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Foreword

Few mathematicians in Germany in the last 30 years have influenced analytic
number theory as much and as deeply as Samuel Patterson. His impressive
genealogy is only one of the results of his active mathematical career.

Many of the articles in this volume have been presented at the conference
“Patterson 60++” at the University of Göttingen in July 2009 on the occasion
of his 60th birthday. The conference featured four generations of mathematicians
including Patterson’s children and grandchildren as well as his own advisor Prof.
Alan F. Beardon who did not miss the opportunity to contribute an enjoyable and
lively talk to the many mathematical birthday presents.

The articles in this volume reflect Patterson’s manifold interests ranging from
classical analytic number theory and exponential sums via automorphic forms on
metaplectic groups to measure-theoretic aspects of Fuchsian groups. The combina-
tion of measure theory and spectral theory, envisioned by Patterson 30 years ago,
is still a most fruitful instance of interdisciplinary mathematics. Besides purely
mathematical topics, Samuel Patterson is also well known for his interest in the
history of mathematics; a place like Göttingen where he has been teaching and
researching for the last 30 years seems to be an appropriate location in this respect.
We hope that this book gives a lively image of all of these aspects.

We would like to thank the staff of Springer for their cooperation,
Michaela Wasmuth for preparing the genealogy, Stefan Baur for excellent and
competent typesetting, the numerous referees for their valuable time and expertise,
and first and foremost the authors for contributing to this volume. Some colourful
and very personal recollections of Samuel Patterson have been compiled on the
following pages.

Göttingen, Germany Valentin Blomer
Summer 2011 Preda Mihăilescu

vii



viii Foreword

Encounters with Samuel J. Patterson

I came to Göttingen in October 1982, as a first year student in mathematics.
Samuel J. Patterson was lecturing on linear algebra. The course was very intense,
never loosing a beat in the flow of ideas. His style was passionate, getting in touch
with the subject even literally: he would wipe the board with his arm, or his right
hand, and when it was over, after ninety minutes of hard work, there was chalk
all over the place, including his pants and, sometimes, even his impressive beard.
Needless to say, the girls liked it very much.

At that time, I did not know much about mathematics and contemporary research,
but it was clear to the audience that an enthusiastic scientist was at work here, and
it was a significant encouragement to more than just a few to become serious about
mathematics.

Later, when I became his research student, he had gathered a larger group
of younger people in the SFB 170. Those days, his efforts in number theory
concentrated on Gauss sums and metaplectic forms, so it seemed. My reading
list, however, reflected his heritage as a more classically oriented analytic number
theorist, and it would send me off into a different direction. His approach to
supervision is to guide the student toward independence as early as is possible. He
would push the project as long as guidance is necessary, but get out of the way when
there is enough momentum. Also, in the Oberseminar, we got a weekly treat of what
he thought we should know, and that was quite a bit.

It is not a surprise that his students work in different fields of mathematics. At
heart, his love for the theory of numbers and classical mathematics is always present.
Now he is soon to retire, whatever this means. Certainly, he will not retire as a
mathematician, and we hope that he also continues to encourage the next generation.

Jörg Brüdern

I remember June 2001 in Oberwolfach, the conference commemorating the bicen-
tennary of Carl Friedrich Gauss’s Disquisitiones Arithmeticae. We had brought
together for the occasion mathematicians with historians and philosophers of
mathematics. Fairly explicit mathematics dominated the first talks: composition
of binary quadratic forms, irreducibility questions in Gauss’s Seventh Section
on cyclotomy, nineteenth century reports on the state of the theory of numbers,
etc. This changed when it was Patterson’s turn to talk. His subject was Gauss’s
determination of the sign of (certain) quadratic Gauss sums, as they are called today.
Not that he banned explicit mathematics from his talk – as the lecture went on, he
indicated explicitly several proofs of Gauss’s relation, and generalisations thereof.
But for some 20 min, he just talked about Gauss’s well-known letter to Olbers of 3
September 1805. This is the letter, where Gauss describes how long he had struggled
with the proof – proof of a result, as Patterson duly pointed out, which Gauss had
announced in the Disquisitiones on the sole basis of experimental evidence – and
how suddenly, with no apparent connection to the ideas he had pursued before – wie
der Blitz einschlägt – the crucial idea had finally struck him.
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A specialist of German literature commenting on this letter would be expected to
point to the ambient discourse on genius at the time – der Geniebegriff bei Goethe
(und anderen). At the Oberwolfach conference, it was precisely the most active
research mathematician among all those present at the conference who struck this
note. He explained how to read this letter as a self-portrait of Gauss working on his
image, on the ethos reflected in it. Beethoven’s Eroica was mentioned as a point of
reference for the document, as was Tolstoi’s War and Peace.

Unlike the romantic writer, the poet of Roman antiquity was supposed, not only
just to capture an immediate impression and conjure up its deeper meaning with
a stroke – ... die Vöglein schweigen im Walde; warte nur, balde .... – but also to
prove himself a poeta doctus, able to build global knowledge from geography and
natural history into his polished narration. Samuel J. Patterson is for me a rare and
challenging example of mathematicus litterarius – a species of which we could use
many more, provided they are as capable as he is to use the literary, the humanistic
vantage point for detaching themselves from naive identifications with mathematical
heroes of the past.

Cf. The expanded writeup of the talk: S.J. Patterson, Gauss sums. In: The
Shaping of Arithmetic after C.F. Gauss’s Disquisitiones Arithmeticae (C. Goldstein,
N. Schappacher, J. Schwermer, eds.), Springer, 2007; pp. 505–528.

Norbert Schappacher

Es gibt wenige Personen im Leben, die dauerhaft im Gedächtnis haften bleiben.
Samuel J. Patterson ist eine davon. Nicht nur als Mensch, sondern mehr noch
durch seine Impulse und Ideen, die entscheidende Weichenstellungen geben, und
zu glücklichen und wertvollen Entwicklungen führen.

Er nahm zum Wintersemester 1981 den Ruf auf die Nachfolge von Max Deuring
an, die Antrittsvorlesung hielt er am 20. Januar 1982: “Gauß’sche Summen: ein
Thema mit Variationen”, ein Gebiet, dass ihn stets fasziniert hat. Es ist bezeichnend,
dass er in seiner Antrittsvorlesung Gauß mit den Worten zitiert1: “... nämlich die
Bestimmung des Wurzelzeichens ist es gerade, was mich immer gequält hat. Dieser
Mangel hat mir alles Übrige, was ich fand, verleidet; und seit vier Jahren wird selten
eine Woche hingegangen sein, wo ich nicht einen oder den anderen vergeblichen
Versuch, diesen Knoten zu lösen, gemacht hätte — besonders lebhaft wieder in der
letzten Zeit. Aber alles Brüten, alles Suchen ist umsonst gewesen, traurig habe ich
jedesmal die Feder weglegen müssen. Endlich vor ein paar Tagen ist’s gelungen –
aber nicht meinem mühsamen Suchen, sondern bloß durch die Gnade Gottes möchte
ich sagen. Wie der Blitz einschlägt, hat sich das Rätsel gelöst;...”. An diese Sätze von
Gauß werde ich stets erinnert, wenn ich Pattersons Arbeitsweise charakterisieren
soll; ähnliche Bemerkungen von ihm selbst zu seiner Arbeitsweise belegen dies.

1Brief von Gauß an Olbers vom 3.9.1805.
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Auf Grund seiner Arbeiten zu Fuchs’schen und Klein’schen Gruppen2 wurde
D. Sullivan dazu angeregt, über analoge Fragen für dynamische Systeme nachzu-
denken. Dies wiederum führte dazu, dass ich mit Patterson im SFB 170 im
Jahr 1984 ein Teilprojekt zu geodätischen Strömungen beantragte, das erfolg-
reich über mehr als zehn Jahre lief. Natürlich war Patterson die treibende Kraft
hinter diesem Projekt, bezeichnend hierbei seine Weitsicht und die Fähigkeit
weitgesteckte Fragen zu formulieren. Bezeichnend ist auch die Begeisterung, mit
der er Mitte der achtziger Jahre fraktale Geometrie erklärte. Auf der Konferenz über
dynamische Systeme und Ergodentheorie in Oberwolfach konnte er stundenlang
darüber erzählen und auch Laien dafür begeistern. Die Fragestellungen des SFB
waren schwierig, wurden dann aber doch in Zusammenarbeit mit der Berliner
Gruppe im SFB 288 (A. Juhl) beantwortet3: “Es war 1984 nicht klar, wie die
beiden Zugänge (symbolische Dynamik und Selberg’sche Zetafunktionen) zu der
analytischen Theorie der Kleinschen Gruppen zueinander passten. Es war auch nicht
klar, ob ein Zugang dem anderen überlegen war. Ein Ziel war ein Verständnis der
beiden Theorien und, wenn möglich, ihre Synthese. Etwas später hat Gromov eine
sehr anschauliche, wenn nicht immer wörtlich korrekte Darstellung der Ripsschen
Theorie der hyperbolischen Gruppen gegeben. Es war klar, dass die beiden Zugänge
auch hier anwendbar waren. Da der kombinatorische Rahmen in mancher Hinsicht
einfacher und in anderer komplizierter als der differentialgeometrische ist, lag es
auch nahe, diese auch in die Betrachtungen einzubeziehen.”

Der SFB 170 “Geometrie und Analysis” war der zweite Sonderforschungsbere-
ich in reiner Mathematik, der durch die Deutsche Forschungsgemeinschaft gefördert
wurde. Nicht zuletzt durch die treibende Kraft von Hans Grauert, Tammo tom Dieck
und Samuel J. Patterson wurde dies ermöglicht. Der SFB 170 hatte 4 Teilpro-
jekte: 1. Komplexe Analysis (Grauert, Flenner), 2. Topologie (tom Dieck, Smith)
3. Metaplektische Formen (Patterson, Christian) und 4. Geodätische Strömungen
(Patterson, Denker). Er war nach heutigen Maßstäben recht klein, trotzdem wis-
senschaftlich wegweisend, für die damalige Fakultät lebenserhaltend und für den
wissenschaftlichen Nachwuchs in den achtziger Jahren eine der wenigen
Möglichkeiten, sich in Deutschland fortzubilden.4 Der SFB ermöglichte zudem eine
verbesserte Außendarstellung der Fakultät.

Am Ende der Laufzeit des SFB 1995 war klar, dass die Fakultät neu ausgerichtet
werden musste. Auf Grund mehrerer Umstände war dieses Ziel kurzfristig nicht
erreichbar. Verschiedene Versuche waren nicht erfolgreich, aber eine wegweisenden
Neuausrichtung war für Paddy stets oberste Priorität. Als eine solche (unter
mehreren) erwies sich die Möglichkeit für die Fakultät, über Zentren in Informatik
und Statistik mehr Zusammenarbeit innerhalb der Universität zu generieren und so
die Mathematik mehr ins Blickfeld zu rücken. Das Zentrum für Statistik wurde

2siehe mein Beitrag mit Bernd Stratmann in diesem Band.
3Abschlußbericht des SFB 170.
4Die Göttinger Fakultät hatte viele seiner Mittelbaustellen verloren; der SFB schaffte hier einen
kleinen Ausgleich.
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2001 als eine Einrichtung der Fakultät gegründet.5 Patterson war sicherlich der
fakultätsinterne Initiator dieser Initiative und verfolgte die Entwicklung des ZfS
als Vorstandsmitglied mit Rat und Tat. Es soll hier nicht diskutiert werden, wie
sehr diese entscheidende Idee von Patterson zur Entwicklung der Fakultät in den
letzten Jahren beigetragen hat. Es zeigt aber, wie sehr auch Patterson der Gauß’schen
Maxime zuneigt ist, dass angewandte und reine Mathematik eins sind. Auf jeden
Fall kann seither eine positive Entwicklung der Fakultät beobachtet werden, nicht
zuletzt durch Patterson’s konstantes Drängen auf Qualität gepaart mit Sinn für das
Machbare.

Schon in seiner Antrittsvorlesung legte Patterson großen Wert auf historische
Zusammenhänge. Dies ist eine bemerkenswerte Eigenschaft seiner Arbeitsweise.
Es gab über all die Jahre keinen besser qualifizierten Wissenschaftler in Göttingen,
der die umfangreiche Modellsammlung des Mathematischen Instituts6 und seine
historisch wertvollen Schriften betreuen konnte. Es ist stets ein Vergnügen zu
beobachten, mit welchem Enthusiasmus und welche tiefsinnigen Beschreibungen
Patterson die Modelle zahlreichen Besuchern, auch Schulklassen, näher bringt.
Er ist auch einer der universitätsweit anerkannten Fachleute der mathematischen
Nachlässe, die die Universitätsbibliothek besitzt. Sicherlich hat Paddy hier sein
Hobby mit seiner Arbeit verbunden. Anläßlich des Gauß Jahres 2005 beschäftigte
sich Patterson mit dem mathematischen Werk von Gauß im verstärkten Maße, und
das führte zu einem Beitrag in der Begleitband zur Gauß-Ausstellung 2005.7 Es
bleibt nur zu wünschen, dass Paddy weiterhin so aktiv und erfolgreich wirken kann.

Manfred Denker

Maybe you had a God-father, maybe you did not. But when one joins as a
new professor the Institute of Mathematics in Göttingen, then one must have a
God-father, it is the law. More precisely, it became recently the law. When I arrived
in Göttingen, I had the chance to have one by his own initiative: Samuel J. Patterson,
also called Paddy.

Believing it might be useful for someone new to the Institute – and who had in
fact only recently rejoined Academia – to have a point of reference, he developed for
us a regular meeting ceremony. A little bit like the fox and the Little Prince of Saint-
Exupéry, we met regularly on Wednesday, around the Café Hemer. I soon discovered
that Paddy was a fundamental link in the long line, which connected present to
the foundation times; at our Institute, these are situated around the personalities of
Hilbert and Klein. With Paddy, halfways mythical names such as Grauert, Kneser or
Siegel and Hasse were personal, direct or indirect encounters from his early years
in Göttingen, and then stories and associations brought imperceptibly the founders

5http://www.uni-protokolle.de/nachrichten/id/19562/.
6http://www.math.uni-goettingen.de/historisches/modellsammlung.html.
7S. J. Patterson, M. Denker: Gauß – der geniale Mathematiker, Göttinger Bibliotheksschriften 30.
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on the scene. As a recent person in the Alma Mater, I had encountered few active
mathematicians in my life – but talking about so many, as if somehow I had just
missed them by a fraction, the number of acquaintances grew from one Wednesday
to another. At times, the stories of people who missed in one or another way their
duty or natural expectations put in them, would come to complete the picture – and
an attentive look would check then how the message was received.

That was the God-father at work, recalling me if necessary, that ethics was there
constantly as a choice, failure a most probable menace, yet not a rule – and the tiny
gap between the two is where the light comes in. Ethics and mathematics going on
two indistinguishably close, parallel roads, the counterpart was openly described in
Paddy’s favorite formula “a mathematician is a person who fails 99% of the time and
knows it”. With or without quantization, failure is a rule of statistics but not one of
necessity, and we are working at its borderline, either as mathematicians, or simply
as creatures trying to stay involved in the art of being human. In the two realms, our
scepticisms were compensating each other. This friendly initiation lasted for less
than two years, and afterwards no one ever cared to ask me, how I graduated from
Paddy’s God-fathership.

At this time, I learned to respect in Paddy one of the rare personalities I happened
to encounter, who seemed to have offered all of his dedication in community tasks
in the academic business, for the finality of inflicting the Institutions with the best
of the spirit they were intended for. One who tried, modestly and with tenacity,
to change the system from within, as some song might put it. I was amazed by
his knowledge of the legal background, coupled by a venerable lack of (utilitarian)
pragmatism, which accompanied all of his attitudes.

It happened that towards the end of the God-father apprenticeship, I was getting
involved with understanding some things about Iwasawa theory, which I believed
should be simple in their essence, but did not appear like that in any book or
publication I encountered. Paddy had at that time a “Working-group seminar” on
Tuesdays, and I asked him if I could become one of that group and use some time
slots for talking about these questions. He accepted, and using the attention of my
small auditory, I could start organizing my new area of research. As a result, there
was a series of four manuscripts of about 30–70 pages in length, which expanded on
one another, partially refuting previous claims and gaining focus. The attention of
this auditory, and most of all, the one of Paddy, was of great importance, in an early
spotting of some crude errors of wishful thinking. The subject was certainly remote
from his domain of expertise, but certainly not from his mathematical instinct. Once
again, the discussions we had in our Wednesday walks remained a memorable help,
and the first versions of the Snoqit8 manuscripts, which were the immediate notes
for the seminar and have been more than once rewritten, remained a valuable means
for recovering some of the initial guiding questions, if not insights. Some results
drawn from that work are included in this volume.

8Seminar notes on open questions in Iwasawa theory.
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Paddy will take a slightly anticipated retirement and intends to retire in nature,
watching birds and performing laic pilgrimages to places of Celtic Christianism.
I wish him all the peace and luck at this – can we believe, this might also mean
retirement from mathematics?

Preda Mihăilescu
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Norbert Schappacher IRMA, 7 rue René Descartes, 67084 Strasbourg cedex,
France, schappacher@math.unistra.fr

Bernd O. Stratmann Fachbereich 3 – Mathematik und Informatik, Universität
Bremen, Bibliothekstr. 1, D–28359 Bremen, Germany, bos@math.uni-bremen.de

goldfeld@columbia.edu
hille@math.hu-berlin.de
jhoff@math.brown.edu
martin.olbrich@uni.lu
kazhdan@math.huji.ac.il
mhk@math.uni-bremen.de
preda@uni-math.gwdg.de
schappacher@math.unistra.fr
bos@math.uni-bremen.de


The Density of Rational Points on a Certain
Threefold

Valentin Blomer and Jörg Brüdern

Abstract The equation

x1y2y3 + x2y1y3 + x3y1y2 = 0

defines a singular threefold in P
2×P

2. Let N(B) be the number of rational points on
this variety with non-zero coordinates of height at most B. It is proved that N(B)�
B(logB)4.

1 Introduction

The equation
x1y2y3 + x2y1y3 + x3y1y2 = 0 (1)

is a homogenous linear one in x = (x1,x2,x3) and a quadric in y. Thus, the equation
defines a threefold in P

2×P
2. The purpose of this note is to study the distribution

of its rational points.
There are three singularities on this variety. It is readily confirmed that these are

given by the equations yi = xi = y j = x j = 0, for each of the three choices of i, j with
1≤ i < j ≤ 3. Any solution of (1) with x1x2x3y1y2y3 = 0 we consider as a “trivial”
solution. Note that the singular points are included here.

We shall count non-trivial rational points on (1), sorted according to their
anticanonical height that we now define. Recall that a rational point in P

2 has a
representation by a primitive vector x ∈ Z

3 (that is, the coordinates x1,x2,x3 are
coprime), and that x is unique up to sign. Then |x| = max |x j| is the natural height
of the rational point. A rational point on (1) may be represented by a pair x,y of

V. Blomer (�) • J. Brüdern
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2 V. Blomer and J. Brüdern

primitive vectors, and its anticanonical height is defined by |x|2|y|. It is now natural
to consider the counting function N(B), defined as the number of all pairs x,y of
primitive vectors in Z

3 with

|x|2|y| ≤ B (2)

that satisfy (1) and

x1x2x3y1y2y3 �= 0. (3)

We shall determine the order of magnitude of N(B).

Theorem 1. One has

B(logB)4� N(B)� B(logB)4.

It should be stressed that there are many more trivial solutions. For example, we
may choose x1 = 0, x2 = x3 = 1 and y1,y2 coprime. Then y3 =−y2 solves (1), and
there are� B2 such solutions satisfying (2).

It is very likely that there is an asymptotic formula for N(B) in which the leading
term is CB(logB)4, with some positive constant C. Such a formula is predicted by
a very general conjecture of Manin (see [1, 3]). The relevant height zeta function
should have an analytic continuation with a pole at its abscissa of convergence, so
that one would even expect an asymptotic expansion

N(B) = BP(logB)+ o(B) (B→ ∞), (4)

in which P is a certain real polynomial of degree 4. However, results of this type
seem to be beyond the limitations of the methods in this paper.

The anticanonical height is a very natural measure for the size of a solution of
a bihomogenous equation. In a sense, this measure puts equal weight on the linear
and the quadratic contributions, in our special case. There are very few examples
where this choice of height has been studied via methods from analytic number
theory (but see Robbiani [6] and Spencer [7]). Alternatively, one may also consider
(1) as a cubic in P

5, and then count rational points according to their natural height
max(|x|, |y|). Then one can say much more. In particular, the analogue of (4) can be
established by an analytic method. For this as well as a more thorough discussion
of Manin’s conjecture and other recent work related to it, we refer the reader to our
forthcoming memoir [2].

Our approach has some similarity with work of Heath-Brown [4] on the Caley
cubic. It has become customary in problems of this type to count points on the
universal torsor, rather than on the original variety, and this paper is no exception.
The torsor is described in Sect. 2. Then we use a lattice point estimate from Heath-
Brown [5] to establish the upper bound estimate for N(B) in Sects. 3 and 4. In certain
cases, one encounters an unconventional problem: a direct use of the geometry of
numbers leads to estimates that are seemingly too weak by a power of log logB.
In Sect. 4, we bypass this difficulty. Our argument uses an iterative scheme that
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appears to be new in this context. The lower bound for N(B) can be established by
direct methods, as we shall see in Sect. 5. Two technical bounds are required here,
and the proofs for these are given in Sect. 6.

2 The Passage to the Torsor

The sole purpose of this section is to describe a parametrization of the threefold.
The result is crucial for the derivation of both the upper and the lower bound
in the theorem. Although no use of this fact is made later, it is perhaps of interest
to observe that Lemma 1 yields a bijection between the threefold and its universal
torsor.

Let C denote the set of pairs of primitive x,y∈ Z3 that satisfy (1) and (3). Let A
denote the set of all (d,z,a) ∈ N

3×Z
3×Z

3 with a1a2a3z1z2z3 �= 0 that satisfy the
lattice equation

a1d1 + a2d2 + a2d3 = 0 (5)

and the coprimality constraints

(di;d j) = (zi;z j) = (dk;zk) = 1 (1≤ i < j ≤ 3,1≤ k ≤ 3),
(a1z1;a2z2;a3z3) = 1.

(6)

Lemma 1. The mapping A → C defined by

x1 = a1z1, x2 = a2z2, x3 = a3z3

y1 = d2d3z1, y2 = d1d3z2, y3 = d1d2z3 (7)

is a bijection.

Proof. Given an element of A , one checks from (6) that x and y are primitive, and
from (1) that (x,y) ∈ C . To construct the inverse mapping, let (x,y) ∈ C be given.
Then put

d1 = (y2;y3), d2 = (y1;y3), d3 = (y1;y2).

Since y is primitive, the d j are coprime in pairs, as required in (6). By (3), we can
now define non-zero integers z j through the equations

y1 = d2d3z1, y2 = d1d3z2, y3 = d1d2z3,

as in 7, and by construction, the coprimality conditions in the first line of (6) all
hold. We substitute for y in (1) and obtain

d1x1z2z3 + d2x2z1z3 + d3x3z1z2 = 0.
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This yields z1 | d1x1z2z3, and with (6) now in hand, we conclude that z1 | x1.
Similarly, z j | x j for j = 2,3, and we may define a j ∈ Z through x j = a jz j . The
condition that (a1z1;a2z2;a3z3) = 1 is implied by the fact that x is primitive. This
completes the proof.

3 A First Auxiliary Upper Bound

We embark on the estimation of N(B) from above through a series of auxiliary
bounds for the number, say V (X ,Y ), of (x,y) ∈ C within the box

|x| ≤ X , |y| ≤ Y. (8)

Our principal tool is the theory of successive minima from the geometry of numbers.
All the necessary information is imported through the next lemma.

Lemma 2. Let v ∈ Z
3 be primitive, let Hi > 0 (1≤ i≤ 3), and suppose that |v3| ≤

H1H2. Then the number of primitive u ∈ Z
3 that satisfy

u1v1 + u2v2 + u3v3 = 0,

and that lie in the box |ui| ≤ Hi (1≤ i≤ 3), is at most 50H1H2|v3|−1.

Proof. This is contained in Heath-Brown [5], Lemma 3 (see also [4], Lemma 3).
Even without the hypothesis that |v3| ≤ H1H2, Heath-Brown shows that 4 +
40H1H2|v3|−1 is an admissible upper bound for the number of u that are counted
here.

As a first application of Lemma 2, we demonstrate an essentially best possible
bound for V (X ,Y ) when X is smaller than Y .

Lemma 3. Let 4≤ X ≤ Y . Then

V (X ,Y )� X2Y (logX)3.

Proof. By Lemma 1, we see that V (X ,Y ) equals the number of (d,a,z) ∈A with

|a jz j| ≤ X , d1d2|z3| ≤ Y, d1d3|z2| ≤ Y, d2d3|z1| ≤ Y.

Here, all z j enter the conditions only through |z j|, so that at the cost of a factor 8, it
is enough to count z with all z j positive. A similar observation applies to a: by (5),
the a j may not all have the sign. Hence, there are exactly six possible distributions
of signs among a1,a2,a3. By symmetry, it then suffices to consider the case where
a1 > 0,a2 > 0,a3 < 0. In this situation, it is convenient to replace −a3 by a3, and
accordingly to rewrite (5) as

a1d1 + a2d2 = a3d3 (9)
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in which all variables are now positive. Since any (d,a,z) ∈A consists of primitive
d,a,z, by (6), it now follows that

V (X ,Y )≤ 48U, (10)

where U is the number of triples d,a,z ∈N
3 of primitive vectors that satisfy (9) and

a jz j ≤ X , d1d2z3 ≤ Y, d1d3z2 ≤ Y, d2d3z1 ≤ Y. (11)

Now fix a and z in line with these conditions. We shall count the number of
possibilities for d by Lemma 2. By (9), we have a1d1 < a3d3, whence by (11),

d1 ≤ Y/(d3z2)≤ Ya3/(z2a1d1).

Consequently,
d1 ≤ (Ya3)

1/2(z2a1)
−1/2, (12)

and similarly, one also finds that

d2 ≤ (Ya3)
1/2(z1a2)

−1/2. (13)

We now apply Lemma 2, with a in the role of v, and with

H1 = (Ya3)
1/2(z2a1)

−1/2, H2 = (Ya3)
1/2(z1a2)

−1/2, H3 = Y.

The condition that
|a3| ≤ H1H2 = Ya3(a1z1a2z2)

−1/2

is satisfied, because by (11) and the hypothesis of the lemma to be proved, one
has a1z1a2z2 ≤ X2 ≤ Y 2. Hence, the number of primitive d to be counted does not
exceed 50Y(a1z1a2z2)

−1/2. It follows that

U ≤ 50 ∑
a jz j≤X
j=1,2,3

Y

(a1z1a2z2)1/2
.

The familiar asymptotic formula

∑
az≤X

1 = X logX +O(X)

and partial summation now suffice to conclude that

U � X2Y (logX)3,

and the lemma follows from (10).
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4 Another Auxiliary Upper Bound

In this section, we complement the work of the previous section by examining the
situation when Y is smaller than X .

Lemma 4. Suppose that 4≤ Y ≤ X. Then

V (X ,Y )� X2Y (logY )3.

This bound has the same strength than the one exhibited in Lemma 3, but the
proof is considerably more complex. The basic idea is the same, with the roles of d
and a interchanged. We shall estimate V (X ,Y ) through an iterative scheme rooted
in the following bound.

Lemma 5. Let 4 ≤ Z ≤ Y ≤ X and 4 ≤ Y3 ≤ Y. Let T = T (X ,Y,Y3,Z) denote the
number of (x,y) ∈ C with

|x| ≤ X , Y/Z ≤ |y1|, |y2| ≤ Y, |y3| ≤ Y3.

Then

T � X2Y3(logY )3(logZ)2.

Proof. By Lemma 1, T equals the number of (a,d,z)∈A satisfying the inequalities

|a jz j | ≤ X (1≤ j ≤ 3), d1d2|z3| ≤ Y3,

Y/Z ≤ d2d3|z1| ≤ Y, Y/Z ≤ d1d3|z2| ≤ Y. (14)

As in the previous section, only primitive a and d are counted here. Now fix an
admissible choice of d and z. We apply Lemma 2 with d in the role of v, and with
Hj = X/|z j|. Repeated use of (14) and the postulated inequality Y ≤ X suffices to
confirm that

d3 ≤ Y/|z1| ≤ X/|z1| ≤ X2/|z1z2|= H1H2,

as required. Lemma 2 now shows that no more than 50H1H2d−1
3 primitive a

correspond to the given pair z,d. We sum this over z and d, and observe that there
are 8 possible distributions of sign among z1,z2,z3. It follows that

T ≤ 400∑
z,d

X2

z1z2d3

in which the sum is over z ∈ N
3, d ∈ N

3 subject to the conditions

d1d2z3 ≤ Y3, Y/Z ≤ d1d3z2 ≤ Y, Y/Z ≤ d2d3z1 ≤ Y
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and z j ≤ X for 1≤ j ≤ 3. We carry out the sum over z3 to infer that

T ≤ 400 ∑
z1,z2≤Y

∑
d

X2Y3

z1z2d1d2d3
,

where the sum over d is now restricted by the inequalities

Y/Z ≤ d1d3z2 ≤ Y, Y/Z ≤ d2d3z1 ≤ Y.

Before proceeding further, we record here an elementary inequality. In fact, when
ξ ,ζ are real numbers with 1≤ ζ ≤ ξ , then

∑
ξ/ζ≤d≤ξ

1
d
≤ 2+

∫ ξ

ξ/ζ

dt
t
≤ 2+ logζ ,

as one readily confirms. We apply this with ξ =Y/(d3z j) and ζ =min(Z,Y/(d3z j))
to bound the sums over d1 and d2 above, and deduce that

T ≤ 400 ∑
z1,z2≤Y

∑
d3≤Y

X2Y3(2+ logZ)2

z1z2d3
.

The conclusion of Lemma 5 is now immediate.

Note that V (X ,Y )= T (X ,Y,Y,Y ), so that Lemma 5 givesV (X ,Y )�X2Y (logY )5.
This is too weak when Y is large, but the conclusion of Lemma 4 is now established
for Y ≤ e4. For larger Y , one can do rather better. Let logk be the iterated logarithm,
defined by log1 = log and logk+1 = log◦ logk. When Y ≥ e4, determine the integer
K by the inequalities

4≤ logK Y < e4 (15)

and note that K ≥ 1. For 1≤ k≤ K, the number

Zk = (logk Y )3 (16)

is a real number with Zk ≥ 64. Now let W0 = W0(X ,Y ) be the number of all x,y
counted by V (X ,Y ), where one has |y j| ≤ YZ−1

1 for at least one j ∈ {1,2,3}, and
when 1 ≤ k ≤ K, let Vk = Vk(X ,Y ) be the number of those x,y counted by V (X ,Y )
where YZ−1

k < |y j| ≤Y holds for all j ∈{1,2,3}. Then one has V (X ,Y ) =W0+V1. If
we define Wk as the number of solutions counted by Vk(X ,Y ) that have |y j| ≤ XZ−1

k+1
for at least one j ∈ {1,2,3}, then Vk =Wk +Vk+1, and by repeated application, one
finds that

V (X ,Y ) =W0 +W1 + · · ·+WK−1 +VK. (17)
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Observe that VK = T (X ,Y,Y,ZK), so that Lemma 5 and (15) imply the bound VK �
XY 2(logY )3. A similar estimate is available for Wk when 0 ≤ k < K. By symmetry
in the indices 1,2,3, one finds that

W0 ≤ 3T (X ,Y,Y Z−1
1 ,Y )

and

Wk ≤ 3T (X ,Y,Y Z−1
k+1,Zk) (1≤ k < K).

Lemma 5 now yields

W0� X2Y Z−1
1 (logY )5� X2Y (logY )2

and

Wk� X2YZ−1
k+1(logY )3(logZk)

2,

uniformly for 1≤ k < K. By (16),

Z−1
k+1(logZk)

2 = 3(logk+1 Y )−1,

so that, on collecting together, we now deduce from (17) the inequality

V (X ,Y )� X2Y (logY )3
(

1+
K

∑
k=1

(logk Y )−1
)
.

By (15), we see logK−l Y ≥ expl(0) for 0 ≤ l < K; here exp1 = exp and expl+1 =
exp◦expl is the iterated exponential. Now

K

∑
k=1

(logk Y )−1 ≤ 1+
∞

∑
l=1

expl(0)
−1,

and the sum on the right converges. This completes the proof of Lemma 4.
The upper bound for N(B) is now available. Any pair x,y with |x|2|y| ≤ B

satisfies |x| ≤ 4 j, |y| ≤ 42−2 jB for some j with 1≤ j� logB. Hence,

N(B)≤ ∑
1≤ j�logB

V (4 j,42−2 jB), (18)

and we may apply Lemmas 3 and 4 to conclude that N(B)� B(logB)4, as required.
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5 The Lower Bound Method

The work in the previous sections involved a number of enveloping processes. For
the upper bounds it sufficed to ignore the coprimality constraints (6) whenever they
would otherwise complicate the argument, and also (18) is derived by a non-disjoint
cover of the hyperbolic condition |x|2|y| ≤ B. For the lower bound, we have to
reverse the procedure, and we therefore now consider the number V ∗(X ,Y ) of all
(x,y) ∈ C with

|x| ≤ X ,
1
4

Y < |y| ≤ Y.

The crucial lower bound then is the following result.

Lemma 6. Let Y be sufficiently large. Then, uniformly for X and Y with X ≥ Y 3,
one has

V ∗(X ,Y )� X2Y (logY )3.

Once this is established, we can mimic the strategy leading to (18), and obtain

N(B)≥ ∑
4 j≤B1/7

V ∗(2− jB1/2,4 j)� B(logB)4,

which completes the proof of the theorem.

In the remainder of this section, we shall derive Lemma 6. Again, the counting
process will be performed on the torsor. Three technical estimates are required, the
first of which is given in the next lemma.

Lemma 7. Let A1,A2 be real numbers with A j ≥ 2. Let z1,z2,d3,b ∈ N with
(z1;z2) = (b;d3) = 1. Let S(A1,A2,z1,z2,d3,b) = S denote the number of pairs a1,a2

with (a1;z2) = (a2;z1) = (a1;a2) = 1 and

a1 ≤ A1, a2 ≤ A2, a2 ≡ ba1 mod d3.

Then uniformly for A1,A2,z1,z2,d,b in the indicated ranges, one has

S� A1A2
ϕ(z2d3)ϕ(z1)

d2
3z2z1

+O((τ(z1)A1 + τ(z2)A2) log(A1z1)).

We postpone the proof of this as well as the one for the following lemma to the
final section.

Lemma 8. Let D≥ 1 and c ∈ N. Then

∑
d≤D

(c;d)=1

1 =
ϕ(c)

c
D+O(τ(c)). (19)
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In addition, let D2 ≥ D1 ≥ 1. Then

∑
D1≤d≤D2
(c;d)=1

ϕ(d)4

d5 � ϕ(c)
c

log
D2

D1
+O

(
τ(c)(1+ logD1)

4

D1

)
. (20)

Proof (of Lemma 6). As a first step, we will only count those (x,y) ∈ C , where
(x1;x2) = 1, before passing to the torsor. By Lemma 1, it follows that V ∗(X ,Y ) is
bounded below by the number of (d,a,z) ∈ N

3×Z
3×N

3, where

(di;d j) = (zi;z j) = (dk;zk) = 1 (21)

hold for 1≤ i < j ≤ 3, 1≤ k ≤ 3, where

(a1z1;a2z2) = 1, (22)

and where

1≤ |a j|z j ≤ X ,
1
4

Y < d1d2z3,d2d3z1,d1d3z2 ≤ Y. (23)

Note that a3 is now absent from the coprimality constraints.

Let V ∗∗ denote the number of (d,a,z) counted above that also satisfy the
inequalities

d2d3z1 ≥ 1
2

Y,
1
2

d3z2 ≤ d2z3 ≤ d3z2 ≤ Y 2/5. (24)

Then
V ∗(X ,Y )≥V ∗∗. (25)

In preparation for an application of Lemma 7, fix a choice of z,d in accordance with
(21)–(24).

Now choose pairs (a1,a2) ∈ N
2 with

a1 ≤ X/(4z1), a2 ≤ X/(2z2), (a1z1,a2z2) = 1, d1a1 ≡−a2d2 mod d3.

In view of (21) and Lemma 7, there are S(X/(4z1),X/(2z2),z1,z2,d3,b) such
choices, where b is defined by bd2 ≡−d1 mod d3, and we have

S� X2ϕ(z1)ϕ(z2d3)

(z1z2d3)2 −O(X(logX)(z1z2)
ε)� X2ϕ(z1)ϕ(z2d3)

(z1z2d3)2

in the current situation. For each such pair (a1,a2), there is an integer a3 such that
(6) holds, and we have

|a3|= a1d1 + a2d2

d3
≤ X

d3

(
d1

4z1
+

d2

2z2

)
≤ X

d3

(
Y

4z1d2z3
+

d3

2z3

)
≤ X

z3
,
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as one readily checks from (23) and (24). Hence, the triple (d,a,z) is indeed counted
by V ∗∗. This shows that

V ∗∗ � X2∑
d,z

ϕ(z1)ϕ(z2d3)

(z1z2d3)2 ,

in which the sum is restricted by (21), (24) and the second set of conditions in (23).

Next, observe that any d1 with

Y/(4d2z3)≤ d1 ≤ Y/(2d2z3) (26)

satisfies the previous size constraints, and that Y/(d2z3) ≥ Y 3/5. The coprimality
constraints on d1 add up to (d1;d2d3z1) = 1. Hence, we may sum over all d1

satisfying (26) and apply (19) with c = d2d3z1. Then

V ∗∗ � X2Y ∑
1
2 Y<d2d3z1≤Y

1
2 d3z2≤d2z3≤d3z2≤Y2/5

ϕ(z1)
2ϕ(z2)ϕ(d2)ϕ(d3)

2

z3
1z2

2z3d2
2d3

3

,

where z1,z2,z3,d2,d3 are still subject to all applicable conditions in (21). The
next sum that we carry out is the one over z1. The interval for z1 is of length
Y/(2d2d3) � Y 1/5, and the coprimality condition on z1 is (z1;z2z3) = 1. Since
ϕ(z1)

2z−3
1 ≥ ϕ(z1)

3z−4
1 , we may apply (20) with c = z2z3, D2/D1 = 2 and D1 �

Y 1/5 to find that

V ∗∗ � X2Y ∑
1
2 d3z2≤d2z3≤d3z2≤Y2/5

ϕ(z2)
2ϕ(z3)ϕ(d2)ϕ(d3)

2

z3
2z2

3d2
2d3

3

,

with the sum now subject to the coprimality conditions (d2;d3) = (z2;z3) =
(d2;z2) = (d3;z3) = 1. We obtain again a lower bound if we sum for d3,z2,z3 over
the interval [Y 1/6,Y 1/5] only. If these three variables are in that range, the conditions
on d2 are (d2;d3z2) = 1 and d3z2/(2z3) ≤ d2 ≤ d3z2/z3, in which d3z2/z3 ≥ Y 1/5.
We may sum over d2 with the aid of (20), and then find that

V ∗∗ � X2Y ∑
Y 1/6≤d3,z2,z3≤Y 1/5

(z2;d3z3)=(z3;d3)=1

ϕ(z2)
3ϕ(z3)ϕ(d3)

3

z4
1z2

3d4
3

.

We now sum over z2 first, using (20) with c = d3z3, and then over d3 with c = z3 and
finally over z3 with c = 1. In this way, we deduce that V ∗∗ � X2Y (logY )3. Lemma
6 now follows from (25).
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6 Two Exercises

It remains to establish the technical estimates reported as Lemmas 7 and 8. Proofs
are fairly standard and pedestrian, though also somewhat elaborate.

We begin with Lemma 7. In the notation introduced in the statement of that
lemma, we have

S ≥ ∑
a1≤A1

(a1;d3z2)=1

∑
a2≤A2

(a2;a1z1)=1
a2≡ba1 mod d3

1 = ∑
a1≤A1

(a1;d3z2)=1

∑
f |a1z1

μ( f ) ∑
a2≤A2

a2≡0 mod f
a2≡ba1 mod d3

1.

Under the hypotheses of Lemma 7, the inner sum is empty unless ( f ;d3) = 1. In the
latter case, the congruence conditions combine to one modulo d3 f , and we infer that

S ≥ ∑
a1≤A

(a1;d3z2)=1

∑
f |a1z1

( f ;d3)=1

μ( f )

(
A2

d3 f
+O(1)

)
.

Here, the error term O(1) sums up to at most

∑
a1≤A1

τ(a1z1)≤ τ(z1) ∑
a1≤A1

τ(a1)� τ(z1)A1 logA1,

which can be absorbed in the terms on the right hand side in the conclusion of
Lemma 7. In the remaining sum

S0 = ∑
a1≤A1

(a1;d3z2)=1

∑
f |a1z1

( f ;d3)=1

A2μ( f )
d3 f

,

we exchange the summations and then find that

S0 =
A2

d3
∑

f≤A1z1
( f ;d3)=1

μ( f )
f ∑

a1≤A1
(a1;d3z2)=1

a1z1≡0 mod f

1.

In the current situation, the inner sum is empty unless ( f ;d3z2) = 1. Since a1z1 ≡
0 mod f is the same as f

( f ;z1)
|a1, we may write f1 = f/( f ;z1) to rewrite the previous

sum as

S0 =
A2

d3
∑

f≤A1z1
( f ;d3z2)=1

μ( f )
f ∑

a≤A1/ f1
(a;d3z2)=1

1

=
A2

d3
∑

f≤A1z1
( f ;d3z2)=1

μ( f )
f

(
ϕ(d3z2)

d3z2 f1
A1 +O(τ(d3z2))

)
.
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Here, we have applied (19), a formula that we prove momentarily. The error term
O(τ(d3z2)) sums up to a total contribution not exceeding

A2

d3
τ(d3)τ(z2) ∑

f≤A1z1

1
f
� τ(z2)A2 logA1z1,

which is one of the terms on the right-hand side in the conclusion of Lemma 7. The
leading term makes a total contribution of

S1 = A1A2
ϕ(d3z2)

d2
3z2

∑
f≤A1z1

( f ;d3z2)=1

μ( f )( f ;z1)

f 2 . (27)

In order to estimate the expression S1 from below, we first complete the sum over f
to a series, and estimate the error. In fact, we have

∞

∑
f=1

( f ;d3z2)=1

μ( f )( f ;z1)

f 2 = ∏
p�d3z2

(
1− (p;z1)

p2

)
� ϕ(z1)

z1
.

Moreover,

∑
f>A1z1

( f ;d3z2)=1

μ( f )2( f ;z1)

f 2 ≤ z1 ∑
f>A1z1

1
f 2 �

1
A1

,

so that (27) yields

S1� A1A2
ϕ(d3z2)ϕ(z1)

d2
3z1z2

+O(A2).

On collecting together, one readily confirms the claim in Lemma 7.

The proof of Lemma 8 is an exercise in multiplicative number theory. For (19),
we merely note that

∑
d≤D

(c;d)=1

1 =∑
f |c
μ( f )

(
D
f
−O(1)

)
=
ϕ(c)

c
D+O(τ(c)).

The proof of (20) is equally lowbrow, but a bit more involved. A brief sketch will
suffice. By Möbius inversion, there is a multiplicative function h with

ϕ(d)4

d4 =∑
r|d

h(r). (28)

One finds that h(r) = 0 unless r is square-free. When p is a prime, one has

h(p) =

(
p− 1

p

)4

− 1 =− 4
p
+O

(
1
p2

)
. (29)
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We routinely deduce that

∑
d≤D

|h(d)| � ∏
p≤D

(
1+

4
p

)
� (logD)4, (30)

and that for any c ∈ N one has

∞

∑
d=1

(c;d)=1

h(d)
d

=∏
p�c

(
1+

h(p)
p

)
, (31)

the sum being absolutely convergent. Let H(c) be the real number described in (31).
Then by (29), one finds that there exists a positive number C such that C≤H(c)≤ 1
holds for all c ∈ N. By (28) and (19),

∑
d≤D

(c;d)=1

ϕ(d)4

d4 = ∑
r≤D

h(r) ∑
d≤D/r
(c;dr)=1

1 = ∑
r≤D

(r;c)=1

h(r)

(
ϕ(c)D

cr
+O(τ(c))

)
.

By (30), the error term O(τ(c)) sums to O(τ(c)(logD)4). In the main term, we
complete the sum over r to (31), and control the resulting error by (30) and partial
summation. It follows that

∑
d≤D

(c;d)=1

ϕ(d)4

d4 =
ϕ(c)

c
H(c)D+O(τ(c)(logD)4).

By partial summation, one finds that there exists a certain real number H0(c) such
that

∑
d≤D

(c;d)=1

ϕ(d)4

d5 =
ϕ(c)

c
H(c) logD+H0(c)+O

(
τ(c)

(logD)4

D

)

holds uniformly in c. This implies (20).

7 An Alternative Argument

The referee has kindly pointed out the following variant of the proof of the upper
bound, and we express our gratitude for allowing us to include a sketch of the
argument here. One splits the ranges for ai,di into dyadic intervals A j < a j ≤ 2A j,
D j < d j ≤ 2D j. For each such range, the estimate of Lemma 3 from [5] yields�
1+A1A2A3/max(AiDi) solutions a1,a2,a3 of (5) for each choice of d1,d2,d3, and
therefore � D1D2D3 +∏(AiDi)/max(AiDi) in total. Alternatively, we can count
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the number of d’s for each choice of a’s giving� A1A2A3 +∏(AiDi)/max(AiDi)
in total. Combining the two estimates, one gets a bound

�min(A1A2A3,D1D2D3)+
∏(AiDi)

max(AiDi)
�
(
∏(AiDi)

)2/3
.

One then has to sum over the zi for z1 � min(X/A1,Y/D2D3), etc. Put Ei =
D1D2D3/Di so that the number of triples z1,z2,z3 is � ∏min(X/Ai,Y/Ei). We
conclude that for each 6-tuple of dyadic ranges Ai,Di the contribution is

�
3

∏
i=1

A2/3
i E1/3

i min

(
X
Ai

,
Y
Ei

)
.

Notice now that as (d1,d2,d3) runs over N3 the values (d2 + d3,d1 + d3,d1 + d2)
take each value in N

3 at most once. Hence, we can replace a summation in which
the Di run over powers of 2, by a sum in which the Ei run over powers of 2. Our
estimate then factorizes giving

�
(
∑
A,E

A2/3E1/3 min

(
X
A
,

Y
E

))3

,

where A,E run over powers of 2. When X/A≤ Y/E the summand is XA−1/3E1/3.
We sum first for E ≤AY/X to get�XA−1/3.(AY/X)1/3 =X2/3Y 1/3. Then summing
for A � X gives � X2/3Y 1/3 logX . The case Y/E ≤ X/A similarly gives �
X2/3Y 1/3 logY , and these lead at once to V (X ,Y )� X2Y (logXY )3.
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Affine Gindikin–Karpelevich Formula via
Uhlenbeck Spaces

Alexander Braverman, Michael Finkelberg, and David Kazhdan

Abstract We prove a version of the Gindikin–Karpelevich formula for untwisted
affine Kac–Moody groups over a local field of positive characteristic. The proof is
geometric and it is based on the results of [Braverman, Finkelberg, and Gaitsgory,
Uhlenbeck spaces via affine Lie algebras, Progr. Math., 244, 17–135, 2006] about
intersection cohomology of certain Uhlenbeck-type moduli spaces (in fact, our
proof is conditioned upon the assumption that the results of [Braverman, Finkelberg,
and Gaitsgory, Uhlenbeck spaces via affine Lie algebras, Progr. Math., 244,
17–135, 2006] are valid in positive characteristic; we believe that generalizing
[Braverman, Finkelberg, and Gaitsgory, Uhlenbeck spaces via affine Lie algebras,
Progr. Math., 244, 17–135, 2006] to the case of positive characteristic should be
essentially straightforward but we have not checked the details). In particular, we
give a geometric explanation of certain combinatorial differences between finite-
dimensional and affine case (observed earlier by Macdonald and Cherednik), which
here manifest themselves by the fact that the affine Gindikin–Karpelevich formula
has an additional term compared to the finite-dimensional case. Very roughly
speaking, that additional term is related to the fact that the loop group of an affine
Kac-Moody group (which should be thought of as some kind of “double loop
group”) does not behave well from algebro-geometric point of view; however, it
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has a better behaved version, which has something to do with algebraic surfaces.
A uniform (i.e. valid for all local fields) and unconditional (but not geometric)
proof of the affine Gindikin–Karpelevich formula is going to appear in [Braverman,
Kazhdan, and Patnaik, The Iwahori-Hecke algebra for an affine Kac-Moody group
(in preparation)].

Dedicated to S. Patterson on the occasion of his 60th birthday.

1 The Problem

1.1 Classical Gindikin–Karpelevich Formula

Let K be a non-archimedian local field with ring of integers O and let G be
a split semi-simple group over O . The classical Gindikin–Karpelevich formula
describes explicitly how a certain intertwining operator acts on the spherical vector
in a principal series representation of G(K ).1 In more explicit terms, it can be
formulated as follows.

Let us choose a Borel subgroup B of G and an opposite Borel subgroup B−; let
U,U− be their unipotent radicals. In addition, let Λ denote the coroot lattice of G,
R+ ⊂Λ – the set of positive coroots,Λ+ – the subsemigroup of Λ generated by R+.
Thus any γ ∈ Λ+ can be written as ∑aiαi, where αi are the simple roots. We shall
denote by |γ| the sum of all the ai.

Set now GrG = G(K )/G(O). Then it is known that U (K )-orbits on Gr are
in one-to-one correspondence with elements of Λ (this correspondence will be
reviewed in Sect. 2); for any μ ∈Λ , we shall denote by Sμ the corresponding orbit.
The same thing is true for U−(K )-orbits. For each γ ∈ Λ , we shall denote by T γ

the corresponding orbit. It is well known that T γ ∩Sμ is non-empty iff μ− γ ∈ Λ+

and in that case the above intersection is finite. The Gindikin–Karpelevich formula
allows one to compute the number of points in T−γ ∩S0 for γ ∈Λ+ (it is easy to see
that the above intersection is naturally isomorphic to T−γ+μ ∩ Sμ for any μ ∈ Λ ).
The answer is most easily stated in terms of the corresponding generating function:

Theorem 1. (Gindikin–Karpelevich formula)

∑
γ∈Λ+

#(T−γ ∩S0)q−|γ|e−γ = ∏
α∈R+

1− q−1e−α

1− e−α
.

1More precisely, the Gindikin-Karpelevich formula answers the analogous question for real
groups; its analog for p-adic groups (usually also referred to as Gindikin-Karpelevich formula)
is proved e.g., in Chap. 4 of [6].
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1.2 Formulation of the Problem in the General Case

Let now G be a split symmetrizable Kac–Moody group functor in the sense of [8]
and let g be the corresponding Lie algebra. We also let Ĝ denote the corresponding
“formal” version of G (cf. page 198 in [8]). The notations Λ ,Λ+,R+,GrG,Sμ ,T γ

make sense for Ĝ without any changes (cf. Sect. 2 for more detail).

Conjecture 1. For any γ ∈Λ+, the intersection T−γ ∩S0 is finite.

This conjecture will be proved in [2] when G is of affine type. In this paper, we are
going to prove the following result:

Theorem 2. Assume that K = k((t)) where k is finite. Then Conjecture 1 holds.

So now (at least when K is as above) we can ask the following

Question: Compute the generating function2

Ig(q) = ∑
γ∈Λ+

#(T−γ ∩S0) q−|γ|e−γ .

One possible motivation for the above question is as follows: when G is finite-
dimensional, Langlands [6] has observed that the usual Gindikin–Karpelevich
formula (more precisely, some generalization of it) is responsible for the fact that the
constant term of Eisenstein series induced from a parabolic subgroup of G is related
to some automorphic L-function. Thus, we expect that generalizing the Gindikin–
Karpelevich formula to general Kac-Moody group will eventially become useful
for studying Eisenstein series for those groups. This will be pursued in further
publications.

We do not know the answer for general G. In the case when G is finite-
dimensional, the answer is given by Theorem 1. In this paper we are going to reprove
that formula by geometric means and give a generalization to the case when G is
untwisted affine.

1.3 The Affine Case

Let us now assume that g= g′aff, where g′ is a simple finite-dimensional Lie algebra.
The Dynkin diagram of g has a canonical (“affine”) vertex and we let p be the
corresponding maximal parabolic subalgebra of g. Let g∨ denote the Langlands
dual algebra and let p∨ be the corresponding dual parabolic. We denote by n(p∨) its
(pro)nilpotent radical.

Let (e,h, f ) be a principal sl(2)-triple in (g′)∨. Since the Levi subalgebra of p∨
is C⊕g′ ⊕C (where the first multiple is central in g∨ and the second is responsible

2The reason that we use the notation Ig rather than IG is that it is clear that this generating function
depends only on g and not on G.
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for the “loop rotation”), this triple acts on n(p∨) and we let W = (n(p∨)) f (the
centralizer of f in n(p∨)). We are going to regard W as a complex (with zero
differential) and with grading coming from the action of h (thus, W is negatively
graded). In addition, W is endowed with an action of Gm, coming from the loop
rotation in g∨. In the case when g′ is simply laced we have (g′)∨ � g′ and n(p∨) =
t · g′[t] (i.e., g′-valued polynomials, which vanish at 0). Hence, W = t · (g′) f [t] and
the above Gm-action just acts by rotating t. Let d1, . . . ,dr be the exponents of g′
(here r = rank(g′)). Then (g′) f has a basis (x1, . . . ,xr), where each xi is placed in
the degree −2di. We let Fr act on W by requiring that it acts by qi/2 on elements
of degree i. Also for any n ∈ Z, let W (n) be the same graded vector space but with
Frobenius action multiplied by q−n.

Consider now Sym∗(W ). We can again consider it as a complex concentrated
in degrees ≤0 endowed with an action of Fr and Gm. For each n ∈ Z, we let
Sym∗(W )n be the part of Sym∗(W ) on which Gm acts by the character z �→ zn.
This is a finite-dimensional complex with zero differential, concentrated in degrees
≤0 and endowed with an action of Fr.

We are now ready to formulate the main result. Let δ denote the minimal positive
imaginary coroot of g. Set

ΔW (z) =
∞

∑
n=0

Tr(Fr,Sym∗(W )n)z
n.

In particular, when g′ is simply laced we have

Δ(z) =
r

∏
i=1

∞

∏
j=0

(1− q−diz j)−1.

Theorem 3. (Affine Gindikin–Karpelevich formula)
Assume that the results of [1] are valid over k and let K = k((t)). Then

Ig(q) =
ΔW (e−δ )
ΔW (1)(e−δ )

∏
α∈R+

(
1− q−1e−α

1− e−α

)mα

.

Here, mα denotes the multiplicity of the coroot α .

Remark. Although formally the paper [1] is written under the assumption that
char k = 0, we believe that adapting all the constructions of [1] to the case
char k= p should be more or less straightforward. We plan to discuss it in a separate
publication.

Let us make two remarks about the above formula: first, we see that it is very
similar to the finite-dimensional case (of course in that case mα = 1 for any α)

with the exception of a “correction term” (which is equal to ΔW (e−δ )
ΔW (1)(e−δ )

). Roughly

speaking, this correction term has to do with imaginary coroots of g. The second
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remark is that the same correction term appeared in the work of Macdonald [7] from
purely combinatorial point of view (cf. also [3] for a more detailed study). The main

purpose of this note is to explain how the term ΔW (e−δ )
ΔW (1)(e

−δ ) appears naturally from

geometric point of view (very roughly speaking it is related to the fact that affine
Kac–Moody groups over a local field of positive characteristic can be studied using
various moduli spaces of bundles on an algebraic surface). The relation between the
present work and the constructions of [3] and [7] will be discussed in [2].

2 Interpretation via Maps from P
1 to B

2.1 Generalities on Kac–Moody Groups

In what follows all schemes will be considered over a field k which at some point
will be assumed to be finite. Our main reference for Kac–Moody groups is [8].
Assume that we are given a symmetrizable Kac–Moody root data and we denote
by G (resp. Ĝ) the corresponding minimal (resp. formal) Kac–Moody group functor
(cf. [8], page 198); we have the natural embedding G ↪→ Ĝ. We also let W denote
the corresponding Weyl group and we let � : W → Z≥0 be the corresponding length
function.

The group G is endowed with closed subgroup functors U ⊂ B,U− ⊂ B− such
that the quotients B/U and B−/U− are naturally isomorphic to the Cartan group H
of G; also H is isomorphic to the intersection B∩B−. Moreover, both U− and B−
are still closed as subgroup functors of Ĝ. On the other hand, B and U are not closed
in Ĝ and we denote by B̂ and Û their closures.

The quotient G/B has a natural structure of an ind-scheme which is ind-proper;
the same is true for the quotient Ĝ/B̂ and the natural map G/B → Ĝ/B̂ is an
isomorphism. This quotient is often called the thin flag variety of G. Similarly, one
can consider the quotient B = Ĝ/B−; it is called the thick flag variety of G or
Kashiwara flag scheme. As is suggested by the latter name, B has a natural scheme
structure. The orbits of B on B are in one-to-one correspondence with the elements
of the Weyl groupW ; for each w∈W , we denote by Bw the corresponding orbit. The
codimension of Bw is �(w); in particular, Be is open. There is a unique H-invariant
point y0 ∈Be. The complement to Be is a divisor in B whose components are in
one-to-one correspondence with the simple roots of G.

In what followsΛ will denote the coroot lattice of G, R+⊂Λ – the set of positive
coroots,Λ+ – the subsemigroup of Λ generated by R+. Thus, γ ∈Λ+ can be written
as ∑aiαi where αi are the simple coroots. We shall denote by |γ| the sum of all
the ai.

In what follows we shall assume that G is “simply connected,” which means that
Λ is equal to the full cocharacter lattice of H.
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2.2 Some Further Notations

For any variety X and any γ ∈ Λ+ we shall denote by Symγ X the variety
parametrizing all unordered collections (x1,γ1), . . . ,(xn,γn), where x j ∈ X ,γ j ∈ Λ+

such that ∑γ j = γ .
Assume that k is finite and let S be a complex of �-adic sheaves on a variety X

over k. We set
χk(S ) =∑

i∈Z
(−1)i Tr(Fr,Hi(X ,S )),

where X = X ×
Speck

Speck.

We shall denote by (Ql)X the constant sheaf with fiber Ql . According to the
Grothendieck–Lefschetz fixed point formula, we have

χk((Ql)X) = #X(k).

2.3 Semi-Infinite Orbits

As in the introduction, we set K = k((t)), O = k[[t]]. We let Gr = Ĝ(K )/Ĝ(O),
which we are just going to consider as a set with no structure. Each λ ∈ Λ is a
homomorphism Gm→ H; in particular, it defines a homomorphism K ∗ → H(K ).
We shall denote the image of t under the latter homomorphism by tλ . Abusing the
notation, we shall denote its image in Gr by the same symbol. Set

Sλ = Û(K ) · tλ ⊂ Gr; T λ =U−(K ) · tλ ⊂ Gr .

Lemma 1. Gr is equal to the disjoint union of all the Sλ .

Proof. This follows from the Iwasawa decomposition for G of [5]; we include a
different proof for completeness. Since Λ � Û(K )\B̂(K )/B̂(O), the statement
of the lemma is equivalent to the assertion that the natural map B̂(K )/B̂(O)→
Ĝ(K )/Ĝ(O) is an isomorphism; in other words, we need to show that B̂(K ) acts
transitively on Gr. But this is equivalent to saying that Ĝ(O) acts transitively on
Ĝ(K )/B̂(K ), which means that the natural map Ĝ(O)/B̂(O)→ Ĝ(K )/B̂(K ) is
an isomorphism. However, the left-hand side is (Ĝ/B̂)(O) and the right-hand side is
(Ĝ/B̂)(K ) and the assertion follows from the fact that the ind-scheme Ĝ/B̂ satisfies
the valuative criterion of properness.

The statement of the lemma is definitely false if we use T μ ’s instead of Sλ ’s since
the scheme Ĝ/B− does not satisfy the valuative ctiterion of properness. Let us say
that an element g(t) ∈ Ĝ(K ) is good if its projection to B(K ) = B−(K )\Ĝ(K )
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comes from a point of B(O). Since B(O) =B−(O)\Ĝ(O), it follows that the set of
good elements of Ĝ(K ) is just equal to B−(K ) ·G(O), which immediately proves
the following result:

Lemma 2. The preimage of
⋃
γ∈Λ

T γ in Ĝ(K ) is equal to the set of good elements of

Ĝ(K ).

2.4 Spaces of Maps

Recall that the Picard group of B can be naturally identified with Λ∨ (the dual
lattice to Λ ). Thus for any map f : P1→B, we can talk about the degree of f as
an element γ ∈ Λ . The space of such maps is non-empty iff γ ∈ Λ+. We say that
a map f : P1 → B is based if f (∞) = y0. Let M γ be the space of based maps
f : P1 →B of degree γ . It is shown in the Appendix to [1] that this is a smooth
scheme of finite type over k of dimension 2|γ|. We have a natural (“factorization”)
map πγ : M γ → Symγ

A
1, which is related to how the image of a map P

1 → B
intersects the complement to Be. In particular, if we set

F γ = (πγ)−1(γ ·0),

then F γ consists of all the based maps f : P1→B of degree γ such that f (x) ∈Be

for any x �= 0.

Theorem 4. There is a natural identification F γ (k)� T−γ ∩S0.

Since F γ is a scheme of finite type over k, it follows that F γ (k) is finite and thus
Theorem 4 implies Theorem 2.

The proof of Theorem 4 is essentially a repetition of a similar proof in the finite-
dimensional case, which we include here for completeness.

Proof. First of all, let us construct an embedding of the union of all the F γ (k)
into S0 = Û(K )/Û(O). Indeed, an element of

⋃
γ∈Λ+

F γ is uniquely determined

by its restriction to Gm ⊂ P
1; this restriction is a map f : Gm → Be such that

limx→∞ f (x) = y0. We may identify Be with Û (by acting on y0). Thus, we get

⋃
γ∈Λ+

F γ ⊂ {u : P1\{0}→ Û | u(∞) = e}. (1)

We have a natural map from the set of k-points of the right-hand side of (1) to
Û(K ); this map sends every u as above to its restriction to the formal punctured
neighbourhood of 0. We claim that after projecting Û(K ) to S0 = Û(K )/Û(O),
this map becomes an isomorphism. Recall that Û is a group-scheme, which can
be written as a projective limit of finite-dimensional unipotent group-schemes Ui;
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moreover, each Ui has a filtration by normal subgroups with successive quotients
isomorphic toGa. Hence, it is enough to prove that the above map is an isomorphism
when U = Ga. In this case, we just need to check that any element of the quotient
k((t))/k[[t]] has unique lift to a polynomial u(t)∈ k[t, t−1] such that u(∞)= 0, which
is obvious.

Now Lemma 2 implies that a map u(t) as above extends to a map P
1→B if and

only if the corresponding element of S0 lies in the intersection with some T−γ .
It remains to show that F γ (k) is exactly equal to S0 ∩ T−γ as a subset of S0.

Let Λ∨ be the weight lattice of G and let Λ∨+ denote the set of dominant weights
of G. For each λ∨ ∈ Λ∨+ , we can consider the Weyl module L(λ∨), defined over
Z; in particular, L(λ∨)(K ) and L(λ∨)(O) make sense. By the definition L(λ∨) is
the module of global sections of a line bundle L (λ∨) on B. Moreover, we have a
weight decomposition

L(λ∨) =
⊕

μ∨∈Λ∨
L(λ∨)μ∨ ,

where each L(λ∨)μ∨ is a finitely generated free Z-module and L(λ∨)λ∨ := lλ∨ has
rank one. Geometrically, lλ∨ is the fiber of L (λ∨) at y0 and the corresponding
projection map from L(λ∨) = Γ (B,L (λ∨)) to lλ∨ is the restriction to y0.

Let ηλ∨ denote the projection of L(λ∨) to lλ∨ . This map is U−-equivariant (where
U− acts trivially on lλ∨).

Lemma 3. The projection of a good element g∈G(K ) lies in T ν (for some ν ∈Λ )
if and only if for any λ∨ ∈Λ∨ we have:

ηλ∨(g(L(λ∨)(O)))⊂ t〈ν,λ
∨〉lλ∨(O); ηλ∨(g(L(λ∨)(O))) �⊂ t〈ν,λ

∨〉−1lλ∨(O).
(2)

Proof. First of all, we claim that if the projection of g lies in T ν then the above
condition is satisfied. Indeed, it is clearly satisfied by tν ; moreover, (2) is clearly
invariant under left multiplication by U−(K ) and under right multiplication by
G(O). Hence any g ∈U−(K ) · tν ·G(O) satisfies (2).

On the other hand, assume that a good element g ∈ G(K ) satisfies (2). Since
g lies in U−(K ) · tν ′ ·G(O) for some ν ′, it follows that g satisfies (2) when ν is
replaced by ν ′. However, it is clear that this is possible only if ν = ν ′.

It is clear that in (2) one can replace g(L(λ∨)(O)) with g(L(λ∨)(k)) (since the
latter generates the former as an O-module).

Let now f be an element of F γ . Then f ∗L (λ∨) is isomorphic to the line bundle
L (〈γ,λ∨〉) on P

1. On the other hand, the bundle L (λ∨) is trivialized on Be by
means of the action of U ; more precisely, the restriction of L (λ∨) is canonically
identified with the trivial bundle with fiber lλ∨ . Let now s ∈ L(λ∨)(k); we are going
to think of it as a section of L(λ∨) on B. In particular, it gives rise to a function
s̃ : Be → lλ∨ . Let also u(t) be the element of U(K ), corresponding to f . Then
ηλ∨(u(t)(s)) can be described as follows: we consider the composition s̃ ◦ f and
restrict it to the formal neighbourhood of 0 ∈ P

1 (we get an element of lλ∨(K )).
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On the other hand, since f ∈F γ , it follows that f ∗L (λ∨) is trivialized away from
0 and any section of it can be thought of as a function P

1\{0} with pole of order
≤ 〈γ,λ∨〉 at 0. Hence, s̃◦ f has pole of order ≤ 〈γ,λ∨〉 at 0.

To finish the proof it is enough to show that for some s the function s̃ ◦ f has
pole of order exactly 〈γ,λ∨〉 at 0 (indeed if f ∈ T−γ ′ for some γ ′ ∈ Λ , then by (2)
s̃ ◦ f has pole of order ≤ 〈γ ′,λ∨〉 at 0 and for some s, it has pole of order exactly
〈γ ′,λ∨〉, which implies that γ = γ ′). To prove this, let us note that since L (λ∨)
is generated by global sections, the line bundle f ∗L (λ∨) is generated by sections
of the form f ∗s, where s is a global section of L (λ∨). This implies that for any
s ∈ Γ (P1, f ∗L (λ∨)) there exists a section s ∈ Γ (B,L (λ∨)) such that the ratio
s/s is a rational function on P

1, which is invertible at 0. Taking s such that its pole
with respect to the above trivialization of f ∗L (λ∨) is exactly equal to 〈γ ′,λ∨〉 and
taking s as above, we see that the pole of f ∗s with respect to the above trivialization
of f ∗L (λ∨) is exactly equal to 〈γ ′,λ∨〉.

3 Proof of Theorem 1 via Quasi-Maps

3.1 Quasi-Maps

We shall denote by QM γ the space of based quasi-maps P1 →B. According to
[4], we have the stratification

QM γ =
⋃
γ ′≤γ

M γ ′ ×Symγ−γ ′
A

1.

The factorization morphism πγ0 extends to the similar morphism πγ : QM γ→ Symγ

and we set F
γ
= (πγ )−1(0). Thus, we have

F
γ
=
⋃
γ ′≤γ

F γ ′ . (3)

There is a natural section iγ : Symγ
A

1→QM γ . According to [4], we have

Theorem 5. 1. The restriction of ICQM γ to F γ ′ is isomorphic to
(Ql)F γ′ [2](1)⊗|γ

′| ⊗Sym∗(n∨+[2](1))γ−γ ′ .
2. There exists a Gm-action on QM γ , which contracts it to the image of iγ . In

particular, it contracts F
γ

to one point (corresponding to γ ′ = 0 in (3)).
3. Let sγ denote the embedding of γ ·0 into Symγ

A
1. Then

s∗γ i
!
γ ICQM γ = Sym∗(n+)γ

(here the right hand is a vector space concentrated in cohomological degree 0 and
with trivial action of Fr).
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The assertion (2) implies that πγ! ICQM γ = i!γ ICQM γ and hence

H∗c (F , ICQM γ |
F

γ ) = s∗γπ
γ
! ICQM γ = s∗γ i!γ ICQM γ = Sym∗(n+)γ .

Thus, setting, S γ = ICQM γ |
F

γ we get

∑
γ∈Λ+

χk(S
γ)e−γ = ∏

α∈R+

1
1− e−α

. (4)

On the other hand, according to (1) we have

χk(S
γ) = ∑

γ ′≤γ
(#F γ ′)q−|γ

′|Tr(Fr,Sym∗(n∨+[2](1))γ−γ ′),

which implies that

∑
γ∈Λ+

χk(S
γ)e−γ =

∑
γ∈Λ+

#F γ(k)q−|γ|e−γ

∏
α∈R+

1− q−1e−α
=

Ig(q)

∏
α∈R+

1− q−1e−α
. (5)

Hence,
Ig(q) = ∏

α∈R+

1− q−1e−α

1− e−α
.

4 Proof of Theorem 3

4.1 Flag Uhlenbeck Spaces

We now assume that G = (G′)aff where G′ is some semi-simple simply connected
group. We want to follow the pattern of Sect. 3. Let γ ∈Λ+. As is discussed in [1],
the corresponding space of quasi-maps behaves badly when G is replaced by Gaff.
However, in this case one can use the corresponding flag Uhlenbeck space U γ . In
fact, as was mentioned in the Introduction, in [1] only the case of k of characteristic
0 is considered. In what follows we are going to assume that the results of loc. cit.
are valid also in positive characteristic.

The flag Uhlenbeck space U γ has properties similar to the space of quasi-maps
QM γ considered in the previous section. Namely, we have:

a. U γ is an affine variety of dimension 2|γ|, which contains M γ as a dense open
subset.

b. There is a factorization map πγ : U γ → Symγ
A

1; it has a section iγ : Symγ
A

1→
U γ .

c. U γ is endowed with a Gm-action, which contracts U γ to the image of iγ .
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These properties are identical to the corresponding properties of QM γ from the
previous section. The next (stratification) property, however, is different (and it is
in fact responsible for the additional term in Theorem 3). Namely, let δ denote the
minimal positive imaginary coroot of G′aff. Then we have

d. There exists a stratification

U γ =
⋃

γ ′∈Λ+ ,n∈Z,γ−γ ′−nδ∈Λ+

(M γ−γ ′−nδ ×Symγ ′
A

1)×Symn(Gm×A
1). (6)

In particular, if we now set F
γ
= (πγ)−1(γ ·0), we get

F
γ
=

⎛
⎝ ⋃
γ ′∈Λ+ ,n∈Z,γ−γ ′−nδ∈Λ+

F γ ′

⎞
⎠×Symn(Gm). (7)

4.2 Description of the IC-Sheaf

In [1], we describe the IC-sheaf of U γ . To formulate the answer, we need to
introduce some notation. Let P(n) denote the set of partitions of n. In other words,
any P ∈P(n) is an unordered sequence n1, . . . ,nk ∈ Z>0 such that ∑ni = n. We
set |P| = k. For a variety X and any P ∈P(n), we denote by SymP(X) the locally
closed subset of Symn(X) consisting of all formal sums ∑nixi where xi ∈ X and
xi �= x j for i �= j. The dimension of SymP(X) is |P| ·dimX . Let also

Sym∗(W [2](1))P =
k⊗

i=1

Sym∗(W [2](1))ni .

Theorem 6. The restriction of ICU γ to M γ−γ ′−nδ ×Symγ ′(A1)×SymP(Gm×A
1)

is isomorphic to constant sheaf on that scheme tensored with

Sym∗(n+)γ ′ ⊗Sym∗(W )P[2|γ− γ ′ − nδ |](|γ− γ ′ − nδ |).

Corollary 1. The restriction of ICU γ to F γ−γ ′−nδ ×SymP(Gm) is isomorphic to
the constant sheaf tensored with

Sym∗(n∨+)γ ′ ⊗Sym∗(W )P[2|γ− γ ′ − nδ |](|γ− γ ′ − nδ |).

Let now S γ denote the restriction of ICU γ to F
γ
. Then as in (4) we get

∑
γ∈Λ+

χk(S
γ )e−γ = ∏

α∈R+

1
(1− e−α)mα

. (8)
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On the other hand, arguing as in (5) we get that

∑
γ∈Λ+

χk(S
γ)e−γ = A(q)

Ig(q)

∏
α∈R+

(1− q−1e−α)mα
, (9)

where

A(q) =
∞

∑
n=0

∑
P∈P(n)

Tr(Fr,H∗c (SymP(Gm),Ql)⊗Sym∗(W [2](1))P)e
−nδ .

This implies that

Ig(q) = A(q) ∏
α∈R+

(
1− q−1e−α

1− e−α

)mα

.

It remains to compute A(q). However, it is clear that

A(q) =
∞

∑
n=0

Tr(Fr,Symn(H∗c (Gm))⊗W [2](1))e−nδ =
ΔW (e−δ )
ΔW (1)(e−δ )

. (10)

This is true since Hi
c(Gm) = 0 unless i = 1,2, and we have

H1
c (Gm) =Ql , H2

c (Gm) =Ql(−1),

and thus if we ignore the cohomological Z-grading, but only remember the
corresponding Z2-grading, then we just have

Sym∗(H∗c (Gm)⊗W [2](1)) = Sym∗(W )⊗Λ∗(W (1)),

whose character is exactly the right-hand side of (10).
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Daniel’s Twists of Hooley’s Delta Function

Jörg Brüdern

Abstract Following ideas of Daniel, a function analogous to Hooley’s Delta
function is constructed for multiplicative functions with values in the unit disc.
When the multiplicative function is of oscillatory nature, moments of the new
Delta function are smaller than those for Hooley’s original. Similar ideas apply
to incomplete convolutions if the multiplicative function satisfies a more rigid
condition that is best expressed in terms of its generating Dirichlet series. The most
prominent example where the theory applies is the Möbius function, thus providing
some new insights into its value distribution.

Prologue

In a highly original memoir, Hooley [4] undertook a thorough study of a family
of functions that encode important information about the distribution of divisors.
Nowadays known as Hooley’s Delta function, the simplest of these is defined by

Δ(n) = max
u

#{d | n : u < logd ≤ u+ 1}. (1)

Amongst other things, Hooley established the upper bound

∑
n≤x

Δ(n)� x(logx)4/π−1 (2)

and worked out several applications in diverse areas of number theory, including
divisor sums and problems of Waring’s type. His work was taken further by Hall
and Tenenbaum, resulting in a very subtle estimate ([7] and [3], Theorem 70).
In particular, the exponent 4/π− 1 in (2) may be replaced by any positive number.
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Tenenbaum [8, 9] gave further applications and generalisations, and the average
order of Δ(n) also features in work of Vaughan [10, 11] on the asymptotic formula
in Waring’s problem.

During a seminar in Stuttgart, on November 24, 2000, Stephan Daniel proposed a
far-reaching generalisation of Hooley’s Delta function. He attached a multiplicative
weight to the divisors d in (1) and showed how further savings can be made when
the weight has mean value 0 in some suitable quantitative sense. In particular,
the Möbius function and Dirichlet characters are admissible weights. With the
non-principal character modulo 4 in the rôle of the weight, Daniel’s twist of the
Delta function is related to the number of representations by sums of two squares
in the same way as Hooley’s original is to the ordinary divisor function. Hence,
in all cases where Hooley’s Delta function can be used to evaluate a divisor sum,
one may hope to do so with the divisor function replaced by r(n), the number of
representations of the natural number n as sums of two squares of integers. In this
spirit, Daniel developed his work on the divisor problem for binary forms [1],
and announced an asymptotic formula for the sum

∑
0<|F(u,v)|≤x

r(|F(u,v)|) (3)

in which F denotes an irreducible binary quartic form with integer coefficients, and
where u,v run over Z.

To my great dismay, several months after the event, Daniel left the academic
world, and his work was never published. This was much regretted by workers
in the field, especially because an asymptotic formula for integer solutions of the
conditions

F(u,v) = a2 + b2 ≤ x, (4)

with F as in (3), is one of the missing pieces for a complete resolution of Manin’s
conjecture for Châtelet surfaces. In March 2010, I rediscovered a set of notes that
I took during Daniel’s seminar, and after extensive discussions with him. These
contained precise statements of his results and fairly thorough sketches of the
principal arguments. The first chapter of this paper gives an account of his work
on mean value estimates for twisted Delta functions, as far as I have been able to
reconstruct it. I am grateful to Stephan Daniel for his kind permission to prepare the
material for publication. The main result, Theorem 1 below, is entirely due to Daniel,
and he alone should receive the full credit. Also, the main ideas for the proofs in
chapter 1 are his. However, I am of course fully responsible for any errors that I
may have introduced or overlooked. The notes also contained a mean value estimate
for a certain maximal function associated with the Möbius function, and this will
be the theme of chapter 2. Daniel’s bound is stated as (85) below. My attempts to
demonstrate it led to a more general result concerning incomplete convolutions of
multiplicative functions that is formulated as Theorem 2, and that contains (85) as a
special case.
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It is hoped that Daniel’s contributions will prove useful in many applications,
beyond the obvious one to thin averages of r(n). While the forensic efforts to recover
Daniel’s asymptotic formula for the sum (3) were still in progress, I learned that de
la Bretèche and Tenenbaum also succeeded to establish a mean square estimate for
twists of the Delta function with a Dirichlet character, or the Möbius function. Their
bounds are somewhat different to Daniel’s, and do not cover a situation as general
as Theorem 1 does, but for the application to the diophantine problem (4), their
estimates are equally good. A detailed account of the diophantine applications will
be contained in their forthcoming memoir, so that there is no need to reproduce that
part of Daniel’s work here.

1 Twisted Delta Functions

1.1 Introduction

Before embarking on the main theme, it is appropriate to introduce some notational
conventions. Standard notation is used for common arithmetical functions. Thus, the
number of divisors of the natural number n is d(n), the number of prime factors is
ω(n), and μ(n) denotes the Möbius function. The greatest common factor of a and
b is (a,b), and [a,b] is their lowest common multiple. The letter p, without or with
subscripts, always denotes prime numbers. If f : X→C and g : X→R are functions
such that there is a positive number K with | f | ≤ Kg, then, following Landau and
Vinogradov, this is abbreviated as f = O(g), or f � g. The “implicit constant” in
these symbols is an admissible value for K.

Finally, the “ε-convention” is applied in this paper: whenever ε occurs in a
statement, it is asserted that the statement is true for any fixed positive number ε .
Note that, with this convention activated, the bounds A� xε and B� xε imply that
AB� xε , for example. Implicit constants may depend on ε .

Let H denote the set of multiplicative functions h : N→ C with |h(n)| ≤ 1 for
all n ∈N. Then define

Δh(n;u,v) = ∑
d|n

u<logd≤u+v

h(d), (5)

Δh(n) = max
u

max
0<v≤1

|Δh(n;u,v)|. (6)

Note that when h(n) = 1 for all n, then Δh = Δ . The main theorem concerns a
weighted mean of Δh when h oscillates. To describe the set of weights properly,
first fix positive real numbers c,C,δ with C ≥ 1 (the parameter set in the sequel).
Then let F = F (c,C,δ ) denote the set of multiplicative functions ρ : N→ [0,∞)
satisfying the following two conditions:
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• For all primes p and all k≥ 2, one has

ρ(p)≤C, ρ(pk)≤Cp(1−δ )k−1, (7)

• For 1 < σ ≤ 2, one has

∑
p

ρ(p) log p
pσ

≤ c
σ − 1

+C. (8)

These conditions are of familiar type for those working with averages of
multiplicative functions over thin sequences. Typical choices in applications are
ρ(n) = 1 for all n, or, when f ∈ Z[x] is irreducible, the number ρ f (n) of incongruent
solutions to f (a)≡ 0 mod n. In both cases, one may take c = 1 in (8).

Now let h ∈H , and let Fh be the set of all ρ ∈F that satisfy the inequality

∣∣∣∑
n≤x

μ(n)2ρ(n)h(n)
∣∣∣≤Cx(logx)−c (9)

for all x ≥ 2. Note that if Fh contains functions that mimic the characteristic
function of a dense set, then (9) forces h to oscillate on that set.

For positive numbers c and t, let

α = max
(

c,c+
1
2
(c− 1)t,2tc− 3

2
t
)
, β =

(1
2

ct
)1/2

(10)

and when z > 30, define the functions

L (z) = exp((logz)1/2 log logz), L ∗(z) = exp((logz)1/2(log logz)1/2).

For 0≤ z≤ 30, put L (z) = L ∗(z) = 1.

Theorem 1 (Daniel). Fix a parameter set and a real number t with 1≤ t ≤ 2. Then
there is a number D such that for any h ∈H and ρ ∈Fh, one has

∑
n≤x

ρ(n)Δh(n)
t � x(logx)α−1L (logx)βL ∗(logx)D.

The implicit constant depends only on the parameter set and on t.

