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Preface

An increasing number of problems and methods involve in�nite-dimensional
aspects. This is due to the progress of technologies which allow us to store
more and more information while modern instruments are able to collect
data much more e�ectively due to their increasingly sophisticated design.
This evolution directly concerns the statisticians who have to propose new
methodologies while taking into account such high-dimensional data (e.g. con-
tinuous processes, functional data, etc.). The numerous applications (micro-
arrays, paleo-ecological data, radar waveforms, spectrometric curves, speech
recognition, continuous time series, 3-D images, etc.) in various �elds (biol-
ogy, econometrics, environmetrics, the food industry, medical sciences, paper
industry, speech recognition, etc.) make researching this statistical topic very
worthwhile. New challenges emerge both from theoretical and practical point
of views. This First International Workshop on Functional and Operator-
ial Statistics (IWFOS) aims to emphasize this fascinating �eld of research
and this volume gathers the contributions presented in this conference. It is
worth noting that this volume mixes applied works (with original datasets
and/or computational issues) as well as fundamental theoretical ones (with
deep mathematical developments). Therefore, this book should cover a large
audience, like academic researchers (theoreticians and/or practitioners), grad-
uate/PhD students and should appeal to anyone working in statistics with
industrial companies, research institutes or software developers.

This Workshop covers a wide scope of statistical aspects. Numerous works
deal with classi�cation (see for instance chapters 6, 7, 17, 21 or 41), functional
PCA-based methods (see for instance chapters 2, 16, 30 or 37 ), mathemat-
ical toolbox (see for instance chapters 11, 13, 24 or 29), regression (see for
instance chapters 3, 4, 5, 8, 10, 18, 19, 23, 26, 27, 33 or 34), spatial statistics
(see for instance chapters 9, 22, 35, 36 or 42), time series (12, 28, 39, 40 or
44). Other topics are also present as subsampling (see chapter 38) as well as
transversal/explorative methodologies (see for instance chapters 14, 20, 31 or
43). In addition, interesting works focus on original/motivating applications
(see for instance chapters 15, 25 or 32). This splitting into topics (classi�ca-
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tion, functional PCA-based methods, ...) is introduced just for giving an idea
on the contents but most of the time, one can assign a same work to several
subjects. It is worth noting that numerous contributions deal with statistical
methodologies for functional data which is certainly the main common de-
nominator of IWFOS (see chapters 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 17,
18, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 43, 44).

The scienti�c success of this event is obviously linked with the wide variety
of participants coming from about 20 countries covering all the continents.
One would like to thank them gratefully and specially the invited speakers
and all the contributors for the high quality of their submitted works.

Of course the hard core is the STAPH members (see chapter 1), which
managed and coordinated this Workshop both from a scienti�c and orga-
nizational point of view. But this international conference would not exist
without the help of many people. In particular, K. Benhenni (France), B.
Cadre (France), H. Cardot (France), A. Cuevas (Spain), A. Dahmani (Alge-
ria), A. Goia (Italia), W. Gonzalez-Manteiga (Spain), W. Härdle (Germany),
A. Kneip (Germany), Ali Laksaci (Algeria), A. Mas (France), E. Ould-saïd
(France), M. Rachdi (France), E. Salinelli (Italia) and I. Van Keilegom (Bel-
gium) have greatly contributed to the high quality of IWFOS'2008 and are
gratefully thanked.

The �nal thanks go to Marie-Laure Ausset which took charge of sec-
retary tasks as well as the institutions which have supported this Work-
shop via grants or administrative supports (CNRS, Conseil Général de la
Haute-Garonne, Conseil Régional Midi-Pyrénées, Laboratoire de Statistique
et Probabilités, Institut de Mathématiques de Toulouse, Université Paul
Sabatier, Laboratoire Gremars-Equippe of university Charles De Gaulle,
Équipe de Probabilités-Statistique of University Montpellier 2, laboratoire
LMPA (Littoral) and University del Piemonte Orientale (Italy)).

Toulouse, France Sophie Dabo-Niang
May 2008 Frédéric Ferraty
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Chapter 1
Introduction to IWFOS'2008

Alain Boudou, Frédéric Ferraty, Yves Romain, Pascal Sarda, Philippe Vieu
and Sylvie Viguier-Pla

Abstract The working group STAPH is pleased to organize the First Inter-
national Workshop on Functional and Operational Statistics (IWFOS). After
several years of fruitful collaboration and exchange with national and inter-
national experts in the �eld �Statistics in in�nite dimensional spaces�, the
need for such a workshop was becoming increasingly evident. The workshop
will o�er participants an overview of the current state of knowledge in this
area, whilst at the same time providing them with an opportunity to share
their own experience.
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2 Alain Boudou et al.

1.1 Historical and scienti�c setting

Since a long time functional aspects in Statistics have been investigated in
the Probabilistic and Statistical component of the Mathematical Institute
of Toulouse. Historically, the root of this topic in our laboratory is due to
two families of research famous in both national and international statistical
community. The �rst one comes from the important contribution (despite of
his short lifetime) of Gérard Collomb to the nonparametric estimation (see
for instance its starting and precursor work in Collomb, 1983). The second
major work developed was the functional approach of the multivariate analy-
sis provided by Jacques Dauxois and Alain Pousse (see for instance Dauxois
et Pousse, 1975 for a signi�cant work on Factorial Analyses with a functional
environment). Each of both topics was developed in parallel without connec-
tion in the international statistical literature. However, advances in functional
estimation favored more and more interactions between nonparametric and
multivariate methods, especially by means of smoothing tools. For instance,
when splines functions (see De Boor, 1978) became well-known in the sta-
tistical community, lots of works both in nonparametric and factor analysis
settings included such basis of functions: nonlinear multivariate analysis (see
De Leeuw and Rijckvorsel, 1988), dimension reduction in multivariate non-
parametric regression (see the monograph of Hastie and Tibshirani, 1990,
on additive models and references therein),.... At last, it is worth noting
that multivariate analysis and nonparametric approaches are not competi-
tive statistical methods but complementary explorative ones in that sense
they propose tools with assumptions on the data as weak as possible.

More recently, the technological progress allows to collect and store data
at �ner and �ner measurements. Hence, the result of one observation can be
viewed as a discretized version of one curve (Near InfraRed spectrum, radar
waveform,...), or of one surface (3D-image) or of any mathematical object
living in an in�nite-dimensional space. This kind of high dimensional data are
called "Functional data" and needs a special attention, and new functional
statistical tools taking into account such functional data. Precursor works
can be found in the chemometrical community but the real starting point
of statistical methods for functional data was the 1990's with the signi�cant
monography by Ramsay and Silverman (1997).

It is clear that such an historical setting makes Toulouse a privileged place
for developing new statistical tools in both multivariate analysis and nonpara-
metric methods with a special attention for functional mathematical back-
ground. This is the guideline of the STAPH working group.
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1.2 The STAPH group

aims. The �rst one is still to go on with the developments of both historical
topics described just before: multivariate analysis and nonparametric estima-
tion. As outlined before, interactions between these two wide areas of research
in statistics are more and more frequent. This includes in particular various
extensions to the functional data setting. So, the second aim is to bridge the
numerous gaps between these two important �elds of research. In particu-
lar, one can expect that the mixing of multivariate technics with functional
estimation can allow the building of new pertinent statistical methods with
a special emphasis on in�nite-dimensional data. In this in�nite-dimensional
spirit, the three main statistical topics on which the STAPH group focuses
are:
⇒The operatorial background of statistics and its connected subjects,
⇒The univariate/multivariate nonparametric functional estimation,
⇒ Statistical methods for in�nite-dimensional data.
The in�nite-dimensional setting is certainly one of the most heavy challenge
since it combines original theoretical and practical problems but this will be
the price to pay for developing new methodologies. A sample of main recent
contributions involving STAPH's members in these �elds can be found in
Ferraty and Vieu (2006) who make the gap between nonparametric statis-
tics and functional data analysis, in Crambes, Kneip and Sarda (2008) who
produce deep asymptotics study in functional linear regression, in Boudou
and S. Viguier-Pla (2006), who study the speci�cities of PCA of times se-
ries, that implies to work in frequency domain. Other various study domains
are for example the properties of some tensor operators by Romain (2002)
or the de�nition of operator-based random measures in Banach spaces with
applications to stationary series by Benchik et al. (2007).

STAPH is also a way of thinking the research. There is no �universally bet-
ter� way of making research in that sense that there is no hierarchy between
practical or theoretical aspects. Said di�erently, there is no universal method
of producing pertinent research; deep theoretical problems can have poten-
tial impacts on real applications whereas fundamental work can emerge from
practical developments, and all intermediate situations can occur. This is why
it is important to consider theoretical as well as practical aspects, without any
predominance. Throughout informal but deep discussions, each participant
in STAPH brings its own brick in such a way that, brick by brick, the col-
lective scienti�c knowledge progresses. In this spirit, the human component
plays a major role, which is the key of the success. This can be summarized
by this quotation of François Rabelais (1533): Science sans conscience n'est
que ruine de l'âme. (i.e. Science without consciousness is nothing but a ruin
of soul). This is the foundation of the STAPH group and one aims to develop
and share more and more the knowledge on these topics not only inside our

The STAPH group has been created in 1999 and pursues two main scienti�c
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institution (Mathematical Institute of Toulouse) but also with the French
community and �nally the international one.

1.3 The �rst IWFOS'2008

It is now something like ten years that STAPH is developping its activities,
and details of activities can be founded in Staph (2008). After several publi-
cations on its privileged topics, regular seminars have been organized. Step by
step, strong links have been built with various statistical french laboratories
(Grenoble, Lille, Montpellier, Paris,...). When the STAPH network grew up
su�ciently, regular meetings were organized in France (Toulouse, Grenoble,
Lille) with more and more participants coming not only from french uni-
versities, but also from foreign countries (Algeria, Germany, Spain,...). The
international network of STAPH was also expanded via its participation in
the organization of sessions in international meetings. It is clear that the
main common interest of various participants to this scienti�c events was
statistical modelling in high dimensional setting with a special emphasis on
functional data. At the same time, the number of international publications
in this area became larger and larger. The popular success of this recent �eld
of statistics is certainly motivated by the numerous domains of application
(chemometrics, econometrics, environmetrics, high technologies, medical sci-
ences, industries,...) as well as by the new theoretical challenges arising from
the in�nite-dimensional setting.

Given that, the necessity of organizing an international workshop around
these topics, which can be gathered under the label �Statistical methods and
problems in in�nite-dimensional spaces�, became an evidence and here borned
the �rst International Workshop on Functional and Operatorial Statistics. As
attested by the abstracts collected in this document, this meeting gathers the
most in�uent statisticians actually active on these �elds. More information
on this event can be found in IWFOS (2008).

According to the STAPH spirit, this workshop is the opportunity to present
as well the most recent theoretical works on in�nite dimensional statistics as
various practical case studies. Moreover, still keeping an eye on the future, a
special attention has been given to young researchers who have been volun-
tarily mixed to the most con�rmed ones.

This scienti�c event is the result of fruitful collaborations. Of course, the
hard core are the STAPH members, which managed and coordinated this
Workshop both from a scienti�c and organizational point of view. But this
international conference would not exist without the help of many people.
Among them one would like to thank especially to S. Dabo-Niang for the
realization of these proceedings and for its participation to the Scienti�c
Committee.
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Naturally, the various scienti�c contacts developed around the STAPH's
activities during the last decade play a key role as well for the high scienti�c
level of IWFOS'2008 as for their material implications. K. Benhenni (France),
B. Cadre (France), H. Cardot (France), A. Cuevas (Spain), S. Dabo-Niang
(France), A. Dahmani (Algeria), A. Goia (Italia), W. Gonzalez-Manteiga
(Spain), W. Härdle (Germany), A. Kneip (Germany), Ali Laksaci (Algeria),
A. Mas (France), E. Ould-saïd (France), M. Rachdi (France), E. Salinelli
(Italia) and I. Van Keilegom (Belgium) have greatly contributed to the high
quality of IWFOS'2008. They are gratefully thanked for accepting the invita-
tion to join the organizing/scienti�c committee and for their help in reviewing
the contributions contained in this proceedings. Denis Bosq and Jim Ram-
say have high scienti�c authority in in�nite dimensional statistics (see for
instance Bosq, 2000 or Ramsay and Silverman, 1997). We would like to ex-
press them our strong gratitude as well for the continuous interest shown for
STAPH's activities as for their various contributions to this workshop. One
also grateful thanks the invited speakers as well as all contributors whose
the high quality of the submitted works ensured the scienti�c success of this
event.
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Chapter 2
Solving Multicollinearity in Functional
Multinomial Logit Models for Nominal
and Ordinal Responses

Ana Aguilera and Manuel Escabias

Abstract Di�erent functional logit models to estimate a multicategory re-
sponse variable from a functional predictor will be formulated in terms of
di�erent types of logit transformations as base-line category logits for nom-
inal responses or cumulative, adjacent-categories or continuation-ratio logits
for ordinal responses. Estimation procedures of functional logistic regression
based on functional PCA of sample curves will be generalized to the case of a
multicategory response. The true functional form of sample curves will be re-
constructed in terms of basis expansions whose coe�cients will be estimated
from irregularly distributed discrete time observations.

2.1 Introduction

The functional logistic regression model is the most used method to explain a
binary variable in terms of a functional predictor as can be seen in many appli-
cations in di�erent �elds. Ratcli�e et al. (2002) used this model for predicting
if human foetal heart rate responses to repeated vibroacoustic stimulation.
The relation between the risk of drought and time evolution of temperatures
has been modeled in Escabias et al. (2005). With respect to the problem of
estimation of this model, Escabias et al. (2004) proposed di�erent functional
principal component approaches for solving multicollinearity by providing an
accurate parameter function estimation. An alternative estimation procedure
based on PLS logit regression has been recently considered (Aguilera et al.,
2007).
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In the general context of generalized functional linear models, James (2002)
assumes that each predictor can be modeled as a smooth curve from a given
functional family. Then, the functional model can be equivalently seen as a
generalized linear model whose design matrix is given by the unobserved basis
coe�cients for the predictor and the EM algorithm is used for estimating the
model from longitudinal observations at di�erent times for each individual.
On the other hand, Müller and StadtMüller (2005) considered an orthonor-
mal representation of sample curves and used as predictor variables of the
functional model a �nite number of coe�cients of such orthonormal expan-
sion. Asymptotic tests and simultaneous con�dence bands for the parameter
function have been obtained by using this dimension reduction approach. An
estimation procedure based on B-splines expansion maximizing the penalized
log-likelihood has been studied in Marx and Eilers (1999) for a functional bi-
nomial response model and in Cardot and Sarda (2005) for the general case
of functional generalized linear models.

The natural generalization of the functional logit model is the functional
multinomial regression model where the response variable has a �nite set of
categories and the predictor is a functional variable. An initial work on this
issue has been developed by Cardot et al. (2003) where a functional baseline-
category logit model has been considered for predicting land use with the
temporal evolution of coarse resolution remote sensing data. In this paper
we propose a di�erent approach comparing di�erent methods of estimation
based on the approximation of the functional predictor and the parameter
functions in a �nite space generated by a basis of functions what turns the
functional model into a multiple one. Model estimation will be improved by
developing several functional principal component approaches and selecting
the predictor principal components according to their ability to provide the
best possible estimation of the parameter functions.

2.2 Functional multinomial response model

Let us consider a functional predictor {X (t) : t ∈ T} , whose sample curves
belong to the space L2(T ) of square integrable functions on T, and a cate-
gorical response random variable Y with S categories.

Given a sample of observations of the functional predictor {xi(t) : t ∈
T, i = 1, . . . , n}, the sample of observations of the response associated to
them is a set of n vectors (yi1, . . . , yiS)′ of dimension S de�ned by

yis =
{
1 if category s is observed for X(t) = xi(t)
0 other case
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so that each observation is generated by a multinomial distribution
M(1;πi1, . . . , πiS) with πis = P [Y = s|X(t) = xi(t)] and

∑S
s=1 πis = 1 ∀i =

1, . . . , n.
Let us observe that yiS is redundant. Then, if we denote by yi =

(yi1, . . . , yi,S−1)′ the vector response for subject i, with mean vector µi =
E[Yi] = (πi1, . . . , πi,S−1)′, the multinomial response model is a particular
case of generalized linear model yis = πis + εis with

gs(µi) = αs +
∫

T

βs(t)xi(t)dt, s = 1, . . . , S − 1, (2.1)

where the link function components gs can be de�ned in di�erent ways, εis
are independent and centered errors and αs and βs(t) a set of parameters
to be estimated. In this paper we are going to generalize the functional logit
model for a binary response to the case of a multinomial response. Because of
this we will consider as link functions di�erent types of logit transformations
lis = gs(µi) (see Agresti (2002) for a detailed explanation).

2.2.1 Nominal responses

Baseline-category logits for nominal response pair each response with a base-
line category

lis = log [πis/πiS ] .

Then, the equation that expresses baseline-category logit models directly in
terms of response probabilities is (αS = 0, βS(t) = 0)

πis =
exp

{
αs +

∫
T
xi (t)βs (t) dt

}
∑S
s=1 exp

{
αs +

∫
T
xi (t)βs (t) dt

} , s = 1, . . . , S, i = 1, . . . , n. (2.2)

2.2.2 Ordinal responses

When the response variable is ordinal the logit transformations lis re�ect
ordinal characteristics such as monotone trend. Next, several types of ordinal
logits will be studied.

Cumulative logits
Cumulative logits use category ordering by forming logits of cumulative

probabilities. The most popular logit model for ordinal responses is the pro-
portional odds model
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lis = log
P [Y ≤ s|xi(t)]

1− P [Y ≤ s|xi(t)] =

∑s
j=1 πij∑S
j=s+1 πij

= αs +
∫

T

β(t)xi(t)dt,

s = 1, . . . , S − 1, that has the same e�ects β(t) = βs(t) ∀s = 1, . . . , S − 1
for each cumulative logit. Then, each response probability is obtained as
πis = Fis − Fi,s−1 with

Fis = P [Y ≤ s|xi(t)] =
exp

(
αs +

∫
T
β(t)xi(t)dt

)

1 + exp
(
αs +

∫
T
β(t)xi(t)dt

) .

Adjacent-categories logits
Logits for ordinal responses do not need use cumulative probabilities. Al-

ternative logits for ordinal responses are the adjacent-categories logits and
the continuation-ratio logits.

Adjacent-categories logits are de�ned as lis = log [πis/πi,s+1] ,
s = 1, . . . , S − 1. Taking into account the relation between baseline-category
logits and adjacent-categories, the adjacent-categories logit model with com-
mon e�ect β(t) (equal odds model)

log
[
πis
πi,s+1

]
= αs +

∫

T

β(t)xi(t)dt,

can be expressed in terms of the response probabilities as

πis =
exp

[∑S−1
j=s αj +

∫
T

(S − s)β(t)xi(t)dt
]

1 +
∑S−1
s=1 exp

[∑S−1
j=s αj +

∫
T

(S − s)β(t)xi(t)dt
] .

Continuation-ratio logits
Continuation-ratio logits are

lis = log [P (Y = s)/P (Y > s)] = log
[
πis/

∑S
j=s+1 πij

]
. Denoting by pis =

πis
πis+···+πiS the probability of response s, given response s or higher, the
continuation-ratio logit models can be seen as ordinary binary logit mod-
els

lis = log
πis∑S

j=s+1 πij
= log

pis
1− pis = αs +

∫

T

βs(t)xi(t)dt,

so that these conditional probabilities are modeled as

pis =
πis

πis + · · ·+ πiS
=

exp
(
αs +

∫
T
βs(t)xi(t)dt

)

1 + exp
(
αs +

∫
T
βs(t)xi(t)dt

) .
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2.3 Model estimation

As with any other functional regression model, estimation of the parameters
of a functional multinomial response model is an ill-posed problem due to the
in�nite dimension of the predictor space. See Ramsay and Silverman (2005)
for a discussion on the functional linear model. In addition, the functional
predictor is not observed continuously in time so that sample curves xi(t) are
observed in a set of discrete time points {tik : k = 1, . . . ,mi} that could be
di�erent for each sample individual. The most used solution to this problems
is to reduce dimension by performing a basis expansion of the functional
predictor.

A �rst estimation of the parameter functions of a functional multicategory
logit model can be obtained by considering that both the predictor curves
as parameter functions belong a �nite space generated by a basis of func-
tions xi (t) = a′iΦ (t) , βs (t) = β′sΦ (t) , with Φ (t) = (φ1 (t) , . . . , φp (t))′ a
vector of basic functions that generate the space where x (t) belong to, and
ai = (ai1, . . . , aip)

′ and βs = (βs1, . . . , βsp)
′ the vectors of basis coe�cients

of sample curves and parameter functions, respectively. The sample curves
basis coe�cients will be computed in a �rst step by using di�erent approxima-
tion methods as interpolation (data observed without error) or least squares
smoothing (noisy data).

Then, the functional model turns to a multiple one given by

lis = αs +
∫

T

xi (t)βs (t) dt = αs + a′iΨβs s = 1, . . . , S − 1, i = 1, . . . , n,

with Ψ = (ψuv) being the p× p matrix of inner products
ψuv =

∫
T
φu (t)φv (t) dt.

In matrix form each vector of logit transformations Ls = (l1s, . . . , lns)′ can
be expressed as Ls = αs1 +AΨβs, s = 1, . . . , S − 1.

The estimation of this model will be carried out by maximizing the associ-
ated multinomial log likelihood, under each of the four di�erent multicategory
logits considered in previous section. In the case of baseline-category logits
the log likelihood is concave, and the Newton-Raphson method yields the
ML parameter estimates. For cumulative logits a Fisher scoring algorithm is
used for iterative calculation of ML estimates. The adjacent-categories logit
model is �tted by using the same methods for its equivalent baseline-category
logit model. In the case of continuation-ratio logit models the simultaneous
ML estimation of its parameters can be reduced to separate �tting of model
for each di�erent continuation-ratio logit by using ML estimation for binary
logit models.
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2.4 Principal components approach

The ML estimation of the functional multinomial regression model obtained
by the approach in the previous section is a�ected by high multicollinearity
what makes the variances of estimated parameter function increase in an
arti�cial way. This has been proven for the logit model of binary response
(Aguilera et al., 2005) and for its functional version (Escabias et al., 2004)
through di�erent simulated and real data sets. In this paper this problem
will be solved by using as covariates of the multiple multinomial regression
model a set of functional principal components of the functional predictor.
An alternative way of avoiding excessive local �uctuation in the estimated
parameter function would be to use a roughness penalty approach based on
maximizing a penalized likelihood function (see Marx and Eilers (1999) for
the functional regression model with binary response).

Two di�erent FPCA of the sample curves will be considered after ap-
proximating such curves in a �nite dimension space generated by a basis of
functions. First, we will compute FPCA of the sample paths with respect
to the usual inner product in L2 (T ) that is equivalent to PCA of the data
matrix AΨ1/2 with respect to the usual inner product in Rp. And second, we
will perform PCA of the design matrix AΨ with respect to the usual inner
product in Rp that is equivalent to FPCA of certain transformation of sample
curves xi(t). The results set out in Ocaña et al. (2007) allow to demonstrate
these equivalences between functional and multivariate PCA. Let us observe
that both FPCA match when the basis is orthonormal.

Let Γ be a matrix of functional principal components associated to x(t)
so that Γ = AΨV with V V ′ = I. Then, the multinomial logit model can be
equivalently expressed in terms of all principal components as Ls = αs1 +
AΨβs = αs1 + Γγs, and we can give an ML estimation of the parameters
of the functional model (coordinates of βs (t)) through the estimation of this
one, β̂s = V γ̂s.

Then, we propose to approximate these parameters functions by using a
reduced set of principal components. There are di�erent criteria in litera-
ture to select principal components in regression methods. Escabias et al.
(2004) compared in the functional binary logit model the classical one that
consist of including principal components in the model in the order given by
explained variability with the one of including them in the order given by
a stepwise method based on conditional likelihood ratio test. In this work
we will compare these two methods for di�erent functional nominal and or-
dinal logit models. The optimum number of principal components (model
order) will be determines by using di�erent criteria based on minimization
the leave-one-out prediction error or the leave-one-out misclassi�cation rate
via cross-validation.

The model will be tested by di�erent simulated examples and applications
with real data. It will be shown that the best parameter function estimation is
given by the model that minimizes the mean of the integrated mean squared
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error of the parameter functions estimates. The relation of this minimum with
special trends in other goodness of �t measures will be also investigated. An
adequate model selection method based on the results will be proposed.
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Chapter 3
Estimation of Functional Regression
Models for Functional Responses by
Wavelet Approximation

Ana Aguilera, Francisco Ocaña and Mariano Valderrama

Abstract A linear regression model to estimate a sample of response curves
(realizations of a functional response) from a sample of predictor curves (func-
tional predictor) is considered. Di�erent procedures for estimating the pa-
rameter function of the model based on wavelets expansions and functional
principal component decomposition of both the predictor and response curves
are proposed. Wavelets coe�cients will be estimated from discrete observa-
tions of sample curves at irregularly spaced time points that could be di�erent
among sample individuals.

3.1 Introduction

Functional data analysis is an emerging �eld in the statistical research de-
signed for modeling a sample of curves that can be seen as realizations of
a functional variable. A detailed study of the most common techniques in
FDA can be found in the book of Ramsay and Silverman (2005). Theorethi-
cal and pratical aspects of nonparametric methods for FDA are collected in
the recent book by Ferraty and View (2006). Functional regression models
have been studied intensively in the recent literature on this topic. These are
regression models where predictors or responses may be viewed as functional
variables. The functional linear model to estimate an scalar response from a
functional predictor has been studied in Cardot et al. (1999). The situation
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where the predictor is a vector or scalar and the response is functional was
analized by Chiou et al. (2004).

The aim of this paper is to propose an estimation procedure for a functional
regression model where both predictor and response variables are functions.
This model has been recently studied by Yao et al. (2005) that proposed
an estimation approach for sparse and irregular longitudinal data based on
a nonparametric estimation of the eigenfunctions of the sample covariance
operators associated to both predictor and response functional variables. As
a particular case of this functional regression model, principal component
prediction models were �rstly introduced by Aguilera et al. (1999) to forecast
a continuous time stochastic process on a future interval from its recent past.
The same prediction problem have been solved by using wavelets methods
on the notion of autoregressive Hilbert processes (Antoniadis and Sapatinas,
2003).

In this paper we propose a four step estimation procedure of such a func-
tional regression model summarized as
1. Wavelets smoothing of predictor and response sample curves from irreg-

ularly spaced longitudinal data.
2. Functional principal component analysis of the orthonormal wavelets ap-

proximations of both predictor and response functional variables that is
reduced to standart PCA of both matrices of wavelets coe�cients.

3. Multivariate linear regression of each functional principal component
(PC) of the response curves on an optimum set of PCs of the predic-
tor curves.

4. Cross-validation variable selection procedure which takes into account
both the variance explained by each PC of the predictor variable and its
correlation with the PC of the response variable that we want to predict.

Finally, the predictive performance of the proposed functional regression
model will be studied with real and simulated data.

3.2 Functional linear model for a functional response

Let us consider a functional predictor variable {Xw(t) : t ∈ T,w ∈ Ω} and
a functional response variable {Yw(s) : s ∈ S,w ∈ Ω} where (Ω,A,P) is a
probability space, T and S are intervals in R, and both processes have square
integrable sample paths.

The sample consists of pairs of random trajectories {(xw(t), yw(s)), w =
1, ..., n} that can be seen as realizations of the functional predictor and re-
sponse variables, respectively.

As an extension of the multivariate linear regression model, the functional
linear regression model to estimate functional response Y (s) from functional
predictor X(t) is
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yw(s) = α(s) +
∫

T

β(t, s)xw(t)dt+ εw(s) s ∈ S,

with εw being independent and centered random errors and β a square inte-
grable bivariate regression function. We will suppose without loss of general-
ity that predictor and response variables are centered (µX(t) = µY (s) = 0),
in other case centered sample curves x̃w(t) = xw(t) − µX(t)) and ỹw(s) =
yw(s)− µY (s) will be used instead of xw(t) and yw(s), respectively.

Then, the problem is reduced to estimate the conditional mean function

E[Y (s)/xw] =
∫

T

β(t, s)xw(t)dt. (3.1)

Our main aim is to estimate parameter function β. This is an ill-posed prob-
lem due to the in�nite dimension of predictor and response realizations.

3.3 Model estimation

A �rst estimation of parameter function β can be obtained by assuming that
both predictor and response sample curves belong to �nite dimension spaces
generated by two di�erent basis {ϑp : p = 1, . . . , P} and {ϕq : q = 1, . . . , Q}.
That is,

xw(t) =
P∑
p=1

awpϑp(t) yw(s) =
Q∑
q=1

bwqϕq(s). (3.2)

If we assume that the parameter function is expressed as
β(t, s) =

∑P
p=1

∑Q
q=1 βpqϑp(t)ϕq(s), then model (3.1) is equivalent to the

following multivariate linear regression model:

bwq =
P∑
p=1

βpq

P∑
r=1

awrψpr + εwq q = 1 . . . , Q, (3.3)

with ψpr =
∫
T
ϑp(t)ϑr(t)dt, and εwq independent and centered random errors.

In matrix form B = AΨβ+Υ, where B = (bwq), A = (awp), Ψ = (ψpr) and
Υ = (εwq). Let us observe that the functional model has been reduced to a
multivariate linear regression model of response sample curves coe�cients on
predictor sample curves coe�cients multiplied by the matrix of inner prod-
ucts between predictor basis functions. Then, we can obtain the following
estimation of the parameter function

β̂(t, s) =
P∑
p=1

Q∑
q=1

β̂pqϑp(t)ϕq(s),
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from the least squares estimation of its coe�cients matrix
β̂ = ((AΨ)′(AΨ))−1(AΨ)′B.

The problem is that the columns of the design matrix (AΨ) of this model
are usually highly correlated (multicollinearity) so that the estimation of
function β can be inaccurate despite the good predictive ability of the model.
In this paper we propose an estimation of the parameter function based
on functional principal component decomposition of predictor and response
curves.

Let us consider the following orthogonal decomposition of predictor and
response sample curves, respectively,

xw(t) =
n−1∑

i=1

ξwifi(t) yw(s) =
n−1∑

j=1

ηwjgj(s),

where ξi and ηj are the principal components (PCs) vectors of predictor
and response curves, respectively, given by ξwi =

∫
T
xw(t)fi(t)dt and ηwj =∫

S
yw(s)gj(s)ds, with fi(t) and gj(s) being the principal component weights

obtained as the eigenfunctions of the sample covariance operators of predictor
and response curves, respectively.

Then, functional regression is equivalent to linear regression of each PC of
Y (s) in terms of all PCs of X(t). That is model (3.1) can be written as

ηwj =
n−1∑

i=1

ξwiνij + εwj , (3.4)

so that the parameter function is given by β(t, s) =
∑n−1
i=1

∑n−1
j=1 νijfi(t)gj(s).

It is known that least squares estimation of νij is given by ν̂ij = σij
σ2
i
,

with σij the corresponding element of the sample cross-covariance matrix of
predictor and response principal components and σ2

i the sample variance of
predictor PC ξi.

A functional principal component estimation of parameter function β can
be obtained by selecting an optimum number of pc's of the response variable
and regress each of them in terms of and optimum number of pc's of the
predictor variable.

Then, the following prediction equation can be used to forecast the re-
sponse y∗(s) associated to a new predictor curve x∗

E[y∗(s)/x∗] =
J∑

j=1

η∗j gj(s) =
J∑

j=1

∑

i∈Ij

σij
σ2
i

ξ∗i gj(s),

where principal component ξi is predicted as ξ∗i =
∫
T
x∗(t)fi(t)dt.

In order to estimate principal components weights fi(t) and gj(s) we will
assume that predictor and response curves can be expressed as in (3.2). Then,
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the results set out in Ocaña et al. (2007) allow to demonstrate that functional
principal component analysis (FPCA) of the predictor sample paths (resp.
the response sample curves) with respect to the usual inner product in L2 (T )
is equivalent to PCA of the data matrix AΨ1/2 (resp. BΠ1/2) with respect to
the usual inner product in RP (resp. RQ), with Π = (πqr) being the matrix
of inners products between basis functions de�ned by Πqr =

∫
S
ϕq(s)ϕr(s)ds.

Let ΓX = (ξwi)n×P (resp. ΓY = (ηwj)n×Q) be the matrix whose columns
are the PCs of the AΨ1/2 matrix (resp. BΠ1/2), and V X (resp. V Y ) the one
whose columns are the eigenvectors of the sample covariance matrix of AΨ1/2

(resp. BΠ1/2.) Then, ΓX =
(
AΨ1/2

)
V X (resp. ΓY =

(
BΠ1/2

)
V Y ) and the

PCs weight functions are

fi (t) =
P∑
p=1

fpiϑp (t) , i = 1, . . . , P, gj (t) =
Q∑
q=1

gqjϕq (t) , j = 1, . . . , Q,

with F = (fpi)P×P = Ψ−1/2V X (resp. G = (gqj)Q×Q = Π−1/2V Y ).
Then, basis coe�cients of the parameter function (coe�cients

β = (βpq)P×Q of model (3.3)) are estimated in terms of the estimates of the
parameters ν = (νij)P×Q of functional principal component regression model
(3.4) as β̂ = Ψ−1/2V X ν̂(V Y )′Π−1/2.

Let us observe that when basis are orthonormals, FPCAs of {xw(t)} and
{yw(s)} are equivalent to classic multivariate PCAs of the A and B coe�-
cients matrices, respectively. In this case Ψ = Π = I so that β = V Xν(V Y )′.
This is the case of the orthonormal wavelet approximation of sample curves
considered in this paper.

3.4 Wavelet approximation of sample curves

In practice, basis coe�cients of predictor and response sample curves need
to be estimated from discrete time observations {xwk : k = 1, . . . ,Kw} and
{ywl : l = 1, . . . , Lw} of each predictor and response sample curves xw(t)
and yw(s) at a �nite set of time points (twk : k = 1, . . . ,Kw) and (swl : l =
1, . . . , Lw), respectively.

In order to estimate basis coe�cients from irregularly distributed obser-
vations, we will consider that discrete time observations have been observed
with some error

xwk = xw(twk) + εwk =
P∑
p=1

awpϑp(twk) + εwk k = 1, . . . ,Kw
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ywl = yw(swl) + εwk =
Q∑
q=1

bwqϕq(swl) + εwk l = 1, . . . , Lw.

There are many applications where sample paths are not smooth curves.
Wavelets provide useful methods for analyzing data with intrinsically local
properties, such as discontinuities and sharp spikes. They form orthonormal
basis and enable multiresolution analysis by localizing a function in di�erent
phases of both time and frequency domains simultaneously, and thus o�er
some advantages over traditional Fourier expansions. In this paper we pro-
pose to estimate basis coe�cients by orthogonal projection of each predictor
and response sample curve on basis of wavelets on bounded intervals. For sim-
plicity, we will summarize wavelet approximation for the functional response
X.

Let φ and ψ be the scaling and wavelet functions for an orthogonal mul-
tiresolution analysis (MRA) of L2 (R). It is known that there exist di�erent
wavelet families with the orthogonal and compact support restriction which
can satisfy interesting properties from an approximating and a denoising
point of view (Mallat, 1998).

In our case we should consider the adaptation of the wavelet analysis onto
a bounded interval. For simplicity, one of the usual wavelet adaptation in
the space L2[0, 1] is considered in this work (Mallat, 1998). Among other
consequences, the proposed methodology will be formulated in terms of the
unit interval [0, 1]. In fact, for any given J ∈ N, let VJ be the subspace at
level J of the considered MRA in L2[0, 1] and let {φ∗J,k : k = 0, . . . , 2J−1} be
the scaling orthonormal basis of VJ . The orthogonal approximation of each
sample path of x, at resolution level J , can be formulated by

PJxw(τ) =
2J−1∑

k=0

λJ,k(w)φ∗J,k(τ) , ∀ τ ∈ [0, 1] , (3.5)

where λJ,k =
∫ 1

0
X(τ)φJ,k(τ) dτ . In this way, the FPCA of PJX can be viewed

as an approximation to the FPCA of X.
A more sparsely decomposition of PJX can be obtained as follows by

applying the Discrete Wavelet Transform (DWT) to the coordinate vector
λJ = (λJ,k)k:

PJxw(τ) = λ0,0(w)φ∗0,0(τ)+
J−1∑

j=0

2j−1∑

k=0

γj,k(w)ψ∗j,k(τ) ∈ V0+
J−1∑

j=0

Wj , (3.6)

where {φ∗0,0} ∪
⋃J−1
j=0 {ψ∗j,k}2

j−1
k=0 is an orthonormal basis.

Unfortunately, the discrete time observation assumption makes impossi-
ble to exactly compute the scaling and thus the wavelet coordinates for the
expansions given in equations (3.5) and (3.6). Nevertheless, once the scaling
coordinates λJ,k are approximated, the coordinates in equations (3.6) could
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be directly approximated by applying DWT to the approximated scaling co-
ordinates.
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Chapter 4
Functional Linear Regression with
Functional Response: Application to
Prediction of Electricity Consumption

Jaromír Antoch, Lubo² Prchal, Maria Rosaria De Rosa and Pascal Sarda

Abstract Functional linear regression model linking observations of a func-
tional response variable with measurements of an explanatory functional vari-
able is considered. The slope function is estimated with a tensor product
splines. Some computational issues are addressed by means of a simulation
study. This model serves to analyze a real data set concerning electricity con-
sumption in Sardinia. The interest lies in predicting either incoming weekend
or incoming weekdays consumption curves if actual weekdays consumption is
known.

4.1 Introduction

Our aim is to analyze the e�ect of a functional variable on a functional
response by means of functional linear regression models. The application
motivating this study concerns electricity consumption in Sardinia. The data
set consists in 52 584 values of electricity consumption collected every hour
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within the period January 1, 2000, till December 31, 2005. The complete
data series has been cut into 307 weeks for which the weekdays (Monday
to Friday) and the weekends (Saturday and Sunday) have been separated,
leading to the two sets of discretized curves of electricity consumption. The
reason for this separation is substantial di�erence between weekdays and
weekend consumptions. Our main purpose was to predict the consumption
for the next weekdays and the consumption for the next weekend. In each case
the (functional) predictor is the (discretized) curve of the present weekdays
consumption.

We adopt a general framework for both situations, considering the data
as observations of identically distributed random functional variables{
Xi(s), Yi(t), s ∈ I1, t ∈ I2

}
, i = 1, . . . , n, de�ned on the same probability

space and taking values in some functional spaces. The most common is to
consider the separable real Hilbert spaces L2(I1) and L2(I2) of square inte-
grable functions de�ned on the compact intervals I1 ⊂ R and I2 ⊂ R, which
are equipped with the standard inner products. We focus on the functional
linear relation of the type

Yi(t) = α(t) +
∫

I1

Xi(s)β(s, t) ds+ εi(t), t ∈ I2, i = 1, . . . , n, (4.1)

where α(t) ∈ L2(I2) and β(s, t) ∈ L2(I1 × I2) are unknown functional pa-
rameters and ε1(t), . . . , εn(t) stand for a sample of i.i.d. centered random
variables taking values in L2(I2), εi(t) and Xi(s) being uncorrelated. For a
generic interval I, the set L2(I) is equipped with its usual inner product
〈φ, ψ〉 =

∫
I
φ(t)ψ(t)dt, φ, ψ ∈ L2(I) and the associated norm ‖φ‖ = 〈φ, φ〉1/2.

In what follows we often omit arguments of the functional variables and
parameters and simply write Xi, Yi, εi and β instead of

{
Xi(s), s ∈ I1

}
,{

Yi(t), t ∈ I2
}
,
{
εi(t), t ∈ I2

}
and

{
β(s, t), s ∈ I1, t ∈ I2

}
, respectively. No-

tice that in model (4.1) Xi's represent a weekdays curves while Yi's represent
a weekend curves, or a weekday curve in which case Yi = Xi+1, and the model
(4.1) corresponds to an ARH(1) as de�ned in Bosq (2000).

Bivariate parameter β(s, t) is estimated by means of a tensor product
splines minimizing a penalized least squares criterion. Computational as-
pects, comments on �tuning� estimator parameters and some remarks on
discretization and eventual curve presmoothing are discussed on the basis
of a simulation study. Further, we switch to the problem of predicting the
consumption by analyzing in a �rst step detrended data and adding to it in
the second step trend adjustment.

General linear regression model (4.1) has been studied by several authors,
e.g., by Ferraty and Vieu (2006), Müller and Wang (2003) or Ramsay and
Silverman (2005). The case of a scalar response has been for the �rst time
considered in Ramsay and Dalzell (1991).
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4.2 Estimation procedure

Before de�ning our estimation procedure, return to the model (4.1) an discuss
identi�ability of the model, i.e. existence and uniqueness of the slope function
β.

Let Bj =
(
Bj1, . . . Bjdj

)′
, j = 1, 2, denote the normalized B-splines basis

of the spline space Sqjkj (Ij) of degree qj de�ned on the interval Ij with kj−1
equidistant interior knots and dj = kj + qj being the dimension of Sqjkj (Ij),
see Dierckx (1993). Our estimator β̂ of β is a bivariate spline with a tensor
product representation de�ned as β̂(s, t) = B1

′(s)Θ̂B2(t), where the d1 × d2

matrix Θ̂ satis�es

Θ̂ = arg min
Θ∈Rd1×d2

1
n

n∑

i=1

∣∣∣
∣∣∣Yi−Y −

∫

Ii

(
Xi(s)−X(s)

)
B1
′(s)ΘB2(·) ds

∣∣∣
∣∣∣
2

+ (4.2)

%Pen(m,Θ),

with a penalty parameter % > 0 and the penalty term given by

Pen(m,Θ) =
m∑

m1=0

m!
m1!(m−m1)!

∫

I2

∫

I1

[
∂m

∂sm1∂tm−m1
B1
′(s)ΘB2(t)

]2

dsdt.

An explicit solution of (4.2) is derived using Kronecker product notation.
Alternatively one can approximate this solution by a simpler matrix version
Θ̃ if one replaces Pen(m,Θ) in the minimization task (4.2) with

P̃en(m,Θ) =
∫

I2

∫

I1

{[
B

(m)
1
′ΘB(0)

2

]2
+
[
B

(0)
1
′ΘB(m)

2

]2}
ds dt.

Hence, the approximating estimator of the functional parameter β(s, t)
is de�ned as β̃(s, t) = B1

′(s)Θ̃B2(t). Numerical solution is performed with
the use of an algorithm discussed by Benner, et al. (2002). The intercept
parameter α can be estimated either by

α̂(t) = Y (t)−
∫

I1

β̂(s, t)X(s) ds, ∀t2 ∈ I, (4.3)

or approximated by α̃(t) if β̃ is used instead of β̂ in (4.3). This estimator was
introduced and its symptotic behavior of β̂ in terms of error of prediction are
studied in Prchal and Sarda (2007).
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4.3 Computational aspects and simulations

Numerical calculation of the estimator β̂ and α̂ requires proper choice of
several parameters: order qj of the splines, order of derivativesm, the numbers
of the knots kj and penalization parameter ρ. It is known that orders qj and
m do not play an important role compared to kj and ρ. It is thus usual to
take values equal to qj=3 or 4 and m = 2. Besides, it has been stressed in
similar context that a strategy to choose kj and ρ is to �x the number of
knots kj reasonably large, and thus both to prevent oversmoothing and to
control degree of smoothness of the estimator with the parameter ρ. In our
simulation experiments we have used value of k between 15 and 30, while ρ
was chosen to minimize the leave-one-out cross-validation criterion

cv(%) =
n∑

i=1

∫

I2

[
Yi(t)−

∫

I1

β̂i(s, t)Xi(s) ds
]2

dt, (4.4)

where β̂i(s, t) is obtained from the data set with the i-the pair (Xi, Yi) omit-
ted. An alternative and computationally faster criterion c̃v(%) can be used
when replacing β̂i with β̃i. From our experience the approximating criterion
provides in many cases a value close to the one obtained by minimizing the
criterion (4.4). It can also be used to provide a pivotal parameter for the
search of the minimizer of (4.4).

In order to investigate behavior of our estimator for the data which are
�under the control�, a series of simulations was performed. More precisely, we
considered a general regression context with i.i.d. pairs (Xi, Yi), i = 1, . . . , n,
but we guess that the results essentially remains valid in the case of a weak de-
pendence as is the case, for example, of the ARH(1) processes. Therefore, we
have simulated independent Brownian motion trajectoriesXi(s), i = 1, . . . , n,
on [0, 1] discretized at p equidistant points tj and studied two functional pa-
rameters β1(s, t) = 5 sin(2πs) cos(2πt), and β2(s, t) = 20 exp

{−100(s− t)2
}
.

The error terms εi were drawn at each point tj from a Gaussian white noise.
Our simulation study shows that the approximating matrix solution is com-
petitive with the exact estimator and, as concerns data �tting, behaves sat-
isfactorily. If one primarily focuses on the functional parameter estimation,
the exact solution should be preferred as it is more stable as concerns tuning
parameters of the method. The matrix approach, however, can still be used
throughout the cross-validation procedure at least as the pivot parameter,
whose neighborhood is then seek throught by the exact method.

Surprisingly, in some situations a very small number of knots can be suf-
�cient to obtain good estimators. As the matrix method behaves well and is
fast, it is worth performing estimation for several knot setups � eventually a
kind of cross-validation can be used for the knots as well. Interesting is also
the case of errors-in-variables due to, e.g., not exact predictor registering, for
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which a presmoothing of the curves or functional total least squares might
be involved, for details see Cardot et al. (2007).

4.4 Prediction of electricity consumption

Figure 4.1 represents the complete data sets of electricity consumption in
Sardinia during the years 2000 � 2005. In order to eliminate (and estimate)
increasing trend, we have performed a one-sided kernel smoother which is
known to be an e�cient way to eliminate the trend and at least a part of the
seasonality in a nonparametric framework.

As said before, we have concentrated on week interval separating week-
days (Monday to Friday) from weekends (Saturday and Sunday) and esti-
mated and predicted each part separately. More precisely, spline estimator
β̂ or its approximation β̃ were used to predict either weekdays or weekends
consumption curves. Concerning the parameters, we have used cubic splines,
i.e. q1 = q2 = 4, and a derivative order m = 2. The cross-validation criterion
(4.4) was used to select the penalty parameter % (with either β̂ or β̃ as a
basis estimator). The same criterion (only with the computationally faster
estimator β̃) has
been also used to select the number of knots. Di�erent number of knot was
considered for predictor and response basis which was performed in each case,
that is for the weekdays prediction and for the weekends prediction.
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Fig. 4.1 Electricity consumption data with estimated trend.
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Fig. 4.2 Prediction of electricity data for the week 260 for both learn/test and sequential
approaches. Dots stay for the observed data, while the solid lines present the prediction.

While for weekends prediction the number of knots is more or less the
same for predictor basis and response basis, it turns out that for weekdays
prediction considerably smaller number of knots for the predictor basis than
the response one is su�cient despite the fact that both variables are of the
same nature.

We have compared a sequential approach with a learn-test approach for
detrended prediction. The trend adjustment was then performed via kernel
estimation. Figure 4.2 shows a prediction of electricity data for the week 260
for both learn/test and sequential approaches as an example.

It appears that the functional approach is a competitive methodology to
predict electricity consumption. Further, our experiments have con�rmed sat-
isfactory behavior of the approximating matrix estimator of the functional
parameter that is computationally much simpler and faster than the exact
vectorial one and provides fully competitive prediction results.

Finally, some open problems still remain. One of them is how to include
in the estimation procedure the knowledge of special events such as festive
days which may in�uence the prediction. Several solutions can be considered
such as involving a longer consumption history as the predictor or replace
the least squares approach with a more robust criterion.
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Chapter 5
Asymptotic Normality of Robust
Nonparametric Estimator for Functional
Dependent Data

Mohammed Attouch, Ali Laksaci and Elias Ould-Saïd

Abstract We propose a family of robust nonparametric estimators for re-
gression function based on kernel method. We establish the asymptotic nor-
mality of the estimator under the concentration properties on small balls of
the probability measure of the functional explanatory dependent variables.

5.1 Introduction

The robust method used here belongs to the class of M-estimates introduced
by Huber (1964). The literature on this estimation method is quite impor-
tant when the data are vectors (see for instance Robinson (1984), Collomb
and Härdle (1986), Boente and Fraiman (1989 and 1990), Fan et al. (1994)
for previous results and Laïb and Ould-Saïd (2000), Boente and Rodriguez
(2006) for recent advances and references).
In the functional case, Cadre (2001) studied the estimate of the median (with-
out conditioning) of the distribution of a random variable taking its values in
a Banach space. Cardot et al. (2005) used this robust approach to consider
the linear model of regression quantile with the explanatory variable taking
values in a Hilbert space. They established the L2-convergence rate of the re-
gression quantile estimators. Recently, Azzedine et al. (2006) obtained a rate
of the almost complete convergence of the robust nonparametric regression
estimator when the regressors are functional. The asymptotic normality of the
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classical linear kernel estimators has been established by Masry (2005). Un-
der the concentration properties on small balls of the probability measure of
the underlying functional variable, Ezzahrioui and Ould-Saïd ((2005), (2006))
studied the asymptotic normality of the kernel estimator of the conditional
mode and the conditional quantile in both iid and dependent cases, and At-
touch al. (2007) obtained the asymptotic normality for regression function
based in kernel method in the iid case. Among the wide literature concerning
the functional case, we only refer to the good overviews in the parametric
models given by Ramsay and Silverman (2002), (2005) and to the monograph
of Ferraty and Vieu (2006) for the prediction problem in functional nonpara-
metric statistics via the regression function, the conditional mode and the
conditional quantile estimation by the kernel method.
In this work, we establish asymptotic normality of the kernel M-estimate
under less restrictive conditions related to some regularity of the model, the
topology structure of the functional data space. Our results are applied to
derive asymptotic normality of the predictor estimate, to build con�dence
curve.

5.2 Model and estimation

Let (Xn, Yn)n≥1 distributed as (X,Y ) which is a random pair valued in F×R,
where F is a semi-metric space, d(., .) denoting the semi-metric. For any x
in F , we consider ψx a real-valued Borel function satisfying some regularity
conditions to be stated below. The nonparametric model studied in this pa-
per, denoted by θx, is implicitly de�ned as a zero with respect to (w.r.t.) t of
the following equation

Ψ(x, t) = E [ψx(Y, t) | X = x] = 0. (5.1)

We suppose that, for all x ∈ F , θx exists and is the unique zero with respect
to t of (5.1) (see, for instance Boente & Fraiman (1989) for this problem).
The kernel estimate of Ψ(x, t) is de�ned by

Ψ̂(x, t) =
∑n
i=1K(h−1

n d(x,Xi))ψx(Yi, t)∑n
i=1K(h−1

n d(x,Xi))
, ∀t ∈ R

where K is a kernel and hn is a sequence of positive real numbers. A natural
estimator of θx denoted by θ̂x, is a zero w.p.t. t of the

Ψ̂(x, t) = 0. (5.2)

The robust method used in this paper is belongs in the class of M-estimates
introduced by Huber (1964).

In the follows we suppose that (Xn, Yn)n≥1 are strongly mixing.
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5.3 Hypothesis and results

In the following x will be a �xed point in F , Nx will denote a �xed neigh-
borhood of x and we set λγ(u, t) = E [ψγx(Y − t)|X = u] and Γγ(u, t) =
E [(ψ′x)γ(Y − t)|X = u], for γ ∈ {1, 2}.
We need the following hypotheses:

(H1) P(X ∈ B(x, h)) = φx(h) > 0,
(H2) ψx is continuous di�erentiable function, monotone, bounded, w.r.t.

the second component, and its derivative ∂ψx(y, t)
∂t

is bounded and con-
tinuous at θx uniformly in y.

(H3) The function λγ(·, ·) satis�es the Lipschitz's condition w.r.t. the
�rst one, that is: there exists a strictly positive constant bγ such that:

∀(u1, u2) ∈ Nx ×Nx, ∀t ∈ R, |λγ(u1, t)− λγ(u2, t)| ≤ C1d(u1, u2)bγ .

(H4) The function Γγ(·, ·) satis�es the Lipschitz's condition w.r.t. the
�rst one, that is: there exists a strictly positive constant dγ such that:

∀(u1, u2) ∈ Nx ×Nx, ∀t ∈ R, |Γγ(u1, t)− Γγ(u2, t)| ≤ C2d(u1, u2)dγ .

(H5) The bandwidth h satis�es:

h ↓ 0, ∀t ∈ [0, 1] lim
h→0

φx(th)
φx(h)

= βx(t) and nφ(h)→∞ as n→∞.

(H6) The kernel K from R into R+ is a di�erentiable function supported
on [0, 1]. Its derivative K ′ exists and is such that there exist two constants
C3 and C4 with −∞ < C3 < K ′(t) < C4 < 0 for 0 ≤ t ≤ 1.

(H7) (Xi, Yi)i∈N is an α-mixing sequence whose coe�cients satisfy

∃ a > 0, ∃ C > 0 : ∀n ∈ N α(n) ≤ Cn−a.

(H8) 0 < sup
i 6=j
P ((Xi, Xj) ∈ B(x, h)×B(x, h)) = O

(
(φx(h))(a+1)/a

n1/a

)
.

(H9) limn→∞ h = 0 and ∃η > 0, such that, Cn1−a+η ≤ φx(h) ≤
C ′n

1
1−a+η, with a > 2.

Theorem 5.1. Assume that (H1)-(H9) hold, then θ̂x exists and is unique
with probability tending to 1, and for any x ∈ A, we have

(
nφx(h)
σ2(x, θx)

)1/2 (
θ̂x − θx −Bn(x)

) D→ N (0, 1) as n→∞ (5.3)

with explicit expression of σ2(x, θx) and Bn(x).
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5.4 Conditional con�dence curve

To build con�dence curve for the true value of θ given curve X = x, we
use an asymptotic approximation provided by the following Corollary where
σ(x, θx) is substituted by it estimate.

Corollary 5.1. To remove the bias term Bn(x) from the equation (5.3), we
assume that nh2b1φ(h) → 0 on the bandwidth parameter h. Then, under the
assumptions of Theorem 5.1, we have for any x ∈ A

(
nφ(hn)

σ̂2
n(x, θ̂x)

)1/2 (
θ̂x − θx

)
→ N (0, 1) as n→∞.

From this Corollary we get the following (1− η) con�dence curve

θ̂x ± t1−η ×
(
σ̂2
n(x, θ̂x)
nφ(hn)

)1/2

where t1−η denotes the 1− η quantile of the standard normal distribution.
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Chapter 6
Measuring Dissimilarity Between Curves
by Means of Their Granulometric Size
Distributions

Guillermo Ayala, Martin Gaston, Teresa Leon and Fermín Mallor

Abstract The choice of a dissimilarity measure between curves is a key
point for clustering functional data. In this paper we propose to obtain the
granulometric distribution functions of the original curves and then calculate
the dissimilarities between the new functional data. Good results have been
obtained with two real examples.

6.1 Introduction

The issue of measuring the similarity between curves has been addressed
by a number of authors in the literature. It is well known that the L2 dis-
tance only provides a sensible criterion for clustering when the curves have
approximately the same shape. Di�erent semi-metrics between curves have
been de�ned. Ferraty and Vieu (2003) proposed a semi-metric based on the
derivatives of the curves and a semi-metric based on the functional principal
component analysis. Other interesting approach can be found in Cerioli et al.
(2005) where the original functional data are continuous trajectories evolving
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over time. These authors propose a new dissimilarity measure based on their
sequence of local extrema (maxima or minima). Some statistical methods
usually work with transformations of the original data. Registration of func-
tional data is a basic transformation for curves Ramsay and Silverman (1997)
in which the arguments of the di�erent functional data are modi�ed. The idea
underlying curve registration is that two functions can di�er because of two
sources of variation: the usual amplitude variation and phase variation. A
transformation of the time scale permits the pointwise comparison of the two
functions. The package FDA (2007) (Ramsay et al. (2007)) includes curve
registration (function registerfd). Dynamic time warping technique for align-
ing curves is studied in Morlini (2005) as an essential preliminary in many
applications before classi�cation.

In this paper, we propose a new preprocessing technique which takes into
account the shape of the curves using tools from Mathematical Morphology.
This technique, originally developed at sixties by Matheron and Serra at the
Ecole des Mines in Paris, describes an image (or a function in our case) using
set operations (extended to functions). A general reference about Mathemat-
ical Morphology is Soille (2003). In particular, our approach is heavily based
on granulometries, essentially, they are size distributions associated with the
original functions and have been used as shape-size descriptors in binary im-
ages and as texture descriptors for gray-level images. Our proposal is to obtain
the granulometric size distribution of the original curves as a preliminary step
and then di�erent dissimilarity measures between the granulometric cumula-
tive distribution functions will be used to group the original functional data.
Di�erent empirical studies will be given showing the better performance of
the clustering techniques applied to this transformed functional data instead
of the original ones. Section 2 contains some basic de�nitions and prelimi-
naries. Finally, Section 3 shows the methods and the classi�cation results for
two datasets: radar waveforms and vertical forces exerted on the ground by
both feet during the sit-to-stand movement.

6.2 Basic concepts

Although the main idea in Functional Data Analysis (FDA) is to take into
account the continuous feature of the data, they are collected as n observed
digitized curves {χi(tj); j = 1, . . . p}i=1,...n, where the observation points
{tj}pj=1 are usually equidistant. We use the indices {1, . . . p} to index our
sets: χ(tj) = χ(j). Morphological operators extract relevant structures of
the set under study by probing it with another set of known shape called
structuring element (SE from now on) in the 1-D case it is usually a discrete
interval. For the sake of simplicity, most of the de�nitions in this section will
be given for the particular case of 1-D images, i.e. discrete functions.
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The erosion of a function f by a SE B is the function εB(f) de�ned at
x ∈ {1, . . . p} as [εB(f)](x) = minb∈Bf(x+b). The dilation of a function f by
a SE B, δB(f), at x ∈ {1, . . . p} is de�ned as [δB(f)](x) = maxb∈Bf(x + b).
The structural opening or simply the opening of f by a symmetric SE B,
γB(f) is de�ned as γB(f) = δB(εB(f)) = δBεB(f). The subgraph of the
opened function is equivalent to the union of the translations of the SE when
it �ts the subgraph of the original function.

The granulometry of a given setG is a formalization of the intuitive concept
of size distribution over the family A of subsets of G. It was de�ned by
Matheron in Matheron (1975). This granulometric theory was extended to
functions in Dougherty (1992).

From now on, let B = (−1, 0, 1) and λ a homothetic parameter. A family
of openings {γµiB} where µi ∈ {1, 2, ..., p} is a granulometry if for all µi, µj ∈
{1, 2, ..., p} and for all function f , µi ≤ µj ⇒ γµiB(f) ≥ γµjB(f). In this
paper we will consider the following granulometric size distribution:

Ff (λ) = 1− m(λ)
m(0)

for λ ≥ 0, (6.1)

where m(λ) =
∫
γλB(f).

According to this formula each granulometric curve is a function of the
structuring element size which plots the area under the opened curve versus
the area under the original curve, then they re�ect the shape-size of the
original curves. Many applications of granulometries and their associated size
distributions have been published. Some examples appear in Ayala(2001),
Sabourin (1997).

6.3 Methods and experimental results

Following Ferraty and Vieu (2006), the statistical modeling for treating curve
data consists in looking at them as a sample of independent realizations
{X1, . . . , Xn} of some functional variables distributed like X and taking val-
ues in some abstract in�nite dimensional space (E, d), where d is a measure
of similarity between curves (perhaps a metric or a semi-metric).

