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Preface

Since it was introduced by Zadeh in 1965, the fuzzy set theory has been widely applied
in various fields of modern society. Central to the fuzzy set is the extension of the
characteristic function taking the value of 0 or 1 to the membership function which
can take any value from the closed interval [0,1]. However, the membership function
is only a single-valued function, which cannot be used to express the evidences of sup-
port and objection simultaneously in many practical situations. In the processes of
cognition of things, people may not possess a sufficient level of knowledge of the prob-
lem domain, due to the increasing complexity of the socio-economic environments. In
such cases, they usually have some uncertainty in providing their preferences over the
objects considered, which makes the results of cognitive performance exhibit the char-
acteristics of affirmation, negation, and hesitation. For example, in a voting event, in
addition to support and objection, there is usually abstention which indicates hesita-
tion and indeterminacy of the voter to the object. As the fuzzy set cannot be used to
completely express all the information in such a problem, it faces a variety of limits
in actual applications.

Atanassov (1983) extends the fuzzy set characterized by a membership function to
the intuitionistic fuzzy set (IFS), which is characterized by a membership function, a
non-membership function and a hesitancy function. As a result, the IFS can describe
the fuzzy characters of things more detailedly and comprehensively, which is found
to be more effective in dealing with vagueness and uncertainty. Over the last few
decades, the IFS theory has been receiving more and more attention from researchers
and practitioners, and has been applied to various fields, including decision making,
logic programming, medical diagnosis, pattern recognition, robotic systems, fuzzy
topology, machine learning and market prediction, etc.

The IFS theory is undergoing continuous in-depth study as well as continuous
expansion of the scope of its applications. As such, it has been found that effective
aggregation and processing of intuitionistic fuzzy information becomes increasingly
important. Information processing tools, including aggregation techniques for intu-
itionistic fuzzy information, association measures, distance measures and similarity
measures for IFSs, have broad prospects for actual applications, but pose many in-
teresting yet challenging topics for research.

In this book, we will give a thorough and systematic introduction to the latest
research results in intuitionistic fuzzy information aggregation theory and its ap-
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plications to various fields such as decision making, medical diagnosis and pattern
recognition, etc. The book is organized as follows:

Chapter 1 introduces the aggregation techniques for intuitionistic fuzzy informa-
tion. We first define the concept of intuitionistic fuzzy number (IFN), and based
on score function and accuracy function, give a ranking method for IFNs. We then
define the operational laws of IFNs, and introduce a series of operators for aggregat-
ing intuitionistic fuzzy information. These include the intuitionistic fuzzy averaging
operator, intuitionistic fuzzy bonferroni means, and intuitionistic fuzzy aggregation
operators based on Choquet integral, to name just a few. The desirable properties
of these operators are described in detail, and their applications to multi-attribute
decision making are also discussed.

Chapter 2 mainly introduces the aggregation techniques for interval-valued intu-
itionistic fuzzy information. We first define the concept of interval-valued intuitionis-
tic fuzzy number (IVIFN), and introduce some basic operational laws of IVIFNs. We
then define the concepts of score function and accuracy function of IVIFNs, based on
which a simple method for ranking IVIFNs is presented. We also introduce a number
of operators for aggregating interval-valued intuitionistic fuzzy information, including
the interval-valued intuitionistic fuzzy averaging operator, the interval-valued intu-
itionistic fuzzy geometric operator, the interval-valued intuitionistic fuzzy aggregation
operators based on Choquet integral, and many others. The interval-valued intuition-
istic fuzzy aggregation operators are applied to the field of decision making, and some
approaches to multi-attribute decision making based on interval-valued intuitionistic
fuzzy information are developed.

Chapter 3 introduces three types of measures: association measures, distance
measures, and similarity measures for IFSs and interval-valued intuitionistic fuzzy
sets (IVIFSs).

Chapter 4 introduces decision making approaches based on intuitionistic prefer-
ence relation. We first define preference relations, then introduce the concepts of
interval-valued intuitionistic fuzzy positive and negative ideal points. We also utilize
aggregation tools to establish models for multi-attribute decision making. Approaches
to multi-attribute decision making in interval-valued intuitionistic fuzzy environments
are also developed. Finally, consistency analysis on group decision making with intu-
itionistic preference relations is given.

Chapter 5 introduces multi-attribute decision making with IFN/IVIFN attribute
values and known or unknown attribute weights. We introduce the concepts such as
relative intuitionistic fuzzy ideal solution, relative uncertain intuitionistic fuzzy ideal
solution, modules of IFNs and IVIFNs, etc. We then establish projection models to
measure the similarity degree between each alternative and the relative intuitionistic
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fuzzy ideal solution and the similarity degree between each alternative and the relative
uncertain intuitionistic fuzzy ideal solution, by which the best alternative can be
obtained.

Chapter 6 introduces aggregation techniques for dynamic intuitionistic fuzzy infor-
mation and methods for weighting time series. We introduce the concepts of intuition-
istic fuzzy variable and uncertain intuitionistic fuzzy variable. We describe dynamic
intuitionistic averaging operators, based on which dynamic intuitionistic fuzzy multi-
attribute decision making and uncertain dynamic intuitionistic fuzzy multi-attribute
decision making problems are tackled.

Chapter 7 considers multi-attribute group decision making problems in which the
attribute values provided by experts are expressed in IFNs, and the weight informa-
tion about both the experts and the attributes is to be determined. We introduce
two nonlinear optimization models, from which exact formulas can be obtained to
derive the weights of experts. To facilitate group consensus, we introduce a nonlin-
ear optimization model based on individual intuitionistic fuzzy decision matrices. A
simple procedure is used to rank the alternatives. The results are also extended to
interval-valued intuitionistic fuzzy situations.

This book is suitable for practitioners and researchers working in the fields of fuzzy
mathematics, operations research, information science and management science and
engineering, etc. It can also be used as a textbook for postgraduate and senior-year
undergraduate students.

This work was supported by the National Science Fund for Distinguished Young
Scholars of China under Grant 70625005.

