


Springer Series in Statistics

Forecasting with Exponential Smoothing

The State Space Approach



Springer Series in Statistics 
Advisors: 
P. Bickel, P. Diggle, S. Fienberg, U. Gather, 
I. Olkin, S. Zeger 



Forecasting with Exponential
 Smoothing

The State Space Approach

Rob J. Hyndman, Anne B. Koehler, 
J. Keith Ord and Ralph D. Snyder



© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is 
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,  broadcasting, 
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication 

1965, in its current version, and permissions for use must always be obtained from Springer-Verlag. 
Violations are liable for prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not 
imply, even in the absence of a specific statement, that such names are exempt from the relevant 
 protective laws and regulations and therefore free for general use.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Professor Rob Hyndman 
Department of Econometrics & Business

 Statistics 

Clayton VIC 3800
Australia

Department of Decision
Sciences & Management Information Systems 

USA

Professor Keith Ord

Washington DC 20057
USA

Georgetown University
McDonough School of Business

ordk@georgetown.edu

Statistics

Australia

Department of Econometrics & Business

Professor Anne Koehler

ISBN 978-3-540-71916-8 e-ISBN 978-3-540-71918-2

Library of Congress Control Number: 2008924784

or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 

Miami UniversityMonash University
Oxford, Ohio 45056

Cover design: Deblik, Berlin, Germany 

Rob.Hyndman@buseco.monash.edu.au koehleab@muohio.edu

Monash University

Associate Professor Ralph Snyder

Clayton VIC 3800

Ralph.Snyder@buseco.monash.edu.au



Preface

Exponential smoothing methods have been around since the 1950s, and are
still the most popular forecasting methods used in business and industry.
Initially, a big attraction was the limited requirements for computer storage.
More importantly today, the equations in exponential smoothing methods
for estimating the parameters and generating the forecasts are very intu-
itive and easy to understand. As a result, these methods have been widely
implemented in business applications.

However, a shortcoming of exponential smoothing has been the lack of a
statistical framework that produces both prediction intervals and point fore-
casts. The innovations state space approach provides this framework while
retaining the intuitive nature of exponential smoothing in its measurement
and state equations. It provides prediction intervals, maximum likelihood
estimation, procedures for model selection, and much more.

As a result of this framework, the area of exponential smoothing has
undergone a substantial revolution in the past ten years. The new innova-
tions state space framework for exponential smoothing has been discussed
in numerous journal articles, but until now there has been no systematic
explanation and development of the ideas. Furthermore, the notation used
in the journal articles tends to change from paper to paper. Consequently,
researchers and practitioners struggle to use the new models in applications.
In writing this book, we have attempted to compile all of the material related
to innovations state space models and exponential smoothing into one coher-
ent presentation. In the process, we have also extended results, filled in gaps
and developed totally new material. Our goal has been to provide a compre-
hensive exposition of the innovations state space framework for forecasting
time series with exponential smoothing.
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Outline of the Book

We have written this book for people wanting to apply exponential smooth-
ing methods in their own area of interest, as well as for researchers wanting
to take the ideas in new directions. In attempting to cater for this broad
audience, the book has been structured into four parts, providing increasing
levels of detail and complexity.

Part I: Introduction (Chaps. 1 and 2)
If you only want a snack, then read Part I. It provides an overview of our
approach to forecasting and an introduction to the state space models
that underlie exponential smoothing. You will then be able to appreciate
how to implement exponential smoothing in the statistical framework of
innovations state space models.

Chapter 1 includes some general information on forecasting time series
and provides an historical context. In Chap. 2, we establish the linkage
between standard exponential smoothing methods and the innovations
state space models. Then, we describe all parts of the forecasting process
using innovations state space models in the following order: initializa-
tion, estimation, forecasting, evaluation of forecasts, model selection, and
an automatic procedure for the entire process which includes finding
prediction intervals.

Part II: Essentials (Chaps. 3–7)
Readers wanting a more substantial meal should go on to read
Chaps. 3–7. They fill out many of the details and provide links to the most
important papers in the literature. Anyone finishing the first seven chap-
ters will be ready to begin using the models for themselves in applied
work.

We examine linear models more closely in Chap. 3, before adding the
complexity of nonlinear and heteroscedastic models in Chap. 4. These
two chapters also introduce the concepts of stationarity, stability, and
forecastability. Because the linear models are a subset of the general
innovations state space model, the material on estimation (Chap. 5), pre-
diction (Chap. 6), and model selection (Chap. 7) relates to the general
model, with considerations of linear models and other special subgroups
where informative.

Part III: Further Topics (Chaps. 8–17)
If you want the full banquet, then you should go on to read the rest of the
book. Chapters 8–17 provide more advanced considerations of the details
of the models, their mathematical properties, and extensions of the mod-
els. These chapters are intended for people wanting to understand the
modeling framework in some depth, including other researchers in the
field.
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We consider the normalization of seasonal components in Chap. 8,
and the addition of regressors to the model in Chap. 9. In Chap. 10, we
address the important issue of parameter space specification, along with
the concept of the minimal dimension of a model. The relationship with
other standard time series models is investigated. In particular, Chap. 11
looks at ARIMA models, and Chap. 13 examines conventional state space
models, which have multiple sources of randomness. An information fil-
ter for estimating the parameters in a state space model with a random
seed vector is detailed in Chap. 12. The advantages of the information fil-
ter over the Kalman filter, which was originally developed for stationary
data, are explained. The remaining four chapters address special issues
and models for specific types of time series as follows: time series with
multiple seasonal patterns in Chap. 14, time series with strictly positive
values in Chap. 15, count data in Chap. 16, and vectors of time series in
Chap. 17.

Part IV: Applications (Chaps. 18–20)
The final part of the book provides the after-dinner cocktails and contains
applications to inventory control, economics and finance.

These applications are intended to illustrate the potentially wide reach
and usefulness of the innovations state space models. Procedures for
addressing the important inventory problems of nonstationary demand
and the use of sales data when true demand is unknown are covered in
Chap. 18 for a reorder inventory system. In Chap. 19, the natural imple-
mentation of conditional heteroscedasticity in the innovations state space
models framework (i.e., a GARCH-type model) is shown and applied
to examples of financial time series. In Chap. 20, the Beveridge-Nelson
decomposition of a univariate time series into transitory and permanent
components is presented in the linear innovations state space frame-
work. The advantages of this formulation over other approaches to the
Beveridge-Nelson decomposition are explained.

Website

The website http://www.exponentialsmoothing.netprovides supplemen-
tary material for this book, including data sets, computer code, additional
exercises, and links to other resources.

Forecasting Software

Time series forecasting is not a spectator sport, and any serious forecaster
needs access to adequate computing power. Most of the analyses pre-
sented in this book can readily be performed using the forecast package for
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R (Hyndman 2007), which is available on CRAN (http://cran.r-project.
org/). All of the data in the book are available in the expsmooth package for
R. In addition, we provide R code at http://www.exponentialsmoothing.
net for producing most of the examples in the book.
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Part I

Introduction



1

Basic Concepts

1.1 Time Series Patterns

Time series arise in many different contexts including minute-by-minute
stock prices, hourly temperatures at a weather station, daily numbers of
arrivals at a medical clinic, weekly sales of a product, monthly unem-
ployment figures for a region, quarterly imports of a country, and annual
turnover of a company. That is, time series arise whenever something is
observed over time. While a time series may be observed either continuously
or at discrete times, the focus of this book is on discrete time series that are
observed at regular intervals over time.

A graph of a time series often exhibits patterns, such as an upward or
downward movement (trend) or a pattern that repeats (seasonal variation),
that might be used to forecast future values. Graphs of four time series that
display such features are presented in Fig. 1.1.

• Figure 1.1a shows 125 monthly US government bond yields (percent per
annum) from January 1994 to May 2004. This time series appears to have
a changing level with a downward drift that one would be reluctant to
forecast as continuing into the future, and it seems to have no discernable
seasonal pattern.

• Figure 1.1b displays 55 observations of annual US net electricity gen-
eration (billion kwh) for 1949 through 2003. This time series contains a
definite upward trend that changes somewhat over time.

• Figure 1.1c presents 113 quarterly observations of passenger motor vehi-
cle production in the UK (thousands of cars) for the first quarter of 1977
through the first quarter of 2005. For this time series there is a constant
variation around a changing level. As with Fig. 1.1a, there is no trend that
one would want to forecast as continuing into the future. However, there
is a possibility of a seasonal pattern.

• Figure 1.1d shows 240 monthly observations of the number of short term
overseas visitors to Australia from May 1985 to April 2005. There is a
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Fig. 1.1. Four time series showing patterns typical of business and economic data.

definite seasonal pattern in this time series, and the variation increases
as the level of the time series increases. It is not possible to tell visually
whether the increase is due to an increase in the seasonal fluctuations or is
caused by some other factors. While there is an upward drift, it might not
be a good idea to forecast it as continuing into the future.

From these few examples it is clear that there is frequently a need for
forecasting that takes into account trend, seasonality, and other features of
the data. Specifically, we are interested in the situation where we observe a
time series y1, . . . , yn, and we wish to forecast a future observation at time
n + h. In order to exploit the patterns like those in Fig. 1.1, many different
forecasting methods and models have been proposed.

1.2 Forecasting Methods and Models

A forecasting method is an algorithm that provides a point forecast: a sin-
gle value that is a prediction of the value at a future time period. On the
other hand, a statistical model provides a stochastic data generating process
that may be used to produce an entire probability distribution for a future
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time period n + h. A point forecast can then be obtained easily by tak-
ing the mean (or median) of the probability distribution. A model also
allows the computation of prediction (forecast) intervals with a given level
of confidence.

We use the notation ŷn+h|n to denote a point forecast of yn+h using the
information available at time n. This notation does not need to distinguish
between point forecasts that arise from forecasting methods and those that
are derived from statistical models, because the statistical models will lead
directly to point forecasting methods.

1.3 History of Exponential Smoothing

Historically, exponential smoothing describes a class of forecasting methods.
In fact, some of the most successful forecasting methods are based on the con-
cept of exponential smoothing. There are a variety of methods that fall into
the exponential smoothing family, each having the property that forecasts
are weighted combinations of past observations, with recent observations
given relatively more weight than older observations. The name “exponen-
tial smoothing” reflects the fact that the weights decrease exponentially as
the observations get older.

The idea seems to have originated with Robert G. Brown in about 1944
while he was working for the US Navy as an Operations Research analyst. He
used the idea in a mechanical computing device for tracking the velocity and
angle used in firing at submarines (Gardner 2006). In the 1950s he extended
this method from continuous to discrete time series, and included terms to
handle trend and seasonality. One of his first applications was forecasting
demand for spare parts in the US Navy inventory system. This latter work
was presented at a meeting of the Operations Research Society of America
in 1956 and formed the basis of his first book on inventory control (Brown
1959). The ideas were further developed in Brown’s second book (1963).

Independently, Charles Holt was also working on an exponential smooth-
ing method for the US Office of Naval Research (ONR). Holt’s method dif-
fered from Brown’s with respect to the smoothing of the trend and seasonal
components. His original work was reproduced in an ONR memorandum
(Holt 1957), which has been very widely cited, but was unpublished until
recently when it appeared in the International Journal of Forecasting in 2004.
Holt’s work on additive and multiplicative seasonal exponential smooth-
ing became well known through a paper by his student Peter Winters (1960)
which provided empirical tests for Holt’s methods. As a result, the seasonal
versions of Holt’s methods are usually called Holt-Winters’ methods (and
sometimes just Winters’ methods, which is rather unfair to Holt).

Another of Holt’s collaborators was John Muth, who later became
famous in economics for formulating the concept of rational expectations.
In exponential smoothing he is known for introducing two statistical models
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(Muth 1960) for which the optimal forecasts are equivalent to those obtained
from simple exponential smoothing.

Muth’s models were the first in a long series of statistical models that are
related to forecasting using exponential smoothing. The success of the expo-
nential smoothing methods for forecasting, and for controlling inventory, has
resulted in many researchers looking for models that produce the same point
forecasts as these methods. Many of these models, including those of Muth,
are state space models for which the minimum mean squared error forecasts
are the forecasts from simple exponential smoothing.

1.4 State Space Models

State space models allow considerable flexibility in the specification of the
parametric structure. In this book, we will use the innovations formulation of
the model (e.g., Anderson and Moore 1979; Aoki 1987; Hannan and Deistler
1988). Let yt denote the observation at time t, and let xt be a “state vector”
containing unobserved components that describe the level, trend and sea-
sonality of the series. Then a linear innovations state space model can be
written as

yt = w′xt−1 + εt, (1.1a)
xt = Fxt−1 + gεt, (1.1b)

where {εt} is a white noise series and F , g and w are coefficients. Equa-
tion (1.1a) is known as the measurement (or observation) equation; it describes
the relationship between the unobserved states xt−1 and the observation yt.
Equation (1.1b) is known as the transition (or state) equation; it describes the
evolution of the states over time. The use of identical errors (or innovations)
in these two equations makes it an “innovations” state space model. Several
exponential smoothing methods are equivalent to point forecasts of special
cases of model (1.1); examples are given in Sect. 2.5.

The philosophy of state space models fits well with the approach of expo-
nential smoothing because the level, trend and seasonal components are
stated explicitly in the models. In contrast, one cannot see these components
as easily in autoregressive integrated moving average (ARIMA) models (Box
et al. 1994).

Nonlinear state space models are also possible. One form that we use in
Chap. 2 is

yt = w(xt−1) + r(xt−1)εt, (1.2a)
xt = f (xt−1) + g(xt−1)εt. (1.2b)

An alternative, and more common, specification is to assume that the
errors in the two equations are mutually independent. That is, gεt in (1.1b)
is replaced by zt, where zt consists of independent white noise series that
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are also independent of εt, the error in the measurement equation. The
assumption that zt and εt are independent provides enough constraints to
ensure that the remaining parameters are estimable (termed just identified in
the econometrics literature).

There are an infinite number of ways in which the parameter space could
be constrained to achieve estimability. The purpose of this book is to present
the theory and applications of the innovations formulation, wherein all of the
error sources are perfectly correlated. In some papers, these are known as
single source of error (SSOE) models (e.g., Ord et al. 1997). By contrast, we
refer to the more common form of the state space model as having multiple
sources of error (MSOE).

At first it may seem that innovations state space models are more restric-
tive than MSOE models, but this is not the case. In fact, the reverse is true.
Any linear MSOE model can be written in innovations form, and any linear
innovations model can be written in MSOE form. However, the innovations
models can have a larger parameter space. The innovations models have sev-
eral other advantages over the models with multiple sources of error, as will
be seen in Chap. 13.

Moreover, MSOE state space models, like ARIMA models, are linear
models that require both the components and the error terms to be additive.
While nonlinear versions of both MSOE and ARIMA models exist, these are
much more difficult to work with. In contrast, it is relatively easy to use a
nonlinear innovations state space model for describing and forecasting time
series data and we will use them frequently in this book.

MSOE models that are similar to the types of models considered in this
book include dynamic linear models (Harrison and Stevens 1976; Duncan
and Horn 1972; West and Harrison 1997) and structural models (Harvey
1989).

Modern work on state space models began with Kalman (1960) and
Kalman and Bucy (1961), following which a considerable body of litera-
ture developed in engineering (e.g., Jazwinski 1970; Anderson and Moore
1979). Early work in the statistical area included the Markovian representa-
tion developed by Akaike (1973, 1974). Hannan and Deistler (1988) provided
a unifying presentation of the work by engineers and statistical time series
analysts for stationary time series. In economics, Aoki and Havenner (1991)
looked at multivariate state space models and suggested procedures for both
stationary and nonstationary data. For a review of the books in the area, see
Durbin and Koopman (2001, p. 5).
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Getting Started

Although exponential smoothing methods have been around since the 1950s,
a modeling framework incorporating stochastic models, likelihood calcu-
lations, prediction intervals, and procedures for model selection was not
developed until relatively recently, with the work of Ord et al. (1997) and
Hyndman et al. (2002). In these (and other) papers, a class of state space
models has been developed that underlies all of the exponential smoothing
methods.

In this chapter, we provide an introduction to the ideas underlying expo-
nential smoothing and the associated state space models. Many of the details
will be skipped over in this chapter, but will be covered in later chapters.

Figure 2.1 shows the four time series from Fig. 1.1, along with point
forecasts and 80% prediction intervals. These were all produced using expo-
nential smoothing state space models. In each case, the particular models
and all model parameters were chosen automatically with no intervention
by the user. This demonstrates one very useful feature of state space models
for exponential smoothing—they are easy to use in a completely automated
way. In these cases, the models were able to handle data exhibiting a range of
features, including very little trend, strong trend, no seasonality, a seasonal
pattern that stays constant, and a seasonal pattern with increasing variation
as the level of the series increases.

2.1 Time Series Decomposition

It is common in business and economics to think of a time series as a combi-
nation of various components such as the trend (T), cycle (C), seasonal (S),
and irregular or error (E) components. These can be defined as follows:

Trend (T): The long-term direction of the series
Seasonal (S): A pattern that repeats with a known periodicity

(e.g., 12 months per year, or 7 days per week)
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Fig. 2.1. Four time series showing point forecasts and 80% prediction intervals
obtained using exponential smoothing state space models.

Cycle (C): A pattern that repeats with some regularity but
with unknown and changing periodicity (e.g., a
business cycle)

Irregular or error (E): The unpredictable component of the series

In this monograph, we focus primarily upon the three components T, S and
E. Any cyclic element will be subsumed within the trend component unless
indicated otherwise.

These three components can be combined in a number of different ways.
A purely additive model can be expressed as

y = T + S + E,

where the three components are added together to form the observed series.
A purely multiplicative model is written as

y = T × S × E,

where the data are formed as the product of the three components. A sea-
sonally adjusted series is then formed by extracting the seasonal component
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from the data, leaving only the trend and error components. In the additive
model, the seasonally adjusted series is y − S, while in the multiplica-
tive model, the seasonally adjusted series is y/S. The reader should refer
to Makridakis et al. (1998, Chap. 4) for a detailed discussion of seasonal
adjustment and time series decomposition.

Other combinations, apart from simple addition and multiplication, are
also possible. For example,

y = (T + S) × E

treats the irregular component as multiplicative but the other components as
additive.1

2.2 Classification of Exponential Smoothing Methods

In exponential smoothing, we always start with the trend component, which
is itself a combination of a level term (�) and a growth term (b). The level
and growth can be combined in a number of ways, giving five future trend
types. Let Th denote the forecast trend over the next h time periods, and let
φ denote a damping parameter (0 < φ < 1). Then the five trend types or
growth patterns are as follows:

None: Th = �
Additive: Th = � + bh

Additive damped: Th = � + (φ + φ2 + · · ·+ φh)b
Multiplicative: Th = �bh

Multiplicative damped: Th = �b(φ+φ2+···+φh)

A damped trend method is appropriate when there is a trend in the time
series, but one believes that the growth rate at the end of the historical data is
unlikely to continue more than a short time into the future. The equations for
damped trend do what the name indicates: dampen the trend as the length
of the forecast horizon increases. This often improves the forecast accuracy,
particularly at long lead times.

Having chosen a trend component, we may introduce a seasonal compo-
nent, either additively or multiplicatively. Finally, we include an error, either
additively or multiplicatively. Historically, the nature of the error compo-
nent has often been ignored, because the distinction between additive and
multiplicative errors makes no difference to point forecasts.

If the error component is ignored, then we have the fifteen exponential
smoothing methods given in the following table. This classification of meth-
ods originated with Pegels’ (1969) taxonomy. This was later extended by

1 See Hyndman (2004) for further discussion of the possible combinations of these
components.
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Trend component Seasonal component

N A M
(None) (Additive) (Multiplicative)

N (None) N,N N,A N,M
A (Additive) A,N A,A A,M
Ad (Additive damped) Ad,N Ad,A Ad,M
M (Multiplicative) M,N M,A M,M
Md (Multiplicative damped) Md,N Md,A Md,M

Gardner (1985), modified by Hyndman et al. (2002), and extended again by
Taylor (2003a), giving the fifteen methods in the above table.

Some of these methods are better known under other names. For exam-
ple, cell (N,N) describes the simple exponential smoothing (or SES) method,
cell (A,N) describes Holt’s linear method, and cell (Ad,N) describes the
damped trend method. Holt-Winters’ additive method is given by cell (A,A),
and Holt-Winters’ multiplicative method is given by cell (A,M). The other
cells correspond to less commonly used but analogous methods.

For each of the 15 methods in the above table, there are two possible state
space models, one corresponding to a model with additive errors and the
other to a model with multiplicative errors. If the same parameter values are
used, these two models give equivalent point forecasts although different
prediction intervals. Thus, there are 30 potential models described in this
classification.

We are careful to distinguish exponential smoothing methods from the
underlying state space models. An exponential smoothing method is an algo-
rithm for producing point forecasts only. The underlying stochastic state
space model gives the same point forecasts, but also provides a framework
for computing prediction intervals and other properties. The models are
described in Sect. 2.5, but first we introduce the much older point-forecasting
equations.

2.3 Point Forecasts for the Best-Known Methods

In this section, a simple introduction is provided to some of the best-
known exponential smoothing methods—simple exponential smoothing
(N,N), Holt’s linear method (A,N), the damped trend method (Ad,N) and
Holt-Winters’ seasonal method (A,A and A,M). We denote the observed time
series by y1, y2, . . . , yn. A forecast of yt+h based on all the data up to time
t is denoted by ŷt+h|t. For one-step forecasts, we use the simpler notation
ŷt+1 ≡ ŷt+1|t. Usually, forecasts require some parameters to be estimated;
but for the sake of simplicity it will be assumed for now that the values of all
relevant parameters are known.
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2.3.1 Simple Exponential Smoothing (N,N Method)

Suppose we have observed data up to and including time t − 1, and we wish
to forecast the next value of our time series, yt. Our forecast is denoted by ŷt.
When the observation yt becomes available, the forecast error is found to be
yt − ŷt. The method of simple exponential smoothing,2 due to Brown’s work
in the mid-1950s and published in Brown (1959), takes the forecast for the
previous period and adjusts it using the forecast error. That is, the forecast
for the next period is

ŷt+1 = ŷt + α(yt − ŷt), (2.1)

where α is a constant between 0 and 1.
It can be seen that the new forecast is simply the old forecast plus an

adjustment for the error that occurred in the last forecast. When α has a value
close to 1, the new forecast will include a substantial adjustment for the error
in the previous forecast. Conversely, when α is close to 0, the new forecast
will include very little adjustment.

Another way of writing (2.1) is

ŷt+1 = αyt + (1 − α)ŷt. (2.2)

The forecast ŷt+1 is based on weighting the most recent observation yt with
a weight value α, and weighting the most recent forecast ŷt with a weight of
1 − α. Thus, it can be interpreted as a weighted average of the most recent
forecast and the most recent observation.

The implications of exponential smoothing can be seen more easily if (2.2)
is expanded by replacing ŷt with its components, as follows:

ŷt+1 = αyt + (1 − α)[αyt−1 + (1 − α)ŷt−1]

= αyt + α(1 − α)yt−1 + (1 − α)2ŷt−1.

If this substitution process is repeated by replacing ŷt−1 with its components,
ŷt−2 with its components, and so on, the result is

ŷt+1 = αyt + α(1 − α)yt−1 + α(1 − α)2yt−2 + α(1 − α)3yt−3

+ α(1 − α)4yt−4 + · · · + α(1 − α)t−1y1 + (1 − α)tŷ1. (2.3)

So ŷt+1 represents a weighted moving average of all past observations with
the weights decreasing exponentially; hence the name “exponential smooth-
ing.” We note that the weight of ŷ1 may be quite large when α is small and
the time series is relatively short. The choice of starting value then becomes
particularly important and is known as the “initialization problem,” which
we discuss in detail in Sect. 2.6.

2 This method is also sometimes known as “single exponential smoothing.”
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For longer range forecasts, it is assumed that the forecast function is
“flat.” That is,

ŷt+h|t = ŷt+1, h = 2, 3, . . . .

A flat forecast function is used because simple exponential smoothing works
best for data that have no trend, seasonality, or other underlying patterns.

Another way of writing this is to let �t = ŷt+1. Then ŷt+h|t = �t and
�t = αyt + (1− α)�t−1. The value of �t is a measure of the “level” of the series
at time t. While this may seem a cumbersome way to express the method, it
provides a basis for generalizing exponential smoothing to allow for trend
and seasonality.

In order to calculate the forecasts using SES, we need to specify the ini-
tial value �0 = ŷ1 and the parameter value α. Traditionally (particularly
in the pre-computer age), ŷ1 was set to be equal to the first observation
and α was specified to be a small number, often 0.2. However, there are
now much better ways of selecting these parameters, which we describe in
Sect. 2.6.

2.3.2 Holt’s Linear Method (A,N Method)

Holt (1957)3 extended simple exponential smoothing to linear exponen-
tial smoothing to allow forecasting of data with trends. The forecast for
Holt’s linear exponential smoothing method is found using two smoothing
constants, α and β∗ (with values between 0 and 1), and three equations:

Level: �t = αyt + (1 − α)(�t−1 + bt−1), (2.4a)
Growth: bt = β∗(�t − �t−1) + (1 − β∗)bt−1, (2.4b)
Forecast: ŷt+h|t = �t + bth. (2.4c)

Here �t denotes an estimate of the level of the series at time t and bt denotes
an estimate of the slope (or growth) of the series at time t. Note that bt is a
weighted average of the previous growth bt−1 and an estimate of growth
based on the difference between successive levels. The reason we use β∗
rather than β will become apparent when we introduce the state space
models in Sect. 2.5.

In the special case where α = β∗, Holt’s method is equivalent to “Brown’s
double exponential smoothing” (Brown 1959). Brown used a discounting
argument to arrive at his forecasting equations, so 1 − α represents the
common discount factor applied to both the level and trend components.

In Sect. 2.6 we describe how the procedure is initialized and how the
parameters are estimated.

3 Reprinted as Holt (2004).
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One interesting special case of this method occurs when β∗ = 0. Then

Level: �t = αyt + (1 − α)(�t−1 + b),

Forecast: ŷt+h|t = �t + bh.

This method is known as “SES with drift,” which is closely related to the
“Theta method” of forecasting due to Assimakopoulos and Nikolopou-
los (2000). The connection between these methods was demonstrated by
Hyndman and Billah (2003).

2.3.3 Damped Trend Method (Ad,A Method)

Gardner and McKenzie (1985) proposed a modification of Holt’s linear
method to allow the “damping” of trends. The equations for this method
are:4

Level: �t = αyt + (1 − α)(�t−1 + φbt−1), (2.5a)
Growth: bt = β∗(�t − �t−1) + (1 − β∗)φbt−1, (2.5b)

Forecast: ŷt+h|t = �t + (φ + φ2 + · · ·+ φh)bt. (2.5c)

Thus, the growth for the one-step forecast of yt+1 is φbt, and the growth is
dampened by a factor of φ for each additional future time period. If φ = 1,
this method gives the same forecasts as Holt’s linear method. For 0 < φ < 1,
as h → ∞ the forecasts approach an asymptote given by �t + φbt/(1− φ). We
usually restrict φ > 0 to avoid a negative coefficient being applied to bt−1 in
(2.5b), and φ ≤ 1 to avoid bt increasing exponentially.

2.3.4 Holt-Winters’ Trend and Seasonality Method

If the data have no trend or seasonal patterns, then simple exponential
smoothing is appropriate. If the data exhibit a linear trend, then Holt’s linear
method (or the damped method) is appropriate. But if the data are seasonal,
these methods on their own cannot handle the problem well.

Holt (1957) proposed a method for seasonal data. His method was stud-
ied by Winters (1960), and so now it is usually known as “Holt-Winters’
method” (see Sect. 1.3).

Holt-Winters’ method is based on three smoothing equations—one for
the level, one for trend, and one for seasonality. It is similar to Holt’s lin-
ear method, with one additional equation for dealing with seasonality. In
fact, there are two different Holt-Winters’ methods, depending on whether
seasonality is modeled in an additive or multiplicative way.

4 We use the same parameterization as Gardner and McKenzie (1985), which is
slightly different from the parameterization proposed by Hyndman et al. (2002).
This makes no difference to the value of the forecasts.
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Multiplicative Seasonality (A,M Method)

The basic equations for Holt-Winters’ multiplicative method are as follows:

Level: �t = α
yt

st−m
+ (1 − α)(�t−1 + bt−1) (2.6a)

Growth: bt = β∗(�t − �t−1) + (1 − β∗)bt−1 (2.6b)
Seasonal: st = γyt/(�t−1 + bt−1) + (1 − γ)st−m (2.6c)
Forecast: ŷt+h|t = (�t + bth)st−m+h+

m
, (2.6d)

where m is the length of seasonality (e.g., number of months or quarters
in a year), �t represents the level of the series, bt denotes the growth, st
is the seasonal component, ŷt+h|t is the forecast for h periods ahead, and
h+

m = [(h− 1) mod m] + 1. The parameters (α, β∗ and γ) are usually restricted
to lie between 0 and 1. The reader should refer to Sect. 2.6.2 for more details
on restricting the values of the parameters. As with all exponential smooth-
ing methods, we need initial values of the components and estimates of the
parameter values. This is discussed in Sect. 2.6.

Equation (2.6c) is slightly different from the usual Holt-Winters’ equa-
tions such as those in Makridakis et al. (1998) or Bowerman et al. (2005).
These authors replace (2.6c) with

st = γyt/�t + (1 − γ)st−m.

The modification given in (2.6c) was proposed by Ord et al. (1997) to make
the state space formulation simpler. It is equivalent to Archibald’s (1990)
variation of Holt-Winters’ method. The modification makes a small but
usually negligible difference to the forecasts.

Additive Seasonality (A,A Method)

The seasonal component in Holt-Winters’ method may also be treated addi-
tively, although in practice this seems to be less commonly used. The basic
equations for Holt-Winters’ additive method are as follows:

Level: �t = α(yt − st−m) + (1 − α)(�t−1 + bt−1) (2.7a)
Growth: bt = β∗(�t − �t−1) + (1 − β∗)bt−1 (2.7b)

Seasonal: st = γ(yt − �t−1 − bt−1) + (1 − γ)st−m (2.7c)
Forecast: ŷt+h|t = �t + bth + st−m+h+

m
. (2.7d)

The second of these equations is identical to (2.6b). The only differences in the
other equations are that the seasonal indices are now added and subtracted
instead of taking products and ratios.
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As with the multiplicative model, the usual equation given in textbooks
for the seasonal term is slightly different from (2.7c). Most books use

st = γ∗(yt − �t) + (1 − γ∗)st−m.

If �t is substituted using (2.7a), we obtain

st = γ∗(1 − α)(yt − �t−1 − bt−1) + [1 − γ∗(1 − α)]st−m.

Thus, we obtain identical forecasts using this approach by replacing γ in
(2.7c) with γ∗(1 − α).

2.4 Point Forecasts for All Methods

Table 2.1 gives recursive formulae for computing point forecasts h periods
ahead for all of the exponential smoothing methods. In each case, �t denotes
the series level at time t, bt denotes the slope at time t, st denotes the seasonal
component of the series at time t, and m denotes the number of seasons in a
year; α, β∗, γ and φ are constants, and φh = φ + φ2 + · · ·+ φh.

Some interesting special cases can be obtained by setting the smoothing
parameters to extreme values. For example, if α = 0, the level is constant
over time; if β∗ = 0, the slope is constant over time; and if γ = 0, the sea-
sonal pattern is constant over time. At the other extreme, naı̈ve forecasts
(i.e., ŷt+h|t = yt for all h) are obtained using the (N,N) method with α = 1.
Finally, the additive and multiplicative trend methods are special cases of
their damped counterparts obtained by letting φ = 1.

2.5 State Space Models

We now introduce the state space models that underlie exponential smooth-
ing methods. For each method, there are two models—a model with additive
errors and a model with multiplicative errors. The point forecasts for the
two models are identical (provided the same parameter values are used), but
their prediction intervals will differ.

To distinguish the models with additive and multiplicative errors, we add
an extra letter to the front of the method notation. The triplet (E,T,S) refers to
the three components: error, trend and seasonality. So the model ETS(A,A,N)
has additive errors, additive trend and no seasonality—in other words, this
is Holt’s linear method with additive errors. Similarly, ETS(M,Md,M) refers
to a model with multiplicative errors, a damped multiplicative trend and
multiplicative seasonality. The notation ETS(·,·,·) helps in remembering the
order in which the components are specified. ETS can also be considered an
abbreviation of ExponenTial Smoothing.

Once a model is specified, we can study the probability distribution
of future values of the series and find, for example, the conditional mean
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ŷ t

+
h|t

=
� t

bφ
h

t
s t−

m
+

h+ m

In
ea

ch
ca

se
,�

t
d

en
ot

es
th

e
se

ri
es

le
ve

la
tt

im
e

t,
b t

d
en

ot
es

th
e

sl
op

e
at

ti
m

e
t,

s t
d

en
ot

es
th

e
se

as
on

al
co

m
po

ne
nt

of
th

e
se

ri
es

at
ti

m
e

t,
an

d
m

d
en

ot
es

th
e

nu
m

be
r

of
se

as
on

s
in

a
ye

ar
;α

,β
∗ ,

γ
an

d
φ

ar
e

co
ns

ta
nt

s,
φ

h
=

φ
+

φ
2
+
··
·+

φ
h

an
d

h+ m
=
[ (h

−
1)

m
od

m
] +

1.



2.5 State Space Models 19

of a future observation given knowledge of the past. We denote this as
µt+h|t = E(yt+h | xt), where xt contains the unobserved components such
as �t, bt and st. For h = 1 we use µt+1 ≡ µt+1|t as a shorthand notation. For
most models, these conditional means will be identical to the point forecasts
given earlier, so that µt+h|t = ŷt+h|t. However, for other models (those with
multiplicative trend or multiplicative seasonality), the conditional mean and
the point forecast will differ slightly for h ≥ 2.

2.5.1 State Space Models for Holt’s Linear Method

We now illustrate the ideas using Holt’s linear method.

Additive Error Model: ETS(A,A,N)

Let µt = ŷt = �t−1 + bt−1 denote the one-step forecast of yt assuming we
know the values of all parameters. Also let εt = yt − µt denote the one-step
forecast error at time t. From (2.4c), we find that

yt = �t−1 + bt−1 + εt, (2.8)

and using (2.4a) and (2.4b) we can write

�t = �t−1 + bt−1 + αεt, (2.9)
bt = bt−1 + β∗(�t − �t−1 − bt−1) = bt−1 + αβ∗εt. (2.10)

We simplify the last expression by setting β = αβ∗. The three equations
above constitute a state space model underlying Holt’s method. We can write
it in standard state space notation by defining the state vector as xt = (�t, bt)′
and expressing (2.8)–(2.10) as

yt = [1 1] xt−1 + εt, (2.11a)

xt =
[

1 1
0 1

]
xt−1 +

[
α
β

]
εt. (2.11b)

The model is fully specified once we state the distribution of the error term εt.
Usually we assume that these are independent and identically distributed,
following a Gaussian distribution with mean 0 and variance σ2, which we
write as εt ∼ NID(0, σ2).

Multiplicative Error Model: ETS(M,A,N)

A model with multiplicative error can be derived similarly, by first setting
εt = (yt − µt)/µt, so that εt is a relative error. Then, following a similar
approach to that for additive errors, we find

yt = (�t−1 + bt−1)(1 + εt),
�t = (�t−1 + bt−1)(1 + αεt),
bt = bt−1 + β(�t−1 + bt−1)εt,
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or

yt = [1 1] xt−1(1 + εt),

xt =
[

1 1
0 1

]
xt−1 + [1 1]xt−1

[
α
β

]
εt.

Again we assume that εt ∼ NID(0, σ2).
Of course, this is a nonlinear state space model, which is usually consid-

ered difficult to handle in estimating and forecasting. However, that is one
of the many advantages of the innovations form of state space models—we
can still compute forecasts, the likelihood and prediction intervals for this
nonlinear model with no more effort than is required for the additive error
model.

2.5.2 State Space Models for All Exponential Smoothing Methods

We now give the state space models for all 30 exponential smoothing
variations. The general model involves a state vector xt = (�t, bt, st, st−1, . . . ,
st−m+1)′ and state space equations of the form

yt = w(xt−1) + r(xt−1)εt, (2.12a)
xt = f (xt−1) + g(xt−1)εt, (2.12b)

where {εt} is a Gaussian white noise process with variance σ2, and µt =
w(xt−1). The model with additive errors has r(xt−1) = 1, so that yt = µt + εt.
The model with multiplicative errors has r(xt−1) = µt, so that yt = µt(1 +
εt). Thus, εt = (yt − µt)/µt is the relative error for the multiplicative model.
The models are not unique. Clearly, any value of r(xt−1) will lead to identical
point forecasts for yt.

Each of the methods in Table 2.1 can be written in the form given in (2.12a)
and (2.12b). The underlying equations for the additive error models are given
in Table 2.2. We use β = αβ∗ to simplify the notation. Multiplicative error
models are obtained by replacing εt with µtεt in the equations of Table 2.2.
The resulting multiplicative error equations are given in Table 2.3.

Some of the combinations of trend, seasonality and error can occasionally
lead to numerical difficulties; specifically, any model equation that requires
division by a state component could involve division by zero. This is a
problem for models with additive errors and either multiplicative trend or
multiplicative seasonality, as well as the model with multiplicative errors,
multiplicative trend and additive seasonality. These models should there-
fore be used with caution. The properties of these models are discussed in
Chap. 15.

The multiplicative error models are useful when the data are strictly pos-
itive, but are not numerically stable when the data contain zeros or negative
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values. So when the time series is not strictly positive, only the six fully
additive models may be applied.

The point forecasts given earlier are easily obtained from these models
by iterating (2.12) for t = n + 1, n + 2, . . . , n + h, and setting εn+j = 0 for
j = 1, . . . , h. In most cases (notable exceptions being models with multiplica-
tive seasonality or multiplicative trend for h ≥ 2), the point forecasts can be
shown to be equal to µt+h|t = E(yt+h | xt), the conditional expectation of the
corresponding state space model.

The models also provide a means of obtaining prediction intervals. In the
case of the linear models, where the prediction distributions are Gaussian,
we can derive the conditional variance vt+h|t = V(yt+h | xt) and obtain
prediction intervals accordingly. This approach also works for many of the
nonlinear models, as we show in Chap. 6.

A more direct approach that works for all of the models is to simply
simulate many future sample paths, conditional on the last estimate of the
state vector, xt. Then prediction intervals can be obtained from the per-
centiles of the simulated sample paths. Point forecasts can also be obtained
in this way by taking the average of the simulated values at each future time
period. One advantage of this approach is that we generate an estimate of
the complete predictive distribution, which is especially useful in applica-
tions such as inventory planning, where the expected costs depend on the
whole distribution.

2.6 Initialization and Estimation

In order to use these models for forecasting, we need to specify the type of
model to be used (model selection), the value of x0 (initialization), and the
values of the parameters α, β, γ and φ (estimation). In this section, we discuss
initialization and estimation, leaving model selection to Sect. 2.8.

2.6.1 Initialization

Traditionally, the initial values x0 are specified using ad hoc values, or via a
heuristic scheme. The following heuristic scheme, based on Hyndman et al.
(2002), seems to work very well.

• Initial seasonal component. For seasonal data, compute a 2×m moving aver-
age through the first few years of data. Denote this by { ft}, t = m/2 +
1, m/2 + 2, . . . . For additive seasonality, detrend the data to obtain yt − ft;
for multiplicative seasonality, detrend the data to obtain yt/ ft. Compute
initial seasonal indices, s−m+1, . . . , s0, by averaging the detrended data for
each season. Normalize these seasonal indices so that they add to zero for
additive seasonality, and add to m for multiplicative seasonality.
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• Initial level component. For seasonal data, compute a linear trend using
linear regression on the first ten seasonally adjusted values (using the sea-
sonal indices obtained above) against a time variable t = 1, . . . , 10. For
nonseasonal data, compute a linear trend on the first ten observations
against a time variable t = 1, . . . , 10. Then set �0 to be the intercept of
the trend.

• Initial growth component. For additive trend, set b0 to be the slope of the
trend. For multiplicative trend, set b0 = 1 + b/a, where a denotes the
intercept and b denotes the slope of the fitted trend.

These initial states are then refined by estimating them along with the
parameters, as described below.

2.6.2 Estimation

It is easy to compute the likelihood of the innovations state space model
(2.12), and so obtain maximum likelihood estimates. In Chap. 5, we show
that

L∗(θ, x0) = n log
( n

∑
t=1

ε2
t

)
+ 2

n

∑
t=1

log |r(xt−1)|

is equal to twice the negative logarithm of the likelihood function (with con-
stant terms eliminated), conditional on the parameters θ = (α, β, γ, φ)′ and
the initial states x0 = (�0, b0, s0, s−1, . . . , s−m+1)′, where n is the number of
observations. This is easily computed by simply using the recursive equa-
tions in Table 2.1. Unlike state space models with multiple sources of error,
we do not need to use the Kalman filter to compute the likelihood.

The parameters θ and the initial states x0 can be estimated by minimiz-
ing L∗. Alternatively, estimates can be obtained by minimizing the one-step
mean squared error (MSE), minimizing the residual variance σ2, or via some
other criterion for measuring forecast error. Whichever criterion is used, we
usually begin the optimization with x0 obtained from the heuristic scheme
above and θ = (0.1, 0.01, 0.01, 0.99)′.

There have been several suggestions for restricting the parameter space
of α, β and γ. The traditional approach is to ensure that the various equations
can be interpreted as weighted averages, thus requiring α, β∗ = β/α, γ∗ =
γ/(1 − α) and φ to all lie within (0, 1). This suggests that

0 < α < 1, 0 < β < α, 0 < γ < 1 − α, and 0 < φ < 1.

However, we shall see in Chap. 10 that these restrictions are usually
stricter than necessary (although in a few cases they are not restrictive
enough).

We also constrain the initial states x0 so that the seasonal indices add to
zero for additive seasonality, and add to m for multiplicative seasonality.
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2.7 Assessing Forecast Accuracy

The issue of measuring the accuracy of forecasts from different methods has
been the subject of much attention. We summarize some of the approaches
here. A more thorough discussion is given by Hyndman and Koehler (2006).

There are three possible ways in which the forecasts can have arisen:

1. The forecasts may be computed from a common base time, and be of vary-
ing forecast horizons. That is, we may compute out-of-sample forecasts
ŷn+1|n, . . . , ŷn+h|n based on data from times t = 1, . . . , n. When h = 1, we
write ŷn+1 ≡ ŷn+1|n.

2. The forecasts may be from varying base times, and be of a consistent fore-
cast horizon. That is, we may compute forecasts ŷ1+h|1, . . . , ŷm+h|m where
each ŷj+h|j is based on data from times t = 1, . . . , j.

3. We may wish to compare the accuracy of methods between many series
at a single forecast horizon. That is, we compute a single ŷn+h|n based on
data from times t = 1, . . . , n for each of m different series.

While these are very different situations, measuring forecast accuracy is the
same in each case.

The measures defined below are described for one-step-ahead forecasts;
the extension to h-steps-ahead is immediate in each case and raises no new
questions of principle.

2.7.1 Scale-Dependent Errors

The one-step-ahead forecast error is simply et = yt − ŷt, regardless of how the
forecast was produced. Similarly the h-step-ahead forecast error is et+h|t =
yt+h − ŷt+h|t. This is on the same scale as the data. Accuracy measures that
are based on et are therefore scale-dependent.

The two most commonly used scale-dependent measures are based on
the absolute error or squared errors:

Mean absolute error (MAE) = mean(|et|),

Mean squared error (MSE) = mean(e2
t ).

When comparing forecast methods on a single series, we prefer the MAE
as it is easy to understand and compute. However, it cannot be used to make
comparisons between series as it makes no sense to compare accuracy on
different scales.

2.7.2 Percentage Errors

The percentage error is given by pt = 100et/yt. Percentage errors have
the advantage of being scale-independent, and so are frequently used to
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compare forecast performance between different data sets. The most com-
monly used measure is:

Mean absolute percentage error (MAPE) = mean(|pt|)
Measures based on percentage errors have the disadvantage of being infi-
nite or undefined if yt = 0 for any t in the period of interest, and having an
extremely skewed distribution when any yt is close to zero. Another problem
with percentage errors that is often overlooked is that they assume a mean-
ingful zero. For example, a percentage error makes no sense when measuring
the accuracy of temperature forecasts on the Fahrenheit or Celsius scales.

They also have the disadvantage that they put a heavier penalty on pos-
itive errors than on negative errors. This observation led to the use of the
so-called “symmetric” MAPE proposed by Makridakis (1993), which was
used in the M3 competition (Makridakis and Hibon 2000). It is defined by

Symmetric mean absolute percentage error (sMAPE)
= mean(200|yt − ŷt|/(yt + ŷt)).

However, if yt is zero, ŷt is also likely to be close to zero. Thus, the measure
still involves division by a number close to zero. Also, the value of sMAPE
can be negative, so it is not really a measure of “absolute percentage errors”
at all.

2.7.3 Scaled Errors

The MASE was proposed by Hyndman and Koehler (2006) as a generally
applicable measure of forecast accuracy. They proposed scaling the errors
based on the in-sample MAE from the naı̈ve forecast method. Thus, a scaled
error is defined as

qt =
et

1
n − 1

n

∑
i=2

|yi − yi−1|
,

which is independent of the scale of the data. A scaled error is less than one
if it arises from a better forecast than the average one-step naı̈ve forecast
computed in-sample. Conversely, it is greater than one if the forecast is worse
than the average one-step naı̈ve forecast computed in-sample.

The mean absolute scaled error is simply

MASE = mean(|qt|).

The in-sample MAE is used in the denominator as it is always available
and effectively scales the errors. In contrast, the out-of-sample MAE for the
naı̈ve method can be based on very few observations and is therefore more
variable. For some data sets, it can even be zero. Consequently, the in-sample
MAE is preferable in the denominator.
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The MASE can be used to compare forecast methods on a single series,
and to compare forecast accuracy between series as it is scale-free. It is the
only available method which can be used in all circumstances.

2.8 Model Selection

The forecast accuracy measures described in the previous section can be used
to select a model for a given set of data, provided the errors are computed
from data in a hold-out set and not from the same data as were used for
model estimation. However, there are often too few out-of-sample errors to
draw reliable conclusions. Consequently, a penalized method based on in-
sample fit is usually better.

One such method is via a penalized likelihood such as Akaike’s information
criterion:

AIC = L∗(θ̂, x̂0) + 2q,

where q is the number of parameters in θ plus the number of free states
in x0, and θ̂ and x̂0 denote the estimates of θ and x0. (In computing the
AIC, we also require that the state space model has no redundant states—see
Sect. 10.1, p. 149.) We select the model that minimizes the AIC amongst all of
the models that are appropriate for the data.

The AIC also provides a method for selecting between the additive
and multiplicative error models. Point forecasts from the two models are
identical, so that standard forecast accuracy measures such as the MSE or
MAPE are unable to select between the error types. The AIC is able to select
between the error types because it is based on likelihood rather than one-step
forecasts.

Obviously, other model selection criteria (such as the BIC) could also
be used in a similar manner. Model selection is explored in more detail in
Chap. 7.

2.8.1 Automatic Forecasting

We combine the preceding ideas to obtain a robust and widely applicable
automatic forecasting algorithm. The steps involved are summarized below:

1. For each series, apply all models that are appropriate, optimizing the
parameters of the model in each case.

2. Select the best of the models according to the AIC.
3. Produce point forecasts using the best model (with optimized parameters)

for as many steps ahead as required.
4. Obtain prediction intervals5 for the best model either using the analyti-

cal results, or by simulating future sample paths for {yn+1, . . . , yn+h} and

5 The calculation of prediction intervals is discussed in Chap. 6.
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finding the α/2 and 1− α/2 percentiles of the simulated data at each fore-
casting horizon. If simulation is used, the sample paths may be generated
using the Gaussian distribution for errors (parametric bootstrap) or using
the resampled errors (ordinary bootstrap).

This algorithm resulted in the forecasts shown in Fig. 2.1. The models
chosen were:

• ETS(A,Ad,N) for monthly US 10-year bond yields
(α = 0.99, β = 0.12, φ = 0.80, �0 = 5.30, b0 = 0.71)

• ETS(M,Md,N) for annual US net electricity generation
(α = 0.99, β = 0.01, φ = 0.97, �0 = 262.5, b0 = 1.12)

• ETS(A,N,A) for quarterly UK passenger vehicle production
(α = 0.61, γ = 0.01, �0 = 343.4, s−3 = 24.99, s−2 = 21.40, s−1 = −44.96,
s0 = −1.42)

• ETS(M,A,M) for monthly Australian overseas visitors
(α = 0.57, β = 0.01, γ = 0.19, �0 = 86.2, b0 = 2.66, s−11 = 0.851, s−10 =
0.844, s−9 = 0.985, s−8 = 0.924, s−7 = 0.822, s−6 = 1.006, s−5 = 1.101,
s−4 = 1.369, s−3 = 0.975, s−2 = 1.078, s−1 = 1.087, s0 = 0.958)

Although there is a lot of computation involved, it can be handled
remarkably quickly on modern computers. The forecasts shown in Fig. 2.1
took a few seconds on a standard PC.

Hyndman et al. (2002) applied this automatic forecasting strategy to the
M-competition data (Makridakis et al. 1982) and IJF-M3 competition data
(Makridakis and Hibon 2000), and demonstrated that the methodology is
particularly good at short-term forecasts (up to about six periods ahead), and
especially for seasonal short-term series (beating all other methods in the
competition for these series).

2.9 Exercises

Exercise 2.1. Consider the innovations state space model (2.12). Equations
(2.12a) and (2.12b) are called the measurement equation and transition equation
respectively:

a. For the ETS(A,Ad,N) model, write the measurement equation and transi-
tion equations with a separate equation for each of the two states (level
and growth).

b. For the ETS (A,Ad,N) model, write the measurement and transition equa-
tions in matrix form, defining xt, w(xt−1), r(xt−1), f (xt−1), and g(xt−1).
See Sect. 2.5.1 for an example based on the ETS(A,A,N) model.

c. Repeat parts a and b for the ETS(A,A,A) model.
d. Repeat parts a and b for the ETS(M,Ad,N) model.
e. Repeat parts a and b for the ETS(M,Ad,A) model.
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Exercise 2.2. Use the innovations state space model, including the assump-
tions about εt, to derive the specified point forecast,

ŷt+h|t = µt+h|t = E(yt+h | xt),

and variance of the forecast error,

vt+h|t = V(yt+h | xt),

for the following models:

a. For ETS(A,N,N), show ŷt+h|t = �t and vt+h|t = σ2[1 + (h − 1)α2].
b. For ETS(A,A,N), show ŷt+h|t = �t + hbt and

vt+h|t = σ2
[
1 +

h−1

∑
j=1

(α + βj)2
]

c. For ETS(M,N,N), show ŷt+h|t = �t, vt+1|t = �2
t σ2, and

vt+2|t = �2
t

[
(1 + α2σ2)(1 + σ2) − 1

]
.

Exercise 2.3. Use R to reproduce the results in Sect. 2.8.1 for each of the four
time series: US 10-year bond yields, US net electricity, UK passenger vehicle
production, and Australian overseas visitors. The data sets are named bonds,
usnetelec, ukcars and visitors respectively. The ets() function found in
the forecast package can be used to specify the model or to automatically
select a model.

Exercise 2.4. Using the results of Exercise 2.3, use R to reproduce the results
in Fig. 2.1 for point forecasts and prediction intervals for each of the four
time series. The forecast() function in the forecast package can be used
to produce the point forecasts and prediction intervals for each model found
in Exercise 2.3.
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Linear Innovations State
Space Models

In Chap. 2, state space models were introduced for all 15 exponential smooth-
ing methods. Six of these involved only linear relationships, and so are
“linear innovations state space models.” In this chapter, we consider linear
innovations state space models, including the six linear models of Chap. 2,
but also any other models of the same form. The advantage of working with
the general framework is that estimation and prediction methods for the gen-
eral model automatically apply to the six special cases in Chap. 2 and other
cases conforming to its structure. There is no need to derive these results on
a case by case basis.

The general linear innovations state space model is introduced in Sect. 3.1.
Section 3.2 provides a simple algorithm for computing the one-step predic-
tion errors (or innovations); it is this algorithm which makes innovations
state space models so appealing. Some of the properties of the models,
including stationarity and stability, are discussed in Sect. 3.3. In Sect. 3.4 we
discuss some basic innovations state space models that were introduced
briefly in Chap. 2. Interesting variations on these models are considered in
Sect. 3.5.

3.1 The General Linear Innovations State Space Model

In a state space model, the observed time series variable yt is supplemented
by unobserved auxiliary variables called states. We represent these auxiliary
variables in a single vector xt, which is called the state vector. The state vector
is a parsimonious way of summarizing the past behavior of the time series
yt, and then using it to determine the effect of the past on the present and
future behavior of the time series.
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The general1 linear innovations state space model is

yt = w′xt−1 + εt, (3.1a)
xt = Fxt−1 + gεt, (3.1b)

where yt denotes the observed value at time t and xt is the state vector. This
is a special case of the more general model (2.12). In exponential smoothing,
the state vector contains information about the level, growth and seasonal
patterns. For example, in a model with trend and seasonality, xt = (�t, bt,
st, st−1, . . . , st−m+1)′.

From a mathematical perspective, the state variables are essentially
redundant. In Chap. 11, it will be shown that the state variables contained in
the state vector can be substituted out of the equations in which they occur to
give a reduced form of the model. So why use state variables at all? They help
us to define large complex models by first breaking them into smaller, more
manageable parts, thus reducing the chance of model specification errors.
Further, the components of the state vector enable us to gain a better under-
standing of the structure of the series, as can be seen from Table 2.1. In
addition, this structure enables us to explore the need for each component
separately and thereby to carry out a systematic search for the best model.

Equation (3.1a) is called the measurement equation. The term w′xt−1
describes the effect of the past on yt. The error term εt describes the unpre-
dictable part of yt. It is usually assumed to be from a Gaussian white noise
process with variance σ2. Because εt represents what is new and unpre-
dictable, it is referred to as the innovation. The innovations are the only source
of randomness for the observed time series, {yt}.

Equation (3.1b) is known as the transition equation. It is a first-order recur-
rence relationship that describes how the state vectors evolve over time.
F is the transition matrix. The term Fxt−1 shows the effect of the past on
the current state xt. The term gεt shows the unpredictable change in xt. The
vector g determines the extent of the effect of the innovation on the state. It is
referred to as a persistence vector. The transition equation is the mechanism for
creating the inter-temporal dependencies between the values of a time series.

The k-vectors w and g are fixed, and F is a fixed k × k matrix. These fixed
components usually contain some parameters that need to be estimated.

The seed value x0 for the transition equation may be fixed or random.
The process that generates the time series may have begun before period 1,
but data for the earlier periods are not available. In this situation, the start-up
time of the process is taken to be −∞, and x0 must be random. We say that
the infinite start-up assumption applies. This assumption is typically valid in
the study of economic variables. An economy may have been operating for
many centuries but an economic quantity may not have been measured until
relatively recent times. Consideration of this case is deferred to Chap. 12.

1 An even more general form is possible by allowing w, F and g to vary with time,
but that extension will not be considered here.
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Alternatively, the process that generates a time series may have started
at the beginning of period 1, and x0 is then fixed. In this case we say that
the finite start-up assumption applies. For example, if yt is the demand for
an inventory item, the start-up time corresponds to the date at which the
product is introduced. The theory presented in this and most subsequent
chapters is based on the finite start-up assumption with fixed x0.

Upon further consideration, we see that even when a series has not
been observed from the outset, we may choose to condition upon the state
variables at time zero. We then employ the finite start-up assumption with
fixed x0.

Model (3.1) is often called the Gaussian innovations state space model
because it is defined in terms of innovations that follow a Gaussian distribu-
tion. It may be contrasted with alternative state space models, considered in
Chap. 13, which involve different and uncorrelated sources of randomness in
(3.1a) and (3.1b), rather than a single source of randomness (the innovations)
in each case.

The probability density function for y = [y1, . . . , yn] is a function of the
innovations and has the relatively simple form

p(y | x0) =
n

∏
t=1

p(yt | y1, . . . , yt−1, x0)

=
n

∏
t=1

p(yt | xt−1)

=
n

∏
t=1

p(εt).

If we assume that the distribution is Gaussian, this expression becomes:

p(y | x0) = (2πσ2)−n/2 exp
(
− 1

2

n

∑
t=1

ε2
t /σ2

)
. (3.2)

This is easily evaluated provided we can compute the innovations {εt}.
A simple expression for this computation is given in the next section.

3.2 Innovations and One-Step-Ahead Forecasts

If the value for x0 is known, the innovation εt is a one-step-ahead prediction
error. This can be seen by applying (3.1a) and (3.1b) to obtain

E(yt | yt−1, . . . , y1, x0) = E(yt | xt−1) = w′xt−1.

Then the prediction of yt, given the initial value x0 and observations
y1, . . . , yt−1, is w′xt−1. If we denote the prediction by ŷt|t−1, the innovations
can be computed recursively from the series values using the relationships
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ŷt|t−1 = w′xt−1, (3.3a)

εt = yt − ŷt|t−1, (3.3b)

xt = Fxt−1 + gεt. (3.3c)

This transformation will be called general exponential smoothing. It was first
outlined by Box and Jenkins (Box et al. 1994, pp. 176–180) in a much
overlooked section of their book.

The forecasts obtained with this transformation are linear functions of
past observations. To see this, first substitute (3.3a) and (3.3b) into (3.3c) to
find

xt = Dxt−1 + gyt, (3.4)

where D = F − gw′. Then back-solve the recurrence relationship (3.4) to
give

xt = Dtx0 +
t−1

∑
j=0

D jgyt−j. (3.5)

This result indicates that the current state xt is a linear function of the seed
state x0 and past and present values of the time series. Finally, substitute
(3.5), lagged by one period, into (3.3a) to give

ŷt|t−1 = at +
t−1

∑
j=1

cjyt−j, (3.6)

where at = w′Dt−1x0 and cj = w′D j−1g. Thus, the forecast is a linear
function of the past observations and the seed state vector.

Equations (3.1), (3.3), and (3.4) demonstrate the beauty of the innovations
approach. We may start from the state space model in (3.1) and generate
the one-step-ahead forecasts directly using (3.3). When a new observation
becomes available, the state vector is updated using (3.4), and the new one-
step-ahead forecast is immediately available. As we shall see in Chap. 13,
other approaches achieve the updating and the transition from model to
forecast function with less transparency and considerably more effort.

3.3 Model Properties

3.3.1 Stability and Forecastability

When the forecasts of yt are unaffected by observations in the distant past,
we describe the model as forecastable. Specifically, a forecastable model has
the properties

∞

∑
j=1

|cj| < ∞ and lim
t→∞

at = a. (3.7)
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Our definition of forecastability allows the initial state x0 to have an ongoing
effect on forecasts, but it prevents observations in the distant past having any
effect. In most cases, a = 0, but not always; an example with a �= 0 is given
in Sect. 3.5.2.

A sufficient, but not necessary, condition for (3.7) to hold is that the eigen-
values of D lie inside the unit circle. In this case, D j converges to a null
matrix as j increases. This is known as the “stability condition” and such
models are called stable. D is called the discount matrix. In a stable model, the
coefficients of the observations in (3.6) decay exponentially. The exponential
decline in the importance of past observations is a property that is closely
associated with exponential smoothing.

It turns out that sometimes at converges to a constant and the coefficients
{cj} converge to zero even when D has a unit root. In this case, the forecasts
of yt are unaffected by distant observations, while the forecasts of xt may
be affected by distant past observations even for large values of t. Thus, any
stable model is also forecastable, but some forecastable models are not sta-
ble. Examples of unstable but forecastable models are given in Chap. 10. The
stability condition on D is closely related to the invertibility restriction for
ARIMA models; this is discussed in more detail in Chap. 11.

3.3.2 Stationarity

The other matrix that controls the model properties is the transition matrix,
F . If we iterate (3.1b), we obtain

xt = Fxt−1 + gεt

= F 2xt−2 + Fgεt−1 + gεt
...

= F tx0 +
t−1

∑
j=0

F jgεt−j.

Substituting this result into (3.1a) gives

yt = dt +
t−1

∑
j=0

kjεt−j, (3.8)

where dt = w′F t−1x0, k0 = 1 and kj = w′F j−1g for j = 1, 2, . . . . Thus,
the observation is a linear function of the seed state x0 and past and present
errors. Any linear innovations model may be represented in the form (3.8);
this is an example of a finite Wold decomposition (Brockwell and Davis 1991,
p. 180).
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The model is described as stationary2 if

∞

∑
j=0

|kj| < ∞ and lim
t→∞

dt = d. (3.9)

In such a model, the coefficients of the errors in (3.8) converge rapidly to zero,
and the impact of the seed state vector diminishes over time.

We may then consider the limiting form of the model, corresponding to
the infinite start-up assumption. Equation (3.8) becomes

yt = d +
∞

∑
j=0

kjεt−j.

This form is known as the Wold decomposition for a stationary series. It
follows directly that E(yt) = d and V(yt) = σ2 ∑∞

j=0 k2
j .

A sufficient, but not necessary, condition for stationarity to hold is for
the absolute value of each eigenvalue of F to lie strictly in the unit interval
(0, 1). Then F j converges to a null matrix as j increases. As with the stabil-
ity property, it turns out that sometimes dt converges to a constant and the
coefficients {kj} converge to zero even when F has a unit root. However,
this does not occur with any of the models we consider, and so it will not be
discussed further.

Stationarity is a rare property in exponential smoothing state space mod-
els. None of the models discussed in Chap. 2 are stationary. The six linear
models described in that chapter have at least one unit root for the F
matrix. However, it is possible to define stationary models in the exponen-
tial smoothing framework; an example of such a model is given in Sect. 3.5.1,
where all of the transition equations involve damping.

3.4 Basic Special Cases

The linear innovations state space model effectively contains an infinite num-
ber of special cases that can potentially be used to model a time series; that is,
to provide a stochastic approximation to the data generating process of a time
series. However, in practice we use only a handful of special cases that pos-
sess the capacity to represent commonly occurring patterns such as trends,
seasonality and business cycles. Many of these special cases were introduced
in Chap. 2.

The simplest special cases are based on polynomial approximations of
continuous real functions. A polynomial function can be used to approxi-
mate any real function in the neighborhood of a specified point (this is known

2 The terminology “stationary” arises because the distribution of (yt, yt+1, . . . , yt+s)
does not depend on time t when the initial state x0 is random.
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as Taylor’s theorem in real analysis). To demonstrate the idea, we temporar-
ily take the liberty of representing the data by a continuous path, despite the
fact that business and economic data are typically collected at discrete points
of time.

The first special case to be considered, the local level model, is a zero-
order polynomial approximation. As depicted in Fig. 3.1a, at any point along
the data path, the values in the neighborhood of the point are approximated
by a short flat line representing what is referred to as a local level. As its
height changes over time, it is necessary to approximate the data path by
many local levels. Thus, the local level effectively represents the state of a
process generating a time series.

The gap between successive levels is treated as a random variable. More-
over, this random variable is assumed to have a Gaussian distribution that
has a zero mean to ensure that the level is equally likely to go up or down.

(a) Local level approximation
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(b) Local trend approximation
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Fig. 3.1. Schematic representation of (a) a local level model; and (b) a local trend
model.
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The final local level is projected into the future to give predictions. As
the approximation is only effective in a small neighborhood, predictions
generated this way are only likely to be reliable in the shorter term.

The second special case involves a first-order polynomial approximation.
At each point, the data path is approximated by a straight line. In the deter-
ministic world of analysis, this line would be tangential to the data path at
the selected point. In the stochastic world of time series data, it can only be
said that the line has a similar height and a similar slope to the data path.
Randomness means that the line is not exactly tangential. The approximat-
ing line changes over time, as depicted in Fig. 3.1b, to reflect the changing
shape of the data path. The state of the process is now summarized by the
level and the slope at each point of the path. The stochastic representation is
based on the assumption that the gaps between successive slopes are Gaus-
sian random variables with a zero mean. Note that the prediction is obtained
by projecting the last linear approximation into the future.

It is possible to move beyond linear functions to higher order polynomials
with quadratic or cubic terms. However, these extensions are rarely used
in practice. It is commonly thought that the randomness found in real time
series typically swamps and hides the effects of curvature.

Another strategy that does often bear fruit is the search for periodic
behavior in time series caused by seasonal effects. Ignoring growth for the
moment, the level in a particular month may be closer to the level in the
corresponding month in the previous year than to the level in the preceding
month. This leads to seasonal state space models.

3.4.1 Local Level Model: ETS(A,N,N)

The simplest way to transmit the history of a process is through a single
state, �t, called the level. The resulting state space model is defined by the
equations

yt = �t−1 + εt, (3.10a)
�t = �t−1 + αεt, (3.10b)

where εt ∼ NID(0, σ2). It conforms to a state space structure with xt = �t,
w = 1, F = 1 and g = α. The values that are generated by this stochastic
model are randomly scattered about the (local) levels as described in (3.10a).
This is illustrated in Fig. 3.2 with a simulated series.

In demand applications, the level �t−1 represents the anticipated demand
for period t, and εt represents the unanticipated demand. Changes to the
underlying level may be induced by changes in the customer base such as
the arrival of new customers, or by new competitors entering the market.
Changes like these transcend a single period and must affect the underlying
level. It is assumed that the unanticipated demand includes a persistent and
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Fig. 3.2. Simulated series from the ETS(A,N,N) model. Here α = 0.1 and σ = 5.

a temporary effect; αεt denotes the persistent effect, feeding through to future
periods via the (local) levels governed by (3.10b).

The degree of change of successive levels is governed by the size of the
smoothing parameter α. The cases where α = 0 and α = 1 are of special
interest.

Case: α = 0 The local levels do not change at all when α = 0. Their com-
mon level is then referred to as the global level. Successive values of the
series yt are independently and identically distributed. Its moments do
not change over time.

Case: α = 1 The model reverts to a random walk yt = yt−1 + εt. Successive
values of the time series yt are clearly dependent.

The special case of transformation (3.3) for model (3.10) is

ŷt|t−1 = �t−1,

εt = yt − �t−1,
�t = �t−1 + αεt.

It corresponds to simple exponential smoothing (Brown 1959), one of the
most widely used methods of forecasting in business applications. It is a
simple recursive scheme for calculating the innovations from the raw data.
Equation (3.4) reduces to

�t = (1 − α)�t−1 + αyt. (3.11)
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The one-step-ahead predictions obtained from this scheme are linearly
dependent on earlier series values. Equation (3.6) indicates that

ŷt+1|t = (1 − α)t�0 + α
t−1

∑
j=0

(1 − α)jyt−j. (3.12)

This is a linear function of the data and seed level. Ignoring the first term
(which is negligible for large values of t and |1 − α| < 1), the prediction
ŷt|t−1 is an exponentially weighted average of past observations. The coefficients
depend on the “discount factor” 1 − α. If |1 − α| < 1, then the coefficients
become smaller as j increases. That is, the stability condition is satisfied if and
only if 0 < α < 2. The coefficients are positive if and only if 0 < (1 − α) < 1,
and (3.11) can then be interpreted as a weighted average of the past level �t−1
and the current series value yt. Thus, the prediction can only be interpreted
as a weighted average if 0 < α < 1.

Consequently, there are two possible ranges for α that have been pro-
posed: 0 < α < 2 on the basis of a stability argument, and 0 < α < 1 on
the basis of an interpretation as a weighted average. The narrower range is
widely used in practice.

The impact of various values of α may be discerned from Fig. 3.3. It shows
simulated time series from an ETS(A,N,N) model with �0 = 100 and σ = 5
for various values of α. The same random number stream from a Gaussian
distribution was used for the three series, so that any perceived differences
can be attributed entirely to changes in α. For the case α = 0.1, the underlying
level is reasonably stable. The plot has a jagged appearance because there is a
tendency for the series to switch direction between successive observations.
This is a consequence of the fact, shown in Chap. 11, that successive first-
differences of the series, ∆yt and ∆yt−1, are negatively correlated when α is
restricted to the interval (0, 1). When α = 0.5, the underlying level displays
a much greater tendency to change. There is still a tendency for successive
observations to move in opposite directions. In the case α = 1.5, there is
an even greater tendency for the underlying level to change. However, the
series is much smoother. This reflects the fact, also established in Chap. 11,
that successive first-differences of the series are positively correlated for cases
where α lies in the interval (1, 2).

3.4.2 Local Trend Model: ETS(A,A,N)

The local level model can be augmented by a growth rate bt to give

yt = �t−1 + bt−1 + εt, (3.13a)
�t = �t−1 + bt−1 + αεt, (3.13b)
bt = bt−1 + βεt, (3.13c)
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Fig. 3.3. Comparison of simulated time series from a local level model. Here σ = 5.

where there are now two smoothing parameters α and β. The growth rate
(or slope) bt may be positive, zero or negative. Model (3.13) has a state space
structure with

xt =
[
�t bt

]′ , w =
[
1 1
]′ , F =

[
1 1
0 1

]
and g =

[
α β
]′ .

The size of the smoothing parameters reflects the impact of the innova-
tions on the level and growth rate. Figure 3.4 shows simulated values from
the model for different settings of the smoothing parameters. When β = 0,
the growth rate is constant over time. If, in addition, α = 0, the level changes
at a constant rate over time. That is, there is no random change in the level
or growth. This case will be called a global trend. The constant growth rate
is sometimes interpreted as a long-term growth rate. For other values of the
smoothing parameters, the growth rate follows a random walk over time. As



44 3 Linear Innovations State Space Models

Time period

y

0 10 20 30 40

80
10

0
14

0
18

0

α = 0 and β = 0

Time period

y

0 10 20 30 40

10
0

30
0

50
0

α = 0.5 and β = 0.1

Time period

y

0 10 20 30 40

0
10

00
30

00

α = 1.2 and β = 1

Fig. 3.4. Comparison of simulated time series from a local trend model. Here σ = 5.

the smoothing parameters increase in size, there is a tendency for the series
to become smoother.

For this model, the transformation (3.3) of series values into innovations
becomes

ŷt|t−1 = �t−1 + bt−1,

εt = yt − ŷt|t−1,

�t = �t−1 + bt−1 + αεt,
bt = bt−1 + βεt.

This corresponds to Holt’s linear exponential smoothing (Holt 1957). An
equivalent system of equations is

ŷt|t−1 = �t−1 + bt−1, (3.14a)
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εt = yt − ŷt|t−1, (3.14b)

�t = αyt + (1 − α)(�t−1 + bt−1), (3.14c)
bt = β∗(�t − �t−1) + (1 − β∗)bt−1, (3.14d)

where β∗ = β/α. The term �t − �t−1 is often interpreted as the “actual
growth” as distinct from the predicted growth bt−1.

Equations (3.14c) and (3.14d) may be interpreted as weighted averages if
0 < α < 1 and 0 < β∗ < 1, or equivalently, if 0 < α < 1 and 0 < β < α. These
restrictions are commonly applied in practice. Alternatively, it can be shown
(see Chap. 10) that the model is stable (i.e., the discount matrix D j converges
to 0 as j increases) when α > 0, β > 0 and 2α + β < 4. This provides a much
larger parameter region than is usually allowed.

3.4.3 Local Additive Seasonal Model: ETS(A,A,A)

For time series that exhibit seasonal patterns, the local trend model can be
augmented by seasonal effects, denoted by st. Often the structure of the
seasonal pattern changes over time in response to changes in tastes and tech-
nology. For example, electricity demand used to peak in winter, but in some
locations it now peaks in summer due to the growing prevalence of air con-
ditioning. Thus, the formulae used to represent the seasonal effects should
allow for the possibility of changing seasonal patterns. The ETS(A,A,A)
model is

yt = �t−1 + bt−1 + st−m + εt, (3.15a)
�t = �t−1 + bt−1 + αεt, (3.15b)
bt = bt−1 + βεt, (3.15c)
st = st−m + γεt. (3.15d)

This model corresponds to the first-order state space model where

w′ =
[
1 1 0 · · · 0 1

]
,

xt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�t
bt
st

st−1
...

st−m+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 · · · 0 0
0 1 0 0 · · · 0 0
0 0 0 0 · · · 0 1
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and g =

⎡
⎢⎢⎢⎢⎢⎢⎣

α
β
γ
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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Careful inspection of model (3.15) shows that the level and seasonal terms
are confounded. If an arbitrary quantity δ is added to the seasonal elements
and subtracted from the level, the following equations are obtained

yt = (�t−1 − δ) + bt−1 + (st−m + δ) + εt,
�t − δ = �t−1 − δ + bt−1 + αεt,

bt = bt−1 + βεt,
(st + δ) = (st−m + δ) + γεt,

which is equivalent to (3.15). To avoid this problem, it is desirable to con-
strain the seasonal component so that any sequence {st, st+1, . . . , st+m−1}
sums to zero (or at least has mean zero). The seasonal components are said
to be normalized when this condition is true. Normalization of seasonal fac-
tors involves a subtle modification of the model and will be addressed in
Chap. 8. In the meantime, we can readily impose the constraint that the sea-
sonal factors in the initial state x0 must sum to zero. This means that the
seasonal components start off being normalized, although there is nothing to
constrain them from drifting away from zero over time.

The transformation from series values to prediction errors can be shown
to be

ŷt|t−1 = �t−1 + bt−1 + st−m,

εt = yt − ŷt|t−1,

�t = �t−1 + bt−1 + αεt,
bt = bt−1 + βεt,
st = st−m + γεt.

This corresponds to a commonly used additive version of seasonal expo-
nential smoothing (Winters 1960). An equivalent form of these transition
equations is

ŷt|t−1 = �t−1 + bt−1 + st−m, (3.16a)

εt = yt − ŷt|t−1, (3.16b)

�t = α(yt − st−m) + (1 − α)(�t−1 + bt−1), (3.16c)
bt = β∗(�t − �t−1) + (1 − β∗)bt−1, (3.16d)
st = γ∗(yt − �t) + (1 − γ∗)st−m, (3.16e)

where the series value is deseasonalized in the trend equations and
detrended in the seasonal equation, β∗ = β/α and γ∗ = γ/(1 − α). Equa-
tions (3.16c–e) can be interpreted as weighted averages, in which case the
natural parametric restrictions are that each of α, β∗ and γ lie in the (0, 1)
interval. Equivalently, 0 < α < 1, 0 < β < α and 0 < γ < 1 − α. However, a
consideration of the properties of the discount matrix D leads to a different
parameter region; this will be discussed in Chap. 10.
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3.5 Variations on the Common Models

A number of variations on the basic models of the previous section can be
helpful in some applications.