Note that c= 1 implies α = 1. Hence, according to an earlier comment, if h∈H
is such that ρ ≡ 1 or ρ f for some irreducible integer polynomial f are in Fh, then
for these ρ one has

∑
n≤x

ρ(n)Δh(n)
t � xL (logx)

√
t/2+o(1)� x(logx)ε . (11)
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Similar results for Δ(n) are necessarily inflated by powers of logx. It is an
immediate corollary of Lemma 2.2 of Tenenbaum [9] that for t ≥ 1 one has

∑
n≤x

ρ f (n)Δ(n)t � x(logx)2t−t−1+ε . (12)

Thus, if one would use the trivial inequality Δh(n) ≤ Δ(n) in (11), then a factor
of approximate size logx is lost in the important special case t = 2. Moreover, the
obvious inequality

d(n)≤ Δ(n) log3n (13)

and the classical estimate

∑
n≤x

ρ f (n)d(n)
t � x(logx)2t−1 (14)

show that the exponent of logx in (12) is the best possible. Thus, Daniel’s bound
(11) with t = 2 is a genuine improvement over what can be achieved with mean
values of Δ(n).

It is perhaps of interest that the factor μ(n)2 may not be omitted from (9). In fact,
with ρ ≡ 1 and h(n) = (−1)n+1, one has

∑
n≤x

ρ(n)h(n)� x(logx)−c, (15)

but also Δh(n) = Δ(n) for all odd n, so that (13) and a suitable variant of (14) yield

∑
n≤x

Δh(n)
2 ≥ ∑

m≤x/2

Δ(2m− 1)2� x logx.

This bound is in conflict with (11), which is a special case of Theorem 1.
Consequently, the conclusion of Theorem 1 is no longer valid if the condition (9) is
replaced with the seemingly more natural (15).

1.2 A Simplicistic Lemma

In the later stages of the advance toward Theorem 1, reference will be made to the
following inequality between certain Dirichlet series. Its proof is routine.

Lemma 1. Let f : N→ [0,∞) be an arithmetical function with f (n) = 0 whenever n
is not square-free. Suppose that there exists a number A≥ 1 such that the inequality
f (pn) ≤ A f (n) holds for all primes p and for all natural numbers n. Let k ∈ N.
Then there exists a number B depending only on A and k such that for all 1< σ ≤ 2,
one has

∞

∑
n=1

f (n)
nσ

(log log9n)k ≤ B
(

log
3

σ − 1

)2k ∞

∑
n=1

f (n)
nσ

. (16)
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Proof. By hypotheses, f (n) ≤ f (1)Aω(n). Hence, both series in (16) converge for
σ > 1. For square-free n, one has

logn =∑
p|n

log p, (17)

and therefore,

log9n = log9+∑
p|n

log p≤ log1890+ ∑
p|n

p≥11

log p.

For real numbers u,v with u ≥ 2, v ≥ 2 one has log(u+ v) ≤ logu+ logv, as one
readily confirms. Recursive application yields

loglog9n≤ 3+ ∑
p|n

p≥11

loglog p,

and consequently,

(log log9n)k ≤ 2k
(

3k +
(
∑
p|n

p≥11

loglog p
)k)

.

It follows that the sum on the left-hand side of (16) does not exceed

6kF(σ)+ 2k ∑
p1,...,pk
p j≥11

∞

∑
n=1

[p1,...,pk]|n

f (n)
nσ

k

∏
j=1

loglog p j,

where

F(σ) =
∞

∑
n=1

f (n)
nσ

.

The hypotheses concerning f show that

∞

∑
n=1

[p1,...,pk]|n

f (n)
nσ
≤ Ak[p1, . . . , pk]

−σF(σ),

whence the expression (
6k +(2A)kU(σ)

)
F(σ)
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with

U(σ) = ∑
p1,...,pk
p j≥11

(log log p1) . . . (loglog pk)

[p1, . . . , pk]σ

is an upper bound for the left-hand side of (16). The lemma will therefore follow
from the inequality

U(σ)�
(

log
3

σ − 1

)2k
(18)

that is now derived.
Let

Vj(σ) = ∑
p≥11

(log log p) j

pσ
.

Since [p1, . . . , pk] is the product of the distinct primes among p1, . . . , pk, one finds
that

U(σ)�
k

∑
l=1

∑
j1,..., jl≥1

j1+...+ jl=k

Vj1(σ) . . .Vjl (σ). (19)

Here, the implicit constant depends only on k. By partial summation,

Vj(σ) = σ
∫ ∞

11
∑

11≤p≤x

(loglog p) j dx
x1+σ .

To obtain an upper bound, recall that σ ≤ 2 and replace loglog p by loglogx. Then
by Chebyshev’s estimate,

Vj(σ)≤ 8
∫ ∞

11

(loglogx) j

xσ logx
dx = 8

∫ ∞

(σ−1) log11

(logy/(σ − 1)) j

yey dy; (20)

for the last identity, the substitution y = (σ − 1) logx was used. To estimate this
integral, first observe that the function (logy/(σ − 1)) je−y/2 is decreasing on the
interval y≥ 2 j2, as one readily verifies by differentiation. Therefore, one now has

∫ ∞

2 j2

(logy/(σ − 1)) j

yey dy≤
(

log
2 j2

σ − 1

) j
e− j2

∫ ∞

0
e−y/2 dy.

This is crude, but suffices. On the interval (σ − 1) log11 ≤ y ≤ 2 j2, the function
(logy/(σ − 1)) j is increasing, so that

∫ 2 j2

(σ−1) log11

(logy/(σ − 1)) j

yey dy≤
(

log
2 j2

σ − 1

) j ∫ ∞

(σ−1) log11
e−y dy

y
.
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The integral that remained on the right-hand side here is O(log(3/(σ − 1))),
by straightforward estimates. On collecting together, it follows that whenever 1 ≤
j ≤ k, one has

Vj(σ)�
(

log
3

σ − 1

) j+1
,

with an implicit constant depending only on k. Now (18) follows from (19).

1.3 Mean Values of the Weights

In this preparatory section, certain mean values for functions h∈H and ρ ∈F are
examined. The main result is Lemma 4, which plays a pivotal rôle in the transition
from the oscillatory condition (9) to the estimate in Theorem 1.

Lemma 2. Let t be a non-negative real number, and let ρ ∈F . Then uniformly for
1 < σ ≤ 2 one has

∞

∑
n=1

μ(n)2ρ(n)d(n)tn−σ � (σ − 1)−2tc.

The implicit constant depends only on t and C.

Proof. The Dirichlet series on the left-hand side of the proposed inequality equals

∏
p
(1+ρ(p)2t p−σ )≤∏

p
(1+ρ(p)p−σ)2t

.

By (7), one finds that

log∏
p
(1+ρ(p)p−σ)≤∑

p
ρ(p)p−σ ≤

∫ 2

σ
∑
p

ρ(p) log p
ps ds+∑

p

C
p2 .

Now, by rough estimates and (8),

log∏
p
(1+ρ(p)p−σ)≤

∫ 2

σ

c
s− 1

ds+ 2C =−c log(σ − 1)+ 2C,

and the lemma follows immediately.

Lemma 3. Fix a parameter set. Then there exists a sequence of positive real
numbers C(k) such that for any h ∈H and ρ ∈Fh, any k ∈N and x≥ 1, one has

∣∣∣ ∑
n≤x

(n,k)=1

μ(n)2ρ(n)h(n)
∣∣∣≤C(k)x(log 3x)−c. (21)
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The proof is by induction on k. The case k = 1 follows from (9). Now let
k > 1, and write Ξk(x) for the sum on the left-hand side of (21). Then a routine
rearrangement gives

Ξk(x) =∑
l|k
μ(l) ∑

m≤x/l

μ(lm)2ρ(lm)h(lm) =∑
l|k
μ(l)ρ(l)h(l)Ξl(x/l).

By induction hypothesis, the individual contribution of terms with l < k, l ≤ x does
not exceed

ρ(l)C(l)
x
l

(
log

3x
l

)−c
,

and when l > x, then Ξl(x/l) = 0. Since the bound

x
l

(
log

3x
l

)−c� x(log3x)−c

holds uniformly in l with the implicit constant depending only on c, it follows that
the inequality

|Ξk(x)| ≤ ρ(k)|Ξk(x/k)|+D(k)x(log3x)−c

is valid with some constant D(k) depending at most on k and the parameter set. This
inequality may be iterated υ times, until one reaches x/kυ < 1, and one then finds

|Ξk(x)| ≤ D′(k) ∑
υ:kυ≤x

xk−υ

(log3xk−υ)c ≤C(k)x(logx)−c

when D′(k) and C(k) are suitably large. This confirms the claim in the lemma.
The previous lemma will enter the further proceedings only through the next

lemma, which is a more precise statement. Lemma 3 will be used in the proof as a
presieving device. Before the result can be formulated precisely, two multiplicative
functions are to be introduced. Let

υ(k) =∏
p|k

(1− p−1/4)−1. (22)

Moreover, when σ is a real number, h ∈H and ρ ∈Fh, let

θσ (k) = θσ (k;ρ) =∏
p|k

(1+ρ(p)p−σ)−1. (23)

Lemma 4. Let h ∈H and ρ ∈Fh. Then whenever k ∈ N and 1≤ σ ≤ 2, one has

∑
n≤x

(n,k)=1

μ(n)2ρ(n)h(n)θσ (n)� υ(k)x(log3x)−c. (24)

The implicit constant depends only on the parameter set.
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Proof. Throughout this proof, let K denote the product of all primes not exceeding
C2. Moreover, again only within this proof, let a denote a number with the property
that p | a implies p≤C2, and let b denote a number with (b,K) = 1. This convention
also applies when subscripts are present. Note that with this convention activated,
any natural number n has a unique factorisation n = ab.

Now let ϒk(x) denote the sum on the left of (24), and factor n as above. Then
(a,b) = 1, and one finds that

ϒk(x) = ∑
a≤x

(a,k)=1

μ(a)2ρ(a)h(a)θσ (a)ϒ ∗k (x/a), (25)

where
ϒ ∗k (y) = ∑

b≤y
(b,k)=1

μ(b)2ρ(b)h(b)θσ (b).

For p > C2, one has ρ(p)p−1 ≤ C−1 < 1. On writing (1 + ρ(p)p−σ )−1 as a
geometric series, it follows that whenever σ ≥ 1, one can rewrite (23) as

θσ (b) =∏
p|b

∞

∑
l=0

(
− ρ(p)

pσ

)l
=

∞

∑
m=1

p|m⇒p|b

ψ(m)

mσ

with
ψ(m) = ∏

pl‖m
(−ρ(p))l.

This may be injected into the formula forϒ ∗k (y). Exchanging the order of summation
then produces

ϒ ∗k (y) =
∞

∑
m=1

ψ(m)

mσ ∑
b≤y

(b,k)=1
p|m⇒p|b

μ(b)2ρ(b)h(b). (26)

Note that the inner sum here is empty unless (m,kK) = 1. For a natural number n,
let

n∗ =∏
p|n

p

be the square-free kernel. Then (26) becomes

ϒ ∗k (y) =
∞

∑
m=1

(m,kK)=1

ψ(m)

mσ ∑
b≤y

(b,k)=1
m∗|b

μ(b)2ρ(b)h(b)

=
∞

∑
m=1

(m,kK)=1

ψ(m)

mσ μ(m∗)2ρ(m∗)h(m∗)ϒ †
km∗(y/m∗), (27)
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where

ϒ †
d (z) = ∑

b≤z
(b,d)=1

μ(b)2ρ(b)h(b). (28)

In preparation for the removal of the coprimality condition, consider the Dirichlet
series

Gd(s) =
∞

∑
b=1

(b,d)=1

μ(b)2ρ(b)h(b)b−s

that converges absolutely in Re s > 1. Its Euler product is

Gd(s) = ∏
p>C2

p�d

(1+ρ(p)h(p)p−s) = G1(s) ∏
p>C2

p|d

(1+ρ(p)h(p)p−s)−1,

and one has

∏
p>C2

p|d

(1+ρ(p)h(p)p−s)−1 =
∞

∑
b=1
b∗|d

v(b)
bs (29)

with
v(n) =∏

pl‖n

(−ρ(p)h(p)
)l
.

It follows that Gd(s) is the product of G1(s) and the Dirichlet series described in
(29). On comparing cofficients, one obtains a convolution formula that transforms
the sum in (28) into

ϒ †
d (z) = ∑

b1b2≤z
b∗2|d

μ(b1)
2ρ(b1)h(b1)v(b2).

More explicitly, this can be rewritten as

ϒ †
d (z) = ∑

b≤z
b∗|d

v(b) ∑
n≤z/b
(n,K)=1

μ(n)2ρ(n)h(n).

Here, the inner sum is of the type considered in Lemma 3, and the choice of K
depends only on C. Hence, by Lemma 3,

ϒ †
d (z)� ∑

b≤z
b∗|d

|v(b)| z
b

(
log

3z
b

)−c
, (30)
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where the implicit constant depends at most on the parameter set. Now note that

b−1/4
(

log
3z
b

)−c� (log3z)−c (31)

holds uniformly in b, with the implicit constant depending only on c. Moreover,
since h∈H , a comparison of the definitions of v and ψ yields the inequality v(b)≤
|ψ(b)|, and consequently, (30) implies that

ϒ †
d (z)�

z
(log3z)c ∑

b∗|d

|ψ(b)|
b3/4

=
z

(log3z)c ∏
p|d

p>C2

∞

∑
l=0

ρ(p)l

p3l/4
.

However, for p >C2, one has ρ(p)p−1/2 ≤ 1, and therefore,

∞

∑
l=0

ρ(p)l

p3l/4
≤

∞

∑
l=0

p−l/4 = υ(p). (32)

It follows that

ϒ †
d (z)� υ(d)z(log3z)−c.

Note that this bound crucially depends on Lemma 3, and hence on the oscillatory
hypothesis (9).

The estimation of ϒ ∗k (y) now proceeds through (27), which combines with the
final bound forϒ †

d (z) to

ϒ ∗k (y)� y ∑
m∗≤y

(m,kK)=1

|ψ(m)|
mσm∗

ρ(m∗)|h(m∗)|υ(km∗)
(

log
3y
m∗
)−c

.

Here, recall the currently active convention about the letter b, that is now used as
a substitute for m. Then since |h(m∗)| ≤ 1 and σ ≥ 1 by hypotheses, the previous
bound simplifies to

ϒ ∗k (y)� υ(k)y ∑
b∗≤y

(b,k)=1

|ψ(b)|ρ(b∗)υ(b∗)
bb∗

(
log

3y
b∗
)−c

� υ(k)y
(log3y)c ∑

b∗≤y
(b,k)=1

|ψ(b)|ρ(b∗)υ(b∗)
b3/4b∗

. (33)
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For the final inequality, note that again (31) was used in conjunction with b∗ | b.
The sum over b on the right of (33) is bounded above by the corresponding Euler
product

∏
C2<p≤y

(
1+

ρ(p)υ(p)
p

∞

∑
l=1

ρ(p)l

p3l/4

)
,

whence by (32)

ϒ ∗k (y)�
υ(k)y

(log3y)c ∏
p

(
1+

ρ(p)2υ(p)2

p7/4

)
.

The inequality ρ(p)υ(p) ≤ Cυ(2) shows that the product converges and that it
is bounded in terms of C, so it may be absorbed into the implicit constant. The
consequential estimate forϒ ∗k (y) may then be imported into (25) to infer that

ϒk(x)� ∑
a≤x

(a,k)=1

μ(a)2ρ(a)θσ (a)υ(k)
x
a

(
log

3x
a

)−c
.

However, square-free values of a are divisors of K. Therefore, μ(a)2ρ(a) is bounded
in terms of C. Moreover, one also has |θσ (a)| ≤ 1, so that it now follows thatϒk(x)�
υ(k)x(log3x)−c, as required.

1.4 Classical Propinquity Estimates

The quantity
Δ(n;u,v) = #{d | n : u < logd ≤ u+ v} (34)

is a special case of (5). The next lemma exploits the expectation that the maximal
function

Δ (v)(n) = max
u
Δ(n;u,v) (35)

is essentially bounded when v is small in terms of n.

Lemma 5. Let ρ ∈F (c,C,δ ) and 0 < v≤ (logx)−4(C2+1). Then one has

∑
n≤x

μ(n)2ρ(n)Δ (v)(n)2

n
� (logx)c.

The implicit constant depends only on the parameter set.
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Proof. The propinquity function

d(v)(n) = #{(d1,d2) : d1 | n, d2 | n, d1 < d2 ≤ evd1}

serves well as an upper bound for Δ (v)(n). In fact, one obviously has

Δ (v)(n)2 ≤ Δ (v)(n)+ 2d(v)(n),

whence

Δ (v)(n)2 ≤ 1+ 4d(v)(n).

Hence, the sum in question does not exceed

∑
n≤x

μ(n)2ρ(n)
n

+ 4∑
n≤x

μ(n)2ρ(n)d(v)(n)
n

,

and for the first summand here, Rankin’s trick and Lemma 2 yield the acceptable
bound

∑
n≤x

μ(n)2ρ(n)
n

≤ e
∞

∑
n=1

μ(n)2ρ(n)
n1+1/ logx

� (logx)c.

For the second sum, Cauchy’s inequality produces

∑
n≤x

μ(n)2ρ(n)d(v)(n)
n

≤
(
∑
n≤x

μ(n)2ρ(n)2d(v)(n)
n

) 1
2
(
∑
n≤x

d(v)(n)
n

) 1
2
.

The estimation of the first factor on the right is straightforward. By (7), one has
μ(n)2ρ(n)2 ≤C2ω(n), and the inequality d(v)(n)≤ d(n)2 is obvious. This yields

∑
n≤x

μ(n)2ρ(n)2d(v)(n)
n

≤∏
p≤x

(
1+

4C2

p

)
� (logx)4C2

.

For the second factor, the definition of d(v)(n) may be opened and the order of
summation be reversed. This gives

∑
n≤x

d(v)(n)
n

= ∑
d1<d2≤evd1

d2≤x

∑
n≤x

[d1,d2]|n

1
n
� (logx) ∑

d1<d2≤evd1
d2≤x

1
[d1,d2]

.
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The remaining sum can be transformed by d = (d1,d2), d j = d f j, and is then seen
not to exceed

∑
d≤x

∑
f1< f2≤ev f1

f2≤x/d

1
d f1 f2

� (logx) ∑
f1< f2≤ev f1

f1≤x

1

f 2
1

� (logx) ∑
f1≤x

[ev f1− f1]

f 2
1

� (logx)2(ev− 1).

For 0≤ v≤ 1, one has ev− 1� v. The estimates established so far combine to

∑
n≤x

μ(n)2ρ(n)Δ (v)(n)2

n
� (logx)2C2+2v1/2 +(logx)c.

This proves Lemma 5.

An estimate for weighted moments of the classical Delta function is the theme
of the next lemma. The result is very similar to Lemma 2.2 of Tenenbaum [9], but
uniformity with respect to the weights needs attention.

Lemma 6. Fix a parameter set and a real number t ≥ 1. Then there is a number B
such that for ρ ∈F and 1 < σ ≤ 2 one has

∞

∑
n=1

μ(n)2ρ(n)Δ(n)t

nσ
� (σ − 1)−max(2tc−t,c)L ∗((σ − 1)−1)B.

The implicit constant and B depend only on the parameter set and on t.

Proof. The method of moments and differential inequalities is central to the
argument; see Chap. 7 of [3] for an account. For easy reference, notation is in line
with this source as far as is possible. For any natural number, consider the moment

Mq(n) =
∫ ∞

−∞
Δ(n;u,1)q du, (36)

where Δ(n;u,v) is as in (34). By Theorem 72 of Hall and Tenenbaum [3], one has

21−qΔ(n)q ≤Mq(n)≤ d(n)q, (37)

whence in view of (7), the Dirichlet series

L(σ) =
∞

∑
n=1

μ(n)2ρ(n)Mq(n)t/q

nσ
(38)
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converges for σ > 1, and the inequality

∞

∑
n=1

μ(n)2ρ(n)Δ(n)t

nσ
≤ 2tL(σ) (39)

holds. For later use, it is worth remarking that (7) and the second inequality in (37)
imply that

L(2)≤∏
p
(1+ 2tCp−2), (40)

where the important point is that the right-hand side is independent of q.
The Dirichlet series L(σ) has been examined in detail by Tenenbaum [9] in

the special case where ρ = ρ f and f is an irreducible polynomial with integer
coefficients. His method can be followed closely to complete the proof of Lemma 6.
The reader is referred to [9] for more details of the argument to follow.

The argument leading from [9, (2.9)] to [9, (2.10)] is still valid in the more
general context, and an inspection of the proceedings there reveals that Tenenbaum’s
constant C0 depends only on an upper bound for ρ(p), and hence only on C, in the
notation of this paper. One then substitutes the inequality (2.11) of [9] by (8) of this
paper. Arguing as on p. 220 of [9], one confirms that for all σ > 1 one has

−L′(σ)≤ 2t/qL(σ)
( c
σ − 1

+C
)
+Ct/q

0 4t
( c
σ − 1

+C
)1−t/q

J(σ),

where

J(σ) =
∞

∑
n=1

μ(n)2Mq(n)
t(q−2)/q(q−1)ρ(n)d(n)t/(q−1)n−σ .

Hölder’s inequality is now applied to estimate J(σ) in terms of L(σ) and a sum that
has occurred in Lemma 2. With the estimate from Lemma 2 in the rôle of [9, (2.12)],
the argument of [9] then yields

−L′(σ) ≤ 2t/qL(σ)
( c
σ − 1

+C
)

+KCt/q
0 4t

( c
σ − 1

+C
)1−t/q

(σ − 1)−2tc/(q−1)L(σ)(q−2)/(q−1),

in which K denotes a constant dependent at most on the parameter set. As in the
argument leading to [9, (2.13)], this may then be used to derive the preliminary
differential inequality

−L′(σ)≤ c2t/qL(σ)(σ − 1)−1 +C1L(σ)(q−2)/(q−1)(σ − 1)−1+(t/q)−2tc/(q−1),
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where C1 depends only on the parameter set and on t. For a technical reason,
a slightly weaker inequality is easier to handle. For any γ ≥ 2t c− t + t/q, the
inequality

−L′(σ)≤ c2t/qL(σ)(σ − 1)−1 +C1L(σ)(q−2)/(q−1)(σ − 1)−1−γ/(q−1) (41)

still holds whenever 1 < σ ≤ 2, and one may replace C1 by any larger number if
necessary. It will be convenient to choose

γ = max(c2t − t + t/q,c+(1+ ct log2)/q),

because one then has

γ− c2t/q ≥ c
(

1+
1+ t log2

q
− 2t/q

)
≥ c

2q
, (42)

provided only that q is sufficiently large in terms of t. The function

X(σ) =
( C1

γ− c2t/q

)q−1
(σ − 1)−γ

satisfies (41) with equality when X replaces L. The preceding inequality proves the
denominator in the definition of X positive, at least when q is large. Also, when
q > t, one has γ− c2t/q ≤max(c2t ,2c+1). Now choose C1 ≥ 2max(c2t ,2c+1) so
large that (41) holds; according to an earlier comment, this is possible. Note that C1

still depends only on the parameter set and on t. The inequality C1/(γ− c2t/q) ≥ 2
has been enforced, and so, for large q, one has X(2)≥ 2q−1. By (40), it follows that
X(2) ≥ L(2) holds for large values of q. By Lemma 70.2 of Hall and Tenenbaum
[3] and (42), this shows that the inequality

L(σ)≤ X(σ)≤ (2C1q/c)q(σ − 1)−γ

holds throughout the range 1 < σ ≤ 2. With C2 = 2C1/c, the previous inequality can
then be rewritten as

L(σ) ≤ (σ − 1)−max(c2t−t,c) exp(q logC2q+C3q−1 log(σ − 1)−1), (43)

where again C3 only depends on the parameter set and on t. If one were allowed to
choose

q =

[(
log(σ − 1)−1

loglog(σ − 1)−1

)1/2]

in (43), then in view of (39), the proof of Lemma 6 would be complete. In fact,
when σ decreases to 1, then q goes to infinity, and the lower bound for q for
which (43) holds depends only on t and the parameter set. Thus, the above choice
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is definitely admissible for σ − 1 sufficiently small. For larger values of σ , one
chooses the smallest q for which (43) holds. Now σ − 1 is bounded below, and
again, the conclusion of Lemma 6 follows from (43) and (39).

1.5 The Moment Method

Preparatory work now completed, the remaining sections of this chapter are devoted
to the principal steps in the proof of Theorem 1. The strongest upper bounds for
the average order of Hooley’s Delta function known hitherto have been obtained
through the method of moments and a differential inequalities technique, both
developed by Hall and Tenenbaum (see Chap. 7 of [3] and the comments therein).
Their strategy also underpinned the proof of Lemma 6 in the previous section. In
the classical case, the first inequality in (37) is central to the passage from moments
Mq(n) to the Delta function. In the presence of a twist h ∈ H , this step is less
obvious, and one also has to keep track of the parameter v in (5) and (6). It is
therefore appropriate to define the maximal function

Δ (v)
h (n) = max

u
|Δh(n;u,v)|, (44)

and, whenever q is a natural number, the moment

M(v)
h;q(n) =

∫ ∞

−∞
|Δh(n;u,v)|q du. (45)

The next lemma is an attempt to provide a useful substitute for (37).

Lemma 7. Let n be a natural number and h ∈ H . Then for any positive real
number v, one has

Δ (v)
h (n)≤ Δ (v)(n).

Moreover, when q and K are natural numbers, then

Δh(n)≤ 3KΔ (2−K)(n)+ 2K2 max
0≤k≤K

2k/qM(2−k)
h;q (n)1/q.

Proof. The first inequality follows immediately from |h(m)| ≤ 1 for all m. For the
other, more important inequality, rather more care is required. For given data u∈R,
0 < v≤ 1 and K ∈ N, first choose a subset K ⊂ {1, . . . ,K} such that

0≤ v− ∑
k∈K

2−k < 2−K .
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Then by the triangle inequality and (35), again using |h| ≤ 1, one obtains the bound

|Δh(n;u,v)| ≤ ∑
k∈K

|Δh(n;uk,2
−k)|+Δ (2−K)(n)

in which

uk = u+ ∑
l∈K
l<k

2−l .

In particular, it follows that

Δh(n)≤
K

∑
k=1

Δ (2−k)
h (n)+Δ (2−K)(n). (46)

This will be complemented with another inequality that again is a consequence
of the triangle inequality. The starting point is (5). For any v > 0 and real numbers
u, w with u < w≤ u+ v, one observes that

Δh(n;u,v) = Δh(n;u,w− u)+Δh(n;w,v)−Δh(n;u+ v,w− u).

Now apply the triangle inequality and integrate over admissible values of w. This
brings in the integrals

Ih(n;u,v) =
∫ v

0
|Δh(n;u,υ)|dυ , (47)

and the resulting inequality reads

v|Δh(n;u,v)| ≤ Ih(n;u,v)+
∫ u+v

u
|Δh(n;w,v)|dw+ Ih(n;u+ v,v). (48)

A similar argument applies to the integral (47) and produces an iterative inequality.
In fact, when 1

2 v < υ ≤ v, one begins with the identity

Δh(n;u,v) = Δh

(
n;u,υ− 1

2
v
)
+Δh

(
n;u+υ− 1

2
v,

1
2

v
)
.

On isolating the contribution from the interval 0≤ υ ≤ 1
2 v in (47), integration of the

previous identity over 1
2 v≤ υ ≤ v demonstrates that

Ih(n;u,v)≤ 2Ih

(
n;u,

1
2

v
)
+

∫ u+ 1
2 v

u

∣∣∣Δh

(
n;w,

1
2

v
)∣∣∣dw.
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One may replace v by 1
2 v here, and substitute the result for the first term on the

right-hand side of the original inequality. Iterating this process J times yields

Ih(n;u,v)≤ 2JIh(n;u,2−Jv)+
J

∑
j=1

2 j−1
∫ u+2− jv

u
|Δh(n;w,2− jv)|dw.

An inspection of (47) and (44) reveals the alternative inequality Ih(n;u,v) ≤
vΔ (v)(n). Hence, on combining these estimates with (48), one derives the bound

v|Δh(n;u,v)| ≤ 2vΔ (2−Jv)(n)+
J

∑
j=0

2 j
(∫ u+2− jv

u
+

∫ u+v+2− jv

u+v

)
|Δh(n,w,2

− jv)|dw.

Hölder’s inequality now produces

v|Δh(n;u,v)| ≤ 2vΔ (2−Jv)(n)+
J

∑
j=0

2 j(21− jv)1−1/qM(2− jv)
h;q (n)1/q,

which simplifies to

|Δh(n;u,v)| ≤ 2Δ (2−Jv)(n)+ 2
J

∑
j=0

(2 j

v

)1/q
M(2− jv)

h;q (n)1/q.

Here, the right-hand side is independent of u, and therefore an upper bound for

Δ (v)
h (n). Now choose v= 2−k, J = K−k and insert the result into (46) to deduce that

Δh(n)≤ (2K + 1)Δ (2−K)(n)+ 2
K

∑
k=1

K−k

∑
j=0

2( j+k)/qM(2− j−k)
h;q (n)1/q.

The lemma is now immediate.

A convoluted moment is now to be estimated. For 0 ≤ j ≤ q and primes p, this
is defined by

N(v)
h;q(n; j, p) =

∫ ∞

−∞
|Δh(n;u,v)|q− j|Δh(n,u− log p,v)| j du. (49)

One may use Hölder’s inequality to separate the two factors in the integrand. By
(45), this yields the simple bound

N(v)
h;q(n; j, p)≤M(v)

h;q(n) (50)

that will be used later only for j = 1 and j = q− 1. In the special case h = 1 and
v = 1, superior upper bounds are part of Theorem 73 of Hall and Tenenbaum [3].
The following lemma serves as an appropriate replacement.
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Lemma 8. Uniformly in q≥ 5, 2≤ j ≤ q− 2, 0 < v≤ 1 and h ∈H , one has

∑
p

log p
p

N(v)
h;q(n; j, p)

� (
M(v)

h;2(n)+Δ(n)2(log log9n)4)(vd(n)2)2/(q−2)M(v)
h;q(n)

(q−4)/(q−2).

Proof. By (49) and Hölder’s inequality, it is immediately clear that it suffices to
establish Lemma 8 in the two cases j = 2 and j = q− 2. First consider j = 2. Let

Eh(n;u,v) =∑
p

log p
p
|Δh(n;u− log p,v)|2.

Note that by (5) the sum over p is over a finite range, and that

∑
p

log p
p

N(v)
h;q(n;2, p) =

∫ ∞

−∞
Eh(n;u,v)|Δh(n;u,v)|q−2 du. (51)

Moreover, by (5) again,

Eh(n;u,v) =∑
p

log p
p ∑

d1|n,d2|n
eu<pd j≤eu+v

h(d1)h(d2).

For a pair d1,d2 it will be convenient to write

d+ = max(d1,d2), d− = min(d1,d2). (52)

Then

Eh(n;u,v) = ∑
d1|n,d2|n

h(d1)h(d2) ∑
eu/d−<p≤eu+v/d+

log p
p

. (53)

For an efficient evaluation of the inner sum over p, first note that the prime
number theorem coupled with partial summation shows that there are certain real
numbers E,κ with κ > 0 and

∑
p≤x

log p
p

= logx+E +O
(

exp(−κ
√

logx)
)
, (54)

throughout the range x≥ 1. Now note that the sum over p in (53) is non-empty only
in cases where d+/d− ≤ ev, and if this is so, then by (54), this sum in (53) equals

log
evd−

d+
+O

(
exp

(
−κ

(
log

eu

d−

)1/2))
.
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This is useful only when d− is not too large. Therefore, let

γ(n) = exp

(
− 3

(
loglog9n

κ

)2)
, (55)

and let E′h(n;u,v) be the sum (53) with the additional constraint d1 ≤ euγ(n). Write
E′′h(n;u,v) for the sum with the complementary condition d1 > euγ(n) so that

Eh(n;u,v) = E′h(n;u,v)+E′′h(n;u,v).

When d1 ≤ euγ(n), it follows that eu/d− ≥ γ(n)−1, and consequently,

E′h(n;u,v) = ∑
d1|n,d2|n

d1≤euγ(n)
d+/d−≤ev

h(d1)h(d2)

(
log

evd−

d+
+O

(
1

(log9n)3

))
.

Since h takes values in the complex unit disc only, the error term sums to at most

� (log9n)−3 ∑
d−|n

∑
d+|n

d−<d+≤d−ev

1� d(n)Δ (v)(n)(log9n)−3,

and (13) now yields

E′h(n;u,v) = ∑
d1|n,d2|n

d1≤euγ(n)
d+/d−≤ev

h(d1)h(d2) log
evd−

d+
+O(Δ (v)(n)Δ(n)).

The leading term on the right-hand side here is readily seen to equal the integral

∫ ∞

−∞

(
∑
d|n

d≤euγ(n)
ew<d≤ew+v

h(d)
)(

∑
f |n

ew< f≤ew+v

h( f )
)

dw.

By Cauchy’s inequality, the modulus of this expression does not exceed

(∫ ∞

−∞

∣∣∣ ∑
d|n

d≤euγ(n)
ew<d≤ew+v

h(d)
∣∣∣2 dw

)1/2
M(v)

h;2(n)
1/2 = J1/2M(v)

h;2(n)
1/2,

say. An inspection of the summation conditions in the integrand of J reveals that
the artificially introduced constraint d ≤ euγ(n) may be omitted in the initial range
ew+v≤ euγ(n), and forces the integrand to vanish when ew > euγ(n). Hence, by (45),
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J ≤ M(v)
h;2(n)+

∫
e−vγ(n)≤ew−u≤γ(n)

∣∣∣ ∑
d|n

ew<d≤euγ(n)

h(d)
∣∣∣2 dw

≤ M(v)
h;2(n)+ vΔ (v)(n)2.

This implies the inequality

E′h(n;u,v)≤M(v)
h;2(n)+ v1/2M(v)

h;2(n)
1/2Δ (v)(n)+O(Δ (v)(n)Δ(n))

that simplifies to

E′h(n;u,v)�M(v)
h;2(n)+Δ (v)(n)Δ(n). (56)

Here, the implicit constant was inherited only from the use of the prime number
theorem, and is therefore an absolute one.

The estimation of E′′h(n;u,v) is straightforward. Since the sum over p in (53) is
empty unless 2d+≤ eu+v, and since one has d− ≥ d1≥ euγ(n) in the current context,
the trivial bound |h(d1)h(d2)| ≤ 1 already gives

E′′h(n;u,v)≤ ∑
d1|n,d2|n

euγ(n)<d1≤eu+v

e−v≤d1/d2≤ev

∑
p≤ev/γ(n)

log p
p

.

The sum over p contributes O
(
(log log9n)2

)
. For any fixed d1, the sum over d2

does not exceed Δ (2v)(n) ≤ 2Δ (v)(n). Then split the range euγ(n)< d1 ≤ eu+v into
O
(
(loglog9n)2

)
intervals of length at most 1 for logd1 to finally confirm that

E′′h(n;u,v)� Δ(n)Δ (v)(n)(log log9n)4.

This combines with (56) to

Eh(n;u,v)�M(v)
h;2(n)+Δ(n)Δ (v)(n)(log log9n)4, (57)

and (51) yields

∑
p

log p
p

N(v)
h;q(n;2, p)� (

M(v)
h;2(n)+Δ(n)Δ (v)(n)(log log9n)4)M(v)

h;q−2(n). (58)

By (45) and Hölder’s inequality,

M(v)
h;q−2(n)≤M(v)

h;2(n)
2/(q−2)M(v)

h;q(n)
(q−4)/(q−2), (59)
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and in the notation introduced in (52), one has

M(v)
h;2(n) = ∑

d1|n,d2|n
d+/d−≤ev

h(d1)h(d2) log
evd−

d+
. (60)

For each of the terms to be summed here, one has |h(d1)h(d2)| log evd−
d+ ≤ v so that

in fact

M(v)
h;2(n)≤ 2vΔ (v)(n)d(n)≤ 2vd(n)2. (61)

One may now combine (58), (59) and (61) to confirm the case j = 2 of Lemma 8.
It remains to consider j = q− 2. The substitution u′ = u− log p in (49) leads to

an expression similar to (51), but with u− log p in the definition of E now replaced
by u+ log p. Little change is necessary in the following argument to establish the
appropriate analogue of (57), and after that point, the case j = q− 2 of Lemma 8
follows mutatis mutandis.

The crucial step is right ahead. A differential inequality will be derived for a

Dirichlet series analogous to (38), but with Mq replaced by M(v)
h;q . It will be important

to have at hand the special case q = 2 that is directly accessible.

Lemma 9. Fix a parameter set. Let h ∈H and ρ ∈Fh. Then, for 1 < σ ≤ 2 and
0 < v≤ 1, one has

∞

∑
n=1

μ(n)2ρ(n)M(v)
h;2(n)n

−σ � v(σ − 1)−2c log
3

σ − 1
.

The implicit constant depends only on the parameter set.

Proof. Let Z(σ) denote the Dirichlet series that is to be estimated. By (7), one has

μ(n)2ρ(n)�Cω(n), and by (45), (36) and (37), one has M(v)
h;2(n)≤M2(n)≤ d(n)2,

so that Z(σ) is absolutely convergent for σ > 1. Hence, by (60),

Z(σ) =
∞

∑
d1,d2=1

d+/d−≤ev

h(d1)h(d2) log
evd−

d+

∞

∑
n=1

[d1,d2]|n

μ(n)2ρ(n)
nσ

.

Now substitute n = m[d1,d2] in the inner sum, and write the remaining sum over m
as a product. This yields

Z(σ) = P(σ)
∞

∑
d1,d2=1

d+/d−≤ev

h(d1)h(d2)
ρ([d1,d2])μ(d1)

2μ(d2)
2

[d1,d2]σ
θσ (d1d2;ρ) log

evd−

d+
,

where θσ (k;ρ) is defined by (23), and

P(σ) =∏
p
(1+ρ(p)p−σ). (62)
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For later use, note that Lemma 2 delivers the bound

P(σ) =
∞

∑
n=1

μ(n)2ρ(n)
nσ

� (σ − 1)−c. (63)

Returning to Z(σ), the sum over d1,d2 is now arranged according to the value of
d = (d1,d2). Then

Z(σ) = P(σ)
∞

∑
d=1

μ(d)2ρ(d)|h(d)|2
dσ

θσ (d)Zd(σ) (64)

in which Zd(σ) is defined by

Zd(σ) =
∞

∑
d1,d2=1

d+/d−≤ev

(d1,d2)=(d1d2,d)=1

λ (d1)λ (d2)

dσ1 dσ2
log

evd−

d+
,

and where in the interest of brevity, from now on the shorthand

λ (d) = λσ (d) = μ(d)2ρ(d)h(d)θσ (d) (65)

is used. The diagonal term d1 = d2 = 1 contributes v. The remaining terms come in
conjugate pairs so that

Zd(σ) = v+ 2Re
∞

∑
d1=1

(d1,d)=1

λ (d1)

dσ1
∑

d1<d2≤d1ev

(d2,dd1)=1

λ (d2)

dσ2
log

evd1

d2
.

Here, the sum over d2 is empty unless [d1(ev− 1)] ≥ 1 holds, and the previous
identity therefore becomes

Zd(σ) = v+ 2Re ∑
d1≥(ev−1)−1

(d1,d)=1

λ (d1)

dσ1

∫ evd1

d1
∑

d1<d2≤w
(d2,dd1)=1

λ (d2)

dσ2

dw
w

.

To obtain an estimate for the sum over d2, one first removes d−σ2 by partial
summation and then applies Lemma 4. Uniformly for d1 ≤ w ≤ 3d1, this yields
the bound

� υ(dd1)

(
w1−σ

(log3w)c +σ
∫ w

d1

y
(log3y)c

dy
y1+σ

)
� υ(dd1)

d1−σ
1

(log3d1)c
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for the relevant sum that may now be integrated against dw/w. The implicit constant
in this estimate stems from Lemma 4, and depends therefore only on the parameter
set, this remaining true for the consequential formula

Zd(σ) = v+O

(
vυ(d) ∑

d1≥(ev−1)−1

υ(d1)|λ (d1)|
dσ1 (log3d1)c

)
.

Now consider the Dirichlet series

H(σ) =
∞

∑
n=1

μ(n)2υ(n)ρ(n)
nσ

, H∗(σ) =
∞

∑
n=1

μ(n)2υ(n)ρ(n)
nσ (log3n)c . (66)

The trivial bound |h(d1)θσ (d1)| ≤ 1 for 1 < σ ≤ 2 first shows that |λ (d1)| ≤
μ(d1)

2ρ(d1), and then that

Zd(σ) = v+O(vυ(d)H∗(σ)), (67)

in which once again the implicit constant depends only on the parameter set. It
remains to estimate H∗(σ). By (7) and (22), it is clear that H(σ), and hence also
H∗(σ), converges for σ > 1. Also, for σ > 1, (22) shows that υ(p) ≤ 1+ 8p−1/4.
By (7), it now follows that

H(σ ) =∏
p

(
1+

υ(p)ρ(p)
pσ

)
≤∏

p

(
1+

ρ(p)
pσ

)(
1+

8C

p5/4

)
≤ P(σ )∏

p

(
1+

8C

p5/4

)
.

The second factor on the right is a convergent product depending only on C. Hence,
by (63),

H(σ)� (σ − 1)−c.

Here, we choose σ = 1+(log3x)−1 and apply Rankin’s trick to deduce that

∑
n≤x

μ(n)2υ(n)ρ(n)
n

� (log3x)c.

By partial summation, this implies

∑
n≤x

μ(n)2υ(n)ρ(n)
n(log3n)c � 1+

∫ x

1

dy
y log3y

� log log9x,

and another partial summation yields

H∗(σ) = (σ − 1)
∫ ∞

1
x−σ ∑

n≤x

μ(n)2υ(n)ρ(n)
n(log3n)c dx.
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Now estimate the integrand and then integrate by parts to deduce that

H∗(σ)� (σ − 1)
∫ ∞

1
x−σ (log log9x)dx� 1+

∫ ∞

1

dx
xσ log9x

.

The final integral here is of the same type as the one considered in (20), and the
argument given there yields

H∗(σ)� log
3

σ − 1
.

By (67), it follows that

Zd(σ)� vυ(d) log
3

σ − 1
.

This may be inserted into (64) and combined with (63). The estimates obtained so
far then produce

Z(σ)� vP(σ)H(σ) log
3

σ − 1
� v(σ − 1)−2c log

3
σ − 1

,

as required to complete the proof of the lemma.

The reader is invited to analyse the proof of Lemma 9 in cases where cancella-
tions from oscillatory h are not available. The most natural situation is h ≡ ρ ≡ 1,
the average order of Hooley’s Delta function. Then the best one can hope for, for the
sum considered in Lemma 9, is O((σ − 1)−3). For comparison, Lemma 9 provides
a superior bound almost as good as (σ − 1)−2 in all cases, where c = 1. Thus, the
oscillatory properties of h are not only coded into the sum considered in Lemma 9,
but are also extractable in a simple manner.

The result is now fed into an estimation of a Dirichlet series that plays the same
rôle in the proof of Theorem 1 as the function L(σ) did in Lemma 8. The relevant
series is given by

Lh(σ) = L(v)
h (σ ;ρ ,q, t) =

∞

∑
n=1

μ(n)2ρ(n)M(v)
h;q(n)

t/qn−σ , (68)

where σ > 1 and the parameters range over 0 < v≤ 1, t ≥ 1, q ∈N, h∈H and ρ ∈
Fh. For notational simplicity, most parameters are often suppressed in the sequel.
Yet, it is important to estimate this sum not also uniformly for 1 < σ ≤ 2, but also
with respect to v and q.

By (45) and (36), one has M(v)
h;q(n) ≤ Mq(n) so that the series L(σ) defined in

(38) is an upper bound for Lh(σ). In particular, it follows that Lh(σ) converges for
σ > 1, and a short calculation based on (17) reveals that

−L′(σ) =
∞

∑
n=1

μ(n)2ρ(n)
nσ ∑

p�n

ρ(p) log p
pσ

M(v)
h;q(pn)t/q. (69)
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The next goal is an estimate for the inner sum here. By (5), when p � n, one has

|Δh(pn;u,v)| ≤ |Δh(n;u,v)|+ |Δh(n;u− log p,v)|.

One takes the q-th power, expands by the binomial theorem and then integrates over
u to confirm that

M(v)
h;q(pn) ≤ 2M(v)

h;q(n)+
q−1

∑
j=1

(q
j

)
N(v)

h;q(n; j, p)

≤ 2(q+ 1)M(v)
h;q(n)+

q−2

∑
j=2

(q
j

)
N(v)

h;q(n; j, p), (70)

where for the last inequality, the summands j = 1 and j = q− 1 were estimated by
(50). For the remaining j, one multiplies by ρ(p)(log p)p−σ and notes that ρ(p)≤C
and 1 < σ ≤ 2 in the current context. Hence, by Lemma 8,

∑
p�n

ρ(p) log p
pσ

M(v)
h;q(pn) ≤ 2(q+ 1)M(v)

h;q(n)∑
p�n

ρ(p) log p
pσ

+C′2qΓ (v)
h (n)

(
vd(n)2)2/(q−2)

M(v)
h;q(n)

(q−4)/(q−2), (71)

where the shorthand

Γ (v)
h (n) = M(v)

h;2(n)+Δ(n)2(log log9n)4 (72)

has been used in the interest of brevity, and where C′ denotes the product of C with
the constant implicit in Lemma 8.

Now restrict to the range 1 ≤ t ≤ 2 and suppose that q ≥ 5 so that q > t. An
estimate for the inner sum in (69) is readily available. One first uses Hölder’s
inequality to bring in the bound in (71), then applies the inequality

(ξ +η)υ ≤ ξυ +ηυ (73)

that is valid for 0 ≤ υ ≤ 1 and non-negative real numbers ξ , η . This procedure
yields

∑
p�n

ρ(p) log p
pσ

M(v)
h;q(pn)t/q ≤ ((2q+ 2)M(v)

h;q(n)
)t/q∑

p�n

ρ(p) log p
pσ

+
(
C′2qΓ (v)

h (n)
)t/q(

vd(n)2)2t/q(q−2)
M(v)

h;q(n)
t(q−4)/q(q−2)

(
∑
p

ρ(p) log p
pσ

)1−(t/q)
.
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By (9) and crude estimates, the above does not exceed

(
(2q+ 2)M(v)

h;q(n)
)t/q

(
c

σ − 1
+C

)

+C′′Γ (v)
h (n)t/q(vd(n)2)2t/q(q−2)

M(v)
h;q(n)

t(q−4)/q(q−2)(σ − 1)t/q−1,

where C′′ is a positive number depending at most on the parameter set and on t.
When inserted into (69), this yields

−L′h(σ)≤ (2q+ 2)t/qLh(σ)
( c
σ − 1

+C
)
+C′′v2t/q(q−2)(σ − 1)t/q−1Jh(σ), (74)

where

Jh(σ) =
∞

∑
n=1

μ(n)2ρ(n)
nσ

Γ (v)
h (n)t/qd(n)4t/q(q−2)M(v)

h;q(n)
t(q−4)/q(q−2).

By Hölder’s inequality and (68), one finds that

Jh(σ)≤
(

∞

∑
n=1

μ(n)2ρ(n)d(n)t

nσ

)4/q(q−2)

K(σ)2/qLh(σ)(q−4)/(q−2) (75)

with

K(σ) =
∞

∑
n=1

μ(n)2ρ(n)Γ (v)
h (n)t/2

nσ
.

This procedure brings back Lh(σ), and at the same time separates d(n) and Γ (v)
h (n).

An estimate for K(σ) is available by (72) and (73) (take υ = 1
2 t), namely

K(σ)≤
∞

∑
n=1

μ(n)2ρ(n)M(v)
h;q(n)

t/2

nσ
+

∞

∑
n=1

μ(n)2ρ(n)Δ(n)t(loglog9n)2t

nσ
.

For the first summand on the right-hand side, one may apply Hölder’s inequality
to interpolate between the estimates provided by Lemmata 2 and 9. This yields the
upper bound

�
(

v(σ − 1)−2c log
3

σ − 1

)t/2(
(σ − 1)−c)1−t/2� (σ − 1)−c(1+t/2) log

3
σ − 1

for the term under consideration. For the second summand, note that Δ(pn)≤ 2Δ(n)
holds, as a consequence of Hooley [4], his formula (5). Therefore, Lemma 1 is
applicable with A = 2t and k = 4. This procedure combined with Lemma 6 yields
the upper bound
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�
(

log
3

σ − 1

)8 ∞

∑
n=1

μ(n)2ρ(n)Δ(n)t

nσ

�
(

log
3

σ − 1

)8

(σ − 1)−max(2t c−t,c)L ∗((σ − 1)−1)B.

Collecting together, this shows that

K(σ)� (σ − 1)−max(2t c−t,c(1+t/2))L ∗((σ − 1)−1)2B.

Note that this is somewhat crude: the potentially small factor vt/2 was neglected,
and B was increased to 2B to absorb powers of log3/(σ− 1).

The Dirichlet series that remained explicit in (75) was estimated in Lemma 2.
Therefore, by (74) and the preceding estimate for K(σ), it now follows that

−L′h(σ)≤ (2q+ 2)t/qLh(σ)
( c
σ − 1

+C
)

+ C′′v2t/q(q−2)L ∗((σ − 1)−1)2B/(q−2)(σ − 1)−1−2η/(q−2)Lh(σ)(q−4)/(q−2), (76)

where

η =
1
q

(
2t+1c+(q− 2)max

(
2tc− 3

2
t,c+

1
2
(c− 1)t

))
.

A crude upper bound for Lh(σ) is enough to remove the term involving C from
(76). In fact, by (45) and trivial estimates followed by an application of (73), one
first observes that

M(v)
h;q(n)≤M(v)

h,2(n)d(n)
q−2 ≤ 2vd(n)q,

and then infers from Lemma 2 the bound

Lh(σ)≤ (2v)t/q
∞

∑
n=1

μ(n)2ρ(n)d(n)t

nσ
� vt/q(σ − 1)−2tc. (77)

Since t ≤ 2, one has (2q+ 2)t/q� 1, and it then readily follows that

(2q+ 2)t/qLh(σ)� v2t/q(q−2)(σ − 1)−1−2η/(q−2)Lh(σ)(q−4)/(q−2).

Consequently, there is a number C′′′ such that

−L′h(σ)≤ (2q+ 2)t/qLh(σ)
c

σ − 1

+ C′′′v2t/q(q−2)L ∗((σ − 1)−1)4B/(q−2)(σ − 1)−1−2η/(q−2)Lh(σ)(q−4)/(q−2).

The further proceedings are similar to those within the proof of Lemma 6. One may
replace η with any larger number, and such is given by
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η ′ =
8c
q

max
(

2tc− 3
2

t,c+
1
2
(c− 1)t,c(2q+ 2)t/q

)
, (78)

so that the differential inequality

−L′h(σ)≤ c(2q+ 2)t/qLh(σ)(σ − 1)−1

+ C′′′v2t/q(q−2)L ∗((σ − 1)−1)4B/(q−2)(σ − 1)−1−2η ′/(q−2)Lh(σ)(q−4)/(q−2)

holds throughout the range 1 < σ ≤ 2. The factor L ∗((σ − 1)−1)4B/(q−2) disturbs
the argument used in the proof of Lemma 6, but monotonicity tames its influence.
Fix a number σ0 with 1 < σ0 < 2. Then for σ0 ≤ σ ≤ 2, one has

−L′h(σ)≤ c(2q+ 2)t/qLh(σ)(σ − 1)−1

+ C′′′v2t/q(q−2)L ∗((σ0−1)−1)4B/(q−2)(σ−1)−1−2η ′/(q−2)Lh(σ)(q−4)/(q−2). (79)

The function

Xh(σ) = Xh(σ ;σ0) = vt/qL ∗((σ0−1)−1)2B

(
C′′′

η ′ − c(2q+ 2)t/q

)(q−2)/2

(σ−1)−η
′

satisfies (79) with equality, as one readily checks. Here, it is important to note that
(78) guarantees η ′ − c(2q+ 2)t/q > 0. Moreover, again by (78),

Xh(2) = vt/qL ∗((σ0− 1)−1)2B

(
C′′′

η ′ − c(2q+ 2)t/q

)(q−2)/2

≥ vt/q
(C′′′

8c

)(q−2)/2
,

at least when q is large and σ0− 1 is sufficiently small. By (77), one has Lh(2)�
vt/q, so that for large q one concludes that Xh(2) ≥ Lh(2). By Lemma 70.2 of Hall
and Tenenbaum [3] and (79), it follows that Lh(σ) ≤ Xh(σ ,σ0) holds for all σ0 ≤
σ ≤ 2. In particular, one may take σ = σ0 to deduce that the inequality

Lh(σ)≤ vt/qL ∗((σ − 1)−1)2B
(C′′′q

8c

)q/2
(σ − 1)−η

′
(80)

is valid for 1 < σ ≤ 2. Now use the expansion (2q+2)t/q = 1+ t
q log(2q+2)+ · · ·

to compare (78) with (10). This yields

η ′ ≤ α+
ct
q

log(2q+ 2)+O

(
1
q

)

in which the implicit constant depends only on c as long as t is constrained to 1 ≤
t ≤ 2. Inserting this into (80), one now concludes as follows.
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Lemma 10. Let h ∈H and ρ ∈Fh. There is a number q0 depending only on the
parameter set such that whenever q≥ q0, 1≤ t ≤ 2, 0 < v≤ 1 and 1 < σ ≤ 28/27,
one has

L(v)
h (σ ;ρ ,q, t)≤ vt/q(σ − 1)−α expΨ ,

where α is given by (10),

Ψ =
q
2

log
C′′′q
8c

+

(
ct
q

log(2q+ 2)+O

(
1
q

))
log(σ − 1)−1

+ 2B(log(σ − 1)−1)1/2(log log(σ − 1)−1)1/2,

and B,C′′′ denote suitable numbers depending only on the parameter set. The
implicit constant depends only on c.

The observant reader will have noticed that the condition σ ≤ 28/27 has been
introduced only to ensure that loglog(σ − 1)−1 > 1.

By an argument very similar to the one in Lemma 6, the bound in Lemma 10
transforms into the following intermediate version of Theorem 1.

Lemma 11. Let 1≤ t ≤ 2. Let h ∈H and ρ ∈Fh. Then

∑
n≤x

μ(n)2ρ(n)Δh(n)t

n
� (logx)αL (logx)βL ∗(logx)D

in which the positive number D and the implicit constant depend only on the
parameter set.

Proof. Let q and K denote natural numbers. Then by Lemma 7, the inequality

Δ(n)t ≤ 18KtΔ (2−K)(n)t + 8K2t max
0≤k≤K

2kt/qM(2−k)
h;q (n)t/q

holds for any 1≤ t ≤ 2. By Rankin’s trick,

∑
n≤x

μ(n)2ρ(n)Δh(n)t

n
≤ 18KtΣ1 + 24K2tΣ2 (81)

with

Σ1 = ∑
n≤x

μ(n)2ρ(n)Δ (2−K)(n)t

n
,

Σ2 =
K

∑
k=0

2kt/qL(2−k)
h

(
1+

1
logx

;ρ ,q, t

)
.

It is convenient to choose

K = [4(C2 + 1) loglogx]+ 1, (82)
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because then 2−K� (logx)−4(C2+1), and Lemma 5 then provides the estimate Σ1�
(logx)c which in view of (81), (82) and (10) is acceptable.

It remains to estimate Σ2. By Lemma 10,

2kt/qL(2−k)
h

(
1+

1
logx

;ρ ,q, t
)
≤ (logx)α expΦ,

where

Φ =
q
2

log
C′′′q
8c

+

(
ct
q

log(2q+ 2)+O
(1

q

))
logx

+ 2B(loglogx)1/2(loglog logx)1/2 +O(1)

which is independent of k. One chooses

q = [(2ct loglogx)1/2]+ 1

to confirm that

Φ ≤
(

1
2

ct log logx

)1/2

log loglogx+
1
2

D(loglogx)1/2(loglog logx)1/2.

Here, D is a number depending only the parameter set and on t; recall that this was
the case with B as well. This gives

Σ2� K(logx)α expΦ � K(logx)αL (logx)βL ∗(logx)D/2,

and Lemma 11 follows from (81) and (82).

1.6 The Proof of Theorem 1

The scene is ready for the proof of Theorem 1, which will be deduced from
Lemma 11 by an argument of Hooley [4], Chap. II.2.

Let m, n be coprime numbers. Then by (5),

|Δh(mn;u,v)| ≤∑
d|n
|Δh(m;u− logd,v)|.

It follows that |Δh(mn;u,v)| ≤ d(n)Δh(m), and hence that

Δh(mn)≤ d(n)Δh(m). (83)
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This should be compared with the inequality (5) in Hooley [4], in which coprimality
is not required.

Consider the sum

S(x) = ∑
n≤x

μ(n)2ρ(n)Δh(n)
t logn,

and apply (17) to infer that

S(x) = ∑
pm≤x
p�m

μ(m)2ρ(pm)Δh(pm)t log p.

By (7) and (83),

S(x)≤ 2tC ∑
m≤x

μ(m)2ρ(m)Δh(m)t ∑
p≤x/m

log p.

By Chebyshev’s estimate and Lemma 11,

S(x)� x(logx)αL (logx)βL ∗(logx)D.

The unwanted factor logn in the definition of S(x) may be removed by partial
summation, and one finds that

∑
n≤x

μ(n)2ρ(n)Δh(n)
t � x(logx)α−1L (logx)βL ∗(logx)D. (84)

Finally, the restriction to square-free numbers in (84) can be removed by a
standard process. For any integer n, there is a unique factorisation n = ml with
μ(m)2 = 1, square-full l and (m, l) = 1. Hence, by (83) and (84),

∑
n≤x

ρ(n)Δh(n)
t = ∑

l≤x
p|l⇒p2|l

ρ(l) ∑
m≤x/l
(m,l)=1

μ(m)2ρ(m)Δh(ml)t

≤ x(logx)α−1L (logx)βL ∗(logx)D ∑
l≤x

p|l⇒p2|l

ρ(l)d(l)t

l
.

By (7), the sum over l contributes at most

∏
p≤x

(
1+

∞

∑
υ=2

p−υρ(pυ)(υ+ 1)t

)
≤∏

p

(
1+C

∞

∑
υ=2

p−υδ−1(υ+ 1)2

)
.

The right-hand side here depends only on the parameter set. Theorem 1 now follows.
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2 Incomplete Convolutions

2.1 The Main Result

The truncated convolution of Möbius’ function, defined by

M(n,u) = ∑
d|n

logd≤u

μ(d),

is a frequently recurring object in areas related to sieve theory. The size of the
maximal function

M(n) = max
u
|M(n,u)|

is therefore of interest in not only a few applications. Following a pivotal contribu-
tion of Erdös and Kátai [2], research on M(n) focussed on bounds that would hold
for almost all natural numbers n. In this spirit, Maier [5] showed that the inequality
M(n) > (log logn)0.2875 fails for no more than o(x) of the natural numbers n not
exceeding x. Also, on combining the methods of [5] with recent results of Maier
and Tenenbaum [6], one finds that M(n) < (log logn)log2+ε holds for almost all n.
In his Stuttgart seminar in 2000, Daniel mentioned that his method for twisted Delta
functions can be modified to attack M(n) in mean, and announced the estimate

∑
n≤x

M(n)2� xL (logx)1+ε . (85)

It is surprising that Daniel’s remark, apparently, is the first attempt to control
moments of M(n). Following Daniel’s line of thought, it seems natural to discuss
the underlying problem in the same general framework as in the first chapter of this
memoir. Thus, for h ∈H , consider the incomplete convolution

Bh(n,u) = ∑
d|n

logd≤u

h(d) (86)

and its cognate maximal function

Bh(n) = max
u
|B(n,u)|. (87)

Note that Bμ(n) = M(n), and that the estimate (85) for the t-th moment of M(n)
is the same as the one that Theorem 1 yields for Δμ(n). However, one should not
expect that means of Bh(n) are typically as small as the related mean ofΔh(n). For an
example, let χ denote the primitive Dirichlet character, modulo 4. Then Theorem 1
provides the estimate

∑
n≤x

Δχ(n)2� x(logx)ε .
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Yet, whenever n is a product of primes congruent to 1, modulo 4, one has χ(d) =
1 for all d|n, whence Bχ(n) = d(n), and some mundane analytic number theory
reveals that

∑
n≤x

Bχ(n)
2 ≥ ∑

n≤x
p|n⇒p≡1 mod 4

d(n)2� x logx. (88)

Consequently, the oscillatory condition (9) is not sufficient to imply an estimate
of the desired type for Bh(n). For such an estimate to hold, a more rigid interplay
between the multiplicative function h and the weight ρ is inevitable. To make this
precise, let c,C,δ be a parameter set, and suppose that h ∈H and ρ ∈Fh conspire
through the estimate

∞

∑
n=1

μ(n)2ρ(n)h(n)n−σ �√σ − 1 (89)

that must be assumed to hold uniformly in the interval 1 < σ ≤ 2. Perhaps less
significantly, the oscillatory condition (9) will from now on be replaced by the
stronger bound

∑
n≤x

μ(n)2ρ(n)h(n)� x(logx)−1/ε , (90)

and in addition to (7), it will be convenient to suppose that

|h(p)|ρ(p)≤ (1− δ )p (91)

holds for all primes p. In view of (7), this last condition is relevant only for small
primes.

Let F ∗
h (c,C,δ ) denote the set of all ρ ∈Fh for which (89)–(91) hold.

Theorem 2. Fix a parameter set and a real number t with 1≤ t ≤ 2. Then there is
a number D such that for any h ∈H and ρ ∈F ∗

h , one has

∑
n≤x

ρ(n)Bh(n)
t � x(logx)α−1L (logx)βL ∗(logx)D.

The implicit constant depends at most on t and the parameter set.

One may take h = μ and ρ = 1. Then the Dirichlet series on the left-hand side
of (89) is ζ (σ)−1, where ζ is Riemann’s zeta function. Hence, the critical condition
(89) does indeed hold, and also the other hypotheses in Theorem 2 are satisfied with
α = c = 1 and δ = 1

2 . Therefore, Theorem 2 contains Daniel’s upper bound (85), as
a very special case. On the other hand, by (88), the vanishing condition (89) cannot
hold for the primitive character modulo 4. In fact, when a non-principal Dirichlet
character χ is substituted for h in (89), and one takes ρ = 1, then the sum on the
left-hand side of (89) is L(s,χ)/L(2s,χ2), which does not vanish at s = 1. Thus, the
hypotheses of Theorem 2 are not satisfied for any character, as expected.
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2.2 A Transistor for the Vanishing Condition

In this section, we consider a series of Dirichlet’s type, for later use in an application
of the moment method. The series will encode the principal implications of the
vanishing condition (89). In the proceedings, Lemma 13 will play the same rôle
as Lemma 4 did in the proof of Theorem 1. Since the oscillatory condition (9) is
now available in the sharper form (90), Lemma 4 itself may be refined. Recall the
definition of λ (n) = λσ (n) in (65), which is a multiplicative function that vanishes
unless n is square-free. Also, recall the definition of the function υ(n) in (22).

Lemma 12. Fix a parameter set. Then uniformly for h ∈H , ρ ∈F ∗
h , k ∈ N, 1 ≤

σ ≤ 2 and x≥ 1, one has

∑
n≤x

(n,k)=1

λσ (n)� υ(k)x(log3x)−1/ε .

Proof. This follows by rewriting the proofs of Lemmas 3 and 4, with the stronger
hypothesis (90) in place of (9).

For primes p, a crude consequence of (7) is that |λ (p)| ≤ 2C, and consequently,
for any natural number k, the series

Λk(σ) =
∞

∑
n=1

(n,k)=1

λσ (n)n−σ (92)

converges absolutely for σ > 1. Convergence for σ = 1 is implied by Lemma 12,
but this is not needed later.

Lemma 13. Fix a parameter set, and suppose that h and ρ satisfy the hypotheses
of Theorem 2. Then uniformly in σ ∈ (1,2] and k ∈ N, one has

Λk(σ)� υ(k)
√
σ − 1.

Proof. As in the proof of Lemma 4, let K denote the product of all primes p with p≤
C2. The series defining Λk(σ) expands as an Euler product. Brute force estimation
of the Euler factors for the finitely many p≤C2 then shows that

Λk(σ)�
∣∣∣∣∣∏

p�kK

(1+λ (p)p−σ)

∣∣∣∣∣.

For primes p with p >C2, one deduces from (7), (23) and (65) that

1+λ (p)p−σ = 1+ρ(p)h(p)p−σ(1+ρ(p)p−σ)−1

= (1+ρ(p)h(p)p−σ)(1+ f (p,σ)), (93)
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where

f (p,σ) =
ρ(p)2h(p)p−2σ

(1+ρ(p)h(p)p−σ)(1+ρ(p)p−σ)
.

Note that by (7), the denominator here is non-zero, and one finds that

| f (p,σ)| ≤C2 p−2
(

1− 1
p

)−1
,

so that, throughout the interval 1 < σ ≤ 2, one has the uniform estimate

∏
p�kK

|1+ f (p,σ)| � 1.

Consequently, by (93),

Λk(σ)�
∣∣∣∏

p�kK

(1+ρ(p)h(p)p−σ)
∣∣∣.

The Euler factors here are those of the series in (89). The postulated bound for this
series now yields

Λk(σ)�
√
σ − 1∏

p|kK

|1+ρ(p)h(p)p−σ |−1.

For primes p >C2 with p|k, recall that (7) yields ρ(p)|h(p)|p−σ ≤Cp−1 ≤ p−1/2.
Hence, by (22),

Λk(σ)� υ(k)
√
σ − 1 ∏

p≤C2

|1+ρ(p)h(p)p−σ |−1.

By (91), one has |ρ(p)h(p)p−1| ≤ 1− δ . It follows that the product on the far right
of the previous display is bounded above in terms of the parameter set, uniformly
for σ ≥ 1. This establishes the lemma.

2.3 Preparatory Work

This section prepares the ground for the application of a variant of the moment
method. Appropriate analogues of Lemmas 7–9 will be developed.

Moments of Bh(n;u) have to be defined with some care. The sum (86) is empty
for u < 0, whence Bh(n;u) = 0 in this case. Moreover, when u ≥ logn, one has
Bh(n;u) = g(n), where

g(n) =∑
d|n

h(d) (94)
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is the complete convolution associated with h ∈H . Thus, the maximum in (87)
occurs for some u ∈ [0, logn]. This suggests to study the moments

Mh;q(n) =
∫ logn

0
|Bh(n;u)|q du (95)

by the techniques described in the first chapter. The following inequality bounds
Bh(n) in terms of these moments. It will substitute Lemma 7.

Lemma 14. Let q, n be natural numbers with n≥ 3. Then for any h ∈H , one has

Bh(n)≤Mh;q(n)
1/q +Δh(n).

Proof. Let u ∈ [0, logn], and choose an interval I ⊂ [0, logn] of length 1, with u ∈ I.
Then for any u′ ∈ I, one has |u− u′| ≤ 1, whence by (86) and (6), it follows that

|Bh(n;u)| ≤ |Bh(n;u′)|+Δh(n).

This may be integrated over u′ ∈ I to conclude that

|Bh(n;u)| ≤
∫

I
|Bh(n;u′)|du′+Δh(n),

and Hölder’s inequality yields

|Bh(n;u)| ≤
(∫

I
|Bh(n;u′)|q du′

)1/q
+Δh(n).

On the right-hand side, one may extend the integration to [0, logn]. The lemma now
follows from (95).

The next goal is an analogue of Lemma 9. The trivial bound |Bh(n;u)| ≤ d(n)
and (95) show that

Mh;2(n)≤ d(n)2 logn. (96)

Hence, the Dirichlet series

Z(σ) =
∞

∑
n=1

μ(n)2ρ(n)Mh;2(n)n
−σ (97)

converges for σ > 1.

Lemma 15. Subject to the hypotheses of Theorem 2, in the range 1 < σ ≤ 2 one
has

Z(σ)� (σ − 1)−2c.
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Proof. Let τ ≥ 1. Then recalling the definition of d+ in (52), a straightforward
integration of (86) yields

∫ logτ

0
|Bh(n;u)|2 du = ∑

d1|n,d2|n
d+≤τ

h(d1)h(d2) log
τ

d+
. (98)

The admissible choice τ = n, via (94) and (95), produces the identity

Mh;2(n) = ∑
d1|n,d2|n

h(d1)h(d2) log
n

d+
= (logn)|g(n)|2− ∑

d1|n,d2|n
h(d1)h(d2) logd+.

(99)
This may be inserted into (97). One then finds that

Z(σ) = Z(1)(σ)−Z(2)(σ),

where

Z(1)(σ) =
∞

∑
n=1

(logn)μ(n)2ρ(n)|g(n)|2n−σ ,

Z(2)(σ) =
∞

∑
n=1

∑
d1|n,d2|n

(logd+)h(d1)h(d2)μ(n)2ρ(n)n−σ ,

and (7) implies that both sums converge absolutely for σ > 1.
The sum Z(2)(σ) will be analysed first. The treatment is initiated by reversing the

order of summation. Then, writing n = [d1,d2]m in the now inner sum, one infers
that

Z(2)(σ) =
∞

∑
d1,d2=1

h(d1)h(d2)(logd+)
∞

∑
m=1

μ(m[d1,d2])
2ρ(m[d1,d2])m

−σ [d1,d2]
−σ .

Non-zero contributions to the sum over m require that (m,d1d2) = 1, and that [d1,d2]
is square-free. The latter is equivalent to the constraint that d1, d2 be both square-
free. Hence,

Z(2)(σ) =
∞

∑
d1,d2=1

μ(d1)
2μ(d2)

2 ρ([d1,d2])h(d1)h(d2)

[d1,d2]σ
(logd+)

∞

∑
m=1

μ(m)2 ρ(m)

mσ .

By (62) and (23), the sum over m equals

∏
p�d1d2

(1+ρ(p)p−σ) = P(σ)θσ (d1d2;ρ),
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whence Z(2)(σ) may be rewritten as

P(σ)
∞

∑
d1,d2=1

μ(d1)
2μ(d2)

2ρ([d1,d2])h(d1)h(d2)θσ (d1d2)(logd+)[d1,d2]
−σ .

Now write d = (d1,d2) and d j = de j. Since d1, d2 are square-free, the numbers d,
e1, e2 are square-free and coprime in pairs. Recalling (65), this shows that

Z(2)(σ) = P(σ)
∞

∑
d=1

∞

∑
e1,e2=1
(e1,e2)=1
(d,e1e2)=1

μ(d)2ρ(d)|h(d)|2θσ (d2)λ (e1)λ (e2)

(de1e2)σ
logde+,

where e+ = max(e1,e2). By (23), θσ (d2) = θσ (d). Writing again d j in place of e j,
the previous formula now recasts as

Z(2)(σ) = P(σ)
∞

∑
d=1

μ(d)2ρ(d)|h(d)|2θσ (d)d−σ
(
(logd)Ud(σ)+Vd(σ)

)
, (100)

in which

Ud(σ) =
∞

∑
d1,d2=1
(d1,d2)=1
(d,d1d2)=1

λ (d1)λ (d2)

dσ1 dσ2
, Vd(σ) =

∞

∑
d1,d2=1
(d1,d2)=1
(d,d1d2)=1

λ (d1)λ (d2)

dσ1 dσ2
logd+.

The condition that (d1,d2) = 1 is removed by Möbius inversion to the effect that

Ud(σ) =
∞

∑
k=1

μ(k)
∞

∑
d1,d2=1

(d1d2,d)=1
k|d1,k|d2

λ (d1)λ (d2)

dσ1 dσ2
,

and then, on writing d j = kl j , the sums transforms further to

Ud(σ) =
∞

∑
k=1

(k,d)=1

μ(k)
k2σ

∞

∑
l1,l2=1

(l1l2,d)=1

λ (kl1)λ (kl2)
lσ1 lσ2

=
∞

∑
k=1

(k,d)=1

μ(k)
k2σ

∣∣∣
∞

∑
l=1

(l,d)=1

λ (kl)
lσ

∣∣∣2.

However, λ (kl) = 0 unless (k, l) = 1, a condition that may now be added to the sum
over l. But then, by (92),

Ud(σ) =
∞

∑
k=1

(k,d)=1

μ(k)|λ (k)|2k−2σ |Λkd(σ)|2.
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By Lemma 13 and routine estimates, one finally deduces that for σ > 1 one has

Ud(σ)� (σ − 1)υ(d)2
∞

∑
k=1

(k,d)=1

υ(k)2|λ (k)|2k−2� (σ − 1)υ(d)2. (101)

The treatment of the sum Vd(σ) is similar, but the presence of the factor logd+

causes extra difficulties. The principal step is to separate the variables of summation.
First note that diagonal terms, with d1 = d2, do not contribute to Vd(σ) because, in
this case, the condition that (d1,d2) = 1 implies d1 = d2 = 1, where logd+ = 0.
Combining conjugate pairs then shows that

Vd(σ) = 2Re
∞

∑
d1,d2=1

(d1d2,d)=(d1,d2)=1
d1<d2

λ (d1)λ (d2)

dσ1 dσ2
logd2.

As in the initial transformation of Ud(σ), the coprimality condition (d1,d2) = 1
may be removed by Möbius inversion. Then again following the argument used for
Ud(σ) mutatis mutandis, the change of variables d j = kl j produces the formula

Vd(σ) = 2Re
∞

∑
k=1

(k,d)=1

μ(k)
|λ (k)|2

k2σ ∑
l1<l2

(l1l2,kd)=1

λ (l1)λ (l2)
lσ1 lσ2

logkl2

= 2Re
(
V (1)

d (σ)+V (2)
d (σ)

)
,

where

V (1)
d (σ) =

∞

∑
k=1

(k,d)=1

μ(k)(logk)
|λ (k)|2

k2σ ∑
l1<l2

(l1l2,kd)=1

λ (l1)λ (l2)
lσ1 lσ2

,

V (2)
d (σ) =

∞

∑
k=1

(k,d)=1

μ(k)
|λ (k)|2

k2σ ∑
l1<l2

(l1l2,kd)=1

λ (l1)λ (l2)
lσ1 lσ2

log l2.

By symmetry and (92), the first of the two sums reassembles to

2ReV (1)
d (σ) =

∞

∑
k=1

(k,d)=1

μ(k)(logk)
|λ (k)|2

k2σ ∑
l1 �=l2

(l1l2,kd)=1

λ (l1)λ (l2)
lσ1 lσ2

=
∞

∑
k=1

(k,d)=1

μ(k)(logk)
|λ (k)|2

k2σ

(
|Λkd(σ)|2− ∑

l=1
(l,kd)=1

|λ (l)|2
l2σ

)
.
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By Lemma 13 and straightforward estimates, it now follows that

2ReV (1)
d (σ)� υ(d)2.

In the sum defining V (2)
d (σ), it will be convenient to replace the condition l1 < l2

by l1 ≤ l2. This restores the diagonal terms l1 = l2 at the cost of an error

∞

∑
k=1

(k,d)=1

μ(k)
|λ (k)|2

k2σ

∞

∑
l=1

(l,kd)=1

|λ (l)|2
l2σ log l� 1,

as one readily checks. The summation over l1 is performed first, starting from

V (2)
d (σ) =

∞

∑
k=1

(k,d)=1

μ(k)
|λ (k)|2

k2σ

∞

∑
l2=1

(l2,kd)=1

λ (l2)
lσ2

(log l2) ∑
l1≤l2

(l1,kd)=1

λ (l1)
lσ1

+O(1).

By partial summation,

V (2)
d (σ) =V (3)

d (σ)+σV (4)
d (σ)+O(1),

where

V (3)
d (σ) =

∞

∑
k=1

(k,d)=1

μ(k)
|λ (k)|2

k2σ

∞

∑
l2=1

(l2,kd)=1

λ (l2)
l2σ
2

(log l2) ∑
l1≤l2

(l1,kd)=1

λ (l1),

V (4)
d (σ) =

∞

∑
k=1

(k,d)=1

μ(k)
|λ (k)|2

k2σ

∞

∑
l2=1

(l2,kd)=1

λ (l2)
lσ2

(log l2)
∫ l2

1
w−σ−1 ∑

l1≤w
(l1,kd)=1

λ (l1)dw.

By Lemma 12, the innermost sum in V (3)
d contributes O(υ(kd)l2(log3l2)−1/ε), so

that a crude upper bound is

V (3)(σ) � υ(d)
∞

∑
k=1

(k,d)=1

|λ (k)|2υ(k)
k2σ

∞

∑
l2=1

(l2,kd)=1

|λ (l2)|
l2σ−1
2

(log3l2)
−1/ε

� υ(d)
∞

∑
k=1

|λ (k)|2υ(k)
k2

∞

∑
l2=1

|λ (l2)|
l2

(log3l2)
−1/ε .

The simple bound

∑
l≤x

|λ (l)|
l
≤∏

p≤x

(
1+
|λ (p)|

p

)
� (logx)2C
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combines with partial summation to show that the sum over l2 in the previous display
converges for ε < (9C)−1, and one infers the bound

V (3)
d (σ)� υ(d).

A similar argument supplies a bound for V (4)(σ). Exchanging the integration
with the sum over l2 yields the formula

V (4)
d (σ) =

∞

∑
k=1

(k,d)=1

μ(k)
|λ (k)|2

k2σ Jkd(σ) (102)

with

Jq(σ) =
∫ ∞

1
w−σ−1

(
∑

l1≤w
(l1,q)=1

λ (l1)
)(

∑
l2≥w

(l2,q)=1

λ (l2)
lσ2

log l2
)

dw.

Here, the summations over l1 and l2 are separated. By Lemma 12, the sum over l1
is O(υ(q)w(log3w)−1/ε). Similarly, by partial summation and Lemma 12, a routine
estimation shows that the sum over l2 is O(υ(q)), uniformly in σ > 1. Hence,

Jq(σ)� υ(q)2
∫ ∞

1
w−σ (log3w)−5 dw� υ(q)2,

and then, by (102) and straightforward estimates, one deduces that V (4)
d (σ) �

υ(d)2. On collecting together the bounds obtained for V (l)
d (σ), it follows that

Vd(σ)� υ(d)2.

This final bound may now be combined with (101) and (100) to complete the
estimation of Z(2)(σ). On recalling that |h(d)|2θσ (d) ≤ 1, one first obtains the
intermediate bound

Z(2)(σ)� P(σ)
∞

∑
d=1

μ(d)2υ(d)2d−σ
(
(logd)(σ − 1)+ 1

)
. (103)

The next steps are very similar to the argument used in the proof of Lemma 9. One
considers the Dirichlet series

H†(s) =
∞

∑
d=1

μ(d)2ρ(d)υ(d)2d−s

as a function of the complex variable s. It has an Euler product in Res> 1, and differs
from the product H(σ) defined in (66) only in that υ(d) is replaced by υ(d)2. Thus,
a brief inspection of the argument used to bound H(σ) shows that an analogous
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estimation fully covers the current situation, and one finds that for real σ ∈ (1,2] one
has H†(σ)� (σ−1)−c. However, H†(s) is a Dirichlet series with real, non-negative
coefficients, so that whenever σ = Res > 1 one has |H†(s)| ≤H†(σ). Consequently,
observing that

− d
dσ

H†(σ) =
∞

∑
d=1

μ(d)2ρ(d)υ(d)2d−σ logd,

it follows from Cauchy’s integral formula that

− d
dσ

H†(σ) =
1

4π2

∫
|w−σ |= 1

2 (σ−1)

H†(w)
(w−σ)2 dw� (σ − 1)−1−c.

With these bounds at hand, one deduces from (103) and (63) that

Z(2)(σ)� P(σ)
(
H†(σ)+ (σ − 1)(H†)′(σ)

)� (σ − 1)−2c,

as required.
The estimation of Z(1)(σ) is very similar. One considers the series

Z(0)(s) =
∞

∑
n=1

μ(n)2ρ(n)|g(n)|2n−s,

and observes that

Z(1)(σ) =− d
dσ

Z(0)(σ).

Since again Z(0)(s) is defined by a Dirichlet series with real, non-zero coefficients,
one may proceed as in the immediately preceding paragraph, and use Cauchy’s
formula to deduce the desired estimate

Z(1)(σ)� (σ − 1)−2c

from the bound
Z(0)(σ)� (σ − 1)−1−2c, (104)

and the latter is not hard to prove. Indeed, by (94),

Z(0)(σ) =
∞

∑
n=1

μ(n)2ρ(n) ∑
d1|n,d2|n

h(d1)h(d2)n
−σ .

The initial segment of the treatment of Z(2)(σ) may now be copied, leading to an
analogue of (100) that now reads

Z(0)(σ) = P(σ)
∞

∑
d=1

μ(d)2ρ(d)|h(d)|2θσ (d)|Ud(σ)|2.
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One applies (101) and the bound θσ (d)|h(d)|2 ≤ 1 to deduce that

Z(0)(σ) = (σ − 1)P(σ)H†(σ),

which implies the desired (104) by the same argument as in the last line of the
preceeding paragraph. The proof of Lemma 15 is complete.

For the final technical lemma in this section, let 0≤ j≤ q and p be a prime. Then
consider the convoluted moment

Nh;q(n; j, p) =
∫ logn

0
|Bh(n;u)|q− j|Bh(n,u− log p)| j du. (105)

The analogue of (50) reads

Nh;q(n; j, p)≤Mh;q(n), (106)

and it may be demonstrated by the same argument that was used to prove (50). The
following lemma serves as a replacement for Lemma 8.

Lemma 16. Uniformly in q≥ 5, 2≤ j ≤ q− 2, and h ∈H , one has

∑
p

log p
p

Nh;q(n; j, p)

� (
Mh;2(n)+Bh(n)

2(loglog9n)2)(d(n)2 logn
)2/(q−2)

Mh;q(n)
(q−4)/(q−2).

Proof. As was the case with Lemma 8, it suffices to appeal to Hölder’s inequality
and establish Lemma 8 in the cases j = 2 and j = q− 2.

