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Preface

This is the second of three books devoted to classical mechanics. The first book,
entitled Classical Mechanics: Statics and Kinematics; the third, being coauthored by
Z. Koruba, is entitled Classical Mechanics: Applied Mechanics and Mechatronics.
All three books reference each other, and hence they are highly recommended to
the reader. In this book dynamical and advanced mechanics problems are stated,
illustrated, and discussed, and a few novel concepts, in comparison to standard
textbooks and monographs. Apart from being addressed to a wide spectrum of
graduate and postgraduate students, researchers, and instructors from the fields of
mechanical and civil engineering, this volume is also intended to be used as a self-
contained body of material for applied mathematicians and physical scientists and
researchers.

In Chap. 1 the dynamics of a particle and system of particles, as well as rigid-
body motion about a point, are studied. Section 1.1 is focused on particle dynamics.
First, Newton’s second law of motion is revisited. Classification of forces is carried
out, and Newton’s second law is formulated in cylindrical, spherical, and polar
coordinates. Forward and inverse dynamics problems are defined and analyzed. The
dynamics of a particle subjected to the action of a particular excitation from the
previously classified forces is studied. Governing second-order ordinary differential
equations (ODEs) are derived and then solved. An illustrative example of particle
motion along an ellipse is provided. The laws of conservation of momentum, angular
momentum, kinetic energy, and total (mechanical) energy are introduced, illustrated,
and examined. In Sect. 1.2, the fundamental laws of the collection of particles
(discrete or continuous) are introduced and studied. In the case of momentum
conservation of a continuous mechanical system, two important theorems are
formulated. Then the conservation of the center of gravity of either a discrete or
continuous mechanical system is described. Essential corollaries and principles
are formulated, and an illustrative example is provided. Next, the conservation of
the angular (kinetic) momentum of a discrete mechanical system is considered.
Five important definitions are introduced including Köning’s systems, and Köning’s
theorem is formulated. A kinetic-energy formula is derived. Next, the conservation
of angular momentum of a discrete (lumped) mechanical system is studied.
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A theorem regarding the necessary and sufficient condition for the existence of
the first integral of angular momentum is formulated and proved. In addition, two
examples are provided. In what follows the formulation of the law of conservation
of kinetic energy is given. Body motion about a point is analyzed in Sect. 1.3.

Mathematical and physical pendulums are studied in Chap. 2. In Sect. 2.1
second-order ODE governing the dynamics of a mathematical pendulum is derived
and then explicitly solved for two different sets of initial conditions. In addition, a
mathematical pendulum oscillating in a plane rotating with constant angular velocity
is analyzed. A physical pendulum is studied in Sect. 2.2. Again a governing dynam-
ics equation is formulated. In the case of a conservative system mechanical energy
of the physical pendulum is also derived. Section 2.3 concerns the plane dynamics
of a triple physical pendulum. Initially, three second-order ODEs governing the
dynamics of a triple pendulum are derived, and then they are presented in matrix
notation. Since the obtained differential equations are strongly non-linear, they are
then solved numerically. In particular, periodic, quasiperiodic, and chaotic motions
are illustrated and discussed. Furthermore, the dynamic reactions in pendulum joints
are determined and monitored.

In Chap. 3 static and dynamic problems of discrete mechanical systems are
discussed. In Sect. 3.1 the constraints and generalized coordinates are defined. That
is, geometric, kinematic (differential), and rheonomic (time-dependent), as well
as holonomic and non-holonomic, constraints are illustrated and analyzed through
several examples. Furthermore, unilateral and bilateral constraints are introduced
and explained using two illustrative examples. Possible and ideal virtual displace-
ments are also introduced and further examples are provided. Variational principles
of Jourdain and Gauss are introduced in Sect. 3.2, and their direct application
to static problems is illustrated through two examples. The general equations of
statics, as well as the stability of equilibrium configurations of mechanical systems
embedded in a potential force field, are considered in Sect. 3.3. Important theorems
as well as four principles are formulated, and two examples illustrating theoretical
considerations are provided. In Sect. 3.4 the Lagrange equations of the second and
first kind are rigorously derived. Both discrete and continuous mechanical systems
are considered, and some particular cases of the introduced various constraints are
analyzed separately. Five illustrative examples are given. In Sect. 3.5 properties of
Lagrange’s equation, i.e., covariance, calibration invariance, kinetic-energy form,
non-singularity, and the least action principle, are briefly described. The first
integrals of the Lagrange systems are derived and discussed in Sect. 3.6. Cyclic
coordinates are introduced, and two theorems are formulated. Routhian mechanics
is briefly introduced in Sect. 3.7. Using the Legendre transformation, we derive
Routh’s equations. Next, in Sect. 3.8 the cyclic coordinates are discussed, and
their validity is exhibited through examples. A three-degree-of-freedommanipulator
serving as an example of rigid-body kinetics is studied in Sect. 3.9. First, physical
and mathematical models are introduced, then the Denavit–Hartenberg notation is
applied, and the obtained differential equations are solved numerically. Further-
more, the results of numerical simulations are discussed on the basis of an analysis
of three different cases, and some conclusions are formulated.
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Chapter 4 is devoted to classical equations of mechanics. Section 4.1 concerns
Hamiltonian mechanics, Sect. 4.2 describes methods of solution of the Euler–
Lagrange equations, Sect. 4.3 deals with Whittaker equations, Sect. 4.4 concerns
Voronets and Chaplygin equations, and, finally, Sect. 4.5 includes both a derivation
and discussion of Appell’s equations. In Sect. 4.1.1 the canonically conjugate
variables are introduced, and Hamilton’s canonical equations are derived. An
example is added for clarification. In Sect. 4.1.2 the Jacobi–Poisson theorem
is formulated and proved, followed by an introduction to the Poisson bracket.
Canonical transformations are discussed in Sect. 4.1.3, where six theorems are also
given. Non-singular canonical transformations and guiding functions are introduced
in Sect. 4.1.4, whereas the Jacobi method and the Hamilton–Jacobi equations are
presented in Sect. 4.1.5. Then two particular cases of Hamilton–Jacobi equations are
considered in Sect. 4.1.6, i.e., the Hamilton–Jacobi equations for cyclic coordinates
and conservative systems. In Sects. 4.2.1–4.2.4 solutions of the Euler–Lagrange
equations are presented. Section 4.2.2 includes definitions of weak and strong
minima and Euler’s theorem. The Bogomol’nyi equation and decomposition are
briefly stated in Sect. 4.2.3, whereas the Bäcklund transformation is described in
Sect. 4.2.4 supplemented with two examples. Whittaker’s equations are derived
in Sect. 4.3, whereas the Voronets and Chaplygin equations are formulated in
Sect. 4.4. Applications of Chaplygin’s equations are presented as an example of
a homogeneous disk rolling on a horizontal plane. The Appell equations, followed
by an example, are derived in Sect. 4.5.

Classical impact theory is introduced and illustrated in Chap. 5. Basic concepts of
phenomena associated with impact are presented in Sect. 5.1. The fundamental laws
of an impact theory such as conservation of momentum and angular momentum are
given in Sect. 5.2, where two theorems are also formulated. A particle’s impact
against an obstacle is studied in Sect. 5.3, and the physical interpretation of impact
is given in Sect. 5.4. Next (Sect. 5.5) the collision of two balls in translational motion
is analyzed. In particular, kinetic-energy loss during collision is estimated through
the introduced restitution coefficient. In Sect. 5.6 a collision of two rigid bodies
moving freely is studied, and in Sect. 5.7 a center of percussion is defined using as
an example the impact of bullet against a compound pendulum.

Chapter 6 deals with vibrations of mechanical systems. After a short introduction
multi-degree-of-freedom mechanical systems are studied. In Sect. 6.2 linear and
non-linear sets of second-order ODEs are derived from Lagrange’s equations.
Classification and properties of mechanical forces are presented for linear systems
in Sect. 6.3. Subsequently, the dissipative, gyroscopic, conservative, and circulatory
forces are illustrated and discussed in general and using an example. In Sect. 6.4
small vibrations of linear one-degree-of-freedom mechanical systems are presented.
Both autonomous and non-autonomous cases are considered, and (contrary to
standard approaches) solutions are determined for homogenous/non-homogenous
equations using the notion of complex variables. Amplitude and phase responses are
plotted in two graphs, allowing for direct observation of the influence of damping
magnitude on the amplitude-frequency and phase-frequency plots. In particular,
resonance and non-resonance cases are discussed. In addition, transverse vibrations



viii Preface

of a disk mounted on a flexible steel shaft modeled by two second-order linear
ODEs are analyzed, and the critical speeds of the shaft are defined. Both cases,
i.e., with and without damping, are studied. The phenomenon of shaft self-centering
is illustrated. Finally, a one-degree-of-freedom system driven by an arbitrary time-
dependent force is studied using Laplace transformations. An illustrative example
is given. A one-degree-of-freedom non-linear autonomous and conservative system
is studied in Sect. 6.5. It is shown step by step how to obtain its period of vibration.
In addition, the so-called non-dimensional Duffing equation is derived. One-degree-
of-freedom systems excited in a piecewise linear or impulsive fashion are studied in
Sect. 6.6. It is shown how to find the corresponding solutions.

The dynamics of planets is briefly studied in Chap. 7. In the introduction,
Galileo’s principle of relativity is discussed. Second-order vector ODEs are pre-
sented and the homogeneity of space and time are defined. Potential force fields are
introduced in Sect. 7.2, whereas Sect. 7.3 is devoted to the analysis of two-particle
dynamics. Total system energy, momentum, and angular momentum are derived. In
addition, a surface integral and the Laplace vector are defined explicitly, and their
geometrical interpretations are given. First and second cosmic velocities are defined,
among others. Kepler’s three laws are revisited.

The dynamics of variable mass systems is studied in Chap. 8. After a short
introduction, the change in the quantity of motion and angular momentum is
described in Sect. 8.2. Then an equation of motion of a particle of variable mass
(the Meshcherskiy equation) is derived. Two Tsiolkovsky problems are studied in
Sect. 8.4. Finally, in Sect. 8.4.1 an equation of motion of a body with variable mass
is derived and studied. Two illustrative examples are given.

Body and multibody dynamics are studied in Chap. 9. First, in Sect. 9.1, the
rotational motion of a rigid body about a fixed axis is introduced. In Sect. 9.2
Euler’s dynamic equations are derived, and the so-called Euler case is analyzed.
Poinsot’s geometric interpretation of rigid-body motion with one fixed point is
illustrated. The roles of a polhode and a herpolhode are discussed. In Sect. 9.3 the
dynamics of a rigid body about a fixed point in the gravitational field is studied. The
Euler, Lagrange, and Kovalevskaya cases, where first integrals have been found,
are also briefly described. The general free motion of a rigid body is analyzed in
Sect. 9.4. In Sect. 9.5, the motion of a homogenous ball on a horizontal plane in
the gravitational field with Coulomb friction is modeled and analyzed. Equations of
motion are derived and then solved. The roles of angular velocities of spinning and
rolling and the associated roles of the rolling and spinning torques are illustrated and
discussed. Section 9.6 deals with the motion of a rigid body of convex surface on a
horizontal plane. Equations of motion are supplemented by the Poinsot equation,
and the dynamic reaction is derived. Dynamics of a multibody system coupled
by universal joints is studied in Sect. 9.7. Equations of motion are derived using
Euler’s angles and Lagrange equations of the second kind. Conservative vibrations
of a rigid body supported elastically in the gravitational field are analyzed in
Sect. 9.8, and one illustrative example is provided. Wobblestone dynamics is studied
in Sect. 9.9. The Coulomb–Contensou friction model is first revisited, and the
importance of the problem is exhibited emphasizing a lack of a correct and complete
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solution of the stated task in Sect. 9.9.1. Three vectorial equations of motion
are derived, followed by a tenth scalar equation governing the perpendicularity
condition. Several numerical simulation results are presented. Next, a hyperbolic
tangent approximation of friction spatial models are introduced and discussed in
Sect. 9.9.2. The advantages and disadvantages of the introduced approximation
versus the Padé approximations are outlined. A few numerical simulation results
are given.

Stationary motions of a rigid body and their stability is studied in Chap. 10.
It includes problems related to stationary conservative dynamics (Sect. 10.1) and
invariant sets of conservative systems (Sect. 10.2).

A geometrical approach to dynamical problems is the theme of Chap. 11.
In Sect. 11.1, the correspondence between dynamics and a purely geometrical
approach through the Riemannian space concept is derived. It is shown how
dynamical problems, supported by a configuration space and the Jacobi metric,
are reduced to an equation of geodesic deviation known also as the Jacobi–
Levi–Civita (JLC) equation (Sect. 11.3). Next, in Sects. 11.4 and 11.5, the Jacobi
metric on a configuration space is rigorously defined, the JLC equation is derived,
and then it is rewritten in geodesic coordinates. Finally, a two-degree-of-freedom
mechanical system is used to illustrate the theoretical background introduced earlier
in Sect. 11.6.

Finally, it is rather impossible nowadays to write a comprehensive book on
classical mechanics and include an exhaustive bibliography related to classical
mechanics. Therefore, this volume and the two related books mentioned earlier, are
rather located in standard classical mechanics putting emphasis on some important
topics being rarely mentioned in published literature on mechanics.

Furthermore, in the particular case of dynamics/dynamical systems, there is a
vast number of books that are either devoted directly to classical dynamics or that
include novel branches of dynamics like stability problems, bifurcational behavior,
or deterministic chaos. Although the latter material is beyond the book contents,
the reader may be acquainted with my authored co-authored books/monographs
devoted to the mentioned subjects, i.e., Bifurcation and Chaos in Simple Dynamical
Systems, J. Awrejcewicz (World Scientific, Singapore, 1989); Bifurcation and
Chaos in Coupled Oscillators, J. Awrejcewicz (World Scientific, Singapore, 1991);
Bifurcation and Chaos: Theory and Application, J. Awrejcewicz (Ed.) (Springer,
New York, 1995); Nonlinear Dynamics: New Theoretical and Applied Results,
J. Awrejcewicz (Ed.) (Akademie Verlag, Berlin, 1995); Asymptotic Approach in
Nonlinear Dynamics: New Trends and Applications, J. Awrejcewicz, I.V. Andrianov,
and L.I. Manevitch (Springer, Berlin, 1998); Bifurcation and Chaos in Nonsmooth
Mechanical Systems, J. Awrejcewicz and C.-H. Lamarque (World Scientific, Sin-
gapore, 2003); Nonlinear Dynamics of a Wheeled Vehicle, J. Awrejcewicz and R.
Andrzejewski (Springer, Berlin, 2005); Smooth and Nonsmooth High Dimensional
Chaos and the Melnikov-Type Methods, J. Awrejcewicz and M.M. Holicke (World
Scientific, Singapore, 2007); Modeling, Simulation and Control of Nonlinear
Engineering Dynamical Systems: State of the Art, Perspectives and Applications,
J. Awrejcewicz (Ed.) (Springer, Berlin, 2009).
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The dynamics of continuous mechanical systems governed by PDEs and com-
pletely omitted in this book is widely described in the following books/monographs
authored/co-authored by the present author: Nonclassical Thermoelastic Problems
in Nonlinear Dynamics of Shells, J. Awrejcewicz and V.A. Krysko (Springer,
Berlin, 2003); Asymptotical Mechanics of Thin Walled Structures: A Handbook,
J. Awrejcewicz, I.V. Andrianov, and L.I. Manevitch (Springer, Berlin 2004);
Nonlinear Dynamics of Continuous Elastic Systems, J. Awrejcewicz, V.A. Krysko
and A.F. Vakakis (Springer, Berlin, 2004); Thermodynamics of Plates and Shells,
J. Awrejcewicz, V.A. Krysko, and A.V. Krysko (Springer, Berlin, 2007); Chaos in
Structural Mechanics, J. Awrejcewicz and V.A. Krysko (Springer, Berlin, 2008);
Nonsmooth Dynamics of Contacting Thermoelastic Bodies, J. Awrejcewicz and Yu.
Pyryev (Springer, New York, 2009).

The author wishes to express his thanks to P. Da̧bek and M. Kamierczak for their
help in the book preparation.

Many helpful comments and suggestions given by the author’s coworkers from
the Łódź University of Technology, Poland, and in particular the contributions of
K. Januszkiewicz, J. Mrozowski, and G. Kudra are gratefully acknowledged.

It should also be emphasized that a part of Chaps. 3 and 9 was prepared together
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Chapter 1
Particle Dynamics, Material System Dynamics
and Rigid-Body Motion About a Point

1.1 Dynamics of a Particle

1.1.1 Newton’s Second Law of Motion

Let us return to Chap. 1 of [1], where Newton’s laws were introduced. The second
law formulates the relation between the acceleration of motion of a particle and the
force acting on it. However, it turns out that only in certain cases is the force F acting
on this particle independent of the kinematic parameters of motion of the particle.
Let us emphasize that in this chapter all masses are considered constant.

In the general case Newton’s second law takes the form

m
d2r
dt2

D F.r; v; t/; (1.1)

which emphasizes that the force depends on the position of a particle defined by a
radius vector as well as on the velocity of motion of this particle (and sometimes
even on acceleration [2], which, however, will not be considered in this book) and
on time. Equation (1.1) is a second-order non-linear differential equation.

Figure 1.1a presents the free motion of a particle and the vectors of force and
acceleration. In turn, in Fig. 1.1b are shown the distribution of acceleration and
forces acting on the particle in natural coordinates.

Introducing the Cartesian coordinates and projecting the vectors occurring
in (1.1) onto the axes of the system we obtain

m Rx1 D F1 .x1; x2; x3; Px1; Px2; Px3; t/;
m Rx2 D F2 .x1; x2; x3; Px1; Px2; Px3; t/;
m Rx3 D F3 .x1; x2; x3; Px1; Px2; Px3; t/: (1.2)
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and Mathematics 29, DOI 10.1007/978-1-4614-3740-6 1,
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2 1 Particle Dynamics, Material System Dynamics...

Fig. 1.1 Motion of particle in Cartesian coordinates (a) and in natural coordinates (b)

According to previous calculations and Fig. 1.1b, in the natural coordinates (see
Chap. 4.4, Sect. 4, of [1] for more details) we can resolve the acceleration and force
into normal and tangential components, that is,

F D Ftt C Fnn;

a D at t C ann; (1.3)

and according to Newton’s second law we have

m
dv

dt
D Ft;

m
v2

�
D Fn: (1.4)

Let us consider the dynamics of a particle moving on a prescribed fixed plane
curve (Fig. 1.2).

In this case, the motion of the particle is not free motion, which can be illustrated
by the motion (without any resistance to motion) of a small ball inside a bent
tube. Let the curve along which the particle moves be described by the equation
f .x1; x2/ D 0 in the coordinate system OX1X2. The equation of motion in the
vector form reads

ma D F C N: (1.5)

Projecting vectors onto the coordinate axes we obtain

m Rx1 D Fx1 CN cos.N;E1/;

m Rx2 D Fx2 CN cos.N;E2/: (1.6)
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Fig. 1.2 Motion of a particle
on a plane OX1X2 along
prescribed plane curve

The force N has the direction of a normal to the prescribed curve, and the
direction cosines are described by formulas known from differential geometry:

cos.N;Fi / D 1

f �
@f

@xi
; f � D

s�
@f

@x1

�2
C
�
@f

@x2

�2
: (1.7)

Equations (1.6), after taking into account (1.7), take the form

m Rxi D Fxi C �
@f

@x1
; i D 1; 2; (1.8)

where � D N=f �. In those equations the unknowns are �; Rx1, Rx2 [the third equation
is the equation of constraints f .x1; x2/ D 0]. Solving this system of differential-
algebraic equations we can determine the three desired quantities and, subsequently,
the normal force N D �f �.

The vectors in (1.5) can also be projected onto the axes of the natural coordinate
system .�; n/, where the sense of � is in accordance with the sense of a ball’s motion
relative to its initial position A0. We obtain

ma cos.a;�/ D Ft;

ma cos.a;n/ D Fn CN; (1.9)

where Ft and Fn are projections of the force F onto tangent and normal directions.
Because

a cos.a;�/ D d2s

dt2
;

a cos.a;n/ D v2

�
; (1.10)
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after taking into account (1.10) in (1.9) we get

m
d2s

dt2
D Ft;

m
v2

�
D Fn CN: (1.11)

The preceding equations are called Euler’s equations of the constrained motion
of a particle.

Integrating the first of (1.11) and assuming that Ft D const we have

m
ds

dt
D Ftt C C2;

ms.t/ D Ftt
2

2
C C2t C C1: (1.12)

Let v.0/ D v0, s.0/ D 0; then we have C1 D 0, C2 D mv0, and in view of that,
v.t/ D Ft

m
t C v0. From the second of (1.11) we determine N D N.t/. From the

example of the application of natural coordinates it is seen that by the appropriate
choice of coordinates we can significantly simplify (or complicate) a solution with
regard to the mathematical model describing the problem.

One may introduce the following classification of forces:

(1) F D const. The examples of a force like this can be the gravity force or
the friction force. Let us note that both these forces are only approximately
constant. In the former case the motion should take place in the proximity of
Earth, whereas in the latter case the friction can depend on many parameters,
and in many cases it cannot be treated as constant [1, 3].

(2) F D F.t/. The force depends on time, and the dependency has a variety of
forms. In the case of the oscillations of discrete (lumped) systems, such a
dependency is most often a harmonic, periodic, or quasiperiodic function [3].
In the case of the vibrations of continuous systems such as beams, plates, or
shells, the dependency of force on time is often assumed in the form of step,
rectangular, triangular, or impulse excitations [4]. Another example can be the
force of attraction in a magnetic field because it is dependent on the field
strength, which may vary in time.

(3) F D F.r/. The dependency of a force on the position in the case of the
gravitational attraction of particles of masses m1 and m2 can be expressed as
the relation F D G.m1m2/=r

2, where r is the distance between the particles
and G is a constant. We deal with a similar case if to the particle we connect a
spring (of negligible mass) whose stiffness, that is, the dependency of the spring
load on its deflection, is a non-linear function.

(4) F D F.v/. We deal with this case if a particle is moving in a liquid or gaseous
medium. This dependency most often describes damping and is either linear
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(viscous damping) or non-linear and proportional to v2, but it may also assume
a linear negative value, which leads to self-excited motion of a particle [3].

Note that in real mechanical systems combinations of these forces is possible.
Apart from rectangular coordinates one may use curvilinear coordinates for

description of particle dynamics. According to earlier considerations (Chap. 4 of
[1]) equations of motion take the form

(1) In cylindrical coordinates

m
�Rr � r P�2

� D Fr ;

m
�
r R� C 2 Pr P�� D F�;

mRz D Fz; (1.13)

where F D Frer C F�e� C FZE3;
(2) In spherical coordinates

m
� RR �R P�2 �R P�2 sin2 �

� D FR;

m
�
R R� C 2 PR P� �R P�2 sin � cos�

� D F�;

m
�
R R� sin � C 2 PR P� sin� C 2R P� P� cos�

� D F�; (1.14)

where F D FReR C F�e� C F�e� ;
(3) In polar coordinates on a plane

m
�Rr � r P�2

� D Fr ;

m
�
r R� C 2 Pr P�� D F�: (1.15)

This equation was obtained from (1.13) after setting z D const.

1.1.2 Classifying Dynamics Problems

The dynamics of a particle deals with two classes of problems, forward problems
and inversed problems. In the first case the motion of a particle is known, and the
force that causes the motion is desired. In the second case, the force is known, and
the motion of a particle is to be determined.

Forward dynamics problems, according to its name and the definition introduced
earlier, do require knowledge of the vector r D r.t/, and the same Pr D Pr.t/ and
Rr D Rr.t/.

According to (1.1) we have

m. Rx1.t/E1 C Rx2.t/E2 C Rx3.t/E3/ D F1E1 C F2E2 C F3E3; (1.16)
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which allows for the determination of projections of vector F from the equations

m Rxi D Fi ; i D 1; 2; 3: (1.17)

Vector F is defined by the magnitude

F D
q
F 2
1 C F 2

2 C F 2
3 ; (1.18)

and the direction cosines of angles ˛i formed by the vector with the axes Xi are as
follows:

cos˛i D Fi

F
; i D 1; 2; 3: (1.19)

The inverse dynamics problem is more complicated. In order to determine the
motion of a particle knowing the right-hand side of (1.1), one should integrate the
differential equation (1.2) twice. Then we obtain a general solution of the system of
equations (1.2). In order to uniquely determine the motion of the system, one should
choose from the obtained whole family of solutions only those that are consistent
with the initial conditions adopted earlier, that is, one should solve the so-called
Cauchy problem.

In order to determine uniquely the motion of a particle, one should know its
displacement and velocity at the initial time instant t0, that is,

r.t0/ D x10E1 C x20E2 C x30E3;

Pr.t0/ D Px10E1 C Px20E2 C Px30E3; (1.20)

where xi .t0/ D xi0, Pxi .t0/ D Pxi0, i D 1; 2; 3.
Because each of equations (1.2) is a second-order differential equation, in order

to integrate it twice, the introduction of two constants of integration is required.
Since there are three equations, we have to determine six constants Ci . Then, the

solutions take the form

xi D xi .t; C1; C2; C3; C4; C5; C6/;

Pxi D Pxi .t; C1; C2; C3; C4; C5; C6/: (1.21)

Next, according to (1.20) and (1.21) for t D t0 we have

xi0 D xi .t0; C1; C2; C3; C4; C5; C6/;

Pxi0 D Pxi .t0; C1; C2; C3; C4; C5; C6/; i D 1; 2; 3: (1.22)

The preceding system of algebraic equations consisting of six equations allows
us to determine six unknown constants Ci D Ci.x10; x20; x30; Px10; Px20, Px30/.
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Substituting the constants Ci determined in that way into (1.21), we obtain the
particular solutions of the form

xi D xi .t; x10; x20; x30; Px10; Px20; Px30/ : (1.23)

Only in a few cases does the inverse dynamics problem allow one to determine
solutions in analytical form. Systems of ordinary differential equation (1.2) are often
strongly non-linear and their solutions are not known.

There exists, however, a whole range of approximate methods allowing for the
determination of the desired solutions. These methods include numerical methods,
analytical asymptotic methods, and mixed numerically analytical methods. If the
ordinary differential equations are linear with constant coefficients, their formal
solution does not present difficulties.

This problem is a broad one, and the reader can find more information, for
instance, in the monographs of the author and his coworkers [5–10].

1.1.3 Particle Motion Under the Action of Simple Forces

Let us now consider special cases of exciting forces, which were classified at the
beginning of Sect. 1.1.1. If the force acting on a particle is constant F D const, the
from (1.2) we obtain

Rxi D 1

m
Fi : (1.24)

Following the first integration of the three preceding equations, we have

Pxi D 1

m
Fi t C Ci : (1.25)

Integrating (1.25) we obtain

x1 D F1

2m
t2 C C1t C C4;

x2 D F2

2m
t2 C C2t C C5;

x3 D F3

2m
t2 C C3t C C6: (1.26)

In order to uniquely determine the motion, the initial conditions should be taken
into account:

xi .0/ D xi0; Pxi .0/ D vi0; (1.27)
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where t0 D 0 was assumed. Substituting t D 0 into (1.26) and taking into account
(1.27) we obtain the following values of the constants:

Ci D vi0; CiC3 D xi0; i D 1; 2; 3: (1.28)

Taking into account (1.28) in (1.26), the equations of motion of the particle take
the form

xi .t/ D Fi

2m
t2 C v0i t C xi0: (1.29)

Introducing new variables �i .t/ D xi .t/ � xi0, we eventually obtain

�1.t/ D F1

2m
t2 C v01t;

�2.t/ D F2

2m
t2 C v02t;

�3.t/ D F3

2m
t2 C v03t: (1.30)

Setting Fi D 0 in (1.30) we obtain equations of uniform rectilinear motion of a
particle, which is in agreement with Newton’s fist law.

If the force acting on a particle has the form F D F.t/, then from (1.2) we obtain

Rxi D Fi .t/

m
; i D 1; 2; 3: (1.31)

Let us note that each of the three equations in (1.31) is independent of the others.
The solutions are sought in an analogous way to that presented previously. As a
result of integration we obtain

xi D 1

m

tZ
0

2
4 �Z
0

Fi .�/d�

3
5 d� C v0i t C xi0; (1.32)

where the initial conditions (1.27) were assumed.
Let us note that, if we assume Fi to be constant in (1.32), we obtain (1.29). In

the general case the solutions (1.32) depend on the form of the function Fi .t/. If
these relationships are given in the form of elementary functions and the integration
can be successfully conducted twice, we obtain the explicit analytical solution of
the form (1.32), that is, an exact solution.

If the force depends only on position, that is,

F D F.r/ D F1.x1; x2; x3/E1 C F2.x1; x2; x3/E2 C F3.x1; x2; x3/E3;
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then the problem is not an easy one. According to (1.2), equations of motion take
the form

Rx1 D 1

m
F1.x1; x2; x3/;

Rx2 D 1

m
F2.x1; x2; x3/;

Rx3 D 1

m
F3.x1; x2; x3/: (1.33)

However, now each of the equations depends on the solutions of two other
equations. In the general case the solution of the system of equations (1.33) is not
known. However, in two special cases the solutions can be determined.

The first case occurs when the relationships Fi .x1; x2; x3/ are linear, that is,
we have

Fi .x1; x2; x3/ D ki1x1 C ki2x2 C ki3x3; i D 1; 2; 3: (1.34)

Equations (1.33) take the form

Rx.t/ D Ax.t/; (1.35)

where

A D 1

m

2
4k11 k12 k13
k21 k22 k23
k31 k32 k33

3
5 ; (1.36)

x D
2
4x1.t/x2.t/

x3.t/

3
5 : (1.37)

The system of second-order differential equations of the form (1.35) is linear, and
its solution can be determined analytically [3]. We deal with the second case where
an exact solution can be obtained when a particle moves in rectilinear motion. Then,
for a description of the motion a single axis is enough instead of a system of axes.

Such a case was discussed, for instance, in [3]. Let the equation of motion have
the form

m Ry D F.y/ (1.38)

for the initial conditions

y.0/ D y0; Py.0/ D v0: (1.39)

Let us note that

Ry D d Py
dy

dy

dt
D v

dv

dy
; (1.40)

where v D Py.



10 1 Particle Dynamics, Material System Dynamics...

Substituting expression (1.40) into (1.38) we have

mvdv � F.y/dy D 0; (1.41)

and after integration

m

PyZ
v0

vdv D
yZ

y0

F .�/d� (1.42)

we obtain

m
Py2 � v20
2

D
yZ

y0

F .�/d�: (1.43)

From the preceding equation we obtain

Py � dy

dt
D ˙

vuuutv20 C 2

m

yZ
y0

F .�/d�; (1.44)

and separating the variables we have

t D
yZ

y0

d�

˙
s

v20 C 2
m

�R
y0

F .�/d�

C t0: (1.45)

From (1.45) it follows that unexpectedly we obtained the solution in the form of
the inverse function of y.t/, that is, t D t.y/. If we assume that the relationship
F.y/ has the form enabling the integrations described in (1.45), then the relationship
t.y/ can usually be represented through elementary functions. If the relationship
F.y/D ky is linear, then additionally it is possible to find the relationship yDy.t/.

The last of the considered cases is associated with the relationship F D F.v/.
Similar to the case of F D F.r/, the problem cannot be generally solved in exact
form. However, if the relationship is linear, the solution can be obtained in analytical
form.

Let us consider one special case of the rectilinear motion of a particle, that is,

m Ry D F. Py/ (1.46)

or

m
dv

dt
D F.v/: (1.47)
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Following separation of the variables and integration we obtain

t D
Z

m

F.�/
d� C C1: (1.48)

On the assumption that as a result of integration we will succeed in determining
the function t D t.v/, and also in determining v D v.t/, it is easy to carry out the
integration for the second time obtaining

y.t/ D
Z

v.t; v0/dt C C2: (1.49)

If this method fails, then we can proceed in a different way [2]. One should
multiply (1.47) by dy obtaining

m
dy

dt
dv D F.v/dy; (1.50)

and separating the variables

dy D mv

F.v/
dv: (1.51)

Integrating the preceding equation we obtain

y.v/ D m

Z
�

F.�/
d� C C2: (1.52)

At the end of the calculations in this section it should be emphasized that the
subject of our analysis was the simple dependencies of the force on particular
parameters, such as time, position, and velocity, that occurred separately. The
problem becomes more complicated if they occur together.

As was already mentioned, the forward dynamics problems for a particle consist
in the determination of the force producing the motion, on the assumption that the
mass of the particle is known and the equation of the trajectory of the particle motion
is known as well.

While solving problems of this class, one often applies the so-called method of
kinetostatics. One makes use of d’Alembert’s principle through introduction of the
inertia forces FB D �ma, where a is the acceleration (kinetics), and then one takes
into consideration the equilibrium of forces acting on a particle (statics).

Example 1.1. A particle A of mass m moves along a path that is an ellipse of the
form x21a

�2 C x22b
�2 D 1 (Fig. 1.3). The acceleration of the moving particle is

parallel to the axis OX2. Determine the relationship F.t/, where F is the force
acting on the particle. One should assume the following initial conditions: r.0/ D
bE2; Pr.0/ D v0E1.
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Fig. 1.3 Motion of a particle
along an ellipse

According to the conditions of the problem we have

mRr D F;

that is,

m. Rx1E1 C Rx2E2/ D F1E1 C F2E2;

and hence we obtain the following scalar equations:

m Rx1 D F1; m Rx2 D F2:

Because the acceleration Rr k E2, we have F1 D 0. Thus we have

Px1 D constI

following integration, and taking into account the initial condition x1 D v0t , and
from the equation of an ellipse we find

x2 D ˙b
s
1 � v20t

2

a2
;

where the plus sign means that the particle is located on the upper half of the ellipse.
Because F1 D 0, the determination of F boils down to the determination of F2,

that is, to the determination of the acceleration Rx2. From the last relationship we
have

Px2 D
b
�
� 2v20t

a2

�
2

q
1 � v20t

2

a2

D �bv20t

a2

�
1 � v20t

2

a2

�� 1
2

;
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Rx2 D �bv20
a2

2
4q1 � v20t

2

a2
�
0
@ � v20t

2

a2r
1� v20t

2

a2

1
A
3
5

1 � v20t
2

a2

D �bv20
a2

h�
1 � v20t

2

a2

�
C v20t

2

a2

i
�q

1 � v20t
2

a2

�3 D � b
4v20
a2x32

;

and eventually we obtain

F D F2Emb D m Rx2Emb2 D �mb
4v20

a2x32
Emb2:

In the end, let us observe that zero horizontal acceleration of the particle (constant
horizontal velocity v0) and “start” from point .O; b/mean that the particle can move
only on the ellipse quadrant, and its vertical velocity at point .a;O/will be infinitely
large. �

1.1.4 Law of Conservation of Momentum

The law of conservation of momentum of a particle is also known as Newton’s
second law or Euler’s first law. According to the previous considerations and taking
into account the introductory definitions given in [1] we will analyze the motion
of a particle in the adopted Cartesian coordinate system of basis fE1;E2;E3g. We

will describe the position of particle A by the radius vector r D �!
OA, where O is

the origin of the coordinate system. The integral form of the law of conservation of
momentum is expressed by the formula

P.t/ � P.t0/ D
tZ

t0

F.�/d�; (1.53)

where F denotes the vector of force acting on the particle.
If we assume that vector P.t/ is differentiable with respect to time, then

differentiating both sides of (1.53) we have

F D PP D dP
dt
: (1.54)

The preceding equation can be written in the form

dP D Fdt; (1.55)

where Fdt is the elementary impulse of a force.
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Let us note [2] that the elementary impulse of a force depends on the force vector
and on time, that is, it contains more information about the external action on the
particle than the notion of force used so far.

On the other hand, P denotes the momentum of a particle, that is,

P D mv D mPr: (1.56)

Comparing (1.55) and (1.56) we obtain

mdv D Fdt: (1.57)

The preceding formula has the following interpretation.
An infinitesimal increment of momentum of a particle is equal to the elementary

impulse of forces acting on the particle.
Let us note that from (1.57) we obtain Newton’s second law

m
dv
dt

D F; (1.58)

which justifies the equivalence of the two names of the discussed law.
Because the elementary impulse of a force and elementary momentum are both

vectors, one may add them by means of sums or integrals (see next section).
Integrating both sides of (1.57) we obtain

v2Z
v1

d.mv/ D
t2Z
t1

Fdt; (1.59)

wherem D const was assumed. From the preceding equation we get

	P D J12; (1.60)

where

	P D P2 � P1; P2 D mv2; P1 D mv1;

J12 D
t2Z
t1

Fdt: (1.61)

The formula (1.60) expresses the law of conservation of momentum in time
interval .t2 � t1/. From the formula it also follows that P2 D P1 C J12. This means
that if we know momentum vector P1 and the impulse [i.e., we know the relation
F D F.t/, and we are able to calculate integral (1.61)], then after geometric addition
of these two vectors we obtain momentum vector P2.
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If F D const, then from (1.61) we get

J12 D F.t2 � t1/: (1.62)

Let us also note that if there is no force acting on a particle .F D 0/, then
according to (1.56) and (1.57) we have

P � mv D const; (1.63)

which means that the momentum of a particle is constant.

1.1.5 Laws of Conservation of the Kinematic Quantities
of a Particle

We say that an arbitrary kinematic quantity is conserved during the motion of a
particle if it is constant during this motion.

Such quantities are very important in mechanics and are called integrals of
motion. It turns out that in the case of particle motion we are dealing with the laws
of conservation of three kinetic quantities. We will successively present these laws
below.

1. The law of conservation of momentum
According to (1.53) and (1.56), the momentum P.t/ is conserved (constant) during
the time of motion t � t0 if

R t
t0

F.�/d� D 0. This takes place when F.�/ D 0.
There exists also the second variant of the law of conservation of momentum of

a particle. That is, we can consider the case of the conservation of the projection of
momentum vector P onto an arbitrary direction represented by vector b.t/, that is,
we demand that

d

dt
.P ı b/ D 0: (1.64)

This means that certain components of vector P in the adopted basis of a vector
space are conserved. From the preceding equation we obtain

PP ı b C P ı Pb D F ı b C P ı Pb D 0: (1.65)

From formula (1.65) it follows that if F ı b C P ı Pb D 0, then the quantity P ı b
is conserved.

If a particle moves in a gravitational field, then the components of the vector
P D mv in the directions E1 and E2 are conserved because F D �mgE3. Another
example can be that of a particle hitting a smooth plane. This time the components
of vector P parallel to the aforementioned plane are conserved.
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2. The law of conservation of angular momentum
Taking an arbitrary point O as fixed we will observe the motion of a particle of
mass m. At time instant t the particle has a velocity v and momentum P D mv and
is acted upon by a force F.t/.

Definition 1.1. The moment of the vector of a particle’s momentum with respect
to point O is called the angular momentum of the particle with respect to
pointO .KO/.

According to the preceding definition we have

KO D r � P D r �mv; (1.66)

where r D r.t/ is a radius vector of the previously analyzed particle of the tail at
pointO . Differentiating (1.66) with respect to time we have

PKO D Pr �mv C r �mPv D v �mv C r � F D r � F: (1.67)

Equation (1.67) takes the form

dKO

dt
� PKO D MO; (1.68)

where
MO D r � F (1.69)

and MO is a moment of force F about pole O .
The equation obtained enables us to formulate the following conclusion.

The rate of change of angular momentum of a particle with respect to a given
fixed pole (point O) is equal to the moment of forces acting on the particle with
respect to that pole.

Multiplying both sides of (1.68) by dt we obtain

dKO D MOdt; (1.70)

which enables us to formulate the following conclusion.

An elementary increment of the angular momentum vector is equal to an
elementary impulse of a moment of force.

By conducting calculations analogous to those regarding the conservation of
momentum presented previously, one may integrate both sides of (1.70), obtaining

	KO D KO2 � KO1 D
t2Z
t1

MO.t/dt; (1.71)

where KOi D KO.ti /, i D 1; 2. Equation (1.71) enables us to formulate the
following conclusion.
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The increment of the angular momentum of a particle in a certain time interval
is equal to the impulse of a moment of force acting on the particle during that time
interval.

If MO D const, then from (1.71) we obtain

KO2 � KO1 D MO.t2 � t1/: (1.72)

If MO D 0, then according to (1.70), KO D const D C. That enables us to
formulate the law of conservation of angular momentum.

The angular momentum of a particle with respect to an arbitrary fixed pole is
constant if the moment of forces acting on the particle with respect to that pole
equals zero.

According to (1.66) we have

PKO D d

dt
.r �mv/ D m

d

dt
.r � v/

D m
d

dt

ˇ̌̌
ˇ̌̌E1 E2 E3
x1 x2 x3

Px1 Px2 Px3

ˇ̌̌
ˇ̌̌ D m

d

dt
.x2 Px3 � x3 Px2/E1

Cm d

dt
. Px1x3 � x1 Px3/E2 Cm

d

dt
.x1 Px2 � x2 Px1/E3; (1.73)

and according to (1.69) we obtain

MO D
ˇ̌̌
ˇ̌̌E1 E2 E3
x1 x2 x3
F1 F2 F3

ˇ̌̌
ˇ̌̌ D .x2F3 � x3F2/E1

C .F1x3 � x1F3/E2 C .x1F2 � x2F1/E3: (1.74)

Finally, from (1.68) [taking into account (1.73) and (1.74)] we obtain

m
d

dt
.x2 Px3 � x3 Px2/ D x2F3 � x3F2;

m
d

dt
.x3 Px1 � x1 Px3/ D x3F1 � x1F3;

m
d

dt
.x1 Px2 � x2 Px1/ D x1F2 � x2F1: (1.75)
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For the case MO D 0; KO D C1E1 C C2E2 C C3E3 and from (1.75) we obtain

KO1 � m.x2 Px3 � x3 Px2/ D C1;

KO2 � m.x3 Px1 � x1 Px3/ D C2;

KO3 � m.x1 Px2 � x2 Px1/ D C3; (1.76)

where Ci ; i D 1; 2; 3 are constants.
We obtained, then, the first integrals of the equations of motion, which are called

the integrals of angular momentum.
We encounter the conservation of angular momentum in two cases, namely,

either when the angular momentum vector is completely conserved or when one
of the angular momentum vector components is conserved. The former case takes
place if Fkr. Additionally, the angular momentum is conserved when F D 0 (the
trivial case). Then from (1.67) it follows that KO D const D C. Such force F
we call a central force and its example can be a gravitational force of attraction.
Then, according to (1.66), we have r.t/ � mv.t/ D C. Vector C is constant over
time, that is, vectors r and v form one plane, and thus the particle motion takes
place on a plane. If we treat an arbitrary vector b.t/ as a component of vector KO ,
then the second case of the angular momentum conservation takes place when
KO ı b D const. Then we have

PKO ı b C KO ı Pb D r � F ı b C KO ı Pb D 0; (1.77)

where formula (1.67) was used.

3. The law of conservation of kinetic energy
Before we formulate the law of conservation of the kinetic energy of a particle, we
will introduce certain basic notions associated with work, power, and efficiency.

Figure 1.4 presents the elementary displacement dr of particle A caused by the
action of force F.

The elementary work dW of force F during the elementary displacement dr we
define as a scalar product of the form

dW D F ı dr D F ı dr
dt

dt D F ı vdt: (1.78)

Although dW denotes the total differential, one should bear in mind that
generally the elementary work is not a total differential of any function [2]. From
formula (1.78) it is seen that the work is a scalar and can be expressed both through
the position vector and through the vector of velocity of a particle. A unit of work
is the joule (1J D N �m).

Because a particle moves along a path, we have jdrj D ds, and from (1.78) we
obtain

dW D F ds cos˛: (1.79)
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Fig. 1.4 Elementary
displacement of particle A

The measure of mechanical motion is kinetic energy mv2

2
and momentum mv,

and the measure of force action is the impulse J and work of force W .

Theorem 1.1. The work of a resultant force on a certain displacement is equal to
the algebraic sum of works of each of the component forces on this displacement.

Proof. By assumption we have

Fr D F1 C F2 C � � � C FN ;

and the work on displacement dr is equal to

ıW D Fr ı dr D F1 ı dr C F2 ı dr C � � � C FN ı dr;

and after integration we obtain

W D
Z A2

A1

Fr ı dr D
Z A2

A1

F1 ı dr C
Z A2

A1

F2 ı dr C � � � C
Z A2

A1

FN ı dr;

that is,

W D W1 CW2 C � � � CWN ;

which completes the proof. �

Theorem 1.2. The work of a force constant with regard to the magnitude and
direction on a resultant displacement is equal to the sum of works of this force
on each of the components of the displacement.

Proof. Let point A under the action of force F undergo consecutive displacements
rn such that

r D r1 C r2 C � � � C rN :
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The work done by force F is equal to

W D F ı dr D F ı dr1 C F ı dr2 C � � � C F ı drN D W1 CW2 C � � � CWN ;

which completes the proof. �

Until now, we have used the notion of elementary work. If under the action of
the force F D F.t/ the particle changed its position from pointA1 to pointA2 in the
time interval t2 � t1, then the work done by this force would be equal to the sum of
the elementary works, which can be written as

W _
A1A2

D
Z
_

A1A2

F ı dr D
Z
_

A1A2

F cos˛ds; (1.80)

where
_

A1A2 denotes the arc connecting points A1 and A2 along the curve of the
path of the particle.

If the force F D const, then one of the axes of the Cartesian coordinate system
can be taken as parallel to F. Then we obtain

W _
A1A2

D
Z
_

A1A2

.F1E1 C F2E2 C F3E3/ ı .dx1E1 C dx2E2 C dx3E3/

D
X1A2Z
X1A1

F1dx1 D F1 .x1A2 � x1A1/; (1.81)

where axis E1 k F, that is, F2 D F3 D 0.
If we consider the work of the force mg in the gravitational field, then, on the

assumption that E3 k g, and E3 and g have opposite senses (i.e., E3 ı g D �g),
we have

W _
A1A2

D �mg .x3A2 � x3A1/ D mg .x3A1 � x3A2/ : (1.82)

If one takes the force

F D kr; (1.83)

where k is a stiffness coefficient of a massless elastic element, then

W _
A1A2

D �k
Z
_

A1A2

r ı dr

D �k
rA2Z
rA1

.x1dx1 C x2dx2 C x3dx3/ D k

2

�
r2A1 � r2A2

�
: (1.84)
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Fig. 1.5 Work of internal forces on example of two points of a rigid body

Let us note that during calculation of the integrals used for estimation of the
work, the time t2 � t1 over which the work was done was not exploited. It follows
that the work does not depend on time. However, from our everyday experience we
know that the time in which the work is done is of great importance. Therefore, we
introduce the notion of power.

Work of internal forces in a rigid body
Let us consider two arbitrary points of a rigid body A1 and A2 (Fig. 1.5) subjected
to the action of internal forces F12 and F21, where according to Newton’s third law
F12 D �F21.

Let the vectors of velocities respectively at points A1 and A2 be equal to v1
and v2. Displacements of those points at the time dt are equal to ds1 D v1dt and
ds2 D v2dt . Projections of velocities on the line A1A2 are equal, so the projections
ds

0

1 and ds
0

2 are also equal. The work done by forces F12 and F21 is equal to

F12ds1 cos.F12; v1/C F21ds2 cos.F21; v2/ D F12ds0
1 � F12ds0

2 D 0:

Considering all points we have

ıW D
rX

nD1
ıWn D 0;

that is, the sum of works of internal forces on an arbitrary displacement of a rigid
body is equal to zero.

The following ratio of elementary work done by a force to the time of its duration
we call the power

N D dW

dt
� PW : (1.85)

According to (1.78) we obtain

N D F ı v: (1.86)
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It is easy to notice that when a machine is working, part of the power is consumed
to overcome the resistance to motion, friction, self-heating, wear, etc. As a result
as the machine’s output we obtain power that is smaller than the power initially
supplied. The ratio of these two powers we call efficiency:

� D We

Win
D Ne

Nin
; (1.87)

where the subscript e denotes the effective work or power and the subscript in
denotes the input work or power. The efficiency varies in the range 0 � � � 1.

The law of conservation of kinetic energy (work) is described by a simple
formula:

PT D N; (1.88)

where T D 1
2
mvıv and the power of the force is described by formula (1.86). Let us

note that force F plays here an important role, although it does not occur explicitly
in (1.88).

Equation (1.88) is validated, since we have

PT D 1

2
m

d

dt
.v ı v/ D mPv ı v D F ı v: (1.89)

We will also demonstrate the validity of the following statement.

The differential of the kinetic energy of a particle is equal to the elementary work
done by the force acting on the particle.

From Newton’s second law we have

m
dv
dt

ı dr D F ı dr: (1.90)

The right-hand side of (1.90) is F ı dr D dW , and its left-hand side is

mdv ı dr
dt

D mv ı dv D d

�
mv2

2

�
D dT; (1.91)

and in view of that,

dT D dW: (1.92)

If a particle moving along a certain path was located at pointA1 at time instant t1,
and at point A2 at instant t2, then, integrating (1.92), we obtain

v2Z
v1

dT D
Z
_

A1A2

dW (1.93)
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or

T2 � T1 D W _
A1A2

; (1.94)

where

Ti D m

2
v2i ; i D 1; 2: (1.95)

Equation (1.94) leads to the formulation of the following conclusion.

The increment of the kinetic energy of a particle is equal to the work done by the
forces acting on the path traveled by the particle.

4. The law of conservation of total energy (mechanical energy)
Before this law is formulated, we will introduce certain basic notions regarding a
potential force field [2]. If for a certain force field (i.e., the region of a space within
which forces act on a particle) described by the scalar function

V D V.r; t/; (1.96)

which depends on the position of the particle and on time, the force acting on the
particle described by the radius vector is equal to

F D �gradV.r; t/; (1.97)

then such a field we call a non-stationary potential field and function V.r; t/ we call
the potential. If V D V.r/, then the field is called a stationary field.

According to Definition (1.97) we have

F D �@V
@r

D � @V
@xi

Ei : (1.98)

Introducing the definition of the total differential of the potential as

dV D @V

@r
ı dr D

3X
iD1

@V

@xi
dxi ; (1.99)

and taking into account (1.98), we obtain

dV D �F ı dr D �
3X
iD1

Fidxi : (1.100)

The elementary work of a potential force is a total differential of the potential
of the field, but with a minus sign. This means that the positive work done in the
potential field is accompanied by a decrease in potential value.
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If the force field is a conservative field, the potential

V D V.r/: (1.101)

In turn, the work of the potential force during displacement of a particle under
the action of this force from a given point of the field V.x1; x2; x3/ to the point of
reference V0.x10; x20; x30/, that is, Ep D V � V0, is called the potential energy of a
potential force. If V0 D 0, then Ep D V .

The field is conservative if the following conditions are satisfied:

(1) The work of a force on a closed path S in a conservative field is equal to

I
S

F ı dr D
I
S

Fidxi D
I
S

@V

@xi
dxi D 0: (1.102)

(2) The curl at every point of the conservative field

rot F.r/ D 0; (1.103)

that is,

rot F.r/ D r � F D

ˇ̌̌
ˇ̌̌
ˇ
E1 E2 E3
@
@x1

@
@x2

@
@x3

F1 F2 F3

ˇ̌̌
ˇ̌̌
ˇ

D
�
@F3

@x2
� @F2

@x3

�
E1 C

�
@F1

@x3
� @F3

@x1

�
E2 C

�
@F2

@x1
� @F1

@x2

�
E3

D 0; (1.104)

which means that the conservative field is irrotational.

Three scalar equations following from (1.104) are called Schwartz conditions,
and if they are satisfied, then the examined field is called the potential field.

Figure 1.6 illustrates the notions introduced previously connected with the
potential force field.

Particle A in the figure lies on the surface over which the potential has a constant
value V.x1; x2; x3/ D C . Such a surface is called an equipotential surface. The
marked gradient grad V.x1A; x2A; x3A/ is a vector normal to the equipotential
surface at the point occupied by particle A. Its sense is taken toward increasing
values of the potential.

The lines (paths) of forces are perpendicular to the equipotential surfaces (since
force F has the opposite sense to the vector grad V ? V.x1; x2; x3/ D C ).

Below we present some examples of potential fields. One of them is the
gravitational field of Earth.
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Fig. 1.6 Force acting on particle A.r/ situated in a potential force field

The force acting on a particle of mass m is equal to

F D 0 � E1 C 0 � E2 Cmg � E3; (1.105)

where the system of coordinates was introduced in such a way that g k E3 and
g ı E3 D �g. From (1.105) it follows that F3 D �mg.

We determine the total differential based on formula (1.100). It is equal to

dV D �F3dx3 D d.mgx3/; (1.106)

and integrating both sides of this equation we obtain

V D mgx3 C C3; (1.107)

where C3 is a constant of integration.
Assuming V.0/ D 0 we determine the constant C3 D 0. The equation V D

mgx3 determines the family of equipotential planes parallel to the plane OX1X2.
The lines of forces are perpendicular to these planes, and the potential V increases
with increasing x3. We call such a conservative field a uniform field.

Now we will show the difference between the uniform field and the non-uniform
field on an example of the gravitational field of Earth.
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In the case of the uniform field we have

F1 D F2 D 0; F3 D �mg; (1.108)

wherem is the mass of a particle.
According to (1.106) we have

V1.x3/ D �
Z x3

0

.�mg/dx3 D mgx3 C C1; (1.109)

where C1 is a constant of integration.
In turn, in the case of the non-uniform field the force of gravity is equal to

F3.x3/ D �G mM

.RC x3/2
; (1.110)

whereR is the radius of Earth and the origin of the coordinate system lies on Earth’s
surface, that is,

F3.0/ D �mg: (1.111)

From (1.110) and taking into account (1.111) we obtain

G D gR2

M
; (1.112)

that is,

F3.x3/ D � mgR2

.RC x3/2
: (1.113)

The potential of the non-uniform field is equal to

V2.x3/ D �
Z
F3.x3/dx3 C C2 D mg

Z
dx3

.RC x3/2
C C2

D �mgR2 1

RC x3
C C2: (1.114)

Let

V1.0/ D V2.0/ D 0; (1.115)

then from (1.109) we have C1 D 0, and from (1.114) we obtain C2 D mgR.
Eventually we have

V1 D mgx3;

V2 D mgR

�
1 � R

RC x3

�
: (1.116)
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Fig. 1.7 Example of a
central force

Let us consider now the case of the so-called central field. The direction of a
central force at the point occupied by A is the same as the direction of the position
vector of particleA, and the sense of the force is opposite to the sense of the position
vector. An example of the central force can be the force acting in a spring (Fig. 1.7).

According to Fig. 1.7, we have

F D �K.r/Or D �K.r/ r
r
; (1.117)

where Or is the unit vector of the axis OA.
We obtain the total differential from formulas (1.100) and (1.117):

dV D K.r/

r
r ı dr D K.r/

r
r Or ı dr D K.r/dr: (1.118)

We obtain the potential of the central force after integrating (1.118)

V D
Z
K.r/dr C C: (1.119)

It is not always possible to obtain the analytical form of a solution because it
depends on the form of the non-linear function K.r/. If we are dealing with the
linear case, that is, K.r/ D kr , then from formula (1.119) we obtain

V D 1

2
kr2 C C: (1.120)

Eventually, assuming V.0/ D 0, we have

V D 1

2
kr2 D 1

2
k
�
x21 C x22 C x23

�
: (1.121)
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The equipotential surface is, then, a sphere of radius
q

2V
k

, where V D const.
Lines of action of forces are determined by the radii of this sphere.

An example of a central field is the universal gravitational field. If we denote
masses of planets bym1 and m2, then for this field we have

F.r/ D G
m1m2

r2
(1.122)

and the potential

V D Gm1m2

Z
dr

r2
D �Gm1m2

r
C C: (1.123)

Assuming a value of C D 0 for a singular point r D 0, we have V.0/ D �1.
This means that the gravitational force of attraction of two planets (treated as point
masses) tends to infinity for r ! 0. Now we will demonstrate that any central field
is a potential field.

Multiplying (1.117) by sides by Ei we have

Fi D �F.r/xi
r

; i D 1; 2; 3: (1.124)

The first Schwartz condition described by (1.104) has the form

@F3

@x2
� @F2

@x3
D 0: (1.125)

We successively calculate

@F3

@x2
D �

�
@F

@r

@r

@x2

x3

r
C F.r/x3

@

@x2

�
1

r

��

D �
�
@F

@r

x2

r

x3

r
� F.r/x3

x2

r

1

r2

�
D �

�
@F

@r

x2x3

r2
� F.r/

x2x3

r3

�
; (1.126)

@F2

@x3
D �

�
@F

@r

@r

@x3

x2

r
C F.r/x2

@

@x3

�
1

r

��

D �
�
@F

@r

x3

r

x2

r
� F.r/x2 x3

r

1

r2

�
D �

�
@F

@r

x2x3

r2
� F.r/x2x3

r3

�
: (1.127)

Comparing (1.126) and (1.127) with one another, we can see that (1.125) is
satisfied. In a similar way it is possible to prove the two remaining Schwartz
conditions.
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Now we will take up the analysis of the law of conservation of total energy of a
particle

E D T C V; (1.128)

where T is the kinetic energy and V a potential energy of the particle. We will divide
the forces F acting on the particle into conservative forces Fc described by formula
(1.98) and non-conservative forces Fn.

Exploiting the calculations conducted earlier, according to (1.89), we have

PT D F ı v D .Fc C Fn/ ı v D �@V
@r

ı v C Fn ı v D � PV C Fn ı v: (1.129)

From (1.128) and (1.129) we obtain

PE D Fn ı v: (1.130)

The obtained equation enables us to formulate the following conclusion.

The total energy of a particle is conserved, provided that the non-conservative
forces perform no work, that is, Fn ı v D 0.

Forces in the potential field are conservative. In view of that, E D const, and
the law of conservation of the total energy of a particle can be formulated in the
following form.

The total energy of a particle moving in a potential conservative field has a
constant value.

Example 1.2. A particle of mass m moves on the inside surface of a cylinder of
radius � whose generatrix is parallel to the vector of acceleration of gravity g. On
the assumption that the inside surface is perfectly smooth, determine the equation
of motion of the particle and the reaction force of the cylinder.

Introducing the Cartesian coordinate system (Fig. 1.8), the initial conditions of
motion are as follows: x1.0/ D �, x2.0/ D 0, x3.0/ D 0, Px1.0/ D 0, Px2.0/ D
v0 cos˛, Px3.0/ D v0 sin ˛, where ˛ means the angle between the tangent to the
trajectory and the planeOX1X2.

From Newton’s second law for the particle it follows that

m Rx1 D Rx1; m Rx2 D Rx2; m Rx3 D mg:

Let us integrate the third equation of the obtained system of equations. As a result
we obtain

Px3 D gt C C1; x3 D gt2

2
C C1t C C2;
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Fig. 1.8 Motion of a particle on the smooth inside surface of a cylinder (a) and motion of particle
projection onto the plane OX1X2 (b)

and taking into account the initial conditions we have

v0 sin˛ D C1; C2 D 0:

Eventually,

x3.t/ D gt2

2
C v0t sin˛:

Now, let us make use of the law of conservation of total energy of a particle
moving in the potential field.

From (1.128) it follows that

mv20
2

D m

2
. Px21 C Px22 C Px33/�mgx3:

In the preceding equation, x3.t/ is known, and in view of that we obtain

Px21 C Px22 D v20 � Px23 C 2gx3

D v20 � .gt C v0 sin˛/2 C 2g

�
gt2

2
C v0t sin ˛

�

D v20 � v20 sin2 ˛ D v20.1 � sin2 ˛/ D v20 cos2 ˛:
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Fig. 1.9 Motion of
particle A in plane OX1X2

Let us note that the equation just obtained has the following physical interpreta-
tion. It describes the motion of the projection of a particle onto the plane OX1X2.
That is, the projection of a particle moving on the inside surface of the cylinder
moves with a constant velocity v0 cos˛ along a circle of radius � (Fig. 1.8b).
Because of this we can determine the remaining components of motion x1.t/ and
x2.t/ from the following equations:

x1 D � cos!t; x2 D �� sin!t;

where

! D ��1v0 cos˛:

From the preceding equations we obtain the components of acceleration

Rx1 D �!2x1; Rx2 D �!2x2:

The reaction of the surface of cylinderR is caused by the acceleration of motion
of the particle and is equal to

R D m

q
Rx21 C Rx22 D m!2

q
x21 C x22 D m!2� D m

v20 cos2 ˛
�

: �

1.1.6 Particle Motion in the Central Field

In the case of planar motion of a particle it is convenient to make use of the polar
coordinates in the calculations (Fig. 1.9).
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Using the derived relationships [see (4.195) and (4.196), Chap. 4 of [1]] for the
polar system we obtain

Pr D Prer C r P�e�;

Rr D � Rr � r P�2
�

er C �
r R� C 2 Pr P�� e�: (1.131)

From Newton’s second law we obtain

mRr D F; (1.132)

and taking into account (1.131) in formula (1.132) we have

m
�Rr � r P�2

� D Fr ;

m
�
r R� C 2 Pr P�� D F�: (1.133)

The definition of the central field implies that F� D 0, that is, from the second
equation of (1.133) we obtain

1

r

d

dt

�
re P�� � 1

r

�
2r Pr P� C r2 R�� D 0; (1.134)

which leads to the following relationship:

r2 P� D const � C: (1.135)

We obtain the velocity of the particle from the first equation of (1.131). It is
equal to

v2 D Pr2 C r2 P�2 D �
r2 P��2

 � Pr
r2 P�

�2
C 1

r2

!
:

Because � Pr
r2 P�

�2
D
 �

dr
dt

�
r2 d�

dt

!2
D
 

d
�
1
r

�
d�

!2
;

we have

v2 D C2

2
4 1
r2

C
 

d
�
1
r

�
d�

!235 : (1.136)
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From the first equation of (1.133) we find

Fr D m
� Rr � r P�2

� D �m �r P�2 � Rr�
D �m �r2 P��2

"
r P�2�
r2 P��2 �

d
dt

�
dr
dt

�
�
r2 d�

dt

�2
#

D �mC
2

r2

�
1

r
� d.dr/

r2d�2

�
;

where the following relationships were used:

d�

dt

d�

dt
D
�

d�

dt

�2
;

d

dt

 
d
�
1
r

�
dt

!
D d

dt

�
� 1

r2
dr

dt

�
D � 1

r2
d

dt

�
dr

dt

�
:

Eventually

Fr D �mC
2

r2

"
1

r
C d2

�
1
r

�
d�2

#
: (1.137)

The formulas obtained serve as means of the direct determination of the velocity
(1.136) and the force (1.137) of a particle in the central field and are called Binet’s1

formulas.
Now we will show that the angular momentum of a particle in the central field is

conserved. Since we have

M D r � Fr D r � erFr D 0; (1.138)

and because
dK
dt

D r �mPr D M; (1.139)

the angular momentum of the particle is conserved

K D r �mPr D const: (1.140)

From (1.140) it follows that K changes neither the magnitude nor the direction.
This means that the motion always takes place in one plane perpendicular to the
angular momentum vector K and determined by vectors r and Pr.

1Jacques Binet (1786–1856), French mathematician.
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Fig. 1.10 Motion of particle
along ellipse of semiaxes a
and b

Example 1.3. Determine the magnitude of the central force Fr , provided that the
particle acted upon by this force moves along an ellipse of semiaxes a and b
(Fig. 1.10).

Substituting x1 D r cos�, x2 D r sin� into the equation of the ellipse

x21
a2

C x22
b2

D 1;

we obtain

cos2 �

a2
C sin2 �

b2
D 1

r2
;

and after transformation

1

r2
D b2 cos2 � C a2

�
1 � cos2 �

�
a2b2

D � �a2 � b2
�

cos2 � C a2

a2b2

D 1

b2

�
1 � .a2 � b2/

a2
cos2 �

	
:

Eventually

1

r
D 1

b

p
1 � e2 cos2 � ; e D 1

a

p
a2 � b2:

In order to make use of Binet’s formulas one needs the following derivatives:

d
�
1
r

�
d�

D 1

b

d

d�

�p
1 � e2 cos2 �

�
D 1

b

e2 sin 2�

2
p
1 � e2 cos2 �

;
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d2
�
1
r

�
d�2

D e2

2b

d

d�

�
sin 2�p

1 � e2 cos2 �

�

D e2

2b

2
42 cos 2�

p
1 � e2 cos2 � � e2 sin2 2�

2
p
1�e2 cos2 �

1 � e2 cos2 �

3
5

D e2

2b

"
2 cos 2�

�
1 � e2 cos2 �

� � 1
2
e2 sin2 2�p

1 � e2 cos2 � .1� e2 cos2 �/

#
:

According to formula (1.137) we have

Fr D �mC
2

r2

"p
1 � e2 cos2 �

b
C 2e2 cos 2�

�
1 � e2 cos2 �

� � 1
2
e4 sin2 2�

2b
p
1 � e2 cos2 � .1 � e2 cos2 �/

#

D �mC
2

r2

"
2
�
1 � e2 cos2 �

�2 C 2e2 cos 2�
�
1� e2 cos2 �

� � 1
2
e4 sin2 2�

2b
p
1 � e2 cos2 � .1 � e2 cos2 �/

#

D �mC
2

r2
L

2b
p
1 � e2 cos2 � .1 � e2 cos2 �/

;

where

L D 2
�
1 � 2e2 cos2 � C e4 cos4 � C e2 cos2 � � e4 cos4 �

�e2 sin2 � C e4 sin2 � cos2 � � e4 sin2 � cos2 �
�

D 2
�
1 � e2� :

Finally,

Fr D �mC
2

r2

�
1 � e2� r3
b4

D �mC
2
�
1 � e2�
b4

r;

because
p
1 � e2 cos2 �

�
1 � e2 cos2 �

� D b

r

b2

r2
:

Owing to the obtained sign of the force, it is evident that the moving particle is
attracted to the center of the ellipse. �

Example 1.4. A particle of mass m moves along a circle of radius R under the
action of force Fr directed toward point O 0 located on the circle (Fig. 1.11).
Determine the velocity of the particle and the magnitude of the force as a function
of radius vector r, provided that for r D 2R the particle A has velocity v0.



36 1 Particle Dynamics, Material System Dynamics...

Fig. 1.11 Motion of a
particle along a circle

The radius vector of particle A is described by the equation

r D .RCR cos 2�/E1 CR sin 2�E2;

hence we get

r2 D 2R2 cos 2� CR2 CR2 cos2 2� CR2 sin2 2� D 2R2 .1C cos 2�/

D 2R2
�
1C cos2 � � sin2 �

� D 4R2 cos2 �;

that is, the equation of a circle in the polar coordinate system takes the form

r D 2R cos�:

In order to make use of Binet’s formulas we calculate

d
�
1
r

�
d�

D 1

2R

d
�

1
cos�

�
d�

D 1

2R

sin�

cos2 �
;

d2
�
1
r

�
d�2

D 1

2R

"
cos3 � C 2 sin2 � cos�

cos4 �

#

D 1

2R

"
cos2 � C 2 sin2 �

cos3 �

#
:
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Fig. 1.12 Motion of particle
A under action of force
Fr D F.r/

From (1.136) we have

v2 D C2

"
1

4R2 cos2 �
C sin2 �

4R2 cos4 �

#

D C2

4R2

"
cos2 � C sin2 �

cos4 �

#
D 4C 2R2

r4
:

According to the conditions of the problem

C D r2 P� D .2R/2
v0
2R

D 2Rv0;

and hence the velocity of particle A reads

v D
s
16R4v20
r4

D 4R2

r2
v0:

In turn, from (1.137) we obtain the magnitude of the central force

Fr D �mC
2

2Rr2

"
cos2 �

cos3 �
C cos2 � C 2 sin2 �

cos3 �

#

D �mC
2

Rr2
1

cos3 �
D �8mC

2R2

r5
D �32mR

4v20
r5

: �
Example 1.5. Particle A of massm moves around a fixed centerO under the action
of the force Fr D F.r/ directed along the radius vector of the particle (Fig. 1.12).
Determine the force Fr and the path of the particle on condition that the velocity of
the particle is equal to v D C1=r , where C1 is a constant.
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According to (1.131) the velocity of the particle is equal to

v D
p

Pr2 C r2 P�2 D C1

r
:

Hence, taking into account relation (1.135) we obtain

Pr2 C r2
C 2

r4
D C2

1

r2
:

We transform the preceding equation into the form

dr

dt
D 1

r

q
C2
1 � C2:

Let us note that

dr

dt
D dr

d�

d�

dt
D dr

d�

C

r2
;

and hence we have

dr

d�
D r

q
C2
1 � C2

C
;

and we obtain

ln
r

C2
D �

s�
C1

C

�2
� 1;

where C2 is a constant. Eventually, the equation of the path along which particle A
travels has the form

r D C2e

 
�

r�
C1
C

�2�1
!
;

and it is the logarithmic spiral equation.
In order to make use of Binet’s formulas (1.137) we calculate the derivatives

d
�
1
r

�
d�

D
2
4� 1

C2

s�
C1

C

�2
� 1

3
5 e

��
r�

C1
C

�2�1
;

d2
�
1
r

�
d�2

D 1

C2

"�
C1

C

�2
� 1

#
e

��
r�

C1
C

�2�1 D 1

r

"�
C1

C

�2
� 1

#
;
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1/r0

1
Q0

r

v0

Fig. 1.13 Path of particle
motion determined using
numerical methods

and according to formula (1.137) we have

Fr D �mC
2

r2

"
1

r
C d2

�
1
r

�
d�2

#
D �mC

2

r3
C 2
1

C 2
D �mC

2
1

r3
:

�
Example 1.6. Determine the path along which moves a particle under the action of
the force Fr D mv20R

2=r2 for the following initial conditions:

r.0/ D R; v.0/ D v0; ^.r; v0/ D �.t D 0/ D arctan a�1:

From formula (1.135) we obtain

C D rr P� D r.0/v0 D Rv0;

and from formula (1.137) we have

1

r
C d2

�
1
r

�
d�2

D �1:

The preceding non-homogeneous differential equation has the following
solution:

1

r
D A cos� C B sin� � 1:

The numerical solution of the differential equation for the initial conditions a D
5; R D 2 is presented in Fig. 1.13. �
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Fig. 1.14 Motion of particle along lemniscate of Bernoulli

Example 1.7. A particle of mass m in the central field moves along the lemniscate
of Bernoulli2 of the equation r2 D a cos 2�, where r is the position vector of the
particle attached at the center of a central force field. For the initial time instant of
motion it is assumed that r.0/ D r0, v.0/ D v0 and ^.r; v0/ D ˛. Determine the
central force acting on the particle (Fig. 1.14).

According to formula (1.131) the components of the velocity of particle A are
equal to vr D Pr , v� D r P�, and taking into account the initial time instant we have
v� D r P�.0/ D v0 sin ˛.

According to (1.134) and (1.135) we obtain

r2.0/ P�.0/ D r0v0 sin ˛ D C;

and the we represent lemniscate of Bernoulli in the following form:

1

r
D 1p

a
.cos 2�/�

1
2 :

We calculate successively

d
�
1
r

�
d�

D 1p
a

sin 2�

.cos 2�/
3
2

;

2Jacob Bernoulli (1654–1705), distinguished mathematician in Bernoulli family (he described the
lemniscate properties in 1694).
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d2
�
1
r

�
d�2

D 1p
a

"
2 cos 2� .cos 2�/

3
2 C 3 .cos 2�/

1
2 sin2 2�

.cos 2�/3

#

D 2p
a
.cos 2�/�

1
2 C 3p

a
tan2 2� .cos 2�/�

1
2

D 1p
a
.cos 2�/�

1
2
�
2C 3 tan2 2�

� D 1

r

�
2C 3 tan2 2�

�
:

From the second of Binet’s formulas (1.137) it follows that

Fr D �mC
2

r2

 
1

r
C d2

�
1
r

�
d�2

!
D �mr

2
0v20 sin2 ˛

r2
1

r



1C 2C 3 tan2 2�

�

D �3mr
2
0v20 sin2 ˛

r3



1C tan2 2�

� D �3mr
2
0v20 sin2 ˛

r3

"
sin2 2� C cos2 2�

cos2 2�

#

D �3mr
2
0v20 sin2 ˛

r3
1

cos2 2�
D �3mr

2
0v20a

2 sin2 ˛

r7
;

and the minus sign denotes that the particle is attracted to the field center, that is, to
pointO . �

1.2 Fundamental Laws of Dynamics of a Mechanical System

1.2.1 Introduction

A (discrete or continuous) group of particles, isolated from the environment, is
called a material system (see also Chap. 1 of [1]). Such a system can consist of
a finite or infinite number of particles.

A group of particles in which the position or motion of every particle depends on
the positions and motions of the othe particles is called a system of particles (SOP).

A SOP whose motion is not limited (is limited) by constraints we call a free
(constrained) SOP. An example of a free SOP is the Solar System, where planets are
treated as particles and move along orbits only under the action of forces acting on
them. An example of a constrained SOP is any mechanism or machine.

The main vector of all internal forces Fi D 0, that is,
PN

nD1 Fxni D 0, i D 1; 2; 3.
The main moments of all internal forces with respect to an arbitrary point Mi

0, that
is,
PN

nD1 M0ni D 0, i D 1; 2; 3.
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In this book more attention will be devoted to discrete (lumped) systems. The
reader will find more information regarding the dynamics of continuous systems in,
for example, monographs of the author and his coworkers [3–10].

Material systems can be divided into free systems and constrained systems.
Free systems have no limitations imposed on the motion of any particle of

the system. The particles of such systems are characterized by the possibility of
displacement in an arbitrary direction and by velocities that are determined only
by the initial conditions and forces acting on the particles. However, the motions
of these particles are mutually dependent on each other since the force acting on
one particle may depend on the velocities and displacements of other particles.
In contrast, constrained systems are characterized by the fact that on all or some
part of the particles limitations of motion are imposed. Those limitations are called
constraints.

Let us now consider a discrete material system (DMS) composed of a finite
numberN of particles n and let every particle have massmn.

The dynamics of such a system can be analyzed based on Newton’s laws
presented in Sect. 1.1. It can be demonstrated on the basis of Newton’s third law
that all internal forces, that is, the forces coming only from the other particles of
the system, cancel out each other (they form a closed system of vectors). The forces
acting on the material system that come from the particles not belonging to the
investigated system are called external forces.

Similar considerations also apply to the continuous material system (CMS),
where we assume that a mass element dm is acted upon by the force Fdm (here
F denotes a mass density of force) [11, 12].

In the case of DMS, according to Newton’s second law, we have

mnan D Fen C Fin; (1.141)

where an denotes the vector of acceleration of particle n of massmn whose position
is described by vector rn. The force Fen .F

i
n/ denotes a resultant force of all external

forces (internal forces) applied to particle n.
Our aim is the determination of the motion of the DMS, that is, the motion of

all its particles n D 1; 2; : : : ; N . This boils down to the integration of the system
of second-order differential equations (1.141), since an D Rrn. For large N this
problem is very complicated and often its solution is not feasible. However, it turns
out that there exist certain characteristics (functions) of the considered mechanical
system that are dependent on the velocity and position of its particles (and often
also on time), which remain constant despite changes in rn.t/ and Prn.t/. If such a
function exists and is constant, we call it the first integral of the system of differential
equations (1.141). The integration of all equations of system (1.141) can be replaced
with the analysis of certain quantities characteristic of the system, such as quantity of
motion, angular momentum (moment of momentum), and kinetic energy of a system.

The material appearing in this section (and also in this chapter) might be extended
by the reader by [13–21].
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1.2.2 Law of Conservation of Momentum

According to the previous considerations, let an arbitrary element dm (whose
position is described by position vector r in a certain inertial Cartesian coordinate
system) of CMS be acted upon by the resultant vectors of internal Fi and external
Fe forces. Then, by Newton’s second law, we have

dm
d2r
dt2

D Fi C Fe: (1.142)

Integrating the preceding equation over the whole massm of the CMS we obtainZ
m

d2r
dt2

dm D
Z
m

�
Fe C Fi

�
dm: (1.143)

According to Newton’s third law the internal forces cancel out each other.
Therefore we obtain Z

m

d2r
dt2

dm D
Z
m

Fedm: (1.144)

Because we are considering a system whose mass is constant over time, (1.144),
we can transform it into the form

d

dt

Z
m

vdm D dP
dt

D
Z
m

Fedm; (1.145)

where

v D dr
dt
; P D

Z
m

vdm; (1.146)

and P is called the vector of momentum of a CMS.
One obtains similar relationships for a DMS consisting of N isolated particles,

but the integral symbol in (1.145) should be replaced with the sum symbol. In this
case, for DMS, (1.145) assumes the form [it is the sum of (1.141)]

d

dt

 
NX
nD1

mnvn

!
D dP

dt
D

NX
nD1

Fen: (1.147)

Because also in this case the internal forces cancel out each other .
PN

nD1
Fin D 0/, we have

vn D drn
dt
; P D

NX
nD1

mnvn; (1.148)

where now P is the vector of momentum of the DMS.
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If we have a constrained DMS, then, after its release from constraints, (1.147)
takes the form

dP
dt

D
NX
nD1

Fen C
NX
nD1

FRn ; (1.149)

where it was assumed that reaction forces FRn act on every particle n. Considerations
regarding the constrained CMS will be omitted here.

Equations (1.147) and (1.149) enable us to state the following theorems.

Theorem 1.3. The rate of change of the vector of momentum (quantity of motion)
of a free mechanical system is equal to the geometric sum of external forces acting
on the system.

Theorem 1.4. The rate of change of the vector of momentum (quantity of motion)
of a CMS is equal to the geometric sum of external forces and reaction forces acting
on the system.

Equation (1.149) can be written in the equivalent form

dP D
NX
nD1

Fendt C
NX
nD1

FRn dt; (1.150)

which allows for formulation of the following conclusion.

An elementary increment of momentum of a mechanical system is equal to the
sum of elementary impulses of external forces and reaction forces acting on the
system.

The following integral is called the impulse of a force acting over time interval
t � t0:

J D
tZ

t0

F.�/d�; (1.151)

where in the case of a DMS the force F is discrete, and in the case of a CMS the
vector of force F denotes the mass density of force. In the latter case vector J is
called the mass density of impulse of a force.

Integrating (1.151) we obtain

P.t/ � P.t0/ D 
P D
tZ

t0

0
@Z
m

Fedm

1
A d� D J: (1.152)

The relationship just obtained can be formulated in the following way.

The change of momentum (quantity of motion) of a CMS during time t t0 is equal
to the action of the impulse of a force during that time interval.
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In the case of a DMS, relationship (1.152) takes the form


P D
tZ

t0

�
Fe C FR

�
d�; (1.153)

where

Fe D
NX
nD1

Fen; FR D
NX
nD1

FRn ;

and Fe .FR/ is the main vector of external forces (reaction forces).
Equation (1.153) enables us to formulate the following conclusion.

An elementary increment of momentum of a DMS during time t � t0 is equal to
the sum of impulses of the main vector of external forces and of the main vector of
reaction forces acting during that time.

1.2.3 Law of Motion of Center of Mass

Let us consider further a DMS consisting ofN particles n of massesmn, n 2 Œ1; N �,
whose positions are described by position vectors rn. Point C of the system is
called the center of mass of the DMS (its position is described by the radius vector
rC and the total mass of the DMS is concentrated there, i.e., m D PN

nD1 mn),
provided that the following equation is satisfied:

mrC D
NX
nD1

mnrn: (1.154)

Although the notion of the center of mass was introduced on the example of the
DMS, it can also be applied to liquid, gaseous, rigid and flexible material systems,
or those subjected to the action of various fields of forces (Chap. 1 of [1]).

In the case of the CMS, at first, one should divide the considered system into
mass elements	mn and for each of them determine rCn . Next, one should increase
the number of mass elements up to infinity by the transition
mn ! dmn and in the
limit determine the position of the mass center, which is presented in the following
equation:

rC D
lim

	mn!0

NP
nD1

	mnrn

m
D
R
m

rdm

m
: (1.155)

Assuming that the considered material system is located in the uniform gravita-
tional field it is possible to define the notion of gravity center of both a DMS and a
CMS.
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Multiplying both sides of (1.154) as well as the numerator and denominator
of (1.155) by the acceleration of gravity g, we obtain

Q ı rC D
NX
nD1

Qn ı rn; (1.156)

Q ı rC D
Z
m

r ı dQ; (1.157)

where Q D mg, Qn D mng.
Formulas (1.156) and (1.157) were obtained on the assumption that the mass

center and the gravity center are coincident.
The notion of the mass center has a more general meaning since it does not

depend on the force field in which the system is located (for example, the notion of
the center of gravity loses its meaning when vector g does not exist).

Let us assign to every particle n of a DMS the velocity vn. The momentum of the
DMS is equal to

P D
NX
nD1

mnvn D
NX
nD1

mn

drn
dt

D d

dt

NX
nD1

.mnrn/ D m
drC
dt

D mvC : (1.158)

In the preceding transformations, Pm D 0 was assumed, and (1.154) was used.
Similar considerations can be carried out regarding the CMS. Equation (1.158)
allows for the formulation of the following conclusion.

The vector of momentum of a material system is equal to the product of the vector
of velocity of system mass center and its total mass.

Differentiating (1.158) with respect to time we obtain

dP
dt

D m
d2rC
dt2

� maC ; (1.159)

and taking into account (1.148) we have

maC D
NX
nD1

Fen C
NX
nD1

FRn : (1.160)

Equation (1.160) is the expression for Newton’s second law for particle C (mass
center of a system). It enables us to formulate the following conclusion.

The mass center is a special point at which the total mass of a material system is
concentrated, on which act all vectors of external forces and reactions, and which
moves according to Newton’s second law.
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Instead of observing all N particles of a material system, it suffices to observe
the motion of the mass center of the system, which is very advantageous. However,
this knowledge is not sufficient to determine the motion of other particles of the
system.

The principle of motion of the mass center is obtained from (1.159) and (1.160),
setting aC D 0, which means that vC D const, and this is stated below.

If the sum of external forces and reaction forces acting on a material system is
equal to zero, then the mass center either remains at rest or is in uniform rectilinear
motion.

A material system on which no external forces and no reaction forces act is called
an isolated system (free system).

It follows that for an isolated system the velocity of its mass center is constant.
From (1.159) we obtain

P D mvC D const (1.161)

or

C1E1 C C2E2 C C3E3 D m.c1E1 C c2E2 C c3E3/ ;

where Ci D Pxi and ci D vcxi , and Ci and ci .i D 1; 2; 3/ are arbitrary constants.
In other words, by projecting the quantity of motion vector onto the axes of the

system OX1X2X3 we obtain three first integrals of motion. Therefore, the motion
of the mass center C is uniquely defined.

Example 1.8. Two boys wearing ice skates are standing on an ice rink (a perfectly
smooth horizontal surface) at a distance x from each other. One of them throws a
ball of mass m, which is caught by the other after time t . What is the velocity with
which the boy starts to move after throwing the ball if he has the mass M ?

Because we neglect friction, the horizontal component of the reaction force
produced by the weight of the boy is equal to zero. According to (1.160) there are
no external forces and no reactions along the horizontal direction, that is, (1.161) is
valid. If at the initial time instant of motion the boy throwing the ball was at rest,
then P D vC D 0. Differentiating (1.154) we have

.mCM/ PxC D M v �m
x

t
D 0;

because the horizontal component of the velocity of mass center of the ball is equal
to x=t , and the velocities of the boy v and the ball have opposite senses.

From the preceding equation we obtain

v D m

M

x

t
:

Finally, let us note that along the vertical direction the momentum of the boy–ball
system is not conserved. �
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Fig. 1.15 Schematic leading
to the definition of the
moment of quantity of motion
of material point An and of a
DMS

1.2.4 Moment of Quantity of Motion (Angular Momentum)

Figure 1.15 shows the material pointAn of a DMS, pointO 0 (called the center), and
the adopted Cartesian coordinate system OX1X2X3 [12].

Vectors rO 0 and rn respectively describe the positions of points O 0 and An in the
systemOX1X2X3, and vector �n is the radius vector of point An with respect to the
adopted center O 0.

Definition 1.2. We call the following vector the moment of quantity of motion
(angular momentum) of a material point An with respect to a point O 0 (center):

KnO 0 D �n �mnvn: (1.162)

Definition 1.3. A projection of the moment of quantity of motion of a material
point An on an axis, where the moment of quantity of motion of the point is de-
termined with respect to an arbitrarily chosen point (center) on the aforementioned
axis (because the projection is independent of the choice of the center), is called
the moment of quantity of motion (angular momentum) of material point An with
respect to that axis.

Definition 1.4. The following vector is called the main moment of quantity of
motion of a DMS (angular momentum of a DMS) with respect to a pointO 0 (center):

KO 0 D
NX
nD1

�n �mnv: (1.163)
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Definition 1.5. A projection of the main moment of quantity of motion on an axis
with respect to an arbitrarily chosen point (center) lying on this axis is called the
main moment of quantity of motion of a DMS (angular momentum of a DMS) with
respect to that axis.

According to the introduced definitions it can be easily seen that the angular
momentum changes with the change of the center.

Let us choose in Fig. 1.15 another point (the center) O 00 (not drawn) and let

the position of point An be described by the radius vectors
���!
O 0An and

���!
O 00An. The

moment of quantity of motion of a DMS with respect to O 00 is equal to

KO 00 D
NX
nD1

����!
O 00An �mnvn

�
D

NX
nD1

����!
O 00O 0 C ���!

O 0An
�

�mnvn

D
NX
nD1

����!
O 0An �mnvn

�
C

NX
nD1

����!
O 00O 0 �mnvn

�

D KO 0 C ���!
O 00O 0 � P; (1.164)

where P is the momentum of the DMS [see (1.158)].
The preceding equation describes the relation between the vectors of the quantity

of motion of a DMS calculated with respect to distinct centers O
0

andO
00

.

Definition 1.6. The motion of material points An of a DMS with respect to the
coordinate system of origin at the DMS mass center C and moving in translational
motion (the so-called König3 system) is called the motion of a DMS with respect to
its mass center C .

Let vC denote the absolute velocity of the mass center C (that is, in the system
OX1X2X3), vn the absolute velocity of point An, and vrn the relative velocity of
point An with respect to point C .

Point An moves in composite motion, and its velocity is equal to

vn D vC C vrn: (1.165)

The relative angular momentum of a DMS with respect to its mass center (the
point C ) is equal to

Kr
C D

NX
nD1

�rn �mnvrn; (1.166)

where now �rn.v
r
n/ is the radius vector (velocity) of point An in the König system

with respect to point C .

3Johann Samuel König (1712–1757), German mathematician.
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The absolute angular momentum of a DMS with respect to point C , taking into
account (1.165) and (1.166), is equal to

KC D
NX
nD1

�rn �mnvn D
NX
nD1

�rn �mn

�
vC C vrn

�

D
NX
nD1

�
mn�

r
n

� � vC C
NX
nD1

�
�rn �mN vrn

�

D m�rC � vC C
NX
nD1

�
�rn �mnvrn

� D
NX
nD1

�
�rn �mnvrn

� D Kr
C ; (1.167)

because �rC D 0 (point C lies at the origin of the König system).
One may conclude from (1.167) that the absolute angular momentum of a

DMS with respect to the mass center of system C is equal to the relative angular
momentum of the DMS with respect to point C , that is, KC D Kr

C .
From (1.164), and setting O 0 D C , it follows that

KO 00 D KC C ���!
O 00C � P D KC C ���!

O 00C �
NX
nD1

mnvrn

D KC C ���!
O 00C �mvrC D KC ; (1.168)

because vrC D 0.
If the centerO 00 was chosen arbitrarily, then the angular momentum of the system

with respect to the mass center of the system (point C ) would be identical for each
of the points of the DMS and would equal KC .

1.2.5 Kinetic Energy of a DMS and a CMS

The kinetic energy of a DMS is equal to

T D 1

2

NX
nD1

mnv2n: (1.169)

Taking into account (1.165) in relation (1.169) we obtain
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T D 1

2

NX
nD1

mn

�
vC C vrn

�2

D 1

2

 
NX
nD1

mn

!
v2C C

NX
nD1

�
mnvrn

� � vC C 1

2

NX
nD1

�
mn.vrn/

2
�

D 1

2
mv2C CmvrC � vC C 1

2

NX
nD1

mn.vrn/
2

D 1

2
mv2C C 1

2

NX
nD1

mn.vrn/
2; (1.170)

because vrC D 0.
The obtained result can be presented in the form of the following theorem.

Theorem 1.5 (König theorem). The kinetic energy of a DMS is equal to the sum
of the kinetic energy of a material point located at the mass center of the DMS and
of mass equal to the sum of masses of all points of the DMS and the kinetic energy
associated with the motion of the DMS with respect to its mass center.

Let us now consider the motion of a CMS (a rigid body) with respect to the
fixed point O . Let O 0X 0

1X
0
2X

0
3 be the body system such that O 0 D O , and let the

instantaneous angular velocity of the rigid body ! have the direction of the l axis
determined by direction cosines.

In Chap. 3 of [1] it was shown that

T D 1

2
Il!

2; (1.171)

where Il denotes the mass moment of inertia of a body with respect to an axis l , and
that

T D 1

2

�
IX 0

1
!0
1
2 C IX 0

2
!0
2
2 C IX 0

3
!0
3
2
�

� IX 0

1X
0

2
!0
1!

0
2 � IX 0

1X
0

3
!0
1!

0
3 � IX 0

2X
0

3
!0
2!

0
3; (1.172)

where IX 0

i
and IX 0

ij
denote the mass moments of inertia and the products of inertia

of the body with respect to the system O 0X 0
1X

0
2X

0
3, and in turn !0

i are projections of
vector ! onto axes of this coordinate system, that is, !0

i D ! ı E0
i .

IfO 0X 0
1,O

0X 0
2, andO 0X 0

3 are the principal axes of inertia of a body for pointO 0,
then (1.172) takes the form

T D 1

2

�
IX 0

1
!02
1 C IX 0

2
!02
2 C IX 0

3
!02
3

�
: (1.173)
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If a rigid body rotates with a constant velocity ! about one of the principal axes,
for example, the X 0

1 axis, then we have ! D E0
1!

0
1 and from (1.172) we obtain

T D 1

2
IX 0

1
!02
1 : (1.174)

Let us now describe the moment of quantity of motion of a rigid body with one
point fixed O . Let us introduce the body system O 0X 0

1X
0
2X

0
3, where O 0 D O . The

position vector of material point An in the body system is r0
n, and we assume that

pointAn has the following coordinates in the body system: r0
n ıE0

1 D x0
1n; r0

n ıE0
2 D

x0
2n; r0

n ı E0
3 D x0

3n. The vector of instantaneous angular velocity of the body is
equal to

! D !0
1E

0
1 C !0

2E
0
2 C !0

3E
0
3: (1.175)

The angular momentum of the body with respect to pointO 0 is equal to

KO 0 D
NX
nD1

r0
n �mnvn D

NX
nD1

r0
n �mn

�
! � r0

n

�

D
NX
nD1

mnr0
n � �! � r0

n

�
: (1.176)

Replacing the vector triple product with scalar products we obtain

KO 0 D
NX
nD1

mnr02
n! �

NX
nD1

mn

�
! ı r0

n

�
r0
n

D
NX
nD1

mn

�
x02
1n C x02

2n C x02
3n

�
!

�
NX
nD1

mn

�
!0
1x

0
1n C !0

2x
0
2n C !0

3x
0
3n

�
r0
n: (1.177)

Projections of the vector of angular momentum of the body onto axes O 0X 0
i are

equal to
KO 0Xi D KO 0 ı E0

i : (1.178)

In the case of the O 0X 0
1 axis from (1.177) we obtain

KO 0X1 D KO 0 ı E0
1 D

NX
nD1

mn

�
x02
1n C x02

2n C x02
3n

�
!0
1

�
NX
nD1

mn

�
!0
1x

0
1n C !0

2x
0
2n C !0

3x
0
3n

�
x0
1n
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D
NX
nD1

mn

�
x02
2n C x02

3n

�
!0
1 �

NX
nD1

mn

�
x0
1nx

0
2n

�
!0
2

�
NX
nD1

mn.x
0
1nx

0
3n/!

0
3 D IX 0

1
!0
1 � IX 0

1X
0

2
!0
2 � IX 0

1X
0

3
!0
3; (1.179)

where the definitions of principal moments of inertia and products of inertia
introduced in Chap. 3 of [1] were used.