Zeshui Xu, Xiaoqgiang Cai
Hong Kong
September, 2011
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Chapter 1

Intuitionistic Fuzzy Information
Aggregation

The fuzzy set theory has been extensively applied in various fields of modern society
(Chen et al., 2005) since its introduction by Zadeh (1965) in 1960s. Central to the
fuzzy set is the extension from the characteristic function taking the value of 0 or 1
to the membership function which can take any value from the closed interval [0,1].
However, the membership function is only a single-valued function, which cannot be
used to express the support and objection evidences simultaneously in many practical
situations.

In cognition of things, people may not possess a precise or sufficient level of knowl-
edge of the problem domain, due to the complexity of the socio-economic environment.
In such cases, they usually have some uncertainty in providing their preferences over
the objects considered, which makes the results of cognitive performance exhibit the
characteristics of affirmation, negation and hesitation. For example, in a voting prob-
lem, in addition to “support” and “objection”, there is usually “abstention” which
indicates the hesitation and indeterminacy of the voter regarding the object. Because
a fuzzy set cannot be used to completely express all the information in such problems,
its applicability is often limited in many practical situations.

Atanassov (1986; 1983) generalizes Zadeh’s fuzzy set theory with the concept of
intuitionistic fuzzy set (IFS), which is characterized by a membership function, a non-
member function, and a hesitancy (indeterminancy) function. It is argued that IFS
can describe the fuzzy characters of things more detailedly and comprehensively, and
is therefore more useful in dealing with vagueness and uncertainty than the classical
fuzzy set theory. Over the last few decades, researchers have paid great attention
to investigation of the IFS theory, and achieved fruitful results (Atanassov, 1999;
Bustince et al., 2007). Atanassov (1986) and De et al. (2000) introduce several basic
operations on IFSs, including “intersection”, “union”, “supplement”, and “power”.
However, as the study of the IFS theory expands in both depth and scope, effective
aggregation and handling of intuitionistic fuzzy information has become necessary and
increasingly important. These basic operations on IFSs have been far from meeting
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the actual needs.

In recent years, Xu (2010c; 2007¢), Xu and Xia (2011), Xu and Yager (2011;
2006), and Zhao et al. (2010) have focused on the subject of aggregation techniques
for intuitionistic fuzzy information. They have defined the concept of intuitionistic
fuzzy number and introduced, based on the score function and the accuracy function,
a ranking method for intuitionistic fuzzy numbers. They have further defined oper-
ational laws of intuitionistic fuzzy numbers, and introduced a series of operators for
aggregating intuitionistic fuzzy information, including the intuitionistic fuzzy aver-
aging operator, intuitionistic fuzzy weighted averaging operator, intuitionistic fuzzy
ordered weighted averaging operator, intuitionistic fuzzy hybrid averaging operator,
intuitionistic fuzzy geometric operator, intuitionistic fuzzy weighted geometric op-
erator, intuitionistic fuzzy ordered weighted geometric operator, intuitionistic fuzzy
hybrid geometric operator, intuitionistic fuzzy bonferroni means, generalized intu-
itionistic fuzzy aggregation operators, intuitionistic fuzzy aggregation operators based
on Choquet integral, induced generalized intuitionistic fuzzy aggregation operators,
etc. They have also applied these operators to the field of multi-attribute decision

making.

1.1 Intuitionistic Fuzzy Sets

We first introduce the concept of Zadeh’s fuzzy set:
Definition 1.1.1 (Zadeh, 1965) Let X be a fixed set. Then

F={(, pr(z)) |z e X} (1.1)

is called a fuzzy set, where pp is the membership function of F', up : X — [0, 1], and
pr(z) indicates the membership degree of the element x to F, which is a single value
belonging to the unit closed interval [0, 1].

Atanassov (1986; 1983) generalizes Zadeh’s fuzzy set with the concept of intuition-
istic fuzzy set (IFS) as defined below:
Definition 1.1.2 (Atanassov, 1986; 1983)  An IFS is an object having the following
form:

A= {{a,pa(@),va(@) | € X} (1.2)

which is characterized by a membership function:
pa:X —100,1, z€X — pa(zr)€]0,1] (1.3)
and a non-membership function:

va:X —[0,1], z€X — va(x)e€]0,1] (1.4)
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with the condition:
0 < pa(z)+rva(z) <1, for all ze€ X (1.5)

where pa(z) and v4(x) represent, respectively, the membership degree and the non-
membership degree of x in A.
Moreover, for each IFS A in X, if

ma(x) =1—pa(x) —va(z), for all z€ X (1.6)

then w4 (z) is called an indeterminancy degree of z to A.
Szmidt and Kacprzyk (2000) call 74 (z) an intuitionistic index of z in A. It is a
hesitancy degree of « to A. Obviously,

0<ma(z) <1, for all ze X (1.7)
In particular, if
ra(e) =1 = pa(@) = [1 - pa(@)] =0, z€X (1.8)

then A reduces to Zadeh’s fuzzy set. Thus, fuzzy sets are the special cases of IFSs.
For convenience, Xu (2007e) calls & = (ftq, Vo) an intuitionistic fuzzy number
(IFN) or an intuitionistic fuzzy value (IFV), where

bo €10,1], vo €10,1], pa+trva<l1 (1.9)

and let © be the set of all IFNs. Clearly, a™ = (1, 0) is the largest IFN, and
o~ = (0, 1) is the smallest IFN.

Each IFN o« = (ua, V) has a physical interpretation. For example, if o =
(0.5, 0.3), then we can see that p, = 0.5 and v, = 0.3. It can be interpreted as
“the vote for resolution is 5 in favor, 3 against, and 2 abstentions”.

For any IFN « = ({4, Va), the score of a can be evaluated by the score function
s (Chen and Tan, 1994) as shown below:

s(a) = o — Va (1.10)

where s(a) € [-1, 1].

From Eq.(1.10), we can see that the score s(a) of the IFN « is directly related
to the difference between the membership degree p, and the non-membership degree
V. The greater the difference p, — vq, the larger the score s(«), and then the larger
the IFN «. In particular, if s(a) = 1, then the IFN « takes the largest value (1, 0);
If s(a) = —1, then « takes the smallest value (0, 1).
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Example 1.1.1 Let o; = (0.7,0.2) and ay = (0.5,0.3) be two IFNs. Then by Eq.
(1.10), we can get the scores of a; and aw respectively:

s(a1) =0.7—-02=0.5, s(az)=05-0.3=0.2

Since s(ay) > s(az), we have oy > aa.