It can be easily proved that for Xh(t) = X(t + h) the original X and
the translated Xh will have the same granulometric size distribution i.e. any
dissimilarity measure based on granulometries will be myope to translations
of the domains.

This is a very useful property for some real data as the dataset of 472 radar
waveforms obtained with the satellite Topex/Poseidon (http://www.lsp.ups-
tlse.fr/staph/npfda/). This dataset was previously analyzed in Dabo et al.
(2007) and our results can be compared with those given there. Figure 6.1
displays two curves together with their corresponding granulometries. We
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have used di�erent metrics and semi-metrics to compute dissimilarities be-
tween the granulometric curves and also di�erent clustering methods to group
them. As an example, we will show the results obtained by using the semi-
metric based on the functional principal component analysis selecting the
�rst two components, and the agglomerative clustering method agnes which
is fully described in Kaufman (1990). The average distance has been used for
di�erent groups. Similarly to et al. (2007), Figure 6.2 shows a random selec-
tion of curves from each one of the �ve clusters. In our opinion the curves
in every cluster are quite homogenous. Other choices provide good results,
in particular we have also performed a partitioning around medoids (PAM)
Kaufman (1990) with �ve groups using the distance L2 to obtain the dis-
similarity matrix. The visual inspection of the curves and the contingency
table of the counts at each combination of the groups 11, 12, 21, 22 and 23
obtained in Dabo et al. (2007) and those obtained from the PAM method
(see Table 6.1) suggest that the second classi�cation is better for the curves
in the Groups 21, 22 and 23, although we should say that probably our "c2"
is too big.

Table 6.1 Comparison between classi�cation obtained by Dabo et al. and PAM
G11 G12 G21 G22 G23

c1 1 23 61 9 28
c2 143 76 16 3 2
c3 0 0 0 0 40
c4 0 1 7 6 39
c5 0 0 0 0 17

The average silhouette widths are 0.64 and 0.66 respectively i.e. in both
cases we get a clear cluster structure. Let us recall (see Kaufman (1990))
that the silhouette width for the i-th observation, s(i), is de�ned as s(i) =
(b(i) − a(i))/max{a(i), b(i)} where a(i) is the average dissimilarity between
the observation i and all other points of the cluster to which i belongs mean-
while b(i) is the mean dissimilarity between i and its neighboring cluster i.e.
the nearest one to which i does not belong. Clearly, observations with a large
s(i) are very well clustered, s(i) around 0 means that the observation is be-
tween two clusters, and observations with a negative s(i) are probably placed
in the wrong cluster. The average silhouette width is obtained as:

∑n
i=1

s(i)
n ,

this quantity ranges in (−1, 1) and it has been used both to evaluate the
quality of a classi�cation and to estimate the correct number of clusters: the
partition with the maximum average silhouette width is taken as the opti-
mal partition. It is commonly accepted that average silhouette width values
greater than 0.50 indicate that a reasonable classi�cation has been achieved.

Our second dataset is a sample of vertical forces exerted on the ground
by both feet during the sit-to-stand movement. Two groups were chosen, 59
healthy volunteers and 44 back-pain-patients. For each subject, we had �ve
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trials of the experiment. The �ve original curves were smoothed, registered
and their mean was calculated (10). The mean curve evaluated at a regular
grid is the datum per patient. We have performed a PAM clustering using
the semi-metrics based on PCA. The average silhouette width for two groups
is 0.6. Their sizes are 63 and 40 respectively. The �rst one includes 56 healthy
volunteers and the second one includes 37 patients. Our approach has pro-
vided a good classi�cation in this particular example.

(a) (b)

Fig. 6.1 Two satellite curves, (a), with their corresponding granulometric distribution
functions, (b)
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Fig. 6.2 Classi�cation using agglomerative nesting and the average distance
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Chapter 7
Supervised Classi�cation for Functional
Data: A Theoretical Remark and Some
Numerical Comparisons

Amparo Baíllo and Antonio Cuevas

Abstract The nearest neighbors (k-NN) method is a simple, easy to mo-
tivate procedure for supervised classi�cation with functional data. We �rst
consider a recent result by Cerou and Guyader (2006) which provides a su�-
cient condition to ensure the consistency of the k-NN method. We give some
concrete examples in which such condition is ful�lled. Secondly, we show the
results of a comparative study, performed via simulations and some real-data
examples, involving the k-NN procedure (as a �benchmark choice�) together
with other some recently proposed methods for functional classi�cation.

7.1 Introduction

Supervised classi�cation is a major topic in the emerging �eld of functional
data analysis (see Ramsay and Silverman 2005, Ferraty and Vieu 2006 for
recent monographies). In functional classi�cation the aim is to predict the
class or label Y of an observation X taking values in a separable metric
space (F , d). For simplicity we will assume that the only possible values of
Y are 0 or 1.

Classi�cation of a new observation x from X is carried out by constructing
a mapping g : F −→ {0, 1}, called a classi�er, which maps x into its predicted
label and whose probability of error is given by P{g(X) 6= Y }. It is well known
(see, e.g., Devroye, Györ� and Lugosi 1996) that the Bayes classi�er
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g∗(x) = 1{η(x)≥1/2}

attains the lowest probability of error, where η(x) = P{Y = 1|X = x} de-
notes the regression function of Y on X. However, since the Bayes classi�er
depends on the unknown distribution of (X,Y ), the aim in supervised classi-
�cation is actually to construct a reasonable classi�er gn based on a training
sample Xn = {(Xi, Yi)}i=1,...,n of i.i.d. copies of (X,Y ).

One �rst, obvious way of dealing with the classi�cation problem is to re-
duce the dimension of the data from in�nite to �nite and then to apply a mul-
tivariate classi�cation technique, such as the linear or the nearest neighbour
discriminant rules. Some dimension reduction techniques that have been used
in the literature of functional data are �ltering (see, e.g., Biau, Bunea and
Wegkamp 2005), partial least squares (see Preda, Saporta and Lévéder 2007)
or principal components (see Ramsay and Silverman 2005, Müller 2005).

There are other classi�cation techniques for functional data which do not
rely on dimension reduction. For instance, it is possible to construct a clas-
si�er gn(x) = 1{ηn(x)≥1/2} by thresholding an estimator ηn of the regression
function η. Cérou and Guyader (2005) consider the regression estimator

ηn(x) =
1
k

n∑

i=1

1{Xi∈k(x)}Yi (7.1)

where �Xi ∈ k(x)� means that �Xi is one of the k nearest neighbours of x
(with respect to the metric d)�. By thresholding the regression function given
by (7.1) we get the k-nearest neighbour classi�er

gn(x) = 1{ηn(x)≥1/2}, (7.2)

which consists simply of taking a majority vote over the Yi's such that the
corresponding Xi's are in the subset of the k nearest neighbours of x. In
Preda, Saporta and Lévéder (2007) a regression estimator ηn for classi�ca-
tion purposes is constructed using the theory of Reproducing Kernel Hilbert
Spaces (RKHS) (see also Evgeniou et al. 2002, Wahba 2002).

Other popular data classi�cation rules are kernel ones (see Devroye, Györ�
and Lugosi 1996, Ferraty and Vieu 2006), where the classi�er is given by

gn(x) =

{
0 if

∑n
i=1 1{Yi=0}K

(
d(x,Xi)

h

)
≥∑n

i=1 1{Yi=1}K
(
d(x,Xi)

h

)
,

1 otherwise,

and K is a non-increasing kernel function whose support is contained in
[0,∞). If K = 1[0,1] we obtain the moving window rule, studied in the func-
tional data context by Abraham, Biau and Cadre (2006).

Let us �nally point out that Cuevas, Febrero and Fraiman (2007) have
developed functional data classi�cation tools based on depth notions. The
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observation x is classi�ed into population 0 or 1 depending on the depth of
x in the respective training sample.

Our presentation will have two parts. The �rst one is more theoretical and
will be devoted to the study of some aspects related to the consistency of
the nearest neighbour rule. The second part is practical and is motivated by
the wish of determining, among several of the above described techniques,
which of the them is at the same time simple, computationally low-cost and
e�ective when applied to a wide range of real data.

7.2 Consistency of the nearest neighbour rule

The k-nearest neighbour classi�er is said to be weakly consistent if

E(Ln)→ L∗ as n→∞,

where Ln = P{gn(X) 6= Y |Xn} is the conditional probability of error of the
classi�er de�ned in (7.2). A classical result of Stone (1977) states that, if
(F , d) = (Rm, ‖ · ‖), where 1 ≤ m < ∞ and ‖ · ‖ is the Euclidean norm,
then the k-nearest neighbour classi�er is universally weakly consistent. The
term �universally� means that the result is independent of the distribution of
(X,Y ). However, when X is in�nite dimensional, in order to obtain consis-
tency results, it seems to be necessary to place assumptions on the regularity
of the regression function η with respect to PX . More concretely, Cérou and
Guyader (2005) have studied the following smoothness assumption on the
regression function (see also Abraham, Biau and Cadre 2006).
(H1) Besicovitch condition: For every ε > 0

lim
δ→0

1
PX(BX,δ)

∫

BX,δ

η(z)dPX(z) = η(X) in probability,

where BX,δ := {z ∈ F : d(X, z) ≤ δ} is the closed ball with center X and
radius δ.

Cérou and Guyader (2005) have proved that, if (F , d) is separable and if
Besicovitch condition (H1) is ful�lled, then the nearest neighbour classi�er is
weakly consistent. A stronger condition which implies Besicovitch one is the
following, also appearing in Cérou and Guyader (2005).
(H2) PX -continuity: For every ε > 0

lim
δ→0

1
PX(BX,δ)

∫

BX,δ

1{|η(z)−η(X)|>ε}dPX(z) = 0 a.s.

We will describe some families of distributions of (X,Y ) under which condi-
tion (H2) holds.
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7.3 Comparison of several classi�cation techniques

We will compare the performance of several classi�cation rules (nearest neigh-
bour, PLS linear, Gaussian RKHS, depth-based and moving window) via
some simulations and the analysis of di�erent real data sets.
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Chapter 8
Local Linear Regression for Functional
Predictor and Scalar Response

Amparo Baíllo and Aurea Grané

Abstract The aim of this work is to introduce a new nonparametric re-
gression technique in the context of functional covariate and scalar response.
We propose a local linear regression estimator and study its asymptotic be-
haviour. Its �nite-sample performance is compared with a Nadayara-Watson
type kernel regression estimator via a Monte Carlo study and the analysis of
two real data sets.

8.1 Introduction

There is nowadays a large number of �elds where functional data are col-
lected: environmetrics, medicine, �nance, pattern recognition, . . . This has
led to the extension of �nite dimensional statistical techniques to the in�nite
dimensional data setting. A classical statistical problem is that of regression:
studying the relationship between two observed variables with the aim to
predict the value of the response variable when a new value of the auxiliary
one is observed.

In this work we consider the regression problem with functional auxiliary
variable X taking values in L2[0, 1] and scalar response Y . A sample of ran-
dom elements (Xi, Yi), 1 ≤ i ≤ n, is observed, where the Xi are independent
and identically distributed as X and only recorded on an equispaced grid
t0, t1, . . . , tN of [0, 1] whose internodal space is w = 1/N . It is assumed that
the response variable Y has been generated as
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Yi = m(Xi) + εi, i = 1, . . . , n (8.1)

and that the errors εi are independent, with zero mean and �nite variance
σ2
ε , and are also independent from any of the Xj .
In the context of regression with functional data a common assumption is

that m(x) is a linear function of x. The linear model has been studied in a
large number of works: see, e.g., Cardot, Ferraty and Sarda (2003), Ramsay
and Silverman (2005), Cai and Hall (2006) and Hall and Horowitz (2007).
Extensions of this model have been considered, for instance, by James (2002),
Ferré and Yao (2003), Cardot and Sarda (2005) or Müller and Stadtmüller
(2005). However, when dealing with functional data, it is di�cult to gain
an intuition on whether the linear model is adequate at all or which is the
parametric model that would best �t the data, since graphical techniques are
of scarce use here.

Here we are interested in estimating the regression function m in a non-
parametric fashion. This problem has already been considered, for instance,
by Ferraty and Vieu (2006), who study a kernel estimator of Nadaraya-
Watson type

m̂K(x) :=
∑n
i=1 YiKh(‖Xi − x‖)∑n
i=1Kh(‖Xi − x‖) , (8.2)

whereKh(·) := h−1K(·/h), h = hn is a positive smoothing parameter and ‖·‖
denotes the L2[0, 1] norm. From now on K is assumed to be an asymmetrical
decreasing kernel function. Observe that the estimator m̂K(x) is the value of
a minimizing the weighted squared error

WSE0(x) =
n∑

i=1

(Yi − a)2Kh(‖Xi − x‖).

Thus the kernel estimator given by (8.2) is locally approximating m by a
constant (a zero-degree polynomial). However, in the context of nonparamet-
ric regression with �nite-dimensional auxiliary variables, local polynomial
smoothing has become the �golden standard� (see Fan 1992, Fan and Marron
1993, Wand and Jones 1995). Local polynomial smoothing at a point x �ts
a polynomial to the pairs (Xi, Yi) for those Xi falling in a neighbourhood
of x determined by a smoothing parameter h. In particular, the local linear
regression estimator locally �ts a polynomial of degree one. Here we plan
to extend the ideas of local linear smoothing to the functional data setting,
giving a �rst answer to the open question 5 in Ferraty and Vieu (2006): �How
can the local polynomial ideas be adapted to in�nite dimensional settings?�
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8.2 Local linear smoothing for functional data

Local polynomial smoothing is based on the assumption that the regression
functionm is smooth enough to be locally well approximated by a polynomial.
Thus from now on we will assume that m is di�erentiable in a neighbourhood
of x and, consequently, for every z in this neighbourhood we may approximate
m(z) by a polynomial of degree 1, that is, m(z) ' a + 〈b, z − x〉, where
a = m(x), b = b(x) ∈ L2[0, 1] and 〈 , 〉 denotes the L2[0, 1] inner product.
Then the weighted squared error

WSE(x) :=
n∑

i=1

(Yi −m(Xi))2Kh(‖Xi − x‖)

may be approximated by

WSE1(x) =
n∑

i=1

(Yi − (a+ 〈b,Xi − x〉))2Kh(‖Xi − x‖). (8.3)

A �rst naive answer to the question posed by Ferraty and Vieu 2006 would
be to �nd the values â and b̂ optimizing (8.3). Then we would take m̂LL(x) =
â as the local linear estimator of m(x), the regression function at x (see Fan
1992). However, the minimization of WSE1 may be achieved by a �wiggly�
b̂ that forces m̂LL(x) to adapt to all the data points in a neighbourhood of
x. This is usually overcome by reducing the dimension of parameter b via an
intermediate step of smoothing or regularization.

Here we expand b and Xi using the Fourier trigonometric basis {φj}j≥1

of L2[0, 1] (see Ramsay and Silverman 2005)

b =
∞∑

j=1

bjφj and Xi − x =
∞∑

j=1

cijφj (8.4)

with bj = 〈b, φj〉 and cij = 〈Xi − x, φj〉. Then

WSE1 =
n∑

i=1


Yi −


a+

∞∑

j=1

bjcij






2

Kh(‖Xi − x‖).

The regularization step consists in truncating the series at a certain cut-o�
J . Thus we will minimize the following approximation to WSE1

AWSE1 :=
n∑

i=1


Yi −


a+

J∑

j=1

bjcij






2

Kh(‖Xi − x‖). (8.5)



50 Amparo Baíllo and Aurea Grané

In matrix notation, if Ȳ = (Y1, . . . , Yn)′,
W = diag(Kh(X1 − x), . . . ,Kh(Xn − x)) and

C =




1 c11 . . . c1J
1 c21 . . . c2J
...

...
1 cn1 . . . cnJ




and assuming that C′WC is a nonsingular matrix, the values of a and bj ,
for j = 1, . . . , J , minimizing AWSE1, are




â
b̂1
...
b̂J


 = (C′WC)−1C′WȲ .

Finally, our proposal for the local linear estimator of m(x) is

m̂LL(x) = â = β′1(C′WC)−1C′WȲ , (8.6)

where β1 is the (J + 1) × 1 vector having 1 in the �rst entry and 0's in the
rest.

We refer to Barrientos-Marín (2007), chapter 3, for a simpli�ed version of
this approach. This author substitutes the linear functional given by
〈b,Xi − x〉 in expression (8.3) by a linear function b β(Xi, x), where b ∈ R
and β is an operator taking values in R.

8.3 Performance of the estimator m̂LL

We will show a theoretical result, proved in Baíllo and Grané (2007), on the
asymptotic behaviour of the local linear estimator introduced in Section 2.
More concretely, we will give conditions under which the mean squared error

E((m̂LL(x)−m(x))2|X1, . . . , Xn)

converges to 0 as n → ∞ and J → ∞. Under an additional assumption on
the fractal order of X, we will obtain convergence rates to zero of the mean
squared error. This rates agree with the asymptotic results for the kernel
estimator appearing in Ferraty and Vieu (2006), p. 208, in the sense that the
more concentrated X is around x (as measured by the so-called small ball
probability), the faster the local linear estimator will converge to the true
regression function.

We will also compare the �nite-sample performance of m̂LL with the kernel
estimator m̂K via a Monte Carlo study and the analysis of real data sets. It
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will be seen that, in all the scenarios considered, the local linear regression
estimator performs better than the kernel one, in the sense that the mean
squared prediction error is lower.
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Chapter 9
Spatio-temporal Functional Regression
on Paleoecological Data

Avner Bar-Hen, Liliane Bel and Rachid Cheddadi

Abstract The aim of this presentation is modeling the relationship between
genetic diversity (represented by a positive number) and curves of tempera-
ture and precipitation. Our model links the genetic measure to the climate
curves through a functional regression. The interaction in climate variables
is assumed to be bilinear and the methodology accounts for the spatial de-
pendence among the observations.

9.1 Introduction

In�uence of climate on biodiversity is an important ecological question. Var-
ious theory try to link climate change to allelic richness and therefore to
predict the impact of global warning on genetic diversity.

The aim of this presentation is to modelize the relationship between genetic
diversity in the European beech forests(represented by a positive number) and
curves of temperature and precipitation reconstructed from the past.

Our model links the genetic measure to the climate curves through a linear
functional regression. The interaction in climate variables is assumed to be
bilinear and the methodology accounts for the spatial dependence among the
observations.
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9.2 Data

Since a plant has a limited range of acceptable climate parameters, it is
possible to reconstruct from pollen database climate variables. Temperature
and precipitation were reconstructed from 216 locations from present to a
variable date depending on available data. The pollen dataset was used to
reconstruct climate variables, throughout Europe for the last 15 000 years of
the Quaternary. Due to the methodology, each climate curve is sampled at
irregular time for each location.

Genetic diversities were measured from variation at 12 polymorphic isozyme
loci in the European beech (Fagus sylvatica L.) forests based on an extensive
sample of 389 populations distributed throughout the species range. Based
on these data, various index of diversity can be computed. They mainly char-
acterise within or between population diversity.

Since the pollens were generally not collected in forest, genetic measure
and climate curve are heterotopic. Temperature and precipitation curves are
�rstly estimated on a regular grid of time on sites where are collected the
genetic measure. This is done by a spatio-temporal kriging assuming the
covariance function is exponential and separable. Parameters are �tted em-
pirically.

9.3 Functional regression

The functional linear regression model with functional or real response has
been the focus of various investigations (see [5, 4, 1, 3]). We want to esti-
mate the link between the real random response d(s), the diversity at site s
and (θ1(t, s), θ2(t, s))t>0 the temperature and precipitation functions at site
s. There are two points to consider for the modelization: (i) functional lin-
ear models need to be extended to incorporate interaction between climate
functions; (ii) since the data are geo-referenced, observations cannot be con-
sidered as independent and we also need to extend functional modelization
to spatial data.

We assume that the temperature and precipitation functions are square
integrable random functions de�ned on some real compact set [0, T ]. The very
general model can be written as:

d(s) = f((θ1(t, s), θ2(t, s))T>t>0) + εs

where f is an unknown functional from the space of the continuous functions
from R+ to R.

A linear model, with bilinear interaction can be written as
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f(θ1, θ2) = µ+
∫

[0,T ]

A(t)θ1(s, t)dt+
∫

[0,T ]

B(t)θ2(s, t)dt+
∫ ∫

[0,T ]2
C(t, u)θ1(t, s), θ2(u, s)dudt+ εs

= µ+ 〈A; θ1〉+ 〈B; θ2〉+ 〈Cθ1; θ2〉+ εs

by the Riesz representation of linear and bilinear forms.
Expanding on the same orthonormal base (ei)i∈N we have

θ1(s, t) =
∑

i

αi(s)ei(t) θ2(s, t) =
∑

i

βi(s)ei(t)

A(t) =
∑

i

ai(s)ei(t) B(t) =
∑

i

bi(s)ei(t) C(t, u) =
∑

i,j

cijei(t)ej(t)

The question results in a linear regression on coe�cients ai, bi, cij .
From a practical point of view the in�nite sum is truncated. The e�ect of

the truncature will be discussed. Di�erent choices of the orthonormal basis
will be presented.

Since the data are spatially located, our second extension concerns the
correlation structure of the errors. Functional linear models generally consider
independent observations. The data under study are a sample of regionalized
variables, and the residuals exhibit spatial dependence. In order to estimate
the regression coe�cients by generalized least squares we proceed as usual
in an iterative way: coe�cients are estimated as if the observations were
independent and then the spatial covariance is estimated on residuals. The
coe�cients are re-estimated with the �tted covariance.

It is important to quantify the predictive power of the proposed model.
We use a leaving-one-out approach to quantify the quality of the model. For
each observation d(si) we compute the residual error between the observa-
tion and the prediction on the model based on all observation except d(si).
The mean average prediction error gives a global indication of the predictive
power of the model. As usual, there is a trade-o� between the quality of the
modelization based on the observed data and the predictive power based on
new observations. Parsimony is one important factor, which needs to be con-
sidered. The mean square average prediction statistic is used to choose the
order of the decomposition of the main e�ects and the interaction. This also
gives a tool to quantify the importance of the climate variable to explain the
diversity.

To proceed with our data, we use a Fourier base of order 5. The results show
a strong e�ect of the temperature function, and small e�ect of precipitation
and interaction. When the change of climate just before the Holocene (9000
BP to present) was important the diversity is higher. This mostly concerns
North and Western Europe (Figure 1).
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Fig. 9.1 Thin line: temperature average of the entire sample. Thick line: temperature
average of sites with predicted diversity < 0.24, in [0.24, 0.26[, [0.26, 0.28[ and ≥ 0.28.
Predicted diversity is low when the change of climate in -9000 is weak and becomes higher
when the change of climate increases.
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Chapter 10
Local Linear Functional Regression
Based on Weighted Distance-based
Regression

Eva Boj, Pedro Delicado and Josep Fortiana

Abstract We consider the problem of nonparametrically predicting a scalar
response variable y from a functional predictor χ. We have n observations
(χi, yi). We assign a weight wi = K (d(χ, χi)/h) to each χi, where d is a semi-
metric,K is a kernel function and h is the bandwidth. Then we �t a Weighted
(Linear) Distance-Based Regression, where the weights are as above and the
distances are given by a possibly di�erent semi-metric.

10.1 Introduction

Let (χ, Y ) be a random element where the �rst component χ is a random
element of a functional space (typically a function χ from [a, b] ⊆ R to R)
and Y is a real random variable. We consider the problem of predicting the
scalar response variable y from the functional predictor χ. We assume that we
are given n i.i.d. observations (χi, yi), i = 1, . . . , n, from (χ, Y ) as a training
set. If we de�ne the regression function m(χ) = E(Y |χ = χ) a reasonable
prediction of y would be an estimate of m(χ).

Ramsay and Silverman (2005) consider the linear functional regression
model, where it is assumed that

m(χ) = α+
∫ b

a

χ(t)β(t)dt, and then yi = m(χi) + εi,
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εi having zero expectation. The parameter β, t ∈ [a, b], is a function and
α ∈ R. They propose to estimate β and α by penalized least squares:

min
α,β

n∑

i=1

(
yi − α−

∫

T

χi(t)β(t)dt
)2

+ λ

∫ b

a

(L(β)(t))2dt,

where L(β) is a linear di�erential operator giving a penalty to avoid too much
rough β functions and λ > 0 acts as a smoothing parameter.

Ferraty and Vieu (2006) say that this linear regression model is paramet-
ric because we need only a �nite (and constant in n) number of functional
elements to describe it. They consider a nonparametric functional regression
model where only a few regularity assumptions are made on the regression
function m(χ). They propose the following kernel estimator for m(χ):

m̂K(χ) =
∑n
i=1K(d(χ, χi)/h)yi∑n
i=1K(d(χ, χi)/h)

=
n∑

i=1

wi(χ)yi,

where wi(χ) = K(d(χ, χi)/h)/
∑n
j=1K(d(χ, χj)/h), K is a kernel function

with support [0, 1], the bandwidth h is the smoothing parameter (depending
on n), and d(·, ·) is a semi-metric in the functional space F = {χ : [a, b]→ R}
to which the data χi belong. Examples of semi-metrics in F are L2 distances
between derivatives,

dderivr (χ, γ) =

(∫ b

a

(
χ(r)(t)− γ(r)(t)

)2

dt

)1/2

.

Ferraty and Vieu (2006) prove that m̂K(χ) is a consistent estimator (in the
sense of almost complete convergence) of m(χ) under regularity conditions
on m, χ (involving small balls probability), Y and K. Ferraty, Mas, Vieu
(2007) prove the mean squared convergence and asymptotic distribution of
m̂K(χ).

The book of Ferraty and Vieu (2006) lists several interesting open problems
concerning nonparametric functional regression. In particular, their Open
Question 5 face with including the local polynomial ideas in an in�nite di-
mensional setting in order to extend the estimator m̂K(χ), that is a kind of
Nadaraja-Watson regression estimator.

A �rst answer to this question is given in Baíllo and Grané (2007). They
propose a natural extension of the �nite dimensional local linear regression,
by solving the problem

min
α,β

n∑

i=1

wi(χ)
(
yi − α−

∫

T

(χi(t)− χ(t))β(t)dt
)2

,
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where local weights wi(χ) = K(||χ−χi||/h)/
∑n
j=1K(||χ−χj ||/h) are de�ned

by means of L2 distances (it is assumed that all the functions are in L2([a, b])).
Their estimator of m(χ) is m̂LL(χ) = α̂. A closely related approach can be
seen in Berlinet et al. (2007) and Barrientos (2007).

In this work we give an alternative response to the same open question.
Our proposal rests on Distance-Based Regression (DBR) (Cuadras, 1989,
Cuadras et al. 1990, Cuadras et al. 1996, Boj.et.al:2007), a prediction tool
which can be applied to non-numerical explanatory variables while keeping
compatibility with ordinary least squares regression (OLS), which appears as
a particular case. We use WDBR, the weighted version of DBR, where each
case (χi, yi) has a weight wi > 0. We assign a weight wi ∝ K (d1(χ, χi)/h) to
observation i, where d1( · , · ) is a semi-metric. Then we �t a WDBR, where
the weights are as above and the distances between functions are given by a
possibly di�erent semi-metric d2( · , · ).

10.2 Weighted distance-based regression (WDBR)

Let Ω = {[1], . . . , [n]} be a set of n individuals randomly drawn from a
population. Individual [i] has weight wi ∈ (0, 1). Let w = (w1, . . . , wn)T

adding up to 1. For individual [i] we have observed the value yi of a con-
tinuous one-dimensional response, and we assume that the responses are w-
centered (that is, wT · y = 0, where y = (y1, . . . , yn)T ). A distance func-
tion δ (being a metric or semi-metric) is de�ned between the elements of Ω.
Let ∆ = (d2

i,j)i=1..n,j=1..n be the inter-individual squared distances matrix.
The available information for the elements of the set Ω can be a mixture of
quantitative and qualitative variables or, possibly, other nonstandard quan-
tities, such as character strings or functions. The computation of distances
dij is based on this information. The aim of the WDBR is to predict the
response variable for a new individual [n+ 1] from the same population, us-
ing (d2

n+1,1, . . . , d
2
n+1,n), the vector of squared distances from [n + 1] to the

remaining individuals, as the only available information.
WDBR operates as follows. We say that a n × q matrix X̄, q ≤ n, is

a Euclidean con�guration for ∆ if X̄ veri�es that the Euclidean distance
between its rows i and j is equal to dij . It is assumed that such a con�guration
exists for∆. A weighted version of Metric Multidimensional Scaling (see, e.g.,
Borg and Groenen, 2005 or Boj and Fortania, 2007) can be used to obtain
X̄ from ∆. Then a linear regression of y on X̄ is estimated by Weighted
Least Squares, giving a q-dimensional estimated regression coe�cient β̂. It
can be proven (Boj and Fortania, 2007) that ŷ = X̄β̂ is an intrinsic quantity,
meaning that ŷ admits an alternative expression as a function of the distances
∆:

ŷ = Gw ·
(
D1/2
w · F+

w ·D1/2
w

)
· y, (10.1)
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where Dw = Diag(w), Jw = In − 1n ·wT , Gw = −(1/2)Jw ·∆ · JTw, Fw =
D1/2
w · Gw · D1/2

w , and F+
w is the Moore-Penrose g-inverse of standardized

inner-products matrix Fw.
A new individual [n + 1] is represented as a q-vector Xn+1 in the row

space of X̄ using the Gower's add-a-point formula (see Boj and Fortania,
2007 for the weighted version), giving the best q-dimensional approximation
in the least squares sense to an exact Euclidean con�guration of the whole
set of n + 1 individuals with their distances. It can be proven (Boj and
Fortania, 2007) that ŷn+1 = Xn+1β̂ can alternatively be expressed directly
as a function of the distances:

ŷn+1 = (1/2)
(
gw − d[n+1]

) ·D1/2
w · F+

w ·D1/2
w · y, (10.2)

where gw is the row vector with the diagonal of Gw.
Equations (10.1) and (10.2) are the core of WDBR. Observe that WDBR

is a linear regression in the space where the Euclidean con�guration X̄ is
included. In practice this con�guration is not explicitly calculated. It is also
remarkable that WDBR reproduces weighted least squares regression (WLS):
if we start from a n × q matrix X̄ of q continuous independent variables
corresponding to n individuals (with weights given by w) and we de�ne ∆ =
(d2
i,j), dij being the Euclidean distance between rows i and j of X̄, then

ŷWDBR = ŷWLS and ŷn+1,WDBR = ŷn+1,WLS , because X̄ is trivially a
Euclidean con�guration for ∆. A particular example is when the i-th row of
X̄ is (xi, x2

i , x
3
i ), xi ∈ R. Then doing the cubic weighted regression of yi over

xi is equivalent to �tting WDBR with distances
d(xi, xj) = ‖(xi, x2

i , x
3
i )− (xj , x2

j , x
3
j )‖2.

10.3 Local linear distance-based regression

Let (χi; yi), i = 1, . . . , n, be a random sample of (χ, Y ), Y ∈ R, χ : [a, b]→ R.
We want to estimate m(χ) = E(Y |χ = χ) by a local linear regression
around χ and we are doing that using WDBR. We consider the weights
wi(χ) = K(d1(χ, χi)/h)/

∑n
j=1K(d1(χ, χj)/h), where d1 is a semi-metric be-

tween functions. Let ∆2 = (d2(χi, χj)2)i=1..n,j=1..n be the matrix of squared
distances between functions de�ned from a possible di�erent semi-metric d2.
We �t the WDBR using equation (10.1) from the elements∆2, y = (yi)i=1..n,
w = (wi(χ))i=1..n. We consider a new individual [n+ 1] where the functional
predictor is χ and we compute its squared distances to the other individuals
χi: d2,[n+1] = (d2(χ, χ1)2, · · · , d2(χ, χn)2). Then we use equation (10.2) to
obtain the local linear distance-based estimator of m(χ):

m̂LLDBR(χ) = ŷn+1.
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Let us remark some important points. There are two semi-metrics involved
in the local linear distance-based estimation: one of them, d1, is used to com-
pute the weight of observation χi around the function χ where the regression
function is estimated, and the other, d2, de�nes the distances between obser-
vations for computing the distance-based regression. The semi-metrics d1 and
d2 can coincide or not. Observe that the local linear distance-based estimator
of m(χ) is really a local linear estimator in the space where the semi-metric
d2 is a Euclidean distance.

Assume that d1 and d2 coincide and that they are the L2 distance in
L2([a, b]), that is, d1 = d2 = dderiv0 . Then the local linear distance-based esti-
mator m̂LLDBR(χ) coincide with the local linear estimator m̂LL(χ) proposed
in Baíllo and Grané (2007). Assume now that d2(χ, γ) = 0 for all functions χ
and γ. Then the local linear distance-based estimator m̂LLDBR(χ) �ts locally
a constant around χ and then it coincides with the kernel estimator m̂K(χ)
introduced by Ferraty and Vieu (2006).

LetK be the uniform kernel and assume that h > maxi,j(d1(χi, χj)). Then
a (global) distance-based regression is �tted, that is a linear regression �t in
the space where the semi-metric d2 is a Euclidean distance.

The local linear distance-based estimation is also valid for predictors
that are no functional data. For instance, it is valid for multivariate con-
tinuous data (xi ∈ Rp), mixed data (multivariate xi with some compo-
nents being continuous and other being qualitative), textual data or any
other kind of data for which we are able to compute distances between
individuals. Consider, for instance, that xi ∈ R, d1(xi, xj) = |xi − xj |,
d2(xi, xj) = ‖(xi, x2

i , x
3
i )− (xj , x2

j , x
3
j )‖. Then the estimator m̂LLDBR(x) co-

incide with �tting a local cubic polynomial regression (see the end of Section
2).

Our proposal for estimating m(χ) non-parametrically by local linear
distance-based regression is very �exible, including as particular cases the
local polynomial regression for real predictor variables. So we consider that
this proposal is a satisfactory answer to Open question 5 in Ferraty and Vieu
(2006).

10.4 A real data example: Spectrometric Data

We consider the Spectrometric Data described in Chapter 2 of Ferraty and
Vieu (2006). This dataset includes 215 individuals, each of them being a
sample of chopped meat. For each individual the function χi, relating ab-
sorbance versus wavelength, has been recorded for 100 values of wavelength
in the range 850-1050 nm. An additional response variable is observed: yi,
the sample fat content obtained by analytical chemical processing. Given
that obtaining a spectrometric curve is less expensive that determining the
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fat content by chemical analysis, it is important to predict the fat content y
from the spectrometric curve χ.

Following Section 7.2 in Ferraty and Vieu (2006) we divide the sample in
a training sample (the �rst 160 cases) and a test sample (the last 55 cases).
The performance of di�erent functional prediction methods is measured by
the empirical mean square prediction error in the sample test: MSPE =
(1/55)

∑215
i=161(ŷi − yi)2.

Ferraty and Vieu ( 2006) use three functional predictors for this data set:
nonparametric estimators of conditional expectation (functional kernel esti-
mator as m̂K(χ)), conditional mode and conditional median. The implemen-
tation of these estimators allows a variable bandwidth h based on k-nearest
neighbours, where k is locally selected by cross-validation. The authors recom-
mend to use the semi-metric based on the second order derivatives (dderiv2 ).
We have used the R routines accompanying Ferraty and Vieu (2006) (the
script npfda-specpredRS.txt to be speci�c) to recreate the results included
in the book. The numbers we have obtained are shown in Table 10.1 with the
label FV2006.

In order to have results that we can directly compare with our proposals,
we have computed the functional kernel estimators with �xed bandwidth se-
lected by cross-validation and based on the semi-metrics dderivr , r = 1, 2, 3. We
have used the R function from Ferraty and Vieu (2006) funopare.kernel.cv.
The results are included in Table 10.1 with the label Kernel.FV.

We have implemented the local linear distance-based regression with au-
tomatic selection of the bandwidth by cross-validation. The usual way of
implementing cross-validation has been modi�ed as follows. Usually it is not
possible to check the performance of a candidate bandwidth h being lower
than maxi minj d1(χi, χj) = minj d1(χi∗ , χj) because in this case there are
not enough data in the ball centered at χi∗ with radius h to �t the distance-
based regression. So for an observation χi having less than 3 neighbours at
distance h, we enlarge h to hi allowing to include 3 neighbours in the ball cen-
tered at χi∗ with radius hi. So our implementation is with partially variable
bandwidth.

An alternative implementation of functional kernel estimators is possi-
ble using local linear distance-based regression by selection d1 = dderivr ,
r = 1, 2, 3, and d2 ≡ 0. The results are included in Table 10.1 with the
label Kernel.LLDBR. The results do not coincide with those obtained using
the function funopare.kernel.cv because the di�erent way of bandwidth
selection.

Finally we also show in Table 10.1 the results obtained by local linear
distance-based regression for di�erent combinations of distances d1 and d2,
all of them using semi-metrics based on derivatives. First we �x d2 equal to the
L2 distance between the original functions (d2 = dderiv0 ) and use d1 = dderivr ,
r = 1, 2, 3. This way we do local linear regression in the space of the original
functions for di�erent semi-metrics de�ning neighborhoods in this space. The
case d1 = dderiv0 and d2 = dderiv0 corresponds to the local linear estimator
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proposed by Baíllo and Grané (2007). The case d1 = dderiv2 and d2 = dderiv0

represents an improvement on the kernel method (see the row with label
Kernel.LLDBR dderiv2 ) because now a local linear regression is �tted instead
computing a local average. The best �tting is obtained when using d1 = dderiv2

and d2 = dderiv2 : local linear regression in the space of second derivatives. This
choice of distances d1 and d2 is also the most natural one taken into account
the recommendations of Section 7.2 in Ferraty and Vieu (2006).

We conclude that local linear distance-based regression is a very �exible
tool with good results in practice.

Functional predictor MSPE
FV2006 Cond. Expect. 1.92
FV2006 Cond. Mode. 2.94
FV2006 Cond. Median. 4.84
Kernel.FV dderiv0 139.36
Kernel.FV dderiv1 11.93
Kernel.FV dderiv2 5.37

Functional predictor MSPE
Kernel.LLDBR dderiv0 52.08
Kernel.LLDBR dderiv1 6.85
Kernel.LLDBR dderiv2 3.52
d1 = dderiv0 , d2 = dderiv0 7.94
d1 = dderiv1 , d2 = dderiv0 2.12
d1 = dderiv2 , d2 = dderiv0 1.43
d1 = dderiv1 , d2 = dderiv1 2.91
d1 = dderiv2 , d2 = dderiv2 1.03

Table 10.1 Mean square prediction error (MSPE) for di�erent functional predictors.
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Chapter 11
Singular Value Decomposition of Large
Random Matrices (for Two-Way
Classi�cation of Microarrays)

Marianna Bolla, Katalin Friedl and András Krámli

Abstract Asymptotic behavior of the SVD of blown up matrices exposed to
Wigner-noise is investigated. It is proved that such an m× n matrix almost
surely has a constant number of large singular values (of order √mn), while
the rest of the singular values are of order

√
m+ n, as m,n → ∞. An algo-

rithm, applicable to two-way classi�cation of microarrays, is also given that
�nds the underlying block structure.

11.1 Introduction

In this paper the theory of random matrices � with sizes tending to in�nity �
is applied and developed to �nd linear structure in large real-world data sets
like internet or microarray measurements. Because of the large sizes, classical
statistical methods cannot be used immediately.

In Bolla (2005), large symmetric blown up matrices burdened with a so-
called symmetric Wigner-noise were investigated (see De�nitions 2.1, 2.3). It
was proved that such an n × n matrix has some protruding eigenvalues (of
order n), while the majority of the eigenvalues is at most of order √n with
probability tending to 1, as n→∞. These provide a useful tool to recognize
linear structure in large symmetric real matrices, such as weight matrices of
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random graphs on a large number of vertices produced by communication,
social, or cellular networks. Our goal is to generalize these results for the SVD
of large rectangular random matrices and to apply them to the contingency
table matrix formed by categorical variables in order to perform two-way
clustering of these variables.

11.2 Singular values of a noisy matrix

De�nition 11.1. The m × n real matrix W is a Wigner-noise if its entries
wij (1 ≤ i ≤ m, 1 ≤ j ≤ n) are independent random variables, E(wij) = 0
and the wij 's are uniformly bounded (i.e., there is a constant K > 0 such
that |wij | ≤ K).

The name is originated from the seminal paper Wigner (1958) on the
distribution of eigenvalues of random matrices. The term Wigner-noise in
statistics was �rst used in Bolla (2005).

According to a generalization of a theorem of Füredi and Komlós (1981)
to rectangular matrices, the following result is valid for W.

Lemma 11.1. The maximum singular value of the Wigner-noise W is at
most of order

√
m+ n with probability tending to 1, as n,m→∞.

De�nition 11.2. The m × n real matrix B is a blown up matrix, if there
is an a × b so-called pattern matrix P with entries 0 ≤ pij ≤ 1, further
there are positive integers m1, . . . ,ma with

∑a
i=1mi = m and n1, . . . , nb

with
∑b
i=1 ni = n, respectively, such that the matrix B can be divided into

a × b blocks, the block (i, j) being an mi × nj matrix with entries all equal
to pij (1 ≤ i ≤ a, 1 ≤ j ≤ b).

Blown up structures are usual in graph theory and also sought for in
microarray analysis where they are called chess-board patterns, cf. Kluger
et al (2003). Let us �x the matrix P, blow it up to obtain the matrix B,
and let A = B + W, where W is a Wigner-noise of appropriate size. We are
interested in the properties of A when m1, . . . ,ma →∞ and n1, . . . , nb →∞,
roughly speaking, both at the same rate (in the sequel it will be called usual
growth condition).

Proposition 11.1. If the usual growth condition holds, then all the non-zero
singular values of the m× n blown-up matrix B are of order √mn.
Theorem 11.1. Let A = B + W be an m× n random matrix, where B is a
blown up matrix with positive singular values s1, . . . , sr and W is a Wigner-
noise of the same size. Then the matrix A almost surely has r singular values
z1, . . . , zr with |zi−si| = O(

√
m+ n), i = 1, . . . , r, and for the other singular

values zj = O(
√
m+ n), j = r + 1, . . . ,min{m,n} hold almost surely, as

m,n→∞ under the usual growth condition. (Here r ≤ min{a, b}.)
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Proof The statement follows from the analog of the Weyl's perturbation
theorem for singular values of rectangular matrices. If si(A) and si(B) denote
the ith singular values of the matrix in the argument in decreasing order then
for the di�erence of the corresponding pairs |si(A)− si(B)| ≤ maxi si(W) =
‖W‖, i = 1, . . . ,min{m,n}. Lemma 2.2 asserts that W's spectral norm
‖W‖ = s1(W) = O(

√
m+ n) in probability (by large deviations, also almost

surely), and this �nishes the proof.

11.3 Classi�cation via singular vector pairs

Let Y be the m × r matrix containing the left-hand side singular vectors
y1, . . . ,yr of A in its columns. Similarly, let X be the n×r matrix containing
the right-hand side singular vectors x1, . . . ,xr of A in its columns. We shall
speak in terms of microarrays. Let the r-dimensional representatives of the
genes be the row vectors of Y: y1, . . . ,ym ∈ Rr, while the r-dimensional
representatives of the conditions be the row vectors of X: x1, . . . ,xn ∈ Rr.
Let S2

a(Y) denote the a-variance of the genes' representatives in the clustering
A1, . . . , Aa:

S2
a(Y) =

a∑

i=1

∑

j∈Ai
‖yj − ȳi‖2, where ȳi =

1
mi

∑

j∈Ai
yj ,

while S2
b (X) denotes the b-variance of the conditions' representatives in the

clustering B1, . . . , Bb:

S2
b (X) =

b∑

i=1

∑

j∈Bi
‖xj − x̄i‖2, where x̄i =

1
ni

∑

j∈Bi
xj .

Theorem 11.2. With the above notation, for the a- and b-variances of the
representation of the microarray A the relations

S2
a(Y) = O

(
m+ n

mn

)
and S2

b (X) = O
(
m+ n

mn

)

hold almost surely, under the usual growth condition.

Proof idea The piecewise constant structure of singular vectors of B is used.

Hence, the addition of any kind of a Wigner-noise to a rectangular matrix
that has a blown up structure B will not change the order of the protruding
singular values, and the block structure of B can be reconstructed from the
representatives of the row and column items of the noisy matrix A.
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With an appropriate Wigner-noise, we can achieve that the matrix B +
W in its (i, j)-th block contains 1's with probability pij , and 0's otherwise.
Thus, the noisy matrix A becomes a 0-1 random matrix of incidence relations
between the genes and conditions.

11.4 Perturbation results for correspondence matrices

Sometimes the pattern matrix P is an a × b contingency table with entries
that are nonnegative integers. Then the blown up matrix B can be regarded
as a larger (m× n) contingency table that contains e.g., counts for two cat-
egorical variables with m and n di�erent categories, respectively. For �nd-
ing maximally correlated factors with respect to the marginal distributions
of these two discrete variables, the technique of correspondence analysis is
widely used, see Benzécri et al. (1973). In case of a general pattern matrix P
(with nonnegative real entries), the blown-up matrix B can also be regarded
as a data matrix for two not independent categorical variables. As the cate-
gories may be measured in di�erent units, a normalization is necessary. This
normalization is made by dividing the entries of B by the square roots of the
corresponding row and column sums. This transformation is identical to that
of the correspondence analysis, and the transformed matrix remains the same
when we multiply the initial matrix by a positive constant. Thus, it does not
matter whether we started with a contingency or frequency table or just with
a matrix with nonnegative entries. After performing correspondence transfor-
mation on B, the resulting Bcorr has entries in [0,1] and maximum singular
value 1. It is proved that there is a signi�cant gap between the k largest
(where k = rank (B) = rank (P)) and the other singular values of Acorr, the
matrix obtained from the noisy matrix A = B + W by the correspondence
transformation. This implies well two-way classi�cation properties of the row
and column categories (genes and expression levels).

11.5 Recognizing the structure

A construction is given, how a blown up structure behind a real-life matrix
with a few protruding singular values and �well classi�able� corresponding
singular vector pairs can be found.
Theorem 11.3. Let Am×n be a sequence of m × n matrices, where m and
n tend to in�nity. Assume, that Am×n has exactly k singular values of order
greater than

√
m+ n (k is �xed). If there are integers a ≥ k and b ≥ k

such that the a- and b-variances of the row- and column-representatives are
O(m+n

mn ), then there is a blown up matrix Bm×n such that Am×n = Bm×n +
Em×n, with ‖Em×n‖ = O(

√
m+ n).
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In the proof we give an explicit construction for Bm×n by means of metric
classi�cation methods. To �nd SVD of large rectangular matrices random-
ized algorithms are favored, e.g., Frieze, Kannan (1999). They exploit the
randomness of our data and provide good approximations of the underlying
clusters only if originally there was a linear structure in our matrix.
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Chapter 12
On Tensorial Products of Hilbertian
Linear Processes

Denis Bosq

Abstract We study quadratic transformations for real and Hilbertian Linear
Processes.

12.1 Introduction

Quadratic transforms of linear processes are of interest since they play an im-
portant part in estimation of autocovariance and prediction of these processes
(cf Granger and Newbold (1976), Choi and Taniguchi (2002) among others).

In this work we study that kind of transformations for real and functional
processes. For convenience we focus on autoregressive and moving average
processes.

The main fact is conservation of these models by quadratic transforma-
tions. Properties of the resulting process are easy to derive in the autoregres-
sive case when the moving average context appears to be more intricate.

12.2 The real case

In the real case tensorial product may be identi�ed with usual product.
a) Transforming autoregressive processes
Let (Xn, n ∈ z) be a real autoregressive process of order 1 (AR(1)) that

satis�es the relation
Xn = ρXn−1 + εn, n ∈ z

Denis Bosq
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where |ρ| < 1 and (εn, n ∈ z) is a (weak) white noise.
We suppose that

(I)− E ε4
n = E ε4

0 <∞, E Bn−1(ε2
n) = σ2 > 0, E Bn−1(εn) = 0, n ∈ z,

where Bn−1 = σ(Xt, t ≤ n− 1) is the σ-algebra generated by Xt, t ≤ n− 1.

Then we have the following simple result :

Proposition 12.1.
Set

Zn = X2
n −

σ2

1− ρ2
, n ∈ z,

then (Zn) is an AR(1) such that

Zn = ρ2Zn−1 + En, n ∈ z

where

En = (ε2
n − σ2) + 2ρXn−1εn, n ∈ z,

moreover (En) is a martingale di�erence adapted to (Bn).

Similarly, if (Xn) and (Yn) are independent AR(1), (XnYn) is again an
AR(1).

It is then possible to compute the best predictor of X2
n+1 (resp. Xn+1Yn+1)

given (X2
t , t ≤ n) (resp. XtYt, t ≤ n) and to compare it with the best pre-

dictor given (Xt, t ≤ n) (resp. XtYt, t ≤ n). We also compare the prediction
errors.

b) Moving averages
We now consider the moving average of order 1 (MA(1)) de�ned by

Xn = εn + aεn−1, n ∈ z

where |a| < 1 and (εn) satis�es (I) and the additional condition

E (εn−1ε
3
n) = 0, n ∈ z.

Putting Zn = X2
n − σ2(1 + a2), n ∈ z, one obtains the following :
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Proposition 12.2.
(Zn, n ∈ z) is a MA(1) de�ned by

Zn = En +AEn−1, n ∈ z

where 0 ≤ A < 1 and (En) is the innovation process given by

En =
∞∑

j=0

(−A)jX2
n−j − σ2 1 + a2

1 +A
.

Contrary to the case of an AR(1) the relation

R = ρ2 (12.1)

(where ρ = corr(X0, X1) and R = corr(Z0, Z1)) is not satis�ed in general.
Actually one has

R =
1 + κ(4)

1 + ακ(4)
ρ2

where κ(4) =
E ε4

0

2σ4
− 3

2
is the 4th normed cumulant of ε0 and

α = (1 + a4)/(1 + a2)2. It follows that 0 ≤ R <
a2

1 + a4
and that (12.1) holds

if and only if κ(4) = 0, in particular if (Xn) is Gaussian. Note that (12.1)
implies

A

1 +A2
=
( a

1 + a2

)2

.

Similar results may be obtained for the product of two independent MA(1).

Finally we compare prediction of Zn+1 given Zt, t ≤ n with prediction of
Zn+1 given Xt, t ≤ n.

12.3 The hilbertian case

Let H be a real separable Hilbert space and (Xn, n ∈ z) a sequence of
H-valued random variables. (Xn) is a (standard) autogressive process of
order 1 (ARH(1)) if it is stationary and such that

Xn = ρ(Xn−1) + εn, n ∈ z (12.2)

where (εn) is a H-white noise and ρ ∈ L (the space of continuous linear
operators from H to H, equipped with its usual norm ‖·‖ ·L). If ‖·‖ ρj0L < 1
for some integer j0, (12.2) has a unique solution, namely
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Xn =
∞∑

j=0

ρj(εn−j), n ∈ z.

Now let S be the space of Hilbert-Schmidt operators on H with its norm
‖·‖ ·S , and consider the following assumptions

(I)′− E ‖·‖ εn ⊗ εn2
S = E ‖·‖ ε0 ⊗ ε0

2
S <∞, E Bn−1(εn) = 0,

E Bn−1(εn ⊗ εn) = Cε0 ,

where Cε0 = E (ε0 ⊗ ε0) and Bn−1 = σ(Xt, t ≤ n− 1).
Let us set

Zn = Xn ⊗Xn − C, n ∈ z

(where C = E (X0 ⊗X0)) then :

Proposition 12.3.
(Zn) is a S-valued AR(1) process such that

Zn = R(Zn−1) + En, n ∈ z

where (En) is the S-white noise given by

En = (Xn−1 ⊗ εn)ρ∗ + ρ(εn ⊗Xn−1) + εn ⊗ εn − Cε0 , n ∈ z

and

R(s) = ρsρ∗, s ∈ S.

Moreover (En) is a (Bn) adapted martingale di�erence and

‖·‖Rj(S)

L ≤ ‖·‖ ρj2

L, j ≥ 1.

Finally the case of a MAH(1) is more intricate. First set

Gεn = e
{
`(εn), ` ∈ L}

where the closure is taken in the space L2
H(Ω,A, P ), and let Πεn be the

orthogonal projection of εn. Then a (non-standard) MAH(1) associated
with (εn) satis�es

Xn = εn +Πεn−1(Xn), n ∈ z. (12.3)

Details concerning non-standard linear processes appear in Bosq (2007)
and Bosq and Blanke (2007).

If a stationary process satis�es (12.3) we have :
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Proposition 12.4.
(Xn ⊗Xn − C) is a S-valued non standard MA(1).

Some examples of applications are considered.
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Chapter 13
Recent Results on Random and Spectral
Measures with Some Applications in
Statistics

Alain Boudou, Emmanuel Cabral and Yves Romain

Abstract In this talk we de�ne and study �rst the convolution product of
two spectral measures and secondly the tensor and convolution products of
random measures. Then we propose some applications in stationary processes
statistics.

13.1 Introduction and de�nitions

We begin by introducing three examples in the domain of stationary processes:
(i) An interpolation problem
Let (Xn)n∈Z be a stationary series, how can we de�ne all stationary series
(Yn)n∈Z such as Yn = Xnq?
(ii) A spatial process identi�cation problem
Let (Xn)n∈Z be a stationary series, how can we de�ne all stationary series
(Yn,m)n,m∈Z×Z such as Ynq,np = Xn?
(iii) An inverse Fourier transform problem
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Let (XnYn)n∈Z be a �multiplicative� series, how can we de�ne the random
measure whose Fourier transform is the considered series?

To resolve such kind of questions, we need to elaborate new tools on ran-
dom and spectral measures. These results are presented in the following two
and three sections. Before that we recall and give some de�nitions of random
and spectral measures (cf. Azencott et al., 1984; Birman et al., 1996; Boudou
et al., 2002). A random measure (r.m.) de�ned on ξ (a σ-�eld of a set E)
with values in a C-Hilbert space H, is a mapping Z from ξ onto H such as:
(i) for all pairs (A,B) of disjoint elements of ξ, Z(A ∪ B) = Z(A) + Z(B)
and
< Z(A), Z(B) >= 0 ;
(ii) for each decreasing sequence (An)n∈N of elements of ξ converging to ∅,
we have limn Z(An) = 0H .
Then it is easy to verify that the mapping µZ : A ∈ ξ 7→ ‖Z(A)‖2 ∈ R+ is a
bounded measure.
The stochastic integral with respect to the r.m. Z can be de�ned as the unique
isometry from L2(E, ξ, µZ) onto HZ = vect{Z(A), A ∈ ξ} which associates
Z(A) to 1A, for all A in ξ.
When (E′, ξ′) is a second measurable space and L a measurable mapping from
E into E′ then the mapping L(Z) : A′ ∈ ξ′ 7→ Z(L−1(A′)) ∈ H is a r.m.
called the r.m. image of Z by L. It is easy to verify that L(µZ) = µL(Z) and,
if ϕ is an element of L2(E′, ξ′, µL(Z)) then ϕ ◦ L is a element of L2(E, ξ, µZ)
and

∫
ϕdL(Z) =

∫
ϕ ◦ LdZ.

When Z is a r.m. de�ned on B (resp. B⊗B) the Borel σ-�eld of Π = [−π, π[
(resp. Π ×Π) we call Fourier transform of Z the series (

∫
ei·ndZ)

n∈Z (resp.
(
∫
ei(·n+·n′)dZ)

(n,n′)∈Z2) which is a stationary series, e.g.
<
∫
ei·ndZ,

∫
ei·mdZ >=<

∫
ei·(n−m)dZ,

∫
ei·0dZ > (resp.

<
∫
ei(·n+·n′)dZ,

∫
ei(·m+·m′)dZ >=<

∫
ei(·(n−m)+·(n′−m′))dZ,

∫
ei(·0+·0)dZ >).

Conversely, for each stationary series, we can associate a unique r.m. (called
the associated r.m.) whose Fourier transform is the considered series.
A spectral measure (s.m.) on ξ for H is a mapping ε from ξ into P(H), the
orthogonal projectors set of H, such as:
(i) ε(E) = idH ;
(ii) for all pairs (A,B) of disjoint elements of ξ, ε(A ∪B = ε(A) + ε(B);
(iii) for each decreasing sequence (An)n∈N of elements of ξ converging to ∅
and all X of H, limn ε(An)X = 0.
Then we show that, for all pairs (A,B) of elements of ξ: ε(A)◦ε(B) = ε(A∩B)
and, for all X of H, the mapping ZXε : A ∈ ξ 7→ ε(A)X ∈ H is a r.m. .
Naturally, with the previous notations, we verify that the mapping L(ε) : A′ ∈
ξ′ 7→ ε(L−1(A′)) ∈ P(H) is a s.m. on ξ′ for H called the image s.m. of ε by L.
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13.2 Convolution product of spectral measures

When U is a unitary operator of H (e.g. U∗U = idH = UU∗), it is clear that,
for all X of H, the series (UnX)n∈Z is stationary. If we denote by ZX the
associated r.m. de�ned on B with values in H, we can a�rm that:
(i) for all A of B, the mapping ε(A) : X ∈ H 7→ ZX(A) ∈ H is an orthogonal
projector;
(ii) the mapping ε : A ∈ B 7→ ε(A) ∈ P(H) is a s.m. on B for H called the
associated s.m. to U .
It is clear that, for all X in H, ZX = ZXε and then ZXε is the associated
r.m. to the stationary series (UnX)n∈Z; and futhermore, UX =

∫
ei·1dZXε .