Eventually, writing the projections on two remaining axes we obtain an equation
in matrix form

KO 0 D I!; (1.180)

where

I D

2
64 IX 0

1
�IX 0

1X
0

2
�IX 0

1X
0

3

�IX 0

1X
0

2
IX 0

2
�IX 0

2X
0

3

�IX 0

1X
0

3
�IX 0

2X
0

3
IX 0

3

3
75 : (1.181)

If the axes of the system O 0X 0
1X

0
2X

0
3 coincide with the principal axes of inertia

of the body, then matrix (1.181) is the diagonal matrix of the form

I D

2
64IX

0

1
0 0

0 IX 0

2
0

0 0 IX 0

3

3
75 : (1.182)

If vector ! lies on theO 0X 0
3 axis, then !0

1 D !0
2 D 0, and from (1.180) we obtain

KO 0X 0

1
D �IX 0

1X
0

3
!0
3; KO 0X 0

2
D �IX 0

2X
0

3
!0
3; KO 0X 0

3
D �IX 0

3
!0
3: (1.183)

From (1.180) and (1.183) it follows that vectors KO 0 and ! do not lie on the
same axis. From (1.183) it follows that it can take place if the axis of rotation (i.e.,
direction of vector !) is the principal axis of inertia of the body (then we have
KO 0X 0

3
D IX 0

3
!0
3).

Taking into account (1.172), (1.180) and (1.181), the following relationship holds
true:

T D 1

2
.KO 0 ı!/ : (1.184)

Let us note that because the kinetic energy T > 0, the angle between vectors
KO 0 and ! is an acute angle.
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1.2.6 Law of Conservation of Angular Momentum

According to Fig. 1.15 the angular momentum of a DMS with respect to the center
O 0 is described by (1.163), where the coordinate system introduced in that figure is
the inertial one.

Differentiating (1.163) with respect to time we obtain

dKO 0

dt
D

NX
nD1

P�n �mnvn C
NX
nD1

�n �mnan

D
NX
nD1

P�n �mnvn C
NX
nD1

�n � �Fen C FRn
�

D
NX
nD1

P�n �mnvn C Me
O 0 C MR

O 0 : (1.185)

According to Fig. 1.15 we have

rn D rO 0 C �n; (1.186)

and differentiating (1.186) with respect to time we obtain

P�n D Prn � PrO 0 D vn � vO 0 : (1.187)

From (1.185) we obtain

PKO 0 D
NX
nD1
.vn � vO 0/ �mnvn C Me

O 0 C MR
O 0

D
 

NX
nD1

mnvn

!
� vO 0 C Me

00 C MR
O 0

D mvC � vO 0 C Me
O 0 C MR

O 0 ; (1.188)

where vC is the velocity of the mass center of the DMS, Me
O 0 is the main moment of

external forces with respect to point O 0, and MR
O 0 is the main moment of reactions

with respect to pointO 0 and during transformations was also used differentiation of
(1.154) with respect to time, and hence vO 0 ¤ 0. However, if we take point O 0 as
stationary (O 0 D O), then from (1.188) we obtain

PKO D Me
O C MR

O: (1.189)

Let us observe that origin O of the coordinate system was chosen arbitrarily and
only in a special case will it coincide with the mass center of the considered system.
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Equation (1.189) allows for the statement of the law of conservation of angular
momentum of an SOP.

The time derivative of angular momentum of a material system with respect to an
arbitrary fixed pole O is equal to the sum of main moments of external forces and
reaction forces with respect to that point.

Let us note that if in formula (1.188) an arbitrary non-stationary point O 0 is
chosen at point C , then we obtain mvC � vC D 0, and then formula (1.188) takes
the form

PKC D Me
C C MR

C : (1.190)

A comparison of the obtained relationship with (1.189) leads to the conclusion
that the change in the system’s angular momentum about the fixed point O and
about mass center C is the same.

The preceding calculations can be also represented in integral form.
According to (1.189) we have


KO D KO.t/ � KO.t0/ D
tZ

t0

�
Me
O C MR

O

�
dt: (1.191)

The integral occurring on the right-hand side of (1.191) is called an impulse
(action) of external forces and reactions in time interval t � t0.

One may conclude from (1.191) that the increment of the vector of the system’s
angular momentum with respect to a stationary pole in a finite time interval is equal
to the impulse of moments of external forces and reaction forces about that point in
the same time interval.

If we are dealing with an isolated system (Me
O D MR

O D 0), then we obtain the
following law of conservation of angular momentum.

The angular momentum of an isolated material system with respect to an
arbitrary stationary pole is constant and equal to

KO.t/ D const (1.192)

or

KO D C1E1 C C2E2 C C3E3;

where Ci , i D 1; 2; 3 are arbitrary constants.

In a system where, during motion, Me
O D MR

O D 0, (1.192) remains valid during
the motion of point O 0 with respect to the system mass center C , on the condition
that the relation rO 0 D C1rC .t/ C C2 holds true, where C1 and C2 are constants.
Following differentiation we get vO 0 D C1vC , and substitution into (1.188) proves
the validity of the preceding observation.

Now let us take an arbitrary stationary axis l passing through the system mass
center.
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According to relation (1.188) we have

PKl D Me
l C MR

l ; (1.193)

and on the assumption that during motion of the DMS we have Me
l D MR

l D 0, we
obtain the following first integral:

Kl D const: (1.194)

Theorem 1.6. The necessary and sufficient condition for the existence of the first
integral (1.194) is that projections of the velocity of mass center of the system and of
the velocity of an arbitrary point O 0 lying on the l axis onto a plane perpendicular
to this axis are parallel to each other during the motion of the system.

Proof. Let us take a unit vector of the l axis as l D E3 and multiply (scalar
multiplication) (1.188) by sides by E3 D const obtaining

d .KO 0 ı E3/
dt

D m.vC � vO 0/ ı E C �
Me
O 0 C MR

O 0

� ı E3:
�

Because KO 0 ı E3 D Kl and .Me
O 0 C MR

O 0/ ı E3 D Me
l C MR

l D 0, we have
Kl D const if and only if .vC � vO 0/ ı E3 � 0.

Since

vC � vO 0 D
ˇ̌̌
ˇ̌̌ E1 E2 E3
v1C v2C v3C
v1O 0 v2O 0 v3O 0

ˇ̌̌
ˇ̌̌

D E1 .v2C v3O 0 � v3C v2O 0/ � E2 .v1C v3O 0 � v3C v1O 0/

C E3 .v1C v2O 0 � v2C v1O 0/ ;

we have
.vC � vO 0/ ı E3 D v1C v2O 0 � v2C v1O 0 D 0:

Following transformation we have

v1C
v2C

D v1O 0

v2O 0

:

The obtained relationship proves that the projections of vectors vC and vO 0 onto
a plane perpendicular to the l axis are parallel.

In the end, let us sum up basic knowledge regarding the conservation of
momentum and angular momentum. In the case of choice of an arbitrary pole, the
state of a material system is determined by the main vector of momentum P and
main moment of angular momentum KO .
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Fig. 1.16 Motion of a
mechanical system composed
of a small ball (particle) of
mass m and a metal rim of
mass M

External forces and reaction forces acting on the material system are determined
by the main vectors of these forces Fe and FR, and main moments Me

O and MR
O with

respect to the chosen pointO .
The laws of conservation of momentum and angular momentum are expressed

by the following simple equations:

PP D Fe C FR; (1.195)

PKO D Me
O C MR

O: (1.196)

Example 1.9. On a horizontal smooth surface lies a metal rim of massM and radius
R with a groove along which a particle of mass m moves with velocity constant as
to the magnitude v D const (Fig. 1.16). Determine the motion of the bodies (the rim
and the particle).

The mass center C of the system lies on the segment connecting points O1
andO2.

According to Fig. 1.16 we have

.mCM/rC D M � ���!
OO1 Cm � ���!

OO2;
ˇ̌̌���!
O1C

ˇ̌̌
C
ˇ̌̌��!
CO2

ˇ̌̌
D R;

rC D ���!
OO1 C ���!

O1C D ���!
OO2 C ���!

O2C :

Following transformation we obtain

.mCM/ �
����!
OO1 C ���!

O1C
�

D M � ���!
OO1 Cm � ���!

OO2;

that is,

.mCM/ � ���!
O1C D m �

����!
OO2 � ���!

OO1

�
:



58 1 Particle Dynamics, Material System Dynamics...

In a similar way we calculate

.mCM/ �
����!
OO2 C ���!

O2C
�

D M � ���!
OO1 Cm � ���!

OO2;

that is,

.mCM/ � ��!
CO2 D M �

����!
OO2 � ���!

OO1

�
:

Finally, we have

O1C D m

mCM
R;

CO2 D M

mCM
R:

The calculations leading to the determination of the position of the mass center
simplify significantly following the introduction of the local coordinate system of
one axis directed along segment O1O2 and the origin at point O1.

The angular momentum of the system is equal to zero about the axis parallel to
the OX3 axis and passing through point C . Then we have

IC! CmCO2 .v C !CO2/ D 0:

The quantity IC is a moment of inertia of the rim with respect to the CX3 axis,
which, according to the parallel axis theorem, is equal to

IC D MR2 CM .O1C /
2 ;

and substituting into the previous equation we find

! D � v

R

m.mCM/

M2 C 3mM C 2m2
:

�
Example 1.10. Figure 1.17 shows a disk of mass m and radius R rolling on
a horizontal plane along a straight line (without slip, air resistance, or rolling
resistance). The mass center C of the disk is located at distance r from its geometric
centerO . Derive the equation of motion of the disk on the assumption that the mass
moment of inertia of the disk with respect to the axis perpendicular to it and passing
through point C is equal to IC .

Let us introduce an angle  D  .t/ formed between a line perpendicular to
the horizontal surface and passing through the geometric center of the disk and the
segmentOC . Figure 1.17 shows two vectors of the forces causing the motion of the
disk, that is, the vector of the gravity force and the vector of the reaction force at
point B of two components (vertical and horizontal).
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Fig. 1.17 A disk rolling
without slip on a horizontal
surface

The vector

vB D
� P� � ��!

OB
�

D
ˇ̌̌
ˇ̌̌E1 E2 E3
0 0 P�
0 �R 0

ˇ̌̌
ˇ̌̌ D E1R P�;

where vB denotes the velocity of the point moving on the straight line determined
by the “track” left by the disk on the horizontal surface.

In the introduced absolute right-handed coordinate system BX1X2X3 vector
��!
BC

is given by
��!
BC D �r sin�E1 � .R � r cos�/E2;

hence

ˇ̌̌��!
BC

ˇ̌̌2 D r2 sin2 � C .R � r cos�/2

D r2 sin2 � C r2 cos2 � CR2 � 2rR cos� D r2 CR2 � 2rR cos�:

The angular velocity of the disk has the form

! D P�E3;

whereas the velocity of the mass center with respect to point B is equal to

vC D ! � ��!
BC D

ˇ̌̌
ˇ̌̌ E1 E2 E3

0 0 P�
�r sin� �RC r cos� 0

ˇ̌̌
ˇ̌̌

D E1
� P�.R � r cos�/

� � E2 P�r sin�:
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From (1.188) we obtain

PKB D Me
B C MR

B CmvC � vB:

Let us note that

mvC � vB D m

ˇ̌̌
ˇ̌̌ E1 E2 E3

P�.R � r cos�/ � P�r sin� 0

R P� 0 0

ˇ̌̌
ˇ̌̌

D E1 � 0C E2 � 0CRr P�2 sin�E3:

The angular momentum of the disk with respect to point B is equal to

KB D 

IC Cm.BC/2

� P�E3;

hence

dKB

dt
D d

dt



IC Cm

�
r2 CR2 � 2rR cos�

�� P�E3

D ˚

IC Cm

�
r2 CR2 � 2rR cos�

�� R� C 2mrR P�2 sin�
�

E3:

In turn, we have MR
B D 0 and

Me
B D ��!

BC � .E2mg/ D
ˇ̌̌
ˇ̌̌ E1 E2 E3
�r sin� �RC r cos� 0

0 mg 0

ˇ̌̌
ˇ̌̌ D �mgr sin�E3:

Eventually, we obtain the following second-order non-linear differential
equation:



IC Cm

�
r2 CR2 � 2rR cos�

�� R� CmrR P�2 sin� Cmgr sin� D 0: �

1.2.7 Law of Conservation of Kinetic Energy

From (1.90) and (1.91) we obtain

d

�
mnv2n
2

�
D Fe

0

n drn C FR
0

n drn C Fi
0

n drn: (1.197)
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The preceding calculations are valid for every n 2 Œ1; N �, therefore, adding
N (1.197), we obtain

dT D dW e C dW i C dW r; (1.198)

T D
NX
nD1

mnv2n
2

; dW e D
NX
nD1

Fen ı drn;

dW i D
NX
nD1

Fin ı drn; dW R D
NX
nD1

FRn ı drn; (1.199)

where the symbol d.�/ denotes the elementary work, which in general is not a
differential of any function [2].

Equation (1.198) allows for the formulation of the law of conservation of kinetic
energy.

An elementary increment of the kinetic energy is equal to the sum of elementary
works of external forces, internal forces, and reaction forces that occur in a given
system.

Let us note that, despite the the fact that the system of internal forces is equivalent
to zero, the work done by those forces does not have to be equal to zero.

Since, if on two arbitrary points that interact with one another, the same vectors
of forces but of opposite senses act, then we can imagine a material medium of
properties dependent on the direction of displacement of these points, and thus the
displacements can be different, and consequently the works done by the forces are
not equal. In the case of a rigid body, the works are equal to zero because there are
no displacements between the points of a rigid body.

If all forces acting on a material system result from the accumulated potential,
then

Fen D �gradnV; (1.200)

and the work increment

dW D
NX
nD1

Fen ı drn D �dV: (1.201)

Neglecting the work of the internal forces and reaction forces (a rigid system,
where the distances between particles are constant and where we are dealing with
ideal constraints) from (1.198) and (1.201) we obtain

dT D �dV; (1.202)

and following integration we obtain the so-called integral of energy of the form

T2 � T1 D V1 � V2: (1.203)
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From the obtained equation it can be seen that in the potential field the total
energyE is conserved because

E � T1 C V1 D T2 C V2: (1.204)

Such a material system is called a conservative system.

1.3 Motion About a Point

1.3.1 Kinetic Energy, Ellipsoid of Inertia, and Angular
Momentum

Recall that the motion about a point of a rigid body is the motion of that body with
one point fixed.

In Chaps. 1 and 3 of [1] we introduced the notions of kinetic energy and
momentum of a material point. For the purpose of analysis of motion about a point
of a rigid body, we need to understand the associated notions of kinetic energy,
matrix of inertia, and angular momentum, which implies taking into account the
angular velocity of the body!.

Figure 1.18 presents a rigid body, its instantaneous axis of rotation l , the vector
of angular momentum of the body KO measured with respect to the center O of
motion about a point, and the momentum of a body element of mass dm, that is,
vdm.

Let the body rotate about the fixed axis l with angular velocity !, and let the
distance of the element of mass dm from the rotation axis be denoted by �.

The kinetic energy of the rotating body is equal to

T D 1

2

Z
m

v ı vdm D 1

2

Z
m

v2dm D !2

2

Z
m

�2dm D !2

2
Il (1.205)

because v D �! and the unit vector of the l axis is denoted by l (Fig. 1.18).
From (1.205) it follows that Il D R

m
�2dm is the mass moment of inertia of the

body rotating about the l axis.
However, if the axis of rotation is not fixed, that is, it changes position with

respect to the body under consideration, then the moment of inertia measured with
respect to this instantaneous axis of rotation also undergoes a continuous change.

In the non-stationary coordinate system OX 0
1X

0
2X

0
3 we have

v D ! � r D E0
1

�
!0
2r

0
3 � !0

3r
0
2

�C E0
2

�
!0
3r

0
1 � !0

1r
0
3

�C E0
3

�
!0
1r

0
2 � r 0

1!
0
2

�
: (1.206)
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Fig. 1.18 Motion about a point of a rigid body and the adopted stationary coordinate system
OX1X2X3

Let us note that the preceding result can be obtained through the following linear
transformation:

v D �

r 0� 
!0�� D

2
4 0 r 0

3 �r 0
2

�r 0
3 0 r 0

1

r 0
2 �r 0

1 0

3
5
2
4!0

1

!0
2

!0
3

3
5 ; (1.207)

and in turn

v ı v D
0
@
2
4 0 r 0

3 �r 0
2

�r 0
3 0 r 0

1

r 0
2 �r 0

1 0

3
5
2
4!0

1

!0
2

!0
3

3
5
1
A �

0
@
2
4 0 r 0

3 �r 0
2

�r 0
3 0 r 0

1

r 0
2 �r 0

1 0

3
5
2
4!0

1

!0
2

!0
3

3
5
1
A

D
2
4!0

1

!0
2

!0
3

3
5
T 2
4 0 r 0

3 �r 0
2

�r 0
3 0 r 0

1

r 0
2 �r 0

1 0

3
5
T 2
4 0 r 0

3 �r 0
2

�r 0
3 0 r 0

1

r 0
2 �r 0

1 0

3
5
2
4!0

1

!0
2

!0
3

3
5 : (1.208)
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Let us note that

Œ!0�T Œr0�T D 

!0
1 !

0
2 !

0
3

�24 0 �r 0
3 r 0

2

r 0
3 0 �r 0

1

�r 0
2 r 0

1 0

3
5

D
2
4 !0

2r
0
3 � r 0

2!
0
3

�!0
1r

0
3 C r 0

1!
0
3

!0
1r

0
2 � r 0

1!
0
2

3
5
T

� 

v1 v2 v3

�
(1.209)

and



r 0� 
!0� D

2
4 !0

2r
0
3 � r 0

2!
0
3

�!0
1r

0
3 C r 0

1!
0
3

!0
1r

0
2 � r 0

1!
0
2

3
5 �

2
4v1

v2
v3

3
5 : (1.210)

According to (1.208) we have

I V D
2
4 0 �r 0

3 r 0
2

r 0
3 0 �r 0

1

�r 0
2 r 0

1 0

3
5
2
4 0 r 0

3 �r 0
2

�r 0
3 0 r 0

1

r 0
2 �r 0

1 0

3
5

D

2
664

I V
X 0

1
�I V

X 0

1X
0

2
�I V

X 0

1X
0

3

�I V
X 0

2X
0

1
I V
X 0

2
�I V

X 0

2X
0

3

�I V
X 0

3X
0

1
�I V

X 0

3X
0

2
I V
X 0

3

3
775 ; (1.211)

where

I V
X 0

1
D �

r 0
2

�2 C �
r 0
3

�2
; I V

X 0

1X
0

2
D r 0

1r
0
2; I V

X 0

1X
0

3
D r 0

1r
0
3;

I V
X 0

2X
0

3
D r 0

2r
0
3; I V

X 0

2
D �

r 0
1

�2 C �
r 0
3

�2
; I V

X 0

3
D �

r 0
1

�2 C �
r 0
2

�2
: (1.212)

Taking into account (1.208) and (1.211) in (1.205) we obtain

T D 1

2
!0T

0
@Z
m

IV dm

1
A!0 D 1

2
!0T I0!0; (1.213)

where I0 is the matrix (tensor) of mass moments of inertia of the body in the body
system.

Let the position of the l axis in an arbitrary Cartesian coordinate system
OX1X2X3 be described by angles ˛1, ˛2, and ˛3 (Fig. 1.18).

The desired moment of inertia is equal to

Il D
Z
m

�2dm: (1.214)
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Because

r2 D r21 C r22 C r23 ; (1.215)

cos2 ˛1 C cos2 ˛2 C cos2 ˛3 D 1; (1.216)

�2 D r2 sin2 ' D r2 � .r ı e/2

D r2 � .r1 cos˛1 C r2 cos˛2 C r3 cos˛3/
2

D r21
�
1 � cos2 ˛1

�C r22
�
1 � cos2 ˛2

�C r23
�
1 � cos2 ˛3

� � 2r1r2 cos˛1 cos˛2

� 2r2r3 cos˛2 cos˛3 � 2r1r3 cos˛1 cos˛3

D r21
�
cos2 ˛2 C cos2 ˛3

�C r22
�
cos2 ˛1 C cos2 ˛3

�
C r23

�
cos2 ˛1 C cos2 ˛2

� � 2r1r2 cos˛1 cos˛2

� 2r2r3 cos˛2 cos˛3 � 2r1r3 cos˛1 cos˛3

D �
r22 C r23

�
cos2 ˛1 C �

r21 C r23
�

cos2 ˛2 C �
r21 C r22

�
cos2 ˛3

� 2r1r2 cos˛1 cos˛2 � 2r2r3 cos˛2 cos˛3 � 2r1r3 cos˛1 cos˛3; (1.217)

substituting (1.217) into (1.214) we obtain

Il D IX1 cos2 ˛1 C IX2 cos2 ˛2 C IX3 cos2 ˛3 � 2IX1X2 cos˛1 cos˛2

�2IX2X3 cos˛2 cos˛3 � 2IX1X3 cos˛1 cos˛3: (1.218)

From the obtained formula it follows that if we know the position of the l axis
described by the angles ˛1, ˛2, ˛3, and if we know the moments of inertia and the
products of inertia with respect to the adopted coordinate system, we can determine
the moment of inertia of the body with respect to the l axis.

The kinetic energy described by formula (1.213) can be also represented in the
form

T D 1

2
! ı I!; (1.219)

where I denotes the inertia tensor, which is symmetrical [see (1.211)]. On the
diagonal of the inertia tensor successively lie the moments of inertia with respect to
the axes OX1, OX2, and OX3, and outside the diagonal lie the products of inertia.

We can represent the kinetic energy of the body given by (1.205) as

T D 1

2

Z
m

v ı .! � r/dm D 1

2

Z
m

.r � v/ ı!dm

D 1

2
! ı

Z
m

.r � v/dm D 1

2
! ı K; (1.220)

where K is the angular momentum of the body with respect to point O .
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During transformations of (1.220) the following commutativity property of the
scalar product was used:

.a � b/ ı c D a ı .b � c/ D c ı .a � b/:

From a comparison of (1.219) with (1.220) it follows that the angular momentum
is given by the formula

K D I!: (1.221)

Because vector ! is directed along the instantaneous axis of rotation, knowing
the inertia tensor along the l axis and the magnitude of the angular velocity ! it is
possible to calculate the angular momentum of the body with respect to point O . If
we associate unit vector l with the l axis, then the angular velocity vector is given
by ! D ! l . According to (1.219) we have

T D 1

2
! ı I! D !2

2
l ı Il : (1.222)

In turn the definition of kinetic energy measured with respect to the l axis is given
by (1.205).

Comparing (1.222) with (1.205) we obtain

Il D l ı Il : (1.223)

The obtained equation means that after arbitrarily choosing the unit vector l while
we know the tensor of inertia Il , we can calculate the mass moment of inertia with
respect to the axis defined by unit vector l.

Let S be the rotation matrix such that the vectors of angular momentum K
and of angular velocity !, following rotation of the axes of the coordinate system
OX1X2X3 to the axes OX 0

1X
0
2X

0
3, in the new coordinates take the form

!0 D S!;

K0 D SK; (1.224)

and substituting (1.224) into (1.221) we obtain

STK0 D IST!0: (1.225)

Next, premultiplying by S, we eventually obtain

K0 D I0!0; (1.226)

where the inertia tensor associated with the axes OX 0
1X

0
2X

0
3 reads

I0 D SIST : (1.227)
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Equation (1.227) describes the relationship between the inertia tensors expressed
in the coordinatesOX1X2X3 andOX 0

1X
0
2X

0
3. The property ST S D E, where E is the

identity matrix, was already used earlier during transformations. Equation (1.227)
describes matrices I0 and I as orthogonally similar to one another.

Because according to the previous calculations, matrix I is symmetric and
positive definite, so by introducing the rotation matrix S such that the axes of the
coordinate system OX 0

1X
0
2X

0
3 become coincident with the principal axes of inertia

of the body, we obtain as a result a diagonal matrix of the form

I0 D
2
4�1 0 0

0 �2 0

0 0 �3

3
5 : (1.228)

The kinetic energy of the system expressed through these principal axes of inertia
is equal to

T D 1

2

�
�1!

2
X 0

1
C �2!

2
X 0

2
C �3!

2
X 0

3

�
: (1.229)

Let us recall that vector a, which satisfies the condition below, is called the
eigenvector of matrix I :

Ia D �a: (1.230)

The preceding system is a system of linear algebraic equations of the form

.I � �E/ a D 0: (1.231)

It has a non-zero solution if its characteristic determinant is equal to zero, that is,

det.I � �E/ D 0: (1.232)

The preceding equation leads to the determination of the eigenvalues �1, �2,
and �3 – real numbers – which can be proved.

Moreover, let us note that

det.I � �E/ D det
�
ST I0S � �ST ES

�
D �

det ST
�

det
�
I0 � �E

�
det S D det

�
I0 � �E

�
; (1.233)

which means that matrices of inertia expressed in different coordinate systems have
the same eigenvalues.
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Chapter 2
Mathematical and Physical Pendulum

2.1 The Mathematical Pendulum

A particle of mass m connected by a rigid, weightless rod (or a thread) of length l
to a base by means of a pin joint that can oscillate and rotate in a plane we call a
mathematical pendulum (Fig. 2.1).

Let us resolve the gravity force into the component along the axis the rod and
the component perpendicular to this axis, where both components pass through the
particle of mass m. The normal component does not produce the particle motion.
The component tangent to the path of the particle, being the arc of a circle of
radius l , is responsible for the motion. Writing the equation of moments about the
pendulum’s pivot point we obtain

ml2 R' Cmgl sin ' D 0; (2.1)

whereml2 is a mass moment of inertia with respect to the pivot point.
From (2.1) we obtain

R' C ˛2 sin ' D 0; (2.2)

where

˛ D
r
g

l

�
rad

s

	
:

If it is assumed that we are dealing only with small oscillations of the pendulum,
the relationship sin ˛ � ˛ holds true and (2.2) takes the form

R' C ˛2' D 0: (2.3)

It is the second-order linear differential equation describing the circular motion
of a particle (Sect. 4.2 of [1]). Let us recall that its general solution has the form

' D � sin.˛t C�0/; (2.4)
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Fig. 2.1 Mathematical pendulum

which means that we are dealing with small harmonic oscillations of the period

T D 2
˛

D 2
q

l
g

. Let us note that in the case of small oscillations of a pendulum,

their period does not depend on the initial angle of deflection of the pendulum but
exclusively on the length of pendulum l . We say that such a motion is isochronous.
That observation, however, is not valid for the big initial angle of deflection. Such a
conclusion can be drawn on the basis of the following calculations (see also [2, 3]).

Let us transform (2.2) into the form

P' D �;

P� D �˛2 sin': (2.5)

Let us note that

P� D d�

dt
D d�

d'

d'

dt
D d�

d'
� D 1

2

d

d'

�
�2
�
; (2.6)
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and substituting (2.6) into the second equation of system (2.5) we obtain

d

d'

�
�2
� D �2˛2 sin ': (2.7)

Separating the variables and integrating we obtain

P'2 D 2˛2 cos' C 2C; (2.8)

where C is the integration constant.
Let us emphasize that we were able to conduct the integration thanks to the fact

that the investigated system is conservative (it was assumed that the medium in
which the vibrations take place introduced no damping). Equation (2.8) is the first
integral of the non-linear differential equation (2.2) since it relates the functions
'.t/ and P'.t/. In other words, it is the non-linear equation of reduced order with
respect to the original equation (2.2).

Let us introduce the following initial conditions: '.0/ D '0, P'.0/ D P'0, and
following their substitution into (2.8), in order to determine the integration constant,
we obtain

2C D P'20 � 2˛2 cos'0: (2.9)

From (2.8) we obtain

P' D ˙
p
2 .C C ˛2 cos'/; (2.10)

where C is given by (2.9).
The initial condition P'0 determines the selection of the sign in formula (2.10). If

P'0 > 0, then we select a plus sign, and if P'0 < 0, then we select a minus sign. If
P'0 D 0, then the choice of the sign in front of the square root should agree with the
sign of acceleration R'.0/.

Following separation of the variables in (2.10) and integration we have

t D ˙
Z '

'0

d'p
2 .C C ˛2 cos'/

: (2.11)

Unfortunately, it is not possible to perform the integration of the preceding
equation using elementary functions. The preceding integral is called the elliptic
integral. Equation (2.11) describes the time plot '.t/, and the form of the function
(the solution) depends on initial conditions as shown subsequently.

Below we will consider two cases of selection of the initial conditions [4].

Case 1. Let us first consider a particular form of the initial condition, namely, let
0 < '0 <  and P'0 D 0. For such an initial condition from (2.9) we obtain

C D �˛2 cos'0: (2.12)

Note that (2.7) indicates that jC j � g

l
.
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Substituting the constant thus obtained into (2.11) we obtain

t D ˙ 1

˛

Z '

'0

d'p
2 .cos' � cos'0/

: (2.13)

The outcome of the actual process determines the sign of the preceding expres-
sion, i.e., we have t � 0. From observations it follows that following introduction
of the aforementioned initial condition (or similarly for � < '0 < 0) the angle
'.t/ decreases, that is, cos'0 > cos'; therefore, one should select a minus sign
in (2.13). The angle '.t/ will be a decreasing function until the second extreme
position ' D �'0 is attained. From that instant we will be dealing with similar
calculations since the initial conditions are determined by the initial angle �'0 and
the speed P'� T

2

� D 0, where T is a period of oscillations.
Starting from the aforementioned instant, the angle '.t/ will increase from the

value �'0 to the value C'0; therefore, in that time interval one should select a plus
sign in (2.13).

Note that

cos' � cos'0 D 1 � 2 sin2
'

2
�
�
1 � 2 sin2

'0

2

�
D 2

�
sin2

'0

2
� sin2

'

2

�
; (2.14)

and hence from (2.13) (minus sign) we obtain

t D � 1

2˛

Z '

'0

d'q
sin2 '0

2
� sin2 '

2

D � 1

2˛

Z '

'0

d'

sin '0
2

r
1 � sin2 '2

sin2 '02

: (2.15)

For the purpose of further transformations let us introduce a new variable � of
the form

sin � D sin '

2

sin '0
2

: (2.16)

Differentiating both sides of the preceding equation we obtain

cos �d� D cos '
2

2 sin '0
2

d': (2.17)

Taking into account that the introduction of the new variable � leads also to a
change in the limits of integration, i.e., �0 D 

2
corresponds to '0 [see (2.16)], and

taking into account relationships (2.16) and (2.17) in (2.15) we obtain

t D 1

2˛

Z 
2

�

2 sin '0
2

cos �d�

cos '
2

sin '0
2

q
1 � sin2 �
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D 1

˛

Z 
2

�

d�s
.1 � sin2 �/ cos2 '

2

cos2 �

D 1

˛

Z 
2

�

d�s
cos2 '

2
� .1 � cos2 �/ cos2 '

2

cos2 �

D 1

˛

Z 
2

�

d�q
cos2 '

2

D 1

˛

Z 
2

�

d�q
1 � sin2 '0

2
sin2 �

; (2.18)

because according to (2.16) we have

sin2
'

2
D sin2 � sin2

'0

2
: (2.19)

The change in the angle of oscillations from '0 to zero corresponds to the time
interval T=4, which after using (2.18) leads to the determination of the period of
oscillations

T D 4

˛

Z 
2

0

d�q
1 � sin2 '0

2
sin2 �

: (2.20)

Let x D sin2 '0
2

sin2 �; then jxj < 1, and the integrand can be expanded in a
Maclaurin series about x D 0 in the following form:

f .x/ D 1p
1 � x D 1 � 1

2
x C � � � D 1 � 1

2
sin2

'0

2
sin2 � C � � � : (2.21)

Taking into account (2.20) and (2.21) we obtain

T D 4

s
l

g

 Z 
2

0

d� � 1

2
sin2

'0

2

Z 
2

0

sin2 �d�

!

D 4

s
l

g

�


2
� 1

4
� 
2

sin2
'0

2

�

D 2

s
l

g

�
1 � 1

4
sin2

'0

2

�
� 2

s
l

g

�
1 � 1

16
'20

�
; (2.22)

where in the last transformation the relationship sin '0
2

� '0
2

was used.

Case 2. Now let us consider the case where apart from the initial amplitude '0 the
particle (bob of pendulum) was given the speed P'0 big enough that, according to
(2.9), the following inequality is satisfied:
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C D 1

2
P'20 � g

l
cos'0 >

g

l
: (2.23)

Then the radicand in (2.10) is always positive. This means that the function '.t/
is always increasing (plus sign) or decreasing (minus sign). The physical interpre-
tation is such that the pendulum rotates clockwise (plus sign) or counterclockwise
(minus sign).

It turns out that for certain special values of initial conditions, namely,

C D 1

2
P'20 � g

l
cos'0 D g

l
; (2.24)

we can perform the integration given by (2.11).
From that equation, and taking into account (2.24) and assuming P'0 > 0, we

obtain

t D
s
l

g

Z '

'0

d'p
2.1C cos'/

D
s
l

g

Z '

'0

d'q
2 cos '

2

D

D
s
l

g
ln

"
tan
�

4

� '0
4

�
tan
�

4

� '

4

�
#
; (2.25)

because

p
2.1C cos'/ D

r
2
�
1C cos2

'

2
� sin2

'

2

�
D 2 cos

'

2
:

In (2.25) we have a singularity since when ' !  , the time t ! C1. This
means that for the initial condition (2.24) the pendulum attains the vertical position
for t ! C1. The foregoing analysis leads to the diagram presented in Fig. 2.2.

As was already mentioned, (2.1) cannot be solved in an analytical way using
elementary functions. However, it will be shown that using the natural coordinates
�;n one may determine an exact value of reaction N (Fig. 2.1).

The Euler equations of motion are as follows:

m
d2s

dt2
D F� D �mg sin';

mv2

�
D Fn CN D �mg cos' CN: (2.26)

Taking into account s D l', the first equation of (2.26) takes the form of (2.2).
The second equation of (2.26) yields

N D mv2

l
Cmg cos': (2.27)
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Fig. 2.2 Small oscillations about an equilibrium position, a critical case described by the initial
condition (2.24), and pendulum rotations

Observe that
dv

dt
D dv

d'
� d'

dt
D v

l

dv

d'
; (2.28)

and from (2.2) one obtains

d'

dt
C ˛2 sin ' D dv

ldt
C ˛2 sin ' D v

l2
dv

d'
C ˛2 sin' D 0 (2.29)

or, equivalently,

v
dv

d'
D �gl sin ': (2.30)

Separation of variables and integration give

.v2 � v20/

2
D gl.cos' � cos'0/ (2.31)

or, equivalently,

v2

l
D v20

l
C 2g.cos' � cos'0/: (2.32)

Substituting (2.32) into (2.27) yields

N D mv20
l

C 2mg.cos' � cos'0/:

A minimum force value can be determined from the equation

dN

d'
D �2mg sin ' D 0; (2.33)
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which is satisfied for ' D 0;˙;˙2; : : :.
Because

d2N

d'2
D �2mg cos'; (2.34)

then

d2N

d'2

ˇ̌̌
ˇ
0

D �2mg; d2N

d'2

ˇ̌̌
ˇ


D 2mg: (2.35)

This means that in the lower (upper) pendulum position the thread tension
achives its maximum (minimum).

The force minimum value is computed from (2.27):

Nmin D mv20
l

C 2mg.�1� cos'0/: (2.36)

The thread will be stretched when Nmin � 0, i.e., for

v0 � p
2gl.1C cos'0/: (2.37)

At the end of this subsection we will study a pendulum resultant motion.
Let us assume that an oscillating mathematical pendulum undertakes a flat

motion in plane ˘ , which rotates about a vertical axis crossing the pendulum
clamping point (Fig. 2.3).

The equation of a relative pendulum motion expressed through the natural
coordinates �;n has the following form (projections of forces onto the tangent
direction):

m.pw
� C pu

� C pC� / D �mg sin '; (2.38)

and since the Coriolis acceleration pC� ?˘ , then pC� D 0.
Projection of the translation acceleration onto a tangent to the particle trajectory

is pu
� D .!2l sin '/ cos', and finally (2.38) takes the form

ml R' D �mg sin ' Cm!2l sin ' cos' (2.39)

or

R' D .!2 cos' � ˛2/ sin': (2.40)

Observe that now we have two sets of equilibrium positions yielded by the
equation

.!2 cos' � ˛2/ sin' D 0: (2.41)
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Fig. 2.3 Resultant
mathematical pendulum
motion oscillating in plane ˘
rotating with angular
velocity !

Besides the previously discussed set governed by the equation sin' D 0, i.e.,
'n D n; n 2 C , the additional set of equilibrium positions is given by the
following formula:

'n D ˙ arccos
˛2

!2
C 2n; n 2 C (2.42)

if ! � ˛.
Strongly non-linear equations of motion of the pendulum (2.2) can also be solved

in an exact way. Following the introduction of non-dimesional time � D ˛t we
obtain

' 00 C sin' D 0; (2.43)
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and multiplying by sides through ' 0 we have

' 0' 00 � d

d�

�' 02

2

�
D �d'

d�
sin ' (2.44)

or

d
�' 02

2

�
D � sin'd': (2.45)

Integration of (2.45) yields

' 02

2
D �Œ.� cos'/C cos'0�; (2.46)

that is,

' 0 D ˙p
2
p

j cos' � cos'0j; (2.47)

where cos'0 is a constant of integration.
Because

cos' D 1 � 2 sin2
�'
2

�
; (2.48)

(2.47) takes the form

' 0 D �p
2

r
2
ˇ̌̌
sin2

�'0
2

�
� sin2

�'
2

�ˇ̌̌
; (2.49)

and following separation of the variables and integration we have

�
Z '

'0

d
�
'

2

�
rˇ̌̌

sin2
�
'0
2

�
� sin2

�
'

2

�ˇ̌̌ D
Z t

0

d�: (2.50)

The obtained integral cannot be expressed in terms of elementary functions and
is called an elliptic integral because it also appears during calculation of the length
of an elliptical curve.

For the purpose of its calculation we introduce two parameters – k, called the
elliptic modulus, and u, called the amplitude – according to the following equations:

sin
�'
2

�
D sin

�'0
2

�
sin � D k sin �; k D sin

�'0
2

�
;

cos
�'
2

�
D
r
1 � sin2

�'
2

�
D
p
1 � k2 sin2 �;

d
�

sin
�'
2

��
D cos

�'
2

�
d
�'
2

�
D kd.sin �/ D k cos �d�;

d
�'
2

�
D k cos �d�

cos
�
'

2

� D k cos �d�p
1 � k2 sin2 �

: (2.51)
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From the first equation of (2.51) we have

sin2
�'0
2

�
D k2; (2.52)

and the integral from (2.50) takes the form

Z '0

'.t/

k cos �d�p
1 � k2 sin2 �

p
k2 � k2 sin2 �

D
Z '0

'.t/

d�p
1 � k2 sin2 �

: (2.53)

In the foregoing integral one should additionally alter the limits of integration.
We have here a conservative system; let oscillations of the system be characterized
by period T (we consider the case of a lack of rotation of the pendulum). After time
T=2 starting from the initial condition '0 according to the first equation of (2.51)
we have sin � D �1, which implies �.T=2/ D 3=2. In turn, at the instant the
motion began according to that equation we have sin � D 1, that is, �.0/ D =2.
Finally, (2.50) takes the form

Z 3=2

=2

d�p
1 � k2 sin2 �

D 2

Z =2

0

d�p
1 � k2 sin2 �

D T

2
: (2.54)

The desired period of the pendulum oscillations is equal to

T D 4

Z =2

0

d�p
1 � k2 sin2 �

: (2.55)

The integral

F.��; k/ D
Z ��

0

d�p
1� k2 sin2 �

(2.56)

is called an elliptic incomplete integral of the first kind. Introducing variable

z D sin � (2.57)

we can represent integral (2.56) in the following equivalent form:

Z ��

0

D dz

cos �
p
1 � k2z2

Z sin ��

0

dzp
.1 � z2/.1 � k2z2/

: (2.58)

A graph of dependency T .k/ on the basis of (2.55) is presented in Fig. 2.4.
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Fig. 2.4 Graph of
dependency of period of
pendulum oscillations on
initial deflection
k D sin.'0=2/

2.2 The Physical Pendulum

In this section we will consider the plane motion of a material body suspended on the
horizontal axis and allowed to rotate about it. It is the physical pendulum depicted
in Fig. 2.5.

The pendulum is hung at pointO , and the straight line passing through that point
and the pendulum mass center C defines the axis OX1. We assume that the angle
of rotation of pendulum ' is positive and the sense of the axis perpendicular to the
OX1 axis is taken in such a way that the Cartesian coordinate system OX1X2X3 is
a right-handed one (the X3 axis is perpendicular to the plane of the drawing).

Neglecting the resistance to motion in a radial bearing O and the resistance of
the medium, the only force producing the motion is the component of gravity force
tangent to a circle of radius s. The equation of moments of force about pointO has
the form

IO R' D �msg sin '; (2.59)

where IO is the moment of inertia of the physical pendulum with respect to pivot
pointO , i.e., the axis X3.

By analogy to the equation of motion of a mathematical pendulum (2.2), we will
reduce (2.59) to the form

R' C ˛2f sin ' D 0; (2.60)

where

˛2f D mgs

IO
D g

lred
: (2.61)

From (2.61) it follows that the introduced reduced length of a physical pendulum
equals lred D IC

ms
. All the calculations conducted in Sect. 2.1 hold also in this case
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Fig. 2.5 Physical pendulum
of mass m

owing to the same mathematical model. In particular, the period of small oscillations
of the physical pendulum about the equilibrium position ' D 0 equals

T D 2

˛f
D 2

s
IO

mgs
D 2

s
lred

g
: (2.62)

Let the moment of inertia with respect to the axis parallel to X3 and passing
through the mass center of the physical pendulum be IC . According to the parallel
axis theorem the moment of inertia IO reads

IO D IC Cms2 D m

�
IO

m
C s2

�
D m

�
i 2C C s2

�
; (2.63)

where iC is a radius of gyration with respect to the axis passing through the mass
center of the pendulum.

According to the previous calculations the reduced length of the physical
pendulum is equal to

lred D IO

ms
D s C i 2C

s
: (2.64)
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From the preceding equation it follows that the reduced length of a physical
pendulum is a function of s. If s ! 0, then lred ! 1, whereas if s ! 1, then
lred ! 1. According to (2.62) the period of small oscillations of the pendulum
T ! 1 for s ! 0 and T ! 0 for s ! 1. Our aim will be to determine such a
value of s, i.e., the distance of the point of rotation of the pendulum from its mass
center, for which the period is minimal. According to (2.64)

dlred

ds
D 1 � i 2C

s2
D 0; (2.65)

d2lred

ds2
D 2

s3
i2C > 0: (2.66)

From the two foregoing equations it follows that the function lred.s/ attains the
minimum for the value s D iC because its second derivative for such s is positive.

In Fig. 2.5 point S is marked at the distance lred from the axis of rotation. We
will call that point the center of swing corresponding to the pivot point O . In other
words, if we concentrate the total mass of the physical pendulum at point S , then
we will obtain a mathematical pendulum of length lred.

Let us suspend the pendulum at point S obtained in that way and determine
the corresponding center of swing S�. The length reduced to point S , according to
(2.64), is equal to

l�red D SS� D CS C i 2C
CS

: (2.67)

Because

CS D OS �OC D lred � s D i 2C
s
; (2.68)

from (2.67) we have

l�red D lred � s C s D lred: (2.69)

From the foregoing calculations it follows that the pivot point of the pendulum
and the corresponding center of swing play an identical role with respect to one
another.

In Sect. 2.1 we mentioned the first integral of motion. Now, as distinct from
that approach, we will determine the relationships between the velocities and
the displacement of the pendulum based on the theorem of the conservation of
mechanical energy. Let the mechanical energy of a physical pendulum be given by

T .t/C V.t/ D C Cmgs; (2.70)

where C is a certain constant, i.e., the stored energy of the pendulum introduced
by the initial conditions, and mgs denotes the potential energy of the system in the
equilibrium position ' D 0.

Because we are dealing with a conservative system, the sum of kinetic energy
T and potential energy V does not change in time and is constant for every time
instant t in the considered case (Fig. 2.5):
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T D 1

2
IO P'2; (2.71)

V D mgs.1� cos'/; (2.72)

where V is the potential energy of the pendulum deflected through the angle '.
Substituting (2.71) and (2.72) into (2.70) we have

IO P'2
2

�mgs cos' D C; (2.73)

and hence

P'2 D 2

IO
.C Cmgs cos'/: (2.74)

Let us note that (2.74) is analogous to the previously obtained equation for a
mathematical pendulum (2.8) since we have

P'2 D 2Cf C 2˛2f cos'; (2.75)

where Cf D C=IO and ˛2f is defined by (2.61).
If the initial conditions of the pendulum have the form '.0/ D '0, P'.0/ D 0,

then from (2.73) we obtain
C D �mgs cos'0: (2.76)

This means that the initial energy is associated only with the potential energy,
and taking into account (2.76) in (2.74) we have

P'2 D 2mgs

IO
.cos' � cos'0/: (2.77)

The last equation corresponds to (2.8).

2.3 Planar Dynamics of a Triple Physical Pendulum

2.3.1 Equations of Motion

Our goal is to introduce a mathematical model of a 2D triple physical pendulum.
The mathematical model [3] is a description of the system dynamics with the aid
of equations, in this case, ordinary differential equations. The mathematical model
is a mathematical expression of physical laws valid in the considered system. In
order to proceed with writing the equations, we must first have a physical model
understood as a certain conception of physical phenomena present in the system.
One should remember that the physical model to be presented below does not
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exist in reality but is an idea of a triple physical pendulum. If there existed a
real object, which we would also call a triple physical pendulum, it would be
able to correspond to our physical model approximately at best. By saying here
that the real system and the model correspond to each other approximately, we
mean that all physical phenomena taken into account in the model occur in the
real object. Additionally, the influence of the physical phenomena occurring in
the real system and not taken into account in the model (they can be treated as
disturbances) on the observed (measured) quantities that are of interest to us is
negligible. Those observed quantities in the triple pendulum can be, for instance,
three angles describing the position of the pendulum at every time instant. Clearly,
there exists a possibility of further development of this model so that it incorporates
increasingly more physical phenomena occurring in a certain existing real system
and, consequently, becomes closer to that real system. An absolute agreement,
however, will not be attainable. On the other hand, one may also think about the
opposite situation, in which to the theoretically created idea of a pendulum we try
to match a real object, that is, the test stand. Then we build it in such a way that in
the stand only the laws and physical phenomena assumed in the model are, to the
best possible approximation, valid. The influence of other real phenomena on the
quantities of interest should be negligible.

Our physical model of a triple pendulum (Fig. 2.6) consists of three .i D 1; 2; 3/

absolutely rigid bodies moving in a vacuum in a uniform gravitational field of lines
that are parallel and directed against the axis X2 of the global coordinate system
O1X1X2X3, connected to each other by means of revolute joints Oi and connected
to an absolutely rigid base [5]. Those joints have axes perpendicular to the plane
O1X1X2 so that the whole system moves in planar motion. We assume that in the
joints there exists viscous damping, that is, that the resistive moment counteracting
the relative motion of two pendulums connected to each other is proportional (with
a certain proportionality factor ci ) to their relative angular velocity. We also assume
that mass centers of particular pendulums .Ci/ lie in planes determined by the axes
of joints by which the given pendulum is connected to the rest of the system (this
does not apply to the third pendulum). This last assumption allows for a decrease
in the number of model parameters – to be precise, the number of parameters
establishing the positions of mass centers of particular pendulums. Each of the
pendulums has its own local coordinate system CiX

.i/
1 X

.i/
2 X

.i/
3 .i D 1; 2; 3/ of

the origin at the mass center of the given pendulum and the axis X.i/
3 perpendicular

to the plane of motion. Geometrical parameters that determine the positions of mass
centers .ei / and the distances between the joints .l1; l2/ are indicated in the figure.
Moreover, each of the pendulums possesses mass mi and mass moment of inertia
Ii with respect to the axis CiX3 passing through the mass center (centroidal axis)
and perpendicular to the plane of motion. The first pendulum is acted upon by an
external moment Me.t/. The configuration of the system is uniquely described by
three angles  i , as shown in Fig. 2.6.
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Fig. 2.6 A triple physical pendulum

For the derivation of equations of motion we will make use of Lagrange’s
equations of the second kind having the following form:

d

dt

�
@T

@ Pqn
�

� @T

@qn
C @V

@qn
D Qn; n D 1; : : : ; N; (2.78)

where N is the number of generalized coordinates, qn the nth generalized
coordinate, T the kinetic energy of the system, V the potential energy, and Qn

the nth generalized force. In the case of the considered triple pendulum one may
choose three angles  1,  2, and  3 as generalized coordinates (describing uniquely
the system configuration). Then, (2.78) take the form

d

dt

�
@T

@ P n

�
� @T

@ n
C @V

@ n
D Qn: (2.79)
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Gravity forces can be included in two ways. Firstly, one may put them into
equations as appropriate components of the generalized forces Qn. Secondly, after
taking into account that the gravity forces are conservative, one can put them into
equations as the appropriate potential energy. The latter method is more convenient
and will be applied here. The potential energy (of gravity forces) is as follows:

V D V0 C
3X

nD1
mngx2Cn ; (2.80)

where V0 is an arbitrary constant, g the acceleration of gravity, and x2Cn the
coordinate determining the position along the X2 axis of the mass center of the
nth pendulum.

The kinetic energy of the system is the sum of the kinetic energies of each of
the bodies. In turn, the kinetic energy of a body is the sum of its kinetic energy for the
translational motion (with velocity of the mass center) and for the motion about the
mass center. That relative motion, generally, is the motion about a point (that is,
the instantaneous rotational motion), whereas in our special case of planar motion it
is the rotational motion of the nth pendulum (of the axis of rotation CiX

.n/
3 ). Thus,

the kinetic energy of the system of three connected pendulums is equal to

T D 1

2

3X
nD1

mn

� Px21Cn C Px22Cn
�C 1

2

3X
nD1

In P 2n: (2.81)

The coordinates of mass centers occurring in expressions (2.80) and (2.81) are
equal to

x1C1 D e1 sin 1;

x1C2 D l1 sin 1 C e2 sin 2;

x1C3 D l1 sin 1 C l2 sin 2 C e3 sin 3;

x2C1 D �e1 cos 1;

x2C2 D �l1 cos 1 � e2 cos 2;

x2C3 D �l1 cos 1 � l2 cos 2 � e3 cos 3; (2.82)

whereas their time derivatives

Px1C1 D e1 P 1 cos 1;

Px1C2 D l1 P 1 cos 1 C e2 P 2 cos 2;

Px1C3 D l1 P 1 cos 1 C l2 P 2 cos 2 C e3 P 3 cos 3;
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Px2C1 D e1 P 1 sin 1;

Px2C2 D l1 P 1 sin 1 C e2 P 2 sin 2;

Px2C3 D l1 P 1 sin 1 C l2 P 2 sin 2 C e3 P 3 sin 3: (2.83)

Inserting relationships (2.82) and (2.83) into expressions (2.80) and (2.81),
applying suitable operations, using certain trigonometric identities, and grouping
the terms, we obtain

V D �
3X

nD1
Mn cos n (2.84)

and

T D 1

2

3X
nD1

Bn P 2n C
2X

nD1

3X
jDnC1

Nnj P n P j cos
�
 n �  j

�
; (2.85)

where the following symbols were used:

M1 D m1ge1 C .m2 Cm3/ gl1;

M2 D m2ge2 Cm3gl2

M3 D m3ge3;

B1 D I1 C e1
2m1 C l1

2 .m2 Cm3/ ;

B2 D I2 C e2
2m2 C l2

2m3;

B3 D I3 C e3
2m3;

N12 D m2e2l1 Cm3l1l2;

N13 D m3e3l1;

N23 D m3e3l2: (2.86)

Inserting relations (2.84) and (2.85) into the left-hand sides of (2.79) and
differentiating, we obtain

d

dt

�
@T

@ P 1

�
� @T

@ 1
C @V

@ 1
D B1 R 1 CN12 cos . 1 �  2/ R 2

CN13 cos . 1 �  3/ R 3
CN12 sin . 1 �  2/ P 22 CN13 sin . 1 �  3/ P 23
CM1 sin 1;
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d

dt

�
@T

@ P 2

�
� @T

@ 2
C @V

@ 2
D B2 R 2 CN12 cos . 1 �  2/ R 1

CN23 cos . 2 �  3/ R 3
�N12 sin . 1 �  2/ P 21 CN23 sin . 2 �  3/ P 23
CM2 sin 2;

d

dt

�
@T

@ P 3

�
� @T

@ 3
C @V

@ 3
D B3 R 3 CN13 cos . 1 �  3/ R 1

CN23 cos . 2 �  3/ R 2
�N13 sin . 1 �  3/ P 21 �N23 sin . 2 �  3/ P 22
CM3 sin 3: (2.87)

Now we should determine the right-hand sides, that is, what kinds of generalized
forces act along particular generalized coordinates. When using generalized forces
Qn one should take into account in the equations all non-conservative forces acting
on the system. This will be the moment of forceMe.t/ acting on the first pendulum
but also moments of resistive forces at the connections of the pendulums. Because
the generalized coordinates are angles, the generalized forces must be moments of
force. Moreover, generalized coordinates describe the absolute angular positions
of individual pendulums; therefore, the generalized forces will be the moments
of force acting on particular pendulums. Therefore, it is already known that the
moment Me.t/ will be the component of the first generalized force. Also, on
particular pendulums additionally act the moments associated with viscous damping
at particular revolute joints. We may write it in the following way:

Q1 D Me.t/CM01 CM21;

Q2 D M12 CM32;

Q3 D M23; (2.88)

whereMij is the moment of force with which the i th pendulum or the base .i D 0/

acts on the j th pendulum by means of viscous damping at a joint connecting
two pendulums. Positive directions of particular moments are consistent with
the adopted positive direction common for all generalized coordinates. Clearly,
according to Newton’s third law (action and reaction principle),Mij D �Mji must
hold. For viscous damping (proportional to the relative velocity) we have

M01 D �c1 P 1;
M12 D �c2

� P 2 � P 1
� D �M21;

M23 D �c3
� P 3 � P 2

� D �M32: (2.89)
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While taking the appropriate signs in the preceding formulas we keep in mind
that the moment of damping has to counteract the relative motion of the connected
pendulums. Finally, the generalized forces read

Q1 D Me.t/ � c1 P 1 C c2
� P 2 � P 1

�
;

Q2 D �c2
� P 2 � P 1

�C c3
� P 3 � P 2

�
;

Q3 D �c3
� P 3 � P 2

�
; (2.90)

where ci is the viscous damping coefficient at joint Oi .
Equating formulas (2.90) to (2.87) and moving also the damping force to the

left-hand side of every equation we obtain a system of three second-order ordinary
differential equations (the mathematical model) describing the dynamics of the
triple pendulum:

B1 R 1 CN12 cos . 1 �  2/ R 2 CN13 cos . 1 �  3/ R 3
CN12 sin . 1 �  2/ P 22 CN13 sin . 1 �  3/ P 23
C c1 P 1 � c2

� P 2 � P 1
�CM1 sin 1 D Me.t/;

B2 R 2 CN12 cos . 1 �  2/ R 1 CN23 cos . 2 �  3/ R 3
�N12 sin . 1 �  2/ P 21 CN23 sin . 2 �  3/ P 23
C c2

� P 2 � P 1
� � c3

� P 3 � P 2
�CM2 sin 2 D 0;

B3 R 3 CN13 cos . 1 �  3/ R 1 CN23 cos . 2 �  3/ R 2
�N13 sin . 1 �  3/ P 21 �N23 sin . 2 �  3/ P 22
C c3

� P 3 � P 2
�CM3 sin 3 D 0: (2.91)

Equation (2.91) can also be represented in a more concise and clear form using
matrix notation

M . / R C N . / P 2 C C P C p . / D fe .t/; (2.92)

where

M . / D
2
4 B1 N12 cos . 1 �  2/ N13 cos . 1 �  3/

N12 cos . 1 �  2/ B2 N23 cos . 2 �  3/

N13 cos . 1 �  3/ N23 cos . 2 �  3/ B3

3
5;

N . / D
2
4 0 N12 sin . 1 �  2/ N13 sin . 1 �  3/

�N12 sin . 1 �  2/ 0 N23 sin . 2 �  3/

�N13 sin . 1 �  3/ �N23 sin . 2 �  3/ 0

3
5;
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C D
2
4c1 C c2 �c2 0

�c2 c2 C c3 �c3
0 �c3 c3

3
5; p . / D

2
4M1 sin 1
M2 sin 2
M3 sin 3

3
5; fe .t/ D

2
4Me .t/

0

0

3
5;

 D
2
4 1 2
 3

3
5; P D

2
4 P 1

P 2
P 3

3
5; R D

2
4 R 1

R 2
R 3

3
5; P 2 D

2
4 P 21P 22P 23

3
5: (2.93)

The unknowns of a system of differential equations describing the dynamics of a
triple pendulum [in the form of (2.91) or (2.92)] are the functions  1.t/,  2.t/, and
 3.t/, which means that the solution of those equations describes the motion of the
pendulum.

Let us also draw attention to the parameters of those equations. While there
are 15 of the physical parameters of the pendulum (l1; l2; e1; e2; e3; m1; m2; m3;

I1; I2; I3, g; c1; c2, and c3 – for now we omit parameters of excitation), in the
equations there are actually 11 independent parameters (M1; M2; M3; B1; B2;

B3; N13; N23; c1; c2, and c3), because out of quantities (2.86) one is dependent on
the remaining ones:

N12

N13
D M2

M3

D m2e2

m3e3
C l2

e3
; (2.94)

and hence

N12 D N13
M2

M3

: (2.95)

From the fact that fewer parameters (11) occur in equations of motion than
the number of physical parameters of a pendulum (15) it follows that the same
pendulum in the sense of dynamics (i.e., behaving in the same way) one may build
in an infinite number of ways.

2.3.2 Numerical Simulations

Differential equations (2.92) are strongly non-linear equations and do not have
an exact analytical solution. For the investigation of their solutions, numerical
and analytical approximate methods remain at our disposal. Here one of the most
popular and effective numerical methods for the solution of ordinary differential
equations – the fourth-order Runge–Kutta method [6] – was applied.

However, the mathematical model of a triple pendulum (2.91) or (2.92) has
the form of a system of second-order equations. In order to be able to apply
classical algorithms for integration of differential equations, we have to reduce these
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equations to the form of a system of first-order equations. Let us take a system state
vector (the vector of state variables) as

x D

2
66666664

 1
 2

 3
P 1
P 2
P 3

3
77777775

D
�
 
P 
	
; (2.96)

then the system of six first-order differential equations has the following general
form

Px D f.x; t/ D
� P 

R 
	
: (2.97)

Let us note that we need angular accelerations of the pendulums given explicitly
as functions of system state x and time t . Then we have to solve (2.92) with respect
to R , treating them as algebraic equations. Because it is a system of linear equations,
we have

R D ŒM . /��1
h
fe .t/ � N . / P 2 � C P � p . /

i
: (2.98)

Inserting relation (2.98) into (2.97), we eventually obtain

Px D
" P 
ŒM . /��1

h
fe .t/ � N . / P 2 � C P � p . /

i# ˇ̌̌ˇ̌
 D

2
6664
x1
x2
x3

3
7775; P D

2
6664
x4
x5
x6

3
7775; P 2D

2
6664
x24
x25
x26

3
7775
:

(2.99)

In every step of the integration we must perform an inversion of the matrix
M. /. Because of its size, it is possible to use for this purpose an exact analytical
expression. In the case of a slightly larger system, in practice there would remain
only the possibility of using one of the existing numerical methods for inverting
a matrix. If we investigate (integrate) differential equations (2.92) by means of a
numerical method, in fact not only will the mathematical model consist of these
equations, but also the method itself should be considered as an integral part of
the model. Then a system with continuous time is approximated by a system
with discrete time, and the differential equations themselves are approximated by
difference equations.

In order to conduct an illustrative numerical simulation of a pendulum (i.e., to
find the numerical solution of the model), we have to adopt some concrete values
for model parameters and initial conditions. Let us assume that this special case of
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Fig. 2.7 Special case of a
triple physical pendulum – a
system of three identical
pin-joined rods

a triple physical pendulum are three identical rods connected by means of joints
located at their ends, as shown in Fig. 2.7.

Then we will have

l1 D l2 D l;

m1 D m2 D m3 D m;

e1 D e2 D e3 D l

2
;

I1 D I2 D I3 D ml2

12
; (2.100)

where l is the length of a single pendulum and m its mass, and expressions (2.86)
will take the form

M1 D 5

2
mgl; M2 D 3

2
mgl; M3 D 1

2
mgl;

B1 D 7

3
ml2; B2 D 4

3
ml2; B3 D 1

3
ml2;
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N12 D 3

2
ml2; N13 D 1

2
ml2; N23 D 1

2
ml2: (2.101)

In turn, setting g D 10m=s2, m D 1 kg and l D 1m we obtain

M1 D 25 kg � m2 � s�2; M2 D 15 kg � m2 � s�2; M3 D 5 kg � m2 � s�2;

B1 D 7

3
kg � m2; B2 D 4

3
kg � m2; B3 D 1

3
kg � m2;

N12 D 3

2
kg � m2; N13 D 1

2
kg � m2; N23 D 1

2
kg � m2: (2.102)

Viscous damping in the joints are taken as

c1 D c2 D c3 D 1N � m � s: (2.103)

We take the moment acting on the first pendulum as harmonically varying in time

Me.t/ D q sin .!t/ ; (2.104)

where q is the amplitude and ! the angular frequency of pendulum excitation. These
two parameters will vary for different simulation examples shown later, whereas the
remaining parameters from (2.102) to (2.103) will be constant.

The free motion of a pendulum (the pendulum is not subjected to external excita-
tion, i.e., q D 0) for initial conditions 1.0/D 2.0/D 3.0/D P 1.0/D P 2.0/D 0

and P 3.0/D 1 rad=s is shown in Fig. 2.8. Vibrations decay because the energy of
the pendulum is dissipated through damping in the joints, and no new energy is
simultaneously supplied (no excitation). Therefore, the solution tends to a stable
equilibrium position, and the only stable equilibrium position in this system is
 1 D  2 D  3 D 0.

In Fig. 2.9, in turn, we present the excited transient motion of a pendulum
(q D 25N � m and ! D 3 rad=s), which starts at the time instant t D 0 from zero
initial conditions (bright) and tends to the stable periodical solution (by analogy to
the stable equilibrium position) marked dark. The solution is marked bright for the
time t 2 .0; 150 s/, whereas for t 2 .150 s; 200 s/ it is marked dark. Clearly, for the
time t D 150 s only a pendulum with a good approximation moves on a periodic
solution, whereas in reality it constantly approaches it and reaches it for t ! 1.

The motion of a pendulum is presented in Figs. 2.9–2.11 as the motion of the
tip of the third rod of the pendulum (point O4 in Fig. 2.7) in the plane of motion
of the pendulum (coordinates x1O4 and x2O4 describe the position of pointO4 in the
coordinate systemO1X1X2). One should remember, however, that the space (plane)
x1O4 � x2O4 is a 2D subspace of the system phase space, which is actually 7D (apart
from three angles  1;  2, and  3, and three angular velocities P 1; P 2, and P 3 we
add here a phase of the periodic excitation Me.t/). The graphs presented in the
coordinates x1O4 � x2O4 are projections of phase trajectories onto this subspace and
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Fig. 2.8 Decaying motion of
pendulum not subjected to
external excitation .q D 0/
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Fig. 2.9 Excited motion of pendulum tending to stable periodic solution (dark) for q D 25N � m
and ! D 3 rad=s

Fig. 2.10 Two coexisting periodic solutions for q D 25N � m and ! D 2:022 rad=s attained from
different initial conditions

do not contain complete information. If we observe in Fig. 2.9 a periodic solution
(dark) in the form of a closed line (i.e., the motion is repetitive), then the tip of
the third rod moving on this line returns to its previous position (e.g., to the point
marked with a dark circle), and the values of all state variables repeat themselves
(positions and angular velocities and the phase of the periodic excitation).
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Fig. 2.11 Quasiperiodic solution for ! D 2:8 rad=s [trajectory (a), Poincaré section (b] and
chaotic solution for ! D 2 rad=s [trajectory (c), Poincaré section (d)]; excitation amplitude
q D 25N � m

In non-linear systems the coexistence of many solutions (for the same parame-
ters) is possible. An example is two periodic solutions for the excitation parameters
q D 25N � m and ! D 2:022 rad=s shown in Fig. 2.10. Each of the solutions is
attained from different initial conditions: the solution marked in bright from zero
initial conditions at the instant t D 0, and the solution marked in dark from initial
conditions  1.0/ D  2.0/ D  3.0/ D P 3.0/ D 0 and P 1.0/ D P 2.0/ D �1 rad=s.
On the graph the initial transient motion for t 2 .0; 150 s/ is neglected, and only
the motion in the time interval t 2 .150; 200 s/ is shown, when it has already
taken place in a sufficient approximation on the appropriate periodic solution.
Each solution is asymmetrical, whereas the system is symmetrical. In turn, the two
solutions together form an object symmetrical with respect to the axis of symmetry
of the pendulum. The symmetry of the system implies that asymmetrical solutions
may appear only in such twin pairs.

From the previous examples we see that the typical behavior of a damped and
periodically excited pendulum is that after waiting some time and neglecting certain
initial transient motion, the pendulum starts to move periodically. This period is
always a multiple of the period of excitation. However, it happens sometimes that
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the pendulum never starts its periodic motion regardless of the length of the transient
period we would like to skip. An example is the solution shown in Fig. 2.11a for
the excitation parameters q D 25N � m and ! D 2:8 rad=s. The pendulum starts
at the time instant t D 0 from zero initial conditions. The transient motion for
t 2 .0; 200 s/ was skipped and only the motion for t 2 .200; 350 s/ is shown on the
graph. One may check that after skipping a time interval of transient motion of an
arbitrary length, the pendulum still is going to behave qualitatively in the same way
as shown in Fig. 2.11a.

For a more detailed analysis of aperiodic motions a tool called a Poincaré section
(also a Poincaré map) is very useful. In the case of a system with periodic excitation,
the simplest way to create such a section is by sampling the state of the system in
the intervals equal to the period of excitation. A Poincaré section of the solution
from Fig. 2.11a, obtained by sampling the position of the tip of the third rod of the
pendulum at time instances ti D iT .i D 1; 2; 3; : : : /, where T D 2=! is the
period of excitation, is shown in Fig. 2.11b.

On this occasion we obviously skip an appropriate number of initial points in
order to remove the transient motion. The Poincaré section shown in Fig. 2.11b
contains 3,500 points. As can be seen, these points form a continuous line. This is a
characteristic of quasiperiodic motion.

In Fig. 2.11c, d another case of aperiodic motion of the pendulum is shown for the
excitation parameters q D 25N �m and ! D 2 rad=s. The pendulum starts its motion
at the time instant t D 0 from zero initial conditions. The transient motion for t 2
.0; 200 s/ was skipped. The motion of the tip of the third rod for t 2 .200; 400 s/ is
shown in Fig. 2.11c, whereas Fig. 2.11d shows the corresponding Poincaré section
obtained in the same way as for the quasiperiodic solution, this time composed
of 106 points. It is a typical section for chaotic motion, that is, the set of points
approximating this motion is an infinite set.

In the end, we should add that a Poincaré section for a periodic solution of
period nT (only those kinds of solutions are possible in a system with periodic
excitation), where T is a period of excitation and n is an integer number, will form
a set consisting of n separate points. An example would be the individual points
plotted in Figs. 2.9 and 2.10.

2.3.3 Dynamic Reactions in Bearings

Lagrange’s equations enable a relatively easy derivation of equations of motion of
complex dynamical systems, since, for instance, they allow for avoiding the direct
determination of dynamic reactions in a system. However, when these reactions
have to be determined, it turns out that in equations of motion alone there is not
enough information, and additional analysis of the physical system is required. That
is precisely the case for a triple physical pendulum. If we want to determine the
dynamic reactions in its three joints, we have to consider separately the motion
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Fig. 2.12 Accelerations of characteristic points of a pendulum and their decomposition in local
coordinate systems

of each of the bodies under the action of external forces. In order to obtain the
relationships allowing us to determine the reactions, we will have to find the
accelerations of the mass centers of particular bodies.

The accelerations of the mass center of the first pendulum C1 and the joint O2
(Fig. 2.12) can be expressed in terms of tangential and normal components:

aC1 D a.t1/C1
C a.n1/C1

; aO2 D a.t1/O2
C a.n1/O2

; (2.105)
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where

a
.t1/
C1

D "1e1 D R 1e1; a
.n1/
C1

D !21e1 D P 21 e1; (2.106a)

a
.t1/
O2

D "1l1 D R 1l1; a
.n1/
O2

D !21 l1 D P 21 l1: (2.106b)

In turn, the acceleration of the mass center of the second pendulum C2 can be
represented as

aC2 D aO2 C a.t2/C2=O2
C a.n2/C2=O2

(2.107)

or, taking into account relationship (2.105), as

aC2 D a.t1/O2
C a.n1/O2

C a.t2/C2=O2
C a.n2/C2=O2

; (2.108)

where

a
.t2/

C2=O2
D "2e2 D R 2e2; a

.n2/

C2=O2
D !22e2 D P 22 e2: (2.109)

The total acceleration of pointC2 can also be decomposed into the following two
components (Fig. 2.12):

aC2 D a.t2/C2
C a.n2/C2

; (2.110)

and the best way to determine them is to project the right-hand side of (2.108) onto
the directions t2 and n2:

a
.t2/
C2

D a
.t1/
O2

cos . 2 �  1/C a
.n1/
O2

sin . 2 �  1/C a
.t2/

C2=O2
;

a
.n2/
C2

D �a.t1/O2
sin . 2 �  1/C a

.n1/
O2

cos . 2 �  1/C a
.n2/

C2=O2
; (2.111)

and when we take into account relationships (2.106b) and (2.109), the acceleration
components take the form

a
.t2/
C2

D R 1l1 cos . 2 �  1/C P 21 l1 sin . 2 �  1/C R 2e2;
a
.n2/
C2

D � R 1l1 sin . 2 �  1/C P 21 l1 cos . 2 �  1/C P 22 e2: (2.112)

In an analogous way we can proceed with the acceleration of pointO3:

aO3 D aO2 C a.t2/O3=O2
C a.n2/O3=O2

; (2.113a)

aO3 D a.t1/O2
C a.n1/O2

C a.t2/O3=O2
C a.n2/O3=O2

; (2.113b)

aO3 D a.t2/O3
C a.n2/O3

; (2.113c)
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where

a
.t2/

O3=O2
D "2l2 D R 2l2; a

.n2/

O3=O2
D !22l2 D P 22 l2: (2.114)

Projecting (2.113b) onto directions t2 and n2 we obtain

a
.t2/
O3

D a
.t1/
O2

cos . 2 �  1/C a
.n1/
O2

sin . 2 �  1/C a
.t2/

O3=O2
;

a
.n2/
O3

D �a.t1/O2
sin . 2 �  1/C a

.n1/
O2

cos . 2 �  1/C a
.n2/

O3=O2
; (2.115)

and after taking into account relations (2.106b) and (2.114) we obtain

a
.t2/
O3

D R 1l1 cos . 2 �  1/C P 21 l1 sin . 2 �  1/C R 2l2;
a
.n2/
O3

D � R 1l1 sin . 2 �  1/C P 21 l1 cos . 2 �  1/C P 22 l2: (2.116)

The acceleration of point C3 can be represented as

aC3 D aO3 C a.t3/C3=O3
C a.n3/C3=O3

(2.117)

or, after taking into account (2.113b), as

aC3 D a.t1/O2
C a.n1/O2

C a.t2/O3=O2
C a.n2/O3=O2

C a.t3/C3=O3
C a.n3/C3=O3

; (2.118)

where

a
.t3/

C3=O3
D "3e3 D R 3e3; a

.n3/

C3=O3
D !23e3 D P 23 e3: (2.119)

The total acceleration of point C3 we also decompose into the following two
components (Fig. 2.12):

aC3 D a.t3/C3
C a.n3/C3

; (2.120)

and projecting (2.117) onto directions t3 and n3 we obtain

a
.t3/
C3

D a
.t1/
O2

cos . 3 �  1/C a
.n1/
O2

sin . 3 �  1/

C a
.t2/

O3=O2
cos . 3 �  2/C a

.n2/

O3=O2
sin . 3 �  2/C a

.t3/

C3=O3
;

a
.n3/
C3

D �a.t1/O2
sin . 3 �  1/C a

.n1/
O2

cos . 3 �  1/

� a
.t2/

O3=O2
sin . 3 �  2/C a

.n2/

O3=O2
cos . 3 �  2/C a

.n3/

C3=O3
; (2.121)
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and taking into account relationships (2.106b), (2.114), and (2.119) we obtain

a
.t3/
C3

D R 1l1 cos . 3 �  1/C P 21 l1 sin . 3 �  1/

C R 2l2 cos . 3 �  2/C P 22 l2 sin . 3 �  2/C R 3e3;

a
.n3/
C3

D � R 1l1 sin . 3 �  1/C P 21 l1 cos . 3 �  1/

� R 2l2 sin . 3 �  2/C P 22 l2 cos . 3 �  2/C P 23 e3: (2.122)

The dynamic reactions of the action of the links of a pendulum to one another and
to the base can be represented as the sum of the following components (Fig. 2.13):

RO1 D R.t1/
O1

C R.n1/
O1
; (2.123a)

RO2 D R.t2/
O2

C R.n2/
O2
; (2.123b)

RO3 D R.t3/
O3

C R.n3/
O3
: (2.123c)

Due to space limitations, Fig. 2.13 does not contain the moments of forces of the
actions of links on one another and of the base action through joints, since in the
following calculationswe do not use moment equations but force equations only.

For each link the equations expressing the acceleration of its mass center under
the action of external forces have the following form:

m1aC1 D RO1 Cm1g � RO2;

m2aC2 D RO2 Cm2g � RO3;

m3aC3 D RO3 Cm3g; (2.124)

and projecting these equations onto directions t1, n1, t2, n2, t3, and n3 we obtain

m1a
.t1/
C1

D R
.t1/
O1

�m1g sin . 1/

� R
.t2/
O2

cos . 2 �  1/CR
.n2/
O2

sin . 2 �  1/ ;

m1a
.n1/
C1

D R
.n1/
O1

�m1g cos . 1/

� R
.t2/
O2

sin . 2 �  1/� R
.n2/
O2

cos . 2 �  1/ ;

m2a
.t2/
C2

D R
.t2/
O2

�m2g sin . 2/

� R
.t3/
O3

cos . 3 �  2/CR
.n3/
O3

sin . 3 �  2/ ;
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Fig. 2.13 External forces acting on particular links of a pendulum and the accelerations of the
mass centers of the links (force couples acting at joints not shown)

m2a
.n2/
C2

D R
.n2/
O2

�m2g cos . 2/

� R
.t3/
O3

sin . 3 �  2/� R
.n3/
O3

cos . 3 �  2/ ;
m3a

.t3/
C3

D R
.t3/
O3

�m3g sin . 3/ ;

m3a
.n3/
C3

D R
.n3/
O3

�m3g cos . 3/ : (2.125)
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Those equations can be solved with respect to the components of the dynamic
reactions, and taking into account relationships (2.106a), (2.112), and (2.122), and
bearing in mind that sin.�x/ D � sin.x/ and cos.�x/ D cos.x/, we obtain

R
.t3/
O3

D m3



g sin 3 C e3 R 3 C l1

� R 1 cos . 1 �  3/ � P 21 sin . 1 �  3/
�

Cl2
� R 2 cos . 2 �  3/ � P 22 sin . 2 �  3/

��
;

R
.n3/
O3

D m3



g cos 3 C e3 P 23 C l1

� R 1 sin . 1 �  3/C P 21 cos . 1 �  3/
�

Cl2
� R 2 sin . 2 �  3/C P 22 cos . 2 �  3/

��
;

R
.t2/
O2

D m2



g sin 2 C e2 R 2 C l1

� R 1 cos . 1 �  2/ � P 21 sin . 1 �  2/
��

CR
.n3/
O3

sin . 2 �  3/CR
.t3/
O3

cos . 2 �  3/ ;

R
.n2/
O2

D m2



g cos 2 C e2 P 22 Cl1

� R 1 sin . 1 �  2/C P 21 cos . 1 �  2/
��

CR
.n3/
O3

cos . 2 �  3/ �R.t3/O3
sin . 2 �  3/ ;

R
.t1/
O1

D m1



g sin 1 C e1 R 1

�CR
.n2/
O2

sin . 1 �  2/CR
.t2/
O2

cos . 1 �  2/ ;

R
.n1/
O1

D m1



g cos 1 C e1 P 21

�CR
.n2/
O2

cos . 1 �  2/ �R.t2/O2
sin . 1 �  2/ :

(2.126)

Now the absolute values of total reactions can be calculated as

RO1 D
r�

R
.t1/
O1

�2 C
�
R
.n1/
O1

�2
;

RO2 D
r�

R
.t2/
O2

�2 C
�
R
.n2/
O2

�2
;

RO3 D
r�

R
.t3/
O3

�2 C
�
R
.n3/
O3

�2
: (2.127)

Some examples of time plots of dynamic reactions calculated from relations
(2.126) and (2.127) are presented in Figs. 2.14–2.16.

The time plot shown in Fig. 2.14 corresponds to the solution shown in Fig. 2.8,
that is, to the decaying motion of a pendulum without excitation. It can be seen
that reactions decrease relatively quickly to a value close to a static reaction for a
system at rest. In Fig. 2.15 we present the time plot of dynamic reactions in periodic
motion of the pendulum shown in Fig. 2.9 (q D 25N � m and ! D 3 rad=s). Here
greater values of reactions are visible. In turn, in Fig. 2.16 we present a certain
select part of the time plot of dynamic reactions for the chaotic solution shown in
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Fig. 2.14 Dynamic reactions in bearings for decaying motion of pendulum without external
excitation .q D 0/

Fig. 2.11c, that is, for the parameters of excitation q D 25N � m and ! D 2 rad=s.
The most rapid changes in the dynamic reactions of bearings are visible there. It
should be emphasized, however, that it is only part of an irregular time plot, and the
instantaneous values of reactions may be even greater.
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Fig. 2.15 Dynamic reactions in bearings for periodic motion of pendulum for q D 25N � m and
! D 3 rad=s; color codes: RO1—1, RO2—2, RO3—3

Fig. 2.16 Dynamic reactions in bearings for chaotic motion of pendulum for q D 25N � m and
! D 2 rad=s; color codes: RO1—1, RO2—2, RO3—3
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Supplementary sources for the material in this chapter include [7–12]. In
addition, numerous books are devoted to the periodic, quasiperiodic, and chaotic
dynamics of lumped mechanical systems including [13–15].
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Chapter 3
Statics and Dynamics in Generalized
Coordinates

3.1 Constraints and Generalized Coordinates

We will consider a discrete (lumped) material system (DMS) in Euclidean space E3

composed ofN particles of massesm1; m2; : : : ; mN (see [1]), presented in Fig. 3.1,
which, as mentioned earlier, will be called a discrete mechanical system.

The position of every particle of a mechanical system is described by a radius
vector rn in the adopted right-handed Cartesian coordinate system.

Here it is worth emphasizing that, despite introducing the notion of a particle
already at the very beginning of our book, the majority of interacting bodies cannot
be described (even approximately) by such a notion. The problem is that a “physical
point” always has a certain finite size, and additionally we are often faced with a
body in a liquid or gaseous state.

Rigid bodies from a mechanical point of view are understood as non-deformable
bodies and sufficiently large in comparison to a particle (although the local
deformability of a rigid body is allowed, for instance, in the description of an impact
phenomenon).

We will treat surfaces bounding rigid bodies as barriers that do not let in (out)
other bodies including particles. The restriction of motion of those particles leads to
the introduction of the notion of constraints.

According to the axioms of classical mechanics, masses are positive .mn > 0/

and time-independent .dmn=dt D 0/, and a system is additive (mass of the whole
system m D PN

nD1 mn). A state of the mechanical system presented in Fig. 3.1
is described by radius vectors rn of particles n D 1; : : : ; N and the velocities
of these particles vn. A mechanical system can also be acted upon by certain
forces. However, regardless of the action of these forces, certain restrictions called
constraints can be imposed on vectors rn and vv. If there appears at least one such
restriction, we call the given mechanical system a constrained system or a system
with constraints. If there are no restrictions, the mechanical system is called a free
system.

J. Awrejcewicz, Classical Mechanics: Dynamics, Advances in Mechanics
and Mathematics 29, DOI 10.1007/978-1-4614-3740-6 3,
© Springer Science+Business Media New York 2012
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X2

X1

O

X3

r1 r2

m1 m2
mn

mN

rN

rn

vn

v2

vN

v1

Fig. 3.1 A discrete mechanical system, n D 1; : : : ; N

Let a particle be moving on a certain plane with which we associate the
coordinate system OX1X2. The equation of constraints for the particle has the form
x3 D 0, where x3 denotes the coordinate of the axisOX3 perpendicular to the plane.
Let a particle be moving on a sphere of radius r D r.t/. If we take the coordinate
systemOX1X2X3 at the center of the sphere, then the equation of constraints has the
form x21Cx22Cx23�r2.t/ D 0, where .x1; x2; x3/ are the coordinates of the particle.

We call a mechanical system a system of a finite number of degrees of freedom if
it is possible to introduce a finite-dimensional space RM and a set of points˝ in this
space such that there exists a one-to-one relationship between the possible positions
of particles of the mechanical system and all the points of the set ˝ 	 RM [2].

We call the set˝ a configuration manifold (configuration space) of a mechanical
system if the aforementioned relationship is differentiable following transition from
one set of coordinates to another. In order to illustrate the introduced notions we
present here two examples ([2]). The first example is presented in Fig. 3.2.

The motion of the end of the weightless rod with concentrated mass at this end
takes place along a circle of radius l .

The second example involves the planar motion of a double mathematical
pendulum (Fig. 3.3).

Choosing, in an arbitrary way, two mutually perpendicular torus sections it
is possible to measure from them the angles '1 and '2; then the positions of
the pendulum ends are represented by the points on the torus with a one-to-one
correspondence.

In the example depicted in Fig. 3.2 it would seem that instead of a circle one
might take a segment Œ0; 2� on the axis O'. However, such a choice is improper
because the one-to-one correspondence between the position of the pendulum
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Fig. 3.2 A mathematical pendulum and its configuration manifold (a circle)

Fig. 3.3 A double mathematical pendulum and its configuration manifold (a torus)

' C 2n .n D ˙1; ˙2; : : : / and the points ' belonging only to the interval
Œ0; 2� is not preserved. The start of the segment (point O) should be connected
with its end (point 2), and then we obtain the circle. In turn, in the example
from Fig. 3.3, one might take the square of side Œ0; 2� in the coordinate system
O'1'2. In order to preserve the one-to-one correspondence between the position of
the double pendulum described by the point .'1; '2/ one should “glue” together the
sides of a square, at first, for example, along '1 obtaining a cylinder, and then along
'2, obtaining a torus.

Apart from the aforementioned three-dimensional Euclidean space R3 it is
convenient to introduce a real space R3N in which its single point .x11 ; x

1
2 ; x

1
3 ; : : : ;

xN1 ; x
N
2 ; x

N
3 / represents all N particles of the space R3. Let us note that in this

case N trajectories, associated with every one of N points of the space E3, are
represented by one trajectory in the space R3N . Such a space we call a configuration
space (configuration manifold).

We call the minimum number of independent coordinates necessary to describe
the motion of a mechanical system (they can be linear displacements or rotations)
the generalized coordinates of this system [3–5]. It follows that the number of
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generalized coordinates is equal to the number of degrees of freedom. In both
previousy mentioned cases we have already dealt with constraints that enabled the
realization of the configuration manifold of the considered mechanical system (the
base and the connection of links).

The system shown in Fig. 3.2 has constraints that in the general case can depend
on displacement, velocity, and time.

Let us note that these restrictions are “external” because they do not follow
from the motion of the investigated system. The relationships describing these
restrictions (algebraic equations, algebraic inequalities, differential equations, or
their combinations) are called equations of constraints. We call systems with
imposed constraints constrained systems because their “freedom of motion” is
constrained in a certain way.

Constraints that depend only on position are called geometric constraints (they
do not depend on velocity), and a constraint equation is f .rn; t/ D 0. Kinematic
(differential) constraints additionally depend on the velocity, and the equation of the
constraint has the form f .rn; vn; t/ D 0. Constraints dependent on time are called
rheonomic (time-dependent) constraints, whereas those not dependent on time are
called scleronomic (time-independent) constraints.

The constraints listed above belong to the group of bilateral constraints described
by algebraic equations, whereas unilateral constraints are described by algebraic
inequalities. Constraints are called holonomic constraints if they are geometric or
their equation can be integrated, i.e., it is possible to obtain their equation in the form
of a function dependent on displacement and time. Kinematic constraints that cannot
be reduced to the aforementioned form are called non-holonomic (nonintegrable)
constraints [2–6].

The notion of a non-holonomic system was introduced by Hertz1 (1894), but it
had been considered earlier by Euler (1739). Euler is known as the first scientist to
consider the small vibrations of a rigid body rolling without sliding on a horizontal
surface. The fact that constraints are imposed on velocities fundamentally distin-
guishes non-holonomic systems from systems of Lagrange,2 Routh,3 or Hamilton.4

We will present now an example of non-holonomic constraints that will later be
considered in more detail. Let an ice skate, modeled as a thin rod in contact with
ice, be moving on ice (on the plane OX1X2). Let the velocity of point A of the rod
vA D Œ Px1; Px2� form an angle ' with the axis OX1, so we have Px1A � vA ı E1 D
vA cos' and Px2A � vA ı E2 D vA sin '. In this case we are dealing with a hockey
skate, where angle ' can change and is a coordinate.

1Heinrich Hertz (1857–1894), German physicist and mechanician working on contact problems
and electromagnetic waves.
2Joseph Lagrange (1736–1813), distinguished French and Italian mathematician and astronomer,
working also in Berlin.
3Edward Routh (1831–1907), English mathematician who played a significant role in the theory
of control and stability.
4William Hamilton (1805–1865), Irish mathematician, physician, and astronomer.
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Because the problem is planar, the constraints are described by the following
equation:

Px2A D Px1A tan ': (3.1)

We will show that (3.1) is not integrable. To this end, let us assume that the equation
is integrable, i.e., there exists an analytical relationship between the quantities x1,
x2, and ' of the form

f .x1; x2; '; t/ D 0: (3.2)

Differentiating (3.2) we obtain

Pf D @f

@x1
Px1 C @f

@x2
Px1 tan' C @f

@'
P' C @f

@t
D 0; (3.3)

where relationship (3.1) was taken into account.
By assumption, Px1 and P' are independent. Thus we have

@f

@x1
C @f

@x2
tan' D 0;

@f

@'
D 0;

@f

@t
D 0: (3.4)

Because angle ' is arbitrary, from equations (3.4) it follows that

@f

@x1
D 0;

@f

@x2
D 0;

@f

@'
D 0;

@f

@t
D 0: (3.5)

This means that the function f does not depend on x1, x2, and ', which is in
contradiction with the initial assumption. A complete solution of the problem of ice
skate motion on ice will be presented in Example 3.4.

It is worth drawing the reader’s attention to the difficulties associated with
the analysis of non-holonomic mechanical systems because of their peculiar
properties [6]:

1. They can be derived from the d’Alembert–Lagrange principle but not from
Hamilton’s principle.

2. The law of conservation of energy is valid, but the angular momentum of the
system may be not conserved.

3. Non-holonomic systems are so-called almost Poisson systems but not Poisson
systems.

4. The phase flow associated with non-holonomic systems may not be conserved
in a phase space, which leads to the formulation of a new concept of asymptotic
stability.

In [6] can be found the latest achievements and history regarding non-holonomic
systems. Here we present only an example of a simple system of this type analyzed
by L. Euler. That is, we will consider the geometry of a disk rolling without sliding
on a horizontal plane. Here we can distinguish the “most” general motion of the
disk, that is, the case where it is falling, marked in Fig. 3.4 by time instant t1, when
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x1

x3

x2

x1(t1)
x1(t0)

x2(t0) x2(t1)

B B

A
A

o

o

R
R

θ(t0)

θ(t1)

γ(t0)=0 γ(t1)

ϕ(t0)
ϕ(t1)

Fig. 3.4 General motion of a disk (coin) on a plane in the case where the axis of the disk is vertical
(instant t0) and where the disk is falling (instant t1)

the disk has 5 degrees of freedom, i.e., x1.t/; x2.t/; �.t1/; �.t1/ and '.t1/. The
coordinates of the point of contact between the disk and the plane are denoted by x1
and x2. The angle � is formed between the plane of the disk and the vertical line,
whereas the angle � is the angle of rotation of the disk measured in the planeX1X2.
The second of the distinguished cases corresponds to a situation where the plane
of the disk is perpendicular to the horizontal plane .� D 0/. The third case (the
simplest one) involves the motion of the disk when its plane is perpendicular to the
horizontal plane, and the motion takes place along a straight line. Let us consider
kinematic relationships at point A for the case � D 0, that is, the relationships
following from the process of rolling without sliding, of the form

vA D R
d'

dt
;

dx1
dt

D vA cos�;
dx2
dt

D vA sin�: (3.6)

From the foregoing kinematic relationships we obtain equations of constraints in
the configuration space, that is,

dx1 D R cos�d';

dx2 D R sin�d';
(3.7)

but we cannot determine the curve along which the disk moves in the horizontal
plane.

The notion of constraints describes the manner in which particles and rigid
bodies interact when they begin to come into contact with each other.
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If at the instant after the initial contact a particle “sticks” to the surface of the rigid
body and rests there for the remaining time of the observation, then such constraints
are called the bilateral constraints of the considered particle.

If following the initial contact the particle remains stuck for some time, and then
it separates, then such constraints are called the unilateral constraints of the particle.

If the duration of contact between the particle and the body is very short, and a
sudden change in the sense of the particle velocity occurs, then we are dealing with
an impact and the relationship between the velocity before and after the impact is
defined by the notion of a coefficient of restitution (Chap. 5).

In a material system, unilateral constraints may spontaneously change into bi-
lateral constraints, and vice versa. For instance, the textbook [1] describes the self-
excited vibrations of two particles (blocks) connected together elastically (by means
of massless springs) lying on a non-deformable belt moving with a constant velocity.
In such a system, stick-slip, slip-stick, and slip-slip motions can be observed.

Our planet Earth, in a certain approximation, can be treated as a material system
with constraints. Houses, bridges, factories, etc., are solid bodies remaining on the
ground, so for those “particles,” Earth determines the bilateral constraints. Planes,
balloons, rockets, and missiles are examples of bodies for which Earth determines
the set of unilateral constraints.

Unilateral constraints and bilateral constraints can also have the following
physical interpretation. If in the considered DMS we limit the independence of
the positions and velocities of the system’s particles by connecting them with
rigid massless rods, then the constraints are bilateral constraints. If we connect the
particles with a flexible inextensible thread that cannot break, then we are dealing
with unilateral constraints.

Equations of bilateral constraints have the form

fm .t; r1; Pr1; : : : ; rN ; PrN / D 0; m D 1; : : : ;M: (3.8)

If the equals sign in the equation above is replaced with the .� 0/ or .� 0/ sign,
then the restrictions imposed on the motion of the particles of the DMS are called
unilateral constraints.

From the foregoing discussion it follows thatM relationships (3.8) are described
by non-linear differential equations that depend on the time, position, and velocity
of every particle of a DMS. Already here we encounter a very serious obstacle of a
mathematical nature since, as a rule, the solution to a problem that involves (3.8) is
impossible by means of an analytical method.

Example 3.1. Demonstrate that the connection of two particles by means of a
rigid massless rod (inextensible thread) introduces bilateral constraints (unilateral
constraints).

If we denote the distance between masses m1 (particle A1) and m2 (particle A2)
in Fig. 3.1 by r12, then in the adopted coordinate system we have

f1 � .r1 � r2/
2 D r212;
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or in scalar form

.x1A1 � x1A2/2 C .x2A1 � x2A2/
2 C .x3A1 � x3A3/

2 � r212 D 0;

which, according to (3.8), classifies these constraints as bilateral constraints.
In the case of constraints imposed by means of an inextensible thread, we obtain

.x1A1 � x1A2/
2 C .x2A1 � x2A2/2 C .x3A1 � x3A2/2 � r212 � 0;

which classifies these constraints as unilateral constraints.
In this case neither particle A1 nor particle A2 moves, but during their motion

their relative distance can only change from zero up to r12. ut
Let particle A1 of mass m1 (Fig. 3.1) move with a constant velocity Pr1 D v �

const. We are going to determine the type of constraints imposed on this particle.
We have

Pr1 D v;

and after scalar multiplication by Pr1 we obtain

f1 � Pr1 ı Pr1 � v2 D 0;

or in scalar notation
Px21 C Px22 C Px23 � v2 D 0:

According to (3.8), here as well we are dealing with bilateral constraints, and the
restrictions concern the velocity of particle A1. Its components lie on a sphere of
radius v.