Gau and Buehrer (1993) define the concept of vague set. Bustince and Burillo
(1996) point out that vague sets are IFSs. Chen and Tan (1994) utilize the max
and min operations and the score function to develop an approach to multi-attribute
decision making based on vague sets. However, in some special cases, this approach
cannot be used to distinguish two IFNs.

Example 1.1.2 Let ay = (0.6, 0.2) and ae = (0.7, 0.3) be two IFNs. Then by Eq.
(1.10), we have

$(a1)=06-02=04, s(az)=07-03=04

Since s(a1) = s(ag), we cannot tell the difference between a; and ag by using the
score function.
Hong and Choi (2000) define an accuracy function:

h(a) = po + Vo (1.11)

where a = (o, Vo) is an IFN, h is the accuracy function of «, and h(«) is the accuracy
degree of a. The larger h(«), the higher the accuracy degree of the IFN «.

From Egs.(1.6) and (1.11), the relationship between the hesitancy degree and the
accuracy degree of the IFN « can be shown as follows:

To 4 h(a) =1 (1.12)

Hence, the smaller the hesitancy degree m,, the bigger the accuracy degree h(«).
By Eq.(1.11), we can calculate the accuracy degrees of the IFNs a7 and as in
Example 1.1.2:

h(a1) =0.6+0.2=08, h(as)=0.7+03=1

Then h(ag) > h(ay), i.e., the accuracy degree of the IFN «y is higher than that of
the IFN ;.

Hong and Choi (2000) show that the relation between the score function s and
the accuracy function h is similar to the relation between the mean and the variance
in statistics. It is well known that an efficient estimator is a measure of the variance
of an estimate’s sampling distribution in statistics, i.e., the smaller the variance, the
better the performance of the estimator. Based on this idea, it is meaningful and
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appropriate to stipulate that the higher the accuracy degree h(a), the better the IFN
«. Consequently, as is larger than a;.

Motivated by the above analysis, Xu and Yager (2006) develop a method for

comparison and ranking of two IFNs, which is based on the score function s and the
accuracy function h as defined below:
Definition 1.1.3 (Xu and Yager, 2006) Let a1 = (ttay,Va,) and as = (o, Vas,)
be two IFNs, s(a1) = fta, — Va, and s(a2) = jia, — Va, the scores of the IFNs a; and
a respectively, and h(aq) = g, + Vo, and h(ag) = pa, + va, the accuracy degrees
of the IFNs «y and as respectively. Then

o If s(ay) < s(ag), then the IFN «; is smaller than the IFN a9, denoted by
o) < (g.

o If s(ay) = s(az), then

(1) If (1) = h(aw), the IFNs a1 and ag are equal, i.e., pio, = fta, and Vo, = Va,,
denoted by a1 = ao;

(2) If h(a1) < h(ag), the IEN ay is smaller than the IFN aq, denoted by ag < aw;

(3) If h(aq) > h(az), the IFN «; is larger than aw, denoted by a1 > as.

Hong and Choi (2000) further strengthen the decision making method of Chen
and Tan (1994). They utilize the score function, the accuracy function, and the
max and min operations to develop another technique for handling multi-attribute
decision making with intuitionistic fuzzy information. However, the main problem of
the aforementioned techniques using the minimum and maximum operations to carry
the combination process is the loss of information, and hence a lack of precision in
the final results. Therefore, “how to aggregate a collection of IFNs without any loss
of information” is an interesting research topic (Xu, 2007e).

Up to now, many operators have been proposed for aggregating information in
various decision making environments (Calvo et al., 2002; Xu 2007g; 2004e; Xu and
Da, 2003b; Yager and Kacprzyk, 1997). Four of the most common operators for ag-
gregating arguments are the weighted averaging operator (Harsanyi, 1955), weighted
geometric operator (Saaty, 1980), ordered weighted averaging operator (Yager, 1988)
and ordered weighted geometric operator (Chiclana et al., 2001b; Xu and Da, 2002a),
which are defined as follows respectively:

Definition 1.1.4 (Harsanyi, 1955) Let WA : (Re)” — Re, and a; (j =1,2,---,n)
be a collection of real numbers. If

WA, (a1, a2, an) = ijaj (1.13)
j=1

then the function WA is called a weighted averaging (WA) operator, where Re is
the set of all real numbers, w = (w1,ws, - ,w,)T is the weight vector of a; (j =
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1,2,---,n), with w; € [0, 1] (j = 1,2,--- ,n) and ijzl.
j=1

Definition 1.1.5 (Saaty, 1980) Let WG : (Re)™ — (Re)™. If
WG, (ar,a2, - ,a,) = Ha‘;j (1.14)
j=1

then the function WG is called a weighted geometric (WG) operator, where (Re)™
is the set of all positive real numbers, and w = (w1, wa, -+ ,wy,)T is the exponen-

tial weighting vector of a; (j = 1,2,--- ,n), with w; € [0, 1] (j = 1,2,--- ,n) and
ij =1.
j=1

Both the WA and WG operators first weight all the given arguments a; (j =
1,2,---,n), and then aggregate these weighted arguments. The difference between
these two operators is that the WG operator is much more sensitive to the given
arguments. Especially in the case where there is an argument taking the value of
zero, the aggregated value of these arguments by using the WG operator must be
zero no matter what the other given arguments are.

Definition 1.1.6 (Yager, 1988) Let OWA : (Re)” — Re. If

n
OWAw(a17a27~-~ ,an) = ijbj (].].5)
j=1
where w = (w1, ws, -+ ,w,)T is the weighting vector associated with the function

OWA, with w; € [0,1], j = 1,2,--- ,n, ij = 1, and b; is the j-th largest of
j=1

a; (j =1,2,---,n), then the function OWA is called an ordered weighted averaging

(OWA) operator.