3.5.1 Damped Level Model

One feature of the models in the framework described in Chap. 2 is that the
mean and variance are local properties. We may define these moments given
the initial conditions, but they do not converge to a stable value as t increases
without limit. In other words, the models are all nonstationary; the F matrix
has at least one unit root in every case. However, it is possible to describe
analogous models that are stationary.

Consider the damped local level model

yt = µ + φ�t−1 + εt,
�t = φ�t−1 + αεt.

The transition matrix is simply F = φ, which has no roots greater than one
provided |φ| < 1. Thus, the model is stationary for |φ| < 1.

The discount matrix is D = φ − α. Thus, the model is stable provided
|φ − α| < 1, or equivalently, φ − 1 < α < φ + 1.

We may eliminate the state variable to arrive at

yt = µ + φt�0 + εt + α[φεt−1 + φ2εt−2 + · · ·+ φt−1ε1].

When |φ| < 1, the mean and variance approach finite limits as t → ∞:

E(yt | �0) = µ + φt�0 → µ,

V(yt | �0) = σ2
[

1 +
α2φ2(1 − φ2t−2)

1 − φ2

]
→ σ2

[
1 +

α2φ2

1 − φ2

]
.

Thus, whenever |φ| < 1, the mean reverts to the stable value µ and the vari-
ance remains finite. When the series has an infinite past, the limiting values
are the unconditional mean and variance. Such stationary series play a major
role in the development of Auto Regressive Integrated Moving Average
(ARIMA) models, as we shall see in Chap. 11.

There are two reasons why our treatment of mean reversion (or station-
arity) is so brief. First, the use of a finite start-up assumption means that
stationarity is not needed in order to define the likelihood function. Sec-
ond, stationary series are relatively uncommon in business and economic
applications. Nevertheless, our estimation procedures (Chap. 5) allow mean
reverting processes to be fitted if required.
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3.5.2 Local Level Model with Drift

A local trend model allows the growth rate to change stochastically over
time. If β = 0, the growth rate is constant and equal to a value that will
be denoted by b. The local level model then reduces to

yt = �t−1 + b + εt,
�t = b + �t−1 + αεt,

where εt ∼ NID(0, σ2). It is called a “local level model with drift” and has a
state space structure with

xt =
[
�t b
]′ , w =

[
1 1
]′ , F =

[
1 1
0 1

]
and g =

[
α 0
]′ .

This model can be applicable to economic time series that display an
upward (or downward) drift. It is sometimes preferred for longer term
forecasting because projections are made with the average growth that has
occurred throughout the sample rather than a local growth rate, which
essentially represents the growth rate that prevails towards the end of the
sample.

The discount matrix for this model is

D =
[

1 − α 1 − α
0 1

]
,

which has eigenvalues of 1 and 1 − α. Thus, the model is not stable as D j

does not converge to 0. It is, however, forecastable, provided 0 < α < 2.
The model is also forecastable when α = 0, as it then reduces to the linear
regression model yt = �0 + bt + εt. Discussion of this type of discount matrix
will occur in Chap. 10.

The local level model with drift is also known as “simple exponential
smoothing with drift.” Hyndman and Billah (2003) showed that this model
is equivalent to the “Theta method” of Assimakopoulos and Nikolopoulos
(2000) with b equal to half the slope of a linear regression of the observed
data against their time of observation.

3.5.3 Damped Trend Model: ETS(A,Ad,N)

Another possibility is to take the local trend model and dampen its growth
rate with a factor φ in the region 0 ≤ φ < 1. The resulting model is

yt = �t−1 + φbt−1 + εt,
�t = �t−1 + φbt−1 + αεt,
bt = φbt−1 + βεt.
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The characteristics of the damped local trend model are compatible with fea-
tures observed in many business and economic time series. It sometimes
yields better forecasts than the local trend model. Note that the local trend
model is a special case where φ = 1.

The ETS(A,Ad,N) model performs remarkably well when forecasting real
data (Fildes 1992).

3.5.4 Seasonal Model Based only on Seasonal Levels

If there is no trend in a time series with a seasonal pattern, the ETS(A,N,A)
model can be simplified to a model that has a different level in each season.
A model for a series with m periods per annum is

yt = �t−m + εt, (3.17a)
�t = �t−m + αεt. (3.17b)

It conforms to a state space model where

w′ =
[
0 0 · · · 1

]
,

xt =

⎡
⎢⎢⎢⎣

�t
�t−1

...
�t−m+1

⎤
⎥⎥⎥⎦ F =

⎡
⎢⎢⎢⎢⎣

0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎦ and g =

⎡
⎢⎢⎣

α
0
...
0

⎤
⎥⎥⎦ .

The weighted average requirement is satisfied if 0 < α < 1. Because there is
no link between the observations other than those m periods apart, we may
consider the m sub-models separately. It follows directly that the model is
stable when all the sub-models are stable, which is true provided 0 < α < 2.

3.5.5 Parsimonious Local Seasonal Model

The problem with the seasonal models (3.15) and (3.17) is that they poten-
tially involve a large number of states, and the initial seed state x0 contains a
set of parameters that need to be estimated. Modeling weekly demand data,
for example, would entail 51 independent seed values for the seasonal recur-
rence relationships. Estimation of the seed values then makes relatively high
demands on computational facilities. Furthermore, the resulting predictions
may not be as robust as those from more parsimonious representations.

To emphasize the possibility of a more parsimonious approach, consider
the case of a product with monthly sales that peak in December for Christ-
mas, but which tend to be the same, on average, in the months of January
to November. There are then essentially two seasonal components, one for
the months of January to November, and a second for December. There is no
need for 12 separate monthly components.
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We require a seasonal model in a form that allows a reduced number
of seasonal components. First, redefine m to denote the number of seasonal
components, as distinct from the number of seasons per year. In the above
example, m = 2 instead of 12. An m-vector zt indicates which seasonal com-
ponent applies in period t. If seasonal component j applies in period t, then
the element ztj = 1 and all other elements equal 0. It is assumed that the typ-
ical seasonal component j has its own level, which in period t is denoted by
�tj. The levels are collected into an m-vector denoted by �t. Then the model is

yt = z′
t�t−1 + bt−1 + εt, (3.18a)

�t = �t−1 + 1bt−1 + (1α + ztγ)εt, (3.18b)
bt = bt−1 + βεt, (3.18c)

where 1 represents an m-vector of ones. The term z′
t�t−1 picks out the level

of the seasonal component relevant to period t. The term 1bt−1 ensures that
each level is adjusted by the same growth rate. It is assumed that the random
change has a common effect and an idiosyncratic effect. The term 1αεt repre-
sents the common effect, and the term ztβεt is the adjustment to the seasonal
component associated with period t.

This model must be coupled with a method that searches systematically
for months that possess common seasonal components. We discuss this prob-
lem in Chap. 14. In the special case where no common components are found
(e.g., m = 12 for monthly data), the above model is then equivalent to the
seasonal model in Sect. 3.4.3. If, in addition, there is no growth, the model is
equivalent to the seasonal level model in Sect. 3.5.4.

Model (3.18) is easily adapted to handle multiple seasonal patterns. For
example, daily demand may be influenced by a trading cycle that repeats
itself every week, in addition to a seasonal pattern that repeats itself annually.
Extensions of this kind are also considered in Chap. 14.

An important point to note is that this seasonal model does not conform
to the general form (3.1), because the g and w vectors are time-dependent. A
more general time-varying model must be used instead.

3.5.6 Composite Models

Two different models can be used as basic building blocks to yield even
larger models. Suppose two basic innovations state space models indexed
by i = 1, 2 are given by

yt = w′
ixi,t−1 + ε it,

xit = Fixi,t−1 + giε it,
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where ε it ∼ NID(0, vi). A new model can be formed by combining them as
follows:

yt = w′
1x1,t−1 + w′

2x2,t−1 + εt,[
x1t
x2t

]
=
[
F1 0
0 F2

] [
x1,t−1
x2,t−1

]
+
[
g1
g2

]
εt.

For example, the local trend model (3.13) in Sect. 3.4.2 and the seasonal
model (3.17) in Sect. 3.5.4 can be combined using this principle. To avoid con-
flict with respect to the levels, the �t in the seasonal model (3.17) is replaced
by st. The resulting model is the local additive seasonal model (3.15) in
Sect. 3.4.3.

3.6 Exercises

Exercise 3.1. Consider the local level model ETS(A,N,N). Show that the pro-
cess is forecastable and stationary when α = 0 but that neither property holds
when α = 2.

Exercise 3.2. Consider the local level model with drift, defined in Sect. 3.5.2.
Define the detrended variable z1t = yt − bt and the differenced variable z2t =
yt − yt−1. Show that both of these processes are stable provided 0 < α < 2
but that only z2t is stationary.

Exercise 3.3. Consider the local level model ETS(A,N,N). Show that the mean
and variance for yt|�0 are �0 and �0

2(1 + (t − 1)α2) respectively.

Exercise 3.4. For the damped trend model ETS(A,Ad,N), find the discount
matrix D and its eigenvalues.
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Nonlinear and Heteroscedastic
Innovations State Space Models

In this chapter we consider a broader class of innovations state space mod-
els, which enables us to examine multiplicative structures for any or all of
the trend, the seasonal pattern and the innovations process. This general
class was introduced briefly in Sect. 2.5.2. As for the linear models intro-
duced in the previous chapter, this discussion will pave the way for a general
discussion of estimation and prediction methods later in the book.

One of the intrinsic advantages of the innovations framework is that we
preserve the ability to write down closed-form expressions for the recursive
relationships and point forecasts. In addition, the time series may be repre-
sented as a weighted sum of the innovations, where the weights for a given
innovation depend only on the initial conditions and earlier innovations, so
that the weight and the innovation are conditionally independent. As before,
we refer to this structure as the innovations representation of the time series.
We find that these models are inherently similar to those for the linear case.

The general innovations form of the state space model is introduced in
Sect. 4.1 and various special cases are considered in Sect. 4.2. We then exam-
ine seasonal models in Sect. 4.3. Finally, several variations on the core models
are examined in Sect. 4.4.

4.1 Innovations Form of the General State Space Model

We employ the same basic notation as in Sect. 3.1, so that yt denotes the ele-
ment of the time series corresponding to time t. Prior to time t, yt denotes a
random variable, but it becomes a fixed value after being observed. The first
n values of a time series form the n-vector y.

Following the discussion in Sects. 2.5.2 and 3.1, we define the model for
the variable of interest, yt, in terms of the state variables that form the state
vector, xt. We will select the elements of the state vector to describe the trend
and seasonal elements of the series, using these terms as building blocks to
enable us to formulate a model that captures the key components of the data
generating process.
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From Sect. 2.5.2, we specify the general model with state vector xt =
(�t, bt, st, st−1, . . . , st−m+1)′ and state space equations of the form:

yt = w(xt−1) + r(xt−1)εt, (4.1a)
xt = f(xt−1) + g(xt−1)εt, (4.1b)

where r(·) and w(·) are scalar functions, f(·) and g(·) are vector func-
tions, and εt is a white noise process with variance σ2. Note that we do
not specify that the process is Gaussian because such an assumption may
conflict with the underlying structure of the data generating process (e.g.,
when the series contains only non-negative values). Nevertheless, the Gaus-
sian assumption is often a reasonable approximation when the level of the
process is sufficiently far from the origin (or, more generally, the region
of impossible values) and it will then be convenient to use the Gaussian
assumption as a basis for inference. The functions in this model may all be
time-indexed, but we shall concentrate on constant functions (the invariant
form), albeit with time-varying arguments. In Chap. 3, the functions r and
g were constants, whereas w and f were linear in the state vector. The sim-
plest nonlinear scheme of interest corresponds to {w(xt−1) = r(xt−1) =
f (xt−1) = �t−1; g(xt−1) = α�t−1} or

yt = �t−1(1 + εt), (4.2a)
�t = �t−1(1 + αεt). (4.2b)

These equations describe the ETS(M,N,N) or local level model given in
Table 2.3 (p. 22). We may eliminate the state variable between (4.2a) and
(4.2b) to arrive at a reduced form for the model:

yt = yt−1(1 + εt)(1 + αεt−1)/(1 + εt−1),

yt = �0(1 + εt)
t−1

∏
j=1

(1 + αε j).

We may also eliminate εt to arrive at the recursive relationship:

�t = �t−1 + α(yt − �t−1),
= αyt + (1 − α)�t−1.

The recursive relationship for ETS(M,N,N) is thus seen to be identical to
that for ETS(A,N,N). However, the reduced form equations are clearly dif-
ferent, showing that the predictive distributions (and hence the prediction
intervals) will differ. This difference underlies the need for a stochastic model
for a time series; once a suitable model is selected, valid prediction inter-
vals can be generated. Without an underlying model, only point forecasts
are possible.

Given the insights provided by the local level model, we may approach
the general model in the same way. Reduced-form expressions do not take
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on a useful form without additional assumptions about the various func-
tions in the model. However, we may eliminate the error term to arrive at
the recursive relationship:

xt = f(xt−1) + g(xt−1)
[yt − w(xt−1)]

r(xt−1)
. (4.3)

Further, for convenience, we write

D(xt) = f(xt) − [g(xt)w(xt)]
r(xt)

,

so that
xt = D(xt−1) − g(xt−1)

yt

r(xt−1)
.

We may observe that D(xt) becomes linear in the state variables when
f(xt) and g(xt) are linear in xt and w(xt) = r(xt). Further, when the vector
g(xt)/r(xt) does not depend on the state variables, the transition equations
given in (4.3) reduce to

xt = Dxt−1 − gyt.

It then follows that the model is stable in the sense of Sect. 3.3.1. These con-
ditions may seem restrictive, but they correspond to an important class of
heteroscedastic models, as we shall see below.

The conditional expectation, which is also the one-step-ahead point
forecast ŷt|t−1, is given by:

E(yt|yt−1, . . . , y1, x0) = E(yt|xt−1) = ŷt|t−1 = w(xt−1),

so that the recursive relationships may be summarized as:

ŷt|t−1 = w(xt−1),

εt = (yt − ŷt|t−1)/r(xt−1),

xt = f(xt−1) + g(xt−1)εt.

Once the model has been fully specified, updating proceeds directly
using these equations. This approach is in stark contrast to models based
on the Kalman filter using multiple independent sources of error. In that
case, no direct updating is feasible in general, and we must make use of var-
ious approximations such as the extended Kalman filter (West and Harrison
1997, pp. 496–497). The present form is too general for any meaningful dis-
cussion of particular model properties, and so we will consider these on a
case-by-case basis.



56 4 Nonlinear and Heteroscedastic Innovations State Space Models

As with the linear version in Sect. 3.1, the probability density function for
y may be written in a relatively simple form as:

p(y | x0) =
n

∏
t=1

p(yt | xt−1)

=
n

∏
t=1

p(εt)/|r(xt−1)|.

If we assume that the distribution is Gaussian, this expression becomes:

p(y) = (2πσ2)−n/2
∣∣∣∣ n

∏
t=1

r(xt−1)
∣∣∣∣
−1

exp
(
− 1

2

n

∑
t=1

ε2
t /σ2

)
.

4.2 Basic Special Cases

We now explore some of the special cases that can be used to model time
series, recognizing as always that such models are at best an approxima-
tion to the data generating process. We observed in Chap. 2 that models
in the ETS(M,∗,∗) class give rise to the same point forecasts as those in
the ETS(A,∗,∗) class, because we are deploying the same recursive relation-
ships given in Table 2.1. The stochastic elements of the process determine
whether to use the additive or multiplicative version. If the error process
is homoscedastic, the constant variance assumptions in Chap. 3 are appro-
priate, and the predictions intervals for h-steps ahead have constant widths
regardless of the current level of the process. On the other hand, if the pro-
cess is heteroscedastic, and, in particular, the error variance is proportional to
the current level of the process, the nonlinear schemes introduced in Sect. 4.1
are appropriate. Clearly other assumptions concerning the nature of the vari-
ance are possible, but we restrict our attention to the two options, additive
or multiplicative, for the present discussion. Some extensions are considered
briefly in Sect. 4.4.5.

We may justify the local models as the leading terms of a Taylor series
expansion, and the only difference we would see relative to Fig. 3.1 is that the
superimposed prediction intervals would widen when the observed value
was high and narrow when it was low. Why does this matter? Think for the
moment in terms of forecasting sales. During periods of high sales volume,
the inappropriate use of a constant variance model would lead to underesti-
mation of the level of uncertainty, and hence to a safety stock level that was
too small. Similarly, in periods of low demand, the analysis would lead to
carrying excess inventory. In either case, a loss of net revenue results. This
effect is not always easy to recognize. For example, an empirical investiga-
tion of the coverage provided by prediction intervals might simply count the
number of times the actual value fell within the prediction interval. Because
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the interval is too wide when the level is low, and too narrow at high lev-
els, the overall count might well come out close to the nominal level for the
interval. We need to track the coverage at a given level to be sure that the
prediction intervals are constructed appropriately.

4.2.1 Local Level Model: ETS(M,N,N)

This model is described by (4.2a, b).Upon inspection of these equations, we
see that the conditional variance of yt given �t−1 is σ2�2

t−1, reflecting the com-
ments made earlier. The state equation reveals that the quantity α�t−1εt has
a persistent effect, feeding into the expected level for the next time period.
When α = 0, the mean level does not change, so that the additive and multi-
plicative models are then identical apart from the way the parameters were
specified. When α = 1, the model reverts to a form of random walk with the
reduced form yt = yt−1(1 + εt); the complete effect of the random error is
passed on to the next period. In general, the one-step-ahead predictions are,
as for the additive scheme in (3.12), given by:

ŷt+1|t = (1 − α)t�0 + α
t−1

∑
j=0

(1 − α)jyt−j.

The stability condition is satisfied provided 0 < α < 2.
A natural question to ask is what difference does it make if we select the

multiplicative rather than the additive form of the local level model? Indeed,
plots of simulated series look very similar to those given in Fig. 3.2, so mean-
ingful comparisons must be sought in other ways. One approach is to look
at the conditional variances given the initial conditions. Using the subscripts
A and M for the additive and multiplicative schemes, we arrive at:

VA(yt|x0) = σ2
A[1 + (t − 1)α2],

VM(yt|x0) = x2
0[(1 + σ2

M)(1 + α2σ2
M)t−1 − 1].

In order to compare the two, we set the one-step-ahead variances equal
by putting σA = x0σM. We may then compute the ratio VM/VA for different
values of t and α:

σM 0.03 0.03 0.03 0.12 0.12 0.12
α 0.1 0.5 1.5 0.1 0.5 1.5

t = 5 1.000 1.001 1.004 1.001 1.010 1.058
t = 10 1.000 1.001 1.009 1.001 1.020 1.149
t = 20 1.000 1.002 1.019 1.006 1.040 1.364

Perusal of the table indicates that there are only substantial differences in the
variances for longer horizons with high α and relatively high values of σM.
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When σM = 0.30, the multiplicative error has a mean that is about three times
its standard deviation, and the differences become noticeable quite quickly,
as shown in this table for t = 10:

σM 0.03 0.12 0.30

α = 0.1 1.000 1.001 1.008
α = 0.5 1.001 1.020 1.134
α = 1.0 1.004 1.067 1.519
α = 1.5 1.009 1.149 2.473

The examination of stock price volatility represents an area where the
distinction could be very important. Based on the efficient market hypothesis
we would expect that α = 1. The process might be observed at hourly or
even minute intervals, yet the purpose behind the modeling would be to
evaluate the volatility (essentially as measured by the variance) over much
longer periods. In such circumstances, the use of an additive model when
a multiplicative model was appropriate could lead to considerable under-
estimation of the risks involved. Interestingly, if we start out with this form
of the random walk model and consider the reduced form of (4.2), we can
rewrite the measurement equation as:

yt − yt−1

yt−1
= εt.

That is, the one-period return on an investment follows a white noise process.
As we observed in Sect. 4.1, the Gaussian distribution is not a valid

assumption for strictly positive processes such as these multiplicative mod-
els. In applications, the prediction interval appears to be satisfactory pro-
vided the h-step-ahead forecast root mean squared error is less than about
one-quarter of the mean. In other cases, or for simulations, a more careful
specification of the error distribution may be needed (see Chap. 15).

4.2.2 Local Trend Model: ETS(M,A,N)

We may augment the local level model by adding an evolving growth rate bt
to give the new model:

yt = (�t−1 + bt−1)(1 + εt), (4.4a)
�t = (�t−1 + bt−1)(1 + αεt), (4.4b)
bt = bt−1 + β(�t−1 + bt−1)εt. (4.4c)

This model has a state space structure with:

xt = [lt, bt]′, w(xt−1) = r(xt−1) = �t−1 + bt−1,

f(xt−1) = [�t−1 + bt−1, bt−1]′, and g = [α(�t−1 + bt−1), β(�t−1 + bt−1)]
′ .



4.2 Basic Special Cases 59

Given the multiplicative nature of the model, we take the process and
the underlying level to be strictly positive; the slope may be positive, zero
or negative. There are now two smoothing parameters α and β, and they are
scaled by the current level of the process. Because the slope is typically quite
small relative to the current level of the process, the value of β will often be
small. The following special cases are worth noting:

• β = 0: a global trend
• β = 0, α = 1: random walk with a constant trend element, often known as

the random walk with drift
• β = 0, α = 0: fixed level and trend, thereby reducing to a classical or global

linear trend model

We may represent the model in innovations form as:

ŷt|t−1 = (�t−1 + bt−1),

εt = (yt − ŷt|t−1)/(�t−1 + bt−1),

�t = (�t−1 + bt−1)(1 + αεt),
bt = bt−1 + β(�t−1 + bt−1)εt.

An equivalent form that is more convenient for updating is:

ŷt|t−1 = (�t−1 + bt−1),

εt = (yt − ŷt|t−1)/(�t−1 + bt−1),

�t = αyt + (1 − α)(�t−1 + bt−1),
bt = β∗(�t − �t−1) + (1 − β∗)bt−1,

where β∗ = β/α. The state updates are of exactly the same algebraic form
as those for the additive model in (3.14). Manipulation of the state equations
provides the recursive relationships:

�t = αyt + (1 − α)(�t−1 + bt−1),
bt = β(yt − �t−1) + (1 − β)bt−1.

Following Sect. 3.3, we may write the general form of the stability
condition as constraints on

D(xt) = f(xt) − g(xt)w(xt)/r(xt)
= f(xt) − g(xt)

when w(xt−1) = r(xt−1). Given the particular form of (4.4), this expression
simplifies to

D(xt−1) = [(�t−1 + bt−1)(1 − α), bt−1 − β(�t−1 + bt−1)]′

=
[

1 − α 1 − α
−β 1 − β

]
xt−1.
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This is the same general form as for the additive models discussed in Chap. 3.
So, for the local trend model, the stability conditions remain: α > 0, β > 0
and 2α + β < 4.

4.2.3 Local Multiplicative Trend, Additive Error Model: ETS(A,M,N)

Some of the boxes in Tables 2.2 and 2.3 correspond to models that might
not occur to the model builder as prime candidates for consideration. Nev-
ertheless, we consider a few of these forms for several reasons. First of all,
if we select a model based on some kind of automated search, it is useful to
have a rich set of potential models, corresponding to the many nuances the
time series might display. Second, by exploring such models we gain a better
understanding of the attributes of various nonlinear configurations. Finally,
if our study of their properties reveals some undesirable characteristics,
we are forewarned about such possibilities before jumping to inappropriate
conclusions about usable models.

If we allow an additive error to be associated with a multiplicative trend
(exponential growth or decay), we have the following ETS(A,M,N) model:

yt = �t−1bt−1 + εt,
�t = �t−1bt−1 + αεt,
bt = bt−1 + βεt/�t−1.

If we substitute for the error term, we arrive at the recursive relationships
(β = αβ∗):

�t = (1 − α)�t−1bt−1 + αyt,
bt = (1 − β)bt−1 + βyt/�t−1 = (1 − β∗)bt−1 + β∗�t/�t−1.

It is no longer possible to derive simple expressions to ensure that the
stability conditions are satisfied.

4.2.4 Local Multiplicative Trend, Multiplicative Error Model:
ETS(M,M,N)

In a similar vein, we can make both components multiplicative:

yt = �t−1bt−1(1 + εt),
�t = �t−1bt−1(1 + αεt),
bt = bt−1(1 + βεt).

If we substitute for the error term, we arrive at the same updating equations:

�t = (1 − α)�t−1bt−1 + αyt,
bt = (1 − β)bt−1 + βyt/�t−1 = (1 − β∗)bt−1 + β∗�t/�t−1.
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This model is of interest in that we can guarantee strictly positive values1 for
the series using a set of conditions such as:

0 < α < 1, 0 < β < 1 and 1 + εt > 0.

When we set β = 0, we have a constant trend term corresponding to
a fixed growth rate, b. If we had b < 1 this would correspond to a form
of damping, whereas b > 1 allows perpetual growth and could not sat-
isfy the stability condition. Such a model might fit the past history of a time
series, but we should be cautious about building such a relationship into the
predictive recursion.

4.3 Nonlinear Seasonal Models

Much of the discussion for additive seasonal models applies equally to multi-
plicative models. In addition to any extant trends, we must allow for seasonal
variations in a series. As in Sect. 3.4.3, we represent the seasonal factors by st.
A common feature of such seasonal patterns is that the variability is pro-
portional to the general level of the series. For example, discussions about
the volume of air passenger traffic or about retail sales usually speak of
percentage changes rather than absolute shifts in the series. Such changes
also apply when the seasonal pattern corresponds to days of the week (e.g.,
commuter traffic) or hours of the day (e.g., electricity usage). Consideration
of these examples also indicates that the seasonal pattern may change over
time. Perhaps the most dramatic examples are the differences in commuter
traffic on public holidays or electricity usage between weekdays and week-
ends. In such cases, multiple seasonal cycles may be needed to provide an
effective picture (see Chap. 14). However, even in less volatile situations the
need for evolving seasonal patterns is clearly evident.

4.3.1 A Multiplicative Seasonal and Error Model: ETS(M,A,M)

The seasonal variations are usually more dramatic within a short time frame
than the longer-term changes in trend, so that the focus is primarily on the
correct specification of the seasonal structure. We consider a model with mul-
tiplicative effects for both the seasonal and error components: ETS(M,A,M).
This model may be written as:

yt = (�t−1 + bt−1)st−m(1 + εt), (4.5a)
�t = (�t−1 + bt−1)(1 + αεt), (4.5b)
bt = bt−1 + β(�t−1 + bt−1)εt, (4.5c)
st = st−m(1 + γεt). (4.5d)

1 See Chap. 15 for a detailed discussion of models for positive data.
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The model has a state space structure with:

xt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�t
bt
st

st−1
...

st−m+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

f(xt−1) = Fxt−1, w(xt−1) = r(xt−1) = (�t−1 + bt−1)st−m, and

g(xt−1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

α(�t−1 + bt−1)
β(�t−1 + bt−1)

γst−m
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦

, where F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 . . . 0 0
0 1 0 0 . . . 0 0
0 0 0 0 . . . 0 1
0 0 1 0 . . . 0 0
0 0 0 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Just as the level and seasonal terms in the additive model are only deter-
mined up to an arbitrary additive constant, so the level, trend and seasonal
terms in the present scheme are only determined up to an arbitrary multi-
plicative constant. To resolve the indeterminacy, we usually set ∑m−1

i=0 s0−i =
m. As before, we will find it preferable to apply this normalization through-
out the series; the details are discussed in Chap. 8.

We may use (4.5) to develop the recursive relationships for this scheme
and we arrive at:

xt =
[
f(xt−1)− g(xt−1)

w(xt−1)
r(xt−1)

]
+

g(xt−1)
r(xt−1)

yt

= [Fxt−1 − g(xt−1)] +
g(xt−1)
r(xt−1)

yt.

If we substitute the specific functions derived above, we arrive at:

xt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�t
bt
st

st−1
...

st−m+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(1 − α)(�t−1 + bt−1)
bt−1 − β(�t−1 + bt−1)

(1 − γ)st−m
st−1

...
st−m+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α/st−m
β/st−m

γ/(�t−1 + bt−1)
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

yt. (4.6)

Further, we may use the first equation in (4.6) to substitute for yt in the
expression for bt. Thus, the final recursive relationships, in agreement with
Table 2.1, are:
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�t = (1 − α)(�t−1 + bt−1) + αyt/st−m,
bt = β∗(�t − �t−1) + (1 − β∗)bt−1,
st = (1 − γ)st−m + γyt/(�t−1 + bt−1).

The h-step-ahead forecasting function is:

ŷt+h−1|t−1 = (�t−1 + hbt−1)st−m−1+h∗,

where h∗ = h mod m. This set of forecasting relationships is known as the
multiplicative Holt-Winters’ system for seasonal exponential smoothing; see
the discussion in Sect. 1.3. Users of this method usually recommend the
parameter ranges 0 < α, β, γ < 1, but the exact specification of an accept-
able parameter space is extremely difficult. We defer further discussion until
Chap. 8.

4.3.2 A Multiplicative Seasonal Model with Additive Errors: ETS(A,A,M)

The key feature of the seasonal model that we have just developed is the
multiplicative nature of the interaction between the trend and seasonal
components. Although we used a multiplicative error structure and would
suggest that this assumption is more likely to be satisfied in practice, we
could also develop the multiplicative seasonal structure with additive errors.
The underlying model becomes:

yt = (�t−1 + bt−1)st−m + εt,
�t = �t−1 + bt−1 + (α/st−m)εt,
bt = bt−1 + (β/st−m)εt,
st = st−m + (γ/(�t−1 + bt−1))εt.

Following the same reasoning as before, we arrive back at the recursive rela-
tionships given in (4.6). There is an element of reverse engineering in this
model; that is, we worked back from the recursive relationships to determine
the form of the model. Making adjustments to the smoothing parameters in
the manner indicated does not seem very plausible, yet logic dictates this
is an implicit assumption if the ETS(A,A,M) scheme is to be used. Perhaps
a better way to look at this conclusion is to recognize that one of the ben-
efits of formulating an underlying model is that the process forces us to
make our assumptions explicit. In this case, intuition guides us towards the
ETS(M,A,M) model. As a practical matter, we recommend consideration of
both schemes, so that resulting prediction intervals are consistent with the
historical patterns in the series.

Similar adjustments enable us to consider the ETS(A,M,M) and
ETS(M,M,M) schemes, and to arrive at the recursive relationships given in
Table 2.1. These developments are left as end-of-chapter exercises.
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4.4 Variations on the Common Models

As might be expected, the number of usable models can be expanded con-
siderably. In particular, we may incorporate damping factors or set specific
parameters to special values. We first consider models without a seasonal
component and then examine special cases of the model associated with the
Holt-Winters method.

4.4.1 Local Level Model with Drift

If the growth rate is steady over time, we may simplify the local trend model
by setting β = 0. This modification is often effective when the forecasting
horizon is fairly short and growth is positive:

yt = (�t−1 + b)(1 + εt),
�t = (�t−1 + b)(1 + αεt).

The principal difference between this model and the additive error version is
that the prediction intervals of this model gradually widen as the mean level
increases.

4.4.2 Damped Trend Model: ETS(M,Ad,N)

The damped trend model has the reduced growth rate φbt−1 at time t, where
0 ≤ φ < 1. The level tends to flatten out as time increases, and this feature
can be useful for series whose trends are unlikely to be sustained over time.
In particular, when the variable of interest is non-negative, a negative trend
clearly has to flatten out sooner or later.

yt = (�t−1 + φbt−1)(1 + εt),
�t = (�t−1 + φbt−1)(1 + αεt),
bt = φbt−1 + β(�t−1 + φbt−1)εt.

The damped model may be combined with the previous scheme to produce
a smoother trajectory towards a limiting expected value.

4.4.3 Local Multiplicative Trend with Damping: ETS(A,Md,N)

If we try to introduce similar damping coefficients into multiplicative mod-
els, the models are not well-behaved. In particular, such damping forces the
expected value towards a limiting value of zero. To avoid this difficulty,
we follow Taylor (2003a) and raise the growth rate to a fractional power,
0 ≤ φ < 1. The relevant model, as given in Table 2.2, is:

yt = �t−1bφ
t−1 + εt,



4.4 Variations on the Common Models 65

�t = �t−1bφ
t−1 + αεt,

bt = bφ
t−1 + βεt/�t−1.

The state variable bt is now a growth index with a base of 1.0. On making the
appropriate substitutions, the recursive relationships in Table 2.1 follow, and
are left as an exercise.

4.4.4 Various Seasonal Models

A variety of special seasonal models may be obtained as special cases of Holt-
Winters’ multiplicative scheme, and we present a few of these without going
into great detail.

Purely Seasonal Levels

In effect, the model reduces to m distinct models with a common parameter:

yt = �t−m(1 + εt),
�t = �t−m(1 + αεt).

The multiplicative form recognizes that periods with higher levels are likely
to display greater variability.

Fixed Seasonality

Some series, particularly in the area of macroeconomics, possess quite stable
seasonal patterns. In such cases, it may be desirable to set γ = 0 and treat the
seasonal factors as constant. The resulting model is:

yt = (�t−1 + bt−1)sj(1 + εt),

�t = (�t−1 + bt−1)(1 + αεt),
bt = bt−1 + β(�t−1 + bt−1)εt,

where j = t mod m.

Parsimonious Seasonal Model

As noted in Sect. 3.5.5, series that are observed at many times within the
main period, such as weeks in a year, require a very large number of start-
ing values. Further, only a fairly short series may be available for estimation.
However, many such series have a simple state space structure, such as a nor-
mal level of sales outside certain special periods. The details for the additive
error versions of such models are given in Sect. 3.5.5. The multiplicative error
versions follow, using the same modification as elsewhere in this chapter.
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4.4.5 Other Heteroscedastic Models

The variance structure may be modified in several ways. Perhaps the sim-
plest way is to incorporate an additional exponent in a manner reminiscent of
the method employed by Box and Cox (1964) but without a transformation.
We use the local trend model, ETS(M,A,N) in (4.4) by way of illustration. We
separate out the error terms and modify them by using a power of the trend
term, 0 ≤ θ ≤ 1:

yt = (�t−1 + bt−1) + (�t−1 + bt−1)θεt,

�t = (�t−1 + bt−1) + α(�t−1 + bt−1)θεt,

bt = bt−1 + β(�t−1 + bt−1)θεt.

For example, θ = 1/3 would produce a variance proportional to the 2/3rds
power of the mean, much as the cube-root transformation does. The present
formulation enables us to retain the linear structure for the expectation,
which in many ways is more plausible than the transformation.

4.5 Exercises

Exercise 4.1. Verify the variance expressions for ETS(M,N,N) given in
Sect. 4.2.1.

Exercise 4.2. Use the approach of Sect. 4.3.1 to derive the recursive relations
for the state vector of the ETS(A,M,M) model, given in Table 2.2. Extend the
argument to include the ETS(A,Md,M) model.

Exercise 4.3. Use the approach of Sect. 4.3.1 to derive the recursive relations
for the state vector of the ETS(M,M,M) model, given in Table 2.2. Extend the
argument to include the ETS(M,Md,M) model.

Exercise 4.4. Evaluate the h-step-ahead forecast mean squared error for the
local trend model and for the local level model with drift, given in Sect. 4.4.1.
Compare the two for various combinations of h, α and β.

Exercise 4.5. Evaluate the h-step-ahead forecast mean squared error for the
damped trend model ETS(M,Ad,N) and compare it with that for the local
trend model for various combinations of h, φ, α and β.

Exercise 4.6. Show that the stability conditions for the heteroscedastic model
are exactly those for the ETS(A,A,N) model.

Exercise 4.7. The data set djiclose contains the closing prices for the Dow
Jones Index for the first day of each month from October 1928 to December
2007, along with the monthly returns for that series. Fit a heteroscedastic
ETS(M,A,N) model to these data for a selected part of the series. Compare
your results with the random walk with drift model for the returns series.
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Estimation of Innovations State
Space Models

For any innovations state space model, the initial (seed) states and the
parameters are usually unknown, and therefore must be estimated. This can
be done using maximum likelihood estimation, based on the innovations
representation of the probability density function.

In Chap. 3 we outlined transformations (referred to as “general expo-
nential smoothing”) that convert a linear time series of mutually dependent
random variables into an innovations series of independent and identically
distributed random variables. In the heteroscedastic and nonlinear cases,
such a representation remains a viable approximation in most circumstances,
an issue to which we return in Chap. 15. These innovations can be used to
compute the likelihood, which is then optimized with respect to the seed
states and the parameters. We introduce the basic methodology in Sect. 5.1.
The estimation procedures discussed in this chapter assume a finite start-up;
consideration of the infinite start-up case is deferred until Chap. 12.

Any numerical optimization procedure used for this task typically
requires starting values for the quantities that are to be estimated. An appro-
priate choice of starting values is important. The likelihood function may
not be unimodal, so a poor choice of starting values can result in sub-optimal
estimates. Good starting values (i.e., values that are as close as possible to the
optimal estimates) not only increase the chances of finding the true optimum,
but typically reduce the computational loads required during the search for
the optimum solution. In Sect. 5.2 we will discuss plausible heuristics for
determining the starting values.

5.1 Maximum Likelihood Estimation

The unknown model parameters and states must be estimated. Maximum
likelihood (ML) estimators are sought because they are consistent and
asymptotically efficient under reasonable conditions; for a general discus-
sion see Gallant (1987, pp. 357–391). Hamilton (1994, pp. 133–149) derives
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the convergence properties of various numerical algorithms for computing
ML estimates.

The likelihood function is based on the density of the series vector y. It is a
function of a p-vector θ of parameters such as the smoothing parameters and
damping factors. The likelihood also depends on the innovations variance
σ2, but for reasons that will become clearer soon, it is convenient to separate
it from the main parameter vector θ. Finally, the likelihood depends on the
k-vector x0 of seed states.

Under the more traditional assumptions employed in time series anal-
ysis, the generating process is presumed to have operated for an extensive
period of time prior to the period of the first observation, in which case the
seed state vector must be random. A likelihood function must only be based
on observable random quantities; unobserved random variables must be aver-
aged away. We sidestep the need for averaging, and hence simplify the task
of forming the likelihood function, by assuming that the process has had no
life prior to period 1, in which case the seed state vector x0 is fixed and may
be treated as a vector of parameters. The case of random seed states will be
considered in Chap. 12.

It was shown in Chap. 3 that any time series {yt} governed by a linear
state space model with Gaussian innovations has a multivariate Gaussian
distribution (3.2). In Sect. 4.1, the same basic result was derived as an approx-
imation for the nonlinear version of the model, a remarkable conclusion that
depends critically on the assumption of a fixed seed state. In essence, the joint
density of the series was shown to be the weighted product of the densities
of the individual innovations:

p(y | θ, x0, σ2) =
n

∏
t=1

p(εt)/|r(xt−1)|.

So the Gaussian likelihood can be written as

L(θ, x0, σ2 | y) = (2πσ2)−n/2
∣∣∣∣ n

∏
t=1

r(xt−1)
∣∣∣∣
−1

exp
(
− 1

2

n

∑
t=1

ε2
t /σ2

)
, (5.1)

and the log likelihood is

logL = −n
2

log(2πσ2) −
n

∑
t=1

log |r(xt−1)| − 1
2

n

∑
t=1

ε2
t /σ2. (5.2)

Then taking the partial derivative with respect to σ2 and setting it to zero
gives the maximum likelihood estimate of the innovations variance σ2 as

σ̂2 = n−1
n

∑
t=1

ε2
t .

This formula can be used to eliminate σ2 from the likelihood (5.1) to give the
concentrated likelihood



5.1 Maximum Likelihood Estimation 69

L(θ, x0 | y) = (2πe σ̂2)−n/2
∣∣∣∣ n

∏
t=1

r(xt−1)
∣∣∣∣
−1

.

Thus, twice the negative log-likelihood is given by

−2 logL(θ, x0 | y) = n log(2πe σ̂2) + 2
n

∑
t=1

log |r(xt−1)|

= cn + n log
( n

∑
t=1

ε2
t

)
+ 2

n

∑
t=1

log |r(xt−1)|,

where cn is a constant depending on n but not on θ or x0. Hence, maximum
likelihood estimates of the parameters can be obtained by minimizing

L∗(θ, x0) = n log
( n

∑
t=1

ε2
t

)
+ 2

n

∑
t=1

log |r(xt−1)|. (5.3)

Equivalently, they can be obtained by minimizing the augmented sum of
squared errors criterion:

S(θ, x0) =
[

exp(L∗(θ, x0))
]1/n =

∣∣∣∣ n

∏
t=1

r(xt−1)
∣∣∣∣
2/n n

∑
t=1

ε2
t . (5.4)

In homoscedastic cases, r(xt−1) = 1 and (5.4) reduces to the traditional sum
of squared errors.

Use of (5.4) criterion in place of the likelihood function means that the
optimizer does not directly select the best value of σ2. The number of vari-
ables being directly optimized is reduced by one, with consequent savings
in computational loads. More importantly, however, it avoids a problem that
sometimes arises with the likelihood function, when the optimizer chooses
a trial value of the variance that is quite out-of-kilter with the errors, and a
consequent numerical stability issue occurs.

For particular values of the parameters and seed states, the value of the
innovation is found with εt = [yt − w(xt−1)]/r(xt−1). The state is revised
with the transition

xt = f(xt−1) + g(xt−1)εt.

In the case of homoscedastic errors and linear functional relationships, as
assumed in Chap. 3, this simplifies to

εt = yt −w′xt−1, (5.5)
xt = Fxt−1 + gεt, (5.6)

which is the general linear form of exponential smoothing (Box et al. 1994).
Although expression (5.4) was derived from the likelihood (5.1), we could

start the whole process by directly specifying that the objective is to mini-
mize S(θ, x0). This approach, known as the Augmented Least Squares (ALS)
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Fig. 5.1. Plot of Australian quarterly gross domestic product per capita from the
September quarter of 1971 to the March quarter of 1998.

method, does not require us to make any assumptions about the distri-
butional form of the errors. More generally, when the ML estimates are
computed from (5.4) without any assumption of Gaussianity, we refer to
the results as quasi-maximum likelihood estimators (Hamilton 1994, p. 126).
Such estimators are often consistent, but the expressions for the standard
errors of the estimators may be biased, even asymptotically.

5.1.1 Application: Australian GDP

To illustrate the method, we use the Australian quarterly real gross domestic
product per capita1 from the September quarter of 1971 to the March quar-
ter of 1998. The deseasonalized series, which consists of 107 observations, is
depicted in Fig. 5.1. We fitted a local linear trend model (3.13):

yt = �t−1 + bt−1 + εt (5.7a)
�t = �t−1 + bt−1 + αεt (5.7b)
bt = bt−1 + βεt (5.7c)

by minimizing (5.4).
The results obtained depend on the constraints imposed on the parameter

values during estimation. As seen in Sect. 3.4.2, the constraints 0 < α < 1
and 0 < β < α are typically imposed. They ensure that the states can be

1 Source: Australian Bureau of Statistics.
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Table 5.1. Maximum likelihood results: the local trend model applied to the
Australian quarterly gross domestic product.

Constraints
Conventional Stable

α 1.00 0.61
β 1.00 2.55
�0 4571.3 4568.7
b0 36.5 35.1

MSE 639 291
MAPE 0.36% 0.24%

interpreted as averages. However, another set of constraints arises from the
stability criterion (Sect. 3.3.1, p. 36). They ensure that the observations have
a diminishing effect as they get older. This second set of constraints (derived
in Chap. 10) is α ≥ 0, β ≥ 0 and 2α + β ≤ 4. It contains the first constraint set
and is much larger.

The results are summarized in Table 5.1. The parameter estimates with
the conventional constraints lie on the boundary of the parameter space. In
the second case, the estimates lie in the interior of the parameter space.

The MSE is more than halved by relaxing the conventional constraints to
the stability conditions. The MAPEs indicate that both approaches provide
local linear trends with a remarkably good fit. The lower MAPE of 0.24% for
the stability approach is consistent with the MSE results.

The optimal value of 2.55 for β in the second estimation may seem quite
high. It ensures, however, that the growth rate is very responsive to unantic-
ipated changes in the series. A plot of the estimated growth rates is shown in
Fig. 5.2. The effect is to ensure that the local trend adapts quickly to changes
in the direction of the series values.

5.2 A Heuristic Approach to Estimation

The method of estimation described in the previous section seeks values
of the seed vector x0 and the parameters θ that jointly minimize the aug-
mented sum of squared errors. The inclusion of the seed state vector can be a
source of relatively high computational loads. For example, if it is applied to
a weekly time series, a linear trend with seasonal effects has 54 seed states,
but only three smoothing parameters. In such cases, it is common practice to
approximate the seed values using a heuristic method, and simply minimize
with respect to the parameters θ alone.

Heuristic methods are typically devised on a case by case basis. For exam-
ple, the seed level in a local level model is often approximated by the first
value of a series, or sometimes by a simple average of the first few values of
a series (see Makridakis et al. 1998).
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Fig. 5.2. Estimation of the local trend model for the Australian quarterly gross domes-
tic product per capita from the September quarter of 1971 to the March quarter of
1998: growth rate estimates.

In Sect. 2.6.1 we described a heuristic method that works well for almost
all series. For non-seasonal data, we fit a straight line a + bt to the first ten
observations and set �0 = a. We use b0 = b when the model assumes an
additive trend, and for a model with a multiplicative trend we set b0 = 1 +
b/a. For seasonal data, the seed seasonal components are obtained using a
classical decomposition method (Makridakis et al. 1998) applied to the first
few years of data. Then, as for non-seasonal data, we fit a straight line to the
first ten deseasonalized observations to obtain �0 and b0.

These are simply starting values for the full optimization. We do not gen-
erally use them in forecasting, unless the seasonal period m is very large (as
with weekly data).

Such heuristics can be very successful, but they are not failsafe. The expo-
nential decay of the effect of the seed vector in (3.6) is supposed to ensure that
the effect on the sum of squared errors of any additional error introduced
by the use of a heuristic is negligible. This is only true, however, when the
smoothing parameters are relatively large, and so the states change rapidly
over time. Then the structure that prevailed at the start of the series has little
impact on the series close to the end. However, when the smoothing param-
eters are small, the end states are unlikely to be very different from those at
the start of the observational period. In this case, early seed values are not
discounted heavily, so the effects of any extra error arising from a heuristic
are unlikely to disappear. Heuristics may potentially lead to poor results in
some circumstances. Hyndman et al. (2002) report that optimization of the
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seed states improves forecasts of the M3 series by about 2.8%. It appears that
full optimization is to be recommended where it is practicable.

When heuristics are used, they should be designed to apply to the model
when the smoothing parameters are small. Fortunately, this is not difficult
to achieve. For example, as α and β approach zero, model (5.4) reduces to
the global linear trend model, so that our heuristic based on fitting the linear
trend to the first ten observations can be expected to perform well in such
circumstances. When α and β are large, the heuristic will perform less well,
but the initial conditions are then discounted more rapidly, so the effect is
reduced.

Heuristics originated in an era when computers were very much slower
than those available today. They were devised to avoid what were then quite
daunting computational loads. Nowadays, full optimization of the likeli-
hood can be undertaken in a fraction of the time. For example, Hyndman
et al. (2002) found that it took only 16 min to fit a collection of models, similar
to those from Tables 2.2 and 2.3, to the 3,003 time series from the M3 fore-
casting competition. Much faster times should now be possible with modern
computers.

It may be argued that the above example with weekly seasonal effects
suggests that there remain cases where full optimization may still not be
practicable. However, in this type of situation, it is advisable to reduce the
number of optimizable variables. For example, weeks with similar seasonal
characteristics could be grouped to reduce the number of seasonal indexes.
Alternatively, Fourier representations based on sine and cosine functions,
might be used. Models with a reduced number of states are likely to yield
more robust forecasts.

Heuristics, however, still have a useful place in forecasting. For example,
they can be used to provide starting values for the optimizer. This way the
seed values are still optimized, but the optimizer begins its search from a
point that is likely to be closer to the optimal solution. An advantage of this
approach is that it reduces the chances of sub-optimal solutions with multi-
modal augmented sum of squared errors functions. Moreover, with series
containing slow changes to states, the optimizer automatically prevents any
deleterious effects of poor starting values, should they occur with the use of
a heuristic. Finally, the time required for optimization is typically shortened
by the use of heuristics.

5.3 Exercises

The following exercises should be completed using the quarterly US gross
domestic product series available in the data set usgdp.

Exercise 5.1. Fit the local level model ETS(A,N,N) to the data. This will
require calculating the sum of squared errors criterion and minimizing it
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with respect to the value of �0 and α. Do the estimation using your own R
code. Then compare the results with those obtained using the ets() function
in the forecast package for R.

Exercise 5.2. Fit the local level model with drift (Sect. 3.5.2) to the log-
transformed data.

Exercise 5.3. The multiplicative version of a local level model with drift
model is

yt = �t−1b(1 + εt)
�t = �t−1b(1 + αεt)

where b is a multiplicative drift term. Fit this model to the raw data using the
augmented sum of squared errors criterion. Contrast the results with those
from Exercise 5.2.
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Prediction Distributions
and Intervals

Point forecasts for each of the state space models were given in Table 2.1
(p. 18). It is also useful to compute the associated prediction distributions
and prediction intervals for each model. In this chapter, we discuss how to
compute these distributions and intervals.

There are several sources of uncertainty when forecasting a future value
of a time series (Chatfield 1993):

1. The uncertainty in model choice—maybe another model is correct, or
maybe none of the candidate models is correct.

2. The uncertainty in the future innovations εn+1, . . . , εn+h.
3. The uncertainty in the estimates of the parameters: α, β, γ, φ and x0.

Ideally, the prediction distribution and intervals should take all of these into
account. However, this is a difficult problem, and in most time series analysis
only the uncertainty in the future innovations is taken into account.

If we assume that the model and its parameters (including x0) are known,
then we also know xn, the state vector at the last period of observation,
because the error in the transition equation can be calculated from the obser-
vations up to time n. Consequently, we define the prediction distribution as
the distribution of a future value of the series given the model, its estimated
parameters, and xn. A short-hand way of writing this is yn+h|n ≡ yn+h | xn.

We briefly discuss how to allow for parameter estimation uncertainty in
Sect. 6.1. We do not address how to allow for model uncertainty, although
this is an important issue. Hyndman (2001) showed that model uncertainty
is likely to be a much bigger source of error than parameter uncertainty.

The mean of the prediction distribution is called the forecast mean and is
denoted by µn+h|n = E(yn+h | xn). The corresponding forecast variance is
given by vn+h|n = V(yn+h | xn). We will find expressions for these quantities
for many of the models discussed in this book.
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We are also interested in “lead-time demand” forecasting, where we pre-
dict the aggregate of the next h observations rather than each of the next h
observations individually. We discuss this briefly here and in more detail in
Chap. 18.

The most direct method of obtaining prediction distributions is to simu-
late many possible future sample paths from the fitted model, and to estimate
the distributions from the simulated data. This approach will work for any
time series model, including all of the models discussed in this book. We
describe the simulation method in more detail in Sect. 6.1.

While the simulation approach is simple and can be applied to any
well-specified time series model, the computations can be time-consuming.
Furthermore, the resulting prediction intervals are only available numeri-
cally rather than algebraically. Therefore, the approach does not allow for
algebraic analysis of the prediction distributions.

An alternative approach is to derive the distributions analytically. Ana-
lytical results on prediction distributions can provide additional insight and
can be much quicker to compute. These results are relatively easy to derive
for some models (particularly the linear models), but very difficult for others.
In fact, there are analytical results on prediction distributions for only 15 of
the 30 models in our exponential smoothing framework.

When discussing the analytical prediction distributions, it is helpful to
divide the thirty state space models given in Tables 2.2 and 2.3 (pp. 21–22)
into five classes; Classes 1–4 are shown in Table 6.1.

For each of Classes 1–3, we give expressions for the forecast means and
variances. Class 1 consists of the linear models with homoscedastic errors;
these are discussed in Sect. 6.2. In Sect. 6.3 we discuss Class 2, which contains
the linear models with heteroscedastic errors. Class 3 models are discussed

Table 6.1. The models separated in the exponential smoothing framework split into
Classes 1–5.

A,N,N A,N,A
Class 1 −→ A,A,N A,A,A

A,Ad,N A,Ad,A

M,N,N M,N,A M,N,M
Class 2 −→ M,A,N M,A,A M,A,M ←− Class 3

M,Ad,N M,Ad,A M,Ad,M

Class 4 −→ M,M,N M,M,M
M,Md,N M,Md,M

M,M,A A,N,M A,M,N A,Md,N
Class 5 −→ M,Md,A A,A,M A,M,A A,Md,A

A,Ad,M A,M,M A,Md,M
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in Sect. 6.4; these are the models with multiplicative errors and multiplicative
seasonality but additive trend.

Class 4 consists of the models with multiplicative errors, multiplicative
trend, and either no seasonality or multiplicative seasonality. For Class 4,
there are no available analytical expressions for forecast means or variances,
and so we recommend using simulation to find prediction intervals.

The remaining 11 models are in Class 5. For these models, we also rec-
ommend using simulation to obtain prediction intervals. However, Class 5
models are those that can occasionally lead to numerical difficulties with
very long forecast horizons. Specifically, the forecast variances are infinite,
although this does not usually matter in practice for short- or medium-term
forecasts. This issue is explored in Chap. 15.

Section 6.5 discusses the use of the forecast mean and variance formulae
to construct prediction intervals even in cases where the prediction distribu-
tions are not Gaussian. In Sect. 6.6, we discuss lead-time demand forecasting
for Class 1 models.

Most of the results in this chapter are based on Hyndman et al. (2005) and
Snyder et al. (2004), although we use a slightly different parameterization in
this book, and we extend the results in some new directions.

To simplify some of the expressions, we introduce the following notation:

h = mhm + h+
m ,

where1 h is the forecast horizon, m is the number of periods in each season,
hm = 
(h − 1)/m� and h+

m =
[
(h − 1) mod m

]
+ 1. In other words, hm is the

number of complete years in the forecast period prior to time h, and h+
m is the

number of remaining times in the forecast period up to and including time h.
Thus, h+

m can take values 1, 2, . . . , m.

6.1 Simulated Prediction Distributions and Intervals

Recall from Chap. 4 that the general model with state vector

xt = (�t, bt, st, st−1, . . . , st−m+1)′

has the form
yt = w(xt−1) + r(xt−1)εt,
xt = f(xt−1) + g(xt−1)εt,

where w(·) and r(·) are scalar functions, f(·) and g(·) are vector functions,
and {εt} is a white noise process with variance σ2.

One simple approach to obtaining the prediction distribution is to sim-
ulate sample paths from the models, conditional on the final state xn. This

1 The notation 
u� means the integer part of u.
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Fig. 6.1. Quarterly French exports data with 20 simulated future sample paths gener-
ated using the ETS(M,A,M) model assuming Gaussian innovations. The solid vertical
line on the right shows a 90% prediction interval for the 16-step forecast horizon,
calculated from the 0.05 and 0.95 quantiles of the 5,000 simulated values.

was the approach taken by Ord et al. (1997) and Hyndman et al. (2002). That

is, we generate observations {y(i)
t }, for t = n + 1, . . . , n + h, starting with

xn from the fitted model. Each εt value is obtained from a random number
generator assuming a Gaussian or other appropriate distribution. This pro-
cedure is repeated for i = 1, . . . , M, where M is a large integer. (In practice,
we often use M = 5,000.)

Figure 6.1 shows a series of quarterly exports of a French company (in
thousands of francs) taken from Makridakis et al. (1998, p. 162). We fit an
ETS(M,A,M) model to the data. Then the model is used to simulate 5,000
future sample paths of the data. Twenty of these sample paths are shown in
Fig. 6.1.

Characteristics of the prediction distribution of yn+h|n can then be esti-
mated from the simulated values at a specific forecast horizon: yn+h|n =

{y(1)
n+h, . . . , y(M)

n+h}. For example, prediction intervals can be obtained using
quantiles of the simulated sample paths. An approximate 100(1 − α)% pre-
diction interval for forecast horizon h is given by the α/2 and 1 − α/2
quantiles of yn+h|n. The solid vertical line on the right of Fig. 6.1 is a 90%
prediction interval computed in this way from the 0.05 and 0.95 quantiles of
the simulated values at the 16-step horizon.

The full prediction density can be estimated using a kernel density esti-
mator (Silverman 1986) applied to yn+h|n. Figure 6.2 shows the prediction
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Fig. 6.2. The 16-step forecast density estimated from 5,000 simulated future sample
paths. The 90% prediction interval is calculated from the 0.05 and 0.95 quantiles.

density for the data in Fig. 6.1 obtained in this way, along with the 90%
prediction interval.

There are several advantages in computing prediction distributions and
intervals in this way:

• If the distribution of εt is not Gaussian, another distribution can be used to
generate the εt values when simulating the future sample paths.

• The historical εt values can be resampled to give bootstrap prediction
distributions without making any distributional assumptions.

• The method can be used for nonlinear models where εt may be Gaussian
but yt is not Gaussian.

• The method avoids the complex formulae that are necessary to compute
analytical prediction intervals for some nonlinear models.

• For some models (those in Classes 4 and 5), simulation is the only method
available for computing prediction distributions and intervals.

• It is possible to take into account the error in estimating the model parame-
ters. In this case, the simulated sample paths are generated using the same
model but with randomly varying parameters, reflecting the parameter
uncertainty in the fitted model. This was done in Ord et al. (1997) for mod-
els with multiplicative error, and in Snyder et al. (2001) for models with
additive error.

• The increasing speed of computers makes the simulation approach more
viable every year.
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6.1.1 Lead-Time Forecasting

In inventory control, forecasts of the sum of the next h observations are often
required. These are used for determination of ordering requirements such as
reorder levels, order-up-to levels and reorder quantities.

Suppose that a replenishment decision is to be made at the beginning of
period n + 1. Any order placed at this time is assumed to arrive a lead-time
later, at the start of period n + h + 1. Thus, we need to forecast the aggregate
of unknown future values yn+j, defined by

Yn(h) =
h

∑
j=1

yn+j.

The problem is to make inferences about the distribution of Yn(h) which
(in the inventory context) is known as the “lead-time demand.” The results
from the simulation of single periods give the prediction distributions and
intervals for individual forecast horizons, but for re-ordering purposes it
is more useful to have the lead-time prediction distribution and interval.
Because Yn(h) involves a summation, the central limit theorem states that
its distribution will tend towards Gaussianity as h increases. However, for
small to moderate h, we need to estimate the distribution.

The simulation approach can easily be used here by computing values of
Yn(h) from the simulated future sample paths. For example, to get the distri-
bution of Yn(3) for the quarterly French exports data, we sum the first three
values of the simulated future sample paths shown in Fig. 6.1. This gives us
5,000 values from the distribution of Yn(3) (assuming the model is correct).
Figure 6.3 shows the density computed from these 5,000 values along with a
90% prediction interval.

Here we have assumed that the lead-time h is fixed. Fixed lead-times are
relevant when suppliers make regular deliveries, an increasingly common
situation in supply chain management. For stochastic lead-times, we could
randomly generate h from a Poisson distribution (or some other count distri-
bution) when simulating values of Yn(h). This would be used when suppliers
make irregular deliveries.

6.2 Class 1: Linear Homoscedastic State Space Models

We now derive some analytical results for the prediction distributions of the
linear homoscedastic (Class 1) models. These provide additional insight and
can be much quicker to compute than the simulation approach. Derivations
of the results in this section are given in Appendix “Derivation of Results for
Class 1.”

The linear ETS models are (A,N,N), (A,A,N), (A,Ad,N), (A,N,A), (A,A,A)
and (A,Ad,A). The forecast means are given in Table 6.2. Because of the linear
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Fig. 6.3. The 3-step lead-time demand density estimated from 5,000 simulated
future sample paths assuming Gaussian innovations. The 90% prediction interval is
calculated from the 0.05 and 0.95 quantiles.

Table 6.2. Forecast means and cj values for the linear homoscedastic (Class 1) and
linear heteroscedastic (Class 2) state space models.

Model Forecast mean: µn+h|n cj

(A,N,N)/(M,N,N) �n α
(A,A,N)/(M,A,N) �n + hbn α + βj
(A,Ad,N)/(M,Ad,N) �n + φhbn α + βφj
(A,N,A)/(M,N,A) �n + sn−m+h+

m
α + γdj,m

(A,A,A)/(M,A,A) �n + hbn + sn−m+h+
m

α + βj + γdj,m
(A,Ad,A)/(M,Ad,A) �n + φhbn + sn−m+h+

m
α + βφj + γdj,m

The values of cj are used in the forecast variance expressions
(6.1) and (6.2). Here, dj,m = 1 if j = 0 (mod m) and 0 otherwise,
and φj = φ + φ2 + · · · + φj.

structure of the models, the forecast means are identical to the point forecasts
given in Table 2.1 (p. 18).

The forecast variances are given by

vn+h|n = V(yn+h | xn) =

⎧⎪⎨
⎪⎩

σ2 if h = 1;

σ2

[
1 +

h−1

∑
j=1

c2
j

]
if h ≥ 2; (6.1)

where cj is given in Table 6.2. Note that vn+h|n does not depend on xn or n,
but only on h and the smoothing parameters.
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Table 6.3. Forecast variance expressions for each linear homoscedastic state space
model, where vn+h|n = V(yn+h | xn).

Model Forecast variance: vn+h|n
(A,N,N) vn+h|n = σ2[1 + α2(h − 1)

]
(A,A,N) vn+h|n = σ2

[
1 + (h − 1)

{
α2 + αβh + 1

6 β2h(2h − 1)
}]

(A,Ad,N) vn+h|n = σ2
[

1 + α2(h − 1) + βφh
(1−φ)2 {2α(1 − φ) + βφ}

− βφ(1−φh)
(1−φ)2(1−φ2)

{
2α(1 − φ2) + βφ(1 + 2φ − φh)

}]

(A,N,A) vn+h|n = σ2
[
1 + α2(h − 1) + γhm(2α + γ)

]
(A,A,A) vn+h|n = σ2

[
1 + (h − 1)

{
α2 + αβh + 1

6 β2h(2h − 1)
}

+ γhm
{

2α + γ + βm(hm + 1)
}]

(A,Ad,A) vn+h|n = σ2
[

1 + α2(h − 1) + βφh
(1−φ)2 {2α(1 − φ) + βφ}

− βφ(1−φh)
(1−φ)2(1−φ2)

{
2α(1 − φ2) + βφ(1 + 2φ − φh)

}
+ γhm(2α + γ)

+ 2βγφ
(1−φ)(1−φm)

{
hm(1 − φm)− φm(1 − φmhm)

}]

Because the models are linear and εt is assumed to be Gaussian, yn+h | xn
is also Gaussian. Therefore, prediction intervals are easily obtained from the
forecast means and variances.

In practice, we would normally substitute the numerical values of cj from
Table 6.2 into (6.1) to obtain numerical values for the variance. However,
it is sometimes useful to expand (6.1) algebraically by substituting in the
expressions for cj from Table 6.2. The resulting variance expressions are given
in Table 6.3.

We note in passing that vn+h|n is linear in h when β = 0, but cubic in h
when β > 0. Thus, models with non-zero β tend to have prediction intervals
that widen rapidly as h increases.

Traditionally, prediction intervals for the linear exponential smoothing
methods have been found through heuristic approaches or by employing
equivalent or approximate ARIMA models. Where an equivalent ARIMA
model exists (see Chap. 11), the results in Table 6.3 provide identical forecast
variances to those from the ARIMA model.

State space models with multiple sources of error have also been used to
find forecast variances for SES and Holt’s method (Harrison 1967; Johnston
and Harrison 1986). With these models, the variances are limiting values,
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although the convergence is rapid. The variance formulae arising from these
two cases are the same as in our results.

Prediction intervals for the additive Holt-Winters method have previ-
ously been considered by Yar and Chatfield (1990). They assumed that the
one-period ahead forecast errors are independent, but they did not assume
any particular underlying model for the smoothing methods. The formulae
presented here for the ETS(A,A,A) model are equivalent to those given by
Yar and Chatfield (1990).

6.3 Class 2: Linear Heteroscedastic State Space Models

Derivations of the results in this section are given in Appendix “Derivation
of Results for Class 2.”

The ETS models in Class 2 are (M,N,N), (M,A,N), (M,Ad,N), (M,N,A),
(M,A,A) and (M,Ad,A). These are similar to those in Class 1 except that mul-
tiplicative rather than additive errors are used. Consequently, the forecast
means of Class 2 models are identical to the forecast means of the analogous
Class 1 model (assuming the same parameters), but the prediction intervals
and distributions will be different. The forecast means for Class 2 also coin-
cide with the usual point forecasts. Specific values of the forecast means are
given in Table 6.2.

The forecast variance is given by

vn+h|n = (1 + σ2)θh − µ2
n+h|n, (6.2)

where

θ1 = µ2
n+1|n and θh = µ2

n+h|n + σ2
h−1

∑
j=1

c2
j θh−j, (6.3)

where each cj is identical to that for the corresponding additive error model
from Class 1 in Table 6.2.

For most models, there is no non-recursive expression for the variance,
and we simply substitute the relevant cj values into (6.2) and (6.3) to obtain
numerical expressions for the variance. However, for the ETS(M,N,N) model,
we can go a little further (Exercise 6.1).

6.4 Class 3: Some Nonlinear Seasonal State Space Models

Derivations of the results in this section are given in Appendix “Derivation
of results for Class 3.”

The Class 3 models are (M,N,M), (M,A,M) and (M,Ad,M). These are sim-
ilar to the seasonal models in Class 2 except that the seasonal component is
multiplicative rather than additive.
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Table 6.4. Values of µn+h|n, µ̃n+h|n and cj for the Class 3 models.

Approx µn+h|n µ̃n+h|n cj

ETS(M,N,M) �nsn−m+h+
m

�n α

ETS(M,A,M) (�n + hbn)sn−m+h+
m

�n + hbn α + βj

ETS(M,Ad,M) (�n + φhbn)sn−m+h+
m

�n + φhbn α + βφj

Here, φj = φ + φ2 + · · · + φj. Values of cj are used in the forecast
variance expressions (6.5).

6.4.1 Approximate Forecast Means and Variances

For these models, the exact forecast means and variances are complicated to
compute when h ≥ m. However, by noting that σ2 is usually small (much
less than 1), we can obtain approximate expressions for the mean and vari-
ance which are often useful. Let ŷn+h|n be the usual point forecast as given in
Table 2.1. Then,

µn+h|n ≈ ŷn+h|n (6.4)

and vn+h|n ≈ s2
n−m+h+

m

[
θh(1 + σ2)(1 + γ2σ2)hm − µ̃2

n+h|n
]
, (6.5)

where
µ̃n+h|n = ŷn+h|n/sn−m+h+

m

is the seasonally adjusted point forecast, θ1 = µ̃2
n+1|n, and

θh = µ̃2
n+h|n + σ2

h−1

∑
j=1

c2
j θh−j, h ≥ 2. (6.6)

These expressions are exact for h ≤ m, but are only approximate for h > m.
The variance formula (6.5) agrees with those in Koehler et al. (2001) and
Chatfield and Yar (1991) (who only considered the first year of forecasts).

Specific values for µn+h|n, µ̃n+h|n and cj for the particular models in
Class 3 are given in Table 6.4.

Example 6.1: ETS(M,N,M) model

For the ETS(M,N,M) model, θ1 = �2
n, and for h ≥ 2,

θh = �2
n + α2σ2

h−1

∑
j=1

θh−j

= �2
n + α2σ2(θ1 + θ2 + · · ·+ θh−1).
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Then, by induction, we can show that θh = �2
n(1 + α2σ2)h−1. Plugging this

into (6.5) gives the following simpler expression for vn+h|n:

vn+h|n ≈ s2
n−m+h+

m
�2

n

[
(1 + σ2)(1 + α2σ2)h−1(1 + γ2σ2)hm − 1

]
.

The expression is exact for h ≤ m.

6.4.2 Exact Forecast Means and Variances

To obtain the exact formulae for h > m, we first write the models in Class 3
using the following nonlinear state space model:

yt = w′
1xt−1w

′
2zt−1(1 + εt),

xt = (F1 + G1εt)xt−1,
zt = (F2 + G2εt)zt−1,

where F1, F2, G1, G2, w′
1 and w′

2 are all matrix or vector coefficients, and
xt and zt are unobserved state vectors at time t. As for Class 2, {εt} is
NID(0, σ2), where the lower tail of the distribution is truncated so that 1 + εt
is positive.

Let k be the length of vector xt and q be the length of vector zt. Then the
orders of the above matrices are as follows:

F1 (k × k) G1 (k × k) w′
1 (1 × k)

F2 (q × q) G2 (q × q) w′
2 (1 × q)

• For the ETS(M,N,M) model, xt = �t, zt = (st, . . . , st−m+1)′, and the matrix
coefficients are w1 = 1, w′

2 = [0, . . . , 0, 1],

F1 = 1, F2 =
[
0′m−1 1
Im−1 0m−1

]
, G1 = α, and G2 =

[
0′m−1 γ
Om−1 0m−1

]
.

• For the ETS(M,Ad,M) model, xt = (�t, bt)′, w′
1 = [1, 1],

F1 =
[

1 φ
0 φ

]
, G1 =

[
α α
β β

]
,

and z2, w2, F2 and G2 are the same as for the ETS(M,N,M) model.
• The ETS(M,A,M) model is equivalent to the ETS(M,Ad,M) model with

φ = 1.
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For models in this class,

µn+h|n = w′
1Mh−1w2 (6.7)

and

vn+h|n = (1 + σ2)(w′
2 ⊗w′

1)Vn+h−1|n(w′
2 ⊗w′

1)
′ + σ2µ2

n+h|n, (6.8)

where ⊗ denotes a Kronecker product (Schott 2005, Sect. 8.2), M0 = xnz′
n,

V0 = O2m, and for h ≥ 1,

Mh = F1Mh−1F
′
2 + G1Mh−1G

′
2σ2 (6.9)

and

Vn+h|n = (F2 ⊗F1)Vn+h−1|n(F2 ⊗F1)′

+ σ2
[
(F2 ⊗F1)Vn+h−1|n(G2 ⊗G1)′ + (G2 ⊗G1)Vn+h−1|n(F2 ⊗F1)′

]
+ σ2(G2 ⊗F1 + F2 ⊗G1)

[
Vn+h−1|n +

−→
M h−1

−→
M ′

h−1

]
(G2 ⊗F1 + F2 ⊗G1)′

+ σ4(G2 ⊗G1)
[
3Vn+h−1|n + 2

−→
M h−1

−→
M ′

h−1

]
(G2 ⊗G1)′, (6.10)

where
−→
M h−1 = vec(Mh−1). (That is, the columns of Mh−1 are stacked

to form a vector.) Note, in particular, that µn+1|n = (w′
1xn)(w′

2zn) and
vn+1|n = σ2µ2

n+1|n. While these expressions look complicated and provide
little insight, it is relatively easy to compute them using computer matrix
languages such as R and Matlab.

In Appendix “Derivation of results for Class 3,” we show that the approx-
imations (6.4) and (6.5) follow from the exact expressions (6.7) and (6.8).
Note that the usual point forecasts for these models are given by (6.4) rather
than (6.7).

6.4.3 The Accuracy of the Approximations

In order to investigate the accuracy of the approximations (6.4) and (6.5)
for the exact mean and variance given by (6.7) and (6.8), we provide some
comparisons for the ETS(M,A,M) model in Class 3.

These comparisons are done for quarterly data, where the values for the
components are assumed to be the following: �n = 100, bn = 2, sn = 0.80,
sn−1 = 1.20, sn−2 = 0.90 and sn−3 = 1.10. We use the following base level
values for the parameters: α = 0.2, β = 0.06, γ = 0.1, and σ = 0.05. We vary
these parameters one at a time as shown in Table 6.5.

The results in Table 6.5 show that the mean and approximate mean
are always very close, and that the percentage difference in the standard
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Table 6.5. Comparison of exact and approximate means and standard deviations for
the ETS(M,A,M) model in Class 3.

Period Exact Approximate Exact Approximate SD percent
ahead mean (6.7) mean (6.4) SD (6.8) SD (6.5) difference
h µn+h|n

√vn+h|n

σ = 0.05, α = 0.2, β = 0.06, γ = 0.1

5 121.01 121.00 7.53 7.33 2.69
6 100.81 100.80 6.68 6.52 2.37
7 136.81 136.80 9.70 9.50 2.07
8 92.81 92.80 7.06 6.93 1.80
9 129.83 129.80 10.85 10.45 3.68

10 108.03 108.00 9.65 9.34 3.21
11 146.44 146.40 13.99 13.60 2.81
12 99.22 99.20 10.13 9.88 2.47

σ = 0.1, α = 0.2, β = 0.06, γ = 0.1

5 121.05 121.00 15.09 14.68 2.73
6 100.84 100.80 13.39 13.07 2.40
7 136.86 136.80 19.45 19.04 2.11
8 92.84 92.80 14.15 13.89 1.84
9 129.93 129.80 21.77 20.96 3.75

10 108.11 108.00 19.39 18.75 3.29
11 146.55 146.40 28.11 27.30 2.89
12 99.30 99.20 20.35 19.83 2.55

σ = 0.05, α = 0.6, β = 0.06, γ = 0.1

5 121.02 121.00 10.87 10.60 2.47
6 100.82 100.80 9.96 9.76 2.04
7 136.83 136.80 14.76 14.51 1.72
8 92.82 92.80 10.86 10.70 1.47
9 129.86 129.80 16.64 16.19 2.71

10 108.05 108.00 14.83 14.48 2.37
11 146.46 146.40 21.45 21.00 2.09
12 99.24 99.20 15.45 15.16 1.86

σ = 0.05, α = 0.2, β = 0.18, γ = 0.1

5 121.03 121.00 10.19 9.87 3.08
6 100.82 100.80 9.88 9.66 2.27
7 136.83 136.80 15.55 15.29 1.69
8 92.82 92.80 12.14 11.98 1.28
9 129.87 129.80 19.67 19.16 2.56

10 108.06 108.00 18.41 18.04 2.03
11 146.48 146.40 27.86 27.41 1.64
12 99.26 99.20 20.93 20.65 1.35

σ = 0.05, α = 0.2, β = 0.06, γ = 0.3

5 121.04 121.00 8.10 7.53 7.12
6 100.83 100.80 7.13 6.68 6.36
7 136.84 136.80 10.28 9.70 5.64
8 92.83 92.80 7.42 7.05 4.97
9 129.90 129.80 11.89 10.77 9.46

10 108.08 108.00 10.47 9.59 8.42
11 146.51 146.40 15.04 13.91 7.49
12 99.27 99.20 10.79 10.07 6.67
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deviations only becomes substantial when we increase γ. This result for the
standard deviation is not surprising because the approximation is exact if
γ = 0. In fact, we recommend that the approximation not be used if the
smoothing parameter for γ exceeds 0.10.