Unilateral constraints in this case will appear when we assume that the velocity
of particle A1 cannot exceed velocity v. Such a problem is equivalent to a restriction
in the form of inequality

Px21 C Px22 C Px23 � v2 � 0; (3.9)

which defines this constraint as unilateral.
The transition from unilateral to bilateral constraints takes place through a change

from inequality to equality, that is, when unilateral constraints undergo “tightening.”
Let the considered mechanical system have M1 holonomic constraints. Thus

it has

K1 D 3N �M1 (3.10)

degrees of freedom. There are 3N Cartesian coordinates describing the motion
of a DMS, whereas there are K1 generalized coordinates qk .k D 1; : : : ; K1/

(their number decreases because of the imposed constraints, and hence
K1 < 3N ).
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Cartesian coordinates can be expressed in terms of generalized coordinates in the
following way:

x1n D x1n .q1; : : : ; qk; : : : ; qK1/ ;

x2n D x2n .q1; : : : ; qk; : : : ; qK1/ ;

x3n D x3n .q1; : : : ; qk; : : : ; qK1/ ; (3.11)

where n D 1; : : : ; N .
Relationships of type (3.11) are called equations of constraints in the resolved

form [7–10].
The minimum number of parameters required for a complete description of any

position of a DMS is called the number of its independent generalized coordinates.
As generalized coordinates one can take K1 from the Cartesian coordinates

x1n; x2n; x3n, where n D 1; : : : ; N , so as to enable the solution of M1 equations
of constraints. In practice that approach is not always convenient. Completely
different independent quantities q1; : : : ; qK1 describing the configuration space of
a system are often introduced. The generalized coordinates can be distances, angles,
or surfaces, or they may not have any physical meaning. The functions (3.11)
substituted into constraint equations have to turn these equations into identity
relations, on the assumption that we are dealing with K1 independent generalized
coordinates. Because K1 � 3N , the rank of the rectangular matrix

A D

2
66666666666666666666666666664

@x11

@q1
: : :

@x11

@qK1

@x12

@q1
: : :

@x12

@qK1

@x13

@q1
: : :

@x13

@qK1

:::
:::

@x1N

@q1
: : :

@x1N

@qK1

@x2N

@q1
: : :

@x2N

@qK1

@x3N

@q1
: : :

@x3N

@qK1

3
77777777777777777777777777775

(3.12)

is equal to K1.
If all positions of the system can be described by relations (3.11), the gener-

alized coordinates are global coordinates. If (3.11) is satisfied only for certain
configurations of the system, then the generalized coordinates are local coordinates,
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and it is necessary to choose different local coordinates to represent all possible
system configurations. However, in most cases such problems do not emerge and
the choice of generalized coordinates is suggested naturally by the considered
mechanical system. Relationships inverse to (3.11) that describe the dependencies
of K1 coordinates qk on 3N Cartesian coordinates of the DMS are usually very
difficult to obtain in practice.

Holonomic constraints (also called geometric or finite constraints) are described
by algebraic equations of the form

fm1 .t; r1; : : : ; rN / D 0 (3.13)

or

fm1 .t; x11; : : : ; x1N ; x21; : : : ; x2N ; x31; : : : ; x3N / D 0; m1 D 1; : : : ;M1:

Relationships of type (3.13) are called equations of constraints in implicit form
[7–10]. With these constraints, restrictions are imposed on the positions of particles
of a DMS (they can be unilateral or bilateral).

Kinematic (differential) constraints are described by a system of non-linear
differential equations of the form

fm2 .t; r1; : : : ; rN ; Pr1; : : : ; PrN / D 0 (3.14)

or

fm2 ft; x11; : : : ; x1N ; x21; : : : ; x2N ; x31; : : : ; x3N ;
Px11; : : : ; Px1N ; Px21; : : : ; Px2N ; Px31; : : : ; Px3N g D 0; m2 D 1; : : : ;M2;

and they are indentical to constraints described by (3.8). Kinematic constraints can
also be unilateral or bilateral constraints.

Further, we will deal with a case of kinematic constraints that boils down to an
analysis of relationships that are linear with respect to generalized velocities of the
form

M2X
m2D1

cm2n .t; r1; : : : ; rN / drn C ˇm2 .t; r1; : : : ; rN / dt D 0;

n D 1; : : : ; N; m2 D 1; : : : ;M2: (3.15)

The number of degrees of freedom of a system expressed by independent
generalized coordinates is defined through (3.13) and is equal to K1 D 3N � M1

since kinematic constraints do not change the configuration manifold of a DMS.
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Unilateral constraints can be holonomic or non-holonomic. Holonomic unilateral
constraints are expressed analytically by restrictions imposed on the generalized
coordinates in the form of the following inequalities:

fm .t; x11; : : : ; x1N ; x21; : : : ; x2N ; x31; : : : ; x3N / > 0; m D 1; : : : ;M: (3.16)

The described holonomic constraints were time-dependent constraints because
time occurred explicitly in the equations and inequalities describing them. If time
does not occur in the aforementioned equations and inequalities, then the constraints
are called time-independent constraints. The differential constraints (3.15) are called
time-independent constraints (scleronomic constraints) if the vector functions cm2n
do not depend explicitly on time, and additionally ˇm2 � 0.

The existence of constraints in a DMS significantly influences the dynamics of
such a system. Constraints on every particle supply an additional force called the
reaction of constraints. Moreover, every trajectory of motion in R3N space lies on a
constraint surface described by (3.13), (3.14) or (3.15) or by inequalities (3.16). The
constrained motion of a system with constraints causes the imposition of restrictions
on the displacements, velocities, and accelerations of particles of a DMS so as to
satisfy the equation of constraints.

Equations of non-holonomic constraints (3.15) read as follows:

NX
nD1

cm2n Pr C ˇm2 D 0; m2 D 1; 2; : : : ;M2: (3.17)

In turn, differentiating equations of holonomic constraints (3.13) we obtain

dfm1
dt

D
NX
nD1

@fm1
@rn

Prn C @fm1
@t

D 0; m1 D 1; 2; : : : ;M1; (3.18)

and (3.18) have a form analogous to that of non-integrable kinematic constraints
(3.17).

During the motion of a mechanical system, the system’s radius vectors, veloci-
ties, and accelerations undergo change according to the following equations:

rn D rn .q1; : : : ; qK; t/ ; n D 1; : : : ; N;

v � Prn D @rn
@qk

Pqk C @rn
@t
; k D 1; : : : ; K;

an � Rrn D @rn
@qk

Rqk C @2rn
@qk@qm

Pqk Pqm C 2
@2rn
@qk@t

Pqk C @2rn
@t2

; (3.19)

whereK denotes the minimum number of independent generalized coordinates.
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We aim to express non-holonomic constraints (3.17) in terms of generalized
coordinates. Substituting the first two equations of (3.19) into (3.17) we obtain

cm2n .q1; : : : ; qK; t/

�
@rn
@qk

Pqk C @rn
@t

�
C ˇm2 .q1; : : : ; qK; t/ D 0;

n D 1; : : : ; N; m2 D 1; : : : ;M2; (3.20)

which can be transformed into the following form:

Bm2k .q1; : : : ; qK; t/ Pqk C bm2 .q1; : : : ; qK; t/ D 0; m2 D 1; : : : ;M2; (3.21)

where

Bm2k D @rn
@qk

cm2n; bm2 D @rn
@t
cm2n C ˇm2; (3.22)

and the summation convention applies in the preceding equations (and further).
In the case of both holonomic and non-holonomic systems, generalized coordi-

nates can assume arbitrary values. As far as generalized velocities Pqk are concerned,
they are arbitrary only in the case of a holonomic system. In the case of a non-
holonomic system, generalized velocities satisfy system of equations (3.21).

Proceeding in a similar way, one may differentiate with respect to time equa-
tions (3.17) and (3.18) yielding constraints of accelerations of a DMS introduced
respectively by holonomic and non-holonomic constraints (see, e.g., [11]).

Virtual displacements ırn can be expressed through generalized virtual displace-
ments ıqk in the following way:

ırn D @rn
@qk

ıqk; n D 1; : : : ; N; k D 1; : : : ; K: (3.23)

In the case of a holonomic system, variations ıqk are arbitrary, whereas in the
case of a non-holonomic system [see (3.21) and (3.22)], they are related to each
other by the following equations:

K2X
kD1

Bm2kıqk D 0; m2 D 1; : : : ;M2: (3.24)

From the preceding calculations it follows that for holonomic systems the
number of degrees of freedom is equal to the number of independent generalized
coordinates. In the case of non-holonomic systems, the number of degrees of
freedom is equal to K2 D 3N � M2, where, according to the previous notation,
K2 denotes the number of generalized coordinates, whereas M2 corresponds to the
number of non-integrable constraints.

Let us present now the physical interpretation of the obtained (3.17) and (3.18)
in the number of M D M1 C M2. These equations impose M constraints on
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Fig. 3.5 A graphical illustration of possible paths, displacements, and velocities of particle n

the velocities Prn, n D 1; : : : ; N , of the considered system since at every time
instant the velocities have to satisfy the aforementioned differential equations, and
M1 CM2 < 3N .

If we considered only first-order ordinary differential equations (3.17) and
(3.18) without the remaining 3N � M second-order differential equations, then,
in general, there would be infinitely many choices of velocities Pr1; Pr2; : : : ; PrN such
that the differential equations of constraints would be satisfied [5]. Thus, for a fixed
(“frozen”) time instant there exist infinitely many possibilities from which to choose
the set of displacements and velocities of all the particles of the DMS, and we call
such displacements and velocities of the particles possible velocities and possible
displacements [5].

This will be explained based on the notion of variation introduced in Sect. 1.4.
Let us consider the possible motion of one of the particles of the DMS depicted
in Fig. 3.5. In the figure are shown two possibilities of motion of particle n along
possible paths 1 and 2.

According to Fig. 3.5, at the time instant t D t0 C dt particle n can undergo a
displacement dr.1/n or dr.2/n and end up in positions described by radius vectors r.1/n
and r.2/n . Let us note that

ırn D dr.1/n � dr.2/n : (3.25)
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Multiplying (3.17) and (3.18) by dt we obtain

NP
nD1

@fm

@rn
rn C @fm

@t
dt D 0; m1 D 1; : : : ;M1;

NP
nD1

cm2ndrn C ˇm2dt D 0; m2 D 1; : : : ;M2; (3.26)

and the preceding equations describe the increments of possible displacements drn
or possible displacements of vector rn.

Following substitution into (3.26) of possible displacements dr.1/n and dr.2/n ,
and subtracting by sides the obtained equations for m1 D 1; : : : ;M1 and m2 D
1; : : : ;M2, and then taking into account (3.25), we obtain

NX
nD1

@fm

@rn
ırn D 0; m1 D 1; : : : ;M1; (3.27)

NX
nD1

cm2nırn D 0; m2 D 1; : : : ;M2: (3.28)

The just obtained (3.27) and (3.28) do not contain terms with the time
differential dt . Therefore, we will call variations ırn virtual displacements. The
latter will be coincident with possible displacements for the so-called “freezing” of
constraints. The left-hand side of (3.27) can be represented as

ıfm D
NX
nD1

@fm

@rn
ırn; (3.29)

which is a variation of the function fm D fm.r1; r2; : : : ; rn; t/, but for the “frozen”
time instant t , since according to the definition of variation ıfm denotes the deviation
(variation) of the function fm for the fixed (“frozen”) time instant t . As was already
mentioned, the imposition of constraints on a DMS has the effect that the particles
of the DMS are not allowed to move arbitrarily in R3 space but move on certain
surfaces conventionally called constraint surfaces.

If we are faced with scleronomic constraints, then the previously mentioned
surface is fixed. In this case the differentials of vectors of possible displacements
dr.1/n and dr.2/n and the vectors of virtual displacements ırn are tangent to the surface
of constraints.

Now, let us assume that we are dealing with rheonomic constraints. Then the
previously mentioned vectors dr.1/n , dr.2/n , and ırn are no longer tangent to the
constraint surface, since this surface moves with a certain velocity, which we will
denote by v. In this case the vectors of possible velocities of particles n.1/ and n.2/

are as follows:
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Pr.1/n D v C Pr.1/nt ; Pr.2/n D v C Pr.2/nt ; (3.30)

where Pr.1/nt and Pr.2/nt denote the velocities tangent to the surface moving with
velocity v.

According to (3.25) and (3.30), we have

ırn D dr.1/n � dr.2/n D �Pr.1/n � Pr.2/n
�

dt D
�

Pr.1/nt � Pr.2/nt
�

dt;

which means that vector ırn would be coincident with possible displacements for
frozen constraints, that is, for a non-moving surface. In this case one should prepare
constraints in a certain way, that is, “freeze” them. Therefore, we also call the virtual
displacements “prepared displacements” in mechanics.

If a particle moves on a smooth constraint surface, then we have

FRn ı ırn D 0; (3.31)

where FRn is the reaction normal to the smooth (i.e., frictionless) surface at the
position of particle n. In the case of a fixed constraint surface the total differential
drn D ırn, whereas in the case of a movable constraint surface drn ¤ ırn, but
“freezing” of the constraints allows for the satisfaction of condition (3.31).

In mechanics a postulate of so-called ideal constraints is introduced.
Adding (3.31) together for n D 1; : : : ; N we get

NX
nD1

FRn ı ırn D 0; (3.32)

which expresses this postulate in a proper way. The postulate means that in the
case of ideal constraints the sum of works of all reaction forces FRn during virtual
displacements ırn (at any time instant) is equal to zero.

The introduction of such a postulate was necessary because of the need to
determine unknown reactions FRn . Let us then consider a constrained DMS. For each
particle n the following equation is satisfied, which results from Newton’s second
law:

mnRrn D Fn C Fin C FRn ; n D 1; : : : ; N; (3.33)

and additionallyM1 equations of geometric constraints of the form

fm1 .r1; r2; : : : ; rN ; t/ ; m1 D 1; : : : ;M1 (3.34)

andM2 equations of kinematic constraints of the form

cm2n .r1; r2; : : : ; rn; t/ ı dPrn C ˇm2 .r1; r2; : : : ; rN ; t/ D 0;

n D 1; : : : ; N; m2 D 1; : : : ;M2: (3.35)
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In general, we have 6N C M1 C M2 scalar first-order differential equations
(3.33)–(3.35), 3N unknowns x1n; x2n; x3n, and 3N unknowns FR

nx1
; F R

nx2
; F R

nx3
,

that is, 6N in total. This problem will be described more broadly and clarified during
the derivation of Lagrange’s equations.

Example 3.2. Determine the type of constraints of the systems shown in Figs. 3.2
and 3.3.

In the case of a simple pendulum, the coordinates of a particle of massm satisfy
the following restrictions:

f1 � x3 D 0; f2 � x21 C x22 C x23 � l2 D 0:

According to (3.13) they are geometric constraints, and from the foregoing
system of equations we obtain an equation of the path of a particle of mass m,
which is the circle

x21 C x22 D l2:

In the case of a double mathematical pendulum, the restrictions imposed on the
motion of particles of masses m1 (particle A1) and m2 (particle A2) have the form

f1 � x3;A1 D 0;

f2 � x21A1 C x22A1 C x23A1 � l21 D 0;

f3 � x3A2 D 0;

f4 � .x1A2 � x1A1/
2 C .x2A2 � x2A1/

2 C .x3A2 � x3A1/2 � l2 D 0:

The problem of determining the path of the pointA.x1A1 ; x2A1 ; x3A1 , x1A2 ; x2A2 ;
x3A2/, which represents a double mathematical pendulum, boils down to the solution
of following two non-linear algebraic equations:

x21A1 C x22A1 D l21 ;

.x1A2 � x1A1/2 C .x2A2 � x2A1/2 D l22 :

In both cases we are dealing with time-independent constraints. However, if we
had l D l.t/; l1 D l1.t/; l2 D l2.t/, where these time functions are given in
advance, then the constraints would be time-dependent constraints.

According to (3.13), also here we have imposed geometric constraints. Those
equations admit the following physical interpretation. Particle A1 is always at the
distance l1 (in plane of the drawing) from point O . In turn, the other particle, A2,
lies with respect toA1 on a circle of radius l2 whose center is at pointA1. The surface
on which point A lies is the surface of a torus, and on that surface two coordinates
.'1; '2/ suffice to describe the position of point A. ut

Below we will consider an example of geometric and kinematic constraints
imposed on the motion of a system of two particles.
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Fig. 3.6 Motion of a rod A1A2 on plane OX1X2

Example 3.3. Let two points A1 and A2 be connected by a massless rigid rod of

length l
�ˇ̌̌���!
A1A2

ˇ̌̌
D l

�
and let them move on the plane OX1X2 (Fig. 3.6). On those

two points are imposed constraints in such way that the velocity vector of the center
of segment A1A2, denoted by vC , coincides with the rod axis (see also [5]).

A characteristic of such motion is that the velocity vC of the center of seg-

ment A1A2 is always directed along vector
���!
A1A2, that is,

vC D �
���!
A1A2:

Because
r2 D r1 C ���!

A1A2

and

rC D r1 C ��!
A1C ;

rC D r2 � ��!
CA2;

adding the preceding equations we have

2rC D r1 C r2 C ��!
A1C � ��!

CA2;

that is,

rC D r1 C r2
2

;
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and eventually, we obtain the vector equation

vC � Pr1 C Pr2
2

D �.r2 � r1/:

Multiplying the preceding equation in turn by unit vectors E2 and E1, and then
dividing the first obtained scalar equation by the second, we arrive at

Px2A1 C Px2A2
Px1A1 C Px1A2

D x2A2 � x2A1
x1A2 � x1A1

:

Multiplying out the preceding equation we have

Px2A1 .x1A2 � x1A1/C Px2A2 .x1A2 � x1A1/C Px1A1 .x2A2 � x2A1/

C Px1A2 .x2A2 � x2A1/ D 0:

The obtained equation describes kinematic constraints. It is not possible to
integrate them directly to obtain geometric constraints, so they are non-holonomic
constraints.

An additional equation of (geometric) constraints is (obviously the motion takes
place in the plane OX1X2, and consequently x3A1 D x3A2 D 0)����!

A1A2

�2 D l2;

that is,

.x1A1 � x1A2/2 C .x2A1 � x2A2/
2 � l2 D 0: ut

We will now explain in more detail the physical interpretation of the introduction
of generalized coordinates q1; : : : ; qK1 [see (3.11)] on the assumption that geometric
constraints occur in the system.

Equations of geometric constraints (3.13) allow for the elimination of M1 coor-
dinates, and consequently the K1 D 3N �M1 coordinates remain in the equations.
Following the introduction of generalized coordinates q1; q2; : : : ; q3N�M1 , each of
Cartesian coordinates x1n; x2n; x3n, n D 1; : : : ; N , can be expressed through those
generalized coordinates according to formula (3.11). Let us consider this statement
based on Example 3.3. On the motion of particles A1 and A2 are imposed the
following constraints:

x3A1 D 0;

x3A2 D 0;

.x1A1 � x1A2/2 C .x2A1 � x2A2/
2 D l2; (3.36)
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and we have then N D 2; M1 D 3, that is, K1 D 3N �M1 D 3. It follows that the
system demands that we introduce three generalized coordinates q1 D x1C ; q2 D
x2C ; q3 D '. According to Fig. 3.6 we have

x1A1 D q1 � l

2
cos q3; x2A1 D q2 � l

2
sin q3;

x1A2 D q1 C l

2
cos q3; x2A2 D q2 C l

2
sin q3: (3.37)

Substituting expressions (3.37) into the last equation of (3.36) we obtain

.l sin q3/
2 C .l cos q3/

2 D l2; (3.38)

which is identically satisfied.
From that follows the conclusion that the introduction of generalized coordinates

q1; q2, and q3 allowed constraints (3.36) to be identically satisfied. One may check
that the equation describing kinematic constraints of the form

Px2A1 .x1A2 � x1A1/C Px2A2 .x1A2 � x1A1/

C Px1A1 .x2A2 � x2A1/C Px1A2 .x2A2 � x2A1/ D 0 (3.39)

will not be satisfied.
Based on earlier calculations [see relations (3.21) and (3.22)] we have

Bm2k D
NX
nD1

�
cm2n

@rn
@qk

�

D
NX
nD1

�
cx1m2n

@x1n

@qk
C cx2m2n

@x2n

@qk
C cx3m2n

@x3n

@qk

�
;

bm2 D
NX
nD1

�
cm2n

@rn
@t

�
C ˇm2

D
NX
nD1

�
cx1m2n

@x1n

@t
C cx2m2n

@x2n

@t
C cx3m2n

@x3n

@t

�
C ˇm2: (3.40)
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From (3.37) we obtain

cx111 D x2A1 � x2A2 D �l sin q3;

cx211 D x1A2 � x1A1 D l cos q3;

cx311 D 0;

cx112 D x2A1 � x2A2 D �l sin q3;

cx212 D x1A2 � x1A1 D l cos q3;

cx312 D 0: (3.41)

We have one equation of kinematic constraints, that is, m2 D M2 D 1.
From (3.40) it follows that b1 D 0, because @x1n

@t
D @x2n

@t
D @x3n

@t
D 0 and ˇ1 D 0,

and to determine coefficientsB11; B12, and B13 the following partial derivatives are
needed:

@x1A1
@q1

D 1;
@x1A1
@q2

D 0;
@x1A1
@q3

D l

2
sin q3;

@x2A1
@q1

D 0;
@x2A1
@q2

D 1;
@x2A1
@q3

D � l
2

cos q3;

@x1A2
@q1

D 1;
@x1A2
@q2

D 0;
@x1A2
@q3

D � l
2

sin q3;

@x2A2

@q1
D 0;

@x2A2

@q2
D 1;

@x2A2

@q3
D l

2
cos q3: (3.42)

The unknown coefficients are equal to

B11 D cx111
@x1A1
@q1

C cx112
@x1A1
@q1

D �2l sin q3;

B12 D cx211
@x2A1
@q2

C cx112
@x2A2
@q2

D 2l cos q3;

B13 D 0: (3.43)

Finally, (3.21) takes the form

B11 Pq1 C B12 Pq2 D �2l Pq1 sin q3 C 2l Pq2 cos q3 D 0;

that is,
Pq2 D Pq1 tan q3 (3.44)

Let us count the degrees of freedom of the analyzed system. We have N D 2,
M1 D 3; M2 D 1, from which it follows that W D 3N � .M1 C M2/ D 2,
but we have three generalized coordinates .q1; q2; q3/. The number of generalized
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coordinates exceeds the number of degrees of freedom, but there is an additional
equation (3.44) resulting from the existence of kinematic (non-holonomic) con-
straints.

In holonomic systems the number of degrees of freedom is always equal to the
number of generalized coordinates.

If in Example 3.3 we substitute the rod by a skate, then we remove the possibility
of both motion perpendicular to the blade and rotation about the vertical axis, so the
skate will only be able to slide along the direction of the blade, and if it touches
the ice surface, then it will move on that surface along the blade. If we relate this
problem to the generalized coordinates of the blade in motion on the planeOX1X2,
q D Œx1C ; x2C ; '�

T (coordinates x1C ; x2C and ' are dependent), then the equations
of constraints take the form ' � '0 D 0 and Px2C D Px1C tan', where the constant
'0 D const is determined from the skate initial position on the ice. Following
integration of the second equation we obtain x2C � x1C tan'0 C c D 0, where
constant c is also defined by initial conditions of the skate motion. The motion
of point C takes place along a rectilinear path described by the initial conditions
x1C .t0/; x2C .t0/, and '0. The skate has one degree of freedom, and its motion can
be described by one independent variable.

If in Example 3.3 we replace the rod by a hockey skate (which is rounded
and makes contact with the ice at point C ) whose sliding is blocked along the
direction transversal to the blade but can rotate about the vertical axis passing
through point C , then we have three independent generalized coordinates x1C ; x2C ,
and '. The only non-holonomic constraints imposed on the motion of constraints
are now the non-holonomic constraints Px2C D Px1C tan'.

On the surfaces described by the preceding equations, that is, on the surfaces
of constraints, let us take an arbitrary point A whose radius vector is described
by the equation rA D .x1;1; x2;1; x3;1; : : : ; x1;N ; x2;N ; x3;N /. Through that point
we draw an arbitrary smooth curve lying on the constraint surface, where the
parameter s plays the role of a variable parameterizing this curve. The tip of the
vector r.s/ D .x1;1.s/; x2;1.s/; x3;1.s/; : : : ; x1;N .s/; x2;N .s/; x3;N .s// determines
the hodograph, that is, it lies on the curve. Let r.0/ D rA. The vector dr.s/

ds

ˇ̌
sD0 �

r0 .0/ D .r0
1.0/; : : : ; r

0
N .0// is tangent at point rA to the curve lying on the constraint

surface. There is a possible total ofK D 3N �M curves passing through point rA.
All tangent vectors to these points form a K-dimensional vector space called a
tangent space at point A.

The velocity vector Pr D .Pr1; : : : ; PrN / associated with every trajectory of motion
lies in the tangent space.

Constraint surfaces are a certain part of the configuration space R3N . A particle
(if it has constraints imposed on it) moves on a completely different surface than
the space R3N , which is three-dimensional, infinite, and flat. If we consider a classic
example of motion of a particle on a smooth spherical surface, then the configuration
space is two-dimensional, finite, and curved.
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Let one coordinate qk change by a virtual increment ıqk . The radius vectors
describing the positions of all the remaining points will change by

ırn D ırn .q1; : : : ; qK/ D @rn
@qk

ıqk; (3.45)

where in this case the summation convention does not apply.
The displacements of all the particles of the investigated mechanical system

result from the action of external Fn and internal Fin forces, which perform certain
elementary works. The sum of those elementary works is equal to

NX
nD1

�
Fn C Fin

� ı ırn D
NX
nD1

�
Fn C Fin

� ı @rn
@qk

ıqk D Qkıqk D ıWk: (3.46)

From the preceding equation it follows that the sum of virtual works of forces
.Fn C Fin/, n D 1; : : : ; N , is equal to the work done by the so-called generalized
force Qk during virtual displacement ıqk .

Definition 3.1. A physical quantityQk multiplied by a virtual increment ıqk of the
generalized coordinate qk is equal to the work done by the system of forces acting
on the considered mechanical system during virtual displacements generated as a
result of the increment of this generalized coordinate and is called the generalized
force.

From (3.46) it follows that

Qk D ıWk

ıqk
(3.47)

and that Qk corresponds to the generalized coordinates qk:
The presented approach is often applied in practical calculations, where the

mechanical system is intentionally subjected to the virtual displacement such that
ıqj D 0 for j ¤ k.

Let us now impose virtual increments ıqk on all generalized coordinates
q1; : : : ; qN . They cause the virtual increments of each of the radius vectors rn of
the form

ırn D @rn
@q1

ıq1 C @rn
@q2

ıq2 C � � � C @rn
@qK

ıqK D @rn
@qk

ıqk; k D 1; : : : ; K: (3.48)

There exists a certain arbitrariness of choice of generalized coordinates for
each of the considered mechanical systems. Generalized coordinates allow for a
complete geometrical description of the mechanical system being analyzed with
respect to the introduced frame of reference. Sometimes, however, they do not have
a straightforward physical interpretation. For instance, in Fig. 3.3 were introduced
the so-called absolute angles '1 and '2 describing the motion of a double pendulum,
but the so-called relative angles '1 and  1 (where  1 D '2 � '1), which are also
generalized coordinates, might have been introduced as well.
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3.2 Variational Principles of Jourdain and Gauss

Differentiation of (3.13) and (3.15) leads to the following equations:

@fm1
@rn

an C @2fm1
@rn@rl

vlvn C 2
@2fm1
@t@rn

vn C @2fm1
@t2

D 0;

m1 D 1; : : : ;M1; (3.49)

cm2nan C @cm2n

@rl
vlvn C @cm2n

@t
vn C @̌ m2

@rn
rn C @̌ m2

@t
D 0 ;

m2 D 1; : : : ;M2; (3.50)

where the summation convention applies.
Because we assume the expression 3N � .M1 CM2/ is positive (we are dealing

with motion), for a given fixed time instant t D t� the system is in one position
(configuration) described by the radius vectors rn D r�

n , but the sets of their
velocities vn D v�

n and accelerations an D a�
n can be chosen arbitrarily in infinitely

many ways according to the imposed constraints.
The neighboring configuration of the system at the time instant t� C 	t is

described by the radius vectors r�
n C 	rn, where 	rn are possible displacements

realized in time interval	t . If	t is small enough, we can determine displacements
from the following equation:

	rn D v�
n	t C 1

2
a�
n.	t/

2 C � � � : (3.51)

Because the sets v�
n and a�

n can be chosen arbitrarily in infinitely many ways
(they are infinite sets), 	rn is also an infinite set. Let us take two different virtual
displacements (variations) corresponding to the same quantity	t , which according
to formula (3.51) are equal to

	1rn D v�
n1	t C 1

2
a�
n1.	t/

2 C � � � ;

	2rn D v�
n2	t C 1

2
a�
n2.	t/

2 C � � � : (3.52)

Let us multiply (3.18) and (3.17) by	t and use in turn (3.52). Next, after subtracting
the corresponding equations from each other we obtain

@fm1
@rn

�
v�
n1 � v�

n2

�
	t D 0; m1 D 1; : : : ;M1; (3.53)

cm2n
�
v�
n1 � v�

n2

�
	t D 0; m2 D 1; : : : ;M2: (3.54)
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In a similar way we proceed with (3.49) and (3.50), but now they are multiplied
by 1

2
.	t/2, then subtracted from each other, to arrive at the equations

@fm1
@rn

�
a�
n1 � a�

n2

� .	t/2
2

C
��

@2fm1
@rn@rl

v�
l1

�
v�
n1 �

�
@2fm1
@rn@rl

v�
l2

�
v�
n2

	
.	t/2

2

C2@
2fm1
@t@rn

�
v�
n1 � v�

n2

� D 0; m1 D 1; : : : ;M1; (3.55)

cm2n
�
a�
n1 � a�

n2

� .	t/2
2

C
��
@cm2n

@rl
v�
l1

�
v�
n1 �

�
@cm2n

@rl
v�
l2

�
v�
n2

	
.	t/2

2

C @̌ m2

@rn

�
r�
n1 � r�

n2

� D 0; m2 D 1; : : : ;M2: (3.56)

Subtracting by sides (3.52) we obtain

ırn � 	1rn �	2rn D ıvn	t C ıan
.	t/2

2
C : : : ; (3.57)

where

ıvn D v�
n1 � v�

n2;

ıan D a�
n1 � a�

n2; n D 1; : : : ; N: (3.58)

Historically, if in (3.57) we limit ourselves to the first approximation with respect
to 	t , then we call the virtual displacement given by the equation

ırn D ıvn	t (3.59)

the Jourdain variational principle [12, 13].5

If in (3.57) we assume ıvn D 0 and ıan ¤ 0, we obtain

ırn D ıan
.	t/2

2
; (3.60)

which describes the Gauss variational principle.

5Philip E. B. Jourdain (1879–1919), English scientist.
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The Jourdain variational principle, Gauss variational principle, and the more
frequently and earlier applied d’Alembert principle are equivalent, and we use them
as appropriate to describe the character of the solved problems. For example, the
Jourdain variational principle gives quick results for determination of the selected
reaction forces (reaction moments). In simple applications, it is commonly used by
admitting the possibility of motion of the mechanical system along the direction of
the reaction force that produces this motion, that is, we consider the system as “an
instantaneous mechanism,” which will be explained in more detail in Example 3.4.

The Gauss variational principle differs significantly from the d’Alembert–
Lagrange principle and from the Jourdain variational principle as it is associated
with the notion of an extremum. According to the previous calculations we assume
that at a certain (“frozen”) time instant all the particles of a material system will
have positions rn D r�

n and velocities vn D v�
n , n D 1; : : : ; N , equal to the actual

positions and velocities of the system’s particles. The accelerations in the system
will undergo variations, and in this case they do not have to be infinitely small. We
call such a variation a Gauss variation. Substituting (3.60) into the general equation
of dynamics we obtain

.Fn �mnan/ ı ıan D 0; (3.61)

where the summation convention applies. Because forces Fn do not depend on
accelerations an and mn D const, it is easy to show that (3.61) can be obtained
from the relationship for the extremum of function � of the form

ı� D 0; (3.62)

where

� D 1

2
mn

�
an � Fn

mn

�2
: (3.63)

The function � D � .an/ is sometimes called the system compulsory function.
It has a stationary value for an D a�

n , where a�
n are actual accelerations of

particles of a material system.
Let � � be a system compulsory function, for actual accelerations. Let us consider

the disturbance of actual accelerations of the form

an D a�
n C ıan; ıan > 0; (3.64)

where now an denotes kinematically possible accelerations. Substituting formula
(3.64) into (3.63) we have

� D 1

2
mn

��
a�
n C ıan

� � Fn
mn

	2

D 1

2
mn

"
a�2
n C 2a�

nıan C .ıan/2 � 2a�
n

Fn
mn

� 2ıan Fn
mn

C
�

Fn
mn

�2#
; (3.65)
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and in turn

� � D 1

2
mn

�
a�
n � Fn

mn

�2
D 1

2
mn

"
a�2
n � 2a�

n

Fn
mn

C
�

Fn
mn

�2#
; (3.66)

and from that we calculate

	� D � � � � D �
mna�

n � Fn
�
ıan C 1

2
mn.ıan/2: (3.67)

From (3.67) it follows that 	� attains its extremum (minimum) value for non-
zero ıan in the case of actual motion, since the first term on the right-hand side
of (3.67) vanishes.

The variational principle of Jourdain can be represented in a slightly modified
version convenient for direct application also to dynamic problems. We will begin
the calculations with the general equation of dynamics

NX
nD1
.Fn �mn Pvn/ ı ırn D 0: (3.68)

Let us note that

ırn D ırn
ıqk

ıqk D ıvn
ı Pqk ıqk; (3.69)

and taking into account (3.69) in (3.68) we obtain

 
NX
nD1
.Fn �mn Pvn/ ı ıvn

ı Pqk

!
ıqk D 0: (3.70)

Because ıqk are independent, from (3.70) we obtain the following system of
equations:  

NX
nD1
.Fn �mn Pvn/ ı ıvn

ı Pqk

!
D 0; k D 1; : : : ; K; (3.71)

where K denotes the number of degrees of freedom of the considered DMS and qk
are generalized coordinates. (Note that Fn in (3.71) are forces that perform work.)
If we further assume that N D 1, then we can extend our calculations to the case
of a rigid body. Let us introduce the system of local coordinates of origin at the
mass center of the rigid body O D C and let the position of material points n be
represented by radius vectors �n. Let us note that if N D 1, then K D 6. The
second component of the scalar product in (3.71) can be represented in the form

ıvn
ı Pqk D ıvC

ı Pqk C ı!

ı Pqk � �n; (3.72)

which follows from the König theorem.
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The velocity of an arbitrary point n is equal to

vn D vC C! � �n; (3.73)

and after differentiation with respect to time we obtain

Pvn D PvC C P! � �n C! � P�n D PvC C P! � �n C! � .! � �n/: (3.74)

Substituting (3.72) and (3.74) into (3.71) we obtain

NX
nD1

Fn ı ıvn
ı Pqk �

NX
nD1

mn Pvn ı ıvn
ı Pqk D

NX
nD1

Fn ı ıvC
ı Pqk

C
NX
nD1

Fn ı
�
ı!

ı Pqk � �n
�

�
NX
nD1

mn.PvC C P! � �n

C! � .! � �n// ı ıvC
ı Pqk �

NX
nD1

mn PvC ı
�
ı!

ı Pqk � �n
�

�
NX
nD1

mn. P! � �n C! � .! � �n// ı
�
ı!

ı Pqk � �n
�

D .F �mPvC / ı ıvC
ı Pqk C

NX
nD1

ı!

ı Pqk ı .�n � Fn/

� ı!
ı Pqk

 
NX
nD1

mn�n � PvC
!

�
NX
nD1

Œmn�n � . P! � �n

C ! � .! � �n//� ı
ı!

ı Pqk D .F �mPvC / ı ıvC
ı Pqk

�
NX
nD1
Œmn�n � . P! � �n C! � .! � �n//� MC � ı ı!

ı Pqk D 0; (3.75)

where we used the relation a ı .b � c/ D b.c ı a/ as well as the following
relationships:

m D
NX
nD1

mn; MC D
NX
nD1

�n � Fn;
NX
nD1

mn�n D 0: (3.76)
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Fig. 3.7 Beam consisting of two pin-joined segments, with built-in support at point A and sliding
support at point C situated at angle ˛ with respect to the horizontal

The vector of angular momentum of a body with respect to its mass center equals

KC D
NX
nD1

�n �mnvn D
NX
nD1

mn�n � .vC C! � �n/

D
NX
nD1

mn�n � vC C
NX
nD1
Œmn�n � .! � �n/�

D
NX
nD1
Œmn�n � .! � �n/�; (3.77)

where, during transformations, (3.73) was used.
The time derivative of angular momentum is equal to

PKC D
NX
nD1

�
mn P�n � .! � �n/Cmn�n � d

dt
.! � �n/

	

D
NX
nD1
Œmn�n � . P! � �n/C! � .! � �n/�: (3.78)

Eventually, taking into account (3.78) in (3.75), we obtain

.F �mvC / ı @vC
@ Pqk C .MC � PKC / ı @!C

@ Pqk D 0; (3.79)

which also expresses the variational principle of Jourdain.

Example 3.4. Calculate the reactions of two beams AB and BC of lengths 4l
connected by a pin joint at point B using the Jourdain variational principle. The
geometry and loading of the beam are shown in Fig. 3.7 (see also [13]).
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Fig. 3.8 Schematic showing how to determine the reaction RAx1

The Jourdain variational principle is associated with virtual velocities and for
static cases has the following form:

Fn ı ı Prn D 0;

and in scalar form, after dropping the variation symbol, we obtain

Fx1n Px1n C Fx2n Px2n C Fx3n C Px3n D 0;

where the summation convention applies.
The Jourdain variational principle, also known as the principle of virtual power,

is valid for a material system with ideal, holonomic, and bilateral constraints.
During application of this principle one should take into account the principle
of independent action of forces (moments). Release from constraints takes place
successively depending on the determined reactions. In the adopted coordinate
system we admit a single possibility of motion (translation or rotation) and apply
the reaction force (reaction moment) at the point associating the force with linear
velocity (the moment with angular velocity), which will be presented subsequently.

We replace the actual supports with equivalent supports [13]. Let us calculate the
horizontal reaction at pointA, that is, RAx1 . For this purpose we admit the possibility
of horizontal motion of the beam, and we replace the action of the built-in support
in the horizontal direction with a horizontal slider connected to the beam while at
the same time imposing on it the virtual velocity vAx1 (Fig. 3.8).

We assume that the force F .F ? RAx1/ does not influence the horizontal reaction
and that the velocity vB k vAx1 . The principle of virtual power takes the form

RAx1vAx1 CM! D 0:

The whole beam behaves like a rigid body of an instantaneous center of rotation
at point S , and according to Fig. 3.8 we have BS D 4l= tan˛. Substituting vAx1 D
vB D !BS into the preceding equation we obtain

RAx1 D �M tan˛

4l
:

Let us now determine the horizontal reaction RAx2 (Fig. 3.9).



136 3 Statics and Dynamics in Generalized Coordinates

Fig. 3.9 Schematic showing how to determine the reaction RAx2

Fig. 3.10 Schematic showing how to determine a moment of reaction MA

For this purpose we will treat the system of two beams as a rigid body .vAx2 D
vBx2/ whose center of velocity is situated at point C . In this case the Jourdain
variational principle has the form

.�RAx2 C F / vAx2 CM! D 0:

Now we determine ! from the relationship vBx2 D 4l!, which after substitution
into the preceding equation yields

RAx2 D F C M

4l
:

Let us determine now the reaction moment (of the built-in support) at point A,
that is, MA (Fig. 3.10).

In this case the principle of virtual power will take the form

�MA!A C F v CM!C D 0:

Because vB D 4l! D 4l!C , we have !A D !C D !, and in turn v D 3l!.
Eventually from the preceding equation we obtain

MA D M C 3lF:
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Fig. 3.11 Schematic showing how to determine a moment of reaction RC

Fig. 3.12 Mathematical
pendulum and the adopted
coordinate system OX1X2

What is left to be determined is the reaction at point C , which is perpendicular
to the roller support at this point (Fig. 3.11).

From the Jourdain variational principle we obtain

M!B D RC vC cos˛:

Because vc D 4l!B , finally we calulate

RC D M

4l cos˛
:

Example 3.5. Derive the equation of motion of a mathematical pendulum
(Fig. 3.12) using the Gauss variational principle.

According to (3.63) we have

� D 1

2
m

"�
Rx1 � Fx1

m

�2
C
�

Rx2 � Fx2
m

�2#
;

where according to Fig. 3.12

x2 D l sin '; x1 D l cos'; Fx1 D mg; Fx2 D 0;
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and we successively calculate

Px1 D �l P' sin ' ; Px2 D l P' cos'

Rx1 D �l R' sin ' � l P'2 cos'; Rx2 D l R' cos' � l P'2 sin ':

Substituting Rx1 and Rx2 into the original equation we have

� D 1

2
m
h��l R' sin' � l P'2 cos' � g

�2 C �
l R' cos' � l P'2 sin '

�2i

D 1

2
m.l2 R'2 sin2 ' C l2 P'4 cos2 ' C g2 C 2l2 R' P'2 sin ' cos' C 2lg R' sin '

C 2lg P'2 cos' C l2 R'2 cos2 ' C l2 P'4 sin' � 2l2 R' P'2 sin ' cos'/

D 1

2
m
�
l2 R'2 C 2lg R' sin ' C l2 P'4 C 2lg P'2 cos' C g2

�
:

Condition (3.62) in this case takes the form

@�

@ R' D m
�
l2 R' C lg sin '

� D 0;

hence we get

R' C g

l
sin ' D 0: ut

Example 3.6. On an inclined plane of angle of inclination ' at point O is installed
a light rod of length l and to its opposite end is mounted a disk of radius R and
massm that can roll on this inclined plane (Fig. 3.13). Determine the equations and
the period of oscillations of the disk rolling without sliding for a small angle � .

The vector of angular velocity of the disk is equal to

! D P�ez � P er ;

where the investigated mechanical system has one degree of freedom described by
the generalized coordinate � ; the equation relating P� and P follows from constraints
of rolling of the form

P D l

R
P�:

The investigated system can be treated as a rigid body with a fixed point O . The
angular momentum of the disk is equal to

KO D IX3
P�ez � IO P er ;
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Fig. 3.13 Motion of a disk on an inclined plane

and its time derivative is

PKO D IX3
R�ez � IO R er C IO P e� :

The only external force performing work in the system is the gravity force, which
produces a moment with respect to point O of magnitude

MO D �2mg sin ' sin
�

2
ez Š �mg� sin 'ez:

In the considered case (3.79) simplifies to

.MO � PKO/ ı @!

@ Pqk D 0; (*)

where now the magnitudes of moment and angular momentum are calculated with
respect to the fixed pole O .

Because
@!

@ P� D ez � l

R
er ;

following substitution of the values PKO , MO , and @!

@ P� calculated earlier, from
equation .�/ we obtain

.�mg� sin'ez � IX3
R�ez C IO R er � IO P P�e� / ı

�
ez � l

R
er

�

D �mg� sin ' � IX3
R� � IO R l

R
D �mg� sin ' �

 
IX3 C IO

�
l

R

�2!
R� D 0;
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hence we eventually obtain an equation describing the small oscillations of the
rolling disk in the form

R� C ˛2� D 0;

where

˛2 D mg sin'

IX3 C IO
�
l
R

�2 :
Because for the disk we have IO D mR2

2
, IX3 D m.R

2

4
C l2/, the period of

oscillations is equal to T D 2
˛

D 
q

R2C6l2
gl sin ' . ut

3.3 General Equation of Statics and Stability
of Equilibrium Positions of Mechanical Systems
in a Potential Force Field

The general equation of statics will be derived from the general equation of
dynamics introduced in the following form in Chap. 1 of [14]:

.Fn �mnan/ ı ırn D 0; n D 1; : : : ; N; (3.80)

which is valid for systems with ideal constraints.

Theorem 3.1. From the many possible states of equilibrium (positions of equilib-
rium) of a mechanical system allowed for by ideal constraints, the actual state of
equilibrium, valid in time interval t0 � t � t�, occurs when the elementary work
done by all active forces during arbitrarily chosen virtual displacements is equal to
zero, that is,

Fn ı ırn D 0 .t0 � t � t�/: (3.81)

Equation (3.81) is the necessary and sufficient condition of an actual equilibrium
state and is called the general equation of statics.

Further we will consider equilibrium conditions of a system of particles (i) and a
rigid body (ii).

Case (i). Let us consider a system of particles described by radius vectors rn.
We aim at the formulation of conditions that must be satisfied by constraints
imposed on the system in order for the system to remain in a state of equilibrium,
represented by a certain equilibrium configuration (position) in time interval t0 �
t � t�. If the equilibrium position corresponds to rn D r�

n , then according to (3.13)
we have

fm1
�
r�
1 ; : : : ; r

�
n ; t
� � 0; m1 D 1; : : : ;M1 (3.82)
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for t 2 Œt0; t
��. Velocities and accelerations corresponding to the positions r�

n are
equal to vn D 0, an D 0 for t 2 Œt0; t

��. From the equation describing non-
holonomic constraints (3.17) we obtain

ˇm2
�
r�
1 ; : : : ; r

�
n ; t
� D 0; m2 D 1; : : : ;M2 (3.83)

for t 2 Œt0; t
��. The satisfaction of (3.82) and (3.83) means that the constraints

imposed on the system enable the realization of the state of equilibrium of the
mechanical system. However, the equilibrium of the mechanical system depends
additionally on forces acting on this system, that is, whether or not the general
equation of statics (3.81) is satisfied.

A proof of the necessity of condition (3.81) follows directly from the general
equation of dynamics (3.80) after setting an D 0. As shown in the monograph
[11], a proof of the sufficiency of condition (3.81) is more complex. The complexity
of this problem will be highlighted on the basis of the example below, which was
excerpted from [11].

Example 3.7. Conduct an analysis of equilibrium conditions x.0/ D Px.0/ D Rx.0/
of a particle moving along the axisOX whose motion is described by the differential
equation Rx D Axa, where 0 < a < 1;A > 0.

Substituting x D 0 into the analyzed equation it can be seen that condition (3.81)
is satisfied for any t . The condition of contraints allows for the existence of
equilibrium position x D 0. Let us note, however, that despite the fact that this
conservative, one-degree-of-freedom system is autonomous, the initial conditions
x.0/ D Px.0/ D 0 do not guarantee that the particle will be kept in the equilibrium
position x D 0. It follows from this observation that the analyzed equation, apart
from the solution x � 0, also has one more solution of the form

x.t/ D A�ta�

;

where

A� D
�
A.1 � a/2

2.1C a/

	 1
1�a

; a� D 2

1 � a :

From the given relationship a� D 2.1 � a/�1 it follows that a� � 2 D � > 0.
Differentiating this second non-trivial solution we have Rx.t/ D a�.a� � 1/A�t � ,
hence we obtain Rx.t/ D 0 for t > 0, although for t D 0 we have Rx.0/ D 0.

The preceding example shows that despite the fact that the conditions of
constraints and equality x.0/ D Px.0/ D 0 have been satisfied, it is not guaranteed
that the particle will be in the equilibrium position x D 0.

The proof that condition (3.80) is a sufficient condition requires that the total
uniqueness of the solution with respect to the initial conditions be taken into
account.



142 3 Statics and Dynamics in Generalized Coordinates

Fig. 3.14 Geometry of a
system of three identical
pipes with the forces
performing virtual work
marked

Example 3.8. Determine the magnitude of a horizontal force F that should be
applied to a pipe of center A3 in order for a mechanical system consisting of three
identical pipes of radius R (Fig. 3.14) to remain in static equilibrium.

Virtual work is done only by two forces, that is, G2 D G and the desired force F.
From the isosceles triangle 	A1A2A3 it follows that the radius vectors rA2 and rA3
are determined by the equations

rA2 D 2R cos˛E1 C 2R sin ˛E2;

rA3 D 4R cos˛E1;

and hence we obtain the variations

ırA2 D 2R .� sin˛E1 C cos˛E2/ ı˛;

ırA3 D �4R sin ˛ı˛E1:

In turn,
G D �GE2; F D �FE1;

so substituting it into (3.81) we obtain

F ı ırA3 CG ı ırA2 D 0:

From the preceding equation we have

.4RF sin ˛ � 2RG cos˛/ ı˛ D 0;

hence we find that F D G=.2 tan˛/. ut
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The general equation of statics (3.81) can be expressed in terms of generalized
coordinates in the following way:

Fn ı ırn D Qmıqm D 0;

n D 1; : : : ; N; m D 1; : : : ;M: (3.84)

In the case of holonomic constraints, Df D M , where Df defines the number
of degrees of freedom of the DMS, and the quantities ıqm in (3.84) are independent
of each other. In the case of non-holonomic constraints, they depend on each other.

From (3.84) it follows that in the equilibrium position q D q0 D 0 for the case
of holonomic constraints we obtainDf equilibrium equations of the form

Qm D 0; m D 1; : : : ;M; (3.85)

which allow for the determination of Df desired coordinates of vector
q0Œq10; : : : ; qM0�.

In many problems of statics we encounter a special case where the only active
forces are potential forces that follow from the gravitational force field.

In this case, the problem simplifies substantially since it boils down to the
determination of the extremum of potential energy of the investigated mechanical
system.

Let us recall that a force field is called a potential field if there exists a scalar
function U such that it generates conservative forces acting on the system situated
in that force field, that is,

Fn D @U

@rn
; n D 1; : : : ; N; (3.86)

where U is the force (generating) function. In turn, we call V D �U the potential
or potential energy, and forces Fn defined by (3.86) the potential forces.

The elementary work of potential forces in a stationary potential field is equal to

ıW D Fn ı ırn D @U

@rn
ı ırn

D @U

@x1n
ıx1n C @U

@x2n
ıx2n C @U

@x3n
ıx3n D ıU

D �ıV D � @V

@qm
ıqm D Qmıqm D 0: (3.87)

From (3.87) it follows that knowing the potential V D V.rn/ and for the case of
holonomic constraints Df D M , we have at our disposal Df following algebraic
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Fig. 3.15 Motion of a particle along curve f .x1/ in a potential field

equations, which serve to determine the equilibrium position vector rn D r0n, n D
1; : : : ; N :

Qm D � @V

@qm
D 0; m D 1; : : : ;M: (3.88)

In a potential force field the satisfaction of condition (3.99) is equivalent to the
condition

dV D 0; (3.89)

that is, the total differential of the potential energy is equal to zero.
Let a particle be moving in a potential force field in the vertical plane, where

x2 � h D f .x1/ denotes the elevation (position x2) of this particle above the
ground (Fig. 3.15).

The potential energy of a particle of mass m is equal to

V D mgf .x1/; (3.90)

and condition (3.89) is satisfied at four points Ai of the curve. After a small
displacement of the particle from the position A1 .A2/ it always returns (does not
return) to this position. In the case of an inflexion point A3, the initial deflection
of the material point from the equilibrium position results in permanent loss of
this equilibrium position. In the case of a material point at position A4, its motion
takes place along the horizontal portion of the curve and in its vicinity there exist
infinitely many new equilibrium positions determined by the initial conditions. We
call point A1 an elliptic point, point A2 a saddle point, and point A4 a parabolic
point.

Let us emphasize, however, that conditions (3.88) are the necessary conditions
for equilibrium, but they are not sufficient conditions. We skip the analysis of non-
holonomic constraints, confining ourselves only to the commentary that in this case,
select or all partial derivatives of the potential energy of the system may not be equal
to zero.
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Case (ii). We will now proceed to an analysis of equilibrium conditions in the
second case, that is, in the case of a rigid body. From the previous considerations it
follows that an arbitrary system of forces and moments acting on a rigid body can
be replaced with the equivalent force system, and in the present case, with the main
force vector F and the main moment of forces MO , where O is an arbitrary pole
(point of reduction). If the body is a free body, the conditions F D 0 and MO D 0

are the necessary and sufficient conditions of equilibrium of the body. If the body is
constrained, we “mentally” release it from the constraints, introducing the reaction
forces and reaction moments, and then we treat these forces as active forces. Also in
this case, the equations F D 0 and MO D 0 are valid, and now we determine from
these equations the desired reaction forces and moments.

Theorem 3.2. The necessary and sufficient condition for a body to remain in a state
of equilibrium in the time interval t0 � t � t� is a lack of motion of the body at the
time instant t0 and the satisfaction of the two equations

F D 0; MO D 0; (3.91)

that is, the main force vector and main moment of force (of the forces applied to
the rigid body) with respect to any point O are equal to zero in the time interval
t0 � t � t�.

Proof. A free rigid body is a scleronomic system, and its actual displacement
realized during time dt is a virtual displacement. The elementary work of forces
and moments of forces performed over a rigid body and related to its elementary
displacement (it consists of the translation of poleO and body rotation with respect
to this pole) is equal to

ıW D F ı vOdt C MO ı!dt D 0; (3.92)

where vO denotes the velocity of pole O and ! is the vector of angular velocity of
the body. Let us impose on the body arbitrary instantaneous velocities vO and! for
time instants t 2 Œt0; t�/. From the general equation of statics in the form (3.92)
equations (3.91) follow directly, which was to be demonstrated.

Let us return to the equilibrium conditions of a mechanical system in a potential
force field that are described by equations (3.88). If we disturb the state of
equilibrium q D qO of the system by introducing small displacements and initial
velocities (disturbances), then the system might return to the position qO (the
disturbances tend to zero), or it might not return to this position (Fig. 3.15). We
describe the equilibrium position qO in the first case (point A1 from Fig. 3.15) as
stable and in the second case (points A2, A3, and A4 in Fig. 3.15) as unstable.

Theorem 3.3. If in the equilibrium position of a conservative mechanical system
the energy has a local minimum, then this equilibrium position is stable.

Although the proof of this theorem is omitted here, we will present some basic
information regarding its interpretation.
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Let q0 D q0
�
q1; q2; : : : ; qD

f
� D 0, where Df denotes the number of degrees

of freedom of the DMS, and let V D V.0; : : : ; 0/ D 0. Here we make use of the
following classical definition of stability (see, e.g., [1]). We call the equilibrium
position q1 D � � � D qd D � � � D qDf D 0 a stable position if, for an arbitrary
" > 0, there exists ı D ı.�/ such that for all t > t0 the following inequalities hold:

jqd .t/j < "; j Pqd j < "; d D 1; : : : ;Df ; (3.93)

at the initial conditions assumed earlier

jqd .t0/j < ı; j Pqd .t0/j < ı: (3.94)

In other words, in the space .q; Pq/ the solution starting from a cube of edge 2ı
will remain inside a cube of edge 2�.

By assumption, the scalar function V D V.q1; : : : ; qD
f / has a local minimum,

so there exists � > 0 such that in the neighborhood

jqd j < �; d D 1; : : : ;Df ; (3.95)

the inequality
V.q1; : : : ; qD

f / > V.0; : : : ; 0/ D 0 (3.96)

is satisfied if at least one of the generalized coordinates qd is not equal to zero.
Because the kinetic energy in the proximity of the equilibrium position .0; : : : ; 0/
has the form

T D T2 D 1

2
aij .q1; : : : ; qD

f / Pqi Pqj > 0; (3.97)

from formulas (3.96) and (3.97) it follows that the total energy of the system is equal
to

E D V C T > 0 (3.98)

if at least one of the generalized coordinates qd ¤ 0, d D 1; : : : ;Df . In turn,
because V.0; : : : ; 0/ D 0 and T .0; : : : ; 0/ D 0, we have E.0; : : : ; 0/ D 0, and
taking into account condition (3.94) we conclude that the function E attains the
minimum at zero.

As we will present later in Sect. 3.4, knowledge of the kinetic energy and
potential energy of a system of particles (rigid bodies) and of generalized forces
allows for the derivation of the equations of motion of the system in the form
of Lagrange equations of the second kind. The equations can be presented, for
example, in the form

d

dt

@T

@ Pqd � @T

@qd
D Qd; d D 1; : : : ;Df ; (3.99)

Qd D Q�
d � @D

@ Pqd � @V

@qd
; (3.100)
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where T is the kinetic energy of the rigid system (or the rigid body), Q�
d is the

active force (non-potential and non-dissipative), D is the dissipation function, also
known as the Rayleigh dissipation function describing energy dissipation, and V is
the potential energy of the system.

In technical applications for the determination of equlilibrium positions we can
use the four principles presented below.

(i) Lagrange’s principle.
Inserting T D 0 (the state of equilibrium) in (3.99) we obtain Qd D 0; d D
1; : : : ;D, which describes the equilibrium condition of an arbitrary system of
forces with ideal holonomic constraints.

(ii) Principle regarding potential forces [described by (3.99)].
In the equilibrium position in a potential force field with ideal holonomic
constraints the derivative of potential energy becomes zero with respect to all
generalized coordinates, which indicates the existence of its extremum.

(iii) Dirichlet’s6 principle [follows also from (3.99)].
If a material system is in a potential force field, then the position determined by
the minimum of the potential energy is the position of the stable equilibrium.
The Dirichlet principle in the case of a mechanical system with one degree of
freedom boils down to the satisfaction of two conditions:

@V

@q1
D 0;

@2V

@q21
> 0: (3.101)

In the case of a system with two degrees of freedom Df D 2, the system
equilibrium position in a potential force field is stable when the following
conditions are satisfied:

@V

@q1
D 0;

@2V

@q21
> 0;

@2V

@q21

@2V

@q22
�
�
@2V

@q1@q2

�2
> 0;

@2V

@q21
> 0;

@2V

@q22
> 0: (3.102)

(iv) Torricelli’s7 principle.
This is a special case of Dirichlet’s principle. If in a uniform gravitational
field a constrained material system subjected to the action of ideal constraints
reaches a minimum elevation (the equilibrium position) with respect to the
chosen level, then such a position (configuration) of the system is a static
equilibrium position.

6Johann Peter Dirichlet (1805–1859), German mathematician of French origin working in
Wrocław, Göttingen, and Berlin.
7Evangelista Torricelli (1608–1647), Italian physicist and mathematician.
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Fig. 3.16 Two heavy rods
resting on a smooth cylinder
in equilibrium position
determined by angle 2˛

Example 3.9. Two uniform rods of identical masses m and lengths l connected by
a pin joint at point A rest on a smooth cylinder of radius R (Fig. 3.16). Determine
the angle between the rods in the equilibrium position.

The potential energy of the rods with respect to the axis OX1 has the form

V.˛/ D �2mg.l � x/ cos˛;

and the desired value of x is equal to

x D Rctan˛ CRtan˛ D R

sin ˛ cos˛
:

From the first equation we get

V.˛/ D �2mg
�
l cos˛ � R

sin ˛

�
;

and hence

V 0 � @V.˛/

@˛
D �2mg

�
�l sin ˛ C R cos˛

sin2 ˛

�
D 0:

From this equation we obtain

l sin3 ˛ � R cos˛ D 0:

Dividing the preceding equation by cos˛ we get

l tan ˛ sin2 ˛ � R
�
sin2 ˛ C cos2 ˛

� D 0;

which after dividing by cos2 ˛ leads to the equation

l tan3 ˛ � R tan2 ˛ � R D 0:
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Fig. 3.17 Convex rigid body lying on plane OX1X2 and two coordinate systems (point of contact
A� is in proximity of point A)

Setting tan˛ D y, the desired root ˛O can be determined using a graphical
method shown by the equation

l

R
y3 D y2 C 1:

The inequality condition associated with the preservation of the stability of
equilibrium position takes the form

@2V

@˛2
D @V 0

@˛
D �2mg

"
�l cos˛ CR

 
� sin3 ˛ � 2 sin˛ cos2 ˛

sin4 ˛

!#

D 2mg

 
l cos˛ CR

sin2 ˛ C 2 cos2 ˛

sin3 ˛

!
> 0;

and following determination of the value of ˛O it is possible to show that it is
satisfied. ut
Example 3.10. (See [11]) Investigate the stability of the equilibrium position of a
rigid body lying on a perfectly smooth horizontal surface in a gravitational field. Let
the surface ˘ be convex in the neighborhood of the point of contact with the body
A on condition that the body’ center of gravity lies on a vertical line passing through
the body’s center of mass C (Fig. 3.17).

With the body we associate the Cartesian coordinate system (body system)
CX 0

1X
0
2X

0
3 of origin at its mass center C and axes directed along its principal

centroidal axes of inertia.
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Let us describe by radius vector r0
AŒx

0
1A; x

0
2A; x

0
3A� the position of the point of

contact with the plane,A, in the systemCX 0
1X

0
2X

0
3. Let the equation of the surface˘

bounding the body be given by

f
�
x0
1; x

0
2; x

0
3

� D 0:

We take the sign of the function in such a way that the unit vector n lying on a
line perpendicular to the interior surface of the body at point A is described by the
equation

n D � gradf

jgradf j : (
)

The equation of the surface in the body’s system in the neighborhood of point A
has (approximately) the following analytical form:

f � �h� x0
3A C 1

2

 
x02
1A

R1
C x02

2A

R2

!
C � � � D 0;

where pointA� ¤ A is now the point of contact of the surface˘ of the investigated
body with the horizontal plane after a disturbance (a small deflection) of the body
from its equilibrium position associated with point A; �h is the position of point C
in the equilibrium position of the body (at this position C D C.0; 0; �h/); and R1
and R2 are the radii of curvature of the surface ˘ at point A�.

As can be seen from Fig. 3.17, if the surface ˘ of the body is convex and is
situated above the horizontal plane, then the radii of curvatureR1 > 0 and R2 > 0.

A potential energy of the body is given by the equation

V D mgH; H D �
�
n ı ��!

CA�� ;
where H denotes the distance between the mass center of the body and the
horizontal surface of contact at point A�. The normal vector, according to the
preceding definition (*), is described by the formula

n D � rf
jrf j D

�
@f

@x0

1
E0
1 C @f

@x0

2
E0
2 C @f

@x0

3
E0
3

�
jrf j � n0

1E
0
1 C n0

2E
0
2 C n0

3E
0
3:

We calculate successively

n0
1 � @f

@x0
1

D x0
1�

R1
; n0

2 � @f

@x0
2

D x0
2�

R2
:

Let us recall that
p
1 � x D 1 � 1

2
x C 1

8
x2 C : : : , and because .n0

1/
2 C .n0

2/
2 C

.n0
3/
2 D 1, we have
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n0
3 D

vuut1 �
"�

x0
1�

R1

�2
C
�
x0
2�

R2

�2#
Š 1 � 1

2

"�
x0
1�

R1

�2
C
�
x0
1�

R2

�2#
:

In turn,

H D �
�
n ı ��!

CA�� D � .n1E1 C n2E2 C n3E3/ ı .x1E1 C x2E2 C x3E3/

D � .n1x1 C n2x2 C n3x3/ D �
(

� x21
R1

� x22
R2

C
�
1 � 1

2

�
x21
R1

C x22
R2

�	

�
�
�hC 1

2

�
x21
R1

C x22
R2

�	)
D
(
x21
R1

C x22
R2

�
"

� hC 1

2

�
x21
R1

C x22
R2

�

C h

2

�
x21
R21

C x22
R22

�
� 1

4

�
x21
R21

C x22
R22

��
x21
R1

C x22
R2

�#)

Š hC 1

2

�
x21
R1

C x22
R2

�
� h

2

�
x21
R21

C x22
R22

�

Š hC 1

2

�
R1 � h
R21

x21 C R2 � h
R22

x22

�
:

The potential energy of a rigid body is equal to

V D mgH D mg

�
hC 1

2

�
R1 � h
R21

x21� C R2 � h

R22
x22�

�	
:

We now make use of the conditions following from Dirichlet’s principle, (3.102).
We calculate successively

@V

@xix
D 0; i D 1; 2;

that is,
R1 � h

R21
x1� D 0;

R2 � h

R22
x2� D 0:

In turn,

@2V

@x�
1
2

D R1 � h

R21
> 0;

@2V

@x�
2
2

D R2 � h

R22
> 0;

@2V

@x�
1 @x

�
2

D 0:

If R1 > h and R2 > h, then the equilibrium position of the body is stable. For
instance, in the case of a ball we have R1 D R2 D R (and the stability condition
boils down to the condition R > h) and for a cylinder we have R1 D R, R2D1,
and then also we obtain the stability condition described by the inequality R>h.

�



152 3 Statics and Dynamics in Generalized Coordinates

3.4 Lagrange’s Equations of the First and Second Kind

Having defined the notion of generalized coordinates, we will now derive equations
of motion of a discrete mechanical system with constraints in the generalized
coordinates. According to Newton’s second law, the motion of an arbitrary point
of mass mn is described by the equation

mn

dvn
dt

ı ırn D �
Fn C Fin C FRn

� ı ırn; (3.103)

and using the earlier introduced summation convention this equation describes the
motion of the whole material system.

Let us introduce the notion of ideal constraints. These are bilateral constraints
such that the sum of the virtual works done by the reactions produced by those
constraints during an arbitrary virtual displacement is equal to zero. This means that
the virtual work

ıWn D FRn ı ırn D 0; (3.104)

where the summation convention does not apply.
According to the calculations conducted earlier, the vector of reactions acting

on particle A in the extended space R3N has the form FRA D .FR1;A; : : : ;F
R
N;A/, and

the particle moves along the chosen smooth trajectory. Holonomic constraints (3.7)
are called ideal constraints if for every trajectory vector FRA is perpendicular to the
tangent space at this point, that is,

FRA ı r0.0/ D FRk;A ı r0
k.0/ D 0; (3.105)

where, according to the previous remarks, the differentiation is carried out with
respect to the parameter s and r0

k is the position vector.
Holonomic time-independent constraints (3.8) can be represented in the follow-

ing way:

fm .r1;0; : : : ; rN;0/ D 0; m D 1; : : : ;M: (3.106)

Differentiating the preceding constraint equation along the trajectory of motion
of particle A we obtain

rrk fm .r1;A; : : : ; rN;A/ ı r0
k.0/; k D 1; : : : ; N; m D 1; : : : ;M; (3.107)

where the differential operator defined earlier in Chap. 4 of [14] was used. Let us
recall that the operation rf , that is, the action of the operator r on the scalar
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function f , yields a vector function called the gradient, that is, we obtain the vector

rfm � .rr1fm; : : : ;rrN fm/ �
�
@fm

@r1
; : : : ;

@fm

@rN

�
:

By assumption, the functions fm, m D 1; : : : ;M are independent, as are the
vectors perpendicular to the tangents rfm. The vectors rfm, m D 1; : : : ;M span
complementary spaces (to tangent spaces) at every point of the constraint surface.
The vectors of reactions must belong to the complementary spaces at every point of
the space, that is, they should be expressed through vectors rfm by the following
relationship:

FR .r1; : : : ; PrN / D �m .r1; : : : ; PrN /rfm .r1; : : : ; rN / ; m D 1; : : : ;M; (3.108)

where �m are proportionality factors of the aforementioned vectors.
In the space R3, the preceding expression takes the form

FR .rk/ D �m .rk; Prk/rrk fm .rk/ ; m D 1; : : : ;M; k D 1; : : : ; N: (3.109)

The introduced functions �m, m D 1; : : : ;M are called Lagrange multipliers (or
undetermined Lagrange multipliers), and substituting them into (3.103) and dividing
by ırn we obtain the form of equations of motion called Lagrange’s equations of the
first kind. Those equations will be derived in the E3 space in the next section. The
concept of the extended space R3N was briefly discussed here because it is often
used in so-called geometric mechanics.

The Lagrange multipliers enable us to determine reaction forces, which is
required in many problems of mechanics.

Let us also note that in this approach we do not make use of the notions of work
and virtual displacement. In the case of ideal constraints and problems of statics, that
is, the determination of static equilibrium positions, d’Alembert’s principle takes the
form

Fk .r1; : : : ; rN / ı r0
k D 0; k D 1; : : : ; N; (3.110)

where Fk is a resultant force acting on particle k.
Equations (3.108) and (3.110) allow for the determination of the desired equi-

librium positions of a system with constraints. In the equilibrium positions, forces
acting on a given particle of a DMS including reaction forces must vanish, and
this condition, called a necessary condition, must be satisfied simultaneously for all
particles.

It should be noted that our calculations concern ideally smooth constraints,
which is rarely encountered in real systems. This approach does not allow for
the introduction of friction. The friction force is tangent to the constraint surface
and, additionally, proportional to the reaction force perpendicular to the surface of
constraints.
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Following introduction of the ideal constraints, (3.103) takes the form

mn

dvn
dt

ı ırn D �
Fn C Fin

� ı ırn: (3.111)

Those equations will help in the derivation of Lagrange’s equations of the second
kind, which are characterized by the fact that they do not contain reactions of
constraints but only forces of interaction of DMS characteristic points (i.e., the
internal forces) and external forces independent of constraints.

Different authors derive Lagrange’s equations of the first and the second kind
in various ways. In this book, we rely on calculations excerpted from [5], and the
versatility of this approach consists in the fact that it includes, during the derivation
of Lagrange’s equations of the second kind, both geometric (holonomic) constraints
and non-holonomic (non-integrable) constraints.

Reaction forces of constraints are divided into two groups:

FRn D Fhn C Fnn; (3.112)

where Fhn .F
n
n/ are holonomic (non-holonomic) constraints. We relate the postulate

of ideal constraints (3.32) at first only to holonomic constraints, and it takes the form

NX
nD1

Fhn ı ırn D 0; (3.113)

and from (3.33), taking into account (3.113), we calculate

Fhn D mn Rrn � Fin � Fnn � Fn; n D 1; : : : ; N: (3.114)

Substituting (3.114) into relationship (3.113) we have (the forces Fin are omitted
because they mutually cancel out)

NX
nD1

�
Fnn C Fn �mn Rrn

� ı ırn D 0: (3.115)

Assume that in order to describe the investigated DMS we need qk independent
generalized coordinates, where k D 1; 2; : : : ; K . According to (3.48) we have

ırn D
KX
kD1

@rn
@qk

ıqk: (3.116)

The sum of works of external forces Fen D Fn during the virtual displacements
ırn is equal to
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ıW e D
NX
nD1

Fn ı ırn D
NX
nD1

Fn ı
KX
kD1

@rn
@qk

ıqk

D
KX
kD1

 
NX
nD1

Fn ı @rn
@qk

!
ıqk D

KX
kD1

Qkıqk; (3.117)

where

Qk.q1; q2; : : : ; qK; t/ D
NX
nD1

Fn ı @rn
@qk

; k D 1; : : : ; K: (3.118)

Proceeding in a similar way we define the work of non-holonomic reactions
during the virtual displacements ırn of the form

ıW n D
NX
nD1

Fnn ı ırn D
KX
kD1

 
NX
nD1

Fnn ı @rn
@qk

!
ıqk

D
KX
kD1

Qn
kıqk; k D 1; : : : ; K: (3.119)

In a similar way we determine also the work of d’Alembert’s forces (the inertial
forces) Finn D �mn Rrn during virtual displacements ırn

ıW in D
NX
nD1

Finn ı ırn D
KX
kD1

 
NX
nD1

Finn ı @rn
@qk

!

D
KX
kD1

 
�

NX
nD1

mn

@Prn
@t

ı @rn
@qk

!
ıqk D

KX
kD1

Qin
n ıqk: (3.120)

The sum of all virtual works is

KX
kD1

�
Qk CQn

k CQin
k

�
ıqk D 0: (3.121)

The component
PK

kD1 Qin
k ıqk of the sum that follows from the action of the

inertial forces are expressed through the kinetic energy of the DMS.
According to (3.111) we have

�
mn

dvn
dt

�
ı
�
ırn
ıqk

ıqk

�
D mn

dvn
dt

ı @rn
@qk

ıqk;

n D 1; : : : ; N; k D 1; : : : ; K: (3.122)
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Note that

d

dt

�
vn ı ırn

ıqi

�
D dvn

dt
ı @rn
@qi

C vn ı d

dt

�
@rn
@qi

�
: (3.123)

Then, taking into account relationships (3.122) and (3.123), we obtain

mn

dvn
dt

ı ırn D mn

dvn
dt

ı @rn
@qk

ıqk

D mn

�
d

dt

�
vn ı ırn

ıqk

�
� vn ı d

dt

�
@rn
@qk

�	
ıqk; (3.124)

and hence�
d

dt

�
mnvn ı ırn

ıqk

�
�mnvn ı d

dt

�
@rn
@qk

�	
ıqk D Qin

k ıqk;

n D 1; : : : ; N; k D 1; : : : ;K: (3.125)

Note that

vn D drn
dt

D @rn
@q1

Pq1 C � � � C @rn
@qk

Pqk C � � � C @rn
@qK

PqK; (3.126)

where Pqk are generalized velocities.
The kinetic energy of the analyzed mechanical system can be expressed in terms

of generalized coordinates and generalized velocities in the following way:

T D mnv2n
2

D mn

2

�
@rn
@qk

Pqk
�2
; 1; : : : ; K; n D 1; : : : ; N: (3.127)

Let us calculate the derivatives of the kinetic energy with respect to the
generalized velocity Pqk and with respect to the generalized coordinate qk

@T

@ Pqk D mn

�
@rn
@qk

Pqk
�

ı @rn
@qk

D mnvn ı @rn
@qk

; (3.128)

@T

@ Pqk D mn

�
@rn
@qk

Pqk
�

ı
�
@2rn
@qi@qk

Pqi
�

D mnvn ı d

dt

@rn
@qk

; (3.129)

where formula (3.126) was used.
Equations (3.125), after taking into account (3.128) and (3.129), take the form

d

dt

�
@T

@ Pqk
�

� @T

@qk
D Qin

k ; k D 1; : : : ; K: (3.130)
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Substituting (3.130) into (3.121) we obtain

KX
kD1

�
Qk CQn

k �
�

d

dt

@T

@ Pqk � @T

@qk

�	
ıqk D 0: (3.131)

We have already chosen the coordinates qk to be independent, and hence
from (3.131) we get

d

dt

@T

@ Pqk � @T

@qk
D Qk CQn

k; k D 1; : : : ; K: (3.132)

In the preceding equations we have 2K unknowns, because the generalized
coordinates q1; : : : ; qk and the generalized non-holonomic reactions Qn

1; : : : ;Q
n
k

are not known. We have at our disposal K (3.132) and M2 equations of non-
holonomic constraints (3.15), that is, in totalK CM2 < 2K , because K > M2.

In order to determine any additional required equations we introduce the
condition of ideal non-holonomic constraints of the form

KX
kD1

Qn
kıqk D 0: (3.133)

The concept, described earlier, of constraints freezing allows for the replacement
of non-holonomic constraints (3.15) with scleronomic constraints [this procedure
is reduced to omitting in (3.15) terms ˇm2 and additionally “freezing” time t in
functions �m2n].

From (3.133) we have

Qn
1ıq1 CQn

2ıq1 C � � � CQn
KıqK D 0; (3.134)

and from (3.24) we obtain

B11ıq1 C B12ıq2 C � � � C B1KıqK D 0;

B21ıq1 C B22ıq2 C � � � C B2KıqK D 0;

:::

BM21ıq1 C BM22ıq2 C � � � C BM2KıqK D 0: (3.135)

We haveK Lagrange equations (3.132), and alsoM2 additional equations (3.135)
following from the non-holonomic constraints, whereas we need to determine K
generalized coordinates andK non-holonomic reactions Qn

k .
In order to solve this problem we make use of the method of auxiliary

variables �1; �2; : : : ; �M called the Lagrange multiplers. The desired K functions
Qn
1; : : : ;Q

n
k are expressed in terms ofM2 Lagrange multipliers. Now the unknowns
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are q1; q2; : : : ; qk , �1; �2; : : : ; �M2 (K C M2 in total), whereas we have at our
disposal K Lagrange equations (3.132) and M2 equations of non-holonomic
constraints (3.21). To this end we multiply the first of equations (3.135) by �1, the
second by �2, etc.

Next we add together (3.135) by ordering the terms at ıqk . Non-holonomic gen-
eralized forces Qn

k , k D 1; : : : ; K depend only on M2 non-holonomic constraints,
and then on the M2 Lagrange multipliers �m2 .

By comparing (3.134) and (3.135) after the foregoing operation of multiplication
through multipliers, adding by sides and ordering, and then by comparing the terms
standing at the same coefficients ıqk we obtain

Qn
1 D �1B11 C �2B21C; : : : ;C�M2BM21;

:::

Qn
k D �1B1k C �2B2kC; : : : ;C�M2BM2K; (3.136)

or

Qn
k D

M2X
m2D1

�m2Bm2k; k D 1; : : : ; K; m2 D 1; : : : ;M2: (3.137)

Condition (3.133), taking into account (3.137), takes the following form:

KX
kD1

0
@ M2X
m2D1

�m2Bm2k

1
A ıqk D 0: (3.138)

Substituting (3.138) into Lagrange’s equations and including the equation of
constraints (3.21) we obtain

d

dt

@T

@ Pqk � @T

@qk
D Qk C

M2X
m2D1

�m2Bm2k; k D 1; : : : ; K;

KX
kD1

Bm2k Pqk C bm2 D 0; m2 D 1; : : : ;M2: (3.139)

As is evident, we now have K C M2 equations and K C M2 unknowns,
that is, q1; : : : ; qk , �1; : : : ; �M2 . Let us recall that according to our calculations,
equations (3.139) describe the motion of N material points of the DMS under
investigation with both holonomic and non-holonomic constraints. System of
equations (3.139) is called a system of Lagrange equations of the second kind with
undetermined multipliers.

Because a system is called non-holonomic if at least one of its constraints is
non-holonomic, system (3.139) describes the dynamics of a non-holonomic DMS.
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If Bm2k D 0 and bm2 D 0, then system of equations (3.139) reduces to the
following equations:

d

dt

@T

@ Pqk � @T

@qk
D Qk; k D 1; : : : ; K: (3.140)

System of equations (3.140) describes the motion of a non-holonomic DMS,
and the number of independent generalized coordinates is equal to the number of
degrees of freedom of the DMS, that is, K D Df (the motion of the DMS is
restricted by introduction of the geometric constraints). If we release the DMS also
from geometric constraints and the analyzed DMS becomes a free system, then
Lagrange’s equations of the second kind will not change and will be expressed
through the same indices k as in the case of equations (3.140), where K D Df

is understood as the number of degrees of freedom of the DMS with no constraints.
Let us now consider the case where on the DMS we have imposedM1 geometric

constraints (3.13), and additionally some generalized coordinates in the number of
K1 depend on each other, that is, there exist coordinates that do not satisfy equations
of geometric constraints.

Following differentiation of holonomic constraints with respect to time we obtain
relation (3.18), and taking into account the second equation of (3.19) we obtain

NX
nD1

@fm

@rn
ı
 
K1X
kD1

@rn
@qk

Pqk C @rn
@t

!

D
K1X
kD1

 
K1X
kD1

@fm

@r
ı @rn
@qk

!
Pqk C

NX
nD1

@fm

@rn
ı @rn
@t

D
K1X
kD1

Bh
mk Pqk C bhm: (3.141)

The obtained result exhibits a similarity to the previously analyzed kinematic
(non-holonomic) constraints. However, in this case the constraints were obtained by
differentiation of the geometric constraints, that is, they are integrable (in contrast to
the non-integrable non-holonomic constraints). The following procedure, analogous
to the one described above, can be carried out also for the case of non-holonomic
constraints, which boils down to omitting the index h in relation (3.141).

The general equation of dynamics for the considered case takes the following
form:

K1X
kD1

�
d

dt

@T

@ Pqk � @T

@qk
�Qk �Qh

k

�
ıqk D 0; (3.142)

but now only on some of the quantities ıqk are the restrictions of motion imposed.
From (3.13) it follows that

fm .t; q1; : : : ; qK1/ D 0; m D 1; : : : ;M1: (3.143)
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Therefore, we have M1 equations of geometric constraints, whereas we have
introduced K1 independent generalized coordinates. By proceeding in a way
analogous to that described previously and concerning the analysis of the non-
holonomic constraints using (3.141) we obtain the following system of equations
describing the motion of a holonomic DMS of the form

d

dt

@T

@ Pqk � @T

@qk
D Qk C

M1X
mD1

�mB
h
mk; k D 1; : : : ; K1;

K1X
kD1

Bh
mk Pqk C bhm D 0; m D 1; : : : ;M1: (3.144)

System (3.144) contains K1 CM1 equations with K1 CM1 unknowns, and M1

undetermined Lagrange multipliers appear here; this system is called Lagrange’s
equations of the first kind. Reactions of the holonomic constraints are defined by
Qh
k D PM1

mD1 �mBh
mk .

Until now, we have considered a discrete mechanical system. If the number of
masses tends to infinity, it is possible to pass to a continuous mechanical system. We
will derive Lagrange’s equations of the second kind for the system of a continuous
mass distribution [2, 11].

We take a point of a continuous mechanical system described by a radius vector
r.t/ and separate in its proximity a small element of mass dm. Let dm be subjected
to the action of force fdm, where f is the force related to the unit of mass.

By Newton’s second law we have

dm
d2r.t/

dt2
D fdm: (3.145)

The virtual displacement ır is associated with the virtual work done by the force
fdm during that displacement, that is, fdmır. In view of that the virtual work done
by the force acting on the continuous mechanical system of mass m is equal to

ıW D
Z
m

ır ı fdm: (3.146)

Using (3.23) we write

ıW D ıqn

Z
m

@r
@qn

ı fdm D Qnıqn; (3.147)

Qn D
Z
m

@r
@qn

ı fdm; (3.148)

where Qn denote generalized forces or coefficients of a linear form of variation
of the mechanical system in the configuration space, that is, we have N degrees
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of freedom of the system. If, as in the calculations concerning the discrete system,
we assume that we have ideal constraints imposed on the system, then the virtual
work of the ideal reactions during the virtual displacements is equal to zero.
The remaining forces acting on the system are denoted by f, that is, just as
previously.

From (3.145) and (3.23) we obtain

ıqn

Z
m

@r
@qn

ı .Rr � f/ dm D 0; n D 1; : : : ; N; (3.149)

and taking into account (3.148) we have

ıqn

�Z
m

@r
@qn

ı Rrdm �Qn

�
D 0: (3.150)

For a holonomic system all ıqn are independent, and from formula (3.150) we
obtain Z

m

@r
@qn

ı Rrdm D Qn; n D 1; : : : ; N: (3.151)

Note that

Pr D v D @r
@t

C @r
@qn

Pqn; (3.152)

and additionally
@v
@ Pqn D @r

@qn
: (3.153)

From equality (3.153) it follows that

d

dt

�
@r
@qn

�
D @2r
@t@qn

C @2r
@qi@qn

Pqi ; (3.154)

and from expression (3.152) we have that

@v
@qn

D @2r
@t@qn

C @2r
@qi@qn

Pqi : (3.155)

A comparison of (3.154) with (3.155) leads to the following conclusion:

d

dt

�
@r
@qn

�
D @v
@qn

: (3.156)
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The problem boils down to the calculation of the integral occurring in (3.151),
which takes the formZ

m

@r
@qn

ı Rrdm D
Z
m

d

dt

�
@r
@qn

ı v
�

dm�
Z
m

d

dt

�
@r
@qn

�
ı vdm: (3.157)

Using (3.153) and (3.155) in the preceding equation we obtain

Z
m

@r
@qn

ı Rrdm D
Z
m

d

dt

�
@v
@ Pqn ı v

�
dm�

Z
m

@v
@qn

ı vdm

D d

dt

�
@T

@ Pqn
�

� @T

@qn
; (3.158)

where T denotes the kinetic energy of the mechanical system of mass m, that is,

T D 1

2

Z
m

v ı vdm: (3.159)

Eventually, from (3.151), taking into account (3.158), we obtain Lagrange’s
equations of the second kind for holonomic systems of the form (3.140).

Let us consider a potential force Qn, that is, we assume the existence of a scalar
function of time and generalized coordinates V such that

Qn D �@V .t; q1; : : : ; qn/
@qn

; n D 1; : : : ; N: (3.160)

One may also introduce the notion of generalized potential forcesQn of the form

Qn D �@V.t; q1; : : : ; qN ; Pq1; : : : ; PqN /
@qn

C d

dt

�
@V.t; q1; : : : ; qN ; Pq1; : : : ; PqN /

@ Pqn
�
; n D 1; : : : ; N: (3.161)

After the introduction of the Lagrangian function (also called Lagrangian or
kinetic potential)

L D T � V; (3.162)

Lagrange’s equations of the second kind take the form

d

dt

�
@L

@ Pqn
�

� @L

@qn
D 0; n D 1; : : : ; N: (3.163)

The obtained equations are valid for conservative systems.
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Fig. 3.18 Toothed gear transmission with disks of mass moments of inertia I1 and I2

Very often the introduced Lagrangian L.t; q; Pq/ is treated as an arbitrary func-
tion (a relationship of a function’s independent variables). The class of Lagrangian
dynamics includes a free and constrained DMS.

Finally, we note that the forces linearly dependent on the coordinates

Qi D aij qj ; aij D aj i ; (3.164)

Qi D cij Pqj ; cij D �cj i (3.165)

have respectively the potentials

V D 1

2
aij qiqj ; (3.166)

V D 1

2
cij qi Pqj : (3.167)

The forces described by (3.165) are called gyroscopic forces, and examples of
them will be given later.

Example 3.11. Compose equations of motion of the mechanical system depicted in
Fig. 3.18 using Lagrange’s equations of the second kind. The following symbols are
introduced in the figure: k1, k2 – torsional stiffnesses; z1, z2 – gear tooth numbers,
and the shafts and gears are assumed to be massless; I1, I2 – moments of inertia of
the rigid disks.

In the considered case, Lagrange’s equations of the second kind take the form

d

dt

@T

@ Pqn C @V

@qn
D 0; n D 1; 2:
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The preceding form of Lagrange’s equations of the second kind is valid only
in the case where the system’s kinetic energy does not depend on generalized
coordinates. The kinetic and potential energies of the considered mechanical system
have the form

T D I1 P'21
2

C I2 P'22
2
;

V D 1

2
k1
�
'1 � ' 0

1

�2 C 1

2
k2
�
'2 � ' 0

2

�2
:

The gear ratio of the toothed gear transmission is equal to

i D
ˇ̌̌
ˇ' 0

1

' 0
2

ˇ̌̌
ˇ D z2

z1
;

and if z2 > z1, then ' 0
2 < '

0
1. We calculate successively

@T

@ P'1 D I1 P'1; @T

@ P'2 D I2 P';

@V

@'1
D k1

�
'1 � ' 0

1

�
;

@V

@'2
D k2

�
'2 � ' 0

2

�
: (
)

Let us introduce torsional moments as

Mi D ki
�
'i � ' 0

i

�
; i D 1; 2:

Assuming that power is conserved during the transmission of rotations we can
write

M1!1 D M2!2;

where !1 D P' 0
1, !2 D P' 0

2, and hence we obtain

iM1 D M2:

We get further
ik1

�
'1 � ' 0

1

�C k2
�
'2 � ' 0

2

� D 0; (

)

where
' 0
1 D i' 0

2:

Substituting formulas (
) into the Lagrange equations and taking into account
equality we obtain the following two second-order differential equations:

I1 R'1 C k1
�
'1 � i' 0

2

� D 0;

I2 R'2 C k2
�
'2 � ' 0

2

� D 0: (


)



3.4 Lagrange’s Equations of the First and Second Kind 165

Fig. 3.19 Spherical
pendulum and generalized
coordinates ' and  

The angle ' 0
2 is expressed through relationship (

), which takes the form

ik1
�
'1 � i' 0

2

�C k2
�
' 0
2 � '2

� D 0;

hence we find

' 0
2 D k2

k2 C i 2k1
'2 C ik1

k2 C i 2k1
'1:

Substituting the preceding expression into (


) we obtain

I1 R'1 C k1k2

k2 C i 2k1
'1 � ik1k2

k2 C i 2k1
'2 D 0;

I2 R'2 � ik1k2

k2 C i 2k1
'1 C i 2k1k2

k2 C i 2k1
'2 D 0:

The obtained system of equations is linear and autonomous and can be solved
analytically. �

Example 3.12. Derive equations of motion of the spherical pendulum shown in
Fig. 3.19, where the mass m is attached at the end of a rigid weightless rod of
length l .

Let us make use of Lagrange’s equations of the form

d

dt

@T

@ Pqn � @L

@qn
D 0; L D T � V:
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The kinetic energy T and the potential energy V have the form

T D 1

2
m
�
.l P'/2 C �

l P� sin '
�2�

;

V D mgl .1 � cos'/ :

After differentiation we obtain

@T

@ P' D ml2 P'; @T

@ P� D ml2 P� sin2 ';

@L

@'
D 1

2
ml2 P�2 sin 2' �mgl sin ';

@L

@�
D 0;

and taking into account the Lagrange equations, we have

ml2 R' � 1

2
ml2 P�2 sin 2' Cmgl sin ' D 0;

ml2 R� sin2 ' C 2ml2 P� P' sin ' cos' D 0: (
)

Following transformations, equations (
) take the form

R' � 1

2
P�2 sin 2' C g

l
sin ' D 0;

R� sin2 ' C P� P' sin 2' D 0: (

)

The second equation of system (

) can be written in the form

d

dt

� P� sin2 '
� D 0;

which leads to its immediate integration, and eventually (

) take the form

R' � 1

2
P�2 sin 2' C g

l
sin ' D 0;

P� sin2 ' D C;

where C is a constant of integration.
If P D 0, that is, we introduce the initial conditions of the form  .0/ D P 

.0/ D 0, then from system of the preceding equations, we obtain

R' C g

l
sin ' D 0:

This means that the motion takes place in a plane and corresponds to the
oscillations of the mathematical pendulum, already known to the reader. �
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Fig. 3.20 Double compound
pendulum (coordinates xi , yi ,
i D 1; 2 describe the
positions of mass centers of
particular pendulums)

Example 3.13. Derive equations of motion of the double compound pendulum
(two thin pin-connected homogeneous rods) depicted in Fig. 3.20 using Lagrange’s
equations of the second kind and of the first kind.

The kinetic energy of the system has the form

T D 1

2
m1

� Px21 C Py21
�C 1

2
m2

� Px22 C Py22
�C 1

2
I1 P'21 C 1

2
I2 P'22 ;

and the constraint equations

 1 � x1 � l1

2
cos'1 D 0;  2 � y1 � l1

2
sin '1 D 0;

 3 � x2 � l1 cos'1 � l2

2
cos'2 D 0;  4 � y2 � l1 sin '1 � l2

2
sin '2 D 0: (
)

The preceding equations are valid if the mass centers of both bodies are in the
middle of segments l1 and l2.
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Differentiating equations (
) with respect to time we obtain

Px1 D � l1
2

P'1 sin '1; Py1 D l1

2
P' cos'1;

Px2 D �l1 P'1 sin '1 � l2

2
P'2 sin '2; Py2 D l1 P'1 cos' C l2

2
P'2 cos'2;

and hence

Px21 C Py21 D l21
4

P'21 ;

Px22 C Py22 D l21 P'21 sin2 '1 C l22
4

P'22 sin2 '2 C l1l2 P'1 P'2 sin '1 sin '2

Cl21 P'21 cos2 '1 C l22
4

P'22 cos2 '2 C l1l2 P'1 P'2 cos'1 cos'2

D l21 P'21 C l22
4

P'22 C l1l2 P'1 P'2 cos.'1 � '2/:

Taking the preceding relationships into account in the formula for kinetic energy
we obtain

T D 1

8
m1l

2
1 P'21 C 1

2
m2l

2
1 P'21 C 1

8
m2l

2
2 P'22

C1

2
m2l1l2 P'1 P'2 cos.'1 � '2/C m1l

2
1 P'21
24

C m2l
2
2 P'22
24

D 1

6
m1l

2
1 P'21 C 1

2
m2l

2
1 P'21 C 1

6
m2l

2
2 P'22 C 1

2
m2l1l2 P'1 P'2 cos.'1 � '2/:

Differentiating the kinetic energy T with respect to the generalized coordinates
and generalized velocities we have

@T

@ P'1 D 1

3
m1l

2
1 P'21 C l21m2 P'21 C 1

2
m2l1l2 P'22 cos.'1 � '2/;

@T

@ P'2 D 1

3
m2l

2
2 P'22 C 1

2
m2l1l2 P'1 cos.'1 � '2/;

d

dt

�
@T

@ P'1
�

D 1

3
m1l

2
1 R'1 C 1

2
m2l1l2 R'2 cos.'1 � '2/

�1
2
m2l1l2 P'2. P'1 � P'2/ sin.'1 � '2/C l21m2 R'1;
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d

dt

�
@T

@ P'2
�

D 1

3
m2l

2
2 R'2 C 1

2
m2l1l2 R'1 cos.'1 � '2/

�1
2
m2l1l2 P'1. P'1 � P'2/ sin.'1 � '2/;

@T

@'1
D �1

2
m2l1l2 P'1 P'2 sin.'1 � '2/;

@T

@'2
D 1

2
m2l1l2 P'1 P'2 sin.'1 � '2/:

The potential energy of the system takes the form

V D C �m1gx1 �m2gx2;

where g denotes the acceleration of gravity and C is a certain constant. We have

V D C � 1

2
m1gl1 cos'1 � gm2

�
l1 cos'1 C l2

2
cos'2

�
;

and hence

@V

@'1
D 1

2
m1gl1 sin '1 Cm2gl1 sin '1;

@V

@'2
D 1

2
m2gl2 sin '2:

Using Lagrange’s equations of the form (3.163) we obtain

�
1

3
m1 Cm2

�
l21 R'1 C 1

2
m2l1l2 R'2 cos.'1 � '2/� 1

2
m2l1l2 P'2. P'1 � P'2/ sin.'1 � '2/

C1

2
m2l1l2 P'1 P'2 sin.'1 � '2/C g sin '1l1

�m1

2
Cm2

�
D 0;

1

3
m2l2 R'2 C 1

2
m2l1l2 R'1 cos.'1 � '2/ � 1

2
m2l1l2 P'1. P'1 � P'2/ sin.'1 � '2/

C1

2
m2l1 P'1 P'2 sin.'1 � '2/C 1

2
gm2l2 sin '2 D 0;
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and after their transformations we obtain the following equations:

�
1

3
m1 Cm2

�
l21 R'1 C 1

2
m2l1l2 R'2 cos.'1 � '2/C 1

2
m2l1l2 P'22 sin.'1 � '2/

C gl1

�m1

2
Cm2

�
sin'1 D 0;

1

2
m2l1l2 R'1 cos.'1 � '2/ � 1

2
m2l1l2 P'21 sin.'1 � '2/

C 1

3
m2l

2
2 R'2 C 1

2
gm2l2 sin'2 D 0:

The obtained system of second-order differential equations can be transformed
into a system of second-order equations uncoupled with respect to angular acceler-
ations R'n; n D 1; 2.