Definition 1.1.7 (Chiclana et al., 2001b; Xu and Da, 2002a) Let OWG : (Re)*™ —

(Re)*. If

n
OWG. (a1, a2, ,a,) = [] 0" (1.16)
j=1
where w = (w1, ws, - - ,w,)7T is the exponential weighting vector associated with the

function OWG, with w; € [0, 1], j =1,2,--- ,n, ij =1, and b; is the j-th largest
j=1

ofa; (=1,2,---,n), then the function OWG is called an ordered weighted geometric

(OWG) operator.
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The fundamental characteristic of the OWA and OWG operators is that they first
rearrange all the given arguments in descending order, and then weight the ordered
positions of the arguments. These two operators aggregate the ordered arguments
together with the weights of their ordered positions. Obviously, the argument a; is
not associated with the particular weight w;. Instead, the weight w; is associated with
the particular ordered position i of the arguments. Thus, w; is also called a position
weight. The OWG operator is developed on the basis of the OWA operator and the
geometric mean.

The above four operators are generally suitable to aggregate the arguments taking
the values of real numbers. They have been extended to accommodate uncertain
or fuzzy linguistic environments, see (Bordogna et al., 1997; Delgado et al., 1993;
Herrera et al., 2005; 1996b; Herrera and Martinez, 2000a; 2000b; Xu, 2008a; 2007g;
2006a; 2006b; 2006¢; 2006g; 2004a; 2004d; Xu and Da, 2002b; Yager, 2004c; 2003a;
2003b; 1996; 1995; Zhang and Xu, 2005). Xu (2010c; 2007¢), Xu and Xia (2011),
Xu and Yager (2011; 2006), and Zhao et al. (2010) have further generalized them
to accommodate intuitionistic fuzzy environments and investigated the aggregation

techniques for intuitionistic fuzzy information.

1.2 Operational Laws of Intuitionistic Fuzzy Numbers

Theorem 1.2.1 (Xu, 2007¢) Let a1 = (ftay, Vay) and ag = (fay, Va,) be two
IFNs. Then

01 < Q2 <= flo; K fa, and Vg, = Vg, (1.17)

Proof Since s(o1) = fla; — Vays S(02) = flay — Vass Pay < Hay a0d Vo = Va,, WE

have
S(al) - S(OQ) = (:uoél - Val) - (:uoéz - Va2)
= (:U’Oél - ILLOCQ) + (VOCQ - Va1)
If oy = o, and Vo, = Vq,, then oy = ag; Otherwise s(ay) — s(a2) < 0, ie.,

s(a1) < s(ag). Hence, by Definition 1.1.3, we have ay < a. The proof is completed.

Goguen (1967) defines an L-fuzzy set on X as an X — L mapping, which is a
generalization of the concept of fuzzy set. It covers the fuzzy set as a special case
when L = [0, 1], where L is a complete lattice equipped with an operator satisfying
certain conditions. For example, Deschrijver and Kerre (2003b) define a complete
lattice as a partially ordered set (L, <) such that every nonempty subset of L has a
supremum and an infimum.

A traditional relation on the lattice (L, <), defined by

a1 L Q2 S oy S fla, and Vg 2 Vo, (1.18)
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is also applied to the operations of IFSs (Atanassov, 1986; Cornelis et al., 2004).

However, in some situations, Eq.(1.18) cannot be used to compare IFNs. For
example, let a1 = (fay, Vay) = (0.2, 0.4) and az = (fay, Yay) = (0.4, 0.5), where
ta; = 0.2 < po, = 04 and v, = 0.4 < vo, = 0.5. Then it is impossible to know
which one is larger by using Eq.(1.18). But in this case, we can use Definition 1.1.3
to compare them. In fact, since

s(a1) =02-04=-02, s(ay)=04-05=-0.1

it follows from Definition 1.1.3 that a; < as.
Another well-known relation on the lattice (L, <p,), defined by

a1 <L Q2 S Loy S fay, and Yy, < Vg, (1.19)

does not conform to the implication of IF'S (Atanassov, 1986).

Atanassov (1986) and De et al. (2000) introduce some basic operations on IFSs,
which not only ensure that the operational results are also IFSs, but also are useful
in the calculus of linguistic variables in an intuitionistic fuzzy environment:
Definition 1.2.1 (Atanassov, 1986) Let a set X be fixed, and let A = {(z, pa(z),
va@) e € X}, A = {(5, pa,(2), var(@)) |z € X }and Ay = {(z, pa(a),
x)) |z € X } be three IFSs. Then the following operations are valid:

1) A= {(z, va(e), pa@)|z € X};

2) Ay 1 Ag = {{z, min{pa, (), pa,(2)}, max{va, (@), v, (2)}) |@ € X};

3) AU A = {<.73, maX{HAl ('7;)’ UA2(x)}’ min{VAl ('7;)’ VA, ('7;)}> ‘.73 € X};

4) Ar+ Az = {(z, pa, (z) + pa, (2) — pa, (2) pa, (z),va, (1) va, () [2 € X}
5) Ar- Az = {{z, pa, (2) pa, (), va,(z) +va,(2) —va, (z) va,(z)) [z € X}

De et al. (2000) further give another two operations of IFSs:

(6) n A= {(z, 1 - (1— pa(@)", (wa@)™) |o € X};

(1) A" = {(z, (pa(x))", 1= (1 —va(x)") [z € X},
where n is a positive integer.

Motivated by the above operations, Xu (2007e), Xu and Yager (2006) define some
basic operational laws of IFNs, which will be used in the remainder of this book:
Definition 1.2.2 (Xu, 2007¢; Xu and Yager, 2006) Let a = (uq, Vo), @1 =
(Bays Va,) and a2 = (fay, Vay) be IFNs. Then

va,(
(
(
(
(
(

(1) &= (Va, pa);

(2) a1 A g = (min{fay s fasts Max{Va,s Vas});
(3) a1 V as = (max{fia; s fas b MIN{Va,, Vay });
(4) a1 ® g = (Hay + Has — Hay fass Var Vas);
(5) a1 ® a2 = (Hay Pags Var T Vas — Vay Vas );
(6) Aa = (1~ (1—pa)*, 12), A >0;
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(7) o = (ud, 1— (1 —va)*), A> 0.
Let SP(/‘LalﬂlLLOCQ) = Hay T Hay = Hag Has and TP(Va17Va2) = Vo, Vas- Then the
operational law (4) in Definition 1.2.2 can be rewritten as:

ap oz = (SP(,UCXUIU'OL2)7 TP(VOéuVOéz)) (120)