6.5 Prediction Intervals

The prediction distributions for Class 1 are clearly Gaussian, as the models
are linear and the errors are Gaussian. Consequently, 100(1− α)% prediction
intervals can be calculated from the forecast means and variances in the usual
way, namely µn+h|n ± zα/2

√vn+h|n, where zq denotes the qth quantile of a
standard Gaussian distribution.

In applying these formulae, the maximum likelihood estimator for σ2 (see
p. 68) is simply

σ̂2 = n−1
n

∑
t=1

ε̂2
t ,

where ε̂t = yt − µt|t−1.
The prediction distributions for Classes 2 and 3 are non-Gaussian because

of the nonlinearity of the state space equations. However, prediction inter-
vals based on the above (Gaussian) formula will usually give reason-
ably accurate results, as the following example shows. In cases where the
Gaussian approximation may be unreasonable, it is necessary to use the
simulation approach of Sect. 6.1.

6.5.1 Application: Quarterly French Exports

As a numerical example, we consider the quarterly French exports data given
in Fig. 6.1, and use the ETS(M,A,M) model. We estimate the parameters to
be α = 0.8185, β = 0.01, γ = 0.01 and σ = 0.0352, with the final states
�n = 757.3, bn = 15.7, and zn = (0.873, 1.141, 1.022, 0.964)′.

Figure 6.4 shows the forecast standard deviations calculated exactly using
(6.8) and approximately using (6.5). The approximate values are so close to
the exact values in this case (because σ2 and γ are both very small) that it is
almost impossible to distinguish the two lines.

The data with three years of forecasts are shown in Fig. 6.5. In this
case, the conditional mean forecasts obtained from model ETS(M,A,M) are
virtually indistinguishable from the usual forecasts because σ is so small
(they are identical up to h = m). The solid lines show prediction intervals
calculated as µn+h|n ± 1.96√vn+h|n, and the dotted lines show prediction
intervals computed by generating 20,000 future sample paths from the fit-
ted model and finding the 2.5 and 97.5% quantiles at each forecast horizon.
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Fig. 6.4. Forecast standard deviations calculated (a) exactly using (6.8); and (b)
approximately using (6.5).
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Fig. 6.5. Quarterly French exports data with 3 years of forecasts. The solid lines show
prediction intervals calculated as µn+h|n ± 1.96√vn+h|n, and the dotted lines show pre-
diction intervals computed by generating 20,000 future sample paths from the fitted
model and finding the 2.5 and 97.5% quantiles at each forecast horizon.
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Clearly, the variance-based intervals are a good approximation despite the
non-Gaussianity of the prediction distributions.

6.6 Lead-Time Demand Forecasts for Linear Homoscedastic
Models

For Class 1 models, it is also possible to obtain some analytical results on the
distribution of lead-time demand, defined by

Yn(h) =
h

∑
j=1

yn+j. (6.11)

In particular, the variance of lead-time demand can be used when imple-
menting an inventory strategy, although the basic exponential smoothing
procedures originally provided only point forecasts, and rather ad hoc
formulae were the vogue in inventory control software.

Harrison (1967) and Johnston and Harrison (1986) derived a variance for-
mula for lead-time demand based on simple exponential smoothing using
a state space model with independent error terms. They utilized the fact
that simple exponential smoothing emerges as the steady state form of the
model predictions in large samples. Adopting a different model, Snyder et al.
(1999) were able to obtain the same formula without recourse to a restrictive
large sample assumption. Around the same time, Graves (1999) obtained the
formula using an ARIMA(0,1,1) model.

Harrison (1967) and Johnston and Harrison (1986) also obtained a
variance formula for lead-time demand when trend-corrected exponential
smoothing is employed. Yar and Chatfield (1990), however, suggested a
slightly different formula. They also provide a formula that incorporates
seasonal effects for use with the additive Holt-Winters method.

The approach we adopt here is based on Snyder et al. (2004), although the
parameterization in this book is slightly different from that used in Snyder
et al. (2004). The results obtained subsume those in Harrison (1967), Johnston
and Harrison (1986), Yar and Chatfield (1990), Graves (1999) and Snyder et al.
(1999). In addition, for ETS(A,A,A), the recursive variance formula in Yar and
Chatfield (1990) has been replaced with a closed-form counterpart.

6.6.1 Means and Variances of Lead-Time Demand

In Appendix “Derivation of Cj values” we show that

yn+j = µn+j|n +
j−1

∑
i=1

cj−iεn+i + εqn+j,
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where µn+j|n and ck are given in Table 6.2. Substitute this into (6.11) to give

Yn(h) =
h

∑
j=1

(
µn+j|n +

j−1

∑
i=1

cj−iεn+i + εn+j

)
=

h

∑
j=1

µn+j|n +
h

∑
j=1

Cj−1εn+h−j+1,

(6.12)
where

C0 = 1 and Cj = 1 +
j

∑
i=1

ci for j = 1, . . . , h − 1. (6.13)

Thus, lead-time demand can be resolved into a linear function of the
uncorrelated level and error components.

From (6.12), it is easy to see that the point forecast (conditional mean) is
simply

Ŷn(h) = E(Yn(h) | xn) =
h

∑
j=1

µn+j|n (6.14)

and the conditional variance is given by

V (Yn(h) | xn) = σ2
h−1

∑
j=0

C2
j . (6.15)

The value of Cj for each of the models is given in Table 6.6. These
expressions are derived in Appendix “Derivation of Cj values.”

As with the equations for forecast variance at a specific forecast horizon,
we can substitute these expressions into (6.15) to derive a specific formula
for each model. This leads to a lot of tedious algebra that is of limited value.
Therefore we only give the result for model ETS(A,N,N):

Table 6.6. Values of Cj to be used in computing the lead-time variance in (6.15).

Model Cj

(A,N,N) 1 + jα

(A,A,N) 1 + j
[

α + 1
2 β(j + 1)

]
(A,Ad,N) 1 + jα + βφ

(1−φ)2

[
(j + 1)(1 − φ) − (1 − φj+1)

]
(A,N,A) 1 + jα + γjm

(A,A,A) 1 + j
[

α + 1
2 β(j + 1)

]
+ γjm

(A,Ad,A) 1 + jα + βφ
(1−φ)2

[
(j + 1)(1 − φ) − (1 − φj+1)

]
+ γjm

Here m is the number of periods in each season and jm = 
 j/m�
is the number of complete seasonal cycles that occur within j time
periods.
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V(Yn(h) | xn) =
h−1

∑
j=0

(1 + jα)2

= σ2h
[
1 + α(h − 1) + 1

6 α2(h − 1)(2h − 1)
]

. (6.16)

6.6.2 Matrix Calculation of Means and Variances

The mean and variance of the lead-time demand, and the forecast mean and
variance for a single period, can also be computed recursively using matrix
equations. From Chap. 3, we know that the form of the Class 1 models is

yt = w′xt−1 + εt,
xt = Fxt−1 + gεt,

where w′ is a row vector, g is a column vector, F is a matrix, xt is the
unobserved state vector at time t, and {εt} is NID(0, σ2).

Observe that the lead-time demand can be determined recursively by

Yn(j) = Yn(j − 1) + yn+j, (6.17)

where Yn(0) = 0 and Yn(j) = ∑
j
i=1 yn+i. Consequently, (6.17) can be

written as
Yn(j) = Yn(j − 1) + w′xn+j−1 + εn+j. (6.18)

So, if the state vector xn+j is augmented with Yn(j), the first-order recurrence
relationship [

xn+j
Yn(j)

]
=
[

F 0
w′ 1

] [
xn+j−1

Yn(j − 1)

]
+
[
g
1

]
εn+j

is obtained. This has the general form zn+j = Azn+j−1 + bεn+j. If the mean
and variance of the zn+j are denoted by mz

n+j|n = E(zn+j | xn) and V z
n+j|n =

V(zn+j | xn), then they can be computed recursively using the equations

mz
n+j|n = Amz

n+j−1|n,

V z
n+j|n = AV z

n+j−1|nA
′ + σ2bb′.

The mean of the lead-time demand Yn(h) is the last element in mz
n+h|n, and

the variance of Yn(h) is the bottom right element of V z
n+h|n.

This same procedure of using an augmented matrix can also be applied to
find the forecast mean and variance of yn+h for any single future time period
t = n + h. In this case, the state vector xn+j is augmented with yn+j in place
of Yn(j), and

A =
[

F 0
w′ 0

]
.
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Then, the mean and variance of yn+h are the last elements in mz
n+h|n and

V z
n+h|n respectively. Of course, one can use A = [F , w′]′ and the general

form zn+j = Axn+j−1 + bεn+j to remove the unnecessary multiplications by
0 in an actual implementation.

6.6.3 Stochastic Lead-Times

In practice, lead-times are often stochastic, depending on various factors
including demand in the previous time periods. We explore the effect of
stochastic lead-times on forecast variances in the case of the ETS(A,N,N)
model for simple exponential smoothing.

Let the lead-time, T, be stochastic with mean E(T) = h. The mean lead-
time demand, given the level at time n, is

E(Yn(T) | �n) = ET[E(Yn(T) | T, �n)] = h�n,

as in the case of a fixed lead-time. The variance of the lead-time demand
reduces to

V(Yn(T) | �n) = VT [E(Yn(T) | T, �n)] + ET [V(Yn(T) | T, �n)]

= VT(�nT) + ET

[
σ2

T

∑
j=1

C2
j,T

]

= �2
nV(T) + σ2ET

[ T

∑
j=1

{
1 + 2α(T − j) + α2(T − j)2

} ]

= �2
nV(T) + σ2h + σ2α

[
(1 + 1

2 α)h[2] +
1
3 αh[3]

]
,

where h[j] = E[T(T − 1) . . . (T − j + 1)], j = 1, 2, . . . , is known as the jth
factorial moment of the distribution of T.

For example, when the lead-time is fixed, h[j] = h(h − 1) . . . (h − j + 1).
When the lead-time is Poisson with mean h, then h[j] = hj. Therefore, the
lead-time demand variance becomes

V(Yn(T) | �n) = (�2
n + σ2)h + σ2α

[
(1 + 1

2 α)h2 + 1
3 αh3

]
.

Compare this with the variance for a fixed lead-time as given in (6.16). The
two variances are plotted in Fig. 6.6 for α = 0.1, σ = 1 and �n = 2, showing
that a stochastic lead-time can substantially increase the lead-time demand
variance.
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Fig. 6.6. Lead-time demand variance for an ETS(A,N,N) model with fixed and
stochastic lead-times. Here, α = 0.1, σ = 1 and �n = 2.

6.7 Exercises

Exercise 6.1. For the ETS(M,N,N) model, show that

θj = �2
n(1 + α2σ2)j−1

and

vn+h|n = �2
n

[
(1 + α2σ2)h−1(1 + σ2)− 1

]
.

Exercise 6.2. For the ETS(A,A,A) model, use (6.23) replacing φj by j to show
that

vn+h|n = σ2
[
1 + (h − 1)

{
α2 + αβh + 1

6 β2h(2h − 1)
}

+ γhm {2α + γ + βm(hm + 1)}
]

.

Exercise 6.3. Monthly US 10-year bonds data were forecast with an
ETS(A,Ad,N) model in Sect. 2.8.1 (p. 28). Find the 95% prediction intervals
for this model algebraically and compare the results obtained by simulating
5,000 future sample paths using R.

Exercise 6.4. Quarterly UK passenger vehicle production data were forecast
with an ETS(A,N,A) model in Sect. 2.8.1 (p. 28). Find the 95% prediction
intervals for this model algebraically and compare the results obtained by
simulating 5,000 future sample paths using R.
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Appendix: Derivations

Derivation of Results for Class 1

The results for Class 1 models are obtained by first noting that all of the
linear, homoscedastic ETS models can be written using the following linear
state space model, introduced in Chap. 3:

yt = w′xt−1 + εt (6.19)
xt = Fxt−1 + gεt, (6.20)

where w′ is a row vector, g is a column vector, F is a matrix, and xt is the
unobserved state vector at time t. In each case, {εt} is NID(0, σ2).

Let Ik denote the k × k identity matrix, and 0k denote a zero vector of
length k. Then

• The ETS(A,N,N) model has xt = �t, w = F = 1 and g = α;
• The ETS(A,Ad,N) model has xt = (�t, bt)′, w′ = [1 φ],

F =
[

1 φ
0 φ

]
and g =

[
α
β

]
;

• The ETS(A,N,A) model has xt = (�t, st, st−1, . . . , st−(m−1))′,
w′ = [1 0′m−1 1],

F =

⎡
⎣ 1 0′m−1 0

0 0′m−1 1
0m−1 Im−1 0m−1

⎤
⎦ and g =

⎡
⎣ α

γ
0m−1

⎤
⎦ ;

• The ETS(A,Ad,A) model has xt = (�t, bt, st, st−1, . . . , st−(m−1))′,
w′ = [1 φ 0′m−1 1],

F =

⎡
⎢⎢⎣

1 φ 0′
m−1 0

0 φ 0′
m−1 0

0 0 0′m−1 1
0m−1 0m−1 Im−1 0m−1

⎤
⎥⎥⎦ and g =

⎡
⎢⎢⎣

α
β
γ

0m−1

⎤
⎥⎥⎦ .

The matrices for (A,A,N) and (A,A,A) are the same as for (A,Ad,N) and
(A,Ad,A) respectively, but with φ = 1.

Forecast Mean

Let mn+h|n = E(xn+h | xn). Then mn|n = xn and

mn+h|n = Fmn+h−1|n = F 2mn+h−2|n = · · · = F hmn|n = F hxn.
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Therefore

µn+h|n = E(yn+h|xn) = w′mn+h−1|n = w′F h−1xn.

Example 6.2: Forecast mean of the ETS(A,Ad,A) model

For the ETS(A,Ad,A) model, w′ = [1 φ 0′m−1 1] and

F j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 φj 0 0 . . . 0
0 φj 0 0 . . . 0
0 0 dj+m,m dj+m+1,m . . . dj+2m−1,m
0 0 dj+m−1,m dj+m,m . . . dj+2m−2,m
...

...
...

...
. . .

...
0 0 dj+1,m dj+2,m . . . dj+m,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where φj = φ + φ2 + · · · + φj, and dk,m = 1 if k = 0 (mod m) and dk,m = 0
otherwise. Therefore,

w′F j = [1, φj+1, dj+1,m, dj+2,m, . . . , dj+m,m] (6.21)

and
µn+h|n = �n + φhbn + sn−m+h+

m
.

The forecast means for the other models can be derived similarly, and are
listed in Table 6.2

Forecast Variance

Define the state forecast variance as Vn+h|n = V(xn+h | xn). Note that Vn|n =
O, where O denotes a matrix of zeros. Then, from (6.20),

Vn+h|n = FVn+h−1|nF ′ + gg′σ2,

and therefore

Vn+h|n = σ2
h−1

∑
j=0

F jgg′(F j)′.

Hence, using (6.19), the forecast variance for h periods ahead is

vn+h|n = V(yn+h | xn)

= w′Vn+h−1|nw + σ2 =

⎧⎪⎨
⎪⎩

σ2 if h = 1;

σ2

[
1 +

h−1

∑
j=1

c2
j

]
if h ≥ 2; (6.22)

where cj = w′F j−1g.
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Example 6.3: Forecast variance for the ETS(A,Ad,A) model

Using (6.21), we find that cj = w′F j−1g = α + βφj + γdj,m. Consequently,
from (6.22) we obtain

vn+h|n = σ2

[
1 +

h−1

∑
j=1

(α + βφj + γdj,m)2

]

= σ2
[

1 +
h−1

∑
j=1

(
α2 + 2αβφj + β2φ2

j + {γ2 + 2αγ + 2βγφj}dj,m

)]
. (6.23)

In order to expand this expression, first recall the following well known
results for arithmetic and geometric series (Morgan 2005):

p

∑
j=1

j = 1
2 p(p + 1),

p

∑
j=1

j2 = 1
6 p(p + 1)(2p + 1) and

p

∑
j=1

aj =
a(1 − ap)

1 − a
,

where a �= 1, from which it is easy to show that

p

∑
j=1

jaj =
a[1 − (p + 1)ap + pap+1]

(1 − a)2 ,
p

∑
j=1

j(p − j + 1) = 1
6 p(p + 1)(p + 2)

and φj = φ(1 − φj)/(1 − φ) when φ < 1. Then the following expressions
also follow for φ < 1:

h−1

∑
j=1

φj =
φ

(1 − φ)2

[
h(1 − φ) − (1 − φh)

]

and
h−1

∑
j=1

φ2
j =

φ2

(1 − φ)2

h−1

∑
j=1

(1 − 2φj + φ2j)

=
φ2

(1 − φ)2(1 − φ2)

[
h(1 − φ2) − (1 + 2φ − φh)(1 − φh)

]
.

Furthermore,
h−1

∑
j=1

dj,m = hm. If h − 1 < m (i.e., hm = 0), then
h−1

∑
j=1

φjdj,m = 0,

and if h − 1 ≥ m (i.e., hm ≥ 1), then

h−1

∑
j=1

φjdj,m =
hm

∑
�=1

φ�m =
φ

1 − φ

hm

∑
�=1

(1 − φ�m)

=
φ

(1 − φ)(1 − φm)

[
hm(1 − φm)− φm(1 − φmhm)

]
.

(continued)
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Using the above results, we can rewrite (6.23) as

vn+h|n = σ2
[

1 + α2(h − 1) +
βφh

(1 − φ)2 {2α(1 − φ) + βφ} (6.24)

− βφ(1 − φh)
(1 − φ)2(1 − φ2)

{
2α(1 − φ2) + βφ(1 + 2φ − φh)

}

+ γhm(2α + γ) +
2βγφ

(1 − φ)(1 − φm)

{
hm(1 − φm)− φm(1 − φmhm)

}]
.

This is the forecast variance for the ETS(A,Ad,A) model when h ≥ 2.

Example 6.4: Forecast variance for the ETS(A,A,A) model

To obtain the forecast variance for the ETS(A,A,A) model, we could take
the limit as φ → 1 in (6.24) and apply L’Hospital’s rule. However, in many
ways it is simpler to go back to (6.23) and replace φj with j. This yields
(Exercise 6.2)

vn+h|n = σ2
[
1 + (h − 1)

{
α2 + αβh + 1

6 β2h(2h − 1)
}

(6.25)

+ γhm {2α + γ + βm(hm + 1)}
]

.

The forecast variance expressions for all other models can be obtained as
special cases of either (6.24) or (6.25):

• For (A,Ad,N), we use the results of (A,Ad,A) with γ = 0 and st = 0 for all
t.

• For (A,A,N), we use the results of (A,A,A) with γ = 0 and st = 0 for all t.
• The results for (A,N,N) are obtained from (A,A,N) by further setting β = 0

and bt = 0 for all t.
• The results for (A,N,A) are obtained as a special case of (A,A,A) with β = 0

and bt = 0 for all t.

Derivation of Results for Class 2

The models in Class 2 can all be written using the following state space
model:

yt = w′xt−1(1 + εt), (6.26)

xt = (F + gw′εt)xt−1, (6.27)

where w, g, F , xt and εt are the same as for the corresponding Class 1 model.
The lower tail of the error distribution is truncated so that 1 + εt is positive.
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The truncation is usually negligible as σ is usually relatively small for these
models.

Let mn+h|n = E(xn+h | xn) and Vn+h|n = V(xn+h | xn) as in Sect. 6.2.
The forecast means for Class 2 have the same form as for Class 1, namely

µn+h|n = w′mn+h−1|n = w′F h−1xn.

From (6.26), it can be seen that the forecast variance is given by

vn+h|n = w′Vn+h−1|nw(1 + σ2) + σ2w′mn+h−1|nm′
n+h−1|nw

= w′Vn+h−1|nw(1 + σ2) + σ2µ2
n+h|n.

To obtain Vn+h−1|n, first note that xt = Fxt−1 + get, where et = yt −
w′xt−1 = w′xt−1εt. Then it is readily seen that Vn+h|n = FVn+h−1|nF ′ +
gg′V(en+h | xn). Now let θh be defined such that V(en+h | xn) = θhσ2. Then,
by repeated substitution,

Vn+h|n = σ2
h−1

∑
j=0

F jgg′(F j)′θh−j.

Therefore,

w′Vn+h−1|nw = σ2
h−1

∑
j=1

c2
j θh−j, (6.28)

where cj = w′F j−1g. Now

en+h =
[
w′(xn+h−1 −mn+h−1|n) + w′mn+h−1|n

]
εn+h,

which we square and take expectations to give θh = w′Vn+h−1|nw + µ2
n+h|n.

Substituting (6.28) into this expression for θh gives

θh = σ2
h−1

∑
j=1

c2
j θh−j + µ2

n+h|n, (6.29)

where θ1 = µ2
n+1|n. The forecast variance is then given by

vn+h|n = (1 + σ2)θh − µ2
n+h|n. (6.30)

Derivation of Results for Class 3

Note that we can write (see p. 85)

yt = w′
1xt−1z

′
t−1w2(1 + εt).
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So let Qh = xn+hz
′
n+h, Mh = E(Qh | xn, zn) and Vn+h|n = V(

−→
Q h | xn, zn)

where
−→
Q h = vec(Qh). Note that

Qh = (F1xn+h−1 + G1xn+h−1εn+h)(z′
n+h−1F

′
2 + z′

n+h−1G
′
2εn+h)

= F1Qh−1F
′
2 + (F1Qh−1G

′
2 + G1Qh−1F

′
2)εn+h + G1Qh−1G

′
2ε2

n+h.

It follows that M0 = xnz′
n and

Mh = F1Mh−1F
′
2 + G1Mh−1G

′
2σ2. (6.31)

For the variance of Qh , we find V0 = 0, and

Vn+h|n = V
[
vec(F1Qh−1F

′
2) + vec(F1Qh−1G

′
2 + G1Qh−1F

′
2)εn+h

+ vec(G1Qh−1G
′
2)ε2

n+h
]

= (F2 ⊗F1)Vn+h−1|n(F2 ⊗ F1)′

+ (G2 ⊗ F1 + F2 ⊗G1)V(
−→
Q h−1εn+h)(G2 ⊗ F1 + F2 ⊗G1)′

+ (G2 ⊗G1)V(
−→
Q h−1ε2

n+h)(G2 ⊗G1)′

+ (F2 ⊗F1)Cov(
−→
Q h−1,

−→
Q h−1ε2

n+h)(G2 ⊗G1)′

+ (G2 ⊗G1)Cov(
−→
Q h−1ε2

n+h,
−→
Q h−1)(F2 ⊗F1)′.

Next we find that

V(
−→
Q h−1εn+h) = E[

−→
Q h−1(

−→
Q h−1)′ε2

n+h]

= σ2[Vn+h−1|n +
−→
M h−1(

−→
M h−1)′

]
,

V(
−→
Q h−1ε2

n+h) = E
[−→
Q h−1(

−→
Q h−1)′ε4

n+h
]− E(

−→
Q h−1)E(

−→
Q h−1)′σ4

= 3σ4[Vn+h−1|n +
−→
M h−1(

−→
M h−1)′

]−−→
M h−1(

−→
Mh−1)′σ4

= σ4[3Vn+h−1|n + 2
−→
M h−1(

−→
Mh−1)′

]
,

and

Cov(
−→
Q h−1,

−→
Q h−1ε2

n+h) = E
[−→
Q h−1(

−→
Q h−1)′ε2

n+h
]− E(

−→
Q h−1)E(

−→
Q h−1)′σ2

= σ2(Vn+h−1|n +
−→
M h−1(

−→
M h−1)′)− σ2−→M h−1(

−→
M h−1)′

= σ2Vn+h−1|n.

It follows that

Vn+h|n = (F2 ⊗ F1)Vn+h−1|n(F2 ⊗F1)′

+ σ2
[
(F2 ⊗F1)Vn+h−1|n(G2 ⊗G1)′ + (G2 ⊗G1)Vn+h−1|n(F2 ⊗F1)′

]
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+ σ2(G2 ⊗F1 + F2 ⊗G1)
[
Vn+h−1|n +

−→
M h−1(

−→
M h−1)′

]
× (G2 ⊗F1 + F2 ⊗G1)′

+ σ4(G2 ⊗G1)
[
3Vn+h−1|n + 2

−→
M h−1(

−→
M h−1)′

]
(G2 ⊗G1)′.

The forecast mean and variance are given by

µn+h|n = E(yn+h | xn, zn) = w′
1Mh−1w2

and

vn+h|n = V(yn+h | xn, zn) = V[vec(w′
1Qh−1w2 + w′

1Qh−1w
′
2εn+h)]

= V[(w′
2 ⊗w′

1)
−→
Q h−1 + (w′

2 ⊗w′
1)
−→
Q h−1εn+h]

= (w′
2 ⊗w′

1)[Vn+h−1|n(1 + σ2) + σ2−→M h−1(
−→
M h−1)′](w2 ⊗w1)

= (1 + σ2)(w′
2 ⊗w′

1)Vn+h−1|n(w′
2 ⊗w′

1)
′ + σ2µ2

n+h|n.

When σ is sufficiently small (much less than 1), it is possible to obtain
some simpler but approximate expressions. The second term in (6.31) can
be dropped to give Mh = F h−1

1 M0(F h−1
2 )′, and so

µn+h|n ≈ w′
1F

h−1
1 xn(w′

2F
h−1
2 zn)′.

The order of this approximation can be obtained by noting that the obser-
vation equation may be written as yt = u1,tu2,tu3,t, where u1,t = w′

1xt−1,
u2,t = w′

2zt−1 and u3,t = 1 + εt. Then

E(yt) = E(u1,tu2,tu3,t) = E(u1,tu2,t)E(u3,t),

because u3,t is independent of u1,t and u2,t. Therefore, because E(u1,tu2,t) =
E(u1,t)E(u2,t) + Cov(u1,t, u2,t), we have the approximation:

µn+h|n = E(yn+h | xn, zn) = E(u1,n+h | xn)E(u2,n+h | zn)E(u3,n+h) + O(σ2).

When u2,n+h is constant the result is exact. Now let

µ1,h = E(u1,n+h+1 | xn) = E(w′
1xn+h | xn) = w′

1F
h
1 xn,

µ2,h = E(u2,n+h+1 | zn) = E(w′
2zn+h | zn) = w′

2F
h
2 zn,

v1,h = V(u1,n+h+1 | xn) = V(w′
1xn+h | xn),

v2,h = V(u2,n+h+1 | zn) = V(w′
2zn+h | zn),

and v12,h = Cov(u2
1,n+h+1, u2

2,n+h+1 | xn, zn)

= Cov([w′
1xn+h]2, [w′

2zn+h]2 | xn, zn).

Then
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µn+h|n = µ1,h−1µ2,h−1 + O(σ2) = w′
1F

h−1
1 xnw′

2F
h−1
2 zn + O(σ2).

By the same arguments, we have

E(y2
t ) = E(u2

1,tu
2
2,tu

2
3,t) = E(u2

1,tu
2
2,t)E(u2

3,t),

and

E(y2
n+h | zn, xn) = E(u2

1,n+hu2
2,n+h | xn, zn)E(u2

3,n+h)

=
[
Cov(u2

1,n+h, u2
2,n+h | xn, zn) + E(u2

1,n+h | xn)E(u2
2,n+h | zn)

]
E(u2

3,n+h)

= (1 + σ2)[v12,h−1 + (v1,h−1 + µ2
1,h−1)(v2,h−1 + µ2

2,h−1)].

Assuming that the covariance v12,h−1 is small compared to the other terms,
we obtain

vn+h|n ≈ (1 + σ2)(v1,h−1 + µ2
1,h−1)(v2,h−1 + µ2

2,h−1) − µ2
1,h−1µ2

2,h−1.

We now simplify these results for the ETS(M,Ad,M) case where xt = (�t, bt)′
and zt = (st, . . . , st−m+1)′, and the matrix coefficients are w′

1 = [1, φ], w′
2 =

[0, . . . , 0, 1],

F1 =
[

1 φ
0 φ

]
, F2 =

[
0′m−1 1
Im−1 0m−1

]
,

G1 =
[

α α
β β

]
, and G2 =

[
0′m−1 γ
Om−1 0m−1

]
.

Many terms will be zero in the formulae for the expected value and the
variance because of the following relationships: G2

2 = Om, w′
2G2 = 0′m,

and (w′
2 ⊗ w′

1)(G2 ⊗ X) = 0′2m where X is any 2 × 2 matrix. For the
terms that remain, w′

2 ⊗ w′
1 and its transpose will only use the terms from

the last two rows of the last two columns of the large matrices because
w′

2 ⊗w′
1 = [0′2m−2, 1, 1].

Using the small σ approximations and exploiting the structure of the
ETS(M,Ad,M) model, we can obtain simpler expressions that approximate
µn+h|n and vn+h|n.

Note that w′
2F

j
2G2 = γdj+1,mw′

2. So, for h < m, we have

w′
2zn+h | zn = w′

2

h

∏
j=1

(F2 + G2εn+h−j+1)zn = w′
2F

h
2 zn = sn−m+h+1

Furthermore,

µ2,h = sn−m+h+
m

and v2,h =
[
(1 + γ2σ2)hm − 1

]
s2

n−m+h+
m

.
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Also note that xn has the same properties as for ETS(M,Ad,N) in Class 2.
Thus

µ1,h = �n + φhbn

and v1,h = (1 + σ2)θh − µ2
1,h.

Combining all of the terms, we arrive at the approximations

µn+h|n = µ̃n+h|nsn−m+h+
m

+ O(σ2)

and vn+h|n ≈ s2
n−m+h+

m

[
θh(1 + σ2)(1 + γ2σ2)hm − µ̃2

n+h|n
]
,

where µ̃n+h|n = �n + φhbn, θ1 = µ̃2
n+1|n, and

θh = µ̃2
n+h|n + σ2

h−1

∑
j=1

(α + βφj)2θh−j, h ≥ 2.

These expressions are exact for h ≤ m. The other cases of Class 3 can be
derived as special cases of ETS(M,Ad,M).

Derivation of Cj Values

We first demonstrate that for Class 1 models, lead-time demand can be
resolved into a linear function of the uncorrelated level and error compo-
nents. Back-solve the transition equation (6.20) from period n + j to period n,
to give

xn+j = F jxn +
j

∑
i=1

F j−igεn+i.

Now from (6.19) and (6.20) we have

yn+j = w′xn+j−1 + εn+j

= w′Fxn+j−2 + w′gεn+j−1 + εn+j

...

= w′F j−1xn +
j−1

∑
i=1

w′F j−i−1gεn+i + εn+j

= µn+j|n +
j−1

∑
i=1

cj−iεn+i + εn+j,

where ck = w′F k−1g. Substituting this into (6.11) gives (6.15).
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To derive the value of Cj for the ETS(A,Ad,A) model, we plug the value
of ci from Table 6.2 into (6.13) to obtain

Cj = 1 +
j

∑
i=1

(α + βφi + γdi,m)

= 1 + αj + β
j

∑
i=1

φi + γ
j

∑
i=1

di,m

= 1 + αj +
βφ

(1 − φ)2

[
(j + 1)(1 − φ) − (1 − φj+1)

]
+ γjm,

where jm = 
j/m� is the number of complete seasonal cycles that occur
within j time periods.

A similar derivation for the ETS(A,A,A) model leads to

Cj = 1 +
j

∑
i=1

(α + iβ + γdi,m) = 1 + j
[
α + 1

2 β(j + 1)
]
+ γjm.

The expressions for Cj for the other linear models are obtained as special
cases of either ETS(A,Ad,A) or ETS(A,A,A) and are given in Table 6.6.
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Selection of Models

One important step in the forecasting process is the selection of a model that
could have generated the time series and would, therefore, be a reasonable
choice for producing forecasts and prediction intervals. As we have seen in
Chaps. 2–4, there are many specific models within the general innovations
state space model (2.12). There are also many approaches that one might
implement in a model selection process. In Sect. 7.1, we will describe the
use of information criteria for selecting among the innovations state space
models. These information criteria have been developed specifically for time
series data and are based on maximized likelihoods. We will consider four
commonly recommended information criteria and one relatively new infor-
mation criterion. Then, in Sect. 7.2, we will use the MASE from Chap. 2 to
develop measures for comparing model selection procedures. These mea-
sures will be used in Sects. 7.2.2 and 7.2.3 to compare the five information
criteria with each other, and the commonly applied prediction validation
method for model selection using the M3 competition data (Makridakis
and Hibon 2000) and a hospital data set. We also compare the results with
the application of damped trend models for all time series. Finally, some
implications of these comparisons will be given in Sect. 7.3.

7.1 Information Criteria for Model Selection

The goal in model selection is to pick the model with the best predictive
ability on average. Finding the model with the smallest within-sample one-
step-ahead forecast errors, or even the one with the maximum likelihood,
does not assure us that the model will be the best one for forecasting.

One approach is to use an information criterion which penalizes the like-
lihood to compensate for the potential overfitting of data. The general form
of the information criteria for an innovations state space model is

IC = −2 logL(θ̂, x̂0 | y) + qζ(n), (7.1)
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Table 7.1. Penalties in the information criteria.

Criterion ζ(n) Penalty Source

AIC 2 2q Akaike (1974)
BIC log(n) q log(n) Schwarz (1978)
HQIC 2 log(log(n)) 2q log(log(n)) Hannan and Quinn (1979)
AICc 2n/(n − q − 1) 2qn/(n − q − 1) Sugiura (1978)
LEIC Empirical c qc Billah et al. (2003)

where L(θ̂, x̂0 | y) is the maximized likelihood function, q is the number of
parameters in θ̂ plus the number of free states in x̂0, and ζ(n) is a function
of the sample size. Thus, qζ(n) is the penalty assigned to a model for the
number of parameters and states in the model. (We also require that the state
space model has no redundant states—see Sect. 10.1, p. 149.) The information
criteria that will be introduced in this chapter are summarized in Table 7.1.

For the Gaussian likelihood, we can drop the additive constants in
−2 log(L(θ̂, x̂0 | y)) and replace the expression by L∗(θ, x0) from (5.3) to
obtain

IC = n log
( n

∑
t=1

ε2
t

)
+ 2

n

∑
t=1

log |r(xt−1)|+ qζ(n). (7.2)

Recall from Chap. 5 that εt = [yt − w(xt−1)]/r(xt−1). Also, the likelihood
function is based on a fixed seed state x0. Not only is the fixed seed state
critical for this form of the Gaussian likelihood in the nonlinear version, it
is essential in both the linear and nonlinear case for comparing models that
differ by a nonstationary state (see Chap. 12 for a discussion of this problem).

The procedure for using an information criterion in model selection is to
compute the IC for each model and choose the model with the minimum IC.
Of course, we do not believe that there is an absolutely correct model for a
time series, but this process should find a reasonable model for forecasting.

In the Akaike Information Criterion (AIC) (Akaike 1974), ζ(n) = 2, and
hence the penalty is 2q. The AIC is derived by considering the principles
of maximum likelihood and negative entropy. Suppose future values of a
time series y∗ = [yn+1, . . . , yn+h] are to be predicted from present and past
values y = [y1, . . . , yn]. Model selection can be viewed as the problem of
approximating f (y∗|y), the true conditional density of y∗, given that y is
observed. If g(y∗|y) is an estimate of f , its goodness in approximating f can
be measured by its negative entropy

Iy∗|y( f , g) =
∫

f (y∗|y) log
(

f (y∗|y)
g(y∗|y)

)
dy∗.

This measure is also known as the Kullback-Leibler conditional discriminant
information, and its size reflects the model approximation error. The negative
entropy principle is to select the approximating density g which minimizes
the expected negative entropy Ey[Iy∗|y( f , g)] (Akaike 1977). Because the true
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density f is not known, the negative entropies of various competing models
must be estimated. Akaike’s criterion estimates twice the negative entropy
and is designed to produce an approximate asymptotically unbiased estima-
tor as n increases. Thus, the model having the minimum AIC should have
the minimum prediction error for y∗, at least asymptotically.

In the Schwarz Bayesian information criterion (BIC) (Schwarz 1978), ζ(n) =
log(n), and the penalty is q log(n). Schwarz derived his criterion as the
Bayes solution to the problem of model identification. Asymptotically, the
BIC is minimized at the model order having the highest posterior probabil-
ity. The BIC is “order consistent” under suitable conditions. A criterion is
order consistent if, as the sample size increases, the criterion is minimized
at the true order with a probability that approaches unity. For our models
the order is the number of parameters and free states. In contrast, the AIC
has been criticized because it is inconsistent and tends to overfit models.
Geweke and Meese (1981) showed this for regression models, Shibata (1976)
for autoregressive models, and Hannan (1980) for ARMA models.

In the Hannan–Quinn information criterion (HQIC) (Hannan and Quinn
1979), ζ(n) = 2 log(log(n)) and the penalty is 2q log(log(n)). For the pur-
pose of understanding the objective of Hannan and Quinn in the HQIC, we
divide the Gaussian IC in (7.2) by n to put the information criterion into the
following form:

IC = log
( n

∑
t=1

ε2
t

)
+ (2/n)

n

∑
t=1

log |r(xt−1)|+ qCn,

where Cn = n−1ζ(n). Hannan and Quinn’s goal was to find an information
criterion based on the minimization of the IC that is order consistent and for
which Cn decreases as fast as possible. Thus, HQIC has the property that, like
the BIC, it is order consistent and yet comes closer to achieving the optimal
forecasting performance of the AIC.

In the bias corrected AIC that is denoted by AICc (Sugiura 1978; Hurvich
and Tsai 1989), ζ(n) = n/(n − q − 1), and the penalty is 2qn/(n − q − 1).
While the BIC and HQIC are order consistent, they are not asymptotically
efficient like the AIC. In addition, the AIC is only approximately an unbiased
estimator. In fact, it has a negative bias that becomes more pronounced as n/q
decreases. The AICc is an asymptotically efficient information criterion that
does an approximate correction for this negative bias, and has been shown
to provide better model order choices for small samples.

In the linear empirical information criterion (LEIC) (Billah et al. 2003, 2005),
ζ(n) = c, where c is estimated empirically for an ensemble of N similar time
series with M competing models, and the penalty is qc. The procedure for
estimating c requires that a specified number of time periods H be withheld
from each time series. The forecasting errors for these withheld time peri-
ods are used to compare the competing models and determine a value for c.
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The details of estimating c are provided in Appendix “The linear empirical
information criterion.”

7.2 Choosing a Model Selection Procedure

The potential models to be used in our consideration of the model selection
process are listed in Tables 2.2 and 2.3. The first question to be considered
is whether each model in those tables is the best model for forecasting some
time series. We will use the data from the M3 competition (Makridakis and
Hibon 2000) as an example to see that each model is “best” for a reason-
able number of time series in that data set. Another interesting question is
whether using one model to forecast all time series might be better than
employing a model selection method. Some evidence that one could do well
by always using damped trend models is provided by the M3 data. However,
examination of a set of hospital data containing monthly time series shows
that this is not always the case. The M3 data and the hospital data will also
be used to compare model selection methods that include the information
criteria from Sect. 7.1 and a prediction validation method that is explained in
Appendix “Prediction validation method of model selection.” It will be seen
in both cases that it is reasonable to choose the AIC as the model selection
method.

7.2.1 Measures for Comparing Model Section Procedures

In our comparisons, we will include the following procedures for choosing
forecasting models for N time series:

• A single model for all time series
• Minimum IC (AIC, BIC, AICc, HQIC, LEIC)
• Prediction validation (VAL) (see Appendix “Prediction validation method

of model selection”)

Thus, we consider seven model selection procedures, which may be labeled
procedure 1 to procedure 7.

The mean absolute scaled error (MASE) proposed by Hyndman and
Koehler (2006) is used to determine the success of a model selection pro-
cedure. Consider the situation in which we have a collection of N time series
for which there are M potential models for forecasting future values. The set

of observations for the time series {y(j)
t } (j = 1, . . . , N) is split into two parts:

a fitting set of the first nj values and a forecasting set of the last H values. The

forecasting accuracy of model i (i = 1, . . . , M), for time series {y(j)
t } will be

measured by the mean absolute scaled forecast error, defined by

MASE(H, i, j) =
1
H

H

∑
h=1

|y(j)
nj+h − ŷ(i,j)

nj (h)|
MAEj

, (7.3)
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where MAEj = (nj − 1)−1 ∑
nj
t=2 |y(j)

t − y(j)
t−1|, and ŷ(i,j)

i,nj
(h) is the h-step-ahead

forecast when model i is used for the jth time series.
We define three measures for comparing model selection procedures for

forecasting. All of the measures are based on the mean absolute scaled fore-
cast error MASE(H, i, j), as defined in (7.3). The models are numbered from
1 to M, and for model selection procedure k, we denote the number of the

model selected for time series {y(j)
t } by kj. The rank r(H, kj, j) for proce-

dure k and time series j is the rank of MASE(H, kj, j) among the values of
MASE(H, i, j), i = 1, . . . , M, when they are ranked in ascending order. Note
that this ranking is out of the M models for the model selected by procedure
k, and is not a ranking of the procedures.

For a specified model selection procedure k and number of forecasting
horizons H, the following measures will be computed:

Mean rank MASE(H, k) =
1
N

N

∑
j=1

r(H, kj, j),

Mean MASE(H, k) =
1
N

N

∑
j=1

MASE(H, kj, j),

Median MASE(H, k) = median{MASE(H, kj, j); j = 1, . . . , N}.

A model is fitted to a time series using maximum likelihood estimation
(see 5.2 for the logarithm of the likelihood function). A check should always
be carried out to ensure that the maximum likelihood for a model does not
exceed that of an encompassing model. A violation of this condition indicates
that the solution for the encompassing model is not a global optimum. In this
case, the likelihood for the encompassing model should be seeded with the
optimal values for the smaller model.

7.2.2 Comparing Selection Procedures on the M3 Data

In this section we will use the M3 competition data (Makridakis and Hibon
2000) to compare the model selection procedures listed in the beginning of
Sect. 7.2.1. First, we examine the annual time series from the M3 competition
to determine how frequently a model is best for forecasting a time series in
that data set. The ten non-seasonal models from Tables 2.2 and 2.3 are fitted to
the 645 annual time series in the M3 data set using the maximum likelihood
method of Chap. 5.

Table 7.2 contains the number and percentage of series (out of the 645
annual time series) for which each model is defined to be the best model
for forecasting. In this table, model i∗ is defined to be the best model if
r(H, i∗, j) = 1; that is, if MASE(H, i∗, j) = min{MASE(H, i, j); i = 1, . . . , M}.
Here, the number of forecasting horizons is H = 6 and the number of models
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Table 7.2. Number and percentage of 645 annual M3 time series with minimum
MASE(H, i, j).

Model Count Percent

ETS(A,N,N) 141 21.86
ETS(A,M,N) 84 13.02
ETS(M,M,N) 74 11.47
ETS(A,Md,N) 72 11.16
ETS(M,A,N) 56 8.68
ETS(A,A,N) 54 8.37
ETS(M,Md,N) 52 8.06
ETS(A,Ad,N) 40 6.20
ETS(M,N,N) 37 5.74
ETS(M,Ad,N) 35 5.43

Table 7.3. Number and percentage of 1428 monthly M3 time series with minimum
MASE(H, i, j).

Model Count Percent Model Count Percent

ETS(M,M,N) 92 6.44 ETS(A,M,A) 40 2.80
ETS(M,A,N) 81 5.67 ETS(A,Md,N) 39 2.73
ETS(M,A,M) 78 5.46 ETS(A,Md,M) 39 2.73
ETS(A,M,N) 76 5.32 ETS(A,N,A) 38 2.66
ETS(A,N,N) 69 4.83 ETS(M,Ad,M) 37 2.59
ETS(A,A,M) 63 4.41 ETS(M,Ad,N) 36 2.52
ETS(M,M,M) 60 4.20 ETS(M,Md,M) 35 2.45
ETS(A,N,M) 58 4.06 ETS(A,Ad,N) 34 2.38
ETS(A,A,N) 57 3.99 ETS(M,Md,A) 33 2.31
ETS(A,M,M) 54 3.78 ETS(M,Md,N) 33 2.31
ETS(M,N,M) 49 3.43 ETS(A,Ad,M) 32 2.24
ETS(M,N,A) 48 3.36 ETS(M,M,A) 30 2.10
ETS(M,N,N) 47 3.29 ETS(A,A,A) 30 2.10
ETS(M,A,A) 44 3.08 ETS(A,Ad,A) 30 2.10
ETS(M,Ad,A) 43 3.01 ETS(A,Md,A) 23 1.61

is M = 10. The model for simple exponential smoothing has the largest per-
centage (21.9%) of time series for which a single model is the best model for
forecasting. The smallest percentage of time series for any model is 5.4%. We
will see later that the high percentage for the ETS(A,N,N) model does not
indicate that it is the best model for forecasting all of the annual time series.
However, this table does indicate that every model is best for some of the
time series, and it might be beneficial to have a procedure for choosing from
among all these non-seasonal models.

Table 7.3 contains the analogous results for the 1,428 monthly time series
from the M3 data set. All 30 models from Tables 2.2 and 2.3 were applied to
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Table 7.4. The ten non-seasonal models for annual M3 time series.

Model Mean Mean Median
rank MASE MASE

ETS(A,Ad,N) 4.97 2.92 1.82
ETS(M,Ad,N) 5.23 2.97 1.95
ETS(A,A,N) 5.25 2.99 1.97
ETS(A,Md,N) 5.29 3.57 1.75
ETS(M,Md,N) 5.31 3.24 1.89
ETS(M,A,N) 5.37 2.96 2.01
ETS(A,M,N) 5.77 4.18 1.96
ETS(M,M,N) 5.87 3.63 2.05
ETS(A,N,N) 5.93 3.17 2.26
ETS(M,N,N) 6.02 3.19 2.26

the monthly time series. The counts and percentages in this table also support
the notion of trying to find a model selection procedure.

Consider the procedure where a single model is selected to forecast all
time series in a collection of N time series. Each row of Table 7.4 displays the
three measures (mean rank, mean MASE, and median MASE) when a spec-
ified model i∗ is applied to all of the N = 645 annual time series in the M3
data set. The three measures are based on MASE(6, i∗, j) because H = 6 and
kj = i∗ for all time series, j = 1, . . . , N. Each of the specified models is one
of the M = 10 non-seasonal models in Tables 2.2 and 2.3. A chi-square statis-
tic (KFHS) for the mean ranks, as proposed in Koning et al. (2005), shows
that we can reject the hypothesis that the mean ranks are equal at less than
a 0.001 level of significance (KFHS = 82.9 with 9 degrees of freedom). The
model with the smallest mean rank of 4.97 out of 10 is the additive damped
trend model with additive error, ETS(A,Ad,N). While Table 7.2 shows that
the ETS(A,Ad,N) model is ranked first for only 6.2% of the 645 time series,
it has the smallest mean rank. It also has the smallest mean MASE and the
second smallest median MASE. The ETS(A,N,N) model, which was the best
model (i.e., r(H, i, j) = 1) for the most time series in Table 7.4, is poor with
respect to all three measures. Thus, it is the best model for the largest number
of series, but does poorly on other series. On the other hand ETS(A,Ad,N) is
not the best as often, but it is more robust in that it does not do so poorly
when applied to all time series.

A similar comparison of mean ranks for the M = 30 models in Tables 2.2
and 2.3 on the N = 756 quarterly time series in the M3 data, showed
that the additive damped trend model with multiplicative seasonality and
error, ETS(M,Ad,M), has the smallest mean rank of 12.84. For the N = 1,428
monthly time series in the M3 data, the model that has the smallest mean
rank out of M = 30 is ETS(A,Ad,M), with a rank of 14.09.
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Now we turn to the question of whether we can improve the forecasts
by using a procedure that allows the choice of model to be different for dif-
ferent time series rather than using one model for all time series. We will
compare the following seven model selection procedures: a single model for
forecasting all time series, the five IC methods, and the prediction vali-
dation method. Based on the results obtained using the mean rank of the
MASE(H, i, j) in the preceding paragraphs of this section, we will consider
damped trend models for the choice of the single model. In particular,
the ETS(A,Ad,N) model will be used when choosing among the three lin-
ear models and when choosing among all ten non-seasonal models for the
annual M3 data. The ETS(A,Ad,A) model will be used when choosing among
six linear models for quarterly and monthly data, and the ETS(M,Ad,M)
and ETS(A,Ad,M) models when choosing among all 30 models for quarterly
and monthly data, respectively. The potential models for these categories are
listed in Tables 2.2 and 2.3. In a linear model, the error term and any trend or
seasonal components are additive.

We continue to use the M3 data set in our comparisons of the model selec-

tion procedures. Each time series {y(j)
t } is divided into two parts: the fitting

set of nj values and the forecasting set of H values. For the LEIC and VAL
selection methods, the fitting set is divided further into two segments of n∗

j
and H values. The values of H are 6, 8, and 18 for annual, quarterly, and
monthly data, respectively.

The results of comparing the seven procedures are summarized in
Table 7.5. In the table, we refer to the procedures that employ one of the five
ICs or prediction validation as model selection methods and the procedure that
picks a single model as damped trend. By looking at this table, we can com-
pare a specified damped trend model, the AIC, and the best model selection
method with respect to each of the three measures: mean rank, mean MASE,
and median MASE. “Best Method(s)” indicates the model selection methods
that have the minimum value for the specified measure and type of data on
that row.

Examination of Table 7.5a provides some interesting insights. For this
table, the potential models for selection included only the linear models from
Tables 2.2 and 2.3. There are three potential non-seasonal linear models for
the annual time series and six potential linear models for the quarterly and
monthly data. The last two columns in the table indicate that, among the
model selection methods, the AIC always has the minimum, or nearly the
minimum, value for each measure. On the other hand, applying the indicated
damped trend model to the entire data type is almost always equally satis-
factory with respect to the three measures. The two damped trend models
are encompassing in that all the other possible model choices for the type of
data are special cases. Thus, it is not surprising that the ETS(A,Ad,N) model
performs well for annual data, and the ETS(A,Ad,A) model does well for
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Table 7.5. Comparisons using MASE and MAPE for models in Tables 2.2 and 2.3.

Measure Data type Damped trend AIC Best method(s)

(a) Comparison using MASE for linear models

Mean Rank Annual 1.86/ETS(A,Ad,N) 1.84 1.84/AIC
Quarterly 2.96/ETS(A,Ad,A) 3.08 3.08/AIC
Monthly 3.29/ETS(A,Ad,A) 3.07 3.03/AICc

Mean MASE Annual 2.92/ETS(A,Ad,N) 2.94 2.94/AIC
Quarterly 2.14/ETS(A,Ad,A) 2.15 2.15/AIC, LEIC
Monthly 2.09/ETS(A,Ad,A) 2.06 2.05/AICc

Median MASE Annual 1.82/ETS(A,Ad,N) 1.82 1.82/AIC
Quarterly 1.46/ETS(A,Ad,A) 1.47 1.47/AIC
Monthly 1.12/ETS(A,Ad,A) 1.08 1.07/AICc

(b) Comparison using MASE for all models

Mean Rank Annual 4.97/ETS(A,Ad,N) 5.42 5.29/BIC
Quarterly 12.84/ETS(M,Ad,M) 13.97 13.97/AIC
Monthly 14.09/ETS(A,Ad,M) 13.50 13.29/AICc

Mean MASE Annual 2.92/ETS(A,Ad,N) 3.30 2.91/LEIC
Quarterly 2.13/ETS(M,Ad,M) 2.27 2.27/AIC
Monthly 2.10/ETS(A,Ad,M) 2.07 2.08/AIC, AICc, HQIC

Median MASE Annual 1.82/ETS(A,Ad,N) 1.98 1.92/LEIC
Quarterly 1.50/ETS(M,Ad,M) 1.54 1.54/AIC
Monthly 1.10/ETS(A,Ad,M) 1.10 1.07/HQIC

(c) Comparison using MAPE for linear models

Mean Rank Annual 1.86/ETS(A,Ad,N) 1.83 1.83/AIC
Quarterly 2.98/ETS(A,Ad,A) 3.07 3.07/AIC
Monthly 3.22/ETS(A,Ad,A) 3.08 3.06/AICc

Mean MAPE Annual 22.66/ETS(A,Ad,N) 22.00 21.33/AICc
Quarterly 12.06/ETS(A,Ad,A) 11.95 11.94/LEIC
Monthly 22.01/ETS(A,Ad,A) 21.75 21.23/AICc

Median MAPE Annual 10.92/ETS(A,Ad,N) 11.18 11.16/AICc, LEIC
Quarterly 5.32/ETS(A,Ad,A) 5.46 5.46/AIC
Monthly 9.30/ETS(A,Ad,A) 9.29 9.29/AIC, AICc

(d) Comparison using MAPE for all models

Mean Rank Annual 4.98/ETS(A,Ad,N) 5.45 5.26/LEIC
Quarterly 12.86/ETS(M,Ad,M) 13.87 13.87/AIC
Monthly 13.76/ETS(A,Ad,M) 13.62 13.54/AICc

Mean MAPE Annual 22.66/ETS(A,Ad,N) 25.42 20.71/LEIC
Quarterly 11.96/ETS(M,Ad,M) 12.23 12.15/HQIC
Monthly 20.02/ETS(A,Ad,M) 21.63 21.62/HQIC

Median MAPE Annual 10.92/ETS(A,Ad,N) 11.54 11.16/LEIC
Quarterly 5.22/ETS(M,Ad,M) 5.62 5.54/VAL
Monthly 9.15/ETS(A,Ad,M) 9.03 8.96/VAL
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quarterly and monthly data. One could decide to choose these models rather
than use the AIC model selection method. However, one should be reassured
that the AIC will do as well as or better than the encompassing model, and it
would lead to the selection of simpler models when possible.

The information in Table 7.5b is more complicated. The potential models
for the selection methods in this table include the ten non-seasonal mod-
els for the annual time series and all 30 models for quarterly and monthly
time series from Tables 2.2 and 2.3. The results for quarterly and monthly
data are similar to those for the linear models. The AIC does nearly as well
as or better than the other model selection methods. As in the case of the
linear models, a single damped trend model performs well. Unlike the case
of the linear models, neither the ETS(M,Ad,M) model nor the ETS(A,Ad,M)
model is an encompassing model for the 30 models, and therefore, it is not
as clear which damped trend model to pick. Another observation is that
the mean MASE and median MASE do not decrease when the number of
models in the selection process is increased from six to 30, as we would
hope. For both monthly and quarterly time series, one should consider using
the AIC with an expanded set of linear models, but far fewer than all 30
models.

The annual data in Table 7.5b tend to be shorter than the quarterly and
monthly data. The longest annual series had 41 observations, and there are
many very short time series. Hence, it is not unexpected to find that the
model selection methods did not do as well as a single model. The same com-
parisons as in Table 7.5b were done for annual time series that were greater
than or equal to 20 in length, with essentially no change to the results. In fact,
model selection comparisons were also done for quarterly and monthly data
of length greater than or equal to 28 and 72, respectively, with no change
to the general implications in Table 7.5b. For annual time series, the com-
parisons on the annual data indicate that one should either use the damped
trend model ETS(A,Ad,N) or limit the AIC to the three linear models. These
findings match and help to explain the poor performance of the AIC for
choosing among innovations state space models in Hyndman et al. (2002)
for annual data from the M3 competition.

All of the comparisons in Table 7.5a, b were repeated using the mean
absolute percentage error (MAPE) from Sect. 2.7.2, and again the implica-
tions were the same. See Table 7.5c, d.

For a comparison of the individual methods (five ICs and VAL) using
the MASE, see Table 7.6. This table allows the reader to see more detail for
the model selection methods that are summarized in the last two columns of
Table 7.5a, b. In the next section, we will examine model selection for a set of
hospital data and will present the results in the same form as Table 7.6.
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Table 7.6. Comparisons of methods on the M3 data using MASE for the models in
Tables 2.2 and 2.3.

Measure Data type AIC BIC HQIC AICc LEIC VAL

(a) Comparison of methods using MASE for linear models

Mean Rank Annual 1.84 1.86 1.86 1.88 1.86 1.97
Quarterly 3.08 3.24 3.14 3.16 3.12 3.26
Monthly 3.07 3.15 3.05 3.03 3.23 3.20

Mean MASE Annual 2.94 2.96 2.95 2.96 2.95 3.04
Quarterly 2.15 2.21 2.16 2.17 2.15 2.19
Monthly 2.06 2.13 2.09 2.05 2.19 2.17

Median MASE Annual 1.82 1.85 1.85 1.85 1.85 1.95
Quarterly 1.47 1.58 1.50 1.49 1.49 1.53
Monthly 1.08 1.11 1.08 1.07 1.12 1.10

(b) Comparison of methods using MASE for all models

Mean Rank Annual 5.42 5.29 5.39 5.33 5.31 5.55
Quarterly 13.97 14.75 14.20 14.47 15.14 14.87
Monthly 13.50 13.60 13.33 13.29 14.78 13.92

Mean MASE Annual 3.30 3.28 3.29 3.26 2.91 3.37
Quarterly 2.27 2.38 2.29 2.29 2.40 2.29
Monthly 2.08 2.10 2.08 2.08 2.19 2.20

Median MASE Annual 1.98 1.95 1.97 1.97 1.92 2.00
Quarterly 1.54 1.57 1.55 1.56 1.61 1.55
Monthly 1.10 1.11 1.07 1.09 1.14 1.09

7.2.3 Comparing Selection Procedures on a Hospital Data Set

For another comparison of the model selection procedures, we used time
series from a hospital data set.1 Each time series comprises a monthly patient
count for one of 20 products that are related to medical problems. We
included only time series that had a mean patient count of at least ten and no
individual values of 0. There were 767 time series that met these conditions.
As in the comparisons using the M3 data, we withheld H = 18 time periods
from the fitting set for the LEIC and the VAL model selection methods; sim-
ilarly, we set H = 18 time periods for the comparisons in the forecasting set.
The length of every time series was 7 years of monthly observations. Thus,
the length nj of all fitting sets had the same value of 66 time periods (i.e.,
84 − 18 = 66).

1 The data were provided by Paul Savage of Healthcare, LLC Intelligence and Hans
Levenbach of Delphus, Inc.
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Table 7.7. Comparisons of methods on the hospital data set using MASE for models
in Tables 2.2 and 2.3.

Measure Data type AIC BIC HQIC AICc LEIC VAL

(a) Comparison of methods using MASE for linear models

Mean Rank Monthly 3.10 3.07 3.01 3.10 3.07 3.36
Mean MASE Monthly 0.94 0.91 0.92 0.94 0.91 0.96
Median MASE Monthly 0.83 0.83 0.83 0.83 0.83 0.84

(b) Comparison of methods using MASE for all models

Mean Rank Monthly 13.66 13.25 13.22 13.52 13.53 14.80
Mean MASE Monthly 0.98 0.96 0.97 0.98 0.95 1.00
Median MASE Monthly 0.84 0.84 0.83 0.84 0.85 0.86

By examining Table 7.7, we see that the results for the hospital data set
using the MASE are somewhat similar to those for monthly time series in
the M3 data set. Because there are definitely time series with values near 0,
we believe that in this case the MASE is a more reliable measure than the
MAPE for comparing forecasts. For the selection from only linear models in
Table 7.7a, the three measures (mean rank, mean MASE, and median MASE)
indicate that there is not much difference between the five IC methods (AIC,
BIC, HQIC, AICc, and LEIC). The VAL method seems to be clearly the worst
choice. In Table 7.7b, where the selection is among all 30 models, the VAL
method remains the poorest choice, and similar to the results with the M3
data, there is no improvement with the increase in potential models. A dif-
ference from the findings with the M3 data is that we found that it is not a
good idea to use a single damped trend model for forecasting.

7.3 Implications for Model Selection Procedures

The comparisons of the model selection procedures in Sects. 7.2.2 and 7.2.3
provide us with some interesting information on how to select models, even
though the study was limited to the M3 data and the hospital data. First, the
AIC model selection method was shown to be a reasonable choice among
the six model selection methods for the three types of data (annual, quar-
terly, and monthly) in the M3 data and for the monthly time series in the
hospital data. The number of observations for annual data is always likely to
be small (i.e., less than or equal to 40), and thus the IC procedures may not
have sufficient data to compete with simply choosing a single model such
as the ETS(A,Ad,N) model when all ten non-seasonal models are considered.
However, using the AIC on the three linear non-seasonal models fared as
well as the ETS(A,Ad,N) and would allow the possibility of choosing simpler
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models, especially when there is little trend in the data. Thus, for annual time
series we recommend using the AIC and choosing among the three linear
non-seasonal models.

For the monthly data, the AIC is better than the choice of selecting a sin-
gle damped trend model in both the M3 data and the hospital data. Because
it is definitely not clear which single model to use, we suggest using the
AIC. One might also consider limiting the choice of models to a set that
includes the linear models but is smaller than the complete set of 30 mod-
els. We make the same recommendations for the quarterly time series, with
additional emphasis on reducing the number of models from 30.

In common with other studies of model selection, our focus has been
exclusively on selection methods that relate to point forecasts. Model
selection procedures designed to produce good interval forecasts are likely
to have similar properties to those discussed in this chapter, but the issue is
one to be addressed in future research.

7.4 Exercises

Exercise 7.1. Select a data set with monthly time series, and write some R
code to do the following:

a. Find the maximum likelihood estimates, forecasts for h = 1, . . . , 18, fore-
cast errors for h = 1, . . . , 18, and MASE(18, i, j) for each time series j in the
data set and each linear model i from Table 2.1.

b. Use the AIC to pick a model kj for each time series j and identify the
MASE(18, kj, j) for each time series from values in part a above.

c. Use the BIC to pick a model kj for each time series j and identify the
MASE(18, kj, j) for each time series from values in part a above.

d. Compare the forecast accuracy obtained when selecting a model with the
AIC or BIC, and when using the ETS(A,Ad,A) model for all series. (See
Sect. 7.2.1 for suggested measures).

Exercise 7.2. Repeat Exercise 7.1 with the set of potential models in part a
expanded to include the ETS(M,Ad,M) model and its submodels, and with
the ETS(M,Ad,M) model added to the comparison in part c.
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Appendix: Model Selection Algorithms

The Linear Empirical Information Criterion

In the linear empirical information criterion (LEIC) (Billah et al. 2003, 2005),
ζ(n) = c, where is c is estimated empirically from an ensemble of N simi-
lar time series for M competing models. The number of observations in the

fitting set for time series {y(j)
t }, j = 1 . . . , N, is denoted by nj. Each of the N

sets of observations is divided into two segments: the first segment consists
of n∗

j = nj − H observations and the second segment consists of the last H
observations. Let n = max{nj∗ ; j = 1, . . . , N}. Then, values of c between
0.25 and 2 log(n) in steps of δ provide a range of values wide enough to
contain all the commonly used penalty functions. The value of δ = 0.25 has
worked well in practice. The procedure for estimating c for the LEIC is as
follows:

Model estimation

1. For each of the N series, use the first n∗
j observations to estimate the

parameters and initial state vector in each of the M competing models
by maximum likelihood estimation.

2. Record the maximized log-likelihoods for all estimated models.

Penalty estimation

1. For each trial value of c do the following

(a) For each time series {y(j)
t }, j = 1 . . . , N, select a model with the

minimum LEIC using (7.2) and ζ(n) = the trial value for c.

(b) For each forecast horizon h, h = 1, . . . , H, and time series {y(j)
t }, j =

1 . . . , N, compute the absolute scaled error

ASE(h, c, j) =
|y(j)

n∗
j +h − ŷ(c,j)

n∗
j

(h)|
MAEj

,

where MAEj = (n∗
j − 1)−1 ∑

n∗
j

t=2 |y(j)
t − y(j)

t−1|, and ŷ(c,j)
n∗

j
(h) is the h-

step-ahead forecast using the model selected for the jth series.
2. For each value of c and for each forecast horizon h, calculate the mean

absolute scaled error MASE across the N time series to obtain

MASE(h, c) =
1
N

N

∑
j=1

ASE(h, c, j). (7.4)
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3. Select a value of c(h) by minimizing the MASE(h, c) over the grid of c
values. Thus, a value of c(h) is selected for each forecast horizon h, h =
1, . . . , H.

4. Compute the final value of c by averaging the H values of c(h):

c =
1
H

H

∑
h=1

c(h).

Observe that MASE(H, i, j) in (7.3) is an average across H forecast hori-
zons for a specified model i and time series j, while MASE(h, c) in (7.4) is
an average across N time series for a fixed forecasting horizon h and model
determined by trial value c. Also, it is important to re-estimate the param-
eters and initial state vector for the selected model by using all of the nj
values.

Prediction Validation Method of Model Selection

The prediction validation method (VAL) is a method that has frequently been
used in practice. In this method, a model is chosen from M models for time

series {y(j)
t } as follows:

1. Divide the fitting set for time series {y(j)
t } of length nj into two segments:

the first segment consists of n∗
j = nj − H observations, and the second

segment consists of the last H observations.

2. Using y(j)
1 to y(j)

n∗
j
, find the maximum likelihood estimates for each model

i, i = 1, . . . , M.
3. For each model i, compute the forecasts ŷ(i,j)

n∗
j

(h), h = 1, . . . , H.

4. Compute the MASE(H, i, j), as defined in (7.3), with nj replaced by nj∗ .
5. Choose model kj, where

MASE(H, kj, j) = min{MASE(H, i, j); i = 1, . . . , M}.

The parameters and initial state vector for the selected model must be re-
estimated using all nj values.
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Normalizing Seasonal Components

In exponential smoothing methods, the m seasonal components are com-
bined with level and trend components to indicate changes to the time
series that are caused by seasonal effects. It is sometimes desirable to report
the value of these m seasonal components, and then it is important for
them to make intuitive sense. For example, in the additive seasonal model
ETS(A,A,A), the seasonal components are added to the other components of
the model. If one seasonal component is positive, there must be at least one
other seasonal component that is negative, and the average of the m seasonal
components should be 0. When the average value of the m additive seasonal
components at time t is 0, the seasonal components are said to be normalized.
Similarly, we say that multiplicative seasonal components are normalized if
the average of the m multiplicative seasonal components at time t is 1.

Normalized seasonal components can be used to seasonally adjust the
data. To calculate the seasonally adjusted data when the model contains an
additive seasonal component, it is necessary to subtract the seasonal compo-
nent from the data. For a multiplicative seasonal component, the data should
be divided by the seasonal component.

Thus far, the specified models have not had normalized seasonal com-
ponents. This is because normalization is only necessary when the seasonal
component is to be analyzed separately or used for seasonal adjustment.
If one is only interested in the point forecasts and forecast variances for
prediction intervals, then it is not necessary to normalize the seasonal com-
ponents. In most cases, the forecasts and forecast variances obtained with the
non-normalized models are identical to those obtained with the normalized
models. As we will see, the only exception to this equivalence is when the
trend is multiplicative and the seasonality is additive.

In Sect. 8.1, we discuss normalizing models with additive seasonal com-
ponents. Normalization of models with multiplicative seasonal components
is covered in Sect. 8.2. An example to show the potential importance of
normalization is presented in Sect. 8.3.
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8.1 Normalizing Additive Seasonal Components

The additive seasonal components are said to be normalized when the sum of
any m consecutive components sum to zero:

m−1

∑
i=0

st−i = 0 for t ≥ 0. (8.1)

A common practice is to impose (8.1) for t = 0 so that estimates of the m
initial seasonal components in x0 sum to 0. (The simplest way to impose this
constraint is to estimate only m − 1 of the initial seasonal components and
set the final component to be minus the sum of the others.)

However, for the models with additive seasonality that we have seen in
previous chapters, the normalization property (8.1) for the estimates of the
seasonal components is lost for t > 0 as they are revised in the exponential
smoothing process. To illustrate this point, we examine the case of additive
errors. Note that the seasonal component is defined by

st = st−m + γεt (8.2)
= st−2m + γ(εt + εt−m)
...

= st+m
+ γ

tm

∑
i=0

εt−im ,

where tm = 
(t − 1)/m� and t+m =
[
(t − 1) mod m

]
+ 1 − m. Therefore,

m−1

∑
i=0

st−i =
m−1

∑
k=0

s−k + γ
t

∑
i=1

ε i = γ
t

∑
i=1

ε i.

So the sum of m consecutive components behaves like a random walk and,
over time, will range a long way from zero, particularly if γ is large.

One solution that has been suggested for the normalizing problem in the
additive error situation is to replace (8.2) with the following equation:

st = −
m−1

∑
i=1

st−i + γεt. (8.3)

Although the expected value of the sum ∑m−1
i=0 st−i is 0, this proposed model

does not have the property that the sum of any m consecutive seasonal com-
ponents is 0. Furthermore, estimates of the individual seasonal components
can (and frequently do) become quite unrealistic with this formulation of the
seasonal state equation. If ∑m−1

i=0 s−i = 0, as is required in practice for initial
estimates, then (8.3) is equivalent to st = st−m + γ(εt − εt−1). Looking at (8.3)
in this latter form makes it seem even more unreasonable as a substitute for
(8.2).
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8.1.1 Roberts-McKenzie Normalization

Roberts (1982) and McKenzie (1986) showed how to normalize the seasonal
estimates of additive seasonal components in the case when both the trend
and the errors are also additive. In their method, every seasonal component
has to be revised in each time period. In order to describe and extend their
method, we first introduce a new notation. The seasonal component at time

t for the season that corresponds to time period t − i will be denoted by s(i)
t ,

i = 0, . . . , m − 1. Note that s(i)
t and s(i−1)

t−1 represent seasonal components
for the same season at two different time periods, t and t − 1. Then, for all
models in Tables 2.2 and 2.3 with an additive seasonal component, the state
equations for the seasonal components can be written as follows:

s(0)
t = s(m−1)

t−1 + γq(xt−1)εt, (8.4a)

s(i)
t = s(i−1)

t−1 , i = 1, . . . , m − 1, (8.4b)

where q(xt−1) = 1 for models with additive error, q(xt−1) = ŷt|t−1 for

models with multiplicative error, and xt = [�t, bt, s(0)
t , s(1)

t , . . . , s(m−1)
t ]′. In the

observation equation, we replace the seasonal component st−m by s(m−1)
t−1 .

To obtain normalized seasonal components that correspond to the
Roberts (1982) and McKenzie (1986) normalization, we simply subtract a

small term at, called the additive normalizing factor, from each s(i)
t to ensure

that the seasonal components at each time period sum to zero. Thus, (8.4) is
replaced by

s̃(0)
t = s̃(m−1)

t−1 + γq(x̃t−1)εt − at, (8.5a)

s̃(i)
t = s̃(i−1)

t−1 − at, i = 1, . . . , m − 1, (8.5b)

where a tilde is used to denote the normalized components, and the additive
normalizing factor is

at = (γ/m)q(x̃t−1)εt.

Observe that for these normalized seasonal components

m−1

∑
i=0

s̃(i)
t =

m−2

∑
i=0

[
s̃(i)

t−1 − (γ/m)q(x̃t−1)εt
]
+
[
s̃(m−1)

t−1 + (γ − γ/m)q(x̃t−1)εt
]

=
m−1

∑
i=0

s̃(i)
t−1.

Thus, if the initial values of the seasonal components at t = 0 sum to 0, this
property is maintained at all time periods.

When both the trend and the seasonal components are additive, we will
show that an additional adjustment in the level equation will maintain the
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same forecast means and variances for the model. However, for models with
multiplicative trend but additive seasonality, the normalized model will give
different forecasts from the non-normalized model.

8.1.2 Adjusted Components

In almost all cases, the Roberts-McKenzie scheme outlined above can be
implemented simply by adjusting the usual state components to obtain nor-
malized components. That is, we can use the original models for forecasting
and recover the normalized factors later if required.

With the new notation for the seasonal components, the damped trend
additive seasonal models, ETS(A,Ad,A) and ETS(M,Ad,A) from Tables 2.2
and 2.3, have the following form:

yt = �t−1 + φbt−1 + s(m−1)
t−1 + q(xt−1)εt, (8.6a)

�t = �t−1 + φbt−1 + αq(xt−1)εt, (8.6b)
bt = φbt−1 + βq(xt−1)εt, (8.6c)

s(0)
t = s(m−1)

t−1 + γq(xt−1)εt, (8.6d)

s(i)
t = s(i−1)

t−1 , i = 1, . . . , m − 1. (8.6e)

The only models in Tables 2.2 and 2.3 with additive seasonal components
that are not represented as special cases of (8.6) are those with multiplicative
trend.

The normalized form of the models represented in (8.6) is given below:

yt = �̃t−1 + φb̃t−1 + s̃(m−1)
t−1 + q(x̃t−1)εt, (8.7a)

�̃t = �̃t−1 + φb̃t−1 + αq(x̃t−1)εt + at, (8.7b)

b̃t = φb̃t−1 + βq(x̃t−1)εt, (8.7c)

s̃(0)
t = s̃(m−1)

t−1 + γq(x̃t−1)εt − at, (8.7d)

s̃(i)
t = s̃(i−1)

t−1 − at, i = 1, . . . , m − 1. (8.7e)

We now turn to examining how the states, the forecast means, the forecast
variances, and the prediction distributions for the original model in (8.6) are
related to those for the normalized model in (8.7). The cumulative additive
normalizing factor is defined as

At =
1
m

m−1

∑
i=0

s(i)
t , t ≥ 0.

Assume that we have observed y1, y2, . . . , yt, and x0 = x̃0, with ∑m−1
i=0 s̃(i)

0 =
0. Then the following relationships between the normalized model (8.7) and
the original model (8.6) are valid (see Appendix):
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• Recursive formula for the cumulative additive normalizing factor:

At = At−1 + at. (8.8)

• Normalized states at time t:

�̃t = �t + At, (8.9a)

b̃t = bt, (8.9b)

s̃(i)
t = s(i)

t − At for i = 0, . . . , m − 1. (8.9c)

• Point forecasts and forecast errors are equal for all t ≥ 0 and h ≥ 1:

ỹt+h|t = ŷt+h|t = �t + φhbt + s(m−hm)
t , (8.10)

where ỹt+h|t is the forecast using (8.7) and hm = 
(h − 1)/m�.
• Forecast variances are equal for all t ≥ 0 and h ≥ 1:

– Class 1 models from Chap. 6 where q(xt) = µt+h|t = 1,

ṽt+h|t = vt+h|t =

{
σ2 if h = 1

σ2
[
1 + ∑h−1

j=1 c2
j

]
if h ≥ 2.

(8.11)

– Class 2 models from Chap. 6 where q(xt) = µt+h|t = ŷt+1|t

ṽt+h|t = vt+h|t = (1 + σ2)θh − µ2
t+h|t, (8.12a)

θh =

{
µ2

t+1|t if h = 1

µ2
t+h|t + σ2 ∑h−1

j=1 c2
j θh−j if h ≥ 2,

(8.12b)

where cj = w′F j−1g (see Table 6.2 on page 81 for values of cj
corresponding to specific models).