Conversely, given a s.m. ε on B for H, we can show that the mapping X ∈
H 7→ ∫

ei·1dZXε ∈ H is a unitary operator whose associated s.m. is ε.
A unitary operator U with associated s.m. ε, may be written as a limit of
Riemann's sum because of the equality

U = lim
n

n−1∑

k=0

ei(−π+k 2π
n )ε([−π + k

2π
n
,−π + (k + 1)

2π
n

[);

in sense of the norm ‖A‖ = sup{‖Ax‖; ‖x‖ = 1}.
If U and V are two unitary operators of H with, respectively, associated
s.m. ε and α, we show that UV = V U if and only if, for all pairs (A,B) of
elements of B, the projectors ε(A) and α(B) commute. In this case, the series
(UnV mX)(n,m)∈Z×Z is stationary. Denoting by zX its associated r.m., we can
a�rm that
- for all A of B ⊗ B, the mapping (ε ⊗ α)(A) : X ∈ H 7→ zX(A) ∈ H is an
orthogonal projector;
- the mapping ε⊗α : A ∈ B⊗B 7→ (ε⊗α)(A) ∈ P(H) is a s.m. on B⊗B for
H (called the s.m. product of ε and α).
We denote by P the measurable mapping (λ1, λ2) ∈ Π ×Π 7→ λ1 ∈ Π. The
integration rules with respect to an image r.m. permit us to write

∫
ei·ndP (zX) =

∫
ei·n ◦ PdzX =

∫
ei(·n+·0)dzX = UnV 0X = UnX;

so, by unicity of a r.m. associated to a stationary series, we have P (zX) = ZXε .
For all (A,X) of B ×H, we have

ε(A)X = ZXε (A) = P (zX)A = zXP−1(A) = ε⊗ α(A×Π)X

and then, for all A of B, ε(A) = (ε⊗ α)(A×Π).
Similarly, for all B of B, we show that α(B) = (ε⊗ α)(Π ×B).
This last point permits us to a�rm that ε⊗α is the unique s.m. on B⊗B for
H such as, for all pairs (A,B) of elements of B, (ε⊗α)(A×B) = ε(A)◦α(B)
.
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Because of the topological group structure of Π, the mapping

S : (λ1, λ2) ∈ Π ×Π 7→ λ1 + λ2 − 2π[
λ1 + λ2 + π

2π
] ∈ Π,

is continuous and also measurable. We may consider the s.m. on B for H,
S(ε ⊗ α), denoted by ε ∗ α and called the convolution product of the s.m. ε
and α.
For all X of H, one has:
∫
ei·1dZXε∗α =

∫
ei·1dS(ZXε⊗α) =

∫
ei·1 ◦ SdZXε⊗α =

∫
ei(·1+·1)dzX = UV X,

which implies that ε ∗ α is the s.m. associated to the unitary operator UV .
The convolution product admits an identity element. The s.m. εΠ = δ0(·)idH ,
where δ0 is the Dirac measure concentrated n 0, is the s.m. associated to the
unitary operator idH , it commutes with all s.m. ε on B for H, and then,
εΠ ∗ ε = ε.
We quote at last a distributivity property: if f is a continuous homomor-
phism de�ned from Π (resp. Π × Π) into Π, if ε1 and ε2 two commuting
s.m. on B (resp. B ⊗ B) for H, then the s.m. fε1 and fε2 commute and
f(ε1 ∗ ε2) = (fε1) ∗ (fε2).
Let h be a (obviously continuous) homomorphism de�ned from Z into Z
(resp. Z × Z) and th its transpose, that means th is a homomorphism from
Π, the dual space of Z (resp. Π ×Π the dual space of Z×Z) into Π such as
eiλh(n) = ei

th(λ)n, for all (λ, n) of Π ×Z (resp. ei<(λ1,λ2);h(n)> = ei
th(λ1,λ2)n,

for all ((λ1, λ2), n) of (Π ×Π)× Z).
Then we show that if (Yn)n∈Z (resp. (Yn,m)(n,m)∈Z×Z) is a stationary series
with associated r.m. ZY , thZY is the associated r.m. to the series (Yh(n))n∈Z.
Also, given a stationary series (Xn)n∈Z with associated r.m. ZX , searching all
series (Yn)n∈Z (resp. (Yn,m)(n,m)∈Z×Z) such as (Yh(n))n∈Z = (Xn)n∈Z consists
of searching all r.m. ZY such as thZY = ZX .
To solve this equation (where the r.m. ZY is unknown) we consider a mea-
surable mapping v from Π into Π (resp. Π ×Π) such as th ◦ v = idΠ and a
s.m. εX on B for H such as ZX0

εX = ZX .
Then we show that if ε′ is a s.m. on B (resp. B ⊗ B) for H which commutes
with vεX such as thε′ = εΠ then ZX0

ε′∗vεX is a r.m. solution and all solutions
are of this form.
The direct part of this proposition is resulting from the properties of convo-
lution product of s.m. quoted previously, e.g.:

th(ZX0
ε′∗vεX ) = ZX0

th(ε′∗vεX) = ZX0
thε′∗thvεX = ZX0

εΠ∗εX = ZX0
εX = ZX .

If we choose as homomorphism h the mapping n ∈ Z 7→ nq ∈ Z, we can then
de�ne all stationary series (Yn)n∈Z such as Ynq = Xn, for all n of Z, (Xn)n∈Z
being a given stationary series (cf. Boudou, 2003).
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If we chooe as homomorphism h the mapping n ∈ Z 7→ (nq, np) ∈ Z× Z, we
can then de�ne all stationary series (Yn,m)n∈Z×Z such as Ynq,mp = Xn, for
all n of Z, (Xn)n∈Z being a given stationary series.

13.3 Tensor and convolution products of random
measures

In this part, H1 and H2 are separable C-Hilbert spaces. We use a complex
extension of the functional tensor product (cf. Dauxois et al., 1994) of A1

and A2, two bounded endomorphisms of H1 and H2 respectively, de�ned by
the mapping

A1

l⊗A2 : K ∈ σ2(H1,H2) 7→ A2 ◦K ◦A∗1 ∈ σ2(H1,H2),

where σ2(H1,H2) is the set of all Hilbert-Schmidt operators from H1 into
H2. It is easy to verify the following equalities:
(A1

l⊗A2) ◦ (A′1
l⊗A′2) = (A1 ◦A′1)

l⊗ (A2 ◦A′2) and (A1

l⊗A2)∗ = A∗1
l⊗A∗2.

We deduce that the functional tensor product of two projectors (resp. unitary
operators) is a projector (resp. unitary operator). We can now establish that
when ε1 is a s.m. on B for H1:
(i) for all A of B, E1(A) = ε1(A)

l⊗ idH2 is a projector;
(ii) the mapping A ∈ B 7→ E1(A) ∈ P(σ2(H1,H2)) is a s.m. on B for
σ2(H1,H2) called the right functional ampliation of ε1 in regard to H2.
Similarly, if ε2 is a s.m. on B for H2, we can de�ne the left functional ampli-
ation E2 of ε2 in regard to H1 by the equality E2(A) = idH1

l⊗ ε2(A), for all
A of B.
It is clear that the ampliations E1 and E2 commute and we can consider the
s.m. E1⊗E2 which is called tensor product of ε1 and ε2, and the convolution
s.m. E1 ∗ E2 (cf. Boudou and Romain, 2002).
If we denote by U2 the unitary operator of H2 with associated s.m. ε2, and
de�ned by

U2 = lim
n

n−1∑

k=0

ei(−π+k 2π
n )ε2([−π + k

2π
n
,−π + (k + 1)

2π
n

[),

we deduce the equality

idH1

l⊗ U2 = lim
n

n−1∑

k=0

ei(−π+k 2π
n )[idH1

l⊗ (ε2([−π + k
2π
n
,−π + (k + 1)

2π
n

[))]
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which permits us to a�rm that the unitary operator idH1

l⊗U2 admits E2 for
associated s.m.. If we denote by U1 the unitary operator of H1 with associ-
ated s.m. ε1, we show similarly that U∗1

l⊗ idH2 admits E1 for associated s.m..
We can now a�rm that (U∗1

l⊗ idH2) ◦ (idH1

l⊗ U2) = U∗1
l⊗ U2 is the unitary

operator with associated s.m. E1 ∗ E2.
We consider now (X1

n)n∈Z (resp. (X2
n)n∈Z) a stationary series of elements of

H1 (resp. H2) with associated r.m. Z1 (resp. Z2) and let ε1 (resp. ε2) be the
s.m. such as (ε1(A))(Z1(Π)) = Z1(A) (resp. (ε2(A))(Z2(Π)) = Z2(A)), for
all A of B.
By the equality (U∗1

l⊗ U2)n(X1
0 ⊗ X2

0 ) = X1
−n ⊗ X2

n, we can deduce that
(X1
−n ⊗X2

n)
n∈Z is a stationary series of elements of σ2(H1,H2) with associ-

ated r.m. ZX
1
0⊗X2

0
E1∗E2

. This r.m. is the image, by S, of ZX
1
0⊗X2

0
E1⊗E2

the r.m. which
is the only r.m. de�ned on B ⊗B with values in σ2(H1,H2) which associates
Z1(A) ⊗ Z2(A) to A1 × A2, for all pairs (A1, A2) of elements of B. That is
why we will call ZX

1
0⊗X2

0
E1∗E2

a convolution product of r.m. Z1 and Z2 and we
will denote it by Z1 ∗ Z2.
We suppose now thatH1 (resp.H2) is L2(Ω,B1,P) (resp. L2(Ω,B2,P)), where
the sub σ-�elds B1 and B2 are P-independent. If U denotes the σ-�eld of Ω
generated by the family {B1 ∩ B2; (B1, B2) ∈ B1 × B2}, we can a�rm the
existence of an isometry I between σ2(L2(B1), L2(B2)) and L2(U) such that
I(x̄1⊗x2) = x1x2 for (x1, x2) in L2(B1)×L2(B2) (indeed < x̄⊗y, x̄′⊗y′ >=<
x, x′ >< y, y′ >=

∫
xx̄′dP

∫
yȳ′dP =

∫
xyx′y′dP =< xy, x′y′ > for all pairs

((x, y), (x′, y′)) of elements of L2(B1)× L2(B2)).
Endly we can verify that I ◦ (Z1 ∗ Z2) is a r.m. with values in L2(U) such
that
∫
ei·ndI ◦ (Z1 ∗ Z2) = I(

∫
ei·ndZ1 ∗ Z2) = I(X1

−n ⊗X2
n) = X̄1

−nX
2
n.

So, we may notice that I ◦ (Z1 ∗ Z2) is the r.m. associated to the stationary
series (X̄1

−nX
2
n)
n∈Z. A multivariate version of this last result allow us some

applications in frequency domain principal components analysis (cf. Boudou,
Dauxois, 1994; Boudou, Romain, 2005 ). Futhermore, other extensions may
be investigated as, for example, recent works for r.m. in Banach space (cf.
Benchikh et al., 2007)
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Chapter 14
Parameter Cascading for High
Dimensional Models

David Campbell, Jiguo Cao, Giles Hooker and James Ramsay

Abstract This talk de�nes a general framework for parameter estimation
that synthesizes a variety of common approaches and brings some impor-
tant new advantages. The parameter cascade involves de�ning nuisance pa-
rameters as functions of structural parameters, and in turn de�nes structural
parameters as functions of complexity parameters.

14.1 Introduction

High dimensional models often involve three classes of parameters. Nuisance
parameters c are required to �t the data, are large in number, their number
tends to depend on how much data is available, often de�ne localized e�ects
on the �t, and their values are seldom of direct interest. Structural parameters
θ are the conventional kind; a small �xed number and their values are of
interpretive importance. Above these are the complexity parameters γ that
de�ne the overall complexity of the solution.

This talk de�nes a general framework for parameter estimation that syn-
thesizes a variety of common approaches and brings some important new
advantages. The parameter cascade de�nes nuisance parameters as functions
c(θ, γ) of structural and complexity parameters, and in turn de�nes structural
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parameters as functions θ(γ) of complexity parameters. These functional re-
lationships are often de�ned by choosing three di�erent optimization criteria
corresponding to each level.

14.2 Inner optimization: nuisance parameters

It is common to de�ne the lowest level or inner criterion L(c|θ, γ) as a regu-
larized loss function with the penalty controlled by γ, as in

J(c|θ, γ) =
N∑

i

[yi − β′zi − c′φ(ti)]2

+e−γc′[
∫
‖d

2φ

dt2
− α0φ(t)− α1

dφ

dt
‖2dt]c

where x(t) = c′φ(t), zi is a p-vector of covariate values, and φ(t) is a vector
of K basis functions. There are three groups of parameters to estimate:
• The K coe�cients in c de�ning the basis function expansion of x(t).
• The p+ 2 model parameters α and β de�ning the data �tting model and

the roughness penalty, respectively. For simplicity, we use θ to collect these
two vectors together; θ = (α′, β′)′.

• The single smoothing parameter γ.
The regularization assures that c(θ, γ) is smooth in a speci�ed sense, and
e�ectively controls the degrees of freedom allocated to the nuisance parame-
ters. But c(θ, γ) may also be de�ned explicitly, or by an algorithm whose
result depends on θ and γ, as in kernel smoothing. This functional relation-
ship between nuisance and other parameters is a generalization of the familiar
pro�ling procedure often used in nonlinear regression, where the three opti-
mization criteria are the same.

14.3 Middle optimization: structural parameters

The middle level optimization is usually an unregularized measure of �t, such
as

H(θ|γ) =
N∑

i

[yi − β′zi − c(θ, γ)′φ(ti)]2,

and the fact that the status of c as a parameter as been eliminated by replac-
ing it by a function of the other two classes implicitly ensures regularization.
Of course we need the derivative of c(θ, γ), and this is, by the Implicit Func-
tion Theorem,
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dc

dθ
= −(

∂2F

∂θ2
)−1(

∂2F

∂θ∂c
).

14.4 Outer optimization: complexity parameters

Finally, the top level optimization is a measure of model complexity such as
the generalized cross-validation measure of predictive complexity

G(γ) ∼ ‖[I −A(γ)]y‖2
‖[I −A(γ)‖2 ,

where A(γ) is the smoothing operator, is e�ectively a Raleigh coe�cient
showing the size of the residual vector [I − A(γ)]y relative to the size of
the residual operator I − A(γ). The Implicit Function Theorem again gives
us dθ

dγ .
Estimation of con�dence intervals and other inferential methods can pro-

ceed at this point by classical methods such as the delta method. The appli-
cation will typically require further use of the Implicit Function Theorem to
compute the required derivatives.

14.5 Parameter cascading precedents

This general framework can be seen to include a number of speci�c parameter
estimation strategies in common use, such as the process of removing nuisance
parameters by marginalizing a likelihood. Since the marginal likelihood

L∗(θ|y) =
∫
L(θ, c|y)p(c)dc

is a linear operation, it is necessarily the optimum of a functional quadratic
optimization problem, and in fact minimizes

J(c|θ, y) =
∫

[L(θ, c|y)− L∗(θ|y)]2eln p(c)+Cdc

for any constant C. We see here a functional regression problem in which
function L(θ, c|y) is approximated by a marginal function L∗(θ|y) conditional
on speci�c values of structural parameter θ and data y. What is missing
in marginalization, however, is any counterpart of smoothing parameter γ
that permits a continuum of regularization. But it seems perfectly feasible to
remove this di�culty by appending a continuously controlled penalty to this
de�nition of J(c|θ, y).
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14.6 Parameter cascading advantages

The parameter cascade procedure brings important advantages to parameter
estimation in the presence of nuisance parameters.
• Gradients and hessians at any level can be analytically computed using

the Implicit Function Theorem.
• Interval estimation methods are readily at hand.
• Compared to marginalizing out the nuisance parameters employed in

Bayesian approaches using MCMC, generalized pro�ling is
� much faster,
� much more stable,
� much easier to program,
� permits an adaptive control of the contribution of c to the �t,
� requires no �tuning� by an MCMC expert, and
� can be deployed to the user community much more conveniently.
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Chapter 15
Advances in Human Protein
Interactome Inference

Enrico Capobianco and Elisabetta Marras

Abstract Important cellular functions information can be obtained from
decomposing Protein-Protein Interaction Networks (PPIN) into constituent
groups (complexes, functional modules). Starting from well-covered model
organisms (Yeast), our current e�orts are shifting to a complex target or-
ganism (Homo Sapiens). It is through statistical techniques and machine
learning algorithms that one can proceed with probabilistic steps: assigning
unlabelled proteins (classi�cation), inferring unknown functions (generaliza-
tion), weighting interactions (scoring).

15.1 Introduction

Complex networks are among the most multidisciplinary areas currently in-
vestigated by research communities active in statistical mechanics, graph the-
ory, statistics and probability, and involved in key application tasks in systems
biology (gene regulatory identi�cation and corresponding reverse engineering,
protein-protein and protein-DNA interactions and protein signaling regula-
tion), social studies (friends, web links, disease transmission, trade, opinion
etc.), information and communication technologies (telephone, internet, etc.).

We focus on PPIN, whose continuing data release from large hight-
throughput systems covering many organisms has generated a great oppor-
tunity for network applications, either directly to the experimental data or
to the many tailored DB sources.
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In empirical studies, the sample space usually pertains to the proteins
and their pairwise interactions. There are a �nite number of validated inter-
acting protein pairs (some experimentally observed, some computationally
predicted), but also a much bigger set of non-interacting protein pairs (from
which null models are built).

Other "omic" sources should be integrated to improve the accuracy of the
global interaction map, but adding further complexity to the built-in features,
i.e. high-dimensionality, multiresolution, noise, sparsity, etc.

A challenge is to shrink the interaction set to a calibrated putative inter-
actome based on gold standard reference sets and scores computed from the
likelihood of interactions.

A 'sparse representation' problem arises naturally in various di�erent bi-
ological frameworks, especially where genomics, proteomics, metabolomics
data sources refer to 'high throughput' technologies. With the term interac-
tome it is indicated the whole set of molecular interactions in cells, and we
are here interested in Protein-Protein Interaction Networks (PPIN).

A list of possible reasons inducing sparsity in PPIN includes:

• A small fraction of interacting pairs in the total set of potential protein
pairs (1 in 600 possible pairs actually interact);

• Many false positive interacting pairs (also false negatives though), as 80000
interactions have been predicted in yeast by various high throughput meth-
ods, but only a few (∼ 2400) are justi�ed;

• Many missing values in biological datasets, with coverage going from ∼ 4%
in Y2H (Yeast Two-Hybrid), to ∼ 90% for gene expression data, till 100%
for sequence related features;

• Descriptive protein pairs features that are orders of magnitude less than
the observed dimensionality, which suggests that the degrees of freedom
of the problem depend on a small number of variables.

Common dimensionality reduction methods like principal component and
factor analysis, and then variants such as independent component analysis
and their kernelized versions (also combined with greedy techniques) have
been employed with the aim to encapsulate information within a few salient
dimensions.

This passage yields an embedding which emphasizes the role of a lim-
ited number of relevant features selected to support the hypotheses in the
underlying biological system.

15.2 Methods

A probe (model organism, Yeast) is used to verify the power with which the
employed methods reveal the connectivities in the protein space. The highly
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connected regions are identi�ed as clusters, representing compartmentalized
structures also referred as subnetworks, subgraphs, subproteomes.

Such structures provide a natural representation of possible physical inter-
actions among groups of proteins. We expect these clusters to have a higher
density of points than their surrounding regions. How to measure these den-
sities depends on distance measures assigned to interacting proteins.

The connectivity degree and relevance of each cluster should then be vali-
dated (against complexes or functional modules, for instance). Clusters might
be marginally interconnected, which suggests that threshold distances should
be de�ned so to capture within- and between-clusters dependencies. This al-
lows to reconstruct with a certain con�dence the known network structures
(i.e. target proteomes).

However, clusters can only be considered as proxies for determining the
problems inherent to the identi�cation and reconstruction tasks. More re�ned
methodological solutions are currently considered. Assigning a probability
function to each pairwise distance value and parameterizing each cluster al-
low to establish a likelihood function in a model framework that can be
considered parametric or not, depending on the knowledge that we have of
the parameters.

In turn, a parametric, semiparametric or nonparametric likelihood can be
de�ned. If we consider a vector-valued parameter set consisting of features
that justify and de�ne the protein interactions, we might consider to special-
ize subsets of features in relation to each cluster, consider measurable and
latent features, and endow the parameter set of a nuisance part in relation
to unknown aspects of protein-protein relationships.

Inferring the global protein network structure in terms of dissected com-
ponents calls for local manifold learning algorithms, where (Gaussian and
non-Gaussian) mixture and/or latent variable models can perform quite ef-
�ciently, for instance. Then, through the approximation of their covariance
structure by principal modes or eigenvectors, the goal of approaching the
intrinsic manifold dimensionality can also be achieved.

15.3 Preliminary results

We have started to apply parametric mixture models, in particular Gaussian
ones, to the problem under study. The usual practice is to run the Expectation
Maximization (EM) algorithm as the optimization method that learns the
parameters.

From the standpoint of our application domain, mixtures are relevant be-
cause they approximate densities of high dimensional data that lie on or near
a low dimensional manifold. We expect that the relationships of protein-
protein interactions (our data) and the intrinsic coordinates of the manifold
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(complexes, functional modules, etc.) could be locally linear and smoothly
varying.

From a methodological standpoint, mixtures are interesting because they
lead to �exible parametric and also non-parametric statistical inference, but
in any case we can build through them a fully probabilistic model, valid also
away from the training set, i.e, able to classify (proteins to groups), generalize
(infer functions), predict (assign scores to proteins- clusters associations).

Mixtures of Gaussians are one of the possible choices we are currently
considering. Extensions are under study, not only towards other paramet-
ric distributions but also for incorporating extra covariate information (thus
leading to multiomic source integration), for examining multiresolution dy-
namics (by looking at possible time scale-dependent protein interaction ef-
fects), and for allowing �exibility in model selection as from the number of
e�ectively needed components (sparsity versus redundancy aspects).

The EM algorithm is well-known to proceed by alternating till conver-
gence an E-step and an M-step. The former step is employed to calculate
an objective function Q (expectation of a complete data log-likelihood over
the joint distribution of the unobservable data given the observed data) by
using the current parameter estimates Ψ . The latter step is used to update
the parameter estimates to Ψ ′ based on the optimization of the Ψ -dependent
objective function Q.
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Fig. 15.1 Extracted groups

Fig. 15.2 Embedded variability.
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Fig. 15.3 Identi�ed map.

The PPIN yeast data set (Bader, 2003) consists of 3632 nodes and 22500
interactions.
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Chapter 16
Functional Principal Components
Analysis with Survey Data

Hervé Cardot, Mohamed Chaouch, Camelia Goga and Catherine Labruère

Abstract This work aims at performing Functional Principal Components
Analysis (FPCA) thanks to Horvitz-Thompson estimators when the curves
are collected with survey sampling techniques. Linearization approaches
based on the in�uence function allow us to derive estimators of the asymptotic
variance of the eigenelements of the FPCA. The method is illustrated with
simulations which con�rm the good properties of the linearization technique.

16.1 Introduction

Functional Data Analysis whose main purpose is to provide tools for describ-
ing and modeling sets of curves is a topic of growing interest in the statistical
community. The books by Ramsay and Silverman (2002, 2005) propose an
interesting description of the available procedures dealing with functional
observations. These functional approaches have been proved useful in vari-
ous domains such as chemometrics, economy, climatology, biology or remote
sensing.
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The statistician generally wants, in a �rst step, to represent as well as
possible a set of random curves in a small space in order to get a description
of the functional data that allows interpretation. Functional principal com-
ponents analysis (FPCA) gives a small dimension space which captures the
main modes of variability of the data (see Ramsay and Silverman, 2002 for
more details).

The way the data are collected is seldom taken into account in the lit-
erature and one generally supposes the data are independent realizations of
a common functional distribution. However there are some cases for which
this assumption is not ful�lled, for example when the realizations result from
a sampling scheme. For instance, Dessertaine (2006) considers the estima-
tion with time series procedures of a global demand for electricity at �ne
time scales with the observation of individual electricity consumption curves.
More generally, there are now data (data streams) produced automatically
by large numbers of distributed sensors which generate huge amounts of data
that can be seen as functional. The use of sampling technique to collect them
proposed for instance in Chiky and Hébrail (2007) seems to be a relevant
approach in such a framework allowing a trade o� between storage capacities
and accuracy of the data.

We propose in this work to give estimators of the functional principal com-
ponents analysis when the curves are collected with survey sampling strate-
gies. Let us note that Skinner et al. (1986) have studied some properties of
multivariate PCA in a survey framework. The functional framework is dif-
ferent since the eigenfunctions which exibit the main modes of variability
of the data are also functions and can be naturally interpreted as modes of
variability varying along time. In this new functional framework, we estimate
the mean function and the covariance operator using the Horvitz-Thompson
estimator. The eigenelements are estimated by diagonalization of the esti-
mated covariance operator. In order to calculate and estimate the variance
of the so-constructed estimators, we use the in�uence function linearization
method introduced by Deville (1999).

This paper is organized as follows : Section 2 presents the functional prin-
cipal components analysis in the setting of �nite populations and de�nes
then the Horvitz-Thompson estimator in the new functional framework. The
generality of the in�uence function allows us to extend in section 3 the esti-
mators proposed by Deville to our functional objects and to get asymptotic
variances with the help of perturbation theory (Kato, 1966). Section 4 pro-
poses a simulation study which shows the good behavior of our estimators for
various sampling schemes as well as good approximations to their theoretical
variances.
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16.2 FPCA and sampling

16.2.1 FPCA in a �nite population setting

Let us consider a �nite population U = {1, . . . , k, . . . , N} with size N not
necessarily known

and a functional variable Y de�ned for each element k of the population U :
Yk = (Yk(t))t∈[0,1] belongs to the separable Hilbert space L2[0, 1] of square
integrable functions de�ned on the closed interval [0, 1] equipped with the
usual inner product 〈., .〉 and the norm ‖.‖. The mean function µ ∈ L2[0, 1],
is de�ned by

µ(t) =
1
N

∑

k∈U
Yk(t), t ∈ [0, 1] (16.1)

and the covariance operator Γ by

Γ =
1
N

∑

k∈U
(Yk − µ)⊗ (Yk − µ) (16.2)

where the tensor product of two elements a and b of L2[0, 1] is the rank
one operator such that a ⊗ b(u) = 〈a, u〉b for all u in L2[0, 1]. The operator
Γ is symmetric and non negative (〈Γu, u〉 ≥ 0). Its eigenvalues, sorted in
decreasing order, λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0, satisfy

Γvj(t) = λj vj(t), t ∈ [0, 1], (16.3)

where the eigenfunctions vj form an orthonormal system in L2[0, 1], i.e
〈vj , vj′〉 = 1 if j = j′ and zero else.

We can get now an expansion similar to the Karhunen-Loeve expansion
or FPCA which allows to get the best approximation in a �nite dimension
space with dimension q to the curves of the population

Yk(t) ≈ µ(t) +
q∑

j=1

〈Yk − µ, vj〉vj(t), t ∈ [0, 1]

The eigenfunctions vj indicate the main modes of variation along time t
of the data around the mean µ and the explained variance of the projection
onto each vj is given by the eigenvalue

λj =
1
N

∑

k∈U
〈Yk − µ, vj〉2 .
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We aim at estimating the mean function µ and the covariance operator Γ
in order to deduce estimators of the eigenelements (λj , vj) when the data are
obtained with survey sampling procedures.

16.2.2 The Horvitz-Thompson estimator

We consider a sample of n individuals s, i.e. a subset s ⊂ U, selected according
to a probabilistic procedure p(s) where p is a probability distribution on the
set of 2N subsets of U. We denote by πk = Pr(k ∈ s) for all k ∈ U the �rst
order inclusion probabilities and by πkl = Pr(k & l ∈ s) for all k, l ∈ U with
πkk = πk, the second order inclusion probabilities. We suppose that πk > 0
and πkl > 0. We suppose also that πk and πkl are not depending on t ∈ [0, 1].
We propose to estimate the mean function µ and the covariance operator
Γ by replacing each total with the corresponding Horvitz-Thompson (HT)
estimator (Horvitz and Thompson, 1952). We obtain

µ̂ =
1

N̂

∑

k∈s

Yk
πk

(16.4)

Γ̂ =
1

N̂

∑

k∈s

Yk ⊗ Yk
πk

− µ̂⊗ µ̂ (16.5)

where the size N of the population is estimated by N̂ =
∑
k∈s

1
πk

when it
is not known. Then estimators of the eigenfunctions {v̂j , j = 1, . . . q} and
eigenvalues {λ̂j , j = 1, . . . q} are obtained readily by diagonalisation (or spec-
tral analysis) of the estimated covariance operator Γ̂ . Let us note that the
eigenelements of the covariance operator are not linear functions.

16.3 Linearization by in�uence function

We would like to calculate and estimate the variance of µ̂, v̂j and λ̂j . The
nonlinearity of these estimators and the functional nature of Y make the
variance estimation issue di�cult. For this reason, we adapt the in�uence
function linearization technique introduced by Deville (1999) to the functional
framework.

Let us consider the discrete measure M de�ned on L2[0, 1] as follows
M =

∑
U δYk

where δYk is the Dirac function taking value 1 if Y = Yk and zero otherwise.
Let us suppose that each parameter of interest can be written as a functional
T of M . For example, N(M) =

∫
dM , µ(M) =

∫ YdM/
∫
dM and
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Γ (M) =
∫

(Y − µ(M))⊗(Y − µ(M)) dM/
∫
dM. The eigenelements given by

(16.3) are implicit functionals T of M .
The measure M is estimated by the random measure M̂ de�ned as follows
M̂ =

∑
U

δYk
πk

Ik with Ik = 1{k∈s}. Then the estimators given by (16.4) and
(16.5) are obtained by substitution of M by M̂ , namely they are written as
functionnals T of M̂ .

16.3.1 Asymptotic properties

We give in this section the asymptotic properties of our estimators. In order
to do that, one need that the population and sample sizes tend to in�nity.
We use the asymptotic framework introduced by Isaki & Fuller (1982). Let
us suppose the following assumptions :
(A1) sup

k∈U
‖Yk‖ ≤ C <∞,

(A2) lim
N→∞

n

N
= π ∈ (0, 1),

(A3) min
k∈UN

πk ≥ λ > 0 , min
k 6=l

πkl ≥ λ∗ > 0 and

limN→∞nmax
k 6=l
|πkl − πkπl| <∞,

with λ and λ∗ are two positive constant. We also suppose that the functional
T giving the parameter of interest is an homogeneous functional of degree
α, namely T (rM) = rαT (M) and limN→∞N−αT (M) <∞. For example, µ
and Γ are functionals of degree zero with respect to M . Let us note that the
eigenelements of Γ are also functionals of degree zero with respect to M.

Let us also introduce the Hilbert-Schmidt norm, denoted by ‖·‖2 for op-
erators mapping L2[0, 1] to L2[0, 1].

We show in the next proposition that the our estimators are asymptotically
design unbiased, limN→∞

(
Ep(T (M̂))− T (M)

)
= 0, and consistent, namely

for any �xed ε > 0 we have limN→∞ P (|T (M̂)−T (M)| > ε) = 0. Here, Ep(·)
is the expectation with respect to p(s).
Proposition 16.1. Under hypotheses (A1), (A2) and (A3),

Ep ‖µ− µ̂‖2 = O(n−1), Ep

∥∥∥Γ − Γ̂
∥∥∥

2

2
= O(n−1).

If we suppose that the non null eigenvalues are distinct, we also have,

Ep

(
sup
j

∣∣∣λj − λ̂j
∣∣∣
)2

= O(n−1), Ep ‖vj − v̂j‖2 = O(n−1) for each �xed j.
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16.3.2 Variance approximation and estimation

Let de�ne, when it exists, the in�uence function of a functional T at point
Y ∈ L2[0, 1] say IT (M,Y), as follows

IT (M,Y) = lim
h→0

T (M + hδY)− T (M)
h

where δY is the Dirac function at Y.
Proposition 16.2. Under assumption (A1), we get that the in�uence func-
tions of µ and Γ exist and Iµ(M,Yk) = (Yk − µ)/N and IΓ (M,Yk) =
1
N ((Yk − µ)⊗ (Yk − µ)− Γ ) . If the non null eigenvalues of Γ are distinct
then

Iλj(M,Yk) =
1
N

(〈Yk − µ, vj〉2 − λj
)

Ivj(M,Yk) =
1
N


∑

` 6=j

〈Yk − µ, vj〉〈Yk − µ, v`〉
λj − λ` v`


 .

In order to obtain the asymptotic variance of T (M̂) for T given by (16.1),
(16.2) and (16.3), we write the �rst-order von Mises expansion of our func-
tional in M̂/N �near� M/N and use the fact that T is of degree 0 and
IT (M/N, Yk) = N · IT (M,Yk),

T (M̂) = T (M) +
∑

k∈U
IT (M,Yk)

(
Ik
πk
− 1
)

+RT

(
M̂

N
,
M

N

)
.

Proposition 16.3. Suppose the hypotheses (A1), (A2) and (A3) are ful�lled.
Consider the functional T giving the parameters of interest de�ned in (16.1),
(16.2), (16.3). We suppose that the non null eigenvalues are distinct. Then
RT

(cM
N ,

M
N

)
= op(n−1/2) and the asymptotic variance of T (M̂) is equal to

Vp[
∑
k∈s IT (M,Yk) Ik

πk
] =

∑
U

∑
U (πkl − πkπl) IT (M,Yk)

πk

IT (M,Yl)
πl

.

One can remark that the asymptotic variance given by the above result
is not known. We propose to estimate it by the HT variance estimator with
IT (M,Yk) replaced by its HT estimator. We obtain
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V̂p(µ̂) =
1

N̂2

∑

k∈s

∑

`∈s

1
πk`

∆k`

πkπ`
(Yk − µ̂)⊗ (Y` − µ̂)

V̂p

(
λ̂j

)
=

1
N̂2

∑

k∈s

∑

`∈s

1
πk`

∆k`

πkπ`

(
〈Yk − µ̂, v̂j〉2 − λ̂j

)(
〈Y` − µ̂, v̂j〉2 − λ̂j

)

V̂p (v̂j) =
∑

k∈s

∑

`∈s

1
πk`

∆k`

πkπ`
Îvj(M,Ys)⊗ Îvj(M,Y`)

where ∆k` = πkl − πkπl and Îvj(M,Y`) = 1
N̂

(∑
`6=j

〈Yk−bµ,bvj〉〈Yk−bµ,bv`〉bλj−bλ` v̂`

)
.

Cardot et al. (2007) show that under the assumptions (A1)-(A3), these esti-
mators are asymptotically design unbiased and consistent.

16.4 A Simulation study

In our simulations all functional variables are discretized in p = 100 equi-
spaced points in the interval [0, 1]. We consider a random variable Y distrib-
uted as brownian motion on [0, 1]. We make N = 10000 replications of Y
and construct then two strata U1 and U2 with di�erent variances and with
sizes N1 = 7000 and N2 = 3000. Our population U is the union of the two
strata. Then we estimate the eigenelements of the covariance operator for
two di�erent sampling designs (Simple Random Sampling Without Replace-
ment (SRSWR) and strati�ed) and two di�erent sample sizes n = 100 and
n = 1000. To evaluate our estimation procedures we make 500 replications of
the previous experiment. Then estimation errors for the �rst eigenvalue and
the �rst eigenvector are evaluated by considering the following loss criterions
λ1−λ̂1
λ1

and ||v1−v̂1||
v1

, with ||.|| is the Euclidiean norm. Linear approximation
by in�uence function gives reasonable estimation of the variance for small size
samples and accurates estimations as far as n gets large enough (n = 1000).
We also note that the variance of the estimators given by strati�ed sampling
turns out to be smaller than those by SRSWR.
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Chapter 17
Functional Clustering of Longitudinal
Data

Jeng-Min Chiou and Pai-Ling Li

Abstract This study considers two clustering criteria to achieve di�erent
goals of grouping similar curves. These criteria are based on the minimal
L2 distance and the maximal functional correlation de�ned in this study,
respectively. Each cluster centers on a subspace spanned by the cluster mean
and covariance eigenfunctions of the underlying random functions. Clusters
can thus be identi�ed by the subspace projection of curves.

17.1 Introduction

This study discusses functional data clustering. Individual observations are
viewed as realizations of random functions, and random functions are as-
sumed to follow a stochastic process possibly coupled with random scale
e�ects. The stochastic process comprises a mixture of cluster sub-processes.
The proposed functional clustering method, k-centers projected functional
clustering (FC), accounts for both the means and modes of variation di�er-
entials between clusters by predicting cluster membership with a reclassi�ca-
tion step. This step comprises nonparametric mean and covariance updating
schemes to estimate cluster structures. These functional structures help pre-
dict cluster membership of each curve based on the varied nonparametric ran-
dom e�ect models of the truncated Karhunen-Loève expansion. This study
discusses two clustering criteria to achieve two di�erent goals of clustering
for curve similarity. These two criteria are based on the minimal L2 distance
and the maximal functional correlation de�ned in this study. The former
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considers curve similarity through the L2 distance, and the latter mainly is
concerned with shape similarity, regardless of shifted means and scales. The
following section brie�y describes clustering procedures for both criteria.

17.2 The methods

Suppose that n random functions or curves, Y1, . . . , Yn, are independently
sampled from a mixture of stochastic processes Y in L2(T ).

The Y mixture process includes K sub-processes, and each sub-process
corresponds to a cluster. The random cluster variable C for each individual
cluster membership is randomly distributed among the clusters {1, . . . ,K}.
Here, L2(T ) is a Hilbert space of square integrable functions on a real interval
T = [0, T ]. The inner product of two functions yi and yj in L2(T ) de�ned
by the integral operator 〈yi, yj〉 =

∫
yi(t)yj(t)ν(t)dt, and the norm ‖yi‖ =

|〈yi, yi〉|1/2. This study sets the weight function ν(t) as a uniform kernel on
a compact support T .
The L2 clustering criterion

The mean µ(c) and the covariance Γ (c) of the sub-process associated
with cluster c are de�ned via conditioning such that E(Y (t) | C = c) =
µ(c)(t), Cov(Y (s), Y (t) | C = c) = Γ (c)(s, t), for c ∈ {1, . . . ,K}. Each
of these sub-processes is assumed to possess a Karhunen-Loève expansion,
with the corresponding eigenvalue-eigenfunction pairs (λ(c)

j , φ
(c)
j ), such that

〈Γ (c)(·, t), φ(c)
j 〉 = λ

(c)
j φ

(c)
j (t), t ∈ T . These eigenfunctions are orthonormal

satisfying 〈φ(c)
j , φ

(c)
k 〉 = 1 for j = k and 0 otherwise.

The eigenvalues λ(c)
j are in non-increasing order, λ(c)

1 ≥ λ
(c)
2 ≥ . . ., with

the property that
∑∞
j=1 λ

(c)
j <∞ for a L2 stochastic process.

Consider the nonparametric random e�ect model Y (c) of Y , given the
structure components with the mean µ(c) and the covariance eigenfunctions
φ

(c)
j for cluster c, such that
Y (c)(t) = µ(c)(t) +

∑∞
j=1 ξ

(c)
j (Y )φ(c)

j (t),
where
ξ

(c)
j (Y ) = 〈Y − µ(c), φ

(c)
j 〉.

Although the expansion Y (c) is in�nite dimensional, it is common in prac-
tical applications that a value Mc exists for a given functional data set such
that the �rst leading Mc eigenfunctions can e�ectively span the process.

The value Mc must be chosen from the data and is always �nite.
Choosing Mc leads to the truncated model,

Ỹ (c)(t) = µ(c)(t) +
Mc∑

j=1

ξ
(c)
j (Y )φ(c)

j (t). (17.1)
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If the cluster membership of Y actually belongs to cluster c, given an ob-
served curve Y , then Ỹ (c) is the truncated Karhunen-Loève expansion of Y .
Otherwise, discrepancies exist between Ỹ (c) and Y . According to this basic
principle, the expression Ỹ (c) serves as the basic model for predicting cluster
memberships.

The L2 distance between the curves serves as a reasonable distance mea-
sure in functional clustering among others. Given an observed curve Y = y

and the cluster structure components µ(c) and φ(c)
j , the cluster membership

is determined by the following criterion,

c∗1(y) = arg min
c∈{1,...,K}

‖y − ỹ(c)‖2, (17.2)

where ỹ(c) is the truncated Karhunen-Loève expansion obtained by (17.1).
The clustering criterion (17.2) is used to reclassify the curves, given the (ini-
tial) clustering results. For the initial clustering, the classical multivariate k-
means method clusters the marginal functional principal component scores,
ignoring cluster membership attributes. Other multivariate clustering meth-
ods, such as hierarchical clustering methods and model-based approaches,
can also perform initial clustering.

Criterion (17.2) suggests that each individual is associated with a cluster
that centers on the corresponding mean and eigenfunctions via projection.
This criterion is similar to k-means clustering, where the cluster centers are
the multivariate sample means. In contrast, cluster centers in k-centers pro-
jected FC are stochastic structures consisting of cluster means and covariance
eigenfunctions. These cluster centers are used to obtain the projection of a
curve onto the functional principal component subspaces of individual clus-
ters. This idea coincides with Bock (1987) as a functional version of a k-means
type algorithm. For more details on this functional clustering method, please
refer to Chiou and Li (2007).
The correlation criterion

The underlying shape patterns are often interesting for random functions
accompanied with random scales. To cluster curves with shape similarities,
consider the random function Yθ(t) = θY (t), where θ is a random scale e�ect.
Let Yθ(c) denote the random function of Yθ in cluster c, Yθ(c)(t) = θ(c)Y (c)(t),
such that the stochastic representation uses the structure components of clus-
ter c with the random scale θ(c), where Eθ(c) = 1 and var(θ(c)) = σ2

θ(c). As-
sume that each sub-processes corresponds to a cluster structure comprising
the underlying mean function µ(c) and the orthonormal basis {ϕ(c)

0 , ϕ
(c)
1 , . . .}

of the stochastic expansion, setting ϕ
(c)
0 = 1, for cluster c = 1, . . . ,K.

Write µ(c)(t) = η
(c)
0 + η(c)(t) where η(c)

0 = 〈µ(c), 1〉. These functions satisfy
〈η(c), 1〉 = 0, 〈ϕ(c)

r , ϕ
(c)
s 〉 = 1 for r = s and 0 otherwise.
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Further, let Y X(c)(t) = Yθ(c)(t)−〈Yθ(c), 1〉. This centering yields the random
e�ects model, Y X(c)(t) = θ(c) η(c)(t) +

∑∞
r=1 ε

(c)
r ϕ

(c)
r (t), where

ε
(c)
r = 〈Y X(c) − θ(c) η(c), ϕ

(c)
r 〉. A truncated version is

Ỹ X(c)(t) = θ(c) η(c)(t) +
Mc∑
r=1

ε(c)
r ϕ(c)

r (t), (17.3)

where Mc is a properly chosen constant. Here, assume that the mean shape
function η(c) does not belong to the space spanned by the Mc leading eigen-
functions for identi�ability of θ(c). Further, rescale Y X(c) and Ỹ X(c) such that
Y Z(c)(t) = Y X(c)(t)/‖Y X(c)‖ and Ỹ Z(c)(t) = Ỹ X(c)(t)/‖Ỹ X(c)‖. To de�ne functional cor-
relation, apply the classical geometrical concept of an angle to the functional
data setting (See p. 388 of Ramsay and Silverman, 2005). A functional cor-
relation between two observed random functions yi and yj is thus de�ned
as ρ(yi, yj) = 〈yi/‖yi‖, yj/‖yj‖〉. This functional correlation corresponds to
the cosine function of an angle ϑ such that cos(ϑ) = ρ(yi, yj), and thus
−1 ≤ ρ ≤ 1. The larger the absolute value of ρ, the stronger the positive or
negative association between the functions. This functional correlation serves
as a similarity measure for the functional clustering of shape similarities.

In an attempt to group curves with similar shapes, the �xed and random
intercepts and the random scales are treated as a nuisance. Only the cluster
shape functions or structure components {η(c), ϕ

(c)
1 , ϕ

(c)
2 , . . .} are important in

constructing the underlying shape. Curves with similar shapes are embedded
in the cluster subspace spanned by the cluster structure components. Let
y be a realization of the random function Yθ and yZ = yX /‖yX ‖. Further,
let y(c) denote the function of y expanded by the structure components of
cluster c, and let ỹZ(c) = ỹX(c)/‖ỹX(c)‖, where ỹX(c) is de�ned as in (17.3). The
best cluster membership of the function y is determined by maximizing the
functional correlation between yZ and ỹZ(c) such that

c∗2(y) = arg max
c∈{1,...,K}

ρ(y, ỹ(c)) = arg max
c∈{1,...,K}

〈yZ , ỹZ(c)〉. (17.4)

Note that maximizing the functional correlation 〈yZ , ỹZ(c)〉 is equivalent to
minimizing the L2-distance ‖yZ − ỹZ(c)‖2, observing that ‖yZ − ỹZ(c)‖2 = 2−
2〈yZ , ỹZ(c)〉. Thus the functional clustering criterion (17.4) can also be written
as

c∗2(y) = arg min c ∈ {1, . . . ,K}‖yZ − ỹZ(c)‖2. (17.5)

The criterion in (17.5) is thus similar to the L2 criterion (17.2). However,
criterion (17.5) requires the additional standardization procedure to account
for shape similarities, regardless of shifted means and scales.

In (17.3), estimating the random scale e�ects requires additional steps,
which complicates the functional clustering procedure.
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17.3 Discussion

The k-centers projected FC approach uses data-adaptive eigenbases for the
random process expansion. These basis functions are determined through
covariance functions. This approach has the advantage that the �rst few
eigen-components chosen by functional principal component analysis maxi-
mize the percentage of total variation explained. In contrast to the proposed
k-centers projected FC method, recent approaches based on clustering basis
coe�cients must choose the same basis functions for all clusters to use the
�tted coe�cients as proxies to be clustered. This may create some di�culties
since proper basis functions must be chosen so that the �tted coe�cients
adequately re�ect cluster di�erences. Tarpey and Kinateder (2003) raised
this issue, and García-Escudero and Gordaliza (2005) discussed the relative
merits of using di�erent basis functions. In addition, most coe�cient-based
methods are designed for clustering according to mean functions. Unlike the
k-centers projected FC approach, these methods do not consider di�erentia-
tion in cluster covariance structures. In addition, the k-centers projected FC
approach does not rely on any distributional assumptions, compared to most
model-based clustering approaches, which require Gaussian model assump-
tions. As a by-product, using the k-centers projected FC method reveals the
mean and covariance structures. This facilitates functional cluster analysis
by providing a visual insight into clusters.
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Chapter 18
Robust Nonparametric Estimation for
Functional Data

Christophe Crambes, Laurent Delsol and Ali Laksaci

Abstract It is well known that robust estimation provides an alternative
approach to classical methods which is not unduly a�ected by the presence
of outliers. Recently, these robust estimators have been considered for mod-
els with functional data. In this talk, we focus on asymptotic properties of a
conditional nonparametric estimation of a real valued variable with a func-
tional covariate. We present results dealing with convergence in probability,
asymptotic normality and Lq errors.

18.1 Introduction

A common problem in statistics consists in trying to explain how a variable
of interest Y is linked with a covariate X. This talk deals with this frame-
work, where we assume that the variable to explain Y is real valued and the
explanatory variable X takes values in a semi-metric functional space (F , d).
This kind of variables, well-known as f unctional variables in literature allows
to consider variables as functions (of time for instance), which is interest-
ing since it is well adapted to the functional nature of the observations (see
Ramsay and Silverman, 2002-2005). In this context, the most general model
is the regression model when the covariate is functional, which writes
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Y = r(X) + ε,

where r is an operator from F to R and ε is a random error variable. This
model has already been studied from a nonparametric point of view (that is
to say only with regularity assumptions on r). The book of Ferraty and Vieu
(2006) gives an overview of the main results obtained for a kernel nonpara-
metric estimator of r. However, this estimation of r seen as the conditional
mean of Y given X = x may be unadapted to some situations. For instance,
the presence of outliers or considering heteroskedastic variables can lead to
irrelevent results. Robust regression has been introduced to solve these prob-
lems. Since the �rst important results obtained in the sixties (see Huber
(1964)), an important literature have been devoted to this domain (see for
instance, Robinson, 1984, Collomb and Härdle, 1986, Boente and Fraiman,
1990, and Laïb and Ould-Saïd, 2000 for recent references). Concerning data
of in�nite dimension, the literature is relatively restricted (see Cadre, 2001,
Cardot et. al., 2004). Recently, Azzedine et. al. (2006) studied the almost
complete convergence of robust estimators based on a kernel method. In the
same context, Attouch et. al. (2007) studied the asymptotic normality of
these estimators.

In this work, we propose to study robust estimators. We �rst recall the
convergence in probability as well as an asymptotic normality result obtained
in (1). Then, we give the asymptotic expressions of the dominant terms in
Lp errors, extending the work of Delsol (2007). We �nally apply robust esti-
mation methods to problems of nonparametric statistics as for instance the
prediction of time series.

18.2 Model

Let (X,Y ) be a couple of random variables taking values in F × R, where
F is a semi-metric space, which semi-metric is denoted by d. For x ∈ F , we
consider a real measurable function ψx. The functional parameter studied in
this work, denoted by θx, is the solution (with respect to t), assumed to be
unique, of the following equation

Ψ(x, t) := E [ψx (Y, t) |X = x] = 0. (18.1)
In general, the function ψx is �xed by the statistician according to the sit-

uation he is confronted to. Some classic examples of ψx lead to the estimation
of the conditional mean or conditional quantiles (see Ferraty and Vieu, 2006,
Attouch et. al., 2007). Now, given a sample (Xi, Yi)i=1,...,n with the same law
as (X,Y ), a kernel estimator of Ψ(x, t) is given by

Ψ̂(x, t) =
∑n
i=1K

(
h−1d(x,Xi)

)
ψx (Yi, t)∑n

i=1K (h−1d(x,Xi))
, ∀t ∈ R, (18.2)



18 Robust Nonparametric Estimation for Functional Data 111

where K is a kernel and h = hn is a sequence of positive real numbers. Then,
a natural estimator of θx is θ̂n = θ̂n(x) given by

Ψ̂(x, θ̂n) = 0. (18.3)

We can notice that, when ψx (Y, t) = Y − t, then θ̂n is the estimator given
in Ferraty and Vieu (2002) for the functional nonparametric regression. Let
us also remark that, under the condition that

∑n
i=1K

(
h−1d(x,Xi)

)
is not

equal to zero, the de�nition of the estimator by (18.3) is equivalent to

ρ̂n(x, θ̂n) :=
n∑

i=1

K
(
h−1d(x,Xi)

)
ψx

(
Yi, θ̂n

)
= 0. (18.4)

18.3 Asymptotic results

18.3.1 Convergence in probability and asymptotic
normality

In this section we recall some results given in Attouch et. al.(2007) for inde-
pendent and identically distributed couples (Xi, Yi)i=1,...,n. Under some tech-
nical conditions but rather classic in this nonparametric context, Attouch et.
al.(2007) obtain

θ̂n − θx P−−−−−→
n→+∞

0.

and
(
nF (hn)
Vn(x)

)1/2 (
θ̂n − θx −Bn(x)

) L−−−−−→
n→+∞

N (0, 1) ,

with explicit expressions for Vn(x) and Bn(x).

18.3.2 A uniform integrability result

We give a result of uniform integrability which is useful to get the convergence
of the moments for θ̂n. Let t ∈ R be �xed. We give the result for independent
and identically distributed couples (Xi, Yi). We also can show, with stronger
hypotheses, the same kind of result for arithmetically α-mixing couples. We
set
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F (h) = P (d(X,x) ≤ h) ,

known as the small balls probabilities, and we consider the following hypothe-
ses.

(H.1) There exist p > 2 and C > 0, such that, for X in an open neigh-
bourhood of x, we have almost surely

E [|ψx(Y, t)|p |X] ≤ C.
(H.2) We assume that lim

n→+∞
nF (hn) = +∞.

(H.3) K is supported on the compact [0, 1], is bounded, and K(1) > 0.

Under the hypotheses (H.1)− (H.3), for 0 ≤ q < p, the quantity
∣∣∣
√
nF (hn) (Ψn(x, t)− E [Ψn(x, t)])

∣∣∣
q

,

is uniformly integrable, where Ψn(x, t) =
1

nF (hn)
ρ̂n(x, t).

18.3.3 Moments convergence

We give the result for independent and identically distributed couples
(Xi, Yi)i=1,...,n. We also can show, with stronger hypotheses, the same kind
of result for arithmetically α-mixing couples. We assume that ψx is C1 with
respect to its second argument on a neighbor of θx. We note ζn the random
variable (taking values between θx and θ̂n) such that θ̂n − θx = − Ψn(x,θx)

∂Ψn
∂t (x,ζn)

and we de�ne Bn := − E[Ψn(x,θx)]

E[ ∂Ψn∂t (x,ζn)] . We assume that

Zn :=

√
nF (hn)
Vn(x)

(
θ̂n − θx −Bn(x)

) L−−−−−→
n→+∞

W, (18.5)

where W is a standard gaussian variable, and we have explicit expressions of
Bn(x) and Vn(x). We suppose that assumptions (H.1) − (H.3) are satis�ed
(with t = θx), as well as some other technical conditions given below.

(H.4) t 7→ sup
y

(
∂ψx
∂t

(y, t)− ∂ψx
∂t

(y, θx)
)
is continuous in a neighborhood

of θx.
(H.5) There exists a constant N such that, almost surely in a neighbor-

hood of x
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E

[(
∂ψx
∂t

(Yi, ζn)− ∂ψx
∂t

(Yi, θx)
)2

| Xi

]
≤ N.

(H.6) There exist some constants γ and δ such that

E
[
∂ψx
∂t

(Y, θx) | X
]

11{d(X,x)≤δ} ≥ γ11{d(X,x)≤δ}.

(H.7) Bn(x) satis�es
√
nF (hn)Bn = O (1).

(H.8) There exist p′ > 2 and a constant 0 < C ′ < +∞ such that, for X
in an open neighborhood of x, we have almost surely

E

[∣∣∣∣
∂ψx
∂t

(Y, ζn)
∣∣∣∣
p′

|X
]
≤ C ′.

(H.9) There exist r and a constant 0 < M0 < +∞ such that
E
[∣∣∣θ̂n − θx

∣∣∣
r]
≤M0.

Then, we have, for all q < q′ (we have an explicit de�nition of q′, not given
here)

E
[∣∣∣θ̂n − θx

∣∣∣
q]

= E



∣∣∣∣∣Bn(x) +

√
Vn(x)
nF (hn)

W

∣∣∣∣∣

q

+ o

(
1√

nF (hn)
q

)
.

More explicit asymptotic expressions of Lq errors can be obtained from the
explicit expressions of Bn(x) and Vn(x) given in Attouch et. al.(2007) with
the same approach as in Delsol (2007). These expressions may be usefull to
choose the optimal bandwidth and give the �rst general Lq convergence rates
results for robust estimators in models with functional data.

18.4 Application to time series prediction

In this example, we are interested in the application of robust statistics as a
prediction tool. We use here a time series data similar to the one studied by
Ferraty and Vieu (2006). It concerns the U.S. monthly petroleum consump-
tion for electricity generation1. The objective of this study is to predict the
total consumption one year given the curve the preceding year. The data are
represented on �gure 1.
In order to avoid the heteroskedasticity problem's, Ferraty and Vieu (2006)
used transformed data with a logarithmic di�erence. However, we choose
to study the prediction problem with the initial data, and we consider the
1 data available at www.economagic.com
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objective function ψx(·, ·) = ψ
(
·−·
S(x)

)
where S(x) = Median|Y − medx| is

a robust measure of conditional scale, medx is the conditional median of Y
knowing X = x and ψ(t) = t√

1+t2/2
. The choice of the smoothing parameter

has an important in�uence, mainly in the balance between the bias and the
variance of the estimator. Hence, we choose the parameter locally with the
L1 cross validation on the number of nearest neighbors. The kernel is chosen
to be quadratic. Another important parameter to �x is the semimetric d. For
this example, we consider an entire family of semimetrics computed with the
functional principal components analysis (see Besse et al., 1997) with several
dimensions q and choose by cross-validation the one that is the most �tted
to data. We have plotted on �gure 2 the result of the prediction during one
year.

Fig. 18.1 Curves of energetic consumption.
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Fig. 18.2 Prediction of the energetic consumption during one year (real values: continuous
line, predicted values: dashed line).
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Chapter 19
Estimation of the Functional Linear
Regression with Smoothing Splines

Christophe Crambes, Alois Kneip and Pascal Sarda

Abstract We consider functional linear regression where a real variable Y
depends on a functional variable X. The functional coe�cient of the model is
estimated by means of smoothing splines. We derive the rates of convergence
with respect to the semi-norm induced by the covariance operator of X,
which comes to evaluate the error of prediction. These rates, which essentially
depend on the smoothness of the function parameter and on the structure
of the predictor, are shown to be optimal over a large class of functions
parameters and distributions of the predictor.

19.1 Introduction

In many �elds of applications (climatology, teledetection, linguistics, . . . ),
data come from the observation of continuous phenomenons of time or space.
These data, known as functional data in the literature, are currently the sub-
ject of many works. For an overview of technics for the analysis of functional
data, we can notably refer to the monographs Ramsay and Silverman (2002),
Ramsay and Silverman (2005) and Ferraty and Vieu (2006).

We are interested here in the so-called functional linear model, where we
want to explain the e�ects of a variableX on another variable Y . The variable
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math.univ-montp2.fr

Alois Kneip
Universität Bonn, Adenauerallee 24-26, 53113 Bonn, Germany, e-mail: akneip@uni-bonn.
de

Pascal Sarda
IMT (UMR 5219), route de Narbonne, 31062 Toulouse cedex 1, France, e-mail: Pascal.
Sarda@math.ups-tlse.fr



118 Christophe Crambes, Alois Kneip and Pascal Sarda

X (covariate) is a functional variable and is assumed to take its values in the
space L2([0, 1]) of the functions f : [0, 1] −→ R such that

∫ 1

0
f(t)2dt is �nite,

while the variable Y (variable of interest) is a real-valued random variable. In
this context, the functional linear regression writes, for a set of observations
(Xi, Yi), i = 1, . . . , n distributed as (X,Y ),

Yi = α0 + 〈α,Xi〉+ εi = α0 +
∫ 1

0

α(t)Xi(t)dt+ εi, (19.1)

for i = 1, . . . , n, where the parameter α0 and the function α ∈ L2([0, 1]) are
unknown and εi is an error random variable satisfying E (εi) = 0, E

(
ε2
i

)
= σ2

ε

and E (εiXi(t)) = 0 for almost every t. Our goal is then to estimate the slope
function α and the intercept α0 from the observations (Xi, Yi) , i = 1, . . . , n.
This model has already been studied by several authors. The �rst works on
this model can be found in Ramsay and Dalzell (1991). More recently in
Cardot et al. (1999) and Cardot et al. (2003), two estimators of α have been
proposed, the �rst one based on the functional principal component regres-
sion, and the other one based on regression splines. The estimator presented
below is based on smoothing splines and has been introduced in Cardot et
al. (2007) and Crambes et al. (2007).

19.2 Construction of the estimator

Consider the points 0 < t1 < . . . < tp < 1 where the curves Xi are observed.
More precisely, we assume that t1 = 1/2p and tj−tj−1 = 1/p for j = 2, . . . , p.
Then, we consider the p-dimensional space of natural splines of degree 2m−1
with knots t1, . . . , tp, and a basis of this space (b1, . . . , bp) (see Eubank, 1988
for di�erent candidates of bases). The estimator α̂ of α is de�ned as the
minimizer over all functions a in the Sobolev space Wm,2([0, 1]) of

1
n

n∑

i=1


Yi − Y − 1

p

p∑

j=1

a(tj)(Xi(tj)−X(tj))




2

+ (19.2)

ρ


1
p

p∑

j=1

π2
a(tj) +

∫ 1

0

(a(m)(t))2dt


 ,

where m is a given positive integer and πa(t) is the best approximation, in a
mean square sense, of a by a polynomial of degree m− 1.

For every a = (a1, . . . , ap)
τ ∈ Rp, there exists a unique spline interpolation

sa explicitely de�ned from the vector a and the basis functions b1, . . . , bp. Us-
ing the properties of natural splines, it is shown that α̂ = (α̂(t1), . . . , α̂(tp))τ

satis�es
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α̂ =
1
np

(
1
np2

XTX +
ρ

p
Am

)−1

XTY, (19.3)

where X is the n × p matrix with general term Xi(tj), Y is the vector of
length n with general term Yi and Am is an explicit p × p matrix linked
with the derivatives of order m of the basis functions b1, . . . , bp. Then, the
estimator of α is de�ned by α̂ = sbα, while the estimation of α0 is given by
α̂0 = Y − 〈α̂,X〉.

19.3 Convergence results

The convergence of the estimator α̂ is analyzed with respect to the semi-norm
induced by the covariance operator ofX, Γ := E (〈X − E(X), .〉 (X − E(X))).
This semi-norm is de�ned by ‖u‖2Γ = E

(〈X − E(X), u〉2) and allows us to
interpret our results in terms of prediction error. Indeed, for a new observation
(Xn+1, Yn+1) with Xn+1 independent from X1, . . . , Xn, we predict Yn+1 by
the quantity α̂0 + 〈α̂,Xn+1〉 and we have

E
[
((α̂0 + 〈α̂,Xn+1〉)− (α0 + 〈α,Xn+1〉))2 |α̂0, α̂

]
= ‖α̂− α‖2Γ +OP

(
n−1

)
.