First consider j = 2. For p > eu, one has Bh(n;u− log p) = 0. Hence, the sum
over p in

Eh(n;u) =∑
p

log p
p
|Bh(n;u− log p)|2

is over a finite range, and one has

Eh(n;u) =∑
p

log p
p

∣∣∣ ∑
d|n

log pd≤u

h(d)
∣∣∣2 = ∑

d1|n,d2|n
h(d1)h(d2) ∑

p≤eu/d+

log p
p

.

Now choose κ in accordance with (54), and let γ = γ(n) be defined by (55). Consider
the four mutually exclusive conditions

(i): d+ ≤ γeu (ii): d1 ≤ γeu < d2 (iii): d2 ≤ γeu < d1 (iv): d1,d2 > γeu,
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and let E(i)
h , . . . ,E

(iv)
h be the subsums of Eh with the corresponding condition on d1,d2

added to the sum over d1,d2. Then

Eh(n;u) = E
(i)
h + · · ·+E

(iv)
h .

It may be helpful to observe that

exp(−κ(logγ−1)1/2)� (log9n)−3,

so that, by (54),

E
(i)
h = ∑

d1|n,d2|n
d+≤γeu

h(d1)h(d2)
(

log
eu

d+
+E +O

(
(log9n)−3)).

On comparing with (98), and using trivial estimates, this expression becomes

E
(i)
h =

∫ γeu

0
|Bh(n;u)|2 du+(E+ logγ−1) ∑

d1|n,d2|n
d+≤γeu

h(d1)h(d2)+O

(
d(n)2

(log9n)3

)
,

and one infers the bound

E
(i)
h �Mh;2(n)+ (loglog9n)2Bh(n)

2 +
d(n)2

(log9n)3 .

The treatment of E(ii)
h is more direct. By definition,

E
(ii)
h = ∑

d1|n
d1≤γeu

h(d1) ∑
d2|n

γeu<d2≤eu

h(d2) ∑
p≤eu/d2

log p
p

,

so that one obtains

E
(ii)
h ≤ Bh(n) ∑

p≤γ−1

log p
p

∣∣∣ ∑
d2|n

γeu<d2≤eu/p

h(d2)
∣∣∣≤ 2Bh(n)

2 ∑
p≤γ−1

log p
p

,

which in turn implies

E
(ii)
h � Bh(n)

2(log log9n)2.

By symmetry, the same bound holds for E(iii)
h . Also, a very similar procedure gives

E
(iv)
h ≤ ∑

p≤γ−1

log p
p

∣∣∣ ∑
d1|n,d2|n

γeu<di≤eu/p

h(d1)h(d2)
∣∣∣,
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and it is now transparent that E
(iv)
h also obeys the bound obtained for E

(ii)
h .

On collecting together, this shows that

Eh(n;u)�Mh;2(n)+ (loglog9n)2Bh(n)
2 +

d(n)2

(log9n)3

holds uniformly in u.
With this preparatory inequality at hand, the main argument begins with (105),

showing that

∑
p

log p
p

Nh;q(n;2, p) =
∫ logn

0
|Bh(n,u)|q−2Eh(n;u)du.

The bound for Eh(n;u) yields

∑
p

log p
p

Nh;q(n;2, p)�Mh;q−2

(
Mh;2(n)+ (loglog9n)2Bh(n)

2 +
d(n)2

(log9n)3

)
,

and by Hölder’s inequality,

Mh,q−2(n)≤M
2/(q−2)
h;2 (n)M(q−4)/(q−2

h;q (n).

The case j = 2 of the lemma now follows from (96).
It remains to consider the case j = q− 2. In contrast to the problem considered

in Lemma 8, a treatment rather different form the above is now required, calling for
a detailed account. The obvious change of variable in (105) gives

Nh;q(n;q− 2, p) =
∫ log(n/p)

0
|Bh(n;u+ log p)|2|Bh(n;u)|q−2 du.

Thus, the point of departure now is the formula

∑
p

log p
p

Nh;q(n;q− 2, p) =
∫ log 1

2 n

0
Bh(n;u)q−2Dh(n;u)du, (107)

in which

Dh(n;u) = ∑
p≤ne−u

log p
p
|Bh(n;u+ log p)|2.

By (87), one has

Dh(n;u) = ∑
d1|n,d2|n

h(d1)h(d2) ∑
p≤ne−u

log p
p

.
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Let D′h be the subsum of Dh(n,u) where d+e−u≥ γ−1. If eu > nγ , then this condition
demands that d+ > n, which is impossible. Hence, D′h = 0 in this case. Therefore,
we now suppose that

eu ≤ nγ, (108)

in which case (54) yields

∑
e−ud+<p≤e−un

log p
p

= log
n

d+
+O

(
(log9n)−3),

and a now familiar argument produces the formula

D′h = ∑
d1|n,d2|n
d+>eu/γ

h(d1)h(d2) log
n

d+
+O

(
d(n)2

(log9n)3

)
.

One may flip the condition that d+ > eu/γ into the complementary one, observing
the identity (99). This gives

D′h =−Mh;2(n)+ ∑
d1|n,d2|n
d+≤eu/γ

h(d1)h(d2) log
d+

n
+O

(
d(n)2

(log9n)3

)
.

The obvious formula

log
d
n
= log

d+γ
eu − log

nγ
eu

and (98) again, with τ = eu/γ , provide

D′h =− log
nγ
eu ∑

d1|n,d2|n
d+≤eu/γ

h(d1)h(d2)+O

(
d(n)2

(log9n)3

)
.

Now consider the remaining portion of the sum Dh(n;u), where d+ ≤ eu/γ , and
denote this subsum by D′′h , so that Dh(n;u) = D′h +D′′h . In the sum defining D′′h , one
may restore the terms with p≤ e−ud+ in the sum over p, at the cost of an error

∑
p≤γ−1

log p
p

∣∣∣ ∑
d1|n,d2|n
d+≤eu/γ

h(d1)h(d2)
∣∣∣� Bh(n)

2(log log9n)2.

This shows that

D′′h = ∑
d1|n,d2|n
d+≤eu/γ

h(d1)h(d2) ∑
p≤e−ud+

log p
p

+O
(
Bh(n)

2(loglog9n)2). (109)
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The sum over p may be evaluated by (54). In view of the currently active assumption
(108), it follows that

D′′h =
(

log
n
eu

)
∑

d1|n,d2|n
d+≤eu/γ

h(d1)h(d2)+O

(
Bh(n)

2(log log9n)2 +
d(n)2

(log9n)3

)
.

Now sum D′h and D′′h . The terms that were kept explicit largely cancel out, leaving
the contribution

(logγ−1) ∑
d1|n,d2|n
d+≤eu/γ

h(d1)h(d2)� Bh(n)
2(log log9n)2,

and one finds that

Dh(n;u)� Bh(n)
2(loglog9n)2 +

d(n)2

(log9n)3 . (110)

Although this final estimate has been verified so far only for all u satisfying (108), it
remains valid for all u≤ logn. In fact, it has been noted earlier that whenever eu >
nγ , then D′h = 0, and one also readily verifies that the innermost sum over p in (109)
does not exceed O(logγ−1), so that in this case one has D′′h � Bh(n)2(loglog9n)2,
confirming (110) for the previously missing range of u. If one now uses (110) in
(107) and then proceeds as in the final steps of the estimation in the case j = 2,
then one arrives at the claim of Lemma 16 in the case j = q−2. This completes the
proof.

2.4 A Roadmap for the Way Home

The principal difficulties in the proof of Theorem 2 have now been overcome, and
in the remaining steps, one may follow the pattern of the proof of Theorem 1 very
closely. Therefore, only very brief commentary is offered beyond this point, leaving
most of the details to the reader. The endgame begins with an analogue of (68). One
now studies the Dirichlet series

Lh(σ) = Lh(σ ;ρ ,q, t) =
∞

∑
n=1

μ(n)2ρ(n)Mh;q(n)
t/qn−σ ,

which converges absolutely for σ > 1, as is evident from (96). Recalling (106), the
obvious analogon of (69) for −L′h(σ) remains valid. From (86), one finds that for
p � n, one has

Bh(pn;u) = h(p)Bh(n;u− log p)+Bh(n;u),
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whence
|Bh(pn;u)| ≤ |Bh(n;u− log p)|+ |Bh(n;u)|.

A version of (70), with M,N in place of M,N now follows in the same way as (70)
was proved, and one then derives an analogue of (71), applying Lemma 16 rather
than Lemma 8. The definition ofΓ in (72) needs appropriate adjustment, and in (71),
one should now read logn for the factor v that occurs together with d(n)2, and in the
following argument, this factor may be incorporated in the adjusted version of Jh.
This logarithm presents little difficulty, and one readily confirms an appropriate
analogon of Lemma 10, which may then be fed into the proof of Lemma 11. Thus,
one now estimates the sum

∑
n≤x

μ(n)2ρ(n)Bh(n)t

n

by first applying Lemma 14. This produces two sums of which one is the sum
estimated in Lemma 11, and the other contains the moment Mh;q(n)t/q. The latter
may be controlled by the bound for Lh(σ) provided by the adjusted version of
Lemma 10. One then finds that the claim in Lemma 11 remains valid with Bh(n)
in place of Δh(n). Equipped with this bound, one first observes that for coprime
numbers n,m, one has

|Bh(nm;u)| ≤∑
d|n
|Bh(m;u− logd)|,

as is evident from (86). This implies that

Bh(nm)≤ d(n)Bh(m),

which may replace (83) in the work of Sect. 1.6 to complete the proof of Theorem 2.
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Coefficients of the n-Fold Theta Function
and Weyl Group Multiple Dirichlet Series
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Abstract We establish a link between certain Whittaker coefficients of the gener-
alized metaplectic theta functions, first studied by Kazhdan and Patterson [Kazhdan
and Patterson, Metaplectic forms, Inst. Hautes Études Sci. Publ. Math., (59):
35–142, 1984], and the coefficients of stable Weyl group multiple Dirichlet series
defined in [Brubaker, Bump, Friedberg, Weyl group multiple Dirichlet series. II. The
stable case. Invent. Math., 165(2):325–355, 2006]. The generalized theta functions
are the residues of Eisenstein series on a metaplectic n-fold cover of the general
linear group. For n sufficiently large, we consider different Whittaker coefficients
for such a theta function which lie in the orbit of Hecke operators at a given
prime p. These are shown to be equal (up to an explicit constant) to the p-power
supported coefficients of a Weyl group multiple Dirichlet series (MDS). These MDS
coefficients are described in terms of the underlying root system; they have also
recently been identified as the values of a p-adic Whittaker function attached to an
unramified principal series representation on the metaplectic cover of the general
linear group.
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Dedicated to Professor Samuel J. Patterson in honor of his 60th
birthday,

1 Introduction

This paper links the coefficients of two different Dirichlet series in several complex
variables that arise in the study of automorphic forms on the metaplectic group.
We begin with a brief discussion of the metaplectic group. Let F be a number field
containing the group μ2n of 2nth roots of unity, and let Fv denote the completion of F
at a place v. Let G̃v denote an n-fold metaplectic cover of GLr+1(Fv). Recall that G̃v

is a central extension of GLr+1(Fv) by μn:

1−→ μn −→ G̃v −→GLr+1(Fv)−→ 1.

This group is described by a 2-cocycle whose definition involves the nth power
Hilbert symbol. See Matsumoto [17] or Kazhdan and Patterson [15] for this
construction. The group G̃v is generally not the Fv-points of an algebraic group. One
may then take a suitable restricted direct product to define a global metaplectic cover
G̃ over GLr+1(AF), the adelic points of the group GLr+1. (The assumption that F
contains μ2n rather than μn is not necessary, but greatly simplifies the description of
the cocycle and resulting formulas.)

Generalized theta series were introduced on the metaplectic covers of GL2 by
Kubota [16], and for GLr+1 in the visionary paper of Kazhdan and Patterson [15].
These remarkable automorphic forms are residues of the minimal parabolic Eisen-
stein series on the global metaplectic cover. They generalize classical theta functions
of Jacobi and Siegel, which were shown by Weil to live on the metaplectic double
covers of GL2 and symplectic groups.

After Kubota introduced generalized theta series on the higher metaplectic covers
of GL2, Patterson and Heath-Brown [13] exploited the fact that when n = 3 their
Fourier (Whittaker) coefficients are Gauss sums in order to settle the Kummer
conjecture. Yet, it was found by Suzuki [19] that one could not so readily determine
the coefficients of the theta function on the fourfold cover of GL2. See Eckhardt and
Patterson [10] for further discussion of this case. The difficulty in determining these
coefficients is linked with the non-uniqueness of Whittaker models [9].

Thus, determining the Whittaker coefficients of generalized theta series was rec-
ognized as a fundamental question. The non-degenerate Whittaker coefficients on
an n-fold cover of GLr+1 are non-zero only if n≥ r+1 [15]. Due to non-uniqueness
of Whittaker models, their complete description is unavailable. Although they are
thus mysterious, the partial information that is available is interesting indeed. They
satisfy a periodicity property modulo nth powers, which is a generalization of
the periodicity of the coefficients of the classical Jacobi theta function modulo
squares. Moreover Kazhdan and Patterson found an action of the Weyl group on the
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coefficients modulo this periodicity in which each simple reflection adds or deletes
a Gauss sum. This is an elegant formulation of the information that is available
from Hecke theory. The non-uniqueness of Whittaker models when n > r + 2 is a
consequence of the fact that there is more than one free orbit in this Weyl group
action. We review the definition of the generalized theta functions and expand on
this discussion in Sect. 3.

More recently, Brubaker, Bump and Friedberg [6] have given an explicit descrip-
tion of the Whittaker coefficients of Borel Eisenstein series on the n-fold metaplectic
cover of GLr+1. In particular, they showed that the first non-degenerate Whittaker
coefficient is a Dirichlet series in r complex variables (a “multiple Dirichlet series”)
that is roughly of the form

∑
c1,...,cr

H(c1, . . . ,cr)|c1|−2s1 . . . |cr|−2sr . (1)

Here, the sum runs over r-tuples of non-zero S-integers oS ⊂ F for a finite set of
bad primes S and the coefficients H are sums of products of Gauss sums built
with nth power residue symbols. The general expression for the coefficients H
is best given in the language of crystal graphs, but this full description will not
be needed here. Indeed, we will restrict our attention to cases where the degree
of the cover n is at least r + 1 (which is “stable” in the vocabulary of [3]),
in which case the description of the coefficients simplifies considerably. In this
situation, the coefficients supported at powers of a given prime p are in one-to-
one correspondence with the Weyl group Sr+1 of GLr+1, and have a description in
terms of the underlying root system [3]. Although we have described the series (1)
in terms of global objects (Eisenstein series), let us also mention that the p-power
supported terms are known to match the p-adic Whittaker function attached to the
spherical vector for the associated principal series representation used to construct
the Eisenstein series. This follows from combining the work of McNamara [18]
with that of Brubaker, Bump and Friedberg [2, 6], or by combining [2, 18] and an
unfolding argument of Friedberg and McNamara [11]. The precise definition of the
coefficients H in the “stable” case will be reviewed in Sect. 2.

This paper establishes a link between some of the Whittaker coefficients of
generalized theta functions and the coefficients of a stable Weyl group multiple
Dirichlet series. Let us explain which coefficients are linked. We will show that,
for n > r+ 1 fixed, the coefficients at p determined by Hecke theory are in one-to-
one correspondence with the coefficients at p of the series (1). This is accomplished
by comparing the two Weyl group actions – one on the Whittaker coefficients of
generalized theta series found by Kazhdan and Patterson, and the other on the
permutahedron supporting the stable multiple Dirichlet series coefficients. We know
of no a priori reason for this link. On the one side, we have different Whittaker
coefficients attached to a residue of an Eisenstein series. On the other hand, we have
multiple Dirichlet series coefficients that contribute to the representation of a single
Whittaker coefficient of the Eisenstein series itself. (More precisely, these contribute
to the first non-degenerate coefficient.) For n = r + 1, there is also a link, but this
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time to a multiple Dirichlet series coefficient attached to an Eisenstein series on
the n-fold cover of GLr, rather than on the n-fold cover of GLr+1. Both comparison
theorems for n> r+1 (Theorem 2) and n= r+1 (Theorem 3) are stated and proved
in Sect. 4 of the paper. These theorems sharpen and extend the work of Kazhdan and
Patterson (see [15], Theorems I.4.2 and II.2.3) on this connection.

2 Weyl Group Multiple Dirichlet Series

In [3], Brubaker, Bump, and Friedberg defined a Weyl group multiple Dirichlet
series for any reduced root system and for n sufficiently large (depending on the
root system). The requirement that n be sufficiently large is called stability, as the
coefficients of the Dirichlet series are uniformly described Lie-theoretically for all
such n. In this paper, we will be concerned with root systems of type Ar and in this
case, the stability condition is satisfied if n≥ r.

As above, let F be a number field containing the group μ2n of 2nth roots of
unity. Let S be a finite set of places of F containing the archimedean ones and those
ramified over Q and that is large enough that the ring oS of S-integers in F is a
principal ideal domain.

The multiple Dirichlet series coefficients are built from Gauss sums gt , whose
definition we now give. Let e be an additive character of FS =∏v∈S Fv that is trivial
on oS but no larger fractional ideal. If m,c ∈ oS with c �= 0 and if t ≥ 1 is a rational
integer, let

gt(m,c) = ∑
a mod× c

(a
c

)t
e
(am

c

)
, (2)

where
(

a
c

)
is the nth power residue symbol and the sum is over a modulo c with

(a,c) = 1 in oS. For convenience, we let g(m,c) = g1(m,c). Let p be a fixed prime
element of oS, and q be the cardinality of oS/poS. For brevity, we may sometimes
write gt = gt(1, p).

The multiple Dirichlet series of type Ar defined in [3] has the form

ZΨ (s1, . . . ,sr) =∑HΨ(c1, . . . ,cr)Nc−2s1
1 . . .Nc−2sr

r , (3)

where the sum is over non-zero ideals ci of oS. Here, H andΨ are functions defined
when the ci are non-zero elements of oS, but their product is well defined over
ideals, since H andΨ behave in a coordinated way when ci is multiplied by a unit.
Thus the sum is essentially over ideals cioS. However, we will want to consider H
independently of Ψ , so for each prime p of oS we fix a generator p of p, and only
consider ci which are products of powers of these fixed p’s.

The function Ψ is chosen from a finite-dimensional vector space that is well
understood and defined in [3] or [2], and we will not discuss it further here. The
function H contains the key arithmetic information. It has a twisted multiplicativity,
so that while ZΨ is not an Euler product, the specification of its coefficients is
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reduced to the case, where the ci are powers of the same prime p. See [1, 3, 4]
for further details.

To describe H(pt1 , . . . , ptr ), let Φ be the roots of Ar with Φ+ (resp. Φ−) the
positive (resp. negative) roots. The Weyl group W acts on Φ . Let

Φ(w) = {α ∈Φ+ | wα ∈Φ−}.

Also, let ρ = 1
2 ∑α∈Φ+ α be the Weyl vector and let Σ = {α1, . . . ,αr} denote the set

of simple roots. Then as described in [3], we have:

• H(pt1 , . . . , ptr) �= 0 if and only if ρ−wρ = ∑r
i=1 tiαi for some w ∈W .

• If ρ−wρ = ∑r
i=1 tiαi, then

H(pt1 , . . . , ptr) = ∏
α∈Φ(w)

g
(

pd(α)−1, pd(α)
)

(4)

with d(∑r
i=1 tiαi) = ∑r

i=1 ti.

Thus in the stable case the Weyl group multiple Dirichlet series of type Ar has
exactly (r+1)! non-zero coefficients at each prime p. For motivation, more details,
and generalizations to the case of smaller n (where there are additional nonzero
coefficients), see [1–6].

3 Theta Functions

As in the introduction, G̃ denotes an n-fold metaplectic cover of GLr+1(AF).

Suppose that c = −1 in the notation of [15] if n = r+ 1. Let θ (n)
r denote the theta

function on G̃. This function is the normalized K-fixed vector in the space spanned
by the residues at the rightmost poles of the minimal parabolic Eisenstein series
on G̃. Here, K denotes a suitable compact open subgroup. We will be concerned
with the Whittaker coefficients of this vector, when they exist. By Hecke theory,
these are determined by the values of these coefficients at prime power indices, or
equivalently by the values of the local Whittaker functions for the exceptional theta

representationsΘ (n)
r , in the sense of Kazhdan and Patterson [15]. We now pass to a

fixed completion of F at a good finite prime. In Sect. I.3 of [15], these authors have
shown:

1. The representationΘ (n)
r has a unique Whittaker model if and only if n = r+1 or

n = r+ 2.
2. The representationΘ (n)

r does not have a Whittaker model if n≤ r.

3. The representationΘ (n)
r has a finite number of independent non-zero Whittaker

models if n > r+ 2.
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4. When the Whittaker model for Θ (n)
r is non-zero, it is completely determined by

the values of the associated Whittaker function on diagonal matrices of the form

⎛
⎜⎜⎝
ϖ f1

ϖ f2

. . .

ϖ fr+1

⎞
⎟⎟⎠

with 0≤ fi− fi+1 ≤ n− 1 for 1≤ i≤ r.

The reason that this last holds is that the remaining values are determined by
Kazhdan and Patterson’s Periodicity Theorem. This states that shifting one of the
fi− fi+1 by a multiple of n multiplies the Whittaker value by a specific power of q.

Suppose n ≥ r + 1. Fix a prime element p of oS. Let τn,r(k1, . . . ,kr) be

the (pk1 , . . . , pkr)th Whittaker coefficient of θ (n)
r . This coefficient is obtained by

integrating against the character

eU(u) = e

(
r

∑
i=1

pkiui,i+1

)

of the subgroup U of upper triangular unipotents of GLr+1, which is embedded in
G̃ via the trivial section.

Kazhdan and Patterson observed that Hecke theory may be used to compute
all these Whittaker coefficients in the unique model case, and a subset of the
coefficients in general. (See also Bump and Hoffstein [8] and Hoffstein [14].) We
shall now review their description.

Let W denote the Weyl group for the root system Ar, isomorphic to the symmetric
group Sr+1. In Sect. I.3 of [15], Kazhdan and Patterson define an action of W on the
weight lattice (identified with Z

r+1) by the formula

w[f] = w(f−ρ)+ρ,

where f = ( f1, . . . , fr+1), the Weyl vector ρ = (r,r− 1, . . . ,0), and

w(f) = ( fw−1(1), . . . , fw−1(r+1)).

This action of W on Z
r+1 may then be projected down to (Z/nZ)r+1.

Because we prefer to use coordinates on the root lattice, we will reformulate
this action in the language of the previous section. It suffices to define it for simple
reflections σi, which generate W . Let Kr = {k = (k1, . . . ,kr) | 0≤ k j < n for all j}.
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Table 1 The orbit of (0,0) under S3

Element σ of S3 σ ((0,0))
e (0,0)
σ1 (n−2,1)
σ2 (1,n−2)
σ1σ2 (n−3,0)
σ2σ1 (0,n−3)
σ1σ2σ1 (n−2,n−2)

Table 2 The orbit of (0,0,0) under S4

Element σ of S4 σ ((0,0,0))
e (0,0,0)
σ1 (n−2,1,0)
σ2 (1,n−2,1)
σ3 (0,1,n−2)
σ1σ2 (n−3,0,1)
σ2σ1 (0,n−3,2)
σ1σ3 (n−2,2,n−2)
σ2σ3 (2,n−3,0)
σ3σ2 (1,0,n−3)
σ1σ2σ1 (n−2,n−2,2)
σ3σ2σ1 (0,0,n−4)
σ2σ3σ1 (1,n−4,1)

Element σ of S4 σ ((0,0,0))
σ3σ1σ2 (n−3,2,n−3)
σ2σ3σ2 (2,n−2,n−2)
σ1σ2σ3 (n−4,0,0)
σ1σ3σ2σ1 (n−2,1,n−4)
σ2σ3σ2σ1 (1,n−2,n−3)
σ1σ2σ3σ1 (n−3,n−2,1)
σ2σ3σ1σ2 (0,n−4,0)
σ1σ2σ3σ2 (n−4,1,n−2)
σ2σ1σ3σ2σ1 (0,n−3,n−2)
σ1σ2σ3σ2σ1 (n−3,0,n−3)
σ1σ2σ3σ1σ2 (n−2,n−3,0)
σ1σ2σ1σ3σ2σ1 (n−2,n−2,n−2)

Then the action of σi for any i= 1, . . . ,r on multi-indices k∈Kr is given by σi(k) =
m with

mi−1 =

{
1+ ki+ ki−1 if 1+ ki+ ki−1 < n

1+ ki+ ki−1− n if 1+ ki+ ki−1 ≥ n

mi =

{
n− 2− ki if ki < n− 1

2n− 2− ki if ki = n− 1

mi+1 =

{
1+ ki+ ki+1 if 1+ ki+ ki+1 < n

1+ ki+ ki+1− n if 1+ ki+ ki+1 ≥ n

m j = k j if j �= i− 1, i, i+ 1.

(5)

In these formulas, we take k0 = kr+1 = 0. It is a simple exercise to verify that this
matches the action on the weight lattice described above.

To illustrate, the orbit of the origin when r = 2 and n ≥ 3 is given in Table 1,
and the orbit of the origin when r = 3 and n ≥ 4 is given in Table 2. We shall also
show that the stabilizer of the origin is trivial for n > r+ 1. However, this fails for
n = r+ 1, as one sees immediately in these two examples.

The action above is essentially that corresponding to the action of the Hecke

operators. Since θ (n)
r is an eigenfunction of these operators, one can deduce the

following relation.
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Theorem 1. Suppose that 0≤ k j < n for 1≤ j≤ r, ki �≡ −1 mod n, and σi(k) = m.
Then

τn,r(m) = qi−r/2−1+δ (i,r,k)g1+kiτn,r(k),

where

δ (i,r,k) =

{
−(i− 1)(r− i+ 2)/2 if 1+ ki+ ki−1 ≥ n

0 otherwise

+

{
(i+ 1)(r− i)/2 if 1+ ki+ ki+1 < n

0 otherwise.

Here, we have used the Gauss sum gt as defined in (2). The result follows from
Proposition 5.3 of [14] and the periodicity property of the Fourier coefficients τn,r,
given in Proposition 5.1 there. (Note that G1+ci(mi, p) in [14], Proposition 5.3, is
normalized to have absolute value 1, while g1+ki has absolute value q1/2.) See also
[8], and Corollary I.3.4 of [15].

4 A Link Between Theta Coefficients and Weyl Group Multiple
Dirichlet Series

To give a link between the Whittaker coefficients of the generalized theta functions
that are determined by Hecke theory and the Weyl group multiple Dirichlet series,
we begin by linking the action of (5) to roots. Suppose that n≥ r+ 1.

Proposition 1. Let w ∈ W, and suppose that w((0, . . . ,0)) = k. Then 1 + ki ≡
d(w−1αi) mod n for each i, 1≤ i≤ r.

Proof. We prove the Proposition by induction on �(w), the length of w as a reduced
word composed of simple reflections σi. The case w = 1 is clear. Suppose that
w((0, . . . ,0)) = k and 1+ ki ≡ d(w−1αi) mod n for each i. Choose σ j ∈W such
that �(σ jw) = �(w)+ 1. If σ jw((0, . . . ,0)) = m, then m = σ j(k), so by (5)

mi ≡

⎧⎪⎪⎨
⎪⎪⎩
−2− ki j = i

1+ ki+ k j j = i+ 1 or j = i− 1

ki otherwise

(6)

modulo n. On the other hand, we have

(σ jw)
−1(αi) = w−1(σ j(αi))

=

⎧⎪⎪⎨
⎪⎪⎩

w−1(−αi) j = i

w−1(αi +α j) j = i+ 1 or j = i− 1

w−1(αi) otherwise.
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Hence,

d((σ jw)
−1(αi)) =

⎧⎪⎪⎨
⎪⎪⎩
−d(w−1(αi)) j = i

d(w−1(αi))+ d(w−1(α j)) j = i+ 1 or j = i− 1

d(w−1(αi)) otherwise.

Using the inductive hypothesis, we see that modulo n

d((σ jw)
−1(αi))≡

⎧⎪⎪⎨
⎪⎪⎩
−(1+ ki) j = i

2+ ki+ k j j = i+ 1 or j = i− 1

1+ ki otherwise

=

⎧⎪⎪⎨
⎪⎪⎩

1+(−2− ki) j = i

1+(1+ ki+ k j) j = i+ 1 or j = i− 1

1+ ki otherwise.

Comparing this to (6), we see that the Proposition holds.

Corollary 1. Let w ∈ W, and suppose that w((0, . . . ,0)) = k. Then for all i,
1≤ i≤ r, ki �≡ −1 mod n.

Proof. Since w−1αi is a root, we have d(w−1αi) �= 0. Moreover, from the explicit
description of the roots of type Ar, for any root β ∈ Φ , we have −r ≤ d(β ) ≤ r.
If ki ≡ −1 mod n, Proposition 1 would imply that d(w−1αi) ≡ 0 mod n, which is
impossible as n≥ r+ 1 and d(w−1αi) �= 0.

Corollary 2. Suppose that n> r+1. Then the stabilizer in W of (0, . . . ,0) is trivial.
Thus, the orbit of the origin has cardinality (r+1)!, and every point in the orbit may
be described uniquely as w((0, . . . ,0)) for some w ∈W .

Proof. Let σ ∈W and suppose that σ((0, . . . ,0)) = (0, . . . ,0). By Proposition 1,
d(σ−1αi) ≡ 1 mod n for all i, 1 ≤ i ≤ r. But as noted above, −r ≤ d(σ−1αi) ≤ r.
Since n > r+ 1, the congruence can only hold if d(σ−1αi) = 1 for all i, 1 ≤ i ≤ r.
Thus, σ−1(αi) ∈Φ+ for all i. This implies that σ−1(Φ+)⊂Φ+, which is true only
if σ is the identity element.

Note that Corollary 2 does not remain valid if n = r+ 1; it is possible that there
exists an i for which d(σ−1αi) is −r and not 1. This occurs, for example, when
r = 2, σ = σ1σ2, and i = 1. More generally, see Lemma 1 below.

We may now establish a link between the Whittaker coefficients of the general-
ized theta function that are determined by Hecke theory and the Weyl group multiple
Dirichlet series.

Theorem 2. Suppose that n> r+1. Let w∈W, and set w((0, . . . ,0)) =k, ρ−wρ =

∑tiαi. Then

τn,r(k) = qη(w,n,r,k) H(pt1 , . . . , ptr ),

where the function η(w,n,r,k) is described in (9) below.
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Remark 1. We should emphasize that for given w ∈W the coordinates ki, which are
determined from the equation w((0, . . . ,0)) = k, are not the same as the coordinates
ti, which are determined from the equation ρ−wρ = ∑tiαi. For example, on A2 we
have σ1((0,0)) = (n− 2,1) while ρ−σ1(ρ) = α1, so for σ1, (t1, t2) = (1,0). Thus
in this case Theorem 2 asserts that for n > 3, τn,2(pn−2, p) is equal, up to a power of
q, to H(p,1). (From (4), H(p,1) = g(1, p).)

Coincidentally, on A2 with n = 4 (a unique model case), as one runs over all
w ∈W , one obtains the same 6 integer lattice points for the (k1,k2) and the (t1, t2)
(albeit with some of those lattice point attached to different Weyl group elements
for the two parametrizations), but this phenomenon does not persist to higher rank.

Proof. We prove this by induction on the length of w. If w is the identity, the result
is clear (with η(e,n,r,k) = 0). Suppose that the result is proved for w and that
�(σiw) = �(w)+ 1. Let σi(k) = m. By Corollary 1, the hypothesis of Theorem 1 is
satisfied. Thus by this result, we have

τn,r(m) = qi−r/2−1+δ (i,r,k)g1+kiτn,r(k).

By Proposition 1, g1+ki = gd(w−1αi)
. Moreover, under the assumption that �(σiw) =

�(w)+1, it follows that w−1αi ∈Φ+, so d(w−1αi)> 0. (See, for example, Bump [7],
Propositions 21.2 and 21.10.). Thus, by elementary properties of Gauss sums,

gd(w−1αi)
= q1−d(w−1αi)g(pd(w−1αi)−1, pd(w−1αi)).

So we arrive at the formula

τn,r(m) = qi−r/2+δ (i,r,k)−d(w−1αi)g(pd(w−1αi)−1, pd(w−1αi))τn,r(k). (7)

On the other hand, it is well known (see, for example, Bump [7], Proposition 21.10)
that

Φ(σiw) =Φ(w)∪{w−1αi}.
Thus, (4) implies that

H(pu1 , . . . , pur) = g(pd(w−1αi)−1, pd(w−1αi))H(pt1 , . . . , ptr ), (8)

where ρ −w(ρ) = ∑i tiαi and ρ − σiw(ρ) = ∑i uiαi. Comparing (7) and (8), the
theorem follows.

To give the precise power of q, suppose that w = σ jcσ jc−1 . . .σ j1 is a reduced
word for w, so c = �(w). Let k(0) = (0, . . . ,0) and σ ji(k

(i−1)) = k(i), 1≤ i≤ c. Also
let τ1 = 1 and τt = σ jt−1σ jt−2 . . .σ j1 for 1 < t ≤ c. Then applying (7) repeatedly, we
find that

qη(w,n,r,k) = q−r�(w)/2
�(w)

∏
t=1

q jt+δ ( jt ,r,k(t−1))−d(τ−1
t α jt ). (9)
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Next we turn to the case n= r+1. This equality implies that the Whittaker model
of the theta representation is unique (see Kazhdan-Patterson [15], Corollary I.3.6 for
the local uniqueness and Theorem II.2.5 for its global realization). To describe the
corresponding Whittaker coefficients in terms of multiple Dirichlet series, we first
describe the orbit of the origin under W . As noted above, the stabilizer of the origin
is non-trivial. Indeed, we have

Lemma 1. Suppose n = r+ 1. Then σ1σ2 · · ·σr((0, . . . ,0)) = (0, . . . ,0).

Proof. The proof is a straightforward calculation, left to the reader.

Since the stabilizer of the origin is non-trivial, let us restrict the action of W on r-
tuples to the subgroup generated by the transpositions σi, 1≤ i < r. We will denote
this group Sr; note that Sr is isomorphic to the symmetric group Sr, but the action
of Sr on r-tuples is not the standard permutation action.

Lemma 2. Suppose n = r+ 1. Then the stabilizer in Sr of (0, . . . ,0) is trivial.

Proof. In this proof (and in the proof of Theorem 3 below), we write Wr instead
of W for the Weyl group of type Ar. Wr acts on Kr by the action given in (5).
Observe that under the projection π from Kr to Kr−1 obtained by forgetting the last
coordinate, the action of Sr on Kr restricts to the action of the Weyl group Wr−1

on Kr−1. Indeed, this is true since the actions on the first r− 1 entries are the same;
note that changing the rth entry of an element of Kr does not affect its image under
π ◦σi for σi ∈Sr. Then the Lemma follows at once from Corollary 2, which applies
as n > (r− 1)+ 1.

Combining these, we may describe the orbit of the origin.

Proposition 2. Suppose n = r+ 1. Then the stabilizer in W of the origin has order
r+ 1 and is the group generated by the element σ1σ2 · · ·σr. The orbit of the origin
under W has order r!, and every point in the orbit may be described uniquely as
w((0, . . . ,0)) for some w ∈Sr.

Proof. Since σ1σ2 · · ·σr has order r + 1, the stabilizer W (0,...,0) of the origin in W
has order at least r+ 1. Hence, [W : W (0,...,0)] ≤ r!. But by Lemma 2, the image of
W has order at least r! Since the cardinality of this image is exactly [W : W (0,...,0)],
equality must obtain, and the Proposition follows.

Finally, we give the analogue of Theorem 2 when n = r + 1. The link is once
again between theta Whittaker coefficients and stable Weyl group multiple Dirichlet
series coefficients, but this time the latter are of type Ar−1 rather than type Ar.

Theorem 3. Suppose that n = r + 1. Let w ∈ Sr, and set w((0, . . . ,0)) = k,
ρ−wρ = ∑ tiαi. Then

τr+1,r(k) = qη(w,r+1,r,k) H(pt1 , . . . , ptr−1),

where the coefficient H is the coefficient of the type Ar−1 multiple Dirichlet series,
and the function η(w,r+ 1,r,k) is given by (9) above.
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Remark 2. Note that since n > r− 1, the coefficients H are stable, and account
for the full set of non-zero Weyl group multiple Dirichlet series coefficients for
Ar−1. See [3]. Also, if w ∈ Sr and ρ −wρ = ∑r

i=1 tiαi, then necessarily tr = 0, so
the restriction to (r− 1)-tuples in the right-hand side of the Theorem is natural. In
addition, one can check that

η(σ1σ2 · · ·σr,r+ 1,r,(0, . . . ,0)) = 0,

and that one can use any w ∈ W to reach k in the orbit of (0, . . . ,0) in order
to compute the coefficient τr+1,r(k). (Doing so one obtains each coefficient r + 1
times.)

Proof. The Weyl group of type Ar, Wr, acts on its root system Φ and on Kr. These
actions each restrict: the subgroup Sr acts on

Φr−1 =

{
α ∈Φ | α =

r−1

∑
i=1

miαi for some mi ∈ Z

}
,

and, as noted in the proof of Lemma 2 above, it also acts on Kr−1. These actions
are each compatible with the isomorphism Sr

∼= Wr−1. Thus, we may follow
the argument given in the proof of Theorem 2. However, in that case we obtain
the r! stable coefficients of the type Ar−1 Weyl group multiple Dirichlet series.
(Note that these coefficients are a subset of the (r + 1)! stable coefficients of
type Ar.)

In concluding, we note that one can ask whether theorems that are similar to
Theorems 2 and 3 hold for metaplectic covers of the adelic points other reductive
groups. The theory of theta functions, that is, residues of Eisenstein series on
metaplectic covers, is not yet fully established when the underlying group in
question is not a general linear group. However, we do expect that it can be
developed using methods similar to those of [15], and that the link between
the stable Weyl group multiple Dirichlet series and the Whittaker coefficients
determined by Hecke theory persists. Indeed, Brubaker and Friedberg have carried
out computations of Hecke operators on the four and fivefold covers of GSp(4),
following the approach of Goetze [12]. Under reasonable hypotheses about the
periodicity relation (which should vary depending on root lengths for simple roots)
for theta coefficients for those groups, such a link once again holds in those
cases.
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Towards the Trace Formula
for Convex-Cocompact Groups

Ulrich Bunke and Martin Olbrich

Abstract We develop a general representation theoretic framework for trace
formulas for quotients of rank one simple Lie groups by convex-cocompact discrete
subgroups. We further discuss regularized traces of resolvents with applications to
Selberg-type zeta functions.

Dedicated to Samuel J. Patterson on the occasion of his 60th
birthday.

1 Introduction

In this paper, we develop a part of the harmonic analysis associated with a convex
cocompact subgroupΓ of a semisimple Lie group G of real rank one that could play
the same role as the trace formula in the case of cocompact groups or groups of finite
covolume. In these classical situations, a smooth, compactly supported, and K-finite
function f on G acts by right convolution RΓ ( f ) on the Hilbert space L2(Γ \G).
The trace formula is an expression of the trace of the restriction of this operator
to the discrete subspace in terms of the function f and its Fourier transform f̂ .
The part involving f is called the geometric side and usually written as a sum of
orbital integrals. Depending on the applications one has in mind, one might prefer
to express some of the orbital integrals (as the identity contribution for instance)
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by f̂ , instead. The Fourier transform certainly enters the trace formula in the case of
non-cocompact subgroups via the contribution of the scattering matrix.

In this paper, we assume that Γ is a convex cocompact subgroup of G. Let X be
the symmetric space of G and ∂X be its geodesic boundary. If Γ ⊂ G is a discrete
torsion-free subgroup, then there is a Γ -invariant disjoint decomposition ∂X =Ω ∪
Λ , whereΛ is the limit set of Γ . Here, we call Γ convex-cocompact if Γ \X∪Ω is a
compact manifold with non-empty boundary. In particular,Γ \G has infinite volume.
We assume in addition that G is different from the exceptional rank one group F−20

4
since the necessary spectral and scattering theoretic results are not yet available in
this case (see [4]).

Since the discrete spectrum of L2(Γ \G) is rather sparse – even empty in some
cases – we take the point of view that the contribution of the scattering matrix is
essentially (up to the contribution of the discrete spectrum) the Fourier transform of
the geometric side of the trace formula.

Thus, our starting point is the geometric side. It is a distribution Ψ on G given
as a sum of suitably normalized orbital integrals associated with the hyperbolic
conjugacy classes of Γ

Ψ( f ) := ∑
γ∈C̃Γ

vol(Γγ\Gγ)θγ ( f )

(see Definition 1). Note that our definition of the geometric side does not contain
any contribution of the identity element of Γ . In fact, the usual identity term would
be infinite by the infinite volume of Γ \G. The objective of the trace formula for
convex cocompact Γ is an explicit expression for the Fourier transform of Ψ . We
are looking for a ”measure” Φ on the unitary dual Ĝ such that

Ψ( f ) =
∫

Ĝ
θπ( f )Φ(dπ), (1)

where θπ( f ) := Tr f̂ (π) is the character of π . In this paper we will formulate a
precise conjecture about Φ , but we are not able to prove the formula (1) in the
general case. We conjecture that

∫
Ĝ
θπ( f )Φ(dπ) = ∑

σ∈M̂

1
4π

∫
ia∗

LΓ (πσ ,λ )θπσ ,λ ( f )dλ

+ ∑
σ∈M̂,σ∼=σw,πσ ,0red.

∑
ε∈{+,−}

ÑΓ (πσ ,ε)θπσ ,ε ( f )

+ ∑
σ∈M̂,σ∼=σw,πσ ,0 irred.

ÑΓ (πσ ,0)θπσ ,0( f )

+ ∑
π∈Ĝc∪Ĝd

NΓ (π)θπ( f ). (2)

For the precise notation, we refer to Conjecture 1. The first three terms on the
right-hand side are the contributions of the continuous spectrum. The number
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LΓ (πσ ,λ ) in the first term can be considered as the logarithmic derivative of a kind of
regularized determinant of the scattering matrix. The irreducible components of the
unitary principal series of G with zero parameter (e.g. of the limits of discrete series
representations) contribute with additional terms. The last sum is the contribution of
the discrete spectrum, which comes from complementary series – the non-tempered
unitary representations of G – and some unitary principal series with zero parameter
(together denoted by Ĝc here) and the discrete series Ĝd of G. Note that other unitary
principal series do not contribute to the discrete spectrum [4]. If π ∈ Ĝc, then the
integer NΓ (π) denotes its multiplicity in L2(Γ \G).

The multiplicity of a discrete series representation π in L2(Γ \G) is infinite. In
this case, the number NΓ (π) is a regularized multiplicity and a priory a real number.
But by Proposition 5 NΓ (π) =Φ({π}) is an integer, too. In Proposition 3, we show
that it is zero for integrable discrete series representations π . It is an interesting
problem for future research to study this number for non-integrable discrete series
in detail.

The unitary dual Ĝ has a natural topology. Now observe that the intersection
of the support of f̂ and the support of the Plancherel measure of L2(Γ \G) is the
spectrum of RΓ ( f ). The Fourier transform of a compactly supported function f on
G is never compactly supported on Ĝ. In order to do our computations, we have
to approximate RΓ ( f ) by operators, which have compact spectrum. The missing
piece for the proof of (1) is some estimate, which eventually allows for dropping the
cut-off.1 However, Conjecture 1 can easily be verified in case that Γ has a negative
critical exponent (see the Remark 1).

In this paper, we will prove a formula which is similar to (1), but whereΨ has a
different interpretation. Let R( f ) denote the right-convolution operator on L2(G)
induced by f . Then both, R( f ) and RΓ ( f ), have smooth integral kernels KR( f ),
KRΓ ( f ), and, by Lemma 1, the valueΨ( f ) is nothing else than the integral

Ψ ′( f ) :=
∫
Γ \G

(KRΓ ( f )(g,g)−KR( f )(g,g))μG(dg).

We will show thatΨ ′ can be applied to functions with compactly supported Fourier
transform, and our main Theorem 2 is a formula

Ψ ′( f ) =
∫

Ĝ
θπ( f )Φ(dπ). (3)

together with the explicit expression (2) for Φ .
A related regularized trace formula for the scalar wave operator on real hyper-

bolic spaces has been obtained in [9].

1The problem cannot be solved by just looking at a space of functions f having not necessarily
compact support to which Ψ can be applied such that Lemma 1 remains valid. If the critical
exponent of Γ is positive, any reasonable space of this kind is contained in some Lp(G) for
p < 2. The only Lp-functions f on G (p < 2) with compactly supported Fourier transform are
linear combinations of matrix coefficients of certain discrete series representations. They satisfy
Ψ( f ) = 0, compare Proposition 3.
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There are interesting operators with non-compact spectrum to which Ψ ′ can be
applied. Let K ⊂ G be a maximal compact subgroup and C be the Casimir operator
of G. We fix a K-type τ . For a representation V of G, we let V (τ) denote the
τ-isotypical component. We consider the resolvent (z−C)−1 on L2(Γ \G)(τ) and
L2(G)(τ) if z is not in the spectrum. Let KΓ (z) and K(z) denote the corresponding
integral kernels. The difference KΓ (z)−K(z) is smooth on the diagonal and goes
intoΨ ′ if Re(z)� 0. The study of this regularized resolvent trace, which is closely
related to Selberg-type zeta functions, is the aim of the long final section of the
paper. It is quite independent of the previous ones, only some computations of
Sect. 4.4 are used.

The analysis of Ψ ′( f ) for functions on G with compactly supported Fourier
transform f̂ is based on the Plancherel theorem for L2(Γ \G), which has been shown
in [4]. In the case of the resolvent kernel, we also use the hyperfunction boundary
value theory [18] for eigenfunctions of the Casimir operator. This additional
information provides the asymptotic behavior of the resolvent kernel avoiding the
use of unknown estimates on the growth of Eisenstein series with respect to the
spectral parameter. Note that we do not prove Formula (2) for resolvent kernels.
What we obtain is a functional equation for the meromorphic continuation of
resolvent traces in the spectral parameter z (Proposition 4), compare (4) below. This
functional equation is compatible with Conjecture 1.

Considering traces of resolvents provides the link between the continuous part
of Φ and the Selberg zeta functions ZS(σ ,λ ) associated to Γ . In fact, using the
analysis of the resolvent traces, we can show the meromorphic continuation of the
logarithmic derivative and the functional equation (Theorem 3) of the Selberg zeta
functions (By other methods, we a priori know that the Selberg zeta functions are
meromorphic, see below.). The basic identity is

Z′S(−λ ,σ)
ZS(−λ ,σ) +

Z′S(λ ,σ)
ZS(λ ,σ)

= LΓ (πσ ,λ ). (4)

shown in the proof of Theorem 3. In particular, we obtain the following description
of the singularities of the Selberg zeta function

ordλ=μZS(λ ,σ) =

{
nμ,σ Re(μ)> 0,

resλ=μLΓ (πσ ,λ )+ n−μ,σ Re(μ)< 0,

where the integers nμ,σ are related to the multiplicities of complementary series
representations, and the numbers resλ=μLΓ (πσ ,λ ) can be expressed in terms of
dimensions of spaces of invariant distributions supported on the limit set (see
Corollary 2 for a more precise explanation). Our work extends previous results [11]
in the two-dimensional case and [20] in the spherical case of G = SO(1,n), n≥ 2.

In [8], using different methods in the real hyperbolic and spherical case, the right-
hand side of the functional equation for the Selberg zeta function has been expressed
in terms of a regularized scattering determinant. It is an interesting problem to get
a similar result in the framework of this paper. This could help to understand the
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singularities of the Selberg zeta function at the negative integral points. In [10], the
authors consider Selberg zeta functions associated with spinor representations on
odd-dimensional hyperbolic spaces and identify the special value at the symmetry
point with regularized η-invariants.

Using symbolic dynamics of the geodesic flow and the thermodynamic formal-
ism, one can show that the Selberg zeta functions themselves are meromorphic
functions of finite order [20]. This gives information about the growth of Φ and
on the counting function of resonances. In particular, it shows that Φ can be applied
to Schwartz functions like the Fourier transform f̂ of a K-finite smooth function f
of compact support on G. For the relation between the growth, resonance counting,
and the Hausdorff dimension of the limit set, see also [12].

2 The DistributionΨ

2.1 Invariant Distributions

Let G be a semisimple Lie group. We fix once and for all a Haar measure μG on G.
In this subsection, we describe two sorts of conjugation invariant distributions on G,
namely orbital integrals and characters of irreducible representations.

Let γ ∈ G be a semisimple element. The orbit Oγ := {gγg−1 |g ∈ G} of γ under
conjugation by G is a submanifold of G, which can be identified with Gγ\G, where
Gγ denotes the centralizer of γ . The inclusion iγ : Gγ\G∼= Oγ ↪→ G is a proper map.
Therefore, the pull-back by iγ is a continuous map

i∗γ : C∞
c (G)→C∞

c (Gγ\G).

If we choose a Haar measure μGγ on Gγ , then we obtain an induced measure μGγ\G
on Gγ\G such that

∫
G

f (g)μG(dg) =
∫

Gγ \G

∫
Gγ

f (hg)μGγ (dh)μGγ\G(dg).

The orbital integral θγ associated with γ and the choice of the Haar measure μGγ is,
by definition, the composition of i∗γ and the measure μGγ\G, i.e.

θγ ( f ) := μGγ\G ◦ i∗γ( f ) =
∫

Gγ\G
f (gγg−1)μGγ \G(dg).

We now recall the character θπ of an irreducible admissible representation π of
G, on a Hilbert space Vπ , see e.g. [21]. If f ∈C∞

c (G), then

π( f ) :=
∫

G
f (g)π(g)μG(dg)
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is a trace class operator on Vπ . The character θπ is the distribution on G given by

θπ( f ) := Trπ( f ).

2.2 An Invariant Distribution Associated to Γ

Let G be a semisimple linear connected Lie group of real rank one. We consider a
torsion-free discrete convex-cocompact, non-cocompact subgroup Γ ⊂ G (see [4],
Sect. 2). Let ÕΓ denote the disjoint union of manifolds Gγ\G, where γ runs over a

set C̃Γ of representatives of the set CΓ \{[1]} of non-trivial conjugacy classes of Γ :

ÕΓ =
⊔
γ∈C̃Γ

Gγ\G.

The natural map iΓ : ÕΓ →G is proper, and we obtain a continuous map

i∗Γ : C∞
c (G)→C∞

c (ÕΓ ).

For each γ ∈ C̃Γ , we fix a Haar measure μGγ . Then we define a measure μΓ on ÕΓ
such that its restriction to Gγ\G is vol(Γγ\Gγ)μGγ \G. Note that this measure only
depends on the Haar measure μG and not on the choices of μGγ .

Definition 1. The geometric side of the trace formula is the distribution Ψ on G
given by

Ψ := μΓ ◦ i∗Γ .

In terms of orbital integrals, we can write

Ψ( f ) = ∑
γ∈C̃Γ

vol(Γγ\Gγ)θγ( f ).

Note that this distribution is in fact a measure, invariant under conjugation, and it
only depends on Γ and the Haar measure μG.

2.3 The Fourier Inversion Formula

Let Ĝ denote the unitary dual of G. This is the set of equivalence classes of
irreducible unitary representations of G equipped with a natural structure of a
measurable space. For π ∈ Ĝ, the operator π( f ) is, by definition, the value of the
Fourier tranform of f at π , which we will also denote by f̂ (π).
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It is a consequence of the Plancherel theorem for G [13,22] that there is a measure
p on Ĝ such that for any f ∈C∞

c (G) and g ∈G we have

f (g) =
∫

Ĝ
Trπ(g)−1 f̂ (π) p(dπ).

Note that p(dπ) depends on the choice of the Haar measure μG. Later in this paper,
we will state a more explicit version of the Plancherel theorem.

2.4 The Fourier Transform ofΨ

The contents of a trace formula for convex-cocompact groups Γ would be an
expression of Ψ ( f ) in terms of the Fourier transform f̂ . In other words, we are
interested in the Fourier transform of the distributionΨ . Since Ψ is invariant, this
expression should only involve the characters θπ( f ) = Tr f̂ (π). Thus, there should
exist a certain measure Φ on Ĝ such that the following equality holds true for all
f ∈C∞

c (G):

Ψ( f ) =
∫

Ĝ
θπ( f )Φ(dπ).

Note that there is a Paley–Wiener theorem for G, which characterizes the range of
the Fourier transform as a certain Paley–Wiener space. A priori,Φ is a functional on
this Paley–Wiener space, and it would be a non-trivial statement that this functional
is in fact induced by a measure on Ĝ.

2.5 The DistributionΨ as a Regularized Trace

In this paper, we will not compute the Fourier transform Φ of Ψ in the sense of
Sect. 2.4. Rather we will compute the candidate forΦ using a different interpretation
ofΨ .

Let R denote the right-regular representation of G on L2(G). It extends to the
convolution algebra L1(G) by the formula

R( f ) =
∫

G
f (g)R(g)μG(dg).

If f ∈ C∞
c (G), then R( f ) is an integral operator with smooth integral kernel

KR( f )(g,h) = f (g−1h). In a similar manner, we have a unitary right-regular rep-
resentation RΓ of G on the Hilbert space L2(Γ \G), which can be extended to L1(G)
using the formula

RΓ ( f ) =
∫

G
f (g)RΓ (g)μG(dg).
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If f ∈C∞
c (G), then RΓ ( f ) is an integral operator with smooth kernel

KRΓ ( f )(g,h) = ∑
γ∈G

f (g−1γh). (5)

Indeed, for φ ∈ L2(Γ \G) we have

RΓ ( f )φ(g) =
∫

G
φ(gh) f (h)μG(dh)

=

∫
G
φ(h) f (g−1h)μG(dh)

=

∫
Γ \G ∑γ∈Γ

φ(h) f (g−1γh)μG(dh).

Lemma 1. For f ∈C∞
c (G) we have

Ψ ( f ) =
∫
Γ \G

[KRΓ ( f )(Γ g,Γ g)−KR( f )(g,g)]μG(dg).

Proof. We compute

Ψ( f ) = ∑
γ∈C̃Γ

vol(Γγ\Gγ)θγ ( f )

= ∑
γ∈C̃Γ

vol(Γγ\Gγ)

∫
Gγ\G

f (g−1γg)μGγ\G(dg)

= ∑
γ∈C̃Γ

∫
Γγ\G

f (g−1γg)μG(dg)

=
∫
Γ \G ∑

γ∈C̃Γ
∑

h∈Γγ\Γ
f (g−1h−1γhg)μG(dg)

=

∫
Γ \G ∑

1 �=γ∈Γ
f (g−1γg)μG(dg)

=

∫
Γ \G

[KRΓ ( f )(g,g)−KR( f )(g,g)]μG(dg).

�

Of course, Formula (5) and Lemma 1 remain valid if we replace the condition
of compact support by certain weaker decay properties. We omit the discussion of
possible such replacements at this point since we do not need it for the main line of
argument of this paper.

The expression ofΨ ( f ) in terms of the integral kernels of R( f ) and RΓ ( f ) can
be used to defineΨ on other classes of functions or even on certain distributions.
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Using the Plancherel theorems for L2(G) and L2(Γ \G), the right-regular
representations R and RΓ can be extended. If f is K-finite and f̂ is smooth (in
a sense to be made precise) and has also compact support, then we will see that
g �→ [KRΓ ( f )(g,g)−KR( f )(g,g)] belongs to L1(Γ \G), and thus

Ψ ′( f ) :=
∫
Γ \G

[KRΓ ( f )(g,g)−KR( f )(g,g)]μG(dg)

is well defined. The main result of this paper is an expression ofΨ ′( f ) in terms of
f̂ for those functions.

As mentioned in the introduction, we are going to applyΨ ′ to the difference of
distribution kernels of the resolvents (z−C)−1 of the Casimir operator restricted to
a K-type of L2(Γ \G) and L2(G), respectively. In this example, the single kernels
are not smooth, but their difference is so on the diagonal of Γ \G. Strictly speaking,
the integral defining Ψ ′ exists for Re(z)� 0. For other values of z, we introduce
a truncated versionΨ ′R, R > 0, and we define the value of Ψ ′ as the constant term
of the asymptotic expansion ofΨ ′R as R→ ∞. It seems to be an interesting problem
to characterize the functions of C (restricted to a K-type) with the property that
Ψ ′R (applied to the corresponding distribution kernels) admits such an asymptotic
expansion.

Given a discrete series representation π of G, we can consider the corresponding
isotypic components of L2(G) and L2(Γ \G). If we further consider a K-type of π ,
then the projections onto these components have smooth integral kernels. As a by-
product of the investigation of the resolvents, we can show thatΨ ′ can be applied to
these integral kernels and that its values are integers.

3 The Plancherel Theorem and Integral Kernels

3.1 The Plancherel Theorems for L2(G) and L2(Γ \G): Support
of Plancherel Measures

From now on, it is our standing assumption that G has real rank one, G �= F−20
4 .

We start with describing the rough structure of the unitary dual Ĝ. First, there is a
countable family of square integrable unitary representations, the discrete series Ĝd.
The discretely decomposable subspace L2(G)d ⊂ L2(G) is composed out of these
representations each occurring with infinite multiplicity.

The orthogonal complement L2(G)ac of L2(G)d is given by a countable direct
sum of direct integrals of unitary principal series representations. We are going to
describe their parametrization. Let G = KAN be an Iwasawa decomposition of G.
The abelian group A is isomorphic to the multiplicative group R

+. Let a and n
denote the Lie algebras of A and N. Then dimR(a) = 1 and the roots of (a,n) fix an
order on a. Let M = ZK(A) denote the centralizer of A in K. The unitary principal
series representations πσ ,λ of G are parametrized by the set (σ ,λ )∈ M̂× ia∗. Let W
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denote the Weyl group NK(A)/M, where NK(A) denotes the normalizer of A in K.
It is isomorphic to Z/2, and we can choose a representative of the non-trivial
element w∈NK(A) such that w−1 =w. One knows that πσ ,λ is equivalent to πσw,−λ ,
where σw denotes the Weyl conjugate representation of σ given by σw(m) :=
σ(mw). For λ �= 0, the representation πσ ,λ is irreducible. If σ is equivalent to σw,
i.e. σ is Weyl invariant, then it may happen that πσ ,0 is reducible. In this case, it
decomposes into a sum πσ ,+⊕πσ ,− of limits of discrete series representations.

The set of equivalence classes of unitary representations of G, which we have
listed above, is the set of tempered representations. We refer to Sect. 8 of [4] for a
discussion of the notion of temperedness for L2(G) and L2(Γ \G).

Of course, the Plancherel theorem for L2(G) has been known explicitly for a
long time [13]. The Plancherel measure p is supported on the set of tempered
representations (compare [2]). In particular, it is absolutely continuous with respect
to the Lebesgue measure on ia. Thus, we can neglect the point λ = 0. Then L2(G)ac

decomposes as a direct integral of unitary principal series representations over
M̂× ia∗+ with infinite multiplicity, and the Plancherel measure has full support. Note
that the multiplicity space of the representation π can be realized as V ∗π .

By Ĝac we denote the set of irreducible unitary principal series representations
πσ ,λ , λ �= 0. The remaining unitary representations Ĝc = Ĝ \ (Ĝd ∪ Ĝac) can be
realized as subspaces of principal series representations πσ ,λ with λ ∈ a∗+ ∪{0}.
The case of limits of discrete series Ĝld (in this case λ = 0) was mentioned above.
The representations with parameter λ > 0 are not tempered and belong to the
complementary series Ĝc.

In [4], we studied the Plancherel theorem for L2(Γ \G). Let us recall its rough
structure. The support of the corresponding Plancherel measure pΓ is the union
of Ĝd, Ĝac, and a countable subset of Ĝc. L2(Γ \G) decomposes into sum of
subspaces L2(Γ \G)cusp, L2(Γ \G)ac, and L2(Γ \G)c. Here, L2(Γ \G)cusp is discretely
decomposable into representations of the discrete series, each occurring with infinite
multiplicity, L2(Γ \G)c is discretely decomposable into representations belonging
to Ĝc, each occurring with finite multiplicity, and L2(Γ \G)ac is a direct integral of
unitary principal series representations with infinite multiplicity over the parameter
set M̂× ia∗+. On this set the Plancherel measure pΓ is absolutely continuous to the
Lebesgue measure and has full support. The multiplicity space Mπ can be realized
as a subspace of the Γ -invariant distribution vectors of Vπ̃ , i.e., Mπ ⊂ ΓVπ̃,−∞, where
π̃ denotes the dual representation of π . For π ∈ Ĝac, we are going to describe Mπ
explicitly in Sect. 3.3.

3.2 Extension of R and RΓ

The Plancherel theorem for G provides a G-equivariant unitary equivalence

U : L2(G)
∼→
∫

Ĝ
V ∗π ⊗̂Vπ p(dπ), (6)
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where G acts on L2(G) by the right-regular representation R, and the action on the
direct integral is given by g �→ {π �→ idV∗π ⊗π(g)}. We can identify V ∗π ⊗̂Vπ with the
space of Hilbert–Schmidt operators on Vπ . For φ ∈C∞

c (G) we set

U(φ) :=
{
π �→ ˆ̃φ(π)

}
,

where φ̃ (g) := φ(g−1). This fixes the normalization of the Plancherel measure p.
The inverse transformation maps the family π �→ h(π) to the function

ȟ(g) :=U−1(h)(g) =
∫

Ĝ
Trπ(g)h(π)p(dπ). (7)

If f ∈ L1(G), then UR( f )U−1 is given by {π �→ idV∗π ⊗ f̂ (π)}.
The Plancherel theorem for Γ \G provides a G-equivariant unitary equivalence

UΓ : L2(Γ \G)
∼→
∫

Ĝ
Mπ⊗̂Vπ pΓ (dπ), (8)

where G acts on L2(Γ \G) by the right-regular representation RΓ , and the represen-
tation of G on the direct integral is given by g �→ {π �→ idMπ ⊗ π(g)}. Again, if
f ∈ L1(G), than UΓRΓ ( f )U−1

Γ is given by {π �→ idMπ ⊗ f̂ (π)}. In order to write
down an explicit formula for UΓ , we first identify M∗π with Mπ̃ and embed Mπ⊗̂Vπ
into Hom(Mπ̃ ,Vπ). For φ ∈C∞

c (Γ \G) we define

UΓ (φ)(π) :=

{
Mπ̃ � v �→

∫
Γ \G

φ(g)π(g−1)vμG(dg) ∈Vπ

}
.

This fixes the normalization of pΓ .
Let now h be a function on supp(p) such that h(π) is a bounded operator on Vπ

for almost all π ∈ supp(p). If h is measurable2 and essentially bounded, then it acts
on the direct integral (6) by {π �→ idV∗π ⊗h(π)} and thus defines a bounded operator

U−1{π �→ idV∗π ⊗ h(π)}U =: Ř(h)

on L2(G) commuting with the left-regular action of G.
In a similar manner, if h is a function on supp(pΓ ) such that h(π) is a bounded

operator on Vπ for almost all π ∈ supp(pΓ ), and h is essentially bounded, then it acts
on the direct integral (8) by {π �→ idMπ ⊗h(π)} and thus defines a bounded operator

U−1
Γ {π �→ idMπ ⊗ h(π)}UΓ =: ŘΓ (h)

on L2(Γ \G).

2The notion of measurability is part of the structure of the direct integral, see e.g. [22], Chap. 14.
In our case it just amounts to the measurable dependence on the inducing parameters discussed in
the previous section.
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Let us now assume that the h(π) are of trace-class, and that
∫

Ĝ ‖h(π)‖1 p(dπ) is
finite, where ‖.‖1 denotes the trace norm ‖A‖1 = Tr |A| for a trace class operator A
on Vπ . Then Ř(h) is an integral operator with integral kernel KŘ(h)(g,k) = ȟ(g−1k).
Indeed, for φ ∈C∞

c (G) we have

(Ř(h)φ)(g) =
∫

Ĝ
Trπ(g)h(π) ˆ̃φ(π)p(dπ)

=

∫
Ĝ

Tr
∫

G
π(g)h(π)π(k−1)φ(k)μG(dk)p(dπ)

=

∫
G

∫
Ĝ

Trπ(k−1g)h(π)p(dπ)φ(k)μG(dk)

=
∫

G
ȟ(g−1k)φ(k)μG(dk).

We are looking for a similar formula for the integral kernel of ŘΓ (h) in Sect. 3.3.

3.3 The Absolute Continuous Part of L2(Γ \G): Integral
Kernels for ŘΓ (h)

In this subsection, we describe in detail the Plancherel decomposition of L2(Γ \G)ac.
The goal is to exhibit a class of functions π �→ h(π) with the property that ŘΓ (h) is
an integral operator.

Let P = MAN be a fixed parabolic subgroup. If (σ ,λ ) ∈ M̂×a∗
C

, then we define
the representation σλ of P by σλ (man) := σ(m)aρ−λ , where ρ ∈ a∗ is given by
2ρ(H) = tr ad(H)|n, H ∈ a, and for λ ∈ a∗

C
and a = exp(H) ∈ A we put aλ = eλ (H).

We realize the principal series representation Hσ ,λ := Vπσ ,λ as the subspace of
those distributions in C−∞(G×P Vσλ ) that are given by locally integrable functions

f such that f|K ∈ L2(K ×M Vσ ). Then Hσ ,λ
±∞ = C±∞(G×P Vσλ ) are the spaces of

smooth (resp. distribution) vectors of πσ ,λ . By restriction to K, we obtain canonical
isomorphisms Hσ ,λ ∼= L2(K×M Vσ ). Since the space on the right-hand side does not
depend on λ , it therefore makes sense to speak of smooth functions f on ia∗ such
that f (λ ) ∈ Hσ ,λ .

Note that ∂X can be identified with G/P. Let G/P = Ω ∪Λ be the Γ -invariant
decomposition of the space G/P into the (open) domain of discontinuity Ω and
the (closed) limit set Λ . As a convex-cocompact subgroup Γ acts freely and
cocompactly onΩ . We put B :=Γ \Ω . Furthermore, we define the bundle VB(σλ )→
B by VB(σλ ) := Γ \(G×P Vσλ )|Ω . If λ ∈ ia∗, then we have a natural Hilbert space
L2(B,VB(σλ )). Again, fixing a volume form on B, we obtain identifications of the
spaces L2(B,VB(σλ )) with the fixed space L2(B,VB(σ0)) so that it makes sense to
speak of smooth functions f on ia∗ such that f (λ ) ∈ L2(B,VB(σλ )). We refer to [4,
Sect. 3] for more details.
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By Γ Hσ ,λ
−∞ , we denote the space of Γ -invariant distribution vectors of the

principal series representation. In [4], we defined a family of extension maps
ext: L2(B,VB(σλ ))→ Γ Hσ ,λ

−∞ depending meromorphically on λ . It has no pole for
λ ∈ ia∗, λ �= 0, and for these parameters it provides an explicit identification of the
multiplicity space Mπσ ,λ ⊂ Γ H σ̃ ,−λ

−∞ with L2(B,VB(σ̃−λ )).
The Plancherel measures p and pΓ on {σ}× ia∗+ are given by dim(Vσ )

2πωX
pσ (λ )dλ ,

where pσ is a smooth symmetric function on ia∗ of polynomial growth (see [4],
Lemma 5.5. (3)), and ωX := lima→∞ a−2ρvolG/K(KaK) (see [4, Sect. 11]). Note that
dλ is the real Lebesgue measure on ia.

We now describe the embedding

U−1
Γ :

dim(Vσ )
2πωX

∫
{σ}×ia∗+

L2(B,VB(σ̃−λ ))⊗Hσ ,λ pσ (λ )dλ → L2(Γ \G)ac.

If v⊗w ∈ L2(B,VB(σ̃−λ ))⊗Hσ ,λ
∞ , then we define 〈v⊗w〉 := 〈ext(v),w〉. Let

φ be a smooth function of compact support on ia∗+ ∪ {0} such that φ(λ ) ∈
L2(B,VB(σ̃−λ ))⊗Hσ ,λ

∞ , then we have

U−1
Γ (φ)(g) =

dim(Vσ )
2πωX

∫
ia∗+
〈(1⊗πσ ,λ(g))φ(λ )〉pσ (λ )dλ .

Note that ext may be singular at λ = 0. In this case, it has a first-order pole and
pσ (0) = 0 (see [4], Prop. 7.4) such that the integral is still well defined.

We now fix a K-type τ ∈ K̂. Let Hσ ,λ (τ) denote the τ-isotypic component of
Hσ ,λ . By Frobenius reciprocity, we have a canonical identification

Hσ ,λ (τ) α
=Vτ ⊗HomK(Vτ ,H

σ ,λ )
1⊗β
= Vτ ⊗HomM(Vτ ,Vσ ). (9)

Here, α−1(v⊗U) :=U(v) and β (U)(v) :=U(v)(1).
Any operator A ∈ End(Vτ ⊗HomM(Vτ ,Vσ )) gives rise to a finite rank operator
F(A) := ((1⊗β )α)−1A(1⊗β )α ∈ End(Hσ ,λ ), which is trivial on the orthogonal
complement of Hσ ,λ (τ).

Let q be a smooth function of compact support on M̂× ia∗ such that q(σ ,λ ) ∈
End(Vτ ⊗HomM(Vτ ,Vσ )). We call q symmetric if it is compatible with the equiva-
lences Jw

σ ,λ : Hσ ,λ → Hσw,−λ , i.e. if F(q(σw,−λ )) = Jw
σ ,λ ◦F(q(σ ,λ ))◦ (Jw

σ ,λ )
−1.

If q is symmetric, then we define a function hq on Ĝ with hq(π) ∈ End(Vπ) by
hq(πσ ,λ ) := F(q(σ ,λ )) for (σ ,λ ) ∈ M̂× ia∗, λ �= 0, and by hq(π) = 0 for all other
representations.

Let π∗ : Hσ ,λ
∞ → L2(B,VB(σλ )) denote the push-down map [4], which is the

adjoint of the extension ext: L2(B,VB(σ̃−λ ))→H σ̃ ,−λ
−∞ . The composition

πσ ,λ (g)hq(πσ ,λ )πσ ,λ (k−1)extπ∗

is an operator of finite rank from Hσ ,λ
∞ to Hσ ,λ

∞ . It is therefore nuclear and has a
well-defined trace.
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Lemma 2. The operator ŘΓ (hq) has a smooth integral kernel given by

KŘΓ (hq)
(g,k) = ∑

σ∈M̂

dim(Vσ )
4πωX

∫
ia∗

Trπσ ,λ (g)hq(πσ ,λ )πσ ,λ (k−1)ext◦π∗ pσ (λ )dλ .

Proof. First of all note that the integral is well defined at λ = 0. If ext◦π∗ is singular
at this point, then it has a pole of at most second order. But then the Plancherel
density vanishes at least of second order, too.

Let φ ∈ C∞
c (Γ \G). In the Plancherel decomposition, it is represented by the

function π �→ UΓ (φ)(π) ∈ Mπ⊗̂Vπ . We fix λ for a moment. Let {vi} be an
orthonormal basis of L2(B,VB(σλ )). Furthermore, let {vi} be the dual basis of
L2(B,VB(σ̃−λ )). Then we have

UΓ (φ)(πσ ,λ ) =∑
i

∫
Γ \G

vi⊗φ(k)πσ ,λ (k−1)ext(vi)μG(dk).

We have

ŘΓ (hq)(φ)(g)

=
dim(Vσ )

4πωX
∑
σ∈M̂

∫
ia∗
〈(1⊗πσ ,λ(g)hq(πσ ,λ ))UΓ (φ)(πσ ,λ )〉pσ (λ )dλ . (10)

We now choose {vi} such that v1, . . . ,vr is a basis of the finite dimensional range of
the operator π∗ ◦πσ ,λ (g)◦ hq(πσ ,λ ) and compute

〈(1⊗πσ ,λ(g)hq(πσ ,λ ))UΓ (φ)(πσ ,λ )〉

=
∞

∑
i=1

∫
Γ \G
〈ext(vi),πσ ,λ (g)hq(πσ ,λ )φ(k)πσ ,λ (k−1)ext(vi)〉μG(dk)

=
∞

∑
i=1

∫
Γ \G
〈vi,π∗ ◦πσ ,λ(g)hq(πσ ,λ )φ(k)πσ ,λ (k−1)ext(vi)〉μG(dk)

=
r

∑
i=1

∫
Γ \G
〈vi,π∗ ◦πσ ,λ(g)hq(πσ ,λ )φ(k)πσ ,λ (k−1)ext(vi)〉μG(dk)

=

∫
Γ \G

r

∑
i=1
〈vi,π∗ ◦πσ ,λ(g)hq(πσ ,λ )φ(k)πσ ,λ (k−1)ext(vi)〉μG(dk)

=
∫
Γ \G

φ(k)Tr
(
π∗ ◦πσ ,λ (g)hq(πσ ,λ )πσ ,λ (k−1)ext

)
μG(dk)

=

∫
Γ \G

φ(k)Tr
(
πσ ,λ (g)hq(πσ ,λ )πσ ,λ (k−1)ext◦π∗

)
μG(dk).

Inserting this computation into (10), we obtain the desired formula for the integral
kernel of ŘΓ (hq). �
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4 Poisson Transforms and Asymptotic Computations

4.1 Motivation

Let q be symmetric and define and hq as in Sect. 3.3. We want to show that the
function g �→ [KŘΓ (hq)

(g,g)−KŘ(hq)
(g,g)] belongs to L1(Γ \G). It follows that

Ψ ′( ˜̌hq) =

∫
Γ \G

[KŘΓ (hq)
(Γ g,Γ g)−KŘ(hq)

(g,g)]μG(dg)

is well defined, and we are asking for an expression of Ψ ′( ˜̌hq) (see (7) for ȟq) in
terms of q, respectively hq. In this section, we show preparatory results using the
language of Poisson transformations. The final result will be obtained in Sect. 5.1.

4.2 Poisson Transformation, c-Functions, and Asymptotics

We fix a K-type τ and an M-type σ . Let T ∈ HomM(Vσ ,Vτ) and λ ∈ a∗
C

. If w ∈
Vτ̃ , then by Frobenius reciprocity we consider w⊗T ∗ as an element of H σ̃ ,−λ (τ̃),
which is given by the function k �→ T ∗(τ̃(k−1)w) under the canonical identification
φ−λ : H σ̃ ,−λ

∞
∼→ C∞(K×M Vσ̃ ). We further put Φλ ,μ := φ−1

λ ◦ φμ . We will also use
the notation Φ0,λ for φλ .

The Poisson transformation

PT
λ : Hσ ,λ

−∞ →C∞(G×K Vτ)

is a G-equivariant map, which is defined by the relation

〈w,PT
λ (ψ)(g)〉= 〈w⊗T ∗,πσ ,λ (g−1)ψ〉,

for all ψ ∈ Hσ ,λ
−∞ , w ∈Vτ̃ .

For the definition of the function cσ we refer to [4, Sect. 5]. We have the relation

cσ (λ )cσ̃ (−λ ) = pσ (λ )−1.

It turns out to be useful to introduce the normalized Poisson transformation
0PT

λ := cσ (−λ )−1PT
λ .

We introduce the family of operators

PT
λ ,a : Hσ ,λ

−∞ →C∞(K×M Vτ), a ∈ A+

by
PT

λ ,a( f )(k) := 0PT
λ ( f )(ka).
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In order to discuss the asymptotic behaviour of PT
λ ,a as a→ ∞, we need the

normalized Knapp–Stein intertwining operators

Jw
σ ,λ : Hσ ,λ

−∞ →Hσw,−λ
−∞ .

Note that Jw
σ ,λ ◦ Jw

σw,−λ = id. We again refer to [4, Sect. 5], for more details. The
following is a consequence of [4], Lemma 6.2. Let α ∈ a∗ denote the short root of
(a,n). For λ ∈ ia∗, we have

PT
λ ,a = aλ−ρ

cτ(λ )
cσ (−λ )T ◦Φ0,λ + a−λ−ρτ(w)T ◦Φ0,−λ ◦ Jw

σ ,λ + a−ρ−αR−∞(λ ,a),
(11)

where R−∞(λ ,a) ◦Φλ ,0 remains bounded in C∞(ia∗,Hom(Hσ ,0
−∞ ,C−∞(K×M Vτ)))

as a→∞. Multiplication by T (resp. τ(w)T ) is here considered as a map from Hσ ,0
−∞

(resp. Hσw,0
−∞ ) to C−∞(K ×M Vτ) in the natural way. If χ , χ̃ are smooth functions

on K/M with disjoint support, then χR−∞(λ ,a)χ̃ ◦ Φλ ,0 remains bounded in

C∞(ia∗,Hom(Hσ ,0
−∞ ,C∞(K×M Vτ))) as a→ ∞.

4.3 An Estimate

In order to formulate the result appropriately, we introduce the following space
CΓ (G) of functions on G. For each compact V ⊂ Ω and integer N, we consider
the seminorm

|φ |V,N := sup
kah∈VA+K

(1+ | log(a)|)Na2ρ |φ(kah)|,φ ∈C(G).

Here we identify V (using ∂X ∼= K/M) with the subset {k ∈ K | kM ∈V} of K. We
define CΓ (G) as the space of all continuous functions φ on G such that |φ |V,N < ∞
for all compact V ⊂ Ω and N ∈ N. If φ is Γ -invariant and belongs to CΓ (G), then
clearly φ ∈ L1(Γ \G).

Now let T ∈ HomM(Vσ ,Vτ), R ∈ HomM(Vσ̃ ,Vτ̃), and q ∈C∞
c (ia

∗). Then we can
define the operator

Aq = Aq(T,R) :=
∫

ia∗
0PT

λ ◦ (ext◦π∗− 1)◦ (0PR
−λ )

∗ q(λ )dλ

∈ Hom(C−∞c (G×K Vτ),C
∞(G×K Vτ)).

This operator has a smooth integral kernel (g,h) �→ Aq(g,h) ∈ End(Vτ). The main
result of this subsection is the following estimate.

Proposition 1. The function g �→ Aq(G,G) belongs to CΓ (G).
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Proof. Note that we only have to show finiteness of the norms |.|V,N , where V ⊂Ω
is compact and has the additional property that V is contained in the interior of
a compact subset V1 ⊂ Ω satisfying γV1 ∩V1 = /0 for all 1 �= γ ∈ Γ . Indeed, any
seminorm defining CΓ (G) can be majorized by the maximum of a finite number of
these special ones.

We choose a smooth cut-off function χ̃ on Ω such that supp(χ̃) ⊂ V1 and
supp(1− χ̃)∩V = /0. We further choose a cut-off function χ on Ω such that χ̃χ = χ
and supp(1− χ)∩V = /0. Then we can write for k ∈V

0PT
λ ◦ (ext◦π∗− 1)◦ (0PR

−λ
)∗
(kah,kah)

= τ(h)−1χ(k)◦
[
PT

λ ,a ◦ (ext◦π∗− 1)◦
(
PR
−λ ,a

)∗]
(k,k)◦ χ(k)τ(h). (12)

In order to employ the off-diagonal localization of the Poisson transformation,
we write

χ ◦PT
λ ,a ◦ (ext◦π∗− 1)◦

(
PR
−λ ,a

)∗ ◦ χ
= χ ◦PT

λ ,a ◦ (1− χ̃)◦ (ext◦π∗− 1)◦ χ̃ ◦ (PR
−λ ,a)

∗ ◦ χ
+χ ◦PT

λ ,a ◦ (ext◦π∗− 1)◦ (1− χ̃)◦ (PR
−λ ,a)

∗ ◦ χ . (13)

In (13), we could insert the factor (1− χ̃) since χ̃ ◦ (ext◦π∗− 1)◦ χ̃ = 0. Using that
supp(χ)∩ supp(1− χ̃) = /0, we have

χ ◦PT
λ ,a ◦ (1− χ̃) = a−λ−ρχ ◦ τ(w)T ◦Φ0,−λ ◦ Jw

σ ,λ ◦ (1− χ̃)+ a−ρ−αR∞(λ ,a),

where R∞(λ ,a) ◦Φλ ,0 remains bounded in C∞(ia∗,Hom(Hσ ,0
−∞ ,C∞(K×M Vτ))) as

a→ ∞.
We obtain

χ ◦PT
λ ,a ◦ (ext◦π∗− 1)◦ (PR

−λ ,a)
∗ ◦ χ

= a−2ρa−2λ χ ◦ τ(w)T ◦Φ0,−λ ◦ Jw
σ ,λ ◦ (1− χ̃)◦ (ext◦π∗ − 1)◦ χ̃

◦Φλ ,0 ◦R∗
cτ(−λ )∗

cσ (λ )
◦ χ (14)

+a−2ρχ ◦ τ(w)T ◦Φ0,−λ ◦ Jw
σ ,λ ◦ (1− χ̃)◦ (ext◦π∗− 1)◦ χ̃

◦(Jw
σ̃ ,−λ )

∗ ◦Φ−λ ,0 ◦R∗τ̃(w)∗ ◦ χ (15)

+a−2ρa2λ χ ◦ cτ(λ )
cσ (−λ )T ◦Φ0,λ ◦ (ext◦π∗− 1)◦ (1− χ̃)

◦(Jw
σ̃ ,−λ )

∗ ◦Φ−λ ,0 ◦R∗τ̃(w)∗ ◦ χ (16)
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+a−2ρχ ◦ τ(w)T ◦Φ0,−λ ◦ Jw
σ ,λ ◦ (ext◦π∗− 1)◦ (1− χ̃)
◦(Jw

σ̃ ,−λ )
∗ ◦Φ−λ ,0 ◦R∗τ̃(w)∗ ◦ χ (17)

+Q(λ ,a),

where a2ρ+αQ(λ ,a) remains bounded in

C∞(ia∗,Hom(C−∞(K×M Vτ),C
∞(K×M Vτ))) as a→ ∞.