If we let Sp(Vays Vas) = Var + Vas — Var Vas a0d TP (flay , as) = Has fhas, then the
operational law (5) in Definition 1.2.2 can be rewritten as:

ap ®oag = (TP(/’LOﬂ?:u’OQ)? SP(VOéuVOéz)) (121)

where Sp(z1,22) = x1 + 2 — x122 is a well-known ¢-conorm satisfying (Klir and
Yuan, 1995):

(1) (Boundary): Sp(1, 1) =1, Sp(z, 0) = Sp(0, z) = z;

(2) (Monotonicity): If 1 < 2} and z3 < 24, then Sp(z1, x2) < Sp(x), 4);

(3) (Commutativity): Sp(z1, x2) = Sp(xe, x1);

(4) (Associativity): Sp(x1, Sp(xe,x3)) = Sp(Sp(x1,z2), x3)),
and Tp(y1,y2) = y1y2 is a well-known t-norm satisfying (Klir and Yuan, 1995):

(1) (Boundary): Tp(0, 0) =0, Tp(y, 1) = y;

(2) (Monotonicity): If y1 <yj and y2 < y3, then Tp(y1, y2) < Tr(y1,¥5);
(3) (Commutativity): Tp(y1, y2) = Tr(y2, y1);
(4) (Associativity): Tp(y1, Tr(y2,93)) = Tr(Tp(y1,v2), y3)-

In particular, if o =1 — Vo, fta; =1 — Vo, and pa, =1 — 14, then a, ag and as
represent the traditional fuzzy numbers. In this case, the operational laws (4)—(7) in
Definition 1.2.2 reduce to the following forms (Xu, 2007e):

(4) o1 ® a2 = Sp(Has s Has )

(5") a1 @ az = Tr(fray, fas);

(6") A =1 — (1 — )™, A > 0;

(7) o = pd, A > 0.

Let 6(\, a) = 1 — (1 — a)*, where a € [0,1] and A > 0. Then the expression (6')
is a unit interval monotone increasing function on A and a, with the following good
properties (Xu, 2007e):

(1) 0 < d(N, a) < 1. Especially, 6(A, 0) =0, 6(A, 1) =1 and (1, a) = a;

(2)IfX—0and 0 <a <1, then 6(\, a) — 0;

(B)If A — +oo and 0 < a < 1, then §(A, a) — 1;

(4) If A > )\2, then 5()\1, a) > 5()\27 a);

(5) I a1 > ag, then d(A, a1) > 6(A, ag).

These desirable properties provide a theoretic basis for the application of the
operational laws (4)-(7) in Definition 1.2.2 to the aggregation of IFNs.
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Theorem 1.2.2 (Xu, 2007e; Xu and Yager, 2006) Let &1 = a1 D, G2 = a1 @ g,
3= Aa, &y = o, and A > 0. Then all &; (i = 1,2,3,4) are [FNs.
Proof Since a1 = (fay, Va,) and @2 = (ftay, Va,) are IFNs,
ILLOél e [07 1]7 VO(I 6 [07 1]7 /”LQQ 6 [07 1]
Vozg 6[071]7 ,u'al +Vo¢1 <17 /”’a2+yo¢2 gl

Therefore, by the operational law (4) in Definition 1.2.2, we have

Moy + Has — Moy Has = :u‘Oél(]- - Naz) + Has > Has > 07 Moy oz > 0
Moy =+ HBas = Haq Bas + Vo Vas S Hay + HPas — Hag Pas + (1 - :u'al)(l - Uaz) =1
and thus ¢ is an IFN.
It follows from the operational law (5) in Definition 1.2.2 that
Og,uozl,ufog <17 Ogyozl +Va2_l/a1 Va2 gl

VOél)( Va2)+ya1 +V042_V041V042

(1
( Val)( Va2)+1_(1_ya1)(1_ya2)
1

Moy Ko + Ve, + Voo — Vo Va2

hence ¢ is an IFN.

Since o = (o, Vo) is an IFN, by the operational law (6) in Definition 1.2.2, we
can obtain

1—(1—pa)*>0, v2>0
and
T—(1=pa)* + 1y <= (1= pa)* + (1= pa) =1

Therefore, &3 is also an IFN.

According to the operational law (7) in Definition 1.2.2, we have

pr =0, 1—(1—-v)*>0
and
A+ 11— ) <A - ) +1-(1—-vx) =1
Thus, ¢y is also an IFNs. The proof is completed.
In the following, let us look at A« and a* for some special cases of A and a (Xu,

2007e):
(1) If o« = (ptas va) = (1, 0), then

Aa=(1-(1-pa) va)=01-(1-1" 0% =(L0)

o’ = (g, 1—(1—va))) = (1%, 1= (1-0)") = (1, 0)
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i.e.,

A1, 0) = (1, 0), (1,0 =

(2) If @ = (fta, Vo) = (0, 1), then

(1, 0)

Aa=(1-(1-pa) va)=01-(1-0)7 1% =(0, 1)

ot = (kg 1= (1=1a)) = (0%, 1= (1-1)") = (0, 1)

i.e.,

A0, 1)=(0, 1), (0, 1)
(3) If & = (fta, va) = (0, 0), then

= (07 ]-)

A= (1= (1= pa) 13)=(1~(1-0)0 0*)=(0,0)

ot = (ph, 1—(1—wa)t) = (0%, 1-(1-0)") = (0, 0)

ie.,

A(0, 0)= (0, 0), (0, 0)* =

(4) It A —0and 0 < pqg, Vo <1, then

Aa=(1-1-pa), va)—

ot = (pa, 1= (1-va)*) —

(5) If A — +oo and 0 < pig, Vo < 1, then

Na=(1—(1-pa), ) —

o =y, 1= (1= va)) =

(6) If A = 1, then

(0, 0)

(0, 1)

(1, 0)

(1, 0)

(0, 1)

= (1= (1= pa), 1) = (s va) =0

ot = (/‘g\m 1-(1- Va)A) = (Ma, Va) =

i.e.,

Aa=a, ot=a =1

Theorem 1.2.3 (Xu, 2007e; Xu and Yager, 2006)
(1) a1 © az = a2 ® ag;
(2) 1 ®az = az ®ag;
(3) (041 () 012) = Ao ® /\042,
(4) (1 @ a2)* = a3 @ a3;

