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Preface

This is the second of three books devoted to classical mechanics. The first book,
entitled Classical Mechanics: Statics and Kinematics; the third, being coauthored by
Z. Koruba, is entitled Classical Mechanics: Applied Mechanics and Mechatronics.
All three books reference each other, and hence they are highly recommended to
the reader. In this book dynamical and advanced mechanics problems are stated,
illustrated, and discussed, and a few novel concepts, in comparison to standard
textbooks and monographs. Apart from being addressed to a wide spectrum of
graduate and postgraduate students, researchers, and instructors from the fields of
mechanical and civil engineering, this volume is also intended to be used as a self-
contained body of material for applied mathematicians and physical scientists and
researchers.

In Chap. 1 the dynamics of a particle and system of particles, as well as rigid-
body motion about a point, are studied. Section 1.1 is focused on particle dynamics.
First, Newton’s second law of motion is revisited. Classification of forces is carried
out, and Newton’s second law is formulated in cylindrical, spherical, and polar
coordinates. Forward and inverse dynamics problems are defined and analyzed. The
dynamics of a particle subjected to the action of a particular excitation from the
previously classified forces is studied. Governing second-order ordinary differential
equations (ODEs) are derived and then solved. An illustrative example of particle
motion along an ellipse is provided. The laws of conservation of momentum, angular
momentum, kinetic energy, and total (mechanical) energy are introduced, illustrated,
and examined. In Sect. 1.2, the fundamental laws of the collection of particles
(discrete or continuous) are introduced and studied. In the case of momentum
conservation of a continuous mechanical system, two important theorems are
formulated. Then the conservation of the center of gravity of either a discrete or
continuous mechanical system is described. Essential corollaries and principles
are formulated, and an illustrative example is provided. Next, the conservation of
the angular (kinetic) momentum of a discrete mechanical system is considered.
Five important definitions are introduced including K6ning’s systems, and Koning’s
theorem is formulated. A kinetic-energy formula is derived. Next, the conservation
of angular momentum of a discrete (lumped) mechanical system is studied.



vi Preface

A theorem regarding the necessary and sufficient condition for the existence of
the first integral of angular momentum is formulated and proved. In addition, two
examples are provided. In what follows the formulation of the law of conservation
of kinetic energy is given. Body motion about a point is analyzed in Sect. 1.3.

Mathematical and physical pendulums are studied in Chap. 2. In Sect. 2.1
second-order ODE governing the dynamics of a mathematical pendulum is derived
and then explicitly solved for two different sets of initial conditions. In addition, a
mathematical pendulum oscillating in a plane rotating with constant angular velocity
is analyzed. A physical pendulum is studied in Sect. 2.2. Again a governing dynam-
ics equation is formulated. In the case of a conservative system mechanical energy
of the physical pendulum is also derived. Section 2.3 concerns the plane dynamics
of a triple physical pendulum. Initially, three second-order ODEs governing the
dynamics of a triple pendulum are derived, and then they are presented in matrix
notation. Since the obtained differential equations are strongly non-linear, they are
then solved numerically. In particular, periodic, quasiperiodic, and chaotic motions
are illustrated and discussed. Furthermore, the dynamic reactions in pendulum joints
are determined and monitored.

In Chap. 3 static and dynamic problems of discrete mechanical systems are
discussed. In Sect. 3.1 the constraints and generalized coordinates are defined. That
is, geometric, kinematic (differential), and rheonomic (time-dependent), as well
as holonomic and non-holonomic, constraints are illustrated and analyzed through
several examples. Furthermore, unilateral and bilateral constraints are introduced
and explained using two illustrative examples. Possible and ideal virtual displace-
ments are also introduced and further examples are provided. Variational principles
of Jourdain and Gauss are introduced in Sect. 3.2, and their direct application
to static problems is illustrated through two examples. The general equations of
statics, as well as the stability of equilibrium configurations of mechanical systems
embedded in a potential force field, are considered in Sect. 3.3. Important theorems
as well as four principles are formulated, and two examples illustrating theoretical
considerations are provided. In Sect. 3.4 the Lagrange equations of the second and
first kind are rigorously derived. Both discrete and continuous mechanical systems
are considered, and some particular cases of the introduced various constraints are
analyzed separately. Five illustrative examples are given. In Sect. 3.5 properties of
Lagrange’s equation, i.e., covariance, calibration invariance, kinetic-energy form,
non-singularity, and the least action principle, are briefly described. The first
integrals of the Lagrange systems are derived and discussed in Sect. 3.6. Cyclic
coordinates are introduced, and two theorems are formulated. Routhian mechanics
is briefly introduced in Sect. 3.7. Using the Legendre transformation, we derive
Routh’s equations. Next, in Sect. 3.8 the cyclic coordinates are discussed, and
their validity is exhibited through examples. A three-degree-of-freedom manipulator
serving as an example of rigid-body kinetics is studied in Sect. 3.9. First, physical
and mathematical models are introduced, then the Denavit—Hartenberg notation is
applied, and the obtained differential equations are solved numerically. Further-
more, the results of numerical simulations are discussed on the basis of an analysis
of three different cases, and some conclusions are formulated.
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Chapter 4 is devoted to classical equations of mechanics. Section 4.1 concerns
Hamiltonian mechanics, Sect. 4.2 describes methods of solution of the Euler—
Lagrange equations, Sect. 4.3 deals with Whittaker equations, Sect. 4.4 concerns
Voronets and Chaplygin equations, and, finally, Sect. 4.5 includes both a derivation
and discussion of Appell’s equations. In Sect. 4.1.1 the canonically conjugate
variables are introduced, and Hamilton’s canonical equations are derived. An
example is added for clarification. In Sect. 4.1.2 the Jacobi—Poisson theorem
is formulated and proved, followed by an introduction to the Poisson bracket.
Canonical transformations are discussed in Sect. 4.1.3, where six theorems are also
given. Non-singular canonical transformations and guiding functions are introduced
in Sect. 4.1.4, whereas the Jacobi method and the Hamilton—Jacobi equations are
presented in Sect. 4.1.5. Then two particular cases of Hamilton—Jacobi equations are
considered in Sect. 4.1.6, i.e., the Hamilton—Jacobi equations for cyclic coordinates
and conservative systems. In Sects. 4.2.1-4.2.4 solutions of the Euler-Lagrange
equations are presented. Section 4.2.2 includes definitions of weak and strong
minima and Euler’s theorem. The Bogomol’nyi equation and decomposition are
briefly stated in Sect. 4.2.3, whereas the Bécklund transformation is described in
Sect. 4.2.4 supplemented with two examples. Whittaker’s equations are derived
in Sect. 4.3, whereas the Voronets and Chaplygin equations are formulated in
Sect. 4.4. Applications of Chaplygin’s equations are presented as an example of
a homogeneous disk rolling on a horizontal plane. The Appell equations, followed
by an example, are derived in Sect. 4.5.

Classical impact theory is introduced and illustrated in Chap. 5. Basic concepts of
phenomena associated with impact are presented in Sect. 5.1. The fundamental laws
of an impact theory such as conservation of momentum and angular momentum are
given in Sect. 5.2, where two theorems are also formulated. A particle’s impact
against an obstacle is studied in Sect. 5.3, and the physical interpretation of impact
is given in Sect. 5.4. Next (Sect. 5.5) the collision of two balls in translational motion
is analyzed. In particular, kinetic-energy loss during collision is estimated through
the introduced restitution coefficient. In Sect. 5.6 a collision of two rigid bodies
moving freely is studied, and in Sect. 5.7 a center of percussion is defined using as
an example the impact of bullet against a compound pendulum.

Chapter 6 deals with vibrations of mechanical systems. After a short introduction
multi-degree-of-freedom mechanical systems are studied. In Sect. 6.2 linear and
non-linear sets of second-order ODEs are derived from Lagrange’s equations.
Classification and properties of mechanical forces are presented for linear systems
in Sect. 6.3. Subsequently, the dissipative, gyroscopic, conservative, and circulatory
forces are illustrated and discussed in general and using an example. In Sect. 6.4
small vibrations of linear one-degree-of-freedom mechanical systems are presented.
Both autonomous and non-autonomous cases are considered, and (contrary to
standard approaches) solutions are determined for homogenous/non-homogenous
equations using the notion of complex variables. Amplitude and phase responses are
plotted in two graphs, allowing for direct observation of the influence of damping
magnitude on the amplitude-frequency and phase-frequency plots. In particular,
resonance and non-resonance cases are discussed. In addition, transverse vibrations
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of a disk mounted on a flexible steel shaft modeled by two second-order linear
ODE:s are analyzed, and the critical speeds of the shaft are defined. Both cases,
i.e., with and without damping, are studied. The phenomenon of shaft self-centering
is illustrated. Finally, a one-degree-of-freedom system driven by an arbitrary time-
dependent force is studied using Laplace transformations. An illustrative example
is given. A one-degree-of-freedom non-linear autonomous and conservative system
is studied in Sect. 6.5. It is shown step by step how to obtain its period of vibration.
In addition, the so-called non-dimensional Duffing equation is derived. One-degree-
of-freedom systems excited in a piecewise linear or impulsive fashion are studied in
Sect. 6.6. It is shown how to find the corresponding solutions.

The dynamics of planets is briefly studied in Chap. 7. In the introduction,
Galileo’s principle of relativity is discussed. Second-order vector ODEs are pre-
sented and the homogeneity of space and time are defined. Potential force fields are
introduced in Sect. 7.2, whereas Sect. 7.3 is devoted to the analysis of two-particle
dynamics. Total system energy, momentum, and angular momentum are derived. In
addition, a surface integral and the Laplace vector are defined explicitly, and their
geometrical interpretations are given. First and second cosmic velocities are defined,
among others. Kepler’s three laws are revisited.

The dynamics of variable mass systems is studied in Chap. 8. After a short
introduction, the change in the quantity of motion and angular momentum is
described in Sect. 8.2. Then an equation of motion of a particle of variable mass
(the Meshcherskiy equation) is derived. Two Tsiolkovsky problems are studied in
Sect. 8.4. Finally, in Sect. 8.4.1 an equation of motion of a body with variable mass
is derived and studied. Two illustrative examples are given.

Body and multibody dynamics are studied in Chap. 9. First, in Sect. 9.1, the
rotational motion of a rigid body about a fixed axis is introduced. In Sect. 9.2
Euler’s dynamic equations are derived, and the so-called Euler case is analyzed.
Poinsot’s geometric interpretation of rigid-body motion with one fixed point is
illustrated. The roles of a polhode and a herpolhode are discussed. In Sect. 9.3 the
dynamics of a rigid body about a fixed point in the gravitational field is studied. The
Euler, Lagrange, and Kovalevskaya cases, where first integrals have been found,
are also briefly described. The general free motion of a rigid body is analyzed in
Sect. 9.4. In Sect. 9.5, the motion of a homogenous ball on a horizontal plane in
the gravitational field with Coulomb friction is modeled and analyzed. Equations of
motion are derived and then solved. The roles of angular velocities of spinning and
rolling and the associated roles of the rolling and spinning torques are illustrated and
discussed. Section 9.6 deals with the motion of a rigid body of convex surface on a
horizontal plane. Equations of motion are supplemented by the Poinsot equation,
and the dynamic reaction is derived. Dynamics of a multibody system coupled
by universal joints is studied in Sect. 9.7. Equations of motion are derived using
Euler’s angles and Lagrange equations of the second kind. Conservative vibrations
of a rigid body supported elastically in the gravitational field are analyzed in
Sect. 9.8, and one illustrative example is provided. Wobblestone dynamics is studied
in Sect. 9.9. The Coulomb—Contensou friction model is first revisited, and the
importance of the problem is exhibited emphasizing a lack of a correct and complete
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solution of the stated task in Sect. 9.9.1. Three vectorial equations of motion
are derived, followed by a tenth scalar equation governing the perpendicularity
condition. Several numerical simulation results are presented. Next, a hyperbolic
tangent approximation of friction spatial models are introduced and discussed in
Sect. 9.9.2. The advantages and disadvantages of the introduced approximation
versus the Padé approximations are outlined. A few numerical simulation results
are given.

Stationary motions of a rigid body and their stability is studied in Chap. 10.
It includes problems related to stationary conservative dynamics (Sect. 10.1) and
invariant sets of conservative systems (Sect. 10.2).

A geometrical approach to dynamical problems is the theme of Chap. 11.
In Sect. 11.1, the correspondence between dynamics and a purely geometrical
approach through the Riemannian space concept is derived. It is shown how
dynamical problems, supported by a configuration space and the Jacobi metric,
are reduced to an equation of geodesic deviation known also as the Jacobi—
Levi—Civita (JLC) equation (Sect. 11.3). Next, in Sects. 11.4 and 11.5, the Jacobi
metric on a configuration space is rigorously defined, the JLC equation is derived,
and then it is rewritten in geodesic coordinates. Finally, a two-degree-of-freedom
mechanical system is used to illustrate the theoretical background introduced earlier
in Sect. 11.6.

Finally, it is rather impossible nowadays to write a comprehensive book on
classical mechanics and include an exhaustive bibliography related to classical
mechanics. Therefore, this volume and the two related books mentioned earlier, are
rather located in standard classical mechanics putting emphasis on some important
topics being rarely mentioned in published literature on mechanics.

Furthermore, in the particular case of dynamics/dynamical systems, there is a
vast number of books that are either devoted directly to classical dynamics or that
include novel branches of dynamics like stability problems, bifurcational behavior,
or deterministic chaos. Although the latter material is beyond the book contents,
the reader may be acquainted with my authored co-authored books/monographs
devoted to the mentioned subjects, i.e., Bifurcation and Chaos in Simple Dynamical
Systems, J. Awrejcewicz (World Scientific, Singapore, 1989); Bifurcation and
Chaos in Coupled Oscillators, J. Awrejcewicz (World Scientific, Singapore, 1991);
Bifurcation and Chaos: Theory and Application, J. Awrejcewicz (Ed.) (Springer,
New York, 1995); Nonlinear Dynamics: New Theoretical and Applied Results,
J. Awrejcewicz (Ed.) (Akademie Verlag, Berlin, 1995); Asymptotic Approach in
Nonlinear Dynamics: New Trends and Applications, J. Awrejcewicz, 1.V. Andrianov,
and L.I. Manevitch (Springer, Berlin, 1998); Bifurcation and Chaos in Nonsmooth
Mechanical Systems, J. Awrejcewicz and C.-H. Lamarque (World Scientific, Sin-
gapore, 2003); Nonlinear Dynamics of a Wheeled Vehicle, J. Awrejcewicz and R.
Andrzejewski (Springer, Berlin, 2005); Smooth and Nonsmooth High Dimensional
Chaos and the Melnikov-Type Methods, J. Awrejcewicz and M.M. Holicke (World
Scientific, Singapore, 2007); Modeling, Simulation and Control of Nonlinear
Engineering Dynamical Systems: State of the Art, Perspectives and Applications,
J. Awrejcewicz (Ed.) (Springer, Berlin, 2009).
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The dynamics of continuous mechanical systems governed by PDEs and com-
pletely omitted in this book is widely described in the following books/monographs
authored/co-authored by the present author: Nonclassical Thermoelastic Problems
in Nonlinear Dynamics of Shells, J. Awrejcewicz and V.A. Krysko (Springer,
Berlin, 2003); Asymptotical Mechanics of Thin Walled Structures: A Handbook,
J. Awrejcewicz, I.V. Andrianov, and L.I. Manevitch (Springer, Berlin 2004);
Nonlinear Dynamics of Continuous Elastic Systems, J. Awrejcewicz, V.A. Krysko
and A.F. Vakakis (Springer, Berlin, 2004); Thermodynamics of Plates and Shells,
J. Awrejcewicz, V.A. Krysko, and A.V. Krysko (Springer, Berlin, 2007); Chaos in
Structural Mechanics, J. Awrejcewicz and V.A. Krysko (Springer, Berlin, 2008);
Nonsmooth Dynamics of Contacting Thermoelastic Bodies, J. Awrejcewicz and Yu.
Pyryev (Springer, New York, 2009).

The author wishes to express his thanks to P. Dgbek and M. Kamierczak for their
help in the book preparation.

Many helpful comments and suggestions given by the author’s coworkers from
the £.6dZ University of Technology, Poland, and in particular the contributions of
K. Januszkiewicz, J. Mrozowski, and G. Kudra are gratefully acknowledged.

It should also be emphasized that a part of Chaps. 3 and 9 was prepared together
with G. Kudra, and Chap. 11 was written in cooperation with D. Sendkowski.

Finally, I acknowledge the Humboldt Foundation Award and the hospitality
of Professor P. Hagedorn during my stay at Fraunhofer Institute in Darmstadt,
Germany, as well as the support of the Master Award of the Polish Foundation of
Science (FNP) during the final stage of the book’s preparation.

L6dZ and Darmstadt Jan Awrejcewicz
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Chapter 1
Particle Dynamics, Material System Dynamics
and Rigid-Body Motion About a Point

1.1 Dynamics of a Particle

1.1.1 Newton’s Second Law of Motion

Let us return to Chap. 1 of [1], where Newton’s laws were introduced. The second
law formulates the relation between the acceleration of motion of a particle and the
force acting on it. However, it turns out that only in certain cases is the force F acting
on this particle independent of the kinematic parameters of motion of the particle.
Let us emphasize that in this chapter all masses are considered constant.

In the general case Newton’s second law takes the form

2
mj—t;. =F(r,v,1), (1.1)
which emphasizes that the force depends on the position of a particle defined by a
radius vector as well as on the velocity of motion of this particle (and sometimes
even on acceleration [2], which, however, will not be considered in this book) and
on time. Equation (1.1) is a second-order non-linear differential equation.

Figure 1.1a presents the free motion of a particle and the vectors of force and
acceleration. In turn, in Fig. 1.1b are shown the distribution of acceleration and
forces acting on the particle in natural coordinates.

Introducing the Cartesian coordinates and projecting the vectors occurring
in (1.1) onto the axes of the system we obtain

mx; = Fy (x1,x2, X3, X, X2, X3, 1),

mx, = I (x1,x2, X3, X1, X2, X3, 1),

misy = F3 (x1,x2, X3, X1, X2, X3, ). (1.2)

J. Awrejcewicz, Classical Mechanics: Dynamics, Advances in Mechanics 1
and Mathematics 29, DOI 10.1007/978-1-4614-3740-6_1,
© Springer Science+Business Media New York 2012
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Fig. 1.1 Motion of particle in Cartesian coordinates (a) and in natural coordinates (b)

According to previous calculations and Fig. 1.1b, in the natural coordinates (see
Chap. 4.4, Sect. 4, of [1] for more details) we can resolve the acceleration and force
into normal and tangential components, that is,

F = Ft+ Fn,
a=at+ a,n, (1.3)

and according to Newton’s second law we have

d
m— =F,
dt
2
ml = F, (1.4)
P

Let us consider the dynamics of a particle moving on a prescribed fixed plane
curve (Fig. 1.2).

In this case, the motion of the particle is not free motion, which can be illustrated
by the motion (without any resistance to motion) of a small ball inside a bent
tube. Let the curve along which the particle moves be described by the equation
f(x1, x2) = 0 in the coordinate system OX;X,. The equation of motion in the
vector form reads

ma=F+N. (1.5)
Projecting vectors onto the coordinate axes we obtain
mi; = Fy, + N cos(N,E)),

mi; = Fy, + N cos(N, E,). (1.6)
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Fig. 1.2 Motion of a particle X, 4
on a plane OX X, along 2
prescribed plane curve

E,
(0]

_Ll'l'l v
X

The force N has the direction of a normal to the prescribed curve, and the
direction cosines are described by formulas known from differential geometry:

1 of af \? af \?
NF)=———, f"=4/|l+ . 1.7
cosNF) = L \/(axl) + (2 (17
Equations (1.6), after taking into account (1.7), take the form
a
mx; = Fy, —}—)\—f, i=1,2, (1.8)
3x1

where A = N/ f*.Inthose equations the unknowns are A, ¥;, X, [the third equation
is the equation of constraints f(x;,x,) = 0]. Solving this system of differential-
algebraic equations we can determine the three desired quantities and, subsequently,
the normal force N = A f*.

The vectors in (1.5) can also be projected onto the axes of the natural coordinate
system (z, n), where the sense of 7 is in accordance with the sense of a ball’s motion
relative to its initial position 4y. We obtain

macos(a,t) = F,

macos(a,n) = F, + N, (1.9)

where F; and F; are projections of the force F onto tangent and normal directions.
Because

d%s

dr2’
2
acos(a,n) = ; (1.10)

acos(a, 1) =
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after taking into account (1.10) in (1.9) we get

d3s

maz = v
V2

m— = F, + N. (1.11)
P

The preceding equations are called Euler’s equations of the constrained motion

of a particle.

v(t

Integrating the first of (1.11) and assuming that F; = const we have

ds

— = Fit + G,
mdt t + 2
Fi?
ms(t) = 5 + Cot + C. (1.12)

Let v(0) = vy, s(0) = 0; then we have C; = 0, C; = mvy, and in view of that,
) = %t + vp. From the second of (1.11) we determine N = N(¢). From the

example of the application of natural coordinates it is seen that by the appropriate
choice of coordinates we can significantly simplify (or complicate) a solution with
regard to the mathematical model describing the problem.

(1)

)

3)

“)

One may introduce the following classification of forces:

F = const. The examples of a force like this can be the gravity force or
the friction force. Let us note that both these forces are only approximately
constant. In the former case the motion should take place in the proximity of
Earth, whereas in the latter case the friction can depend on many parameters,
and in many cases it cannot be treated as constant [1, 3].

F = F(¢). The force depends on time, and the dependency has a variety of
forms. In the case of the oscillations of discrete (lumped) systems, such a
dependency is most often a harmonic, periodic, or quasiperiodic function [3].
In the case of the vibrations of continuous systems such as beams, plates, or
shells, the dependency of force on time is often assumed in the form of step,
rectangular, triangular, or impulse excitations [4]. Another example can be the
force of attraction in a magnetic field because it is dependent on the field
strength, which may vary in time.

F = F(r). The dependency of a force on the position in the case of the
gravitational attraction of particles of masses m; and m, can be expressed as
the relation F = G(mm,)/r?, where r is the distance between the particles
and G is a constant. We deal with a similar case if to the particle we connect a
spring (of negligible mass) whose stiffness, that is, the dependency of the spring
load on its deflection, is a non-linear function.

F = F(v). We deal with this case if a particle is moving in a liquid or gaseous
medium. This dependency most often describes damping and is either linear
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(viscous damping) or non-linear and proportional to v2, but it may also assume
a linear negative value, which leads to self-excited motion of a particle [3].

Note that in real mechanical systems combinations of these forces is possible.

Apart from rectangular coordinates one may use curvilinear coordinates for
description of particle dynamics. According to earlier considerations (Chap. 4 of
[1]) equations of motion take the form

(1) In cylindrical coordinates
m (r — r@z) = I,
m (r@ + 21"@) = Fp,
m7 = I, (1.13)

where F = F,e, + Fopep + FzE3;
(2) In spherical coordinates

m (R — R$* — RO*sin’ ¢) = Fp,
m (Rp +2R$ — RO’ sing cos¢) = Fy,
m (ROsing + 2RO sing + 2RO$ cos ¢) = Fo, (1.14)

where F = Freg + Fyey + Fpep;
(3) In polar coordinates on a plane

m (i" —r@z) =F,
m (r® + 2i0) = Fe. (1.15)

This equation was obtained from (1.13) after setting z = const.

1.1.2 Classifying Dynamics Problems

The dynamics of a particle deals with two classes of problems, forward problems
and inversed problems. In the first case the motion of a particle is known, and the
force that causes the motion is desired. In the second case, the force is known, and
the motion of a particle is to be determined.

Forward dynamics problems, according to its name and the definition introduced
earlier, do require knowledge of the vector r = r(¢), and the same r = r(¢) and
I =Tr1().

According to (1.1) we have

m (X1 ()E; + X2(t)Ey + X3(1)E3) = FIE| + FE; + F3E3, (1.16)
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which allows for the determination of projections of vector F from the equations
mx; = Fi, =123 (1.17)

Vector F is defined by the magnitude

F=/F2+ F2+ FZ, (1.18)

and the direction cosines of angles ¢; formed by the vector with the axes X; are as
follows:

F‘
coso; = FI i=12,3. (1.19)

The inverse dynamics problem is more complicated. In order to determine the
motion of a particle knowing the right-hand side of (1.1), one should integrate the
differential equation (1.2) twice. Then we obtain a general solution of the system of
equations (1.2). In order to uniquely determine the motion of the system, one should
choose from the obtained whole family of solutions only those that are consistent
with the initial conditions adopted earlier, that is, one should solve the so-called
Cauchy problem.

In order to determine uniquely the motion of a particle, one should know its
displacement and velocity at the initial time instant 7y, that is,

r(to) = x10E1 + x20E2 + x30Es,
(t)) = X10E1 + X20Ez + x30Es, (1.20)
where x; (o) = X;0, Xi (to) = Xi0,1 = 1,2,3.
Because each of equations (1.2) is a second-order differential equation, in order
to integrate it twice, the introduction of two constants of integration is required.

Since there are three equations, we have to determine six constants C;. Then, the
solutions take the form

xi = x; (t,Cy1, Gy, C3,Cy, Cs, Cg),
Xi = X; (t,Cy, Gy, C3, Cy, Cs, Cy). (1.21)

Next, according to (1.20) and (1.21) for t = 7y we have

Xio = X; (to, C1, C2, C3, Cy4, Cs, Cs),
Xio = X; (t0, C1,C5,C3,C4,Cs,Cs), i =1,2,3. (1.22)

The preceding system of algebraic equations consisting of six equations allows
us to determine six unknown constants C; = C;(x19, X20, X30, X10, X20, X30)-
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Substituting the constants C; determined in that way into (1.21), we obtain the
particular solutions of the form

X; = Xx; (t, X10, X20, X30, X10, X20, X30) - (1.23)

Only in a few cases does the inverse dynamics problem allow one to determine
solutions in analytical form. Systems of ordinary differential equation (1.2) are often
strongly non-linear and their solutions are not known.

There exists, however, a whole range of approximate methods allowing for the
determination of the desired solutions. These methods include numerical methods,
analytical asymptotic methods, and mixed numerically analytical methods. If the
ordinary differential equations are linear with constant coefficients, their formal
solution does not present difficulties.

This problem is a broad one, and the reader can find more information, for
instance, in the monographs of the author and his coworkers [5-10].

1.1.3 Particle Motion Under the Action of Simple Forces

Let us now consider special cases of exciting forces, which were classified at the
beginning of Sect. 1.1.1. If the force acting on a particle is constant F = const, the
from (1.2) we obtain

1
¥ = —F. (1.24)
m

Following the first integration of the three preceding equations, we have
. 1
x; = —Fit + C;. (1.25)
m
Integrating (1.25) we obtain
F
X, = Loy Cit 4+ Cy,
2m
F
X =124 Cyt + Cs,
2m
F
x3 = —1> + Cst + Cg. (1.26)
2m

In order to uniquely determine the motion, the initial conditions should be taken
into account:

x;i(0) = xj0, % (0) = vjo, (1.27)
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where #p = 0 was assumed. Substituting # = 0 into (1.26) and taking into account
(1.27) we obtain the following values of the constants:

Ci=vio, Ciyz=xp, i=1.273. (1.28)

Taking into account (1.28) in (1.26), the equations of motion of the particle take
the form

F4
xi(t) = ﬁlz—‘rVOil + Xjo. (1.29)
Introducing new variables &; (1) = x; () — x;9, we eventually obtain
F
E1(1) = ﬁfz + voit,
F
£2(1) = ﬁlz + voot,
F
5(t) = ﬁﬂ + vost. (1.30)

Setting F; = 0 in (1.30) we obtain equations of uniform rectilinear motion of a
particle, which is in agreement with Newton’s fist law.
If the force acting on a particle has the form F = F (), then from (1.2) we obtain

Fi(t
55,-:—’(), i=12.3. (1.31)
m
Let us note that each of the three equations in (1.31) is independent of the others.
The solutions are sought in an analogous way to that presented previously. As a
result of integration we obtain

t T
1
o= _/ /mg)dg dr + voil + X0, (1.32)
m
0

0

where the initial conditions (1.27) were assumed.

Let us note that, if we assume F; to be constant in (1.32), we obtain (1.29). In
the general case the solutions (1.32) depend on the form of the function F;(¢). If
these relationships are given in the form of elementary functions and the integration
can be successfully conducted twice, we obtain the explicit analytical solution of
the form (1.32), that is, an exact solution.

If the force depends only on position, that is,

F =F(r) = Fi(x1, x2, x3)E; + F>(x1, x2, x3)Ey + F3(x1, x2, x3)E3,
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then the problem is not an easy one. According to (1.2), equations of motion take
the form

. 1

X1 = —Fi(x1, x2, x3),
m

. 1

Xy = — Fa(x1, x2, x3),
m

. 1
X3 = EF3(X1,X2,X3)- (1.33)

However, now each of the equations depends on the solutions of two other
equations. In the general case the solution of the system of equations (1.33) is not
known. However, in two special cases the solutions can be determined.

The first case occurs when the relationships F;(x;, xp, x3) are linear, that is,
we have

Fi(x1,x2,x3) = kijnxt + kinxo + kizxs, i =1,2,3. (1.34)

Equations (1.33) take the form

(1) = Ax(1). (1.35)
where
| ku ki ks
Azg kov  kan kx|, (1.36)
kst kxn k3
x1(2)
X=|x() |- (1.37)
x3(1)

The system of second-order differential equations of the form (1.35) is linear, and
its solution can be determined analytically [3]. We deal with the second case where
an exact solution can be obtained when a particle moves in rectilinear motion. Then,
for a description of the motion a single axis is enough instead of a system of axes.

Such a case was discussed, for instance, in [3]. Let the equation of motion have
the form

my = F(y) (1.38)
for the initial conditions
y(0) =yo,  y(0) = vo. (1.39)
Let us note that
y:%%:vg—;, (1.40)

where v = y.
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Substituting expression (1.40) into (1.38) we have

mvdv — F(y)dy =0, (1.41)
and after integration
b y
m/vdvz /F(n)dn (1.42)
Vo Yo
we obtain
¥
22
myzwszwm. (1.43)
Yo

From the preceding equation we obtain

y
d 2
yzl:i %+—/me, (1.44)
dr m

Yo

and separating the variables we have

y di-'
= / =+ 1. (1.45)

£
Yo :t,/vé—}- 2 [ F(n)dn
Yo

From (1.45) it follows that unexpectedly we obtained the solution in the form of
the inverse function of y(¢), that is, 1 = #(y). If we assume that the relationship
F(y) has the form enabling the integrations described in (1.45), then the relationship
t(y) can usually be represented through elementary functions. If the relationship
F(y) =ky is linear, then additionally it is possible to find the relationship y = y (¢).

The last of the considered cases is associated with the relationship F = F(v).
Similar to the case of F = F(r), the problem cannot be generally solved in exact
form. However, if the relationship is linear, the solution can be obtained in analytical
form.

Let us consider one special case of the rectilinear motion of a particle, that is,

my = F(y) (1.46)
or

md_t = F(v). (1.47)
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Following separation of the variables and integration we obtain

m

On the assumption that as a result of integration we will succeed in determining
the function t = #(v), and also in determining v = v(¢), it is easy to carry out the
integration for the second time obtaining

y(t) = /v(l,vo)dl + C,. (1.49)

If this method fails, then we can proceed in a different way [2]. One should
multiply (1.47) by dy obtaining

d
md—);dv = F(v)dy, (1.50)
and separating the variables
dy = 7V 4 (1.51)
YT Fm :

Integrating the preceding equation we obtain

y(v) =m id?;' + Cy. (1.52)

F(©)

At the end of the calculations in this section it should be emphasized that the
subject of our analysis was the simple dependencies of the force on particular
parameters, such as time, position, and velocity, that occurred separately. The
problem becomes more complicated if they occur together.

As was already mentioned, the forward dynamics problems for a particle consist
in the determination of the force producing the motion, on the assumption that the
mass of the particle is known and the equation of the trajectory of the particle motion
is known as well.

While solving problems of this class, one often applies the so-called method of
kinetostatics. One makes use of d’ Alembert’s principle through introduction of the
inertia forces F3 = —ma, where a is the acceleration (kinetics), and then one takes
into consideration the equilibrium of forces acting on a particle (statics).

Example 1.1. A particle A of mass m moves along a path that is an ellipse of the
form x?a=? + x3b™2 = 1 (Fig. 1.3). The acceleration of the moving particle is
parallel to the axis OX,. Determine the relationship F(¢), where F is the force
acting on the particle. One should assume the following initial conditions: r(0) =
bE,, 1(0) = vE;.
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Fig. 1.3 Motion of a particle &
along an ellipse . F,=-mr
r(0) °
A
m
r F
>
0] x

According to the conditions of the problem we have
mr =F,
that is,

m (X1E; + X2Ey) = FiE| + FE,,

and hence we obtain the following scalar equations:
m)'c'l = Fl, m}'éz = Fz.

Because the acceleration ¥ || E;, we have F; = 0. Thus we have
X1 = const;

following integration, and taking into account the initial condition x; = vpt, and
from the equation of an ellipse we find

242

Vot

xz=:|:b 1—0—2,
a

where the plus sign means that the particle is located on the upper half of the ellipse.

Because F; = 0, the determination of F boils down to the determination of F5,
that is, to the determination of the acceleration X,. From the last relationship we
have
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\f(z)t2
1ol | 2
5 a? ‘%,2
. bvg 1=
Xy = —— >
a’ 1— i

and eventually we obtain
mb*v?
30 Em bz .
a’x;

F = FFEmb = mX¥,Emb, = —

In the end, let us observe that zero horizontal acceleration of the particle (constant
horizontal velocity vy) and “start” from point (O, b) mean that the particle can move
only on the ellipse quadrant, and its vertical velocity at point (a, O) will be infinitely
large. O

1.1.4 Law of Conservation of Momentum

The law of conservation of momentum of a particle is also known as Newton’s
second law or Euler’s first law. According to the previous considerations and taking
into account the introductory definitions given in [1] we will analyze the motion
of a particle in the adopted Cartesian coordinate system of basis {E|, E;, E3}. We

will describe the position of particle A by the radius vector r = ﬁ, where O is
the origin of the coordinate system. The integral form of the law of conservation of
momentum is expressed by the formula

P(t) — P(ty) = / F(7)dr, (1.53)

where F denotes the vector of force acting on the particle.
If we assume that vector P(¢) is differentiable with respect to time, then
differentiating both sides of (1.53) we have

—p= (1.54)

T '
The preceding equation can be written in the form

dP = Fdr, (1.55)

where Fdt is the elementary impulse of a force.
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Let us note [2] that the elementary impulse of a force depends on the force vector
and on time, that is, it contains more information about the external action on the
particle than the notion of force used so far.

On the other hand, P denotes the momentum of a particle, that is,

P = mv = mr. (1.56)
Comparing (1.55) and (1.56) we obtain
mdv = Fdr. (1.57)

The preceding formula has the following interpretation.

An infinitesimal increment of momentum of a particle is equal to the elementary
impulse of forces acting on the particle.

Let us note that from (1.57) we obtain Newton’s second law

& _g (1.58)
m— =F, .
dr

which justifies the equivalence of the two names of the discussed law.

Because the elementary impulse of a force and elementary momentum are both
vectors, one may add them by means of sums or integrals (see next section).
Integrating both sides of (1.57) we obtain

V2 15}

/d(mv) = /th, (1.59)

Vi 1
where m = const was assumed. From the preceding equation we get
AP = ]2, (1.60)

where

AP:PZ_PI, PZZmVZ, Plzmvl,
5]

Jio = /th. (1.61)

4l

The formula (1.60) expresses the law of conservation of momentum in time
interval (f; — t1). From the formula it also follows that P, = Py + Ji,. This means
that if we know momentum vector P; and the impulse [i.e., we know the relation
F = F(¢), and we are able to calculate integral (1.61)], then after geometric addition
of these two vectors we obtain momentum vector P,.
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If F = const, then from (1.61) we get
Juo=F@n—n). (1.62)

Let us also note that if there is no force acting on a particle (F = 0), then
according to (1.56) and (1.57) we have

P = mv = const, (1.63)

which means that the momentum of a particle is constant.

1.1.5 Laws of Conservation of the Kinematic Quantities
of a Particle

We say that an arbitrary kinematic quantity is conserved during the motion of a
particle if it is constant during this motion.

Such quantities are very important in mechanics and are called integrals of
motion. It turns out that in the case of particle motion we are dealing with the laws
of conservation of three kinetic quantities. We will successively present these laws
below.

1. The law of conservation of momentum
According to (1.53) and (1.56), the momentum P(¢) is conserved (constant) during
the time of motion ¢ — ¢#; if ftf) F(r)dr = 0. This takes place when F(r) = 0.

There exists also the second variant of the law of conservation of momentum of
a particle. That is, we can consider the case of the conservation of the projection of
momentum vector P onto an arbitrary direction represented by vector b(z), that is,
we demand that

%{Pob)zo. (1.64)

This means that certain components of vector P in the adopted basis of a vector
space are conserved. From the preceding equation we obtain

Pob+Pob=Fob+Pob=0. (1.65)

From formula (1.65) it follows that if F o b 4+ P o b = 0, then the quantity P o b
is conserved.

If a particle moves in a gravitational field, then the components of the vector
P = myv in the directions E; and E, are conserved because F = —mgE;. Another
example can be that of a particle hitting a smooth plane. This time the components
of vector P parallel to the aforementioned plane are conserved.
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2. The law of conservation of angular momentum

Taking an arbitrary point O as fixed we will observe the motion of a particle of
mass m. At time instant ¢ the particle has a velocity v and momentum P = mv and
is acted upon by a force F(¢).

Definition 1.1. The moment of the vector of a particle’s momentum with respect
to point O is called the angular momentum of the particle with respect to
point O (Kop).

According to the preceding definition we have
Ko =rxP=rxmv, (1.66)

where r = r(¢) is a radius vector of the previously analyzed particle of the tail at
point O. Differentiating (1.66) with respect to time we have

Ko=txmv+rxmv=vxmv+rxF=rxF. (1.67)
Equation (1.67) takes the form

Ko _kp=M (1.68)
dl - O - 07 .

where
Mo =rxF (1.69)
and M is a moment of force F about pole O.
The equation obtained enables us to formulate the following conclusion.

The rate of change of angular momentum of a particle with respect to a given
fixed pole (point O) is equal to the moment of forces acting on the particle with
respect to that pole.

Multiplying both sides of (1.68) by df we obtain
dKop = Mpdt, (1.70)

which enables us to formulate the following conclusion.

An elementary increment of the angular momentum vector is equal to an
elementary impulse of a moment of force.

By conducting calculations analogous to those regarding the conservation of
momentum presented previously, one may integrate both sides of (1.70), obtaining

5]
AKp = Kpr — Kp; = /MO(l)dt, (1.71)
n

where Ko, = Kp(#), i = 1,2. Equation (1.71) enables us to formulate the
following conclusion.
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The increment of the angular momentum of a particle in a certain time interval
is equal to the impulse of a moment of force acting on the particle during that time
interval.

If Mo = const, then from (1.71) we obtain
Koz — Ko1 = Mo(t2 — 7). (1.72)
If Mp = 0, then according to (1.70), Ko = const = C. That enables us to

formulate the law of conservation of angular momentum.

The angular momentum of a particle with respect to an arbitrary fixed pole is
constant if the moment of forces acting on the particle with respect to that pole
equals zero.

According to (1.66) we have

. d d
Ko = a(r X mv) = ma(r X V)

d E| E; E;

=m— |x] X2 X3| = m— (x2X3 — x3%2) E
de | . .7 . dr
X1 X2 X3

d d
+m5 (X1x3 — x1X3) Eg + m— (x1X%2 — x2%1) E3, (1.73)

and according to (1.69) we obtain

E E; E;
Mo = |x1 x2 x3| = (x2F3—X3F2)E1
Fi F F;

+(F1)C3—X1F3)E2+()Cle—XQFl)E3. (174)

Finally, from (1.68) [taking into account (1.73) and (1.74)] we obtain

d . .
M (X2X3 — X3X2) = X283 — x3 /7,

d . .
ma (x3X1 — x1X3) = x3F1 — x1 F3,

d
mE(xl)'cz—xz)'cl) =x1F2—sz1. (1.75)
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For the case Mp = 0, Ko = C|E; + G,E; + C5E; and from (1.75) we obtain

Ko1 = m (xx3 — x3X2) = Cy,
Kor = m (x3x%; — x1X3) = Cy,

Ko3z = m (x1X2 — x2%1) = Cs, (1.76)

where C;, i = 1,2, 3 are constants.

We obtained, then, the first integrals of the equations of motion, which are called
the integrals of angular momentum.

We encounter the conservation of angular momentum in two cases, namely,
either when the angular momentum vector is completely conserved or when one
of the angular momentum vector components is conserved. The former case takes
place if F|jr. Additionally, the angular momentum is conserved when F = 0 (the
trivial case). Then from (1.67) it follows that Ko = const = C. Such force F
we call a central force and its example can be a gravitational force of attraction.
Then, according to (1.66), we have r(¢) x mv(t) = C. Vector C is constant over
time, that is, vectors r and v form one plane, and thus the particle motion takes
place on a plane. If we treat an arbitrary vector b(¢) as a component of vector Ko,
then the second case of the angular momentum conservation takes place when
Ko ob = const. Then we have

Koob+Kpob=rxFob+Kpob=0, (1.77)

where formula (1.67) was used.

3. The law of conservation of kinetic energy
Before we formulate the law of conservation of the kinetic energy of a particle, we
will introduce certain basic notions associated with work, power, and efficiency.
Figure 1.4 presents the elementary displacement dr of particle A caused by the
action of force F.
The elementary work dW of force F during the elementary displacement dr we
define as a scalar product of the form

d
dW=Fodr=Fod—:dt=Fovdt. (1.78)

Although dW denotes the total differential, one should bear in mind that
generally the elementary work is not a total differential of any function [2]. From
formula (1.78) it is seen that the work is a scalar and can be expressed both through
the position vector and through the vector of velocity of a particle. A unit of work
is the joule (1J = N - m).

Because a particle moves along a path, we have |dr| = ds, and from (1.78) we
obtain

dW = Fdscosa. (1.79)
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Fig. 1.4 Elementary
displacement of particle A

E,

. L 2
The measure of mechanical motion is kinetic energy “3~ and momentum mv,

and the measure of force action is the impulse J and work of force W.

Theorem 1.1. The work of a resultant force on a certain displacement is equal to
the algebraic sum of works of each of the component forces on this displacement.

Proof. By assumption we have
F,=F +F,+---+Fy,
and the work on displacement dr is equal to
W =F,odr=F,odr+F,odr+.--4+Fy odr,

and after integration we obtain

Ar Ay Az Az
W = F,odr:/ Flodr+/ ondr+---+/ Fy odr,
A Ay A4 A

that is,
W=W+W,+---+ Wy,

which completes the proof. |

Theorem 1.2. The work of a force constant with regard to the magnitude and
direction on a resultant displacement is equal to the sum of works of this force
on each of the components of the displacement.

Proof. Let point A under the action of force F undergo consecutive displacements
r,, such that

r=ry+r+--+ry.
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The work done by force F is equal to
W:Fodl‘ZFodrl—}-Fodl‘z—i-"'—i—FodrN :W1+W2+”'+WN7

which completes the proof. O

Until now, we have used the notion of elementary work. If under the action of
the force F = F(¢) the particle changed its position from point A to point A, in the
time interval t, — 1, then the work done by this force would be equal to the sum of
the elementary works, which can be written as

ArAz -

= / Fodr= / F cosads, (1.80)

Alr:‘lz Al/;lz

where A A, denotes the arc connecting points A; and A, along the curve of the
path of the particle.

If the force F = const, then one of the axes of the Cartesian coordinate system
can be taken as parallel to F. Then we obtain

WA;lz - / (FIE| + FE; + F3E;3) o (dx1E| + dx;E; + dx3E3)
AL Ay
X114y
- / Fidvy = Fy (xi4, — ¥14)), (1.81)
Xia,

where axis E; || F, thatis, F, = F5 = 0.

If we consider the work of the force mg in the gravitational field, then, on the
assumption that E3 || g, and E; and g have opposite senses (i.e., E3 0 g = —g),
we have

W, = M8 (X34, — X34,) = Mg (X34, — X34,) - (1.82)
If one takes the force
F = kr, (1.83)

where k is a stiffness coefficient of a massless elastic element, then

W~ :—k/rodr
A1 As

AlhAz
rAz k
=—k / (x1dx; + x2dxs + x3dx3) = > (ri11 — rflz) ) (1.84)

IAI
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Fig. 1.5 Work of internal forces on example of two points of a rigid body

Let us note that during calculation of the integrals used for estimation of the
work, the time #, — f; over which the work was done was not exploited. It follows
that the work does not depend on time. However, from our everyday experience we
know that the time in which the work is done is of great importance. Therefore, we
introduce the notion of power.

Work of internal forces in a rigid body

Let us consider two arbitrary points of a rigid body A; and A, (Fig. 1.5) subjected
to the action of internal forces Fi, and F,;, where according to Newton’s third law
Fi, = —F».

Let the vectors of velocities respectively at points A; and A, be equal to v;
and v,. Displacements of those points at the time dt are equal to ds; = v;d¢ and
ds, = v,dt. Projections of velocities on the line A; A, are equal, so the projections
dsi and ds; are also equal. The work done by forces F, and F5; is equal to

F12ds1 COS(F12, V1) + Fz]dSz COS(F21, V2) = Flzdsi — F]zdSé =0.

Considering all points we have

8W=2r:8W,,=0,

n=1

that is, the sum of works of internal forces on an arbitrary displacement of a rigid
body is equal to zero.

The following ratio of elementary work done by a force to the time of its duration
we call the power

N=— =W. (1.85)

According to (1.78) we obtain
N =Fov. (1.86)
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It is easy to notice that when a machine is working, part of the power is consumed
to overcome the resistance to motion, friction, self-heating, wear, etc. As a result
as the machine’s output we obtain power that is smaller than the power initially
supplied. The ratio of these two powers we call efficiency:

W. N,
fr— p— —’ 1.87
n W N, (1.87)

where the subscript e denotes the effective work or power and the subscript in
denotes the input work or power. The efficiency varies in the range 0 < n < 1.

The law of conservation of kinetic energy (work) is described by a simple
formula:

T =N, (1.88)
where T = %mvov and the power of the force is described by formula (1.86). Let us
note that force F plays here an important role, although it does not occur explicitly
in (1.88).

Equation (1.88) is validated, since we have

.1 d
T =-m—(vov)=mvov=Fov. (1.89)
2 dt

We will also demonstrate the validity of the following statement.

The differential of the kinetic energy of a particle is equal to the elementary work
done by the force acting on the particle.

From Newton’s second law we have
dv
maodrzFodr. (1.90)

The right-hand side of (1.90) is F o dr = dW, and its left-hand side is

dr mv?
mdvo — =mvodv=d| — | =dT, (1.91)
dr 2

and in view of that,
dT = dw. (1.92)

If a particle moving along a certain path was located at point A; at time instant 71,
and at point A, at instant #,, then, integrating (1.92), we obtain

/dT: / aw (1.93)

AlAAz
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or

T,—T = WAIAAZ’ (1.94)

where
T, = %vf, i=1.2. (1.95)

Equation (1.94) leads to the formulation of the following conclusion.

The increment of the kinetic energy of a particle is equal to the work done by the
forces acting on the path traveled by the particle.

4. The law of conservation of total energy (mechanical energy)
Before this law is formulated, we will introduce certain basic notions regarding a
potential force field [2]. If for a certain force field (i.e., the region of a space within
which forces act on a particle) described by the scalar function

V= V(1) (1.96)

which depends on the position of the particle and on time, the force acting on the
particle described by the radius vector is equal to

F = —gradV(r, 1), (1.97)

then such a field we call a non-stationary potential field and function V (r, t) we call
the potential. If V' = V(r), then the field is called a stationary field.
According to Definition (1.97) we have

v BVE' (1.98)
Jar n axi " '

Introducing the definition of the total differential of the potential as
av v
dV =—odr=>) ——dx;. (1.99)
: ‘
and taking into account (1.98), we obtain

3
dV:-Fodr:-Zde,-. (1.100)

i=1

The elementary work of a potential force is a total differential of the potential
of the field, but with a minus sign. This means that the positive work done in the
potential field is accompanied by a decrease in potential value.
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If the force field is a conservative field, the potential
V =V(r). (1.101)

In turn, the work of the potential force during displacement of a particle under
the action of this force from a given point of the field V' (x;, x2, x3) to the point of
reference Vo (x10, X20, X30), thatis, E, = V — V4, is called the potential energy of a
potential force. If Vy = 0, then E, = V.

The field is conservative if the following conditions are satisfied:

(1) The work of a force on a closed path S in a conservative field is equal to
v
Fodr=(Q Fidx; = —dx; =0. (1.102)
8x,~
S S S

(2) The curl at every point of the conservative field

rotF(r) =0, (1.103)
that is,
E; E;, E;
rotF(r) = VxF = % 3%2 a_i;
F F, Fs

3F3 an 3F1 3F3 an 8F1
=[—-—")E — ——|E — — —|E
(ax2 BX3) + (BX3 3x1) + (8x1 3)62) 3
—0. (1.104)

which means that the conservative field is irrotational.

Three scalar equations following from (1.104) are called Schwartz conditions,
and if they are satisfied, then the examined field is called the potential field.

Figure 1.6 illustrates the notions introduced previously connected with the
potential force field.

Particle A in the figure lies on the surface over which the potential has a constant
value V(x;, x2, x3) = C. Such a surface is called an equipotential surface. The
marked gradient grad V(x;4, x24, X34) is a vector normal to the equipotential
surface at the point occupied by particle A. Its sense is taken toward increasing
values of the potential.

The lines (paths) of forces are perpendicular to the equipotential surfaces (since
force F has the opposite sense to the vector grad V' L V(x1, x2, x3) = C).

Below we present some examples of potential fields. One of them is the
gravitational field of Earth.
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line of
force

V(X,,%,,X,)=C

X,

Fig. 1.6 Force acting on particle A(r) situated in a potential force field

The force acting on a particle of mass m is equal to
F=0-E +0-E; +mg-E;s, (1.105)

where the system of coordinates was introduced in such a way that g || E; and
goE; = —g. From (1.105) it follows that F3 = —mg.
We determine the total differential based on formula (1.100). It is equal to

dV = —Fzdx; = d(mgx3), (1106)
and integrating both sides of this equation we obtain
V =mgx; + Cs, (1.107)

where Cj is a constant of integration.

Assuming V(0) = 0 we determine the constant C; = 0. The equation V =
mgx3 determines the family of equipotential planes parallel to the plane OX,X,.
The lines of forces are perpendicular to these planes, and the potential V' increases
with increasing x3. We call such a conservative field a uniform field.

Now we will show the difference between the uniform field and the non-uniform
field on an example of the gravitational field of Earth.
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In the case of the uniform field we have
Fi=F =0, F; = —mg, (1.108)

where m is the mass of a particle.
According to (1.106) we have

X3
Vi(x3) = —/ (—mg)dx; = mgx; + Cy, (1.109)
0

where C) is a constant of integration.
In turn, in the case of the non-uniform field the force of gravity is equal to

mM

Fi(x3) = _G(R—}——X3)2’

(1.110)

where R is the radius of Earth and the origin of the coordinate system lies on Earth’s
surface, that is,

F3(0) = —mg. (1.111)

From (1.110) and taking into account (1.111) we obtain

S
G="—, (1.112)
M
that is,
mgR?
) =—7"—. 1.113
3(x3) R+ 1) ( )
The potential of the non-uniform field is equal to
Va(xs) = /F(x)dx +C=m / s L e
2(x3) = 3(x3)dxs 2 =mg (R + x3)? 2
= —mgR* C. 1.114
R A + G ( )
Let
V1(0) = 12(0) = 0, (1.115)
then from (1.109) we have C; = 0, and from (1.114) we obtain C, = mgR.
Eventually we have
Vi = mgxs,
V. R(1 R (1.116)
=m — . .
2 g R+ x3
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Fig. 1.7 Example of a ]
central force

Let us consider now the case of the so-called central field. The direction of a
central force at the point occupied by A is the same as the direction of the position
vector of particle A, and the sense of the force is opposite to the sense of the position
vector. An example of the central force can be the force acting in a spring (Fig. 1.7).

According to Fig. 1.7, we have

F:—KOﬁE:—Kﬁé, (1.117)

where T is the unit vector of the axis OA.
We obtain the total differential from formulas (1.100) and (1.117):

K(r)

odr= ——=rrodr = K(r)dr. (1.118)
r

dvzmr
r

We obtain the potential of the central force after integrating (1.118)

V:/me+c (1.119)

It is not always possible to obtain the analytical form of a solution because it
depends on the form of the non-linear function K(r). If we are dealing with the
linear case, that is, K(r) = kr, then from formula (1.119) we obtain

1
V:EMJ+C. (1.120)

Eventually, assuming V(0) = 0, we have

1 1
V=§m1=§k@%+ﬁ+x9. (1.121)
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The equipotential surface is, then, a sphere of radius %,

Lines of action of forces are determined by the radii of this sphere.
An example of a central field is the universal gravitational field. If we denote
masses of planets by m; and m,, then for this field we have

where V' = const.

F(r)= 222 (1.122)
r
and the potential
d G
V=G6mm, [ S =-"""2 ¢ (1.123)
r r
Assuming a value of C = 0 for a singular point r = 0, we have V(0) = —oo.

This means that the gravitational force of attraction of two planets (treated as point
masses) tends to infinity for r — 0. Now we will demonstrate that any central field
is a potential field.

Multiplying (1.117) by sides by E; we have

a ;
R FOx 5y (1.124)
r

The first Schwartz condition described by (1.104) has the form

oF;  0F,
— = =0. (1.125)
8x2 8x3

)

= _ (a_Fﬂﬂ — F(r)XS%riz) _ _ (a_szm — F(r)%) , (1.126)

We successively calculate

8F3 JoF or X3 d
S (B F _
dxo (Br ox, r + F(r)xs dx2

or r r ar r?
an _ JoF or X2 ( ) 1
oxs or ox3 r e r
(w2 (YR g2 g g
or r r rr? or r? r3

Comparing (1.126) and (1.127) with one another, we can see that (1.125) is
satisfied. In a similar way it is possible to prove the two remaining Schwartz
conditions.
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Now we will take up the analysis of the law of conservation of total energy of a
particle

E=T+V, (1.128)

where T is the kinetic energy and V' a potential energy of the particle. We will divide
the forces F acting on the particle into conservative forces F¢ described by formula
(1.98) and non-conservative forces F”.

Exploiting the calculations conducted earlier, according to (1.89), we have

; . v .
T=Fov=(F‘+F”)ov=—a—ov+F"0V=—V+F"ov. (1.129)
r
From (1.128) and (1.129) we obtain

E=F'ov. (1.130)

The obtained equation enables us to formulate the following conclusion.

The total energy of a particle is conserved, provided that the non-conservative
forces perform no work, that is, F" o v = 0.

Forces in the potential field are conservative. In view of that, E = const, and
the law of conservation of the total energy of a particle can be formulated in the
following form.

The total energy of a particle moving in a potential conservative field has a
constant value.

Example 1.2. A particle of mass m moves on the inside surface of a cylinder of
radius p whose generatrix is parallel to the vector of acceleration of gravity g. On
the assumption that the inside surface is perfectly smooth, determine the equation
of motion of the particle and the reaction force of the cylinder.

Introducing the Cartesian coordinate system (Fig. 1.8), the initial conditions of
motion are as follows: x;(0) = p, x2(0) = 0, x3(0) = 0, X;(0) = 0, x(0) =
vocosa, x3(0) = vpsinw, where o means the angle between the tangent to the
trajectory and the plane OX; X».

From Newton’s second law for the particle it follows that

mx; = Ry, mi,=R,,, mi;=mg.

Let us integrate the third equation of the obtained system of equations. As a result
we obtain

. gt2
X3 =gt + Cy, X3=7+C1I+C2,
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Fig. 1.8 Motion of a particle on the smooth inside surface of a cylinder (a) and motion of particle
projection onto the plane OX; X, (b)

and taking into account the initial conditions we have
VoSiIlOl=C1, C2=0.

Eventually,

/2
x3(t) = g? + vot sina.

Now, let us make use of the law of conservation of total energy of a particle
moving in the potential field.
From (1.128) it follows that

m?  m . . .
TO = E(X% + X3 + X3) — mgxs.

In the preceding equation, x3(¢) is known, and in view of that we obtain

L2 c2 2 2
X{+ X3 = vy — X3 + 2gx3

2
= v% — (gt + vosina)? + 2g (% + vot sin a)

2

— 2 ‘2
= vy — V; sin

— 2 S22 N 22
a = vj(1 —sin” o) = vjcos”a.
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Fig. 1.9 Motion of
particle A in plane OX; X,

'
X

Let us note that the equation just obtained has the following physical interpreta-
tion. It describes the motion of the projection of a particle onto the plane OX, X,.
That is, the projection of a particle moving on the inside surface of the cylinder
moves with a constant velocity vocoso along a circle of radius p (Fig. 1.8b).
Because of this we can determine the remaining components of motion x;(¢) and
x7(t) from the following equations:

X] = pcoswt, X, =—psinwt,

where
w = p_lvo cos .
From the preceding equations we obtain the components of acceleration
2 - 2

X = —wxy, X» = —wxs.

The reaction of the surface of cylinder R is caused by the acceleration of motion
of the particle and is equal to

2 2
_ D w2 2 2 2 2 _ Vi COs™
R=m/X{ + X5 =mw ,/xl+x2—mwp—mT. O

1.1.6 Particle Motion in the Central Field

In the case of planar motion of a particle it is convenient to make use of the polar
coordinates in the calculations (Fig. 1.9).
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Using the derived relationships [see (4.195) and (4.196), Chap. 4 of [1]] for the
polar system we obtain

I = e, + r@ey,
i=(f-r0’e + (ro +2i0)ep. (1.131)
From Newton’s second law we obtain
mi = F, (1.132)
and taking into account (1.131) in formula (1.132) we have
m (i" — r@z) = F,,
m (ré + 2i0) = Fe. (1.133)

The definition of the central field implies that Fg = 0, that is, from the second
equation of (1.133) we obtain

1

L 40) = - (ri6 +r76) =0, (1.134)

which leads to the following relationship:

r2@ = const = C. (1.135)
We obtain the velocity of the particle from the first equation of (1.131). It is
equal to
2 P\
2 _ 22 202 255
= O° = (r'oe — -
V=i +r (r’e) ((ﬂ@) +r2)
Because
N dary \ 2 1\ 2
(r): (@) ) _ (4G
r2e r2de do |’
we have

1)) 2
v = C? iz+(d(’)) ) (1.136)
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From the first equation of (1.133) we find

:_mC2 (l d(dr))

2 \r r2de?
where the following relationships were used:

de do (d@)2

drodr - \dr
d (d(;)\ _d/ tdr\ _ 1d[dr
de\ dr | de\ r2de)  r2de \de )’
Eventually
mC* 1 d* (%)
F,=— -4+ —Z5 . 1.137
" r2 |:r + de? ¢ )

The formulas obtained serve as means of the direct determination of the velocity
(1.136) and the force (1.137) of a particle in the central field and are called Binet’s'
formulas.

Now we will show that the angular momentum of a particle in the central field is
conserved. Since we have

M=rxF, =rxeF, =0, (1.138)
and because
dK .
’m =rxmr=M, (1.139)

the angular momentum of the particle is conserved
K = r x mr = const. (1.140)
From (1.140) it follows that K changes neither the magnitude nor the direction.

This means that the motion always takes place in one plane perpendicular to the
angular momentum vector K and determined by vectors r and r.

1Jacques Binet (1786-1856), French mathematician.
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Fig. 1.19 Motion o.f particle > 50 |
along ellipse of semiaxes a
and b —m F,
Ny e
of x I =
1

Example 1.3. Determine the magnitude of the central force F,, provided that the

particle acted upon by this force moves along an ellipse of semiaxes ¢ and b
(Fig. 1.10).

Substituting x; = r cos ®, x, = r sin @ into the equation of the ellipse

2 2
X2 x

i >
R
a? b2 ’

we obtain
cos? O N sin® © 1
a2 p2 2
and after transformation

1 b?cos’® +a’ (1 —cos’ O) B — (a® = b?) cos? © + a?

r2 a*b? N a’b?
1 (@®-0»
= ﬁ [1 — T COS @i| .
Eventually
1 1 1
—:l—)x/l—ezcosz@, e=—~a?>—b2
r a

In order to make use of Binet’s formulas one needs the following derivatives:

d(t 1d 1 25in260
d@p) _1d (Vi—etoor ) = 120
de b dO b2J1—e2cos?®
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d>(4) 2 d ( $in 26 )

7 =216\ Vi e o
o2 [20820V/1 — eZcos? @ — —£sin"20
= — 24/1—€2 cos? @
2b 1 —e2cos?2®

e? _200s2@(1—e cos ())——e sin” 26
2b | V1—e2cos2O (1 —e2cos? O)

According to formula (1.137) we have

Fo mC? | v/1 —e2cos2® +2e200s2@(1—e cos? @) — ze*sin 220
' r b 2bv1 —e2cos? O (1 —e2cos? O)
_ mC? 2(1—620052@) + 2¢2 cosZ()(l—e cos ()) e sin 26
o 2bv/1—e2cos? O (1 —e2cos? O)
. mC? L
1—e2cos? O (1 —e2cos? ©)
where
L=2(1 2¢%cos> O + e*cos* @ + €% cos? @ — e* cos* @
—e?sin? © + e*sin® © cos> O — ¢* sin? O cos® @)
=2(1-¢%).
Finally,
mC?(1—e?)r? mC?(1—e?)
b= 2 X == b "
because

b b?
V1 —e2cos2® (1 —e?cos’ O
( )= rr2
Owing to the obtained sign of the force, it is evident that the moving particle is
attracted to the center of the ellipse. |

Example 1.4. A particle of mass m moves along a circle of radius R under the
action of force F, directed toward point O’ located on the circle (Fig. 1.11).
Determine the velocity of the particle and the magnitude of the force as a function
of radius vector r, provided that for r = 2R the particle A has velocity vy.
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Fig.. 1.11 Motior} ofa xz A
particle along a circle
A(r, ©)
F
m
r
0 29 Vo
!
O O X
R

The radius vector of particle A4 is described by the equation
r=(R+ Rcos20)E; + Rsin20KE,,
hence we get
r? = 2R%cos20 + R* + R?cos’ 20 + R?sin’ 260 = 2R? (1 + cos20)
= 2R? (1+ cos® © — sin? 0) = 4R? cos® O,
that is, the equation of a circle in the polar coordinate system takes the form

r =2Rcos®.

In order to make use of Binet’s formulas we calculate

d(f)  1d(zg) 1 sin®

r cos ®

d® ~ 2R d®  2Rcos2®’

d®(f) 1 [cos’® +2sin* @ cos O
de2 2R cos* ©

cos3 O

1 cos? @ + 2sin’> @
" 2R '
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Fig. 1.12 Motion of particle
A under action of force
F, = F(r)

From (1.136) we have

_ 2 1 n sin? ©
= 4R2cos2®  4R%cos*®

_C? | cos?@+sin” O | 4C2R?
4R cos* © ot

According to the conditions of the problem

2 Vo

20— 9 Ry,
2R Yo

C =r’0 = (2R)

and hence the velocity of particle A reads

[16R42  4R?
V= 4 = —2\/0.
r r

In turn, from (1.137) we obtain the magnitude of the central force

Fo_ mC?2 |:cosz(~) cosz@+2sin2@:|
i

T 2Rr2 | cos3® cos3 @
. mC* 1 8mC?R>  32mR%]
T Rrlcos’® rs - rs |

Example 1.5. Particle A of mass m moves around a fixed center O under the action
of the force F, = F(r) directed along the radius vector of the particle (Fig. 1.12).
Determine the force F, and the path of the particle on condition that the velocity of
the particle is equal to v = C;/r, where C| is a constant.
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According to (1.131) the velocity of the particle is equal to
: — C
v=Vi2+r262 = =L,
r

Hence, taking into account relation (1.135) we obtain

C? C2

.2 2 1

r +r _— =,
4 2

We transform the preceding equation into the form
dr

_1 2 2
o= Ve-c

dr dr d@_drC

d dOdt  dOr?’

d_r r,/Clz—C2

de C

Let us note that

and hence we have
and we obtain

where C; is a constant. Eventually, the equation of the path along which particle A

travels has the form
2
o,/ (& —1)
r = Cze( (C )

and it is the logarithmic spiral equation.
In order to make use of Binet’s formulas (1.137) we calculate the derivatives

’

d(f) | 1 (cl)z_l oY)
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Fig. 1.13 Path of particle
motion determined using
numerical methods

and according to formula (1.137) we have

r2 |r de? -

1
Fr:_mC2 l+d2(;) :_mCZC_IZ__mCIZ'
3 C2 3 0

Example 1.6. Determine the path along which moves a particle under the action of
the force F, = mvjR?/r? for the following initial conditions:
r(0) = R, v(0) = vy, <(r,vo) = O(t = 0) = arctana .
From formula (1.135) we obtain
C=rr® = r(0)vp = Rvy,

and from formula (1.137) we have

N | =
+

The preceding non-homogeneous differential equation has the following
solution:

1
—=Acos® + Bsin® — 1.
r

The numerical solution of the differential equation for the initial conditions a =
5, R = 2is presented in Fig. 1.13. |
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Fig. 1.14 Motion of particle along lemniscate of Bernoulli

Example 1.7. A particle of mass m in the central field moves along the lemniscate
of Bernoulli? of the equation 7> = a cos 26, where r is the position vector of the
particle attached at the center of a central force field. For the initial time instant of
motion it is assumed that r(0) = rp, v(0) = vy and <(r, v9) = «. Determine the
central force acting on the particle (Fig. 1.14).

According to formula (1.131) the components of the velocity of particle A are
equaltov, = F,vg = r@, and taking into account the initial time instant we have
vo = r@(0) = vysina.

According to (1.134) and (1.135) we obtain

r2(0)@(0) =rovpsina = C,

and the we represent lemniscate of Bernoulli in the following form:

1 1 1
— = —(cos2M®) 2.
r ﬁ( )

We calculate successively

d(;) 1 sin20
de va (0052@)%’

2Jacob Bernoulli (1654—1705), distinguished mathematician in Bernoulli family (he described the
lemniscate properties in 1694).
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de2 — Ja

2 1 3 1
= — (c0s20)77 + — tan® 26 (cos20) "2
ﬁ( ) Ja ( )
1

= Ja (cos 2@)_% (2 + 3 tan’ 2@) = % (2 + 3 tan’ 2@) .

From the second of Binet’s formulas (1.137) it follows that

Fo_ mC2(1+d2(%))_ mr3v2sin’ o 1

d* (L) 1 | 2c0s20 (cos 2@)% + 3 (cos 2@)% sin” 20
(cos20)?

[1+2+3tan’20)]

r2 \r de? r? r
3mrdvisin’ o (1 + an?26] 3mrgvisin® a | sin® 26 + cos? 26
= -————— an o/ = —
r3 r3 cos? 260
3mr@visinfa 1 3mrdvia® sin® a
r cos? 20 r’ '

and the minus sign denotes that the particle is attracted to the field center, that is, to
point O. O

1.2 Fundamental Laws of Dynamics of a Mechanical System

1.2.1 Introduction

A (discrete or continuous) group of particles, isolated from the environment, is
called a material system (see also Chap. 1 of [1]). Such a system can consist of
a finite or infinite number of particles.

A group of particles in which the position or motion of every particle depends on
the positions and motions of the othe particles is called a system of particles (SOP).

A SOP whose motion is not limited (is limited) by constraints we call a free
(constrained) SOP. An example of a free SOP is the Solar System, where planets are
treated as particles and move along orbits only under the action of forces acting on
them. An example of a constrained SOP is any mechanism or machine.

The main vector of all internal forces F' = 0, that is, Zfl\,:l F.,,=0,i=1,23.
The main moments of all internal forces with respect to an arbitrary point M, that

is, YN Mo, =0,i =1,2,3.
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In this book more attention will be devoted to discrete (lumped) systems. The
reader will find more information regarding the dynamics of continuous systems in,
for example, monographs of the author and his coworkers [3-10].

Material systems can be divided into free systems and constrained systems.

Free systems have no limitations imposed on the motion of any particle of
the system. The particles of such systems are characterized by the possibility of
displacement in an arbitrary direction and by velocities that are determined only
by the initial conditions and forces acting on the particles. However, the motions
of these particles are mutually dependent on each other since the force acting on
one particle may depend on the velocities and displacements of other particles.
In contrast, constrained systems are characterized by the fact that on all or some
part of the particles limitations of motion are imposed. Those limitations are called
constraints.

Let us now consider a discrete material system (DMS) composed of a finite
number N of particles n and let every particle have mass m,,.

The dynamics of such a system can be analyzed based on Newton’s laws
presented in Sect. 1.1. It can be demonstrated on the basis of Newton’s third law
that all internal forces, that is, the forces coming only from the other particles of
the system, cancel out each other (they form a closed system of vectors). The forces
acting on the material system that come from the particles not belonging to the
investigated system are called external forces.

Similar considerations also apply to the continuous material system (CMS),
where we assume that a mass element dm is acted upon by the force Fdm (here
F denotes a mass density of force) [11, 12].

In the case of DMS, according to Newton’s second law, we have

mya, = F +F (1.141)

where a, denotes the vector of acceleration of particle n of mass m,, whose position
is described by vector r,,. The force F¢ (F') denotes a resultant force of all external
forces (internal forces) applied to particle n.

Our aim is the determination of the motion of the DMS, that is, the motion of
all its particles n = 1,2, ..., N. This boils down to the integration of the system
of second-order differential equations (1.141), since a, = ¥,. For large N this
problem is very complicated and often its solution is not feasible. However, it turns
out that there exist certain characteristics (functions) of the considered mechanical
system that are dependent on the velocity and position of its particles (and often
also on time), which remain constant despite changes in r,(¢) and 1, (¢). If such a
function exists and is constant, we call it the first integral of the system of differential
equations (1.141). The integration of all equations of system (1.141) can be replaced
with the analysis of certain quantities characteristic of the system, such as quantity of
motion, angular momentum (moment of momentum), and kinetic energy of a system.

The material appearing in this section (and also in this chapter) might be extended
by the reader by [13-21].



1.2 Fundamental Laws of Dynamics of a Mechanical System 43
1.2.2 Law of Conservation of Momentum

According to the previous considerations, let an arbitrary element dm (whose
position is described by position vector r in a certain inertial Cartesian coordinate
system) of CMS be acted upon by the resultant vectors of internal F and external
F¢ forces. Then, by Newton’s second law, we have

d’r

dm@ =F +F. (1.142)

Integrating the preceding equation over the whole mass m of the CMS we obtain
dzr e i
—dm = | (F*+F)dm. (1.143)
According to Newton’s third law the internal forces cancel out each other.

Therefore we obtain

/dzrd /F"d (1.144)

—dam = m. .
dr?

m m

Because we are considering a system whose mass is constant over time, (1.144),
we can transform it into the form

d dp
—/Vdm = —= /Fedm, (1.145)
dr dr
where
dr
v=g, P=[vim (1.146)
m

and P is called the vector of momentum of a CMS.

One obtains similar relationships for a DMS consisting of N isolated particles,
but the integral symbol in (1.145) should be replaced with the sum symbol. In this
case, for DMS, (1.145) assumes the form [it is the sum of (1.141)]

N N
d dp
n=1 n=1

Because also in this case the internal forces cancel out each other (Zflv:l
Fi = 0), we have

N
dr,
W= P= ;mv (1.148)

where now P is the vector of momentum of the DMS.
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If we have a constrained DMS, then, after its release from constraints, (1.147)
takes the form

N
ap =Y R+ 3 E, (1.149)

where it was assumed that reaction forces FX act on every particle n. Considerations
regarding the constrained CMS will be omitted here.
Equations (1.147) and (1.149) enable us to state the following theorems.

Theorem 1.3. The rate of change of the vector of momentum (quantity of motion)
of a free mechanical system is equal to the geometric sum of external forces acting
on the system.

Theorem 1.4. The rate of change of the vector of momentum (quantity of motion)
of a CMS is equal to the geometric sum of external forces and reaction forces acting
on the system.

Equation (1.149) can be written in the equivalent form
N N
dP =) "Fidr + Y FRdr, (1.150)
n=1 n=1

which allows for formulation of the following conclusion.

An elementary increment of momentum of a mechanical system is equal to the
sum of elementary impulses of external forces and reaction forces acting on the
system.

The following integral is called the impulse of a force acting over time interval

t—1o:

t
J= /F(t)dr, (1.151)

where in the case of a DMS the force F is discrete, and in the case of a CMS the
vector of force F denotes the mass density of force. In the latter case vector J is
called the mass density of impulse of a force.

Integrating (1.151) we obtain

t
P(t) —P(ty) = AP = / /F"dm dr =1]. (1.152)
1o m
The relationship just obtained can be formulated in the following way.

The change of momentum (quantity of motion) of a CMS during time t1 is equal
to the action of the impulse of a force during that time interval.
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In the case of a DMS, relationship (1.152) takes the form
t
AP = / (F° + F¥) dr, (1.153)
fo

where
N N
F=)"F,. Ff=>)Fr
n=1 n=1

and F°¢ (FR) is the main vector of external forces (reaction forces).
Equation (1.153) enables us to formulate the following conclusion.

An elementary increment of momentum of a DMS during time t — 1y is equal to
the sum of impulses of the main vector of external forces and of the main vector of
reaction forces acting during that time.

1.2.3 Law of Motion of Center of Mass

Let us consider further a DMS consisting of N particles n of masses m,, n € [1, N],
whose positions are described by position vectors r,. Point C of the system is
called the center of mass of the DMS (its position is described by the radius vector
rc and the total mass of the DMS is concentrated there, i.e., m = Zi\;l my),
provided that the following equation is satisfied:

N
mre =Y m,r,. (1.154)
n=1

Although the notion of the center of mass was introduced on the example of the
DMS, it can also be applied to liquid, gaseous, rigid and flexible material systems,
or those subjected to the action of various fields of forces (Chap. 1 of [1]).

In the case of the CMS, at first, one should divide the considered system into
mass elements Am,, and for each of them determine rc,. Next, one should increase
the number of mass elements up to infinity by the transition Am, — dm, and in the
limit determine the position of the mass center, which is presented in the following
equation:

N
A}J,?lo ngl Am,r, ’{rdm
re = = = (1.155)

Assuming that the considered material system is located in the uniform gravita-
tional field it is possible to define the notion of gravity center of both a DMS and a
CMS.
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Multiplying both sides of (1.154) as well as the numerator and denominator
of (1.155) by the acceleration of gravity g, we obtain

N

Qorc =) Q,or, (1.156)
n=1

Qorc = /ron, (1.157)

where Q = mg, Q, = m,g.

Formulas (1.156) and (1.157) were obtained on the assumption that the mass
center and the gravity center are coincident.

The notion of the mass center has a more general meaning since it does not
depend on the force field in which the system is located (for example, the notion of
the center of gravity loses its meaning when vector g does not exist).

Let us assign to every particle n of a DMS the velocity v,,. The momentum of the
DMS is equal to

al Yodr, d ¢ dre
n
P:Zmnvn :ZmnE:EZ(mnrn):mF = mvcg. (1158)
n=1 n=1 n=1
In the preceding transformations, iz = 0 was assumed, and (1.154) was used.
Similar considerations can be carried out regarding the CMS. Equation (1.158)
allows for the formulation of the following conclusion.

The vector of momentum of a material system is equal to the product of the vector
of velocity of system mass center and its total mass.

Differentiating (1.158) with respect to time we obtain

P T g (1.159)
— =m—— = mac, .
dt de? ¢
and taking into account (1.148) we have
N N
mac = Y Fo+ > FF. (1.160)
n=1 n=1

Equation (1.160) is the expression for Newton’s second law for particle C (mass
center of a system). It enables us to formulate the following conclusion.

The mass center is a special point at which the total mass of a material system is
concentrated, on which act all vectors of external forces and reactions, and which
moves according to Newton’s second law.
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Instead of observing all N particles of a material system, it suffices to observe
the motion of the mass center of the system, which is very advantageous. However,
this knowledge is not sufficient to determine the motion of other particles of the
system.

The principle of motion of the mass center is obtained from (1.159) and (1.160),
setting ac = 0, which means that v¢ = const, and this is stated below.

If the sum of external forces and reaction forces acting on a material system is
equal to zero, then the mass center either remains at rest or is in uniform rectilinear
motion.

A material system on which no external forces and no reaction forces act is called
an isolated system (free system).

It follows that for an isolated system the velocity of its mass center is constant.

From (1.159) we obtain

P = mve = const (1.161)

or
CiE| + GE; + GE; = m (c1E| + :E; + ¢;E3),

where C; = Py, and ¢; = v.y,, and C; and ¢; (i = 1,2, 3) are arbitrary constants.

In other words, by projecting the quantity of motion vector onto the axes of the
system OX, X, X, we obtain three first integrals of motion. Therefore, the motion
of the mass center C is uniquely defined.

Example 1.8. Two boys wearing ice skates are standing on an ice rink (a perfectly
smooth horizontal surface) at a distance x from each other. One of them throws a
ball of mass m, which is caught by the other after time #. What is the velocity with
which the boy starts to move after throwing the ball if he has the mass M ?

Because we neglect friction, the horizontal component of the reaction force
produced by the weight of the boy is equal to zero. According to (1.160) there are
no external forces and no reactions along the horizontal direction, that is, (1.161) is
valid. If at the initial time instant of motion the boy throwing the ball was at rest,
then P = v¢ = 0. Differentiating (1.154) we have

(m4+M)xc = Mv—m? =0,

because the horizontal component of the velocity of mass center of the ball is equal
to x/t, and the velocities of the boy v and the ball have opposite senses.
From the preceding equation we obtain

m x
V= ——.
Mt
Finally, let us note that along the vertical direction the momentum of the boy—ball
system is not conserved. |
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Fig. 1.15 Schematic leading
to the definition of the
moment of quantity of motion
of material point 4, and of a
DMS

XSJL A

v

1.2.4 Moment of Quantity of Motion (Angular Momentum)

Figure 1.15 shows the material point A, of a DMS, point O’ (called the center), and
the adopted Cartesian coordinate system OX| X, X3 [12].

Vectors ro- and r,, respectively describe the positions of points O’ and A, in the
system OX; X, X3, and vector p,, is the radius vector of point A, with respect to the
adopted center O’.

Definition 1.2. We call the following vector the moment of quantity of motion
(angular momentum) of a material point A, with respect to a point O’ (center):

Kuor = p, X MyVy. (1.162)

Definition 1.3. A projection of the moment of quantity of motion of a material
point A, on an axis, where the moment of quantity of motion of the point is de-
termined with respect to an arbitrarily chosen point (center) on the aforementioned
axis (because the projection is independent of the choice of the center), is called
the moment of quantity of motion (angular momentum) of material point 4, with
respect to that axis.

Definition 1.4. The following vector is called the main moment of quantity of
motion of a DMS (angular momentum of a DMS) with respect to a point O’ (center):

N
Ko = an X MyV. (1.163)

n=1
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Definition 1.5. A projection of the main moment of quantity of motion on an axis
with respect to an arbitrarily chosen point (center) lying on this axis is called the
main moment of quantity of motion of a DMS (angular momentum of a DMS) with
respect to that axis.

According to the introduced definitions it can be easily seen that the angular
momentum changes with the change of the center.
Let us choose in Fig. 1.15 another point (the center) O” (not drawn) and let

— s
the position of point 4, be described by the radius vectors O’A4, and O” A,,. The
moment of quantity of motion of a DMS with respect to O” is equal to

N N
Kor = Z (0”A,, X m,,V,,) = Z (0”0’ + O’A,,) X My Vy
n=1 n=1
N N
- Z (O’A,, X m,,vn) + Z (0”0’ X mnvn)
n=1 n=1
—
=Kyp +0"0' xP, (1.164)

where P is the momentum of the DMS [see (1.158)].
The preceding equation describes the relation between the vectors of the quantity
of motion of a DMS calculated with respect to distinct centers O and 0",

Definition 1.6. The motion of material points 4, of a DMS with respect to the
coordinate system of origin at the DMS mass center C and moving in translational
motion (the so-called Konig? system) is called the motion of a DMS with respect to
its mass center C.

Let v¢ denote the absolute velocity of the mass center C (that is, in the system
0X,X,X3), v, the absolute velocity of point A4,, and v/, the relative velocity of
point A, with respect to point C.

Point A, moves in composite motion, and its velocity is equal to

Vp = Ve + V). (1.165)

The relative angular momentum of a DMS with respect to its mass center (the
point C) is equal to

N
C=D Py xmv, (1.166)
n=1

where now p’ (v})) is the radius vector (velocity) of point A4, in the Konig system
with respect to point C.

3Johann Samuel Kénig (1712-1757), German mathematician.
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The absolute angular momentum of a DMS with respect to point C, taking into
account (1.165) and (1.166), is equal to

N N
K¢ :Zprmnvn :Zp; X my (Ve +V))
n=1 n=1
N N
Zmnpn XVc+Z pnmeV)
n=1 n=1
N N
=mpe xve + Y (pp xmavy) =Y (o5 xmuvy) =K. (1.167)
n=1

n=1

because p;- = 0 (point C lies at the origin of the Konig system).

One may conclude from (1.167) that the absolute angular momentum of a
DMS with respect to the mass center of system C is equal to the relative angular
momentum of the DMS with respect to point C, that is, K¢ = K.

From (1.164), and setting 0" = C, it follows that

— — N X
Ko =Kc +0"C xP=Kc +0"C x Y m,v,
n=1
— .
=Kc + 0"C xmv}. =K, (1.168)

because v, = 0.

If the center O” was chosen arbitrarily, then the angular momentum of the system
with respect to the mass center of the system (point C') would be identical for each
of the points of the DMS and would equal K¢.

1.2.5 Kinetic Energy of a DMS and a CMS

The kinetic energy of a DMS is equal to

N
1
= Ezmnvﬁ. (1.169)
n=1

Taking into account (1.165) in relation (1.169) we obtain
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my (ve +v;)’

Pﬂ
I
ol —
Mz

1

3
Il

M=

=

N N
1
mn) vi + nZ::l (mav}) -ve + 3 nzzjl (ma(v))?)

1

Ee)i-ge

1 1
= Emvzc +mvg - ve + 5 Z:mn(v;)2

n=1

N
1 2 1 ry2
= 5 3 i) (1.170)
because vi. = 0.

The obtained result can be presented in the form of the following theorem.

Theorem 1.5 (Konig theorem). The kinetic energy of a DMS is equal to the sum
of the kinetic energy of a material point located at the mass center of the DMS and
of mass equal to the sum of masses of all points of the DMS and the kinetic energy
associated with the motion of the DMS with respect to its mass center.