We further compute, using that the intertwining operators commute with ext◦π∗
(compare the proof of Lemma 3 for a similar argument), the functional equation of
the intertwining operators, and χ ◦ (ext◦π∗− 1)◦ χ = 0

(15)+ (17)

= a−2ρχ ◦ τ(w)T ◦Φ0,−λ ◦ Jw
σ ,λ ◦ (ext◦π∗− 1)◦ χ̃

◦(Jw
σ̃ ,−λ )

∗ ◦Φ−λ ,0 ◦R∗τ̃(w)∗ ◦ χ
+a−2ρχ ◦ τ(w)T ◦Φ0,−λ ◦ Jw

σ ,λ ◦ (ext◦π∗− 1)◦ (1− χ̃)
◦(Jw

σ̃ ,−λ )
∗ ◦Φ−λ ,0 ◦R∗τ̃(w)∗ ◦ χ

= a−2ρχ ◦ τ(w)T ◦Φ0,−λ ◦ (ext◦π∗− 1)◦ Jw
σ ,λ ◦ (Jw

σ̃,−λ )
∗ ◦Φ−λ ,0 ◦R∗τ̃(w)∗ ◦ χ

= a−2ρχ ◦ τ(w)T ◦Φ0,−λ ◦ (ext◦π∗− 1)◦Φ−λ ,0 ◦R∗τ̃(w)∗ ◦ χ
= a−2ρτ(w)T ◦Φ0,−λ ◦ χ ◦ (ext◦π∗− 1)◦ χ ◦Φ−λ ,0 ◦R∗τ̃(w)∗

= 0.

Note that in (14) and (16) one of the intertwining operators is localized off-
diagonally. We conclude that the following families of operators

χ ◦ τ(w)T ◦Φ0,−λ ◦ Jw
σ ,λ ◦ (1− χ̃)◦ (ext◦π∗− 1)◦ χ̃ ◦Φλ ,0 ◦R∗

cτ(−λ )
cσ (λ )

◦ χ ,

χ ◦ cτ(λ )
cσ (−λ )T ◦Φ0,λ ◦ (ext◦π∗− 1)◦ (1− χ̃)◦ (Jw

σ̃ ,−λ )
∗ ◦Φ−λ ,0 ◦R∗τ̃(w)∗ ◦ χ

belong to C∞(ia∗,Hom(C−∞(K ×M Vτ),C∞(K ×M Vτ))). Restricting the smooth
distribution kernel to the diagonal, multiplying by the smooth compactly supported
function q, and integrating over ia∗ we obtain the following estimates using the
standard theory of the Euclidean Fourier transform. For any N ∈ N, we have

sup
k∈K

sup
a∈A+

∣∣∣∣
∫

ia∗
Q(λ ,a)(k,k)q(λ )dλ

∣∣∣∣ a2ρ(1+ | log(a)|)N < ∞,
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sup
k∈K

sup
a∈A+

∣∣∣∣
∫

ia∗
χ(k)2[τ(w)T ◦Φ0,−λ ◦ Jw

σ ,λ ◦ (1− χ̃)◦ (ext◦π∗− 1)

◦Φλ ,0 ◦R∗
cτ (−λ )
cσ (λ )

](k,k)q(λ )a−2λdλ
∣∣∣∣ (1+ | log(a)|)N < ∞,

sup
k∈K

sup
a∈A+

∣∣∣∣
∫

ia∗
χ(k)2[

cτ(λ )
cσ (−λ )T ◦Φ0,λ ◦ (ext◦π∗− 1)◦ (1− χ̃)◦ (Jw

σ̃ ,−λ )
∗

◦Φ−λ ,0 ◦R∗τ̃(w)∗](k,k)q(λ )a2λdλ
∣∣∣ (1+ | log(a)|)N < ∞.

This implies the proposition. �

Remark 1. We have shown in fact that q �→ |(Aq)|diag| is a continuous map from
C∞

c (ia
∗) to L1(Γ \G). It would be desirable to extend this map from C∞

c (ia
∗) to the

Schwartz space S (ia∗). It is this technical problem that prevents us to prove that the
Fourier transformΦ ofΨ restricted to the unitary principal series representations is
a tempered distribution. If this would be true, then it is in fact a measure and given
by our computations below.

If we would like to show that the map q �→ |(Aq)|diag| extends to a map from the
Schwartz space to L1(Γ \G) along the lines above, we need estimates on the growth
of ext as the parameter λ tends to infinity along the imaginary axis. If the imaginary
axis is in the domain of convergence of ext, i.e. the critical exponent δΓ of Γ is
negative, then such an estimate is easy to obtain. In the general case, one has to
estimate the meromorphic continuation of ext, and this is an open problem.

4.4 A Computation

In this subsection, we want to express
∫
Γ \G tr Aq(g,g)μG(dg) in terms of q.

Recall that the symmetric space X = G/K can be compactified by adjoining the
boundary ∂X = G/P. Since Γ ⊂G is convex-cocompact, it acts freely and properly
on X ∪Ω with compact quotient. Therefore, we can choose a smooth function
χΓ ∈ C∞

c (X ∪Ω) such that ∑γ∈Γ γ∗χΓ ≡ 1 on X ∪Ω . The restriction of χΓ to X
can be lifted to G as a right-K-invariant function, which we still denote by χΓ . We
denote by χΓ∞ the right-M-invariant lift to K of the restriction of χΓ to ∂X = K/M.
We write

∫
Γ \G

tr Aq(g,g)μG(dg) =
∫

G
χΓ (g)tr Aq(g,g)μG(dg).
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Let χU be the characteristic function of the ball BU in X of radius U centered at
the origin [K]. Again, we denote its right-K-invariant lift to G by the same symbol.
Then we can write

∫
G
χΓ (g)tr Aq(g,g)μG(dg) = lim

U→∞

∫
G
χΓ (g)χU(g)tr Aq(g,g)μG(dg).

Given U we fix a function χ1 ∈C∞
c (G/K) such that

χ1χUχΓ = χUχΓ . (18)

The operator χ1χΓ 0PT
λ ◦ (ext◦π∗− 1) ◦ (0PR

−λ )
∗χ1 has a compactly supported

smooth integral kernel. It is therefore of trace class. Composing it with the
multiplication operator by χU we see that χUχΓ 0PT

λ ◦ (ext◦π∗− 1)◦ (0PR
−λ )

∗χ1 is
of trace class, too. We can write

∫
G
χΓ (g)χU(g)tr Aq(g,g)μG(dg)

=

∫
ia∗

Tr [χUχΓ 0PT
λ ◦ (ext◦π∗− 1)◦ (0PR

−λ )
∗χ1]q(λ )dλ .

Note that

ia∗ � λ �→ Tr [χUχΓ 0PT
λ ◦ (ext◦π∗− 1)◦ (0PR

−λ )
∗χ1]

is a smooth function. We want to compute its limit in the sense of distributions as
U → ∞ using Green’s formula.

Note that VB(1ρ+α) is a complex bundle with a real structure, which is trivi-
alizable together with this structure. Indeed, B is orientable (note that we assume
that G is connected), and VB(1ρ+α) is a real power of ΛmaxT ∗B. We choose any
non-vanishing real section φ ∈ C∞(B,VB(1ρ+α)). Let p : G→ ∂X be the natural
projection. By changing the sign of φ if necessary, we will assume that φ is given
by a positive smooth function f : p−1(Ω)→R satisfying f (γgman)= aα f (g) for all
γ ∈ Γ , g ∈ p−1(Ω), man ∈ P. For any z ∈ C, the complex power f z : p−1(Ω)→ C

defines a non-vanishing section φ z ∈ C∞(B,VB(1ρ+zα)). In particular, if we take
z such that zα = λ − μ , then multiplication by φ z gives an isomorphism Φ̄λ ,μ :
C∞(B,VB(σμ))→C∞(B,VB(σλ )), and similar isomorphisms of the spaces of L2- and

distribution sections. If Re(z) = 0, then ext : C∞(B,VB(1ρ+zα))→ Γ H1,ρ+zα
−∞ is well

defined (indeed ρ + zα belongs to the domain of convergence of the meromorphic
family ext). Multiplication by ext(φ z) gives a continuous map

Φ̄λ ,μ : Hσ ,μ
∞ →Hσ ,λ

−∞ .

This map is Γ -equivariant and extends in fact to larger subspaces of Hσ ,μ
−∞ of

distributions, which are smooth on neighbourhoods of the limit set Λ .
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The usual trick to bring in Green’s formula is to write

Tr
[
χUχΓ 0PT

λ ◦ (ext◦π∗− 1)◦ (0PR
−λ )

∗χ1
]

= lim
μ→λ

Tr
[
χUχΓ 0PT

λ ◦
(
ext◦ Φ̄λ ,μ ◦π∗− Φ̄λ ,μ

)◦ (0PR
−μ
)∗ χ1

]
.

Let ∇τ denote the invariant connection of the bundle V (τ) = G×K Vτ over X and
Δτ := (∇τ )∗∇τ be the Laplace operator. Then there exists a constant c ∈ R such
that (Δτ + c+λ 2)◦PT

λ = 0. Let n denote the outer unit-normal vector field at ∂BU .
We set

Ψλ ,μ := ext◦ Φ̄λ ,μ ◦π∗− Φ̄λ ,μ .

By Green’s formula, we have for λ �=±μ

Tr
[
χUχΓ 0PT

λ ◦Ψλ ,μ ◦
(0PR
−μ
)∗ χ1

]

=
1

λ 2− μ2 Tr
[
Δτ ,χΓ

]
χU ◦ 0PT

λ ◦Ψλ ,μ ◦
(0PR
−μ
)∗ χ1 (19)

− 1
λ 2− μ2 TrχΓ|∂BU

◦ (0PT
λ
)
|∂BU
◦Ψλ ,μ ◦

(
∇τ

n
0PR
−μ
)∗
|∂BU

(20)

+
1

λ 2− μ2 TrχΓ|∂BU
◦ (∇τ

n
0PT

λ
)
|∂BU
◦Ψλ ,μ ◦

(0PR
−μ
)∗
|∂BU

. (21)

Note that the derivatives of χ1 drop out because of (18). Moreover, (0PT
λ )|∂BU

:

Hσ ,λ
−∞ →C∞(∂BU ,V (τ)|∂BU

) denotes the composition of the Poisson transform and
restriction to the boundary of BU , and this operator can be expressed in terms of
PT

λ ,a.
We introduce the following notation. Let aU ∈ A+ be such that distX(aU K,K)

=U . We define ω(U) := a−2ρ
U vol(∂BU). Note that ωX := limU→∞ ω(U) exists. Let

χΓa ∈C∞(K) denote the function k �→ χΓ (ka). Note that lima→∞ χa = χ∞. Then we
can write

(20)+ (21)

= − ωU a2ρ
U

λ 2− μ2 TrχΓaU
◦PT

λ ,aU
◦Ψλ ,μ ◦ (∂PR

−μ,aU
)∗

+
ωU a2ρ

U

λ 2− μ2 TrχΓaU
◦ ∂PT

λ ,aU
◦Ψλ ,μ ◦ (PR

−μ,aU
)∗.

Here, ∂PT
λ ,a stands for the derivative of the function a �→PT

λ ,a with respect to the
positive fundamental unit vector field on A.

Let χ be a smooth cut-off function on X ∪Ω of compact support such that

γ(supp(χ))∩ supp(χ) = /0, ∀γ ∈ Γ ,γ �= 1. (22)
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Note that χΓ can be decomposed into a finite sum χΓ = ∑i χ i such that each χ i

satisfies (22). We fix a cut-off function χ̃ on Ω satisfying (22) and χ̃ ≡ 1 on
a neighbourhood of supp(χ) ∩Ω . We further define χa(k) = χ(kaK), χ∞(k) =
χ|∂X(kM) and observe that |χa− χ∞| = O(a−α) for any seminorm |.| of C∞(K).
Using that χ̃Ψλ ,μ χ̃ = 0, we can write

(20)+ (21) (χΓ replaced by χ)

= − ωU a2ρ
U

λ 2− μ2 TrχaU ◦PT
λ ,aU
◦ (1− χ̃)◦Ψλ ,μ ◦ (∂PR

−μ,aU
)∗

− ωU a2ρ
U

λ 2− μ2 TrχaU ◦PT
λ ,aU
◦ χ̃ ◦Ψλ ,μ ◦ (1− χ̃)◦ (∂PR

−μ,aU
)∗

+
ωU a2ρ

U

λ 2− μ2 TrχaU ◦ ∂PT
λ ,aU
◦ (1− χ̃)◦Ψλ ,μ ◦ (PR

−μ,aU
)∗

+
ωU a2ρ

U

λ 2− μ2 TrχaU ◦ ∂PT
λ ,aU
◦ χ̃ ◦Ψλ ,μ ◦ (1− χ̃)◦ (PR

−μ,aU
)∗. (23)

We now insert the asymptotic decomposition (11) of the operators PT
λ ,a as a→ ∞

noting that in each line one of these operators is localized off-diagonally.
In order to stay in trace class operators, we choose a function χ1 ∈C∞(K) such that
supp(1− χ1)∩ supp(χ) = /0 and supp(1− χ̃)∩ supp(χ1) = /0. We obtain

(20)+ (21)
(
χΓ replaced by χ

)

= −ωU a−μ−λU (−μ−ρ)
λ 2− μ2 Tr R∗

cτ̃(−μ)∗
cσ (μ)

τ(w)T χ∞Φ0,−λ Jw
σ ,λ (1− χ̃)Ψλ ,μΦμ,0χ1

−ωU aμ−λU (μ−ρ)
λ 2− μ2 Tr R∗Tχ∞Φ0,−λ Jw

σ ,λ (1− χ̃)Ψλ ,μ(J
w
σ̃ ,−μ)

∗Φ−μ,0χ1

−ωU aμ+λU (μ−ρ)
λ 2− μ2 Tr R∗τ(w)−1 cτ(λ )

cσ (−λ )Tχ∞Φ0,λ χ̃Ψλ ,μ(1− χ̃)(Jw
σ̃ ,−μ)

∗Φ−μ,0χ1

−ωU aμ−λU (μ−ρ)
λ 2− μ2 Tr R∗Tχ∞Φ0,λ Jw

σ ,λ χ̃Ψλ ,μ(1− χ̃)(Jw
σ̃ ,−μ)

∗Φ−μ,0χ1

+
ωU a−μ−λU (−λ −ρ)

λ 2− μ2 Tr R∗
cτ̃(−μ)∗

cσ (μ)
τ(w)T χ∞Φ0,−λ Jw

σ ,λ (1− χ̃)Ψλ ,μΦμ,0χ1

+
ωU aμ−λU (−λ −ρ)

λ 2− μ2 Tr R∗Tχ∞Φ0,−λ Jw
σ ,λ (1− χ̃)Ψλ ,μ(J

w
σ̃ ,−μ)

∗Φ−μ,0χ1
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+
ωU aμ+λU (λ −ρ)

λ 2− μ2 Tr R∗τ(w)−1 cτ(λ )
cσ (−λ )Tχ∞Φ0,λΨλ ,μ(1− χ̃)(Jw

σ̃ ,−μ)
∗Φ−μ,0χ1

+
ωU aμ−λU (−λ −ρ)

λ 2− μ2 Tr R∗Tχ∞Φ0,−λ Jw
σ ,λ χ̃Ψλ ,μ(1− χ̃)(Jw

σ̃ ,−μ)
∗Φ−μ,0χ1

+a−αU
1

λ 2− μ2 Rχ(λ ,μ ,aU)

= −ωU a−μ−λU

λ + μ
Tr R∗

cτ̃(−μ)∗
cσ (−μ) τ(w)Tχ∞Φ0,−λ Jw

σ ,λ (1− χ̃)Ψλ ,μΦμ,0χ1

−ωU aμ−λU

λ − μ Tr R∗Tχ∞Φ0,−λ Jw
σ ,λ (1− χ̃)Ψλ ,μJw

σ ,−μΦ−μ,0χ1

+
ωU aμ+λU

λ + μ
Tr R∗τ(w)−1 cτ(λ )

cσ (−λ )Tχ∞Φ0,λΨλ ,μ(1− χ̃)(Jw
σ̃ ,−μ)

∗Φ−μ,0χ1

−ωU aμ−λU

λ − μ Tr R∗Tχ∞Φ0,−λ Jw
σ ,λ χ̃Ψλ ,μ(1− χ̃)(Jw

σ̃ ,−μ)
∗Φ−μ,0χ1

+a−αU
1

λ 2− μ2 Rχ(λ ,μ ,aU).

The remainder Rχ(λ ,μ ,a) is holomorphic and remains bounded in C∞(ia∗ × ia∗)
as a→ ∞.

We define 〈R,T 〉 ∈ C such that R∗ ◦T = 〈R,T 〉idVσ . If σ is not Weyl-invariant,
i.e. σw �∼= σ , then the compositions R∗cτ̃(−μ)∗τ(w)T , R∗τ(w)−1cτ(λ )T vanish and
we define 〈R,T 〉(λ ) := 0. If the representation σ is Weyl-invariant, then it can be
extended to the normalizer NK(M) of M. In particular, we can define σ(w). In this
case, we define 〈R,T 〉(λ ) ∈ C such that

σ(w)R∗τ(w)−1 cτ(λ )
cσ (−λ )T = 〈R,T 〉(λ )idVσ .

Note that R∗ cτ̃ (−μ)∗
cσ (μ) τ(w)Tσ(w)

−1 = 〈R,T 〉(−μ)idVσ . Further, we put

Jσ ,λ = σ(w)Jw
σ ,λ : Hσ ,λ

−∞ →Hσ ,−λ
−∞ .

Then we can write

Tr
[
χχU ◦ 0PT

λ ◦ (ext◦ Φ̄λ ,μ ◦π∗− Φ̄λ ,μ)◦
(0PR
−μ
)∗ χ1

]

=−ωU a−μ−λU 〈R,T 〉(−μ)
λ + μ

TrΦμ,−λ ◦ χ∞ ◦ Jσ ,λ ◦ (1− χ̃)◦Ψλ ,μ ◦ χ1 (24)
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−ωU aμ−λU 〈R,T 〉
λ − μ Trχ∞ ◦ Jw

σ ,λ ◦Ψλ ,μ ◦ (Jw
σ̃ ,−μ)

∗ ◦Φ−μ,−λ ◦ χ1

+
ωU aμ+λU 〈R,T 〉(λ )

λ + μ
Trχ∞ ◦Ψλ ,μ ◦ (1− χ̃)◦ (Jσ̃ ,−μ)∗ ◦Φ−μ,λ ◦ χ1 (25)

+
1

λ 2− μ2 Tr′ [Δτ ,χ ]◦ 0PT
λ ◦Ψλ ,μ ◦ (0PR

−μ)
∗

+
a−αU

λ 2− μ2 Qχ(λ ,μ ,aU), (26)

where

Qχ(λ ,μ ,aU) := Rχ(λ ,μ ,aU)−aαUTr′ [Δτ ,χ ](1−χU)◦ 0PT
λ ◦Ψλ ,μ ◦ (0PR∗

−μ)
∗. (27)

We defer the justification of the terms (26), (27) to Lemma 4 below. The
functional Tr′ here is applied to operators with distribution kernels which are
continuous on the diagonal, and it takes the integral of its local trace over the
diagonal. Note that the remainder Qχ is independent of the choice of χ1.

The left-hand side of this formula is holomorphic on a∗
C
× a∗

C
. The individual

terms on the right-hand side may have poles. To aim of the following discussion is
to understand these singularities properly.

Lemma 3. The meromorphic family

(μ ,λ ) �→ 1
λ − μ Trχ∞ ◦ Jw

σ ,λ ◦Ψλ ,μ ◦ (Jw
σ̃ ,−μ)

∗ ◦Φ−μ,−λ ◦ χ1

is regular for μ = λ .

Proof. We must show that

Trχ∞ ◦ Jw
σ ,λ ◦ (ext◦π∗− 1)◦ (Jw

σ̃ ,−λ )
∗ ◦ χ1 = 0.

Recall the definition of the scattering matrix Sw
σ ,λ from [4], Def. 5.6. We are going

to employ the relations

ext◦ Sw
σ ,λ = Jw

σ ,λ ◦ ext, π∗ ◦ (Jw
σ̃ ,−λ )

∗ = (Sw
σ̃ ,−λ )

∗ ◦π∗, Sw
σ ,λ ◦ (Sw

σ̃ ,−λ )
∗ = id.

We now compute

Trχ∞ ◦ Jw
σ ,λ ◦ (ext◦π∗− 1)◦ (Jw

σ̃,−λ )
∗ ◦ χ1

= Trχ∞ ◦ ext◦ Ŝw
σ ,λ ◦ (Sw

σ̃,−λ )
∗ ◦π∗ ◦ χ1− χ∞ ◦ Jw

σ ,λ ◦ (Jw
σ̃,−λ )

∗ ◦ χ1

= Trχ∞ ◦ (ext◦π∗− 1)◦ χ1

= 0. �
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In particular, we have

lim
U→∞

lim
μ→λ
−ω(U)aμ−λU 〈R,T 〉

λ − μ Trχ∞ ◦ Jw
σ ,λ ◦Ψλ ,μ ◦ (Jw

σ̃,−μ)
∗ ◦Φ−μ,−λ ◦ χ1

= ωX〈R,T 〉 d
dμ |μ=λ

Trχ ◦ Jw
σ ,λ ◦Ψλ ,μ ◦ (Jw

σ̃ ,−μ)
∗ ◦Φ−μ,−λ ◦ χ1.

(28)

If the distribution kernel of an operator A admits a continuous restriction to the
diagonal, then let DA denote this restriction.

Lemma 4. 1. For any compact subset Q ⊂ ia∗ there is a constant C such that for
all k ∈ K and μ ,λ ∈Q we have

|D [Δτ ,χ ]◦ 0PT
λ ◦Ψλ ,μ ◦ (0PR

−μ)
∗(ka)|<Ca−2ρ−α .

2. We have
Tr′ [Δτ ,χΓ ]◦ 0PT

λ ◦Ψλ ,μ ◦ (0PR∗
−μ)

∗ = 0

(note that we consider the cut-off function χΓ here).

Proof. The reason that 1. holds true is that |dχ(ka)| ≤Ca−α and |Δχ(ka)| ≤Ca−α
uniformly in k ∈ K and a ∈ A. We use the decomposition

D [Δτ ,χ ]◦ 0PT
λ ◦Ψλ ,μ ◦ (0PR

−μ)
∗(ka)

= D [Δτ ,χ ]◦ 0PT
λ ◦ χ̃ ◦Ψλ ,μ ◦ (1− χ̃)◦ (0PR

−μ)
∗(ka) (29)

+D [Δτ ,χ ]◦ 0PT
λ ◦ (1− χ̃)◦Ψλ ,μ ◦ (0PR

−μ)
∗(ka). (30)

The asymptotic behaviour (11) of the operators PT
λ ,a is uniform for λ in compact

subsets of ia∗ and can be differentiated with respect to a. We conclude that for any
compact subset Q⊂ ia∗ there is a constant C ∈ R such for all λ ,μ ∈ Q we have

sup
k
|D [Δτ ,χ ]a ◦ 0PT

λ ◦ (1− χ̃)◦Ψλ ,μ ◦ (0PR
−μ)

∗(ka)| ≤Ca−2ρ−α ,

sup
k
|D [Δτ ,χ ]a ◦ 0PT

λ ◦ χ̃ ◦Ψλ ,μ ◦ (1− χ̃)◦ (0PR
−μ)

∗(ka)| ≤Ca−2ρ−α .

We can write χΓ as a finite sum χΓ = ∑i χ i, where the cut-off functions χ i obey
(22). For each index i, we choose an appropriate cut-off function χ i

1 as above. It
follows from 1. that tr D [Δτ ,χΓ ] ◦ 0PT

λ ◦Ψλ ,μ ◦ (0PR−μ)∗ is integrable over G. We
observe that

πσ ,λ (γ)◦Ψλ ,μ = ext◦ Φ̄λ ,μ ◦π∗− Φ̄λ ,μ ◦πσ ,μ(γ) =Ψλ ,μ ◦πσ ,μ(γ)



122 U. Bunke and M. Olbrich

and compute

Tr′ [Δτ ,χΓ ]◦ 0PT
λ ◦Ψλ ,μ ◦ (0PR

−μ)
∗

= ∑
γ∈Γ

Tr′ π(γ)−1χΓ π(γ)◦ [Δτ ,χΓ ]◦ 0PT
λ ◦Ψλ ,μ ◦ (0PR

−μ)
∗

= ∑
γ∈Γ

Tr′ χΓ ◦ [Δτ ,(γ−1)∗χΓ ]◦π(γ)◦ 0PT
λ ◦Ψλ ,μ ◦πσ ,μ(γ)−1 ◦ (0PR

−μ)
∗

= ∑
γ∈Γ

Tr′ χΓ ◦ [Δτ ,(γ−1)∗χΓ ]◦ 0PT
λ ◦πσ ,λ(γ)◦Ψλ ,μ ◦πσ ,μ(γ)−1 ◦ (0PR∗

−μ)
∗

= ∑
γ∈Γ

Tr′ χΓ ◦ [Δτ ,(γ−1)∗χΓ ]◦ 0PT
λ ◦Ψλ ,μ ◦ (0PR

−μ)
∗

= 0,

since ∑γ∈Γ (γ−1)∗χΓ ≡ 1. �

Note that the second assertion of the lemma implies

∑
i

Tr [Δτ ,χ i]◦ 0PT
λ ◦Ψλ ,μ ◦ (0PR∗

−μ)
∗ ◦ χ i

1 = 0.

We now combine (24) and (25) and write

(24)+ (25)

=
ω(U)(aμ+λU − a−μ−λU )

λ + μ
〈R,T 〉(−μ)

TrΦμ,−λ ◦ χ∞ ◦ Jσ ,λ ◦ (1− χ̃)◦Ψλ ,μ ◦ χ1 (31)

+
ω(U)aμ+λU

λ + μ
Tr
[〈R,T 〉(λ )χ∞ ◦Ψλ ,μ ◦ (1− χ̃)◦ (Jσ̃,−μ)∗ ◦Φ−μ,λ ◦ χ1

−〈R,T 〉(−μ)Φμ,−λ ◦ χ∞ ◦ Jσ ,λ ◦ (1− χ̃)◦Ψλ ,μ ◦ χ1
]

(32)

Note that (31) is regular at λ = μ = 0. In fact, if ext has a pole at λ = 0, then it is of
first order and Jσ ,0 = id (see [4], Prop. 7.4). Therefore, χ∞ ◦ Jσ ,0 ◦ (1− χ̃) vanishes.

In order to see that (32) is regular at λ = μ = 0, too, observe in addition that

Tr [χ ◦ (ext◦π∗− 1)◦ (1− χ̃)◦ (Jσ̃ ,0)∗ ◦ χ1

−χ ◦ Jσ ,0 ◦ (1− χ̃)(ext◦π∗− 1)◦ χ1] = 0. (33)



Towards the Trace Formula for Convex-Cocompact Groups 123

Combining Lemma 3 and 4, (2), and (33) we conclude that 1
λ 2−μ2 QχΓ (λ ,μ ,aU)

is regular at μ = λ , where we set QχΓ := ∑i Qχ i . Furthermore, locally uniformly in
λ one has

lim
U→∞

a−αU

λ 2− μ2 QχΓ (λ ,μ ,aU) = 0.

By the Lemma of Riemann–Lebesgue, we have

lim
U→∞

ω(U)a2λ
U

2λ
Tr
[〈R,T 〉(λ )χ∞ ◦ (ext◦π∗− 1)◦ (1− χ̃)◦ (Jσ̃,−λ )∗ ◦Φ−λ ,λ ◦ χ1

−〈R,T 〉(−λ )Φλ ,−λ ◦ χ∞ ◦ Jσ ,λ ◦ (1− χ̃)◦ (ext◦π∗− 1)◦ χ1
]

= 0

as distributions on ia∗. Moreover,

lim
U→∞

ω(U)(a2λ
U − a−2λ

U )

2λ
〈R,T 〉(−λ )

TrΦλ ,−λ ◦ χ∞ ◦ Jσ ,λ ◦ (1− χ̃)◦ (ext◦π∗− 1)◦ χ1 (34)

= πωX〈R,T 〉(0)δ0(λ ) lim
λ→0

[
TrΦλ ,−λ ◦ χ∞ ◦ Jσ ,λ ◦ (1− χ̃)◦ (ext◦π∗− 1)◦ χ1

]

(35)

in the sense of distributions on ia∗. Combining (28) and (35) we now have shown
the following proposition.

Proposition 2. We have

∫
Γ \G

tr Aq(g,g)μG(dg)

= ωX〈R,T 〉
∫

ia∗
∑

i

d
dμ |μ=λ

Tr
[
χ i
∞ ◦ Jw

σ ,λ ◦
(
ext◦ Φ̄λ ,μ ◦π∗− Φ̄λ ,μ

)

◦(Jw
σ̃ ,−μ)

∗ ◦Φ−μ,−λ ◦ χ i
1

]
q(λ )dλ

+πωX〈R,T 〉(0)∑
i

lim
λ→0

(
Tr
[
Φλ ,−λ ◦ χ i

∞ ◦ Jσ ,λ ◦ (ext◦π∗− 1)◦ χ i
1

])
q(0).(36)

Observe that we can rewrite this in the more invariant form

ωX 〈R,T 〉
∫

ia∗
d

dμ |μ=λ
Tr′
[
χΓ∞ ◦ Jw

σ ,λ ◦
(
ext◦ Φ̄λ ,μ ◦π∗− Φ̄λ ,μ

)

◦(Jw
σ̃ ,−μ)

∗ ◦Φ−μ,−λ
]

q(λ )dλ

+πωX〈R,T 〉(0) lim
λ→0

(
Tr′
[
Φλ ,−λ ◦ χΓ∞ ◦ Jσ ,λ ◦ (ext◦π∗− 1)

])
q(0).



124 U. Bunke and M. Olbrich

5 The Fourier Transform ofΨ

5.1 The Contribution of the Scattering Matrix

We consider a symmetric function q ∈C∞
c (ia

∗,End(Vτ ⊗HomM(Vτ ,Vσ ))). For π ∈
Ĝ, we form hq(π) ∈ End(Vπ) as in Sect. 3.3. There we have seen that Ř(hq) and
ŘΓ (hq) have smooth integral kernels.

We choose a basis {vi}i=1,...,dim(τ) of Vτ and a basis {Tj} j=1,...,dim(HomM(Vτ ,Vσ ))

of HomM(Vτ ,Vσ ). Let {vi} be a dual basis of Vτ̃ and {T j} be a dual basis of
HomM(Vσ ,Vτ) = HomM(Vτ ,Vσ )∗ (with respect to the pairing 〈T ′,T 〉 = trVτT ′ ◦T ,
T ∈ HomM(Vτ ,Vσ ), T ′ ∈ HomM(Vσ ,Vτ)). Then {φi j := vi⊗Tj} can be considered
as a basis of Hσ ,λ (τ). Furthermore, {φ i j := vi⊗ (T j)∗} can be considered as a basis
of H σ̃ ,−λ (τ̃) = Hσ ,λ (τ)∗, and we have

〈φi j ,φhl〉 =
∫

K
〈Tj ◦ τ(k)−1(vi),(T

l)∗ ◦ τ̃(k)−1(vh)〉dk

=

∫
K
〈τ(k)◦T l ◦Tj ◦ τ(k)−1(vi),v

h〉dk

=
〈T l ,Tj〉
dim(Vτ)

〈vi,v
h〉

=
1

dim(Vτ)
δ l

jδ
h
i . (37)

For g ∈ G and w ∈ Vτ̃ , we define pT
λ ,w(g) ∈ H σ̃ ,−λ

∞ such that 〈PT
λ (φ)(g),w〉 =

〈pT
λ ,w(g),φ〉 for all φ ∈Hσ ,λ

−∞ . Using (9), we can write pT
λ ,w(g) = πσ̃ ,−λ (g)(w⊗T ∗).

We can write

q = ∑
i, j,k,l

qi jklvi⊗Tj⊗ vk⊗Tl ,

where the functions qi jkl := 〈vi⊗ T j,q(vk ⊗ Tl)〉 belong to C∞
c (ia

∗). Now we can
compute

Trπσ ,λ (g)hq(πσ ,λ ) = dim(Vτ)∑
i, j

〈
φ i j ,πσ ,λ (g)hq

(
πσ ,λ

)
φi j

〉

= dim(Vτ)∑
i, j

〈
PT j

λ

(
hq(πσ ,λ )φi j

)(
g−1) ,vi

〉

= dim(Vτ)∑
i, j

〈
hq

(
πσ ,λ

)
φi j , pT j

λ ,vi

(
g−1)〉

= dim(Vτ) ∑
i, j,k,l

qkli j(λ )
〈

vk⊗Tl, pT j

λ ,vi

(
g−1)〉
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= dim(Vτ) ∑
i, j,k,l

qkli j(λ )
〈

P
T ∗l
−λ
(

pT j

λ ,vi

(
g−1))(1),vk

〉

= dim(Vτ) ∑
i, j,k,l

qkli j(λ )
〈

vi,PT j

λ ◦
(

P
T ∗l
−λ
)∗ (

g−1,1
)
(vk)

〉
.

In the last line of this computation PT j

λ ◦ (P
T ∗l
−λ )

∗(g,g′) is the integral kernel of the
G-equivariant operator

PT j

λ ◦
(

P
T ∗j
−λ

)∗
: C−∞c (G×K Vτ)→C∞(G×K Vτ).

We can express the integral kernel of Ř(hq) via Poisson transforms as follows:

KŘ(hq)
(g,g1) =

∫
Ĝ

Trπ(g)hq(π)π(g−1
1 )p(dπ)

=
dim(Vσ )

4πωX

∫
ia∗

Trπ(g−1
1 g)hq(πσ ,λ )pσ (λ )dλ

= ∑
i, j,k,l

dim(Vσ )dim(Vτ)
4πωX

∫
ia∗

qkli j(λ )
〈

vi,PT j

λ ◦
(

P
T ∗l
−λ
)∗
(g−1g1,1)(vk)

〉
pσ (λ )dλ

= ∑
i, j,k,l

dim(Vσ )dim(Vτ)
4πωX

∫
ia∗

qkli j(λ )
〈

vi,PT j

λ ◦
(

P
T ∗l
−λ
)∗

(g1,g)(vk)
〉

pσ (λ )dλ

= ∑
i, j,k,l

dim(Vσ )dim(Vτ)
4πωX

∫
ia∗

qkli j(λ )
〈

vi,0PT j

λ ◦
(

0P
T ∗l
−λ
)∗

(g1,g)(vk)
〉

dλ . (38)

In a similar manner, we obtain

Trπσ ,λ (g)hq(πσ ,λ )πσ ,λ (g−1
1 )extπ∗

= Tr hq(πσ ,λ )πσ ,λ (g−1
1 )extπ∗ πσ ,λ (g)

= dim(Vτ)∑
k,l

〈
φ kl ,hq(πσ ,λ )πσ ,λ (g−1

1 )extπ∗ πσ ,λ (g)φkl

〉

= dim(Vτ)∑
k,l

〈
hq(πσ ,λ )∗φ kl ,πσ ,λ (g−1

1 )extπ∗ πσ ,λ (g)φkl

〉

= dim(Vτ) ∑
i, j,k,l

qkli j(λ )
〈

vi⊗T j,πσ ,λ (g−1
1 )extπ∗ πσ ,λ (g)φkl

〉

= dim(Vτ) ∑
i, j,k,l

qkli j(λ )
〈

vi,PT j

λ (extπ∗ πσ ,λ (g)φkl)(g1)
〉

= dim(Vτ) ∑
i, j,k,l

qkli j(λ )
〈

extπ∗ πσ ,λ (g)φkl , pT j

λ ,vi(g1)
〉
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= dim(Vτ) ∑
i, j,k,l

qkli j(λ )
〈
φkl ,πσ̃ ,−λ (g−1)extπ∗

(
pT j

λ ,vi(g1)
)〉

= dim(Vτ) ∑
i, j,k,l

qkli j(λ )
〈

vk,P
T ∗l
−λ
(

extπ∗
(

pT j

λ ,vi(g1)
))

(g)
〉

= dim(Vτ) ∑
i, j,k,l

qkli j(λ )
〈

vi,PT j

λ ◦ ext◦π∗ ◦
(

P
T∗l
−λ
)∗

(g1,g)(vk)
〉

and thus

KŘΓ (hq)
(g,g1) =

dim(Vσ )
4πωX

∫
ia∗

Trπσ ,λ (g)hq

(
πσ ,λ

)
πσ ,λ

(
g−1

1

)
pσ (λ )dλ

= ∑
i, j,k,l

dim(Vσ )dim(Vτ)
4πωX

∫
ia∗

qkli j(λ )
〈
vi,PT j

λ ◦ ext◦π∗ ◦
(

P
T ∗l
−λ
)
∗(g1,g)(vk)

〉
pσ (λ )dλ

= ∑
i, j,k,l

dim(Vσ )dim(Vτ)
4πωX

∫
ia∗

qkli j(λ )
〈
vi,0PT j

λ ◦ ext◦π∗ ◦
(

0P
T ∗l
−λ
)
∗(g1,g)(vk)

〉
dλ . (39)

We conclude that

KŘΓ (hq)
(g,g1)−KŘ(hq)

(g,g1)

= ∑
i, j,k,l

dim(Vσ )dim(Vτ )
4πωX

∫
ia∗

qkli j(λ )〈vi,0PT j

λ ◦ (ext◦π∗− 1)◦ (0P
T∗l
−λ )

∗(g1,g)(vk)〉dλ

=
dim(Vσ )dim(Vτ )

4πωX ∑
i, j,k,l

〈vi,Aqkli j(T
j,T ∗l )(g1,g)vk〉.

By Proposition 1, the difference

g �→ (KŘΓ (hq)
(g,g)−KŘ(hq)

(g,g))

is integrable over Γ \G. Using the fact that τ is irreducible, we compute

∑
i,k

∫
Γ \G
〈vi,Aqkli j(T

j,T ∗l )(g,g)vk〉μG(dg)

=∑
i,k

∫
Γ \G

∫
K
〈vi,Aqkli j(T

j,T ∗l )(gh,gh)vk〉μK(dh)μG(dg)

=∑
i,k

∫
Γ \G

∫
K
〈vi,τ(h)−1Aqkli j(T

j,T ∗l )(g,g)τ(h)vk〉μK(dh)μG(dg)

=∑
k

∫
Γ \G

tr Aqklk j(T
j,T ∗l )(g,g)μG(dg).
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The following formula is now an immediate consequence of Proposition 2.

∫
Γ \G

(
KŘΓ (hq)

(g,g)−KŘ(hq)
(g,g)

)
μG(dg) (40)

= dim(Vσ )dim(Vτ )
4π

∫
ia∗
∑

i
∑
k, j,l

〈T ∗l ,T j〉 d
dμ |μ=λ

Tr
[
χ i
∞ ◦ Jw

σ ,λ ◦
(
ext◦ Φ̄λ ,μ ◦π∗ − Φ̄λ ,μ

)

◦(Jw
σ̃ ,−μ)

∗ ◦Φ−μ,−λ ◦ χ i
1

]
qklk j(λ )dλ

+ dim(Vσ )dim(Vτ)
4 ∑

i
∑
k, j,l

〈T ∗l ,T j〉(0)

lim
λ→0

(
Tr
[
Φλ ,−λ ◦ χ i

∞ ◦ Jσ ,λ ◦ (ext◦π∗− 1)◦ χ i
1

])
qklk j(0).

Now we will rewrite this formula in a more invariant fashion. Using (37), we first
compute

∑
k, j,l

〈T ∗l ,T j〉qklk j(λ ) (41)

=
1

dim(Vσ )
∑
j,l,k

Tl(T
j)〈vk⊗Tl ,q(λ )vk⊗Tj〉

=
1

dim(Vσ )
∑
l,k

〈vk⊗T l ,q(λ )vk⊗Tl〉

=
1

dim(Vτ)dim(Vσ )
Tr hq(πσ ,λ ). (42)

We assume for a moment thatσ is Weyl-invariant. For T ∈HomM(Vσ ,Vτ), we define
T � ∈Hom(Hσ ,λ

−∞ ,Vτ) by T �( f ) = PT
λ ( f )(1). Recall the relation ([4], Lemma 5.5, 1.)

T � ◦σ(w)◦ Jw
σ ,λ = cσ (−λ )[τ(w)◦ cτ(λ )◦T ◦σ(w)−1]�.

We compute

〈R,T 〉(0)
= 1

dim(Vσ )cσ (0)
Trσ(w)◦R∗ ◦ τ(w)−1 ◦ cτ(0)◦T

= 1
dim(Vσ )cσ (0)

Tr τ(w)◦ cτ(0)◦T ◦σ(w)−1 ◦R∗

= 1
dim(Vσ )cσ (0)

∫
K

Tr τ(k)−1 ◦ τ(w)◦ cτ(0)◦T ◦σ(w)−1 ◦R∗ ◦ τ(k)μK(dk)

= 1
dim(Vσ )cσ (0)∑

i

∫
K
〈τ(k)−1 ◦ τ(w)◦ cτ(0)◦T ◦σ(w)−1 ◦R∗ ◦ τ(k)(vi),v

i〉μK(dk)
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= 1
dim(Vσ )cσ (0)∑

i

〈Pτ(w)◦cτ(0)◦T◦σ(w)−1

0 (vi⊗R∗)(1),vi〉

= 1
dim(Vσ )cσ (0)∑

i

〈[τ(w)◦ cτ(0)◦T ◦σ(w)−1]�(vi⊗R∗),vi〉

= 1
dim(Vσ )∑

i

〈T � ◦σ(w)◦ Jw
σ ,0(vi⊗R∗),vi〉

= 1
dim(Vσ )∑

i
PT

0 ◦ Jσ ,0(vi⊗R)(1),vi〉

= 1
dim(Vσ )∑

i

〈Jσ ,0(vi⊗R∗),vi⊗T ∗〉.

Since Jσ ,0 is K-equivariant, we can write

Jσ ,0(vi⊗R) = vi⊗ jσ ,0(R)

for some jσ ,0 ∈ End(HomM(Vσ ,Vτ)). We now have

∑
k, j,l

〈T ∗l ,T j〉(0)qklk j(λ )

=
1

dim(Vσ )
∑
k, j,l
∑

i
〈vi⊗ jσ ,0(T

∗
l ),v

i⊗T j〉〈vk⊗T l ,q(λ )vk⊗Tj〉

=
1

dim(Vσ )
∑
k,l

〈vk⊗T l ,q(λ )(vk⊗ jσ ,0(T
∗

l ))〉 (43)

=
1

dim(Vσ )
∑
k,l

〈vk⊗T l ,q(λ )◦ Jσ ,0(vk⊗T ∗l )〉

=
1

dim(Vσ )dim(Vτ)
Tr hq(πσ ,0)◦ Jσ ,0. (44)

Inserting (42) and (44) into (40), we obtain the following theorem.

Theorem 1. If q is a smooth compactly supported symmetric function on M̂× ia∗
such that q(σ ,λ ) ∈ End(Vτ ⊗HomM(Vτ ,Vσ )), then the difference

g �→ KŘΓ (hq)
(g,g)−KŘ(hq)

(g,g)

is integrable over Γ \G, and we have

∫
Γ \G

(
KŘΓ (hq)

(g,g)−KŘ(hq)
(g,g)

)
μG(dg)



Towards the Trace Formula for Convex-Cocompact Groups 129

= ∑
σ∈M̂

1
4π ∑i

∫
ia∗

d
dμ |μ=λ

Tr
[
χ i
∞ ◦ Jw

σ ,λ ◦
(
ext◦ Φ̄λ ,μ ◦π∗− Φ̄λ ,μ

)

◦(Jw
σ̃ ,−μ)

∗ ◦Φ−μ,−λ ◦ χ i
1

]
Tr hq(πσ ,λ )dλ

+
1
4∑i

lim
λ→0

(
Tr
[
Φλ ,−λ ◦ χ i

∞ ◦ Jσ ,λ ◦ (ext◦π∗− 1)◦ χ i
1

])
Tr hq(πσ ,0)◦ Jσ ,0.

We can again rewrite this formula as follows

∫
Γ \G

(
KŘΓ (hq)

(g,g)−KŘ(hq)
(g,g)

)
μG(dg)

= ∑
σ∈M̂

1
4π

∫
ia∗

d
dμ |μ=λ

Tr′
[
χΓ∞ ◦ Jw

σ ,λ ◦
(
ext◦ Φ̄λ ,μ ◦π∗− Φ̄λ ,μ

)

◦(Jw
σ̃ ,−μ)

∗ ◦Φ−μ,−λ
]

Tr hq(πσ ,λ )dλ

+
1
4

lim
λ→0

(
Tr′
[
Φλ ,−λ ◦ χΓ∞ ◦ Jσ ,0 ◦ (ext◦π∗− 1)

])
Tr hq(πσ ,0)◦ Jσ ,0.

5.2 The Fourier Transform ofΨ : A Conjecture

Observe that Theorem 1 does not solve our initial problem of computing the Fourier
transform of the distributionΨ . The point is that there is no function f ∈C∞

c (G) such
that its Fourier transform f̂ has compact support, too.3 In order to extend Theorem 1
to f̂ , we must extend Proposition 1 to Schwartz functions. As explained in Remark 1,
the main obstacle to do this is an estimate of the growth of the extension map ext =
extλ : C−∞(B,VB(σ ,λ ))→Hσ ,λ

−∞ as λ tends to infinity along the imaginary axis.
The goal of this subsection is to rewrite the result of the computation of Ψ ′ in

terms of characters thus obtaining the candidate of the measureΦ . We will also take
the discrete spectrum of L2(Γ \G) into account.

Recall that

Tr f̂ (πσ ,λ ) = θπσ ,λ ( f ).

If πσ ,0 is reducible, then it decomposes into a sum of πσ ,+⊕πσ ,− of limits of
discrete series representations which are just the ±1 eigenspaces of Jσ ,0. In this
case, ext is regular at λ = 0 ([4], Prop. 7.4.). We can write

Tr f̂ (πσ ,0)◦ Jσ ,0 = θπσ ,+( f )−θπσ ,−( f ).

3Compare the footnote on page 99.
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If we replace hq by f̂ , then formulas (38) and (39) just give the contributions of
the continuous spectrum KRac( f ) and KRac

Γ ( f ) to the integral kernels KR( f ) and KRΓ ( f ).
We have KR( f ) = KRac( f ) +KRd( f ), where

KRd( f )(g,g1) = ∑
π∈Ĝd

Trπ(g) f̂ (π)π(g−1
1 ).

Since we assume that f is K-finite, and there are only finitely many discrete series
representations containing a given K-type, this sum is finite.

Furthermore, KRΓ ( f ) = KRac
Γ ( f ) +KRd

Γ ( f ) +KRc
Γ ( f ). Here KRd

Γ ( f ) = ∑π∈Ĝd
K

Rd,π
Γ ( f )

is the contribution of discrete series representations (again a finite sum),

K
Rd,π
Γ ( f )

(g,g1) =∑
i, j
〈ψi,φ j〉〈ψi,π(g) f̂ (π)π(g−1

1 )φ j〉,

where {φ j} and {ψi} are orthonormal bases of the infinite-dimensional Hilbert
spaces Vπ and Mπ , respectively. The finite sum KRc

Γ ( f ) = ∑π∈Ĝc
KRc,π

Γ ( f ) is the

discrete contribution of representations belonging to Ĝc. If we choose orthogonal
bases {φ j} and {ψi} of the Hilbert spaces Vπ and Mπ (note that dim(Mπ)<∞), then
we can write

KRc,π
Γ ( f )(g,g1) =∑

i, j
〈ψi,φ j〉〈ψi,π(g) f̂ (π)π(g−1

1 )φ j〉.

We define the multiplicity of π by NΓ (π) := dim(Mπ ). It is clear that
∫
Γ \G

KRc
Γ ( f )(g,g)μG(dg) = ∑

π∈Ĝc

NΓ (π)θπ( f ).

Now we discuss discrete series contributions. In Lemma 14, we will show that if
f is K-finite and invariant under conjugation by K, then for each π ∈ Ĝd we have

K
Rd,π
Γ ( f )

(g,g)−KRd,π( f )(g,g) ∈ L1(Γ \G). (45)

Given any A ∈ Vπ̃,K ⊗Vπ ,K we define the function Ĝ � π ′ �→ hA(π ′) to be zero for
all π ′ �= π and hA(π) := Ā, where Ā :=

∫
K π̃(k)⊗π(k)Adk. The map

Vπ̃,K⊗Vπ ,K � A �→ T (A) :=
∫
Γ \G

[
KŘd

Γ (hĀ)
(g,g)−KŘd(hĀ)

(g,g)
]
μG(dg)

is well defined and a (g,K)-invariant functional on Vπ̃,K ⊗Vπ ,K . Since Vπ ,K is
irreducible it follows that

T (A) = NΓ (π)Tr(A) (46)

for some number NΓ (π) ∈C, which plays the role of the multiplicity of π . Here, we
consider A as a finite-dimensional operator on Vπ .
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A discrete series representation is called integrable if its bi-K-finite matrix
coefficients belong to L1(G). We split Ĝd into integrable and non-integrable
representations

Ĝd = Ĝdi∪ Ĝdn.

Note that discrete series representations with sufficiently regular parameter are
integrable, but if Ĝd �= /0, then also the set Gdn is infinite (except for G = SL(2,R)).
In contrast to the general case, for integrable discrete series representations π , the
assertion (45) is easy to obtain. In fact, more is true.

Proposition 3. Let π ∈ Ĝdi, v,w ∈ Vπ ,K, and let f = fv,w be the matrix coefficient
fv,w(g) := 〈v,π(g)w〉. ThenΨ( f ),Ψ ′( f ) are well-defined, and we have

Ψ( f ) =Ψ ′( f̂ ) = 0.

Moreover, NΓ (π) = 0.

Proof. The function f belongs to an appropriate L1-Schwartz space for G. Using
Weyl’s integral formula and that Γ is convex cocompact, one observes that for
any such Schwartz function h the function (γ,g) �→ vol(Γγ\Gγ)h(g−1γg) belongs
to L1(

⋃
γ∈C̃Γ Gγ\G). Hence, by Fubini the computation in Lemma 1 remains valid.

This proves the first equation. Hyperbolic orbital integrals of matrix coefficients of
discrete series vanish ([21], 7.5.4). HenceΨ ( f ) = 0. For any unitary representation
(ρ ,Y ) of G, any y ∈ Y , w ∈ Vπ ,K the map Vπ ,K � v �→ π( fv,w)y ∈ Y∞,K is an
intertwining operator of (g,K)-modules. It follows that R( f ) =Rd( f ) = Rd,π( f ) and
RΓ ( f ) = Rd

Γ ( f ) = Rd,π
Γ ( f ). Hence, T (π( f )) =Ψ ′( f̂ ) = 0. Since Tr(π( fv,v)) �= 0 for

v �= 0, we eventually find (see (46)) that NΓ (π) = 0. �

Proposition 3 can be extended to a larger subset of Ĝd that depends on the critical
exponent of Γ . We will not discuss this issue here. It follows from Lemma 14 that
KRac

Γ ( f )(g,g)−KRac( f )(g,g) belongs to L1(Γ \G) not only if f̂ is smooth of compact
support, K-finite and K-invariant (Proposition 1), but also in the case that f ∈C∞

c (G)
is K-finite and K-conjugation invariant.

The following conjecture provides the candidate for the measure Φ . Its discrete
part is expressed in terms of multiplicities NΓ (π). If π ∈ Ĝc, then NΓ (π) is just
the dimension of the space of multiplicities Mπ and thus a non-negative integer. If
π ∈ Ĝdn, then NΓ (π) is a sort of regularized dimension of Mπ . We will show in
Proposition 5 that NΓ (π) is an integer in this case, too. The continuous part of the
spectrum will contribute a point measure supported on the irreducible constitutents
of the representationsπσ ,0, and the corresponding weight will be denoted by ÑΓ (π).
The remaining contribution of the continuous spectrum is absolute continuous to
the Lebesgue measure dλ on Ĝac = M̂× ia∗+ and will be described by the density
LΓ (πσ ,λ ). By Theorem 3, this density appears in the functional equation of the
Selberg zeta function. In particular, as it can be already seen from the definition
below, LΓ (πσ ,λ ) admits a meromorphic continuation to all of a∗

C
as a function of λ .

Its residues are closely related to the multiplicities of resonances.
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Conjecture 1. If f ∈C∞
c (G) is bi-K-finite, then we have

Ψ( f ) = ∑
σ∈M̂

1
4π

∫
ia∗

LΓ (πσ ,λ )θπσ ,λ ( f )dλ

+ ∑
σ∈M̂,σ∼=σw,πσ ,0red.

∑
ε∈{+,−}

ÑΓ (πσ ,ε)θπσ ,ε ( f )

+ ∑
σ∈M̂,σ∼=σw,πσ ,0 irred.

ÑΓ (πσ ,0)θπσ ,0( f )

+ ∑
π∈Ĝc∪Ĝdn

NΓ (π)θπ( f ),

where

LΓ (πσ ,λ ) :=
d

dμ |μ=λ
Tr′
[
χΓ∞ ◦ Jw

σ ,λ ◦
(
ext◦ Φ̄λ ,μ ◦π∗− Φ̄λ ,μ

)◦ (Jw
σ̃ ,−μ)

∗ ◦Φ−μ,−λ
]

(47)
and

ÑΓ (πσ ,±) := ±1
4

Tr′ lim
λ→0

([
Φλ ,−λ ◦ χΓ∞ ◦ Jσ ,λ ◦ (ext◦π∗− 1)

])
,

ÑΓ (πσ ,0) :=
1
4

Tr′ lim
λ→0

([
Φλ ,−λ ◦ χΓ∞ ◦ Jσ ,λ ◦ (ext◦π∗− 1)

])
.

Note that the discussion above does not prove this conjecture. What it does prove
is the following theorem. Here, we call a measurable operator valued function h on Ĝ
smooth if it depends smoothly on the inducing parameter of unitary principal series
representations. More precisely, for σ ∈ M̂ we consider the natural map iσ : ia∗ → Ĝ
given by iσ (λ ) := [πσ ,λ ] ∈ Ĝ. We require that h ◦ iσ : ia∗ → End(L2(K×M Vσ )) is
smooth. We do not impose any condition at the remaining representations π ∈ Ĝ.

Theorem 2. If Ĝ � π �→ h(π) ∈ EndK(Vπ) is smooth, of compact support, and
factorizes over finitely many K-types, then we have

Ψ ′( ˜̌h) = ∑
σ∈M̂

1
4π

∫
ia∗

LΓ (πσ ,λ )Tr h(πσ ,λ )dλ

+ ∑
σ∈M̂,σ∼=σw,πσ ,0red.

∑
ε∈{+,−}

ÑΓ (πσ ,ε)Tr h(πσ ,ε)

+ ∑
σ∈M̂,σ∼=σw,πσ ,0 irred.

ÑΓ (πσ ,0)Tr h(πσ ,0)

+ ∑
π∈Ĝc∪Ĝdn

NΓ (π)Tr h(π).
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6 Resolvent Kernels and Selberg Zeta Functions

6.1 Meromorphic Continuation of Resovent Kernels

We fix some K-type τ and introduce the vector bundles

V (τ) := G×K Vτ → X := G/K, VY (τ) := Γ \V (τ)→ Y := Γ \X .

Fixing the (scale of the) invariant Riemannian metric on X defines an Ad-invariant
bilinear form b on g. The Casimir operator C of G corresponding to −b gives rise
to an unbounded self-adjoint operator on the Hilbert space of sections L2(X ,V (τ)).
To be precise, it is the unique self-adjoint extension of the restriction of C to the
space of smooth sections with compact support. It is bounded from below. For each
complex number z which is not contained in the spectrum σ(C), we let R(z) be the
operator (z−C)−1. By r(z), we denote its distribution kernel.

The Casimir operator descends to an operator acting on sections of VY (τ)
and induces a unique unbounded self-adjoint operator CY on L2(Y,VY (τ)). For
z �∈ σ(CY ), we define the resolvent RY (z) of the operator (z−CY )

−1 and denote
by rY (z) its distribution kernel. We consider both, r(z) and rY (z), as distribution
sections of the bundle V (τ)�V (τ̃) over X ×X . We will in particular be interested
in the difference d(z) := rY (z)− r(z).

Let M̂(τ)⊂ M̂ denote the set of irreducible representations of M which appear in
the restriction of τ to M. For each σ ∈ M̂ and λ ∈ a∗

C
let zσ (λ ) denote the value of C

on the principal series representation Hσ ,λ . We will fix the unique order-preserving
isometric identification a∗ ∼=R. Then zσ (λ ) is of the form zσ (λ ) = cσ−λ 2 for some
cσ ∈ R. We define Cτ to be the branched cover of C to which the inverse functions

λσ (z) =
√

cσ − z

extend holomorphically for all σ ∈ M̂(τ). We fix one sheet Cphys of Cτ over the
set C \ [b,∞), b := minσ∈M̂(τ) cσ , which we call physical. We will often consider

C
phys as a subset of C. It follows from the Plancherel theorem for L2(X ,V (τ)) and

L2(Y,VY (τ)) (see [4]) that [b,∞) is the continuous spectrum of C and CY . Thus, d(z)
is defined on the complement of finitely many points of Cphys, which belong to the
discrete spectrum of C and CY .

Let Δ denote the diagonal in X ×X and define S :=
⋃

1 �=γ∈Γ (1× γ)Δ ⊂ X ×X .
Let Ci, i = 1,2, denote the Casimir operators of G acting on the first and the second
variable of the product X ×X . The distribution d(z) satisfies the elliptic differential
equation

(2z−C1−C2)d(z) = 0 (48)

on X×X \ S and is therefore smooth on this set.
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Lemma 5. The kernel d(z) extends to Cτ as a meromorphic family of smooth
sections of V (τ)�V(τ̃) on X×X \ S.

Proof. We first show

Lemma 6. r(z) and rY (z) extend to Cτ as meromorphic families of distributions.

Proof. We give the argument for rY (z) since r(z) can be considered as a special
case, where Γ is trivial. Let Vi ⊂ X , i = 1,2 be open subsets such that the restriction
to Vi of the projection X → Y is a diffeomorphism. We consider φ ∈C∞

c (V1,V (τ̃)),
ψ ∈C∞

c (V2,V (τ)) as compactly supported sections over Y .
We now employ the Plancherel theorem [4] for L2(Y,VY (τ)) in order to show that

rφ ,ψ (z) := rY (z)(φ ⊗ψ) = 〈φ ,(z−CY )
−1ψ〉

extends meromorphically to Cτ . We decompose

φ = ∑
s∈σp(CY )

φs +φac, ψ = ∑
s∈σp(CY )

ψs +ψac

according to the discrete and continuous spectrum of CY . We have

rφ ,ψ (z) = ∑
s∈σp(CY )

(z− s)−1〈φs,ψs〉+ 〈φac,(z−C)−1ψac〉.

We now employ the Eisenstein Fourier transformation in order to rewrite the last
term of this equation.

For each σ ∈ M̂(τ), we consider the normalized Eisenstein series as a meromor-
phic family of maps

C−∞(B,VB(σλ ))⊗HomM(Vσ ,Vτ)� f ⊗T �→ 0ET
λ ( f ) := 0PT

λ ◦ext( f )∈C∞(Y,VY (τ))

parametrized by λ ∈ a∗
C

. For each σ let {Ti(σ)}i, Ti(σ) ∈ HomM(Vσ ,Vτ), be a
basis, and let T j(σ) ∈ HomM(Vσ̃ ,Vτ̃) be the dual basis in the following sense:
Ti(σ)∗T j(σ) = δ j

i idVσ̃ . If φ ∈ C∞
c (Y,VY (τ̃)), then its Eisenstein Fourier transform

EFTσ̃ (φ)(λ ) ∈C∞(B,VB(σ̃λ ))⊗HomM(Vσ̃ ,Vτ̃) is given by

〈EFTσ̃ (φ)(λ ), f ⊗Ti(σ)〉 := 〈φ ,0ETi(σ)
−λ ( f )〉 = 〈(0ETi(σ)

−λ )∗(φ), f 〉.

As a consequence of the Plancherel theorem, we obtain for φ ∈ C∞
c (V1,V (τ̃)),

ψ ∈C∞
c (V2,V (τ)) that

〈φac,ψac〉 = ∑
σ∈M̂(τ)

1
4πωX

∫
ia∗
〈EFTσ̃ (φ)(−λ ),EFTσ (ψ)(λ )〉dλ

= ∑
σ∈M̂(τ)

1
4πωX

∑
j

∫
ia∗
〈(0E

Tj(σ)
λ )∗(φ),(0ET j(σ)

−λ )∗(ψ)〉dλ
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= ∑
σ∈M̂(τ)

1
4πωX

∑
j

∫
ia∗
〈φ ,0E

Tj(σ)
λ ◦ (0ET j(σ)

−λ )∗(ψ)〉dλ .

In a similar manner, we obtain

〈φac,(z−C)−1ψac〉

= ∑
σ∈M̂(τ)

1
4πωX

∑
j

∫
ia∗

(z− zσ (λ ))−1
〈
φ ,0E

Tj(σ)
λ ◦ 0

(
ET j(σ)
−λ

)∗
(ψ)

〉
dλ .(49)

We further investigate the summands in (49) for each σ seperately. So for
z ∈C

phys we put

u(z) :=
∫

ia∗
(z− zσ (λ ))−1∑

j

〈
φ ,0E

Tj(σ)
λ ◦ 0

(
ET j(σ)
−λ

)∗
(ψ)

〉
dλ . (50)

If we set F(μ) := u(zσ (μ)), then it is defined and holomorphic for Re(μ)> 0. Thus

F(μ) =
∫ i∞

−i∞

f (z)
μ2− z2 dz, Re(μ)> 0, (51)

for some meromorphic function f on C that is regular and integrable on the
imaginary axis and satisfies f (z) = f (−z). The last property is a consequence of
the functional equation of the Eisenstein series and the unitarity of the scattering
matrix on the imaginary axis. Here, we interpret the integral as a complex contour
integral. Elementary residue calculus shows that any function of the form (51)
extends meromorphically to all of C obeying the functional equation

F(μ)−F(−μ) = 2π i
f (μ)
μ

. (52)

Indeed, let us denote the right half-plane by U . For ν ∈ iR \ {0}, we consider a
compact change of the contour of integration in (51), symmetric with respect to z =
0, without crossing singularities of f and leaving ν to the right (and hence−ν to the
left). We obtain holomorphic functions Fν , ν ∈ iR\{0} on open neighborhoods Uν
of ν such that Fν|U∩Uν = F|U∩Uν and Fν|Uν∩Uν′ = Fν ′|Uν∩Uν′ and thus a holomorphic
extension of F to an open set U+ containing U ∪ iR\ {0}. For μ ∈U+∩ (−U+) we
get by construction of the extension of F

F(μ)−F(−μ) = 2π i

(
−resz=μ

f (z)
μ2− z2 + resz=−μ

f (z)
μ2− z2

)
= 2π i

f (μ)
μ

.

We can now define F on the left half-plane by this functional equation and obtain
a meromorphic continuation of F to C \ {0}, where 0 is an isolated singularity of
F . This singularity is removable if f (0) = 0. In general, it is a pole of at most first
order since

∫ i∞
−i∞

1
μ2−z2 dz = π i

μ . Hence, F is also meromorphic at μ = 0.
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Thus, we have shown that rY (z) is a meromorphic family of distributions if we
put the topology induced by the evaluations against sections of the form φ ⊗ψ . We
now argue that it is indeed meromorphic with respect to the strong topology. It is
clear that rY (z) is so on the sheet Cphys. If z1,z2 ∈ Cτ vary in different sheets of
Cτ but project to the same z ∈ C

phys, then by the construction above the difference
rY (z1)−rY (z2) is a meromorphic family of smooth sections. We conclude that rY (z)
is a meromorphic family of distributions on Cτ . �

We see that d(z) extends to a meromorphic family of distributions on Cτ . Since
it fulfills the differential equation (48) on Δ \ S, we conclude that its restriction to
this set is in fact a meromorphic family of smooth sections. This finishes the proof
of Lemma 5. �

6.2 Finite Propagation Speed Estimates

In Sect. 6.1, we have fixed the scaling of the Riemannian metric, which we use in
order to define the distance function d1 : X × X → R. On X ×X we furthermore
define the function d0(x,y) := inf1 �=γ∈Γ d1(x,γy). Note that S = {d0 = 0}. Given
ε > 0 we define the neighbourhood Sε := {d0 ≤ ε} of S. Let b := infσ(CY ).

Lemma 7. Given ε > 0 and a compact subset W ⊂ {Re(z)< b} there is a constant

C > 0 such that |d(z)(x,y)| <Ce−(d0(x,y)−ε)
√

b−Re(z) for all (x,y) �∈ S2ε and z ∈W.

Proof. We are going to use the finite propagation speed method, which has been
introduced in [6]. In this case, we employ the finite propagation speed of the wave
operators cos(tA) and cos(tAY ), where A :=

√
C− b, AY :=

√
CY − b. We write

R(z) = (b− z)−
1
2

∫ ∞

0
e−t
√

b−z cos(tA)dt,

RY (z) = (b− z)−
1
2

∫ ∞

0
e−t
√

b−z cos(tAY )dt.

Finite propagation speed gives

d(z)(x,y) = (b− z)−
1
2

∫ ∞

d0(x,y)−ε
e−t
√

b−z[cos(tAY )− cos(tA)]dt (x,y)

on the level of distribution kernels. By partial integration

(C1− b)N(C2− b)Nd(z)(x,y)

= (b− z)2N− 1
2

∫ ∞

d0(x,y)−ε
e−t
√

b−z[cos(tAY )− cos(tA)]dt(x,y).
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We now employ the fact that
∫ ∞

d0(x,y)−ε e−t
√

b−z cos(tAY )dt is a bounded operator

on L2(Y,VY (τ)) with norm bounded by C1e−(d0(x,y)−ε)Re(
√

b−z). A similar estimate
holds for the other term. If we choose N > dim(X)/4, then we can conclude that

|d(z)(x,y)| <Ce−(d0(x,y)−ε)Re(
√

b−z),

where C depends on W , C1, and a uniform estimate of norms of delta distributions
as functionals on the Sobolev spaces W 2N,2(X ,V (τ)) and W 2N,2(Y,VY (τ)). This
estimate holds because X ,Y as well as the bundles V (τ),VY (τ) have bounded
geometry. We further have employed the fact (which is again a consequence of
bounded geometry) that we can use powers of the operator C,CY in order to define
the norm of the Sobolev spaces. The assertion of the lemma now follows from
Re(
√

b− z)≥√b−Re(z). �

The distribution r(z) is smooth outside the diagonal Δ because it satisfies a
differential equation similar to (48). For ε > 0, we define the neighbourhood
Δε := {d ≤ ε} of Δ .

Lemma 8. For ε > 0 and a compact subset W ⊂ {Re(z) < b}, there is a constant

and C > 0 such that |r(z)(x,y)| < Ce−(d1(x,y)−ε)
√

b−Re(z) for all (x,y) �∈ Δ2ε and
z ∈W .

Proof. The proof is similar to that of Lemma 7. Using finite propagation speed, we
can write

r(z)(x,y) = (b− z)−
1
2

∫ ∞

d(x,y)−ε
e−t
√

b−z cos(tA)dt(x,y),

(C1− b)N(C2− b)Nr(z)(x,y) = (b− z)2N− 1
2

∫ ∞

d(x,y)−ε
e−t
√

b−z cos(tA)dt(x,y).

We now argue as in the proof of Lemma 7 in order to conclude the estimate. �

Let Lγ denote the action of γ ∈ Γ on sections of V (τ). By δΓ ∈ a∗ we denote the
critical exponent of Γ (see [4]).

Lemma 9. If
√

b−Re(z)> δΓ +ρ , then on X×X \ S we have

d(z) = ∑
1 �=γ∈Γ

(1⊗Lγ)r(z).

Proof. It follows from Lemma 8 that |(1⊗ Lγ )r(z)(x,y)| < Ce−d1(x,γ−1y)
√

b−Re(z).
In view of the definition of the critical exponent δΓ , this sum converges locally
uniformly on X×X \S. The distribution u(z) := rY (z)−∑γ∈Γ (1⊗Lγ)r(z) on X×X
satisfies the differential equations

(z−C1)u(z) = 0, (z−C2)u(z) = 0,
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and is therefore a smooth section depending meromorphically on z ∈ C
phys. We

further have the estimate

∑
1 �=γ∈Γ

|(1⊗Lγ)r(z)(x,y)| <Ce−sd0(x,y), s <
√

b−Re(z)− δΓ −ρ .

For Re(z)� 0, we see that u(z) defines a bounded operator on L2(Y,VY (τ)) with
image contained the z-eigenspace of C. Since z is outside the spectrum it vanishes.
Since u is meromorphic in z, it vanishes for all z with

√
b−Re(z) > δΓ +ρ . This

proves the lemma. �

6.3 Boundary Values

We define ∂S :=
⋃

1 �=γΓ (γ×1)(∂Δ ∩Ω ×Ω), where ∂Δ ⊂ ∂X×∂X is the diagonal
in the boundary. The meromorphic family of eigensections d(z) on X × X \ S
has meromorphic families of hyperfunction boundary values. Since we consider a
product of rank one spaces it is easy to determine the leading exponents of a joint
eigensection of C1,C2 with eigenvalue z. These exponents are pairs of elements
of a∗

C
.

Lemma 10. The set of leading exponents of a joint eigensection of C1,C2 in the
bundle V (τ)⊗V(τ̃) with generic eigenvalue z is

{
μ(σ ,ε),(σ ′,ε ′)(z) |σ ∈ M̂(τ),σ ′ ∈ M̂(τ̃), ε,ε ′ ∈ {+,−}} ,

where μ(σ ,ε),(σ ′,ε ′)(z) = (−ρ + ελσ (z),−ρ + ε ′λσ ′(z)). The corresponding bound-
ary value is a section of the bundle V (τ(σ)ελσ (z))⊗V (τ̃(σ ′)ε ′λσ ′ (z))→ ∂X × ∂X,
where τ(σ), τ̃(σ ′) denote the isotypic components.

Proof. An eigensection of C in V (τ) → X has leading exponents −ρ + ελσ (z),
ε ∈ {+,−}, and the corresponding boundary value is a section of V (τ(σ)ελσ (z)).
This implies the lemma. �

Note that d(z) is a joint eigensection in a neighbourhood in X×X of Ω×Ω \∂S.
Therefore, for generic z it has hyperfunction boundary values along this set [15]. We
denote the boundary value associated with the leading exponent ν := μ(σ ,ε),(σ ′,ε ′)(z)
by βν( f ).

Lemma 11. We have βν(d(z)) = 0 (the meromorphic family of hyperfunctions
vanishes) except for ν = μ(σ ,−),(σ̃w,−)(z), σ ∈ M̂(τ), in which case βν(d(z)) is a
meromorphic family of real analytic sections.
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Proof. We employ the fact that βν(d(z)) depends meromorphically on z. Let
U ⊂ Ω be such that the restriction of the projection Ω → B to U is a diffeomor-
phism. The identification a∗ ∼= R fixed above induces an identification A ∼= R

+,
which we use in the following estimates. There is a constant c > 0 such that
for all (k1,k2) ∈ U ×U we have d0(k1a1,k2a2) > c|max(a1,a2)| (see [4], Cor.
2.4). Using Lemma 7, we see that for Re(z) < b we have |d(z)(k1a1,k2a2)| <
C|max(a1,a2)|−

√
b−Re(z), where C depends on z. If one of the signs ε,ε ′ is

positive, for z� 0 we have
√

b− z− 2ρ + ελσ (z)+ ε ′λσ ′(z) > 0. For those z, we

have limmin(a1,a2)→∞ d(z)(k1a1,k2a2)(a1,a2)
−μ(σ ,ε),(σ ′ ,ε ′)(z) = 0 uniformly in (k1,k2),

where (a,b)(μ,ν) := aμbν . This shows that βν(d(z)) = 0 if one of ε,ε ′ is positive.
We now consider the kernel r(z) on X × X \ Δ . It is a joint eigenfunction of

C1,C2 to the eigenvalue z on a neighbourhood of ∂X × ∂X \ ∂Δ and therefore has
hyperfunction boundary values along this set. A similar argument as above but using
Lemma 8 instead of 7 shows that βν(r(z)) = 0 except for ε = ε ′ =−.

Note that r(z) is G-invariant in the sense that for g ∈ G we have Lg⊗Lgr(z) =
r(z). If ν = μ(σ ,−),(σ ′,−)(z), then βν(r(z)) is a G-invariant hyperfunction section
of V (τ(σ)−λσ (z))⊗V (τ̃(σ ′)−λσ ′(z) ) over ∂X × ∂X \ ∂Δ . Since this set is an orbit
of G, an invariant hyperfunction on this set is smooth, and the evaluation at the
point (w,1) ∈ ∂X × ∂X provides an injection of the space of invariant sections into
Vτ(σ)⊗Vτ̃(σ ′). If b is such a G-invariant section, then we have for ma ∈MA

b(w,1) = b(maw,ma)

= b(wmwa−1,ma)

= τ(wm−1w)⊗ τ̃(m−1)aλσ ′ (z)−λσ (z)b(w,1).

Thus, b(w,1) ∈ [Vτw(σw)⊗Vτ̃(σ ′)]M. We conclude that σ ′ ∼= σ̃w, and in this case
λσ ′(z) = λσ (z) holds automatically. Thus, βν(r(z)) = 0 if σ ′ �∼= σ̃w.

We write

V (τ(σ)−λ )⊗V(τ̃(σ̃w)−λ )

=V (σ−λ )⊗V(σ̃w
−λ )⊗HomM(Vσ ,Vτ)⊗HomM(Vσ̃w ,Vτ̃).

The space of invariant sections of V (σ−λ )⊗V (σ̃w
−λ ) over ∂X×∂X \∂Δ is spanned

by the distribution kernel ĵw
σw,λ of the Knapp–Stein intertwining operator Ĵw

σw,λ .

We conclude that for each σ ∈ M̂(τ) there is a meromorphic family Aσ (z) ∈
HomM(Vσ ,Vτ)⊗HomM(Vσ̃w ,Vτ̃) such that for ν = μ(σ ,−),(σ̃w,−)(z) we have under
the identifications above βν(r(z)) = ĵw

σw,λσ (z)⊗Aσ(z).

Let ν = μ(σ ,−),(σ̃w,−)(z). We now employ Lemma 9 which states that for Re(z)�
0 we have d(z) = ∑1 �=γ∈Γ (Lγ ⊗ 1)r(z). The sum converges locally uniformly and
thus in the space of smooth section over X×X \ S. We further see that convergence
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holds locally uniformly in a neighbourhood of Ω ×Ω \ ∂S. Thus by [18], we can
consider distribution boundary values, and by continuity of the boundary value map
we have on Ω ×Ω \ ∂S

βν(d(z)) = ∑
1 �=γ∈Γ

(πσ−λσ (z) (γ)⊗ 1)βν(d(z))

= ∑
1 �=γ∈Γ

(πσ−λσ (z) (γ)⊗ 1) ĵw
σw,λσ (z)⊗Aσ (z)

= (ŝw
σw,λσ (z)− ĵw

σw,λσ (z))⊗Aσ(z),

where ŝw
σw,λσ (z) is the distribution kernel of the scattering matrix Ŝw

σw,λσ (z). Here, we

use the identity π∗ ◦ Ĵw
σw,λσ (z) = Ŝw

σw,λσ (z) ◦ π∗, which implies that the distribution

kernel of the scattering matrix Ŝw
σw,λ can be obtained by averaging the distribution

kernel of the Knapp–Stein intertwining operator Ĵw
σw,λ for Re(λ )� 0.

It follows from the results of [4] that ŝw
σw,λσ (z)− ĵw

σw,λσ (z) extends to a meromor-
phic family of smooth sections on all of a∗

C
. By [5], Lemma 2.19, 2.20, it is indeed

a meromorphic family of real analytic sections. Strictly speaking, in [5] we only
considered the spherical M-type for G = SO(1,n), the straightforward extension of
these results to the general case can be found in [17, Chap. 3]. We conclude that
βν(d(z)) is real analytic as required.

A similar reasoning shows that βν(d(z)) = 0 for all ν which are not of the form
μ(σ ,−),(σ̃w,−)(z) for some σ ∈ M̂(τ). �

Lemma 12. We have an asymptotic expansion (for generic z)

d(z)(k1a,k2a)
a→∞∼ ∑

σ∈M̂(τ)

∞

∑
n=0

a−2ρ−2λσ(z)−nα pz,σ ,n(k1,k2), (53)

which holds locally uniformly for k ∈ Ω ×Ω \ ∂S, and where the real analytic
sections pz,σ ,n(k1,k2) of V (τ)⊗V(τ̃) depend meromorphically on z.

Proof. Since the boundary value of d(z) along Ω ×Ω \ ∂S is real analytic we can
employ [18], Prop. 2.16, in order to conclude that d(z) has an asymptotic expansion
with coefficients, which depend meromorphically on z. The formula follows from
an inspection of the list of leading exponents Lemma 11. �

Lemma 12 has the following consequence. For generic z, we have

tr d(z)(ka,ka)
a→∞∼ ∑

σ∈M̂(τ)

∞

∑
n=0

a−2ρ−2λσ (z)−nα pz,σ ,n(k),

which holds locally uniformly for k ∈Ω , and where the real analytic functions pz,σ ,n
depend meromorphically on z.
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6.4 The Regularized Trace of the Resolvent

Recall that χΓ ∈C∞
c (X∪Ω) is a cut-off function such that∑γ∈Γ γ∗χΓ = 1 on X∪Ω .

Lemma 13. The integral

Qτ(z) :=
∫

X
χΓ (x) tr d(z)(x,x)dx

converges for Re(z)� 0 and admits a meromorphic continuation to all of Cτ .

Proof. Convergence for Re(z)� 0 follows from Lemma 7. Fix R ∈ A. We write
Qτ(z) = Q1(z,R)+Q2(z,R), where

Q1(z,R) :=
∫ R

1

∫
K
χΓ (ka)tr d(z)(ka,ka)dkv(a)da,

where v is such that dk v(a)da is the volume measure on X . Note that v(a) ∼
a2ρ(ωX + a−αc1 + a−2αc2 + · · ·) as a→ ∞.

It is clear that Q1(z,R) admits a meromorphic continuation. We have an
asymptotic expansion as a→ ∞.

u(z,a) :=
∫

K
χΓ (ka)tr d(z)(ka,ka)dkv(a)∼ ∑

σ∈M̂(τ)

∞

∑
n=0

a−2λσ (z)−nαqz,σ ,n,

where q depends meromorphically on z. For m ∈ N, let

um(z,a) := u(z,a)− ∑
σ∈M̂(τ)

m

∑
n=0

a−2λσ (z)−nαqz,σ ,n.

Given a compact subset W of Cτ we can choose m ∈ N0 such that
∫ ∞

R um(z,a)da
converges (for generic z) and depends meromorphically on z for all z ∈ W . We
further have

∑
σ∈M̂(τ)

m

∑
n=0

∫ ∞

R
a−2λσ (z)−nαqz,σ ,nda = ∑

σ∈M̂(τ)

m

∑
n=0

R−2λσ (z)−nαqz,σ ,n
2λσ(z)+ nα

,

and this function extends meromorphically to Cτ . Since we can choose W arbitrary
large, we conclude that Qτ(z) admits a meromorphic continuation to all of Cτ . �

6.5 A Functional Equation

Let L(τ) := {cσ |σ ∈ M̂(τ)} be the set of ramification points of Cτ , define C
� :=

C \ L(τ), and let C�
τ ⊂ Cτ be the preimage of C

� under the projection Cτ → C.
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Then C
�
τ → C

� is a Galois covering with group of deck transformations Π :=
⊕L(τ)Z2. The action of Π extends to Cτ such Cτ \C�

τ consists of fixed points. For
l ∈ L(τ) let ql ∈Π be the corresponding generator. Then we have λσ (qlz) =−λσ (z)
for all σ ∈ M̂(τ) with cσ = l and λσ ′(qlz) = λσ ′(z) else.

Recall the definition (47) of the function LΓ (πσ ,λ ).

Proposition 4. For l ∈ L(τ), we have

Qτ(qlz)−Qτ(z) = ∑
σ∈M̂(τ),cσ=l

−[τ : σ ]
2λσ (z)

LΓ (πσ ,λσ (z)).

Proof. The proof of Lemma 5, in particular the functional equation (52), gives that
(in the notation introduced there)

〈rY (qlz)−rY (z),φ⊗ψ〉= ∑
σ∈M̂(τ),cσ=l

−1
2ωXλσ (z)∑j

〈
φ ,0E

Tj(σ)
λσ (z) ◦

0
(

ET j(σ)
−λσ (z)

)∗
(ψ)

〉
.

We conclude that

rY (qlz)− rY (z) = ∑
σ∈M̂(τ),cσ=l

−1
2ωXλσ (z)∑j

0E
Tj (σ)
λσ (z) ◦

0
(

ET j(σ)
−λσ (z)

)∗
.

The same reasoning applies to the trivial group Γ , where the Eisenstein series get
replaced by the Poisson transformations. Thus, we can write

d(qlz)− d(z) = ∑
σ∈M̂(τ),cσ=l

−1
2ωXλσ (z)∑j

0P
Tj(σ)
λσ (z) ◦ (ext◦π∗− 1)◦

(
0PT j(σ)
−λσ (z)

)∗
.

The proof of Lemma 13 shows that Q1(z,R) has an asymptotic expansion

Q1(z,R)∼ Qτ(z)+ ∑
σ∈M̂(τ)

∞

∑
n=0

R−2λσ (z)−nαqz,σ ,n

2λσ (z)+ nα
.

In particular, if 2λσ (z) �∈ −N0α for all σ , then Qτ(z) is the constant term in the
asymptotic expansion of Q1(z,R).