An arbitrary plane motion of a rigid body of number n can be described by the
motion of the mass center of this body fxn; yng and the angle of rotation 'n of the
form

mn Rxn D Fnx C
MX
mD1

�m
@�m

@xn
;

mn Ryn D Fny C
MX
mD1

�m
@�m

@yn
; n D 1; : : : ; N;

In R'n D Mn C
MX
mD1

�m
@�m

@'n
; (

)

whereM denotes the number of geometric constraints.
In the preceding equations, mn denotes the mass of the body n, Fnx and Fyn

denote the projections of forces acting on the mass center of the body n, and
Mn are the moments of force reduced to the body centers. Functions  m are
constraint equations, and �m denote unknown Lagrange multipliers. We have then
3N equations (

) with 3N CM unknowns. AdditionalM constraint equations are
subject to the integration two times, and afterward they are included in the system
of 3N differential equations.

We derive the Lagrange’s equations of the first kind (N D 2;M D 4).
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Let us list only non-zero derivatives of formulas (
):

@�1

@x1
D1; @�1

@'1
D l1

2
sin '1;

@�2

@y1
D1; @�2

@'1
D � l1

2
cos'1;

@�3

@x2
D1; @�3

@'1
D l1 sin'1;

@�3

@'2
D l2

2
sin '2;

@�4

@y2
D 1;

@�4

@'1
D � l1 cos'1;

@�4

@'2
D � l2

2
cos'2:

Eventually, from (

) we obtain a system of differential equations with Lagrange
multipliers:

m1 Rx1 D m1g C �1;

m1 Ry1 D �2;

m2 Rx2 D m2g C �3;

m2 Ry2 D �4;

I1 R'1 D �1
l1

2
sin '1 � �2

l1

2
cos'1 C �3l1 sin '1 � �4l1 cos'1;

I2 R'2 D �3
l2

2
sin '2 � �4

l2

2
cos'2 :

Additional four equations are yielded by differentiation of the constraint equa-
tions (
) and they follow:

Rx1 C l1

2
R'1 sin '1 C l1

2
P'21 cos'1 D 0;

Ry1 � l1

2
R'1 cos'1 C l1

2
P'21 sin'1 D 0;

Rx2 C l1 R'1 sin '1 C l2

2
R'2 sin'2 C l1 P'21 cos'1 C l2

2
P'22 cos'2 D 0;

Ry2 � l1 R'1 cos'1 � l2

2
R'2 cos'2 C l1 P'21 sin'1 C l2

2
P'22 sin '2 D 0; �
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Fig. 3.21 Toothed gear
transmission with viscous
damping and driving torque
M.t/

Example 3.14. Compose an equation of motion of the mechanical system shown in
Fig. 3.21, and determine the intertooth force of a toothed gear transmission of mass
moments of inertia I1 and I2. In the figure, k1 denotes the torsional stiffness of the
massless shaft, and additionally gear wheel (2) is viscously damped with the torque
Mt D �c P'2, and gear wheel (1) is driven with the torqueM.t/.

We will take the angles '1 and '2 as generalized coordinates that, as distinct from
the case in Example 3.11, are now dependent on each other.

For the solution of the problem we will make use of Lagrange’s equations of the
first kind of the form

d

dt

@T

@ P'n C @V

@'n
D Qn C �

@f

@'n
; n D 1; 2;

where Lagrange multiplier � is the desired intertooth force, and additionally

Q1ı'1 D M.t/ı'1; Q2ı'2 D �c P'2ı'2;
f D r1'1 � r2'2 D 0; T D I1 P'21

2
C I2 P'22

2
; V D k1'

2
1

2
:

Following differentiation and taking into account the geometric relation we have

I1 R'1 C k1'1 D M.t/C �r1;

I2 R'2 C c P'2 D ��r2;
'2 D i'1; (
)

where i D r1=r2.
Equations (
) make a system of three differential-algebraic equations with three

unknowns: '1, '2, and �.
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However, the problem can be reduced to the analysis of one second-order non-
homogeneous differential equation. Let us multiply the second equation of (
) by i
and then add the first and second equations, obtaining

I1 R'1 C iI2 R'2 C k1'1 C ic P'2 D M.t/;

and taking into account the third equation of (
) we obtain

.I1 C iI2/ R'1 C i 2c P'1 C k1'1 D M.t/ (

)

or
.I1 C i 2I2/ R'2 C i 2c P'2 C k1'2 D iM.t/:

The reaction S12 of wheel (1) to wheel (2) is equal to

MR1 D �
@f

@'1
D �r1 � S12r1;

and the reaction S21 of wheel (2) to wheel (1) equals

MR2 D �
@f

@'2
D ��r2 � S12r2;

that is, S12 D � and S21 D ��.
In order to determine the intertooth forces, we have to determine the Lagrange

multiplier: from (

) we determine '1.t/ in the known way, and then from the first
equation of (
) we determine � D �.t/. �

Example 3.15. Determine the equation of motion and reactions of constraints of the
skate from Example 3.3 if the skate’s mass is equal to m.

According to formula (3.44) we have

Px1C sin ' � Px2C cos' D 0;

which defines the non-integrable non-holonomic constraints, and point C denotes
the skate mass center.

We consider the stated problem without friction on the assumption that the
position of the mass center of the skate is always at the same distance from the
ice rink surface.

The kinetic energy of the skate equals

T D 1

2
m
� Px21C C Px22C

�C 1

2
IC P'2;

where IC is the moment of inertia of the skate with respect to the axis perpendicular
to the ice surface and passing through point C .
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From Lagrange’s equation (3.140) we obtain

d

dt

@T

@ Px1C � @T

@x1C
D Qx1 C � tan';

d

dt

@T

@ Px2C � @T

@x2C
D Qx2 � �;

d

dt

@T

@ P' � @T

@'
D Q':

Let us take the following initial conditions of the skate motion: x1C D 0,
x2C D 0, ' D 0. Furthermore, at the initial time instant let the skate mass center
have linear velocity vC and angular velocity !C , that is, Px1C .0/ D vC , P! D !C
(from the equation of non-holonomic constraints we obtain Px2C .0/ D 0). Because
the skate’s potential energy during its motion does not change and there is no
friction, we have Qx1 D 0, Qx2 , Q' D 0.

From Lagrange’s equations of the first kind we obtain

m Rx1C D � tan '; m Rx2C D ��; R' D 0:

Integrating twice the last equation we have ' D !C t . This means that the
skate during its motion rotates with a constant angular velocity !C about an axis
perpendicular to the ice rink surface.

Combining the first two equations of motion gives

Rx1C C Rx2C tan .!C t/ D 0: (
)

Following differentiation of the equation of non-holonomic constraints we obtain

Rx1C tan' C Px1C
�
1C tan2 '

�
!C D Rx2C : (

)

Substituting (

) into (
) and following some transformations we obtain

Rx1C C !C tan .!C t/ Px1C D 0:

In order to solve the preceding equation we introduce the substitution

z D Px1C ;

which allows us to decrease the order of the differential equation, and the problem
boils down to the analysis

Pz C !C tan .!0t/ z D 0:
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Separating the variables we obtain

Z
dz

z
D �

Z
tan ' d';

and after integration we have

ln jzj � ln jcos'j D lnC;

where C is a constant. Finally, we obtain

z D C cos';

and from the initial condition z.0/ D v0 we have C D vC . In view of that, we have

z � dx1C
dt

D vC cos!C t:

Following separation of the variables in the preceding equation and integration
we obtain

x1C D vC
!C

'Z
0

cos' d' C C:

Because x1C D 0, we have C D 0, and finally we obtain

x1C D vC
!C

sin!C t:

In order to determine x2C .t/, using the constraints equation, we have

Px2C D vC tan' cos' D vC sin ';

that is,

x2C D vC
!C

'Z
0

sin ' d' C C;

which means that

x2C D � vC
!C

Œcos'�'0 C C:

The constant C is determined from the following condition:

x2C .0/ � 0 D � vC
!C

C C;

that is, C D vC =!C . Finally,

x2C D � vC
!C

.1 � cos'/ :
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In what follows we present a mechanical interpretation of the obtained solutions:

x1C D vC
!C

sin!C t; x2C D vC
!C

.1 � cos!C t/:

Recall that the parametric equations of a circle of center S.x0; y0/ and radius r
have the form

x D x0 C r cos';

y D y0 C r sin ';

where ' is the arc measure of the angle.
In our case we have r � v0

!C
, x0 D 0, y0 D v0

!C
. This means that during the

motion of the skate, its center moves on a circle of radius v0=!C whose center lies
on the vertical axis of the adopted system of coordinates.

According to Lagrange’s equations of the first kind the reactions of constraints
read

Rx1 D � tan!C t; Rx2 D ��: (
 
 
)

The multiplier � can be derived from the second equation of Lagrange’s
equations

� D �m Rx2C D �mvC!C cos!C t:

Finally, from equations (
 
 
) we obtain

Rx1 D �mvC!C sin!C t; Rx2 D mvC!C cos!C t:

The reaction of constraints R D
q
R2x1 CRx2 D mvC!C has a constant value

during motion of the skate. �

3.5 Properties of Lagrange’s Equation

In a system with constraints, the motion of a DMS takes place in a certain subset
˝K of the configuration spaceR3N . The space˝K allows for the introduction of the
so-called atlas of coordinates in which two different coordinate systems are defined
simultaneously.

Note that, for example, in the case of particle motion on a spherical surface it is
necessary to introduce two coordinate systems that would jointly cover completely
the spherical surface. The dimension of the space ˝K is equal to K � 3N , and at
every one of its points q it is possible to define the tangent space T˝q , that is, the
K-dimensional linear space of the vectors tangent to ˝K at point q. The space ˝ is



3.5 Properties of Lagrange’s Equation 177

aK-dimensional manifold. The tangent space T˝q is spanned byK tangent vectors
�1.1; 0; : : : ; 0/; : : : ; �K.0; : : : ; 0; 1/ and includes velocity vectors Pq D . Pq1; : : : ; PqK/
of every trajectory passing through point q.

Spaces ˝K and T˝q can be merged into one 2K-dimensional space T˝2K ,
which we will call a tangent bundle of the manifold ˝K . This space consists of
pairs .q; Pq/ representing point q of manifold ˝K and of every velocity vector Pq
from the tangent space TQq .

Lagrange’s equations (3.163) describe the motion on manifold ˝K . The La-
grangian L D .q; Pq; t/ is prescribed in the tangent bundle T˝2K . If there exist
constraints in a DMS, then the manifold˝K is described by constraint equations.

Lagrange’s equation introduced on the basis of Newton’s second law has many
interesting properties. We will briefly describe them below [2].

1. Covariance. The methods introduced thus far of deriving Lagrange’s equations
of the second kind consisted in a description of kinetic and potential energies as
functions qn and Pqn of generalized coordinatesQn, where n D 1; : : : ; N . In the
next step, differentiation of energies T and V (or of the Lagrangian L) yields
N second-order differential equations. If we choose another set of generalized
coordinates, the form of Lagrange’s equations remains unaffected. If we subject
the generalized coordinates to the transformation

qi D qi .t; Qq/ ; (3.168)

then the form of Lagrange’s equations will be the same. The transition from
one system of generalized coordinates q D .q1; : : : ; qN / to the other Qq D
. Qq1; : : : ; QqN / is prescribed by the invertible and smooth transformation (3.168).

Since we haveL ! QL andQ ! QQ, the equations in new and old coordinates
have the form

d

dt

@L

@ Pq � @L

@q
D Q;

d

dt

@ QL
@ PQq � @ QL

@ Qq D QQ; (3.169)

because both Lagrangians L D .q; Pq; t/ and QL D . Qq; PQq; t/ describe the same
motions of a particle on manifold ˝K . It follows that if q.t/ is a trajectory of
motion obtained from the equation generated by the Lagrangian L D .q; Pq; t/,
then the trajectory Qq D Qq.t;q/ obtained through transformation (3.168) also
satisfies Lagrange’s equation of the second kind but with Lagrangian QL. The
property of Lagrange’s equation described thus far is called covariance.

Lagrange’s equation of the form (3.169) points to the fact that in order to
obtain differential equations of motion of a holonomic system in a potential field,
one needs to know the form of only one function L.
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2. Calibration invariance. If into Lagrange’s equations (3.169) instead of the
kinetic energy T we substitute

T .t;q; Pq/ D d

dt
F .t;q/; (3.170)

then they do not change, since we have

d

dt

�
@

@ Pq
�

dF

dt

�	
� @

@q

�
dF

dt

�
D @

@q

�
dF

dt

�
� @

@q

�
dF

dt

�
D 0: (3.171)

If into the first of equations (3.169) instead of L we substitute L C dF
dt , then

the equations will be not affected. Moreover, if in the Lagrangian QL D . Qq; PQq; t/
we change the variables Qq to q by means of transformation (3.168), then the new
Lagrangian QL D .q; Pq; t/ determines the same trajectory as the LagrangianL D
.q; Pq; t/. It follows that the difference QL.q; Pq; t/ � L.q; Pq; t/ D dF.t; q/

dt has to
satisfy identically equation (3.163). We call the functionF.t;q/ a transformation
function from the Lagrangian L D .q; Pq; t/ to the Lagrangian QL D . Qq; PQq; t/,
and vice versa.

3. Form of the kinetic energy. During the derivation of Lagrange’s equations it can
be demonstrated that the kinetic energy has the form (Sect. 3.6)

T D T2 C T1 C T0; (3.172)

where

T2 D 1

2
aij .t;q/ Pqi Pqj ; T1 D bi.t;q/ Pqi ; T0 D T0.t;q/: (3.173)

4. Non-singularity. Substituting the energy forms (3.172) and (3.173) into
Lagrange’s equations we obtain

anj Rqj C fn.t;q; Pq/ D 0; n D 1; : : : ; N: (3.174)

Differential equations (3.174) can be solved easily with respect to acceler-
ations, and then they can be represented in the form of normal (first-order)
differential equations. It can be demonstrated that the square matrix Œaij � is a non-
singular, symmetric, and positive-definite matrix. This means that Lagrange’s
equations satisfy the rule of determinism, that is, the Cauchy problem has a
unique solution for the given initial conditions q0 D q.t0/, Pq0 D Pq.t0/.

5. Hamilton’s principle of least action. By integrating the Lagrangian along the
curve Qq.t/, where time is a parameter, we obtain the following number:

S D
t2Z
t1

L
�
t; Qq; PQq

�
dt: (3.175)
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Fig. 3.22 Schematic
illustrating Hamilton’s
principle of least action

Let us consider two arbitrary points 1 and 2 (Fig. 3.22) corresponding to time
instants t1 and t2.

Point q1 can be linked to point q2 along various paths. Hamilton noticed
that there exists a curve Oq joining those points such that it satisfies Lagrange’s
equation, that is,

d

dt

@L

@ POq � @L

@ Oq D 0; Oq.t1/ D q1; Oq.t2/ D q2: (3.176)

All curves joining two points can be parameterized through the introduction
of a parameter ˛, where ˛ D 0 corresponds to the actual trajectory Oq, which is
the solution of boundary value problem (3.176). Because Qq D Qq.˛; t/, we have
S D S.˛/, and we assume that the family of trajectories is differentiable with
respect to the parameter ˛. Additionally, we have Qq.0; t/ D Oq.t/ and S.˛/ D min
for ˛ D 0. The condition of the minimum involves the satisfaction of the equation
dS
d˛

ˇ̌̌
ˇ
˛D0

D 0. We will formulate Hamilton’s principle of least action on the basis

of the following theorem.

Theorem 3.4. The actual trajectory and only it is the extremum of the action
according to the Hamilton.

Proof. (see [2])
Differentiating (3.175) with respect to ˛ we obtain

dS

d˛
D

t2Z
t1

 
@L

@ Qq
@ Qq
@˛

C @L

@ PQq
@ PQq
@˛

!
dt: (3.177)

Let us integrate by parts the second term of expression (3.177)

t2Z
t1

@L

@ PQq
@ PQq
@˛
dt D @L

@ PQq

ˇ̌̌
ˇ
t2

t1

@ Qq
@˛

ˇ̌̌
ˇ
t2

t1

�
t2Z
t1

d

dt

�
@L

@ PQq
�
@ Qq
@˛

dt: (3.178)



180 3 Statics and Dynamics in Generalized Coordinates

Because the curves pass through the points q1 D Qq1 and q2 D Qq2, we have
@Qq
@˛

ˇ̌̌
ˇ
t1

D @Qq
@˛

ˇ̌̌
ˇ
t2

D 0, and after substituting (3.178) into formula (3.177), we obtain

dS

d˛
D

t2Z
t1

@ Qq
@˛

�
@L

@ Qq � d

dt

@L

@ PQq
�

dt: (3.179)

According to the definition of the trajectory as the actual trajectory, for ˛ D 0

we have @L
@Oq � d

dt
@L

@POq D 0, which means that dS
d˛ D 0. If, in turn, we take dS

d˛ D 0

(the condition of minimum), then we obtain @L
@Oq � d

dt
@L

@POq D 0, which was to be

demonstrated.
In many textbooks this problem is considered based on the analysis of integral

(3.175) understood as Hamilton’s action and calculated along the trajectory Qq.t/.
As was already mentioned, the actual (true) trajectory Oq satisfies Lagrange’s
equation (3.163).

Let us consider the difference of actions [i.e., the values of integrals (3.175)]
calculated for the true trajectory Oq.t/ and any trajectory Qq.t/ nearly coincident with
the true one understood as

ıqi � Qqi .t/ � Oqi .t/; t1 � t � t2; i D 1; : : : ; K; (3.180)

where ıqi , called variations of trajectory, are small.
According to the introduced definition of Hamilton’s action we have [see (3.175)]

S D
t2Z
t1

L. Qq; PQq; t/dt;

Smin D
t2Z
t1

L. Oq; POq; t/dt; (3.181)

that is,

ıS D S � Smin D
t2Z
t1

h
L. Qq; PQq; t/ � L. Oq; POq; t/

i
dt: (3.182)

In turn,

L. Qq; PQq; t/ D L
�

Oq C ıq; POq C ı Pq; t
�

�L
�

Oq; POq; t
�

Š L
�

Oq; POq; t
�

C ıL

ıq

ˇ̌̌
ˇOq;POqıq C ıL

ı Pq
ˇ̌̌
ˇOq;POqı Pq; (3.183)



3.6 First Integrals of Lagrange Systems 181

where in the preceding expansion into a series only the linear terms with respect to
ıq and ı Pq were retained.

Substituting expression (3.183) into (3.182) we obtain

ıS D
t2Z
t1

 
@L

@q

ˇ̌̌
ˇOq;POqıq C @L

@ Pq
ˇ̌̌
ˇ
ı;POq

!
dt D 0: (3.184)

The integral of the second equation on the right-hand side of (3.184) has the form

t2Z
t1

 
@L

@ Pq
ˇ̌̌
ˇOq;POqı Pq

!
dt D

�
@L

@ Pq
	t2
t1

Œıq�t2t1 �
t2Z
t1

d

dt

�
@L

@ Pq
�
ıqdt; (3.185)

where integration by parts was applied.
Because ıqjt1 D ıqjt2 D 0, after substituting formula (3.185) into equa-

tion (3.184) we obtain

ıS D ı

t2Z
t1

L
�

Oq; POq; t
�

dt D
t2Z
t1

ıq
�
ıL

ıq
� d

dt

�
ıL

ı Pq
�	 ˇ̌̌
ˇOq;POqdt D 0: (3.186)

The preceding integral we call a first variation of (Hamilton’s) action integral.
In other words, attaining the stationary value (extremum value) on trajectory Oq.t/

by integral (3.175) corresponds to the vanishing of the variation on the trajectory
Oq.t/ described by formula (3.176). And conversely, if the action described by
formula (3.177) attains a stationary value on a certain trajectory Oq.t/, it has to satisfy
Lagrange’s equation.

On the basis of the introduced Lagrangian function and the principle of least
action, principles of Lagrangian mechanics are often formulated that unify the
apparently distinct dynamic processes. ut

3.6 First Integrals of Lagrange Systems

Let us consider an autonomous dynamic system of the form

Pxn D fn .x1; : : : ; xN / ; n D 1; : : : ; N: (3.187)

Let system of differential equations (3.187) have general solutions of the form
xn D �.t; C1; : : : ; Cn/, where now they are initial conditions for the aforementioned
system of equations.
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Let us consider the scalar function F Œx1.t/; x2.t/; : : : ; xn.t/� determined in the
same domain as the function fi , where the following condition holds true:

F Œx1.t/; x2.t/; : : : ; xN .t/� � const: (3.188)

This means that along the trajectory xi .t/ the function is constant (but is not
identically equal to a constant). We call such a function F a global first integral or
simply a first integral.

Differentiating formula (3.188) with respect to parameter t (time) we obtain

dF

dt
D @F

@xn

dxn
dt

D @F

@xn
fn.x1; : : : ; xN / � 0: (3.189)

If the scalar functionF satisfies the condition of first integral, but only in a certain
subdomain of the domain of the function fn.x1; : : : ; xN /, then we call it a local first
integral.

As was mentioned previously, if there exists such a global integral, then it allows
for the reduction of a dimension of a phase space of the analyzed dynamical system.

Let us consider the conservative oscillator

Rx C x D 0: (3.190)

We have then

Px D v;

Pv D �x; (3.191)

and the global first integral has the form

F.x; v/ D x2 C v2: (3.192)

The solution of equality (3.191) reads

x D A sin t C B cos t;

v D A cos t � B sin t; (3.193)

that is,

F.x; v/ D A2 sin2 t CB2 cos2 t C A2 cos2 t CB2 sin2 t

D A2 C B2: (3.194)

Thus it depends only on the initial conditions A and B , and for the given A and B
it is a constant.
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In a similar way we can determine the integral in the case of the non-autonomous
system

Pxn D fn.t; x1; : : : ; xN /; i D 1; : : : ; N: (3.195)

Let us extend the phase space by one dimension by augmenting expression
(3.189) with equation Pt D 1. If a first integral is differentiable, it satisfies the
condition

@F

@t
C @F

@xn
fn � 0: (3.196)

Now going back to the formalism introduced by Lagrange, the function
F.t; q; Pq/, which assumes constant values during the motion of a system along
a trajectory, is called the first integral.

We say that a mechanical system is integrable if it has a global first integral.
According to this definition, as observed by Zhuravlev [2], a system with one degree
of freedom with damping is not integrable.

We will now show how to find the first integral of Lagrange’s equations
when generalized forces have the potential. We multiply each kth Lagrange
equation (3.163) (here we use index k instead of n) by Pqk , and then we add together
those equations, obtaining

Pqk d

dt

@L

@ Pqk � Pqk @L
@qk

D 0: (3.197)

Because
d

dt

�
Pqk @L
@ Pqk

�
D Rqk @L

@ Pqk C Pqk d

dt

@L

@ Pqk ; (3.198)

d

dt
L.t; Pq;q/ D @L

@t
C @L

@qk
Pqk C @L

@ Pqk D Rqk; (3.199)

and after taking into account (3.198) and (3.199) in (3.197) we obtain

d

dt

�
Pqk @L
@ Pqk

�
� dL

dt
C @L

@t
D 0: (3.200)

If the Lagrangian L D L. Pq; q/, then we have @L
@t

D 0, and from the preceding
equation we obtain

Pqk @L
@ Pqk � L D const: (3.201)

The obtained first integral is called a generalized integral of energy.
Let us now examine the structure of the kinetic energy of a system. According to

its definition and taking into account (3.19) we have
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T D 1

2

NX
nD1

mnPr2n D 1

2

NX
nD1

mn

 
KX
kD1

@rn
@qk

Pqk C @rn
@t

!2

D 1

2

KX
k;iD1

aki Pqk Pqi C
KX
kD1

akqk C a0; (3.202)

where

aki D
NX
nD1

mn

@r
@qk

@r
@qi

; ak D
NX
nD1

mn

@rn
@qk

@rn
@t
;

a0 D 1

2

NX
nD1

mn

�
@rn
@t

�2
: (3.203)

One may conclude from (3.203) that the coefficients aki , ak , and aO are functions
of q1; q2; : : : ; qK; t , although they do not depend explicitly on time. According to
(3.202) the kinetic energy of a DMS reads

T D T2 C T1 C T0; (3.204)

where

T2 D 1

2

KX
k;iD1

aki Pqk Pqi ;

T1 D
KX
kD1

akqk;

T0 D a0: (3.205)

One may show easily that the quadratic form T2 � 0, and the determinant
det Œaki �k;i ¤ 0.

Knowing the structure of the kinetic energy in a Lagrange system, one may
determine the Lagrangian

L D T � V D L2 C L1 C L0 D 1

2
aki Pqk Pqi C ak Pqk C T0 � V; (3.206)

and hence the first integral (3.201) has the form

1

2
aki Pqk Pqi � T0 C V D T2 � T0 C V D const; (3.207)

where L2 D T2, L1 D T1, and L0 D T � V .
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The total energy of the investigated system reads

E D T2 C T1 C T0 C V; (3.208)

where V denotes the potential energy.
From a comparison of (3.207) and (3.208) it follows that the total energy of the

system is not conserved.
The next step will be the consideration of a conservative system. According to

the definition given in [2], one is dealing with a conservative system if:

(1) @r
@t

D 0,
(2) Qk D @V

@qk
,

(3) @V
@t

� 0.

Therefore, we have T1 D T0 D 0, and for a conservative system from (3.207) and
(3.208) we obtain

E D T2 C V D const; (3.209)

which means that the sum of the kinetic and potential energy is constant at every
time instant.

Until now, while defining the Lagrangian we assumed that the potential V D
V.qn/ and that we hadQn D � @V

@qn
(see, e.g., (3.160)).

However, one may also introduce the notion of the so-called generalized
potential V D V.qi ; Pqi ; t/, and then the generalized forces (3.160) take the form

Qn D d

dt

@V

@ Pqn � @V

@qn
: (3.210)

If the Lagrangian function L.t; q1; : : : ; qN ; Pq1; : : : ; PqN / does not depend on
certain coordinates, for instance, on qKC1; : : : ; qN , then we can immediately obtain
N � K first integrals of the considered mechanical system. Because Lagrange’s
equations in the field of potential forces and in the case of holonomic systems take
the form

d

dt

@L

@ Pqn � @L

@qn
D 0; n D 1; : : : ; K; (3.211)

d

dt

@L

@ Pqn D 0; n D K C 1; : : : ; N; (3.212)

which means that

@L

@ Pqn D Cn � const; n D K C 1; : : : ; N: (3.213)

The coordinates qKC1; : : : ; qN are called cyclic coordinates.
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Fig. 3.23 Mathematical
pendulum with a moveable
pivot point

Definition 3.2. (of a cyclic coordinate [11]) A coordinate qC is called a cyclic
coordinate if it does not occur in a Lagrangian function, that is, @L=@qC D 0.

Theorem 3.5. If q˛ is a cyclic coordinate, then according to (3.213) we obtain
the Lagrange first integral. The remaining generalized coordinates of the analyzed
system undergo changes in time defined by the system of N � 1 degrees of freedom,
where the constant Cn plays the role of a parameter.

Let us consider an example presented in [1] (Fig. 3.23).
The Lagrangian of the system is equal to

L D m

2

h
. Px C l P' cos'/2 C l2 P'2 sin2 '

i
Cmgl cos': (3.214)

The coordinate x is a cyclic coordinate because it does not occur in (3.214).
According to (3.212) we have

@L

@ Px D m. Px C l P' cos'/ D const: (3.215)

If the system is conservative, then the total energy of the system is conserved,
that is,

E D T C V D m

2

� Px2 C 2 Px P'l cos' C l2'2
� �mgl cos': (3.216)

Eliminating Px from equation (3.215) and substituting into expression (3.216) we
obtain first-order non-linear differential equation in '.t/. As was mentioned, the
order of the system is reduced by one.
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The described method of determining first integrals leads to the reduction of
the order of the analyzed equations and, consequaently, often to a simpler way
of determining a solution. The analytical form expressed in terms of first integrals
frequently describes important laws of mechanics connected with the conservation
of certain physical quantities, which was already discussed in Chap. 1.

This last characteristic of first integrals is so important that very often the first
integrals are determined despite the fact that the complete solution to the problem is
already known. The first integrals enable the formulation of certain general laws of
motion of an analyzed system and attribution to them of some physical meaning.

Below we present a method for making such conservation laws based on the
schematic presented in Zhuravlev’s monograph [2].

Let the system of differential equations (3.187) has a general solution of the form
˚n.t; x1; : : : ; xN /, where x1; : : : ; xN are initial conditions. On that assumption we
have

d�n
dt

D fn Œ�1.t; x1; : : : ; xN /; : : : ; �N .t; x1; : : : ; xN /� : (3.217)

Theorem 3.6. If there exists the integral

F.x1; : : : ; xN / D lim
T!1

1

T

TZ
0

G Œ�1.�; x1; : : : ; xN /; : : : ; �n.�; x1; : : : ; xN /� d�;

(3.218)

which cannot be reduced to a constant, then the function F.x1; : : : ; xN / is the first
integral of the system of equations (3.187). It is worth noting that the choice of
the function GŒ�1; : : : ; �N � is arbitrary. It is chosen in such a way that the integral
(3.218) can be calculated.

For the purpose of clarification of the formulated theorem, we present a slightly
modified example excerpted from [2].

Example 3.16. Consider a conservative autonomous oscillator with one degree of
freedom whose equations have the form

Px1 D x2;

Px2 D �˛2x1: (
)

It is known that in this case a general form of solutions is

x1 D �1.t; C1; C2/ D C1 cos˛t C C2 sin ˛t;

x2 D �2.t; C1; C2/ D �˛C1 sin ˛t C ˛C2 cos˛t; (

)

and one may verify this by substitution of �1 and �2 into equations (
).
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According to Theorem 3.6 we aim to calculate the integral

F.C1; C2/ D lim
k!1

1

kT0

kT0Z
0

�21dt

because according to the freedom of choice of the functionG we have taken it to be
G D �21 , and the period T0 D 2=˛.

Let us observe that

F.C1; C2/ D k

kT0

T0Z
0

�21dt

D ˛

2

2
˛Z
0

�
C2
1 cos2 ˛t C C2

2 sin2 ˛t C C1C2 sin 2˛t
�

dt

D ˛

2

2
˛Z
0

�
C2
1

�
1

2
C 1

2
cos 2˛t

�
C C2

2

�
1

2
� 1

2
cos 2˛t

�

C C1C2 sin 2˛t

	
dt D 1

2

�
C2
1 C C2

2

�
:

From equations (

) we obtain x1.0/ D C1, x2.0/ D ˛C2, and finally 2F D
x21.0/C x22 .0/

˛2
.

The obtained result means that while the system is in motion, its energy has a
constant value determined by the introduced initial conditions. �

3.7 Routh’s Equation

In some cases it is more convenient to pass to a higher class of problems, that is,
from Lagrangian mechanics to Routhian mechanics. In order to do that we will at
first become familiar with the so-called Legendre transformation, also known as a
potential transformation.

Let us assume that from old variables xk we would like to pass to new variables
yk , that is, xk ! yk , according to the relationships
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y1 D f1.x1; : : : ; xN /;

:::

yn D fn.x1; : : : ; xN /;

:::

yN D fN .x1; : : : ; xN /: (3.219)

If functions fn have a potential, that is, there exists a scalar function
V.x1; : : : ; xN / such that

fn D @V

@xn
; n D 1; : : : ; N; (3.220)

then transformation (3.219) is called a Legendre8 transformation. Moreover, if the

determinant of the matrix (the Hessian9) det
h

@2V
@xk@xl

i
¤ 0, then we call potential

V.x1; : : : ; xN / a non-singular potential.
If on the basis of (3.219) we can determine the inverse relationships in a one-to-

one manner, that is, calculate the variables xn according to the equalities

x1 D '1.y1; : : : ; yN /;

:::

xn D 'n.y1; : : : ; yN /;

:::

xN D 'N .y1; : : : ; yN /; (3.221)

then we call the potential V.x1; : : : ; xN / a strongly non-singular potential.
The following theorem is crucial to further calculations [2].

Theorem 3.7. If transformation (3.219) is a potential transformation, and the
corresponding potential V.x1; : : : ; xN / is strongly non-singular, then the inverse
transformation (3.221) is also a potential transformation, and the corresponding po-
tential V �.y1; : : : ; yn/ is also strongly non-singular, and the relationship between
V and V � reads

8Adrien-Marie Legendre (1752–1833), French mathematician.
9Ludwig Otto Hesse (1811–1874), German mathematician mainly working on the problem of
algebraic invariance.
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V �.y1; : : : ; yN / D Œxiyi � V.x1; : : : ; xN /�xnD'n.y1;:::;yN / ; (3.222)

where xiyi D
XN

iD1 xi yi .

Proof. Let us perform the following differentiation:

@V �

@yn
D
�
xn C @xi

@yn
yi � @V

@xi

@xi

@yn

	
xiD'i .y1;:::;yN /

; (3.223)

and we express the variables xn through y1; : : : ; yN according to (3.221). According
to the definitions introduced by (3.220) and (3.219) we have @V

@xi
D yi , and

from (3.223) we obtain

@V �

@yn
D xn � 'n.y1; : : : ; yN /: (3.224)

This means that the transformation xn D 'n.y1; : : : ; yN / is a potential trans-
formation. Potentials V.x1; : : : ; xN / and V �.x1; : : : ; xN / are called conjugate
potentials.

The presented information regarding the Legendre transformation will be used
for the derivation of Routh’s equations on the basis of Lagrange’s equation and
using the function L D L.t; q1; : : : ; qN ; Pq1; : : : ; PqN /.

Routh used the concepts of Lagrange and Hamilton to describe the state of a
holonomic system.

In this case, part of the generalized velocities in the amount of s D N � l , that is,
Pql ; PqlC1; : : : ; PqN , will be subjected to the Legendre transformation. The role of the
potential will be played by the kinetic energy, that is,

pk D @L

@ Pqk ; k D l C 1; : : : ; N: (3.225)

In other words, variables q1; : : : ; qN , Pq1; : : : ; Pql remain unchanged, and the
introduced transformation has the form

.q1; : : : ; qN ; Pq1; : : : ; PqN / 7! .q1; : : : ; qN ; Pq1; : : : ; Pql ; plC1; : : : ; pN / : (3.226)

We call the potential L� (conjugate to L according to Theorem 3.6) a Routhian
function, and it has the form

L� � R .t; q1; : : : ; qN ; Pq1; : : : ; Pql ; plC1; : : : ; pN / D Pqkpk � L; (3.227)

where k D l C 1; : : : ; N . The velocities Pqk occurring on the right-hand side
of (3.227) should be expressed through pk determined from (3.225). Finally,
according to (3.227), the Routhian function will depend on the new variables
q1; : : : ; qN ; Pq1; : : : ; Pql ; plC1; : : : ; pN ; t .
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Our aim is the application of the concept of Routh’s potential to Lagrange’s
equations (3.163).

The total differential of the Routhian function [on the left-hand side of (3.227)]
has the form

dR D
lX

iD1

�
@R

@qi
dqi C @R

@ Pqi d Pqi
�

C
NX

jDlC1

�
@R

@qj
dqj C @R

@pj
dpj

�
C @R

@t
dt;

(3.228)

because Pqj D pj for j D l C 1; : : : ; N .
The total differential of the right-hand side of (3.227) has the form

dR D �
lX

iD1

�
@L

@qi
dqi C @L

@ Pqi d Pqi
�

C
NX

jDlC1

 
Pqj dpj C pjd Pqj � @L

@qj
dqj � @L

@ Pqj d Pqj
!

� @L

@t
dt; (3.229)

where the underlined terms cancel out, because pj D @L
@ Pqj [see relation (3.225)].

Comparing right-hand sides of (3.228) and (3.229) we obtain

@R

@qi
D � @L

@qi
;

@R

@ Pqi D � @L
@ Pqi ; i D 1; : : : ; l;

@R

@qj
D � @L

@qj
;

@R

@pj
D Pqj ; j D l C 1; : : : ; N;

@R

@t
D �@L

@t
: (3.230)

Because the analyzed system satisfies Lagrange’s equations of the form

d

dt

�
@L

@ Pqi
�

� @L

@qi
D 0; i D 1; : : : ; N; (3.231)

taking into account the first row of equations of system (3.230) we obtain

d

dt

�
@R

@ Pqi
�

� @R

@qi
D 0; i D 1; : : : ; l: (3.232)

This means that the first l equations of Routh’s system have the structure of
Lagrange’s equations, that is, the structure of second-order differential equations
with respect to time.
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The remaining equations of Routh’s system are first-order differential equations
of the form

dqj
dt

D @R

@pj
;

dpj
dt

D d

dt

�
@L

@ Pqj
�

D � d

dt

�
@R

@ Pqj
�

D � @R

@qj
; j D l C 1; : : : ; N; (3.233)

where the underlined term can be neglected because it is useful only during the
derivation of this relationship. ut

3.8 Cyclic Coordinates

The usefulness of Routh’s equations reveals in the case of the occurrence of
the so-called cyclic coordinates (or ignorable coordinates), which were already
mentioned in Sect. 3.7.

In a system of N degrees of freedom described by the generalized coordinates
q1; q2; : : : ; qN , let one of the coordinates qj be a cyclic coordinate. Then @L

@qj
D 0.

Further we will consider a potential holonomic system described by Hamilton’s
equation (see Hamilton’s mechanics in Chap. 4)

dqi
dt

D @H

@pi
;

dpi
dt

D �@H
@qi

; i D 1; : : : ; N: (3.234)

In the case of the cyclic coordinate we have

@L

@qj
D � @H

@qj
D � @R

@qj
: (3.235)

Because @H
@qj

D 0, the function H does not depend on this coordinate, that
is, H D H.q1; : : : ; qj�1; qjC1; : : : ; qN ; p1; : : : ; pj�1; pj ; pjC1; : : : ; pN ; t/. In
light of that for such a coordinate we have [see the second equation of system
(3.234)]

dpj
dt

D 0; (3.236)

that is,
pj D Cj � const: (3.237)

Because H depends on pj , according to the first equation of system (3.234), we
have
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dqj
dt

D @H.q1; ; : : : ; qj�1; qjC1; : : : ; qN ; p1; : : : ; pj�1; pj ; pjC1; : : : ; pN ; t/
@pj

:

(3.238)

Let us assume that as a result of the integration of 2.N � 1/ equations (3.233)
for i ¤ j we obtain

qi D qi .Cj ; C1; : : : ; C2.N�1/; t/;

pi D pi .Cj ; C1; : : : ; C2.N�1/; t/; (3.239)

where C1; C2; : : : ; C2.N�1/ are constants of integration following from the intro-
duced initial conditions.

In light of that, (3.234) is integrable, and

qj D
tZ

0

@H.�/

@pj
d� C C2N ; (3.240)

where C2N is the last constant subject to determination.
As can be seen, one cyclic coordinate reduced the number of equations subjected

to integration by two (if we have k coordinates of this kind, the order of the system
of equations subjected to integration is equal to N � 2k).

Let us introduce now the notion of cyclic coordinates in Routh’s equations. Let
us have, according to the previous agreement, k D N � l cyclic coordinates. Then
we obtain k D N � l first integrals of a system of the form [see (3.237) and (3.234)]

pj � Cj D @L

@ Pqj ; j D l C 1; : : : ; N: (3.241)

because from the second equation of system (3.233) we have

pi D �@H
@ Pqi :

According to (3.227), the Routhian function takes the form

R D
NX

jDlC1
PqjCj � L; (3.242)

where the functions Pqj D Pqj .q1; : : : ; ql ; Pq1; : : : ; Pql ; ClC1; : : : ; CN / were obtained
from (3.241) after solving them with respect to Pqj . It can be seen that the Routhian
function does not depend on velocities PqlC1; : : : ; PqN corresponding to the cyclic
coordinates qlC1; : : : ; qN .
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The problem boils down to the integration of l Lagrange equations (3.232) and to
the determination of time changes of cyclic coordinates from differential equations
of the following form: (see formula (3.233))

dqj
dt

D @R

@Cj
;

dpj
dt

D 0; j D l C 1; : : : ; N: (3.243)

In the next step, first we integrate the system of Lagrange’s equations, and then
we integrate equations (3.243).

Example 3.17. Let us consider the spherical pendulum from Example 3.12, where

T D 1

2
m
h
.l P'/2 C �

l P� sin '
�2i

;

V D mgl .1� cos'/ ;

and in light of that

L D 1

2
m
h
.l P'/2 C �

l P� sin '
�2i �mgl.1� cos'/:

Let us note that L does not depend on  , that is,  is the cyclic coordinate.
According to (3.241) we have

p� � C1 D @L

@ P� D ml2 P� sin2 ';

hence
P� D C1

ml2 sin2 '
:

According to formula (3.242), the Routhian function has the following form:

R D C1 P� � 1

2
m
h
.l P'/2 C �

l P� sin '
�2iCmgl.1� cos'/

D �1
2
ml2 P'2 C C2

1

ml2 sin2 '
� 1

2
ml2

"
C2
1�

ml2 sin2 '
� 2 sin2 '

#
Cmgl.1� cos'/

D �1
2
ml2 P'2 C 1

2

C 2
1

ml2 sin2 '
Cmgl.1� cos'/:

In the preceding formula the so-called Routh’s kinetic energy and Routh’s
potential energy are equal to
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T � D 1

2
ml2 P'2;

V � D 1

2

C 2
1

ml2 sin2 '
Cmgl.1� cos'/:

Because there is no dissipation of energy in the system, we have T � C V � D
const � C2, that is,

1

2
ml2 P'2 C 1

2

C 2
1

ml2 sin2 '
Cmgl.1� cos'/ D C2:

3.9 Kinetics of Systems of Rigid Bodies:
A Three-Degree-of-Freedom Manipulator

3.9.1 Introduction

Now we will take up the kinetics of a system composed of four rigid bodies. During
its analysis we will utilize the material introduced in previous chapters, especially
Chap. 4 of [14] and this chapter.

Nowadays multibody systems are often used in robotics and in the construction
of manipulators, where joints can be equipped with various mechatronic systems
applied for the realization of a desired motion of links (bodies) [15–17].

The subject of this section is the analysis of the kinetics and controls of a three-
degree-of-freedom manipulator with a SCARA configuration [18, 19].

3.9.2 A Physical and Mathematical Model

During modeling (e.g., see [20]) the following assumptions were made:

1. The manipulator consists of revolute and prismatic kinematic pairs (see Table 4.1
of book [14]).

2. The manipulator model is an open kinematic chain of connected rigid bodies,
and each of the bodies is equipped with an independent driving motor.

3. Any backlashes in the kinematic pairs are neglected.

The analyzed three-degree-of-freedom manipulator with a SCARA configuration
is presented in Fig. 3.24, where we introduced the coordinate systems of the bodies
O 0X 0

1X
0
2X

0
3, O

00X 00
1 X

00
2 X

00
3 , and O 000X 000

1 X
000
2 X

000
3 , and after rotation of the system .00/

we obtain the system .000/, where now on the axis X 000
1 lies a body (particle) of

mass m4.
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Let us apply the Denavit–Hartenberg notation (Chap. 4 of [14]), where masses,
mass moments of inertia, and the positions of the centers of gravity of the bodies are
presented in Fig. 3.24, and the degrees of freedom of the manipulator are denoted
by h1, �2, and �3.

The kinematic state equations of a manipulator will be derived based on
Lagrange’s equations of the form

d

dt

�
@L

@ P�i

�
� @L

@�i
D Qi � Ri; (3.244)

where L D T � V is the Lagrangian function, T .V / denotes the kinetic energy
(potential energy), �i is the joint variable associated with the i th kinematic pair,Qi

is the generalized force, and Ri is the generalized reaction force.
The kinetic energy of a system in translational motion is equal to

T1 D 1

2

h Ph21.m1 Cm2 Cm3/Cm4v
2
rm4

i
; (3.245)

where vrm4 denotes the velocity of a body of mass m4 in a space system, which
according to the symbols introduced in Fig. 3.24 is equal to vrm4 D jvrm4 j D
drm4

dt D Prm4 .
The kinetic energy of rotational motion of bodies 2 and 3 is equal to

T2 D 1

2


 P�2
3

�
IO3 Cm3l

2
O3

�C P�2
2

�
IO2 Cm2l

2
O2 C IO3 Cm3�

2
rO3

��
;

�rO3 D
q
x21rO3 C x22rO3 ; (3.246)

and xi , i D 1; 2, are elements of vector rO3. The potential energy of a system of
bodies is equal to

V D gh1 .m1 Cm2 Cm3 Cm4/ ; (3.247)

where g denotes the gravitational acceleration. Vectors rO3 and rm4 depend on the
position (configuration) of the manipulator.

Following the introduction of the transformation matrices

A1 D

2
664
1 0 0 0

0 1 0 0

0 0 1 h1.t/

0 0 0 1

3
775 ;

A2 D

2
6664

cosŒ�2.t/� � sinŒ�2.t/� 0 l2 cosŒ�2.t/�

sinŒ�2.t/� cosŒ�2.t/� 0 l2 sinŒ�2.t/�

0 0 1 0

0 0 0 1

3
7775 ;
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Fig. 3.24 A physical model of a three-degree-of-freedom manipulator with a SCARA configura-
tion

A3 D

2
664

cosŒ�3.t/� � sinŒ�3.t/� 0 0

sinŒ�3.t/� cosŒ�3.t/� 0 0

0 0 1 0

0 0 0 1

3
775 ; (3.248)

we obtain

TO3 D
3Y
iD1

Ai

D

2
666664

cosŒ�2.t/C�3.t/� � sinŒ�2.t/C�3.t/� 0 l2 cosŒ�2.t/�

sinŒ�2.t/C�3.t/� cosŒ�2.t/C�3.t/� 0 l2 sinŒ�2.t/�

0 0 1 h1.t/

0 0 0 1

3
777775 :

(3.249)
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The vector

rO3 D TO3lO3 D

2
666664

l2 cosŒ�2.t/�C lO3 cosŒ�2.t/C�3.t/�

l2 sinŒ�2.t/�C lO3 sinŒ�2.t/C�3.t/�

h1.t/

1

3
777775 ; (3.250)

because we have lO3 D ŒlO3; 0; 0�
T. Substituting matrix (3.250) into the second

equation of (3.246) we obtain

�rO3 D
h
.l2 cosŒ�2.t/�C l3 cosŒ�2.t/C�3.t/�/

2

C .l2 sinŒ�2.t/�C lO3 sinŒ�2.t/C�3.t/�/
2
i 1
2
: (3.251)

In a similar way we find

rm4 D

2
66664
l2 cosŒ�2.t/�C l3 cosŒ�2.t/C�3.t/�

l2 sinŒ�2.t/�C l3 sinŒ�2.t/C�3.t/�

h1.t/

1

3
77775 (3.252)

and

vrm4 D

2
66664

�l2 sinŒ�2.t/� P�2.t/ � l3 sinŒ�2.t/C�3.t/�
� P�2.t/C P�3.t/

�
l2 cosŒ�2.t/� P�2.t/C l3 cosŒ�2.t/C�3.t/�

� P�2.t/C P�3.t/
�

Ph1.t/
1

3
77775 ;

(3.253)

vrm4 D
 ��l2 sinŒ�2.t/� P�2.t/ � l3 sinŒ�2.t/C�3.t/�

� P�2.t/C P�3.t/
��2

C �
l2 cosŒ�2.t/� P�2.t/C l3 cosŒ�2.t/C�3.t/�

� P�2.t/C P�3.t/
��2

C
� Ph1.t/

�2� 1
2

: (3.254)
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Eventually, the Lagrangian function takes the form

L D 1

2

� Ph1.t/
�2
.m1 Cm2 Cm3/Cm4

� ��l2 sinŒ�2.t/� P�2.t/ � l3 sinŒ�2.t/
�

C�3.t/�
� P�2.t/C P�3.t/

�2 C �
l2 cosŒ�2.t/� P�2.t/C l3 cosŒ�2.t/

�
C�3.t/�

� P�2.t/C P�3.t/
�2 C

� Ph1.t/
�2	

C P�3.t/2
�
IO3 Cm3l

2
O3

�C P�2
2.t/

2
�
IO2 Cm2l

2
O2 C IO3

�
Cm3

�
.l2 cosŒ�2.t/�C lO3 cosŒ�2.t/C�3.t/�/

2

C .l2 sinŒ�2.t/�C lO3 sinŒ�2.t/C�3.t/�/
2
� �

� gh1.t/.m1 Cm2 Cm3 Cm4/; (3.255)

and after its substitution into (3.244) we obtain three second-order differential
equations, which are given below in matrix form

2
664
a11 0 0

0 a22 a23

0 a32 a33

3
775
2
664

Rh1
R�2
R�3

3
775C

2
664
0

c2

c3

3
775C

2
664
b1

0

0

3
775g D

2
664
F1

M2

M3

3
775 ; (3.256)

where

a11 D m1 Cm2 Cm3 Cm4;

a22 D IO2 C IO3 C l2O2m2

Cm3

�
l2O3 C l22 C 2lO3l2 cosŒ�3�

�Cm4

�
l22 C l23 C 2l2l3 cosŒ�3�

�
;

a23 D m4l
2
3 Cm4l2l3 cosŒ�3�;

a32 D a32;

a33 D IO3 C l2O3m3 Cm4l
2
3 ;

c2 D � .lO3 Cm4l3/ 2l2 P�2 P�3 sinŒ�3� � .m4l2l3 sinŒ�3�/ P�2
3;

c3 D .lO3m3 Cm4l3/ l2 P�2 sinŒ�3�;

b1 D a11: (3.257)

The obtained differential equations describe the kinematic state of a sys-
tem without taking into account the resistance to motion. Although the first of



200 3 Statics and Dynamics in Generalized Coordinates

Fig. 3.25 Characteristic of
force and moment of friction
assumed for calculations

equations (3.256) is linear and independent of the others, the two remaining
equations are strongly non-linear and coupled with each other. It was assumed that
the force F1.t/ came from the motor connected with link (body) 1.

Differential equations (3.256) were solved numerically, which was described in
more detail in [19], where the adopted friction characteristic (Chap. 2 of [14]) was
modeled as a linear function with discontinuity at zero (Fig. 3.25).

A real multibody object such as a manipulator is a mechatronic system (see also
[20]). In the case of its control, a model of the object contains a driving system
(actor), a multibody system (three links), and a measurement system (sensors).
In the considered case during analysis using block diagrams, blocks simulating the
friction and drive assemblies of particular manipulator links were also included. The
drive block generates functions of driving moments for the given body, and thanks
to the feedback on position and velocity, it is a primitive manipulator controller.

According to (3.256), the initial parameters of motion are the positions of
particular manipulator links .h1; �1; �2/ in the corresponding body systems and the
velocities of those links . Ph1; P�1; P�2/ at the instant when the simulation (numerical
calculations) starts.

The moments and forces of friction occurring at the i th manipulator body can be
imposed through specification of two parameters: the magnitude of the static friction
force and the ratio of increment of force to the increment of speed. The drive block
consists of three elements: a controller, a regulator, and a drive unit. In this case the
control is based on the method of linear functions with parabolic connectors. As a
result, we obtain that the functions of velocity vs. time, the so-called velocity profile,
are in the shape of a trapezium (Fig. 3.26). Because of that, constant accelerations
during braking and startup are obtained.

At first, the controller forms a velocity profile in the shape of a trapezium.
Then this signal is integrated, which leads to the determination of the displace-
ment function. In the regulator, the difference between the actual and prescribed
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Fig. 3.26 A trapezium-
shaped velocity profile

displacement generates a signal forcing the function of velocity, whereas the
difference between the actual and prescribed velocity forms the function of the
driving moment. The drive unit consists of a motor (with limited driving moment)
and a transmission adjusting the velocity. The control of model movements takes
place through specification of the velocity function in the form shown in Fig. 3.26.
By adjusting the slopes of the trapezium’s sides the required accelerations during
startup and braking phases can be specified.

The settings of the PD controller are stored in additional blocks and are selected
so as to guarantee the function of an aperiodic critical character. A maximum driving
moment of the motor is selected separately for the positive and negative directions
of motion. Additionally, a transmission ratio of the mechanical transmission is
selected.

3.9.3 Results of Numerical Simulations

For the given three-parameter sets presented in [18, 19] a numerical simulation was
conducted and plots of the position and velocity of particular links were obtained.

Below we will carry out the analysis of three cases.

(i) Correct movements of the manipulator.
We are dealing with correct movements of a manipulator when it reaches
the prescribed positions and plots of the actual velocity coincide with those
prescribed by the control system within the limits of a certain assumed
tolerance. Let us consider, for instance, link 1, where the prescribed value for
the position is equal to 0.75 m. As follows from Fig. 3.27a, the value of the end
position of this link is close to the value 0.75 m. The velocity plot has a shape
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Fig. 3.27 Plots of positions and velocities of manipulator link no. 1 (a, b), 2 (c, d), and 3 (e, f) in
the case of correct manipulator movements
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imposed by the controller, and additionally all vertices of the trapezium are
rounded. The visible shift of the actual velocity plot (Fig. 3.27b) with respect
to the theoretical one points to the occurrence of error in the system. Similar
observations concern the remaining links (see plots of �2.t/, P�2.t/ presented in
Fig. 3.27c, d, and the plots of �3.t/, P�3.t/ presented in Fig. 3.27e, f).

(ii) A dynamic interaction.
In the case of the second set of parameters, manipulator links 2 and 3 move
in the same direction. The plots presented in Fig. 3.28a–d demonstrate that the
settings of the regulator and the powers of the motors are properly selected.
The next four plots (Fig. 3.28e–h) present the results associated with the
case where link number 3 moves with the same parameters as previously,
but in the opposite direction. In Fig. 3.28h the deviation from the prescribed
velocity function becomes evident. It occurs at the moment when braking of
link 2 begins (about 1.5 s after the start). The driving moment of motor 3 is
not sufficient to overcome the dynamic forces, which leads to the interaction
between links 2 and 3. At that time instant the motion of the link 3 is not
controlled and follows from the action of the link 2. In the case of 3.3 link 3
was under continuous control of the controller, and the maximum moment of
the motor was sufficient for the realization of the input from the controller.

From the preceding calculations it follows that in the control systems
commonly applied in industry today, changes in the direction of motion of
only one link influence significantly the kinetic behavior of manipulators.

(iii) Kinetic effects associated with changes in the moment of inertia.
In the considered case (third set of parameters, Fig. 3.29a–f), the configuration
of the manipulator is such that link 3 is rotated with respect to link 2 through
the angle �3 D 1:5 rad, and this angle remains fixed during the simulation
(Fig. 3.29c). The velocity plot of link 2 (Fig. 3.29b) is correct.

After positioning of link 3 so that it is a straight line extension of link 2
.�3 D 0/, the velocity plot for link 2 shown in Fig. 3.29d was obtained. The
form of this plot is the result of an overshoot. After the change in position of
link 3, the moment of inertia of the assembly 2–3 is so large that motor 2 has
insufficient power to follow the velocity input. At a certain time instant the
driving moment of motor 2 no longer increases but settles at a constant level.
This leads to an increase in the error of velocity and position, that is, to the
overshoot of the manipulator.

From the discussed example it follows that the manipulator configuration has
considerable influence on the process of its control. Although link 3 theoretically
remains stationary, there exist small deviations of its position during motion caused
by kinetic interactions (Fig. 3.29c).

Although the major source material for this chapter is in Polish and Russian, the
reader may find complementary texts in [21–27].
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Fig. 3.28 Plots of positions and velocities of manipulator links of nos. 2 and 3 moving in the same
direction (a–d) and in opposite directions (e–h)



3.9 Kinetics of Systems of Rigid Bodies 205

Fig. 3.29 Plots of positions and velocities of manipulator links of nos. 2 and 3 (case iii)
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Chapter 4
Classic Equations of Dynamics

4.1 Hamiltonian Mechanics

4.1.1 Hamilton’s Equations

Let us return to Lagrange’s equations of the second kind, which, for the system of
N degrees of freedom loaded exclusively with potential forces, take the form

d

dt

�
@L

@ Pqn
�

� @L

@qn
D 0; n D 1; : : : ; N: (4.1)

At the given time instant t the values of displacements qn.t/ and velocities Pqn.t/
are known. The variables qn.t/, Pqn.t/, t are called Lagrangian variables or state
variables.

If we know the Lagrangian, instead of the generalized velocities Pqn.t/ we can
choose quantities pn, called generalized impulses, of the form

pn D @L

@ Pqn ; (4.2)

where the variables qn, pn, and t are called Hamiltonian variables.
Hamilton observed that after introducing the aforementioned variables,

Lagrange’s equations (4.1) take a form that exhibits a symmetry. The variables
qn and pn will be called canonically conjugate variables, and the equations in those
variables Hamilton’s canonical equations.

In mechanics the quantities pn are often called generalized momenta, that is,
pn has a dimension of momentum if the corresponding qn . Pqn/ has a dimension of
displacement (linear velocity), or a dimension of angular momentum if qn . Pqn/ has a
dimension of an angle (angular velocity). Also, applying the notation adopted in the
present work, we have fpng D Œamn�f Pqmg, which in tensor notation would have the

J. Awrejcewicz, Classical Mechanics: Dynamics, Advances in Mechanics
and Mathematics 29, DOI 10.1007/978-1-4614-3740-6 4,
© Springer Science+Business Media New York 2012
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form Pqn D amn Pqm, where Œamn� is the matrix of generalized masses corresponding
to qn (i.e., the metric tensor of a covariant basis). In other words, pn and Pqn are
covariant and contravariant components of one vector in a certain metric space, that
is, v D PqnEn D PqnEn.

The Legendre transformation (3.222), introduced earlier, now, for the function
L.qn; Pqn; t/ with respect to the coordinates Pqn, takes the form

H.qn; pn; t/ D
NX
nD1

pn Pqn � L.q1; : : : ; qN ; Pq1; : : : ; PqN ; t/ ; (4.3)

where the transformation is made with respect to all generalized velocities n D
1; : : : ; N . Let us note that Pqn D Pqn.q1; : : : ; qN ; p1; : : : ; pN ; t/, which follows
from the solution of (4.2), i.e., using those equations we determine the generalized
velocities in terms of the generalized momenta treating the generalized coordinates
as parameters. The function H.q1; : : : ; qN ; p1; : : : ; pN ; t/ is called the Hamilto-
nian function (the Hamiltonian).

Proceeding similarly as in the case of calculations regarding the Routhian
function let us calculate the total differential of the Hamiltonian function on the
left-hand side of expression (4.3):

dH D
NX
nD1

�
@H

@qn
dqn C @H

@pn
dpn

�
C @H

@t
dt: (4.4)

In turn, the total differential of the right-hand side of (4.3) is equal to

dH D
NX
nD1

 
Pqndpn C pnd Pqn � @L

@ Pqn d Pqn � @L

@qn
dqn

!
� @L

@t
dt; (4.5)

where the underlined terms cancel out.
Comparing (4.4) with (4.5) we obtain

@H

@qn
D � @L

@qn
;

@H

@pn
D dqn

dt
; (4.6)

and
@H

@t
D �@L

@t
: (4.7)

From (4.2) we get

dpn
dt

D d

dt

@L

@ Pqn D @L

@qn
: (4.8)
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Eventually, we obtain the equations

dqn
dt

D @H

@pn
;

dpn
dt

D �@H
@qn

: (4.9)

We call equations (4.9) Hamilton’s canonical equations.
Reader interested in broadening their understanding of the problems discussed in

this section may refer to [1–24].

Example 4.1. Determine the canonical form of Hamilton’s equations for the spher-
ical pendulum considered in Examples 3.13 and 3.18 of Chap. 3.

By definition (4.3) of the Hamiltonian we have

p D @L

@ P D ml2 P sin2 ';

p' D @L

@ P' D ml2 P';

H D P p C P'p' �L

D p2 

ml2 sin2 '
C p2'

ml2
� 1

2
ml2

p2'

.ml2/
2

� ml2p2 sin2 '

2
�
ml2 sin2 '

�2 �mgl.1� cos'/

D 1

2

p2'

ml2
C 1

2

p2 

ml2 sin2 '
�mgl.1� cos'/:

Hamilton’s canonical equations (4.9) take the form

d'

dt
D @H

@p'
D p'

ml2
;

d 

dt
D @H

@p 
D p 

ml2 sin2 '
;

dp'
dt

D �@H
@'

D 1

2

p2 

ml2
2 sin' cos'

sin4 '
�mgl sin ';

dp 
dt

D �@H
@ 

D 0:

For p D 0 we have

d'

dt
D p'

ml2
;

dp'
dt

D �mgl sin ';

which are Hamilton’s canonical equations for a mathematical pendulum. ut
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4.1.2 Jacobi–Poisson Theorem

In the literature on mechanics, the notion of the so-called Poisson bracket is used.
The following expression is called the Poisson bracket of functions u and v:

Œu; v� D
NX
nD1

@u

@qn

@v

@pn
� @u

@pn

@v

@qn
; (4.10)

where it is assumed that functions u and v are continuous and twice differentiable.
Let us cite here [9] certain properties of the Poisson brackets (the proofs are

omitted):

(i) Œu; v� D �Œv; u�;
(ii) ŒCu; v� D C Œu; v�; C D const;

(iii) Œu C v;w� D Œu;w�C Œv;w�;

(iv)
@

@t
Œu; v� D

�
@u

@t
; v

	
C
�

u;
@v

@t

	
;

(v) ŒŒu; v�;w� D ŒŒv;w�; u�C ŒŒw; u�; v� D 0: (4.11)

Let the variables pn and qn satisfy Hamilton’s canonical equations (4.9),
henceforth called Hamilton’s equations. If the function F.qn.t/; pn.t/; t/ � C D
const, then it is a first integral of Hamilton’s equations. Thus for any time instant t
we have

dF

dt
D @F

@t
C

NX
nD1

�
@F

@qn

dqn
dt

C @F

@pn

dpn
dt

�

D @F

@t
C

NX
nD1

�
@F

@qn

@H

@pn
� @F

@pn

@H

@qn

�
D @F

@t
C ŒF;H� D 0: (4.12)

It turns out that making use of the concept of the Poisson bracket enables a clear
statement of the Jacobi–Poisson theorem, which allows for the construction of a first
integral of a Hamiltonian system if at least two other of its first integrals F1 and F2
are known.

Theorem 4.1 (Jacobi–Poisson theorem). If F1 and F2 are first integrals of Hamil-
ton’s equations (4.9), then their Poisson bracket ŒF1; F2� is also a first integral of
those Hamilton equations.

Proof. According to property (iv) we have

@

@t
ŒF1; F2� D

�
@F1

@t
; F2

	
C
�
F1;

@F2

@t

	
:
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Because by assumption F1 and F2 are first integrals, we have

@Fi

@t
C ŒFi ; H� D 0; i D 1; 2;

which, after using the first equation of the proof and property (i), gives

@

@t
ŒF1; F2� D Œ�ŒF1; H�; F2�C ŒF1; �ŒF2;H��

D ŒŒH; F1�; F2� � Œ�ŒF2; H�; F1�
D ŒŒH; F1�; F2�C ŒŒF2; H�; F1�;

where property (ii) for C D �1 was used as well. From property (v) for the
functions F1, F2, and H we obtain

ŒŒH; F1�; F2�C ŒŒF1; F2�; H�C ŒŒF2; H�; F1� D 0;

that is,

ŒŒH; F1�; F2�C ŒŒF2; H�; F1� D �ŒŒF1; F2�; H�;
and hence

@

@t
ŒF1; F2�C ŒŒF1; F2�; H� D 0;

which we had set out to demonstrate. ut

4.1.3 Canonical Transformations

With the aid of matrix notation Hamilton’s equations (4.9) can be expressed in the
form

Px D IH0; (4.13)

where

x2N D

2
6666666664

q1
:::

qN
p1
:::

pN

3
7777777775
; I2N D

�
0N EN

�EN 0N

	
; H0

1�2N D @H

@x
D

2
66666666664

@H
@q1
:::
@H
@qN
@H
@p1
:::
@H
@pN

3
77777777775
: (4.14)
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As can be seen, x is a column vector, matrix I is skew-symmetric, H0 is a column
matrix, and matrix EN is a diagonal matrix composed of ones. It is easy to check
that det I D 1, I2 D �E2N , IT D I�1 D �I.

The use of canonical transformations is motivated by a desire to choose general-
ized coordinates (or their combination) such that the form of equations would enable
us to find the first integrals of the considered problem. One such possibility has
already been discussed on the example of Routh’s equations and cyclic coordinates.
Let us conduct the following transformation of coordinates q and p:

Qn D Qn.q;p; t/; Pn D Pn.q;p; t/; (4.15)

that is, we perform the transition to new coordinates Q and P in the following way:
q ! Q, p ! P. We select the new coordinates Qn and Pn .n D 1; : : : ; N / so that
the system of equations obtained after the transformation is a Hamiltonian system
as well.

The Jacobian matrix of transformation (4.15) has the form

J D

2
664
@Q
@q

@Q
@p

@P
@q

P
@p

3
775 D

2
6666666666666664

@Q1

@q1
: : :

@Q1

@qN

@Q1

@p1
: : :

@Q1

@pN
:::

:::
:::

:::
@QN

@q1
: : :

@QN

@qN

@QN

@p1
: : :

@QN

@pN
@P1

@q1
: : :

@P1

@qN

@P1

@p1
: : :

@P1

@pN
:::

:::
:::

:::
@PN

@q1
: : :

@PN

@qN

@PN

@p1
: : :

@PN

@pN

3
7777777777777775

: (4.16)

Definition 4.1 (of the canonical transformation). If we choose matrix J by means
of an appropriate selection of matrices Q and P, so that the following relation holds
true

JTIJ D C I; (4.17)

where C is a certain constant, and matrix I is defined by formula (4.14), then
transformation (4.15) is called a canonical transformation.

Now we will check whether the identity transformationsQn D qn and Pn D pn
are canonical (to simplify the calculation we will take N D 2).

According to formula (4.16) we have

J D

2
664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3
775 ;
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and substituting it into equality (4.17) we obtain

2
664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3
775
2
664
0 0 1 0

0 0 0 1

�1 0 0 0

0 �1 0 0

3
775
2
664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3
775D

2
664
0 0 1 0

0 0 0 1

�1 0 0 0

0 �1 0 0

3
775
2
664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3
775D

2
664
0 0 1 0

0 0 0 1

�1 0 0 0

0 �1 0 0

3
775;

which satisfies formula (4.16) for C D 1.
In the general case for C D 1 the transformation matrix J is called a symplectic

matrix. IfC ¤ 1, then the transformation matrix J is called a generalized symplectic
matrix of valence C . Knowing the valence of matrix J (i.e., the number C ) we are
able to determine the value of its determinant.

From (4.17) we obtain

det
�
JTIJ

� D det JT det I det J D det.C I/: (4.18)

It can be noticed easily (say, for N D 2) that

det.C I/ D

ˇ̌̌
ˇ̌̌
ˇ̌
0 0 C 0

0 0 0 C

�C 0 0 0

0 �C 0 0

ˇ̌̌
ˇ̌̌
ˇ̌ D C.�1/N

ˇ̌̌
ˇ̌̌ 0 0 C

�C 0 0

0 �C 0

ˇ̌̌
ˇ̌̌ D C2

ˇ̌̌
ˇ�C 0

0 �C
ˇ̌̌
ˇ D C2N :

Because det I D 1 and det JT D det J, from (4.18) we obtain

det J D ˙CN : (4.19)

Theorem 4.2. If we take in the considered phase space the two successive canoni-
cal transformations yi D yi .x; t/ with the valences Ci , i D 1; 2, respectively, then
the resulting transformation y D y.x; t/ D y2Œy1.x; t/; t � is also a canonical one
with the valence C D C1C2.

Proof. Owing to the definition of the canonical transformation (4.17) we have

JT
i IJi D Ci I; J1 D @yi

@x
; J2 D @y2

@y1
; i D 1; 2:

Then

J D @y
@x

D @y2
@y1

@y1
@x

D J2J1;

and consequently

JTIJ D .J2J1/TI.J2J1/ D JT
1J2IJ2J1 D JT

1C2IJ1 D C2JT
1 IJ1 D C1C2I: ut
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Theorem 4.3. If we take the canonical transformation y D y.x; t/ with valence C ,
then the inverse transformation x D x.y; t/ is also a canonical one with va-
lence 1=C .

Proof. Multiplying (4.17) by .JT/�1 (left-hand sidedly) and by J�1 (right-hand
sidedly) we obtain

.JT/�1JTIJJ�1 D C.JT/�1IJ�1

or, equivalently,

1

C
I D .JT/�1IJ�1: ut

Below we will present several theorems pertaining to canonical transformations
(their proofs can be found in Markeev [9]).

Theorem 4.4. A necessary and sufficient condition for transformation (4.15) to be
canonical is the satisfaction of the following equations:

Œqi ; qk� D 0; Œpi ; pk� D 0; Œqi ; pk� D Cıik; (4.20)

where the introduced Poisson brackets denote the valence defined by formula (4.17),
and ıik is the Kronecker delta (i.e., ıik D 1 for i D k).

Theorem 4.5. A necessary and sufficient condition for transformation (4.15) to be
canonical is the satisfaction of the following equations:

ŒQi ; Qk� D 0; ŒPi ; Pk� D 0; ŒQi ; Pk� D Cıik; (4.21)

where Q D Q.q; p; t/, P D P.q; p; t/.

Theorem 4.6. A necessary and sufficient condition for transformation (4.15) to be
canonical is the existence of a constant C ¤ 0 such that

ıF � C

NX
nD1

pnıqn �
NX
nD1

PnıQn (4.22)

is the total differential of a certain function F D F.q; p; t/.

Now we will demonstrate that matrix J of the form (4.16), generated by the
motion of a Hamiltonian system, satisfies canonical transformation (4.17) for
C D 1. This means that the state of the system described at time instant t D 0

by the coordinates q0 and p0 is transformed into the coordinates q.t/ and p.t/ for
time instant t , that is, q0 ! q and p0 ! p.
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Let us differentiate equation of motion (4.13) with respect to .q0; p0/ .q0 D
q.0/; p0 D p.0//; we obtain

d

dt

@.q;p/
@.q0;p0/

D IH00 @.q;p/
@.q0;p0/

; (4.23)

where qT D qT.q0;p0; t/, pT D pT.q0;p0; t/.
In this case, matrix (4.16) has the form

J2N�2N D
�
@.q;p/
@.q0;p0/

	
D

2
6666666666666664

@q1

@q10
: : :

@q1

@qN0

@q1

@p10
: : :

@q1

@pN0
:::

:::
:::

:::
@qN

@q10
: : :

@qN

@qN0

@qN

@p10
: : :

@qN

@pN0
@p1

@q10
: : :

@p1

@qN0

@p1

@p10
: : :

@p1

@pN0
:::

:::
:::

:::
@pN

@q10
: : :

@pN

@qN0

@pN

@p10
: : :

@pN

@pN0

3
7777777777777775

; (4.24)

and matrix H00 takes the form

H00

1�2N D
�

@H0

@.q0; p0/

	
D

2
666666666666666664

@2H

@q210
: : :

@2H

@q10@qN0

@2H

@q10@p10
: : :

@2H

@q10@pN0
:::

:::
:::

:::

@2H

@qN@q10
: : :

@2H

@qN0@qN0

@2H

@qN0@p10
: : :

@2H

@qN0@pN0
@2H

@p10@q10
: : :

@2H

@p10@qN0

@2H

@p10@p10
: : :

@2H

@p10@pN0
:::

:::
:::

:::

@2H

@pN0@q10
: : :

@2H

@pN0@qN0

@2H

@pN@p10
: : :

@2H

@pN0@pN0

3
777777777777777775

:

(4.25)

Equation (4.23) with matrices defined by (4.24) and (4.25) can be written in
the form

d

dt
J D IH00J: (4.26)

Let us now transpose both sides of the preceding matrix equation

d

dt
JT D JT

�
IH00�T D JTH00TIT D �JTH00I; (4.27)

because it is easy to verify that H00 D H00T [see matrix (4.25)] and IT D �I.
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According to formula (4.17) for C D 1 we have

I D JTIJ; (4.28)

where J is described by (4.24).
Let us calculate the derivative [taking into account of (4.26) and (4.28)]

d

dt

�
JTIJ

� D PJTIJ C JTIPJ

D �JTH00I2J C JTI2H00J

D JTH00J � JTH00J � 0 (4.29)

because I2 D �E2N .
Thus we proved that the matrix JTIJ is a constant matrix, and for time instant

t D 0 it is equal to I. This result can be stated in the form of the following theorem.

Theorem 4.7. The transformation of a phase space .q; p/ as a result of the motion
of a Hamiltonian system is a canonical transformation of the valence C D 1.

If we consider the motion of a point in a phase space .q, p/ starting from the
initial condition q.t0/ D q0, p.t0/ D p0, the trajectory of motion is determined by
the equations q D q.q0; p0; t/ and p D p.q0; p0; t/.

Theorem 4.8 (Liouville’s1 theorem). The volume of a phase space described by
the formula

Vt D
Z
: : :

Z
„ ƒ‚ …

2N

dq1 : : : dqN dp1 : : : dpN (4.30)

is conserved during the motion of a Hamiltonian system.

Proof. For the time instant t D 0 (4.30) has the form

V0 D
Z
: : :

Z
„ ƒ‚ …

2N

dq10 : : : dqN dp10 : : : dpN0:

Because matrix J is the Jacobian of transformation (4.15), using matrix (4.24)
we have

dx D Jdx0;

1Joseph Liouville (1809–1882), French mathematician who contributed greatly to number theory,
complex analysis, differential geometry, and topology.
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where

dx D

2
6666666664

dq1
:::

dqN
dp1
:::

dpN

3
7777777775
; dx0 D

2
6666666664

dq10
:::

dqN
dp10
:::

dpN

3
7777777775
:

Expressing variables dx in terms of dx0 occurring inside of the integral, we
introduce the Jacobian of the transformation

Vt D
Z
: : :

Z
„ ƒ‚ …

2N

j det Jjdq10 : : : dqNdp10 : : : dpN :

According to equality (4.28) we have

det I D det JT det I det J;

that is, det J D ˙1.
In turn, for t D 0 we have J D E2N , and because det E2N D 1, we have

det J D 1. According to the theorem proved earlier, the matrix JTIJ D I is a
constant matrix for any time instant t . Also, for any time instant we have det jJj D 1,
thus Vt D V0, which we had set out to demonstrate. ut

4.1.4 Non-Singular Canonical Transformations and Guiding
Functions

If transformation (4.15) is canonical, and additionally we have

det
@Q
@p

¤ 0; (4.31)

then canonical transformation (4.15)

Q D Q.q;p; t/; P D P.q;p; t/; (4.32)

is called a non-singular canonical transformation. According to the theorem
associated with (4.22), if the transformation is canonical, then

ıF.q;p.q;Q; t/; t/ � C

NX
nD1

pnıqn �
NX
nD1

PnıQn D ıS.q;Q; t/; (4.33)
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where the satisfaction of condition (4.31) allowed for the expression of p in the
form of the function p D p.q; Q; t/. The function F in which such a change was
made is denoted by S and is called the guiding function of non-singular canonical
transformation (4.32). From (4.33) it follows that

@S.q;Q; t/
@q

D Cp;
@S.q;Q; t/

@Q
D �P: (4.34)

On the other hand, if the function S D S.q; Q; t/ is given such that

det

�
@2S

@q@Q

�
¤ 0; (4.35)

then equations (4.34) describe the non-singular canonical transformation of valence
C ¤ 0.

In turn, it is possible to pass from (4.34) to the form (4.32). From the first
equation of (4.34) we can obtain Q D Q.q; p; t/. Subsequently, substituting Q
into the second equation of (4.34) we obtain P D P.q; p; t/.

Knowing the guiding function S allows for an easy transition from one form of
the Hamiltonian function [corresponding to the old coordinates .q; p/] to another
form [corresponding to the new coordinates .Q; P/]. In this case (see [9]) we have

OH D CH C @S

@t
; (4.36)

where OH is the new Hamiltonian function.
A great advantage of this approach consists in the fact that in order to change the

coordinates, that is, to pass from the old to the new coordinates (which is required for
the determination of first integrals), there is no need to carry out the transformations
of, often, many functions (variables) 2N , but it is enough to know the functionsH
and S .

4.1.5 Jacobi’s Method and Hamilton–Jacobi Equations

Let us now make an attempt, using the notions introduced earlier, to integrate
Hamilton’s canonical equations of the form

Pq D @H

@p
; Pp D �@H

@q
: (4.37)

For C D 1, according to (4.34), we have

@S.q;Q; t/
@q

D p;
@S.q;Q; t/

@Q
D �P: (4.38)
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Hamilton’s equations in the new coordinate system .P;Q/ take the following
form [equivalent to (4.37)]:

PQ D @ OH
@P

; PP D �@
OH

@Q
; (4.39)

where, according to function (4.36), we have

OH.Q;P; t/ D H.q;p; t/C @S.q;Q; t/
@t

; (4.40)

where @S
@t

can be expressed in terms of functions Q; P using (4.38).

The value of the new Hamiltonian function OH depends on the function S . If we
take it such that OH � 0, then from (4.39) we obtain

PQ D 0; PP D 0; (4.41)

and after their integration

Q D C1; P D C2; (4.42)

where C1 and C2 are vectors of N constants, that is, CT
i D .C

.i/
1 ; : : : ; C

.i/
N /

T,
i D 1; 2.

Substituting equality (4.42) into the second equation of (4.38) we have

q D q.C1;C2; t/; (4.43)

and then from the first equation of (4.38) we get

p D p.C1;C2; t/: (4.44)

Substituting expressions (4.43) and (4.44) into equation (4.40) and taking into
account (4.38) we obtain

@S.q;Q; t/
@t

CH

�
q;
@S.q;Q; t/

@q
; t

�
D 0: (4.45)

This is a partial differential equation called the Hamilton–Jacobi equation; it
serves to determine the guiding function S dependent on q1.t/; q2.t/; : : : ; qN .t/
and t , where the quantities Q D C1 are treated as parameters (because they are
constant).

Theorem 4.9 (Jacobi’s theorem). If S D S.q; C1; t/ is a complete integral of
Hamilton–Jacobi equation (4.45), that is, S depends onN constants .C 1

1 ; : : : ; C
1
N /,

and we have
ˇ̌̌
@2S
@q@C1

ˇ̌̌
¤ 0, then we find the solutions (4.43) and (4.44) of (4.37)
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from (4.38), i.e.

@S

@q
D p;

@S

@C1

D �C2; (4.46)

where the vector C2 is composed of N arbitrary constants.

It should be emphasized that in general there is no recipe for the integration
of partial differential equation (4.45), and it is not always easier to solve this
equation than ordinary differential equations (4.37). However, in many cases where
the Hamiltonian function appears in technical applications, either function S can
be directly determined or the process by which it is determined is significantly
simplified.

4.1.6 Forms of the Hamilton–Jacobi Equations in the Case
of Cyclic Coordinates and Conservative Systems

Let us consider the case where we have N � K cyclic coordinates, that is,
qKC1; : : : ; qN are cyclic coordinates. The Hamiltonian function in this case takes
the form

H D H.q1; : : : ; qK; p1; : : : ; pK; pKC1; : : : ; pN ; t/; (4.47)

and, according to the previous calculations, because cyclic coordinates are inte-
grable, the complete integral is equal to

S D C
.1/
KC1qKC1; : : : ; C .1/

N qN C OS.q1; : : : ; qK; C .1/
1 ; : : : ; C

.1/
N ; t/; (4.48)

and after its substitution into Hamilton–Jacobi equation (4.45) we have

@ OS
@t

CH

 
q1; : : : ; qK;

@ OS
@q1

; : : : ;
@ OS
@qK

; C
.1/
KC1; : : : ; C

.1/
N ; t

!
D 0: (4.49)

The function OS subjected to integration according to partial differential equa-
tion (4.49) is significantly simplified since it depends on .N C 1 �K/ variables.

In the case of conservative systems, the full energy of the system is conserved,
and the Hamiltonian function assumes a constant value, that is,

H.q1; : : : ; qN ; p1; : : : ; pN / D H�: (4.50)

This means that the Hamiltonian H� does not depend explicity on t , and H� is
an arbitrary constant.

Substituting (4.50) into Hamilton–Jacobi equation (4.45) we obtain
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@S

@t
CH� D 0; (4.51)

that is, after integration

S D �H�t C V; (4.52)

where now V does not depend explicitly on time. Because S D S.q; Q/, in our
case we have S D S.q; C1/.

From (4.50) and (4.52) we get

H� D H

�
q1; : : : ; qN ;

@V

@q1
; : : : ;

@V

@qN

�
; (4.53)

which is known as the Hamilton–Jacobi equation for conservative systems. From
(4.53) we compute V D V.q1; : : : ; qN ; C

.1/
1 ; : : : ; C

.1/
N�1; H�/. Equation (4.52) now

takes the form

S D �H�t C V
�
q1; : : : ; qN ; C

.1/
1 ; : : : ; C

.1/
N�1;H

�
�
; (4.54)

which determines the complete integral of the Hamilton–Jacobi equation.
According to Jacobi’s theorem [see formulas (4.46)] we get

@V

@qn
D pn; .n D 1; : : : ; N /;

@V

@C
.1/
n

D �C .2/
n ; .n D 1; : : : ; N � 1/;

@V

@H� D t � C .2/
N ; (4.55)

where C .2/
1 ; : : : ; C

.2/
N are arbitrary constants.

The equation (4.55) can be interpreted in the following way. First, part of N
equations of (4.55) define the impulses pn, n D 1; : : : ; N ; second, part of the
N � 1 equations describe trajectories of the N -dimensional coordinate space of
q1; : : : ; qN ; all of them govern the dynamics of the conservative system.

Various extensions of the described approach (despite a huge number of
monographs) can also be found in [25, 26] with an emphasis on mechanical
applications.
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4.2 Solution Methods for Euler–Lagrange Equations

4.2.1 Introduction

Other methods of analysis of second-order (or higher) non-linear differential
equations obtained with the use of variation and called Euler or Euler–Lagrange
equations (Chap. 3), which are relatively new and alternative as compared to asymp-
totic methods, are the so-called Bogomolny decomposition [6, 13] and Bäcklund
transformation [1, 7, 17].

In the mechanics of deformable bodies, we commonly face the problem of
static or dynamic deflections of beams, plates, and shells, which are described
by non-linear partial differential equations (PDEs). This concerns both hyperbolic
and elliptic PDEs. The mentioned variational methods were successfully applied in
certain branches of physics for the analysis of non-linear equations of a field theory
and, in particular, of the so-called soliton equations, which include the Korteweg–
de Vries equation,2 the sine-Gordon3 equation, and the non-linear Schrödinger4

equation. These methods are based on a theory of the so-called strong necessary
conditions and, subsequently, on its modification (extension) called semistrong
necessary conditions.

This approach made it possible to find the Bäcklund5 transformation for a wide
class of non-linear PDEs, including the aforementioned soliton equations. This, in
turn, opened up the possibility of finding particular solutions to such equations and
then to generate a whole “lattice” of such solutions (by application of the so-called
Bianchi6 permutability theorem).

4.2.2 Euler’s Theorem and Euler–Lagrange Equations

Let us consider the functional

�Œy� D
bZ
a

F.x; y.x/; y0.x//dx; (4.56)

where x 2 Œa; b�, x ! y.x/ 2 R, and F has continuous partial derivatives.

2This equation is a mathematical model of waves on shallow water surfaces and is named after
Dutch mathematicians D. Korteweg (1848–1941) and G. de Vries (1866–1934).
3Walter Gordon (1893–1939), twentieth-century English physicist.
4Erwin Schrödinger (1887–1961), an Austrian/Irish mathematician awarded the Nobel prize in
1933.
5Arthur Bäcklund (1845–1922), a Swedish mathematician and physicist.
6Luigi Bianchi (1856–1928), Italian mathematician who made important contributions to differen-
tial geometry.
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Definition 4.2 (of a weak minimum). Functional (4.56) attains a weak minimum
for y D y� if there exists " > 0 such that �Œy� � �Œy�� for all y 2 K1.y�; "/,
where

K1.y�; "/ D �
max jy.x/ � y�.x/j C max

ˇ̌
y0.x/ � y�.x/

ˇ̌
< "

�
: (4.57)

Definition 4.3 (of a strong minimum). Functional (4.56) attains a strong mini-
mum for y D y�, if there exists " > 0 such that �Œy� � �Œy�� for all y 2 K0.y�; "/,
where

K0.y�; "/ D �
max jy.x/ � y�.x/j < "� : (4.58)

It can be demonstrated that, if the functional �Œy� attains a strong extremum for
y D y�, then it also attains a weak extremum for the function y�, but not vice versa.

Theorem 4.10 (Euler’s theorem). If functional (4.56) attains an extremum for
y D y�.x/, then

dF

dy
� d

dx

�
@F

@y0

�
D 0 (4.59)

for y D y�, y0 D y0�.

Equation (4.59) is called Lagrange’s equation or the Euler–Lagrange equation,
but it is also known as Euler’s equation or the Euler–Poisson equation.

The problem of determining the extremum of functional (4.56) boils down to
the solution of (4.59). However, there exist no general methods of integration of
non-linear equations of this kind, and here the previously introduced theories of the
Bäcklund transformation and Bogomolny decomposition come to our aid.

The presented concepts of the solution of non-linear PDEs can be exploited to
solve a wide class of equations that appear in various fields of physics by treating
them as equations of the type (4.59), further called Lagrange’s systems. Even if
we are unable to construct functional (4.56), very often it is possible to reduce
these equations to the Lagrange class by introducing certain transformations of
independent variables of these equations.

A classic variational approach is based on the fact that the actual trajectory
in a configuration space satisfies Hamilton’s principle of least action. Since, if
we consider an arbitrary trajectory q D q.t/ admissible by constraints, then the
principle of least action is reduced to the following condition for the vanishing of
variation:

ı�Œy� D
bZ
a

�
dF

dy
ıy C @F

@y0 ıy
0
�

dx D 0 (4.60)
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for the physical (actual) trajectory q� D q�.t/. Integrating by parts we obtain the
Euler–Lagrange equation. From variational equation (4.60) it follows that

dF

dy
D 0;

dF

dy0 D 0: (4.61)

Any solution of the preceding system of equations is simultaneously the solution
of Euler–Lagrange equation (4.59). The solutions of equations (4.61) are called
strong solutions, whereas solutions of equation (4.59) that are different from strong
solutions are called weak solutions.

Let us note that the order of strong equations (4.61) is smaller than the order of
original equations (4.56). It turns out that strong equations allow for the generation
of many solutions by taking advantage of an internal symmetry of Hamilton’s action
integral.

For a four-dimensional Euclidean space .X1;X2;X3; t/ there exists a Lie7 group
of transformations having ten generators, and with every generator of this group
is associated an integral of motion, as stated by the so-called Noether8 theorem
[14]. This theorem makes it possible to establish certain associations between
symmetries of a system and certain properties of motion such as momentum, angular
momentum, and energy.

Hamilton’s variational principle applied to the LagrangiansL andL� of the form

L� D LC I (4.62)

leads to the action principle of the form

ı

bZ
a

ŒLC I �dt D 0: (4.63)

Because for both Lagrangians L and L� from Hamilton’s principle we obtain
identical Euler–Lagrange equations, we have

ıI D ı

bZ
a

Idt � 0: (4.64)

We call a functional I having the preceding property a topological invariant, and
I D L� � L a density of a topological invariant.

According to the construction of functional (4.56), now we have

bZ
a

��
dF

dy
C dI

dy

�
ıy C

�
@F

@y0 C @I

@y0

�
ıy0
	

dx D 0; (4.65)

7Marius Sophus Lie (1842–1899), Norwegian mathematician.
8Emmy Noether (1882–1935), German mathematician known for her contributions to abstract
algebra and theoretical physics.
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hence we obtain the following system of strong equations:

@F

@y
C @I

@y
D 0;

@F

@y0 C @I

@y0 D 0: (4.66)

Any solution of the system of strong equations is simultaneously the solution of
Euler–Lagrange equation (4.59).

The Euler–Lagrange equations are invariant with respect to calibrating a trans-
formation, that is, they remain identical for both � and �� D � C I .

As it turns out, this property makes it possible to find many new analytical
solutions for numerous equations of the Euler–Lagrange kind.

4.2.3 Bogomolny Equation and Decomposition

Both notions will be introduced using a non-variational approach. Let us consider a
one-dimensional model of a scalar field whose free energy functional has the form

HŒy� D
Z "

1

2

�
dy.x/

dx

�2
C V.y.x//

#
dx: (4.67)

According to Euler’s theorem, trajectory y� D y�.x/, on which functional (4.67)
attains its minimum, satisfies the following Euler–Lagrange equation:

d2y

dx2
D �@V Œy.x/�

@y
: (4.68)

Bogomolny proposed the following decomposition of (4.67):

HŒy� D 1

2

Z �
dy.x/

dx
˙p

2ŒV .y/ � C �

	2
dx

�
Z

dy

dx

p
2.V � C/dx C

Z
Cdx

D
Z "

1

2

�
dy

dx

�2
˙ dy

dx

p
2.V � C/C .V � C/

#
dx

D
Z

dy

dx

p
2.V � C/dx D

Z "
1

2

�
dy

dx

�2
C V

#
dx; (4.69)

where C is a constant that describes the initial energy and
ˇ̌R
Cdx

ˇ̌
< 1.
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The Bogomolny equation has the form

dy

dx
˙p

2ŒV .y/ � C � D 0: (4.70)

4.2.4 Bäcklund Transformation

Nowadays Bäcklund transformations are introduced using both an algebraic varia-
tional and a geometric approach.

Definition 4.4 (of a Bäcklund transformation). Let the following two decoupled
differential equations be given:

E.u; ux; ut ; uxx; : : : ; x; t/ D 0;

F.v; vx; vt ; vxx; : : : ; x; t/ D 0; (4.71)

where u D u.x; t/ and v D v.x; t/ are certain fields and variables t and x are
independent and real.

The following two differential relations

Ri.u; ux; ut ; v; vx; vt ; : : : ; x; t/ D 0; i D 1; 2; (4.72)

are called a Bäcklund transformation for (4.71) if:

(i) For u0 satisfying the equationE.u0; u0x; u0t ; u0xx; : : : ; x; t/ D 0, the solution of
system of equations (4.72) of the form

R1
�
u0; u0x; u

0
t ; v; vx; vt ; : : : ; x; t

� D 0;

R2
�
u0; u0x; u

0
t ; v; vx; vt ; : : : ; x; t

� D 0 (4.73)

makes it possible to find v.x; t/, which at the same time is the solution of the
second equation of (4.71);

(ii) For v0 satisfying the equation F.v0; v0x; v0t ; v0xx; : : : ; x; t/ D 0, the solution of
system of equations (4.72) of the form

R1
�
u; ux; ut ; v

0; v0x; v
0
t ; : : : ; x; t

� D 0;

R2
�
u; ux; ut ; v

0; v0x; v
0
t ; : : : ; x; t

� D 0 (4.74)

makes it possible to determine u D u.x; t/, which at the same time is the
solution of the first equation of (4.71).