Let A\, A1, A2 > 0. Then

11
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(5) Ao @ o = ()\1 + )\2)@;
(6) a™M ® ar? = a>\1+>\2;
(N @az)®a=0 & (2@ a);
(8) (™) = .
f

Proof (1) By the operational law (4) in Definition 1.2.2, we get

o1 Baz = (:u‘oél + Hay — Hag Has, Valyaz)
= (:Uoéz + Hay — Hastay s Va2l/a1)

= a9 D oy
(2) From the operational law (5) in Definition 1.2.2, we obtain

a1 ® g = (ua1ua2a Vo, T Vay, = Vay Voéz)
= (:U’Oéz;uoéu Vas + Vay — Vazl/oél)

=a2®a;
(3) Using the operational laws (4) and (6) in Definition 1.2.2, we have

/\(041 D 042) = (1 - (1 - (:LLOél + oy — :u'al:u'aQ)))\v (Voél Va2))\)
= (]- - (1 - :u‘Oél)A(]- - Naz))\v (Voél Vaz))\) (122)
Also since
Aag = (1 - (1 - /“Loél)A’ Vc)y\l)
Nz = (1= (1= ), ¥2))

a2

we can see that

Nar®Aag = (1— (1 — pa,) +1— (1 — 1o,
— (1= (1= )M = (1= pa))s (Vayvas)?)
= (2= (1= pa) = (1= pax)* = (1= (1 = pra,)* = (1 = pay)*
+ (1= 1) 1 = p10:)Y)s (Vo Va))
= (1= (1= pa) (1 = pan)®s (Vay Var)Y) (1.23)

Combining Eq.(1.22) with Eq.(1.23), we can get
Ao @ az) = dag © Az
(4) Using the operational laws (5) and (7) in Definition 1.2.2, we have

(al ® (12))\ = ((Uoélluoéz))\v 1- (1 - (Voél + Vo, — Valyoéz))A)
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= ((/1‘061/1‘062))\7 1- ((1 - Va1)(]- - Vaz))A)
= (Mo Hay, 1= (1 =va)M (1 = vay)?) (1.24)
Also since
ai\:(lu'gla 1_(1_1/041))\)’ ag\:(,u'gw 1_(1_V042))\)
we have

ai\ ® ag\ = (ﬂglﬂgw 1- (]- - I/al))\ +1- (]- - VO&Q)A
(1= (1= (= va)M)A = (1= va,)Y)
= (i, Moys 1= (1= va )N(1 = vay)Y) (1.25)

It thus follows from Eqgs.(1.23) and (1.24) that

' a)

(a1 © ag)
(5) According to the operational law (6) in Definition 1.2.2, we can get
Ma= (1= (1—pa)™, 13")
Ao = (1= (1= pa)™e, 132)
Thus

AMa® oo = (2 - (]. - ,Uza))\l - (]- - ;U'OC)AQ
— (1= (1= p)™) A = (1= pa)™), w3022

= (1= (1= p)M (1= pa), (wa)2)
( ( _ )1+>\2 (Va)A1+>\2)
=M+ X)a

(6) Using the operational law (7) in Definition 1.2.2, we have
o= (g, (=)™
= (up?, (1-va)™)
Then
oM @M = (U, (1= va)™ + (1= 7)™ — (1= v (1 = va)™)

= (papa?s 1= (1 =va)M(1-va)™)
_ ((HQ)A1+>\2’ (1 _ VQ)A1+>\2)
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_ a>\1+>\2

(7) By the operational law (4) in Definition 1.2.2, we can obtain that

(1 ® a2) ® = (Hay + Has — Hay Hazs VaiVasy) D (Has Va)
= (Hay + Haz — Bayfag + Pa
= (Hay + Has = Hay Bas )Has VayVasVa)
= (Hay + Haz — Payfag + Ha
— Hayla — Hazfa + Hay Basla; VagVasVa)
a1 & (a2 ® @) = (fays Vay) ® (fas + Ha — Hasflay VasVa)
= (Hay + Has + Ha — Hazfa — Ha (Ha,
+ Ha = HasBa)s VaiVasVa)
= (Hay + Haz + Ha — Hasfa = Hay Bas — Hay Ba

+ oy BagPas Yoy Vas Va)

and thus (o ® az) ®a = a1 & (a2 © @).
(8) According to the operational law (7) in Definition 1.2.2, we can get

(a™) ( — o))

A2 _(
= ((ua ) (1= (1= (1 =wa)™))™)
= (pa, 1= (1 = va)™™)
= (a )Mz

which completes the proof.

1.3 Intuitionistic Fuzzy Aggregation Operators

In this section we will introduce, based on Definition 1.2.2, some operators for aggre-
gating intuitionistic fuzzy information:

Definition 1.3.1 (Xu, 2007¢) Let oj = (fta;, Vo;) (j = 1,2,--+,n) be a collection
of IFNs, and let IFWA : " — ©. If

IFWA, (a1, a2, -+, ap) = wian ©waay @ -+ S wyay, (1.26)

then the function IFWA is called an intuitionistic fuzzy weighted averaging (IFWA)
operator, where w=(wy,wa, - ,wy) T is the weight vector of a; (j=1,2,---,n), with

wj €0,1](j=1,2,---,n) and ij = 1. In particular, if w=(1/n,1/n,---,1/n)",
j=1
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then the IFWA operator reduces to an intuitionistic fuzzy averaging (IFA) operator:
IFA(a17a2,-~-7an):i(a1 Do ®---Day) (1.27)

Definition 1.3.2 (Xu and Yager, 2006) Let IFWG : @™ — 6. Then, if
IFWG, (a1, a2, - ,ap) =0 ®a5? @ - @ o (1.28)

then the function IFWG is called an intuitionistic fuzzy weighted geometric (IFWG)
operator, where w = (w1, ws, -+ ,wy)T is the exponential weighting vector of a; (j =

1,2,---,n), with w; € [0,1](j = 1,2,--- ,n) and ij = 1. In particular, if w =
j=1