We can now apply the part of the proof of Proposition 2 in which we determined
the constant term (as R→ ∞) of

∫ R

1

∫
K
χΓ (ka)tr

[
0P

Tj(σ)
λ ◦ (ext◦π∗− 1)◦ (0PT j(σ)

−λ )∗
]
(ka,ka)dkv(a)da

as a distribution on ia∗ \ {0}. This shows the desired equation first on zσ (ia∗), and
then everywhere by meromorphic continuation. �
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6.6 Selberg Zeta Functions

For a detailed investigation of Selberg zeta functions associated with bundles (for
cocompact Γ ), we refer to [3]. Here, we assume that σ is irreducible and Weyl
invariant, or that it is of the form σ ′ ⊕(σ ′)w for some Weyl non-invariant irreducible
M-type σ ′. In the latter case, we define LΓ (πσ ,λ ) := LΓ (πσ

′,λ )+LΓ (π (σ ′)w,λ ).
Let P = MAN be a parabolic subgroup of G. If γ ∈ Γ \ 1, then it is conjugate in

G to an element mgag ∈MA with ag > 1. Let n̄ be the negative root space of (g,a).
For Re(λ )> ρ , we can define the Selberg zeta function ZS(λ ,σ) by the converging
infinite product

ZS(λ ,σ) := ∏
1 �=[g]∈CΓ

∞

∏
k=0

det
(

1−σ(mg)⊗ Sk(Ad(mgag)|n̄)a−λ−ρg

)
.

In the case of cocompact Γ , it was shown by [7] that ZS(λ ,σ) has a meromorphic
continuation to all of a∗

C
. In [20], it was explained that the argument of [7] extends

to the case of convex cocompact subgroups since it is the compactness of the non-
wandering set of the geodesic flow of Y that matters and not the compactness of Y .
Strictly speaking, [20] deals with the spherical case of SO(1,2n), but the argument
extends to the general case.

There is a virtual representation τ of K (i.e. an element of the integral represen-
tation ring of K) such that τ|M = σ in the integral representation ring of M (see [16],
[3]). We call τ a lift of σ . Note that τ is not unique. We can extend the material
developed above to virtual K-types by extending the traces linearly. Because of the
factor [τ : σ ], Proposition 4 has the following corollary.

Corollary 1. If τ is a lift of σ , then Qτ(z) extends to a twofold branched cover of
C associated with λσ (z).

Theorem 3. The Selberg zeta function satisfies

ZS(λ ,σ)
ZS(−λ ,σ) = exp

∫ λ

0
LΓ (πσ ,z)dz.

In particular, the residues of LΓ (πσ ,λ ) are integral.

Proof. By [3], Prop. 3.8. we have

Qτ(zσ (λ )) =
1

2λ
Z′S(λ ,σ)/ZS(λ ,σ) (54)

for Re(λ )� 0. Indeed, for Re(λ )� 0 the function f , f (g) := trd(zσ (λ ))(g,g),
satisfies Lemma 1. Therefore, Qτ(zσ (λ )) is just what is called in [3] the hyperbolic
contribution associated to the resolvent.
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So Corollary 1 and Proposition 4 yield the functional equation of the logarithmic
derivative of the Selberg zeta function

Z′S(−λ ,σ)
ZS(−λ ,σ) +

Z′S(λ ,σ)
ZS(λ ,σ)

= LΓ
(
πσ ,λ

)
. (55)

Integrating and employing the a priori information that ZS(λ ,σ) is meromorphic,
we obtain the desired functional equation. �

As explained in the introduction, it is known (from the approach to ZS using
symbolic dynamics and Ruelles thermodynamic formalism) that ZS(λ ) is a mero-
morphic function of finite order. It follows that LΓ (πσ ,λ ), as a function of λ , grows
at most polynomially.

In order to describe the singularities of ZS(λ ,σ) we assume – if X has even
dimension – that τ is an admissible lift of σ (see [3], Def. 1.17). Let nλ ,σ denote the
(virtual) dimension of the subspace of the L2-kernel of CY − zσ (λ ) on VY (τ), which
is generated by non-discrete series representations of G. Using (54) and (55), one
can derive the following corollary.

Corollary 2. The orders of the singularities of the Selberg zeta function ZS(λ ,σ)
associated to Γ at μ �= 0 are given by

ordλ=μZS(λ ,σ) =
{

nμ,σ Re(μ)> 0,
resλ=μLΓ (πσ ,λ )+ n−μ,σ Re(μ)< 0.

If μ is non-integral and if ext has a pole at μ of at most first order, then it is not
difficult to see that

resλ=μLΓ (πσ ,λ ) = dim ΓC−∞(Λ ,V (σμ))− dim ΓC−∞(Λ ,V (σ−μ)),

where ΓC−∞(Λ ,V (σ±μ)) is the space of Γ -invariant distribution sections on ∂X
with support on the limit set Λ . If ext has higher order singularity, then the
residue has a similar interpretation (see [5], Prop. 5.6) This provides an independent
argument for the integrality of the residues of LΓ (πσ ,λ ) at non-integral μ . For
Re(μ)> 0, μ non-integral again, one has in addition

nμ,σ = dim ΓC−∞(Λ ,V (σμ)).

This gives the plain formula (provided μ is non-integral and ext has an at most first
order pole at μ)

ordλ=μZS(λ ,σ) = dim ΓC−∞(Λ ,V (σμ)) ,

which is in accordance with Patterson’s general conjecture [5, 14, 17, 19] on a
cohomological description of the singularities of ZS(λ ,σ). The conjecture has been
established in a number of cases. The difficulty in the general case is to achieve a
good understanding of the residues of LΓ (πσ ,λ ) at integral μ .



Towards the Trace Formula for Convex-Cocompact Groups 145

6.7 Integrality of NΓ (π) for Discrete Series Representations

Let π be a discrete series representation of G containing the K-type τ̃ . There
are embeddings Mπ ⊗Vπ(τ̃) ↪→ L2(Γ \G)(τ̃) and Vπ̃ ⊗Vπ(τ̃) ↪→ L2(G)(τ̃). Let
A ∈ EndK(Vπ(τ̃)) be given. We extend A by zero to the orthogonal complement
of Vπ(τ̃), thus obtaining an operator in EndK(Vπ), which we will still denote by A.
The operator A induces operators ŘΓ (hA) and Ř(hA) on L2(Γ \G) and L2(G), where
hA is supported on {π} ⊂ Ĝ and hA(π) := A.

Here, we are mainly interested in the case of a non-integrable discrete series
representation π , compare the discussion in Sect. 5.2.

Lemma 14. We have

KŘΓ (hA)
(g,g)−KŘ(hA)

(g,g) ∈ L1(Γ \G).

Proof. Let D(G,τ) be the algebra of invariant differential operators on V (τ). It
is isomorphic to (U (g)⊗U (k) End(Vτ))K . If π ′ is an admissible representation of
G, then D(G,τ) acts in a natural way on (Vπ ′ ⊗Vτ)K . If π ′ is irreducible, then
(Vπ ′ ⊗Vτ)K is an irreducible representation of D(G,τ). The correspondence π ′ �→
(Vπ ′ ⊗Vτ) provides a bijection between the sets of equivalence classes of irreducible
representations of G containing the K-type τ̃ and irreducible representations of
D(G,τ), see e.g. [21, 3.5.4].

Note that EndK(Vπ(τ̃)) ∼= End((Vπ ⊗Vτ)K). We conclude that there is DA ∈
D(G,τ) that induces the endomorphism A on Vπ(τ̃). Let z0 be the eigenvalue of
the Casimir operator on π and Z be the finite set of irreducible representations of
G containing the K-type τ̃ such that C acts with eigenvalue z0. Then we can choose
DA such that it vanishes on all (Vπ ′ ⊗Vτ)K for π ′ ∈ Z, π ′ �= π .

For simplicity, we assume that z0 is not a branching point of R(z). In the
latter case, the following argument can easily be modified. The operators DARY (z)
and DAR(z) have poles at z0 with residues KŘΓ (hA)

and KŘ(hA)
. The difference

(DA)1d(z) := (DA)1rY (z)− (DA)1r(z) of distribution kernels is still a meromorphic
family of joint eigenfunctions with real analytic boundary values along Ω×Ω \∂S.
We have the asymptotic expansion

(DA)1d(z)(k1a,k2a)
a→∞∼ ∑

σ∈M̂(τ)

∞

∑
n=0

a−2ρ−2λσ(z)−nα pz,σ ,n,A(k1,k2). (56)

The residue of (DA)1d(z) at z0 can be computed by integrating (DA)1d(z) along a
small circle counter-clockwise surrounding z0. If we insert the asymptotic expansion
(56) into this integral, then we obtain an asymptotic expansion

resz=z0(DA)1d(z)(k1a,k2A)
a→∞∼ ∑

σ∈M̂(τ)

∞

∑
n=0

resz=z0a−2ρ−2λσ(z)−nα pz,σ ,n,A(k1,k2)
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∼ ∑
σ∈M̂(τ)

∞

∑
n=0

finite

∑
m=0

log(a)ma−2ρ−2λσ (z0)−nα pz0,σ ,n,m,A(k1,k2),

where pz0,σ ,n,m,A is a real analytic section on Ω ×Ω \ ∂S. Since KŘΓ (hA)
and

KŘ(hA)
project onto eigenspaces of square integrable sections we have for k1 �= k2

KŘ(hA)
(k1a1,k2a2)

ai→∞∼
∞

∑
n1,n2=0

finite

∑
m1,m2

log(a1)
m1 log(a2)

m2

a−ρ−λσ (z0)−n1α
1 a−ρ−λσ (z0)−n2α

2 pz0,σ ,n1,n2,m1,m2,A(k1,k2),

with pz0,σ ,n1,n2,m1,m2,A(k1,k2) = 0 as long as −λσ (z0) − n1α ≥ 0, −λσ (z0)
− n2α ≥ 0, and similarly for KŘΓ (hA)

. We conclude that −2λσ(z0)− nα < 0 if
pz0,σ ,n,m,A �= 0. The assertion of the lemma now follows. �

Recall the definition (46) of the regularized multiplicity NΓ (π) of a discrete series
representation π . By Proposition 3, it vanishes for integrable π . For the general case,
we have the following

Proposition 5. If π be a representation of the discrete series of G, then NΓ (π)∈ Z.

Proof. There exists an invariant generalized Dirac operator D acting on a graded
vector bundle E → X , E = E+⊕E−, such that Vπ̃ ⊕{0} is the kernel of D [1]. If τ
is the virtual K-representation associated with E , then

τ|M = 0. (57)

Let DY be the induced operator on Y . The distribution kernels of r(z) := (z−D2)−1

and rY (z) := (z−D2
Y )
−1 have meromorphic continuations to a branched covering of

C. Their difference goes into the functionalΨ ′. The function

Q(z) :=
∫
Γ \G

tr (rY (z)− r(z))(g,g)dg

has a meromorphic continuation to all of C by (57) and Proposition 4. Its residue at
z = 0 is given by

resz=0Q(z) = NΓ (π)+ ∑
π ′∈Ĝc

n(τ,π ′)NΓ (π ′),

where the sum reflects the fact that a finite number of representations belonging to
Ĝc may contribute to the kernel of DY . Here, n(τ,π ′) ∈ Z is the virtual multiplicity
of τ in π ′, and NΓ (π ′) ∈ N0 is the multiplicity of the complementary series
representation π ′ in L2(Γ \G). We show that resz=0Q(z) = 0 in order to conclude
that NΓ (π) =−∑π ′∈Gc n(τ,π ′)NΓ (π ′) ∈ Z.
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It suffices to show that Q(z) ≡ 0 for Re(z)� 0. This follows from (54), but we
will give an independent argument. We can write

rY (z)− r(z) =
1
z
((D2

Y )1rY (z)− (D2)1r(z)).

Integrating the restriction of this difference to the diagonal over Γ \G, we obtain

Q(z) =
1
z

∫
Γ \G

tr ((D2
Y )1rY (z)− (D2)1r(z))(g,g)dg

=
1
z

∫
G
χΓ (g)tr ((D2

Y )1rY (z)− (D2)1r(z))(g,g)dg

= −1
z

∫
G
χΓ (g)tr ((DY )1(DY )2rY (z)−D1D2r(z))(g,g)dg

−1
z

∫
G

tr c(dχΓ )1((DY )1rY (z)−D1r(z))(g,g)dg

= −1
z

∫
G
χΓ (g)tr ((D2

Y )1rY (z)−D2
1r(z))(g,g)dg

−1
z

∫
G

tr c(dχΓ )1((DY )1rY (z)−D1r(z))(g,g)dg,

where c(dχΓ ) denotes Clifford multiplication. We conclude that

Q(z) =− 1
2z

∫
G

tr c(dχΓ )1((DY )1rY (z)−D1r(z))(g,g)dg.

The right-hand side of this equation vanishes as a consequence of ∑γ∈Γ γ∗χΓ ≡ 1
and the Γ -invariance of ((DY )1rY (z)−D1r(z))(g,g). This finishes the proof of the
proposition. �
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Abstract Generalized theta functions are residues of metaplectic Eisenstein series.
Even in the case of the n-fold cover of GL(2), the Fourier coefficients of these
mysterious functions have not been determined beyond n= 3. However, a conjecture
of Patterson illuminates the case n = 4. In this paper, we make a new conjecture
concerning the Fourier coefficients of the theta function on the sixfold cover of
GL(2), present some evidence for the conjecture, and prove it in the case that the
base field is a rational function field. Although the conjecture involves a single
complex variable, our approach makes critical use of double Dirichlet series.
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has been a familiar object since the nineteenth century and it has found many
applications in number theory and other fields. Weil observed that θ (z) can be
interpreted as an automorphic form on the twofold cover of GL(2). An Eisenstein
series E(2)(z,s) on this group can be constructed which has a pole at s = 3/4, and
whose residue at this pole is a constant multiple of θ (z).

Kubota [9] investigated automorphic forms on the corresponding n-fold cover of
GL(2), n ≥ 3. He defined a metaplectic Eisenstein series E(n)(z,s) on this group
whose constant coefficient has a pole at s = 1/2+ 1/(2n). It follows that E(n)(z,s)
has a pole at this point, and Kubota defined the nth-order analog of the theta
function as

θ (n)(z) = Ress=1/2+1/(2n)E
(n)(z,s).

The precise nature of this general nth order theta function seems to be far more
mysterious than the familiar n = 2 case. Patterson [10, 11] determined (by means
of a metaplectic converse theorem) that in the case n = 3 its Fourier coefficients
are essentially cubic Gauss sums. Kazhdan and Patterson [8] then showed that on
the n-cover of GL(r) the Whittaker–Fourier coefficients of an analogously defined
theta function satisfy certain periodicity properties. However, even for GL(2), for
n ≥ 4 the Fourier coefficients of θ (n)(z) have proved quite difficult to determine.
Since they are naturally defined from an arithmetic situation (the n-fold cover is
built using nth power local Hilbert symbols; in some sense, the existence of such a
group is a reflection of nth order reciprocity), it would be of great interest to do this,
and such a determination would be likely to have applications. See, for example,
[2] for such an application which does not rely on a precise understanding of the
coefficients.

Patterson [13] has made a beautiful conjecture about the Fourier coefficients of
θ (n)(z) in the case n = 4 (see also [5] for a refinement of the original conjecture).
It was proved when the ground field is a rational function field in [6] (see [14]
for a version of [6] from Patterson’s point of view). In addition, [5, 16], extensive
numerical investigations have been made in the cases n = 4,6. But aside from some
suggestions concerning the algebraic number field in which these coefficients ought
to lie, the values of the coefficients are not in general understood, even heuristically.

The purpose of this paper is to formulate a conjecture about some of the Fourier
coefficients of θ (n)(z) in the case n = 6, and to prove this conjecture in the case of a
rational function field. This conjecture seems to be “almost” true in a more general
setting than n = 6 but some extra insight is still missing.

In the next section, we will set up some notation and explain in a rough, but
hopefully informative way, what is known, what has been conjectured, and what is
still inscrutable.
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2 A Formulation of the Conjecture

Although a great deal of number theory is concerned with Euler products, construc-
tions on the metaplectic group frequently give rise to Dirichlet series with analytic
continuation and functional equation that are not Euler products. Remarkably, it is
an observation of Patterson that the equality of two such series may nonetheless
encode deep information about the Fourier coefficients of the higher order theta
functions. In this section, we build on Patterson’s insight to arrive at a new
conjecture concerning θ (6) that is formulated as such an equality, and we explain
its consequences.

The series we require are Rankin–Selberg convolutions of metaplectic forms.
Unfortunately, such convolutions require a great deal of care at bad places (indeed,
even in the non-metaplectic case the treatment of such places is delicate). To avoid
these difficulties, we will work heuristically at first, following the style in the early
sections of [7]. We will then give a full, precise proof of the conjecture in the rational
function field case in Sect. 6. One expects many aspects of the theory of automorphic
forms over global fields to be uniform in terms of the base field, so the proof in this
case is a likely indication of a more general phenomenon.

It is worth mentioning a caveat: there is an important difference between the
function field and the number field cases. Namely, there are typically many elements
(modulo units) of given norm in a function field, and there may be much cancellation
in corresponding sums, a phenomenon that does not occur in the number field case.
Hence, the function field analog can oversimplify the number field scenario, rather
than producing a true likeness. The situations would be more comparable if twists by
characters were introduced. We have, in fact, checked in unpublished computations
that the heuristic arguments still hold if character twists are included, but we have
not checked the corresponding function field calculations.

Let F be a global field containing the 2nth roots of unity. Let o denote the ring of
integers of F . To give the heuristic treatment, we will imagine that the class number
of o is one and that all primes are unramified. These assumptions are never truly
satisfied, but the S-integer formalism, introduced by Patterson in this context, allows
one to make the heuristic definitions we give below precise. In addition to these
simplifying assumptions, we will not keep track of powers of the numbers 2 and π
in gamma factors, and we will neglect values of characters whose conductors consist
of ramified primes (simplifying, for example, the statement of the Davenport–Hasse
relation). A rational function field Fq(t) with q congruent to 1 modulo 4n comes
close to satisfying these simplifying assumptions, and thus conjectures formulated
via such simplifying assumptions can usually be stated, and occasionally proved,
rigorously in this case. That is the situation with the conjecture we present below.

A fundamental object for us is the normalized Gauss sum with numerator m and
denominator d formed with the jth power of the kth power residue symbol:

G(k)
j (m,d) = Nd−1/2 ∑

α (mod d)

(α
d

) j

k
e
(αm

d

)
,
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where e(x) is an additive character of conductor o and Nd denotes the absolute norm

of d. With this normalization, |G(k)
j (m,d)|= 1 when d is square free and (m,d) = 1.

Because we will later work with both the n and 2n-fold covers, let us begin with
a discussion of the k-fold cover, k≥ 2. In this context, the mth Fourier coefficient of
Kubota’s Eisenstein series consists of an arithmetic part times a Whittaker function
(essentially a K-Bessel function with index 1/k). The arithmetic part is a Dirichlet
series

D(k)
j (s,m) =∑

d

G(k)
j (m,d)

Nds .

Here, j is prime to k, and arbitrary; it may be regarded as parametrizing the different
embeddings of the abstract group of kth roots of unity into C

×. The sum is over d
sufficiently congruent to 1. (More carefully, one would keep track of the dependence
on the inducing data for the Eisenstein series and obtain a sum over non-zero ideal
classes, see [1].) The product

D̃(k)
j (s,m2) = Γk(s)ζ ∗(ks− k/2+ 1)D(k)

j (s,m2) (1)

has an analytic continuation and satisfies a functional equation

Nms/2D̃(k)
j (s,m2) = D̃(k)

j (1− s,m2)Nm(1−s)/2. (2)

Here,

Γk(s) = Γ
(

s− 1
2
+

1
k

)
Γ
(

s− 1
2
+

2
k

)
· · ·Γ

(
s− 1

2
+

k− 1
k

)
(3)

and ζ ∗ denotes the completed zeta function of the field F. The normalized series (1)
is analytic except for simple poles at s = 1/2+ 1/k,1/2− 1/k, and its residue at
s = 1/2+ 1/k is given by

Ress=1/2+1/kD̃(k)
j (s,m) = c

τ(k)j (m)

Nm1/2k
, (4)

where c is a nonzero constant. The numerator τ(k)j (m) is the object we are
investigating: the mth Fourier coefficient of the theta function on the k-fold cover
of GL(2).

The Eisenstein series is an eigenfunction of the Hecke operators Tpk for every

prime p and consequently so is its residue, the theta function. This forces the τ(k)j (m)
to obey certain Hecke relations (see [7, 8, 12]). These are:

τ(k)1 (mpi) = G(k)
i+1(m, p)τ(k)1 (mpk−2−i), (5)

valid for k ≥ 2, p a prime, 0≤ i≤ k− 2, and (m, p) = 1.
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For the moment, we will restrict ourselves to the case m = 1. Our object is to

understand the nature of the coefficients τ(k)1 (pi), that is the coefficients at prime
power indices of the theta function formed from the first power of the kth order
residue symbol. The periodicity relation proved by Kazhdan and Patterson reduces,
in this case, to the relation

τ(k)1 (mpk) = Np1/2τ(k)1 (m)

for any m. Thus when studying τ(k)1 (pi), we need go no higher than i = n− 1.

Referring to (5), we see from taking i = k− 1 that τ(k)1 (pk−1) = 0. Also, from

i = k− 2 we see (normalizing so τ(k)1 (1) = 1), that

τ(k)1 (pk−2) = G(k)
k−1(1, p).

Thus, the Hecke relations completely determine the coefficients in the cases k = 2,
the familiar quadratic theta function, and k = 3, the cubic theta function whose
coefficients were found by Patterson. In particular, when k = 3

τ(3)1 (p) = G(3)
2 (1, p) = G(3)

1 (1, p)

and τ(3)1 (p2) = 0.
Unfortunately, for k ≥ 4, the information provided by the Hecke operators is

incomplete. The first undetermined case, k = 4, was studied by Patterson in [13].

The Hecke relations in this case give τ(4)1 (p3) = 0 and

τ(4)1 (p2) = G(4)
3 (1, p) = G(4)

1 (1, p),

but τ(4)1 (p) is just related to itself. When the m is reintroduced and we use periodicity
we have the more refined information

τ(4)1 (mp) = G(4)
2 (m, p)τ(4)1 (mp).

The Gauss sum is

G(4)
2 (m, p) =

(
m
p

)2

4
G(4)

2 (1, p) =

(
m
p

)
2

G(2)
1 (1, p) =

(
m
p

)
2
,

as the quadratic Gauss sum is trivial by our simplifying assumption. Thus, τ(4)1 (mp)
must vanish unless m is a quadratic residue modulo p.

Patterson observed that there are two natural Dirichlet series that can be formed:

D1(w) = ζ (4w− 1)∑G(4)
3 (1,m)

Nmw
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and

D2(w) = ζ (4w− 1)∑τ(4)1 (m)2

Nmw .

The first is the first Fourier coefficient of the Eisenstein series on the 4-cover of
GL(2), multiplied by its normalizing zeta function, and with the variable change
2s− 1/2→ w. The second is the Rankin–Selberg convolution of the theta function
with itself (not its conjugate), also multiplied by its normalizing zeta factor. He
conjectured that

D2(w) = D1(w)
2.

This conjecture was based on the fact that both sides had double poles in the same
places, both had identical gamma factors, and when corresponding coefficients were
matched, all provable properties of the coefficients of D2(w) were consistent with
the completely known D1(w). If this conjecture were true it would follow that

τ(4)1 (m)2 = G(4)
3 (1,m) ∑

d1d2=m

(
d1

d2

)
2

and in particular that

τ(4)1 (p)2 = 2G(4)
3 (1, p).

To date, Patterson’s conjecture has remained unproved and even ungeneralized.
A remarkable aspect of it is that it states that a naturally occurring Dirichlet series
without an Euler product is equal to a square of another such Dirichlet series. In fact,
one side (D2) is the Rankin–Selberg convolution of a theta function on the 4-cover of
GL(2) with itself. The other side (D2

1) is the square of a Rankin-Selberg convolution.
The object being squared, D1, is the first Fourier coefficient of the Eisenstein series
on the 4-cover of GL(2). Using [8], it may also be regarded as the analog of the
standard L- series associated with the theta function on the 4-cover of GL(3).

A weaker conjecture, that has been generalized, was made in [3]. It implies that

τ(4)1 (p)G(4)
1 (1, p) = τ(4)3 (p), i.e. that the argument of τ(4)1 (p) is the square root of the

conjugate Gauss sum. This was proved by Suzuki [15] in the case where the ground
field is a function field.

We now make a new conjecture relating Rankin–Selberg convolutions involving
coefficients of the higher-order theta functions. We specify the 6th order residue
symbol by (11) below wth n = 3.

Conjecture 1.

ζ (3u− 1/2)∑τ(6)1 (m2)

Nmu = ζ (3u− 1/2)∑G(3)
1 (1,d)
Ndu ·∑ τ(3)1 (m)

Nmu .

The left-hand side is the convolution of the theta function on the sixfold cover of
GL(2) with the theta function on the double cover of GL(2). The right-hand side
is the product of two terms: the first coefficient of the cubic Kubota Eisenstein
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series, multiplied by its normalizing zeta factor, and the Mellin transform of the
theta function on the threefold cover of GL(2). In this case (n = 3), the two factors
on the right are equal, but we write it this way with an eye toward potential future
generalizations. We include the apparently extraneous zeta functions as they arise
naturally in the normalizing factors.

Writing m = m1m2
2m3

3, with m1,m2 square free and relatively prime, m3 unre-

stricted we see by the periodicity properties of τ(6)1 and the known valuation of τ(3)1
that this conjectured equality translates to

∑ τ(6)1 (m2
1m4

2)

Nmu
1Nm2u

2

=

(
∑ G(3)

1 (1,d)
Ndu

)2

,

another striking identity involving the square of a series without an Euler product.

Note that the Gauss sums G(3)
1 (1,d) on the right-hand side vanish unless d is square

free.
If we cancel the zeta factor, and equate corresponding coefficients, we have the

following predicted behavior for the coefficients τ(6)1 (m2
1m4

2):

τ(6)1 (m2
1m4

2) = G(3)
1 (1,m2)

2G(3)
1 (1,m1)

(
m2

m1

)2

3
∑

m1=d1d2

(
d2

d1

)
3
.

Bearing in mind that G(3)
1 (1,m2)

2 = G(6)
1 (1,m2) by the Davenport–Hasse relation

[4], this relation is consistent with what is implied by setting k = 6 in the Hecke
relations (5). Similarly, all aspects of the identity given above are consistent with
the Hecke relations. Setting m2 = 1 and m1 = p, this reduces to

τ(6)1 (p2) = 2G(3)
1 (1, p).

The Conjecture is made after verifying that the polar behaviour and gamma
factors of the left and right-hand sides are identical. This verification is the content
of Sects. 3–5. Indeed, as will be seen, a similar conjecture is almost true for the
general case where 3 is replaced by n and 6 by 2n. The difficulty is that the identity
is partially, but not completely, compatible with the Hecke relations.

3 A Double Dirichlet Series Obtained from the 2n-Cover
of GL(2)

We will obtain the desired information about the poles and gamma factors of
the series above by first performing the easier task of determining the analytic
continuation, polar lines and functional equations of several related multiple
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Dirichlet series. We begin by defining the following double Dirichlet series, initially
for ℜ(s),ℜ(w) > 1. Let

Z1(s,w) =∑
d,m

G(2n)
1 (m2,d)

NdsNmw . (6)

Also, for n odd, let

Z2(s,w) =∑
d,m

G(n)
1 (m2,d)

NdsNmw , (7)

and for n even, let

Z2(s,w) =∑
d,m

G(2n)
n+1(m

2,d)

NdsNmw . (8)

The corresponding normalized series are

Z̃1(s,w) = ζ ∗(δn(s+w− 1/2)− δn/2+1)ζ ∗(2ns− n+ 1)Z1(s,w) (9)

and
Z̃2(s,w) = ζ ∗(δns− δn/2+ 1)ζ ∗(2ns+ 2nw− 2n+ 1)Z2(s,w). (10)

Here,

δ =

{
1 if n is odd

2 if n is even,

and the ∗ in the zeta functions again means that the appropriate gamma factors have
been included.

Let χd and ψd be multiplicative characters of conductor d, with ψ2
d = 1. Then if

τ(χ) refers to the usual Gauss sum corresponding to χ , normalized to have absolute
value 1, the Davenport–Hasse relation [4] states (ignoring characters ramified at
primes dividing 2n) that

τ(χd)τ(χdψd) = τ(χ2
d ).

We have also suppressed the quadratic Gauss sum as it is trivial with our simplifying
assumptions. In the case, n is odd we choose a non-standard definition of the 2nth
order power residue symbol:

(α
d

)
2n

=
(α

d

)
n

(α
d

)
2
, (11)

as it makes our formulas cleaner. (The right-hand side is actually the usual symbol
raised to the (n+ 2)th power.) Thus, the Davenport–Hasse relation implies that

G(2n)
1 (1,d)G(n)

1 (1,d) = G(n)
2 (1,d). (12)



Double Dirichlet Series and Theta Functions 157

In the case n = 3 this translates into the familiar

G(6)
1 (1,d) = G(3)

2 (1,d)G(3)
1 (1,d) = G(3)

1 (1,d)2.

In the case n is even
(α

d

)n+1

2n
=
(α

d

)
2n

(α
d

)
2

and
(α

d

)2

2n
=
(α

d

)
n
,

so the Davenport–Hasse relation implies that

G(2n)
1 (1,d)G(2n)

n+1(1,d) = G(n)
1 (1,d). (13)

For example, if n = 2 this is the trivial relation

G(4)
1 (1,d)G(4)

3 (1,d) = G(2)
1 (1,d) = 1.

Our main tool in establishing the analytic continuation of the Zi(s,w), i = 1,2,
will be

Proposition 1. For ℜs,ℜw > 1, both Z1(s,w) and Z2(s,w) converge absolutely.
Furthermore, each has an analytic continuation for any fixed w as long as ℜs is
sufficiently large. In fact, the following relations hold. For n ODD

Z1(s,w) = Z2(s+w− 1/2,1−w)

= ζ (2ns+ nw− n)∑̃
d0

G(χ (n)
d̃0

)L(1−w,(χ (n)
d̃0

)2)

(Nd̃0)s+w/2(Nd0)(w−1)/2

× ∏
(p,d0)=1

⎛
⎝1+

χ (n)
d̃0

(p)

Npns+(n−1)w/2−(n−1)/2

⎞
⎠

× ∏
(p,d0)=1

⎛
⎜⎝1−

χ (n)
d̃0

(p)

Npns+(n+1)w/2−(n−1)/2

⎞
⎟⎠ ,
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and for n even

Z1(s,w) = Z2(s+w− 1/2,1−w)

= ζ (2ns+ nw− n)∑̃
d0

G

((
χ (2n)

d̃0

)n+1
)

L
(

1−w,χ (n)
d̃0

)

(Nd̃0)s+w/2(Nd0)(w−1)/2

× ∏
(p,d0)=1

(
1− 1

Np2ns+nw−n+1

)
.

Here, G(ψ) refers to the Gauss sum associated with the character ψ , normalized
to have absolute value equal to 1. The sums over d0 and d̃0 are defined as follows.
If n is odd, then we write d̃0 = e1en

2. Here, e1 is nth power free, e2 is the square free
product of all p dividing e1 such that the exact power of p dividing e1 is even and
we sum over all such e1. If n is even, then we sum over all d̃0 that are 2nth power
free, with the proviso that if p|d̃0 then an odd power of p must exactly divide d̃0. We
denote by d0 the product of all the distinct primes dividing d̃0.

Proposition 1 is proved by taking s,w to have large real parts, and interchanging
the order of summation in Z1(s,w). A careful analysis reduces Z1(s,w) to the
expressions on the right-hand side above, but with the functional equation applied
to the L-series in the numerator (i.e. the argument of the L-series is w rather than
1−w.) The sum over d then converges absolutely for any fixed w as long as the real
part of s is sufficiently large. If one applies the functional equation to the L-series
and uses the Davenport–Hasse relation, the sum is transformed into that given in the
Proposition. Similarly, if one takes Z2(s+w− 1/2,1−w), where ℜ(1−w) and ℜs
are sufficiently large to insure absolute convergence, and interchanges the order of
summation, the right-hand side of the Proposition is obtained directly.

One can alternatively take Z1(s,w),Z2(s,w) and sum over d on the inside. If one
does this, with the real parts of s,w sufficiently large, then one obtains

Z1(s,w) =∑
m

D(2n)
1 (s,m2)

Nmw (14)

and also

Z2(s,w) =∑
m

D(n)
n−1(s,m

2)

Nmw (15)

for n odd and

Z2(s,w) =∑
m

D(2n)
n−1(s,m

2)

Nmw (16)

for n even.
Applying the relations (14)–(16) and the functional equation (2), one obtains the

following
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Proposition 2. For fixed s the series expressions (14)–(16) converge absolutely as
long as the real part of w is sufficiently large. In the range of absolute convergence,
the normalized series Z̃1(s,w), Z̃2(s,w) defined in (9),(10) satisfy

Z̃1(s,w) = Z̃1(1− s,w+ 2s− 1)

and
Z̃2(s,w) = Z̃2(1− s,w+ 2s− 1)

We are now in a position to obtain the analytic continuation of Z̃1(s,w) and
Z̃2(s,w). First let us clear the poles by defining

Ẑi(s,w) = Pi(s,w)Z̃i(s,w) (17)

for i = 1,2, where

P1(s,w) =

(
s− 1

2
− 1

2n

)(
s− 1

2
+

1
2n

)
(w)(w− 1)(w+ 2s− 2)(w+ 2s− 1)

×
(

s+w− 1− 1
δn

)(
s+w− 1+

1
δn

)

(18)
and

P2(s,w) = P1(s+w− 1/2,1−w).

The factors in P are chosen to clear the poles in s and w in the region of absolute
convergence, and also to satisfy Pi(s,w) = Pi(1− s,w+2s−1) for i = 1,2. Thus,
in addition to being analytic in the region of absolute convergence,

Ẑi(s,w) = Ẑi(1− s,w+ 2s− 1)

for i = 1,2 and

Ẑ1(s,w) = Ẑ2(s+w− 1/2,1−w).

For i = 1,2, Ẑi(s,w) converges absolutely in the region ℜs,ℜw > 1. The
functional equation in s given above in (2) implies a polynomial bound in |m|s for
the Dirichlet series in the numerators of (14)–(16) whenℜ(s)< 0. Consequently, the
Phragmen–Lindelöf principle implies a bound for these series when 0 ≤ℜ(s) ≤ 1.
Thus, Ẑi(s,w) can be extended to a holomorphic function in the region in C

2 given
by

{(s,w) |ℜ(s)≤ 0,ℜ(w)>−2ℜ(s)+ 2}∪{(s,w) |ℜ(s)> 1,ℜ(w)> 1}
∪ {(s,w) | 0≤ℜ(s)≤ 1,ℜ(w)>−ℜ(s)+ 2}
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Arguing similarly with the L-functions appearing in the representations of Zi(s,w)
given in Proposition 1, the Ẑi(s,w) extend holomorphically to the region

{(s,w) | 0≤ℜ(w)≤ 1,ℜ(s)>−ℜ(w)/2+ 3/2}
∪ {(s,w) |ℜ(w)≤ 0,ℜ(s)>−ℜ(w)+ 3/2}.

By Bochner’s theorem, the functions Ẑi(s,w) thus extend analytically to the convex
closure of the union of these regions, which is the region

R1 = {(s,w) | s≤ 0,ℜ(w)>−2ℜ(s)+ 2}
∪ {(s,w) | 0≤ℜ(s)≤ 3/2,ℜ(w)>−4ℜ(s)/3+ 2}
∪ {(s,w) | 3/2≤ℜ(s),ℜ(w) >−ℜ(s)+ 3/2}. (19)

Applying the relation Ẑ1(s,w) = Ẑ2(s+w−1/2,1−w) we see that as the image
of R1 under the map (s,w)→ (s+w− 1/2,1−w) intersects itself, we can extend
both Ẑ1(s,w) and Ẑ2(s,w) to the convex hull of the union of R1 and its image. This
is the half-plane

R2 = {(s,w) ∈ C
2 |ℜ(w)>−2ℜ(s)+ 2}.

Finally, applying Ẑi(s,w) = Ẑi(1− s,w+ 2s− 1) for i = 1,2 and taking the convex
hull of the union of overlapping regions we obtain analytic continuation to C

2.
We summarize the above discussion in

Proposition 3. The functions Z̃1(s,w) and Z̃2(s,w) defined in (9), (10) have an
analytic continuation to all of C2, with the exception of certain polar lines. For
Z̃1(s,w), these polar lines are s = 1/2± 1/(2n); w = 1,0; w + 2s− 1 = 1,0;
s+w− 1/2 = 1/2± 1/(δn). For Z̃2(s,w) these polar lines are s = 1/2± 1/(δn);
w = 1,0; w+ 2s− 1 = 1,0; s+w− 1/2= 1/2± 1/(2n).

4 The Residue of Z̃1(s,w) at s = 1/2+1/(2n)

Now that the analytic properties of Z̃1(s,w) have been established we can investigate
the residue of this function at s = 1/2+ 1/(2n). By (4), we have

Ress=1/2+1/(2n)Z1(s,w) =∑
m

τ(2n)
1 (m2)

Nmw+1/(2n)

and

Ress=1/2+1/(2n)Z̃1(s,w) = ζ (δnw− δn/2+ δ/2+ 1)ζ (2)∑
m

τ(2n)
1 (m2)

Nmw+1/(2n)
.
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Consequently, we set u = w+ 1/(2n) and define

L̃(u) = ζ (δnu− δn/2+ 1)∑
m

τ(2n)
1 (m2)

Nmu . (20)

Remark. This is one of the two Dirichlet series of interest to us. We have chosen to
first derive the analytic properties of Z̃1(s,w) and then deduce the analytic properties
of L̃(u) by viewing this function as the residue of the two-variable Dirichlet series.
It should be possible to analyze L̃(u) directly by viewing it as a Rankin–Selberg
convolution of the theta function on the 2n-cover of GL(2) with the quadratic theta
function, but experience indicates that the two variable approach is considerably
simpler to carry out.

By Proposition 3, L̃(u) inherits an analytic continuation to C and a functional
equation relating L̃(u) to L̃(1− u). Also, L̃(u) is analytic except for possible poles
at u = 1+1/(2n),−1/(2n),1−1/(2n),1/(2n),1/2+1/(δn),1/2−1/(δn). Using
the analytic properties of Z̃1(s,w),s corresponding properties of L̃(u) are derived as
follows:

lim
u→1+1/(2n)

(u− 1− 1/(2n))L̃(u)

= lim
u→1+1/(2n)

(u− 1− 1/(2n)) lim
s→1+1/(2n)

(s− 1− 1/(2n))Z̃1(s,u− 1/(2n))

= lim
s→1+1/(2n)

(s− 1− 1/(2n)) lim
w→1

(w− 1)Z̃1(s,w).

Thus, we have approached the problem by interchanging the order of two limits.
Using Proposition 1 above, it is easy to compute that

lim
w→1

(w− 1)Z̃1(s,w) = ζ ∗(δns)ζ ∗(2ns− n+ 1).

As w = 1 corresponds to u = 1+ 1/(2n), we see that L̃(u) will have a pole at u =
1+1/(2n) (and at u =−1/(2n)) if and only if ζ ∗(δns)ζ ∗(2ns−n+1) has a pole at
s = 1+ 1/(2n). As this is not the case, the potential pole of L̃(u) at u = 1+ 1/(2n)
does not exist.

To investigate the behavior of L̃(u) at u near 1 − 1/(2n), we consider
limw→2−2s Ẑ1(s,w). Applying the functional equations in sequence yields

Ẑ1(s,w) = Ẑ2(s+w−1/2,1−w) = Ẑ2(3/2− s−w,w+2s−1)= Ẑ1(s,2−2s−w)

from which we obtain

lim
w→2−2s

Ẑ1(s,w) =−
(

s− 1
2
− 1

2n

)(
s− 1

2
+

1
2n

)
(2− 2s)(1− 2s)

×
(

s− 1− 1
δn

)(
s− 1+

1
δn

)
ζ ∗(δn− δns)ζ ∗(2ns− 1).

(21)
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For behavior of L̃(u) at u near 1/2+ 1/(δn), we likewise evaluate the limit
limw→1+1/(δn)−s Ẑ1(s,w). Applying the functional equations in sequence we obtain

Ẑ1(s,w) = Ẑ2(s+w− 1/2,2− 2s−w).

Taking the limit as w→ 1+ 1/(δn)− s yields

lim
w→1+1/(δn)−s

Ẑ1(s,w) =

(
s− 1

2
− 1

2n

)(
s− 1

2
+

1
2n

)(
1+

1
δn
− s

)(
1
δn
− s

)

×
(

s− 1+
1
δn

)(
s+

1
δn

)(
2
δn

)
ζ ∗(2)ζ ∗(n+ 1− 2ns)

× lim
s+w− 1

2→ 1
2+1/(δn)

(
s+w− 1− 1

δn

)
Z2

(
s+w− 1

2
,2− 2s−w

)

=

(
s− 1

2
− 1

2n

)(
s− 1

2
+

1
2n

)(
1+

1
δn
− s

)(
1
δn
− s

)(
s− 1+

1
δn

)

×
(

s+
1
δn

)(
2
δn

)
ζ ∗(2)ζ ∗(n+ 1− 2ns)M(δn)

1+(δ−1)n(1− s). (22)

Here,

M(k)
j (u) =∑

τ(k)j (m)

Nmu (23)

denotes the Mellin transform of the theta function on the k-fold cover of GL(2), with
the underlying residue symbol being the jth power of the standard one.

We have thus far computed Ẑ1(s,2− 2s) and Ẑ1(s,1+ 1/(δn)− s). We will now
evaluate these expressions as s approaches 1/2+1/(2n). Applying the relations (21)
and (22) (and continuing to ignore primes dividing 2n), we obtain for n = 2:

Ẑ1

(
3
4
,

1
2

)
= κ2, (24)

and for n = 3:

Ẑ1

(
2
3
,

2
3

)
= κ2, (25)

where κ = Ress=1ζ ∗(s). For general n≥ 4, we obtain

Ẑ1

(
1
2
+

1
2n

,1− 1
n

)
= ζ ∗

(
δ (n− 1)

2

)
ζ ∗(n). (26)

Translating back to L̃(u), defined in (20) we see that as u→ 1− 1/(2n), for n = 2

L̃(u)∼ κ2

(u− 3/4)2 , (27)
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for n = 3

L̃(u)∼ κ2

(u− 5/6)2 , (28)

and for general n≥ 4

L̃(u)∼
ζ ∗
(
δ (n−1)

2

)
ζ ∗(n)

(u− 1+ 1/(2n))
. (29)

In a similar manner we obtain, as u→ 1/2+ 1/(δn), for n≥ 4

L̃(u)∼ ζ ∗(2)M(δn)
1+(δ−1)n

(
1
2
− 1

2n

)
,

where M(δn)
1+(δ−1)n(1− s) is defined in (23). Note that when n = 2, n = 3, the two

poles coincide and create a double pole, while for all n≥ 4 these poles are separate.
This may be related to the fact that the conjecture can be made consistent with the
Hecke relations in only these two cases.

5 The Gamma Factors of L̃(u) and a Conjecture

Recall the gamma factors associated with D̃(n)
1 (s,m2) defined in (1) as Γn(s):

Γn(s) = Γ
(

s− 1
2
+

1
n

)
Γ
(

s− 1
2
+

2
n

)
· · ·Γ

(
s− 1

2
+

n− 1
n

)
.

Applying the functional equations of Proposition 2.2 in succession, one sees that the
gamma factors associated with Z̃1(s,w) are

Γ2n(s)Γδn(s+w− 1/2)Γ (w)Γ (w+ 2s− 1).

Taking the residue at s = 1/2+1/(2n), it follows that the gamma factors associated
with L̃(u) are

Γδn(u)Γ
(

u− 1
2n

)
Γ
(

u+
1

2n

)
. (30)

Recall that

M(k)
j (u) =∑

τ(k)j (m)

Nmu

denotes the Mellin transform of the theta function on the k-fold cover of GL(2),
where the underlying residue symbol is raised to the j power. In contrast to the
situation with L̃(u), it is easy to verify directly that the gamma factors associated

with M(k)
j (u) are Γ (u− 1/(2k))Γ (u+ 1/(2k)). We therefore define

M̃(k)
j (u) = Γ

(
u− 1

2k

)
Γ
(

u+
1
2k

)
M(k)

j (u).
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It is now apparent that the gamma factors associated with L̃(u), given in (30),

factor into those associated to D̃(δn)
1 (u,1), namely Γδn(u), times those associated

to M̃(n)
j (u). (This is true for any j.)

Recall that for n≥ 4 the poles of L̃(u) are simple and located at

u = 1− 1/(2n),1/(2n),1/2+1/(δn),1/2−1/(δn),

while in the cases n = 2,3 they combine into double poles located at u = 3/4,5/6.

On the other hand, D̃(δn)
1 (u,1) has simple poles at 1/2+ 1/(δn),1/2− 1/(δn),

while it is easily verified that M̃(n)
j (u) has simple poles at u = 1− 1/(2n),1/(2n).

Because of these observations, it is plausible to conjecture that for some value

of j, L̃(u) factors into a product M̃(n)
j (u)D̃(δn)

1 (u,1). We can investigate this more
closely, by using the information provided by the Hecke operators, and conclude
that a likely value for j is j = 1. For example, after canceling gamma factors, we
might tentatively conjecture that the following Dirichlet series identities hold: for n
odd

ζ (nu− n/2+ 1)∑τ(2n)
1 (m2)

Nmu = ζ (nu− n/2+ 1)∑τ(n)1 (m)

Nmu ·∑
G(n)

1 (1,d)
Ndu

and for n even

ζ (2nu− n+ 1)∑τ(2n)
1 (m2)

Nmu = ζ (2nu− n+ 1)∑τ(n)1 (m)

Nmu ·∑
G(2n)

n+1(1,d)

Ndu .

Specializing to the case n = 2 and canceling ζ (4u − 1), this reduces to the
relation

∑ τ(4)1 (m2)

Nmu =∑ τ(2)1 (m)

Nmu ·∑
G(4)

3 (1,d)

Ndu .

Write m=m0m2
1, where m0 is square free and m1 is unrestricted. Then by the known

properties of τ(4)1 , it follows that

τ(4)1 (m2
0m4

1) = G(4)
1 (1,m0)Nm1/2

1

and thus the left-hand side of the expression above equals

∑ τ(4)1 (m2
0m4

1)

Nmu
0Nm2u

1

= ζ (2u− 1/2)∑G(4)
3 (1,d)

Ndu .
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As τ(2)1 (m0m2
1) = Nm1/2

1 if m0 = 1 and vanishes otherwise, and as G(4)
3 (1,d) =

G(4)
1 (1,m0) if d = m0 is square free and vanishes otherwise, the identity holds in

the case n = 2.
The case n = 3 has already been discussed in Sect. 2 after the formulation of

Conjecture 1. When n ≥ 4, the highest coefficient index before periodicity which
comes into play is Np2n−2. At this index, the Hecke relations confirm an equality
of the left and right-hand sides. Unfortunately, they fail to confirm this equality at
lower indices. The conjecture may thus need a mild modification to hold for n ≥ 4,
or it may fail completely. The question remains open.

6 A Proof of the Conjecture in the Case of a Rational
Function Field and n Odd

In this section, we will work over the rational function field Fq(T ). We will make
crucial use of the paper [6], in the sense that we will refer to it for all notation
and a number of results. We require q ≡ 1 mod n, and for convenience, we also
suppose that q ≡ 1 mod 4. The conjecture is provable in this case because over a
function field any Dirichlet series with a functional equation (with finite conductor)
must be a ratio of polynomials. The polar behavior of the Dirichlet series determines
the denominator, and a finite amount of information about the early coefficients is
enough to determine the numerator.

Let n ≥ 3 be odd. The function field analog of the series Z1(s,w) above is
the Rankin–Selberg convolution of E(2n)(z,u) with θ (2)(z). In effect, the theta
function picks off the coefficients of the Eisenstein series with square index and
assembles them in a Dirichlet series. The functional equation and polar behavior of
the Dirichlet series are determined by the corresponding functional equations and
polar behavior of the Eisenstein series in the integral:

∫
E(2n)(z,u)θ (2)(z)E(n)(z,v)dμ(z),

where the integration is taken over a truncated fundamental domain. Although the
integrand is not of rapid decay, the technique of regularizing the integral provides
the functional equation and polar behavior of a Mellin transform of the part of the
product E(2n)(z,u) with θ (2)(z) that is of rapid decay. See [17] an exposition of this.
The key point for us is that all the necessary information about the Mellin transform
is determined by these properties.

Denoting this Mellin transform as R(u,v), we have explicitly

R(u,v) =
∫

ord(Y)≡0 mod n
∑c(2n)

m (u,Y )τ(2)(m,Y ) |Y |2v−2 d×Y, (31)
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where the sum is over m ∈ A := Fq[T ] such that−2−degm+2ordY ≥ 0. Formulas

for c(2n)
m are given in [6]. In particular, if we let

Dm(u, i) = ∑
degc≡i mod n

|c|−2ug(2n)
1 (m,c),

then
c(2n)

m (u,Y ) = q|Y |2−2uD̃m(u,Y ),

with

D̃m(u,Y ) = Dm(u,0)

⎛
⎜⎝1+(1− q−1) ∑

1≤k≤2nγ−2−degm
k≡0 mod n

qk(1−2u)

⎞
⎟⎠

+Dm(u,1+ degm)q2nγ−2−degmg−1−degm(μm,T )q−2(2nγ−1−degm)u.
(32)

Here, μm denotes the leading coefficient of m. Note that D̃m(u,Y ) is thus a non-zero
constant plus a sum of positive powers of q−2u that are multiples of n.

Let ϖ = 1/T be the local uniformizer. The τ(2)(m,Y ) are the Fourier coefficients
of the quadratic theta function, described by

τ(2)(m,Y ) =

{
|Y |1/2 m = m2

0 with ord(ϖ−2m2
0Y 2)≥ 0

0 otherwise.

Substituting into the integral (31), we can do the Y integration, obtaining

R(u,v) = c ∑
nγ≥1+degm0

q(2u−2v−1/2)nγD̃m2
0
(u,ϖnγ ),

where c is a non-zero constant.
Letting s = 2u−1/2,w = 2v−2u+1/2, and denoting by R̃(u,v), the product of

R(u,v) by the normalizing zeta and gamma factors of the two Eisenstein series, we
have, corresponding to Z̃1(s,w),

R̃(u,v) = cqqn−1−2nsζ ∗(2ns− n+ 1)qn−1−ns−nwζ ∗(n(s+w− 1)+ 1)

× ∑
nγ≥1+degm0

q−wnγD̃m2
0
(s/2+ 1/4,ϖnγ), (33)

where cq is a non-zero constant.
The functional equations of the Eisenstein series imply that Z̃1(s,w) = R̃(u,v) is

a rational function of x = q−s and y = q−w. Also there are, at most, simple poles at

s = 1/2± 1/2n, w = 0,1, w = 2− 2s, w = 1− 2s, s+w− 1/2= 1/2± 1/n.
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We therefore write

Z̃1(s,w) =
P(x,y)
D(x,y)

with

D(x,y) = (1− yn)(1− qnyn)(1− qn−1x2n)(1− qn+1x2n)

(1− qn+1xnyn)(1− qn−1xnyn)(1− qnx2nyn)(1− q2nx2nyn). (34)

Note from (33) that Z̃1(s,w) is of the form x2n(xy)nyn times a power series in
xn,yn. Also, the functional equations of the Eisenstein series imply that

Z̃1(s,w) = Z̃1(s,2− 2s−w).

Combining this information with (34), we conclude that P(x,y) is of the form

P(x,y) = x3ny2n
M

∑
i=0

N

∑
j=0

Bi jx
iny jn.

and satisfies the functional equation

P(x,y) = q6nx6ny6nP(x,q−2x−2y−1).

To go further, we consider the residue

R(y;q) = lim
x2n→q−n−1

(1− qn+1x2n)Z̃1(s,w) =
P(q−1/2−1/2n,y)

D(y)
,

where

D(y) = (1− yn)(1− qnyn)(1− q−2)(1− q(n+1)/2yn)(1− q(n−3)/2yn)

×(1− q−1yn)(1− qn−1yn). (35)

Notice that R(y;q) is a power series in yn beginning with the power y2n. Also, the
functional equation above specializes to

P(q−1/2−1/2n,y) = q9nP(q−1/2−1/2n,y−1q−1+1/n).

Let us introduce for clarity the (admittedly unnecessary) variable t = yq−1/2n.
For convenience, write R̃(t;q) = R(y;q), P̃(t) = P(q−1/2−1/2n,y), and D̃(t) = D(y),
so

R̃(t;q) = P̃(t)D̃(t).
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The functional equation above in y becomes one sending t→ q−1t−1 and

P̃(t) = t6nq3nP̃(q−1t−1).

Thus if P̃(t) = ∑M
2 Bitni, then the functional equation implies that M = 4 and B2 =

q−nB4. Also, recall that B2 is non-zero. Thus, we arrive at the expression

P̃(t) = B2t2n(1+B′3tn + qnt2n)

for certain coefficients B2, B′3.
Finally, we have that the residue of P̃1(t) is 0 at both t−n = qn+1/2 and at t−n =

q−1/2. This forces

1+B′3tn + qnt2n = (1− qn+1/2tn)(1− q−1/2tn).

Cancelling these two factors from the denominator D̃(t), we arrive at

Theorem 1. The function R̃(t;q) is of the form

R̃(t;q) =
cn,qt2n

(1− q1/2tn)(1− qn/2+1tn)(1− qn/2−1tn)(1− qn−1/2tn)
,

where cn,q is a non-zero constant.

Now we compare this to the Mellin transform computed in [6]. The function
Mn(u;q) introduced in (5.2) there is defined as the Mellin transform of the theta
function on the n-fold cover of GL(2) over the function field Fq(T ). The Mellin
transform introduces a variable w. Continuing to let y = q−w, we have

Proposition 4. [6] For a certain nonzero constant c′n,q, one has

Mn(y;q) =
c′n,qyn

(1− qyn)(1− q2n−1yn)
.

Here, Mn has functional equation

Mn(y;q) = Mn(y
−1q−2;q).

We also find the Dirichlet series part Dn(t;q) of the Fourier coefficient of the nth
order metaplectic Eisenstein series in [6], (5.2). From this equation, we have

Dn(t;q) =
tn

(1− qn−1tn)(1− qn+1tn)
,

with t = q−2s. This function has functional equation under s �→ 1− s.
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Let us compare these three expressions. We have

Dn(tq
−1/2;q) =

q−n/2tn

(1− qn/2−1tn)(1− qn/2+1tn)
.

Also, suppose that q is an even power of the residue characteristic. Then we may
compute the Mellin transform of the theta function over Fq1/2(T ). If we double
the Mellin transform variable w to 2w, then the resulting expression may still be
expressed in terms of y = q−w = (q1/2)−2w. This is given by

Mn(y;q1/2) =
c′

n,q1/2yn

(1− q1/2yn)(1− qn−1/2yn)
.

We thus find that after normalizing so that the first coefficient of every power series
equals 1.

Theorem 2. Suppose that q is an even power of the residue characteristic. Then

R̃(t;q) = Mn(t;q1/2)Dn(tq
−1/2;q).

In other words, the rational polynomial on the left-hand side, which equals the
Rankin–Selberg convolution of the Eisenstein series on the 2n-fold cover with the
quadratic theta function, factors into the rational polynomial representing the Mellin
transform of a theta function on the n-fold cover times the first Fourier coefficient
of the Eisenstein series on the n-fold cover.

This proves the conjecture in the case of the rational function field when n is
odd. Unfortunately, the conjecture is certainly not true over a number field for
n≥ 5, as observed previously. Thus, the special nature of the rational function field
seems to give rise to too many simplifications! In particular, the numerators on both
sides are (after cancellations) essentially trivial in this case. In a function field of
higher genus, the numerators would be polynomials, and further structure would be
revealed. It remains a very interesting open question to follow through the methods
of this section in the case of any extension of the rational function field and to see
what the actual relationship is between R̃,Mn and Dn.
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The Patterson Measure: Classics, Variations
and Applications

Manfred Denker and Bernd O. Stratmann

Abstract This survey is dedicated to S. J. Patterson’s 60th birthday in recognition
of his seminal contribution to measurable conformal dynamics and fractal geometry.
It focuses on construction principles for conformal measures for Kleinian groups,
symbolic dynamics, rational functions and more general dynamical systems, due to
Patterson, Bowen-Ruelle, Sullivan and Denker-Urbański.

1 The Patterson Measure: Classics

In his pioneering work [75] Patterson laid the foundation for a comprehensive
measure theoretical study of limit sets arising from (conformal) dynamical systems.
Originally, his main focus was on limit sets of finitely generated Fuchsian groups,
with or without parabolic elements. We begin this survey by reviewing his con-
struction and some of its consequences in the slightly more general situation of a
Kleinian group. The starting point of this construction is that to each Kleinian group
G one can associate the Poincaré series P(z,s), given by

P(z,s) := ∑
g∈G

exp(−sd(z,g(0))),

for s ∈ R, 0 denoting the origin in the (N + 1)-dimensional hyperbolic space H

(throughout, we always use the Poincaré ball model for H), z an element of H, and
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where d denotes the hyperbolic metric. The abscissa of convergence δ = δ (G) of
this series is called the Poincaré exponent of G. It is a priori not clear if P(z,s)
converges or diverges for s = δ , and accordingly, G is called of δ -divergence type
if P(z,δ ) diverges, and of δ -convergence type otherwise. Patterson made use of
this critical behaviour of P(z,s) at s = δ in order to build measures supported on
the limit set L(G) of G, that is, the set of accumulation points of the orbit G(0), as
follows. In order to incorporate also the δ -convergence type case, he first chooses
a sequence (s j) tending to δ from above, and then carefully crafts a slowly varying
function ϕ such that the modified Poincaré series

Pϕ(z,s) := ∑
g∈G

ϕ(d(z,g(0)))exp(−sd(z,g(0)))

still has abscissa of convergence equal to δ , but diverges for s = δ . With this slight
alteration of the classical Poincaré series, he then defines discrete measures μz,s j by
putting weights on the orbit points in G(0) according to

μz,s j (g(0)) =
ϕ(d(z,g(0)))exp(−s jd(z,g(0)))

Pϕ(z,s j)
.

Due to the divergence of the modified Poincaré series at δ , each weak accumulation
point of the resulting sequence

(
μz,s j

)
of measures is clearly supported on L(G),

and each of these so obtained limit measures is what one nowadays calls a Patterson
measure. One of the success stories of these measures is that if G is geometrically
finite, that is, each element of L(G) is either a radial limit point or else is the fixed
point of some parabolic element of G, then there exists a unique measure class
containing all these measures. In other words, in this situation a weak accumulation
point μz of the sequence

(
μz,s j

)
does not depend on the particular chosen sequence

(s j). Moreover, in this geometrically finite situation it turns out that G is of δ -
divergence type. Let us now concentrate on this particular situation for a moment,
that is, let us assume that G is geometrically finite. Then, a crucial property of the
family {μz : z ∈ H} is that it is δ -harmonic, meaning that for arbitrary z,w ∈ H we
have, for each x ∈ L(G),

dμz

dμw
(x) = exp(δbx(z,w)),

where bx(z,w) denotes the signed hyperbolic distance of z to w at x, obtained
by measuring the hyperbolic distance dx(z,w) between the two horocycles at x,
one containing z and the other containing w, and then taking the negative of this
distance if w is contained in the horoball bounded by the horocycle through z,
and letting it be equal to this hyperbolic distance otherwise. Note that dx(z,w) is
a Busemann function and bx(z,w) coincides with log(P(z,x)/P(w,x)), for P(·, ·)
denoting the Poisson kernel in H. Let us also remark that here the wording
δ -harmonic points towards another remarkable success story of the concept
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“Patterson measure”, namely, its close connection to spectral theory on the manifold
associated with G. More precisely, we have that the function φ0, given by

φ0(z) :=
∫
∂H

P(z,x)δ dμ0(x),

is a G-invariant eigenfunction of the Laplace–Beltrami operator associated with the
(smallest) eigenvalue δ (N − δ ). Moreover, φ0 is always square-integrable on the
convex core of H/G, defined by forming first the convex hull of the limit set in H,
then taking a unit neighbourhood of this convex hull, and finally quotienting out G.
In order to gain more geometric insight into δ -harmonicity, it is convenient to
consider the measure μγ(0), for some arbitrary γ ∈G. A straightforward computation
gives that μγ(0) = μ0 ◦ γ−1, and hence, the δ -harmonicity implies that

d(μ0 ◦ γ−1)

dμ0
(x) = P(γ(0),x)δ , for all γ ∈ G. (1)

This property of the Patterson measure μ0 is nowadays called δ -conformality.
Sullivan [111] was the first to recognise the geometric strength of this property,
which we now briefly comment on. Let sx denote the hyperbolic ray between 0 ∈H

and x ∈ ∂H, and let xt denote the point on sx at hyperbolic distance t from the
origin. Let Bc(xt)⊂H denote the (N +1)-dimensional hyperbolic disc centred at xt

of hyperbolic radius c > 0, and let Π : H→ ∂H denote the shadow-projection given
by Π(C) := {x ∈ ∂H : sx ∩C �= /0}. Also, if xt lies in one of the cusps associated
with the parabolic fixed points of G, let r(xt) denote the rank of the parabolic fixed
point associated with that cusp, otherwise, put r(xt) equal to δ . Combining the δ -
conformality of μ0 and the geometry of the limit set of the geometrically finite
Kleinian group G, one obtains the following generalized Sullivan shadow lemma
[110, 111, 113]:

μ0(Π(Bc(xt)))� |Π(Bc(xt)))|δE · exp((r(xt)− δ )d(xt ,G(0))),

for all x ∈ L(G) and t > 0, for some fixed sufficiently large c > 0, and where | · |E
denotes the diameter with respect to the chordal metric in ∂H. Note that in the latter
formula the “fluctuation term” exp((r(xt )− δ )d(xt ,G(0))) can obviously also be
written in terms of the eigenfunction φ0 of the Laplace–Beltrami operator. Besides,
this gives a clear indication towards why the Patterson measure admits the inter-
pretation as a “correspondence principle”, which provides a stable bridge between
geometry and spectral theory. However, one of the most important consequences
of the generalized Sullivan shadow lemma is that it allows us to use the Patterson
measure as a striking geometric tool for deriving significant geometric insights into
the fractal nature of the limit set L(G). For instance, it immediately follows that if G
has no parabolic elements, then μ0 coincides, up to a multiplicative constant, with
the δ -dimensional Hausdorff measure on L(G). Hence, in this case, the Hausdorff
dimension of L(G) is equal to δ . To extend this to the case in which there are



174 M. Denker and B.O. Stratmann

parabolic elements, one first establishes the following generalization of a classical
theorem of Khintchine in metrical Diophantine approximations [55]. The proof in
[110] uses the generalized Sullivan shadow lemma and the techniques of Khint-
chine’s classical result (for further results on metrical Diophantine approximations
in connection with the Patterson measure, see e.g. [42,76,96–103,105], or the survey
article [104]).

limsup
t→∞

d(xt ,G(0))
logt

= (2δ (G)− rmax)
−1 , for μ0-almost all x ∈ L(G).

Here, rmax denotes the maximal rank of the parabolic fixed points of G. By com-
bining this with the generalized Sullivan shadow lemma, an immediate application
of the mass distribution principle gives that even when G has parabolic elements,
we still have that δ is equal to the Hausdorff dimension of L(G). Moreover, these
observations immediately show that μ0 is related to the δ -dimensional Hausdorff
measure Hδ and packing measure Pδ as follows. For ease of exposition, the
following table assumes that G acts on hyperbolic 3-space.

0 < δ < 1 δ = 1 1 < δ < 2

No cusps μ0 � Hδ � Pδ μ0 � H1 � P1 μ0 � Hδ � Pδ
rmax = 1 μ0 � Pδ ,Hδ = 0 μ0 � H1 � P1 μ0 � Hδ ,Pδ = ∞
rmin = 2 n.a. n.a. μ0 � Pδ ,Hδ = 0
rmin = 1,rmax = 2 n.a. n.a. Hδ = 0, Pδ = ∞

Moreover, as was shown in [105], again by applying the generalized Sullivan
shadow lemma for the Patterson measure, we additionally have that δ is equal to
the box-counting dimension of L(G). At this point, it should also be mentioned that
in [8] and [103] it was shown that in fact every non-elementary Kleinian group
G has the property that its exponent of convergence δ is equal to the Hausdorff
dimension of its uniformly radial limit set, that is, the subset of the radial limit set
consisting of those limit points x ∈ L(G) for which there exists c > 0 such that
d(xt ,G(0)) < c, for all t > 0. The proof of this rather general result is based on an
elementary geometrization of the Poincaré series and does not use any Patterson
measure theory (see also [103]). These fractal geometric interpretations of the
exponent of convergence are complemented by its dynamical significance. Namely,
one finds that the square integrability of the eigenfunction φ0 on the convex core of
H/G implies that the invariant measure for the geodesic flow on H/G associated
with the Patterson measure has finite total mass [113]. Using this, one then obtains
that δ is equal to the measure-theoretic entropy of the geodesic flow. In particular,
if there are no cusps, one can define a topological entropy for the invariant set of
geodesics with both endpoints in the limit set, and this topological entropy also
turns out to be equal to the critical exponent δ [111]. It is worth mentioning that in
this geometrically finite situation the invariant measure for the geodesic flow is not
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only of finite total mass and ergodic, but it is also mixing and even Bernoulli [90].
In fact, these strong properties of the geodesic flow have been exploited intensively
in the literature to derive various interesting aspects of the limit set. For instance,
the marginal measure of the Patterson–Sullivan measure |x− y|−2δdμ0(x)dμ0(y),
obtained by disintegration of the first coordinate, leads to a measure which is
invariant under the Bowen–Series map. This allows us to bring standard (finite
and infinite) ergodic theory into play. As an example of the effectiveness of this
connection, we mention the recent result (see [53] in these Proceedings) that for a
geometrically finite Kleinian group G with parabolic elements we have that, with
| · | denoting the word metric,

∑
g∈G
|g|≤n

exp(−δd(0,g(0))) = O(n2δ−rmax).

For Kleinian groups which are not geometrically finite the Patterson measure
theory is less well developed, although various promising first steps have been un-
dertaken. Here, an interesting class is provided by finitely generated, geometrically
infinite Kleinian groups acting on hyperbolic 3-space H3 whose limit set is not equal
to the whole boundary ∂H3. For these groups, it had been conjectured for almost
40 years that the area of their limit sets is always equal to zero. This conjecture
was named after Ahlfors and was eventually reduced to the so-called tameness-
conjecture, a conjecture which was only very recently confirmed in [5] and [18].
Given the nature of this conjecture, it is perhaps not too surprising that the concept
“Patterson measure” also made vital contributions to its solution.

For infinitely generated Kleinian groups, so far only the beginnings of a
substantial theory have been elaborated. As Patterson showed in [77], there exist
infinitely generated groups whose exponent of convergence is strictly less than
the Hausdorff dimension of their limit set. Kleinian groups with this property
were named in [37] as discrepancy groups. Also, an interesting class of infinitely
generated Kleinian groups is provided by normal subgroups N of geometrically
finite Kleinian groups G. For these groups, one always has that L(N) = L(G) and
δ (N) ≥ δ (G)/2 (see [37]), and this inequality is in fact sharp, as was shown very
recently in [11]. Moreover, by a result of Brooks in [14], one has that if G acts on
hyperbolic n-space such that δ (G)> n/2, then

N is a discrepancy group if and only if G/N is non-amenable.

This result is complemented by beautiful applications of the Patterson measure
theory in [86] and [87], where it was shown for the Fuchsian case that if G/N ∼= Z

k,
and hence δ = δ (N) = δ (G), since Zk is clearly amenable, then

N is of δ -divergence type ⇔
{

k ∈ {1,2} if G has no parabolic elements

k = 1 if G has parabolic elements.
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Finally, we mention the related work of [2], which considers the special situation
of the Riemann surface C\Z uniformized by a Fuchsian group N, which is a normal
subgroup of the subgroup G of index 6 of the modular group PSL2(Z) uniformizing
the threefold punctured sphere. There it was shown that the Poincaré series P(z,s)
associated with N has abscissa of convergenceδ (N) = 1 and that it has a logarithmic
singularity at s = 1 (for further results of this type, see e.g. [4, 65, 72, 79, 80]). This
result of [2] is obtained by showing that the associated geodesic flow has a factor,
which is Gibbs-Markov [3] and by using a local limit theorem of Cauchy type.

2 Gibbs Measures

Rokhlin’s seminal paper [88] on the foundations of measure theory, dynamical
systems and ergodic theory is fundamental for our further discussion of Patterson
measures and conformality of measures of the type as in (1). Let R : Ω1 → Ω2

be a measurable, countable-to-one map between two Lebesgue spaces (Ωi,Σi,μi)
(i = 1,2) [19], where Σi and μi denote some Borel fields and measures. If R is non-
singular1, the Jacobian JR of R exists, meaning that, for all E ∈ Σ1 such that R|E is
invertible, we have that

μ2(R(E)) =
∫

E
JRdμ1. (2)

By our assumptions, the images R(E) are always measurable, in fact, throughout this
section all functions and sets considered will always be assumed to be measurable.
Also, note that JR is uniquely defined, μ1-almost everywhere. Moreover, since R
is countable-to-one, the Jacobian JR gives rise to the transfer operator LJ = LJR ,
given by

LJ f (x) = ∑
R(y)=x

f (y)
/

J(y), (3)

for all measurable functions f : Ω1→R for which the right-hand side in (3) is well
defined. (For example, the latter always holds for f bounded and R finite-to-one,
and it holds, more generally, if ‖LJ1‖∞ < ∞.) For this type of function, we then
have that (2) is equivalent to

∫
f dμ1 =

∫
LJ f dμ2. (4)

Note that this identity can also be written in terms of the “dual operator” L ∗
J , which

maps μ2 to μ1. If the two Lebesgue spaces agree and are equal to some Ω , then

1R is said to be nonsingular with respect to μ1 and μ2, if for each measurable set E ⊂Ω2 one has
that μ1(R−1(E)) = 0 if and only if μ2(E) = 0.
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R : Ω → Ω is a non-singular transformation of the Lebesgue space Ω , and in this
situation we have that μ = μ1 is a fixed point of the dual L ∗

J .
The δ -conformality of the Patterson measure in (1) can be viewed as determining

the Jacobian for the transformations in the Kleinian group G. Hence, the Patterson
construction in Sect. 1 solves the problem of finding a measure whose Jacobian
equals a certain power of the derivative of these transformations. This naturally leads
to the following question: For a given measurable function φ and a transformation
T , when does there exist a probability measure with Jacobian equal to eφ? It turns
out that typical conditions on φ and T are certain kinds of conformality as well as
some specific geometric and/or analytic properties. Nowadays, this type of question
is well addressed, but in the mid-1970s the work in [75] paved the way for these
developments (see the following sections). Here, it should also be mentioned that,
parallel to this development, the theory of Gibbs measures evolved [12,122], solving
the analogue question for subshifts of finite type.

Consider a compact metric space (Ω ,d) and a continuous finite-to-one transfor-
mation T : Ω →Ω . For a given continuous function φ : Ω → R, let us first identify
non-singular measures mφ for which (2) is satisfied with JT = eφ . A good example
for this situation is given by a differentiable map T of the unit interval into itself,
where the Lebesgue measure satisfies the equality (2), with φ being equal to the
logarithm of the modulus of the derivative of T .

For an expanding, open map T : Ω → Ω and a continuous function φ , Ruelle’s
Perron–Frobenius Theorem [12] guarantees the existence of a measure μ satisfying

μ(T (A)) = λ
∫

A
eφdμ , (5)

for some λ > 0 and for each A ∈ Σ for which T |A is invertible. Each measure
so obtained is called a Gibbs measure for the potential function φ . This type of
measure represents a special case of conformal measures. An open, expanding map
on a compact metric space is called R-expanding, where R refers to Ruelle. This
includes subshifts of finite type (or topological Markov chains), for which the Ruelle
Theorem was originally proven. In fact, such a R-expanding map has the property
that the number of pre-images of all points is locally constant. Consequently, for a
given φ ∈ C(X), the Perron–Frobenius operator (or equally, the transfer operator)
Lφ acts on the space C(X), and is given by

Lφ f (x) = ∑
y:T (y)=x

f (y)exp(−φ(y)).

In this situation, we then have that the map m �→L ∗
φ m/m(Lφ1) has a fixed point

mφ . The measure mφ is a Gibbs measure whose Jacobian is equal to λ · eφ , for
λ = mφ (Lφ1). The logarithm of the eigenvalue λ is called the pressure P(T,−φ)
of −φ .

The following Bowen–Ruelle–Perron–Frobenius Theorem summarised the main
results in this area.
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Theorem 1. ([12]) Let (Ω ,T ) be a topologically mixing, R-expanding dynamical
system. For each Hölder continuous function φ : Ω → R, there exists a probability
measure mφ and a positive Hölder continuous function h such that the following
hold.

1. L ∗
φ mφ = exp(P(T,φ))mφ ;

2. Lφh = exp(P(T,φ))h;
3. L n

φ f − ∫ f hdmφ decreases in norm exponentially fast.

One immediately verifies that the measure m̃φ , given by dm̃φ = h · dmφ , is T -
invariant, and hence, m̃φ is often also referred to as the invariant Gibbs measure. In
fact, as the name already suggests, the existence of this type of Gibbs measures
is closely related to the thermodynamic formalism for discrete time dynamical
systems.

Note that the existence of mφ has been derived in [52], whereas some first
results in this direction were already obtained in [74]. Alternative proofs of the
Bowen–Ruelle–Perron–Frobenius Theorem use, for instance, the Hilbert metric in
connection with positive cones (see [38] and Sect. 5) or, for the statement in (2), the
Theorem of Ionescu-Tulcea and Marinescu (see [50]). Also, note that the original
version of this theorem was given in terms of subshifts of finite type. In fact, an R-
expanding transformation admits a Markov partition, and therefore, the associated
coding space is a subshift of finite type. Nevertheless, the theorem can also be
proven directly in terms of R-expanding maps on compact metric spaces.

Finally, let us remark that the method above can be extended to systems which
are neither open nor expanding. For instance, the potential function φ may have
properties which only requires T to be expanding along certain orbits. A typical
condition of this type is that the pressure function at φ exceeds sup(φ), where the
supremum is taken over the state space Ω . This situation arises, for instance, if T
is a rational map on the Riemann sphere (see e.g. [33] and [27], or [47] for the
case of a map of the interval). In this case, we still have that Lφ acts on the set of
continuous functions, and the proof of the existence of the invariant Gibbs measure
then uses that for a Hölder continuous potential function φ most of the branches
are contracting and that the contributions of other branches are negligible, due to
the boundedness condition on φ . In fact, this approach turns out to be somehow
characteristic for certain non-uniformly hyperbolic systems.

3 Sullivan’s Conformal Measure

As already mentioned at the beginning, originally one of the main motivations for
the construction of the Patterson measure was to study fractal geometric properties
of limit sets of Fuchsian groups. The analogue of Patterson’s construction for Julia
sets of either hyperbolic or parabolic rational maps was first noticed by Sullivan
in [112]. Recall that a rational function R : S2 → S2 is called hyperbolic if its



The Patterson Measure: Classics, Variations and Applications 179

Julia set does not contain any critical or rationally indifferent (parabolic) periodic
points, whereas R is called parabolic if its Julia set contains a parabolic periodic
point, but does not contain any critical point. Here, the key observation is that in
these expansive cases the Julia set can be considered as being the “limit set” of the
action of the rational map on its Fatou component. The elaboration of this analogue
between Fuchsian groups and rational maps in [112] has led to what is nowadays
called Sullivan’s dictionary (for some further chapters of this dictionary, see e.g.
[106–109, 112]).

The idea of a conformal measure for a rational map R appeared first in [112],
Theorem 3, where the existence of a conformal measure for the function |R′|t , for
some t ∈R, was established. Moreover, in the same paper Sullivan showed that this
measure is unique in the hyperbolic case. In fact, in this case one easily verifies
that δ = inf{t > 0 : a t-conformal measure exists} coincides with the Hausdorff
dimension h of the Julia set. Sullivan’s construction modifies the Patterson measure
construction, and his method was later extended in [28] to more general classes of
transformations.

Recall that the starting point of Patterson’s and Sullivan’s construction is to
consider powers φ t of the exponential of some potential function logφ , for t greater
than a certain critical value, and then to proceed by letting t decrease to this critical
value. However, in the case of expanding rational maps, it is much simpler to use
the theory of Gibbs measures, as explained in Sect. 2.

One immediately verifies that there always exists a Gibbs measure mt for φ t =
|R′|t , for some t ≥ 0 (this follows from the discussion in Sect. 2). Since

mt(R(A)) = λt

∫
A
|R′|tdmt ,

where as before logλt = P(R,−t log |R′|), we have that the measure mt is conformal
if and only if P(R,−t log |R′|) = 0. If R is expanding, it is easy to see that the
pressure function is continuous and strictly decreasing, for t ≥ 0. In particular,
we have that P(R,0) (= logdeg(R)) is equal to the topological entropy (see
[66]) and that P(R,−t log |R′|)→ −∞, for t tending to infinity. This implies that
there exists a unique t for which the pressure function vanishes. In fact, this is
precisely the content of the Bowen–Manning–McCluskey formula [13, 68]. Using
this observation, it can then be shown that the so obtained t is equal to the Hausdorff
dimension of the Julia set of R, a result due to Sullivan in [112] (see [13] for
related earlier results on dynamical and geometric dimensions). Note that Sullivan’s
construction employs Patterson’s approach, replacing the orbit under the Fuchsian
group by the set of pre-images under R of some point in the Fatou set, which
accumulates at the Julia set. This approach can be viewed as some kind of “external
construction” (see [40]).

For more general rational functions, it is necessary to gain better control over
the eigenvalues of the transfer operator. This can hardly be done by the type of
functional analytic argument given above. However, for a parabolic rational map
one still finds that there exists a unique non-atomic ergodic conformal measure with
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exponent equal to the Hausdorff dimension of the Julia set. Although there still
exists such a conformal measure, in this situation one finds that every other ergodic
conformal measure is concentrated on the orbit of the parabolic points (see [32,34]).
While the construction is still straightforward in this parabolic case, other cases
of rational functions have to be treated with refined methods and require certain
“internal constructions”, of which we now recall a few (see also Sect. 4).

One of these methods is Urbański’s KV-method, which considers invariant
subsets of the Julia set whose closures do not contain any critical point. Given that
these sets exhaust the Julia set densely, this method allows us to construct measures
which converge weakly to the conformal measure in question. Here, the main work
consists in showing that the obtained limit measure has no atoms at the critical
orbits. This is achieved by employing a certain type of tightness argument. In a
similar fashion to that outlined above, the construction leads to a conformal measure
with a minimal exponent (see [31,83]). Although it is still an open problem to decide
whether this measure is overall non-atomic, one nevertheless has that the minimal
exponent is equal to the dynamical dimension of the system.

Another method is the constructive method of [29], which applies in the case
of subexpanding rational functions and in the case of rational functions satisfying
the Collet-Eckmann condition. It also applies to rational maps which satisfy the
following summability condition of [40] and [84]:

∞

∑
n=1
|(Rn)′(Rnc(c))|−α < ∞,

for some α ≥ 0, for all critical points c in the Julia set, and for some nc ∈ N. In this
case, the existence of a non–atomic conformal measure is guaranteed, given that the
Julia set does not contain parabolic points and given that α < h/(h+ μ), where h
denotes the Hausdorff dimension of the Julia set and μ the maximal multiplicity of
the critical points in the Julia set.

Finally, let us also mention that for a general rational map we have that the
dynamical dimension of its Julia set coincides with the minimal t for which a t-
conformal measure exists [31, 83].

The following theorem summarizes the discussion above.

Theorem 2. Let R be a rational map of the Riemann sphere, and let h denote
the Hausdorff dimension of its Julia set J(R). Then there exists a non-atomic h-
conformal probability measure m on J(R), given that one of the following conditions
hold:

(1) ([112]) R is hyperbolic. In this case, m is the unique t-conformal measure, for
all t ∈ R.

(2) ([32]) R is parabolic. In this case, m is the unique non–atomic t-conformal
measure, for all t ∈ R.

(3) ([29]) R is subexpanding (of Misiurewicz type). In this case, m is the unique
non–atomic h-conformal measure.



The Patterson Measure: Classics, Variations and Applications 181

(4) ([118]) If J(R) does not contain any recurrent critical points of R, then m is the
unique h-conformal measure. Moreover, m is ergodic and conservative.

(5) ([40, 84]) R satisfies the above summability condition. In this case, m is the
unique non–atomic h-conformal measure.

(6) ([6]) R is a Feigenbaum map for which the area of J(R) vanishes. In this case, m
is the unique h-conformal measure and there exists a non–atomic t-conformal
measure, for each t ≥ h.

In order to complete this list, let us also mention that Prado has shown in [82] that
for certain infinitely renormalizable quadratic polynomials (originally introduced in
[67]), the equality h = inf{t : ∃ a t-conformal measure} still holds. The ergodicity
problem for the conformal measure of quadratic polynomials is treated in [81] and
then extended further in [48].

An interesting new approach for obtaining the existence of conformal measures
is developed by Kaimanovich and Lyubich. They study conformal streams which
are defined on laminations of conformal structures. This setting is very much in the
spirit of our discussion of bundle maps in Sect. 5. For further details concerning
the construction of conformal streams and its application to rational functions, we
refer to [51]. Moreover, note that the theory of conformal measures has also been
elaborated for semigroups of rational functions (see [114–116]).