Let us now consider the motion of a CMS (a rigid body) with respect to the
fixed point O. Let O’ X[ X} X} be the body system such that O’ = O, and let the
instantaneous angular velocity of the rigid body @ have the direction of the / axis
determined by direction cosines.

In Chap. 3 of [1] it was shown that

1
T = Elm)z, (1.171)
where /; denotes the mass moment of inertia of a body with respect to an axis /, and
that

1
_ 72 72 72
T = 3 (IXI/a)l + Iy, + I3 )
-1 b —1 s —1 s 1.172
X[ x,@ @y — Iy xrwy w3 — Iy yr w03, (1.172)

where [ X/ and / b denote the mass moments of inertia and the products of inertia
of the body with respect to the system O’ X X} X}, and in turn ] are projections of
vector @ onto axes of this coordinate system, that is, a)l/ =wo Ef .

If O'X|, O'X}, and O’ X} are the principal axes of inertia of a body for point O’,
then (1.172) takes the form

T = (le/wiz + Iyl + nga);z) . (1.173)

N =
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If a rigid body rotates with a constant velocity @ about one of the principal axes,
for example, the X axis, then we have @ = E|w] and from (1.172) we obtain
1 72
T = EIXfwl . (1.174)
Let us now describe the moment of quantity of motion of a rigid body with one
point fixed O. Let us introduce the body system O’X| X)X}, where 0" = O. The
position vector of material point A, in the body system is r/,, and we assume that
point A, has the following coordinates in the body system: r}, oE| = x|, r, oE}, =
x5,, 1, o Ef = x} . The vector of instantaneous angular velocity of the body is
equal to

w = o E| + 0)E}, + 0jE]. (1.175)

The angular momentum of the body with respect to point O’ is equal to

N N
/ / /
Ko = E r, X m,v, = E ), X my, (wxrn)

n=1 n=1
N

=Y mur, x (@ xr}). (1.176)
n=1

Replacing the vector triple product with scalar products we obtain

N N
_ /2 / /
Koo =) malo—Y m,(wor,)r,

n=1 n=1

N
2] 2 2
= Zm” (xln + Xon + x3n)w

n=1

N
= my (@)x], + 0x}, + WX}, ) 1. (1.177)

n=1

Projections of the vector of angular momentum of the body onto axes O’X/ are
equal to
Kox, = Ko o EL. (1.178)

In the case of the O’ X axis from (1.177) we obtain

N
/ 23 2 12 /
Koy, = Ko oE| = E my (X7, + x5, + X5,) )
n=1
N
r ! ! ! !’ ! I
- Z my (@) X1, + 03x3, + ©3x5,) X1,
n=1
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N N
= Zm” (xézn + xé%l)wi - Zm" (xinx;n)wé
n=1 n=1

N
ro ’r_ ’ ’ ’
- E My (X1, X3,)05 = Ix;0) — Ix o, — Iyrxros, (1.179)

n=1

where the definitions of principal moments of inertia and products of inertia
introduced in Chap. 3 of [1] were used.

Eventually, writing the projections on two remaining axes we obtain an equation
in matrix form

Ko = lw, (1.180)
where
1 A
g gy I

If the axes of the system O’X| X, X} coincide with the principal axes of inertia
of the body, then matrix (1.181) is the diagonal matrix of the form

IXI/ O O
I=|0 Iy 0] (1.182)
O O ng

If vector w lies on the O’ X} axis, then w| = @) = 0, and from (1.180) we obtain
Kole/ = _IXI/XS/(U:;’ KO'Xé = _IXéng:;’ KO'X; = —Ix{a)é (1183)

From (1.180) and (1.183) it follows that vectors Ky and @ do not lie on the
same axis. From (1.183) it follows that it can take place if the axis of rotation (i.e.,
direction of vector w) is the principal axis of inertia of the body (then we have
Koy = Iyj05).

Taking into account (1.172), (1.180) and (1.181), the following relationship holds
true:

1
T = E (KO/ ow) . (1184)

Let us note that because the kinetic energy 7 > 0, the angle between vectors
Ko’ and @ is an acute angle.
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1.2.6 Law of Conservation of Angular Momentum

According to Fig. 1.15 the angular momentum of a DMS with respect to the center
O’ is described by (1.163), where the coordinate system introduced in that figure is
the inertial one.

Differentiating (1.163) with respect to time we obtain

dKo-
dr

N
Py X muV, + E P, X Myay,

n=1

Il
M=

3
Il
_

Il
M=

N
Py X MV, + an x (F¢ + FF)
n=1

3
Il
_

Pp X MV, + Mo, +ME, (1.185)

Il
M=

3
Il
_

According to Fig. 1.15 we have
r, =ro +p,, (1.186)
and differentiating (1.186) with respect to time we obtain
p, =t, —To =V, —Vo. (1.187)
From (1.185) we obtain

N
Ko = Z(Vn —Vor) xmuv, + M5, + Mg,

n=1

N
= (Z mnv,,) X vor + M, + Mﬁ,

n=1

= mve X Vor + M%, + M5, (1.188)

where v¢ is the velocity of the mass center of the DMS, M%, is the main moment of
external forces with respect to point O’, and M’g, is the main moment of reactions
with respect to point O’ and during transformations was also used differentiation of
(1.154) with respect to time, and hence vor # 0. However, if we take point O’ as
stationary (O’ = 0), then from (1.188) we obtain

Ko = M, + M&. (1.189)

Let us observe that origin O of the coordinate system was chosen arbitrarily and
only in a special case will it coincide with the mass center of the considered system.
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Equation (1.189) allows for the statement of the law of conservation of angular
momentum of an SOP.

The time derivative of angular momentum of a material system with respect to an
arbitrary fixed pole O is equal to the sum of main moments of external forces and
reaction forces with respect to that point.

Let us note that if in formula (1.188) an arbitrary non-stationary point O is
chosen at point C, then we obtain mve x ve = 0, and then formula (1.188) takes
the form

Kc = M{ + ME. (1.190)

A comparison of the obtained relationship with (1.189) leads to the conclusion
that the change in the system’s angular momentum about the fixed point O and
about mass center C is the same.

The preceding calculations can be also represented in integral form.

According to (1.189) we have

AKo = Ko (1) — Ko(ty) = / (M4, + MZE) dr. (1.191)

The integral occurring on the right-hand side of (1.191) is called an impulse
(action) of external forces and reactions in time interval t — f.

One may conclude from (1.191) that the increment of the vector of the system’s
angular momentum with respect to a stationary pole in a finite time interval is equal
to the impulse of moments of external forces and reaction forces about that point in
the same time interval.

If we are dealing with an isolated system (M$, = MX = 0), then we obtain the
following law of conservation of angular momentum.

The angular momentum of an isolated material system with respect to an
arbitrary stationary pole is constant and equal to

Ko (t) = const (1.192)

or

Ko = CiE; + GE; + GiEs,

where C;, i = 1,2, 3 are arbitrary constants.

In a system where, during motion, M¢, = Mg = 0, (1.192) remains valid during
the motion of point O with respect to the system mass center C, on the condition
that the relation ror = Cir¢(¢) + C; holds true, where C; and C, are constants.
Following differentiation we get vpor = C;v¢, and substitution into (1.188) proves
the validity of the preceding observation.

Now let us take an arbitrary stationary axis [ passing through the system mass
center.
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According to relation (1.188) we have
K; = M{ + MF, (1.193)

and on the assumption that during motion of the DMS we have Mj = M[R =0, we
obtain the following first integral:

K; = const. (1.194)

Theorem 1.6. The necessary and sufficient condition for the existence of the first
integral (1.194) is that projections of the velocity of mass center of the system and of
the velocity of an arbitrary point O’ lying on the | axis onto a plane perpendicular
to this axis are parallel to each other during the motion of the system.

Proof. Let us take a unit vector of the [ axis as I = Ej; and multiply (scalar
multiplication) (1.188) by sides by E; = const obtaining

d(Ko oE
%:m(vcxvo/)oE—i—( & +My) oEs. .

Because Ko/ o E3 = K; and (M¢), + ME ) o E3 = M + M} = 0, we have
K; = const if and only if (v¢ X vgr) o E3 = 0.

Since
Ei E;, E;
Yc X Vo = |Vic Vac V3cC
Vio’ V20’ V3o’
= E{ (vacvzor — vacvaor) — Ez (Vicvior — vacvior)
+ E; (vicvaor — vacvior)
we have

(ve xvor) o E3 = vicvaor — vacvipr = 0.

Following transformation we have

vic _ Vio

Vac V20!

The obtained relationship proves that the projections of vectors v¢ and vos onto
a plane perpendicular to the [ axis are parallel.

In the end, let us sum up basic knowledge regarding the conservation of
momentum and angular momentum. In the case of choice of an arbitrary pole, the
state of a material system is determined by the main vector of momentum P and
main moment of angular momentum K.
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Fig. 1.16 Motion of a X2 A ‘

mechanical system composed : v
of a small ball (particle) of : m
mass m and a metal rim of :
mass M R i
L e
i _______::_.}_—.2{_’“_".__ a
o
1: M
X,
O »

External forces and reaction forces acting on the material system are determined
by the main vectors of these forces F¢ and F, and main moments M¢, and M¥ with
respect to the chosen point O.

The laws of conservation of momentum and angular momentum are expressed
by the following simple equations:

P = F° + FX, (1.195)
Ko = MY, + MX. (1.196)

Example 1.9. On a horizontal smooth surface lies a metal rim of mass M and radius
R with a groove along which a particle of mass m moves with velocity constant as
to the magnitude v = const (Fig. 1.16). Determine the motion of the bodies (the rim
and the particle).

The mass center C of the system lies on the segment connecting points O
and O,.
According to Fig. 1.16 we have

— — — —
(m+ M)c =M -00, +m- 005, ‘OIC) + )COZ) — R,

rc = 00,4+ 0,C = 00, + 0,C.

Following transformation we obtain
(m +M)-(001 n 013) —M-00, +m-00,,

that is,

(m—i—M)-OlC:m«(OOz—OOl).
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In a similar way we calculate
—_—  — — —
(m+ M)- (002+ 02C) =M-00; +m- 005,

that is,
— — ——
(m+M)-C02:M-<002—001).

Finally, we have

m
0,.C = R,
! m+ M

M
CO, = R
m-+ M

The calculations leading to the determination of the position of the mass center
simplify significantly following the introduction of the local coordinate system of
one axis directed along segment O; O, and the origin at point O;.

The angular momentum of the system is equal to zero about the axis parallel to
the OX; axis and passing through point C. Then we have

Icwo+mCOy(v+ wCO;) = 0.

The quantity /¢ is a moment of inertia of the rim with respect to the C X3 axis,
which, according to the parallel axis theorem, is equal to

Ic = MR*>+ M (0,C)?,

and substituting into the previous equation we find

v m(m + M)
 RM?2+43mM +2m?’ 0

Example 1.10. Figure 1.17 shows a disk of mass m and radius R rolling on
a horizontal plane along a straight line (without slip, air resistance, or rolling
resistance). The mass center C of the disk is located at distance r from its geometric
center O. Derive the equation of motion of the disk on the assumption that the mass
moment of inertia of the disk with respect to the axis perpendicular to it and passing
through point C is equal to /¢.

Let us introduce an angle v = ¥ (¢) formed between a line perpendicular to
the horizontal surface and passing through the geometric center of the disk and the
segment OC. Figure 1.17 shows two vectors of the forces causing the motion of the
disk, that is, the vector of the gravity force and the vector of the reaction force at
point B of two components (vertical and horizontal).
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Fig. 1.17 A disk rolling
without slip on a horizontal
surface

The vector
N E E E;
w:(anﬂzzo 0 W|=ER¥,
0 —R 0

where vy denotes the velocity of the point moving on the straight line determined
by the “track” left by the disk on the horizontal surface.

In the introduced absolute right-handed coordinate system BX, X, X, vector R
is given by
—

BC = —rsinWVE; — (R —rcos¥)E,,

hence
2 22 2
)R‘ =r°sin“¥ + (R —rcos¥)
=r2sin’ ¥ + r?cos? ¥ + R> —2rRcos¥ = r> + R> — 2rRcos .
The angular velocity of the disk has the form

w = lj’E3,
whereas the velocity of the mass center with respect to point B is equal to
E1 Ez E3

ve=wxBC=| 0 0 i
—rsin¥ —R+rcos¥ O

=E (lI./(R — 1 cos lI/)) — Ele'/r sin .
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From (1.188) we obtain
KB :M% +M§ + mve X vp.

Let us note that

E, E, E;
mve Xvg =m lI'/(R—rcoslll) —¥rsin® 0
RY 0 0

=E;-0+E;-0+ Rré’sin WE;.
The angular momentum of the disk with respect to point B is equal to
Kg = [Ic + m(BC)*| VE;,
hence

Ky _d
dr dr
= {[IC +m (r2 + R?>—2rR cos lI/)] U + 2mrR¥? sin lI/} E;.

[IC +m (r2 + R?>—2rRcos lI/)] li/E3

In turn, we have M§ =0 and

. E1 Ez E3
Mj = BC x (Eymg) = |—rsin¥ —R+rcos¥ 0| = —mgrsinVEs.
0 mg 0

Eventually, we obtain the following second-order non-linear differential
equation:

[Ic +m (r* + R* —2rRcos W) | ¥ + mrR¥sin¥ + mgrsin¥ =0. O

1.2.7 Law of Conservation of Kinetic Energy

From (1.90) and (1.91) we obtain

m,,v2 0 RO ;0
d (T) =Fdr, + FXdr, + F! dr,. (1.197)
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The preceding calculations are valid for every n € [1, N], therefore, adding
N (1.197), we obtain

dT = dW* +dW' +dw’, (1.198)

N mnv’zl N
T=>)" 5 dWe=2F;odrn,
n=1 n=

N N
dW' =) Fjodr,, dWR =Y Flodr,, (1.199)
n=1 n=1

where the symbol d(-) denotes the elementary work, which in general is not a
differential of any function [2].

Equation (1.198) allows for the formulation of the law of conservation of kinetic
energy.

An elementary increment of the kinetic energy is equal to the sum of elementary
works of external forces, internal forces, and reaction forces that occur in a given
system.

Let us note that, despite the the fact that the system of internal forces is equivalent
to zero, the work done by those forces does not have to be equal to zero.

Since, if on two arbitrary points that interact with one another, the same vectors
of forces but of opposite senses act, then we can imagine a material medium of
properties dependent on the direction of displacement of these points, and thus the
displacements can be different, and consequently the works done by the forces are
not equal. In the case of a rigid body, the works are equal to zero because there are
no displacements between the points of a rigid body.

If all forces acting on a material system result from the accumulated potential,
then

F! = —grad,V, (1.200)
and the work increment
N
dw = ZF; odr, = —dV. (1.201)
n=1

Neglecting the work of the internal forces and reaction forces (a rigid system,
where the distances between particles are constant and where we are dealing with
ideal constraints) from (1.198) and (1.201) we obtain

dT = —dv. (1.202)

and following integration we obtain the so-called integral of energy of the form

h,—T =V =" (1.203)
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From the obtained equation it can be seen that in the potential field the total
energy E is conserved because

E=T+Vi=T,+V,. (1.204)

Such a material system is called a conservative system.

1.3 Motion About a Point

1.3.1 Kinetic Energy, Ellipsoid of Inertia, and Angular
Momentum

Recall that the motion about a point of a rigid body is the motion of that body with
one point fixed.

In Chaps. 1 and 3 of [1] we introduced the notions of kinetic energy and
momentum of a material point. For the purpose of analysis of motion about a point
of a rigid body, we need to understand the associated notions of kinetic energy,
matrix of inertia, and angular momentum, which implies taking into account the
angular velocity of the body @ .

Figure 1.18 presents a rigid body, its instantaneous axis of rotation /, the vector
of angular momentum of the body Ky measured with respect to the center O of
motion about a point, and the momentum of a body element of mass dm, that is,
vdm.

Let the body rotate about the fixed axis / with angular velocity w, and let the
distance of the element of mass dm from the rotation axis be denoted by p.

The kinetic energy of the rotating body is equal to

1 1 2 2
T:—/vovdm:—/vzdmzw—/pzdmzw—ll (1.205)
2 2 2 2

m m m

because v = pw and the unit vector of the / axis is denoted by I (Fig. 1.18).
From (1.205) it follows that I; = fm pzdm is the mass moment of inertia of the
body rotating about the / axis.

However, if the axis of rotation is not fixed, that is, it changes position with
respect to the body under consideration, then the moment of inertia measured with
respect to this instantaneous axis of rotation also undergoes a continuous change.

In the non-stationary coordinate system OX| X)X} we have

v = o xr=E| (0)r; — wir}) + E) (0ir] — o(r}) + Ej (wir) — rie}). (1.206)
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Fig. 1.18 Motion about a point of a rigid body and the adopted stationary coordinate system
0X1 X, X3

Let us note that the preceding result can be obtained through the following linear

transformation:

/ / /
0 r3 —ry| |

_ l Ty — ’ I ’
v=(["][«])=|-r5 0 1 | (1.207)
/ / /
ry —r; 0 5
and in turn
! ! / ! ! /
0 r; —r) ] 0 r; —r) ]
— / / / . o / /
vov = —-ry; 0 1 w, ry 0 1 )
! ! / ! ! A
r, —r; 0 w; r, —r; 0 w;
_ T T
/ / / / / /
] 0 ry —ry 0 ry —ry o}
J— / / / / / /
= | w, -r; 0 r -r; 0 1 ) |- (1.208)
/ / / / / /
| w5 ry —r; 0 ry —r; 0 JOX
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Let us note that

0 —rf r}
'] =[w oywi]| 5, 0 —r]
—ryr 0

! / !
W)y — s
— ! .0 /PN —
= | —wir; + rjw; = [vl ) V3] (1.209)
/i /N
Wy, —rw,

and
wiry — ryw; V]
[r'][e] = | —o|r; + 7o) | = [ v ]. (1.210)
|y — 1w, V3
According to (1.208) we have
[0 —r} 1} 0 ry —r
IV = ry 0 —ri||—-r; 0 1
|—rj r{ 0 ry —r; 0
v v v
Ty =l =y
v v v
= _IX,;X( ]Xg _IX,;XS’ ’ (1.211)
vV 1% Vv
v Ty Iy
where
2 2
Iy = ()" + (1) Iyyy =riry Iy =rirs,
2 2 2 2
Ly =rarse Ty =(1) +(3) . Ly=()"+(2). (212
Taking into account (1.208) and (1.211) in (1.205) we obtain
1 /T %4 ’ 1 1Ty 1
T:Ew 1"dm | ® =§w Te', (1.213)

m

where I is the matrix (tensor) of mass moments of inertia of the body in the body
system.

Let the position of the / axis in an arbitrary Cartesian coordinate system
OX, X, X, be described by angles a1, a», and a3 (Fig. 1.18).

The desired moment of inertia is equal to

I = /pzdm. (1.214)

m
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Because
rr=ri4r}+rl, (1.215)
cos? o) + cos? oy + cos? oy =1, (1.216)

o> =rtsin®g = r? — (roe)?

=r’— (rycosay + rpcosan + 73 cos oz_o,)2
=ri (1 —cos’ay) + r; (1 —cos® @) + r3 (1 — cos® a3) — 2ryr, cos &y cos
— 2ryr3 COS0p COS ¥3 — 27113 COS (] COS O3

2

ri (cos® o + cos” a3) + 75 (cos ; + cos” a3)

+ r32 (cos2 o] + cos’ az) — 2111 cOS @1 COS Oy

— 2rF3 COS @) COS (X3 — 21113 COS (] COS (3

= (r22 + r_%) cos’a; + (”12 + r_%) cos’ oy + (rl2 + r22) cos” a3

— 2111y COS 0] COS Oy — 2113 COS Qp COS (X3 — 27 73 COS (] COS (3, (1.217)

substituting (1.217) into (1.214) we obtain
I} = Iy, cos’ ay + Iy, cos? ar + Iy, cos? a3 — 21y, x, COs o Cos o
—21Ix,x, cosap cosaz — 21 x, x, COS Q| COS Q3. (1.218)

From the obtained formula it follows that if we know the position of the / axis
described by the angles o, o, o3, and if we know the moments of inertia and the
products of inertia with respect to the adopted coordinate system, we can determine
the moment of inertia of the body with respect to the / axis.

The kinetic energy described by formula (1.213) can be also represented in the
form

1
T = Ew olw, (1.219)

where I denotes the inertia tensor, which is symmetrical [see (1.211)]. On the

diagonal of the inertia tensor successively lie the moments of inertia with respect to

the axes OX, OX», and OX3, and outside the diagonal lie the products of inertia.
We can represent the kinetic energy of the body given by (1.205) as

1 1
T ZE/vo(wxr)dmZE/(rxv)owdm
m m
1 1
= Ewo/(rxv)dm = EwoK, (1.220)
m

where K is the angular momentum of the body with respect to point O.
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During transformations of (1.220) the following commutativity property of the
scalar product was used:

(@axb)oc=ao(bxc)=co(axbh).

From a comparison of (1.219) with (1.220) it follows that the angular momentum
is given by the formula

K = Io. (1.221)

Because vector @ is directed along the instantaneous axis of rotation, knowing
the inertia tensor along the / axis and the magnitude of the angular velocity o it is
possible to calculate the angular momentum of the body with respect to point O. If
we associate unit vector I with the / axis, then the angular velocity vector is given
by @ = w I. According to (1.219) we have

1 2
T=-wolw = 1oll. (1.222)
2 2

In turn the definition of kinetic energy measured with respect to the / axis is given
by (1.205).
Comparing (1.222) with (1.205) we obtain

I =101l (1.223)

The obtained equation means that after arbitrarily choosing the unit vector / while
we know the tensor of inertia I/, we can calculate the mass moment of inertia with
respect to the axis defined by unit vector /.

Let S be the rotation matrix such that the vectors of angular momentum K
and of angular velocity @, following rotation of the axes of the coordinate system
OX, X, X, to the axes OX|X; X}, in the new coordinates take the form

o' =Sw,
K’ = SK, (1.224)

and substituting (1.224) into (1.221) we obtain
STK' =157 w'. (1.225)
Next, premultiplying by S, we eventually obtain
K =T/, (1.226)
where the inertia tensor associated with the axes OX| X, X} reads

I' =SIS”. (1.227)
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Equation (1.227) describes the relationship between the inertia tensors expressed
in the coordinates OX, X, X and OX| X} X}. The property S”S = E, where E is the
identity matrix, was already used earlier during transformations. Equation (1.227)
describes matrices I’ and I as orthogonally similar to one another.

Because according to the previous calculations, matrix I is symmetric and
positive definite, so by introducing the rotation matrix S such that the axes of the
coordinate system OX{X} X} become coincident with the principal axes of inertia
of the body, we obtain as a result a diagonal matrix of the form

210 0
'=|02x0]|. (1.228)
00 A

The kinetic energy of the system expressed through these principal axes of inertia
is equal to

1 2 2 2
T =3 (Mo}, + 20}, + Lo}y (1.229)

Let us recall that vector @, which satisfies the condition below, is called the
eigenvector of matrix I :

Ia = Aa. (1.230)

The preceding system is a system of linear algebraic equations of the form
I-AE)a =0. (1.231)
It has a non-zero solution if its characteristic determinant is equal to zero, that is,
det(I— AE) = 0. (1.232)

The preceding equation leads to the determination of the eigenvalues A, A,,
and A3 — real numbers — which can be proved.
Moreover, let us note that

det(I— AE) = det (S"I'S — AS"ES)
= (detS”) det (I' — AE) detS = det (I —AE),  (1.233)

which means that matrices of inertia expressed in different coordinate systems have
the same eigenvalues.
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Chapter 2
Mathematical and Physical Pendulum

2.1 The Mathematical Pendulum

A particle of mass m connected by a rigid, weightless rod (or a thread) of length /
to a base by means of a pin joint that can oscillate and rotate in a plane we call a
mathematical pendulum (Fig. 2.1).

Let us resolve the gravity force into the component along the axis the rod and
the component perpendicular to this axis, where both components pass through the
particle of mass m. The normal component does not produce the particle motion.
The component tangent to the path of the particle, being the arc of a circle of
radius /, is responsible for the motion. Writing the equation of moments about the
pendulum’s pivot point we obtain

mi*g 4+ mglsing = 0, (2.1)

where m[? is a mass moment of inertia with respect to the pivot point.
From (2.1) we obtain

¢+ a’sing =0, (2.2)

/g [rad
@ =,/7 |

If it is assumed that we are dealing only with small oscillations of the pendulum,
the relationship sin & &~ « holds true and (2.2) takes the form

where

¢ +a’p=0. (2.3)

It is the second-order linear differential equation describing the circular motion
of a particle (Sect. 4.2 of [1]). Let us recall that its general solution has the form

¢ = ¢ sin(at + Oy), (2.4)
J. Awrejcewicz, Classical Mechanics: Dynamics, Advances in Mechanics 69
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Fig. 2.1 Mathematical pendulum

which means that we are dealing with small harmonic oscillations of the period

T = %’ =2r \/g . Let us note that in the case of small oscillations of a pendulum,

their period does not depend on the initial angle of deflection of the pendulum but

exclusively on the length of pendulum /. We say that such a motion is isochronous.

That observation, however, is not valid for the big initial angle of deflection. Such a

conclusion can be drawn on the basis of the following calculations (see also [2, 3]).
Let us transform (2.2) into the form

=17

7=

sin . 2.5)

Let us note that

d dy d d 1d
P, ), 2.6)

V=4 Tdpdr T det T 2dg
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and substituting (2.6) into the second equation of system (2.5) we obtain

d

A N
i (»?) 20 sin @. 2.7

Separating the variables and integrating we obtain
@* = 2a*cosg + 2C, (2.8)

where C is the integration constant.

Let us emphasize that we were able to conduct the integration thanks to the fact
that the investigated system is conservative (it was assumed that the medium in
which the vibrations take place introduced no damping). Equation (2.8) is the first
integral of the non-linear differential equation (2.2) since it relates the functions
@(t) and ¢(t). In other words, it is the non-linear equation of reduced order with
respect to the original equation (2.2).

Let us introduce the following initial conditions: ¢(0) = ¢o, ¢(0) = ¢o, and
following their substitution into (2.8), in order to determine the integration constant,
we obtain

2C = ¢} —2a* cos gq. (2.9)
From (2.8) we obtain
® =£v2(C + a?cosp), (2.10)

where C is given by (2.9).

The initial condition ¢, determines the selection of the sign in formula (2.10). If
¢o > 0, then we select a plus sign, and if ¢y < 0, then we select a minus sign. If
¢@o = 0, then the choice of the sign in front of the square root should agree with the
sign of acceleration ¢(0).

Following separation of the variables in (2.10) and integration we have

@2.11)

[ reiees
t ==+ .
o0 V2 (C + a?cosg)

Unfortunately, it is not possible to perform the integration of the preceding
equation using elementary functions. The preceding integral is called the elliptic
integral. Equation (2.11) describes the time plot ¢(¢), and the form of the function
(the solution) depends on initial conditions as shown subsequently.

Below we will consider two cases of selection of the initial conditions [4].

Case I. Let us first consider a particular form of the initial condition, namely, let
0 < ¢o < m and ¢y = 0. For such an initial condition from (2.9) we obtain

C = —a?cos ¢p. (2.12)

Note that (2.7) indicates that |C| < £.
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Substituting the constant thus obtained into (2.11) we obtain

1 [¢ do
f— 4o . 2.13)
o +/2(cosg —cos )

The outcome of the actual process determines the sign of the preceding expres-
sion, i.e., we have ¢t > 0. From observations it follows that following introduction
of the aforementioned initial condition (or similarly for —7 < ¢y < 0) the angle
@(t) decreases, that is, cos¢@y > cos ¢; therefore, one should select a minus sign
in (2.13). The angle ¢(¢) will be a decreasing function until the second extreme
position ¢ = —¢y is attained. From that instant we will be dealing with similar
calculations since the initial conditions are determined by the initial angle —¢y and
the speed ¢(£) = 0, where 7 is a period of oscillations.

Starting from the aforementioned instant, the angle ¢(¢) will increase from the
value —¢y to the value +¢y; therefore, in that time interval one should select a plus
sign in (2.13).

Note that

cos<p—cos<p0—1—2sm2(§ (1 251n2(';0)

_ 200 2@
=2 (sm > sin 2) , (2.14)

and hence from (2.13) (minus sign) we obtain

L[ d
T 2a / ) / - e
@ oo [sin® £ smz% * o sin 9 /1 — Sinzzg
2

For the purpose of further transformations let us introduce a new variable & of
the form

sin &
2z (2.16)

0
sin 5

siné =

Differentiating both sides of the preceding equation we obtain

cos %
do. 2.17)

cosédé = —
2 sin %

Taking into account that the introduction of the new variable £ leads also to a
change in the limits of integration, i.e., § = corresponds to ¢ [see (2.16)], and
taking into account relationships (2.16) and (2 17) in (2.15) we obtain

1 /er 2sin £ cos £dE

" 20 ) o w —
cos 5 sin 14/ 1 —sin” &
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1 /’5 d¢

o Jg (1 —sin® £) cos? &

cos? &

1 /’5 dg 1 /’5 d&

o Jg cos’§ — (1 —cos’§)cos” . ¥ Je Jeos? &

cos? &
- / , (2.18)
1— sm2 2 sin® €

because according to (2.16) we have

sin’ % = sin® £ sin’ @. (2.19)

The change in the angle of oscillations from ¢, to zero corresponds to the time
interval 7'/4, which after using (2.18) leads to the determination of the period of

oscillations
/ . (2.20)
sm2 @ sin® €

Let x = sin® 2 sin® &; then |x| < 1, and the integrand can be expanded in a
Maclaurin series about x = 0 in the following form:

f(x) = 2 % sin2f4+--- . (221)

1 1 1
=1l—=-x4+:--=1——5sin
V1I—x 2

Taking into account (2.20) and (2.21) we obtain

i 3 1 3
T=4|1 e — —sin? 2 [ 7 sin? £de
)
g \Jo 0
! 1
=4./— z——-zsinzﬁ
g\2 3 27

l I ., l 1,
=2r E 1—4sm7 ~ 21 E I—E% , (2.22)

where in the last transformation the relationship sin <p_20 ~ ‘”20 was used.

Case 2. Now let us consider the case where apart from the initial amplitude ¢, the
particle (bob of pendulum) was given the speed ¢y big enough that, according to
(2.9), the following inequality is satisfied:
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C= %(j)g - % cosgo > . (2.23)
Then the radicand in (2.10) is always positive. This means that the function ¢(#)
is always increasing (plus sign) or decreasing (minus sign). The physical interpre-
tation is such that the pendulum rotates clockwise (plus sign) or counterclockwise
(minus sign).
It turns out that for certain special values of initial conditions, namely,

1., g g
C =S¢~ Jeospo =T, (2.24)
we can perform the integration given by (2.11).
From that equation, and taking into account (2.24) and assuming ¢y > 0, we

obtain
_ \/7 /¢ dp \/7 /w dp
g 0\ 2(1 + COS@) g @0 /ZCOS%
/ tan (£ — &
=./—In —(‘:T ;) . (2.25)
&g tan (3 — %)
because

V2(1 + cosg) = \/2 (1 —|—c052%—sin2 %) = ZCOS%.

In (2.25) we have a singularity since when ¢ — m, the time t — +o00. This
means that for the initial condition (2.24) the pendulum attains the vertical position
for t — +oo0. The foregoing analysis leads to the diagram presented in Fig. 2.2.

As was already mentioned, (2.1) cannot be solved in an analytical way using
elementary functions. However, it will be shown that using the natural coordinates
7, n one may determine an exact value of reaction N (Fig. 2.1).

The Euler equations of motion are as follows:

s ,
mm = F, = —mgsing,
mv?
— =F,+ N =—mgcosgp + N. (2.26)
P

Taking into account s = [¢, the first equation of (2.26) takes the form of (2.2).
The second equation of (2.26) yields

2

mv
N = e + mg cos ¢. (2.27)
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Fig. 2.2 Small oscillations about an equilibrium position, a critical case described by the initial

condition (2.24), and pendulum rotations

Observe that

dv dv dep vdv
dt  de dr ldg’

and from (2.2) one obtains

d<p+2, dv+2_ vdv+2_ 0
— 4 a’sing = — +a‘sing = —— +a“sing =
d Y= T = 24y ¢
or, equivalently,

dv Isi

v— = —gl sin ¢.

dg g @

Separation of variables and integration give

2_ 2
(‘}—2‘)0) = gl(cos ¢ — cos¢p)
or, equivalently,
V2
7= TO + 2g(cos @ — cos ).

Substituting (2.32) into (2.27) yields

2
mvg

N = - + 2mg(cos ¢ — cos ¢y).

A minimum force value can be determined from the equation

dN
— = —2mgsing =0,
de

(2.28)

(2.29)

(2.30)

2.31)

(2.32)

(2.33)
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which is satisfied for ¢ = 0, &7, +2m7,.. ..

Because
d2N
— = —2mgcosg, (2.34)
de
then

d’N d’N

—| = -2mg, — | =2mg. (2.35)

d(p2 0 d(p2 T

This means that in the lower (upper) pendulum position the thread tension
achives its maximum (minimum).
The force minimum value is computed from (2.27):

2
mvg

Nyin = - + 2mg(—1 — cos ¢yp). (2.36)

The thread will be stretched when N,,,;, > 0, i.e., for

vo > /2gl(1 4 cos ¢y). (2.37)

At the end of this subsection we will study a pendulum resultant motion.

Let us assume that an oscillating mathematical pendulum undertakes a flat
motion in plane I1, which rotates about a vertical axis crossing the pendulum
clamping point (Fig. 2.3).

The equation of a relative pendulum motion expressed through the natural
coordinates T,n has the following form (projections of forces onto the tangent
direction):

m(py + pi + py) = —mgsing, (2.38)
and since the Coriolis acceleration p¢ LI7, then p¢ = 0.

Projection of the translation acceleration onto a tangent to the particle trajectory
is p" = (w*l sin¢) cos ¢, and finally (2.38) takes the form

ml$ = —mg sin @ + mw?l sin ¢ cos ¢ (2.39)

or

¢ = (w*cos g — a?) sing. (2.40)

Observe that now we have two sets of equilibrium positions yielded by the
equation

(w?cosg —a?)sing = 0. (2.41)
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Fig. 2.3 Resultant
mathematical pendulum
motion oscillating in plane /7
rotating with angular
velocity @

Besides the previously discussed set governed by the equation sing = 0, i.e.,
¢, = nm, n € C, the additional set of equilibrium positions is given by the
following formula:

2
¢, = T arccos 01_2 +2nn, necC (2.42)
w

ifo>a.

Strongly non-linear equations of motion of the pendulum (2.2) can also be solved
in an exact way. Following the introduction of non-dimesional time t = ot we
obtain

¢" 4+ sing = 0, (2.43)
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and multiplying by sides through ¢’ we have

d /o do .
ron — S (Y N _ Y
Q= d‘C( > ) dr sin ¢ (2.44)
or
o”
d(T) — —singpdg. (2.45)

Integration of (2.45) yields
2
=5 = —[(=cos @) + cos o], (2.46)
that is,

¢ = £v/24/| cos g — cos gy, (2.47)

where cos ¢y is a constant of integration.
Because

cosp =1— 2 sin® (%), (2.48)

(2.47) takes the form

- —ﬁ\/z )sin2 (%) —sin? (%)) (2.49)

and following separation of the variables and integration we have

BN R 250
v \/‘sm — sin’ (‘g)‘ 0

The obtained integral cannot be expressed in terms of elementary functions and
is called an elliptic integral because it also appears during calculation of the length
of an elliptical curve.

For the purpose of its calculation we introduce two parameters — k, called the
elliptic modulus, and u, called the amplitude — according to the following equations:

= si ( )sm@—ksm@ k—31n<(/;0),

= ./1—sin? ((g)z 1 — k2sin’ 6,

= (—) (%) = kd(sin 0) = k cos 6d#,
_ kcos0df  kcostdb

cos( ) vl—kzsinze'

2.51)
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From the first equation of (2.51) we have
%o 72
sin ( 4 ) s (2.52)

and the integral from (2.50) takes the form

vo k cos 6d6 vo do
- = (2.53)
(1) \/1 — k2sin% 6 \/k2 — k2sin% 6 o) V1 —k2sin’ 0

In the foregoing integral one should additionally alter the limits of integration.
We have here a conservative system; let oscillations of the system be characterized
by period 7' (we consider the case of a lack of rotation of the pendulum). After time
T /2 starting from the initial condition ¢, according to the first equation of (2.51)
we have sinf = —1, which implies 6(7/2) = 37/2. In turn, at the instant the
motion began according to that equation we have sin 6 = 1, that is, 6(0) = 7/2.
Finally, (2.50) takes the form

3n/2 T
/ / —. (2.54)
1— k2 sin? Vi k2 G20 2
The desired period of the pendulum oscillations is equal to
=4 / . (2.55)
1- k2 sin’
The integral
9*
do
F(0* k) = e — (2.56)
0 V1—k2sin’6
is called an elliptic incomplete integral of the first kind. Introducing variable
7 =sinf (2.57)

we can represent integral (2.56) in the following equivalent form:

0* dz sin 0% dz
e — . (2.58)
0 cosO+/1—k2z2 Jo V(A =22)(1 —k222)

A graph of dependency 7 (k) on the basis of (2.55) is presented in Fig. 2.4.
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Fig. 2.4 Graph of 18 F
dependency of period of
pendulum oscillations on 16
initial deflection
k = sin(go/2) 14 -
T 12
10
8 -
a i L
0 0.2 0.4 06 0.8 1

2.2 The Physical Pendulum

In this section we will consider the plane motion of a material body suspended on the
horizontal axis and allowed to rotate about it. It is the physical pendulum depicted
in Fig. 2.5.

The pendulum is hung at point O, and the straight line passing through that point
and the pendulum mass center C defines the axis OX|. We assume that the angle
of rotation of pendulum ¢ is positive and the sense of the axis perpendicular to the
OX axis is taken in such a way that the Cartesian coordinate system OX| X, X3 is
a right-handed one (the X3 axis is perpendicular to the plane of the drawing).

Neglecting the resistance to motion in a radial bearing O and the resistance of
the medium, the only force producing the motion is the component of gravity force
tangent to a circle of radius s. The equation of moments of force about point O has
the form

logp = —msgsing, (2.59)

where /o is the moment of inertia of the physical pendulum with respect to pivot
point O, i.e., the axis X3.

By analogy to the equation of motion of a mathematical pendulum (2.2), we will
reduce (2.59) to the form

¢+ afsing =0, (2.60)
where
2 mgs g
o = —— = —. (2.61)
f IO lred

From (2.61) it follows that the introduced reduced length of a physical pendulum
equals lreq = % All the calculations conducted in Sect. 2.1 hold also in this case
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Fig. 2.5 Physical pendulum
of mass m

Xy

owing to the same mathematical model. In particular, the period of small oscillations
of the physical pendulum about the equilibrium position ¢ = 0 equals

2 I Iy
T="Lcom |2 = |22 (2.62)
o mgs g

Let the moment of inertia with respect to the axis parallel to X3 and passing
through the mass center of the physical pendulum be /¢. According to the parallel
axis theorem the moment of inertia I reads

I
Io=1Ic+ms*=m (—0 + s2) =m(ii +5°), (2.63)
m

where i¢ is a radius of gyration with respect to the axis passing through the mass
center of the pendulum.

According to the previous calculations the reduced length of the physical
pendulum is equal to

-2
g = 2 =5+ -C. (2.64)
m S
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From the preceding equation it follows that the reduced length of a physical
pendulum is a function of s. If s — 0, then /¢4 — o0, whereas if s — oo, then
lrea — ©00. According to (2.62) the period of small oscillations of the pendulum
T — oo fors - 0and T — O for s — oo. Our aim will be to determine such a
value of s, i.e., the distance of the point of rotation of the pendulum from its mass
center, for which the period is minimal. According to (2.64)

d/ieq ié
=1-LX=0, 2.65
ds 52 ( )
d?leq 2.
d;; = S—31§ > 0. (2.66)

From the two foregoing equations it follows that the function /..4(s) attains the
minimum for the value s = i¢ because its second derivative for such s is positive.

In Fig. 2.5 point S is marked at the distance /;q from the axis of rotation. We
will call that point the center of swing corresponding to the pivot point O. In other
words, if we concentrate the total mass of the physical pendulum at point S, then
we will obtain a mathematical pendulum of length /;eq.

Let us suspend the pendulum at point S obtained in that way and determine
the corresponding center of swing S*. The length reduced to point S, according to

(2.64), is equal to >

l
[*,=SS8*=CS + C—CS (2.67)
Because

£
CS =08 —0C = lpg—s = €, (2.68)

S

from (2.67) we have

Leg = lea =5 + 5 = Lea. (2.69)

From the foregoing calculations it follows that the pivot point of the pendulum
and the corresponding center of swing play an identical role with respect to one
another.

In Sect. 2.1 we mentioned the first integral of motion. Now, as distinct from
that approach, we will determine the relationships between the velocities and
the displacement of the pendulum based on the theorem of the conservation of
mechanical energy. Let the mechanical energy of a physical pendulum be given by

T@)+ V() =C + mgs, (2.70)

where C is a certain constant, i.e., the stored energy of the pendulum introduced
by the initial conditions, and mgs denotes the potential energy of the system in the
equilibrium position ¢ = 0.

Because we are dealing with a conservative system, the sum of kinetic energy
T and potential energy V' does not change in time and is constant for every time
instant ¢ in the considered case (Fig. 2.5):
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1
T = Eloqbz, (2.71)
V =mgs(l —cosg), (2.72)

where V is the potential energy of the pendulum deflected through the angle ¢.
Substituting (2.71) and (2.72) into (2.70) we have

Io¢?
2

—mgscosg = C, (2.73)

and hence

2
@ = I—(C + mgs cos ). (2.74)
o

Let us note that (2.74) is analogous to the previously obtained equation for a
mathematical pendulum (2.8) since we have

¢* = 2C; + 207 cos g, (2.75)

where C; = C/Ip and ozf, is defined by (2.61).
If the initial conditions of the pendulum have the form ¢(0) = ¢y, ¢(0) = 0,
then from (2.73) we obtain
C = —mgs cos . (2.76)

This means that the initial energy is associated only with the potential energy,
and taking into account (2.76) in (2.74) we have

2
o I;?gs (cos @ — cos ¢g). (2.77)
0

The last equation corresponds to (2.8).

2.3 Planar Dynamics of a Triple Physical Pendulum

2.3.1 Egquations of Motion

Our goal is to introduce a mathematical model of a 2D triple physical pendulum.
The mathematical model [3] is a description of the system dynamics with the aid
of equations, in this case, ordinary differential equations. The mathematical model
is a mathematical expression of physical laws valid in the considered system. In
order to proceed with writing the equations, we must first have a physical model
understood as a certain conception of physical phenomena present in the system.
One should remember that the physical model to be presented below does not
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exist in reality but is an idea of a triple physical pendulum. If there existed a
real object, which we would also call a triple physical pendulum, it would be
able to correspond to our physical model approximately at best. By saying here
that the real system and the model correspond to each other approximately, we
mean that all physical phenomena taken into account in the model occur in the
real object. Additionally, the influence of the physical phenomena occurring in
the real system and not taken into account in the model (they can be treated as
disturbances) on the observed (measured) quantities that are of interest to us is
negligible. Those observed quantities in the triple pendulum can be, for instance,
three angles describing the position of the pendulum at every time instant. Clearly,
there exists a possibility of further development of this model so that it incorporates
increasingly more physical phenomena occurring in a certain existing real system
and, consequently, becomes closer to that real system. An absolute agreement,
however, will not be attainable. On the other hand, one may also think about the
opposite situation, in which to the theoretically created idea of a pendulum we try
to match a real object, that is, the test stand. Then we build it in such a way that in
the stand only the laws and physical phenomena assumed in the model are, to the
best possible approximation, valid. The influence of other real phenomena on the
quantities of interest should be negligible.

Our physical model of a triple pendulum (Fig. 2.6) consists of three (i = 1, 2, 3)
absolutely rigid bodies moving in a vacuum in a uniform gravitational field of lines
that are parallel and directed against the axis X, of the global coordinate system
0 X1 X, X3, connected to each other by means of revolute joints O; and connected
to an absolutely rigid base [5]. Those joints have axes perpendicular to the plane
01X X, so that the whole system moves in planar motion. We assume that in the
joints there exists viscous damping, that is, that the resistive moment counteracting
the relative motion of two pendulums connected to each other is proportional (with
a certain proportionality factor ¢;) to their relative angular velocity. We also assume
that mass centers of particular pendulums (C;) lie in planes determined by the axes
of joints by which the given pendulum is connected to the rest of the system (this
does not apply to the third pendulum). This last assumption allows for a decrease
in the number of model parameters — to be precise, the number of parameters
establishing the positions of mass centers of particular pendulums. Each of the
pendulums has its own local coordinate system C; X I(I)XZ(’)X:,E’) (i =1,2,3)of
the origin at the mass center of the given pendulum and the axis X 3(') perpendicular
to the plane of motion. Geometrical parameters that determine the positions of mass
centers (e;) and the distances between the joints (/;, /;) are indicated in the figure.
Moreover, each of the pendulums possesses mass m; and mass moment of inertia
I; with respect to the axis C; X3 passing through the mass center (centroidal axis)
and perpendicular to the plane of motion. The first pendulum is acted upon by an
external moment M, (¢). The configuration of the system is uniquely described by
three angles v;, as shown in Fig. 2.6.
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Fig. 2.6 A triple physical pendulum

For the derivation of equations of motion we will make use of Lagrange’s
equations of the second kind having the following form:

dr

T T
d(a ) 9 8V=Q,,, n=1,...,N, (2.78)

G g * g
where N is the number of generalized coordinates, g, the nth generalized
coordinate, 7' the kinetic energy of the system, V' the potential energy, and Q,
the nth generalized force. In the case of the considered triple pendulum one may
choose three angles /1, ¥», and 3 as generalized coordinates (describing uniquely
the system configuration). Then, (2.78) take the form

d T T A%
a (am) "o, Tay, - O 279)
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Gravity forces can be included in two ways. Firstly, one may put them into
equations as appropriate components of the generalized forces Q,. Secondly, after
taking into account that the gravity forces are conservative, one can put them into
equations as the appropriate potential energy. The latter method is more convenient
and will be applied here. The potential energy (of gravity forces) is as follows:

3
Vi=Vo+ ) magn,. (2.80)

n=1

where Vj is an arbitrary constant, g the acceleration of gravity, and x,c, the
coordinate determining the position along the X, axis of the mass center of the
nth pendulum.

The kinetic energy of the system is the sum of the kinetic energies of each of
the bodies. In turn, the kinetic energy of a body is the sum of its kinetic energy for the
translational motion (with velocity of the mass center) and for the motion about the
mass center. That relative motion, generally, is the motion about a point (that is,
the instantaneous rotational motion), whereas in our special case of planar motion it
is the rotational motion of the nth pendulum (of the axis of rotation C; X 3(")). Thus,
the kinetic energy of the system of three connected pendulums is equal to

I o . P
r= 2 Zm" (e, +%3¢,) + 3 Zlnlﬁf- (2.81)

n=1 n=1
The coordinates of mass centers occurring in expressions (2.80) and (2.81) are
equal to
Xic, = e;sinyy,
X1c, = [; sin Wl + e; sin I//z,

Xic; = L sinyy + [ sin s + e3 sin i3,

Xac, = —ej cos Yy,
Xac, = —l1 cos Y| — ey cos Y,
Xocy; = —licos Yy — [ cos Y, — ez cos 3, (2.82)

whereas their time derivatives
X1c, = ey cos Yy,

X1, = 1y Yy cos Yy + 2 cos Y,
Xicy = [ 1/}1 cosy + Ip fﬂz cos ¥, + e3 1/}3 cos V3,
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Xac, = e Y sinyy,
Xac, =1y I/.fl siny + es 1&2 sin y,,
%acy = LY sin Yy + Ly sin g, + e3 Y sin 3. (2.83)

Inserting relationships (2.82) and (2.83) into expressions (2.80) and (2.81),
applying suitable operations, using certain trigonometric identities, and grouping
the terms, we obtain

3
V=- Z M, cos ¥, (2.84)
n=1

and
3 2 3
1 . ..
r= QZBW;?JFZ > Nujiirj cos (Vi — 7)) (2.85)
n=1 n=1j=n+1

where the following symbols were used:

M, = migey + (ma + m3) gl,

My = mager + msglh

M; = msges,

By = I) + e’my + 112 (my + m3),

By = I, + e’my + 1,’m,

By = I3 + e’ms,

Nip = maesdy + mslily,

Niz = mzesly,

Noz = mzesls. (2.86)

Inserting relations (2.84) and (2.85) into the left-hand sides of (2.79) and
differentiating, we obtain

d /0T aT v - v
_( )__+—:Bllﬁl—i-leCOS(Wl_WZ)WZ

dt \oyn ) dy1 0y ]
+ Nizcos (Y1 — ¥3) V3

+ Niasin (Y1 — ¥2) ¥3 + Nizsin (Y1 — ¥3) Y3
+ M sin Y,
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d /0T aT 1% . y

o (B_%) 9 + P Byyra + Nipcos (Y — V2) ¥
+ Nozcos (Y2 — ¥3) Y3
— Nypsin (Y1 — ¥2) Y2 + Nas sin (Y — ¥3) 92
+ M, sin Yy,

d /0T aT 1% - v’

< (3_%) 9 + P B3y + Nizcos (Y1 — ¥3) ¥

+ Nascos (Y2 — ¥3) ¥

— Nizsin (Y1 — ¥3) 7 — Nasin (Y2 — ¢3) 2
+ M;sin 3. (2.87)

Now we should determine the right-hand sides, that is, what kinds of generalized
forces act along particular generalized coordinates. When using generalized forces
0, one should take into account in the equations all non-conservative forces acting
on the system. This will be the moment of force M, (¢) acting on the first pendulum
but also moments of resistive forces at the connections of the pendulums. Because
the generalized coordinates are angles, the generalized forces must be moments of
force. Moreover, generalized coordinates describe the absolute angular positions
of individual pendulums; therefore, the generalized forces will be the moments
of force acting on particular pendulums. Therefore, it is already known that the
moment M,(t) will be the component of the first generalized force. Also, on
particular pendulums additionally act the moments associated with viscous damping
at particular revolute joints. We may write it in the following way:

Q1= M.(t) + Moy + M2y,

02 = M + M3,

03 = M, (2.88)
where M;; is the moment of force with which the ith pendulum or the base (i = 0)
acts on the jth pendulum by means of viscous damping at a joint connecting
two pendulums. Positive directions of particular moments are consistent with
the adopted positive direction common for all generalized coordinates. Clearly,

according to Newton’s third law (action and reaction principle), M;; = —M ;; must
hold. For viscous damping (proportional to the relative velocity) we have

Mo = —ci31,
My = —c; (Y2 — 1) = —May,
Mz = —c3 (3 — V) = —Ms,. (2.39)
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While taking the appropriate signs in the preceding formulas we keep in mind
that the moment of damping has to counteract the relative motion of the connected
pendulums. Finally, the generalized forces read

01 = M(t) — c1y1 + ¢z (Y2 — ).
0> =—c2 (V2 — VY1) + 3 (V3 — V).
03 = —c3 (% - I/fz) (2.90)

where ¢; is the viscous damping coefficient at joint O;.

Equating formulas (2.90) to (2.87) and moving also the damping force to the
left-hand side of every equation we obtain a system of three second-order ordinary
differential equations (the mathematical model) describing the dynamics of the
triple pendulum:

By + Nizcos (Y1 — ¥2) ¥z + Nizcos (Y1 — ¥3) ¥r3
+ Nigsin (Y1 = ¥2) Y3 + Nissin (Y1 = ¥3) 93
+ ey — e (Y2 — ) + Mysinyy = M.(2),
Bays + Niacos (Y1 — ¥2) 1 + Nas cos (V2 — ¥3) Y3
— Niasin (Y1 = ¥2) ¥rf + Nossin (V2 — ¥3) 93
+ ¢ (V2 — V1) — ¢3 (V3 — ¥2) + M siny, =0,
B3y + Nizcos (Y1 — ¥3) Y1 + Nz cos (Y2 — ¥3) ¥
— Nizsin (Y1 — ¥3) Y7 — Naz sin (V2 — ¥3) ¥
+ ¢3 (Y3 — Y) + My sin s = 0. (2.91)

Equation (2.91) can also be represented in a more concise and clear form using
matrix notation

M) ¥ +N@) ¥ +Ch +p@) =1L (1), (2.92)
where
B Bl N12 COS (I//l — lﬂz) N13 COS (lﬂl — 1//3)
M (¥) = | Nizcos (Y — ) B, Na3cos (Y2 — ¥3) |»
L N13cos (Y1 — ¥3) Nazcos (V2 — ¥3) B;
i 0 Nigsin (Yy —Y2) Nyzsin (Y — ¥3)
N(@) = | =Nuzsin (Y1 — ) 0 Nassin (Yo — ¥3) |,
| —Nizsin (Y1 — ¥3) —Nazsin (Y2 — ¥3) 0
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_C1 +cy —C 0 M, sin Wl M, (l)
C=| - ata-—a| p{H)=|Msny,|, L= 0 |,
L 0 —C3 C3 M3 sin W3 0
K o[ . [0 Lo [Vt
v=[va|. d=|d0| d=|@| ¥ =|0] 9
L3 Vs Vs V3

The unknowns of a system of differential equations describing the dynamics of a
triple pendulum [in the form of (2.91) or (2.92)] are the functions ¥ (¢), ¥»(t), and
¥3(t), which means that the solution of those equations describes the motion of the
pendulum.

Let us also draw attention to the parameters of those equations. While there
are 15 of the physical parameters of the pendulum (/,, /5, e;, ez, e3, my, my, ms,
I, I, I, g, c1, ¢, and c3 — for now we omit parameters of excitation), in the
equations there are actually 11 independent parameters (M, M, M3, By, B,
B3, Ni3, Nas, ¢y, ¢, and c3), because out of quantities (2.86) one is dependent on
the remaining ones:

N My,  me

I
b L + 2 (2.94)
Niz Mz mze; e3

and hence

Nip = Ni3—-. (2.95)

From the fact that fewer parameters (11) occur in equations of motion than
the number of physical parameters of a pendulum (15) it follows that the same
pendulum in the sense of dynamics (i.e., behaving in the same way) one may build
in an infinite number of ways.

2.3.2 Numerical Simulations

Differential equations (2.92) are strongly non-linear equations and do not have
an exact analytical solution. For the investigation of their solutions, numerical
and analytical approximate methods remain at our disposal. Here one of the most
popular and effective numerical methods for the solution of ordinary differential
equations — the fourth-order Runge—Kutta method [6] — was applied.

However, the mathematical model of a triple pendulum (2.91) or (2.92) has
the form of a system of second-order equations. In order to be able to apply
classical algorithms for integration of differential equations, we have to reduce these
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equations to the form of a system of first-order equations. Let us take a system state
vector (the vector of state variables) as

12
)
_ |V = 4 2.96
¥ 12 [ } (290
!.02
L V3

then the system of six first-order differential equations has the following general
form

x=f(x,7) = [ﬂ (2.97)

Let us note that we need angular accelerations of the pendulums given explicitly
as functions of system state x and time 7. Then we have to solve (2.92) with respect
to v, treating them as algebraic equations. Because it is a system of linear equations,
we have

=M@ [ O -N@F - Ch—p)]. (2.98)

Inserting relation (2.98) into (2.97), we eventually obtain

. v
"‘[[M(xh)r‘[fe(z)—N(w>~/}2—c¢—p(~/f>ﬂ‘ w] [x] [

v=|x [i=| xs |07 =| x2
X3 X6 xé
(2.99)

In every step of the integration we must perform an inversion of the matrix
M(¥). Because of its size, it is possible to use for this purpose an exact analytical
expression. In the case of a slightly larger system, in practice there would remain
only the possibility of using one of the existing numerical methods for inverting
a matrix. If we investigate (integrate) differential equations (2.92) by means of a
numerical method, in fact not only will the mathematical model consist of these
equations, but also the method itself should be considered as an integral part of
the model. Then a system with continuous time is approximated by a system
with discrete time, and the differential equations themselves are approximated by
difference equations.

In order to conduct an illustrative numerical simulation of a pendulum (i.e., to
find the numerical solution of the model), we have to adopt some concrete values
for model parameters and initial conditions. Let us assume that this special case of



92 2 Mathematical and Physical Pendulum

Fig. 2.7 Special case of a
triple physical pendulum — a
system of three identical
pin-joined rods

a triple physical pendulum are three identical rods connected by means of joints
located at their ends, as shown in Fig. 2.7.
Then we will have

L=0L=I,
m|p =mpy=m3=m,
l
€1—€2—€3—§,
hebh=n="" (2.100)
1—2—3—12, .

where / is the length of a single pendulum and m its mass, and expressions (2.86)
will take the form

1
M, = —mgl, M, = —mgl, M; = Emgl,

1
Bl = —mlz, Bz = —mlz, B3 = —mlz,
3 3 3
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3 1 1
N = E’”lz’ Niz = Emzz, Ny = Emzz. (2.101)

In turn, setting g = 10m/s%, m = l1kgand/ = 1 m we obtain

M, =25kg-m*-s>, M, =15kg-m*-s2, M;=5kg-m*> 572,

By =zkg-m2, B, = ﬂkg-rnz, B; = lkg-mz,
3 3 3
_3 2 _ 1 2 _ 1 2
le—zkg-m, N13—2kg-m, N23—2kg-m. (2.102)

Viscous damping in the joints are taken as
ci=c=c3=1N-m-s. (2.103)
We take the moment acting on the first pendulum as harmonically varying in time
M,(t) = gsin(wt), (2.104)

where ¢ is the amplitude and o the angular frequency of pendulum excitation. These
two parameters will vary for different simulation examples shown later, whereas the
remaining parameters from (2.102) to (2.103) will be constant.

The free motion of a pendulum (the pendulum is not subjected to external excita-
tion, i.e., ¢ = 0) for initial conditions v, (0) = ¥, (0) = ¥3(0) = v/, (0) = 1¥2(0) =0
and v3(0) = 1 rad/s is shown in Fig. 2.8. Vibrations decay because the energy of
the pendulum is dissipated through damping in the joints, and no new energy is
simultaneously supplied (no excitation). Therefore, the solution tends to a stable
equilibrium position, and the only stable equilibrium position in this system is
Vi=v>=93=0.

In Fig. 2.9, in turn, we present the excited transient motion of a pendulum
(g =25N-mand w = 3rad/s), which starts at the time instant 1 = 0 from zero
initial conditions (bright) and tends to the stable periodical solution (by analogy to
the stable equilibrium position) marked dark. The solution is marked bright for the
time ¢ € (0, 150s), whereas for t € (150s, 200s) it is marked dark. Clearly, for the
time ¢t = 150s only a pendulum with a good approximation moves on a periodic
solution, whereas in reality it constantly approaches it and reaches it for # — oo.

The motion of a pendulum is presented in Figs. 2.9-2.11 as the motion of the
tip of the third rod of the pendulum (point Oy in Fig. 2.7) in the plane of motion
of the pendulum (coordinates x;p, and x,0, describe the position of point Oy in the
coordinate system O; X| X»). One should remember, however, that the space (plane)
X10, — X20, 18 a 2D subspace of the system phase space, which is actually 7D (apart
from three angles 1, ¥», and ¥3, and three angular velocities 1&1, 1/}2, and 1&3 we
add here a phase of the periodic excitation M,(¢)). The graphs presented in the
coordinates x1o, — X20, are projections of phase trajectories onto this subspace and
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Fig. 2.8 Decaying motion of
pendulum not subjected to
external excitation (¢ = 0)
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0.5

% 2 A 0 1 2 3
Xy04 [M]

Fig. 2.9 Excited motion of pendulum tending to stable periodic solution (dark) for ¢ = 25N - m
and w = 3rad/s

X104 [m]

Fig. 2.10 Two coexisting periodic solutions for g = 25N -m and w = 2.022rad/s attained from
different initial conditions

do not contain complete information. If we observe in Fig. 2.9 a periodic solution
(dark) in the form of a closed line (i.e., the motion is repetitive), then the tip of
the third rod moving on this line returns to its previous position (e.g., to the point
marked with a dark circle), and the values of all state variables repeat themselves
(positions and angular velocities and the phase of the periodic excitation).
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Fig. 2.11 Quasiperiodic solution for @ = 2.8rad/s [trajectory (a), Poincaré section (b] and
chaotic solution for @ = 2rad/s [trajectory (c), Poincaré section (d)]; excitation amplitude
g =25N-m

In non-linear systems the coexistence of many solutions (for the same parame-
ters) is possible. An example is two periodic solutions for the excitation parameters
q = 25N -m and w = 2.022rad/s shown in Fig. 2.10. Each of the solutions is
attained from different initial conditions: the solution marked in bright from zero
initial conditions at the instant 1 = 0, and the solution marked in dark from initial
conditions ¥ (0) = 1¥(0) = ¥3(0) = 1/3(0) = 0 and ¥/, (0) = ¥»,(0) = —1rad/s.
On the graph the initial transient motion for ¢ € (0, 150s) is neglected, and only
the motion in the time interval ¢ € (150, 2005s) is shown, when it has already
taken place in a sufficient approximation on the appropriate periodic solution.
Each solution is asymmetrical, whereas the system is symmetrical. In turn, the two
solutions together form an object symmetrical with respect to the axis of symmetry
of the pendulum. The symmetry of the system implies that asymmetrical solutions
may appear only in such twin pairs.

From the previous examples we see that the typical behavior of a damped and
periodically excited pendulum is that after waiting some time and neglecting certain
initial transient motion, the pendulum starts to move periodically. This period is
always a multiple of the period of excitation. However, it happens sometimes that
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the pendulum never starts its periodic motion regardless of the length of the transient
period we would like to skip. An example is the solution shown in Fig. 2.11a for
the excitation parameters ¢ = 25N - m and v = 2.8rad/s. The pendulum starts
at the time instant ¢ = O from zero initial conditions. The transient motion for
t € (0, 200 s) was skipped and only the motion for ¢ € (200, 350 s) is shown on the
graph. One may check that after skipping a time interval of transient motion of an
arbitrary length, the pendulum still is going to behave qualitatively in the same way
as shown in Fig. 2.11a.

For a more detailed analysis of aperiodic motions a tool called a Poincaré section
(also a Poincaré map) is very useful. In the case of a system with periodic excitation,
the simplest way to create such a section is by sampling the state of the system in
the intervals equal to the period of excitation. A Poincaré section of the solution
from Fig. 2.11a, obtained by sampling the position of the tip of the third rod of the
pendulum at time instances t; = iT (i = 1,2, 3,...), where T = 2xn/w is the
period of excitation, is shown in Fig. 2.11b.

On this occasion we obviously skip an appropriate number of initial points in
order to remove the transient motion. The Poincaré section shown in Fig. 2.11b
contains 3,500 points. As can be seen, these points form a continuous line. This is a
characteristic of quasiperiodic motion.

In Fig. 2.11c, d another case of aperiodic motion of the pendulum is shown for the
excitation parameters ¢ = 25N-m and w = 2rad/s. The pendulum starts its motion
at the time instant ¢ = 0O from zero initial conditions. The transient motion for ¢ €
(0, 200 s) was skipped. The motion of the tip of the third rod for ¢ € (200, 4005) is
shown in Fig. 2.11c, whereas Fig. 2.11d shows the corresponding Poincaré section
obtained in the same way as for the quasiperiodic solution, this time composed
of 10° points. It is a typical section for chaotic motion, that is, the set of points
approximating this motion is an infinite set.

In the end, we should add that a Poincaré section for a periodic solution of
period nT (only those kinds of solutions are possible in a system with periodic
excitation), where 7 is a period of excitation and # is an integer number, will form
a set consisting of n separate points. An example would be the individual points
plotted in Figs. 2.9 and 2.10.

2.3.3 Dynamic Reactions in Bearings

Lagrange’s equations enable a relatively easy derivation of equations of motion of
complex dynamical systems, since, for instance, they allow for avoiding the direct
determination of dynamic reactions in a system. However, when these reactions
have to be determined, it turns out that in equations of motion alone there is not
enough information, and additional analysis of the physical system is required. That
is precisely the case for a triple physical pendulum. If we want to determine the
dynamic reactions in its three joints, we have to consider separately the motion
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Fig. 2.12 Accelerations of characteristic points of a pendulum and their decomposition in local
coordinate systems

of each of the bodies under the action of external forces. In order to obtain the
relationships allowing us to determine the reactions, we will have to find the
accelerations of the mass centers of particular bodies.

The accelerations of the mass center of the first pendulum C; and the joint O,
(Fig. 2.12) can be expressed in terms of tangential and normal components:

ac, = a(cti) + ag'll), ap, = aglz) + ag'z‘), (2.105)
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where
agi) = &1 = 1plel, ag‘) = wlzel = 1/}1261, (2.106a)
aglz) =&l = U1y, ag’zl) - wlzll = 1&1211- (2.106b)

In turn, the acceleration of the mass center of the second pendulum C, can be
represented as

ac, = a0, +al?), +ag, (2.107)

or, taking into account relationship (2.105), as

ac, = ap) +al) +al), +al?), . (2.108)
where
a(éi)/oz = £r07 = Ynes, ag'zz}oz = a)zzez = 1'02262. (2.109)

The total acceleration of point C; can also be decomposed into the following two
components (Fig. 2.12):

ac, = al? +al?, (2.110)

and the best way to determine them is to project the right-hand side of (2.108) onto
the directions 7, and n,:

agj) = aﬁé‘z’ cos (Yo — V1) + a&" sin (Y2 — Y1) + agﬁoz,
al? = —af)) sin (Y2 — Y1) + ag! cos (Yo — 1) + al)y, . (2.111)

and when we take into account relationships (2.106b) and (2.109), the acceleration
components take the form

agi) = Yilicos (Y2 — Y1) + Yilisin (Y2 — ¥1) + vhaea,
al? = —ynlysin (Y2 — 1) + il cos (Y2 — y) + Ve, (2.112)

In an analogous way we can proceed with the acceleration of point Oj3:

ao, =ao, +ay) o +a57,. (2.113a)
ao, =al) +al + a‘g})/Oz + a(g;}%, (2.113b)

ap, = a(("f}) + a(O"j), (2.113¢)
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where
agi)/oz = 8212 = &212, a(0n32/)02 = a);lz = wzzlz (2114)
Projecting (2.113b) onto directions #, and n, we obtain
agzs) = a(Otlz) cos (Yo — 1) + a(O"Z‘) sin (Y2 — Y1) + a(Oti)/Oz’
ag’;) = —a(O”z) sin (Y2 — Y1) + a(O"Z‘) cos (Yo — Y1) + a(O";/)OZ, (2.115)

and after taking into account relations (2.106b) and (2.114) we obtain

a(Otzs) Y11y cos (Yo — Y1) + Yl sin (Yo — Y1) + Yala,
al? = —ulysin (Y —y1) + ¥l cos (Yo — 1) + 3l (2.116)

The acceleration of point C3 can be represented as
ac, =ao, +al), +ag, (2.117)

or, after taking into account (2.113b), as

_ o) (n1) (12) (n2) (13) (n3)
ac, = ag, + a9, +ag,,0, + 200, + 2,0, T ac,/0, (2.118)
where
agi)/% = g3e3 = Ynes, a(c’?/)@ = wle; = Yle;. (2.119)

The total acceleration of point C3 we also decompose into the following two
components (Fig. 2.12):

ac, = a(ctz) + a(C";), (2.120)

and projecting (2.117) onto directions 73 and n3 we obtain

ag) = ag) cos (3 — 1) +ag! sin (Y3 — ¥1)
+ agzs)/oz cos (Y3 — ¥2) + a(O";/)OZ sin (Y3 — ¥) + ag;)/03,
a%? = —a% sin (Y3 — ¥1) + alV cos (Y3 — Y1)

—a) o, sin (Y3 — ) +al), cos (Y3 — Yo) +all, . (2.121)
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and taking into account relationships (2.106b), (2.114), and (2.119) we obtain

al = yly cos (Y3 = yn) + il sin (Y3 — Y1)
+ Yaly cos (Y3 — o) + Y3l sin (Y3 — ¥2) + Yses,
al = —lysin (Y3 — Y1) + Y3l cos (Y3 — Y1)
— Yl sin (Y3 — ¥2) + V312 cos (Y3 — ¥2) + 3es. (2.122)

The dynamic reactions of the action of the links of a pendulum to one another and
to the base can be represented as the sum of the following components (Fig. 2.13):

Ro, = R}, + Ry, (2.1232)
Ro, = R +Ry?. (2.123b)
Ro, =Ry + RYY. (2.123¢)

Due to space limitations, Fig. 2.13 does not contain the moments of forces of the
actions of links on one another and of the base action through joints, since in the
following calculationswe do not use moment equations but force equations only.

For each link the equations expressing the acceleration of its mass center under
the action of external forces have the following form:

miac, = Ro, +m1g —Ro,,
moac, = Ro, + m2g — Ro,,

msac, = Ro, + msg, (2.124)
and projecting these equations onto directions #1, 111, ¢, 12, t3, and n3 we obtain
t t
m a(C:) R(Oll) myg sin (V)

— R cos (Y2 — Y1) + RS sin (42 — ).

m ("‘) R(O"l‘) mig cos (V)
— R sin (Y2 — Y1) — R cos (2 — Y1) .

mza(éi) R(otzz) myg sin (Y2)

— R cos (¥3 — ) + Ry, sin (Y3 = ¥) .
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Fig. 2.13 External forces acting on particular links of a pendulum and the accelerations of the
mass centers of the links (force couples acting at joints not shown)

(n2) __ R(”Z)

maag; — mag cos (Y2)

(3) sin (Y3 — ¥2) — R(O":) cos (Y3 — ¥2) ,

m agi) R('3) msg sin (Y3) ,
msa (”3) R("3) —msgcos (V3) . (2.125)
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Those equations can be solved with respect to the components of the dynamic
reactions, and taking into account relationships (2.106a), (2.112), and (2.122), and
bearing in mind that sin(—x) = — sin(x) and cos(—x) = cos(x), we obtain

Ry = ms [gsinys + ey + I (Y cos (Y1 — ¥3) — ¥ sin (Y1 — v3))
+1y (Y2 cos (Y2 — ¥3) — ¥3 sin (Y2 — ¥3)) ] .

Ri?j’ = m3[gcos¥s + esy3 + 11 (V1 sin (Y1 — ¥3) + ¥rf cos (Y1 — ¥3))
+ (Yasin (Y2 = ¥3) + Y13 cos (Y2 = ¥3))]

R(Otzz) = my [gsiny, + exfn + 11 (Y1 cos (Y1 — ¥2) — Yi sin (Y1 — ¥)) ]
+ RGY sin (Y2 — ¥3) + Ry cos (Y2 = 13)

Rg; = ma[g cos Yy + exfi3 +1 (V1 sin (Y1 = ¥2) + ¥ cos (Y1 = ¥)) |
+ RYY cos (Yo — 3) — RY) sin (2 — ¥13) .

Ry =my [gsinyy +efn] + RGY sin (Y1 — ¥) + RY cos (y1 — ¥2) .

Rgll) =my [gcosy + ell/}lz] + R(O";) cos (Y1 — ) — R(Otzz) sin (Y, — ) .
(2.126)

Now the absolute values of total reactions can be calculated as

Ro, = \/(Rg?)z + (ng)z,
Ro, = \/(Rg?f + (Rg;)z,

Ro, = \/(Rg;’)2 + (R(O";))Z. (2.127)

Some examples of time plots of dynamic reactions calculated from relations
(2.126) and (2.127) are presented in Figs.2.14-2.16.

The time plot shown in Fig. 2.14 corresponds to the solution shown in Fig. 2.8,
that is, to the decaying motion of a pendulum without excitation. It can be seen
that reactions decrease relatively quickly to a value close to a static reaction for a
system at rest. In Fig. 2.15 we present the time plot of dynamic reactions in periodic
motion of the pendulum shown in Fig. 2.9 (¢ = 25N - m and w = 3rad/s). Here
greater values of reactions are visible. In turn, in Fig. 2.16 we present a certain
select part of the time plot of dynamic reactions for the chaotic solution shown in
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Fig. 2.14 Dynamic reactions in bearings for decaying motion of pendulum without external
excitation (¢ = 0)

Fig. 2.11c, that is, for the parameters of excitation ¢ = 25N -m and w = 2rad/s.
The most rapid changes in the dynamic reactions of bearings are visible there. It
should be emphasized, however, that it is only part of an irregular time plot, and the
instantaneous values of reactions may be even greater.
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Supplementary sources for the material in this chapter include [7-12]. In

addition, numerous books are devoted to the periodic, quasiperiodic, and chaotic
dynamics of lumped mechanical systems including [13—15].
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Chapter 3
Statics and Dynamics in Generalized
Coordinates

3.1 Constraints and Generalized Coordinates

We will consider a discrete (lumped) material system (DMS) in Euclidean space E’
composed of N particles of masses my, my, ..., my (see[1]), presented in Fig. 3.1,
which, as mentioned earlier, will be called a discrete mechanical system.

The position of every particle of a mechanical system is described by a radius
vector r, in the adopted right-handed Cartesian coordinate system.

Here it is worth emphasizing that, despite introducing the notion of a particle
already at the very beginning of our book, the majority of interacting bodies cannot
be described (even approximately) by such a notion. The problem is that a “physical
point” always has a certain finite size, and additionally we are often faced with a
body in a liquid or gaseous state.

Rigid bodies from a mechanical point of view are understood as non-deformable
bodies and sufficiently large in comparison to a particle (although the local
deformability of a rigid body is allowed, for instance, in the description of an impact
phenomenon).

We will treat surfaces bounding rigid bodies as barriers that do not let in (out)
other bodies including particles. The restriction of motion of those particles leads to
the introduction of the notion of constraints.

According to the axioms of classical mechanics, masses are positive (m, > 0)
and time-independent (dm,/dt = 0), and a system is additive (mass of the whole
system m = Zfl\,:l my). A state of the mechanical system presented in Fig. 3.1
is described by radius vectors r, of particles n = 1,..., N and the velocities
of these particles v,. A mechanical system can also be acted upon by certain
forces. However, regardless of the action of these forces, certain restrictions called
constraints can be imposed on vectors r, and v,. If there appears at least one such
restriction, we call the given mechanical system a constrained system or a system
with constraints. If there are no restrictions, the mechanical system is called a free
system.

J. Awrejcewicz, Classical Mechanics: Dynamics, Advances in Mechanics 107
and Mathematics 29, DOI 10.1007/978-1-4614-3740-6_3,
© Springer Science+Business Media New York 2012
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X4

Fig. 3.1 A discrete mechanical system,n = 1,..., N

Let a particle be moving on a certain plane with which we associate the
coordinate system OX, X,. The equation of constraints for the particle has the form
x3 = 0, where x3 denotes the coordinate of the axis OX; perpendicular to the plane.
Let a particle be moving on a sphere of radius r = r(t). If we take the coordinate
system OX, X, X, at the center of the sphere, then the equation of constraints has the
form xl2 +x§ +x§ —r2(t) = 0, where (x|, X2, x3) are the coordinates of the particle.

We call a mechanical system a system of a finite number of degrees of freedom if
it is possible to introduce a finite-dimensional space R™ and a set of points £2 in this
space such that there exists a one-to-one relationship between the possible positions
of particles of the mechanical system and all the points of the set £2 C R [2].

We call the set £2 a configuration manifold (configuration space) of a mechanical
system if the aforementioned relationship is differentiable following transition from
one set of coordinates to another. In order to illustrate the introduced notions we
present here two examples ([2]). The first example is presented in Fig. 3.2.

The motion of the end of the weightless rod with concentrated mass at this end
takes place along a circle of radius /.

The second example involves the planar motion of a double mathematical
pendulum (Fig. 3.3).

Choosing, in an arbitrary way, two mutually perpendicular torus sections it
is possible to measure from them the angles ¢; and ¢,; then the positions of
the pendulum ends are represented by the points on the torus with a one-to-one
correspondence.

In the example depicted in Fig. 3.2 it would seem that instead of a circle one
might take a segment [0, 2] on the axis O¢. However, such a choice is improper
because the one-to-one correspondence between the position of the pendulum
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Fig. 3.3 A double mathematical pendulum and its configuration manifold (a torus)

¢ +2nm (n = =£1, £2,...) and the points ¢ belonging only to the interval
[0, 27r] is not preserved. The start of the segment (point O) should be connected
with its end (point 27), and then we obtain the circle. In turn, in the example
from Fig. 3.3, one might take the square of side [0, 27] in the coordinate system
O@1¢,. In order to preserve the one-to-one correspondence between the position of
the double pendulum described by the point (1, ¢;) one should “glue” together the
sides of a square, at first, for example, along ¢; obtaining a cylinder, and then along
¢, obtaining a torus.

Apart from the aforementioned three-dimensional Euclidean space R? it is

convenient to introduce a real space R3¥ in which its single point (xll, le, x_,}, R

x{v , xév , xév ) represents all N particles of the space R®. Let us note that in this
case N trajectories, associated with every one of N points of the space E3, are
represented by one trajectory in the space R*V. Such a space we call a configuration
space (configuration manifold).

We call the minimum number of independent coordinates necessary to describe
the motion of a mechanical system (they can be linear displacements or rotations)

the generalized coordinates of this system [3-5]. It follows that the number of
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generalized coordinates is equal to the number of degrees of freedom. In both
previousy mentioned cases we have already dealt with constraints that enabled the
realization of the configuration manifold of the considered mechanical system (the
base and the connection of links).

The system shown in Fig. 3.2 has constraints that in the general case can depend
on displacement, velocity, and time.

Let us note that these restrictions are “external” because they do not follow
from the motion of the investigated system. The relationships describing these
restrictions (algebraic equations, algebraic inequalities, differential equations, or
their combinations) are called equations of constraints. We call systems with
imposed constraints constrained systems because their “freedom of motion” is
constrained in a certain way.

Constraints that depend only on position are called geometric constraints (they
do not depend on velocity), and a constraint equation is f(r,,t) = 0. Kinematic
(differential) constraints additionally depend on the velocity, and the equation of the
constraint has the form f(r,,v,,t) = 0. Constraints dependent on time are called
rheonomic (time-dependent) constraints, whereas those not dependent on time are
called scleronomic (time-independent) constraints.

The constraints listed above belong to the group of bilateral constraints described
by algebraic equations, whereas unilateral constraints are described by algebraic
inequalities. Constraints are called holonomic constraints if they are geometric or
their equation can be integrated, i.e., it is possible to obtain their equation in the form
of a function dependent on displacement and time. Kinematic constraints that cannot
be reduced to the aforementioned form are called non-holonomic (nonintegrable)
constraints [2-6].

The notion of a non-holonomic system was introduced by Hertz' (1894), but it
had been considered earlier by Euler (1739). Euler is known as the first scientist to
consider the small vibrations of a rigid body rolling without sliding on a horizontal
surface. The fact that constraints are imposed on velocities fundamentally distin-
guishes non-holonomic systems from systems of Lagrange,? Routh,? or Hamilton.*

We will present now an example of non-holonomic constraints that will later be
considered in more detail. Let an ice skate, modeled as a thin rod in contact with
ice, be moving on ice (on the plane OX, X,). Let the velocity of point A of the rod
v4 = [X|, X2] form an angle ¢ with the axis OX, so we have X4 = v4 o E| =
vqcose and X4 = vy o E; = vy sing. In this case we are dealing with a hockey
skate, where angle ¢ can change and is a coordinate.

'Heinrich Hertz (1857-1894), German physicist and mechanician working on contact problems
and electromagnetic waves.

2Joseph Lagrange (1736-1813), distinguished French and Ttalian mathematician and astronomer,
working also in Berlin.

3Edward Routh (1831-1907), English mathematician who played a significant role in the theory
of control and stability.

4William Hamilton (1805-1865), Irish mathematician, physician, and astronomer.
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Because the problem is planar, the constraints are described by the following
equation:
Xo4 = X14tan . 3.1

We will show that (3.1) is not integrable. To this end, let us assume that the equation
is integrable, i.e., there exists an analytical relationship between the quantities xj,
X2, and ¢ of the form

S (x1,x2,9,1) = 0. (3.2)
Differentiating (3.2) we obtain
. 0 0 0 0
f= —fX1+—fX1 tang0+—f¢)+—f =0, 3.3)
dxy dxy aQD ot

where relationship (3.1) was taken into account.
By assumption, x; and ¢ are independent. Thus we have

af af af af

— 4+ —t =0, —=0, —=0 34

o o, 20 o1 (34)
Because angle ¢ is arbitrary, from equations (3.4) it follows that

0 a 0 a

U o Wy Wy U, (3.5)

9x, T0x, T e T

This means that the function f does not depend on xj, x;, and ¢, which is in
contradiction with the initial assumption. A complete solution of the problem of ice
skate motion on ice will be presented in Example 3.4.

It is worth drawing the reader’s attention to the difficulties associated with
the analysis of non-holonomic mechanical systems because of their peculiar
properties [6]:

1. They can be derived from the d’Alembert-Lagrange principle but not from
Hamilton’s principle.

2. The law of conservation of energy is valid, but the angular momentum of the
system may be not conserved.

3. Non-holonomic systems are so-called almost Poisson systems but not Poisson
systems.

4. The phase flow associated with non-holonomic systems may not be conserved
in a phase space, which leads to the formulation of a new concept of asymptotic
stability.

In [6] can be found the latest achievements and history regarding non-holonomic
systems. Here we present only an example of a simple system of this type analyzed
by L. Euler. That is, we will consider the geometry of a disk rolling without sliding
on a horizontal plane. Here we can distinguish the “most” general motion of the
disk, that is, the case where it is falling, marked in Fig. 3.4 by time instant #;, when
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Fig. 3.4 General motion of a disk (coin) on a plane in the case where the axis of the disk is vertical
(instant #y) and where the disk is falling (instant ;)

the disk has 5 degrees of freedom, i.e., x;(¢), x2(¢), @(t1), y(t1) and ¢(t;). The
coordinates of the point of contact between the disk and the plane are denoted by x;
and x,. The angle y is formed between the plane of the disk and the vertical line,
whereas the angle 6 is the angle of rotation of the disk measured in the plane X, X,.
The second of the distinguished cases corresponds to a situation where the plane
of the disk is perpendicular to the horizontal plane (y = 0). The third case (the
simplest one) involves the motion of the disk when its plane is perpendicular to the
horizontal plane, and the motion takes place along a straight line. Let us consider
kinematic relationships at point A for the case y = 0, that is, the relationships
following from the process of rolling without sliding, of the form

d d d
d—(f, & v4cos ®, & v4sin ©. (3.6)

=R
va d d

From the foregoing kinematic relationships we obtain equations of constraints in
the configuration space, that is,

dx; = Rcos Odg,
dx, = Rsin Odg,

(3.7)

but we cannot determine the curve along which the disk moves in the horizontal
plane.