• Simulated prediction distributions are the same:

ỹ(i)
t+h = y(i)

t+h for the ith simulated value at time t, (8.13)

where ỹ(i)
t+h is the value simulated using (8.7).

The results in (8.8)–(8.13) are valid for the ETS(A,Ad,A) and ETS(M,Ad,A)
models, and any of their special cases in Tables 2.2 and 2.3. Thus, for these
models it is clearly not necessary to normalize the seasonal factors if one is
only interested in the forecasts and the prediction intervals. It is also possible
to apply (8.9) at any time period t to find the normalized components when
forecasting with the original models. Observe that it is necessary to adjust the
level �t if its value is to be reported or if one plans to continue the exponential
smoothing process with the values of the new components.
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Because αq(x̃t−1)εt + at = (α + γ/m)q(x̃t−1)εt, the smoothing parameter
for the level in the normalized model (8.7) is α + γ/m. This model may be
simplified slightly by letting α∗ = α + γ/m; that is, only altering the equa-
tions for the seasonal components. The values for the components, forecasts,
and forecast variances produced using this modification are identical to those
from the normalized model in (8.7).

When the trend is multiplicative, a model analogous to (8.7) can be used
for normalization. However, in contrast to the case of additive trend, the
forecasts will be somewhat altered from the original form of the model (see
Exercises 8.2 and 8.3). Nevertheless, we recommend that this model be used
whenever normalized components are required.

8.2 Normalizing Multiplicative Seasonal Components

As in the case of additive seasonal components, it may be desirable to report
the values of the multiplicative seasonal components. We will continue to
denote the seasonal component at time t for the season that corresponds to

time period t − i by s(i)
t , i = 0, . . . , m − 1. The multiplicative seasonal com-

ponents are said to be normalized when the seasonal components from any m
consecutive time periods have an average of 1, or equivalently, a sum of m:

m−1

∑
i=0

st−i = m, for t ≥ 0.

The normalization procedure for multiplicative seasonality was introduced
by Archibald and Koehler (2003).

To normalize multiplicative seasonal components, we replace (8.4) by

s̃(0)
t =

[
s̃(m−1)

t−1 + γq(x̃t−1)εt
]
/rt, (8.14a)

s̃(i)
t = s̃(i−1)

t−1 /rt, i = 1, . . . , m − 1, (8.14b)

where rt is a multiplicative normalizing factor:

rt = 1 + (γ/m)q(x̃t−1)εt,

and q(x̃t−1) takes one of the following values:

• Multiplicative error

q(x̃t−1) = s̃(m−1)
t−1 . (8.15)

• Additive error with no trend

q(x̃t−1) = 1/�̃t−1. (8.16)
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• Additive error and additive damped trend (φ = 1 for no damping)

q(x̃t−1) = 1/(�̃t−1 + φb̃t−1). (8.17)

• Additive error and multiplicative damped trend (φ = 1 for no damping)

q(x̃t−1) = 1/(�̃t−1b̃φ
t−1). (8.18)

Assuming that ∑m−1
i=0 s̃(i)

0 = m for the initial estimates, the sum of seasonal
components at any time t is m. This can be shown by noting that if the sea-
sonal components are normalized (i.e., the sum is m) at time period t − 1,
then they are normalized at time period t:

m−1

∑
i=0

s̃(i)
t =

1
rt

{[
s̃(m−1)

t−1 + γq(x̃t−1)εt
]
+

m−2

∑
i=0

s̃(i−1)
t−1

}

=
1
rt

{ m−1

∑
i=0

s̃(i)
t−1 + γq(x̃t−1)εt

}

=
m + γq(x̃t−1)εt

1 + (γ/m)q(x̃t−1)εt

= m.

In the normalized form of the models, we multiply the level and growth
by rt if the trend is additive and multiply only the level equation by rt if there
is no trend or if the trend is multiplicative. For example, the ETS(M,Ad,M)
model from Table 2.3 has the form

yt = (�t−1 + φbt−1)s(m−1)
t−1 (1 + εt),

�t = (�t−1 + φbt−1)(1 + αεt),

bt = φbt−1 + β(�t−1 + φbt−1)εt,

s(0)
t = s(m−1)

t−1 (1 + γεt),

s(i)
t = s(i−1)

t−1 , i = 1, . . . , m − 1,

and the normalized form of the ETS(M,Ad,M) model is given by

yt = (�̃t−1 + φb̃t−1)s̃(m−1)
t−1 (1 + εt), (8.19a)

�̃t =
[
(�̃t−1 + φb̃t−1)(1 + αεt)

]
rt, (8.19b)

b̃t =
[
φb̃t−1 + β(�̃t−1 + φb̃t−1)εt

]
rt, (8.19c)

s̃(0)
t =

[
s̃(m−1)

t−1 (1 + γεt)
]
/rt, (8.19d)

s̃(i)
t = s̃(i−1)

t−1 /rt, i = 1, . . . , m − 1. (8.19e)
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We now find results for multiplicative seasonality that correspond to
those for additive seasonality. Assume that we have observed y1, y2, . . . yt,

with ∑m−1
i=0 s̃(i)

0 = m. Then the following results are valid (see Exercise 8.4):

• The cumulative multiplicative normalizing factor is given by

Rt =
1
m

m−1

∑
i=0

s(i)
t , t ≥ 0. (8.20)

• Recursive formula for the cumulative multiplicative normalizing factor:

Rt+1 = Rtrt+1. (8.21)

• Normalized states at time t:

�̃t = �tRt, (8.22a)

b̃t =

{
btRt if the trend is additive
bt if the trend is multiplicative,

(8.22b)

s̃(i)
t = s(i)

t /Rt for i = 0, . . . , m − 1. (8.22c)

• Point forecasts are equal for all t ≥ 0 and h ≥ 1:

ỹt+h|t = ŷt+h|t, (8.23)

where ỹt+h|t is the forecast using (8.19).
• Simulated prediction distributions are the same:

ỹ(i)
t+h = y(i)

t+h for the ith simulated value at time t, (8.24)

where ỹ(i)
t+h is the simulated value using (8.19).

• For Class 3 models in Chap. 6, means and variances are equal:

µ̃t+h|t = µt+h|t see (6.4) and (6.7), (8.25a)

ṽt+h|t = vt+h|t see (6.5) and (6.8). (8.25b)

Because the forecasts are the same with and without normalizing, it is
not important to normalize the components unless the values of the com-
ponents need to be provided. Moreover, one can normalize the components
at any time period by using (8.22). Notice that all the components (level,
slope and seasonal) must be adjusted if one intends to re-start the exponential
smoothing process with the normalized values.
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8.3 Application: Canadian Gas Production

To demonstrate the normalization procedure, we will use Canadian gas pro-
duction data shown in the top panel of Fig. 8.1. Because the seasonal pattern
is changing rapidly throughout the series, this series is likely to have a high
value of γ in the fitted models, and is therefore likely to have the estimated
seasonal component wander away from one.

We fit an ETS(M,N,M) model to these data with α = 0.2 and γ = 0.6.
The level and seasonal components are shown in Fig. 8.2. The original sea-
sonal component has wandered some distance away from one, and the level
is lower to compensate. After normalization, the seasonal component stays
close to one and the level reflects the true level of the original series.

When we divide the original series by the normalized component, we
obtain seasonally adjusted data. These are shown in the bottom panel of
Fig. 8.1.
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Fig. 8.1. Top: Monthly Canadian gas production in billions of cubic meters, January
1960–February 2005. Bottom: Seasonally adjusted Canadian gas production.
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Fig. 8.2. The level and seasonal components for the ETS(M,N,M) model fitted to the
monthly Canadian gas production data. The original components are shown as dashed
lines and the normalized components are shown as solid lines.
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8.4 Exercises

Exercise 8.1. Use the proofs in Chap. 6 to find ṽt+h|t for Class 1 and Class 2
models.

Exercise 8.2. Consider the components of the ETS(A,Md,A) model:

yt = µt + εt, (8.26a)

µt = �t−1bφ
t−1 + s(m−1)

t−1 , (8.26b)

�t = �t−1bφ
t−1 + αεt, (8.26c)

bt = bφ
t−1 + βεt/�t−1, (8.26d)

s(0)
t = s(m−1)

t−1 + γεt, (8.26e)

s(i)
t = s(i−1)

t−1 , i = 1, . . . , m − 1. (8.26f)

a. Show that the same updating equations apply for the normalized seasonal
terms as in (8.6).

b. Show that if the seasonal normalization is applied in isolation, the original
and normalized models will produce different forecasts.

Exercise 8.3.

a. Following on from Exercise 8.2, show that for the normalized form to pro-
duce the same one-step-ahead forecasts, we require the normalized form
of the model represented in (8.26) to be written as:

�̃t−1b̃φ
t−1 = �t−1bφ

t−1 + At−1

so that

�̃t = �t + At = �̃t−1b̃φ
t−1 + αεt + at.

b. Hence show that, in order to have b̃t = bt, we must use the recurrence
relationship

b̃t = ct(b̃φ
t−1 − At−1/�̃t + βεt/�̃t),

where ct = �̃t/(�̃t − At).
c. Show that yet another normalization would be required to maintain the

same two-step-ahead forecast.

Exercise 8.4. Derive (8.21), (8.22), (8.23) and (8.24) for the ETS(M,Ad,M),
ETS(A,Ad,M), ETS(A,Md,M) and ETS(M,Md,M) models.
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Appendix: Derivations for Additive Seasonality

The purpose of this appendix is to derive the results in (8.8)–(8.13). We
will prove the first three of the six items jointly by mathematical induction.
Because we have observed y1, y2, . . . , yt, the values of ε i for i = 1, 2, . . . , t are
replaced by ε i = (yt − ŷt|t−1)/q(xt−1) in the non-normalized case and by
ε̃ i = (yt − ỹt|t−1)/q(x̃t−1) in the normalized case.

For t = 1, result (8.8) is true because

A1 =
∑m−1

i=0 s(i)
1

m

=
1
m

{[
s(m−1)

0 + γq(x0)ε1
]
+

m−2

∑
i=0

s(i)
0

}

= 0 + (γ/m)q(x0)ε1

= 0 + (γ/m)q(x̃0)ε1

= A0 + a1

It is also easily seen that (8.9) and (8.10) hold for t = 1.
Assume that (8.8)–(8.10) are true for time t. Observe that εt+1 = ε̃t+1

because ỹt+1|t is assumed to be the same as ŷt+1|t. Then, At+1 = At + at+1
follows by the same argument as for t = 1 and the assumptions for t. The
other items can be justified for t + 1 as follows:

�̃t+1 = �̃t + φb̃t + αq(x̃t)ε̃t+1 + at+1

= �t + At + φbt + αq(xt)εt+1 + at+1

= �t+1 + At+1,

b̃t+1 = φb̃t + βq(x̃t)εt+1

= bt+1,

s̃(0)
t+1 = s̃(m−1)

t + γq(x̃t)ε̃t+1 − at+1

= s(m−1)
t − At + γq(xt)εt+1 − at+1

= s(0)
t+1 − At+1,

s̃(i)
t+1 = s̃(i−1)

t − at+1

= s(i−1)
t − At − at+1, i = 1, . . . , m − 1

= s(i−1)
t+1 − At+1, i = 1, . . . , m − 1,

ỹt+1+h|t+1 = �̃t+1 + φhb̃t+1 + s̃(m−h+
m)

t+1

= (�t+1 + At+1) + φhbt+1 +
[
s(m−h+

m)
t+1 − At+1

]
= ŷt+1+h|t+1,

where h+
m =

[
(h − 1) mod m

]
+ 1.
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To prove (8.11) and (8.12), we use the notation in Chap. 6 to write the
normalized Class 1 and Class 2 models as

ỹ = w′x̃t−1 + q(x̃t−1)εt, (8.27a)
x̃t = Fx̃t−1 + gq(x̃t−1)εt, (8.27b)

where q(x̃t−1) = 1 for Class 1 models and q(x̃t−1) = w′x̃t−1 =
ŷt+h|t for Class 2 models. In addition, g̃ = g + γ, where γ =
[γ/m, 0,−γ/m, (−γ/m)1′(m−1)]

′. Recall from Example 6.2 (p. 96) that in the
ETS(A,Ad,A) and ETS(M,Ad,A) models

w′F i = [1, φi+1, di+1,m, di+2,m, . . . , di+m,m], (8.28)

where φi = φ + φ2 + · · · + φi, and dj,m = 1 if j = 0(mod m) and dj,m = 0
otherwise. It follows that w′F iγ = 0.

Because we have shown that ỹt+h|t = ŷt+h|t, the proofs in Chap. 6 can be
applied to the two different cases in (8.27) to find ṽt+h|h. The two variances
have the forms in (8.11) and (8.12) with c̃j = w′F j−1g̃. Because w′F iγ = 0,

c̃j = w′F j−1g̃ = w′F j−1(g + γ) = w′F j−1g = cj,

and ṽt+h|t = vt+h|t for all of the Class 1 and Class 2 models in Tables 2.2
and 2.3.

The verification of (8.13) is now addressed. When we have observed val-
ues for y1, y2, . . . , yt, we can use these values and the models in (8.6) and
(8.7) to find xt and x̃t, respectively. Then starting with xt and x̃t, we can
use the same models to generate values for yt+1, yt+2, . . . , yt+h and ỹt+1,
ỹt+2, . . . , ỹt+h, respectively, by randomly selecting values εt+1, εt+2, . . . , εt+h
from a probability distribution with mean 0 and standard deviation σ.
If we treat the simulated values yt+1, yt+2, . . . , yt+h as the observed val-
ues, we can extend the results in (8.8)–(8.10) to the simulated values for
xt+1, xt+2, . . . , xt+h and x̃t+1, x̃t+2, . . . , x̃t+h. It follows that the simulated
prediction distributions using (8.6) and (8.7) are identical because, for the
ith simulated value,

ỹ(i)
t+h = �̃

(i)
t+h−1 + φb̃(i)

t+h−1 + s̃(m−1)(i)
t+h−1 + q(x̃(i)

t+h−1)εt+h

= (�(i)
t+h−1 + At+h−1) + φb(i)

t+h−1 + (s(m−1)(i)
t+h−1 − At+h−1) + q(x(i)

t+h−1)εt+h

= y(i)
t+h.
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Models with Regressor Variables

Up to this point in the book, we have considered models based upon a sin-
gle series. However, in many applications, additional information may be
available in the form of input or regressor variables; the name may be rather
opaque, but we prefer it to the commonly-used but potentially misleading
description of independent variables. We then refer to the series of interest
as the dependent series. Regressor series may represent either explanatory or
intervention variables.

An explanatory variable is one that provides the forecaster with addi-
tional information. For example, futures prices for petroleum products can
foreshadow changes for consumers in prices at the pump. Despite the term
“explanatory” we do not require a causal relationship between the input and
dependent variables, but rather a series that is available in timely fashion
to improve the forecasting process. Thus, stock prices or surveys of con-
sumer sentiment are explanatory in this sense, even though they may not
have causal underpinnings in their relationship with a dependent variable.

An intervention is often represented by an indicator variable taking val-
ues 0 and 1, although more general forms are possible. These variables
may represent planned changes (e.g., the introduction of new legislation) or
unusual events that are recognized only in retrospect (e.g., extreme weather
conditions). Indicator variables may also be used to flag unusual observa-
tions or outliers; if such values are not identified they can distort the estimates
of other parameters in the model.

In the next section we introduce the general linear innovations model
and then examine a special case which provides insights into its structure.
The model development parallels that of the multiple source of error model
(see Harvey 1989, Chap. 7). We illustrate the use of these methods with two
examples in Sect. 9.2; the first uses intervention variables to modify a uni-
variate sales series and the second considers a leading indicator model for
gasoline prices. We conclude the chapter with a discussion of diagnostic tests
based upon the residuals.
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9.1 The Linear Innovations Model with Regressors

We start from the standard linear innovations model introduced in Chap. 3:

yt = w′xt−1 + εt, (9.1a)
xt = Fxt−1 + gεt. (9.1b)

The regressor variables are incorporated into the measurement equation
(9.1a) and the model has the general form:

yt = w′xt−1 + z′
tp + εt, (9.2a)

xt = Fxt−1 + gεt. (9.2b)

The vector p, formed from the regression coefficients, consists of unknown
quantities that need to be estimated. The vector zt contains the regressor
variables.

Although p is time invariant, it is convenient to provide it with a time
subscript and rewrite the model (9.2) as

yt = w′xt−1 + z′
tpt−1 + εt,

xt = Fxt−1 + gεt,
pt = pt−1.

These equations can be stacked to give

yt = w̄′
tx̄t−1 + εt, (9.3a)

x̄t = F̄tx̄t−1 + ḡεt, (9.3b)

where x̄t =
[
xt
pt

]
, w̄t =

[
wt
zt

]
, F̄t =

[
F 0
0 I

]
and ḡ =

[
g
0

]
.

Equations (9.3) have the form of a general time invariant innovations state
space model.

As an example, consider a local level model where a single intervention
occurs at time t = 10 that has a transient effect on the series (a spike) of
an unknown amount p1. The measurement equation becomes yt = �t−1 +
zt p1 + εt and the transition equation is simply �t = �t−1 + αεt, where zt is an
indicator variable that is 1 in period 10 and 0 in all other periods. Similarly,
if the effect is permanent (a step), we define the regressor variable as zt = 1
if t ≥ 10 and zt = 0 otherwise.

In either case, the model may be written in the form (9.3) as

yt =
[
1 zt
] [�t−1

p1

]
+ εt,[

�t
p1

]
=
[

1 0
0 1

] [
�t−1
p1

]
+
[

α
0

]
εt.
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We make the usual assumption that the error terms are independent and fol-
low Gaussian distributions with zero means and constant variance; that is,
ε ∼ N(0, σ2). The method of estimation in Chap. 5 may be readily adapted
to fit a model with the general form (9.3). It treats the seed state as a fixed
vector and combines it with the model’s parameters for optimization of the
likelihood or sum of squared errors functions. Because the regression coeffi-
cients form part of the seed state vector, estimates of them are obtained from
the optimized value of the seed state vector.

Predictions can be undertaken with a suitable adaptation of the method in
Chap. 6. At this stage, when developing prediction distributions we assume
that the errors are homoscedastic. It is now necessary to supplement this
method with future values of the regressors. If the regressors consist of lead-
ing indicator variables, such values will be known up to a certain future point
of time. Moreover, if they consist of indicator variables reflecting the effect of
known future interventions that have also occurred in the past, then such
values are also known. However, when they are unknown, predictions of
the future values of the regressors are needed. It is then best to revert to a
multivariate time series framework (see Chap. 17).

This approach is easily adapted to accommodate heteroscedastic innova-
tions of the type considered in Chap. 4. A grand model is obtained that has
the general form

yt = w̄′
tx̄t−1 + r(x̄t−1)εt, (9.4a)

x̄t = F̄tx̄t−1 + ḡ(x̄t−1)εt. (9.4b)

The model may be fitted using the method from Chap. 5. Forecasts and pre-
diction distributions may then be obtained by methods for heteroscedastic
data described in Chap. 6.

9.2 Some Examples

In this section, we assume that a homoscedastic model is adequate and that
the errors are independent and follow a Gaussian distribution; that is, ε ∼
N(0, σ2).

9.2.1 An Example Using Indicator Variables

We now examine a simple example to illustrate the methods developed so
far. We consider a series that gives the sales of a product for 62 weeks starting
in early 2003. We refer to the series, which was supplied by a company, as
“FM Sales.” The series is plotted in Fig. 9.1.

We will incorporate three indicator variables as regressors:

• z1 = 1 in weeks 1–12 when product advertising was in a low-profile mode,
and z1 = 0 otherwise
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Fig. 9.1. The FM Sales series (thousands of units sold per week). The shaded regions
show 90% prediction intervals: the light-shaded region is from the local level model
without regressors; the dark-shaded region is from the local level model with regressors.

Table 9.1. Analysis of the FM sales data using the local level model with regressors.

Model p1 p2 p3 α �0 R2

Regression only −8.65 5.88 18.73 – – 0.793
Local level (LL) – – – 0.731 23.47 0.575
LL with regressors −4.80 4.65 17.29 0.471 28.47 0.808

• z2 = 1 in weeks 13–15 and 48–51 denoting high sales periods before Easter
and Christmas, and z2 = 0 otherwise

• z3 = 1 in week 52 to denote the after-Christmas sales peak, and z3 = 0
otherwise

The results are given in Table 9.1; the maximum likelihood estimates were
obtained by direct maximization. The contributions of the regressor terms
tend to dominate in this case, but the persistence in the series is clearly seen
with the value of α = 0.471.

The local level with regressors model yields a point forecast for the next
period of 31.26. The estimated standard deviation is σ̂ = 2.39, so that a 90%
one-step-ahead prediction interval would be [27.33, 35.19]. By contrast, the
local level model without regressors gives a point forecast of 32.59, σ̂ = 3.54
and the prediction interval [26.75, 38.43].
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9.2.2 Use of a Leading Indicator

Time series regression based upon two or more variables requires some
care in model development. For example, a researcher may use the trans-
fer function approach of Box et al. (1994, Chaps. 10 and 11). The detailed
discussion of such procedures is beyond the scope of this book, because
the methodology is similar whether an ARIMA or a state space approach
is employed. Accordingly, we use a single explanatory variable to illustrate
ideas. Consider two series relating to US gasoline prices:

Y = US retail gas prices (the average price per gallon, in dollars)
X = The spot price of a barrel of West Texas Intermediate (WTI) oil in

dollars as traded at Cushing, Oklahoma

The Cushing spot price is widely used in the industry as a “marker” for
pricing a number of other crude oil supplies traded in the domestic spot
market at Cushing, Oklahoma. The data are monthly and cover the period
January 1991 to November 2006.

The two series are plotted in Fig. 9.2 and show both marked nonstation-
arity and considerably increased variability in the later years. At this point,
we will examine the series through the end of 2001 to reduce the effects of
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Fig. 9.2. Monthly US gasoline and spot market prices: January 1991–November 2006.
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Fig. 9.3. Cross correlation function for gas prices and spot prices (after taking
logarithms and differencing).

the increased volatility. Also, we convert to natural logarithms to reduce the
variability due to increased prices. We return to the volatility question in
Chap. 19. As the spot price should be a long-term leading indicator of the
retail price, this relationship could usefully be examined using cointegra-
tion methods (see Tsay 2005, pp. 376–390). Given that our present focus is on
shorter-term forecasting, we will eschew that approach in favor of a simpler
analysis for expository purposes.

Analysis of the logarithms of spot price (Lspot) reveals that the time series
may be represented as a random walk (α̂ = 1.17 for the LL model), so that
modeling in terms of first differences is a reasonable place to start; this step
is consistent with the pre-whitening approach of Box et al. (1994). The cross
correlation function (CCF) for the differenced series of logarithms (DLprice
and DLspot) is shown in Fig. 9.3.

The CCF shows that the spot price has strong contemporaneous varia-
tion with the retail price, but also that it leads retail prices by one month.
Weekly data would show a more refined pattern of leading behavior given
the time taken for the price of crude oil to affect pump prices. Because we are
interested in forecasting, we restrict our attention to models that use the spot
price with a one-month lag, Lspot(1). Models with non-zero slopes did not
appear to improve matters, and we also found that a fixed seasonal pattern
sufficed.

Accordingly, we consider the following models:

• Local level — ETS(A,N,N)
• Local level with seasonals — ETS(A,N,A)
• Regression on Lspot(1)
• Regression on Lspot(1) and seasonal dummies
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Table 9.2. Analysis of the US gas prices data (logarithmic transform).

Model α b(spot) R2 s AICR

Local level (LL) 1.71 – 0.924 0.0359 −153.3
LL + seasonals 1.63 – 0.938 0.0339 −156.9
Regression on Lspot(1) – 0.531 0.756 0.0642 −1.2
Regression on Lspot(1) + seasonals – 0.503 0.795 0.0617 0.0
LL + Lspot(1) 1.52 0.142 0.930 0.0346 −161.8
LL + seasonals + Lspot(1) 1.45 0.151 0.944 0.0325 −167.6
LL + seasonals + Lspot(1) [MSOE] 1.00 0.259 0.937 0.0345 −152.0

b(spot) denotes the slope of Lspot(1)

• Local level with regression on Lspot(1)
• Local level with seasonals and regression on Lspot(1)
• Local level with seasonals and regression on Lspot(1), and α ≤ 1

The final model is included as it corresponds to the restriction imposed on α
in the multiple source of error model.

The results are summarized in Table 9.2. The AIC values are reported rel-
ative to the poorest fitting model, and are labeled as AICR. Several features
are apparent. First, the regression models perform poorly when the series
dynamics are ignored. Second, when the local level effects are included,
the coefficient of the spot price variable is much smaller. Third, the sea-
sonal effects are modest but important; the values show a consistent rise
in the warmer months when demand is higher. Finally, the estimates of α
consistently exceed 1; to understand why this might be, we can rewrite the
transition equation as

�t = yt + (α − 1)εt.

From this expression, we see that α > 1 means that the price is expected to
continue to move in the same direction as it did in the previous period. It is
worth noting that the MSOE scheme is unable to capture such behavior.

The performance of the models could be improved by identifying outliers
and making appropriate adjustments. In order to make such adjustments we
now need to identify suitable diagnostic procedures.

9.3 Diagnostics for Regression Models

Hitherto, our approach to model selection has highlighted the use of infor-
mation criteria, as described in Chap. 7. However, model building with
regressors often involves the evaluation of many variables and multiple lags.
In principle, all possible models could be evaluated by information criteria,
but this approach may be computationally intensive. Also, many researchers
prefer a more hands-on developmental process in which a variety of diag-
nostics may be used. The diagnostics described in the rest of this section
are not new, nor do they form an exhaustive list, but they cover the main
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questions that a researcher may wish to address. For more detailed coverage
in a time series context, see Harvey (1989, Chap. 5); much of the discussion
below derives from this source. For more general discussions on regression
diagnostics, the reader may consult Belsley et al. (1980) particularly on multi-
collinearity questions, and Cook and Weisberg (1999) on graphical methods,
influence measures and outliers.

9.3.1 Goodness-of-Fit Measures

The regression residuals are defined by substituting the parameter estimates
into (9.3a); we denote these sample quantities by et, the estimates of εt. After
the model has been fitted, the associated degrees of freedom are n − q − 1,
where q denotes the number of fitted parameters. That is, q = np + ng + d,
where np denotes the number of regression coefficients, ng the number of
parameters in the transition equations, and d the number of free states in the
initial state vector x0.

We consider three components that provide information about the good-
ness of fit. The baseline is the original (or total) sum of squared errors for the
dependent variable:

SST =
n

∑
t=1

(yt − ȳ)2 .

We may then compute the sum of squared errors based upon fitting the
innovations model alone:

SSE(I) =
n

∑
t=1

e2
t .

The coefficient of determination is then defined in the usual way as

R2
I = 1 − SSE(I)/SST. (9.5)

We can then incorporate regression elements into the model and generate the
sum of squared errors for the complete model [SSE(C)]. Thus, the complete
model has a coefficient of determination

R2
C = 1 − SSE(C)/SST.

The quantity R2
C − R2

I represents the improvement due to the inclusion of
the regression terms. The efficacy of the regression component may be tested
using the ratio:

F =
SSE(I) − SSE(C)

SSE(C)
.

Under the usual null hypothesis this measure has an F distribution with
(np, n − q − 1) degrees of freedom.
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When the local level model is used, Harvey (1989, p. 268) suggests
replacing the denominator of (9.5) by the sum of squares for the first
differences

SSTD =
n

∑
t=1

(yt − yt−1 − ȳD)2,

where ȳD = (yn − y1)/(n − 1) denotes the mean of the first differences. We
could then use the modified coefficient:

R2
D = 1 − SSE(I)/SSTD.

Intuitively, R2
D measures the improvement of the model over a simple ran-

dom walk with drift and may be used to test the value of the innovations
model beyond differencing. However, because competing models may imply
different orders of differencing in the reduced forms, we prefer to use the
measures defined earlier.

9.3.2 Standard Errors

Approximate standard errors for individual coefficients may be determined
from the information matrix; details are given in Harvey (1989, pp. 140–143).

9.3.3 Checks of the Residuals

Many diagnostics have been developed that search for structure among
the residuals in the series. Again, we mention only some of the standard
tests; those seeking a more detailed treatment should consult Harvey (1989,
Chap. 5).

Residual Autocorrelation and Cross-Correlations

Plots of the autocorrelation function (ACF) of the residuals and of the cross-
correlations (CCF) of the residuals with suitably differenced input series
(currently in or outside the model) will help to identify omitted elements.
Again, we should note that relying only upon graphical procedures can be
both time-consuming and lacking in clarity, so some form of testing or evalu-
ation is preferable. The ACF may be tested using the Box–Ljung–Pierce [BLP]
statistic (Ljung and Box 1978). We may define the autocorrelation of order j as

rj =
∑n

t=j+1(et − ē)(et−j − ē)

∑n
t=1(et − ē)2 .

The BLP statistic is then defined as

Q(P) = n(n + 2)
P

∑
j=1

(n − j)−1r2
j .
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Under the null hypothesis of no autocorrelation, Q is asymptotically dis-
tributed as chi-squared with P − ng degrees of freedom, where ng denotes
the number of parameters that are estimated for the transition equations.
The choice of P is somewhat arbitrary, and many researchers use several
different values in order to gain insight. It is worth noting that, under
H0, Q(P2) − Q(P1) is asymptotically chi-squared with P2 − P1 degrees of
freedom, which allows the researcher to check different horizons.

The BLP statistics for the last two models in Table 9.2 based upon the first
12 lags are 47.9 and 46.2 respectively, with 11 degrees of freedom. Both sets
of residuals show a significant negative autocorrelation at lag 2.

Tests of Gaussianity

A Gaussian probability plot will often suggest the need for a transformation
and help to identify major outliers. A simple test of Gaussianity proposed by
Bowman and Shenton (1975) has been popularized in the econometric liter-
ature by Jarque and Bera (1980). The test uses the third and fourth moments
of the residuals to measure skewness and kurtosis respectively:

√
b1 =

1
ns3

n

∑
t=1

(et − ē)3,

b2 =
1

ns4

n

∑
t=1

(et − ē)4,

where s =
√

MSE. When the error process is Gaussian, these statistics are
asymptotically independent. Further, both statistics have sampling distribu-
tions that are asymptotically Gaussian, although the approach to the limiting
forms is very slow. Thus, a test may be based upon the statistic

J = (n/6)b1 + (n/24)(b2 − 3)2,

which is asymptotically distributed as chi-squared with 2 degrees of free-
dom. An improved test of this general form is contained in an unpublished
paper by Doornik and Hansen (1994).

Several other tests, such as those of Anderson and Darling (1952) and Lil-
liefors (1967), are based upon deviations from expectation in the probability
plot. These tests have the advantage that the outliers are easily identified. In
the present example, a few outliers at the end of the series result in the rejec-
tion of the null hypothesis. An extended model that allows for these outliers
has only a minor effect upon the estimates, although the forecasts would
be more affected as some of the outliers occur at the end of the series. Rather
than extend the discussion, we defer further consideration to Chap. 19, where
we examine heteroscedastic disturbances.
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Heteroscedasticity

A common form of heteroscedasticity arises when the variance at time t is
a function of the mean level of the series at that time. Such structures are
a major motivation for the multiplicative models introduced in Chap. 4 and
discussed at various points throughout this book. If model-building starts
from the linear innovations state space form, it is quite likely that the resid-
uals will not indicate a uniform variance over time. Because many series
display a positive trend, the variability at the end of the series will often
be greater than that at the outset. Based upon this intuition, Harvey (1989,
pp. 259–260) suggests dividing the series into three nearly equal parts of
length I = 
(n + 1)/3�. The test statistic is defined as

H(I) =
n

∑
t=n−I+1

e2
t

/ I

∑
t=1

e2
t .

When the error process is Gaussian and the null hypothesis of homoscedas-
ticity holds, the sampling distribution of H(I) is approximately F(I, I).

The LL + seasonals + Lspot(1) model has H = 6.3 with I = 44, which is
highly significant and indicates the need to account for heteroscedasticity.

Because the purpose of this section was to illustrate ideas, rather than to
discuss model-building in detail (outlier identification, additional variables,
etc.), we do not pursue matters further at this stage. However, it is evident
that the most critical concern is the increased volatility in the series, and we
return to that question in Chap. 19.

9.4 Exercises

Exercise 9.1. Extend the model given in (9.2) to include regressor variables
in the transition equations, where the vectors of coefficients p1 and p2 will
typically include some zero elements:

yt = w′xt−1 + z′
tp1 + εt,

xt = Fxt−1 + z′
tp2 + gεt.

Express the model in reduced form by eliminating the state variables. Hence
show that the regressors in the transition equation only affect the dependent
variable after a one-period delay.

Exercise 9.2. Consider the special case of the model defined in Exercise 9.1
corresponding to the ETS(A,N,N) process with a single regressor variable:

yt = xt−1 + zt p1 + εt,
xt = xt−1 + zt p2 + αεt.
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Show that the reduced form is:

yt − yt−1 = p1(zt − zt−1) + p2zt−1 + εt − (1 − α)εt−1.

Further show that the same reduced form could be obtained by includ-
ing both zt+1 and zt in the transition equation, but omitting them from the
measurement equation.

Exercise 9.3. The residual checks in Sect. 9.3 suggest the need for an autore-
gressive term at lag 2 in the oil price model. Develop such a model and
compare its performance with the results given in Table 9.2.

Exercise 9.4. The events of 11 September 2001 produced a substantial short-
term drop in the number of air passengers. Use the monthly series on the
number of enplanements on domestic aircraft (data set enplanements) to
develop an intervention model to describe the series. Use two indicator vari-
ables to model the changes: SEPT1 = 1 in September 2001 and = 0 otherwise;
and SEPT2 = 1 in and after October 2001 and = 0 otherwise. Hence estimate
the overall effects upon air travel. [For further discussion, see Ord and Young
(2004).]

Exercise 9.5. The US Conference Board carries out a monthly survey on con-
sumer confidence. Although the use of this measure as a true explanation
of economic change is debatable, its primary benefit is that it appears before
many macroeconomic indices are released. The data set unemp.cci contains
100 monthly observations on the consumer confidence index (CCI) and sea-
sonally adjusted civilian unemployment (UNEMP) in the US, covering the
period June 1997–September 2005:

a. Develop univariate models for each series and establish that each series is
close to a random walk.

b. Develop a state space regression model that uses CCI (lagged one month)
and the SEPT2 indicator defined in Exercise 9.4 to predict UNEMP.
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Some Properties of Linear Models

In this chapter, we discuss some of the mathematical properties of the linear
innovations state space models described in Chap. 3. These results are based
on Hyndman et al. (2008).

We provide conditions that ensure the model is of minimal dimension
(Sect. 10.1) and conditions that guarantee the model is stable (Sect. 10.2). We
will see that the non-seasonal models are already of minimal dimension, but
that the seasonal models are slightly larger than necessary. The normalized
seasonal models, introduced in Chap. 8, are of minimal dimension.

The stability conditions discussed in Sect. 10.2 can be used to derive the
associated parameter space. We find that the usual parameter restrictions
(requiring all smoothing parameters to lie between 0 and 1) do not always
lead to stable models. Exact parameter restrictions are derived for all the
linear models.

10.1 Minimal Dimensionality for Linear Models

The linear innovations state space models (defined in Chap. 3) are of the form

yt = w′xt−1 + εt, (10.1a)
xt = Fxt−1 + gεt. (10.1b)

The model is not unique; for example, an equivalent model can be obtained
simply by adding an extra row to the state vector and adding a row contain-
ing only zeros to each of w, F and g. Therefore it is of interest to know when
the model has the shortest possible state vector xt, in which case we say it
has “minimal dimension.”

In particular, we wish to know whether the specific cases of the model
given in Table 2.2 on page 21 are of minimal dimension. The coefficient matri-
ces F , g and w can easily be determined from Table 2.2, and are given below.
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Here Ik denotes the k × k identity matrix and 0k denotes a zero vector of
length k.

ETS(A,N,N): w = 1 F = 1 g = α

ETS(A,Ad,N): w =
[

1
1

]
F =

[
1 1
0 φ

]
g =

[
α
β

]

ETS(A,N,A): w =

⎡
⎣ 1
0m−1

1

⎤
⎦ F =

⎡
⎢⎣

1 0′m−1 0

0 0′m−1 1

0m−1 Im−1 0m−1

⎤
⎥⎦ g =

⎡
⎣ α

γ
0m−1

⎤
⎦

ETS(A,Ad,A): w =

⎡
⎢⎢⎣

1
1

0m−1
1

⎤
⎥⎥⎦ F =

⎡
⎢⎢⎢⎢⎣

1 1 0′m−1 0

0 φ 0′
m−1 0

0 0 0′m−1 1

0m−1 0m−1 Im−1 0m−1

⎤
⎥⎥⎥⎥⎦ g =

⎡
⎢⎢⎣

α
β
γ

0m−1

⎤
⎥⎥⎦

The matrices for ETS(A,A,N) and ETS(A,A,A) are the same as for
ETS(A,Ad,N) and ETS(A,Ad,A) respectively, but with φ = 1.

The following definitions are given by Hannan and Deistler (1988,
pp. 44–45):

Definition 10.1. The model (10.1) is said to be observable if Rank(O) = p where

O = [w, F ′w, (F ′)2w, . . . , (F ′)p−1w]

and p is the length of the state vector xt.

Definition 10.2. The model (10.1) is said to be reachable if Rank(R) = p where

R = [g, Fg, F 2g, . . . , F p−1g]

and p is the length of the state vector xt.

Reachability and observability are desirable properties of a state space
model because of the following result from Hannan and Deistler (1988, p. 48):

Theorem 10.1. The state space model (10.1) is of minimal dimension if and only if
it is observable and reachable.

Example 10.1: ETS(A,A,N)

The observability matrix is

O =
[
w, F ′w

]
=
[

1 1
1 2

]
,



10.1 Minimal Dimensionality for Linear Models 151

which has rank 2. The reachability matrix is

R = [g, Fg] =
[

α α + β
β β

]
,

which has rank 2 unless β = 0. Consequently, the model is of minimal
dimension provided β �= 0.

A similar argument can be used (see Exercise 10.1a) to show that the
non-seasonal models ETS(A,N,N) and ETS(A,Ad,N) are both reachable and
observable, and therefore of minimal dimension.

10.1.1 Seasonal Models

Consider the ETS(A,N,A) model, for which the rank of O < p and the rank
of R < p. This is because, for the ETS(A,N,A) model, (F ′)p−1 = F p−1 = Ip .
Therefore, model ETS(A,N,A) is neither reachable nor observable. A similar
argument (Exercise 10.1b) shows that models ETS(A,A,A) and ETS(A,Ad,A)
are also neither reachable nor observable.

These problems arise because of a redundancy in the model. For example,
the ETS(A,N,A) model is given by yt = �t−1 + st−m + εt, where the level and
seasonal components are given by

�t = �t−1 + αεt and st = st−m + γεt.

So both the level and seasonal components have long run features due to
unit roots. In other words, both can model the level of the series, and the
seasonal component is not constrained to lie anywhere near zero. This is the
same problem that led to the use of normalizing in Chap. 8.

Let L denote the lag operator defined by Lyt = yt−1. Then, by expanding
st = et/(1 − Lm), where et = γεt, it can be seen that st can be decomposed
into two processes, a level displaying a unit root at the zero frequency and a
purely seasonal process, having unit roots at the seasonal frequency:

st = �∗t + s∗t ,

where �∗t = �∗t−1 + 1
m et,

S(L)s∗t = θ(L)et,

S(L) = 1 + L + · · · + Lm−1 represents the seasonal summation operator
and θ(L) = m−1 [(m − 1) + (m − 2)L + · · ·+ 2Lm−3 + Lm−2]. The long run
component �∗t should be part of the level term.

This leads to an alternative model specification where the seasonal equa-
tion for models ETS(A,N,A), ETS(A,A,A) and ETS(A,Ad,A) is replaced by

S(L)st = θ(L)γεt. (10.2)
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The other equations remain the same, as the additional level term can be
absorbed into the original level equation by a simple change of parameters.
Noting that θ(L)/S(L) = [1 − 1

m S(L)]/(1 − Lm), we see that (10.2) can be
written as

st = st−m + γεt − γ

m
(εt + εt−1 + · · ·+ εt−m+1).

In other words, the seasonal term is calculated as in the original models, but
is then adjusted by subtracting the average of the last m shocks. The effect
of this adjustment is equivalent to the normalization procedure outlined in
Chap. 8, in which the seasonal terms st, . . . , st−m+1 are adjusted every time
period to ensure that they sum to zero. Models using the seasonal com-
ponent (10.2) will be referred to as “normalized” versions of ETS(A,N,A),
ETS(A,A,A) and ETS(A,Ad,A). It can be shown (Exercise 10.1c) that the
normalized models are of minimal dimension.

10.2 Stability and the Parameter Space

In Chap. 3, we found (p. 36) that, for linear models of the form (10.1), we
could write the state vector as

xt = Dtx0 +
t−1

∑
j=0

D jgyt−j,

where D = F − gw′ is the discount matrix. So for initial conditions to have
a negligible effect on future states, we need Dt to converge to zero. There-
fore, we require D to have all eigenvalues inside the unit circle. We call this
condition stability (following Hannan and Deistler 1988, p. 48).

Definition 10.3. The model (10.1) is said to be stable if all eigenvalues of D =
F − gw′ lie inside the unit circle.

Stability is a desirable property of a time series model because we want
models where the distant past has a negligible effect on the present state.

In Chap. 3, we also found that

ŷt|t−1 = w′xt = at +
t−1

∑
j=1

cjyt−j,

where at = w′Dt−1x0 and cj = w′D j−1g. Thus, the forecast is a linear func-
tion of the past observations and the seed state vector. This result shows that
for a model to be stable, we require the weaker forecastability condition:

Definition 10.4. The model (10.1) is forecastable if
∞

∑
j=1

|cj| < ∞ and lim
t→∞

at = a. (10.3)

Obviously, any model that is stable is also forecastable.
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On the other hand, it is possible for a model to have a unit eigenvalue
for D, but to satisfy the forecastability condition (10.3). In other words, an
unstable model can still produce stable forecasts provided the eigenvalues
which cause the instability have no effect on the forecasts. This arises because
D may have unit eigenvalues where w′ is orthogonal to the eigenvectors
corresponding to the unit eigenvalues.

To avoid complications, we will assume that all the eigenvalues are dis-
tinct. In this case, we can write the eigendecomposition of D as D = UΛV ,
where the columns of U are the eigenvectors of D, Λ is a diagonal matrix
containing the eigenvalues of D, and V = U−1. Then

cj+1 = w′D jg = w′UΛjV g = ∑
i

λ
j
i(w

′ui)(v′
ig),

where ui is a column of U (a right eigenvector) and vi is a row of V (a left
eigenvector). By inspection, we see that the sequence converges to zero pro-
vided either |λi| < 1, w′ui = 0 or v′

ig = 0, for each i. Further, the sequence
only converges under these conditions. Similarly,

at+1 = w′Dtx0 = ∑
i

λt
i(w

′ui)(v′
ix0).

In this case, the sequence converges to a constant if and only if either |λi| ≤
1, w′ui = 0 or vix0 = 0, for each i. Thus, we can restate forecastability as
follows.

Theorem 10.2. Let λi denote an eigenvalue of D = F − gw′, and let ui be the
corresponding right eigenvector and vi the corresponding left eigenvector. Then the
model (10.1) is forecastable if and only if, for each i, at least one of the following four
conditions is met:

1. |λi| < 1
2. w′ui = 0
3. |λi| = 1 and v′

ig = 0
4. v′

ix0 = 0 and v′
ig = 0

The concept of forecastability was noted by Sweet (1985) and Lawton
(1998) for ETS(A,A,A) (additive Holt-Winters) forecasts, although neither
author used a stochastic model as we do here. The phenomenon was also
observed by Snyder and Forbes (2003) in connection with the ETS(A,A,A)
model. The first general definition of this property was given by Hyndman
et al. (2008).

We now establish stability and forecastability conditions for each of the
linear models. For the damped models, we assume that φ is a fixed damp-
ing parameter between 0 and 1, and we consider the values of the other
parameters that would lead to a stable model.



154 10 Some Properties of Linear Models

The value of D for each model is given below.

ETS(A,N,N): D = 1 − α

ETS(A,Ad,N): D =
[

1 − α 1 − α
−β φ − β

]

ETS(A,N,A): D =

⎡
⎢⎣

1 − α 0′m−1 −α

−γ 0′m−1 1 − γ

0m−1 Im−1 0m−1

⎤
⎥⎦

ETS(A,Ad,A): D =

⎡
⎢⎢⎢⎢⎣

1 − α 1 − α 0′m−1 −α

−β φ − β 0′m−1 −β

−γ −γ 0′m−1 1 − γ

0m−1 0m−1 Im−1 0m−1

⎤
⎥⎥⎥⎥⎦

Again, for ETS(A,A,N) and ETS(A,A,A), the corresponding result is obtained
from ETS(A,Ad,N) and ETS(A,Ad,A) by setting φ = 1.

Example 10.2: Local level model with drift

The local level model with drift is equivalent to the ETS(A,A,N) model with
β = 0. Thus, the discount matrix for this model is

D =
[

1 − α 1 − α
0 1

]
, so that U =

[
1 (1 − α)/q
0 α/q

]
and V =

[
1 −(1 − α)/α
0 q/α

]
,

where q =
√

1 − 2α + 2α2. The corresponding roots of D are 1 and 1 − α,
and corresponding to the unit root we have:

w′u = [1, 1]
[
(1 − α)/q

α/q

]
= 1/q and v′g = [0, q/α]

[
α
0

]
= 0.

Thus, the model is not stable as D has a unit root. However, it can be
forecastable as the unit root satisfies the third condition of Theorem 10.2.

The other root is 1 − α with

w′u = [1, 1]
[

1
0

]
= 1 and v′g = [1,−(1 − α)/α]

[
α
0

]
= α.

So the model will be forecastable if 0 < α < 2 (condition 1 of Theorem 10.2),
or if α = 0 (condition 3 of Theorem 10.2). If α = 0, the model is equivalent
to the linear regression model yt = �0 + bt + εt.

The stability conditions for models without seasonality (i.e., ETS(A,N,N),
ETS(A,A,N) and ETS(A,Ad,N)) are summarized in Table 10.1. These are given
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Table 10.1. Stability conditions for models without seasonality.

ETS(A,N,N): 0 < α < 2

ETS(A,A,N): 0 < α < 2

0 < β < 4 − 2α

ETS(A,Ad,N): 1 − 1/φ < α < 1 + 1/φ

α(φ − 1) < β < (1 + φ)(2 − α)

0 < φ ≤ 1
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Fig. 10.1. Parameter spaces for model ETS(A,Ad,N). The right hand graph shows the
region for model ETS(A,A,N) (when φ = 1). In each case, the light-shaded regions rep-
resent the stability regions; the dark-shaded regions are the usual regions constructed
by restricting each parameter in the conventional parameterization to lie between 0
and 1.

in McClain and Thomas (1973) for the ETS(A,A,N) model; results for the
ETS(A,Ad,N) and ETS(A,N,N) models are obtained in a similar way. To
visualize these regions, we have plotted them in Fig. 10.1. The light-shaded
regions represent the stability regions; the dark-shaded regions are the usual
regions defined by 0 < β < α < 1. Note that the usual parameter region
is entirely within the stability region in each case. Therefore non-seasonal
models obtained using the usual constraints are always stable (and always
forecastable).

10.2.1 Seasonal Models

The characteristic equation for matrix D in the (un-normalized) ETS(A,N,A)
model is f (λ) = (1 − λ)P(λ) = 0, where

P(λ) = λm + αλm−1 + αλm−2 + · · ·+ αλ2 + αλ + (α + γ − 1). (10.4)

Thus, D has a unit eigenvalue regardless of the values of the model
parameters, and so the model is always unstable.
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Similarly, the characteristic equation of D for model ETS(A,Ad,A) is
f (λ) = (1 − λ)P(λ) = 0, where

P(λ) = λm+1 + (α + β − φ)λm + (α + β − αφ)λm−1 + · · ·+ (α + β − αφ)λ2

+ (α + β − αφ + γ − 1)λ + φ(1 − α − γ). (10.5)

Example 10.3: Additive Holt-Winters’ model ETS(A,A,A)

In this case,

D =

⎡
⎢⎢⎢⎢⎣

1 − α 1 − α 0′m−1 −α

−β 1 − β 0′m−1 −β

−γ −γ 0′m−1 1 − γ

0m−1 0m−1 Im−1 0m−1

⎤
⎥⎥⎥⎥⎦.

Solving the equations corresponding to the unit root case (Exercise 10.2)
shows that u is proportion to [−1, 0, 1, . . . , 1]. It follows that w′u = 0. Con-
sequently, the model is forecastable if the remaining roots are inside the unit
circle.

The same argument applies to all of the seasonal models. Thus, the
ETS(A,N,A), ETS(A,A,A) and ETS(A,Ad,A) models are forecastable if and
only if the roots of P(λ) lie inside the unit circle. Hyndman et al. (2008)
use this result to derive the specific conditions for forecastability; these
conditions are summarized in Table 10.2.

The inequalities involving only α and γ provide necessary conditions
for forecastability that are easily implemented. The final condition (giving
a range for β) is more complicated to use than finding the numerical roots
of (10.5). Therefore, we suggest that, in practice, these conditions on α and
γ be imposed when estimating the model; the roots of (10.5) can then be
calculated and tested.

To visualize these regions, we have plotted them in Figs. 10.2–10.4. The
light-shaded regions represent the forecastability regions; the dark-shaded
regions are the usual regions given by

0 < α < 1, 0 < β < α, 0 < γ < 1 − α, and 0 < φ < 1.

The forecastable region for α and γ is illustrated in Fig. 10.2. For large
values of φ, the upper limit of γ is obtained when the upper limit of α equals
the lower limit of α. For φ = 1, this simplifies to γ < 2m/(m − 1), as given by
Archibald (1991), but for smaller values of φ the upper limit of γ is smaller
than this.

The right hand column of Fig. 10.2 shows that the usual parameter
region of an ETS(A,N,A) model is entirely within the forecastability region.
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Table 10.2. Forecastability conditions for models ETS(A,N,A) and ETS(A,Ad,A).

ETS(A,N,A): max(−mα, 0) < γ < 2 − α and
−2

m − 1
< α < 2 − γ

ETS(A,Ad,A): 0 < φ ≤ 1

max(1 − 1/φ − α, 0) < γ < 1 + 1/φ − α

1 − 1/φ − γ(1 − m + φ + φm)/(2φm) < α < (B + C)/(4φ)

−(1 − φ)(γ/m + α) < β < D + (φ − 1)α

where

B = φ(4 − 3γ) + γ(1 − φ)/m

C =
√

B2 − 8
[
φ2(1 − γ)2 + 2(φ − 1)(1 − γ)− 1

]
+ 8γ2(1 − φ)/m

D = minθ

{
(φ − φα + 1)(1 − cos θ)

− γ

[
(1 + φ)(1 − cos θ − cos mθ) + cos(m − 1)θ + φ cos(m + 1)θ

2(1 − cos mθ)

] }
and θ is a solution to

φα − φ + 1
γ

+
(φ − 1)(1 + cos θ − cos mθ) + cos(m − 1)θ − φ cos(m + 1)θ

2(1 + cos θ)(1 − cos mθ)
= 0

Conditions for ETS(A,A,A) can be obtained from ETS(A,Ad,A) by setting φ = 1.

Therefore ETS(A,N,A) models obtained using the usual constraints are
always forecastable.

The forecastable region for α and β is depicted in Figs. 10.3 and 10.4 for
m = 4 and m = 12 respectively. For m = 4, the usual parameter region is
entirely contained within the forecastability region for all values of φ and
γ, except when both φ and γ are relatively small. However, for m = 12
(Fig. 10.4), it can be seen that the usual parameter region and the forecastabil-
ity region intersect for model ETS(A,Ad,A), but neither is contained within
the other, even when φ = 1. Therefore, models obtained using the usual
constraints may often not be forecastable.

Consequently, we recommend that the usual parameter regions not be
used. Instead, when parameters are estimated, the optimization routine
should be constrained to return values within the forecastability region. If
we constrain the parameters to lie in the intersection of the usual region
and the forecastability region, we can retain the interpretation of the model
equations as weighted averages. However, such constraints may produce
inferior forecasts when the best-fitting model lies outside the more restricted
region.
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Fig. 10.2. Light-shaded region: the forecastable region of α and γ for model
ETS(A,Ad,A). Dark-shaded region: the usual region where 0 < α < 1 and 0 < γ <
1 − α. The right column shows the regions for model ETS(A,A,A) (when φ = 1). These
are also the regions for model ETS(A,N,A) as they are independent of β.

10.2.2 Normalized Models

Archibald (1984, 1990) discussed the stable region for the normalized ver-
sion of ETS(A,A,A), and Archibald (1991) provided some preliminary steps
towards finding the stable region for the normalized version of ETS(A,Ad,A).
Hyndman et al. (2008) extended this analysis and derived the results
described below.

In Chap. 8, we showed that the normalized models can be written in state
space form with the state vector xt = (�t, bt, s1,t, . . . , sm−1,t)′, where si,t is the
estimate of the seasonal factor for the ith month ahead made at time t. Note
that sm,t ≡ s0,t = 1 − s1,t − · · · − sm−1,t. Following Roberts (1982, Sect. 3), the
seasonal updating is defined as follows:

s0,t = s1,t−1 + γ(1 − 1
m )et,

si,t = si+1,t−1 − γ
m et.

The level and trend equations are updated as with the standard model. Then
w′ = [1, 1, 1, 0′m−2],

F =

⎡
⎢⎢⎢⎢⎣

1 1 0 0′m−2

0 φ 0 0′m−2

0m−2 0m−2 0m−2 Im−2

0 0 −1 −1′m−2

⎤
⎥⎥⎥⎥⎦ , g =

⎡
⎣ α

β
−(γ/m)1m−1

⎤
⎦
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Fig. 10.3. Light-shaded region: the forecastable region of α and β for model
ETS(A,Ad,A) with m = 4. Dark-shaded region: the usual region where 0 < α < 1 − γ
and 0 < β < α. The right column shows the region for model ETS(A,A,A) (when
φ = 1).

and

D =

⎡
⎢⎢⎢⎢⎣

1 − α 1 − α −α 0′m−2

−β φ − β −β 0′m−2

(γ/m)1m−2 (γ/m)1m−2 (γ/m)1m−2 Im−2

γ/m γ/m γ/m − 1 −1′m−2

⎤
⎥⎥⎥⎥⎦ ,

where 1k denotes a k-vector of ones. The characteristic equation for D is
given by

f (λ) =
m+1

∑
i=0

θiλ
m+1−i, (10.6)
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Fig. 10.4. Light-shaded region: the forecastable region of α and β for model
ETS(A,Ad,A) with m = 12. Dark-shaded region: the usual region where 0 < α < 1 − γ
and 0 < β < α. The right column shows the region for model ETS(A,A,A) (when
φ = 1).

where

θ0 = 1
θ1 = α + β − γ/m − φ

θi = α(1 − φ) + β − (1 − φ)γ/m, i = 2, . . . , m − 1
θm = α(1 − φ) + β + γ[1 − (1 − φ)/m]− 1

and

θm+1 = φ[1 − γ(1 − 1/m)− α].

Note that this is equivalent to (10.5) if we reparameterize the model,
replacing α in (10.5) by α − γ/m. Therefore the forecastability conditions for
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the standard ETS(A,Ad,A) model are the same as the stability conditions
for the normalized ETS(A,Ad,A) model, apart from this minor reparam-
eterization. In particular, the normalized models are stable (provided the
parameters are within the stability regions).

10.3 Conclusions

With the non-seasonal exponential smoothing models, our results are clear:
the models are of minimal dimension and are stable using the usual con-
straints. In fact, it is possible to allow parameters to take values in a larger
space, and still retain a stable model.

With the seasonal exponential smoothing methods, the situation is more
complicated.Thereisaredundancyinthestatevectorbecausetheseasonalstates
arenotconstrained,makingthemodelsoflargerdimensionthannecessary.The
same redundancy leads to a unit root in the discount matrix, causing all of the
linear seasonal models to be unstable for any values of the model parameters.
However, we have shown that the model can be made forecastable, and we
have provided conditions for the parameters to ensure forecastability.

The normalized model circumvents this problem by requiring the seasonal
states to sum to zero, thus removing the inherent redundancy in the seasonal
terms. This leads to both a minimal dimension model and a stable model.

10.4 Exercises

Exercise 10.1.

a. Show that the non-seasonal models ETS(A,N,N) and ETS(A,Ad,N) are of
minimal dimension.

b. Show that the seasonal models ETS(A,A,A) and ETS(A,Ad,A) are not of
minimal dimension.

c. Show that the normalized seasonal models ETS(A,N,A), ETS(A,A,A) and
ETS(A,Ad,A) are of minimal dimension.

d. Show that the (unnormalized) seasonal models ETS(A,A,A) and
ETS(A,Ad,A) are of minimal dimension if the level component is omitted
from the models. (This is an alternative to normalization).

Exercise 10.2. Complete Example 10.3 by showing that u is proportional to
[−1, 0, 1, . . . , 1] for the ETS(A,A,A) model.

Exercise 10.3. The expression xt = Dxt−1 + gyt also applies to some of the
nonlinear models discussed in Chap. 4. Use this observation to write down
the stability conditions for the relevant nonlinear models.
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Reduced Forms and Relationships
with ARIMA Models

The purpose of this chapter is to examine the links between the (linear)
innovations state space models and autoregressive integrated moving aver-
age (ARIMA) models, frequently called “Box–Jenkins models” because Box
and Jenkins (1970) proposed a complete methodology for identification, esti-
mation and prediction with these models. We will show that when the state
variables are eliminated from a linear innovations state space model, an
ARIMA model is obtained. This ARIMA form of the state space model is
called its reduced form.

The process for deriving the reduced form uses the lag operator, defined
by Lyt = yt−1, to eliminate the state variables from the state space model.
Another procedure that relies on conventional equation solving methods
will be explained in Chap. 13. The latter method has the advantage that its
algorithm can be implemented relatively easily in a matrix programming
language such as R or Matlab.

We begin the chapter with a brief summary of ARIMA models and their
properties. In Sect. 11.2 we obtain reduced forms for the simple cases of the
local level model, ETS(A,N,N), and the local trend model, ETS(A,A,N). Then,
in Sect. 11.3 we show how to put a general linear innovations state space
model into an ARIMA reduced form. (Causal) stationarity and invertibility
conditions for the reduced form model are developed in Sect. 11.4, and we
explore the links with causal stationarity and stability of the corresponding
innovations state space model.

In the opposite direction, an ARIMA model can also be put in the form
of a linear innovations state space model. This reverse procedure is demon-
strated in Sect. 11.5.
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11.1 ARIMA Models

The general form of an ARMA model is conventionally written as:

φ(L)yt = λ + θ(L)εt, (11.1)

where L is the lag operator defined above, and φ(L) and θ(L) are polyno-
mials in L. The random errors, εt, are assumed to be independent and
identically distributed with zero means and equal variances, σ2; we write
this as εt ∼ IID(0, σ2). The parameter λ represents a constant term.

Several special cases serve to illustrate the general model.

• First order autoregression—AR(1):

yt = λ + φ1yt−1 + εt. (11.2)

• pth order autoregression—AR(p):

yt = λ + φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt. (11.3)

• First order moving average—MA(1):

yt = λ + εt − θ1εt−1. (11.4)

• qth order moving average—MA(q):

yt = λ + εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q. (11.5)

• pth order AR, qth order MA—ARMA(p, q):

yt = λ + φ1yt−1 + · · ·+ φpyt−p + εt − θ1εt−1 − · · · − θqεt−q. (11.6)

An important aspect of ARMA modeling is that we assume the series
started up in the infinite past, in contrast to the innovations state space mod-
els we have considered thus far, where a finite start-up has been employed.
Intuitively, if the finite start was a long time ago and the effect of the initial
conditions diminishes over time, we might expect that the finite start-up sys-
tem would converge to the limiting infinite start-up scheme. We now specify
the conditions under which this convergence occurs.

11.1.1 Causal Stationarity

The standard assumption made about the autoregressive component is that
the roots of the polynomial φ(u) = 0 all lie outside the unit circle. This
assumption means that we can rewrite (11.1) as:

yt = λ/φ(1) + [θ(L)/φ(L)]εt = λ/φ(1) + ψ(L)εt, (11.7)
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where

ψ(u) = 1 + ψ1u + ψ2u2 + · · · (11.8)

is an infinite series which is absolutely convergent for |u| ≤ 1. An ARMA
model satisfying these conditions is said to be causally stationary. A uni-
variate process is causal if the current value depends only upon current
and past values of the error process and past values of the series. Hence-
forth we assume this to be the case and refer just to stationarity, with the
qualifier “causal” always there by implication. Stationarity clearly implies
that the coefficients ψi converge to zero as we move away from the present
time. This condition reduces to the requirement that the roots of the poly-
nomial φ(u) = 0 should lie outside the unit circle. The representation given
in (11.7) is known as the Wold representation (or decomposition) of a time
series. Thus, any stationary time series may be represented by an infi-
nite order MA scheme. Further, (11.7) shows that such processes may in
some cases be represented by finite-order ARMA schemes. By extension, as
indicated in Exercise 11.6, state space models always result in finite-order
ARIMA reduced-form models. In turn, these conditions imply that the pro-
cess has an unconditional mean and variance, as illustrated by the following
examples.

Example 11.1: Mean and variance for AR(1)

It follows from (11.8) that the AR(1) process is stationary provided |φ1| < 1.
We may then denote the mean by µ and the variance by ω2. Taking
expectations on both sides of (11.2) we obtain:

E(yt) = µ = λ + φ1E(yt−1) + E(εt) = λ + φ1µ

so that µ = λ/(1 − φ1). In general, the mean of an AR(p) process can be
written as µ = λ/φ(1). Subtracting out the mean, squaring both sides of
(11.2) and taking expectations, we arrive at:

E[(yt − µ)2] = φ2
1E[(yt−1 − µ)2] + 2φ1E[εt(yt−1 − µ)] + E(ε2

t).

Because εt and yt−1 are independent, the cross-product term is zero, so this
expression reduces to:

V(yt) = ω2 = σ2/(1 − φ2
1).
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Example 11.2: Mean and variance for stationary processes

We can use the ARMA(p, q) form given in (11.6) to arrive at general expres-
sions for the mean and variance, although some simplifications are usually
possible for specific models. Because the error terms have zero expectations,
we see immediately that µ = λ/φ(1). Further, because the error terms are
uncorrelated and each has variance σ2, we obtain for the variance:

V(yt) = ω2 = σ2
∞

∑
i=0

ψ2
i .

How does this definition of stationarity compare with that given in
Sect. 3.3.2? The difference lies in the start-up conditions. In Chap. 3 we
assumed a finite start-up, whereas here we are assuming that the series
started in the infinite past. We can rewrite the AR(1) model as:

yt = λ + φ1yt−1 + εt, t = 2, 3, . . . ,
y1 = λ + φ1�0 + ε1.

This form corresponds to the damped level model in Sect. 3.5.1 with α = 1.
This correspondence enables us to see that the coefficients {kj} in (3.8) are
equivalent to the {ψj} in (11.8), and that the constant term is dt = µ + φt

1�0,
which converges to the mean when |φ1| < 1. Similar equivalences may be
established for more general models.

11.1.2 Invertibility

The representation in (11.7) enables us to recast any ARMA(p, q) process as
an infinite order MA process. A similar manipulation enables us to rewrite
the model as:

[φ(L)/θ(L)](yt − µ) = εt,

which may be represented as an infinite order AR process with operator
π(L) = φ(L)/θ(L) provided the series expansion of π(u) is absolutely con-
vergent for |u| ≤ 1 or ∑∞

i=1 |πi| < ∞. This requirement reduces to the
condition that the roots of θ(u) = 0 should lie outside the unit circle. When
this condition holds, we can write the model as:

π(L)yt = µφ(1)/θ(1) + εt or yt = λ/θ(1) + π1yt−1 + π2yt−2 + · · ·+ εt.

When this representation is valid, we say the model is invertible. We relate
this concept to our earlier discussion of forecastability in Sect. 11.4.
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11.1.3 ARIMA Models

Our discussion in the previous section focused upon stationary models, yet
nearly all of the discussion in earlier chapters has assumed the existence
of trends or, at the very least, locally varying mean levels. In our experi-
ence, most series in economics and business exhibit such behavior, so that
stationary series are relatively rare. Indeed, in many cases where stationarity
is observable, the time series has been transformed in some way; for exam-
ple, a series of stock prices {yt} typically follows a random walk, but the
return on the stock, defined as rt = (yt − yt−1)/yt−1 may well be stationary.

We extend the models under consideration to include nonstationary
models by specifying the ARIMA class of models, which may be written as

φ(L)(1 − L)dyt = θ(L)εt. (11.9)

We drop the constant term in accordance with common usage. Note that we
have partitioned the AR operator into two parts: the first term φ(L) is the
standard AR polynomial and the second term (1 − L)d describes the differ-
encing1 operations. On occasion, it is convenient to represent this product
by: η(L) = φ(L)(1 − L)d. Differencing once or twice is sufficient in most
applications.

Once the appropriate order of differencing has been performed, the series
zt = (1 − L)dyt may be modeled as an ARMA process, as in the previous
section. The full model for the original series is then referred to as an
ARIMA(p, d, q) process. For full details of ARIMA processes, see Box et al.
(1994, Chap. 4).

11.1.4 Seasonal Series

In order to complete the description of ARIMA models, we must also con-
sider the existence of seasonal patterns in the data. If the series was purely
seasonal, we could consider a model such as (11.9) but with each “month”
relating back only to the same month in previous “years.” So, if there are m
months, a purely seasonal model could be written as

Φ(Lm)[1 − Lm]Dyt = Θ(Lm)εt. (11.10)

The operator 1 − Lm defines a seasonal difference, whereas Φ(Lm) is the sea-
sonal autoregressive polynomial and Θ(Lm) represents the seasonal moving
average polynomial. Purely seasonal series may occur from time to time, but
a far more common possibility is that there are both regular and seasonal
effects to take into account. A natural way to do this is to combine (11.9) and

1 Note that (1− L)yt = yt − yt−1 represents the difference between successive obser-
vations.
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(11.10) to produce what is termed a “multiplicative” model in the literature
(a confusing but now standard term):

φ(L)Φ(Lm)(1 − L)d[1 − Lm]Dyt = θ(L)Θ(Lm)εt. (11.11)

As before, we omit the constant term. Differencing may occur either at lag 1,
or at lag m, or at both lags. Overall, the seasonal element may comprise P
AR terms, Q MA terms and D seasonal differences. The full model is then
denoted by ARIMA(p, d, q)(P, D, Q)m.

An advantage of the multiplicative form is that the stationarity and
invertibility conditions can be examined separately for the regular and
seasonal components, by checking the roots of each polynomial in turn.

Example 11.3: The airline model

The best-known and most widely used model in this extended class is
known as the “airline model” used by Box and Jenkins to model a monthly
time series of airline passenger counts; see Box et al. (1994, Chap. 9), which
is also the standard reference for these seasonal models. The airline model
is of the form ARIMA(0,1,1)(0,1,1)m, with m = 12 in the example; that is,

(1 − L)(1 − Lm)yt = (1 − θ1L)(1 − θmLm)εt. (11.12)

11.2 Reduced Forms for Two Simple Cases

We now consider the relationships between the ARIMA models and the
linear innovations state space models considered earlier in the book. The
approach we will follow is to eliminate the state variables from the state
model, thereby arriving at an ARIMA process, which we refer to as a reduced
form model. Because the innovations models operate from a finite start-up,
but the ARIMA models assume an infinite past, we must restrict our atten-
tion to those linear innovations state space models that are stable in the sense
of Sect. 3.3.1, so that the effect of the start-up conditions can be ignored in
sufficiently long series.

Example 11.4: Simple exponential smoothing—ETS(A,N,N) model

In Chap. 3, the ETS(A,N,N) model, which is the innovations state space
model for simple exponential smoothing, was defined. Using the lag
operator L, this model can be written in a slightly different manner as
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yt = �t−1 + εt, (11.13a)
(1 − L)�t = αεt. (11.13b)

To find the ARIMA reduced form of the ETS(A,N,N) model in (11.13), apply
the differencing operator 1 − L to both sides of the measurement equation
(11.13a). The result is the ARIMA(0,1,1) model

(1 − L)yt = (1 − L)�t−1 + (1 − L)εt

= αεt−1 + εt − εt−1

= (1 − θ1L)εt,

where θ1 = 1 − α. It is well known that the ARIMA(0,1,1) model provides
the same point forecasts as simple exponential smoothing. The ETS(A,N,N)
model and the ARIMA(0,1,1) model will also produce the same forecast
variances and prediction intervals.

The ETS parameter space α ∈ (0, 2) corresponds exactly to the ARIMA
parameter space |θ1| < 1. However, we observe that the finite start-up
assumption enables the ETS scheme to handle α = 0, corresponding to a
constant mean; the ARIMA model does not include this case.

Example 11.5: ETS(A,A,N) model

In a similar manner, we can write the local ETS(A,A,N) model, which is the
innovations state space model for Holt’s method, as

yt = �t−1 + bt−1 + εt, (11.14a)
(1 − L)�t = bt−1 + αεt, (11.14b)
(1 − L)bt = βεt. (11.14c)

Applying the differencing operator (1 − L)2 to the measurement equation
(11.14a) and using transition equations (11.14b) and (11.14c), we obtain the
following ARIMA(0,2,2) model

(1 − L)2yt = [1 − θ1L − θ2L2]εt,

where θ1 = 2 − α − β and θ2 = α − 1. The invertibility conditions for this
model are 4 − 2α − β > 0, β > 0 and 0 < α < 2, which the reader is asked
to verify in Exercise 11.1.

We note that these reduced forms implicitly assume an infinite start-
up. If the finite start-up assumption is considered, model (11.14) must be
supplemented by the values of the initial states �0 and b0.
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In the next section we find reduced forms for the general form of the
linear innovations state space model.

11.3 Reduced Form for the General Linear Innovations Model

We now consider the reduced form of the general linear innovations state
space model. The goal is to transform the state space model into an ARIMA
model. As in (11.9), the general ARIMA model may be expressed by

η(L)yt = φ(L)δ(L)yt = θ(L)εt,

where η(L) and θ(L) are both polynomials in the lag operator L, and may
include powers of L related to the seasonal period m. In addition, δ(L)
contains all the unit roots of the polynomial. If we let zt = δ(L)yt,

φ(L)zt = θ(L)εt

is an autoregressive moving average (ARMA) model.
The general linear innovations state space model yt = w′xt−1 + εt and

xt = Fxt−1 + gεt can be reduced to an ARIMA model with the help of the
lag operator. First, the transition equation can be rewritten as

(I −F L)xt = gεt. (11.15)

As it is possible that I −F L may not have an inverse, we multiply both sides
of (11.15) by its adjoint, adj(I −F L), to get

det(I − F L)xt = adj(I −F L)gεt. (11.16)

Next, apply the operator det(I − F L) to both sides of the measurement
equation to find

det(I −F L)yt = w′det(I − F L)xt−1 + det(I −F L)εt.

Then, using (11.16), substitute for det(I − F L)xt−1 to obtain the following
ARIMA model:

det(I − F L)yt = w′adj(I −F L)gεt−1 + det(I − F L)εt. (11.17)

In this ARIMA model
η(L) = det(I − F L)

and
θ(L) = w′adj(I −F L)gL + det(I −F L).

It is possible that the polynomials on both sides of this equation have com-
mon factors, in which case they should be canceled, in accordance with the
minimal dimension state representation developed in Chap. 10. That is, this
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reduced form will correspond to the ARIMA model after the elimination of
any factors that are common to both η(L) and θ(L). Technically, the elimina-
tion of a unit root should lead to the introduction of a constant on the right
hand side of the equation. However, such constants are often set to zero when
there is at least one unit root remaining on the left hand side. The following
example illustrates the process.

Example 11.6: Finding an ARIMA reduced form for the ETS(A,A,A) model

Direct application of (11.17) to the ETS(A,A,A) model in Sect. 3.4.3 yields

η(L) = (1 − L)2(1 − Lm)
and θ(L) = L(1 − L)(1 − Lm)α

+ L(1 − Lm)β + Lm(1 − L)2γ + (1 − L)2(1 − Lm).

Inspection of the two polynomials reveals the presence of a common factor
1 − L in both polynomials, indicating that the state space model has been
overdifferenced. Elimination of a unit root common to both sides yields the
revised expression:

η(L) = (1 − L)(1 − Lm)
and θ(L) = (1 − L)(1 − Lm) + L(1 − Lm)α

+ (L + · · ·+ Lm)β + Lm(1 − L)γ.

This model contains (m + 1) moving average terms but only three parame-
ters, so it differs from the usual seasonal ARIMA process. When β = 0, this
model is close to the airline model (11.12), differing only by the factor αγ in
the coefficient of Lm+1.

11.4 Stationarity and Invertibility

The conditions for stationarity and invertibility will now be considered. We
seek conditions on the matrices in the state space models to indicate when
their ARIMA reduced forms have each of these two properties. Recall that
a basic identity for the lag operator L and a matrix A is (I − AL)−1 =
∑∞

j=0(AL)j.
We stated in Sect. 11.1.1 that an ARMA model of the form φ(L)zt =

θ(L)εt, where zt = yt − µ, is stationary provided ∑∞
i=1 |ψi| < ∞. Initially,

we will assume that det(I −F L) = 0 has no unit roots. Then we can put the
transition equation (11.15) into the form

xt = (I −F L)−1gεt. (11.18)
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By substituting (11.18) into the measurement equation, we obtain

yt = [1 + w′(I − F L)−1gL]εt = ψ(L)εt. (11.19)

Equation (11.19) is the MA form of the state space model, provided the
inverse matrix (I − F )−1 exists. If we write F j = UΛjV , where Λ is the
diagonal matrix of eigenvalues and (U , V ) are the matrices of eigenvectors,
then

ψ(L) = 1 + w′U
( ∞

∑
j=0

ΛjLj+1
)
V g.

Requiring the eigenvalues of F to lie within the unit circle guarantees that
∑∞

i=1 |ψi| < ∞. Thus, the reduced form ARIMA model is stationary if the
eigenvalues of F lie inside the unit circle.

We found in Sect. 3.3.2 that this same condition on the eigenvalues
was a sufficient condition for stationarity of the linear innovations state
space model. It is also a necessary condition for all of the models we are
interested in.