If in (4.71) we have EDF , then (4.72) is called an auto-Bäcklund
transformation.
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Definition 4.5 (auto-Bäcklund transformation). Relations (4.72) are called
strong Bäcklund (auto-Bäcklund) transformations if for every pair

R1
�
u0; u0x; u

0
t ; v

0; v0x; v
0
t ; : : : ; x; t

� D 0;

R2
�
u0; u0x; u

0
t ; v

0; v0x; v
0
t ; : : : ; x; t

� D 0 (4.75)

the following equations are simultaneously satisfied:

E.u0; u0x; u
0
t ; u

0
xx; : : : ; x; t/ D 0;

F.v0; v0x; v
0
t ; v

0
xx; : : : ; x; t/ D 0: (4.76)

Let us note that if the order of coupled equations (4.72) is equal to or greater than
the order of the original equations (4.71), then the advantages of this approach are
questionable.

Example 4.2. Let us consider an auto-Bäcklund transformation for the system of
sine-Gordon equations of the form

@2u

@x@t
D sin u;

@2v

@x@t
D sin v:

According to [17], the transformation has the form

1

2

�
@u

@x
C @v

@x

�
D ˇ sin

�u � v

2

�
;

1

2

�
@u

@t
� @v

@t

�
D 1

ˇ
sin

�
u C v

2

�
:

Differentiating the first of the preceding equations with respect to t and the
second with respect to x we obtain

1

2

�
@2u

@x@t
C @2v

@x@t

�
D ˇ

2

�
@u

@t
� @v

@t

�
cos

�u � v

2

�

D sin

�
u C v

2

�
cos

�u � v

2

�
;

1

2

�
@2u

@x@t
� @2v

@x@t

�
D 1

2ˇ

�
@u

@x
C @v

@x

�
cos

�
u C v

2

�

D sin
�u � v

2

�
cos

�
u C v

2

�
:

Adding and subtracting the preceding equations by sides we obtain the original
equation.
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Let us substitute a trivial solution v D 0 into the obtained Bäcklund relations.
This leads to the following differential equations:

@u

@x
D 2ˇ sin

�u

2

�
;

@u

@t
D 2

ˇ
sin
�u

2

�
;

and after their integration we obtain the following particular sine-Gordon equation:

u.x; t/ D 4 arctan

�
C e�

�
1
ˇ tCˇx

�	
: �

Example 4.3. Derive the Bogomolny equation based on strong necessary condi-
tions.

It can be demonstrated that the only non-trivial invariant of (4.64) is

I D
Z
G.y/y0dx:

Substituting the foregoing relation into Euler’s equation we obtain

@ŒG.y/y0�
@y

� d

dx

�
@ŒG.y/y0�
@y0

	
� 0:

Thus we have

F.x; y.x/; y0.x// D 1

2

�
dy

dx

�2
C V Œy.x/�;

I.y/ D G.y/y0:

According to formulas (4.66) a system of strong equations has the following
form:

@V

@y
C @G

@y

@y

@x
D 0;

@y

@x
CG.y/ D 0:

From the second equation we have

@y

@x
D �G;

and after substitution of this equality into the first equation we obtain

@V

@y
D @G

@y
G:
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Integrating the preceding equation we obtain

V Œy.x/� D 1

2
G2 C C;

where C is an integration constant (a real number). From the preceding equation
we find

G D ˙p2ŒV .y/ � C �: �

4.3 Whittaker’s Equations

Let a Hamiltonian function not depend explicitly on time, that is,

H D H.q1; : : : ; qN ; p1; : : : ; pN / D H0 � const; (4.77)

where H0 D H.q10; : : : ; qN0; p10; : : : ; pN0/, i.e., it is defined by the introduced
initial conditions. Because qn D qn.t/ and pn D pn.t/, the motion of a Hamiltonian
system can be understood as the motion of a point on a hyperplane (4.77).
From (4.77) we determine

p1 D �HW .q1; : : : ; qN ; p2; : : : ; pN ; H0/: (4.78)

Separating out variables q1 and p1 in Hamilton’s canonical equations (4.9)
we obtain

dq1
dt

D @H

@p1
;

dp1
dt

D �@H
@q1

; (4.79)

dqn
dt

D @H

@pn
;

dpn
dt

D �@H
@qn

; n D 2; : : : ; N: (4.80)

Dividing both sides of (4.80) by the first equation of (4.79) we have

dqn
dq1

D
�
@H

@pn

���
@H

@p1

�
;

dpn
dq1

D �
�
@H

@pn

���
@H

@p1

�
; n D 2; 3; : : : ; N: (4.81)

Let us substitute p1 defined by (4.78) into (4.77) and as a result obtain

H.q1; : : : ; qN ; �HW ; p2; : : : ; pN / D H0: (4.82)
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Differentiating the preceding equation with respect to qn we obtain

@H

@qn
C @H

@p1

@p1

@qn
D @H

@qn
� @H

@p1

@HW

@qn
D 0; n D 2; : : : ; N: (4.83)

Proceeding in an analogous way we get

@H

@pn
� @H

@p1

@HW

@pn
D 0; n D 2; : : : ; N: (4.84)

Taking into account (4.83) and (4.84) in the right-hand sides of equations (4.81)
we obtain

dqn

dq1
D @HW

@pn
;

dpn

@q1
D �@H

W

@qn
: (4.85)

If in the obtained equations we exchange q1 with t , we arrive at the canonical
form of Hamilton’s equations (4.9). The role of a Hamiltonian functionH is played
by a Whittaker functionHW . Equation (4.85) are called Whittaker’s equations.9

Integration of Whittaker’s equations leads to the determination of velocities and
momenta

qn D qn.q1; H0; C1; : : : ; C2N�2/;

pn D pn.q1; H0; C1; : : : ; C2N�2/; n D 2; 3; : : : ; N; (4.86)

where C1; : : : ; C2N�2 are arbitrary constants.
Substituting the quantities thus obtained into (4.78) we obtain

p1 D f1.q1; H0; C1; : : : ; C2N�2/: (4.87)

Equations (4.86) and (4.87) define the motion of a point of coordinates p1.q1/;
p2.q1/; : : : ; pN .q1/; q2.p1/; : : : ; qN .p1/ on a phase hyperplaneH D H0.

In order to determine the dependency of coordinates on time one should make
use of the first equation of system (4.79), which will take the form

dq1
dt

D f2.q1; H0; C1; : : : ; C2N�2/; (4.88)

9Edmund Taylor Whittaker (1873–1956), English mathematician who contributed widely to
applied mathematics and mathematical physics.
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and separating the variables and integrating we eventually get

t D
Z

dq1
f2

C C2N�1: (4.89)

Solving the preceding algebraic equation with respect to q1 we obtain

q1 D q1.t; H0; C1; : : : ; C2N�1/: (4.90)

In [14] it is shown that using the Legendre transformation, Whittaker’s equations
can be reduced to Lagrange’s equations of the form

d

dq1

@P

@q0
n

� @P

@qn
D 0; n D 2; 3; : : : ; N; (4.91)

where

P D P.q2; : : : ; qN ; q
0
2; : : : ; q

0
N ; q1; H0/ D

NX
nD2

q0
npn �HW ;

q0
n D dqn

dq1
; (4.92)

and quantities pn occurring in a Legendre function P are expressed by q0
2; : : : ; q

0
N

from equations

q0
n D @HW

@pn
; n D 2; 3; : : : ; N: (4.93)

Equations in the form of (4.91) are called Jacobi equations.

4.4 Voronets and Chaplygin Equations

In many cases equations describing the motion of a DMS with Lagrange multipliers
are burdensome in practical applications, especially if we are not interested in
determining the reactions of constraints. P.V. Voronets10 [3] proposed equations
that do not have the aforementioned disadvantages. We will derive them on the
basis of equations taken from [9], where we will be considering a scleronomic non-
holonomic DMS.

10Peter Vasilevich Voronets (1871–1923), Russian scientist widely known for his research in the
field of analytical mechanics.
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In the considered case, (3.139) takes the form

d

dt

@T

@ Pqw
� @T

@qw
D Qw �

MX
mD1

�m˛mw; w D 1; : : : ;W;

d

dt

@T

@ PqWCm
� @T

@qWCm
D QWCm C �m; m D 1; : : : ;M;

PqWCm D
WX

wD1
˛mw Pqw: (4.94)

In the preceding equations the system hasWCM generalized coordinates, where
M denotes the number of scleronomic non-holonomic constraints.

The third of equations (4.94) results from the equation of constraints described
by the second equation of system (3.139), where coefficients Bmk do not depend
explicitly on time and we have bm D 0. That equation is obtained after imposing the
condition that from K generalized velocities we have W independent generalized
velocities, and the number of degrees of freedom of the DMS is equal to W D
K � M . From this equation it follows that the dependent generalized velocities in
the amount of M can be expressed byW independent generalized velocities.

It can be demonstrated [9] that the coefficients

A
.m/

wk D
 
@˛mw

@qk
C

MX
uD1

@˛mw

@qWCu
˛uk

!
�
 
@˛mk

@qw
C

MX
uD1

@˛mk

@qWCu
˛uw

!
(4.95)

are not identically equal to zero for an arbitrary instant of motion of the analyzed
DMS.

The third equation of system (4.94) allows for the following representation of the
kinetic energy of a DMS:

T .q1; : : : ; qK; Pq1; : : : ; PqK; t/ D N�.q1; : : : ; qK; Pq1; : : : ; PqW ; t/: (4.96)

Differentiating (4.96) with respect to Pq1; : : : ; PqW we obtain

@ N�
@ Pqw

D @T

@ Pqw
C

MX
mD1

@T

@ PqWCm
˛mw; w D 1; 2; : : : ;W; (4.97)

where the third equation of system (4.94) was used in the transformations.
Differentiation of (4.97) with respect to time leads to the following equation:

d

dt

@ N�
@ Pqw

D d

dt

@T

@ Pqw
C

MX
mD1

˛mw
d

dt

@T

@ PqWCm
C

MX
mD1

d˛mw

dt

@T

@ PqWCm
: (4.98)
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The terms underlined in the preceding equation will be calculated from (4.94).
As a result of the transformations, the terms containing Lagrange multipliers �m are
reduced, and (4.98) takes the form

d

dt

@ N�
@ Pqw

D @T

@qw
CQw C

MX
mD1

˛mw
@T

@qWCm
C

MX
mD1

˛mwQWCm

C
MX
mD1

d˛mw

dt

@T

@ PqWCm
: (4.99)

Since, according to the third equation of system (4.94), we obtain

@�

@ql
D @T

@ql
C

MX
mD1

@T

@ PqWCm

 
WX
kD1

@˛mk

@ql
Pqk
!
; l D 1; 2; : : : ; K; (4.100)

taking into account this result in (4.99) we have

d

dt

@ N�
@ Pqw

D @ N�
@qw

�
MX
mD1

@T

@ PqWCm

 
WX
kD1

@˛mk

@qw
Pqk
!

CQw C
MX
mD1

˛mw
@ N�

@qWCm

�
kX

uD1
˛uw

 
MX
mD1

@T

@ PqWCm

 
WX
kD1

@˛mk

@qWCu
Pqk
!!

C
MX
mD1

˛mwQWCm C
MX
mD1

d˛mw

dt

@T

@ PqWCm
: (4.101)

Transforming the preceding equations we eventually arrive at

d

dt

@ N�
@ Pqw

� @ N�
@qw

D Qw C
MX
mD1

˛mw

 
QWCm C @ N�

@qWCm

!

C
MX
mD1

@T

@ PqWCm

2
4d˛mw

dt
�

WX
kD1

 
@˛mk

@qw
C

MX
uD1

@˛mk

@qWCu
˛uw

!
Pqk
3
5

D Qw C
MX
mD1

˛mw

 
QWCm C @ N�

@qWCm

!
C

MX
mD1

�w

 
WX
kD1

A
.m/

wk Pqk
!
;

�w D @T

@ PqwCm
; w D 1; 2; : : : ;W; m D 1; 2; : : : ;M; (4.102)
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where in the preceding equation the underlined term was replaced by the previously
introduced coefficients A.m/wk according to (4.96), and the notion of generalized
momentum�w was introduced.

The obtained equations (4.102) in the amount of W are called Voronets
equations [3].

We have K D W CM generalized coordinates, and in order to determine them
one should solve the following system ofM CW equations:

d

dt

@ N�
@ Pqw

� @ N�
@qw

D �w C
MX
mD1

˛mw

 
QWCm C @ N�

@qWCm

!
C

MX
mD1

�w

 
WX
kD1

A
.m/

wk Pqk
!
;

PqWCm D
WX

wD1
˛mw Pqw; w D 1; 2; : : : ;W; m D 1; 2; : : : ;M; (4.103)

in which there are no longer any Lagrange multipliers.
If the kinetic energy T , coefficients ˛mw, and generalized forces Ql .l D

1; : : : ; K/ do not depend on the generalized coordinates qWCm .m D 1; 2; : : : ;M /,
then the Voronets equations take the following simpler form:

d

dt

@ N�
@ Pqw

� @ N�
@qw

D Qw C
MX
mD1

˛mwQWCm C
MX
mD1

 
WX
kD1

A
.m/

wk Pqk
!
; w D 1; : : : ;W;

(4.104)

where coefficients A.m/wk are now described by the simple relationships

A
.m/

wk D @˛mw

@qk
� @˛mk

@qw
; w; k D 1; : : : ;W; m D 1; : : : ;M: (4.105)

In this case we can further simplify the expressions for generalized forces
Ql .l D 1; : : : ; K/ and for generalized momenta �m .m D 1; 2; : : : ;M /. If we
express generalized velocities PqwCm .m D 1; : : : ;M / by independent generalized
velocities Pq1; : : : ; PqW according to the third equation of system (4.94), then we
obtain the system of equations dependent only on the generalized coordinates
q1; : : : ; qW , which can be solved independently of an equation of constraints, that is,
the third equation of system (4.94). Following application of the described algorithm
to (4.104) we obtain Chaplygin’s equations.11

11Sergey Alexeyevich Chaplygin (1869–1942), Russian mechanician and mathematician.
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Fig. 4.1 Rolling without slip of a disk on a horizontal plane [9]

Chaplygin’s equations simplify even more if generalized forces are potential
forces and potential V does not depend on the generalized coordinates qWCm. Then
Chaplygin’s equations take the form

d

dt

@ N�
@ Pqw

� @ N�
@qw

D � @V

@qw
C

MX
mD1

�m

 
WX
kD1

A
.m/

wk Pqk
!
; w D 1; : : : ;W: (4.106)

Example 4.4. Let a homogeneous disk of massm roll on a horizontal plane without
slipping while in contact with the plane at a single point (Fig. 4.1). Derive the
equation of motion of the disk.

In Fig. 4.1 the absolute coordinate systemOX1X2X3 is introduced in such a way
that the axisOX3 is perpendicular to the horizontal plane, on which the disk moves.
With the disk is associated the body system CX 00

1 X
00
2 X

00
3 , where C is the mass center

of the disk and the axis CX 00
3 is perpendicular to the disk plane.

The position of the mass center of the disk in the absolute system C D
C.x1; x2; r sin�/, where r is the radius of the disk and � is one of the introduced
Euler angles.
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The kinetic energy and potential energy of the disk are equal to

T D 1

2
m
�

Px21 C Px22 C �
r P� cos�

�2�C 1

2

�
I1!1

002 C I2!
00
2
2 C I3!

00
3
2
�
;

V D mgr sin�;

where g is the acceleration of gravity, the vector of angular velocity of the disk is
given by ! D !00

1E00
1 C !00

2E00
2 C !00

3E00
3 , and Ii are moments of inertia of the disk

with respect to the principal centroidal axes of inertia CX 00
i ; i D 1; 2; 3 .I1 D I2 D

1
4
mr2; I3 D mr2/.

According to the calculations of Sects., 5.5.4 and 5.5.5 of [24] Euler’s kinematic
equations take the form

!00
1 D P sin� sin' C P� cos';

!00
2 D P sin� cos' � P� sin ';

!00
3 D P cos� C P'I

using these equations in the expression for the kinetic energy T we obtain

T D 1

2
m
� Px21 C Px22

�C 1

8
mr2

�
1C 4cos2�

� P�2

C 1

8
mr2 P 2sin2� C 1

4
mr2

� P cos� C P'�2:
The velocity of pointD of contact of the disk with the horizontal plane is equal to

vD D vC C! � ��!
CD D 0: (
)

According to Fig. 4.1, line DE is parallel to the line of nodes n. In turn,
line DC ? DE and lies on the plane determined by the axes CX 0

3 and CX 00
3 . There

is an angle ' between line DC and axis CX 00
2 .

In the absolute system we have

vC D E1 Px1 C E2 Px2 C E3r P� cos�;

��!
CD D E1r cos� sin � E2r cos� cos � E3r sin�;

! D E1
� P� cos C P' sin sin�

�C E2
� P� sin � P' cos sin�

�
C E3

� P C P' cos�
�
:
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We successively calculate

!���!
CD D

ˇ̌̌
ˇ̌̌ E1 E2 E3

P� cos C P' sin sin� P� sin � P' cos sin� P C P' cos�
r cos� sin �r cos� cos �r sin�

ˇ̌̌
ˇ̌̌

D E1

�r sin�

� P� sin � P' cos sin�
�C r cos� cos 

� P C P' cos�
��

C E2


r sin�

� P� cos C P' sin sin�
�C r cos� sin 

� P C P' cos�
��

� E3


r cos� cos 

� P� cos C P' sin sin�
�

C r cos� sin 
� P� sin � P' cos sin�

��
;

and from (
) we obtain

Px1 D r sin�
� P� sin � P' cos sin �

�
� r cos� cos 

� P C P' cos�
� D r P� sin� sin 

� r P' cos sin2� � r P'cos2� cos � r P cos� cos 

D r

 P� sin sin� � � P cos� C P'� cos 

�
;

Px2 D �r sin�
� P� cos C P' sin sin�

�
� r cos� sin 

� P C P' cos�
� D �r P� sin� cos 

� r P'sin2� sin � r P cos� sin � r P'cos2� sin 

D �r 
 P� sin� cos C � P' C P cos�
�

sin 
�
;

Px3 D �r P� cos�cos2 C r P' sin cos sin� cos�

C r P� cos�sin2 � r P' cos� cos sin sin�

D r P� cos� � r P� cos� � 0: (

)

Let us note that in the solutions describing the kinetic T and potential energy
of the disk, and in equations of constraints (

), the coordinates x1 and x2 do not
occur. Equations of motion of the disk will be derived on the basis of Chaplygin’s
equations (4.106). Let us denote the generalized coordinates as

q1 D �; q2 D '; q3 D  ; q4 D x1; q5 D x2:
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In our case [see (4.94)] we haveW D 3 andm D 2. According to (4.94) we have
to determine Pq4 D Px1 and Pq5 D Px2 from equations of constraints (

), which with
the new notation takes the form

Pq4 D r Œ Pq1 sin q3 sin q1 � . Pq3 cos q1 C Pq2/ cos q3� D ˛11 Pq1 C ˛12 Pq2 C ˛13 Pq3;
Pq5 D �r Œ Pq1 sin q1 cos q3 C . Pq2 C Pq3 cos q1/ sin q3� D ˛21 Pq1 C ˛22 Pq2 C ˛33 Pq3:

From the preceding equations we determine the desired coefficients ˛mw, which
are equal to

˛11 D r sin q1 sin q3; ˛12 D �r cos q3; ˛13 D �r cos q1 cos q3;

˛21 D �r sin q1 cos q3; ˛22 D �r sin q3; ˛23 D �r cos q1 sin q3:

From (4.105) we calculate the coefficients A.m/wk . Non-zero values of those
coefficients are equal to

A
.1/
23 D �A.1/23 D r sin q3; A

.2/
23 D �A.2/32 D �r cos q3:

Generalized momenta according to the second equation of (4.102) are equal to

�1 D @T

@ Pq4 D m Px1

D mr . Pq1 sin q1 sin q3 � Pq2 cos q3 � Pq3 cos q4 cos q3/ ;

�2 D @T

@ Pq5 D m Px2

D mr . Pq1 sin q1 cos q3 C Pq2 sin q3 C Pq3 cos q1 sin q3/ :

Chaplygin’s equations (4.106) take the form

d

dt

@ N�
@ P� � @ N�

@�
D �mgr cos�;

d

dt

@ N�
@ P' � @ N�

@'
D mr2 P� P ;

d

dt

@ N�
@ P � @ N�

@ 
D �mr2 P� P' sin�:
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In the preceding equation the energy

T D N� D 1

2
mr2


 P� sin sin� � � P cos� C P'� cos 
�2

C 1

2
mr2


 P� sin� cos C � P' C P cos�
�

sin 
�2

C 1

8
mr2

�
1C 4cos2�

� P�2 C 1

8
mr2 P 2sin2� C 1

4
mr2

� P cos� C P'�2
D 5

8
mr2 P�2 C 1

8
mr2 P 2sin2� C 3

4
mr2

� P cos� C P'�2:
Substituting the preceding equation into Chaplygin’s equations we get

P� C P 2 sin� cos� C 6

5
P' P sin� C 4

5

g

r
cos� D 0;

d

dt

� P' C P cos�
� D 2

3
P� P sin�;

d

dt

�� P' C P cos�
�

cos� C 1

6
P sin2�

	
D �2

3
P' P� sin�:

Integrating the preceding equations (e.g., numerically) we find � D �.t/, and
consequently we determine the third coordinate of the position of point C .C D
C.x1.t/; x2.t/; r sin�.t///, where x1.t/ and x2.t/ are determined by integration
of equations (**). ut

4.5 Appell’s Equations

In order to derive Appell’s12 equations, first we will introduce certain preliminary
concepts regarding pseudo-coordinates useful for the analysis of non-holonomic
systems [2]. Let a DMS with non-holonomic constraints in the amount of K have
W degrees of freedom. We will call the additional introduced quantities w; Pw; Rw,
w D 1; : : : ;W respectively pseudo-displacements, pseudo-velocities, and pseudo-
accelerations. Let us construct linear combinations of generalized coordinates
Pq1; : : : ; PqK of the form

Pw D
KX
kD1

awk .q1; q2; : : : ; qK; t/ Pqk; w D 1; : : : ;W: (4.107)

12Paul Émile Appell (1855–1930), French mathematician and rector of the University of Paris.
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The system of linear equations (4.107) determines P1; P2; : : : ; PW pseudo-
velocities, which may not have any physical meaning, that is, they may not be
generalized velocities. A similar observation concerns pseudo-displacements and
pseudo-accelerations. Generalized velocities satisfy the equation of non-holonomic
constraints (3.24), and henceforth we will use the indexm2 D m.

Generalized velocities Pq1; Pq2; : : : ; PqK satisfy M (3.21), and expressing them in
terms of pseudo-velocities according to relation (4.107), equation (3.21) will take
the form

Pqk D
KX
kD1

dwk Pw C gk; k D 1; : : : ; K; (4.108)

where now dwk D dwk.q1; q2; : : : ; qK; t/ and gk D gk.q1; q2; : : : ; qK; t/ and
imposed pseudo-velocities Pw can have arbitrary values.

From (4.107) we obtain

ıw D
KX
kD1

awkıqk; w D 1; : : : ;W: (4.109)

This means that the variation of a pseudo-displacement ıw is equal to the sum
of variations of generalized displacements ıqk .

Let us note that in the case of non-holonomic constraints, generalized displace-
ments satisfy (3.24) of the form

KX
kD1

Bmkıqk D 0; m D 1; : : : ;M: (4.110)

From systems of equations (4.109) and (4.110) we express ıqk in terms of
pseudo-displacements, obtaining

ıqk D
WX
w

dwkıw; k D 1; 2; : : : ; K: (4.111)

Substituting relations (4.111) into (3.23) we obtain

ırn D
KX
kD1

@rn
@qk

ıqk D
KX
kD1

@rn
@qk

WX
w

dwk@w

D
WX

wD1
enwıw; n D 1; 2; : : : ; N; (4.112)
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where

enw D
KX
kD1

@rn
@qk

dwk; n D 1; 2; : : : ; N; w D 1; 2; : : : ;W: (4.113)

Our next task is the expression of enw in terms of generalized accelerations and
pseudo-accelerations. To this end we differentiate (4.107) with respect to time, and
we substitute the obtained generalized accelerations Rqk , k D 1; 2; : : : ; K into the
third equation of (3.19) obtaining

an D
WX

wD1
enw Rw C hn; n D 1; : : : ; N; (4.114)

where now hn D hn.1; : : : ; W ; P1; : : : ; PW ; t/. Differentiating the preceding
equation with respect to Rw; w D 1; : : : ;W we obtain

@an
@ Rw

D enw; n D 1; : : : ; N; w D 1; : : : ;W: (4.115)

Eventually, substituting (4.115) into (4.112) we obtain

ırn D
WX

wD1

@an
@ Rw

@w; n D 1; : : : ; N: (4.116)

Appell’s equations, like the majority of equations discussed in this book, will be
derived from the general equation of dynamics of the form

NX
nD1

.Fn �mnan/ ı ırn D 0 (4.117)

and by making use of relation (3.117) of the form

NX
nD1

Fn ı ırn D
KX
kD1

Qkıqk: (4.118)

The elementary work of active forces acting on a given DMS is equal to

ıW D
NX
nD1

Fn ı ırn D
KX
kD1

Qk ı
WX

wD1

@an
@ Rw

ıw D
WX

wD1
wıw; (4.119)
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where

w D w .q1; qk; P1; : : : ; Pw; t / D
KX
kD1

dwkQk; (4.120)

and in the course of the preceding calculations, transformations (4.116) were used.
The quantities w will be called generalized forces corresponding to pseudo-
displacements w; w D 1; : : : ;W .

Next we calculate the elementary work done by inertia forces

ıW D
NX
nD1

mnan ı ırn D
NX
nD1

mnan ı
WX

wD1
enwıw

D
WX

wD1

 
NX
nD1

mnan ı @an
@ Rw

!
ıw

D
WX

wD1

@

@ Rw

 
1

2

NX
nD1

mna2n

!
ıw D

WX
wD1

@S

@ Rw
ıw: (4.121)

Equations (4.112) and (4.115) were used during transformations, and the
introduced function

S D 1

2

NX
nD1

mna2n (4.122)

is called the energy of accelerations of a DMS, and S D S.q1; : : : ; qK; P1; : : : ;
PW ; R1; ; : : : ; RW ; t/ according to the general equation of dynamics (4.117), and
taking into account (4.119) and (4.122), we obtain Appell equations

@S

@ Rw
D w; w D 1; : : : ;W: (4.123)

In order to solve the problem of the dynamics of a non-holonomic DMS, equa-
tions (4.123) should be solved simultaneously with M equations of non-holonomic
constraints (3.21) and with W equations (4.107) defining pseudo-velocities. It
can be shown that Appell’s equations can be solved with respect to pseudo-
accelerations Rw, w D 1; : : : ;W . Moreover, equations of constraints (3.21) [see
(4.108)] and (4.107) can be solved with respect to generalized velocities Pqk; k D
1; : : : ; K . Eventually, we have at our disposal K C W equations with unknowns
q1; : : : ; qK; P1; : : : ; PW .

Imposing initial conditions q10; : : : ; qk0; P; : : : ; Pw0, from (4.108) we determine
uniquely the initial conditions for generalized velocities Pq10; : : : ; PqK0 according
to the conditions of non-holonomic constraints. Thus, we have initial conditions
q10; : : : ; qK0; Pq10; : : : ; PqK0, which at once define a Cauchy problem for a given
DMS.
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If as Pw we take generalized velocities Pqw, w D 1; : : : ;W , then generalized
forces w correspond to Q0

w, where

Q0
w D Qw C

K�WX
pD1

˛pwQwCp; w D 1; : : : ;W: (4.124)

For such a choice, the acceleration energy S D S.q1; : : : ; qK; Pq1; : : : ;
PqW ; Rq1; : : : ; RqW ; t/, and Appell’s equations take the form

@S

@ Rqw
D Q0

w; w D 1; : : : ;W: (4.125)

The precedingW Appell equations (also called the Gibbs–Appell equations [9]),
augmented with M equations of non-holonomic constraints, describe the motion of
the analyzed non-holonomic DMS. The number of those equationsM CW D K is
equal to the number of generalized coordinates. If we are dealing with a holonomic
DMS, then K D W , since M D 0 and Q0

w D Qw, and (4.125) represent the form
of Lagrange’s equations of the second kind. Despite many advantages, the major
drawback of Appell’s equations is connected with the difficulties associated with
determining the acceleration energy S essential for their formulation. It seems that
in engineering practice it is easier to exploit Voronets’s and Chaplygin’s equations
in which it is necessary to determine the kinetic energy T of the DMS under
investigation.

Now we will demonstrate a method to determine the acceleration energy on
an example of the motion of a rigid body with one point fixed. We introduce
the absolute system of coordinates OX1X2X3 and the body system O 00X 00

1 X
00
2 X

00
3 .

The point O D O 00 is a fixed point of the body, and the axes of the body system
coincide with its principal axes of inertia related to point O .

According to the definition of acceleration energy given by (4.122), in a body
system we have

S D 1

2

NX
nD1

mn

�
a2
nx00

1
C a2

nx00

2
C a2

nx00

3

�
; (4.126)

where N denotes the number of particles approximating the rigid body.
In Chap. 5 of [24] we already determined the acceleration of a particle n of a

rigid body, which reads

an D " � rn C! .! ı rn/� !2rn: (4.127)

From the preceding vector equation we determine the coordinates of projections
of vector an on the system axes O 00X 00

1 X
00
2 X

00
3 , which are equal to
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anx00

1
D �x1n

�
!002
2 C !002

3

�C x2n
�
!00
2 !

00
1 � P!00

3

�C x3n
�
!00
1 !

00
3 C P!00

2

�
;

anx00

2
D �x2n

�
!002
3 C !002

1

�C x3n
�
!00
3 !

00
2 � P!00

1

�C x1n
�
!00
2 !

00
1 C P!00

3

�
;

anx00

3
D �x3n

�
!002
1 C !002

2

�C x1n
�
!00
1 !

00
3 � P!00

2

�C x2n
�
!00
3 !

00
2 C P!00

1

�
: (4.128)

Substituting (4.128) into (4.126), while taking into account IX 00

1 X
00

2
D 0,

IX 00

1 X
00

3
D 0, IX 00

2 X
00

3
D 0 (see Chap. 3 in [24]) and additionally neglecting terms

independent of P!00
1 ; P!00

2 , and P!00
3 , we obtain

S D 1

2

 
NX
nD1

mnx
2
1n

!� P!00
3
2 C 2!00

2 !
00
1 P!00

3 C P!00
2
2� 2!00

1 !
00
3 P!00

2

�

C 1

2

 
NX
nD1

mnx
2
2n

!� P!00
1
2 C 2!00

3
2!00

2 P!00
1C P!00

3
2 � 2!00

2 !
00
1 P!00

3

�

C 1

2

 
NX
nD1

mnx
2
3n

!� P!00
2
2C 2!00

1
2!00

3 P!00
2 C P!00

1
2 � 2!00

3 !
00
2 P!00

1

�

D 1

2

�
IX 00

1
P!00
1
2 C IX 00

2
P!00
2
2 C IX 00

3
P!00
3
2
�

C
�
IX 00

3
� IX 00

2

�
!00
2 !

00
3 P!00

1

C
�
IX 00

1
� IX 00

3

�
!00
3 !

00
1 P!00

2 C
�
IX 00

2
� IX 00

1

�
!00
1 !

00
2 P!00

3 ; (4.129)

where IX 00

1
, IX 00

2
, and IX 00

3
are respectively the moments of inertia about axesO 00X 00

1 ,
O 00X 00

2 , and O 00X 00
3 .

Let point C be the mass center of a given DMS moving in an arbitrary manner.
We will determine the acceleration energy of the DMS taking the pole at point C .
The acceleration of pointm of the number n .n D 1; : : : ; N / is equal to

an D aC C aw
n : (4.130)

Substituting (4.130) into (4.122) we obtain

S D 1

2

 
NX
nD1

mn

!
a2C C

 
NX
nD1

mnaw
n

!
ı aC C 1

2

NX
nD1

mn

�
aw
n

�2

D 1

2
ma2C C 1

2

NX
nD1

mn

�
aw
n

�2
(4.131)

because
NX
nD1

mn D m;

NX
nD1

mnaw
n D M aw

C D 0: (4.132)
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The obtained result can be formulated in the form of a theorem analogous to
König’s theorem on the kinetic energy of a DMS.

Theorem 4.11. The acceleration energy of a DMS is equal to the sum of the
acceleration energy of a particle located at the mass center of the DMS and having
a mass equal to the mass of the DMS and the acceleration energy resulting from the
motion of the DMS relative to its mass center.

Example 4.5. (see [9]) Let a homogeneous ball of radius r be moving without slip
on a stationary horizontal surface. Demonstrate that the angular velocity vector of
the ball is conserved during its motion.

We will introduce two Cartesian coordinate systems. The absolute system
OX1X2X3 has its origin at the point of contact of the ball with the horizontal
surface of axis OX3 directed against the acceleration of gravity. The body system
CX 00

1 X
00
2 X

00
3 has its origin at the mass center of the ball. LetC D C.x1; x2; r/ be the

coordinates of the mass center of the ball in the OX1X2X3 system, and the vector
of angular velocity ! D ˙Ei!i D ˙E00

i !
00
i .

From the condition of the absence of slip we obtain

Px1 D !2r; Px2 D �!1r: (
)

Because for a ball IX 00

1
D IX 00

2
D IX 00

3
D 2

5
mr2, according to (4.129) we obtain

S1 D 1

2
mr2

� P!00
1
2 C P!00

2
2 C P!00

3
2
�
;

and S1 is the acceleration energy of the ball resulting from its rotational motion
relative to the mass center C .

According to (4.131) and taking into account S1, the total acceleration energy of
the ball equals

S D 1

2
m
� Rx21 C Rx22

�C 1

5
mr2

� P!00
1
2 C P!00

2
2 C P!00

3
2
�
: (

)

Differentiating (
) with respect to time and introducing pseudo-velocities
Pi D !i , i D 1; 2; 3 we obtain

Rx1 D r R2; Rx2 D �r R1:

The angular acceleration of the ball is given by the equation

"2 D P!00
1
2 C P!00

2
2 C P!00

3
2 D P!21 C P!22 C P!23 D R21 C R22 C R23 :
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Taking into account the last two equations in (

) we obtain

S D 1

2
mr2

� R21 C R22
�C 1

5
mr2

� R21 C R22 C R23
�

D 1

10
mr2



7
� R21 C R22

�C 2 R3
�
:

Because the generalized forces w in Appell’s equations (4.123) are equal to
zero, the problem boils down to the integration of three equations

@S

@ Ri D 0; i D 1; 2; 3:

We successively get

@S

@ R1 D 7

5
mr2 R1 D 0;

@S

@ R2 D 7

5
mr2 R2 D 0;

@S

@ R3 D 2

5
mr2 R3 D 0:

This means that P1 D !1 D const, P2 D !2 D const, P3 D !3 D const, that is,
that the vector ! D E1!1 C E2!2 C E3!3 is constant during the motion of the ball
on the horizontal plane. ut
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Chapter 5
Theory of Impact

5.1 Basic Concepts

So far we have considered problems concerning the statics and dynamics of discrete
(lumped) and continuous material systems when forces of action and reaction act
upon these systems in a continuous fashion for the entire duration of a process. On
the other hand, it is known that changes in system momentum leading to changes
in velocity are associated with the action of a force or moment of force during a
finite and often very short time interval. A phenomenon is called an impact if we
observe a sudden (instantaneous) change in the velocity of a particle caused by the
action of instantaneous forces. Despite the passage of several years, the notions of
instantaneous changes in velocities and forces of an infinitely short duration time are
intuitive, and to date they have not found an adequate mathematical description. If
two bodies collide and the time of the collision process is very short, then we observe
a continuous change in the velocity of the body, and because the collision usually
lasts for a very short time, it is associated with the generation of relatively large
forces. However, it should be emphasized that the notions of “small” and “large”
quantities are relative and subjective.

If other forces also act on the analyzed system and the impact is associated with
the vibrations of the system, which are characterized by a period of free vibrations
with or without damping, then the duration of the collision process is short in
comparison, for example, with the previously mentioned period of oscillations,
whereas the instantaneous forces are large compared to the other forces present
in the analyzed system. However, if there are no such reference quantities in the
system, then the introduced idealized notions must be related, for example, to the
duration of observation of the phenomenon.

According to Newton’s second law, the motion of a particle whose position
is determined by a radius vector r.t/ is described by a second-order differential
equation of the form

m
d2r
dt2

D F; (5.1)
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where F is the force acting on a particle of mass m. From this equation we obtain
a variable quantity of motion of the particle in the time interval from t0 to t0 C � ,
since after integrating (5.1) we have

m.Pr.t/ � Pr0/ D
t0C�Z
t0

Fd�: (5.2)

Let us introduce the following notation: Pr.t/ D v.t/, Pr0 D v0, and

J D
t0C�Z
t0

Fd�: (5.3)

In the case of an arbitrary duration of action of the force F, that is, the quantity
� , (5.3) defines an impulse of a force. If the duration of a force action tends to zero,
that is, � ! 0, and despite the fact that the limit

J D lim
�!0

t0C�Z
t0

Fd� (5.4)

still exists, the quantity J is called an impulse of impact, and the force F itself is
called an impact force or instantaneous force. If the value of the integral occurring
in (5.4) is averaged out, then from this equation we obtain

Fav D J
�
: (5.5)

Note that Fav ! 1 for � ! 0, that is, the impact force reaches large magnitudes
during the collision process. According to formula (5.2) for � ! 0 we obtain

m.v � v0/ D m.	v/ D 
.mv/ D J: (5.6)

From the obtained equation it follows that the impulse of impact leads to a step
change in the velocity of a particle, where v0 is the velocity before the impact
and v is the velocity following impact. This is the first characteristic of the impact
phenomenon.

We obtain the second feature of the impact phenomenon after the integration
of (5.2). That is, we have

m.r.t/ � r0/ D mPr0� C
t0C�Z
t0

0
@ t0C�Z

t0

Fd�

1
A d�: (5.7)

From the preceding equation it is easy to notice that for � ! 0 we have

lim
�!0

t0C�Z
t0

Fd� D J; lim
�!0

t0C�Z
t0

Jd� D 0; (5.8)
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and hence from (5.7) we get

lim
�!0

.r.t0 C �/ � r.t0// D 0; (5.9)

which means that the particle position just before and just after impact is the same.

5.2 Fundamental Laws of a Theory of Impact

In Chap. 2 of [1] and Chap. 1 of this book, we presented the fundamental laws and
theorems connected with the statics and dynamics of material systems during the
action of constant forces, independent of time or acting during a finite and “long”
time interval. Here they will be extended and adapted to the requirements of the
analysis of the phenomenon of impact.

5.2.1 The Law of Conservation of Momentum During Impact

The law of conservation of momentum for a particle was discussed in Chap. 1. In
the case of a discrete material system consisting of N separate particles, the law of
conservation of momentum is expressed by the following equation [see the case of
a particle described by (1.147)]:

dP
dt

D d

dt

 
NX
nD1

mnvn

!
D

NX
nD1

Fn; (5.10)

where on the left-hand side occurs a derivative of the quantity of motion of a system
of particles and on the right-hand side the sum of forces acting on the system.

Integrating the preceding equation we obtain

P � P0 D
t0C�Z
t0

NX
nD1

Fnd�: (5.11)

Taking into account the occurrence of instantaneous forces (impact forces), we
can write

	P D P � P0 D
NX
nD1

lim
�!0

t0C�Z
t0

Fnd� D
NX
nD1

Jn; (5.12)

where Jn are impulses of impact coming from the impact forces Fn. Based on the
preceding equations it is possible to formulate the following theorem.
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Theorem 5.1. The change of momentum of a system of particles at the instant of
impact is equal to the sum of external impulses of impact caused by all instantaneous
forces acting on the system at the considered instant.

5.2.2 The Law of Conservation of Angular Momentum During
Impact

If external Fe and internal forces Fi act on every particle of a material system
(a position of the particle is described by a radius vector r.t/), then according to
Newton’s second law we have

mRr D Fe C Fi: (5.13)

The calculations will be conducted with respect to a certain point O not
associated with the adopted stationary coordinate system O 0X 0

1X
0
2X

0
3. Premulti-

plying (5.13) by the vector .r � rO/ and integrating over the whole mass of the
considered system we obtain

Z
m

.r � rO/ � d2r
dt2

dm D
Z
m

.r � rO/ � Fedm (5.14)

because according to Newton’s second law the internal forces cancel out.
Note that

d

dt

Z
m

.r � rO/ � dr
dt

dm D
Z
m

.r � rO/ � d2r
dt2

dmC
Z
m

d

dt
.r � rO/ � dr

dt
dm;

(5.15)

and additionally the second term on the right-hand side of the preceding equation is
equal to

Z
m

d

dt
.r � rO/ � dr

dt
dm D

Z
m

dr
dt

� dr
dt

dm�
Z
m

drO
dt

� dr
dt

dm

D �
Z
m

drO
dt

� dr
dt

dm D �drO
dt

�
Z
m

dr
dt

dm

D �drO
dt

� d

dt

Z
m

rdm D �drO
dt

�mdrC

dt
; (5.16)

where rC describes the position of the center of mass of the system (Fig. 5.1).
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Fig. 5.1 Mechanical system
with point O shown; about
this point the angular
momentum of the system is
determined

If the analyzed mechanical system is continuous, then the system’s angular
momentum is described by the formula

K D
Z
m

.r � rO/ � vdm; (5.17)

and if it is discrete, then its angular momentum is equal to

K D
NX
nD1

mn.rn � rO/ � vn; (5.18)

where
PN

nD1 mn D m. For a continuous system we have

dK
dt

D
Z
m

d

dt
.r � rO/ � vdmC

Z
m

.r � rO/ � d2r
dt2

dm; (5.19)

and taking into account formulas (5.14) and (5.16) we obtain

dK
dt

D �drO
dt

�mdrC

dt
C
Z
m

.r � rO/ � Fedm: (5.20)
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Integrating the preceding equation with respect to time we obtain

	K D K � KO D
t0C�Z
t0

Z
m

.r � rO/ � Fedmd� � ŒrO �mrC�
t0C�
t0

D
Z
m

.r � rO/ �
0
@ t0C�Z

t0

Fed�

1
A dm D

Z
m

.r � rO/ � Jdm (5.21)

for a continuous mechanical system. Similar calculations conducted for a discrete
mechanical system [see (5.17)] lead to the following result:

	K D K � KO D
NX
nD1

rn � Jn; (5.22)

where Jn is the impulse of impact on particle n.
The results of those calculations can be summarized in the form of the following

theorem.

Theorem 5.2. A change in the angular momentum of any mechanical system with
respect to an arbitrary pole O at the instant of impact is equal to the moment of
external impulses of impact acting on the system.

It can be demonstrated that the preceding theorem is valid in the case of an
arbitrary pole, either moving or fixed [2].

We will derive a general equation of the theory of impact. The general equation
of motion for a discrete material system has the form

NX
nD1

.mn Rrn � Fn/ ı ırn D 0: (5.23)

Integrating the equations resulting from Newton’s second law with respect to
(time of) impact duration we obtain

lim
�!0

NX
nD1

t0C�Z
t0

.mn Rrn � Fn/ d� D
NX
nD1

mn
Prn � lim
�!0

t0C�Z
t0

Fnd�: (5.24)

Forces Fn are resolved into impact forces Fi
n associated with impact and “non-

impact” (i.e., ordinary) forces Fnin ; then from (5.23), and taking into account
expression (5.24), we obtain a general equation of impact:

NX
nD1

Œmn .Pr � Prn.0//� Jn� ı ırn D 0; (5.25)
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where:

lim
�!0

t0C�Z
t0

Find� D J; lim
�!0

t0C�Z
t0

Fnin d� D 0: (5.26)

5.3 Particle Impact Against an Obstacle

Let a particle of mass m hit the surface of an obstacle whose mass is so large that
the impact does not cause any change in its position (Fig. 5.2).

In the introduced coordinate system the angle of incidence (angle of rebound)
is denoted ˛ .ˇ/. We assume that at the instant of contact of the mass m with
the obstacle the only instantaneous force (impact force) is the normal force N (the
tangent force is equal to zero because we assume that the constraints are ideal). The
velocity v1 denotes the velocity of the mass m just before impact and v2 – right
after impact. The law of conservation of momentum for a particle in vector notation
m.v2�v1/ D J has the following representation in the systemOX1X2 (the equation
is successively multiplied by E1 and E2 yielding v2x1�v1x1 D 0,m.v2x2�v1x2/ D J):

mv2 cos.90ı � ˇ/ �mv1 cos.90ı � ˛/ D 0;

mv2 cosˇ �mv1 cos.180ı � ˛/ D J; (5.27)

that is,

m.v2 sinˇ � v1 sin ˛/ D 0;

m.v2 cosˇ C v1 cos˛/ D J; (5.28)

m
X2

N

O
v2

v1

X1

E2

E1

Fig. 5.2 Impact of mass m
against a stationary obstacle
at its point O
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because vector J has the same sense as vector N. As can be seen, we have two
algebraic equations for the determination of three unknown quantities v2, ˇ, and J.
Newton noticed that the ratio of normal components of velocities does not depend on
the velocity of motion of the colliding bodies or their geometry but on the materials
they are made of. In our case the coefficient of restitution � is described by the
formula .v2 ı E2/E2 D ��.v1 ı E2/E2 or

� D �v2n
v1n

D �v2x2
v1x1

D �v2 ı E2
v1 ı E2

D v2 cosˇ

v1 cos˛
; (5.29)

where v2ıE2 D v2n and v1ıE2 D v1n, which follows from the hypothesis of Newton
(the law of restitution of a normal velocity). However, it should be emphasized that
the Newton hypothesis is too simple, and in many cases experimental investigations
show that the restitution coefficient depends not only on the materials of impacting
objects but also on their geometry and velocities [3].

In the preceding equation vn denotes the normal velocity (in this case in the X2
direction). The minus sign in (5.29) is a consequence of the fact that for the given
sense of the normal, the velocities E2v1n and E2v2n always have opposite senses
(signs). From the equation of conservation of momentum in the X1 direction we
have

v2x1 D v1x1 D v1 sin ˛: (5.30)

In turn, from the equation of restitution of a normal velocity (in theX2 direction)
we obtain

v2x2 D ��v1n D �v1 cos˛; (5.31)

where v2x2 D v2n and v1x2 D v1n, and vector v2n D ��v1n.
The desired velocity after the collision is equal to [see (5.30) and (5.31)]

v2 D
q

v22x1 C v22x2 D v1
p

sin2 ˛ C �2 cos2 ˛: (5.32)

The angle formed between the velocity v2 and the axisX2 can be calculated from
the following equation [dividing (5.30) by (5.31) by sides]:

tanˇ D v2x1
v2x2

D 1

�
tan˛: (5.33)

An impulse of the impact force calculated from the equation for the change in
momentum in the X2 direction [the second equation of system (5.27)] after taking
into account (5.29) is equal to

J D mv1.1C �/ cos˛: (5.34)
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5.4 A Physical Interpretation of Impact

Let us consider a small ball (of negligible radius) hitting a stationary deformable
obstacle (Fig. 5.3).

All equations of this section are formulated for collinear vectors, and therefore
the scalar notation is used. The reaction N1 of the obstacle is a result of the
deformation of its material, and during contact of two bodies the velocity of
magnitude v1 at the moment of impact decreases to zero for the time instant t0 C �1.
The reaction force N1 generates the impulse of a force of the form

J1 D
t0C�1Z
t0

N1d� D mv1 cos˛: (5.35)

In turn, the deformed material produces the impulsive force of reaction N2, which
generates the following impulse of a force:

J2 D
t0C�2Z
t0

N2d� D mv2 cosˇ: (5.36)

The ratio of impulses

J2
J1

D mv2 cosˇ

mv1 cos˛
D � (5.37)

describes the coefficient of restitution. The limiting values of this coefficient can be
determined easily on the basis of the following considerations. If the obstacle is a
plastic body, then the velocity v2 D 0 (the ball does not bounce off the obstacle) and
then � D 0. If the angle of incidence is equal to the angle of rebound and v2 D v1,
then the impact is perfectly elastic and � D 1. In general, 0 � � � 1.

Fig. 5.3 Impact of a small
ball of radius r ! 0 against a
deformable obstacle
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Table 5.1 Restitution
coefficient values Material �

Steel 0:56

Wood 0:26

Cast iron 0:66

Lead 0:20

Ivory 0:81

Glass 0:94

In Table 5.1 the values of the coefficients of restitution are given for an elastic
particle, and on the assumption that both colliding bodies are made of the same
material.

The model of a perfectly rigid body does not allow for an explanation of
the phenomenon of rebound of a body during impact. In order to explain this
phenomenon, it is necessary to introduce a model of a deformable body. If a particle
hits an obstacle in a normal direction (Fig. 5.3), then from (5.37) for ˛ D ˇ D 0 we
obtain

� D v2
v1
: (5.38)

The difference in kinetic energy before and after impact is equal to

T1 � T2 D mv21 �mv22
2

D mv21 �mv21�
2

2
D mv21

2

�
1 � �2

�
: (5.39)

The smaller the coefficient of restitution, the more kinetic energy is lost because
of conversion into heat. The kinetic energy is converted into heat completely during
plastic impact, whereas during perfectly elastic impact the energy is completely
preserved since � D 0.

5.5 Collision of Two Balls in Translational Motion

We will now consider the impact of two homogeneous balls of equal radii, but made
of different materials, which are in translational motion, where the vectors of the
velocities of their centers just before the instant of impact lie on a line passing
through the centers of both balls (Fig. 5.4).

From Fig. 5.4 we can see that in order for the first ball to hit the second ball, the
first one has to “chase” the other, that is, we have v1 > v2. It should be emphasized
that in this section, subscripts 1 and 2 correspond to the numbering of bodies; the
velocities of bodies before impact possess no superscripts, and those following
impact are denoted by a superscript prime (0). After the collision, which lasts for
a very short time, the balls move with unknown velocities v0

1 and v0
2. In the time
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Fig. 5.4 Collision of two balls moving in translational motion: (a) the instant just before collision;
(b) the collision; (c) the instant immediately following collision

interval, when the balls remain in contact with each other, their interactions are
treated as internal forces of this mechanical system, and, according to Newton’s
third law, they cancel out. Therefore, these forces cannot produce any change in
momentum of the considered mechanical system. It follows that the momentum of
the system before and after impact remains unchanged, that is,

m1v1 Cm2v2 D m1v
0
1 Cm2v

0
2; (5.40)

where in the preceding equation vector quantities are replaced by scalars since the
vectors are collinear. Recall that impact is called a central collision if a normal
to the surface of contact between the bodies (a line of impact) passes through the
centers of the colliding bodies. The impact of two bodies is called a direct collision
if the velocities of the bodies’ points at which contact occurs are directed along the
common normal to the surfaces of both bodies [4].

We adopt the following physical interpretation of the considered direct and
central collision of two balls. The first stage, corresponding to the time interval
�1, is associated with the build-up of a local deformation of both balls, where in the
time interval t0 C �1 � t0 the velocity of the first ball decreases, whereas the velocity
of the second increases until the velocities of both balls become equal to v�. At this
time instant, forces of mutual interaction reach their maximum magnitudes.

The deformations of the balls accumulate their kinetic energy in the form of a
potential energy that is subsequently transferred to each of the balls during the so-
called “second stage” of the collision in the time interval �2. At the end of this time
interval, the balls recover from the elastic deformations and gain velocities v0

1 and
v0
2, and starting from this moment they cease to act on each other.
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The increments of the momentum of both balls in the time interval from t0 to
t0 C �1 are equal to

m1v
� �m1v1 D �

t0C�1Z
t0

F d� D �J1

m2v
� �m2v2 D

t0C�1Z
t0

F d� D J1; (5.41)

where vector notation is not used for the reasons mentioned earlier, and F is the
force of interaction of the balls on each other. Adding (5.41) to each other by sides
we get

v� D m1v1 Cm2v2
m1 Cm2

: (5.42)

We will now consider the collision of balls in the time interval from t0 C �1 to
t0 C �1 C �2. In this case we have

m1v
0
1 �m1v

� D �
t0C�1C�2Z
t0C�1

F d� D �J2;

m2v
0
2 �m2v

� D
t0C�1C�2Z
t0C�1

F d� D J2: (5.43)

According to previous calculations, determination of the velocities of balls at the
time instant just after collision is possible only by the introduction of the notion of
a coefficient of restitution, that is,

J2 D �J1: (5.44)

We must determine four unknowns v�, J1, v0
1, v0

2 from (5.41), (5.42), (5.43), and
(5.44). Eventually, from those equations we obtain

v0
1 D .m1 � �m2/v1 C .1C �/m2v2

m1 Cm2

;

v0
2 D .m2 � �m1/v2 C .1C �/m1v1

m1 Cm2

: (5.45)
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In the case of plastic collision .� D 0/, from (5.45) we obtain

v0
1 D v0

2 D m1v1 Cm2v2
m1 Cm2

; (5.46)

and in the case of perfectly elastic collision .� D 1/ from (5.45) we have

v0
1 D .m1 �m2/v1 C 2m2v2

m1 Cm2

;

v0
2 D .m2 �m1/v2 C 2m1v1

m1 Cm2

: (5.47)

If m1 D m2, then from (5.46) and (5.47) we respectively obtain

v0
1 D v0

2 D v1 C v2
2

; (5.48)

v0
1 D v2; v0

2 D v1: (5.49)

The obtained equations for the velocities of balls following the collision allow
also for the analysis of the case of collision presented in Fig. 5.3. Into (5.45) one
should substitute v1 D v, v0

1 D v0, v2 D 0, m2 D 1. We divide the numerator and
denominator of those equations by m2, obtaining

v0
1 D lim

m2!1

�
m1
m2

� �
�

v1

1C m1
m2

D ��v1;

v0
2 D lim

m2!1
.1C �/m1

m2
v1

1C m1
m2

D 0: (5.50)

From the first equation of (5.50) it follows that after the collision the ball has a
velocity of smaller magnitude than before the collision and of opposite sense. If we
release the ball from height h onto horizontal ground and measure the maximum
height after the ball bounces off the ground, then

v0 D
p
2gh0; v D

p
2gh; (5.51)

and making use of (5.50) we obtain

� D
ˇ̌̌v0

v

ˇ̌̌
D
r
h0
h
; (5.52)
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Fig. 5.5 Direct collision of two balls

which allows for the experimental determination of the coefficient of restitution �.
In the case of collision of two balls it is possible to determine the loss of the kinetic
energy that occurs in the analyzed mechanical system

T � T 0 D 1

2

�
m1v

2
1 Cm2v

2
2

� � 1

2

�
m1v

02
1 Cm2v

02
2

�

D 1

2

�
1 � �2

� m1m2

m1 Cm2

.v21 � v22/: (5.53)

From the preceding equation for � D 0 we get

T � T 0 D 1

2

m1m2

m1 Cm2

.v21 � v22/; (5.54)

and for � D 1 we have T D T 0.

Example 5.1. Two balls of masses m1 and m2 are suspended from two weightless
rods. The ball of larger mass is deflected from the equilibrium position up to the
height h1 and then released with no initial velocity. Provided that the height h2
reached by the second ball after impact is known, determine the coefficient of
restitution (Fig. 5.5).

The potential energy of the first ball after its free release converts into kinetic
energy, which makes it possible to determine the velocity of the first ball just before
it hits the second ball, that is,

m1v21
2

D m1gh1:
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Since after the collision the balls are treated again as non-deformable, just after
impact the velocity of the second ball is equal to v0

2 and its kinetic energy turns into
potential energy according to the equation

m2v02
2

2
D m2gh2:

From two preceding equations we obtain

v1 D
p
2gh1; v0

2 D
p
2gh2:

Let us now make use of the second of equations (5.45) to obtain (for v2 D 0)

p
2gh2 D .1C �/m1

p
2gh1

m1 Cm2

;

and following the transformation we have

� D m1 Cm2

m1

s
h2

h1
� 1:

For � D 1 andm1 D m2 we obtain h1 D h2. �

5.6 Collision of Two Freely Moving Rigid Bodies

Let two rigid bodies of masses m1 and m2 start to make contact at point A at time
instant t i (Fig. 5.6). Let us assume that at time instant t i the mass centers of the
bodies have velocities viCi , and their angular velocities are equal to !iCi , i D 1; 2.
As can be seen from Fig. 5.6, the contact of bodies commences at point A, where
we assume a smooth surface of contact in order to neglect friction forces. According
to Newton’s third law, impact forces F of opposite senses are created that are
perpendicular to the surface of contact at point A. The bodies remain in contact
during the short time interval � , that is, tf D t i C � , where tf denotes the instant
when the contact between the bodies ceases.

Further motion of bodies after contact cessation can be analyzed on the basis of
the initial conditions and equations of motion of bodies (which take into account
the forces and the resistance of the medium) determined at time instant tf . Our aim
is to determine the velocities vfCi and !fCi , i D 1; 2, of both rigid bodies at time
instant tf , which are essential for further analysis of motion. We will proceed after
introducing the following assumptions [5]:
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Fig. 5.6 Collision of two
rigid bodies: (a) instant just
before collision t i ; (b)
collision t i < t < tf ;
(c) instant just after
collision t f
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(1) Only impact forces F are taken into account (the remaining forces are assumed
to be negligible).

(2) The positions of bodies in the system OX1X2X3 are the same at instants t i

and tf (they do not change during time interval �).
(3) Impact forces emerge and develop during time interval � along a common line

perpendicular to the surface of contact.

Axes of parallel coordinate systems associated with the bodies are chosen such
that one axis of each system (here number 1 axes) is parallel to the normal direction
at the point of collision.

By Theorems 5.1 [see also (5.12)] and 5.2 [see also (5.22)], we can write

	Pi D JFi ; 	Ki D ��!
CiA � JFi ; (5.55)

where i D 1; 2.
According to the introduced parallel body systems Ci X

0
1X

0
2X

0
3 we have

JF1 D E0
1JF ; JF2 D �JF1 D �E0

1JF : (5.56)

From the first equation of (5.55) we have

m1

�
vfC1 � viC1

�
D JF ; (5.57)

and from the second

	K1 D
ˇ̌̌
ˇ̌̌ E0

1 E0
2 E0

3

x0
1A1

x0
2A1

x0
3A1

JF 0 0

ˇ̌̌
ˇ̌̌ D E0

2JF x
0
3A1

� E0
3JF x

0
2A1
: (5.58)

From vector equations (5.57) and (5.58) we obtain the following six scalar
equations:

m1

�
vf1C1 � vi1C1

�
D JF ;

m1

�
vf2C1 � vi2C1

�
D 0;

m1

�
vf3C1 � vi3C1

�
D 0; (5.59)

2
664

I
C1
X 0

1
�IC1

X 0

1X
0

2
�IC1

X 0

1X
0

3

�IC1
X 0

2X
0

1
I
C1
X 0

2
�IC1

X 0

2X
0

3

�IC1
X 0

3X
0

1
�IC1

X 0

3X
0

2
I
C1
X 0

3

3
775
2
64!

f
11 � !i11
!
f
12 � !i12
!
f
13 � !i13

3
75 D

2
4 0

JF x0
3A1

�JF x0
2A1

3
5 ; (5.60)

where, here and also in the next equation,!ik denotes the component k of vector!i .
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Fig. 5.7 Velocities of points A1 and A2 at time instants t i and t f

Applying a similar procedure for the second rigid body we get

m2

�
vf1C2 � vi1C2

�
D �JF ;

m2

�
vf2C2 � vi2C2

�
D 0;

m2

�
vf3C2 � vi3C2

�
D 0; (5.61)
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C2
X 0

1
�IC2

X 0

1X
0

2
�IC2

X 0

1X
0

3

�IC2
X 0

2X
0

1
I
C2
X 0

2
�IC2

X 0

2X
0

3

�IC2
X 0

3X
0

1
�IC2

X 0

3X
0

2
I
C2
X 0

3

3
775
2
64!

f
21 � !i21
!
f
22 � !i22
!
f
23 � !i23

3
75 D

2
4 0

�JF x0
3A2

JF x0
3A2

3
5 : (5.62)

In total we have written 12 equations for the determination of 13 unknowns !kik ,
vklCm .i; k; l D 1; 2; 3; m D 1; 2/, and JF .

An additional equation can be obtained from the law of conservation of kinetic
energy. Here, however, relying on the previous calculations, we make use of the
vector calculus.

In Fig. 5.7 are shown the velocity vectors of point A at time instants t i and tf .
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The velocities of points A1 and A2 are equal to

vA1 D v1A1E
0
1 C v2A1E

0
2 C v3A1E

0
3;

vA2 D v1A2E
0
1 C v2A2E

0
2 C v3A2E

0
3: (5.63)

Because the force interaction takes place along the normal and there is no friction
or slip, we have

v2A1E
0
2 C v3A1E

0
3 D v2A2E

0
2 C v3A2E

0
3: (5.64)

Taking into account equality (5.64) in system (5.63) we obtain

vA1 � vA2 D E0
1.v1A1 � v1A2/: (5.65)

From (5.65) we obtain

� vf1A1 � vf1A2
vi1A1 � vi1A2

D 1 (5.66)

if we are dealing with a perfectly elastic rebound of bodies. On the other hand, if
the rebound is perfectly plastic, then

vf1A1 � vf1A2
vi1A1 � vi1A2

D 0: (5.67)

In the end, according to the previous calculations, in the intermediate case we
introduce the coefficient of restitution �, and formulas (5.66) and (5.67) take the
form

� vf1A1 � vf1A2
vi1A1 � vi1A2

D �; (5.68)

where 0 � � � 1.
The obtained equations allow also for an analysis of the simple case where the

second body m2 is stationary and the first one is reduced to a particle of mass m
(Fig. 5.2).

5.7 A Center of Percussion

Let a compound pendulum of mass m1 be suspended at point O and let it be hit by
a horizontally traveling bullet of mass m2 (Fig. 5.8).
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Fig. 5.8 A bullet’s impact against a compound pendulum

By Theorems 5.1 and 5.2 we obtain the following equations for the pendulum:

m1

�
vf1C1 � vi1C1

�
D J C J1O ;

m1

�
vf2C1 � vi2C1

�
D J2O;

IO. P'f � P'i / D Jr2; (5.69)

and for the bullet of mass m2

m2

�
vf1C2 � vi1C2

�
D �J; m2

�
vf2C2 � vi2C2

�
D 0; (5.70)

and the law of restitution takes the form

� vf1A1 C vf1C2 D �
�
vi1A1 � vi1C2

�
: (5.71)

At time instant t i in the case of the pendulum we have 'i D 0, P'i D 0, and in
the case of the bullet Px0i

1C2
D vi1C2 D vi Px0i

2C2
D 0. Because the pendulum cannot
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possibly move in the vertical direction, we also have Pxf2C1 D Pxi2C1 D 0, which
enables us to obtain the result J2O D 0 from the second equation of system (5.69).
In turn, from the second equation of (5.70) we get vf2C2 D 0 because vi2C2 D 0.

Eventually, the equations take the form

m1 P'f r1 D J C J1O ; IO P'f D Jr2;

m2

�
Pxf1C2 � �o

�
D �J; � P'kr2 C Pxk1C2 D ��ov; (5.72)

and their solutions

P'f D m2vor2.1C �/

IO Cm2r
2
2

; Pxf1C2 D vo
�
m2r

2
2 � �IO

�
IO Cm2r

2
2

;

J D m2voIO.1C �/

IO Cm2r
2
2

; J1O D m2vo.1C �/

IO Cm2r
2
2

.m1r1r2 � IO/: (5.73)

From the last equation of (5.73) it follows that J1O D 0, on condition that r2 D
IO

m1r1
. This means that the impulse of a force is not generated at the pivot point of

a pendulum if the mass m2 hits the pendulum at a certain point located at distance
IOm

�1
1 r

�1
1 from the pivot point; this point of a body is called a center of percussion.
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Chapter 6
Vibrations of Mechanical Systems

6.1 Introduction

Vibration theory belongs to well-developed branches of mechanics and physics. It
cannot be understood without a good command of the fundamentals of mathematics.
A large body of literature exists that is devoted to the theory of vibrations of
discrete and continuous systems; it is not cited here in full; we mention only a few
works [1–16], where an extensive bibliography covering the field can be found.
This book will give certain basic information concerning the vibrations of discrete
(or lumped) systems from the viewpoint of “mechanics.” The vibrations of lumped
mechanical systems are described by ordinary differential equations. We dealt with
such equations in Chaps. 1–3.

Let us assume that particles of a lumped material system (Fig. 3.1) are connected
to each other by means of massless spring-damper elements. Those connections
generate forces and moments of forces (torques) that are dependent on the dis-
placements and velocities of the particles. The imposition of initial conditions by
means of, for example, the initial deflection and velocity of particles for certain
known parameters of the system (masses, stiffnesses, damping coefficients, system
geometry) causes vibrations of the mechanical system under consideration. In
subsequent calculations we will confine ourselves only to small vibrations about
a certain static configuration of the system (equilibrium position). Recall that in
the case of non-linear systems, the system may have several distinct equilibrium
positions. For small vibrations about the considered equilibrium position it is
possible to conduct the linearization process, which consists in the expansion of
certain functions into a Taylor1 series (Maclaurin2 series) and taking into account
only linear terms (although linearization is not always possible). As a result, the
problem boils down to the analysis of linear differential equations with constant

1Brook Taylor (1685–1731), English mathematician known for Taylor’s theorem and Taylor series.
2Colin Maclaurin (1698–1746), Scottish mathematician working mainly in Edinburgh.

J. Awrejcewicz, Classical Mechanics: Dynamics, Advances in Mechanics
and Mathematics 29, DOI 10.1007/978-1-4614-3740-6 6,
© Springer Science+Business Media New York 2012
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or variable coefficients. A natural step in subsequent calucations will be the use of
Lagrange’s equations of the second kind.

6.2 Motion Equation of Linear Systems with N Degrees
of Freedom

In the general case, the vibrations of mechanical systems with many degrees of
freedom can be derived immediately from Newton’s second law (which is quite
popular) or from Lagrange’s equations of the second kind. Making use of the latter
possibility in general case we have

d

dt

@T

@ Pqn � @T

@qn
D Q.t; q; Pq/; n D 1; : : : ; N; (6.1)

where q D .q1; : : : ; qN /. Because we will consider small vibrations, it is possible
to conduct linearization of the system in the neighborhood of a trivial equilibrium
position q D 0 (this is always possible after moving the coordinate system to the
chosen equilibrium position). It turns out that, in the general case, for rheonomic
constraints the kinetic energy T D T .t; q; Pq/ occurring in (6.1) possesses a certain
characteristic structure described below. Because

T D 1

2

Z
m

v2dm D 1

2

Z
m

 
@r
@t

C
NX
nD1

@r
@qn

Pqn
!2

dm

D 1

2

Z
m

@r
@t

@r
@t

dmC
NX
nD1

Pqn
Z
m

@r
@t

@r
@qn

dmC 1

2

Z
m

 
NX
nD1

@r
@qn

Pqn
!2

dm

D T0 C T1 C T2; (6.2)

where

T0 D 1

2

Z
m

�
@r
@t

�2
dm

T1 D
NX
nD1

bn Pqn D
NX
nD1

0
@Z
m

@r
@t

@r
@qn

dm

1
A Pqn;

T2 D 1

2

NX
n;jD1

mnj Pqn Pqj D 1

2

NX
n;jD1

0
@Z
m

@r
@qn

@r
@qj

dm

1
A Pqn Pqj ; (6.3)
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and, as can be seen from (6.3), we have T0 D T0.t; q/, bn D bn.t; q/, mnj D
mnj .t; q/. Next we will consider a mechanical system with time-independent
(scleronomic) constraints, for which T D T .q; Pq/, and with a generalized force
Q D Q.q; Pq/, which means that T0 D T0.q/, bn D bn.q/, mnj D mnj .q/.
Let us expand the energy T D T2 and generalized forces into a series about the
equilibrium position q D 0 making use of a Maclaurin series of the following form
(for rheonomic constraints @r

@t
D 0, and hence T0 D T1 D 0):

T D T2 D 1

2
mnj .q/ Pqn Pqj D 1

2
mnj .0/ Pqn Pqj C : : : ;

Qn D Qn.q; Pq/ D �cnj Pqj � knj qj ; (6.4)

where in (6.4) the summation convention introduced earlier applies.
Eventually, from Lagrange’s equations we obtain a system of second-order linear

ordinary differential equations, which in matrix notation has the form

M Rq C C Pq C Kq D 0; (6.5)

where:

M D Œmnj � is a kinetic energy matrix or inertia matrix that is positive-definite and
symmetric;
C D Œcnj � is an arbitrary square matrix of forces of resistance to motion, that is,
forces dependent on velocity;
K D Œknj � is an arbitrary square matrix of configuration (positional) forces, that is,
forces dependent on displacement.

An important property of Lagrange’s equations, regardless of whether the system
is linear or non-linear, is their linearity with respect to accelerations. The obtained
equations have the form

mnj Rqj C fn.t; q; Pq/ D 0: (6.6)

In the case of a linear scleronomic system we obtain

mnj Rqj C cnj Pqj C knj qj D 0; (6.7)

which is the equivalent form of the matrix notation (6.5). It turns out that inertia
matrixes are always non-singular, that is, detŒmnj � ¤ 0 (for a proof refer to [12]).

For C D 0 from (6.5) we obtain

M Rq C Kq D 0; (6.8)
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and let us consider two square forms

.Mq ı q/ D
NX

n;jD1
mnj qnqj ;

.Kq ı q/ D
NX

n;jD1
knj qnqj ; (6.9)

which are positive-definite. It is known from linear algebra that if at least one of the
forms (6.9) is positive-definite, then there exists a real non-singular change of the
variables

q D U ; (6.10)

where det U ¤ 0, T D . 1;  2; : : : ;  N /
T , which makes it possible to reduce (6.9)

to their counterpart forms

.Mq ı q/ D
NX
kD1

 2k ; .Kq ı q/ D
NX
kD1

�k 
2
k : (6.11)

The change of variables

q D
NX
kD1

 kuk; (6.12)

allows us to introduce the normalization procedure

.Mun ı uj / D ınj ; (6.13)

where ınj is the Kronecker symbol. Differentiation of (6.10) yields

Pq D U P : (6.14)

Using Pq and P instead of q and  in the first equation of (6.11), (6.11) can be
read as the following positive definite forms:

2T D
NX
kD1

P 2k ; 2V D
NX
kD1

�k 
2
k : (6.15)

Owing to the introduced normal coordinate  k , the obtained simple form of
kinetic T and potential V energies allows to cast (6.8) in the form

R k C �k k D 0; k D 1; : : : ; N; (6.16)
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where all �k are positive. This means that each equation of (6.16) governs
the harmonic oscillations of a one-degree-of-freedom autonomous conservative
oscillator, and its oscillations have the form

 k D Ck sin.!kt C ˇk/; k D 1; : : : ; N; (6.17)

where the frequency!k D p
�k , and Ck and ˇk are arbitrary constants. Substituting

(6.17) into (6.12) yields

q D
NX
kD1

Ckuk sin.!k C ˇk/: (6.18)

Let us assume that only Ci ¤ 0. Then (6.18) allows us to defined the so-called
ith normal form or ith mode of oscillations

qi D Ciui sin.!i t C ˇi /: (6.19)

If we introduce the initial conditions in such a way that the i th mode of
oscillations is realized, then all generalized coordinates oscillate harmonically with
the same frequency !i . The geometrical properties of the modes are defined via
the coefficients of normal modes as a ratio of vectors ui , which can be normalized.
Assuming the solution

q D uei�t ; (6.20)

and substituting it into (6.8) we get

.K � �M/u D 0; (6.21)

and hence the algebraic equation

det.K � �M/ D 0 (6.22)

yields �j D j D 1; : : : ; N , where �j D !2j . On the other hand, each of the obtained
�j eigenvalues allows us to define the associated vector uj from (6.21).

Here the problem of normal forms of linear vibrations has been only briefly
addresed since it has been widely described in numerous books/monographs
devoted to oscillations of lumped mechanical systems.

6.3 Classification and Properties of Linear Mechanical
Forces

The matrix notation of linear equations of motion for lumped mechanical system
(6.5) will be used to introduce the classification of forces.



276 6 Vibrations of Mechanical Systems

The matrix of forces of resistance to motion C can always be represented in
the form

C D CS C CA; (6.23)

where �
CS
�T D CS ;

�
CA
�T D �CA; (6.24)

which means that CS (CA) is a symmetric (skew-symmetric) matrix.
Forces of the form CS Pq generated by the symmetric matrix CS are called

dissipative forces, provided that PqTCS Pq � 0 for an arbitrary vector Pq ¤ 0 (a strict
inequality describes the forces of complete dissipation).

Let us introduce the function

R D 1

2
PqTCS Pq; (6.25)

called a Rayleigh3 dissipation function [10]. The presented quadratic form has a
very important property, that is,

@R

@ Pq D CS Pq; (6.26)

which will be demonstrated for a two-element vector q.
We have

R D 1

2
Œ Pq1; Pq2�

�
c11 c12
c21 c22

	 � Pq1
Pq2
	

D 1

2
Œ Pq1c11 C Pq2c21; Pq1c12 C Pq2c22�

� Pq1
Pq2
	

D 1

2
Œ Pq21c11 C Pq1 Pq2c21 C Pq1 Pq2c12 C Pq22c22�;

@R

@ Pq D

2
664
@R

@ Pq1
@R

@ Pq2

3
775 D

�
c11 c12

c21 c22

	 � Pq1
Pq2
	
;

3John Rayleigh (1842–1919), English physicist awarded the Nobel prize in 1904.
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hence

@R

@ Pq1 D Pq1c11 C 1

2
Pq2.c21 C c12/ D Pq1c11 C Pq2c12;

@R

@ Pq2 D Pq2c22 C 1

2
Pq1.c21 C c12/ D Pq1c12 C Pq2c22;

because for the considered matrix CS D C, which means that c12 D c21.
The forces CA Pq are called gyroscopic forces. Below we present their

properties:

1. The power of gyroscopic forces is equal to N D PqTCA Pq D 0. Let us note that

NT D � PqTCA Pq�T D 

qT
�
CA Pq��T D �

CA Pq�T Pq
D PqT �CA

�T Pq D �PqTCA Pq D �N; (6.27)

where the definition of gyroscopic forces and the second equation of (6.24) were
used. Equality (6.27) is satisfied only if N D 0.

2. Generalized potential of gyroscopic forces.
Gyroscopic forces have the following generalized potential:

V.q; Pq/ D 1

2
qTCA Pq; (6.28)

since we obtain

d

dt

@V

@ Pq � @V

@q
D �CA Pq; (6.29)

which will be demonstrated for a two-element vector q.

We have

V D 1

2
Œq1; q2�

�
c11 c12
c21 c22

	 � Pq1
Pq2
	

D 1

2
Œ Pq1q1c11 C Pq1q2c21 C q1 Pq2c12 C q2 Pq2c22�;

@V

@q
D
�
1
2
. Pq1c11 C Pq2c12/
1
2
. Pq1c21 C Pq2c22/

	
;

@V

@ Pq D
�
1
2
.q1c11 C q2c21/
1
2
.q1c12 C q2c22/

	
;

d

dt

@V

@ Pq D
�
1
2
. Pq1c11 C Pq2c21/
1
2
. Pq1c12 C Pq2c22/

	
;
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d

dt

@V

@ Pq � @V

@q
D
�
1
2

Pq2.c21 � c12/
1
2

Pq1.c12 � c21/
	
;

CA Pq D
�
c11 c12
c21 c22

	 � Pq1
Pq2
	

D
�
c11 Pq1 C c12 Pq2
c21 Pq1 C c22 Pq2

	
;

which proves the validity of the formula, because in this case c11 D �c11 D 0,
c22 D �c22 D 0, c21 D �c12.

Also the matrix of positional forces K can be represented as the sum of a
symmetric and skew-symmetric matrix of the form

K D KS C KA;�
KS
�T D KS ;�

KA
�T D �KA: (6.30)

Forces KSq are called conservative forces or potential forces. Potential forces
are associated with the potential in the following way:

KSq D @V

@q
; (6.31)

where

V D 1

2
qT KSq: (6.32)

They have the following property. The work of those forces in a configuration
space along a certain closed curve is equal to zero, that is,

I
Knj qjdqn D 0: (6.33)

Forces KAq are called circulatory forces. They are orthogonal to the vector of
generalized coordinates, that is,

qT KAq D 0: (6.34)

For the planar case (a two-element vector q) a vector field of circulatory forces
consists of circles, which is depicted in Fig. 6.1.

Example 6.1. Let us consider a particle with mass m connected to a ring by means
of linear springs of stiffnesses k1 and k2 and viscous damping c, where the ring
rotates with angular velocity ! (Fig. 6.2).

We assume small linear vibrations, and non-linear geometric relations are
neglected.
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Fig. 6.1 Interpretation of
property (6.34) of circulatory
forces

Fig. 6.2 Mass m fixed by
means of spring-damper
elements to ring rotating with
angular velocity !

Let us introduce the Cartesian coordinate systemOX1X2X3 rigidly connected to
a ring, where the mass oscillates in the OX1X2 plane.

The kinetic energy of the mass in the system OX1X2X3 is equal to

T D 1

2
m


. Px1 � !x2/

2 C . Px2 C !x1/
2
� D T2 C T1 C T0;

where

T1 D m!.x1 Px2 � Px1x2/;

T2 D 1

2
m. Px21 � Px22/

T0 D 1

2
m!2.x21 C x22/:
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Potential energy accumulated in the springs is equal to

V D 1

2
k1x

2
1 C 1

2
k2x

2
2 ;

and the dissipation function has the form

R D 1

2
c Px21 :

Now, let us use Lagrange’s equations of the form

d

dt

�
@L

@ Pqi
�

C @R

@ Pqi � @L

@qi
D Qi; i D 1; 2;

where

L D T � V D1

2
m. Px21 C Px22/Cm!.x1 Px2 � Px1x2/

C 1

2
m!2.x21 C x22/� 1

2
k1x

2
1 � 1

2
k2x

2
2

and

q1 D x1; q2 D x2:

Let us successively calculate

@L

@ Px1 D m Px1 �m!x2; @L

@ Px2 D m Px2 Cm!x1;

d

dt

�
@L

@ Px1
�

D m Rx1 �m! Px2; d

dt

�
@L

@ Px2
�

D m Rx2 �m! Px1;

@R

@ Px1 D c Px1; @R

@ Px2 D 0;

@L

@x1
D m! Px2 Cm!2x1 � k1x1;

@L

@x2
D �m! Px1 Cm!2x2 � k2x2;

which after substitution into Lagrange equations gives

m Rx1 � 2m! Px2 C c Px1 �m!2x1 C k1x1 D 0;

m Rx2 C 2m! Px1 �m!2x2 C k2x2 D 0: (
)

The obtained ODEs can be rewritten in the form (Sect. 6.3)

M Rq C �
CA C CS

� Pq C .KO C KS/ q D 0;
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where particular matrices have the forms

M D
�
m 0

0 m

	
; CS D

�
c 0

0 0

	
; CA D

�
0 �2m!

2m! 0

	
;

KS D
�
k1 0

0 k2

	
; KO D

��m!2 0

0 �m!2
	

D �!2M;

KS D KO C KS :

Matrix M is the mass matrix, matrix CS is the damping matrix generated by
the Rayleigh dissipation function, CA is the skew-symmetric matrix generating
gyroscopic forces that couples the motion of the mass in two directions, KS is the
symmetric stiffness matrix, and KO D �!2M is a matrix generating circulatory
forces (centrifugal forces).

Using the definitions of matrices introduced previously, by those matrices we can
express particular terms of total energy of the system under investigation, that is,

T2 D 1
2

PqTM Pq; T1 D 1

2
qTCA Pq; T0 D !2

2
qT Mq;

V D 1
2
qTKSq; R D 1

2
PqTCS Pq:

In order to highlight the special properties of the analyzed system described
by (
) let us consider a special case for which c D 0, k1 D k2 D k.

From (
) we obtain

Rx1 � 2! Px2 C .˛2 � !2/x1 D 0;

Rx2 C 2! Px1 C .˛2 � !2/x2 D 0; (

)

where ˛2 D k
m

.
In this case gyroscopic forces play a stabilizing role in the investigated system,

although at first glance it seems that the system would exhibit unstable properties
since so-called negative stiffnesses appear in the system for !2 > ˛2. To verify the
system’s behavior, we seek its solutions in the form

x1 D X1e�t ; x2 D X2e�t :

Substituting the preceding solutions into (

) we obtain

�
�2 C .˛2 � !2/ �2!�

2!� �2 C .˛2 � !2/
	 �
X1

X2

	
D 0:
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A characteristic equation takes the form

�4 C 2�2.˛2 C !2/C .˛2 � !2/2 D 0:

This equation has the following roots:

�21 D �.˛ � !/2; �22 D �.˛ C !/2:

From the preceding calculations it follows that four roots are always imaginary
for any value of !, and therefore there is no instability.

Let us assume now that the system has only one degree of freedom, that is, let
the massm move only along the axis OX1. Setting x2 D Px2 D Rx2 D 0 in (

) from
the first equation we have

Rx1 C .˛2 � !2/x1 D 0;

which describes the motion of the mass along the axisOX1. However, in this case for
! > ˛ instabilities of vibrations appear in association with the so-called “negative
stiffness.”

It follows that enabling the mass to also move along the axis OX2 allows for the
elimination of vibrational instabilities.

6.4 Small Vibrations of Linear One-Degree-of-Freedom
Systems

Let us consider the case of forced vibrations of a system with one degree of freedom
(Fig. 6.3).

An equation of motion for the system takes the form

m Rx C c Px C kx D F0 cos!t (6.35)

or

Rx C 2h Px C ˛2x D q cos!t; (6.36)

where

c

m
D 2h; ˛2 D k

m
; q D F0

m
:

First, let us consider free vibrations of the system .F0 D 0/. We seek a solution
in the form

x.t/ D ert ; (6.37)
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Fig. 6.3 Vibrations
of a one-degree-of-freedom
system with damping and
harmonic excitation

which, substituted into (6.36), leads to the following characteristic equation:

r2 C 2hr C ˛2 D 0: (6.38)

The roots of this equation are given by

r1;2 D �h˙
p
h2 � ˛2: (6.39)

Therefore, a general solution has the form

x.t/ D A1er1t C A1er1t : (6.40)

If h > ˛, then the solution reads

x.t/ D e�ht
�
A1e

p
h2�˛2t C A2e�p

h2�˛2t
�
; (6.41)

and as can be easily noticed, limt!1 x.t/ D 0. A time response x.t/ tends to zero
without vibrations.

If h < ˛, then (6.39) takes the form

r1;2 D �h˙ i�; i2 D �1; (6.42)

where � D p
˛2 � h2, and the solution in this case has the form

x.t/ D 1

2
e�htRe


 NAei�t C Aei�t
�
; (6.43)

where NA and A are complex conjugates of each other.
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Fig. 6.4 Free damped vibrations of one-degree-of-freedom system

The transformation to a real form of the solution is enabled by the following
Euler formula:

ei�t D cos�t C i sin�t: (6.44)

We have

x.t/ D 1

2
e�htReŒ.AR � AI i/.cos�t C i sin�t/

C.AR C AI i/.cos�t � i sin�t/�

D e�ht .A1 cos�t C A2 sin�t/; (6.45)

where A D AR C AI i , AR D A1, AI D A2.
The third case remains to be considered, that is, h D ˛, which corresponds to a

critical damping coefficient ccr described by the equation

ccr D 2m

r
k

m
D 2

p
km: (6.46)

In this case we are dealing with a double root of the characteristic equation (see
[11]), and the solution has the form

x.t/ D .A1 C A2t/e
�ht : (6.47)

In the case of critical damping we do not observe any vibrations. Solution (6.45)
describes the process of damped harmonic vibrations whose time plot is shown in
Fig. 6.4.
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A characteristic of damped vibrations is that the maximum (minimum)
deflections are reached periodically after the time Td D 2

�
called a period of

damped vibrations. Therefore, we introduce the notion of a logarithmic decrement
in the form

ı D ln
x.t/

x.t C Td /

D ln
.A1 cos�tn C A2 sin�tn/e�htn


A1 cos�
�
tn C 2

�

�CA2 sin�
�
tn C 2

�

��
e�h.tnC 2

� /

D ln
1

e�h 2�
D 2

�
h: (6.48)

The logarithmic decrement can be used to determine a viscous damping coeffi-
cient of vibrations. Since, if we know ı, that is, the natural logarithm of the ratio of
two consecutive maximum deflections and the time interval between occurrences of
those deflections, from (6.48) we find the value of damping:

c D 2m
ı

Td
: (6.49)

In the end, let us consider the case of forced vibrations, that is, F0 ¤ 0. To
determine a solution we will exploit the notion of complex numbers. Equation (6.36)
takes the form

Rx C 2h Px C ˛2x D q.cos!t C i sin!t/ D qei!t : (6.50)

The preceding second-order differential equation is non-homogeneous. Its solu-
tion is the sum (superposition) of a general solution of the homogeneous differential
equation [i.e., (6.50) for q D 0] and a particular solution of non-homogeneous
(6.50). This latter solution is sought in the form

x D NAei!t : (6.51)

Substituting (6.51) into (6.50) we obtain

��!2 C 2h!i C ˛2
� NA D q; (6.52)

where NA is the complex number conjugate to A D AR CAI i .
From the preceding equation we get

NA D AR � AI i D q

.˛2 � !2/C 2h!i
: (6.53)
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In order to determine AR and AI , let us multiply the numerator and the
denominator of the right-hand side of (6.53) by Œ.˛2�!2/�2h!i�, thereby obtaining

AR �AI i D q.˛2 � !2/
.˛2 � !2/2 C 4h2!2

� 2h!q

.˛2 � !2/2 C 4h2!2
i; (6.54)

and hence we have

AR D q.˛2 � !2/
.˛2 � !2/2 C 4h2!2

; AI D 2h!q

.˛2 � !2/2 C 4h2!2
: (6.55)

Solution (6.51) has a real interpretation in the form

Re x.t/ D ReŒ.AR �AI i/.cos!t C i sin!t/�

D AR cos!t C AI sin!t D a cos.!t � ˇ/: (6.56)

Because

AR cos!t C AI sin!t D a cosˇ cos!t C a sinˇ sin!t; (6.57)

we have

AR D a cosˇ; AI D a sinˇ; (6.58)

and hence

a D
q
A2R C A2I ; tanˇ D AI

AR
: (6.59)

Because the general solution of the homogeneous equation of the form (6.45)
vanishes for t ! 1, only the particular solution of the non-homogeneous equation
of the form (6.56) remains. As can be seen, the response of the system is harmonic
and shifted in phase by the angle ˇ with respect to a driving force. From (6.59) we
obtain

a D qp
.˛2 � !2/2 C 4h2!2

D q

˛2
1r�

1 � �
!
˛

�2�2 C 4
�
h
˛

�2 �!
˛

�2 ;

ˇ D arctan
2h!

˛2 � !2
D arctan

2 h
˛
!
˛

1 � �
!
˛

�2 : (6.60)
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Fig. 6.5 Amplitude response
of an oscillator with harmonic
excitation and damping for
different values of ratio h=˛

The coefficient q=˛2 � F0=k D xst describes a static deflection, and the first of
(6.60) is transformed into

� � �
�!
˛

�
D a

xst
D 1r�

1 � �
!
˛

�2�2 C 4
�
h
˛

�2 �!
˛

�2 : (6.61)

The preceding function � D �.!
˛
/ describes the amplitude response (Fig. 6.5).

The second equation of system (6.60) describes a phase response (Fig. 6.6).
We obtain the case of vibrations of an undamped oscillator with a harmonic

excitation after setting h D 0. According to (6.56) we have

x.t/ D a cos!t (6.62)

for ˇ D 0 and ! < ˛ and

x.t/ D �a cos!t (6.63)

for ! > ˛. This means that before resonance the forced vibrations are in phase with
the external driving force, whereas following resonance the vibrations of the mass
are out of phase with the driving force.

The resonance takes place when ! D ˛, and then the amplitude goes to infinity.
Damping decreases amplitudes of resonant vibrations. Also the case h D 0 is
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Fig. 6.6 Phase response of an oscillator with harmonic excitation and damping for different values
of ratio h=˛

depicted in Figs. 6.5 and 6.6. Now we will show the method of application of a
function of a complex variable to solving the problem of vibrations of the system
depicted in Fig. 6.3 when it is subjected to two driving forcesF cos!t and F sin!t .

The equations of vibrations of the oscillator have the form

Rx1 C 2h Px1 C ˛2x1 D q cos!t;

Rx2 C 2h Px2 C ˛2x2 D q sin!t: (6.64)

The solutions of the preceding equations are, respectively,

x1 D a cos.!t � ˇ/;

x2 D a sin.!t � ˇ/ D a cos
�
!t � 

2
� ˇ

�
; (6.65)

where for both cases the amplitude and phase are described by (6.60).
Let us now introduce a complex excitation of the form

F D FR C iFI D F.cos!t C i sin!t/ D F ei!t ; (6.66)

and then the equation of vibrations of the analyzed oscillator takes the form

Rx C 2h Px C ˛2x D qei!t ; (6.67)

where now x is the complex variable and q D F=m.
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A particular solution of (6.67) has the form

x D aei.!t�ˇ/ D aei!te�iˇ; (6.68)

and substituting expression (6.68) into (6.67) we obtain

a.�!2 C 2h!i C ˛2q/e�iˇ D q (6.69)

or, in expanded form,

a.�!2 C 2h!i C ˛2q/.cosˇ � i sinˇ/ D q: (6.70)

Splitting the preceding equation into real and imaginary parts, we obtain

a.�!2 cosˇ C 2h! sinˇ C ˛2q cosˇ/ D q;

!2 sinˇ C 2h! cosˇ � ˛2q sinˇ D 0: (6.71)

The solution of this system gives the values of the amplitude and phase angle ˇ
described by (6.60).

From (6.68) it follows that

x D xR C ixI ; (6.72)

where

xR D a cos.!t � ˇ/; xI D a sin.!t � ˇ/: (6.73)

From those calculations it follows that the solution of the first (second) of (6.64)
is xR .xI /. In other words the real part of solution (6.72) corresponds to the real part
of the force (excitation) and the imaginary part of solution (6.72) corresponds to the
imaginary part of the force.

We will now present the geometric interpretation of solution (6.72). Let vector a
rotate around pointO with a constant angular velocity !.

According to Fig. 6.7 we have

a D aR C iaI D a cos.!t � ˇ/ER C ia sin.!t � ˇ/EI
D xRER C ixIEI : (6.74)

From (6.74) it follows that the projection of vector a onto the horizontal real axis
represents the real part of the solution, whereas the projection of the rotating vector
a onto the vertical axis represents the imaginary part of the solution.

Two successive differentiations of the rotating vector a lead to the determination
of the velocity and acceleration of the analyzed oscillator, and their projections onto
the real and imaginary axes give the velocities and accelerations of the oscillator
with driving forces F cos!t and F sin!t .
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Fig. 6.7 Vector a rotating
with constant angular
velocity !

According to relation (6.74) we have

Pa D ia!ei.!t�ˇ/ D �a! sin.!t � ˇ/ER C ia! cos.!t � ˇ/EI

D � PxRER C i PxIEI : (6.75)

We will demonstrate that vectors Pa and a are perpendicular to each other. We
have

a ı Pa D .xRER C ixIEI / ı .� PxRER C i PxIEI /

D � xR PxR � xI PxI D �a cos.!t � ˇ/.�a! sin.!t � ˇ//
� a sin.!t � ˇ/.a! cos.!t � ˇ// D 0: (6.76)

Moreover, vector Pa leads vector a through an angle 
2

. A similar situation occurs
for the acceleration Ra, which leads vector Pa through an angle 

2
, and projections

of this vector onto the axes give the accelerations of the oscillator for the case of
F cos!t and F sin!t . The relative orientation of vectors a, Pa, and Ra is shown in
Fig. 6.7.

In order to apply the described approach based on the introduction of a complex
variable, we will consider transverse vibrations of a disk mounted on a flexible
steel shaft of length l and circular cross section [14] (Fig. 6.8a) and disk imbalance
O 0C D e, where C is the disk mass center. The mass of the shaft is negligible as
compared to the mass m of the disk. According to Newton’s second law we have

m Rx1C D �kx1; m Rx2C D �kx2; (6.77)
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Fig. 6.8 Transverse vibrations of the disk (a) and the geometry of motion (b)

where

x1C D x1 C � cos'; x2C D x2 C � cos': (6.78)

The coefficient k D l3

48EI
is the bending stiffness of the shaft, and the third

degree of freedom of the disk associated with the possible occurrence of torsional
vibrations in its plane is neglected.