The notion of constraints describes the manner in which particles and rigid
bodies interact when they begin to come into contact with each other.
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If at the instant after the initial contact a particle “sticks” to the surface of the rigid
body and rests there for the remaining time of the observation, then such constraints
are called the bilateral constraints of the considered particle.

If following the initial contact the particle remains stuck for some time, and then
it separates, then such constraints are called the unilateral constraints of the particle.

If the duration of contact between the particle and the body is very short, and a
sudden change in the sense of the particle velocity occurs, then we are dealing with
an impact and the relationship between the velocity before and after the impact is
defined by the notion of a coefficient of restitution (Chap. 5).

In a material system, unilateral constraints may spontaneously change into bi-
lateral constraints, and vice versa. For instance, the textbook [1] describes the self-
excited vibrations of two particles (blocks) connected together elastically (by means
of massless springs) lying on a non-deformable belt moving with a constant velocity.
In such a system, stick-slip, slip-stick, and slip-slip motions can be observed.

Our planet Earth, in a certain approximation, can be treated as a material system
with constraints. Houses, bridges, factories, etc., are solid bodies remaining on the
ground, so for those “particles,” Earth determines the bilateral constraints. Planes,
balloons, rockets, and missiles are examples of bodies for which Earth determines
the set of unilateral constraints.

Unilateral constraints and bilateral constraints can also have the following
physical interpretation. If in the considered DMS we limit the independence of
the positions and velocities of the system’s particles by connecting them with
rigid massless rods, then the constraints are bilateral constraints. If we connect the
particles with a flexible inextensible thread that cannot break, then we are dealing
with unilateral constraints.

Equations of bilateral constraints have the form

fm(l‘,l‘l,l"l,...,I‘N,I"N):O, m=1,...,M. (3.8)

If the equals sign in the equation above is replaced with the (> 0) or (< 0) sign,
then the restrictions imposed on the motion of the particles of the DMS are called
unilateral constraints.

From the foregoing discussion it follows that M relationships (3.8) are described
by non-linear differential equations that depend on the time, position, and velocity
of every particle of a DMS. Already here we encounter a very serious obstacle of a
mathematical nature since, as a rule, the solution to a problem that involves (3.8) is
impossible by means of an analytical method.

Example 3.1. Demonstrate that the connection of two particles by means of a
rigid massless rod (inextensible thread) introduces bilateral constraints (unilateral
constraints).

If we denote the distance between masses m (particle A) and m, (particle A,)
in Fig. 3.1 by 72, then in the adopted coordinate system we have

fi=(@—1r)’ =1,
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or in scalar form

2 2 2 2
(X14, = X14,)" + (X24, — X24,)" + (X34, — X343)" — 71, = 0,

which, according to (3.8), classifies these constraints as bilateral constraints.
In the case of constraints imposed by means of an inextensible thread, we obtain

2 2 2
(X14, = X145)° + (Y24, — X24,)” + (X34, — X34,)> — 1], <0,

which classifies these constraints as unilateral constraints.
In this case neither particle A; nor particle A, moves, but during their motion
their relative distance can only change from zero up to r5.

Let particle A; of mass m; (Fig. 3.1) move with a constant velocity r; = v =
const. We are going to determine the type of constraints imposed on this particle.
We have

I =V,

and after scalar multiplication by ¥; we obtain
fistiok —v2 =0,

or in scalar notation
2 w2, w2 2 _
X{+x; +x3—v=0.

According to (3.8), here as well we are dealing with bilateral constraints, and the
restrictions concern the velocity of particle A;. Its components lie on a sphere of
radius v.

Unilateral constraints in this case will appear when we assume that the velocity
of particle A; cannot exceed velocity v. Such a problem is equivalent to a restriction
in the form of inequality

4+ A7+ x5 -2 <0, (3.9)

which defines this constraint as unilateral.
The transition from unilateral to bilateral constraints takes place through a change
from inequality to equality, that is, when unilateral constraints undergo “tightening.”
Let the considered mechanical system have M; holonomic constraints. Thus
it has

Ki =3N — M, (3.10)

degrees of freedom. There are 3N Cartesian coordinates describing the motion
of a DMS, whereas there are K; generalized coordinates g (k = 1,...,K))
(their number decreases because of the imposed constraints, and hence
K, <3N ).
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Cartesian coordinates can be expressed in terms of generalized coordinates in the
following way:

Xin = X1n (ql,...,qk,---qul)’
Xopn = Xop (ql,...,qk,---aqu)’

X3n = X3u (q15 - Gk - - qK;) 3.11)

wheren =1,...,N.

Relationships of type (3.11) are called equations of constraints in the resolved
form [7-10].

The minimum number of parameters required for a complete description of any
position of a DMS is called the number of its independent generalized coordinates.

As generalized coordinates one can take K; from the Cartesian coordinates
X1ns X2n, X3, Wheren = 1,..., N, so as to enable the solution of M; equations
of constraints. In practice that approach is not always convenient. Completely
different independent quantities ¢, . .., gk, describing the configuration space of
a system are often introduced. The generalized coordinates can be distances, angles,
or surfaces, or they may not have any physical meaning. The functions (3.11)
substituted into constraint equations have to turn these equations into identity
relations, on the assumption that we are dealing with K; independent generalized
coordinates. Because K; < 3N, the rank of the rectangular matrix

[ dx11 ox11 |
0x1o 0x12
0x13 0x13

A=|: : (3.12)

0x1n 0xX1n
dqy T gk,
0xan 0xan
dqy T gk,
Ox3y 0x3y

L 91 9qk,

is equal to K.

If all positions of the system can be described by relations (3.11), the gener-
alized coordinates are global coordinates. If (3.11) is satisfied only for certain
configurations of the system, then the generalized coordinates are local coordinates,
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and it is necessary to choose different local coordinates to represent all possible
system configurations. However, in most cases such problems do not emerge and
the choice of generalized coordinates is suggested naturally by the considered
mechanical system. Relationships inverse to (3.11) that describe the dependencies
of K| coordinates gx on 3N Cartesian coordinates of the DMS are usually very
difficult to obtain in practice.

Holonomic constraints (also called geometric or finite constraints) are described
by algebraic equations of the form

fm1 (l,l‘l,...,l'N):O (3.13)

or

Sy (X101, o XN X1, XN, X3 X)) =0, myp =1, M.

Relationships of type (3.13) are called equations of constraints in implicit form
[7-10]. With these constraints, restrictions are imposed on the positions of particles
of a DMS (they can be unilateral or bilateral).

Kinematic (differential) constraints are described by a system of non-linear
differential equations of the form

fmz(t,rl,...,rN,i'l,...,l"N):0 (314)
or
Jma AL X101, oo XINL X1, o XON, X31, .., X3N,
Xilsoe s XIN, X210 oo XoN, X310, .., X3y =0, ma=1,..., My,

and they are indentical to constraints described by (3.8). Kinematic constraints can
also be unilateral or bilateral constraints.

Further, we will deal with a case of kinematic constraints that boils down to an
analysis of relationships that are linear with respect to generalized velocities of the
form

M,
Z Copn (.11, ..., xy)dr, + B, (2,11, xy)df =0,

mz=l

nzl,...,N, mzzl,...,Mz. (315)

The number of degrees of freedom of a system expressed by independent
generalized coordinates is defined through (3.13) and is equal to K; = 3N — M,
since kinematic constraints do not change the configuration manifold of a DMS.
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Unilateral constraints can be holonomic or non-holonomic. Holonomic unilateral
constraints are expressed analytically by restrictions imposed on the generalized
coordinates in the form of the following inequalities:

fm(Z7xllﬂ'"9x1N7'x217"'7'x2Nﬂx3l7"'7'x3N)20’ mzl?"'7M' (3'16)

The described holonomic constraints were time-dependent constraints because
time occurred explicitly in the equations and inequalities describing them. If time
does not occur in the aforementioned equations and inequalities, then the constraints
are called time-independent constraints. The differential constraints (3.15) are called
time-independent constraints (scleronomic constraints) if the vector functions ¢,
do not depend explicitly on time, and additionally §,,, = 0.

The existence of constraints in a DMS significantly influences the dynamics of
such a system. Constraints on every particle supply an additional force called the
reaction of constraints. Moreover, every trajectory of motion in R*" space lies on a
constraint surface described by (3.13), (3.14) or (3.15) or by inequalities (3.16). The
constrained motion of a system with constraints causes the imposition of restrictions
on the displacements, velocities, and accelerations of particles of a DMS so as to
satisfy the equation of constraints.

Equations of non-holonomic constraints (3.15) read as follows:

D Cmmb A By =0, my=1.2..... M. (3.17)

n=1

In turn, differentiating equations of holonomic constraints (3.13) we obtain

dfml Z 3fm1 Bfml =0, m =12,..., M, (3.18)

8r,, dt

and (3.18) have a form analogous to that of non-integrable kinematic constraints
(3.17).

During the motion of a mechanical system, the system’s radius vectors, veloci-
ties, and accelerations undergo change according to the following equations:

r, =r,(q,....qx,t), n=1,...,N,

ar, ar,
=r, = / —, k=1,...,K,
VER =545 g
ay =, = MG 4 O ISP ] (3.19)
n = n—a 03 an Qka aqaqk 8127 .

where K denotes the minimum number of independent generalized coordinates.
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We aim to express non-holonomic constraints (3.17) in terms of generalized
coordinates. Substituting the first two equations of (3.19) into (3.17) we obtain

Jar, . or,
cmzn(qlv"'quvt)(a_quk—i_a_:)+ﬂm2(qlv"'qu7t):07
nzl,...,N, mzzl,...,Mz, (320)

which can be transformed into the following form:

Bk (q1. - qr. ) Gk +bmy (g1, ... qk. 1) =0, my=1,..., My, (3.21)

where 3 3
Bmzk = %cmzns bmz = %cmzn + ﬁmzv (322)
and the summation convention applies in the preceding equations (and further).

In the case of both holonomic and non-holonomic systems, generalized coordi-
nates can assume arbitrary values. As far as generalized velocities ¢, are concerned,
they are arbitrary only in the case of a holonomic system. In the case of a non-
holonomic system, generalized velocities satisfy system of equations (3.21).

Proceeding in a similar way, one may differentiate with respect to time equa-
tions (3.17) and (3.18) yielding constraints of accelerations of a DMS introduced
respectively by holonomic and non-holonomic constraints (see, e.g., [11]).

Virtual displacements ér,, can be expressed through generalized virtual displace-
ments 8¢y in the following way:

8, n=1,....,N, k=1,....K. (3.23)

In the case of a holonomic system, variations ¢y are arbitrary, whereas in the
case of a non-holonomic system [see (3.21) and (3.22)], they are related to each
other by the following equations:

K>

> Bupbge =0, my=1.... .M, (3.24)
k=1

From the preceding calculations it follows that for holonomic systems the
number of degrees of freedom is equal to the number of independent generalized
coordinates. In the case of non-holonomic systems, the number of degrees of
freedom is equal to K, = 3N — M,, where, according to the previous notation,
K, denotes the number of generalized coordinates, whereas M, corresponds to the
number of non-integrable constraints.

Let us present now the physical interpretation of the obtained (3.17) and (3.18)
in the number of M = M, 4+ M,. These equations impose M constraints on
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Fig. 3.5 A graphical illustration of possible paths, displacements, and velocities of particle n

the velocities r,, n = 1,..., N, of the considered system since at every time
instant the velocities have to satisfy the aforementioned differential equations, and
M, + M, <3N.

If we considered only first-order ordinary differential equations (3.17) and
(3.18) without the remaining 3N — M second-order differential equations, then,
in general, there would be infinitely many choices of velocities ¥y, 1y, ..., Ty such
that the differential equations of constraints would be satisfied [5]. Thus, for a fixed
(“frozen”) time instant there exist infinitely many possibilities from which to choose
the set of displacements and velocities of all the particles of the DMS, and we call
such displacements and velocities of the particles possible velocities and possible
displacements [5].

This will be explained based on the notion of variation introduced in Sect. 1.4.
Let us consider the possible motion of one of the particles of the DMS depicted
in Fig. 3.5. In the figure are shown two possibilities of motion of particle n along
possible paths 1 and 2.

According to Fig. 3.5, at the time instant ¢ = f#, + d¢ particle n can undergo a
displacement dri,l) or drﬁ,z) and end up in positions described by radius vectors rﬁ,l)
and rf,z). Let us note that

r, = dr) —dr?, (3.25)
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Multiplying (3.17) and (3.18) by d¢ we obtain

N, fm 9fm
—dZZO, :15---7Ms
n2=:1 3rn o ot " :
N
Z szndl'n + ,Bmzdt =0, my=1,..., M>, (3.26)

n=1

and the preceding equations describe the increments of possible displacements dr;,
or possible displacements of vector r;,.

Following substitution into (3.26) of possible displacements dr,(ql) and dr,(qz) ,

and subtracting by sides the obtained equations for m; = 1,..., M, and m, =
1,..., M,, and then taking into account (3.25), we obtain

N

9fm

> e =0, = 1,... M, (3.27)

= ar,

N

D bty =0, my=1.... M. (3.28)

n=1

The just obtained (3.27) and (3.28) do not contain terms with the time
differential dz. Therefore, we will call variations &r, virtual displacements. The
latter will be coincident with possible displacements for the so-called “freezing” of
constraints. The left-hand side of (3.27) can be represented as

ad
8fm = o 8, (3.29)
ar,
n=1
which is a variation of the function f,, = f,,(r1, r2, ..., 1., t), but for the “frozen”

time instant ¢, since according to the definition of variation § f;, denotes the deviation
(variation) of the function f;, for the fixed (“frozen”) time instant . As was already
mentioned, the imposition of constraints on a DMS has the effect that the particles
of the DMS are not allowed to move arbitrarily in R? space but move on certain
surfaces conventionally called constraint surfaces.

If we are faced with scleronomic constraints, then the previously mentioned
surface is fixed. In this case the differentials of vectors of possible displacements
dr,(,l) and dr,(f) and the vectors of virtual displacements dr,, are tangent to the surface
of constraints.

Now, let us assume that we are dealing with rtheonomic constraints. Then the
previously mentioned vectors dr,(,l) s dr,(,z) , and dr, are no longer tangent to the
constraint surface, since this surface moves with a certain velocity, which we will
denote by v. In this case the vectors of possible velocities of particles 7)) and n®
are as follows:
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i) = vy B = v (3.30)

where i',(ll,f) and l",(f,) denote the velocities tangent to the surface moving with

velocity v.
According to (3.25) and (3.30), we have

sty = drl) —dr® = (£ — i) dr = (l";glz) - 1";(12:,‘)) dz,

which means that vector dr, would be coincident with possible displacements for
[frozen constraints, that is, for a non-moving surface. In this case one should prepare
constraints in a certain way, that is, “freeze” them. Therefore, we also call the virtual
displacements “prepared displacements” in mechanics.

If a particle moves on a smooth constraint surface, then we have

FRoér, =0, (3.31)

where F,’f is the reaction normal to the smooth (i.e., frictionless) surface at the
position of particle n. In the case of a fixed constraint surface the total differential
dr, = ér,, whereas in the case of a movable constraint surface dr, # r,, but
“freezing” of the constraints allows for the satisfaction of condition (3.31).

In mechanics a postulate of so-called ideal constraints is introduced.
Adding (3.31) together forn = 1,..., N we get

N
> Ffoér, =0, (3.32)

n=1

which expresses this postulate in a proper way. The postulate means that in the
case of ideal constraints the sum of works of all reaction forces Ff during virtual
displacements ér,, (at any time instant) is equal to zero.

The introduction of such a postulate was necessary because of the need to
determine unknown reactions Ff . Let us then consider a constrained DMS. For each
particle n the following equation is satisfied, which results from Newton’s second
law:

mut, =F, +F +FR n=1,... N, (3.33)

and additionally M; equations of geometric constraints of the form
fml (1'1,1'2,...,1'1\/,1), m=1,..., M (3.34)
and M, equations of kinematic constraints of the form

cmzn (rlers---srnvt)odl‘.n +ﬁm2 (rlsr27'~'7rNs[) - Os

nzl,...,N, mzzl,...,Mz. (335)
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In general, we have 6N + M| 4+ M, scalar first-order differential equations
(3.33)~(3.35), 3N unknowns Xy, X, X3,, and 3N unknowns F\ . FR FR

thatis, 6NV in total. This problem will be described more broadly and clarified during
the derivation of Lagrange’s equations.

Example 3.2. Determine the type of constraints of the systems shown in Figs. 3.2
and 3.3.

In the case of a simple pendulum, the coordinates of a particle of mass m satisfy
the following restrictions:

fi=x3=0, fH=xi+x3+x3-1>=0.

According to (3.13) they are geometric constraints, and from the foregoing
system of equations we obtain an equation of the path of a particle of mass m,
which is the circle

2 2 _ g2
xi+x;=1°

In the case of a double mathematical pendulum, the restrictions imposed on the
motion of particles of masses m (particle A;) and m, (particle A,) have the form

fi=x34, =0,

= xlel +X§A1 +X§A1 —If =0,

fr=x34, =0,

fo= (X4, — X14,)> + (024, — %24,)° + (X34, — X34,)> = 1> = 0.

The problem of determining the path of the point A(X14,, X24,, X34,, X14,, X245,
X34,), which represents a double mathematical pendulum, boils down to the solution
of following two non-linear algebraic equations:

2 2 12
X, + X9, =11,
2 2 2
(X1A2 — xlAl) + (X2A2 — x2A1) = Zz‘

In both cases we are dealing with time-independent constraints. However, if we
had I = I(¢),; = [1(t), [ = I(t), where these time functions are given in
advance, then the constraints would be time-dependent constraints.

According to (3.13), also here we have imposed geometric constraints. Those
equations admit the following physical interpretation. Particle A; is always at the
distance /; (in plane of the drawing) from point O. In turn, the other particle, A,,
lies with respect to A; on a circle of radius /; whose center is at point A;. The surface
on which point 4 lies is the surface of a torus, and on that surface two coordinates
(¢1, ¢2) suffice to describe the position of point A. O

Below we will consider an example of geometric and kinematic constraints
imposed on the motion of a system of two particles.
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X,A

O X1, Xia, X
1

Fig. 3.6 Motion of arod A; A, on plane OX X,

Example 3.3. Let two points A; and A, be connected by a massless rigid rod of
length / ()AlAz) = l) and let them move on the plane OX X, (Fig. 3.6). On those

two points are imposed constraints in such way that the velocity vector of the center
of segment A, A,, denoted by v¢, coincides with the rod axis (see also [5]).
A characteristic of such motion is that the velocity v¢ of the center of seg-

ment A A, is always directed along vector A; A,, that is,

—_
Ve = AAlAz.
Because
r,=r + A4
and

—
rc =r; + 4,C,

—
r'c =1 — CAz,
adding the preceding equations we have

— =

2rc =r;+ 1+ A;C — CAy,

that is,
ry+r;

rc = ——F—,
2
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and eventually, we obtain the vector equation

Ve = &21‘2 = A(ry; —ry).

Multiplying the preceding equation in turn by unit vectors E, and E;, and then
dividing the first obtained scalar equation by the second, we arrive at

Xoa, + Xoa,  Xoa, — X24,

XA, +X14,  X14, — X14,

Multiplying out the preceding equation we have

Xo4, (X14, — X14,) + X24, (K14, — X14,) + X14, (X24, — X24,)

+X14, (X24, — X24,) = 0.

The obtained equation describes kinematic constraints. It is not possible to
integrate them directly to obtain geometric constraints, so they are non-holonomic
constraints.

An additional equation of (geometric) constraints is (obviously the motion takes
place in the plane OX, X>, and consequently x34, = x34, = 0)

() =
that is,

(X14, — X14,)° + (X24, — X24,)> — 12 = 0. O

We will now explain in more detail the physical interpretation of the introduction
of generalized coordinates qi, . . ., gk, [see (3.11)] on the assumption that geometric
constraints occur in the system.

Equations of geometric constraints (3.13) allow for the elimination of M| coor-
dinates, and consequently the K; = 3N — M, coordinates remain in the equations.
Following the introduction of generalized coordinates ¢1, ¢2, ..., q3n5—u,, €ach of
Cartesian coordinates x,, X2,, X3,, # = 1,..., N, can be expressed through those
generalized coordinates according to formula (3.11). Let us consider this statement
based on Example 3.3. On the motion of particles A; and A, are imposed the
following constraints:

x34, = 0,
X34, = 0,

(X4, = X14,)” + (x24, — X24,)> = 12, (3.36)
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and we have then N = 2, M| = 3, thatis, K; = 3N — M; = 3. It follows that the
system demands that we introduce three generalized coordinates ¢; = Xic, ¢2 =
X2c, g3 = ¢. According to Fig. 3.6 we have

X4 = 41— 5€0843,  Xoa = G2 7 sings,

/ I .
X14, = q1 + Ecosqg, X24, = G2 + 3 sin g3. (3.37)

Substituting expressions (3.37) into the last equation of (3.36) we obtain
(Ising3)* + (I cos q3)* = I, (3.38)

which is identically satisfied.

From that follows the conclusion that the introduction of generalized coordinates
q1, 42, and g3 allowed constraints (3.36) to be identically satisfied. One may check
that the equation describing kinematic constraints of the form

Xoa, (X4, — X14y) + X24, (X1, — X14;)

+ X14, (X24, — X24,) + X14, (X24, — X24,) =0 (3.39)

will not be satisfied.
Based on earlier calculations [see relations (3.21) and (3.22)] we have

al Jr,

N X1, X2y, 0x3,
= nZ=:l Cximon W Cxomaon W Cxsman W s

N

ar,
bmz = Z (cmzn 9 ) ,Bmz
n=1
N
ax ax ax

= Z (cxlmzn B_;n + Cxymaon Tzn + Cxamon a_;n) + ,Bmz- (340)
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From (3.37) we obtain

Cxj11 = X24, — Xo4, = —I sings,
Cxyll = X14, — X14, = [ COS g3,
Cxz11 =0,

Cx 12 = X4, — X24, = —I sings,
Cx,12 = X14, — X14, = [ CO8¢3,

Cx312 = 0. (3.41)

We have one equation of kinematic constraints, that is, m, = M, = 1.
From (3.40) it follows that b; = 0, because 35% = 33?” = 3‘5‘% =0and B, =0,
and to determine coefficients By;, Bi, and Bj3 the following partial derivatives are

needed:

0x14, 0X1 4, 0x14, .
=1, =0, = —sings,
g J7p) 943 2
d d d
X24, _ 0, X24, _ 1’ X24, = — = cosgs,
36]1 aqz 36]3 2
a a a
X14, — 1’ X145 _ O, X14, _ _ SiHQ3,
g1 99> g3 2
d 0 d /
X24, _ 0’ X245 _ 1’ X245 = — 08 ¢;. (342)
Iq J7p) 993 2
The unknown coefficients are equal to
a a
By = cxlnM + cxluﬂ = —2/sings,
dq1 g1
a a
B = cxznﬂ + cxluﬂ =2l cosqs,
992 g2
B;; =0. (3.43)

Finally, (3.21) takes the form
Bi141 + Biag, = =214, sings + 21§, cos g3 = 0,
that is,

G>» = qitanqs (3.44)

Let us count the degrees of freedom of the analyzed system. We have N = 2,
M, = 3, M, = 1, from which it follows that W = 3N — (M| + M,) = 2,
but we have three generalized coordinates (¢;, ¢2, ¢3). The number of generalized



3.1 Constraints and Generalized Coordinates 127

coordinates exceeds the number of degrees of freedom, but there is an additional
equation (3.44) resulting from the existence of kinematic (non-holonomic) con-
straints.

In holonomic systems the number of degrees of freedom is always equal to the
number of generalized coordinates.

If in Example 3.3 we substitute the rod by a skate, then we remove the possibility
of both motion perpendicular to the blade and rotation about the vertical axis, so the
skate will only be able to slide along the direction of the blade, and if it touches
the ice surface, then it will move on that surface along the blade. If we relate this
problem to the generalized coordinates of the blade in motion on the plane OX X»,
q = [x1¢, x20, qo]T (coordinates xjc, x2c and ¢ are dependent), then the equations
of constraints take the form ¢ — ¢y = 0 and X,¢ = X|¢ tan ¢, where the constant
@o = const is determined from the skate initial position on the ice. Following
integration of the second equation we obtain x,c — xjc tangy + ¢ = 0, where
constant ¢ is also defined by initial conditions of the skate motion. The motion
of point C takes place along a rectilinear path described by the initial conditions
x1¢ (), x2c (), and ¢g. The skate has one degree of freedom, and its motion can
be described by one independent variable.

If in Example 3.3 we replace the rod by a hockey skate (which is rounded
and makes contact with the ice at point C) whose sliding is blocked along the
direction transversal to the blade but can rotate about the vertical axis passing
through point C, then we have three independent generalized coordinates x¢, xac,
and ¢. The only non-holonomic constraints imposed on the motion of constraints
are now the non-holonomic constraints X,¢ = X;¢ tan¢.

On the surfaces described by the preceding equations, that is, on the surfaces
of constraints, let us take an arbitrary point A whose radius vector is described
by the equation ry = (X1, X2.1, X3.1,---,X1.N» X2.N, X35). Through that point
we draw an arbitrary smooth curve lying on the constraint surface, where the
parameter s plays the role of a variable parameterizing this curve. The tip of the
vector r(s) = (x11(5), x2.1(5), X3.1(8), ..., X N (5), X2 n(5), x3.5(s)) determines
the hodograph, that is, it lies on the curve. Let r(0) = r4. The vector dg(;) s—p =
r' (0) = (r}(0),...,r} (0)) is tangent at point r 4 to the curve lying on the constraint
surface. There is a possible total of K = 3N — M curves passing through point r 4.
All tangent vectors to these points form a K-dimensional vector space called a
tangent space at point A.

The velocity vector r = (¥, ..., Iy) associated with every trajectory of motion
lies in the tangent space.

Constraint surfaces are a certain part of the configuration space R*V. A particle
(if it has constraints imposed on it) moves on a completely different surface than
the space R3V, which is three-dimensional, infinite, and flat. If we consider a classic
example of motion of a particle on a smooth spherical surface, then the configuration
space is two-dimensional, finite, and curved.
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Let one coordinate g, change by a virtual increment Sqi. The radius vectors
describing the positions of all the remaining points will change by

ar,

Iqxk

where in this case the summation convention does not apply.

The displacements of all the particles of the investigated mechanical system
result from the action of external F,, and internal FZ forces, which perform certain
elementary works. The sum of those elementary works is equal to

or, =6r, (q1,...,.9x) = 8qr, (3.45)

N N
. L
> (Fy +F)ose, = (F, +F)o %8% = Qudgi = $Wi.  (3.46)
k
n=1

n=1

From the preceding equation it follows that the sum of virtual works of forces
F, + Fj;), n =1,...,N,is equal to the work done by the so-called generalized
force Qy during virtual displacement 8qj.

Definition 3.1. A physical quantity Q. multiplied by a virtual increment §q;. of the
generalized coordinate qy is equal to the work done by the system of forces acting
on the considered mechanical system during virtual displacements generated as a
result of the increment of this generalized coordinate and is called the generalized
force.

From (3.46) it follows that
Wi

Sqx
and that Q. corresponds to the generalized coordinates gy

The presented approach is often applied in practical calculations, where the
mechanical system is intentionally subjected to the virtual displacement such that
8q; = 0for j # k.

Let us now impose virtual increments §qx on all generalized coordinates

Ok (3.47)

q1,-..,qn. They cause the virtual increments of each of the radius vectors r, of
the form
or, or, or, or,,
Sr, = —8q1 + —8q, +---+ Sqx = Sqr, k=1,...,K. (3.43)
g 99> gk gk

There exists a certain arbitrariness of choice of generalized coordinates for
each of the considered mechanical systems. Generalized coordinates allow for a
complete geometrical description of the mechanical system being analyzed with
respect to the introduced frame of reference. Sometimes, however, they do not have
a straightforward physical interpretation. For instance, in Fig. 3.3 were introduced
the so-called absolute angles ¢; and ¢, describing the motion of a double pendulum,
but the so-called relative angles ¢; and v, (where ¥y = ¢, — ¢1), which are also
generalized coordinates, might have been introduced as well.
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3.2 Variational Principles of Jourdain and Gauss

Differentiation of (3.13) and (3.15) leads to the following equations:

0fm, O fon, O fon, O fon,
2 =0,
ar, " Or,dr Viva + 9t or, Vit 012
mlzl,...,Ml, (349)
ICmon € mon 0Bm Bm
Condpn + Br,2 Vv, + 312 v, + B'BrHZ r, + §t2 =0,
my=1,..., M, (3.50)

where the summation convention applies.

Because we assume the expression 3N — (M| + M) is positive (we are dealing
with motion), for a given fixed time instant ¢ = ¢* the system is in one position
(configuration) described by the radius vectors r, = rj, but the sets of their
velocities v, = v and accelerations a, = a can be chosen arbitrarily in infinitely
many ways according to the imposed constraints.

The neighboring configuration of the system at the time instant t* + Af is
described by the radius vectors ) + Ar,, where Ar, are possible displacements
realized in time interval A¢. If At is small enough, we can determine displacements
from the following equation:

1
Ar, = Vi AL + Ea;;‘(m)2 4o (3.51)
Because the sets v and a) can be chosen arbitrarily in infinitely many ways
(they are infinite sets), Ar, is also an infinite set. Let us take two different virtual

displacements (variations) corresponding to the same quantity A, which according
to formula (3.51) are equal to

1
Air, = v AL + Ea;;l(m)2 4o

1
Aor, = VAL + Ea,’fz(At)z o (3.52)

Let us multiply (3.18) and (3.17) by At and use in turn (3.52). Next, after subtracting
the corresponding equations from each other we obtain

9
i’;‘ (Vii—Vi) At =0, my=1,.... M, (3.53)

Con (Vi1 = Vi) At =0, my=1,.... M,. (3.54)
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In a similar way we proceed with (3.49) and (3.50), but now they are multiplied
by %(At)z, then subtracted from each other, to arrive at the equations

or, (3”1_3”2) 2 + E)rnarlvl1 Vi arnar,vlz V2 2

P o w wy _
+231‘al‘ (an—Vnz)—O, my=1,..., M, (3.55)
(A1)? A€ mon A€ mon (A1)?
Can (A — ay) ) + 81-,2 Vi) Vo — 8—1-,2V72 Voo 5
aﬂmz * * ) _
+IER ( —E) = 0. my= Lo My, (3.56)
n

Subtracting by sides (3.52) we obtain

At)?
or, = Ar, — Aory, :8vnAt+(San( ) + ..., (3.57)
where
8¥n = V1 = Vi,
Sa, =a, —a),, n=1,...,N. (3.58)

Historically, if in (3.57) we limit ourselves to the first approximation with respect
to At, then we call the virtual displacement given by the equation

or, = 6v, At (3.59)

the Jourdain variational principle [12,13].5
If in (3.57) we assume §v,, = 0 and §a, # 0, we obtain

(Ar)?
>

ér, = da, (3.60)

which describes the Gauss variational principle.

SPhilip E. B. Jourdain (1879-1919), English scientist.
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The Jourdain variational principle, Gauss variational principle, and the more
frequently and earlier applied d’ Alembert principle are equivalent, and we use them
as appropriate to describe the character of the solved problems. For example, the
Jourdain variational principle gives quick results for determination of the selected
reaction forces (reaction moments). In simple applications, it is commonly used by
admitting the possibility of motion of the mechanical system along the direction of
the reaction force that produces this motion, that is, we consider the system as “an
instantaneous mechanism,” which will be explained in more detail in Example 3.4.

The Gauss variational principle differs significantly from the d’Alembert—
Lagrange principle and from the Jourdain variational principle as it is associated
with the notion of an extremum. According to the previous calculations we assume
that at a certain (“frozen”) time instant all the particles of a material system will
have positions r, = rj and velocities v, = v;,n = 1,..., N, equal to the actual
positions and velocities of the system’s particles. The accelerations in the system
will undergo variations, and in this case they do not have to be infinitely small. We
call such a variation a Gauss variation. Substituting (3.60) into the general equation
of dynamics we obtain

(F, —mya,) oda, =0, (3.61)

where the summation convention applies. Because forces F, do not depend on
accelerations a, and m, = const, it is easy to show that (3.61) can be obtained
from the relationship for the extremum of function I" of the form

oI =0, (3.62)
where
1 F,\’
I'=-m,|la,——) . (3.63)
2 mpy
The function I = I'(a,) is sometimes called the system compulsory function.
It has a stationary value for a, = a), where a, are actual accelerations of

particles of a material system.
Let I'* be a system compulsory function, for actual accelerations. Let us consider
the disturbance of actual accelerations of the form

a, = a, + da,, da, >0, (3.64)

where now a, denotes kinematically possible accelerations. Substituting formula
(3.64) into (3.63) we have

2
I = %mn [(a: + 8a,) — &:|

npy

" ny npy

1 F, F, (F.\
= S a*? + 2a*8a, + (8a,)’ —2a* —~ —28a,— + (—) ., (3.65)
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and in turn
r*= lmn (a;; - ﬂ)z = lmn |:a,f2 - 232‘& + (F—)z} , (3.66)
my my, my
and from that we calculate
AT =T —TI'* = (m,a} —F,)8a, + %mn((San)z. (3.67)

From (3.67) it follows that AT attains its extremum (minimum) value for non-
zero 8a, in the case of actual motion, since the first term on the right-hand side
of (3.67) vanishes.

The variational principle of Jourdain can be represented in a slightly modified
version convenient for direct application also to dynamic problems. We will begin
the calculations with the general equation of dynamics

N
Z(Fn — MpVy) 08, = 0. (3.68)
n=1
Let us note that s P
or, = ol 8qr = Vn 8qr, (3.69)
8qk 8qk
and taking into account (3.69) in (3.68) we obtain
al v,
> (Fy = my¥y) 0 =" | i = 0. (3.70)
el 8q

Because §¢gj are independent, from (3.70) we obtain the following system of
equations:

N

8V
Z(Fn — My Vy) 0 L. =0, k=1,...,K, (3.71)
n=1 8qk

where K denotes the number of degrees of freedom of the considered DMS and gx
are generalized coordinates. (Note that F,, in (3.71) are forces that perform work.)
If we further assume that N = oo, then we can extend our calculations to the case
of a rigid body. Let us introduce the system of local coordinates of origin at the
mass center of the rigid body O = C and let the position of material points n be
represented by radius vectors p,,. Let us note that if N = oo, then K = 6. The
second component of the scalar product in (3.71) can be represented in the form

8V, Sve Sw
— =+ = X P, (3.72
8qx gk gk P )

which follows from the Konig theorem.



3.2 Variational Principles of Jourdain and Gauss 133
The velocity of an arbitrary point z is equal to
Vo =V +® Xp,, (3.73)
and after differentiation with respect to time we obtain
Vi=Ve+@Xp,+®xXp,=Ve+oxp,+oXx(@Xxp,). (3.74)
Substituting (3.72) and (3.74) into (3.71) we obtain

i SV al SV N Sve
E F, o —% — 2 V., o —° — E F, o —
"8 n=1mnvn ° qu "e qu

n=1 8qk n=1

N

N
dw . .
+E Fno(_-kxpn)_§ m (Ve + @ X p,

n=1 n=1

1)
o x (@ x p,)) o g Zmnvco(—xpn)

N
> @ x p, + @ x (@ xp,)) 0 (5—.“’ xpn)
8q

n=1

=(F—mvc)o— Z o (p, x F,)

N
1)
— mup, x (@ % p, +© x @ x p,) —Mc] 0 % —0. (375
k
n=1

where we used the relation a o (b x ¢) = b(coa) as well as the following
relationships:

N N N
m=>Y"m,  Mc=>» p,xF. Y mp,=0. (3.76)
n=1 n=1 n=1
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Fig. 3.7 Beam consisting of two pin-joined segments, with built-in support at point A and sliding
support at point C situated at angle o with respect to the horizontal

The vector of angular momentum of a body with respect to its mass center equals

N N
Kc = an XMyVyp = Zmnpn X (V¢ + @ X p,)

n=1

=
—_

N
mnpn X V¢ + Z[mﬂpn X ((l) X pn)]

n=1

Il
M=

=
Il
_

[mup, x (@ x p,)]. (3.77)

I
M=

1

=
Il

where, during transformations, (3.73) was used.
The time derivative of angular momentum is equal to

N
. d
Z |:mnpn X ((x) X pn) +mup, X E(") X pn)]

n=1

Kc

N
=Y [mup, x (@ x p,) + @ x (@ % p,)]. (3.78)

n=1
Eventually, taking into account (3.78) in (3.75), we obtain

9 .9
(F—mve) o =€ 4 (Me —Ke) o 2€ ), (3.79)
gk aqx

which also expresses the variational principle of Jourdain.

Example 3.4. Calculate the reactions of two beams AB and BC of lengths 4/
connected by a pin joint at point B using the Jourdain variational principle. The
geometry and loading of the beam are shown in Fig. 3.7 (see also [13]).
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F

Fig. 3.8 Schematic showing how to determine the reaction R 4y,

The Jourdain variational principle is associated with virtual velocities and for
static cases has the following form:

F, oér, =0,
and in scalar form, after dropping the variation symbol, we obtain
Fxl,,xln + sz,,x2n + FX3,, + )-C3n = O,

where the summation convention applies.

The Jourdain variational principle, also known as the principle of virtual power,
is valid for a material system with ideal, holonomic, and bilateral constraints.
During application of this principle one should take into account the principle
of independent action of forces (moments). Release from constraints takes place
successively depending on the determined reactions. In the adopted coordinate
system we admit a single possibility of motion (translation or rotation) and apply
the reaction force (reaction moment) at the point associating the force with linear
velocity (the moment with angular velocity), which will be presented subsequently.

We replace the actual supports with equivalent supports [13]. Let us calculate the
horizontal reaction at point A, thatis, R4, . For this purpose we admit the possibility
of horizontal motion of the beam, and we replace the action of the built-in support
in the horizontal direction with a horizontal slider connected to the beam while at
the same time imposing on it the virtual velocity v 4, (Fig. 3.8).

We assume that the force F (F L R, ) does not influence the horizontal reaction
and that the velocity Vg || V4y,. The principle of virtual power takes the form

RAx1 VAx + Mw = 0.

The whole beam behaves like a rigid body of an instantaneous center of rotation
at point S, and according to Fig. 3.8 we have BS = 4//tanc. Substituting v4y, =
vp = wBS into the preceding equation we obtain

M tano
4]

RAx1 = -

Let us now determine the horizontal reaction R4y, (Fig. 3.9).
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F

Fig. 3.10 Schematic showing how to determine a moment of reaction M 4

For this purpose we will treat the system of two beams as a rigid body (v4y, =
Vpx,) Whose center of velocity is situated at point C. In this case the Jourdain
variational principle has the form

(_RAx2 + F)VAx2 +Mw =0.

Now we determine w from the relationship vy, = 4/, which after substitution
into the preceding equation yields

M
Rsz:F_'_H'

Let us determine now the reaction moment (of the built-in support) at point A,
that is, M4 (Fig. 3.10).
In this case the principle of virtual power will take the form

—Mywq4 + Fv+ Moc = 0.

Because vp = 4lw = 4lwc, we have wy = wc = w, and in turn v = 3lw.
Eventually from the preceding equation we obtain

My=M +3IF.
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F

Fig. 3.11 Schematic showing how to determine a moment of reaction R¢

Fig. 3.12 Mathematical X
pendulum and the adopted ""_
coordinate system OX; X, O =
/
¢
mg
X1 Y

What is left to be determined is the reaction at point C, which is perpendicular
to the roller support at this point (Fig. 3.11).
From the Jourdain variational principle we obtain

Mwp = Rcve cosa.

Because v. = 4lwg, finally we calulate

M

Re = ——.
© 7 4lcosa

Example 3.5. Derive the equation of motion of a mathematical pendulum
(Fig. 3.12) using the Gauss variational principle.
According to (3.63) we have

where according to Fig. 3.12

X, =lIsing, x;=Ilcosg, F, =mg, Fy, =0,
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and we successively calculate
X1 =—lgsing, X,=I¢cosp
¥ =—I¢sing —l¢>cosp, X =I¢cosp—I¢*sing.
Substituting X; and X, into the original equation we have

= %m [(_Z¢ sing — ¢ cos g — g)2 + (l¢5 cosg —1¢? sin<p)2]

= %m(lzgliz sin? @ + 12¢* cos® ¢ + g7 + 21%¢¢? sin g cos ¢ + 21 g sin ¢
+21gg*cos @ + 12¢% cos® ¢ + 12¢* sing — 21%G¢? sin ¢ cos @)
= %m (IP¢* +2ig@sing + 1°¢* +21g¢* cos ¢ + g°) .
Condition (3.62) in this case takes the form
or _ m (Zng + nginfp) =0,

8_¢5_

hence we get
¢+ %sin(p =0. O

Example 3.6. On an inclined plane of angle of inclination ¢ at point O is installed

a light rod of length / and to its opposite end is mounted a disk of radius R and

mass m that can roll on this inclined plane (Fig. 3.13). Determine the equations and

the period of oscillations of the disk rolling without sliding for a small angle 6.
The vector of angular velocity of the disk is equal to

w = Oe. — Vre,,

where the investigated mechanical system has one degree of freedom described by
the generalized coordinate 8; the equation relating 6 and ¥ follows from constraints

of rolling of the form

.
V=R

The investigated system can be treated as a rigid body with a fixed point O. The
angular momentum of the disk is equal to

0.

Ko = Iy,0e.— Ipvre,,
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= ‘mgsing
mgsing¥ Q
/ 2mgsingsing

Fig. 3.13 Motion of a disk on an inclined plane

and its time derivative is
Ko = Ix,0e. — IoVre, + Ioyrey.
The only external force performing work in the system is the gravity force, which
produces a moment with respect to point O of magnitude

0
My = —2mg sin ¢ sin Eez >~ —mg0 sin ge,.

In the considered case (3.79) simplifies to

. 0w
(Mo —Kop) o Frol 0, (*)
Gk
where now the magnitudes of moment and angular momentum are calculated with
respect to the fixed pole O.

Because

0w /
— =e,— —e
00

R T
following substitution of the values KO, My, and %‘;; calculated earlier, from
equation (*) we obtain

" . . i
(—mg0singe, — Ix,0e. + Ioye, — [oYbey) o (eZ - Ee,)

2
= —mgfsing — Iy,0 - Io&% = —mgfsing — <1x3 + 1o (—) ) b =0,
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hence we eventually obtain an equation describing the small oscillations of the
rolling disk in the form

0+ a0 = 0,
where
5 mg sin g
o = —12
Iy, + 1o (ﬁ)
Because for the disk we have Ip = ’”TRZ, Iy, = m(RT2 + [?), the period of

. . . 2 2
oscillations is equal to 7 = 2% = /& t61% O
o glsing

3.3 General Equation of Statics and Stability
of Equilibrium Positions of Mechanical Systems
in a Potential Force Field

The general equation of statics will be derived from the general equation of
dynamics introduced in the following form in Chap. 1 of [14]:

(F, —mua,)oér, =0, n=1,...,N, (3.80)

which is valid for systems with ideal constraints.

Theorem 3.1. From the many possible states of equilibrium (positions of equilib-
rium) of a mechanical system allowed for by ideal constraints, the actual state of
equilibrium, valid in time interval ty < t < t«, occurs when the elementary work
done by all active forces during arbitrarily chosen virtual displacements is equal to
zero, that is,

F,o8r, =0 (to <t <ty). (3.81)

Equation (3.81) is the necessary and sufficient condition of an actual equilibrium
state and is called the general equation of statics.

Further we will consider equilibrium conditions of a system of particles (i) and a
rigid body (ii).

Case (i). Let us consider a system of particles described by radius vectors r,,.
We aim at the formulation of conditions that must be satisfied by constraints
imposed on the system in order for the system to remain in a state of equilibrium,
represented by a certain equilibrium configuration (position) in time interval 7y <
t < t,. If the equilibrium position corresponds to r, = r, then according to (3.13)
we have

fml (I‘T,... r Z)EO, m =1,...,M (3.82)

shno
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for ¢t € [ty, t*]. Velocities and accelerations corresponding to the positions r); are
equal tov, = 0,a, = 0 fort € [ty, t*]. From the equation describing non-
holonomic constraints (3.17) we obtain

B, (xF,....x0 1) =0, my=1,.... M, (3.83)

for t € [ty, t*]. The satisfaction of (3.82) and (3.83) means that the constraints
imposed on the system enable the realization of the state of equilibrium of the
mechanical system. However, the equilibrium of the mechanical system depends
additionally on forces acting on this system, that is, whether or not the general
equation of statics (3.81) is satisfied.

A proof of the necessity of condition (3.81) follows directly from the general
equation of dynamics (3.80) after setting a, = 0. As shown in the monograph
[11], a proof of the sufficiency of condition (3.81) is more complex. The complexity
of this problem will be highlighted on the basis of the example below, which was
excerpted from [11].

Example 3.7. Conduct an analysis of equilibrium conditions x(0) = x(0) = X(0)
of a particle moving along the axis OX whose motion is described by the differential
equation X = Ax?, where0 <a < 1,4 > 0.

Substituting x = 0 into the analyzed equation it can be seen that condition (3.81)
is satisfied for any 7. The condition of contraints allows for the existence of
equilibrium position x = 0. Let us note, however, that despite the fact that this
conservative, one-degree-of-freedom system is autonomous, the initial conditions
x(0) = x(0) = 0 do not guarantee that the particle will be kept in the equilibrium
position x = 0. It follows from this observation that the analyzed equation, apart
from the solution x = 0, also has one more solution of the form

x(t) = A*19",

where

e [AG=aPT 2
=|— a .
2(1+a) ’ l—a

From the given relationship a* = 2(1 — a)~' it follows that a* —2 = € > 0.
Differentiating this second non-trivial solution we have ¥(t) = a*(a* — 1)A*t¢,
hence we obtain X(¢) = 0 for ¢ > 0, although for t = 0 we have ¥(0) = 0.

The preceding example shows that despite the fact that the conditions of
constraints and equality x(0) = x(0) = 0 have been satisfied, it is not guaranteed
that the particle will be in the equilibrium position x = 0.

The proof that condition (3.80) is a sufficient condition requires that the total
uniqueness of the solution with respect to the initial conditions be taken into
account.
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Fig. 3.14 Geometry of a X, A
system of three identical
pipes with the forces
performing virtual work
marked

Example 3.8. Determine the magnitude of a horizontal force F that should be
applied to a pipe of center A3 in order for a mechanical system consisting of three
identical pipes of radius R (Fig. 3.14) to remain in static equilibrium.

Virtual work is done only by two forces, that is, G, = G and the desired force F.
From the isosceles triangle A A; A, A3 it follows that the radius vectors r4, and r 4,
are determined by the equations

ry, = 2RcosaE; + 2R sinaE,,

ry, = 4RcosaE,,

and hence we obtain the variations

0r4, = 2R (—sinaE; + coseE;) der,
0rq, = —4RsinadoE;.

In turn,
G = —GE,, F =—-FE,,

so substituting it into (3.81) we obtain
Fodry, + G odry, =0.
From the preceding equation we have
(4RF sina —2RG cosa) §a = 0,

hence we find that F = G/(2tan). O
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The general equation of statics (3.81) can be expressed in terms of generalized
coordinates in the following way:

F, oér, = Q0,,8qm =0,
n=1,...,.N, m=1,...,M. (3.84)

In the case of holonomic constraints, D/ = M, where D/ defines the number
of degrees of freedom of the DMS, and the quantities §¢,, in (3.84) are independent
of each other. In the case of non-holonomic constraints, they depend on each other.

From (3.84) it follows that in the equilibrium position q = qo = 0 for the case
of holonomic constraints we obtain D/ equilibrium equations of the form

0n=0 m=1,....,.M, (3.85)

which allow for the determination of D/ desired coordinates of vector
Qolq10. - - - - gm0l

In many problems of statics we encounter a special case where the only active
forces are potential forces that follow from the gravitational force field.

In this case, the problem simplifies substantially since it boils down to the
determination of the extremum of potential energy of the investigated mechanical
system.

Let us recall that a force field is called a potential field if there exists a scalar
function U such that it generates conservative forces acting on the system situated
in that force field, that is,

U
F, = , n=1,...,N, (3.86)
ar,,
where U is the force (generating) function. In turn, we call V' = —U the potential

or potential energy, and forces F,, defined by (3.86) the potential forces.
The elementary work of potential forces in a stationary potential field is equal to

SW =F, odr, = gU o dr,
oUu oUu U
= X1y 8oy + b3, = 8U
X1y, 0x2, 0x3,
aV
= =5V = —B—Sqm = Qmégm = 0. (3.87)
qm

From (3.87) it follows that knowing the potential V' = V'(r,) and for the case of
holonomic constraints D/ = M, we have at our disposal D/ following algebraic
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XY

0]

Fig. 3.15 Motion of a particle along curve f(x;) in a potential field

equations, which serve to determine the equilibrium position vector r,, = rg, n =
1,...,N:

£1%4
——— =0, m=1,...,M. (3.88)
0qm

In a potential force field the satisfaction of condition (3.99) is equivalent to the
condition

On =

dv =0, (3.89)

that is, the total differential of the potential energy is equal to zero.

Let a particle be moving in a potential force field in the vertical plane, where
X, = h = f(x1) denotes the elevation (position x,) of this particle above the
ground (Fig. 3.15).

The potential energy of a particle of mass m is equal to

V =mgf(x1), (3.90)

and condition (3.89) is satisfied at four points A; of the curve. After a small
displacement of the particle from the position A; (A;) it always returns (does not
return) to this position. In the case of an inflexion point A3, the initial deflection
of the material point from the equilibrium position results in permanent loss of
this equilibrium position. In the case of a material point at position Ay, its motion
takes place along the horizontal portion of the curve and in its vicinity there exist
infinitely many new equilibrium positions determined by the initial conditions. We
call point A an elliptic point, point A, a saddle point, and point A4 a parabolic
point.

Let us emphasize, however, that conditions (3.88) are the necessary conditions
for equilibrium, but they are not sufficient conditions. We skip the analysis of non-
holonomic constraints, confining ourselves only to the commentary that in this case,
select or all partial derivatives of the potential energy of the system may not be equal
to zero.
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Case (ii). We will now proceed to an analysis of equilibrium conditions in the
second case, that is, in the case of a rigid body. From the previous considerations it
follows that an arbitrary system of forces and moments acting on a rigid body can
be replaced with the equivalent force system, and in the present case, with the main
force vector F and the main moment of forces Mo, where O is an arbitrary pole
(point of reduction). If the body is a free body, the conditions F = 0 and My = 0
are the necessary and sufficient conditions of equilibrium of the body. If the body is
constrained, we “mentally” release it from the constraints, introducing the reaction
forces and reaction moments, and then we treat these forces as active forces. Also in
this case, the equations F = 0 and My = 0 are valid, and now we determine from
these equations the desired reaction forces and moments.

Theorem 3.2. The necessary and sufficient condition for a body to remain in a state
of equilibrium in the time interval ty <t < t« is a lack of motion of the body at the
time instant ty and the satisfaction of the two equations

F=0, Mp=0, (3.91)

that is, the main force vector and main moment of force (of the forces applied to
the rigid body) with respect to any point O are equal to zero in the time interval
o <1t = ts.

Proof. A free rigid body is a scleronomic system, and its actual displacement
realized during time dr is a virtual displacement. The elementary work of forces
and moments of forces performed over a rigid body and related to its elementary
displacement (it consists of the translation of pole O and body rotation with respect
to this pole) is equal to

SW =Fovodt + Mp owdt =0, (3.92)

where v denotes the velocity of pole O and @ is the vector of angular velocity of
the body. Let us impose on the body arbitrary instantaneous velocities vp and @ for
time instants ¢ € [fo, tx). From the general equation of statics in the form (3.92)
equations (3.91) follow directly, which was to be demonstrated.

Let us return to the equilibrium conditions of a mechanical system in a potential
force field that are described by equations (3.88). If we disturb the state of
equilibrium q = qo of the system by introducing small displacements and initial
velocities (disturbances), then the system might return to the position qo (the
disturbances tend to zero), or it might not return to this position (Fig. 3.15). We
describe the equilibrium position qo in the first case (point A; from Fig. 3.15) as
stable and in the second case (points A,, A3, and A4 in Fig. 3.15) as unstable.

Theorem 3.3. If in the equilibrium position of a conservative mechanical system
the energy has a local minimum, then this equilibrium position is stable.

Although the proof of this theorem is omitted here, we will present some basic
information regarding its interpretation.
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Let qo = qo (¢1. 2..-..qp”) = 0, where D/ denotes the number of degrees
of freedom of the DMS, and let V= V(0,...,0) = 0. Here we make use of the
following classical definition of stability (see, e.g., [1]). We call the equilibrium
position ¢ = --- = g4 = --- = qp/ = 0 a stable position if, for an arbitrary
e > 0, there exists § = §(¢) such that for all 1 > ¢, the following inequalities hold:

lga@)| <&, |qal<e, d= 1,...,Df, (3.93)
at the initial conditions assumed earlier

lqa ()| <8, |qa(t0)] < 6. (3.94)

In other words, in the space (q, q) the solution starting from a cube of edge 26
will remain inside a cube of edge 2e.

By assumption, the scalar function V' = V(qy,..., ¢p Y ') has a local minimum,
so there exists n > 0 such that in the neighborhood

lgal <n. d=1.....D/, (3.95)

the inequality
V(gi,....qp") > V(0,...,0) =0 (3.96)

is satisfied if at least one of the generalized coordinates g, is not equal to zero.
Because the kinetic energy in the proximity of the equilibrium position (0, ...,0)
has the form

1 ..
T =T = a;@,. . .4p)qiq; > 0, (3.97)

from formulas (3.96) and (3.97) it follows that the total energy of the system is equal
to
E=V+T>0 (3.98)

if at least one of the generalized coordinates ¢; # 0,d = 1,..., D/ . In turn,
because V(0,...,0) = 0 and T(0,...,0) = 0, we have E(0,...,0) = 0, and
taking into account condition (3.94) we conclude that the function E attains the
minimum at zero.

As we will present later in Sect. 3.4, knowledge of the kinetic energy and
potential energy of a system of particles (rigid bodies) and of generalized forces
allows for the derivation of the equations of motion of the system in the form
of Lagrange equations of the second kind. The equations can be presented, for
example, in the form

d aT aT
—_— =04, d=1,...,D7, 3.99
dr 9q4 g4 Qd ( )
., D v
0s=0r -2 2 (3.100)
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where 7' is the kinetic energy of the rigid system (or the rigid body), Q is the
active force (non-potential and non-dissipative), D is the dissipation function, also
known as the Rayleigh dissipation function describing energy dissipation, and V is
the potential energy of the system.

In technical applications for the determination of equlilibrium positions we can
use the four principles presented below.

(1) Lagrange’s principle.

Inserting 7 = O (the state of equilibrium) in (3.99) we obtain Q; = 0, d =
1,..., D, which describes the equilibrium condition of an arbitrary system of
forces with ideal holonomic constraints.

(i1) Principle regarding potential forces [described by (3.99)].
In the equilibrium position in a potential force field with ideal holonomic
constraints the derivative of potential energy becomes zero with respect to all
generalized coordinates, which indicates the existence of its extremum.

(ii1) Dirichlet’s® principle [follows also from (3.99)].
If a material system is in a potential force field, then the position determined by
the minimum of the potential energy is the position of the stable equilibrium.
The Dirichlet principle in the case of a mechanical system with one degree of
freedom boils down to the satisfaction of two conditions:

1% 02V
— =0, —>0. (3.101)
Iq1 9

In the case of a system with two degrees of freedom D/ = 2, the system
equilibrium position in a potential force field is stable when the following
conditions are satisfied:

v, PV,
g1 T 0g? ’
PV 92V PV o\’
w5907 \aoam) >0
dq7 9q; dq10q>
eV >0 v >0 (3.102)
dgf ~ 7 dqy .

(iv) Torricelli’s’ principle.
This is a special case of Dirichlet’s principle. If in a uniform gravitational
field a constrained material system subjected to the action of ideal constraints
reaches a minimum elevation (the equilibrium position) with respect to the
chosen level, then such a position (configuration) of the system is a static
equilibrium position.

%Johann Peter Dirichlet (1805-1859), German mathematician of French origin working in
Wroctaw, Gottingen, and Berlin.

"Evangelista Torricelli (1608—1647), Italian physicist and mathematician.
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Fig. 3.16 Two heavy rods
resting on a smooth cylinder
in equilibrium position
determined by angle 2«

Example 3.9. Two uniform rods of identical masses m and lengths / connected by
a pin joint at point A rest on a smooth cylinder of radius R (Fig. 3.16). Determine
the angle between the rods in the equilibrium position.

The potential energy of the rods with respect to the axis OX| has the form
V(e) = —2mg(l — x) cos«,

and the desired value of x is equal to

R

X = Rctana + Rtana = ———.
sin & cos o

From the first equation we get

V() = —2mg (Z coso — i) ,

sin o
and hence
aV R
V' = (@) = -2mg (—l sino + 'C(;S(X) =
do sin” «

From this equation we obtain
Isin*a — Rcosa = 0.
Dividing the preceding equation by cos « we get
[tana sin®a — R (sinzoz + cos’ &) =0,
which after dividing by cos? « leads to the equation

ltan’o — Rtan’a — R = 0.
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AT(X1X20X)

Fig. 3.17 Convex rigid body lying on plane OX; X, and two coordinate systems (point of contact
A™ is in proximity of point A4)

Setting tanae = y, the desired root op can be determined using a graphical
method shown by the equation

I s 2
—y’ = 1.
R Yo+
The inequality condition associated with the preservation of the stability of
equilibrium position takes the form

’?v v’ 2mg|: lcosa + R (—sin3oe—2sinoecoszoe)j|

da? oo sin*«

3

i 02 2
2
sim- o

and following determination of the value of « it is possible to show that it is
satisfied. O

Example 3.10. (See [11]) Investigate the stability of the equilibrium position of a
rigid body lying on a perfectly smooth horizontal surface in a gravitational field. Let
the surface IT be convex in the neighborhood of the point of contact with the body
A on condition that the body’ center of gravity lies on a vertical line passing through
the body’s center of mass C (Fig. 3.17).

With the body we associate the Cartesian coordinate system (body system)
CX[ X} X} of origin at its mass center C and axes directed along its principal
centroidal axes of inertia.
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Let us describe by radius vector r/[x] ,, x5 ,, x},] the position of the point of
contact with the plane, A, in the system C X| X} X}. Let the equation of the surface IT
bounding the body be given by

f (x{,xé,xg) =0.

We take the sign of the function in such a way that the unit vector n lying on a
line perpendicular to the interior surface of the body at point A is described by the
equation

grad f
|grad f |

The equation of the surface in the body’s system in the neighborhood of point A
has (approximately) the following analytical form:

1 X2 X2
f=—h—xi + oy Xaa)

(%)

Ry R,

where point A* # A is now the point of contact of the surface IT of the investigated
body with the horizontal plane after a disturbance (a small deflection) of the body
from its equilibrium position associated with point A; —/ is the position of point C
in the equilibrium position of the body (at this position C = C(0, 0, —h)); and R;
and R; are the radii of curvature of the surface IT at point A*.

As can be seen from Fig. 3.17, if the surface [T of the body is convex and is
situated above the horizontal plane, then the radii of curvature R; > 0 and R, > 0.

A potential energy of the body is given by the equation

V =mgH, H:—(noCT*)),

where H denotes the distance between the mass center of the body and the
horizontal surface of contact at point A*. The normal vector, according to the
preceding definition (*), is described by the formula

i wr af of
v (B e+ R

n=— = = n\E| + nyE, + n}E}.
VS VS : ? :
We calculate successively
n/gﬁzx;* n’si:xé*
! d i R1 ’ 2 axé R2 ’

Let us recall that +/T — x = 1 — $x 4+ §x? + ..., and because (n})? + (n})* +
(n})? = 1, we have
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X\ xhe )\ 1] /x\? X\
A P 1+ 2 ~l_ - 1* 1* _
" [(Rl) +(R2 2 1\& ) T\ &

In turn,

2

P
H=— (n oCA ) = — (mE; + mEs + n3E3) o (x1E; + x2Ez + x3E3)

= —(nix; + naxy +n3x3) = —

The potential energy of a rigid body is equal to

l1(Ri-h , R—h,
V:mgH:mg[h—i—E( &2 Xi« + &2 X5 ) |-

We now make use of the conditions following from Dirichlet’s principle, (3.102).
We calculate successively

vV
=0, =12,
0xiy :
that is,
Ri—h Ry—h
5 X1x = 0, —sz* =0
Ry Ry
In turn,
2V R —h PV Ry—h FR%
*2 = 2 > 0’ *2 = 2 > U, * * 0

x| R x5 R; ox; 0x3

If Ry > h and R, > h, then the equilibrium position of the body is stable. For
instance, in the case of a ball we have Ry = R, = R (and the stability condition
boils down to the condition R > h) and for a cylinder we have Ry = R, Ry=o00,
and then also we obtain the stability condition described by the inequality R>h.

|
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3.4 Lagrange’s Equations of the First and Second Kind

Having defined the notion of generalized coordinates, we will now derive equations
of motion of a discrete mechanical system with constraints in the generalized
coordinates. According to Newton’s second law, the motion of an arbitrary point
of mass m,, is described by the equation

dv, .
mnd_vt o8r, = (F, + F, + FX) o 5r,, (3.103)

and using the earlier introduced summation convention this equation describes the
motion of the whole material system.

Let us introduce the notion of ideal constraints. These are bilateral constraints
such that the sum of the virtual works done by the reactions produced by those
constraints during an arbitrary virtual displacement is equal to zero. This means that
the virtual work

W, =FRo6r, =0, (3.104)

where the summation convention does not apply.

According to the calculations conducted earlier, the vector of reactions acting
on particle A in the extended space R*" has the form F& = (Fﬁ Areon ,Fjlf,. 1), and
the particle moves along the chosen smooth trajectory. Holonomic constraints (3.7)
are called ideal constraints if for every trajectory vector Fﬁ is perpendicular to the
tangent space at this point, that is,

F{or'(0) = F{ ,or,(0) =0, (3.105)

where, according to the previous remarks, the differentiation is carried out with
respect to the parameter s and r) is the position vector.

Holonomic time-independent constraints (3.8) can be represented in the follow-
ing way:

fm(rl,Os---er,O):Ov m = 1,...,M. (3106)

Differentiating the preceding constraint equation along the trajectory of motion
of particle A we obtain

Ve fr ®1as .ty 0,0, k=1,... Nm=1..M  (3.107

where the differential operator defined earlier in Chap. 4 of [14] was used. Let us
recall that the operation V f, that is, the action of the operator V on the scalar
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function f', yields a vector function called the gradient, that is, we obtain the vector

0fm 0fm
Vin= Ve s o s Viey )= —.co — |-
o= O e S = (e )
By assumption, the functions f,,, m = 1,..., M are independent, as are the
vectors perpendicular to the tangents V f,,,. The vectors V f,,, m = 1,..., M span

complementary spaces (to tangent spaces) at every point of the constraint surface.
The vectors of reactions must belong to the complementary spaces at every point of
the space, that is, they should be expressed through vectors V f,, by the following
relationship:

FR(I'l,...,I"N):Am(rl,...,i‘N)me(1'1,...,1‘1\/), m = 1,...,M, (3108)

where A,, are proportionality factors of the aforementioned vectors.
In the space R?, the preceding expression takes the form

FR(rp) = A (0 0) Vi, frn (0p), m=1,....M, k=1,...,N. (3.109)

The introduced functions A,,, m = 1,..., M are called Lagrange multipliers (or
undetermined Lagrange multipliers), and substituting them into (3.103) and dividing
by ér, we obtain the form of equations of motion called Lagrange’s equations of the
first kind. Those equations will be derived in the E* space in the next section. The
concept of the extended space R*N was briefly discussed here because it is often
used in so-called geometric mechanics.

The Lagrange multipliers enable us to determine reaction forces, which is
required in many problems of mechanics.

Let us also note that in this approach we do not make use of the notions of work
and virtual displacement. In the case of ideal constraints and problems of statics, that
is, the determination of static equilibrium positions, d’ Alembert’s principle takes the
form

Fi (ry,....ry)or, =0, k=1,...,N, (3.110)

where Fy, is a resultant force acting on particle k.

Equations (3.108) and (3.110) allow for the determination of the desired equi-
librium positions of a system with constraints. In the equilibrium positions, forces
acting on a given particle of a DMS including reaction forces must vanish, and
this condition, called a necessary condition, must be satisfied simultaneously for all
particles.

It should be noted that our calculations concern ideally smooth constraints,
which is rarely encountered in real systems. This approach does not allow for
the introduction of friction. The friction force is tangent to the constraint surface
and, additionally, proportional to the reaction force perpendicular to the surface of
constraints.
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Following introduction of the ideal constraints, (3.103) takes the form

mn%o&n = (F, +F}) o dr,. (3.111)

Those equations will help in the derivation of Lagrange’s equations of the second
kind, which are characterized by the fact that they do not contain reactions of
constraints but only forces of interaction of DMS characteristic points (i.e., the
internal forces) and external forces independent of constraints.

Different authors derive Lagrange’s equations of the first and the second kind
in various ways. In this book, we rely on calculations excerpted from [5], and the
versatility of this approach consists in the fact that it includes, during the derivation
of Lagrange’s equations of the second kind, both geometric (holonomic) constraints
and non-holonomic (non-integrable) constraints.

Reaction forces of constraints are divided into two groups:

FR =F! 4 ¥, (3.112)

where F" (F") are holonomic (non-holonomic) constraints. We relate the postulate
of ideal constraints (3.32) at first only to holonomic constraints, and it takes the form

N
> Floér, =0, (3.113)
n=1

and from (3.33), taking into account (3.113), we calculate
F' = m,t, - F —F' —F,, n=1,...,N. (3.114)

Substituting (3.114) into relationship (3.113) we have (the forces FZ are omitted
because they mutually cancel out)

N
(FZ +F, —mni‘n) odr, =0. (3.115)

n=1

Assume that in order to describe the investigated DMS we need gy independent
generalized coordinates, where k = 1,2, ..., K. According to (3.48) we have

or, = 8qx. (3.116)

The sum of works of external forces F;, = F, during the virtual displacements
dr, is equal to
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N
:ZFHOSrn ZF OZ
n=1

n=1 k=1
K N I K
= ( 90 ) Sqi = ) Qudqu. (3.117)
k=1 = k=1
where
al ar,
Qk(ql,qz,...,qK,t)=ZFnoaqz, k=1,....K. (3.118)

n=1

Proceeding in a similar way we define the work of non-holonomic reactions
during the virtual displacements dr,, of the form
) Sqx

K
Z "Sqr, k=1,....K. (3.119)

N
=) Fodr, = Z (ZF
n=1

In a similar way we determine also the work of d’ Alembert’s forces (the inertial

forces) Ffﬂ = —m, ¥, during virtual displacements §r,
al Jr
8Win — Fin odr, = an n

(XL bk, o, Ko
Z( Zmngo )5qk=ZQ,’,”8qk. (3.120)

k=1 \ n=1 g k=1
The sum of all virtual works is
K
> (O + QF + 01) Sqi = 0. (3.121)
k=1

The component 211;1 0 }'{”qu of the sum that follows from the action of the
inertial forces are expressed through the kinetic energy of the DMS.
According to (3.111) we have

an Srn $ an 3rn 5
m,— | o =m,— o ,
dr 8qr K dr oqx k

n=1...,N, k=1,....K. (3.122)
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Note that

d or, dv, Or, d [or,
— o — | = — n O — . 3.123
ar (V °5q,.) a Cag TV w (aqf) G129

Then, taking into account relationships (3.122) and (3.123), we obtain

an an 3rn

n . ) n = Mp—— )
Mgy OO = Mg % g Ok
d ory, d (or,
= — — ) - — | — ) | 8gk. 3.124
el (o) ~veo g (3 ) oo 20
and hence
d ) d (or, in
I:E (mnvn o E) —muVy © E (3qk):|54k = Q0 8qx,
n=1,....N, k=1,... . K. (3.125)
Note that
dr, Or,, or, , or, .
=1 -7 e ; 3.126
Vi = o 3611q1+ + aqqu+ + aqKQK ( )

where ¢y are generalized velocities.
The kinetic energy of the analyzed mechanical system can be expressed in terms
of generalized coordinates and generalized velocities in the following way:

2 9 2
7—':}/””‘}":ﬂ rnqk s 1,...,K5 n:l,...,N. (3127)
2 2 \ 9qk

Let us calculate the derivatives of the kinetic energy with respect to the
generalized velocity ¢ and with respect to the generalized coordinate gx

3T Br,, . Br,, 3rn

— =m, o = myV, o , (3.128)
g (3qk Qk) g 9qk

T or, 0’r, d dr,

— =m, 7 o| —¢; | = myv, 0 — s (3.129)
34k (aqk ‘”‘) (aqf 31! ) dr 9gx

where formula (3.126) was used.
Equations (3.125), after taking into account (3.128) and (3.129), take the form

d /0T oT .
Aoy o _ i k-1 K 3.130
dr (34k) 0qxk g ( )
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Substituting (3.130) into (3.121) we obtain

K
d oT aT
k§=1|:Qk+Qk (dt 9 8qk):|561k 0 (3.131)

We have already chosen the coordinates g; to be independent, and hence
from (3.131) we get

In the preceding equations we have 2K unknowns, because the generalized
coordinates ¢, ...,qr and the generalized non-holonomic reactions Q7,..., Q}
are not known. We have at our disposal K (3.132) and M, equations of non-
holonomic constraints (3.15), that is, in total K + M, < 2K, because K > M,.

In order to determine any additional required equations we introduce the
condition of ideal non-holonomic constraints of the form

K
> 018qc =0. (3.133)

k=1

The concept, described earlier, of constraints freezing allows for the replacement
of non-holonomic constraints (3.15) with scleronomic constraints [this procedure
is reduced to omitting in (3.15) terms f,,, and additionally “freezing” time ¢ in
functions A, ].

From (3.133) we have

018q1 + 058q1 + -+ + O%8qx =0, (3.134)
and from (3.24) we obtain

Bi16g1 + Bi28g> + -+ + Bikdgx =0,
B18q1 + B»dgsr + -+ + Bakdgx =0,

Buy18q1 + Buyp8qa + -+ + BupkSqx = 0. (3.135)

We have K Lagrange equations (3.132), and also M, additional equations (3.135)
following from the non-holonomic constraints, whereas we need to determine K
generalized coordinates and K non-holonomic reactions Q.

In order to solve this problem we make use of the method of auxiliary
variables A1, A,, ..., Ay called the Lagrange multiplers. The desired K functions

T...., Oy are expressed in terms of M, Lagrange multipliers. Now the unknowns
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are qi,42,...,qk, AM.A2, ..., A, (K + M, in total), whereas we have at our
disposal K Lagrange equations (3.132) and M, equations of non-holonomic
constraints (3.21). To this end we multiply the first of equations (3.135) by A4, the
second by A,, etc.

Next we add together (3.135) by ordering the terms at §gx. Non-holonomic gen-
eralized forces Q [ k = 1,..., K depend only on M, non-holonomic constraints,
and then on the M, Lagrange multipliers A,,,.

By comparing (3.134) and (3.135) after the foregoing operation of multiplication
through multipliers, adding by sides and ordering, and then by comparing the terms
standing at the same coefficients §g; we obtain

O =M Bi + LB+, ..., +Am, Buss

Or = MBix + A Bo+, ..., +Au, Bk (3.136)

or My
0= dmBuk. k=1...K m=1.. M. (3.137)
m2=l

Condition (3.133), taking into account (3.137), takes the following form:

K M>
ST D2 A Buok | S = 0. (3.138)
k=1 \\my=1

Substituting (3.138) into Lagrange’s equations and including the equation of
constraints (3.21) we obtain

dar T o

dob b Ay By, k=1.... K.

dr 9gx  Oqr Q"+m§1 e Tk
K
ZBmszk +bn, =0, my=1,..., M. (3.139)
k=1

As is evident, we now have K + M, equations and K + M, unknowns,
that is, g1, ...,qgk, A1, ..., Aum,. Let us recall that according to our calculations,
equations (3.139) describe the motion of N material points of the DMS under
investigation with both holonomic and non-holonomic constraints. System of
equations (3.139) is called a system of Lagrange equations of the second kind with
undetermined multipliers.

Because a system is called non-holonomic if at least one of its constraints is
non-holonomic, system (3.139) describes the dynamics of a non-holonomic DMS.
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If B,k = 0 and b,,, = 0, then system of equations (3.139) reduces to the
following equations:

————— =0« k=1,....K. (3.140)

System of equations (3.140) describes the motion of a non-holonomic DMS,
and the number of independent generalized coordinates is equal to the number of
degrees of freedom of the DMS, that is, K = D/ (the motion of the DMS is
restricted by introduction of the geometric constraints). If we release the DMS also
from geometric constraints and the analyzed DMS becomes a free system, then
Lagrange’s equations of the second kind will not change and will be expressed
through the same indices k as in the case of equations (3.140), where K = D/
is understood as the number of degrees of freedom of the DMS with no constraints.

Let us now consider the case where on the DMS we have imposed M| geometric
constraints (3.13), and additionally some generalized coordinates in the number of
K depend on each other, that is, there exist coordinates that do not satisfy equations
of geometric constraints.

Following differentiation of holonomic constraints with respect to time we obtain
relation (3.18), and taking into account the second equation of (3.19) we obtain

N K
afm or, . 0,
; ar, ° (; oqx e+ E)

al (K‘ o ar,,)q, . N fn  or,
k

- — 0 — 0 ——
= ar gy = or, Ot

= Bl + by (3.141)
k=1

The obtained result exhibits a similarity to the previously analyzed kinematic
(non-holonomic) constraints. However, in this case the constraints were obtained by
differentiation of the geometric constraints, that is, they are integrable (in contrast to
the non-integrable non-holonomic constraints). The following procedure, analogous
to the one described above, can be carried out also for the case of non-holonomic
constraints, which boils down to omitting the index 4 in relation (3.141).

The general equation of dynamics for the considered case takes the following
form:

K,
d ar  aT N
——— — — Ok — Sqx =0, 3.142
Z( T g Qk) Gk (3.142)

but now only on some of the quantities g are the restrictions of motion imposed.
From (3.13) it follows that

fm(l,ql,...,qu)ZO, m=1,..., M. (3.143)
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Therefore, we have M| equations of geometric constraints, whereas we have
introduced K; independent generalized coordinates. By proceeding in a way
analogous to that described previously and concerning the analysis of the non-
holonomic constraints using (3.141) we obtain the following system of equations
describing the motion of a holonomic DMS of the form

M,
dar AT
- = AnBE k=1,....K,
a9 g Qk+mz=:1 m Bk 1
K,
Y Bligk+bl =0, m=1.. M. (3.144)
k=1

System (3.144) contains K; + M; equations with K| + M; unknowns, and M,
undetermined Lagrange multipliers appear here; this system is called Lagrange’s
equations of the first kind. Reactions of the holonomic constraints are defined by
0l = L, Bl

Until now, we have considered a discrete mechanical system. If the number of
masses tends to infinity, it is possible to pass to a continuous mechanical system. We
will derive Lagrange’s equations of the second kind for the system of a continuous
mass distribution [2, 11].

We take a point of a continuous mechanical system described by a radius vector
r(¢) and separate in its proximity a small element of mass dm. Let dm be subjected
to the action of force fdm, where f is the force related to the unit of mass.

By Newton’s second law we have

d’r(r)

dm a2 = fdm. (3.145)

The virtual displacement §r is associated with the virtual work done by the force
fdm during that displacement, that is, fdmdr. In view of that the virtual work done
by the force acting on the continuous mechanical system of mass m is equal to

SW = / or o fdm. (3.146)
Using (3.23) we write
ar
SW = Sqn/ 3 ofdm = Q,6q,, (3.147)
m 9qn
ar
0, = / o fdm, (3.148)
m 0Gn

where Q, denote generalized forces or coefficients of a linear form of variation
of the mechanical system in the configuration space, that is, we have N degrees
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of freedom of the system. If, as in the calculations concerning the discrete system,
we assume that we have ideal constraints imposed on the system, then the virtual
work of the ideal reactions during the virtual displacements is equal to zero.
The remaining forces acting on the system are denoted by f, that is, just as
previously.

From (3.145) and (3.23) we obtain

9
8qn/ ar o(F—f)dm=0, n=1,.. N, (3.149)

qn

and taking into account (3.148) we have

(]

For a holonomic system all 8¢, are independent, and from formula (3.150) we
obtain

O idm — Qn) —0. (3.150)
g

a
/ Y o¥dm=0Q,, n=1,...,N. (3.151)
m 0Gn
Note that 3 3
r r
r=v=—+—q, 3.152
r=v=--+ 52, 4n ( )
and additionally
ad a
A (3.153)
g, 0qy
From equality (3.153) it follows that
d [ or 0’r 0’r
— = — 4+ —1qi, 3.154
dr (aQn) 019qy * aQiaan ¢ )

and from expression (3.152) we have that

v N 9*r .
aqn  919q, " dqiog,

(3.155)

A comparison of (3.154) with (3.155) leads to the following conclusion:

d [ or av
_ = . 1
de (aQn ) gy, (3.156)
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The problem boils down to the calculation of the integral occurring in (3.151),
which takes the form

/ o i / d ( or d / d () La (3.157)
[e] m = —_— [e] m — —_— @] m. .
aqy dr \ 9g, v dr \ 9g, v

m

Using (3.153) and (3.155) in the preceding equation we obtain

/ or oi‘dm:/i 8.V ov dm—/ ov ovdm
Bqn dr aq,, BQn

d (0T aT
= — — , 3.158
dr (BC}n) g ( )

where T denotes the kinetic energy of the mechanical system of mass m, that is,
1
T=—- ] vovdm. (3.159)
2 Jm

Eventually, from (3.151), taking into account (3.158), we obtain Lagrange’s
equations of the second kind for holonomic systems of the form (3.140).

Let us consider a potential force Q,, that is, we assume the existence of a scalar
function of time and generalized coordinates V' such that

_BV(t,ql,...,q,,)

Qn = aqn

. n=1,...,N. (3.160)

One may also introduce the notion of generalized potential forces Q,, of the form

_BV(taqlﬁ“"quq.h”"q.N)
gy

i aV([yqls---9qN5q.l7"'7q.N) n
dt 3Gy '

O, =

=1,....,N. (3.161)

After the introduction of the Lagrangian function (also called Lagrangian or
kinetic potential)
L=T-Y, (3.162)

Lagrange’s equations of the second kind take the form

d [oL\ L
d % a=1..N 3.163
ar (aq,,) 34n " (3163

The obtained equations are valid for conservative systems.
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Fig. 3.18 Toothed gear transmission with disks of mass moments of inertia /, and 7,

Very often the introduced Lagrangian L(¢, ¢, ¢) is treated as an arbitrary func-
tion (a relationship of a function’s independent variables). The class of Lagrangian
dynamics includes a free and constrained DMS.

Finally, we note that the forces linearly dependent on the coordinates

Qi =aijqj. aij =4aji, (3.164)
Qi =cijqj, cij =—Cji (3.165)

have respectively the potentials

1

V= 2aijqiq;- (3.166)
1 .

V= EC,'jqiq]'. (3.167)

The forces described by (3.165) are called gyroscopic forces, and examples of
them will be given later.

Example 3.11. Compose equations of motion of the mechanical system depicted in
Fig. 3.18 using Lagrange’s equations of the second kind. The following symbols are
introduced in the figure: k, k, — torsional stiffnesses; z;, zo — gear tooth numbers,
and the shafts and gears are assumed to be massless; /;, [, — moments of inertia of
the rigid disks.

In the considered case, Lagrange’s equations of the second kind take the form

d o v _
dt g,  9q, -

0, n=12.
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The preceding form of Lagrange’s equations of the second kind is valid only
in the case where the system’s kinetic energy does not depend on generalized
coordinates. The kinetic and potential energies of the considered mechanical system
have the form

_ Li¢} n Lo;
2 2’

T
1 ne 1 N2
V= Ekl ((Pl_@l) +§k2 ((P2_§02) .

The gear ratio of the toothed gear transmission is equal to

and if z, > zj, then ¢} < ¢|. We calculate successively

aT aT

_— = I 0 N —_— = I .7

3¢1 191 3<p2 20

v v

_— = k — o s _— = k — ! .

2o 1 (o1 — o)) 20, 2 (02— ¢5) (%)

Let us introduce torsional moments as
M; =ki (g —¢]), =12

Assuming that power is conserved during the transmission of rotations we can
write

Miw = Mrw,,

where | = ¢|, w, = ¢}, and hence we obtain

iM, = M,.
We get further
iki (o1 — @) + ka2 (92 — ¢5) =0, ()
where
o1 =ig;.

Substituting formulas (x) into the Lagrange equations and taking into account
equality we obtain the following two second-order differential equations:

Ligy + ki (o1 —igh) =0,
D@y + ko ((,02 - (pé) 0.

(k)
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Fig. 3.19 Spherical
pendulum and generalized
coordinates ¢ and

The angle ¢, is expressed through relationship (), which takes the form

iky (o1 —igh) + ko (¢ —@2) = 0.

hence we find
;L ko n ik
(pz_kz-i—izkl@z k2+i2k1¢l'

Substituting the preceding expression into (%) we obtain

.. kiky ikiky
1 =0,
191 +k2+i2k1(pl ko + 1%k, 2
[ k1k i 2k k
Ly — —Kik2 Pk

ko +i2k1(pl + ko +i2k1(p2 n

The obtained system of equations is linear and autonomous and can be solved
analytically. O

Example 3.12. Derive equations of motion of the spherical pendulum shown in
Fig. 3.19, where the mass m is attached at the end of a rigid weightless rod of
length /.

Let us make use of Lagrange’s equations of the form

d aT 9L

— =0, L=T-V
dt 9q, 9q,
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The kinetic energy 7" and the potential energy V' have the form
1 e\2 LS 2
T = M ((lqo) + (/¥ sing) ),
V =mgl (1 —cosgp).

After differentiation we obtain

oT

— =ml*¢, — =ml*¥sin’ g,
d¢ Y o v
aL 1 . aL

% = Emlzlll2 sin2¢ —mgl sin ¢, 7 0,

and taking into account the Lagrange equations, we have

1 ,
mi§ — Emlzllf2 sin2¢ + mgl sing = 0,
m1*W sin® ¢ 4+ 2mI*¥¢sing cos g = 0. (%)

Following transformations, equations () take the form

1.
¢ — Elllzsin2<p + %sinqp =0,
W sin® ¢ + ¥¢sin2¢ = 0. (%)

The second equation of system () can be written in the form

% (lI/ sin? (p) =0,

which leads to its immediate integration, and eventually () take the form

1.
¢ — Elllzsin2<p+ %sinqp =0,
Wsing = C,

where C is a constant of integration. )
If ¥ = 0, that is, we introduce the initial conditions of the form ¥ (0) = v
(0) = 0, then from system of the preceding equations, we obtain

¢+§m¢=0

This means that the motion takes place in a plane and corresponds to the
oscillations of the mathematical pendulum, already known to the reader. |
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Fig. 3.20 Double compound
pendulum (coordinates x;, y;,
i = 1,2 describe the
positions of mass centers of
particular pendulums)

pin joint

Example 3.13. Derive equations of motion of the double compound pendulum
(two thin pin-connected homogeneous rods) depicted in Fig. 3.20 using Lagrange’s
equations of the second kind and of the first kind.