Up to now, the classification of conformal measures has not been completed.
Clearly, since the space of conformal measures is compact with respect to the
weak topology, we always have that there exists a conformal measure of minimal
exponent. However, this measure can be either non-atomic, or purely atomic, or
even a mixture of both of these types. This follows by convexity of the space of
conformal measures (cf. [40]). At this point, it should be remarked that [9] contains
an interesting result, which clarifies under which conditions on the critical and
parabolic points one has that a conformal measure is non-atomic. Also, let us remark
that an important aspect when studying conformal measures is provided by the
attempts to describe the essential support of a conformal measure in greater detail
(see [15, 26, 49, 71, 85]). Of course, the set of radial limit points marks the starting
point for this journey.

There are various further fundamental results on the fine structure of Julia
sets, which have been obtained via conformal measures. For instance, conformal
measures led to the striking result that the Hausdorff dimension of the Julia set of
parabolic maps of the Riemann sphere lies strictly between p/(p+ 1) and 2 (see
[1]), where p denotes the maximum of the number of petals to be found at parabolic
points of the underlying rational map. Also, conformal measures have proven to be
a powerful tool in studies of continuity and analyticity of the Hausdorff-dimension-
function on families of rational maps [36, 125].

Recently, the existence of Sullivan’s conformal measures has also been estab-
lished for meromorphic functions [63]. The following theorem summarizes some of
the most important cases.
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Theorem 3. Let T be a meromorphic function on C, and let F be the projection
of T onto {z ∈ C : −π < Re(z) ≤ π}. With hT (resp. hF) denoting the Hausdorff
dimension of J(T ) (resp. J(F)), in each of the following cases we have that there
exists a hT -conformal (resp. hF-conformal) measure.

(1) ([57]) T is a transcendental function of the form T (z) = R(exp(z)), where R is
a non-constant rational function whose set of singularities consists of finitely
many critical values and the two asymptotic values R(0) and R(∞). Moreover,
the critical values of T are contained in J(T ) and are eventually mapped to
infinity, and the asymptotic values are assumed to have orbits bounded away
from J(T ). In this case, there exists t < hF such that if t > 1 then there is only one
t-conformal measure. Also, the hF-conformal measure is ergodic, conservative
and vanishes on the complement of the set of radial limit points. In particular,
this hF-conformal measure lifts to a σ -finite hF -conformal measure for T .

(2) ([59, 61]) T is either elliptic and non-recurrent or weakly non-recurrent.2

We then have that the hT -conformal measure is non–atomic, ergodic and
conservative, and it is unique as a non–atomic t-conformal measure.

(3) ([119, 121]) T is either exponential3 and hyperbolic or super-growing.4 Here,
if t > 1 then the hF-conformal measure is ergodic, conservative and unique as
a t-conformal measure for F. Also, this conformal measure lifts to a σ -finite
hF -conformal measure for T .

(4) ([120]) T is given by T (z) = exp(z− 1) (parabolic). Here, the hF -conformal
measure is non–atomic, ergodic and conservative. Also, for t > 1 it is the unique
non–atomic t-conformal measure for F, and if t �= h then there exist discrete t-
conformal measures for F, whereas no such discrete t-conformal measure for F
exists for t = h. Again, this conformal measure lifts to a σ -finite hF -conformal
measure for T .

(5) ([94]) T is given by T (z) = R(exp(z)), where R is a non-constant rational
function with an asymptotic value, which eventually maps to infinity. Here,
the hF -conformal measure is non–atomic, conservative and ergodic, where hF

denotes the Hausdorff dimension of the radial Julia set of F. Also, this measure
is unique as a hF -conformal measure, and it lifts to a σ -finite hF -conformal
measure for T .

The proofs of these statements follow the general construction method, which
will be described in the next section. Furthermore, the proofs use the well-
known standard method of extending a finite conformal measure for an induced
transformation to the full dynamics (see e.g. [35]). Note that [58] gives a finer
analysis of the geometric measures appearing in part (5) of the previous theorem.

2The ω limit sets of critical points in the Fatou set are attracting or parabolic cycles and the ω limit
set of critical points c in the Julia set are compact in C\{c} (resp. T n(c) = ∞, for some n≥ 1).
3That is of the form T (z) = λ exp(z).
4The sequence of real parts αn (resp. the absolute value) of T n(0) is exponentially increasing, that
is, αn+1 ≥ cexpαn, for all n ∈ N and for some c > 0.
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Furthermore, we would like to mention the work in [62] and [60], where one finds
a discussion of the relations between different geometric measures. Also, fractal
geometric properties of conformal dynamical systems are surveyed in [117] (see
also the surveys in [78] and [104]).

4 Conformal Measures for Transformations

As mentioned before, the Patterson–Sullivan construction relies on approximations
by discrete measures supported on points outside the limit set, and hence can be
viewed as some kind of “external construction”. In contrast to this, we are now
going to describe an “internal construction”, which uses orbits inside the limit set.
The basic idea of this construction principle is inspired by the original Patterson
measure construction in [75], and also by the method used for deriving equilibrium
measures in the proof of the variational principle for the pressure function [73].
Note that the method does not use powers of some potential function, instead, it
mimics the general construction of Gibbs measures, and one is then left to check the
vanishing of the pressure function.

Throughout this section, let (X ,d) be a compact metric space, equipped with the
Borel σ -field F . Also, let T : X → X be a continuous map for which the set S (T )
of singular points x ∈ X (that is, T is either not open at x or non-invertible in some
neighbourhood of x) is finite. Furthermore, let f : X → R be a given continuous
function, and let (En : n ∈ N) be a fixed sequence of finite subsets of X .

Recall that for a sequence of real numbers (an : n ∈ N), the number c =
limsupn→∞ an/n is called the transition parameter of that sequence. Clearly, the
value of c is uniquely determined by the fact that it is the abscissa of convergence of
the series ∑n∈N exp(an−ns). For s = c, this series may or may not converge. Similar
to [75] (see also Sect. 1), an elementary argument shows that there exists a slowly
varying sequence (bn : n ∈N) of positive reals such that

∞

∑
n=1

bn exp(an− ns)

{
converges for s > c

diverges for s≤ c.
(6)

4.1 The Construction Principle

Define an = log∑x∈En expSn f (x), where Sn f = ∑0≤k<n f ◦ T k, and let c be the
transition parameter of the sequence (an : n ∈ N). Also, let (bn : n ∈ N) be a slowly
varying sequence satisfying (6). For each s > c, we then define the normalized
measure

ms =
1

Ms

∞

∑
n=1

∑
x∈En

bn exp(Sn f (x)− ns)δx, (7)
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where Ms is a normalizing constant, and where δx denotes the Dirac measure at the
point x ∈ X . A straightforward calculation then shows that, for A ∈F such that T |A
is invertible,

ms(TA) =
∫

A
exp(c− f )dms+O(s− c)

− 1
Ms

∞

∑
n=1

∑
x∈A∩(En+1ΔT−1En)

bn exp(Sn f (T (x))− ns). (8)

For s↘ c, any weak accumulation point of {ms : s> c}will be called a limit measure
associated with f and (En : n∈N). In order to find conformal measures among these
limit measures, we now have a closer look at the terms in (8). There are two issues
to discuss here. First, if A is a set which can be approximated from above by sets
An for which T |An is invertible and for which the limit measure of their boundaries
vanishes, then the outer sum on the right-hand side of (8) converges to the integral
with respect to the limit measure. Obviously, this convergence depends on how the
mass of ms is distributed around the singular points. If the limit measure assigns
zero measure to these points, the approximation works well. In this case, one has to
check whether the second summand in (8) tends to zero as s↘ c. The simplest case
is that En+1 = T−1(En), for all n ∈ N, and then nothing has to be shown.

This discussion has the following immediate consequences.

Proposition 1. ([28]) Let T be an open map, and let m be a limit measure assigning
measure zero to the set of periodic critical points. If we have

lim
s↘c

1
Ms

∞

∑
n=1

∑
x∈En+1ΔT−1En

bn exp(Sn f (T (x))− ns) = 0,

then there exists a exp(c− f )-conformal measure μ . Moreover, if m assigns measure
zero to all critical points, then μ = m.

Clearly, the proposition guarantees, in particular, that for an arbitrary rational
map R of the Riemann sphere we always have that there exists a exp(p− f )-
conformal measure supported on the associated Julia set, for some p ∈ R.

Also, the above discussion motivates the following weakening of the notion of a
conformal measure.

Definition 1. With the notation as above, a Borel probability measure m is called
weakly exp(c− f )-conformal, if

m(T (A)) =
∫

A
exp(c− f )dm

for all A ∈F such that T |A is invertible and A∩S (T ) = /0.

The following proposition shows that these weakly conformal measures do in
fact always exist.
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Proposition 2. ([28]) With the notation as above, we always have that there exists
a weakly exp(p− f )–conformal Borel probability measure m, for some p ∈ R.

The following theorem addresses the question of how to find the transition
parameter c, when constructing a conformal measure by means of the construction
principle above. Obviously, the parameter c very much depends on the potential f
as well as on the choice of the sequence (En : n ∈N). In most cases, the sets En can
be chosen to be maximal separating sets, and then the parameter c is clearly equal
to the pressure of φ . However, in general, it can be a problem to determine the value
of c. The following theorem gives a positive answer for a large class of maps.

Theorem 4. ([28]) For each expansive map T , we have that there exists a weakly
exp(P(T, f )− f )-conformal measure m. If, additionally, T is an open map, then m
is an exp(P(T, f )− f )-conformal measure.

Note that besides its fruitful applications to rational and meromorphic functions
of the complex plane, the above construction principle has also been used success-
fully for maps of the interval (including circle maps) (see e.g. [16, 28, 43–46]). In
particular, it has been employed to establish the existence of a 1-conformal measure
for piecewise continuous transformations of the unit interval, which have neither
periodic limit point nor wandering intervals, and which are irreducible at infinity
(see [16]). Moreover, conformal measures for higher dimensional real maps appear
in [17], and there they are obtained via the transfer operator method.

Currently, it is an active research area to further enlarge the class of transfor-
mations for which the existence of conformal measures can be established. This
area includes the promising attempts to construct conformal measures on certain
characteristic subsets of the limit set, such as on the radial limit set [26,49,85] or on
certain other attractors [25]. Also, a related area of research aims to elaborate fractal
geometry for systems for which weakly conformal measures exist (see e.g. [31]).

We end this section by giving two further examples of systems for which the
theory of conformal measures has proven to be rather successful. The first of these
is the case of expanding maps of the interval. Here, Hofbauer was one of the leading
architects during the development of the general theory.

Theorem 5. ([45]) Let T : [0,1] → [0,1] be an expanding, piecewise monotone
map of the interval which is piecewise Hölder differentiable. Let A⊂ [0,1] have the
Darboux property and positive Hausdorff dimension h, and assume that the forward
orbit of each element of A does not intersect the endpoints of the monotonicity
intervals of T . Then we have that there exists a non-atomic h-conformal measure,
which is unique as a t-conformal measure for t > 0.

Also, for expansive C1+ε-maps Gelfert and Rams obtained the following result.

Theorem 6. ([39]) Let (X ,T ) be an expansive, transitive C1+ε -Markov system,
whose limit set has Hausdorff dimension equal to h. Then there exists a h-conformal
measure.
In particular, we have that h is the least exponent for which a t-conformal measure
exists, and h is also the smallest zero of the pressure function P(T,−t log |T ′|).
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Finally, let us mention that the above construction principle can obviously also
be applied to iterated function systems and graph-directed Markov systems. For
these dynamical systems, conformal measures are obtained by considering the
inverse branches of the transformations coming with these systems. For further
details we refer to [70].

5 Gibbs Measures for Bundle Maps

In this section, we give an outline of how to extend the concept of a Gibbs measure
to bundles of maps over some topological (or measurable) space X (cf. Sect. 2).
For this, let (X ,T ) be a dynamical system for which the map T : X → X factorizes
over some additional dynamical system (Y,S) such that the fibres are non-trivial.
Then there exists a map π : X → Y such that π ◦T = S ◦π . We will always assume
that π is either continuous (if X is compact) or measurable. A system of this type
is called a fibred system. Note that the set of fibred systems includes dynamical
systems, which are skew products. For ease of exposition, let us mainly discuss
the following two cases: (1) (Y,S) is itself a topological dynamical system and π
is continuous; (2) (Y,B,P,S) is a measurable dynamical system, with P being a
probability measure on Y , S an invertible probability preserving transformation, and
where π is measurable.

In the first case, one can define a family (L
(y)
φ : y ∈ Y ) of transfer operators,

given on the space Cy of continuous functions on π−1({y}) (the image does not
necessarily have to be a continuous function), by

L
(y)
φ f (x) = ∑

T (z)=x
π(z)=y

f (z)e−φ(z).

If the fibre maps Ty = T |π−1(y) are uniformly open and expanding,5 these operators
act on the spaces of continuous functions on the fibres. In this situation, we have that
an analogue of the Bowen–Ruelle–Perron–Frobenius Theorem holds. Note that it is
not known whether this analogue can be obtained via some fixed point theorem. The
currently known proof uses the method of invariant cones and Hilbert’s projective
metric (see [7, 22]). More precisely, a conic bundle (Ky : y ∈ Y ) over X is given as
follows. For each y ∈ Y , let Ky ⊂Cy be the cone defined by

Ky = { f ∈Cy : f (x1)≤ ρ(x1,x2) f (x2); x1,x2 ∈ π−1({y}); d(x1,x2)< a},

where ρ(x1,x2) = exp(2β (d(x1,x2))
γ ), and where β is chosen such that β >

αλγ/2(1− λγ). Here, 0 < γ ≤ 1 denotes the Hölder exponent of the potential
function φ . One then verifies that Ty(Ky) ⊂ KS(y) and that the projective diameter

5That is there exist a > 0 and λ > 1 such that for all x,x′ ∈ π−1({y}) we have that d(x,x′) < a
implies that d(T (x),T (x′))≥ λd(x,x′).
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of KS(y) is finite and does not depend on y. By using Birkhoff’s Theorem [7],
we then obtain that the fibre maps Ty are contractions. This method of employing
Hilbert’s projective metric in order to derive conformal measures is due to Ferrero
and Schmidt, and we refer to [38] for further details. The following theorem states
this so obtained analogue of the Bowen–Ruelle–Perron–Frobenius Theorem for
bundle maps.

Theorem 7. ([22]) Assume that the fibre maps are uniformly expanding, open
and (uniformly) exact.6 For each Hölder continuous function φ : X → R, we then
have that there exists a unique family {μy : y ∈ Y} of probability measures μy on
π−1({y}) and a unique measurable function α : Y →R>0 such that, for each A⊂ X
measurable,

μS(y)(T (A)) = α(y)
∫

A
exp(φ(x))dμy(x). (9)

Moreover, the map y �→ μy is continuous with respect to the weak topology.

The family of measures obtained in this theorem represents a generalization of
the concept “Gibbs measure”, which also explains why such a family is called a
Gibbs family. Note that the strong assumptions of the theorem are necessary in
order to guarantee the continuity of the fibre measures. Moreover, note that, under
some mild additional assumptions, the function α can be shown to be continuous
(and in some cases, it can even be Hölder continuous) [22]. Since by changing the
metric [20, 30], each expansive system can be made into an expanding system, one
immediately verifies that the previous theorem can be extended such that it includes
fibrewise uniformly expansive systems. The proof of this extension is given in [89].

Let us also mention that typical examples for these fibred systems are provided
by Julia sets of skew products for polynomial maps in C

d. For these maps, it is
shown in [23] that various outcomes of the usual thermodynamic formalism can
be extended to the Gibbs families associated with these maps. This includes the
existence of measures of maximal entropy for certain polynomial maps. Note that,
alternatively, these measures can also be obtain via pluriharmonic functions.

For more general dynamical systems, the fibre measures do not have to be
continuous. In fact, as observed by Bogenschütz and Gundlach, the Hilbert metric
also turns out to be a useful tool for investigating the existence of Gibbs families for
more general maps. One of the problems which one then usually first encounters
is to locate a suitable subset of Y for which the relation in (9) is satisfied. It
turns out that here a suitable framework is provided by the concept of a random
dynamical system. More precisely, let us assume that the map S is invertible and
that (Y,S) is equipped with a σ -algebra B and an S-preserving ergodic probability
measure P. The following “random version” of the Bowen–Ruelle Theorem has
been obtained in [10]. Note that in here we have that (9) holds P-almost everywhere.
Also, note that in the special case in which S is invertible, we have that each of the
operators Lφ (y) is nothing else but a restriction of the transfer operator to fibres.
Moreover, the theorem uses the concept of a random subshift of finite type. Such a

6That is for ε > 0 there exists some n≥ 1 such that T n(B(x,ε)) ⊃ π−1({Sn(π(x))}).
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subshift is defined by a bounded random function l : Y → N and a random matrix
A(·) = (ai, j(·)) over Y with entries in {0,1}, such that the fibres are given by

π−1({y}) = {(xn)n≥0 : xk ≤ l(Sk(y)) and axk,xk+1(S
k(y)) = 1,∀k ∈ N}.

Theorem 8. ([10]) Let (X ,T ) be a random subshift of finite type for which
‖ logLφ‖∞ ∈ L1(P), A(·) is uniformly aperiodic and φ|π−1({y}) is uniformly Hölder
continuous, for each y∈Y . Then there exist a random variable λ with logλ ∈ L1(P),
a positive random function g with ‖ logg‖∞ ∈ L1(P), and a family of probability
measures μy such that the following hold, for all y ∈ Y.

1. L
(y)∗
φ μS(y) = λ (y)μy;

2. L
(y)
φ g = λ (y)g;

3.
∫

gdμy = 1;
4. The system has exponential decay of correlation for Hölder continuous functions.

Further results in this direction can be found in [41, 54, 56]. Note that none of
these results makes use of the Patterson construction, but for random countable
Markov shifts the construction principle of Sect. 4 has been successfully applied,
and this will be discussed in the following final section of this survey.

6 Gibbs Measure on Non-Compact Spaces

Without the assumption of X being compact, the weak convergence in the Patterson
construction needs some additional care in order to overcome the lack of relative
compactness of the associated space of probability measures.

One of the the simplest examples, in which the quality of the whole space X does
not play any role, is the following. Suppose that there exists a compact subset of
X to which the forward orbit of a generic point under a given transformation T :
X → X returns infinitely often. More specifically, let us assume that the map admits
a countable Markov partition, and that there exists some compact atom A of this
partition such that A⊂ ⋃n∈N T−n(A). We then consider the induced transformation
TA : A→ A, given for each x ∈ A by

TA(x) = T n(x)(x),

where n(x) = inf{k ∈ N : T k(x) ∈ A}. Likewise, for a given potential function φ on
X , we define the induced potential function φA by φA(x) = φ(x)+ · · ·+φ(T n(x)−1).
In order to see in which way Gibbs measures for TA give rise to Gibbs measures
for T , let μ be a given Gibbs measure for the transformation TA and the induced
potential function φA. Then define a measure m by

∫
f dm =

∫ n(x)−1

∑
k=0

f (T k(x))dμ(x).



The Patterson Measure: Classics, Variations and Applications 189

One immediately verifies that m is a σ -finite Gibbs measure for the potential
function φ (see [35]).

If in the absence of compactness one still wants to employ any of the general
construction principles for conformal measures, discussed in Sects. 1, 2 and 4, one
needs to use the concept of tightness of measures. For instance, for S-uniformal
maps of the interval, tightness has been used in [25] to show that there exists a
conformal measure concentrated on a dense symbolic subset of the associated limit
set. Also, Urbański’s KV-method, discussed in Sect. 3, appears to be very promising
here, since it gives rise to conformal measures which are concentrated on non-
compact subsets of X (although, strictly speaking, the construction is carried out
for a compact space, where limits do of course exist). Moreover, there is ongoing
research on the existence of Gibbs measures for countable topological Markov
chains. In all of the results obtained thus far, tightness plays a key role. For this
non-compact situation, there are various examples in the literature for which the
existence of Gibbs measures is discussed. However, the first general result was
derived in [69].

In the following theorem, we consider a topologically mixing Markov chain X ,
given by a state space Λ , a map T : X → X , and a transition matrix Σ = (σi j)i, j∈Λ .
Recall that (X ,T ) is said to have the big images and big pre-images property,
abbreviated as (BIP), if there exist a finite set Λ0 ⊂ Λ of states such that for each
� ∈Λ there exist a,b ∈Λ0 for which

σa�σ�b = 1.

Note that this property is equivalent to what Mauldin and Urbański call “finitely
primitive” [69]. Also, mark that the property (BIP) is more restrictive than the
big image property of [1], which was there used to obtain absolutely continuous
invariant measures.

The following theorem is due to Sarig. The proof of the sufficiency part of this
theorem can also be found in [69].

Theorem 9. ([93]) Let (X ,T ) be a topologically mixing infinite topological Markov
chain, and let φ ∈ C(X) have summable variation.7 In this situation, we have that
the following two statements are equivalent.

(1) There exists an invariant Gibbs measure for φ .
(2) (X ,T ) has the property (BIP) and the Gurevic pressure PG(φ) of φ is finite, that

is, for some � ∈Λ we have

PG(φ) := lim
n→∞

1
n

log ∑
T n(x)=x

I�(x)exp(φ(x)+ · · ·+φ(T n−1(x)))< ∞.

7That is ∑∞
n=1Vn(φ ) < ∞, where Vn(φ ) denotes the maximal variation of φ over cylinders of

length n.



190 M. Denker and B.O. Stratmann

Recently, this result has been partially extended by Stadlbauer in [95] to the case
of random countable topological Markov chains. Moreover, for the situation of the
theorem with the additional assumptions that a certain random (BIP) holds and that
V y

1 (φ)< ∞ for all y ∈Y , it was shown in [24] that there exists an invariant measure.

Theorem 10. ([95]) Let (X ,T ) be a random topological Markov shift, and let φ be
a locally fibre Hölder continuous function of index two8 with finite Gurevic pressure.

Also, assume that the functions y �→ ∑∞
k=1κ(S−k(y))rk, y �→ logsup{L (y)

φ 1(x) : x ∈
XS(y)} and y �→ loginf{L (y)

φ 1(x) : x∈ XS(y)} are P-integrable, and let (X ,T,φ) be of

divergence type.9 Then there exists a measurable function α : Y → R+ and a Gibbs
family {μy : y ∈ Y} for the potential PG(φ)−φ such that, for all y ∈ Y and all x in
the fibre over y,

dμS(y)

dμy
(x) = α(y)exp(PG(φ)−φ(x)).

In the work of Sarig in [91] and [92], which is closely related to the thermody-
namic formalism, tightness is used to construct Gibbs measures via transfer operator
techniques. Contrary to this approach, the results in [95] combine the Patterson
measure construction with Crauel’s Prohorov Theorem on tightness ([21]). To be
more precise, let (X ,T ) be a random Markov chain over the base (Y,B,R,P),
where P is some fixed probability measure. Then Crauel’s theorem states that a

sequence of bundle probabilities {μ (n)
y : y ∈ Y} is relatively compact with respect

to the narrow topology if and only if {μ (n)
y : y ∈ Y} is tight.10 Here, convergence of

the discrete fibre measures {μ (n)
y : y ∈ Y} towards {μy : y ∈ Y} with respect to the

narrow topology means that for all functions f , which are continuous and bounded
as functions on fibres, we have that

∫ ∫
f dμ (n)

y dP(y) =
∫ ∫

f dμy dP(y).

The construction in Sect. 4 can then be carried out fibrewise, showing that there exist
weak accumulation points with respect to the narrow topology (see also [24]). It is
worth mentioning that, beyond this result, in this situation no further results on the
existence of conformal measures seem to be known. Also, thorough investigations
of the fractal geometry of such systems are currently still missing.

8V y
n (φ )≤ κ(y)rn for n≥ 2 and

∫
logκ dP < ∞.

9For a fixed measurable family ξy ∈ π−1(y), we have that ∑n:Sn(y)∈Y ′ s
n(L

(y)
φ )n(1)(ξSn(y)) con-

verges for s < 1 and diverges for s = 1, where Y ′ is some set of positive measure.
10That is for all ε > 0 there exists a measurable set K ⊂ X such that K∩π−1({y}) is compact, for

all y ∈ Y , and infn
∫
μ (n)

y (K)dP(y) > 1− ε .
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2. Aaronson, J.; Denker, M.: The Poincaré series of C\Z. Ergodic Theory Dynam. Systems 19,
No.1 (1999), 1–20.

3. Aaronson, J.; Denker, M.: Local limit theorems for partial sums of stationary sequences
generated by Gibbs-Markov maps. Stochastics and Dynamics 1 (2001), 193–237.

4. Adachi, T.; Sunada, T.: Homology of closed geodesics in a negatively curved manifold. J.
Differ. Geom. 26 (1987), 81–99.

5. Agol, I.: Tameness of hyperbolic 3-manifolds. Preprint (2004); arXiv:math.GT/0405568.
6. Avila, A.; Lyubich, M.: Hausdorff dimension and conformal measures of Feigenbaum Julia

sets. J. Amer. Math. Soc. 21 (2008), 305–363.
7. Birkhoff, G.: Lattice theory. Third edition. AMS Colloquium Publ., Vol. XXV AMS,

Providence, R.I. 1967
8. Bishop, C. J.; Jones, P. W.: Hausdorff dimension and Kleinian groups. Acta Math. 56 (1997),

1–39.
9. Blokh, A. M.; Mayer, J. C.; Oversteegen, L. G.: Recurrent critical points and typical limit

sets for conformal measures. Topology Appl. 108 (2000), 233–244.
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107. Stratmann, B. O.; Urbański, M.: Jarnik and Julia: a Diophantine analysis for parabolic
rational maps. Math. Scand. 91 (2002), 27–54.
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Moments for L-Functions for GLr×GLr−1

Adrian Diaconu, Paul Garrett, and Dorian Goldfeld

Abstract We establish a spectral identity for moments of Rankin–Selberg L-func-
tions on GLr×GLr−1 over arbitrary number fields, generalizing our previous results
for r = 2.

1 Introduction

Let k be an algebraic number field with adele ring A. Fix an integer r ≥ 2
and consider the general linear groups GLr(k), GLr(A) of r× r invertible ma-
trices with entries in k, A, respectively. Let Z+ be the positive real scalar ma-
trices in GLr. Let π be an irreducible cuspidal automorphic representation in
L2(Z+GLr(k)GLr(A)). Let π ′ run over irreducible unitary cuspidal representations
in L2(Z+GLr−1(k)\GLr−1(A)), where now Z+ is the positive real scalar matrices
in GLr−1. For brevity, denote a sum over such π ′ by ∑π ′ . For complex s, let
L(s,π ×π ′) denote the Rankin–Selberg convolution L–function. A second integral
moment over the spectral family GLr−1 is described roughly as follows. For each
irreducible cuspidal automorphic π ′ of GLr−1, assign a constant c(π ′)≥ 0. Letting
π∞ be the archimedean component of π and π ′∞ the archimedean factor of each π ′,
let M(s,π∞,π ′∞) be a function of complex s, whose possibilities will be described in
more detail later. The corresponding second moment of π is

∑
π ′

c(π ′)
∫

Re s= 1
2

|L(s,π ×π ′)|2 ·M(s,π∞,π ′∞)ds.
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In fact, there are further correction terms corresponding to non-cuspidal parts of
the spectral decomposition of L2(Z+GLr−1(k)\GLr−1(A)), but the cuspidal part
presumably dominates.

The theory of second integral moments on GL2×GL1 has a long history, although
the early papers treated mainly the case that the groundfield k is Q. For example,
see [2, 3, 10, 11, 14, 16, 21–24, 27, 35, 42–44]. Second integral moments of level-one
holomorphic elliptic modular forms were first treated in [21, 22], the latter using
an idea that is a precursor of part of the present approach. The study of second
integral moments for GL2×GL1 with arbitrary level, groundfield, and infinity-type
is completely worked out in [12].

The main aim of this paper is to establish an identity relating the second integral
moment, described above, to the integral of a certain Poincaré series P against the
absolute value squared | f |2 of a distinguished cuspform f ∈ π . Acknowledging that
the spectral decomposition of L2(ZAGLr(k)\GLr(A)) also has a non-cuspidal part
generated by Eisenstein series and their residues, the identity we obtain takes the
form

∫

ZAGLr(k)\GLr(A)

P(g,ϕ∞) · | f (g)|2 dg

=∑
π ′
|ρ(π ′)|2

∫
Re s= 1

2

|L(s,π ×π ′)|2 ·M(s,π∞,π ′∞,ϕ∞)ds + (non-cuspidal part).

Here, M(s,π∞,π ′∞,ϕ∞) is a weighting function depending on the complex parameter
s, on the archimedean components π∞ and π ′∞, and on archimedean data ϕ∞ defining
the Poincaré series. The global constants ρ(π ′) are analogues of the leading Fourier
coefficients of GL2 cuspforms. The spectral expansion of the Poincaré series P
relates the second integral moment to automorphic spectral data. Remarkably, the
cuspidal data appearing in the spectral expansion of P comes only from GL2.

These new identities have some similarities to the Kuznetsov trace formula
[1,19,49,50], in that they are derived via the spectral resolution of a Poincaré series,
but they are clearly of a different nature. We have in mind application not only to
cuspforms, but also to truncated Eisenstein series or wave packets of Eisenstein
series, thus applying harmonic analysis on GLr to L-functions attached to GL1,
touching upon higher integral moments of the zeta function ζk(s) of the ground
field k.

In connection to this work, we mention the recent mean-value result of [51],

∫ T 1−ε

−T 1−ε ∑
T<t j≤2T

∣∣L( 1
2 + it,u j×ϕ)

∣∣2 dt � T 3+ε for ε > 0,

where ϕ is on GL3, and where u j on GL2 has spectral data t j, as usual. From
this, the t-aspect convexity bound can be recovered. Also, [37] obtains a t-aspect
subconvexity bound for standard L-functions for GL3(Q) for Gelbart–Jacquet lifts.
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For context, we review the [15] treatment of spherical waveforms f for GL2(Q).
In that case, the sum of moments is a single term

∫
ZAGL2(Q)\GL2(A)

P(g,z,w) | f (g)|2 dg

=
1

2π i

∫
Re (s)= 1

2

L(z+ s, f ) ·L(s, f ) ·Γ (s,z,w, f∞) ds,

where Γ (s,z,w, f∞) is a ratio of products of gammas, with arguments depending
upon the archimedean data of f . Here, the Poincaré series P(g) = P(g,z,w) is
specified completely by complex parameters z,w, and has a spectral expansion

P(g,z,w)=
π 1−w

2 Γ
(

w−1
2

)
π−

w
2 Γ
(

w
2

) ·E1+z(g)+
1
2 ∑

F on GL2

ρF ·L
( 1

2 +z,F
) ·G ( 1

2− itF ,z,w
) ·F(g)

+
1

4π i

∫
Re (s)= 1

2

ζ (z+ s)ζ (z+ 1− s)
ξ (2− 2s)

G (1− s,z,w) ·Es(g)ds,

for Re(z)� 1
2 , Re(w)� 1, where ξ (s) = π−s/2Γ (s/2)ζ (s), where G is essentially

a product of gamma function values

G (s,z,w) = π−(z+
w
2 )
Γ ( z+1−s

2 )Γ ( z+s
2 )Γ ( z−s+w

2 )Γ ( z+s−1+w
2 )

Γ (z+ w
2 )

,

and F is summed over (an orthogonal basis for) spherical (at finite primes)
cuspforms on GL2 with Laplacian eigenvalues 1

4 + t2
F , and Es is the usual spherical

Eisenstein series. The continuous part, the integral of Eisenstein series Es, cancels
the pole at z = 1 of the leading term, and when evaluated at z = 0 is

P(g,0,w) = (holomorphic at z=0)+ 1
2 ∑

F on GL2

ρF ·L
( 1

2 ,F
) ·G ( 1

2 − itF ,0,w
) ·F(g)

+
1

4π i

∫
Re (s)= 1

2

ζ (s)ζ (1− s)
ξ (2− 2s)

G (1− s,0,w) ·Es(g)ds.

In this spectral expansion, the coefficient in front of a cuspform F includes G
evaluated at z = 0 and s = 1

2 ± itF , namely

G ( 1
2 − itF ,0,w) = π−

w
2

Γ
( 1

2−itF
2

)
Γ
( 1

2+itF
2

)
Γ
(

w− 1
2−itF
2

)
Γ
(

w− 1
2+itF
2

)

Γ
(

w
2

) .

The gamma function has poles at 0,−1,−2, . . ., so this coefficient has poles at
w = 1

2 ± itF , − 3
2 ± itF , . . .. Over Q, among spherical cuspforms (or for any fixed
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level) these values have no accumulation point. The continuous part of the spectral
side at z = 0 is

1
4π i

∫
Re (s)= 1

2

ξ (s)ξ (1− s)
ξ (2− 2s)

Γ (w−s
2 )Γ (w−1+s

2 )

Γ (w
2 )

·Es ds,

with gamma factors grouped with corresponding zeta functions, to form the
completed L-functions ξ . Thus, the evident pole of the leading term at w = 1 can
be exploited, using the continuation to Re(w) > 1/2. A contour-shifting argument
shows that the continuous part of this spectral decomposition has a meromorphic
continuation to C with poles at ρ/2 for zeros ρ of ζ , in addition to the poles from
the gamma functions.

Already for GL2, over general ground fields k, infinitely many Hecke characters
enter both the spectral decomposition of the Poincaré series and the moment
expression. This naturally complicates isolation of literal moments, and complicates
analysis of poles via the spectral expansion. Suppressing constants, the moment
expansion is a sum of twists by Hecke characters χ , of the form∫

ZAGL2(k)\GL2(A)
P(s,z,w,ϕ∞) · | f (g)|2

=∑
χ

∫
Re (s)= 1

2

L(z+ s, f ⊗ χ) ·L(1− s, f ⊗ χ) ·M(s,z,χ∞,ϕ∞) ds,

where M(s,z,χ∞,ϕ∞) depends upon complex parameters s,z and archimedean
components χ∞, f∞, and upon auxiliary archimedean data ϕ∞ defining the Poincaré
series. Again suppressing constants, the spectral expansion is

P(g,z,ϕ∞) = (∞− part) ·E1+z(g) + ∑
F on GL2

(∞− part) ·ρF ·L
(

1
2 + z,F

) ·F(g)

+ ∑
χ

∫
Re (s)= 1

2

L(z+ s,χ)L(z+ 1− s,χ)
L(2− 2s,χ2)

G (s,χ∞) ·Es,χ(g)ds,

where the factor denoted ∞-part depends only upon the archimedean data, as does
G (s,χ∞).

In the simplest case beyond GL2, take f a spherical cuspform for GL3(Q)
generating an irreducible cuspidal automorphic representation π = π f . We can
construct a weight function Γ (s,z,w,π∞,π ′∞) with explicit asymptotic behavior,
depending upon complex parameters s, z, and w, and upon the archimedean
components π∞ for π and for π ′ irreducible cuspidal automorphic on GL2, such
that the moment expansion has the form
∫

ZAGL3(Q)\GL3(A)
P(g,z,w) · | f (g)|2 dg

= ∑
π ′ on GL2

|ρ(π ′)|2 1
2πi

∫
Re (s)= 1

2

|L(s,π×π ′)|2 ·Γ (s,0,w,π∞,π ′∞) ds

+
1

4πi
1

2πi ∑k∈Z
∫

Re (s1)=
1
2

∫
Re (s2)=

1
2

|L(s1,π×πE(k)
1−s2

)|2

|ξ (1−2it2)|2
Γ (s1,0,w,π∞,E

(k)
1−s2,∞) ds1 ds2,
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where π ′ runs over (an orthogonal basis for) all level-one cuspforms on GL2, with

no restriction on the right K∞-types, E(k)
s is the usual level-one Eisenstein series of

K∞-type k, and the notation E(k)
1−s2,∞ means that the dependence is only upon the

archimedean component. Here and throughout, for Re(s) = 1/2, use 1− s in place
of s, to maintain holomorphy in complex-conjugated parameters.

More generally, for an irreducible cuspidal automorphic representation π on
GLr with r ≥ 3, whether over Q or over a numberfield, the moment expansion
includes an infinite sum of terms |L(s,π × π ′)|2 for π ′ ranging over irreducible
cuspidal automorphic representations on GLr−1, as well as integrals of products
of L-functions L(s,π × π ′1) . . .L(s,π × π ′�) for π ′1, . . . ,π ′� ranging over �-tuples of
cuspforms on GLr1 × . . .×GLr� for all partitions (r1, . . . ,r�) of r.

Generally, the spectral expansion of the Poincaré series for GLr is an induced-up
version of that for GL2. Suppressing constants, using groundfield Q to skirt Hecke
characters, the spectral expansion has the form

P = (∞−part) ·Er−1,1
z+1 + ∑

F on GL2

(∞−part) ·ρF ·L( rz+r−2
2 + 1

2 ,F) ·Er−2,2
z+1

2 ,F

+
∫

Re (s)= 1
2

(∞−part) · ζ (
rz+r−2

2 + 1
2 − s) ·ζ ( rz+r−2

2 + 1
2 + s)

ζ (2−2s)
·Er−2,1,1

z+1,s− z+1
2 ,−s− z+1

2
ds,

where F is summed over an orthonormal basis for spherical cuspforms on GL2,
and where the Eisenstein series are naively normalized spherical, with Er−1,1

s a
degenerate Eisenstein series attached to the parabolic corresponding to the partition
r − 1,1, and Er−2,1,1

s1,s2,s3,χ a degenerate Eisenstein series attached to the parabolic
corresponding to the partition r− 2,1,1.

Again over Q, the most-continuous part of the moment expansion for GLr is of
the form

∫
Re (s)= 1

2

∫
t∈Λ
|L(s,π ×πE 1

2 +it
)|2 Mt(s) dsdt

=

∫ ∫
Λ

∣∣∣∣ Π1≤�≤r−1 L(s+ it�,π)
Π1≤ j<�<n ζ (1− it j + it�)

∣∣∣∣
2

Mt(s) dsdt,

where

Λ = {t ∈ R
r−1 : t1 + · · ·+ tr−1 = 0}

and where Mt is a weight function depending upon π . More generally, let r− 1 =
m ·b. For π ′ irreducible cuspidal automorphic on GLm, let

π ′Δ = π ′ ⊗ . . .⊗π ′



202 A. Diaconu et al.

on GLm × ·· · ×GLm. Inside the moment expansion, we have (recall Langlands-
Shahidi)

∫
Re (s)= 1

2

∫
Λ
|L(s,π ×πE

π′Δ , 1
2 +it

)|2 Mπ ′,t(s) dsdt

=

∫ ∫ ∣∣∣∣ Π1≤�≤b L(s+ it�,π×π ′)
Π1≤ j<�≤b L(1− it j + it�,π ′ ×π ′∨)

∣∣∣∣
2

M dsdt.

Replacing the cuspidal representation π on GLr(Q) by a (truncated) minimal-
parabolic Eisenstein series Eα with α ∈ C

n−1, the most-continuous part of the
moment expansion contains a term

∫ ∫
Λ

∣∣∣∣Π1≤μ≤n, 1≤�≤r−1 ζ (αμ + s+ it�)

Π1≤ j<�<r |ζ (1− it j + it�)

∣∣∣∣
2

dsdt.

Taking α = 0 ∈ C
r−1 gives

∫ ∫
Λ

∣∣∣∣ Π1≤�≤r−1 ζ (s+ it�)r

Π1≤ j<�<r ζ (1− it j + it�)

∣∣∣∣
2

M dsdt.

For example, for GL3, where Λ = {(t,−t)} ≈ R,

∫ ∫
R

∣∣∣∣ζ (s+ it)3 ·ζ (s− it)3

ζ (1− 2it)

∣∣∣∣
2

M dsdt,

and for GL4

∫
(s)

∫
Λ

∣∣∣∣ ζ (s+ it1)4 ·ζ (s+ it2)4 ·ζ (s+ it3)4

ζ (1−it1+it2)ζ (1−it1+it3)ζ (1−it2+it3)

∣∣∣∣
2

M dsdt.

2 Background and Normalizations

We recall some facts concerning Whittaker models and Rankin–Selberg integral
representations of L-functions, and spectral theory for automorphic forms, on GLr.
To compare zeta local integrals formed from vectors in cuspidal representations to
local L-functions attached to the representations, we specify distinguished vectors
in irreducible representations of p-adic and archimedean groups. Locally at both
p-adic and archimedean places, Whittaker models with spherical vectors have a
natural choice of distinguished vector, namely, the spherical vector taking value 1 at
the identity element of the group.

Even in general, for the specific purposes here, at finite places the facts are clear.
At archimedean places, the facts are more complicated, and, further, the situation
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dictates choices of data, and we are not free to make ideal choices. See [6–8] for
detailed surveys, and references to the literature, mostly papers of Jacquet, Piatetski-
Shapiro and Shalika. The spectral theory is due to [36,41], and proof of conjectures
of [29] in [40].

Fix an integer r ≥ 2 and consider the general linear group G = GLr over a
fixed algebraic number field k. For a positive integer �, in the following we use
the notation “�× �” to denote an �-by-� matrix, and let 1� denote the �× � identity
matrix. Then G = GLr has the following standard subgroups:

P = Pr−1,1 =

{(
(r− 1)× (r− 1) ∗

0 1× 1

)}
,

U =

{(
1r−1 ∗

0 1

)}
, H =

{(
(r− 1)× (r− 1) 0

0 1

)}
,

N = {upper-triangular unipotent elements in H}
= (unipotent radical of standard minimal parabolic in H),

Z = center of GLr.

Let A = Ak be the adele ring of k. For a place v of k let kv be the corresponding
completion, with ring of integers ov for finite v. For an algebraic group defined over
k, let Gv be the kv-valued points of G. For G = GLr over k, let Kv be the standard
maximal compact subgroup of Gv: for v <∞, Kv = GLr(ov) for v≈R, Kv = Or(R),
and for v≈ C, Kv =U(r).

A standard choice of non-degenerate character on NkUk\NAUA is

ψ(n ·u) = ψ0(n12 + n23 + · · ·+ nr−2,r−1) ·ψ0(ur−1,r),

where ψ0 is a fixed non-trivial character on A/k. A cuspform f has a Fourier-
Whittaker expansion along NU

f (g) = ∑
ξ∈Nk\Hk

Wf (ξg) where Wf (g) =
∫

NkUk\NAUA

ψ(nu) f (nug)dndu.

The Whittaker function Wf (g) factors over primes, and a careful normalization of
this factorization is set up below. Cuspforms F on H have corresponding Fourier-
Whittaker expansions

F(h) = ∑
ξ∈N′k\H′k

WF(ξh) where WF(g) =
∫

N′k\N′A
ψ(n)F(nh)dn,

where H ′ ≈GLr−2 sits inside H as H sits inside G, N′ = N∩H ′, and ψ is restricted
from NU to N. This Whittaker function also factors WF =

⊗
v WF,v.

At finite places v, given an irreducible admissible representation πv of Gv

admitting a Whittaker model, [31] shows that there is an essentially unique effective
vector W eff

πv
, generalizing the characterization of newform in [4], as follows. For πv
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spherical, W eff
πv

is the usual unique spherical Whittaker vector taking value 1 at the
identity element of the group, as in [5, 46]. For non-spherical local representations,
define effective vector as follows. Let

Uopp
v (�) =

{(
1r−1 0

x 1

)
: x = 0 mod p�

}
.

Let KH
v ≈ GLr−1(ov) be the standard maximal compact of Hv. Define a congruence

subgroup of Kv by

Kv(�) = KH
v · (Uv∩Kv) ·Uopp

v (�).

For a non-spherical Whittaker model πv, there is a unique positive integer �v, the
conductor of πv, such that πv has no non-zero vectors fixed by Kv(�

′) for �′< �v, and
has a one-dimensional space of vectors fixed by Kv(�v). The remaining ambiguous
constant is completely specified by requiring that local Rankin–Selberg integrals

Zv(s,W
eff
πv
×Wo

π ′v) =
∫

Nv\Hv

|detY |s W eff
πv

(
Y

1

)
W o
π ′v(Y )dY

produce the correct local factors Lv(s,πv×π ′v) of GLr×GLr−1 Rankin-Selberg L–
functions for every spherical representation π ′v of the local GLr−1, with normalized
spherical Whittaker vector W o

π ′v
in π ′v. That is,

Zv(s,W
eff
πv
×W o

π ′v) = Lv(s,πv×π ′v),
with no additional factor on the right-hand side. See Sect. 4 of [32], and comments
below. Cuspidal automorphic representations π ≈⊗′v πv of GA admit local Whit-
taker models at all finite places, so locally at all finite places have a unique effective
vector.

Facts concerning archimedean local Rankin–Selberg integrals for GLm×GLn for
general m,n are more complicated than the non-archimedean cases. See [9, 47, 48],
as well as the surveys [6–8]. The spherical case for GLr ×GLr−1 admits fairly
explicit treatment, but this is insufficient for our purposes. Fortunately, for us there is
no compulsion to attempt to specify the archimedean local data for Rankin–Selberg
integrals. Indeed, the local archimedean Rankin–Selberg integrals will be deformed
into shapes essentially unrelated to the corresponding L-factor, in any case. Thus, in
the moment expansion in the theorem below we can use any systematic specification
of distinguished vectors eπv in irreducible representations πv of Gv, and eπ ′v in π ′v of
Hv, for v archimedean. For v|∞ and πv, a Whittaker model representation of Gv with
a spherical vector, let the distinguished vector eπv be the spherical vector normalized
to take value 1 at the identity element of the group. Similarly, for π ′v a Whittaker
model representation of Hv with a spherical vector, let the distinguished vector
eπ ′v be the normalized spherical vector. Anticipating that cuspforms generating
spherical representations at archimedean places make up the bulk of the space of
automorphic forms, we do not give an explicit choice of distinguished vector in
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other archimedean representations. Rather, we formulate the normalizations below,
and the moment expansion, in a fashion applicable to any choice of distinguished
vectors in archimedean representations.

Let π be an automorphic representation of GA, factoring over primes as π ≈⊗′
vπv admitting a global Whittaker model. Each local representation πv has a

Whittaker model, since π has a global Whittaker model. At each finite place v,
let W eff

πv
be the normalized effective vector, and eπv the distinguished vector at

v|∞. Let f ∈ π be a moderate-growth automorphic form on GA corresponding to
a monomial tensor in π , consisting of the effective vector at all finite primes, and
the distinguished vector eπv at v|∞. Then the global Whittaker function of f is a
globally determined constant multiple of the product of the local functions:

Wf = ρ f ·
⊗
v|∞

eπv ⊗
⊗
v<∞

W eff
πv

,

where ρ f is a general analogue of the leading Fourier coefficient ρ f (1) in the
GL2(Q) theory.

Let π ′ be an automorphic representation of HA spherical at all finite primes,
admitting a global Whittaker model. Let π ′ factor as j :

⊗′
v π ′v → π ′. Certainly

each π ′v admits a Whittaker model. At each finite v, let W o
π ′v

be the normalized

spherical vector in π ′v, and at archimedean v let eπ ′v be the distinguished vector.
For a moderate-growth automorphic form F ∈ π ′ corresponding to a monomial
vector in the factorization of π ′, at all finite places corresponding to the spherical
Whittaker function W o

π ′v
, and to the distinguished vector eπ ′v at archimedean places,

again specify a constant ρF by

WF = ρF ·
⊗
v|∞

eπ ′v ⊗
⊗
v<∞

W o
π ′v .

When π ′ occurs discretely in the space of L2 automorphic forms on H, each of the
local factors of π ′ is unitarizable, and uniquely so up to a constant, by irreducibility.
For an arbitrary vector ε = ε∞ in π ′∞, let Fε be the automorphic form corresponding
to
⊗

v<∞W o
πv
⊗ ε by the isomorphism j. Define ρFε by

WFε = ρFε ·
⊗
v<∞

W o
πv
⊗ ε.

By Schur’s Lemma, the comparison of ρF and ρFε depends only upon the
comparison of archimedean data, namely,

ρFε

ρF
=

|ε|π ′∞
|⊗v|∞ eπ ′v |π ′∞

,

with Hilbert space norms on the representation π ′∞ at archimedean places. The
ambiguity of these norms by a constant disappears in taking ratios.
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Indeed, the global constants ρF and ρFε can be compared by a similar device
(and induction) for F and Fε in any irreducible π ′ occurring in the L2 automorphic
spectral expansion for H. We do not carry this out explicitly, since this would require
setting up normalizations for the full spectral decomposition, while our main interest
is in the cuspidal (hence, discrete) part.

With f cuspidal and F moderate growth, corresponding to distinguished vectors,
as above, the Rankin–Selberg zeta integral is the finite-prime Rankin–Selberg
L-function, with global constants ρ f and ρF , and with archimedean local Rankin–
Selberg zeta integrals depending upon the distinguished vectors at archimedean
places:

∫
Hk\HA

|detY |s− 1
2 F(Y ) f

(
Y

1

)
dY = ρ f ·ρF ·L(s,π ×π ′) ·∏

v|∞
Zv(s,eπv × eπ ′v).

The finite-prime part of the Rankin-Selberg L–function appears regardless of the
archimedean local data. The global constants ρ f and ρF do depend partly upon the
local archimedean choices, but are global objects.

We need a spectral decomposition of part of L2(Hk\HA), as follows. Let KH
fin be

the standard maximal compact GLr−1(ô) of Hfin, where as usual ô is ∏v<∞ ov, with
ov the local integers at the finite place v of k. First, there is the Hilbert direct-integral
decomposition by characters ω on the central archimedean split component Z+ of
H: let

i : y −→ (y
1
d , . . . ,y

1
d ,1,1, . . .) for y > 0, with d = [k : Q]

be the diagonal imbedding of the positive real numbers in the archimedean factors
of the ideles of k. The central archimedean split component is

Z+ = { j(y) =

⎛
⎜⎝

i(y)1/(r−1)

. . .

i(y)1/(r−1)

⎞
⎟⎠ ∈ HA : y > 0}.

The point of our parametrization is that (with idele norms)

|det j(y)| = |i(y)| = y with y > 0.

The corresponding spectral decomposition is

L2(Hk\HA) ≈
∫ ⊕
R

L2(Z+Hk\HA,ωit) dt,

where L2(Z+Hk\HA,ωit) is the isotypic component of functions Φ with |Φ| in
L2(Z+Hk\HA) transforming by

Φ( j(y) ·h) = yit ·Φ(h) for y > 0 and h ∈ HA
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under Z+. The projections and spectral synthesis along Z+ can be written as

F(h) =

∫
R

(∫ ∞

0
F( j(y) ·h)y−it dy

y

)
dt.

Each isotypic component L2(Z+Hk\HA,ωit) has a direct integral decomposition
as a representation of HA, of the form

L2(Z+Hk\HA,ωit) ≈
∫ ⊕
Ξ
π ′ ⊗ |det |it dπ ′,

where Ξ is the set of irreducibles π ′ occurring in L2(Z+Hk\HA,ω0). That is, the
irreducibles for general archimedean split-component character ωit differ merely by
a determinant twist from the trivial split-component character case. The measure is
not described explicitly here, apart from the observation that the discrete part of the
decomposition, including the cuspidal part, has counting measure.

For our applications, we are concerned with the subspaces L2(Z+Hk\HA/KH
fin,ω)

of right KH
fin-invariant functions. Since each π ′ factors over primes as a restricted ten-

sor product π ′ ≈⊗′vπ ′v of irreducibles π ′v of the local points Hv, the decomposition
of L2(Z+Hk\HA/KH

fin,ω) only involves the subset Ξ o consisting of irreducibles π ′ ∈
Ξ such that for every finite place v the local representation π ′v is spherical. Let π ′∞ be
the archimedean factor of π ′, and π ′fin the finite-place factor, so π ′ ≈ π ′∞⊗π ′fin. Let
π ′ofin be the one-dimensional space of KH

fin-fixed vectors in π ′fin. As a representation
of the archimedean part H∞ of HA,

L2(Z+Hk\HA/KH
fin,ωit) ≈

∫ ⊕
Ξo

(
π ′∞⊗π

′o
fin

)⊗|det |it dπ ′.

An automorphic spectral decomposition for F in L2(Z+Hk\HA/KH
fin,ωit) can be

written in the form

F =
∫
Ξo
∑

j

〈F,Φπ ′ j⊗|det |it〉 ·Φπ ′ j⊗|det |it dπ ′,

whereΞ o indexes spherical automorphic representationsπ ′ with trivial archimedean
split-component character entering the spectral expansion, for each of these j
indexes an orthonormal basis in the archimedean component π ′∞, and Φπ ′ j is the
corresponding moderate-growth spherical automorphic form in the global π ′. The
pairing is the natural one, namely,

〈F,Φπ ′ j⊗|det |it〉 =
∫

Hk\HA

F(h)Φπ ′ j(h) |deth|−it dh.
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3 Moment Expansion

We define a Poincaré series P = Pz,ϕ∞ depending on archimedean data ϕ∞
and a complex equivariance parameter z. With various simplifying choices of
archimedean data ϕ∞ depending only on a complex parameter w, the Poincaré
series P = Pz,w is a function of the two complex parameters z,w. By design, for
a cuspform f of conductor � on G = GLr over a number field k, for any choice of
data for the Poincaré series sufficient for convergence, the integral

∫
ZAGk\GA

| f |2 ·P

is an integral moment of L–functions attached to f , in the sense that it is a sum and
integral over a spectral family, namely, a weighted average over spectral components
with respect to L2(GLr−1(k)\GLr−1(A)). Subsequently, we will obtain a spectral
expansion of the more-simply parametrized Poincaré series P = Pz,w, giving the
meromorphic continuation of this integral in the complex parameters z,w.

For z ∈ C, let
ϕ =

⊗
v

ϕv,

where z ∈ C specifies an equivariance property of ϕ , as follows. For v finite,

ϕv(g) =

⎧⎨
⎩
∣∣(detA)/dr−1

∣∣z
v (for g = mk with m =

(
A 0
0 d

)
in ZvHv and k ∈ Kv),

0 (otherwise).

For v archimedean require right Kv-invariance and left equivariance

ϕv(mg) =

∣∣∣∣detA
dr−1

∣∣∣∣
z

v
·ϕv(g) for g ∈ Gv, for m =

(
A 0
0 d

)
∈ ZvHv.

Thus, for v|∞, the further data determining ϕv consists of its values on Uv. A simple
useful choice of archimedean data parametrized by a single complex parameter w is

ϕv

(
1r−1 x

0 1

)
= (1+ |x1|2 + . . .+ |xr−1|2)−[kv:R]w/2, where x =

⎛
⎜⎝

x1
...

xr−1

⎞
⎟⎠,

and w ∈ C. The norm |x1|2 + . . .+ |xr−1|2 is normalized to be invariant under Kv.
Thus, ϕ is left ZAHk-invariant. We attach to any such ϕ a Poincaré series

P(g) = Pϕ(g) = ∑
γ∈ZkHk\Gk

ϕ(γg).
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Remark. There is an essentially unique choice of (parametrized) archimedean data
ϕ∞ = ϕz,w,∞ such that the associated Poincaré series at z = 0 has a functional
equation (as in [13]). For instance, when G = GL3 over Q this choice is

ϕ∞
(

I2 u
1

)
= ϕ0,w,∞

(
I2 u

1

)
= 2−w√π

Γ (w
2 )
(
1+ ||u||2)− w

2 F
(

w
2 ,

w
2 ;w; 1

1+||u||2
)

Γ (w+1
2 )

,

for z = 0, with F the usual hypergeometric function

F(α,β ;γ;x) =
Γ (γ)

Γ (α)Γ (β )
·

∞

∑
m=0

1
m!

Γ (α+m)Γ (β +m)

Γ (γ+m)
xm (for |x|< 1).

The functional equation of the Poincaré series P0,w(g) attached to this choice of
ϕ = ϕw when z = 0 is: the function

sin
(πw

2

)
P0,w(g) +

π ζ (w)ζ (2−w)

2(1−w)π
1
2−wΓ (w− 1

2)ζ (2w− 1)
·E1,1,1

(
g,

w
3
,1− 2w

3

)

is invariant as w → 2 − w, where E1,1,1(g,s1,s2) = E1,1,1
s1,s2 (g) is the minimal

parabolic Eisenstein series. After our discussion of the spectral expansion of the
Poincaré series, we give a general prescription for archimedean data producing
Poincaré series admitting a functional equation: with suitable archimedean data,
the functional equation is visible from the spectral expansion.

With subscripts ∞ denoting the archimedean parts of various objects, for h,m ∈
H∞, define

K (h,m) = Kϕ∞(h,m) =

∫
U∞
ϕ∞(u)ψ∞(huh−1)ψ∞(mum−1)du.

Let π ≈ ⊗′πv be a cuspidal automorphic representation of G, with finite set S
of finite primes such that πv is spherical for finite v �∈ S, and πv has conductor �v

for v ∈ S. We say a cuspform f in π is a newform if it is spherical at finite v �∈ S
and is right Kv(�v)-fixed for v ∈ S. As above, the global Whittaker function Wf of f
factors as

Wf = ρ f ·
⊗
v<∞

W eff
πv
⊗
⊗
v|∞

eπv .

Let eπ∞ =⊗v|∞eπv . Let π ′ be an automorphic representation of H admitting a global
Whittaker model, with unitarizable archimedean factor π ′∞, with orthonormal basis
επ ′ j for π ′∞. Recalling that K (h,m) = Kz,ϕ∞(h,m) depends on the parameter z and
the data ϕ∞, the gamma factors appearing in the moment expansion below are

Γ (eπ∞ ,π
′
∞,s) = Γz,ϕ∞(eπ∞ ,π

′
∞,s) =∑

j

∫

N∞\H∞

∫

N∞\H∞

∫

K∞

eπ∞(hk)επ ′ j(h)|deth|z+s− 1
2

×eπ∞(mk)επ ′ j(m)|detm| 12−sK (h,m)dmdhdk.
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The sum over the orthonormal basis for π ′∞ is simply an expression for a projection
operator, so is necessarily independent of the orthonormal basis indexed by j. Thus,
the sum indeed depends only on the archimedean Whittaker model π ′∞.

For each automorphic representation π ′ of H occurring (continuously or dis-
cretely) in the automorphic spectral expansion for H, and admitting a global
Whittaker model, and spherical at all finite primes, let Fπ ′ be an automorphic form
in π ′ corresponding to the spherical vector at all finite places and to the distinguished
vector eπ ′∞ in the archimedean part.

Theorem 1. Let f be a cuspform, as just above. For Re(z)� 1 and Re(w)� 1,
we have the moment expansion

∫
ZAGk\GA

| f |2 ·P

= |ρ f |2
∫
Ξo
|ρFπ′ |2

∫
R

L( 1
2 + it + z,π⊗π ′)L( 1

2 − it,π⊗π ′)Γ (eπ∞ ,π ′∞, 1
2 + it)dt dπ ′.

Proof. The typical first unwinding is

∫
ZAGk\GA

P(g) | f (g)|2 dg =

∫
ZAHk\GA

ϕ(g) | f (g)|2 dg.

Express f in its Fourier–Whittaker expansion, and unwind further:

∫
ZAHk\GA

ϕ(g) ∑
η∈Nk\Hk

Wf (ηg) f (g)dg =

∫
ZANk\GA

ϕ(g)Wf (g) f (g)dg.

Use an Iwasawa decomposition G = (HZ)UK everywhere locally to rewrite the
whole integral as

∫
Nk\HA×UA×KA

ϕ(huk)Wf (huk) f (huk)dhdudk.

At finite primes v �∈ S, the right integral over Kv can be dropped, since all the
functions in the integrand are right Kv-invariant. At finite primes v ∈ S, using
the newform assumption on f , the one-dimensionality of the Kv(�v)-fixed vectors
in πv implies that the Kv-type in which the effective vector lies is irreducible.
Thus, by Schur orthogonality and inner product formulas, a diagonal integral of
f (xkv) · f (ykv) over kv ∈ Kv is a positive constant multiple of f (x) f (y), for all
x,y ∈ GA. Thus, the integrals over Kv for v finite can be dropped entirely, and, up to
a positive constant depending only upon the right Kv-type of f at v ∈ S, the whole
integral is ∫

Nk\HA×UA×K∞
ϕ(huk)Wf (huk) f (huk)dhdudk.
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Since f is left Hk-invariant, it decomposes along Hk\HA. The function h →
f (huk) with u ∈UA and k ∈ K∞ is right KH

fin-invariant. Thus, f decomposes as

f (huk) =

∫
R

∫
Ξo
∑

j
Φπ ′ j(h) |deth|it

∫
Hk\HA

Φπ ′ j(m)|detm|−it f (muk)dm dπ ′dt.

Unwind the Fourier–Whittaker expansion of f

f (huk)

=
∫
Ξo
∑

j

Φπ ′ j(h)|deth|it
∫

Hk\HA

Φπ ′ j(m) |detm|−it ∑
η∈Nk\Hk

W f (ηmuk)dmdk dπ ′

=

∫
Ξo
Φπ ′ j(h) |deth|it

∫
Nk\HA

Φπ ′ j(m) |detm|−it W f (muk)dmdk dπ ′.

Then the whole integral is∫
ZAGk\GA

P(g) | f (g)|2 dg

=

∫

R

∫

Ξo

∑
j

∫

Nk\HA

∫

UA

∫

K∞

ϕ(huk)Φπ ′ j(h)|deth|itWf (huk)

×
∫

Nk\HA

W f (muk)Φπ ′ j(m)|detm|−itdmdhdudk dπ ′dt.

The part of the integrand that depends upon u ∈U is

∫
UA

ϕ(huk)Wf (huk)W f (muk)du

= ϕ(h)Wf (hk)W f (mk) ·
∫

UA

ϕ(u)ψ(huh−1)ψ(mum−1)du.

The latter integrand and integral visibly factor over primes. We need the following:

Lemma 1. Let v be a finite prime. For h,m ∈ Hv such that W eff
πv

(h) �= 0 and
W eff
πv

(m) �= 0, we have

∫
Uv

ϕv(h)ψv(huh−1)ψv(mum−1)du =

∫
Uv∩Kv

1 du.

Proof. At a finite place v, ϕv(u) �= 0 if and only if u ∈Uv∩Kv, and for such u

ψv(huh−1) ·Wπv(h) =W eff
πv

(huh−1 ·h) =W eff
πv

(hu) =W eff
πv

(h) ·1
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by the right Uv∩Kv-invariance, since f is a newform, in our present sense. Thus, for
W eff
πv

(h) �= 0, ψv(huh−1) = 1, and similarly for ψv(mum−1). Thus, the finite-prime
part of the integral over Uv is just the integral of 1 over Uv∩Kv, as indicated.

Returning to the proof of the theorem, the archimedean part of the integral does
not behave as the previous lemma indicates the finite-prime components do, because
of its non-trivial deformation by ϕ∞. Thus, with subscripts ∞ denoting the infinite-
adele part of various objects, for h,m ∈ H∞, as above, let

K (h,m) =
∫

U∞
ϕ∞(u)ψ∞(huh−1)ψ∞(mum−1)du.

The whole integral is

∫
ZAGk\GA

P(g) | f (g)|2 dg =

∫

R

∫

Ξo

∑
j

∫

K∞

∫

Nk\HA

∫

Nk\HA

K (h,m)ϕ(h)

×Wf (hk)Φπ ′ j(h)|deth|itW f (mk)Φπ ′ j(m)|detm|−itdmdhdπ ′dk dt.

Normalize the volume of Nk\NA to 1. For a left Nk-invariant function Φ on HA,
using the left NA-equivariance of W by ψ , and the left NA-invariance of ϕ ,

∫
Nk\NA

ϕ(nh)Φ(nh)Wf (nhk)dn = ϕ(h)Wf (h)

∫
Nk\NA

ψ(n)Φ(nh)dn = ϕ(h)Wf (hk)WΦ(h),

where
WΦ (h) =

∫
Nk\NA

ψ(n)Φ(nh)dn.

(The integral is not againstψ(n), butψ(n).) That is, the integral over Nk\HA is equal
to an integral against (up to an alteration of the character) the Whittaker function WΦ
of Φ , which factors over primes for suitable Φ . Thus, the whole integral is

∫
ZAGk\GA

P(g) | f (g)|2 dg =

∫

R

∫

Ξo

∑
j

∫

NA\HA

∫

NA\HA

∫

K∞

K (h,m)

×Wf (hk)WΦπ′ j(h)|deth|itW f (mk)WΦπ′ j(m)|detm|−itdmdhdπ ′dk dt.

For fixed π ′, j, t, the integral over m,h,k is a product of two Euler products, since
the Whittaker functions factor over primes, normalized by global constants ρ f and
ρΦπ′ j . The functions {Φπ ′, j : j} correspond to an orthonormal basis {επ ′ j} in the
local archimedean part π ′∞ of π ′, so, as noted earlier, by Schur’s lemma the global
constant ρΦπ′ j is independent of j. For each π ′, let Fπ ′ be the finite-prime spherical
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automorphic form corresponding to distinguished vectors at archimedean places.
The Φπ ′ j’s are normalized spherical at all finite places. Thus, for each π ′ and j,

∫

NA\HA

∫

NA\HA

∫

K∞

ϕ(h)Wf (hk)WΦπ′ j(h)|deth|itW f (mk)WΦπ′ j(m)|detm|−itdmdhdk

= |ρ f |2 · |ρFπ′ |
2 ·L( 1

2 + it + z,π×π ′)L( 1
2 − it,π×π ′)

×
∫

N∞\H∞

∫

N∞\H∞

∫

K∞

∫
K∞

eπ∞(huk)επ ′ j(h)|deth|itεπ ′ j(m)eπ∞(muk)|detm|−itdmdhdk.

This gives the assertion of the theorem.

Remark. Automorphic forms not admitting Whittaker models do not enter this
expansion.

4 Spectral Expansion of Poincaré Series

The Poincaré series admits a spectral expansion facilitating its meromorphic
continuation. The only cuspidal data appearing in this expansion is from GL2, right
Kv-invariant everywhere locally.

In the Poincaré series P, let ϕ∞ be the archimedean data, and z,w the two
complex parameters. For a spherical GL2 cuspform F , let

Φs,F
((A ∗

0 D

)
·θ) = |detA|2s · |detD|−(r−2)s ·F(D) (where θ ∈ KA)

and define an Eisenstein series

Er−2,2
s,F (g) = ∑

γ∈Pr−2,2
k \Gk

Φs,F(γ ·g).

Also, for a Hecke character χ , with

Φs1,s2,s3,χ(

⎛
⎝A ∗ ∗

0 m2 ∗
0 0 m3

⎞
⎠ ·θ ) = |detA|s1 · |m2|s2χ(m2) · |m3|s3χ(m3),

for θ ∈ KA, A ∈ GLr−2, define an Eisenstein series

Er−2,1,1
s1,s2,s3,χ(g) = ∑

γ∈Pr−2,1,1
k \Gk

Φs1,s2,s3,χ(γg).
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Theorem 2. With Eisenstein series as just above, the Poincaré series P has a
spectral expansion

P =
(∫

N∞
ϕ∞
)

Er−1,1
z+1 + ∑

F

(∫
PGL2(k∞)

ϕ̃∞WF,∞

)
·ρF ·L( rz+r−2

2 + 1
2 ,πF) ·Er−2,2

z+1
2 ,F

+∑
χ

χ(d)
4π iκ

∫

Re (s)= 1
2

(( ∫

PGL2(k∞)

ϕ̃∞ ·WE1−s,χ ,∞

)
· L(

rz+r−2
2 + 1− s,χ) ·L( rz+r−2

2 + s,χ)
Λ(2− 2s,χ2)

×|d|−( rz+r−2
2 + s− 1

2 ) ·Er−2,1,1

z+1,s− (r−2)(z+1)
2 ,−s− (r−2)(z+1)

2 ,χ

)
ds,

where F runs over an orthonormal basis for everywhere-spherical cuspforms for
GL2, ρF is the GL2 leading Fourier coefficient of F, χ runs over unramified
grossencharacters, d is the differental ideal of k, κ is the residue of ζk(s) at s = 1,
WF,∞ and WEs,χ are the normalized archimedean Whittaker functions for GL2, πF is
the representation generated by F, L(s,χ) is the usual grossencharacter L–function,
and Λ(s,χ) is the grossencharacter L–function with its gamma factor.

Remark. Notably, the spectral expansion of P contains nothing beyond the main
term, the cuspidal GL2 part induced up to GLr, and the continuous GL2 part induced
up to GLr.

Proof. Rewrite the Poincaré series as summed in two stages, and apply Poisson
summation, namely

P(g) = ∑
ZkHk\Gk

ϕ(γg) = ∑
ZkHkUk\Gk

∑
β∈Uk

ϕ(βγg) = ∑
ZkHkUk\Gk

∑
ψ∈(Uk\UA )̂

ϕ̂γg(ψ),

where
ϕ̂g(ψ) =

∫
UA

ψ(u)ϕ(ug)du (for g ∈ GA).

The inner summand for ψ trivial gives the leading term in the spectral expansion
of the Poincaré series. Specifically, it gives a vector from which a degenerate
Eisenstein series for the (r− 1,1) parabolic Pr−1,1 = ZHU is formed by the outer
sum. That is,

g→
∫

UA

ϕ(ug)du

is left equivariant by a character on Pr−1,1
A

, and is left invariant by Pr−1,1
k , namely,

∫
UA

ϕ(upg)du =

∫
UA

ϕ(p · p−1up ·g)du = δPr−1,1(m) ·
∫

UA

ϕ(m ·u ·g)du

=

∣∣∣∣detA
dr−1

∣∣∣∣
z+1 ∫

UA

ϕ(ug)du (where p =

(
A ∗
0 d

)
, m =

(
A 0
0 d

)
, A ∈ GLr−1).
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The normalization is explicated by setting g = 1:

∫
UA

ϕ(u)du =

∫
U∞
ϕ∞ ·

∫
Ufin

ϕfin =

∫
U∞
ϕ∞ ·meas(Ufin∩Kfin) =

∫
U∞
ϕ∞.

A natural normalization is that this be 1, so the Eisenstein series includes the
archimedean integral and finite-prime measure constant as factors:

∫
U∞
ϕ∞ · Er−1,1

z+1 (g) = ∑
γ∈Pr−1,1

k \Gk

(∫
UA

ϕ(uγg)du

)
.

The group Hk is transitive on non-trivial characters of Uk\UA. For fixed non-
trivial character ψ0 on k\A, let

ψξ (u) = ψ0(ξ ·ur−1,r) (for ξ ∈ k×).

The spectral expansion of P with its leading term removed is

∑
γ∈Pr−1,1

k \Gk

∑
α∈Pr−2,1

k \Hk

(
∑
ξ∈k×

ϕ̂αγg(ψξ )

)
,

where Pr−2,1 is the corresponding parabolic subgroup of H ≈ GLr−1. Let

U ′ =

⎧⎨
⎩
⎛
⎝1r−2 ∗

1
1

⎞
⎠
⎫⎬
⎭ , U ′′ =

⎧⎨
⎩
⎛
⎝1r−2

1 ∗
1

⎞
⎠
⎫⎬
⎭ .

Let

Θ =

⎧⎨
⎩
⎛
⎝1r−2

∗ ∗
∗ ∗

⎞
⎠
⎫⎬
⎭ ≈ GL2.

Regrouping the sums, the expansion of the Poincaré series with its leading term
removed is

∑
γ∈Pr−2,1,1

k \Gk

(
∑
ξ∈k×

∫
U ′′
A

ψξ (u′′)
∫

U ′
A

ϕ(u′u′′γg)du′du′′
)

= ∑
γ∈Pr−2,2

k \Gk

∑
α∈P1,1\Θk

(
∑
ξ∈k×

∫
U ′′
A

ψξ (u′′)
∫

U ′
A

ϕ(u′u′′αγg)du′du′′
)
.
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Letting

ϕ̃(g) =
∫

U ′
A

ϕ(u′g)du′

the expansion becomes

∑
γ∈Pr−2,2

k \Gk

∑
α∈P1,1\Θk

∑
ξ∈k×

∫
U ′′
A

ψξ (u′′) ϕ̃(u′′αγg)du′′.

We claim the equivariance

ϕ̃(pg) = |detA|z+1 · |a|z · |d|−(r−1)z−(r−2) · ϕ̃(g),

for p =

⎛
⎝A ∗ ∗

a
d

⎞
⎠ ∈ GA, with A ∈ GLr−2.

This is verified by changing variables in the defining integral: let x ∈ A
r−2 and

compute

⎛
⎝1r−2 x

1
1

⎞
⎠
⎛
⎝A b c

a
d

⎞
⎠=

⎛
⎝A b c+ xd

a
d

⎞
⎠=

⎛
⎝A b c

a
d

⎞
⎠
⎛
⎝1r−2 A−1xd

1
1

⎞
⎠ .

Thus, |detA|z · |a|z · |d|−(r−1)z comes out of the definition of ϕ , and another |detA| ·
|d|2−r from the change-of-measure in the change of variables replacing x by Ax/d
in the integral defining ϕ̃ from ϕ . Note that

|a|z · |d|−(r−1)z−(r−2) = |det

(
a

d

)
|− (r−2)

2 ·(z+1) · |a/d| rz+(r−2)
2 .

Thus, letting

Φ(g) = ∑
α∈P1,1

k \Θk

(
∑
ξ∈k×

∫
U ′′
A

ψξ (u′′) ϕ̃(u′′αg)du′′
)
,

we can write

P(g) − ∑
γ∈Pr−1,1

k \Gk

∫
UA

ϕ(uγg)du = ∑
γ∈Pr−2,2

k \Gk

Φ(γg).

The right-hand side of the latter equality is not an Eisenstein series for Pr−2,2 in the
strictest sense.



Moments for L-Functions for GLr×GLr−1 217

Define a GL2 kernel ϕ(2) for a Poincaré series as follows. As in the general case,
we require right invariance by the maximal compact subgroups locally everywhere,
and left equivariance

ϕ(2)
((

a ∗
d

)
·D
)

= |a/d|β ·ϕ(2)(D).

The remaining ambiguity is the archimedean data ϕ(2)
∞ , completely specified by

giving its values on the archimedean part of the standard unipotent radical, namely,

ϕ(2)
∞

(
1 x

1

)
= ϕ̃

⎛
⎝1r−2

1 x
1

⎞
⎠ (ϕ̃ as above).

Let U1,1 be the unipotent radical of the standard parabolic P1,1 in GL2. Express ϕ(2)

in its Fourier expansion along U1,1, and remove the constant term: let

ϕ∗(β ,D) = ϕ(2)(β ,D)−
∫

U1,1
A

ϕ(2)(β ,uD)du = ∑
ξ∈k×

∫
U1,1
A

ψξ (u)ϕ(2)(β ,uD)du.

The corresponding GL2 Poincaré series with leading term removed is

Q(β ,D) = ∑
α∈P1,1

k \GL2(k)

ϕ∗(β ,αD).

Thus, for

g =

(
A ∗

D

)
(with A ∈ GLr−2(A) and D ∈ GL2(A)),

the inner integral

g→
∫

U ′′
A

ψ(u′′) ϕ̃(u′′g)du′′

is expressible in terms of the kernel ϕ∗ for Q, namely,

∑
ξ∈k×

∫
U ′′
A

ψξ (u′′) ϕ̃(u′′g)du′′ = |detA|z+1 · |detD|− (r−2)
2 ·(z+1) ·ϕ∗ ( rz+r−2

2 ,D
)
.

Thus,

∑
α∈P1,1

k \Θk

∑
ξ∈k×

∫
U ′′
A

ψξ (u′′)ϕ̃(u′′αg)du′′= |detA|z+1|detD|− (r−2)
2 (z+1)Q

(
rz+r−2

2 ,D
)
.
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Thus, letting

Φ
(

A ∗
D

)
= |detA|z+1 · |detD|− (r−2)· z+1

2 ·Q( rz+r−2
2 ,D),

with A ∈ GLr−2 and D ∈ GL2, we have

P(g) =
(∫

U∞
ϕ∞
)
·Er1,1

z+1(g) + ∑
γ∈Pr−2,2

k \Gk

Φ(γg).

To obtain a spectral decomposition of the Poincaré series P for GLr, we first recall
from [11] the spectral decomposition of Q for r = 2, and then form Pr−2,2 Eisenstein
series from the spectral fragments.

As in [11], a direct computation shows that the spectral expansion of the GL2

Poincaré series with constant term removed is

Q(β ,D) =∑
F

(∫
PGL2(k∞ )̃

ϕ∞ ·WF,∞

)
·ρF ·L(β + 1

2 ,πF) ·F

+∑
χ

χ(d)
4π iκ

∫

Re (s)= 1
2

(∫
PGL2(k∞)

ϕ̃∞ ·WE1−s,χ ,∞

)

× L(β + 1− s,χ) ·L(β + s,χ)
L(2− 2s,χ2)

· |d|−(β+s−1/2) ·Es,χ(D)ds,

where F runs over an orthonormal basis of everywhere-spherical cuspforms, ρF
is the general GL2 analogue of the leading Fourier coefficient, πF is the cuspidal
automorphic representation generated by F , WF,∞ and WEs,χ ,∞ are the normalized
spherical vectors in the corresponding archimedean Whittaker models, Λ(s,χ) is
the standard L-function completed by adding the archimedean factors, and d is the
differental idele. Thus, the individual spectral components of Φ are of the form

Φ z+1
2 ,Ψ

((
A ∗
0 D

)
·θ
)
= (constant) · |detA|z+1 · |detD|−(r−2) z+1

2 ·Ψ(D),

where θ ∈ KA and Ψ is either a spherical GL2 cuspform or a spherical GL2

Eisenstein series, in either case with trivial central character.
For Ψ a spherical GL2 cuspform F averaging over Pr−2,2

k \Gk produces a half-
degenerate Eisenstein series

Er−2,2
z+1

2 ,F
(g) = ∑

γ∈Pr−2,2
k \Gk

Φ z+1
2 ,F(γ ·g).

As in the appendix, the half-degenerate Eisenstein series Er−2,2
s,F has no poles in

Re(s) ≥ 1/2. With s = (z+ 1)/2 this assures absence of poles in Re(z)≥ 0.
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The continuous spectrum part of Q produces degenerate Eisenstein series on G,
as follows. With Ψ = Es,χ the usual spherical, trivial central character, Eisenstein
series for GL2, define an Eisenstein series

Er−2,2
z+1

2 ,Es,χ
(g) = ∑

γ∈Pr−2,2
k \Gk

Φ z+1
2 ,Es,χ

(γg).

As usual, for Re(s)� 0 and Re(z)� 0, this iterated formation of Eisenstein series
is equal to a single-step Eisenstein series. That is, let

Φs1,s2,s3,χ

⎛
⎝
⎛
⎝A ∗ ∗

0 m2 ∗
0 0 m3

⎞
⎠ ·θ

⎞
⎠= |detA|s1 · |m2|s2χ(m2) · |m3|s3χ(m3),

for θ ∈ KA, A ∈ GLr−2, and let

Er−2,1,1
s1,s2,s3,χ(g) = ∑

γ∈Pr−2,1,1
k \Gk

Φs1,s2,s3,χ(γg).

Taking s1 = 2 · z+1
2 , s2 = s− (r−2)(z+1)

2 , and s3 =−s− (r−2)(z+1)
2 ,

Er−2,2
z+1

2 ,Es,χ
= Er−2,1,1

z+1,s− (r−2)(z+1)
2 ,−s− (r−2)(z+1)

2 ,χ
.

Adding up these spectral components yields the spectral expansion of the Poincaré
series.

Remark. Suitable archimedean data to give the Poincaré series a functional equation
is best described in the context of the spectral expansion, and, due to the form of
the spectral expansion, essentially reduces to GL2. It is useful to describe the data
through a differential equation, since this explains the outcome of the computation
more transparently. Since each archimedean place affords its own opportunity for
data choices, we simplify this aspect of the situation by taking groundfield k =Q.

First, for G = GL2(Q), let Δ be the usual invariant Laplacian on the upper half-
plane H, and consider the partial differential equations

(Δ − s(s− 1))ν uβs,ν = the distribution f →
∫ ∞

0
yβ · f

(
y 0
0 1

)
dy
y
,

for 1 ≤ ν ∈ Z and s,β ∈ C, on H. Further, require that uβs,ν have the same
equivariance as the target distribution, namely,

uβs,ν(t · z) = tβ ·uβs,ν(z) (for t > 0 and z ∈ H).
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Then uβs,ν(x+ iy) = yβ ·ϕβs,ν (x/y) for a function ϕβs,ν on R satisfying the correspond-
ing differential equation

(
(1+ x2)

∂ 2

∂x2 + 2x(1−β ) ∂
∂x

+
(
β (β − 1)− s(s− 1)

))ν
f = δ ,

with Dirac δ at 0.
The generalized function δ is in the L2 Sobolev space on R with index − 1

2 −
ε for every ε > 0. By elliptic regularity, solutions f to this differential equation
are in the local Sobolev space with index 2ν − 1

2 − ε , and by Sobolev’s lemma
are locally at least C2ν−1−2ε ⊂C2ν−2. That is, by increasing ν solutions are made
as differentiable as desired, and their Fourier transforms will have corresponding
decay, giving convergence of the Poincaré series (for suitable s,β ), as in [11].

The spectral expansion of the GL2 Poincaré series P
β
s,ν formed with this

archimedean data ϕβs,ν is a special case of the computation in [11], recalled
above, but in fact gives a much simpler outcome. For example, the cuspidal
components are directly computed by unwinding, integrating by parts, and applying
the characterization of ϕβs,ν by the differential equation:

〈Pβ
s,ν , F〉 = ρF(1) ·Λ(β + 1

2 ,F)(
sF(sF − 1)− s(s− 1)

)ν where ΔF = sF(sF − 1),

where Λ(·,F) is the L-function completed with its gamma factors. Thus,

P
β
s,ν = ∑

F

ρF(1) ·Λ(β + 1
2 ,F) ·F(

sF(sF − 1)− s(s− 1)
)ν + (non-cuspidal),

summing over an orthonormal basis of cuspforms F . Granting convergence for
ν sufficiently large and Re(s),Re(β ) large, the cuspidal part has a meromorphic
continuation in s with poles at the values sF , as expected. Visibly, the cuspidal part
of Pβ

s,ν is invariant under s↔ 1−s, and in these coordinates the map β →−β maps
F to F (whether or not F is self-contragredient).