(19.4)
The rates of convergence of our estimator depend essentially on regularity

assumptions on the function α and on the curves Xi. More precisely, we make
the following assumptions.

(H.1) α is m times di�erentiable and α(m) ∈ L2([0, 1]).
(H.2) There exists 0 < κ < 1 such that, for every δ > 0, there exists

0 < C1 < +∞ satisfying

P (|X(t)−X(s)| ≤ C1 |t− s|κ , t, s ∈ [0, 1]) ≥ 1− δ.
(H.3) There exist 0 < C2 < +∞ and q ∈ N such that, for every k ∈ N,

there exists a sub-space Lk of L2([0, 1]) such that

E

(
inf
f∈Lk

sup
t∈[0,1]

|X(t)− f(t)|2
)
≤ C2k

−2q.

(H.4) There exists C3 > 0 such that, for every r, s

V ar

(
1
n

n∑

i=1

〈Xi − E(X), ζr〉〈Xi − E(X), ζs〉
)
≤

C3

n
E
(〈X − E(X), ζr〉2

)
E
(〈X − E(X), ζs〉2

)
,
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where (ζr)r are the eigenfunctions of Γ .
Under the previous assumptions, if np−2κ = O(1) and

ρ ∼ n−(2m+2q+1)/(2m+2q+2), we have

‖α̂− α‖2Γ = OP

(
n−(2m+2q+1)/(2m+2q+2)

)
. (19.5)

Assumption (H.2) allows to control the error resulting in the approxima-
tion of an integral by a discrete sum. It appears that (H.3) is satis�ed provided
that the predictors Xi are smooth i.e. continuously di�erentiable at an order
q1 and X(q1)

i being Lipschitz continuous with order r1 and q = [q1 + r1]. On
the other hand, (H.3) may be satis�ed for non smooth Xi as it is the case
for Brownian motion. In any case, (H.3) implies that the eigenvalues λr of Γ
decrease rapidly in the sense that

∑+∞
r=k+1 λr = O(k−2r).

We show that the convergence rate (19.5) is optimal relatively to a certain
class of functions α and curves Xi. These results are compared to the rates
of convergence obtained in Cai and Hall (2006). These authors concentrate
on the error (α̂0 + 〈α̂, x〉) − (α0 + 〈α, x〉) for a �xed (non random) x, which
is a major di�erence with our work.
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Chapter 20
A Random Functional Depth

Juan Cuesta-Albertos and Alicia Nieto-Reyes

Abstract We de�ne an easy to compute and not computational demanding
functional depth which gives results comparable to those obtained with more
involved depths. When applied in �nite-dimensional settings, it can be seen
as an approximation to the Tukey depth as it uses a �nite number of ran-
domly chosen one-dimensional projections while the Tukey depth considers
all-possible one-dimensional projections.

20.1 Introduction

Given a probability distribution P de�ned in a in�nite-dimensional (or multi-
dimensional) space X , a depth tries to order the points in X from the �center
(of P )" to the �outward (of P )". Obviously, this problem includes data sets
if we consider P as the empirical distribution associated to the data set at
hand.

Some functional [for instance, Fraiman and Muniz (2001) and López-
Pintado and Romo (2006)] and several multidimensional depths [see Liu,
Parelius and Singh (1999) and references there] have been proposed.

Here, we try to take advantage of the main result in Cuesta-Albertos,
Fraiman and Ransford (2007) to introduce a new functional depth. Roughly
speaking, this result establishes that a randomly chosen one-dimensional pro-
jection is enough to determine a distribution (see Section 3 for a more detailed
description of this result). Thus, from a theoretical point of view, it should
be possible to compute depths of points using only a randomly chosen one-
dimensional projection.
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Universidad de Cantabria Spain, e-mail: juan.cuesta@unican.es
Alicia Nieto-Reyes
Universidad de Cantabria Spain, e-mail: alicia.nieto@unican.es



122 Juan Cuesta-Albertos and Alicia Nieto-Reyes

This is the point of view chosen in Cuevas, Febrero and Fraiman (2007),
where the authors propose to choose just a vector, v1, at random and de-
�ne the deepness of a given point x as its deepness in the one-dimensional
subspace generated by v1. However, there, they also propose to choose at
random a �nite number of vectors and take as depth of a given point x the
mean of the one-dimensional depths obtained with each vector. They do that
in order to get stability in the de�nition although, as stated, Theorem 4.1
in Cuesta-Albertos, Fraiman and Ransford (2007) provides the theoretical
background for the �rst de�nition.

Here, we take a di�erent point of view, inspired by the Tukey depth. If
x ∈ Rp, then, the Tukey depth of x with respect to P , DT (x, P ), is the
minimal probability which can be attained in the closed halfspaces containing
x.

Let us see an equivalent de�nition. In the one-dimensional setting, it seems
reasonable to order the points using the order induced by the function

x→ D1(x, P ) := min{P (−∞, x], P [x,∞)}.

Given v ∈ Rp, let Πv be the projection of Rp on the one dimensional subspace
generated by v. Thus, P ◦Π−1

v is the marginal of P on this subspace, and it
is obvious that

DT (x, P ) = inf
{
D1(Πv(x), P ◦Π−1

v ) : v ∈ Rp} , x ∈ Rp. (20.1)

Our idea, here, is to compute the depths of points in separable Hilbert
spaces as the in�mum over a �nite family of randomly chosen one-dimensional
vectors, v1, ..., vk. That is, we replace in (20.1) the in�mum over a nondenu-
merable number of vectors by the in�mum over v1, ..., vk and do the com-
putations in a separable Hilbert space. This provides some stability to the
de�nition of depth and, kept k low, we have an easily computable depth.

It worths to mention that, some other depths based on the consideration
of all possible one-dimensional projections, but replacing D1(x, P ) by some
other function, have been proposed [see, for instance, Zuo (2003)]. We con-
sider that what follows could be applied to all of them, but, we have chosen
the Tukey depth to test it concretely.

Furthermore, it is well known that the most important drawback of the
Tukey depth is the required computational time. This time is more or less
reasonable if p = 2, but it becomes prohibitive even for p = 8 [see Mosler
and Hoberg (2006)]. To reduce the time, in Zuo (2006), it is proposed to
approximate their values using randomly selected projections. Thus, in some
sense, Zuo (2006) can be considered as an antecedent of our depth.

In Section 2, we de�ne the random functional depth and show some of its
characteristics. Section 3 justi�es the randomness in the de�nition of func-
tional depth. Finally, in Section 4, we apply our depth to a functional classi-
�cation problem.
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In this contribution, we will be interested in probability distributions de-
�ned on a general separable Hilbert space which will be denoted by X . All
the random elements will be assumed to be de�ned on the same, rich enough,
probability space (Ω, σ, P ).

The computations have been carried out with MatLab. Computational
codes are available from the authors upon request.

20.2 Functional depth

We begin with the de�nition of the random functional depth.

De�nition 20.1. Let P be a probability distribution on X . Let x ∈ X ,
k ∈ IN and let ν be an absolutely continuous distribution on X . The random
functional depth of x with respect to P based on a set R = {v1, ..., vk} is

DR(x, P ) = min{D1(Πvi(x), P ◦Π−1
vi ) : vi ∈ R for i = 1, ..., k}, x ∈ X ,

where v1, ..., vk are independent and identically distributed random vectors
with distribution ν.

An interesting question is whetherDR satis�es the de�nition of depth given
by Zuo and Ser�ing (2000). This de�nition includes four requirements. The
�rst three (a�ne invariance, maximality at center and monotonicity relative
to deepest point) are always ful�lled. However, the fourth one (vanishing at
in�nity) is not satis�ed in general, but it holds if the dimension of X is �nite.

Furthermore, we have that the random functional depth can be consis-
tently estimated.

Theorem 20.1. Let v1, ..., vk ∈ X . Let P be a probability distribution on X ,
and let {Pn} be a sequence of empirical distributions computed on a random
sample taken from P which is independent of the vectors v1, ..., vk.

Then, conditionally on R = {v1, ..., vk}, we have that

sup
x∈X
|DR(x, Pn)−DR(x, P )| → 0, almost surely [P].

The proof is based on the real case of the Glivenko-Cantelli Theorem.
For a broader exposition of the random functional depth, see Cuesta-

Albertos and Nieto-Reyes (2008a) and (2008b).
We close this section noticing that there exists the possibility of extending

the results in this contribution to Banach spaces due to the generalization of
Theorem 4.1 in Cuesta-Albertos, Fraiman and Ransford (2007) which appears
in Cuevas and Fraiman (2007).
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20.3 Randomness

Obviously, DR(x, P ) is a random variable. It may seem a bit strange to take
a random quantity to measure the depth of a point, which is inherently not-
random. We have two reasons to take this point of view.

Firstly, Theorem 4.1 in Cuesta-Albertos, Fraiman and Ransford (2007)
shows that if P and Q are probability distributions on X , ν is an absolutely
continuous distribution on X and

ν{v ∈ X : P ◦Π−1
v = Q ◦Π−1

v } > 0,

then P = Q. In other words, if we have two di�erent distributions and ran-
domly choose a marginal of them, those marginals are almost surely di�erent.
In fact, it is also required that at least one of the distributions is determined
by its moments, but this is not too important for the time being. According to
this result, one randomly chosen projection is enough to distinguish between
two distributions on X . Since the depths determine one-dimensional distribu-
tions, a depth computed on just one random projection allows to distinguish
between two distributions.

Secondly, let us consider the case in which X is �nite dimensional. If the
support of ν is X , and, for every k, Rk ⊂ Rk+1, then

DRk(x, P ) ≥ DRk+1(x, P )→ DT (x, P ), a.s. (20.2)

Therefore, if we choose a large enough k, the e�ect of the randomness in
DRk will be negligible. Of course, the question of interest here is to learn
how large k must be, because values of k that are too large would make this
de�nition useless.

We propose to choose the right k depending on the problem. For instance,
with bootstrap in test problems or cross-validation in supervised classi�ca-
tion problems (see Section 4). Furthermore, to have an idea about the range
of possible values, it could be a possibility to choose k based on the com-
parison between DT and DRk in several multidimensional cases. However,
the long computation times required to obtain DT make those comparisons
unpractical. Instead of this, we have decided to choose a situation in which
the deepness of the points are clearly de�ned and can be easily computed
with a di�erent depth.

If P is an elliptical distribution with parameters µ and Σ, every depth
should be a monotone function of the Mahalanobis depth, where, given x ∈ X
(= Rp in this case) this depth is

DM (x, P ) :=
1

1 + (x− µ)tΣ−1(x− µ)
.

Thus, from (20.2), the larger the k, the larger the resemblance between
DRk(·, P ) and a monotone function of DM (·, P ).
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For getting an idea about the optimal number of projections required
we will present some simulations, where the selection has been based on
the Spearman correlation coe�cient between the random functional and the
Mahalanobis depths. Note that depths only try to rank points according
to their closeness to the center of P . Thus, it is reasonable to measure the
resemblance between DRk(·, P ) and DM (·, P ) looking only at the ranks of the
points, which is equivalent to employing the Spearman correlation coe�cient.

Those simulations have been carried out for di�erent dimensions, sample
sizes and distributions with independent and dependent marginals. Moreover,
since, in practice, we do not know P, and we only have a random sample of
P we have also introduced some simulations in which µ and Σ are estimated.
We have obtained no obvious di�erences between them.

20.4 Analysis of a real data set

In this section we try to classify by sex some growth curves. The data are
very well known and have been taken from the �le growth.zip, downloaded
from the URL ftp://ego.psych.mcgill.ca/pub/ramsay/FDAfuns/Matlab.

We have applied a leave-one-out cross-validation (CV) procedure to those
curves. In order to classify a given curve, we have employed the procedures
based on depths proposed in López-Pintado and Romo (2006) and Cuevas,
Febrero and Fraiman (2007) and, also, some combinations of them.

For applying the previous procedures, we have to compute random func-
tional depths. Thus, two problems has to be �xed. The �rst one consists
in choosing the distribution to be employed to select the projections. The
second one refers to �xing the number of one dimensional projections to be
considered.

First problem is included in a more general and important one: which
is the optimal distribution to choose the projections in a given problem?
Of course, the answer should depend on the problem at hand and it is in
progress. However, we have done some preliminary steps and, here we choose
the optimal distribution by CV in a parametric family which includes the
standard Brownian Motion. The results are encouraging since the di�erence
between employing the standard Brownian Motion or a distribution in the
family by CV is a reduction of about 10% in the rate of error.

The number of projections is also chosen by CV between {1, 3, 5, ..., 99}.
There are some procedures to compare with. Some of them are based

on functional depths [see López-Pintado and Romo (2006)], some on the k-
nearest neighbors procedure [see, for instance, Biau, Bunea and Wegcamp
(2005)], and some others on nonparametric regression techniques [see Abra-
ham, Biau and Cadre (2006), Baíllo and Grané (2007) and Ferraty and Vieu
(2003)].
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In fact, one of the employed classi�cation procedures classi�es the curve in
the group whose deepest curve is closest to it. Obviously, the deepest curves
can be replaced by another representative curve like the median or the modal
curves [see Ferraty and Vieu (2006)].

Moreover, since every functional data, at the end, belong to the discrete
word, in practice they are discrete and, then procedures like Random Forests
[see Breiman (2001)] can be also considered.
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Chapter 21
Parametric Families of Probability
Distributions for Functional Data Using
Quasi-Arithmetic Means with
Archimedean Generators

Etienne Cuvelier and Monique Noirhomme-Fraiture

Abstract Parametric probability distributions are central tools for proba-
bilistic modeling in data mining, and they lack in functional data analysis
(FDA). In this paper we propose to build this kind of distribution using
jointly Quasi-arithmetic means and generators of Archimedean copulas. We
also de�ne a density adapted to the in�nite dimension of the space of func-
tional data. We use these concepts in supervised classi�cation.

21.1 QAMML distributions

Let (Ω,A, P ) a probability space and D a closed real interval. A functional
random variable (frv) is any function from D × Ω → R such for any t ∈
D, X(t, .) is a real random variable on (Ω,A, P ). Let L2(D) be the space of
square integrable functions (with respect to Lebesgues measure) u(t) de�ned
on D.

If f, g ∈ L2(D), then the pointwise order between f and g on D is de�ned
as follows :

∀t ∈ D, f(t) ≤ g(t) ⇐⇒ f ≤D g. (21.1)
It is easy to see that the pointwise order is a partial order over L2(D), and
not a total order. We de�ne the functional cumulative distribution function
(fcdf) of a frv X on L2(D) computed at u ∈ L2(D) by :

FX,D(u) = P [X ≤D u]. (21.2)
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To compute the above probability, let us remark that, it is easy to compute
the probability distribution of the value of X(t) for a speci�c value of t, and
this for any t ∈ D. Then we de�ne respectively the surface of distributions
and the surface of densities as follow :

G : D × R→ [0, 1] : (t, y) 7→ P [X(t) ≤ y] (21.3)

g : D × R→ [0, 1] : (t, y) 7→ ∂

∂t
G (t, y) (21.4)

We can use various methods for determining suitable g and G for a chosen
value of X. Thus for example, if X is a Gaussian process with mean value
µ(t) and standard deviation σ(t), then, for any (t, y) ∈ D × R, we have :

In the following we will always use the function G with a function u of
L2 (D), so, for the ease of the notations, we will write : G [t;u] = G [t, u (t)].
We will use the same notation for g. In what follows we de�ne our parametric
families of probability distributions.
Let X be a frv, u ∈ L2(D) and G its Surface of Distributions. Let also φ
be a continuous strictly decreasing function from [0, 1] to [0,∞] such that
φ(0) = ∞, φ(1) = 0, where ψ = φ−1 must be completely monotonic on
[0,∞[ i.e. (−1)k d

k

dtk
ψ(t) ≥ 0 for all t in [0,∞[ and for all k. We de�ne the

Quasi-Arithmetic Mean of Margins Limit (QAMML) distribution of X by :

FX,D(u) = ψ

[
1
|D|

∫

D
φ (G [t;u]) dt

]
. (21.5)

The function φ is called the QAMML generator. In fact the expression (21.5)
can be seen as the limiting (or continuous) case of two other expressions.
The �rst expression, which is obvious and gives its name to (21.5), use a
quasi-arithmetic mean M :

FX,D(u) = lim
n→∞

M {G[t1;u], . . . , G[tn;u]} (21.6)

where {t1, . . . , tn} ⊂ D is a subset of points in D, preferably equidistant. In
the discrete case, a quasi-arithmetic mean is a function M : [a, b]n → [a, b]
de�ned as follows:

M(x1, . . . , xn) = ψ

(
1
n

n∑

i=1

φ (xi)

)
(21.7)

where φ is a continuous strictly monotonic real function and ψ = φ−1.
The second limiting case links the QAMML distributions to the classical
approximation : P [X ≤D u] = H (u(t1), . . . , u(tn)), using the archimedean
copulas:

FX,D(u) = lim
n→∞

ψ

[
n∑

i=1

φ (G∗ [ti;u])

]
(21.8)
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where ∗ is the following transformation, applied to margins:

G∗(x) = ψ

(
1
n
φ (G(x))

)
. (21.9)

Let us remind that a copula is a multivariate cumulative distribution func-
tion de�ned on the n-dimensional unit cube [0, 1]n such that every marginal
distribution is uniform on the interval [0, 1]. The interest of copulas comes
from the fact that (Sklar's theorem), if H is an n-dimensional distribution
function with margins F1, ..., Fn, then there exists an n-copula C such that
for all x ∈ Rn ,

H(x1, ..., xn) = C(F1(x1), ..., Fn(xn)). (21.10)

The copula captures the dependence structure of the distribution. An im-
portant family of copulas is the family of Archimedean copula, given by the
following expression :

C(u1, ..., un) = ψ

[
n∑

i=1

φ(ui)

]
. (21.11)

where φ, called the generator, has the same properties that a QAMML gen-
erator.
This second limiting case shows that QAMML shares the properties and
limitations of archimedeans copulas in the modeling of an frv X (see the
GQAMML section).

21.2 Gateaux density

A fcdf is an incomplete tool without an associate density, but as the QAMML
distributions deal directly with in�nite nature of functional data, we cannot
use the classical multivariate density function:

h(x1, ..., xn) =
∂n

∂x1 . . . ∂xn
H(x1, . . . , xn). (21.12)

To solve this problem we propose to use a concept of the functional analysis
: the Gâteaux di�erential which is a generalization of directional derivative.
Let X be a frv, FX,D its fcdf and u a function of L2(D). Then for h ∈ L2(D)
we de�ne the Gâteaux density of FX,D at u and in the direction of h by:

fX,D,h(u) = lim
ε→0

FX,D (u+ h · ε)− FX,D (u)
ε

= DFX,D(u;h) (21.13)
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where DFX,D(u;h) is the Gâteaux di�erential of FX,D at u in the direction
h ∈ V .
It is easy to show that, if FX,D is a QAMML fcdf, u and h are two functions
of L2(D), then the corresponding Gâteaux density of FX,D computed in u, in
direction of h is given by:

fX,D,h(u) =
1
|D| ·ψ

′
[

1
|D|

∫

D
φ (G [t;u]) dt

]
·
{∫

D
φ′ (G [t;u]) · g [t;u]h(t)dt

}
.

(21.14)
We can show that, if we use the statistical dispersion σ(t) of the functional
data, then fX,D,σ(u) = P [X = u].

21.3 GQAMML distributions

QAMML shares the limitations of archimedeans copulas (see section 1), but
the archimedean copulas of dimension n > 2, can capture dependence struc-
tures from independence until the complete positive dependence between vari-
ables. Thus, if for s, t ∈ D, there is a negative dependence between X(s) and
X(t), the QAMML will not be able to model the situation. But the bidimen-
sional archimedean copulas can deal with this kind of dependence, using the
same generator, but with larger domain for the parameter. Then we de�ne the
Generalized Quasi-Arithmetic Mean of Margins Limit (GQAMML) FX,D(u)
as follows. Let X be a frv de�ned on D, u ∈ L2(D), {Dp,Dn} a partition of
D such :
• ∀s, t ∈ Dp, there is a positive dependence between X(s) and X(t),
• ∀s, t ∈ Dn, there is a positive dependence between X(s) and X(t),
• ∀s ∈ Dp and ∀t ∈ Dn, there is a negative dependence between X(s) and
X(t).

Then

FX,D(u) = ψ

( |Dp|
|D| φ

[
FX,Dp(u)

]
+
|Dn|
|D| φ

[
FX,Dn(u)

])
(21.15)

where φ is the generator of an bidimensional archimedean copulas.
Of course, using the chain rule, the Gâteaux density of FX,D is given by

fX,D,σ(u) = ψ′
( |Dp|
|D| φ

[
FX,Dp(u)

]
+
|Dn|
|D| φ

[
FX,Dn(u)

])

{ |Dp|
|D| φ

′ [FX,Dp(u)
]
fX,Dp,σ(u) +

|Dn|
|D| φ

′ [FX,Dn(u)
]
fX,Dn,σ(u)

}
(21.16)
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21.4 CQAMML distributions

In functional data analysis, we know that, some times, when we treat smooth
data, there is a lot of information in the derivatives of the data. Of course we
can apply the GQAMML distributions to the concerned derivative, but we
can also consider jointly the distribution of the di�erent derivatives. Then we
de�ne the Complete Quasi-Arithmetic Mean of Margins Limit (CQAMML)
FjiX,D(u) (with i < j ) as follows. Let X be a frv de�ned on D with j

successive derivatives, u ∈ L2(D) with j successive derivatives:

FjiX,D(u) = C
(
FX[i],D

(
u[i]
)
, . . . ,FX[j],D

(
u[j]
))

(21.17)

where :
• X [i] and u[i] are the ith derivatives for X and u,
• C is a n-dimensional copula.
Note that the copula C is not necessarily an archimedean copula. The density
of the CQAMML distribution is a classical joint density used with theGâteaux
densities of the di�erent GQAMML distributions.

21.5 Supervised classi�cation

To illustrate the interest of the QAMML families of distribution we propose to
use it in a supervised classi�cation application. To perform the classi�cation
we use the Gâteaux density of a QAMML distribution to build a bayesian
classi�er:

P (ωi|u) =
fωi,D,h(u) · P (ωi)

P (u)
(21.18)

where P (ωi|u) is the probability that u belong to the ith group, fωi,D,h(u)
the adequate Gâteaux density, and P (u) the probability of u (but this latter
is constant for all cluster, so it is not necessary to compute it).
We compute the parameters of each cluster using the classical maximum
likelihood, and the cluster of u is the cluster with the highest probability
P (ω|u).
The chosen dataset is the well known spectrometric data from Tecator. The
data consist in 100 channels of spectrum absorbance (wavelength from 850
nm to 1050 nm). The goal is to distinguish the data with more than 20% of fat
content, from the data with less than 20% of fat content. We have performed a
10-fold cross validation on the data, the �rst derivative, the second derivative
using the GQAMML distributions, and jointly on the di�erent derivatives
using the CQAMLL distributions, and this with the following parametrization
:
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• Surface of distributions G : Normal distribution,
• QAMML and GQAMML generators : Clayton generator,
• CQAMML copula : Normal copula.

Table 21.1 Results of the 10-fold cross validations
Distributions misclassi�cations
FX,D 31.4%
FX′,D 9.4%
FX′′,D 5.5%
F1

0X,D 16.5%
F2

1X,D 4%
F2

0X,D 9.4%

The table 21.1 shows the results, and we can see that the best results are given
using the distribution of the second derivative, and also considering jointly
the distribution of the �rst and second derivative, but it is well known that
the second derivative of these data contains the more interesting information
to distinguish the clusters. We can also remark that when we use directly the
functionnal data jointly with the derivatives, the quality of the classi�cation
decrease, but we know that original functions contain only slight di�erences
between the two groups.

21.6 Conclusions

The good results of the supervised classi�cation example show that our new
families of parametric distributions for functional data can be used in classi-
�cations task in FDA. These distributions can be used also in unsupervised
classi�cation with existing algorithms. And a lot of parametrization can be
chosen using existing copulas in the di�erent level of the QAMML families,
and other choices for the distributions of the surface of distributions can be
done. So a great �eld of experimentation is open with the QAMML families
of distributions for functional data.
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Chapter 22
Point-wise Kriging for Spatial
Prediction of Functional Data

Pedro Delicado, Ramón Giraldo and Jorge Mateu

Abstract We propose a methodology to carry out spatial prediction when
measured data are curves. Our approach is based on both the kriging predic-
tor and the functional linear point-wise model theory. The spatial prediction
of an unobserved curve is obtained as a linear combination of observed func-
tions. We employ a solution based on basis function to estimate the functional
parameters. A real data set is used to illustrate the proposals.

22.1 Introduction

Spatial prediction models for many types of data (univariate, multivariable
and space-time) have been proposed. It is possible to consider other geostatis-
tical settings in which instead of univariate, space-time or multivariate data
set, the observations consist of a sample of random functions collected in
di�erent sites of a region. Many dynamic processes in environmental sciences
obey smooth functional forms. An example is meteorology, where curves of
climatological variables are obtained in weather stations of a country (Ram-
say and Silverman, 2005). Statistical methods to model data sets based on
curves are included in the term functional data analysis (FDA). Functional
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versions for many branches of statistics have been given. Examples of such
methods include exploratory analysis (Ramsay and Silverman, 2005), lin-
ear models (Cardot et al., 1999), non parametric models (Ferraty and Vieu,
2006) or multivariate techniques (Silverman, 1995; Ferraty and Vieu, 2003).
Our goal in this work is to propose a geostatistical methodology useful to
analyze functional data. The paper is focused on spatial prediction of func-
tional data. We take into account the geographical coordinates of sampling
points in order to estimate spatial association between observed curves and
to carry out parameters estimation. The kriging predictor proposed is based
on the functional linear model concurrent philosophy (Ramsay and Silver-
man, 2005), that is, the in�uence of the functional covariates on a functional
response is simultaneous or point-wise.

22.2 Point-wise kriging for functional Data

Let
{
χs(t), t ∈ T, s ∈ D ⊂ Rd

}
be a random �eld where observations are

functions de�ned on some compact set T of R. Assume we observe a sample
of curves χs1(t), · · · , χsn(t) de�ned for t ∈ T , si ∈ D, i = 1, · · · , n. It is
usually assumed that these curves belong to a separable Hilbert space H of
square integrable functions de�ned on T . We assume for each t ∈ T that
we have a second-order stationary and isotropic random process, that is, the
mean and variance functions are constant and the covariance depends only
on the distance between sampling points. Formally we assume that:
• E(χs(t)) = m(t), for all t ∈ T, s ∈ D.
• Cov(χs(t),χs(u)) = σ(t, u), t, u ∈ T, s ∈ D. If t = u, V (χs(t)) = σ2(t).
• Cov(χsi(t),χsj (u)) = C(h; t, u), where h = ‖si − sj‖.

If t = u, Cov(χsi(t),χsj (t)) = C(h; t).
• 1

2V(χsi(t)− χsj (u)) = γ(h; t, u), where h = ‖si − sj‖.
If t = u, 1

2V(χsi(t)− χsj (t)) = γ(h; t).
The function γ(h; t), as a function of h, is called semivariogram of χ(t). For a
non-sample site s0, we propose a family of linear predictors for χs0(t), t ∈ T ,
given by

χ̂s0(t) =
n∑

i=1

λi(t)χsi(t), λ1(t), . . . , λn(t) : T → R. (22.1)

For each t ∈ T , the predictor (22.1) has the same expression as an ordinary
kriging predictor. This modeling approach is coherent with the functional
linear concurrent model (FLCM) (Ramsay and Silverman, 2005) which the
in�uence of each covariate on the response is simultaneous or point-wise.
FLCM is de�ned as Y (t) = α(t)+β1(t)X1(t)+ · · ·+βq(t)Xq(t)+ε(t). In this
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model the response Y (t) and each covariate Xj(t), j = 1, · · · , q, are functions
of the same argument andXj(t) only in�uences Y (t) through its value at time
t. Estimation of functional parameters α(t), βj(t), j = 1, · · · , q, is carried out
by solving

Min
α(·),...,βq(·)

E‖Ŷ (t)− Y (t)‖2.

In our context the covariates are the observed curves in n sites of a region and
the functional response is an unobserved function on an unsampled location.
Consequently our optimization problem is

Min
λ1(·),...,λn(·)

E‖χ̂s0(t)− χs0(t)‖2

or equivalently by using Fubini´s Theorem

Min
λ1(·),...,λn(·)

∫

T

E
(
χ̂s0(t)− χs0(t)

)2
dt. (22.2)

In a classical univariate geostatistical setting we assume that the observa-
tions are a realization of a random �eld

{
Z(s) : s ∈ D,D ∈ Rd

}
. The krig-

ing predictor is de�ned as
∑n
i=1 λiZ(si) and the best linear unbiased pre-

dictor (BLUP) is obtained by minimizing σ2
s0 = V (Ẑ(si) − Z(si)) subject

to
∑n
i=1 λi = 1. On the other hand in multivariable geostatistics (Myers,

1982; Ver Hoef and Cressie, 1993; Wackernagel, 1995) the data consist of
{Z(s1), · · · ,Z(sn)}, that is, we have observations of a spatial vector-valued
process {Z(s) : s ∈ D}, where Z(s) ∈ Rm and D ⊆ Rd. In this context
V (Ẑ(s0) − Z(s0)) is a matrix and the BLUP of m variables on an unsam-
pled location s0 is obtained by minimizing σ2

s0 =
∑m
i=1 V

(
Ẑi(s0)− Zi(s0)

)

subject to constraints that guarantees unbiasedness conditions, that is, min-
imizing the trace of the mean-squared prediction error matrix subject to
some restrictions given by the unbiasedness condition (Myers,1982). The op-
timization problem given in (22.2) is an extension of the minimization cri-
terium given by Myers (1982) to the functional context, by replacing the
summation by an integral and the random vectors [Z1(s0), · · · , Zm(s0)] and
[Ẑ1(s0), · · · , Ẑm(s0)] by the functional variables χ(t) and χ̂(t) with t ∈ T .
The predictor (22.1) is unbiased if E(χ̂s0(t)) = µ(t), for all t ∈ T , that is, if∑n
i=1 λi(t) = 1. Consequently, in order to �nd the BLUP, the n functional pa-

rameters in the predictor proposed are given by the solution of the following
optimization problem:

Min
λ1(·),...,λn(·)

∫

T

V
(
χ̂s0(t)− χs0(t)

)
dt, s.t.

n∑

i=1

λi(t) = 1, for all t ∈ T.

(22.3)
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In order to solve the problem (22.3) we give a solution based on basis func-
tions. We assume that each observed function can be expressed in terms of
K basis functions by

χsi(t) =
K∑

l=1

ailBl(t) = aTi B(t), i = 1, · · · , n, (22.4)

and the functional parameters in (22.1) can be expressed by means of

λi(t) =
K∑

l=1

bilBl(t) = bTi B(t). (22.5)

Then using (22.4) and (22.5) the expression (22.1) is given by

χ̂s0(t) =
n∑

i=1

bTi B(t)aTi B(t) (22.6)

=
n∑

i=1

bTi B(t)BT (t)ai.

Parameters estimation is carried out by solving the optimization problem
(22.3) replacing (22.6) in that expression and using a coregionalization linear
model (LMC) (Wackernagel, 1995) to estimate covariances between coe�-
cients of �tted basis functions.

22.3 Example

A well-known application of FDA in an environmental context is the func-
tional modeling of temperature and precipitation curves observed at 35
weather stations of Canada (Ramsay and Silverman, 2005). We use temper-
ature curves of this data set to provide an applied context for our proposal.
We use 45 Fourier basis functions to smooth each observed curve. Point-wise
kriging using the expression (22.1) was used to predict a temperature curve
on a site do not considered in the original data. This site is located in Slave
Lake, Alberta, near to Edmonton station in Figure 22.1. As a �rst stage of
the analysis a LMC was �tted to the multivariable random �eld composed
by the coe�cients of the Fourier basis used to smooth each sampled curve.
Based on the LMC obtained the functional parameters λi(t), i = 1, · · · , 35
were estimated (Figure 22.2). An estimated functional parameter has consid-
erably greater magnitude than others (curve with values around 0.6). This
functional parameter correspond to Edmonton (Figure 22.1), the nearest sta-
tion to Slave Lake in the considered set of curves. Other stations near to
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Fig. 22.1 Averages (over 30 years) of daily temperature curves (right panel) observed at
35 Canadian weather stations (left panel).

Slave Lake and consequently with great in�uence on the temperature pre-
diction of this place are Yellowknife (weights around 0.2, Figure 22.2), and
Uranium City and Pr George (values around 0.1, Figure 22.2). This result
is coherent with the kriging philosophy, that is, sites closer to the predic-
tion location have greater in�uence than others more far apart. Sum of esti-
mated functional parameters is equal to 1 for all t (Figure 22.2). With this
result we verify graphically unbiasedness constraint. A plot of the temper-
ature prediction on Slave Lake appears in Figure 22.2 (right panel). From
this �gure it is remarkable that the predicted curve shows a seasonal be-
havior similar to the smoothed curves. In addition predicted values can
be considered consistent with real values reported for this weather station
(http://www.climate.weathero�ce.ec.gc.ca/climateData/).
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Fig. 22.2 Estimated functional parameters (left, clear lines), sum of functional estimated
parameters (left, dark line), smoothed temperature curves (right, clear lines) and temper-
ature prediction function on unsampled site (right, dark line).
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Fig. 22.3 Right panel: Point-wise kriging predictions based on cross-validation. Left panel:
Cross-validation residuals (clear lines), residual mean (dark line) and residual standard
deviation (dashed line) of Canadian temperature data set.

To verify the goodness-of-�t of the point-wise kriging prediction model, we
use cross-validation methods. Each smoothed curve χsi(t), i = 1, · · · , 35 was
removed, and further predicted from remaining data. A graphical comparison
among observed (after smoothing) and predicted curves (Figures 22.2 and
22.3) shows that predicted curves are more smoothed than observed ones, as
well as that the predicted data set has less variance specially towards both at
the beginning and the end of the year, that is, in wintertime which Canadian
weather is most variable (Figure 22.3). This was not surprising on the one
hand because kriging is a smoothing method and on the other hand due
to the considered temperature data set includes weather stations with very
di�erent temperature magnitudes (Figure 22.1). Resolute and Iqaluit stations
in the Arctic (Figure 22.1) as well as Inuvik in the northwest (200 kilometers
from Arctic circle), with very cold winters and short summers, have di�erent
magnitudes that other weather stations considered in our data set as some
marine stations as Victoria, Vancouver or Prince Rupert in the southwest of
the country.
Figure 22.3 (right panel) shows cross-validation residuals. The plot indicates
reasonable or good prediction for a high proportion of places (residuals around
cero). However there are some stations with large positive or negative residual
curves. This is due to the fact that the temperature functions at Resolute,
Inuvik, Iqaluit, Dawson, Churchill, Prince Rupert and St Johns are not well
predicted by the model because of both these have extreme temperature
values and are spatially very separated of remaining ones (Figure 22.1). We
can also observe in Figure 22.3 that although there are some outliers, the
residual mean indicates that there was not evidence of biased predictions.
The residual variance is non-homogeneous through the year (Figure 22.3) as
consequence of reasons above mentioned.
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Chapter 23
Nonparametric Regression on
Functional Variable and Structural Tests

Laurent Delsol

Abstract The aim of this talk is to highlight the usefulness of kernel meth-
ods in regression on functional variables. After reminding some asymptotic
properties of the kernel estimator of the regression operator, we introduce a
general framework to construct various innovative structural tests (no-e�ect,
linearity, single-index, ... ). Various bootstrap procedures are implemented
on datasets in order to emphasize the pertinence of such structural testing
methods.

23.1 Introduction

For many years statisticians have worked on models designed for multivari-
ate random variables. However, the improvement of measuring apparatus
provides data discretized on a thinner and thinner grid. Consequently, these
data become intrinsically functional. Spectrometric curves, satellite images,
annual electricity consumptions or sounds records are few examples, among
others, of such intrinsically functional variables. This has led to a new sta-
tistical way of thinking in which we are interested in models where variables
may belong to a functional space. To get more references on the state of art
in functional statistics the reader may refer to the synthetic books, Ramsay
and Silverman (2002-2005) that gather a large scope of statistical methods
adapted to functional data study, while Bosq (2000) focuses on dependent
functional random variables. More recently, nonparametric kernel methods
have been adapted to the functional case with the ideas introduced by (18) in
the context of regression on functional variables. The monography of Ferraty
and Vieu (2006) gives an overview of some recent advances with nonpara-

Laurent Delsol
Institut de Mathématiques, Université de Toulouse et CNRS (U.M.R. 5219), 118 route de
Narbonne, 31062 cedex 9 Toulouse, France, e-mail: delsol@cict.fr
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metric kernel methods.

In this talk one focuses more precisely on a functional regression model
where the response variable Y is real-valued while the explanatory variable
X belongs to a functional space E . In other words one considers the following
model

Y = r (X) + ε (23.1)
where the regression operator r is unknown. Such models have already been
widely studied in the linear case (i.e. when r is linear) and still are topical
issues (see for instance Ramsay and Dalzell (1991), Cardot et al. (2003) and
Crambes et al. (2007)). In the nonparametric case (i.e. only under regular-
ity assumptions on r) the �rst results come from Ferraty and Vieu (2002)
in which a generalization of the well-known Nadaraya-Watson estimator is
introduced. Many papers have been devoted to prove asymptotic properties
of this estimator. The �rst part of this talk makes a short review on some
of these results and presents speci�cities of the use of kernel methods with
functional data.

In the multivariate case, many structural testing procedures have been
proposed based on nonparametric methods, empirical likelihood ratio, or-
thogonal projection ... (see for instance Azzalini an Bowman (1993), Härdle
and Mammen (1993), Härdle and Kneip (1999), Eubank (2000), Horowitz
and Spokoiny (2001), Fan and Yao (2003), Chen et al. (2003), Chen et al.
(2006), González-Manteiga et al. (2002) or Lavergne and Patilea (2007) and
the references therein). In the second part of this talk we are interested in
the potential use of nonparametric tools created for functional regression to
extend structural testing procedures from the multivariate case to the func-
tional case. Despite the abundant literature devoted to functional regression
models and structural testing procedures in multivariate regression, there
are very few papers on structural testing procedures in functional regression.
As far as we know the existing literature is reducted to papers dealing with
tests for no-e�ect (see for instance Gadiaga and Ignaccolo (2005)), tests of
H0 : {r = r0} (where r0 is a known operator) in the functional linear model
(see for instance Cardot et al. (2003)) and an heuristic goodness-of-�t test
(see Chiou et al. (2007)). There is no test to check if the regression model
is linear or not, and more generally to test if the true regression operator
belongs to a given family of operators. In this talk we present a general
structural testing procedure adapted to functional regression that allows to
check if r belongs to a given family R. The proposed approach consists in a
comparison between a general nonparametric estimator and a particular one
that converges quicker under the null hypothesis. This idea is similar to the
one used in Härdle and Mammen (1993) and González-Manteiga et al. (2002)
in the multivariate case where a nonparametric and a parametric estimator
are compared to check for a parametric model. This work extends the previ-
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ous abundant existing literature on structural testing procedures to the case
of a functional explanatory variable. Indeed, the general assumptions used
through this paper allow to cover a large scope of testing procedures such as,
for instance, tests for no e�ect, tests for linearity, tests for functional single
index model, tests for dimension reduction.

23.2 Nonparametric estimation

We aim to present some asymptotic properties of the following generalisation
of the Nadaraya-Watson estimator to functional data introduced in (18):

r̂ (x) =

∑n
i=1 YiK

(
d(Xi,x)
hn

)

∑n
i=1K

(
d(Xi,x)
hn

) , (23.2)

where K is a kernel function, hn the smoothing parameter, x a �xed element
of E and d a semimetric on E .
Before giving any asymptotic result we have to introduce the notion of small
ball probability Fx (s) := P (d (X,x) ≤ s) that has a key importance in as-
ymptotic properties of kernel methods adapted to functional data. The quan-
tity Fx (hn) is the equivalent, for the functional case, of the quantity hdnf (x)
(standard in the multivariate case when the density f is continuous) and do
not need the existence of a positive density with regard to a speci�c measure.
The nature of the functional variable X, of the center x and the choice of the
semimetric used have a direct e�ect on the shape of these probabilities and
hence on asymptotic properties of the kernel estimator (23.2). The use of a
projection semimetric may be seen as an alternative to the curse of dimen-
sionality.
The following results give almost complete convergence, asymptotic normal-
ity and Lq errors of the kernel estimator. Our contribution concerns Theorems
2 and 3 in which we explicit the function ψm and give explicit expressions of
the constants V and B.
Theorem 1 Under some assumptions one gets (see Ferraty and Vieu (2006)
for more references):

r̂ (x)− r (x) = O
(
hβn
)

+O

(√
log (n)
nFx (hn)

)
a.co.

Theorem 2 Under some assumptions one gets (see Masry (2005), Ferraty
et al. (2007) and Delsol (2008)):

√
nFx (hn)
V

(r̂ (x)− r (x)−Bhn)→ N (0, 1) .
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Theorem 3 Under some assumptions one gets (see Dabo-Niang and Rhomari
(2003), and Delsol (2007)):

E
[
|r̂ (x)− r (x)|2m

]
=

m∑

k=0

V 2kB2(m−k) (2m)!
(2 (m− k))!k!2k

h
2(m−k)
n

(nFx (hn))k
+

o

(
1

(nFx (hn))m

)
,

E
[
|r̂ (x)− r (x)|2m+1

]
=

V 2m+1

(nFx (hn))m+ 1
2
ψm

(
Bhn

√
nFx (hn)
V

)
+

o

(
1

(nFx (hn))m+ 1
2

)
,

23.3 Structural tests

We are now interested in constructing a structural testing procedure. In other
words, we want to check if r belongs to a given family of operators R. We
propose to check the null hypothesis H0 : {∃r0 ∈ R,P (r (X) = r0 (X)) = 1}
against the local alternative H1,n :

{
infr0∈R ‖r − r0‖L2(wdPX) ≥ ηn

}
. We

consider the following test statistic constructed from the ideas of Härdle and
Mammen (1993) and González-Manteiga et al. (2002):

T ?n =
∫ ( n∑

i=1

(Yi − r?0 (Xi))K
(
d (x,Xi)
hn

))2

w (x) dPX (x) ,

where w is a weight function with bounded support W and r?0 is a particular
estimator, depending on the family R, constructed from a dataset D∗ :=
(Xi, Yi)n+1≤i≤N independent of D := (Xi, Yi)1≤i≤n. It is a generalisation of
the statistic proposed by González-Manteiga et al. (2002) to the functional
case. We note mn = N − n and introduce two variables that do not depend
on the fact that H0 holds or not and provide asymptotic bias and variance
terms:

T1,n =
∫ n∑

i=1

K2

(
d (Xi, x)
hn

)
ε2
iw (x) dPX (x) ,

T2,n =
∫ ∑

1≤i6=j≤n
K

(
d (Xi, x)
hn

)
K

(
d (Xj , x)

hn

)
εiεjw (x) dPX (x) .

It is now possible to state the next theorem concerning the asymptotic dis-
tribution of T ?n .
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Theorem 4 Under general assumptions one gets:

• Under (H0), 1√
V ar(T2,n)

(T ?n − E [T1,n]) L→ N (0, 1) ,

• Under (H1,n), 1√
V ar(T2,n)

(T ?n − E [T1,n]) L→ +∞.

Because of the general assumptions used, our approach allows to construct
various innovative structural tests:
• If R = {r0}, Theorem 4 may be applied with r∗0 = r0 and n = N when r0

is Hölderian on a neighborhood of W . This complete former works Cardot
et al. (2003) (linear functional model) and Gadiaga and Ignaccolo (2005)
(with projection arguments).

• If R = {r0, ∃C, r0 ≡ C}, our test statistic may be used with r∗0 ≡
m−1
n

∑N
i=n+1 Yi if nΦ 1−l

2 (hn) = o (mn) (where l ∈ [0, 1
2

]
is involved in

one of our conditions). We get a no-e�ect test of the variable X on Y
that completes the results established by Gadiaga and Ignaccolo (2005)
in the case of a known constant C and Cardot et al. (2003) in the linear
functional model.

• If R = {r0 : E → R, linear}, our results may be used, under some assump-
tions, taking for r∗0 the estimator studied in Crambes et al. (2007). We get
the �rst linearity test proposed for a regression model with functional co-
variate.

• Let V : E → Rq known. If R = {r0, ∃ψ : Rq → R, r0 = ψ ◦ V }, our ap-
proach may be used, under some assumptions, taking for r∗0 the kernel
estimator constructed from (V (Xi) , Yi)n+1≤i≤N . We get an innovative
test that allows to check if the e�ect of an explanatory functional variable
is indeed the e�ect of the vector V (X) constituted from some features of
this curve (for instance minima, maxima, in�ection points,. . . ).

• If E is an Hilbert space and if
R = {r0, ∃θ ∈ E , ∃ψ : R→ R, r0 = ψ (< ., θ >)}, the results given by Ait-
Saïdi et al. (2008) show that in certain cases θCV may be chosen by cross-
validation and we can take for r∗0 the kernel estimator constructed from
(< Xi, θCV >,Yi)n+1≤i≤N .

23.4 Bootstrap procedures and simulations

Instead of computing quantiles from the asymptotic law, we propose various
residual-based bootstrap procedures. We call r̂∗ the kernel estimator con-
structed from the sample D∗. We propose to repeat the following procedure
for b in {1, . . . , Nboot} to construct Nboot bootstrap values of T ∗n . We compute
successively the values of:
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1. Estimated residuals: ε̂i = Yi − r̂ (Xi) , 1 ≤ i ≤ n and ε̂i = Yi − r̂∗ (Xi) ,
n+ 1 ≤ i ≤ N .

2. Estimated centered residuals: ˆ̂εi = ε̂i − ε̂n, 1 ≤ i ≤ n, ˆ̂εi = ε̂i − ε̂N−n,
n+ 1 ≤ i ≤ N .

3. Bootstrap residuals:
a) Resampling:

(
ε̃bi
)

1≤i≤n, respectively
(
ε̃bi
)
n+1≤i≤N , are drawn with re-

placement from
{

ˆ̂εi, 1 ≤ i ≤ n
}
, respectively from

{
ˆ̂εi, n+ 1 ≤ i ≤ N

}
.

b) Naive bootstrap:
(
ε̃bi
)

1≤i≤n, respectively
(
ε̃bi
)
n+1≤i≤N , are drawn from

the empirical distribution of
(

ˆ̂εi
)

1≤i≤n
, respectively

(
ˆ̂εi
)
n+1≤i≤N

.

c) Wild bootstrap: ε̃bi = ˆ̂εiUi, 1 ≤ i ≤ N , where (Ui)1≤i≤n are i.i.d.∼ PW ,
independent of (Xi, Yi)1≤i≤N and ful�ll E [U1] = 0, E

[
U j1

]
= 1, j = 2, 3.

4. Bootstrap responses Ỹ bi = r∗0 (Xi) + ε̃bi , 1 ≤ i ≤ N .
5. Bootstrap test statistic T̃ b∗n computed from the sample

(
Xi, Ỹ

b
i

)
1≤i≤N

.

Finally, if α is the level of the test, we reject assumption H0 if our test statis-
tic T ∗n is greater than the value of the empirical (1− α)-quantile of the family(
T̃ b∗n
)

1≤b≤Nboot
.

We compare level and power of these bootstrap procedures on simulation
studies. For instance, in the case of a no-e�ect test, we simulate 300 curves

Xi (t) = aicos (2πt) + bisin (3πt) + ci (t− 0.45) (t− 0.75) edit,

with ai ∼ U ([−1; 1]) , bi ∼ N (1; 1) , ci ∼ U ([1; 5]) and di ∼ U ([−1.5; 1.5])
and consider the following model where εi ∼ N (0; 1)

Yi = γ (ai + bi + ci + di) + 2 + εi.

We split this dataset in three independent datasets of size 100. The �rst
one corresponds to D, the second one to D∗ while the third one is used to
approximate the integral. In the following table we give the probabilities of
rejecting the no-e�ect assumption for various values of γ computed on 10000
tests with Nboot = 100. R represents the empirical signal-to-noise ratio. We
propose three wild bootstrap procedures constructed from three distributions
PW .

γ Resampling Naive Boot. Wild Boot. 1 Wild Boot. 2 Wild Boot. 3 R
0 0.0618 0.0463 0.0614 0.0437 0.0534 1

0.2 0.1609 0.1275 0.1601 0.1133 0.1373 1.14
0.4 0.5180 0.4603 0.5437 0.4447 0.4999 1.56
0.59 0.8293 0.7806 0.8517 0.7836 0.8231 2.21
0.8 0.9557 0.9420 0.9659 0.9445 0.9591 3.23
1 0.9862 0.9775 0.9921 0.9827 0.9886 4.47
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Chapter 24
Vector Integration and Stochastic
Integration in Banach Spaces

Nicolae Dinculeanu

24.1 Introduction

The Stochastic Integral H · X with respect to a real-valued process X, as
constructed by Dellacherie and Meyer (1975-1980), is obtained by extending
a linear functional from the space if simple processes to the space of all
bounded predictable processes H.

This Stochastic Integral is not a genuine integral, in the sense that it is
not an integral with respect to a measure. It is desirable, as in the classical
Measure Theory, to have a space of integrable processes, with a norm on it
for which it is a Banach space, and to have an integral for the integrable
processes, which would be the Stochastic Integral. Also, desirable would be
to have Vitali and Lebesgue-type convergence theorems. Such a goal is legit-
imate and many attempts have been made to ful�ll this goal.

We present a measure-theoretic approach of the Stochastic Integral H ·X
by using a vector measure IX associated with this process X, where both
processes H and X have their values in Banach spaces. A particular case was
previously considered by Kussmaul (1977) in case both processes H and X
are real-valued.

In order to be able to adopt a measure-theoretic approach for the Stochas-
tic Integral, we have to construct, �rst, an integration theory for vector-valued
functions with respect to vector-valued measures with �nite semivariation.

Nicolae Dinculeanu
University of Florida Gainesville, Florida 32611, USA, e-mail: dinculeanunicola@
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24.2 Vector integration

There are four stages in the development of the integration theory. Each stage
is based on the preceding one.

24.2.1 The classical integral

The framework for this stage is a measure space (X,
∑
, µ) with µ a positive

measure. As it is well known, the following notions are de�ned:
µ−measurability and µ−integrability of real-valued functions, the space
L1(µ) of µ−integrable functions, an integral

∫ |f |µ for the µ−integrable func-
tions, a seminormal ||f ||1 =

∫ |f |dµ on the space L1(µ) for which it is com-
plete and the space of

∑−step functions is dense in L1(µ). Moreover, the
Vitali and the Lebesgue convergence theorems are valid. All these features
will be found in the following stages.

24.2.2 The Bochner integral

We have the same framework (X,
∑
, µ) with µ ≥ 0, but the functions have

values in a Banach space F . A function f : X → F is µ−measurable if it is
the pointwise limit of a sequence of

∑−step functions.
The function f is Bochner-integrable with respect to µ if it is µ−measurable

and if the function |f | is µ−integramble in the sense of stage 1. The space of
Bouchner-integrable functions f : X → F is denoted by L1

F (µ) and we de�ne
the seminorm ||f ||1 =

∫ |f |dµ for f ∈ L1
F (µ). The space L1

F (µ) is complete
for this seminorm and the

∑−step functions are deuse in L1
F (µ). Moreover,

the Vitali and the Lebesgue convergence theorems remain valid. It remains
to de�ne the Bochner integral. For a

∑−step function f =
∑
ϕAixi with

Ai ∈
∑

disjoint and xi ∈ F , we de�ne the integral
∫
fdµ by

∫
fdµ =

∑
µ(Ai)xi ∈ F.

For such a function we have

|
∫
fdµ| ≤

∫
|f |dµ = ||f ||1,

hence the linear mapping f 7→ ∫
fdµ, with values in F , is continuous on the

subspace of step functions, for the seminorm ||f ||1. We extend this functional
by continuity to the whole space L1

F (µ). The value of this extension for a
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functions f ∈ L1
F (µ) is denoted by

∫
fdµ and is called the Bochner integral

of f with respect to µ. We have
∫
fdµ ∈ F .

24.2.3 Integration with respect to a vector-measure with
�nite variations

The framework for this stage is a measurable space (X,
∑

), three Banach
spaces E,F,G such that E ⊂ L(F,G) continuously and a σ−additive measure
m :

∑ → E. We assume that m has �nite variation, which is the same to
assume that there is a �nite, positive, σ−additive measure γ dominating m,
i.e., such that |m(A)| ≤ γ(A) for A ∈∑. There is a smallest �nite, positive,
σ−additive measure dominating m, denoted by |m| and called the variation
of m.

Measurability, and integrability of a function f : X → F is, by de�nition,
measurability and integrability with respect to the variation |m|, in the sense
of stage 2. We denote by L1

F (m) := L1
F (|m|), the space of m−integrable

functions, and we de�ne the seminorm ||f ||1 =
∫ |f |d|m|, for f ∈ L1

F (µ). The
space L1

F (m) is complete, the
∑−step functions are dense and the Vitali

and Lebesgue convergence theorems are valid.
The integral

∫
fdm for f ∈ L1

F (m) is an element of G and is de�ned �rst,
as in stage 2, for

∑−step functions and then extended by continuity to the
whole space L1

F (m). We notice that
∫
fdm ∈ G for f ∈ L1

F (µ).

24.2.4 Integration with respect to a vector-measure with
�nite semivariation

This stage is more complicated, but seems to be custom-made for application
to the Stochastic Integral. We have the same framework as in stage 3: a mea-
surable space (X,

∑
), three Banach spaces E ⊂ L(F,G) and a σ−additive

measure m :
∑ → E. This measure is not necessarily with �nite variation,

but we associate to it a family (mz)z∈G∗ , of vector measures mz :
∑ → F ∗

with �nite or in�nite variation |mz|, in the following way: For z ∈ G∗, the
measure mz :

∑→ F ∗ is de�ned for each set A ∈∑ by the equality

< x,mz(A) >=< m(A)x, z >, for x ∈ F.

The semivariation m̃ (or m̃F,G) of m with respect to the embedding
E ⊂ L(F,G) is de�ned by
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m̃(A) = sup
|z|≤1

|mz|(A)|, for A ∈
∑

.

We assume the semivariation m̃ is �nite. Then all measures mz have �nite
variation |mz|. For each measure mz :

∑ → F ∗ = L(F,R) we apply the
theory of stage 3, and we obtain a space L1

F (mz). For each function f ∈⋂
z∈G∗

L1
F (mz) we de�ne the seminorm

m̃(f) = sup
|z|≤1

∫
|f |d|mz| ≤ +∞.

The functions f with m̃(f) < ∞ are called m−integrable functions and
the space of m−integrable functions f : X → F is denoted by FF (m̃). We
have, evidently FF (m̃) ⊂ ⋂

z∈G∗
L1
F (mz) and m̃(f) is a seminorm on FF (m̃),

for which it is complete and Vitali and Lebesgue-type convergence theorems
are valid.

We de�ne now the integral for functions f ∈ FF (m̃). If f ∈ FF (m̃), then
f ∈ L1

F (mz) for each z ∈ G∗ and

|
∫
fdmz| ≤

∫
f |d|mz| ≤ |z|m̃(f),

hence this mapping belongs to G∗∗. We denote this mapping by
∫
fdm and

we call it the integral of f with respect to m. We have
∫
fdm ∈ G∗∗,

<

∫
fdm.z >=

∫
fdmz, for z ∈ G∗,

and
|
∫
fdm| ≤ m̃(f).

24.3 The stochastic integral

The framework for this section is a probability space (Ω,F , P ), a �ltra-
tion (Ft)t∈R+ satisfying the usual conditions and three Banach spaces E ⊂
L(F,G). If 1 ≤ p <∞ we denote LpF = LpF (P ).

We de�ne the ring R of subsets of R+×Ω consisting of predictable rectan-
gles of the form {0}×A with A ∈ F0 and (s, t]×A with s < t and A ∈ Fs. The
σ−algebra P generated by R is called the predictable σ−algebra. We con-
sider a vector-valued process X : R+ ×Ω → E. We assume that X is cadlag
(i.e. continue à droite, limits à gauche), adapted (i.e. Xt is Ft−measurable
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for t ∈ R+), and that Xt ∈ LpF for each t ∈ R+. From the embedding
E ⊂ L(F,G) we deduce the embedding LpE ⊂ L(F,LpG).

We associate to the process X a stochastic measure IX : R → LpE ⊂
L(F,LpG), by IX({0} × A) = X01A ∈ LpE , for A ∈ F0 and IX((s, t] × A) =
(Xt−Xs)1A ∈ LpE , for s ≤ t and A ∈ Fs. The measure IX is additive (but not
necessarily σ−additive) and does not necessarily have �nite semivariation. 

We say that the process X is p−summable (with respect to (F,LpG), if
the measure IX can be extended to a σ−additive measure IX : P → LpE ⊂
L(F,LpG), with �nite semivariation (ĨX)F,LpG (or with respect to (F,LpG)). We
assume that X is p−summable with respect to (F,LpG). We shall de�ne the
stochastic integral H ·X with respect to X, of certain predictable processes
H : R+ × Ω → F . The stochastic integral H · X is itself a process with
valued in G. For this purpose we shall apply stage 4 of the preceding section,
by replacing (X,

∑
, µ) with (R+ × Ω,P, IX) and E ⊂ L(F,G) with LpE ⊂

L(F,LpG).
Instead of z ∈ G∗ from stage 4, we consider here z ∈ (LpG)∗ = LqG∗

with 1
p + 1

q = 1. For z ∈ LqG∗ we consider the measure (IX)z : P → F ∗ =
L(F,R) with �nite variation |(IX)z|, the space L1

F ((IX)z) and the integral∫
Hd(IX)z ∈ R for H ∈ L1((IX)z).
The measure (IX)z satis�es the equality:
< y, (IX)z(A) >=

∫
< IX(A)(ω)y, z(ω) > dP (ω), for A ∈ P and y ∈ F ,

where the bracket in the integral represents the duality between G and G∗,
and the bracket outside the integral represents the duality between F and
F ∗.

According to stage 4 of the preceding section, we de�ne the space

FF (IX) ⊂ ⋂
z∈LqG

L1
F

(
(IX)z

)
, and the seminorm

ĨX(H) = sup
∫
|H|d|(IX)z|, for H ∈ FF (ĨX).

The space FF (ĨX) is complete for this seminorm. Moreover, we can de�ne
for each H ∈ FF (ĨX) the integral

∫
HdIX ∈ (LPG)∗∗. We notice that for each

H ∈ FF (ĨX) and each t ∈ R+ we have 1[0,t]H ∈ FF (ĨX).
Then we denote

∫

[0,t]

HdIX =
∫

1[0,t]HdIX ∈ (LPG)∗∗.

We obtain a family (∫

[0,t]

HdIX

)

t∈R+

of elements of (LpG)∗∗.
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We are interested in processes H for which
∫

[0,t]
HdIX ∈ LpG (rather than

(LpG)∗∗). In this case we denote by the same symbol the equivalence class∫
[0,t]

HdIX in LpG, as well as any random variable belonging to this equivalence
class. We obtain in this way a process (

∫
[0,t]

HdIX)t∈R+ with values inG. This
process is always adapted to the �ltration (Ft)t∈R+ but it is not necessarily
cadlag. Then, we denote by L1

F,G(X) the set of processes H ∈ FF,G(ĨX)
satisfying the following two conditions:
a)
∫

[0,t]
HdIX ∈ LPG, for every t ∈ R+.

b) The process (
∫

[0,t]
HdIX)t∈R+ has a cadlag modi�cation.