The kinetic energy of the system has the form

1 ) . 1 ) . | |
T = S (X7 +97) + M (X3 + 93) + 5119012 + 512<P§s

and the constraint equations

/ /
wlsxl—%cosgol:O, %Ey1—51sing01=0,

l . Iy .
1/f3zxz—llcosqo1—§2cosqoz=0, w4zyz—llsln¢1—§251n¢z=0- (%)

The preceding equations are valid if the mass centers of both bodies are in the
middle of segments /; and /5.
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Differentiating equations (*) with respect to time we obtain

L, . )

. . . 1.
X] = —— @1 SIng, = S¢pcCosgy,
1 2901 ®1 N1 2</) P1
) .. L, . . . b,
Xo = —l1¢ singy — 5902 sm o, Y2 = ligicosg + 3902 COS @2,
and hence

2, 1122
x1+Y1—Zl

12 . .
x2 + y2 = llgol sin® o+ 1 goz 2 gin® @2 + l11@1¢; sin @y sin @,

. 3 .
+112g012 cos? o1+ szpg cos? @2 + L1115 cos 1 cos ¢,

l
=127 + 4902 + L1 12192 cos(@1 — @2).

Taking the preceding relationships into account in the formula for kinetic energy
we obtain

1
T = mlllqol—}— mzllgol—}— mzlzq)z

8
+lm Lilp1¢s cos(pr — ¢2) + m111<p1 + lez(pz
) 2010201¢2 1 2 24 24
1 1 1 1 ..
= 6m111¢1 + 2m211<p1 + 6mzlzrp2 + Emzlllz%fpoOS((ﬂl — ).

Differentiating the kinetic energy 7" with respect to the generalized coordinates
and generalized velocities we have

oT 1 1 )

3—(/.)1 = 3””11[1901 + 11”’72@1 + En’tzlllz@%COS(@l — ),
oT 1 ) 1 .

3_(/‘)2 = gmzlzzgozz + Emzlllzgol cos(¢1 — ¢2),

oT 1 1
el — Zz.. -z Zl . _
7 (39131) 3m1 191 + 2mz 112§ cos(¢1 — ¢2)

1 T .
_§m21112§02(¢1 — @) sin(pr — @) + [Tmadn,
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d /0T 1 1
[l B lz.. - 1 G _
T (3(/.)2) 3m2 S + 2m2 112¢1 cos(¢1 — ¢2)

1 .. L
—Emzlllzcﬂl((ﬂl — @2) sin(g1 — ¢2),

oT 1 ..

— = ——malihgi1ga sin(@r — @),
8901 2

oT 1 ..

— = —mal1L¢1¢2 sin(@r — @2).
8902 2

The potential energy of the system takes the form
V=C-—mgx —mygxs,

where g denotes the acceleration of gravity and C is a certain constant. We have

1 [
V=C- Emlgll cos @ — gmy (ll cosg; + EZCOS(/)Z) ,

and hence
vV 1 . .
— = —my gl sing; + mygly sin ¢y,
8901 2
aV 1 L si
— =-m sin ;.
90 2 2812 S @3

Using Lagrange’s equations of the form (3.163) we obtain
1 2. 1 . 1 .. L.
3 me 17 g1 + Emzlllzfpz cos(gr — ¢2) — Emzlll%ﬂz((ﬂl — ¢2) sin(¢1 — ¢2)
1 L. . m
+§m21112<p1<p2 sin(p; — ¢2) + gsing/; (7 + m2> =0,
1 .. 1 . 1 .. Ly
gmzl%ﬂz + Emzlllzfpl cos(¢1 — ¢2) — Emzlllz(/’l((pl — ¢2) sin(g1 — ¢2)

1 .. 1 .
+§m211§01§02 sin(g; — ¢@2) + Egmzlz sing; = 0,



170 3 Statics and Dynamics in Generalized Coordinates

and after their transformations we obtain the following equations:

1 . 1 .. 1 Lo .
(gml + mz) I} + Emzlllzwz cos(p1 — ¢2) + Emzlll%ﬂ% sin(e1 — ¢2)

ny .
+ gl (7 + mz) sing; = 0,

1 .. 1 .
Emzlllzfpl cos(p; — @) — Emzlllzgolz sin(¢; — ¢2)

| 1 .
+ gmzlzfpz + zgmzlz sing, = 0.

The obtained system of second-order differential equations can be transformed
into a system of second-order equations uncoupled with respect to angular acceler-
ations ¢,, n =1, 2.

An arbitrary plane motion of a rigid body of number n can be described by the
motion of the mass center of this body {x,, y,} and the angle of rotation ¢, of the
form

M
v,
mn)‘c‘n = F + ka_,
— 0xy
M
o,
mnyn—Fny"‘ZAma_’ }’l=1, 5N’
m—1 Vn

v,
0pn

M
m=1

where M denotes the number of geometric constraints.

In the preceding equations, m, denotes the mass of the body n, F,, and F),
denote the projections of forces acting on the mass center of the body n, and
M,, are the moments of force reduced to the body centers. Functions v, are
constraint equations, and A,, denote unknown Lagrange multipliers. We have then
3N equations (%) with 3N 4+ M unknowns. Additional M constraint equations are
subject to the integration two times, and afterward they are included in the system
of 3N differential equations.

We derive the Lagrange’s equations of the first kind (N =2, M = 4).
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Let us list only non-zero derivatives of formulas (x):

%:1, %:Z—lsinq)l,
0x1 3901 2
%zl, %z—l—lcosgol,
a1 dg1 2

it =1, 0% = [y singy,
0x2 G172

v I . ¥,

3_(,02 :E sin ¢, 3_yz =1,
%z—llcosgol, %=—Z—ZCOS§02-
dp1 d¢2 2

Eventually, from () we obtain a system of differential equations with Lagrange
multipliers:

miXy = mig + Ay,
mij; = Az,
myXo = myg + A3,

myjs = A4,

/ /
Li¢ = /1151 sin @ —/1251 cos @) + A3l sing; — A4ly cos @y,
. L . I8
L, = /\35 sin ¢, — /\45 cos @ .

Additional four equations are yielded by differentiation of the constraint equa-
tions (*) and they follow:

. ll .o Zl .2
X1+ 5('01 sing; + 5(,01 cosg; =0,
o ll . ll .2 .
Y1 — =@1cos@ + —@psing; =0,
2 2
. .o 12 .o ) 12 )
Xy + L1y singy + 5(,02 sin g, + 197 cos ¢ + 5(;)2 cosgpy =0,

o . 12 . 2. 12 .2 .
V2 —lLig1 cos gy — 5 #2cos ¢ + L1y singy + P smgy = 0, O
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Fig. 3.21 Toothed gear
transmission with viscous
damping and driving torque
M)

Example 3.14. Compose an equation of motion of the mechanical system shown in
Fig. 3.21, and determine the intertooth force of a toothed gear transmission of mass
moments of inertia /; and I,. In the figure, k| denotes the torsional stiffness of the
massless shaft, and additionally gear wheel (2) is viscously damped with the torque
M; = —c¢,, and gear wheel (1) is driven with the torque M (¢).

We will take the angles ¢; and ¢, as generalized coordinates that, as distinct from
the case in Example 3.11, are now dependent on each other.

For the solution of the problem we will make use of Lagrange’s equations of the
first kind of the form

d oT av af
- = n A 5 = 1,2,
TR AR PR

where Lagrange multiplier A is the desired intertooth force, and additionally

Q18p1 = M(t)8¢p1, Q2802 = —cp28¢a,

hgt | b kip?
f=ngi—nep=0 T=>+75% V==

Following differentiation and taking into account the geometric relation we have
Ly +kigr = M(1) + Ary,

Ly + cr = —Ar,
0 =g, (%)
wherei = ri/r;.

Equations () make a system of three differential-algebraic equations with three
unknowns: ¢, ¢, and A.
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However, the problem can be reduced to the analysis of one second-order non-
homogeneous differential equation. Let us multiply the second equation of (x) by 7
and then add the first and second equations, obtaining

Lgy + i@y + kg +icgr = M(1),
and taking into account the third equation of (x) we obtain
(I +iL)§1 +i’cgr + kigpr = M(t) (k%)

or
(I + i’ 1)§y + i%cgy + kigy = iM(2).

The reaction S}, of wheel (1) to wheel (2) is equal to

a
Mg, = kl = Arp = Siri,
91

and the reaction S,; of wheel (2) to wheel (1) equals

f

Mg, = 90 = —Ary = Spra,

thatis, S1» = A and S, = —A.

In order to determine the intertooth forces, we have to determine the Lagrange
multiplier: from () we determine ¢, (¢) in the known way, and then from the first
equation of (x) we determine A = A(¢). |

Example 3.15. Determine the equation of motion and reactions of constraints of the
skate from Example 3.3 if the skate’s mass is equal to m.

According to formula (3.44) we have
Xic sing — Xyc cosg =0,

which defines the non-integrable non-holonomic constraints, and point C denotes
the skate mass center.

We consider the stated problem without friction on the assumption that the
position of the mass center of the skate is always at the same distance from the
ice rink surface.

The kinetic energy of the skate equals

. . |
T = 3 (Xc + X3c) + EICGDZ,
where /¢ is the moment of inertia of the skate with respect to the axis perpendicular
to the ice surface and passing through point C.
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From Lagrange’s equation (3.140) we obtain

d oT oT
— — = At ,
dt 0x1c 0xic Qxl tAtang
d 0T oT
. . - = sz - /’\'a
dt 0x2¢ dxoc
d oT oT
———— =0,
dt 9  Jg
Let us take the following initial conditions of the skate motion: x;¢c = 0,

Xoc¢ = 0, ¢ = 0. Furthermore, at the initial time instant let the skate mass center
have linear velocity v¢ and angular velocity wc, that is, X1.(0) = v¢, ©® = oc
(from the equation of non-holonomic constraints we obtain x,¢ (0) = 0). Because
the skate’s potential energy during its motion does not change and there is no

friction, we have Oy, =0, O.,, O, = 0.
From Lagrange’s equations of the first kind we obtain
mxic = A tan @, mixc = —A, (,0 =0.

Integrating twice the last equation we have ¢ = wct. This means that the
skate during its motion rotates with a constant angular velocity w¢ about an axis
perpendicular to the ice rink surface.

Combining the first two equations of motion gives

X1c + ¥y tan (wct) = 0. ()

Following differentiation of the equation of non-holonomic constraints we obtain

¥ctang + Xic (1 + tan” ¢) we = Foc. (%)

Substituting (*) into (x) and following some transformations we obtain

X1c 4+ oc tan (wct) X1c = 0.

In order to solve the preceding equation we introduce the substitution

= Xic,

which allows us to decrease the order of the differential equation, and the problem
boils down to the analysis

Z 4+ wc tan (wot) z = 0.
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Separating the variables we obtain

d
& =—/tan<pd<p,
Z

and after integration we have
In|z] —In|cos¢| = InC,
where C is a constant. Finally, we obtain
z=C cosg,
and from the initial condition z(0) = vy we have C = v¢. In view of that, we have

. dxlc
ST

= vc coswclt.

Following separation of the variables in the preceding equation and integration
we obtain

@
ve
Xic = —/cosqodgo + C.
wc
0
Because x;¢ = 0, we have C = 0, and finally we obtain
Ve o .
X1c = — SInwct.
wc
In order to determine x,¢ (¢), using the constraints equation, we have
Xoc = ve tang cos@ = v¢ sing,
that is,

¢
Xoc = V—C/sinfpd<p+C,
wc
0

which means that
Ve
Xoc = —— [cosg]y + C.
wc

The constant C is determined from the following condition:
12
xe(0) =0=-—+C,
wc
that is, C = v¢ /wc. Finally,

Xoc = e (1 —cosg).
wc
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In what follows we present a mechanical interpretation of the obtained solutions:

ve . Ve
Xic = —sinwct, xc = — (1 —coswct).
wc wc

Recall that the parametric equations of a circle of center S(x, yo) and radius r
have the form

X = Xo +rcosg,

y = Yo+ rsing,

where ¢ is the arc measure of the angle.

In our case we have r = av)—‘é, Xo =0,y = a‘)—" This means that during the
motion of the skate, its center moves on a circle of radius vo/wc whose center lies
on the vertical axis of the adopted system of coordinates.

According to Lagrange’s equations of the first kind the reactions of constraints
read

Ry, = Atanwct, Ry, = —A. (% % %)

The multiplier A can be derived from the second equation of Lagrange’s
equations
A = —mXyc = —mvcwce coswct.

Finally, from equations (* * *x) we obtain

R, = —mvcwcsinwct, R,, = mvcwc coswct.

The reaction of constraints R = ,/ R)ZC Tt R,, = mvcwc has a constant value
during motion of the skate. |

3.5 Properties of Lagrange’s Equation

In a system with constraints, the motion of a DMS takes place in a certain subset
QK of the configuration space R*" . The space £2X allows for the introduction of the
so-called atlas of coordinates in which two different coordinate systems are defined
simultaneously.

Note that, for example, in the case of particle motion on a spherical surface it is
necessary to introduce two coordinate systems that would jointly cover completely
the spherical surface. The dimension of the space £2X is equal to K < 3N, and at
every one of its points ¢ it is possible to define the tangent space 7 §2,, that is, the
K-dimensional linear space of the vectors tangent to £2X at point ¢. The space £2 is
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a K-dimensional manifold. The tangent space 7 §2,, is spanned by K tangent vectors
y1(1,0,...,0),...,yx(0,...,0,1) and includes velocity vectors ¢ = (§1,-..,qk)
of every trajectory passing through point g.

Spaces 2% and T2, can be merged into one 2K-dimensional space 72K,
which we will call a tangent bundle of the manifold £2X. This space consists of
pairs (q, q) representing point ¢ of manifold £2X and of every velocity vector ¢
from the tangent space 7Q,,.

Lagrange’s equations (3.163) describe the motion on manifold £2X. The La-
grangian L = (q, q. t) is prescribed in the tangent bundle 7T 222X, If there exist
constraints in a DMS, then the manifold £2X is described by constraint equations.

Lagrange’s equation introduced on the basis of Newton’s second law has many
interesting properties. We will briefly describe them below [2].

1. Covariance. The methods introduced thus far of deriving Lagrange’s equations
of the second kind consisted in a description of kinetic and potential energies as
functions ¢, and ¢, of generalized coordinates Q,,, where n = 1,..., N. In the
next step, differentiation of energies 7' and V (or of the Lagrangian L) yields
N second-order differential equations. If we choose another set of generalized
coordinates, the form of Lagrange’s equations remains unaffected. If we subject
the generalized coordinates to the transformation

g =qi (1,qQ), (3.168)

then the form of Lagrange’s equations will be the same. The transition from
one system of generalized coordinates q = (qi,...,qn) to the other q =
(41, ...,qn) is prescribed by the invertible and smooth transformation (3.168).

Since we have L — L and 0 — Q, the equations in new and old coordinates
have the form

d oL 9L
dr dq oq =Q

dolL oJL =

2= %), 1
95 94 Q (3.169)

because both Lagrangians L = (q, q, ¢) and L =@ ﬁ, t) describe the same
motions of a particle on manifold £2X. It follows that if q(¢) is a trajectory of
motion obtained from the equation generated by the Lagrangian L = (q, q, ?),
then the trajectory q = q(¢,q) obtained through transformation (3.168) also
satisfies Lagrange’s equation of the second kind but with Lagrangian L. The
property of Lagrange’s equation described thus far is called covariance.

Lagrange’s equation of the form (3.169) points to the fact that in order to
obtain differential equations of motion of a holonomic system in a potential field,
one needs to know the form of only one function L.
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2. Calibration invariance. If into Lagrange’s equations (3.169) instead of the
kinetic energy T we substitute

) d
T(t.q.q) = EF(t,q), (3.170)

then they do not change, since we have

d[d [dF d (dF _ 0 (dF 0 (dF — 0 3.171)
dr [ ag \ dr og\ dr /] 9q \ dr og\dr | ’
If into the first of equations (3.169) instead of L we substitute L + %, then

the equations will be not affected. Moreover, if in the Lagrangian . = (q. ﬁ, t)
we change the variables q to q by means of transformation (3.168), then the new
Lagrangian L= (q, q, t) determines the same trajectory as the Lagrangian L =
(q. q. 7). It follows that the difference L(q, q. 1) — L(q, q. ) = % has to
satisfy identically equation (3.163). We call the function F (¢, q) a transformation
function from the Lagrangian L = (q, . ) to the Lagrangian L = (g, (] t),
and vice versa.

3. Form of the kinetic energy. During the derivation of Lagrange’s equations it can

be demonstrated that the kinetic energy has the form (Sect. 3.6)
T=T+T +T, (3.172)

where

1 .. .
o= 5ay(.04d;. T =bit.04. To=Te. G173

4. Non-singularity. Substituting the energy forms (3.172) and (3.173) into
Lagrange’s equations we obtain

anjdi + fi(t.q.@) =0, n=1,....N. (3.174)

Differential equations (3.174) can be solved easily with respect to acceler-
ations, and then they can be represented in the form of normal (first-order)
differential equations. It can be demonstrated that the square matrix [a;;] is a non-
singular, symmetric, and positive-definite matrix. This means that Lagrange’s
equations satisfy the rule of determinism, that is, the Cauchy problem has a
unique solution for the given initial conditions qo = q(f), qo = q(%).

5. Hamilton’s principle of least action. By integrating the Lagrangian along the
curve ¢(t), where time is a parameter, we obtain the following number:

19}

S = /L (r,q, ﬁ) dr. (3.175)

3l
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Fig. 3.22 Schematic ~
illustrating Hamilton’s 9.

principle of least action / g,

G =
Qs

Let us consider two arbitrary points 1 and 2 (Fig. 3.22) corresponding to time
instants 7 and #,.

Point ¢; can be linked to point ¢, along various paths. Hamilton noticed
that there exists a curve ¢ joining those points such that it satisfies Lagrange’s
equation, that is,

daL oL
dr oq  9g

0, q(t) =q1, G4(2)=q. (3.176)

All curves joining two points can be parameterized through the introduction
of a parameter o, where @ = 0 corresponds to the actual trajectory ¢, which is
the solution of boundary value problem (3.176). Because § = G («, t), we have
S = S(«), and we assume that the family of trajectories is differentiable with
respect to the parameter «. Additionally, we have q(0, ¢) = q(¢) and S(«) = min
for @ = 0. The condition of the minimum involves the satisfaction of the equation

ds

Fm = 0. We will formulate Hamilton’s principle of least action on the basis

=0
of the following theorem.

Theorem 3.4. The actual trajectory and only it is the extremum of the action
according to the Hamilton.

Proof. (see [2])
Differentiating (3.175) with respect to & we obtain

5] .
ds 0L 3G AL 34
@ _ (LA, %), 177
da /(aqaa+aqaa) (3.177)

1
Let us integrate by parts the second term of expression (3.177)

t . 5]
dL 9q oL £ d (dL 3G
Mg = —/— (—) M 4. (3.178)
0o dr \ 9q/ Oa

J aqvet ag
1

1%} a(-i
, 0o
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Because the curves pass through the points q; = q; and q@u = @, we have

q

ol = LT 0, and after substituting (3.178) into formula (3.177), we obtain

dor

4l 15}

5]

ds  foq (oL doL
45 _ [ (9L doLy g 17
da / o (aq i aq) ! (3.179)

n

According to the definition of the trajectory as the actual trajectory, for ¢ = 0
we have 5= — =<5 = 0, which means that % = 0. If, in turn, we take % =0
q

(the condition of minimum), then we obtain %_]:i — %i—f = 0, which was to be
demonstrated. !

In many textbooks this problem is considered based on the analysis of integral
(3.175) understood as Hamilton’s action and calculated along the trajectory g(¢).
As was already mentioned, the actual (true) trajectory § satisfies Lagrange’s
equation (3.163).

Let us consider the difference of actions [i.e., the values of integrals (3.175)]
calculated for the true trajectory ¢(¢) and any trajectory ¢ (¢) nearly coincident with

the true one understood as
8qi =qGi(t) —qi(t), 11 <t<t, i=1,....K, (3.180)

where 8q;, called variations of trajectory, are small.
According to the introduced definition of Hamilton’s action we have [see (3.175)]

5]
S = / L@ §.1)dr,
1

15}

Smin = /L((Alv(lst)dts (3181)

4l

that is,
5]

§S = S — Spin = / [L(q,f;,z) - L(q,é,z)] dr. (3.182)
14l

In turn,

L(@.q.1) = L(q+8q,ﬁ+8q,t) —L(q,ﬁ,t)

84, (3.183)
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where in the preceding expansion into a series only the linear terms with respect to

8q and §q were retained.
Substituting expression (3.183) into (3.182) we obtain

i (oL
ss= [ [=
/(3(1

3l

aL
Sq + —
q+ 24

) dr = 0. (3.184)

a.q 5.q

The integral of the second equation on the right-hand side of (3.184) has the form

15}

5]
oL aL7" d (dL
/ —1| 6q|dt=|—| [dq ;2—/— — ) 8qdt, (3.185)
0q |44 aq |, ! dr \ 9q
1 ’ 1
where integration by parts was applied.
Because 4q|;, = 48q|? = 0, after substituting formula (3.185) into equa-

tion (3.184) we obtain

%) 5]
; SL d (6L
ss =68 | L(a.d.t)dr= [sq|l=—-= (2=
/ (qqt)t /q[é’q dt(f?q)}
4l

3l

dr=0.  (3.186)
ad

The preceding integral we call a first variation of (Hamilton’s) action integral.

In other words, attaining the stationary value (extremum value) on trajectory §(¢)
by integral (3.175) corresponds to the vanishing of the variation on the trajectory
q(t) described by formula (3.176). And conversely, if the action described by
formula (3.177) attains a stationary value on a certain trajectory ¢ (t), it has to satisfy
Lagrange’s equation.

On the basis of the introduced Lagrangian function and the principle of least
action, principles of Lagrangian mechanics are often formulated that unify the
apparently distinct dynamic processes. O

3.6 First Integrals of Lagrange Systems

Let us consider an autonomous dynamic system of the form
Xn = fulx1,....,xy), n=1,...,N. (3.187)
Let system of differential equations (3.187) have general solutions of the form

X, = ¢(t,Cy,...,C,), where now they are initial conditions for the aforementioned
system of equations.
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Let us consider the scalar function F[x;(?), x2(?), ..., x,(¢)] determined in the
same domain as the function f;, where the following condition holds true:

F [x1(t), x2(t), ..., xn(2)] = const. (3.188)

This means that along the trajectory x;(¢) the function is constant (but is not
identically equal to a constant). We call such a function F a global first integral or
simply a first integral.

Differentiating formula (3.188) with respect to parameter ¢ (time) we obtain

dF oF dx, oF
d ax, dr ax, Ja(x1 XN) ( )
If the scalar function F satisfies the condition of first integral, but only in a certain
subdomain of the domain of the function f, (xi, ..., xx), then we call it a local first
integral.

As was mentioned previously, if there exists such a global integral, then it allows
for the reduction of a dimension of a phase space of the analyzed dynamical system.
Let us consider the conservative oscillator

X+ x=0. (3.190)
We have then
X =,
V= —X, (3.191)

and the global first integral has the form
F(x,v) = x> +°. (3.192)
The solution of equality (3.191) reads

X = Asint + Bcost,
v = Acost — Bsint, (3.193)

that is,
F(x,v) = A%sin’t + B?cos*t + A% cos*t + B*sin*¢
= A%+ B~ (3.194)

Thus it depends only on the initial conditions A and B, and for the given 4 and B
it is a constant.
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In a similar way we can determine the integral in the case of the non-autonomous

system
X = fult,x1,...,xy), i=1,...,N. (3.195)

Let us extend the phase space by one dimension by augmenting expression
(3.189) with equation / = 1. If a first integral is differentiable, it satisfies the
condition

oF  OF
o o,

Now going back to the formalism introduced by Lagrange, the function
F(¢, q, q), which assumes constant values during the motion of a system along
a trajectory, is called the first integral.

We say that a mechanical system is integrable if it has a global first integral.
According to this definition, as observed by Zhuravlev [2], a system with one degree
of freedom with damping is not integrable.

We will now show how to find the first integral of Lagrange’s equations
when generalized forces have the potential. We multiply each kth Lagrange
equation (3.163) (here we use index k instead of 1) by ¢, and then we add together
those equations, obtaining

Ja=0. (3.196)

. d oL aL_O (3.197)
Taroge Mg T |
Because
d (. 0L\ _ aL+,daL (3.198)
ar \ a5, ) = 9 e T g aa '
dL(t' )—8L+8L +8L— (3.199)
d[ aq7q - at a qk aq Qk, .

and after taking into account (3.198) and (3.199) in (3.197) we obtain

d oL dL 8L
— | gk — 3.200
(Qk 3ék) Frev ( )
If the Lagrangian L = L(q, q), then we have = 0, and from the preceding
equation we obtain
. dL
qx —— — L = const. (3.201)
gk

The obtained first integral is called a generalized integral of energy.
Let us now examine the structure of the kinetic energy of a system. According to
its definition and taking into account (3.19) we have
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n=1 n=1 k=1
| X K
=3 Z Qidedi + Y arqe + ao. (3.202)
k,i=1 k=1
where
N N
Jr Jr or, Jr,
aki—;mn@a—qi, a"_;m"aqk FT
N 2
1 ar,
== n . 3.203
w=33m (%) a0

One may conclude from (3.203) that the coefficients ay;, ax, and ap are functions
of 1,42, ...,qk.t, although they do not depend explicitly on time. According to
(3.202) the kinetic energy of a DMS reads

T=T+T +Tp (3.204)

where

1 K
T, = 3 kz_:l akiqrqi,

K
Ty =) arqr.

k=1
Ty = ay. (3.205)

One may show easily that the quadratic form 7, > 0, and the determinant

det [ak,-]k’,- # 0.
Knowing the structure of the kinetic energy in a Lagrange system, one may

determine the Lagrangian

1
L=T-V=~Ly+Li+Lo= jaiqxqi + acqe + To =V, (3.206)

and hence the first integral (3.201) has the form

1
Eakiqkqi —To+V =T,—Ty+ V = const, (3.207)

where Lz = Tz, Ll = Tl, and L() =T-V.
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The total energy of the investigated system reads
E=T+T+Ty+V, (3.208)

where /' denotes the potential energy.

From a comparison of (3.207) and (3.208) it follows that the total energy of the
system is not conserved.

The next step will be the consideration of a conservative system. According to
the definition given in [2], one is dealing with a conservative system if:

(1) & =0,
2) Ok =i,
3 G =

Therefore, we have 71 = Ty = 0, and for a conservative system from (3.207) and
(3.208) we obtain
E =T,+V = const, (3.209)

which means that the sum of the kinetic and potential energy is constant at every
time instant.

Until now, while defining the Lagrangian we assumed that the potential V' =
V(g,) and that we had Q, = —gTI: (see, e.g., (3.160)).

However, one may also introduce the notion of the so-called generalized
potential V.= V(qi, qi, t), and then the generalized forces (3.160) take the form

dov oV

O =39 g

(3.210)

If the Lagrangian function L(¢,q1,...,qn,q1,.-.,4n) does not depend on
certain coordinates, for instance, on ¢x+1, .. ., gn, then we can immediately obtain
N — K first integrals of the considered mechanical system. Because Lagrange’s
equations in the field of potential forces and in the case of holonomic systems take

the form
d L JaL

————— =0, =1,...,K, 3.211
dt 94, 0qn ! (3-211)
d JL
— =0, =K+1,...,N, 3.212
dr 94, " + ( )
which means that
JaL
% =C,=const, n=K+1,...,N. (3.213)
qn

The coordinates gg+1, ..., gy are called cyclic coordinates.
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Fig. 3.23 Mathematical
pendulum with a moveable
pivot point

Definition 3.2. (of a cyclic coordinate [11]) A coordinate qc¢ is called a cyclic
coordinate if it does not occur in a Lagrangian function, that is, dL/dqc = 0.

Theorem 3.5. If q, is a cyclic coordinate, then according to (3.213) we obtain
the Lagrange first integral. The remaining generalized coordinates of the analyzed
system undergo changes in time defined by the system of N — 1 degrees of freedom,
where the constant C,, plays the role of a parameter.

Let us consider an example presented in [1] (Fig. 3.23).
The Lagrangian of the system is equal to

L= % [()'c + 1§ cos )* 4 1%¢? sin? qo] + mgl cos . (3.214)

The coordinate x is a cyclic coordinate because it does not occur in (3.214).
According to (3.212) we have

aL
s m(x + l¢ cos ¢) = const. (3.215)
X

If the system is conservative, then the total energy of the system is conserved,
that is,

E=T+V = % ()'c2 + 2x¢l cosp + Zz(pz) —mgl cos . (3.216)

Eliminating x from equation (3.215) and substituting into expression (3.216) we
obtain first-order non-linear differential equation in ¢(f). As was mentioned, the
order of the system is reduced by one.
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The described method of determining first integrals leads to the reduction of
the order of the analyzed equations and, consequaently, often to a simpler way
of determining a solution. The analytical form expressed in terms of first integrals
frequently describes important laws of mechanics connected with the conservation
of certain physical quantities, which was already discussed in Chap. 1.

This last characteristic of first integrals is so important that very often the first
integrals are determined despite the fact that the complete solution to the problem is
already known. The first integrals enable the formulation of certain general laws of
motion of an analyzed system and attribution to them of some physical meaning.

Below we present a method for making such conservation laws based on the
schematic presented in Zhuravlev’s monograph [2].

Let the system of differential equations (3.187) has a general solution of the form

®,(t,xy,...,xy), where x1, ..., xy are initial conditions. On that assumption we
have

d¢,

n = fuldi(t, x1,.. s xN), oo ON(E, X1, .. xN)] - (3.217)

Theorem 3.6. If there exists the integral

T

. 1
F(xl,...,xN):Tll)n;o?/G[¢>1(t,x1,...,xN),...,qﬁ,,(r,xl,...,xN)]dt,
0
(3.218)

which cannot be reduced to a constant, then the function F(xy, ..., xy) is the first
integral of the system of equations (3.187). It is worth noting that the choice of
the function G|p1, . .., ¢n] is arbitrary. It is chosen in such a way that the integral
(3.218) can be calculated.

For the purpose of clarification of the formulated theorem, we present a slightly
modified example excerpted from [2].

Example 3.16. Consider a conservative autonomous oscillator with one degree of
freedom whose equations have the form

X1 = X2,
.2
X2 = —a’x). ()
It is known that in this case a general form of solutions is
x; = ¢1(t, Cy,Cy) = Cycosat + Cysinat,

Xy = ¢(t,Cy,Cr) = —aCysinat + aC, cosat, (%)

and one may verify this by substitution of ¢; and ¢, into equations ().
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According to Theorem 3.6 we aim to calculate the integral

| kT
F(C,G) = klglgo T / prd
0

because according to the freedom of choice of the function G we have taken it to be
G = ¢?, and the period Ty = 27/«.
Let us observe that

Ty
k
F(C, ) = ﬁ/%zdf
0
0

2
a

2 / (CPcos® at + C5 sin® at + CC,sin2at) dr

2
0
2
I 1 I 1
= %/ |:C12 (5 + 5 cos 2at) +C3 (5 - Ecos2at)
0
1
+ CC;sin 2at:| dt = 3 (CE+C3).

From equations (*%) we obtain x;(0) = Cj, x2(0) = «aC,, and finally 2F =

x3(0)

x7(0) + =5
The obtained result means that while the system is in motion, its energy has a
constant value determined by the introduced initial conditions. O

3.7 Routh’s Equation

In some cases it is more convenient to pass to a higher class of problems, that is,
from Lagrangian mechanics to Routhian mechanics. In order to do that we will at
first become familiar with the so-called Legendre transformation, also known as a
potential transformation.

Let us assume that from old variables x; we would like to pass to new variables
Yk, that is, x; — Vi, according to the relationships
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yi= X1, ..., xN),

Yn = fn(-xls"-s-xN)v

YN = v, xn). (3.219)

If functions f, have a potential, that is, there exists a scalar function
V(xi,...,xy) such that

v
T x,

I

n=1,...,N, (3.220)

then transformation (3.219) is called a Legendre® transformation. Moreover, if the
determinant of the matrix (the Hessian®) det[ v ] # 0, then we call potential

90Xy 0X]
V(x1,...,xn) anon-singular potential.
If on the basis of (3.219) we can determine the inverse relationships in a one-to-
one manner, that is, calculate the variables x, according to the equalities

X1 =@1(V1,...,IN)s

Xn = @u(Y1s.. s IN)s

XN = @N(V1see s YN, (3.221)

then we call the potential V(x, ..., xy) a strongly non-singular potential.
The following theorem is crucial to further calculations [2].

Theorem 3.7. If transformation (3.219) is a potential transformation, and the
corresponding potential V(xi, ..., xyn) is strongly non-singular, then the inverse
transformation (3.221) is also a potential transformation, and the corresponding po-
tential V*(y1, ..., yn) is also strongly non-singular, and the relationship between

V and V* reads

8 Adrien-Marie Legendre (1752-1833), French mathematician.

“Ludwig Otto Hesse (1811-1874), German mathematician mainly working on the problem of
algebraic invariance.
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V*(yl, ceey yN) = [)C,'y,' - V(Xl, ey XN)]Xn=<ﬂn(y1s---JN) , (3222)

N
where XiYi = E . lx,-yi.
i=

Proof. Let us perform the following differentiation:

av* ox; aV ox;
=[n+iyi—— x’} , (3.223)
0y 0yn™ 0% O L=y 1)
and we express the variables x,, through y, ..., yy according to (3.221). According

to the definitions introduced by (3.220) and (3.219) we have % = Y;, and
from (3.223) we obtain

av*
=X, =0a(V1,....¥N). (3.224)

OYn
This means that the transformation x, = ¢,(y1,..., yn) is a potential trans-
formation. Potentials V(xy,...,xy) and V*(x,...,xy) are called conjugate

potentials.

The presented information regarding the Legendre transformation will be used
for the derivation of Routh’s equations on the basis of Lagrange’s equation and
using the function L = L(¢,q1,...,4N,q1,---,4N)-

Routh used the concepts of Lagrange and Hamilton to describe the state of a
holonomic system.

In this case, part of the generalized velocities in the amount of s = N —/, that is,
q1.4i1+1, - - -, qn, Will be subjected to the Legendre transformation. The role of the
potential will be played by the kinetic energy, that is,

oL
Pk= > k=01+1,...,N. (3.225)
Gk
In other words, variables qi,...,qn, q1,...,q; remain unchanged, and the

introduced transformation has the form

q1s---.qn. 41, ... qN) = Q1. 9N, G141, Pi+1, -, PN) . (3.226)

We call the potential L* (conjugate to L according to Theorem 3.6) a Routhian
function, and it has the form

L* = R(l,ql,...,qN,(jl,...,(j[,pl_H,...,pN) = q'kpk — L, (3.227)

where k = [ 4+ 1,..., N. The velocities ¢x occurring on the right-hand side
of (3.227) should be expressed through p; determined from (3.225). Finally,
according to (3.227), the Routhian function will depend on the new variables

qis- s GN-q1s-- 14l Pi41s .-, PN L.
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Our aim is the application of the concept of Routh’s potential to Lagrange’s
equations (3.163).

The total differential of the Routhian function [on the left-hand side of (3.227)]
has the form

! N
dR 0R OR OR
;(8% “ 5 ) ; (861] U o p’)+ 3

l

(3.228)
because §g; = pjforj =1+1,...,N.
The total differential of the right-hand side of (3.227) has the form
I
oL oL
dR = — —dg; + —dg;
; (3%‘ qi + i (Iz)
al oL IL oL
+ " \dpdpy + pidg; — dg; — -dg; | — Sodr. (3.229)
e B 5g, ™ g, a

where the underlined terms cancel out, because p; = ;q—Lj [see relation (3.225)].
Comparing right-hand sides of (3.228) and (3.229) we obtain

OR AL R oL
dq; g 0 04
oR oL oR

_— = ——, —:q", j:l+1,,N,
aq, dq;  Op; ’

oR aL
—_ = 3.230
ot ot ( )
Because the analyzed system satisfies Lagrange’s equations of the form
d [JL aL
—(—_)——:0, i=1,...,N, (3.231)
9 9
taking into account the first row of equations of system (3.230) we obtain
d [ 0R oR
—\=]-=—=0 i=1,...,L (3.232)
qu 3qi

This means that the first / equations of Routh’s system have the structure of
Lagrange’s equations, that is, the structure of second-order differential equations
with respect to time.
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The remaining equations of Routh’s system are first-order differential equations
of the form

dr _8pj’

dp; d [ JL oR oR

LS (&) _8 =——, j=I0+1,....N, (3.233)
de — dr \ g, aq; g

where the underlined term can be neglected because it is useful only during the
derivation of this relationship. O

3.8 Cyclic Coordinates

The usefulness of Routh’s equations reveals in the case of the occurrence of
the so-called cyclic coordinates (or ignorable coordinates), which were already
mentioned in Sect. 3.7.
In a system of N degrees of freedom described by the generalized coordinates
q1, 92, - .., qn, let one of the coordinates g; be a cyclic coordinate. Then aqL =0.
Further we will consider a potential holonomic system described by Hamilton’s
equation (see Hamilton’s mechanics in Chap. 4)

dg; oH dp;  9H
S _ o P 9 _1.....N (3.234)
dt pi dr 0gi

In the case of the cyclic coordinate we have

L 9H _ OR (3.235)
8qj aqj 8qj ' ’

Because g—H = 0, the function H does not depend on this coordinate, that

is, H = H(ql,...,qj_l, qj+1s---s4Ns Pls-v-s Dj—1s Pj» Pj+1s---» DN, ). In
light of that for such a coordinate we have [see the second equation of system

(3.234)]

dp:
P, (3.236)
dt
that is,
pj = C; = const. (3.237)

Because H depends on p;, according to the first equation of system (3.234), we
have
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dg; _ 0H(q1., - qj=1.9j41s- -GN Plse s Dj—1, Pjs Dj+1s---s DN 1)
dr 8pj '

(3.238)

Let us assume that as a result of the integration of 2(N — 1) equations (3.233)
fori # j we obtain

qi = qi(Cj,Cy,...,Coyn-1),1),
pi = pi(C;,Cy,...,Con-1).1), (3.239)
where Ci, C,, ..., Cyn—1) are constants of integration following from the intro-

duced initial conditions.
In light of that, (3.234) is integrable, and

t

OH
¢ :/ i @ 4 4 Con. (3.240)

Dj
0
where Cyy is the last constant subject to determination.

As can be seen, one cyclic coordinate reduced the number of equations subjected
to integration by two (if we have k coordinates of this kind, the order of the system
of equations subjected to integration is equal to N — 2k).

Let us introduce now the notion of cyclic coordinates in Routh’s equations. Let
us have, according to the previous agreement, k = N — [ cyclic coordinates. Then
we obtain k = N —/ first integrals of a system of the form [see (3.237) and (3.234)]

aL
pj=Ci=—, j=I[l+1,...,N. (3.241)
9g;
because from the second equation of system (3.233) we have

oH

P

According to (3.227), the Routhian function takes the form

N
R= Y ¢,C;—L, (3.242)
j=I+1
where the functions ¢; = ¢;(q1,..., g1, 41,..., 41, Ci41,..., Cy) were obtained
from (3.241) after solving them with respect to ¢;. It can be seen that the Routhian
function does not depend on velocities ¢;+1, ..., gy corresponding to the cyclic

coordinates ¢; 41, ..., gn-
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The problem boils down to the integration of / Lagrange equations (3.232) and to
the determination of time changes of cyclic coordinates from differential equations
of the following form: (see formula (3.233))

dqj _ aR d])j

=, =0, j=I+1.._.N 24
@ "ac; @ & = (3.243)

In the next step, first we integrate the system of Lagrange’s equations, and then
we integrate equations (3.243).

Example 3.17. Let us consider the spherical pendulum from Example 3.12, where
1 .\2 P 2
T = M [(l(p) + (I¥sing) ],
V =mgl (1 —cosp),

and in light of that

L= %m [(Z(,ZJ)2 + (ZlI'/ sin (p)z] —mgl(l —cosg).

Let us note that L does not depend on ¥, that is, ¥ is the cyclic coordinate.
According to (3.241) we have

oL .
=(C = — =ml*¥sin® ¢,
Py 1 o0 ¢

hence
Ci

q./ = —'2.
ml2sin” ¢

According to formula (3.242), the Routhian function has the following form:

R=CV¥— %m [(l(,b)2 + (1w singo)z] +mgl(1 — cos @)

1 C? 1 cz
=——ml?¢*+ —1 > | ——L gin? + mgl(1 — cos
e mil2sin¢ 2 (m12%sin’ @) v 8l 2
1 1 C?
=——ml*¢*> + ———— + mgl(1 —cos ¢).
2" 2mi2sin’ ¢ gl 2

In the preceding formula the so-called Routh’s kinetic energy and Routh’s
potential energy are equal to
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T* — lmlz -2
2 )

1 ¢}
=————— +mgl(l —cosy).
2mi?sin® ¢ gt 2

*

Because there is no dissipation of energy in the system, we have T* + V* =
const = (C,, that is,

1m12-2+1 ct + mgl(1 —cosgp) = C
2 ¢ 2mi?sin’ ¢ & vr=r

3.9 Kinetics of Systems of Rigid Bodies:
A Three-Degree-of-Freedom Manipulator

3.9.1 Introduction

Now we will take up the kinetics of a system composed of four rigid bodies. During
its analysis we will utilize the material introduced in previous chapters, especially
Chap. 4 of [14] and this chapter.

Nowadays multibody systems are often used in robotics and in the construction
of manipulators, where joints can be equipped with various mechatronic systems
applied for the realization of a desired motion of links (bodies) [15-17].

The subject of this section is the analysis of the kinetics and controls of a three-
degree-of-freedom manipulator with a SCARA configuration [18, 19].

3.9.2 A Physical and Mathematical Model

During modeling (e.g., see [20]) the following assumptions were made:

1. The manipulator consists of revolute and prismatic kinematic pairs (see Table 4.1
of book [14]).

2. The manipulator model is an open kinematic chain of connected rigid bodies,
and each of the bodies is equipped with an independent driving motor.

3. Any backlashes in the kinematic pairs are neglected.

The analyzed three-degree-of-freedom manipulator with a SCARA configuration
is presented in Fig. 3.24, where we introduced the coordinate systems of the bodies
O'X[X;X;, 0"X!' X} XY, and O X{" X5’ X", and after rotation of the system (")
we obtain the system (”’), where now on the axis X" lies a body (particle) of
mass ms.
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Let us apply the Denavit—Hartenberg notation (Chap. 4 of [14]), where masses,
mass moments of inertia, and the positions of the centers of gravity of the bodies are
presented in Fig. 3.24, and the degrees of freedom of the manipulator are denoted
by hl, 92, and 93.

The kinematic state equations of a manipulator will be derived based on
Lagrange’s equations of the form

d (dL aL
Sl L D T 3.244
d (3@,’) 00 Q ( )

where L = T — V is the Lagrangian function, 7 (V') denotes the kinetic energy
(potential energy), 6; is the joint variable associated with the i th kinematic pair, Q;
is the generalized force, and R; is the generalized reaction force.

The kinetic energy of a system in translational motion is equal to

1r.

T = 2 I:h%(ml + my + m3) + m4vfm4] , (3.245)
where v,,,, denotes the velocity of a body of mass m4 in a space system, which
according to the symbols introduced in Fig. 3.24 is equal to vy, = |Vim,| =
dry, .

31‘4 = Ty

The kinetic energy of rotational motion of bodies 2 and 3 is equal to

1. .
T, 3 [@f (103 + m3l(2)3) + @% (102 + mzl(z)z + los + m3p303)] ,

Pros = ,/xlzm3 + x%rm, (3.246)

and x;, i = 1,2, are elements of vector rp3. The potential energy of a system of
bodies is equal to
V =ghi (m; +my+m3 +my), (3.247)

where g denotes the gravitational acceleration. Vectors rp3 and r,,, depend on the
position (configuration) of the manipulator.
Following the introduction of the transformation matrices

1 00 O
01 0 0
A=100 1 mo |
LO 0 O 1
[(cos[@,(¢)] —sin[@,()] 0 [rcos[@,(1)]
A, = sin[@,(¢)]  cos[@,()] 0 [rsin[@,(1)]
0 0 1 0 ’
L 0 0 0 1
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Fig. 3.24 A physical model of a three-degree-of-freedom manipulator with a SCARA configura-
tion

cos[@3(f)] —sin[@3(z)] O O
N sin[(*())g(t)] cos[%(t)] (1) 8 , (3.248)
0 0 01
we obtain
3
Tos = HAi
i=1
cos[@y(1) + O3(1)]  —sin[Oy(1) + O3(1)] 0 [ cos[@a(7)]

Sin[@ (1) + @s(1)]  cos[@a(t) + O3(1)] O Irsin[@s(1)]
0 0 hi(t)
0 0 0 1

—_—

(3.249)
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The vector
[ cos[@,(1)] + lp3 cos[@1(t) + O3(1)]
I, Sin[@z(l)] + o3 Sil’l[@z(l) + @3(1)]
ro3 = Toslps = , (3.250)
h (1)
1

because we have lp3 = [[p3. 0, 0]T. Substituting matrix (3.250) into the second
equation of (3.246) we obtain

Pros = | (12cos[@2(1)] + 13 cos[@2(1) + O3 (1)])”

=

+ (1 sin[O2(1)] + o3 sin[Oa (1) + @3(z)])2] . (3.251)
In a similar way we find

[y cos[@,(1)] + I3 cos[Ox (1) + O3(1)]
[ sin[@,(t)] + I3 sin[O,(t) + Os(t)]

T, = o) (3.252)
1
and
—1,sin[0,(1)]Os(t) — I3 sin[O1 (1) + O3(1)] (Oa(t) + O5(1))
S 1, cos[O5(1)]O1(t) + 13 cos[@(t) + O3(1)] (O2(1) + O5(1))
o hi(t)
1

(3.253)
Vimg = { (—L2sin[@2(1)]O1 (1) — I3 sin[O2(1) + O3(1)] (Oa(1) + @3(1)))2

+ (L cos[@2(1)]Ox(t) + I3 cos[Oa (1) + O3(1)] (Oa(t) + @3(1)))2

+ (ﬁl(r))z} : . (3.254)
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Eventually, the Lagrangian function takes the form

L= % { (i}l(r))z (m1 + my + ms) + my [ (=l sin[@(1)]O1(t) — L3 sin[Os(1))
+ 03] (02(1) + O3(1))” + (12 cos[O2(1)]Os (1) + I cos[@s (1))
+ 05(0)] (62(0) + O3(1))” + (hl(z))z}
+ 05(1)? (Io3 + mslys;) + O3(t)* (102 + mald, + 103)
+ 3 ((12c0s[2(0)] + L3 c0s[O2(1) + O3(1)])”
+ (L sin[@,(1)] + Los sin[@,(¢) + @3(1)])2) }
— ghy (1) (my + my + m3 + my), (3.255)

and after its substitution into (3.244) we obtain three second-order differential
equations, which are given below in matrix form

ai 0 0 h.l 0 b] F1
0 an an|| & |+ |ca|+| 0lg=]| M|, (3.256)
0 an ax || 6, c3 0 M;

where

ayy = my + my + m3 + my,
an = Ios+ Loz + 15,m;
+m3 (155 + 15 + 2103l cos[@3]) + mu (15 + 15 + 20213 cos[E4])

az = myl; + mylyls cos[Os],
axp = axy,
asy = I3 + 1}3ms + myl2,

2 = — (lo3 + mul3) 210,05 sin[O3] — (mulsls sin[O3]) 63,

3 = (losms + muls) LO, sin[Os],

by =ay,. (3.257)

The obtained differential equations describe the kinematic state of a sys-
tem without taking into account the resistance to motion. Although the first of



200 3 Statics and Dynamics in Generalized Coordinates

Fig. 3.25 Characteristic of 4
force and moment of friction M [Nm]
assumed for calculations F [N]
T
o [rad/s]
v [m/s] .
-T

equations (3.256) is linear and independent of the others, the two remaining
equations are strongly non-linear and coupled with each other. It was assumed that
the force F) () came from the motor connected with link (body) 1.

Differential equations (3.256) were solved numerically, which was described in
more detail in [19], where the adopted friction characteristic (Chap. 2 of [14]) was
modeled as a linear function with discontinuity at zero (Fig. 3.25).

A real multibody object such as a manipulator is a mechatronic system (see also
[20]). In the case of its control, a model of the object contains a driving system
(actor), a multibody system (three links), and a measurement system (sensors).
In the considered case during analysis using block diagrams, blocks simulating the
friction and drive assemblies of particular manipulator links were also included. The
drive block generates functions of driving moments for the given body, and thanks
to the feedback on position and velocity, it is a primitive manipulator controller.

According to (3.256), the initial parameters of motion are the positions of
particular manipulator links (%, 61, 6>) in the corresponding body systems and the
velocities of those links (hl, 91, 92) at the instant when the simulation (numerical
calculations) starts.

The moments and forces of friction occurring at the i th manipulator body can be
imposed through specification of two parameters: the magnitude of the static friction
force and the ratio of increment of force to the increment of speed. The drive block
consists of three elements: a controller, a regulator, and a drive unit. In this case the
control is based on the method of linear functions with parabolic connectors. As a
result, we obtain that the functions of velocity vs. time, the so-called velocity profile,
are in the shape of a trapezium (Fig. 3.26). Because of that, constant accelerations
during braking and startup are obtained.

At first, the controller forms a velocity profile in the shape of a trapezium.
Then this signal is integrated, which leads to the determination of the displace-
ment function. In the regulator, the difference between the actual and prescribed
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Fig. 3.26 A trapezium- A
shaped velocity profile v [m’! S]

max

t[s.]
L "

~~———————————

-~

displacement generates a signal forcing the function of velocity, whereas the
difference between the actual and prescribed velocity forms the function of the
driving moment. The drive unit consists of a motor (with limited driving moment)
and a transmission adjusting the velocity. The control of model movements takes
place through specification of the velocity function in the form shown in Fig. 3.26.
By adjusting the slopes of the trapezium’s sides the required accelerations during
startup and braking phases can be specified.

The settings of the PD controller are stored in additional blocks and are selected
so as to guarantee the function of an aperiodic critical character. A maximum driving
moment of the motor is selected separately for the positive and negative directions
of motion. Additionally, a transmission ratio of the mechanical transmission is
selected.

3.9.3 Results of Numerical Simulations

For the given three-parameter sets presented in [18, 19] a numerical simulation was
conducted and plots of the position and velocity of particular links were obtained.
Below we will carry out the analysis of three cases.

(i) Correct movements of the manipulator.
We are dealing with correct movements of a manipulator when it reaches
the prescribed positions and plots of the actual velocity coincide with those
prescribed by the control system within the limits of a certain assumed
tolerance. Let us consider, for instance, link 1, where the prescribed value for
the position is equal to 0.75 m. As follows from Fig. 3.27a, the value of the end
position of this link is close to the value 0.75 m. The velocity plot has a shape



202 3 Statics and Dynamics in Generalized Coordinates

a b
h, [m] v, [m/s]

tls) ' t
c [s] d [s]
0, [rad/s]
15}~
i v (RN . AR SR, SRR\, (B RN
1l i .
i 0.5[- :
0.5} ; j i :
0 : : : : 0 - : : :
0 0.5 1 1.5 2 0 0.5 1 1.5 2
e t[s] f t[s]
0, [rad] 0, [rad/s]

. 0 0.5 1 15 2
t[s] t[s]

Fig. 3.27 Plots of positions and velocities of manipulator link no. 1 (a, b), 2 (c, d), and 3 (e, f) in
the case of correct manipulator movements



3.9 Kinetics of Systems of Rigid Bodies 203

imposed by the controller, and additionally all vertices of the trapezium are
rounded. The visible shift of the actual velocity plot (Fig. 3.27b) with respect
to the theoretical one points to the occurrence of error in the system. Similar
observations concern the remaining links (see plots of 6(7), 6»(¢) presented in
Fig. 3.27c¢, d, and the plots of 65(¢), 65(¢) presented in Fig. 3.27e, ).
(i) A dynamic interaction.

In the case of the second set of parameters, manipulator links 2 and 3 move
in the same direction. The plots presented in Fig. 3.28a—d demonstrate that the
settings of the regulator and the powers of the motors are properly selected.
The next four plots (Fig. 3.28e-h) present the results associated with the
case where link number 3 moves with the same parameters as previously,
but in the opposite direction. In Fig. 3.28h the deviation from the prescribed
velocity function becomes evident. It occurs at the moment when braking of
link 2 begins (about 1.5s after the start). The driving moment of motor 3 is
not sufficient to overcome the dynamic forces, which leads to the interaction
between links 2 and 3. At that time instant the motion of the link 3 is not
controlled and follows from the action of the link 2. In the case of 3.3 link 3
was under continuous control of the controller, and the maximum moment of
the motor was sufficient for the realization of the input from the controller.

From the preceding calculations it follows that in the control systems
commonly applied in industry today, changes in the direction of motion of
only one link influence significantly the kinetic behavior of manipulators.

(iii) Kinetic effects associated with changes in the moment of inertia.
In the considered case (third set of parameters, Fig. 3.29a—f), the configuration
of the manipulator is such that link 3 is rotated with respect to link 2 through
the angle 63 = 1.5rad, and this angle remains fixed during the simulation
(Fig. 3.29¢). The velocity plot of link 2 (Fig. 3.29b) is correct.

After positioning of link 3 so that it is a straight line extension of link 2
(63 = 0), the velocity plot for link 2 shown in Fig. 3.29d was obtained. The
form of this plot is the result of an overshoot. After the change in position of
link 3, the moment of inertia of the assembly 2-3 is so large that motor 2 has
insufficient power to follow the velocity input. At a certain time instant the
driving moment of motor 2 no longer increases but settles at a constant level.
This leads to an increase in the error of velocity and position, that is, to the
overshoot of the manipulator.

From the discussed example it follows that the manipulator configuration has
considerable influence on the process of its control. Although link 3 theoretically
remains stationary, there exist small deviations of its position during motion caused
by kinetic interactions (Fig. 3.29¢).

Although the major source material for this chapter is in Polish and Russian, the
reader may find complementary texts in [21-27].
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Fig. 3.28 Plots of positions and velocities of manipulator links of nos. 2 and 3 moving in the same
direction (a—d) and in opposite directions (e—h)
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Fig. 3.29 Plots of positions and velocities of manipulator links of nos. 2 and 3 (case iii)
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Chapter 4
Classic Equations of Dynamics

4.1 Hamiltonian Mechanics

4.1.1 Hamilton’s Equations

Let us return to Lagrange’s equations of the second kind, which, for the system of
N degrees of freedom loaded exclusively with potential forces, take the form

d (L) oL _ L....,N 4.1)
- — = n = FRIA .
dt \94n ) 0qn ’

At the given time instant ¢ the values of displacements g, (¢) and velocities g, (¢)
are known. The variables g, (¢), g, (), t are called Lagrangian variables or state
variables.

If we know the Lagrangian, instead of the generalized velocities ¢, (f) we can
choose quantities p,, called generalized impulses, of the form

oL
0g,

Pn (4.2)

where the variables g,,, p,, and ¢ are called Hamiltonian variables.

Hamilton observed that after introducing the aforementioned variables,
Lagrange’s equations (4.1) take a form that exhibits a symmetry. The variables
qn and p, will be called canonically conjugate variables, and the equations in those
variables Hamilton’s canonical equations.

In mechanics the quantities p, are often called generalized momenta, that is,
pn has a dimension of momentum if the corresponding g, (¢,) has a dimension of
displacement (linear velocity), or a dimension of angular momentum if g, (§,) has a
dimension of an angle (angular velocity). Also, applying the notation adopted in the
present work, we have {p,} = [@m.]{¢m}, Which in tensor notation would have the

J. Awrejcewicz, Classical Mechanics: Dynamics, Advances in Mechanics 207
and Mathematics 29, DOI 10.1007/978-1-4614-3740-6_4,
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form ¢, = am,q™, where [a,,,] is the matrix of generalized masses corresponding
to g, (i.e., the metric tensor of a covariant basis). In other words, p, and ¢, are
covariant and contravariant components of one vector in a certain metric space, that
is, v=¢,E, = ¢,E".

The Legendre transformation (3.222), introduced earlier, now, for the function
L(qu, gn, t) with respect to the coordinates ¢,,, takes the form

N
H(Qmpn’t) :anqn_L(q17”'5qNaq.la"'anat)7 (43)

n=1

where the transformation is made with respect to all generalized velocities n =
I,...,N. Let us note that ¢, = ¢,(q1,....9n, P1,--., PN, t), which follows
from the solution of (4.2), i.e., using those equations we determine the generalized
velocities in terms of the generalized momenta treating the generalized coordinates
as parameters. The function H(qi,...,qy, p1,--., PN, t) is called the Hamilto-
nian function (the Hamiltonian).

Proceeding similarly as in the case of calculations regarding the Routhian
function let us calculate the total differential of the Hamiltonian function on the
left-hand side of expression (4.3):

N
0H oH oH

In turn, the total differential of the right-hand side of (4.3) is equal to

N
. . aL . aL oL
dH = Z (‘Indpn + pndgn — Wd%l - WdQn) - gdl, 4.5)

n=1

where the underlined terms cancel out.
Comparing (4.4) with (4.5) we obtain

H L 9H _ dg,

= — , , 4.6
9qn ¢, apy dr (46)
and

oH oL
— = 4.7
ot ot “.7)

From (4.2) we get
dp, d JdL oL

Pn _ - (4.8)

e drdg, g’
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Eventually, we obtain the equations

dt ~ dp,.  dt  dg,

We call equations (4.9) Hamilton’s canonical equations.

209

4.9)

Reader interested in broadening their understanding of the problems discussed in

this section may refer to [1-24].

Example 4.1. Determine the canonical form of Hamilton’s equations for the spher-

ical pendulum considered in Examples 3.13 and 3.18 of Chap. 3.

By definition (4.3) of the Hamiltonian we have

oL .
= — = ml*ysin’ g,
Py o0 ¥ sin® ¢
oL 5.
P = — =ml @,
® 3@
H=19ypy+ép,—L
Py e 1 2 r; B ml? pj sin®

ComZsitg  mIP 2 2 2 (misin? g)

1r 1P

1
S mgl(1— .
2mi2 " 2mi2sin? g mgl(l = cosg)

Hamilton’s canonical equations (4.9) take the form
do OH  p,
dt  ap, mi¥
dy  0H Py

dt @ "~ mil?sin’¢’
dp, oH 1 P%y 2sin @ cos @

=—— = — mgl sing,
dr dp 2ml? sin4(p mersime
d])w _ 3H -0
d oy

For py = 0 we have

dp _ py dp, .

—_— = —, —_— = — l s

dt  ml? dr mersime

which are Hamilton’s canonical equations for a mathematical pendulum.

—mgl(1 —cosg)
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4.1.2 Jacobi-Poisson Theorem

In the literature on mechanics, the notion of the so-called Poisson bracket is used.
The following expression is called the Poisson bracket of functions u# and v:

Ndu oy ou 0Jv

- , 4.10
= 0qn Opn  Opn Oqn (4.10)

[u.v] =

where it is assumed that functions u and v are continuous and twice differentiable.
Let us cite here [9] certain properties of the Poisson brackets (the proofs are
omitted):

(@) [u.v] = —[v,ul,

(i) [Cu,v] = Clu,v], C = const,

(iii) [u + v, w] = [u, w] + [v, w],

TN 700 B

@iv) Py [u,v] = [at,v} + [u, 31i|’

™) [[u,v], w] = [[v,w], u] + [[w, u],v] = 0. (4.11)

Let the variables p, and g, satisfy Hamilton’s canonical equations (4.9),
henceforth called Hamilton’s equations. If the function F(g,(¢), p,(t),t) = C =
const, then it is a first integral of Hamilton’s equations. Thus for any time instant #
we have

N

dr  oF oF dg, OF dp,
ar _Jr Z q T p
dr ot dg, dt op, dt

n=1

OF N[/ OF 0H OF dH OF
- a9 = L [F.H =0 4.12
ot (aQn 3Pn 3Pn aQn) ot * [ ' ] 0 ( )

+
Ny

n=1

It turns out that making use of the concept of the Poisson bracket enables a clear
statement of the Jacobi—Poisson theorem, which allows for the construction of a first
integral of a Hamiltonian system if at least two other of its first integrals F; and F,
are known.

Theorem 4.1 (Jacobi-Poisson theorem). If F| and F, are first integrals of Hamil-
ton’s equations (4.9), then their Poisson bracket [F, F] is also a first integral of
those Hamilton equations.

Proof. According to property (iv) we have

0 _ JoF; oF,
E[Fla ] = [W, F2i| + I:Fh ?i|
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Because by assumption F and F, are first integrals, we have

OF;
W-'—[F‘Z,H]:O, i=1,2,

which, after using the first equation of the proof and property (i), gives

%[Fl, B = [-[Fi, H], 2] + [F1, —[F>, H]]

[[H, Fi], F2] = [-[F2, H], Fi]
[[H, Fi], F2] + [[F2, H], Fi1],

where property (ii) for C = —1 was used as well. From property (v) for the
functions F;, F>, and H we obtain

[H, Fi]. F2] + [[F1, F2], H] + [[F2, H], Fi] =0,

that is,
[[H, Fil, B2] + [[F>, H], Fi] = —[[F. ], H],
and hence
D1FL B+ IFL R H] =0
which we had set out to demonstrate. O

4.1.3 Canonical Transformations

With the aid of matrix notation Hamilton’s equations (4.9) can be expressed in the
form

x =IH, (4.13)
where
— —_ r 3_H ]
q1 dq1
' ol
qn Oy Ey / oH Erm
= , Ly = , H = — =% |. 4.14
XoN » 2N [_EN 0N:| 1X2N Ix g% ( )
oH
_pN_ _317_N_
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As can be seen, x is a column vector, matrix I is skew-symmetric, H' is a column
matrix, and matrix Ey is a diagonal matrix composed of ones. It is easy to check
thatdet I = 1,1> = —Epn, IT =T"! = —L.

The use of canonical transformations is motivated by a desire to choose general-
ized coordinates (or their combination) such that the form of equations would enable
us to find the first integrals of the considered problem. One such possibility has
already been discussed on the example of Routh’s equations and cyclic coordinates.
Let us conduct the following transformation of coordinates q and p:

Qn = Qn(qs pvt)v P, = Pn(qs PJ)» (4.15)

that is, we perform the transition to new coordinates Q and P in the following way:
q — Q, p — P. We select the new coordinates Q, and P, (n = 1,..., N) so that
the system of equations obtained after the transformation is a Hamiltonian system
as well.

The Jacobian matrix of transformation (4.15) has the form

F0Q1 001 901 9011
dq1 " 9gn dp1 T Opw

9Q 9Q 3QN 3QN 3QN 3QN

N3a | | B Baw o
=19 B =] 9 i | @
dq dp dq1 T dgn Opr  Opwn

aPy 9Py 9Py 0Py
L dg1 =" dgn Op1 " Opw

Definition 4.1 (of the canonical transformation). If we choose matrix J by means
of an appropriate selection of matrices Q and P, so that the following relation holds
true

J'Iy=cC1L, (4.17)

where C is a certain constant, and matrix I is defined by formula (4.14), then
transformation (4.15) is called a canonical transformation.

Now we will check whether the identity transformations Q, = ¢, and P, = p,
are canonical (to simplify the calculation we will take N = 2).
According to formula (4.16) we have

1000
0100
J= 0010}’

0001
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and substituting it into equality (4.17) we obtain

1000770 01071000 0 01071000 0 010
0100l 0 0O01|[[0100| [0 O0OL||0O100| |0 0O1
0010||—-1 000|]|0010| |—-1000||0010| |—-1000/[
0001/ 0 —100]]0001 0 —-100]]0001 0 —-100

which satisfies formula (4.16) for C = 1.

In the general case for C = 1 the transformation matrix J is called a symplectic
matrix. If C # 1, then the transformation matrix J is called a generalized symplectic
matrix of valence C. Knowing the valence of matrix J (i.e., the number C) we are
able to determine the value of its determinant.

From (4.17) we obtain

det (J'IJ) = detJ" detIdetJ = det(CT). (4.18)

It can be noticed easily (say, for N = 2) that

0 0 6c 0 0| e
det(CI) = =C(=DN|-Cc 0 o|=cC? =C™,
—C 0 00 0 —C 0 0 -C
0 —-CO0O0
Because det I = 1 and det JT = det J, from (4.18) we obtain
detJ = +CV. (4.19)

Theorem 4.2. [f we take in the considered phase space the two successive canoni-
cal transformations y; = y;(X,t) with the valences C;, i = 1,2, respectively, then
the resulting transformation y = y(X,t) = ya[yi1(X,1),t] is also a canonical one
with the valence C = C,C,.

Proof. Owing to the definition of the canonical transformation (4.17) we have

dy; 9
', =crL =2 =220 -1
ox ay,
Then
_dy  dy20y1
= ox " dy, ox = JJi,

and consequently

I = LID'IJLT) =T BLIL) = )Gl = GJ, =C L. O
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Theorem 4.3. [f we take the canonical transformation'y = y(x, t) with valence C,
then the inverse transformation x = Xx(y,t) is also a canonical one with va-

lence 1/C.

Proof. Multiplying (4.17) by (JT)™! (left-hand sidedly) and by J~' (right-hand
sidedly) we obtain

(JT)—IJTIJJ—I — C(JT)—IIJ—I
or, equivalently,

l_ T\—ly7-1
Fl=ahu o

Below we will present several theorems pertaining to canonical transformations
(their proofs can be found in Markeev [9]).

Theorem 4.4. A necessary and sufficient condition for transformation (4.15) to be
canonical is the satisfaction of the following equations:

[9is ] =0, [pis Pk} =0, [qi, px] = Ci, (4.20)
where the introduced Poisson brackets denote the valence defined by formula (4.17),
and ;i is the Kronecker delta (i.e., §;x = 1 fori = k).

Theorem 4.5. A necessary and sufficient condition for transformation (4.15) to be
canonical is the satisfaction of the following equations:

[Qi. Okl =0, [Pi, Px]=0, [Qi, P]= Cé. (4.21)

where Q = Q(q, p, t), P =P(q, p, 1).

Theorem 4.6. A necessary and sufficient condition for transformation (4.15) to be
canonical is the existence of a constant C # 0 such that

N N
SF=C Y pubgn—Y_ PubQ, (4.22)

n=1 n=1

is the total differential of a certain function F = F(q, p, t).

Now we will demonstrate that matrix J of the form (4.16), generated by the
motion of a Hamiltonian system, satisfies canonical transformation (4.17) for
C = 1. This means that the state of the system described at time instant t = 0
by the coordinates qo and py is transformed into the coordinates q(¢) and p(z) for
time instant ¢, that is, gy — q and po — p.
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Let us differentiate equation of motion (4.13) with respect to (qo, po) (qo =

q(0), po = p(0)); we obtain

d
4 9@p) _yo9@p) 4.23)
dz 9(qo, po) d(qo. po)
where " = q"(qo. po. 7). p" = p"(qo. po. 7).
In this case, matrix (4.16) has the form
- g1 dq1  dqi dq1
dq10  9gno 9pio  dpwo
dgn dgn dgn dqn
_[9@p) | _ |dgi0 " dgno dp1o " dpwo
Jonxon = [m = | op; ;. apy o | (4.24)
dq10 dgno dpio apno
pn dpn Opn apn
Ldgi0  dgno dpio dpnod
and matrix H” takes the form
2H 2H 2H P2H
g7, " 0q100gn0 99100p10  99109pPN0
?H ?H ?H ?H
/
" — BL — dgn 0q10 dgno0gno Ignodpi1o 0gn0dPNo
IX2N 8((]0, po) 82H 82H 0 82H
0p100q10 0p100gn0  Op100p10 dp100pwNo
2H 2H 2H 2H
L 9pN09q10 dpnodgno OpNOpIo dpnodpNo |
(4.25)

Equation (4.23) with matrices defined by (4.24) and (4.25) can be written in

the form

iJ =1IH")
dt ’

Let us now transpose both sides of the preceding matrix equation

% T =77 (IH”)T = J'H"'1' = —JTH"L,

(4.26)

4.27)

because it is easy to verify that H” = H’ 'T [see matrix (4.25)] and I" = —I.
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According to formula (4.17) for C = 1 we have
I=J"17, (4.28)

where J is described by (4.24).
Let us calculate the derivative [taking into account of (4.26) and (4.28)]

d . .
% (') =J"I+ 11
= —JTH'PJ + J'PH")
=JHJ-J'H']=0 (4.29)
because I = —E,y .

Thus we proved that the matrix JTIJ is a constant matrix, and for time instant
t = 0itis equal to I. This result can be stated in the form of the following theorem.

Theorem 4.7. The transformation of a phase space (q, p) as a result of the motion
of a Hamiltonian system is a canonical transformation of the valence C = 1.

If we consider the motion of a point in a phase space (q, p) starting from the
initial condition q(fp) = qo, p(fo) = Ppo, the trajectory of motion is determined by
the equations q = q(qo, Po, ¢) and p = p(qo, Po, ?)-

Theorem 4.8 (Liouville’s' theorem). The volume of a phase space described by
the formula

Vt:/.../dql...qudpl...de (430)

——
2N

is conserved during the motion of a Hamiltonian system.

Proof. For the time instant # = 0 (4.30) has the form

V():/.../dqlo...qudplo...d])N().

————
2N

Because matrix J is the Jacobian of transformation (4.15), using matrix (4.24)
we have

dx = Jdxo,

1Joseph Liouville (1809—1882), French mathematician who contributed greatly to number theory,
complex analysis, differential geometry, and topology.
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where
[ dgy ] [ dg10 |
dx = dqy . dxg = dan
dpi dpio
| dpw | | dpw |

Expressing variables dx in terms of dx, occurring inside of the integral, we
introduce the Jacobian of the transformation

V, = / .. / |detJ|d6]10 ...dgndpio...dpy.
———
2N
According to equality (4.28) we have
detT = det J" detIdetJ,

that is, det J = £1.

In turn, for ¢t = 0 we have J = E,y, and because det E;y = 1, we have
det J = 1. According to the theorem proved earlier, the matrix JTIJ = I is a
constant matrix for any time instant ¢. Also, for any time instant we have det |J| = 1,
thus V; = Vp, which we had set out to demonstrate. O

4.1.4 Non-Singular Canonical Transformations and Guiding
Functions

If transformation (4.15) is canonical, and additionally we have
a
det —Q #0, 4.31)
op

then canonical transformation (4.15)

Q = Q(qv P; t)’ P= P(qv P t)v (432)

is called a non-singular canonical transformation. According to the theorem
associated with (4.22), if the transformation is canonical, then

N N
SF(q.p(q.Q.1).1) = C Y pudgu— Y _ Pu8Q, =385S(q.Q.1),  (4.33)
n=1

n=1
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where the satisfaction of condition (4.31) allowed for the expression of p in the
form of the function p = p(q, Q, ¢). The function F in which such a change was
made is denoted by S and is called the guiding function of non-singular canonical
transformation (4.32). From (4.33) it follows that

05(q.Q.1) 05(q.Q. 1)
————=Cp, —————~ =-P. 4.34
3q p ) (4.34)
On the other hand, if the function S = S(q, Q, ¢) is given such that
HERY
det 0, 4.35
© (Ban) # (43

then equations (4.34) describe the non-singular canonical transformation of valence
C #0.

In turn, it is possible to pass from (4.34) to the form (4.32). From the first
equation of (4.34) we can obtain Q = Q(q, p, ¢). Subsequently, substituting Q
into the second equation of (4.34) we obtain P = P(q, p, ).

Knowing the guiding function S allows for an easy transition from one form of
the Hamiltonian function [corresponding to the old coordinates (q, p)] to another
form [corresponding to the new coordinates (Q, P)]. In this case (see [9]) we have

H=CH+ a_s’ (4.36)
ot
where H is the new Hamiltonian function.

A great advantage of this approach consists in the fact that in order to change the
coordinates, that is, to pass from the old to the new coordinates (which is required for
the determination of first integrals), there is no need to carry out the transformations
of, often, many functions (variables) 2N, but it is enough to know the functions H
and S.

4.1.5 Jacobi’s Method and Hamilton—Jacobi Equations

Let us now make an attempt, using the notions introduced earlier, to integrate
Hamilton’s canonical equations of the form

oH 0H
q = -, ) — —_—— 4.37
q op p 3q ( )
For C = 1, according to (4.34), we have
0S(q, Q. ¢ 0S5(q, Q. ¢
(@.Q.1) _ @Q.n _ o 4.38)

9q P: 9Q
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Hamilton’s equations in the new coordinate system (P, Q) take the following
form [equivalent to (4.37)]:

where, according to function (4.36), we have

A 35(q, Q,
H(Q,P,t) = H(q,p,?) + % (4.40)

where %—f can be expressed in terms of functions Q, P using (4.38).

The value of the new Hamiltonian function H depends on the function S. If we
take it such that H = 0, then from (4.39) we obtain

Q=0 P=0, (4.41)

and after their integration
Q=C,, P=0C,, (4.42)
where C; and C, are vectors of N constants, that is, C] = (Cl(i), o Czi,i))T,

i=1,2.
Substituting equality (4.42) into the second equation of (4.38) we have

q=q(C, Cy.1), (4.43)
and then from the first equation of (4.38) we get
p = p(Ci, Cy,1). (4.44)

Substituting expressions (4.43) and (4.44) into equation (4.40) and taking into
account (4.38) we obtain

95(q.Q.1) +H(q 95(q.Q.7) t) —o.

4.45
ot aq ( )

This is a partial differential equation called the Hamilton—Jacobi equation; it
serves to determine the guiding function S dependent on g (¢), g2(t),...,qn(t)
and ¢, where the quantities Q = C; are treated as parameters (because they are
constant).

Theorem 4.9 (Jacobi’s theorem). If S = S(q, Cy, t) is a complete integral of
Hamilton—Jacobi equation (4.45), that is, S depends on N constants (C}, ..., CJ{,),

¥S_| £ 0, then we find the solutions (4.43) and (4.44) of (4.37)

and we have 799CT
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from (4.38), i.e.

% _p B ¢ (4.46)
aq - pv aCl - 2 .

where the vector C, is composed of N arbitrary constants.

It should be emphasized that in general there is no recipe for the integration
of partial differential equation (4.45), and it is not always easier to solve this
equation than ordinary differential equations (4.37). However, in many cases where
the Hamiltonian function appears in technical applications, either function S can
be directly determined or the process by which it is determined is significantly
simplified.

4.1.6 Forms of the Hamilton—Jacobi Equations in the Case
of Cyclic Coordinates and Conservative Systems

Let us consider the case where we have N — K cyclic coordinates, that is,
qK+1,---,qn are cyclic coordinates. The Hamiltonian function in this case takes
the form

H=H(qi,....qk. D1+ DK+ PK+1s---+ DN, 1), (4.47)

and, according to the previous calculations, because cyclic coordinates are inte-
grable, the complete integral is equal to

S =Cqks1s - Cay +8(q1 - oqr, CVL O, (448)
and after its substitution into Hamilton—Jacobi equation (4.45) we have

38 38 s o~
—+ H vevergiky =iy —Cry...,Cy ] = 0. 4.49
o + (% qk 91 gk K+1 N ( )

The function S subjected to integration according to partial differential equa-
tion (4.49) is significantly simplified since it depends on (N + 1 — K) variables.

In the case of conservative systems, the full energy of the system is conserved,
and the Hamiltonian function assumes a constant value, that is,

H(ql""’qN’pl""’pN)zH*‘ (4-50)

This means that the Hamiltonian H* does not depend explicity on 7, and H* is
an arbitrary constant.
Substituting (4.50) into Hamilton—Jacobi equation (4.45) we obtain
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aS
— +H*=0, 4.51
o+ 4.51)

that is, after integration

S=—H*t+V, (4.52)

where now V does not depend explicitly on time. Because S = S(q, Q), in our
case we have S = S(q, C)).
From (4.50) and (4.52) we get

1% av ) ’ 4.53)

H*:H( 1o YNs T 5y 7
1 1 g1 dgn

which is known as the Hamilton—Jacobi equation for conservative systems. From

(4.53) we compute V = V(qy,...,qn, Cl(l), R Cz(vlilv H*). Equation (4.52) now
takes the form

S=—H*%+V (ql,...,qN,Cl“),...,C,S)_l,H*), (4.54)

which determines the complete integral of the Hamilton—Jacobi equation.
According to Jacobi’s theorem [see formulas (4.46)] we get

vV vV

aq :pn, (}’l:l,...,N), ac(l):_cn(Z)’ (}’l:l,,N—l),

1%

S = cy. (4.55)
where Cl(z), ...,C 1%2) are arbitrary constants.

The equation (4.55) can be interpreted in the following way. First, part of N
equations of (4.55) define the impulses p,, n = 1,..., N; second, part of the
N — 1 equations describe trajectories of the N-dimensional coordinate space of
q1,--.,qn; all of them govern the dynamics of the conservative system.

Various extensions of the described approach (despite a huge number of
monographs) can also be found in [25, 26] with an emphasis on mechanical
applications.
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4.2 Solution Methods for Euler-Lagrange Equations

4.2.1 Introduction

Other methods of analysis of second-order (or higher) non-linear differential
equations obtained with the use of variation and called Euler or Euler-Lagrange
equations (Chap. 3), which are relatively new and alternative as compared to asymp-
totic methods, are the so-called Bogomolny decomposition [6, 13] and Bdcklund
transformation [1,7,17].

In the mechanics of deformable bodies, we commonly face the problem of
static or dynamic deflections of beams, plates, and shells, which are described
by non-linear partial differential equations (PDEs). This concerns both hyperbolic
and elliptic PDEs. The mentioned variational methods were successfully applied in
certain branches of physics for the analysis of non-linear equations of a field theory
and, in particular, of the so-called soliton equations, which include the Korteweg—
de Vries equation,’ the sine-Gordon® equation, and the non-linear Schrodinger*
equation. These methods are based on a theory of the so-called strong necessary
conditions and, subsequently, on its modification (extension) called semistrong
necessary conditions.

This approach made it possible to find the Biicklund® transformation for a wide
class of non-linear PDEs, including the aforementioned soliton equations. This, in
turn, opened up the possibility of finding particular solutions to such equations and
then to generate a whole “lattice” of such solutions (by application of the so-called
Bianchi® permutability theorem).

4.2.2 Euler’s Theorem and Euler—Lagrange Equations

Let us consider the functional

b

o] = / Flx.y(x). y'(x))dx. (4.56)

a

where x € [a, b], x — y(x) € R, and F has continuous partial derivatives.

2This equation is a mathematical model of waves on shallow water surfaces and is named after
Dutch mathematicians D. Korteweg (1848-1941) and G. de Vries (1866-1934).

3Walter Gordon (1893-1939), twentieth-century English physicist.

“Erwin Schrodinger (1887-1961), an Austrian/Irish mathematician awarded the Nobel prize in
1933.

3 Arthur Biicklund (1845-1922), a Swedish mathematician and physicist.

SLuigi Bianchi (1856-1928), Ttalian mathematician who made important contributions to differen-
tial geometry.
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Definition 4.2 (of a weak minimum). Functional (4.56) attains a weak minimum
for y = y* if there exists ¢ > 0 such that ¢[y] > ¢[y*] forall y € K'(y*, ¢),
where

K'(y*.&) = (max |y(x) — y*(x)| + max [y'(x) — y*(x)| < ¢). (4.57)

Definition 4.3 (of a strong minimum). Functional (4.56) attains a strong mini-
mum for y = y*, if there exists ¢ > 0 such that ¢[y] > ¢[y*]forall y € K°(y*, ¢),
where

K°(y*,e) = (max|y(x) —y*()| < 8). (4.58)

It can be demonstrated that, if the functional ¢[y] attains a strong extremum for
y = y*, then it also attains a weak extremum for the function y*, but not vice versa.

Theorem 4.10 (Euler’s theorem). If functional (4.56) attains an extremum for

y = y*(x), then
dF d (OF
o ax\ay) =0 (39

fory =y*, y =y

Equation (4.59) is called Lagrange’s equation or the Euler—Lagrange equation,
but it is also known as Euler’s equation or the Euler—Poisson equation.

The problem of determining the extremum of functional (4.56) boils down to
the solution of (4.59). However, there exist no general methods of integration of
non-linear equations of this kind, and here the previously introduced theories of the
Bicklund transformation and Bogomolny decomposition come to our aid.

The presented concepts of the solution of non-linear PDEs can be exploited to
solve a wide class of equations that appear in various fields of physics by treating
them as equations of the type (4.59), further called Lagrange’s systems. Even if
we are unable to construct functional (4.56), very often it is possible to reduce
these equations to the Lagrange class by introducing certain transformations of
independent variables of these equations.

A classic variational approach is based on the fact that the actual trajectory
in a configuration space satisfies Hamilton’s principle of least action. Since, if
we consider an arbitrary trajectory ¢ = ¢(¢) admissible by constraints, then the
principle of least action is reduced to the following condition for the vanishing of
variation:

b
Soly] = / (%Sy + 87F8y/) dx =0 (4.60)
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for the physical (actual) trajectory ¢* = ¢*(¢). Integrating by parts we obtain the
Euler-Lagrange equation. From variational equation (4.60) it follows that

g =0, E =0 (4.61)
dy dy’

Any solution of the preceding system of equations is simultaneously the solution
of Euler—Lagrange equation (4.59). The solutions of equations (4.61) are called
strong solutions, whereas solutions of equation (4.59) that are different from strong
solutions are called weak solutions.

Let us note that the order of strong equations (4.61) is smaller than the order of
original equations (4.56). It turns out that strong equations allow for the generation
of many solutions by taking advantage of an internal symmetry of Hamilton’s action
integral.

For a four-dimensional Euclidean space (X, X2, X3, t) there exists a Lie’ group
of transformations having ten generators, and with every generator of this group
is associated an integral of motion, as stated by the so-called Noether® theorem
[14]. This theorem makes it possible to establish certain associations between
symmetries of a system and certain properties of motion such as momentum, angular
momentum, and energy.