The leading term of the spectral expansion of Pβ
s,ν , via Poisson summation, is a

constant multiple Cβ
s,ν ·Eβ+1 of the spherical Eisenstein series Eβ+1. This happens

regardless of the precise choice of archimedean data, simply due to the homogeneity
we have required of the archimedean data throughout.

Similarly, the continuous part of this Poincaré series on GL2 is

1
4π i

∫
Re (se)=

1
2

ξ (β + se)ξ (β + 1− se) ·Ese

ξ (2se) ·
(
(se(se− 1)− s(s− 1)

)ν dse,

where ξ is the ζ -function completed with its gamma factor. In analogy with the
cuspidal discussion, the product ξ (β+se) ·ξ (β+1−se) is invariant under β→−β ,
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since ξ (1− z) = ξ (z). The visual symmetry in s↔ 1− s is slightly deceiving, since
the meromorphic continuation (in s) through the critical line Re(se) =

1
2 (over which

the Eisenstein series is integrated) introduces extra terms from residues at se = s
and se = 1− s. Indeed, parts of these extra terms cancel a pole in the leading term
Cβ

s,ν ·Eβ+1 at β = 0. Despite this subtlety in the continuous spectrum, the special
choice of archimedean data makes meromorphic continuation in s,β visible.

In summary, for GL2(Q), the special choice of archimedean data makes the
cuspidal part of the Poincaré series have a visible meromorphic continuation, and
satisfy obvious functional equations. The continuous part of the Poincaré series
satisfies functional equations modulo explicit leftover terms.

The ideal choice of archimedean data ϕ∞ for the Poincaré series for GLr(Q) is
such that the averaged version of it, denoted ϕ̃∞ in the proof above, restricts to the

function ϕβs,ν for GL2 just discussed: we want

∫
Rr−2

ϕ∞

⎛
⎝1r−2 0 u

0 1 x
0 0 1

⎞
⎠ du = ϕ̃∞

⎛
⎝1r−2 0 0

0 1 x
0 0 1

⎞
⎠ = ϕβs,ν(x) for x ∈ R.

It is not obvious that, given a reasonable (even) function f on R, there is a
rotationally symmetric function u on R

r−2 such that

∫
Rr−2

u(y+ xer−1)dy = f (x) ei the standard basis for Rr−1,

with R
r−2 sitting in the first r− 2 coordinates in R

r−1. Fourier inversion clarifies
this, as follows. Supposing the integral identity just above holds, integrate further in
the (r− 1)th coordinate x, against e2π iξx, to obtain

û(ξ er−1) = f̂ (ξ ) for ξ ∈R,

where the Fourier transform on the left-hand side is on R
r−1, on the right-hand side

is on R. For u rotationally invariant, û is also rotationally invariant, and the latter
equality can be rewritten as

û(ξ ) = f̂ (|ξ |) for ξ ∈ R
r−1.

By Fourier inversion,

u(x) =

∫
Rr−1

e2π i〈ξ ,x〉 f̂ (|ξ |)dξ for x ∈ R
r−1.

That is, given an even function f on R, the latter formula yields a rotationally
invariant function on R

r−1, whose averages along R
r−2 are the given f . This proves

existence of an essentially unique ϕ∞ yielding the prescribed ϕβs,ν .
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Then the functional equation of the most-cuspidal part of the special-data
Poincaré series on GLr is inherited from the functional equation of the cuspidal
part of the special-data Poincaré series on GL2.

5 Appendix: Half-Degenerate Eisenstein Series

Take q > 1, and let f be a cuspform on GLq(A), in the strong sense that f is in
L2(GLq(k)\GLq(A)

1), and f meets the Gelfand–Fomin–Graev conditions

∫
Nk\NA

f (ng)dn = 0 (for almost all g)

and f generates an irreducible representation of GLq(kv) locally at all places v of k.
For a Schwartz function Φ on A

q×r and Hecke character χ , let

ϕ(g) = ϕχ , f ,Φ(g) = χ(detg)q
∫

GLq(A)
f (h−1)χ(deth)rΦ(h · [0q×(r−q) 1q] ·g)dh.

This function ϕ has the same central character as f . It is left invariant by the adele
points of the unipotent radical

N =

{(
1r−q ∗

1r

)}
(unipotent radical of P = Pr−q,q).

The function ϕ is left invariant under the k-rational points Mk of the standard Levi
component of P,

M =

{(
a

d

)
: a ∈ GLr−q, d ∈ GLr

}
.

To understand the normalization, observe that

ξ (χ r, f ,Φ(0,∗)) = ϕ(1) =
∫

GLq(A)
f (h−1)χ(deth)rΦ(h · [0q×(r−q) 1q])dh

is a zeta integral as in [18] for the standard L-function attached to the cuspform f .
Thus, the Eisenstein series formed from ϕ includes this zeta integral as a factor, so
write

ξ (χ r, f ,Φ(0,∗)) · EP
χ , f ,Φ(g) = ∑

γ∈Pk\GLr(k)

ϕ(γ g) (convergent for Re(χ)� 1).
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The meromorphic continuation follows by Poisson summation:

ξ (χ r, f ,Φ(0,∗)) ·EP
χ , f ,Φ(g)

= χ(detg)q ∑
γ∈Pk\GLr(k)

∫
GLq(k)\GLq(A)

f (h)χ(deth)−r ∑
α∈GLq(k)

Φ(h−1 · [0 α] ·g)dh

= χ(detg)q
∫

GLq(k)\GLq(A)
f (h)χ(deth)−r ∑

y∈kq×r , full rank
Φ(h−1 · y ·g)dh.

The Gelfand–Fomin–Graev condition on f fits the full-rank constraint. Anticipating
that we can drop the rank condition suggests that we define

ΘΦ(h,g) = ∑
y∈kq×r

Φ(h−1 · y ·g).

As in [18], the non-full-rank terms integrate to 0:

Proposition 1. For f a cuspform, less-than-full-rank terms integrate to 0, that is,
∫

GLq(k)\GLq(A)
f (h)χ(deth)−r ∑

y∈kq×r , rank <q

Φ(h−1 · y ·g)dh= 0.

Proof. Since this is asserted for arbitrary Schwartz functions Φ , we can take g = 1.
By linear algebra, given y0 ∈ kq×r of rank �, there is α ∈GLq(k) such that

α · y0 =

(
y�×r

0(q−�)×r

)
(with �-by-r block y�×r of rank �).

Thus, without loss of generality fix y0 of the latter shape. Let Y be the orbit of y0

under left multiplication by the rational points of the parabolic

P�,q−� =
{(

�-by-� ∗
0 (q− �)-by-(q− �)

)}
⊂ GLq.

This is some set of matrices of the same shape as y0. Then the subsum over GLq(k) ·
y0 is ∫

GLq(k)\GLq(A)
f (h)χ(deth)−r ∑

y∈GLq(k)·y0

Φ(h−1 · y)dh

=
∫

P�,q−�
k \GLq(A)

f (h)χ(deth)−r ∑
y∈Y

Φ(h−1 · y)dh.

Let N and M be the unipotent radical and standard Levi component of P�,q−�,

N =

(
1� ∗
0 1q−�

)
, M =

(
�-by-� 0

0 (q− �)-by-(q− �)

)
.
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Then the integral can be rewritten as an iterated integral

∫
NkMk\GLq(A)

f (h)χ(deth)−r ∑
y∈Y

Φ(h−1 · y)dh

=

∫
NAMk\GLq(A)

∑
y∈Y

∫
Nk\NA

f (nh)χ(detnh)−rΦ((nh)−1 · y)dndh

=

∫
NAMk\GLq(A)

∑
y∈Y

χ(deth)−rΦ(h−1 · y)
(∫

Nk\NA

f (nh)dn

)
dh,

since all fragments but f (nh) in the integrand are left invariant by NA. The inner
integral of f (nh) is 0, by the Gelfand–Fomin–Graev condition, so the whole is 0.

Let ι denote the transpose-inverse involution. Poisson summation gives

ΘΦ(h,g) = ∑
y∈kq×r

Φ(h−1 · y ·g) = |det(h−1)ι |r |detgι |q ∑
y∈kq×r

Φ̂((hι)−1 · y ·gι)

= |det(h−1)ι |r |detgι |qΘΦ̂(h
ι ,gι ).

As withΘΦ , the lower-rank summands inΘΦ̂ integrate to 0 against cuspforms. Thus,
letting

GL+
q = {h∈GLq(A) : |deth| ≥ 1} GL−q = {h∈GLq(A) : |deth| ≤ 1},

we have

ξ (χ r, f ,Φ(0,∗)) ·EP
χ , f ,Φ(g) = χ(detg)q

∫
GLq(k)\GLq(A)

f (h)χ(deth)−rΘΦ(h,g)dh

= χ(detg)q
∫

GLq(k)\GL+q
f (h)χ(deth)−rΘΦ(h,g)dh

+χ(detg)q
∫

GLq(k)\GL−q
f (h)χ(deth)−rΘΦ(h,g)dh

= χ(detg)q
∫

GLq(k)\GL+q
f (h)χ(deth)−rΘΦ(h,g)dh

+ χ(detg)q
∫

GLq(k)\GL−q
|det(h−1)ι |r |detgι |q f (h)χ(deth)−rΘΦ̂(h

ι ,gι)dh.
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By replacing h by hι in the second integral, convert it to an integral over
GLq(k)\GL+

q , and the whole is

ξ (χ r, f ,Φ(0,∗)) ·EP
χ , f ,Φ(g) = χ(detg)q

∫
GLq(k)\GL+q

f (h)χ(deth)−rΘΦ(h,g)dh

+ χ−1(detgι)q
∫

GLq(k)\GL+q
f (hι ) χ−1(dethι)−rΘΦ̂(h,g

ι)dh.

Since f ◦ ι is a cuspform, the second integral is entire in χ . Thus, we have proven

ξ (χ r, f ,Φ(0,∗)) ·EP
χ , f ,Φ is entire.
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Further Remarks on the Exponent
of Convergence and the Hausdorff Dimension
of the Limit Set of Kleinian Groups

Martial R. Hille

Abstract In [Patterson, Further remarks on the exponent of convergence of
Poincaré series, Tôhoku Math. Journ. 35 (1983), 357–373], it was shown how to
construct for a given ε > 0 a Kleinian group of the first kind with exponent of
convergence smaller than ε.
We show the more general result that for any m∈N there are Kleinian groups acting
on (m+1)-dimensional hyperbolic space for which the Hausdorff dimension of their
uniformly radial limit set is less than a given arbitrary number d ∈ (0,m) and the
Hausdorff dimension of their Jørgensen limit set is equal to a given arbitrary number
j ∈ [0,m).
Additionally, our result clarifies which part of the limit set gives rise to the result of
Patterson’s original construction.
The key idea in our construction is to combine the previous techniques of Patterson
with a description of various limit sets in terms of the coding map.

1 Introduction and Statement of Results

Let Γ be a Kleinian group acting on (m+ 1)-dimensional hyperbolic space and let
L(Γ ) denote its limit set. One of the important questions in the theory of Kleinian
groups is to understand the relation between the exponent of convergence δ (Γ ) of
the Poincare series associated withΓ and the Hausdorff dimension dimH L(Γ ) of the
limit set L(Γ ). It was eventually proved by Patterson in [11] that for geometrically
finite non-elementary Kleinian groups these quantities do in fact coincide. However,
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for infinitely generated Kleinian groups, this does not hold in general as was shown
in [12].

In fact, in [12] Patterson constructed Kleinian groups of the first kind for which
δ (Γ ) is arbitrarily small. Recall that a Kleinian group is said to be of the first kind
if its limit set equals the boundary of hyperbolic space.

In [1], Bishop and Jones clarified the relationship of dimH L(Γ ) and δ (Γ ) by
proving that δ (Γ ) = dimH Lr(Γ ) for all non-elementary Kleinian groups Γ . Here,
Lr(Γ ) denotes the radial limit set, a certain subset of L(Γ ) (see Definition 3 below).
Note that if Γ is geometrically finite, then every limit point is either a radial point
or a parabolic fixed point. In [5] further subsets of L(Γ ) have been introduced, in
particular the Jørgensen limit set LJ(Γ ), whose name was inspired by Sullivan’s
notion “Jørgensen end”, which was introduced in [17, Fig. 1] (see also [10, p. 172]).

In this paper, we introduce the dynamical limit set Ldyn(Γ ) := L(Γ )\LJ(Γ ) and
extend the coding map from the limit set L(Γ ) to the code space associated with a
set of generators of Γ . We then prove the following result. This will be done using
the relationship between the code space and various limit sets via the coding map.

Main Theorem. For every m∈N and for every d, j ∈ (0,m), there exists a Kleinian
group Γ acting on (m+ 1)-dimensional hyperbolic space such that

δ (Γ )≤ d and dimH LJ(Γ ) = j.

In particular, Γ can be chosen to be of Schottky type.

Note that the statement clearly holds for j = 0 as well.

2 Definitions and Basic Facts

Let us first recall some basic definitions and facts.

Definition 1. The ball Dm+1 := {x = (x0, . . . ,xm) ∈ R
m+1 | ‖x‖ < 1}, when equi-

pped with the metric given by ds2 = dx2/(1−‖x‖2), is called the Poincaré model
of the (m+ 1)-dimensional hyperbolic space. Its boundary will be denoted by S

m.

Let B be a (m+ 1)-ball in R
m+1 whose boundary ∂B is orthogonal to S

m. Then
B∩Dm+1 �= /0 is a hyperbolic half-space. From now on, we only consider hyperbolic
half-spaces of this type. For each such (m+1)-dimensional hyperbolic half-space C
there is a unique open Euclidean (m+1)-ball BC whose boundary ∂BC is orthogonal
to S

m and for which we have that BC ∩Dm+1 = C. Let Ext(BC) and Int(BC) refer
to the exterior and interior of BC, respectively. For a hyperbolic half-space C, we
denote its hyperbolic boundary by ∂C, that is, ∂C = ∂BC ∩Dm+1, and its boundary
in S

m by ∂C, that is ∂C = S
m ∩ (BC ∪ ∂BC). Let diamE(C) denote the Euclidean

diameter of BC. We now give the definition of a Kleinian group of Schottky type.
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Definition 2. A groupΓ acting on D
m+1 will be called a Kleinian group of Schottky

type if there exists a non-empty countable set {Ci}i∈I(Γ )⊂Z\{0} of pairwise disjoint
(m + 1)-dimensional hyperbolic half-spaces and a set {γi}i∈I(Γ ) of orientation
preserving isometries of Dm+1 such that the following hold.

• For each Ci, there is a unique open Euclidean (m+1)-ball BCi for which we have
that BCi ∩Dm+1 =Ci.

• For every i∈ I(Γ ), we have that the map γi extends to a Lipschitz continuous map
gi (with the same Lipschitz constant as γi) which maps Ext(BCi) onto Int(BC−i).
Here, Lipschitz continous is meant with respect to the Euclidean metric.

• The group Γ is generated by {γi}i∈I(Γ ).
• There exist ε > 0 such that the following holds. For each Ci, there exist finitely

many Cj ∈ {Ck}k∈I(Γ ) such that diamE(Cj) > diamE(Ci). For these Cj, we then
have BCj ∩ (1+ ε)BCi = /0. Here, (1+ ε)BCi refers to the Euclidean ball with
centre equal to the centre of BCi and with diameter (1+ ε)diamE(Ci).

With this notation, let D :=
⋂

i∈I(Γ )C
c
i . Here, Cc

i denotes the complement of Ci

in D
m+1. Note that it was shown in [9] that D is a Dirichlet fundamental domain

constructed with respect to the origin.

In other words, a group Γ will be called a Kleinian group of Schottky type if
and only if Γ is a free discrete subgroup of the group of orientation preserving
isometries of the (m+ 1)-dimensional hyperbolic space generated by a countable
set of hyperbolic (or loxodromic) elements. For further details on Kleinian groups
of Schottky type, we refer to [9].

Let us quickly recall the following types of limit sets for a Kleinian group of
Schottky type.

Definition 3. Let Γ be a Kleinian group of Schottky type acting on D
m+1. We then

define the following types of limit sets of Γ .

• For an arbitrary x ∈ D
m+1 the set

⋃
γ∈Γ γ(x) has accumulation points exclusively

at the boundary ∂Dm+1 = S
m of hyperbolic space. The set L(Γ ) of these

accumulation points is called the limit set of Γ . (Note that L(Γ ) is independent
of the choice of x [9, p. 22, D. 3]).

• An element x ∈ L(Γ ) is called a uniformly radial limit point if for some c > 0 the
ray from 0 ∈ D

m+1 to x is fully contained in
⋃
γ∈Γ b(γ(0),c). Here, b(γ(0),c)

refers to the hyperbolic ball centred at γ(0) of radius c. The set Lur(Γ ) of
uniformly radial limit points is called the uniformly radial limit set of Γ (see
e.g. [17]).

• An element x ∈ L(Γ ) is called a Jørgensen limit point if and only if, for some
Dirichlet domain Dz of Γ based at some point z ∈ D

m+1, there exists γ ∈ Γ such
that γ(Dz) contains the hyperbolic geodesic ray from γ(z) to x. The set LJ(Γ ) of
Jørgensen limit points is called the Jørgensen limit set of Γ (see e.g. [10]).

• Following [7], we define the dynamical limit set Ldyn(Γ ) by

Ldyn(Γ ) := L(Γ )\LJ(Γ ).
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Let us assume that D0 is a fundamental domain of Γ based at the origin, and let
{γ1,γ2, . . .} be an irreducible set of generators of Γ . It is well known (cf. [6, 13])
that for a finitely generated Kleinian group Γ there is a coding of the limit set of Γ
by infinite words. In particular, to any point in the limit set is associated an infinite
(reduced) word in the generators ofΓ . Furthermore, for a finitely generated Kleinian
group of Schottky type, this map is one-to-one (cf. [6]). In a nutshell, this coding can
be interpreted as coming from the tesselation of Dm+1 by the Dirichlet fundamental
domain D of Γ (say, at the origin), or, more precisely, the sides of the fundamental
domain. Given an infinite word γ1γ2 . . . of a Kleinian group of Schottky type and its
associated limit point x, one easily verifies that the geodesic ray from the origin to x
passes through the images γ1(D), γ1γ2(D) and so on.

Note that for a fixed set of generators {γ1, . . . ,γk} of Γ the coding map can
be extended to a map π : L(Γ )→ {1, . . . ,k}∞ ⊂ N

∞. For an infinitely generated
Kleinian group of Schottky type, we extend this coding map to π : L(Γ )→ {0}∪⋃

n∈N{1,2, . . .}n∪N∞ by allowing finite codings. Note that this means that π is not in
general one-to-one, but the restriction of π to the preimage π−1(N∞) is one-to-one.
This coding map is not unknown: see for instance [3], where it has been employed in
the situation of an infinitely generated Schottky group whose generators accumulate
at exactly one point; hence, the coding map in [3, p. 570] is one-to-one. Also note
that in [3, p. 570] it is considered to be a map from the code space to the limit set,
while in this artcile we use the reverse direction (since in general the generators have
more than one accumulation point).

With this coding map π , we have the following lemma.

Lemma 1. For a Kleinian group Γ of Schottky type and for the coding map π as
above we have

Lur(Γ ) = π−1 ({i ∈ N
∞| limsup{ik | k ∈N}< ∞}) ;

Ldyn(Γ ) = π−1 (N∞) ;

LJ(Γ ) = L(Γ )\Ldyn(Γ ).

In particular, this implies that LJ(Γ ) corresponds exactly to those points in L(Γ ),
which do not have an infinite (but a finite) coding. Therefore, a point x lies in LJ(Γ )
if and only if there is some Dirichlet domain Dz of Γ based at some point z ∈ D

m+1

such that x is an accumulation point of sides of Dz.

Remark. The first assertion is well known, see for instance [15, p. 240]. The second
and third assertions appear to be common knowledge, see for instance the comments
[3, p. 570]. For the sake of completeness, we nevertheless include the proof.

Proof. In order to prove the assertion regarding Lur, one proceeds as follows. First
note that if Γ1 ⊂ Γ2 ⊂ . . . ⊂ Γk ⊂ . . . is an increasing sequence of subgroups of the
Kleinian group Γ =

⋃
kΓk, then Lur(Γ ) =

⋃
k Lur(Γk). If Γ is a Kleinian group of

Schottky type, then it is freely generated, say by generators γ1,γ2, . . . . Hence, Γk :=
〈γi | i ≤ k〉 gives such an increasing sequence. For each of the finitely generated
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groups Γk, one has that each limit point is coded by a unique infinite word (from the
alphabet {1, . . . ,k}). Combining this observation with the fact that Lur(Γk) = L(Γk),
it follows that Lur(Γ ) can be symbolically described as stated in Lemma 1.

In order to see that the Jørgensen limit set of a Kleinian group of Schottky type is
contained in the set of limit points which do not have an infinite coding, let x∈ LJ(Γ )
be fixed. By definition, we then have, for some Dirichlet domain Dz of Γ based at
some point z∈Dm+1, that there exists γ ∈Γ such that γ(Dz) contains the hyperbolic
geodesic ray from γ(z) to x. Hence, the Euclidean distance from x to the set of sides
of the Dirichlet domain Dz must be equal to zero. That is, x must be an accumulation
point of sides of Dz, since a Kleinian group of Schottky type is by definition a free
group generated by loxodromic elements (in particular, a Kleinian group of Schottky
type has no parabolic elements). Note that if x is an accumulation point of sides of
some Dirichlet domain Dz, then there exists a geodesic ray as above. Hence, LJ(Γ )
is equal to the Γ -orbit of the accumulation points of sides of Dz. Recall that a word
i1i2 . . . can be interpreted as a coding obtained by listing the fundamental domains
in the Γ -orbit of Dz, which are passed when one travels along the ray from 0 to
x. In particular, this shows that a Jørgensen limit point x can only be coded by a
finite word, since the ray from 0 to x intersects at most finitely many fundamental
domains.

In order to show that the set of limit points x ∈ L(Γ ) which do not have an
infinite coding is contained in LJ(Γ ), we use the contrapositive method and proceed
as follows. Assume that x /∈ LJ(Γ ). For each γ ∈Γ , we then have that the hyperbolic
geodesic ray from γ(z) to x is not completely contained in γ(Dz). Now, if x would
be coded by a finite word, then this would mean that the geodesic ray from 0 to
x eventually stays in one of the images of the fundamental domain, say g(Dz). By
convexity of g(Dz), it then follows that the geodesic ray from g(z) to x is fully
contained in g(Dz). This is a contradiction, and hence shows that the geodesic ray
from 0 to x must pass through infinitely many images of the fundamental domain.
This implies that there exists an infinite coding associated with x, and therefore, x is
not contained in the set of limit points without infinite coding. This completes the
proof of the lemma. $%
Definition 4. Let Γ be a Kleinian group acting on D

m+1, and let s ∈ R. The series

∑
γ∈Γ

e−sd(0,γ(0))

will be called the Poincaré series associated with Γ . The exponent of convergence
of this series will be denoted by δ (Γ ) and referred to as the Poincaré exponent
associated with the Kleinian group Γ .

Theorem 1 (Bishop, Jones). For each non-elementary Kleinian group Γ , the
Poincaré exponent δ (Γ ) coincides with the Hausdorff dimension of the uniformly
radial limit set.

For a proof see [1]. A more detailed proof can be found in [14].
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3 Proof of Main Theorem

We are now ready to prove the Main Theorem. Recall that the main statements of
the theorem are as follows.

For every m ∈ N and every d, j ∈ (0,m), there exists a Kleinian group Γ ⊂
Iso(Dm+1) such that

dimH Lur(Γ )≤ d and dimH LJ(S) = j.

In particular, Γ can be chosen to be of Schottky type.

Proof. Note that the case j = 0 is trivial, since any finitely generated Kleinian group
of Schottky type with small enough Poincare exponent might serve as an example.
For the case j = m, we refer to [12].

Hence, let m ∈ N and j,d ∈ (0,m) be fixed. The idea is to construct an infinitely
generated Kleinian group of Schottky type Γ∞. Fix a strictly increasing sequence
{dn}n∈N∪{0} of positive real numbers such that limn→∞ dn = d. Now choose a

finitely generated Kleinian group of Schottky type Γ0 := 〈γ1, . . . ,γl〉 acting on D
m+1

such that δ (Γ0)< d0. For I(Γ0) := {1, . . . , l}∪{−1, . . . ,−l} let {Ci}i∈I(Γ0) denote the
hyperbolic half-spaces associated with the generators of Γ0 (as in Definition 2). We
then have that D =

⋂
i∈I(Γ0)

Cc
i is a Dirichlet domain for Γ0. Recall that ∂D denotes

the intersection of S
m with the closure D of D. Choose a closed m-dimensional

ball X ⊂ S
m, which is contained in an open subset of ∂D. Moreover, choose some

� ∈ (0,1) and a set of two injective contractions S := {ϕ1, ϕ2 : X → X} such that
ϕ1(X)∩ϕ2(X) = /0, and such that

L(S) :=

⎛
⎝⋂

n∈N

⋃
i1,...,in∈{1,2}

ϕin ◦ . . .◦ϕi1(X)

⎞
⎠ satisfies dimH L(S) = j.

Such an S is called an iterated function system (IFS) and that such an S exists is well
known; for further details on iterated function systems, we refer for example to the
book [4].

As mentioned above, we will now inductively construct an infinitely generated
Kleinian group of Schottky type Γ∞. In order to do that we will for each n ∈ N and
each k ∈ {1, . . . ,2n} find a suitable hyperbolic isometry γn,k ∈ Iso(Dm+1) and define
the free groups

Γn := 〈γi, j | 1≤ i≤ n, 1≤ j ≤ 2n〉�Γ0.

Therefore, the start of the induction is given by Γ0. For ease of exposition, we also
use the free groups

Γn,k := Γn−1 � 〈γn, j | 1≤ j ≤ k〉= Γn,k−1 � 〈γn,k〉.
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The crucial point is that for each n ∈ N and each k ∈ {1, . . . ,2n} we can inductively
find γn,k ∈ Iso(Dm+1) such that the following properties are satisfied:

1. Γn,k is a Kleinian group of Schottky type.
2. The choice of γn,k does not interfere with the induction step, that is

∂C±γn,k ∩
⋃

e∈{1,2}n

ϕe(X) = /0.

3. The sides of the fundamental domain for Γn,k−1 � 〈γn,k〉 are located suitably, that
is, for the unique (k0,k1, . . . ,kn−1) ∈ {1,2}n with k = ∑n−1

i=0 (ki− 1)2i, we have

dist
(

BC±γn,k ,ϕkn−1 ◦ . . .◦ϕk0(X)
)
≤ �n.

This property will be crucial when proving the fact regarding LJ(Γ ).
4. The exponent of convergence of Γn,k−1 � 〈γn,k〉 is small enough, that is,

δ
(
Γn,k
)≤ dn,k.

Clearly, by construction (in particular condition (3) above), we have that the
set of accumulation points of the set {∂Ci : i ∈ I(Γ∞)} of sides of ∂D(Γ∞) in S

m

is equal to L(S). This implies that LJ(Γ∞) = Γ∞(L(S)), and hence dimH LJ(Γ∞) =
dimH L(S). Furthermore, by choice of S, we have that dimH L(S) = j. Combining
these observations, we conclude that dimH LJ(Γ ) = j. This gives the equality stated
in the theorem.

For the inequality δ (Γ∞) ≤ d, note that by Theorem 1 and the definition of
Lur(Γ∞), we have that δ (Γ∞) = limn→∞ δ (Γn). (Note that this result was originally
proven by means of conformal measures by Sullivan in [16], while this simple proof
is e.g. contained in [5, Remark 1].) Since δ (Γn) ≤ dn for each n ∈ N, we conclude
that limn→∞ δ (Γn) ≤ limn→∞ dn = d. Combining these observations, the inequality
in the theorem follows.

This completes the proof of the Main Theorem. $%
Remark. Note that by choosing the finitely generated Kleinian group of Schottky
type Γ0 in such a way that d − δ (Γ0) is small, one can construct an infinitely
generated Kleinian group Γ∞ with δ (Γ∞) ∈ (δ (Γ0),d].

Remark. Finally, we would like to remark that even though in this construction
we control dimH Lr(Γ ) and dimH LJ(Γ ), this does not imply that we control
dimH Ldyn(Γ ) and hence also not dimH L(Γ ).

Namely, note that (by Theorem 1 of Bishop and Jones) one has δ (Γ ) =
dimH Lur(Γ ) = dimH Lr(Γ ) and that by definition Lr(Γ ) ⊂ Ldyn(Γ ). However,
dimH Lr(Γ ) and dimH Ldyn(Γ ) do not coincide in general. This follows from a result
of Brooks in [2]. More precisely, on the one hand, it was shown in [2] that for a
normal subgroup N of a convex cocompact Kleinian group Γ (with δ (Γ ) > n/2)
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one has δ (N)< dimH L(N) if and only if Γ /N is non-amenable. On the other hand,
at least for certain such N, it is easy to show that dimH LJ(N) < dimH L(N). This
can be seen as follows. Consider a purely hyperbolic free group Γ := G � H :=
〈g〉� 〈h1,h2〉 for fixed g,h1,h2 such that δ (Γ )> n/2 and the free normal subgroup
N := 〈{hgh−1 | h∈H}〉. Then one hasΓ /N �H and LJ(N) =N(L(H)). Combining
these observations with the fact that dimH L(N) = δ (Γ ) > δ (H) it follows that
max{δ (N),dimH LJ(N)}< dimH Ldyn(N) = δ (Γ ).

Furthermore, for normal subgroups N of a convex cocompact Kleinian group Γ
one has (by a result of Falk and Stratmann in [5]) that dimH Lr(N)≤ dimH Ldyn(N)≤
2 · dimH Lr(N). However, in general no such upper bound is known. Hence, in
the construction in this paper we do control dimH Lr(Γ ) and dimH LJ(Γ ) but not
dimH Ldyn(Γ ) nor dimH L(Γ ).
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A Note on the Algebraic Growth Rate
of Poincaré Series for Kleinian Groups

Marc Kesseböhmer and Bernd O. Stratmann

Abstract In this note, we employ infinite ergodic theory to derive estimates for
the algebraic growth rate of the Poincaré series for a Kleinian group at its critical
exponent of convergence.

Keywords Poincaré series • Infinte ergodic theory • Kleinian groups

Dedicated to S.J. Patterson on the occasion of his 60th birthday.

1 Introduction and Statements of Result

In this note, we study the Poincaré series

P(z,w,s) := ∑
g∈G

e−sd(z,g(w))

of a geometrically finite, essentially free Kleinian group G acting on the (N + 1)-
dimensional hyperbolic space D, for arbitrary z,w ∈ D. Here, d(z,w) denotes the
hyperbolic distance between z and w, and s ∈ R. It is well known that a group of
this type is of δ -divergence type, which means that P(z,w,s) diverges for s equal to
the exponent of convergence δ = δ (G) of P(z,w,s). We are in particular interested
in the situation in which G is a zonal group, that is, we always assume that G has
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parabolic elements. For Kleinian groups of this type, we then consider the partial
Poincaré sum

Pn(z,w,s) := ∑
g∈G
|g|≤n

e−sd(z,g(w)),

for n∈N, and where | · | denotes the word metric in G. The main result of this note is
the following asymptotic estimate for these partial Poincaré sums, for s equal to the
exponent of convergence δ . Here, rmax denotes the maximal rank of the parabolic
fixed points of G, and� denotes comparability, that is, bn� cn if and only if (bn/cn)
is uniformly bounded away from zero and infinity, for two sequences (bn) and (cn)
of positive real numbers.

Theorem 1. For a geometrically finite, essentially free, zonal Kleinian group G and
for each z,w ∈ D, we have

Pn(z,w,δ ) �
⎧⎨
⎩

n2δ−rmax for δ < (rmax + 1)/2,
n/ log n for δ = (rmax + 1)/2,
n for δ > (rmax + 1)/2.

Note that the results in this note grew out of the authors closely related recent studies
in [9] of the so-called sum-level sets for regular continued fractions. These sets are
given by

Cn :=

{
[a1,a2, . . .] ∈ [0,1] :

k

∑
i=1

ai = n, for some k ∈ N

}
,

where [a1,a2, . . .] denotes the regular continued fraction expansion. Inspired by a
conjecture in [7], it was shown in [9] that for the Lebesgue measure λ (Cn) of these
sets one has that, with bn ∼ cn denoting limn→∞ bn/cn = 1,

λ (Cn)∼ 1
log2 n

and
n

∑
k=1

λ (Ck)∼ n
log2 n

.

For refinements of these results, we also refer to [10]. It is not hard to see that in here
the second asymptotic estimate implies Theorem 1 for G equal to the (subgroup of
index 3 of the) modular group PSL2(Z).

2 Preliminaries

2.1 The Canonical Markov Map

As already mentioned in the introduction, throughout, we exclusively consider
a geometrically finite, essentially free, zonal Kleinian group G. By definition
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(see [8]), a group of this type can be written as a free product G = H ∗Γ , where
H = 〈h1,h

−1
1 〉 ∗ · · · ∗ 〈hu,h−1

u 〉 denotes the free product of finitely many elementary,
loxodromic groups, and Γ = Γ1 ∗ · · · ∗Γv denotes the free product of finitely many
parabolic subgroups of G such that Γi = 〈γi1 ,γ

−1
i1

, . . . ,γiri
,γ−1

iri
〉 is the parabolic

subgroup of G associated with the parabolic fixed point pi of rank ri. Clearly,
Γi
∼= Z

ri and γ±i j
(pi) = pi, for all j = 1, . . . ,ri and i = 1, . . . ,v. Also, note that G

has no relations other than those which originate from cusps of rank at least 2, that
is, those Γi with ri > 1. Without loss of generality, we can assume that G admits
the choice of a Poincaré polyhedron F with a finite set F of faces such that if two
elements s and t of F intersect inside D, then the two associated generators gs and
gt must have the same fixed point, which then, in particular, has to be a parabolic
fixed point of G of rank at least 2.

Let us now first recall from [17] the construction of the relevant coding
map T associated with G, which maps the radial limit set Lr(G) into itself.
This construction parallels the construction of the well-known Bowen-Series map
(cf. [4, 13–16]).

For ξ ,η ∈ Lr(G), let γξ ,η : R→ D denote to the directed geodesic from η to ξ
such that γξ ,η intersects the closure F of F in D, normalized such that γξ ,η (0) is the
summit of γξ ,η . The exit time eξ ,η is defined by

eξ ,η := sup{s : γξ ,η (s) ∈ F}.

Since ξ ,η ∈ Lr(G), we clearly have that |eξ ,η | < ∞. By Poincaré’s polyhedron
theorem (cf. [6]), we have that the set F carries an involution F → F , given
by s �→ s′ and s′′ = s. In particular, for each s ∈F there is a unique face-pairing
transformation gs ∈ G such that gs(F)∩F = s′. We then let

Lr(G) := {(ξ ,η) : ξ ,η ∈ Lr(G),ξ �= η and ∃ t ∈ R : γξ ,η(t) ∈ F},

and define the map S : Lr(G) → Lr(G), for all (ξ ,η) ∈ Lr(G) such that
γξ ,η(eξ ,η ) ∈ s, for some s ∈F , by

S(ξ ,η) := (gs(ξ ),gs(η)).

In order to show that the map S admits a Markov partition, we introduce the
following collection of subsets of the boundary ∂D of D. For s ∈F , let As refer
to the open hyperbolic halfspace for which F ⊂ D \ As and s ⊂ ∂As. Also, let
Π :D→ ∂D denote the shadow-projection given byΠ(A) := {ξ ∈ ∂D :σξ ∩A �= /0},
where σξ denotes the ray from 0 to ξ . Then the projections as of the side s to ∂D is
given by

as := Int(Π(As)).

If G has exclusively parabolic fixed points of rank 1, then as∩ at = /0, for all s, t ∈
F ,s �= t. Hence, by convexity of F , we have γξ ,η(eξ ,η ) ∈ s if and only if ξ ∈ as.
In other words, S(ξ ,η) = (gsξ ,gsη) for all ξ ∈ as. This immediately gives that the



240 M. Kesseböhmer and B.O. Stratmann

projection map π : (ξ ,η) �→ ξ onto the first coordinate of Lr(G) leads to a canonical
factor T of S, that is, we obtain the map

T : Lr(G)→ Lr(G), given by T |as∩Lr(G) := gs.

Clearly, T satisfies π ◦S= T ◦π . Since T (as) = gs(as) = Int(∂D\as′), it follows that
T is a non-invertible Markov map with respect to the partition {as∩Lr(G) : s ∈F}.

If there are parabolic fixed points of rank greater than 1, then, a priori, S does
not have a canonical factor. In this situation, the idea is to construct an invertible
Markov map S̃ which is isomorphic to S and which has a canonical factor. This
can be achieved by introducing a certain rule on the set of faces associated with
the parabolic fixed points of rank greater than 1, which keeps track of the geodesic
movement within these cusps. This then permits to define a coding map also in this
higher rank case, and, for ease of notation, this map will also be denoted by T .
(For further details we refer to [17], where this construction is given for G having
parabolic fixed points of rank 2 and acting on 3-dimensional hyperbolic space; the
general case follows from a straightforward adaptation of this construction.) For this
so obtained coding map T we then have the following result.

Proposition 1 ([17, Proposition 2, Proposition 3]). The map T is a topologically
mixing Markov map with respect to the partition generated by {as∩Lr(G) : s∈F}.
Moreover, the map S̃ is the natural extension of T .

2.2 Patterson Measure Theory

In order to introduce the T -invariant measure on L(G) relevant for us here, let us
first briefly recall some of the highlights in connection with the Patterson measure
and the Patterson–Sullivan measure (for detailed discussions of these measures,
we refer to [11,12,18,19,21], see also [5] in these Proceedings). By now it is folklore
that, given some sequence (sn) of positive reals which tends to δ from above, the
Patterson measure mδ is a probability measure supported on L(G), given by a weak
accumulation point of the sequence of measures

(
(P∞(0,0,δn))

−1 ∑
g∈G

e−δnd(0,g(0))1g(0)

)
.

For geometrically finite Kleinian groups, and therefore, in particular, for the type of
groups considered in this note, it is well known that the so obtained limit measure
is non-atomic and does not depend on the particular choice of the sequence (sn).
Hence, in particular, mδ is unique. Moreover, we have that mδ is δ -conformal, that
is, for all g ∈ G and ξ ∈ L(G), we have

d (mδ ◦ g)
d mδ

(ξ ) =
(

1−|g(0)|2
|ξ − g−1(0)|2

)δ
.
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This δ -conformality is one of the key properties of mδ , and for geometrically finite
Kleinian groups it has the following, very useful geometrization. For this, let ξt

denote the unique point on the ray σξ such that the hyperbolic distance between 0
and ξt is equal to t, for arbitrary ξ ∈ L(G) and t > 0. Also, let Bc(ξt) ⊂ D denote
the (N + 1)-dimensional hyperbolic disc centred at ξt of hyperbolic radius c > 0.
Moreover, if ξt lies in one of the cusps associated with the parabolic fixed points
of G, we let r(ξt) denote the rank of the parabolic fixed point associated with that
cusp, otherwise, we put r(ξt) equal to δ . We then have the following generalization
of Sullivan’s shadow lemma, where “diam” denotes the Euclidean diameter in ∂D.

Proposition 2 ([18, 20]). For fixed, sufficiently large c > 0, and for all ξ ∈ L(G)
and t > 0, we have

mδ (Π(Bc(ξt)))� (diam(Π(Bc(ξt))))
δ · e(r(ξt )−δ )d(ξt ,G(0)).

A further strength of the Patterson measure in the geometrically finite situation lies
in the fact that it gives rise to a measure m̃δ on (L(G)× L(G)) \ {diag.}, which
is ergodic with respect to the action of G on (L(G)× L(G)) \ {diag.}, given by
g((ξ ,η)) = (g(ξ ),g(η)). This measure is usually called the Patterson–Sullivan
measure, and it is given by

dm̃δ (ξ ,η) :=
dmδ (ξ )dmδ (η)
|ξ −η |2δ .

The (first) marginal measure of the Patterson–Sullivan measure then defines the
measure μδ on L(G), given by

μδ := m̃δ ◦π−1.

The advantage of the measure μδ is that it is suitable for non-trivial applications of
certain results from infinite ergodic theory. In fact, for the system (L(G),T,μδ ) the
following results have been obtained in [17].

Proposition 3. The map T is conservative and ergodic with respect to the T -
invariant, σ -finite measure μδ , and μδ is infinite if and only if δ ≤ (rmax + 1)/2.
Moreover, if G has parabolic fixed points of rank less than rmax, then μδ gives finite
mass to small neighbourhoods around these fixed points.

2.3 Infinite Ergodic Theory

In this section, we summarize some of the infinite ergodic theoretical properties of
the system (L(G),T,μδ ). For further details, we refer to [17].

Recall that we always assume that G is a geometrically finite, essentially free,
zonal Kleinian group, and note that for our purposes here we only have to consider
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the parabolic subgroups of maximal rank, since, by Proposition 3, μδ gives infinite
measure to arbitrary small neighbourhoods of a fixed point of a parabolic generator
of G only if the parabolic fixed point is of maximal rank rmax. Then define

D0 :=
⋂

γ a generator of Γi
i=1,...,v;ri=rmax

(D\ClD(Aγ◦γ )),

and let
D := Lr(G)∩Π(D0).

Recall that the induced transformation TD on D is defined by TD(ξ ) := Tρ(ξ )(ξ ),
where ρ denotes the return time function, given by ρ(ξ ) := min{n ∈ N : T n(ξ ) ∈
D}. One then considers the induced system

(
D ,TD ,μδ ,D

)
, where μδ ,D denotes

the restriction of μδ to D . Using standard techniques from ergodic theory, for this
induced system the following result was obtained in [17]. Here, bn� cn means that
(bn/cn) is uniformly bounded away from infinity.

Fact ([17]). The map TD has the Gibbs–Markov property with respect to the
measure μδ ,D . That is, there exists c ∈ (0,1) such that for arbitrary cylinders [ω1]
of length n and [ω2] of length m such that [ω2]⊂ T n

D([ω1]), we have for μδ ,D -almost
every pair η ,ξ ∈ [ω2],

∣∣∣∣∣log
dμδ ,D ◦T−n

D ,ω1

dμδ ,D
(ξ )− log

dμδ ,D ◦T−n
D ,ω1

dμδ ,D
(η)

∣∣∣∣∣� cm,

where T−n
D ,ω1

denotes the inverse branch of T n
D mapping T n

D([ω1]) bijectively to [ω1].

Let T̂D denotes the dual operator of TD , given by

μδ ,D( f ·g ◦T) = μδ ,D
(

T̂D( f ) ·g
)
, for all f ∈ L1(μδ ,D),g ∈ L∞(μδ ,D).

The Gibbs–Markov property of TD then allows to employ the following chain of
implications (cf. [1, 2]):

TD has the Gibbs–Markov property with respect to μδ ,D .

=⇒ There exists c0 ∈ (0,1) such that, for all f ∈ L1(μδ ,D) and n ∈ N, we have

∥∥∥T̂ n
D f − μδ ,D( f )

∥∥∥
L
� cn

0‖ f‖L.

(Here, ‖ · ‖L refers to the Lipschitz norm (cf. [2], p. 541).)
=⇒ TD is continued fraction mixing (cf. [2], p. 500).
=⇒ The set D is a Darling–Kac set for T . That is, there exists a sequence (νn)

(called the return sequence of T) such that

1
νn

n−1

∑
i=0

T̂ i1D(ξ )→ μδ (D), uniformly for μδ -almost every ξ ∈D .
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Finally, let us also remark that the growth rate of the sequence (νn) can be
determined explicitly as follows. Recall from [1, Sect. 3.8] that the wandering rate
of the Darling–Kac set D is defined by the sequence (wn), which is given, for each
n ∈ N, by

wn := μδ

(
n⋃

k=1

T−(k−1)(D)

)
.

An application of [1, Proposition 3.8.7] gives that the return sequence and the
wandering rate are related through

νn ·wn ∼ n
Γ (1+β )Γ (2−β ) ,

where β := max{0,1+ rmax − 2δ} coincides with the index of variation of the
regularly varying sequence (wn). Hence, we are left with to determine the wandering
rate. But this has been done in [17, Theorem 1], where it was shown that

wn �
⎧⎨
⎩

nrmax−2δ+1 for δ < (rmax + 1)/2
logn for δ = (rmax + 1)/2
1 for δ > (rmax + 1)/2.

Hence, by combining these observations, it follows that

νn �
⎧⎨
⎩

n2δ−rmax for δ < (rmax + 1)/2
n/ logn for δ = (rmax + 1)/2
n for δ > (rmax + 1)/2.

3 Proof of the Theorem 1

As we have seen in the previous section, we have that the set D := Lr(G)∩Π(D0)
is a Darling–Kac set. Combining this with Proposition 2, Proposition 3, and the fact
that the Patterson measure mδ and its T–invariant version μδ are comparable on D ,
one obtains

1
νn

∑
g(w)∈D0
|g|≤n

e−δd(z,g(w)) � 1
νn

n

∑
k=0

mδ

(
D ∩T−k(D)

)
� 1
νn

n

∑
k=0

μδ
(
D ∩T−k(D)

)

=
1
νn

n

∑
k=0

μδ
(
1D · T̂ k1D

)
= μδ

(
1D · 1

νn

n

∑
k=0

T̂ k1D

)

∼ (μδ (1D))
2 .
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Since μδ (1D )� 1, it follows that

∑
g(w)∈D0
|g|≤n

e−δd(z,g(w)) � νn.

To extend this estimate to the full G-orbit of w, let

Qi :=
⋂

γ a generator of Γi

(D\ClD(Aγ))

denote the fundamental domain for the action of Γi on D, for each i ∈ {1, . . . ,v}.
Clearly, we can assume, without loss of generality, that z and w are contained in
each of the fundamental domains Qi. For every γ ∈ Γi such that |γ| = k, for some
1 < k≤ n, we then have, with the convention ν0 := 1,

∑
g(w)∈γ(Qi)
|g|≤n

e−δd(z,g(w)) � k−2δ νn−k.

Also, note that
card{γ ∈ Γi : |γ|= k} � kri−1.

Combining these observations, it follows that

Pn(δ ,z,w) � ∑
g(w)∈D0
|g|≤n

e−δd(z,g(w)) + ∑
i=1,..,v
ri=rmax

∑
γ∈Γi
|γ|≥2

∑
g(w)∈γ(Qi )
|g|≤n

e−δd(z,g(w))

� νn + ∑
i=1,..,v
ri=rmax

n

∑
k=2
∑
γ∈Γi
|γ|=k

∑
g(w)∈γ(Qi )
|g|≤n

e−δd(z,g(w))

� νn +
n

∑
k=2

krmax−1k−2δ νn−k.

In order to finish the proof, recall that, by a result of Beardon [3], one has that δ >
rmax/2. Therefore, there exists κ = κ(G)> 0 such that δ > rmax/2+κ . Moreover,
note that we can assume, without loss of generality, that (νn) is increasing. Using
these observations, it now follows that, on the one hand,

n

∑
k=2

νn−kk−2δ+rmax−1� νn

n

∑
k=2

k−2δ+rmax−1� νn

n

∑
k=1

k−1−2κ � νn.

On the other hand, we clearly have that ∑n
k=2 νn−kk−2δ+rmax−1� νn−2. Combining

these observations with the estimate for the asymptotic growth rate of the return
sequence (νn), given in the previous section, the proof of Theorem 1 follows.
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Appendix∗
SNOQIT I†: Growth of Λ -Modules and
Kummer Theory

Preda Mihăilescu

One by one the guests arrive
The guests are coming through
And “Welcome, welcome” cries a voice
“Let all my guests come in!”.1

To S. J. Patterson, at his 60th birthday.

Abstract Let A = lim←−n
be the projective limit of the p-parts of the class groups in

some Zp-cyclotomic extension. The main purpose of this paper is to investigate the
transition Λan→Λan+1 for some special a = (an)n∈N ∈ A, of infinite order. Using
an analysis of the Fp[T ]-modules An/pAn and An[p], we deduce some restrictive
conditions on the structure and rank of these modules. Our model can be applied also
to a broader variety of cyclic p-extensions and associated modules. In particular, it
applies to certain cases of subfields of Hilbert or Takagi class fields, i.e. finite cyclic
extensions.

As a consequence of this taxonomy (the term taxonometric research was coined
by Samuel Patterson; it very well applies to this work and is part of the dedication at
the occasion of his 60th birthday), we can give a proof in CM fields of the conjecture
of Gross concerning the non-vanishing of the p-adic regulator of p-units.

∗Due to time constraints, the main results of this paper did not undergo a complete review process.
We decided to publish them nevertheless, because of the strong connection with the theme of this
book. Theorem 3 of this contribution will appear in amplified form elsewhere.

†SNOQIT= “Seminar Notes on Open Questions in Iwasawa Theory” refers to a seminar held
together with S. J. Patterson in 2007/08.

1Leonard Cohen: The Guests.
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1 Introduction

Let p be an odd prime andK⊃Q[ζ ] be a galois extension containing the pth roots of
unity, while (Kn)n∈N are the intermediate fields of its cyclotomic Zp-extension K∞.
Let An = (C (Kn))p be the p-parts of the ideal class groups of Kn and A= lim←−n

An be
their projective limit. The subgroups Bn⊂An are generated by the classes containing
ramified primes above p and we let

A′n = An/Bn,

B = lim←−
n

Bn, A′ = A/B. (1)

We denote as usual the galois group Γ = Gal(K∞/K) and Λ = Zp[Γ ] ∼= Zp[[τ]] ∼=
Zp[[T ]], where τ ∈ Γ is a topological generator and T = τ− 1; we let

ωn = (T + 1)pn−1− 1 ∈Λ , νn+1,n = ωn+1/ωn ∈Λ .

If Hn ⊃ Kn are the maximal p-abelian unramified extensions of Kn – the p-Hilbert
class fields of Kn – then Xn := Gal(Hn/Kn) ∼= An via the Artin Symbol, which we
shall denote by ϕ . Let H=∪nHn be the maximal unramified p-extension of K∞ and
X = Gal(H/K∞). The isomorphisms ϕ : An → Xn are norm compatible and yield
and isomorphism in the projective limit, which we shall also denote by ϕ :

ϕ(A) = ϕ

(
lim←−

n

An

)
= lim←−

n

(ϕ(An)) = lim←−
n

(Xn) = X . (2)

The module A is a finitely generated Λ -torsion module, and we assume for
simplicity in this paper that μ(A) = 0.

The groups An,Bn,A′n, etc. are multiplicativeΛ -modules and we shall denote the
action of Λ -multiplicatively, so aT = τ(a)/a for a ∈ a. Whenever intensive use of
group ring actions makes additive preferable, we either state the related results in
terms of abstract modules, written additively, or explicitly state a switch to additive
notation, by slight abuse of language.

If X is a finite abelian group, we denote by Xp its p-Sylow group. The exponent
of Xp is the smallest power of p that annihilates Xp; the subexponent

sexp(Xp) = min
{

ord(x) : x ∈ Xp \X p
p

}
.

Fukuda proves in [8] (see also Lemma 4 below) that if μ(K) = 0, then there
for the least n0 ≥ 0 such that p−rk(An0+1) = p−rk(An0) we also have p−rk(A) =
p−rk(An0): the p-rank of An becomes stationary after the first occurrence of a
stationary rank. It is a general property of finitely generated Λ -modules of finite p-
rank, that their p-rank must become stationary after some fixed level – the additional
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fact that this already happens after the first rank stabilization is a consequence of an
early theorem of Iwasawa (see Theorem 2 below), which relates the Λ -module A
to class field theory. The theorem has a class field theoretical proof and one can
show that the properties it reveals are not shared by arbitrary finitely generated
Λ -modules.

The purpose of this paper is to pursue Fukuda’s observation at the level of
individual cyclic Λ -modules and also investigate the prestable segment of these
modules. We do this under some simplifying conditions and focus on specific cyclic
Λ -modules defined as follows:

Definition 1. Let K be a CM field and a=(an)n∈N ∈A− have infinite order. We say
that a is conic2 if the following conditions are fulfilled:

1. There is a Λ -submodule C⊂ A− such that

A− = C⊕Λa.

We say in this case that Λa is Λ -complementable.
2. Let c = (cn)n∈N ∈Λa. If cn = 1 for some n > 0, then c ∈ ωn(Λa).
3. If b ∈ A− and there is a power q = pk with bq ∈Λa, then b ∈Λa.
4. If fa(T ) ∈ Zp[T ] is the exact annihilator of Λa, then ( fa(T ),ωn(T )) = 1 for all

n > 0. The common divisor here is understood in Qp, so fa,ωn are coprime as
polynomials in Qp.

The above definition is slightly redundant, containing all the properties that we shall
require. See also Sect. 2.1 for a more detailed discussion of the definition. We shall
denote a conic module by A =Λa and An =Λan.

The first purpose of this paper is to prove the following theorem.

Theorem 1. Let p be an odd prime, K be a galois CM extension containing a pth
root of units and let Kn,An and A be defined like above, such that μ(A) = 0. Let a=
(an)n∈N ∈ A− \ (A−)p be conic, q = ord(a1) and let fa(T ) be the exact annihilator
polynomial of a. Then there is an integer n0 ≥ 1 such that

1. For all n ≥ n0, we have p−rk(An) = λ (A ) = deg( fa). Moreover, ord(an) =
pn−n0ord(an0) = pn+z(a), for some z(a) ∈ Z.

2. If p−rk(Am)< deg(ωm) for some m≤ n0, then m+ 1≥ n0.

For all n > 0, we have ord(an+1)≤ pord(an).

The theorem is obtained by a tedious algebraic analysis of the rank growth in the
transitions An ↪→An+1.

A class of examples of conic modules is encountered for quadratic ground
fields K, such that the p-part A1(K) of the class group is Zp-cyclic. We shall give

2One can easily provide examples of non conic elements, by considering K∞ as a Zp-extension of
Kn for some n > 1. It is an interesting question to find some conditions related only to the field K,
which assure the existence of conic elements.
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in Sect. 3.2 a series of such examples, drawn from the computations of Ernvall
and Metsänkylä in [6]. A further series of applications concern the structure of
the components ep−2kA of the class group of p-cyclotomic extensions, when the
Bernoulli number B2k ≡ 0 mod p. If the conjecture of Kummer–Vandiver or the
cyclicity conjecture holds for this component, then the respective modules are conic.

The question about the detailed structure of annihilator polynomials in Iwasawa
extensions is a difficult one, and it has been investigated in a series of papers in the
literature. For small, e.g. quadratic fields, a probabilistic approach yields already
satisfactory results. In this respect, the Cohen-Lenstra [4] and Cohen-Martinet [5]
heuristics have imposed themselves, being confirmed by a large amount of empirical
results; see also Bhargava’s use of these heuristics in [2] for recent developments.

At the other end, for instance in p-cyclotomic fields, computations only revealed
linear annihilator polynomials. In spite of the improved resources of modern
computers, it is probably still infeasible to pursue intensive numeric investigations
for larger base fields. In this respect, we understand this paper as a proposal for
a new, intermediate approach between empirical computations and general proofs:
empirical case distinctions leading to some structural evidence. In this sense, the
conditions on conic elements are chosen such that some structural results can
be achieved with feasible effort. The results indicate that for large base fields,
the repartitions of exact annihilators of elements of A− can be expected to be
quite structured and far from uniform repartition within all possible distinguished
polynomials.

1.1 Notations

We shall fix some notations. The field K is assumed to be a CM galois extension of
Q with group Δ , containing a pth root of unity ζ but no p2th roots of unity. We let
(ζpn)n∈N be a norm coherent sequence of pnth roots of unity, so Kn =K[ζpn ]. Thus,
we shall number the intermediate extensions of K∞ by K1 = K,Kn = K[ζpn ]. We
have uniformly that Kn contains the pnth but not the pn+1th roots of unity. In our
numbering, ωn annihilates K×n and all the groups related to Kn (An,O(Kn), etc.)

Let A = C (K)p, the p-Sylow subgroup of the class group C (K). The p-parts of
the class groups of Kn are denoted by An and they form a projective sequence with
respect to the norms Nm,n :=NKm/Kn ,m> n> 0, which are assumed to be surjective.
The projective limit is denoted by A = lim←−n

An. The submodule B⊂A is defined by
(1) and A′ = A/B. At finite levels A′n = An/Bn is isomorphic to the ideal class group
of the ring of the p-units in Kn. The maximal p-abelian unramified extension of Kn

is Hn and H
′
n ⊂Hn is the maximal subfield that splits all the primes above p. Then

Gal(H′n/Kn)∼= A′n (e.g. [11], Sects. 3 and 4).
If the coherent sequence a = (an)n∈N ∈ A− is a conic element, then

p−rk(Λa) < ∞. We write A = Λa and An = Λan: the finite groups An form a
projective sequence of Λ -modules with respect to the norms. The exact annihilator
polynomial of A is denoted by fa(T ) ∈ Zp[T ].
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If f ∈ Zp[T ] is some distinguished polynomial that divides the characteristic
polynomial of A, we let A( f ) = ∪nA[ f n] be the union of all power f -torsions in
A. Since A is finitely generated, this is the maximal submodule annihilated by some
power of f . If B ⊂ A( f ) is some Λ -module, then we let k = ord f (B) be the least
integer such that f kB = 0.

1.2 List of Symbols

We give here a list of the notations introduced below in connection with Iwasawa
theory.

p A rational prime,
ζpn Primitive pnth roots of unity with ζ p

pn = ζpn−1 for all n > 0,
μpn = {ζ k

pn ,k ∈ N},
K A galois CM extension of Q containing the pth roots of unity,
K∞,Kn The cyclotomic Zp – extension of K, and intermediate fields,
Δ = Gal(K/Q),

A(K) The p-part of the ideal class group of the field K,

s The number of primes above p in K,

Γ = Gal(K∞/K) = Zpτ, τ a topological generator of Γ ,
T = τ− 1,
∗ Iwasawa’s involution on Λ induced by T ∗ = (p−T )/(T + 1),
Λ = Zp[[T ]], Λn =Λ/(ωnΛ),

ωn = (T + 1)pn−1− 1, (K×n )ωn = {1},
A′n = A′(Kn), the p-part of the ideal class group of the p-integers of Kn,

A′ = lim←−A′n,
B = 〈{b = (bn)n∈N ∈ A : bn = [℘n],℘n ⊃ (p)}〉Zp ,

H∞ The maximal p-abelian unramified extension of K∞,

H
′
∞ ⊂H∞ The maximal subextension of H∞ that splits the primes above p,

ϕ The Artin symbol, see also (2).

The following notations are specific for transitions:

(A,B) = A conic transition, A,B are finite Zp[T ]-modules,
G = < τ >,a cyclic p-group acting on the modules of the transition,
T = τ− 1,
S(X) = X [p], the p-torsion of the p group X , or its socle,
R(X) = X/(pX), the “roof” of the p group X ,

N, ι = The norm and the lift associated with the transition (A,B),
K = Ker (N : B→ A),
ω = Annihilator of A, such that N = p+ωN′,
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d = deg(ω(T )); ν = (ω+1)p−1
ω ,

νω = Annihilator of B,
T = B/ι(A), The transition module associated to (A,B),
s,s′ = Generators of S(A),S(B) as Fp[T ]-modules,
a,b = Generators of A,B as Zp[T ]-modules,
r,r′ = p−rk(A), p−rk(B).

1.3 Ramification and Its Applications

Iwasawa’s Theorem 6 [11] plays a central role in our investigations. Let us recall
the statement of this theorem in our context; we use here an extended version of
this theorem, which is found with identical statements and proofs in [16], Lemma
13.14 and 13.15 and [13], Chap. 5, Theorem 4.2. In view of (2), the statement below
is obtained by applyng ϕ−1 to the galois groups in Washington’s formulation of
Lemma 13.15. Note also that our numbering starts at one, while it starts at zero in
Washington numeration of the intermediate levels of K∞.

Theorem 2 (Iwasawa, Theorem 6 [11]). Let K be a number field and P = {℘i :
i = 1,2, . . . ,s} be the primes of K above p and assume that they ramify completely
in K∞/K. Let H/K∞ be the maximal p-abelian unramified extension of K∞ and
H = Gal(H∞/K), while Ii ⊂ H, i = 1,2, . . . ,s are the inertia groups of some primes
of H∞ above℘i. Let ai ∈A be such that ϕ(σi)I1 = Ii, for i = 2,3, . . . ,s.

Let Y1 = AT · [a2, . . . ,as]Zp
⊂ A and Yn = νn,1Y1. Then A/Yn

∼= An.

Note that the context of the theorem is not restricted to CM extensions. In fact,
Iwasawa’s theorem applies also to non-cyclotomic Zp-extensions, but we shall not
consider such extensions in this paper.

The following Theorem settles the question about Y−1 in CM extensions:

Theorem 3. Let K be a galois CM extension of Q and A be defined like above.
Then A−(T ) = A−[T ] = B−.

We prove the theorem in chapter 4. Then we derive from Theorem 3 the following
result:

Corollary 1. Let K be a CM s-field and Bn,A′n be defined by (1). Then (A′)−
[T ] = {1}.

This confirms a conjecture of Gross and Kuz’min stated by Federer and Gross
in [7] in the context of p-adic regulators of p-units of number fields, and earlier by
Kuz’min [12] in a class field oriented statement, which was shown by Federer and
Gross to be equivalent to the non-vanishing of p-adic regulators of p-units. We prove
here the class field theoretic statement for the case of CM fields. The conjecture was
known to be true for abelian extensions, due to previous work of Greenberg [9].



SNOQIT I: Growth of Λ -Modules and Kummer theory 253

1.4 Sketch of the Proof

We start with an overview of the proof. Our approach is based on the investigation
of the growth of the ranks rn := p−rk(An)→ p−rk(An+1); for this, we use tran-
sitions Cn := An−1/ιn,n+1(An), taking advantage of the fact that our assumptions
assure that the ideal lift maps are injective for all n. Since we also assumed
p−rk(A )<∞, it is an elementary fact that the ranks rn must stabilize for sufficiently
large n. Fukuda proved recently that this happens after the first n for which rn = rn+1.
We call this value n0: the stabilization index, and focus upon the critical section
An : n < n0. In this respect, the present work is inspired by Fukuda’s result and
extends it with the investigation of the critical section; this reveals useful criteria for
stabilization, which make that the growth of conic Λ -modules is quite controlled:
at the exception of some modules with flat critical section, which can grow in rank
indefinitely, but have constant exponent pk, the rank is bounded by p(p− 1).

The idea of our approach consists in modeling the transitions (A,B)= (An,An+1)
by a set of dedicated properties that are derived from the properties of conic ele-
ments. The conic transitions are introduced in Definition 3 below. Conic transitions
do not only well describe the critical section of conic Λ -modules, but they also
apply to sequences A1,A2, . . . ,An of more general finite modules on which a p-cyclic
group < τ > acts via the group ring R = Z/(pN ·Z)[τ] = Zp[T ],T = τ − 1, with
pNAn = 0; the modules A,B are in particular assumed to be cyclic as R-modules
and they fulfill some additional properties with respect to norms and lifts. As a
consequence, the same theory can be applied, for instance, to sequences of class
groups in cyclic p-extensions, ramified or unramified.

The ring R is a local ring with maximal ideal (p,T ); since this ideal is not
principal, it is customary to use the Fitting ideals for the investigation of modules on
which R acts. Under the additional conditions of conicity however, the transitions
(A,B) come equipped with a wealth of useful Fp[T ]-modules. Since Fp[T ] has a
maximal ideal (T ), which is principal, this highly simplifies the investigation. The
most important Fp[T ]-modules related to a transition are the socle, S(B) = B[p] and
the roof, R(B) = B/pB. It is a fundamental, but not evident fact, that S(B) is a cyclic
Fp[T ], and we prove this by induction in Lemma 8. With this, the transitions are
caught between two pairs of cyclic Fp[T ]-modules, and the relation between these
modules induces obstructions on the growth types. These obstructions are revealed
in a long sequence of tedious case distinctions, which develop in a natural way.

The relation between rank growth and norm coherence reveals in Corollary 2 the
principal condition for termination of the rank growth: assuming that p−rk(A1) = 1,
this must happen as soon as p−rk(An) < pn−1. This is a simple extension of
Fukuda’s results, giving a condition for growth termination, for rank stabilization.
A further important module associated with the transition is the kernel of the norm,
K := Ker (N : B→ A). The structure of K is an axiom of conic transitions, which
is proved to hold in the case of conic Λ -modules. The analysis of growth in conic
transitions is completed in the chapter 2.



254 P. Mihăilescu

In chapter 3, the analysis of transitions can be easily adapted to conicΛ -modules,
yielding an inductive proof of their structure, as described in Theorem 1. In the
fourth chapter, we prove the Theorem 3 and Corollary 1.

Except for the second chapter, the material of this paper is quite simple and
straightforward. In particular, the main proof included in chapter 3 follows easily
from the technical preparation in chapter 2. Therefore, the reader wishing to obtain
first an overview of the main ideas may skip the second chapter in a first round and
may even start with chapter 4, in case her interest goes mainly in the direction of the
proof of the conjectures included in that chapter.

The Lemmata 4, 5 are crucial for our approach to Kummer theory. They imply the
existence of some index n0 ≥ 0 such that for all coherent sequences a = (an)n∈N ∈
A− \ (A−)p, there is a constant z = z(a) ∈ Z such that:

p−rk(An) = p−rk(An0),

ap
n+1 = ιn,n+1(an),

ord(an) = pn+z. (3)

2 Growth of Λ -Modules

We start with a discussion of the definition of conicity:

2.1 The Notion of Conic Modules and Elements

We have chosen in this paper a defensive set of properties for conic modules, in
order to simplify our analysis of the growth of Λ -modules. We give here a brief
discussion of these choices. The restriction to CM fields and submodulesΛa ⊂ A−
is a sufficient condition for ensuring that all lift maps ιn,n+1 are injective. One can
prove in general that for a of infinite order, these maps are injective beyond a fixed
stabilization index n0 that will be introduced below. For n< n0, the question remains
still open, if it suffices to assume that ord(a) = ∞ in order to achieve injectivity at
all levels. It is conceivable that the combination of the methods developed in this
paper may achieve this goal, but the question allows no simple answer, so we defer
it to later investigations.

By assuming additionally that ( fa(T ),ωn(T )) = 1, we obtain as a consequence
of these assumptions, that for x = (xm)m∈N with xm = 1, we have x ∈ ωnA. In the
same vein, if xωn

m = 1 for m > n, then xm ∈ ιn,m(An). These two consequences are
very practical and will be repeatedly applied below.
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The fundamental requirement to conic elements a ∈ A is that the module Λa
has a direct complement, which is also a Λ -module. Conic modules exist – see
for instance Corrolary 1 or the case of imaginary quadratic extensions K with Zp

cyclic (C (K))p and only one prime above p. The simplifying assumption allows to
derive interesting properties of the growth of Λ -modules that may be generalized to
arbitrary modules.

This condition in fact implies the property 3. of the definition 1, a condition
which we also call Zp-coalescence closure of Λa, meaning that Λa is equal to the
smallest Zp-submodule of A, which contains Λa and has a direct complement as
a Zp-module. Certainly, given property 1 and using additive notation, b = g(T )a+
x,x ∈ B,g ∈ Zp[T ], and then qb ∈ Λa implies by property 1 that qx = 0, so b is
twisted by a p-torsion element, which is inconsistent with the fact that A− was
assumed Zp-torsion free. It is also an interesting question, whether the assumption
of property 1 and ai ∈ TA are sufficient to imply property 1.

2.2 Auxiliary Identities and Lemmata

We shall frequently use some identities in group rings, which are grouped below. For
n> 0 we let Rn =Z/(pN ·Z)[T ]/(ωn) for some large N > 0, satisfying N > exp(An).
The ring Rn is local with maximal ideal (ωn) and we write T for the image of T in

this ring. Since T
pn ∈ pRn, it follows that T

pn+N

= 0; thus, T ∈ Rn is nilpotent and
Rn is a principal ideal domain.

We also consider the group ring R′n :=Z/(pN ·Z)[ωn]/(νn+1,n), which is likewise
a local principal ideal domain with maximal ideal generated by the nilpotent element
ωn. From the binomial development of νn+1,n, we deduce the following fundamental
identities in Λ :

νn+1,n =
(ωn + 1)p− 1

ωn
= ω p−1

n +
p−1

∑
i=1

(
p
i

)
/p ·ω i−1

n

= p(1+O(ωn))+ω p−1
n = ω p−1

n + pu(ωn),

u(ωn) = 1+
p− 1

2
ωn + · · ·+ω p−2

n ∈Λ×,
ω p

n = ωn · (νn+1,n− pu(ωn)) = ωn+1− pωnu(ωn). (4)

The above identities are equivariant under the Iwasawa involution ∗ : τ �→
(p+1)τ−1. Note that we fixed the cyclotomic character χ(τ) = p+1. If f (T ) ∈Λ ,
we write f ∗(T ) = f (T ∗), the reflected image of f (T ). The reflected norms are
ν∗n+1,n =ω∗n+1/ω

∗
n . From the definition of ω∗n , we have the following useful identity:

ωn + tω∗n = pn−1c, t ∈Λ×n ,c ∈ Z
×
p . (5)
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We shall investigate the growth of the modules An for n→ n+ 1. Suppose now
that A is a finite abelian p-group which is cyclic as an Zp[T ]-module, generated
by a ∈ A. We say that a monic polynomial f ∈ Zp[T ] is a minimal polynomial for
a, if f has minimal degree among all monic polynomials g ∈ a' = {x ∈ Zp[T ] :
xa = 0} ⊂ Zp[T ].

We note the following consequence of Weierstrass preparation:

Lemma 1. Let I = (g(T )) ⊂ Zp[T ] be an ideal generated by a monic polyno-
mial g(T ) ∈ Zp[T ]. If n = deg(g) is minimal amongst all the degrees of monic
polynomials generating I, then g(T ) = T n + ph(T ), with h(T ) ∈ Zp[T ] and
deg(h)< n.

Proof. Let g(T ) = T n +∑n−1
i=0 ciT i. Suppose that there is some i < n such that

p � ci. Then the Weierstrass Preparation Theorem ([16], Theorem 7.3) implies
that g(T )Zp[T ] = g2(T )Zp[T ], for some polynomial with deg(g2(T )) ≤ n, which
contradicts the choice of g. Therefore, p | ci for all 0 ≤ i < n, which completes the
proof of the lemma.

Remark 1. As a consequence, if A is a finite abelian group, which is a Λ -cyclic
module of p-rank n, then there is some polynomial g(T ) = T r − ph(T ), which
annihilates A.

We shall use the following simple application of Nakayama’s Lemma:

Lemma 2. Let X be a finite abelian p-group of p-rank r and X = {x1,x2, . . . ,xr}⊂
X be a system with the property that the images xi ∈ X/pX form a base of this Fp-
vector space. Then X is a system of generators of X.

Proof. This is a direct consequence of Nakayama’s Lemma, [14], Chap. VI, Sect. 6,
Lemma 6.3.

The following auxiliary lemma refers to elementary abelian p groups with group
actions.

Lemma 3. Let E be an additively written finite abelian3 p-group of exponent p.
Suppose there is a cyclic group G =< τ > of order p acting on E, and let T = τ−1.
Then E is an Fp[T ]-module and E/TE is an Fp-vector space. If r = dimFp(E/TE),
then every system E = {e1,e2, . . . ,er} ⊂ E such that the images ei ∈ E/(TE) form a
base of the latter vector space, is a minimal system of generators of E as an Fp[T ]-
module. Moreover E[T ] ∼= E/(TE) as Fp-vector spaces and E = ⊕r

i=1Fp[T ]ei is a
direct sum of r cyclic Fp[T ]-modules.

Proof. The modules E[T ] and E/TE are by definition annihilated by T ; since
Fp[T ]/(TFp[T ]) ≡ Fp, they are finite dimensional Fp-vector spaces. Let E be
defined like in the hypothesis. The ring Fp[T ] is local with principal maximal ideal
TFp[T ], and T is a nilpotent of the ring since τ p = 1 so we have the following

3These groups are sometimes denoted by elementary abelian p-groups, e.g. [16], Sect. 10.2.
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identities in Fp[τ] = Fp[T ]: 0 = τ p − 1 = (T + 1)p − 1 = T p. It follows from
Nakayama’s Lemma that E is a minimal system of generators. The map T : E→E is
a nilpotent linear endomorphism of the Fp-vector space E , so the structure theorem
for Jordan normal forms of nilpotent maps implies that E =⊕r

i=1Fp[T ]ei. One may
also read this result by considering the exact sequence

0 �� E[T ] �� E �� E �� E/(TE) �� 0

in which the arrow E → E is the map e �→ Te. The diagram indicates that E[T ] ∼=
E/(TE), hence the claim.

In the situation of Lemma 3, we denote the common Fp-dimension of E[T ] and
E/TE by T -rank of E .

2.3 Stabilization

We shall prove in this section the relations (3). First we introduce the following
notations:

Definition 2. given a finite abelian p-group X , we write S(X) = X [p] for its p-
torsion: we denote this torsion also by the socle of X . Moreover, the factor X/X p =
R(X) – the roof of X . Then S(X) and R(X) are Fp-vector spaces and we have the
classical definition of the p-rank given by p−rk(X) = rank (S(X)) = rank (R(X)),
the last two ranks being dimensions of Fp-vector spaces. We say that x ∈ X is p-
maximal, or simply maximal, if x �∈ X p.

Suppose there is a cyclic p-group G = τ acting on X , such that X is a cyclic
Zp[T ]-module with generator x ∈ X , where T = τ − 1. Suppose additionally that
S(X) is also a cyclic Fp[T ]-module. Let s := (ord(x)/p)x ∈ S(X). Then we say
that S is straight if s generates S(X) as an Fp[T ]-module; otherwise, S(X) is folded.

The next lemma is a special case of Fukuda’s Theorem 1 in [8]:

Lemma 4 (Fukuda). Let K be a CM field and An,A be defined like above. Suppose
that μ(A−) = 0 and let n0 > 0 be such that p−rk(A−n0

) = p−rk(A−n0+1). Then
p−rk(A−n ) = p−rk(A−n0

) = λ− for all n > n0.

Remark 2. The above application of Fukuda’s Theorem requires μ = 0; it is known
that in this case the p-rank of An must stabilize, but here it is shown that it must
stabilize after the first time this rank stops growing from An to An+1. We have
restricted the result to the minus part, which is of interest in our context. Note that
the condition μ = 0 can be easily eliminated, by considering the module (A−)pm

for
some m > μ .

The following elementary, technical lemma will allow us to draw additional
information from Lemma 4.
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Lemma 5. Let A and B be finitely generated abelian p-groups denoted additively,
and let N : B→ A, ι : A→ B two Zp – linear maps such that:

1. N is surjective and ι is injective4;
2. The p-ranks of A and B are both equal to r and |B|/|A|= pr.
3. N(ι(a)) = pa,∀a ∈ A and ι is rank preserving, so p−rk(ι(A)) = p−rk(A);

Then ι(A) = pB and ord(x) = p ·ord(Nx) for all x ∈ B.

Proof. The condition 3. is certainly fulfilled when ι is injective, as we assume, but
it also follows from sexp(A) > p, even for lift maps that are not injective. We start
by noting that for any finite abelian p – group A of p – rank r and any pair αi,βi;
i = 1,2, . . . ,r of minimal systems of generators there is a matrix E ∈ Mat(r,Zp),
which is invertible over Zp, such that

β = Eα. (6)

This can be verified directly by extending the map αi �→ βi linearly to A and, since
(βi)

r
i=1 is also a minimal system of generators, deducing that the map is invertible,

thus regular. It represents a unimodular change of base in the vector space A⊗Zp Qp.
The maps ι and N induce maps

ι : A/pA→ B/pB, N : B/pB→ A/pA.

From 1, we see N is surjective and since, by (2), it is a map between finite sets of the
same cardinality, it is actually an isomorphism. But 3. implies that N ◦ ι : A/pA→
A/pA is the trivial map and since N is an isomorphism, ι must be the trivial map,
hence ι(A)⊂ pB.

Since ι is injective, it is rank preserving, i.e. p−rk(A) = p−rk(ι(A)). Let bi,
i = 1,2, . . . ,r be a minimal set of generators of B: thus, the images bi of bi in
B/pB form an Fp – base of this algebra. Let ai = N(bi); since p−rk(B/pB) =
p−rk(A/pA), the set (ai)i also forms a minimal set of generators for A. We claim
that |B/ι(A)|= pr.

Pending the proof of this equality, we show that ι(A) = pB. Indeed, we have the
equality of p-ranks:

|B/pB|= |A/pA|= |B/ι(A)|= pr,

implying that |pB| = |ι(A)|; since ι(A) ⊂ pB and the p – ranks are equal, the two
groups are equal, which is the first claim. The second claim will be proved after
showing that |B/ι(A)|= pr.

4The same results can be proved if the injectivity assumption is replaced by the assumption that
sexp(A)> p – injectivity then follows. In our context the injectivity is however part of the premises,
so we give here the proof of the simpler variant of the lemma.
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Let S(X) denote the socle of the finite abelian p – group X . There is the
obvious inclusion S(ι(A)) ⊂ S(B) ⊂ B and since ι is rank preserving, p−rk(A) =
p−rk(S(A)) = p−rk(B) = p−rk(S(B)) = p−rk(S(ι(A))), thus S(B) = S(ι(A)). Let
(ai)

r
i=1 be a minimal set of generators for A and a′i = ι(ai) ∈ B, i = 1,2, . . . ,r; the

(a′i)r
i=1 form a minimal set of generators for ι(A)⊂ B. We choose in B two systems

of generators in relation to a′i and the matrix E will map these systems according
to (6).

First, let bi ∈ B be such that peibi = a′i and ei > 0 is maximal among all possible
choices of bi. From the equality of socles and p-ranks, one verifies that the set (bi)

r
i=1

spans B as a Zp-module; moreover, ι(A) ⊂ pB implies ei ≥ 1. On the other hand,
the norm being surjective, there is a minimal set of generators b′i ∈ B, i = 1,2, . . . ,r
such that N(b′i) = ai. Since bi,b′i span the same finite Zp-module B, (6) in which
α = b and β = b′ defines a matrix with b = E ·b′. On the other hand,

ι(a) = a′ = Diag(pei)b = Diag(pei
i )E ·b′,

The linear map N : B→ A acts component-wise on vectors x ∈ Br. Therefore,

Nb = Nbi = N(Eb′) = N

((
∏

j
b′∑ j ei, j

j

)r

i=1

)

=

(
∏

j
(Nb′j)∑ j ei, j

)r

i=1

=

(
∏

j
(a j)

∑ j ei, j

)r

i=1

= E(a).

Using the fact that the subexponent is not p, we obtain thus two expressions for Na′
as follows:

Na′ = pa = pI ·a
= N (Diag(pei)b) = Diag(pei) ·N(b) = Diag(pei) ·Ea, so

a = Diag(pei−1) ·Ea.

The a j form a minimal system of generators and E is regular over Zp; therefore,
(α) := (α j)

r
j=1 = Ea is also minimal system of generators of A and the last identity

above becomes

a = Diag(pei−1) ·α.

If ei > 1 for some i ≤ r, then the right-hand side is not a generating system of A
while the left side is: it follows that ei = 1 for all i. Therefore, |B/ι(A)| = pR and
we have shown above that this implies the injectivity of ι .

Finally, let x ∈ B and q = ord(Nx) ≥ p. Then qN(x) = 1 = N(qx), and since
qx ∈ ι(A), it follows that N(qx) = pqx = 1 and thus pq annihilates x. Conversely, if
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ord(x) = pq, then pqx = 1 = N(qx) = qN(x), and ord(Nx) = q. Thus, ord(x) = p ·
ord(Nx) for all x ∈ B with ord(x)> p. If ord(x) = p, then x ∈ S(B) = S(ι(A)⊂ ι(A)
and Nx = px = 1, so the last claim holds in general.

One may identify the modules A,B in the lemma with subsequent levels A−n , thus
obtaining:

Proposition 1. Let K be a CM field, let A− = lim←−n
A−n and assume that μ(A) = 0.

Let n0 ∈ N be the bound proved in Lemma 4, such that for all n ≥ n0 we have
p−rk(A−n ) = Zp-rk(A−) = λ−. Then the following facts hold for x = (xn)n∈N ∈A−
with xn �= 1 for some n > n0:

pxn+1 = ι(Nn+1,n(xn)), ι(A−n ) = pA−n+1,

ωnxn+1 ∈ ιn,n+1(A
−
n [p]). (7)

In particular,

νn+1,n(xn+1) = pxn+1 = ιn,n+1(xn). (8)

Proof. We let n > n0. Since A− is Zp-torsion free, we may also assume that
sexp(A−n ) > p. We use the notations from Lemma 5 and let ι = ιn,n+1,N = Nn+1,n

and N′ = νn+1,n.
For proving (8), thus px = ι(N(x)) = N′(x), we consider the development t :=

ωn = (T + 1)pn− 1 and

N′ = p+ t · v = p+ t

((
p
2

)
+ tw)

)
, v,w ∈ Z[t],

as follows from the binomial development of N′ = (t+1)p−1
t . By definition, t

annihilates A−n and a fortiori ι(A−n ) ⊂ A−n+1; therefore, for arbitrary x ∈ A−n+1 we
have (pt)x = t(px) = tι(x1) = 0, where the existence of x1 with px = ι(x1),x1 ∈ A−n
follows from Lemma 5. Since ι is injective and thus rank preserving, we deduce that
tx ∈ A−n+1[p] = ι(A−n [p]), which is the first claim in (7). Then

t2x = t · (tx) = tx2 = 0, since x2 = tx ∈ ι(A−n ).