(1/n,1/n,---,1/n)T, then the IFWG operator reduces to an intuitionistic fuzzy ge-

ometric (IFG) operator:

IFG(O(l,OéQ, 7O[n):(041®042®®04n)71b (129)

Based on Definitions 1.2.2, 1.2.3, and Theorem 1.2.3, we can get the following
result:
Theorem 1.3.1 (Xu, 2007¢) The aggregated value by using the IFWA operator is
also an IFN, where

IFWAw(ah Qg, - aan) = 1- H (1 - ,U'aj)Wj7 H V(‘;']]-. (130)
j=1 j=1
and w = (w1, ws, -+ ,w,)T is the weight vector of a; (j = 1,2,---,n), with w; €

[0, 1](j =1,2,--- ,n) and ij = 1. In particular, if po; = 1-va; (j =1,2,--- ,n),
j=1

then Eq.(1.30) reduces to the following form:

IFWAw(OZl;a27'.' 7an) = 1-— H(]. _,uaj)w'j; H(]— _,uaj)Wj (].3].)
j=1 j=1
Proof We prove Eq.(1.30) by using mathematical induction on n.
(1) When n = 2, we have
IFWA , (a1, a2) = wiaq @ waare

By Theorem 1.2.2, we can see that both wya; and weasy are IFNs, and the value of
w11 @ waas is also an IFN. From the operational law (6) in Definition 1.2.2, we have

w1y = (1 - (1 - Mal)wlv V?;ll)
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waaz = (1= (1 — pay)**, v47)
Then
IFWA, (a1, a2) = wiag @ woas
= 2= =pa) = (1 =va,)** = (1= (1 = pay)**)
(L= (1= pay)*?), w3 vss)
= (1= (1= pa ) (1= )2, w5 ve3)

(2) Suppose that n =k, Eq.(1.30) holds, i.e.,

IFWA, (a1, a0, -+, ) = wiag ® waas @ -+ - B wrag
k
= l_H = Hay)” HV
j=1

and the aggregated value is an IFN. Then when n = k + 1, by the operational laws
(4) and (6) in Definition 1.2.2, we have

IFWA, (a1, a2, , Qpt1) = w1 D waae @ -+ B Wi © Wht10k+1

= (w11 Bwas B -+ B wray) B Wet1Qk+1
k

L= T = pa)% + (1= (1= pray ) +)
j=1

k+1

k
| (O R |

k+1

+

wj W j
- L=y [
j=1 j=1

by which the aggregated value is also an IFN. Therefore, when n =k + 1, Eq.(1.30)
holds.

Thus, by (1) and (2), we know that Eq.(1.30) holds for all n. The proof is com-
pleted.
Theorem 1.3.2 (Xu and Yager, 2006) The aggregated value by using the IFWG
operator is also an IFN, where

IFWG, (a1, a0, ,ap) = H pal, 1 H — Va,;)“ (1.32)

and w = (w1, ws, -+ ,wy)T is the exponential weighting vector of a; (j = 1,2,--+ ,n),
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with w; € [0, 1] (j =1,2,--- ,n) and ij = 1. In particular, if po, =1 —va; (j =
j=1
1,2,---,n), then Eq.(1.32) reduces to the following form:

IFWGy (a1, ag, -+ o) = | [J i, 1= we (1.33)
j=1 j=1

Proof We prove Eq.(1.32) by using mathematical induction on n.
(1) When n = 2, we have

IFWG, (a1, a2) = af' ® a5?

According to Theorem 1.2.2, we can see that both aj" and a5? are IFNs, and the

value of af! ® a5 is also an IFN. It follows from the operational law (7) in Definition

1.2.2 that
Oéblu1 = (ﬂgia 1- (]- - Val)ah)
a3? = (g2, 1= (1= va,)*?)

Then

IFWG, (a1, a2) = o' ® a5?
= (ar ez, 1= (1 — v, )™
+1—(1 =) = (1= (1 —va,)*" ) (1 = (1 = vay)*?)
= (#Z)iﬂiia 1- (1 - Val)W1(1 - VOéz)WQ)

(2) Suppose that n =k, Eq.(1.32) holds, i.e.,

IFWGw(al,a27~-~ ,ak) = a“l‘]l ®OZ‘52 Q- ®Ck;:k
k

k
= ([T 1 =TT = v
j=1

j=1

and the aggregated value is an IFN. Then when n = k + 1, by the operational laws
(5) and (7) in Definition 1.2.2, we get

IFWGw(al,a2,~- 70[}€+1)
w
=o' ®a3* ®- - ®apt ®agy
. w
= (o ®03* © - ®af*) D ajfy

k+1 k

H FL;Z-V 1- H (1 - Vaj)% + (1 - (1 - Vak+1)Wk+l)
j=1

Jj=1



18 Chapter 1  Intuitionistic Fuzzy Information Aggregation

k
H 1 - V(l ’ (1 - (1 - Vak+1)Wk+1)

k+1 k+1
[Tee, 1-1]Q~va)™
j=1 j=1

by which the aggregated value is also IFN. Thus, when n = k + 1, Eq.(1.32) holds.
Therefore, based on (1) and (2), we know that Eq.(1.32) holds for any n. The

proof is completed.

Example 1.3.1 Let a3 = (0.3, 0.5), az = (0.2, 0.6), ag = (0.7, 0.2), and oy =

(0.4, 0.3) be IFNs, and w = (0.3, 0.4, 0.2, 0.1)" the weight vector of «; (j

1,2,3,4). Then

4
IFWA, (a1, a0, a3,a4) = | 1 — H — ;) H vy
j=1
=(1-(1-03"x(1- 0.2)0-4 x (1 —=0.7)%%x (1 —0.4)°"1,
0.5%3 x 0.6%4 x 0.20-2 x 0.3%1)
= (0.386 0.425)

IFWG, (a1, ao, a3, 0q) = H,u H — Vo)
= J
(0303><0204><0702 x 0.4%1
1—(1-0.5)"3x (1 -0.6)"*x (1-0.2)°%2x (1-0.3)""
= (0.311, 0.480)

4
J

—

The IFWA operator has the following properties:

Theorem 1.3.3 (Xu, 2007¢)(Idempotency) If all the IFNs «; (j =1,2,--- ,n) are
equal, ie., aj =0, j=1,2,--- ,n, then