Hamilton’s variational principle applied to the Lagrangians L and L* of the form

L*=L+1 (4.62)

leads to the action principle of the form
b
) /[L + I]dt = 0. (4.63)

Because for both Lagrangians L and L* from Hamilton’s principle we obtain
identical Euler-Lagrange equations, we have

b
8l = S/Idt =0. (4.64)

We call a functional I having the preceding property a fopological invariant, and
I = L* — L adensity of a topological invariant.
According to the construction of functional (4.56), now we have

b
dF  dI OF  aI\ .,
ar or 9 dx = 4.
/[(dy +dy)8y+(8y’+3y/)8y} *=0 (463

"Marius Sophus Lie (1842-1899), Norwegian mathematician.

8Emmy Noether (1882-1935), German mathematician known for her contributions to abstract
algebra and theoretical physics.



4.2 Solution Methods for Euler-Lagrange Equations 225

hence we obtain the following system of strong equations:

OF oI aF oI
—4+—=0, —+-—=0. 4.66
T ity (4.66)

Any solution of the system of strong equations is simultaneously the solution of
Euler-Lagrange equation (4.59).

The Euler—Lagrange equations are invariant with respect to calibrating a trans-
formation, that is, they remain identical for both ¢ and ¢* = ¢ + I.

As it turns out, this property makes it possible to find many new analytical
solutions for numerous equations of the Euler—Lagrange kind.

4.2.3 Bogomolny Equation and Decomposition

Both notions will be introduced using a non-variational approach. Let us consider a
one-dimensional model of a scalar field whose free energy functional has the form

2
Hly] = / [1 (dy ) ) + V(y(x)):| dx. (4.67)

2 dx

According to Euler’s theorem, trajectory y* = y*(x), on which functional (4.67)
attains its minimum, satisfies the following Euler—Lagrange equation:

d?y  V[y(x)]
FT Al (4.68)

Bogomolny proposed the following decomposition of (4.67):

2 d

$/3—§de+/€“

2
=5 [ [dy N cq dx

dx

2
[ (5) s oo

2 \dx

2
:/%de =/|:l (d_y) +V:| dx, (4.69)

where C is a constant that describes the initial energy and ‘ JC dx‘ < 00.
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The Bogomolny equation has the form

d
V2V - Cl=0. (4.70)

4.2.4 Bdacklund Transformation

Nowadays Bécklund transformations are introduced using both an algebraic varia-
tional and a geometric approach.

Definition 4.4 (of a Bicklund transformation). Let the following two decoupled
differential equations be given:

E(”s”)ﬁ”tv”xx~-- 7-x7t) = 07
FO,ve, v, vixs .o x,1) =0, 4.71)
where u = u(x, t) and v = v(x, t) are certain fields and variables ¢ and x are
independent and real.
The following two differential relations

Ri(u,uy,up, v, vy, ve, ..., x, 1) =0, i=1,2, (4.72)

are called a Bicklund transformation for (4.71) if:

(i) For u° satisfying the equation E@°, ug, u?, ugx, ..., X, t) = 0, the solution of
system of equations (4.72) of the form
R, (uo,ug,u?,v, vX,v,,...,x,t) =0,
R, (uo, ug, u?,v, Vs Viy e oh X, t) =0 4.73)

makes it possible to find v(x, t), which at the same time is the solution of the
second equation of (4.71);

(ii) For1? satisfying the equation F(»°, v2, v, v ... x, 1) = 0, the solution of
system of equations (4.72) of the form

0.0 0
R, (u,ux,u,,v ,vx,v,,...,x,t) =0,

X0

R, (u,ux,ut,vo,vo v?,...,x,t) =0 4.74)
makes it possible to determine u = u(x, t), which at the same time is the
solution of the first equation of (4.71).

If in (4.71) we have E=F, then (4.72) is called an auto-Bdcklund
transformation.
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Definition 4.5 (auto-Béicklund transformation). Relations (4.72) are called
strong Bicklund (auto-Bicklund) transformations if for every pair

0.0 0.0 .0 .0
Rl(u,ux,u,,v,vx,v,,...,x,t)zo,

Ry (uo,ug,u(t),vo W0 v?, o ,x,t) =0 4.75)

s Vxo

the following equations are simultaneously satisfied:

E(uo,u uO ugx,...,x,t) =0,
FOO W00 o x, 1) =0. (4.76)

Let us note that if the order of coupled equations (4.72) is equal to or greater than
the order of the original equations (4.71), then the advantages of this approach are
questionable.

Example 4.2. Let us consider an auto-Bécklund transformation for the system of
sine-Gordon equations of the form
0%u 0%y
u,
dxot axat

= sinv.
According to [17], the transformation has the form
1 /0u v u—v
5(8x ax) ﬂsm( 2 )
L (ou ov) 1 ain [ +v
2\ar at) B 2 )

Differentiating the first of the preceding equations with respect to ¢ and the
second with respect to x we obtain

l %u 32\/ _ﬁ u dv (M—V)
2 \avar Tavar) = 2 2
u-+v u—v

N ( ) )

l 3214_32\/ _L % @ u+v
2 \oxdr  oaxor) 28 \ox 2
u—yv u-+v

:sm( 7 )cos( 2 )

Adding and subtracting the preceding equations by sides we obtain the original
equation.
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Let us substitute a trivial solution v = 0 into the obtained Béacklund relations.
This leads to the following differential equations:

(). M= Za()

and after their integration we obtain the following particular sine-Gordon equation:

u(x,t) = 4arctan I:Ce$(}5t+ﬁx):| . 0

Example 4.3. Derive the Bogomolny equation based on strong necessary condi-
tions.

It can be demonstrated that the only non-trivial invariant of (4.64) is

I = / G(y)y'dx.
Substituting the foregoing relation into Euler’s equation we obtain

Gy d [3[G(y)y/]} —0
ady dx ay’ o

Thus we have

1 (dy)?
Feeyey' @) =5 ($) + Vel

I(y) = G(»)y'.

According to formulas (4.66) a system of strong equations has the following
form:

v 9Gdy ady .

From the second equation we have

8y_

o
and after substitution of this equality into the first equation we obtain

W G
dy dy
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Integrating the preceding equation we obtain
1
Viy@)]=36"+C.

where C is an integration constant (a real number). From the preceding equation

we find
G ==+2[V(y)—C]. O

4.3 Whittaker’s Equations

Let a Hamiltonian function not depend explicitly on time, that is,
H=H(q,....qn, p1,...,pn) = Hy = const, (4.77)

where Hy = H(q10, ---,4Nn0, P10s ---» PNO), 1.€., it is defined by the introduced
initial conditions. Because ¢, = ¢, (¢) and p, = p,(t), the motion of a Hamiltonian
system can be understood as the motion of a point on a hyperplane (4.77).
From (4.77) we determine

pi=—H"(q1,....qn, P2, ..., pn, Hy). (4.78)

Separating out variables g; and p; in Hamilton’s canonical equations (4.9)
we obtain

dq, _ oH dp: oH

=2 - 4.79
dr api dr 0q1 @7
d oH d oH
qn _ , Pn_ , n=2,...,N. (4.80)
dr 0pn dr gy

Dividing both sides of (4.80) by the first equation of (4.79) we have
dg, (BH)/(BH)
7 dpn ap1)
d oH oH
p”:—( )/(—) n=23,....N. (4.81)
dq, pn ap1

Let us substitute p; defined by (4.78) into (4.77) and as a result obtain

H(qi,....qn. —H", p2, ..., py) = Hy. (4.82)
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Differentiating the preceding equation with respect to g, we obtain

OH _OH dpi _ 9H _OH 9H" _

— = - — n=2,...,N. (4.83)
dgn ~ Op10gn  3gy  Ip1 Ogy
Proceeding in an analogous way we get
0H  OH OH"
=0, n=2,...,N. (4.84)

dps  dp1 Ips

Taking into account (4.83) and (4.84) in the right-hand sides of equations (4.81)
we obtain

dg, oH" dp,  OH"
dgi  dp, " dq1  Oqn

(4.85)

If in the obtained equations we exchange ¢; with ¢, we arrive at the canonical
form of Hamilton’s equations (4.9). The role of a Hamiltonian function H is played
by a Whittaker function H" . Equation (4.85) are called Whittaker’s equations.’

Integration of Whittaker’s equations leads to the determination of velocities and
momenta

qu = qn(qh HO? Cls"'SCzN—z)v

pnzp,,(ql,Ho, Cl,---,CZN—Z), n:2, 3,...,N, (4.86)

where Cy, ..., Coy—; are arbitrary constants.
Substituting the quantities thus obtained into (4.78) we obtain

p1 = fi(qi, Ho, C1,...,Conn). (4.87)

Equations (4.86) and (4.87) define the motion of a point of coordinates p;(qi),
p2(q1), ..., pn(q1), g2(p1),...,qn(p1) on a phase hyperplane H = Hj.

In order to determine the dependency of coordinates on time one should make
use of the first equation of system (4.79), which will take the form

d
ditl = falqi, Ho, Ci,...,Con-2), (4.88)

°Edmund Taylor Whittaker (1873-1956), English mathematician who contributed widely to
applied mathematics and mathematical physics.
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and separating the variables and integrating we eventually get

d
t= [ Y4 oo (4.89)
)2

Solving the preceding algebraic equation with respect to ¢; we obtain
g1 = q:(t, Ho, Cy,...,Con—1). (4.90)

In [14] it is shown that using the Legendre transformation, Whittaker’s equations
can be reduced to Lagrange’s equations of the form

d 9P _op 0 2,3 N (4.91)
T o, =V, n=245..., N, .
dq1 dq,  9qy
where
N
P = P(qu---sqNs qév"'vq;Vv qi, HO) = Z‘I;Pn _HWs
n=2
dgy
I i 4.92
W= g (4.92)
and quantities p, occurring in a Legendre function P are expressed by g5, ..., ¢}
from equations
aH"
q, = , n=2,3...,N. (4.93)
0pn

Equations in the form of (4.91) are called Jacobi equations.

4.4 Voronets and Chaplygin Equations

In many cases equations describing the motion of a DMS with Lagrange multipliers
are burdensome in practical applications, especially if we are not interested in
determining the reactions of constraints. P.V. Voronets'® [3] proposed equations
that do not have the aforementioned disadvantages. We will derive them on the
basis of equations taken from [9], where we will be considering a scleronomic non-
holonomic DMS.

10peter Vasilevich Voronets (1871-1923), Russian scientist widely known for his research in the
field of analytical mechanics.
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In the considered case, (3.139) takes the form

M
d oT 0T
L 0 =S A, w=1..... W
dr aq.w BQW Q Z et v
d T aT
dt 0qwm  Oqw+m
w

Gwim = Y Sl (4.94)

w=1

:QW+m+A.m, m=1,...,M,

In the preceding equations the system has W + M generalized coordinates, where
M denotes the number of scleronomic non-holonomic constraints.

The third of equations (4.94) results from the equation of constraints described
by the second equation of system (3.139), where coefficients B,,; do not depend
explicitly on time and we have b,, = 0. That equation is obtained after imposing the
condition that from K generalized velocities we have W independent generalized
velocities, and the number of degrees of freedom of the DMS is equal to W =
K — M . From this equation it follows that the dependent generalized velocities in
the amount of M can be expressed by W independent generalized velocities.

It can be demonstrated [9] that the coefficients

Ai»"]? — (Bamw Z 00ty ) _ (E)é;xqu Z 0k W) (4.95)

aqk aqW+u OGw 4u

are not identically equal to zero for an arbitrary instant of motion of the analyzed
DMS.

The third equation of system (4.94) allows for the following representation of the
kinetic energy of a DMS:

T(q1,- - Gk Gis -Gk 1) = OG1, ... qK, G1s- - Gw,1). (4.96)
Differentiating (4.96) with respect to g1, . .., gw we obtain
= M
00 aT T
—_ = — + — Qs w=1,2,....W, 4.97)
aqw aqw Z an+m "

where the third equation of system (4.94) was used in the transformations.
Differentiation of (4.97) with respect to time leads to the following equation:

M

d9e  dar 3 d ar idamw T
dr 0, dt g, " dt 0Gw m dt Gwm

(4.98)
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The terms underlined in the preceding equation will be calculated from (4.94).
As aresult of the transformations, the terms containing Lagrange multipliers A, are
reduced, and (4.98) takes the form

406  aT oT
wdg,  ogn O Z“’”W wam Z“’"WQW”’
datyy
4.99
" Z dr 3qW+m 99

Since, according to the third equation of system (4.94), we obtain

3@ T aamk
— l=12,....K, (4.100)
dq Z a61W+m (; 3% )

taking into account this result in (4.99) we have

d 96 a@ M i .
i Sl TR O e (Z )

klaqw

M —

0
+ Qw + Z Uy ——
m=1 aq

+m

) Z“w (Z o (Z . ))

k=1

day,,,
+ Z Lo QW tm + Z " an+ (4.101)

Transforming the preceding equations we eventually arrive at

M w M
oT d oty 8amk ok .
by U | de —z( ) i

m=1 aqW+m 3% 3QW+L¢

M
= Qw+ Z Amw (QW+m

m=1

) felie)

T
aq.w+m ’

w=1,2,.... W, m=1,2,....M, (4.102)
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where in the preceding equation the underlined term was replaced by the previously
introduced coefficients Af:;'c) according to (4.96), and the notion of generalized
momentum ®&,, was introduced.

The obtained equations (4.102) in the amount of W are called Voronets
equations [3].

We have K = W + M generalized coordinates, and in order to determine them
one should solve the following system of M 4 W equations:

406 06 ) J m)
— — @ + Umw m 7 ’
dt aqw 3% Z (QW+ an"””) Z (kz:l " qk)

Gwam =Y CmuGu. w=12.. W, m=12...M (4103

w=1

in which there are no longer any Lagrange multipliers.

If the kinetic energy T, coefficients «,,,, and generalized forces Q; (I =
1,..., K) do not depend on the generalized coordinates gy 4+, (m =1, 2,..., M),
then the Voronets equations take the following simpler form:

96 _
dita;i _Qw+zamwQW+m+Z<Z wk)q.k), w=1,..., W,

g,

k=1
(4.104)
where coefficients Af:,’]? are now described by the simple relationships
m 0ty O
ivk): O _M, wk=1,....W, m=1,...,M. (4.105)

aqk BCIW

In this case we can further simplify the expressions for generalized forces
0, (I = 1,...,K) and for generalized momenta @, (m = 1, 2,..., M). If we
express generalized velocities ¢+, (m = 1,..., M) by independent generalized
velocities ¢y, ...,qw according to the third equation of system (4.94), then we
obtain the system of equations dependent only on the generalized coordinates
q1,--..qw, which can be solved independently of an equation of constraints, that is,
the third equation of system (4.94). Following application of the described algorithm
to (4.104) we obtain Chaplygin’s equations."!

Sergey Alexeyevich Chaplygin (1869—1942), Russian mechanician and mathematician.
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Fig. 4.1 Rolling without slip of a disk on a horizontal plane [9]

Chaplygin’s equations simplify even more if generalized forces are potential
forces and potential V' does not depend on the generalized coordinates g +,,,. Then
Chaplygin’s equations take the form

do6 06 aw U LANPIN
498 98 _ 9V 0, A ) w=1.....w. (4106
TS . + Z (Z wic dk w ( )

Example 4.4. Let ahomogeneous disk of mass m roll on a horizontal plane without
slipping while in contact with the plane at a single point (Fig. 4.1). Derive the
equation of motion of the disk.

In Fig. 4.1 the absolute coordinate system OX X, X3 is introduced in such a way
that the axis OX3 is perpendicular to the horizontal plane, on which the disk moves.
With the disk is associated the body system CX| X X7, where C is the mass center
of the disk and the axis C X' is perpendicular to the disk plane.

The position of the mass center of the disk in the absolute system C =
C(xy, xz, rsin ®), where r is the radius of the disk and @ is one of the introduced
Euler angles.
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The kinetic energy and potential energy of the disk are equal to

1 . 1
T = M (xlz + %7+ (r® cos @)2) + 5 (11601//2 + 1260/2/2 + I3a)§’2) ,
V =mgrsin®,

where g is the acceleration of gravity, the vector of angular velocity of the disk is
given by @ = o/E| + 0)E] + »{E[, and I; are moments of inertia of the disk
with respect to the principal centroidal axes of inertia C X i” L i=1,23=1,=
%mrz, I; = mr?).

According to the calculations of Sects., 5.5.4 and 5.5.5 of [24] Euler’s kinematic
equations take the form

o] = sin@sing + O cos g,
w) =y sin@cosp — Osing,
o = cos O + ¢;
using these equations in the expression for the kinetic energy 7' we obtain

T = %m (31 + %3) + %mrz (1 + 4cos’®) ©7

1 . 1 .
+ gmrzwzsinz@ + Zmrz(w cos O + ¢)2.
The velocity of point D of contact of the disk with the horizontal plane is equal to
—
Vp=Vec +w xCD =0. (%)
According to Fig. 4.1, line DE is parallel to the line of nodes n. In turn,
line DC L DE and lies on the plane determined by the axes C X} and CXY. There
is an angle ¢ between line DC and axis C X} .
In the absolute system we have
ve = Eix; + Exity + E3r©cos O,
% . .
CD =E rcos®sinyy —Eyr cos ® cos y — Ejr sin ©,
® =E; (Ocosy + ¢siny sin @) + E, (Osinyr — ¢ cos ¢ sin O)

+E; ( + ¢ cosO).
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We successively calculate

N E1 Ez E3
©xCD = |@cos Y + ¢sinysin@ @ siny — @ cos ¥ sin @ i + ¢ cos @
r cos ® sin Y —r cos ® cos ¥ —rsin®

=K [—r sin ® (@sinw —([)COSl//Sin@) + rcos®cosy (1// +¢)cos@)]
+ E; [r sin ® (@cosw + (,bsimpsin@) + rcos®siny (1// + gbcos@)]
—E; [rcos@cosw (@cosw + (,bsinl//sin@)
+ rcos@siny (Osiny — g cosysinO)],
and from (*) we obtain
X = rsin@(@sinl// —¢cos¢sin9)
—rcos ® cosy (1// +¢Jcos@) = r@sin O sin
— 1@ cos Ysin?@ — rgcos?@ cos Y — ryr cos O cos Y
=r[Osinysin® — (Y cos® + ¢) cos ¥ ],
X, = —rsin® (O cos Y + ¢ sin ¥ sin O)
—rcos ®siny (w + (,bcos@) = —r@sin O cos ¥
— r@sin?@sin ¥ — ri/ cos @ sin ¥ — rgcos’ sin ¥
= —r[O@sin@cosy + (¢ + Y cos ) sinyr],
X3 = —r@ cos Ocos’ Y + r¢ sin ¥ cos ¥ sin @ cos @
+ @ cos Osin®*Y — r¢ cos @ cos ¥ sin Y sin O
=rOcos® —r@cosO = 0. (%)
Let us note that in the solutions describing the kinetic 7" and potential energy
of the disk, and in equations of constraints (), the coordinates x; and x, do not

occur. Equations of motion of the disk will be derived on the basis of Chaplygin’s
equations (4.106). Let us denote the generalized coordinates as

G =0, @=¢, =Y qi=Xx1, (5=Xx.
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In our case [see (4.94)] we have W = 3 and m = 2. According to (4.94) we have
to determine ¢4 = X; and g5 = X, from equations of constraints (), which with
the new notation takes the form

Gs = r[q1singzsing; — (§3cosqi + ¢2) cos g3] = a1141 + 21242 + 21343,
gs = —r[q1sing; cosqz + (¢2 + ¢3 cosqy) sings] = 2141 + angs + 033G3.

From the preceding equations we determine the desired coefficients «,,,,, which
are equal to

o] = rsing; sings, o1y = —Tr COS¢3, ™13 = —F COS{|COS(g3,

op] = —rsing;cosqs, Qpy = —rsings, on3 = —F COSq] Sings.

From (4.105) we calculate the coefficients Aff]? . Non-zero values of those
coefficients are equal to

A%) = —A%) = rsings, A%) = _Agzz) = —r C0S¢3.

Generalized momenta according to the second equation of (4.102) are equal to

aT )
O = — = mx,
044
=mr (¢ sing; sin g3 — ¢ COS g3 — §3 COS ¢4 COS q3) ,
aT
O = — =mxy
9qs

= mr (1 sing; cosqs + ¢2sings + g3 cosq; sings) .

Chaplygin’s equations (4.106) take the form

d 96 _ 30 = —mgr cos ®
9o 00 ¢ ’
d 96 &) ..

_3_@_ — BL = mr’Oy,

dr dp  J¢

d 96 90 .

—— — — = —mr’O¢sin O.
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In the preceding equation the energy
- 1 . .
T=06= Emrz[@ sin ¥ sin @ — (1 cos © + @) cos w]z
1 . .
+ Emrz[@ sin ® cos ¥ + (¢ + ¥ cos ©) sin 1//]2
L 2oV G2 4 Lo 250 | 2
+ gmr (1 + 4cos @)@ + gmr Yesin“® + Zmr (Wcos@ +<p)

5 . 1 . 3 .
= gmrz@2 + gmrzwzsinz@ + Zmrz(lp cos @ + qb)2.

Substituting the preceding equation into Chaplygin’s equations we get
. o 6.. . 4¢
® + Y sin®@cos @ + gqmpsm@ + g—cos@ =0,
r

d . 2 ..
o (¢ + Ycos®) = g@w sin @,
S 1., 2 .

& (¢ + V¥ cos®) cos © + gwsm O|= —39 © sin O.

Integrating the preceding equations (e.g., numerically) we find ® = ©@(¢), and
consequently we determine the third coordinate of the position of point C (C =
C(x1(t), x2(t), rsin®(t))), where x;(¢) and x,(¢) are determined by integration
of equations (¥*). O

4.5 Appell’s Equations

In order to derive Appell’s'? equations, first we will introduce certain preliminary
concepts regarding pseudo-coordinates useful for the analysis of non-holonomic
systems [2]. Let a DMS with non-holonomic constraints in the amount of K have
W degrees of freedom. We will call the additional introduced quantities 7,,, 7,,, 7,
w = 1,..., W respectively pseudo-displacements, pseudo-velocities, and pseudo-
accelerations. Let us construct linear combinations of generalized coordinates
q1,...,qk of the form

K
]‘TWZZawk(qla qza"'5qK7 t)q.ka Wzla"'aW (4~107)
k=1

12Paul Emile Appell (1855-1930), French mathematician and rector of the University of Paris.
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The system of linear equations (4.107) determines iy, 3,..., Ty pseudo-
velocities, which may not have any physical meaning, that is, they may not be
generalized velocities. A similar observation concerns pseudo-displacements and
pseudo-accelerations. Generalized velocities satisfy the equation of non-holonomic
constraints (3.24), and henceforth we will use the index m, = m.

Generalized velocities ¢, g2, . . ., 4k satisfy M (3.21), and expressing them in
terms of pseudo-velocities according to relation (4.107), equation (3.21) will take
the form

qk=2dwk7'rw+gk, k=1,....K, (4.108)
k=1

where now d,x = dwi(q1, 92,....9k, t) and gx = gc(q1, 42,...,9k, t) and
imposed pseudo-velocities 1, can have arbitrary values.
From (4.107) we obtain

K
Smw =Y awbq., w=1,..., W (4.109)
k=1

This means that the variation of a pseudo-displacement §r,, is equal to the sum
of variations of generalized displacements §g.

Let us note that in the case of non-holonomic constraints, generalized displace-
ments satisfy (3.24) of the form

> Buikdgi =0, m=1,...,M. (4.110)

From systems of equations (4.109) and (4.110) we express 8¢gx in terms of
pseudo-displacements, obtaining

w
Sqi =Y dkdm, k=12,...K. (4.111)

Substituting relations (4.111) into (3.23) we obtain

Sl'n = 3I‘n Z arn Zdwkaﬂw

W&TW, n=12,...,N, (4.112)

nMs T
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where
€,y = E —dyx n=12 N, w=1,2 4% 4.113)
w a k Ll ki 90 9 9 90t . .

Our next task is the expression of e,,, in terms of generalized accelerations and
pseudo-accelerations. To this end we differentiate (4.107) with respect to time, and
we substitute the obtained generalized accelerations g, k = 1, 2,..., K into the
third equation of (3.19) obtaining

w
a, =Y ety +h, n=1...N, (4.114)
w=1
where now h, = h,(mxy,..., 7w, 7y,..., 7w, t). Differentiating the preceding
equation with respect to 7,,, w = 1, ..., W we obtain
0a,
— = €, n=1,....N, w=1,...,W. (4.115)
07,y

Eventually, substituting (4.115) into (4.112) we obtain

w
Sra=Y ;)a,, .. n=1.... N (4.116)

w=1 w

Appell’s equations, like the majority of equations discussed in this book, will be
derived from the general equation of dynamics of the form

N
Z (F, — mya,) o8r, =0 (4.117)

n=1

and by making use of relation (3.117) of the form

N K
> Fyo8r, =) Oibqr. (4.118)
n=1 k=1

The elementary work of active forces acting on a given DMS is equal to

N K w aan w
SW = _F, odr, :ZQkoZaﬁ S =Y mub, (4.119)
n=1 k=1 w=1 " w=1




242 4 Classic Equations of Dynamics

where
K
Ty = T (G0 s 1, T £) = D duic O, (4.120)
k=1

and in the course of the preceding calculations, transformations (4.116) were used.
The quantities m,, will be called generalized forces corresponding to pseudo-
displacements mw,, w=1,..., W.

Next we calculate the elementary work done by inertia forces

N N w
W = E my,a, o ér, = E mua, o E €,,,07T,,
n=1 n=1 w=1

w=1 \n=1
w N w
2 (1 , X
- - a2 | 8x, = Sl 4.121

Equations (4.112) and (4.115) were used during transformations, and the
introduced function

N
1
S=3 ’;mnaﬁ (4.122)

is called the energy of accelerations of a DMS, and § = S(q1,...,9k,71,...,
Tw, 71, ..., 7w, t) according to the general equation of dynamics (4.117), and
taking into account (4.119) and (4.122), we obtain Appell equations

— = Ty, w=1,...,W. (4.123)

In order to solve the problem of the dynamics of a non-holonomic DMS, equa-
tions (4.123) should be solved simultaneously with M equations of non-holonomic
constraints (3.21) and with W equations (4.107) defining pseudo-velocities. It
can be shown that Appell’s equations can be solved with respect to pseudo-
accelerations 7, w = 1,..., W. Moreover, equations of constraints (3.21) [see
(4.108)] and (4.107) can be solved with respect to generalized velocities ¢, k =
1,..., K. Eventually, we have at our disposal K 4+ W equations with unknowns
ql,...,qK,J'n,...,frW.

Imposing initial conditions g, . . ., ko, 7T, - . . , Tyo, from (4.108) we determine
uniquely the initial conditions for generalized velocities ¢io, ..., {Jxo according
to the conditions of non-holonomic constraints. Thus, we have initial conditions
q10, - - -»q4K0> 410 - - - » K0, Which at once define a Cauchy problem for a given
DMS.
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If as m,, we take generalized velocities ¢, w = 1,..., W, then generalized
forces m,, correspond to Q;,, where

K—W
Q:vz QW+ Z O‘prw+p, w=1,...,W (4.124)
p=1
For such a choice, the acceleration energy S = S(q1,.-..,9%,41,---,

qw,q1,--.,4w,t), and Appell’s equations take the form

9S
— =0, w=1,..., W. (4.125)
G

The preceding W Appell equations (also called the Gibbs—Appell equations [9]),
augmented with M equations of non-holonomic constraints, describe the motion of
the analyzed non-holonomic DMS. The number of those equations M + W = K is
equal to the number of generalized coordinates. If we are dealing with a holonomic
DMS, then K = W, since M = 0 and Q(v = Q,, and (4.125) represent the form
of Lagrange’s equations of the second kind. Despite many advantages, the major
drawback of Appell’s equations is connected with the difficulties associated with
determining the acceleration energy S essential for their formulation. It seems that
in engineering practice it is easier to exploit Voronets’s and Chaplygin’s equations
in which it is necessary to determine the kinetic energy 7 of the DMS under
investigation.

Now we will demonstrate a method to determine the acceleration energy on
an example of the motion of a rigid body with one point fixed. We introduce
the absolute system of coordinates OX; X>X3 and the body system O” X[ X)X} .
The point O = O” is a fixed point of the body, and the axes of the body system
coincide with its principal axes of inertia related to point O.

According to the definition of acceleration energy given by (4.122), in a body
system we have

N
— 1 2 2 2
S=3 Z_:l my (22,0 + a2y +a2,), (4.126)

where N denotes the number of particles approximating the rigid body.
In Chap.5 of [24] we already determined the acceleration of a particle n of a
rigid body, which reads

a, =€eXr,+o(®or,) —w’r,. (4.127)

From the preceding vector equation we determine the coordinates of projections
of vector a, on the system axes O” X' X} X7, which are equal to
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8, = =Xy (037 + 03) + x2, (@) 0] — @) + x5, (0] 0f + @) ,
ey = =X (05 + o)) + x31 (0§ ) — &) + x1a (0) 0] + &Y)
a7 = —x3, (07 + ©3%) + x15 (0] 05 — @) + X2, (WS 0) + @) . (4.128)
Substituting (4.128) into (4.126), while taking into account / xXrxy = 0,

Ixryy =0, Ixyyr =0 (see Chap. 3 in [24]) and additionally neglecting terms

independent of @}, @Y, and @}, we obtain

N
1
_ 2 <112 /NN =112 /NN
S = 3 E muxi, | (037 + 205 ol 0 + 07— 20 0] o))
n=1
1 N
2 <112 "2, 11 =112 /NN
+5 E myx3, | (0% + 20570 o) + &) — 20w oY)
n=1

N
1
2 <112 n2 1 =112 /NN
+5 E myx3, | (0574 20*0)o) + o> — 200 o)
n=1

1 112 . 112 N NN
=3 (IXI//a)l + Ixyw,” + Ixyw; ) + (IX3” — IXE’) W) W5 W)

+ (1 = Iy) @fe(6f + (g = Lyy ) o 0}, (4.129)
where Iy, Iyy, and Iy are respectively the moments of inertia about axes 0" XY,
0"X/, and O"X".

Let point C be the mass center of a given DMS moving in an arbitrary manner.
We will determine the acceleration energy of the DMS taking the pole at point C.
The acceleration of point m of the numbern (n = 1,..., N) is equal to

a, =ac +a,. (4.130)

Substituting (4.130) into (4.122) we obtain

1 N N 1 al 2
s= 5 (ot (Lo ) one + § om)
n=1 n=1 n=1

N
1 1 W2
Emazc + Enz=jln1n(aun) (4.131)

because

N N
domy=m. Y ma; =Map =0. (4.132)
n=1 n=1
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The obtained result can be formulated in the form of a theorem analogous to
Ko6nig’s theorem on the kinetic energy of a DMS.

Theorem 4.11. The acceleration energy of a DMS is equal to the sum of the
acceleration energy of a particle located at the mass center of the DMS and having
a mass equal to the mass of the DMS and the acceleration energy resulting from the
motion of the DMS relative to its mass center.

Example 4.5. (see [9]) Let a homogeneous ball of radius r be moving without slip
on a stationary horizontal surface. Demonstrate that the angular velocity vector of
the ball is conserved during its motion.

We will introduce two Cartesian coordinate systems. The absolute system
OXX, X3 has its origin at the point of contact of the ball with the horizontal
surface of axis OX3 directed against the acceleration of gravity. The body system
CX['XJ X/ has its origin at the mass center of the ball. Let C = C(x;, x», r) be the
coordinates of the mass center of the ball in the OX; X, X3 system, and the vector
of angular velocity w = YE;0; = YE/ /.

From the condition of the absence of slip we obtain

X1 =wr,  Xp=-—orr. (%)
Because foraball Iyy = Iyy = Ixy = %m 12, according to (4.129) we obtain
1
Si=gmr? (& + 67 + 677),

and S, is the acceleration energy of the ball resulting from its rotational motion
relative to the mass center C.

According to (4.131) and taking into account S, the total acceleration energy of
the ball equals

1 1
S = 5m (¥ + %3) + gmr2 (0] + 0)* + @5?). (%)

Differentiating () with respect to time and introducing pseudo-velocities
7w = w;, i =1, 2, 3 we obtain

)'élzrﬁz, )'ézz—rﬁl.
The angular acceleration of the ball is given by the equation

2 a2 a2 a2 a2y D D =D 2 2
E=w"tw +wy" =]+, +w; =n] + 1, + 3.
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Taking into account the last two equations in () we obtain

S = gmr? (] + #) + g (5 4+ + #3)
= 11—0mr2 [7 (77 + 7t3) + 23] .

Because the generalized forces m,, in Appell’s equations (4.123) are equal to

zero, the problem boils down to the integration of three equations

a—f,g =0, i=12,3.
87t,-
We successively get
aS T 5. aS T 5. aS 2 5.
e = =0, —/— == =0, —/— == =0.
o 5mr Ty o 5mr ) o 5mr 3

This means that 77y = w; = const, 77, = w, = const, 773 = w3 = const, that is,

that the vector w = E w1 + Eyw, + Eszw; is constant during the motion of the ball

on the horizontal plane. O
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Chapter 5
Theory of Impact

5.1 Basic Concepts

So far we have considered problems concerning the statics and dynamics of discrete
(lumped) and continuous material systems when forces of action and reaction act
upon these systems in a continuous fashion for the entire duration of a process. On
the other hand, it is known that changes in system momentum leading to changes
in velocity are associated with the action of a force or moment of force during a
finite and often very short time interval. A phenomenon is called an impact if we
observe a sudden (instantaneous) change in the velocity of a particle caused by the
action of instantaneous forces. Despite the passage of several years, the notions of
instantaneous changes in velocities and forces of an infinitely short duration time are
intuitive, and to date they have not found an adequate mathematical description. If
two bodies collide and the time of the collision process is very short, then we observe
a continuous change in the velocity of the body, and because the collision usually
lasts for a very short time, it is associated with the generation of relatively large
forces. However, it should be emphasized that the notions of “small” and “large”
quantities are relative and subjective.

If other forces also act on the analyzed system and the impact is associated with
the vibrations of the system, which are characterized by a period of free vibrations
with or without damping, then the duration of the collision process is short in
comparison, for example, with the previously mentioned period of oscillations,
whereas the instantaneous forces are large compared to the other forces present
in the analyzed system. However, if there are no such reference quantities in the
system, then the introduced idealized notions must be related, for example, to the
duration of observation of the phenomenon.

According to Newton’s second law, the motion of a particle whose position
is determined by a radius vector r(¢) is described by a second-order differential
equation of the form

d’r
m— =F, (5.1
de? )
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where F is the force acting on a particle of mass m. From this equation we obtain
a variable quantity of motion of the particle in the time interval from #; to 7o + ,
since after integrating (5.1) we have

to+t
m(x(t) —¥p) = / Fdr. (5.2)
4]
Let us introduce the following notation: r(¢) = v(t), Ip = vo, and
to+t
J= / Fdr. (5.3)
4]
In the case of an arbitrary duration of action of the force F, that is, the quantity

7, (5.3) defines an impulse of a force. If the duration of a force action tends to zero,
that is, T — 0, and despite the fact that the limit

to+t
J = lim / Fdr (5.4)

7—0
to

still exists, the quantity J is called an impulse of impact, and the force F itself is
called an impact force or instantaneous force. If the value of the integral occurring
in (5.4) is averaged out, then from this equation we obtain

Fo = >. (5.5)

Note that F,y — oo for 7 — 0, that is, the impact force reaches large magnitudes
during the collision process. According to formula (5.2) for t — 0 we obtain

m(v—vy) = m(Av) = A(mv) =]. (5.6)

From the obtained equation it follows that the impulse of impact leads to a step
change in the velocity of a particle, where v, is the velocity before the impact
and v is the velocity following impact. This is the first characteristic of the impact
phenomenon.

We obtain the second feature of the impact phenomenon after the integration
of (5.2). That is, we have

0+t [/ o+t
m(r(t) —rg) = mryt + / / Fdz | dz. 5.7
1o to
From the preceding equation it is easy to notice that for t — 0 we have
to+t totc
lim / Fdr =J, lim / Jdr =0, (5.8)

—0 =0
fo fo
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and hence from (5.7) we get
lim(r(tp + ) — r(t)) = 0, (5.9)
=0

which means that the particle position just before and just after impact is the same.

5.2 Fundamental Laws of a Theory of Impact

In Chap. 2 of [1] and Chap. 1 of this book, we presented the fundamental laws and
theorems connected with the statics and dynamics of material systems during the
action of constant forces, independent of time or acting during a finite and “long”
time interval. Here they will be extended and adapted to the requirements of the
analysis of the phenomenon of impact.

5.2.1 The Law of Conservation of Momentum During Impact

The law of conservation of momentum for a particle was discussed in Chap. 1. In
the case of a discrete material system consisting of N separate particles, the law of
conservation of momentum is expressed by the following equation [see the case of
a particle described by (1.147)]:

N N

dpP d

E = 5 ( E m,,V,,) = E Fn, (510)
n=1 n=1

where on the left-hand side occurs a derivative of the quantity of motion of a system
of particles and on the right-hand side the sum of forces acting on the system.
Integrating the preceding equation we obtain

to+t N
P—P, = / ZFndr. (5.11)
f0 n=1

Taking into account the occurrence of instantaneous forces (impact forces), we
can write
N to+t

N
AP:P—P():ZIH_)mO/Fndt:ZJn, (5.12)
n=1 o n=1

where J, are impulses of impact coming from the impact forces F,. Based on the
preceding equations it is possible to formulate the following theorem.
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Theorem 5.1. The change of momentum of a system of particles at the instant of
impact is equal to the sum of external impulses of impact caused by all instantaneous
forces acting on the system at the considered instant.

5.2.2 The Law of Conservation of Angular Momentum During
Impact

If external F® and internal forces F' act on every particle of a material system
(a position of the particle is described by a radius vector r(¢)), then according to
Newton’s second law we have

mi = F° + F', (5.13)

The calculations will be conducted with respect to a certain point O not
associated with the adopted stationary coordinate system O'X|X;X}. Premulti-
plying (5.13) by the vector (r — rp) and integrating over the whole mass of the
considered system we obtain

d’r
(r—ro) x d_tzdm = | (r—rp) x Fdm (5.14)

because according to Newton’s second law the internal forces cancel out.
Note that

d/( 1O /( ) ¢r +/ ¢ 1 O
— J(r=ro)x —dm= [ (r—ro) x — —(r—rp) x —dm,
dr o)X g " o)X gz ar 0 4 "

(5.15)

and additionally the second term on the right-hand side of the preceding equation is
equal to

d dr dr dr drp dr
—(r—ro)x —dm= | —x—dm— | — x —dm
dr dr dr dt dr dr
m m m
drpo dr dro dr
=— | —x—dm=——-=x [ —dm
dr dr dr dr
m m
dr d dr dr
= 0%« " | rdm=-"Cx m—o, (5.16)
dr dr dr dr

where rc describes the position of the center of mass of the system (Fig. 5.1).
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Fig. 5.1 Mechanical system
with point O shown; about
this point the angular
momentum of the system is
determined

253

If the analyzed mechanical system is continuous, then the system’s angular

momentum is described by the formula

K= /(r—ro) x vdm,
m
and if it is discrete, then its angular momentum is equal to
N
K= Zmn(rn - 1'0) X Vn,
n=1
where Zf,v:l m, = m. For a continuous system we have
dr
m

and taking into account formulas (5.14) and (5.16) we obtain

dK _ dl’o

dl’c
& dre —ro) x Fedm.
< <M +[(r ro) x Fédm
m

dK d d?
=/a(r—r0)xvdm+/(r—ro)xd—t;d

(5.17)

(5.18)

m, (5.19)

(5.20)
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Integrating the preceding equation with respect to time we obtain

to+t
AK=K-Ko = / /(r —r10) x Fédmdr — [ro x mrc]p ™™
ty m
o+t
= /(r— ro) X / Fédr | dm = /(r— ro) X Jdm (5.21)
m to m

for a continuous mechanical system. Similar calculations conducted for a discrete
mechanical system [see (5.17)] lead to the following result:

N
AK = K-Kp =Zr,,xJn, (5.22)

n=1

where J, is the impulse of impact on particle 7.
The results of those calculations can be summarized in the form of the following
theorem.

Theorem 5.2. A change in the angular momentum of any mechanical system with
respect to an arbitrary pole O at the instant of impact is equal to the moment of
external impulses of impact acting on the system.

It can be demonstrated that the preceding theorem is valid in the case of an
arbitrary pole, either moving or fixed [2].

We will derive a general equation of the theory of impact. The general equation
of motion for a discrete material system has the form

N
> (mui, —F,) 0 ér, = 0. (5.23)

n=1

Integrating the equations resulting from Newton’s second law with respect to
(time of) impact duration we obtain

N o+t to+t

N
lim / (mpt, — F,)dr = Zlmnmn — lim / F,dr. (5.24)
-

n=I1 fo to

Forces F,, are resolved into impact forces F! associated with impact and “non-
impact” (i.e., ordinary) forces Fﬁi; then from (5.23), and taking into account
expression (5.24), we obtain a general equation of impact:

N
> [ (k= £,(0) = Ju] 0 6x, = 0, (5.25)

n=1
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where:
to+t to+t
lim / Fidr =], lim / F!'dr = 0. (5.26)
to to

5.3 Particle Impact Against an Obstacle

Let a particle of mass m hit the surface of an obstacle whose mass is so large that
the impact does not cause any change in its position (Fig. 5.2).

In the introduced coordinate system the angle of incidence (angle of rebound)
is denoted « (B). We assume that at the instant of contact of the mass m with
the obstacle the only instantaneous force (impact force) is the normal force N (the
tangent force is equal to zero because we assume that the constraints are ideal). The
velocity v; denotes the velocity of the mass m just before impact and v, — right
after impact. The law of conservation of momentum for a particle in vector notation
m(vo—vy) = J has the following representation in the system OX, X, (the equation
is successively multiplied by E;| and E, yielding voy, —viy, = 0, m(vay, —Viy,) = J):

mvy cos(90° — B) — mvy cos(90° — a) = 0,
mvy cos f —mvy cos(180° — ) = J, (5.27)

that is,

m(vysin B — vy sina) = 0,

m(vacos B+ vicosa) =17, (5.28)
A
m %
\N\ o
p
E2u v,

O, ‘
W I Xi

|

N |

|

. |

Fig. 5.2 Impact of mass m v, I

|

against a stationary obstacle
at its point O
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because vector J has the same sense as vector N. As can be seen, we have two
algebraic equations for the determination of three unknown quantities v,, 8, and J.
Newton noticed that the ratio of normal components of velocities does not depend on
the velocity of motion of the colliding bodies or their geometry but on the materials
they are made of. In our case the coefficient of restitution v is described by the
formula (v, o E;)E; = —v(v) o Ey)E; or

Vi Vo,  VaoEy  wcosf

V= —— —

- - ’
Vin Vix Vi OE2 Vi Cos

(5.29)

where vo0E, = v;, and vioE, = vy, which follows from the hypothesis of Newton
(the law of restitution of a normal velocity). However, it should be emphasized that
the Newton hypothesis is too simple, and in many cases experimental investigations
show that the restitution coefficient depends not only on the materials of impacting
objects but also on their geometry and velocities [3].

In the preceding equation v, denotes the normal velocity (in this case in the X,
direction). The minus sign in (5.29) is a consequence of the fact that for the given
sense of the normal, the velocities E,vy, and E,v,, always have opposite senses
(signs). From the equation of conservation of momentum in the X, direction we
have

Voy, = Viy, = Vi sina. (5.30)

In turn, from the equation of restitution of a normal velocity (in the X, direction)
we obtain

Vax, = —VVi; = VV1COSK, (5.31)

where vy, = vz, and vy, = v1,, and vector vy, = —VVy,.
The desired velocity after the collision is equal to [see (5.30) and (5.31)]

V) = ,/v%x1 + v%xz =y Vsin2 & 4+ v2cos?a. (5.32)

The angle formed between the velocity v, and the axis X, can be calculated from
the following equation [dividing (5.30) by (5.31) by sides]:

1
20— tana. (5.33)

V2x, v

tanf =

An impulse of the impact force calculated from the equation for the change in
momentum in the X, direction [the second equation of system (5.27)] after taking
into account (5.29) is equal to

J=mvi(1 +v)cosa. (5.34)
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5.4 A Physical Interpretation of Impact

Let us consider a small ball (of negligible radius) hitting a stationary deformable
obstacle (Fig. 5.3).

All equations of this section are formulated for collinear vectors, and therefore
the scalar notation is used. The reaction N; of the obstacle is a result of the
deformation of its material, and during contact of two bodies the velocity of
magnitude v; at the moment of impact decreases to zero for the time instant 7y + 7.
The reaction force N; generates the impulse of a force of the form

to+11
I = / Nidt = mv; cosa. (5.35)

]

In turn, the deformed material produces the impulsive force of reaction N, which
generates the following impulse of a force:

to+12
J, = / Npdt = mv; cos f. (5.36)

fo

The ratio of impulses

J
T _ mvycosfp (5.37)
Jq mvyy cos o

describes the coefficient of restitution. The limiting values of this coefficient can be
determined easily on the basis of the following considerations. If the obstacle is a
plastic body, then the velocity v, = 0 (the ball does not bounce off the obstacle) and
then v = 0. If the angle of incidence is equal to the angle of rebound and v, = vy,
then the impact is perfectly elastic and v = 1. In general, 0 < v < 1.

Fig. 5.3 Impact of a small
ball of radius r — 0 against a
deformable obstacle
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Table 5.1 Restituti Material v
able estitution Material v

coefficient values i
Steel 0.56
Wood 0.26
Cast iron 0.66
Lead 0.20
Ivory 0.81
Glass 0.94

In Table 5.1 the values of the coefficients of restitution are given for an elastic
particle, and on the assumption that both colliding bodies are made of the same
material.

The model of a perfectly rigid body does not allow for an explanation of
the phenomenon of rebound of a body during impact. In order to explain this
phenomenon, it is necessary to introduce a model of a deformable body. If a particle
hits an obstacle in a normal direction (Fig. 5.3), then from (5.37) fora = 8 = 0 we
obtain

V2

v = —. (5.38)
V1

The difference in kinetic energy before and after impact is equal to

mvz —mv2 mv2 —mv2v2 mv2
T, —T, = 12 2 =1 5 ! :71(1—v2). (5.39)

The smaller the coefficient of restitution, the more kinetic energy is lost because
of conversion into heat. The kinetic energy is converted into heat completely during
plastic impact, whereas during perfectly elastic impact the energy is completely
preserved since v = 0.

5.5 Collision of Two Balls in Translational Motion

We will now consider the impact of two homogeneous balls of equal radii, but made
of different materials, which are in translational motion, where the vectors of the
velocities of their centers just before the instant of impact lie on a line passing
through the centers of both balls (Fig. 5.4).

From Fig. 5.4 we can see that in order for the first ball to hit the second ball, the
first one has to “chase” the other, that is, we have v; > v,. It should be emphasized
that in this section, subscripts 1 and 2 correspond to the numbering of bodies; the
velocities of bodies before impact possess no superscripts, and those following
impact are denoted by a superscript prime ('). After the collision, which lasts for
a very short time, the balls move with unknown velocities v} and v}. In the time



5.5 Collision of Two Balls 259

Fig. 5.4 Collision of two balls moving in translational motion: (a) the instant just before collision;
(b) the collision; (c) the instant immediately following collision

interval, when the balls remain in contact with each other, their interactions are
treated as internal forces of this mechanical system, and, according to Newton’s
third law, they cancel out. Therefore, these forces cannot produce any change in
momentum of the considered mechanical system. It follows that the momentum of
the system before and after impact remains unchanged, that is,

mivy + mavy = mv, + mav}, (5.40)

where in the preceding equation vector quantities are replaced by scalars since the
vectors are collinear. Recall that impact is called a central collision if a normal
to the surface of contact between the bodies (a line of impact) passes through the
centers of the colliding bodies. The impact of two bodies is called a direct collision
if the velocities of the bodies’ points at which contact occurs are directed along the
common normal to the surfaces of both bodies [4].

We adopt the following physical interpretation of the considered direct and
central collision of two balls. The first stage, corresponding to the time interval
71, is associated with the build-up of a local deformation of both balls, where in the
time interval #y 4 t; — #( the velocity of the first ball decreases, whereas the velocity
of the second increases until the velocities of both balls become equal to v*. At this
time instant, forces of mutual interaction reach their maximum magnitudes.

The deformations of the balls accumulate their kinetic energy in the form of a
potential energy that is subsequently transferred to each of the balls during the so-
called “second stage” of the collision in the time interval t,. At the end of this time
interval, the balls recover from the elastic deformations and gain velocities v’1 and
v5, and starting from this moment they cease to act on each other.
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The increments of the momentum of both balls in the time interval from ¢, to
tp + 1) are equal to

to+7
mv —mpv; = — Fdr = -],
4]
to+11
Mav* — mavy = / Fdr =1, (5.41)

fo

where vector notation is not used for the reasons mentioned earlier, and F is the
force of interaction of the balls on each other. Adding (5.41) to each other by sides
we get
" mivy + movy
v

= —=-° 5.42
ep—— (5.42)

We will now consider the collision of balls in the time interval from ¢, + 7; to
to + 71 + 12. In this case we have

httn+n
mpyy —mpy* = — Fdtr = -],
to+1;
to+t+10
mavy —myv* = / Fdr =1J,. (5.43)
o+

According to previous calculations, determination of the velocities of balls at the
time instant just after collision is possible only by the introduction of the notion of
a coefficient of restitution, that is,

Jz = VJl. (544)

We must determine four unknowns v*, Ji, v{, v; from (5.41), (5.42), (5.43), and
(5.44). Eventually, from those equations we obtain

J o= (my —vmy)vy + (1 4+ v)myv,
! my + my ’

;_ (my—vmpvy + (1 +v)mv,

5.45
e—— (5.45)
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In the case of plastic collision (v = 0), from (5.45) we obtain

mivy + mpv
Vi == e 22 (5.46)
mp; +mo

and in the case of perfectly elastic collision (v = 1) from (5.45) we have

M = (m; — mz)vl + 2movy

)

my + my
— 2

v, = (ma —m)vy + mlvl. (5.47)

my + my

If m; = my, then from (5.46) and (5.47) we respectively obtain

o=y = Bt (5.48)

2
Vi =w, V=g (5.49)

The obtained equations for the velocities of balls following the collision allow
also for the analysis of the case of collision presented in Fig. 5.3. Into (5.45) one
should substitute vi = v, v{ =V, vo = 0, m» = oo. We divide the numerator and
denominator of those equations by m,, obtaining

/1 _
¥ = i, g =
(1 + V)%Vl
Vy= lim ——" —, (5.50)
my—>00 1 + m—;

From the first equation of (5.50) it follows that after the collision the ball has a
velocity of smaller magnitude than before the collision and of opposite sense. If we
release the ball from height 4 onto horizontal ground and measure the maximum
height after the ball bounces off the ground, then

Vi = 2gh!, v=+/2gh, (5.51)

and making use of (5.50) we obtain

== (5.52)
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Fig. 5.5 Direct collision of two balls

which allows for the experimental determination of the coefficient of restitution v.
In the case of collision of two balls it is possible to determine the loss of the kinetic
energy that occurs in the analyzed mechanical system

1 1 , ,
T-T = E (mlv% + mzv%) - 5 (mlvlz + mzvzz)
1 mpmy
Loy o oy 5.53
2( v)ml+m2(vl VZ) ( )

From the preceding equation for v = 0 we get

;1 mmy

T-T =—-————
2my + my

(v —13), (5.54)

andforv =1wehave T = T".

Example 5.1. Two balls of masses m; and m, are suspended from two weightless
rods. The ball of larger mass is deflected from the equilibrium position up to the
height /; and then released with no initial velocity. Provided that the height A,
reached by the second ball after impact is known, determine the coefficient of
restitution (Fig. 5.5).

The potential energy of the first ball after its free release converts into kinetic
energy, which makes it possible to determine the velocity of the first ball just before
it hits the second ball, that is,

mlv%

=m1gh1.



5.6 Collision of Two Freely Moving Rigid Bodies 263

Since after the collision the balls are treated again as non-deformable, just after
impact the velocity of the second ball is equal to v} and its kinetic energy turns into
potential energy according to the equation

myV's
2

= myghs.

From two preceding equations we obtain

Vv = \/2gl’l1, V/2 = 4/ 2gh2.

Let us now make use of the second of equations (5.45) to obtain (for v, = 0)

\/Zg_hz — (1 + V)mlylzghl

mp; +mo

)

and following the transformation we have

miy+my |hy
v = —‘/——1.
mi ]’ll

Forv = 1 and m| = m, we obtain h; = h,. O

5.6 Collision of Two Freely Moving Rigid Bodies

Let two rigid bodies of masses m; and m, start to make contact at point A at time
instant ¢’ (Fig. 5.6). Let us assume that at time instant ¢’ the mass centers of the
bodies have velocities Vici, and their angular velocities are equal to “’ic,-’ i =1, 2.
As can be seen from Fig. 5.6, the contact of bodies commences at point A, where
we assume a smooth surface of contact in order to neglect friction forces. According
to Newton’s third law, impact forces F of opposite senses are created that are
perpendicular to the surface of contact at point A. The bodies remain in contact
during the short time interval , that is, t/ = t' 4 t, where ¢t/ denotes the instant
when the contact between the bodies ceases.

Further motion of bodies after contact cessation can be analyzed on the basis of
the initial conditions and equations of motion of bodies (which take into account
the forces and the resistance of the medium) determined at time instant #/. Our aim
is to determine the velocities Vé and wé, i = 1, 2, of both rigid bodies at time
instant £/, which are essential for further analysis of motion. We will proceed after
introducing the following assumptions [5]:
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Fig. 5.6 Collision of two
rigid bodies: (a) instant just
before collision #*; (b)
collision ! <t <1t/

(c) instant just after
collision ¢/

5 Theory of Impact
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(1) Only impact forces F are taken into account (the remaining forces are assumed
to be negligible).

(2) The positions of bodies in the system OX,X,X; are the same at instants 7'
and ¢/ (they do not change during time interval 7).

(3) Impact forces emerge and develop during time interval t along a common line
perpendicular to the surface of contact.

Axes of parallel coordinate systems associated with the bodies are chosen such
that one axis of each system (here number 1 axes) is parallel to the normal direction
at the point of collision.

By Theorems 5.1 [see also (5.12)] and 5.2 [see also (5.22)], we can write

AP,‘ = JFi’ AK,‘ = C,A X JFi’ (555)

wherei =1, 2.
According to the introduced parallel body systems C; X| X)X} we have

Jr =EJp. Jp=-Jp =—E Jp. (5.56)

From the first equation of (5.55) we have

m (vé1 - v"cl) =Jr (5.57)
and from the second
E| E, Ej
AKy = |x], x5, X, | = EyJexy, —EiJpxs,,. (5.58)
J. 0 O

From vector equations (5.57) and (5.58) we obtain the following six scalar
equations:

f i _
mi (VICI —Vig, ) =JF,

f i _
my (Vzcl —Vy, ) = 0,

my (V{C1 — Vécl) =0, (5.59)
o o o .
T g ~hax | [ ef) - o, 0
_J¢ G S i | =
I)éz/Xl/ I)éz/ I)éZ/X?/ a)lfz—a)iz = J[:ngl R (5.60)
i /
_IXs’le _IXs’lXé ]Xs'l {3 — W3 —Jrxyy,

where, here and also in the next equation, w;; denotes the component k of vector ;.
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Fig. 5.7 Velocities of points A, and A, at time instants ¢/ and 7/

Applying a similar procedure for the second rigid body we get

S i —
my (Vlcz — v1C2 = —JF,

my (v{cz - Véq) =0,
mz (vie, = vie,) =0, (5.61)
I)g{z _I)((:’zxg _I)((:’zxg ol — v, 0
Ly I iy | | oh — b, | = [ =Tex,, |- (5.62)
_IXZXI’ _Ixfxg ngz w; — ol Trx3y,

In total we have written 12 equations for the determination of 13 unknowns w{‘k,
Vie (i,k,1=1,2,3, m=1,2),and J.

An additional equation can be obtained from the law of conservation of kinetic
energy. Here, however, relying on the previous calculations, we make use of the
vector calculus.

In Fig. 5.7 are shown the velocity vectors of point A at time instants ¢’ and ¢/ .
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The velocities of points A; and A, are equal to

i i i
Va, = Vi B} +vag, By +vig Es,

V4, = VIAZE/I =+ VZAZE/Z =+ V3A2E/3. (5.63)

Because the force interaction takes place along the normal and there is no friction
or slip, we have

V2A1E/2 =+ V3A1Eg = VZAZElz =+ V3A2E/3. (5.64)

Taking into account equality (5.64) in system (5.63) we obtain

V4, — V4, = E/l(lel — V1A2). (565)
From (5.65) we obtain
f f
Via, —Vi4
_—l_l_l_zzl (5.66)
VIAI lez

if we are dealing with a perfectly elastic rebound of bodies. On the other hand, if
the rebound is perfectly plastic, then

f f
oy
A, (5.67)
VIAI - lez

In the end, according to the previous calculations, in the intermediate case we
introduce the coefficient of restitution v, and formulas (5.66) and (5.67) take the
form

f f
Vig, —V
] (5.68)
Viar Vi,
where 0 < v < 1.
The obtained equations allow also for an analysis of the simple case where the

second body m, is stationary and the first one is reduced to a particle of mass m
(Fig. 5.2).

5.7 A Center of Percussion

Let a compound pendulum of mass m; be suspended at point O and let it be hit by
a horizontally traveling bullet of mass m, (Fig. 5.8).
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Fig. 5.8 A bullet’s impact against a compound pendulum

By Theorems 5.1 and 5.2 we obtain the following equations for the pendulum:
mi (Ve —vie ) =T+1
1\WVie, Vi ) = + Jio,

/ i —
m (Vzcl — Vi, ) = hoo,

Io(@) —¢") = Jr, (5.69)
and for the bullet of mass m,
ms (v, =vie) = =3 ma (v, = vhe,) =0, (5.70)

and the law of restitution takes the form

- V{Al + vlsz =V (VilAl - V’icz) . (5.71)

At time instant ¢/ in the case of the pendulum we have ¢’ = 0, ¢’ = 0, and in
the case of the bullet X}, = vi., =V X}, = 0. Because the pendulum cannot
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possibly move in the vertical direction, we also have )'c{cl = X, = 0, which

enables us to obtain the result J,o = 0 from the second equation of system (5.69).

In turn, from the second equation of (5.70) we get v{cz = 0 because Vgcz =0.
Eventually, the equations take the form

mlgbfrl =J+Jo, Iogbf = Jr,,

mo (xlfcz — va) = -], —qbkrz + )'clfcz = —V,V, (5.72)
and their solutions
S mwn( ey (i vio)
Io + m2r22 ’ 162 1o + m2r22
mavelo(1 +v) mave(1 + v)
J=—""—"———=, Jio=————(mirr—1Io). (5.73)
Io+m2r2 Io + mor;

From the last equation of (5.73) it follows that J;p = 0, on condition that r, =
Io

. This means that the impulse of a force is not generated at the pivot point of
miry
a pendulum if the mass m, hits the pendulum at a certain point located at distance

Iom7'r;! from the pivot point; this point of a body is called a center of percussion.
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Chapter 6
Vibrations of Mechanical Systems

6.1 Introduction

Vibration theory belongs to well-developed branches of mechanics and physics. It
cannot be understood without a good command of the fundamentals of mathematics.
A large body of literature exists that is devoted to the theory of vibrations of
discrete and continuous systems; it is not cited here in full; we mention only a few
works [1-16], where an extensive bibliography covering the field can be found.
This book will give certain basic information concerning the vibrations of discrete
(or lumped) systems from the viewpoint of “mechanics.” The vibrations of lumped
mechanical systems are described by ordinary differential equations. We dealt with
such equations in Chaps. 1-3.

Let us assume that particles of a lumped material system (Fig. 3.1) are connected
to each other by means of massless spring-damper elements. Those connections
generate forces and moments of forces (torques) that are dependent on the dis-
placements and velocities of the particles. The imposition of initial conditions by
means of, for example, the initial deflection and velocity of particles for certain
known parameters of the system (masses, stiffnesses, damping coefficients, system
geometry) causes vibrations of the mechanical system under consideration. In
subsequent calculations we will confine ourselves only to small vibrations about
a certain static configuration of the system (equilibrium position). Recall that in
the case of non-linear systems, the system may have several distinct equilibrium
positions. For small vibrations about the considered equilibrium position it is
possible to conduct the linearization process, which consists in the expansion of
certain functions into a Taylor! series (Maclaurin® series) and taking into account
only linear terms (although linearization is not always possible). As a result, the
problem boils down to the analysis of linear differential equations with constant

'Brook Taylor (1685-1731), English mathematician known for Taylor’s theorem and Taylor series.
2Colin Maclaurin (1698-1746), Scottish mathematician working mainly in Edinburgh.

J. Awrejcewicz, Classical Mechanics: Dynamics, Advances in Mechanics 271
and Mathematics 29, DOI 10.1007/978-1-4614-3740-6_6,
© Springer Science+Business Media New York 2012
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or variable coefficients. A natural step in subsequent calucations will be the use of
Lagrange’s equations of the second kind.

6.2 Motion Equation of Linear Systems with N Degrees
of Freedom

In the general case, the vibrations of mechanical systems with many degrees of
freedom can be derived immediately from Newton’s second law (which is quite
popular) or from Lagrange’s equations of the second kind. Making use of the latter
possibility in general case we have

d oT 0T
= 0(t.q9,9), =1,...,N, 6.1
ada,  9a, 0(t.q.q9). n (6.1)
where ¢ = (q1,...,qn)- Because we will consider small vibrations, it is possible

to conduct linearization of the system in the neighborhood of a trivial equilibrium
position ¢ = 0 (this is always possible after moving the coordinate system to the
chosen equilibrium position). It turns out that, in the general case, for rheonomic
constraints the kinetic energy 7 = T'(¢, q, ¢) occurring in (6.1) possesses a certain
characteristic structure described below. Because

2

1 or N or
T=-[vdm= —agn | d
z/ "= /(az+nzlaqnq) &

2

1 arar Jr Jr 1 N oor
= = o n by _.n d

2 arac® Zq/azaq +2/(;aqﬁ) "
=T+ T + T, (6.2)

where
1 ar\>
Jr or
Tl = anQn —Z: Ea_ m | 4n,

N
1 Jor oJr .
TZZ_ E mn/‘]n‘]/ = E dm qnqj, (6.3)
n,j=



6.2 Motion Equation of Linear Systems with N Degrees of Freedom 273

and, as can be seen from (6.3), we have To = To(t.q), by = bu(t.q), myj =
my;(t,q). Next we will consider a mechanical system with time-independent
(scleronomic) constraints, for which 7 = T(q, ¢), and with a generalized force
QO = 0Q(q.q), which means that To = To(q), by = bu(q), my; = my;(q).
Let us expand the energy T = T, and generalized forces into a series about the
equilibrium position ¢ = 0 making use of a Maclaurin series of the following form
(for rheonomic constraints % = 0, and hence Ty, = T; = 0):

1 .. 1 ..
r="= Emnj(q)‘h%' = Emnj(o)‘h%' +...,

0w = 0u(q.9) = —cnjq; —knjq,. (6.4)

where in (6.4) the summation convention introduced earlier applies.
Eventually, from Lagrange’s equations we obtain a system of second-order linear
ordinary differential equations, which in matrix notation has the form

Mg + Cq + Kq =0, (6.5)

where:

M = [m,,;] is a kinetic energy matrix or inertia matrix that is positive-definite and
symmetric;

C = [cy;] is an arbitrary square matrix of forces of resistance to motion, that is,
forces dependent on velocity;

K = [k,;] is an arbitrary square matrix of configuration (positional) forces, that is,
forces dependent on displacement.

An important property of Lagrange’s equations, regardless of whether the system
is linear or non-linear, is their linearity with respect to accelerations. The obtained
equations have the form

Mg + fult.q.4) = 0. (6.6)
In the case of a linear scleronomic system we obtain
majqj + €njqj + knjq; =0, (6.7)
which is the equivalent form of the matrix notation (6.5). It turns out that inertia
matrixes are always non-singular, that is, det[m,;] # 0 (for a proof refer to [12]).

For C = 0 from (6.5) we obtain

Mg + Kq =0, (6.8)
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and let us consider two square forms

N
(MQOQ) = Z Muj4ngj,

n,j=1
N
(Kqoq) = Z knj‘]nqjs (6.9)

n,j=1

which are positive-definite. It is known from linear algebra that if at least one of the
forms (6.9) is positive-definite, then there exists a real non-singular change of the
variables

q="Uy, (6.10)
wheredetU # 0, ¥" = (Y1, ¥5. ..., ¥n)", which makes it possible to reduce (6.9)

to their counterpart forms

N N
Mqoq) =Y Y. (Kqoq) =) oxyi. (6.11)
k=1 k=1
The change of variables
N
Q=) viw, (6.12)
k=1

allows us to introduce the normalization procedure
(Mu,, ou;) =6y, (6.13)
where §,; is the Kronecker symbol. Differentiation of (6.10) yields
q=Uy. (6.14)

Using q and 1# instead of q and ¥ in the first equation of (6.11), (6.11) can be
read as the following positive definite forms:

N N
T =Y 2V =) ok (6.15)
k=1

k=1

Owing to the introduced normal coordinate vy, the obtained simple form of
kinetic T and potential V' energies allows to cast (6.8) in the form

Y + ox Yk =0, k=1,...,N, (6.16)
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where all o; are positive. This means that each equation of (6.16) governs
the harmonic oscillations of a one-degree-of-freedom autonomous conservative
oscillator, and its oscillations have the form

Vi = Crsin(wt + Br). k=1,....N, 6.17)

where the frequency w; = /0%, and Cy and By are arbitrary constants. Substituting
(6.17) into (6.12) yields

N
q= Z Cruy sin(wg + Bi). (6.18)
k=1

Let us assume that only C; # 0. Then (6.18) allows us to defined the so-called
ith normal form or ith mode of oscillations

q; = Ciu; sin(wit + ,3,) (6.19)

If we introduce the initial conditions in such a way that the ith mode of
oscillations is realized, then all generalized coordinates oscillate harmonically with
the same frequency w;. The geometrical properties of the modes are defined via
the coefficients of normal modes as a ratio of vectors u;, which can be normalized.
Assuming the solution

q = ue’’, (6.20)

and substituting it into (6.8) we get

(K—oM)u =0, (6.21)
and hence the algebraic equation

det(K—oM) =0 (6.22)
yieldso; = j = 1,...,N,whereo; = a)j2 On the other hand, each of the obtained

o; eigenvalues allows us to define the associated vector u; from (6.21).

Here the problem of normal forms of linear vibrations has been only briefly
addresed since it has been widely described in numerous books/monographs
devoted to oscillations of lumped mechanical systems.

6.3 Classification and Properties of Linear Mechanical
Forces

The matrix notation of linear equations of motion for lumped mechanical system
(6.5) will be used to introduce the classification of forces.
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The matrix of forces of resistance to motion C can always be represented in
the form

C=0C%+C4, (6.23)
where
(€)' =c5, (¢ =-c, (6.24)

which means that C5 (C*) is a symmetric (skew-symmetric) matrix.

Forces of the form C5§ generated by the symmetric matrix C5 are called
dissipative forces, provided that ¢"C5¢ > 0 for an arbitrary vector ¢ # 0 (a strict
inequality describes the forces of complete dissipation).

Let us introduce the function

1
R = EchSq, (6.25)

called a Rayleigh® dissipation function [10]. The presented quadratic form has a
very important property, that is,

R

— =C%, (6.26)
aq

which will be demonstrated for a two-element vector q.

We have
1 .
R = Sldr.do] [C” C”} [?1}
C21 C22] | 42

T F
= —[gic11 + §2021, Gic12 + Gac] p
2

2
1 .2 L. .. .2
= E[qlcll + q142¢21 + q1G2¢12 + §5¢2],
oR
R g, | _ |:Cn 612i| |:q'1i|
0q IR 1 2] 1¢2]’
09>

3John Rayleigh (1842-1919), English physicist awarded the Nobel prize in 1904.
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hence

oR . 1. . .
— =qicu1 + =¢2(ca + c12) = Gici + acin,
aql 2

R . 1. ) .
— = qcn + =qi(ca + c12) = qici2 + §ac,
aqz 2

because for the considered matrix C = C, which means that c;» = ¢3;.
The forces CAq are called gyroscopic forces. Below we present their
properties:

1. The power of gyroscopic forces is equal to N = ¢'C*q = 0. Let us note that
. N 1T AT .
N'=(@'cla) =[d" (C'9)] =(c'a) 4
. T. . .
=q' (C") 4=-q'C'q=—N. (6.27)

where the definition of gyroscopic forces and the second equation of (6.24) were
used. Equality (6.27) is satisfied only if N = 0.
2. Generalized potential of gyroscopic forces.
Gyroscopic forces have the following generalized potential:

. 1 .
V(g.q) = EqTCAq, (6.28)
since we obtain
dov v
— = _C4. 6.29
dr 3q  0q 4 (6.29)

which will be demonstrated for a two-element vector q.

‘We have

1 .
= Yanan[or ][0
C21 C22] [ 42
1

= 5[41‘]16’11 + 4192021 + q1G2¢12 + G2G2¢22],

WV _ [3@ien + gacn)]
dq  [2(Gica + Gacn) |’

v _%(qwu + g2¢21) |
0q _%(%012 +qaen) ]’
d V. [3(gien + qacan) ]
| 2(g1c12 + G2c22) |
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dov v _ [%42(021 _012):|
dt dq  dq sq1(ca —can) |’

Chq = [Cn 612} [6’11} _ [Cnél + Cl2q.2i|
1 cn | g2 2141 + 0G|’
which proves the validity of the formula, because in this case ¢;; = —c;; = 0,
cn = —cxn =0,c = —cpa.

Also the matrix of positional forces K can be represented as the sum of a
symmetric and skew-symmetric matrix of the form

K =K’ + K",
(K*)' =K.
(K*)' = —K*. (6.30)

Forces KSq are called conservative forces or potential forces. Potential forces
are associated with the potential in the following way:

v

KSq=—,
4=

(6.31)

where

1
V= EqTKSq. (6.32)

They have the following property. The work of those forces in a configuration
space along a certain closed curve is equal to zero, that is,

¢K,,j(]jdqn =0. (633)

Forces K4q are called circulatory forces. They are orthogonal to the vector of
generalized coordinates, that is,

q"K'q=0. (6.34)
For the planar case (a two-element vector q) a vector field of circulatory forces

consists of circles, which is depicted in Fig. 6.1.

Example 6.1. Let us consider a particle with mass m connected to a ring by means
of linear springs of stiffnesses k; and &, and viscous damping ¢, where the ring
rotates with angular velocity o (Fig. 6.2).

We assume small linear vibrations, and non-linear geometric relations are
neglected.
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Fig. 6.1 Interpretation of Aq,
property (6.34) of circulatory
forces

9.

Fig. 6.2 Mass m fixed by
means of spring-damper
elements to ring rotating with
angular velocity @

Let us introduce the Cartesian coordinate system OX, X, X, rigidly connected to
aring, where the mass oscillates in the OX, X, plane.
The kinetic energy of the mass in the system OX, X, X, is equal to

1
T = 3" [ —0x2)* + (5 + wx1)*| = T + T1 + To.
where

T) = mo(x1X2 — X1X2),

1, .
= Em(x% —13)

L 20 2
To = —mow~(x7 + x3).

2
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Potential energy accumulated in the springs is equal to
1 1
V= Eklxlz + Ekzx%,

and the dissipation function has the form

1
R= Ecxf.

Now, let us use Lagrange’s equations of the form

d (3L) oR OJL )
5. a . +_.__:le 14 :1727
g i

ds dq;  0g;
where
L=T-V :%m(xf + %3) + maw(x; X3 — X1x2)
+ lma)z(xl2 +x3) — lkle - lkzxg
2 2 2
and

q1 = X1, {42 = Xa.

Let us successively calculate

oL . oL )

— = mMX;] —MwXy, — = mX; + mwxy,

8x1 8x2

d /0L . . d (oL . .
— | — )| = mxX| —mowx,, — |\ = | =mx; —mwx,
dr \ 9%, ! ’ dr \ 9%, ? !
oR . oR 0

oo = CX1, =0,

8)&1 ! 8x2

JdL JdL

— = mwi, + mo*x; —kix;, — = —mwx; +mw’x; —kyxy,
8x1 aXQ

which after substitution into Lagrange equations gives
mx| — 2mwx, + cx; — mw’x; + kjx; =0,
mi; + 2mwx, — mw’x, + kax, = 0. (%)

The obtained ODESs can be rewritten in the form (Sect. 6.3)

Mg + (C* + C%) 4 + (Ko + Ks)q = 0,
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where particular matrices have the forms

m 0 s cO0 4 0 —2mow
M= , = , = ;
|:0 m} ¢ |:0 0:| ¢ |:2ma) 0 :|

Matrix M is the mass matrix, matrix CS is the damping matrix generated by
the Rayleigh dissipation function, C* is the skew-symmetric matrix generating
gyroscopic forces that couples the motion of the mass in two directions, Kg is the
symmetric stiffness matrix, and Ko = —>M is a matrix generating circulatory
forces (centrifugal forces).

Using the definitions of matrices introduced previously, by those matrices we can
express particular terms of total energy of the system under investigation, that is,

2
O
—q’' Mg,
2(1 q

P 1 .
T, = 34"Mq. I = EqTCA(L Ty

.1 s.
V=1q"K%q, R= EqTCSq.

In order to highlight the special properties of the analyzed system described
by (x) let us consider a special case for whichc = 0, k) = k, = k.
From () we obtain

X1 —2wis + (0® —w?)x; =0,
¥ +2wx; + (ot2 - a)z)xz =0, (%)

2k

where o

In this case gyroscopic forces play a stabilizing role in the investigated system,
although at first glance it seems that the system would exhibit unstable properties
since so-called negative stiffnesses appear in the system for w? > «?. To verify the
system’s behavior, we seek its solutions in the form

X1 = Xle‘”, Xy = Xze‘”.

Substituting the preceding solutions into () we obtain

[02 + (a? — 0?) —2w00 :| [X1:| —0

200 o2+ @ -] Xs
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A characteristic equation takes the form
ot +20%(0® + 0?) + (¢ — wH)? = 0.
This equation has the following roots:

ol = —(a—w)?, 03 =—(a+ o)

From the preceding calculations it follows that four roots are always imaginary
for any value of w, and therefore there is no instability.

Let us assume now that the system has only one degree of freedom, that is, let
the mass m move only along the axis OX,. Setting x, = X, = X, = 0 in (**) from
the first equation we have

i1+ (@ —w?)x; =0,

which describes the motion of the mass along the axis OX,. However, in this case for
o > o instabilities of vibrations appear in association with the so-called “negative
stiffness.”

It follows that enabling the mass to also move along the axis OX, allows for the
elimination of vibrational instabilities.

6.4 Small Vibrations of Linear One-Degree-of-Freedom
Systems

Let us consider the case of forced vibrations of a system with one degree of freedom
(Fig. 6.3).
An equation of motion for the system takes the form

mx + cx + kx = Fycoswt (6.35)
or
X+ 2h% + o*x = g coswt, (6.36)
where
k F
gy ok B
m m m

First, let us consider free vibrations of the system (Fy = 0). We seek a solution
in the form

x(t) =", (6.37)
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Fig. 6.3 Vibrations

of a one-degree-of-freedom
system with damping and
harmonic excitation

F.,cosmt

x(t)

ARNNRRORNRON

which, substituted into (6.36), leads to the following characteristic equation:
r2+2hr + o> =0. (6.38)
The roots of this equation are given by
ria=—h+vh?—al (6.39)
Therefore, a general solution has the form
x(1) = Aje™ + A, (6.40)
If & > «, then the solution reads

x(1) = &7 (4, eVI oy eV, (6.41)

and as can be easily noticed, lim;—, . x(#) = 0. A time response x (¢) tends to zero
without vibrations.
If i < «, then (6.39) takes the form

ra=-h+id, i?=-1, (6.42)

where A = /a2 — h2, and the solution in this case has the form
1 _ . .
x(t) = Ee_h’Re [Ae? + Ae*], (6.43)

where A and A are complex conjugates of each other.
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X(t) A

Fig. 6.4 Free damped vibrations of one-degree-of-freedom system

The transformation to a real form of the solution is enabled by the following
Euler formula:

e — cos At + isin At. (6.44)
We have

1
x(t) = Ee_h’Re[(AR — Aji)(cos At +isinAr)

+(Ar + Ari)(cos At —isinAt)]
=e (A, cos At + Ay sin A1), (6.45)

where A = AR + A[i, AR = Al, A[ = Az.
The third case remains to be considered, that is, # = «, which corresponds to a
critical damping coefficient ¢, described by the equation

k
Cor = 2m p =2V km. (6.46)

In this case we are dealing with a double root of the characteristic equation (see
[11]), and the solution has the form

x(1) = (A, + Axt)e™. (6.47)
In the case of critical damping we do not observe any vibrations. Solution (6.45)

describes the process of damped harmonic vibrations whose time plot is shown in
Fig. 6.4.
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A characteristic of damped vibrations is that the maximum (minimum)
deflections are reached periodically after the time 7, = 27” called a period of
damped vibrations. Therefore, we introduce the notion of a logarithmic decrement

in the form
x(t)
=In———
x(t+Ty)
(A cos At, + Ajsin At,)e
[A1cosA (tn + ZZ) + Assin A (1, + Z£)] e~ (%)

1 2
=In——s = —h. 6.48
n = 3 (6.48)

=In

The logarithmic decrement can be used to determine a viscous damping coeffi-
cient of vibrations. Since, if we know §, that is, the natural logarithm of the ratio of
two consecutive maximum deflections and the time interval between occurrences of
those deflections, from (6.48) we find the value of damping:

c= Zm%. (6.49)

In the end, let us consider the case of forced vibrations, that is, Fy # 0. To
determine a solution we will exploit the notion of complex numbers. Equation (6.36)
takes the form

¥ 4 2hx + o*x = g(coswt + isinwt) = ge’. (6.50)
The preceding second-order differential equation is non-homogeneous. Its solu-
tion is the sum (superposition) of a general solution of the homogeneous differential

equation [i.e., (6.50) for ¢ = 0] and a particular solution of non-homogeneous
(6.50). This latter solution is sought in the form

x = Ae'’. (6.51)
Substituting (6.51) into (6.50) we obtain
(—w* + 2hwi + a*) A = q, (6.52)

where A is the complex number conjugate to A = Ag + A;i.
From the preceding equation we get

q
(a? — w?) + 2hwi

A=Ar— Aji = (6.53)
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In order to determine Ar and A;, let us multiply the numerator and the
denominator of the right-hand side of (6.53) by [(a> —w?)—2hwi], thereby obtaining

2_ 2
Ar = At = (a? il(jz)z f4)h2w2 (@2 - wzz};g)—qi- i 654
and hence we have
2_ 2
Ar =@ - (32)2 f 4)h2w2’ =1 —wzz};:) i 4he? (6:33)
Solution (6.51) has a real interpretation in the form
Rex(t) = Re[(Agr — Aji)(coswt + isinwt)]
= Agcoswt + Aj sinwt = a cos(wt — B). (6.56)
Because
Agcoswt + Aj sinwt = acos B coswt + asin B sin wt, (6.57)
we have
Agr =acosf, A; =asinp, (6.58)
and hence

A
a= A3+ A2,  tanf = A—’. (6.59)
R

Because the general solution of the homogeneous equation of the form (6.45)
vanishes for 1 — oo, only the particular solution of the non-homogeneous equation
of the form (6.56) remains. As can be seen, the response of the system is harmonic
and shifted in phase by the angle 8 with respect to a driving force. From (6.59) we
obtain

q q 1

T ) e

’

2hw 2ho
a? — w? 1_(3 2"

B = arctan (6.60)
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Fig. 6.5 Amplitude response
of an oscillator with harmonic
excitation and damping for
different values of ratio &/«

The coefficient ¢ /a? = Fy/k = x4 describes a static deflection, and the first of
(6.60) is transformed into

v=v (3) -4 _ ! . (6.61)

- ey e

The preceding function v = v(¢) describes the amplitude response (Fig. 6.5).

The second equation of system (6.60) describes a phase response (Fig. 6.6).

We obtain the case of vibrations of an undamped oscillator with a harmonic
excitation after setting # = 0. According to (6.56) we have

x(t) = acoswt (6.62)

for = 0and w < & and
x(t) = —acoswt (6.63)

for w > «. This means that before resonance the forced vibrations are in phase with
the external driving force, whereas following resonance the vibrations of the mass
are out of phase with the driving force.

The resonance takes place when w = «, and then the amplitude goes to infinity.
Damping decreases amplitudes of resonant vibrations. Also the case 7 = 0 is
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7
D ~0,05
pdy T

Fig. 6.6 Phase response of an oscillator with harmonic excitation and damping for different values
of ratio h/a

depicted in Figs. 6.5 and 6.6. Now we will show the method of application of a

function of a complex variable to solving the problem of vibrations of the system

depicted in Fig. 6.3 when it is subjected to two driving forces F' cos wt and F sin wt.
The equations of vibrations of the oscillator have the form

X1 4 2hx) + o?x; = g coswt,

¥y 4 2hx; 4+ o’xy = g sinwt. (6.64)
The solutions of the preceding equations are, respectively,
x1 = acos(wt — B),

. big
X, = asin(wt — B) = acos (a)t —5 " /3) , (6.65)

where for both cases the amplitude and phase are described by (6.60).
Let us now introduce a complex excitation of the form

F = Fg 4+ iF; = F(coswt + isinwt) = Fe'', (6.66)
and then the equation of vibrations of the analyzed oscillator takes the form
¥ 4 2h% + o’x = ge, (6.67)

where now x is the complex variable and ¢ = F/m.



6.4 Small Vibrations of Linear One-Degree-of-Freedom Systems 289

A particular solution of (6.67) has the form
x = ael@ P = gel@teTP (6.68)
and substituting expression (6.68) into (6.67) we obtain
a(—w* + 2hwi + o?q)e ™ =¢ (6.69)
or, in expanded form,
a(—w? + 2hwi + a*q)(cos B —i sinB) = q. (6.70)
Splitting the preceding equation into real and imaginary parts, we obtain

a(—w?cos B + 2hwsin f + a’gcos B) = q.
w?sin B + 2hw cos p —a’gsinf = 0. (6.71)

The solution of this system gives the values of the amplitude and phase angle
described by (6.60).
From (6.68) it follows that

X = XxXp +1ix7, (6.72)

where
xg = acos(wt — B), x; =asin(wt — p). (6.73)

From those calculations it follows that the solution of the first (second) of (6.64)
is xg (x7). In other words the real part of solution (6.72) corresponds to the real part
of the force (excitation) and the imaginary part of solution (6.72) corresponds to the
imaginary part of the force.

We will now present the geometric interpretation of solution (6.72). Let vector a
rotate around point O with a constant angular velocity .