Now we consider the case when F has unit eigenvalues. If the eigenval-
ues of F do not exceed 1, then det(I − F L) = φ(L)δ(L), where δ(L) is a
polynomial for which the roots are all of the unit eigenvalues of F , and so
φ(L) is a polynomial that has no unit roots. Then, (11.17) can be written as
the integrated MA model

wt = δ(L)yt =
(
w′ adj(I −F L)

φ(L)
gL + δ(L)

)
εt = ψ(L)εt.

The process {wt} will be stationary provided ∑∞
i=1 |ψi| < ∞. That is, we

have induced stationarity by differencing. If an eigenvalue of F exceeds 1,
the process is not stationary and cannot be made stationary by applying
difference operators.

Recall that an ARIMA model is invertible if ∑∞
i=1 |πi|<∞. The AR reduced

form of the innovations state space model can be found in a similar manner.
In Sect. 3.3.1 we saw that the state vector xt may be written as xt = Dxt−1 +
gyt, where D = F − gw′. Hence, another form for the transition equation is

xt = (I −DL)−1gyt. (11.20)

Provided all the eigenvalues of D lie inside the unit circle, we may sub-
stitute equation (11.20) into the measurement equation to obtain

yt = w′(I −DL)−1gyt−1 + εt.

Thus, the AR form of the state space model is[
1 −w′(I −DL)−1gL

]
yt = π(L)yt = εt.
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By employing the same argument that was used for the MA polynomial
ψ(L) and the transition matrix F , we can see that requiring eigenvalues of
D to lie inside the unit circle is equivalent to guaranteeing that the absolute
value of the coefficients in the polynomial π(L) will converge to zero.

Comparing this with the results in Chap. 10, we see that stability of the
linear innovations model implies invertibility of the reduced form ARIMA
model.

11.5 ARIMA Models in Innovations State Space Form

In the previous section it was shown how to reduce a linear innovations state
space model to an equivalent ARIMA model. It will now be shown that any
ARIMA model can be reformulated as an innovations state space model. We
start with the general ARIMA model

η(L)yt = θ(L)εt, (11.21)

where the polynomials η(L) and θ(L) do not possess any common roots.
The polynomial operator η(L) contains both the unit root operators and the
autoregressive operators. Let k = max(r, s), where r and s are the degrees of
the polynomials η(L) and θ(L), respectively. Then the two polynomials can
be written as

η(L) = 1 −
k

∑
i=1

ηiL
i and θ(L) = 1 −

k

∑
i=1

θiL
i.

It follows that (11.21) can be written as

yt =
k

∑
i=1

ηiyt−i + εt −
k

∑
i=1

θiεt−i.

Let xj,t−j be a partial sum that is calculated with information available at
period t − j and defined by

xj,t−j =
k

∑
i=j

(ηiyt−i − θiεt−i). (11.22)

Note that xj,t = 0 when j > k, and that

yt = x1,t−1 + εt. (11.23)

Combining (11.22) and (11.23), we obtain

xj,t−j =
k

∑
i=j

(ηix1,t−i−1 + (ηi − θi)εt−i),
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so that
xj,t−j = xj+1,t−j−1 + ηjx1,t−j−1 + (ηj − θj)εt−j

or
xj,t = xj+1,t−1 + ηix1,t−1 + (ηj − θj)εt.

In summary, the ARIMA model can be rewritten as

yt = x1,t−1 + εt,
xi,t = ηix1,t−1 + xi+1,t−1 + (ηi − θi)εt for i = 1, . . . , k.

Thus, as shown in Pearlman (1980), the ARIMA process in (11.21) can be
represented by the innovations linear state space model where

w =

⎡
⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎦ F =

⎡
⎢⎣

η1 Ik−1
...

ηk 0

⎤
⎥⎦ and g =

⎡
⎢⎣

η1 − θ1
...

ηk − θk

⎤
⎥⎦.

Example 11.7: The innovations state space model for ARIMA(1,1,1)

Consider the following ARIMA model

(1 − L)(1 − φ1L)yt = (1 − θ1L)εt.

The polynomial operators for this model are

η(L) = 1 − (1 + φ1)L + φ1L2 and θ(L) = 1 − θ1L − 0L2.

Thus, the innovations state space representation would be

w =
[

1
0

]
F =

[
1 + φ1 1
−φ1 0

]
and g =

[
1 + φ1 − θ1

−φ1

]
.

Although the result in Example 11.7 does indeed provide a state space
representation for this ARIMA model, the form differs considerably from the
models described in Chaps. 2 and 3, and the coefficients may be difficult to
interpret. We therefore seek linear transformations of the state variables that
deliver an appropriate form.

We start with the usual form of the linear innovations model yt =
w′xt−1 + εt and xt = Fxt−1 + gεt and transform to yt = w′

0x
∗
t−1 + εt and

x∗
t = F0x

∗
t−1 + g0εt, where

w = J ′w0, JF = F0J or F0 = JFJ−1, g0 = Jg and x∗
t = Jx∗

t−1.

The reduced form is unchanged, so the question is whether a suitable
matrix J exists. The answer is “sometimes” as the following examples
illustrate.
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Example 11.8: A modified innovations state space model for ARIMA(1,1,1)

By analogy with the local linear trend model, an appropriate form for the

ARIMA(1,1,1) process would have w0 =
[

1
φ

]
and F0 =

[
1 φ
0 φ

]
, which can

be achieved by setting J =
[

0 −φ−1

φ−1 φ−2

]
; finally, the transformation yields

g0 =
[

1
1 − θφ−1

]
. We note in passing that the damped local trend model

given in Sect. 2.3.3 may be represented as an ARIMA(1,1,2) model, so the
present process is a special case of that process.

The following example shows that such transformations may not always
be feasible.

Example 11.9: Innovations state space models for ARIMA(2,0,2)

The ARIMA(2,0,2) model has the form yt = φ1yt−1 + φ2yt−2 + εt − θ1εt−1 −
θ2εt−2, where we ignore the constant term for convenience. If the roots of
φ(u) = 0 are real, denote them by (a1, a2), where a1 + a2 = φ1/φ2 and
−a1a2 = 1/φ2. Then it may be shown that the state space model can be
restructured to give the form:

yt = a1x1,t−1 + a2x2,t−1 + εt,
x1,t = a1x1,t−1 + a2x2,t−1 + g1εt,
x2,t = a2x2,t−1 + g2εt,

where g1 = 1− (θ2/φ2) and g2 = 1 − θ1/a2 − θ2/a2
2. There is clearly an ele-

ment of choice as to which root to use in which equations, but this
indeterminacy does not affect the validity of the state space model.

However, when the roots are complex, the representation changes. We
can proceed as follows. Denote the AR coefficients by φ1 = 2a and φ2 =
ac − a2. When c ≥ 0 the roots are real, but when c < 0 the roots are complex
and we arrive at a state space model of the form:

yt = ax1,t−1 + ax2,t−1 + εt, (11.24a)
x1,t = ax1,t−1 + ax2,t−1 + g1εt, (11.24b)
x2,t = cx1,t−1 + ax2,t−1 + g2εt. (11.24c)

The reason for the different form is that the complex roots give rise to
cyclical behavior in the forecast function, which cannot be modeled by the
exponential smoothing models listed earlier.
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11.6 Cyclical Models

The focus of this book is upon the state space models that underlie expo-
nential smoothing. Nevertheless, there are some series that display regular
cyclical patterns, such as the famous Wolfer sunspot series (Anderson 1971).
As just noted, suitable models for such processes involve complex roots in
the reduced form, which cannot be obtained directly from the exponential
smoothing formulation. Following Harvey (1989, pp. 38–40), we specify an
innovations form of a stationary cyclical model in the following way, rather
than using (11.24) above.

yt = µ + x1,t−1 + εt, (11.25a)
x1,t = φx1,t−1 cos λc + φx2,t−1 sin λc + g1εt, (11.25b)
x2,t = −φx1,t−1 sin λc + φx2,t−1 cos λc + g2εt. (11.25c)

The parameter φ may be viewed as a damping factor, although all we require
for stationarity is that |φ| < 1. The parameter λc is measured in radians and
denotes the cycle frequency. Alternatively, we can say that the time taken
for the system to complete a cycle is 2π/λc. Leaving aside the start-up con-
ditions, this model has a constant mean and four other parameters, as does
the ARIMA(2, 0, 2) scheme. The reader is asked to verify that the state space
version reduces to an ARIMA(2, 0, 2) model in Exercise 11.2.

By way of example, we consider the Wolfer sunspot data, which repre-
sents annual sunspot counts for the period 1770–1889. Fitting model (11.25)
yields the estimates:

φ = 0.81, λc = 0.591, µ = 46.0, g1 = 2.09, and g2 = 0.97.

The value of the frequency λc corresponds to a cycle of 10.6 years, consistent
with other analyses of these data.

In conclusion, we see that an ARIMA model can always be converted into
a linear innovations state space model, but that the particular forms intro-
duced in Chap. 3 do not encompass all possible parameter combinations that
exist within the ARIMA class. As a practical matter, we can always identify
a state space model that corresponds to a particular ARIMA model, but we
may not be able to convert it into an exponential smoothing form.

11.7 Exercises

Exercise 11.1. Verify the invertibility conditions for the local linear trend
model, given in Sect. 11.2.

Exercise 11.2. Verify that the state space model (11.25) reduces to an ARIMA
(2, 0, 2) scheme with complex roots. Find the conditions for this model to
reduce to an AR(2) scheme. Verify that the model is stationary provided
|φ| < 1.
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Exercise 11.3. Show that the parameter spaces for the cyclical AR(2) model
given in (11.25) and the real roots AR(2) model defined in Example 11.9
are disjoint. Further, show that their union corresponds exactly to the entire
parameter space for the AR(2) model.

Exercise 11.4. Apply the same reasoning as in Sect. 11.3 to obtain a reduced
form for the model given in (9.2). To simplify the derivation, assume that
(I − F ) is invertible.

Exercise 11.5. Use the result in Exercise 11.4 to derive explicit results for the
local level model with a single regressor variable, and show that the resulting
form is the same as that given in Sect. 9.1.

Exercise 11.6. If a state space model has k transition equations, and the max-
imum lag in equation i is mi, i = 1, . . . , k, show that the corresponding
ARIMA(p, d, q) model has p + d ≤ M and q ≤ M, where M = m1 + · · ·+ mk.
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Linear Innovations State Space
Models with Random Seed States

Exponential smoothing was used in Chap. 5 to generate the one-step-ahead
prediction errors needed to evaluate the likelihood function when estimat-
ing the parameters of an innovations state space model. It relied on a fixed
seed state vector to initialize the associated recurrence relationships, some-
thing that was rationalized by recourse to a finite start-up assumption. The
focus is now changed to stochastic processes that can be taken to have
begun prior to the period of the first observed time series value, and which,
as a consequence, have a random seed state vector. The resulting theory
of estimation and prediction is suitable for applications in economics and
finance where observations rarely cover the entire history of the generating
process.

The Kalman filter (Kalman 1960) can be used in place of exponential
smoothing. Like exponential smoothing, it generates one-step-ahead predic-
tion errors, but it works with random seed states. It is an enhanced version of
exponential smoothing that is used to update the moments of states and asso-
ciated quantities by conditioning on successive observations of a time series.
It will be seen that it was devised for stationary time series and that it cannot
be adapted for nonstationary time series without major modifications.

An alternative to the Kalman filter is an information filter, which also con-
ditions on successive observations. However, instead of having a primary
focus on the manipulation of moments of associated random quantities, it
relies on linear stochastic equations. By using an information filter, the prob-
lems encountered with the Kalman filter for nonstationary data conveniently
disappear. An information filter can be applied to both stationary and non-
stationary time series without modification. The version presented here is an
adaptation of the Paige and Saunders (1977) information filter to the linear
innovations state space model context.

Section 12.1 discusses the linear innovations state space model when the
initial state vector x0 is random. Section 12.2 is devoted to likelihood func-
tions and their role in estimating the parameters of models of stationary and
nonstationary time series. Section 12.3 outlines the information filter used to
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generate the information needed for the evaluation of a likelihood function.
We also illustrate the use of the information filter in fitting a linear trend
line. Section 12.4 provides a method for generating prediction distributions.
Then the problem of model selection is considered in Sect. 12.5. Section 12.6
examines the problem of smoothing a time series after it has been filtered.
Finally, in Sect. 12.7, we consider the Kalman filter for stationary time series
and examine its links with exponential smoothing.

12.1 Innovations State Space Models
with a Random Seed Vector

The filters in the random seed case will be outlined for the linear innovations
state space model considered in Chap. 3. Thus, it will be helpful at this point
to examine this model via some examples in order to understand some of the
potential problems that can arise when we have a random seed vector. It will
be recalled that the linear innovations state space model is defined as

yt = w′xt−1 + εt, (12.1a)
xt = Fxt−1 + gεt, (12.1b)

where εt ∼ NID(0, σ2), w and g are fixed vectors, and F is a fixed square
matrix. In Chap. 3 it was seen that the typical state vector xt is a linear func-
tion of the seed state vector x0. Moreover, because yt depends on xt−1, it
also ultimately depends linearly on x0. Thus, all random quantities in the
state space model depend on the distribution of the seed state x0.

The distribution of the seed state summarizes the history of a process in
the periods preceding the collection of the time series data. Its derivation is
illustrated with two examples, the first for a stationary time series and the
second for a nonstationary time series.

Example 12.1: Damped local level

The damped local level model was defined in Sect. 3.5.1 in terms of a mea-
surement equation yt = φ�t−1 + εt, where the levels �t are governed by
the recurrence relationship �t = φ�t−1 + αεt and where −1 < φ < 1.
It represents a stationary time series. The recurrence relationship can be
solved to give �t = α ∑∞

j=0 φjεt−j, from which it follows that E(�t) = 0 and
V(�t) = α2σ2/(1 − φ2). This invariant distribution describes the situation
for any period t before incorporating information from the observations. In
particular, it represents the only available information about the process at
the end of period 0. In other words, �0 ∼ NID(0, α2σ2/(1 − φ2)).
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Example 12.2: Local level model

A local level model is obtained when φ = 1 in Example 12.1. It represents
a nonstationary time series. Then the variance of �0 = α ∑∞

j=0 ε−j is infinite,
so that the associated density degenerates to 0 over the entire domain of the
random variable. In this case there is no effective information from the past.

When the states are governed by a stationary stochastic process, a general
method can be established for finding the moments of their steady state dis-
tribution. The key is the transition equation (12.1b), which has the solution
xt = ∑∞

j=0 F jgεt−j. Therefore, xt has mean 0 and variance matrix Vx, where

Vx = σ2
∞

∑
j=0

F jgg′F ′ j

and Vx satisfies the linear constraint Vx = FVxF ′ + σ2gg′. When stacking
operations are used to convert the latter into a suitable form for solving, we
obtain

vec(Vx) = σ2(I −F ⊗ F )−1g ⊗ g,

where ⊗ is the Kronecker product. When the transition matrix F has a trian-
gular structure, it is possible to solve for the variance matrix of the invariant
distribution of the states without recourse to these stacking operations. The
following example illustrates the basic ideas.

Example 12.3: Double damped local trend model

The invariant distribution of the states of the double damped local trend
model

yt = φ1�t−1 + φ2bt−1 + εt,
�t = φ1�t−1 + φ2bt−1 + αεt,
bt = φ2bt−1 + βεt

has a variance matrix that satisfies the linear equations[
V11 V12
V21 V22

]
=
[

φ1 φ2
0 φ2

] [
V11 V12
V21 V22

] [
φ1 0
φ2 φ2

]
+ σ2

[
α2 αβ
βα β2

]
.

Unpacking the relationships leads to a triangular set of equations

V22 = σ2β2/(1 − φ2
2),

V21 = σ2(φ2
2V22 + βα)/(1 − φ1φ2),

V11 = σ2(2φ1φ2V21 + φ2
2V22 + α2)/(1 − φ2

1),

which may be solved for the variances and covariances in the order V22,
V21, V11.
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A nonstationary time series may have both stationary and nonstationary
components. The damped trend model in Example 12.4 has a nonstationary
level, but a stationary growth rate. It illustrates the point that the moments
of a seed vector may be only partially known. In many common cases, the
situation is even worse. When all the states follow nonstationary processes,
as in Example 12.2, the moments of the seed vector are completely unknown.

Example 12.4: Damped trend model

The damped trend model ETS(A,Ad,N) is

yt = �t−1 + φbt−1 + εt,
�t = �t−1 + φbt−1 + αεt,
bt = φbt−1 + βεt.

By iterating the last two equations, we find that

bt = β
∞

∑
j=0

φjεt−j

and

�t =
∞

∑
j=1

[
α + β(1 − φj)(1 − φ)−1 + φj−1

]
εt−j + αεt,

from which it follows that

V
[
�t
bt

]
=

βσ2

1 − φ2

[
∞ φβ

1−φ + (1 + φ)α
φβ

1−φ + (1 + φ)α 1

]
.

The levels follow a random walk and so have infinite variance. The growth
rates are governed by an AR(1) process with a damping factor satisfying
the stationarity condition |φ| < 1. The variance of the seed growth rate is
therefore finite. The covariance between the seed level and seed growth rate
is also finite.

12.2 Estimation

It is rare for all of the elements in the transition matrix F and persistence vec-
tor g of the innovations state space model to be known a priori, and so they
must be estimated. Apart from the common scaling factor σ2, the unknown
parameters of F and g can be collected together into a vector θ which must
be estimated. The option to be examined here is estimation by maximizing
the likelihood.
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Under the finite start-up assumption, the likelihood was based on the
probability density function p(y|σ2, θ, x0), where x0 is a fixed vector of seed
states. Under the infinite start-up assumption, the seed state vector x0 is ran-
dom and must be integrated out of the density function to give the new
density p(y|σ2, θ). The latter forms the basis of a new form of likelihood
function when the seed vector is random.

The likelihood function, based on the joint distribution of the sample,
is not particularly simple to evaluate directly. It requires knowledge of the
variance matrix of the sample, which is often difficult to derive. Moreover,
given that it has the dimensions of the sample size, the required inversion
of the variance matrix is no trivial matter. Fortunately, the likelihood can be
decomposed into a product of one-step-ahead prediction distributions. It can
then be more simply evaluated using the moments of these univariate distri-
butions, which are obtained from either the information filter in Sect. 12.3 or
the Kalman filter in Sect. 12.7

The prediction form of the likelihood is examined for both stationary and
nonstationary time series. In the stationary case, the seed vector has a known
distribution, and so the number of well-defined predictions corresponds to
the number of observations. In the nonstationary case, it will be seen that the
number of well-defined predictions falls short of the number of observations.
The problem of defining the likelihood in this case is also addressed.

12.2.1 Stationary Time Series

The likelihood function for a stationary time series is based on the density
p(y|θ, σ2). Let yt|t−1 designate yt conditioned on y1:t−1, θ and σ2, where
ys:t = [ys, ys+1, . . . , yt]′ denotes a vector containing a subseries of obser-
vations and y1:0 is interpreted as a series with no elements. Then we can
write

p(y|θ, σ2) =
n

∏
t=1

p(yt|t−1)

by successive conditioning. The typical component of this product is given
by

p(yt|t−1) = (2πvt|t−1)
−1/2 exp

(
− (yt − µt|t−1)2

2vt|t−1

)
,

where µt|t−1 and vt|t−1 (t ≥ 2) are the mean and variance of the one-step-
ahead predictions, and µ1|0 and v1|0 are the corresponding quantities for the
invariant distribution of the series. The likelihood can therefore be written as

L(σ2, θ | y) = (2πσ2)−n/2
( n

∏
t=1

v̄t|t−1

)−1/2

exp
(
−

n

∑
t=1

(yt − µt|t−1)2

2v̄t|t−1σ2

)
,

where v̄t|t−1 = vt|t−1/σ2 is the standardized one-step-ahead variance. This
likelihood may be compared with (5.1) for the likelihood obtained under the
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finite start-up assumption in Sect. 5.1. Because yt − µt|t−1 is the one-step-
ahead prediction error, this is called the prediction error decomposition of the
likelihood function (Schweppe 1965). It will be seen that a filter, when applied
to each successive element of y, yields the mean µt|t−1 and the standardized
variance v̄t|t−1 of the one-step-ahead prediction distribution, the mean being
the point prediction of yt using the past observations y1:t−1. The maximum
likelihood estimate of σ2 is

σ̂2 =
1
n

n

∑
t=1

(yt − µt|t−1)
2/v̄t|t−1.

We use this to concentrate σ2 out of the likelihood. Then, deleting nuisance
constants and inverting the resultant function, we obtain the criterion

S(θ) =
( n

∏
t=1

v̄t|t−1

)1/n n

∑
t=1

(yt − µt|t−1)
2/v̄t|t−1.

This is the augmented sum of squared errors, the random seed state analogue of
(5.4).

The parameter vector θ that minimizes the augmented sum of squared
errors also maximizes the likelihood function. For computational purposes,
greater numerical stability is achieved by minimizing the log augmented
sum of squared errors

log S(θ) =
1
n

n

∑
t=1

log(v̄t|t−1) + log
( n

∑
t=1

(yt − µt|t−1)
2/v̄t|t−1

)
.

12.2.2 Nonstationary Time Series

In nonstationary cases, the formation of a likelihood is more problematic.
It will be seen that when a filter is applied to a state space model with r
nonstationary states, usually the first r predictions are arbitrary and the cor-
responding one-step-ahead prediction distributions are zero across the entire
real line. To obtain a properly defined distribution, these must be discarded.
It is standard practice to base the likelihood on the well-defined one-step-
ahead prediction distributions from period r + 1 onwards. The prediction
error decomposition of the likelihood becomes

L(σ2, θ | y) = (2πσ2)−(n−r)/2
( n

∏
t=r+1

v̄t|t−1

)−1/2

exp
(
−

n

∑
t=r+1

(yt − µt|t−1)2

2v̄t|t−1σ2

)
.

The maximum likelihood estimate of σ2 is now

σ̂2 =
1

n − r

n

∑
t=r+1

(yt − µt|t−1)
2/v̄t|t−1.
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Using this to concentrate σ2 out of the likelihood, and simplifying again, we
obtain the augmented sum of squares criterion

S(θ) =
( n

∏
t=r+1

v̄t|t−1

)1/(n−r) n

∑
t=r+1

(yt − µt|t−1)
2/v̄t|t−1.

12.3 Information Filter

12.3.1 Background

The information filter is an algorithm capable of generating the moments
of the one-step-ahead prediction distributions needed for the evaluation
of the likelihood function. It is a recursive procedure which passes for-
ward, processing each observation in turn. Each stage of this procedure
has a prediction step and a revision step. It relies on triangular factoriza-
tions of inverse variance matrices, which means that it may be viewed as a
square-root filter.

Before describing the information filter, we first provide some necessary
background information on triangular stochastic equations. The basic idea
is that if x designates a generic random vector with mean mx and variance
matrix Vx, then the inverse variance matrix V −1

x can be decomposed using
Gaussian elimination to give the factorization

V −1
x = R′V −1R, (12.2)

where R is a unit upper triangular matrix1 and V is a diagonal matrix.
A new random vector c can be defined by the equation c = Rx. It is easy

to see that c has mean vector mc = Rmx and variance matrix Vc = V . In
effect, the transformation R converts a random vector x, which may have
correlated elements, to a random vector c with uncorrelated elements. The
matrix R is an alternative to covariances for summarizing all the available
information on interdependencies between the elements of x. The elements
of c are fundamental components that encapsulate information about central
tendency and dispersion without being confounded by information about
interdependencies. It follows that all the information about a random vector
x is encapsulated by the triangular stochastic equation

Rx = c, (12.3)

where Vc is a diagonal matrix. The moments of a random vector x can always
be constructed from the triangular equations Rmx = mc and RVxR′ = Vc.

It will be seen that the filter is built on stochastic equations of the general
form

Ax = b, (12.4)

1 A unit upper triangular matrix has 1s on the diagonal and 0s below the diagonal.
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where A is a fixed, but not necessarily triangular, matrix and b is a random
vector with uncorrelated elements. When A is non-singular, it is always pos-
sible to derive a triangular stochastic equation like (12.3) that is equivalent.
The key to this derivation is a QR decomposition (Golub and Van Loan 1996)
of the matrix A as

A = QR, (12.5)
where R is a unit upper triangular matrix. Unlike a traditional QR decompo-
sition where Q is an orthogonal matrix, the matrix Q is constructed so that
the product Λ = Q′V −1

b Q is a diagonal matrix. Such a decomposition can
always be constructed using fast Givens transformations (Stirling 1981), the
theory of which is presented in Appendix “Triangularization of stochastic
equations.”

On obtaining this decomposition, the triangular equations may be
derived as follows. Substitute (12.5) into (12.4) to give QRx = b. Premultiply
by Q′V −1

b to give Q′V −1
b QRx = Q′V −1

b b, and replace the term Q′V −1
b Q by

the diagonal matrix Λ to give ΛRx = Q′V −1
b b. Thus, Rx = Λ−1Q′V −1

b b.
Define the random vector c by c = Λ−1Q′V −1

b b. Our triangular equa-
tion then takes the form (12.3). Then it follows that the moments of c are
mc = Λ−1Q′V −1

b mb and Vc = Λ−1. In particular, the elements of the
constructed c are uncorrelated, as required. It is convenient to write the
generalized orthogonality condition for Q as

Q′V −1
b Q = V −1

c . (12.6)

An information filter begins with a triangular equation representation for
the seed state x0. It then processes each observation in turn, each stage ter-
minating with the triangular equation representing what is known about the
random state vector xt conditional on the sub-series y1:t.

The innovations variance σ2 can be omitted from many calculations if we
work with standardized variances such as V̄x = Vx/σ2 and v̄t|s = vt|s/σ2,
where Vx = V(x) and vt|s = V(yt | y1:s). Using standardized variances
allows us to avoid the problem of needing to know σ2 when computing
predictions from the model.

12.3.2 Initialization

For stationary time series, the seed state x0 is assigned the invariant distribu-
tion of the process. The inverse standardized variance matrix of the invari-
ant distribution is factorized according to (12.2). The following examples
illustrate how this is done.

Example 12.5: Damped level model

In Example 12.1, the damped local level model had V(�0) = α2σ2/(1− φ2).
Here R = 1 and V̄c = α2/(1 − φ2).



12.3 Information Filter 187

Example 12.6: Damped trend model

The invariant distribution of the states of the double damped local trend
model

yt = 0.9�t−1 + 0.8bt−1 + εt,
�t = 0.9�t−1 + 0.8bt−1 + 0.5εt,
bt = 0.8bt−1 + 0.1εt

has, using the formulae from Example 12.3, a standardized variance matrix[
3.2439 0.2421
0.2421 0.0278

]
with corresponding inverse

[
0.8806 −7.6692

−7.6692 102.7591

]
. The

triangular factorization of this inverse matrix has components

R =
[

1.0000 −8.7086
0 1.0000

]
and V̄c =

[
1.1356 0

0 0.0278

]
.

Example 12.7: Local level model

The local level model in Example 12.2 represents a nonstationary time
series. The seed local level has an infinite variance. Here R = 1 and V̄c = ∞.
The infinite diagonal matrix means that no prior information is being
provided to the filter.

Example 12.8: Damped trend model

The matrix
[

a b
b c

]
has an inverse (ac − b2)−1

[
c −b
−b a

]
which, as a → ∞,

converges to
[

0 0
0 c−1

]
. Therefore, the inverse standardized variance matrix

associated with the invariant distribution for the damped trend model in

Example 12.4 is
[

0 0
0 (1 − φ2)/β

]
. Here

R =
[

1 0
0 1

]
and V̄c =

[
∞ 0
0 β/(1 − φ2)

]
.

The first diagonal element of ∞ in the diagonal matrix means that the first
row of R provides no information to the filter. It is interesting that the
covariances can safely be ignored because, by taking the limit, the finite
covariances have disappeared from the inverse variance matrix.
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12.3.3 Prediction Step

We now step forward in time to the start of period t, before the random vari-
able yt has been observed. The aim is to find the prediction distribution of
yt informed by (or conditioned on) past observations y1:t−1. A summary of
past information is conveyed by the triangular stochastic equation

Rt−1xt−1|t−1 = ct−1|t−1, (12.7)

obtained by previous applications of the filter. The exception occurs at the
start of period 1, where the triangular equation representation of the invari-
ant state distribution is used. Here, we use the notation xt−1|t−1 to mean that
xt−1 is conditioned on y1:t−1.

To specify the prediction step of the information filter, it is convenient
to eliminate εt from the transition equation (12.1b) and rewrite the invariant
innovations state space model (12.1) as

yt = w′xt−1 + εt, (12.8a)
xt = Dxt−1 + gyt, (12.8b)

where εt ∼NID(0, σ2) and D = F − gw′. The information from the past,
represented by (12.7), is combined with information from the present, rep-
resented by the state space equations (12.8a) and (12.8b), to give⎡

⎣Rt−1 0 0
−w′ 0 1
−D I −g

⎤
⎦
⎡
⎣xt−1|t−1

xt|t−1
yt|t−1

⎤
⎦ =

⎡
⎣ct−1|t−1

εt
0

⎤
⎦ .

Because this stochastic equation has the general form Ax = b, the triangular-
ization algorithm from Appendix “Triangularization of stochastic equations”
may be applied to give⎡

⎣∗ ∗ ∗
0 Rt rt
0 0 1

⎤
⎦
⎡
⎣xt−1|t−1

xt|t−1
yt|t−1

⎤
⎦ =

⎡
⎣ ∗

ct|t−1
dt|t−1

⎤
⎦ ,

where an asterisk (∗) designates quantities that are of no direct interest. These
equations can be unpacked to give

Rtxt|t−1 + rtyt|t−1 = ct|t−1 (12.9a)

and yt|t−1 = dt|t−1. (12.9b)

Thus, the mean and variance of dt|t−1 are the one-step-ahead mean and vari-
ance of yt. As we saw in Sect. 12.2, these are needed for the evaluation of the
likelihood function.
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12.3.4 Revision Step

We now step forward to the end of period t, at which point it is assumed
that yt has been observed. The now fixed value of yt may be substituted into
(12.9a) to give

Rtxt|t = ct|t, (12.10)

where
ct|t = ct|t−1 − rtyt.

It is (12.10) that is carried forward to the next period. It represents the most
current information about the past behavior of the process.

This completes the specification of the information filter. Unlike its more
common counterpart, the Kalman filter, it applies to both stationary and
nonstationary time series without major change. In the nonstationary case,
one must simply be aware that some of the row variances of the triangular
stochastic equations for the seed states are infinite. In the case where no infor-
mation is available from the past, all of these row variances are set to infinity.
As is shown in Appendix “Triangularization of stochastic equations,” the
recommended triangular factorization algorithm used in the information fil-
ter has a limiting form in the presence of infinite variances. It follows, as
asserted, that the information filter can then be applied to nonstationary time
series without modification.

The above revision step involves conditioning on the new observation yt.
It is remarkable how simple it becomes to conduct the conditioning operation
when it is recast like this in terms of triangular stochastic equations.

12.3.5 Linear Trend Example

The information filter will now be illustrated by fitting a global linear trend
to the time series {5, 10, 12, 15, 20}. It may be considered a special case of
fitting a local trend model where α = β = 0. The state space form of a linear
trend line is

yt = �t−1 + bt−1 + εt,
�t = �t−1 + bt−1,
bt = bt−1,

where �t designates the level in period t and bt designates the growth rate.
It is convenient to express the stochastic equations in tableau form. The

first columns of a tableau are used to store the left hand matrix of a stochastic
equation; the next column contains the means of the right hand side; and the
final column lists the standardized variances of the right hand side.
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Example 12.9: Tableau form of stochastic equations

The stochastic equation [
2 1
1 3

] [
x1
x2

]
= b,

where

b ∼ NID
([

3
5

]
, 81
[

0.50 0
0 0.25

])
,

has a tableau

x1 x2 m v̄

2 1 3 0.50
1 3 5 0.25 .

An overview of the calculations is shown in Table 12.1. Each row lists
some results from a stage of the algorithm. The second column contains
the stochastic equations for the one-step-ahead prediction distributions that
emerge after the application of the prediction step. The third column has the
triangular equations that carry information about the states from one stage
to the next. To save space, redundant columns of zeros have been dropped
from the equations.

The following inferences can be drawn from these calculations:

1. The predictions following stages 1 and 2 appear to be 0. However, the vari-
ances are infinite in both cases, suggesting that the predictions are really
arbitrary.

2. The triangular equations system following stage 1 has an arbitrary solu-
tion for the mean growth rate. The mean level, however, is equal to 5. This
corresponds to the situation where there are an infinite number of pos-
sible trend lines passing through the point (1, 5), a situation depicted in
Fig. 12.1 left.

3. At the end of stage 2, the variances in the triangular equations are both
finite. Back-solving gives the solution mb

2|2 = 5 and m�
2|2 = 10. There is

now enough information to define a unique trend line. Passing through
the points (1, 5) and (2, 10), it is graphed in Fig. 12.1 right.

After processing all the observations, the distribution of the level and
slope for period 5 is governed by the equations shown at the bottom right
of the table. Back-solving them gives

m5|5 =
[

19.4
3.5

]
and V̄5|5 =

[
0.6 0.2
0.2 0.1

]
.
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Table 12.1. Trend calculations summary.

Sample yt|t−1 = dt|t−1 Rtxt|t = ct|t

Initialization �0|0 b0|0 m0|0 v̄0|0
1 0 0 ∞
0 1 0 ∞

y1 = 5 y1|0 µ1|0 v̄1|0 �1|1 b1|1 m1|1 v̄1|1
1 0 ∞ 1 0 5 1

0 1 0 ∞

y2 = 10 y2|1 µ2|1 v̄2|1 �2|2 b2|2 m2|2 v̄2|2
1 0 ∞ 1 −0.5 7.5 0.5

0 1 5 2

y3 = 12 y3|2 µ3|2 v̄3|2 �3|3 b3|3 m3|3 v̄3|3
1 15 6 1 −1 9 0.333

0 1 3.5 0.5

y4 = 15 y4|3 µ4|3 v̄4|3 �4|4 b4|4 m4|4 v̄4|4
1 16 3.33 1 −1.5 10.5 0.25

0 1 3.2 0.2

y5 = 20 y5|4 µ5|4 v̄5|4 �5|5 b5|5 m5|5 v̄5|5
1 18.5 2.5 1 −2 12.4 0.2

0 1 3.5 0.1

0
2

4
6

8
10

t

y t

0 1 2

0
2

4
6

8
10

t

y t

0 1 2

Fig. 12.1. Examples of trend lines based on one and two observations.

This solution provides the standardized variance matrix instead of the
variance matrix. To get the variance matrix, it is necessary to scale the stan-
dardized variance matrix by an estimate of σ2. It was seen in Sect. 12.2 that
the maximum likelihood estimate of σ2 is given by

σ̂2 = SSE/(n − r), (12.11)
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where SSE designates the sum of squared errors and r is the number of free
non-informative states. In this trend example r = 2.

The sum of squared errors can be calculated in two different ways. One
of them is to use the final results to obtain retrospective predictions of the
series and calculate the associated errors. More specifically, the retrospective
predictions are based on the means µt|5 = E(yt|y1:5), quantities that are more
commonly referred to as the smoothed observations. These may be calculated
using the formula

µt|5 = 19.4− 3.5(5− t).

Table 12.2 shows the smoothed observations, the errors and the sum of
squared errors.

A second approach to calculating the sum of squared errors works
directly with the one-step-ahead prediction errors from the information filter.
The one-step-ahead predictions, together with the associated mean squared
errors, are obtained from the last row of the tableaux of the second column of
Table 12.1. They have been recorded in columns 2 and 6 of Table 12.3. In the
first two periods, the one-step-ahead prediction distributions have arbitrary
moments, and so their cells are left blank. Unlike their smoothed counter-
parts, the one-step-ahead prediction errors do not have the same variance.
The squared errors must therefore be adjusted, dividing them by the stan-
dardized variances, as shown in the final column of Table 12.3. The column
sum also turns out to be 2.7. It is this second approach that is normally used
with filters to calculate the sum of squared errors.

Table 12.2. Sum of squared error calculations from smoothed observations.

Period Smoothed values Actual values Errors Squared errors

1 5.4 5 −0.4 0.16
2 8.9 10 1.1 1.21
3 12.4 12 −0.4 0.16
4 15.9 15 −0.9 0.81
5 19.4 20 0.6 0.36

SSE 2.70

Table 12.3. Sum of squared error calculations from predictions.

Period Predicted Actual Errors Squared Standardized Ratio
values values errors variances

1 Arbitrary 5
2 Arbitrary 10
3 15.0 12 −3.0 9.00 6.00 1.50
4 16.0 15 −1.0 1.00 3.33 0.30
5 18.5 20 1.5 2.25 2.50 0.90

SSE 2.70
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The variance σ̂2 is now calculated using (12.11) to give 0.90. Therefore,
the variance matrix is

Vn|n = 0.90V̄n|n =
[

0.54 0.18
0.18 0.09

]
.

12.4 Prediction

Future values of the time series are unknown and must be treated as random
variables. When the parameters and seed states are set to their maximum
likelihood values, their distributions are Gaussian. So, the prediction prob-
lem is to unravel their means and variances. Two methods for doing this are
presented here for any linear innovations state space model.

12.4.1 Direct Method

The information filter ends in period n with the stochastic equation Rnxn|n =
cn|n that indirectly describes the conditional distribution of the state vector
xn. It may be solved for the mean mn|n and variance Vn|n. These moments
will be used to seed a recursive procedure for finding the moments of the
future observations.

To derive the recursive procedure, we augment the state vector xt in
future period t = n + h by yt and so obtain the first-order recurrence
relationship [

xt
yt

]
=
[

F 0
w′ 0

] [
xt−1
yt−1

] [
g
1

]
εt.

This has the general form

zt = Azt−1 + bεt, (12.12)

and thus the mean and variance of the zt can be computed recursively using
the equations

mz
t = Amz

t−1,

V z
t = AV z

t−1A
′ + σ2bb′.

The mean and variance of yt|t−1 are the last elements in mz
t and V z

t .

12.4.2 Indirect Method

By working with the stochastic equations representations of random vec-
tors, the moments of the future observations can be obtained without direct
recourse to the means and variances of the future states. The algorithm is
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based on the recurrence relationship (12.12). The distribution of the state zt
summarizes the past at the beginning of the first future period t = n + 1.
It is represented by its triangular representation Snzn|n = cn|n where Sn
is a unit upper triangular matrix. The following steps are repeated for t =
n + 1, . . . , n + h.

Step 1 Form the tableau

zt−1|n εt zt|n Mean Variance

St−1 0 0 mc
t−1|n vc

t−1|n
0 1 0 0 σ2

A b −I 0 0

Step 2 Apply the appropriate linear transformations to obtain the equivalent
unit upper triangular stochastic equation system

zt−1|n εt zt|n Mean Variance

∗ ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗
0 0 St mc

t|n vc
t|n

where the asterisks are again used to represent quantities of only secondary
interest. The bottom elements in mc

t and vc
t are the required mean and

variance of the distribution of yt|n.

12.5 Model Selection

When there are a number of candidate models for a time series, it is necessary
to seek that one which is most likely to yield the best forecasts. This issue was
considered in Chap. 7 in the context of the finite start-up assumption where
we conditioned on the seed states. We now revisit the issue under the infinite
start-up assumption where the seed state is now treated as a random rather
than a fixed vector.

It was argued in Chap. 7 that the maximized likelihood should not be
used as a model selection criterion because it favors models with a large
number of parameters. One possible solution to this problem is to use a
penalized likelihood to discourage the selection of models with large num-
bers of parameters. The Akaike information criterion (AIC) was suggested as
a possibility.

Now that x0 is to be treated as a random vector, the AIC is redefined to
be

AIC = −2 logL(θ̂ | y) + 2q,

where θ̂ designates the maximum likelihood value of the parameter vector θ
and q is the number of parameters (excluding σ2). The key difference is that
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the seed state x0 is now integrated out of the likelihood function. Moreover,
the parameter count no longer includes the number of free seed states.

Evidence was provided in Chap. 7 that the AIC is quite good at model
selection on real time series. When the seed state is treated as a random
vector, however, things become problematic. The predicament is best illus-
trated by the behavior of the AIC in the case of the AR(1) process yt =
φyt−1 + εt. The likelihood function, needed for the calculation of the AIC,
may be obtained using its prediction error decomposition. This begins with
the marginal distribution of y1, which in Example 11.1 (with µ = 0), was
shown to be N(0, σ2/(1 − φ2)). The one-step-ahead prediction distribution
of yt is N(φyt−1, σ2), and so the likelihood function is

L(φ, σ2 | y) =
(1 − φ2)1/2

(2πσ2)n/2 exp

(
− 1

2σ2

[
(1 − φ2)y2

1 +
n

∑
t=2

(yt − φyt−1)2
])

.

Suppose we wish to use the AIC to compare an AR(1) process where φ̂ = 0.99
with a random walk yt = yt−1 + εt where the constraint φ = 1 effectively
applies. The optimal value of the likelihood function is finite for the AR(1)
process but 0 for the random walk. In other words, the AIC will be finite
in the first case but infinite in the second. This problem with the random
walk model is typically circumvented by conditioning on the first sam-
ple value y1 and basing the likelihood on the conditional joint density
p(y2, . . . yn|y1, φ, σ2). It can be shown that this is equivalent to a likelihood
function based on the first-differences of the series. This now gives a finite
value for the likelihood of the random walk, but it is unrelated to the
likelihood of an AR(1) process: their likelihoods are non-comparable. This,
problem carries over to the AIC and it is for this reason that the level of dif-
ferencing in an ARIMA approach is typically determined with unit root tests
rather than information criteria.

In our view, the avoidance of this problem provides a strong incentive to
condition on the seed state vector (as was done in Chap. 7). The cost might be
a small loss of statistical efficiency in the estimates, and the creation of slight
inconsistencies between the state space and standard ARIMA approaches.
The gain, however, is a coherent, viable approach to model selection which
avoids the complexities of unit root tests. This argument means that expo-
nential smoothing is to be preferred to a Kalman or information filter in the
context of the innovations form of the state space model.

12.6 Smoothing Time Series

A filter involves a forward pass through a time series, directly or indirectly
computing the moments of the conditional distributions of random states
xt|t−1 and the one-step-ahead predictions yt|t−1. It finishes with information,
direct or indirect, about the moments of xn|n. The last state is the only one
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conditioned on the entire sample. All other states are conditioned on a partial
sample representing the history at the points of time to which they refer.

We now consider the problem of conditioning the states on the entire
sample. We seek an algorithm that finds the moments of xt|n rather than
the moments of xt|t−1 or xt|t. We shall see that it involves a backward pass
through the data following the forward pass with the information filter.

The key is the prediction step of the information filter which resulted in
the triangular equation

⎡
⎣∗ ∗ ∗

0 Rt rt
0 0 1

⎤
⎦
⎡
⎣xt−1|t−1

xt|t−1
yt|t−1

⎤
⎦ =

⎡
⎣ ∗

ct|t−1
dt|t−1

⎤
⎦ .

It is now necessary to replace the asterisks by symbols because the top
component turns out to be the key to smoothing. It is rewritten as:

⎡
⎣Tt Lt qt

0 Rt rt
0 0 1

⎤
⎦
⎡
⎣xt−1|t−1

xt|t−1
yt|t−1

⎤
⎦ =

⎡
⎣at|t−1

ct|t−1
dt|t−1

⎤
⎦ ,

where Tt is a unit upper triangular matrix.
After the revision step, the top two sub-equations reduce to

[
Tt Lt
0 Rt

] [
xt−1|t
xt|t

]
=
[
at|t
ct|t

]
,

where

at|t = at|t−1 − qtyt,

ct|t = ct|t−1 − rtyt.

The top equation is
Ttxt−1|t = at|t−1 −Ltxt|t.

This provides a mechanism for calculating a preceding state from its succes-
sor. It is therefore suitable for the backward pass. Thus, during the forward
pass with the information filter, these equations are stored for use during the
backward pass.

The backward pass begins by solving for the moments of xn−1|n from
the moments of xn|n. Then each preceding equation is used to unravel
the moments of preceding states, terminating with the moments of the
conditioned seed state x0|n.

As we show in Sect. 13.2.2, xt|t converges stochastically to xt, so that
the additional information provided by xt|n becomes negligible. This result
has sometimes been viewed as implying that a two-sided filter cannot be
applied within the innovations framework. However, this interpretation is
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not correct. The reason for the confusion lies in the specification of the
state variables. In the innovations model, we can express xt in terms of
{yt, . . . , y1, x0} as demonstrated in (3.5), which clearly demonstrates the one-
sided nature of the structure of the state variable. An appropriate framework
for two-sided filters is developed in Sect. 13.5.

12.7 Kalman Filter

The Kalman filter is an alternative mechanism for progressively revising the
moments of the distributions of states and current unobserved series values
with information gleaned from past observed values of a series. As part of
this process, it produces the point predictions and the conditional variances
needed to evaluate the likelihood function. It is widely recommended and
used for this purpose (Harvey 1989), so for completeness, its logic will be
outlined here. However, its role in this respect should be supplanted by the
information filter. Unlike the information filter, the Kalman filter has no lim-
iting form in the presence of infinite state variances, and cannot be applied
without further modification to nonstationary time series.

The Kalman filter is presented here in terms of variances. Where required,
its equations can be easily adapted to involve standardized variances instead
of variances. Either way, each stage of the Kalman filter, like the information
filter, has a prediction step and revision step.

12.7.1 Prediction Step

We jump to the situation that prevails at the beginning of period t. The
moments of the conditional state vector xt−1|t−1 are known from the appli-
cation of the filter to the past series values y1:t−1. The exception is period 1,
where the moments of x1|0 are set to the moments of the invariant distribu-
tion2 of the states, obtained using the method described in Sect. 12.1.

The prediction step, at the start of period t, is geared to finding the
moments of yt|t−1 and xt|t−1. The covariance between them is also needed.
It is therefore best to combine yt|t−1 and xt|t−1 into a single random vector

zt|t−1 =
[

yt|t−1
xt|t−1

]
. (12.13)

Equations (12.1a) and (12.1b), after conditioning on y1:t−1, can be stacked to
give

zt|t−1 = Axt−1|t−1 + bεt, (12.14)

2 This is where the stationarity assumption is critical. Nonstationary time series do
not possess an invariant distribution.
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where A =
[
w′
F

]
and b =

[
1
g

]
. Using standard rules for calculating

the moments of linear combinations of uncorrelated random vectors, the
moments of zt|t−1 can then be derived with these equations:

mz
t|t−1 = Amt−1|t−1,

V z
t|t−1 = AVt−1|t−1A

′ + σ2bb′.

The moments which emerge after the application of these formulae can be
partitioned in conformity with yt|t−1 and xt|t−1 as follows

mz
t|t−1 =

[
µt|t−1
mt|t−1

]
, (12.15)

V z
t|t−1 =

[
vt|t−1 ζ ′

t|t−1
ζt|t−1 Vt|t−1

]
. (12.16)

The quantity µt|t−1 = w′mt−1|t−1 is the point prediction of yt made at
time t − 1 utilizing the information from the past series values y1:t−1. In
other words, it is the one-step-ahead prediction. The quantity vt|t−1 =
w′Vt−1|t−1w + σ2 is a measure of the risk associated with this prediction,
sometimes referred to as the mean squared error. Other information includes
the prediction mt|t−1 of xt, the associated mean squared error Vt|t−1, and the
covariance ζt|t−1.

12.7.2 Revision Step

Time now advances to the end of period t, at which point yt will have been
observed; the latter changes from a random to a fixed quantity. The goal of
the revision step at this point in time is to find the moments of xt|t. This
step relies on the following general rules for conditioning a generic random
vector x on a generic random variable y (see, for example, Anderson (1958)):

E(x|y) = m + ζv−1(y − µy)

and

V(x|y) = V − ζζ ′v−1,

where V(y) = v, E(x) = m, V(x) = V and Cov(x, y) = ζ.
The various components required to find the moments of xt|t are avail-

able from the output of the prediction step, and the equations for the revision
step in the Kalman filter are

mt|t = mt|t−1 + ζt|t−1v−1
t|t−1(yt − µt|t−1)
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and
Vt|t = Vt|t−1 − ζt|t−1ζ

′
t|t−1v−1

t|t−1.

A more common form of these equations is

mt|t = Fmt−1|t−1 + kt(yt − µt|t−1) (12.17)

and
Vt|t = Vt|t−1 − vt|t−1ktk

′
t, (12.18)

where

kt = ζt|t−1v−1
t|t−1 =

FVt−1|t−1w + gσ2

w′Vt−1|t−1w + σ2 . (12.19)

This expression follows directly from (12.16). The vector kt is called the
Kalman gain.

In summary, the revision step involves the calculation of the Kalman gain
kt with (12.19), and the use of (12.17) and (12.18) to update the mean and
variance of the state. Equation (12.17) is of particular interest. It is reminiscent
of (3.3c) for exponential smoothing. The only difference is that the vector kt,
which determines the impact of the error on the new state vector, changes
over time.

Example 12.10: Simple average

A simple average

ȳn =
1
n

n

∑
t=1

yt

can be calculated recursively with

ȳt = ȳt−1 + (yt − ȳt−1)/t.

Here the gain kt = 1/t. This recurrence relationship can be seeded with an
arbitrary value for ȳ0. After observing y1, the recurrence relationship yields
ȳ1 = y1. The effect of the arbitrary seed value disappears after one period.

It can be shown, under quite general conditions, that kt → k when a
time series is governed by an invariant linear innovations state space model
(12.1). Moreover, vt|t−1 → σ2. In other words, the Kalman filter converges to
exponential smoothing. It should be appreciated that exponential smoothing
is used with fixed seed states, and the Kalman filter with random seed states.
In long time series subject to structural change, the seed state typically has
little effect on all but a few subsequent states. After that there is little effective
difference between the Kalman filter and exponential smoothing.
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Example 12.11: Simple average

The Kalman filter in the previous example has a gain given by kt = 1/t.
Hence kt → 0 as t → ∞. This means that eventually new observations will
contribute no additional information to the estimate of the mean, reflecting
the fact that the state of the system is constant over time. New observations
only add value in large samples if the underlying state changes randomly
over time, such as in a local level model with α > 0.

In many applications, exponential smoothing can be used as a convenient
approximation for the Kalman filter. The effect is to ignore knowledge about
the process prior to period 1. In other words, a process with an infinite start-
up is approximated by one with a finite start-up.

In Sect. 12.1 we saw that when the model contains nonstationary states,
some or all of the variances are infinite. The formulae of the Kalman filter
have no limiting form in this situation and can no longer be used. Special
adaptations of the Kalman filter (Ansley and Kohn 1985; de Jong 1991a; Sny-
der and Forbes 2003) are available for this important situation; they are,
however, more complex, and their logic is more opaque as a consequence.
The simpler option is to use the information filter.

12.8 Exercises

Exercise 12.1. The moments of a random vector x satisfying the triangular
equation (12.3) are readily derived using the equations Rmx = mc and
RVxR

′ = Vc. To reverse this process and derive the triangular representation
of a random vector x from its moments, we need the triangular factorization
of the variance matrix. Suppose the variance matrix is

Vx =
[

10 2
2 4

]
. (12.20)

Expand the expression RVxR
′ = Vc for this particular matrix to yield equa-

tions that must be satisfied by the unknown elements of R and Vc. By solving
these equations, establish that

Rx =
[

1 −0.5
0 1

]
and Vc =

[
9 0
0 4

]
.

Exercise 12.2. Suppose we have a time series of only two values, represented
by a random vector (y1, y2)′ with mean (0, 0)′ and variance matrix given
by (12.20). The problem is to find the one-step-ahead prediction distribu-
tion y2|y1. It is hypothesized that the mean of y2|y1 is a linear predictor
m2|1 = ay1 where a is an unknown constant. Define a new random vari-
able e2 = y2 − ay1. Derive an expression for the covariance of e2 and y1



12.8 Exercises 201

and demonstrate that when a = 0.2, the covariance is 0 and the variance
of e2 is 3.6. The relationship between y2 and y1 can now be summarized as
y2 = 0.2y1 + e2 where y1 and e2 are uncorrelated. Now suppose that it is the
beginning of period 2 and y1 has been observed to be 20. Show that y2|y1 is
normally distributed with a mean of 4 and a variance of 3.6.

Exercise 12.3. Generalize the method in Exercise 12.2 to the random vector
(y1, y2)′ where yi has mean µi and variance σi, and Cov(y1, y2) = σ12. Thus
demonstrate that y2|y1 has mean µ2 + a(y1 − µ1) and variance σ2 − a2σ1,
where a = σ12/σ1.

Exercise 12.4. Using the result from Exercise 12.1, express the information on
the relationship between y1 and y2 as a stochastic equation. Use it to derive
the moments of y2|y1.

Exercise 12.5. Consider the following stochastic equations (in tableau form).

y2 y1 mc vc

1 −0.2 0 3.6
0 1 0 10

Show that these equations imply that the mean and variance of the vector
(y1, y2)′ are, after rearranging rows and columns, the same as those in Exer-
cise 12.2. Also confirm that the first stochastic equation corresponds to the
linear representation of y2 obtained in Exercise 12.2.

Exercise 12.6. The aim of this exercise is to illustrate the use of the informa-
tion filter to estimate the mean µ in the white noise process yt = µ + εt,
where εt ∼ NID(0, σ2). We would anticipate that the information filter yields
a simple average as the estimate of µ. At the beginning of period 1 there is
no information about the series, so µ must be thought of as random vari-
able with an infinite variance. Assume that y1 turns out to be 5, so that at
the beginning of period 2 we have a stochastic equation µ = 5 − ε1 which
represents the available information from the past. The stochastic equation
µ− y2 = −ε2 is the only information on the process in period 2. The situation
can summarized in tableau from as follows:

µ y2 mc vc

1 0 5 1
1 −1 0 1

a. Applying fast Givens transformations,3 show that this stochastic equation
system can be converted to the following equivalent upper triangular form.

µ y2 mc vc

1 −1/2 5/2 1/2
0 1 5 2

3 See Appendix “ Triangularization of Stochastic Equations”.
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b. Using the second row in this tableau, determine the moments of the one-
step-ahead prediction distribution of y2. Is this result consistent with the
use of a simple average for prediction?

c. Suppose y2 is observed to be 10. Use the first equation in the above tableau
to revise the estimate of µ. Is your result consistent with the use of a simple
average?
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Appendix: Triangularization of Stochastic Equations

Stochastic equations take the general form Ax = b, where A is a square
matrix and both x and b are random vectors. Moreover, the elements of b
are mutually uncorrelated. The solution to conventional simultaneous linear
equations is typically obtained by Gaussian elimination; a variation of this
strategy applies when the equations contain random variables.

Gaussian Elimination

We begin by reviewing the operations associated with Gaussian elimination,
examining their application to the deterministic simultaneous equations

2x1 + x2 = 6, (12.21a)
3x1 + 4x2 = 14. (12.21b)

The aim is to obtain an equivalent unit upper triangular equation system and
to use back-substitution to solve for the variables x1 and x2.

Step 1 Do a simple pivot on x1 in (12.21a): divide by the pivot element 2 to
give

x1 + 0.5x2 = 3. (12.22a)

Step 2 Do a conventional pivot with the aim of eliminating x1 from (12.21b):
multiply the revised pivot equation (12.22a) by 3 and subtract from
(12.21b) to give

2.5x2 = 5. (12.23)

Step 3 Do a simple pivot on (12.23): divide by 2.5, to give x2 = 2.

The resulting triangular equation system is

x1 + 0.5x2 = 3, (12.24a)
x2 = 2. (12.24b)

Triangularity is important because it admits back-substitution as a solu-
tion method. Equation (12.24b) immediately provides the solution for x2.
When x2 = 2 is back-substituted into (12.24a), the solution x1 = 2 is obtained.

Stochastic Triangularization

To see how triangularization works for stochastic equations, it is now
assumed that b1 ∼ N(6, 8) and b2 ∼ N(14, 12), so that (12.21a) and (12.21b)
become, in tableau form:

x1 x2 µ v

2 1 6 8
3 4 14 12
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Again Gaussian elimination is employed, but the quirk is to add rules
to ensure that the new variances created by row operations are computed
correctly, and that the random right hand side variables are uncorrelated.

Step 1 As before, a simple pivot is done on the first equation by dividing the
first row by 2 to give

x1 + 0.5x2 = b+
1 , (12.25)

where b+
1 = b1/2. Thus, µ+

1 = 6/2 = 3 and v+
1 = 8/(2)2 = 2; the square

of the pivot element is divided into the original variance. The revised
equation system following the simple pivot is

x1 x2 µ v

1 0.5 3 2
3 4 14 12

Step 2 A conventional pivot aimed at eliminating x1 from the second equa-
tion is undertaken next. The first equation above is multiplied by 3 and
subtracted from the second equation to give

2.5x2 = b+
2 ,

where b+
2 = b2 − 3b1. Thus, µ+

2 = µ2 − 3µ1 = 14 − 3 × 3 = 5 and v+
2 =

v2 + (−3)2v1 = 12 + (−3)2 × 2 = 30. The right hand side b+
2 created

by the elimination step, however, is correlated with b1. An additional
sub-step is required to preserve the diagonal structure of the variance
matrix of the right hand side vector b after it is transformed. The pivot
equation (12.25) is replaced by the new pivot equation formed from a
linear combination of itself and the second equation. When w1 and w2
designate the (as yet unknown) coefficients of this linear combination,
the pivot equation is replaced by

(w1 + 3w2)x1 + (0.5w1 + 4w2)x2 = (w1b1 + w2b2). (12.26)

The right hand side of the new first equation is b+
1 = w1b1 + w2b2. Its

variance must be given by v+
1 = w2

1v1 + w2
2v2. The unknown w1 and w2

are selected so that the coefficient of x1 in the new equation remains equal
to 1, something that requires that w1 + 3w2 = 1. They are also selected so
that the new b+

1 and b+
2 are uncorrelated. It is convenient when focussing

on covariances to work with a random disturbance vector defined by u =
b − m, where m is the vector of means. In these terms, we require that
E(u+

1 u+
2 ) = 0. Substituting the formulae for the new disturbances gives

E(w1u1 + w2u2)(u2 − 3u1) = 0. Expanding, and applying the expectation
operator to the individual terms of the resulting expression, the equation
−6w1 + 12w2 = 0 is obtained, which simplifies to −w1 + 2w2 = 0. Taken
together, the unit diagonal condition and the zero correlation condition
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imply that w1 and w2 satisfy the simultaneous equations

w1 + 3w2 = 1,
−w1 + 2w2 = 0.

Their solution is w1 = 0.4 and w2 = 0.2. Equation (12.26) becomes x1 +
x2 = b+

1 , where µ+
1 = w1µ1 + w2µ2 = 0.4 × 3 + 0.2 × 14 = 4 and v+

1 =
0.42 × 2 + 0.22 × 12 = 0.8. The new tableau is

x1 x2 µ v

1 1 4 0.8
0 2.5 5 30

Step 3 A simple pivot is now performed on the second row to convert the
coefficient of x2 to 1. The tableau, after dividing the second row by 2.5, is

x1 x2 µ v

1 1 4 0.8
0 1 2 4.8

The required unit upper triangular form has been obtained. If required, it
can be back-solved to give the means and variances of x1 and x2, together
with their mutual covariance.

It has been seen that the existence of random right hand side vectors in
linear equations leads to a situation where the simple and conventional pivot
operations associated with Gaussian elimination must be supplemented by
other row operations which ensure that the new right hand sides created
by them remain uncorrelated. All of these operations are essentially linear,
and the implicit matrices used at each step in transforming one system of
stochastic equations into another are orthogonal. The particular method of
constructing these implicit transformation matrices and applying them to
the stochastic equations is referred to as the fast Givens transformation method
(Golub and Van Loan 1996).

The operations undertaken in the example can be generalized so that
they may be applied to any linear stochastic equation system. The result-
ing fast Givens transformation algorithm involves the repetitive application
of augmented conventional and simple pivots to each successive row. Stage
i begins with an echelon structure in the sub-matrix formed from the first
i − 1 rows. The diagonal of this rectangular sub-matrix consists of cells
(1, 1), (2, 2), . . . , (i − 1, i − 1) which contain only ones. All elements below
the diagonal equal zero. The elements above the diagonal are typically non-
zero. The aim at stage i is to extend the special structure to row i so that the
new sub-matrix formed from rows 1 to i has an echelon structure. This may
be done by eliminating any non-zero elements before the cell (i, i) in row i
using conventional augmented pivots. Then, when necessary, an augmented
simple pivot can be used to convert the element aii to 1.
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Equation Objects

Fast Givens transformations are typically applied to a collection of stochastic
equations given by Ax = b. To specify the rules governing fast Givens trans-
formations in general terms, it is convenient to introduce another object that
represents a stochastic equation in this collection. The typical equation, writ-
ten as a′x = b, can be conveniently summarized by the triple (a, µ, v), where
a′ is a row vector, and µ and v are the mean and variance of b. The random
vector x is not shown explicitly because it is common to all equations and its
moments are typically unknown.

Let q = (a, µ, v) designate this equation object. Operations can be defined
on equation objects as follows:

Addition If q1, q2 are stochastic equations with uncorrelated right hand sides,
q1 + q2 = (a1 + a2, µ1 + µ2, v1 + v2).

Subtraction If q1, q2 are moments equations with uncorrelated right hand
sides, q1 − q2 = (a1 − a2, µ1 − µ2, v1 + v2).

Multiplication If c is a non-zero scalar and q is a moments equation, then
cq = (ca, cµ, c2v).

The interpretation of the equation index is now changed to be the position
of the equation in the system Ax = b. The augmented simple pivot involves
dividing the ith equation by the pivot element aii. It can be summarized by
the single statement

q+
i = a−1

ii qi.

The augmented conventional pivot involves using a pivot row qp to elimi-
nate the element aip in the row qi where i > p. The Gaussian elimination part
can be described by the statement

q+
i = qi − aipqp.

The pivot row is also revised, but by using the formula

q+
p = wpqp + wiqi,

where

wp = vi/v+
i ,

wi = aipvp/v+
i .

It can be shown that when wp and wi are chosen using these formulae, then:

a. The pivot element after the transformation still equals 1
b. The new right hand sides b+

q and b+
i are uncorrelated
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It is conceivable, when used in the context of nonstationary time series,
that some of the variances are infinite. This possibility has so far been
ignored. Fortunately, the formulae associated with fast Givens transforma-
tions converge to well-defined limits when a variance tends to infinity.

It may be established that the revised variance for the ith row is

v+
i = vi + a2

ipvp,

so that
wp =

vi

vi + a2
ipvp

and wi =
aipvp

vi + a2
ipvp

.

If vp → ∞ then wp → 0 and wi → a−1
ip . Hence, when vp = ∞, the

conventional augmented pivot is replaced by the simple augmented pivot
a+

p = ai/aip and v+
i = ∞.

The introduction of the simple augmented pivot for the infinite variance
case opens up the possibility of a more refined transformation strategy than
is typically used in computer implementations. It begins with the original
stochastic equations Ax = b and a triangular stochastic equation Rx = c
with the variances of c all set to infinity. This means, in the beginning, that
the triangular equation system contains no information. This is done even
for stationary time series. In this case, prior information about the process is
not lost; it is embedded in the equation system Ax = b.

In this refined version of the elimination strategy, each row of the original
stochastic equations Ax = b is processed in turn. We consider the situation
that prevails when it is the turn of the ith row, written as a′x = b, to be
processed. Using the rows of the triangular equation system as pivot rows,
we can eliminate successive non-zero values in a′x = b preceding the ele-
ment aii. On pivoting on a row of the triangular equations with an infinite
variance, the simple augmented pivot is undertaken, and the process is then
terminated for the row a′x = b. We then proceed to process the (i + 1)st row
of the equation system.

By using equation objects to define fast Givens transformations, we can
define the transformations more succinctly. Furthermore, equation objects
can be implemented in object oriented computer programming languages,
and the common arithmetic operations can be “overloaded” using the above
definitions. This provides an elegant, practical way to implement fast Givens
transformations.

A more formal treatment of fast Givens transformations is provided in
Golub and Van Loan (1996). The transformations are normally used for fit-
ting homoscedastic or heteroscedastic regressions (Gentleman 1973; Stirling
1981). They are an alternative to other orthogonalization methods such as
Gram-Schmidt and Householder transformations. An advantage of using
fast Givens transformations is that they can exploit the sparsity of matri-
ces to reduce computational loads; the elimination operation is skipped for
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any zero elements before the element aii in row i. The other advantage, as
seen above, is that they have a well-defined limiting form in the presence of
infinite variances. It should also be noted that the variances can be replaced
by standardized variances in the fast Givens transformation equations when
it is used with algorithms which rely on standardized variances like the
information filter in Sect. 12.3.



13

Conventional State Space Models

The primary purpose of this book is to demonstrate that the innovations
form of the state space model provides a simple but flexible approach to
forecasting time series. However, for reasons that are not completely clear,
the innovations form has been largely over-shadowed in the literature by
another version of the state space model that has multiple sources of ran-
domness. We refer to this version as the multi-disturbance or multiple source
of error (MSOE) model. The two approaches are compared and contrasted in
this chapter. When we are comparing the two frameworks directly, both the
finite and infinite start-up assumptions are valid; however, when the two are
compared via their ARIMA reduced forms, the infinite start-up assumption
will be used. The emphasis will be almost exclusively upon linear state space
models, because, as we shall see in Sect. 13.4, the MSOE formulation becomes
difficult to manage in the nonlinear case.

In Chap. 2, we introduced the local level and local trend models, together
with their seasonal extensions. It will be seen that these innovations, or single
source of error (SSOE), models all have their counterparts within a multiple
source of error framework. It is often thought that the MSOE provides a bet-
ter modeling framework than the SSOE because the multiple sources of error
appear to allow greater generality. We will show that any MSOE model has
an innovations representation, so that this viewpoint cannot be correct.

A general definition of the state space framework is presented in
Sect. 13.1. It is seen to encompass both the innovations and the multiple
disturbance forms of the state space model. Several important special cases
of the MSOE are also given. A general approach to estimation is given in
Sect. 13.2. Reduced forms of the MSOE models are examined in Sect. 13.3.
The SSOE and MSOE approaches are then compared in Sect. 13.4.
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13.1 State Space Models

The overall state of a system in period t is represented by a random vector
zt, which incorporates both the observations and the unobservable states.
The elements in zt are arranged so that zt = (yt, xt)′, where yt denotes the
observation at time t, which will be recorded over the periods 1 to n, and xt
is the random vector of k unobservable states.

The evolution of the state of the system is governed by the first-order
recurrence relationship

zt = Azt−1 + ut, (13.1a)
where ut ∼ NID(0, Vu), (13.1b)

A is a fixed matrix and Vu is a positive semi-definite variance matrix. This
general format is particularly useful when we consider parameter estimation
in Sect. 13.2. When expressed in terms of the observable and unobservable
states, (13.1) may be written as

yt = w′xt−1 + εt, (13.2a)
xt = Fxt−1 + ηt, (13.2b)[

εt
ηt

]
∼ NID

([
0
0

]
,
[

Vε Vεη

Vηε Vη

])
, (13.2c)

where w is a fixed vector and F is a fixed matrix. That is, zt =
[

yt
xt

]
, A =[

0 w′
0 F

]
, ut =

[
εt
ηt

]
, and Vu =

[
Vε Vεη

Vηε Vη

]
.

As in earlier chapters, (13.2a) and (13.2b) are called the measurement and
transition equations respectively. Further, we again assume that the observa-
tion yt depends only on the unobserved states xt−1 as they prevailed at the
beginning of period t (at time t − 1).

When ηt = gεt (where g is a fixed vector of persistence parameters), the
state space model becomes

yt = w′xt−1 + εt, (13.3a)
xt = Fxt−1 + gεt, (13.3b)
εt ∼ NID(0, Vε). (13.3c)

Equations (13.3) describe the vector form of the innovations model, which
was introduced in Sect. 2.5.2. Another form of state space model assumes
that Vεη = 0 and that Vη is diagonal. We refer to this model as the multi-
disturbance or MSOE state space model. Both possibilities involve restrictions,
but the second form places independence assumptions on the disturbances.
When there are k states, this formulation includes k + 1 unknown variances
as parameters, just as the innovations model includes k + 1 parameters: a
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single variance and k persistence parameters. These choices represent the
maximum number of parameters that can be built into the models that retain
the estimability (or identifiability) of all parameters.

At first sight the MSOE model appears to be more general than the inno-
vations form because it involves more random disturbances. However, as we
will show in Sect. 13.4, any MSOE model may be represented in innovations
form so that there is only a need for one primary source of randomness for
each observable state. This conclusion, it should be noted, is derived under
the assumption that the disturbances have a Gaussian distribution; it may
not be true for non-Gaussian state space models. Nevertheless, because most
applications rely upon the mean and variance structures of the models, the
practical implication is that little, if anything, will be lost by using the SSOE
approach. Furthermore, as we will see later in this chapter, the innovations
model approach provides several benefits.

In earlier chapters, we have examined the use of the innovations form
of the state space framework to model evolving common features such as
trends and seasonal patterns. Particularly important cases included the local
level, local trend and damped trend, and their seasonal extensions. It will
now be shown that each case has a multi-disturbance analogue.

The multi-disturbance versions form what has been called a structural
approach to time series (Harvey 1989), one that has been widely used in
economic studies. The following table shows corresponding standard struc-
tural models from the two approaches. We note that although the common
symbols �, b and ε are used to represent the level, slope and innovation
respectively, their values and meaning differ between the two frameworks.
The multiple disturbance versions presented here differ slightly from those
of Harvey (1989); a point we explore in the next subsection.

Model Conventional models Innovations models

Level yt = �t−1 + εt yt = �t−1 + εt
�t = �t−1 + ηt �t = �t−1 + αεt

Trend yt = �t−1 + bt−1 + εt yt = �t−1 + bt−1 + εt
�t = �t−1 + bt−1 + ηt �t = �t−1 + bt−1 + αεt
bt = bt−1 + ξt bt = bt−1 + βεt

Seasonal yt = �t−1 + bt−1 + st−m + εt yt = �t−1 + bt−1 + st−m + εt
�t = �t−1 + bt−1 + ηt �t = �t−1 + bt−1 + αεt
bt = bt−1 + ξt bt = bt−1 + βεt
st = st−m + ωt st = st−m + γεt

13.1.1 Canonical Forms

The MSOE scheme assumes that the various error processes are inde-
pendent. Thus, in (13.2) we would set Vεη = 0. However, most MSOE
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formulations (e.g., Harvey 1989; West and Harrison 1997) specify the mea-
surement equation as

yt = w′xt + ε∗t . (13.4)

If we substitute the transition equation (13.2b) into this expression we
arrive at

yt = w′Fxt−1 + w′ηt + ε∗t ,

so that the errors in the measurement and transition equations are now corre-
lated. In order to make the independence assumption operational, we must
choose a specific model, termed the canonical model by West and Harrison
(1997, Chap. 5). Further, we must recognize that any transformation of the
state variables may result in previously uncorrelated errors becoming corre-
lated. The innovations approach provides a simple way out of this dilemma.
Because the errors are perfectly correlated, any linear transformation leaves
them perfectly correlated. The details are provided in Exercise 13.2. It may
be shown that the different forms of the model have no effect on predictions,
but the choices mean that individual components such as the local level may
have different values; see Exercise 13.3.

13.1.2 Other State Space Models

A number of other formulations have appeared in the literature over the
years. Akaike (1974) proposed an innovations model that maps directly into
an ARMA(k, k− 1) scheme. The details are given in Exercise 13.1. Aoki (1987)
also presents an innovations form, but we do not pursue these alternatives
further in this book.

13.2 Estimation

The unknown parameters of both innovations and multi-disturbance state
space models must be estimated. Because they both conform to the struc-
ture described in (13.1), a theory of estimation encompassing both cases is
developed in terms of the more general framework. The seed state vector z0
is assumed to be random rather than fixed. Two points need to be made at
this stage. The first is that virtually all the current literature on the multi-
disturbance model relies upon the Kalman filter to develop the estimates.
The second is that this reliance is not necessary as the information filter that is
described in Sect. 12.3 is applicable in both frameworks. We proceed by first
providing a general framework and then adapting the Kalman filter from
Sect. 12.7 to its familiar MSOE form.

Using arguments similar to those in Chap. 12, it may be argued that
the likelihood function can be rewritten in a prediction error form. For the
moment, the focus is restricted to the case where all the states, both observ-
able and unobservable, are stationary. The observations are represented by
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the n-vector y. The unknown parameters are collected together into a vec-
tor θ. The prediction error decomposition of the likelihood function is (see
Schweppe 1965)

L(θ | y) =
n

∏
t=1

(vt|t−1)
−1/2 exp

(
− 1

2

(
yt−µt|t−1

)2
/

vt|t−1

)
,

where µt|t−1 and vt|t−1 are the mean and variance of the one-step-ahead pre-
diction distribution. We use θ to denote the variances of the different error
terms in the general model (13.1). The aim is to maximize the likelihood with
respect to θ. To implement the maximum likelihood approach, we need a
mechanism to generate the updated values µt|t−1 and vt|t−1.

13.2.1 Kalman Filter

The Kalman filter was considered in Sect. 12.7 for the innovations state space
model. The version presented here is based on the more general model (13.1)
and so encompasses both the innovations model and the MSOE model as
special cases. The argument follows along the same lines as that in Sect. 12.7.
We let y1:s = y1, . . . , ys and define

µt|s = E(yt | y1:s),

vt|s = V(yt | y1:s),

mt|s = E(x | y1:s),

Vt|s = V(x | y1:s),

ζt|t−1 = Cov(xt, yt | y1:t−1),

mz
t|s = E(z | y1:s),

and V z
t|s = V(z | y1:s) =

[
vt|s ζ ′

t|s
ζt|s Vt|s

]
.

Then, using the notation of (13.1), the Kalman filter is given in part by the
equations

zt|t−1 = Azt−1|t−1 + ut, (13.5a)

mz
t|t−1 = Amz

t−1|t−1, (13.5b)

V z
t|t−1 = AV z

t−1|t−1A
′ + Vu. (13.5c)

It is assumed that the distribution of zt−1|t−1 is available from the preced-
ing iteration of the filter after processing t − 1 observations. The exception is
period t = 1 where z0|0 is described by the steady state distribution. Equa-
tions (13.5) are obtained from the general model (13.1). These equations form
the prediction step, whose application yields the quantities µt|t−1 and vt|t−1
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from the top part of (13.5). The remaining part of the Kalman filter is the revi-
sion step. By an argument similar to that employed in Sect. 12.7.2, we arrive
at the relationships:

mt|t = mt|t−1 + kt(yt − µt|t−1)

and Vt|t = Vt|t−1 − vt|t−1ktk
′
t,

where kt = ζt|t−1/vt|t−1.