Using t2x = ptx = 0, the above development for N′ plainly yields N′x = px, as
claimed. Injectivity of the lift map then leads to (7). Indeed, for a = (an)n∈N and
n > n0 we have

ord(an) = ord(ιn+1,n(an)) = ord(ιn+1,n ◦Nn+1,n(an+1))

= ord(νn+1,nan+1) = ord(pan+1) = ord(an+1)/p.

This completes the proof.
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Remark 3. The restriction to the minus part A− is perfectly compatible with the
context of this paper. However, we note that Lemma 5 holds as soon as sexp(A) > p.
As a consequence, all the facts in Proposition 1 hold true for arbitrary cyclic modules
Λa with ord(a) = ∞. The proof being algebraic, it is not even necessary to assume
that K∞ is the cyclotomic Λ -extension of K, it may be any Zp-extension and
A = lim←−n

An is defined with respect to the p-Sylow groups of the class groups in
the intermediate levels of K∞. The field K does not need to be CM either. The
Proposition 1 is suited for applications in Kummer theory, and we shall see some
in the chapter 4. This remark shows that the applications reach beyond the frame
imposed in this paper.

As a consequence, we have the following elegant description of the growth of
orders of elements in A−n :

Lemma 6. Let K be a CM field and An,A be defined as above, with μ(A) = 0. Then
there exists an n0 > 0 which only depends on K, such that:

1. p−rk(A−n ) = p−rk(A−n0
) = λ− for n≥ n0,

2. For all a = (an)n∈N ∈ A− there is a z = z(a) ∈ Z such that, for all n ≥ n0 (3)
holds.

Proof. The existence of n0 follows from Lemma 4 and relation (7) implies that
ord(an) = pn−n0ord(an0) for all n ≥ n0, hence the definition of z. This proves point
2 and (3).

The above identities show that the structure of A is completely described by An0 :
both the rank and the annihilator fa(T ) of A are equal to rank and annihilator
of An0 . Although An0 is a finite module and thus its annihilator ideal is not
necessarily principal, since it also contains ωn0+1 and pn+z, the polynomial fa(T )
is a distinguished polynomial of least degree, contained in this ideal. Its coefficients
may be normed by choosing minimal representatives modulo pn+z. It appears that
the full information about A is contained in the critical section {An : n≤ n0}.

2.4 The Case of Increasing Ranks

In this section, we shall give some generic results similar to Lemma 5, for the case
when the groups A and B have distinct ranks. Additionally, we assume that the
groups A and B are endowed with a common group action, which is reminiscent
from the action of Λ on the groups An of interest.

The assumptions about the groups A,B will be loaded with additional premises,
which are related to the case A = An,B = An+1. We define:

Definition 3. A pair of finite abelian p-groups A,B is called a conic transition, if
the following hold:
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1. A,B are abelian p-groups written additively and N : B→ A and ι : A→ B are
linear maps which are surjective, respectively injective. Moreover N ◦ ι = p as a
map B→ B. The ranks are r = p−rk(A)≤ r′ = p−rk(B). Note that for r = r′ we
are in the case of Lemma 5, so this will be considered as a stable case.

2. There is a finite cyclic p-group G = Zpτ acting on A and B, making B into cyclic
Zp[τ] – modules. We let T = τ− 1.

3. We assume that there is a polynomial ω(T ) ∈ R := Z/(pN ·Z)[T ], for N >
2exp(B), with

N =
(ω(T )+ 1)p− 1

ω
∈R,

ω ≡ T deg(ω) mod pZp[T ], and ω ≡ 0 mod T.

In particular, (4) holds; we write d = deg(ω(T )) ≥ 1. We also assume that
ωA = 0.

4. The kernel K := Ker (N : B→ A)⊂ B is assumed to verify K = ωB and if x ∈ B
verifies ωx = 0, then x ∈ ι(A).

5. There is an a ∈ A such that ai = T ia, i = 0, . . . ,r− 1 form a Zp-base of A, and
a0 = a.

The transition is regular if r′ = pd; it is regular flat, if sexp(B) = exp(B) and it is
regular wild, if it is regular and exp(B)> sexp(B). It is initial is r = d = 1 and it is
terminal if r′ < pd. If r = r′, the transition is called stable. The module associated
with the transition (A,B) is the transition module T = B/ι(A). We shall write ν =
ι ◦N : B→ B. Then ν = ν(T ) is a polynomial of degree deg(ν) = (p−1)d and ων
annihilates B.

We introduce some notions for the study of socles. Let ϖ : B→ N be the map
x→ ord(x)/p and ψ : B→ S(B) be given by x �→ ϖ(x) · x, a Zp-linear map. Let
Ω(b) = {qi := ϖ(T ib) : i = 0,1, . . . ,r′ − 1}. Then q0 ≥ q1 ≥ . . .qr′−1. The jumps
of Ω(b) are the set

J := {i : qi > qi+1} ⊂ {0,1, . . . ,r′ − 2}.

We shall write

B j :=
j

∑
i=0

ZpT ib⊂ B, 0≤ j < r′.

We consider in the sequel only transitions that are not stable, thus we assume that
r < r′. We show below that point 4 of the definition reflects the specific properties
of conic modules, while the remaining ones are of general nature and apply to
transitions in arbitrary cyclic Λ -modules. Throughout this chapter, a and b are
generators of A and B as Zp[T ]-modules. Any other generators differ from a and b
by units.

We start with an elementary fact, which holds for finite cyclic Zp[T ]-modules X ,
such as the elements of conic transitions.
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Lemma 7. If (A,B) be a conic transition. If y,z ∈ B\ pB are such that y− z ∈ pB,
then they differ by a unit:

y,z �∈ pB, y− z ∈ pB ⇒ ∃ v(T ) ∈ (Zp[T ]
×), z = v(T )y. (9)

Moreover, if S(A),S(B) are Fp[T ]-cyclic and y∈ B\{0} is such that Ty∈ T S(B),
then either y ∈ S(B) or there are a′ ∈ ι(a) and z ∈ S(B) such that

y = z+ a′, Ta′ = 0, ord(a′)> p. (10)

Proof. Let b ∈ B generate this cyclic Zp[T ] module. Then R(B) = B/pB is a cyclic

Fp[T ] module; since τ pM
= 1 for some M > 0, it follows that (T +1)pM−1= T pM

=
0 ∈ Fp[T ], so the element T is nilpotent.

Let y ∈ B with image 0 �= y ∈ R(B). Then there is a k ≥ 0 such that
T kbFp[T ]R(B) = yFp[T ]R(B): consider the annihilator ideal of the image b′ ∈
B/(pB,y). Since b is a generator, we also have y = g(T )b,g ∈ Zp[T ]. The above
shows that g(T )≡ 0 mod T k, so let g(T ) = T kg1(T ) with g1(T ) = ∑ j≥0 c jT j, c j ∈
Zp. The above equality of ideals in B/pB implies that c0 ∈ Z

×
p , since otherwise

T kBFp[T ]R(B)� yFp[T ]R(B). Therefore, g(T )∈ (Zp[T ])×. Applying the same fact
to y,z, we obtain (9) by transitivity.

Finally suppose that 0 �= Ty ∈ S(B) = B[p]. Then y �= 0; if ord(y) = p then
y ∈ S(B) and we are done. Suppose thus that ord(y) = pe,e > 1 and let y′ = pe−1y ∈
S(B). The socle S(B) is Fp[T ] cyclic, so there is a z ∈ S(B) such that Ty = Tz ∈
T S(B). Then T (y− z) = 0 and y− z ∈ ι(A) by point 4 of the definition 3; therefore
y = z + a′,a′ ∈ ι(a). Moreover, ord(y) = ord(a′) > p while Ty = T z+ Ta′, thus
Ta′ = 0. This confirms (10).

2.5 Transition Modules and Socles

The following lemmata refer to conic transitions. We start with several results of
general nature, which will then be used in the next section for a case-by-case
analysis of transitions and minimal polynomials.

Lemma 8. The following facts hold in conic transitions:

(i) Suppose that S(A) is Fp[T ]-cyclic; then the socle S(B) is also a cyclic Fp[T ]-
cyclic module.

(ii) Let x' = {t ∈ Zp[T ] : tx = 0} be the annihilator ideal of x and ω ∈ Zp[T ] be
a representant of the class (ω mod b') ∈ B/b'. We have

ι(S(A)) ⊂ S(K), K ∩ ι(A) = ι(S(A)), and (11)

K = ωB = a'B. (12)
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Proof. The point (i) follows from Lemma 3. Indeed, S(B)⊇ ι(S(A)) are elementary
p-groups by definition. If x ∈ S(B)[T ], then Tx = 0 and point 3 of the definition
of conic transitions implies that x ∈ ι(A) ∩ S(B) = ι(S(A)). Thus, S(B)[T ] ⊆
ι(S(A))[T ] and since S(A) is Fp[T ] cyclic, we know that p−rk(ι(S(A))[T ]) =
p−rk(S(B)[T ]) = 1. The Lemma 3 implies that the T -rank of S(B) is one and
S(B) is cyclic as an Fp[T ]-module.

Let now x ∈ ι(S(A)), so ωx = px = 0. Then Nx = (pu+ω p−1)x = 0, and thus
x ∈ S(K). If x′ ∈ ι(A)∩K, then Nx′ = px′ = 0 and thus x′ ∈ S(K)∩ ι(A) = ι(S(A)),
showing that (11) is true.

By point (4) of the definition of conic transitions, we have K = ωB = ωZp[T ]b
and since ω acts on b via its image modulo the annihilator of this generator, it
follows that K =ωb for any representant of this image in Zp[T ]. For t ∈ a', we have
N(tb) = tN(b) = ta = 0; conversely, if x = t ′b ∈ K, then N(t ′b) = t ′N(b) = t ′a = 0
and thus t ′ ∈ a'. We thus have K = a'B, which confirms (12) and completes the
proof of (ii).

An important consequence of the structure of the kernel of the norm is

Corollary 2. Let (A,B) be a transition with r < d. Then r′ = r.

Proof. Let θ = T r + pg(T) ∈ a' be a minimal annihilator polynomial of a. Then
θB ⊂ K = ωB so there is a y ∈ Zp[T ] such that θb = ωyb and since θb �∈ pB, it
follows that y �∈ pZp[T ]. Let thus y = cT j +O(p,T j+1) with j ≥ 0 and (c, p) = 1.
Then

α = T r + pg(T)−ω · y = T r +T d+ j +O(p,T d+ j+1) ∈ b'.

Using d > r, Weierstrass Preparation implies that there is a distinguished polynomial
h(T ) of degree r and a unit v(T ) such that α = hv. Since v is a unit, h ∈ b'. But
then T rb ∈ P and thus B = P and p−rk(B) = r, which confirms the statement of the
Lemma.

The corollary explains the choice of the signification of flat and terminal transitions:
a terminal transition can only be followed by a stable one.

We analyze in the next lemma the transition module T in detail.

Lemma 9. Let (A,B) be a conic transition and T = B/ι(A) be its transition
module. Then

1. The module T is Zp[T ]-cyclic, annihilated by ν , and

r′ ≤ r+(p− 1)d.

Moreover,

exp(B)≤ pexp(A), (13)

and there is an �(B) with ord(T �−1b) = exp(B) = p ·ord(T �B).
2. If S(A)⊂ TA and S(B) is folded, then r′ = r.



SNOQIT I: Growth of Λ -Modules and Kummer theory 265

Proof. Since ν(B) = ι(A), it follows that ν(T ) = 0, showing that

r′ = p−rk(B)≤ p−rk(A)+ p−rk(T )≤ p−rk(A)+ deg(ν) = r+(p− 1)d,

which confirms the first claim in point 1.
Let now q = exp(A), so qι(A) = 0 and qB⊇ ι(A). Thus T ' ⊇ (B/qB). We let

�(B) = p−rk(B/qB) and prove the claims of the lemma. We have

pqu(T )b =−qT p−1b+ qι(a) =−qT p−1b,

Assuming that qT p−1b �= 0, we obtain p−rk(T ) ≤ (p− 1)d < p−rk(B/qB), in
contradiction with the fact that B/qB is a quotient of T . Therefore, qT p−1b = 0
and thus pqu(T)b = 0, so exp(B) = pq. Therefore, the module qB⊂ S(B) and it has
rank �(B). Let s′ ∈ S(B) be a generator. Comparing ranks in the Fp[T ]-cyclic module
S(B), we see that T r′−�s = qbv(T ), v(T ) ∈ (Fp[T ])×.

Suppose now that S(B) is folded; then ι(S(A)) = T kS(B),k = r′ − r. If s =

T g(T )ι(a) is a generator of ι(S(A)), then T r′−rs′ = v(T )ι(s),v(T ) ∈ (Fp[T ])×.
Thus,

T (T r′−r−1s′ − g(T )vι(a)) = 0,

and by point 4 of the definition of conic transitions, T r′−r−1s′ ∈ ι(S(A)). But then

r′ = p−rk(S(B))≤ p−rk(ι(S(A))+ r′ − (r+ 1) = r+ r′ − (r+ 1) = r′ − 1.

This is a contradiction which implies that r = r′ and (A,B) is in this case a stable
transition.

In view of the previous lemma, we shall say that the transition (A,B) is wild if
r′ = pd and S(B) is folded. The flat transitions are described by:

Lemma 10. Let (A,B) be a conic transition. The following conditions are
equivalent:

(i) The exact sequence

0→ ι(A)→ B→T → 0, (14)

is split.
(ii) The jump-set J(B) = /0,

(iii) The socle S(B) is straight,
(iv) sexp(B) = exp(B),

Moreover, if (A,B) is a transition verifying the above conditions and exp(A) = q,
then exp(B) = q.

Proof. The conditions (ii) and (iv) are obviously equivalent: if q = sexp(B) =
exp(B), then the exponent qi = ord(T ib) = q are all equal, and conversely, if these
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exponents are equal, then sexp(B) = exp(B): to see this, consider x ∈ B \ pB such
that ord(x) = sexp(B). Since 0 �= x ∈ R(B), Lemma 7 shows that x = T kv(T ),
k ≥ 0,v ∈ (Zp[T ])×. Therefore ord(x) = qk = q, as claimed.

Suppose that S(B) is straight, so ψ(b) generates S(B). Then T jψ(b) �= 0 for
all 0 ≤ j < r′ and thus T jϖ(b) · b = ϖ(b)(T jb) �= 0. Since ord(ϖ(b)T jb) ≤ p, it
follows that the order is p and ϖ(b) = ϖ(T jb), so ord(b) = ord(T jb) for all j, and
thus sexp(B) = exp(B). Hence, (iii)⇒ (ii),(iv). Conversely, suppose that the socle
is folded. Then let ψ(T kb) be a generator of the socle, k > 0. The same argument
as above shows that ord(T k−1b)> ord(T kb) and thus J(B) �= /0. Therefore, (ii)–(iv)
are equivalent.

We show that (14) is split if (ii)–(iv) hold. Suppose that ι(a) �∈ pB; then ι(a)= νb
has non trivial image in R(B) and thus ord(a) = ord(b). If (14) is not split, then

ψ(ι(a)) ∈ ∑deg(ν)−1
i=0 ZpT ib, in contradiction to S(B) being straight. Thus, J(b) = /0

implies (14) being split.
Conversely, we show that if (14) is split, then S(B) is straight and sexp(B) =

exp(B). We have B = ι(A)⊕Br′−r−1 and S(B) = S(Br′−r−1)⊕ ι(S(A)). On the other
hand, ι(S(A)) = ι(A)∩K �= /0; therefore, S(Br−1)∩ S(K) = /0, and it follows that
S(B) is straight. This completes the proof of the equivalence of (i)–(iv).

If exp(A) = q and the above conditions hold, then exp(B) = sexp(B) and thus
�(B) = p−rk(B) = r′. We prove by induction that r′ = pd: Assume thus that
p−rk(A) = d and let s′ = (q/p)b ∈ S(B), a generator. Then s := Ns′ = (q/b)ι(a) ∈
ι(S(A)) will be a generator of ι(S(A)). A rank comparison then yields

r′ = p−rk(S(B)) = p−rk(S(A))+ (p− 1)d = pd.

From ι(a) = pbu(ω)+ω p−1b, we gather that ord(a)≥max(pord(b),ord(ω p−1b)).
Since r′ = p−rk(B) = pd and �(B) = r′, it follows that ord(ω p−1b) = ord(b) =
ord(a) = q. The claim follows by induction on the rank of A.

We have seen in the previous lemma that regular flat transitions can be iterated
indefinitely: this is the situation for instance in Λ -modules of unbounded rank: note
that upon iteration, the exponent remains equal to the exponent of the first module
and this may be any power of p. The regular wild transitions will be considered
below, after the next lemma that generalizes Lemma 5 to the case of increasing
ranks, and gives conditions for a large class of terminal transitions.

Lemma 11. Suppose that q′ := ord(a) > p, r′ > r and ι(a) ∈ pB. For b ∈ B with
Nb = a, we let the module C =C(b) := ∑r−1

i=0 ZpT ib. Then

1.

C ⊃ ι(A) and ι(A) = pC. (15)

2. The element b spans B as a cyclic Zp[T ]-module and

K = S(B). (16)
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Moreover, r′ ≤ (p− 1)d and the transition (A,B) is terminal.

Proof. Let a′= ι(a) and c∈B be maximal and such that pec= a′, thus T i pec=T ia′.
Let C = ∑r−1

i=0 ZpT ic. Since T ia′ = peT ic, we have ι(A) ⊂ C and thus p−rk(C) ≥
p−rk(A); on the other hand, the generators of C yield a base for C/pC, so the reverse
inequality p−rk(C)≤ p−rk(A) follows; the two ranks are thus equal.

We show that N : C→ A is surjective. We may then apply the lemma 5 to the
couple of modules A,C. Let x ∈ Zp[T ] be such that N(c) = xa. If x ∈ (Zp[T ])×, then
N(x−1c) = a and surjectivity follows.

Assume thus that x ∈M= (p,T ). We have an expansion

N(c) = h(T )a =

(
h0 +

r−1

∑
i=1

hiT
i

)
a, hi ∈ Zp,

and we assume, after possibly modifying h0 by a p-adic unit, that h0 = pk for some
k ∈N. If k = 0, then h(T ) ∈ (Zp[T ])×, so we are in the preceding case, so k > 0. We
rewrite the previous expansion as

N(c) = (pk +Tg(T ))a, (17)

with g(T ) ∈ Zp[T ] of degree < r− 1. Let f = e+ k− 1; from pec = a, we deduce:

p f c = pk−1 · (pec) = pk−1a and N(p f c) = N(pk−1a) = pka.

By dividing the last two relations, we obtain (1− p f )N(c) = Tg(T )a. Since B is
finite, we may choose M > 0 such that pM f c = 0. By multiplying the last expression
with (1− pM f )/(1− p f ), we obtain

N(c) = T g(T )(1+ p f + · · ·)a.

We compare this with (17), finding Tg(T )(p f + p2 f + · · ·)a = pka.
Since ι(a) ∈ pB, we have e > 0. It follows that

pk · (1− pe−1Tg(T )(1+ p f + · · ·))a = 0,

so pka = 0 – since the expression in the brackets is a unit. Introducing this in (17),
yields: N(c) = Tg(T )a. From pec = a, we then deduce N(pec) = pa = peT g(T )a,
and this yields p(1− pe−1Tg(T ))a = 0. It follows from e > 0 that pa = 0, in
contradiction with the hypothesis that ord(a)> p. We showed thus that if ι(a) ∈ pB
and ord(a) > p, the norm N : C→ A is surjective and we may apply the lemma 5.
Thus pC = A = N(C) and pc = a.

The module B is Zp[T ]-cyclic, so let b be a generator with Nb = a and let

C̃ = ∑r′−1
i=0 T ic. We claim that C̃ = B. For this, we compare R(B) to R(C̃); we

obviously have R(C̃) ⊆ R(B). If we show that this is an equality, the claim follows
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from Nakayama’s Lemma 2. The module R(B) if Fp[T ] cyclic, so there is an integer
k ≥ 0 with c ∈ T kR(B). But then N(C̃)⊂ T kN(B) and since N : C→ A is surjective
and C ⊂ C̃, we must have k = 0, which confirms the claim and completes the proof
of point 1.

Note that ι(S(A)) ⊂ A = pC, thus C ∩K ⊇ ι(S(A)). Conversely, if x ∈ C ∩K,
then x ∈ pC, since T ic �∈ ι(A) for 0≤ i < r, from the assumption a∈ pB. Therefore,
x ∈ pC∩K = ι(A)∩K = ι(S(A)), as shown in (11), and

C∩K = ι(S(A)).

If r′ > r, then p−rk(K) = r′ − r; if r = r′, the transition is stable and K ⊂C.
We now prove (16). Let x = gb ∈ K,g ∈ a' ⊂ Zp[T ]. Since pb ∈ A, we have

px = gpb ∈ gA = 0. Thus K ⊂ S(B); conversely,

p−rk(S(B)) = p−rk(S(A))+ r′ − r = p−rk(S(A))+ (p−rk(B)− p−rk(C))

= p−rk(S(A))+ p−rk(K)

and since S(A) ⊂ K and S(B) is cyclic, it follows that S(B) = K, which confirms
(16) and assertion 2.

Finally, note that p−rk(S(B)) = r′ and since κ = ωb generates the socle and

0 = ((ω+ 1)p− 1)b = ω p−1κ = T (p−1)dκ ,

it follows that r′ ≤ (p− 1)d, as claimed.

We now investigate regular wild transitions and show that not more than two such
consecutive transitions are possible.

Lemma 12. Let (X ,A) be a wild transition with p−rk(X) = 1 and (A,B) be a
consecutive transition. Then

1. S(A) �⊂K(A) and there is an x′ ∈X with ord(x′) = p2 together with g= T f (T )a∈
K(A) such that s = ι(x′)+ g is a generator of S(A) and �(A) = 2.

2. The rank r′ ≤ (p−1)d and B is terminal, allowing an annihilator fB(T ) = T r′ −
q/pw(T ).

Proof. In this lemma, we consider two consecutive transitions, so we write T =
τ−1, acting on A,B and ω = (T +1)p−1 annihilating A and acting on B. We shall
also need the norm

N = NB/X =
1
T

(
(T + 1)p2− 1

)
= p2U(T )+ pT pV (T ),

U,V = 1+O(T) ∈ (Zp[T ])
×

We let q = exp(A),q/p= exp(X) and qp= exp(B). In the wild transition (A,B), the
socle has length p and if s ∈ B is a generator, then 0 �= Ns = T p−1s ∈ S(X); it
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follows that s �∈ K(A). Let ι(x) = Ns ∈ ι(S(X)); if x �∈ pX , there is a c ∈ Z
×
p

with T p−1s = cN(a) = cpu(T )a + cT p−1a and thus T p−1(s− ca)u−1(T ) = pa;
then pa ∈ K(A) ∩ ι(S(X)), and thus ord(a) = p2 and Lemma 11 implies that
p−rk(A) < p, which is a contradiction to our choice. Therefore, exp(X) > p and
there is an x′ ∈ X of order p2 such that pι(x′) = N(ι(x′)) = N(s), so we conclude
that N(s− x′) = 0 and x′ − s ∈ K(A), which implies the first part in claim 1. We
show now that �(A) = 2; indeed, s− q/p3ι(x) ∈ K(A), so there is a power pk such
that s− q/p3ι(x) = T pkw(T )b and w ∈ Zp[T ] \ pZp[T ]. From T s = T 2 pkw(T )b,
and since p−rk(T sFp[T ]) = p− 1, we conclude that w ∈ (Fp[T ])×. Moreover, the
above identities in the socle imply

q/pk ≥ p2ord
(
T pka

)
> p = ord

(
T 2 pka

)≥ ord
(
T p−1 pka

)
= q/pk+1.

Consequently, pk = q/p2 and ord(Ta) = q while ord(T 2a) = q/p, thus �(A) = 2.
For claim 2 we apply point 1. in Lemma 9. Let q = exp(A) = pexp(X)> p2 and

�′ = �(B) = p−rk(qB), �= �(A) = p−rk(q/pA). From the cyclicity of the socle, we
have

S(B)[T ] = q/p2xFp = q/p2N (b)Fp, hence ∃c ∈ F
×
p ,

T �′−1qb = cq/p2N (b) = (cqU(T )+ cq/pT pV (T ))b. (18)

Assuming that �′ > 1, then qb(1− O(T )) = q/pT pV (T )b and thus q/pT pb =
qbV1(T ). Then ord(T pb) = q and thus �′ < p.
Moreover, q/pT p+�′b = qT �′ pV1(T )b = 0, thus ord(T p+�′b)≤ q/p and a fortiori

ord(T 2p−1b)≤ q/p, ord(T p−1b)≤ q. (19)

We now apply the norm of the transition (A,B), which may be expressed in ω as
NB/A = pu(ω)+ω p−1. Note that u(ω) = v(T ) ∈ (Zp[T ])×, for some v depending
on u. Also

ω = T p + pTu(T) = T (T p−1 + pu(T))

ω p−1 = T p(p−1)+T (p−1)2
p(p− 1)u(T)+O(p2).

Since p ≥ 3, (19) implies ord(T p(p−1)b)≤ q/p and ord(T (p−1)2
b)≤ q. We thus

obtain:

ι(a) = pv(T )b+(T p(p−1) + pu1(T )T
(p−1)2

+O(p2))b, hence

q/pι(a) = qbv(T ),

and it follows in this case that 1 < � = �′ = 2 < p. Consider now the module Q =
ι(A)/(ι(A)∩ pB). Since pι(A)⊂ (ι(A)∩ pB), this is an Fp[T ] module; let T i be its
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minimal annihilator. Then T iι(a)v1(T ) = pb,v1 ∈ (Zp[T ])×; but q/pv−1(T )ι(a) =
qb, and thus q/p(Ti − v2(T ))ι(a) = 0,v2 ∈ (Zp[T ])×. If i > 0, then v2(T )−
T i ∈ (Zp[T ])× and this would imply q/pι(a) = 0, in contradiction with the
definition q = ord(a). Consequently i = 0 and ι(a) ∈ pB. We may thus apply the
Lemma 11 to the transition (A,B). It implies that the transition is terminal and
r′ < (p− 1)d.

Finally, we have to consider the case when �′ = 1, so the relation (18) becomes

q(1/c−U(T))b = q/pT pV (T ))b.

If c �= 1, then q/pT pb = qw(T ),w ∈ (Fp[T ])× and the proof continues like in the

case �′ > 1. If c = 1, then we see from the development of U(T ) = 1+ T
(p2

2

)
+

O(T )2 that there is a unit d = p2−1
2 ∈ Z

×
p such that

qdTU1(T )b = q/pT pV (T )b = 0,

since � = 1 and thus T qb = 0. We may deduce in this case also that q/pι(a) =
qb · c1, c1 ∈ Z

×
p and complete the proof like in the previous cases. The annihilator

polynomial of B is easily deduced from Lemma 11: T r′b∈ ι(S(A)) is a generator of
the last socle, so T r′b= Tq/p2ι(a)+cq/p3ι(x) and some algebraic transformations
lead to

T r′bw(T ) = q/pb, w ∈ (Zp[T ])
×,

which is the desired shape of the minimal polynomial. Note that q/p = exp(X);
also, the polynomial is valid in the case when (A,B) is stable. We could not
directly obtain a simple annihilating polynomial for A, but now it arises by
restriction.

The previous lemma shows that an initial wild regular transition cannot be followed
by a second one. Thus, growth is possible over longer sequences of transitions only
if all modules are regular flat. The following lemma considers the possibility of a
wild transition following flat ones.

Lemma 13. Suppose that (A,B) is a transition in which A is a regular flat module of
rank p−rk(A)≥ p and exp(B)> exp(A). Then B is terminal and d < r′ < (p−1)d.
Moreover, there is a binomial fB(T ) = ωT r′−d− qw(T ) ∈ b';w ∈ (Fp[T ])×.

Proof. Since exp(B) > exp(A), the transition is not flat. Assuming that B is not
terminal, then it is regular wild. Let q = exp(A) = sexp(A) and s′ ∈ S(B) be a
generator of the socle of B. By comparing ranks, we have T (p−1)ds′ = ω p−1s′ =
q/pι(a)v(T ),v ∈ (Fp[T ])×. If q = p, then

T (p−1)ds′ = νv1(T )b ⇒ νs′ = pu(ω)s′+ω p−1s′ = νv1(T )b,



SNOQIT I: Growth of Λ -Modules and Kummer theory 271

and thus s′ − v1(T )b ∈ K. Since K = ωB, we have (ωx + v1(T ))b ∈ S. The
factor ωx+ v1(T ) ∈ (Zp[T ])× and it follows that b ∈ S(B), which contradicts the
assumption exp(B) > exp(A), thus confirming the claim in this case. If q > p, then
the previous identity yields s′ −q/p2ι(a) ∈ K and thus s′ = q/p2ι(a)+ωxb; we let
x = pkv(T ) with v(0) �≡ 0 mod p.

We assumed that p−rk(S(B)) = pd, so it thus follows that v(T ) ∈ (Zp[T ])×.
Recall that ord(b) = qp as a consequence of exp(B) > exp(A) and (13); the norm
shows that

qu(ω)b+(q/p)ω p−1b = (q/p)ι(a) �= 0.

If (q/p)ω p−1b = 0, then qu(ω) = (q/p)ι(a), which implies that the annihilator of
Q= ι(A)/(pB∩ι(A)) is trivial and ι(A)⊂ pB. We are in the premises of Lemma 11,
which implies that B is terminal.

It remains that ord(ω p−1b) = q. We introduce this in the expression for the
generator of the socle:

s′ = ω pkv(T )b− q/pu(ω)b− q/p2ω p−1b ∈ S(B).

We have

q/pk−1 = ord(pkb)≥ p2 = ord(pkωb)≥ ord(pkω p−1b) = q/pk,

and thus q/p2 ≤ pk ≤ q/p. Note that

ωs′ = ω2 pkv(T )b+ωq/p2ι(a) = ω2 pkv(T )b ∈ S(B);

from ω p−1(q/p)b ∈ S(B), it follows that pk = q/p and ord(ωb) = qp while
ord(ω2b) = q = ord(ω p−1b). Let i > 0 be the least integer with q/pωTib ∈ S(B).
From the definition of s′, we see that T k is also the annihilator of (q/p2)ι(a) in
ι(A)/(S(ι(A))), so i = d, since A is flat. It follows that �(B) = p−rk(B/qB) = 2d
and the cyclicity of the socle implies that

T (p−2)ds′ = qbv1(T ) = T (p−2)ds′ =
q
p
ω p−1v(T )b+

q
p2ω

p−2ι(a).

Hence, there is a unit v2(T ) ∈ (Zp[T ])× such that q
p (p−ω p−1v2(T ))b = 0. By

comparing this with the norm identity q
p(p+ω p−1u−1(T ))b = q

p ι(a) we obtain,

after elimination of ω p−1b, that q
p(pbv3(T )+ ι(a)) = 0 and the reasonment used

in the previous case implies that ι(a) ∈ pB so Lemma 11 implies that B is
terminal.

We now show that ι(A) ⊂ pB. Otherwise, r′ ≥ (p − 1)d and T r′−1s′ =
cT d−1q/pι(a), so by cyclicity of the socle, T r′−ds′ = v(T )q/pι(a) while νs′ =
T pd−r′−1ι(a) �= 0. A similar estimation like before yields also in this case
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s′ = q/pωv(T )b+ q/p2T jι(a), j = pd− r′ − 1. Then ω p−2s′ = q/pω p−1v(T )b ∈
S(B). Let i > 0 be the smallest integer with pb ∈ ι(a). Then qb = T iq/pι(a)v1(T )
and we find a unit v2(T ) such that

q/p
(
ω p−1T i+r′−(p−1)d−1− pv2(T )

)
b = 0.

This implies by a similar argument as above, that ι(a) ∈ pB. Therefore, we
must have r′ < (p− 1)d and S(B) = K(B) ⊃ q/pι(A). Since qb = q/pι(a) =
ωbT r′−dv(T ), we obtain an annihilator polynomial fB(T ) =T r′−d−qv−1(T ), which
completes the proof of the lemma.

We finally apply the Lemma 10 to a sequence of flat transitions. This is the only case,
which allows arbitrarily large growth of the rank, while the value of the exponent is
fixed to q.

Lemma 14. Suppose that A1,A2, . . . ,An are a sequence of cyclic Zp[T ] modules
such that (Ai,Ai+1) are conic non-stable transitions with respect to some ωi ∈Zp[T ]
and p−rk(A1) = 1. If n > 3, then Ai are regular flat for 1≤ i < n.

Proof. If n = 2 there is only one, initial transition: this case will be considered in
detail below. Assuming that n> 2, the transitions (Ai,Ai+1) are not stable; if (A1,A2)
is wild, then Lemma 12 implies n ≤ 3. The regular transitions being by definition
the only ones which are not terminal, it follows that Ak,k = 1,2, . . . ,n− 1 are flat.
Lemma 13 shows in fact that A2, which must be flat, can only be followed by either
a regular flat or a terminal transition. The claim follows by induction.

2.6 Case Distinctions for the Rank Growth

We have gathered above a series of important building blocks for analyzing
transitions. First, we have shown in point 2. of Lemma 9 that all transitions that
are not flat are terminal. Thus for the cases of interest that allow successive growths
of ranks, we must have r = d,r′ = pd. The Lemma 10 shows that these reduce to
exp(A) = q = sexp(A).

We start with an auxiliary result which will be applied in both remaining cases:

Lemma 15. Let (A,B) be a transition with exp(A) = p and r = d < r′ < pd. Then
S(B)⊇K with equality for r′ ≤ (p−1)d. If S(B) �=K, then s = T pd−r′ is a generator
of S(B).

Proof. Since r = d = deg(ω), it follows that N(T ib)) = T iι(a) �= 0 for
i = 0,1, . . . ,r−1 while N(T db) = T dι(a) = 0, since exp(A) = p. Therefore K =ωB
and R(K) = T dR(B).

We first show that S(B) ⊂ K: let s ∈ S(B) be a generator. Cyclicity of the
socle implies that T r′−1s = c0T d−1ι(a) �= 0,c0 ∈ F

×
p and T r′s = 0. We have
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N(s) = (pu(ω)+ω p−1)s = ω p−1s = T (p−1)ds. If r′ ≤ (p− 1)d, then T (p−1)ds = 0
and thus s ∈ K and S(B) = S(K). Otherwise, T (p−1)db = ι(a) ∈ R(B) and a fortiori
N(s) ∈ ι(S(A)) = Fp[T ]ι(a). Let 0 ≤ k < d be such that N(s) = T kι(a): we may
discard an implicit unit by accordingly modifying s. Then T d−(k+1)N(s) �= 0 and
T d−kN(s) = 0. Therefore, T d−(k+1)s �∈ K = ωB and s �∈ pB. It follows that sR(B) =
T kR(B) and s = T kv(T )b, by lemma 7. By comparing ranks, we see that k = pd− r′

and s = T pd−r′ is a generator of S(B).

For initial transitions we have:

Lemma 16. Let (A,B) be a conic transition and suppose that r = 1 and the
transition is terminal. If r′ < p, then B has a monic annihilator polynomial fB(T ) =
T r′ − qw(T ) with q = ord(a) and w ∈ (Zp[T ])×.

Proof. We let q = ord(a) throughout this proof. Assume first that r′ < p− 1, so
T p−1b= T p−1−r′(T r′b)= 0, since T r′a∈ ι(A) by definition of the rank. Then ι(a)=
(pu(T )+T p−1)b = pu(T )b and pb = u(T )−1ι(a) = ι(a), since u(T ) ≡ 1 mod T .
We have thus shown that ι(a) ∈ pB and, for q > p, we may apply Lemma 11. It
implies that S(B) = K = T B and T r′−1(T b) = cq/pι(a) = cqb,c ∈ Z

×
p . This yields

the desired result for this case. If q = p, the previous computation shows that ι(a) ∈
pB, but Lemma 11 does not apply here. We can apply Lemma 15, and since, in
the notation of the lemma, d = 1 and the transition is assumed not to be stable, we
are in the case 1 < r′ ≤ p− d and thus S(B) = K too. The existence of the minimal
polynomial fB(T ) = T r′ − pc∈ b' follows from this point like in the case previously
discussed.

If r′= p−1, then T p−1b= ι(a)− pu(T )b and thus T pb= pTu(T )b= 0 and Tb∈
S(B). Since the socle is cyclic and K = T B it follows that K = S(B). In particular,
there is a c ∈ Z

×
p such that

T p−1b =
cq
p
ι(a) =

cq
p

(
pu(T )+T p−1)b

= cqu(T )b+
cq
p

u(T )T p−1b, hence

T p−1
(

1− cq
p

u(T )

)
b = cqu(T )b.

If q > p, then 1− cq
p u(T ) ∈ (Zp[T ])×; if q = p, it must also be a unit: otherwise,

1− cu(T ) ≡ 0 mod T and thus T pb = cqu(T )b = 0, in contradiction with the fact
that qb = q/pι(a) �= 0. In both cases, we thus obtain an annihilator polynomial of
the shape claimed.

Finally, in the case r′ = p and the transition is wild. We refer to Lemma 12 in
which treats this case in detail.

Remark 4. Conic Λ -modules are particularly simple modules. The following ex-
ample is constructed using Thaine’s method used in the proof of his celebrated
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theorem [15]. Let F1 ⊂ Q[ζ73] be the subfield of degree 3 over Q and K1 =
F1 ·Q[

√−23]. Then A1 := (C (K1))3 = C9 is a cyclic group with 9 elements. If
K2 is the next level in the cyclotomic Z3-extension of K1, then

A2 := (C (K2))3 =C27×C9×C9×C3×C3×C3.

The prime p = 3 is totally split in K1 and the classes of its factors have orders
coprime to p. Although A1 is Zp-cyclic, already A2 has p-rank 2p. Thus, A cannot
be conic, and it is not even a cyclicΛ -module.

It is worth investigating, whether the result of this paper can extent to the case
when socles are not cyclic and conicity is not satisfied, in one or more of its
conditions. Can these tools serve to the understanding of Λ -modules as the one
above?

3 Transitions and the Critical Section

We return here to the context ofΛ modules and conic elements, and use the notation
defined in the introduction, so An =Λan are the intermediate levels of the conic Λ -
module Λa ⊂ A−. We apply the results of the previous chapter to the transitions
Cn = (An,An+1) for n < n0. By a slight abuse of notation, we keep the additive
notation for the ideal class groups that occur in these concrete transitions. The first
result proves the consistency of the models:

Lemma 17. Let the notations be like in the introduction and a = (an)n∈N ∈ A− a
conic element, A = Λa and An = Λan ⊂ A−n . Then the transitions (An,An+1) are
conic in the sense of Definition 3, for all n > 0.

Proof. Let A = An,B = An+1 and N = NKn+1,Kn , ι = ιn,n+1 be the norms of fields
and the ideal lift map, which is injective since a ∈ A−. We let T = τ− 1 with τ the
restriction of the topological generator of Γ to Kn+1 and ω = ωn = (T +1)pn−1−1.
Then a fortiori ωA = 0, and all the properties (1)–(3) of conic transitions follow
easily. Point (5) is a notation. We show that the important additional property (4)
follows from the conicity of a. The direction ωA ⊂ K follows from Y1 = T X in
Theorem 2. The inverse inclusion is a consequence of point (1) of the definition of
conic elements. Conversely, if x ∈ K, we may regard x = xn+1 ∈An+1 as projection
of a norm coherent sequence y = (xm)m∈N ∈A : for this, we explicitly use point (3)
of the definition of conic elements. Since x = yn+1 = 1 we have by point (2) of the
same definition, y ∈ ωn ·A . This implies yn = Nx = 1; this is the required property
(4) of Definition 3

The next lemma relates vp(a1) to the minimal polynomials fa(T ):

Lemma 18. Let a ∈ A− be conic and m = vp(a1). Then vp( fa(0)) = m. In
particular, if vp(a1) = 1, then fa(T ) is an Eisenstein polynomial.
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Proof. Let q = pm and b = qa ∈ Λa. Then b1 = 0 and, by conicity, it follows
that qa = b = T g(T )a. It follows that Tg(T )− q annihilates a. We may choose
g such that deg(g(T )T ) = deg( fa(T )), so there is a constant c ∈ Zp such that
T g(T )−q= c fa(T ). Indeed, if c is the leading coefficient of Tg(T ), the polynomial
D(T ) = T g(T )− q− c fa(T ) annihilates a and has degree less than deg( fa). Since
fa is minimal, either D(T ) = 0, in which case c = 1 and fa(T ) = T g(T )−q, which
confirms the claim, or D(T )∈ pZp[T ] and c≡ 1 mod p. Since c is a unit in this case,
we may replace b by c−1b = T g1(T )a and the polynomial T g(T ) is now monic.
The previous argument implies that fa(T ) = T g1(T )− c−1q, which completes the
proof. Since fa(T ) is distinguished, we have fa(T )≡ T d mod p and if m = 1, then
p2

� fa(0), so fa(T ) is Eisenstein. The converse is also true.

If m> 1, we have seen in the previous chapter that there are minimal polynomials
of An0 , which are essentially binomials; in particular, they are square free. It would
be interesting to derive from this fact a similar conclusion about fa(T ). We found
no counterexamples in the tables in [6]; however, the coefficients of fn0(T ) are
perturbed in the stable growth too, and there is no direct consequence that we may
derive in the present setting. The next lemma describes the perturbation of minimal
polynomials in stable growth:

Lemma 19. Let gn(T ) = T r− pg̃n(T ) be a minimal polynomial of An. If n ≥ n0,
then

gn(T )≡ fa(T ) mod A '
n−1. (20)

Proof. The exact annihilator fa(T ) of A also annihilates all finite level modules An.
In particular, for n≥ n0 we have deg(gn(T )) = deg( fa) for all minimal polynomials
gn of An, and thus deg(gn− fa) < λ (a). We note that gn− fa = pδn(T ) ∈ pZp[T ]
with deg(δn)< r. It follows that

0 = pδn(T )an = δn(T )ιn−1,n(an−1),

and since ι is injective, it follows that δn(T ) ∈A '
n−1, as claimed.

It is worthwhile noting that if a is conic and fa(T ) = ∏k
i=1 f ei

i (T ) with distinct
prime polynomials fi(T ), then bi := fa(T )/ fi(T )a have also conic transitions, but
the modulesΛbi are of course not complementable as Λ -modules.

3.1 Proof of Theorem 1

With this, we shall apply the results on conic transitions and prove the Theorem 1.

Proof. Let a ∈ A− \ pA− be conic, let n0 be its stabilization index and An =
Λan,n ≥ 0 be the intermediate levels of A = Λa. Proposition 1 implies the
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statement of point 1. in the theorem. Statement 2 is a consequence of Corollary 2.
The final condition ord(an+1)≤ pord(an) for all n was proved in (13) of Lemma 9.
This completes the proof of the theorem.

3.2 Some Examples

We shall discuss here briefly some examples5 drawn from the paper of Ernvall and
Metsänkylä [6] and the tables in its supplement. The authors consider the primes
p = 3, ρ = ζp and base fields K = K(m) = Q[

√
m,ρ ]. They have calculated the

annihilator polynomials of fa(T ) for a large choice of cyclic A(K(m))−. Here, are
some examples:

Example 1. In the case m = 2732, A−(K1(m)) ∼=Cp2 and A−(K2(m)) ∼=Cp3 ×Cp.
The growth stabilizes and the polynomial fa(T ) has degree 2; the annihilator f2(T )
is a binomial, but not fa(T ), so the binomial shape is in general obstructed by the
term fa(T ) = f2(T )+O(p).

Example 2. In the case m = 3,512, we have A−(K1(m)) ∼=Cp2 and A−(K2(m)) ∼=
Cp3×Cp×Cp. The polynomial fa(T ) has degree 3 and for B = A(K2(m))− and A =

A(K1(m))−. This is a wild transition, which is initial and terminal simultaneously.
We did not derive a precise structure for such transitions in Lemma 12.

Example 3. In the case m =−1,541, the authors have found λ = 4. Unfortunately,
the group A(K3(m)) cannot be computed with PARI, so our verification restricts
to the structure of the transition (A,B) = (A1,A2). This is the most interesting
case found in the tables of [6] and the only one displaying a wild initial transition.
The Lemma 12 readily implies that the transition (A2,A3) must be terminal and
λ < (p− 1)p = 6, which is in accordance with the data. The structure is A2 =
Cp3×Cp3×Cp and with respect to this group decomposition we have the following
decomposition of individual elements in A = A1 and B = A2:

b = (1,0,0) T b = (0,10,1) T 2b = (−6,9,1)

T 3b = (18,−3,0) T 4b = (18,9,0) T 5b = (0,9,0)

a = (0,12,1) 3a = (0,9,0) 9b = (9,0,0).

Some of the particularities of this examples are: S(B) is generated by s′ = T 3b−2a
and it is Fp[T ]-cyclic, as predicted. Moreover, s′ ∈K+ ι(A) but s �∈K and pb �∈ ι(a),
while qb ∈ S(B)[T ] = S(A)[T ], both facts that were proved in the Lemma 12.

5I am grateful to an anonymous referee for having pointed out some very useful examples related
to the present topic.
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Example 4. In all further examples with λ ≥ 3, the fields K(m) have more than
one prime above p and A−(m) is not conic. For instance, for m = 2,516, we also
have A−(K1(m)) ∼= Cp2 and A−(K2(m)) ∼= Cp3 ×Cp ×Cp, but T 3b = 0, for b a
generator of A(K2(m))−. The module is thus obviously not conic. This examples
indicates a phenomenon that was verified in more cases, such as our example in
Remark 4: an obstruction to conicity arises from the presence of floating elements
b∈A−. These are defined as sequences b=(bn)n∈N ∈A−\(p,T )A− having b1 = 0.
When such elements are intertwined in the structure of Λa, one encounters floating
elements. It is an interesting question to verify whether the converse also holds:
a∈A−\(p,T )A− is conic if it contains not floating elements. Certainly, the analysis
of transitions in presence of floating elements is obstructed by the fact that the
implication Tx = 0⇒ x ∈ A is in general false. However, the obstruction set is well
defined by the submodule of floating elements, which indicates a possible extension
of the concepts developed in this paper. The analysis of floating elements is beyond
the scope of this paper and will be undertaken in subsequent research.

Example 5. Let K = Q[
√−31] with A(K) = C3 and only one prime above p = 3.

A PARI computation shows that A(K2) =Cp2 , so Fukuda’s Theorem implies that A
is Λ -cyclic with linear annihilator. Let L/K be the cyclic unramified extension of
degree p. There are three primes above p in L and A(L) = {1}, a fact which can
be easily proved and needs no verification. Let Ln = L ·Kn be the cyclotomic Zp-
extension of L. One can also prove that A(Ln)∼= (An(K))p, so A(L) is alsoΛ cyclic
with the same linear annihilator polynomial as A(K). Let b ∈ A(L) be a generator
of the Λ -module. The above shows that b is a floating class.

The extension L/Q in this example is galois but not CM and p splits in L/K in
three principal primes. If ν ∈ Gal(L/K) is a generator, it lifts in Gal(H∞/K) to an
automorphism ν̃ that acts non-trivially on Gal(H∞/L∞).

Let B∞ be the Zp-extension of Q and H∞ be the maximal p-abelian unramified
extension of K∞ and of L∞ (the two coincide in this case); then the sequence

0→Gal(L∞/B∞)→Gal(H∞/B∞)→ Gal(H∞/L∞)→ 0 (21)

is not split in the above example, and this explains why ν̃ lifts to a generator of
X ′ := Gal(H∞/K∞).

Let p,νp,ν2(p) ⊂ L be the primes above p and I0, I1, I2 ⊂ Gal(H∞/L) be their
inertia groups: then I1 = Iν̃0 , I2 = Iν̃

2

0 . Let I⊂Gal(H∞/K) be the inertia of the unique
prime above p and τ ∈Gal(H∞/K) be a generator of this inertia. We fix τ ′ as a lift of
the topological generator of Γ : it acts, in particular, also on L. Let τ be a generator
of I0 and a ∈ X = Gal(H∞/L∞) such that τ1 = aτ is a generator of I1. We assume
that both τ,τ1 restrict to a fixed topological generator of Γ = Gal(L∞/K∞). Then

τ1 = aτ = τν̃ = ν̃−1τν̃ ⇒ a = ν̃−1τν̃τ−1.

Since τ acts by restriction as a generator ofΓ ′=Gal(K∞/K) and ν̃ generates X ′, the
above computation implies that a ∈ (Gal(H∞/K))′ = T X ′ = pX ′ = X . In particular,
a is a generator of X ∼= A(L).
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In this case, we have seen that the primes above p are principal, the module
A(L) is floating and it is generated by a = τ1τ−1 �∈ T X . Thus, Y1 = Λa = Zpa and
[Y1 : T X ] = p. Since T X is the commutator, there must be a cyclic extension L

′/L
of degree p, which is p-ramified but becomes unramified at infinity. It arises as
follows: let H2 be the Hilbert class field of K2. Then H2/L2 is cyclic of degree p
and Gal(H2/K) =<ϕ(a2)>, with a2 ∈ A(K2) a generator. Thus (T −cp)a2 = 0 for
some c ∈ Z

×
p and Gal(H2/L2) = p < ϕ(a2)>=< ϕ(Ta2)>. Since T 2a2 = c2 p2a2,

it follows that T Gal(H2/L2) = 0 and thus H2/L1 is abelian. This induces a cyclic
extension L

′
1/L1, which is p-ramified, but becomes unramified already over L2.

It also explains the role of the sequence (21) in Theorem 3. Phenomena in this
context will be investigated together with the question about floating classes in a
subsequent paper.

The prime p = 3 is interesting since it immediately displays the more delicate
cases r′ = p−1 and r = p in Lemma 16. We found no examples with λ > p, which
require an intermediate flat transition according to the above facts.

4 The Ramification Module

In this section, we prove the theorems stated in Sect. 1.2. The terms and notations
are those introduced in that introductory section. Note that the choice of K as a
galois CM extension containing the pth roots of unity is useful for the simplicity
of proofs. If K is an arbitrary totally real or CM extension, one can always take its
normal closure and adjoin the roots of unity: in the process, no infinite modules can
vanish, so facts which are true in our setting are also true for subextensions of K
verifying our assumptions.

Let us first introduce some notations: H1 is the p-part of the Hilbert class field
of K and H1 = H1 ·K∞; Ω/K is the maximal p-abelian p-ramified extension of
K. It contains in particular K∞ and Zp-rk(Ω/H1) = r2 + 1+D(K), where D(K)
is the Leopoldt defect. Since K is CM, complex multiplication acts naturally on
Gal(Ω/K∞) and induces a decomposition

Gal(Ω/K∞) = Gal(Ω/K∞)
+⊕Gal(Ω/K∞)

−;

this allows us to define

Ω− = ΩGal(Ω/K∞)+

Ω+ = ΩGal(Ω/K∞)− , (22)

two extensions of K∞.
We shall review Kummer radicals below and derive a strong property of galois

groups, which are Λ -modules with annihilator a power of some polynomial: the
order reversal property. Combined with an investigation of the galois group of
Ω−/H1 by means of class field theory, this leads to the proof of Theorem 3.
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4.1 Kummer Theory, Radicals and the Order Reversal

Let K be a galois extension of Q which contains the pth roots of unity and L/K
be a finite Kummer extension of exponent q = pm,m ≤ n. Its classical Kummer
radical rad(L/K) ⊂ K× is a multiplicative group containing (K×)q such that
L = K[rad(L)1/q] (e.g. [14], Chap. VIII, Sect. 8). Following Albu [1], we define
the cogalois radical

Rad(L/K) =
(
[rad(L/K)1/q]K×

)
/K×, (23)

where [rad(L/K)1/q]K× is the multiplicative K×-module spanned by the roots in
rad(L/K)1/q and the quotient is one of multiplicative groups. Then Rad(L/K) has
the useful property of being a finite multiplicative group isomorphic to Gal(L/K).
For ρ ∈ Rad(L/K) we have ρq ∈ rad(L/K); therefore, the Kummer pairing is
naturally defined on Gal(L/K)×Rad(L/K) by

〈σ ,ρ〉Rad(L/K) = 〈σ ,ρq〉rad(L/K).

Kummer duality induces a twisted isomorphism of Gal(K/Q)-modules Rad(L/K)•
∼= Gal(L/K). Here, g ∈ Gal(K/Q) acts via conjugation on Gal(L/K) and via
g∗ := χ(g)g−1 on the twisted module Rad(L/K)•; we denote this twist the Leopoldt
involution. It reduces on Gal(K/K) to the classical Iwasawa involution (e.g. [13],
p. 150).

We now apply the definition of cogalois radicals in the setting of Hilbert class
fields. Let K be like before, a CM galois extension of Q containing the pth roots of
unity and we assume that, for sufficiently large n, the pnth roots are not contained
in Kn−1, but they are in Kn. Let L ⊂ H∞ be a subextension with galois group
Gal(L/K∞) = ϕ(M)|L, with M ⊂ A a Λ -submodule, which is Zp-free. Let Ln =
L∩Hn be the finite levels of this extension and let z∈Z be such that exp(Mn)= pn+z

in accordance with (7). If z < 0, we may take z = max(z,0). We define L
′
n =

Ln ·Kn+z, so that L′n/Kn+z is a Kummer extension and let Rn = Rad(L′n/Kn+z and

Bn
∼=Rpn+z

n ⊂K
×
n /(K

×
n )

pn+z
. Then (7) implies, by duality, that Rp

n+1 =Rn, for n> n0;
the radicals form a norm coherent sequence with respect to both the dual norm N∗m,n
and to the simpler p-map. Since L = ∪nL

′
n, we may define Rad(L/K∞) = lim←−n

Rn.
The construction holds in full generality for infinite abelian extensions of some field
containing Q[μp∞], with galois groups, which are Zp-freeΛ -modules and projective
limits of finite abelian p-groups. But we shall not load notation here for presenting
the details. Also, the extension L needs not be unramified, and we shall apply the
same construction below for p-ramified extensions.

We gather the above mentioned facts for future reference in

Lemma 20. Let z ∈ N be such that ord(an)≤ pn+z for all n and K
′
n = Kn+z,L

′
n =

Ln · Kn+z. Then L
′
n/K

′
n are abelian Kummer extensions with galois groups



280 P. Mihăilescu

Gal(L′n/Kn+z) ∼= ϕ(Mn), galois over K and with radicals Rn = Rad(L′n/Kn+z) ∼=
(Gal(L′n/Kn+z))

•, as Λ -modules. Moreover, if M = Λc is a cyclic Λ -module, then
there is a ν∗n+1,n-compatible system of generators ρn ∈ Rn such that R•n = Λρn

and, for n sufficiently large, ρ p
n+1 = ρn. The system Rn is projective and the limit

is R = lim←−n
Rn. We define

K∞[R] = ∪nKn+z[Rn] = L.

Note that the extension by the projective limit of the radicals R is a convention,
the natural structure would be here an injective limit. However, this convention is
useful for treating radicals of infinite extensions as stiff objects, dual to the galois
group which is a projective limit. Alternatively, one can of course restrict to the
consideration of the finite levels.

The order reversal is a phenomenon reminiscent of the inverse galois correspon-
dence; if M is cyclic annihilated by f n(T ), with f a distinguished polynomial,
then there is an inverse correspondence between the f -submodules of M and the
f ∗ submodules of the radical R. The result is the following:

Lemma 21. Let f ∈ Zp[T ] be a distinguished polynomial and a ∈ A− \ Ap have
characteristic polynomial f m for m > 1 and let An = Λan,A = Λ . Assume that
L ⊂ H∞ has galois group Δ = Gal(L/K∞)∼= A and let R = Rad(L/K∞). At finite
levels, we have Gal(Ln/Kn)∼= An and Rn = Rad(L′n/Kn+z), with Rn =Λρn. Then

〈
ϕ(an)

f k
,ρ ( f ∗) j

n

〉
L′n/Kn+z

= 1 for k+ j ≥ m. (24)

Proof. Let g = ϕ(an) ∈ Δn be a generator and ρ ∈ Rn generate the radical. The
equivariance of Kummer pairing implies

〈
g f k

,ρ ( f ∗) j
〉
L′n/Kn+z

=
〈

g,ρ ( f ∗) j+k
〉
=
〈

g f j+k
,ρ
〉
.

By hypothesis, a f m

n = 1, and using also duality, g f m
= ρ ( f ∗)m

= 1. Therefore, the
Kummer pairing is trivial for k + j ≥ m, which confirms (24) and completes the
proof.

It will be useful to give a translation of (24) in terms of projective limits: under
the same premises like above, writing ρ = lim←−n

ρn for a generator of the radical
R = Rad(L/K∞), we have

〈
ϕ(a) f k

,ρ ( f ∗) j
〉
L/K

= 1 for k+ j ≥ m. (25)

We shall also use the following simple result:
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Lemma 22. Let K be a CM galois extension of Q and suppose that (A′)−(T ) �= 0.
Then ordT (A−(T ))> 1.

Proof. Assuming that (A′)−(T ) �= 0, there is some a = (an)n∈N ∈ A− with image
a′ ∈ (A′)−[T ]. We show that ordT (a) = 2. Let Qn ∈ an be a prime and n sufficiently
large; then ord(an) = pn+z for some z ∈ Z depending only on a and not on n. Let
(α0) =Qpn+z

and α = α0/α0; since a′ ∈ (A′)−[T ] it also follows that aT
n ∈ B− and

thus QT =Rn wit bn := [Rn] ∈ Bn. If bn �= 1, then ordT (a) = 1+ordT (a′) = 2, and
we are done.

We thus assume that bn = 1 and draw a contradiction. In this case, R1− j
n = (ρn)

is a p-unit and (αT ) =
(
ρ pn+z

n
)
, so

αT = δρ pn+z

n , δ ∈ μpn .

Taking the norm N = NKn/K we obtain 1 = N(δ )N(ρn)
pn+z

. The unit N(δ ) ∈
μ(K) =< ζpk > – we must allow here, in general, that K contains the pkth roots

of unity, for some maximal k > 0. It follows that ρ1 := N(ρn) verifies ρ pn+z

1 = δ1,

and since δ1 �∈ E(K)pk+1
, it follows that ρ pk

1 =±1 and by Hilbert 90 we deduce that

ρ pk

n =±xT ,x ∈K
×
n . In terms of ideals, we have then

Q(1− j)T pn+z
= (αT ) =

(
xT pn+z−k

)
, hence

(
Q(1− j)pk

/(x)
)T pn+z−k

= (1) ⇒ (Q(1− j)pk
/(x))T = (1).

But Q is by definition not a ramified prime, so the above implies that an has order
bounded by pk, which is impossible since an ∈ A−n . This contradiction confirms the
claim and completes the proof of the lemma.

4.2 Units and the Radical of Ω

The extension Ω/K is an infinite extension and Zp-rk(Gal(Ω/K)) = D(K) +
r2(Kn)+ 1. Here, r2(Kn) is the number of pairs of conjugate complex embedding
and the 1 stands for the extensionK∞/K. Let℘⊂K be a prime above p, let D(℘)⊂
Δ be its decomposition group, and C = Δ/D(℘) be a set of coset representatives
in Δ . We let s = |C| be the number of primes above p in K. Moreover,

Zp-rk
(
Gal((Ω−/K∞)

)
= r2(Kn).
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It is a folklore fact, which we shall prove constructively below that the regular part

r2(Kn) in the above rank stems from Ω− ⊂ ΩE , where ΩE = ∪nKn[E
1/pn

n ]. The
radical is described precisely by:

Lemma 23. Notations being like above, we define for n > 1: E ′n = {eν∗n,1 : e ∈ En}
and En = E ′n · (En)

pn
. Then

Ω− =H1 · ∪nKn[E
1/pn

n ]×T1, (26)

where T1/K1 is an extension which shall be described in the proof. It has group
Gal(T1/K1)∼= (Z/(p ·Z))s−1.

Proof. We show that the subgroups Em give an explicit construction of Ω−, as
radicals. The proof uses reflection, class field theory and some technical, but strait
forward estimations of ranks.

Let U = O(K ⊗Q Qp) and U (1) be the units congruent to one modulo an
uniformizor in each completion of K at a prime above p. The global units
E1 = E(K1) embed diagonally in U and we denote by E the completion of this
embedding, raised to some power coprime to p, so that E ⊂U (1). A classical result
from class field theory [13] p. 140, says that

Gal(Ω/H1)∼=U (1)/E.

Since (U (1))− ∩ E = μp, it follows that Gal(Ω−/H−1 ) = (U (1))− ×T (U−)/μp,
where the torsion part T (U−) =∏ν∈C μp is6 the product of the images of the pth
roots of unity in the single completions, factored by the diagonal embedding of the
global units.

For the proof, we need to verify that ranks are equal on both sides of (26). Let
πν ∈Kn be a list of integers such that (πν) =℘νh for h the order of the class of℘ν

in the ideal class group C (K). Then we identify immediately T1 = ∏ν∈CK[π1/p
ν ]

as a p-ramified extension with group Gal(T1/K) = T (U−)/μp ⊂ Gal(Ω−/H−).
A straightforward computation in the group ring yields that T ∗x ≡ 0 mod

(ωn, pn)Λ iff x∈ ν∗n,1Λ . On the other hand, suppose that x∈ rad(Ω−/Kn)∩En; note
that here the extensions can be defined as Kummer extensions of exact exponent pn,
so there is no need of an index shift as in the case of the unramified extensions
treated above. This observation and Kummer theory imply that xT ∗ ∈ E pn

n , and thus

x ∈ En. We denote as usual ΩE = ∪nKn[E
1/pn

n ]. We found that ∪mKm[E
1/pm

m ] =
Ω−∩ΩE ; by comparing ranks, we see that if Ω− �= Tn ·H1 · (Ω−∩ΩE), then there
is an extension Ω− ⊃Ω ′′ � (Ω− ∩ΩE), such that

Zp-rk(Gal(Ω ′′/K∞)) = r2(K) = Zp-rk(Gal(Ω− ∩ΩE)).

6We have assumed for simplicity that K does not contain the p2th roots of unity. The construction
can be easily generalized to the case when K contains the pkth but not the pk+1th roots of unity.
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Since ΩE ⊂ Ω , where Ω is the maximal p-abelian p-ramified extension of K∞,
it follows that Gal((Ω− ∩ ΩE)/K∞) is a factor of Gal(Ω−/K∞) and also of
Gal(Ω ′′/K∞).

The index [Gal(Ω ′′ : K∞) : Gal((Ω−∩ΩE)/K∞)]<∞ and since Gal(Ω ′′/K∞) is
a free Zp-module and thus has no finite compact subgroups, it follows from infinite
galois theory that Ω ′′ =Ω− ∩ΩE , which completes the proof.

We note that for Ωn ⊃ Kn, the maximal p-abelian p-ramified extension of Kn, the
same arguments lead to a proof of

Ω−n = ∪m≥nKm

[
E(Km)

N∗m,n/pm
]
. (27)

4.3 Construction of Auxiliary Extensions and Order Reversal

On minus parts we have Zp-rk(Ω−/K−) = r2+1 and the rank Zp-rk(Ω−/H−1 ) = r2

does not depend on Leopoldt’s conjecture. We let G=Gal(H∞/K) and X = ϕ(A) =
Gal(H∞/K∞), following the notation in [16], Lemma 13.15. The commutator is
G′ = TX and the fixed field L = H

TX
∞ is herewith the maximal abelian extension

of K contained in H∞. From the definition of Ω , it follows that L = Ω ∩H∞ (see
also [11], p. 257). Consequently, Gal(L/H1)∼= X/TX . Let F(T ) = T mG(T ) be the
annihilator polynomial of pMA, with pM an annihilator of the Zp-torsion (finite and
infinite) of A. If A◦ is this Zp-torsion, then A∼ A(T )+A(G(T ))+A◦.

From the exact sequences

0 �� K1 ��

��

pμA− ��

��

pμA−(T )+A−(G) ��

��

K2 ��

��

0

0 �� 0 �� pMA− �� pMA−(T )⊕A−(G) �� 0 �� 0

in which M ≥ μ is such that annihilates the finite kernel and cokernel K1,K2 and the
vertical arrows are multiplication by pM−μ , we see that it is possible to construct
a submodule of A−, which is a direct sum of G and T -parts. We may choose M
sufficiently large, so that the following conditions also hold: pMA−(T ) is a direct
sum of cyclic Λ -modules and if a prime above p is inert in some Zp-subextension

of H∞/H
pMϕ(A−)
∞ , then it is totally inert. Let K̃ = H

pMϕ(A−)
∞ for some M large

enough to verify all the above conditions. Let KT = H
pMA−(G)
∞ ; by construction,

X̃T := Gal(KT/K̃) ∼ A−(T ) and it is a direct sum of cyclic Λ -modules. Let
a1,a2, . . . ,at ∈ pMA−(T ) = ϕ−1(X̃T ) be such that

X̃T =
t⊕

j=1

ϕ (Λai) . (28)
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From the definition K
−
B =Ω−∩H∞⊂KT and Lemma 22 implies that Gal(H∞/K

−
B )

∼ X̃T [T ]. Let now a ∈ pMA−(T ) \ (p,T )pMA−(T ) – for instance a = a1 and let
A =Λa while C ⊂ pMA−(T ) is aΛ -module with A ⊕C = pMA−(T ). We assume

that m = ordT (a) and let b = T m−1a ∈A−[T ]. We define Ka =K
ϕ(C )
T , an extension

with Gal(Ka/K̃)∼=A . At finite levels, we let Ka,n :=Ka∩Hn and let z be a positive
integer such that K′a,n := Kn+zKa,n is a Kummer extension of K′n := Kn+z, for all
sufficiently large n – we may assume that M is chosen such that the condition n> M
suffices. The duals of the galois groups ϕ(An) are radicals Rn = Rad(Ka,n/K̃),
which are cyclic Λ -modules too (see also the following section for a detailed
discussion of radicals), under the action ofΛ , twisted by the Iwasawa involution. We
let ρn ∈ Rn be generators which are dual to an and form a norm coherent sequence
with respect to the p-map, as was shown above, since n > M > n0; by construction,

ρ pn+z

n ∈K
′
n. We gather the details of this construction in

Lemma 24. Notations being like above, there is an integer M > 0, such that the
following hold:

1. The extension K̃ := H
pMX
∞ has group X̃ := Gal(H∞/K̃) = X̃(T ) ⊕ X̃(G)

below H∞.

2. The extension KT :=H
X̃(G)
∞ has group X̃T =

⊕t
i=1Λϕ(ai).

3. For a ∈ pMA−(T )\ (p,T )pMA−(T ), we define A = Λa and let C ⊂ pMA−(T )
be a direct complement. We define Ka = H

ϕ(C )
T , so Gal(Ka/K̃) = ϕ(A ) and let

Ka,n =Ka∩Hn.
4. There is a positive integer z such that for all n > M,

K
′
a,n =Kn+z ·Ka,n ⊂Hn+z

is a Kummer extension of K′n :=Kn+z.
5. For K−B =Ω− ∩H∞, we have K−B ⊂KT and Gal(H∞/K

−
B )∼ X̃T [T ].

6. The radical Rn = Rad(Ka,n/K̃) ∼= A •
n and we let ρn ∈ Rn generate this radical

as a Λ∗-cyclic module, so that ρ (T∗)i

n , i = 0,1, . . . ,m− 1 form a dual base to the

base aT i

n , i = 0,1, . . . ,m− 1 of An. We have ρ pn+z

n ∈K
′
n.

We may apply the order reversal to the finite Kummer extensions Ka,n/K̃n de-
fined in Lemma 24. In the notation of this lemma, we assume that m= ordT (a) > 1.
We deduce from 24 that

〈
ϕ(an)

T i
,ρ (T ∗)m−1−i

n

〉
Ka,n/K̃

= ζpv,

v ≥ n+ z−M, i = 0,1, . . . ,m− 1. (29)

This fact is a direct consequence of (24) for i = 0 and it follows by induction on

i, using the following fact. Let Fi = K̃
[
ρ (T ∗)m−1−i

n
]
; then Fi = ∏i

j=0Fi are galois
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extensions of K̃1 and in particular their galois groups are Λ -modules. In particular,
Gal(Fm−1/K̃)∼= A T m−1

n = An[T ]. From Lemma 22, we know that An[T ] ⊂ B−n , so
at least one prime p⊂ K̃ above p is inert in Fm−1, and the choice of M in Lemma 24
implies that it is totally inert in Fm−1/K̃n. Let℘⊂K be a prime below p. It follows
in addition Fm−2 ⊂ H

′
∞ · K̃ and all the primes above p are split in Fm−2: this is

because

Gal(Fm−2/K̃)∼= An/An[T ] = An/(An∩Bn)⊂ A′n.

Let now Ka be like above and Kb = Ω− ∩Ka, so Kb/K̃ is a Zp-extension.
Moreover, we assume that Kb �⊂ H

′
∞, so not all primes above p are totally split.

By choice of M, we may assume that there is at least on prime ℘⊂ K above
p, such that the primes K̃ ⊃ p ⊃℘ are inert in Kb. By the construction of Ω−
in the previous section, we have T ∗Rad(Kb/K̃) = 0. The order reversal lemma
implies then that Gal(Kb/K̃) ∼= A /(TA ). Assuming now that m = ordT (a) ≥ 1,
the Lemma 22 implies that T m−1a ∈ B− and the subextension of Ka, which does
not split all the primes above p is the fixed field of T m−1A ; but then order reversal
requires that Rad(Kb/K̃) is cyclic, generated by ρ , which is at the same time a
generator of Rad(Ka/K̃) as a Λ -module. Since we have seen that T ∗Rad(Kb/K̃) =
0, we conclude that T ∗Rad(Ka/K̃) = 0, and by duality, Ta = 0. This holds for all
a ∈ pMA−(T ), so we have proved:

Lemma 25. Let H−B =Ω− ∩H∞. If [K−B ∩H′∞ : K∞]< ∞, then A−(T ) = B−.

4.4 The Contribution of Class Field Theory

We need to develop more details from local class field theory in order to understand
the extension H

−
B = Ω− ∩H∞. This is an unramified extension of K∞, which is

abelian overH1. We wish to determine the Zp-rank of this group and decide whether
the extensions in H

−
B split the primes above p or not.

Let ℘⊂ K be a prime over p and ℘+ ⊂ K
+ be the real prime below it. If ℘+

is not split in K/K+, then B− = {1} and it is also known that (A′)−(T ) = {1} in
this case – this follows also from the Lemma 22. The case of interest is thus when
℘ is split in K/K+. Let D(℘)⊂ Δ and C,s be defined like above and let p⊂ Ω be
a prime above℘.

Local class theory provides the isomorphism Gal(Ω/H1) ∼= U (1)/E via the
global Artin symbol (e.g. [13]). We have the canonic, continuous embedding

K ↪→K⊗QQp
∼=∏

ν∈C

Kν℘,

and U (1) =∏ν∈C U (1)
ν℘, where U (1)

p are the one-units in the completion at the prime p.

The ring U (1) is a galois algebra and Δ = Gal(K/Q) ↪→ Gal(U (1)/Qp). Thus,
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complex conjugation acts on U (1) via the embedding of K, and if u ∈ U (1) has
ι℘(u) = x, ι℘(u) = y, then ju verifies

ι℘( ju) = y, ι℘( ju) = x.

Moreover, u ∈U− iff u = v1− j,v ∈U . Thus, if ι℘(v) = v1 and ι℘(v) = v2, then

ι℘(u) = v1/v2, ι℘(u) = v2/v1 = 1/ι℘(u). (30)

One can analyze U+ in a similar way. Note that Zp embeds diagonally in U+; this
is the preimage of Gal(K∞/K), under the global Artin symbol.

Next we shall construct by means of the Artin map some subextension of Ω−,
which are defined uniquely by some pair of complex conjugate primes℘,℘⊃ (p)
and intersect H∞ is a Zp-extension. Since U (1) is an algebra, there exists for
each pair of conjugate primes ℘,℘ with fixed primes P,P j̃ ⊂ Ω above (℘,℘),
a subalgebra

V℘=
{

u ∈U (1) : ιP(u) = 1/ιP j(u); ιν℘= 1, ∀ν ∈C \ {1, j}
}
. (31)

Accordingly, there is an extension M℘⊂Ω− such that

ϕ−1(Gal(M℘/K∞)) =V℘.

By construction, all the primes above p above℘,℘ are totally split in M℘. Since
Gal(K℘/Qp) = D(℘) and U℘ is a pseudocyclic Zp-module, pseudoisomorphic
to Zp[D(℘)] (e.g. [13], p. 140–141), it follows that there is exactly one Zp-
subextensionU℘⊂M℘ with galois group fixed by the augmentation of D(℘). Since
the augmentation and the norm yield a direct sum decomposition of Zp[D(℘)],
this extension and its galois group are canonic – up to possible finite quotients.
Locally, the completion of U/Qp of U℘ at the primes above℘ is a Zp-extension
of Qp, since its galois group is fixed D(℘). It follows by a usual argument that
U℘/K∞ is unramified at all primes above p, so U℘⊂ H. One has by construction
that U−℘⊂Ω−, so we have proved:

Lemma 26. Let K be a CM extension like above and assume that the primes
℘+ ⊂ K

+ split in K/K+. For each prime ℘ ⊂ K, there is a canonic (up to
finite subextensions) Zp-extension U℘ ⊂ Ω− ∩ H∞ such that Gal(U℘/K∞) =

ϕ
(

V
A(Zp[D℘])
℘

)
, where A(Zp[D℘] is the augmentation ideal of this group ring and

V℘ is defined by (31). In particular, Ω− contains exactly s′ = |C|/2 unramified
extensions.

Our initial question boils down to the following: is U℘⊂H
′
∞?
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The following example perfectly illustrates the question:

Example 6. Let K/Q be an imaginary quadratic extension of Q in which p is split.

Then U (1)(K) = (Z
(1)
p )2 and Ω = K∞ ·Ω− is the product of two Zp-cyclotomic

extensions; we may assume that H1 = K, so Gal(Ω/K) = ϕ(U (1)(K)). One may
take the second Zp-extension in Ω also as being the anticyclotomic extension.
In analyzing a similar example, Greenberg makes in [10] the following simple
observation: since Qp has only two Zp-extensions and K∞ contains the cyclotomic
ramified one, it remains that locally Ω−/K∞ is either trivial or an unramified Zp-
extension. In both cases, Ω− ⊂ H∞ is a global, totally unramified Zp-extension –
we have used the same argument above in showing that U℘/K∞ is unramified. The
remark settles the question of ramification, but does not address the question of our
concern, namely splitting. However, in this case we know more. In the paper [9]
published by Greenberg in the same year, he proves that for abelian extensions of
Q, thus in particular for quadratic ones, (A′)−(T ) = {1}. Therefore in this example,
Ω− cannot possibly split the primes above p.

How can this fact be explained by class field theory?

We give here a proof of Greenberg’s theorem [9] for imaginary quadratic extensions,
and thus an answer to the question raised in the last example; we use the notations
introduced there:

Proof. We shall write L = K∞ ·H1; we have seen above that Ω/L must be an
unramified extension. Let P ∈ Ω be a prime above ℘, let j̃ ∈ Gal(Ω/H1) be a
lift of complex conjugation and let τ ∈ Gal(Ω/H1) be a generator of the inertia
group I(P): since ΩP/K℘ is a product of Zp-extensions of Qp and Qp has no
two independent ramified Zp-extensions, it follows that I(P) ∼= Zp is cyclic, so τ
can be chosen as a topological generator. Then τ j = j · τ · j generates I(P j̃) ∼= Zp.
Iwasawa’s argument used in the proof of Thereom 2 holds also for Ω/H1: there is
a class a ∈ An with τ j = τϕ(a), where the Artin symbol refers to the unramified
extension Ω/L. Thus,

j · τ · j · τ−1 = τ j−1 = ϕ(a).

The inertia groups I(P) �= I(P j̃): otherwise, their common fixed field would be an
unramified Zp-extension of the finite galois field H1/Q, which is impossible: thus
τ j−1 = ϕ(a) �= 1 generates a group isomorphic to Zp. Let now p=P∩L; the primes
p,p j̃ are unramified in Ωn/L, so τ restricts to an Artin symbol in this extension. The
previous identity implies

(
Ω/L

a

)
=

(
Ω/L

p j−1

)
;

Since the Artin symbol is a class symbol, we conclude that the primes in the coherent
sequence of classes b = [p j−1] ∈ B− generate Gal(Ω/Ωϕ(a)) and a = b, which
completes the proof.
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4.5 Proof of Theorems 3 and 1

We can turn the discussion of the example above into a proof of Theorem 3 with
its consequence, the Corollary 1. The proof generalizes the one given above for
imaginary quadratic extensions, by using the construction of the extensions U℘
defined above.

Proof. Let L = H1 ·K∞, like in the previous proof. Let ℘⊂ K be a prime above
p and U be the maximal unramified extension of L contained in U℘, the extension
defined in Lemma 26, and let j̃ be a lift of complex conjugation to Gal(U/Q). Since
Ω/H1 is abelian, the extension U/H1 is also galois and abelian.

Let P ⊂ U be a fixed prime above℘ and j̃ ∈ Gal(U/H1) be a lift of complex
conjugation. Consider the inertia groups I(P), I(P j̃) ⊂ Gal(U/H1) be the inertia
groups of the two conjugate primes. Like in the example above, Gal(U/H1) ∼= Z

2
p

and UP/K℘ is a product of at most two Zp extensions of Qp. It follows that the
inertia groups are isomorphic to Zp and disinct: otherwise, the common fixed field
in U would be an uramified Zp-extension of H1.

For ν ∈C \ {1, j}, the primes above ν℘ are totally split in U℘/K∞, so a fortiori
in U. Let τ̃ ∈Gal(U/H1) generate the inertia group I(P); then τ̃ j̃ ∈Gal(U/H1) is a
generator of I(P j̃). Since U/L is an unramified extension, there is an a ∈ A− such
that

τ̃ j = jτ̃ j =

(
U/L

a

)
· τ̃.

Thus,

ϕ(a) = jτ̃ jτ̃−1. (32)

Like in the previous proof, we let p =P∩L and note that since p does not ramify

in U/L, the automorphism τ̃ acts like the Artin symbol
(
U/L
p

)
. The relation (32)

implies:
(
U/L

a

)
=

(
U/L

p j−1

)
.

In particular, the primes in the coherent sequence of classes b = [p j−1] ∈ B−
generate Gal(U/L) and U does not split all the primes above p. This happens for
all ℘ and by Lemma 26 we have H

−
B = ∏ν∈C/{1, j}Uν℘, so it is spanned by Zp-

extensions that do not split the primes above p and consequently

[H′∞∩HB]< ∞.

We may now apply Lemma 25 which implies that A−(T ) = B−. This completes
the proof of Theorem 3. The corollary 1 is a direct consequence: since A−(T ) =
A−[T ] = B−, it follows directly from the definitions that (A′)−(T ) = {1}.
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Remark 5. The above proof is intimately related to the case when K is CM and
K∞ is the Zp-cyclotomic extension of K. The methods cannot be extended without
additional ingredients to non-CM fields, and certainly not other Zp-extensions than
the cyclotomic. In fact, Carroll and Kisilevsky have given in [3] examples of Zp-
extensions in which A′(T ) �= {1}.

A useful consequence of the Theorem 3 is the fact that the Zp-torsion of X/TX is
finite. As a consequence, if M =A[pμ ],μ = μ(K), then Y1∩M− ⊂ T X . In particular,
if a ∈M− has a1 = 1, then a ∈ TM−. We shall give in a separate paper a proof of
μ = 0 for CM extensions, which is based upon this remark. Note that the finite
torsion of X/TX is responsible for phenomena such as the one presented in the
example (5) above.

5 Conclusions

Iwasawa’s Theorem 6 reveals distinctive properties of the main module A of
Iwasawa Theory, and these are properties that are not shared by general Noeterian
Λ -torsion modules, although these are sometimes also called “Iwasawa modules”.
In this paper, we have investigated some consequences of this theorem in two
directions. The first was motivated by previous results of Fukuda: it is to be
expected that the growth of specific cyclic Λ -submodules, which preserve the
overall properties of A in Iwasawa’s Theorem, at a cyclic scale, will be constrained
by some obstructions. Our analysis has revealed some interesting phenomena,
such as

1. The growth in rank of the modules An stops as soon as this rank is not maximal
(i.e., in our case, pn−1 for some n.

2. The growth in the exponent can occur at most twice before rank stabilization.
3. The most generous rank increase is possible for regular flat module, when all the

group An have a fixed exponent and subexponent, until rank stabilization, and
the exponent is already determined by An. It is an interesting fact that we did not
encounter any example of such modules in the lists of Ernvall and Metsänkylä.

Although these obstruction are quite strong, there is no direct upper bound either on
ranks or on exponents that could be derived from these analysis.

Turning to infinite modules, we have analyzed in chapter 4 the structure of the
complement of TX in Iwasawa’s module Y−1 in the case of CM extentions. This
was revealed to be B−, a fact which confirms the conjecture of Gross-Kuz’min in
this case.

The methods introduced here suggest the interest in pursuing the investigation of
consequences of Iwasawa’s Theorem. Interesting open topics are the occurrence of
floating elements and their relation to the splitting in the sequence (21) and possible
intersections of Λ -maximal modules. It is conceivable that a better understanding
of these facts may allow to extend our methods to the study of arbitrary Λ -cyclic
submodules of A. It will probably be also a matter of taste to estimate whether the



290 P. Mihăilescu

detail of the work, that such generalizations may require, can be expected to be
compensated by sufficiently simple and structured final results.
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