According to Fig. 6.7 we have

a =ag +ia; = acos(wt — B)Eg + ia sin(wt — BE;
= )CRER + i)C]E]. (674)

From (6.74) it follows that the projection of vector a onto the horizontal real axis
represents the real part of the solution, whereas the projection of the rotating vector
a onto the vertical axis represents the imaginary part of the solution.

Two successive differentiations of the rotating vector a lead to the determination
of the velocity and acceleration of the analyzed oscillator, and their projections onto
the real and imaginary axes give the velocities and accelerations of the oscillator
with driving forces F cos wt and F sin wt.
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Fig. 6.7 Vector a rotating
with constant angular
velocity @

According to relation (6.74) we have

a = iawe@ P = —qwsin(wt — B)Eg + iaw cos(wt — B)E;

= —xrEr +ix/E;. (6.75)

We will demonstrate that vectors @ and a are perpendicular to each other. We
have

aoa = (xgEg +ix;E;) o (—xgEg + ix;Ej)
= — XpXgp — x;X; = —acos(wt — B)(—aw sin(wt — P))

— asin(wt — B)(aw cos(wt — B)) = 0. (6.76)

Moreover, vector a leads vector a through an angle 7. A similar situation occurs
for the acceleration a, which leads vector @ through an angle 7, and projections
of this vector onto the axes give the accelerations of the oscillator for the case of
F coswt and F sin wt. The relative orientation of vectors a, @, and @ is shown in
Fig. 6.7.

In order to apply the described approach based on the introduction of a complex
variable, we will consider transverse vibrations of a disk mounted on a flexible
steel shaft of length / and circular cross section [14] (Fig. 6.8a) and disk imbalance
O'C = e, where C is the disk mass center. The mass of the shaft is negligible as
compared to the mass m of the disk. According to Newton’s second law we have

m)'élc = —kxl, m)'ézc = —kx2, (6.77)
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Fig. 6.8 Transverse vibrations of the disk (a) and the geometry of motion (b)

where
Xic = X] 4+ UCOSQ, Xoc = X2+ [LCOSQ. (6.78)
The coefficient k = % is the bending stiffness of the shaft, and the third
degree of freedom of the disk associated with the possible occurrence of torsional
vibrations in its plane is neglected.
Let us introduce the complex representation in the following form:

X =X +ix3, Xc = Xi¢c +ixac. (6.79)

Multiplying the second equation of (6.77) by i and adding these equations to each
other we obtain

Yo +a’x =0, (6.80)

where now x and x¢ are complex variables.
In turn, according to relation (6.78), we have

x = (x1c — pcosg) +i(xoc — pusing)
= X1¢ + ixac — p(cos ¢ +ising) = xc — e, (6.81)

which, substituted into (6.80), gives

Yo + a’xe = poel. (6.82)
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We can obtain the equation of vibrations of point o’ directly as

d2 '
7 (x 4+ pe) + a’x =0, (6.83)

which following transformations leads to the equation
i+ a’x = pow’e?, (6.84)

where ¢ = wt. A single equation in the complex plane describes transverse
vibrations of the disk.

The solution of (6.82) represents the displacement of mass center C of the disk
and has the form

M iwt
= — ', 6.85
Xe =12 (w/oz)ze (6.85)
and vector rc of magnitude
_ (6.86)
rc = .
T /ey

rotates with angular velocity w in the direction of shaft rotation. In turn, the
deflection of the shaft determined by point O’ can be obtained from the solution
of (6.84) in the form

2

L (6.87)
1—(w/a)?

which allows for the determination of the vector of deflection of the shaft r in the

form

(/o)

r pL|1 @/’ (6.88)
which rotates in the direction of shaft rotation with angular velocity w. The mass
center C remains in the plane of deflection of the shaft during vibrations.

In both cases [formulas (6.85) and (6.87)] it can be seen that if @ — «, then we
are dealing with resonance and the velocity @ = o = o, is called a critical speed.

For large angular velocities of the shaft @ > o« its deflection following
application of the I’Hospital’s* rule in (6.88) is equal to y, whereas the position
of the mass center of the disk rc — 0 (i.e., it tends to the position of the axis of
rotation) which follows from (6.86).

So far we have considered the strongly idealized case where damping is not
present in the system. Following the introduction of damping replacing external

4Guillame de 1'Hospital (1661-1704), French mathematician, taught by Leibnitz and Johann
Bernoulli, who published a I’Hospital rule that was, in fact, discovered by J. Bernoulli.
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resistances, the equation of vibrations (6.84) takes the form
¥+ 2hx + o?x = po’e®. (6.89)
For this equation we seek a solution in the form
x = Rel@™P), (6.90)
Substituting relation (6.90) into (6.89) we obtain
— w?’R + 2hwiR + o&’R = pw’e”. (6.91)
From formula (6.91) it follows that

(@? —w*)R = pw? cos B,

2hwR = pw?sin f. (6.92)

From (6.92) we obtain the desired quantities

R _ (©/a)?
H N = @@ + 4/ (@/a)
tan 8 = M%- (6.93)

The plot ofﬁ is a function of (2) and (%) and is depicted in Fig. 6.9.

The relative position of the centroid O’ and the mass center C of the disk
is shown in Fig. 6.10 [11]. For small values of the viscous damping coefficient
points O’ and C lie approximately on a line perpendicular to the originally straight
axis of the shaft (away from resonance).

The increase of @ (with values of « and & kept fixed) causes the increase of
the angle B, which for v > « leads to § = 180°, and we are dealing with the
phenomenon of the self-centering of the shaft.

If in Fig. 6.3 instead of the harmonic excitation we assume an arbitrary time-
dependent driving force of the form F(¢), then the equation of motion of this system
takes the form

mi + cx + kx = F(t) (6.94)

or
¥+ 2h% +a’x =q(1), (6.95)

where now ¢(t) = %F(t).
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Fig. 6.9 Resonance plot
R (2) for different values
n \a
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In order to solve (6.95), we apply a Laplace’® transform, that is, we map the
function X(s) of a complex variable to the function x(¢) in the time domain, by
means of the following integral transformation:

+o00
X(s) = /x(t)e_‘"dt, (6.96)

—00

where s = ¢ + iw, and further we determine the initial conditions for (6.95) for
to = 0. By means of algebraic transformations associated with (6.95) and variable s
in the complex domain, we can conduct the inverse transformation
| c+iw
x(t) = L7 [X(s)] = 3 / X(s)e™*"dt, (6.97)
i

c—iw

SPierre-Simon Laplace (1749-1827), French mathematician and astronomer.



6.4 Small Vibrations of Linear One-Degree-of-Freedom Systems 295

(@) w0 XJ
r
Of
/o p
ot
Cc
)(z‘r
X_1_ (@) W>>0 X.j
Ll C‘ Ll
r o
X, ¥ XY

Fig. 6.10 Relative position of geometric center O’ and mass center C of disk depending on the
relation between w and o

that is, from the complex domain to the time domain. In practice we do not calculate
such integrals, but we use a table of original functions and their transforms. Because
we are interested in a particular solution, during the analysis of (6.95) we assume
the following initial conditions: x(0) = x(0) = 0. Applying the Laplace transform
to (6.95) we obtain

(s> + 2hs + &%) X(s) = Q(s), (6.98)
and following transformation

9(s) 1

2 1.0 h 1 :
o =S +25 s+ 1

o

X(s) =

(6.99)
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Fig. 6.11 Firing of the gun barrel situated in a horizontal position

The right-hand side of (6.99) is the ratio of two transforms. By the convolution
theorem we have

Si@) = fo(1) = /fl(f)fz(l —1)dt = /fl(l — 1) f2(1)dz,
0 0
Lfi(t) x fa()] = Fi(s)Fa(s),
L7 [Fi()Fa(9)] = fi(0) * fo(0), (6.100)
and hence an original function of such a product is a convolution of time functions,

which are original functions of the aforementioned transforms.
On the other hand,

1 1 1
1 500 = 1 1001 = a0,

1 1 & t
L™ = Tsin| 1-8—), 6.101
[T2s2+2gTs+1] T8 Sm( ST) (6.101)

where § = g, T = é
According to (6.100) we obtain

t

2
x(t) = / %q(r)a—ze_h(’_” sin (\/oﬂ —h2(t - r)) dr

) va?—h
t
_ / qir) =100 §in At — 7)dr, (6.102)

0

where A = va? — h? and (6.102) is valid for ¢ < cq;.

Example 6.2. In a gun barrel situated horizontally (Fig. 6.11) there is a projectile
of mass m, and the barrel of mass M is supported by means of a recoil mechanism
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(a spring and damper). Determine the recoil, that is, the displacement of the barrel
after the projectile leaves the barrel. Assume that the time in which the projectile
moves in the barrel is negligibly small, and the velocity of the projectile at the
moment when it leaves the barrel is equal to vy,.

At the moment when the projectile leaves the gun barrel, let us assume x (0) = 0,
x(0) = Xo.
The equation of motion of the barrel has the form

M3 +cx +kx =0,

and its vibrations are excited by the initial velocity Xxy. The motion of the barrel is
described by (6.45), from which, following the introduction of the initial conditions
mentioned previously, we obtain A; = 0, A = 3. Eventually, the equation of
motion of the barrel has the form

x(t) = %e_ht sin Az.

The initial velocity of the projectile X, remains to be determined. To this end we
exploit the theorem of the conservation of momentum for a system composed of a
barrel and projectile (Sect. 1.1.4).

The momentum of the system at the instant when the projectile leaves the barrel
is equal to

P = M3xo+ m(xo—v,).

Under the conditions of the problem, before firing, the barrel and projectile have
velocities equal to zero. The momentum of the system at the moment just before
firing is equal to zero.

Because the momentum of the system has to be conserved, the desired magnitude
of the velocity is equal to

m

m+ M

)'C() = Vp-
In [15] it is shown that a solution obtained in this way differs only slightly from
a solution that takes into account the time of motion of the projectile in the barrel.

6.5 Non-Linear Conservative 1DOF System
and Dimensionless Equations

Let us consider the system from Fig. 6.3 with no damping and no excitation, but
with non-linear stiffness k = k(x) (see [16]). The equation of motion of mass m
has the form

mx + k(x) =0, (6.103)
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and dividing by sides by the mass m we get
X+ s(x) =0,
and we assume the initial conditions
x(0) = xo, x(0) = vp.

Let us note that
. dx dx dv

T ax
and substituting this relationship into (6.104) we obtain
vdv + s(x)dx = 0.

Following integration we have

X X
[ vav == [ seman,
Vo X0
and further
) -
X< =,
2 == [ sonan

X0

which allows for the calculation of the velocity

(6.104)

(6.105)

(6.106)

(6.107)

(6.108)

(6.109)

(6.110)

6.111)

We determine equilibrium positions from the algebraic equation s(x) = 0, and
then choosing one of the positions (xy) we place there the origin of the axis OX, that
is, we will consider small vibrations about the equilibrium position xo = 0. Our aim
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is to determine the period of oscillations T of the considered conservative system.
To this end we impose the following initial conditions on the system: x(0) = Ay,
%(0) = 0. Following the passage of time 2 we obtain x (1) = 4y, x (%) = 0.
According to (6.111) we have

A

Y — (6.112)

&
Ao —[=2 [ s(pdn
Ao

The upper limit of integration 4, is determined from (6.110), that is, we have

NN

Ay

—Z/S(n)dn =0. (6.113)

Ao

In this case, for an odd function s(n), from (6.112) we get

0
d
T:4/—§. (6.114)
Ao —[=2 [ s(mdy
Ao
Let us consider an odd function of the form
s(x) = ax®, (6.115)

that is, our aim is to determine the vibrations of the oscillator described by the
equation

¥ +ax’=0. (6.116)

From formula (6.114) we obtain

d¢

0 0
2 dé
T =4 —— =4/ | ———. (6.117)
a [ 44 _ £4
Ao — | —2a f n3dn Ao AO g
Ao
Introducing a new variable of the form

Aou = §, (6.118)
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from (6.117) we obtain

0 1
2 dg 21 du
:_4\/j/—:4\ﬁ_/—. (6.119)
al \/Ag_”4Aé aAOo L—uf

Unfortunately, the integral in formula (6.119) cannot be expressed in terms of
elementary functions. However, it can be expressed through the function I, because
we have

1

1 1\?
r{-1. 6.120
/ V1—u* W (4) ( )

0
The function I"(x) is tabulated for 1 < x < 2, and additionally I"(x) = M

Hence F(%) = 41°(1.25), and from (6.119) we obtain the period
T = 7.418 (Agv/a) . (6.121)

Now, let us turn to problems of reduction of equations to a dimensionless
form. Usually, during the idealization process it is necessary to introduce a certain
order of various elements by comparing them with each other and with respect to
characteristic quantities chosen in advance. For example, if one element has a length
of 1cm, then a natural question arises: is this quantity small or large? The answer
to this question can be provided only by the initial formulation of the problem. It is
clear that if we investigate the motion of a satellite in near-Earth orbit, then we can
assume the length of 1 cm to be negligibly small. On the other hand, if we consider
a distance between molecules, then the length of 1 cm is an extremely large value.

Let us give another example. It is well known that air is compressible. But do we
always have to take into account the compressibility of the air? It depends on the
initial formulation of the problem. If an investigated object moves through the air
with small velocity V', then compressibility can be neglected while constructing the
mathematical model. However, if the velocity of the object is large, and even close to
or greater than the speed of sound, then, inevitably, compressibility has to be taken
into account. In this case, it is very convenient to introduce a dimensionless quantity
M = V/a called the Mach number, which plays an important role in acrodynamics.
For instance, at M <« 1 it is possible to make use of the idealized mathematical
model of incompressible gas, whereas for greater values of the Mach number one
should take into account air compressibility. A similar situation occurs during the
construction of mathematical models in other fields of science and technology,
where an important role is played by some other characteristic dimensionless
numbers, which, in general, are created by a combination of three dimensionless
quantities: length L, time 7', and mass M. For the sake of convenience it is
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assumed that the dimension of the combination F T?/M L is equal to 1 (where F is
a force). In other words, one of the quantities F', 7', L, or M can be chosen as the
independent one.

To recapitulate, all the variable quantities of a process under consideration
should be reduced to dimensionless quantities. This can be achieved by dividing
the process input variables into certain corresponding (in the sense of dimension)
characteristic quantities or their combinations: length L, velocity V, a viscous
damping coefficient ¢, spring stiffness k, dynamic viscosity v, etc. Therefore,
in various branches of science and technology the application of dimensional
analysis to every problem yields a set of characteristic dimensionless numbers —
the similarity parameters — whose values qualitatively describe the nature of the
investigated processes (similarity laws for processes). As examples we may cite
the numbers of Mach,® Nusselt,” Reynolds,® Strouhal,’ Froude,'? Biot,!' and many
others. They can be very small or, conversely, very large.

The reduction of equations to a dimensionless form has other important features
as well. Usually after rescaling of the parameters, their number decreases and the
analyzed problem gains a metascientific character, that is, the description is valid in
distinct fields of science, such as mechanics, electrical systems, atomic physics, etc.

We will consider a particle mounted to a base by means of a certain massless
spring with non-linear characteristics (the aerodynamic drag and friction are ne-
glected). Let, at time instant = 0, the point mass be deflected from an equilibrium
position by a certain value x; and then released. The deflection of the body from
the original position at time instant z* is denoted by x* (*). The equation of motion
reads

d?x*

e + f(x*) =0, (6.122)

and we assume that f(x*) = 0 for x* = 0.

Ernst Mach (1838-1916), Czech/Austrian physicist and philosopher; the Mach number M = :—:,
where vy is the velocity of an object and v the velocity of sound in the considered medium.
7Wilhelm Nusselt (1882-1957), German engineer; the Nusselt number N = % where L is the
characteristic length, /1 the convective heat transfer coefficient, and & ; the thermal conductivity of
a liquid.

80sborne Reynolds (1842-1912), Trish professor who studied fluid dynamics; the Reynolds
number Re = **

VL, where vy is the mean fluid velocity, L the characteristic length, and v the
kinematic viscosity of a fluid.

3
9Vincent Strouhal (1850-1922), Czech physicist; the Strouhal number Sr = % where f is the
frequency, ¢ the coefficient of expansion, and U the flow rate.
10William Froude (1810-1879), English engineer; the Froude number (dimensionless) Fr = f
where v is the characteristic velocity and ¢ the characteristic velocity of water wave propagation.
11Je.em—Baptiste Biot (1774-1862), French physicist, astronomer, and mathematician; the Biot
number Bi = },’(—1 where /i is the heat transfer coefficient, / the characteristic length of a body,
and k the coefficient of thermal conductivity of the body.
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Let us expand the non-linear function f(x*) into the Maclaurin series

d x*2d2 x*3d3
af xR at &

f(x*) =x* o T o e TS + .- (6.123)
where the derivatives G f;, are calculated at the point x* = 0.
Substituting relationships (6.123) into (6.122) we obtain
d2x* . df x*3 d3f
3 =0, 6.124
T e T e o (6129
where it is assumed that f(0) = dV*z (0) =0, dx* (0) > 0.
Let us introduce the dimensionless quantities
x* t*
= —, = —, 6.125
YT T (6123)

where [/ and T are characteristic constants of length and time.
Let the time constant be described by the equation

[ df } [1]. (6.126)

Let us note that the preceding equation corresponds to

P =1 6.127
5| (6.12)

where F is the force, T denotes time, M is the mass, and L denotes length.
Introducing dimensionless quantities (6.125) into (6.124) we obtain

L8 8 oy Lond
T2 dr? dx*3

(0) =0, (6.128)

and multiplying this equation through by 7/ [ we have

dx 2 f 3722 & f
a + x T T4l s 0) =0. (6.129)
Following introduction of the quantities
Bo = f B = T212 &/ (0), (6.130)

d*3



6.6 1DOF Systems with Loading 303

(6.129) takes the form
d’x 3
— X x” =0. 6.131
T Box + B ( )
This equation plays an important role in non-linear mechanics and is called a
Duffing equation.
The initial condition x*(0) = x; assumes the dimensionless form of x(0) =

N
(I
]

= X0.

6.6 One-Degree-of-Freedom Mechanical Systems
with a Piecewise Linear and Impulse Loading

In this section we will consider the vibrations of a one-degree-of-freedom system,
depicted in Fig. 6.12, loaded with a piecewise linear loading F ().

The considered loads F(¢) are shown in Fig. 6.13.

For the case presented in Fig. 6.13a, the equation of motion of the system shown
in Fig. 6.12 has the form

F
mi + kx = t—ot (6.132)
0
for0 <t <.
Dividing by mass m we have

X4+a'x=——=¢qo—. (6.133)
0

The solution of the preceding equation is sought in the form

X0, (6.134)

x = Cjcosat + Cysinat + ;
0

F(t)

x(t)

Fig. 6.12 A model
of the investigated system
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a FA b FA
Fil== Fo
|
|
I
: > >
0 t 0 t
c FA
FB._!
o t

Fig. 6.13 Models of “piecewise linear” loading

Substituting (6.134) into (6.133) we get
Xy = qo. (6.135)

In order to determine the constants C; and C,, one has to specify initial
conditions, which we assume to be in the form

x(0)=x", x(0)=x". (6.136)

Taking into account the first equation of system (6.136) in relation (6.134)
we obtain

C=x", (6.137)

and differentiating (6.134) we have

% = —aC; sinat + aCycosat + ? (6.138)
0

Taking into account the second initial condition of system (6.136) in relation
(6.138) we have

i =Ca+ 2, (6.139)
)
hence we find
1
C, = — (x— - ﬁ) . (6.140)
o to
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Substituting the determined constants into (6.134) and (6.138) we get

1
X =x cosar + — ()'c_ — E) sinat + El, (6.141)
o to To
X = —ax sinat + ()'c_ — ?) cosat + ?. (6.142)
0 0

At the instant f, the deflection and velocity, according to formulas (6.141) and
(6.142), are equal to

1
X(ty) = x~ cosaty + — ()'c_ — ?) sin oty + Xo, (6.143)
(04 0
= _ . . X0 X0
X(ty) = —ax” sinaty + (x — t_) cos aty + P (6.144)
0 0
For time ¢ > ¢ (6.133) takes the form
F
4oy =qo= —, (6.145)
m
and we seek its solution in the form
x = xo + Ci cosat + Cysinat, (6.146)

which means that at the instant 7, the time is measured from zero, and the initial
conditions are described by (6.143) and (6.144).

Substituting ¢ = 0 into (6.146) and its derivative, and taking into account
relations (6.143) and (6.144), we obtain

- 1
xo+ Cy = x~ cosaty + — ()'c_ — ?) sin oty + X, (6.147)
o 0
aC, = —ax” sinaty + ()'c_ — ;ﬁ) cosaty + ?. (6.148)
0 0

Substituting the constants C; and C; into (6.146) we have
_ 1 (. X0\ .
X =Xo+ |[x cosafy+ —(x _t_ sin oty | cos ot
o 0

1
+ |:—x_ sinaty + — ()'c_ — E) cos oty + ﬁ} sin ot, (6.149)
o o oty
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and following further transformations we get

_ X . sin ety
X =X+ |x cosafy + — sinwty — xo
o

cos ot
oty

1 —cosaty

+ [—x_ sinaty + T cosaty + Xo ( )i| sinat. (6.150)
o

Aty

Let us now consider the case where oty — 0 and we assume the following
approximations:

. 1 —cosaty oty
sinaty ~ 0, cosaty ~ 1, —_— . (6.151)
[021)) 2

We will show how the last approximation of (6.151) is obtained. We have

(at0)® 1 (ato)’

cosaty = cos0 — (cos0) , = >

)

which substituted into the left-hand side of the third equation of (6.151) leads to the
result presented there.
Taking into account relation (6.151) in (6.150) we have

X~ 1
X =Xx04+ (x~ —Xxp)cosat + (x_ + ax20 0) sin ', (6.152)
o

and differentiating this equation we obtain

2xot,
X = —a(x —xo)sinat + ()'c_ + ¢ )250 0) cos af. (6.153)

If aty — 0, then from (6.152) we obtain

X = xo + (x~ = xo) cosaf + — sinar. (6.154)
(07

Let us now consider the case presented in Fig. 6.13b for initial conditions equal
to zero.
The equation of motion of the system has the form
¥ 4+ ox = qo. (6.155)

where ¢p = % The solution of (6.155) has the form

X = xo + Asinat + Bcosat, (6.156)



6.6 1DOF Systems with Loading 307
hence for x(0) = 0, x(0) = 0 we obtain

x(0) = B + xo =0,
%(0) = Aa = 0, (6.157)

and eventually we have
40
x = xo(l —cosat) = 07(1 —cosat). (6.158)

This result can be obtained immediately from (6.154) after substituting x~ =

X~ =0.
2q0 _ 2F
2

Moreover, for cosat, = —1 we have x = T == 2x0, which means that

the dynamic action of the force Fy causes a deflection that is two times greater.
Let us now turn to the solution of the case shown in Fig. 6.13c. For t > ¢, there
is no loading and the system oscillates according to the equation

x(t) = Cicosat + Cysinat. (6.159)

At the time instant 0 < ¢ < ¢, the system was loaded with force Fj of constant
magnitude (the case from Fig. 6.13b), and its vibrations were described by (6.158).
For the instant t = ¢, from (6.158) and (6.159) it follows that

x(t;) = xo(1 —cosaty) = Ccosaty + Cpsinaty, (6.160)
hence
X(t;) = xpasinaty = —Cha sinaty + Coro cos ety (6.161)

Let us multiply (6.160) by « sinaf; and (6.161) by cos a#; and then respectively
by —« cosaty and sin af;. Adding the obtained results by sides we obtain the values
of the desired constants

Cy = xp(cosaty — 1),
(6.162)
C, = Xxgsinat;.

Substituting these constants into (6.159) we obtain

x(t) = —xgcosat + xocosats cosat + xo sinatg sinat
= —Xxpcosat + xgcos(aty — at)

= Xxp [cos(aty; — at) — cosat]

ty —at t . ty —ot —at
= Xo (—ZSina‘ ar o sma ¢ ot) (6.163)

2 2
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because

a—i—ﬂsina—ﬂ

cosa —cos f = —2sin 5 5

Eventually relation (6.163) takes the form

.oaty . (aty — 2ot
x(t) = —2xp sin TS sin (ST)

t t
= 2Xx( sin s sina [t —= ). (6.164)
2 2

To recapitulate, for the time instant # < #; we have solution (6.160), and for
t > t; we have (6.164).
We introduce the following ratio into the calculations:

L_ b (6.165)
T 2" '
which taken into account in (6.164) yields
. t . 2t t
x(t) = 2xpsinm (%) sin 7 (T — %) . (6.166)
Let us note that
I3
sin 7 (—) =0, (6.167)
T
which means that x(¢) = 0 for n(’%) =nm,n=1,2,...,thatis, fort, = nT.

Now, let us estimate the value of x (¢) for t;, = T/2. From (6.166) we have

Lo (2t 1 t
x(t) = 2x sin E (7 — E) = —2XCoS 271’7, (6.168)

which means that in this case (for £, = T'/2) we have xp,y for 2.7tt% = 2mn, thatis,
fort, = Tn.

In general, the time response x(¢) depends on the duration of action of the force
Fj relative to a period of free vibrations of the system 7" = 27 /«, namely:

1. For t; > 0.5T the maximum displacement x,x(¢) appears during application of
the loading and is equal to 2xy.

2. For t; < 0.5T the maximum displacement appears after the force Fy ceases to
act and is always smaller than 2x.

3. For t; = T at the same time we have x(z;) = X(f;) = 0, which means that the
system does not move.
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Let us consider now a certain special case of the loading depicted in Fig. 6.13c,
that is, for #;, — 0. According to the calculation of Sect. 5.1, the impulse of a force
is described by (5.4), and if F = Fy = const acts during time interval (0, ), then
from (5.4) we obtain

J = Fot,. (6.169)

The impulse of a force in this case is equal to the area of a rectangle of height F
and base #;. Thus we can take various values of Fy and #; keeping the same value
of impulse J. A special case of the impulse of a force is an instantaneous impulse,
where we set J = const and the time of its duration #;, — 0, which results in
Fy — oc.

Using the notion of the impulse of a force, (6.164) can be written in the form

J sin % t
x(t) = ——2sina (z — ;) . (6.170)
mo St 2

and proceeding to the limit as z, — 0 we obtain

J
lim x(t) = — sinat. (6.171)
mo

ty—0

In the preceding calculations it is assumed that the instantaneous impulse acts
at the time instant 7, = 0, but if the impulse acts at an arbitrary instant #;, then
the motion of the considered one-degree-of-freedom system is described by the
following equation:

0 for t <t,,

x(t) = J (6.172)
— sina(t —t) for t > .
mo

Figure 6.14, in turn, shows a series of instantaneous impulses.
Because we are dealing with a linear system, for which the superposition
principle is applicable, the motion of the analyzed system is described by

N

x) =Y. % sina(r — 1,). (6.173)

n=0

The notion of an instantaneous impulse of a force makes it possible to explain
the physical meaning of the response of a one-degree-of-freedom system subjected
to an arbitrary driving force F(¢) and described by (6.102). Because we consider
the vibrations of the system without damping, substituting 7 = 0 into (6.102) yields

t

x(t) = i/F(ts)sina(t — t,)dt,. (6.174)
0
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F(t)

v

&

Fig. 6.14 A series of instantaneous impulses acting on a one-degree-of-freedom system

F{t)h

Y

Fig. 6.15 Time plot of an arbitrary force F(r)

Let an arbitrary force F(¢) have the form presented in Fig. 6.15, where an
elementary impulse dJ = F(t;)dt is shown.

If the system is acted upon only by an elementary impulse, then for initial
conditions equal to zero and ¢ > #,, according to (6.172), we have

F (1)
ma

dx(t) = ﬂ sina(t —ty) = sina(t — ty)dty. (6.175)
mo

An extension of the action of an elementary impulse to the interval 0 < #; < ¢
makes it possible to determine the total displacement x (¢) through the integration
of elementary displacements (6.175), which results in (6.174).

At the end of this section we will consider the case of excitation of the system
shown in Fig. 6.12 by a series of impulses of short duration J(¢) and repeating
periodically, which is depicted in Fig. 6.16.
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F(t)t

Fig. 6.16 Excitation of a one-degree-of freedom conservative system by a series of periodic
impulses of force

A general solution of the differential equation
¥4+ atx = q(t) (6.176)

during the action of only one impulse has the form
ts
X 1
x(t) = xgcosat + 0 sinot + — / F(t;) sina(t — t5)dts, (6.177)
o mo
0

which is valid for ¢ > ¢,.
The instantaneous impulse of a force preserves the value of the integral, that is,
t.\'
lim | F(t)dt = J = const. (6.178)
ty—0
0
In order to preserve the constant value of J and for z;, — 0 the force F(t*) — oo,
where t = t* denotes the time instant when the instantaneous impulse is applied.

This phenomenon can be described using the Dirac delta function §(z;) by the
equation

F(ty) = J8(t,). (6.179)

Substituting relations (6.179) into (6.177) we get

ts
¢ J
x(t) = xgcosat + o sinat + — / 8(ts) sina(t — t)dts. (6.180)
o mo
0



312 6 Vibrations of Mechanical Systems

Fig. 6.17 A unit step 1(t) r's
function sign (t)

1

For linear systems the superposition principle applies, and thus the response of
the analyzed system to the sum of excitations by distinct forces is equal to the sum
of system responses to each of those excitations. Thus, the problem boils down to
the determination of the system response to an arbitrary excitation F(¢), provided
that we know the so-called time functions g(¢) corresponding to a transfer function
G (s) in the domain of complex variable s, which can be represented by the equation

t t

x(t) = /g(t —17)F(r)dt = /g(t)F(t —1)dr. (6.181)

0 0

Calculation of the preceding integral is substantially simplified for the case
F(¢t) = 6(t) by virtue of certain properties of the function §(¢), which will be
briefly described below [10].

The unit step function is described by the equation

1) = %(1 + sgn(?)), (6.182)

where
1 for ¢t >0,

sgn(t) =40 for =0, (6.183)
-1 for <0,

and the function (6.183) is presented in Fig. 6.17.
If we introduce a parameter ¢, then we can describe a family of functions

1 1
1(a, 1) = 3 + = arctan of, (6.184)

where
lim 1(a,t) = 1(). (6.185)
o—>00
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Fig. 6.18 Areas bounded by S(at) 4
curves 8(«;, t) for different
i =1,2,3

al

O

Qs

Let us introduce the following function with parameter

S, ) — i) _ 1 1

dr 714 a2? (6.186)

Let us note that the area bounded by the curve §(«, ¢) does not depend on the
parameter « since

/ 8(c.1)dr = [L(er. 1), = % [% + 5] —1, (6.187)

which is also illustrated in Fig. 6.18.
For @y > o, > o3 a maximum of the function §(«, t) moves upward along the
vertical axis. An impulse function §(¢) is defined as

8(1) = lim 8(c.1). (6.188)

The impulse function is equal to zero for ¢ # 0 and its value for z = 0 is equal to
infinity, and the area bounded by this function is equal to 1 ( ffzo 8(t —)dr = 1).
According to (6.186) we have

§(t) = %’). (6.189)

Below we present two important properties of the Dirac delta function 5(t):

1. The following equation holds true:
x()6(t — 1) = x(v)é(t — 1), (6.190)

since the function §(¢ — 7) is different from zero only for t = 7.
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2. The following equation holds true:

o

/ x()5(t — v)dt = x(7). (6.191)

—00

Exploiting property 1 we obtain

/ x(1)o(t —t)dt = / x(1)8(t — 1)
= x(1) / 8(t — t)dt = x(7). (6.192)

Infinite limits of integration in (6.191) can be replaced with finite limits, but in
such a way that the argument of the function § should be equal to zero within these
limits, that is,

00 T+e
/ x(1)o(t —t)dt = / x(2)8(t — v)dt = x(7). (6.193)

If we now set F(t) = 4(¢) in (6.181), then taking into account property 2 we
have

t t

x(t) = /g(l —1)é(r)dr = /g(t)S(t —1)dt = g(1), (6.194)

0 0

and in control theory the function g(¢) is traditionally called an impulse response of
a system. Using property (6.177), (6.194) takes the form

X J
x(t) = xpcosat + 2 sinar + —— sinat, (6.195)
o ma

where we further assume xp = x(0) = 0, Xo = X(0) = 0 to simplify the
calculations.
The motion of a particle of mass m is described by the equation

J J
x(t) = —sinat, x(t) = —cosut. (6.196)
mo m
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For the assumed initial conditions x(0) = x(0) = 0 from (6.196) it follows that
they satisfy the following initial conditions: x(0) = 0, x(0) = J/m. This leads to
the important conclusion that the action of an instantaneous impulse J is equivalent
to subjecting an autonomous system to a kinematic excitation x(0) = J/m while
retaining x(0) = 0.

A motion of mass m described by the initial conditions x(0) = 0, x(0) = J/m
has the form

()

v J
x(t) = x(0) cosat + i) sino¢t = — sinot. (6.197)
o mo

Let us now return to the solution of our problem of excitation of the mass by
a series of impulses presented in Fig. 6.16, where this time we will exploit the
superposition principle.

The solution in the time interval 7 < ¢t < 2T has the form

J
x(t) = — [sinat + sina(t — T)], (6.198)
mo
and in the time interval 27 < t < 3T the form
J . . .
x(t) = — [sinat + sina(t —T) + sina(t —27)], (6.199)
ma

and, finally, in the time interval Ty < ¢t < Ty 4 it takes the form

J
x(t) =—[sinat +sina(t — T) + sina(t —27) + ---
mao
J N
cetsina(t —nT)] = —— Y sina(t —nT). (6.200)
mo 0

If we consider the one-degree-of-freedom mechanical system shown in Fig. 6.2,
that is, with viscous damping of the coefficient c, then, depending on the relation
between ¢ and its critical value ¢, the impulse response of the system has the
following form:

1. For ¢ < ¢t

0 for t <O,

g(r) = 1
—ze_’” sin (v a? — hzt) for t>0;

m~o? —h

(6.201)
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2. Forc > cg:

0 for ¢t <0,

g(r) = 1
e sinh (v h? — oczt) for t>0;

ma/h? —o?
3. Forc¢ = cg:

0 for ¢t <O,

s =411
—e My for ¢>0.
m

The example of vibrations of the previously mentioned non-autonomous 0s-
cillator with harmonic excitation described by (6.35) together with (6.102) make
it possible to explain the physical consequences of introducing the driving force
Fycoswt.

Let the driving force be introduced in the following way:

0 for ¢t <O,
F(t) = (6.202)
Fycoswt for ¢t >0.

Apart from the components of the solution discussed previously, that is, the one
associated with excitation by the initial conditions x(0) = x¢ and x(0) = X, and
the one associated with the action of the driving force at the time # > 0 described
by (6.56), a component describing the contribution from vibrations caused by a
sudden application of the force F cos w? at the time instant = 0 appears.

This component also describes the free vibrations of the system, which are,
however, completely independent of the initial conditions.

Both components describe the so-called transient process and for t — oo and
when the damping /2 # 0 is present they decay.

The solution of (6.35), which is the sum of the general solution of a homogeneous
equation without a driving force and two particular solutions with a driving force at
the time instant 1 = 0 in the form Fj and for > 0 in the form F, cos wt, reads

t
X h
x(t)y=e [xo cosAt + w sin)kt:| + %/e_h(’_’) cos wt sin A(¢ — 7)dr,

0
(6.203)
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and following integration we have

Xo + h
x(t) =eM |:x0 Cos At + Yo+ o sin /\ti|
—ht .
+ ¢ 4 (COS,B COS AL + w sin/lt)
V(@2 —0?)? + 4h2w? A
q
cos(wt — ), (6.204)

V(0?2 — 02)? + 4h2w?

where the angle § is described by (6.58) and (6.59).

If we consider a transient state (i.e., we are interested in the initial process of
vibrations), then all three terms of solution (6.204) should be taken into account.
However, if we are interested in a steady state of vibrations, that is, when the
contribution from free vibrations is removed by viscous damping, then the first two
terms can be dropped to leave only the third term of solution (6.204), which was
analyzed earlier in detail in Sect. 6.4.

In the end, it is worth noting that the steady state of vibrations with no damping
(¢ = 0) can be periodic or quasiperiodic because it depends on the ratio of
frequencies w/a. If w/a = k/I, where k and [/ are commensurable natural
numbers, then the response is periodic. However, if the ratio o/« is an irrational
number, for example, +/2, then the so-called quasiperiodic solution appears, where
two incommensurable frequencies w and o« appear. In a linear system with one or
many degrees of freedom, chaotic vibrations cannot appear.

Example 6.3. Determine the equation of motion of a one-degree-of-freedom linear
oscillator with viscous damping and a piecewise linear excitation of the form

t
Fit)y=F (1—Z—) for t <t

s

and

Fi)=0 for >t

for initial conditions equal to zero.

The equation of motion of the oscillator has the form

t
Fy (1 — —) for t <ty,
mx +cx + kx = s

0 for t >,

where x(0) = 0, x(0) = 0.
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According to (6.181) we have

1

x(t) = / F(t)g(t — 1)dr,

0

where: g(t) = ﬁe_h’f sinAt, A = Va2 —h%,2hm =c,a? = \/g

The desired solution is determined by the following equations:

1. Inthe case t < t,:

x(t) = —i/( ) “he=0 Gin A(t — 7)dt
0

2. In the case t > ¢;:
F t
x(t) = —2 (1 — 3) e "= sin A(r — 7)dx.
mA ts
0

Let us consider case 1, in which the problem boils down to the calculation of the
following integral:

0B +1).

t
Il(i) = /e_h(’_’) sinA(t — 7)dt
0

t t

=e M sin)\t/e’” coskrdr—cosx\t/eht sinAzdr |,
0

and

t

i 1
12(1) = / e "D sin A(r — 7)dr
N
0

t

t
sin At / e cos Atdt — cos At / e sin A rdt
0 0

e—hr

Ls
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First, let us calculate the terms of the integral / l(i), where during the calculations
we will make use of the method of integration by parts based on the formula

/ F(0g' (dx = F(D)g() — / £1(0g(0dx. *

on the assumption that the derivatives of functions f and g are continuous.
Using the preceding equation we obtain

t

1 Lo
A= /ehr cosAtdr = |:—e}” coskti| + — B,
h o h

\ 1 )
B = /e’” sinArdr = [—eht sinkti| — —A.
h o h
0
Solving the preceding system of equations with respect to unknowns A and B
we obtain

el h

A = m (l’l COSAZ‘ + Asmlt) — m,
ht

B=——
h* + A2

(hsinAt — AcosAt) + el

Taking into account the preceding calculations we obtain

1) = e [Asin At — B cos Af]
3 he—ht

= m (1 —e_ht COSAI) — msinkt.

Let us now consider the case Iz(i), in which the problem boils down to the
calculation of two integrals

t t

/reht cosAtdt and /te’” sin Atdr.
0 0

Also in this case we apply the method of integration by parts. Let us set f = 7
and g’ = e" cos At, and from formula (*) we obtain
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t

\ ht I
te" t
/re’” cosAtdt = A — / Adr = ﬁ (hcosAt + AsinAt) — e
0 0
t
et . ht
—/ e (hcosAt + AsinAr)dr + JEH
0
tel h |
= 13 (heosde + Asindi) — m/ehrcos“dt
0
A ; ht
t
— /ehf sin Ardt = ﬁ (hcosAt + AsinAt)

0

— h e (hcosAt + AsinAt) — h
W24 02 | h2 + A2 ' W2+ A2

A
h? + A2
ht

eht ) A
[hz e (hsinAt — A cosAt) + m]

t
= ﬁ (hcosAt + AsinAt)
eht 5 5 ) h2 _ /\2
+m [(A — h”)cos At —2hA sm)\t] + m
Similarly we calculate
p ht
ht _: _ te : _
/re sinArdr = e (hsinAt — A cos At)
0
el ) . 2h)
+ m [(A — I’Z )smkt — ZI’ZACOSAZ‘] — m

Substituting the results obtained earlier, for case 1 we obtain

) ht
11(’) =e_h’{ sin At [e— (hcosAt + AsinAt) —

h? + A2 h“ﬁﬂ}

eht ) A
— Ccos At [m (hsinAt + AcosAt) + m] } ,
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i e—ht teht
12’) =— sin M{ e (hcos At + Asin Af)
eht ) ) ) hz _Az
+ m [(A — h*)cos At —2hA smlt] + m}
teht
— coskt{ JERy (hsinAt — A cosAt)

eht ) ” . 2hA
+m[(k —h)SlnAl—ZhACOSAt]—(l/lz—i_—Az)z .

In a similar way we carry out the calculations for case 2, that is, for # > ;. In

this case following the transformations we eventually obtain

X

R

—

11.
12.

13

(1) =% me—hﬁ—w (h* — A?)sin A(t —t;) + 2hA cos A(t — t;) }
- W iAZ)Ze_ht (1 " ﬁhkz) cost
+ % (h + (h};z—i—_—/\)f)ts) sinkt:|§ .
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Chapter 7
Elements of Dynamics of Planets

7.1 Introduction

For a long time the structure of the universe has aroused admiration and dread, and
for a long time people have tried to explain the phenomena of the cosmos. However,
not much has changed for hundreds of years in this field of human activity.

If a body moves in space as a real element of the Universe (a planet) or an object
artificially introduced into space by humans (e.g., an artificial satellite, spacecraft),
then it is subjected to, for example, gravitational interactions with other bodies
(planets), forces of resistance associated with atmospheres surrounding the planets
(bodies) that can be non-homogeneous, and forces caused by the pressure of the
solar wind.

A simple problem of planetary dynamics is the so-called two-body problem,
which boils down to the analysis of the dynamics of two particles. Despite the
simplicity of the statement, this problem is capable of modeling the motion of
planets of the Solar System or artificial satellites because the forces of resistance
mentioned earlier are small compared to the forces of gravitational interaction of a
planet and the Sun, or an artificial satellite and the Earth.

From such a point of view a “particle” is a certain “asymptotic” approximation
of the object whose dimensions are negligibly small compared to its distances from
other “particles” of the considered system. Let us note that, apart from the mass,
such a particle can have an electric charge, be situated in a gravitational force field,
etc. In a Newtonian description of motion of planets, the notion of free motion means
that an arbitrary particle in the R® space is acted upon by each of the remaining
particles. The movements of these particles are the results of the particles’ mutual
interactions, for instance, in the form of gravitational forces.

In order to observe the motion of particles in such a physical space, we have to
introduce certain reference systems. These are real or virtual physical objects that
either move or are stationary and from where a subject makes observations or carries
out measurements of motion.

J. Awrejcewicz, Classical Mechanics: Dynamics, Advances in Mechanics 323
and Mathematics 29, DOI 10.1007/978-1-4614-3740-6_7,
© Springer Science+Business Media New York 2012
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Much like during the analysis of DMSs, also here it is convenient to introduce
a certain right-handed Cartesian coordinate system and determine the positions

of particles by their position vectors r,, n = 1,..., N. These vectors are time
dependent r, = r,(¢), which follows from the force interactions affecting those
particles.

There might be infinitely many reference systems, but they are related by certain
relationships described by Galileo’s principle of relativity, which includes the
following elements.

1. All mechanical phenomena take place in R* space, which is common (the same)
for all objects (bodies) moving in this space.

2. The phenomena taking place in this space are ordered in time, and this order is
independent of the motion of bodies.

3. Descriptions of the phenomena (or the motion of bodies) are identical in each of
the adopted coordinate systems, on the condition that they remain at rest or move
in uniform (rectilinear) motion.

If we take two Cartesian coordinate systems OX, X, X, and OX| XX}, then the
relationships between the position vectors of a particle and time in both systems
read

r/

t =1, (7.1)

r—vt,

where v = const is the velocity of the system OX|X} X} with respect to OX, X, X;.
Both systems OX,X,X, and OX|X}X} are inertial (their axes are constantly
mutually parallel and move relative to each other in uniform rectilinear motion with
velocity v). At the initial time instant ¢’ = ¢t = 0 we have O’ = O.

Differentiating (7.1) we obtain

r=r—v,

¥ = . (7.2)

In other words, the laws of dynamics should be according to Galileo’s principle
of relativity invariant under transformations (7.1) and (7.2). Let us note that the
notion introduced by Newton of force being a vector does not represent certain
attributes of particles, such as gravitational mass or electric charge.

On an arbitrary particle 4, of a material system, in general, acts a force that is
dependent on all the remaining particles at instant ¢ of the form F,(ry,..., ry,
ri,..., Iy, t), which means that it also depends on the position and velocity
of the analyzed particle 4,. According to Newton’s second law, the motion of
every particle in the space R? is described by a system of N second-order vector
differential equations of the form

Mabn(t) = Fp(re, ... . tn.F1,. . FN.2), n=1,...,N. (7.3)
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Systems whose motion is described by (7.3) are called inertial systems. An
arbitrary method leading to the determination of the relations r,(¢) is called the
integration of equations of motion (7.3).

In the general case the obtained system of non-linear differential equations (7.3)
is not integrable. If exclusively by means of analytical operations (i.e., not using
numerical procedures) we are able to determine the solution of system (7.3), then
we say that system (7.3) is integrable by quadratures.

It turns out that systems like (7.3) written in an arbitrary way, in general, do
not model the motion of a given mechanical systems. That is because they have
to satisfy Galileo’s principle of relativity as well as certain properties of time and
space. Taking into account relations (7.2), the invariance of (7.3) under a Galilean
transformation (7.1) leads to the determination of the same magnitudes of forces in
the form

1 ) 1 .
WF;(r’l, coLEy) = WF;(rl —Vi,... . fy —V,1)
n n

1
= —Fn(l'l,...,l"N,t). (7.4)

n

If in the considered space we are faced with small speeds compared to the speed

of light, then masses of bodies do not change, and the forces F, (ry,..., r,,...,
ry, ry,..., Iy,..., Iy, t) depend on the radius vector r, of particle A,, and the
velocity of this vector I, through the difference r, — r;, where j = 1,..., N,

J # n, because |r, — r;| denotes the distance between particle n and each of the
remaining particles j.

The considered R? space should be physically isotropic. In other words, motion
along a straight line of a body subjected to a certain resultant force is the same
regardless of the direction in which the force acts. Homogeneity of R® space means
that phenomena proceed identically in different locations in space at the same
time instant. Homogeneity of time means that the phenomena proceed identically
regardless of the time instant at which they occur. Homogeneity and isotropy imply
an invariance of (7.3) under arbitrary translations and rotations of the coordinate
system. The homogeneity of time implies an invariance of (7.3) under arbitrary
translations of a particle along the time axis.

Space isotropy means that the field of forces F,(ry, ..., Iy, t) is a vector field,
that is, the positions of particle A, and the forces acting on it in the coordinate
systems OX, X, X, and OX{ X)X} are given by the following formulas:

!
r, = Ar,,

F (), ... F.t") = AF,(r1. ... Fy. 1), (1.5)

where, as was shown earlier, A is the constant rotation matrix. Relations (7.5)
indicate that the quantities occurring there are vectors.
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Fig. 7.1 A schematic of Az. r-r, m
relation (7.8) with vectors ry, XA A
r;, ry not drawn for clarity 3 n
A<, rr,
T,
n AN
0] X,

%

The homogeneity of space implies that the following relation is satisfied:

Fn(rl+c7"'7rN+c51..17"'7l‘.N7t):Fn(rl7"'7rNﬂl..lﬂ"'51‘.N7t)7

¢c, n,j=1,...,N. (7.6)

r, —r;
Likewise, the homogeneity of time implies that the following relation is satisfied:
Fn(rl,...,l"N,l-l-l‘())=Fn(l'1,...,l"1v,l). (7.7)

Because the forces acting on particles are generated by these particles, they
should be dependent on the relative positions and velocities of those particles, that s,

Fn:F,,(I‘n—rl,...,l‘n—l'j,...,l",,—l"z,...,l",,—I"N), I’lzl,...,N, (78)

which is presented in Fig. 7.1.

From relations (7.8) it follows that the force acting on a particle of mass m,
depends on the interactions with each of the remaining particles of the system
through vectors 4, A}, A, As, ..., but it does not depend on the mutual interactions

of other particles, that is, neither on vectors A,A4;,n,j = 1,...,N,andn # j,
nor on their time derivatives. As a result we obtain

Fo(.ot—rj.)= Y Fy(r,—r; b —1)). (7.9)
n,j=1..N
(n#))
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If in (7.9) we subsequently introduce the symmetry principle, thatis, F,,; = F;,,
which means that

Fyj(ty =1y — ) = —Fju(r; =10 — ), (7.10)

then we obtain Newton’s third law.

From (7.10) it follows that F,,; + F;, = 0, that is, the forces act along the
same direction, which, however, is generally different from the direction of r, —r;.
The forces will act along a straight line connecting particles 4, and A; if they are
independent of the velocity r, —F;.

7.2 Potential Force Fields

The previously mentioned gravitational or electrostatic forces are generated by
so-called potential force fields. Those forces do not depend on the velocities of
particles, and the work done by them on a closed path vanishes (i.e., there is
no dissipation or delivery of energy to the system). Such forces have certain
corresponding functions called potentials of forces. For example, the potential (the
potential energy) is the energy corresponding to compression or elongation of a
spring.

Let the force from an arbitrary point of the R? space, whose position is described
by the radius vector r (Fig. 7.1), act on particle A,, which is determined by vector r,,:

F,(r—r,) = =V, V,(Ir — r,|), (7.1D)

where V,(Jr — r,|) is the potential of a force field and differentiation is carried out
with respect to vector r.

Let us now consider any two points  and j of the field. According to Newton’s
third law we have

Vrj Vn(lrj —1u]) + Vi Vj(|rn —r; [) =0. (7.12)

Because |[r; —1,| = |r, —1j], 50 V, = V; = V,;(Ir]) = V;u(|r|), where r
describes the position of an arbitrary point of the potential force field.

Because every particlen = 1,..., N of a force field moves with the velocity 1,
so the kinetic energy of the system of particles

N
1 .
T =33 mi, (7.13)
n=1
and the potential energy
X
V=2 22 Vit —xj). (7.14)
n,j=1

n#
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The total energy of the system remains unchanged during its motion, that is, the
integral of motion of the system has the form

E =T+ V = const. (7.15)

7.3 Dynamics of Two Particles

This chapter was written on the basis of [1-5] and the author’s own studies. Let us
limit ourselves in our calculations in physical space to N = 2. The problem boils
down to the following. Knowing the positions and velocities of particles of masses
my, (n = 1, 2) in the adopted coordinate system, determine the motion of these
particles on the assumption that between them there exist gravitational forces that
are consistent with Newton’s law of gravitation (see Markeev [1]).

Let us introduce an absolute Cartesian coordinate system whose origin O lies
at the mass center of the Solar System and whose axes are directed toward certain
fixed stars. The introduction of such a coordinate system requires some commentary.
Galileo’s principle of relativity (the homogeneity of time, space, and the R* space
isotropy) reduced our calculations to the internal interactions of the particles. In the
Solar System fo:l m, ~ 1073 Ms, where Mg is the mass of the Sun.

The action of all the planets of the Solar System on the Sun is negligibly small
because of the Sun’s large mass, and we can assume that the Sun remains at rest and
take as its mass center the origin of the absolute coordinate system OX, X, X;. With
point A} = O’ we associate the coordinate system O’X{X] X} of axes parallel to
the absolute system OX,X,X; (Fig. 7.2) because the dimensions of the body tend
to zero. Another point A, is described in the absolute coordinate system by radius
vector r.

Q‘ X
X, 4 m 4
e r12 !
O=A
r, r mo X
X,
© X,

Fig. 7.2 Motion of two X
particles in R?® space 1
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The force acting on mass m, from the side of mass m has the following form
[see (7.11)]:
miynms

Fo(r—r) =F;, =-V, h(r—n|) =-G 5T,
i2

and the force acting on mass m; from the side of mass m, has the form

mymy mymy
For =-G——11 =G—F—rn,
31 "2

where G is the universal gravitational constant.
Particles m; and m, remain in equilibrium under the action of the following
forces:

that is,
momip Iz
2 9
ST ri2]

mimy Iz

mli‘l =G

"122 r12] ‘
Then, from Fig. 7.2 it follows that
r| + I = Iy, (7.17)

that is, differentiating and taking into account relation (7.16) we have

Fio = Fp — ) = —k 2, (7.18)

"z
where k = G(m; + m,).

The preceding equation describes the motion of a system of one degree of
freedom, that is, the motion of a body of mass m, with respect to point O of
mass m. Integrating (7.18) we determine ri,(¢), and consequently we determine
r;(¢) and ry(¢) after integrating the now linear (7.16) whose right-hand sides are
known.

It is also possible to determine the motion of the mass center of particles A; and
A,. Let point C be the mass center of the moving particles A; and A,, and let its
position be described by radius vector rc. By definition we have

miry + morp
rc=————
mp +mo
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and solving a system consisting of the preceding equation and (7.17) we obtain

mj
I, =rc+ ——rq2,
my + my
ny
r=rc— —TI2. (719)
my + mp

The mass center C moves in uniform rectilinear motion. Knowing vectors ry,(?),
ri(¢), and rp(¢) we can determine rc(¢). The obtained differential (7.18) can be
interpreted as the motion of a reduced mass with respect to a fixed attracting
center O’.

Subtracting (7.16) by sides we have

miny Iri2

r122 T2 7

mzfz — ml'fl =-2G

and from (7.18) we obtain

.. mp +my rp
h—tf=-G—F——.
T |ri2]

Dividing the two preceding equations by sides we have

maIy —miry -9 mymy

. .o 9
I, — I my + my
that is,
mumy .. . mimyz riz
2— (i, — ¥)) = -2G T -
my + my 5T T2

Eventually, the equation of vibrations of such a system with one degree of
freedom has the form
mymy ., mymy I

—I'n = _G—Z_ = =V, (r). (7.20)
mp +mj ' |I‘12|

In the considered system we are dealing with the following three integrals of
motion:
1. Total energy:
1

. L,
E = Emlrf + §m2r§ +V (r—12)): (7.21)

2. Total system momentum:

P = m ¥ + moris; (7.22)
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3. Total system angular momentum:

K =r; xmr| + ry X msr;. (7.23)

Equation (7.22) proves the linear dependence of vectors r; and r,, which was
used during the derivation of (7.18). Integrating (7.18) we obtain

r
Fp=I —I = —k/ﬁdl
T2
and multiplying (cross product) by rj, we have
Iy X o = —krpp X —dt = b(?).
iy
Differentiation with respect to time the right-hand side of the last equation yields
db
e
Thus we have demonstrated the validity of the following relation:

r x v=Db = const, (7.24)

which is also called a surface integral (setting rj = r, ¥jp = v). This name is
justified by the following physical interpretation. According to (7.24) we have

E| E, E;
b =biE| + bE, +bsE; = | r{ 1} 1]
Viovy v

= E|(r)vy — rivh) + ES(rv) — ) + B (rvy — rov)). (7.25)

Because b = const, the magnitude of b can be calculated for an arbitrary time
instant, for example, t = fy. If b = 0, from (7.25) we obtain

/A /A /S A B
TaVy = T3V, T3V] =T V3, vy = K. (7.26)

Recall that an analogous problem was already considered earlier (Chap. 5). In a
similar way one can show that

/ /
1-2_3_4, (7.27)

Equation (7.27) describes a straight line in the coordinate system O’X{X}X},
where ', = x’;, — x,07, n = 1, 2, 3. In this case during the motion of two particles
A and A, the tip of vector r moves along a straight line.
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Fig. 7.3 Geometric "

interpretation of the surface X2
integral / t+At
A

In the general case, the motion of particles takes place on a plane determined by
vectors r and v. According to (7.24), the plane is perpendicular to vector b. In other
words, vector b is normal to the aforementioned plane. An equation of the plane has
the form

bor=0 (7.28)

or, in expanded form,

blxi + bzxé + b3x§ =0, (7.29)

where A, = A (x, x5, x}) (Fig. 7.2).

A hodograph of vector r (of particle A,) is a curve lying on the plane given by
(7.29). Because we know that the path of particle A4, is a plane curve, let us take a
new coordinate system O” X' X} X} such that the path of motion of a particle lies,
for instance, on the plane O’ X{' X} . Vector b, as a vector normal to the plane, has
the form b = [0, 0, bg’ ]T. On the other hand, vector b can be expressed in terms of
the coordinates of r and r, and according to formula (7.25) we have

"no_ o nen "en
by = x{x) — xjx{. (7.30)

Let us now introduce polar coordinates (r, ¢) on the plane O’ X' X} (Fig. 7.3).
According to Fig. 7.3 we have

x| =rcosep, X! =rFcosg —rgsing,
Xy = rsing, Xy = Fsing — rgcosg. (7.31)

A surface integral, described by (7.24), in this case reduces to the equation

rcos (i sing + r¢ cosg) —rsing(r cosg — r¢ sing) = by,
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or, following transformation, to
r’g = bj. (7.32)

If the particle moves from point A4, at time instant ¢ to point A at time instant
t + At, then the position vector of the particle sweeps the area of a curvilinear
triangle O’ A, A),. The area of this triangle is approximately equal to

AS = ! ZA
_Er ('07

and dividing by A¢ and proceeding to the limit as Ar — 0 we obtain

QZEZ%:lb”

. 7.33

a2 A28 (739
The quantity % is called a sector velocity, and, as was shown, it is constant. The

obtained equation justifies Kepler’s second law, discussed in Chap. 1 of [3].
Premultiplying (7.18) by vector b and using relation (7.24) we obtain

k
bxr= ——3(r XT) XT. (7.34)
r
Because
(rxr)xr=r(ror)—r(ror)
. _ . d
=1"r2—rr;"=r3—ror ror=r3_(£)
r2 dr \r
and

d
bxit=—(b ,
x T dt( X V)

so substituting the preceding relations into (7.34) we obtain

d d /r
— (b =—k—(-), 7.35
a PV =k (r) (7.35)
hence, integrating we get
r
bxv+k—=—bg, (7.36)
r
where by, = const is called the Laplace vector, and relation (7.36) is called a

Laplace integral (the minus sign is formally introduced as required by further
transformations).
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K,

A
A J

pole axis

A\

r
Y

Fig. 7.4 Properties of the path of point A, and the geometric interpretation of vectors r and by,

It turns out that the Laplace vector lies in the plane of the orbit. Multiplying
(7.36) through by b we have

k
bo(bxv)+ —(bor)=bob. (7.37)
r
Taking into account (7.28) from relation (7.37) we obtain

bob = 0. (7.38)

This means that the Laplace vector and the vector normal to the surface sector are
perpendicular to each other. Following scalar multiplication of (7.36) by v we have

k
ro(bxv)+ —(ror) =-roby. (7.39)
r

Using the rule of cyclic permutation of factors
ro(bxv)=bovxr=—-borxv=—-bob=—-b% (7.40)
from relation (7.39) we obtain
—b%+kr = —byr cosé. (7.41)
The right-hand side follows from the fact that vectors by, and r lie in one plane
(Fig. 7.4). The angle 6 is called an angle of true anomaly.

Because the Laplace vector by = const, the position of particle A, is described
by the polar coordinates (r, 6).
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From relation (7.41) we get

b? (b*/k) 14
r= = = : (7.42)
k 4+ bLcos@  (k+bLcosO)/k 14 ecosf
where
p=>b*%"", e=bik" (7.43)

Recall that p is called a semilatus rectum (it is a positive value of an ordinate
corresponding to the focus of the ellipse), and the quantity e an eccentricity of an
ellipse.

The polar equation of an ellipse (7.42) is obtained on the assumption that
point Ay = O’ is located at the center of an ellipse, and a polar axis lies on a
major axis and is directed toward the nearest vertex of the ellipse.

Let us recall some properties of an ellipse (Fig. 7.4).

The path (an orbit) of point A, with respect to point O’ is an ellipse.

The position vectors of an ellipse are equal to r; = k + ex’ and r, = k — ex/,
where x’ is an abscissa of an arbitrary point A, and hence we get ry + r, = 2k.

The directrices of an ellipse k1 » = 4k?/by. An ellipse is a locus of all points for
which the ratio of their distances from a focus to a directrix is constant and equal to
eccentricity of an ellipse e < 1. If e = 1, then the path of point A, is a parabola. If
e > 1, then the path of point A, is a hyperbola, and for e = 0 the orbit is a circle.

7.4 Kepler’s First Law

Planets move along ellipses with the Sun at one focus.

In this case, referring back to our previous calculations, a body of mass m1>>m»,
and let the Sun, that is, the body of mass m, be situated at point O’.
From (7.19) we approximately get

) =rc+rp, r;=rg,

and hence it follows that the mass center of the system of these two bodies is located
at the center of the Sun.
As in the case of the pendulum, the orbit of point A, depends on the initial
velocity, which will be shown below.
The kinetic and potential energy of a particle with respect to O’ are expressed by
the formulas
1, mk

T=-mv, V=——of
2 r

where we assumed m = m and r = ry.
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Because in a potential force field there is no energy dissipation, the total energy
is conserved. On this basis, we obtain an integral of motion, which is equal to

2k
C=vi- = const, (7.44)

where vy and r( are the magnitudes respectively of the velocity and position vector
at the initial time instant.
From the formula

2k
vV —-==C (7.45)
r

it follows that if the distance between points O’ and A, decreases, then the speed
v of point A, decreases accordingly, and vice versa. In other words, for C > 0
particle A, can move an arbitrary distance away from point O’.

According to (7.36) we have

r\2 5
(bxv+k;) = b,
that is,
2k
b2v2+—(bxv)or+k2:bf,
r

because vector b is perpendicular to v.
Taking into account relation (7.40) we obtain

b? (vz— %) + k2 =D,

’
and taking into account (7.44) we eventually arrive at
b>C +k* =by. (7.46)

From (7.43) and (7.46) we have

N AN P 7.47
A e

From the preceding relationship it follows that an elliptical orbit (e < 1) appears

in the case where vy < ,/ % Such allowable initial velocities are called elliptic
velocities and are denoted by the symbol v;.
2%

In the case vo = vy; = /7 we are dealing with a parabolic orbit (e =1).

Finally, for the velocity vy > % particle A, moves along a hyperbola, and such
velocities are called hyperbolic velocities (viy;).
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The first cosmic velocity is associated with the motion of a satellite near the
surface of Earth. It can be determined from the equation

v% mM
m— =mg = G—z,
ro I‘O

(7.48)

where m is the mass of the satellite and M denotes the mass of Earth.
From the preceding equation we obtain

|GM [ k
Vi = /80 = [ — = 4/ — (7.49)
ro ro

because form < M wehavek = G(m + M) ~ GM.
The second cosmic velocity vy (a parabolic velocity) is equal to

|2k
=, = V2v; = 11.2km/s, (7.50)
0

because for the radius of Earth rp = 6371km and g = 9.81 m/s*> we have vy =
7.91 km/s.

It is known from analytical geometry that for an ellipse of axes a, b (a > b) and
the focus ¢ the following relations hold true:

b? c
p=—, c=+~a?2-bh? e=
a

6_1.
From these relations one may easily obtain
a>=b>+c* =c* +ap = e*a* + pa,

hence
p
= —. 7.51
a=1_= (7.51)

In turn, we have

p
b= /pa = —2 . 7.52
‘ V1—e? 752

Formulas (7.51) and (7.52) describe semiaxes of an ellipse in terms of its
semilatus rectum p and eccentricity e.

One may also introduce the notion of an apocenter (or apoapsis) («), that is,
the point on an ellipse that is the most distant from its focus, and a pericenter (or
periapsis) (1), that is, the point on an ellipse that is the closest to the focus (Fig. 7.5).
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Fig. 7.5 Basic parameters
of an ellipse

According to (7.33) the area of an ellipse S is equal to

T
/b”dt = mab,
0

where T is a period of revolution of particle A, on the ellipse.
According to relation (7.43) we have that b;’ = |/ pk, that is,

NI'—‘

T — 2_7r ZJTab 2mwab _ Zna%. (7.53)

@ v K2 vk

The obtained quantity,
Vk

a

0=, (7.54)

(ST

is called an average angular velocity (frequency) of motion of particle A, on the
ellipse.

Let us now consider two particles A; and A, respectively of masses m; and m,
that move on elliptical orbits.

If a gravitational interaction between particles A; and A, is neglected, then
periods of their motion along elliptical orbits are equal to

3 3
2mal 2mal
T, = L T, = L (7.55)

JGm + M) S+ M)

where M is the mass of the Sun.
Dividing (7.55) by sides we get

T1\? M 3
Ny _m+M(fa ’ (7.56)
T m;+ M \a;
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and assuming m; + M ~ M ,m, + M ~ M we obtain Kepler’s third law:

Ty _ (ar)’ (1.57)
T2 n an ’ '
According to this law the ratio of squares of a planets periods of revolution

around the Sun is equal to the ratio of cubes of the semimajor axes of their elliptical
paths.
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Chapter 8
Dynamics of Systems of Variable Mass

8.1 Introduction

So far we have considered DMSs and CMSs in which masses of particles m,, and
their number have not changed. In nature and technology, however, phenomena are
commonly known where the number of particles of a system or their mass change
over time.

If floating icebergs are heated by the Sun’s rays, then the ice melts and their
mass decreases. If the falling snow becomes frozen to the floating icebergs, then
their mass increases. Earth’s mass increases when meteorites fall on its surface. In
turn, the mass of the meteorites before they reach Earth’s surface decreases as a
result of burning in Earth’s atmosphere. The mass of rockets decreases as the fuel
they contain burns. The mass of elements transported on a conveyor belt changes as
aresult of their loading and unloading.

8.2 Change in Quantity of Motion and Angular Momentum

Let the mass of a mechanical system m(¢) be changing in time according to the
equation
m(t) = mo—my (1) +my(t), (8.1

where m(t) = m(ty), m(t) > 0, (m,(¢) > 0) denotes the mass of particles leaving
(entering) the system (Fig. 8.1).

Let us choose a time instant ¢ during motion of the system, and let for this instant
the momentum p of the considered system of particles increase by Ap during time
At. Then, by p* let us denote the momentum of analogous system, but of a constant
mass. At the instant # + At the quantity of motion of a system of variable mass is
equal to

p+ Ap =p* + Ap* — Ap; + Aps. (8.2)

J. Awrejcewicz, Classical Mechanics: Dynamics, Advances in Mechanics 341
and Mathematics 29, DOI 10.1007/978-1-4614-3740-6_8,
© Springer Science+Business Media New York 2012
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m,(t)

X,

Fig. 8.1 Motion of a body of variable mass with respect to the inertial coordinate system

0'X|X}X]

This means that the increment of momentum of the investigated system follows
from the increment of momentum of a system of constant mass and the additional
quantity of motion delivered (Ap;) and removed (Ap;) to/from the system during

time Af.
From the preceding equation we obtain

Ap = Ap* — Ap; + Ap,

because at the instant ¢ we have
p=p"
Dividing by At and on the assumption that Az — 0 we get

. p Ap* . Ap . Ap
lim — = lim — lim — Iim ——,
Ar—0 At Ar—0 At Ar—0 At Ar—0 At

hence d
p
5 —F+F
where
A * *
F— lim 2P _ 97
Ai—0 At dr
A A
FR = lim =P' FR = jm =P,
At—0 At At—0 At

(8.3)

(8.4)

(8.5)

(8.6)

(8.7)

and F is a main vector of a system of external forces acting at the time instant 7.
Equation (8.6) extends the well-known theorem concerning the change in the
quantity of motion (momentum) of a system. On its right-hand side additionally

appear the so-called thrust forces, FR and FX.
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In a similar way one can generalize the theorem regarding the change in angular
momentum (moment of momentum) of a system. Applying an argument analogous
to the previous one, we obtain

K + AK = K* + AK* — AK + AK;, (8.8)

where K is the moment of momentum of the system with respect to a certain
arbitrary chosen fixed pole in the coordinate system O’ X| X} X}, and AK; ;) denotes
the sum of moments of a quantity of motion for those particles that left (entered)
the considered system of variable mass during the time interval A¢. Dividing the
preceding equation by A¢ and proceeding to the limit as At — 0 we have

dK

-5:M+Mﬂmﬂ, (8.9)
where
* .
M= tm =
Mf = - m S5 ME = g, T (510

Equation (8.9) is a generalization of a theorem concerning changes in the angular
momentum of a mechanical system. On its right-hand side additionally appear
moments of a thrust force, Mf and M§.

8.3 Motion of a Particle of a Variable Mass System

Let us consider a particle A belonging to the investigated system of variable mass,
and let the mass of this particle be described by (8.11) in the form

mA(Z)zmA(to)—mAl (l)+mA2(l). (8.11)

The kinematics of a particle of variable mass is presented in Fig. 8.2. In Fig. 8.2
the absolute velocity of a piece of mass Am; is denoted by u,, whereas the absolute
velocity of a piece of mass Am; is denoted by u;. We will assume that Am 4, <
m4(to) and Am 4, <K m (o).

In order to derive the differential equation of the motion of a particle of variable
mass m(t), we will make use of (8.6). A quantity of motion (momentum) of
particle A at an arbitrary time instant ¢ reads

p@)=m@)v(), (8.12)
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Fig. 8.2 Particle of mass m F
in absolute system OX; X, X3
at time instant ¢ and piece of

V.
mass Am expelled (absorbed U,
Amy) from (by) particle A {\A

X,

and the changes in momentum that follow from absorbing mass Am, and expelling
mass Am by particle A during the time interval At are respectively equal to

Api = Amiu,-, i = 1,2 (813)

According to (8.7) we have

. Apl . Amlul dl’)’ll
R _ _ — _ — g —1
Fr== A T A A T
. Apz . Amzllz dmz
R _ —_— = = R —
=l A =A% A T G4
Substituting (8.12) and (8.14) into (8.6) we obtain
d dl’)’ll dl’)’l2
— Hvie)]=F - — —uy, 8.15
—m 0V ()] T+ (8.15)
and following the transformations we have
mi 4 :F—ml(ul —V)"‘r‘l’i’lz (llz—V). (8.16)

The obtained (8.16) is called a generalized Meshcherskiy' equation, and it
describes the motion of a particle of variable mass. If the mass of particle A does
not change, then m; = n1, = 0, and from (8.16) we obtain Newton’s second law
on the motion of particle A of constant mass m.

'Tvan Meshcherskiy (1859-1935), professor working mainly in Saint Petersburg.
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In previous calculations the dynamics of a particle of variable mass was presented
descriptively during the derivation of (8.6) and (8.9). Presently we will proceed in
a different way (see [1,2]) by taking into account only the change in momentum
of particle A. Let an elementary mass dm, of velocity u,(¢) be added, and an
elementary mass dm of velocity u; (¢) be removed, to/from particle A of mass m(¢)
and velocity v(¢). The momenta at the time instants ¢ and ¢ + d¢ are equal to

p(l) = (m + dl’)’ll)V + dmou,,
p (¢t +dt) = (m + dmy) (v + dv) + dmu,.

The increment of momentum is equal to
p(t +dt) —p (t) = vdm, + dvdm, + mdv + dmu; — vdm; — dmyuy,

and neglecting differentials of the second order and dividing by d¢ we obtain
the generalized Meshcherskiy equation (8.16), where F = dp/d¢. Following the
introduction of relative velocities,

w,=w—v, =12 (8.17)

Respectively expelling and absorbing the mass by particle A (8.16) takes the
form
miy = F —mw; + maws. (8.18)

Taking into account relation (8.17), (8.18) is identical to (8.16). If the case of
separation of mass from particle A4 is considered alone, then from (8.11) for my4, =

0 we obtain
m(t) = m(to) —m(2), (8.19)

hence
m(t) = —m(2). (8.20)

Substituting (8.20) into (8.18) we get
mi, =F + Ff. (8.21)

The preceding equation is called a Meshcherskiy equation. From (8.21) it follows
that the effect of separation of mass is equivalent to the action of an additional force
FR = mw, on particle A, called a thrust force. The thrust force FR (removal of
mass) has a sense opposite to the sense of velocity w;, whereas the thrust force Ff
(addition of mass) has the same sense as the sense of the relative velocity w,. The
quantity m (n1,) is called the mass removal (addition) per second.

In a special case, where the absolute velocity of the mass that separates is u; = 0,
(8.21) takes the form

Mm— =F——v (8.22)
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or J
) _

dr
We have shown that if the absolute velocity of the mass that separates is equal
to zero, then the derivative of momentum of particle A balances the external forces
acting on this particle. If, in turn, the relative velocity of the mass that separates is
w; = u; — v = 0, then from (8.21) we obtain

(8.23)

m(t)j—: =F. (8.24)

In this case we obtained an equation that is formally consistent with Newton’s
second law on the motion of a particle of constant mass.

8.4 Motion of a Rocket (Two Problems of Tsiolkovsky)

Let us now consider two problems of Tsiolkovsky.?

8.4.1 First Tsiolkovsky Problem

Let a rocket, treated further as a particle, be moving in space, and let the action
of external forces on it be negligibly small. The initial conditions of motion are as
follows: v(0) = vy, m(t) = mo + m (t), where m, is the mass of the rocket and
m(t) is the mass of fuel (m(0) = m ).

In the considered case, the Meshcherskiy equation, (8.21), takes the form

mg = d—mwl. (8.25)

dr dr

Let us assume that the relative velocity of combustion gases w; = u; —v = const
and its sense are opposite to those of velocity vector v. It follows that a rocket moves
along a straight line according to the sense of vector v (Fig. 8.3).

Following the projection (multiplication by E;) of (8.25) onto the axis OX we
obtain

dv dm
m— = ——
dr a

2Konstantin Tsiolkowsky (1857-1935), Russian teacher of mathematics and physics of Polish
origin; precursor to the theory of rocket flight.



8.4 Motion of a Rocket (Two Problems of Tsiolkovsky) 347

Fig. 8.3 Motion of rocket in
a force-free field

or d
dv = —w 2. (8.26)
m
Integrating (8.26) we have
v(t) = —wilnm+ C, (8.27)

where C is the constant of integration equal to C = vy + wy In(mg + mg).
Finally, the time change in the velocity of a rocket is described by the scalar
equation

dx moy + myo
— =) = In{ ——— ). 8.28
T v(t) = vo +wi H( m(0) ) (8.28)

The maximum velocity is reached by the rocket after the fuel is completely spent,
that is, when m(t.) = my, and it is equal to

v(tx) =vo +wiln (1 + m) . (8.29)
mo

The obtained equation is called a rocket equation. The maximum velocity of
a rocket does not depend on the process of fuel combustion, that is, whether
combustion proceeds slowly or quickly. The constant quantity mo/my is also
known as a Tsiolkovsky constant.

In contrast, the trajectory of motion of a rocket does depend on the process of
fuel combustion. Integrating (8.28), for the initial condition x (0) = 0, we have

1
!’

x(t) = vot + wy /ln il
m(7)
0

dr, (8.30)

where m( = mg + mjo.
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Fig. 8.4 Vertical motion of
rocket in Earth’s gravitational
field

Xs

N4 /I
o

8.4.2 Second Tsiolkovsky Problem

Let a rocket, treated further as a particle, move vertically upward in a uniform
gravitational field of Earth, its resistance to motion being neglected. The relative
velocity of ejection of fuel combustion products is constant and directed vertically
downward (Fig. 8.4).

In this case after projection of the Meshcherskiy equation (8.21) onto the axis
0X; we get

dv dm
— = —mg — —wy, 8.31
ma mg = W (8.31)
or, separating the variables,
d
dv + gt) = — w2 (8.32)
m

Integrating the preceding equation we have
v+ gt =—wlnm+ C. (8.33)
The constant C is equal to

C = vo+winm),. (8.34)
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Substituting the obtained value of C into (8.33) we have

d I
§ = (1) = vo— gt +wln (n;"(?)) . (8.35)

If we assume the initial conditions to be x3(0) = 0, vy = 0, then following the
integration of (8.35) we get

t

/ 1

() = w/ln (n;"((;)) dr — 581, (8.36)
0

Let the fuel combustion take place according to the following process:
m(t) = mye ™™, (8.37)

where « is a constant coefficient characterizing the speed of fuel combustion.
The mass of combustion products m(¢) can be calculated from

m(t) +my(t) = mo + myo = my
and is equal to
my(t) = mo + myo — (mo + myp) e = my (1 — e_‘”) . (8.38)
The thrust force is equal to

at

FE =1inw; = mjwiae™ = m(t)wa, (8.39)
where aw, is the acceleration imposed on the rocket due to fuel combustion.
Because we assumed certain combustion process described by (8.37), from (8.35)
we have

/
v(t):vo—gt—f—wln(njot),
e o

and for vy = 0 we obtain
v(t) = (aw — g)t. (8.40)

In turn, from (8.36) (or by integrating (8.40)) we have

2
xX3(t) = (aw — g) % (8.41)

From the last equation it follows that the launch of the rocket is possible if
aw > g, that is, the acceleration coming from a thrust force F lR should exceed
the acceleration of gravity.
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If the fuel is burned completely at the time instant ¢ = 7, then according to
(8.37) we have
m(ty) =mo+m(ty) = me */,
that is,
mo = mye” '/, (8.42)

because at the instant #x we have no more fuel, that is, m(ts) = 0.
From (8.42) we can determine the time required for complete combustion of fuel
by a rocket, which is equal to
=", (8.43)
o

y:ln(l+@).
mo

From (8.40) and (8.41) one can determine the velocity and ceiling height of a
rocket corresponding to the time instant when the fuel is spent:

where

vy = g (@w—g), (8.44)
2
y:(aw—g)
xy = Lo (8.45)

Because at the instant when the fuel has run out ¢t = ¢y and vy = v(ty), for
such initial conditions a rocket of mass m(ty) = mo additionally climbs in Earth’s
gravitational field at the height

2 2
14

2
-2 8.46
3¢~ 20%g (aw—g) (8.46)

We obtain the maximum height / of the rocket using (8.45) and (8.46):

2 1
h=hy+x3 = VTW (g - ;) . (8.47)

The height reached by a rocket depends on the coefficient of the fuel combustion
rate ov. For example, at a rapid (explosive) rate of fuel combustion the height attained
is equal to

(8.48)



8.5 Equations of Motion of a Body with Variable Mass 351
8.5 Equations of Motion of a Body with Variable Mass

A group of particles n = 1,..., N, between which the mutual distances do not
change and at least one of which is a particle with variable mass, is called a rigid
body of variable mass [3].

According to the previous calculations, let the particles of the body (the material
system) change their mass according to (8.1), that is,

my(t) = moy —my, (t) + my,(t), n=1,...,N, (8.49)

where m,(¢) is the total mass lost by particle n at time ¢, and m,(¢) is the total
mass gained by the particle at time .

Let us further consider the case of motion of a rigid body with variable mass
about a certain fixed point O (motion about a point of a system with variable mass).
The angular momentum Ky of the system about point O is equal to (in the system
rigidly connected to the body OX{' X}/ XY)

dK
_dt" + o x Ko = M5 + ME, (8.50)

where M is the main moment of external forces acting on the system with respect
to point O, and Mg is the additional moment of a thrust force that needs to be
determined.

According to relation (8.8) we have

N
dKjp = delnrn X Uyp,
n=1
N
dKyp = Y dma,r, X ug,, (8.51)
n=1

where r,, is a radius vector of particle 7, and on that basis a moment of thrust forces
is equal to

Mp = MF, + M5, (8.52)

where

N dm
R 1n
M, =3 TR T

n=1

N
ME. — dm,
0 = — E 5 I, X Uyy,.
n=1
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Introducing the notion of relative velocity w, according to equations

Uy, = Vy + Wiy,

W, = Vy + Wy, (8.53)

we have

T, % (V) + W) + Z I'n X (v + Wa,)

N
n=1
al dm2n dm 1n
Sy (G )
— . dt

al dmy, dmy,
+Zrnx - dr Wi + dr Wy
n=1

al dm dm al dm
2 1
where (8.49) was used.
Eventually we obtain
dlI
ME =M} + 7 (8.55)
where
N
dmZn dmln
MW = r, X n n )
0 ; ( T T )
N
ol | dm,
—w = r, X — (0w xXr,), 8.56
a” ; a @) (8.56)

and I is the matrix of the inertia tensor of a body for point O, and in this case the
matrix depends on time. Because Ko = lw, from (8.50) and taking into account
(8.55) we obtain

Ao 1% o xr =Mj + M} + ar
a® T e RPTRS

hence

d
Id—‘;’ toxlo =M+ MY, (8.57)
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If the axes of a coordinate system during the process of gaining and losing
mass remain the principal axes of inertia, then (8.57) has the following scalar
representation:

dw
I (t)d_zl + (Is(1) — I(1)) wpws = My + M),

dw
L) + (1) = LO) o103 = My + My,

da)3 W
130)3"‘(12(1)—11(1))601602 = M;+ M;", (8.58)

where I;(t) are the moments of inertia of the body with respect to the axes OX;,
M, are the projections of a main vector of external forces onto these axes, and
w = w1 Ei + o Ey + w3E;3.

In the case of rotation of the body about a fixed axis (let it be the axis 0X3), we
have w = w3;E3, and from the last equation of (8.58) we obtain

d
1,;(;)% =M+ MY (8.59)

As distinct from the previously considered case of the rotation of a rigid body
about a fixed axis, on the right-hand side additionally appeared the moment of a
thrust force, and on the left-hand side the mass moment of inertia of a body changing
in time.

Example 8.1. Figure 8.5 shows a drum having moment of inertia /o with respect to
the axis OX3 perpendicular to the plane of the drawing and passing through point O,
onto which a rope of length S and mass m is wound. Determine the angular velocity
of the drum on the assumption that the rope started to reel out from the drum at an
initial velocity of zero and the drum axis was horizontal.

For the solution of the problem we make use of (8.59). In this case

d/
M3W = (0)1 —(1)) Ev

where w; is the angular velocity of an elementary moment of inertia d/ of a rope
separating from a drum that is rotating with angular velocity @. The element of the
rope leaving the drum has a velocity equal to the peripheral speed of the drum, that
is, ro) = ro, ie, M = 0.

The equation of motion of the investigated system is analogous to (8.24) for the
rotational motion. The problem reduces to the analysis of equation

d
1) 3 = M7,
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Fig. 8.5 Rope reeling out
of a drum

where
1(o@t)) = Iy + mr? — %(r(p)rz.

In turn, the moment M # follows from the action of the force coming from the
rope reeling out from the drum and is equal to

M (p(0) = T (ro)er.

Because
do dodep  do

ar  dgdr  “dg

from the equation of motion we have

m do m
Iy +mr*——r? )a)— = —r’go,
(1 s ) Ca T T8
and separating the variables we get
mrg 0
wdw = de.