These expressions provide all the information needed to evaluate the likeli-
hood function for given values of the parameters.

As soon as the assumption of stationarity is dropped, the variances of
nonstationary components are infinite and the Kalman filter formulae have
no proper limiting form (Ansley and Kohn 1985). Moreover, the likelihood,
as defined for stationary time series, is 0 everywhere. The traditional escape
from this dilemma is to condition on the first p values of the time series,
where p is the number of free nonstationary unobservable components. The
density upon which the likelihood is based is then given by

p(yp+1, yp+2, . . . , yn|θ, y1, y2, . . . , yp) =
n

∏
t=p+1

(vt|t−1)
−1/2 exp

(
− 1

2

(
yt − µt|t−1

)2
/

vt|t−1

)
.

One approach (Harvey 1989) is based on the assumption that all the
unobserved states are nonstationary, so that p = k. A set of simultaneous
equations is formed by stacking the model equations for the first k periods.
The number of unknown unobservable state variables then exactly matches
the number of equations and may normally be solved for the unobserved
components including the moments of xp|p. The Kalman filter is then seeded
with the distribution of xp|p in period p + 1 and used to generate the predic-
tions and associated variance matrices for periods p + 1, p + 2, . . . , n needed
to evaluate the likelihood function. This approach works in most circum-
stances, but must be adapted to handle potential complexities such as linear
dependencies in the equations, missing values or partially known starting
conditions when there is a mix of stationary and nonstationary unobserved
state variables. A modern recursive version that allows for these potential
complications may be found in de Jong (1991a, b). His algorithm is referred
to as an augmented Kalman filter.

13.2.2 Convergence of Estimates

As the length of the series t increases, the variance matrix for xt|t, defined as
Vt|t (see (12.18) for this expression in the innovations case) converges to a lim-
iting value, say V0; for a proof, see Anderson and Moore (1979) and Harrison
(1997). Harrison’s proof applies to the MSOE scheme and does not require
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an assumption of Gaussian errors. His approach can be extended using the
general form of the Kalman filter outlined in Sect. 12.7. For the MSOE model,
this matrix is non-null, but for the innovations model, the limiting value is
0 as shown by Leeds (2000, pp. 78–79). This latter proof is a correction to
errors in both the original proof by Caines and Mayne (1970) and a revised
proof by the same authors (1971). Thus, it has been shown that, as t increases,
the estimates of the state variables in the innovations model will converge in
probability to the true values of the unobserved state variables at time t.

Many computer implementations ignore the distinction between states
and their estimates. This result suggests that, in sufficiently long series, this
practice is justifiable in the innovations framework.

13.3 Reduced Forms

13.3.1 Multi-Disturbance Models

Unobserved components are very useful in the sense that they enable us to
specify plausible candidate state space models for the patterns that one may
observe in a time series. However, from a strict mathematical perspective,
their role is largely redundant. If a time series is stationary, its behavior is
essentially determined by its autocorrelation function (ACF). Two state space
models may appear to have a different structure because they are based on
different states. However, if they yield the same mean, variance and ACF,
they are equivalent from a forecasting perspective. Matters are more com-
plicated for nonstationary time series because the unconditional mean and
variances are not defined. An appropriate level of differencing may yield a
stationary series. In this case, if the same transformations are applied to two
models to induce stationarity, and both transformed models have the same
mean, variance and ACF, they have the same properties. In the terminology
of Chap. 10, the two models have the same minimal state representation.

The Wold representation theorem states that any linear stationary time
series can be expressed as a moving average process and that this represen-
tation is unique. These moving average representations may involve infinite
series and a more parsimonious structure is often achieved by converting to
autoregressive moving average (ARMA) processes (Box et al. 1994).

The ARIMA representation is the reduced form corresponding to the
minimal dimension representation of the state space model.

Common multi-disturbance state space models and their reduced forms
are shown in Table 13.1. The right hand sides of the reduced forms are multi-
disturbance moving average processes. However, the Granger–Newbold
theorem (Granger and Newbold 1986) asserts that

(a) The sum of uncorrelated moving average processes is itself a moving
average process

(b) The covariance function of the sum is the sum of the component covari-
ance functions
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Table 13.1. Reduced forms of multi-disturbance state space models.

Multi-disturbance model Reduced form

Level
yt = �t−1 + εt ∆yt = ∆εt + ηt−1
�t = �t−1 + ηt

Trend
yt = �t−1 + bt−1 + εt ∆2yt = ζt−1 + ∆ηt−1 + ∆2εt
�t = �t−1 + bt−1 + ηt
bt = bt−1 + ζt

Seasonal
yt = �t−1 + bt−1 + st−m + εt ∆2∆myt = ∆mζt−1 + ∆∆mηt−1 + ∆2ωt−m
�t = �t−1 + bt−1 + ηt + ∆2∆mεt
bt = bt−1 + ζt
st = st−m + ωt

In other words, any multiple disturbance moving average process has
an equivalent traditional innovations moving average representation. The
reduced forms, in terms of the multiple error terms, are shown in Table 13.1.
Note that in the table, the difference operators are defined as ∆xt = xt − xt−1
and ∆mxt = xt − xt−m. The reduced forms for the innovations models follow
immediately when we replace the error terms from the transition equations
by the appropriate linear functions of the single source of error.

The reduced forms may be obtained as an equation solving exercise.
In any period, the model consists of k + 1 equations. Stacking the model
k + 1 equations over the k periods (t − 1), . . . , (t − k) gives k(k + 1) equa-
tions involving the k + 1 state vectors xt−1, . . . , xt−k−1; these equations also
involve yt−1, . . . , yt−k−1 and the disturbances. Because each state vector con-
tains k elements, the number of state variables exactly matches the number
of equations. Ignoring the possibility of linear dependence for the moment,
the stacked equations can be solved for the state variables in terms of the
lagged y values and the disturbances. The solution for xt−1 found in this
manner can be substituted into the measurement equation to yield an expres-
sion that no longer depends on the state variables. It is the required reduced
form.

In deriving the reduced form, ultimately only the solution for xt−1 is
required. It is possible to adapt the above procedure to avoid finding the
solutions for xt−2, . . . , xt−k−1. The procedure can be understood by plac-
ing the stacked equations in tableau form; the tableau is then supplemented
by the equation for yt, which is placed in the final row. We then apply
Gaussian elimination to eliminate the state variables from the measure-
ment equation. The approach is illustrated in Example 13.1 for a local level
model (k = 1).
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Example 13.1: Local level model

The relevant equations for the local level may be stacked in detached form
as follows:

yt yt−1 �t−1 �t−2 εt εt−1 ηt−1

0 0 −1 1 0 0 1
0 1 0 1 0 1 0

1 0 1 0 1 0 0

The aim is to eliminate all the state variables from the final row. The process
begins by eliminating the state �t−1 by adding the first row to the final row
to give

yt yt−1 �t−1 �t−2 εt εt−1 ηt−1

0 0 −1 1 0 0 1
0 1 0 1 0 1 0

1 0 0 1 1 0 1

Now �t−2 appears in the final row. It is eliminated by subtracting the second
row to give:

yt yt−1 �t−1 �t−2 εt εt−1 ηt−1

0 0 −1 1 0 0 1
0 1 0 1 0 1 0

1 −1 0 0 1 −1 1

The reduced form is shown in the final row of the third tableau. It was
obtained without explicitly solving for the local levels.

It may be observed that only the bottom row was changed by the transfor-
mation process in this example. This is not true in general. The rows before
the final row may not always have a triangular structure in the columns cor-
responding to the state variables. Then below-diagonal elements must be
eliminated using conventional pivoting operations associated with Gaussian
elimination. It is also sensible to undertake simple pivots to ensure that all
diagonal elements equal one. Only then should the elements in the final row
of the tableau corresponding to state variables be eliminated, as illustrated
in the example, to yield the reduced form.

The tableaux associated with this method explode in size when models
with more states are considered, and so the derivation of the reduced form is
more difficult to illustrate in the available space. Nevertheless, the method is
readily coded and is quite tractable when implemented on a computer.
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When a zero pivot is encountered, the elements in the pivot column below
the pivot are searched for a non-zero value. The row containing this non-zero
value is swapped with the pivot row so that resulting new pivot element in
the new pivot row is non-zero. Then the reduction algorithm continues as
normal.

When no non-zero element lies below a zero pivot element, the required
row swap is not possible. In this case, there is not a unique solution for some
of the state vectors in terms of the observations, and so the states are not
identifiable. This occurs when the model is not of minimal dimension (see
Chap. 10).

Identifiability of the state variables is not always necessary in order to
derive a unique reduced form. In the ETS(A,A,A) model, the level and sea-
sonal indexes are not identified, yet the reduced form is unique because
the linear combination of the state vectors in the measurement equation is
unique. The above reduction method can be adapted to handle such cases.
As shown in Chap. 10, the solution typically involves the elimination of com-
mon factors from the two sides of the reduced model to achieve a canonical
form.

In general, the reduced form may be written as

yt =
k

∑
i=1

φiyt−i −
k

∑
j=1

θjεt−j + εt, (13.6)

where εt is formed from all the disturbances associated with period t via
the Granger–Newbold theorem. The autoregressive elements may involve
unit roots, which can be separated out as in Chap. 10. As is evident from
Table 13.1, the moving average component can be expressed as the sum of
uncorrelated moving average components:

yt =
k

∑
i=1

φiyt−i +
k

∑
j=0

ξ′jηt−j, (13.7)

where ηt represents the independent errors in the state equations, as in
(13.2b) with coefficients ξj. The individual moving average components have
autocovariance functions that can be combined to provide the autocovari-
ance function for εt.

13.3.2 Innovations Models

The triangularization method described in the previous section for finding
the reduced form of a multi-disturbance state space model is readily adapted
to the innovations state space model. The independence assumption of the
disturbances is nowhere used in the algorithm, and so it applies in exactly the
same way when the disturbances are correlated. In the particular case where
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the disturbances are perfectly correlated, the reduced form of an innovations
model can be obtained from the reduced form of a multi-disturbance model
using the substitution ηt = gεt. For example, in the case of a local trend
model, the substitutions ηt = αεt and ξt = βεt yield the innovations reduced
form ∆yt = −θ2εt−2 − θ1εt−1 + εt where θ1 = 2 − α − β and θ2 = α − 1.

13.4 Comparison of State Space Models

Multi-disturbance state space models encompass two special cases: the
MSOE model where the disturbances are uncorrelated and the innovations
form where they are perfectly correlated. It is often thought that the first
assumption is less restrictive than the second; the argument is that the MSOE
model has many sources of randomness, and should therefore be more
flexible than the innovations form.

Paradoxically, the opposite is true. Anderson and Moore (1979) appear to
be the first to have asserted, for discrete time contexts at least, that any multi-
disturbance linear state space model has an equivalent innovations form.
Their claim was remarkably general: it encompassed non-invariant as well
as invariant state space models. They provided strong evidence that this has
to be true by recognizing that the Kalman filter for any multi-disturbance
state space model is always expressed in terms of the one-step-ahead predic-
tion error, and that this implies the existence of an innovations model with
the same gains. Their proof is opaque and possibly incomplete, so we do not
pursue it further.

Hannan and Deistler (1988) proved the conjecture for stationary time
series. They relied on transfer functions (i.e., polynomial functions of the lag
operator) for their proof. They did not cover nonstationary time series. How-
ever, for those nonstationary time series that can be differenced to create a
stationary time series, the same basic theory may be applied.

The general result can be stated as follows and the proof is derived by
identifying various results presented earlier in the book.

Theorem 13.1. The following statements hold for linear time series with invariant
coefficients and Gaussian disturbances:

A. Any MSOE model may be represented as an ARIMA model
B. Any innovations model may be represented as an ARIMA model
C. Any ARIMA model may be represented as an innovations model
D. Not all ARIMA models are representable by an MSOE model

Proof. This proof is somewhat informal and proceeds by drawing together
results presented earlier in the book:

A. This property was discussed in Chap. 11 and in Sect. 13.3. The property
holds provided that (13.7) corresponds to a minimal state space model.
That is, the AR component φ(L) = 0 has roots on or outside the unit
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circle, the MA component is invertible and any common factors in the
two polynomials have been eliminated.

B. This property was demonstrated in Sect. 11.3. The same requirements on
the polynomials apply.

C. This property was demonstrated in Sect. 11.5, but we should recall that
the innovations model will correspond specifically to an exponential
smoothing form only when the polynomial θ(L) = 0 has real roots.

D. This negative statement can be demonstrated by means of counter-
examples. Two models are equivalent in this framework if their (dif-
ferenced) reduced forms have the same autocorrelation function (ACF).
We define the autocorrelations by ρj = γj/γ0, where j = 1, 2, . . . and
γj = Cov(yt, yt−j).

The ACF of the MSOE reduced form depends on the system vari-
ances; for the innovations model it is determined by the persistence
parameters.

The ACFs for the local level and local trend models are given in
Table 13.2; all autocovariances not listed in the table are zero. Examina-
tion of the expressions in the table reveals that for the local level model
−0.5 < ρ1 ≤ 0 for MSOE with the limiting value corresponding to σ2

η = 0.
The ARIMA scheme has −0.5 < ρ1 < 0.5, with the limits corresponding
to |θ1| = 1. Thus, an ARIMA(0,1,1) model with θ1 < 0 does not have an
MSOE counterpart.

Likewise, for the local trend model, we have −0.667 < ρ1 ≤ 0 for the
MSOE, but −0.707 < ρ1 < 0.707 for the ARIMA scheme, so that some
ARIMA(0,2,2) models do not possess an MSOE form. The derivation is
left as an exercise.

A counter-claim to these examples could be that the parameter spaces
may be extended by allowing correlation among the disturbances. We
explore this conjecture below. ��
We may use the entries in Table 13.2 to explore the relationships between

the MSOE and innovations models. The general point may be illustrated
using the local level model. The first-order autocorrelation is always negative
for the MSOE version. It may be either positive or negative in the innovations
model. When the autocorrelation is negative, it is always possible to find a

Table 13.2. Reduced forms of common state space models.

Model Multiple error Innovations

Local γ0 = σ2
η + 2σ2

ε γ0 = [(α − 1)2 + 1]σ2
ε

Level γ1 = −σ2
ε γ1 = (α − 1)σ2

ε

Local γ0 = (σ2
ξ + 2σ2

η + 6σ2
ε ) γ0 =

[
(α + β − 2)2 + (1 − α)2 + 1

]
σ2

ε

Trend γ1 = −(σ2
η + 4σ2

ε ) γ1 = −(2 − α − β)(2 − α)σ2
ε

γ2 = σ2
ε γ2 = (1 − α)σ2

ε
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corresponding value for α by equating the two expressions and solving the
quadratic in α to obtain

α = − q
2

+

√(
1 +

q
2

)2 − 1, (13.8)

where q is the so-called signal-to-noise ratio defined by q = σ2
η/σ2

ε .
This analysis serves to illustrate a further point, relating to the relative

ease of use of the MSOE and innovations models. As we saw in Sect. 11.3,
the relationships between the parameters in the ARIMA and innovations
models are linear. Those between the MSOE model and the other two are
quadratic, making it more difficult to establish relationships between the sets
of parameters.

13.4.1 Size of the Parameter Space

In order to explore the size of the parameter space under different assump-
tions about the correlations among the error terms in the measurement and
transition equations, we revert to a consideration of the general form given in
(13.2). The general argument is due to Leeds (2000, pp. 50–56), and the details
are given in the Appendix. The argument given there shows that when there
are J transition equations, we must consider 2J possible solutions, and only
one of these solutions will satisfy the forecastability conditions. To be spe-
cific, we demonstrate the argument for the local trend model, although it
applies quite generally.

We first put the problem into an appropriate framework that enables
us to apply the linear fractional programming approach described in the
Appendix. The notation we now use is specific to this subsection and purely
for convenience in the present discussion. The local trend model has three
error terms in the general case, and we may write the variance matrix for
(εt, ηt, ξt) as ⎡

⎣ v2
0 ρ1v0v1 ρ2v0v2

ρ1v0v1 v2
1 ρ3v1v2

ρ2v0v2 ρ3v1v2 v2
2

⎤
⎦ .

Extending the result in Table 13.2, the general form of the lag one autocorre-
lation for the twice-differenced series is

−(4v2
0 + 4ρ1v0v1 + 2ρ2v0v2 + v2

1 + ρ3v1v2)
(6v2

0 + 6ρ1v0v1 + 2ρ2v0v2 + 2v2
1 + 2ρ3v1v2 + v2

2)
.

A comparable expression may be obtained for the autocorrelation at lag two;
see Exercise 13.4. All higher-order autocorrelations are zero. We may deter-
mine the maximum size of the parameter space by finding the smallest and
largest possible values for each autocorrelation, provided the extremes are
achieved for the same choices of the correlations.
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If we fix the value of v = (v0, v1, v2)′, the numerator and denominator
of the autocorrelation are linear in the correlations, and we may maximize
(minimize) the value of the expression using linear fractional programming.
The details are given in the Appendix. We find that the same extreme solu-
tions apply whatever the value of v, and so we conclude that the size of
the parameter space is maximized when the errors are perfectly correlated.
However, an innovations model with J transition equations still has 2J pos-
sible solutions, and we now proceed to select a unique solution from this
set.

The local trend model has J = 2, and the transition equations have the
error terms (g1εt, g2εt). From Table 13.1 we may write the right hand side of
the reduced form equation for the local trend model as

εt − (2 − g1 − g2)εt−1 − (g1 − 1)εt−2 ≡ (1 − θ1L − θ2L2)εt.

The forecastability conditions may be written as:

|θ2| < 1, 1 − θ1 − θ2 > 0, 1 + θ1 − θ2 > 0.

These conditions reduce to the requirements that (g1 > 0, g2 > 0), which
establishes the uniqueness of the solution. The reader is asked to verify these
conditions in Exercise 13.5.

13.4.2 Seasonal Models

In order to compare the seasonal models we make use of the autocovariance
generating function (ACGF) for the differenced series. Consider an ARIMA
model written in moving average form with the error variance equal to 1
(without loss of generality) and the auxiliary polynomial

θ(z) = 1 − θ1z − θ2z2 − · · · − θqzq − · · · . (13.9)

The ACGF is then defined as:

C(z) = θ(z)θ(z−1). (13.10)

The coefficient of zj is the autocovariance at lag j. Thus γ0 = 1 + θ2
1 + θ2

2 + · · · ,
γ1 = −θ1 + θ1θ2 + · · · , and so on. The general forms for the seasonal models
are cumbersome, and it is convenient to summarize them in somewhat dif-
ferent ways. Thus, for the innovations model, using the canonical reduced
form given in Example 11.6, (13.9) becomes

θ(z) = 1 − (1 − α − β)z + β(z2 + · · ·+ zm−1) − (1 − β − γ)zm

+ (1 − α − γ)zm+1.

For the MSOE model, it is easier to specify the autocovariances directly.
Again using the canonical reduced form, we arrive at the expressions:
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γ0 = (mσ2
ξ + 2σ2

η + 2σ2
ω + 6σ2

ε ),

γ1 = (m − 1)σ2
ξ − (σ2

ω + 2σ2
ε ),

γj = (m − j)σ2
ξ , j = 1, 2, . . . , m − 2,

γm−1 = σ2
ξ + σ2

ε ,

γm = −(σ2
η + 2σ2

ε ),

γm+1 = σ2
ε .

For these two seasonal models, any attempt to equate autocovariances of the
same order leads to more equations than unknowns. No solution exists that
matches the autocovariances, other than the degenerate form with σ2

ω = 0.
Thus, the two models are not equivalent. Interestingly, McKenzie (1976)
derived an ARIMA representation of this additive Holt-Winters scheme.
Careful reading of his paper reveals that he used an innovations form of
the state space model to obtain the result. The covariance expressions just
derived do not allow a simple mapping from the state space parameters to
the ARIMA coefficients. More generally, because the autocovariances are typ-
ically quadratic in the moving average parameters, it is only in special cases
that explicit solutions are available for the mapping from the MSOE model
to its ARIMA reduced form. There can be multiple solutions to such equa-
tions, but the requirement of invertibility ensures that there is at most one
acceptable solution.

13.4.3 Nonlinear Models

We saw in Chap. 4 that it was possible to specify nonlinear and heteroscedas-
tic schemes using the innovations form, and that the resulting (albeit
approximate) Gaussian likelihood was readily obtained, as seen in Chap. 5.
Comparable models may be specified in the MSOE framework, but compu-
tational difficulties immediately arise. The probability density function now
involves terms for each of the unobserved errors and there is no simple way
to integrate these out to obtain the likelihood for the unknown parameters.
We could make use of Markov Chain Monte Carlo (MCMC) methods, but
Gaussian likelihood remains an approximation and adding an extra layer of
simulations adds to the computational burden.

13.5 Smoothing and Filtering

Harvey and Koopman (2000) showed that the MSOE scheme leads to optimal
symmetric two-sided smoothers. These were defined for an infinite series,
although applications will clearly involve truncation after a finite number
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of terms. This smoother corresponds to the Wiener-Kolmogorov (WK) fil-
ter. They also noted that when the components are correlated, as in the
innovations formulation, the resulting signal extraction filter is asymmet-
ric. Indeed, the perfect correlation among the components of the innovations
model led to our observation in Sect. 12.6 that the two-sided filter does not
improve the estimates of the state variables asymptotically. However, the
WK filter remains available, once we recognize that its role is to smooth the
series, not to estimate the state variables as such. Because any innovations
model may be expressed in ARIMA form, an appropriate WK filter may be
developed within that framework.

The following example illustrates how an appropriate WK smoother can
be constructed.

Example 13.2: Local level model

Consider the local level model, written as the reduced ARIMA(0,1,1):

(1 − L)yt = [1 − (1 − α)L]εt.

The (doubly infinite) WK filter is given by:

�S,t =
α2yt

[1 − (1 − α)L][1 − (1 − α)L−1]
=

α

2 − α

∞

∑
j=−∞

(1 − α)|j|yt−j.

This smoother also corresponds to the two-sided Beveridge–Nelson (BN)
filter given by Proietti and Harvey (2000), although it should be noted that
the filter is admissible only for 0 < α < 1. The WK and BN filters often do
not have the same form.

As pointed out by Gijbels et al. (1999), when exponential smoothing is
interpreted as a kernel estimate, simple exponential smoothing is the natural
forecast and the filter given above is the natural smoother.

The approach just described provides a smoothed estimator for the mean
of the process, and we now turn to consider the individual components.
Key elements in the analysis of economic time series are the creation of the
deseasonalized series and the creation of a smoothed trend. Bell (1984) and
Burridge and Wallis (1988) extended the WK filter to nonstationary series to
enable the extraction of unobserved components.

One way to develop a WK filter for the components of an innova-
tions process is to generate the corresponding ARIMA model and then
apply a canonical decomposition, such as that developed by Hillmer and
Tiao (1982). However, if we recall from Sect. 13.2.2 that the estimates of
the state variables converge to their true values, a much simpler approach
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is possible. We may construct the seasonally adjusted or detrended series
directly, and then smooth the remaining components. This is illustrated in
the next example.

Example 13.3: Seasonal levels model

Consider the following innovations model, which should also include the
appropriate normalization as described in Chap. 8:

yt = �t−1 + st−m + εt,
�t = �t−1 + αεt,
st = st−m + γεt.

We may generate the approximately detrended series as:

z1t = yt − �t|n ≈ st−m + εt.

It follows from Example 13.2 that the smoothed seasonal components may
be computed as:

sS,t ≈ γ2z1t

[1 − (1 − γ)Lm][1 − (1 − γ)L−m]
=

γ

2 − γ

∞

∑
j=−∞

(1 − γ)|j|z1,t−jm.

In turn, the seasonal components lead to the deseasonalized series:

z2t = yt − st ≈ �t + εt.

The smoothed trend is then given by:

�S,t ≈ α2z2t

[1 − (1 − α)L][1 − (1 − α)L−1]
=

α

2 − α

∞

∑
j=−∞

(1 − α)|j|z1,t−j.

We may iterate between the seasonal and trend components until conver-
gence is obtained, although the differences may be expected to be small
provided the series is of reasonable length.

In summary, we observe that while the primary motivation for using the
innovations approach is that it is more directly beneficial for forecasting (the
focus of this text), smoothing and filtering operations may also be performed
within the innovations framework.
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13.6 Exercises

Exercise 13.1. Consider a state space model in the general form of (13.3) with

w′ = (1, 0, . . . , 0), g′ = (1, ψ1, . . . , ψk−1) and F =

⎡
⎢⎢⎢⎣

0 0 0 . . . 0
0 1 0 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . 1
φk φk−1 . . . . . . φ1

⎤
⎥⎥⎥⎦ .

The state vector is defined as xt = (yt, yt+1|t, . . . , yt+k−1|t) and εt is deleted
from the measurement equation. Show that this model reduces to an
ARMA(k, k − 1) model.

Exercise 13.2. Consider the innovations model with measurement equation
(13.4) used in place of (13.1). Show that the form of the model given by (13.2)
still applies, with revised coefficients w1 = F ′w and g1 = g

1+w′g .

Exercise 13.3. Show that the reduced forms of the two MSOE schemes given
in Sect. 13.1.1 result in the same ARIMA reduced forms.

Exercise 13.4. Show that the general form of the lag 2 autocovariance for the
local trend model (in the notation of Sect. 13.4.1) is

v2
0 + ρ1v0v1 + ρ2v0v2.

Hence show that the first and second order autocorrelations have the same
set of conditions for extreme values.

Exercise 13.5. Show that the conditions for forecastability discussed in
Sect. 13.4.1 lead to a unique local trend model with a maximal parameter
space.
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Appendix: Maximizing the Size of the Parameter Space

In a seminal paper on Linear-Fractional Programming (LFP), Charnes and
Cooper (1962) showed that the LFP optimization problem

max
u

∑j Ajuj

∑j Bjuj
, subject to 0 ≤ uj ≤ cj for all j,

may be reformulated as a linear program of the form:

max
u ∑

j
Ajuj subject to ∑

j
Bjuj = c and 0 ≤ uj ≤ cj for all j.

In our application, the denominator is always a strictly positive variance
term and the {uj} represent either the positive or negative parts of corre-
lation coefficients, so that cj = 1 for all j.

When there are J transition equations and one measurement equation,
the joint error distribution involves K = J(J + 1)/2 correlation coefficients.
The LFP optimization is subject to 2K constraints and K non-negativity con-
straints on the correlations plus one equality constraint. By inspection, we
can see that K − 1 of the correlations must each take on one of the three val-
ues (−1, 0, +1); the remaining correlation is then determined by the equality
constraint. We now proceed to incorporate additional features of the partic-
ular problem to arrive at a unique solution:

• A simple reparameterization of the problem (replacing each correlation ρ
by ρ∗ = ρ + 1) serves to demonstrate that the zero values are internal solu-
tions and can be ignored.

• We now have that K − 1 of the correlations are ±1; it follows that the
remaining correlation must be ±1.

• We can now return to the state space formulation, because the correlations
are generated by the J + 1 terms (εt, g1εt, g2εt, . . . , gJεt). The J coefficients
gj give rise to the 2J possible solutions after setting the coefficient in the
measurement equation equal to +1, without loss of generality.

• Finally, we may demonstrate that the only solution to satisfy the forecasta-
bility conditions is that with all gj > 0. The argument for the local trend
model is illustrated in Sect. 13.4.1.

In principle, other formulations may provide parameter spaces of equal
size for specific cases, but there is no loss in restricting attention to the
innovations models.
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Time Series with Multiple Seasonal
Patterns

Co-authors:1 Phillip Gould2 and Farshid Vahid-Araghi3

Time series that exhibit multiple seasonal patterns can arise from many
sources. For example, both daily and weekly cycles can be seen in Fig. 14.1
for hourly utility demand data and in Fig. 14.2 for hourly vehicle counts on a
freeway. Usually when we discuss seasonal patterns we mean patterns that
change with the seasons of the year for weekly, quarterly, or monthly data.
In this chapter any periodic pattern of fixed length will be considered to
be a seasonal pattern and called a cycle. It is easy to think of many exam-
ples where multiple seasonal cycles would occur, say for hours of the day
within days of the week, such as hospital admissions, demand for public
transportation, telephone calls to call centers, requests for cash at ATMs, and
accessing computer websites. The seasonal innovations state space models in
Tables 2.2 and 2.3 are designed for one seasonal cycle in which the seasonal
components are revised only once during every cycle. Thus, the objective
of this chapter is to extend some of those models to handle more frequent
observations with more than one cycle. Another objective is the ability to
revise the seasonal components more often than once every seasonal cycle.
For example, in the case of hourly traffic count data we would like to be able
to revise the seasonal components for a weekly cycle (a cycle of length 168)
more frequently than once a week.

There are several notable features in Fig. 14.1. First, we observe that the
daily cycles are not all the same, although it may reasonably be claimed
that the cycles for Monday through Thursday are similar, and perhaps
Friday also. Those for Saturday and Sunday are quite distinct. In addition,
we would expect the patterns for public holidays to be more similar to
weekends than to regular weekdays. A second feature of the data is that
the underlying levels of the daily cycles may change from one week to

1 This chapter is based, in part, on material presented in Gould et al. (2008).
2 Dr. Phillip Gould, Australia and New Zealand Banking Group Limited, Australia.
3 Professor Farshid Vahid-Araghi, School of Economics, Australian National Uni-

versity, Australia.
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Fig. 14.1. Two-week sub-sample of hourly utility demand data.
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Fig. 14.2. Two-week sub-sample of traffic count data.

the next, yet be highly correlated with the levels for the days immediately
preceding. These same characteristics can also be seen to hold for the vehicle
count data in Fig. 14.2. An effective time series model must be sufficiently
flexible to capture these principal features without imposing too heavy a
computational or inferential burden.

The most commonly employed approaches to modeling seasonal pat-
terns within exponential smoothing are the Holt-Winters methods (Winters
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1960). These methods correspond to the ETS(A,A,A) and ETS(M,A,M) mod-
els in Chap. 2 and might be used for the type of data shown in Figs. 14.1 and
14.2. However, these models suffer from several important weaknesses. In
order to capture the weekly cycle, these models would require 168 starting
values (24 hours × 7 days) and would fail to pick up the similarities from
day-to-day at a particular time. Also, they do not allow for patterns on dif-
ferent days to adapt at different rates nor for the component for one day
to be revised on another day. In a recent paper, Taylor (2003b) has devel-
oped a double seasonal exponential smoothing method, which allows the
inclusion of one cycle nested within another. His method is described briefly
in Sect. 14.1.2. Taylor’s method represents a considerable improvement, but
assumes the same intra-day cycle for all days of the week. Moreover, updates
based upon recent information (the intra-day cycle) are the same for each day
of the week.

Two other approaches for modeling seasonal cycles are the Box–Jenkins
method for ARIMA models (Box et al. 1994) and the state space method for
multiple disturbance models (e.g., Harvey 1989). In ARIMA models, mul-
tiple seasonal cycles could be established by including additional seasonal
factors. Such an approach again requires the same cyclical behavior for each
day of the week. Although the resulting model may provide a reasonable
fit to the data, there is a lack of transparency in such a complex model,
even in the linear case, compared to the specification provided by Taylor’s
approach and by the methods we describe later in this chapter. The disad-
vantages of the multiple disturbance models have previously been described
in Chaps. 12 and 13 with respect to the estimation process and the ability to
handle nonlinear (multiplicative seasonal) patterns directly.

The additive Holt-Winters (HW) method and Taylor’s double seasonal
(DS) scheme are outlined in Sect. 14.1. The multiple seasonal (MS) model
is introduced and developed in Sect. 14.2; the primary emphasis is on the
additive scheme, but the multiplicative version is also briefly described.
Applications to hourly data on utility demand and on traffic flows are
considered in Sects. 14.3 and 14.4, respectively.

14.1 Exponential Smoothing for Seasonal Data

14.1.1 An Innovations State Space Model
for the Holt-Winters (HW) Method

The Holt-Winters (HW) exponential smoothing approach (Winters 1960)
includes methods for both additive seasonal patterns (where the size of sea-
sonal variation is not affected by the level of yt) and multiplicative seasonal
patterns (where there is larger seasonal variation at higher values of yt). Our
primary development is in terms of additive seasonality; the corresponding
model for the multiplicative case is presented in Sect. 14.2.2. A model for
the additive seasonal HW method decomposes the series value yt into an
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error εt, a level �t, a trend bt and a seasonal component st. The underlying
innovations state space model is the ETS(A,A,A) model:

yt = �t−1 + bt−1 + st−m + εt, (14.1a)
�t = �t−1 + bt−1 + αεt, (14.1b)
bt = bt−1 + βεt, (14.1c)
st = st−m + γεt, (14.1d)

where εt ∼ NID(0, σ2), and α, β and γ are smoothing parameters for the
level, trend and seasonal terms, respectively. The smoothing parameters
reflect how quickly the level, trend and seasonal components adapt to new
information. The value of m represents the number of seasons in one sea-
sonal cycle. In this chapter we will need to distinguish an ETS(A,A,A) model
with m1 seasons from one with m2 seasons. Hence, in this chapter only, we
will denote the ETS(A,A,A) model by HW(m) and the seasonal cycle by
ct = (st, st−1, . . . , st−m+1)′. Estimates of m + 2 different seed values for the
unobserved components must be made; one for the level, one for the trend,
and m for the seasonal terms (although we constrain the initial seasonal
components to sum to 0).

The HW method allows each of the m seasonal terms to be updated only
once during the seasonal cycle of m time periods. Thus, for hourly data we
might have an HW(24) model that has a cycle of length 24 (a daily cycle).
Each of the 24 seasonal terms would be updated once every 24 hours. Or
we might have an HW(168) model that has a cycle of length 168 (24 hours×
7 days). Although a daily pattern might occur within this weekly cycle, each
of the 168 seasonal terms would be updated only once per week. In addition,
the same smoothing constant γ is used for each of the m seasonal terms. In
Sect. 14.2 we will show how to relax these restrictions using our model for
multiple seasonal (MS) processes.

14.1.2 An Innovations State Space Model
for the Double Seasonal (DS) Method

Taylor’s double seasonal (DS) exponential smoothing method (Taylor 2003b)
was developed to forecast time series with two seasonal cycles: a short one
that repeats itself many times within a longer one. It should not be con-
fused with double exponential smoothing (Brown 1959), the primary focus
of which is on a local linear trend. Taylor (2003b) developed a method for
multiplicative seasonality, which we adapt for additive seasonality.

Like the HW exponential smoothing methods, DS exponential smoothing
is a method. It was specified without recourse to a stochastic model, and hence,
it cannot be used in its current form to find estimates of the uncertainty sur-
rounding predictions. In particular, a model is required to find prediction
intervals. The problem is resolved by specifying an innovations state space
model underpinning the additive DS method. Letting m1 and m2 designate
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the periods of the two cycles, this model is:

yt = �t−1 + bt−1 + s(1)
t−m1

+ s(2)
t−m2

+ εt, (14.2a)

�t = �t−1 + bt−1 + αεt, (14.2b)
bt = bt−1 + βεt, (14.2c)

s(1)
t = s(1)

t−m1
+ γ1εt, (14.2d)

s(2)
t = s(2)

t−m2
+ γ2εt, (14.2e)

where εt ∼ NID(0, σ2), and the smoothing parameters for the two seasonal
components are γ1 and γ2. We denote this model by DS(m1, m2) and the two
seasonal cycles by

c
(1)
t = (s(1)

t , s(1)
t−1, . . . , s(1)

t−m1+1)
′ and c

(2)
t = (s(2)

t , s(2)
t−1, . . . , s(2)

t−m2+1)
′.

Estimates of m1 + m2 + 2 seeds must be made for this model.
There are m2 seasonal terms in the long cycle that are updated once in

every m2 time periods. There are an additional m1 seasonal terms in the
shorter cycle that are updated once in every m1 time periods. It is not a
requirement of the DS(m1, m2) model that m1 be a divisor of m2. However,
if k = m2/m1, then there are k shorter cycles within the longer cycle. Hence,
for hourly data, there would be 168 seasonal terms that are updated once in
every weekly cycle of m2 = 168 time periods and another m1 = 24 seasonal
terms that are updated once in every daily cycle of 24 time periods. For the
longer weekly cycle the same smoothing parameter, γ2, is used for each of
the 168 seasonal terms, and for the shorter daily cycle the same smoothing
parameter, γ1, is used for each of the 24 seasonal terms. In our MS model we
will be able to relax these restrictions.

14.1.3 Using Indicator Variables in a Model for the HW Method

We now show how to use indicator variables to express the HW(m2) model in
two other forms when k = m2/m1. We do this to make it easier to understand
the MS model and its special cases in the next section. First we divide the
cycle c0 for HW(m2) into k sub-cycles of length m1 as follows:

ci,0 = (si,0, si,−1, . . . , si,−m1+1)′

= (s−m1(k−i), s−m1(k−i)−1, . . . , s−m1(k−i)−m1+1)
′, (14.3)

where i = 1, . . . , k, and

c0 = (c′k,0, c′k−1,0, . . . , c′1,0)
′. (14.4)

For example, with hourly data, we could divide the weekly cycle of length
168 into k = 7 daily sub-cycles of length m1 = 24. At each time period t, cit
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contains the current values of the m1 seasonal components for cycle i (i.e.,
day i) and is defined by

cit = (si,t, si,t−1, . . . , si,t−m1+1)′, i = 1, . . . , k. (14.5)

Next we define a set of indicator variables that indicate which sub-cycle is
in effect for time period t. For example, when using hourly data these indica-
tor variables would indicate the daily cycle to which the time period belongs.
The indicator variables are defined as follows:

xit =
{

1 if time t occurs when sub-cycle i is in effect
0 otherwise. (14.6)

Then the HW(m2) model may be written as follows:

yt = �t−1 + bt−1 +
k

∑
i=1

xitsi,t−m1 + εt, (14.7a)

�t = �t−1 + bt−1 + αεt, (14.7b)
bt = bt−1 + βεt, (14.7c)
sit = si,t−m1 + γxitεt, i = 1, . . . , k. (14.7d)

The effect of the xit is to ensure that the m2 = k × m1 seasonal terms are each
updated exactly once in every m2 time periods. Equation (14.7d) may also
be written in a form that will be a special case of the MS model in the next
section as follows:

sit = si,t−m1 +
( k

∑
j=1

γijxjt

)
εt,

where i = 1, . . . , k and

γij =
{

γ if i = j
0 otherwise.

14.2 Multiple Seasonal Processes

14.2.1 An Innovations State Space Model
for Multiple Seasonal (MS) Processes

A fundamental goal of our new model for multiple seasonal (MS) processes
is to allow for the seasonal terms that represent a seasonal cycle to be updated
more than once during the period of the cycle. This goal may be achieved
in two ways with our model. We start, as we did for the HW(m2) model
in the previous section, by dividing the cycle of length m2 into k shorter
sub-cycles of length m1. Then we use a matrix of smoothing parameters
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that allows the seasonal terms of one sub-cycle to be updated during the
time for another sub-cycle. For example, seasonal terms for Monday can be
updated on Tuesday. Sometimes this goal can be achieved in a second way
by combining sub-cycles with the same seasonal pattern into one common
sub-cycle. This latter approach has the advantage of reducing the required
number of seed values and, in some cases, the number of parameters. More
frequent updates may also provide better forecasts, particularly when the
observations m1 time periods ago are more important than those values
m2 time periods earlier. It is also possible with our model to have different
smoothing parameters for different sub-cycles (e.g., for different days of the
week).

The existence of common sub-cycles is the key to reducing the number
of seed values compared to those required by the HW method and DS expo-
nential smoothing. As described in Sect. 14.1.3, it may be possible for a long
cycle to be broken into k = m2/m1 shorter cycles of length m1. Of these k
possible sub-cycles, r ≤ k distinct cycles may be identified. For example,
consider the case when m1 = 24 and m2 = 168 for hourly data. By assuming
that Monday–Friday have the same seasonal pattern, we can use the same
sub-cycle for these 5 days. We can use the same sub-cycle for Saturday and
Sunday, if they are similar. Thus, we might be able to reduce the number of
daily sub-cycles from k = 7 to r = 2. The number of seed estimates required
for the seasonal terms would be reduced from 168 for the HW method and
192 for the DS method to 48 for the new method.

A set of indicator variables based on the r shorter cycles can be
defined by

xit =
{

1 if time period t occurs when sub-cycle i is in effect;
0 otherwise. (14.8)

On any given day, only one of the xit values equals 1. Let xt = [x1t, x2t,
x3t, . . . , xrt]′ and st = [s1t, s2t, s3t, . . . , srt]′.

The general MS model for additive seasonality and r ≤ k = m2/m1 is:

yt = �t−1 + bt−1 +
r

∑
i=1

xitsi,t−m1 + εt, (14.9a)

�t = �t−1 + bt−1 + αεt, (14.9b)
bt = bt−1 + βεt, (14.9c)

sit = si,t−m1 +
( r

∑
j=1

γijxjt

)
εt, (14.9d)

where i = 1, . . . , r and εt ∼ NID(0, σ2).
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This model is a linear innovations state space model, and the equations
can also be written in matrix form:

yt = �t−1 + bt−1 + x′
tst−m1 + εt, (14.10a)

�t = �t−1 + bt−1 + αεt, (14.10b)
bt = bt−1 + βεt, (14.10c)
st = st−m1 + Γxtεt, (14.10d)

ŷt+1|t = �t−1 + bt−1 + x′
tst−m1 . (14.10e)

The seasonal smoothing matrix Γ contains the smoothing parameters for
each of the cycles. The parameter γii is used to update seasonal terms dur-
ing time periods that belong to the same sub-cycle (e.g., days that have the
same daily pattern). The parameter γij, i �= j, is used to update seasonal
terms belonging to a sub-cycle during the time periods that occur during
another sub-cycle (e.g., seasonal terms for one day can be updated during a
day that does not have the same daily pattern). We will denote this model by
MS(r; m1, m2) and the seasonal cycles by

cit = (si,t, si,t−1, . . . , si,t−m1+1)′

for i = 1, . . . , r.
This model can also be written in a state space form (see Appendix “First-

order form of the model”) and estimated using the Kalman filter (Sect. 12.7)
or the information filter (Sect. 12.3). Here, as will be discussed in Sect. 14.2.5,
we estimate the model using exponential smoothing when maximizing the
conditional likelihood in Chap. 5.

14.2.2 A Model for Multiplicative Seasonality

Thus far, we have concentrated upon models for time series that exhibit
additive, rather than multiplicative, seasonal patterns. In the additive case
the seasonal effects do not depend on the level of the time series, while
for the multiplicative case the seasonal effects increase at higher values
of the time series. We can adapt the MS(r; m1, m2) model to account for a
multiplicative seasonal pattern using the approach for nonlinear models in
Chap. 4.

The general multiplicative form of the MS model for r ≤ k = m2/m1 is:

yt = (�t−1 + bt−1)
( r

∑
i=1

xitsi,t−m1

)
(1 + εt), (14.11a)

�t = (�t−1 + bt−1)(1 + αεt), (14.11b)
bt = bt−1 + β(�t−1 + bt−1)εt, (14.11c)
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sit = si,t−m1

[
1 +

( r

∑
j=1

γijxjt

)
εt

]
(i = 1, . . . , r), (14.11d)

where εt ∼ NID(0, σ2). Consequently,

ŷt+1|t = (�t−1 + bt−1)
( r

∑
i=1

xitsi,t−m1

)
. (14.12)

14.2.3 Reduced Form of the MS Model

We now return to the additive form of the MS model. The reduced form of
the MS(r; m1, m2) model may be derived from (14.9) by applying appropriate
transformations to yt to eliminate the state variables and achieve stationarity.
The reduced form of the MS model is

∆∆m2 yt =
r

∑
j=1

(
θjtL

jm1 − θj,t−1Ljm1+1
)

εt + α∆m2 εt−1 + β
m2

∑
j=1

Ljεt + ∆∆m2 εt,

(14.13)
where L is the lag operator and ∆i = (1 − Li) takes the ith difference. In the
case where the trend bt is omitted, the reduced form becomes:

∆m2 yt =
( r

∑
j=1

θjtL
jm1

)
εt + α

m2

∑
j=1

Ljεt + ∆m2 εt. (14.14)

The θit value will be a sum of r terms, each of which is a product of a value
from xt and a value from Γ, but at any time t it will be equal to only one of
the values from Γ.

For example, in the case with no trend, m1 = 4, m2 = 12 and k = r = 3
(no repeating sub-cycles), (14.14) can be written as:

∆12yt =
( 3

∑
j=1

θjtL
4j
)

εt + α
12

∑
j=1

Ljεt + ∆12εt. (14.15)

In this case, θ1t = x1tγ13 + x2tγ21 + x3tγ32, θ2t = x1tγ12 + x2tγ23 + x3tγ31 and
θ3t = x1tγ11 + x2tγ22 + x3tγ33. See Appendix “The MS(r; m1, m2) model in
reduced form” for the derivation of the reduced form.

The reduced form of the model verifies that the MS model has a sensible,
though complex, ARIMA structure with time-dependent parameters at the
seasonal and near seasonal lags. The advantage of the state space form is
that the MS model is more logically derived, more easily estimated, and more
interpretable than its reduced form counterpart. In the next section we give
the specific restrictions on Γ (and hence the θit values) that may be used to
show that the reduced forms of the HW(m1), HW(m2) and DS(m1, m2) models
are special cases of the reduced form of the MS(r; m1, m2) model in (14.13).
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14.2.4 Model Restrictions

In general, the number of smoothing parameters contained in Γ is equal to
the square of the number of separate sub-cycles (r2) and can be quite large.
In addition to combining some of the sub-cycles into a common sub-cycle,
restrictions can be imposed on Γ to reduce the number of parameters. We
shall see that some of these restrictions produce the HW(m1), HW(m2), and
DS(m1, m2) models as special cases of the MS(r; m1, m2) model in (14.10).

One type of restriction is to force common diagonal and common off-
diagonal elements as follows:

γij =
{

γ∗
1, if i �= j common off-diagonal

γ∗
2, if i = j common diagonal. (14.16)

In this case θ1t = θ2t = · · · = θr−1,t = γ∗
1 and θrt = γ∗

2 .
Within the type of restriction in (14.16), there are three restrictions of

particular interest. We will refer to them as

• Restriction 1: γ∗
1 = 0, and γ∗

2 �= 0
If r = k, this restricted model is equivalent to the HW(m2) model in
(14.1) where γ∗

2 = γ. The seed values for the k seasonal cycles in this
MS(k; m1, m2) model and the one seasonal cycle in the HW(m2) model are
related as shown in (14.3) and (14.4) of Sect. 14.1.3 (where t = 0).

• Restriction 2: γ∗
1 = γ∗

2
If the seed values for the r seasonal sub-cycles in the MS(r; m1, m2) model
are identical, this restricted model is equivalent to the HW(m1) model
in (14.1) where γ∗

1 = γ. Normally in the MS(r; m1, m2) model, the different
sub-cycles are allowed to have different seed values. Hence, this restricted
model will only be exactly the same as the HW(m1) model if we also restrict
the seed values for the sub-cycles to be equal to each other. However, for
sufficiently large n, the forecasts should not be affected by the seed values.

• Restriction 3: Equivalent to (14.16)
If r = k, this restricted model is equivalent to the DS(m1, m2) model in
(14.2) where γ∗

1 = γ1 and γ∗
2 = γ1 + γ2. The seed values for the k sea-

sonal cycles in this MS(k; m1, m2) model and the two seasonal cycles in the
DS(m1, m2) model are related by

ci0 = (s(1)
0 + s(2)

−m1(k−i) , s(1)
−1 + s(2)

−m1(k−i)−1 , . . . ,

s(1)
−m1+1 + s(2)

−m1(k−i)−m1+1)
′.

The MS(r; m1, m2) model allows us to explore a much broader range
of assumptions than existing methods, while retaining parsimony. It nests
the models underlying the additive HW and DS methods. It contains
other restricted forms that stand in their own right. Table 14.1 presents
the number of parameters and seed values that require estimates in the



14.2 Multiple Seasonal Processes 239

Table 14.1. Number of smoothing parameters and seed values.

Model Parameters Seed values

MS(r; m1, m2) r2 + 2 rm1 + 2
MS(r; m1, m2)-Rstr. 1 3 rm1 + 2
HW(m2) 3 m2 + 2 = km1 + 2
MS(r; m1, m2)-Rstr. 2 3 rm1 + 2
HW(m1) 3 m1 + 2
MS(r; m1, m2)-Rstr. 3 4 rm1 + 2
DS(m1, m2) 4 m2 + 2 = km1 + 2a

a Short cycle seed values may be started at 0.

MS(r; m1, m2) model and some of its restrictions. A procedure for choosing
among the possible MS(r; m1, m2) models with and without these restrictions
is described in the next section.

14.2.5 Model Estimation, Selection, and Prediction

The estimation, model selection, and prediction described in this section
apply to both the additive and multiplicative MS models.

Estimation

Within the exponential smoothing framework, the parameters in an
MS(r; m1, m2) model can be estimated by minimizing the one-step-ahead sum
of squared errors

SSE =
n

∑
i=1

(yt − ŷt)2,

where n is the number of observations in the series, and ŷt = ŷt|t−1. The
seed states for the level, trend and seasonal components may be estimated
by applying the procedures for HW(m2) in Sect. 2.6.1 to the time periods that
represent four completions of all the sub-cycles (e.g., the first four weeks
for hourly data). The m1 estimates for each of the k seasonal sub-cycles are
then found by using the relationship between the cycles explained in (14.3)
and (14.4) of Sect. 14.1.3. If r < k, the estimates of the sub-cycles with the
same seasonal pattern are averaged. Then the SSE is minimized with respect
to the smoothing parameters by using the exponential smoothing equations
in (14.9). The smoothing parameters are restricted to values between 0 and 1.

Model Selection

We have seen that various special cases of the MS(r; m1, m2) model may be of
interest. We may wish to choose the number of seasonal sub-cycles r to be less
than k, restrict the values of the seasonal parameters, or use a combination
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of the two. We employ a two-step process to make these decisions. First we
choose r, and then we determine whether to restrict Γ as follows:

1. Choose the value of r in MS(r; m1, m2)
(a) From a sample of size n, withhold q time periods, where q is the last

20% of the data rounded to the nearest multiple of m2 (e.g., whole
number of weeks).

(b) Select a set of values of interest for r (e.g., using common sense
and/or graphs), and estimate the parameters for each model using
observations 1 to n − q.

(c) For each of the models in 1(b), find one-step-ahead forecasts for time
periods n − q + 1 to n without re-estimating.

(d) Pick the value of r with the smallest root mean squared forecast error

RMSE(1) =

√√√√ n

∑
t=n−q+1

(yt − ŷt)2/q.

2. Choose the restrictions on Γ

(a) Using the value of r selected in part 1 and the same n− q time periods,
compute the one-step-ahead forecast errors for Restrictions 1, 2, and
3, no restrictions, and any other restrictions of particular interest over
[n − q + 1, n].

(b) Choose the restriction with the smallest RMSE.

Prediction

A point forecast for yn+h at time period n is the conditional expected value:

ŷn+h|n = E(yn+h | a0, y1, . . . , yn),

where

a0 = (�0, b0, s1,0, . . . , s1,−m1+1, s2,0, . . . , s2,−m1+1, . . . , sr,0, . . . , sr,−m1+1)′

= (�0, b0, c′1,0, c′2,0, . . . , c′r,0)
′.

Prediction intervals for h periods in the future from time period n can be
found by using the model in (14.9) as follows: simulate an entire distribution
for yn+h and pick the percentiles for the desired level of confidence (Ord et al.
1997).

14.3 An Application to Utility Data

In this empirical example, we show that the MS model performs best within
the class of exponential smoothing models. Utility demand data was selected
to illustrate our MS procedure because it clearly has multiple seasonal cycles.
Other approaches to forecasting utility demand may be more appropriate
in particular circumstances; see, for example, Ramanathan et al. (1997) and
Cottet and Smith (2003).



14.3 An Application to Utility Data 241

M
W

0 20 40 60 80 100 120

40
00

60
00

80
00

10
00

0
12

00
0

14
00

0

Fig. 14.3. Hourly utility demand.

14.3.1 The Study

The data set consists of 3,024 observations (18 weeks) of hourly utility
demand, beginning on January 1, 2003, from a utility company in the Mid-
western area of the United States. A graph of the data is shown in Fig. 14.3.
This utility data appears to have a changing level rather than a trend so the
growth rate bt is omitted. The data also appear to exhibit an additive seasonal
pattern, that is, a seasonal pattern for which the variation does not change
with the level of the time series. For this reason the main focus of this appli-
cation is on additive models, although a multiplicative version of our model
is also tested. The data are split into two parts: a fitting sample of (n = 2,520)
observations (i.e., 15 weeks) and post sample data of (p = 504) observations
(i.e., 3 weeks). There are no weekday public holidays during the period of
the post-sample data.

The data have a number of important features that should be reflected
in the model structure. There are three levels of seasonality: yearly effects
(largely driven by temperatures), weekly effects and daily effects. For this
case study, we will only seek to capture the daily and weekly seasonal
patterns.

14.3.2 Selecting an MS Model

In this section we follow the procedure for model selection described in
Sect. 14.2.5 to select the best MS model. The first step is to choose r in
MS(r; 24, 168). To start this step we withhold 504 observations or three
weeks of data (q = 504) from the fitting sample (n = 2,520). The value of q is
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Fig. 14.4. MS(7; 24, 168): Hourly sub-cycles by day, based on the last 168 observations
(t = 2,353, . . . , 2,520).

20% of n and is the same as that of p in this example. Then, we need to
re-examine the data to look for common daily patterns for different days
of the week. One way to look for potential common patterns is to graph
the 24-hour pattern for each day of the week on the same horizontal axis.
In Fig. 14.4 we plot the seasonal terms that are estimated for the seven
sub-cycles in the MS(7; 24, 168) model during the last week of the sample
(t = n − 167, . . . , n). The plot suggests that r = 7 may use more daily pat-
terns than is required. The similarity of some weekday sub-cycles indicates
that alternative structures could be tested.

Visual inspection of Fig. 14.4 shows that the Monday–Friday sub-cycles
are similar, and Saturdays and Sundays are similar. Closer inspection shows
that the Monday–Tuesday patterns are similar, Wednesday–Friday patterns
are similar, and Saturdays and Sundays display some differences from each
other. A third possible approach is to assume that Monday–Thursday have a
common pattern and Friday, Saturday and Sunday have their own patterns.
This choice is plausible because Fridays should have a different evening
pattern to other weekdays as consumers and industry settle into weekend
routines. Support for this choice of common sub-cycles can also be seen in
Fig. 14.4 where Friday starts to behave more like Saturday in the evening
hours. We list these three choices below:

• r = 4 Version 1 MS(4; 24, 168):
Common Monday–Thursday sub-cycle, separate Friday, Saturday and
Sunday sub-cycles

• r = 4 Version 2 MS(4(2); 24, 168):
Common Monday–Tuesday, Wednesday–Friday sub-cycles, separate Sat-
urday and Sunday sub-cycles
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Table 14.2. Withheld-sample RMSE in MS model selection for utility data.

Model Restriction RMSE(1) Parameters Seed values

MS(7; 24, 168) none 234.72 50 168
MS(4; 24, 168) none 239.67 17 96
MS(4(2); 24, 168) none 250.34 17 96
MS(2; 24, 168) none 225.51 5 48
MS(2; 24, 168) 1 246.51 2 48
MS(2; 24, 168) 2 234.49 2 48
MS(2; 24, 168) 3 225.31 3 48

Table 14.3. Comparison of post-sample forecasts for the utility data.

Model Restriction RMSE(1) Parameters Seed values

HW(24) na 278.50 2 24
HW(168) na 278.04 2 168
DS(24, 168) na 227.09 3 168
MS(7; 24, 168) none 208.45 50 168
MS(2; 24, 168) 3 206.45 3 48

• r = 2 MS(2; 24, 168):
Common Monday–Friday sub-cycle, common weekend sub-cycle

We finish the first step of the model selection process by comparing the
value of RMSE(1) for the MS(7; 24, 168) model to the values for the three sub-
models listed above. Of these four models, MS(2; 24, 168) has the smallest
RMSE(1), as shown in Table 14.2. Thus, we choose this model in the first step.
The RMSE(1) values in Table 14.2 are computed for the withheld time periods
n − q + 1 to n (i.e., 2,017–2,520). In Table 14.2 we say this RMSE(1) compares
“withheld-sample” forecasts to distinguish it from the RMSE(1) in Table 14.3,
which will be computed for the p post-sample values (i.e., 2,521–3,024) that
are not part of the fitting sample.

In the second step of the process from Sect. 14.2.5, we compare Restric-
tions 1, 2, and 3 from Sect. 14.2.4 for the MS(2; 24, 168) model that was chosen
in the first step. The RMSE(1) values for these three additional models are
also shown in Table 14.2. The model with the smallest RMSE(1) for the with-
held sample test is the MS(2; 24, 168) model with Restriction 3. Hence, this
model is our selection for the best MS model for forecasting.

14.3.3 Forecasting with the MS, HW and DS Models

In general, the MS models provide better point forecasts than the HW and
DS models. The forecasting accuracy of the models is compared by using
the root mean squared forecast error for h periods ahead over p post-sample
values. The root mean squared forecast error is defined as:
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Fig. 14.5. Forecasting accuracy (RMSE) for lead-times from 1 to 48 hours (i.e., 2 days).

RMSE(h) =

√√√√ 1
p − (h − 1)

n+p−h

∑
t=n

(yt+h − ŷt+h|t)2,

where ŷt+h|t is the forecast of yt+h at time t. In this application, the RMSE(h)
values are averages based on 3 weeks (i.e., p = 504 hours) of post-sample
data and lead-times h of 1–48 hours. Table 14.3 contains the post sam-
ple RMSE(1) for the two HW models of HW(24) and HW(168), the double
seasonal model DS(24, 168), the full unrestricted multiple seasons model
MS(7; 24, 168), and the selected multiple seasons model MS(7; 24, 168) with
Restriction 3 from Sect. 14.3.2. Figure 14.5 contains the RMSE(h) for these
same five models where the forecast horizon, h, ranges from 1 to 48 hours.

The estimation of the parameters and seed values for these five models is
done using the fitting sample of size n = 2,520. The first four weeks of the fit-
ting sample are used to find initial values for the states. For the HW method
these values are found by using the approach in Sect. 2.6.1. The 24 additional
initial values for the daily seasonal components in the DS method are set
equal to 0. The initial values for the MS models are found as described in
Sect. 14.2.5. Smoothing parameters for all of the models are estimated by min-
imizing the SSE for the fitting sample of length n = 2,520, and all parameters
are constrained to lie between 0 and 1.

In examining Table 14.3, we see that MS(2; 24, 168) with Restriction 3 has
the smallest RMSE(1), and MS(7; 24, 168) is second best. The MS(2; 24, 168)
model also has far fewer parameters (3 versus 50) and seed values (48 ver-
sus 168) than the MS(7; 24, 168) model. In Fig. 14.5, the RMSE(h) values are
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Fig. 14.6. MS(2; 24, 168) Restriction 3: Point forecasts and 80% prediction intervals for
the first 8 h in the next week (t = 2,521, . . . , 2,528) of the utility demand.

consistently lower for the MS models than for the HW and DS alternatives,
with the MS model chosen by our selection process being much lower. The
more accurate forecasts are the result of the MS models offering a more
reliable structure for capturing the changes in seasonality.

Figure 14.6 shows the post-sample forecasting accuracy of the MS(2;
24,168) model with Restriction 3. Forecasts and 80% prediction intervals are
provided only for the first 8 h of the post-sample period because the intervals
become extremely wide as the time horizon increases. During the 8 h period
in Fig. 14.6, the forecasts are very good. The 80% prediction intervals are cal-
culated via simulation. One cause for the wide prediction intervals at longer
time horizons is the large estimate of α. Large structural change will require
wide prediction intervals. For the utility data the parameter α was estimated
to be between 0 and 1, and this constraint was binding in most cases (i.e.,
α̂ = 1). In this case, the resulting model corresponds to a purely seasonal
model for first differences.

14.3.4 Further Comments

The wide prediction intervals that were found when forecasting the utility
data can sometimes be avoided, if one’s goal is to forecast more than a few
hours ahead. For the longer time horizons, the parameters can be estimated
by minimizing the sum of squared h-step-ahead errors instead of the usual
one-step-ahead errors. Table 14.4 shows the effect on the estimates of the
parameters when the estimation criterion is altered for the utility data in our
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Table 14.4. Utility data smoothing parameter estimates.

Estimation done for α̂ γ∗
1 γ∗

2

h = 1 1 0.084 0.12
h = 24 0 0.83 0.83
h = 168 0 0.11 0.13

study. When the sum of squares is minimized for 24-step-ahead or 168-step-
ahead errors, the estimate of α is 0. This smaller value of α̂ will reduce the
width of the prediction intervals at the longer lead-times. Examination of
the equations in (14.9), without (14.9c) and when α = 0, reveals that the
prediction intervals will only increase in width every m1 periods rather than
every period. Figure 14.5 suggests that narrower prediction intervals become
possible, especially for m1/2 < h ≤ m1.

An interesting feature of Fig. 14.5 is the way in which the models clearly
have lower RMSE(h) values when h is a multiple of 24. This pattern has been
seen in other studies of seasonal series (e.g., Makridakis and Hibon 2000),
and indicates some degree of model mis-specification. The implication of the
numerical results in this case is that the forecasts are more accurate when
they are made for a full day ahead for the same time of day (i.e., a purely
seasonal model).

In addition to examining the utility data in Fig. 14.3 to decide that addi-
tive seasonal models were appropriate, we tested the multiplicative
MS(7; 24, 168) model in (14.11) with no trend. We found that the withheld-
sample RMSE(1) was 271.48, which is larger than the RMSE(1) of 234.72
for the additive MS(7; 24, 168) model. This provides further support for our
choice of additive seasonality. An advantage of the single source of error
models is that such nonlinear models can be included in a study.

Because Taylor (2003b) found that adding an AR(1) term improved the
forecasting accuracy of the DS model for his utility data, we also examined
whether adding an AR(1) would help for our data. We found that forecasts
at lead-times longer than one time period are worse when the AR(1) term is
included.

14.4 Analysis of Traffic Data

In this section we investigate an application of the MS approach to hourly
vehicle counts, and compare the forecasts with those from the HW and DS
approaches.

14.4.1 The Study

The fitting sample consists of 1,689 observations (about 10 weeks) of hourly
vehicle counts for the Monash Freeway, outside Melbourne in Victoria,
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Fig. 14.7. Hourly vehicle counts.

Australia, beginning August 1995. A graph of the data is shown in Fig. 14.7.
The observation series has missing values when the data recording equip-
ment was not operational. The gaps in the data are for periods of days (i.e.,
multiples of 24) and can be handled using unconditional updating of the
states. When yt is not observed, the error cannot be calculated. The error is
still unknown and is governed by an N(0, σ2) distribution. The best predictor
of the uncertain error is the mean of its distribution, namely 0. Hence we use
0 as the estimate of εt when predicting the next state vector from the old state
vector using the transition state equation. Such an approach can be applied
to any innovations state space model. In many traffic applications this abil-
ity to handle missing values is particularly useful when counting equipment
has to be taken off-line for maintenance.

Apart from the missing observations, the traffic data have the same
features as the utility data, although the yearly effects are less pronounced.
As before, we only seek to capture the daily and weekly seasonal pat-
terns. Because this data appears to have no trend and to exhibit an additive
seasonal pattern, we use additive seasonality for the HW, DS, and MS
approaches, and omit the equation for the growth rate bt. Victorian public
holidays appear throughout the fitting sample and follow a similar daily
pattern to Sundays.

This study of vehicle flows includes the HW(24), HW(168), DS(24, 168)
and MS models. Models are compared by using the RMSE for h periods
ahead over a post-sample period of length p = 504, which does not contain
any public holidays. We examine lead-times of up to 2 weeks (h = 1, . . . , 336),
which can be relevant for planning road works. Smoothing parameters and
seeds are estimated using the same procedures as in the previous section.
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Table 14.5. Comparison of withheld-sample forecasts for the traffic data.

Model Restriction RMSE(1) Parameters Seed values

MS(7; 24, 168) none 498.31 50 168
MS(4; 24, 168) none 428.88 17 96
MS(3; 24, 168) none 394.42 10 72
MS(2; 24, 168) none 308.84 5 48
MS(2; 24, 168) 1 310.94 2 48
MS(2; 24, 168) 2 333.85 2 48
MS(2; 24, 168) 3 310.94 3 48
MS(2; 24, 168) public hols. none 228.68 5 48

An MS model is chosen using the method in Sect. 14.2.5, with q = 336 (i.e.,
2 weeks of data). Based on a visual inspection of the raw data and plots of
the seasonal terms for the MS(7; 24, 168) model, three candidates were tested
along with the full MS model.

• r = 4 Version 1 MS(4; 24, 168): Common Monday–Thursday sub-cycle,
separate Friday, Saturday and Sunday sub-cycles

• r = 3 MS(3; 24, 168): Common Monday–Friday sub-cycle, separate Satur-
day and Sunday sub-cycles

• r = 2 MS(2; 24, 168): Common Monday–Friday sub-cycle, common week-
end sub-cycle

In Table 14.5 we see that, among the first four models, MS(2; 24, 168) has
the smallest RMSE(1), where this RMSE is computed using the withheld val-
ues within the original sample. Thus, we choose r = 2 in step 1. None of
the restrictions are supported. However, if we account for public holidays by
using the same indicator as the one for the Saturday/Sunday sub-cycle, the
one-step-ahead forecasts for the withheld data are greatly improved. Hence,
we choose MS(2; 24, 168) with public holidays for our best MS model.

14.4.2 Comparison of the MS Models with the HW and DS Models

In Table 14.6, the post-sample RMSE(1) can be compared for each of the fol-
lowing six models: HW(24), HW(168), DS(24, 168), full MS(7; 24, 168) (with
and without public holidays), and MS(2; 24, 168) model with public holidays.
We see that the MS(2; 24, 168) model that accounts for public holidays has the
smallest RMSE(1), while the RMSE(1) for the MS(7; 24, 168) model is slightly
larger than the essentially common value for HW(168) and DS(24, 168).
The MS(2; 24, 168) model with public holidays is clearly the best model for
forecasting 1 h ahead, offering a reduction of approximately 15% in RMSE
over the HW and DS models.

In Fig. 14.8, we can compare the HW(24) model, the HW(168) model, the
MS(7; 24, 168) model, and the MS(2; 24, 168) model with public holidays over
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Table 14.6. Comparison of post-sample forecasts for the traffic data.

Model Restriction RMSE(1) Parameters Seed values

HW(24) na 365.09 2 24
HW(168) na 228.60 2 168
DS(24, 168) na 228.59 3 168
MS(7; 24, 168) none 238.33 50 168
MS(7; 24, 168) public hols. none 245.25 50 168
MS(2; 24, 168) public hols. none 203.64 5 48
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Fig. 14.8. Forecasting accuracy (RMSE) for lead-times from 1 to 336 hours (i.e., 2
weeks).

lead-times of 1–336 hours. The values of RMSE(h) when h > 1 in this figure
give a different ordering for forecasting accuracy than those in Table 14.6.
The estimate of γ1 when m1 = 24 for DS(24, 168) is effectively zero, making
it is equivalent to HW(168). Thus, the DS(24, 168) model is not included, as
it is indistinguishable from HW(168). The model selected by our MS selec-
tion process, MS(2; 24, 168) with public holidays, is no longer best, but it still
provides far more accurate forecasts than the HW and DS models. Clearly,
the MS(7; 24, 168) produces the best forecasts (i.e., the smallest RMSE(h)) for
forecasting horizons of 2 or more hours ahead.

The unconditional updating of the states during periods of missing data
proves to be effective for all models. Generally jumps are observed in the
level �t after periods of missing data. The jumps are more pronounced for
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Fig. 14.9. MS(7; 24, 168): Multi-step-ahead point forecasts and 80% prediction inter-
vals for the vehicle counts for each hour in the last 2 weeks of the evaluation sample
(t = 1,681, . . . , 2,016).

the MS(7; 24, 168) model, which has a relatively stable level during periods
of no missing data.

Multi-step-ahead forecasts and 80% prediction intervals for the post-
sample data using the MS(7; 24, 168) model can be found in Fig. 14.9. The
forecasts follow the observed series closely and the prediction intervals are
not as wide as those for the utility data. These narrower intervals can be
explained by the extremely small estimate of α. For MS(7; 24, 168), α̂ = 0.01.

14.5 Exercises

Exercise 14.1. Consider the indicator variable models in Sect. 14.1.3 when
m1 = 4 and m2 = 12, and show that Restriction 1 applied to Model 14.9
(or the equivalent Model 14.10) yields the Holt-Winters model HW(12).

Exercise 14.2. Repeat Exercise 14.1 to show that Restriction 2 applied to
Model 14.9 (or the equivalent Model 14.10) yields the Holt-Winters model
HW(4).

Exercise 14.3. Develop an argument for the double smoothing model
DS(m1, m2) similar to the one in Sect. 14.1.3 to show that Restriction 3 applied
to Model 14.9 (or the equivalent Model 14.10) leads to the DS(m1, m2) model.
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Appendix: Alternative Forms

First-Order Form of the Model

The MS(r; m1, m2) model in (14.9) can be written in first-order form where the
state variables are lagged by only one period in the state transition equation:

yt = w′
tat−1 + εt,

at = Fat−1 + gtεt,

where at is the state vector of length 2 + rm1 containing level, trend and
seasonal terms:

at = (�t, bt, s1,t, . . . , s1,t−m1+1, s2,t, . . . , s2,t−m1+1, . . . , sr,t, . . . , sr,t−m1+1)′;

wt is a vector of length 2 + rm1 containing values of 1 and 0 (depending on
which sub-cycle t corresponds to):

wt = (1, 1, 0, . . . , 0, x1t, 0, . . . , 0, x2t, 0, . . . , 0, xrt)′;

F is a block-diagonal (2 + rm1)× (2 + rm1) matrix of the form:

F =

⎡
⎢⎢⎢⎣

F�

... 0

· · · ... · · ·
0

... Fs

⎤
⎥⎥⎥⎦,

where

F� =
[

1 1
0 1

]

controls the level and trend components, and the seasonal components are
controlled by the rm1 × rm1 matrix

Fs = I ⊗F1,

where I is the r × r identity matrix and F1 is the m1 × m1 matrix of the form

F1 =

⎡
⎢⎢⎢⎢⎣

0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎦; (14.17)
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gt is a vector of length 2 + rm1, the values of which are determined by Γ, α, β
and xt:

gt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α
β

∑r
i=1 γ1ixit

0
...

∑r
i=1 γ2ixit

0
...

∑r
i=1 γrixit

...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The MS(r; m1, m2) Model in Reduced Form

Consider the MS(r; m1, m2) model in (14.9). We restrict our attention to
the case where r = m2/m1. This does not entail any loss of generality, because
all cases in which the number of distinct cycles of period m1 is less than
m2/m1 can be considered as special cases of the case r = m2/m1, with some
equality constraints on the smoothing parameters and seed values.

The non-seasonal part of the series is a “local linear trend” process, which
is an ARIMA(0,2,2); see Sect. 11.2. Hence, the important thing to establish is
the reduced form of the seasonal component. Because si,t−m1 appears in the
yt equation rather than si,t, we start by lagging equation (14.9d) m1 periods.
Then the following is true for i = 1, . . . , r:

si,t−m1 = si,t−2m1 +
( r

∑
j=1

γijxj,t−m1

)
εt−m1 .

Repeated substitution r times leads to:

si,t−m1 = si,t−m2−m1 +
( r

∑
j=1

γijxj,t−m1

)
εt−m1 +

( r

∑
j=1

γijxj,t−2m1

)
εt−2m1 + · · ·

+
( r

∑
j=1

γijxj,t−(r−1)m1

)
εt−(r−1)m1

+
( r

∑
j=1

γijxj,t

)
εt−m2 .

The last term has xj,t rather than xj,t−m2 because xj,t = xj,t−m2. For each value
of j, one and only one of the r indicator variables xj,t, xj,t−m1, . . . , xj,t−(r−1)m1
is equal to one and the rest are zero, and as j changes, a different one of
these indicator variables switches to one. Hence the r terms (∑r

j=1 γijxj,t−m1),
(∑r

j=1 γijxj,t−2m1), . . . , (∑r
j=1 γijxj,t) are a circular backward rotation of
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γi1, γi2, . . . , γir, the rth row of the matrix of smoothing parameters. An
example of such a backward rotation would be γi2, γi1, γir, γir−1, . . . , γi4, γi3.
Depending on which sub-cycle t belongs to, the rotation starts from a differ-
ent point. However, because si,t−m1 is added to yt only when xi,t = 1, (i.e.,
when t belongs to sub-cycle i), the relevant rotation starts from γi,i−1 (or γi,r
if i = 1) and circles back and ends with γi,i.

Hence, we have

(1 − Lm2)si,t−m1 =
r

∑
j=1

γc
ijεt−jm1 for t ∈ sub-cycle i, (14.18)

where γc
i1, . . . , γc

ir is the particular backward rotation of γi1, γi2, . . . , γir
described above. This shows that each of the r seasonal factors is a sea-
sonal ARIMA (0, 1, 0)m2 × (0, 0, r − 1)m1 . Using (14.18) and noting that xi,t =
xi,t−m2, the seasonal component of yt can be written as:

r

∑
i=1

xi,tsi,t−m1 =
r

∑
i=1

xi,tsi,t−m1−m2 +
r

∑
i=1

xi,t

r

∑
j=1

γc
ijεt−jm1

=
r

∑
i=1

xi,t−m2si,t−m1−m2 +
r

∑
j=1

( r

∑
i=1

xi,tγ
c
ij

)
εt−jm1

=
r

∑
i=1

xi,t−m2si,t−m1−m2 +
r

∑
j=1

θj,tεt−jm1 ,

where θj,t ≡ ∑r
i=1 xi,tγ

c
ij. This shows that the seasonal component in yt is

a seasonal ARIMA(0, 1, 0)m2 × (0, 0, r − 1)m1 with periodic moving average
parameters. Hence yt is the sum of an ARIMA(0,2,2) and a seasonal ARIMA
(0, 1, 0)m2 × (0, 0, r − 1)m1 with moving average parameters that depend on
which sub-cycle t belongs to.

To find the reduced form, we first subtract yt−m2 from yt:

yt − yt−m2 = �t−1 − �t−1−m2 + bt−1 − bt−1−m2 +
r

∑
j=1

θj,tεt−jm1 + εt − εt−m2 .