Let us introduce the complex representation in the following form:

x D x1 C ix2; xC D x1C C ix2C : (6.79)

Multiplying the second equation of (6.77) by i and adding these equations to each
other we obtain

RxC C ˛2x D 0; (6.80)

where now x and xC are complex variables.
In turn, according to relation (6.78), we have

x D .x1C � � cos'/C i.x2C � � sin'/

D x1C C ix2C � �.cos' C i sin'/ D xC � �ei'; (6.81)

which, substituted into (6.80), gives

RxC C ˛2xC D �˛2ei': (6.82)
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We can obtain the equation of vibrations of pointO
0

directly as

d2

dt2
�
x C �ei'

�C ˛2x D 0; (6.83)

which following transformations leads to the equation

Rx C ˛2x D �!2ei'; (6.84)

where ' D !t . A single equation in the complex plane describes transverse
vibrations of the disk.

The solution of (6.82) represents the displacement of mass center C of the disk
and has the form

xC D �

1 � .!=˛/2 ei!t ; (6.85)

and vector rC of magnitude

rC D �

ˇ̌̌
ˇ 1

1 � .!=˛/2

ˇ̌̌
ˇ (6.86)

rotates with angular velocity ! in the direction of shaft rotation. In turn, the
deflection of the shaft determined by point O 0 can be obtained from the solution
of (6.84) in the form

x D �.!=˛/2

1 � .!=˛/2 ei!t ; (6.87)

which allows for the determination of the vector of deflection of the shaft r in the
form

r D �
.!=˛/2

j1 � .!=˛/2j ; (6.88)

which rotates in the direction of shaft rotation with angular velocity !. The mass
center C remains in the plane of deflection of the shaft during vibrations.

In both cases [formulas (6.85) and (6.87)] it can be seen that if ! ! ˛, then we
are dealing with resonance and the velocity ˛ � ! � !cr is called a critical speed.

For large angular velocities of the shaft ! � ˛ its deflection following
application of the l’Hospital’s4 rule in (6.88) is equal to �, whereas the position
of the mass center of the disk rC ! 0 (i.e., it tends to the position of the axis of
rotation) which follows from (6.86).

So far we have considered the strongly idealized case where damping is not
present in the system. Following the introduction of damping replacing external

4Guillame de l’Hospital (1661–1704), French mathematician, taught by Leibnitz and Johann
Bernoulli, who published a l’Hospital rule that was, in fact, discovered by J. Bernoulli.
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resistances, the equation of vibrations (6.84) takes the form

Rx C 2h Px C ˛2x D �!2ei!t : (6.89)

For this equation we seek a solution in the form

x D Rei.!t�ˇ/: (6.90)

Substituting relation (6.90) into (6.89) we obtain

� !2RC 2h!iRC ˛2R D �!2eiˇ: (6.91)

From formula (6.91) it follows that

.˛2 � !2/R D �!2 cosˇ;

2h!R D �!2 sinˇ: (6.92)

From (6.92) we obtain the desired quantities

R

�
D .!=˛/2q

Œ1 � .!=˛/2�
2 C 4.h=˛/2.!=˛/2

;

tanˇ D �
2.h=˛/.!=˛/

1 � .!=˛/2
: (6.93)

The plot of R
�

is a function of
�
!
˛

�
and

�
h
˛

�
and is depicted in Fig. 6.9.

The relative position of the centroid O 0 and the mass center C of the disk
is shown in Fig. 6.10 [11]. For small values of the viscous damping coefficient
points O 0 and C lie approximately on a line perpendicular to the originally straight
axis of the shaft (away from resonance).

The increase of ! (with values of ˛ and h kept fixed) causes the increase of
the angle ˇ, which for ! � ˛ leads to ˇ D 180ı, and we are dealing with the
phenomenon of the self-centering of the shaft.

If in Fig. 6.3 instead of the harmonic excitation we assume an arbitrary time-
dependent driving force of the form F.t/, then the equation of motion of this system
takes the form

m Rx C c Px C kx D F.t/ (6.94)

or

Rx C 2h Px C ˛2x D q.t/; (6.95)

where now q.t/ D 1
m
F.t/.
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Fig. 6.9 Resonance plot
R
�

�
!
˛

�
for different values

of
�
h
˛

�

In order to solve (6.95), we apply a Laplace5 transform, that is, we map the
function X.s/ of a complex variable to the function x.t/ in the time domain, by
means of the following integral transformation:

X.s/ D
C1Z

�1
x.t/e�stdt; (6.96)

where s D c C i!, and further we determine the initial conditions for (6.95) for
t0 D 0. By means of algebraic transformations associated with (6.95) and variable s
in the complex domain, we can conduct the inverse transformation

x.t/ D L�1 ŒX.s/� D 1

2i

cCi!Z
c�i!

X.s/e�stdt; (6.97)

5Pierre-Simon Laplace (1749–1827), French mathematician and astronomer.
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Fig. 6.10 Relative position of geometric center O 0 and mass center C of disk depending on the
relation between ! and ˛

that is, from the complex domain to the time domain. In practice we do not calculate
such integrals, but we use a table of original functions and their transforms. Because
we are interested in a particular solution, during the analysis of (6.95) we assume
the following initial conditions: x.0/ D Px.0/ D 0. Applying the Laplace transform
to (6.95) we obtain �

s2 C 2hs C ˛2
�
X.s/ D Q.s/; (6.98)

and following transformation

X.s/ D Q.s/

˛2
1

1
˛2
s2 C 2 h

˛
1
˛
s C 1

: (6.99)
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Fig. 6.11 Firing of the gun barrel situated in a horizontal position

The right-hand side of (6.99) is the ratio of two transforms. By the convolution
theorem we have

f1.t/ 
 f2.t/ D
tZ

0

f1.�/f2.t � �/d� D
tZ

0

f1.t � �/f2.�/d�;

L Œf1.t/ 
 f2.t/� D F1.s/F2.s/;

L�1 ŒF1.s/F2.s/� D f1.t/ 
 f2.t/; (6.100)

and hence an original function of such a product is a convolution of time functions,
which are original functions of the aforementioned transforms.

On the other hand,

L�1
�
1

˛2
Q.s/

	
D 1

˛2
L�1 ŒQ.s/� D 1

˛2
q.t/;

L�1
�

1

T 2s2 C 2�T s C 1

	
D 1

T
p
1 � �2

e
�t
T sin

�p
1 � �2 t

T

�
; (6.101)

where � D h
˛

, T D 1
˛

.
According to (6.100) we obtain

x.t/ D
tZ

0

1

˛2
q.�/

˛2p
˛2 � h2 e�h.t��/ sin

�p
˛2 � h2.t � �/

�
d�

D
tZ

0

q.�/

�
e�h.t��/ sin�.t � �/d�; (6.102)

where � D p
˛2 � h2 and (6.102) is valid for c < ccr.

Example 6.2. In a gun barrel situated horizontally (Fig. 6.11) there is a projectile
of mass m, and the barrel of mass M is supported by means of a recoil mechanism
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(a spring and damper). Determine the recoil, that is, the displacement of the barrel
after the projectile leaves the barrel. Assume that the time in which the projectile
moves in the barrel is negligibly small, and the velocity of the projectile at the
moment when it leaves the barrel is equal to vp.

At the moment when the projectile leaves the gun barrel, let us assume x.0/ D 0,
Px.0/ D Px0.

The equation of motion of the barrel has the form

M Rx C c Px C kx D 0;

and its vibrations are excited by the initial velocity Px0. The motion of the barrel is
described by (6.45), from which, following the introduction of the initial conditions
mentioned previously, we obtain A1 D 0, A2 D Px0

�
. Eventually, the equation of

motion of the barrel has the form

x.t/ D Px0
�

e�ht sin�t:

The initial velocity of the projectile Px0 remains to be determined. To this end we
exploit the theorem of the conservation of momentum for a system composed of a
barrel and projectile (Sect. 1.1.4).

The momentum of the system at the instant when the projectile leaves the barrel
is equal to

p D M Px0 Cm. Px0 � vp/:

Under the conditions of the problem, before firing, the barrel and projectile have
velocities equal to zero. The momentum of the system at the moment just before
firing is equal to zero.

Because the momentum of the system has to be conserved, the desired magnitude
of the velocity is equal to

Px0 D m

mCM
vp:

In [15] it is shown that a solution obtained in this way differs only slightly from
a solution that takes into account the time of motion of the projectile in the barrel.

6.5 Non-Linear Conservative 1DOF System
and Dimensionless Equations

Let us consider the system from Fig. 6.3 with no damping and no excitation, but
with non-linear stiffness k D k.x/ (see [16]). The equation of motion of mass m
has the form

m Rx C k.x/ D 0; (6.103)
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and dividing by sides by the mass m we get

Rx C s.x/ D 0; (6.104)

and we assume the initial conditions

x.0/ D x0; Px.0/ D v0: (6.105)

Let us note that

Rx D d Px
dx

dx

dt
D v

dv

dx
; (6.106)

and substituting this relationship into (6.104) we obtain

v dv C s.x/dx D 0: (6.107)

Following integration we have

PxZ
v0

vdv D �
xZ

x0

s.�/d�; (6.108)

and further

Px2 � v20
2

D �
xZ

x0

s.�/d�; (6.109)

which allows for the calculation of the velocity

v � dx

dt
D ˙

vuuutv20 � 2
xZ

x0

s.�/d�: (6.110)

Separating the variables in (6.110) and integrating again, we get

t D
xZ

x0

d�

˙
vuutv20 � 2

�R
�0

s.�/d�

: (6.111)

We determine equilibrium positions from the algebraic equation s.x/ D 0, and
then choosing one of the positions .x0/we place there the origin of the axisOX , that
is, we will consider small vibrations about the equilibrium position x0 D 0. Our aim



6.5 Non-Linear Conservative 1DOF System and Dimensionless Equations 299

is to determine the period of oscillations T of the considered conservative system.
To this end we impose the following initial conditions on the system: x.0/ D A0,
Px.0/ D 0. Following the passage of time T

2
we obtain x

�
T
2

� D A1, Px � T
2

� D 0.
According to (6.111) we have

T

2
D

AZ
A0

d�

�
s

�2
�R
A0

s.�/d�

: (6.112)

The upper limit of integration A1 is determined from (6.110), that is, we have

vuuut�2
A1Z
A0

s.�/d� D 0: (6.113)

In this case, for an odd function s.�/, from (6.112) we get

T D 4

0Z
A0

d�

�
s

�2
�R
A0

s.�/d�

: (6.114)

Let us consider an odd function of the form

s.x/ D ax3; (6.115)

that is, our aim is to determine the vibrations of the oscillator described by the
equation

Rx C ax3 D 0: (6.116)

From formula (6.114) we obtain

T D 4

0Z
A0

d�

�
s

�2a
�R
A0

�3d�

D �4
r
2

a

0Z
A0

d�q
A40 � �4

: (6.117)

Introducing a new variable of the form

A0u D �; (6.118)
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from (6.117) we obtain

T D �4
r
2

a

0Z
1

d�q
A40 � u4A40

D 4

r
2

a

1

A0

1Z
0

dup
1 � u4

: (6.119)

Unfortunately, the integral in formula (6.119) cannot be expressed in terms of
elementary functions. However, it can be expressed through the function � , because
we have

1Z
0

dup
1 � u4

D 1

4
p
2
�

�
1

4

�2
: (6.120)

The function � .x/ is tabulated for 1 < x < 2, and additionally � .x/ D � .xC1/
x

.
Hence � .1

4
/ D 4� .1:25/, and from (6.119) we obtain the period

T D 7:418
�
A0

p
a
��1

: (6.121)

Now, let us turn to problems of reduction of equations to a dimensionless
form. Usually, during the idealization process it is necessary to introduce a certain
order of various elements by comparing them with each other and with respect to
characteristic quantities chosen in advance. For example, if one element has a length
of 1 cm, then a natural question arises: is this quantity small or large? The answer
to this question can be provided only by the initial formulation of the problem. It is
clear that if we investigate the motion of a satellite in near-Earth orbit, then we can
assume the length of 1 cm to be negligibly small. On the other hand, if we consider
a distance between molecules, then the length of 1 cm is an extremely large value.

Let us give another example. It is well known that air is compressible. But do we
always have to take into account the compressibility of the air? It depends on the
initial formulation of the problem. If an investigated object moves through the air
with small velocity V , then compressibility can be neglected while constructing the
mathematical model. However, if the velocity of the object is large, and even close to
or greater than the speed of sound, then, inevitably, compressibility has to be taken
into account. In this case, it is very convenient to introduce a dimensionless quantity
M D V=a called the Mach number, which plays an important role in aerodynamics.
For instance, at M  1 it is possible to make use of the idealized mathematical
model of incompressible gas, whereas for greater values of the Mach number one
should take into account air compressibility. A similar situation occurs during the
construction of mathematical models in other fields of science and technology,
where an important role is played by some other characteristic dimensionless
numbers, which, in general, are created by a combination of three dimensionless
quantities: length L, time T , and mass M . For the sake of convenience it is
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assumed that the dimension of the combinationF T 2=ML is equal to 1 (where F is
a force). In other words, one of the quantities F , T , L, or M can be chosen as the
independent one.

To recapitulate, all the variable quantities of a process under consideration
should be reduced to dimensionless quantities. This can be achieved by dividing
the process input variables into certain corresponding (in the sense of dimension)
characteristic quantities or their combinations: length L, velocity V , a viscous
damping coefficient c, spring stiffness k, dynamic viscosity �, etc. Therefore,
in various branches of science and technology the application of dimensional
analysis to every problem yields a set of characteristic dimensionless numbers –
the similarity parameters – whose values qualitatively describe the nature of the
investigated processes (similarity laws for processes). As examples we may cite
the numbers of Mach,6 Nusselt,7 Reynolds,8 Strouhal,9 Froude,10 Biot,11 and many
others. They can be very small or, conversely, very large.

The reduction of equations to a dimensionless form has other important features
as well. Usually after rescaling of the parameters, their number decreases and the
analyzed problem gains a metascientific character, that is, the description is valid in
distinct fields of science, such as mechanics, electrical systems, atomic physics, etc.

We will consider a particle mounted to a base by means of a certain massless
spring with non-linear characteristics (the aerodynamic drag and friction are ne-
glected). Let, at time instant t D 0, the point mass be deflected from an equilibrium
position by a certain value x�

0 and then released. The deflection of the body from
the original position at time instant t� is denoted by x�.t�/. The equation of motion
reads

d2x�

dt�2
C f .x�/ D 0; (6.122)

and we assume that f .x�/ D 0 for x� D 0.

6Ernst Mach (1838–1916), Czech/Austrian physicist and philosopher; the Mach number M D v0
v�

,
where v0 is the velocity of an object and v� the velocity of sound in the considered medium.
7Wilhelm Nusselt (1882–1957), German engineer; the Nusselt number N D hL

kf
, where L is the

characteristic length, h the convective heat transfer coefficient, and kf the thermal conductivity of
a liquid.
8Osborne Reynolds (1842–1912), Irish professor who studied fluid dynamics; the Reynolds
number Re D v�L

�
, where v� is the mean fluid velocity, L the characteristic length, and � the

kinematic viscosity of a fluid.
9Vincent Strouhal (1850–1922), Czech physicist; the Strouhal number Sr D fc3

U
, where f is the

frequency, c the coefficient of expansion, and U the flow rate.
10William Froude (1810–1879), English engineer; the Froude number (dimensionless) F r D v

c
,

where v is the characteristic velocity and c the characteristic velocity of water wave propagation.
11Jean-Baptiste Biot (1774–1862), French physicist, astronomer, and mathematician; the Biot
number Bi D hl

k
, where h is the heat transfer coefficient, l the characteristic length of a body,

and k the coefficient of thermal conductivity of the body.
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Let us expand the non-linear function f .x�/ into the Maclaurin series

f .x�/ D x� df

dx� C x�2

2Š

d2f

dx�2 C x�3

3Š

d3f

dx�3 C � � � ; (6.123)

where the derivatives dfi
dx�i are calculated at the point x� D 0.

Substituting relationships (6.123) into (6.122) we obtain

d2x�

dt�2
C x� df

dx� C x�3

6

d3f

dx�3 D 0; (6.124)

where it is assumed that f .0/ D d2f
dx�2 .0/ D 0, df

dx�
.0/ > 0.

Let us introduce the dimensionless quantities

x D x�

l
; t D t�

T
; (6.125)

where l and T are characteristic constants of length and time.
Let the time constant be described by the equation

�
T 2

df

dx� .0/
	

D Œ1�: (6.126)

Let us note that the preceding equation corresponds to

�
F T 2

ML

	
D Œ1�; (6.127)

where F is the force, T denotes time, M is the mass, and L denotes length.
Introducing dimensionless quantities (6.125) into (6.124) we obtain

l

T 2
d2x

dt2
C xl

df

dx� .0/C 1

6
x3l3

d3f

dx�3 .0/ D 0; (6.128)

and multiplying this equation through by T 2=l we have

d2x

dt2
C xT 2

df

dx� .0/C 1

6
x3T 2l2

d3f

dx�3 .0/ D 0: (6.129)

Following introduction of the quantities

ˇ0 D T 2
df

dx� .0/; ˇ1 D 1

6
T 2l2

d3f

dx�3 .0/; (6.130)
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(6.129) takes the form

d2x

dt2
C ˇ0x C ˇ1x

3 D 0: (6.131)

This equation plays an important role in non-linear mechanics and is called a
Duffing equation.

The initial condition x�.0/ D x�
0 assumes the dimensionless form of x.0/ D

x�

0

l
D x0.

6.6 One-Degree-of-Freedom Mechanical Systems
with a Piecewise Linear and Impulse Loading

In this section we will consider the vibrations of a one-degree-of-freedom system,
depicted in Fig. 6.12, loaded with a piecewise linear loading F.t/.

The considered loads F.t/ are shown in Fig. 6.13.
For the case presented in Fig. 6.13a, the equation of motion of the system shown

in Fig. 6.12 has the form

m Rx C kx D F0

t0
t (6.132)

for 0 � t � t0.
Dividing by mass m we have

Rx C ˛2x D F0

m

t

t0
D q0

t

t0
: (6.133)

The solution of the preceding equation is sought in the form

x D C1 cos˛t C C2 sin ˛t C x0

t0
t: (6.134)

Fig. 6.12 A model
of the investigated system
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Fig. 6.13 Models of “piecewise linear” loading

Substituting (6.134) into (6.133) we get

˛2x0 D q0: (6.135)

In order to determine the constants C1 and C2, one has to specify initial
conditions, which we assume to be in the form

x.0/ D x�; Px.0/ D Px�: (6.136)

Taking into account the first equation of system (6.136) in relation (6.134)
we obtain

C1 D x�; (6.137)

and differentiating (6.134) we have

Px D �˛C1 sin ˛t C ˛C2 cos˛t C x0

t0
: (6.138)

Taking into account the second initial condition of system (6.136) in relation
(6.138) we have

Px� D C2˛ C x0

t0
; (6.139)

hence we find

C2 D 1

˛

�
Px� � x0

t0

�
: (6.140)
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Substituting the determined constants into (6.134) and (6.138) we get

x D x� cos˛t C 1

˛

�
Px� � x0

t0

�
sin ˛t C x0

t0
t; (6.141)

x D �˛x� sin˛t C
�

Px� � x0

t0

�
cos˛t C x0

t0
: (6.142)

At the instant t0 the deflection and velocity, according to formulas (6.141) and
(6.142), are equal to

Nx.t0/ D x� cos˛t0 C 1

˛

�
Px� � x0

t0

�
sin˛t0 C x0; (6.143)

PNx.t0/ D �˛x� sin ˛t0 C
�

Px� � x0

t0

�
cos˛t0 C x0

t0
: (6.144)

For time t > t0 (6.133) takes the form

Rx C ˛2x D q0 � F0

m
; (6.145)

and we seek its solution in the form

x D x0 C NC1 cos˛t C NC2 sin ˛t; (6.146)

which means that at the instant t0 the time is measured from zero, and the initial
conditions are described by (6.143) and (6.144).

Substituting t D 0 into (6.146) and its derivative, and taking into account
relations (6.143) and (6.144), we obtain

x0 C NC1 D x� cos˛t0 C 1

˛

�
Px� � x0

t0

�
sin˛t0 C x0; (6.147)

˛ NC2 D �˛x� sin ˛t0 C
�

Px� � x0

t0

�
cos˛t0 C x0

t0
: (6.148)

Substituting the constants NC1 and NC2 into (6.146) we have

x D x0 C
�
x� cos˛t0 C 1

˛

�
Px� � x0

t0

�
sin ˛t0

	
cos˛t

C
�
�x� sin ˛t0 C 1

˛

�
Px� � x0

t0

�
cos˛t0 C x0

˛t0

	
sin ˛t; (6.149)
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and following further transformations we get

x Dx0 C
�
x� cos˛t0 C Px�

˛
sin˛t0 � x0

sin˛t0
˛t0

	
cos˛t

C
�
�x� sin˛t0 C Px�

˛
cos˛t0 C x0

�
1 � cos˛t0

˛t0

�	
sin ˛t: (6.150)

Let us now consider the case where ˛t0 ! 0 and we assume the following
approximations:

sin ˛t0 � 0; cos˛t0 � 1;
1 � cos˛t0

˛t0
� ˛t0

2
: (6.151)

We will show how the last approximation of (6.151) is obtained. We have

cos˛t0 D cos 0 � .cos 0/
.˛t0/

2

2
D 1 � .˛t0/

2

2
;

which substituted into the left-hand side of the third equation of (6.151) leads to the
result presented there.

Taking into account relation (6.151) in (6.150) we have

x D x0 C .x� � x0/ cos˛t C
� Px�

˛
C ˛x0t0

2

�
sin ˛t; (6.152)

and differentiating this equation we obtain

Px D �˛.x� � x0/ sin˛t C
�

Px� C ˛2x0t0

2

�
cos˛t: (6.153)

If ˛t0 ! 0, then from (6.152) we obtain

x D x0 C .x� � x0/ cos˛t C Px�

˛
sin ˛t: (6.154)

Let us now consider the case presented in Fig. 6.13b for initial conditions equal
to zero.

The equation of motion of the system has the form

Rx C ˛2x D q0; (6.155)

where q0 D F0
m

. The solution of (6.155) has the form

x D x0 C A sin ˛t C B cos˛t; (6.156)
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hence for x.0/ D 0, Px.0/ D 0 we obtain

x.0/ � B C x0 D 0;

Px.0/ � A˛ D 0; (6.157)

and eventually we have

x D x0.1 � cos˛t/ D q0

˛2
.1 � cos˛t/: (6.158)

This result can be obtained immediately from (6.154) after substituting x� D
Px� D 0.

Moreover, for cos˛tn D �1 we have x D 2q0
˛2

D 2F0
k

D 2x0, which means that
the dynamic action of the force F0 causes a deflection that is two times greater.

Let us now turn to the solution of the case shown in Fig. 6.13c. For t � ts there
is no loading and the system oscillates according to the equation

x.t/ D C1 cos˛t C C2 sin ˛t: (6.159)

At the time instant 0 � t � ts the system was loaded with force F0 of constant
magnitude (the case from Fig. 6.13b), and its vibrations were described by (6.158).
For the instant t D ts from (6.158) and (6.159) it follows that

x.ts/ � x0.1 � cos˛ts/ D C1 cos˛ts C C2 sin ˛ts; (6.160)

hence

Px.ts/ � x0˛ sin ˛ts D �C1˛ sin ˛ts C C2˛ cos˛ts: (6.161)

Let us multiply (6.160) by ˛ sin ˛ts and (6.161) by cos˛ts and then respectively
by �˛ cos˛ts and sin ˛ts . Adding the obtained results by sides we obtain the values
of the desired constants

C1 D x0.cos˛ts � 1/;
C2 D x0 sin ˛ts:

(6.162)

Substituting these constants into (6.159) we obtain

x.t/ D �x0 cos˛t C x0 cos˛ts cos˛t C x0 sin ˛ts sin ˛t

D �x0 cos˛t C x0 cos.˛ts � ˛t/

D x0 Œcos.˛ts � ˛t/ � cos˛t�

D x0

�
�2 sin

˛ts � ˛t C ˛t

2
sin

˛ts � ˛t � ˛t
2

�
(6.163)
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because

cos˛ � cosˇ D �2 sin
˛ C ˇ

2
sin

˛ � ˇ

2
:

Eventually relation (6.163) takes the form

x.t/ D �2x0 sin
˛ts

2
sin

�
˛ts � 2˛t

2

�

D 2x0 sin
˛ts

2
sin ˛

�
t � ts

2

�
: (6.164)

To recapitulate, for the time instant t � ts we have solution (6.160), and for
t > ts we have (6.164).

We introduce the following ratio into the calculations:

ts

T
D ts

2
˛; (6.165)

which taken into account in (6.164) yields

x.t/ D 2x0 sin

�
ts

T

�
sin

�
2t

T
� ts

T

�
: (6.166)

Let us note that

sin

�
ts

T

�
D 0; (6.167)

which means that x.t/ D 0 for . ts
T
/ D n , n D 1; 2; : : : , that is, for ts D nT .

Now, let us estimate the value of x.t/ for ts D T=2. From (6.166) we have

x.t/ D 2x0 sin


2

�
2t

T
� 1

2

�
D �2x0 cos 2

t

T
; (6.168)

which means that in this case (for ts D T=2) we have xmax for 2 tn
T

D 2n, that is,
for tn D T n.

In general, the time response x.t/ depends on the duration of action of the force
F0 relative to a period of free vibrations of the system T D 2=˛, namely:

1. For ts � 0:5T the maximum displacement xmax.t/ appears during application of
the loading and is equal to 2x0.

2. For ts < 0:5T the maximum displacement appears after the force F0 ceases to
act and is always smaller than 2x0.

3. For ts D T at the same time we have x.ts/ D Px.ts/ D 0, which means that the
system does not move.
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Let us consider now a certain special case of the loading depicted in Fig. 6.13c,
that is, for ts ! 0. According to the calculation of Sect. 5.1, the impulse of a force
is described by (5.4), and if F D F0 D const acts during time interval .0; ts/, then
from (5.4) we obtain

J D F0ts : (6.169)

The impulse of a force in this case is equal to the area of a rectangle of height F0
and base ts . Thus we can take various values of F0 and ts keeping the same value
of impulse J . A special case of the impulse of a force is an instantaneous impulse,
where we set J D const and the time of its duration ts ! 0, which results in
F0 ! 1.

Using the notion of the impulse of a force, (6.164) can be written in the form

x.t/ D J

m˛

sin ˛ts
2

˛ts
2

sin ˛

�
t � ts

2

�
; (6.170)

and proceeding to the limit as ts ! 0 we obtain

lim
ts!0

x.t/ D J

m˛
sin ˛t: (6.171)

In the preceding calculations it is assumed that the instantaneous impulse acts
at the time instant ts D 0, but if the impulse acts at an arbitrary instant ts , then
the motion of the considered one-degree-of-freedom system is described by the
following equation:

x.t/ D
8<
:
0 for t < ts;

J

m˛
sin ˛.t � ts/ for t � ts:

(6.172)

Figure 6.14, in turn, shows a series of instantaneous impulses.
Because we are dealing with a linear system, for which the superposition

principle is applicable, the motion of the analyzed system is described by

x.t/ D
NX
nD0

Jn

m˛
sin ˛.t � tn/: (6.173)

The notion of an instantaneous impulse of a force makes it possible to explain
the physical meaning of the response of a one-degree-of-freedom system subjected
to an arbitrary driving force F.t/ and described by (6.102). Because we consider
the vibrations of the system without damping, substituting h D 0 into (6.102) yields

x.t/ D 1

m˛

tZ
0

F.ts/ sin˛.t � ts/dts: (6.174)
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Fig. 6.14 A series of instantaneous impulses acting on a one-degree-of-freedom system

Fig. 6.15 Time plot of an arbitrary force F.t/

Let an arbitrary force F.t/ have the form presented in Fig. 6.15, where an
elementary impulse dJ D F.ts/dts is shown.

If the system is acted upon only by an elementary impulse, then for initial
conditions equal to zero and t � ts , according to (6.172), we have

dx.t/ D dJ

m˛
sin ˛.t � ts/ D F.ts/

m˛
sin˛.t � ts/dts: (6.175)

An extension of the action of an elementary impulse to the interval 0 � ts � t

makes it possible to determine the total displacement x.t/ through the integration
of elementary displacements (6.175), which results in (6.174).

At the end of this section we will consider the case of excitation of the system
shown in Fig. 6.12 by a series of impulses of short duration J.t/ and repeating
periodically, which is depicted in Fig. 6.16.
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Fig. 6.16 Excitation of a one-degree-of freedom conservative system by a series of periodic
impulses of force

A general solution of the differential equation

Rx C ˛2x D q.t/ (6.176)

during the action of only one impulse has the form

x.t/ D x0 cos˛t C Px0
˛

sin ˛t C 1

m˛

tsZ
0

F.ts/ sin ˛.t � ts/dts; (6.177)

which is valid for t > ts .
The instantaneous impulse of a force preserves the value of the integral, that is,

lim
ts!0

tsZ
0

F.t/dt D J D const: (6.178)

In order to preserve the constant value of J and for ts ! 0 the forceF.t�/ ! 1,
where t D t� denotes the time instant when the instantaneous impulse is applied.
This phenomenon can be described using the Dirac delta function ı.ts/ by the
equation

F.ts/ D J ı.ts/: (6.179)

Substituting relations (6.179) into (6.177) we get

x.t/ D x0 cos˛t C Px0
˛

sin˛t C J

m˛

tsZ
0

ı.ts/ sin˛.t � ts/dts: (6.180)
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Fig. 6.17 A unit step
function sign (t)

For linear systems the superposition principle applies, and thus the response of
the analyzed system to the sum of excitations by distinct forces is equal to the sum
of system responses to each of those excitations. Thus, the problem boils down to
the determination of the system response to an arbitrary excitation F.t/, provided
that we know the so-called time functions g.t/ corresponding to a transfer function
G.s/ in the domain of complex variable s, which can be represented by the equation

x.t/ D
tZ

0

g.t � �/F.�/d� D
tZ

0

g.t/F.t � �/d�: (6.181)

Calculation of the preceding integral is substantially simplified for the case
F.t/ D ı.t/ by virtue of certain properties of the function ı.t/, which will be
briefly described below [10].

The unit step function is described by the equation

1.t/ D 1

2
.1C sgn.t//; (6.182)

where

sgn.t/ D

8̂̂<
ˆ̂:
1 for t > 0;

0 for t D 0;

� 1 for t < 0;

(6.183)

and the function (6.183) is presented in Fig. 6.17.
If we introduce a parameter ˛, then we can describe a family of functions

1.˛; t/ D 1

2
C 1


arctan˛t; (6.184)

where

lim
˛!1 1.˛; t/ D 1.t/: (6.185)
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Fig. 6.18 Areas bounded by
curves ı.˛i ; t / for different
˛i , i D 1; 2; 3

Let us introduce the following function with parameter

ı.˛; t/ D d1.˛; t/
dt

D 1



1

1C ˛2t2
: (6.186)

Let us note that the area bounded by the curve ı.˛; t/ does not depend on the
parameter ˛ since

1Z
�1

ı.˛; t/dt D Œ1.˛; t/�1�1 D 1



h
2

C 

2

i
D 1; (6.187)

which is also illustrated in Fig. 6.18.
For ˛1 > ˛2 > ˛3 a maximum of the function ı.˛; t/ moves upward along the

vertical axis. An impulse function ı.t/ is defined as

ı.t/ D lim
˛!1 ı.˛; t/: (6.188)

The impulse function is equal to zero for t ¤ 0 and its value for t D 0 is equal to
infinity, and the area bounded by this function is equal to 1 .

R1
�1 ı.t � �/dt D 1/.

According to (6.186) we have

ı.t/ D d1.t/
dt

: (6.189)

Below we present two important properties of the Dirac delta function ı.t/:

1. The following equation holds true:

x.t/ı.t � �/ D x.�/ı.t � �/; (6.190)

since the function ı.t � �/ is different from zero only for t D � .
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2. The following equation holds true:

1Z
�1

x.t/ı.t � �/dt D x.�/: (6.191)

Exploiting property 1 we obtain

1Z
�1

x.t/ı.t � �/dt D
1Z

�1
x.�/ı.t � �/

D x.�/

1Z
�1

ı.t � �/dt D x.�/: (6.192)

Infinite limits of integration in (6.191) can be replaced with finite limits, but in
such a way that the argument of the function ı should be equal to zero within these
limits, that is,

1Z
�1

x.t/ı.t � �/dt D
�C"Z
��"

x.t/ı.t � �/dt D x.�/: (6.193)

If we now set F.t/ D ı.t/ in (6.181), then taking into account property 2 we
have

x.t/ D
tZ

0

g.t � �/ı.�/d� D
tZ

0

g.t/ı.t � �/d� D g.t/; (6.194)

and in control theory the function g.t/ is traditionally called an impulse response of
a system. Using property (6.177), (6.194) takes the form

x.t/ D x0 cos˛t C Px0
˛

sin ˛t C J

m˛
sin ˛t; (6.195)

where we further assume x0 D x.0/ D 0, Px0 D Px.0/ D 0 to simplify the
calculations.

The motion of a particle of massm is described by the equation

x.t/ D J

m˛
sin˛t; Px.t/ D J

m
cos˛t: (6.196)
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For the assumed initial conditions x.0/ D Px.0/ D 0 from (6.196) it follows that
they satisfy the following initial conditions: x.0/ D 0, Px.0/ D J=m. This leads to
the important conclusion that the action of an instantaneous impulse J is equivalent
to subjecting an autonomous system to a kinematic excitation Px.0/ D J=m while
retaining x.0/ D 0.

A motion of mass m described by the initial conditions x.0/ D 0, Px.0/ D J=m

has the form

x.t/ D x.0/ cos˛t C Px.0/
˛

sin ˛t D J

m˛
sin ˛t: (6.197)

Let us now return to the solution of our problem of excitation of the mass by
a series of impulses presented in Fig. 6.16, where this time we will exploit the
superposition principle.

The solution in the time interval T < t < 2T has the form

x.t/ D J

m˛
Œsin ˛t C sin ˛.t � T /� ; (6.198)

and in the time interval 2T < t < 3T the form

x.t/ D J

m˛
Œsin ˛t C sin ˛.t � T /C sin˛.t � 2T /� ; (6.199)

and, finally, in the time interval TN < t < TNC1 it takes the form

x.t/ D J

m˛
Œsin ˛t C sin ˛.t � T /C sin ˛.t � 2T /C � � �

� � � C sin ˛.t � nT /� D J

m˛

NX
nD0

sin˛.t � nT /: (6.200)

If we consider the one-degree-of-freedom mechanical system shown in Fig. 6.2,
that is, with viscous damping of the coefficient c, then, depending on the relation
between c and its critical value ccr, the impulse response of the system has the
following form:

1. For c < ccr:

g.t/ D

8̂<
:̂
0 for t < 0;

1

m
p
˛2 � h2 e�ht sin

�p
˛2 � h2t

�
for t � 0I

(6.201)
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2. For c > ccr:

g.t/ D

8̂<
:̂
0 for t < 0;

1

m
p
h2 � ˛2 e�ht sinh

�p
h2 � ˛2t

�
for t � 0I

3. For c D ccr:

g.t/ D
8<
:
0 for t < 0;

1

m
e�ht t for t � 0:

The example of vibrations of the previously mentioned non-autonomous os-
cillator with harmonic excitation described by (6.35) together with (6.102) make
it possible to explain the physical consequences of introducing the driving force
F0 cos!t .

Let the driving force be introduced in the following way:

F.t/ D
(
0 for t < 0;

F0 cos!t for t � 0:
(6.202)

Apart from the components of the solution discussed previously, that is, the one
associated with excitation by the initial conditions x.0/ D x0 and Px.0/ D Px0 and
the one associated with the action of the driving force at the time t > 0 described
by (6.56), a component describing the contribution from vibrations caused by a
sudden application of the force F0 cos!t at the time instant t D 0 appears.

This component also describes the free vibrations of the system, which are,
however, completely independent of the initial conditions.

Both components describe the so-called transient process and for t ! 1 and
when the damping h ¤ 0 is present they decay.

The solution of (6.35), which is the sum of the general solution of a homogeneous
equation without a driving force and two particular solutions with a driving force at
the time instant t D 0 in the form F0 and for t > 0 in the form F0 cos!t , reads

x.t/ D e�ht
�
x0 cos�t C Px0 C hx0

�
sin�t

	
C q

�

tZ
0

e�h.t��/ cos!� sin�.t � �/d�;

(6.203)
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and following integration we have

x.t/ D e�ht
�
x0 cos�t C Px0 C hx0

�
sin�t

	

C e�ht qp
.˛2 � !2/2 C 4h2!2

�
cosˇ cos�t C h cosˇ C ! sinˇ

�
sin�t

�

C qp
.˛2 � !2/2 C 4h2!2

cos.!t � ˇ/; (6.204)

where the angle ˇ is described by (6.58) and (6.59).
If we consider a transient state (i.e., we are interested in the initial process of

vibrations), then all three terms of solution (6.204) should be taken into account.
However, if we are interested in a steady state of vibrations, that is, when the
contribution from free vibrations is removed by viscous damping, then the first two
terms can be dropped to leave only the third term of solution (6.204), which was
analyzed earlier in detail in Sect. 6.4.

In the end, it is worth noting that the steady state of vibrations with no damping
.c D 0/ can be periodic or quasiperiodic because it depends on the ratio of
frequencies !=˛. If !=˛ D k=l , where k and l are commensurable natural
numbers, then the response is periodic. However, if the ratio !=˛ is an irrational
number, for example,

p
2, then the so-called quasiperiodic solution appears, where

two incommensurable frequencies ! and ˛ appear. In a linear system with one or
many degrees of freedom, chaotic vibrations cannot appear.

Example 6.3. Determine the equation of motion of a one-degree-of-freedom linear
oscillator with viscous damping and a piecewise linear excitation of the form

F.t/ D F0

�
1 � t

ts

�
for t < ts

and

F.t/ D 0 for t � ts

for initial conditions equal to zero.

The equation of motion of the oscillator has the form

m Rx C c Px C kx D

8̂̂<
ˆ̂:
F0

�
1� t

ts

�
for t < ts;

0 for t � ts;

where x.0/ D 0, Px.0/ D 0.
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According to (6.181) we have

x.t/ D
tZ

0

F.�/g.t � �/d�;

where: g.t/ D 1
m�

e�ht sin�t , � D p
˛2 � h2, 2hm D c, ˛2 D

q
k
m

.
The desired solution is determined by the following equations:

1. In the case t < ts :

x.t/ D F0

m�

tsZ
0

�
1 � �

ts

�
e�h.t��/ sin�.t � �/d�

2. In the case t � ts :

x.t/ D F0

m�

tZ
0

�
1 � �

ts

�
e�h.t��/ sin�.t � �/d�:

Let us consider case 1, in which the problem boils down to the calculation of the
following integral:

x.t/ D F0

m�

�
I
.i/
1 C I

.i/
2

�
;

I
.i/
1 D

tZ
0

e�h.t��/ sin�.t � �/d�

D e�ht
2
4sin�t

tZ
0

eh� cos��d� � cos�t

tZ
0

eh� sin��d�

3
5 ;

and

I
.i/
2 D � 1

ts

tZ
0

�e�h.t��/ sin�.t � �/d�

D e�ht

ts

2
4sin�t

tZ
0

�eh� cos��d� � cos�t

tZ
0

�eh� sin��d�

3
5 :
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First, let us calculate the terms of the integral I .i/1 , where during the calculations
we will make use of the method of integration by parts based on the formula

Z
f .x/g0.x/dx D f .x/g.x/ �

Z
f 0.x/g.x/dx; ; (
)

on the assumption that the derivatives of functions f and g are continuous.
Using the preceding equation we obtain

A �
tZ

0

eh� cos��d� D
�
1

h
eh� cos�t

	t
0

C �

h
B;

B �
tZ

0

eh� sin��d� D
�
1

h
eh� sin�t

	t
0

� �

h
A:

Solving the preceding system of equations with respect to unknowns A and B
we obtain

A D eht

h2 C �2
.h cos�t C � sin�t/ � h

h2 C �2
;

B D eht

h2 C �2
.h sin�t � � cos�t/C h

h2 C �2
:

Taking into account the preceding calculations we obtain

I
.i/
1 D e�ht ŒA sin�t � B cos�t�

D �

h2 C �2

�
1 � e�ht cos�t

� � he�ht

h2 C �2
sin�t:

Let us now consider the case I .i/2 , in which the problem boils down to the
calculation of two integrals

tZ
0

�eh� cos��d� and

tZ
0

�eh� sin��d�:

Also in this case we apply the method of integration by parts. Let us set f D �

and g0 D eh� cos�� , and from formula (
) we obtain
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tZ
0

�eh� cos��d� D tA �
tZ

0

Ad� D teht

h2 C �2
.h cos�t C � sin�t/ � ht

h2 C �2

�
tZ

0

eh�

h2 C �2
.h cos�� C � sin��/ d� C ht

h2 C �2

D teht

h2 C �2
.h cos�t C � sin�t/ � h

h2 C �2

tZ
0

eh� cos��d�

� �

h2 C �2

tZ
0

eh� sin��d� D teht

h2 C �2
.h cos�t C � sin�t/

� h

h2 C �2

�
eht

h2 C �2
.h cos�t C � sin�t/ � h

h2 C �2

	

� �

h2 C �2

�
eht

h2 C �2
.h sin�t � � cos�t/C �

h2 C �2

	

D teht

h2 C �2
.h cos�t C � sin�t/

C eht

.h2 C �2/2



.�2 � h2/ cos�t � 2h� sin�t

�C h2 � �2
.h2 C �2/2

:

Similarly we calculate

tZ
0

�eh� sin��d� D teht

h2 C �2
.h sin�t � � cos�t/

C eht

.h2 C �2/



.�2 � h2/ sin�t � 2h� cos�t

� � 2h�

.h2 C �2/2
:

Substituting the results obtained earlier, for case 1 we obtain

I
.i/
1 De�ht

(
sin�t

�
eht

h2 C �2
.h cos�t C � sin�t/ � h

h2 C �2

	

� cos�t

�
eht

h2 C �2
.h sin�t C � cos�t/C �

h2 C �2

	 )
;
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I
.i/
2 D � e�ht

ts

(
sin�t


teht

h2 C �2
.h cos�t C � sin�t/

C eht

.h2 C �2/2



.�2 � h2/ cos�t � 2h� sin�t

�C h2 � �2
.h2 C �2/2

�

� cos�t


teht

h2 C �2
.h sin�t � � cos�t/

C eht

.h2 C �2/2



.�2 � h2/ sin�t � 2h� cos�t

� � 2h�

.h2 C �2/2

�)
:

In a similar way we carry out the calculations for case 2, that is, for t � ts . In
this case following the transformations we eventually obtain

x.t/ D F0

m�

(
1

.h2 C �2/2ts
e�h.t�ts /

"
.h2 � �2/ sin�.t � ts/C 2h� cos�.t � ts/

#)

� F0

m

(
1

.h2 C �2/2
e�ht

"�
1C 2h

h2 C �2

�
cos�t

C 1

�

�
hC h2 � �2

.h2 C �2/ts

�
sin�t

#)
:
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Chapter 7
Elements of Dynamics of Planets

7.1 Introduction

For a long time the structure of the universe has aroused admiration and dread, and
for a long time people have tried to explain the phenomena of the cosmos. However,
not much has changed for hundreds of years in this field of human activity.

If a body moves in space as a real element of the Universe (a planet) or an object
artificially introduced into space by humans (e.g., an artificial satellite, spacecraft),
then it is subjected to, for example, gravitational interactions with other bodies
(planets), forces of resistance associated with atmospheres surrounding the planets
(bodies) that can be non-homogeneous, and forces caused by the pressure of the
solar wind.

A simple problem of planetary dynamics is the so-called two-body problem,
which boils down to the analysis of the dynamics of two particles. Despite the
simplicity of the statement, this problem is capable of modeling the motion of
planets of the Solar System or artificial satellites because the forces of resistance
mentioned earlier are small compared to the forces of gravitational interaction of a
planet and the Sun, or an artificial satellite and the Earth.

From such a point of view a “particle” is a certain “asymptotic” approximation
of the object whose dimensions are negligibly small compared to its distances from
other “particles” of the considered system. Let us note that, apart from the mass,
such a particle can have an electric charge, be situated in a gravitational force field,
etc. In a Newtonian description of motion of planets, the notion of free motion means
that an arbitrary particle in the R3 space is acted upon by each of the remaining
particles. The movements of these particles are the results of the particles’ mutual
interactions, for instance, in the form of gravitational forces.

In order to observe the motion of particles in such a physical space, we have to
introduce certain reference systems. These are real or virtual physical objects that
either move or are stationary and from where a subject makes observations or carries
out measurements of motion.

J. Awrejcewicz, Classical Mechanics: Dynamics, Advances in Mechanics
and Mathematics 29, DOI 10.1007/978-1-4614-3740-6 7,
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Much like during the analysis of DMSs, also here it is convenient to introduce
a certain right-handed Cartesian coordinate system and determine the positions
of particles by their position vectors rn, n D 1; : : : ; N . These vectors are time
dependent rn D rn.t/, which follows from the force interactions affecting those
particles.

There might be infinitely many reference systems, but they are related by certain
relationships described by Galileo’s principle of relativity, which includes the
following elements.

1. All mechanical phenomena take place in R3 space, which is common (the same)
for all objects (bodies) moving in this space.

2. The phenomena taking place in this space are ordered in time, and this order is
independent of the motion of bodies.

3. Descriptions of the phenomena (or the motion of bodies) are identical in each of
the adopted coordinate systems, on the condition that they remain at rest or move
in uniform (rectilinear) motion.

If we take two Cartesian coordinate systems OX1X2X3 and OX 0
1X

0
2X

0
3, then the

relationships between the position vectors of a particle and time in both systems
read

r0 D r � vt;

t 0 D t; (7.1)

where v D const is the velocity of the systemOX 0
1X

0
2X

0
3 with respect to OX1X2X3.

Both systems OX1X2X3 and OX 0
1X

0
2X

0
3 are inertial (their axes are constantly

mutually parallel and move relative to each other in uniform rectilinear motion with
velocity v). At the initial time instant t 0 D t D 0 we haveO 0 D O .

Differentiating (7.1) we obtain

Pr0 D Pr � v;

Rr0 D Rr: (7.2)

In other words, the laws of dynamics should be according to Galileo’s principle
of relativity invariant under transformations (7.1) and (7.2). Let us note that the
notion introduced by Newton of force being a vector does not represent certain
attributes of particles, such as gravitational mass or electric charge.

On an arbitrary particle An of a material system, in general, acts a force that is
dependent on all the remaining particles at instant t of the form Fn.r1; : : : ; rN ;
Pr1; : : : ; PrN ; t/, which means that it also depends on the position and velocity
of the analyzed particle An. According to Newton’s second law, the motion of
every particle in the space R3 is described by a system of N second-order vector
differential equations of the form

mn Rrn.t/ D Fn.r1; : : : ; rN ; Pr1; : : : ; PrN ; t/; n D 1; : : : ; N: (7.3)
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Systems whose motion is described by (7.3) are called inertial systems. An
arbitrary method leading to the determination of the relations rn.t/ is called the
integration of equations of motion (7.3).

In the general case the obtained system of non-linear differential equations (7.3)
is not integrable. If exclusively by means of analytical operations (i.e., not using
numerical procedures) we are able to determine the solution of system (7.3), then
we say that system (7.3) is integrable by quadratures.

It turns out that systems like (7.3) written in an arbitrary way, in general, do
not model the motion of a given mechanical systems. That is because they have
to satisfy Galileo’s principle of relativity as well as certain properties of time and
space. Taking into account relations (7.2), the invariance of (7.3) under a Galilean
transformation (7.1) leads to the determination of the same magnitudes of forces in
the form

1

m0
n

F0
n.r

0
1; : : : ; Pr0

N t
0/ D 1

m0
n

F0
n.r1 � vt; : : : ; PrN � v; t/

D 1

mn

Fn.r1; : : : ; PrN ; t/: (7.4)

If in the considered space we are faced with small speeds compared to the speed
of light, then masses of bodies do not change, and the forces Fn.r1; : : : ; rn; : : : ;
rN ; Pr1; : : : ; Prn; : : : ; PrN ; t/ depend on the radius vector rn of particle An, and the
velocity of this vector Prn through the difference rn � rj , where j D 1; : : : ; N ,
j ¤ n, because jrn � rj j denotes the distance between particle n and each of the
remaining particles j .

The considered R3 space should be physically isotropic. In other words, motion
along a straight line of a body subjected to a certain resultant force is the same
regardless of the direction in which the force acts. Homogeneity of R3 space means
that phenomena proceed identically in different locations in space at the same
time instant. Homogeneity of time means that the phenomena proceed identically
regardless of the time instant at which they occur. Homogeneity and isotropy imply
an invariance of (7.3) under arbitrary translations and rotations of the coordinate
system. The homogeneity of time implies an invariance of (7.3) under arbitrary
translations of a particle along the time axis.

Space isotropy means that the field of forces Fn.r1; : : : ; PrN ; t/ is a vector field,
that is, the positions of particle An and the forces acting on it in the coordinate
systems OX1X2X3 and OX 0

1X
0
2X

0
3 are given by the following formulas:

r0
n D Arn;

F0
n.r

0
1; : : : ; Pr0

N ; t
0/ D AFn.r1; : : : ; PrN ; t/; (7.5)

where, as was shown earlier, A is the constant rotation matrix. Relations (7.5)
indicate that the quantities occurring there are vectors.
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Fig. 7.1 A schematic of
relation (7.8) with vectors r1 ,
r2, rN not drawn for clarity

The homogeneity of space implies that the following relation is satisfied:

Fn.r1 C c; : : : ; rN C c; Pr1; : : : ; PrN ; t/ D Fn.r1; : : : ; rN ; Pr1; : : : ; PrN ; t/;
rn � rj D c; n; j D 1; : : : ; N: (7.6)

Likewise, the homogeneity of time implies that the following relation is satisfied:

Fn.r1; : : : ; PrN ; t C t0/ D Fn.r1; : : : ; PrN ; t/: (7.7)

Because the forces acting on particles are generated by these particles, they
should be dependent on the relative positions and velocities of those particles, that is,

Fn D Fn.rn � r1; : : : ; rn � rj ; : : : ; Prn � Pr2; : : : ; Prn � PrN /; n D 1; : : : ; N; (7.8)

which is presented in Fig. 7.1.
From relations (7.8) it follows that the force acting on a particle of mass mn

depends on the interactions with each of the remaining particles of the system

through vectors
���!
AnA1,

���!
AnA2; : : : , but it does not depend on the mutual interactions

of other particles, that is, neither on vectors
���!
AnAj , n; j D 1; : : : ; N , and n ¤ j ,

nor on their time derivatives. As a result we obtain

Fn.: : : ; rn � rj ; : : : / D
X

n;jD1:::N
.n¤j /

Fnj .rn � rj ; Prn � Prj /: (7.9)
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If in (7.9) we subsequently introduce the symmetry principle, that is, Fnj D Fjn,
which means that

Fnj .rn � rj ; Prn � Prj / D �Fjn.rj � rn; Prj � Prn/; (7.10)

then we obtain Newton’s third law.
From (7.10) it follows that Fnj C Fjn D 0, that is, the forces act along the

same direction, which, however, is generally different from the direction of rn � rj .
The forces will act along a straight line connecting particles An and Aj if they are
independent of the velocity Prn � Prj .

7.2 Potential Force Fields

The previously mentioned gravitational or electrostatic forces are generated by
so-called potential force fields. Those forces do not depend on the velocities of
particles, and the work done by them on a closed path vanishes (i.e., there is
no dissipation or delivery of energy to the system). Such forces have certain
corresponding functions called potentials of forces. For example, the potential (the
potential energy) is the energy corresponding to compression or elongation of a
spring.

Let the force from an arbitrary point of the R3 space, whose position is described
by the radius vector r (Fig. 7.1), act on particleAn, which is determined by vector rn:

Fn.r � rn/ D �rrVn.jr � rnj/; (7.11)

where Vn.jr � rnj/ is the potential of a force field and differentiation is carried out
with respect to vector r.

Let us now consider any two points n and j of the field. According to Newton’s
third law we have

rrj Vn.jrj � rnj/C rrnVj .jrn � rj j/ D 0: (7.12)

Because jrj � rnj D jrn � rj j, so Vn D Vj � Vnj .jrj/ D Vjn.jrj/, where r
describes the position of an arbitrary point of the potential force field.

Because every particle n D 1; : : : ; N of a force field moves with the velocity Prn,
so the kinetic energy of the system of particles

T D 1

2

NX
nD1

mn Pr2n; (7.13)

and the potential energy

V D 1

2

NX
n;jD1
n¤j

Vnj .jrn � rj j/: (7.14)
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The total energy of the system remains unchanged during its motion, that is, the
integral of motion of the system has the form

E D T C V D const: (7.15)

7.3 Dynamics of Two Particles

This chapter was written on the basis of [1–5] and the author’s own studies. Let us
limit ourselves in our calculations in physical space to N D 2. The problem boils
down to the following. Knowing the positions and velocities of particles of masses
mn .n D 1; 2/ in the adopted coordinate system, determine the motion of these
particles on the assumption that between them there exist gravitational forces that
are consistent with Newton’s law of gravitation (see Markeev [1]).

Let us introduce an absolute Cartesian coordinate system whose origin O lies
at the mass center of the Solar System and whose axes are directed toward certain
fixed stars. The introduction of such a coordinate system requires some commentary.
Galileo’s principle of relativity (the homogeneity of time, space, and the R3 space
isotropy) reduced our calculations to the internal interactions of the particles. In the
Solar System

PN
nD1 mn � 10�3MS, where MS is the mass of the Sun.

The action of all the planets of the Solar System on the Sun is negligibly small
because of the Sun’s large mass, and we can assume that the Sun remains at rest and
take as its mass center the origin of the absolute coordinate systemOX1X2X3. With
point A1 D O 0 we associate the coordinate system O 0X 0

1X
0
2X

0
3 of axes parallel to

the absolute system OX1X2X3 (Fig. 7.2) because the dimensions of the body tend
to zero. Another point A2 is described in the absolute coordinate system by radius
vector r2.

Fig. 7.2 Motion of two
particles in R3 space
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The force acting on mass m2 from the side of mass m1 has the following form
[see (7.11)]:

F2.r � r1/ � F12 D �rr1V2.jr � r2j/ D �Gm1m2

r312
r12;

and the force acting on mass m1 from the side of mass m2 has the form

F21 D �Gm1m2

r321
r21 D G

m1m2

r312
r12;

where G is the universal gravitational constant.
Particles m1 and m2 remain in equilibrium under the action of the following

forces:

m2

d2r2
dt2

D F12; m1

d2r1
dt2

D F21;

that is,

m1Rr1 D G
m2m1

r212

r12
jr12j ;

m2Rr2 D G
m1m2

r212

r12
jr12j : (7.16)

Then, from Fig. 7.2 it follows that

r1 C r12 D r2; (7.17)

that is, differentiating and taking into account relation (7.16) we have

Rr12 D Rr2 � Rr1 D �k r12
r312
; (7.18)

where k D G.m1 Cm2/.
The preceding equation describes the motion of a system of one degree of

freedom, that is, the motion of a body of mass m2 with respect to point O of
mass m1. Integrating (7.18) we determine r12.t/, and consequently we determine
r1.t/ and r2.t/ after integrating the now linear (7.16) whose right-hand sides are
known.

It is also possible to determine the motion of the mass center of particles A1 and
A2. Let point C be the mass center of the moving particles A1 and A2, and let its
position be described by radius vector rC. By definition we have

rC D m1r1 Cm2r2
m1 Cm2

;
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and solving a system consisting of the preceding equation and (7.17) we obtain

r2 D rC C m1

m1 Cm2

r12;

r1 D rC � m2

m1 Cm2

r12: (7.19)

The mass center C moves in uniform rectilinear motion. Knowing vectors r12.t/,
r1.t/, and r2.t/ we can determine rC.t/. The obtained differential (7.18) can be
interpreted as the motion of a reduced mass with respect to a fixed attracting
centerO 0.

Subtracting (7.16) by sides we have

m2 Rr2 �m1Rr1 D �2Gm1m2

r212

r12
jr12j ;

and from (7.18) we obtain

Rr2 � Rr1 D �Gm1 Cm2

r212

r12
jr12j :

Dividing the two preceding equations by sides we have

m2 Rr2 �m1 Rr1
Rr2 � Rr1 D 2

m1m2

m1 Cm2

;

that is,

2
m1m2

m1 Cm2

.Rr2 � Rr1/ D �2Gm1m2

r212

r12
jr12j :

Eventually, the equation of vibrations of such a system with one degree of
freedom has the form

m1m2

m1 Cm2

Rr12 D �Gm1m2

r212

r12
jr12j D �rV12.r/: (7.20)

In the considered system we are dealing with the following three integrals of
motion:

1. Total energy:

E D 1

2
m1Pr21 C 1

2
m2 Pr22 C V .jr1 � r2j/ I (7.21)

2. Total system momentum:

P D m1Pr1 Cm2Pr2I (7.22)
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3. Total system angular momentum:

K D r1 �m1 Pr1 C r2 �m2Pr2: (7.23)

Equation (7.22) proves the linear dependence of vectors r1 and r2, which was
used during the derivation of (7.18). Integrating (7.18) we obtain

Pr12 D Pr2 � Pr1 D �k
Z

r12
r312

dt;

and multiplying (cross product) by r12 we have

r12 � Pr12 D �kr12 �
Z

r12
r312

dt D b.t/:

Differentiation with respect to time the right-hand side of the last equation yields

db
dt

D 0:

Thus we have demonstrated the validity of the following relation:

r � v D b D const; (7.24)

which is also called a surface integral (setting r12 D r, Pr12 D v). This name is
justified by the following physical interpretation. According to (7.24) we have

b � b1E0
1 C b2E0

2 C b3E0
3 D

ˇ̌̌
ˇ̌̌E0

1 E0
2 E0

3

r 0
1 r

0
2 r

0
3

v0
1 v0

3 v0
3

ˇ̌̌
ˇ̌̌

D E0
1.r

0
2v

0
3 � r 0

3v
0
2/C E0

2.r
0
3v

0
1 � r 0

1v
0
3/C E0

3.r
0
1v

0
2 � r 0

2v
0
1/: (7.25)

Because b D const, the magnitude of b can be calculated for an arbitrary time
instant, for example, t D t0. If b D 0, from (7.25) we obtain

r 0
2v

0
3 D r 0

3v
0
2; r 0

3v
0
1 D r 0

1v
0
3; r 0

1v
0
2 D r 0

2v
0
1: (7.26)

Recall that an analogous problem was already considered earlier (Chap. 5). In a
similar way one can show that

v0
1

r 0
1

D v0
2

r 0
2

D v0
3

r 0
3

D � 0: (7.27)

Equation (7.27) describes a straight line in the coordinate system O 0X 0
1X

0
2X

0
3,

where r 0
n D x0

n �xnO 0 , n D 1; 2; 3. In this case during the motion of two particles
A1 and A2 the tip of vector r moves along a straight line.
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Fig. 7.3 Geometric
interpretation of the surface
integral

In the general case, the motion of particles takes place on a plane determined by
vectors r and v. According to (7.24), the plane is perpendicular to vector b. In other
words, vector b is normal to the aforementioned plane. An equation of the plane has
the form

b ı r D 0 (7.28)

or, in expanded form,

b1x
0
1 C b2x

0
2 C b3x

0
3 D 0; (7.29)

where A2 D A2.x
0
1; x

0
2; x

0
3/ (Fig. 7.2).

A hodograph of vector r (of particle A2) is a curve lying on the plane given by
(7.29). Because we know that the path of particle A2 is a plane curve, let us take a
new coordinate system O 00X 00

1 X
00
2 X

00
3 such that the path of motion of a particle lies,

for instance, on the plane O 0X 00
1 X

00
2 . Vector b, as a vector normal to the plane, has

the form b D Œ0; 0; b00
3 �

T. On the other hand, vector b can be expressed in terms of
the coordinates of r and Pr, and according to formula (7.25) we have

b00
3 D x00

1 Px00
2 � x00

2 Px00
1 : (7.30)

Let us now introduce polar coordinates .r; '/ on the plane O 0X 00
1 X

00
2 (Fig. 7.3).

According to Fig. 7.3 we have

x00
1 D r cos'; Px00

1 D Pr cos' � r P' sin ';

x00
2 D r sin '; Px00

2 D Pr sin' � r P' cos': (7.31)

A surface integral, described by (7.24), in this case reduces to the equation

r cos'.Pr sin ' C r P' cos'/ � r sin '.Pr cos' � r P' sin'/ D b00
3 ;
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or, following transformation, to

r2 P' D b00
3 : (7.32)

If the particle moves from point A2 at time instant t to point A0
2 at time instant

t C 	t , then the position vector of the particle sweeps the area of a curvilinear
triangleO 0A2A0

2. The area of this triangle is approximately equal to

	S D 1

2
r2	';

and dividing by 	t and proceeding to the limit as 	t ! 0 we obtain

dS

dt
D 1

2
r2
	'

	t
D 1

2
b00
3 : (7.33)

The quantity dS
dt is called a sector velocity, and, as was shown, it is constant. The

obtained equation justifies Kepler’s second law, discussed in Chap. 1 of [3].
Premultiplying (7.18) by vector b and using relation (7.24) we obtain

b � Rr D � k

r3
.r � Pr/ � r: (7.34)

Because

.r � Pr/ � r D Pr.r ı r/ � r.r ı Pr/

D Prr2 � rr Pr D r3
Pr ı r � r ı Pr

r2
D r3

d

dt

� r
r

�

and

b � Rr D d

dt
.b � v/;

so substituting the preceding relations into (7.34) we obtain

d

dt
.b � v/ D �k d

dt

� r
r

�
; (7.35)

hence, integrating we get

b � v C k
r
r

D �bL; (7.36)

where bL D const is called the Laplace vector, and relation (7.36) is called a
Laplace integral (the minus sign is formally introduced as required by further
transformations).
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Fig. 7.4 Properties of the path of point A2 and the geometric interpretation of vectors r and bL

It turns out that the Laplace vector lies in the plane of the orbit. Multiplying
(7.36) through by b we have

b ı .b � v/C k

r
.b ı r/ D b ı bL: (7.37)

Taking into account (7.28) from relation (7.37) we obtain

b ı bL D 0: (7.38)

This means that the Laplace vector and the vector normal to the surface sector are
perpendicular to each other. Following scalar multiplication of (7.36) by v we have

r ı .b � v/C k

r
.r ı r/ D �r ı bL: (7.39)

Using the rule of cyclic permutation of factors

r ı .b � v/ D b ı v � r D �b ı r � v D �b ı b D �b2; (7.40)

from relation (7.39) we obtain

� b2 C kr D �bLr cos �: (7.41)

The right-hand side follows from the fact that vectors bL and r lie in one plane
(Fig. 7.4). The angle � is called an angle of true anomaly.

Because the Laplace vector bL D const, the position of particle A2 is described
by the polar coordinates .r; �/.
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From relation (7.41) we get

r D b2

k C bL cos �
D .b2=k/

.k C bL cos �/=k
D p

1C e cos �
; (7.42)

where

p D b2k�1; e D bLk
�1: (7.43)

Recall that p is called a semilatus rectum (it is a positive value of an ordinate
corresponding to the focus of the ellipse), and the quantity e an eccentricity of an
ellipse.

The polar equation of an ellipse (7.42) is obtained on the assumption that
point A1 D O 0 is located at the center of an ellipse, and a polar axis lies on a
major axis and is directed toward the nearest vertex of the ellipse.

Let us recall some properties of an ellipse (Fig. 7.4).
The path (an orbit) of point A2 with respect to pointO 0 is an ellipse.
The position vectors of an ellipse are equal to r1 D k C ex0 and r2 D k � ex0,

where x0 is an abscissa of an arbitrary point A2, and hence we get r1 C r2 D 2k.
The directrices of an ellipse k1;2 D ˙k2=bL. An ellipse is a locus of all points for

which the ratio of their distances from a focus to a directrix is constant and equal to
eccentricity of an ellipse e < 1. If e D 1, then the path of point A2 is a parabola. If
e > 1, then the path of point A2 is a hyperbola, and for e D 0 the orbit is a circle.

7.4 Kepler’s First Law

Planets move along ellipses with the Sun at one focus.

In this case, referring back to our previous calculations, a body of massm1�m2,
and let the Sun, that is, the body of mass m1, be situated at point O 0.

From (7.19) we approximately get

r2 D rC C r12; r1 D rC;

and hence it follows that the mass center of the system of these two bodies is located
at the center of the Sun.

As in the case of the pendulum, the orbit of point A2 depends on the initial
velocity, which will be shown below.

The kinetic and potential energy of a particle with respect to O 0 are expressed by
the formulas

T D 1

2
mv2; V D �mk

r
;

where we assumed m D m1 and r D r1.
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Because in a potential force field there is no energy dissipation, the total energy
is conserved. On this basis, we obtain an integral of motion, which is equal to

C D v20 � 2k

r0
D const; (7.44)

where v0 and r0 are the magnitudes respectively of the velocity and position vector
at the initial time instant.

From the formula

v2 � 2k

r
D C (7.45)

it follows that if the distance between points O 0 and A2 decreases, then the speed
v of point A2 decreases accordingly, and vice versa. In other words, for C � 0

particle A2 can move an arbitrary distance away from pointO 0.
According to (7.36) we have

�
b � v C k

r
r

�2 D b2L;

that is,

b2v2 C 2k

r
.b � v/ ı r C k2 D b2L;

because vector b is perpendicular to v.
Taking into account relation (7.40) we obtain

b2
�

v2 � 2k

r

�
C k2 D b2L;

and taking into account (7.44) we eventually arrive at

b2C C k2 D bL: (7.46)

From (7.43) and (7.46) we have

e D bL

k
D
s
1C

�
b

k

�2 �
v20 � 2k

r0

�
: (7.47)

From the preceding relationship it follows that an elliptical orbit .e < 1/ appears

in the case where v0 <
q

2k
r0

. Such allowable initial velocities are called elliptic

velocities and are denoted by the symbol vI .

In the case v0 D vII D
q

2k
r0

we are dealing with a parabolic orbit .e D 1/.

Finally, for the velocity v0 >
q

2k
r0

particle A2 moves along a hyperbola, and such

velocities are called hyperbolic velocities .vIII /.
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The first cosmic velocity is associated with the motion of a satellite near the
surface of Earth. It can be determined from the equation

m
v21
r0

D mg D G
mM

r20
; (7.48)

wherem is the mass of the satellite and M denotes the mass of Earth.
From the preceding equation we obtain

v1 D p
gr0 D

s
GM

r0
Š
s
k

r0
(7.49)

because for m  M we have k D G.mCM/ � GM .
The second cosmic velocity vII (a parabolic velocity) is equal to

vII D
s
2k

r0
D p

2v1 Š 11:2 km/s; (7.50)

because for the radius of Earth r0 D 6371 km and g D 9:81m/s2 we have vI �
7:91 km/s.

It is known from analytical geometry that for an ellipse of axes a, b .a > b/ and
the focus c the following relations hold true:

p D b2

a
; c D

p
a2 � b2; e D c

a
:

From these relations one may easily obtain

a2 D b2 C c2 D c2 C ap D e2a2 C pa;

hence

a D p

1 � e2 : (7.51)

In turn, we have

b D p
pa D pp

1 � e2
: (7.52)

Formulas (7.51) and (7.52) describe semiaxes of an ellipse in terms of its
semilatus rectum p and eccentricity e.

One may also introduce the notion of an apocenter (or apoapsis) .˛/, that is,
the point on an ellipse that is the most distant from its focus, and a pericenter (or
periapsis) ./, that is, the point on an ellipse that is the closest to the focus (Fig. 7.5).
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Fig. 7.5 Basic parameters
of an ellipse

According to (7.33) the area of an ellipse S is equal to

S D 1

2

TZ
0

b00
3 dt D 1

2
b00
3 T D ab;

where T is a period of revolution of particle A2 on the ellipse.
According to relation (7.43) we have that b

00

3 D p
pk, that is,

T D 2

!
D 2abp

pk
D 2abq

k b
2

a

D 2a
3
2p
k
: (7.53)

The obtained quantity,

! D
p
k

a
3
2

; (7.54)

is called an average angular velocity (frequency) of motion of particle A2 on the
ellipse.

Let us now consider two particles A1 and A2 respectively of masses m1 and m2

that move on elliptical orbits.
If a gravitational interaction between particles A1 and A2 is neglected, then

periods of their motion along elliptical orbits are equal to

T1 D 2a
3
2

1p
G.m1 CM/

; T2 D 2a
3
2

2p
G.m2 CM/

; (7.55)

whereM is the mass of the Sun.
Dividing (7.55) by sides we get

�
T1

T2

�2
D m2 CM

m1 CM

�
a1

a2

�3
; (7.56)
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and assuming m1 CM � M ,m2 CM � M we obtain Kepler’s third law:

�
T1

T2

�2
D
�
a1

a2

�3
: (7.57)

According to this law the ratio of squares of a planets periods of revolution
around the Sun is equal to the ratio of cubes of the semimajor axes of their elliptical
paths.
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Chapter 8
Dynamics of Systems of Variable Mass

8.1 Introduction

So far we have considered DMSs and CMSs in which masses of particles mn and
their number have not changed. In nature and technology, however, phenomena are
commonly known where the number of particles of a system or their mass change
over time.

If floating icebergs are heated by the Sun’s rays, then the ice melts and their
mass decreases. If the falling snow becomes frozen to the floating icebergs, then
their mass increases. Earth’s mass increases when meteorites fall on its surface. In
turn, the mass of the meteorites before they reach Earth’s surface decreases as a
result of burning in Earth’s atmosphere. The mass of rockets decreases as the fuel
they contain burns. The mass of elements transported on a conveyor belt changes as
a result of their loading and unloading.

8.2 Change in Quantity of Motion and Angular Momentum

Let the mass of a mechanical system m.t/ be changing in time according to the
equation

m.t/ D m0 �m1 .t/Cm2 .t/ ; (8.1)

where m.t/ D m.t0/, m1.t/ � 0, (m2.t/ � 0) denotes the mass of particles leaving
(entering) the system (Fig. 8.1).

Let us choose a time instant t during motion of the system, and let for this instant
the momentum p of the considered system of particles increase by 	p during time
	t . Then, by p� let us denote the momentum of analogous system, but of a constant
mass. At the instant t C 	t the quantity of motion of a system of variable mass is
equal to

p C	p D p� C	p� �	p1 C	p2: (8.2)

J. Awrejcewicz, Classical Mechanics: Dynamics, Advances in Mechanics
and Mathematics 29, DOI 10.1007/978-1-4614-3740-6 8,
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Fig. 8.1 Motion of a body of variable mass with respect to the inertial coordinate system
O 0X 0

1X
0

2X
0

3

This means that the increment of momentum of the investigated system follows
from the increment of momentum of a system of constant mass and the additional
quantity of motion delivered .	p2/ and removed .	p1/ to/from the system during
time 	t .

From the preceding equation we obtain

	p D 	p� �	p1 C	p2 (8.3)

because at the instant t we have
p D p�: (8.4)

Dividing by 	t and on the assumption that 	t ! 0 we get

lim
	t!0

	p
	t

D lim
	t!0

	p�

	t
� lim
	t!0

	p1
	t

C lim
	t!0

	p2
	t

; (8.5)

hence
dp
dt

D F C FR1 C FR2 ; (8.6)

where

F D lim
	t!0

	p�

	t
D dp�

dt
;

FR1 D � lim
	t!0

	p1
	t

; FR2 D lim
	t!0

	p2
	t

; (8.7)

and F is a main vector of a system of external forces acting at the time instant t .
Equation (8.6) extends the well-known theorem concerning the change in the

quantity of motion (momentum) of a system. On its right-hand side additionally
appear the so-called thrust forces, FR1 and FR2 .
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In a similar way one can generalize the theorem regarding the change in angular
momentum (moment of momentum) of a system. Applying an argument analogous
to the previous one, we obtain

K C	K D K� C	K� �	K1 C	K2; (8.8)

where K is the moment of momentum of the system with respect to a certain
arbitrary chosen fixed pole in the coordinate systemO 0X 0

1X
0
2X

0
3, and	K1.2/ denotes

the sum of moments of a quantity of motion for those particles that left (entered)
the considered system of variable mass during the time interval 	t . Dividing the
preceding equation by	t and proceeding to the limit as 	t ! 0 we have

dK
dt

D M C MR
1 C MR

2 ; (8.9)

where

M D lim
	t!0

	M�

	t
D 	K�

dt
;

MR
1 D � lim

	t!0

	K1

	t
; MR

2 D lim
	t!0

	K2

	t
: (8.10)

Equation (8.9) is a generalization of a theorem concerning changes in the angular
momentum of a mechanical system. On its right-hand side additionally appear
moments of a thrust force, MR

1 and MR
2 .

8.3 Motion of a Particle of a Variable Mass System

Let us consider a particle A belonging to the investigated system of variable mass,
and let the mass of this particle be described by (8.11) in the form

mA .t/ D mA .t0/ �mA1 .t/CmA2 .t/ : (8.11)

The kinematics of a particle of variable mass is presented in Fig. 8.2. In Fig. 8.2
the absolute velocity of a piece of mass	m2 is denoted by u2, whereas the absolute
velocity of a piece of mass 	m1 is denoted by u1. We will assume that 	mA1 
mA.t0/ and	mA2  mA.t0/.

In order to derive the differential equation of the motion of a particle of variable
mass m.t/, we will make use of (8.6). A quantity of motion (momentum) of
particle A at an arbitrary time instant t reads

p .t/ D m.t/ v .t/ ; (8.12)
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Fig. 8.2 Particle of mass m0

in absolute system OX1X2X3
at time instant t and piece of
mass	m1 expelled (absorbed
	m2) from (by) particle A

and the changes in momentum that follow from absorbing mass	m2 and expelling
mass 	m1 by particle A during the time interval	t are respectively equal to

	pi D 	miui ; i D 1; 2: (8.13)

According to (8.7) we have

FR1 D � lim
	t!0


p1
	t

D � lim
	t!0

	m1u1
	t

D �u1
dm1

dt
;

FR2 D lim
	t!0


p2
	t

D lim
	t!0

	m2u2
	t

D u2
dm2

dt
: (8.14)

Substituting (8.12) and (8.14) into (8.6) we obtain

d

dt
Œm .t/ v .t/� D F � dm1

dt
u1 C dm2

dt
u2; (8.15)

and following the transformations we have

mRrA D F � Pm1 .u1 � v/C Pm2 .u2 � v/ : (8.16)

The obtained (8.16) is called a generalized Meshcherskiy1 equation, and it
describes the motion of a particle of variable mass. If the mass of particle A does
not change, then Pm1 D Pm2 D 0, and from (8.16) we obtain Newton’s second law
on the motion of particle A of constant massm.

1Ivan Meshcherskiy (1859–1935), professor working mainly in Saint Petersburg.
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In previous calculations the dynamics of a particle of variable mass was presented
descriptively during the derivation of (8.6) and (8.9). Presently we will proceed in
a different way (see [1, 2]) by taking into account only the change in momentum
of particle A. Let an elementary mass dm2 of velocity u2.t/ be added, and an
elementary mass dm1 of velocity u1.t/ be removed, to/from particleA of massm.t/
and velocity v.t/. The momenta at the time instants t and t C dt are equal to

p .t/ D .mC dm1/ v C dm2u2;

p .t C dt/ D .mC dm2/ .v C dv/C dm1u1:

The increment of momentum is equal to

p .t C dt/ � p .t/ D vdm2 C dvdm2 Cmdv C dm1u1 � vdm1 � dm2u2;

and neglecting differentials of the second order and dividing by dt we obtain
the generalized Meshcherskiy equation (8.16), where F D dp=dt . Following the
introduction of relative velocities,

wi D ui � v; i D 1; 2: (8.17)

Respectively expelling and absorbing the mass by particle A (8.16) takes the
form

mRrA D F � Pm1w1 C Pm2w2: (8.18)

Taking into account relation (8.17), (8.18) is identical to (8.16). If the case of
separation of mass from particle A is considered alone, then from (8.11) formA2 �
0 we obtain

m.t/ D m.t0/�m1.t/; (8.19)

hence
Pm.t/ D � Pm1.t/: (8.20)

Substituting (8.20) into (8.18) we get

mRrA D F C FR1 : (8.21)

The preceding equation is called a Meshcherskiy equation. From (8.21) it follows
that the effect of separation of mass is equivalent to the action of an additional force
FR1 D Pmw1 on particle A, called a thrust force. The thrust force FR1 (removal of
mass) has a sense opposite to the sense of velocity w1, whereas the thrust force FR2
(addition of mass) has the same sense as the sense of the relative velocity w2. The
quantity Pm1 . Pm2/ is called the mass removal (addition) per second.

In a special case, where the absolute velocity of the mass that separates is u1 D 0,
(8.21) takes the form

m
dv
dt

D F � dm

dt
v (8.22)
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or
d.mv/

dt
D F: (8.23)

We have shown that if the absolute velocity of the mass that separates is equal
to zero, then the derivative of momentum of particle A balances the external forces
acting on this particle. If, in turn, the relative velocity of the mass that separates is
w1 D u1 � v D 0, then from (8.21) we obtain

m.t/
dv
dt

D F: (8.24)

In this case we obtained an equation that is formally consistent with Newton’s
second law on the motion of a particle of constant mass.

8.4 Motion of a Rocket (Two Problems of Tsiolkovsky)

Let us now consider two problems of Tsiolkovsky.2

8.4.1 First Tsiolkovsky Problem

Let a rocket, treated further as a particle, be moving in space, and let the action
of external forces on it be negligibly small. The initial conditions of motion are as
follows: v.0/ D v0, m.t/ D m0 C m1.t/, where m0 is the mass of the rocket and
m1.t/ is the mass of fuel .m1.0/ D m10/.

In the considered case, the Meshcherskiy equation, (8.21), takes the form

m
dv
dt

D dm

dt
w1: (8.25)

Let us assume that the relative velocity of combustion gases w1 D u1�v D const
and its sense are opposite to those of velocity vector v. It follows that a rocket moves
along a straight line according to the sense of vector v (Fig. 8.3).

Following the projection (multiplication by E1) of (8.25) onto the axis OX we
obtain

m
dv

dt
D �dm

dt
w1

2Konstantin Tsiolkowsky (1857–1935), Russian teacher of mathematics and physics of Polish
origin; precursor to the theory of rocket flight.
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Fig. 8.3 Motion of rocket in
a force-free field

or

dv D �w1
dm

m
: (8.26)

Integrating (8.26) we have

v.t/ D �w1 lnmC C; (8.27)

where C is the constant of integration equal to C D v0 C w1 ln.m0 Cm10/.
Finally, the time change in the velocity of a rocket is described by the scalar

equation

dx

dt
� v.t/ D v0 C w1 ln

�
m0 Cm10

m.t/

�
: (8.28)

The maximum velocity is reached by the rocket after the fuel is completely spent,
that is, when m.t�/ D m0, and it is equal to

v.t�/ D v0 C w1 ln

�
1C m10

m0

�
: (8.29)

The obtained equation is called a rocket equation. The maximum velocity of
a rocket does not depend on the process of fuel combustion, that is, whether
combustion proceeds slowly or quickly. The constant quantity m10=m0 is also
known as a Tsiolkovsky constant.

In contrast, the trajectory of motion of a rocket does depend on the process of
fuel combustion. Integrating (8.28), for the initial condition x.0/ D 0, we have

x.t/ D v0t C w1

tZ
0

ln
m0
0

m.�/
d�; (8.30)

wherem0
0 D m0 Cm10.
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Fig. 8.4 Vertical motion of
rocket in Earth’s gravitational
field

8.4.2 Second Tsiolkovsky Problem

Let a rocket, treated further as a particle, move vertically upward in a uniform
gravitational field of Earth, its resistance to motion being neglected. The relative
velocity of ejection of fuel combustion products is constant and directed vertically
downward (Fig. 8.4).

In this case after projection of the Meshcherskiy equation (8.21) onto the axis
OX3 we get

m
dv

dt
D �mg � dm

dt
w1; (8.31)

or, separating the variables,

d.v C gt/ D �w
dm

m
: (8.32)

Integrating the preceding equation we have

v C gt D �w lnmC C: (8.33)

The constant C is equal to

C D v0 C w lnm0
0: (8.34)
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Substituting the obtained value of C into (8.33) we have

dx3
dt

� v.t/ D v0 � gt C w ln

�
m0
0

m.t/

�
: (8.35)

If we assume the initial conditions to be x3.0/ D 0, v0 D 0, then following the
integration of (8.35) we get

x3.t/ D w

tZ
0

ln

�
m0
0

m.t/

�
d� � 1

2
gt2: (8.36)

Let the fuel combustion take place according to the following process:

m.t/ D m0
0e

�˛t ; (8.37)

where ˛ is a constant coefficient characterizing the speed of fuel combustion.
The mass of combustion productsm1.t/ can be calculated from

m.t/Cm1.t/ D m0 Cm10 � m0
0

and is equal to

m1.t/ D m0 Cm10 � .m0 Cm10/ e�˛t D m0
0

�
1 � e�˛t � : (8.38)

The thrust force is equal to

FR
1 D Pm1w1 D m0

0w1˛e�˛t D m.t/w1˛; (8.39)

where ˛w1 is the acceleration imposed on the rocket due to fuel combustion.
Because we assumed certain combustion process described by (8.37), from (8.35)
we have

v.t/ D v0 � gt C w ln

�
m0
0

e�˛t

�
;

and for v0 D 0 we obtain
v.t/ D .˛w � g/ t: (8.40)

In turn, from (8.36) (or by integrating (8.40)) we have

x3.t/ D .˛w � g/
t2

2
: (8.41)

From the last equation it follows that the launch of the rocket is possible if
˛w > g, that is, the acceleration coming from a thrust force FR

1 should exceed
the acceleration of gravity.
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If the fuel is burned completely at the time instant t D tf , then according to
(8.37) we have

m.tf / D m0 Cm1.tf / D m0
0e

�˛tf ;

that is,
m0 D m0

0e
�˛tf ; (8.42)

because at the instant tk we have no more fuel, that is, m1.tf / D 0.
From (8.42) we can determine the time required for complete combustion of fuel

by a rocket, which is equal to

tf D �

˛
; (8.43)

where

� D ln

�
1C m10

m0

�
:

From (8.40) and (8.41) one can determine the velocity and ceiling height of a
rocket corresponding to the time instant when the fuel is spent:

vf D �

˛
.˛w � g/ ; (8.44)

x3f D �2 .˛w � g/
2˛2

: (8.45)

Because at the instant when the fuel has run out t D tf and vf D v.tf /, for
such initial conditions a rocket of mass m.tf / D m0 additionally climbs in Earth’s
gravitational field at the height

hd D v2f
2g

D �2

2˛2g
.˛w � g/2 : (8.46)

We obtain the maximum height h of the rocket using (8.45) and (8.46):

h D hd C x3f D �2w

2

�
w

g
� 1

˛

�
: (8.47)

The height reached by a rocket depends on the coefficient of the fuel combustion
rate ˛. For example, at a rapid (explosive) rate of fuel combustion the height attained
is equal to

hmax D �2w2

2g
: (8.48)
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8.5 Equations of Motion of a Body with Variable Mass

A group of particles n D 1; : : : ; N , between which the mutual distances do not
change and at least one of which is a particle with variable mass, is called a rigid
body of variable mass [3].

According to the previous calculations, let the particles of the body (the material
system) change their mass according to (8.1), that is,

mn.t/ D m0n �m1n.t/Cm2n.t/; n D 1; : : : ; N; (8.49)

where m1n.t/ is the total mass lost by particle n at time t , and m2n.t/ is the total
mass gained by the particle at time t .

Let us further consider the case of motion of a rigid body with variable mass
about a certain fixed pointO (motion about a point of a system with variable mass).
The angular momentum KO of the system about point O is equal to (in the system
rigidly connected to the body OX 00

1 X
00
2 X

00
3 )

dKO

dt
C! � KO D MZ

O C MR
O; (8.50)

where MZ
O is the main moment of external forces acting on the system with respect

to point O , and MR
O is the additional moment of a thrust force that needs to be

determined.
According to relation (8.8) we have

dK1O D
NX
nD1

dm1nrn � u1n;

dK2O D
NX
nD1

dm2nrn � u2n; (8.51)

where rn is a radius vector of particle n, and on that basis a moment of thrust forces
is equal to

MR
O D MR

1O C MR
2O; (8.52)

where

MR
1O D �

NX
nD1

dm1n

dt
rn � u1n;

MR
2O D �

NX
nD1

dm2n

dt
rn � u2n:
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Introducing the notion of relative velocity wn according to equations

u1n D vn C w1n;

u2n D vn C w2n; (8.53)

we have

MR
O D �

NX
nD1

dm1n

dt
rn � .vn C w1n/C

NX
nD1

dm2n

dt
rn � .vn C w2n/

D
NX
nD1

rn �
�

dm2n

dt
� dm1n

dt

�
� vn

C
NX
nD1

rn �
�

�dm1n

dt
w1n C dm2n

dt
w2n

�

D
NX
nD1

rn �
�

dm2n

dt
w2n � dm1n

dt
w1n

�
C

NX
nD1

rn � dmn

dt
vn; (8.54)

where (8.49) was used.
Eventually we obtain

MR
O D MW

O C dI
dt
!; (8.55)

where

MW
O D

NX
nD1

rn �
�

dm2n

dt
w2n � dm1n

dt
w1n

�
;

dI
dt
! D

NX
nD1

rn � dmn

dt
.! � rn/ ; (8.56)

and I is the matrix of the inertia tensor of a body for point O , and in this case the
matrix depends on time. Because KO D I!, from (8.50) and taking into account
(8.55) we obtain

dI
dt
!C I

d!

dt
C! � I! D MZ

O C MW
O C dI

dt
!;

hence

I
d!

dt
C! � I! D MZ

O C MW
O : (8.57)
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If the axes of a coordinate system during the process of gaining and losing
mass remain the principal axes of inertia, then (8.57) has the following scalar
representation:

I1.t/
d!1
dt

C .I3.t/ � I2.t// !2!3 D M1 CMW
1 ;

I2.t/
d!2
dt

C .I1.t/ � I3.t// !1!3 D M2 CMW
2 ;

I3.t/
d!3
dt

C .I2.t/ � I1.t// !1!2 D M3 CMW
3 ; (8.58)

where Ii .t/ are the moments of inertia of the body with respect to the axes OXi ,
Mi are the projections of a main vector of external forces onto these axes, and
! D !1E1 C !2E2 C !3E3.

In the case of rotation of the body about a fixed axis (let it be the axis OX3), we
have ! D !3E3, and from the last equation of (8.58) we obtain

I3.t/
d!3
dt

D M3 CMW
3 : (8.59)

As distinct from the previously considered case of the rotation of a rigid body
about a fixed axis, on the right-hand side additionally appeared the moment of a
thrust force, and on the left-hand side the mass moment of inertia of a body changing
in time.

Example 8.1. Figure 8.5 shows a drum having moment of inertia I0 with respect to
the axisOX3 perpendicular to the plane of the drawing and passing through pointO ,
onto which a rope of length S and massm is wound. Determine the angular velocity
of the drum on the assumption that the rope started to reel out from the drum at an
initial velocity of zero and the drum axis was horizontal.

For the solution of the problem we make use of (8.59). In this case

MW
3 D .!1 � !/ dI

dt
;

where !1 is the angular velocity of an elementary moment of inertia dI of a rope
separating from a drum that is rotating with angular velocity !. The element of the
rope leaving the drum has a velocity equal to the peripheral speed of the drum, that
is, r!1 D r!, i.e., MW

3 D 0.
The equation of motion of the investigated system is analogous to (8.24) for the

rotational motion. The problem reduces to the analysis of equation

I.'.t//
d!

dt
D MZ;
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Fig. 8.5 Rope reeling out
of a drum

where

I.'.t// D I0 Cmr2 � m

S
.r'/r2:

In turn, the moment MZ follows from the action of the force coming from the
rope reeling out from the drum and is equal to

MZ.'.t// D m

S
.r'/gr:

Because

d!

dt
D d!

d'

d'

dt
D !

d!

d'
;

from the equation of motion we have

�
I0 Cmr2 � m

S
r3'

�
!

d!

d'
D m

l
r2g';

and separating the variables we get

!d! D mr2g

S

'

I0 Cmr2 � m
S
r3'

d':
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Setting I0 D 3mr2 we have

!2

2
D g

S

�Z
'

4 � r
S
'

d' C C

�
:

The obtained indefinite integral is calculated by substitution:

t D 4 � r

S
';

hence

d' D �S
r

dt; ' D S

r
.4 � t/ :

We have then Z
'

4 � r
S
'

D �
Z
4� t

t
dt D S2

r2
.4 ln jt j C t/

D 4S2

r2
ln
ˇ̌̌
4 � r

S
'
ˇ̌̌
� S

r
' C C

S

r
;

that is,

!2

2
D g

r

�
�4S
r

ln
ˇ̌̌
4 � r

S
'
ˇ̌̌
� ' C C

�
:

The integration constant is determined from the initial condition !.0/ D 0 and
is equal to

C D 4S

r
ln 4:

The desired function

! � !Œ'.t/� D
�
2g

r

�
�4S
r

ln
h
4 � r

S
'
i

� ' C 4S

r
ln 4

�	 1
2

:

The maximum angular velocity ! D !max is obtained after the rope has been
completely unwound, that is, substituting ' � 'max D S

r
into the preceding formula.

�

Example 8.2. A body of mass m is thrown upward with initial speed v0, and there
is a chain of unit mass � stacked on a horizontal plane and attached to the body.
Determine the maximum height attained by the chain (Fig. 8.6).

During the motion of the chain its links are successively lifted from the stationary
stack, that is, their absolute velocity is equal to zero. The problem is therefore
described by (8.23), which in our case takes the form

d

dt
Œ.mC �x/ Px� D �mg:
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Fig. 8.6 Projection of ball of
mass m with attached chain

The first integral of the preceding equation reads

m Px C �x Px D �mgt C C1

or

d

dt

�
mx C �x2

2

	
D �mgt C C1:

The second integral is equal to

mx C �x2

2
D �mg t

2

2
C C1t C C2:

Let x.0/ D x0, Px.0/ D v0. The constant C1 is found from the equation

C1 D .mC �x0/ v0;

and the constant C2 reads

C2 D
�
mC �x0

2

�
x0:
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The maximum height is attained for a velocity of mass equal to Px � v.t�/ D 0,
that is, for the time instant

t� D C1

mg
D .mC �x0/v0

mg
:

The desired quantity x.t�/ D x� is determined from the equation

mx� C �x2�
2

D � .mC �x0/
2v20

2mg
C .mC �x0/

2v20
mg

C
�
mC �x0

2

�
x0

or, following transformation,

x2� C 2m

�
x� �

�
.mC �x0/

2v20
mg�

C
�
2m

�
C x0

�
x0

	
D 0:

For x0 D 0 we have

x2� C 2m

�
x� � mv20

g�
D 0:

Solving the preceding quadratic equation and rejecting the negative root we
obtain

x� D �m
�

C 1

2

s
4m

�

�
m

�
C v20
g

�
: �

Finally, this chapter can be supplemented by the classic works [4–9].
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Chapter 9
Body and Multibody Dynamics

9.1 Rotational Motion of a Rigid Body About a Fixed Axis

The kinematics and statics of particles of a body supported by a thrust bearing and
radial bearing have already been considered in Chaps. 2 and 5 of [1].

Let a rigid body have two fixed points O and QO , and let the reactions of
constraints at these points be equal to R and QR. The system of external forces acting
on the body is replaced by a main force F and main moment MO applied at pointO
(the pole), which is the origin of both the stationary OX1X2X3 and non-stationary
coordinate systems O 0X 0

1X
0
2X

0
3, whereO D O 0 (Fig. 9.1).

The body has only one degree of freedom described by an angle '.t/. In order to
obtain equations of motion of the body we will make use of the laws of conservation
of momentum and angular momentum, which were stated in Chap. 1 of [1]. Here
they are related to the mass center C of the body assuming the following form:

M
dvC
dt

D F C R C QR; (9.1)

KC

dt
D MO C ��!