S Io+mr2—%r3p
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Setting Iy = 3mr? we have

w? g )
a4 do +C ).
2 S(/4—§<p¢+)

The obtained indefinite integral is calculated by substitution:

r=4-"
— S(p,

hence

S S
dgp = ——dt, p=—0“4-1).
r r

We have then
4—t S?
/Lz—/—dtz—(ﬂnltl—l-t)
t r2

4 2
r2 S r r

that is,
w> g 4S r
=i (-Zma-Sel-v+c).
2 r ( rn sY ¢ + )
The integration constant is determined from the initial condition w(0) = 0 and
is equal to

48
C = —1In4.
r

The desired function

0 = olp(n)] = [zr—g (—?m [¢-Lo] o+ gm)]z |

The maximum angular velocity @ = wp,x 1S obtained after the rope has been
completely unwound, that is, substituting ¢ = @m.,x = % into the preceding formula.
O

Example 8.2. A body of mass m is thrown upward with initial speed vy, and there
is a chain of unit mass p stacked on a horizontal plane and attached to the body.
Determine the maximum height attained by the chain (Fig. 8.6).

During the motion of the chain its links are successively lifted from the stationary
stack, that is, their absolute velocity is equal to zero. The problem is therefore
described by (8.23), which in our case takes the form

d
o [(m + px) X] = —mg.
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Fig. 8.6 Projection of ball of
mass m with attached chain

The first integral of the preceding equation reads
mx + pxx = —mgt + C;
or

d 2
o [mx + p%i| = —mgt + C.

The second integral is equal to

2 2

t
mx—i—%:—mgg—}-clt—}-Cg.

Let x(0) = xg, Xx(0) = vo. The constant C; is found from the equation
Ci = (m + pxo) vo,

and the constant C; reads
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The maximum height is attained for a velocity of mass equal to x = v(tx) = 0,
that is, for the time instant

Ci _ (m+ pxo)vo
mg mg

1y =

The desired quantity x (fx) = x4 is determined from the equation

2 2,2 2,2

X m 4+ pxp)-v m + pxo)v, X

X PX ( pX0)" Vg ( pX0)Vy ( PO)XO
2 2mg mg 2

or, following transformation,

2m m + pxg)?vi 2m
P mgp P

For xy = 0 we have

2 mv3
p gp

Solving the preceding quadratic equation and rejecting the negative root we
obtain

Finally, this chapter can be supplemented by the classic works [4-9].
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Chapter 9
Body and Multibody Dynamics

9.1 Rotational Motion of a Rigid Body About a Fixed Axis

The kinematics and statics of particles of a body supported by a thrust bearing and
radial bearing have already been considered in Chaps. 2 and 5 of [1].

Let a rigid body have two fixed points O and O, and let the reactions of
constraints at these points be equal to R and R. The system of external forces acting
on the body is replaced by a main force F and main moment M applied at point O
(the pole), which is the origin of both the stationary OX; X, X3 and non-stationary
coordinate systems O’ X{ X)X}, where O = O’ (Fig. 9.1).

The body has only one degree of freedom described by an angle ¢(¢). In order to
obtain equations of motion of the body we will make use of the laws of conservation
of momentum and angular momentum, which were stated in Chap. 1 of [1]. Here
they are related to the mass center C of the body assuming the following form:

d -
Y _F+R+R ©.1)
dr

K —

=€ =My + 00 xR, (9.2)

dr

valid in the coordinate system OX; X, X3.

We are interested in the reactions acting on the body, and that is why we will
express (9.1) and (9.2) in the body system O’X|X;X}]. Some vectors used in
subsequent calculations will have the form

F = FE| + FE, + FE},
R = RiE| + R:E) + R:E],

R = RE| + R:E} + R;E,
o=

oE;,

J. Awrejcewicz, Classical Mechanics: Dynamics, Advances in Mechanics 359
and Mathematics 29, DOI 10.1007/978-1-4614-3740-6_9,
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Fig. 9.1 Rigid body rotation X _Xr

measured with angle 37N

@ = () about fixed axis
—

0X; (00 = H)

—

and all vectors are expressed in the body system O’ X|X;X} (R; = 0).
According to previous calculations we have Ky = lw, that is,

Ko, = Lo — Ihwy — 11305,
Ko, = —1ho| + Lo, — [0,
Ko, = —I30) — Ino) + L}, 9.4)
and because in our case 0| = w) = 0, we have
Ko, = —1130. Ko, = =10, Ko, = 3¢, 9.5)

where
Ko = KOIEII + KOZElz + K03Eg. (9.6)

In 9.4) Iix = Ii(t), o = w!(t), because in the space (global) coordinate
system the body changes its position and, consequently, changes both its mass
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moments of inertia and components of angular velocity vector. Therefore, below
we present the equations of motion of a rigid body in a local coordinate system.
Equations (9.1) and (9.2) in the system O’X| X} X} have the form

d 3
MstC—l—wavc:F—i—R—i—R, 9.7)
dK. —

—dl" +oxKop=Mop+ 00 xR. 9.8)

Recall that the operator d/dt is a relative differential operator (as opposed to
an absolute differential operator d/dt), that is, it describes the differentiation of a
vector in the coordinate system O'X| X} X}.

An arbitrary vector a obeys the following differentiation: da/dr = da +
@ x a, where  denotes the rotational velocity of the system O’X|X;Xj;, and
da/dt (aa/ dr) denotes an absolute (relative) derivative. In other words, the absolute
velocity of the tip of angular momentum vector Ko is equal to the geometric sum
of its relative velocity dKo /dt and the velocity of transportation @ x K¢. Because

—
ve =@ x 0OC, 9.9
taking into account relations (9.3)—(9.6) we successively calculate
E| E, Ej

ve=10 0 ¢ |=—¢x}cE| + x| 0E), (9.10)

I ! !
X1c Xac Xac

E. E, E
! 2 .3 . . 2/ “ 2/
woxKo=|0 0 ¢ |=-9KoE| + Ko¢E,, = [:¢0°E| — [130°E)},
Ko1 Koz Ko3
9.11)
Ei E) Ej
wxve=| 0 0 ¢|=-xc¢°E|—¢*x)-E). (9.12)
X3¢ $xic O
According to formulas (9.6) and (9.10) we have
dv ; .
d—tc = —¢x) E| + x| K, (9.13)
dKo vt - -
— = —113(pE1 — ]23§0E2 + I3§0E3. 9.14)

dr
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From (9.7) and (9.8), taking into account relations (9.10)—(9.14), we obtain

—Mx}ye§ — Mx|-¢* = F/ + R, + R,
Mx| ¢ — Mxh-¢> = F) + R}, + R},
0= F|+ R, + R;, (9.15)

—13¢ + I3¢* = Moy — HR,,
—I$ — 1139* = Mo> + HRy,
I = Mos. (9.16)

The obtained differential equations have the following properties. The third
equation of (9.15) is the algebraic sum R} + R, = —F}, and because it does
not occur in the remaining equations, it is not possible to determine the reactions
R} and ﬁg separately. Moreover, their sum is independent of body motion. The
remaining transverse reactions can be determined from the remaining equations
of systems (9.15) and (9.16). The third equation of system (9.16) describes the
rotational motion of a rigid body about the axis OX} driven by the moment M 3.

In Example 2.4 of [1] we determined the reactions in the bearings in a static case.
Now we will try to determine the conditions for which the dynamic reactions of the
system (that is, the reactions during body rotation with angular velocity ¢E}) are
equal to the static reactions.

Transverse static reactions are determined from (9.15) and (9.16), and setting

¢ = ¢ = 0 we obtain

R+ R =—-F,
Ry + Ry = —F>,
.M
R2 = ﬂa
H
~ MO
R = —72, (9.17)

thatis, Ry = —F + Mop2/H, R, = —F, — Mo /H.
The same magnitudes of reactions are obtained for ¢ # 0 and ¢ # 0, on the
condition that the following equations are satisfied:

X ® + x{c¢” =0,
oo 9.18)

Xic§ — X" =0,

113§ — I3¢* = 0,
i (9.19)

In¢ + I3~ = 0.
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System (9.18) can be treated as a system of homogeneous equations of the form

5 e ll=1o
[95 —¢?] [x3¢ 0] 020

and, in turn, system (9.19) can be represented in the form

. 2 .
AR ©21)
¢ —¢~] LIz 0
In both cases the determinant of system W = —(¢* + @) # 0, which leads to
two conditions: xic = xéc = 0 and I;3 = I3 = 0. This means that the transverse
dynamic reactions in the bearings during rigid-body rotation about a fixed axis are

equal to the static reactions if and only if the axis of rotation is a principal centroidal
axis of inertia of the body.

9.2 Motion of a Rigid Body About a Fixed Point

In order to obtain equations of motion for the present case it suffices to make use of
the equation

—9% — My, (9.22)

where K¢ denotes the angular momentum (moment of momentum) calculated with
respect to point O, and My is the main moment of forces acting on the body with
respect to the same point. Point O is fixed, and there we locate the origins of the
non-stationary O’ X{ X, X} and stationary OX; X, X3 coordinate systems.
Equation (9.22) in the body coordinate system O’X| XX} takes the form
dKo
T + o xKp = Mo, (9.23)

where Ko is described by (9.6) and (9.4), and a/ dt is a local derivative.
Because

’ I I
E, E, E;
i / /
wxKo=|0 o o)|=E(0;Kos— Ko})
Ko1 Ko» Kos3

+ E/2 (K()la)g — K03a)i) + E/3 (a)i Ko, — a)éK()l) R (9.24)
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from (9.23) we obtain
Loy — oy — 11303 + 0 (—113w{ — Lo, + I3w§)
— w} (—1aw] + Lol — Inw)) = Moy,
— 120] + Loy — 1305 + o} (Lo — Ihw, — I130})
— o) (o] — L) — I3w§) = Mo,
— 1130] — Loy + Los + o] (—1o] — Lo, — o))
— wh (Lo} — Inw) — I130%) = Mo, (9.25)
and following transformations we have
L) — oy — 11304 + (I — ) 00}
+ In3 (60§2 - w§2) + w] (112w§ - 113w§) = Mo,
— Inoy + Loy — L300y + (1) — ) o]
+ 113 (60{2 - w§2) + ) (12360{ - Ilzwé) = Moo,
— I130] — I + Loy + (I — 1) o)
+ 1 (wgz - wgz) + o} (130 — 1)) = Mos. (9.26)
Let us choose the axes O'X;, O’'X}, and O'X} so that they coincide with the

principal axes of inertia of the body associated with point O’ = O. In this case
I, = I;3 = I3 = 0 and (9.26) take the much simpler form

L] + (I3 — ) oy = Moy,

Lo, + (1) — ;) )0 = Mo,
13(1); + (I, — Il)a);a)i = Mops. 9.27)
Equations (9.27) are called Euler’s dynamic equations. If the known components
of a main moment Mo; = Mo;(w], w}, w5, t),i =1, 2, 3, then in order to obtain
w{(t), w)(t), and wi(t), one should integrate (e.g., numerically) (9.27). Recall that

the position of a body in an absolute coordinate system OX; X, X3 is associated with
the introduction of three Euler angles, derived in [1] we have

"

w!" = o] = ysingsinf + 0 cos ¢,
o} = )y = yr cospsin§ — O sin g,

o =0}y = Psinf + , (9.28)



9.2 Motion of a Rigid Body About a Fixed Point 365

and in order to simplify the notation, the symbols (”’) are dropped in this section.
In other words, the transition from the coordinate system OX; X, X3 to the system
O'X| X} X takes place through Euler’s angles.

Substituting the determined functions of time o] = w/(¢), i = 1, 2, 3, into
Euler’s kinematic equations (9.28) we are able to solve them with respect to Euler’s
angles, that is, to determine ¢ = W(t) 6 = 0(1), and ¢ = ¢(1).

If, however, Mo; = Mo;(w)], 0y, 0}, ¢, V. 6, &, Vv, 0, t), then one should
solve simultaneously six differential equations given by (9.27) and (9.28). If a rigid
body is not acted upon by a main moment, that is, Mp = 0, then we are dealing
with the so-called Euler case of rigid-body motion about a fixed point O, and for
this case (9.27) take the form

Ila)i + (13 - 12) a)éa); = 0,

]20')£ + (I; — I5) a){wé =0,
Loy + (I — 1) wiw; = 0. (9.29)
The preceding equations constitute a system of three first-order non-linear
ordinary differential equations. If the aforementioned body is in the gravitational

field, then the condition My = O is satisfied, provided that the fixed point about
which the body rotates is coincident with the mass center of the body, that is,

0=C.

From (9.22) for the Euler case we have
Ko = const. (9.30)

Vector K¢’s property of being constant means that during motion of the rigid
body both its direction and magnitude are constant. From (9.4) and (9.6) for the
Euler case we have

Ko = Lo E| + Lo E) + Lw,E;, (9.31)
where now unit vectors E|, E}, E} are the unit vectors of the principal axes of inertia

of the body at point O = O’.
From conditions (9.30) and (9.31) it follows that

K} = I}0)” + o) + o}’ = const. (9.32)
The increment of kinetic energy of the rigid body is equal to

dT' =Mp owdt +Fovpdr =0 (9.33)

because in the considered Euler case My = 0 and vp = 0. From that we have

1
TZZQW +MU+hm)zmm. (9.34)
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From the preceding calculations it follows that Euler’s equations (9.29) possess
two first integrals in the forms (9.32) and (9.34). The mentioned integrals can also
be obtained immediately from (9.29).

The Euler case can be further simplified if the vector of angular velocity of the
body w is constant with respect to the body. This means that ©] = @} = &} = 0,
and from (9.29) we obtain

(I3 — ) w305 = 0,
(11 - ]3) a)iwé =0,
(I, — 1)) | = 0. (9.35)

Because by assumption | # 0, ) # 0, and w} # 0, all algebraic equations of
(9.35) are satisfied for an arbitrary vector ® when I} = I, = I5. In this case the
ellipsoid of inertia at point O’ changes into the surface of a ball. This special Euler
case is called the stationary spinning of a rigid body (@ = const).

Let any two principal moments of inertia with respect to point O’ be equal, for
instance, I} = I, # I3. Also in this case (9.35) are satisfied, but this time not for
an arbitrary vector @. They are satisfied for (1) o] = @) = 0 and w} # 0 (spinning
about a principal axis of inertia OX}) or for (2) w} = 0, and arbitrary w|, ) (in this
case spinning takes place about an arbitrary axis passing through point O and lying
in an equatorial plane of the ellipsoid of inertia).

Finally, if I;, I, and I3 are all distinct, then (9.35) can also be satisfied. Then
two out of the three quantities w{, w}, and w} are equal to zero, and the third one
is arbitrary. The body rotates about the principal axis of inertia associated with the
non-zero component of vector .

Let us consider the second dynamical simplification of the Euler case described
by (9.29). If I} = I, # I3, then the rigid body is called a dynamically symmetric
body and the axis OX} an axis of dynamical symmetry of a body. If we introduce
the system OX;X,X3 in such way that the axis OXj is directed along the angular
momentum vector Ky = const, then, using Fig. 9.2 and projecting vector Ko onto
the axes of the system O’X|X] X}, we obtain

Liw] = Ko sin 0 sin ¢,
L) = Ko sinf cos ¢,

Lwi = Ko cosf. (9.36)
If I, = I,, then from the third equation of (9.29) we have

w} = wy, = const. (9.37)
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Fig. 9.2 Projecting angular momentum vector Ko onto axes of a body system, and vectors of
angular velocity of spin ¢™ and angular velocity of precession ¥ *

This means that the projection of vector @ onto the axis of dynamical symmetry
of the body is constant. From (9.37) and the third equation of system (9.36) we
obtain

I /
cosbp = % = const, (9.38)
0

that is, the angle of nutation 6 is constant. In this case Euler’s kinematic equa-
tions (9.28) take the form

w| = singsin O,
wh =y cos ¢ sin O,
ws = cosfo + ¢. (9.39)
Substituting the first equation of (9.39) into the first equation of (9.36) we obtain
LV = Ko, (9.40)
hence
_ Ko

= —— = y* = const. (9.41)
I
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Fig. 9.3 Poinsot’s geometric
interpretation of motion of a
rigid body with one point O
fixed

=g O
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e -1
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The component Yr* is called the rate of precession. One quantity remains to
be described — ¢, which we determine from the third equation of (9.38). Using
relations (9.37), (9.38), and (9.41) we calculate successively

. . K

¢ = wyy — Y*cosbp :wgo—l—ocoséo
1

I L—1

Wiy = ]—l’a)w = ¢* = const. (9.42)

= w3 — ]_1

The quantity ¢* is called the rate of spin of a body.

In the general case, the motion of a body about a fixed point O that is composed
of the rotational motion about the axis associated with the body (in the present case
O'X}) and the rotational motion of this axis (O'X}) around a fixed axis (OX3)
is called the precession of a rigid body. A special case of precession is the steady
precession, where the two previously mentioned angular velocities (i.e., ¢* and ¥/*)
are constant.

The Euler case for a dynamically symmetric body describes its steady precession.
In this case, during motion the symmetry axis of the body OX} describes the cone
of circular cross section and opening angle 26 at the apex O, where cosfp =
cos(E}, Ko). Likewise, the revolving motion of body symmetry axis of unit vector
E’, takes place with a constant velocity Yr* and is accompanied by (simultaneous)
spinning of the body with a constant angular velocity ¢* about its symmetry axis of
unit vector Ef.

The geometric interpretation associated with the considered Euler case proposed
by Poinsot is worth noting.

Let a rigid body in a gravitational field have its center of mass at point O and
let it be supported at this point. The motion about a point of the body in this case is
called the inertial motion of a body with its mass center fixed. Figure 9.3 shows the
ellipsoid of inertia of a body like that in arbitrary motion about a fixed point O. The
center of the ellipsoid is located at point O.
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Let the body rotate with angular velocity @ [w], @}, w}] given in the body system
O'X| X} X}. The ellipsoid of inertia related to point O has the form

LX]7 + Lxy + Lxy = 1. (9.43)
Let the axis determined by vector @ have one point 4 in common with the surface
of the ellipsoid. The plane passing through point A and tangent to the ellipsoid is

called an invariable plane and denoted by 7. Below we will cite proofs of three
characteristics of the Euler case presented by Poinsot (see also [2]).

1. We will prove that @ || ﬁ
From Fig. 9.3 it follows that vectors @ and ﬁ are collinear, that is,

04 [X] 4. X540, X54] = Aw 0], wiwl]. (9.44)
It should be demonstrated that A = const. From (9.44) we obtain
X, = Ao, i=1,2,3, (9.45)

and since point A belongs to the ellipsoid of inertia, from (9.43) and (9.44) we
obtain

22 (o + hof’ + Lol’) =2TA2 = 1, (9.46)

where (9.34) was used. From relation (9.46) we obtain

1
A = —— = const. (9.47)

V2T

2. We will demonstrate that 7 1 Kp.
The equation of the surface of the ellipsoid follows.

f (x{,xé,xé) = leiz + széz + I3x§2 —1=0, (9.48)

and the vector normal to this surface at point A4 is given by

aof aof af
d,f = —2-| E. + =~ | E,+ == | E!
grads f 9x) |4 v 9x3 | 4 2t x5 | 4 }

= 211)CiAE/1 + ZIZXQAEIZ + 2I3X§AE/3
= 2A[1w{E| + LwjE, + LwiE] = 2AKo. (9.49)

Because, by assumption, the normal vector grad, f is perpendicular to 7,
from relation (9.49) it follows that Ko L 7.
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3. We will demonstrate that the projection of the radius vector r/; = ﬁ of point 4
onto the direction of vector Ky is constant. From Fig. 9.3, (9.45) and (9.47), and
from the relation 27 = Ky o o it follows successively that

—
Koo OA A(@oKp) 2AT 2T

op = Koo04 _twoKo) — const. (9.50)
Ko Ko Ko Ko

Vector Kp = const, which means that it has a constant direction in the system
OXX>X; during the time that a rigid body is in motion. In the system O’X| X} X}
its direction changes, but the magnitude is preserved, which follows from (9.32). Let
point A(t,4) of the body become A;(?4,) after a certain time. Projections of vectors

ﬁ and O—AT onto the direction of K¢ are equal. This means that the plane 7 L Ko
during the motion of point A described by the radius vector is always at the same
distance OB from point O, that is, the plane 7 is fixed in space. The velocity of
point A is equal to zero because it lies on an instantaneous axis of rotation @.

From the foregoing calculations it follows that in the Euler case the motion of
the rigid body has the following geometric interpretation proposed by Poinsot.

The ellipsoid of inertia related to the fixed point of a body rolls without sliding
on the plane , which is fixed in space. The plane m is continuously perpendicular
to the vector of angular momentum Ky and the vectors of the angular velocity
of the body w and the radius vector of the point of contact between the ellipsoid
and the plane r’; are collinear and proportional to each other. The plane 7 is called
the invariant plane, and the axis along which is directed vector Ko is called the

invariant axis. Point A, which is the tip of radius vector ﬁ, during motion belongs
simultaneously to the plane 7 and the ellipsoid of inertia that rolls on this plane. The
motion of point A takes place along a curve on the plane n called the herpolhode.
In turn, on the surface of the ellipsoid, point A moves along a curve called the
polhode.

According to previous calculation, during motion, the instantaneous axis of
rotation @ describes a conical surface, that is, a moving axode in the system
O'X[X; X} and a fixed axode in the system OX;X,X3. The moving axode rolls
around the fixed axode along a generatrix that belongs at the given instant to both
conical surfaces, and vector @ lies on the generatrix. The herpolhode belongs to the
fixed axode and the polhode to the moving axode.

At the end of the calculations, we will determine the orientation in space of a
body for the Euler case, that is, in the stationary system OX X, X3. In the coordinate
system presented in Fig. 9.3, that is, where Ko lies on the axis OX3, and for the
general case, that is, the dynamically asymmetric case (I; # I, # I3), relations
between Euler’s angles and the coordinates of vector @ are given by (9.36). If the
coordinates of vectors w[w], w), w}] are known, then from (9.36) we calculate

/

]16()
tan¢g = }, cosf =
]2602

Iga)é
Ko’

9.51)
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Fig. 9.4 Values of w; (¢) (a) and K2 and 2T (b) for M;(¢) = 0,i = 1,2, 3 obtained as a result of
the solution to (9.27)

Let us multiply the first equation of system (9.28) by sin¢ and the second by
cos ¢, then, adding them to each other, we obtain

) sing + wjcos ¢
sin 0

1&:

, (9.52)

and from (9.36) we have

Ila){
Kosinf’

I
]2602

sing = Kosind'

cos¢p = (9.53)

Substituting (9.53) into (9.52) we obtain

601211 + wézlz Ko (wizll + a)ézlz) B Ko (w{zll + a)ézlz)

L K2 sin? 0 = KL (1—cosf)

Ko (wizll + a)ézlz) Ko (a)izll + a)ézlz)

- 2 2
(K3 - 1301) o) + o,

(9.54)

where during transformations the second equation of (9.51) and (9.32) were used.

To illustrate the conducted theoretical calculations, we perform some numerical
simulations of the dynamics of a rigid body about a fixed point situated at the mass
center of the body.

Euler’s dynamic equations (9.27) are solved numerically.

In addition, as can be seen from the preceding algorithm, values of invari-
ants (9.32) and (9.34) were estimated numerically.

Figure 9.4 presents time plots of w; (¢) (panel a) and runs of values of K2 and 27
(panel b).

In the next step we use Euler’s kinematic equations (9.28) in order to determine
Euler’s angles ¢ = ¢(t), v = ¥ (t), 8 = 6(¢). The left-hand sides of those
equations are described by the solutions to Euler’s dynamic equations.
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Fig. 9.5 Euler’s angles as functions of time numerically estimated using Euler’s dynamic and
kinematic equations (a) and a graph of the function [sin 0(¢)]™! (b)

The results of our computations (angles ¢(z), ¥(¢), and 6(¢)) are given in
Fig. 9.5a, and additionally Fig. 9.5b shows a graph of function [sin 8(z)] !, where it
is seen that for ¢t = 15.2 we are dealing with a singularity (sin 8(¢) — 0).

Until now we have considered systems of autonomous kinematic and dy-
namic Euler differential equations. Now we present two examples of solutions
to non-autonomous Euler dynamic equations, that is, when M; = M;(t) =
Mo; cos(\/F,- t). In all calculations we use the same initial conditions and parame-
ters given in the description of the algorithm for a solution to Euler’s equations.

From Fig. 9.6 it follows that K2,(¢) and 27'(¢) change in time, and additionally
with an increase in the amplitude of the forcing moments we observe a transition
from regular (periodic) to non-regular (chaotic) dynamics.

9.3 Dynamics of Rigid-Body Motion About a Fixed Point
in a Gravitational Field

Let us introduce the coordinate system as shown in Fig. 9.2, where the fixed point
O = O’ is the origin of both the stationary coordinate system OX;X,X3 (the axis
OXj5 is vertical) and the system O’X| X)X} rigidly connected to a body (the axis
O'X} is the axis about which the body spins); it does not coincide with the mass
center of the body C(x/ .. x5, x}-). We determine the orientation of the body with
respect to space, that is, to the coordinate system OX|X;,X3, by means of Euler’s
angles ¥, ¢, and 0 (Fig. 9.7).

The principal moments of inertia of the body with respect to axes O’X{, O’ X},
and O’X} are denoted respectively by 1, I, and I3, and at the mass center of the
body we apply its weight G = mg. The unit vector E; of axis OX3 is denoted by
N (E; = N), which has the coordinates N = N[n', n}, n}] in the body coordinate
system. From Euler’s kinematic equations (9.28) and Fig. 9.7 it follows that the
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Fig. 9.6 Time plots ¢(¢), ¥ (¢), and 6(¢) as a result of the solution to non-autonomous Euler
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Fig. 9.7 A rigid body in a uniform gravitational field and Euler’s angles
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components of unit vector N in the coordinate system O’X|X)X} are equal to
multipliers at ¥, and hence we have

n| =singsinb, ny, = cos ¢ sin 6, ny = cos#. (9.55)
Because the normal unit vector N is in a stationary system, we have

dN
— =0, 9.56
5 (9.56)

and in a body system (local system) (9.56) takes the form called a Poisson equation:

d

dtN+w xN=0, (9.57)

where o is the vector of the angular velocity of the body and d /dt denotes the local
derivative.
Because, according to (9.55), we have

N = E\n| + Ejn), + En, (9.58)
and
E E E
wxN=|o o) o)|=E (njo,—nio))

Wy on
B} (10— oin}) + By (@fny —nje}).  (959)

from (9.57), and taking into account relations (9.58) and (9.59), we obtain three
differential equations of first order:

dn,

g + ol

dn/,

_dt2 = —win| + winj,

dng !’ ! /AN

L + ;. (9.60)

In the considered case, the right-hand sides of Euler’s dynamic equations (9.27)
need to be specified, that is, the moment of forces M should be determined. This
moment is determined only by the gravity force of the body G and is equal to

— — —
Mo =0C xG =0C x(—NG) =GN x 0C, 9.61)
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and, according to the assumptions adopted earlier, we have
/ / /
E, E, E;
Mo = [n/G n3G niG|= GE| (nyx}c —nixhc)
/ / /
X1c  Yc A3c
+ GE) (nfx|c —nxic) + GEj (n)x5e —nbxic). 9.62)

Euler’s dynamic equations for the considered system take the form

dw!
I dtl + (I — L) 0,05 = G (nhx3e —nsxye).,
dw),
I, dtz + (I1 — L) wj0) = G (njx]c —nixic),
I dwé I I A ! G A ! 963
Chp + (L —1)ww, = (”1xzc _nlec)- (9.63)

Complete knowledge concerning dynamics of a rigid body with one point fixed
and located in the uniform gravitational field boils down to the integration of
six first-order non-linear differential equations given by (9.60) and (9.63). If the
integration can be successfully carried out, then we obtain the desired solutions
n; = ni(t), o] = w/(t),i = 1,2, 3. This means that we determine the vectors
® = o(t) and N = N(¢) in a body system. In turn, knowledge of n/(¢) makes it
possible to determine the position of the body in the space system because from
(9.55) one is able to determine ¢ = ¢(¢) and € = 6(¢). The angle v = ¥ (t)
is yet to be determined, and it can be found using one of Euler’s kinematic
equations (9.28). The analysis of the problem boils down to the determination of
first integrals of differential equations (9.60) and (9.63).

We obtain the first integrals of (9.60) and (9.63) from the observation that |[N| =
1, which means that

(n} ()" + (n5(0))” + (nh())” = 1. (9.64)

In the considered case neither vector G nor the reactions at point O produce a
moment with respect to the axis OX3. This means that the projection of an angular
momentum Ky onto the axis OX3 is constant and equal to

Ko o N = const, (9.65)

and because in the non-stationary system Ko = Ko[/ 0|, L0, [;»}] and N =
N[n}, n’, n%], (9.65) in the system O’ X[ X)X} takes the form

Lwin| + Lwin, + I;winy = const. (9.66)

Equation (9.66) describes the second first integral of the considered problem.
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During the motion of a rigid body with one point fixed in a uniform gravitational
field the total energy is conserved, that is,

T + V = const, (9.67)

where

V = Gw oN=G (xlcn’l + xzcn/z + X3Cn/3) s
1
T=3 (nof® + o’ + Lef?). (9.68)

Therefore the third first integral of the analyzed problem has the form

1
E (11&)12 + 12(1)%2 + 13(1);12>
+ G (xicn| + x2cny + x3¢n}) = const. (9.69)

In the considered case for the illustration of the theoretical calculations some nu-
merical simulations of systems of Euler’s dynamic equations (9.63) and differential
equations (9.60) are performed.

Figure 9.8 presents graphs of w; (¢) and first integrals (invariants) for the case
of rigid-body motion about a fixed point in a uniform gravitational field for three
values of body weight G. It is evident that the increase of G causes an increase
of w; (¢); note that the runs have an irregular character, and the invariants preserve
constant values in time.

In the monograph [2] one finds the proof that in order for a problem to be
integrable by quadratures, it is sufficient to know four independent first integrals of
(9.60) and (9.63). For this reason, yet another first integral is left to be determined.
However, until now it has not been done except for certain special cases, that is, for
certain select regions of initial conditions.

The fourth first integral has been determined only for the first three special cases
of motion of a given body. Those cases will be briefly described below.

1. The Euler case. This case was considered in detail in Sect. 9.2. It is characterized
by the coincidence of the mass center with the pivot point, thatis, C = O (right-
hand sides of (9.63) are then equal to zero since x|~ = x5 = x5~ = 0).

2. The Lagrange case. The mass center of a body C lies on the axis of rotation,
and the ellipsoid of inertia of the body with respect to the fixed point O # C
coincides with the ellipsoid of spin of the body. We are dealing with the Lagrange
case, for instance, when I} = I, # I3, x|, = x5 = 0, X} # 0. From the third
equation of system (9.63) we determine the fourth first integral of the form

w} = const, (9.70)

that is, the projection of the vector of angular velocity @ onto the axis of rotation
of the body is conserved

n; o @ = const. (9.71)
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Fig. 9.8 Functions w; (¢),i = 1,2, 3 and three invariants determined by (9.64), (9.66), and (9.69)
for G = 0.2N (a), G = 1.0N (b), and G = 2.0N (¢)

3. The Kovalevskaya' case. In this case an ellipsoid of inertia with respect to the
fixed point O’ = O is the ellipsoid of spin. Let this spinning occur with respect
to the axis O’ X, let I; = I, = 213, and let the mass center C be located on an
equatorial plane of the ellipsoid of inertia (x} = 0). It can be demonstrated that
when the ellipsoid of spin is coincident with the ellipsoid of inertia, an arbitrary
axis lying in the equatorial plane and passing through point O is a principal axis
of inertia. If we take OX { as the second axis of inertia, then xéc = 0. Euler’s
dynamic equations (9.63) for the Kovalevskaya case take the form

dw} dw), dw

=0, 2—= + wywy = anj,
1%3 3 dr

2 whw}
dr 273 dr

=any, =0, (9.72)

1Zophia Kovalevskaya (1850-1891), Russian mathematician of Polish origin who worked on
differential equations.
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where a = (Gx|.)/I5. In the Kovalevskaya case the fourth first integral has the
following algebraic form:

2
(a){z —w) — an’l) + (20]w) — anb)’ = const. (9.73)

One may be convinced of that after differentiating (9.73) and using (9.60)
and (9.63).

9.4 General Free Motion of a Rigid Body

From the calculations of kinematics it follows that the general motion of a rigid
body can be described through the motion of its arbitrary point (the pole) and the
motion of the body with respect to this point treated as a fixed point. However,
such an arbitrary choice leads to complex equations of motion for the body. If we
take the mass center of the rigid body as the pole, then the problem is substantially
simplified. The motion of the rigid body can be treated as being composed of the
motion of its mass center C and the motion of the body about point C. The motion
of the mass center is treated as the motion of a particle acted upon by forces and
moments of force applied to the considered rigid body. Equations of free motion of
arigid body have the form

d dK
m e _ ¢ _
dr

, T Mc, (9.74)
where the first one describes the motion of the mass center subjected to the action
of the main force vector applied at point C and the second one describes the change
in the angular momentum of the body with respect to point C caused by the main
moment of force about that point.

The first vector differential equation of (9.74) has the following form in an
absolute system:

e e e
M% - F, M% - R, M% - F, (9.75)

where

F=EF +EF +E;F;.

The second vector differential equation of (9.74) is usually represented in a body
system and has the form

— t+wX KC = Mc, (976)
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where c~1/ dr denotes the local derivative of the vector. In scalar form (9.76) becomes
system (9.23), where on the right-hand side the subscript O should be replaced
with C.

However, this is not a good choice of non-stationary coordinate system either.
If the axes of the system CX{X] X} become coincident with the principal axes of
inertia passing through point C, that is, they become principal centroidal axes of
inertia, then (9.76) are Euler’s dynamic equations in the form

/

do
I dtl + (I — L)) whoy = Mc,,

/

dw
]2 dl‘z + (11 — I3)CO{C()§ = MCZ’

dw)
dr

Iz —}—(Iz—Il)wiw; = MC37 9.77)
where the moments of inertia and the moments of forces are described in a local
coordinate system.

As was already mentioned, in order to trace motion in an absolute system
C XX, X3 one should determine the dependencies of Euler’s angles on time, that is,
simultaneously (or additionally) solve the system of Euler’s kinematic equations of
the form

| =y sinfsing + 0 cos ¢,
w} = v sinf cos p — O singp,
wh = Yrsing + ¢. (9.78)

In problems involving the simulation of the motion of a rigid body, kinematic
differential equations are used in a form inverse to (9.78), that is, a form that
expresses the time derivatives of Euler’s angles in terms of the components of
angular velocity in the body system. However, for any choice of Euler’s angles this
inverse relationship has a singular position, which was mentioned previously.

In the general case, the right-hand sides of systems of non-linear differential
equations (9.75) and (9.77) have the forms F; = F;(xic, X2c, X3¢, ¥, 0, ¢, 1)
and M¢; = Mc;(x1c, Xac, X3¢, ¥, 0, ¢, t), and because of that the three systems
of differential equations (9.75), (9.77) and (9.78) should be solved simultaneously.

In one of the special cases, where M¢; = O and F; = F, = 0, F3 = Mg, that
is, when the only force acting on the body is its weight, equations (9.75) take the
form

dlec dzxzc dzx_v,c
az az a - ©7)

and the remaining two systems of (9.77) and (9.78) are independent of them; they
were the subject of our discussion during the analysis of motion of a rigid body in
the Euler case.
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9.5 Motion of a Homogeneous Ball on a Horizontal Plane
in Gravitational Field with Coulomb Friction

Let us consider the motion of a homogeneous ball of mass M and radius r on a
horizontal rough plane, shown in Fig. 9.9 (the motion takes place in the absence of
rolling resistance, and the only active force is the gravity force).

Let us introduce the absolute coordinate system OX;X,X; and the system
C X, X, X3 of axes parallel to the absolute system, but with its origin at the center of
the ball C. Let @ denote the angular velocity of the ball, and if v is the translational
velocity of the mass center C of the ball, then the velocity of the point of contact of
the ball with the surface reads

—>
vy =vVe +o x CA. (9.80)

The reaction at point A has the form
R=N+T, (9.81)

where the friction force
T = —uNvy, (9.82)

where v is the unit vector of velocity at point A (of the absolute velocity of point A
at which the ball makes contact with the ground at the given instant), that is,

V4 = V4V, (983)

X,

v

X,

Fig. 9.9 Motion of a ball on a horizontal plane in the gravitational field
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which also means that we are dealing with a case of a ball rolling with sliding.
Moreover, the angular momentum of the ball with respect to its center is equal to

2
Ke =Icw = ngzw. (9.84)

Equations (9.74) for the considered case take the form

d
MEC — Mg+ R, (9.85)
dr
dw —
le-=CAxR (9.86)

If we assume

rc = Eixic + Exxac + Esxsc,
T=E T +ET>,
N = E;N, (9.87)

then (9.85) take the scalar form

d? d? d?
=T M—SS =T M—C=-Mg+ N, (988)

M -
dr?

and since during motion x3¢c = const = r, from the third equation of system (9.88)
weobtain N = Mg.

Then,
E, E; E;
—
AxR=10 0 —r =E1FT2—E2T17‘, (989)
n T, N
and from (9.86) we obtain
d 5T d 5T d
don 20 G20 495 ) (9.90)
dr 2Mr dr 2Mr dr
From the last equation it follows that
w o E3 = const, 9.91)

regardless of whether the ball rolls without sliding (v4 = 0) or with sliding (v4 #
0). The magnitude of the friction force for the case with sliding (i.e., for v4 =
vavo # 0), according to relation (9.82), is equal to 7 = uN = uM g = const. We
will demonstrate that the direction of vector T is conserved.
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Differentiating (9.80) with respect to time we obtain

d d .
£=£+d)xa+axw
dr dr
—-Mg+ T 5T 7T
_gy SMerD | STr (9.92)

M OMr  2M’

where during the transformations relations (9.81), (9.82), (9.85), and (9.90) were
taken into account.
From (9.92) we obtain

dvy dvy 7
— = —— gV, 9.93
dr Vo va dr 2 gvo ( )

where (9.83) was used. Because vy L %, from relation (9.93) we obtain

dV() dVA 7

— =0, — = —=ug. 9.94

dr a 2 ©99
From the first equation of (9.94) it follows that vy = const. According to (9.82)

this means that also the friction force T has constant direction. The integration of

the second equation of (9.94) yields

7
va(t) =va(0) — FH8L (9.95)

which means that the plot of v4(¢) on the (v, t) plane is a straight line.

The motion of point A takes place in the horizontal plane OX; X», and the motion
of the mass center of the body C takes place in the plane C X X.

Integrating the first two equations of motion (9.88) we obtain the trajectory of
motion of point C. We have successively

dxic T
= = —¢ 0),
vic " i vic (0)
d)Czc Tz
= = —t 0),
Vac " i vac (0)
T
Xic = ﬁtz +vic(0)t + xic,
Xoc = Elz + voc (0)t 4+ x5¢. (9.96)
2M

Let the velocity vector, which according to formula (9.95) is equal to

;
valt) = (VA(O) - Eﬂgf) Vo = va(t)vo. (9.97)
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form an angle o with the axis OX|. Then, multiplying relation (9.97) successively

by E; and E, we obtain

va(t) = va(t) cosaE; + vy(t) sinaE,.

Integrating (9.90) we obtain

5T,
w( (1) = Mt + 1(0),

5T
J(t) = —=——1 + 5(0).
w3(1) = =52t + 0)(0)
According to relations (9.82) and (9.87) we have
—uNvy = ET1 + ExT>,

and multiplying this equation by E; and E, we obtain

T\, = —uNvooE| = —uMgcosa,
T, =—uNvooE, = —uMgsina.

Taking into account formulas (9.101) in (9.99) we have

S5ugt
o (D) = ——,

cosa + w;(0),

S5ugt
2r

wy(t) = — sina + 5(0),

and inserting quantities from (9.101) into relations (9.96) we obtain

vic = —pgt cosa + vic(0),

Voc = —ugt sina + voc (0),
2

t
Xic = _,ug2 coso + vic (0)t + x1¢(0),

2

vgts |
Xoc = _gT sina + vac (0)7 + x2¢(0).

(9.98)

(9.99)

(9.100)

(9.101)

(9.102)

(9.103)

From the first two equations of (9.103) it follows that the parametric equations
of the velocity of point C describe a line, and parametric equations of motion of
point C describe a parabola, on the assumption that vectors v4 and v¢ are not
collinear, and the motion of point A on the plane OX X, takes place with sliding.
Such motion lasts until the time instant ¢, = Z;AT(gO) [see (9.95)]. At the instant
t = t, we have v4(t«) = 0, so the ball motion with sliding comes to an end, and
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its rolling motion with simultaneous spinning starts. Then, because v4 = 0, from
(9.83) and (9.82) it follows that T = 0, that is, 7 = 7, = 0. Substituting these
values into differential equations (9.88), which describe the motion of the mass

center of the ball, we obtain

d*xic d%xa¢
=0, =0, 9.104
de? de? ( )
and from (9.90) we have
dw} dw)
=0, =0. 9.105
dr dr ( )

From (9.105) it follows that during rolling with spinning @ = E;w;(0) +
E>w,(0) = const. Integrating (9.104) we obtain

dx
e = 2= =vnc). e =ncO) +x0c().
dx
Vo = djc = 3¢ (0), X2c = vac (0)t 4 x2¢(0). (9.106)
The motion of point A can be determined using (9.80), where
E, E, E;
—>
wXxCA=|w wy w3|=Ewr—Ewr, (9.107)
0O 0 O
hence we obtain
x14(t) = vic (0)1 + x1¢(0) + ran(0),
X24(t) = vac (0)f + x2¢ (0) — rw; (0). (9.108)

The solution of the problem of a ball’s motion on a plane with Coulomb friction
allows for a wider interpretation of the friction phenomenon within the framework
of the classic Amontons—Coulomb model. Let an arbitrary rigid body, bounded by a
convex surface 7’ in a region of contact with the plane 7, move on the plane 7 with
the point of contact at A (Fig. 9.10). The plane 5’ is tangent to the surface 7 during
the motion of a rigid body. The velocity v4 of motion of point A4 lies in the plane
7. If v4 = 0, then the rigid body moves without sliding on the plane 7. If v4 # 0,
then the rigid body moves with sliding on the plane , and v 4 is called the velocity
of sliding [2].

If point A is taken as a pole, then the velocity of motion of an arbitrary point of
the surface 7’ (described by radius vector r) with respect to pole A is the geometric



9.5 Motion of a Homogeneous Ball on a Horizontal Plane. . . 385

Fig. 9.10 Motion of a rigid
body bounded by a convex
surface 7’ on the horizontal
plane 7= (with marked vectors
of angular velocity @ and
angular momentum K )

sum of the velocity of pole v4 and the velocity resulting from the rotation caused by
® of the form (Fig. 9.10)

V=Vy+wXr, (9.109)

where
w=w,+ o, (9.110)

From (9.110) it follows that vector @ is resolved into two components at the
point of contact. Vector @, (normal) is perpendicular to the plane 7, and vector @,
(tangent) lies on the plane 7, hence we have », L ;. Vector @, is called the
angular velocity of turning and vector @, the angular velocity of rolling.

Below we will present various types of motion of a rigid body on the plane &
depending on the velocities v4, @,, and ®,.

1. Ifvy =0, w, = 0, and w; # 0, then the surface 7’ rolls on the plane 7.
2.1fvy =0, ®, # 0, and ®, = 0, then we are dealing with the phenomenon of
the turning of the surface 7’ on the plane 7.
L Ifvy #0, 0, =0,and ; = 0, then the surface 7’ slides on the plane 7.
4. Ifvy # 0, w, # 0,and w, # 0, then the surface 7’ slides, rolls, and turns on
the stationary plane 7.

(O8]

Force interaction between surfaces 7’ and 7 includes a force called the normal
reaction N > 0 perpendicular to both surfaces, acting from (the side of) the plane
7 on the surface 7’ and directed from the plane 7 toward the surface 7’. Then,
additionally, the friction force T lying in the plane & at point A acts on the rigid
body (if at least one of the surfaces 7 or 7’ is a rough surface). If v4 = 0, then the
friction force is a force of rolling friction, which is usually smaller than the friction
force T = uN, where u is the coefficient of sliding friction (see Sect. 2.8 in [1]).
If the contact surfaces are smooth at point A, then there is no friction force, and the
reaction acting on the rigid body reduces to the normal force N.

The following equation is valid in the body system [see (9.76)]

dK 4
?—F(A)XKA:MA, (9111)
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where M 4 is the moment of force with respect to pole 4, and then

wxKy=w, xKy+w, x Ky

= w, K ;0" + o K] ;0 =M, +M,. (9.112)
Taking into account relations (9.112) in (9.111) we obtain

dK
d_ZA = (Mua — oK 1) @) + (Mia — 01 K} 4) ©]
= My40° + M40!. 9.113)

From (9.113) it follows that the force N + T and the moment of force M,, along
the unit vector of the normal velocity @ and the moment of force M, along the unit
vector of the tangential velocity @ act at point A on the rigid body act. A similar
situation occurs for a main force F acting on a body and the force R = N + T,
which can be resolved in a similar manner, that is,

F+N+T=F,0)+ Fo!. (9.114)

The moment of force M,, 4 is called the turning moment of force and the moment
M, the rolling moment of force. The main turning moment of force is carried by a
turning moment of friction forces (a couple of forces) only if the rigid body makes
contact with the stationary plane m over a certain (small) surface instead of a point.

9.6 Motion of a Rigid Body with an Arbitrary Convex
Surface on a Horizontal Plane

We will consider a generalization of the motion of a ball on a rough plane in the
case of motion of an arbitrary rigid body, on the assumption that its contact with
a point of the horizontal plane is always in the convex region of the body [2]. The
modeling of such contact was conducted in Sect. 9.5, and we will make use of the
calculations presented there.

Let M denote the mass of arigid body, @ and v¢ respectively the angular velocity
of the body and translational velocity of the mass center C, K¢ the moment of
momentum with respect to point C, and R = N + T the reaction of the plane =
on the rigid body. Equations of motion have the form described by (9.7) and (9.8),
which in the present case are

1
Ve + @ XVe =—gn+ ﬁR’ 9.115)

Ke + o xKe =r xR, (9.116)
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where r is the vector connecting the mass center C with the point of contact of the
bodies A4, and the dot denotes a/ d, that is, a local differential operator.

Because, vector n is constant in a space system, according to the calculations of
Sect. 9.3 we have

n+wxn=0. 9.117)

Equation (9.117), called a Poinsot equation, holds true for all cases (1)=-(4)
considered toward the end of Sect. 9.5. In order to consider specific cases it is
necessary to include additional equations relevant to a given.

Let the motion of a body on the plane 7 take place without sliding (then v4 = 0,
where A is the point of contact of the body with the plane ). According to (9.80)
in this case we obtain

Ve +wxr=0. (9.118)

According to Example 9.10 we have

f(xxx3) =0, n= —éi:j;l, (9.119)
which defines vector n. The 12 desired quantities
ve = VvicEr + vacEr +v3cEs,
© = 0|cE| + 05 E) + 0 E},
rc = x1cE1 + xocEz + x3cEs,
R = RIE| + RE, + RIE, = R\E| + RE; + R;E; (9.120)

can be determined from (9.115)—(9.117) and (9.119) which total 12 as well.
If there is no sliding, then there is no dissipation of energy, that is, the mechanical
energy of the rigid body is conserved. This means that

1 1
E = Emvzc + 3 (Kow) — Mg (r¢c on) = const. 9.121)
If there is no friction in the system (contact surfaces are perfectly smooth), then

R=N= Nn. (9.122)

Following scalar multiplication of (9.118) by n we obtain the equation of
constraints of the form

no(vc +® xr) =0. (9.123)

On the other hand, in an absolute system an equation of geometric constraints has
the form (we do not consider the case of a body losing contact with the surface )

x3c = —(rom), 9.124)

from which after differentiation we obtain
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X3c = —(fon+ron)=-rfon=—(rxw)on. (9.125)

Equation of geometric constraints (9.123), after taking into account
relation (9.125), acquires the form

novec =E;ove =X3c = —no(rxw). (9.126)

From (9.115), (9.118), and (9.126) it follows that in the absolute system
0OX X, X3 equation (9.115) takes the form

N
"’ZO'E1+O~E2+5C'3c~E3=(-g-}-ﬁ)E} 9.127)

According to the preceding equation we have
Xic =C; =const, i=1,2, (9.128)

and the projections of the velocity of mass center C onto the plane 7 are constant.
It follows that

xic = Cit, Xac = Cyt, (9.129)

hence

x = ke +xde = \/CE + Chr. 9.130)

This means that the mass center moves in uniform rectilinear motion on the plane
OX1X». Let us determine reaction N during such motion of a rigid body. Equating
the coefficients at E3 in (9.127) we obtain

N=M(g+)'é3c)=M[g—no%(rxw):|

=M[g—no(fxXw®+rXxw)]
=M{g—no[(@Xr)xw+rXel}. (9.131)
Finally, we should also determine quantities w|, @}, w}, x|, X}, and x5, which
are obtained after solving (9.116) and (9.117) by taking into account additional

equations (9.119), (9.122), and (9.131). Let us now consider the case with sliding,
that is, where v4 # 0. Then the reaction at point 4 acting on the body is equal to

R=N+T=N@—ME), 9.132)
Ve

where (9.126) and (9.131) hold true, and the whole course of our calculations was
valid for the case N > 0.
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9.7 Equations of Vibrations of a System of N Rigid Bodies
Connected with Cardan Universal Joints

The subject of this section will be the vibrations of N compound pendulums,
which are axisymmetrical rigid bodies connected to each other by means of Cardan
universal joints (see Table 4.1 of [1]). These joints allow two degrees of freedom of
motion between bodies. The first of the bodies in the chain is excited in a kinematic
way also through a Cardan universal joint (the vector of angular velocity @ comes
from a vertically mounted motor). Each of the axisymmetrical bodies of numbers
Jj = 1,..., N has three mass moments of inertia /;; = I;» # I3, where, according
to the convention adopted in this work, the system of Cartesian coordinates rigidly
connected to body j is denoted by O; X{”X)" X", and moments /3 are calculated
with respect to the axis O; X}”. The moments of inertia I, where j denotes a
rigid body number, and k denotes an axis number (k = 1,2, 3), are calculated with
respect to the coordinates C; X{” X7" X" (axes O; X" are parallel to principal axes
C; X;""), where C; denote positions of the body mass centers.

In order to derive equations of motion of the connected rigid bodies (compound
pendulums), we will make use of the previously introduced Euler angles to describe
the positions of rigid bodies in space and Lagrange equations of the second kind.
Figure 9.11a shows how rotational motion is transmitted from the motor S to the
system of pendulums. Figure 9.11b presents the first rigid body connected by means
of a Cardan universal joint to the motor, and the center of the joint is denoted by O;.
The convention adopted for labeling bodies, the positions of their mass centers C;,
and the distances between the successive centers of joints is depicted in Fig. 9.11c

Body 1 has two possibilities for moving with respect to a system rotating with
velocity @ (Y1 = wt) described by the angles 6, and ¢;.

The appropriate notions and method for using Euler’s angles are described in
Sect. 5.5.4 of [1] on the basis of schematic diagrams presented in Fig. 5.56 [1].

The schematic diagram shown in Fig. 9.11b indicates that these angles are
introduced in a slightly different way. However, it is worth emphasizing that all
three intermediate Cartesian coordinate systems should be of one type, for instance,
right-handed.

We will now show, using the vector calculus, how to carry out a transformation
of the coordinates of a point in the Cartesian coordinate systems O; X|X,X3,
0; X X;X}, 0; XXV XY, and O; X{" X" X" making use of the introduced Euler’s
angles.

By rotating the coordinate system O; X|” X5’ X}’ successively through angles
@1, 01, and V1, the radius vector of an arbitrary point of the body having coordinates
(x", x5, x7"), thatis, E{"x}" +E' x}" +E}' x’, will be expressed in the O; X1 X» X3
coordinate system (Fig. 9.12).

Rotation of the system O;X{"X)"X}" through the angle ¢; (Fig. 9.12a) is
equivalent to the following transformation:

"1 " m"e_n " _n
Eix; +E3x3 =E/x; +E3x3,

E/ =E/, (9.133)



390 9 Body and Multibody Dynamics

Fig. 9.11 (a) Motor S transmitting motion to a system of rigid bodies by means of a Cardan
universal joint. (b) Space system OX;X»>X; (O = O;), body system of body number 1
0,X/{”X;" Xy, body number 1, and Euler’s angles. (¢) Schematic diagram showing labeling
convention for the geometry of the bodies

Fig. 9.12 Successive rotations of coordinate systems through Euler’s angles ¢; (a), 8; (b), and

¥ ()
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and hence, multiplying respectively by E| and E7, we have
xl — E/// E/l/.xi// E/// // :/3//7
_ n n_mn " n_n
x3 = E{' o E{x{" + E’ o E5xY’,
X =xy (9.134)

and eventually we obtain

"o__

X = x{"cos gy + xi’ sin gy,
" "
xy = —x{"sing; + x3’ cos ¢y,
" "
Xy =X, . (9.135)

The next rotation through angle 6, (Fig. 9.12b) leads to the relation

Ejx; + Ejxy = Ejxy + EJxy,
"~ E|, (9.136)

hence, multiplying by E, and E’, we obtain

xy = Ej o Eyxy + Ef o Ejxy,
xy = E; o Ejx) + Ef o Ejxy,
x| = xi, (9.137)

or, in equivalent form,

Xy = x3 cos By — xj sin 6},

Xy = x3 sin 0 + x§ cos 0y,
x| = xi. (9.138)
Then the rotation through angle v, (Fig. 9.12c¢) is described by the relations

Eix; + Eyx; = Ejx{ 4+ Ejx),
5 = Es, (9.139)
from which we obtain
x; =Ej oE\x| + E) o Ex},
x, = E| o Eox| + E} o Epx),
X} = x3, (9.140)
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or, in equivalent form,
X = X] cos Y — x5 sin gy,
X2 = X} sinyy + x5 cos Y,
X3 = Xj. (9.141)
Relations (9.135), (9.138), and (9.141) lead to the following equations:
x1 = x1 cos Y — (x5 cos B — x5 sin 6;) sin ¥y,
xy = x{ sinyy + (x5 cos 0 — x¥ sin 6;) cos ¥y,

X3 = x3 sin 0 + x5 cos 0y, (9.142)

x1 = (x{" cos g + x§ sing;) cos ¥y
— [x5" cos ) — (—x{"sing + x5’ cos ¢y) sin 6y | sin ¥y,
x2 = (x]" cosgy + x5’ sing;) siny
— [x5" cos ) — (—x{" sing + x3" cos ¢1) sin 6; ] cos ¥y,
n

X3 = x5'sin 6 + (—x{” sing + x3’ cos (pl) cos b, (9.143)

" "

x1 = x| [cos ¢ cosy —sing; sin 0, sin ] — x;" cos 0 sin

—

"

+ x5 [sin @ cos ¥ + cos ¢ sin 0; sin ],

x2 = x| [cos ¢y sin ¥y + sin @y sin 6 cos Y] + x5 cos 6; cos ¥

"

+ x5’ [sin @ sin Yr; — cos ¢; sin 6 cos Y],
x3 = —x"sing cos O + x5 sin B + x5’ cos ¢ cos by, (9.144)

and eventually we obtain the relationship between the coordinates of the point in the
stationary system x and the body system x””’ of the form

x =Ax”, (9.145)

where A is the matrix of rotation of body 1 of the form

cos @1 cos Yy — singg sin 0 sinyr;  — cos 6 sin Yy
Ay = | cosg;siny; + sing; sinf cosy;  cos 6 cos Yy
— sin @) cos 6, sin 6,

sin @ cos Y| + cos ¢ sin 0 sin ¥
sin @ sin Y| — cos ¢y sin 6 cos ¢, (9.146)

cos @1 cos 0
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Body 1 during its motion is acted upon by the angular velocity vectors @, @,
and 0 ;. We would like to determine the resultant vector of angular velocity @ of
the body system O X" X" X}", that is, we have to project the vectors of angular
velocity, mentioned previously, onto the axes of this coordinate system. To this
end we determine the relationships between the coordinates of the aforementioned
vectors in the systems O; X1 X, X3, 01 X[ X)X}, O\ X! X)X}, and O, X" X}' X",

According to the previous schematic diagrams we have

x; = x1E; o E| + x,E, o Ef,

xy = x1E; o B} + x,E, o E),

X, = x3, (9.147)
that is,

x| = xjcos Y + xzsinyy,

Xy = —x sin Y + xz cos Yy,

X, = x3, (9.148)
and then

¥ = By o B 4 x{Ef oK.

xy = x;E) o By + xjE; o Ef,

x{ = xi, (9.149)
that is,

x5 = xycos by + xjsin 6y,
x5 = —x5sin ) + xjcos 0y,
X = x, (9.150)
and eventually
xi// — xi/E/{ o E/I// + x:/%/ ;’/O /1//’
¥ = B o B 4 x{E{ o Y.
Y =EJ, 9.151)
that is,
x{" = x| cosg — x5 singy,
xy = x| sing; + x5 cos ¢y,

Xy = xj. (9.152)
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Note that
w =Ko,
¢1 = E/zl/‘/"lv
0, =E/0. (9.153)

Below we present the process of projecting vectors (9.153). We have successively

1. Vector @:
] =0, wy =0, 0y = o,
w) = wsinb), wy = wcos by, o =0,
o' = —wcosbsing;, ) =wcosbcosy, ) =wsinb;
(9.154)
2. Vector ¢,:
¢13 =0, Ph =01, @ =0; (9.155)
3. Vector 1:
01, = 61, 01, = 0, 01, =0,
0/" = 6, cos gy, 07 = 6, sin ¢, 015 = 0. (9.156)
Taking into account the preceding calculations we obtain
w1 = —w cos 0 sin @) + 91 cos ¢y,
w2 = ¢ + wsin 0y,
w13 =  cos @1 cos b + 91 sin ¢y, (9.157)
and eventually the vector of angular velocity of body 1 reads
W] = a)nE’{’ + a)leg’ + C()13E/3”. (9.158)

Let us now consider one of the connected bodies of number j. This body is
connected to the body of number j — 1 by means of a Cardan universal joint.
This means that body j has two ways of moving relative to body j — 1, which are
described by angles ; and ¢; (Fig. 9.13) with respect to the system O; X{" X;" X%’
of axes mutually parallel to the coordinate of body j — 1 (Fig. 9.13a).

According to the calculations conducted earlier, by choosing an arbitrary point
of body j of coordinates (x{”, x”, x{”), we can describe its coordinates in the
stationary system O;X;X,X3; using rotation matrix A; introduced earlier and

employing the previously described notion.
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m

a X!

Fig. 9.13 The position of body j (b) with respect to body j — 1 (a) is determined by two angles
6; and ¢;

Our aim is to express the position of an arbitrary point belonging to an arbitrary
body of number j and given in a coordinate system rigidly connected to body j
in a stationary system, that is, O;X;X,X3. To this end it is necessary to apply
the successive rotations of the bodies preceding body j, which is equivalent to the
following notation:

Xj—1 = AjX;, Xj—2=A;_1Xj_1,
Xj3=A; 7Xj2, Xj=Aj Xj,
J=N,j—k=1, (9.159)
and hence we obtain
Xj—k =Aj ;... A; HA;_|AX;. (9.160)

For instance, in order to determine the coordinates of the point of the body N in
a stationary system one should set j = N and k = N — 1 in (9.160):

X; =A1A2...ANXN, (9161)
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where matrix A; is the matrix that generates the motion described by (9.146), and
therefore the angles describing the position of two bodies of numbers j — 1 and j
arevalidfor2 < j < N.

The matrix A;, 2 < j < N, occurring in the preceding equations, can be easily
obtained from matrix A after setting ¥r; = O:

Cos ; sing; sin 6; —sing; cos;
A= 0 cos f); sin 6; . (9.162)
sing; —cos@; sind; cos ¢; cos 0;

Because the vector of angular velocity of body j — 1 is known, we are able
to determine the vector of angular velocity of body j in the system O; X{" X}’ X%’
rigidly connected to body j. According to Fig. 9.13b, where the known components
of vector @ ;_; are marked in red and those of vectors 0 j and ¢@; are marked in
yellow, using matrix A ; we can express vector @ ; in the coordinates of body ;.

Vectors @ ;1 and 0 ; are projected onto the axes of the coordinate system of
body j in the following way:

Cos @, sing; sin 6; —sing; cos; - w31y, +éj
0 cos 0; sin 0; O —1), , (9.163)
sin 0; —cosg; sinf; cos¢_j cost; W(—1)

and additionally taking into account that ¢ ; lies on the axis O; X;” we obtain

wj = (a)(j_l)l + éj)cosgoj
+ w1y, sing; sin0; — w(; 1), sing; cos b,
wj, = W(j—1),c080; + wj_1),sinb; + ¢;,
wj, = (a)(j_l)l + 91) sing;
— (j—1), COS@; sin0; 4+ w(;j 1), cos@; cos 0;. (9.164)

In order to derive equations of motion we have to determine the positions of
origins O; of all previously used coordinate systems and the positions of mass
centers C; of all rigid bodies.

According to Fig. 9.11c the position of the center of joint O, can be determined
from (9.145) because, substituting X"’ = [0 0 /;]T, we obtain

—I; (sin ¢y cos wt + cos ¢ sin 6y sinwt) ,

X10,

X20, = —l) (sin@; sinwt — cos ¢; sin 6 cos wt) ,

X30, = —l) cos ¢ cos 0, (9.165)
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and the position of the mass center of body 1 is equal to

Xi1c, = —ay (sin ) coswt + cos ¢; sin 0; sinwt) ,
X2, = —a; (sing; sinwt — cos ¢ sin B cos wt) ,
X3¢, = —aj cos ¢; cos 0. (9.166)

Recurrence formulas for the determination of positions of the remaining points
O, follow from the equation

SN
0j-10; = —E{'lj 1 = (x10; — X10;1) Ex

+ (x20; — x20j-1) E2 + (x30; — x30j-1) Es. (9.167)
Multiplying relation (9.159) in turn by E;, i = 1, 2, 3 we obtain

"

X10j = X10j—1 — lj—1E; o EY’,
= xp0j_1 —1;_1E; o E
X20j = X20j—1 j—1L£2 s

"

X30; = X30j—1 —lj_1E3O 3 j=2,...,N, (9.168)

where vector E}’ is associated with body j — 1.
In turn, the mass centers C; of the rigid bodies are described by the equations

"
X1cj = X105 —ajEl OE» s
"
X2cj = X20j —ajEz OE» s

X3Cj ZX30j—ajE3 OE%”, ] =2,...,N, (9.169)

and vector EY’ is associated with body ;.

In order to exploit Lagrange’s equations of the second kind, which serve to
derive equations of motion of the connected rigid bodies, one should determine
the kinetic energy 7' of the system of bodies, the potential energy V' of the bodies
in the gravitational force field, and the potential energy U accumulated in each of
j =1,..., N Cardan universal joints. The energies are given by the equations

N
1 . . .
T=3 > m; (XIZC]' + X3¢, +x32Cj)

j=1

N N N
1
+ 5 | Do 1hel, + D 1o, + ) 1w, | (9.170)
1

J=1 j= J=1



398 9 Body and Multibody Dynamics

N
V=2gY mjx. (9.171)
=1
1 N
U=32k (8 +¢}). 9.172)
j=l1

where g is the acceleration of gravity and k ; denotes the stiffness coefficient of each
of the Cardan universal joints j.
Lagrange’s equations of the second kind in this case take the form

doT 9T U Vv

WLV o =1, 6N, 9.173
dr Bq, aq,- + 3q,~ + 3%‘ : ( )

where ¢; are the generalized coordinates of the body.

Let us write the equations of motion that follow from relation (9.173) in the
explicit form for the case of only one body j = 1.

From (9.166) we obtain

X1, = —ai [(/')1 COS @] COSw! — w sin ¢y sin wt — ¢ sin ¢ sin B; sin wt
+ 91 cos @1 cos B sin wt + w cos ¢, sin B cos a)t] ,
Xoc, = —ay [(,211 cos @1 Sin wt + w sin @1 cos wt + ¢ sin ¢ sin O cos wt
— él cos ¢ cos B coswt + w cos ¢ sin O sin a)t] ,
X3¢, = a1 [qbl sin @ cos 0 + 6, cos @ sin 91] . (9.174)

Taking into account relations (9.174) and (9.149) in (9.170) and then formu-
las (9.166) in (9.171) from (9.173) we obtain the following equation of motion for
the first body with two degrees of freedom with the adopted generalized coordinates
0, and ¢y:

¢ =2+ M) {2[w6; (C + 112) —aigm sin (¢1)] cos (Or)
—kigr + A (a)2 cos? (@) — @12) sin ((pl)} ,

b, = [4 (111 + My) cos® (¢1) + 113 sin® (901)]_l c0” {(C = I
+ 2115 — I13) sin 20) — 4 [((C + I12) @ cos(O) + Asin(2¢1)6)1) ¢y
—aigmy cos(gr) sin(0)) — k1 O1]}, (9.175)

where
M, = mal, A=1—13+ M,

B = Acos(2¢) ., C =B+ M.
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9.8 Conservative Vibrations of a Rigid Body Supported
Elastically in the Gravitational Field

Now we will make use of the previously introduced knowledge regarding the
geometry of masses, the kinematics of a rigid body, and Lagrange’s equations of
the second kind to the derivation of equations of motion of a rigid body elastically
supported at three points A;, i = 1, 2, 3 (see [3]). The body has a mass M and
moments of inertia with respect to principal centroidal axes of inertia I; = [ X!
L =1 X} and I3 = [ Xy Linear springs of stiffnesses k;, i = 1, 2, 3 are connected
with each of the points A;. The springs carry the load only along their axes, that is,
the spring of stiffness k; carries the load along the axis OX;, and their opposite ends
B; are subjected to a harmonic kinematic excitation (b; cos w;t), which is illustrated
in Fig. 9.14.

The considered body has six degrees of freedom, and the axes of the non-
stationary system C X" X" X" situated at the mass center of the body C coincide
with the axes of principal centroidal axes of inertia.

In the solution of this problem we will make certain assumptions. Introducing a
stationary coordinate system at an arbitrary point O it is easy to notice that under
the weight Mg the rigid body goes down rotating simultaneously about a certain

b,cosam,t

i A X
Xs :

b,casm,t
BLU--U AAAA
2 ) VYV

2

g

i

|

Fig. 9.14 A rigid body supported by springs and the introduced Cartesian coordinate systems
(only vectors r3, Ars, and rj are shown)
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unknown axis (it becomes skewed with respect to the Cartesian coordinate system
of the origin O) assuming in this position a configuration of static equilibrium.
Because later on we do not take into account the geometric non-linearities associated
with the motion of springs, we can assume that in the static equilibrium position
points O and C coincide. In a static equilibrium position, the gravity force M g is
carried exclusively by a vertically situated spring, and a certain amount of potential
energy will already be accumulated in it. Vibrations will be further measured from
the static equilibrium position, and in this position all three Cartesian coordinate
systems introduced in Fig. 9.14 are coincident.

From the calculations of Sect. 5.7 (see Chap. 5 of [1]) it follows that the general
motion of a rigid body can be described by the translational motion of mass center
C of this body and three rotations about the axes of the Cartesian coordinate
system, where these axes coincide with the principal centroidal axes of inertia of
the considered rigid body.

According to Fig. 9.14, this means that an arbitrary position of the body can be
characterized by vector r¢ (displacement of mass center C ), and the system assumes
a position described by the coordinate system CX;X,X3. Next, it is possible to
perform the rotation of the body about point C, measured, for example, by three of
Euler’s angles, in such a way that after three such rotations the axes of the system
C XX, X5 are coincident with the axes C X" X" X}".

Because the body has six degrees of freedom, the Cartesian coordinates of an
arbitrary point that belongs to a rigid body can be described by the following six
generalized coordinates.

1. The coordinates of the mass center C(x;c, Xa2c, X3¢ ), Where ¢, = x1¢c = Xy,
q» = Xac = X2, 3 = X3c = X3, and the vector r¢ = rc¢[xic, X2¢, X3c]
determines the translational motion of the body.

2. The Euler angles that represent the motion of a body about a point ¢4 = 6,
qs = 92, de = 93 (Flg 915)

If we rotate the coordinate system CX|"X)"X}" successively through angles
03, 6>, and 6, then the radius vector of an arbitrary body point of coordinates
(x}", x3’, x4"), that is, E{"x}" + EJ'x}" + EY'x}’, is expressed in the coordinate
system C X X, X3, which is illustrated in Fig. 9.16.

The rotation of the system CX[”X}"X}" through the angle 65 (Fig. 9.16a) is
equivalent to the following transformation:

{4 B = B B
I =EY, (9.176)
which after multiplying by E/ and EJ gives
o = (B ) + (B oK),
o = ! (B 0 B) + (B o ).
Xy =xy, 9.177)
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AX,

Fig. 9.15 Angles 6; and angular velocities 6; introduced to analyze the part of rigid-body motion
associated with motion about a point

Fig. 9.16 Successive rotations of coordinate systems through angles 65 (a), 6, (b), and 6, (¢)

and eventually we have
x| = x{" cos 05 — x3)" sin 65,

Y = x{"sin 65 + x}’ cos 65,

xy = xy. (9.178)

=
N
|
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The next rotation through the angle 6, leads to the relationship (Fig. 9.16b)
B + Byl = E{x{ + B4,
E] = E), (9.179)

which after multiplying by E| and E} gives

X{ = 3 (B o B}) + ¥4 (Y oY)

xy = x| (Ef o E}) + x% (E} o E}),

Xy =x3, (9.180)
and hence we have

x| = x{ cos 0, + x5 sin 65,

Xy = —x{ sin b, + x5 cos 65,
X, = xl. (9.181)

Then rotation through the angle 6, (Fig. 9.16¢) is described by the relationships
Exxs + Esxs = Eyx) + Ejx;,
E| =E,, (9.182)

from which we obtain

X1 = Xy, (9.183)
or, in equivalent form,
X2 = xcos O — x} sin 6y,
X3 = x5 8in 6y + xj cos 6y,
xXp = xj. (9.184)

Taking into account the preceding relationships we obtain

x1 = x} cos b + x sin 6,

= (x{” cos 3 — x3" sin 65) cos 6> + x}’ sin 6,

= x1" cos 6 cos O3 — x}’ sin B3 cos 6, + x3’ sin 6,,
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X2 = xycos B — xjsin 6

x5 cos B — (—x/ sin 0, + x¥ cos 6;) sin 0,

(x}"sin 63 + x3” cos 63) cos 6;
— [ (x{" cos 03 — x7" sin 65) sin 6, + x3” cos 6, ] sin 6,
///

= (sin 65 cos B; + cos 65 sin 6, sin 6;)

+ x5 (cos 0 cos 05 — sin 65 sin 6, sin 6;) — x3" sin 6 cos 65,

x5 sin ) + x3 cos 0

X3

x5 sin 6y + (—x{ sin 6> + x5 cos 6,) cos

= (xi” sin 63 + x5 cos 93) sin 0,

+ [ (x]" cos 3 — x3" sin 65) sin 6 + x}” cos 6> ] cos 6,

= x{” (sin 6y sin B3 — cos 65 sin 6, cos 6;)

"

+ x5 (cos 65 sin B + sin 05 sin 6 cos B)) + x3’ cos 6; cos 65, (9.185)

or, in the equivalent matrix form,

[ cos 6, cos 63 —sin 3 cos 6, sin 6
X1 sin 03 cos 01 + cos 01 cos B3 — —sin 6} cos 6, x{”
X2 | =| +cosBzsinBrsinf; — sin 6Bz sin b, sin b x5
x3 xg//
sin 0 sin 63 — cos 03 sin 0} cos 01 cos 6,
| —cos 03 sinf, cos By 4+ sin B3 sin 6 cos By

(9.186)

The change in time of each of the introduced angles 6 = 0,(7), 6, = 6,(7),
and 03 = 65(t) generates angular velocities 91, 92, and 93 of the vectors drawn in
Fig. 9.15.

To determine the kinetic energy of a body it is necessary to know the components
of the angular velocity vector

0=0,+0,+ 05, (9.187)
expressed in the body coordinate system C X" X" X3

This time we will analyze successive rotations of the coordinate systems
presented in Fig. 9.16 in the reverse order.
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We have successively
X = xi,
Xy = xp o8 6; + x3sin by,
X3 = —xsin 0y + x3 cos 6y, (9.188)
and then

X} = x| cos 6, — x} sin 05,

"o__
X2 =X
X3 = x| sin 6, + x5 cos 6,, (9.189)

and eventually we obtain

X" = x| cos B3 + x7 sin 63,

xy" = —x{ sin B3 + xj cos 65,
n 4
X = (9.190)

According to Fig. 9.15 we have
0,=E6. 0,=E]6,  0;=E/0,. (9.191)

We project each of the velocity vectors of (9.190) onto the axes of the system
CX[" X} X" according to (9.187)+(9.190).
For vector #, we have

éil =0, éfz =0, éis =0,
01, = 61 cos 6, 0, =0, 0, = 6, sin6,,
9{/{ = 6, cos 0, cos 65, 9{’2’ = —0, cos 6 sin 65, 91”:,: =0;sinf.  (9.192)

For vector 6, we have

A N o
)1 = 0ysin 63,

05y = 6, cos b5,

)y = 0. (9.193)
Vector @ in the coordinate system has the form
0 =E/ (91 cos 0 cos 03 + 65 sin 93)
+EY (—91 cos 6, sin 05 + 6, cos 93)

+E! (é3 + 6y sin 92) . (9.194)
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For the sake of simplification of calculation we will assume that the body is
supported at three points A, A,, and Az, which are the ends of springs of linear
stiffnesses that are in contact with the body (we neglect friction). As was already
mentioned, the opposite ends B, B,, B3 of the springs are excited in a harmonic
kinematic way, and the excitation has the form xp; = b;cosw;t, i = 1,2,3.
The springs are guided, and their axes are parallel to the corresponding axes of
the coordinate system OX; X, X3, and points A; and B; are allowed to move only
along the axis OX;. In this way, geometric non-linearities caused by the motion
of the body and generated by the forces in springs do not appear, and the springs
are assumed to be working in a linear range, which is expressed by their stiffness
coefficients k; .

In a static equilibrium position for b; = 0 the coordinates of points B, are
described in the system OX; X, X3, because points C and O are coincident (C =
0), and the angles 6, = 0, n = 1,2, 3. In turn, the coordinates of points A4; in the
static equilibrium position are equal to

"

D —
xA] - rAlxl rAlxl’

s _m
'xAz =Ty = rAzxz’

Xty = Ty = - (9.195)
Coordinates of points A; associated with the direction of the corresponding

spring and caused by the generalized displacements in the system OX; X, X3 are
given below:

— s "
X14, = X}, 4+ X1 + [x]y, cos 6 cos 0

—x5, sin 3 cos 0 + x3 sin6, ],
Xod, = Xy, + X2 + [x{’;lz (sin 05 cos 0 + cos 03 sin 6, sin 0;)
+ x4}, (cos 0 cos B3 — sin 63 sin 6, sin 0,) — x7 sin 6 cos 6, .
X34y = X34, + X3 + [x]), (sin 0y sin 65 — cos 65 sin 6 cos 6)
+ x4}, (cos 65 sin 6 + sin 03 sin 6, cos ;) + x5, cos B cos 6], (9.196)
where now xi, x», x3 result from the translational displacement of the mass center

of the rigid body.
The following forces are generated in the springs k;:

P =—kiA = -k, [x1 + xﬂh cos 0, cos 63 — xé’;h sin 63 cos 6,

+ x5, sinf — x1p,(1)],
Py = —kady = —ky [x2 + x1}, (sin 63 cos B + cos 63 sin 6, sin 6;)
+ x4}, (cos 6; cos 03 — sin 65 sin 6, sin 6;)

— X3, sin 0; cos 6y — x2,(1)].
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Py = —k3As = —k3 [x3 + X1y, (sin 6 sin 63 — cos 63 sin 6, cos 6;)

+ x5, (cos B3 sin §; — sin 63 sin 6, cos 6;)

+ x4}, cos 0y cos 0, — x3p,(1)], (9.197)

where A1, A, A3 denote deflections of the springs situated in parallel to the axes
0X,, 0X,, and OX3 measured from a static equilibrium position.

Because the vibrations are observed from a static equilibrium position, potential
energy is accumulated only in the springs and is equal to

V == (kiA] + koAJ + k3A3) . (9.198)

N =

Using (9.198), the kinetic energy of the considered rigid body is equal to

1 I /- . 2
T = EM (X7 + X5 +%3) + 31 (91 cos 0, cos 03 + 0, sin 93)

I . . . 2 I3 . . 2
+ ?2 (—91 cos 6, sin 65 + 6 cos 93) + 73 (93 + 6y sin 92) . (9.199)

Lagrange’s equations of the second kind for the considered case have the
following form:

d aT aT av
S 2 % o =16 (9.200)
drdg; dq; = 9gq;

where g1 = x1, 42 = X2, 43 = x3, 44 = 01, q5 = >, g6 = 5.
We calculate successively

BT_M_ BT_M_ BT_M_
o gy T g T
8_?" =1 (91 cos? 0, cos® 65 + éz cos 6, cos 05 sin 93)
06, ) ) ’
+ I (91 cos’ 0, sin’ B3 — 92 cos 6, sin 65 cos 93)
+ I3 (91 Sil’l2 6, + 93 sin 92) s
oT - 1. .
8_6?2 =1 (92 sin® 65 + 591 cos 6, sin 293)

+ I (91 cos O3 — 591 cos 6, sin 293) ,
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oT . .
=1 (9 + 6, sinb,),
P 3|63 1 2)
oT
— =0,
06,
oT 1 . ..
3—92 = —511 (912 cos? B3 sin 26, + 6,6, sin 6, sin 293)
1 . ..
+ Elz (—912 sin’ 03 sin 260, + 6,6, sin 6, sin 293)
1., . ..
+ I3 591 sin20, + 0,65cos 6, |,
oT Lo, 5. .. L.
— =1, | —=6; cos” 6, sin 205 + 6,6, cos 6, cos 265 + — 05 sin 26;
00 2 2
1 22 2 . A A 1 N2 o
+ I 591 cos” 6, sin 2605 — 010, cos 6, cos 205 — 592 sin26; |,
a_V_k[ +/// 9 9_/// 9 9+/// -e_l/l(t)]
B 1[X1 + X[y, cos 6y cos 3 — x3y, sin 63 cos 0 + x5, sin 6 — x{p, ,
v _ k " (sin@ 0 03 sin 6, sin 0
PP 2 [x2 4 x{, (sin 65 cos 0 + cos 0 sin 6, sin 6;)
+ x5, (cos 6y cos B3 — sin 05 sin 6, sin 6;) — x5} sin 0; cos 6, — x5, (0]
v _ " . . .
P ks [x3 + X4, (sin 0, sin 63 — cos 05 sin 8, cos 6;)
X3
+ X7, (cos B3 sin 6 + sin 03 sin 6, cos ;) + x5, cos O cos 6, — x3,(1)].,
v _ " . . .
0= ko {xz [xlAz (cos 05 sin B, cos O; — sin 05 sin 0))
1

o . .
— X34, (sin 0 cos 63 + sin 63 sin 6 cos 6)

n " . . .
— X34, os 0 cos 03] + [x7y, (sin 63 cos 0 + cos 65 sin 0 sin 6;)

+ x4}, (cos 6} cos 03 — sin 0 sin 6, sin 6;)

" . " . . .
— x4}, sin 0 cos 6, — x5, (1) ] - [x{"}, (—sin 63 sin 6 + cos 0 sin 6, cos 6;)

" . . . "
+ x5, (—sin 6; cos 03 — sin B3 sin 6, cos 6;) — x5, cos By cos 6> ]}

+ ka{xs [xi’//13 (cos 0 sin 03 + cos 05 sin 6, sin 6)

n . . . n .
+ X34, (cos 63 cos 6 — sin 05 sin 6, sin 1) — x3,, sin 6 cos 92]

+ [x14, (sin 6 sin 5 — cos 65 sin 6; cos 6;)

+ x5, (cos O3 sin 0 + sin O3 sin 6; cos 6;)
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+ x5}, cos 0y cos B — x3p,(1)] - [x{, (cos 0 sin 63 + cos 05 sin 6, sin 6;)

" . . . oo
+ x5}, (cos 65 cos 0 — sin 63 sin 6, sin ) — x5} sin 6; cos 6]},

14
_ M mwooo- . "
8_92 = kl{xl ( Xy, sin 6> cos 03 + x5, sin 05 sin 6 + x5y, cos 92)
" " .
+ x4, cos 6 cos B3 — x7 sin 05 cos 6,
n . " .
+ x5, sin 0, — x1p,(t)] - [ — x{}, sin6; cos 03
+ x7y, sin 63 sin 6, 4 x7; cos 2]} + ka{x2 [x{’;lz cos 05 cos 6, sin 0,
- xé’ﬁlz sin 63 cos 6, sin 0, + x;’;lz sin 0 sin 92]
+ [x1, (sin 65 cos B + cos 63 sin 6, sin ;)
+ X3, (cos 6 cos O — sin 6 sin 6, sin 6;)
— x4}, sin 0 cos 6y — x2p, () ] - [x{}, cos 65 cos 6, sin 6,
— X3}, sin 63 cos 0, sin 6 + x7, sin 6 sin 6, ]}
+k { —x 0 0 0 . sin6 0 0
3{xa| — x4, cos 65 cos 6, cos B + x5, sin 65 cos 6, cos 6,
" . " . . .
— X34, Cos 0 sin 93] + [xlA3 (sin 6 sin 63 — cos 65 sin 6, cos 0;)
+ x5, (cos B3 sin 0; + sin 03 sin 6, cos 6) 4 x5, cos O cos 0,
"
— X3B, (t)] . [ — X|4, COS 03 cos 6, cos 6,
+ xé’/’h sin 63 cos 6, cos 0 — x:’,,’;h cos 0, sin 92]},
W ki{xy (=x1), cos 6 sin 65 — x3; cos 65 cos B, + x5 cos 65)
393 — K] 1 14, 2 3 24, 3 2 34, 2

+ [x74, cos 6, cos 65 — x5, sin 65 cos 6,

+ x5, sin 0, — x1p,(1)] - [ — x{}, cos B, sin 3 — X7y cos b5 cos 0]}

+ ka{xa[x1}, (cos 65 cos B — sin 65 sin 6, sin 6;)

n . . .
— X34, (cos 0 sin 63 + cos 65 sin 6 sin 6) ]

+ [x1, (sin 65 cos B + cos 65 sin 6, sin 6;)

+ xﬂz (cos 01 cos 63 — sin 65 sin 6, sin 0;)

— X3y, sin 6 cos 6 — x23, 0] - [xi’;lz (cos 65 cos 0 — sin 05 sin 0, sin 6;)

— x5, (cos 0; sin 03 + cos 63 sin 0, sin ;) |}

+ k3{2x3[x{y, (sin 6 cos 05 + sin 65 sin 6, sin 6;)

+ x5, (—sin 63 sin 6; + cos 63 sin 6, cos 6)) |
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+ Z[Xﬁ} (sin 6y sin 63 — cos B5 sin 6, cos ;)
+ x5, (cos B3 sin B; + sin 63 sin 6, cos 6;)
+ X}, cos 6 cos 0 — x3p,(1)] - [ X1, (sin 0 cos 65 + sin 65 sin 6, sin 6;)

"

+ x5, (—sin 63 sin 6, + cos 63 sin 6 cos 6,) |}. (9.201)

Substituting the results of calculations (9.201) into Lagrange’s equations (9.200)
we obtain six non-linear ordinary differential equations that describe the conserva-
tive dynamics of the considered rigid body subjected to kinematic excitation at three
points and supported with linear springs. For small vibrations the problem can be
simplified by the introduction of approximations cos §; = 1 and sin §; = 6;.