Repeated substitution into (14.9b) yields:

�t−1 − �t−1−m2 + bt−1 − bt−1−m2 =
m2

∑
j=1

bt−j + α
m2

∑
j=1

εt−j,

which leads to:

∆m2 yt =
m2

∑
j=1

bt−j + α
m2

∑
j=1

εt−j +
r

∑
j=1

θj,tεt−jm1 + ∆m2 εt.
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If there was no trend in the model, the reduced form would be the above
equation without the first term on the right hand side. With the trend,
because bt is integrated, we still have to do an extra round of first dif-
ferencing to achieve stationarity. Using the facts that ∆bt−j = βεt−j and
∑m2

j=1 εt−j − ∑m2
j=1 εt−j−1 = εt−1 − εt−m2−1, we get

∆∆m2 yt = β
m2

∑
j=1

εt−j + α∆m2 εt−1 +
r

∑
j=1

(θj,tεt−jm1 − θj,t−1εt−jm1−1) + ∆∆m2 εt.

This shows that after first and m2 differencing, yt is a moving average of
order m2 + 1 with non-zero, but periodic, moving average parameters about
seasonal lags corresponding to a sub-cycle of period m1.
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Nonlinear Models for Positive Data

Co-author:1 Muhammad Akram2

In Chap. 4 we considered a class of nonlinear and heteroscedastic inno-
vations state space models and developed their properties. At that time
we noted that the Gaussian distribution was not always an appropriate
distribution for the error process. Nevertheless, we claimed that the Gaus-
sian likelihood would often provide a reasonable framework for parameter
estimation. We also used the Gaussian distribution to construct prediction
intervals. Our aim in this chapter is to examine the structure of these nonlin-
ear exponential smoothing state space models in greater detail and to check
the conditions under which the use of the Gaussian distribution provides an
appropriate approximation.

Why should these issues concern us? First of all, we may note that most
of the series that we encounter in business applications are strictly positive,
such as sales, prices, etc. Of course, there are many exceptions, most notably
the returns on an investment (although the underlying stock or bond price
is strictly positive even here). Nevertheless, the linear models of Chap. 3 are
widely used for such series, so why should we pay particular attention to
the nonlinear models? The first reason is that, under the Gaussian assump-
tion, the forecast variances may be undefined. Second, we find that there are
some difficult specification problems associated with models strictly defined
on the positive half line; we examine these questions in greater detail in
Sect. 15.1. We then explore purely multiplicative models in Sect. 15.2 in order
to identify possible solutions to these difficulties. Section 15.3 contains some
distributional results for the ETS(M,N,N) model, where the innovations are
from a lognormal or gamma distribution. In Sect. 15.4, we examine the extent
to which the Gaussian distribution can serve as a reasonable approximation,
notwithstanding the theoretical objections noted earlier. We need to consider

1 This chapter is based, in part, on material presented in Hyndman and Akram
(2006) and Akram et al. (2007).

2 Dr. Muhammad Akram, Department of Econometrics and Business Statistics,
Monash University, Australia.
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parameter estimation, point forecasting, interval forecasting and simulation.
We find that the Gaussian approximation typically works well for the first
two issues, has a somewhat mixed record for interval estimation and may
lead to problems in long series simulations.

15.1 Problems with the Gaussian Model

Positive time series are very common in business, industry, economics and
other fields, and exponential smoothing methods are frequently used for
forecasting such series. From a practical viewpoint, this approach often
appears to be satisfactory because the process is bounded well away from the
origin. However, cases may arise where the prediction intervals developed
(following the procedures in Chap. 6) include a sub-interval of negative val-
ues. Indeed, as the forecasting horizon is extended, even the point forecasts
may become negative.

Because the Gaussian distribution extends over the whole real line, it can-
not provide an exact specification for the error process when the series is
constrained to be non-negative. When the model is purely multiplicative,
a logarithmic transformation seems a reasonable option, and we explore it
in Sect. 15.2.2. However, when the model has some additive components,
this option is not available. Some authors (e.g., Hyndman et al. 2002) have
suggested using a truncated Gaussian distribution for the errors so that
the sample space is constrained to take only positive values. Other options
include the use of distributions such as the gamma or lognormal which are
defined on the positive half-line. In this section we explore the theoretical
limitations of the Gaussian model, before exploring other options later in the
chapter.

We begin the discussion by considering the various models outlined in
Tables 2.2 and 2.3. Fifteen of these 30 ETS models contain additive errors,
and the others involve multiplicative errors. It is convenient to divide the
30 models into four classes, although we divide them differently from the
classes given in Chap. 6:

Class M: Purely multiplicative models: (M,N,N), (M,N,M), (M,M,N),
(M,M,M), (M,Md,N) and (M,Md,M)

Class A: Purely additive models: (A,N,N), (A,N,A), (A,A,N), (A,A,A),
(A,Ad,N) and (A,Ad,A)

Class X: Models with additive errors and at least one multiplicative compo-
nent, and models with multiplicative errors and multiplicative trend but
additive seasonality: (A,M,∗), (A,Md,∗), (A,∗,M), (M,M,A), (M,Md,A),
where ∗ denotes any admissible component (11 models)

Class Y: Models with multiplicative errors and additive trend, and the model
with multiplicative errors and additive seasonality but no trend: (M,A,∗),
(M,Ad,∗) or (M,N,A), where ∗ denotes any admissible component (seven
models)



15.1 Problems with the Gaussian Model 257

Class A corresponds to Class 1 in Chap. 6 and Class X corresponds to Class 5
in Chap. 6. The models in Classes M and Y are divided differently into
Classes 2–4 in Chap. 6.

It is evident that only the purely multiplicative models of Class M can
guarantee a sample space that is restricted to the positive half-line. Class A
contains the purely additive models, widely used in practice for short-term
forecasting, but they clearly do not conform to the requirements of non-
negative processes unless additional conditions are imposed. The remaining
models in Classes X and Y all possess both multiplicative and additive com-
ponents. If the observational sample space is not restricted to be strictly
positive, the Class X models can have an infinite forecast variance for three or
more steps ahead (i.e., h ≥ 3); for some seasonal models the problem occurs
for h ≥ m + 2. This problem does not arise, however, for the Class Y models.
The following discussion serves to illustrate the general concern.

15.1.1 The Infinite Variance Problem

Consider the ETS(A,M,N) model:

yt = �t−1bt−1 + εt,
�t = �t−1bt−1 + αεt,
bt = bt−1 + βεt/�t−1.

Simulated values from the model ETS(A,M,N) are plotted in the top panel
of Fig. 15.1. The Gaussian distribution is used to generate the errors. From
this figure, the implications of an infinite forecast variance can be seen quite
clearly. As soon as the value of �t−1 gets close to zero, the sample path
becomes very unstable.

To observe how the behavior of the series changes with the change in the
value of �t (particularly when �t is close to zero), the first few values of the
states have also been plotted in Fig. 15.1. The middle panel shows the level
component of the series and the bottom panel shows the slope component
of the series. From this figure, it can be seen that the fifth value of the level
component is very close to zero. This leads to a rapid decrease in the trend
component in the following period. In the next time period the level increases
sharply, and it oscillates between successively larger positive and negative
values thereafter. As a consequence of these changes in the level and slope
components, the value of the sample path becomes unstable from this point
onward.

To see that this problem is general in nature, consider the trend equation
at time t = 2:

b2 = b1 + βε2/�1 = b0 + β

(
ε2

�1
+

ε1

�0

)
= b0 + β

(
ε2

�0b0 + αε1
+

ε1

�0

)
.
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Fig. 15.1. ETS(A,M,N) simulation: �0 = 0.1, b0 = 1, α = 0.1, β = 0.05, and σ = 1.

If εt has a Gaussian distribution, the first term in the brackets is a ratio of two
Gaussian variables. When �0b0 = 0 this term has a Cauchy distribution. In
general, for all other values of �0b0, the distribution is not Cauchy but it still
has an infinite variance and undefined expectation (see Stuart and Ord 1994,
pp. 400, 421). Indeed, these problems arise whenever the level of the series
has positive density over an open interval that includes zero. These prob-
lems with the trend equation will propagate into the observation equation
at time t = 3. Similar problems arise with other distributions in Class X; see
Hyndman and Akram (2006) for details.

We may try to restrict the range of the errors in such a way as to eliminate
the possibility of negative values. A model with multiplicative components
(whether E, T or S) is only sensible if observations are defined on the positive
half-line, but the Gaussian error structure clearly leads to a non-vanishing
probability of a violation sooner or later. Because these models require
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non-negative observations and state variables, model failure is inevitable in
the long-run when the underlying distribution is taken over the whole real
line. Essentially, for any model with a Gaussian error process, the first pas-
sage time properties will eventually lead to negative values for the series
unless there is a strong upward trend.

In order to maintain the strictly positive nature of the model, the error
process cannot be specified as Gaussian. A Gaussian approximation may
work as the basis for computing point forecasts and short-term prediction
intervals, and this method has been widely used over the years. However,
such choices cannot lead to exact distributional results.

To find a possible solution, consider the same simple model ETS(A,M,N).
In order for the process to remain strictly positive, we require:

�t−1bt−1 + εt > 0.

This condition requires the distribution of

ε∗t = 1 +
εt

�t−1bt−1

to be defined on the positive line; that is, ε∗t ∈ (0, ∞). From a practical
perspective, a long series may be needed before the positivity condition is
violated; the first passage time depends strongly on the parameters.

15.1.2 The Convergence to Zero Problem

Models with only multiplicative components may appear to be the natural
choice for positive data. However, Fig. 15.2 shows three realizations of the
ETS(M,N,N) model using the Gaussian distribution, all of which show a ten-
dency to decay towards zero. The reason for this behavior is discussed in
Sect. 15.2.1. Again, it is a relatively long-run behavior, and so does not have
an immediate impact on short-term forecasting. However, for simulations
and long-term forecasting, this behavior needs to be understood.

15.1.3 Non-Constant Innovations Variance

If the error εt is to have mean zero and the sample space is to be restricted to
the positive real line, then the variance cannot be constant. This is easily seen
for the ETS(M,N,N) model by considering the possible values of εt when �t is
close to zero. Further, if the process approaches zero, the mean of a truncated
distribution becomes more strongly positive, which may cause an uptick in
the series; see Exercise 15.1.

Based upon these findings, it would appear that we should consider mod-
els with non-negative error structures; we proceed to examine such models
in the next section.
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Fig. 15.2. Simulated data from model ETS(M,N,N) with Gaussian errors. The param-
eter values are �0 = 10, α = 0.3 and σ = 0.3.

15.2 Multiplicative Error Models

In the previous section, we concluded that only models with a multiplicative
error structure should be considered for strictly positive data. In this section
we show that even in these circumstances, the models may fail to perform
satisfactorily.

Example 15.1: ETS(M,N,N) model

By way of illustration, we consider the multiplicative simple exponential
smoothing model, or ETS(M,N,N), as given below:

yt = �t−1(1 + εt), (15.1a)
�t = �t−1(1 + αεt), (15.1b)
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where εt denotes a white noise series with variance σ2, such that εt ≥ −1
and 0 < α < 1 (to ensure the data remain positive). Hyndman et al. (2002)
consider the model with εt ∼ N(0, σ2). A truncated Gaussian distribution
could be used with positive data to ensure εt ≥ −1. When σ2 is very small,
the truncation is almost never needed. This assumption is not unreason-
able in many applications in business and economics, but we shall not so
restrict the discussion here. Other specifications of the error distribution
that we consider in this chapter are the lognormal and gamma distribu-
tions. We ran simulations on these three alternatives, maintaining the same
mean and variance for the errors, using a common random number stream,
and selecting plausible sets of parameter values. Somewhat surprisingly,
we found that the three specifications produced very similar results, except
near zero. The reader is encouraged to explore the behavior of these models
under different initial conditions; see Exercise 15.2.

Some models have properties akin to branching processes, in that dif-
ferent realizations may either explode or fade to zero. Even though long
series may be necessary for such asymptotic behavior to become manifest,
this property is potentially troubling for long forecast horizons or in simula-
tion studies. We will now explore these empirical findings from a theoretical
perspective.

15.2.1 Kakutani’s Theorem

We are interested in situations where observations are on the positive half-
line, but the other features of the innovations model remain unchanged.
Therefore, we now assume that the distribution of δt = 1 + εt has mean 1
and variance σ2, such that the δt are defined on the positive half-line and are
independent and identically distributed. We continue with the simple case
ETS(M,N,N), because the results can be extended directly to deal with more
complex models. In this discussion, as a matter of convenience, we assume
that 0 < α ≤ 1. (If 1 < α < 2 we would need to consider δt = 1 + αεt
to ensure that the process remains positive. This change would mean that
δt ≥ (α− 1)/α to guarantee non-negativity, but otherwise the basic argument
is unchanged.)

We can write the local level state equation of model (15.1) as

�t = �0(1 + αε1)(1 + αε2) · · · (1 + αεt)

= �0

t

∏
j=1

(1 + αε j)

= �0Ut, (15.2)

where Ut = Ut−1(1 + αεt) and U0 = 1. Therefore Ut is a non-negative
product martingale, because E(Ut+1|Ut) = Ut.
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Kakutani’s theorem for product martingales (see Williams 1991, p. 144)
may be stated as follows.

Theorem 15.1. Let X1, X2, · · · , Xn be positive independent random variables, each
with mean 1, and let ai = E

√
Xi. Then for Un = ∏n

j=1 Xj,

U∞ > 0 almost surely if lim
n→∞

n

∏
i=1

ai > 0,

U∞ = 0 almost surely if lim
n→∞

n

∏
i=1

ai = 0.

Note that ai ≥ 0 and Jensen’s inequality (see Shiryaev 1984, p. 192) gives
ai ≤ 1. Further, provided the distributions of the Xi are not degenerate,
ai < 1. Thus, we may apply Kakutani’s theorem to (15.2), and we see that the
results in Fig. 15.2 are consistent with the theoretical result. That is, sample
paths for ETS(M,N,N) models with the stated properties tend to converge
stochastically to zero. This is true regardless of the distribution of 1 + αεt,
provided it has mean one and is non-degenerate.

The results extend to other multiplicative error models under similar con-
ditions; Exercises 15.3 and 15.4 examine the ETS(M,N,M) and ETS(M,Md,N)
models, originally discussed in Hyndman and Akram (2006).

15.2.2 An Alternative Approach

Our results so far indicate that the Gaussian assumption is at best an approxi-
mation and that the use of non-Gaussian distributions alone does not resolve
the problem when we consider long-term forecasting. Thus, in order to make
progress, we must be willing to relax one or more of the underlying assump-
tions that were made earlier. The result provided by Kakutani’s Theorem
provides the essential insight. If we are to overcome the tendency to con-
verge to zero, we must allow E

√
Xi to take on values equal to or greater than

one.
For example, consider a modified ETS(M,N,N) model, which we write as

METS(M,N,N;LN) to indicate both the modified form and the dependence
on the lognormal distribution:

yt = �t−1(1 + εt), (15.3a)
�t = �t−1(1 + εt)α, (15.3b)

where δt = 1 + εt is a positive random variable. This form of multiplicative
model is chosen primarily for its convenience as it enables us to obtain exact
sampling results when we assume that δt follows a lognormal distribution.
This model also ensures a positive-valued process for all 0 < α < 2. The
model may or may not be an improvement over existing choices, a question
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we explore in Sect. 15.5.3, but its qualitative behavior is similar and it is more
easily explored analytically.

Using a log-transformation, (15.3) can be written as

y∗t = �∗t−1 + δ∗t , (15.4a)
�∗t = �∗t−1 + αδ∗t , (15.4b)

where y∗t = log(yt), �∗t = log(�t) and δ∗t = log(δt). Thus the log-transformed
model in (15.4) is identical to the simple exponential smoothing model
ETS(A,N,N).

15.3 Distributional Results

We now proceed to develop some distributional results for each of the mod-
els (15.1) and (15.3). If we denote the mean and variance of δt = 1 + εt by
M and V respectively, and E(δk

t ) = Mk, then the means and variances of the
h-step-ahead prediction distributions may be written as:

Model (15.1)

E(yn+h|n) = E1A = �n M(1 − α + αM)h−1, (15.5a)

E(y2
n+h|n) = E2A = �2

n(M2 + V)
[
(1 − α + αM)2 + α2V

]h−1, (15.5b)

V(yn+h|n) = E2A − E2
1A. (15.5c)

Model (15.3)

E(yn+h|n) = E1M = �nMMh−1
α , (15.6a)

E(y2
n+h|n) = E2M = �2

n(M2 + V)Mh−1
2α , (15.6b)

V(yn+h|n) = E2M − E2
1M. (15.6c)

Two particular choices of distribution are the lognormal and the gamma and
we now consider each in turn.

15.3.1 The Lognormal Distribution

If δ∗t in (15.4) is Gaussian with mean µ and variance ω, or δ∗t ∼ N(µ, ω), we
may denote the lognormal assumption by δt ∼ logN(µ, ω). Standard results
for the lognormal distribution (see Stuart and Ord 1994, pp. 241–243) yield:

E(δk
t ) = exp(kµ + k2ω/2), for any k, (15.7a)

E(δt) = exp(µ + ω/2) = E1, (15.7b)

V(δt) = E2
1 [exp(ω)− 1], (15.7c)

and E(δα/2
t ) = exp(αµ/2 + α2ω/8). (15.7d)
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Table 15.1. Long-term behavior of the prediction distribution for the METS
(M,N,N;LN) model, with 0 < α < 1.

Range E(δα
t ) E(δα/2

t ) E(yh) V(yh)

µ + αω < 0 <1 <1 Decreasing Decreasing
µ + αω = 0 <1 <1 Decreasing Finite
−αω < µ < −αω/2 <1 <1 Decreasing Increasing
µ + αω/2 = 0 =1 <1 Finite Increasing
−αω/2 < µ < −αω/4 >1 <1 Increasing Increasing
µ + αω/4 = 0 >1 =1 Increasing Increasing
µ + αω/4 > 0 >1 >1 Increasing Increasing

The entry “Finite” means that the term approaches a finite limit.

From (15.7d) we can see that the expectation will exceed 1 provided µ +
αω/2 > 0.

If we now consider forecasting h periods ahead, we may set the forecast
origin to t = 0 without loss of generality to simplify the notation. Then the
prediction distribution for yh = �0zh in model (15.4) is lognormal with zh ∼
logN(µh, ωh), where

µh = µ(1 + (h − 1)α),

ωh = ω(1 + (h − 1)α2),
E(yh) = �0 exp[µh + ωh/2] = Eh,

and V(yh) = E2
h[exp(ωh) − 1].

The distributional result is exact, so that we can explore the behavior of
the prediction distribution for long lead-times with the help of Kakutani’s
Theorem. The possible outcomes for different values of the parameters are
summarized in Table 15.1. The prediction distributions become increasingly
skewed as h increases; when E(δα/2

t ) < 1 and E(δα
t ) ≤ 1, Pr(yh > 0) ↓ 0.

Individual runs for some parameter combinations are shown in Fig. 15.3.
In accordance with Table 15.1, we observe the drift towards zero when
E(δα/2

t ) < 1 and E(δα
t ) ≤ 1. The reverse is true when µ > 0. Further, the plots

show that when the parameter values are close to the boundary conditions,
we may need a long series in order to observe the limiting properties. How-
ever, we should recall from Fig. 15.2 and the related discussion that different
sample realizations may vary considerably.

The sampling distribution for model (15.1) is not exact, but may be
approximated by a lognormal distribution with mean and variance given
by (15.5) using the expectations given in (15.7).

15.3.2 The Gamma Distribution

Similar results are observed if we use the gamma distribution in place of the
lognormal, although exact distributional results are not available. We denote
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Fig. 15.3. Simulated data from the model METS(M,N,N;LN) with lognormal errors
δt ∼ logN(µ, ω): (a) µ = αω/4; (b) µ = 0; (c) µ = −αω/4; (d) µ = −3αω/8; (e) µ =
−αω/2; and (f) µ = −3αω/4; where �0 = 1, ω0.5 = σ = 0.05 and α = 0.3.

the distribution by δt ∼ Γ(r, λ), where r and λ are the shape and location
parameters. The moments of the gamma distribution are (see Stuart and Ord
1994, pp. 81–82):

E(δt) = rλ = µ,

E(δk
t ) =

λkΓ(r + k)
Γ(r)

,

and V(δt) = rλ2 = µ2/r.

For large r, the use of Stirling’s approximation yields E(δ0.5
t ) = µ0.5

exp(−r/8). Thus, for large values of r, µ needs to exceed 1 by only a small
amount to avoid convergence to zero.
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Table 15.2. Long-term behavior of the prediction distribution for the METS(M,N,N;G)
model, where G denotes the gamma distribution with r = 20, α = 0.5 and r0 =
[Γ(r + α)/Γ(r)]2 = 19.75.

E(δα
t ) E(δα/2

t ) E(yh) V(yh)

λ < 1/r <1 <1 Decreasing Decreasing
λ = 1/r =1 <1 Decreasing Decreasing
1/r < λ < 1/r0 >1 <1 Decreasing Increasing
λ = 1/r0 >1 =1 Decreasing Increasing
1/r0 < λ ≤ 1/19.66 >1 >1 Decreasing Increasing
λ > 1/19.66 >1 >1 Increasing Increasing

For comparative purposes, we consider model (15.3); the mean and vari-
ance for model (15.1) follow directly from (15.5). The distribution of yh has
mean and variance:

E(yh) = �0rλ(h−1)α+1
[

Γ(r + α)
Γ(r)

]h−1

,

V(yh) = �2
0λ2α(h−1)+2

[
r(r + 1)

(
Γ(r + 2α)

Γ(r)

)h−1

− r2
(

Γ(r + α)
Γ(r)

)2h−2
]

,

where Γ(r) denotes the gamma function. For large r, E(yh) = �0µ1+(h−1)α

and the variance is approximately

V(yh) = r−1�2
0µ2α(h−1)+2(1 + (h − 1)α2).

The last term in parentheses in the approximate variance is precisely that for
the local level model given in Table 6.3.

The distribution of yh can be approximated by the gamma distribution
with the same first and second moments. The behavior for the gamma dis-
tribution is qualitatively similar to that for the lognormal as summarized in
Table 15.2. The results are tabulated only for the case r = 20, which is smaller
than the values that would typically arise in applications; however, these
numbers serve to illustrate the general patterns. Again, long series are often
needed before the asymptotic behavior shows in the plots. We note that the
ratio r0/r tends to 1 as r → ∞, so that the region of the parameter space with
decreasing mean and increasing variance is vanishingly small. As in the log-
normal case, the prediction distributions become increasingly skewed as h
increases, and when E(δα/2

t ) < 1 and E(δα
t ) ≤ 1, Pr(yh > 0) ↓ 0.

15.4 Implications for Statistical Inference

We now consider the implications of these results for inference. There are
three elements to consider: parameter estimation based upon the likelihood
function, prediction distributions for a small to moderate number of steps
ahead, and the simulation of (potentially) long series.
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15.4.1 The Approximate Likelihood

Once the error distribution is specified, we may examine the form of the dis-
tribution to see how close the approximation is to the true version. It is well
known that the lognormal density function approaches that of the Gaussian
distribution as ω → 0; see Stuart and Ord (1994, p. 242) for a graphical rep-
resentation of this limiting relationship. However, our question is somewhat
different in that we are concerned with differences in the maximum likeli-
hood estimates, not the density functions. In order to examine this question,
we may compare the estimates obtained by:

(a) Applying the Gaussian ML estimators to lognormal data
(b) Evaluating the (correct) estimates using the lognormal likelihood func-

tion and then transforming to the mean and variance of the original error
process

In analytical terms, it is straightforward to show that the two approaches
produce similar results as ω → 0; the question is: how good is the first form
as an approximation to the second? The value of the lognormal parameter µ
does not affect the relative bias or variability of the approximate estimates, so
we may focus exclusively upon the effect that the value of σ = ω0.5 has upon
the approximation. We carried out a small simulation study using M = 100
replicates for samples of size n = 25 with σ set equal to 0.05, 0.10 and 0.20.
Values greater than 0.20 are most unlikely in practice in the present context.
The results are summarized in the following table, which examines the ratios
of the two estimates for each of the mean and standard deviation of the error.
The average bias is measured in percentage terms; the bias of the mean of the
error is negligible (less than 0.1% in all cases) and so is omitted from the table.
The standard deviations of the percentage biases were also computed across
the 100 replicates. Again, those for the mean are very small (less than 0.01%)
and are omitted. The figures for the variance of the error are reported in the
table and it can be seen that they are of a reasonable magnitude, even for σ =
0.2. The variances of the estimates themselves are almost equal, indicating
that the loss in efficiency is very slight in this region of the parameter space.

σ 0.05 0.10 0.20

Percent bias in variance 0.05 0.32 1.54
SD of percent bias in variance 1.98 3.95 7.96

Clearly, much more extensive simulation studies could be run, but the bene-
fits would be marginal. We can be reasonably confident that when the errors
follow the lognormal (or gamma) distribution, the Gaussian likelihood func-
tion is a reasonable approximation for the region of the parameter space
involved. In turn, because the one-step-ahead error distributions are close to
the Gaussian form, the approximate one-step-ahead prediction distributions
will also be reasonably close to the underlying forms in most cases.
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15.4.2 Prediction Distributions and Simulations

We now consider the lognormal model given in (15.4) and examine the pre-
diction distribution. It follows from (15.7) that the h-step-ahead prediction
distribution is also lognormal, of the form

logN
(

log(�0) + µ[(h − 1)α + 1] , ω[(h − 1)α2 + 1]
)

.

As h increases, the divergence between the Gaussian and lognormal models
becomes more and more pronounced as the prediction distribution becomes
more skewed. Similar results apply for the gamma distribution, but exact ana-
lytical results are not available. In Table 15.3 we present numerical results for
both distributions for typical values of σ and α. Again, we have focussed
upon the modified METS(M,N,N;∗) scheme, but qualitatively similar results
will apply more broadly.

The results in the table indicate that there is very little difference between
the lognormal and gamma models. We use the standard measures of skew-
ness γ1 and kurtosis γ2 based upon the third and fourth moments; γ1 =
γ2 = 0 for a Gaussian distribution. As expected, the distributions become
more skewed and heavy-tailed as the forecasting horizon increases and/or
the value of α increases.

For purely multiplicative (Class M) models with lognormal errors, the
analytical expressions for point forecasts and prediction intervals for model
ETS(A,∗,∗) may be used for the log-transformed ETS(M,∗,∗) model. That

Table 15.3. Standardized skewness and kurtosis coefficients for predictive distribu-
tions for the METS(M,N,N) model with lognormal and gamma errors.

Lognormal h α = 0.5 α = 0.8
γ1 γ2 γ1 γ2

σ = 0.05 1 0.15 0.04 0.15 0.04
5 0.21 0.08 0.28 0.14

10 0.27 0.13 0.39 0.28

σ = 0.10 1 0.30 0.16 0.30 0.16
5 0.43 0.33 0.58 0.60

10 0.55 0.55 0.81 1.19

Gamma h α = 0.5 α = 0.8
γ1 γ2 γ1 γ2

σ = 0.05 1 0.10 0.02 0.10 0.02
5 0.20 0.26 0.27 0.23

10 0.27 0.29 0.39 0.33

σ = 0.10 1 0.20 0.06 0.20 0.06
5 0.40 0.49 0.55 0.64

10 0.54 0.71 0.79 1.21
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is, if the forecast on the log scale is F and the lower and upper limits
of the prediction interval are L and U, then the forecast on the original
scale is eF with the prediction interval (eL, eU). Otherwise, for Class M
models, the best approach is to use simulations based upon a careful spec-
ification of the underlying distribution, following the methods outlined in
Chap. 6.

In order to apply the analytical approach, we must be sure that the under-
lying model will produce strictly positive values in any realization of the
series. The following example illustrates how we may check whether this
requirement is met.

Example 15.2: ETS(M,M,M) model

The model equations for the ETS(M,M,M) model are:

yt = �t−1bt−1st−m(1 + εt),
�t = �t−1bt−1(1 + αεt),
bt = bt−1(1 + βεt),
st = st−m(1 + γεt).

For convenience, we will assume that t = km to avoid the notational com-
plexities of partial seasonal cycles. Then repeated substitutions result in the
reduced form (taking t mod m = p):

yt = �0bt
0s−m+p(1 + εt)

t−1

∏
j=1

[
(1 + αε j)(1 + βε j)

t−j
] k−1

∏
i=1

(1 + γε i).

Inspection of the reduced form shows that the process will remain strictly
positive provided all the starting values for the state variables are positive
and εt > max(−1,−1/α,−1/β,−1/γ) for all t. The most natural way to
ensure that this condition is satisfied is to require that max(α, β, γ) < 1 and
that εt > −1. Similar conditions apply for the ETS(M,Md,M) model.

In general, when the model is in Class M, conditions such as those given
in Example 15.2 will suffice to maintain a positive path for the process. How-
ever, when at least one component is additive (as for the Class A models),
an unrestricted sample path may eventually hit negative values. When the
series has an overall upward trend, the risk is greatly reduced, but cannot be
eliminated as a theoretical possibility.

Because the nonlinear models are applied to series that are non-negative,
models with an additive component cannot be formally correct. Neverthe-
less, they have proved extremely useful, and the implementation problems
are minor when considering parameter estimation or predictive statements
for relatively short horizons. We only run into difficulties for long horizons
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or when we are simulating a long series. We may avoid problems either by
dropping any realization that becomes negative, or by using the modified
series y∗t = max(∆, yt) for some small ∆ > 0. Neither solution is perfect, and
should only be applied in circumstances where violations are infrequent. If
negative values occur frequently, this is a sign that the proposed model is
inappropriate for the specified set of parameters and starting values.

15.5 Empirical Comparisons

We will now illustrate some of the points discussed in this chapter by exam-
ining an annual time series of the number of new freight cars shipped in the
USA over the period 1947–1993.3 The data are plotted in Fig. 15.4. A visual
inspection of the series suggests a changing local level, and the AIC compar-
ison of different local models suggests that the ETS(M,N,N) model is the best
choice.

15.5.1 Point Forecasts and Estimation

We now compare the performances of the Gaussian-based (M,N,N) and
(A,N,N) models to those of the lognormal and gamma-based (M,N,N)
models, using fitting samples of 28, 34 and 40 observations and a (non-
overlapping) hold-out sample of the next six observations in each case. The
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Fig. 15.4. US freight car shipments, 1947–1993.

3 This series is available as Number N0193 in the M3 Competition data.
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Table 15.4. Summary statistics for the US freight cars series.

(A,N,N) (M,N,N) L1 L2 G1 G2

n = 28
α 0.32 0.01 0.43 0.40 0.00 0.29
MAE 1,953 1,668 2,034 2,015 1,810 1,926
MAPE 74 59 79 72 71 72
mean 0.975 1.165 0.615 0.998

n = 34
α 0.21 0.00 0.38 0.29 0.00 0.25
MAE 1,779 2,899 1,271 868 3,211 1,645
MAPE 401 632 286 195 698 371
mean 0.959 1.178 0.578 0.985

n = 40
α 0.42 0.22 1.01 0.73 0.00 0.48
MAE 329 243 294 331 2,266 331
MAPE 24 19 23 25 180 25
mean 1.205 1.202 0.606 1.051

L1 = lognormal model (15.1); L2 = lognormal model (15.3); G1 = gamma
model (15.1), r estimated by ML; G2 = gamma model (15.1), r = 50.

models were fitted using conditional maximum likelihood, except that we
also considered a gamma model with a pre-set value for the index r. There
were two reasons for this additional option: first, the likelihood function for
the gamma was not well-behaved numerically, suggesting potential prob-
lems in more general applications. Second, the results for the fitted gamma
model were poor, whereas using a large preset value for r gave better results,
while preserving the positive structure of the series.

The results are given in Table 15.4 and show the Mean Absolute Error
(MAE) for the one-step-ahead errors for the hold-out sample in each case. In
the analysis we report r = 50 for the second gamma model, but the results
varied only marginally for other “large” values.

Only very limited conclusions may be drawn from a single example,
but a few points are worth noting. First, the gamma model with the maxi-
mum likelihood estimate of r produces erratic results. Likelihood estimation
produces small values for r and consequently gives means that are much
less than 1, implying rapid convergence towards zero. Hence, this model
is excluded from further discussion. Second, the means of the remaining
gamma and lognormal models hover around 1, reflecting the uncertainty
about whether or not the series is declining; otherwise the one-step-ahead
performance of these three models appears to be similar. However, for longer
horizons, the different values of the means imply quite different trajectories.
All three models differ somewhat from the ETS(M,N,N) model, but show
some similarities with the (A,N,N) results.
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Table 15.5. Prediction intervals based upon the gamma and lognormal distributions
using models (15.1) and (15.3) with �0 = 100 and V(δ) = 0.1.

Distribution h: Means Lower PI Upper PI

1 5 10 1 5 10 1 5 10

α = 0.3
Lognormal (15.1) 100 100 100 54 48 42 186 208 236
Lognormal (15.3) 100 96.1 91.4 52 44 37 175 182 189
Gamma (15.1) 100 100 100 48 41 33 171 186 203
Gamma (15.3) 100 95.9 90.9 48 39 31 171 178 186
ETS(A,N,N) 100 100 100 38 28 17 162 172 183
ETS(M,N,N) 100 100 100 38 27 14 162 172 186

α = 0.8
Lognormal (15.1) 100 100 100 54 29 15 186 351 657
Lognormal (15.3) 100 97.0 93.4 52 26 14 175 256 326
Gamma (15.1) 100 100 100 48 16 03 171 259 356
Gamma (15.3) 100 96.9 93.1 48 16 03 171 251 332
ETS(A,N,N) 100 100 100 38 −17 −61 162 217 261
ETS(M,N,N) 100 100 100 38 −25 −88 162 225 288

These results raise more questions than they resolve, but support the
general contention that estimation properties and short-term point forecasts
are not seriously affected by the long-run behavior discussed earlier in the
chapter.

15.5.2 Prediction Intervals

One of the principal reasons for the introduction of the gamma and log-
normal models is the concern about prediction intervals. To illustrate how
the positivity constraint affects these intervals, we provide some numerical
examples in Table 15.5. As expected, the prediction intervals based upon the
Gaussian distribution for (A,N,N) and (M,N,N) grow progressively more
misleading as α becomes larger or the forecast horizon is extended. The
results for models (15.1) and (15.3) are fairly similar, although the slightly
longer upper tail of the lognormal distribution becomes evident for model
(15.1) at h = 10. Note that point forecasts for model (15.1) are constant
because we set E(δt) = 1; this result would not hold otherwise.

15.5.3 Forecasting Jewelry Sales

In order to explore further the relative merits of formulations (15.1) and
(15.3), we fitted these models to 314 series that describe weekly sales of
costume jewelry items over the period week 5, 1998 to week 24, 2000. The
data were provided by a leading company in that field. Products that were
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either launched or discontinued during that period were removed from the
study. Most products had very high sales over the Christmas period, so we
partitioned the data as follows:

Estimation sample: weeks 5–45, 1998 and weeks 2–20, 1999 (n = 60);
Test sample: weeks 21–45, 1999 (n∗ = 25).

The gap in the estimation sample did not cause any problems because the
differences in levels before and after the Christmas period were minor; the
random fluctuations were generally much larger than any level changes.

Three ETS(M,N,N) models were fitted to each series by maximum likeli-
hood:

• Model 1: (15.1) assuming a Gaussian error distribution with mean 0
• Model 2: (15.1) assuming a lognormal error distribution with median 1
• Model 3: (15.3) assuming a lognormal error distribution with median 1

We calculated the one-step-ahead forecasting errors for each series over
the test samples and created summaries using the MSE, MAPE and MASE
measures introduced in Sect. 2.7. Although the results sometimes differ for
individual series, the overall picture is consistent across the three measures,
and only the MASE results are reported here. A plot of MASE values by indi-
vidual series is shown in Fig. 15.5, which indicates that the three models often
behave similarly, although Model 1 appears to have a greater number of large
MASE values overall. Plots of pairwise comparisons of MASE values for the
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Fig. 15.5. MASE of the three ETS(M,N,N) models fitted to the jewelry data. The series
are ordered by the median of the three MASE values to show the differences more
clearly. The average MASE values for each of the models are shown as horizontal lines.
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Fig. 15.6. MASE comparison of the three ETS(M,N,N) models. On the diagonal line
the two models have the same MASE.

different models are given in Fig. 15.6. Further study is clearly necessary, but
the limited results suggest that model 1 is inferior to the other two. Of the
two lognormal models, (15.3) appears to be marginally preferable.

15.6 An Appraisal

In this chapter we have undertaken an exploration of models defined on the
positive half-line. One of the attractions of the innovations approach is that it
enables an exact specification of such models that can lead to explicit results
for the prediction distribution. Nevertheless, we have uncovered certain
properties that make the use of such models more intricate than conven-
tional practice might suggest. We now summarize our findings to date, while
recognizing that this is an area where further research is needed.
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Parameter estimation using the Gaussian likelihood appears to be a
viable option for the ranges of the parameters that we typically encounter.
Further, the point forecasts generated from such fitted models appear to
be satisfactory. However, when we turn to prediction intervals, the Gaus-
sian approximation becomes progressively less reasonable as h increases.
The lognormal and gamma assumptions appear to provide very similar
results.

For simulation purposes there is no substitute for an appropriate non-
Gaussian model. At this stage, we are inclined to recommend the lognormal
over the gamma on the grounds of operational simplicity. Because only the
purely multiplicative models have a sample space restricted to the posi-
tive half-line, model simulations with other schemes may need to provide
a floor below which the series cannot go. Clearly, this is an area where the
investigator must proceed with caution.

15.7 Exercises

Exercise 15.1. Assume that the distribution of εt follows a Gaussian distribu-
tion with parameters µ and σ, and with left-truncation at −1. Show that the
mean of εt is

µ + σ
φ(c)
Φ(c)

,

where φ and Φ represent the density function and distribution function of
the standard Gaussian distribution, and c = (1 + µ)/σ. Numerically or
otherwise, show that the adjustment to the mean is negligible for reasonable
values of σ; for example, σ < 0.2.

Exercise 15.2. Simulate the model ETS(M,N,N) with lognormal errors, where
σ = 0.05, α = 0.3 and �0 = 10. Generate a series with n = 5,000 to obtain a
clear picture of the behavior of the series:

a. Run several simulations with different sets of random numbers and
observe the different types of realization that can occur.

b. Keeping the same set of random numbers, change the values of σ and α
and see how the results change.

c. Use Gaussian errors in place of the lognormal errors and compare the two
formulations when generating realizations with the same set of random
numbers.

Exercise 15.3. The ETS(M,N,M) model has the form:

yt = �t−1st−m(1 + εt),
�t = �t−1(1 + αεt),
st = st−m(1 + γεt),
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where εt denotes a white noise series such that εt ≥ −1, and m is the number
of seasons in a year (e.g., m = 4 for quarterly data, m = 12 for monthly data,
etc.).

Using the approach of Sect. 15.2.1, write down the m + 1 product martin-
gales, one for the level equation and m for the seasonal components.

Show that almost all of the sample paths for the model converge to zero.

Exercise 15.4. Consider the ETS(M,Md,N) model:

yt = �t−1bφ
t−1(1 + εt),

�t = �t−1bφ
t−1(1 + αεt),

bt = bφ
t−1(1 + βεt),

where εt denotes a white noise series such that εt ≥ −1.
Following the same approach as in the previous exercise, show that

almost all of the sample paths for the model converge to zero. [Note that
the results for the ETS(M,M,N) model follow on setting φ = 1.]
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Models for Count Data

Time series are often formed from counts. The number of accidents per
month at an intersection, the number of cardiac cases per day presenting
at an emergency center, the number of power failures each month in a
geographical region, and the weekly demand for a slow moving inventory
are all examples of time series of counts. Such data are non-negative and
integer-valued.

The models in earlier chapters can be used with count data when counts
are large because a Gaussian distribution typically provides a good fit to
an empirical distribution of large counts. The latter is typically symmetric,
and although a Gaussian distribution spills over into the negative part of
the real line, the probability of a negative value implied by a fitted Gaussian
distribution is usually very small.

However, the earlier models are not appropriate when counts are small.
Counts cannot be negative, yet the probability of a negative value implied by
a fitted Gaussian distribution is usually not negligible in this circumstance.
Moreover, empirical distributions of low count data are typically positively
skewed rather than symmetric. A common practice that retains a role for
the Gaussian distribution in the presence of low counts is to model the data
after a log transformation. However, this approach fails on count time series
which contain zeros, and does not take account of the discrete nature of the
sample space.

A Poisson distribution is often recommended for count data in place of
the Gaussian distribution (Brown 1959). A random variable Y has a Pois-
son distribution if it takes the values y = 0, 1, 2, . . . with probabilities given
by Pr(Y = y) = λye−λ/y!. Its mean and variance are both equal to λ. Data
governed by a Poisson distribution are said to be equi-dispersed because
the variance is equal to the mean. In practice, count time series are often
over-dispersed; that is, they have a variance which is greater than their mean.

Consequently, the negative binomial distribution is sometimes used
because its variance is always greater than its mean (Stuart and Ord 1994).
Another common option is to retain the Poisson distribution but introduce
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further randomness by allowing λ to be a random variable. Moreover,
because count time series are often autocorrelated as well as over-dispersed,
λ is assumed to change over time according to an autoregressive process.
One possibility is to assume that yt | λt−1 ∼ Poisson(λt−1), where λt =
a + bλt−1 + cyt. The parameters a, b and c are constrained to be non-negative
and to satisfy the stationarity condition b + c < 1 (Heinen 2003; Jung et al.
2006). Another possibility is to introduce an additional source of randomness
and assume that the Poisson parameter is governed by a recurrence relation-
ship log(λt) = r + κ log(λt−1) + ηt, where ηt ∼ NID(0, σ2

η). Both d and κ are
parameters, the latter satisfying the stationarity condition |κ| < 1 (Chan and
Ledolter 1995; Jung et al. 2006). These two autoregressive approaches have
been compared in Snyder et al. (2008), where it has been shown that the lat-
ter dual source of randomness approach applies to a wider range of samples
than does the former single source of error approach, but that the approaches
are mutually complementary in the sense that the samples to which they may
be applied do not overlap.

Time series are rarely stationary in practice, so the focus of this chap-
ter is on models that are related to exponential smoothing and which are
suitable for application to nonstationary count data. Thus we consider the
Poisson analogue of the Gaussian innovations local level model and a similar
approach where the Poisson distribution is replaced by a negative binomial
distribution (Harvey and Fernandes 1989). These models are introduced in
Sect. 16.1.

For time series which contain a large number of zeros, Croston (1972)
proposed an approach whereby the non-zero values were forecast sepa-
rately from the time between them. His proposal was specifically designed
to forecast intermittent demand data, and it has become a popular method
in business applications. We discuss Croston’s method in Sect. 16.2, with
particular attention to the possible models underlying the method.

In Sect. 16.3, we compare the forecast efficiency of these methods via an
empirical study.

16.1 Models for Nonstationary Count Time Series

16.1.1 Local Poisson Model

The Poisson analogue of the Gaussian innovations local level model is

yt | λt−1∼Poisson(λt−1), (16.1)

where λt = (1 − α)λt−1 + αyt and 0 < α < 1. The only source of random-
ness is the Poisson distribution itself. Nevertheless, the associated time series
is over-dispersed because additional randomness feeds into the process
through random changes in the local level.
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Simple exponential smoothing is used to calculate the levels λt. The
seed level λ0 and the smoothing parameter α may be selected to maximize
a Poisson likelihood. Point predictions are obtained by extrapolating the
final level λn. The one-step-ahead prediction distribution for yt+1 | λt is
Poisson(λt). The prediction distributions for multiple steps ahead are not
available in closed form. It may be shown, however, that E(yt+h | λt) = λt
and V(yt+h) = [1 + α2(h − 1)]λt. A negative binomial distribution, fitted
using the method of moments, is likely to form a good approximation to
such a prediction distribution. When more precise results are required, it is
necessary to resort to simulation methods.

16.1.2 Local Negative Binomial Model

Another approach (Harvey and Fernandes 1989) relies on a negative bino-
mial distribution in place of a Poisson distribution. Instead of selecting the
seed level to maximize the likelihood function, an adaptation of simple expo-
nential smoothing for finite samples is used. Gilchrist (1967) demonstrated,
for any real time series, that the underlying level that minimizes the dis-
counted sum of squared errors may be computed from two quantities ct and
bt with λt = ct/bt. The required quantities for this calculation are obtained
recursively by

ct = (1 − α)ct−1 + yt and bt = (1 − α)bt−1 + 1,

where 0 < α < 1 and 1 − α is the discount factor. These recurrence
relationships are seeded with c0 = b0 = 0, and so their solutions are

ct =
t

∑
j=0

(1 − α)jyt−1 and bt =
t

∑
j=0

(1 − α)j.

Thus, λt is a weighted average of the observations, where the weights decline
exponentially with increases in the age index j. As t increases, λt converges
to the exponentially weighted average associated with the traditional simple
exponential smoothing formula λt = (1 − α)λt−1 + αyt.

This use of the discounted average allows us to bypass the determination
of a seed level and to focus on the single parameter α which may be estimated
by maximizing a likelihood function. The likelihood is based on the product
of the one-step-ahead prediction distributions

p(yt | y1, . . . , yt−1, α) =
Γ(δct−1 + yt)
yt! Γ(δct−1)

(
δbt−1

1 + δbt−1

)δct−1
(

1
1 + δbt−1

)yt

,

where δ = 1 − α.
Harvey and Fernandes (1989) use Bayesian-like arguments to obtain their

method without direct recourse to a state space model. Later they infer that
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the model underlying their method must have a measurement distribution

yt | λt∼Poisson(λt).

It must also have the transition equation λt = (1 − α)−1λt−1ηt, where ηt
has a beta distribution with parameters (1 − α)ct−1 and αct−1. Because this
model relies on two probability distributions, it may be viewed as the multi-
ple source of randomness analogue of the local Poisson model in the previous
section.

16.1.3 Convergence Problem

The local level models described in this section have a fixed point of λt = 0.
Moreover, this fixed point is an attractor: there is a finite probability that
λt will drop to zero. The problem with this particular fixed point is that all
subsequent values of the time series are forced to be zero. That is, all sample
paths will converge to zero. Figure 16.1 illustrates this phenomena with some
data generated by a local Poisson model where λ0 = 2 and α = 0.5. One
must be aware of this problem when using the model to simulate prediction
distributions.

Grunwald et al. (1997) provide a detailed explanation of this phe-
nomenon and show that this is a much more general problem. They prove
that if the sample space of a model defined as an exponentially weighted
moving average is bounded to any subset of [0, ∞), (e.g., taking only posi-
tive values or non-negative integers), then the original process will converge
almost surely to a constant.

Time
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Fig. 16.1. Time series generated from a Poisson local level model: λ0 = 2; α = 0.5.



16.2 Croston’s Method 281

This result means that the count models defined in this section are only
suitable for short-term forecasting, and should not be used for long-term
forecasting or simulation.

16.2 Croston’s Method

Time series of demand are often recorded as counts and can sometimes con-
tain many zeros; such data are usually called “intermittent demand” and are
associated with “slow-moving” items. A popular method for forecasting the
demand of such data was developed by Croston (1972). It involves separat-
ing the original demand time series into two derived series: the non-zero
demands, and the time gaps between the periods with non-zero demands.
The method then involves applying simple exponential smoothing sepa-
rately to each derived time series, with the same smoothing parameter being
used in each case. The point forecast of demand is the ratio of the forecasts
of the non-zero demand and the time gap.

To be specific, let yt be the demand occurring during the time period t
and xt be the indicator variable for non-zero demand periods; i.e., xt = 1
when demand occurs at time period t and xt = 0 when no demand occurs.
Furthermore, let jt be the number of periods with non-zero demand during
interval [0, t]; that is, jt = ∑t

i=1 xi is the index of the non-zero demand. For
ease of notation, we will usually drop the subscript t on j. Then we let qj
represent the quantity of the jth non-zero demand and τj the number of peri-
ods between the occurrence of qj−1 and qj. Using this notation, we can write
yt = xtqj.

Croston’s method forecasts {qj} and {τj} separately using simple expo-
nential smoothing, with forecasts being updated only after demand occur-
rences. Let qj+1|j and τj+1|j be the forecasts of the (j + 1)th non-zero demand
and the (j + 1)th time gap respectively, based on data up to and including
non-zero demand j. Then Croston’s method gives

q̂j+1|j = (1 − α)q̂j|j−1 + αqj, j = 1, 2, . . . , jn, (16.2a)

τ̂j+1|j = (1 − α)τ̂j|j−1 + ατj, j = 2, 3, . . . , jn. (16.2b)

The smoothing parameter α usually takes values between 0 and 1, and is
assumed to be the same for both qj and τj. Then the mean demand rate,
which is used as the h-step-ahead forecast for the demand at time n + h, is
estimated by the ratio

ŷn+h|n = q̂jn+1|jn
/

τ̂jn+1|jn , (16.3)

where jn is the last period with a non-zero demand. Several variations on
this procedure have been proposed including Johnston and Boylan (1996)
and Syntetos and Boylan (2001, 2005).
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16.2.1 An Underlying Model?

Croston (1972, Appendix B) states that the assumptions of this method are:

(1) The non-zero demand sizes qj are governed by an ARIMA(0,1,1) model
(2) The distribution of times gaps τj is iid geometric
(3) Demand sizes qj and time gaps τj are mutually independent

However, as indicated in Snyder (2002), assumption (2) is incorrect because
it would result in the use of a simple average rather than an exponentially
weighted average for the forecasts of the time gaps. Moreover, this mis-
take has been compounded in much of the published empirical analyses
of Croston’s method (e.g., Willemain et al. 1994; Syntetos and Boylan 2001,
2005) where an independence assumption is also imposed on the non-zero
demands in place of Assumption 1.

Note that (16.2a) can be rewritten as an exponentially weighted average
of past values:

q̂j+1|j =
j−1

∑
k=0

α(1 − α)kqj−k + (1 − α)jλ0. (16.4)

A similar equation can be obtained for τj. This immediately means that the
underlying models must be nonstationary (e.g., Abraham and Ledolter 1983,
Sect. 3.3).

Shenstone and Hyndman (2005) used this result, along with the conver-
gence problem noted above, to show that there is no possible model that
would lead to (16.3) as the optimal forecast equation unless we allow a
sample space that includes both negative values and non-integer values.

However, if we are prepared to ignore the convergence problem, we can
derive a model that gives one-step forecasts that are equivalent to Croston’s
method (16.3). We assume two separate local level models underlying the
processes {qj} and {τj}. For the process of non-zero demands, {qt}, we will
assume that they are governed locally by a Poisson distribution where the
domain of the distribution is shifted up by one. Thus,

qj | λj−1 ∼ Poisson(λj−1 − 1) + 1, where λj = (1 − α)λj−1 + αqj.

We also assume that a local Bernoulli distribution governs whether there
is a positive or zero demand. It is assumed that the Bernoulli distribution
in period t is conditionally independent of its predecessors, and that the
Bernoulli distribution remains unchanged between periods with non-zero
demands. Thus, the gaps between non-zero demands are governed locally
by a geometric distribution:

τj | �j−1 ∼ Geometric(�j−1), where �j = (1 − α)�j−1 + ατj.
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Equation (16.2) gives the one-step forecasts of these processes, but not
the multi-step-ahead forecasts. In fact, the convergence problem noted in
Sect. 16.1.3 applies to both models, and sample paths in both cases will
converge to 1.

The probability of a non-zero demand in period t is given by πt = 1/�j−1,
and so the probability of demand in period t is given by

Pr(yt = k | λj−1, �j−1) =
{

1 − πt if k = 0
πt pk,j if k > 0, (16.5)

where k = 1, 2, . . . , and

pk,j = Pr(qj = k | λj−1) = (λj−1 − 1)k−1e1−λj−1
/
(k − 1)! .

16.2.2 Estimation

Croston indicated, on the basis of experience, that the smoothing parameter α
should take a value between 0.1 and 0.2. He had little to say about the choice
of seed values for the non-zero demands and gap recurrence relationships.

Given the model derived in the previous section, we can estimate the
parameters using a likelihood approach. The likelihood function is the prod-
uct of the mass functions (16.5) for periods 1, 2, . . . , n. This function may be
maximized with respect to λ0, �1 and α. For numerical stability, this solution
is typically found by maximizing the associated log-likelihood.

16.3 Empirical Study: Car Parts

The predictive capabilities of the Poisson model, the negative binomial
model and Croston’s method were compared on 2,674 time series supplied
by a US car company. The time series, representing the monthly sales for
slow moving parts, cover a period of 51 months. The 2,509 time series with-
out missing values have an average gap between positive demands of 2.9
months and an average positive demand of 2. Eighty-nine percent of the
time series were over-dispersed, and the dispersion ratio (i.e., the ratio of
the variance to the mean), averaged across all time series, was 2.3.

The time profile of aggregate demand for all of the car parts is shown in
Fig. 16.2. It indicates that there is a tendency for demands to decline as the
age of a part increases. Demands appear to be nonstationary.

Although a downward trend is discernable in the aggregate data, it is
far from clear that such trends always operate at the individual parts level.
It is important to allow for other possible trajectory shapes which may
only be observed at the individual part level. One possibility, ignoring the
zero demands, is a gradual increase to some peak and then a slow decline.
Because such patterns are not known in advance, there is a need for an
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Fig. 16.2. Time profile of demands averaged across 2,674 time series denoting demand
for car parts.

approach that adapts to whatever pattern emerges as a part ages. Given the
uncertainty over the trajectory, it is best to treat the underlying level as a
random variable and assume that its evolution over time is governed by a
stochastic process.

To minimize the computational problems that arise with time series con-
taining a small number of positive values, the database was further culled to
eliminate those time series which:

(a) Possessed fewer than ten positive monthly demands
(b) Had no positive demand in the first 15 and final 15 months

There were 1,046 time series left after this additional cull.
Six approaches to forecasting were compared in the study. The simplest,

designated by Z, was to set all the predictions to the value zero, on the
grounds that the empirical distributions of many time series have a mode
of zero. The second was based on a global Poisson (GP) distribution with
iid observations where it is optimal to use a simple average of observed
demands. The others were the methods described in the previous section
that allow for random changes in the underlying level: the local Poisson (LP)
model; the local negative binomial (LNB) model; and Croston’s method. Max-
imum likelihood estimation was used in each case. However, because the
folklore of exponential smoothing (Brown 1959; Croston 1972) suggests that
it is best to use fixed values of α across an entire range of products, particu-
larly with small samples, this possibility was also considered. In those cases
where a fixed parameter was used, the seed levels continued to be estimated
by maximizing the likelihood function. In other words, a partial maximum
likelihood approach was employed.

The models were estimated using the first 45 observations of each time
series. Their forecasting performances were compared over periods 46–51
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Table 16.1. Forecast performance for each method applied to the 1,046 car parts time
series. Summary statistics are for MASE values.

Model/method α Mean Median Stdev

Z 0.42 0.30 0.47
LP 0.3 0.63 0.55 0.42
LP 0.2 0.64 0.56 0.38
LNB 0.8 0.64 0.56 0.38
LNB ML 0.65 0.59 0.40
Croston 0.3 0.65 0.60 0.40
Croston 0.2 0.65 0.61 0.39
LP ML 0.68 0.64 0.36
Croston 0.1 0.68 0.65 0.38
Croston ML 0.68 0.67 0.40
Croston 0.0 0.70 0.70 0.39
GP 0.82 0.75 0.31

Summary statistics are for MASE values.

using the MASE statistic (see Sect. 2.7.3). The means, medians and standard
deviations of the MASEs calculated across the 1,046 time series are given in
Table 16.1. The approaches are ordered by the median.

The zero method (Z) had the most remarkable performance, its median
MASE being substantially lower than the other methods. However, the stan-
dard deviation of its MASE was much higher, suggesting a strong lack of
consistency of performance over all the time series. Intriguingly, the tradi-
tional global Poisson distribution had the worst performance. The associated
simple average, which places an equal weight on all the observations (includ-
ing the zeros), has little value for the type of count data represented by car
parts demands.

Of the approaches labeled “maximum likelihood” (ML), the local neg-
ative binomial distribution was best, followed by the local Poisson dis-
tribution, with the Croston method surprisingly coming last. The folklore
about the use of fixed parameter values was also confirmed. Fixed value
approaches did better than their maximum likelihood counterparts. The per-
formances of the local Poisson and local negative binomial distributions were
reversed, but Croston’s method continued to have the poorest performance.

For the case of Gaussian observations considered in earlier chapters, each
multiple source of randomness model has an equivalent single source of ran-
domness model. This no longer appears to be true for count data. A deeper
analysis of the results indicates that the local Poisson model may or may not
work better than the local negative binomial model at the level of individual
time series. The LNB 0.8 was better than LP 0.2 for 56% of the time series and
they tied for 28% of the time series. However, the maximum difference in the
MASE was only 0.15%, so the two approaches are really quite similar with
regard to point forecasts.
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In a further attempt to separate the LP and LNB models, 90% predic-
tion intervals were simulated for periods 46–51. In both cases, about 95%
of the withheld values were found to lie within these prediction intervals.
This result was obtained whether or not the smoothing parameter (discount
factor) was optimized. In these circumstances, the dual source of random-
ness approach (LNB) appears to have little advantage over the single source
of randomness approach (LP) on this particular data set. Curiously, the
prediction intervals generated from these models are a little too wide.

In general it was observed that reductions in the median MASE were
accompanied by increases in its standard deviation. This suggests that a
multi-model approach might work better than any single model approach
by tailoring the model choice to the individual structures of the time series.
However, it is not clear how this can be done. Sample sizes, in practice, are
often too small to withhold data for a prediction validation approach. And
the models are based on different probability distributions, something that
precludes the use of an information criterion approach. This is an issue that
warrants further investigation.

16.4 Exercises

Exercise 16.1. A time series is governed by a Poisson local level model
(Sect. 16.1.1) with λ0 = 2. Simulate series of length 100 for α = 0, 0.2, 0.5
and 1. What conclusions can you make about the effect of α? Do such series
converge to the fixed point of zero?

Exercise 16.2. Demonstrate that the value of λt which minimizes the dis-
counted sum of squared errors ∑t−1

j=0 δj(yt−j − λt)2 may be calculated with
the ratio at/bt where at = δat−1 + yt and bt = δbt−1 + 1.

Exercise 16.3. Consider the Poisson model with a time-dependent mean,
which may be written as yt|λt−1 ∼ Poisson(λt−1) where λt = a + bλt−1 +
cyt. The parameters a, b and c must be non-negative to avoid negative values
for the conditional mean. Given the starting value λ0, show that

E(yt | λ0) = a + a(b + c) + · · ·+ a(b + c)t−1 + (b + c)tλ0.

Note that if b + c < 1 the conditional expected value of yt | λ0 converges to
the limiting value a/(1 − b − c); otherwise it increases without limit.

Exercise 16.4. The data set partx contains a history of monthly sales of an
automobile part. Compare the following forecasting methods applied to
these data: (1) a progressive simple average (where the average is changed
each period to reflect the effect of each additional observation); (2) a local
Poisson model; (3) a local negative binomial model; and (4) Croston’s
method. For models (2)–(4), parameters should be estimated by either
maximizing the likelihood or minimizing the sum of squared errors.
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Vector Exponential Smoothing

Co-author:1 Ashton de Silva2

In earlier chapters we have considered only univariate models; we now pro-
ceed to examine multi-series extensions and to compare the multi-series
innovations models with other multi-series schemes. We shall refer to our
approach as the vector exponential smoothing (VES) framework. The inno-
vations framework is similar to the structural time series models advocated
by Harvey (1989) in that both rely upon unobserved components, but there
is a fundamental difference: in keeping with the earlier developments in this
book, each time series has only one source of error.

The VES models are introduced in Sect. 17.1; special cases of the gen-
eral model are then discussed in Sect. 17.2. An inferential framework is then
developed in Sect. 17.3 for the VES models, building upon our earlier results
for the univariate schemes.

The most commonly used multivariate time series models are those
defined within the ARIMA framework. Interestingly, this approach also
has only one source of randomness for each time series. Thus, the vec-
tor versions of the ARIMA framework (VARIMA), and special cases such
as vector autoregression (VAR) and vector moving average (VMA), may
be classified as innovations approaches to time series analysis (Lütkepohl
2005). We compare the VES framework with existing approaches in Sect. 17.4.
As in Chap. 11, when we consider equivalences between vector innova-
tions models and the VARIMA forms, we will make the infinite start-up
assumption.

Finally we compare the performance of VES models to VAR and other
existing state space alternatives, first in an empirical study of exchange rates
(Sect. 17.5), and then across a range of different time series taken from a large
macroeconomic database, in Sect. 17.6.

1 This chapter is based on de Silva et al. (2007), which should be consulted for further
details.

2 Dr. Ashton de Silva, School of Economics, Finance & Marketing, RMIT University,
Melbourne, Australia.
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17.1 The Vector Exponential Smoothing Framework

The general vector exponential smoothing model (VES) is introduced in this
section. Conceptually, the model builds directly upon the univariate frame-
work; see, for example, Anderson and Moore (1979). We stack the univariate
observations into an N-vector and then assume that the vector of observa-
tions yt is a linear function of a k-vector of unobserved components xt−1
plus error. That is, we have the measurement equation

yt = Wxt−1 + εt, (17.1a)

where W is an N × k matrix of coefficients that are often known, as in the
univariate case, and εt is an N-vector. The innovations {εt} follow a common
multivariate Gaussian distribution with zero means and variance matrix Σ,
but we assume that {εt} and {εt+i} are independent for all i �= 0.

The evolution of the unobserved components is governed by the first-
order Markovian relationship

xt = Fxt−1 + Gεt. (17.1b)

This is called the transition equation. The fixed k × k matrix F is referred
to as the transition matrix. The k × N matrix G typically has elements that
are unknown; they determine the effects of the innovations on the process
beyond the period in which they occur. When G = 0, the components
are deterministic. When G is block-diagonal with some non-zero elements
within each block, each innovation has an effect only on its own series. When
G has non-zero elements outside these blocks, an innovation will have an
effect on other series as well as its own.

The general model given in (17.1) is rather opaque and will often be
“parameter-heavy.” A common formulation separates out the state variables
for each series, so that the elements of (17.1) may be written as:

xt =

⎡
⎢⎣

x1t
...

xNt

⎤
⎥⎦ , W =

⎡
⎢⎣

w′
1 0 0

0
. . . 0

0 0 w′
N

⎤
⎥⎦,

F =

⎡
⎢⎣

F1 0 0

0
. . . 0

0 0 FN

⎤
⎥⎦ and g =

⎡
⎢⎢⎣

g11 . . . g1N
g21 . . . g2N

. . .
gN1 . . . gNN

⎤
⎥⎥⎦.

That is, the state variables are updated as functions of the random errors of
all series but there are no common states. We now examine several special
cases.
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17.1.1 Seemingly Unrelated Models

When gij = 0 for all i �= j, the series are related only through the error terms,
an example of a seemingly unrelated regression (SUR) model, as defined by
Zellner (1962). In the time series context, Harvey (1989) refers to such mod-
els as SUTSE (seemingly unrelated time series equations) models. No special
properties arise in this case, save that joint estimation will produce more effi-
cient estimators than treating each series separately. An iterative scheme that
involves estimating the parameters in the transition equations and then the
variance matrix will often work well.

17.1.2 Homogeneous Coefficient Models

As a further specialization of the SUTSE models, we now allow the coeffi-
cients to be the same across all series. That is, we set wi = w0, Fi = F0 and
gi = g0. We refer to these models as homogeneous because each series has an
equal number of states with the same updating mechanism. These models
were introduced by Harvey (1986). The models have two important features:
first, the ability to pool estimates across series leads to more efficient estima-
tion. Second, and perhaps more importantly, a homogeneous system allows
the aggregation of individual series to a total such that the single series and
aggregate forecasts are in complete agreement. Such a feature is desirable,
for example, when forecasts for individual products must match up with the
total for that product class.

Because the series may be not be measured in the same units, we intro-
duce coefficients ai and define: y0,t = ∑i aiyi,t, x0,t = ∑i aixi,t and ε0,t =
∑i aiε i,t. The zero subscripts are included to emphasize that the aggregation
process has unequal coefficients. These summations lead to the aggregate
model

y0,t = w′
0x0,t−1 + ε0,t,

x0,t = F0x0,t−1 + g0ε0,t.

17.1.3 Models with Group Seasonality

As an illustration of a model that contains both specific and common state
variables, we consider a model with group seasonality, developed in detail
by Ouwehand et al. (2007). The model is designed to cover situations where
the set of series has a common seasonal pattern. Such circumstances often
arise when forecasting a group of related products; the sales patterns may be
evolving differently, but the overall product group may be subject to simi-
lar seasonal variations. Because individual series are often rather short, this
model enables the forecaster to improve the estimates of the seasonal factors
by pooling across series.
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For example, we may extend the additive Holt-Winters’ seasonal or
ETS(A,A,A) model given in Sect. 3.4.3 in the following way:

yi,t = �i,t−1 + bi,t−1 + st−m + ε i,t,
�i,t = �i,t−1 + bi,t−1 + αiε i,t,
bi,t = bi,t−1 + βiε i,t,

st = st−m + γ ∑
i

ciε i,t,

where i = 1, 2, . . . , N, �i,t−1 and bi,t−1 denote the level and trend terms for the
ith series, and st denotes the common seasonal term. The ci are non-negative
constants that define the weights on the different series. Thus, the model
contains 2N + m state variables in all.

17.2 Local Trend Models

We now consider a class of local trend vector models, which are developed by
analogy with the univariate linear models formulated in Chap. 3. In practice,
the growth rates may be more appropriately modeled as a stationary process
rather than a random walk (Gardner and McKenzie 1985), so we consider the
vector damped local trend model in the form:

yt = �t−1 + Φbt−1 + εt, (17.3a)
�t = �t−1 + Φbt−1 + Aεt, (17.3b)
bt = Φbt−1 + Bεt, (17.3c)

where Φ denotes a matrix of damping factors. When Φ is diagonal, we
apply separate damping factors to each series, as in the univariate case. In
the present context, the formulation is more general, because the slopes are
(potentially) functions of all the other series’ slopes, damped at different
rates. This construction may sound rather artificial, but it turns out that in
the reduced form of the model, Φ is the matrix of first-order autoregressive
coefficients; see Exercise 17.1. The system is forecastable provided the eigen-
values λ in the determinantal equation |Φ(I −A) − (I + Φ −A− ΦB)λ +
λ2I| = 0 all have modulus less than 1. This expression clearly reduces to N
similar univariate statements when A and B are diagonal.

Various special cases follow from the vector damped local trend model:

• Vector local trend model, when Φ = I
• Vector local level model, when Φ = 0

17.3 Estimation

The matrices W , F and G in the vector exponential smoothing model poten-
tially depend on a vector of unknown parameters designated by θ. We also
need to estimate Σ. We develop a maximum likelihood procedure following
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the same general argument as in Chap. 5 for the univariate case. As in
Sect. 5.1, we condition upon the starting values x0. This conditional likeli-
hood, viewed as a function of θ, Σ and x0, can be represented by L(θ, Σ, x0 |
y1, y2, . . . , yn) = p(y1, y2, . . . , yn | θ, Σ, x0). In turn, the likelihood may be
written as the product of the one-step-ahead prediction density functions:

L(θ, Σ, x0 | y1, y2, . . . , yn) =
n

∏
t=1

p(yt | y1, y2, . . . , yt−1, θ, Σ, x0).

The moments of the prediction distributions are

E(yt | y1, y2, . . . , yt−1, θ, Σ, x0) = Wxt−1

and
V(yt | y1, y2, . . . , yt−1, θ, Σ, x0) = Σ.

The state vectors are calculated using the general linear recursions (where et
denotes the estimated errors):

ŷt = Wxt−1,
et = yt − ŷt,
xt = Fxt−1 + Get.

The log-likelihood function is

logL(θ, Σ, x0 | y1, . . . , yn) = −n
2

(N log(2π) + log |Σ|) − 1
2

n

∑
t=1

e′tΣ−1et.

The variance matrix may be concentrated out of the likelihood because its
ML estimator is:

Σ̂ = n−1
n

∑
t=1

ete
′
t.

The concentrated log-likelihood function then becomes

logL(θ, Σ̂, x0 | y1, . . . , yn) = −n
2
(N log(2π) + N log |Σ̂|) − 1

2

n

∑
t=1

e′tΣ̂
−1

et.

The vector θ is restricted to satisfy the various forecastability conditions
that are specific to the particular model under consideration. Because this
framework assumes a finite start-up, it is not necessary to impose stationarity
conditions, although the investigator may prefer to do so.

One approach to starting the numerical search procedure is to fit the uni-
variate models separately and to use these estimates as starting values. A
potential limitation of this approach is that it does not provide starting val-
ues for inter-series parameters. However, setting the initial values of these
parameters to zero seems to work well in practice. A more general difficulty
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is that the likelihood function is not concave so that individual runs may lead
to local optima. To avoid these difficulties, de Silva et al. (2007) used multiple
runs with randomly assigned starting values centered upon the values given
below, subject to the choices being within the feasible region.

Values for x0:
Vector Local Level Model: Start up values for the initial levels �0 equal the

average of the first ten observations for each series.
Vector Local Trend Model: The first ten observations of each series are

regressed against time. The intercept and slope estimates provide
approximations of the values of �0 and b0 respectively.

Values for the elements of the parameter matrices:
A Diagonal elements set to 0.33, off-diagonal elements set to 0
B Diagonal elements set to 0.50, off-diagonal elements set to 0
Φ Diagonal elements set to 0.90, off-diagonal elements set to 0

17.3.1 Prediction

Following the univariate discussion in Chap. 6, we may develop predic-
tion distributions under the assumption that the errors follow a multivariate
Gaussian distribution. Let µn+j|n denote the mean of the jth-step-ahead pre-
diction distribution with the forecast origin being at the end of period n;
and let Vn+j|n be the variance matrix. Also, let mn+j|n and Un+j|n be the
conditional mean vector and variance matrix of the state vector in period
n + j. Then the moments of the prediction distributions can be computed
recursively using the formulae for j = 1, 2, . . . , h:

µn+j|n = Wmn+j−1|n
Vn+j|n = WUn+j−1|nW ′ + Σ

mn+j|n = Fmn+j−1|n
Un+j|n = FUn+j−1|nF ′ + GΣG′.

Note that mn|n = xn and Un|n = 0. As in our earlier discussion, no attempt
has been made to incorporate the effects of sampling error into these
distributions.

17.3.2 Model Selection

Following the discussion in Chap. 7, we recommend the Akaike informa-
tion criterion (AIC) as the best of the common information criteria for
model selection. Letting q designate the number of unknown parameters,
the multivariate AIC is specified as:

AIC = −2 logL(θ̂, x̂0 | y1, . . . , yn) + 2q,
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where θ̂ and x̂0 denote the maximum likelihood estimates. As before, we
note that the AIC may be used to choose among different models, provided
the estimates are derived from the conditional likelihood, described above.

17.4 Other Multivariate Models

The most widely used framework for the study of multivariate time series
is the vector autoregressive integrated moving average (VARIMA) class of
models. The VARIMA models have the general form

Φ(L)zt = Θ(L)εt, (17.4)

where L is the lag operator, and zt = (1 − L)dyt denotes the dth order dif-
ference. The operators Φ(L) and Θ(L) are matrix polynomial functions of
the lag operator satisfying the usual stationarity and invertibility conditions.
These models represent the direct vector extension of the univariate models
presented in Sect. 11.1. As in Sect. 11.1.4, extensions can be made to include
seasonal factors, but we prefer to keep the notation general and as simple as
possible. It is worth noting that εt is an innovation vector that corresponds to
the innovation vector used in the VES model. The frameworks ostensibly dif-
fer in that (17.4) contains no unobserved components. However, as we shall
see in Sect. 17.4.1, the two approaches have close links.

The full VARIMA model (17.4) has not been widely used in applica-
tions, largely because order selection and estimation is difficult, although
recent work by Athanasopoulos and Vahid (2008a) goes some way towards
overcoming these problems.

A popular special case of the VARIMA model is the vector autoregressive
(VAR) scheme:

Φ(L)zt = εt,

introduced by Sims (1980). VAR models have proved very popular in econo-
metrics and related areas, partly because they can be fitted by ordinary least
squares provided the errors are taken to be independent. Another attractive
feature is their ability to capture the dynamic relationships among the vari-
ables, an ability which is shared by all the models considered in this chapter.
However, the restriction to VAR rather than VARMA may harm forecast
accuracy (Athanasopoulos and Vahid 2008b). A potential drawback of VAR
models is that when p lags are used, N2 p parameters must be estimated.
State space models are usually more parsimonious in this respect.

Because the processes of interest are often nonstationary, one common
approach in VAR model-building is to difference each nonstationary series
before fitting the model. However, this amount of differencing may prove
excessive because some series may move in tandem, such as the spot price
and futures price series examined in Chap. 9. In these circumstances, we may
consider cointegrated models (Engle and Granger 1987; Johansen 1988). For
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the purpose of exposition, we assume that all the series become stationary
after a single differencing; the usual terminology is that the yt are integrated
of order 1 or I(1). The differenced series, zt = yt − yt−1, are then I(0). The
VAR model may then be rewritten in the form:

zt = Φ∗
1zt−1 + Ψyt−1 + εt. (17.5)

The matrix Ψ cannot be of full rank given the initial assumption that the
zt are I(0). In general, if the rank of Ψ is R < N we may write Ψ = ΓΛ′,
where Γ and Λ are N × R matrices of rank R. The vector Λ′yt defines the R
cointegrating relationships. The modified model

zt = Φ∗
1zt−1 + ΓΛ′yt−1 + εt (17.6)

is then known as the vector error-correction model (VECM). For further
details of the theoretical developments see, for example, Hendry (1995,
Chap. 8).

The performance of VAR and VECM models in econometric forecasting
has been somewhat mixed; for a recent review see Allen and Morzuch (2006).
Because the VECM models do not add new perspectives to vector innova-
tions models, we will not examine them further, but concentrate upon the
VAR models in our empirical comparisons.

17.4.1 Reduced Forms

The reduced forms of the VES models are obtained by eliminating the state
variables between the measurement and transition equations, as in the uni-
variate case. For example, for the local level model we eliminate the levels
and arrive at the VARIMA(0,1,1) model (1 − L)yt = εt − Θεt−1, where
Θ = I − A and I is an identity matrix. A unique value of Θ is associated
with a given matrix A, and vice versa. Thus, the vector local level model is
equivalent to the VARIMA(0,1,1) model.