The processes H ∈ L1
F,G(X) are said to be integrable with respect to X.

If H ∈ L1
F,G(X), then any cadlag modi�cation of the process

(
∫

[0,t]
HdIX)t∈R+ is called the stochastic integration of H with respect to X

and is denoted by H ·X or
∫
HdX :

(H ·X)t(ω) = (
∫
HdX)t(ω) = (

∫
[0,t]

HdIX)(ω), a.s.
It follows that the stochastic integral is de�ned up to an evanescent process.

Examples of p−summable processes:
1.) If E and G are Hilbert spaces and X : R+ × Ω → E ⊂ L(F,G) is a
square-integrable martingale, then X is 2−summable.
2.) If X : R+ × Ω → E is a cadlag, adapted process with integrable
variations, then X is 1−summable for any embedding E ⊂ L(F,G) and
the stochastic integral can be computed pathwise as a Stieltjes integral:
(H ·X)t(ω) =

∫
[0,t]

Hs(ω)dXs(ω), a.s. for t ∈ R+.

3.) If X : R+ × Ω → E ⊂ L(F,G) is a cadlag, adapted process with
p−integrable semivariation relative to (F,G) and if c0 does not belong to
E and G, then X is p−summable and the stochastic integral can be com-
puted pathwise as a Stieltjes integral:

(
H ·X

)

t

(ω) =
∫

[0,t]

Hs(ω)dXs(ω), a. s. for t ∈ R+.
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Chapter 25
Multivariate Functional Data
Discrimination Using ICA: Analysis of
Hippocampal Di�erences in Alzheimer's
Disease

Irene Epifanio and Noelia Ventura

Abstract Recently, independent component analysis (ICA) has been suc-
cessfully used for classi�cation of univariate curves, Epifanio (2008). Extend-
ing this methodology to the multivariate functional case, an analysis of hip-
pocampal di�erences in Alzheimer's disease is carried out.

25.1 Introduction

Early diagnosis of Alzheimer's disease (AD) is a topic of great importance.
As more e�ective pharmacological therapies become available, the adminis-
tration of these agents to individuals who are subtly impaired may render the
treatments more e�ective. Mild cognitive impairment (MCI) has been pro-
posed and commonly accepted as a diagnostic entity within the continuum
of cognitive decline towards AD in old age [Grundman et al. 2004, Petersen,
2004]. Longitudinal studies suggest that hippocampal volume loss predicts
cognitive decline [Jack, et al. 1999, Mungas et al. 2001]. Volumetric measure-
ments are simple features, but structural changes at speci�c locations cannot
re�ected in them. If morphological changes could be established, then this
should enable researchers to gain an increased understanding about condi-
tion. This explains why shape analysis has thus become of increasing interest
to the neuroimaging community, Styner et al. (2003).

We analyse the information extracted from magnetic resonance (MR) scans
in 28 subjects for three groups: controls, patients with MCI, and patients with
early AD. The main objective is to understand the way in which their hip-
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pocampi di�er. The available information is translated in a (multivariate)
functional form, as explained in Section 2, and used in a functional discrim-
inant analysis. This methodology uses ICA, and is explained in Section 3.
Finally, results are presented in Section 4, together with some conclusions
and future developments.

25.2 Brain MR scans processing

Twenty-eight subjects participated in this study: 12 healthy elders (�ve males
and seven females, mean age 70.17±3.43), 6 patients with MCI (two males
and four females, mean age 75.50±3.33), and 10 patients with early AD (one
male and nine females, mean age 71.50±4.35). All subjects were recruited
from the Neurology Service at La Magdalena Hospital and the Neuropsy-
chology Service at the Universitat Jaume I. All experimental procedures com-
plied with the guidelines of the ethical research committee at the Universitat
Jaume I. Written informed consent was obtained from every subject or their
appropriate proxy prior to participation. Selection for the participant group
was made after careful neurological and neuropsychological assessment. The
neuropsychological test battery involved Digit Span, Similarities, Vocabulary,
and Block Design of the WAIS-III; Luria's Watches test, and Poppelreuter´s
Overlapping Figure test. MRI studies were performed on a 1.5T General
Electric system. A whole brain high resolution 3D-Gradient Echo (FSPGR)
T1-weighted anatomical reference scan was acquired (TE 4.2 ms, TR 11.3
ms, FOV 24 cm; matrix = 256×256×124, 1.4 mm-thick coronal images).

Hippocampi are traced on contiguous coronal slices (or sections) following
the guidelines of Watson et al. (1992), and Hasboun et al. [Hasboun et al.,
1996]. Each hippocampus is described by around 30 slices. The hippocampus
segmentation was done by a double tracer, blinded to the clinical data of
the study subjects. The �rst tracing was done manually by an expert rater
with the VOXAR program (v4.2) and the second tracing was done manually
with the MRIcro software by other expert tracer, giving nearly equal seg-
mentations. So, we consider only one of the segmentations, the second one.
Total time for the segmentation of one hippocampus was approximately 40
minutes. Fig. 25.1 (a) shows an example of one coronal slice, with the right
and left hippocampus drawn in white, whereas Fig. 25.1 (b) displays a sagital
view of one of the hippocampus.

As aforementioned, volumen is a discriminatory feature for this problem.
Therefore, we think that area could be a good descriptor for each slice. Area
of right and left hippocampus in each slice is computed (it can be estimated
as the number of pixels of each hippocampal segmented slice). Therefore,
for each subject we have two functional data, where the argument is not
time, as usual, but the space, the coronal axis. We observe the right and
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(a) (b)

Fig. 25.1 Hippocampal outlines in a coronal (a) and sagital (b) slice.

left hippocampal area only in each coronal slice (with 1.4mm of separation
between them), although they are really continuous functions.

25.3 Methodology: ICA and linear discriminant analysis

Epifanio has studied recently several shape descriptors for classi�cation of
univariate functional data Epifanio (2008), where existing literature on func-
tional discrimination is also discussed. In this paper, shape descriptors have
been exhaustively compared with classical and the most recent advances in
functional data classi�cation. Coe�cients of independent component analy-
sis (ICA) components were one of them. They can be computed easily, and
provide better than or similar results to those from existing techniques. Fur-
thermore, they can be extended easily to the multivariate functional case.
Although, Epifanio (2008) can be seen for details, here a brief summary is
given.

Assume that we observe n linear mixtures x1(t), ..., xn(t) of n independent
components sj(t),

xi(t) =
n∑

j=1

aijsj(t), for all i. (25.1)

In practice, we have discretized curves ({xi(tk); k = 1, ...,m}), therefore we
can consider the m×n data matrix X = {xi(tk)} to be a linear combination
of independent components, i.e. X = SA, where columns of S contain the
independent components and A is a linear mixing matrix. ICA attempts to
�un-mix� the data by estimating an un-mixing matrix W where XW = S.
Under this generative model the measured �signals� in X will tend to be
�more Gaussian� than the source components (in S) due to the Central Limit
Theorem. Thus, in order to extract the independent components/sources we
search for an un-mixing matrix W that maximizes the nongaussianity of the
sources.
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We compute ICA for functions in the training set. The coe�cients in this
base (S) can be easily obtained by least squares �tting, Ramsay and Silver-
man (2005). If y = {y(tk)}mk=1 is a discretized function, its coe�cients are:
(STS)−1ST y, where T indicates the transposed matrix. These coe�cients
constitute the feature vector used in the classi�cation stage. We assume that
all functions are observed at the same points. In any case, this is not a re-
strictive issue, since we can always �t a basis and estimate the functions at
the desired points.

Before the application of the ICA algorithm, data preprocessing is use-
ful, Hyvärinen et al. (2001). Smoothing of the data is useful for reducing
noise. Another very useful thing to do is to reduce previously the dimen-
sion of the data by principal component analysis (PCA), thus reducing
noise and preventing overlearning. Therefore, we compute the PCA �rst,
retaining a certain number of components, and then estimate the same
number of independent components as the PCA reduced dimension. Fas-
tICA algorithm, with the default parameters, is used for obtaining ICA
(http://www.cis.hut.fi/projects/ica/fastica/).

When having multivariate functional data, we can concatenate observa-
tions of the functions into a single long vector, as done for computing bivariate
functional PCA, Ramsay and Silverman (2002).

Coe�cients in ICA base are used in a classical linear discriminant analy-
sis. The number of independent components used is selected by leave-one-out
cross-validation. We can also compute a linear discriminant function α(t)
based on ICA as made in [Ramsay and Silverman, 2002, Ch. 8] with PCA.
The linear discriminant values can be expressed in terms of the ICA coef-
�cients and discriminant scores a (a vector of the same length as the num-
ber of functions in the ICA basis): a(STS)−1STX. At the same time, we
can approximate

∫
α(t)xi(t)dt by

∑m
k=1 α(tk)xi(tk) if we consider the sep-

aration between points as one. Therefore, we estimate α(t) at points tk as
a(STS)−1ST .

This methodology is applied to a known bivariate functional data: the
bone shape data of [Ramsay and Silverman,2002, Ch. 8], where the best
results using PCA yielded 26 errors (19 false positives and 7 false negatives).
In our case, the number of errors was reduced to 20 (19 false positives and 1
false negative) using only the coe�cients for one independent component.

25.4 Results of the hippocampus study

Firstly, the classical features, right and left hippocampal volumes, are com-
puted. The misclassi�cations by a linear discriminant analysis and leave-
one-out cross-validation are 5 if volumes of right and left hippocampi are
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considered. This number is increased if they are considered separately: 6 and
7 for the left and right hippocampi, respectively.

Secondly, bivariate functional data compiling areas of slices for the left and
right hippocampi are considered. As the coronal length of each hippocampus
is variable, for having a common axis (33 slices), we complete the raw data
by adding zeros when hippocampal surface is �nished. Moreover, for all sub-
jects, the �rst and last slice are zero. Data are smoothed by 31 Fourier basis
functions, and di�erent smoothing parameter λ (we consider λ = 0, 0.01, 1),
where the roughness penalty is the integrated squared second derivative. In
order to take into account the phase variation (some hippocampi only appear
in 24 slices), we carry out a registration process, applying the function reg-
isterfd of the package fda, using the minimum eigenvalue of a cross-product
matrix as the continuous registration criterion and the mean function as the
target function, Ramsay and Silverman (2005).

Using the methodology presented in Section 3, with λ and number of inde-
pendent components chosen by leave-one-out cross-validation, the number of
misclassi�cations is 5, with one component and λ = 0.1. This result does not
improve that of the volume. We think that this because the same argument
(axis) is used in the registration of the right and left hippocampi, and maybe
their behaviour is not the same. Therefore, we consider areas of slices for
the left and right hippocampi separately, as univariate functions, and repeat
the procedure. The number of misclassi�cations for the left hippocampi is 3,
with �ve components and λ = 0.1, whereas it is 6 for the right hippocampi,
with two components and λ = 0. Figures 25.2 (a) and (b) display the mode
of variability corresponding to the resulting α(t)s, for the left and right hip-
pocampi, respectively, with the vertical lines. The solid curve is the mean.
The dashed, dashdotted and dotted curves represent the mean of the controls,
patients with MCI, and patients with early AD, respectively. The �rst linear
discriminant explains 95.7% and 91.9% of the variance between groups, for
the left and right hippocampi, respectively.

0 5 10 15 20 25 30 35
−20

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35
−20

0

20

40

60

80

100

120

140

(a) (b)

Fig. 25.2 The mode of variability corresponding to α(t)s, for the left (a) and right (b)
hippocampi. See the text for details.
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Both for the right and left hippocampus, the zone where the linear dis-
criminant functions are bigger in absolute value corresponds to the head of
the hippocampi (hippocampi can be divided in three parts: head, body and
tail) Hasboun et al. (1992). This agrees with the conclusions obtained in other
studies with other methodologies, Wang et al. (2003). We consider the point
where the corresponding α(t)s takes its maximum absolute value. Inverting
the corresponding warping function, we �nd the left and right slices of each
subject (rounding to the nearest integer) corresponding to those maximum
values. In order not to base the following analysis only in one slice, we also
consider the previous and subsequent slice to the determined slice. There-
fore, three slices for the right and three slices for the left hippocampi are
considered for each subject, corresponding to the zone of the hippocampal
head indicated by the inversion of the warping functions. The mean of the
areas of these slices are shown in Fig. 25.3 (b), together with the volumes for
the right and left hippocampi (Fig. 25.3 (a)). We can see how it is possible
to discriminate better between groups (the number of misclassi�cations with
the hippocampal head areas is 3 by leave-one-out).
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Fig. 25.3 Left vs. right hippocampal volumes (a), and mean of the areas of the determined
hippocampal head slices (b). Crosses, stars and circles indicate the controls, patients with
MCI, and patients with early AD, respectively.

Finally, we parameterize by arc length the outlines of each of the three
determined slices with 45 points. The di�erent slices are translated to the
origin in such a way its centroid coincides with the origin. The tracing begins
counterclockwise in the most eastern outline point in the same row as the
centroid, using bwtraceboundary of the image toolbox of MatLab. Twenty-
�ve Fourier basis are used to represent these functions. Averages of the three
considered slices per individual are calculated for right and left hippocampi.
Therefore, we have two pairs of functions {X(t), Y (t)} for each individual,
one pair for the right and another pair for the left hippocampus, i.e., a total
of four functional data per individual. Using these four functions jointly with
ICA, only 2 misclassi�cations are achieved with 3 independent components,
which are very promising results.
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This point is very interesting, since if segmentation was reduced only to
the hippocampal head, the segmentation time would be shorter. Furthermore,
it is easier to implement an automatic segmentation only for the hippocam-
pal head, which will decrease even more that time, and will eliminate the
variability due to the subjectivity of the manual tracer.

The study should be repeated with a larger database in order to achieve
valid medical conclusions, although the methodology could be used without
modi�cations. Other point to study could be the use of ICA in other situa-
tions, such as functional logistic regression.
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Chapter 26
In�uence in the Functional Linear
Model with Scalar Response

Manuel Febrero, Pedro Galeano and Wenceslao González-Manteiga

Abstract This paper studies how to identify in�uential curves in the func-
tional linear model in which the response is scalar and the predictor is func-
tional and how to measure their e�ects on the estimation of the model and
on the forecasts, when the model is estimated by the principal components
method. For that, we introduce and analyze two statistics that measure the in-
�uence of each curve on the functional slope estimate of the model, which are
generalizations of the measures proposed for the standard regression model
by Cook (1977) and Peña (2005), respectively.

26.1 Introduction

The collection of data which consists of repeated measurements of the same
subject densely taken over an ordered grid of points belonging to a �nite
length interval is becoming progressively frequent. Data of these character-
istics are usually called functional data, because even though the recording
points are really discrete, we may assume that the entire function has been
completely observed. It is well known that multivariate statistical methods
are not well suited for functional data for several reasons. For instance, multi-
variate statistical methods ignore the time correlation structure of functional
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data. Thus, there exists a demand for suitable procedures to analyze such
data. The books of Ramsay and Silverman (2004, 2005) and Ferraty and
Vieu (2006) are texts of reference and summarize several methods and case
studies for handling functional data from di�erent approaches.

In the recent literature, functional linear models in which the predictors
and/or the response are of a functional nature have received considerable
attention. This paper deals with the functional linear model with scalar re-
sponse in which the predictor is functional. Several approaches have been pro-
posed for estimating the functional parameter of the functional linear model
with scalar response. For instance, Hastie and Mallows (1993), Marx and
Eilers (1999), Cardot, Ferraty and Sarda (2003) and Ramsay and Silverman
(2005) have analyzed the use of restricted basis functions and penalization
methods. Ferraty and Vieu (2006) have proposed the use of nonparamet-
ric estimates based on kernels. Cardot, Ferraty and Sarda (1999) proposed
a least-squares estimate based on functional principal components, which
has been further analyzed in Cardot, Ferraty and Sarda (2003), Hall and
Hosseini-Nasab (2006), Cai and Hall (2006) and Hall and Horowitz (2007),
among others.

As any other statistical data, in�uential observations may be sometimes
found in functional datasets. The aim of this paper is to analyze in�uence in
the functional linear model with scalar response. In particular, we study how
to identify curves with larger in�uence on the estimation of the functional
parameter of the model and how to measure their e�ects on the estimation.
For that, we propose two statistics that seems to be useful in detecting which
curves have strong in�uence on the estimated slope. These statistics are the
generalization to functional data of the measures proposed by Cook (1977)
and Peña (2005) for the standard linear regression model. We use bootstrap
methods to calibrate the distribution of these statistics, which allow us to
detect the presence of in�uential observations. No much is known about in-
�uence in functional models. Only Shen and Xu (2007) and Chiou and Müller
(2007) have introduced functional versions of the Cook distance in the case in
which the predictors are real and the responses are functional, and in the case
in which both the predictors and the responses are functional, respectively.
Both models are di�erent that the one considered here.

As mention previously, there are several ways to estimate the functional
linear model with scalar response. The approach taken in this paper is based
on the functional principal components technique, which has become very
popular. Although it is well known that this estimator may be rough even for
large sample sizes and alternative more smoother estimates have been pro-
posed, we show that the estimator based on functional principal components
provides a natural framework to analyze in�uence. Nevertheless, the results
derived in this paper can be generalized to alternative smoothing estimators
in a simple way.

The rest of this abstract is as follows. Section 2 presents the functional
linear model with scalar response and reviews estimation based on the func-
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tional principal components. Section 3 proposes to analyze in�uence from a
functional point of view by proposing two measures of in�uence which are
the generalization of the measures proposed by Cook (1977) and Peña (2005)
for the standard linear regression model.

26.2 The functional linear model with scalar response

The functional linear model with scalar response faces the problem of es-
timating the relationship between a real variable y and a square integrable
random function X, de�ned in the same probability space. For that, let us as-
sume that a set of pairs of the form (X1, y1) , . . . , (Xn, yn) is observed, where
the exploratory variables, X1, . . . , Xn, and the response variables, y1, . . . , yn,
are independent and identically distributed realizations of the stochastic
process X and the real variable y, respectively. Additionally, we assume that
both variables are centered and that X is valued in L2 (T ), the separable
Hilbertian space of square integrable functions de�ned on the closed interval
T = [a, b] ⊂ <.

The functional linear model with scalar response assumes that the rela-
tionship between Xi and yi is given by:

yi = 〈Xi, β〉+ εi =
∫

T

Xi (t)β (t) dt+ εi, (26.1)

where β is a square integrable function de�ned on T , 〈·, ·〉 denotes the usual
inner product on L2 (T ), and the errors εi, i = 1, . . . , n, have E [εi] = 0 and
constant variance E

[
ε2
]

= σ2, and are independent of the functions Xi.
The functional slope β is the unknown parameter of the functional linear

model with scalar response (26.1) and has to be estimated from the set of pairs
(X1, y1) , . . . , (Xn, yn). For that, we use the principal components approach
of Cardot, Ferraty and Sarda (1999). The functional principal components
of X1, . . . , Xn are the orthonormal eigenfunctions of the sample covariance
operator Γn, which maps any function x in L2 (T ) into another function in
L2 (T ), as follows:

Γnx =
1
n

n∑

i=1

〈Xi, x〉Xi =
1
n

n∑

i=1

(∫

T

Xi (s)x (s) ds
)
Xi. (26.2)

The orthonormal eigenfunctions are denoted by vk, k = 1, 2, . . ., and have
associated eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn−1 ≥ 0 = λn = · · · , such that
Γnvk = λkvk, for k ≥ 1, and 〈vk, vl〉 = δkl, the Dirac delta function such that
δkl = 1, for k = l and δkl = 0, for k 6= l. The eigenfunctions vk, k = 1, 2, . . .
form an orthonormal basis of the functional space L2 (T ). Consequently, the
functional variables Xi and the slope β can be written in terms of the eigen-
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functions vk, k = 1, 2, . . ., using the Karhunen-Loève expansion as follows:

Xi =
∞∑

k=1

γikvk,

β =
∞∑

k=1

βkvk,

where βk = 〈β, vk〉 and γik = 〈Xi, vk〉, respectively, for k = 1, 2, . . . and
i = 1, . . . , n. Note that, in fact, γik = 0, for k ≥ n, so that, model (26.1) can
be rewritten as follows:

yi = 〈Xi, β〉+ εi =

〈
n∑

k=1

γikvk,
∞∑

k=1

βkvk

〉
+ εi =

n∑

k=1

γikβk + εi.

Cardot, Ferraty and Sarda (1999) proposed to estimate β by taking βk = 0,
for k ≥ kn + 1, where kn is some positive integer such that kn < n and
λkn > 0, and estimating the coe�cients βk for k = 1, . . . , kn by minimizing
the residual sum of squares given by:

RSS
(
β(kn)

)
=

n∑

i=1

(
yi −

kn∑

k=1

γikβk

)2

=
∥∥y − γ(kn)β(kn)

∥∥2
,

where y = (y1, . . . , yn)′, β(kn) is the kn × 1 vector β(kn) = (β1, . . . , βkn)′

and γ(kn) is the n × kn matrix whose k-th column is the vector γ·k =
(γ1k, . . . , γnk)′, which is usually called the k-th principal component score and
veri�es v̂ar (γ·k) = (1/n)

∑n
i=1 γ

2
ik = λk and ĉov (γ·k, y) = (1/n)

∑n
i=1 γikγil =

0, for k 6= l. Using standard arguments, the least-squares estimate of β(kn) is
given by:

β̂(kn) =
(
γ′(kn)γ(kn)

)−1

γ′(kn)y,

where γ(kn)
′γ(kn) is a kn×kn diagonal matrix whose (k, k)-th element is nλk,

and γ(kn)
′y is a kn × 1 vector whose k-th element is n × ĉov (γ·k, y). Thus,

β̂(kn) can be written as follows:

β̂(kn) =
(
ĉov (γ·1, y)

λ1
, . . . ,

ĉov (γ·kn , y)
λkn

)′
,

which allows us to de�ne the least-squares estimate of the slope β, denoted
by β̂, and based on the functional principal components of X1, . . . , Xn, as
follows:

β̂ =
kn∑

k=1

β̂kvk =
kn∑

k=1

ĉov (γ·k, y)
λk

vk. (26.3)
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Cardot, Ferraty and Sarda (1999) showed that under several conditions the
estimator β̂ converges in probability and almost surely to β. Further analysis
on the asymptotic and �nite sample properties of β̂ can be found in Cai and
Hall (2006), Hall and Hosseini-Nasab (2006) and Hall and Horowitz (2007).

26.3 In�uence measures for the functional linear model

Once that the model (26.1) has been estimated, it is necessary to asses the
appropriateness of the model using the residuals of the �t. For that, note that
the vector of �tted values can be written as ŷ = H(kn)y, where:

H(kn) = γ(kn)

(
γ′(kn)γ(kn)

)−1

γ′(kn), (26.4)

is called the hat matrix. Note that no matrix inversion is necessary in order
to obtain H(kn) because it can be written as follows:

H(kn) = Γ(kn)Γ
′
(kn), (26.5)

where Γ(kn) is the n× kn matrix whose k-th column is the vector:

Γ·k =
(
γ1k/

√
nλk, . . . , γnk/

√
nλk

)′
= γ·k/

√
nλk.

Therefore, the residuals of the �t are given by e = y− ŷ =
(
I −H(kn)

)
y. The

relationship between ε and e can be established by substituting y by its true
value γ(n)β(n) + ε. This leads to:

e =
(
I −H(kn)

) (
γ(n)β(n) + ε

)
= γ(kn+1:n)β(kn+1:n) +

(
I −H(kn)

)
ε,

where γ(kn+1:n) is the n × (n− kn) matrix whose columns are the vectors
γ·k, for k = kn + 1, . . . , n and β(kn+1:n) = (βkn+1, . . . , βn)′. The last relation-
ship shows that the residuals are biased. Nevertheless, as shown by Cardot,
Ferraty and Sarda (2003) and Hall and Hosseini-Nasab (2006), the bias can
be neglected if n is large enough and kn has been chosen suitably. Thus, the
relationship between ε and e strongly depends on the matrix I − H(kn). In
fact, as the vector ε has zero mean and covariance σ2I, then the vector e
has mean γ(kn+1:n)β(kn+1:n) and covariance σ2

(
I −H(kn)

)
. In order to over-

come the heteroscedasticity of e, it is preferable to work with the internally
Studentized residuals, which are de�ned as follows:

ri =
ei

sR
√

1−H(kn),ii

, i = 1, . . . , n
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where H(kn),ii is the (i, i)-th element of the diagonal of the matrix H(kn) and
s2
R is the functional residual variance given by:

s2
R =

e′e
Trace

(
I −H(kn)

) =
e′e

n− kn ,

which attempts to estimate the variance of the error term, σ2.
Using the the internally Studentized residuals we can carry out diagnostics

on the functional linear model (26.1) such as the ones usually considered for
the standard linear regression model. In this paper, we focus on the identi�-
cation of in�uence curves. For that we consider two measures. The �rst one is
the Cook distance introduced by Cook (1977) for determining the in�uence of
a data point in linear regression. The functional Cook distance for the model
(26.1) can be de�ned as follows:

Di =

(
ŷ − ŷ(−i,kn)

)′ (
ŷ − ŷ(−i,kn)

)

kns2
R

, (26.6)

where ŷ(−i,kn) is the prediction of the response vector y using the cuto� kn and
excluding the i-th observation (Xi, yi) in the estimation. The second one is
the Peña distance introduced by Peña (2005) for determining the in�uence of
a data point in the standard linear regression model. This distance is based on
determining how each point is in�uenced by the rest of points. Here, we adapt
the measure proposed by Peña (2005) to the functional principal components
estimation. For that, for each curve, we de�ne the vector:

si =
(
ŷi − ŷ(−1,kn),i, . . . , ŷi − ŷ(−n,kn),i

)′
, i = 1, . . . , n

where ŷi is the i-th component of the vector ŷ and ŷ(−i,kn),h is the h-th
component of ŷ(−i,kn), for h = 1, . . . , n. Then, the measure of the in�uence
of the i-th curve is measured as follows:

Si =
s′isi

kns2
RH(kn),ii

, i = 1, . . . , n

which is the squared norm of the vector si standardized.
The distribution of both statistics is of a complicated form. Thus, in or-

der to determinate the presence of in�uential observations, we propose a
smoothed bootstrap method to approximate percentiles of the distribution
of both statistics. The performance of both measures and the proposed boot-
strap method will be analyzed by means of several Monte Carlo experiments
and will be illustrated by means of a real data example.
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Chapter 27
Is it Always Optimal to Impose
Constraints on Nonparametric
Functional Estimators? Some Evidence
on the Smoothing Parameter Choice

Jean-Pierre Florens and Anne Vanhems

Abstract The objective of this work is to analyze the impact of imposing
linear constraints on a nonparametric estimator. Such a framework is basic
and has been studied many times, with various applications in Economics.
Our purpose is to analyze whether or not it is worth imposing some economic
linear constraint in a nonparametric setting for well-speci�ed problems. In
particular, we investigate some optimal choice for smoothing parameters.

27.1 Introduction

Taking into account structural constraints to estimate an interest parameter
lies at the heart of many problems in economics. Various examples of eco-
nomic restrictions can be found in the literature, like concavity, monotonicity
of functions, equilibrium conditions. A general overview on how to include
economic restrictions can be found in Matzkin 1994 or 2003. Nonparametric
estimation and testing methods for econometric models have also been inves-
tigated widely. Imposing linear constraints like monotonicity or concavity has
in particular been studied by Delecroix, Simioni and Thomas-Agnan 1996,
Mammen and Thomas-Agnan 1999, Delecroix and Thomas-Agnan 2000. And
more recently, Hall and Huang 2001 or Blundell and Horowitz 2004 have
suggested general kernel-types estimators to impose shape constraints on a
regression function.

Generally speaking, consider the estimation of a function ϕ satisfying some
economic constraint: A (ϕ) = 0 or A (ϕ) > 0 . The functional ϕ is usually

Jean-Pierre Florens
University of Toulouse 1 and Toulouse Business School, France, e-mail: florens@cict.fr
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University of Toulouse 1 and Toulouse Business School, France, e-mail: a.vanhems@
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given by some economic background, like demand function, or production
function and it can be de�ned as the best approximation of Y satisfying a
structural constraint, that can be de�ned for example by:
• A (ϕ) (z) = ∂iϕ (z) = 0 , dimension reduction
• A(ϕ)(z) = ϕ′(z) ≤ 0 , monotonicity constraint
• A(ϕ)(z) = ϕ′′(z) ≤ 0 , convexity constraint
• Slutsky constraint in demand function theory
• Linear compact constraints:

A(ϕ) =
∫
ϕ(z)k(z)dz , A(ϕ) (t) =

∫
ϕ(z)k(z |t )dz

These constraints, usually given by the economic theory or identi�cation
issues (like for example in nonseparable models), have di�erent properties:
linear or nonlinear, de�ned through an integral or a di�erential operator.

However, whatever are the properties of the constraint you impose on your
functional of interest, it raises several issues that may prevent the econome-
trician to impose it. First of all, a constrained function de�ned on in�nite
dimension space is not easily tractable and is usually discretized for com-
putational purposes. For example, monotonicity or concavity constraints are
often imposed on a �xed grid of points in order to make to constraint more
tractable. Second, the operator A may depend on unknown parameters, like
the unknown distribution of the dataset, and then needs to be estimated and
approximated too. A third issue may be identi�cation and overidenti�cation
problem of the estimated solution. This issue is classical in ill-posed inverse
problems and the usual way to deal with it is to regularize the solution using
regularization methods like Tikhonov or Landweber-Friedman regularization.

At last, the cost to pay for estimating the constraint may prevent the
econometrician to impose it, if it worsens too severely the rate of convergence.
The objective of this work is to analyze the impact of these three di�erent
issues in the estimation and asymptotic properties of a constrained estimator
in order to answer the question of the usefulness of imposing a constraint
in an nonparametric context. The kind of constraint we have in mind can
be very general like Slutsly constraint in demand theory, which nonlinear,
di�erential. Nevertheless, in this paper, we will focus on a very particular
class of constraints, which are linear integral and compact. The next step
will be of course to extend this restrictive class.

Estimating nonparametrically a functional under shape constraint is closely
linked to the general framework of inverse problems. Therefore, we intend to
investigate the usefulness of imposing a linear constraint to estimate nonpara-
metrically a regression function in well-speci�ed inverse problems. An inverse
problem is said well-speci�ed when the dataset is driven by the true underly-
ing model (satisfying the model). We implicitly assume that the theoretical
underlying economic model is true. Then, intuitively, imposing a constraint
may not be always necessary, in particular when the initial estimator con-
verges su�ciently quickly. In this work, we investigate some rule to choose
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optimally the smoothing parameters of the estimated functionals of interest.
Due to the particular shape of the constraint we impose, our work is also
closely linked to the estimation of projection operator, studied for example
in Johannes 2005.

Our paper is organized as follows. The next section is devoted to the def-
inition of our model, and identi�cation and overidenti�cation of our interest
parameter. We mainly deal with linear integral constraints (in the case of
equality constraint) and provide some analytic expression of the constrained
solution. We then discuss the choice of the regularization method and provide
some asymptotic results.

27.2 General constrained solutions

Consider a random vector (Z, Y ) ∈ IRk × IRq , P the probability distribution
on (Z, Y ), and the following model:

{
Y = m (Z) + U

IE(U |Z ) = 0 (27.1)

Solving this problem leads to the classical solution m(z) = IE (Y |Z = z ) .
The function m is well de�ned on L2 (Z) , the Hilbert space of square in-
tegrable functions ϕ (Z) with respect to P . It is frequent to impose some
additional conditions that are usually given by economic context, like belong-
ing to a subspace C of L2

Z . C can characterize monotonic functions, convex
functions, or more complex constraint like Slutsky condition. The object of
interest becomes the best-approximate solution ϕ of (27.1) on the set C. If
the subset C is convex and closed, there exists a unique solution: ϕ = PC(m)
where PC is de�ned as the orthogonal projector onto C.

In what follows, we focus on a particular form of constraint. The set C is
characterized through some linear operator A:

C =
{
ϕ ∈ L2(Z);Aϕ = 0

}

Remark that C de�nes the Null Space of A, denoted by N (A) . Therefore,
the interest parameter to be studied is solution of the following equation:
ϕ = PN(A)(m) . Depending on the regularity properties of A, and on whether
or not A is known, we expect to derive di�erent properties for the solution
ϕ and its estimator. In principle, the operator A can either be linear or
nonlinear, compact or noncompact, de�ned as an integral or a di�erential
operator. In what follows, we will assume that:

Assumption [A1] : (i) A is a linear integral compact operator, from
L2(Z) into L2.

(ii) A is not injective, but its adjoint A∗ is injective.
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An example of constraint satisfying the previous assumption is:
A(ϕ) (t) =

∫
ϕ(z)k(z | t)dz = IE(ϕ(Z) |T = t ) where k is the density func-

tion of Z|T .

We recall that the dual operator A∗ is de�ned by the following property:
∀ (ϕ,ψ) ∈ L2(Z)× L2, 〈Aϕ,ψ〉L2 = 〈ϕ,A∗ψ〉L2(Z) . Note that the de�ni-

tion of A∗ is closely linked to the topology considered (this is an important
issue in practice for computation).

Existence and uniqueness: Due to the properties of A, N(A) is closed
and convex, and there exists a unique solution to the projection problem.
This solution is de�ned by:

ϕ = PN(A)(m) =
(
I − (A∗A)†A∗A

)
m (27.2)

where A† is the generalized Moore-Penrose inverse of A (see Engl, Hanke
and Neubauer 2000 for more details). This operator is the unique linear ex-
tension of the inverse of A restricted on N(A)⊥ .

27.3 Regularized estimated solutions

The joint distribution of (Y,Z) is unknown and needs to be estimated using
dataset. Consider a iid sample of this random vector: (yi, zi)i=1,...,n . A non-
parametric estimator of the conditional expectation is denoted by m̂. Thanks
to assumption [A1], any projection on the Null Space of A is uniquely de�ned
and we consider the following estimated solution:

ϕ̂ = PN(A)(m̂) =
(
I − (A∗A)†A∗A

)
m̂ (27.3)

This estimator ϕ̂ can be very interesting to analyze as the true estimator as-
sociated to the true solution ϕ (de�ned by equation (27.2)). Both functions
are the real interest parameters of the constrained model, they are perfectly
well-de�ned, but unfortunately not easily tractable for two reasons. First, the
operator (A∗A) to inverse lies in a in�nite dimension space and the gener-
alized inverse operator (A∗A)† has to be numerically approximated. Second,
the operator A itself may need to be estimated. Let consider both cases.

Inversion of A∗A. A strategy to deal with this ill-posedness is to de�ne
a regularized operator rα (A∗A) converging to (A∗A)† as α decreases to zero.
More precisely, rα is assumed to be piecewise continuous real function de�ned
on [0; c] for c > 0 such that there exists a constant c with

∣∣σ2rα
(
σ2
)∣∣ ≤ c

and lim
α−>0

rα
(
σ2
)

= 1
σ2 for all σ2 ∈ (0; c] . We will assume classical conditions

on the regularization scheme rα in order to prove all the results.
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Various examples of regularization methods can be applied. We can think
in particular of the Landweber Friedman recursive scheme:

ϕα,k = (I − bA∗A)ϕα,k−1, k = 1, ...,
1
α
− 1

with b �xed constant, b < 1
‖A2‖ . The smoothing parameter α determines the

number of iterations on the algorithm. Another classical method is Tikhonov
regularization: rα (A∗A) = (αI +A∗A)−1

Therefore, we de�ne a regularized solution ϕα by:

ϕα = (I − rα (A∗A)A∗A)m = PαN(A)(m)

Estimation of A. Up to now, we haven't discuss the case where A is
unknown, depending on the law of distribution of the dataset, or even simply
numerically untractable. In both cases, we need to replace the true oper-
ator A by some estimation or approximation Â. As we mentioned in in-
troduction, the exists di�erent kinds of constraints. Consider for example
A(ϕ) (t) = IE(ϕ(Z) |T = t ) . In this case, the operator A depends on the law
of distribution of (Z, T ) and a natural estimation of the constraint is to re-
place the conditional expectation by a kernel estimate, or series estimator.
For the monotonous or convexity constraint case, the operator A is known
but not easily computable. An approximation is then given by discretizing
the constraint on a �xed grid of points.

Depending on whether the operator A is estimated or not, we will consider
either

ϕ̂α = (I − rα (A∗A)A∗A) m̂ = PαN(A)(m̂)

or
ϕ̂α =

(
I − rα

(
Â∗Â

)
Â∗Â

)
m̂ = Pα

N( bA)(m̂)

These last expressions de�ne explicit regularized estimators for our solu-
tion ϕ. The asymptotic properties will depend in particular on the choice of
the smoothing parameter α.

27.4 Asymptotic behavior

The objective of this part is to derive some consistency and asymptotic rate
results using the estimated expressions of ϕ derived above.

One speci�c feature of the model is the case of well-speci�ed problem.
It means that the underlying economic model is true and the conditional
expectation automatically satis�es the constraint, that is m ∈ N(A) and
ϕ = m . The di�culty of the problem comes from the estimation part since
the nonparametric regression may not satisfy the constraint. We will pay a
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particular attention to that case. Intuitively, if the model is well-speci�ed,
we should at least expect the same rate of convergence as the conditional
expectation estimator or even better.

By de�nition,

‖ϕ̂− ϕ‖ =
∥∥PN(A)(m̂−m)

∥∥
≤ ‖m̂−m‖

Therefore, the "true estimator" ϕ̂ will always converge to ϕ, with a rate of
convergence that is quicker or equal to the initial nonparametric rate. This
rate is in principal unknown, apart from a few exceptions. We can think
in particular of a projection on a �nite dimension space, that will lead to a
parametric rate of convergence. Other examples will lead to no gain in rates of
convergence, and the true estimator will converge at the initial nonparametric
rate. Generally speaking, in what follows, we will assume that: ‖ϕ̂− ϕ‖2 =
O
(

1
n2a

)
,a > 0 .

By construction, ϕ̂α is the regularized computable version of the "true"
estimator ϕ̂. An important issue to deal with is to check whether or not the
regularized estimation error (ϕ̂α − ϕ) achieves the same rate of convergence
as (ϕ̂− ϕ) . This implies in particular an optimal choice of the smoothing pa-
rameters α. Such an investigation could lead to practical adaptative methods
for choosing α, which are crucial issues for practitioners.

We have:

ϕ̂α − ϕ =
[
I − rα

(
Â∗Â

)
Â∗Â

]
m̂− ϕ

= Pα
N( bA)

m̂− ϕ

=
[
Pα
N( bA)

− PαN(A)

]
m̂

︸ ︷︷ ︸
+
[
PαN(A) − PN(A)

]
m̂

︸ ︷︷ ︸
+ ϕ̂− ϕ︸ ︷︷ ︸

However, there exists a tradeo� between these three terms, and depending
on the regularization bias (second term) and the properties of Â (�rst term),
we get di�erent rates of convergence. In particular, we show that it may not
always be useful to impose the constraint on m̂, it depends on the slow rate
of convergence of Â to A.

At last, we give some data driven rule to select the smoothing parameter
α.
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Chapter 28
Dynamic Semiparametric Factor Models
in Pricing Kernels Estimation

Enzo Giacomini and Wolfgang Härdle

Abstract Dynamic semiparametric factor models (DSFMs) smooth in time
and space simultaneously, approximating complex dynamic structures by ba-
sis functions and a time series of loading coe�cients. In this paper DSFMs
are used to estimate in a time varying approach the term structure from state
price densities and pricing kernels obtained from German option data.

28.1 Introduction

Option prices are a valuable source of information concerning risk assess-
ments from investors about future �nancial payo�s. The information is sum-
marized in the state price densities (SPD), the continuous counterpart from
Arrow-Debreu security prices. Under no arbitrage assumptions the state price
densities q - corresponding to a risk neutral measure Q - are derived from
option prices as in Breeden and Litzenberger (1978). In contrast to the state
price density, the historical density p describes the random variations of the
underlying price.

According to standard economic theory, risk averse investors facing �nan-
cial risk have preference-indi�erence relations represented by a concave utility
function u. Equilibrium and non-arbitrage arguments, as in Merton (1973),
show that u is related to the state price and historical densities, allowing to
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conclude its functional form from q and p. Part of this relation is given by
the pricing kernel (28.2).

In this paper we investigate, in a time varying approach, pricing kernels
from DAX and ODAX data and their term structure. The complex dynamic
structure from pricing kernels across di�erent maturities is approximated and
analysed by dynamic semiparametric factor models (DSFMs).

28.2 Pricing kernels

A �exible approach is to assume a complete market where the di�usion
process

dSt
St

= µ(St, t)dt+ σ(St, t)dBt

describes the price of a security, t ∈ [0, T ] and Bt is a standard Brownian
motion de�ned on a probability space (Ω,F , P ). The arbitrage-free price at
time t ≤ s ≤ T from a payo� Ψ(Ss) is given by

EQ
[
e−rτΨ(Ss)

∣∣Ft
]

= EP
[
e−rτΨ(Ss)

ζs
ζt

∣∣∣∣Ft
]

where r is interest rate, τ = s − t time to maturity, Ft = σ(Sn, 0 ≤ n ≤ t)
represents the information available at t and ζt = dQ

dP

∣∣∣
Ft
. The pricing kernel

(PK) is de�ned as:

Mt,τ = e−rτ
ζs
ζt
. (28.1)

We assume the existence of a representative investor with utility function u
that solves the Merton optimization problem. In equilibirum the PK is path
independent and equal to the marginal rate of substitution:

u′(ST )
u′(St)

= Mt,τ = e−rτ
qt(ST )
pt(ST )

. (28.2)

Here qt, pt denote the risk neutral and historical density at time t.
Breeden and Litzenberger (1978) showed how qt(ST ) may be obtained from

option prices. Ait-Sahalia and Lo (1998) used the estimate:

q̂t(ST ) = erτ
∂2CBS{St,K, τ, rt, σ̂t(κ, τ)}

∂K2

∣∣∣∣
K=ST

(28.3)
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where CBS(S,K, τ, r, σ) = SΦ(d1)−Ke−rτΦ(d2) is the Black-Scholes price of
a call option with strike K and maturity τ . Here Φ(x) is the standard normal
cdf, d1 =

{
log
(
S
K

)
+ (r + 1

2σ
2)τ
}
/(σ
√
τ), d2 = d1 − σ

√
τ and σ̂t(κ, τ) is a

nonparametric estimator for the implied volatility at moneyness κt = K
St
e−rtτ

and maturity τ .
Implied volatilities may be estimated from observed option prices. On

each day t = 1, . . . , T there are Jt options traded. Each intra-day trade
j = 1, . . . , Jt corresponds to an implied volatility σt,j and a pair of moneyness
and maturity Xt,j = (κt,j , τt,j)>. Figure 1 depicts the implied volatilities
corresponding to trades on ODAX in day 20000502 (dates are written as
year, month, day).

Fig. 28.1 Observed implied volatilities (left), data design (right), ODAX on 20000502

28.3 Pricing kernels estimation with DSFM

Dynamic semi-parametric factor models (DSFM), Fengler et al. (2007),
employ the time series structure of implied volatilities regressing log im-
plied volatilities Yt,j = log σt,j on Xt,j using smooth basis functions ml,
l = 0, . . . , L weighted with factor loadings zt,l:

Yt,j =
L∑

l=0

zt,lml(Xt,j) + εt,j (28.4)

where εt,j is noise and zt,0 ≡ 1.
For each t the observations Yt = {Yt,j : 1 ≤ j ≤ Jt} may be viewed as

discretized values from a smooth surface St, therefore interest might be placed
on St, which has a linkage to functional data analysis. The usual approach
as in Cont and da Fonseca (2002) is to obtain an estimate of St from Yt and
build up a factor model. DSFM avoids an initial �t of St that may su�er
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from design-sparseness by transfering the discrete representation directly to
the functions ml.

Following Borak et al. (2007), the basis functions are expanded using a
series estimator for functions ψk : R2

+ → R, k = 1 . . . ,K and coe�cients
γl,k ∈ R

ml(Xt,j) =
K∑

k=1

γl,kψk(Xt,j).

De�ning the matrices Z = (zt,l), Γ = (γl,k) we obtain the least square esti-
mators as

(Γ̂ , Ẑ) = arg min
Γ∈G,Z∈Z

T∑
t=1

J∑

j=1

{
Yt,j − z>t Γψ(Xt,j)

}2

where zt = (zt,0, . . . , zt,L)>, ψ(x) = {ψ1(x), . . . , ψK(x)}> , G =M(L+1,K),
Z = {Z ∈M(T, L+1) : zt,0 ≡ 1} andM(a, b) is the set of all (a×b) matrices.
The implied volatility (IV) at time t is estimated as

σ̂t(κ, τ) = exp
{
ẑ>t m̂(κ, τ)

}
(28.5)

where m̂ = (m̂0, . . . , m̂L)> are the estimators for the basis functions in (28.4)
with m̂l(x) = γ̂>l ψ(x) and γl = (γl,1, . . . , γl,K)>. Using (28.3), the state price
density may be approximated by

q̂t(κ, τ, ẑt, m̂) = (28.6)

ϕ(d2)

{
1

Kσ̂t
√
τ

+
2d1

σ̂t

∂σ̂t
∂K

+
K
√
τd1d2

σ̂t

(
∂σ̂t
∂K

)2

+K
√
τ
∂2σ̂t
∂K2

}∣∣∣∣∣
K=ST

where ϕ(x) is the standard normal pdf. As in Ait-Sahalia and Lo (2000) we
de�ne an estimate M̂t(κ, τ) of the PK as the ratio between the estimated
SPD and the estimated p:

M̂t(κ, τ, ẑt, m̂) = e−rtτ
q̂t(κ, τ, ẑt, m̂)
p̂t(κ, τ)

. (28.7)

It is our interest to examine the dynamic structure of (28.6) and (28.7).

28.4 Empirical results

Here IVs, SPDs and PKs are estimated from intraday DAX and ODAX data
from 20010101 to 20020101 corresponding to 253 trading days. The implied
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volatilities are estimated with DSFM as in (28.5) with L = 3. The number
of dynamic functions is chosen based on

RV (L) =

∑T
t=1

∑Jt
j=1

{
Yt,j −

∑L
l=0 ẑt,lm̂l(Xt,j)

}2

∑T
t=1

∑Jt
j=1(Yt,j − Ȳ )2

where Ȳ =
PT
t=1

PJt
j=1 Yt,jPT

t=1 Jt
. The value 1 − RV (L) may be interpreted as the

ratio of variation explained by the model to total variation. Table 28.1 shows
that the addition of the fourth or �fth dynamic function results in small
model �t improvement.

L 1−RV (L)
1 0.772
2 0.966
3 0.978
4 0.979
5 0.978

Table 28.1 Number of dynamic basis functions and explained variation

Tensor B-splines, quadratic in τ and cubic in κ directions placed on 8× 6
knots, are used for the series estimators of m̂l. We note that, as in Borak
et al. (2007), the order of the splines and number of knots have negligible
in�uence on RV (L). The loading factors series {ẑt,l} are depicted in Figure
28.2.

Fig. 28.2 Left: Loading factors bzt,l, l = 1, 2, 3 (top to bottom). Right: bσt (left), bqt
(middle) and cMt (right), τ = 20 days for t = 20010824 where bzt,1 = 0.68 (red) and
t = 20010921, bzt,1 = 0.36 (blue)

The historical density p̂t is estimated with GARCH(1,1) from the last 240
observations. From (28.6) and (28.7) we obtain sequences of 253 SPDs and



186 Enzo Giacomini and Wolfgang Härdle

PKs over a grid of moneyness and maturities. Figure 28.3 shows one shot of
these sequences at day 20010710.

Risk averse utilities u are concave. Hence, (28.2) implies that under risk
aversion pricing kernels are monotone decreasing in moneyness. DAX PKs
are not decreasing, i.e. present risk proclivity for some levels of moneyness,
hence we verify the empirical pricing kernel paradox.

Fig. 28.3 Estimated SPD (left) and PK (right) across κ and τ at t = 20010710

Figure 28.2 displays the e�ects of large variations in ẑt,1 around 20010911
on IV, SPD and PK. Figure 28.4 shows that skewness and excess kurtosis of
q̂t(ST ) are correlated with factor loadings ẑt,1 and ẑt,3 for di�erent maturities.
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Fig. 28.4 Left: SPD skewness for τ = 18, (2), 50 days (top), bzt3 (bottom). Right: SPD
excess kurtosis for τ = 18, (2), 40 days (top), bzt1 (bottom)
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Chapter 29
The Operator Trigonometry in Statistics

Karl Gustafson

Abstract An operator trigonometry developed chie�y by this author dur-
ing the past 40 years has interesting applications to statistics, and provides
new geometrical understandings of statistical e�ciency, canonical correla-
tions, and other statistical bounds and inequalities.

29.1 The origins of the operator trigonometry

The operator trigonometry was created in 1967�1969 by this author. The orig-
inal motivating application was a question about multiplicative perturbation
of contraction semigroup generators. Speci�cally, if A is a generator, when is
BA a generator? For example, B may represent a time change operator when
A generates a Markov process.

In retrospect, it was good fortune that this question naturally brought out
two entities which became cornerstones of the general operator trigonometry:

inf
0 6=x∈D(A)

Re 〈Ax, x〉||Ax||||x|| ≡ µ1(A), (1)

and
inf

−∞<ε<∞
||εB − I|| ≡ ν1(B). (2)

In (1) A is an arbitrary strongly accretive densely de�ned closed operator in
a Banach X : Re〈Ax, x〉 >= m||x||2, m > 0. Here the notation 〈y, x〉 denotes a
semi-inner product on the space X. In (2) B is an arbitrary strongly accretive
bounded operator on X. Given A the in�nitesimal generator of a strongly
continuous contraction semigroup, one knows by the Hille-Yosida-Phillips-
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Lumer theory that A is dissipative, i.e., −A is accretive, Re〈−Ax, x〉 >= 0, and
µ1(−A) >= 0. For all accretive multiplicative perturbing bounded operators
B, one knows from convexity properties of operator norms on B(X) that
ν1(B) <= 1. When A is strongly dissipative, i.e., −A is strongly accretive, and
B is strongly accretive, then the result I obtained was that the multiplicative
perturbation BA still generates a contraction semigroup, if and only if,

ν1(B) <= µ1(−A). (3)

29.2 The essentials of the operator trigonometry

In the following, let us for convenience, in discussing the operator trigonom-
etry, assume that A and B are both strongly accretive bounded operators
in B(X). Then both entities in (1), (2), (3) are positive real numbers ν1(B)
and µ1(A) strictly between 0 and 1. Notice that we have changed the sign
on A so that for the general operator trigonometry as we describe it here, we
will always be in the context of both A and B strongly accretive bounded
operators. Also, although the original question was in a context of Banach
spaces and semi-inner products, we will also here specialize to the case of
Hilbert spaces X and the usual inner product 〈y, x〉.

Intuition led me in 1967 to interpret (1) as geometrically characterizing
the largest angle that A could turn a vector x to Ax. I called this angle φ(A),
the operator angle of A. This intuition is readily seen as that coming from
the Schwarz inequality. Motivated by the Rayleigh Ritz variational theory of
eigenvalues, in 1969 I decided to call µ1 by a similar name, speci�cally:

µ1(A) ≡ cosφ(A) ≡ the �rst antieigenvalue of A. (4)

To amplify why I coined the term antieigenvalue, assume for the moment
that the in�mum in (1) is attained by some vector x. I called such x a
corresponding �rst antieigenvector of A. Those are the vectors most turned
by A, in contradistinction to eigenvectors, which are not turned at all.

It seemed to me that it would be nice if (3) could be made completely
trigonometric. To achieve that caused me in 1968 to obtain an important
result, which I called the Min-Max Theorem, re�ecting how I proved it. The
result of this Theorem is that (2) became trigonometric:

ν1(B) ≡ sinφ(B) = (1− cos2 φ(B))1/2. (5)

Then the requirement (3) becomes fully trigonometric:

sinφ(B) <= cosφ(A). (6)
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In the case that A and B are selfadjoint positive de�nite bounded operators
on a Hilbert space, I found that

cosφ(A) =
2
√
mM

m+M
, sinφ(A) =

M −m
M +m

, (7)

where m and M are the minima and maxima of the spectrum σ(A). For (A)
a �nite dimensional symmetric positive de�nite n×n matrix with eigenvalues
0 < λ1

<= λ2
<= · · · <= λn, the expressions in (7) become:

cosφ(A) =
2
√
λ1λn

λn + λ1
, sinφ(A) =

λn − λ1

λn + λ1
. (8)

In that case there are exactly two antieigenvectors:

(9) x± = ±
(

λn
λ1 + λn

)1/2

x1 +
(

λ1

λ1 + λn

)1/2

xn,

where x1 and xn are norm-one eigenvectors from the eigenspaces correspond-
ing to λ1 and λn, respectively.

29.3 The operator trigonometry in statistics

Skipping details of the intervening history of the operator trigonometry from
1969 to 1999, I had early surmised that there would be applications to sta-
tistics. I even mentioned this in my antieigenvalues lecture in 1969 at the
Third Symposium on Inequalities at UCLA, which became the 1972 paper
Gustafson (1972). In that paper I allude to the fact that µ1 is a ratio of
moments. However, in the early 1970's my interests turned principally to
quantum scattering theory, and in the 1980's, to computational �uid dynam-
ics. Only in the 1990's did I return to further systematic development of
the operator trigonometry, and applications, for example, to numerical lin-
ear algebra and quantum mechanics. In 1999 I wrote the paper Gustafson
(1999), which connects the operator trigonometry to statistics, and sent it to
a journal not well known to me. There one of the two referees peremptorially
rejected the paper. Shortly thereafter my ideas and connections in Gustafson
(1999) surfaced as of considerable interest within the matrix statistics com-
munity. I announced the main results of Gustafson (1999) in my survey of
the operator trigonometry given at the Second International Conference on
Unconventional Models of Computation in Brussels in December 2000, which
became the paper Gustafson (2001). I also mentioned the results for statis-
tics in the paper Gustafson (1999), submitted in 1999. Those fundamental
connections between my operator trigonometry and statistics established in
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Gustafson (1999) �nally appeared in the paper Gustafson (2004). See also
my later papers Gustafson (2005-2007a) for further applications to statistics.

29.4 Operator trigonometry in general

For more background on the operator trigonometry and its applications in
other domains, I suggest the two books Gustafson (1997) and Gustafson et
al.(1997) and my recent review article Gustafson (2006). In particular, the
latter contains more than 60 citations to work on the operator trigonometry
by me, by my two former Ph.D. students D.K.M. Rao and M. Seddighin, and
40 citations to related work by others. One might also see the recent paper
Gustafson (2007b).

29.5 Conclusions

In this lecture, I will �rst present the essentials of the operator trigonometry,
giving additional insights. Then I will describe and come up-to-date on the
ideas, connections, and applications to statistics in Gustafson (2005-2007a).
These include the new geometrical understandings of statistical e�ciency,
canonical correlations, Hotelling correlations, and other statistical bounds
and inequalities due to Durbin, Watson, Bloom�eld, Knott, Khatri, Rao,
Ando, Styan, Puntanen, Drury, Liu, Lu, Bartmann, Eaton, and further back,
Hotelling and Von Neumann, among others.
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Chapter 30
Selecting and Ordering Components in
Functional-Data Linear Prediction

Peter Hall

Abstract For some �fty years the problem of basis choice, in linear prediction
problems based on high-dimensional data, has been under discussion. From
some viewpoints the debate is no closer to resolution today than in the past.
We shall discuss the issues involved, describe theoretical results which shed
light on the debate, and introduce methodology that is appropriate in cases
where non-standard techniques can be e�ective.

30.1 Introduction

The problem of component choice in regression-based prediction has a long
history. The main cases where important choices have to be made are func-
tional data analysis, or FDA, and problems in which the explanatory vari-
ables are relatively high-dimensional vectors, for example when sample size is
smaller than dimension. The setting of FDA is arguably the most prominent;
principal component analysis has become a common method for prediction
in functional linear regression.

In the functional-data context the number of components can also be in-
terpreted as a smoothing parameter, and so the viewpoint is a little di�erent
from that for conventional linear regression. However, arguments for and
against di�erent component-choice methods are relevant to both settings,
and have received signi�cant recent attention. We shall discuss a theoreti-
cal result, applicable in a variety of settings, which to some extent justi�es
the standard approach. Although the result is of minimax type, it is not
asymptotic in nature; it holds for each sample size.
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Nevertheless, there are clearly instances where prediction bases that are
alternative to the conventional one, are bene�cial. For example, this can
occur when the explanatory random function, x say, is atypical of most of
the functions that are actually observed. We shall discuss these issues, and
suggest methodology for tackling them.

30.2 Linear prediction in a general setting

Suppose we observe independent and identically distributed data pairs
(X1, Y1), . . . , (Xn, Yn), generated as (X,Y ) by the model

Y = α+ 〈β,X〉+ ε . (1)

Here Y , α and ε are scalars, X and β are vectors or functions in a space F ,
〈·, ·〉 denotes an inner product on F , and the experimental error ε has zero
mean and �nite variance and is independent of the explanatory variable X.
For a given value x of X, we wish to estimate the conditional mean of Y ,
given that X = x:

µ(x) = E(Y |X = x) = α+ 〈β, x〉 .

Of course, the case of FDA is of greatest interest to us. There, β and X are
both functions de�ned on a region R, say, and the inner product represents
an integral:

〈β,X〉 =
∫

R
β(t)X(t) dt . (2)

However, the problem we are addressing arose in relatively conventional linear
regression long before FDA came on the scene. In k-variate linear regression,
β = (β(1), . . . , β(k))T and X = (X(1), . . . , X(k))T are both vectors, and the
inner product in (1) is given by vector multiplication: 〈β,X〉 = βTX.

A conventional approach to estimating µ(x) is based on estimators
φ̂1, φ̂2, . . . of the respective orthonormal eigenvectors φ1, φ2, . . . that arise in
the canonical decomposition of the covariance function
K(s, t) = cov{X(s), X(t)}, of X. (In the latter formula, and below, the value
of t in X(t) refers to the component index of X if X is a vector, and to the
argument of X if X is a function.) The quantities φ̂1, φ̂2, . . . are generally
ordered in terms of an empirical measure of their importance, by asking that
the respective eigenvalue estimators θ̂j form a decreasing sequence:

θ̂1 ≥ θ̂2 ≥ . . . . (3)

In very high-dimensional settings only the �rst few of the eigenvectors φ̂j are
employed for prediction. Therefore, ordering according to (3), and using a
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technique such as cross-validation to choose a frequency cut-o�, leads to a
method for dimension reduction.

30.3 Arguments for and against the principal
component basis

The arguments summarised in the previous section underpin the principal-
component approach to selecting, and ordering, regressor variables. They go
back at least to work of Kendall (1957, p. 75). Ordering in the way prescribed
by (3) is a reasonable �rst choice, but it is open to question because it is
based solely on the data Xi. In particular, it takes no account of x in the
function µ(x). Surely the methodology should at least consider x; for example,
it should take x into account when ranking the eigenvectors φ̂j for the purpose
of estimating µ(x). It might also be appropriate to estimate µ(x) using a
choice of orthonormal eigenvectors di�erent from φ̂1, φ̂2, . . ., attuned to both
x and the sequence of Xi's.

The queries raised in the previous paragraph have, of course, a history.
Cox (1968, p. 272) argued that x should be taken into account, noting that:

A di�culty [with the conventional approach] seems to be that there is no
logical reason why the dependent variable should not be closely tied to
the least important principal component.