O QO � QR; (9.2)

valid in the coordinate system OX1X2X3.
We are interested in the reactions acting on the body, and that is why we will

express (9.1) and (9.2) in the body system O 0X 0
1X

0
2X

0
3. Some vectors used in

subsequent calculations will have the form

F D F1E0
1 C F2E0

2 C F3E0
3;

R D R1E0
1 CR2E0

2 CR3E0
3;

QR D QR1E0
1 C QR2E0

2 C QR3E0
3;

! D P'E0
3;

J. Awrejcewicz, Classical Mechanics: Dynamics, Advances in Mechanics
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Fig. 9.1 Rigid body rotation
measured with angle
' D '.t/ about fixed axis

OX3
��!
.O QO D H/

��!
OC D x0

1CE0
1 C x0

2CE0
2 C x0

3CE0
3; (9.3)

and all vectors are expressed in the body system O 0X 0
1X

0
2X

0
3 .

QR3 D 0/.
According to previous calculations we have KO D I!, that is,

KO1 D I1!
0
1 � I12!

0
2 � I13!

0
3;

KO2 D �I12!0
1 C I2!

0
2 � I23!

0
3;

KO3 D �I13!0
1 � I23!

0
2 C I3!

0
3; (9.4)

and because in our case !0
1 D !0

2 D 0, we have

KO1 D �I13 P'; KO2 D �I23 P'; KO3 D I3 P'; (9.5)

where

KO D KO1E
0
1 CKO2E

0
2 CKO3E

0
3: (9.6)

In (9.4) Iik D Iik.t/, !0
i D !0

i .t/, because in the space (global) coordinate
system the body changes its position and, consequently, changes both its mass
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moments of inertia and components of angular velocity vector. Therefore, below
we present the equations of motion of a rigid body in a local coordinate system.
Equations (9.1) and (9.2) in the system O 0X 0

1X
0
2X

0
3 have the form

M
QdvC
dt

CM! � vC D F C R C QR; (9.7)

QdKO

dt
C! � KO D MO C

��!
O QO � QR: (9.8)

Recall that the operator Qd=dt is a relative differential operator (as opposed to
an absolute differential operator d=dt), that is, it describes the differentiation of a
vector in the coordinate system O 0X 0

1X
0
2X

0
3.

An arbitrary vector a obeys the following differentiation: da=dt D Qda C
! � a, where ! denotes the rotational velocity of the system O 0X 0

1X
0
2X

0
3, and

da=dt .Qda=dt/ denotes an absolute (relative) derivative. In other words, the absolute
velocity of the tip of angular momentum vector KO is equal to the geometric sum
of its relative velocity QdKO=dt and the velocity of transportation! � KO . Because

vC D ! � ��!
OC; (9.9)

taking into account relations (9.3)–(9.6) we successively calculate

vC D
ˇ̌̌
ˇ̌̌ E0

1 E0
2 E0

3

0 0 P'
x0
1C x

0
2C x

0
3C

ˇ̌̌
ˇ̌̌ D � P'x0

2CE0
1 C x0

1C P'E0
2; (9.10)

! � KO D
ˇ̌̌
ˇ̌̌ E0

1 E0
2 E0

3

0 0 P'
KO1 KO2 KO3

ˇ̌̌
ˇ̌̌ D � P'KO2E0

1 CKO1 P'E0
2;D I23 P'2E0

1 � I13 P'2E0
21

(9.11)

! � vC D
ˇ̌̌
ˇ̌̌ E0

1 E0
2 E0

3

0 0 P'
� P'x0

2C P'x0
1C 0

ˇ̌̌
ˇ̌̌ D �x0

1C P'2E0
1 � P'2x0

2CE0
2: (9.12)

According to formulas (9.6) and (9.10) we have

QdvC
dt

D � R'x0
2CE0

1 C x0
1C R'E0

2; (9.13)

QdKO

dt
D �I13 R'E0

1 � I23 R'E0
2 C I3 R'E0

3: (9.14)
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From (9.7) and (9.8), taking into account relations (9.10)�(9.14), we obtain

�Mx0
2C R' �Mx0

1C P'2 D F 0
1 CR0

1 C QR0
1;

Mx0
1C R' �Mx0

2C P'2 D F 0
2 CR0

2 C QR0
2;

0 D F 0
3 CR0

3 C QR0
3; (9.15)

�I13 R' C I23 P'2 D MO1 �H QR2;
�I23 R' � I13 P'2 D MO2 CH QR1;

I3 R' D MO3: (9.16)

The obtained differential equations have the following properties. The third
equation of (9.15) is the algebraic sum R0

3 C QR0
3 D �F 0

3 , and because it does
not occur in the remaining equations, it is not possible to determine the reactions
R0
3 and QR0

3 separately. Moreover, their sum is independent of body motion. The
remaining transverse reactions can be determined from the remaining equations
of systems (9.15) and (9.16). The third equation of system (9.16) describes the
rotational motion of a rigid body about the axis OX 0

3 driven by the momentMO3.
In Example 2.4 of [1] we determined the reactions in the bearings in a static case.

Now we will try to determine the conditions for which the dynamic reactions of the
system (that is, the reactions during body rotation with angular velocity P'E0

3) are
equal to the static reactions.

Transverse static reactions are determined from (9.15) and (9.16), and setting
P' D R' D 0 we obtain

R1 C QR1 D �F1;
R2 C QR2 D �F2;
QR2 D MO1

H
;

QR1 D �MO2

H
; (9.17)

that is, R1 D �F1 CMO2=H , R2 D �F2 �MO1=H .
The same magnitudes of reactions are obtained for P' ¤ 0 and R' ¤ 0, on the

condition that the following equations are satisfied:

(
x0
2C R' C x0

1C P'2 D 0;

x0
1C R' � x0

2C P'2 D 0;
(9.18)

(
I13 R' � I23 P'2 D 0;

I23 R' C I13 P'2 D 0:
(9.19)
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System (9.18) can be treated as a system of homogeneous equations of the form

� P'2 R'
R' � P'2

	 �
x0
1C

x0
2C

	
D
�
0

0

	
; (9.20)

and, in turn, system (9.19) can be represented in the form

� P'2 R'
R' � P'2

	 �
I13
I23

	
D
�
0

0

	
: (9.21)

In both cases the determinant of system W D �. P'4 C R'2/ ¤ 0, which leads to
two conditions: x0

1C D x0
2C D 0 and I13 D I23 D 0. This means that the transverse

dynamic reactions in the bearings during rigid-body rotation about a fixed axis are
equal to the static reactions if and only if the axis of rotation is a principal centroidal
axis of inertia of the body.

9.2 Motion of a Rigid Body About a Fixed Point

In order to obtain equations of motion for the present case it suffices to make use of
the equation

dKO

dt
D MO; (9.22)

where KO denotes the angular momentum (moment of momentum) calculated with
respect to point O , and MO is the main moment of forces acting on the body with
respect to the same point. Point O is fixed, and there we locate the origins of the
non-stationaryO 0X 0

1X
0
2X

0
3 and stationaryOX1X2X3 coordinate systems.

Equation (9.22) in the body coordinate system O 0X 0
1X

0
2X

0
3 takes the form

QdKO

dt
C! � KO D MO; (9.23)

where KO is described by (9.6) and (9.4), and Qd=dt is a local derivative.
Because

! � KO D
ˇ̌̌
ˇ̌̌ E0

1 E0
2 E0

3

!0
1 !0

2 !0
3

KO1 KO2 KO3

ˇ̌̌
ˇ̌̌ D E0

1

�
!0
2KO3 �KO2!

0
3

�

C E0
2

�
KO1!

0
3 �KO3!

0
1

�C E0
3

�
!0
1KO2 � !0

2KO1

�
; (9.24)
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from (9.23) we obtain

I1 P!0
1 � I12 P!0

2 � I13 P!0
3 C !0

2

��I13!0
1 � I23!0

2 C I3!
0
3

�
� !0

3

��I12!0
1 C I2!

0
2 � I23!

0
3

� D MO1;

� I12 P!0
1 C I2 P!0

2 � I13 P!0
3 C !0

3

�
I1!

0
1 � I12!0

2 � I13!0
3

�
� !0

1

��I13!0
1 � I23!

0
2 � I3!0

3

� D MO2;

� I13 P!0
1 � I23 P!0

2 C I3 P!0
3 C !0

1

��I12!0
1 � I2!

0
2 � I23!0

3

�
� !0

2

�
I1!

0
1 � I12!0

2 � I13!0
3

� D MO3; (9.25)

and following transformations we have

I1 P!0
1 � I12 P!0

2 � I13 P!0
3 C .I3 � I2/ !0

2!
0
3

C I23

�
!0
3
2 � !0

2
2
�

C !0
1

�
I12!

0
3 � I13!

0
2

� D MO1;

� I12 P!0
1 C I2 P!0

2 � I13 P!0
3 C .I1 � I3/ !

0
1!

0
3

C I13

�
!0
1
2 � !0

2
2
�

C !0
2

�
I23!

0
1 � I12!

0
3

� D MO2;

� I13 P!0
1 � I23 P!0

2 C I3 P!0
3 C .I2 � I1/ !

0
1!

0
2

C I12

�
!0
2
2 � !0

1
2
�

C !0
3

�
I13!

0
2 � I23!

0
1

� D MO3: (9.26)

Let us choose the axes O 0X 0
1, O

0X 0
2, and O 0X 0

3 so that they coincide with the
principal axes of inertia of the body associated with point O 0 D O . In this case
I12 D I13 D I23 D 0 and (9.26) take the much simpler form

I1 P!0
1 C .I3 � I2/ !

0
2!

0
3 D MO1;

I2 P!0
2 C .I1 � I3/ !0

1!
0
3 D MO2;

I3 P!0
3 C .I2 � I1/ !0

2!
0
1 D MO3: (9.27)

Equations (9.27) are called Euler’s dynamic equations. If the known components
of a main momentMOi D MOi.!

0
1; !

0
2; !

0
3; t/, i D 1; 2; 3, then in order to obtain

!0
1.t/, !

0
2.t/, and !0

3.t/, one should integrate (e.g., numerically) (9.27). Recall that
the position of a body in an absolute coordinate systemOX1X2X3 is associated with
the introduction of three Euler angles, derived in [1] we have

!000
1 � !0

1 D P sin � sin � C P� cos�;

!000
2 � !0

2 D P cos� sin � � P� sin �;

!000
3 � !0

3 D P sin � C P�; (9.28)
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and in order to simplify the notation, the symbols .000/ are dropped in this section.
In other words, the transition from the coordinate system OX1X2X3 to the system
O 0X 0

1X
0
2X

0
3 takes place through Euler’s angles.

Substituting the determined functions of time !0
i D !0

i .t/, i D 1; 2; 3, into
Euler’s kinematic equations (9.28) we are able to solve them with respect to Euler’s
angles, that is, to determine  D  .t/, � D �.t/, and � D �.t/.

If, however, MOi D MOi.!
0
1; !

0
2; !

0
3; �;  ; �;

P�; P ; P�; t/, then one should
solve simultaneously six differential equations given by (9.27) and (9.28). If a rigid
body is not acted upon by a main moment, that is, MO D 0, then we are dealing
with the so-called Euler case of rigid-body motion about a fixed point O , and for
this case (9.27) take the form

I1 P!0
1 C .I3 � I2/ !

0
2!

0
3 D 0;

I2 P!0
2 C .I1 � I3/ !

0
1!

0
3 D 0;

I3 P!0
3 C .I2 � I1/ !0

2!
0
1 D 0: (9.29)

The preceding equations constitute a system of three first-order non-linear
ordinary differential equations. If the aforementioned body is in the gravitational
field, then the condition MO D 0 is satisfied, provided that the fixed point about
which the body rotates is coincident with the mass center of the body, that is,
O D C .

From (9.22) for the Euler case we have

KO D const: (9.30)

Vector KO ’s property of being constant means that during motion of the rigid
body both its direction and magnitude are constant. From (9.4) and (9.6) for the
Euler case we have

KO D I1!
0
1E

0
1 C I2!

0
2E

0
2 C I3!

0
3E

0
3; (9.31)

where now unit vectors E0
1; E0

2; E0
3 are the unit vectors of the principal axes of inertia

of the body at point O D O 0.
From conditions (9.30) and (9.31) it follows that

K2
O D I 21 !

0
1
2 C I 22 !

0
2
2 C I 23 !

0
2
2 D const: (9.32)

The increment of kinetic energy of the rigid body is equal to

dT D MO ı!dt C F ı vOdt D 0 (9.33)

because in the considered Euler case MO D 0 and vO D 0. From that we have

T D 1

2

�
I1!

0
1
2 C I2!

0
2
2 C I3!

0
3
2
�

D const: (9.34)



366 9 Body and Multibody Dynamics

From the preceding calculations it follows that Euler’s equations (9.29) possess
two first integrals in the forms (9.32) and (9.34). The mentioned integrals can also
be obtained immediately from (9.29).

The Euler case can be further simplified if the vector of angular velocity of the
body ! is constant with respect to the body. This means that P!0

1 D P!0
2 D P!0

3 D 0,
and from (9.29) we obtain

.I3 � I2/ !0
2!

0
3 D 0;

.I1 � I3/ !0
1!

0
3 D 0;

.I2 � I1/ !0
1!

0
2 D 0: (9.35)

Because by assumption !0
1 ¤ 0, !0

2 ¤ 0, and !0
3 ¤ 0, all algebraic equations of

(9.35) are satisfied for an arbitrary vector ! when I1 D I2 D I3. In this case the
ellipsoid of inertia at point O 0 changes into the surface of a ball. This special Euler
case is called the stationary spinning of a rigid body .! D const/.

Let any two principal moments of inertia with respect to point O 0 be equal, for
instance, I1 D I2 ¤ I3. Also in this case (9.35) are satisfied, but this time not for
an arbitrary vector !. They are satisfied for (1) !0

1 D !0
2 D 0 and !0

3 ¤ 0 (spinning
about a principal axis of inertiaOX 0

3) or for (2) !0
3 D 0, and arbitrary!0

1; !
0
2 (in this

case spinning takes place about an arbitrary axis passing through pointO and lying
in an equatorial plane of the ellipsoid of inertia).

Finally, if I1; I2 and I3 are all distinct, then (9.35) can also be satisfied. Then
two out of the three quantities !0

1; !
0
2, and !0

3 are equal to zero, and the third one
is arbitrary. The body rotates about the principal axis of inertia associated with the
non-zero component of vector !.

Let us consider the second dynamical simplification of the Euler case described
by (9.29). If I1 D I2 ¤ I3, then the rigid body is called a dynamically symmetric
body and the axis OX 0

3 an axis of dynamical symmetry of a body. If we introduce
the system OX1X2X3 in such way that the axis OX3 is directed along the angular
momentum vector KO D const, then, using Fig. 9.2 and projecting vector KO onto
the axes of the system O 0X 0

1X
0
2X

0
3, we obtain

I1!
0
1 D KO sin � sin�;

I2!
0
2 D KO sin � cos�;

I3!
0
3 D KO cos �: (9.36)

If I1 D I2, then from the third equation of (9.29) we have

!0
3 � !0

3O D const: (9.37)
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Fig. 9.2 Projecting angular momentum vector KO onto axes of a body system, and vectors of
angular velocity of spin P�� and angular velocity of precession P �

This means that the projection of vector ! onto the axis of dynamical symmetry
of the body is constant. From (9.37) and the third equation of system (9.36) we
obtain

cos �O D I3!
0
3O

KO

D const; (9.38)

that is, the angle of nutation � is constant. In this case Euler’s kinematic equa-
tions (9.28) take the form

!0
1 D P sin � sin �O;

!0
2 D P cos� sin �O;

!0
3 D P cos �O C P�: (9.39)

Substituting the first equation of (9.39) into the first equation of (9.36) we obtain

I1 P D KO; (9.40)

hence

P D KO

I1
D P � D const: (9.41)
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Fig. 9.3 Poinsot’s geometric
interpretation of motion of a
rigid body with one point O
fixed

The component P � is called the rate of precession. One quantity remains to
be described – P�, which we determine from the third equation of (9.38). Using
relations (9.37), (9.38), and (9.41) we calculate successively

P� D !0
3O � P � cos �O D !0

3O � KO

I1
cos �O

D !0
3O � I3

I1
!0
3O D I1 � I3

I1
!0
3O D P�� D const: (9.42)

The quantity P�� is called the rate of spin of a body.
In the general case, the motion of a body about a fixed pointO that is composed

of the rotational motion about the axis associated with the body (in the present case
O 0X 0

3) and the rotational motion of this axis (O 0X 0
3) around a fixed axis (OX3)

is called the precession of a rigid body. A special case of precession is the steady
precession, where the two previously mentioned angular velocities (i.e., P�� and P �)
are constant.

The Euler case for a dynamically symmetric body describes its steady precession.
In this case, during motion the symmetry axis of the body OX 0

3 describes the cone
of circular cross section and opening angle 2�O at the apex O , where cos �O D
cos.E0

3; KO/. Likewise, the revolving motion of body symmetry axis of unit vector
E0
3 takes place with a constant velocity P � and is accompanied by (simultaneous)

spinning of the body with a constant angular velocity P�� about its symmetry axis of
unit vector E0

3.
The geometric interpretation associated with the considered Euler case proposed

by Poinsot is worth noting.
Let a rigid body in a gravitational field have its center of mass at point O and

let it be supported at this point. The motion about a point of the body in this case is
called the inertial motion of a body with its mass center fixed. Figure 9.3 shows the
ellipsoid of inertia of a body like that in arbitrary motion about a fixed pointO . The
center of the ellipsoid is located at pointO .
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Let the body rotate with angular velocity!Œ!0
1; !

0
2; !

0
3� given in the body system

O 0X 0
1X

0
2X

0
3. The ellipsoid of inertia related to point O has the form

I1x
0
1
2 C I2x

0
2
2 C I3x

0
3
2 D 1: (9.43)

Let the axis determined by vector! have one pointA in common with the surface
of the ellipsoid. The plane passing through point A and tangent to the ellipsoid is
called an invariable plane and denoted by  . Below we will cite proofs of three
characteristics of the Euler case presented by Poinsot (see also [2]).

1. We will prove that ! k �!
OA.

From Fig. 9.3 it follows that vectors ! and
�!
OA are collinear, that is,

�!
OA



x0
1A; x

0
2A; x

0
3A

� D �!


!0
1; !

0
2!

0
3

�
: (9.44)

It should be demonstrated that � D const. From (9.44) we obtain

x0
iA D �!0

i ; i D 1; 2; 3; (9.45)

and since point A belongs to the ellipsoid of inertia, from (9.43) and (9.44) we
obtain

�2
�
I1!

0
1
2 C I2!

0
2
2 C I3!

0
3
2
�

D 2T �2 D 1; (9.46)

where (9.34) was used. From relation (9.46) we obtain

� D 1p
2T

D const: (9.47)

2. We will demonstrate that  ? KO .
The equation of the surface of the ellipsoid follows.

f
�
x0
1; x

0
2; x

0
3

� D I1x
0
1
2 C I2x

0
2
2 C I3x

0
3
2 � 1 D 0; (9.48)

and the vector normal to this surface at point A is given by

gradAf D @f

@x0
1

ˇ̌̌
ˇ
A

E0
1 C @f

@x0
2

ˇ̌̌
ˇ
A

E0
2 C @f

@x0
3

ˇ̌̌
ˇ
A

E0
3

D 2I1x
0
1AE0

1 C 2I2x
0
2AE0

2 C 2I3x
0
3AE0

3

D 2�


I1!

0
1E

0
1 C I2!

0
2E

0
2 C I3!

0
3E

0
3

� D 2�KO: (9.49)

Because, by assumption, the normal vector gradAf is perpendicular to  ,
from relation (9.49) it follows that KO ?  .
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3. We will demonstrate that the projection of the radius vector r0
A D �!

OA of point A
onto the direction of vector KO is constant. From Fig. 9.3, (9.45) and (9.47), and
from the relation 2T D KO ı! it follows successively that

OB D KO ı �!
OA

KO

D � .! ı KO/

KO

D 2�T

KO

p
2T

KO

D const: (9.50)

Vector KO D const, which means that it has a constant direction in the system
OX1X2X3 during the time that a rigid body is in motion. In the system O 0X 0

1X
0
2X

0
3

its direction changes, but the magnitude is preserved, which follows from (9.32). Let
point A.tA/ of the body become A1.tA1 / after a certain time. Projections of vectors�!
OA and

��!
OA1 onto the direction of KO are equal. This means that the plane  ? KO

during the motion of point A described by the radius vector is always at the same
distance OB from point O , that is, the plane  is fixed in space. The velocity of
point A is equal to zero because it lies on an instantaneous axis of rotation !.

From the foregoing calculations it follows that in the Euler case the motion of
the rigid body has the following geometric interpretation proposed by Poinsot.

The ellipsoid of inertia related to the fixed point of a body rolls without sliding
on the plane  , which is fixed in space. The plane  is continuously perpendicular
to the vector of angular momentum KO and the vectors of the angular velocity
of the body ! and the radius vector of the point of contact between the ellipsoid
and the plane r0

A are collinear and proportional to each other. The plane  is called
the invariant plane, and the axis along which is directed vector KO is called the

invariant axis. PointA, which is the tip of radius vector
�!
OA, during motion belongs

simultaneously to the plane  and the ellipsoid of inertia that rolls on this plane. The
motion of point A takes place along a curve on the plane  called the herpolhode.
In turn, on the surface of the ellipsoid, point A moves along a curve called the
polhode.

According to previous calculation, during motion, the instantaneous axis of
rotation ! describes a conical surface, that is, a moving axode in the system
O 0X 0

1X
0
2X

0
3 and a fixed axode in the system OX1X2X3. The moving axode rolls

around the fixed axode along a generatrix that belongs at the given instant to both
conical surfaces, and vector! lies on the generatrix. The herpolhode belongs to the
fixed axode and the polhode to the moving axode.

At the end of the calculations, we will determine the orientation in space of a
body for the Euler case, that is, in the stationary systemOX1X2X3. In the coordinate
system presented in Fig. 9.3, that is, where KO lies on the axis OX3, and for the
general case, that is, the dynamically asymmetric case .I1 ¤ I2 ¤ I3/, relations
between Euler’s angles and the coordinates of vector ! are given by (9.36). If the
coordinates of vectors!Œ!0

1; !
0
2; !

0
3� are known, then from (9.36) we calculate

tan� D I1!
0
1

I2!
0
2

; cos � D I3!
0
3

KO

: (9.51)



9.2 Motion of a Rigid Body About a Fixed Point 371

0.6
a b

0.4
0.04

0.03

0.02

0.01

0.00

0.2

0.0

0 20 40 60 80 0 20 40 60 80

−0.2

−0.4

Fig. 9.4 Values of !i .t/ (a) and K2
o and 2T (b) for Mi.t/ D 0, i D 1; 2; 3 obtained as a result of

the solution to (9.27)

Let us multiply the first equation of system (9.28) by sin � and the second by
cos�, then, adding them to each other, we obtain

P D !0
1 sin � C !0

2 cos�

sin �
; (9.52)

and from (9.36) we have

sin � D I1!
0
1

KO sin �
; cos� D I2!

0
2

KO sin �
: (9.53)

Substituting (9.53) into (9.52) we obtain

P D !0
1
2
I1 C !0

2
2
I2

KO sin2 �
D
KO

�
!0
1
2
I1 C !0

2
2
I2

�
K2
O sin2 �

D
KO

�
!0
1
2
I1 C !0

2
2
I2

�
K2
O .1 � cos2 �/

D
KO

�
!0
1
2
I1 C !0

2
2
I2

�
�
K2
O � I 23 !

0
3
2
� D

KO

�
!0
1
2
I1 C !0

2
2
I2

�
I 21 !

0
1
2 C I 22 !

0
2
2

; (9.54)

where during transformations the second equation of (9.51) and (9.32) were used.
To illustrate the conducted theoretical calculations, we perform some numerical

simulations of the dynamics of a rigid body about a fixed point situated at the mass
center of the body.

Euler’s dynamic equations (9.27) are solved numerically.
In addition, as can be seen from the preceding algorithm, values of invari-

ants (9.32) and (9.34) were estimated numerically.
Figure 9.4 presents time plots of !i .t/ (panel a) and runs of values ofK2

O and 2T
(panel b).

In the next step we use Euler’s kinematic equations (9.28) in order to determine
Euler’s angles � D �.t/,  D  .t/, � D �.t/. The left-hand sides of those
equations are described by the solutions to Euler’s dynamic equations.
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Fig. 9.5 Euler’s angles as functions of time numerically estimated using Euler’s dynamic and
kinematic equations (a) and a graph of the function Œsin �.t/��1 (b)

The results of our computations (angles �.t/,  .t/, and �.t/) are given in
Fig. 9.5a, and additionally Fig. 9.5b shows a graph of function Œsin �.t/��1, where it
is seen that for t D 15:2 we are dealing with a singularity .sin �.t/ ! 0/.

Until now we have considered systems of autonomous kinematic and dy-
namic Euler differential equations. Now we present two examples of solutions
to non-autonomous Euler dynamic equations, that is, when Mi � Mi.t/ D
MOi cos.

p
Bi t/. In all calculations we use the same initial conditions and parame-

ters given in the description of the algorithm for a solution to Euler’s equations.
From Fig. 9.6 it follows that K2

O.t/ and 2T .t/ change in time, and additionally
with an increase in the amplitude of the forcing moments we observe a transition
from regular (periodic) to non-regular (chaotic) dynamics.

9.3 Dynamics of Rigid-Body Motion About a Fixed Point
in a Gravitational Field

Let us introduce the coordinate system as shown in Fig. 9.2, where the fixed point
O D O 0 is the origin of both the stationary coordinate system OX1X2X3 (the axis
OX3 is vertical) and the system O 0X 0

1X
0
2X

0
3 rigidly connected to a body (the axis

O 0X 0
3 is the axis about which the body spins); it does not coincide with the mass

center of the bodyC.x0
1C ; x

0
2C ; x

0
3C /. We determine the orientation of the body with

respect to space, that is, to the coordinate system OX1X2X3, by means of Euler’s
angles  , �, and � (Fig. 9.7).

The principal moments of inertia of the body with respect to axes O 0X 0
1, O

0X 0
2,

and O 0X 0
3 are denoted respectively by I1, I2 and I3, and at the mass center of the

body we apply its weight G D mg. The unit vector E3 of axis OX3 is denoted by
N .E3 D N/, which has the coordinates N D NŒn0

1; n
0
2; n

0
3� in the body coordinate

system. From Euler’s kinematic equations (9.28) and Fig. 9.7 it follows that the



9.3 Dynamics of Rigid-Body Motion About a Fixed Point in a Gravitational Field 373

0.6
a

b

0.05

0.04

0.03

0.02

0.01

0.00

50

40

30

20

10

0

0.4

0.2

0.0

−0.2

15

10

5

−5

−10

−15

0

−0.4
0

0 20 40 60 80 20 40 60 800

0 50 10050 100 150 150

Fig. 9.6 Time plots �.t/,  .t/, and �.t/ as a result of the solution to non-autonomous Euler
dynamic equations (a) and plots ofK2

O.t/ and 2T .t/ (b) for MOi D 0:001 (a) and MOi D 0:5 (b)

Fig. 9.7 A rigid body in a uniform gravitational field and Euler’s angles
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components of unit vector N in the coordinate system O 0X 0
1X

0
2X

0
3 are equal to

multipliers at P , and hence we have

n0
1 D sin � sin �; n0

2 D cos� sin �; n0
3 D cos �: (9.55)

Because the normal unit vector N is in a stationary system, we have

dN
dt

D 0; (9.56)

and in a body system (local system) (9.56) takes the form called a Poisson equation:

Qd
dt

N C! � N D 0; (9.57)

where ! is the vector of the angular velocity of the body and Qd=dt denotes the local
derivative.

Because, according to (9.55), we have

N D E0
1n

0
1 C E0

2n
0
2 C E0

3n
0
3 (9.58)

and

! � N D

ˇ̌̌
ˇ̌̌
ˇ̌
E0
1 E0

2 E0
3

!0
1 !0

2 !0
3

n0
1 n0

2 n0
3

ˇ̌̌
ˇ̌̌
ˇ̌ D E0

1

�
n0
3!

0
2 � n0

2!
0
3

�

C E0
2

�
n0
1!

0
3 � !0

1n
0
3

�C E0
3

�
!0
1n

0
2 � n0

1!
0
2

�
; (9.59)

from (9.57), and taking into account relations (9.58) and (9.59), we obtain three
differential equations of first order:

dn0
1

dt
D �!0

2n
0
3 C !0

3n
0
2;

dn0
2

dt
D �!0

3n
0
1 C !0

1n
0
3;

dn0
3

dt
D �!0

1n
0
2 C n0

1!
0
2: (9.60)

In the considered case, the right-hand sides of Euler’s dynamic equations (9.27)
need to be specified, that is, the moment of forces MO should be determined. This
moment is determined only by the gravity force of the body G and is equal to

MO D ��!
OC � G D ��!

OC � .�NG/ D GN � ��!
OC; (9.61)
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and, according to the assumptions adopted earlier, we have

MO D

ˇ̌̌
ˇ̌̌
ˇ̌
E0
1 E0

2 E0
3

n0
1G n0

2G n0
3G

x0
1C x0

2C x0
3C

ˇ̌̌
ˇ̌̌
ˇ̌ D GE0

1

�
n0
2x

0
3C � n0

3x
0
2C

�

CGE0
2

�
n0
3x

0
1C � n0

1x
0
3C

�CGE0
3

�
n0
1x

0
2C � n0

2x
0
1C

�
: (9.62)

Euler’s dynamic equations for the considered system take the form

I1
d!0

1

dt
C .I3 � I2/ !

0
2!

0
3 D G

�
n0
2x

0
3C � n0

3x
0
2C

�
;

I2
d!0

2

dt
C .I1 � I3/ !

0
1!

0
3 D G

�
n0
3x

0
1C � n0

1x
0
3C

�
;

I3
d!0

3

dt
C .I2 � I1/ !

0
1!

0
2 D G

�
n0
1x

0
2C � n0

2x
0
1C

�
: (9.63)

Complete knowledge concerning dynamics of a rigid body with one point fixed
and located in the uniform gravitational field boils down to the integration of
six first-order non-linear differential equations given by (9.60) and (9.63). If the
integration can be successfully carried out, then we obtain the desired solutions
n0
i D n0

i .t/, !
0
i D !0

i .t/, i D 1; 2; 3. This means that we determine the vectors
! D !.t/ and N D N.t/ in a body system. In turn, knowledge of n0

i .t/ makes it
possible to determine the position of the body in the space system because from
(9.55) one is able to determine � D �.t/ and � D �.t/. The angle  D  .t/

is yet to be determined, and it can be found using one of Euler’s kinematic
equations (9.28). The analysis of the problem boils down to the determination of
first integrals of differential equations (9.60) and (9.63).

We obtain the first integrals of (9.60) and (9.63) from the observation that jNj D
1, which means that �

n0
1.t/

�2 C �
n0
2.t/

�2 C �
n0
3.t/

�2 D 1: (9.64)

In the considered case neither vector G nor the reactions at point O produce a
moment with respect to the axis OX3. This means that the projection of an angular
momentum KO onto the axis OX3 is constant and equal to

KO ı N D const; (9.65)

and because in the non-stationary system KO D KOŒI1!
0
1; I2!

0
2; I3!

0
3� and N D

NŒn0
1; n

0
2; n

0
3�, (9.65) in the system O 0X 0

1X
0
2X

0
3 takes the form

I1!
0
1n

0
1 C I2!

0
2n

0
2 C I3!

0
3n

0
3 D const: (9.66)

Equation (9.66) describes the second first integral of the considered problem.
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During the motion of a rigid body with one point fixed in a uniform gravitational
field the total energy is conserved, that is,

T C V D const; (9.67)

where

V D G
��!
OC ı N D G

�
x1Cn

0
1 C x2C n

0
2 C x3C n

0
3

�
;

T D 1

2

�
I1!

0
1
2 C I2!

0
2
2 C I3!

0
3
2
�
: (9.68)

Therefore the third first integral of the analyzed problem has the form

1

2

�
I1!

0
1
2 C I2!

0
2
2 C I3!

0
31
2
�

CG
�
x1C n

0
1 C x2C n

0
2 C x3Cn

0
3

� D const: (9.69)

In the considered case for the illustration of the theoretical calculations some nu-
merical simulations of systems of Euler’s dynamic equations (9.63) and differential
equations (9.60) are performed.

Figure 9.8 presents graphs of !i .t/ and first integrals (invariants) for the case
of rigid-body motion about a fixed point in a uniform gravitational field for three
values of body weight G. It is evident that the increase of G causes an increase
of !i .t/; note that the runs have an irregular character, and the invariants preserve
constant values in time.

In the monograph [2] one finds the proof that in order for a problem to be
integrable by quadratures, it is sufficient to know four independent first integrals of
(9.60) and (9.63). For this reason, yet another first integral is left to be determined.
However, until now it has not been done except for certain special cases, that is, for
certain select regions of initial conditions.

The fourth first integral has been determined only for the first three special cases
of motion of a given body. Those cases will be briefly described below.

1. The Euler case. This case was considered in detail in Sect. 9.2. It is characterized
by the coincidence of the mass center with the pivot point, that is, C D O (right-
hand sides of (9.63) are then equal to zero since x0

1C D x0
2C D x0

3C D 0).
2. The Lagrange case. The mass center of a body C lies on the axis of rotation,

and the ellipsoid of inertia of the body with respect to the fixed point O ¤ C

coincides with the ellipsoid of spin of the body. We are dealing with the Lagrange
case, for instance, when I1 D I2 ¤ I3, x0

1C D x0
2C D 0, x0

3C ¤ 0. From the third
equation of system (9.63) we determine the fourth first integral of the form

!0
3 D const; (9.70)

that is, the projection of the vector of angular velocity! onto the axis of rotation
of the body is conserved

n0
3 ı! D const: (9.71)



9.3 Dynamics of Rigid-Body Motion About a Fixed Point in a Gravitational Field 377

0.6

a

b

c

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

0.0

0.0

0.4

0.2

−0.2

−0.4

1.0

1.5

1.0

0.5

0.0

−0.5

−1.0

−1.5

0.5

0.0

−0.5

−1.0

−0.6

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

0 20 40 60 80 100 120 140

0 20 40 60 80 100 120 140

0 20 40 60 80 100 120 140

0 20 40 60 80 100 120 140

0.0

Fig. 9.8 Functions !i .t/, i D 1; 2; 3 and three invariants determined by (9.64), (9.66), and (9.69)
for G D 0:2N (a), G D 1:0N (b), and G D 2:0N (c)

3. The Kovalevskaya1 case. In this case an ellipsoid of inertia with respect to the
fixed point O 0 D O is the ellipsoid of spin. Let this spinning occur with respect
to the axis O 0X 0

3, let I1 D I2 D 2I3, and let the mass center C be located on an
equatorial plane of the ellipsoid of inertia .x0

3C D 0/. It can be demonstrated that
when the ellipsoid of spin is coincident with the ellipsoid of inertia, an arbitrary
axis lying in the equatorial plane and passing through point O is a principal axis
of inertia. If we take OX 0

1 as the second axis of inertia, then x0
2C D 0. Euler’s

dynamic equations (9.63) for the Kovalevskaya case take the form

2
d!0

1

dt
� !0

2!
0
3 D 0; 2

d!0
2

dt
C !0

1!
0
3 D an0

3;
d!0

3

dt
D an0

2 D 0; (9.72)

1Zophia Kovalevskaya (1850–1891), Russian mathematician of Polish origin who worked on
differential equations.



378 9 Body and Multibody Dynamics

where a D .Gx0
1C /=I3. In the Kovalevskaya case the fourth first integral has the

following algebraic form:

�
!0
1
2 � !0

2
2 � an0

1

�2 C �
2!0

1!
0
2 � an0

2

�2 D const: (9.73)

One may be convinced of that after differentiating (9.73) and using (9.60)
and (9.63).

9.4 General Free Motion of a Rigid Body

From the calculations of kinematics it follows that the general motion of a rigid
body can be described through the motion of its arbitrary point (the pole) and the
motion of the body with respect to this point treated as a fixed point. However,
such an arbitrary choice leads to complex equations of motion for the body. If we
take the mass center of the rigid body as the pole, then the problem is substantially
simplified. The motion of the rigid body can be treated as being composed of the
motion of its mass center C and the motion of the body about point C . The motion
of the mass center is treated as the motion of a particle acted upon by forces and
moments of force applied to the considered rigid body. Equations of free motion of
a rigid body have the form

M
dvC
dt

D F;
dKC

dt
D MC ; (9.74)

where the first one describes the motion of the mass center subjected to the action
of the main force vector applied at point C and the second one describes the change
in the angular momentum of the body with respect to point C caused by the main
moment of force about that point.

The first vector differential equation of (9.74) has the following form in an
absolute system:

M
d2x1C

dt2
D F1; M

d2x2C
dt2

D F2; M
d2x3C

dt2
D F3; (9.75)

where

F D E1F1 C E2F2 C E3F3:

The second vector differential equation of (9.74) is usually represented in a body
system and has the form

QdKC

dt
C! � KC D MC ; (9.76)
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where Qd=dt denotes the local derivative of the vector. In scalar form (9.76) becomes
system (9.23), where on the right-hand side the subscript O should be replaced
with C .

However, this is not a good choice of non-stationary coordinate system either.
If the axes of the system CX 0

1X
0
2X

0
3 become coincident with the principal axes of

inertia passing through point C , that is, they become principal centroidal axes of
inertia, then (9.76) are Euler’s dynamic equations in the form

I1
d!0

1

dt
C .I3 � I2/ !0

2!
0
3 D MC1;

I2
d!0

2

dt
C .I1 � I3/ !0

1!
0
3 D MC2;

I3
d!0

3

dt
C .I2 � I1/ !0

1!
0
2 D MC3; (9.77)

where the moments of inertia and the moments of forces are described in a local
coordinate system.

As was already mentioned, in order to trace motion in an absolute system
CX1X2X3 one should determine the dependencies of Euler’s angles on time, that is,
simultaneously (or additionally) solve the system of Euler’s kinematic equations of
the form

!0
1 D P sin � sin � C P� cos�;

!0
2 D P sin � cos� � P� sin�;

!0
3 D P sin � C P�: (9.78)

In problems involving the simulation of the motion of a rigid body, kinematic
differential equations are used in a form inverse to (9.78), that is, a form that
expresses the time derivatives of Euler’s angles in terms of the components of
angular velocity in the body system. However, for any choice of Euler’s angles this
inverse relationship has a singular position, which was mentioned previously.

In the general case, the right-hand sides of systems of non-linear differential
equations (9.75) and (9.77) have the forms Fi D Fi .x1C ; x2C ; x3C ;  ; �; �; t/

andMCi D MCi.x1C ; x2C ; x3C ;  ; �; �; t/, and because of that the three systems
of differential equations (9.75), (9.77) and (9.78) should be solved simultaneously.

In one of the special cases, where MCi D 0 and F1 D F2 D 0, F3 D Mg, that
is, when the only force acting on the body is its weight, equations (9.75) take the
form

d2x1C
dt2

D 0;
d2x2C

dt2
D 0;

d2x3C
dt2

D �g; (9.79)

and the remaining two systems of (9.77) and (9.78) are independent of them; they
were the subject of our discussion during the analysis of motion of a rigid body in
the Euler case.
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9.5 Motion of a Homogeneous Ball on a Horizontal Plane
in Gravitational Field with Coulomb Friction

Let us consider the motion of a homogeneous ball of mass M and radius r on a
horizontal rough plane, shown in Fig. 9.9 (the motion takes place in the absence of
rolling resistance, and the only active force is the gravity force).

Let us introduce the absolute coordinate system OX1X2X3 and the system
CX1X2X3 of axes parallel to the absolute system, but with its origin at the center of
the ballC . Let! denote the angular velocity of the ball, and if vC is the translational
velocity of the mass center C of the ball, then the velocity of the point of contact of
the ball with the surface reads

vA D vC C! � �!
CA: (9.80)

The reaction at point A has the form

R D N C T; (9.81)

where the friction force

T D ��N v0; (9.82)

where v0 is the unit vector of velocity at pointA (of the absolute velocity of point A
at which the ball makes contact with the ground at the given instant), that is,

vA D vAv0; (9.83)

Fig. 9.9 Motion of a ball on a horizontal plane in the gravitational field
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which also means that we are dealing with a case of a ball rolling with sliding.
Moreover, the angular momentum of the ball with respect to its center is equal to

KC D IC! D 2

5
Mr2!: (9.84)

Equations (9.74) for the considered case take the form

M
dvC
dt

D M g C R; (9.85)

IC
d!

dt
D �!
CA � R: (9.86)

If we assume

rC D E1x1C C E2x2C C E3x3C ;

T D E1T1 C E2T2;

N D E3N; (9.87)

then (9.85) take the scalar form

M
d2x1C

dt2
D T1; M

d2x2C
dt2

D T2; M
d2x3C

dt2
D �Mg CN; (9.88)

and since during motion x3C D const D r , from the third equation of system (9.88)
we obtain N D Mg.

Then,

�!
CA � R D

ˇ̌̌
ˇ̌̌
ˇ̌
E1 E2 E3

0 0 � r
T1 T2 N

ˇ̌̌
ˇ̌̌
ˇ̌ D E1rT2 � E2T1r; (9.89)

and from (9.86) we obtain

d!1
dt

D 5T2

2Mr
;

d!2
dt

D 5T1

2Mr
;

d!3
dt

D 0: (9.90)

From the last equation it follows that

! ı E3 D const; (9.91)

regardless of whether the ball rolls without sliding .vA D 0/ or with sliding .vA ¤
0/. The magnitude of the friction force for the case with sliding (i.e., for vA D
vAv0 ¤ 0), according to relation (9.82), is equal to T D �N D �Mg D const. We
will demonstrate that the direction of vector T is conserved.
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Differentiating (9.80) with respect to time we obtain

dvA
dt

D dvC
dt

C P! � �!
CAC P�!

CA �!

D g C .�M g C T/
M

C 5Tr
2Mr

D 7T
2M

; (9.92)

where during the transformations relations (9.81), (9.82), (9.85), and (9.90) were
taken into account.

From (9.92) we obtain

dvA
dt

v0 C vA
dv0
dt

D �7
2
�gv0; (9.93)

where (9.83) was used. Because v0 ? dv0
dt , from relation (9.93) we obtain

dv0
dt

D 0;
dvA
dt

D �7
2
�g: (9.94)

From the first equation of (9.94) it follows that v0 D const. According to (9.82)
this means that also the friction force T has constant direction. The integration of
the second equation of (9.94) yields

vA.t/ D vA.0/� 7

2
�gt; (9.95)

which means that the plot of vA.t/ on the .v; t/ plane is a straight line.
The motion of pointA takes place in the horizontal planeOX1X2, and the motion

of the mass center of the body C takes place in the plane CX1X2.
Integrating the first two equations of motion (9.88) we obtain the trajectory of

motion of point C . We have successively

v1C D dx1C
dt

D T1

M
t C �1C .0/;

v2C D dx2C
dt

D T2

M
t C �2C .0/;

x1C D T1

2M
t2 C v1C .0/t C x1C ;

x2C D T2

2M
t2 C v2C .0/t C x2C : (9.96)

Let the velocity vector, which according to formula (9.95) is equal to

vA.t/ D
�

vA.0/� 7

2
�gt

�
v0 D vA.t/v0; (9.97)
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form an angle ˛ with the axis OX1. Then, multiplying relation (9.97) successively
by E1 and E2 we obtain

vA.t/ D vA.t/ cos˛E1 C vA.t/ sin ˛E2: (9.98)

Integrating (9.90) we obtain

!0
1.t/ D 5T2

2Mr
t C !0

1.0/;

!0
2.t/ D � 5T1

2Mr
t C !0

2.0/: (9.99)

According to relations (9.82) and (9.87) we have

� �N v0 D E1T1 C E2T2; (9.100)

and multiplying this equation by E1 and E2 we obtain

T1 D ��N v0 ı E1 D ��Mg cos˛;

T2 D ��N v0 ı E2 D ��Mg sin ˛: (9.101)

Taking into account formulas (9.101) in (9.99) we have

!0
1.t/ D �5�gt

2r
cos˛ C !0

1.0/;

!0
2.t/ D �5�gt

2r
sin ˛ C !0

2.0/; (9.102)

and inserting quantities from (9.101) into relations (9.96) we obtain

v1C D ��gt cos˛ C v1C .0/;

v2C D ��gt sin ˛ C v2C .0/;

x1C D ��gt
2

2
cos˛ C v1C .0/t C x1C .0/;

x2C D ��gt
2

2
sin ˛ C v2C .0/t C x2C .0/: (9.103)

From the first two equations of (9.103) it follows that the parametric equations
of the velocity of point C describe a line, and parametric equations of motion of
point C describe a parabola, on the assumption that vectors vA and vC are not
collinear, and the motion of point A on the plane OX1X2 takes place with sliding.
Such motion lasts until the time instant t� D 2vA.0/

7�g
[see (9.95)]. At the instant

t D t� we have vA.t�/ D 0, so the ball motion with sliding comes to an end, and
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its rolling motion with simultaneous spinning starts. Then, because vA D 0, from
(9.83) and (9.82) it follows that T D 0, that is, T1 D T2 D 0. Substituting these
values into differential equations (9.88), which describe the motion of the mass
center of the ball, we obtain

d2x1C
dt2

D 0;
d2x2C

dt2
D 0; (9.104)

and from (9.90) we have

d!0
1

dt
D 0;

d!0
2

dt
D 0: (9.105)

From (9.105) it follows that during rolling with spinning ! D E1!1.0/ C
E2!2.0/ D const. Integrating (9.104) we obtain

v1C D dx1C
dt

D v1C .0/; x1C D v1C .0/t C x1C .0/;

v2C D dx2C
dt

D v2C .0/; x2C D v2C .0/t C x2C .0/: (9.106)

The motion of point A can be determined using (9.80), where

! � �!
CA D

ˇ̌̌
ˇ̌̌
ˇ̌
E1 E2 E3

!1 !2 !3

0 0 0

ˇ̌̌
ˇ̌̌
ˇ̌ D E1!2r � E2!1r; (9.107)

hence we obtain

x1A.t/ D v1C .0/t C x1C .0/C r!2.0/;

x2A.t/ D v2C .0/t C x2C .0/� r!1.0/: (9.108)

The solution of the problem of a ball’s motion on a plane with Coulomb friction
allows for a wider interpretation of the friction phenomenon within the framework
of the classic Amontons–Coulomb model. Let an arbitrary rigid body, bounded by a
convex surface  0 in a region of contact with the plane  , move on the plane  with
the point of contact at A (Fig. 9.10). The plane  0 is tangent to the surface  during
the motion of a rigid body. The velocity vA of motion of point A lies in the plane
 . If vA D 0, then the rigid body moves without sliding on the plane  . If vA ¤ 0,
then the rigid body moves with sliding on the plane  , and vA is called the velocity
of sliding [2].

If point A is taken as a pole, then the velocity of motion of an arbitrary point of
the surface  0 (described by radius vector r) with respect to pole A is the geometric
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Fig. 9.10 Motion of a rigid
body bounded by a convex
surface  0 on the horizontal
plane  (with marked vectors
of angular velocity ! and
angular momentum KA)

sum of the velocity of pole vA and the velocity resulting from the rotation caused by
! of the form (Fig. 9.10)

v D vA C! � r; (9.109)

where
! D !n C!t : (9.110)

From (9.110) it follows that vector ! is resolved into two components at the
point of contact. Vector !n (normal) is perpendicular to the plane  , and vector !t
(tangent) lies on the plane  , hence we have !n ? !t . Vector !n is called the
angular velocity of turning and vector !t the angular velocity of rolling.

Below we will present various types of motion of a rigid body on the plane 
depending on the velocities vA, !n, and !t .

1. If vA D 0, !n D 0, and !t ¤ 0, then the surface  0 rolls on the plane  .
2. If vA D 0, !n ¤ 0, and !t D 0, then we are dealing with the phenomenon of

the turning of the surface  0 on the plane  .
3. If vA ¤ 0, !n D 0, and !t D 0, then the surface  0 slides on the plane  .
4. If vA ¤ 0, !n ¤ 0, and !t ¤ 0, then the surface  0 slides, rolls, and turns on

the stationary plane  .

Force interaction between surfaces  0 and  includes a force called the normal
reaction N � 0 perpendicular to both surfaces, acting from (the side of) the plane
 on the surface  0 and directed from the plane  toward the surface  0. Then,
additionally, the friction force T lying in the plane  at point A acts on the rigid
body (if at least one of the surfaces  or  0 is a rough surface). If vA D 0, then the
friction force is a force of rolling friction, which is usually smaller than the friction
force T D �N , where � is the coefficient of sliding friction (see Sect. 2.8 in [1]).
If the contact surfaces are smooth at point A, then there is no friction force, and the
reaction acting on the rigid body reduces to the normal force N.

The following equation is valid in the body system [see (9.76)]

QdKA

dt
C! � KA D MA; (9.111)
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where MA is the moment of force with respect to pole A, and then

! � KA D !n � KA C!t � KA

D !nK
0
nA!

0
n C !tK

0
tA!

0
t D Mn C Mt : (9.112)

Taking into account relations (9.112) in (9.111) we obtain

QdKA

dt
D �

MnA � !nK
0
nA

�
!0n C �

MtA � !tK
0
tnA

�
!0t

D QMnA!
0
n C QMtA!

0
t : (9.113)

From (9.113) it follows that the force N C T and the moment of force Mn along
the unit vector of the normal velocity!0n and the moment of force Mt along the unit
vector of the tangential velocity !0t act at point A on the rigid body act. A similar
situation occurs for a main force F acting on a body and the force R D N C T,
which can be resolved in a similar manner, that is,

F C N C T D Fn!
0
n C Ft!

0
t : (9.114)

The moment of force QMnA is called the turning moment of force and the moment
QMtA the rolling moment of force. The main turning moment of force is carried by a

turning moment of friction forces (a couple of forces) only if the rigid body makes
contact with the stationary plane  over a certain (small) surface instead of a point.

9.6 Motion of a Rigid Body with an Arbitrary Convex
Surface on a Horizontal Plane

We will consider a generalization of the motion of a ball on a rough plane in the
case of motion of an arbitrary rigid body, on the assumption that its contact with
a point of the horizontal plane is always in the convex region of the body [2]. The
modeling of such contact was conducted in Sect. 9.5, and we will make use of the
calculations presented there.

LetM denote the mass of a rigid body,! and vC respectively the angular velocity
of the body and translational velocity of the mass center C , KC the moment of
momentum with respect to point C , and R D N C T the reaction of the plane 
on the rigid body. Equations of motion have the form described by (9.7) and (9.8),
which in the present case are

PvC C! � vC D �gn C 1

M
R; (9.115)

PKC C! � KC D r � R; (9.116)
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where r is the vector connecting the mass center C with the point of contact of the
bodies A, and the dot denotes Qd=dt , that is, a local differential operator.

Because, vector n is constant in a space system, according to the calculations of
Sect. 9.3 we have

Pn C! � n D 0: (9.117)

Equation (9.117), called a Poinsot equation, holds true for all cases (1)�(4)
considered toward the end of Sect. 9.5. In order to consider specific cases it is
necessary to include additional equations relevant to a given.

Let the motion of a body on the plane  take place without sliding (then vA D 0,
where A is the point of contact of the body with the plane ). According to (9.80)
in this case we obtain

vC C! � r D 0: (9.118)

According to Example 9.10 we have

f
�
x0
1; x

0
2; x

0
3

� D 0; n D � gradf

jgradf j ; (9.119)

which defines vector n. The 12 desired quantities

vC D v1CE1 C v2CE2 C v3CE3;

! D !0
1CE0

1 C !0
2CE0

2 C !0
3CE0

3;

rC D x1CE1 C x2CE2 C x3CE3;

R D R0
1E

0
1 CR0

2E
0
2 CR0

3E
0
3 D R1E1 CR2E2 CR3E3 (9.120)

can be determined from (9.115)–(9.117) and (9.119) which total 12 as well.
If there is no sliding, then there is no dissipation of energy, that is, the mechanical

energy of the rigid body is conserved. This means that

E D 1

2
mv2C C 1

2
.K ı!/ �Mg .rC ı n/ D const: (9.121)

If there is no friction in the system (contact surfaces are perfectly smooth), then

R D N D Nn: (9.122)

Following scalar multiplication of (9.118) by n we obtain the equation of
constraints of the form

n ı .vC C! � r/ D 0: (9.123)

On the other hand, in an absolute system an equation of geometric constraints has
the form (we do not consider the case of a body losing contact with the surface )

x3C D � .r ı n/ ; (9.124)

from which after differentiation we obtain
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Px3C D � .Pr ı n C r ı Pn/ D �Pr ı n D � .r �!/ ı n: (9.125)

Equation of geometric constraints (9.123), after taking into account
relation (9.125), acquires the form

n ı vC � E3 ı vC � Px3C D �n ı .r �!/ : (9.126)

From (9.115), (9.118), and (9.126) it follows that in the absolute system
OX1X2X3 equation (9.115) takes the form

Pv D 0 � E1 C 0 � E2 C Rx3C � E3 D
�

�g C N

M

�
E3: (9.127)

According to the preceding equation we have

PxiC D Ci D const; i D 1; 2; (9.128)

and the projections of the velocity of mass center C onto the plane  are constant.
It follows that

x1C D C1t; x2C D C2t; (9.129)

hence

x D
q
x21C C x22C D

q
C2
1 C C2

2 t: (9.130)

This means that the mass center moves in uniform rectilinear motion on the plane
OX1X2. Let us determine reaction N during such motion of a rigid body. Equating
the coefficients at E3 in (9.127) we obtain

N D M .g C Rx3C / D M

�
g � n ı d

dt
.r �!/

	

D M Œg � n ı .Pr �!C r � P!/�
D M fg � n ı Œ.! � r/ �!C r � P!�g : (9.131)

Finally, we should also determine quantities!0
1, !

0
2, !

0
3, x

0
1C , x0

2C , and x0
3C , which

are obtained after solving (9.116) and (9.117) by taking into account additional
equations (9.119), (9.122), and (9.131). Let us now consider the case with sliding,
that is, where vA ¤ 0. Then the reaction at point A acting on the body is equal to

R D N C T D N

�
n � �vC

vC

�
; (9.132)

where (9.126) and (9.131) hold true, and the whole course of our calculations was
valid for the case N > 0.
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9.7 Equations of Vibrations of a System of N Rigid Bodies
Connected with Cardan Universal Joints

The subject of this section will be the vibrations of N compound pendulums,
which are axisymmetrical rigid bodies connected to each other by means of Cardan
universal joints (see Table 4.1 of [1]). These joints allow two degrees of freedom of
motion between bodies. The first of the bodies in the chain is excited in a kinematic
way also through a Cardan universal joint (the vector of angular velocity ! comes
from a vertically mounted motor). Each of the axisymmetrical bodies of numbers
j D 1; : : : ; N has three mass moments of inertia Ij1 D Ij 2 ¤ Ij 3, where, according
to the convention adopted in this work, the system of Cartesian coordinates rigidly
connected to body j is denoted by OjX 000

1 X
000
2 X

000
3 , and moments I3 are calculated

with respect to the axis OjX 000
3 . The moments of inertia Ijk , where j denotes a

rigid body number, and k denotes an axis number (k D 1; 2; 3), are calculated with
respect to the coordinates CjX 000

1 X
000
2 X

000
3 (axes OjX 000

k are parallel to principal axes
CjX

000
k ), where Cj denote positions of the body mass centers.

In order to derive equations of motion of the connected rigid bodies (compound
pendulums), we will make use of the previously introduced Euler angles to describe
the positions of rigid bodies in space and Lagrange equations of the second kind.
Figure 9.11a shows how rotational motion is transmitted from the motor S to the
system of pendulums. Figure 9.11b presents the first rigid body connected by means
of a Cardan universal joint to the motor, and the center of the joint is denoted byO1.
The convention adopted for labeling bodies, the positions of their mass centers Cj ,
and the distances between the successive centers of joints is depicted in Fig. 9.11c

Body 1 has two possibilities for moving with respect to a system rotating with
velocity ! . 1 D !t/ described by the angles �1 and '1.

The appropriate notions and method for using Euler’s angles are described in
Sect. 5.5.4 of [1] on the basis of schematic diagrams presented in Fig. 5.56 [1].

The schematic diagram shown in Fig. 9.11b indicates that these angles are
introduced in a slightly different way. However, it is worth emphasizing that all
three intermediate Cartesian coordinate systems should be of one type, for instance,
right-handed.

We will now show, using the vector calculus, how to carry out a transformation
of the coordinates of a point in the Cartesian coordinate systems OjX1X2X3,
OjX

0
1X

0
2X

0
3,OjX

00
1 X

00
2 X

00
3 , andOjX 000

1 X
000
2 X

000
3 making use of the introduced Euler’s

angles.
By rotating the coordinate system OjX

000
1 X

000
2 X

000
3 successively through angles

'1, �1, and  1, the radius vector of an arbitrary point of the body having coordinates
.x000
1 ; x

000
2 ; x

000
3 /, that is, E000

1 x
000
1 CE000

2 x
000
2 CE000

3 x
000
3 , will be expressed in theOjX1X2X3

coordinate system (Fig. 9.12).
Rotation of the system O1X

000
1 X

000
2 X

000
3 through the angle '1 (Fig. 9.12a) is

equivalent to the following transformation:

E00
1x

00
1 C E00

3x
00
3 D E000

1 x
000
1 C E000

3 x
000
3 ;

E00
2 D E000

2 ; (9.133)
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Fig. 9.11 (a) Motor S transmitting motion to a system of rigid bodies by means of a Cardan
universal joint. (b) Space system OX1X2X3 .O D O1/, body system of body number 1
O1X

000

1 X
000

2 X
000

3 , body number 1, and Euler’s angles. (c) Schematic diagram showing labeling
convention for the geometry of the bodies

Fig. 9.12 Successive rotations of coordinate systems through Euler’s angles '1 (a), �1 (b), and
 1 (c)
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and hence, multiplying respectively by E00
1 and E00

3 , we have

x00
1 D E000

1 ı E00
1x

000
1 C E000

3 ı E00
1x

000
3 ;

x00
3 D E000

1 ı E00
3x

000
1 C E000

3 ı E00
3x

000
3 ;

x00
2 D x000

2 ; (9.134)

and eventually we obtain

x00
1 D x000

1 cos'1 C x000
3 sin '1;

x00
3 D �x000

1 sin '1 C x000
3 cos'1;

x00
2 D x000

2 : (9.135)

The next rotation through angle �1 (Fig. 9.12b) leads to the relation

E0
2x

0
2 C E0

3x
0
3 D E00

2x
00
2 C E00

3x
00
3 ;

E00
1 D E0

1; (9.136)

hence, multiplying by E0
2 and E0

3, we obtain

x0
2 D E00

2 ı E0
2x

00
2 C E00

3 ı E0
2x

00
3 ;

x0
3 D E00

2 ı E0
3x

00
2 C E00

3 ı E0
3x

00
3 ;

x00
1 D x0

1; (9.137)

or, in equivalent form,

x0
2 D x00

2 cos �1 � x00
3 sin �1;

x0
3 D x00

2 sin �1 C x00
3 cos �1;

x00
1 D x0

1: (9.138)

Then the rotation through angle  1 (Fig. 9.12c) is described by the relations

E1x1 C E2x2 D E0
1x

0
1 C E0

2x
0
2;

E0
3 D E3; (9.139)

from which we obtain

x1 D E0
1 ı E1x0

1 C E0
2 ı E1x0

2;

x2 D E0
1 ı E2x0

1 C E0
2 ı E2x0

2;

x0
3 D x3; (9.140)
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or, in equivalent form,

x1 D x0
1 cos 1 � x0

2 sin 1;

x2 D x0
1 sin 1 C x0

2 cos 1;

x3 D x0
3: (9.141)

Relations (9.135), (9.138), and (9.141) lead to the following equations:

x1 D x00
1 cos 1 � �

x00
2 cos �1 � x00

3 sin �1
�

sin 1;

x2 D x00
1 sin 1 C �

x00
2 cos �1 � x00

3 sin �1
�

cos 1;

x3 D x00
2 sin �1 C x00

3 cos �1; (9.142)

x1 D �
x000
1 cos'1 C x000

3 sin '1
�

cos 1

� 

x000
2 cos �1 � ��x000

1 sin ' C x000
3 cos'1

�
sin �1

�
sin 1;

x2 D �
x000
1 cos'1 C x000

3 sin '1
�

sin 1

� 

x000
2 cos �1 � ��x000

1 sin ' C x000
3 cos'1

�
sin �1

�
cos 1;

x3 D x000
2 sin �1 C ��x000

1 sin ' C x000
3 cos'1

�
cos �1; (9.143)

x1 D x000
1 Œcos'1 cos 1 � sin'1 sin �1 sin 1� � x000

2 cos �1 sin 1

C x000
3 Œsin ' cos 1 C cos'1 sin �1 sin 1� ;

x2 D x000
1 Œcos'1 sin 1 C sin '1 sin �1 cos 1�C x000

2 cos �1 cos 1

C x000
3 Œsin ' sin 1 � cos'1 sin �1 cos 1� ;

x3 D �x000
1 sin '1 cos �1 C x000

2 sin �1 C x000
3 cos'1 cos �1; (9.144)

and eventually we obtain the relationship between the coordinates of the point in the
stationary system x and the body system x000 of the form

x D A1x000; (9.145)

where A1 is the matrix of rotation of body 1 of the form

A1 D

2
664

cos'1 cos 1 � sin'1 sin �1 sin 1 � cos �1 sin 1

cos'1 sin 1 C sin '1 sin �1 cos 1 cos �1 cos 1

� sin'1 cos �1 sin �1

sin '1 cos 1 C cos'1 sin �1 sin 1

sin '1 sin 1 � cos'1 sin �1 cos'1

cos'1 cos �1

3
775 (9.146)
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Body 1 during its motion is acted upon by the angular velocity vectors !, P'1,
and P�1. We would like to determine the resultant vector of angular velocity !1 of
the body system O1X

000
1 X

000
2 X

000
3 , that is, we have to project the vectors of angular

velocity, mentioned previously, onto the axes of this coordinate system. To this
end we determine the relationships between the coordinates of the aforementioned
vectors in the systems O1X1X2X3, O1X 0

1X
0
2X

0
3, O1X

00
1 X

00
2 X

00
3 , and O1X 000

1 X
000
2 X

000
3 .

According to the previous schematic diagrams we have

x0
1 D x1E1 ı E0

1 C x2E2 ı E0
1;

x0
2 D x1E1 ı E0

2 C x2E2 ı E0
2;

x0
3 D x3; (9.147)

that is,

x0
1 D x1 cos 1 C x2 sin 1;

x0
2 D �x1 sin 1 C x2 cos 1;

x0
3 D x3; (9.148)

and then

x00
2 D x0

2E
0
2 ı E00

2 C x0
3E

0
3 ı E00

2 ;

x00
3 D x0

2E
0
2 ı E00

2 C x0
3E

0
3 ı E00

3 ;

x00
1 D x0

1; (9.149)

that is,

x00
2 D x0

2 cos �1 C x0
3 sin �1;

x00
3 D �x0

2 sin �1 C x0
3 cos �1;

x00
1 D x0

1; (9.150)

and eventually

x000
1 D x00

1E00
1 ı E000

1 C x00
3E00

3 ı E000
1 ;

x000
3 D x00

1E00
1 ı E000

3 C x00
3E00

3 ı E000
3 ;

E000
2 D E00

2 ; (9.151)

that is,

x000
1 D x00

1 cos'1 � x00
3 sin '1;

x000
3 D x00

1 sin '1 C x00
3 cos'1;

x000
2 D x00

2 : (9.152)
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Note that

! D E3!;

P'1 D E000
2 P'1;

P�1 D E00
1

P�1: (9.153)

Below we present the process of projecting vectors (9.153). We have successively

1. Vector !:

!0
1 D 0; !0

2 D 0; !0
3 D !;

!00
2 D ! sin �1; !00

3 D ! cos �1; !00
1 D 0;

!000
1 D �! cos �1 sin '1; !000

3 D ! cos �1 cos'1; !000
2 D ! sin �1I

(9.154)

2. Vector P'1:

P'13 D 0; P' 000
12 D P'1; P' 000

11 D 0I (9.155)

3. Vector P�1:
P� 00
11 D P�1; P� 00

12 D 0; P� 00
13 D 0;

P� 000
11 D P�1 cos'1; P� 000

13 D P�1 sin '1; P� 000
12 D 0: (9.156)

Taking into account the preceding calculations we obtain

!11 D �! cos �1 sin '1 C P�1 cos'1;

!12 D P'1 C ! sin �1;

!13 D ! cos'1 cos �1 C P�1 sin '1; (9.157)

and eventually the vector of angular velocity of body 1 reads

!1 D !11E000
1 C !12E000

2 C !13E000
3 : (9.158)

Let us now consider one of the connected bodies of number j . This body is
connected to the body of number j � 1 by means of a Cardan universal joint.
This means that body j has two ways of moving relative to body j � 1, which are
described by angles �j and 'j (Fig. 9.13) with respect to the system OjX

000
1 X

000
2 X

000
3

of axes mutually parallel to the coordinate of body j � 1 (Fig. 9.13a).
According to the calculations conducted earlier, by choosing an arbitrary point

of body j of coordinates .x000
1 ; x

000
2 ; x

000
3 /, we can describe its coordinates in the

stationary system O1X1X2X3 using rotation matrix A1 introduced earlier and
employing the previously described notion.
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Fig. 9.13 The position of body j (b) with respect to body j � 1 (a) is determined by two angles
�j and 'j

Our aim is to express the position of an arbitrary point belonging to an arbitrary
body of number j and given in a coordinate system rigidly connected to body j
in a stationary system, that is, O1X1X2X3. To this end it is necessary to apply
the successive rotations of the bodies preceding body j , which is equivalent to the
following notation:

xj�1 D Ajxj ; xj�2 D Aj�1xj�1;

xj�3 D Aj�2xj�2; xj�k D Aj�kxj�k;

j � N; j � k D 1; (9.159)

and hence we obtain

xj�k D Aj�k : : :Aj�2Aj�1Aj xj : (9.160)

For instance, in order to determine the coordinates of the point of the body N in
a stationary system one should set j D N and k D N � 1 in (9.160):

xj D A1A2 : : :AN xN ; (9.161)
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where matrix A1 is the matrix that generates the motion described by (9.146), and
therefore the angles describing the position of two bodies of numbers j � 1 and j
are valid for 2 � j � N .

The matrix Aj , 2 � j � N , occurring in the preceding equations, can be easily
obtained from matrix A1 after setting  1 D 0:

Aj D

2
664

cos'j sin 'j sin �j � sin 'j cos �j

0 cos �j sin �j

sin 'j � cos'j sin �j cos'j cos �j

3
775

T

: (9.162)

Because the vector of angular velocity of body j � 1 is known, we are able
to determine the vector of angular velocity of body j in the system OjX

000
1 X

000
2 X

000
3

rigidly connected to body j . According to Fig. 9.13b, where the known components
of vector !j�1 are marked in red and those of vectors P�j and P'j are marked in
yellow, using matrix Aj we can express vector !j in the coordinates of body j .

Vectors !j�1 and P�j are projected onto the axes of the coordinate system of
body j in the following way:

2
664

cos'j sin 'j sin �j � sin 'j cos �j

0 cos �j sin �j

sin �j � cos'j sin �j cos' j cos �j

3
775

�1 2
664
!.j�1/1 C P�j
!.j�1/2
!.j�1/3

3
775 ; (9.163)

and additionally taking into account that P'j lies on the axis OjX 000
2 we obtain

!j1 D
�
!.j�1/1 C P�j

�
cos'j

C !.j�1/2 sin'j sin �j � !.j�1/3 sin 'j cos �j ;

!j2 D !.j�1/2 cos �j C !.j�1/3 sin �j C P'j ;
!j3 D

�
!.j�1/1 C P�1

�
sin 'j

� !.j�1/2 cos'j sin �j C !.j�1/3 cos'j cos �j : (9.164)

In order to derive equations of motion we have to determine the positions of
origins Oj of all previously used coordinate systems and the positions of mass
centers Cj of all rigid bodies.

According to Fig. 9.11c the position of the center of joint O2 can be determined
from (9.145) because, substituting x000 D Œ0 0 l1�

T, we obtain

x1O2 D �l1 .sin'1 cos!t C cos'1 sin �1 sin!t/ ;

x2O2 D �l1 .sin'1 sin!t � cos'1 sin �1 cos!t/ ;

x3O2 D �l1 cos'1 cos �1; (9.165)
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and the position of the mass center of body 1 is equal to

x1C1 D �a1 .sin '1 cos!t C cos'1 sin �1 sin!t/ ;

x2C1 D �a1 .sin '1 sin!t � cos'1 sin �1 cos!t/ ;

x3C1 D �a1 cos'1 cos �1: (9.166)

Recurrence formulas for the determination of positions of the remaining points
Oj follow from the equation

�����!
Oj�1Oj D �E000

3 lj�1 D �
x1Oj � x1Oj�1

�
E1

C �
x2Oj � x2Oj�1

�
E2 C �

x3Oj � x3Oj�1
�

E3: (9.167)

Multiplying relation (9.159) in turn by Ei , i D 1; 2; 3 we obtain

x1Oj D x1Oj�1 � lj�1E1 ı E000
3 ;

x2Oj D x2Oj�1 � lj�1E2 ı E000
3 ;

x3Oj D x3Oj�1 � lj�1E3 ı E000
3 ; j D 2; : : : ; N; (9.168)

where vector E000
3 is associated with body j � 1.

In turn, the mass centers Cj of the rigid bodies are described by the equations

x1Cj D x1Oj � ajE1 ı E000
3 ;

x2Cj D x2Oj � ajE2 ı E000
3 ;

x3Cj D x3Oj � ajE3 ı E000
3 ; j D 2; : : : ; N; (9.169)

and vector E000
3 is associated with body j .

In order to exploit Lagrange’s equations of the second kind, which serve to
derive equations of motion of the connected rigid bodies, one should determine
the kinetic energy T of the system of bodies, the potential energy V of the bodies
in the gravitational force field, and the potential energy U accumulated in each of
j D 1; : : : ; N Cardan universal joints. The energies are given by the equations

T D 1

2

NX
jD1

mj

�
Px21Cj C Px22Cj C Px23Cj

�

C 1

2

0
@ NX
jD1

Ij1!
2
j1

C
NX
jD1

Ij2!
2
j2

C
NX
jD1

Ij3!
2
j3

1
A ; (9.170)
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V D g

NX
jD1

mjx3Cj ; (9.171)

U D 1

2

NX
jD1

kj

�
�2j C '2j

�
; (9.172)

where g is the acceleration of gravity and kj denotes the stiffness coefficient of each
of the Cardan universal joints j .

Lagrange’s equations of the second kind in this case take the form

d

dt

@T

@ Pqi � @T

@qi
C @U

@qi
C @V

@qi
D 0; i D 1; : : : ; 6N; (9.173)

where qi are the generalized coordinates of the body.
Let us write the equations of motion that follow from relation (9.173) in the

explicit form for the case of only one body j D 1.
From (9.166) we obtain

Px1C1 D �a1
h

P'1 cos'1 cos!t � ! sin '1 sin!t � P'1 sin'1 sin �1 sin!t

C P�1 cos'1 cos �1 sin!t C ! cos'1 sin �1 cos!t
i
;

Px2C1 D �a1
h

P'1 cos'1 sin!t C ! sin '1 cos!t C P'1 sin '1 sin �1 cos!t

� P�1 cos'1 cos �1 cos!t C ! cos'1 sin �1 sin!t
i
;

Px3C1 D a1

h
P'1 sin '1 cos �1 C P�1 cos'1 sin �1

i
: (9.174)

Taking into account relations (9.174) and (9.149) in (9.170) and then formu-
las (9.166) in (9.171) from (9.173) we obtain the following equation of motion for
the first body with two degrees of freedom with the adopted generalized coordinates
�1 and '1:

R'1 D Œ2 .I12 CM1/�
�1 ˚2 
! P�1 .C C I12/ � a1gm1 sin .'1/

�
cos .�1/

� k1'1 C A
�
!2 cos2 .�1/ � P�2

1

�
sin .'1/

�
;

R�1 D 

4 .I11 CM1/ cos2 .'1/C I13 sin2 .'1/

��1 � !2 ˚ .C � I11

C 2I12 � I13/ sin .2�/� 4 
�.C C I12/ ! cos.�/C A sin.2'1/ P�1
� P'1

� a1gm1 cos.'1/ sin.�1/ � k1�1
��
; (9.175)

where

M1 D m1a
2
1; A D I11 � I13 CM1;

B D A cos .2'1/ ; C D B CM1:
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9.8 Conservative Vibrations of a Rigid Body Supported
Elastically in the Gravitational Field

Now we will make use of the previously introduced knowledge regarding the
geometry of masses, the kinematics of a rigid body, and Lagrange’s equations of
the second kind to the derivation of equations of motion of a rigid body elastically
supported at three points Ai , i D 1; 2; 3 (see [3]). The body has a mass M and
moments of inertia with respect to principal centroidal axes of inertia I1 D IX 000

1
,

I2 D IX 000

2
, and I3 D IX 000

3
. Linear springs of stiffnesses ki , i D 1; 2; 3 are connected

with each of the points Ai . The springs carry the load only along their axes, that is,
the spring of stiffness ki carries the load along the axisOXi , and their opposite ends
Bi are subjected to a harmonic kinematic excitation .bi cos!i t/, which is illustrated
in Fig. 9.14.

The considered body has six degrees of freedom, and the axes of the non-
stationary system CX 000

1 X
000
2 X

000
3 situated at the mass center of the body C coincide

with the axes of principal centroidal axes of inertia.
In the solution of this problem we will make certain assumptions. Introducing a

stationary coordinate system at an arbitrary point O it is easy to notice that under
the weight M g the rigid body goes down rotating simultaneously about a certain

Fig. 9.14 A rigid body supported by springs and the introduced Cartesian coordinate systems
(only vectors r3, 	r3, and rs3 are shown)



400 9 Body and Multibody Dynamics

unknown axis (it becomes skewed with respect to the Cartesian coordinate system
of the origin O) assuming in this position a configuration of static equilibrium.
Because later on we do not take into account the geometric non-linearities associated
with the motion of springs, we can assume that in the static equilibrium position
points O and C coincide. In a static equilibrium position, the gravity force M g is
carried exclusively by a vertically situated spring, and a certain amount of potential
energy will already be accumulated in it. Vibrations will be further measured from
the static equilibrium position, and in this position all three Cartesian coordinate
systems introduced in Fig. 9.14 are coincident.

From the calculations of Sect. 5.7 (see Chap. 5 of [1]) it follows that the general
motion of a rigid body can be described by the translational motion of mass center
C of this body and three rotations about the axes of the Cartesian coordinate
system, where these axes coincide with the principal centroidal axes of inertia of
the considered rigid body.

According to Fig. 9.14, this means that an arbitrary position of the body can be
characterized by vector rC (displacement of mass centerC ), and the system assumes
a position described by the coordinate system CX1X2X3. Next, it is possible to
perform the rotation of the body about point C , measured, for example, by three of
Euler’s angles, in such a way that after three such rotations the axes of the system
CX1X2X3 are coincident with the axes CX 000

1 X
000
2 X

000
3 .

Because the body has six degrees of freedom, the Cartesian coordinates of an
arbitrary point that belongs to a rigid body can be described by the following six
generalized coordinates.

1. The coordinates of the mass center C.x1C ; x2C ; x3C /, where q1 D x1C � x1,
q2 D x2C � x2, q3 D x3C � x3, and the vector rC D rC Œx1C ; x2C ; x3C �
determines the translational motion of the body.

2. The Euler angles that represent the motion of a body about a point q4 D �1,
q5 D �2, q6 D �3 (Fig. 9.15).

If we rotate the coordinate system CX 000
1 X

000
2 X

000
3 successively through angles

�3, �2, and �1, then the radius vector of an arbitrary body point of coordinates
.x000
1 ; x

000
2 ; x

000
3 /, that is, E000

1 x
000
1 C E000

2 x
000
2 C E000

3 x
000
3 , is expressed in the coordinate

system CX1X2X3, which is illustrated in Fig. 9.16.
The rotation of the system CX 000

1 X
000
2 X

000
3 through the angle �3 (Fig. 9.16a) is

equivalent to the following transformation:

E00
1x

00
1 C E00

2x
00
2 D E000

1 x
000
1 C E000

2 x
000
2 ;

E00
3 D E000

3 ; (9.176)

which after multiplying by E00
1 and E00

2 gives

x00
1 D x000

1

�
E000
1 ı E00

1

�C x000
2

�
E000
2 ı E00

1

�
;

x00
2 D x000

1

�
E000
1 ı E00

2

�C x000
2

�
E000
2 ı E00

2

�
;

x00
3 D x000

3 ; (9.177)
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Fig. 9.15 Angles �i and angular velocities P�i introduced to analyze the part of rigid-body motion
associated with motion about a point

Fig. 9.16 Successive rotations of coordinate systems through angles �3 (a), �2 (b), and �1 (c)

and eventually we have

x00
1 D x000

1 cos �3 � x000
2 sin �3;

x00
2 D x000

1 sin �3 C x000
2 cos �3;

x00
3 D x000

3 : (9.178)
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The next rotation through the angle �2 leads to the relationship (Fig. 9.16b)

E0
1x

0
1 C E0

3x
0
3 D E00

1x
00
1 C E00

3x
00
3 ;

E00
2 D E0

2; (9.179)

which after multiplying by E0
1 and E0

3 gives

x0
1 D x00

1

�
E00
1 ı E0

1

�C x00
3

�
E00
3 ı E0

1

�
;

x0
3 D x00

1

�
E00
1 ı E0

3

�C x00
3

�
E00
3 ı E0

3

�
;

x0
2 D x00

2 ; (9.180)

and hence we have

x0
1 D x00

1 cos �2 C x00
3 sin �2;

x0
3 D �x00

1 sin �2 C x00
3 cos �2;

x0
2 D x00

2 : (9.181)

Then rotation through the angle �1 (Fig. 9.16c) is described by the relationships

E2x2 C E3x3 D E0
2x

0
2 C E0

3x
0
3;

E0
1 D E1; (9.182)

from which we obtain

x2 D x0
2

�
E0
2 ı E2

�C x0
3

�
E0
3 ı E2

�
;

x3 D x0
2

�
E0
2 ı E3

�C x0
3

�
E0
3 ı E3

�
;

x1 D x0
1; (9.183)

or, in equivalent form,

x2 D x0
2 cos �1 � x0

3 sin �1;

x3 D x0
2 sin �1 C x0

3 cos �1;

x1 D x0
1: (9.184)

Taking into account the preceding relationships we obtain

x1 D x00
1 cos �2 C x00

3 sin �2

D �
x000
1 cos �3 � x000

2 sin �3
�

cos �2 C x000
3 sin �2

D x000
1 cos �2 cos �3 � x000

2 sin �3 cos �2 C x000
3 sin �2;
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x2 D x0
2 cos �1 � x0

3 sin �1

D x00
2 cos �1 � ��x00

1 sin �2 C x00
3 cos �2

�
sin �1

D �
x000
1 sin �3 C x000

2 cos �3
�

cos �1

� 
� �x000
1 cos �3 � x000

2 sin �3
�

sin �2 C x000
3 cos �2

�
sin �1

D x000
1 .sin �3 cos �1 C cos �3 sin �2 sin �1/

C x000
2 .cos �1 cos �3 � sin �3 sin �2 sin �1/� x000

3 sin �1 cos �2;

x3 D x0
2 sin �1 C x0

3 cos �1

D x00
2 sin �1 C ��x00

1 sin �2 C x00
3 cos �2

�
cos �1

D �
x000
1 sin �3 C x000

2 cos �3
�

sin �1

C 
� �x000
1 cos �3 � x000

2 sin �3
�

sin �2 C x000
3 cos �2

�
cos �1

D x000
1 .sin �1 sin �3 � cos �3 sin �2 cos �1/

C x000
2 .cos �3 sin �1 C sin �3 sin �2 cos �1/C x000

3 cos �1 cos �2; (9.185)

or, in the equivalent matrix form,

2
664
x1

x2

x3

3
775D

2
6666666666666664

cos �2 cos �3 � sin �3 cos �2 sin �2

sin �3 cos �1 C cos �1 cos �3 � � sin �1 cos �2

C cos �3 sin �2 sin �1 � sin �3 sin �2 sin �1

sin �1 sin �3 � cos �3 sin �1 cos �1 cos �2

� cos �3 sin �2 cos �1 C sin �3 sin �2 cos �1

3
7777777777777775

2
664
x000
1

x000
2

x000
3

3
775 :

(9.186)

The change in time of each of the introduced angles �1 D �1.t/, �2 D �2.t/,
and �3 D �3.t/ generates angular velocities P�1, P�2, and P�3 of the vectors drawn in
Fig. 9.15.

To determine the kinetic energy of a body it is necessary to know the components
of the angular velocity vector

P� D P�1 C P�2 C P�3; (9.187)

expressed in the body coordinate system CX 000
1 X

000
2 X

000
3 .

This time we will analyze successive rotations of the coordinate systems
presented in Fig. 9.16 in the reverse order.
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We have successively

x0
1 D x1;

x0
2 D x2 cos �1 C x3 sin �1;

x0
3 D �x2 sin �1 C x3 cos �1; (9.188)

and then

x00
1 D x0

1 cos �2 � x0
3 sin �2;

x00
2 D x0

2;

x00
3 D x0

1 sin �2 C x0
3 cos �2; (9.189)

and eventually we obtain

x000
1 D x00

1 cos �3 C x00
2 sin �3;

x000
2 D �x00

1 sin �3 C x00
2 cos �3;

x000
3 D x00

3 : (9.190)

According to Fig. 9.15 we have

P�1 D E0
1

P�1; P�2 D E00
2

P�2; P�3 D E000
3

P�2: (9.191)

We project each of the velocity vectors of (9.190) onto the axes of the system
CX 000

1 X
000
2 X

000
3 according to (9.187)�(9.190).

For vector P�1 we have

P� 0
11 D P�1; P� 0

12 D 0; P� 0
13 D 0;

P� 00
11 D P�1 cos �2; P� 00

12 D 0; P� 00
13 D P�1 sin �2;

P� 000
11 D P�1 cos �2 cos �3; P� 000

12 D � P�1 cos �2 sin �3; P� 000
13 D P�1 sin �2: (9.192)

For vector P�2 we have

P� 000
21 D P�2 sin �3;

P� 000
22 D P�2 cos �3;

P� 000
23 D 0: (9.193)

Vector P� in the coordinate system has the form

P� D E000
1

� P�1 cos �2 cos �3 C P�2 sin �3
�

C E000
2

�
� P�1 cos �2 sin �3 C P�2 cos �3

�
C E000

3

� P�3 C P�1 sin �2
�
: (9.194)
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For the sake of simplification of calculation we will assume that the body is
supported at three points A1, A2, and A3, which are the ends of springs of linear
stiffnesses that are in contact with the body (we neglect friction). As was already
mentioned, the opposite ends B1; B2; B3 of the springs are excited in a harmonic
kinematic way, and the excitation has the form xBi D bi cos!i t , i D 1; 2; 3.
The springs are guided, and their axes are parallel to the corresponding axes of
the coordinate system OX1X2X3, and points Ai and Bi are allowed to move only
along the axis OXi . In this way, geometric non-linearities caused by the motion
of the body and generated by the forces in springs do not appear, and the springs
are assumed to be working in a linear range, which is expressed by their stiffness
coefficients ki .

In a static equilibrium position for bi D 0 the coordinates of points Bn are
described in the system OX1X2X3, because points C and O are coincident .C D
O/, and the angles �n D 0, n D 1; 2; 3. In turn, the coordinates of points Ai in the
static equilibrium position are equal to

xsA1 D rA1x1 D r 000
A1x1

;

xsA2 D rA2x2 D r 000
A2x2

;

xsA3 D rA3x3 D r 000
A3x3

: (9.195)

Coordinates of points Ai associated with the direction of the corresponding
spring and caused by the generalized displacements in the system OX1X2X3 are
given below:

x1A1 D xs1A1 C x1 C 

x000
1A1

cos �2 cos �3

�x000
2A1

sin �3 cos �2 C x000
3A1

sin �2
�
;

x2A2 D xs2A2 C x2 C 

x000
1A2
.sin �3 cos �1 C cos �3 sin �2 sin �1/

C x000
2A2
.cos �1 cos �3 � sin �3 sin �2 sin �1/ � x000

3A2
sin �1 cos �2

�
;

x3A3 D xs3A3 C x3 C 

x000
1A3
.sin �1 sin �3 � cos �3 sin �2 cos �1/

C x000
2A3
.cos �3 sin �1 C sin �3 sin �2 cos �1/C x000

3A3
cos �1 cos �2

�
; (9.196)

where now x1; x2; x3 result from the translational displacement of the mass center
of the rigid body.

The following forces are generated in the springs ki :

P1 D �k1�1 D �k1


x1 C x000

1A1
cos �2 cos �3 � x000

2A1
sin �3 cos �2

C x000
3A1

sin �2 � x1B1.t/� ;
P2 D �k2�2 D �k2



x2 C x000

1A2
.sin �3 cos �1 C cos �3 sin �2 sin �1/

C x000
2A2

.cos �1 cos �3 � sin �3 sin �2 sin �1/

� x000
3A2

sin �1 cos �2 � x2B2.t/
�
;
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P3 D �k3�3 D �k3


x3 C x000

1A3
.sin �1 sin �3 � cos �3 sin �2 cos �1/

C x000
2A3

.cos �3 sin �1 � sin �3 sin �2 cos �1/

C x000
3A3

cos �1 cos �2 � x3B3.t/
�
; (9.197)

where �1; �2; �3 denote deflections of the springs situated in parallel to the axes
OX1; OX2, andOX3 measured from a static equilibrium position.

Because the vibrations are observed from a static equilibrium position, potential
energy is accumulated only in the springs and is equal to

V D 1

2

�
k1�

2
1 C k2�

2
2 C k3�

2
3

�
: (9.198)

Using (9.198), the kinetic energy of the considered rigid body is equal to

T D 1

2
M
� Px21 C Px22 C Px23

�C I1

2

� P�1 cos �2 cos �3 C P�2 sin �3
�2

C I2

2

�
� P�1 cos �2 sin �3 C P�2 cos �3

�2 C I3

2

� P�3 C P�1 sin �2
�2
: (9.199)

Lagrange’s equations of the second kind for the considered case have the
following form:

d

dt

@T

@ Pqj � @T

@qj
C @V

@qj
D 0; j D 1; : : : ; 6; (9.200)

where q1 D x1, q2 D x2, q3 D x3, q4 D �1, q5 D �2, q6 D �3.
We calculate successively

@T

@ Px1 D M Px1; @T

@ Px2 D M Px2; @T

@ Px3 D M Px3;

@T

@ P�1
D I1

� P�1 cos2 �2 cos2 �3 C P�2 cos �2 cos �3 sin �3
�

C I2

� P�1 cos2 �2 sin2 �3 � P�2 cos �2 sin �3 cos �3
�

C I3

� P�1 sin2 �2 C P�3 sin �2
�
;

@T

@ P�2
D I1

�
P�2 sin2 �3 C 1

2
P�1 cos �2 sin 2�3

�

C I2

�
P�1 cos2 �3 � 1

2
P�1 cos �2 sin 2�3

�
;
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@T

@ P�3
D I3

� P�3 C P�1 sin �2
�
;

@T

@�1
D 0;

@T

@�2
D �1

2
I1

� P�21 cos2 �3 sin 2�2 C P�1 P�2 sin �2 sin 2�3
�

C 1

2
I2

�
� P�21 sin2 �3 sin 2�2 C P�1 P�2 sin �2 sin 2�3

�

C I3

�
1

2
P�21 sin 2�2 C P�1 P�3 cos �2

�
;

@T

@�3
D I1

�
�1
2

P�21 cos2 �2 sin 2�3 C P�1 P�2 cos �2 cos 2�3 C 1

2
P�22 sin 2�3

�

C I2

�
1

2
P�21 cos2 �2 sin 2�3 � P�1 P�2 cos �2 cos 2�3 � 1

2
P�22 sin 2�3

�
;

@V

@x1
D k1



x1 C x000

1A1
cos �2 cos �3 � x000

2A1
sin �3 cos �2 C x000

3A1
sin �2 � x000

1B1
.t/
�
;

@V

@x2
D k2



x2 C x000

1A2
.sin �3 cos �1 C cos �3 sin �2 sin �1/

C x000
2A2
.cos �1 cos �3 � sin �3 sin �2 sin �1/ � x000

3A2
sin �1 cos �2 � x2B2.t/

�
;

@V

@x3
D k3



x3 C x000

1A3
.sin �1 sin �3 � cos �3 sin �2 cos �1/

C x000
2A3
.cos �3 sin �1 C sin �3 sin �2 cos �1/C x000

3A3
cos �1 cos �2 � x3B3.t/

�
;

@V

@�1
D k2

˚
x2


x000
1A2
.cos �3 sin �2 cos �1 � sin �3 sin �1/

� x000
2A2

.sin �1 cos �3 C sin �3 sin �2 cos �1/

� x000
3A2

cos �1 cos �3�C Œx000
1A2

.sin �3 cos �1 C cos �3 sin �2 sin �1/

C x000
2A2
.cos �1 cos �3 � sin �3 sin �2 sin �1/

� x000
3A2

sin �1 cos �2 � x2B2.t/
� � 
x000

1A2
.� sin �3 sin �1 C cos �3 sin �2 cos �1/

C x000
2A2
.� sin �1 cos �3 � sin �3 sin �2 cos �1/� x000

3A2
cos �1 cos �2

��
C k3

˚
x3


x000
1A3
.cos �1 sin �3 C cos �3 sin �2 sin �1/

C x000
2A3
.cos �3 cos �1 � sin �3 sin �2 sin �1/ � x000

3A3
sin �1 cos �2

�
C 


x000
1A3

.sin �1 sin �3 � cos �3 sin �2 cos �1/

C x000
2A3
.cos �3 sin �1 C sin �3 sin �2 cos �1/
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C x000
3A3

cos �1 cos �2 � x3B3.t/
� � 
x000

1A3
.cos �1 sin �3 C cos �3 sin �2 sin �1/

C x000
2A3
.cos �3 cos �1 � sin �3 sin �2 sin �1/ � x000

3A3
sin �1 cos �2

��
;

@V

@�2
D k1

˚
x1
��x000

1A1
sin �2 cos �3 C x000

2A1
sin �3 sin �2 C x000

3A1
cos �2

�
C 


x000
1A1

cos �2 cos �3 � x000
2A1

sin �3 cos �2

C x000
3A1

sin �2 � x1B1.t/
� � 
 � x000

1A1
sin �2 cos �3

C x000
2A1

sin �3 sin �2 C x000
3A1

cos �2
��C k2

˚
x2


x000
1A2

cos �3 cos �2 sin �1

� x000
2A2

sin �3 cos �2 sin �1 C x000
3A2

sin �1 sin �2
�

C 

x000
1A2

.sin �3 cos �1 C cos �3 sin �2 sin �1/

C x000
2A2
.cos �1 cos �3 � sin �3 sin �2 sin �1/

� x000
3A2

sin �1 cos �2 � x2B2.t/
� � 
x000

1A2
cos �3 cos �2 sin �1

� x000
2A2

sin �3 cos �2 sin �1 C x000
3A2

sin �1 sin �2
��

C k3
˚
x3

 � x000

1A3
cos �3 cos �2 cos �1 C x000

2A3
sin �3 cos �2 cos �1

� x000
3A3

cos �1 sin �3
�C 


x000
1A3
.sin �1 sin �3 � cos �3 sin �2 cos �1/

C x000
2A3
.cos �3 sin �1 C sin �3 sin �2 cos �1/C x000

3A3
cos �1 cos �2

� x3B3.t/
� � 
 � x000

1A3
cos �3 cos �2 cos �1

C x000
2A3

sin �3 cos �2 cos �1 � x000
3A3

cos �1 sin �2
��
;

@V

@�3
D k1

˚
x1
��x000

1A1
cos �2 sin �3 � x000

2A1
cos �3 cos �2 C x000

3A1
cos �2

�
C 


x000
1A1

cos �2 cos �3 � x000
2A1

sin �3 cos �2

C x000
3A1

sin �2 � x1B1.t/
� � 
 � x000

1A1
cos �2 sin �3 � x000

2A1
cos �3 cos �2

��
C k2

˚
x2


x000
1A2
.cos �3 cos �1 � sin �3 sin �2 sin �1/

� x000
2A2

.cos �1 sin �3 C cos �3 sin �2 sin �1/
�

C 

x000
1A2

.sin �3 cos �1 C cos �3 sin �2 sin �1/

C x000
2A2
.cos �1 cos �3 � sin �3 sin �2 sin �1/

� x000
3A2

sin �1 cos �2 � x2B2.t/
� � 
x000

1A2
.cos �3 cos �1 � sin �3 sin �2 sin �1/

� x000
2A2

.cos �1 sin �3 C cos �3 sin �2 sin �1/
��

C k3
˚
2x3



x000
1A3

.sin �1 cos �3 C sin �3 sin �2 sin �1/

C x000
2A3
.� sin �3 sin �1 C cos �3 sin �2 cos �1/

�
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C 2


x000
1A3
.sin �1 sin �3 � cos �3 sin �2 cos �1/

C x000
2A3
.cos �3 sin �1 C sin �3 sin �2 cos �1/

C x000
3A3

cos �1 cos �2 � x3B3.t/
� � 
x000

1A3
.sin �1 cos �3 C sin �3 sin �2 sin �1/

C x000
2A3
.� sin �3 sin �1 C cos �3 sin �2 cos �1/

��
: (9.201)

Substituting the results of calculations (9.201) into Lagrange’s equations (9.200)
we obtain six non-linear ordinary differential equations that describe the conserva-
tive dynamics of the considered rigid body subjected to kinematic excitation at three
points and supported with linear springs. For small vibrations the problem can be
simplified by the introduction of approximations cos �i Š 1 and sin �i Š �i .