In the general case in various places of the body we can apply external forces
Fs = Fs(t) whose points of application are determined by vectors rg, s =
1,2,...,S, and whose amount can be smaller or greater than the number of the
introduced generalized coordinates. In this case equations of motion of the system
can be derived using Lagrange’s equations of the second kind of the form

d aT oT oV

S8 L o =16 (9.202)
dt dg; dq;  0q; !

where Q; is the generalized force corresponding to the generalized coordinate g ;
and should be expressed in terms of forces F.

We determine the generalized forces based on the principle that the sum of works
SW of forces Fg (s = 1,2,...,S) during virtual displacements drg is equal to the
sum of works of generalized forces Q ; during virtual displacements §g, that is,

SW =F,oér, = 0,;8q;. (9.203)

where the Einstein summation applies. Coordinates of the vectors that determine the
positions of force vectors must be expressed in terms of the generalized coordinates,
that is, we have

ry =71 (q1,...,96,1), (9.204)
hence we obtain

or
Sry = ré’q,, j=1,...6, s=1,....5. (9.205)

Substituting relations (9.205) into (9.203) we obtain

S 6 Ir
SW = ZFSO quqj

j=1

6 S
= (Z Fs o ) 8q; = Z 0;8q;. (9.206)

Jj=1 Jj=1
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Fig. 9.17 Axisymmetrical body in motion about a point and the introduced systems of coordinates

from which follows

org
, 9.207)
g,

N
Qi)=Y F()o

s=1

which was the aim of our calculations.

Below we will consider small vibrations of a free axisymmetrical body in motion
about a point, which was the subject of analysis in [4]. As distinct from the previous
general calculations, here we introduce several simplifications leading to a system
of linear differential equations.

Example 9.1. Determine the critical angular velocity of the top shown in Fig. 9.17,
on the assumption that the angular velocity with respect to its symmetry axis OX _,:"

is equal to 63 = w = const, and the mass center M of the body is situated at
distance a from point O.

From (9.199), and setting I} = I, = I and I3 = I, we obtain
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T = % (91 cos 65 cos 05 + 6, sin 93)2
+ % (—91 cos 0, sin 63 + 6, cos 93) + - (93 + 6y sin 92)
= é (912 cos® 6, + 922) + 170 (a) + 6, sin 92) . ()

We assume that the generalized coordinates 6 and 6 are small and that w >> 91
and @ > 6,. On these assumptions () takes the form

Tow? .
0w 0.

T = é (912 cos? 6 + 922) +

We calculate successively

d T

- - = 1923

dr 892
oT . I . :
8_92 = Iowb, + 25912 sin 6, cos 6, =~ Tpw0,

d T d

L = Io0H —19 0

a7 891 owbtr + 1 cos® 6,

= Ioa)éz + Iél cos® 0, — 21@192 sin 6, cos 6,
o] ]oa)éz + ]él,

oT
R—
30,

Because of the small values of the angles 6; and 6, we neglect the potential
energy of a body in the gravitational field, and the generalized forces are equal to
Q1= Mgasinf, = Mgab, and Q, = Mgasint, = Mgab,.

From Lagrange’s equations we obtain

16, + Iowb, = Mgab,,
16, — Iowb, = Mgabs,
and dividing them by / we have
6, —a?0, + pb, = 0,
6, — a6, + B6; =0, (%)
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Finally, the system of two ordinary differential equations of the form (xx) is left
for the analysis. We seek their solutions in the form of the functions

91 = Qloeiwot, 92 = oneiwot, i2 = —1.
Inserting the preceding solutions into (**) we obtain
— (0w +a?) iwoB] [ 610 0
—iwop — (w5 +a?) ] [ 620 0

and the desired frequencies of free vibrations are determined from the characteristic
equation

— (wp +0?) iwo B

—iwpp — (03 +a?)
From the preceding equation we obtain
(03 + 0{2)2 —wpB* = 0wy —wh (B2 —22%) +a* = 0.

The roots of the preceding equation determine the frequencies of free vibrations,
which are equal to

1
wh = > (B> —2a%) £ VB2 — 402
We determine the critical value of velocity for which the assumed small
vibrations about point O occur from the condition 8 = 2, and it is equal to
w = % IMga. O

9.9 A Wobblestone Dynamics

9.9.1 Coulomb-Contensou Friction Model

Since the time of the ancient Celts it has been known that certain bodies having
a center of mass not coincident with their centroid and having principal centroidal
axes of inertia not coincident with their geometric axes exhibit certain interesting
dynamical behaviors. An example of such a rigid body is the so-called wobblestone
(a half-ellipsoid solid having many other names, e.g., rattleback or celt), which lies
on a flat horizontal surface, sets in rotational motion about the vertical axis, and
rotates in only one direction. The imposition of an initial velocity in the opposite
direction leads to a quick cessation of the rotation in this direction, and subsequently
the stone starts its transverse vibrations and rotation in the opposite direction.
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The Celts believed that all bodies (objects) possessed consciousness and spirit.
Wobblestones came from meteorites, which were readily found in Ireland and, as
they provided a yes or no answer, were used by Celts for fortune telling.

The first scientific work concerning the dynamics of a wobblestone was pub-
lished by Walker [5] in 1896. Walker observed that the amazing dynamics of the
wobblestone was the result of the asymmetry of the principal centroidal axes of
inertia with respect to the symmetrical axes of the stone. Analyzing this problem
was not easy because of the absence of linear terms in equations of dynamics and
because of the need for an adequate friction model. In 1986 Hermann returned to
this topic [6]. He pointed to the possibility of the return motion of the stone in either
one or two directions depending on the geometric and inertial parameters of a given
rigid body. The lack of inclusion of slip by Hermann led to a contradiction with the
earlier assumptions of Magnus [7], where a linear dependence was assumed between
the friction force and the velocity of the contact point of the stone and horizontal
surface on which the stone moved. The problem was taken up by Caughey [8],
but his model deviated considerably from reality. In 1982 Kane and Levinson [9]
introduced a model that was closer to reality and took into account rolling but in
the absence of slip. The model allowed for a demonstration of several changes in
the direction of rotation, and the introduction of viscous damping into the system
allowed for their reduction to one or two changes.

One year later Lindberg and Longman [10] observed that it was impossible to
decouple the linearized equations of motion of a wobblestone due to the presence
of gyroscopic terms.

A more complex model of stone dynamics was proposed by Garcia and
Hubbard [11] that included aerodynamic dissipation, dry friction, and slip; in
addition, numerical analysis was enhanced by experimental investigations.

The lack of a complete explanation, including the lack of an adequate mathemati-
cal model of the dynamics of a wobblestone, also represented a challenge for leading
Russian mechanicians. In 2002 Markeev [12] conducted an analysis of the dynamics
of a wobblestone in the neighborhood of static and dynamic equilibrium positions
on the assumption of an absence of friction. However, the derived perturbation
equations included only the local dynamics of the stone. On the other hand, they
were verified in an experimental way as well.

In 2006 Borisov et al. [13] undertook a mathematical modeling of a heavy
unbalanced ellipsoid rolling without slip on a horizontal surface pointing to
phenomena similar to those observed during the motion of a wobblestone. In 2008,
Zhuravlev and Klimov [14] presented a model of a wobblestone that was the closest
to reality and that introduced the possibility of slip of the contact point between the
stone and a horizontal surface and, additionally, included the CCZ friction model,
discussed earlier in Sect. 2.11.2 of [1]. The aforementioned friction leads to mutual
coupling of rotations and slips of the body, and the derived equations of motion
allow one to carry out a global analysis of the dynamics of a wobblestone with the
aid of numerical methods.



414 9 Body and Multibody Dynamics

X=X

Fig. 9.18 Wobblestone on a horizontal plane 7 and axes of a body coordinate system and absolute
coordinate system

Figure 9.18 shows a view of a wobblestone that includes the axes of the absolute
system OX X, X3 and systems of principal centroidal axes of inertia rotated through
angle o with respect to the principal axes of the ellipsoid.

The position of point of contact A between the stone and plane 7 in the body
system located at the mass center of the stone is given by the vector k + r, where

— —
k=CO = (0,0, —k)Tandr = 0’4 = (x], x}, x})T.

The principal geometric axes of an ellipsoid are denoted by a, b, ¢, where a >
b > c. Moreover, in an absolute system the unit vector was introduced such that
no g < 0. Equations of motion of the wobblestone in a body system have the form

d
md—:’—l—wx(mv):—mgon—l—Nn—T,

d
ch—(: tox(cw)=NEk+r)xn—(k+r)xT,

d_n +®xn=0, (9.208)
dr
where the third equation of system (9.208) is the Poisson equation.

Above, m is the mass of the wobblestone; /. is the diagonal inertia matrix with
respect to the mass center C of non-zero elements B;, B, and Bj; T is the friction
force directed against the velocity of point A, where vy = v + @ x (k + r); and
N = Nn s a normal force at the point of contact (reaction at the contact point is
equalto R=N+T).

Three vector equations (9.208) have ten unknowns: n = (ny, na, }’l3)T, vV =
(v, v2, v3)Tand = (w1, w,, w3)T and the scalar N. An additional scalar equation
necessary to solve the problem results from the observation that during the motion of
a wobblestone, it remains in contact the entire time with the horizontal plane OX | X,
whose normal vector is n (only this case will be considered). The perpendicularity
condition generates the tenth scalar equation of the form

v+wx(k+r)on=0. (9.209)
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Fig. 9.19 Construction of a wobblestone

The friction force occurring in the first two equations of (9.208) has the form

B UN(V+ o x (k+71))
v+ wx(k+r) + 3% 1won|
3

(9.210)

and, as can be seen, it depends on v, @, n, and r + k. Above, u is the coefficient of
kinetic friction, p is the radius of the circular contact path between two bodies. On
the assumption that p is small, the friction moment M7 can be neglected.

In Fig. 9.19 it is shown how one may easily construct a wobblestone.

On one half of a homogeneous ellipsoid along its axis @ we place a homogeneous
rod fixed by a screw to the ellipsoid at point O. Such an arrangement results in a
change to the position of the mass center. Next, we rotate the rod through angle «,
changing in this way both the moments of inertia and the positions of the principal
centroidal axes of inertia.

To simplify the numerical simulation of systems (9.208) and (9.209), let us
choose a coordinate system so as to simplify the second of vector equations (9.208)
by diagonalization of matrix I¢. The Cartesian coordinate system O’X, X5, X3,
will be called an ellipsoid system. The second coordinate system O'X|X)X} is
rotated with respect to the previous one through angle o about the axis O'X} =
O’ X;.. The aforementioned coordinate systems have their corresponding axes
parallel to those of systems C X, X». X3, and CX{X}X}. The system CX{X}X}
is a system of principal centroidal axes of inertia (since axis CX; = CX3, is the
principal centroidal axis, the products of inertia /cx,, x;, = Icxoxse = lexx; =
Iexyx; = 0).

If we know the moments of inertia in the system CX;,X».X3., then after
rotation through appropriate angle o the inertia matrix assumes a diagonal form
Ic = diag[ll, 12, 13]

In order to determine the moments of inertia /| = Iy, I, = I, we will make
use of the results of calculations from Example 3.9 in [1].
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We have accordingly

_ 2 .2 :

chl’ =Ivy =1, = Icx cos’a + Icx, sin“a — Icx, x,, sin2a,
_ -2 2 :

chg =lyy =1, = Icx sin"a + Icx, cos"a + Icx, x,, Sin 2,

chg =IOX§ = 13. (9211)
The product of inertia in the coordinate system C XX} X} is equal to

Iex, —1
e T Ginda + Iex, x,, cos2a = 0, (9.212)

lexix; =
because we choose the angle a, so that /cy/y; = 0. On the basis of (9.212) we
determine the value of the unknown angle

ZICXI('XZL'

o = —arctan (9.213)

Iex,, —Icx,,

Having determined the angle o, we can now express an arbitrary vector r
described by the coordinates O’ X1, X5, X3, in terms of the coordinates obtained
after rotation of this system through the angle «, that is, coordinates of the system
O'X| X} X}, and vice versa. According to (5.176) we obtain

I

X . X

te cosa —sina 0 1
X2¢ | = | sina cosa O | x5 ]. (9.214)

0 0 1 ’

X3¢ X3

An equation of an ellipsoid in an ellipsoid system has the canonical form

2 2 2
x’ie

p(r) = "le 4 % v 8 o, 9.215)

and according to (9.215) in the system O’X| X} X} this equation takes the form

(—x| cosa + x} sina)’

$(r) =

a?

7 . / 2
(x] sina Jl:zxz cos@)” % _1=0. (9.216)

Next, we express the function ¢ (r) with the aid of matrix R in the following way:

¢(@)+1=roRr 9.217)
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or, in expanded form,

x{z(bzcosza + a®sin’a) + xéz(bzsinza + a*cos’a)
2x)xb(a> — b?)sinacosa  xP

172 3 2 72

— = Rux;” + Rypx;

2h2 2
+ Ry3xy — (Rip + Rap)x(xh — (Ri3 + Rap)x|x}
— (Ry3 + Ra)xhxs. (9.218)

Equating terms at the same powers of variables x| and x/, and their combinations,
we obtain the desired elements of matrix R:

(b*cos’a + a’sin’a)

Ry = 52 ,
(b?sin*a + a’cos’a)
Ry = 252 ,
1
R3; = =k
b2_ 2
R, = Ry = az—bj sin o cos «,
Riz = R31 = Ry3 = R3 = 0. 9.219)
Note that
1d
Ed—‘f — Rr. (9.220)

A normal unit vector at the point of contact n is defined as

do
_ _ _dr
n= ik (9.221)
dr
where
ni(t) +ni(t) +ni@) = 1. (9.222)

The normal unit vector n and vector % are proportional to one another, that is,

n= fili—f, f <o. (9.223)

The coefficient f and the coordinates of the point of contact in the ellipsoid
system are determined from (9.215) and (9.223), that is, one has to solve the
following system of equations:
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2 2 2

| ) X3 _
@ Tyt =0
2f-xle 2fx26 2f-x3e
nxle = a—z, X2e — 7, X3¢ — C—2 (9224)
Solutions of system (9.224) have the form
a’ny, (1)
Xle = — ,
a2, 0+ b 1) + ¢ (0
bzn«\'Zf’ (t)
X2e = — s
\/azn)zqe(t) + bzn)z% @) + cznise ()
2ny,, (1)
X3¢ = — s
Jan (O + 0202, (1) + e, (1)
L W t bZn2 2n2 (¢ 9.225
f__z a nxle()+ nxze(t)+c nx:;‘,( )' ( . )
Because, according to (9.215), ¢(r) = 0, from (9.217) we obtain
roRr=1. (9.226)

Vector r in the preceding equation will be expressed using vector n. According
to (9.220) and (9.223) we have

n=2fRor. (9.227)

Taking into account (9.227) in (9.226) we obtain
1\2
(ﬁ) R 'noRR 'n=1, (9.228)

which makes it possible to determine one of the desired unknowns
1
f= —EVR—ln on. (9.229)

The desired vector r, according to (9.227), is expressed in terms of unit vector n
in the following way:
R™'n
r=——. (9.230)
vR 'mon

The preceding calculations generalize the results obtained earlier [see (9.225)].
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In order to numerically solve the problem, that is, the system of algebraic
differential equations (9.208) and (9.209), let us differentiate algebraic equa-
tion (9.209) of the form

vion=0, (9.231)

which ensures the perpendicularity of vectors n and v,4, which means that the
velocity of the point of contact v 4 lies on the plane .
Differentiating (9.231) in the absolute system OX; X, X3 we obtain

Wi oppvy o dW4 0 (9.232)
—on+vyo—=—on=290, .
dr T T
because ‘3—’; = 0, where % is the derivative in the absolute coordinate system.

Since

dVA ElvA

— = —4w®w XV

 dr 4

:d%(v—i—wx(r+k))+wx(v+(wx(r+k)))
:‘Lf—i-cf)x(r+k)+wx(§+§)+wx(v+(wx(r+k))), (9.233)

condition (9.232) takes the form

[éf—}-a;)x(r+k)+wxf‘—i—wx(v—i—wx(r—}—k)))]onzo. (9.234)

Differentiating condition (9.231) in the local system C XX} X} we have

ElvA 4 Eln
——on V40—
dr A7 dr

=(V4+o@xr+k +oxt)on+ v+ (@x (r+Kk)on=0. (9.235)

In this way the problem eventually is reduced to a solution of differential
equations (9.208) and (9.234) or (9.235).

The problem is solved in the following way. The system of differential equations
(9.208) and (9.235) was solved numerically. Algebraic calculations were conducted
based on equations (9.214)—(9.230). An illustrative result of calculations is pre-
sented in Fig. 9.20.

In Fig. 9.20b the change in direction of rotation ws(¢) is clearly seen, in Fig. 9.20c
it is seen that at the beginning and end of motion the normal force is equal to the
weight of the stone, whereas from Fig. 9.20a it follows that all components of the
vector of velocity of the center of mass of the stone are characterized by oscillatory
changes.



420 9 Body and Multibody Dynamics

ao0i5F

0.10 -
- |"|||||I|
0.05 RER | _. |"

0.00 fmnsn

-0.05

-0.10

-0.15},

c 5.0

4.5

4.0

3.5

3.0

2.

[

h i..|||H| M i H“i

2 ' '||I|II"|H|EI“I| 10 12

Fig. 9.20 Dynamics of the wobblestone: (a) plots of v (), v2(z) and v3(z); (b) plots of w(t),
w; (1), and w3(2); (c) plot of N(7)
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Fig. 9.21 Contact patch and X
coordinate systems

dF
.
@y 0 4
o\ NP
oWNA U x;

9.9.2 Tangens Hyperbolicus Approximations of the Spatial
Model of Friction

In Fig. 9.21 is presented a non-dimensional circular contact area (of radius equal
to one) with the center at point A, with a relative translational non-dimensional
velocity of magnitude u = v4/p (Where v4 is the length of the real sliding velocity
of point A and p is the real radius of the contact surface) and relative angular velocity
. Without loss of generality we assume that the velocity u is directed along the X
axis of the introduced coordinate system AX;X,. We assume that in the contact
pressure distribution, initially possessing a central symmetry, distortion appears due
to rolling resistance, and the final stress distribution is symmetric with respect to
the 1 axis of the Ané coordinate system. The resultant normal force is applied at
point S, and the rolling resistance vector is opposite to the & axis (see [14-16] for
more details).

The resultant non-dimensional friction force components and friction torque can
be expressed as follows:

Ty, (u,w,p) = Tox, + Trx,,
TXZ (u,(l), ﬁ) = TOX2 + Ters
M (0, B) = Mo + M,, (9.236)

where Tox,, Tox,, and Mo are the corresponding friction force components along
the X and X, axes and friction torque for case where there is no rolling resistance,
while T, x,, T;x,, and M, are the corresponding components of friction force and
torque related to rolling resistance. Assuming that Coulomb’s law holds true on an
arbitrary surface element dF, the corresponding non-dimensional elements of the
friction model (with the non-dimensional friction coefficient equal to one) have the
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following integral form in a polar coordinate system:

2 1 2 1
Tox, (u,) = / / oo tydrdp.  Tox, (ww. ) = / / o, 1y, drdg,
0 0 0 0
2 1 2 1
Tox, (1, 0) = / / 0o trydrdp.  Tox, (ww. ) = / / 0, ty,drdg,
0 0 0 0
27 1

Mo (u,w) =r //00(1){2 cos¢ — ty, sing)drde,
00

2 1
M, (u,w,B) =r //0, (tx, cos ¢ — tx, singp)drde, (9.237)
00
where
r(u—wrsing)
tx, (r.¢) = _ ,
Vur —2wursing + o?r?
wr?cosg
tx, (r,p) =

ki
V2 —=2wursing + w?r?

while 0 and o, are components of the non-dimensional contact stress distribution
o(r,¢,B) =o00(r) + o,(r, ¢, B). For 0 having central symmetry, oy, = O.

The distortion in the stress distribution related to the rolling resistance is assumed
to be a linear function with one parameter 0 < k, < 1 [15]:

o, (r,¢.B) =00 (r) kyrcos (¢ — B), (9.238)

where o0y is the non-dimensional (for the non-dimensional surface element dF and
additionally related to the real resultant normal reaction) contact stress distribution
for cases without rolling resistance, which for the Hertz law takes the form

oo (r) = i\/ 1—r2 (9.239)
2

The integral model (9.236)--(9.237) is not convenient in direct application to real
problems of modeling and simulation. Moving the origin of the polar coordinate
system to the instantaneous center of velocities one can obtain exact analytical
expressions of the components (9.237) in terms of elementary functions [15]. But
they are still inconvenient to use because of their complexity. One way to avoid this
problem is to construct suitable approximations. One of the simplest approximations
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is the first-order Padé one proposed by Kireenkov [15] for the complete combined
model of sliding and rolling resistance in the following form:

u
Tox,p1) = ———,
1( ) u+all I(U|
T wk, sin B
=d _—,
rX1(P1) 21u+a11 B
w k- cos f
T xyp1) = bot ——————,
rX>(P1) |(l)|+b111/t
w
Mopy = cor———,
*D lo| + ciiu
uk, sin
M, P =CT————. (9240)
r®D |w| + c11u

The coefficients of model (9.240) are determined by the following conditions:

0Tox, (1)
du

_ Tox,
u=0 du

’

u=0

Ter(Pl)|u:0 = Trx|=0s

Ter(P1)|u=0 = Tr x| =0

0T, x,(p1) T} x,
ow

9
w=0

w
Mop) |u=0 = Mo|,—o-

Mo Mo
ow

9
0=0

w

0=0

Mr(Pl) ’w=0 =M, Iw:()s

and for the Hertz case (9.239) we have a;; = 8/(31), a1 = —1/4, bo1 = 37 /32,
by = 157/32, coy = 37/16, ¢1; = 157/16, ¢c31 = —37/16. The approximations
(9.240) preserve the values but do not completely satisfy all first partial derivatives
of the functions (9.237) at u = 0 or w = 0. To satisfy all first partial derivatives it
is necessary to use a second-order Padé approximation [15]:

u? + apu |w|

Tox,p2) = ,
WP |o| + w?

o] .
Trx,p2) = am P k,sin B,
|@] + brou
+ bppu|w| + w?

Ty x,p2) = bo2 " wk, cosf,
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|o| + ciou
u? + cpul|o| + w?
u? .
Mr(PZ) = szm kr sSin ,8 (9241)

Mowp2) = co2

Coefficients of the model (9.241) are determined in an analogous way to the
model (9.240) constants. For the Hertz case (9.239) we have a;; = 87/8, ax» =
—31/32, bo, = 3n/32, by = 32/(157), coo = 3n/16, c;o = 16/(157),
¢y = —1/5. Approximations (9.241) completely satisfy the values and all first
partial derivatives of the functions (9.237) atu = 0 or w = 0.

Here the complete set of tangens hyperbolicus approximations of a coupled
model of dry friction and rolling resistance for a circular contact area between
interacting bodies is used in the following form:

TOXl(th) = tanh (l’ll u |a)|_1) s

Ty x,@) = fikrsin B,
Ty x5ty = fakr cos B,
Mow) = f>— f1.
M.y = hs (1 — tanh (szu_”2|a)|q2)) kysin 8, (9.242)

where  fi =h, (1 — tanh (sluql |a)|_'“)) sign(w), f» = hatanh (h4u_la)) .

The coefficients of model (9.242) are determined analogously to the case of
models (9.240) and (9.241). The number of constants is smaller because of the use
of certain relation between functions 7, x,, T} x,, and Mo [the same relation can also
be used for models (9.240)—(9.241), but we present them in the form proposed by
Kireenkov [15]]. For the Hertz case (9.239) we have h; = 37/8, h, = —37/32,
hy =37 /32, hy = 32/(157), hs = —1/5. The approximations (9.242) completely
satisfy the values and all first partial derivatives of functions (9.237) at u = 0 or
w = 0. Coefficients g1, q2, s1, $2 do not affect values and first partial derivatives
atu = 0 or o = 0, but they are chosen to be ¢; = 1.75, ¢ = 2.5, 57 = 1.25,
s, = 0.275 for the best fitting of the integral model (9.237) for different values of u
and w.

Figure 9.22 presents a comparison of three approximate models (9.240)—(9.242)
and an exact integral model (9.237). The tangens hyperbolicus approximation is
closest to the exact integral model. It is significantly more accurate than the second-
order Padé approximation.

The wobblestone as a semi-ellipsoid rigid body with its mass center at point C,
touching a rigid, flat, and fixed horizontal surface m (parallel to the X; X, plane
of the global stationary coordinate system X;X,X3) at point A is presented in
Fig. 9.23.

The equations of motion in the non-stationary coordinate system OX;X,X;
(with axes parallel to the principal centroidal axes of inertia; we assume that the
geometrical axis X3, of the ellipsoid is parallel to one of them) are as follows:
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Fig. 9.22 Exact and approximated components of friction models
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Pade Ist or.
Pade 2nd or:;
tanh

~

=

d
m—v—i-wx(mv):—mgn—i-Nn—i-T,
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P ]

——

u=1, p=1, k,=1

d
Bd_a: +owxBv)=(r—-k)x(Nn+T)+M, + M,,

dn+ 0
— +owxn=0,
dr

(9.243)
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X=X,

X;

X

Fig. 9.23 The wobblestone on a horizontal plane

where m is the mass of the wobblestone, B = diag(B), B, B3) is the tensor of inertia
of the solid, v is the absolute velocity of the mass center C, @ is the absolute angular
velocity of the body, N is the value of the normal reaction of the horizontal plane,
n is the unit vector normal to the plane X X,, T (not included in Fig. 9.23) is the
sliding friction force at point of contact A, and M, and M, (notincluded in Fig. 9.23)
are respectively the dry friction and the rolling resistance torques applied to the
body. Vector r indicates the actual contact point position and vector k determines
the mass center position [16].

The combined models of sliding friction and rolling resistance cannot be directly
used in the form presented previously for the wobblestone modeling and simulations
with the use of standard numerical methods of integration. One reason is that the
expressions for friction forces and torques have singularity for u = 0 and w = 0.
Another problem arises from the fact that for # = 0 the directions of the components
T,x, and T,x, are indefinite. Due to that reason we will express them in the Ané
coordinate system. But the angle 8 will still be indefinite due to the lack of sliding
velocity. Similar problems appear due to the absence of rolling. In order to avoid
these difficulties we propose the following specific approximations of the friction
and rolling resistance models:

(0]
T=—uNTow—uN (Txi@cs + Trxo@3p) m
(O3
— N (Trxi@)Sp — Trxo(€p) ———— ol 12
fiNw,
Mt = —/,L,ON Mt(a)n, M, = —W, (9244)
T

where (a) at the end of an index stands for some kind of approximation.
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For a linear Padé approximation we have

u wy krsp

Tope = . Trx p1e) = azi .
T Tl Fan o +e T Pl a o] + e
wy krcp corw, + ca1 |lul| k,sp
T x,p1s) = boi . My = , (9.245)
e ol +bur ul -+ T o[+ en ull + e
and the second-order Padé approximation model takes the form
o lultane
0(P2) = .
297 w2 g ull o | + w2 + &
|wn| wpkrsp
T, =dap-——,
7 X1(P2e) 25 0 te
|wn| + D12 ||ul|
T, =b w, kycg,
P T IO by ull o] + @2 e
|wn | + c12 [[ul] w’k,sg
M = w, + cp—--—, 9.246
(P2 T W2 e lall |w,| + @2 +¢ 2wt ol +¢ ( )
while the tangens hyperbolicus model will be as follows:
T o(the) = tanh (I’Zl ||ll|| ) u
" ol +¢) Tull + ¢
T x,(the) = fiekrsg, T x5(the) = Saskrcp,
|w,| + e\
M (he) = foe — f1s + hs (1 — tanh (&(W krsg, (9.247)

where fi. = h» (1 — tanh (sl ( M)'LTL)[“)) sign (wy,), f2: = hztanh <h4”u‘ﬁﬁ),
where w is the dry friction coefficient, p is the radius of the contact path (we assume
that the circular contact path between bodies with constant radius is independent
of the normal force), f, = p f02” fol 0,12 cos (¢ — o) drdg is the rolling resistance
coefficient and for the Hertz case f, = pk,/5, u is the normalized velocity v4 of
the body point in contact with the horizontal surface, w, is the projection of the
angular velocity onto the X3 axis, @, is the component of the angular velocity lying
on the 7 plane, wg is the vector lying on the 7 plane of the same length as w, but
perpendicular to it, and cg and sg are approximated sine and cosine functions of the
angle B (angle between the sliding and rolling directions):
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v
Vi=V+4+ o X (r—k), u=—A,
W, = ® - N, @; = ® — wyNn, ®Wp =Wy XN,
Uye ug (9.248)
Cﬂ:—z’ Sﬂ:—27
Ve + U Ve + U
Upe =U-@g + &, Ug = —U-@y.

The M, vector is constructed on the assumption that the rolling resistance torque
opposes the angular velocity component lying on the 7 plane (it is equivalent
to assuming a rigid 7 plane and deformable wobblestone). The parameter ¢ is
introduced in order to smooth the equations and avoid numerical problems around
some singularities. The differential equations of motion (9.243) are supplemented
with the following algebraic equation:

(v+®x(@—k)on=0, (9.249)

which follows from the fact that the velocity v,4 lies on the plane 7. Equa-
tions (9.243) and (9.249) now form the differential-algebraic equation set. One way
to solve them is to differentiate condition (9.249) with respect to time and then treat
it as an additional equation while solving the governing equations algebraically with
respect to the corresponding derivatives and the normal reaction N.

To complete the model, the relation between vectors r and n should be given.
Taking the ellipsoid equation

e e T _

ﬁ-’_ﬁ-’_c_z_l’ (9.250)
(where a, b, and ¢ are the semiaxes of the ellipsoid) and the condition of tangent
contact between the ellipsoid and the horizontal plane

Arie Arae Arae
dl "2 _ B (9.251)

7, Nae = ?, n3e c_z’

we can find the relation between the components of vectors r and n in the
OX e X2 X3, coordinate system. Since the OX; X, X3 coordinate system is obtained
by rotation of the O X, X5, X3, system around the X3, axis through the angle o, the
corresponding relation in the O X X, X3 coordinate system can be found easily.

All the presented results were obtained for the following parameters and initial
conditions: m = 0.25kg, g = 10m/sz, o = 0.3rad, B, = 107 kg-mz, B, =
8-107*kg-m?, By = 103kg-m%, a = 0.08m, b = 0.016m, ¢ = 0.012m,
ki =k, =0,ky =0.002m, u = 05,0 =6-10"*m, k, = 1,¢ = 107*rad/s,
Vio = v20 = v3o =0m/s, nig = nyo =0,n30 = L.

Figure 9.24 shows the results of simulation of the wobblestone initially spinning
at w3p = 20rad/s but also wobbling at w9 = lrad/s (wyp = 0) for three
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Fig. 9.24 Wobblestone response with initial conditions w9 = 0, w0 = 1, w30 = 20 (rad/s) for
different approximations of the friction model

different approximations: the first-order Padé, the second-order Padé, and tangens
hyperbolicus approximation. The wobblestone exhibits typical behavior for that
kind of solid, that is, we can observe that after some time the spin changes sign and
the motion vanishes. The differences between the three solutions are seen, especially
between the solution using the first-order Padé approximation and the others. The
significance of that difference depends on the kind of application of the developed
model and simulation. The rest of the presented results were obtained using of a
tangens hyperbolicus approximation.

Figure 9.25 presents similar results for initial spin w3y = 4 rad/s and wobbling at
wy0 = lrad/s (wjp = 0). We can also see the corresponding behavior of a system
with friction torque M, switched off, where the motion ends with the wobblestone
spinning with constant velocity without wobbling, but the initial portion of motion
does not differ significantly from the motion of the wobblestone with the friction
torque. The corresponding normal force history is also presented in Fig. 9.25.

In Fig. 9.26 the final w3 angular velocity for a wobblestone without dry friction
torque M, for different initial conditions is presented in the form of contour plots.
One can observe that for one direction of the spin (w3p = 2rad/s in Fig. 9.26a)
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Fig. 9.25 Wobblestone response and normal force history with initial conditions w;p = 0, w29 =
1, w39 = 4 (rad/s) for tangens hyperobolicus approximation

there is some area around the point (0,0) on the plane of the initial conditions w;p—
wy0 for which there are no reversals. The changes in the sign of spin take place for
initial conditions outside that area, that is, for strong enough initial wobbling. For
the opposite sign of the initial spin (w3p = —3rad/s in Fig. 9.26b) it is difficult
to observe the spin reversal. The most interesting plot, however, is the that in
Fig. 9.26c, where the section along the w3 axis in the initial-condition space is
shown. The w3 axis is stable in the sense that a small enough perturbation of the
wobblestone spinning with any value and any sign will decay after some time, and
the stone will continue spinning with (almost) the same velocity. To observe the
reversals, the initial wobbling must be large enough and only for the proper sign of
the spin.
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Fig. 9.26 Wobblestone final w; angular velocity (rad/s) (without dry friction torque M;) for
different initial conditions. (a) w3 = 2rad/s. (b) w3p = —3rad/s. (¢) wp = Orad/s

To conclude this discussion of our results, also presented in [16], a complete set
of tangens hyperbolicus approximations of the spatial friction model coupled with
the rolling resistance for the circular contact area between interacting bodies was
developed and then compared with corresponding Padé approximations of the first
and second order, well known from the literature, as well as with the numerical
solution of the exact integral model. It was shown that tangens hyperbolicus
approximations are the closest to the exact solution. Applying three different
approximations to the wobblestone model the differences in simulation results were
shown. In applications where high accuracy of simulation is required, a model with
a second-order Padé or tangens hyperbolicus approximation should be used. Taking
into account that the complexity of both approximations is comparable and that the
tangens hyperbolicus approximation is actually closer to the exact integral model of
friction, it seems reasonable to use the second one.
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Both the presented model of the wobblestone and its simulations are very realistic
compared with most earlier works on the celt since the correct spatial friction

model, coupled with rolling resistance torque, has been applied, however with the
significant simplifying assumption of a circular contact area between stone and table
with a constant radius independent of the normal force.
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Chapter 10
Stationary Motions of a Rigid Body
and Their Stability

10.1 Stationary Conservative Dynamics

Let us consider a scleronomic mechanical system described by the system of
differential equations

x = f(x), (10.1)
where x € R and for an arbitrary choice of initial conditions x(fy) = x° there exists
a unique solution x = x(x’, ¢), where - = %, and time ¢ € [0, +00). Owing to the

autonomous nature of (10.1) we will further assume ¢y, = 0. From the considerations
of Chap. 9 it follows that in the case of conservative dynamics of a rigid body first
integrals exist that lead to simplification of such systems.

Thus, let us assume that system (10.1) has M first integrals of the forms

Up(x(t)) = Co, U1 (x(2)) = Cy,...,. Uy = (x(t)) =Cy, M < N-—1, (10.2)

where C;,i =0, 1,..., M, are constants.

Theorem 10.1. If one of the first integrals of system (10.1) has a non-singular
stationary (constant) value for certain fixed (constant) values of the remaining first
integrals of this system at a certain point X°, then the solution x = x° describes the
actual motion of the dynamical system governed by (10.1).

Proof. see [1] Let C = [Cy,..., Cy]", and the first integral Uy(x(z)) = Co has
a constant (stationary) value for certain fixed values of the remaining first integrals
Ux’) = C° Ux) = [Ui(x),..., Uu(X)]". o

Let us introduce M values of undetermined Lagrange multipliers A = [Ay, ...,
Au]" and the function

W(x,A) = Uy(x) + AT(U(x) — C°). (10.3)

J. Awrejcewicz, Classical Mechanics: Dynamics, Advances in Mechanics 433
and Mathematics 29, DOI 10.1007/978-1-4614-3740-6_10,
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0

Because by assumption X" is non-singular, we have

PW(x, A
det (#) # 0. (10.4)
ox (XO,)»O)
Function (10.3) is a linear combination of the first integrals of system (10.1), and
after its substitution into (10.1) we obtain

aw aw\"dx  ow\T
—_— = _ _— = _— f = 0, 10.5
dr ( ox ) dr ( ox ) ®) (10.3)
which means that W is also a first integral of (10.1), where 1, A1, A5,..., Ay are
constant coefficients. The second derivative of (10.5) with respect to x has the form
2" o (oW
— ] f —[— ) =0. 10.6
(ax2) (X)+8x(8x) (10.6)

Stationary values x = x” and A = A” are determined from algebraic equations
of the form

W, W

— =0, — =0. 10.7
ox oA ( )
Taking (10.7) into account in (10.6) we obtain
*wW
— ] f®°=0. 10.8
( 8x2 )xo (X) ( )
Taking into account condition (10.4) we obtain
f(x)" =0, (10.9)

which we set out to demonstrated.

The classic approach [2] consists in the determination of solutions of non-linear
algebraic equations (10.9) in order to determine x°. Provided that we know the
first integrals of the analyzed system, the problem becomes simpler because we
are dealing with quadratic forms (10.7), which often may be just linear algebraic
equations.

Stationary solutions Uy(x) = Cj depend on the values of the remaining fixed
constants C, constituting in this way a family of solutions x = x°(C) in the space
RY x RM (x e RY,C € RM).

Theorem 10.2. If one of the first integrals of system (10.1) has its local extremum
(minimum or maximum) for the fixed values of the remaining first integrals at a
certain point x°, then the solution x = x° is a stable stationary motion of dynamical
system (10.1).
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Proof. Let the integral Uy(x) = Cy attain the extremum Cé) for the fixed values C°
of the remaining first integrals at point Xo.

Let us consider the solution x’(¢) = x(x°, ) of system (10.1), for Uy(x’(¢)) =
Up(x°) = CJ, Ux’(t)) = U(x") = C°. The quantity C{ is the extremum value of
the function Uy (x) for the fixed values C° of the first integrals U(x) = C attained
at point x°. This means that x’() = x° is the stationary motion of the analyzed
dynamical system.

Let us now introduce a quadratic form as follows:

V(x) = (Uo(x) — Cg)* + (U(x) — €)' (U(x) — C). (10.10)

The function % = 0; moreover, V(xo) = 0 and V(x) > 0 for x — x" # 0. Since
if in the neighborhood of point x” variables x(¢) satisfy the condition U(x(t)) = C°
for x # X, then V(x) = (Up(x) — C(?) > 0. In turn, for x = x( we have V(x) =
(U(x) — C%)T(U(x) — C% > 0. This means that V(x) is a positive-definite function
(V(x) > 0) and % = 0 in the neighborhood of x°. According to the Lyapunov'
stability theorem [2], the stationary motion x(z) = x is stable. O

The conditions for the function Uy(x) to attain its extremum at point x° for
additional conditions U(x) = C are equivalent to the determinacy with regard to
the sign (positive- or negative-definite) of a quadratic form of the form

2
82W — l(X—XO)T a_W (X—XO) (10.11)
2 x> ) o

on the linear manifold

§U = (a—U) x—x% =0. (10.12)
ox X0

Let us consider the equation of disturbances in the neighborhood x = x° of the
form

of
0X = |:—i| X, (10.13)
ox X0
that is, in the Taylor series expansion about x’ we retain only linear terms.
Equation of disturbances (10.13) possesses an integral of the form

1 2w
82W = E(SxT [W} 0 85X = Yo (10.14)

! Alexandr Lyapunov (1857-1918), Russian mathematician who made a great contribution to the
theory of stability, working mainly in Kharkiv and Saint Petersburg.
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and additionally M linear integrals of the form
au
oU = [—} X =y. (10.15)
ox X0

A characteristic equation corresponding to the matrix in (10.13) of the form

- ().
det|oE, — | — =0, (10.16)
ox X0

which is a polynomial of the Nth order, has exactly M zero roots (eigenvalues)
00=0,01=0,..., 0y = Oifrank(Z) o =N — M.

Theorem 10.3. The stationary motion x = x° of dynamical system (10.1) is
unstable if the determinant

[0arxn], [%—E]
(=DM det <0 (10.17)

[B_U]T [aZ_W]
ax ’ ox2 00
and the rank of the matrix [%]Xo is equal to N — M, that is,
of
rank |:—i| =N-M.
ox X0

The proof of the preceding theorem is given in [1].

Example 10.1. Investigate the stability of the stationary motions of a rigid body
about a fixed point (Sect. 9.2) in the Euler case. Equations of motion (9.29) have
two first integrals, (9.32) and (9.34), of the form

1 7 7 7
T = 5 (Ilwl2 + Loy + I3w32) = T* = const,
K2 = Lo + Lo} + Loy = K2 = const, (10.1.1)

and we assume I3 > [, > I;.

In this case function (10.3) takes the form

1
W' A) =T — E)L(Kg — K. (10.1.2)
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The preceding function is stationary if the following conditions are satisfied:

ow ow
aa)i = Ila)i(l —All) =0, aa)é = Iza);(l - Alz) =0,
aw

- = Loy(1-A) =0, K= K;*=const.

9}
System (10.1.3) has the following solutions:

A€eR and Kj=0,

o r_ | *2 __ 272
1 =0, w,=w;=0, A=1I17" and Kj =ow"l],
r /_ r _g7—1 *2 __ 2792

0 =w; =0, w,=o0, A=1," and K =wl;,
"'— @ = /o _ 71 *2 __ 272

o =w, =0, w;=o0, A=1; and Kj =ow"I;.

(10.1.3)

(10.1.4)
(10.1.5)
(10.1.6)
(10.1.7)

Solution (10.1.4) corresponds to a state of equilibrium, and it is stable with
respect to wy, ), and w}, because in this case the energy integral T' [see (10.1.1)]

attains its global minimum.

The three remaining stationary solutions correspond to body rotations about
principal centroidal axes of inertia. Let us conduct an analysis of solution (10.1.5).

According to (10.11), and taking into account (10.1.3), we have

2 1 / / / 82 860}
§°W = §[8w1,8w2,8w3] preli Swj |,
@ Léw)

5 L(1=AlY) 0 0
I:m:| = 0 12(1 —Alz) 0 s
0 0 I5(1 — Al3)

that is,

$W = % [12 (1 —~ —) (Swy)* + I (

Linear manifold (10.12) in this case takes the form

2
§(K3) = [aﬁ} Sdw

o]

0w
21w) 0 0 Sw|
=| 0 2w, 0 Swj | = 2Iwdw; =0,

0 0 2w} ], Low)

hence for w # 0 we obtain §w; = 0.

(10.1.8)

(10.1.9)

(10.1.10)
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Because by assumption /3 > I, > [I;, we have 82W < 0. It follows that for
Kg = const the function 7" on solution (10.1.5) attains its maximum.
In the case of solution (10.1.7) we have

1 I I
2 — — _ 2 _ 2
8 = 5 |:11 (1 13) ((Swl) + 12 (1 13) (5(1)2) i| s
§(K3) = 2I}wéw; = 0. (10.1.11)

In this case §°W > 0 and for Kg = const the function 7" on solution (10.1.7)
attains its minimum.

From the preceding analysis it follows that, by Theorem 10.2, a rigid body with
fixed mass center, after the introduction of the initial rotations about the smallest
or largest axis of inertia, rotates infinitely long, even after small disturbances of
motion, because its stationary rotations about these axes are stable.

In the end, let us consider stationary rotational motion about the average axis of
an ellipsoid, that is, solution (10.1.6).

In this case we have

1 I I3
2 - _ 2 _ 2
W = 5 |:11 (1 —12) ((Swl) + 13 (1 —12) (5(1)3) i|,
§(K3) = 2I}wéw; = 0. (10.1.12)

The first term of the first equation is positive, whereas the second is negative,
and in order to estimate the stability we will make use of Theorem 10.3. The matrix
corresponding to the quadratic form §2W in this case takes the form

[W_W} = ]1( _%) 0 . (10.1.13)

The determinant of the preceding matrix is equal to

I (1-14 0 I I
1( 12) =11 1__1 1__3 < 0. (10.1.14)
I
o n(1-%) I &

According to Theorem 10.3 one should now determine the rank of the matrix
[0
After the linearization of equations of motion (9.29) we obtain
Li(8ay) + (Is — L)widw, + (I3 — L)wydw} = 0,
L) + (I1 — I)w 8w, + (I} — I)widw; = 0,
13(5(1);) + (I, — Il)wi&ué + (I, — Il)a)éé’wi =0, (10.1.15)
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hence after taking into account (10.1.6) we have

11(860;) + (13 - Ig)a)&ug =0,
L(§a)) =0,
L80%) + (I — I)wdw| = 0, (10.1.16)

that is, the matrix

0 0 Lty
1

of
[a—} =l o o o |. (10.1.17)
@t | Lol 0 0

The rank of this matrix is equal to 2, and because M = 1 and N = 3, the second
condition of Theorem 10.3 is also satisfied. Eventually, we come to the conclusion
that rotation about the average axis of an inertia ellipsoid is unstable. |

10.2 Invariant Sets of Conservative Systems
and Their Stability

We will start our calculations with the definition of an invariant set.

Definition 10.1. The set M is called an invariant set (positive invariant) of
dynamical system (10.1) if for x" € M (start of motion) we have x(x°, t) eM
(motion of the system) for all # > 0 and all e M.

Because in our case we consider systems that satisfy Theorem 10.1, we say
that the manifold M generates the functions Up(x) for the previously mentioned
additional conditions for the remaining first integrals to be constant, that is, U(x) =
C = const:

1. A non-singular stationary value on the set M, where
§Uslsu=0 = 0, 82Uy |su=o # 0. (10.18)

2. A local minimum (maximum) value if Uy(M) = const and there exists § > 0
such that for any x satisfying the condition

0 < dist(x,M) < 4, Ux) =C, (10.19)
also the following condition is satisfied:

Uo(x) > (< 0)Uo(M),



440 10 Stationary Motions of a Rigid Body and Their Stability

where
dist(x, M) = min ||x — x*||. (10.20)
x*eM

Theorem 10.4. Ifa certain set My generates a non-singular stationary value of one
of the first integrals of system (10.1) for fixed values of the remaining first integrals,
then My is an invariant set of dynamical system (10.1).

The proof of the preceding theorem is given in [1], and it is carried out in an
analogous way to the proof of Theorem 10.1 since if dim My = 0, then the invariant
manifold My reduces to the points (positions) of equilibrium of the considered
dynamical system (10.1). If dimMj, > 0, then the stationary value generated by
this set corresponds to stationary motions of system (10.1).

In the general case the manifold My is filled up with stationary motions of
system (10.1), which can be periodic, quasiperiodic, or chaotic.

Theorem 10.5. If a compact set My generates a local non-singular stationary
extremum (minimum or maximum) value for fixed values of the remaining first inte-
grals of system (10.1), then My is a stable invariant set of dynamical system (10.1).

The proof of this theorem is provided in [1]. From the theorem it follows that
the open set M is invariant (one should prove this), and subsequently it should be
proved that this invariant set is stable. Let us emphasize that the proof of the theorem
does not require the assumption of differentiability of first integrals. Let us note that
stationary motions x’(x’, ¢) lying on the invariant set My, are stable in reference to
some of the variables that characterize the distance of the disturbed motion from
the set My, but in general these motions are unstable with respect to disturbances
x —x’(x%, 7).

Example 10.2. Determine the invariant set corresponding to a stationary motion of
arigid body about a fixed point in the Euler case about the average axis of an inertia
ellipsoid.

As was already shown in Example 10.1, the rotation of a body about the average
axis of an ellipsoid of inertia is unstable, and according to (10.1.1) in this case we
have T = 1 w? and K} = IJw?.

Equations of motion (9 29) are satisfied for the invariant set determined by the
equations

11(1) + 12(1)2 + 13(1) Iza)z,
ol + ol + ol = }o?, (%)

where @ € R. From the preceding equations we determine

n_ Dh(h—1) o7
iy A Gl
op = LI =D) (a0 oy (%)

I3(I) — I3)
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and after substitution into the second of the equations of motion (9.29) we obtain

@ = i\/(b—h)(h —1) 2 _up). (10.21)
Ll

Equation () describes the stationary motion of a rigid body about a fixed point
in the Euler case about the average axis of an inertia ellipsoid on the manifold given
by (). O
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Chapter 11
Geometric Dynamics

11.1 Introduction

A classical approach to the dynamics of Hamiltonian systems (or dynamical systems
in general) is based on the notion of a phase space (Chaps. 2 and 3). It turns out that
the phase space of a Hamiltonian system possesses certain geometric properties [1].
One of the first scientists to notice that was H. Poincaré! [2]. By exploiting the
properties of the phase space of Hamiltonian systems and Hamilton’s equations
themselves, it is possible to formulate mechanics in the language of symplectic
geometry [1, 3]. The phase space plays here the role of a manifold on which is
defined a certain quantity called a symplectic form, which relates mechanics to
geometry. In turn, the subject of analysis of this chapter is the geometric approach to
the dynamics of mechanical systems, henceforth called geometric dynamics. As the
name implies, it deals with the geometric formulation of dynamics with aid of the
formalism of differential geometry. It turns out that the dynamics of Hamiltonian
systems can be formulated in the language of geometry of a Riemann’-Finsler’
space [4,5]. The object of investigation of the present chapter is the geometric
description of dynamics in a Riemannian space. In order to use the aforementioned
formalism of a Riemannian space we have to be able to describe a differentiable
manifold and define on it a metric tensor [6, 7].

In other words, we need to have at our disposal the Riemannian space “obtained
from the investigated dynamical system.” As far as the potential manifolds are
concerned we can choose from several spaces naturally occurring in dynamics
such as, for example, a configuration space, an extended configuration space, a

"Henri Poincaré (1854—1912), a great French physicist and mathematician being i.a. a pioneer of
chaos theory.

2Bernhard Riemann (1826—1866), influential German mathematician who made essential contri-
butions to analysis and differential geometry.
3Paul Finsler (1894-1970), German and Swiss mathematician.
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configuration time-space, an extended configuration time-space, a tangent bundle of
the configuration space. All those manifolds can be equipped with a metric tensor,
that is, a metric.* The following ways of choosing a metric exist:

. A configuration space Q 4 the Jacobi metric.

. An extended configuration space Q x R + the Eisenhart metric.

. A configuration time-space Q x R + the Finsler metric.

. An extended configuration time-space Q x R? + the Eisenhart metric.
. A tangent bundle of a configuration space 7TQ + the Sasaki metric.

O N O B S R

The choice of one of the preceding alternative descriptions is a matter of
convenience and depends on the class of the dynamical system under investigation.
In other words, not every dynamical system can be described (geometrized) in each
of the previously mentioned cases. In the case of the configuration manifold with
the Jacobi metric we can describe only Hamiltonian systems with an energy integral.
In the case of the extended configuration time-space with the Eisenhart metric [8]
we can describe non-autonomous systems. On the other hand, the Finsler geometry
allows for the description of systems with a velocity-dependent potential, which,
in turn, is not possible within Riemannian geometry. In the present chapter we
will consider one of the aforementioned descriptions, namely, the configuration
space with the Jacobi metric. The class of systems that can be described within
the framework of this formalism are systems with Lagrangians of the form

1 -
L= ay@i'd ~ V(. (1.

where a;;(q) are the components of a kinetic energy matrix. The essence of
geometric dynamics is the fact that the motion of the whole system can be identified
with the motion of a certain virtual point along a geodesic in a Riemannian space.
Therefore, we have to somehow associate a metric tensor with the dynamics of the
investigated dynamical system, which is one of the fundamental problems of the
geometric approach. A solution of this problem? is derived from the possibility of
a variational formulation of many mechanical problems. This is possible because
geodesic equations can be obtained also as a result of the variation of a certain
expression A that is the length of the geodesic between two points. In other words,
the length of arc of the geodesic has to assume a stationary value, which is expressed
by the equation

Py
(SA:/dS:O. (11.2)
Py

This means that from all paths connecting points P; and P, we choose that one
for which (11.2) holds true. An elementary square whose length is equal to the

4We will often use both terms in an interchangeable way.
SWe emphasize that it is not the only way to obtain the metric tensor.
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length between two points lying infinitesimally close to each other is defined in a
Riemannian space as

ds® = g;;(q)dg'dg’ (11.3)

where g;; (q) are the components of a metric tensor that, in general, can depend on
the coordinates q [9]. Quantity (11.3) can be written in a different way using the
matrix form of a metric tensor g, namely,

T
dql 811 812 &IN dql
dqz 821 822 &2N dq2

ds? = , (11.4)

dgV | Lgni gn2 -+ gwvv] Ldg
where the symmetry of a metric tensor was used (g;; (q) = g;i(q)). Now, substitut-

ing the previously described length between the aforementioned two points, that is,
(11.3), into (11.2), we obtain

Py Py uy
8/ds =5/,/g,-jdq"dqf :5/ﬁdu, (11.5)
Py Py ui

where
SO 7
1] > ds
Moving the variation inside the integral and then carrying out the variation of the
integrand we obtain

uy

/ 05 s Y au = o, (11.6)
dq" ap’

uj

Because

ros (9 2 9 s
o =5 () = 4 60,

integrating by parts the second term in (11.6) we obtain

up uz

up d
/aﬁé’p"du: aﬁ(Sq" —/— oy 8q"du. (11.7)
ap” ap” “ du \ dp”

uj uj

Because the variations §¢g” at the ends of the integration interval vanish, we have

up

uy
M?Sprdu:—/i M 8q"du. (11.8)
ap du \ 9p

ui ui
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Substituting the obtained result into (11.6) we find

uz

/(aﬁ_d% (M)) 8¢"du = 0. (11.9)

aq” ap”

uj

Because in the integration interval variations §¢” are arbitrary, the preceding
integral vanishes when the integrand becomes zero [4]. Hence we obtain Euler—
Lagrange equations

d [0 0

— Vi — ﬂ =0. (11.10)
du \ dp’ aq’

Carrying out the differentiation in the preceding expression we obtain

d(aﬁ) aﬁ_d( 1 8w) 1 ow

du \ ap’ dg"  du\2ywop’ ) 2Jwoq"

_d b yow L dfowy T dw
Cdu\2yw) apr  2ywdu\dp") 2 wiq"
1 dw ow 1 d B_W 3 1 B_W_
ap’ 2 waqr
(11.11)

= 4 ——
w32 dudpr 2/ wdu
and then, multiplying through by 2./w,

d 14
4 (AW _dyw 1 dw ow (11.12)
du \ dp” aq" 2w du dp”

Because the parameter u# was arbitrary, we can set u = s, that is, now we take as
the parameter the length of arc of a geodesic. Then, using relation (11.5) we find

dg' dg’/

=gipp =gi——=1, 11.13
W=8iP P = 8y s ( )
hence
dw
du
Equation (11.12) then takes the form
d [0 a
4 (Ow) _avw (11.14)
du \ dp’ aq’
Because
aw - o .
+— = &ij6,p’ + g8/ p' = 2gi, P, (11.15)

apr
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(11.14) takes the form

= (2girp") — =L pip/ = 0. 11.16
5, (28irp') 2 7P (11.16)

Differentiating with respect to s we have

dgir dg’ dp'  dgy ; ;
2—=——p' +2g,———p'p/ =0. 11.17
3q) o P T8y g " P (11.17)
Now, using the definition p’ , we obtain

&g +28gir dg' dg/  0gi; dg’ dg’
Eir g2 dg/ ds ds  dqg” ds ds

2 = 0. (11.18)

The second term in the preceding equation can be written in the form

dgir dg' dg/  dg;, dq¢' dg/  dg;, dg' dg’
g' b i gA 49 9~ + _g/" ii (11.19)
dq’/ ds ds dq’/ ds ds dq' ds ds

This is possible because the term Zg’j’ is summed with the term Cg’s 9’ \which
is symmetrical with respect to 1ndlces i and j, and thus (11.19) represents a

symmetrization of the expression 7>~ g” . Using this fact in relation (11.18) we obtain

2g

&g (g, 02,  Ogi\ dgi dgl
q (L 98jr _ g,,) e 99 _ (11.20)

T ds2 dq/ dq! aq” ) ds ds

Multiplying the preceding equation by g"” and summing with respect to the index
r we obtain

. dqt 1, (dgir  Og;  0gi ) dg' dg/
nra — 14 —gnr [ S0 : —— =0, 11.21
& 8irgs? + 28 (aql ag’ aq’) ds ds ( )
which defines equations of a geodesic [10]
d*q" dg' dg’
¢ peddde N (11.22)

ds? i'ds ds

where

L (08ir 0g;r  0gij
.= —-g"| = . , 11.23
£ (aqf " dq'  dq" (1123
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and N is a dimension of a Riemannian space. Geodesic equations (11.22) are
determined completely by a metric tensor g. Thus, having found the relation
between the dynamics of the examined system and the metric tensor, we obtain
geodesics corresponding to the dynamics of the investigated system.

Equations of motion of a dynamical system can also be obtained using the
variational calculus. This is possible by virtue of the variational formulation of
Lagrangian mechanics exploiting the principle of least action (see [1,3,11])

5]
(SS:S/L(q,q)dt:O, (11.24)
3l

where S is the action functional. Here we are dealing with a situation analogous to
the one in the case of a Riemannian space where geodesic equations were obtained
by demanding that the variation of a functional of the action A vanishe [see (11.2)].
The difference consists in the fact that now the integration variable is time 7. Thus, as
before, from the principle of least action and substituting into (11.10) the Lagrangian
L instead of \/w we obtain Euler-Lagrange equations:

d (oL oL 0 1.2 N (11.25)
J— — = n = ..y IV .
de \agn ) agn e

Substituting Lagrangian (11.1) into (11.24) we find

d . 1 da;; ., .

; v
dr (@ing") — =

J =0. (11.26)

2 aq" 74 aq"

Differentiating, we keep in mind that quantities a”/ are dependent on ¢’ and
obtain
0diy . . - 10a;; ;.. IV
il 4 oan il — = J i _
3744 0= 35007 * 3

0. (11.27)

Next, we multiply relation (11.27) through by g*", and because g"" g;, = 8%, we
obtain the equations of motion

.k kn in 200 ) gigi kn 22— . 11.28
@t (‘aqf 23q”)qq BT (29

The fundamental demand during the geometrization of dynamical systems is that
geodesic equations in the given Riemannian space projected onto the configuration
space Q give equations of motion of the considered dynamical system. Whether the
geometrization is possible or not is determined by the following theorem, stated in
a way appropriate for the case of the Jacobi metric [4].

Theorem 11.1. For a given conservative dynamical system of total energy E whose
Lagrangian has the form
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1 o
L =a;@q¢'q’ —V(a
it is always possible to find the transformation of the metric
gij = e*Pq;;, where o(q) =In2(E —-V)

such that geodesics in a Riemannian space are the trajectories of the dynamical
system.

Thus determining the correspondence between dynamics and a Riemannian
space in this way, we can shift the investigation and analysis of dynamical systems to
the investigation of the behavior of geodesics in the given Riemannian space, which
is precisely the essence of geometric dynamics. The basic tool for such analysis
is the Jacobi-Levi-Civita® equation (JLC), also known as the equation of geodesic
deviation. Subsequently, we will derive this equation and analyze it for the presented
model of a Riemannian space (a configuration space and the Jacobi metric) and
specifically for mechanical systems with two degrees of freedom.

11.2 The Jacobi Metric on Q

In the case of conservative systems in a quite simple way it is possible to
obtain a metric that is provided by the kinetic energy itself. Let us consider then
a conservative dynamical system with N degrees of freedom described by the
following Lagrangian:

1 -
L= sa;(@i'¢ ~ Vi@ (11.29)

Because our considered mechanical system is conservative, the total energy E is
an integral of motion. In that case Hamilton’s variational principle [1]

5]
S/L(q,q)dt =0 (11.30)
1

is reduced to the Maupertuis principle of least action

5]
8/2Tdt =0, (11.31)
1

5Tullio Levi-Civita (1873-1941), Ttalian mathematician of Jewish origin who investigated celestial
mechanics, the three-body problem, and hydrodynamics.
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where
1 i
T = S4ij (@q'q’

is the kinetic energy of the system. If the total energy is the constant of motion, we
have E = T + V, and substituting V = E — T instead of V into the expression for
Lagrangian (11.29) we find L = 2T — E. Substituting the quantity obtained in this
way into (11.30) we obtain

t 23 5] 5]
8/(2T—E)dt :8/2Tdt—8/Edt=8/2Tdt =0. (11.32)
1 1 51 3|

Exploiting the analogy between formulas (11.2) and (11.31) we obtain
ds =2Tdt =2(E—-V)dt, (11.33)

where we make use of the fact that £ = T + V. Next, squaring equation (11.33) by
sides we obtain

ds’> = 4(E — V) Tdr>. (11.34)
Then substituting
T = Say@i'd’
into (11.34) we find

ds* = 2(E — V) a;;(q)¢' ¢’ d?
=2(E —V)a;(q)dq'dq’. (11.35)

On the other hand, o
ds2 — gijdqldq]’ (11.36)

and taking the preceding relation into account we obtain a metric of the form
gij =2Waij, where W=E-Y. (11.37)

The preceding metric is called the Jacobi metric and will be denoted by g. The
quantity W introduced in formula (11.37) assumes the same values as the kinetic
energy 7 of the investigated system because, by definition, it is the difference
of the total and potential energy. However, the adopted formalism does not allow
for the explicit introduction of the kinetic energy into the metric because of the
occurrence of velocities in 7. Therefore, the introduction of 7" instead of W into
(11.37) would imply that the metric is dependent on velocity, and such a case is
described not by the geometry of a Riemannian space but by the geometry of a
Finsler space, which is not a subject of interest of this chapter.
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The considered Riemannian space in this case is a configuration space Q
defined as

0={qeRY: E-V=>0}. (11.38)

It is the manifold with a boundary
30 ={qeR": E-V =0}. (11.39)

Let us note that a metric of form (11.37) is degenerate when £ = V (in other
words, when the kinetic energy of the system becomes zero).

A configuration space Q of a dynamical system with N degrees of fredom has
the structure of a differentiable manifold in which the role of local coordinates
is played by generalized coordinates. This manifold, together with a metric g
defined on it, forms the desired Riemannian space M = (Q,g). According to
the assumptions of the theory, geodesic equations projected onto a configuration
space should lead to the determination of equations of motion. Because in our case
a Riemannian manifold is the configuration manifold, geodesic equations should be
identical with the equations of motion. In order to obtain these equations we make
use of Euler-Lagrange equations for a geodesic Lagrangian,’ but then Christoffel®
symbols have to be found, which is more laborious than the application of Euler—
Lagrange equations to a geodesic Lagrangian. The geodesic Lagrangian is obtained
from relation (11.36) after “dividing” a linear element by sides by ds. Because we
obtained equations of geodesics from (11.14), substituting

dg' dg/

L 11.40
gip'p = g5 (11.40)

into (11.14), we obtain Euler—Lagrange equations for the geodesic Lagrangian

d oL aL

- —a@i) _aq_k:o_ (11.41)

The quantities occurring in the preceding equations are equal to

L dg’ 0L dgi; dg' dg’
=g & _f8uTd T 11.42
a(dq") 81k gy dgk  dgF ds ds ( )

7Obviously, we can obtain geodesic equations from formula (10.1.5).

8Elwin Bruno Christoffel (1829—1900), German mathematician and physicist working mainly at
the University of Strasbourg.
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Differentiating the first of the expressions we obtain

d L dgix dg' dg/ d%q’
— = - — —— ik ———- 11.43
ds \ 5 (ﬂ) dg/ ds ds + 28ik ds? ( )
ds
Then, substituting relations (11.42) and (11.43) into (11.41) we find
d’q" | (g 193gy ) dg’ dg’
ik—— — = —— =0 11.44
Bik g5 (qu 2 g™ ) ds ds ( )
Using formula (11.37) we obtain
ag; da; v
98k _ oy 2ik 9, 22 (11.45)
aq’ aq’ aq’

Substituting the preceding result into (11.44) and applying formula (11.33) we
find

o d*q’ L dik dV dq' da;x  19a;;\ dg' dg’
a2 T W g7 29¢" ) &t

aip AV dg' dg’  dV

- = - 4 —— =0.
W ag/ dr dr ' dgk
Because
v oV dg’
dt g/ dt’
we obtain
aa'k 1 da;; i av
- kn k270N gigd kn ZZ_ — 11.46
@ ha (aq, 28q")qq T T (1140
where
o 4
dt

These are equations of motion (11.28). Thus the metric g is properly defined.
Here the Riemannian space has the same dimension as the configuration space of
the system. This dimension is equal to the number of degrees of freedom of the
investigated mechanical system.
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11.3 The Jacobi-Levi-Civita Equation

As mentioned previously, the fundamental tool of geometric dynamics is the
equation of geodesic deviation called the Jacobi—Levi-Civita equation or the JLC
equation for short. In order to derive this equation let us consider a one-parameter
family of geodesics V, in N -dimensional space V. Let s (the length of a geodesic)
be the parameter varying along each of the geodesic lines of this family. By « let us
denote a parameter that is constant for each of the geodesic lines and changes while
switching between geodesics. In other words, the parameter # numbers geodesics in
the family

={geVy: yu(s)=q}, (11.47)

where y is a geodesic. The family V, forms a two-dimensional space. Let us denote
by T, V> a space tangent to V> at point p. This space is spanned by the vectors

3 0
{E%} (11.48)

Let us introduce the following designations:
0, =—, 0,=— (11.49)

where vector d,, is called a Jacobi vector. Because vector dy is tangent to a geodesic,
from the definition of the geodesic [7] we obtain

Vo, = 0. (11.50)
Moreover, the following equality holds true:
Vsau = Vuas- (11.51)

Because the preceding vectors belong to the space Vy, they can be expanded in
terms of the basis of this space:

g’ aq/

- €, au - aI/l

3, = (11.52)

On the left-hand side of formula (11.51) we have

_ g’ g/ g’
Vide = Vag (a—) = a5V (a_)

dq’ dq' 361’ dq’
= o Vi(e;) + — (au €.
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Now, using relation (11.52) we obtain

aqj aqi . aij _ (azqk aq an Fk)

v,9, = 0% ri,
as o 5% 9590 = \osou T 9s ou ¥

In an analogous way we obtain the right-hand side of formula (11.51) in the form

g~ g’ 9q’
Vu s — F . 11.
9, (8u8s * s )ek (11.53)

Because Christoffel symbols are symmetrical and
azqk azqk
ouds  dsou’

(11.54)

relation (11.51) is satisfied. Let us act on the proven relationship (11.51) from the
left with an affine connection. We obtain

V29, = V,V,9;. (11.55)
Let us introduce a Riemann tensor [7]
R (3S, au) 8S =V Vuas - VMVSBS — V[aA ,Bl,]as’ (11.56)

where in our case [0y, d,] = 0. Indeed, using relation (11.52) we find

_[dd', P4’ | _ 04 (%,
[05.0.] = I:geu Ee]:| = Eez (Ee;

aq/ aq aq 0g/
- , €)= 11.57
8ue(8se) Bs gu B¢ e =0 (157)

because mixed partial derivatives are commutative. Hence the Riemann tensor
(11.56) is reduced to the form

R (3S, au) as =V Vuas - Vuvsas- (11.58)
Taking into account formula (11.50) we find
R (3;,0,) 3, = V,V,0;. (11.59)

Substituting the obtained result into (11.55) and exploiting the antisymmetry of
the Riemann tensor we obtain an equation of the form

V23, + R (3;,9,) 3, = 0. (11.60)
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This equation is called the Jacobi—Levi-Civita equation (JLC) or the equation
of geodesic deviation. As can be seen, it describes the evolution of vector d,, along
a geodesic. Another derivation of the equation of geodesic deviation can be found
in [10].

In order to carry out any calculations at all, we have to pass from the tensor form
(i.e., independent of the specific coordinate system) of the JLC equation (11.60) to
an equation in local coordinates.’ Because in a Riemannian space the basis consists

of vectors {e;, e, ..., ey}, let us resolve vectors @, and 9y into this basis
, d dg’ A
0, =J=J'e, 3s—>d—szd—sej:Y’ej. (11.61)

Let us note that the partial derivative d; is replaced by an ordinary derivative
because we are interested in the evolution of the Jacobi vector J along a geodesic
that is parameterized by s. At first, let us calculate the quantity

V=V, (V, (Je)) =V, (vase,- + %e,-)

ds

k
:vs((%JrJ Yka) ) (11.62)

Repeating analogous steps we further obtain

k
V3J=Y"vn((‘] JYfrk) )
’ ds

dJx dJ* o
Y" +JYITE ) Vaer + Y, | —— + J'YI TS ) e
ds ds 1

dJk dJk
=Y" (d JYka)F’ke,+—( JYka)
\)

o dJ! o dJ!
=V (J’Y/Vje,- + d—sei) =V (JIYJ ijiek + —e,-)

ds \ ds

(5 iy 't
(Y ( ot Yfrjﬁ) I+ o (K +J YfFjli)) e

When we introduce the following notation'”

k dk
8]_] L iyirk

= , (11.63)

9Since, by definition, a Riemannian space has the structure of a differentiable manifold, in general
there is no single global coordinate system but many so-called local coordinate systems.

190ften this quantity is called the absolute derivative of a tensor [8].
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equation (11.62) can be written in the form

d (8J! §Jk
V2 = (d_s (K) + FnlkY”W) €. (11.64)

Using relationship (11.63) again, we obtain
viy=2 (ﬁ) e = Eek. (11.65)
s s 852
Let us calculate the second term in equation (11.60)
R(J,8,)d; = R(J'e;, Y/ e;)YFe,
= J'Y/Y*R(ej. ej)e = J'Y/Y* R}, e,
where we used the linearity of a Riemann tensor with respect to each of its

arguments. Substituting the obtained result and relation (11.65) into (11.60) we
obtain

§2J" ivjykpn
(W +J'Y'Y Rkl-j) e, =0. (11.66)
Hence the JLC equation in the local coordinates takes the form
§2Jn
8s?

+J'Y/Y*R], = 0. (11.67)

As can be seen, these are N second-order differential equations with respect to
the parameter s. They are a starting point for any further calculations. Let us note
that in these equations there occur quantities Y%, which are the components of vector
d, (11.61), or, to put it differently, they are the components of a velocity vector in
Riemannian space. They satisfy the equations

i j ivjrk dr*
Vi, =Y'Vi(Y'e;) =Y Y/F,-jek + d—ek
s
ivjrk drt
= YY/F,-]-+— e, = 0. (11.68)
ds

Taking into account relation (11.61) we obtain the geodesic equations

d?¢* cdq' dg/ sYF 0

i e LS 11.69
52 Y ds ds 8s ( )

wherek =1,2,..., N.
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11.4 The JLC Equation in Geodesic Coordinates

The obtained equations (11.67) can be already directly applied to the investigated
system. However, their number can be diminished by choosing a certain basis in the
considered Riemannian space. That is, let us consider the system of vectors E; that
satisfy the following conditions:

E1 = 33,, g(E,', E]) = 8,']', VSE,' =0. (1170)

Having defined the basis already in the Riemannian space, let us resolve the
vectors occurring in the JLC equation (11.60) on this basis

3, =E,, d,=1"E,. (11.71)

Let us now substitute expansions (11.70) into the JLC equation (11.60). As a
result we obtain

VZ(I"E,) + R(I"E,,E)E; = 0. (11.72)
The first of the terms in the preceding expression takes the form
arn
VZ(I"E,) = Vi(Vs(I"E,)) = 57 B (11.73)
s

where we twice used the fact that vectors E, undergo parallel translation along the
geodesic. Substituting the obtained result into (11.72) we obtain

a2
<7 B+ RU'E, E)E; =0, (11.74)

Now, let us calculate the second term in the preceding equation. Let us resolve
vector E,, on the basis {e;, e5,...,ey}

R(I"E,,E\)E, = R(I"W/e;, Wle,)Wle
= I"WJUfU[R(ej. e )e, = "W W W R e, (11.75)

Because the preceding expression is a vector, it can be represented as a linear
combination of the vectors of the basis £; in the form

N
R(I"E, ENE; =Y ¢(I"W]UfW{R], e, We)E,
q=1

N
=D "R (e @R,
=1

<

N
=Y I"'WJUfWwiR, K, (11.76)
q=1
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We insert here a sigma sign because the index of summation g occurs at the
same level, and consequently the Einstein summation convention does not apply.
Substituting relation (11.76) into (11.74) we obtain

&1
Z( +1"qukw’w'R,,]k)E =0, (11.77)

which leads to an equation of the form

d2rq

42 T WU UWIR, = 0. (11.78)

The quantities llflk lI/{ occurring in the preceding expression are components of
the vector E; = 9. On the other hand, from relation (11.61) we have 9, = Y/e s
so we obtain Y* = Wk and Y/ = W/, Substituting this into (11.78) we find

d2r4
o Y Y'WIR, = 0. (11.79)
For ¢ = 1 (i.e., the component along the geodesic) the preceding equation
assumes a simple form:
d2r!
— =0, 11.80
02 ( )
because
"wIYNY'wiR, = 1"w]YY'Y'R, = 0. (11.81)

The preceding quantity vanishes because it is the sum of products of quantities
R;;jk and Y'Y!, which are respectively antisymmetric and symmetric with respect
to the exchange of the indices i/. Because of relationship (11.80), it suffices to
consider only the equations

d2r4 «
oz ey Y'WIR, =0, (11.82)
where ¢ = 2,3,..., N In the preceding equations quantities occur that are

dependent on the solutions of geodesic equations (or, which is equivalent, of
equations of motion). This means that in order to solve the JLC equation one
should simultaneously solve equations of motion.'! However, for systems with
many degrees of freedom certain procedures enable the solution of the JLC equation
without having to know the solutions of the equations of motion of the investigated
system [4]. This approach facilitates, on certain assumptions, the calculation of

1A similar situation occurs in the case of calculation of Lyapunov exponents.
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Lyapunov exponents by means of an analytical method. However, it requires the
application of a mathematical apparatus that is beyond the scope of this book.

11.5 The JLC Equation for the Jacobi Metric

The JLC equation (11.67) for the Jacobi metric has the form

sy
<7t Y/Y'R, = 0. (11.83)

Using formula (11.63) we find

§2J dJ! (4" j

57T =5 ( Tt rpJ’y ) + I (K + I Yk) Yl (1184
Next, we differentiate and group the terms, obtaining

FE LN C (RN VL ) o dy*
- = _ jyk i 2 i k
53 = qr T 2g Y+ (a Y/yk+r), +F,FnkYY)

q’
(11.85)
Taking into account formula (11.68) we have
dy* :
- = —rkyry*,
s
Substituting the obtained relationship into (11.85) we obtain
§2Ji d2Ji daJ" ar) « ;
F:d_sz—i_zds Y +J”(3—"1r— F,—i—Fk,F)YY’.

Substituting the preceding expression into the JLC equation (11.83) we obtain

gt _dJn ary
o7 t2 g Lyl + J”(aq”l 0 I 0 +R,n,) Y'yr =o.

Next, we make use of the form of the Riemann tensor, and we have

d2Jji n 2dJ”
ds? ds

: ar:
iyl 4 J”W’/YZY’ =0. (11.86)



460 11 Geometric Dynamics

In order to use the preceding equation efficiently it has to be reduced to the
differential equation with respect to time ¢. Using relation (11.33) we obtain

d 1 d
ds  2wdr’
d? 1 & 1 dWw d
ds? ~ 4W2di2 4W3 dr dr
Substitutitng the preceding relations into (11.86) we obtain the JLC equation for
the Jacobi metric in the form

. W .. . or!
J— —Ji42Jrri x4 g —lx'xr =0, 11.87
where
dg”
X = .
ds

If the dimension of a Riemannian space (which in the present case is determined
by the configuration space) is equal to N, then we obtain a system of N ordinary
differential equations with respect to time.

11.6 Mechanical Systems with Two Degrees of Freedom

Already in systems with two degrees of freedom it is possible to observe chaotic
behavior because then the phase space is four-dimensional [12, 13]. Since in the
case of conservative systems descriptions by means of the Jacobi metric and the
Eisenhart metric are equivalent, we can choose either of them in an arbitrary way. In
the case of the Jacobi metric a Riemannian space is two-dimensional because it is a
configuration space whose dimension is equal to the number of degrees of freedom
of the investigated system. On the other hand, in the case of the Eisenhart metric the
space is four-dimensional. Let us consider the Jacobi metric (11.37) in the matrix
form

ap ap

G = 2W[
ap an

} W = E - V(q). (11.88)

which corresponds to a Lagrangian of the form

1 . 1 . Yy
L =3an@) + 5an@)’ +and'y* = V(@) (11.89)

Our aim is to obtain the JLC equation for the conservative mechanical system
with two degrees of freedom whose dynamics is described by Lagrangian (11.89).
To this end we make use of previously obtained results (11.82) and write the JLC
equation for a system with two degrees of freedom in the form
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d2re .
—— + "WYY IR

ds2 1l]k =0.

The preceding equations are equations in a geodesic coordinate system. The first
equation (¢ = 1), according to (11.80), reduces to the form

21!
a2

whereas the second one takes the form

d?1?
— + WY Y ' WR

- +=0. (11.90)

ilj

The unknown quantities in the preceding equation are the quantities !, which,
in turn, are the components of basis vector E,. Those components are determined
from condition (11.70). Let us write the orthonormality condition in the matrix form

UGy =1, (11.91)

where I is an identity matrix and ¥ is a matrix of the form
v — vl ) _ Yyl .
182 Y23
Following transformation of condition (11.91) we obtain the equation

vy = G771,

which, in turn, leads to equations of the form

G
v 4 (e = ,
( ) + ( 2) detG
Gy
Y2+ (¥3) = .
( ) + ( 2) detG
As solutions we take
1 1 1 2
v, = detG(GuY + GpY”),
2 1 1 2
1112 = — detG(G“Y + G, Y9). (11.92)
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Taking into account the fact that in a two-dimensional space there exists only one
non-vanishing component of the Riemann tensor and that there are symmetries of
components, (11.90) takes the form

&2
o T I*Ryp (3Y' —w)Y?) = 0.

Next, using (11.92), we obtain

d’1? 2 Ro12

ds? detG
or, in equivalent form,

i + Lriz =0

dsz2 2 -

where R denotes a scalar of curvature. The preceding equation in time domain takes
the form

. W
1—W1+2RW21=0, I1=1%

Now, applying the substitution

[ = Aed T — AYW.

we obtain
A+Q2@)A=0, (11.93)
where
V(w1 (w
Q0)==-|—-—=-— ARW? . 11.94
o=t a(e) s

The obtained equation serves as a basis for the analysis of dynamical systems
with two degrees of freedom in a Riemannian space. It should be emphasized that
the function €2(¢) does not depend on time explicitly but only implicitly through
solutions to equations of motion. This means that in order to carry out its analysis
we have to solve the JLC equation simultaneously with equations of motion.

Example 11.1. As an example of a mechanical system with two degrees of freedom
we will consider a double physical pendulum. The dynamics of such a pendulum is
described by a Lagrangian of the form
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1 1

+ macrli 1 cos p + g (mycp + maly) (cosgy — 1)
+ mpgcy (cosgr, — 1), (%)

where ¢ = @1 — ¢2; m1, m, denote the masses of particular links of the pendulum;
Ji, J, are the moments of inertia of the links about their mass centers; c¢;, ¢, denote
the positions of the mass centers of the links; and /;, /; denote the lengths of the
links.

In order to write the preceding Lagrangian in non-dimensional form we introduce
the following scaling:

. miger + mogl
Ji +mic? + myl?

Jo + magl
Ji +mict +mald’

macaly
Ji+ mlcf + mzllz’

msCs

mic, + mol;’
Lagrangian (x) takes the following non-dimensional form:

L, . .
L= 5‘!’12 + g 22 + k@1p2cos¢p + (cosgr — 1) + (cosgp — 1)
Equations of dynamics obtained from Euler—Lagrange equations for Lagrangian

(x) take the form

$+a'bg’+a 'y =0, ()
where
22

_ @ o |9 _ 1 /ccos¢>:|

- b - . b a - b
Ol 4 B 1 R
b= 0. —K sin¢ 7 n = SiI.l(pl '

—K sin¢ 0 U sin @o

Geometrization will be carried out in a configuration space with the Jacobi
metric, which in this case has the form
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. I «cos¢
g_2W|:/ccos¢> B :|’

W=FE—-1—-pu+cosg; + (tcose,.

At first, let us calculate the Christoffel symbols after taking (11.23) into account:

1 .
r! = W deta (2«? sin g1cos’¢
+ Wik sin (2¢) — ik sin ¢, cos ¢ — fsin qol) ,
1 .
r}= W deta (2uk? sin grcos’e
— Wi sin (2¢) — B sin ¢y cos ¢ — B sin )
1
1“12l = SWdeta (usingy —2Wk sin ¢ — k sin ¢y cos @) ,
1 ) . .
1"212 = SWdeta (B sing; + 2Wk sin¢ — pk sin ¢, cos @) ,
1 . .
Flzz = SWdeta (kp singy cos ¢ — Bsingy),
Fl _ ﬁ . .
2= 59 deta (k sin ¢ cos ¢ — psin @) .

Because the system has two degrees of freedom, the configuration space,
and consequently the Riemannian space, is a two-dimensional space. In two-
dimensional Riemannian space we have only one non-zero component of the
Riemann tensor, which in our case takes the form

Roin1 = pcosgy + 2Wk cos¢ + B cosg

sin’g; deta

1 . . 2
+ —_ — +
(k sin g1 cos ¢ — (L sin @)

_f sin ¢ (kp sin @1 cos ¢ — puk sin @, cos ¢
deta
. . 2Wi3sin’¢ cos
—,Bp,sm(pz—i-ﬂsm(pl)——(P ¢,
deta

where the components of the Riemann tensor are found from the formula'?

120bviously we apply here the Einstein summation convention, that is, we carry out the summation
with respect to repeating indices.
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ort or/!
I k ij i i
Ry = Bq_lf T3 + 0Ly — T Do
Next, we obtain a curvature scalar R of the form
_ kcos¢ K3sin¢ cos ¢
~ Wdeta W deta?

1 .9
+ 37 derg (i1 cosd = usings)” + Tk
K sin
_ ZI/VZ—cha(faZ(K'B sin @1 cos ¢ — juk sin @, cos

L cos @y + B cos e
2W2deta '

— Busingy + Bsing) +

We substitute the last obtained form of the curvature scalar into (11.94) and solve
the resulting JLC equation (11.93) simultaneously with equations of motion ().
Further details and numerical examples can be found in [14, 15]. O
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