Cox then went on to consider an alternative approach, in which �simple com-
binations, not the principal components, can be used as regressor variables.�

Mosteller and Tukey (1977, p. 397) argued that this type of approach
might be unnecessarily pessimistic, since it took the unreasonable view that
nature connived to render principal components contrary:

A malicious person who knew our x's and our plan for them could always
invent a y to make our choices look horrible. But we don't believe nature
works that way � more nearly that nature is, as Einstein put it (in
German), �tricky, but not downright mean.� And so we o�er a technique
that frequently helps. . .

Mosteller and Tukey went on to discuss principal component methods, and
endorsed the component ranking determined by (3) to the extent that �sep-
arating big components from little components can be e�ective.� However,
they also tacitly acknowledged Cox's (1968) alternative approach (without
mentioning the paper), by suggesting, among other things, that a statistician
could �choose new linear combinations of the few largest principal components
so as to make them more interpretable.�

Kendall's (1957) relatively rudimentary approach remains very popular
today, particularly in functional data analysis. The approach has long had
adherents, including Spurrell (1963) and Hocking (1976).
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A number of these issues, and others, are addressed at greater length
by Cook (2007), in the paper on which his 2005 Fisher Lecture was based;
and by the paper's discussants, Christensen (2007), B. Li (2007) and L. Li
and Nachtsheim (2007). In particular, Cook (2007), like us, juxtaposes the
quotations above from Cox (1968) and Mosteller and Tukey (1977). He argues
that Hotelling (1957) and Hawkins and Fatti (1984) expressed a viewpoint
in sympathy with that of Cox, but that remarks of Fisher (1924) can be
interpreted as favouring the position of Mosteller and Tukey. (However, Cook
(2007) does not mention Mosteller and Tukey's (1977) subsequent comments,
which lend support to Cox's (1968) position.)

30.4 Theoretical argument in support of the ordering
(3) of the principal component basis

Let X = {X1, . . . , Xn} denote the set of explanatory variables in the dataset
introduced in section 2. Take 1 ≤ p ≤ n, and take ψ1, . . . , ψp to be any
subsequence of φ̂1, . . . , φ̂n. (The quantities ψp+1, ψp+2, . . . can be de�ned ar-
bitrarily, subject to ψ1, ψ2, . . . forming a complete orthonormal basis.) In par-
ticular, ψj = φ̂rj , say, for 1 ≤ j ≤ p, where r1, . . . , rp are distinct members
of the set {1, . . . , n}. De�ne (conditional) mean squared error by:

MSE = E
[{µ̂(x)− µ(x)}2 ∣∣ X ] .

Then the following minimax property can be established.
Theorem 1. If the only information we have about β is that its norm, ‖β‖ =
〈β, β〉1/2, equals a given constant C (or alternatively, that ‖β‖ ≤ C), then the
choice of r1, . . . , rp that produces, for each value of C and p, the least mean
squared error when this quantity assumes the largest value that it is permitted
for the class of slopes β satisfying ‖β‖ = C (or, respectively, ‖β‖ ≤ C), is
rj = j for each j. This is identical to the choice that orders the eigenvectors
φ̂j canonically by insisting on a decreasing ranking of eigenvalues, as at (3).

If we have additional information about β, over and above that permit-
ted in Theorem 1, then we may be able to reduce mean squared error by
re-ordering the basis. For example, suppose the problem is one of linear re-
gression for functional data; that the region R, in the inner product at (2),
is the interval I = [−1, 1]; and that we know that β is an even function on I.
Then we can ignore any basis functions φ̂j that are odd functions, since their
contribution to accurate prediction will be zero. Equivalently, when we rank
the functions φ̂j , we should rank last all φ̂j 's that are odd functions.

Of course, in practice we shall not know that β is exactly even, and more-
over, none of the φ̂j 's will be exactly odd. Nevertheless, the insight provided
by the idealised example above can be helpful in practice. For instance, sup-
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pose x(t) equals the number of miles travelled by a �eet of trucks in week t
of the year, and Y is the total amount of fuel used by the �eet during the
year. We expect β to be signi�cantly in�uenced by seasonal e�ects, arising for
example because of the impact of highway conditions on fuel consumption,
and we anticipate that those e�ects will be approximately symmetrically dis-
tributed about the middle of the year. Therefore, if the period of one year
is re-centred and rescaled so that it starts at −1 and ends at +1, then β is
likely to be close to an even function on I. In this setting, prediction could
potentially bene�t from ordering the components φ̂1, φ̂2, . . . so that those that
were close to being odd functions were indexed relatively late.

30.5 Other approaches to basis choice

In addition to the context discussed above, where we make use of information
from outside the dataset, it is sometimes possible to choose a more e�ective
basis by using only information only from the dataset itself. For example,
this is the case if the regressand, x, in the prediction problem is atypical of
the explanatory variables X1, . . . , Xn. In instances like this it can be useful,
and e�ective, to construct the basis using only those variables Xi that are
�close to� x in some sense, and to use cross-validation to make the selection.

To illustrate this point we give a simple, �nite-dimensional example, where
�close to� is interpreted in the sense of simple Euclidean distance. In practice,
alternative distances measures can be more e�ective.

Assume that X = U ψU + V ψV , where the functions ψU and ψV are or-
thonormal, the random variables U and V are independent, U has a zero-one
distribution with P (U = 0) = P (U = 1) = 1

2 , and V has a continuous distri-
bution, for instance normal N(0, 1). A realisation of X has, with probability
1
2 , the form x = v ψV , where v is a scalar. The corresponding value of µ(x)
is bV v, where bV =

∫
R β ψV .

For this version of x, ‖X − x‖2 = U2 + (V − v)2. Hence, if 0 < δ < 1 then
‖X −x‖ ≤ δ entails U = 0 and X = V ψV . Therefore, if we restrict attention
to data Xi for which ‖Xi − x‖ ≤ δ < 1 then the reduced dataset will include
only functions of the form Xi = Vi ψV for nonzero Vi's. In consequence,
an adaptive basis-choice method which constructs the basis only from data
Xi that are within δ of x will, with probability converging to 1 exponentially
fast, correctly produce the singleton {ψV } as the basis for the class of random
functions X satisfying ‖X − x‖ ≤ δ.

Once ψV is concisely identi�ed, identi�cation of ψU will quickly follow,
and it is then clear that the Karhunen-Loève expansion of X involves no
other components. Moreover, the principal components XiU =

∫
RXi ψU and

XiV =
∫
RXi ψV are now explicitly known, and we see that the functional

linear regression problem has degenerated, as it ideally should, to the simple
linear regression problem where we observe triples (XiU , XiV , Yi) generated
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as Yi = α + bU XiU + bV XiV + εi for 1 ≤ i ≤ n, where bW =
∫
R β ψW for

W = U, V . The identi�cation of XiU and XiV , and of the regression model,
occurs with probability exponentially close to 1, and does not occur if we
work with the standard principal component basis.

While this example is naive in its simplicity, it correctly focuses on atyp-
icality as a major issue in alternative basis choice. If the regressand, x, is
su�ciently atypical of a substantial number of the actual explanatory data
Xi, then empirical methods can be used to choose a basis that is more ap-
propriate for prediction starting with x.
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Chapter 31
Bagplots, Boxplots and Outlier
Detection for Functional Data

Rob Hyndman and Han Lin Shang

Abstract We propose some new tools for visualizing functional data and
for identifying functional outliers. The proposed tools make use of robust
principal component analysis, data depth and highest density regions. We
compare the proposed outlier detection methods with the existing �functional
depth� method, and show that our methods have better performance on
identifying outliers in French male age-speci�c mortality data.

31.1 Introduction

Although the presence of outliers has a serious e�ect on the modeling and
forecasting of functional data, the problem has so far received little attention.
In this paper, we propose the functional bagplot and a functional boxplot in
order to visualize functional data and to detect any outliers present.

Recently, two papers have considered the problem of outlier detection in
functional data. Hyndman & Ullah (2007) used a method based on robust
principal components analysis and the integrated squared error from a linear
model while Febrero et al. (2007) considered functional outlier detection using
functional depth, a likelihood ratio test and smoothed bootstrapping. The
method of Hyndman & Ullah involves several parameters to be speci�ed and
so is perhaps too subjective for regular use, while the method of Febrero et
al. involves fewer decisions by users but is time consuming to compute and
is not able to detect some types of outliers. We propose a new method that
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uses robust principal components analysis, but is simpler to apply than that
of Hyndman & Ullah (2007).

Suppose we have a set of curves {yi(x)}, i = 1, . . . , n, which are realizations
on the functional space I. We are interested in visualizing these curves for
large n using functional equivalents of boxplots and bagplots, and we are
interested in identifying outliers in the observed curves.

To illustrate the ideas, we will consider annual French male age-speci�c
mortality rates (1899�2003) shown in Figure 31.1. These data were used by
Hyndman & Ullah (2007) who obtained them from the Human Mortality
Database (2007). The mortality rates are the ratio of death counts to pop-
ulation exposure in the relevant period of age and time. The data were �rst
scaled using natural logarithms. The colours re�ect the years of observation
in �rainbow� order, with the oldest curves in red and the most recent curves in
purple. There are some apparent outliers (in yellow and green) which show an
unusual increase in mortality rates between ages 20 and 40. These are mainly
due to the First and Second World Wars, as well as the Spanish in�uenza
which occurred in 1918.

Before proceeding further, we need to de�ne the notion of ordering a set
of curves. López-Pintado & Romo (2007) proposed the use of �generalized
band depth� to order a set of curves. The generalized band depth of a curve
is the proportion (computed using Lebesgue measure) of times that the curve
is entirely contained in the band de�ned by J curves from the sample. They
suggest using J = 2 and propose that the �median� should be de�ned as the
curve with the highest depth. See also Ferraty & Vieu (2006, p.129) for some
related discussion.
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Fig. 31.1 Functional time series plot for the French male mortality data (1899�2003).
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While ordering by depth is useful in some contexts, we prefer an alternative
approach to ordering obtained using a principal component decomposition of
the set of observed curves. If we let

yi(x) = µ(x) +
n−1∑

k=1

zi,kφk(x),

where {φk(x)} represents the eigenfunctions, then we can use an ordering
method from multivariate analysis based on the principal components scores
{zi,k}.

The simplest procedure is to consider only the �rst two scores, zi =
(zi,1, zi,2). Then an ordering of the curves is de�ned using the ordering of
{zi; i = 1, . . . , n}. For example, bivariate depth can be used (Rousseeuw et
al., 1999). Alternatively, the value of the kernel bivariate density estimate at
zi can be used to de�ne an ordering.

There are two major advantages in ordering via the principal component
scores: (1) it leads to a natural method for de�ning visualization methods
such as functional bagplots and functional boxplots; and (2) it seems to be
better able to identify outliers in real data (as we will see in the application).

Outliers will usually be more visible in the principal component space
than the original (functional) space (Filzmoser et al., 2008). Thus �nding
outliers in the principal component scores does no worse than searching for
them in the original space. Often, it is the case that the �rst two principal
component scores su�ce to convey the main modes of variation (Hall et al.,
2007). We have found empirically that the �rst two principal component
scores are adequate for outlier identi�cation.

Because principal component decomposition is itself non-resistant to out-
liers, we apply a functional version of Croux & Ruiz-Gazen's (2003) robust
principal component analysis which uses a projection pursuit technique. This
method was described and used in Hyndman & Ullah (2007).

31.2 Functional bagplot

The functional bagplot is based on the bivariate bagplot of Rousseeuw et al.
(1999) applied to the �rst two (robust) principal component scores.

The bagplot is constructed on the basis of the halfspace location depth
denoted by d(θ, z) of some point θ ∈ R2 relative to the bivariate data cloud
{zi; i = 1, . . . , n}. The depth region Dk is the set of all θ with d(θ, z) ≥ k.
Since the depth measurements are convex polygons, we have Dk+1 ⊂ Dk.
This concept is somewhat similar to the notion of a ball used in Ferraty and
Vieu (2006). For a �xed center, the regions grow as the radius increases.

Thus, the data points are ranked according to their depth. The bivariate
bagplot displays the median point (the deepest location), along with the
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selected percentages of convex hulls. Any point beyond the highest percentage
of the convex hulls is considered as an outlier. Each point in the scores bagplot
corresponds to a curve in the functional bagplot. The functional bagplot also
displays the median curve which is the deepest location, the 95% con�dence
intervals for the median, and the 50% and 95% of surrounding curves ranking
by depth. Any curve beyond the 95% convex hull is �agged as a functional
outlier.
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Fig. 31.2 The scores bagplot and functional bagplot for the French male mortality data.

An example is shown in Figure 31.2 using the French male mortality data.
The red asterisk marks the median of the bivariate scores and corresponds to
the solid black functional observation in the right panel. The dotted blue lines
give 95% con�dence intervals for the median curve. In the left panel, the dark
grey regions show the 50% convex hull and the light grey regions show the 95%
convex hull. These correspond directly with the regions of similar shading in
the functional plot on the right. Points outside these regions are identi�ed as
outliers. The di�erent colours for these outliers enable the individual curves
on the right to be matched to the scores on the left.
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31.3 Functional HDR boxplot

The functional highest density region (HDR) boxplot is based on the bivariate
HDR boxplot of Hyndman (1996) applied to the �rst two (robust) principal
component scores.

The HDR boxplot is constructed using the Parzen-Rosenblatt bivariate
kernel density estimate f̂(w; a, b). For a bivariate random sample {zi; i =
1, . . . , n}, drawn from a density f , the product kernel density estimate is
de�ned by (Scott, 1992)

f̂(w; a, b) =
1
nab

n∑

i=1

K

(
w1 − zi,1

a

)
K

(
w2 − zi,2

b

)
, (31.1)

where w = (w1, w2)′, K is a symmetric univariate kernel function such that∫
K(u)du = 1 and (a, b) is a bivariate bandwidth parameter such that a > 0,

b > 0, a→ 0 and b→ 0 as n→∞. The contribution of data point zi to the
estimate at some point w depends on how distant zi and w are.

A highest density region is de�ned as

Rα = {z : f̂(z; a, b) ≥ fα},

where fα is such that
∫
Rα

f̂(z; a, b)dz = 1− α. That is, it is the region with
probability coverage 1 − α where every point within the region has higher
density estimate than every point outside the region.

The beauty of ranking by the HDR is its ability to show multimodal-
ity in the bivariate data. The HDR boxplot displays the mode, de�ned as
supz f̂(z; a, b), along with the 50% HDR and the 95% HDR. All points not
included in the 95% HDR are shown as outliers. The functional HDR boxplot
is a one-to-one mapping of the scores HDR bivariate boxplot.

An example is shown in Figure 31.3 using the French male mortality data.
The black circle (left panel) marks the mode of the bivariate scores and
corresponds to the solid black functional observation in the right panel. In
the left panel, the dark grey regions show the 50% HDR and the light grey
regions show the 95% HDR. These correspond directly with the regions of
similar shading in the functional plot on the right. Points outside these regions
are identi�ed as outliers. The di�erent colours for these outliers enable the
individual curves on the right to be matched to the scores on the left.

31.4 Comparison

The following table presents the outlier detection results from the proposed
methods along with the functional depth measure of Febrero et al. (2007).



206 Rob Hyndman and Han Lin Shang

−10 −5 0 5 10 15

−
1

0
1

2
3

4
5

PC score 1

P
C

 s
co

re
 2

o

1914

1915

1916

1917
1918

1919

1940

1942

1943

1944

0 20 40 60 80 100

−
8

−
6

−
4

−
2

0

Age

Lo
g 

de
at

h 
ra

te

Fig. 31.3 The scores HDR boxplot, and functional HDR boxplot for the French male
mortality data.

Method Outlier (Year)
Functional depth 1915
Functional bagplot 1914�1919, 1940, 1943�1945
Functional HDR boxplot 1914�1919, 1940, 1943�1945

Table 31.1 Outlier detection performance between the proposed approach and the func-
tional depth measure approach.

In this case, the functional depth measure approach performs the worst
among all methods. In contrast, all of the apparent outliers in Figure 31.1 have
been detected by both the functional bagplot and functional HDR boxplot
methods.

Of the two new methods, we prefer the functional HDR boxplot as it also
provides an additional advantage in that it can identify unusual �inliers� that
full in sparse regions of the sample space.

R code for constructing the functional bagplot and HDR boxplot are avail-
able upon request from the �rst author.
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Chapter 32
Marketing Applications of Functional
Data Analysis

Gareth James, Ashish Sood and Gerard Tellis

Abstract The Bass (1969) model has been a standard for analyzing and
predicting the market penetration of new products. The authors demonstrate
the insights to be gained and predictive performance of Functional Data
Analysis (FDA), on the market penetration of 760 categories drawn from
21 products and 70 countries. The authors compare a Functional Regression
approach to several models including the Classic Bass model.

32.1 Introduction

Firms are introducing new products at an increasingly rapid rate. At the
same time, the globalization of markets has increased the speed at which
new products di�use across countries, mature, and die o� (Chandrasekaran
and Tellis 2008). These two forces have increased the importance of the accu-
rate prediction of the market penetration of an evolving new product. While
research on modeling sales of new products in marketing has been quite in-
sightful (Chandrasekaran and Tellis 2007; Peres, Mueller and Mahajan 2008),
it is limited in a few respects. First, most studies rely primarily, if not exclu-
sively, on the Bass model. Second, prior research, especially those based on
the Bass model, need data past the peak sales or penetration for stable es-
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timates and meaningful predictions. Third, prior research has not indicated
how the wealth of accumulated penetration histories across countries and
categories can be best integrated for good prediction of penetration of an
evolving new product. For example, a vital unanswered question is whether a
new product's penetration can be best predicted from past penetration of a)
similar products in the same country, b) the same product in similar coun-
tries, c) the same product itself in the same country, or d) some combination
of these three histories.

The current study attempts to address these limitations. In particular,
it makes four contributions to the literature. First, we illustrate the poten-
tial advantages of using Functional Data Analysis (FDA) techniques for the
analysis of penetration curves (Ramsay and Silverman, 2005). Second, we
demonstrate how information about the historical evolution of new products
in other categories and countries can be integrated to predict the evolution of
penetration of a new product. Third, we compare the predictive performance
of the Bass model versus an FDA approach, and some naïve models. Fourth,
we indicate whether information about prior countries, other categories, the
target product itself, or a combination of all three is most important in pre-
dicting the penetration of an evolving new product.

One important aspect of the current study is that it uses data about
market penetration from most of 21 products across 70 countries, for a total
of 760 categories (product x country combinations). The data include both
developed and developing countries from Europe, Asia, Africa, Australasia,
and North and South America. In scope, this study exceeds the sample used
in prior studies. Yet the approach achieves our goals in a computationally
e�cient and substantively instructive manner. Another important aspect of
the study is that it uses Functional Data Analysis to analyze these data.
Over the last decade FDA has become a very important emerging �eld in
statistics, although it is not well known in the marketing literature. FDA
provides a set of techniques that can improve the prediction of future items
of interest especially in cases where prior longitudinal data is available for
the same products, data is available from histories of similar products, or
complete data is not available for some years. The central paradigm of FDA
is to treat each function or curve as the unit of observation. We apply the
FDA approach by treating the yearly cumulative penetration data of each
category as 760 curves or functions. By taking this approach we can extend
several standard statistical methods for use on the curves themselves.

For instance, we use functional principal components analysis (PCA) to
identify the patterns of shapes in the penetration curves. Doing so enables a
meaningful understanding of the variations among the curves. An additional
bene�t of the principal component analysis is that it provides a parsimo-
nious, �nite dimensional representation for each curve. In turn this allows us
to perform functional regression by treating the functional principal compo-
nent scores as the predictors and future characteristics of the curves, such
as future penetration or time to takeo�, as the response. We show that this
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approach to prediction is more accurate than the traditional approach of us-
ing information from only one curve. It also provides a deeper understanding
of the evolutions of the penetration curves. Finally, we perform functional
clustering by grouping the curves into clusters with similar patterns of evolu-
tion in penetration. The groups that we form show strong clustering among
certain products and provide further insights into the patterns of evolution
in penetration. In particular plotting the principal component scores allows
us to visually assess the level of clustering among di�erent products for all
760 curves simultaneously. Such a visual representation would be impossible
using the original curves.

32.2 Methodology

In this section we describe the three di�erent FDA techniques that we applied
to the penetration data. We �rst describe our functional principal compo-
nents approach. We then utilize the functional principal component scores to
perform functional regression for predicting various future characteristics of
the various products. Finally, the PCA scores are used to perform functional
cluster analysis and hence identify groupings among curves.

Most FDA techniques assume that the curves have been observed at all
time points but in practice this is rarely the case. Since we have regularly
spaced observations for each curve we opt to use a simple smoothing spline ap-
proach to generate a continuous smooth curve from our discrete observations.
To compute the functional principal components we divide the time period
t = 1 to t = T into p equally spaced points and evaluate X1(t), . . . , Xn(t) at
each of these time points. Finally, we perform standard PCA on this p di-
mensional data. The resulting principal component vectors provide accurate
approximations to the functional principal components at each of the p grid
points and likewise the principal component scores represent the functional
PCA scores.

We use functional regression to predict several items of interest, such as
future marginal penetration level in any given year or the year of takeo�. Let
Xi(t) be the smooth spline representation of the ith curve observed over time
such as the �rst �ve years of cumulative penetration for a given category. Let
Yi represent a related item to be predicted, such as the marginal penetration
in year six. Functional regression establishes a relationship between predictor,
Xi(t), and the item to be predicted, Yi, as follows:

Yi = f(Xi(t)) + εi, i = 1, . . . , n. (32.1)

Equation (32.1) is di�cult to work with directly because Xi(t) is in�nite
dimensional. However, for any function f there exists a corresponding func-
tion g such that f(X(t)) = g(e1, e2, . . .) where e1, e2 etc. are the principal
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component scores of Xi(t). We use this equivalence to perform functional
regression with the functional principal component scores as the predictors.
The simplest choice for g would be a linear function. We opt to use the more
powerful model produced by assuming that g is an additive but non-linear,
function (Hastie and Tibshirani, 1990). In this case, Equation (32.1) becomes

Yi = β0 +
D∑

j=1

gj(eij) + εi (32.2)

where the gj 's are non-linear functions that are estimated as part of the �tting
procedure and D is chosen so that the �rst D principal components explain
most of the variability in X(t). One advantage of using Equation (32.2) to im-
plement a functional regression is that once the eij 's have been computed via
the functional PCA, we can then use standard additive regression software
to relate Yi to the principal component scores. We can also extend Equation
(32.2) by adding covariates that contain information about the curves be-
yond the principal components, such as product or country characteristics or
marketing variables.

We use functional clustering for the purpose of better understanding the
penetration patterns in the data. In particular, we wish to identify groups
of similar curves and relate them to observed characteristics of these curves
such as the product and country. We use the principal components described
above to reduce the potentially large number of dimensions of variability and
cluster all the curves in the sample. We apply the standard k-means cluster-
ing approach (MacQueen 1967) to the D-dimensional principal component
scores, ei, to cluster all the curves in the sample. We use the "jump" ap-
proach (Sugar and James 2003) to select the optimal number of clusters, k.
Sugar and James (2003) show through the use of information theory and sim-
ulations that this approach provides an accurate estimate of the true number
of clusters in the data. Once we compute the cluster centers, we assign each
curve to its closest cluster mean curve. We then project the centers back into
the original curve space and examine the shape of a typical curve from each
cluster.

32.3 Results

We �nd that two functional principal components explain almost all the vari-
ability in the penetration curves. The �rst component measures the �nal pen-
etration level by year ten while the second component records the pattern
that the product took to get to that point.

We compare two versions of the functional regression approach with �ve
more standard methodologies, including the Bass Model. Eight di�erent re-
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sponse variables were also tested. For almost all combinations of method
and response variable the functional regression approach produced superior
predictions with most results being statistically signi�cant.

The functional clustering suggested six di�erent groupings in the penetra-
tion curves, corresponding to di�erent rates, and di�erent patterns, of growth.
There are also clear dependencies between products and clusters with, for
example, electronics goods tending to group in the high growth clusters and
white goods favoring the low growth clusters. Patterns are also clear among
geographic regions.
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Chapter 33
Nonparametric Estimation in Functional
Linear Model

Jan Johannes

Abstract We consider the problem of estimating the slope parameter in
functional linear regression, where scalar responses Y1, . . . , Yn are modeled
in dependence of random functions X1, . . . , Xn. In the case of second order
stationary random functions and as well in the non stationary case estimators
of the functional slope parameter and its derivatives are constructed based
on a regularized inversion of the estimated covariance operator. In this paper
the rate of convergence of the estimator is derived assuming that the slope
parameter belongs to the well-known Sobolev space of periodic functions and
that the covariance operator is �nitely, in�nitely or in some general form
smoothing.

33.1 Introduction

Functional linear models are becoming very important in a diverse range of
disciplines, including medicine, linguistics and chemometrics (see for instance
Ramsay and Silverman (2005) and Ferraty and Vieu (2006), for several case
studies). Roughly speaking, in all these applications the dependence of a
response variable Y on the variation of an explanatory random function X
is modeled by

Y =
∫ 1

0

β(t)X(t)dt+ ε (33.1)

for some error term ε. One objective is then to estimate nonparametrically
the slope function β and its derivatives based on a sample of (Y,X).
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In this paper we suppose that the random function X is taking its values
almost surely in L2[0, 1], which is endowed with the usual norm ‖·‖, and has
a �nite second moment, i.e., E‖X‖2 < ∞. In order to simplify notations we
assume that the mean function of X is zero. Moreover, the random function
X and the error term ε are independent, where ε has mean zero and a �-
nite second moment, i.e, Eε2 < ∞. This situation has been considered, for
example, in Cardot, Ferraty and Sarda (2003) or Stadtmuller (2005). Then
multiplying both sides in (33.1) by X and taking the expectation leads to

g(s) := E[Y X(s)] =
∫ 1

0

cov(X(t), X(s))β(t)dt =: [Tcovβ](s), s ∈ [0, 1],

(33.2)
where g belongs to L2[0, 1]. We assume that there exists a unique solution
β ∈ L2[0, 1] of equation (33.2), i.e., g belongs to the range R(Tcov) of Tcov and
Tcov is injective. However, as usual in the context of inverse problems all the
results below can also straightforward be obtained for the unique least-square
solution with minimal norm, which exists if and only if g is contained in the
direct sum of R(Tcov) and its orthogonal complement R(Tcov)⊥ (for a de�-
nition and detailed discussion in the context of inverse problems see chapter
2.1 in EHN (2000), while in the special case of a functional linear model we
refer to Cardot, Ferraty and Sarda (2003)). The normal equation (33.2) is the
continuous equivalent of normal equations in the multivariate linear model.
Estimation of β is thus linked with the inversion of the covariance operator
Tcov of X de�ned in (33.2), which due to the �nite second moment of X is
a Hilbert-Schmidt operator. Thereby, unlike in the �nite dimensional case, a
continuous inverse for Tcov does not exist as long as the range of the operator
Tcov is an in�nite dimensional subspace of L2[0, 1]. This corresponds to the
setup of ill-posed inverse problems (with the additional di�culty that Tcov is
unknown and, hence has to be estimated). In the literature several approaches
are proposed in order to circumvent this instability issue. Essentially, all of
them replace in equation (33.2) the operator Tcov by a regularized version hav-
ing a continuous inverse. A popular example is based on a functional principal
components regression (c.f. Bosq (2000), Cardot, Mas and Sarda (2007) or
Muller and Stadtmuller (2005)), this method is also called Spectral cut-o� in
the numerical analysis literature (Tautenhahn (1996)). An other example is
the Tikhonov regularization (c.f. Hall and Horowitz (2007)), where the regu-
larized solution βα is de�ned as unique minimizer of the Tikhonov functional
Fα(β) = ‖Tcovβ − g‖2 + α‖β‖2 for some strictly positive α. A regularization
through a penalized least squares approach after projection onto some ba-
sis (such as splines) is also considered in Ramsay and Dalzell (1991), Eilers
and Marx (1996) or Cardot, Ferraty and Sarda (2003). However, there is a
large number of alternative regularization schemes in the numerical analysis
literature available like the generalized Tikhonov regularization, Landweber
iteration or the ν-Methods to name but a few (c.f. Tautenhahn (1996)). The
common aspect of all these regularization schemes is that an additional reg-
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ularization parameter α (for example, the parameter determining the weight
of the penalty in the Tikhonov functional) is introduced. The risk of the
resulting regularized estimator can then be decomposed, roughly speaking,
into a function of the risk of the nonparametric estimators of g and Tcov plus
an additional bias term which is a function of the regularization parameter
α (for a detailed discussion in the context of inverse problems see Johannes
et al. (2007)). In this paper we assume that β belongs to the Sobolev space
of periodic functions Wp[0, 1] (de�ned below). The relationship between the
range of the covariance operator Tcov and the Sobolev spaces is then essen-
tially determining the functional form of the bias term. For example, if Tcov is
�nitely smoothing, i.e., the range of the Tcov equals Wa[0, 1] for some a > 0,
then the bias is a polynomial of the parameter α. On the other hand, if Tcov is
in�nitely smoothing, i.e., the range of | log(Tcov)|−1 equals Wa[0, 1] for some
a > 0, then the bias is a logarithm of the parameter α. The theory behind
these rates can be uni�ed using an index function κ (c.f. Nair et al.(2005)),
which `links' the range of Tcov and the Sobolev spaces.

The paper is organized in the following way. In Section 2 we de�ne the
estimator of β when X is second order stationary as well as when X is
not second order stationary. We investigate the asymptotic behavior of the
estimator of β in case of a second order stationary X and a not second order
stationary X in Section 3 and Section 4, respectively. All proofs of the results
in this paper can be found in Johannes (2007).

33.2 De�nition of the estimator of β

Let Wp[0, 1] denote the Sobolev space of periodic functions, which is de�ned
for integer m ∈ N by Wm[0, 1] = {f ∈ Hm[0, 1] : f (j)(0) = f (j)(1), j =
0, . . . ,m− 1}, where
Hm[0, 1] = {f : [0, 1]→ R : f (m−1) is absolutely continuous, f (m) ∈ L2[0, 1]}
are Sobolev spaces, and for real values p, Wp[0, 1] is de�ned by interpolation
and duality. Considering the trigonometric basis

φ1 :≡ 1, φ2k(s) :=
√

2 cos(2πks), φ2k+1(s) :=
√

2 sin(2πks), s ∈ [0, 1],
(33.3)

k = 1, 2, . . . and the unbounded sequence

γ1 := 1 and γ2k := γ2k+1 := 2k, k = 1, 2, . . . , (33.4)

the Sobolev space of periodic functions can equivalently de�ned by (c.f.
Neubauer (1988), Mair and Ruymgaart (1996) or Tsybakov (2004))

Wp[0, 1] =
{
f ∈ L2[0, 1] : ‖f‖2p :=

∞∑

j=1

γ2p
j |〈f, φj〉|2 <∞

}
. (33.5)
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Estimation of β when X is second order stationary

If we suppose there exists a positive de�nite function c : [−1, 1] → R such
that cov(X(t), X(s)) = c(t − s), s, t ∈ [0, 1], i.e., X is second order station-
ary. Then the eigenfunctions of Tcov are given by the trigonometric basis
de�ned in (33.3). Moreover, only the eigenvalues {λ1, λ2, . . . } of Tcov depend
on the unknown covariance function c(·) and, hence have to be estimated.
Let (Y1, X1), . . . , (Yn, Xn) be an i.i.d. sample of (Y,X), which we use to con-
struct estimators ĝ and λ̂m, m ∈ N, of g and λm, m ∈ N, respectively. The
estimator β̃q of β is then de�ned by introducing a threshold α > 0, that is
for q ≥ 0 we consider

β̃q :=
∞∑
m=1

ĝm

λ̂m
· φm · 1{λ̂2

m ≥ α · γ2q
m }, with ĝm := 〈ĝ, φm〉, m = 1, 2, . . . ,

(33.6)
where the threshold α = α(n) has to tend to zero as the sample size n
increases. The eigenvalues of Tcov satisfy λm = E〈X,φm〉2, for all m ∈ N,
which motivates the following unbiased estimators

λ̂m =
1
n

n∑

i=1

〈Xi, φm〉2, m = 1, 2, . . . . (33.7)

Moreover, due to Parseval's formula we have
∑∞
m=1 λ̂m = 1

n

∑n
i=1‖Xi‖2

which is almost surely �nite. Thereby, the sum in (33.6) contains only a �nite
number of nonzero summands. On the other hand, an unbiased estimator of
g is given by

ĝ(s) :=
1
n

n∑

i=1

YiXi(s), s ∈ [0, 1]. (33.8)

Estimation of β when X is not second order stationary

We consider a generalized Tikhonov regularization using a Sobolev penalty in
order to overcome the saturation e�ect of the classical Tikhonov regulariza-
tion (for a detailed discussion in the context of an instrumental regression we
refer to Florens et al. (2007)). Given an i.i.d. sample (Y1, X1), . . . , (Yn, Xn) of
(Y,X) we consider again the estimator ĝ of g de�ned in (33.8). In addition we
estimate the covariance function cov(t, s) := cov(X(t), X(s)) by its empirical
counterpart, that is

ĉov(t, s) :=
1
n

n∑

i=1

Xi(t)Xi(s), t, s ∈ [0, 1]. (33.9)

Then the estimator T̂cov of the covariance operator Tcov is de�ned by
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[T̂covf ](s) :=
∫ 1

0

ĉov(t, s)f(t)dt, s ∈ [0, 1], f ∈ L2[0, 1]. (33.10)

The regularized estimator β̂q := β̂q,k of β based on a generalized Tikhonov
regularization of order k is obtained by solving iteratively the k minimization
problems

β̂q,j+1 := arg min
β∈Wq[0,1]

{‖T̂covβ−ĝ‖2+α‖β̂q,j−β‖2q}, j = 0, . . . , k−1, β̂q,0 := 0.

(33.11)
By de�nition β̂q belongs toWq[0, 1] and the classical Tikhonov regularization
is covered with k = 1 and q = 0. A numerical implementation needs a further
discretization step such as a projection onto the �rst m trigonometric basis
functions. However we ignore this step in the following presentation, since
the obtained approximation can be chosen arbitrary close to the minimizer
β̂q (depending only on the computational cost we are willing to pay).

33.3 Risk bound when X is second order stationary

We shall measure the performance of the estimator β̃q de�ned in (33.6) by
the Wq-risk, that is E‖β̃q − β‖2q, provided β ∈ Wp[0, 1] for some p > q ≥ 0.
For an integer k the Sobolev norm ‖g‖k is equivalent to ‖g‖ + ‖g(k)‖ with
k-th weak derivative g(k) of g. Thereby, the Wk-risk re�ects the performance
of β̃k and β̃(k)

k as estimators of β and β(k) , respectively.
Theorem 5 Suppose that X is second order stationary and that β ∈Wp[0, 1],
p > 0. Let Tcov be �nitely smoothing, that is R(Tcov) = Wa[0, 1] for some
a > 0. Consider for 0 ≤ q < p the estimator β̃q de�ned in (33.6). If
E‖X‖4(p+a)/(a+q) < ∞, then with α = c · n−(a+q)/(p+a), c > 0 we obtain
E‖β̃q − β‖2q = O(n−(p−q)/(p+a)) as n→∞.
If the operator Tcov is in�nitely smoothing, that is R(| log Tcov|−1) = Wa[0, 1]
for some a > 0. Then it can be shown that under suitable regularity conditions
on the parameter α and the moments of the random function X the Wq-
risk of the estimator β̃q is of order O((log n)−(p−q)/a). Moreover, the �nitely
and in�nitely smoothing case can be uni�ed, using an index function k :
(0, 1] → R, which is assumed to be a continuous, strictly increasing and
concave function with κ(0+) = 0 (c.f. Nair et al. (2005)). Denote by Φ and ω
the inverse functions of κ and ω−1(t) := tΦ(t), respectively. If the covariance
operator Tcov is general smoothing, that is

d ≤ γ2(q−p)
m · κ(c · λ2

m/γ
2q
m ) ≤ D, m = 1, 2, . . . , for some d,D, c > 0.
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Then under suitable regularity conditions on the parameter α and the mo-
ments of the random function X the Wq-risk of the estimator β̃q is of order
O(ω(1/n)). It is remarkable that the function ω provides the same order than
the modulus of continuity of the inverse operation of Tcov (for a detailed
discussion in the context of a deconvolution problem we refer to Johannes
(2007)).

33.4 Risk bound when X is not second order stationary

Theorem 6 Suppose that X is not second order stationary and that β ∈
Wp[0, 1], p > 0. Let Tcov be �nitely smoothing, that is R(Tcov) = Wa[0, 1] for
some a > 0. Consider for 0 ≤ q < p the estimator β̂q de�ned in (33.11) with
m ≥ (p − q)/(a + q) ∨ 1. If E‖Xm‖2 < ∞ and α = c · n−(a+q)/(p+a), c > 0,
then E‖β̂q − β‖2q = O(n−(p−q)/(p+a)).

If the operator Tcov is in�nitely smoothing, i.e., R(| log Tcov|−1) = Wa[0, 1],
a > 0. Then under suitable regularity conditions on the parameter α and
the moments of the random function X the Wq-risk of the estimator β̂q is of
order O((log n)−(p−q)/a). Moreover, if the covariance operator Tcov is general
smoothing, that is

d‖f‖q−p ≤ ‖κ1/2(B−
q
2T 2

covB
− q2 )f‖2 ≤ D‖f‖q−p for all f ∈ L2[0, 1]

and some d,D > 0, where B : W2[0, 1] → L2[0, 1] with Bf := −f ′′ (c.f.
Johannes et al. (2007)). Then under suitable regularity conditions on the
parameter α and the moments of the random function X the Wq-risk of the
estimator β̂q is of order O(ω(1/n)).
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Chapter 34
Presmoothing in Functional Linear
Regression

Adela Martínez-Calvo

Abstract We consider the functional linear model with scalar response Y
and explanatory variable X valued in a functional space. Functional Prin-
cipal Components Analysis (FPCA) have been used to estimate the model
parameter in recent literature. We propose to modify this methodology by
presmoothing either X or Y . For these new estimates, consistency is stated
and their e�ciency by comparison with the FPCA approach are studied.

34.1 Introduction

Nowadays the progress of computing and measure tools allows us to have
access to data that can be observed in a �ne grid. In these cases, we can
see the data as a discretized version of a functional variable. For this reason
the classical regression models have been adapted to the functional context
where the response variable Y and/or the explanatory variable X are val-
ued in a functional space (see Ramsay and Silverman, 2005, for a parametric
state of art and Ferraty and Vieu, 2006, for a nonparametric one). In par-
ticular, many authors have studied the functional linear model with scalar
response and they have proposed techniques for estimating the model pa-
rameter, for example using basis function systems as B-splines (Cardot et
al., 2003, Ramsay and Silverman, 2005, Crambes et al., 2007). Another well-
known approach is based on FPCA and has been developed and analysed in
many papers (Cardot et al., 1999, Cardot et al., 2003, Cai and Hall, 2006,
Hall and Hosseini-Nasab, 2006, Hall and Horowitz, 2007).

In order to make everything formal, let (E, 〈·, ·〉) be a real separable Hilbert
space (let us denote ‖ · ‖ = 〈·, ·〉1/2 its associated norm), and let ‖ · ‖E′ be the

Adela Martínez-Calvo
University of Santiago de Compostela, Spain, e-mail: adelamc@usc.es
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norm de�ned as ‖T‖E′ =
(∑∞

k=1 (Tek)2
)1/2

∀T ∈ E′, where E′ is the dual
space of E and {ek}∞k=1 is an orthonormal basis in E.

Let us consider the functional linear model given by

Y = m(X) + ε = 〈X, θ〉+ ε,

where Y is a real random variable, X is a random variable valued in E (such
that E(X) = 0 and E(‖X‖2) <∞), θ is a square integrable parameter valued
in E and ε is a real random variable that veri�es E(ε) = 0, E(ε2) = σ2 and
E(εX) = 0. We de�ne the second moment operator Γ (let {(λj , vj)}∞j=1 be its
eigenvalues and eigenfunctions, assuming that λ1 > λ2 > . . .) and the cross
second moment operator ∆ as

Γx = E(X⊗EX(x)) = E(〈X,x〉X), ∆x = E(X⊗E′ Y (x)) = E(〈X,x〉Y ),

∀x ∈ E. If
∑∞
j=1 (∆vjλj )2 < ∞, Cardot et al. (2003) show that the opti-

mization problem
min
β∈E

E[(Y − 〈β,X〉)2] (34.1)

has an unique solution θ that satis�es 〈Γx, θ〉 = ∆x, ∀x ∈ E. In particular,
when x = vj , λj〈vj , θ〉 = ∆vj for j = 1, 2, . . .. Therefore, the solution of
(34.1) can be expressed as

θ =
∞∑

k=1

〈θ, vj〉vj =
∞∑

k=1

∆vj
λj

vj .

This expansion for θ leads them to θ̂Kn =
∑Kn
j=1

∆nv̂j

λ̂j
v̂j , where

∆n = 1
n

∑n
i=1Xi ⊗E′ Yi and {(λ̂j , v̂j)}∞j=1 are the eigenvalues and the eigen-

functions of Γn = 1
n

∑n
i=1Xi ⊗E Xi (assuming that λ̂1 ≥ λ̂2 ≥ . . .). This

estimator converges almost surely (see Cardot et al., 1999) and it is easy to
show that θ̂Kn is the truncated version of the function θn that satis�es

〈Γnx, θn〉 = ∆nx, ∀x ∈ E. (34.2)

Besides elementary calculations allow us to write its conditional mean-
squared error as

E(‖θ̂Kn − θ‖2|X1, . . . , Xn) =
σ2

n

Kn∑

j=1

1

λ̂j
+RKn , (34.3)

where RKn =
∑
j>Kn

〈θ, v̂j〉2.
In this paper, we have revisited this estimator in order to improve its be-

havior in terms of the conditional mean-squared error (34.3) by presmoothing
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eitherX or Y . This is what we call e�ciency: among two estimators, the more
e�cient is the one leading to the smaller conditional mean-squared error.

34.2 Back to the multivariate case

The reason why we have decided to introduce presmoothing techniques comes
from the eighties when Faraldo-Roca and González-Manteiga (1985) state the
e�ciency of linear regression estimates obtained by preliminary nonparamet-
ric estimation in the real context (see Cristóbal-Cristóbal et al., 1987, for
an extension to the multivariate case ). We have realized that those esti-
mates can be seen as a presmoothing of the covariable X. In order to see
this, let us suppose that E = Rp. Following the steps taken in Faraldo-Roca
and González-Manteiga (1985), we can consider the multivariate Nadaraya-
Watson estimator m̂H(x) =

Pn
k=1 YkK(H−1/2(Xk−x))Pn
k=1 K(H−1/2(Xk−x))

, in which H is a p × p
symmetric positive de�nite matrix and K is a symmetrical kernel function
and solve the problem

min
β∈Rp

∫
(m̂H(x)− xtβ)2dµn(x) (34.4)

where µn is a weighting function.
If we choose µn(x) =

∫ x
−∞ f̂H(t)dt where

f̂H(x) = 1
n|H|1/2

∑n
i=1K(H−1/2(Xi − x)) is the nonparametric estimate of

the density function f of X, and K veri�es that
∫
zztK(z)dz = µ2(K)I, it

can be shown that θn is solution of (34.4) if and only if it satis�es

(Γn + µ2(K)H) θn = ∆n, (34.5)

where Γn = 1
n

∑n
i=1XiX

t
i and ∆n = 1

n

∑n
i=1XiYi. This expression is a

perturbation of (34.2) and allows us to de�ne θ̂H,X =
∑p
j=1

∆tnv̂
H
j

λ̂Hj
v̂Hj , where

{(λ̂Hj , v̂Hj )}pj=1 are the eigenvalues and the eigenvectors of Γn + µ2(K)H. It
is important to emphasize that θ̂H,X is also solution of

min
β∈Rp

EF̂∗H ((Y − (X + Z)tβ)2),

where Z is a random vector independent of X with density
g(z) = |H|−1/2K(H−1/2(z)), and
F̂ ∗H(x, y, z) = 1

n

∑n
i=1 1{Yi≤y}1{Xi≤x}

∫ z
−∞ g(t)dt, and therefore it can be

seen as a �presmoothing� of X. Moreover, our study of θ̂H,X allows us to say
that this estimate can be more e�cient than the least-squares estimates.
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In the other hand, when µn(x) = 1
n

∑n
i=1 1(−∞,x](Xi), we obtain a new

solution θn of (34.4) that satis�es

Γnθn = ∆H
n , (34.6)

in which ∆H
n = 1

n

∑n
i=1Xim̂H(Xi) is a �smooth� version of ∆n. We can

introduce the natural estimator θ̂H,Y =
∑p
j=1

(∆Hn )tv̂j

λ̂j
v̂j . Again (34.6) is a

perturbation of (34.2) and here it is clear that we have smoothed Y by means
of the nonparametric estimator m̂H . However, in this case we cannot insure
the e�ciency of θ̂H,Y .

These reasonings have encouraged us to study in the following sections
what happens when E is an arbitrary real separable Hilbert space and how
presmoothing in�uences on the conditional mean-squared error.

34.3 Presmoothing Y

Bearing in mind (34.6), let us look for θn that veri�es 〈Γnx, θn〉 = ∆h
nx for all

x ∈ E, in which ∆h
n = 1

n

∑n
i=1Xi ⊗E′ m̂h(Xi) is a smooth version of ∆n =

1
n

∑n
i=1Xi ⊗E′ Yi, and m̂h(·) =

Pn
k=1 YkK(h−1d(·,Xk))Pn
k=1 K(h−1d(·,Xk)) is the nonparametric

estimator proposed in Ferraty and Vieu (2006) and studied in Ferraty et al.
(2007), where K is an asymmetrical kernel function, h is a strictly positive
real and d is a semimetric on the space E. Hence let us de�ne the estimator
θ̂h,YKn of θ as

θ̂h,YKn =
Kn∑

j=1

∆h
nv̂j

λ̂j
v̂j ,

where {(λ̂j , v̂j)}∞j=1 are the eigenvalues and the eigenfunctions of
Γn = 1

n

∑n
i=1Xi ⊗E Xi. The estimator θ̂h,YKn converges and we have obtained

its conditional mean-squared error.

Theorem 34.1. If m(x) = 〈x, θ〉 and mh,Y
Kn

(x) = 〈x, θ̂h,YKn 〉, under some as-
sumptions ∥∥∥m̂h,Y

Kn
−m

∥∥∥
E′
→ 0 a.s.

Let us introduce the small ball probability function
ϕX0(h) = P (d(X0, X) ≤ h) and let us assume that it can be expressed as
ϕX0(h) ≈ φ(h)f(X0) for �small� h.

Theorem 34.2. Under some assumptions,

E(‖θ̂h,YKn − θ‖2|X1, . . . , Xn) ≈ σ2

nφ(h)

Kn∑

j=1

A

λ̂j
+ h2

Kn∑

j=1

B

λ̂2
j

+RKn (34.7)
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where A and B are positive constants and RKn is de�ned as in formula (34.3).

34.4 Presmoothing X

First presmoothing. By analogy with (34.5), we can look for a function θn in
E such that

〈(Γn + ΓZ)x, θn〉 = ∆nx, ∀x ∈ E, (34.8)
where ΓZ is the second moment operator of a centered process Z independent
of X and, if {(λ̂Zj , v̂Zj )} are the eigenvalues and eigenfunctions of ΓZn = Γn +
ΓZ , we can propose

θ̂ZKn =
Kn∑

j=1

∆nv̂
Z
j

λ̂Zj
v̂Zj .

For this estimator we have the following results.

Theorem 34.3. If m(x) = 〈x, θ〉 and mZ
Kn

(x) = 〈x, θ̂ZKn〉, under some as-
sumptions ∥∥m̂Z

Kn −m
∥∥
E′ → 0 a.s.

Theorem 34.4. If RZKn =
∑
j>Kn

〈θ, v̂Zj 〉2, under some assumptions

E(‖θ̂ZKn − θ‖2|X1, . . . , Xn) =
σ2

n

Kn∑

j=1

〈Γnv̂Zj , v̂Zj 〉(
λ̂Zj

)2 +

Kn∑

j=1

(
〈θ, Γnv̂

Z
j

λ̂Zj
− v̂Zj 〉

)2

+RZKn .

In order to simplify the previous expression, let us suppose that ΓZ = αI.
In this case {(λ̂Zj , v̂Zj )} ≡ {(λ̂j + α, v̂j)} and θ̂ZKn can be written as
θ̂α,XKn =

∑Kn
j=1

∆nv̂j

λ̂j+α
v̂j .

Corollary 34.1. Under some assumptions,

E(‖θ̂α,XKn − θ‖2|X1, . . . , Xn) ≈ (34.9)

E(‖θ̂Kn − θ‖2|X1, . . . , Xn)− 2ασ2

n

Kn∑

j=1

1

λ̂2
j

+ α2
Kn∑

j=1

〈θ, v̂j〉2
λ̂2
j

.

Second presmoothing. Given that we have turned the presmoothing in X
into a perturbation of the empirical second moment operator Γn (remind
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(34.8)) and their associated eigenvalues and eigenfunctions, we have consid-
ered other kind of smoothing FPCA such as those proposed by Pezzulli and
Silverman (1993) and Silverman (1996).

Pezzulli and Silverman (1993) study the properties of {(λ̃j , ṽj)}∞j=1 solu-
tion of the generalized eigenproblem (Γn − αQ) ṽ = λ̃ṽ where α is a �small�
positive real and Q is a symmetric nonnegative operator. The standard tech-
nique of asymptotic expansions allows us to write ṽj = (1− αΠjQ+ o(α)) v̂j
and λ̃j = λ̂j − αρj + o(α) for each j, where Πj =

∑
k 6=j (λ̂j − λ̂k)−1Pk (Pk

is the projection onto the subspace of E spanned by v̂k) and ρj = 〈v̂j , Qv̂j〉.
De�ning θ̃PSKn =

∑Kn
j=1

∆nṽj
λ̃j

ṽj and following the steps given for obtain Theo-
rem 34.4, we can link the conditional mean-squared errors of θ̃PSKn and θ̂Kn .

Theorem 34.5. Under some assumptions,

E(‖θ̃PSKn − θ‖2|X1, . . . , Xn) ≈ E(‖θ̂Kn − θ‖2|X1, . . . , Xn) +
2ασ2

n

Kn∑

j=1

ρj

λ̂2
j

+ α2
Kn∑

j=1

〈θ,Qv̂j〉2
λ̂2
j

− 2α
∑

j>Kn

〈θ, v̂j〉〈θ,ΠjQv̂j〉.

(34.10)

Let us consider the smoothed FPCA proposed by Silverman (1996) who
works with the eigenproblem Γnṽ = λ̃ (I + αQ) ṽ (and with di�erent normal-
ization conditions from Pezzulli and Silverman's ones). In this case, we can
write ṽj =

(
1− α

(
ρj
2 + λ̂jΠjQ

)
+ o(α)

)
v̂j and λ̃j = λ̂j (1− αρj + o(α)),

and de�ne the estimator θ̃SKn =
∑Kn
j=1

∆nṽj
λ̃j

ṽj .

Theorem 34.6. Under some assumptions,

E(‖θ̃SKn − θ‖2|X1, . . . , Xn) ≈ E(‖θ̂Kn − θ‖2|X1, . . . , Xn) +
ασ2

n

Kn∑

j=1

ρj

λ̂2
j

+ α2
Kn∑

j=1

〈θ,Qv̂j〉2 − α

 ∑

j>Kn

ρj〈θ, v̂j〉2 + 2
∑

j>Kn

λ̂j〈θ, v̂j〉〈θ,ΠjQv̂j〉

 .

(34.11)

34.5 Comments about e�ciency

In this paper, we have considered di�erent estimators for the linear model
parameter θ and we have obtained the expressions of their conditional mean-
squared error. Looking at (34.3), (34.7), (34.9), (34.10) and (34.11), we can
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deduce that, in general, presmoothing of Y fails in comparison with θ̂Kn ,
while presmoothing of X can be more e�cient that θ̂Kn with an adequate
choice of smoothing parameter α (depending on the selection of Q for θ̃PSKn
and θ̃SKn). On the other hand, simulations have con�rmed these conclusions.
In addition, these expressions allow us to drive the smoothing parameter
selection to obtain e�ciency.
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Chapter 35
Probability Density Functions of the
Empirical Wavelet Coe�cients of
Multidimensional Poisson Intensities

José Carlos Simon de Miranda

Abstract We determine the probability density functions of the empirical
wavelet coe�cient estimator β̂η =

∫
ψηdN in the wavelet series expansion p̂ =∑

β̂ηψη of non homogeneous multidimensional Poisson processes intensity
functions.

35.1 Introduction

Estimation of non homogeneous Poisson intensities is a research subject
of both theoretical and practical interest given the importance of Poisson
processes in point processes theory as well as its use in a large number of prac-
tical applications. Parametric, semi parametric, non parametric and bayesian
methods have been used to estimate Poisson intensities. We cite Timmermann
and Novak (1998) to Miranda (2006). In our works Miranda (2005), Miranda
(2003) and Miranda and Morettin (2006) we have studied the wavelet estima-
tor p̂ =

∑
β̂ηψη of p, the intensity of a general Point process. In this article

we specialize to non homogeneous Poisson processes. This restriction on the
set of probability structures is strong enough to let us obtain the probabil-
ity density function of the wavelet coe�cient estimators β̂η and yet not too
strong as to forbid its practical and theoretical use as seen above. Mathemat-
ical and statistical aspects of wavelet theory can be found in Meyer (1993)
to Donoho et al. (1996).

This article is organized as follows. In section 2 we present some basics
and notations, in section 3 we state and prove the main results and in section
4 we make some remarks.

José Carlos Simon de Miranda
University of São Paulo, São Paulo, São Paulo, Brazil, e-mail: simon@ime.usp.br
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35.2 Some basics and notations

Let N be a point process on Rd, with unknown intensity p. Let {ψj,i|i, j ∈ Z}
be an orthonormal wavelet basis of L2(R) of the form ψj,i(t) = 2j/2ψ(2jt− i)
or ψj,i(t) = 2j/2ψ(2j(t− t1) + t1 − iT ) for some mother wavelet ψ obtained,
if necessary by the composition of a standard wavelet with an a�ne transfor-
mation, such that its support is [t1, t2] with T = t2 − t1. Here i corresponds
to translations and j to dilations. Let φ be the father wavelet corresponding
to ψ. Similarly, let {φ`i,k, ψj,i : i, k ∈ Z, j ≥ `i, j, `i ∈ Z} be an orthonor-
mal wavelet basis that contains all the scales beyond some �xed extended
integer `i. It is extremely pleasant to adopt the following notation. Let dZ =

{z ∈ Z : z ≥ d}, d ∈ Z∪{−∞} and de�ne Ze(`i) =
{

Z ∪ (`iZ× Z) if `i ∈ Z,
Z2 if `i = −∞.

Let us use Greek letters for indexes in Ze(`i) and we shall write ψη = φ`i,η
if and only if η ∈ Z and ψη = ψj,i if and only if η = (j, i) ∈ Z2.
Thus, the wavelet expansions f(t) =

∑
i∈Z

∑
j∈Z δjiψj,i(t) and f(t) =∑

k∈Z γkφ`i,k(t) +
∑
i∈Z

∑
j∈`iZ δjiψj,i(t) will be simply written

f =
∑
η∈Ze(`i) αηψη, for αη given by

∫∞
−∞ fψηdt =

∫
R(
∑
ξ αξψξ)ψηdt =∑

ξ

∫
R αξψξψηdt =

∑
ξ αξ < ψξ, ψη >= αη. Let for all n, 1 ≤ n ≤ d,

{ψn,j,i|i, j ∈ Z}, ψn,j,i(t) = 2j/2ψn(2jt − i) or ψn,j,i(t) = 2j/2ψn(2j(t −
an) + an − iTn) and {φn,`i,k, ψn,j,i : i, k ∈ Z, j ≥ `in, j, `in ∈ Z ∪ {−∞}} be
orthonormal wavelet bases of L2(R) as above where suppψn = [an, bn] and
Tn = bn − an.

These bases are simply written as {ψn,ηn |ηn ∈ Ze(`in)} and they are,
under restriction, also orthonormal bases of L2[an, bn], 1 ≤ n ≤ d. Taking
tensor products we form the orthonormal basis {ψ̃η̃|ψ̃η̃ = ⊗dn=1ψn,ηn , η̃ =

(η1, . . . , ηd) ∈
d∏

n=1
Ze(`in)} of L2(Rd) and also, under restriction, of

L2(
d∏

n=1
[an, bn]). Denote

d∏
n=1

Ze(`in) by Ze( ˜̀i); ˜̀i = (`i1, ..., `id). From now

on we will drop the tilde and use simple notation for vectors in Rd, tensor
product wavelets and d-tuples in Ze( ˜̀i). In this way if f ∈ L2(Rd) we have
f =

∑
η∈Ze(`i)

αηψη with αη =
∫
Rd
fψηd`.

Frequently we want to obtain the restriction of p to
d∏

n=1
[an, bn] = [a, b] =

O, an observation region, based on the points of a trajectory of the process
that are contained in this Rd interval.

From now on we assume that p is locally square integrable. Therefore
for the wavelet expansion of p restricted to bounded Rd interval observation
regions, we have

p =
∑
η

βηψη, (35.1)

with
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βη =
∫

Rd
pψηd`. (35.2)

The main estimation purpose is to obtain p through the expansion (1) and
for this we need to estimate the wavelet coe�cients βη given by (2). The
unbiased estimator we use is β̂η =

∫
ψηdN .

We use OF = (0, . . . , 0) ∈ Ze(`i), OM = ((`i1, 0), . . . , (`id, 0)) ∈ Ze(`i).
We write for η ∈ Ze(`i), j(η) = `i if η ∈ Z and j(η) = j if η = (j, i). Also, if
η ∈ Ze(`i), j(η) = (j(η1), . . . , j(ηm)) and |j(η)| = ∑m

`=1 j(ηi).

35.3 Main results

In this section we present the central results of this paper. Theorem 1 tells
us how to obtain the probability density function of the empirical wavelet
coe�cient β̂η. Note that this function depends on both the wavelet ψη and
the Poisson intensity p(x). Corollary 1 presents the series expansion of the
characteristic function of β̂η and Corollary 2 gives formulas for the �rst four
centered moments of β̂η as well as its asymmetry and kurtosis coe�cients.
Theorem 2 in the analog of Theorem 1 for the speci�c case of Haar wavelets.

Theorem 35.1. Let N be a Poisson process on Rd with intensity function
p : Rd → R+. Suppose the wavelet ψη is compactly supported and continuous.
Then fη : R → R+, the probability density function of β̂η =

∫
Rd ψηdN , is

given by the principal value

fη(y) =
1

2π

∫

R
exp

(∫

suppψη

p(x) (cos (wψη(x))− 1) dx

)

cos

(∫

suppψη

p(x)sin (wψη(x)) dx− wy
)
dw.