In the general case in various places of the body we can apply external forces
FS D FS.t/ whose points of application are determined by vectors rS , s D
1; 2; : : : ; S , and whose amount can be smaller or greater than the number of the
introduced generalized coordinates. In this case equations of motion of the system
can be derived using Lagrange’s equations of the second kind of the form

d

dt

@T

@ Pqj � @T

@qj
C @V

@qj
D Qj ; j D 1; : : : ; 6; (9.202)

where Qj is the generalized force corresponding to the generalized coordinate qj
and should be expressed in terms of forces FS .

We determine the generalized forces based on the principle that the sum of works
ıW of forces FS .s D 1; 2; : : : ; S/ during virtual displacements ırS is equal to the
sum of works of generalized forcesQj during virtual displacements ıqj , that is,

ıW D Fs ı ırs D Qjıqj ; (9.203)

where the Einstein summation applies. Coordinates of the vectors that determine the
positions of force vectors must be expressed in terms of the generalized coordinates,
that is, we have

rs D rs .q1; : : : ; q6; t/ ; (9.204)

hence we obtain

ırs D @rs
@qj

ıqj ; j D 1; : : : ; 6; s D 1; : : : ; S: (9.205)

Substituting relations (9.205) into (9.203) we obtain

ıW D
SX
sD1

Fs ı
0
@ 6X
jD1

@rs
@qj

ıqj

1
A

D
6X

jD1

 
SX
sD1

Fs ı @rs
@qj

!
ıqj D

6X
jD1

Qj ıqj ; (9.206)
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Fig. 9.17 Axisymmetrical body in motion about a point and the introduced systems of coordinates

from which follows

Qj .t/ D
SX
sD1

F.t/ ı @rs
@qj

; (9.207)

which was the aim of our calculations.
Below we will consider small vibrations of a free axisymmetrical body in motion

about a point, which was the subject of analysis in [4]. As distinct from the previous
general calculations, here we introduce several simplifications leading to a system
of linear differential equations.

Example 9.1. Determine the critical angular velocity of the top shown in Fig. 9.17,
on the assumption that the angular velocity with respect to its symmetry axis OX

000

3

is equal to P�3 D ! D const, and the mass center M of the body is situated at
distance a from pointO .

From (9.199), and setting I1 D I2 D I and I3 D IO , we obtain
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T D I

2

� P�1 cos �2 cos �3 C P�2 sin �3
�2

C I

2

�
� P�1 cos �2 sin �3 C P�2 cos �3

�2 C IO

2

� P�3 C P�1 sin �2
�2

D I

2

� P�21 cos2 �2 C P�22
�

C IO

2

�
! C P�1 sin �2

�2
: (
)

We assume that the generalized coordinates �1 and �2 are small and that ! � P�1
and ! � P�2. On these assumptions (
) takes the form

T D I

2

� P�21 cos2 �2 C P�22
�

C IO!
2

2
C IO! P�1�2:

We calculate successively

d

dt

@T

@ P�2
D I R�2;

@T

@�2
D IO! P�1 C 2

I

2
P�21 sin �2 cos �2 Š IO! P�1;

d

dt

@T

@ P�1
D IO! P�2 C d

dt
I P�1 cos2 �2

D IO! P�2 C I R�1 cos2 �2 � 2I P�1 P�2 sin �2 cos �2

Š IO! P�2 C I R�1;
@T

@�1
D 0:

Because of the small values of the angles �1 and �2 we neglect the potential
energy of a body in the gravitational field, and the generalized forces are equal to
Q1 D Mga sin �1 Š Mga�1 and Q2 D Mga sin �2 Š Mga�2.

From Lagrange’s equations we obtain

I R�1 C IO! P�2 D Mga�1;

I R�2 � IO! P�1 D Mga�2;

and dividing them by I we have

R�1 � ˛2�1 C ˇ P�2 D 0;

R�2 � ˛2�2 C ˇ P�1 D 0; (

)

where ˛2 D Mga

I
, ˇ D IO!

I
.
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Finally, the system of two ordinary differential equations of the form (

) is left
for the analysis. We seek their solutions in the form of the functions

�1 D �1Oei!Ot ; �2 D �2Oei!O t ; i2 D �1:

Inserting the preceding solutions into (

) we obtain

" � �
!2O C ˛2

�
i!Oˇ

� i!Oˇ � �!2O C ˛2
�
#"

�1O

�2O

#
D
"
0

0

#
;

and the desired frequencies of free vibrations are determined from the characteristic
equation ˇ̌̌

ˇ̌ � �
!2O C ˛2

�
i!Oˇ

� i!Oˇ � �!2O C ˛2
�
ˇ̌̌
ˇ̌ D 0:

From the preceding equation we obtain

�
!2O C ˛2

�2 � !2Oˇ2 D !4O � !2O
�
ˇ2 � 2˛2

�C ˛4 D 0:

The roots of the preceding equation determine the frequencies of free vibrations,
which are equal to

!2O D 1

2

�
ˇ2 � 2˛2�˙

p
ˇ2 � 4˛2:

We determine the critical value of velocity for which the assumed small
vibrations about point O occur from the condition ˇ D 2˛, and it is equal to
! D 2

IO

p
IMga. �

9.9 A Wobblestone Dynamics

9.9.1 Coulomb–Contensou Friction Model

Since the time of the ancient Celts it has been known that certain bodies having
a center of mass not coincident with their centroid and having principal centroidal
axes of inertia not coincident with their geometric axes exhibit certain interesting
dynamical behaviors. An example of such a rigid body is the so-called wobblestone
(a half-ellipsoid solid having many other names, e.g., rattleback or celt), which lies
on a flat horizontal surface, sets in rotational motion about the vertical axis, and
rotates in only one direction. The imposition of an initial velocity in the opposite
direction leads to a quick cessation of the rotation in this direction, and subsequently
the stone starts its transverse vibrations and rotation in the opposite direction.
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The Celts believed that all bodies (objects) possessed consciousness and spirit.
Wobblestones came from meteorites, which were readily found in Ireland and, as
they provided a yes or no answer, were used by Celts for fortune telling.

The first scientific work concerning the dynamics of a wobblestone was pub-
lished by Walker [5] in 1896. Walker observed that the amazing dynamics of the
wobblestone was the result of the asymmetry of the principal centroidal axes of
inertia with respect to the symmetrical axes of the stone. Analyzing this problem
was not easy because of the absence of linear terms in equations of dynamics and
because of the need for an adequate friction model. In 1986 Hermann returned to
this topic [6]. He pointed to the possibility of the return motion of the stone in either
one or two directions depending on the geometric and inertial parameters of a given
rigid body. The lack of inclusion of slip by Hermann led to a contradiction with the
earlier assumptions of Magnus [7], where a linear dependence was assumed between
the friction force and the velocity of the contact point of the stone and horizontal
surface on which the stone moved. The problem was taken up by Caughey [8],
but his model deviated considerably from reality. In 1982 Kane and Levinson [9]
introduced a model that was closer to reality and took into account rolling but in
the absence of slip. The model allowed for a demonstration of several changes in
the direction of rotation, and the introduction of viscous damping into the system
allowed for their reduction to one or two changes.

One year later Lindberg and Longman [10] observed that it was impossible to
decouple the linearized equations of motion of a wobblestone due to the presence
of gyroscopic terms.

A more complex model of stone dynamics was proposed by Garcia and
Hubbard [11] that included aerodynamic dissipation, dry friction, and slip; in
addition, numerical analysis was enhanced by experimental investigations.

The lack of a complete explanation, including the lack of an adequate mathemati-
cal model of the dynamics of a wobblestone, also represented a challenge for leading
Russian mechanicians. In 2002 Markeev [12] conducted an analysis of the dynamics
of a wobblestone in the neighborhood of static and dynamic equilibrium positions
on the assumption of an absence of friction. However, the derived perturbation
equations included only the local dynamics of the stone. On the other hand, they
were verified in an experimental way as well.

In 2006 Borisov et al. [13] undertook a mathematical modeling of a heavy
unbalanced ellipsoid rolling without slip on a horizontal surface pointing to
phenomena similar to those observed during the motion of a wobblestone. In 2008,
Zhuravlev and Klimov [14] presented a model of a wobblestone that was the closest
to reality and that introduced the possibility of slip of the contact point between the
stone and a horizontal surface and, additionally, included the CCZ friction model,
discussed earlier in Sect. 2.11.2 of [1]. The aforementioned friction leads to mutual
coupling of rotations and slips of the body, and the derived equations of motion
allow one to carry out a global analysis of the dynamics of a wobblestone with the
aid of numerical methods.
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Fig. 9.18 Wobblestone on a horizontal plane  and axes of a body coordinate system and absolute
coordinate system

Figure 9.18 shows a view of a wobblestone that includes the axes of the absolute
systemOX1X2X3 and systems of principal centroidal axes of inertia rotated through
angle ˛ with respect to the principal axes of the ellipsoid.

The position of point of contact A between the stone and plane  in the body
system located at the mass center of the stone is given by the vector k C r, where

k D ��!
CO D .0; 0; �k/T and r D ��!

O 0A D .x0
1; x

0
2; x

0
3/

T.
The principal geometric axes of an ellipsoid are denoted by a; b; c, where a >

b > c. Moreover, in an absolute system the unit vector was introduced such that
n ı g < 0. Equations of motion of the wobblestone in a body system have the form

m
dv
dt

C! � .mv/ D �mg ı n CNn � T;

IC
d!

dt
C! � .IC!/ D N.k C r/ � n � .k C r/ � T;

dn
dt

C! � n D 0; (9.208)

where the third equation of system (9.208) is the Poisson equation.
Above, m is the mass of the wobblestone; Ic is the diagonal inertia matrix with

respect to the mass center C of non-zero elements B1, B2, and B3; T is the friction
force directed against the velocity of point A, where vA D v C ! � .k C r/; and
N D Nn is a normal force at the point of contact (reaction at the contact point is
equal to R D N C T).

Three vector equations (9.208) have ten unknowns: n D .n1; n2; n3/
T, v D

.v1; v2; v3/T and! D .!1; !2; !3/
T and the scalarN . An additional scalar equation

necessary to solve the problem results from the observation that during the motion of
a wobblestone, it remains in contact the entire time with the horizontal planeOX1X2
whose normal vector is n (only this case will be considered). The perpendicularity
condition generates the tenth scalar equation of the form

.v C! � .k C r// ı n D 0: (9.209)
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Fig. 9.19 Construction of a wobblestone

The friction force occurring in the first two equations of (9.208) has the form

T D �N.v C! � .k C r//

jv C! � .k C r/j C 8�

3
j! ı nj ; (9.210)

and, as can be seen, it depends on v, !, n, and r C k. Above, � is the coefficient of
kinetic friction, � is the radius of the circular contact path between two bodies. On
the assumption that � is small, the friction momentMT can be neglected.

In Fig. 9.19 it is shown how one may easily construct a wobblestone.
On one half of a homogeneous ellipsoid along its axis a we place a homogeneous

rod fixed by a screw to the ellipsoid at point O . Such an arrangement results in a
change to the position of the mass center. Next, we rotate the rod through angle ˛,
changing in this way both the moments of inertia and the positions of the principal
centroidal axes of inertia.

To simplify the numerical simulation of systems (9.208) and (9.209), let us
choose a coordinate system so as to simplify the second of vector equations (9.208)
by diagonalization of matrix IC . The Cartesian coordinate system O 0X1eX2eX3e
will be called an ellipsoid system. The second coordinate system O 0X 0

1X
0
2X

0
3 is

rotated with respect to the previous one through angle ˛ about the axis O 0X 0
3 D

O 0X3e. The aforementioned coordinate systems have their corresponding axes
parallel to those of systems CX1eX2eX3e and CX 0

1X
0
2X

0
3. The system CX 0

1X
0
2X

0
3

is a system of principal centroidal axes of inertia (since axis CX 0
3 D CX3e is the

principal centroidal axis, the products of inertia ICX1eX3e D ICX2eX3e D ICX 0

1X
0

3
D

ICX 0

2X
0

3
D 0).

If we know the moments of inertia in the system CX1eX2eX3e , then after
rotation through appropriate angle ˛ the inertia matrix assumes a diagonal form
IC D diagŒI1; I2; I3�.

In order to determine the moments of inertia I1 � I1010 , I2 � I2020 , we will make
use of the results of calculations from Example 3.9 in [1].
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We have accordingly

ICX 0

1
D I1010 � I1 D ICX1ecos2˛ C ICX2esin2˛ � ICX1eX2e sin 2˛;

ICX 0

2
D I2020 � I2 D ICX1esin2˛ C ICX2ecos2˛ C ICX1eX2e sin 2˛;

ICX 0

3
D IOX 0

3
D I3: (9.211)

The product of inertia in the coordinate system CX 0
1X

0
2X

0
3 is equal to

ICX 0

1X
0

2
D ICX1e � ICX2e

2
sin 2˛ C ICX1eX2e cos 2˛ D 0; (9.212)

because we choose the angle ˛, so that ICX 0

1X
0

2
D 0. On the basis of (9.212) we

determine the value of the unknown angle

˛ D 1

2
arctan

2ICX1eX2e
ICX2e � ICX1e

: (9.213)

Having determined the angle ˛, we can now express an arbitrary vector r
described by the coordinates O 0X1eX2eX3e in terms of the coordinates obtained
after rotation of this system through the angle ˛, that is, coordinates of the system
O 0X 0

1X
0
2X

0
3, and vice versa. According to (5.176) we obtain

2
664
x1e

x2e

x3e

3
775 D

2
4cos˛ � sin ˛ 0

sin˛ cos˛ 0

0 0 1

3
5
2
664
x0
1

x0
2

x0
3

3
775 : (9.214)

An equation of an ellipsoid in an ellipsoid system has the canonical form

�.r/ D x21e
a2

C x22e
b2

C x23e
c2

� 1 D 0; (9.215)

and according to (9.215) in the system O 0X 0
1X

0
2X

0
3 this equation takes the form

�.r/ D .�x0
1 cos˛ C x0

2 sin ˛/2

a2

C .x0
1 sin ˛ C x0

2 cos˛/2

b2
C x0

3

c2
� 1 D 0: (9.216)

Next, we express the function �.r/with the aid of matrix R in the following way:

�.r/C 1 D r ı Rr (9.217)
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or, in expanded form,

x02
1 .b

2cos2˛ C a2sin2˛/C x02
2 .b

2sin2˛ C a2cos2˛/

C 2x0
1x

0
2.a

2 � b2/ sin˛ cos˛

a2b2
C x02

3

c2
D R11x

02
1 CR22x

02
2

CR33x
02
3 � .R12 CR21/x

0
1x

0
2 � .R13 CR31/x

0
1x

0
3

� .R23 CR32/x
0
2x

0
3: (9.218)

Equating terms at the same powers of variables x0
1 and x0

2 and their combinations,
we obtain the desired elements of matrix R:

R11 D .b2cos2˛ C a2sin2˛/

a2b2
;

R22 D .b2sin2˛ C a2cos2˛/

a2b2
;

R33 D 1

c2
;

R12 D R21 D b2 � a2

a2b2
sin ˛ cos˛;

R13 D R31 D R23 D R32 D 0: (9.219)

Note that
1

2

d�

dr
D Rr: (9.220)

A normal unit vector at the point of contact n is defined as

n D �
d�
drˇ̌̌
d�
dr

ˇ̌̌ ; (9.221)

where

n21.t/C n22.t/C n23.t/ D 1: (9.222)

The normal unit vector n and vector d�
dr are proportional to one another, that is,

n D f
d�

dr
; f < 0: (9.223)

The coefficient f and the coordinates of the point of contact in the ellipsoid
system are determined from (9.215) and (9.223), that is, one has to solve the
following system of equations:
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x21e
a2

C x22e
b2

C x23e
c2

� 1 D 0;

nx1e D 2f x1e

a2
; nx2e D 2f x2e

b2
; nx3e D 2f x3e

c2
: (9.224)

Solutions of system (9.224) have the form

x1e D � a2nx1e .t/q
a2n2x1e .t/C b2n2x2e .t/C c2n2x3e .t/

;

x2e D � b2nx2e .t/q
a2n2x1e .t/C b2n2x2e .t/C c2n2x3e .t/

;

x3e D � c2nx3e .t/q
a2n2x1e .t/C b2n2x2e .t/C c2n2x3e .t/

;

f D �1
2

q
a2n2x1e .t/C b2n2x2e .t/C c2n2x3e .t/: (9.225)

Because, according to (9.215), �.r/ D 0, from (9.217) we obtain

r ı Rr D 1: (9.226)

Vector r in the preceding equation will be expressed using vector n. According
to (9.220) and (9.223) we have

n D 2f R ı r: (9.227)

Taking into account (9.227) in (9.226) we obtain

�
1

2f

�2
R�1n ı RR�1n D 1; (9.228)

which makes it possible to determine one of the desired unknowns

f D �1
2

p
R�1n ı n: (9.229)

The desired vector r, according to (9.227), is expressed in terms of unit vector n
in the following way:

r D � R�1np
R�1n ı n

: (9.230)

The preceding calculations generalize the results obtained earlier [see (9.225)].
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In order to numerically solve the problem, that is, the system of algebraic
differential equations (9.208) and (9.209), let us differentiate algebraic equa-
tion (9.209) of the form

vA ı n D 0; (9.231)

which ensures the perpendicularity of vectors n and vA, which means that the
velocity of the point of contact vA lies on the plane  .

Differentiating (9.231) in the absolute system OX1X2X3 we obtain

dvA
dt

ı n C vA ı dn
dt

D dvA
dt

ı n D 0; (9.232)

because dn
dt D 0, where d

dt is the derivative in the absolute coordinate system.
Since

dvA
dt

D
QdvA
dt

C! � vA

D
Qd

dt
.v C! � .r C k//C! � .v C .! � .r C k///

D PQv C PQ! � .r C k/C! � .PQr C PQk/C! � .v C .! � .r C k///; (9.233)

condition (9.232) takes the form

hPQv C PQ! � .r C k/C! � PQr C! � .v C! � .r C k///
i

ı n D 0: (9.234)

Differentiating condition (9.231) in the local system CX 0
1X

0
2X

0
3 we have

QdvA
dt

ı n C vA ı
Qdn
dt

D .PQv C PQ! � .r C k/C! � PQr/ ı n C .v C .! � .r C k// ı PQn D 0: (9.235)

In this way the problem eventually is reduced to a solution of differential
equations (9.208) and (9.234) or (9.235).

The problem is solved in the following way. The system of differential equations
(9.208) and (9.235) was solved numerically. Algebraic calculations were conducted
based on equations (9.214)–(9.230). An illustrative result of calculations is pre-
sented in Fig. 9.20.

In Fig. 9.20b the change in direction of rotation!3.t/ is clearly seen, in Fig. 9.20c
it is seen that at the beginning and end of motion the normal force is equal to the
weight of the stone, whereas from Fig. 9.20a it follows that all components of the
vector of velocity of the center of mass of the stone are characterized by oscillatory
changes.
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Fig. 9.20 Dynamics of the wobblestone: (a) plots of v1.t /; v2.t / and v3.t /; (b) plots of !1.t/,
!2.t/, and !3.t/; (c) plot of N.t/
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Fig. 9.21 Contact patch and
coordinate systems

9.9.2 Tangens Hyperbolicus Approximations of the Spatial
Model of Friction

In Fig. 9.21 is presented a non-dimensional circular contact area (of radius equal
to one) with the center at point A, with a relative translational non-dimensional
velocity of magnitude u D vA=� (where vA is the length of the real sliding velocity
of pointA and � is the real radius of the contact surface) and relative angular velocity
!. Without loss of generality we assume that the velocity u is directed along the X1
axis of the introduced coordinate system AX1X2. We assume that in the contact
pressure distribution, initially possessing a central symmetry, distortion appears due
to rolling resistance, and the final stress distribution is symmetric with respect to
the � axis of the A�� coordinate system. The resultant normal force is applied at
point S , and the rolling resistance vector is opposite to the � axis (see [14–16] for
more details).

The resultant non-dimensional friction force components and friction torque can
be expressed as follows:

TX1 .u; !; ˇ/ D TOX1 C TrX1;

TX2 .u; !; ˇ/ D TOX2 C TrX2;

M .u; !; ˇ/ D MO CMr; (9.236)

where TOX1 , TOX2 , and MO are the corresponding friction force components along
the X1 and X2 axes and friction torque for case where there is no rolling resistance,
while TrX1 , TrX2 , and Mr are the corresponding components of friction force and
torque related to rolling resistance. Assuming that Coulomb’s law holds true on an
arbitrary surface element dF, the corresponding non-dimensional elements of the
friction model (with the non-dimensional friction coefficient equal to one) have the
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following integral form in a polar coordinate system:

TOX1 .u; !/ D
2Z
0

1Z
0

�O tX1drd'; TrX1 .u; !; ˇ/ D
2Z
0

1Z
0

�r tX1drd';

TOX2 .u; !/ D
2Z
0

1Z
0

�O tX2drd'; TrX2 .u; !; ˇ/ D
2Z
0

1Z
0

�r tX2drd';

MO .u; !/ D r

2Z
0

1Z
0

�O.tX2 cos' � tX1 sin '/drd';

Mr .u; !; ˇ/ D r

2Z
0

1Z
0

�r .tX2 cos' � tX1 sin'/drd'; (9.237)

where

tX1 .r; '/ D r .u � ! r sin'/p
u2 � 2 ! u r sin ' C !2r2

;

tX2 .r; '/ D ! r2 cos'p
u2 � 2 ! u r sin ' C !2r2

;

while �O and �r are components of the non-dimensional contact stress distribution
�.r; '; ˇ/ D �O.r/C �r.r; '; ˇ/. For �O having central symmetry, TOX2 D 0.

The distortion in the stress distribution related to the rolling resistance is assumed
to be a linear function with one parameter 0 � kr � 1 [15]:

�r .r; '; ˇ/ D �O .r/ krr cos .' � ˇ/ ; (9.238)

where �0 is the non-dimensional (for the non-dimensional surface element dF and
additionally related to the real resultant normal reaction) contact stress distribution
for cases without rolling resistance, which for the Hertz law takes the form

�O .r/ D 3

2

p
1 � r2: (9.239)

The integral model (9.236)�(9.237) is not convenient in direct application to real
problems of modeling and simulation. Moving the origin of the polar coordinate
system to the instantaneous center of velocities one can obtain exact analytical
expressions of the components (9.237) in terms of elementary functions [15]. But
they are still inconvenient to use because of their complexity. One way to avoid this
problem is to construct suitable approximations. One of the simplest approximations
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is the first-order Padé one proposed by Kireenkov [15] for the complete combined
model of sliding and rolling resistance in the following form:

TOX1.P1/ D u

u C a11 j!j ;

TrX1.P1/ D a21
! kr sinˇ

u C a11 j!j ;

TrX2.P1/ D bO1
! kr cosˇ

j!j C b11u
;

MO.P1/ D cO1
!

j!j C c11u
;

Mr.P1/ D c21
u kr sinˇ

j!j C c11u
: (9.240)

The coefficients of model (9.240) are determined by the following conditions:

@TOX1.P1/

@u

ˇ̌̌
ˇ
uD0

D @TOX1
@u

ˇ̌̌
ˇ
uD0
;

TrX1.P1/
ˇ̌
uD0 D TrX1 juD0;

TrX2.P1/
ˇ̌
uD0 D TrX2 juD0;

@TrX2.P1/

@!

ˇ̌̌
ˇ
!D0

D @TrX2
@!

ˇ̌̌
ˇ
!D0

;

MO.P1/

ˇ̌
uD0 D MO juD0;

@MO.P1/

@!

ˇ̌̌
ˇ
!D0

D @MO

@!

ˇ̌̌
ˇ
!D0

;

Mr.P1/

ˇ̌
!D0 D Mr j!D0;

and for the Hertz case (9.239) we have a11 D 8=.3/, a21 D �1=4, bO1 D 3=32,
b11 D 15=32, cO1 D 3=16, c11 D 15=16, c21 D �3=16. The approximations
(9.240) preserve the values but do not completely satisfy all first partial derivatives
of the functions (9.237) at u D 0 or ! D 0. To satisfy all first partial derivatives it
is necessary to use a second-order Padé approximation [15]:

TOX1.P2/ D u2 C a12u j!j
u2 C a12u j!j C !2

;

TrX1.P2/ D a22
j!j

u2 C !2
! kr sinˇ;

TrX2.P2/ D bO2
j!j C b12u

u2 C b12u j!j C !2
! kr cosˇ;
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MO.P2/ D cO2
j!j C c12u

u2 C c12u j!j C !2
!;

Mr.P2/ D c22
u2

u2 C !2
kr sinˇ: (9.241)

Coefficients of the model (9.241) are determined in an analogous way to the
model (9.240) constants. For the Hertz case (9.239) we have a12 D 8=8, a22 D
�3=32, bO2 D 3=32, b12 D 32=.15/, cO2 D 3=16, c12 D 16=.15/,
c22 D �1=5. Approximations (9.241) completely satisfy the values and all first
partial derivatives of the functions (9.237) at u D 0 or ! D 0.

Here the complete set of tangens hyperbolicus approximations of a coupled
model of dry friction and rolling resistance for a circular contact area between
interacting bodies is used in the following form:

TOX1.th/ D tanh
�
h1 u j!j�1

�
;

TrX1.th/ D f1kr sinˇ ;

TrX2.th/ D f2kr cosˇ;

MO.th/ D f2 � f1;
Mr.th/ D h5

�
1 � tanh

�
s2u

�q2 j!jq2�� kr sinˇ ; (9.242)

where f1 D h2
�
1 � tanh

�
s1uq1 j!j�q1�� sign .!/ ; f2 D h3 tanh

�
h4u�1!

�
:

The coefficients of model (9.242) are determined analogously to the case of
models (9.240) and (9.241). The number of constants is smaller because of the use
of certain relation between functions TrX1 , TrX2 , andMO [the same relation can also
be used for models (9.240)�(9.241), but we present them in the form proposed by
Kireenkov [15]]. For the Hertz case (9.239) we have h1 D 3=8, h2 D �3=32,
h3 D 3=32, h4 D 32=.15/, h5 D �1=5. The approximations (9.242) completely
satisfy the values and all first partial derivatives of functions (9.237) at u D 0 or
! D 0. Coefficients q1, q2, s1, s2 do not affect values and first partial derivatives
at u D 0 or ! D 0, but they are chosen to be q1 D 1:75, q2 D 2:5, s1 D 1:25,
s2 D 0:275 for the best fitting of the integral model (9.237) for different values of u
and !.

Figure 9.22 presents a comparison of three approximate models (9.240)–(9.242)
and an exact integral model (9.237). The tangens hyperbolicus approximation is
closest to the exact integral model. It is significantly more accurate than the second-
order Padé approximation.

The wobblestone as a semi-ellipsoid rigid body with its mass center at point C ,
touching a rigid, flat, and fixed horizontal surface  (parallel to the X1X2 plane
of the global stationary coordinate system X1X2X3) at point A is presented in
Fig. 9.23.

The equations of motion in the non-stationary coordinate system OX1X2X3
(with axes parallel to the principal centroidal axes of inertia; we assume that the
geometrical axis X3e of the ellipsoid is parallel to one of them) are as follows:
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Fig. 9.22 Exact and approximated components of friction models

m
dv
dt

C! � .mv/ D �mgn CNn C T;

B
d!

dt
C! � .Bv/ D .r � k/ � .Nn C T/C Mt C Mr ;

dn
dt

C! � n D 0; (9.243)
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Fig. 9.23 The wobblestone on a horizontal plane 

wherem is the mass of the wobblestone, B = diag(B1,B2, B3) is the tensor of inertia
of the solid, v is the absolute velocity of the mass centerC ,! is the absolute angular
velocity of the body, N is the value of the normal reaction of the horizontal plane,
n is the unit vector normal to the plane X1X2; T (not included in Fig. 9.23) is the
sliding friction force at point of contactA, and Mt and Mr (not included in Fig. 9.23)
are respectively the dry friction and the rolling resistance torques applied to the
body. Vector r indicates the actual contact point position and vector k determines
the mass center position [16].

The combined models of sliding friction and rolling resistance cannot be directly
used in the form presented previously for the wobblestone modeling and simulations
with the use of standard numerical methods of integration. One reason is that the
expressions for friction forces and torques have singularity for u D 0 and ! = 0.
Another problem arises from the fact that for u D 0 the directions of the components
TrX1 and TrX2 are indefinite. Due to that reason we will express them in the A��
coordinate system. But the angle ˇ will still be indefinite due to the lack of sliding
velocity. Similar problems appear due to the absence of rolling. In order to avoid
these difficulties we propose the following specific approximations of the friction
and rolling resistance models:

T D ��N TO.a/ � �N
�
TrX1.a/cˇ C TrX2.a/sˇ

� !ˇ��!ˇ��C "

� �N �
TrX1.a/sˇ � TrX2.a/cˇ

� !

k!k C "
;

Mt D ���N Mt.a/n; Mr D � frN!

k!k C "
; (9.244)

where .a/ at the end of an index stands for some kind of approximation.
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For a linear Padé approximation we have

TO.P1"/ D u
kuk C a11 j!nj C "

; TrX1.P1"/ D a21
!n krsˇ

kuk C a11 j!nj C "
;

TrX2.P1"/ D bO1
!n krcˇ

j!nj C b11 kuk C "
; Mt.P1"/ D cO1!n C c21 kuk krsˇ

j!nj C c11 kuk C "
; (9.245)

and the second-order Padé approximation model takes the form

TO.P2"/ D kuk C a12 j!nj
u2 C a12 kuk j!nj C !2n C "

u;

TrX1.P2"/ D a22
j!nj !nkrsˇ
u2 C !2n C "

;

TrX2.P2"/ D bO2
j!nj C b12 kuk

u2 C b12 kuk j!nj C !2n C "
!n krcˇ;

Mt.P2"/ D j!nj C c12 kuk
u2 C c12 kuk j!nj C !2n C "

!n C c22
u2krsˇ

u2 C !2n C "
; (9.246)

while the tangens hyperbolicus model will be as follows:

TO.th"/ D tanh

�
h1

kuk
j!nj C "

�
u

kuk C "
;

TrX1.th"/ D f1"krsˇ; TrX2.th"/ D f2"krcˇ;

Mt.th"/ D f2" � f1" C h5

�
1 � tanh

�
s2

� j!nj C "

kuk
�q2��

krsˇ; (9.247)

where f1" D h2

�
1 � tanh

�
s1

� kuk
j!njC"

�q1��
sign .!n/ ; f2" D h3 tanh

�
h4

!nkukC"
�

,

where � is the dry friction coefficient, � is the radius of the contact path (we assume
that the circular contact path between bodies with constant radius is independent
of the normal force), fr D �

R 2
0

R 1
0
�rr

2 cos .' � �/ drd' is the rolling resistance
coefficient and for the Hertz case fr D �kr=5, u is the normalized velocity vA of
the body point in contact with the horizontal surface, !n is the projection of the
angular velocity onto theX3 axis,! is the component of the angular velocity lying
on the  plane, !ˇ is the vector lying on the  plane of the same length as ! but
perpendicular to it, and cˇ and sˇ are approximated sine and cosine functions of the
angle ˇ (angle between the sliding and rolling directions):
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vA D v C! � .r � k/ ; u D vA
�
;

!n D ! � n; ! D ! � !nn; !ˇ D ! � n;

cˇ D u�"q
u2�" C u2�

; sˇ D u�q
u2�" C u2�

;

u�" D u �!ˇ C "; u� D �u �! :

(9.248)

The Mr vector is constructed on the assumption that the rolling resistance torque
opposes the angular velocity component lying on the  plane (it is equivalent
to assuming a rigid  plane and deformable wobblestone). The parameter " is
introduced in order to smooth the equations and avoid numerical problems around
some singularities. The differential equations of motion (9.243) are supplemented
with the following algebraic equation:

.v C! � .r � k// ı n D 0; (9.249)

which follows from the fact that the velocity vA lies on the plane  . Equa-
tions (9.243) and (9.249) now form the differential-algebraic equation set. One way
to solve them is to differentiate condition (9.249) with respect to time and then treat
it as an additional equation while solving the governing equations algebraically with
respect to the corresponding derivatives and the normal reaction N .

To complete the model, the relation between vectors r and n should be given.
Taking the ellipsoid equation

r21e
a2

C r22e
b2

C r23e
c2

D 1; (9.250)

(where a, b, and c are the semiaxes of the ellipsoid) and the condition of tangent
contact between the ellipsoid and the horizontal plane

n1e D �r1e

a2
; n2e D �r2e

b2
; n3e D �r3e

c2
; (9.251)

we can find the relation between the components of vectors r and n in the
OX1eX2eX3e coordinate system. Since the OX1X2X3 coordinate system is obtained
by rotation of the OX1eX2eX3e system around the X3e axis through the angle ˛, the
corresponding relation in the OX1X2X3 coordinate system can be found easily.

All the presented results were obtained for the following parameters and initial
conditions: m D 0:25 kg, g D 10m=s2, ˛ D 0:3 rad, B1 D 10�4 kg � m2, B2 D
8 � 10�4 kg � m2, B3 D 10�3 kg � m2, a D 0:08m, b D 0:016m, c D 0:012m,
k1 D k2 D 0, k3 D 0:002m, � D 0:5, � D 6 � 10�4 m, kr D 1, � D 10�4 rad=s,
v1O D v2O D v3O D 0m=s, n10 D n2O D 0, n3O D 1.

Figure 9.24 shows the results of simulation of the wobblestone initially spinning
at !3O D 20 rad=s but also wobbling at !2O D 1 rad/s (!1O D 0) for three
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Fig. 9.24 Wobblestone response with initial conditions !1O D 0, !2O D 1, !3O D 20 (rad/s) for
different approximations of the friction model

different approximations: the first-order Padé, the second-order Padé, and tangens
hyperbolicus approximation. The wobblestone exhibits typical behavior for that
kind of solid, that is, we can observe that after some time the spin changes sign and
the motion vanishes. The differences between the three solutions are seen, especially
between the solution using the first-order Padé approximation and the others. The
significance of that difference depends on the kind of application of the developed
model and simulation. The rest of the presented results were obtained using of a
tangens hyperbolicus approximation.

Figure 9.25 presents similar results for initial spin !30 D 4 rad/s and wobbling at
!2O D 1 rad/s (!1O D 0). We can also see the corresponding behavior of a system
with friction torque Mt switched off, where the motion ends with the wobblestone
spinning with constant velocity without wobbling, but the initial portion of motion
does not differ significantly from the motion of the wobblestone with the friction
torque. The corresponding normal force history is also presented in Fig. 9.25.

In Fig. 9.26 the final !3 angular velocity for a wobblestone without dry friction
torque Mt for different initial conditions is presented in the form of contour plots.
One can observe that for one direction of the spin (!3O D 2 rad/s in Fig. 9.26a)
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Fig. 9.25 Wobblestone response and normal force history with initial conditions !1O D 0, !2O D
1, !30 D 4 (rad/s) for tangens hyperobolicus approximation

there is some area around the point (0,0) on the plane of the initial conditions !1O–
!2O for which there are no reversals. The changes in the sign of spin take place for
initial conditions outside that area, that is, for strong enough initial wobbling. For
the opposite sign of the initial spin (!3O D �3 rad/s in Fig. 9.26b) it is difficult
to observe the spin reversal. The most interesting plot, however, is the that in
Fig. 9.26c, where the section along the !3 axis in the initial-condition space is
shown. The !3 axis is stable in the sense that a small enough perturbation of the
wobblestone spinning with any value and any sign will decay after some time, and
the stone will continue spinning with (almost) the same velocity. To observe the
reversals, the initial wobbling must be large enough and only for the proper sign of
the spin.
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Fig. 9.26 Wobblestone final !3 angular velocity (rad/s) (without dry friction torque Mt ) for
different initial conditions. (a) !3O D 2 rad/s. (b) !3O D �3 rad/s. (c) !1O D 0 rad/s

To conclude this discussion of our results, also presented in [16], a complete set
of tangens hyperbolicus approximations of the spatial friction model coupled with
the rolling resistance for the circular contact area between interacting bodies was
developed and then compared with corresponding Padé approximations of the first
and second order, well known from the literature, as well as with the numerical
solution of the exact integral model. It was shown that tangens hyperbolicus
approximations are the closest to the exact solution. Applying three different
approximations to the wobblestone model the differences in simulation results were
shown. In applications where high accuracy of simulation is required, a model with
a second-order Padé or tangens hyperbolicus approximation should be used. Taking
into account that the complexity of both approximations is comparable and that the
tangens hyperbolicus approximation is actually closer to the exact integral model of
friction, it seems reasonable to use the second one.
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Both the presented model of the wobblestone and its simulations are very realistic
as compared with most earlier works on the celt since the correct spatial friction
model, coupled with rolling resistance torque, has been applied, however with the
significant simplifying assumption of a circular contact area between stone and table
with a constant radius independent of the normal force.
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Chapter 10
Stationary Motions of a Rigid Body
and Their Stability

10.1 Stationary Conservative Dynamics

Let us consider a scleronomic mechanical system described by the system of
differential equations

Px D f.x/; (10.1)

where x 2 RN and for an arbitrary choice of initial conditions x.t0/ D x0 there exists
a unique solution x D x.x0; t/, where � D d

dt , and time t 2 Œ0; C1/. Owing to the
autonomous nature of (10.1) we will further assume t0 D 0. From the considerations
of Chap. 9 it follows that in the case of conservative dynamics of a rigid body first
integrals exist that lead to simplification of such systems.

Thus, let us assume that system (10.1) hasM first integrals of the forms

U0.x.t// D C0; U1.x.t// D C1; : : : ; UM D .x.t// D CM ; M < N � 1; (10.2)

where Ci , i D 0; 1; : : : ; M , are constants.

Theorem 10.1. If one of the first integrals of system (10.1) has a non-singular
stationary (constant) value for certain fixed (constant) values of the remaining first
integrals of this system at a certain point x0, then the solution x � x0 describes the
actual motion of the dynamical system governed by (10.1).

Proof. see [1] Let C D ŒC1; : : : ; CM �
T, and the first integral U0.x.t// D C0 has

a constant (stationary) value for certain fixed values of the remaining first integrals
U.x0/ D C0, U.x/ D ŒU1.x/; : : : ; UM .x/�T. ut

Let us introduce M values of undetermined Lagrange multipliers � D Œ�1; : : : ;

�M �
T and the function

W.x;�/ D U0.x/C �T.U.x/� C0/: (10.3)
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Because by assumption x0 is non-singular, we have

det

�
@2W.x;�/

@x2

�
.x0;�0/

¤ 0: (10.4)

Function (10.3) is a linear combination of the first integrals of system (10.1), and
after its substitution into (10.1) we obtain

dW

dt
D
�
@W

@x

�T dx
dt

D
�
@W

@x

�T

f.x/ � 0; (10.5)

which means that W is also a first integral of (10.1), where 1, �1; �2; : : : ; �M are
constant coefficients. The second derivative of (10.5) with respect to x has the form

�
@2W

@x2

�T

f.x/C @f
@x

�
@W

@x

�
� 0: (10.6)

Stationary values x D x0 and � D �0 are determined from algebraic equations
of the form

@W

@x
D 0;

@W

@�
D 0: (10.7)

Taking (10.7) into account in (10.6) we obtain

�
@2W

@x2

�
x0

f.x/0 D 0: (10.8)

Taking into account condition (10.4) we obtain

f.x/0 D 0; (10.9)

which we set out to demonstrated.
The classic approach [2] consists in the determination of solutions of non-linear

algebraic equations (10.9) in order to determine x0. Provided that we know the
first integrals of the analyzed system, the problem becomes simpler because we
are dealing with quadratic forms (10.7), which often may be just linear algebraic
equations.

Stationary solutions U0.x/ D C0 depend on the values of the remaining fixed
constants C, constituting in this way a family of solutions x D x0.C/ in the space
RN � RM .x 2 RN ;C 2 RM/.
Theorem 10.2. If one of the first integrals of system (10.1) has its local extremum
(minimum or maximum) for the fixed values of the remaining first integrals at a
certain point x0, then the solution x � x0 is a stable stationary motion of dynamical
system (10.1).
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Proof. Let the integral U0.x/ D C0 attain the extremum C0
0 for the fixed values C0

of the remaining first integrals at point x0.
Let us consider the solution x0.t/ D x.x0; t/ of system (10.1), for U0.x0.t// �

U0.x0/ D C0
0 , U.x0.t// � U.x0/ D C0. The quantity C0

0 is the extremum value of
the function U0.x/ for the fixed values C0 of the first integrals U.x/ D C attained
at point x0. This means that x0.t/ � x0 is the stationary motion of the analyzed
dynamical system.

Let us now introduce a quadratic form as follows:

V.x/ D .U0.x//� C0
0 /
2 C .U.x/� C0/T .U.x/� C0/: (10.10)

The function dV
dt � 0; moreover, V.x0/ D 0 and V.x/ > 0 for x � x0 ¤ 0. Since

if in the neighborhood of point x0 variables x.t/ satisfy the condition U.x.t// D C0

for x ¤ x0, then V.x/ D .U0.x/ � C0
0 / > 0. In turn, for x D x0 we have V.x/ D

.U.x/� C0/T.U.x/� C0/ > 0. This means that V.x/ is a positive-definite function

.V .x/ > 0/ and dV
dt � 0 in the neighborhood of x0. According to the Lyapunov1

stability theorem [2], the stationary motion x.t/ � x0 is stable. ut
The conditions for the function U0.x/ to attain its extremum at point x0 for

additional conditions U.x/ D C are equivalent to the determinacy with regard to
the sign (positive- or negative-definite) of a quadratic form of the form

ı2W D 1

2
.x � x0/T

�
@2W

@x2

�
x0
.x � x0/ (10.11)

on the linear manifold

ıU D
�
@U
@x

�
x0
.x � x0/ D 0: (10.12)

Let us consider the equation of disturbances in the neighborhood x � x0 of the
form

ı Px D
�
@f
@x

	
x0
ıx; (10.13)

that is, in the Taylor series expansion about x0 we retain only linear terms.
Equation of disturbances (10.13) possesses an integral of the form

ı2W D 1

2
ıxT

�
@2W

@x2

	
x0
ıx D �0 (10.14)

1Alexandr Lyapunov (1857–1918), Russian mathematician who made a great contribution to the
theory of stability, working mainly in Kharkiv and Saint Petersburg.
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and additionallyM linear integrals of the form

ıU D
�
@U

@x

	
x0
ıx D � : (10.15)

A characteristic equation corresponding to the matrix in (10.13) of the form

det

�
�En �

�
@f
@x

�
x0

	
D 0; (10.16)

which is a polynomial of the N th order, has exactly M zero roots (eigenvalues)
�0 D 0, �1 D 0; : : : ; �M D 0 if rank. @f

@x /x0 D N �M .

Theorem 10.3. The stationary motion x � x0 of dynamical system (10.1) is
unstable if the determinant

.�1/M det

2
64
Œ0M�N �;



@U
@x

�


@U
@x

�T
;
h
@2W
@x2

i
3
75

00

< 0 (10.17)

and the rank of the matrix Œ @f
@x �x0 is equal to N �M , that is,

rank

�
@f
@x

	
x0

D N �M:

The proof of the preceding theorem is given in [1].

Example 10.1. Investigate the stability of the stationary motions of a rigid body
about a fixed point (Sect. 9.2) in the Euler case. Equations of motion (9.29) have
two first integrals, (9.32) and (9.34), of the form

T D 1

2

�
I1!

02
1 C I2!

02
2 C I3!

02
3

�
D T � � const;

K2
0 D I1!

02
1 C I2!

02
2 C I3!

02
3 D K�2

0 � const; (10.1.1)

and we assume I3 > I2 > I1.

In this case function (10.3) takes the form

W.!0; �/ D T � 1

2
�.K2

0 �K�2
0 /: (10.1.2)
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The preceding function is stationary if the following conditions are satisfied:

@W

@!0
1

D I1!
0
1.1 � �I1/ D 0;

@W

@!0
2

D I2!
0
2.1 � �I2/ D 0;

@W

@!0
3

D I3!
0
3.1 � �I3/ D 0; K2

0 D K�2
0 � const: (10.1.3)

System (10.1.3) has the following solutions:

!0
1 D !0

2 D !0
3 D 0; � 2 R and K�

0 D 0; (10.1.4)

!0
1 D !; !0

2 D !0
3 D 0; � D I�1

1 and K�2
0 D !2I 21 ; (10.1.5)

!0
1 D !0

3 D 0; !0
2 D !; � D I�1

2 and K�2
0 D !2I 22 ; (10.1.6)

!0
1 D !0

2 D 0; !0
3 D !; � D I�1

3 and K�2
0 D !2I 23 : (10.1.7)

Solution (10.1.4) corresponds to a state of equilibrium, and it is stable with
respect to !0

1, !
0
2, and !0

3, because in this case the energy integral T [see (10.1.1)]
attains its global minimum.

The three remaining stationary solutions correspond to body rotations about
principal centroidal axes of inertia. Let us conduct an analysis of solution (10.1.5).
According to (10.11), and taking into account (10.1.3), we have

ı2W D 1

2
Œı!0

1; ı!
0
2; ı!

0
3�

�
@2W

@!2

	
!0

2
4 ı!0

1

ı!0
2

ı!0
3

3
5 ;

�
@2W

@!2

	
D
2
4 I1.1 � �I1/ 0 0

0 I2.1 � �I2/ 0

0 0 I3.1 � �I3/

3
5 ; (10.1.8)

that is,

ı2W D 1

2

�
I2

�
1 � I2

I1

�
.ı!0

2/
2 C I3

�
1 � I3

I1

�
.ı!0

3/
2

	
: (10.1.9)

Linear manifold (10.12) in this case takes the form

ı.K2
0/ D

�
@K2

0

@!

	
!0
ı!

D
2
4 2I 21 !0

1 0 0

0 2I 22 !
0
2 0

0 0 2I 23 !
0
3

3
5
!0

2
4 ı!0

1

ı!0
2

ı!0
3

3
5 D 2I 21 !ı!1 D 0; (10.1.10)

hence for ! ¤ 0 we obtain ı!1 D 0.
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Because by assumption I3 > I2 > I1, we have ı2W < 0. It follows that for
K2
0 D const the function T on solution (10.1.5) attains its maximum.
In the case of solution (10.1.7) we have

ı2W D 1

2

�
I1

�
1 � I1

I3

�
.ı!1/

2 C I2

�
1 � I2

I3

�
.ı!2/

2

	
;

ı.K2
0/ D 2I 23 !ı!3 D 0: (10.1.11)

In this case ı2W > 0 and for K2
0 D const the function T on solution (10.1.7)

attains its minimum.
From the preceding analysis it follows that, by Theorem 10.2, a rigid body with

fixed mass center, after the introduction of the initial rotations about the smallest
or largest axis of inertia, rotates infinitely long, even after small disturbances of
motion, because its stationary rotations about these axes are stable.

In the end, let us consider stationary rotational motion about the average axis of
an ellipsoid, that is, solution (10.1.6).

In this case we have

ı2W D 1

2

�
I1

�
1 � I1

I2

�
.ı!1/

2 C I3

�
1 � I3

I2

�
.ı!3/

2

	
;

ı.K2
0/ D 2I 22 !ı!2 D 0: (10.1.12)

The first term of the first equation is positive, whereas the second is negative,
and in order to estimate the stability we will make use of Theorem 10.3. The matrix
corresponding to the quadratic form ı2W in this case takes the form

�
@2W

@!2

	
D
2
4 I1

�
1 � I1

I2

�
0

0 I3

�
1 � I3

I2

�
3
5 : (10.1.13)

The determinant of the preceding matrix is equal to

ˇ̌̌
ˇ̌̌ I1

�
1 � I1

I2

�
0

0 I3

�
1 � I3

I2

�
ˇ̌̌
ˇ̌̌ D I1I3

�
1 � I1

I2

��
1 � I3

I2

�
< 0: (10.1.14)

According to Theorem 10.3 one should now determine the rank of the matrix
Œ @f
@!
�!0 .
After the linearization of equations of motion (9.29) we obtain

I1.ı P!0
1/C .I3 � I2/!0

3ı!
0
2 C .I3 � I2/!0

2ı!
0
3 D 0;

I2.ı P!0
2/C .I1 � I3/!0

1ı!
0
3 C .I1 � I3/!0

3ı!
0
1 D 0;

I3.ı P!0
3/C .I2 � I1/!0

1ı!
0
2 C .I2 � I1/!0

2ı!
0
1 D 0; (10.1.15)
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hence after taking into account (10.1.6) we have

I1.ı P!0
1/C .I3 � I2/!ı!

0
3 D 0;

I2.ı P!0
2/ D 0;

I3.ı P!0
3/C .I2 � I1/!ı!

0
1 D 0; (10.1.16)

that is, the matrix

�
@f
@!

	
!0

D

2
64 0 0 I3�I2

I1
!

0 0 0
I2�I1
I3
! 0 0

3
75 : (10.1.17)

The rank of this matrix is equal to 2, and becauseM D 1 andN D 3, the second
condition of Theorem 10.3 is also satisfied. Eventually, we come to the conclusion
that rotation about the average axis of an inertia ellipsoid is unstable. �

10.2 Invariant Sets of Conservative Systems
and Their Stability

We will start our calculations with the definition of an invariant set.

Definition 10.1. The set M is called an invariant set (positive invariant) of
dynamical system (10.1) if for x0 2 M (start of motion) we have x.x0; t/ 2 M
(motion of the system) for all t > 0 and all x0 2 M .

Because in our case we consider systems that satisfy Theorem 10.1, we say
that the manifold M generates the functions U0.x/ for the previously mentioned
additional conditions for the remaining first integrals to be constant, that is, U.x/ D
C � const:

1. A non-singular stationary value on the set M, where

ıU0jıUD0 D 0; ı2U0jıUD0 ¤ 0: (10.18)

2. A local minimum (maximum) value if U0.M/ D const and there exists ı > 0

such that for any x satisfying the condition

0 < dist.x;M/ < ı; U.x/ D C; (10.19)

also the following condition is satisfied:

U0.x/ > .< 0/U0.M/;
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where

dist.x;M/ D min
x�2M

jjx � x�jj: (10.20)

Theorem 10.4. If a certain set M0 generates a non-singular stationary value of one
of the first integrals of system (10.1) for fixed values of the remaining first integrals,
then M0 is an invariant set of dynamical system (10.1).

The proof of the preceding theorem is given in [1], and it is carried out in an
analogous way to the proof of Theorem 10.1 since if dim M0 D 0, then the invariant
manifold M0 reduces to the points (positions) of equilibrium of the considered
dynamical system (10.1). If dim M0 > 0, then the stationary value generated by
this set corresponds to stationary motions of system (10.1).

In the general case the manifold M0 is filled up with stationary motions of
system (10.1), which can be periodic, quasiperiodic, or chaotic.

Theorem 10.5. If a compact set M0 generates a local non-singular stationary
extremum (minimum or maximum) value for fixed values of the remaining first inte-
grals of system (10.1), then M0 is a stable invariant set of dynamical system (10.1).

The proof of this theorem is provided in [1]. From the theorem it follows that
the open set M0 is invariant (one should prove this), and subsequently it should be
proved that this invariant set is stable. Let us emphasize that the proof of the theorem
does not require the assumption of differentiability of first integrals. Let us note that
stationary motions x0.x0; t/ lying on the invariant set M0 are stable in reference to
some of the variables that characterize the distance of the disturbed motion from
the set M0, but in general these motions are unstable with respect to disturbances
x � x0.x0; t/.

Example 10.2. Determine the invariant set corresponding to a stationary motion of
a rigid body about a fixed point in the Euler case about the average axis of an inertia
ellipsoid.

As was already shown in Example 10.1, the rotation of a body about the average
axis of an ellipsoid of inertia is unstable, and according to (10.1.1) in this case we
have T D 1

2
I2!

2 and K2
0 D I 22 !

2.
Equations of motion (9.29) are satisfied for the invariant set determined by the

equations

I1!
02
1 C I2!

02
2 C I3!

02
3 D I2!

2;

I 21 !
02
1 C I 22 !

02
2 C I 23 !

02
3 D I 22 !

2; (
)

where ! 2 R. From the preceding equations we determine

!02
1 D I2.I2 � I3/

I1.I1 � I3/
.!22 � !02

2 /;

!02
3 D I2.I1 � I2/

I3.I1 � I3/
.!22 � !02

2 /; (

)
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and after substitution into the second of the equations of motion (9.29) we obtain

P!0
2 D ˙

s
.I2 � I3/.I1 � I2/

I3I3
.!2 � !02

2 /: (10.21)

Equation (

) describes the stationary motion of a rigid body about a fixed point
in the Euler case about the average axis of an inertia ellipsoid on the manifold given
by (
). �
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Chapter 11
Geometric Dynamics

11.1 Introduction

A classical approach to the dynamics of Hamiltonian systems (or dynamical systems
in general) is based on the notion of a phase space (Chaps. 2 and 3). It turns out that
the phase space of a Hamiltonian system possesses certain geometric properties [1].
One of the first scientists to notice that was H. PoincarKe1 [2]. By exploiting the
properties of the phase space of Hamiltonian systems and Hamilton’s equations
themselves, it is possible to formulate mechanics in the language of symplectic
geometry [1, 3]. The phase space plays here the role of a manifold on which is
defined a certain quantity called a symplectic form, which relates mechanics to
geometry. In turn, the subject of analysis of this chapter is the geometric approach to
the dynamics of mechanical systems, henceforth called geometric dynamics. As the
name implies, it deals with the geometric formulation of dynamics with aid of the
formalism of differential geometry. It turns out that the dynamics of Hamiltonian
systems can be formulated in the language of geometry of a Riemann2–Finsler3

space [4, 5]. The object of investigation of the present chapter is the geometric
description of dynamics in a Riemannian space. In order to use the aforementioned
formalism of a Riemannian space we have to be able to describe a differentiable
manifold and define on it a metric tensor [6, 7].

In other words, we need to have at our disposal the Riemannian space “obtained
from the investigated dynamical system.” As far as the potential manifolds are
concerned we can choose from several spaces naturally occurring in dynamics
such as, for example, a configuration space, an extended configuration space, a

1Henri Poincaré (1854–1912), a great French physicist and mathematician being i.a. a pioneer of
chaos theory.
2Bernhard Riemann (1826–1866), influential German mathematician who made essential contri-
butions to analysis and differential geometry.
3Paul Finsler (1894–1970), German and Swiss mathematician.

J. Awrejcewicz, Classical Mechanics: Dynamics, Advances in Mechanics
and Mathematics 29, DOI 10.1007/978-1-4614-3740-6 11,
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configuration time-space, an extended configuration time-space, a tangent bundle of
the configuration space. All those manifolds can be equipped with a metric tensor,
that is, a metric.4 The following ways of choosing a metric exist:

1. A configuration space Q C the Jacobi metric.
2. An extended configuration space Q � R C the Eisenhart metric.
3. A configuration time-spaceQ �R C the Finsler metric.
4. An extended configuration time-space Q � R2 C the Eisenhart metric.
5. A tangent bundle of a configuration space TQ C the Sasaki metric.

The choice of one of the preceding alternative descriptions is a matter of
convenience and depends on the class of the dynamical system under investigation.
In other words, not every dynamical system can be described (geometrized) in each
of the previously mentioned cases. In the case of the configuration manifold with
the Jacobi metric we can describe only Hamiltonian systems with an energy integral.
In the case of the extended configuration time-space with the Eisenhart metric [8]
we can describe non-autonomous systems. On the other hand, the Finsler geometry
allows for the description of systems with a velocity-dependent potential, which,
in turn, is not possible within Riemannian geometry. In the present chapter we
will consider one of the aforementioned descriptions, namely, the configuration
space with the Jacobi metric. The class of systems that can be described within
the framework of this formalism are systems with Lagrangians of the form

L D 1

2
aij .q/ Pqi Pqj � V.q/; (11.1)

where aij .q/ are the components of a kinetic energy matrix. The essence of
geometric dynamics is the fact that the motion of the whole system can be identified
with the motion of a certain virtual point along a geodesic in a Riemannian space.
Therefore, we have to somehow associate a metric tensor with the dynamics of the
investigated dynamical system, which is one of the fundamental problems of the
geometric approach. A solution of this problem5 is derived from the possibility of
a variational formulation of many mechanical problems. This is possible because
geodesic equations can be obtained also as a result of the variation of a certain
expression A that is the length of the geodesic between two points. In other words,
the length of arc of the geodesic has to assume a stationary value, which is expressed
by the equation

ıA D
P2Z
P1

ds D 0: (11.2)

This means that from all paths connecting points P1 and P2 we choose that one
for which (11.2) holds true. An elementary square whose length is equal to the

4We will often use both terms in an interchangeable way.
5We emphasize that it is not the only way to obtain the metric tensor.



11.1 Introduction 445

length between two points lying infinitesimally close to each other is defined in a
Riemannian space as

ds2 D gij .q/dqidqj ; (11.3)

where gij .q/ are the components of a metric tensor that, in general, can depend on
the coordinates q [9]. Quantity (11.3) can be written in a different way using the
matrix form of a metric tensor g, namely,

ds2 D

2
6664

dq1

dq2

:::

dqN

3
7775
T2
6664
g11 g12 � � � g1N
g21 g22 � � � g2N
:::

:::
: : :

:::

gN1 gN2 � � � gNN

3
7775
2
6664

dq1

dq2

:::

dqN

3
7775; (11.4)

where the symmetry of a metric tensor was used .gij .q/D gj i .q//. Now, substitut-
ing the previously described length between the aforementioned two points, that is,
(11.3), into (11.2), we obtain

ı

P2Z
P1

ds D ı

P2Z
P1

q
gij dqidqj D ı

u2Z
u1

p
wdu; (11.5)

where

w D gij p
ipj ; pi D dqi

ds
:

Moving the variation inside the integral and then carrying out the variation of the
integrand we obtain

u2Z
u1

�
@
p

w

@qr
ıqr C @

p
w

@pr
ıpr

�
du D 0: (11.6)

Because

ıpr D ı

�
dqr

du

�
D d

du
.ıqr / ;

integrating by parts the second term in (11.6) we obtain

u2Z
u1

@
p

w

@pr
ıprdu D @

p
w

@pr
ıqr

ˇ̌̌
ˇ
u2

u1

�
u2Z

u1

d

du

�
@
p

w

@pr

�
ıqrdu: (11.7)

Because the variations ıqr at the ends of the integration interval vanish, we have

u2Z
u1

@
p

w

@pr
ıprdu D �

u2Z
u1

d

du

�
@
p

w

@pr

�
ıqrdu: (11.8)
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Substituting the obtained result into (11.6) we find

u2Z
u1

�
@
p

w

@qr
� d

du

�
@
p

w

@pr

��
ıqrdu D 0: (11.9)

Because in the integration interval variations ıqr are arbitrary, the preceding
integral vanishes when the integrand becomes zero [4]. Hence we obtain Euler–
Lagrange equations

d

du

�
@
p

w

@pr

�
� @

p
w

@qr
D 0: (11.10)

Carrying out the differentiation in the preceding expression we obtain

d

du

�
@
p

w

@pr

�
� @

p
w

@qr
D d

du

�
1

2
p

w

@w

@pr

�
� 1

2
p

w

@w

@qr

D d

du

�
1

2
p

w

�
@w

@pr
C 1

2
p

w

d

du

�
@w

@pr

�
� 1

2
p

w

@w

@qr

D � 1

4w3=2
dw

du

@w

@pr
C 1

2
p

w

d

du

�
@w

@pr

�
� 1

2
p

w

@w

@qr
D 0;

(11.11)

and then, multiplying through by 2
p

w,

d

du

�
@
p

w

@pr

�
� @

p
w

@qr
D 1

2w

dw

du

@w

@pr
: (11.12)

Because the parameter u was arbitrary, we can set u D s, that is, now we take as
the parameter the length of arc of a geodesic. Then, using relation (11.5) we find

w D gij p
ipj D gij

dqi

ds

dqj

ds
D 1; (11.13)

hence
dw

du
D 0:

Equation (11.12) then takes the form

d

du

�
@
p

w

@pr

�
� @

p
w

@qr
D 0: (11.14)

Because

@w

@pr
D gij ı

i
rp

j C gij ı
j
r p

i D 2girp
i ; (11.15)
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(11.14) takes the form

d

ds

�
2girp

i
� � @gij

@qr
pipj D 0: (11.16)

Differentiating with respect to s we have

2
@gir

@qj
dqj

ds
pi C 2gir

dpi

ds
� @gij

@qr
pipj D 0: (11.17)

Now, using the definition pi D dqi

ds , we obtain

2gir
d2qi

ds2
C 2

@gir

@qj
dqi

ds

dqj

ds
� @gij

@qr
dqi

ds

dqj

ds
D 0: (11.18)

The second term in the preceding equation can be written in the form

2
@gir

@qj
dqi

ds

dqj

ds
D @gir

@qj
dqi

ds

dqj

ds
C @gjr

@qi
dqi

ds

dqj

ds
: (11.19)

This is possible because the term @gir
@qj

is summed with the term dqi

ds
dqj

ds , which
is symmetrical with respect to indices i and j , and thus (11.19) represents a
symmetrization of the expression @gir

@qj
. Using this fact in relation (11.18) we obtain

2gir
d2qi

ds2
C
�
@gir

@qj
C @gjr

@qi
� @gij

@qr

�
dqi

ds

dqj

ds
D 0: (11.20)

Multiplying the preceding equation by gnr and summing with respect to the index
r we obtain

gnrgir
d2qi

ds2
C 1

2
gnr

�
@gir

@qj
C @gjr

@qi
� @gij

@qr

�
dqi

ds

dqj

ds
D 0; (11.21)

which defines equations of a geodesic [10]

d2qn

ds2
C � n

ij

dqi

ds

dqj

ds
D 0; n D 1; 2; : : : ; N; (11.22)

where

� n
ij WD 1

2
gnr

�
@gir

@qj
C @gjr

@qi
� @gij

@qr

�
; (11.23)
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and N is a dimension of a Riemannian space. Geodesic equations (11.22) are
determined completely by a metric tensor g. Thus, having found the relation
between the dynamics of the examined system and the metric tensor, we obtain
geodesics corresponding to the dynamics of the investigated system.

Equations of motion of a dynamical system can also be obtained using the
variational calculus. This is possible by virtue of the variational formulation of
Lagrangian mechanics exploiting the principle of least action (see [1, 3, 11])

ıS D ı

t2Z
t1

L .q; Pq/ dt D 0; (11.24)

where S is the action functional. Here we are dealing with a situation analogous to
the one in the case of a Riemannian space where geodesic equations were obtained
by demanding that the variation of a functional of the action A vanishe [see (11.2)].
The difference consists in the fact that now the integration variable is time t . Thus, as
before, from the principle of least action and substituting into (11.10) the Lagrangian
L instead of

p
w we obtain Euler–Lagrange equations:

d

dt

�
@L

@ Pqn
�

� @L

@qn
D 0; n D 1; 2; : : : ; N: (11.25)

Substituting Lagrangian (11.1) into (11.24) we find

d

dt

�
ain Pqi �� 1

2

@aij

@qn
Pqi Pqj C @V

@qn
D 0: (11.26)

Differentiating, we keep in mind that quantities aij are dependent on qi and
obtain

@ain

@qj
Pqi Pqj C ain Rqi � 1

2

@aij

@qn
Pqi Pqj C @V

@qn
D 0: (11.27)

Next, we multiply relation (11.27) through by gkr , and because gkngin D ıki , we
obtain the equations of motion

Rqk C akn
�
@ain

@qj
� 1

2

@aij

@qn

�
Pqi Pqj C akn

@V

@qn
D 0: (11.28)

The fundamental demand during the geometrization of dynamical systems is that
geodesic equations in the given Riemannian space projected onto the configuration
spaceQ give equations of motion of the considered dynamical system. Whether the
geometrization is possible or not is determined by the following theorem, stated in
a way appropriate for the case of the Jacobi metric [4].

Theorem 11.1. For a given conservative dynamical system of total energyE whose
Lagrangian has the form
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L D 1

2
aij .q/ Pqi Pqj � V.q/

it is always possible to find the transformation of the metric

gij D e'.q/aij ; where '.q/ D ln 2.E � V /

such that geodesics in a Riemannian space are the trajectories of the dynamical
system.

Thus determining the correspondence between dynamics and a Riemannian
space in this way, we can shift the investigation and analysis of dynamical systems to
the investigation of the behavior of geodesics in the given Riemannian space, which
is precisely the essence of geometric dynamics. The basic tool for such analysis
is the Jacobi–Levi-Civita6 equation (JLC), also known as the equation of geodesic
deviation. Subsequently, we will derive this equation and analyze it for the presented
model of a Riemannian space (a configuration space and the Jacobi metric) and
specifically for mechanical systems with two degrees of freedom.

11.2 The Jacobi Metric on Q

In the case of conservative systems in a quite simple way it is possible to
obtain a metric that is provided by the kinetic energy itself. Let us consider then
a conservative dynamical system with N degrees of freedom described by the
following Lagrangian:

L D 1

2
aij .q/ Pqi Pqj � V.q/: (11.29)

Because our considered mechanical system is conservative, the total energyE is
an integral of motion. In that case Hamilton’s variational principle [1]

ı

t2Z
t1

L.q; Pq/dt D 0 (11.30)

is reduced to the Maupertuis principle of least action

ı

t2Z
t1

2T dt D 0; (11.31)

6Tullio Levi-Civita (1873–1941), Italian mathematician of Jewish origin who investigated celestial
mechanics, the three-body problem, and hydrodynamics.
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where

T D 1

2
aij .q/ Pqi Pqj

is the kinetic energy of the system. If the total energy is the constant of motion, we
haveE D T CV , and substituting V D E �T instead of V into the expression for
Lagrangian (11.29) we find L D 2T � E . Substituting the quantity obtained in this
way into (11.30) we obtain

ı

t2Z
t1

.2T �E/ dt D ı

t2Z
t1

2T dt � ı
t2Z
t1

Edt D ı

t2Z
t1

2T dt D 0: (11.32)

Exploiting the analogy between formulas (11.2) and (11.31) we obtain

ds D 2T dt D 2 .E � V / dt; (11.33)

where we make use of the fact thatE D T CV . Next, squaring equation (11.33) by
sides we obtain

ds2 D 4 .E � V / T dt2: (11.34)

Then substituting

T D 1

2
aij .q/ Pqi Pqj

into (11.34) we find

ds2 D 2 .E � V / aij .q/ Pqi Pqjdt2

D 2 .E � V / aij .q/dqidqj : (11.35)

On the other hand,
ds2 D gij dqidqj ; (11.36)

and taking the preceding relation into account we obtain a metric of the form

gij D 2W aij ; where W D E � V: (11.37)

The preceding metric is called the Jacobi metric and will be denoted by g. The
quantity W introduced in formula (11.37) assumes the same values as the kinetic
energy T of the investigated system because, by definition, it is the difference
of the total and potential energy. However, the adopted formalism does not allow
for the explicit introduction of the kinetic energy into the metric because of the
occurrence of velocities in T . Therefore, the introduction of T instead of W into
(11.37) would imply that the metric is dependent on velocity, and such a case is
described not by the geometry of a Riemannian space but by the geometry of a
Finsler space, which is not a subject of interest of this chapter.
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The considered Riemannian space in this case is a configuration space Q

defined as

Q D ˚
q 2 RN W E � V � 0

�
: (11.38)

It is the manifold with a boundary

@Q D ˚
q 2 RN W E � V D 0

�
: (11.39)

Let us note that a metric of form (11.37) is degenerate when E D V (in other
words, when the kinetic energy of the system becomes zero).

A configuration space Q of a dynamical system with N degrees of fredom has
the structure of a differentiable manifold in which the role of local coordinates
is played by generalized coordinates. This manifold, together with a metric g
defined on it, forms the desired Riemannian space M D .Q; g/. According to
the assumptions of the theory, geodesic equations projected onto a configuration
space should lead to the determination of equations of motion. Because in our case
a Riemannian manifold is the configuration manifold, geodesic equations should be
identical with the equations of motion. In order to obtain these equations we make
use of Euler–Lagrange equations for a geodesic Lagrangian,7 but then Christoffel8

symbols have to be found, which is more laborious than the application of Euler–
Lagrange equations to a geodesic Lagrangian. The geodesic Lagrangian is obtained
from relation (11.36) after “dividing” a linear element by sides by ds. Because we
obtained equations of geodesics from (11.14), substituting

gij p
ipj D gij

dqi

ds

dqj

ds
D L (11.40)

into (11.14), we obtain Euler–Lagrange equations for the geodesic Lagrangian

d

ds

0
@ @L

@
�
dqk

ds

�
1
A � @L

@qk
D 0: (11.41)

The quantities occurring in the preceding equations are equal to

@L

@
�
dqk

ds

� D 2gik
dqi

ds
;

@L

@qk
D @gij

@qk
dqi

ds

dqj

ds
: (11.42)

7Obviously, we can obtain geodesic equations from formula (10.1.5).
8Elwin Bruno Christoffel (1829–1900), German mathematician and physicist working mainly at
the University of Strasbourg.
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Differentiating the first of the expressions we obtain

d

ds

0
@ @L

@
�

dqk

ds

�
1
A D 2

@gik

@qj
dqi

ds

dqj

ds
C 2gik

d2qi

ds2
: (11.43)

Then, substituting relations (11.42) and (11.43) into (11.41) we find

gik
d2qi

ds2
C
�
@gik

@qj
� 1

2

@gij

@qn

�
dqi

ds

dqj

ds
D 0: (11.44)

Using formula (11.37) we obtain

@gik

@qj
D 2W

@aik

@qj
� 2aik

@V

@qj
: (11.45)

Substituting the preceding result into (11.44) and applying formula (11.33) we
find

aik
d2qi

ds2
C aik

W

dV

dt

dqi

dt
C
�
@aik

@qj
� 1

2

@aij

@qn

�
dqi

dt

dqj

dt

� aik

W

@V

@qj
dqi

dt

dqj

dt
C @V

@qk
D 0:

Because

dV

dt
D @V

@qj
dqj

dt
;

we obtain

Rqn C akn
�
@aik

@qj
� 1

2

@aij

@qk

�
Pqi Pqj C akn

@V

@qn
D 0; (11.46)

where

Pqj D dqj

dt
:

These are equations of motion (11.28). Thus the metric g is properly defined.
Here the Riemannian space has the same dimension as the configuration space of
the system. This dimension is equal to the number of degrees of freedom of the
investigated mechanical system.
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11.3 The Jacobi–Levi-Civita Equation

As mentioned previously, the fundamental tool of geometric dynamics is the
equation of geodesic deviation called the Jacobi–Levi-Civita equation or the JLC
equation for short. In order to derive this equation let us consider a one-parameter
family of geodesics V2 in N -dimensional space VN . Let s (the length of a geodesic)
be the parameter varying along each of the geodesic lines of this family. By u let us
denote a parameter that is constant for each of the geodesic lines and changes while
switching between geodesics. In other words, the parameter u numbers geodesics in
the family

V2 D fq 2 VN W �u .s/ D qg ; (11.47)

where � is a geodesic. The family V2 forms a two-dimensional space. Let us denote
by TpV2 a space tangent to V2 at point p. This space is spanned by the vectors


@

@u
;
@

@s

�
: (11.48)

Let us introduce the following designations:

@@@s D @

@s
; @@@u D @

@u
; (11.49)

where vector @@@u is called a Jacobi vector. Because vector @@@s is tangent to a geodesic,
from the definition of the geodesic [7] we obtain

rs@@@s D 0: (11.50)

Moreover, the following equality holds true:

rs@@@u D ru@@@s: (11.51)

Because the preceding vectors belong to the space VN , they can be expanded in
terms of the basis of this space:

@@@s D @qi

@s
ei ; @@@u D @qj

@u
ej : (11.52)

On the left-hand side of formula (11.51) we have

rs@@@u D r @qi

@s ei

�
@qj

@u
ej

�
D @qj

@s
ri

�
@qj

@u
ej

�

D @qj

@s

@qi

@u
ri .ej /C @qj

@s
ei

�
@qj

@u

�
ej :
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Now, using relation (11.52) we obtain

rs@@@u D @qj

@s

@qi

@u
� k
ij ek C @2qj

@s@u
ej D

�
@2qk

@s@u
C @qi

@s

@qj

@u
� k
ij

�
ek:

In an analogous way we obtain the right-hand side of formula (11.51) in the form

ru@@@s D
�
@2qk

@u@s
C @qi

@s

@qj

@u
� k
j i

�
ek: (11.53)

Because Christoffel symbols are symmetrical and

@2qk

@u@s
D @2qk

@s@u
; (11.54)

relation (11.51) is satisfied. Let us act on the proven relationship (11.51) from the
left with an affine connection. We obtain

r2
s @@@u D rsru@@@s: (11.55)

Let us introduce a Riemann tensor [7]

R .@@@s;@@@u/ @@@s D rsru@@@s � rurs@@@s � rŒ@@@s ;@@@u�@@@s; (11.56)

where in our case Œ@@@s;@@@u� D 0. Indeed, using relation (11.52) we find

Œ@@@s;@@@u� D
�
@qi

@s
ei ;
@qj

@u
ej

	
D @qi

@s
ei

�
@qj

@u
ej

�

� @qj

@u
ej

�
@qi

@s
ei

�
D @qi

@s

@qj

@u
.eiej � ej ei / D 0 (11.57)

because mixed partial derivatives are commutative. Hence the Riemann tensor
(11.56) is reduced to the form

R .@@@s;@@@u/@@@s D rsru@@@s � rurs@@@s: (11.58)

Taking into account formula (11.50) we find

R .@@@s;@@@u/@@@s D rsru@@@s: (11.59)

Substituting the obtained result into (11.55) and exploiting the antisymmetry of
the Riemann tensor we obtain an equation of the form

r2
s @@@u CR .@@@s;@@@u/@@@s D 0: (11.60)
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This equation is called the Jacobi–Levi-Civita equation (JLC) or the equation
of geodesic deviation. As can be seen, it describes the evolution of vector @@@u along
a geodesic. Another derivation of the equation of geodesic deviation can be found
in [10].

In order to carry out any calculations at all, we have to pass from the tensor form
(i.e., independent of the specific coordinate system) of the JLC equation (11.60) to
an equation in local coordinates.9 Because in a Riemannian space the basis consists
of vectors fe1; e2; : : : ; eN g, let us resolve vectors @@@u and @@@s into this basis

@@@u D J D J iei ; @@@s ! d

ds
D dqj

ds
ej D Y j ej : (11.61)

Let us note that the partial derivative @s is replaced by an ordinary derivative
because we are interested in the evolution of the Jacobi vector J along a geodesic
that is parameterized by s. At first, let us calculate the quantity

r2
s J D rs

�rs

�
J iei

�� D rs

�
J irsei C dJ i

ds
ei

�

D rs

�
J iY jrj ei C dJ i

ds
ei

�
D rs

�
J iY j � k

j iek C dJ i

ds
ei

�

D rs

��
dJ k

ds
C J iY j� k

j i

�
ek

�
: (11.62)

Repeating analogous steps we further obtain

r2
s J D Y nrn

��
dJ k

ds
C J iY j� k

j i

�
ek

�

D Y n
�

dJ k

ds
C J iY j� k

j i

�
rnek C Y nen

�
dJ k

ds
C J iY j � k

j i

�
ek

D Y n
�

dJ k

ds
C J iY j� k

j i

�
� l
nkel C d

ds

�
dJ k

ds
C J iY j � k

j i

�
ek

D
�
Y n
�

dJ k

ds
C J iY j� k

j i

�
� l
nk C d

ds

�
dJ l

ds
C J iY j� l

j i

��
el :

When we introduce the following notation10

ıJ k

ıs
D dJ k

ds
C J iY j � k

j i ; (11.63)

9Since, by definition, a Riemannian space has the structure of a differentiable manifold, in general
there is no single global coordinate system but many so-called local coordinate systems.
10Often this quantity is called the absolute derivative of a tensor [8].
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equation (11.62) can be written in the form

r2
s J D

�
d

ds

�
ıJ l

ıs

�
C � l

nkY
n ıJ

k

ıs

�
el : (11.64)

Using relationship (11.63) again, we obtain

r2
s J D ı

ıs

�
ıJ k

ıs

�
ek D ı2J k

ıs2
ek: (11.65)

Let us calculate the second term in equation (11.60)

R.J; @@@s/@@@s D R.J iei ; Y j ej /Y kek

D J iY j Y kR.ei ; ej /ek D J iY j Y kRnkij en;

where we used the linearity of a Riemann tensor with respect to each of its
arguments. Substituting the obtained result and relation (11.65) into (11.60) we
obtain �

ı2J n

ıs2
C J iY j Y kRnkij

�
en D 0: (11.66)

Hence the JLC equation in the local coordinates takes the form

ı2J n

ıs2
C J iY j Y kRnkij D 0: (11.67)

As can be seen, these are N second-order differential equations with respect to
the parameter s. They are a starting point for any further calculations. Let us note
that in these equations there occur quantities Y k , which are the components of vector
@@@s (11.61), or, to put it differently, they are the components of a velocity vector in
Riemannian space. They satisfy the equations

rs@@@s D Y iri .Y
j ej / D Y iY j � k

ij ek C dY k

ds
ek

D
�
Y iY j� k

ij C dY k

ds

�
ek D 0: (11.68)

Taking into account relation (11.61) we obtain the geodesic equations

d2qk

ds2
C � k

ij

dqi

ds

dqj

ds
D ıY k

ıs
D 0; (11.69)

where k D 1; 2; : : : ; N .



11.4 The JLC Equation in Geodesic Coordinates 457

11.4 The JLC Equation in Geodesic Coordinates

The obtained equations (11.67) can be already directly applied to the investigated
system. However, their number can be diminished by choosing a certain basis in the
considered Riemannian space. That is, let us consider the system of vectors Ei that
satisfy the following conditions:

E1 D @@@s; g.Ei ; Ej / D ıij ; rsEi D 0: (11.70)

Having defined the basis already in the Riemannian space, let us resolve the
vectors occurring in the JLC equation (11.60) on this basis

@@@s D E1; @@@u D I nEn: (11.71)

Let us now substitute expansions (11.70) into the JLC equation (11.60). As a
result we obtain

r2
s .I

nEn/CR.InEn;E1/E1 D 0: (11.72)

The first of the terms in the preceding expression takes the form

r2
s .I

nEn/ D rs.rs.I
nEn// D d2I n

ds2
En; (11.73)

where we twice used the fact that vectors En undergo parallel translation along the
geodesic. Substituting the obtained result into (11.72) we obtain

d2I n

ds2
En CR.InEn;E1/E1 D 0: (11.74)

Now, let us calculate the second term in the preceding equation. Let us resolve
vector En on the basis fe1; e2; : : : ; eN g

R.InEn;E1/E1 D R.In�j
n ej ; �k

1 ek/� l
1el

D I n�j
n �

k
1 �

l
1R.ej ; ek/el D I n�j

n �
k
1 �

l
1R

r
ljker : (11.75)

Because the preceding expression is a vector, it can be represented as a linear
combination of the vectors of the basis Ei in the form

R.InEn;E1/E1 D
NX
qD1

g.I n�j
n �

k
1 �

l
1R

r
ljker ; � i

qei /Eq

D
NX
qD1

I n�j
n �

k
1 �

l
1�

i
qR

r
ljkg.er ; ei /Eq

D
NX
qD1

I n�j
n �

k
1 �

l
1�

i
qRiljkEq: (11.76)



458 11 Geometric Dynamics

We insert here a sigma sign because the index of summation q occurs at the
same level, and consequently the Einstein summation convention does not apply.
Substituting relation (11.76) into (11.74) we obtain

NX
qD1

�
d2I q

ds2
C I n�j

n �
k
1 �

l
1�

i
qRiljk

�
Eq D 0; (11.77)

which leads to an equation of the form

d2I q

ds2
C I n�j

n �
k
1 �

l
1�

i
qRiljk D 0: (11.78)

The quantities �k
1 �

l
1 occurring in the preceding expression are components of

the vector E1 D @@@s . On the other hand, from relation (11.61) we have @@@s D Y j ej ,
so we obtain Y k D �k

1 and Y l D �l
1 . Substituting this into (11.78) we find

d2I q

ds2
C I n�j

n Y
kY l� i

qRiljk D 0: (11.79)

For q D 1 (i.e., the component along the geodesic) the preceding equation
assumes a simple form:

d2I 1

ds2
D 0; (11.80)

because

I n�j
n Y

kY l� i
1Riljk D I n�j

n Y
kY lY iRiljk D 0: (11.81)

The preceding quantity vanishes because it is the sum of products of quantities
Riljk and Y iY l , which are respectively antisymmetric and symmetric with respect
to the exchange of the indices i l . Because of relationship (11.80), it suffices to
consider only the equations

d2I q

ds2
C I n�j

n Y
kY l� i

qRiljk D 0; (11.82)

where q D 2; 3; : : : ; N. In the preceding equations quantities occur that are
dependent on the solutions of geodesic equations (or, which is equivalent, of
equations of motion). This means that in order to solve the JLC equation one
should simultaneously solve equations of motion.11 However, for systems with
many degrees of freedom certain procedures enable the solution of the JLC equation
without having to know the solutions of the equations of motion of the investigated
system [4]. This approach facilitates, on certain assumptions, the calculation of

11A similar situation occurs in the case of calculation of Lyapunov exponents.
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Lyapunov exponents by means of an analytical method. However, it requires the
application of a mathematical apparatus that is beyond the scope of this book.

11.5 The JLC Equation for the Jacobi Metric

The JLC equation (11.67) for the Jacobi metric has the form

ı2J i

ıs2
C J kY jY lRijkl D 0: (11.83)

Using formula (11.63) we find

ı2J i

ıs2
D d

ds

�
dJ i

ds
C � i

jkJ
j Y k

�
C � i

nl

�
dJ n

ds
C � n

jkJ
j Y k

�
Y l : (11.84)

Next, we differentiate and group the terms, obtaining

ı2J i

ıs2
Dd2J i

ds2
C 2

dJ n

ds
� i
nlY

l C J n
�
@� i

nk

@qj
Y j Y k C � i

nk

dY k

ds
C � i

jl�
j

nkY
lY k

�
:

(11.85)

Taking into account formula (11.68) we have

dY k

ds
D �� k

rlY
rY k:

Substituting the obtained relationship into (11.85) we obtain

ı2J i

ıs2
D d2J i

ds2
C 2

dJ n

ds
� i
nlY

l C J n
�
@� i

nr

@ql
� � i

nk�
k
rl C � i

kl�
k
nr

�
Y lY r :

Substituting the preceding expression into the JLC equation (11.83) we obtain

d2J i

ds2
C 2

dJ n

ds
� i
nlY

l C J n
�
@� i

nr

@ql
� � i

nk�
k
rl C � i

kl�
k
nr CRirnl

�
Y lY r D 0:

Next, we make use of the form of the Riemann tensor, and we have

d2J i

ds2
C 2

dJ n

ds
� i
nlY

l C J n
@� i

rl

@ql
Y lY r D 0: (11.86)
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In order to use the preceding equation efficiently it has to be reduced to the
differential equation with respect to time t . Using relation (11.33) we obtain

d

ds
D 1

2W

d

dt
;

d2

ds2
D 1

4W 2

d2

dt2
� 1

4W 3

dW

dt

d

dt
:

Substitutitng the preceding relations into (11.86) we obtain the JLC equation for
the Jacobi metric in the form

RJ i �
PW
W

PJ i C 2 PJ n� i
nlX

l C J n
@� i

rl

@ql
XlXr D 0; (11.87)

where

Xr D dqr

dt
:

If the dimension of a Riemannian space (which in the present case is determined
by the configuration space) is equal to N , then we obtain a system of N ordinary
differential equations with respect to time.

11.6 Mechanical Systems with Two Degrees of Freedom

Already in systems with two degrees of freedom it is possible to observe chaotic
behavior because then the phase space is four-dimensional [12, 13]. Since in the
case of conservative systems descriptions by means of the Jacobi metric and the
Eisenhart metric are equivalent, we can choose either of them in an arbitrary way. In
the case of the Jacobi metric a Riemannian space is two-dimensional because it is a
configuration space whose dimension is equal to the number of degrees of freedom
of the investigated system. On the other hand, in the case of the Eisenhart metric the
space is four-dimensional. Let us consider the Jacobi metric (11.37) in the matrix
form

G D 2W

�
a11 a12

a12 a22

	
; W D E � V.q/; (11.88)

which corresponds to a Lagrangian of the form

L D 1

2
a11. Pq1/2 C 1

2
a22. Pq2/2 C a12 Pq1 Pq2 � V.q/: (11.89)

Our aim is to obtain the JLC equation for the conservative mechanical system
with two degrees of freedom whose dynamics is described by Lagrangian (11.89).
To this end we make use of previously obtained results (11.82) and write the JLC
equation for a system with two degrees of freedom in the form



11.6 Mechanical Systems with Two Degrees of Freedom 461

d2I q

ds2
C I n�j

n Y
kY l� i

qRiljk D 0:

The preceding equations are equations in a geodesic coordinate system. The first
equation .q D 1/, according to (11.80), reduces to the form

d2I 1

ds2
D 0;

whereas the second one takes the form

d2I 2

ds2
C I 2�

j
2 Y

kY l� i
2Riljk D 0: (11.90)

The unknown quantities in the preceding equation are the quantities �i
2 , which,

in turn, are the components of basis vector E2. Those components are determined
from condition (11.70). Let us write the orthonormality condition in the matrix form

‰TG‰ D I; (11.91)

where I is an identity matrix and ‰ is a matrix of the form

‰ D
�
�1
1 �

1
2

�2
1 �

2
2

	
D
�
Y 1 �1

2

Y 2 �2
2

	
:

Following transformation of condition (11.91) we obtain the equation

‰T‰ D G�1;

which, in turn, leads to equations of the form

�
Y 1
�2 C �

�1
2

�2 D G22

det G
;

�
Y 2
�2 C �

�2
2

�2 D G11

det G
:

As solutions we take

�1
2 D 1p

det G
.G12Y

1 CG22Y
2/;

�2
2 D � 1p

det G
.G11Y

1 CG12Y
2/: (11.92)
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Taking into account the fact that in a two-dimensional space there exists only one
non-vanishing component of the Riemann tensor and that there are symmetries of
components, (11.90) takes the form

d2I 2

ds2
C I 2R2121

�
�2
2 Y

1 � �1
2 Y

2
� D 0:

Next, using (11.92), we obtain

d2I 2

ds2
C I 2

R2121

det G
D 0

or, in equivalent form,

d2I 2

ds2
C 1

2
RI2 D 0;

whereR denotes a scalar of curvature. The preceding equation in time domain takes
the form

RI �
PW
W

PI C 2RW 2I D 0; I D I 2:

Now, applying the substitution

I D �e
1
2

R
PW
W dt D �

p
W ;

we obtain

R�C˝ .t/� D 0; (11.93)

where

˝ .t/ D 1

2

0
@ RW
W

� 1

2

 PW
W

!2
C 4RW 2

1
A : (11.94)

The obtained equation serves as a basis for the analysis of dynamical systems
with two degrees of freedom in a Riemannian space. It should be emphasized that
the function �.t/ does not depend on time explicitly but only implicitly through
solutions to equations of motion. This means that in order to carry out its analysis
we have to solve the JLC equation simultaneously with equations of motion.

Example 11.1. As an example of a mechanical system with two degrees of freedom
we will consider a double physical pendulum. The dynamics of such a pendulum is
described by a Lagrangian of the form



11.6 Mechanical Systems with Two Degrees of Freedom 463

L D 1

2

�
m1c

2
1 C J1 Cm2l

2
1

� P'21 C 1

2

�
m2c

2
2 C J2

� P'22
Cm2c2l1 P'1 P'2 cos� C g .m1c1 Cm2l1/ .cos'1 � 1/
Cm2gc2 .cos'2 � 1/ ; (
)

where � D '1 � '2; m1; m2 denote the masses of particular links of the pendulum;
J1; J2 are the moments of inertia of the links about their mass centers; c1; c2 denote
the positions of the mass centers of the links; and l1; l2 denote the lengths of the
links.

In order to write the preceding Lagrangian in non-dimensional form we introduce
the following scaling:

� D t

s
m1gc1 Cm2gl1

J1 Cm1c
2
1 Cm2l

2
1

;

ˇ D J2 Cm2gl1

J1 Cm1c
2
1 Cm2l

2
1

;

� D m2c2l1

J1 Cm1c
2
1 Cm2l

2
1

;

� D m2c2

m1c1 Cm2l1
:

Lagrangian (
) takes the following non-dimensional form:

L D 1

2
P'21 C ˇ

2
P'22 C � P'1 P'2 cos� C .cos'1 � 1/C .cos'2 � 1/ :

Equations of dynamics obtained from Euler–Lagrange equations for Lagrangian
(
) take the form

R'C a�1b P'2 C a�1� D 0; (

)

where

' D
�
'1
'2

	
; P'2 D

� P'21
P'22

	
; a D

�
1 � cos�

� cos� ˇ

	
;

b D
�

0 �� sin �
�� sin � 0

	
; � D

�
sin '1
� sin '2

	
:

Geometrization will be carried out in a configuration space with the Jacobi
metric, which in this case has the form
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g D 2W

�
1 � cos�

� cos� ˇ

	
;

W D E � 1 � �C cos'1 C � cos'2:

At first, let us calculate the Christoffel symbols after taking (11.23) into account:

� 1
11 D 1

2W det a

�
2�2 sin'1cos2�

C W �2 sin .2�/ � �� sin '2 cos� � ˇ sin '1
�
;

� 2
22 D 1

2W det a

�
2��2 sin '2cos2�

� W �2 sin .2�/ � ˇ� sin '1 cos� � ˇ� sin '2
�
;

� 2
11 D 1

2W det a
.� sin '2 � 2W � sin � � � sin'1 cos�/ ;

� 1
22 D 1

2W det a
.ˇ sin '1 C 2W� sin� � �� sin '2 cos�/ ;

� 2
12 D 1

2W det a
.�� sin'2 cos� � ˇ sin '1/ ;

� 1
12 D ˇ

2W det a
.� sin '1 cos� � � sin '2/ :

Because the system has two degrees of freedom, the configuration space,
and consequently the Riemannian space, is a two-dimensional space. In two-
dimensional Riemannian space we have only one non-zero component of the
Riemann tensor, which in our case takes the form

R2121 D � cos'2 C 2W� cos� C ˇ cos'1

C 1

W
.� sin '1 cos� � � sin '2/

2 C sin2'1 deta

W

� � sin �

deta
.�ˇ sin'1 cos� � �� sin '2 cos�

� ˇ� sin '2 C ˇ sin '1/� 2W �3sin2� cos�

deta
;

where the components of the Riemann tensor are found from the formula12

12Obviously we apply here the Einstein summation convention, that is, we carry out the summation
with respect to repeating indices.
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Rlijk D @� l
ik

@qj
� @� l

ij

@qk
C � n

ik�
l
nj � � n

ij �
l
nk:

Next, we obtain a curvature scalar R of the form

R D � cos�

W deta
� �3sin2� cos�

W deta2

C 1

2W 3 deta
.� sin'1 cos� � � sin '2/

2 C sin2'1
2W 3

� � sin�

2W 2 deta2
.�ˇ sin '1 cos� � �� sin'2 cos�

� ˇ� sin '2 C ˇ sin '1/C � cos'2 C ˇ cos'1
2W 2 deta

:

We substitute the last obtained form of the curvature scalar into (11.94) and solve
the resulting JLC equation (11.93) simultaneously with equations of motion (

).
Further details and numerical examples can be found in [14, 15]. �
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