Likewise, the reduced form for the local trend model is found by double
differencing the measurement equation, and then using the transition equa-
tions to eliminate the levels and growth rates, to give the VARIMA(0,2,2)
model

(1 − L)2yt = εt − Θ1εt−1 − Θ2εt−2,

where Θ1 = 2I − A − B and Θ2 = A − I. Again, both Θ1 and Θ2
are uniquely determined in terms of A and B, and vice versa. Thus, the
VES local trend and VARIMA(0,2,2) models are equivalent. Finally, we note
that the vector damped local trend model and the VARIMA(1,1,2) model
are equivalent. The proof is left as Exercise 17.1. The similarities with the
univariate cases are evident.
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17.4.2 Structural Models

The VES models may be contrasted with the multi-series structural time
series model developed by Harvey (1989) that has multiple sources of
randomness for each series. It takes the general form

yt = Ωxt + ut,
xt = Fxt−1 + vt,

where the N-vector ut and the k-vector vt are disturbances that act as
N + k primary sources of randomness. Unlike the innovations form, the
unobserved components vector is not lagged in the measurement equation.
Typically, the structure matrices of the two models are related by W =
ΩF . The disturbance vectors are contemporaneously and inter-temporally
uncorrelated so that the variance matrices of the disturbance vectors are
diagonal.

Thus, the local level model becomes:

yt = �t + ut,
�t = �t−1 + vt.

Although there are some close parallels with the innovations form, the links
are not as direct. The levels can be eliminated to give the reduced form
(1 − L)yt = ut − ut−1 + vt. The right hand side of this reduced form is the
sum of two moving average processes. According to the Granger–Newbold
(1986) theorem, the sum of moving average processes is itself a moving
average process. Thus, this reduced form is also a VARIMA(0,1,1) process.

Despite these processes having the same reduced form, the multiple
source of randomness specification is more restrictive than the innovations
approach. In particular, a comparison of the auto-covariance structure shows
that the multi-disturbance specification has a smaller parameter space and is
of lower dimension. Furthermore, these restrictions become even tighter as
more components are added (Harvey 1989, p. 432).

From this observation and our earlier comments, the following conclu-
sions may be drawn:

1. The multi-disturbance vector local level model is equivalent to a restricted
VARIMA(0,1,1) process

2. The VES local level model is equivalent to a VARIMA(0,1,1) process
without restrictions apart from the usual invertibility conditions

3. The VES local level model is more general than the multi-disturbance
vector local level model

4. The multi-disturbance vector local level model always has an equivalent
innovations local level model
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The multi-disturbance vector local trend model is

yt = �t + ut,
�t = �t−1 + bt−1 + vt,
bt = bt−1 + wt.

This model can also be reduced to the VARIMA(0,2,2) form; see Exercise 17.2.
As for the local level model, the parameter space is restricted. Similar
comments apply to the damped local trend model.

17.5 Application: Exchange Rates

To gauge the forecasting capacity of the VES framework and to compare it
with commonly used alternatives, we summarize the results of an empiri-
cal study reported in de Silva et al. (2007). These authors developed a VES
model for the monthly exchange rate time series of the UK pound (UKP) and
US dollar (USD) against the Australia dollar (AUD); see Fig. 17.1. The expec-
tation was that changes in economic conditions in Australia could affect both
exchange rates simultaneously, and so create interdependencies between
them. However, we believe that these effects should manifest themselves
through the state variables after a lag, rather than contemporaneously, so
we employ unrestricted coefficient matrices but a diagonal variance matrix.

The data comprised 77 monthly observations spanning the period Jan-
uary 2000 to May 2006. The natural logarithm of the series was taken before
the models were fitted. Models were fitted to the first 60 observations.

UK monthly exchange rates
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Fig. 17.1. Monthly exchange rates of the UK pound and US dollar against the
Australian dollar from January 2000 to May 2006.
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The forecasting performances of each model were evaluated on the 17
withheld observations using the mean absolute scaled error (MASE) defined
in Sect. 2.7.3 (p. 26). We define the absolute scaled error (ASE) for the kth
replicate of the ith series as

ASE(i, k) =
|ei,n+k|

1
n−1 ∑n

t=2 |yi,t − yi,t−1|
,

where ei,n+k = yi,n+k − ŷi,n+k. The overall MASE for the system of equations,
averaged across all forecasting horizons, is then given by

MASE =
1

Nh

N

∑
i=1

h

∑
k=1

ASE(i, k),

with N = 2 and h = 17.
The study examined seven distinct models: random walk, local level,

local trend, damped local trend, and VAR models of orders one, two and
three. The series were differenced before fitting the VAR models. For the local
level and trend models, both univariate and multivariate models were con-
sidered. In the multivariate case, both the traditional and innovations models
were also explored. The results are summarized in Table 17.1.

The first conclusion that can be drawn is that there is indeed some struc-
ture in the series, so that improvements can be achieved over the random
walk model. Second, the VES models out-perform their traditional counter-
parts due to the ability of VES models to encompass a larger parameter space.
Third, the VES damped trend model forecasts better than the VAR approach
for this particular set of data. As shown in Table 17.2, the AIC measure would
lead to the selection of this model from the three innovations schemes.

The poor performance of the local trend models probably reflects the fact
that these series, like most macroeconomic series, are I(1) rather than I(2).
Further, the two series generally moved in the same direction over the fitting
sample, but in opposite directions in the test sample; see Fig. 17.2.

Table 17.1. Comparison of approaches: overall MASE by model.

Multi-series Uni-series Multi-series
traditional innovation innovation

Random walk 0.166
Local level 0.174 0.127 0.150
Local trend 0.589 0.119 0.329
Damped local trend 0.265 0.130 0.114
VAR(1) 0.157
VAR(2) 0.143
VAR(3) 0.172

The bolded figure denotes the minimum value.
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Table 17.2. Akaike Information Criterion for each of the fitted VES models.

Model AIC

Vector local level −13.608
Vector local trend −13.628
Vector damped local trend −13.763
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Fig. 17.2. Predicted monthly exchange rates.

The parameter estimates of the vector damped local trend model are:

Σ(×1,000) =
[

0.787 0
0 0.898

]
, A =

[
0.476 0.445

−0.086 1.246

]
,

Φ =
[

0.827 0.203
−0.272 1.136

]
, B =

[
0.102 −0.238
0.041 −0.135

]
.

In general, the parameters within Φ, A and B denote various elasticities.
It is difficult to draw any specific conclusions using the parameter esti-
mates because the states and series interact. Importantly, the modulus of
the largest eigenvalue is less than one (albeit marginally), and therefore the
dampening characteristic of the trend is captured. de Silva et al. (2007) use
impulse response functions (see Lütkepohl 2005) to examine the various
inter-relationships in the model in greater detail.
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17.6 Forecasting Experiment

The conclusions in the previous section were based upon just one pair of
series. In order to gain a deeper understanding of the properties of VES mod-
els, de Silva et al. (2007) conducted a detailed study using 1,000 different data
sets. The variables and their starting dates were randomly chosen from the
Watson (2003) macroeconomic database. The Watson (2003) database com-
prises eight groups which can be loosely considered to represent different
economic sectors. The number of variables in each group ranges from 13
to 27. All variables are real and non-seasonal, with observations from Jan-
uary 1959 to December 1998. Every data set in the de Silva et al. (2007) study
consisted of two variables, chosen randomly from different economic sec-
tors. The starting date was randomly chosen, where the only restriction was
that there must be enough observations to fit and evaluate out-of-sample
forecasts up to twelve periods ahead.

Two sizes of estimation sample were considered: 30 and 100. These sam-
ple sizes were chosen because they resemble small and large sample sizes
that occur in practice. All variables were standardized by dividing by the
standard deviation of their first differences.

The overall conclusions from the de Silva et al. (2007) study may be
summarized as follows:

1. There are definite advantages to using a multivariate rather than a
univariate framework.

2. The VES models perform slightly better than their traditional multi-
disturbance time series counterparts (a function of the relevant parameter
spaces).

3. The predictive ability of the VES models is comparable to that of the VAR
models.

17.7 Exercises

Exercise 17.1. Show that the VES damped local trend model given in (17.3)
reduces to the VARIMA(1,1,2) scheme with moving average matrices Θ1 =
I + Φ −A−B and Θ2 = Φ(A− I).

Exercise 17.2. The multi-disturbance vector local trend model is

yt = �t + ut,
�t = �t−1 + bt−1 + vt,
bt = bt−1 + wt.

Show that this model can be reduced to an equivalent VARIMA(0,2,2) model,
(1 − L)yt = wt + (vt − vt−1) + (ut − 2ut−1 + ut−1). Use the Granger–
Newbold addition theorem to establish that the first-order autocovariance
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is always non-positive, and the second-order autocovariance is always
positive.

Exercise 17.3. The auto-covariance structure for the VARIMA(0,1,1) model is:

Γ(0) : E(∆yt, ∆yt) = Σ + ΘΣΘ′,
Γ(1) : E(∆yt, ∆yt−1) = −ΣΘ′,
Γ(k) : E(∆yt, ∆yt−k) = O, k > 1,

where ∆yt = −Θet−1 + et.

a. Derive the auto-covariance structure for the multi-disturbance structural
time series model:

(1 − L)yt = ut −ut−1 + vt.

b. Compare the parameter space of the first auto-covariance derived in (a) to
the unrestricted VARIMA(0,1,1) model.

c. Calculate the number of parameters to be estimated for the VARIMA
(0,1,1) and the multiple disturbance structural time series model (set
N = 3).
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Inventory Control Applications

Since the pioneering work of Brown (1959), it has been a common practice
to use exponential smoothing methods to forecast demand in computerized
inventory control systems. It transpired that exponential smoothing often
produced good point forecasts. However, the methods proposed to measure
the risk associated with the predictions typically ignored the effect of ran-
dom changes to the states, and so seriously underestimated the level of risk
as a consequence (Johnston and Harrison 1986; Snyder et al. 1999; Graves
1999). The innovations state space model provides the statistical underpin-
nings of exponential smoothing and may be used to derive measures of
prediction risk that are properly consistent with the use of these forecast-
ing methods, and which, as a consequence, allow for random changes in the
states.

There is often, however, a twist to the problem of predicting demand
in inventory systems. Predictions are typically made from sales data that
are recorded for accounting purposes. Sales, however, may be lost during
shortages, in which case sales are a corrupted reflection of demand. Without
proper precautions, the use of sales data can lead to forecasts of demand with
a downward bias. This problem is considered in Sect. 18.1.

Once obtained, predictions of demand and the uncertainty surrounding
them are used as inputs to replenishment decisions. The details of how this
is done depends in part on the decision rules employed to determine the
timing and size of replenishment orders. There is an extensive literature on
inventory control; see, for example, Silver et al. (1998) for a comprehensive
coverage. Section 18.2 provides some insights into the problem of prop-
erly integrating the demand models underlying the exponential smoothing
methods of forecasting with common inventory models.
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18.1 Forecasting Demand Using Sales Data

The methods of estimation described in Chap. 5 may not always be suitable
for application in an inventory control context. They were implicitly based on
the assumption that the series, in this context the demand series, is observed
without error. This assumption may not always be true.

Businesses record transactions with their customers for accounting pur-
poses, but, because there are no transactions during shortages, lost sales
often go unrecorded. Thus, sales data are typically an incomplete record of
demand. During those periods when there are shortages, sales understate
demand. In the parlance of statistics, this is the problem of forecasting with
“censored data.”

We conducted a small simulation study to gauge the effects of truncation
when the estimation methods of Chap. 5 are applied. In this study, demand
series of lengths n = 36 and n = 72 were generated from a local level model
with �0 = 100 and an innovations standard deviation of σ = 10. Experiments
were completed for a grid of values of the persistence parameter α from
0.1 to 1.0 in increments of 0.1, and a variety of truncation levels. Truncation
occurred at z = 0, 0.67, 1.65 and 100 standard deviations above the underly-
ing levels (local means). The last case z = 100 was included as a benchmark
corresponding to the case where there is (effectively) no truncation.

The primary aim of the study was to measure the effect of truncation on
the moments of the prediction distributions of aggregate or lead-time demand
Yn(h) = yn+1 + · · · + yn+h over various possible lead-times h. For a local
level model, the aggregate demand has a mean (Sect. 6.6.1)

E(Yn(h) | �n) = h�n

and variance [(6.16)]

V(Yn(h) | �n) = σ2h
[
1 + α(h − 1) + 1

6 α2(h − 1)(2h − 1)
]

.

The cases h = 5 and h = 9 periods were examined in the study. More-
over, the special case h = 1 was also included to cover the moments of the
conventional one-step ahead prediction distribution.

The prediction distributions from the estimated models were bench-
marked against the prediction distributions from the “true” models of
demand. More specifically, each moment from an estimated model was
divided by the corresponding moment from the true model to give an error
index. Each experiment was replicated 1,000 times, and the median index, a
measure of bias, was calculated. These median indexes, averaged over all the
αs, are reported in Table 18.1. A value of 1 means that there is no bias; a value
less than 1 indicates that there is a downward bias.

Table 18.1 indicates, somewhat surprisingly, that mean lead-time de-
mands are effectively unbiased. All standard deviations, on the other hand,
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Table 18.1. The effect of using sales data instead of demand data on predictions of
lead-time demand using conventional simple exponential smoothing, as reflected by
bias ratios.

Lead-time z n = 36 n = 72

Mean 1 0 0.98 0.98
0.67 1.00 1.05
1.65 1.00 1.01

100 1.00 0.99
5 0 0.98 0.96

0.67 1.00 0.99
1.65 1.00 1.00

100 1.00 1.00
9 0 0.98 0.99

0.67 1.00 1.00
1.65 1.00 1.00

100 1.00 1.00

Stdev 1 0 0.77 0.79
0.67 0.91 0.93
1.65 0.96 0.98

100 0.96 0.98
5 0 0.81 0.85

0.67 0.87 0.92
1.65 0.91 0.95

100 0.91 0.95
9 0 0.83 0.88

0.67 0.87 0.92
1.65 0.88 0.94

100 0.88 0.94

have a downward bias, but this bias contracts as the degree of truncation
decreases or the sample size n increases.

Problems involving censored data have been considered by Robinson
(1980) and Park et al. (2007) for ARMA processes. In an inventory con-
trol context, Nahmias (1994) and Agrawal and Smith (1996) have proposed
methods of estimation in the lost sales case. None of these approaches
relate directly to the case where demand processes are represented by
linear innovations state space models, so a new estimation procedure is
needed.

Because demand can be understated, we develop an approach which
augments sales by an adjustment factor in those periods where there is
a shortage. The logic of the adjustment factor is as follows. At the start
of period t, demand yt is uncertain and has a distribution represented by
ft|t−1(·), with a mean corresponding to the one-step-ahead prediction ŷt|t−1

and a variance σ2. At the end of period t, the sales value ζt is observed. If there
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is no shortage, demand becomes the fixed quantity yt = ζt. If there is a
shortage, demand remains uncertain but its density becomes

ft|t−1(y)∫ ∞
ζt

ft|t−1(y) dy

over the domain yt ≥ ζt. The expected understatement of demand in such a
period is given by

ct = E(yt − ζt) =

∫ ∞
ζt

(y − ζt) ft|t−1(y)dy∫ ∞
ζt

ft|t−1(y)dy
. (18.1)

In the case where the innovations have a Gaussian distribution, ct becomes
(Exercise 18.1)

ct =
σ
[
φ(zt) − zt

∫ ∞
zt

φ(u)du
]

∫ ∞
zt

φ(u)du
, (18.2)

where zt = (ζt − ŷt|t−1)/σ and φ(u) is a standard Gaussian density function.

Algorithm 1 The parameters of the demand model are estimated using a mini-
mum sum of squared errors criterion employing the associated version of exponential
smoothing to generate the required errors. They are initially estimated directly from
the sales data to give an initial estimate of the standard deviation σ and initial values
for the one-step ahead predictions yt|t−1. This process is then repeated on a demand
series (not the sales series) constructed as follows:

1. Demand is set equal to sales for those periods without a shortage.
2. Demand is set equal to sales plus the non-negative correction factor ct calculated

with equation (18.2) for those periods with a shortage, the current estimate of the
standard deviation and the current one-step ahead predictions being used for the
calculations.

Both steps are repeated as each new set of estimates emerge. They are continued until
the estimates of the standard deviation converge to a fixed value.

The simulation study, based on a local level model, was extended to eval-
uate this augmented sales approach. The algorithm was terminated after the
change in the estimates of the standard deviation dropped below 5%. The
results are presented in Table 18.2. Again, the mean seems to be effectively
unbiased. The standard deviation still has a downward bias, but a com-
parison with the original results in Table 18.1 suggests that this has been
reduced.

The study shows that the bias depends on the persistence parameter α.
Table 18.3 summarizes the situation for both conventional and augmented
exponential smoothing for a selection of values of α. First, even in the case
where exponential smoothing is applied to demand rather than sales data,



18.1 Forecasting Demand Using Sales Data 307

Table 18.2. Biases for augmented simple exponential smoothing.

Lead-time z n = 36 n = 72

Mean 1 0 1.02 1.03
0.67 1.00 1.05
1.65 1.00 1.01

100 1.00 0.99
5 0 1.06 1.07

0.67 1.00 0.99
1.65 1.00 1.00

100 1.00 1.00
9 0 1.03 1.02

0.67 1.00 1.00
1.65 1.00 1.00

100 1.00 1.00

Stdev 1 0 1.03 1.06
0.67 0.97 0.99
1.65 0.96 0.98

100 0.96 0.98
5 0 0.92 0.97

0.67 0.91 0.96
1.65 0.91 0.96

100 0.91 0.95
9 0 0.89 0.95

0.67 0.89 0.94
1.65 0.89 0.94

100 0.88 0.94

there is a tendency to under-estimate the standard deviation of lead-time
demand. This problem is exacerbated when sales data are used, becoming
quite acute when there is severe truncation. The augmented method suc-
ceeds in reducing the bias, particularly for lower levels of α. Nevertheless,
the bias is not completely eliminated.

The augmentation strategy is a step forward in the quest for more reli-
able forecasting practices when only sales data, rather than demand data,
are available. Nevertheless, the simulation results indicate that there is still
room for improvement. The most concerning thing revealed by the simula-
tion study is that the problems are most acute for small values of α. Brown
(1959) and others have suggested that small values of α are typical in inven-
tory applications. We have here a serious practical problem that is yet to be
properly resolved.

A useful step towards a resolution of the problem, from a practical point
of view, is to measure lost sales during shortages. In systems where customer
demands are revealed through a computerized ordering process, it is possi-
ble to detect shortages in real time and record demands even when they are
not satisfied. In this way it is possible to obtain a precise measurement of
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Table 18.3. The relationship between bias in standard deviation (averaged across
lead-times and sample sizes) and the persistence parameter α.

z α Method

Conventional Bias-corrected

0 0.1 0.61 0.79
0.3 0.75 0.90
0.7 0.88 1.05
1 0.95 0.95

0.67 0.1 0.77 0.88
0.3 0.87 0.94
0.7 0.96 0.96
1 0.95 0.95

1.65 0.1 0.88 0.90
0.3 0.91 0.92
0.7 0.96 0.96
1 0.95 0.95

100 0.1 0.89 0.89
0.3 0.92 0.92
0.7 0.96 0.96
1 0.95 0.95

demand, and so avoid the use of sales data altogether. Moreover, with mod-
ern computer technologies, the additional cost of operating a scheme like this
is typically negligible. Nevertheless, the study reveals that even when using
demand data, the downward bias problem does not completely disappear.

18.2 Inventory Systems

18.2.1 Basic Features of Inventory Control Systems

Decision rules used to determine the timing and size of replenishment orders
for inventory systems must account for a number of features. First, demands
are uncertain unless customers place forward orders and are prepared to
wait, in which case demands are known with complete certainty. In the com-
mon case where forward orders are not placed, it makes little sense to match
supply exactly to predicted demand. The predicted demand corresponds to
the mean of a prediction distribution, and if this distribution is symmetric, as
with the Gaussian distribution, demand will exceed supply 50% of the time.
A service level of this order is unacceptable, and so an inventory decision
rule should be designed to ensure that the stock lies above the predicted level
of demand. The additional stock is referred to as safety stock. The problem is
to determine its size.
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Although supply is normally above the predicted demand, there are
circumstances where a supply below the predicted demand makes sense
(Snyder 1980).

Second, it should be recognized that an inventory system operates over
time and that replenishment decisions may be made either periodically or
after each customer transaction. The act of checking the state of a system
is called a review. If reviews occur daily, weekly, monthly or at some other
fixed interval, the system is said to use a periodic review control policy. If they
occur after each transaction, it is said to use a perpetual (continuous) review
policy. Because most of the methods of forecasting considered in this book
have been predicated on measurements over fixed intervals, the focus of this
chapter is restricted to periodic review systems. It is assumed that periods
over which demand is collated correspond to the review periods.

It should also be recognized that replenishment orders need not be placed
at a review if the state of the inventory system is considered to be satisfac-
tory. There may be no restrictions on the size of the replenishment order,
in which case it normally makes sense to order at each review. In some
circumstances, however, inventories may be delivered in standard quan-
tities governed by pack sizes and the capacities of available distribution
technologies. Reordering and delivery costs also imply the need for larger
order quantities. Moreover, costs associated with resetting machines in batch
manufacturing may lead to long production runs and large batch sizes. In
addition, suppliers may offer discounts for purchasing in larger quantities.
In each of these situations, it may be necessary to defer the placement of
replenishment orders until a standard replenishment quantity Q is needed.

The ideal initial stock is referred to as the order-up-to level S. When there
are standard replenishment quantities, replenishment orders are deferred
until the stock drops below a critical level called the reorder level R. In such
situations, the gap between the order-up-to level and the reorder level equals
the standard replenishment quantity Q. It is thus possible to distinguish two
basic kinds of periodic inventory control systems: those that have no restric-
tions on the replenishment quantity and that rely on an order-up-to level
alone; and those that rely on a reorder level in addition to the order-up-to
level. The two systems are referred to as the order-up-to level inventory control
system and the reorder level inventory control system respectively. An order-up-
to level inventory system is a special case of a reorder level system where
Q = 1.

If required, a replenishment order is placed the instant that a review is
completed. Typically, however, such an order is not delivered immediately.
The delay until delivery, designated by L, is called the delivery lead-time, and
it may extend over many review periods. It is convenient to assume that it
is an exact multiple of the review period and that a delivery, possibly from
a much earlier order, can occur in the instant following the placement of an
order.
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The implication of a delivery lead-time is that the decision maker must
think ahead. An order placed at time t is not delivered until time t + L and
so cannot have any effect on stock levels until the period beginning at time
t + L. The decision maker has no control in the intervening period covered
by the delivery lead-time.

Another detail concerns what customers do during shortages. One pos-
sibility, considered in the previous section, is the lost sales case. Another
possibility is that customers are prepared to wait until their demands can
be satisfied following a future replenishment of the system. The quantity
of demand awaiting satisfaction is called the backlog. Many businesses are
confronted with a mix of these customer behaviors. For modeling purposes,
however, it is simplest to assume that there is no mix. The primary focus of
this chapter will continue to be on the lost sales case.

18.2.2 System Dynamics

Stock changes over time. It is decreased by sales and increased by deliveries.
A delivery dt immediately following a review at time t causes a jump in the
stock, so that pre-review stock s̄t and post-review stock st are related by

st = s̄t + dt. (18.3)

During the subsequent review period t + 1, sales ζt+1 deplete the stock, so
that by the end of the review period, at time t + 1, the stock is given by

s̄t+1 = st − ζt+1. (18.4)

Sales cannot exceed the initial stock st or the demand yt+1, so that

ζt+1 = min(st, yt+1). (18.5)

The quantity

Pt = s̄t +
L

∑
j=0

qt−j (18.6)

is called the provision. It consists of the pre-review stock s̄t at the current time
t, the outstanding orders qt−1, . . . , qt−L and the new order qt. The provision
immediately before the review, designated by P̄t, is given by

P̄t = s̄t +
L

∑
j=1

qt−j. (18.7)

The pre-review provision is known to the decision maker at time t. It can be
increased by an order qt placed by the decision maker at time t to

Pt = P̄t + qt. (18.8)
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Fig. 18.1. Stationary reorder level system.

The provision is therefore not only known, but it is also controllable. The pro-
vision represents a system’s capacity to meet future demands. By increasing
the provision at time t through the placement of a new order, the chance of
a shortage in the period immediately after its delivery is reduced. It there-
fore makes sense to use the provision to signal the state of the inventory
system.

The operation of a typical reorder level system is depicted in Fig. 18.1.
In reorder level systems, orders are placed at those reviews where the pro-
vision is found to be below the reorder level R. Enough is then ordered to
raise the provision above the reorder level but not above the order-up-to
level. Orders are a multiple of Q. At those reviews where no order is placed,
the period begins with a provision determined by what happened in earlier
periods.

18.2.3 Nonstationary Demands

Constant ordering parameters such as R and S make sense when demands
are stationary and independent. However, demands are typically nonstation-
ary and autocorrelated, and so the ordering parameters need to change over
time in response to changing underlying conditions. When demands are sea-
sonal, for example, it makes sense to adapt R and S to the demand levels that
prevail in each season. Why carry high stocks during those seasons when
demands are low? When demands are autocorrelated there is then a ten-
dency for low demands to be followed by low demands. It makes sense to
use lower reorder levels during such periods.
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Graves (1999) considered the operation of an order-up-to level system
when demands are governed by a local level model under the assumption
of backlogging of demands during shortages. The order-up-to level was
made time-dependent in such a way that the order qt at the beginning of
period t + 1 is determined by the formula qt = yt + hαεt, where h = L + 1.
As in the stationary case, the order replaces the quantity demanded in
period t. However, the term hαεt is now added to account for the effect of
the permanent change in the underlying demand level on the order-up-to
level.

Here we also propose an adaption of traditional stationary inventory
theory. We consider a reorder level system, of which the order-up-to level
system is a special case, where the reorder level R is made to depend on
time. In addition, we consider the lost-sales rather than the backlog situation.
In doing this, another theory of inventory control emerges that is compatible
with the traditional exponential smoothing methods of forecasting.

The reorder level is determined by the formula

Rt = Ŷt(L + 1) + ∆, (18.9)

where Ŷt(L + 1) is the predicted demand over the period (t, t + L + 1) and
∆ is the safety stock. The prediction is a quantity that varies over time and
induces the required change in the reorder level. The safety stock, when posi-
tive, is the extra provision needed to meet demand above the predicted level.
A consequence of increasing the size of ∆ is to reduce the likelihood and size
of lost sales in the period following a delivery.

The order-up-to level is always Q units above the reorder level, so that

St = Rt + Q. (18.10)

The order quantity is determined with the rule

qt =

⌈
(Rt − P̄t)+

Q

⌉
Q, (18.11)

where �� is the ceiling operator1 and the superscript + is the positive part
operator.2

It is a common practice to use the fill rate as a measure of the performance
of an inventory system. The fill rate is the proportion formed by the ratio of
sales to demand. Thus, a fill rate of 90% means that sales represent 90% of
demand, in which case lost sales have amounted to 10% of demand. A com-
mon practice in inventory theory based on stationary demands, is to focus on

1 The ceiling operator rounds a number to its nearest integer value in an upwards
direction. Thus, �3.2� = 4.

2 x+ = x if x ≥ 0 and 0 otherwise.
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the fill rate of a representative review period when the system has reached
a steady state. However, inventory systems with nonstationary demands
never reach a steady state, and the expected fill rate can change from one
period to the next as the expected review period demand changes. In these
circumstances we recommend using a fill rate measured over the period of
a year to indicate the performance of a system. In the case of demands with
seasonal effects, it allows the system to be evaluated over the full span of
a seasonal cycle. Even for non-seasonal demands there is an advantage. It
typically allows a number of inventory cycles to occur so that an average
performance is gauged.

Therefore, in the case of the reorder level system, the aim is to find a value
of the safety stock ∆ that achieves a specified target for the annual fill rate.
When there are τ periods per year, the annual fill rate rn is governed by the
formula

rn =
n+L+τ

∑
t=n+L+1

ζt

/
n+L+τ

∑
t=n+L+1

yt ,

where n is the size of the sales sample. The lead-time L is included because
any order placed at the beginning of period n + 1 cannot influence the sys-
tem performance until it is delivered at time n + L. Once the safety stock is
determined, it can be used in conjunction with the predictions of demand
over the planning horizon, to find the ordering parameters Rt and St with
(18.9).

The situation is too complex to permit the development of an analytical
method for determining the safety stock. Lost sales mean that no simple for-
mula can be derived that summarizes the way the provision affects lost sales.
Moreover, in nonstationary cases, the provision can become temporarily
stranded above the order-up-to level, implying that a more complex multi-
period approach is necessary in place of the traditional representative period
approach. It appears that simulation is the only viable option.

We now outline a procedure for safety stock determination that may be
applied using either the order-up-to or reorder level rules. It is predicated on
the assumption that sales have been recorded for periods 1, 2, . . . , n, and it
consists of the following basic steps.

Algorithm 2 (Safety Stock Determination)

Step 1: Fit the relevant additive innovations models from Chap. 2 to the sales
ζ1, ζ2, . . . , ζn using the estimation method (Algorithm 1 from Sect. 18.1),
and, where appropriate, employ a model selection procedure from Chap. 7 to
select the best model.

Step 2: Simulate M series of demands over the future periods n + 1, n + 2, . . . , n +
L + τ with the selected model from Step 1. Denote the ith replication of the
series value in future period t by yti.
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Step 3: For a trial value of the safety factor ∆, and for each series i = 1, 2, . . . , M
from Step 2, calculate the the annual fill rate

rni =
n+L+τ

∑
t=n+L+1

ζti

/
n+L+τ

∑
t=n+L+1

yti ,

where ζti is the sales in period t for replicated series i.
Step 4: Estimate the mean annual fill rate by averaging the fill rates obtained at

Step 3.
Step 5: Repeat Steps 3 and 4 for a succession of trial values of the safety factor

without changing the future demands from Step 2, until a value is found
that achieves the specified sample fill-rate.

Step 3 of this procedure relies on an inventory model consisting of (18.3),
(18.4), (18.5), (18.7), (18.8), (18.9), (18.10) and (18.11). The inventory equa-
tions are initialized with the actual stock and outstanding orders at the end
of period n. This step must also account for the potential future role of the
decision maker. Part of this role involves the prediction of demand using
exponential smoothing as an input to the determination of the reorder level.
It is necessary to recognize in the simulation that the decision-maker can
observe only sales, as determined by (18.5), rather than demand. It is there-
fore assumed that the decision-maker adjusts sales in those future periods
with a shortage using the correction factor 18.2 before revising the prediction
with exponential smoothing.

In Step 5, the fill rate is a function of the safety stock ∆. The choice of
∆ to meet a target fill rate involves the solution of a nonlinear equation. A
bisection search procedure (Press et al. 2002) typically works well. As the
fill-rate function is continuous, this method always finds a solution. How-
ever, because the function may not be monotonic, it is conceivable that it
has multiple solutions. In this situation, one would ideally want to select the
smallest solution, but this is not guaranteed by the search procedure. Experi-
ence suggests that any dips in the function that destroy its monotonicity tend
to be relatively small, and so multiple solutions (if they exist) are likely to be
fairly close together; any over-stocking caused by this problem is likely to be
relatively small in practice.

Algorithm 2 involves considerable computational loads when repeated
many times on thousands of different inventories. A business might contem-
plate the prospect of applying it annually to re-estimate model parameters
and to revise the level of the ideal safety stock for each inventory. In between,
stocks might be reviewed on a weekly basis. At the beginning of each week
the reorder level would be recalculated with the rule (18.9). The states of the
demand model would be updated to reflect any new information provided
by the previous week’s sales using the augmented version of exponential
smoothing (Algorithm 1). The prediction of lead-time demand needed for
reorder level determination would be calculated. The decision rule (18.11)
would then be used to determine the order quantity.
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18.3 Exercises

Exercise 18.1. Derive (18.2) using the relationship
∫ ∞

z uφ(u)du = φ(z).

Exercise 18.2. The monthly sales for a product and shortage indicators are
provided in the data set msales:

a. Fit a local linear model directly to the sales data to obtain initial estimates
of the innovations standard deviation and the conditional means (one-step
ahead predictions).

b. Using the results from (a), together with the adjustment formula (18.2),
construct a demand series.

c. Fit a local linear model directly to the demand data from (b) to obtain
revised estimates. Has the estimate of the standard deviation increased?

Exercise 18.3. Weekly demand for a product is stationary, having a Gaussian
distribution with a mean of 2,000 and a standard deviation of 100. Replen-
ishment orders are delivered immediately so there is no delivery lead-time.
An order-up-to level inventory system is to be used with the a goal of a
90% fill-rate in a representative future week. The purpose of this exercise
is to demonstrate that the appropriate value of the order-up-to level is about
1,799. Undertake the following steps to achieve this end:

a. Simulate a sample of 100 possible demands for a representative week from
a Gaussian distribution with a mean of 2,000 and standard deviation of
100.

b. Set a trial value for the order-up-to level (supply) of 1,500 and derive the
corresponding shortages; demonstrate that the average fill-rate is about
75%.

c. Now use a solver to find that value for the order-up-to level which
achieves the 90% fill-rate goal.

Exercise 18.4. When the process generating monthly demands is non-
stationary, it is no longer possible to focus on a representative week. Nor
does it make sense to use a fixed order-up-to level: the focus changes to
the determination of a fixed level of safety stock. Furthermore, the goal is
changed to achieving a specified average fill-rate over a year. Suppose that
monthly demand is governed by a local level model with �n = 1,000, σ = 100
and α = 0.2:

a. Use the local level model to simulate ten possible demand series over the
next 12 months.

b. Set a trial value of 100 for the safety stock and show that the fill rate
averaged across the 10 future demand scenarios is about 96% when
the delivery lead-time is zero (stocks above an order-up-to level can be
returned to the supplier without incurring additional costs).

c. Demonstrate that a safety stock of about −30 achieves a 90% fill-rate. (Yes,
safety stock can be negative!).
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Conditional Heteroscedasticity
and Applications in Finance

In 1900, Louis Bachelier published the findings of his doctoral research on
stock prices; his empirical results indicated that stock prices behaved like
a random walk. However, this study was overlooked for the next 50 years.
Then, in 1953, Maurice Kendall published his analysis of stock market prices
in which he suggested that price changes were essentially random. Such a
claim ran counter to the perceived wisdom of the times, but the empiri-
cal studies that followed confirmed Kendall’s claim and ultimately led to
the path-breaking work of Black and Scholes (1973) and Merton (1973) on
the Efficient Market Hypothesis. In essence, the Black–Scholes theory states
that prices will move randomly in an efficient market. Intuitively, we may
argue that if prices were predictable, trading would quickly take place to
erode the implied advantage. Of course, the theory does not apply to insider
knowledge exploited by the few!

Why did it take so long for these ideas to take hold? The lack of empir-
ical research is clearly part of the story, but there is an interesting statistical
effect that also obscured the picture. Until the 1950s, many stock prices were
published as daily averages, and it was not until the paper of Working (1960)
that it was realized that such averaging induces spurious autocorrelations,
and hence apparent predictability among successive observations. This find-
ing led to the now standard practice of publishing prices at particular times,
such as closing prices, rather than averages. Working’s result is stated in
Exercise 19.1.

We discuss the Black–Scholes model briefly in Sect. 19.1 and relate it to
our analysis of discrete time processes. This development leads naturally
to conditionally heteroscedastic processes, which is the subject of Sect. 19.2.
Then, in Sect. 19.3 we examine time series that evolve over time in both their
conditional mean and conditional variance structures. We conclude with
a re-analysis of the US gasoline price data considered earlier in Chap. 9,
which illustrates the value of conditionally heteroscedastic models in the
construction of prediction intervals.
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19.1 The Black–Scholes Model

Merton, Black and Scholes (hereafter MBS) were concerned with the val-
uation of options, typically the option to buy (sell) an asset at some pre-
specified future date, known as a call (put) option. The value of such options
depends upon the expected level of price volatility, typically measured by
the variance of future returns. To take a trivial example, when this variance
is zero, the future price is perfectly known, so we would have no interest
in hedging against possible fluctuations. As the variance increases, hold-
ing the stock becomes more risky and our interest in risk-mitigating options
increases.

As in earlier chapters, we denote the time series by yt, t = 1, 2, . . . . We
assume that yt is a martingale process so that E(yt | y1, . . . , yt−1) = yt−1.
A random walk has the same conditional mean property, but the martin-
gale assumption is more general and enables us to consider a non-constant
variance later.

The basic MBS formulation rests upon a stochastic partial differential
equation of the form:

d ln yt = µ dt + σ dWt, (19.1)

where µ denotes the rate of change in the mean, or the expected rate of return,
also known as the drift in a general time series setting. The parameter σ2,
also denoted by v on occasion, is the rate of change in the variance. Thus Wt
denotes a standard Wiener process, so that yt follows a geometric Brownian
motion. When we condition on the value of the asset at time zero, y0, (19.1)
yields a lognormal distribution for yt | y0, where the conditional mean of
ln yt is ln y0 + tµ and its conditional variance is tσ2. When the parameters
(µ, σ) are replaced by time-dependent terms (µt, σt) in (19.1), a lognormal
distribution still results but the conditional moments become functions that
must be integrated over time.

Once we allow the parameters to be time-dependent, we must describe
how they evolve over time, and a stochastic description will usually be
appropriate. Hull and White (1987) develop a time-dependent version of
MBS:

d ln yt = µ dt + σt dWt,1, (19.2a)
d ln νt = η dt + ξ dWt,2, (19.2b)

where νt = σ2
t and (dWt,1, dWt,2) are, to use Hull and White’s terminology,

“possibly correlated” Wiener processes.
Our purpose here is not to describe the theory of options pricing, but

rather to recognize the implications of this work for building forecasting
models. Clearly, we can make the usual transition from continuous to dis-
crete time by using differences in place of the differential elements. Also,
we can extend model (19.2) by incorporating state equation(s) for the mean,
as in earlier chapters. Moreover, we may go further and allow the Wiener
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processes to be (perfectly) correlated. Better yet, because we are interested
in forecasting rather than an explicit theoretical solution, we may consider
some (nonlinear) functional dependence between the processes. When we
incorporate all of these considerations, we arrive at the model

ln yt = �t−1 + εt, (19.3a)
�t = µ + �t−1 + αεt, (19.3b)

ln vt+1 = u0 + u1 ln vt + u(εt), (19.3c)

where vt = σ2
t and εt ∼ N(0, vt).

We have selected the logarithmic form for the variance in (19.3c) for two
reasons. First of all, the logarithmic form guarantees a positive value for
the variance without placing constraints upon the parameters (u0, u1) or the
function u. Second, this form tends to dampen the impact of extreme values
of the error process, making it somewhat more robust. Although ln yt is used
in model (19.3) because of the MBS framework, the model is generally appli-
cable to random variables measured in their original units, or any suitable
transformation.

The function u is open to choice and the selection may well be
application-specific. However, a reasonable choice is the logarithm of the
absolute value of the error term. Because we are dealing with logarithms,
this produces results equivalent to using the logarithm of the squared error.
To avoid complications when the error is (close to) zero, we could add a
small positive constant, say u3, so that we have a function such as u(εt) =
u2 ln(|εt|+ u3).

In addition to the variance specification, there are many variations on the
basic form of (19.3). We may include slope and seasonal state equations in
the usual way or allow the variance to depend upon the state variables used
to describe the mean.

19.2 Autoregressive Conditional Heteroscedastic Models

Model (19.3) shows the need to integrate the specification of the conditional
variance into the overall framework. The first formulation of this type was
the ARCH (Autoregressive Conditional Heteroscedastic) model proposed
by Engle (1982). The ARCH models represent the conditional variance in a
purely autoregressive way, and the GARCH model, proposed by Bollerslev
(1986) and now generally preferred, may be thought of as an ARMA for-
mulation, although the details are somewhat more involved. Both of these
approaches model vt directly, so that conditions need to be placed on the
parameter space to ensure that the process remains positive. As with mod-
els of the mean, the question of stationarity is important in the ARMA
world. Stationarity in the variance may be imposed upon a GARCH model,
although nonstationary versions, known as integrated or IGARCH models,
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are also useful. This scheme is typically used only for first-order or local level
variance models when it reduces to a local level model with drift.

Nelson (1991) proposed the exponential or EGARCH model based on
ln vt; Nelson also incorporated a term to allow for asymmetric movements
in asset returns, but we do not explore that extension here.

Since these early developments, a number of variations on the basic
GARCH model have appeared in the literature, as researchers sought to
incorporate the particular features associated with different types of asset.
Tsay (2005, Chap. 3) provides an excellent guide to these developments.
The main points for our discussion are that conditional heteroscedastic-
ity is important and that such processes are readily incorporated into the
innovations framework.

19.2.1 Estimation

Much of the work on asset prices assumes that the returns follow a martin-
gale process so that, from the forecasting perspective, we need to worry only
about the state equation for the variance. This reduction makes specification
of the likelihood function very straightforward (cf. Tsay 2005, pp. 106–
108). In the formulation of the Hull–White model (19.2), we noted that the
Wiener processes were “possibly correlated”; thus, as a limiting case, we may
assume perfect correlation and specify an innovations model. This approach
enables us to use functionally related processes in the state equations like
(19.3c). In turn, this step enables us to employ the estimation procedures
developed in Chap. 5. The extension to heavy-tailed distributions such as
Student’s t (cf. Tsay 2005, p. 108) adds to the computational effort but
presents no conceptual problems.

19.2.2 GARCH Model for the Dow Jones Index

We now illustrate the general method using the series of monthly closing
prices for the Dow Jones Index (DJI) over the period January 1990 to March
2007. The series is plotted in Fig. 19.1.

We first fitted four variants of the local level model to the series, ignoring
any changes in variance; these versions were: random walk (RW), local level
(LL), random walk with drift (RWD) and local level with drift (LLD). We
then incorporated the following GARCH-type model based upon (19.3):

ln yt = �t−1 + εt, (19.4a)
�t = µ + �t−1 + αεt, (19.4b)

ln vt+1 = u0 + u1 ln vt + u2 ln |εt|. (19.4c)

The results are given in Table 19.1. As in earlier chapters, the AIC is used to
select among models, with a penalty equal to twice the number of param-
eters. The AIC values given in Table 19.1 are adjusted by subtracting the
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Fig. 19.1. Dow Jones Index: (a) logarithms of monthly closing prices (Jan 1990–Mar
2007); (b) returns for the same period.

value for the RW scheme so that comparisons are easier to make. The results
are much as we would expect. The positive drift term reflects the average
monthly return that an investor would receive if holding a portfolio that
matched the DJI (with appropriate rebalancing by buying and selling stocks
to ensure that the portfolio matched the DJI). Models with drift clearly out-
perform those without that term. In the LL models, the parameter α was
allowed to range over (0, 2). The resulting estimates of α were slightly less
than 1, but there is no real evidence against the random walk hypothesis.
Finally, we note that the GARCH-type model leads to an improvement in the
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Table 19.1. Comparison of conditional heteroscedastic models for the Dow Jones
Index, January 1990–March 2007.

Model α Drift AIC

Constant variance

Random walk (RW) 1.000 – 0.00
Local level (LL) 0.966 – 1.76
RW + drift 1.000 0.0076 −5.13
LL + drift 0.927 0.0076 −4.21

Heteroscedastic

RW + GARCH 1.000 – −2.60
LL + GARCH 0.965 – −5.56
RW + drift + GARCH 1.000 0.0091 −17.73
LL + drift + GARCH 0.960 0.0074 −21.22

overall fit. In Exercise 19.3, the reader is encouraged to compare this model
with a similar model for the DJI, without the logarithmic transformation.

The final form of the GARCH-type equation, corresponding to the LL +
drift + GARCH model, is

ln yt = �t−1 + εt,
�t = 0.0074 + �t−1 + 0.960εt,

ln vt+1 = 0.043 + 0.932 ln vt + 0.125 ln |εt|.
Replacing |εt| by (|εt| + u3) for small values of u3 produced no changes
worthy of note.

19.3 Forecasting

We now revert to the more general notation used in earlier chapters, and use
the measurement equation to define the one-step-ahead forecast as yt+1|t =
w′xt. To this model, we add the equation for the one-step-ahead conditional
variance

ln vt+1 ≡ ln vt+1|t = u0 + u1 ln vt + u2 ln |εt|. (19.6)

The forecast and conditional variance for multiple steps ahead may then be
written as yt+j|t = w′Fj−1xt and

ln vt+j+1|t = u0 + u1 ln vt+j|t + u2E(ln |εt+j|), j = 1, 2, . . . . (19.7)

Because εt ∼ N(0, vt), it may be shown that the conditional expectation
of the logarithm of the absolute error term is E(ln |εt|) = 0.5 ln(vt) − 0.635
(see Abramowitz and Stegun 1964, p. 943). If u3 is included in the model,
the exact expectation is not available, but the bias will be modest when the
constant is small, as is usually the case. The prediction of the error variance
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at time t + j + 1 is then obtained iteratively from (19.6) and (19.7). An explicit
solution appears in Exercise 19.2.

19.3.1 Gas Price Data Revisited

We return to the data on gasoline prices examined in Sect. 9.2.2. In addition to
the constant variance models considered earlier, we also fitted GARCH-type
models with and without the constant u3. The results are given in Table 19.2.
The full model, with all elements included, appears to be preferable based
upon the AIC values.

The GARCH-type equation for the (full) fitted model is:

ln vt = 0.009 + 0.987 ln vt−1 + 0.019 ln |εt + 0.006|.
We observe that each of the models produces an estimate of α greater

than 1, suggesting some persistence in the direction of price movements, but
also implying that the innovations model provides a better fit than the mul-
tiple source of error version. We then generated the forecasts for the months
January 2002–November 2006. In general, the point forecasts from the model
with local level, regression and seasonal terms (LLRS) and those from the
complete model were very close; 54 of 59 forecasts were within 3 cents of each
other and the largest discrepancy was 5.5 cents. However, the picture was
very different for the prediction intervals. We considered 90% intervals for
the 59 observations. As reported in Table 19.3, the constant variance model
had almost one-third of the observations outside the intervals, whereas the
heteroscedastic model was right on target. Because options pricing and other
decisions are based upon price volatility, the benefit from using conditional
heteroscedastic models is clearly seen.

Table 19.2. Comparison of fitted models for the US gasoline price data, January 1991–
December 2001.

Model α Spot price (1) AIC

Local level + regression (LLR) 1.61 0.112 0.0
LLR + seasonal (LLRS) 1.49 0.144 −13.1
LLRS + GARCH 1.48 0.100 −29.9
LLRS + GARCH + u3 1.49 0.145 −34.0

Table 19.3. Coverage of one-step-ahead prediction intervals for US gasoline price
data, January 2002–November 2006.

Model A < L90 A > U90 Total

LLR + seasonal (LLRS) 7 12 19
LLRS + GARCH + u3 4 2 6

A = Actual, L90 = lower 90% limit, U90 = upper 90% limit
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19.3.2 Stochastic Volatility

Although GARCH type models have had some measure of success, the
search for better descriptions of inherent volatility has continued. In particu-
lar, Harvey et al. (1994) and others have introduced an additional stochastic
element into the variance equation to create what is known as a stochastic
volatility model. Thus, (19.3c) may be extended to:

ln vt = u0 + u1 ln vt−1 + ηt,

where ηt is another Gaussian variable and is independent of εt. Parameter
estimation procedures for such models lead to a considerable increase in
computational complexity and we refer the interested reader to Tsay (2005,
pp. 134–140). For some other recent developments in modeling heteroscedas-
ticity, see Andersen et al. (2004).

19.4 Exercises

Exercise 19.1. Assume that the price of a stock follows a random walk,
represented as:

yt = �0 + ε1 + ε2 + · · · + εt.

Each day, the price is recorded at m equally spaced points in time and the
m values for that day are averaged. That is, the average for successive days
may be written as:

A1 = (y1 + y2 + · · ·+ ym)/m,
A2 = (ym+1 + ym+2 + · · ·+ y2m)/m,

and so on. We now define the “change” in price by the differences Dt = At −
At−1. If V(εt) = ω, show that V(Dt) = ω(2m2 + 1)/3m and Cov(Dt, Dt−1) =
ω(m2 − 1)/6m. Hence show that for large m, the first order autocorrelation
between the differences approaches 0.25.

(Working 1960)

Exercise 19.2. Show that (19.6) yields the solution

ln vt+j+1|t = (u0 − 0.635u2)(1 + u11 + · · ·+ uj−1
11 ) + uj

11 ln vt+1|t,

where u11 = u1 + 0.5u2 and j ≥ 1.

Exercise 19.3. Using the Dow Jones series dji described in Sect. 19.2.2, fit
a model similar to (19.4) but without the logarithmic transformation on yt.
Compare your results with those in Table 19.1.

Exercise 19.4. Using the gasprice data set discussed in Sect. 19.3.1, trans-
formed via logarithms, develop models similar to those in Table 19.2 and
compare the results.
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Economic Applications:
The Beveridge–Nelson
Decomposition

Co-authors: Chin Nam Low1 and Heather M. Anderson2

Two features that characterize most macroeconomic time series are sustained
long run growth and fluctuations around the growth path. These features
are often called “trend” and “cycle” respectively, and the macroeconomic,
econometric and statistical literatures contain a variety of techniques for
decomposing economic time series into components that are roughly aligned
with these notions. Most popular in the macroeconomic literature is the use
of the Hodrick–Prescott (1980) filter for trend-cycle decomposition, followed
by the Beveridge–Nelson (1981) decomposition, the decomposition implied
by Harvey’s (1985) unobserved component model, and a myriad of other
contenders. Some, but not all, of these decomposition methods are based on
statistical models, and there is vigorous debate about which of these methods
leads to series that best capture the concepts of economic growth and busi-
ness cycles. Canova (1998) provides an excellent survey of various methods
that are used to decompose economic data, and he also outlines the motiva-
tional and quantitative differences between them. He is careful to point out
that the “cycles” which result from statistical filters need not have a close
correspondence with the classical ideas that underlie business cycle dating
exercises undertaken by think-tanks such as the National Bureau of Eco-
nomic Research in the USA. He also emphasizes that such a correspondence
is not even desirable. Alternative decomposition techniques extract different
types of information from the data, and each can be used to focus on differ-
ent aspects of economic theory. Which filter is appropriate depends on the
question at hand.

The Beveridge–Nelson (1981) (BN) decomposition developed from the
observation that economic growth is not predictable, in the sense that it
has an intrinsic stochastic component. Deterministic models of trend in
economic output, often represented by polynomial functions of time, are

1 Dr. Chin Nam Low, Aretae Pty Ltd, Singapore.
2 Professor Heather Anderson, School of Economics, Australian National University,

Australia.
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then inappropriate indicators of “trend.” Related work undertaken by Nel-
son and Plosser (1982) provided compelling empirical evidence that nearly
all macroeconomic time series contain a (single) unit root with drift, and
this finding had a profound impact on economists, first because stochas-
tic trends are not predictable, and second because innovations to stochastic
trends are not dampened but persist into the future. The innovations could
be interpreted as technological advances, consistent with standard models
of economic growth (as in Solow 1956). Innovations in this context could
also be interpreted as fiscal or monetary policy shocks that had permanent
long-run effects on the economy. Of particular importance was the implica-
tion that innovations to a stochastic trend had a persistent effect, and this,
together with Friedman’s (1957) concept of “permanent” and “transitory”
components in income, led Beveridge and Nelson to develop their decom-
position of macroeconomic time series into “permanent” and “transitory”
components.

Economists use BN decompositions to provide measures of persistence
in economic output (GDP). They also use the BN decomposition to date
and predict various features of the business cycle. An interesting statistical
aspect of this decomposition is that it implies perfect correlation between
innovations to the permanent and transitory components, and this perfect
correlation implies an innovations (single source of error) state-space repre-
sentation. An interesting aspect of the “trend” and “cycle” interpretation of
this decomposition is that the perfect correlation between the innovations to
each component will imply that shocks to an economic variable will affect
both trend and cycle.

Economists are often interested in the relative contributions of trend
and cycle to the total variation in macroeconomic variables, and base their
measures of relative contribution on BN components, so as to account for
stochastic trends in the data. Empirically, the variation in the BN permanent
component is usually very close to the total variation, and the contribution
of the transitory component is usually very small. Stock and Watson (1988)
discuss this finding, pointing out that economists need to recognize the sub-
stantial trend component in output, even if they are primarily interested in
short term variation. In practice, the short term variation in the transitory
component (cycle) is almost negligible, and its serial dependence properties
are typically very weak.

Another interesting property of the BN decomposition arises from the
inclusion of (positive) drift in the BN “trend.” This drift ensures that eco-
nomic growth (i.e., the BN trend) will be positive more often than it is
negative, automatically creating an asymmetry in the growth process. This
is consistent with the classical economic view of the business cycle that asso-
ciates recessions with lower growth. It runs counter to a more statistical
view that there are asymmetries in business cycles, but one can reconcile
the apparent anomaly as a simple artifact of the use of different definitions.
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Some economists view recessions as periods of low growth, while others
view recessions as low points in cycles.

Macroeconomists often use “growth cycle” data to study asymme-
tries in economic time series, where growth cycles are taken to be the
cycles discussed in Zarnowitz and Boschan (1977). Growth cycle data are
constructed by taking the first differences (of the logarithms) of the raw time
series, and the asymmetries are typically modeled using regime switching
autoregressive specifications that allow the intercept and/or autoregres-
sive parameters to change over time. Examples include Markov switch-
ing (MS) models (Hamilton 1989), threshold autoregressive (TAR) models
(Potter 1995), and smooth transition autoregressive (STAR) models used by
Teräsvirta and Anderson (1992). Most of these models allow for two regimes,
and the regimes are loosely interpreted as recessionary and expansionary
phases of the business cycle. Changes in the intercept correspond to changes
in growth rates, while changes in the autoregressive parameters indicate
changes in the short-run dynamic characteristics of growth. Low et al. (2006)
show that it is possible to extend the BN innovations state space representa-
tion to allow for asymmetries in growth cycles, and this is briefly discussed
at the end of the chapter.

The aim of this chapter is to familiarize readers with the BN decompo-
sition of economic time series, because it provides an interesting application
of the linear innovations state space approach to economics. The treatise
provided here focusses on the decomposition of a single variable (in prac-
tice, this is usually the logarithm of the gross domestic product (GDP) of
a country) into just two components. We do not consider more general
linear innovations state space approaches that might explicitly account
for seasonality, because economic theory has little to say about seasonal
effects, and economists typically think in terms of seasonally adjusted data.
We also do not consider local trend models, because there is very little
empirical evidence that macroeconomic time series follow processes that
are integrated of order two, and economic theory does not distinguish
between different types of low frequency data. A state space framework that
can be used to undertake the BN decomposition is outlined in Sect. 20.1.
This framework is based on Anderson et al. (2006) and uses the perfect
correlation between permanent and transitory components to recast the BN
decomposition as an innovations state space model. It turns out that this
state space approach avoids a computational problem associated with other
techniques for estimating the BN permanent component (see Miller 1988;
Newbold 1990; Morley 2002), and it also facilitates the direct estimation of
various measures of “persistence in output.”

In Sect. 20.2 we discuss the application of the state space approach to
decomposing data from the USA, the UK and Australia. Some extensions
to nonlinear processes are discussed in Sect. 20.3.
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20.1 The Beveridge–Nelson Decomposition

The starting point for the Beveridge–Nelson (1981) decomposition is that
most economic time series can be approximated by an ARIMA(p, 1, q) model.
The permanent component of the ARIMA(p, 1, q) series is taken to be the lim-
iting forecast of the series as the forecast horizon goes to infinity (given all
history up to time t), and the transitory component is then the difference
between the present observed value of the series and the permanent compo-
nent. The definition of the permanent component embodies a clear focus on
forecasting. Further, Beveridge and Nelson (1981) show that the BN transi-
tory component consists of the forecastable momentum of the series at each
point in time.

The original derivation of the BN decomposition of a time series yt
assumes that yt is a linear I(1) variable with a stationary Wold representation
given

∆yt = b + γ(L)εt, (20.1)

where b is the long run growth or drift, γ(L) is a polynomial in the lag
operator L with γ(0) = 1 and ∑∞

i=0 |γi| < ∞, and εt is the IID(0, σ2) one-step-
ahead forecast error of yt. Economists are typically interested in γ(1), the
multiplier which measures the long-run effect of a shock εt on yt. The 1981
implementation of the decomposition defined the permanent component as

τt = lim
h→∞

E(yt+h − hb | yt, yt−1, . . . y1),

and then set the transitory component to be ct = yt − τt. Beveridge and Nel-
son then showed that ∆τt = b + γ(1)εt, which implied that this permanent
component followed a random walk with drift. They also showed that the
transitory component was stationary.

The approach used by Anderson et al. (2006) assumes an ARIMA(p, 1, q)
model with drift for yt, so that

γ(L) =
θq(L)
φp(L)

=
1 − θ1L − θ2L2 − · · · − θqLq

1 − φ1L − φ2L2 − · · · − φpLp .

The notation α is used to denote the long-run multiplier given by γ(1) =
θq(1)/φp(1). Equation (20.1) can then be written as

(1 − L)yt = b +
(

θq(L)
φp(L)

− α

)
εt + αεt,

so that yt can be decomposed into two components:

yt =
(

b
1 − L

+
αεt

1 − L

)
+
(

θq(L) − αφp(L)
(1 − L)φp(L)

)
εt = τ∗

t + c∗t . (20.2)
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It is clear that ∆τ∗
t = b + αεt, so that τ∗

t = τt, the BN permanent component.
It follows that c∗t = ct, the BN transitory component. Therefore, we simply
use the notation τt and ct for these two components from now on. Note that
the numerator of the ct term in the decomposition (20.2) has a unit root by
construction.3 It is also useful to note that the expression for ct in (20.2) mea-
sures the short-run effects of εt on yt; that is, the difference between the total
and long-run effects of εt on yt.

Inspection of the two components in (20.2) shows that they are driven
by the same innovation, so that innovations to τt and ct are perfectly corre-
lated. This perfect correlation is a by-product of the BN decomposition rather
than an assumption, but its presence allows one to model the decomposition
within a linear innovations state space framework.

We can rewrite the expression for τt as

τt = b + τt−1 + αεt, (20.3)

which shows that the permanent component is a random walk with drift b
and an uncorrelated innovation given by αεt. Thus, what economists call the
permanent component or a stochastic trend corresponds to a local level with drift
model (see Sect. 3.5.2). We can also rewrite the expression for ct as

ct =
(

θq(L) − αφp(L)
(1 − L)φp(L)

)
εt =

ψr(L)
φp(L)

εt, (20.4)

where ψr(0) = 1− α, and the order of ψr(L) satisfies the condition
r ≤ max(p − 1, q− 1). Letting φ∗

p(L) = φ1L + φ2L2 + . . . + φpLp and ψ∗
r (L) =

ψ1L + ψ2L2 + . . . + ψrLr , the expression for the transitory component
becomes

ct = φ∗
p(L)ct − ψ∗

r (L)εt + (1 − α)εt. (20.5)

Substituting (20.3) and (20.5) into yt = τt + ct leads to

yt = b + τt−1 + φ∗
p(L)ct − ψ∗

r (L)εt + εt. (20.6)

Equations (20.6), (20.3) and (20.5) are a complete representation of a
difference-stationary time series. The associated lag polynomials can be of
degree greater than one, so it is not a linear innovations state space represen-
tation. However, as shown in the next section, equations like this can always
be recast into the first-order form associated with linear innovations state
space models.

Following the convention of calling the permanent component of the BN
decomposition “the trend” and the transitory component “the cycle,” the
parameter of interest in empirical studies of (the logarithms of) output is
typically α, which measures the long run percentage increase in GDP result-
ing from a 1% shock in GDP in one quarter. This parameter is often used as a

3 This is confirmed by substituting L = 1 into the numerator to give a value of zero.
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measure of persistence (see Campbell and Mankiw 1987). It also determines
the relative size of (contemporaneous) innovations to each component. In
practice, if α < 1 then the trend and cycle will have perfect positive correla-
tion and both components will share in the variation of the data. However, if
α > 1, then the innovations in the trend and cycle will have perfect negative
correlation, and the trend τt will be more variable than yt. Some researchers,
such as Proietti (2002), have questioned whether one should call τt a “trend”
when it is more volatile than the output itself, but as was pointed out by
Morley et al. (2003) (who observed that α > 1 for real US GDP), a shock
to output can shift the trend so that the output is behind the trend until it
catches up. Thus, it is quite reasonable for “trend innovations” to be nega-
tively correlated with “cycle innovations,” and for the former innovations to
be more variable than output innovations.

20.2 State Space Form and Applications

We now explore the use of the linear innovations state space approach for
computing the BN permanent/transitory decompositions for ARIMA(0,1,1),
ARIMA(1,1,0) and ARIMA(2,1,2) models of the logarithms of real output
for the United States, the United Kingdom and Australia. The US models
coincide with those used by Stock and Watson (1988) in their study of the
contribution of the trend component to real US GNP, and the scope is broad-
ened to include decompositions for the UK and Australia to demonstrate the
relative contribution of trends in other countries.

In this study, we use quarterly GNP data for the USA (from 1947:1 to
2003:1), quarterly GDP data for the UK (from 1960:1 to 2003:1) and quar-
terly GDP data for Australia (from 1979:3 to 2003:3).4 As noted above, the
primary parameter of interest is Campbell and Mankiw’s (1987) persistence
measure α. Because researchers are often interested in the fraction of the vari-
ance of the quarterly change in real output that can be attributed to changes
in its stochastic trend, the computed BN trends are used to calculate Stock
and Watson’s (1988) R2 measure of this ratio. The empirical results are pre-
sented in Table 20.1, and the details relating to the innovations state space
formulation are outlined below.

20.2.1 ARIMA(0,1,1) Model

The BN components of an ARIMA(0, 1, 1) model are

τt = b + τt−1 + αεt,
ct = (1 − α)εt,

4 The US data were obtained from the Federal Reserve Bank of St Louis, the UK data
from the Office of National Statistics, and the Australian data from the Australian
Bureau of Statistics. The data were transformed so that yt is 100 times the natural
logarithm of the GNP or GDP in each quarter.
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Table 20.1. Measures of the importance of trend in real log GNP/GDP.

Univariate
statistical
model

Long-run change in GNP
predicted from a 1% shock

change in GNP in one quarter (α̂)

Variance
ratios R2

US GNP (1947:1–2003:1)
ARIMA(0,1,1) 1.2701

(0.0552)
0.9339

ARIMA(1,1,0) 1.5226
(0.1464)

0.8817

ARIMA(2,1,2) 1.2653
(0.1459)

0.8458

UK GDP (1960:1–2003:1)
ARIMA(0,1,1) 0.9945

(0.0724)
0.9999

ARIMA(1,1,0) 0.9940
(0.0759)

0.9999

ARIMA(2,1,2) 1.2267
(0.1587)

0.9686

Australia GDP (1979:1–2003:3)
ARIMA(0,1,1) 1.3000

(0.0878)
0.9175

ARIMA(1,1,0) 1.4942
(0.0110)

0.8882

ARIMA(2,1,2) 1.3733
(0.0460)

0.8822

Standard errors are given in parentheses. The R2 statistic is
obtained by regressing the quarterly change in GNP against the
change in the BN trend.

where, in terms of the ARMA coefficients for ∆yt, α = γ(1) = 1 − θ1. These
equations can be cast into innovations state space form with

yt = b +
[
1 0
] [τt−1

ct−1

]
+ εt

as the measurement equation and[
τt
ct

]
=
[

b
0

]
+
[

1 0
0 0

] [
τt−1
ct−1

]
+
[

α
1 − α

]
εt

as the transition equation. Forecasts for these state space equations can be
computed by using a suitable version of the information or Kalman fil-
ters, and the maximum likelihood estimates of the parameters (α and b) are
obtained using the prediction error decomposition of the likelihood function.
Note that it is α rather than the MA(1) parameter that is directly estimated.

The estimated αs and implied variance ratios for the USA, the UK and
Australian output are shown in Table 20.1. Here it is interesting to note that
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Fig. 20.1. Implied transitory components based on different ARIMA models for
the USA, the UK and Australia. The shaded areas indicate peak-to-trough episodes
(recessions) recorded by the NBER for the USA and by the ECRI for the UK and
Australia.

while α > 1 for the USA and Australia, implying that innovations to the
“trend” and “cycle” are negatively correlated, the same is not true for the
UK. In the case of the UK, the standard error associated with the parameter α
suggests that the data are consistent with the possibility that α = 1. Turning
to the R2 measures of the fraction of the variance in the quarterly change in
real output that can be attributed to changes in its stochastic trend, it can be
seen that the permanent component makes a relatively lower contribution in
the USA and Australia than it does in the UK.

The implied transitory components are illustrated in the left hand side
graphs in Fig. 20.1, together with reference recessions published by the
NBER5 and the ECRI.6 While there are often pronounced declines in the tran-
sitory components around the NBER/ECRI peak-to-trough episodes, there
are also clear differences between BN-cycles based on ARIMA(0,1,1) models
of output and conventional business cycles. This is hardly surprising, given

5 http://www.nber.org/cycles.html.
6 http://www.businesscycle.com.
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that the two types of cycle have been constructed to serve different purposes,
and have been based on quite different information sets.

20.2.2 ARIMA(1,1,0) Model

For an ARIMA(1,1,0) model, the permanent trend component is the same
as above, although in this case α = 1/(1 − φ1) in terms of the ARMA
coefficients for ∆yt. The cycle component is given by

ct = φ1ct−1 + (1 − α)εt.

Arranging the model into innovations state space form, the measurement
equation is

yt = b +
[
1 φ1

] [τt−1
ct−1

]
+ εt

and the transition equation is[
τt
ct

]
=
[

b
0

]
+
[

1 0
0 φ1

] [
τt−1
ct−1

]
+
[

α
1 − α

]
εt.

Estimation of the innovations state space model imposes the identity that
φ1 = (α − 1)/α (which arises from the observation that α = 1/(1 − φ1))
and provides a direct estimate of α. Results are provided in Table 20.1, and
the implied transitory components are illustrated in the center graphs of
Fig. 20.1. As for the ARIMA(0,1,1) model, α > 1 for the USA and Australia,
while α < 1 for the UK. Again, because of the standard error of the estimate
of α, it is conceivable that α = 1, which suggests that UK GDP is largely gov-
erned by a random walk with drift. The implied R2 values for the USA and
Australia are much smaller than that for the UK, reflecting a comparatively
more noisy transitory component in the former countries.

20.2.3 ARIMA(2,1,2) Model

The ARIMA(2,1,2) model of output has been used by Morley et al. (2003) for
US GDP. If the focus is restricted to just ARIMA(0,1,1), ARIMA(1,1,0) and
ARIMA(2,1,2) models, it is the model chosen with the AIC for both the USA
and the UK. For Australia, however, the ARIMA(1,1,0) model is selected.
As usual, the permanent component is given by (20.3), while the transitory
component is given by

ct = φ1ct−1 + φ2ct−2 − ψ1εt−1 + (1 − α)εt.

In this case α = (1− θ1 − θ2)/(1−φ1 −φ2) in terms of the ARMA coefficients
for ∆yt, although this relationship does not affect the following estimation.
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The model can be cast into an innovations state space form with

yt = b +
[
1 φ1 1

] ⎡⎣τt−1
ct−1
dt−1

⎤
⎦+ εt

being the measurement equation, and⎡
⎣τt

ct
dt

⎤
⎦ =

⎡
⎣b

0
0

⎤
⎦+

⎡
⎣1 0 0

0 φ1 1
0 φ2 0

⎤
⎦
⎡
⎣τt−1

ct−1
dt−1

⎤
⎦+

⎡
⎣ α

1 − α
−ψ1

⎤
⎦ εt

being the transition equation.
Table 20.1 reports the estimation results and Fig. 20.1 illustrates the

implied transitory components. In the case of the UK, θ̂1 is statistically
insignificant and is set to zero. The reported results are similar to those
above. The estimated value of α for the UK is now greater than one, but
its standard error suggests the possibility that its value could still be one.
Once again, the results suggest that the permanent component in the US and
Australian decompositions are relatively less volatile than the corresponding
component in the UK decomposition.

20.3 Extensions of the Beveridge–Nelson Decomposition
to Nonlinear Processes

The analysis in the previous two sections is based on the assumption that
yt is a linear process, so that all parameters are constant over time and the
transitory component is symmetric around zero. This is inconsistent with
observed asymmetries in business cycles, and it has led to a small literature
on the decomposition of nonlinear time series that has attempted to address
this problem.

Clarida and Taylor (2003) have proposed the simulation of the long-run
forecast of a variable that follows a nonlinear data generating process. Given
an estimated model of the data, the empirical conditional means of simulated
long-run forecast densities based on the estimated parameters of this model
will deliver the permanent component of the data, provided the data are
integrated short-memory in mean. This implies that the long horizon fore-
cast of the first differenced series is a constant (which rules out limit cycles,
chaotic behavior and other time variations in the drift). The empirical con-
ditional means of simulated long-horizon forecasts (adjusted for drift) are,
of course, analogous to the original definition of the permanent component
given by Beveridge and Nelson (1981), in which one had to evaluate the
expected conditional mean of the series (adjusted for drift). As before, the
transitory component is defined as the difference between the present value
of the series and its permanent component.
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A few researchers have worked with explicit models, and found direct
ways of estimating the permanent-transitory decomposition. For instance,
Chen and Tsay (2006) added an exogenous Markov switching (MS) mecha-
nism to the drift in the permanent BN decomposition of GDP, so as to allow
for lower growth rates of GDP during recessions. Rather than simulate the
implied permanent component, they extended Newbold’s (1990) procedure
for BN decomposition to allow for regime switches in drift, and found that
the transitory component became much less variable as a result.

Low et al. (2006) extended Chen and Tsay’s (2006) model by allowing the
parameters in both the permanent and transitory components of the decom-
position to switch between regimes. As in Chen and Tsay (2006), the regime
switches are generated by an exogenously determined MS process, and the
regimes are interpreted as periods of recession and expansion. The extended
model is given by yt = τt + ct, with

τt = bSt + τt−1 + αSt εt (20.7)

and
ct = φ∗

p,St
(L)ct − ψ∗

r,St
(L)εt + (1 − αSt)εt, (20.8)

in which the subscripted transition variable St can take just one of two dis-
crete values at time t, so that the random parameters µSt , φ∗

p,St
(L), ψ∗

r,St
(L),

and αSt all depend on St. The transition of St between its two regimes is
driven by a probability transition matrix P, where

P =
[

p11 p12
p21 p22

]
, (20.9)

pij = Pr(St = j|St−1 = i) and pi1 + pi2 = 1 for all i.
The innovation in yt is again εt ∼ IID(0, σ2), and this provides the single

source of innovation. The variance σ2 of εt is restricted to be constant in this
model, although in principle it could depend on St without loss of identifi-
cation. An example, expressed in innovations form, is the Markov switching
version of an ARIMA(2,1,2) specification given by

yt = bSt +
[
1 φ1,St 1

] ⎡⎣τt−1
ct−1
dt−1

⎤
⎦+ εt

as the measurement equation, and⎡
⎣τt

ct
dt

⎤
⎦ =

⎡
⎣bSt

0
0

⎤
⎦+

⎡
⎣1 0 0

0 φ1,St 1
0 φ2,St 0

⎤
⎦
⎡
⎣τt−1

ct−1
dt−1

⎤
⎦+

⎡
⎣ αSt

1 − αSt−ψ1,St

⎤
⎦ εt

as the transition equation. The parameters in this model can be estimated
using a maximum likelihood approach, replacing the standard Kalman filter
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used in Kim’s (1994) approximation procedure for estimating the MS innova-
tions state space models with a method similar to the Kalman filter described
in Sect. 12.7. Low et al. (2006) estimate the above model, using the same US
data as that in Sect. 20.2, and they find evidence of switches in both the per-
manent and transitory regimes. Growth in the expansionary regime is about
3.5%, compared with 2% in the recessionary regime, and the probability of
staying in an expansionary regime is about 85%, compared with a probability
of about 63% of staying in the recessionary regime. Perhaps one of the most
interesting features of this model is that the long-run multiplier changes if
there is switching in the transitory components, and the results presented in
Low et al. (2006) suggest that this multiplier is 1.35 during expansions, but
only 1.14 during recessions.

20.4 Conclusion

An advantage of the innovations state space approach is that it offers a
simple and straightforward formulation of the permanent and transitory
components of linear economic time series, and it allows direct study of the
long-run multiplier α, a key parameter in macroeconomic analysis. More-
over, because it allows α to be estimated directly, it is then possible to obtain
auxiliary statistics such as its standard error and t-statistic. Another benefit
of the approach, as shown in Sect. 20.3, is that it can easily be adapted to deal
with asymmetries in the data generating process. Furthermore, although this
has not been studied here, it could be expanded to undertake multivariate
decompositions. The interesting aspect of the latter suggestion is that stan-
dard real business cycle theories, as in King et al. (1988), assert that output,
consumption and investment are all driven by a common unit root process
trend, so that economic theory predicts that the permanent and transitory
components of these three variables could all be estimated using a single
source of error approach.

20.5 Exercises

The following exercises apply to the monthly copper price series in the data
set mcopper.

Exercise 20.1. Fit a state space form of the Beveridge–Nelson model with an
AR(1) transitory component to the logarithm of all but the last 2 years of the
series. To simplify matters fix ĉ0 = 0.

You should find the following two local minima:

Solution 1: τ̂0 = 5.529; α̂ = 0; b̂ = 0.0038; φ̂ = 0.9819; σ̂ = 0.0633;

Solution 2: τ̂0 = 5.524; α̂ = 1.37; b̂ = 0.0034; φ̂ = −0.01; σ̂ = 0.0595.
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(Try using different starting values in order to find the two minima.) The first
local minimum implies that the series is trend stationary; the second that it is
difference stationary. The latter, where the series is dominated by a stochastic
trend, has the lowest standard error.

Exercise 20.2. Use both fitted models to predict the series (in the original data
space; not the log space) from the the fixed forecast origin 1 January 2005.
Show that the MAPEs are 31.17% (solution 1) and 34.46% (solution 2). This
confirms that a good fit does not guarantee good forecasts.

Exercise 20.3. Repeat Exercise 20.2 using a rolling origin from 1 January 2005.
Show that the MAPEs based on the one-step-ahead prediction errors are 5.24
(solution 1) and 5.06 (solution 2). The second solution adapts slightly better
to unexpected changes in the market.

Exercise 20.4. Assume that the time series consists of a stochastic trend and
an AR(1) cycle according to the multiplicative model:

yt = τt−1(1 + b)(1 + φct−1)(1 + εt),
τt = τt−1(1 + b)(1 + αεt),
ct = φct−1 + (1 − α)εt.

Fit this model to the original series (withholding the final 2 years of data
as before) so as to minimize the augmented sum of squared errors (see 5.4).
Compare the results with those from the previous exercises.
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