From the proof of theorem 1, the characteristic function of β̂η is given by
the following:
Corollary 35.1. Under theorem's 1 hypothesis we have

E(eiwβ̂η ) = 1+

∞∑
n=1

∑

(
P∞
m=1 im=n)

{ (iw)
P∞
m=1 mim∏∞

m=1(im!(m!)im)

∞∏
m=1

(
∫

suppψη

p(x)ψmη (x)dx)im}

Since we have the series expansion of the characteristic function of β̂η its
moments are easily obtained. The variance, asymmetry and kurtosis of the
wavelet coe�cient distributions is the subject of the following:
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Corollary 35.2. Under theorem's 1 hypothesis, we have

βη = E(β̂η) =
∫
ψηpd`, var(β̂η) =

∫
ψ2
ηpd`,

µ3(β̂η) =
∫
ψ3
ηpd` and µ4(β̂η) =

∫
ψ4
ηpd`+ 3(

∫
ψ2
ηpd`)

2

so that the coe�cients of asymmetry α3 and kurtosis α4 are given by:

α3(η) =

∫
ψ3
ηpd`

(
∫
ψ2
ηpd`)(3/2)

and α4(η) = 3 +

∫
ψ4
ηpd`

(
∫
ψ2
ηpd`)2

.

One of the most important and used wavelet families is the Haar family.
This is a consequence of the extremely simple forms of its scale function and
mother wavelet that makes it computationally easier to use Haar wavelets
instead of other more elaborated ones. However, Haar wavelets are not con-
tinuous and theorem 1 does not apply to them. In this way, we present the
following:

Theorem 35.2. Let N be a Poisson process on Rd with intensity function
p : Rd → R+. Denote ψ+

η = (|ψη| + ψη)/2 and ψ−η = (|ψη| − ψη)/2.
Suppose the wavelet family used is Haar, that is, the wavelets in this fam-
ily are tensor products of one dimensional Haar wavelets only. Then β̂η ∼
||ψη||∞(X+−X−),where X+ and X− are independent Poisson random vari-
ables with means λ+

η =
∫
suppψ+

η
pd` and λ−η =

∫
suppψ−η

pd`. The probability
function of β̂η, fη : ||ψη||∞Z→ R+, is given by:

fη(||ψη||∞z) = exp(−
∫

suppψη

pd`)
∑

k≥max{0,z}

(λ+
η )k(λ−η )k−z

k!(k − z)! .

35.4 Final remarks

We remark that if the intensity may be regarded as constant on suppψη then
we can write the following approximations:

α3(η) =

∫
ψ3
ηpd`

(
∫
ψ2
ηpd`)(3/2)

∼= 2|j(η)|/2

p
1
2

∫
ψ3
z(η)d`

and
α4(η) = 3 +

∫
ψ4
ηpd`

(
∫
ψ2
ηpd`)2

∼= 3 +
2|j(η)|

p

∫
ψ4
z(η)d`,

where ψz(η) is any re-scaled wavelet that corresponds to ψη such that
j(z(η)) = 0 ∈ Zd. Since, for all η ∈ Ze(`i) ∫

ψ3
z(η)d` and

∫
ψ4
z(η)d` are
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limited by constants, we observe that for continuous intensities the kurto-
sis coe�cient will increase without bound as |j(η)| goes to in�nity; and the
same will happen to the absolute value of the asymmetry coe�cient in case
the wavelet has non vanishing integral of its third power. Note that one can
have all α3(η)'s equal to zero if the multidimensional wavelet basis is formed
by tensor products of one dimensional wavelets such that the integral of the
third power of each of these wavelets is zero.

It is also worth noting that in case we have n independent replications of
the Poisson process, i.e. we have n independent trajectories of the process,
we can form the estimators β̃η = 1

n

∑n
i=1 β̂η(i), p̃ = 1

n

∑n
i=1 p̂(i), where β̂η(i)

and p̂(i) are the estimated wavelet coe�cient and intensity obtained from the
ith observation. These estimators inherit the unbiasedness of β̂η(i) and p̂(i).
Moreover, β̃η also presents the desired feature of asymptotical normality as a
consequence of the �niteness of the �rst and second moments of the wavelet
coe�cient estimators β̂η(i) that guarantees the central limit theorem can
be applied to the independent sum β̃η. As a matter of fact the asymptotic
normality of β̃η is not restricted to Poisson process setting; in Miranda and
Morettin (2005), Miranda (2003) and Miranda and Morettin (2006) we have
also shown that the �niteness requirements mentioned above are also valid
for a larger class of point processes so that they will also exhibit this feature
in case of independent replications.
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Chapter 36
A Cokriging Method for Spatial
Functional Data with Applications in
Oceanology

Pascal Monestiez and David Nerini

Abstract We propose a method based on a functional linear model which
takes into account the spatial dependencies between sampled functions. The
problem of estimating a function when spatial samples are available is turned
to a standard cokriging problem for suitable choices of the regression function.
This work is illustrated with environmental data in Antarctic where marine
mammals operate as samplers. In the framework of second order stationarity,
the application points out some di�culties when estimating the structure of
spatial covariance between observations.

36.1 Introduction

One of the hottest challenge for Functional Data Analysis (Ramsay and Sil-
verman, 2005) is the development of statistical methods adapted for spatially
connected curves. Even if theoretical works are currently scarce in this area
(Dabo-Niang and Yao, 2007), many applications raise the need to include spa-
tial relations between functional variables into statistical analysis especially
in environmental sciences (Meiring, 2007). In oceanography, surveys provide
vertical pro�les of temperature, salinity or other variables that are spatially
dependent and sampled along the depth. Most of the time, the analysis of such
data involves geostatistical methods (Wackernagel, 2003). In the best case,
the vertical dimension is included as a third spatial dimension and analysis is
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achieved with standard kriging. However, this approach is often problematic
due to strong and complex anisotropy and to non-stationarity along the verti-
cal dimension. An alternative way is to discretize the curves and to modelize
them using multivariate geostatistics as in Goulard and Voltz (1992). The
latter approach also su�ers from several drawbacks : data analysis does not
include the functional form of the variable along the pro�le and computation
is rapidely limited when pro�les are recorded on a �ne grid. Thus, the aim
of this work is to propose a method which extend the coregionalization ap-
proach taking into account the functional nature of the data. We show that,
in the framework of a functional linear model with spatial dependancy, the
estimation of the regressor reduces to a multivariate cokriging problem, for
suitable choice of the regression function. The method is illustrated with data
analysis of temperature pro�les in Antarctic.

36.2 Spatial linear model

Let us consider a collection of curves E = {yi, i = 1, ..., N} sampled at N
random spatial locations xi over a domain D. Each yi (t) is an unique obser-
vation of Yi (t), random function at location xi where argument t varies in a
compact interval τ of R. The functions Yi take values in a Hilbert space H
with an associated norm denoted by ‖·‖. If we suppose second order station-
narity, the spatial covariance function Cij between Yi at location xi and Yj
at location xj = xi + h reads

{
E (Yi) = µ,∀xi ∈ D
Cij = E [(Yi − µ)⊗ (Yj − µ)] .

The mean of each function is equal to the same function µ (t) at any point of
the domain. The spatial covariance only depends on the vector h connecting
the functional variable pair and is invariant for any translation of the pair into
the domain. Following the work of Cardot et al. (1999), we seek to estimate
Y0, the curve at unknown location x0, with the linear model

Ŷ0 (t) =
N∑

i=1

∫

τ

βi (s, t)Yi (s) ds (36.1)

such that the weighting functions βi (s, t) are chosen to minimize

E
∥∥∥Ŷ0 − Y0

∥∥∥
2

.

We turn the problem of estimating the βi (s, t) by considering the case
where the Yi's are expressed in terms of a linear combination of K known
basis functions φ1, ..., φK
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Yi (t) =
K∑

k=1

αk (xi)φk (t) = α′iφ (t)

where αi = (α1 (xi) , ..., αK (xi))
′ is the vector of coe�cients at location xi

and φ (t) = (φ1 (t) , ..., φK (t))′ the vector of basis functions. In the same way,
the bivariate function βi (s, t) is expanded in the φ-basis such that

βi (s, t) =
K∑

k=1

K∑

l=1

biklφk (s)φl (t)

= φ′ (s) Biφ (t)

for each (s, t) belonging to τ×τ , where Bi is the K×K matrix of coe�cients
bikl at location xi. Replacing these expressions in (36.1) gives

Ŷ0 (t) =
N∑

i=1

α′iWBiφ (t) .

For a suitable choice of an orthonormal basis, the matrix

W =
∫
φ (t)φ′ (t)

of the inner products of the φ-basis is identity and

Ŷ0 (t) =
N∑

i=1

K∑

k,l=1

biklαl (xi)φk (t) .

The computation of Ŷ0 expressed in terms of linear combination of known
functions, is equivalent to an ordinary cokriging on coe�cients of sampled
curves in the isotopic case i. e. when all coe�cients are available at all sam-
pling points.

36.3 Cokriging on coe�cients

The stationarity hypothesis of the random functions Yi expressed into the
φ-basis becomes

{
E (αi) = a, ∀xi ∈ D

Cij = E
[
(αi − a) (αj − a)′

]

where the mean a is aK−vector of coe�cients, Cij theK×K cross covariance
matrix with entries cov (αk (xi) , αl (xj)) , k, l = 1, ...,K. Here again, the
cross-covariance only depends on distance between locations xi and xj . The



240 Pascal Monestiez and David Nerini

cokriging estimator of α0 at location x0 is de�ned as

α̂0 =
N∑

i=1

B
′
iαi (36.2)

which minimizes
trace (var (α̂0 −α0)) . (36.3)

Condition of unbiasedness

E (α̂0 −α0) = 0

is satis�ed by choosing weights that ful�ll the constraints

N∑

i=1

bikl = δkl =
{

1 if αl = αk

0 otherwise .

The computation of the K coe�cients of α̂0 is achieved by global con-
strained minimization of (36.3). As usual in geostatistics, the quality of esti-
mations relies on the choice of a suitable model for the multivariate covariance
functions for which positive semi-de�nite properties must be well checked. As
shown in the following, by �tting a Linear Model of Coregionalization (LMC),
the choice of an obtainable model of spatial covariance structure at di�erent
scales is conducted from a multivariate nested variogram �t (Goulard et al.,
1992).

36.4 Dealing with real data

The above method is illustrated with data in oceanography where marine
mammals operate as samplers. As a matter of fact, the southern Antarctic
ocean is probably one of the less accessible area on Earth. This place plays
a key role in heat exchanges between ocean and atmosphere and very few
oceanographic data are available. Since the 90's, scientists are interested in
the possibility to explore unkown parts of Antarctic ocean using elephant
seals equipped with Argos transmitters including pressure, temperature and
salinity sensors. The elephant seal becomes a valuable auxiliary for oper-
ational oceanography and enables scientists to study the hydrology of the
southern ocean and the animal behaviour (Bailleul et al., 2007).

Figure 1 displays temperature pro�les sampled in Antarctic ocean by an
elephant seal travelling from Kerguelen Islands to the Antarctic continental
shelf. Temperature pro�les are recorded at each dive at di�erent discrete lo-
cations in space and depth. Typically, these data require to be �tted in order
to form a set of functional pro�les. We choose to express each function into



36 A Cokriging Method for Spatial Functional Data 241

Fig. 36.1 Example of sampled temperature (°C) pro�les by elephant seal and spatial
location of displayed pro�les along the trajectory (white circles). The cruise duration is 4.5
monthes. During the travel, the animal crosses and samples di�erent water structures.

an orthonormal polynomial basis where coe�cients have been estimated tak-
ing into account the variability of the sampling devices. The set of estimated
coe�cient vectors {αi, i = 1, ..., N} constitutes the sample E and estima-
tions of a functional pro�le may be achieved at any location x0 along the
trajectory, using the estimator in (36.2). Modelization of covariance struc-
tures between coe�cients is realized through the �t of a multivariate nested
variogram model

Γ (h) =
S∑
u=1

Puγu (h)

where S is the number of chosen structures, the γu (h) are normalized
variograms and Pu are positive semi-de�nite matrices. This coregionalization
approach with two di�erent scales provides a acceptable estimation of the �eld
of temperature pro�les ranging from 0 to 600 m (Fig. 2).

The �tted nested covariograms of Fig. 2 point out the main di�culty of
the method. It is a hard task to �nd the set of variogram models γu, selected
among the family of parametric models used in geostatistics (spherical, ex-
ponential, ...), taking care to keep S reasonably small. In our case, the range
of each nested models is �xed by the practitioner (20 km and 100km) so as
to provide the most graphically satisfactory �t. The matrices Pu are then
�tted by a least squares algorithm (Wackernagel, 2003).
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Fig. 36.2 Example of least squares �t of a multivariate nested variogram model on 3 poly-
nomial coe�cients and associated estimated temperature pro�les. The covariance structure
is decomposed in two scales (20 km and 100 km) which provides an obtainable model for
estimating the coe�cients at di�erent locations along the trajectory of the elephant seal.
Bolded curves are observed pro�les. Thin curves show the predicted curves with cokriging
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Chapter 37
On the E�ect of Curve Alignment and
Functional PCA

Juhyun Park

Abstract When dealing with multiple curves as functional data, it is a com-
mon practice to apply functional PCA to summarise and characterise random
variation in �nite dimension. Often functional data however exhibits addi-
tional time variability that distorts the assumed common structure. This is
recognized as the problem of curve registration. While the registration step
is routinely employed, this is considered as a preprocessing step prior to any
serious analysis. Consequently, the e�ect of alignment is mostly ignored in
subsequent analyses and is not well understood. We revisit the issue by par-
ticularly focusing on the e�ect of time variability on the FPCA and illustrate
the phenomena from a borrowed perturbation viewpoint. The analysis further
suggests an iterative estimating procedure to optimise FPCA.

37.1 Introduction

Repeated measurements in the form of curves are increasingly common in
various scienti�c applications including biomedicine and physical sciences
(Ramsay and Silverman, 2002, 2005). Individual measurements are taken
at consecutive time points (index set) and repeatedly observed for di�erent
subjects. Usually the sample of curves is assumed to have some homogeneous
structure in the functional shape, while allowed for individual variability. It
is desirable that the additional variability is summarised with a few com-
ponents which are able to extract most variability and which are easy to
interpret (Park et al. 2007).

Functional PCA utilises the well-known Karhunen-Loève expansion to
provide an optimal representation of the function with a small number of
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common components. This is based on the assumption that the underly-
ing random function shares the common mean and covariance function. To
�x the idea, consider a stochastic process X ∈ L2(T) with compact sup-
port T = [0, T ], with the mean function µ(t) and the covariance function
γ(s, t) = Cov(X(s), X(t)). Assume that

∫
T
E[X(t)2] <∞. Let λ1 ≥ λ2 ≥ . . .

be the ordered eigenvalues of the covariance operator de�ned through γ with
the corresponding eigenfunctions φ1, φ2, . . .. We assume that

∑
k λk < ∞.

Then
X(t) = µ(t) +

∑

k

ξkφk(t) , (37.1)

where E[ξ] = 0 and E[ξjξk] = λjI(j = k).
With a sample of curves available, these quantities are replaced by their

estimates and a �nite number of components are usually considered su�cient
to extract signi�cant observed variation. Theoretical properties of estimators
are studied in Dauxois et al. (1982), Rice and Silverman (1991), Kneip (1994)
and Hall et al. (2006).

Often functional data exhibits additional time variability, which is mainly
dealt with in pre-processing step, by aligning curves to eliminate the time
variability prior to any serious analysis. This is known as registration problem
and there are several methods developed. Basically when the functions exhibit
identi�able features, curves can be aligned to match those features, which is
known as landmark registration (Gasser and Kneip, 1995). This works well
as long as features are correctly identi�ed. Several other methods have been
developed to automate the procedure when the features are less prominent.
An overview can be found in Ramsay and Silverman (2005).

Although the issue has been rightly acknowledged, because most analysis
treats registration as a preprocessing step, its carry-on e�ects on later analysis
was not well studied. A recent work of Kneip and Ramsay (2007) address a
similar problem and propose a new procedure to combine registration to �t
functional PCA models, extending the covex averaging idea of registration
(Liu and Müller, 2004).

Instead we focus on quantifying our misconduct. What happens then if reg-
istration was not carried out or was made improperly? The obvious problem
arises when estimating global mean structure. Generally, how does the time
variability propagate through to functional PCA analysis? Some issues with
interpretability in functioanl PCA may also be attributed to the improper
registration. We concentrate on relations of eigenvalues and eigenfunctions
between unregistered and registered curves, in the sense that we do not want
our registrations step to be perfect but we would like to be able to correct the
residual di�erence from our imperfect analysis later.

Assume that the observed variable is X̃(t) = X(η(t)) for a monotone
transformation η(t) with E[η(t)] = t for t ∈ T. Suppose that we proceed to
functional PCA without correcting η at the earlier stage to obtain λ̃ and φ̃.
How much do we lose by ignoring η?

We may start with the representation in (37.1) as
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X̃(t) = µ(η(t)) +
∑

k

ξkφk(η(t)) .

Now E[X̃(t)] = µ(η(t)) but note that the series is not any longer orthonormal
decomposition. Write γ̃(s, t) = Cov(X̃(s), X̃(t)). Then

γ̃(s, t) = γ(s, t) + γ̃(s, t)− γ(s, t) .

With some Taylor appromixation argument, it may be shown that γ̃(s, t) −
γ(s, t) = εv(s, t) for some ε and v, then, under some regularity conditions
and for small ε, we would have

λ̃k = λk + ε < φk, V φ > +O(ε2) ,

φ̃k ∝ φ+ ε
∑

l 6=k

< φk, V φl >

λk − λl +O(ε2) ,

where V denotes the corresponding operator for v. A similar derivation is
made in Hall et al. (2006) to quantify sampling variability. We extend the
idea to include time variability. Our interest is to recover λ and φ from λ̃ and
φ̃ using a sample of curves and a registration. Our estimators will be obtained
from the estimators of unregistered curves with some correction made based
on a registration. The precision of registration will be re�ected on that of
V and thus the correction terms in general. Based on these relations some
properties of estimators will be studied and illustrated.
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Chapter 38
K-sample Subsampling

Dimitris Politis and Joseph Romano

Abstract The problem of subsampling in two-sample and K-sample settings
is addressed where both the data and the statistics of interest take values in
general spaces. We show the asymptotic validity of subsampling con�dence
intervals and hypothesis tests in the case of independent samples, and give a
comparison to the bootstrap in the K-sample setting.

38.1 Introduction

Subsampling is a statistical method that is most generally valid for nonpara-
metric inference in a large-sample setting. The applications of subsampling
are numerous starting from i.i.d. data and regression, and continuing to time
series, random �elds, marked point processes, etc.; see Politis, Romano and
Wolf (1999) for a review and list of references.

Interestingly, the two-sample and K-sample settings have not been ex-
plored yet in the subsampling literature; we attempt to �ll this gap here. So,
consider K independent datasets: X(1), . . . , X(K) where
X(k) = (X(k)

1 , . . . , X
(k)
nk ) for k = 1, . . . ,K. The random variables X(k)

j take
values in an arbitrary space1 S; typically, S would be Rd for some d, but S
can very well be a function space. Although the dataset X(k) is independent
of X(k′) for k 6= k′, there may exist some dependence within a dataset. For
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Joseph Romano
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1 Actually, one can let S vary with k as well, but we do not pursue this here for lack of
space.
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conciseness, we will focus on the case of independence within samples here;
the general case will be treated in a follow-up bigger exposition.

Thus, in the sequel we will assume that, for any k, X(k)
1 , . . . , X

(k)
nk are i.i.d.

An example in the i.i.d. case is the usual two-sample set-up in biostatistics
where d `features' (body characteristics, gene expressions, etc.) are measured
on a group of patients, and then again measured on a control group. The
probability law associated with such a K-sample experiment is speci�ed by
P = (P1, . . . , PK), where Pk is the underlying probability of the kth sam-
ple; more formally, the joint distribution of all the observations is the prod-
uct measure

∏K
k=1 P

nk
k . The goal is inference (con�dence regions, hypothesis

tests, etc.) regarding some parameter θ = θ(P ) that takes values in a general
normed linear space B with norm denoted by || · ||. Denote n = (n1, . . . , nK),
and let θ̂n = θ̂n(X(1), . . . , X(K)) be an estimator of θ. It will be assumed that
θ̂n is consistent as mink nk →∞. In general, one could also consider the case
where the number of samples K tends to ∞ as well.

Let g : B → R be a continuous function, and let Jn(P ) denote the sam-
pling distribution of the �root" g[τn(θ̂n−θ(P ))] under P , with corresponding
cumulative distribution function

Jn(x, P ) = ProbP {g[τn(θ̂n − θ(P ))] ≤ x} (38.1)

where τn is a normalizing sequence; in particular, τn is to be thought of as a
�xed function of n such that τn → ∞ when mink nk → ∞. As an example,
g(·) might be a continuous function of the norm || · || or a projection operator.

As in the one-sample case, the basic assumption that is required for sub-
sampling to work is existence of a bona �de large-sample distribution, i.e.,

Assumption 38.1.1 There exists a nondegenerate limiting law J(P ) such
that Jn(P ) converges weakly to J(P ) as mink nk →∞.

The α�quantile of J(P ) will be denoted by
J−1(α, P ) = inf{x : J(x, P ) ≥ α}. In addition to Assumption 38.1.1, we will
use the following mild assumption.

Assumption 38.1.2 As mink nk →∞, τb‖θ̂n − θ(P )‖ = oP (1).

Assumptions 38.1.1 and 38.1.2 are implied by the following assumption, as
long as τb/τn → 0.

Assumption 38.1.3 As mink nk → ∞, the distribution of τn(θ̂n − θ(P ))
under P converges weakly to some distribution (on the Borel σ-�eld of the
normed linear space B).

Here, weak convergence is understood to be taken in the modern sense of
Ho�mann-Jorgensen; see Section 1.3 of van der Vaart and Wellner (1996).
That Assumption 38.1.3 implies both Assumptions 38.1.1 and 38.1.2 follows
by the Continuous Mapping Theorem; see Theorem 1.3.6 of van der Vaart
and Wellner (1996).
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38.2 Subsampling hypothesis tests in K samples

For k = 1, . . . ,K, let Sk denote the set of all size bk (unordered) subsets of the
dataset {X(k)

1 , . . . , X
(k)
nk } where bk is an integer in [1, nk]. Note that the set

Sk contains Qk =
(
nk
bk

)
elements that are enumerated as S(k)

1 , S
(k)
2 , . . . , S

(k)
Qk

.
A K�fold subsample is then constructed by choosing one element from each
super-set Sk for k = 1, . . . ,K. Thus, a typicalK�fold subsample has the form:
S

(1)
i1
, S

(2)
i2
, . . . , S

(K)
iK

, where ik is an integer in [1, Qk] for k = 1, . . . ,K. It is
apparent that the number of possible K�fold subsamples is Q =

∏K
k=1Qk.

So a subsample value of the general statistic θ̂n is

θ̂i,b = θ̂b(S(1)
i1
, . . . , S

(K)
iK

) (38.2)

where b = (b1, . . . , bK) and i = (i1, . . . , iK). The subsampling distribution
approximation to Jn(P ) is de�ned by

Ln,b(x) =
1
Q

Q1∑

i1=1

Q2∑

i2=1

· · ·
QK∑

iK=1

1{g[τb(θ̂i,b − θ̂n)] ≤ x}. (38.3)

The distribution Ln,b(x) is useful for the construction of subsampling con�-
dence sets as discussed in Section 38.3. For hypothesis testing, however, we
instead let

Gn,b(x) =
1
Q

Q1∑

i1=1

Q2∑

i2=1

· · ·
QK∑

iK=1

1{g[τb(θ̂i,b)] ≤ x}, (38.4)

and consider the general problem of testing a null hypothesis H0 that
P = (P1, . . . , Pk) ∈ P0 against H1 that P ∈ P1. The goal is to construct
an asymptotically valid null distribution based on some test statistic of the
form g(τnθ̂n), whose distribution under P is de�ned to be Gn(P ) (with c.d.f.
Gn(·, P )). The subsampling critical value is obtained as the 1−α quantile of
Gn,b(·), denoted gn,b(1− α). We will make use of the following assumption.

Assumption 38.2.1 If P ∈ P0, there exists a nondegenerate limiting law
G(P ) such that Gn(P ) converges weakly to G(P ) as mink nk →∞.

Let G(·, P ) denote the c.d.f. corresponding to G(P ). Let G−1(1 − α, P )
denote a 1−α quantile of G(P ). The following result gives the consistency of
the procedure under H0, and under a sequence of contiguous alternatives; for
the de�nition contiguity see Section 12.3 of Lehmann and Romano (2007).
One could also obtain a simple consistency result under �xed alternatives.
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Theorem 38.1. Suppose Assumption 38.2.1 holds. Also, assume that, for
each k = 1, . . . ,K, we have bk/nk → 0, and bk →∞ as mink nk →∞.
(i) Assume P ∈ P0. If G(·, P ) is continuous at its 1− α quantile
G−1(1− α, P ), then

gn,b
P−→ G−1(1− α, P ) (38.5)

and

ProbP {g(τnθ̂n) > gn,b(1− α)} → α as min
k
nk →∞ . (38.6)

(ii) Suppose, that for some P = (P1, . . . , Pk) ∈ P0, Pnkk,nk is contiguous to
Pnkk for k = 1, . . .K. Then, under such a contiguous sequence, g(τnθ̂n) is
tight. Moreover, if it converges in distribution to some random variable T
and G(·, P ) is continuous at G−1(1 − α, P ), then the limiting power of the
test against such a sequence is P{T > G−1(1− α, P )}.
Proof: To prove (i), let x be a continuity point of G(·, P ). We claim

Gn,b(x) P−→ G(x, P ) . (38.7)

To see why, note that E[Gn,b(x)] = Gb(x, P )→ G(x, P ) . So, by Chebychev's
inequality, to show (38.7), it su�ces to show V ar[Gn,b(x)]→ 0. To do this, let
d = dn be the greatest integer ≤ mink(nk/bk). Then, for j = 1, . . . , d, let θ̄j,b
be equal to the statistic θ̂b evaluated at the data set where the observations
from the kth sample are (X(k)

bk(j−1)+1, X
(k)
bk(j−1)+2, . . . , X

(k)
bk(j−1)+bk

). Then, set

Ḡn,b(x) = d−1
d∑

j=1

1{g(τbθ̄j,b) ≤ x} .

By construction, Ḡn,b(x) is an average of i.i.d. 0�1 random variables with
expectation Gb(x, P ) and variance that is bounded above by 1/(4dn) → 0.
But, Gn,b(x) has smaller variance than Ḡn,b(x). This last statement follows
by a su�ciency argument from the Rao-Blackwell Theorem; indeed,

Gn,b(x) = E[Ḡn,b(x)|P̂ (k)
nk
, k = 1, . . . ,K] ,

where P̂ (k)
nk is the empirical measure in the kth sample. Since these empirical

measures are su�cient, it follows that

V ar(Gn,b(x)) ≤ V ar(Ḡn,b(x))→ 0 .

Thus, (38.7) holds. Then, (38.5) follows by Lemma 11.2.1(ii) of Lehmann and
Romano (2005). Application of Slutsky's Theorem yields (38.6).
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To prove (ii), we know that gn,b P−→ G−1(1 − α, P ) under P . Contiguity
forces the same convergence under the sequence of contiguous alternatives.
The result follows by Slutsky's Theorem. �

38.3 Subsampling con�dence sets in K samples

Let cn,b(1 − α) = inf{x : Ln,b(x) ≥ 1 − α} where Ln,b(x) was de�ned in
(38.3).

Theorem 38.2. Assume Assumptions 38.1.1 and 38.1.2, where g is assumed
uniformly continuous. Also assume that, for each k = 1, . . . ,K, we have
bk/nk → 0, τb/τn → 0, and bk →∞ as mink nk →∞.
(i) Then, Ln,b(x) P−→ J(x, P ) for all continuity points x of J(·, P ).
(ii) If J(·, P ) is continuous at J−1(1− α, P ), then the event

{g[τn(θ̂n − θ(P ))] ≤ cn,b(1− α)} (38.8)

has asymptotic probability equal to 1− α; therefore, the con�dence set
{θ : g[τn(θ̂n − θ)] ≤ cn,b(1− α)} has asymptotic coverage probability 1− α.
Proof: Assume without loss of generality that θ(P ) = 0 (in which case
Jn(P ) = Gn(P )). Let x be a continuity point of J(·, P ). First, we claim that

Ln,b(x)−Gn,b(x) P−→ 0 . (38.9)

Given ε > 0, there exists δ > 0, so that |g(x) − g(x′)| < ε if ‖x − x′‖ < δ.
But then, |g[τb(θ̂i,b− θ̂n)]−g(τbθ̂i,b)| < ε if ‖τbθ̂n‖ < δ; this latter event has
probability tending to one. It follows that, for any �xed ε > 0,

Gn,b(x− ε) ≤ Ln,b(x) ≤ Gn,b(x+ ε)

with probability tending to one. But, the behavior of Gn,b(x) was given in
Theorem 38.1. Letting ε→ 0 through continuity points of J(·, P ) yields (38.9)
and (i). Part (ii) follows from Slutsky's Theorem. �
Remark. The uniform continuity assumption for g can be weakened to con-
tinuity if Assumptions 38.1.1 and 38.1.2 are replaced by Assumption 38.1.3.
However, the proof is much more complicated and relies on a K-sample ver-
sion of Theorem 7.2.1 of Politis, Romano and Wolf (1999).
In general, we may also try to approximate the distribution of a studen-
tized root of the form g(τn[θ̂n− θ(P )]/σ̂n, where σ̂n is some estimator which
tends in probability to some �nite nonzero constant σ(P ). The subsampling
approximation to this distribution is
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L+
n,b(x) =

1
Q

Q1∑

i1=1

Q2∑

i2=1

· · ·
QK∑

iK=1

1{g[τb(θ̂i,b − θ̂n)]/σ̂i,b ≤ x}, (38.10)

where σ̂i,b is the estimator σ̂b computed from the ith subsampled data set.
Also let c+n,b(1− α) = inf{x : L+

n,b(x) ≥ 1− α}.
Theorem 38.3. Assume Assumptions 38.1.1 and 38.1.2, where g is assumed
uniformly continuous. Let σ̂n satisfy σ̂n

P−→ σ(P ) > 0. Also assume that,
for each k = 1, . . . ,K, we have bk/nk → 0, τb/τn → 0, and bk → ∞ as
mink nk →∞.
(i) Then, Ln,b(x) P−→ J(x · σ(P ), P ) if J(·, P ) is continuous at xσ(P ).
(ii) If J(·, P ) is continuous at J−1(1− α, P )/σ(P ), then the event

{g[τn(θ̂n − θ(P ))]/σ̂n ≤ c+n,b(1− α)} (38.11)

has asymptotic probability equal to 1− α.

38.4 Random subsamples and the K�sample bootstrap

For large values of nk and bk, Q =
∏
k

(
nk
bk

)
can be a prohibitively large

number; considering all possible subsamples may be impractical and, thus,
we may resort to Monte Carlo. To de�ne the algorithm for generating ran-
dom subsamples of sizes b1, . . . , bK respectively, recall that subsampling in
the i.i.d. single-sample case is tantamount to sampling without replacement
from the original dataset; see e.g. Politis et al. (1999, Ch. 2.3). Thus, for m =
1, . . . ,M , we can generate the mth joint subsample as X(1)

m , X(2)
m , . . . , X(K)

m

where X(k)
m = {X(k)

I1
, . . . , X

(k)
Ibk
}, and I1, . . . , Ibk are bk numbers drawn ran-

domly without replacement from the index set {1, 2, . . . , nk}. Note that the
random indices drawn to generate X(k)

m are independent to those drawn to
generate X(k′)

m for k 6= k′.
Thus, a randomly chosen subsample value of the statistic θ̂n is given by

θ̂m,b = θ̂b(X(1)
m , . . . , X(K)

m ), with corresponding subsampling distribution de-
�ned as

L̃n,b(x) =
1
M

M∑
m=1

1{g[τb(θ̂m,b − θ̂n)] ≤ x}. (38.12)

The following corollary shows that L̃n,b(x) and its 1−α quantile c̃n,b(1−α)
can be used for the construction of large-sample con�dence regions for θ; its
proof is analogous to the proof of Corollary 2.1 of Politis and Romano (1994).

Corollary 38.1. Assume the conditions of Theorem 38.2. As M →∞, parts
(i) and (ii) of Theorem 38.2 remain valid with L̃n,b(x) and c̃n,b(1−α) instead
of Ln,b(x) and cn,b(1− α).
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Similarly, hypothesis testing can be conducted using the notion of random
subsamples. To describe it, let g̃n,b(1− α) = inf{x : G̃n,b(x) ≥ 1− α} where

G̃n,b(x) =
1
M

M∑
m=1

1{g[τb(θ̂m,b)] ≤ x}. (38.13)

Corollary 38.2. Assume the conditions of Theorem 38.1. As M →∞, parts
(i) and (ii) of Theorem 38.1 remain valid with G̃n,b(x) and g̃n,b(1−α) instead
of Gn,b(x) and gn,b(1− α).

The bootstrap in two-sample settings is often used in practical work; see
Hall and Martin (1988) or van der Vaart and Wellner (1996). In the i.i.d. set-
up, resampling and (random) subsampling are very closely related since, as
mentioned, they are tantamount to sampling with vs. without replacement
from the given i.i.d. sample. By contrast to subsampling, however, no general
validity theorem is available for the bootstrap unless a smaller resample size
is used; see Politis and Romano (1993).

Actually, the general validity of K-sample bootstrap that uses a resample
size bk for sample k follows from the general validity of subsampling as long
as b2k << nk. To state it, let J∗n,b(x) denote the bootstrap (pseudo-empirical)
distribution of g[τb(θ̂∗n,b − θ̂n)] where θ̂∗n,b is the statistic θ̂b computed from
the bootstrap data. Similarly, let c∗n,b(1 − α) = inf{x : J∗n,b(x) ≥ 1 − α}.
The proof of the following corollary parallels the discussion in Section 2.3 of
Politis et al. (1999).

Corollary 38.3. Under the additional condition b2k/nk → 0 for all k, The-
orem 38.2 is valid as stated with J∗n,b(x) and c∗n,b(1− α) in place of Ln,b(x)
and cn,b(1− α) respectively.
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Chapter 39
Inference for Stationary Processes Using
Banded Covariance Matrices

Mohsen Pourahmadi and Wei Biao Wu

Abstract We consider prediction and estimation problems by banding co-
variance matrices of stationary processes. Under a novel short-range depen-
dence condition for a class of nonlinear processes, it is shown that the banded
covariance matrix estimates converge in operator norm to the true covariance
matrix with reasonable rates of convergence. A sub-sampling approach is pro-
posed to choose the banding parameter.

39.1 Introduction

Given a realization X1, . . . , Xn of a stationary process {Xt} with the auto-
covariance function γk = cov(X0, Xk), estimation of the covariance matrix
Σn = (γi−j)1≤i,j≤n is important in almost every aspect of prediction and
statistical inference. A good covariance matrix estimate should necessarily be
positive de�nite and be uniformly close to the true one (Hannan and Deistler,
1988, Sec. 5.3) so that one can invert the estimated covariance matrix to
perform prediction and other inferential tasks. Assuming µ = E(Xt) = 0 and
E(X2

t ) <∞, the autocovariances can be estimated by

γ̂k =
1
n

n−|k|∑

i=1

XiXi+|k|, k = 0,±1, . . . ,±(n− 1). (39.1)

It is known that for �xed k ∈ Z, under the ergodicity condition, γ̂k → γk
in probability. However, this entry-wise convergence does not automatically

Mohsen Pourahmadi
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Wei Biao Wu
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imply that the corresponding estimated matrix Σ̂n = (γ̂i−j)1≤i,j≤n is a good
estimate of Σn (Hannan and Deistler, 1988, Sec. 5.3). Indeed, though Σ̂n is
positive de�nite (see Chapter 5 in Pourahmadi (2001)), it is not uniformly
close to the population covariance matrix Σn, in the sense that the largest
eigenvalue or the operator norm of Σ̂n −Σn does not converge to zero.

Our covariance matrix estimate, for an l a nonnegative integer, is of the
form

Σ̂n,l = (γ̂i−j1|i−j|≤l)1≤i,j≤n. (39.2)

It is a truncated version of Σ̂n, preserving the diagonal and the 2l main
sub-diagonals; note that if l ≥ n − 1, then Σ̂n,l = Σ̂n. Following Bickel and
Levina (2007), we call Σ̂n,l the banded covariance matrix estimate and l its
band parameter. The motivation for banding comes from the fact that for
a large lag k, either γk is close to zero or that γ̂k is an unreliable estimate
of γk. Thus, prudent use of banding may bring considerable computational
economy in the former case and statistical e�ciency in the latter by keeping
small or unreliable γ̂k out of the calculations.

There are important di�erences between our setup and results here, and
those in Bickel and Levina (2007) and Zeitouni and Anderson (2008) where
the observations are iid random vectors and can be viewed as m rows of
an m × n random matrix or a multivariate dataset. They considered the
banded version of the sample covariance matrix, and obtained consistency
results under some regularity condition when log n/m → 0. However, we
work with only one (m = 1) realization or time series data and establish
consistency by banding the sample autocovariance matrix. Also we impose
very mild moment and dependence conditions on a class of nonlinear processes
using a new concept of short-range dependence (Wu, 2005). The selection of
band parameters of our covariance matrix estimates is an adaptation of a
resampling and risk-minimization approach due to Bickel and Levina (2007).
Its performance is assessed via simulations for linear and nonlinear processes
and the results will be reported elsewhere.

39.2 The results

We �rst introduce some structural assumptions on the process {Xt} and work
within the framework of nonlinear stationary processes which includes the
standard linear processes. Hannan and Deistler (1988) have considered certain
linear ARMA processes and obtained the uniform bound ‖Σ̂n,` − Σn‖∞ =
O(
√

log log n/
√
n), ` ≤ (log n)α, α < ∞; see Theorem 5.3.2 therein. In this

section, we obtain comparable results for nonlinear processes and allow a
wider range of `; see Theorem 39.2 below.
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39.2.1 A class of nonlinear processes

Let εi, i ∈ Z, be independent and identically distributed (iid) random vari-
ables. Assume that {Xi} is a causal process of the form

Xi = g(. . . , εi−1, εi), (39.3)

where g is a measurable function such that Xi is a well-de�ned second-order
process. Many stationary processes fall within the framework of (39.3) (see
Tong (1990) and Wu (2005)). To introduce the dependence structure, let
(ε′i)i∈Z be an independent copy of (εi)i∈Z and ξi = (. . . , εi−1, εi). Following
Wu (2005), for α > 0 and i ≥ 0, de�ne the physical dependence measure

δα(i) = ‖Xi −X ′i‖α, where X ′i = g(ξ′i) and (39.4)

ξ′i = (. . . , ε−1, ε
′
0, ε1, . . . , εi−1, εi).

Observe that X ′i = g(ξ′i) is a coupled version of Xi = g(ξi) with ε0 in the
latter replaced by an iid copy ε′0. The quantity δα(i) measures the dependence
of Xi on ε0. As in Wu (2005), we say that {Xi} is short-range dependent if

∆α =
∞∑

i=0

δα(i) <∞. (39.5)

Namely the cumulative impact of ε0 on future values of the process or (Xi)i≥0

is �nite, thus suggesting a short-range dependence. In many applications it
is easy to work with δα(i) which is directly related to the data generating
mechanism of the underlying process as indicated in the next two examples.
Example 39.1. Let Xj = K(

∑∞
i=0 aiεj−i), where ai are real coe�cients with∑∞

i=0 |ai| < ∞, εi are iid with εi ∈ Lα, 2 < α ≤ 4, and K is a Lipschitz
continuous function. Easy calculation shows that δα(i) = O(|ai|), hence (39.5)
holds.
Example 39.2. Let εi be iid random variables and setXi = R(Xi−1, εi), where
R is a bivariate function such that the system admits a stationary solu-
tion. Many nonlinear time series models follow this framework. Wu and Shao
(2004) showed that, under mild and natural conditions, one has δα(i) = O(ri),
0 < r < 1. So (39.5) clearly follows.

39.2.2 Convergence of banded covariance estimators

First we show that
∑̂
n is not a consistent estimate of

∑
n in the sense that

the operator norm or the largest eigenvalue of
∑̂
n −

∑
n does not converge
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to zero. On the positive side, we are able to show the convergence to zero
and obtain an explicit upper bound for ρ(Σ̂n,l − Σn) in our Theorem 39.2.
All the proofs will appear elsewhere.

Theorem 39.1. De�ne the projection operator Pk, k ∈ Z, by

PkZ = E(Z|ξk)− E(Z|ξk−1), Z ∈ L1.

If the process {Xt} in (39.3) satis�es
∞∑

i=0

‖P0Xi‖ <∞, (39.6)

with σ = ‖∑∞i=0 P0Xi‖ > 0, then, ρ(Σ̂n −Σn) 6→ 0 in probability.

It is very di�cult to �nd the asymptotic distribution of the maximal eigen-
value ρ(Σ̂n − Σn), even in the special case that Xi are iid. Recently, Bryc,
Dembo and Jiang (2006) studied spectral measures of Toeplitz matrices with
sub-diagonals being independent. In our case the matrix Σ̂n−Σn is Toeplitz.
However, the sub-diagonals are dependent. Hence the results by Bryc et al
(2006) are not directly applicable. For other contributions for inconcsistency
of largest eigenvalues of sample covariance matrices see Johnstone (2001) and
El Karoui (2007) among others.

Lemma 39.1. Assume that (39.5) holds for some 2 < α ≤ 4 and let q =
α/2, Bq = 18q3/2(q − 1)−1/2 if q < 2 and Bq = 1 if q = 2. Then for any
j ∈ Z,

∥∥∥∥∥
n∑

i=1

XiXi+j − nγj
∥∥∥∥∥
q

≤ 2Bqn1/q‖X1‖α∆α. (39.7)

Theorem 39.2. Let 2 < α ≤ 4 and q = α/2. Assume that (39.5) holds and
0 ≤ l < n− 1. Then

‖ρ(Σ̂n,l −Σn)‖q ≤ cα(l + 1)n1/q−1‖X1‖α∆α +
2
n

l∑

j=1

j|γj | (39.8)

+2
n∑

j=l+1

|γj |,

where cα > 0 is a constant only depending on α.
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39.2.3 Band selection

The band selection problem is intuitively related to the order selection for
�tting MA models to the data, and bandwidth selection in the nonparamet-
ric estimation of the spectral density function. A method motivated by our
Theorem 39.2 suggests that l should satisfy:

l→∞, ln1/q−1 → 0, or ln1/q−1 �
∞∑

j=l+1

|γj |. (39.9)

As a data-driven choice of l, one could propose the following naive algo-
rithm:
1. Choose l such that

∑l
k=−l γ̂(k) is a �good" estimate of σ2 or the spectral

density of {Xt} at zero.
2. Check whether Σn,l is positive de�nite. If so, let l∗ = l.
3. Otherwise, let l∗ = l − 1 and go to Step 2.
The �ner details for implementing this method is worked out in this section
using the idea of resampling and risk-minimization, in a manner similar to
that in Bickel and Levina (2007, Section 5). While they show that �nonover-
lapped" splitting of the data works well for band selection in the multivariate
data framework, our preliminary numerical experiments showed this scheme
to be unsatisfactory for the time series data. Instead, the technique of sub-
sampling (Politis, Romano and Wolf, 1999) which amounts to �overlapped"
splitting of the data proved to be more suitable for time series data. Inter-
estingly, some of the details for implementing subsampling fall within the
conceptual framework of estimating the spectral density of {Xt} at zero as in
1 above, which happens to be a familiar topic in the literature of time series
analysis; for an excellent review see Politis and Romano (1995).

For linear processes, a natural way to select the band parameter ` in (39.2)
is to minimize the risk

R(`) = E‖Σ̂n,` −Σn‖(1,1), (39.10)

where for two n× n matrices A and B, ‖A− B‖(1,1) = max
i

n∑

j=1

|aij − bij | is

the same norm used in Bickel and Levina (2007). Of course, the �oracle" ` is
given by `0 = arg min

`
R(`). The following subsampling scheme will be used

to estimate the risk in (39.10) and hence `0. An asymptotic justi�cation for
it can be found by focusing on the estimation of the vector of parameters
θ = (γ0, · · · , γK)′,K ≥ 1, for a stationary process, and using Theorem 3.3.1
and the results related to Example 3.3.4 in Politis et al. (1999, pp. 83-85).

Given the stationary, centered time series data X1, X2, · · · , Xn of length
n, the γ̂k in (39.1) is usually computed for k = 0, 1, · · · ,K. The choice of K
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is important in practice, since γ̂k is not an accurate estimate of γk for k large.
A useful guide which is part of the folklore of time series analysis is to use
K ≤ n/4, but the default value in the SAS software is K = 24 and in R it is
K = 10 log(10n). In our calculations here we �x it at K = 30, and when using
subsampling to estimate (39.10), the unknown

∑
n will be replaced by the

K×K sample autocovariance matrix
∑̂
K as the �target" and the whole data

X1, · · · , Xn will be used to estimate its entries. The
∑̂
n,` will be replaced

by the K ×K banded matrix
∑̂
b,`,ν whose entries are computed using the

νth block (subseries) of length b, i.e. {Xν , · · · , Xν+b−1}, ν = 1, · · · , n− b+ 1.
Finally, (39.10) is estimated by

R̂(`) =
1

n− b+ 1

n−b+1∑
ν=1

‖Σ̂b,`,ν − Σ̂K‖(1,1), (39.11)

and ˆ̀ is selected to minimize R̂(·). Note that whereas `0 is the best choice in
terms of the risk (39.10), ˆ̀ tries to adapt to the time series data at hand via
(39.11). The optimal choice of the block size b plays a crucial role in selecting
the band `. As a general guide, Politis et al (1999, Chaps 3,9) show that
for consistency in estimation of a parameter, the block size b must grow to
in�nity while b/n → 0 with a rate like n1/3. Note that this requirement is
similar to (39.9) corresponding to the choice of q = 3/2 or α = 3 in Theorem
39.2. For the computations here, we take b > K, and it is �xed at b = 40.

Only in a simulation setup where
∑
n is known, it is possible and useful

to compare ˆ̀ from above to the best band choice for the time series data, i.e.

`1 = arg min
`
‖Σ̂K,` −ΣK‖(1,1), (39.12)

where
∑
K is the �rst K × K principal minor of

∑
n and

∑̂
K,` is the `-

banded version of
∑̂
K in (39.11). Also, the losses of the K ×K and n × n

sample autocovariance matrices, i.e. ‖∑̂K −
∑
K ‖(1,1) and ‖

∑̂
n−

∑
n ‖(1,1),

do serve as useful guides on the merits of these estimators and the relevance
of (39.10)-(39.12) for band selection.
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Chapter 40
Automatic Local Spectral Envelope

Ori Rosen and David Sto�er

Abstract The concept of spectral envelope for the scaling and analysis of
categorical time series in the frequency domain was developed in Sto�er et
al. (1993) under the assumption of homogeneity. Here, we present a method
for �tting a local spectral envelope for nonstationary sequences.

40.1 Introduction

The concept of spectral envelope for the scaling and analysis of categori-
cal time series in the frequency domain was �rst introduced in Sto�er et
al. (1993). There, we addressed the basic question of how to e�ciently dis-
cover periodic components in categorical time series. This was accomplished
as follows. Let Xt, t = 0, ±1, ±2, . . . , be a categorical-valued time series with
�nite state-space C = {c1, c2, . . ., ck+1}. Assume that Xt is stationary and
pj = Pr{Xt = cj} > 0 for j = 1, 2, . . . , k + 1. For βββ = (β1, β2, . . . , βk)′ ∈ Rk,
denote by Xt(βββ) the real-valued stationary time series corresponding to the
scaling that assigns the category cj the numerical value βj , for j = 1, 2, . . . ,
k; the category ck+1, is assigned the �xed value of zero (this is without loss
of generality, as was shown in the article). Our goal was to �nd scalings βββ so
that the spectral density of Xt(βββ), say fX(ω;βββ), is in some sense interesting,
and to summarize the spectral information by what we called the spectral
envelope. We chose βββ to maximize the power at each frequency relative to
the total power,
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λ(ω) = sup
fX(ω;βββ)
σ2(βββ)

, (40.1)

where the sup is over βββ 6= 000k, the k × 1 vector of zeros, and σ2(βββ) =
var{Xt(βββ)}.

It was useful to represent the categories in terms of the vectors eee1, eee2, . . .,
eeek, where eeej represents the k× 1 vector with a one in the j-th row, and zeros
elsewhere; eeek+1 is the k×1 zero vector. We then de�ned a k-dimensional sta-
tionary time series YYY t by YYY t = eeej when Xt = cj . If YYY t has a continuous spec-
tral matrix fY (ω), then Xt(βββ) = βββ′YYY t implies that fX(ω; βββ) = βββ′freY (ω)βββ,
where re denotes the real part [fY (ω) is skew-symmetric, so the imaginary
part is annihilated by pre- and post-multiplication by a real-valued vector].
The optimality criterion can be expressed as

λ(ω) = sup
βββ′freY (ω)βββ
βββ′V βββ

, (40.2)

where V is the variance-covariance matrix of YYY t.
We de�ned λ(ω) to be the spectral envelope of a stationary categorical time

series and βββ(ω) the optimal scaling. The name spectral envelope is appropriate
because λ(ω) envelopes the standardized spectrum of any scaled process; that
is, setting σ2(βββ) = var{Xt(βββ)} = 1, we have fX(ω;βββ) ≤ λ(ω), with equality if
and only if βββ is proportional to βββ(ω). Although information is lost when one
restricts attention to the spectrum of Xt(βββ), less information is lost when one
considers the spectrum of YYY t. Dealing directly with the spectral density fY (ω)
itself is somewhat cumbersome because it is a function into the set of complex
Hermitian matrices. Alternatively, one can view the spectral envelope as an
easily understood, parsimonious tool for exploring the periodic nature of a
categorical time series with a minimal loss of information. We mention that
the spectral envelope methodology draws heavily from ideas developed in
spectral domain principal component analysis (e.g. Brillinger, 2001, Ch. 9)

For the stationary case, estimation proceeds in an obvious way, �rst by
obtaining an consistent estimate of fY (ω) in the usual way, and then by
obtaining the largest eigenvalue of the estimate in the metric of the sample
covariance matrix of the data YYY t. More details and some examples of the
theory and methodology can be found in Shumway & Sto�er (2006, Ch. 7);
R programs for computing the spectral envelope are available on the website
for the text (http://www.stat.pitt.edu/stoffer/tsa2/).

Recently, local methods based on the spectral envelope have been dis-
cussed by other researchers from various �elds such as soil science, and signal
processing (e.g., Wang and Johnson, 2002). We realized early on that the
stationary assumption would have to be relaxed for the spectral envelope to
be a truly useful tool. For example, a common problem in analyzing long
DNA sequences is in identifying coding sequences (CDS) that are dispersed
throughout the sequence and separated by regions of noncoding. Local be-
havior is encountered even within short subsequences of DNA. To address
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this problem of local behavior in categorical-valued time series in general,
we developed a technique to use the spectral envelope methodology in con-
junction with a dyadic tree-based adaptive segmentation (TBAS) method
for analyzing locally stationary processes. These and related techniques were
reported in Sto�er & Ombao (2001), Sto�er (2002), and Sto�er, Ombao &
Tyler (2002). In these papers, we developed various local spectral envelope
techniques; in particular we focused on a TBAS method that automatically
divides a sequence into smaller stationary segments. Once the optimal seg-
mentation was found, we extracted the pertinent spectral information from
these segments. We provided numerous examples in these papers to exhibit
the viability of the technique in detecting genes. The problem with the TBAS
method was that it produced dyadic subdivisions of a sequence that were
considered stationary. Hence, when the analysis was completed, one only had
knowledge of an approximate location of a CDS (or some other interesting
segments, such as repeat regions).

40.2 Basic approach

Our present focus is on developing a better method for estimating a local (in
a generic sense) spectral envelope. The initial method we are proposing is
based on �tting local splines. The �rst step was to develop a method to esti-
mate a spectral matrix function of a stationary vector process via smoothing
splines. This step was accomplished in Rosen and Sto�er (2007). The basic
idea is as follows. We assumed that we have a su�ciently large number, n,
of observations from a p-dimensional stationary time series, xxxt, whose p × p
autocovariance matrix, Γ (h) = {γjk(h)}, satis�es ∑∞h=−∞ |γjk(h)| < ∞ for
all j, k = 1, . . . , p. The p× p spectral density matrix is given by

f(ω) =
∞∑

h=−∞
Γ (h)e−2πiωh, −1/2 ≤ ω ≤ 1/2 ,

where f(ω) = {fjk(ω)}, for j, k = 1, . . . , p. In addition, we assumed f(ω) is
positive de�nite so that we may employ the Whittle likelihood

L(yyy0, . . . , yyyn−1; f0, . . . , fn−1) l
n−1∏

k=0

det(fk)−1 exp(−yyy∗kf−1
k yyyk) , (40.3)

where yyyk is the p×1 discrete Fourier transform of the data at frequency k/n,

yyyk = n−1/2
n∑
t=1

xxxt exp{−2πi kn t},
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and fk = f(k/n).
Our goal was to obtain smooth estimators of the elements of f as a function

of ω while satisfying the constraint that f is positive de�nite. To this end, we
expressed the inverse of the spectral matrix at frequency k/n as the modi�ed
complex Cholesky factorization

f−1
k = T ∗kD

−1
k Tk , (40.4)

where Tk is a complex unit lower triangular matrix, and Dk is a diagonal
matrix. To be more speci�c,

Tk =




1
−θ(k)

21 1
−θ(k)

31 −θ(k)
32 1

...
... . . .

−θ(k)
p1 −θ(k)

p2 . . . −θ(k)
p,p−1 1




and Dk = diag(δ2
1k, . . . , δ

2
pk). Note that in general the θ(k)

il 's are complex-
valued.

It is di�cult to model the elements of the spectral matrix directly because
of the constraint that the spectral matrix must be positive de�nite at each
frequency, but in the factorization (40.4), the θ(k)

il 's are unconstrained and
the δ2

jk's are positive. Thus, it is much easier to model these parameters
rather than the elements of the spectral matrix. Once Tk and Dk have been
estimated, the resulting estimator of fk is automatically positive de�nite.

To facilitate the estimation of the θ(k)
il 's and the δ2

jk's and thereby the
estimation of the spectral matrix, we used the likelihood (40.3) in combi-
nation with the factorization (40.4). We �rst rewrote the likelihood (40.3)
as a function of the θ

(k)
il 's and the δ2

jk's. Let N = [n/2], θk be the
p(p− 1)/2-dimensional vector (θ(k)

21 , θ
(k)
31 , θ

(k)
32 , . . . , θ

(k)
p,p−1)′, Θ = (θ1, . . . ,θN ),

∆ = {δ2
1k, . . . , δ

2
pk}Nk=1 and Y = (yyy1, . . . , yyyN ). >From (40.3) and (40.4) it

followed that the likelihood can be expressed as

L(Y ;∆,Θ) ∝
N∏

k=1

p∏

j=1

δ−2
jk exp{(yyyk − Zkθk)∗D−1

k (yyyk − Zkθk)} , (40.5)

where Zk is a p× p(p− 1)/2 design matrix with elements that are either 0 or
a component of yyyk. Note that in (40.5), the endpoint involving yyy0 is ignored.
Next, we placed linear smoothing spline priors on the θ(k)

il 's and the δ2
jk's.

In our experience, linear smoothing splines were better suited to estimating
the spectral matrix, as they can better accommodate narrowband peaks. In
particular, each of the log δ2

jk's and the real and imaginary parts of each of
the negative θ(k)

il 's are expressed as
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α0 + α1ωk +
N∑
s=1

ψs(ωk)βs , (40.6)

where ωk = k/n and ψs(ωk) =
√

2 cos{(s − 1)πωk}. The ψs(·)'s are the
Demmler-Reinsch basis functions for linear smoothing splines (Eubank, 1999).
Let Xβ be the matrix whose columns are the basis functions ψs(·) evalu-
ated at ω1, . . . , ωN , and let Xα be a matrix whose columns are the vector
of ones and (ω1, . . . , ωN )′. Let X = (Xα

∣∣ Xβ) be the matrix formed by
binding Xα and Xβ columnwise, γj = (α′j ,β

′
j)′, ∆j = (δ2

j1, . . . , δ
2
jN )′ and

θil = (θ(1)
il , . . . , θ

(N)
il )′. Then

log ∆j = Xγj , −<(θil) = Xγil(re), −=(θil) = Xγil(im) , (40.7)

for j = 1, . . . , p, i = 2, . . . , p, and l = 1, . . . , i− 1, where <(·) and =(·) denote
the real part and the imaginary part, respectively. Corresponding to (40.7),
the priors on αj , αil(re) and αil(im) are taken to be N(000, σ2

αI2), and those
on βj , βil(re) and βil(im) are taken to be N(000, τ2

j IN ), N(000, τ2
il(re)IN ) and

N(000, τ2
il(im)IN ), respectively. With the θ(k)

il 's and the δ2
jk's viewed as func-

tions of ω, the parameters τ2
j , τ2

il(re) and τ2
il(im) are smoothing parameters,

governing the amount of smoothing of each of these functions. A zero value
of a smoothing parameter corresponds to a linear �t, while a value tending to
in�nity results in an interpolating linear spline. The priors on the smoothing
parameters are p(τ2

j ) ∝ 1/τ2
j , p(τ2

il(re)) ∝ 1/τ2
il(re) and p(τ2

il(im)) ∝ 1/τ2
il(im).

We estimated the spectral matrix by its posterior mean using Markov chain
Monte Carlo methods to perform the required multidimensional integration.
Details about the sampling scheme and numerous examples, including an
analysis of a DNA nucleotide sequence via the spectral envelope can be found
in Rosen and Sto�er (2007).

The next step is to establish a method for �tting local univariate spec-
tra and then to combine the results from the univariate local case and the
multivariate stationary case to the local multivariate case. The stationary
univariate case can be handled using the stationary multivariate approach
previously described, but where there is no need to use the Cholesky decom-
position; that is, in ρF eq : whittle −−ρF eq : like, there are no θs and there
is only one δ2

k at frequency k/n.
Suppose we are given {X(t/N); t = 1, . . . , N} observations from a

Dahlhaus-locally stationary process with spectrum f(u, ω), for u ∈ (0, 1] and
ω ∈ (−1/2, 1/2], let {Xs(t); t = 1, . . . , N/S; s = 1, . . . , S} be a piecewise
stationary process, where in any small non-overlapping segment ( s−1

S , sS ],
the spectrum of Xt(s) is f(s, ω). Under general smoothness conditions, a
Dahlhaus-locally stationary processes can be well approximated by piecewise
stationary processes, and we therefore focus on the estimation of f(s, ω) as an
approximation to the Dahlhaus-spectrum f(u, ω). The choice of the number
of segments, S, will be discussed after we present the model, but the basic
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idea is that the �ner the partition of the unit time interval, the better the
estimate of the time varying spectrum.

Given S, our goal is the estimation of gs(ω) = log f(s, ω) from the
data, {Xt(s); t = 1, . . . , n; s = 1, . . . , S}, where n = N/S. To this end,
we will �rst calculate the periodogram corresponding to each segment. Let
yyys = (ys,0, . . . , ys,n/2)′ be the log-periodogram for segment s, s = 1, . . . , S,
evaluated at the Fourier frequencies. We model these observations as

yyys(ωk) = gs(ωk) + εk

where gs(ω) is the log of the spectral density for segment s, for s = 1, . . . S,
and the εk's for k = 0, . . . , [n/2] are independent, εk ∼ log(χ2

2/2) for k =
1, . . . , [n/2]− 1, and εk ∼ log(χ2

1) for k = 0, [n/2].
Our basic approach is to model gs(ω) as a mixture of an unknown but

�nite number of spectra so that

gs(ω) =
J∑

j=1

gjs(ω) Pr(j),

where J is the maximum number of components, Pr(j) is the prior probability
that the mixture contains j components, and gjs(ω) is the log of the spectral
density of a mixture of j components in segment s. For a given number of
mixture components j and segment s we model gjs(ω) as

gjs(ω) =
j∑
r=1

πrsj log(frj(ω)) ,

where frj is the spectral density of the rth component and πrjs is the unknown
weight assigned to the rth component in segment s, with

∑j
r=1 πrjs = 1.

Note that the spectral density frj is common to all segments. The value
of πrjs represents the probability that in a mixture of j components, the
data in segment s have spectral density frj . A key point to note is that
these probabilities are parameterized to depend upon the segment s and are
modeled using a multinomial logistic regression; we will discuss how they are
speci�ed next. This means that, although the component spectra are common
to all segments, a time varying estimate of the spectral density is obtained
by allowing the weights of the common spectra to change across segments.

It is important to note that the choice of the number of segments, S, is
not crucial to our estimation process subject to certain constraints. In theory
there are potentially as many segments as there are data points. However,
practically, we need a minimum number of observations in each segment
to estimate the spectral density and for the Whittle approximation to the
likelihood to hold. In our preliminary experiments, it appears that using a
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Fig. 40.1 True (solid lines) and estimates (dashed lines) of the log spectral density. The
left panel shows log(f12) which is the log of the spectral density of the time series xt =
0.9xt−1 + εt. The right panel shows log(f22), the log of the spectral density for xt =
−0.9xt−1 + εt.

minimum of 64 observations in each segment gives reliable results assuming
that the true local spectra have well separated peaks.

Most, if not all, of local spectral techniques, including the adaptive tech-
niques that rely on orthogonal libraries and use entropy-based basis algo-
rithms such as the Best Basis Algorithm, use an arbitrary maximum level
of segmentation of the unit interval to initialize the local analysis. In addi-
tion, most of these techniques use dyadic segmentation for ease. Although
our method also requires picking a maximal segmentation through the choice
of S, it is not crucial that the segmentation be dyadic. In some cases, such
as for DNA, it may be more appropriate to consider triadic segmentation,
which our method easily accommodates.

Finally, but perhaps most importantly, is that the parameters of the mix-
ing function πrjs in our model are of more importance than the number of
segments because these parameters control the location and rate at which
the time series moves from one stationary process to another.

To illustrate our method, consider a time series of length 1024 generated
from the following piecewise stationary model

xt =
{

0.9xt−1 + εt if 1 ≤ t ≤ 450,
−0.9xt−1 + εt if 451 ≤ t ≤ 1024,

where εt ∼ N(0, 1). For illustrative purposes, suppose we know that there
are two components [i.e., Pr(j = 2) = 1]. We �rst divide the time series into
non-overlapping segments each containing 64 data points. This gives a total
of 16 segments. Our estimate of the log spectra in segment s for s = 1, . . . 16
is

g2s(ω) = π1s2 log(f12(ω)) + (1− π1s2) log(f22(ω)) . (40.8)
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Figure 40.1 shows the true (solid line) and estimated (dashed line) log spectral
density for xt = 0.9xt−1 + εt (left panel) and for xt = −0.9xt−1 + εt (right
panel), εt ∼ N(0, 1). Figure 40.2 plots the estimated mixing function π12s as a
function of the segment. This �gure shows that the probability that the data
have spectral density f12 is close to 0.91 at the beginning of the time series.
This probability decreases to 0.5 by the 7th segment and is approximately
0.03 by the end of the time series.

In the general setup, we will we express log(frj) as

log(frj(ωk)) = α0rj + hrj(ωk)

and write hhhrj = Xβββrj . The priors on βββrj , and on α0rj for r = 1, . . . , j and
j = 1, . . . , J and on τ2

rj is similar to the discussion around ρF eq : demmler−
−ρF eq : smoothing; in addition, we impose an ordering on τ2

rj for r = 1, . . . , j
and j = 1, . . . , J , so that for a given j, τ2

1j >, . . . , > τ2
jj . This ensures that

the likelihood is identi�ed.
The mixing probabilities are expressed using the multinomial linear logit

model so that
πrjs =

exp(δ′rjus)∑j
h=1 exp(δ′hjus)

(40.9)

with parameters δrj , r = 1, . . . , j and j = 1, . . . , J . In (40.9), us = (1, us)′,
where the covariate us is taken as us = s/S, and δrj = (δ0rj , δ1rj)′. For identi-
�ability, δ1j is set to zero. Such logistic weights are also used in the mixtures-
of-experts model (Jacobs et al., 1991). The priors on δδδrj for r = 1, . . . , j and
j = 1, . . . , J are bivariate normal with zero mean and variance σ2

δI2 and are
assumed independent across all r and j. In all of our analyses, σ2

δ was equal
to 4. In addition, we impose the following dominance condition, which is a
restriction on δ̃ = (δ11, . . . , δJJ); let U = {u1, . . . , uS}. For r = 1, . . . , j, let
mrj = maxu∈U πrsj(u) be the maximum of πrsj over U and let u(rj) be the
point at which the maximum is attained, i.e. u(rj) = arg maxu∈U πrsj(u).
We assume that mrj > πisj{u(rj)} for all i 6= j. That is, each component
is required to have a point in U at which the probability of that component
exceeds the probabilities of all other components. This requirement is equiv-
alent to placing a prior on δ̃ which puts zero probability on the values of δ̃
in the parameter space where this requirement is not met. The reason for
imposing this dominance condition is to penalize for too many components
in the model.

Finally we will assume a priori that the maximum number of components
is J and that Pr(j = k) = 1/J for k = 1, . . . , J .

For inference, we will estimate the log of the spectral density in segment s,
for s = 1, . . . S by its posterior mean E(gs|y), with all unknown parameters
integrated out and we use MCMC to perform the required multidimensional
integration. The expectation E{gs(ω)|y} is de�ned as
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Fig. 40.2 Estimate of the mixing function π12s in (40.8) based on 16 segments.

E{gs(ω)|y} =
J∑

j=1

∫
E{gs(ω)|y, θθθj , j}p(θθθj |y, j)dθθθj Pr(j|y)

where θθθj = (α′j ,β
′
j , τττ
′
j , δ
′
j)
′, αj = (α01, . . . , α0j)′, βj = (βββ′1j , . . . , βββ

′
jj)
′,

τττ j = (τ2
1j , . . . , τ

2
jj)
′ and δj = (δ′2j , . . . , δ

′
jj). This integral cannot be eval-

uated explicitly and we use MCMC simulation to estimate it. In addition
to the point estimates, we construct (1 − α)-level pointwise credible inter-
vals for the log spectra by obtaining the α/2 and 1 − α/2 percentiles of the
MCMC �tted log spectra based on all the iterates after the burn-in period.
Note that these credible intervals re�ect the uncertainty surrounding not only
our estimate of log frj but also our uncertainty surrounding the number of
components J and the mixing probabilities πrsj .

To simplify the simulation from the posterior distribution p(θθθj , j|y), we
introduce latent variables that are generated during the simulation. The �rst
of these is the number of components j that are active at any point in the
simulation. Then, given j, de�ne the vector of indicator variables γsrj for
s = 1, . . . , S and r = 1, . . . , j, where γsrj = 1 if ys originated from the rth
component, and γsrj = 0, otherwise.

The basic MCMC scheme for our model can be outlined in the following
steps. The sampling scheme consists of two parts; a between-model move
followed by a within-model move. The number of components j is �rst ini-
tialized, then conditional on this value, the other model parameters αj , βj ,
τ j = (τ2

1j , . . . , τ
2
jj)
′ and δj are initialized.

1. Between Model Move: A new value of j is proposed, and conditional on
this value, parameter values for αj , βj , τ j and δj are proposed. These
proposed values are then accepted or rejected using a Metropolis-Hastings
step.

2. Within Model Move: Given the value of j, the parameters speci�c to a
model of j components are then updated as follows.
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a. Let β∗rj = (αrj ,β′rj)′, r = 1, . . . , j, β∗j = (β∗
′

1j , . . . ,β
∗′
jj)′ and

X∗ = (111, X). Generate β∗j from p(β∗j
∣∣ τ j ,γj , X∗, ỹ) via Metropolis-

Hastings steps, where γj = {γsrj}, for r = 1, . . . , j and s = 1, . . . , S,
are the component indicators, and ỹ = (y′1, . . . ,y

′
S)′.

b. Generate τ j from p(τ j
∣∣ βj).

c. Generate δj from p(δj
∣∣ γj , U) via a Metropolis-Hastings step, where

U is the matrix whose sth row is u′s, s = 1, . . . , S.
d. Let γsj = r if γsrj = 1. Generate the component indicators from

p(γsj = r
∣∣ β∗j , δj , X∗,ys).

The proposal densities for generating β∗j and δj are multivariate normal and
so far, the resulting acceptance rates are around 30% and 80%, respectively.

As previously indicated, the next step is to combine the univariate non-
stationary methods with the multivariate stationary method to obtain an
estimator for the local spectral envelope.
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Chapter 41
Recent Advances in the Use of SVM for
Functional Data Classi�cation

Fabrice Rossi and Nathalie Villa

Abstract In the past years, several works were dealing with the use of Sup-
port Vector Machine (SVM) for classifying functional data. Here, we propose
to give an overview of these works and to introduce a new result based on
the use of smoothing conditions on the observed functions. The originality of
this approach both lies in the fact that the consistency result allows to work
with the derivatives of the function instead of the function itself but also that
it is relative to the observed discretization and not to the entire knowledge
of the functions.

41.1 Introduction

As the number of data coming from continuous recording has increased, the
analysis of data taking the form of curves has also been developed. After the
pioneering work of Deville (1974), Cardot et al. (1999), Ramsay and Silver-
man (1997) in the framework of linear models, various statistical methods
have been adapted to what is now called functional data analysis (FDA):
this is the case of nonparametric estimation, Ferraty and Vieu (2006), Fer-
raty and Vieu (2002), of neural networks Ferre and Villa (2006), Rossi and
Conanguez (2005) or of k-nearest neighbors Biauet al. (2005), to name a few.
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SVM were introduced in the past years and they appear to be a com-
petitive tool for solving binary classi�cations. One of their main interest is
that they are less sensitive to the dimensionality of the predictor than other
methods. Then, they are potentially an interesting approach in FDA. In his
PhD thesis Lee (2004), Lee �rst uses the SVM for classifying curves: his
approach was based on PCA pre-processing and was illustrated by several
examples. Unfortunately, no consistency result was given. In Rossi and Villa
(2006a, 2006b), the authors present various ways for dealing with binary
classi�cation of curves by the way of SVM: the �rst article presents a pro-
jection approach that is valid for any Hilbert space and the second one uses
smoothness constraints by the way of a spline interpolation.

This article intends to summarize the past theoretical results obtained
for classi�cation of curves with SVM and to introduce a new consistency
result with respect to the discretization of the observations. This approach
is original as it allows to work on the derivatives of the observations which
can be a relevant task for many kind of problems Ferraty and Vieu (2002),
Rossi and Villa (2005), Dejean et al. (2007). In section 41.2, we recall the
SVM algorithm and the existing consistency results in the multi-dimensional
context. Then, section 41.3 presents the adaptation of this algorithm to the
FDA context. To that aim, section 41.3.2 develops a consistency result by
a projection method and section 41.3.3 a consistent method on derivatives
which uses smoothing splines approximation of the predictors.

The proof of the results given in this paper as long as several applications
on real data sets can be found in Rossi and Villa (2006b), Rossi and Villa
(2007).

41.2 SVM classi�ers

41.2.1 De�nition

Vapnik (1998) introduces a theoretical context to model statistical learning
and popularized Support Vector Machines (SVM), particularly in the frame-
work of binary classi�cation. To recall what is the principle of SVM, suppose
that a training set of size n, (zi, yi)i, of i.i.d. observations is given: (zi) take
their values in a space X and (yi) in {−1, 1}. SVM are classi�ers that belong
to a family of semi-linear classi�ers of the form φn(z) = Sign {〈w,ψ(z)〉F + b}
where ψ : X → F is a given nonlinear function from X to a Hilbert space
F , called feature space. Then, w and b are parameters that have to be learnt
from the data set: they are chosen by an optimization problem that aims at
maximizing the margin between the observations (ψ(zi)) from both classes
and the decision frontier. More precisely, they are the solution of:
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(PC,F ) minw,b,ξ ‖w‖2F + C
∑n
i=1 ξi

such that yi(〈w,ψ(zi)〉F + b) ≥ 1− ξi, 1 ≤ i ≤ n,
ξi ≥ 0, 1 ≤ i ≤ n.

The problem (PC,F ) has a dual formulation that doesn't directly use the
transformed data ψ(zi) but the inner product 〈ψ(zi), ψ(zj)〉F . Thus, the
nonlinear transformation ψ and the feature space, F don't have to be ex-
plicitly known: they are implicitly used by de�ning the scalar product,
〈ψ(zi), ψ(zj)〉F by the way of a kernel trick. A symmetric and positive de�nite
kernel K : X ×X → R is chosen: according to Moore-Aronszajn theorem (1),
this ensures that there is a Hilbert space F and an application ψ : X → F
such that 〈ψ(xi), ψ(xj)〉F = K(xi, xj).

41.2.2 Universal consistency of SVM

SVM are known to have good generalization properties when X is a �-
nite dimensional space. More precisely, Steinwart (2001-2002) show that d-
dimensional SVM are universally consistent, under some hypothesis i.e., that
limn→+∞ Lφn = L∗ where Lφn is the probability of misclassi�cation of the
classi�er φn, Lφn = P(φn(Z) 6= Y ), and L∗ is the Bayes error, the optimal
misclassi�cation rate for the random pair (Z, Y ) having same distribution as
(zi, yi), L∗ = infφ:X→{−1,1} P(φ(Z) 6= Y ).

This result is obtained with particular kernels: if X is a compact subset of
Rd, the kernel K used has to be universal i.e., the set
{z ∈ X → 〈w,ψ(z)〉F , w ∈ F} has to be dense in the set of continuous
functions on X . Secondly, for ε > 0, N (ε,K) is the covering number of the
space F i.e., the minimum number of balls of radius ε that are needed to cover
F ; consistency of SVM also requires that N (ε,K) = O(ε−νd) for a νd > 0.
Among others, Gaussian kernels, Kd

γ (u, v) = exp
(−γ‖u− v‖2X

)
, satisfy both

assumptions with νd = 1/d (see Steinwart, 2002) but this can't be extended
to the case where X has in�nite dimension both because the covering number
assumption is not ful�lled for usual kernels (as Gaussian kernel) and because
assuming that the variable takes its values in a compact set is too much
restrictive in in�nite dimensional spaces.

In the following, Kd
γ ∈ (Acv) will denote any kernel on Rd that satisfy

these two conditions and that possibly can depend on a parameter γ. More-
over, if the calculation of Kd

γ (u, v) is only based on the inner product of u
and v in Rd, such a kernel can be generalized into K∞γ which is a kernel on L2

that has the same form as Kd
γ except that the Rd-inner product is replaced

by the L2-inner product.
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41.3 Using SVM to classify functional data

As was explained above, the consistency result obtained for d-dimensional
SVM can't be applied directly to the in�nite dimensional case. Moreover, in
FDA, the observations are not direct realizations of a random pair having a
functional predictor: if (X,Y ) is a random couple taking its values in L2 ×
{−1, 1}, then i.i.d. realizations of (X,Y ), (xi, yi), are not directly observed
as (xi) are only known through a discretization, xi = (xi(t))t∈τ where τ is a
�nite subset of [0, 1].

41.3.1 Kernels for functional data

To obtain consistency result for functional SVM, a pre-processing is required
that takes into account the functional nature of X. Depending on the prob-
lem, two kinds of pre-processing are investigated in this paper:
• A projection approach (developed in Rossi and Villa (2006b)) where the

pre-processing step is P : x ∈ H → ∑d
j=1〈x, ej〉Hej where (ej)j≥1 is

a Hilbert basis of any Hilbert space, H which is the space where X is
taking its values (e.g., a Fourier basis if H = L2, as stated above). In this
approach, P(X) is a random variable taking its values in a d-dimensional
space; then, as it is usual in FDA, a d-dimensional SVM can be computed
on the d coordinates of the projection.

• A di�erential approach where a prior assumption on X is used: X is sup-
posed to be �smooth� and, more formally, it is supposed to belong to the
Sobolev space
Hm =

{
x ∈ L2([0, 1]) : Dmx exists (in a weak sense) and Dmx ∈ L2

}
.

This Sobolev space is a Hilbert space with respect to the inner product
〈u, v〉Hm =

∫ 1

0
u(m)(t)v(m)(t)dt +

∑m
j=1B

juBjv where (Bj) denotes m
boundary conditions that de�nes an in�nite dimensional subspace of Hm,
Hm1 , such that Hm = Hm0 ⊕Hm1 with Hm0 = KerDm (see Kimerldorf and
Wahba, 1971). Thus, in this approach, the pre-processing consists in using
the derivatives of the original function: Ps(X) = (DmX, (BjX)j).
The following sections are dedicated to the presentation of consistency

results associated to these two approaches and to the description of their
advantages and weaknesses.

41.3.2 Projection approach

The consistency of the projection approach depends on a validation proce-
dure that aims at choosing optimal parameters of the model. Indeed, three
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parameters have to be chosen for using the SVM on the pre-processed data
(Pxi)i: the best dimension of projection, d, the best regularization parame-
ter, C, in (PC,F ) and the best kernel among a �nite set of kernels, Kd. If
A denotes a set of lists of parameters to explore, the choice of the optimal
parameters, a∗ in A has to be done by the validation procedure described in
Algorithm 1.

Algorithm 1 Functional SVM by projection: a validation approach
1: for all a ≡ d ∈ N∗,Kdγ ∈ Kd, C ∈ [0;Cd] in A do
2: Split the data set into B1 = (xi, yi)i=1,...,l and B2 = (xi, yi)i=l...,n.
3: Solve (PC,F ) with zi = Pxi for the chosen parameters a; the corresponding classi-

�er will be denoted by φal .
4: end for
5: Choose a∗ = arg mina∈A L̂n−lφal + λd√

n−l with Ln−l = 1
n−l

Pn
i=l+1 I{φal (xi)6=yi}

and λd ∈ R.
6: Finally, keep the classi�er φn = φa

∗
l .

A consistency result can be deduced from this procedure:

Theorem 41.1. (17) Suppose that:
Assumption on X: X takes its value in a bounded subset of X ;
Assumptions on A: for all d ≥ 1, Kd is a �nite set that contains a kernel
Kd
γ ∈ (Acv) at least, Cd > 1 and

∑
d≥1 |Kd|e−2λ2

d < +∞;
Assumptions on the training and the validation sets: limn→+∞ l = +∞,

limn→+∞ n− l = +∞ and limn→+∞
l log(n−l)
n−l = +∞.

Then, φn is universally consistent: limn→+∞ Lφn = L∗ where Lφn =
P(φn(X) 6= Y ) and L∗ = infφ:H→{−1,1} P(φ(X) 6= Y ).

Two applications of this approach in the context of voice recognition are
given in Rossi and Villa (2006b). Moreover, Park et al. (2007) also uses this
approach to classify gene expression data into functional groups but with a
linear kernel.

41.3.3 Di�erentiation approach

The projection pre-processing shows interesting results on real data but is
somehow restrictive: the form of the representation of X is constrained by an
Hilbert basis and the derivatives of X, that are known to be relevant in some
practical applications (such as spectrometric data), don't lead to a consistent
result with this approach. Moreover, the problem of using a discretization of
the observations isn't addressed.
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41.3.3.1 Representing X

In the di�erential approach, xi is expressed directly in function of its dis-
cretization: that allows to obtain its derivatives directly from xi. In Rossi
and Villa (2006a), we investigated a method that is close to this one by re-
lying on interpolating splines. But, as the observations of X can be noisy,
smoothing splines can be usefull to provide more relevant representations of
xi.

Suppose that (τd)d is a series of distinct discretization points such that
τd ⊂ τd+1, then representing xi by a smoothing spline, from its discretiza-
tion xdi = (xi(t))t∈τd , consists in solving the optimization problem xλ,di =
arg minh∈Hm 1

d

∑
t∈τd(xi(t) − h(t)) + λ

∫ 1

0
(h(m)(t))2dt (see Kimerldorf and

Wahba (1971), Cox (1984), Ragozin (1983), Utreras (1988) for several con-
sistency results of this approximation to the real xi). The most interesting
point of this approach is that it links the derivatives of the smoothing spline
estimate with the discretization of the observation: it exists a matrix Md,
symmetric and positive de�nite, such that

〈x̂λ,di , x̂λ,dj 〉Hm = xTi Mdxj . (41.1)

41.3.3.2 Di�erentiation kernel for consistent functional SVM

Therefore, using equation (41.1), a kernel on the derivatives of (xi) can be
de�ned that is directly computed from the discretizations xdi . The following
theorem links SVM computed on the derivatives of (xi) with a more usual
kernel a�ected by the matrix Md:

Theorem 41.2 (Consistency of di�erentiation SVM). The SVM clas-
si�er on (zi)i = (Dmxλ,di , (Bjxλ,di )j)i obtained with kernel K∞γ ⊗ Km

γ is
equivalent to the SVM classi�er on (xi)i obtained with kernel Kd

γ ◦M−1/2
d .

If this classi�er is denoted by φn,d, and if
Assumptions on the discretization points: for all d, (Bj)j are linearly in-

dependent from {h→ h(t)}t∈τd and, if F is the limit of
Fd(ζ) = 1

|τd|
∑
t∈τd I{ζ=t} for the norm ‖u − v‖∞ =

∑
t∈[0,1] |u(t) − v(t)|,

then F is C∞,
Assumption on X: X[0, 1] is a bounded subset of R,
Assumptions on the kernel: Kd

γ ∈ (Acv),
Assumptions on the parameters: if Sd = ‖Fd − F‖∞ then limd→+∞ λd = 0

and limd→+∞ Sdλ
−5/(4m)
d = 0 and the regularization parameter C of the

optimization problem (PC,X ) is such that Cn,d = O (n1−βd) where 0 <
βd < νd,

then, limd→+∞ limn→+∞ Lφn,d = L∗ for Lφn,d and L∗ de�ned as in theo-
rem 41.1.
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Remark 41.1. Assumptions on (τd) are ful�lled by τd =
{
j
2d

}
j=0,...,2d

, for
example (see Ragozin, 1983).

References

[1] Aronszajn, N.: Theory of reproducing kernels. Transactions of the American Math-
ematical Society. 68 (3), 337�404 (1950).

[2] Biau, G., Bunea, F. and Wegkamp, M.: Functional classi�cation in Hilbert spaces.
IEEE Transactions on Information Theory. 51, 2163�2172 (2005).

[3] Cardot, H., Ferraty, F. and Sarda, P.: Functional linear model. Statistics and Prob-
ability Letters. 45, 11�22 (1999).

[4] Cox, D.D.: Multivariate smoothing splines functions. SIAM Journal on Numerical
Analysis. 21, 789�813 (1984).

[5] Dejean, S. Martin, P.G.P., Baccini, A. and Besse, P.: Clustering time-series gene
expression data using smoothing spline derivatives. EURASIP Journal on Bioinfor-
matics and Systems Biology. 2007:Article ID70561 (2007).

[6] Deville, J.C.: Méthodes statistiques et numériques de l'analyse harmonique. Annales
de l'INSEE. 15(Janvier�Avril), 3�97 (1974).

[7] Ferraty, F. and Vieu, P.: The functional nonparametric model and application to
spectrometric data. Computational Statistics. 17, 515�561 (2002).

[8] Ferraty, F. and Vieu, P.: NonParametric Functional Data Analysis. Springer (2006).
[9] Ferré, L. and Villa, N.: Multi-layer perceptron with functional inputs: an inverse

regression approach. Scandinavian Journal of Statistics. 33(4), 807�823 (2006).
[10] Kimeldorf, G. and Wahba, G.: Some results on Tchebyche�an spline functions.

Journal of Mathematical Analysis and Applications. 33(1), 82�95 (1971).
[11] Lee, H.J.: Functional data analysis: classi�cation and regression. PhD thesis, De-

partment of Statistics, Texas, A&M University (2004).
[12] Park, C., Koo, J.Y., Kim, S., Sohn, I. and Lee, J.W.: Classi�cation of gene functions

using support vector machine for time-course gene expression data. Computational
Statistics and Data Analysis (2007). Article in Press. doi:10.1016/j.csda.2007.09.002.

[13] Ragozin, D.L.: Error bounds for derivative estimation based on spline smoothing of
exact or noisy data. Journal of Approximation Theory. 37, 335�355 (1983).

[14] Ramsay, J.O. and Silverman, B.W.: Functional Data Analysis. Springer Verlag, New
York. (1997).

[15] Rossi, F. and Conan-Guez, B.: Functional multi-layer perceptron: a nonlinear tool
for functional data anlysis. Neural Networks. 18(1), 45�60 (2005).

[16] Rossi, F and Villa, N.: Classi�cation in Hilbert spaces with support vector machines.
In ASMDA 2005 proceedings. pages 635�642, Brest, France. (2005).

[17] Rossi, F and Villa, N.: Support vector machine for functional data classi�cation.
Neurocomputing. 69(7-9), 730�742 (2006b).

[18] Rossi, F. and Villa, N.: Consistency of derivative based functional classi�ers on
sampled data. (2007). Submitted.

[19] Steinwart, I.: On the in�uence of the kernel on the consistency of support vector
machines. Journal of Machine Learning Research. 2, 67�93 (2001).

[20] Steinwart, I.: Support vector machines are universally consistent. Journal of Com-
plexity. 18, 768�791 (2002).

[21] Utreras, F.I.: Boundary e�ects on convergence rates for tikhonov regularization.
Journal of Approximation Theory. 54, 235�249 (1988).

[22] Vapnik, V.: Statistical Learning Theory. Wiley, New York. (1998).



280 Fabrice Rossi and Nathalie Villa

[23] Villa, N. and Rossi, F.: Un résultat de consistance pour des SVM fonctionnels par
interpolation spline. Comptes Rendus Mathématique. Académie des Sciences. Paris.
343(8), 555�560 (2006a).



Chapter 42
Wavelet Thresholding Methods Applied
to Testing Signi�cance Di�erences
Between Autoregressive Hilbertian
Processes

María Ruiz-Medina

Abstract The philosophy of Fan (1996) and Fan and Lin (1998) is adopted in
the formulation of signi�cance tests for comparing autoregressive Hilbertian
processes. The discrete wavelet domain is considered to derive the test sta-
tistic based on thresholding rules. The results derived are applied to the
statistical analysis of spatial functional data (SFD) sequences.

42.1 Introduction

Di�erent testing procedures have been developed in the context of functional
data analysis by several authors. For example, in time series theory, test for
curves were initially considered in Shumway (1988); Brillinger (1973, 1980),
and references therein. In the nonparametric setting, we can mention the pa-
per by Hall and Hart (1990), where a bootstrap test for detecting di�erences
between two mean functions is proposed. In Eubank and Hart (1992) and
Eubank and LaRiccia (1992), a goodness-of-�t test is considered based on
cross-validation. Data-driven methods for smoothed test have been studied
by Inglot and Ledwina (1996), Ledwina (1994), and others. Fan (1996) and
Fan and Lin (1998) proposed a methodology based on adaptive Neyman test,
and wavelet thresholding techniques for testing signi�cance di�erences be-
tween curves. The wavelet domain is also used in the testing procedures pro-
posed, for functional analysis of variance, by Abramovich and Angelini (2006);
Abramovich, Antoniadis, Sapatinas and Vidakovic (2004); among others.

One of the main drawbacks in the formulation of testing methods in the
functional context is the dimensionality. Optimal signal compression methods
are then needed to address this problem. Usually, orthogonal transforms like

María Ruiz-Medina
Department of Statistics and Operation Researchs, Campus Fuente Nueva s/n, E-18071
Granada, Spain, e-mail: mruiz@ugr.es
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the ones involved in Fourier, Principal Component and Wavelet analysis have
been incorporated in the development of estimation methods for functional
data (see, for example, Ferraty and Vieu, 2006; Ramsay and Silverman, 2005;
Vidakovic, 1999). In practice, the application of such orthogonal transforma-
tions requires the pre-implementation of binning, interpolation or smoothing
methods. In the case of discrete transformations, adaptive procedures are for-
mulated for selection of the most signi�cative coe�cients (see, for example,
Fan, 1996; Fan and Lin, 1998). However, in the case of continuous trans-
forms, like the continuous wavelet transform, such selection procedures must
be formulated in terms of useful windows, patch or areas selected under some
optimality criterion (see, for instance, Maraun and Kurths, 2004; Maraun,
Kurths and Holschneider, 2007).

In this paper, a sequential testing procedure is formulated for detecting sig-
ni�cance di�erences between two SFD sequences, in the context of Gaussian
autoregressive Hilbertian processes. The data are transformed into the dis-
crete wavelet domain in terms of a basis of orthonormal compactly supported
spatial wavelets. We consider hard thresholding rules (in terms of the uni-
versal threshold) for selection of the most signi�cant wavelet coe�cients.
The test statistic is then de�ned, considering a functional formulation of the
thresholding test statistic of Fan and Lin (1998), in terms of suitable factor-
izations of the spatial covariance operators involved, as well as the associated
thresholded scalograms.

In Section 2, we describe the preliminary elements involved in the testing
procedure proposed. In Section 3, the main results are summarized. Refer-
ences are listed at the end of the paper.

42.2 Preliminaries

In the following development, we will assume that the sequence {Yt(·) : t ≥ 0}
of SFD to be analyzed obeys the following autoregressive Hilbertian model
of order one (ARH(1)) (see Bosq, 2000):

Yt(x) = A[Yt−1](x) + νt(x), x ∈ D, t ∈ N, (42.1)

where ν is a Gaussian strong Hilbertian white noise, that is, a sequence
of independent and identically Gaussian distributed Hilbert-valued random
variables in H with

E[‖νt‖2H ] = σ2
ν <∞, (42.2)

uncorrelated with the random initial condition Y0. The autocorrelation op-
erator A is a bounded operator de�ned on a dense domain in H. Here, H is
de�ned as a Hilbert space of spatial functions on a compact domain D ⊂ Rn.

For each t ≥ 0, the spatial wavelet transform of Yt is de�ned as
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{Yk(t) : k ∈ Γ0} ∪
{
Yj,k(t) : k ∈ Γ̃j , j ∈ N

}
,

where

Yk(t) =
∫

D

Yt(z)φk(z)dz, k ∈ Γ0,

Yj,k(t) =
∫

D

Yt(z)ψj,k(z)dz, k ∈ Γ̃j , j ∈ N, (42.3)

with {φk, k ∈ Γ0} representing an orthogonal system of compactly supported
scaling functions generating the space V0, that is, the space providing, by
projection, the random draft of Yt, and

{
ψj,k, k ∈ Γ̃j

}
, j ∈ N, represent-

ing orthogonal compactly supported wavelet bases generating the spaces
Wj , j ∈ N, that is, the spaces providing, by projection, the local variabil-
ity properties of Yt. The Hilbert-valued process Y is assumed to satisfy the
necessary regularity and moment conditions to ensure that the integrals in
equation (42.3) are well-de�ned.

For each t ≥ 0, the wavelet periodogram or scalogram (also referred as
wavelet sample spectrum, specially when smoothing is performed in the scale
or spatial direction) of Yt is usually de�ned as

{|Yk(t)|2 : k ∈ Γ0

} ∪
{
|Yj,k(t)|2 : k ∈ Γ̃j , j ∈ N

}
.

We consider hard thresholding procedures, we then have the thresholded
scalogram

STh(Yt) =
{|Yk(t)|2I(|Yk(t)| > δ) : k ∈ Γ0

}∪
{
|Yj,k(t)|2I(|Yj,k(t)| > δ) : k ∈ Γ̃j , j ∈ N

}
,

where I denotes the indicator function. In the results described in the next
section, we consider functional adaptations of the hard thresholding parame-
ter values proposed by Fan (1996), and Fan and Lin (1998), related to the
universal threshold (see, for example, Vidakovic, 1999).

42.3 Main results

Let {Yt(·) : t ≥ 0} be de�ned as in equation (42.1).

(C) Assume that the covariance operator of the Hilbert-valued process
Y

RY = E [Yt ⊗ Yt] = E [Y0 ⊗ Y0] , ∀t ≥ 0,

given by
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RY (φ) = E [Y0 〈Y0, φ〉] , ∀φ ∈ H,
de�nes an isomorphism from H̃∗ onto H̃, with H̃ a dense subspace of H.

Then, for each t ≥ 0, Yt admits an orthogonal decomposition in terms of
dual Riesz bases, providing orthonormal bases of the associated RKHS and
its dual space, given by dual linear transformations of an orthonormal basis
of H. Moreover, RY admits the factorization:

RY = TY T ∗Y ,

in terms of an isomorphism TY from H onto H̃ (see, for example, Ruiz-
Medina, Angulo and Anh, 2003). We consider the case where H = L2(D).
Then, H̃ and H̃∗ can belong to the scale of fractional Besov spaces (in partic-
ular, the scale of fractional Sobolev spaces can be considered). In this case,
we can de�ne the dual Riesz bases involved from an orthonormal basis of
wavelets of L2(D) (see Angulo and Ruiz-Medina, 1999; Ruiz-Medina and
Angulo, 2002; Ruiz-Medina, Angulo and Fernández-Pascual, 2007). For such
a class of Hilbert-valued process the following representation in the wavelet
domain can be considered:

TWD(Yt) = TW2D(TY )TWD(εYt ),

where TWD(Yt) denotes the spatial wavelet transform

{Yk(t) : k ∈ Γ0} ∪
{
Yj,k(t) : k ∈ Γ̃j , j ∈ N

}
,

of Yt. The same notation is used for TWD(εYt ), with εY representing
Gaussian H−white noise. That is, a Gaussian Hilbert-valued process with

RεY (φ)(ψ) = 〈φ, ψ〉H .

Here, TW2D(TY ) denotes the 2D-wavelet transform of operator TY .
Since we have considered an orthonormal wavelet basis of L2(D), and εY

is Gaussian L2(D)−white noise, the spatial wavelet transform

TWD(εYt ) =
{
εYk (t) : k ∈ Γ0

} ∪
{
εYj,k(t) : k ∈ Γ̃j , j ∈ N

}

de�nes a Gaussian white noise process, that is, for each t ≥ 0, the random
components, de�ning the wavelet coe�cients of εYt , are independent.

Condition C is also assumed to be satis�ed by the Hilbert-valued innova-
tion process ν. Therefore, for each t ≥ 0,

TWD(νt) = TW2D(Tν)TWD(ενt ),

with TWD(ενt ) being a white-noise process independent of the white-noise
process TWD(εYt ). Hence,



42 Wavelet Methods Applied to Testing Signi�cance Di�erences 285

TWD(Yt) = TW2D(A)TWD(Yt−1) + TWD(νt)
= TW2D(ATY )TWD(εYt−1) + TW2D(Tν)TWD(ενt ).(42.4)

In the functional formulation of the thresholding test statistic of Fan and Lin
(1998), in the next section, we consider the thresholded version of equation
(42.4), denoting by T̃WD(·) and T̃W2D(·) the thresholded one- and two-
dimensional wavelet transforms.

42.3.1 Comparing two sequences of SFD in the ARH
context

Let us consider two independent sequences of SFD {Yt(·) : t = 1, . . . , T}
and {Zt(·) : t = 1, . . . , T} satisfying condition (C) as before. The following
hypotheses are then tested

(1) H0 : νY =
d
νZ versus H1 : νY 6=

d
νZ

(2) H0 : AY = AZ versus H1 : AY 6= AZ . (42.5)

Test (2) is applied if the null hypothesis in Test (1) is accepted. For applying
Test (1), consistent estimators of the autocorrelation operators AY and AZ
must be considered (see, for instance, Guillas, 2001).

The test statistic in (1) is de�ned in terms of

T1 =
T∑
t=1

‖D(t)‖2,

where

D(t) = [T̃W2D(TνY )]−1T̃WD(νYt )− [T̃W2D(TνZ )]−1T̃WD(νZt ),

with T̃W2D(TνY ) and T̃W2D(TνZ ) being estimated from the factorization
of the thresholded scalograms of νYt and νZt . In practice, for each t = 1, . . . , T,
the vectors T̃WD(νYt ) and T̃WD(νZt ), and the thresholded scalograms of
νYt and νZt are computed, for each sequence of SFD, in terms of the di�erence
between the thresholded wavelet transform of each SFD and the thresholded
wavelet transform of the associated (estimated) autocorrelation operator ap-
plied to a previous element of the SFD sequence, and the thresholded scalo-
grams associated with such di�erences.

In the Test (2), under H0 (AY = AZ = A), after accepting H0 of Test (1),
we have that the di�erences T̃WD(Yt) − T̃WD(Zt), t = 1, . . . , T, obey a
multivariate normal distribution with covariance matrix T̃W2D(A(RY +
RZ)A∗ + 2Rν). As before, the Fan and Lin (1998) philosophy can then
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be applied to formulate the test statistic in a functional framework. The
T̃W2D(A(RY +RZ)A∗+2Rν) is estimated from the thresholded scalograms
of the di�erences between the data.
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Chapter 43
Explorative Functional Data Analysis
for 3D-geometries of the Inner Carotid
Artery

Laura Maria Sangalli, Piercesare Secchi and Simone Vantini

AbstractWe analyze reconstructions of inner carotid arteries, obtained from
3D angiographic images, and we investigate the role of vessel geometry on
the pathogenesis of cerebral aneurysms.

43.1 Introduction

Cerebral aneurysms are lesions of cerebral vessels characterized by a bulge
of the vessel wall. Many authors believe that the onset, development and
possibly rupture of an aneurysm are conditioned by the geometry of the vessel
through its e�ect on blood �uid-dynamics (see, for instance, Hassan et al.
(2005)). We thus aim at studying possible relations between vessel geometries
and this pathology. In particular, we focus here on the analysis of vessel radius
and curvature pro�les. Indeed, these two geometric features, together with
blood density, viscosity and velocity, determine the local hemodynamics.

Our study is part of AneuRisk Project, a joint research program involving
MOX Laboratory for Modeling and Scienti�c Computing (Dip. di Matemat-
ica, Politecnico di Milano), Laboratory of Biological Structures (Dip. di In-
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gegneria Strutturale, Politecnico di Milano), Istituto Mario Negri (Ranica),
Ospedale Niguarda Ca' Granda (Milano), and Ospedale Maggiore Policlinico
(Milano). The Project is supported by Fondazione Politecnico di Milano and
Siemens-Medical Solutions Italia. The AneuRisk dataset is the largest collec-
tion of 3D cerebral angiographies available for the study of the aneurysmal
pathology; it includes the spatial coordinates of vessel centerlines and vessel
radius pro�les for the internal carotid arteries (ICA) of 65 patients with and
without cerebral aneurysms. Details about the elicitation of these data from
3D-angiographies are in Piccinelli et al. (2007). Figure 43.1 shows the draw
of the reconstruction of an ICA with aneurysm.

We perform explorative analyses of this dataset, which support the exis-
tence of a strong relationship between vessel geometry and aneurysm loca-
tion. We �rst �t raw data and estimate vessel centerlines and their curvature
functions, by means of 3D free knot regression splines. Centerlines estimates
then undergo a process of registration, that separates their amplitude vari-
ability from their phase variability, enabling meaningful comparisons across
patients. The main uncorrelated modes of variability, of registered radius and
curvature pro�les, are thus found by functional principal component analy-
sis. Finally, a quadratic discriminant analysis of principal components scores
identi�es the optimal number of principal components that discriminate at
best patients with aneurysms located in di�erent vascular districts: patients
having an aneurysm at or after the terminal bifurcation of the ICA (Upper
group), and patients having an aneurysm along the ICA or healthy (Lower
group). The quadratic discriminant analysis also allows to select special cases
for numerical simulations.

43.2 E�cient estimation of 3D vessel centerlines and
their curvature functions by free knot regression
splines

For every patient i in our dataset, we know, for each point sij on a �ne grid
along a curvilinear abscissa (that goes from the terminal bifurcation of the
ICA, towards the heart), the three spatial coordinates xij , yij and zij of vessel
centerline, and the vessel radius Rij . Due to measurement and reconstruction
errors, reconstructed centerlines may be quite wiggly and thus need to be
smoothed, and so do the estimates of their derivatives, in order to obtain
sensible estimates of their curvature functions. We do so by means of free
knot regression splines, i.e. regression splines where the number and position
of knots are not �xed in advance, but chosen in a way to minimize a penalized
average squared error criterion. Since our data are 3D, the idea is to �t
simultaneously the three spatial coordinates (x(s), y(s), z(s)) of the centerline
versus the curvilinear abscissa s, looking for the optimal spline knots along
the curvilinear abscissa. See Figure 43.3. Optimal knots are searched by an
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algorithm which is a modi�cation of the algorithm developed by Zhou and
Shen (2001) in the 1D case. The �rst and second derivatives of the �tted
centerline are thus used to estimate its curvature. See Figure 43.2.

Fig. 43.1 3D image of an internal carotid
artery with an aneurysm [patient 1]. The
black curve inside the vessel is the center-
line.
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Fig. 43.2 Estimated curvature functions
[patient 1], obtained by free knot splines
with three different penalizations (FKRS1
dotted, FKRS2 solid, and FKRS3 dashed;
see Figure 43.4). The points of approxima-
tely zero curvature are the siphon delimiters
shown in Figure 43.3.

Fig. 43.3 3D image of �tted centerline
(the little bullets show the positions of the
spline knots), together with rough data [pa-
tient 1]. The big squares are the siphon de-
limiters. See Figure 43.2.
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Fig. 43.4 Boxplots of the distribution of
average squared error, degrees of freedom,
and average squared error on �rst deriva-
tives, for the �ts corresponding to the 65
patients, obtained by free knot regression
splines (FKRS1, FKRS2 and FKRS3) and
by local polynomial smoothing with di�er-
ent bandwidths (LPS1, LPS2 and LPS3).
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Fig. 43.5 On the left column, from top to bottom, estimated �rst derivatives x′i(s), y′i(s)
and z′i(s) before registration. On the right column, estimated �rst derivatives x̃′i(s), ỹ′i(s)
and z̃′i(s) after registration.

The amount of penalization in the penalized average squared error crite-
rion is chosen taking into account the trade o� between average squared error
and degrees of freedom of the model (computed as the trace of the linear op-
erator that takes from the raw data to the �tted values). Indeed, when the
penalization increases, the average squared error increases while the degrees
of freedom decrease. See Figure 43.4. Nonetheless, the estimate of the cur-
vature is quite robust with respect to di�erent choices of the penalization.
In particular, the points of approximately zero curvature, which are taken as
delimiters of di�erent carotid siphons, do not change. See Figures 43.2 and
43.3.

Smoothing by free knot regression splines turns out to be more e�cient
than classical local polynomial smoothing, in the sense that the former tech-
nique attains lower average squared errors, and also lower average squared
errors on �rst derivatives (with respect to �rst central di�erences), using less
degrees of freedom. See Figure 43.4. The degrees of freedom of local poly-
nomials (i.e. the trace of the corresponding linear operator) are computed
according to Zhang (2003) empirical formula. Moreover, by using free knot
regression splines we are reducing the dimension of data, a fundamental issue
for our highly dimensional dataset. See Sangalli, Secchi, Vantini and Veneziani
(2007a) for details.

43.3 Registration

Visual inspection of the �rst derivatives of estimated centerlines
(x′i(s), y

′
i(s), z

′
i(s)), for the 65 patients, makes evident that data present a

phase variability that must be removed to enable meaningful comparisons
across patients (Ramsay and Silverman, 2005). See Figure 43.5. This can
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be achieved by means of a registration procedure that �nds the 65 warping
functions hi of the abscissa, that capture this phase variability, leading to the
new registered centerlines (x̃i(s), ỹi(s), z̃i(s)), where x̃i = xi ◦ h−1

i , ỹi = yi ◦
h−1
i , and z̃i = zi◦h−1

i . We look for the optimal warping functions on the space
of increasing a�ne transformations, maximizing the following similarity index
between (x̃i(s), ỹi(s), z̃i(s)) and a reference centerline (x0(s), y0(s), z0(s)) :

1
3




∫
Si
x̃′ix
′
0ds√∫

Si
x̃′2i ds

√∫
Si
x′20 ds

+

∫
Si
ỹ′iy
′
0ds√∫

Si
ỹ′2i ds

√∫
Si
y′20 ds

+

∫
Si
z̃′iz
′
0ds√∫

Si
z̃′2i ds

√∫
Si
z′20 ds




where Si is the support of the i-th centerline. This is analogous to the crite-
rion proposed by Ramsay and Silverman (2005), but suitable for managing
curves de�ned on di�erent supports, as the ones we deal with. A Procrustes
�tting criterion is used to estimate both the 65 warping functions and the
reference centerline. The iterative procedure converges in few steps. See San-
galli, Secchi, Vantini and Veneziani (2007b) for details.

43.4 Statistical analysis

Many interesting traits emerge from the analysis of registered radius and cur-
vature. Figure 43.6 shows that the mean radius of the vessel gets progressively
narrower toward the terminal bifurcation of the ICA (the so-called tapering
e�ect). Moreover, it shows that two peaks of curvature are usually present
at about -3.5 and -2.0 cm to the terminal bifurcation. The same �gure also
displays a density estimate of the location of aneurysms along the ICA. Note
that most aneurysms are clustered in two groups, both located in the terminal
part of the ICA, where tapering is evident, and one located just after the last
peak of curvature. These results provide evidence of a link between morphol-
ogy and aneurysms onset, induced by hemodynamics. Moreover, some details
of the structure of sample autocovariance functions of registered radius and
covariance, not shown here, are amenable of an anatomical interpretation.
See Sangalli, Secchi, Vantini and Veneziani (2007b) for details.

The main uncorrelated modes of variability, of registered radius and curva-
ture pro�les, are found by functional principal component analysis (FPCA).
See Ramsay and Silverman (2005). Since the 65 curves are known on di�erent
abscissa intervals, these analyses focus on the interval where all curves are
available. Figure 43.6 shows the �rst two eigenfunctions of radius, β̂R1(s) and
β̂R2(s), and curvature, β̂C1(s) and β̂C2(s). The distributions of FPCA scores
for the two groups of patients, the Upper group (composed by patients having
an aneurysm at or after the terminal bifurcation of the ICA) and the Lower
group (composed by patients having an aneurysm along the ICA or healthy),
have signi�cantly di�erent means and/or variances. According to these dif-
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Fig. 43.6 Left: registered radius and curvature pro�les (top and bottom respectively),
with superimposed density estimate of aneurysms location. Right: �rst two principal com-
ponents of registered radius and curvature (top and bottom respectively), with boxplots
of corresponding scores: darker boxplots for Lower group patients and lighter boxplots for
Upper group patients.

ferences, Upper group patients have on average wider, more tapered and less
curved ICA's, with respect to Lower group patients. Moreover Upper group
patients display a signi�cantly smaller variance of these geometrical features.
The �rst two eigenfunctions of radius and curvature are in fact the optimal
set of eigenfunctions to discriminate the two groups of patients, by means
of quadratic discriminant analysis of FPCA scores. Moreover, this analysis
allows to select representative geometries for numerical simulations of the
hemodynamics in the vascular neighborhood of the aneurysm. More details
are in Sangalli, Secchi, Vantini and Veneziani (2007b).

These numerical simulations will generate new functional data relative
to the hemodynamics of the ICA, i.e. pressure, velocity and shear stress
along the vessel; we hope that, by extending the previous analyses with the
inclusion of this new information, we will be able to explore and model the
causal relationship between the complex hemodynamics of the ICA and the
onset and rupture of cerebral aneurysms.
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Chapter 44
Inference on Periodograms of In�nite
Dimensional Discrete Time Periodically
Correlated Processes

Zohreh Shishebor, Ahmad Reza Soltani and Ahmad Zamani

Abstract In this work we shall consider two classes of periodically correlated
processes with values in separable Hilbert spaces: weakly second order and
strongly second order. It is proved that the sample Fourier transforms are as-
ymptotically uncorrelated and the periodograms are asymptotically unbiased
for corresponding spectral densities.

44.1 Introduction

In a series of papers, following the work of Rozanov (1992), Miamee and
Salehi (1971), Miamee (1976) and Salehi and Soltani (1983), basic spectral
foundations of in�nite dimensional second order stationary processes were
established. Such processes are considered as bounded linear transformations
on a Hilbert space (or a Banach space) into L2(Ω,F ,P), the space of mean
zero random variables with �nite second moments, possessing certain covari-
ance structure. We refer to such processes as weakly second order (WSO).
More description is provided in the next section. Processes with trajectories
in metric spaces that the metric of the elements are in L2(Ω,F , P ) are also
studied intensively by di�erent authors: Gihman and Skorohod (1974), Tala-
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grand (1991), Bosq (2000), among others. We refer to this type of processes
with values in Hilbert spaces as strongly second order (SSO) processes.

Recent applications of in�nite dimensional process in applied problems has
inspired advanced researches in inference of such processes. In this work we
consider periodically correlated (PC) processes of type WSO or SSO with
values in separable Hilbert spaces. Indeed basic spectral structures of WSO
PC processes were established by Soltani and Shishebor (2007). No study
on periodogram of in�nite dimensional PC processes has yet been carried
out. Periodograms are important tools in spectral analysis of time series to
highlight hidden frequencies. The work by Soltani and Azimmohseni (2007)
and Hurd (1989) are on periodograms of univariate PC processes; also see
Pourahmadi and Salehi (1983).
In summery, sample �nite Fourier transforms (SFFT) and periodograms for
X-valued, X a separable Hilbert space, WSO and SSO processes are intro-
duced, their basic statistical properties are derived, and it is proved that
periodograms are asymptotically unbiased for the corresponding spectral den-
sities, and SFFT at distinct frequencies are asymptotically uncorrelated. This
article is organized as follows.

44.2 Preliminaries and results

Let X be a Hilbert space, let L(X) stands for the bounded linear operators
on X and L2(Ω,F ,P) for the linear space of all complex random variables
with mean zero and with �nite absolute second moments. The inner product
on X is denoted by ( , )X .

A random variable ξ : Ω → X is said to be second order in the
strong sense if ‖ξ(ω)‖X ∈ L2(Ω,F ,P); and second order in the weak sense
(WSO) if (ξ(ω), x)X ∈ L2(Ω,F ,P) for every x ∈ X. Since E| ξ(ω)|2 ≤
E‖ξ(ω)‖2X‖x‖2X , every SSO random variable is WSO. Also since ‖ξ(ω)‖2X =∑∞
i=1 |(ξ(ω), ei)X |2, where {ei} is an orthonormal basis in X, a WSO random

variable is SSO if and only if
∞∑

i=1

E|(ξ(ω), ei)X |2 <∞.

Similarly, WSO and SSO X-valued process ξ = {ξnx , x ∈ X, n ∈ Z} are
de�ned. A WSO as well as a SSO X-valued stochastic process is said to be
periodically correlated (PC) if there exists an integer T > 0 such that for
every x, y ∈ X and m,n ∈ Z,

Eξnx ξ
m
y = Eξn+T

x ξm+T
y . (2.1)
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Univariate second order PC processes where introduced and studied by
Gladyshev (1961). X-valued WSO PC processes where studied by Soltani
and Shishebor (2007). We assume that the spectral density d

dsF(ds) exists:

f(s) = [fp−l(ds+
2πp
T

)] l,p=0,...,T−1. s ∈ [0,
2π
T

). (2.2)

Another spectral representation, time dependent, was derived by Soltani and
Shishebor (2007), namely ξnx =

∫ 2π

0
einsΦ(ds)Vn(s)x, in the sense that

Eξnx ξ
m
y =

∫ 2π

0

ei(n−m)s(Vn(s)x, Vm(s)y)Xds (2.3)

in which Φ is an orthogonally scattered random measure, and
Vn(s) =

∑T−1
k=0 e

i 2πkn
T

ak(s + 2πk
T ), is the sequence of T -periodic, L(X)-valued functions for s ∈

[0, 2π) and n ∈ Z. Furthermore f(s) = A∗(s)A(s) s ∈ [0, 2π
T ), where

A(s) = [aj−k(s+ 2πj
T )]k≤j k, j = 0, . . . , T − 1. The operator-matrix A is

indeed the Cholesky factor of the spectral density f . It is plain to verify that

E(
∞∑

i=1

|(ξn(ω), ei)X |2) =
∞∑

i=1

∫ 2π

0

‖Vn(s)ei‖2Xds <∞. (2.4)

In summary we conclude that a matrix-operator f is the spectral density of
a SSO PC process if and only if it is a nuclear, i.e. every of its entries is
nuclear. Equivalently, the matrix-operator A is Hilbert Schmidt.

Let ηn =
∫ 2π

0
einsΦ(ds), n ∈ Z,, and let us correspondingly de�ne the

following �nite Fourier transforms ( FFT) and X-valued processes based on
a �nite segment of the processes ξ and η. Let

dξ(λ) = N−1/2
N−1∑
t=0

ξte
itλ, dη(λ) = N−1/2

N−1∑
t=0

ηte
itλ, λ ∈ [0, 2π).

Indeed we de�ne the FFT terms to be step functions with jumps at Fourier
frequencies 2πk

N , k = 0, . . . , N − 1. Also let

ξ̃nN = N−1/2
N−1∑
p=0

e−itλpdη(λp)Vn(λp), n ∈ Z,

and let us de�ne the following auxiliary process and its FFT.

dN
ξ̃

(λ) = N−1/2
N−1∑
n=0

einλξ̃nN , λ ∈ [0, 2π)
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Clearly If ξ is SSO, then dNξ (λ) and dN
ξ̃

(λ), N = 1, 2, . . ., λ ∈ [0, 2π) are SSO
X-valued process indexed by {1, 2, . . .} × [0, 2π).

Our �rst asymptotic result below exhibits that the auxiliary PC process
ξ̃ approximates ξ in mean square. Let for x ∈ X and n = 0, . . . , T − 1,
un,x(θ) = ‖Vn(θ)x‖2X , and vn(θ) =

∑∞
i=0 ‖Vn(θ)ei‖2X , Also un,x(θ, θ′) =

(Vn(θ)x, Vn(θ′))X , and vn(θ, θ′) =
∑∞
i=0(Vn(θ)ei, Vn(θ′)ei)X .

Lemma 44.1. (i): Let ξ be a WSO PC process for which un,x(θ),
n = 0, . . . , T − 1 are continuous and of bounded variations on [0, 2π). Then
for each t ∈ Z,

E|ξ̃tx − ξtx|2 → 0, N →∞.
(ii): Let ξ be a SSO PC process for which vn(θ), n = 0, . . . , T − 1 are con-
tinuous and of bounded variations on [0, 2π). Then for each t ∈ Z,

E‖ξ̃t − ξt‖2X → 0, N →∞.

Let us highlight some applications of the Lemma 1. Indeed it can be used
to test whether a segment ξ1, . . . , ξn is a segment of a PC process with given
{V0(·), . . . , Vn(·)}. Indeed by replacing ξ̃ by ξ in (2.16), one can solve the
resulting linear equations for {dη(λp), p = 0, . . . , N − 1}. Then test whether
the solutions are the FFT of a white noise process. If the process ξ is generated
by independent innovations, i.e., the process η has independent values then
dη(λp)x will have normal distribution with mean zero and variance 2π‖x‖2.
Also it is easy to see that that since

E|ξ̃nNx|2X = 2π
N−1∑
p=0

un,x(λp), n ∈ Z, N = 1, 2, . . . .

and

E‖ξ̃nN‖2X = 2π
N−1∑
p=0

vn(λp) n ∈ Z, N = 1, 2, . . . .

Therefore for large N the contribution of every Fourier frequency to the
variances of a WSO or SSO PC process can be measured by solving a number
of simultaneous equations. We note that the variances are periodic too.
We also de�ne

hk,x(θ) = ‖ak(θ +
2πk
T

)x‖2X , x ∈ X,

gk(θ) =
∞∑

i=0

‖ak(θ +
2πk
T

)ei‖2X , n = 0, . . . , T − 1

Also
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hk,k′,x(θ, θ′) = (ak(θ +
2πk
T

)x, ak′(θ′ +
2πk′

T
)X , x ∈ X,

vk,k′(θ, θ′) =
∞∑

i=0

(ak(θ +
2πk
T

)ei, ak′(θ′ +
2πk′

T
)ei)X , n = 0, . . . , T − 1

In the following lemma we prove that the mean square deviation between
dN
ξ̃

(λ) and dNξ (λ) goes to zero as N tends to in�nity, under the mild assump-
tion of continuity of the Cholesky factor.

Lemma 44.2. (i): Let ξ be a WSO PC process for which hn,x(θ),
n = 0, . . . , T − 1 are continuous on [0, 2π). Then at every Fourier frequency
λ

E|dξ̃(λ)x− dξ(λ)x|2 → 0, N →∞.
(ii): Let ξ be a SSO PC process for which gn(θ), n = 0, . . . , T − 1 are contin-
uous on [0, 2π). Then at every Fourier frequency

E‖dξ̃(λ)− dξ(λ)‖2 → 0, N →∞.

Let us introduce periodograms for WSO and SSO PC processes. Let

dTξ (λ) = (dξ(λ), . . . , dξ(λ+
2π(T − 1)

T
))′, λ ∈ [0,

2π
T

).

The periodogram for a WSO as well as SSO PC process is de�ned to be

ITξ (λ) = [Ik,`(λ)]k,`=0,··· ,T−1, λ ∈ [0,
2π
T

),

(Ik,`(λ)x, y) = dξ(λ+
2πk
T

)xdξ(λ+
2π`
T

)y, x, y ∈ X.

Indeed each Ik,`(λ) is a random L(X) valued function on [0, 2π
T ). For WSO

or SSO processes, respectively:

E|(Ik,`(λ)x, y)| <∞, E‖Ik,`(λ)x‖2 <∞, k, ` = 0, · · ·T − 1.

Corollary 44.1. Under the assumption of Lemma 3.2, for Fourier frequen-
cies λ, λ′,

E|dξ̃(λ)xdξ̃(λ′)y − dξ(λ)xdξ(λ′)y| → 0, N →∞, x ∈ X,

for WSO PC processes and

E|
∞∑

i=0

{dξ̃(λ)eidξ̃(λ′)x− dξ(λ)eidξ(λ′)x}| → 0, N →∞, x ∈ X,
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for SSO PC processes.

Let us give the main result of this article. The proof is based on Lemma 2
and the following crucial fact.

dT
ξ̃

(λ) = A(λ)dTη (λ),

Theorem 44.1. Let ξ be an X-valued PC process with the spectral density
f(λ), λ ∈ [0, 2π). Let A(λ), λ ∈ [0, 2π) be the Cholesky factor of f . Assume
for every x ∈ X, A(λ)x is continuous in λ w.r.t. the norm in X. Also dTξ (λ)
and ITξ (λ) be the corresponding SFFT and Periodogram.

(i) If ξ is WSO then for k, ` = 0, · · · , T − 1,

E(Ik,`(λ)x, y)X −→ (fk,`(λ)x, y)X , N →∞, x, y ∈ X.

(ii) If ξ is SSO then for k, ` = 0, · · · , T − 1,

E‖Ik,`(λ)x− fk,`(λ)x‖2X −→ 0, N →∞, x ∈ X.

(iii) For arbitrary frequencies λ1, · · · , λJ in [0, 2π
T ), SFFT

dTξ (λ1), · · · ,dTξ (λJ ) are asymptotically uncorralated with mean zero and co-
variance operators f(λ1), · · · , f(λJ ).
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