IFWA, (a1, a0, ,an) = @ (1.34)

Proof Let a = (ta, Vo). Then Eq.(1.30) and o = (j = 1,2,--- ,n) yield

3

IFWA, (a1, a2, - ) = | 1 — Hl—ﬂa] HI/

Jj=1

~TLa = ma), T
j=1

Jj=1
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n

> wj Zn: wj
= (1 - (1 - ,ch)j=1 ) (Va)J=1 )

= (ftas Vo) =«

which completes the proof.
Theorem 1.3.4 (Xu, 2007¢)(Boundedness) Let

o = (1 o, b v, } ) = (e G, 3, i ()

Then
<IFWA, (a1, a9, o) < ab (1.35)

Proof Since for any j, we have
min (i, } < o, < max (i, b, min v, } < v, < max {ve, )
J

ie.,

j=1 j=1
=1- (1 — min{uaj}>]_
j
— min (o, } (1.36)
! :

ﬁ Vol 2 ﬁ (mjin{’/aj}>wj = (Irljin{vaj}>j=1wj = mjin{uaj} (1.37)

j=1 j=1
I—H(l oy ) < I—H <l—max{ua })
=1 j=1
=1- (1 — max{iq })7
J
= masc{jia, } (1.38)
¢ :
(T = o a = o 139
jl;[l v JI;[1 (max{l/ ; ) (m]ax{y ]}> mjax{u ) ( )

Let IFWA, (a1, a2, -+ , &) = (fas Vo). Then

S(CV) = la — Vo < maX{ﬂaj} - m,in{yaj} = S(aJr)
J J
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S(a) = Ula — Va = min{/‘l’aj} - max{Vaj} = s(a_)
J J

In what follows, we discuss three cases:
(1) s(a) < s(a™) and s(a) > s(a™): It follows from Definition 1.1.3 that Eq.
(1.35) holds.
(2) s(o) = s(a™), i.e., pa — Vo = max{fiq, } —min{v,, }: By Eqs.(1.36) and (1.37),
J J
we have
fta =max{fa,}, Vo =min{va,}
J J
Thus
ha) = pa + va = max{fiq, } + min{ve, } = h(a™)
J J
In this case, according to Definition 1.1.3, we have

IFWA, (a1, 0, o) = ot (1.40)

(3) s(a) = s(a™), i.e., pa — Vo = min{pa, } —max{v,, }: By Eqs.(1.36) and (1.39),
J J
one can obtain

Ha = Injin{lu'aj'}v Voo = m]ax{l/aj}

Hence

h(@) = pta + Ve = minjia, } + max{ve, } = h(a™)
J ' J '
In this case, according to Definition 1.1.3, we have
IFWG, (a1, a9, - ,ap) = (1.41)

Therefore, by (1)-(3), we can see that Eq.(1.35) must hold. This completes the proof.
Theorem 1.3.5 (Xu, 2007e)(monotonicity) Let aj = (fta;, Va,;) (j = 1,2,---,n)
and af = (ttar, vaz) (j = 1,2,-++,n) be two collections of IFNs, if fia, < oy and
Va; 2 Var, for any j. Then

IFWA, (a1, a2, , o) < IFWA, (o], 05, -+ , o) (1.42)
Proof Since pq < fha and vy, > Va for any j, we have

(1= pa)* > (1 o), 0 > 12

Moreover,
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Hence .
— v (1.43)

If « = IFWA, (a1, a9, - ,ap) and o = IFWA, (aF,ad, -+, ), then it follows
from Eq.(1.43) that

j=1

1- H(l_ﬂa] Y= H (Lxdj _H(l_ﬂa§)wj
j=1 j=1

s(a) < s(a®)

If s(a) < s(a*), then by Definition 1.1.3, we get
IFWA, (a1, a9, -+ ,an) < IFWA, (af, a3, -+, ) (1.44)

If s(a) = s(a*), then

I (VSRS | CCRES I (Ve O
j=1 j=1 j=1 j=1

Therefore, by the conditions pq ;< fa and v,; > Var for any j, we have

Hence

Jj=1 Jj=1
_1_ Wi e * .
=1 1‘[1(1 paz ) + Hl”%- h(a*) (1.45)
J= J=

Based on Egs.(1.44) and (1.45), we can see that Eq.(1.42) must hold. This com-
pletes the proof of the theorem.
Similarly, the IFWG operator also has the above properties:
Theorem 1.3.6 (Xu, 2007e)
(1) (Idempotency). If all IFSs «; (j = 1,2,---,n) are equal, e, a; = a (j =
1,2,---,n), then
IFWG, (a1, a0, ,ap) = « (1.46)

(2) (Boundedness). For any w, we have

T <IFWG, (a1, ag, - ,ap) < at (1.47)
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where
o = (in o b )+t = (G, ), i () )
J J ’ J ’ J

(3) (Monotonicity). Let o] = (taz, Var) (j = 1,2,--,n) be a collection of
IFNs, if for any j, pa; < fha and v,; > Var- Then
IFWG, (a1, a2, ,an) < IFWG, (o], a5, -+, al) (1.48)

n

Based on Definitions 1.1.3 and 1.2.2, we give an intuitionistic fuzzy ordered weighted
averaging operator below:
Definition 1.3.3 (Xu, 2007¢) An intuitionistic fuzzy ordered weighted averaging
(IFOWA) operator is a mapping IFOWA : @™ — @, such that w = (w1, wa, -+ ,w,) 7T,

with w; € [0, 1] (j =1,2,--- ,n) and ij =1, and

j=1
IFOWA, (a1, az, -+, ) = W10e(1) © W2lg2) D -+ O WnOig(n) (1.49)
where (0(1),0(2),---,0(n)) is a permutation of (1,2,---,n), such that ay;_1) =

Qo (j), for any j. In particular, if w = (1/n,1/n,---,1/n)T, then the IFOWA operator
reduces to an intuitionistic fuzzy averaging (IFA) operator.

Similar to Theorem 1.3.1, we can get the following result:
Theorem 1.3.7 (Xu, 2007¢) The aggregated value by using the IFOWA operator
is also an IFN, where

n

IFOWA, (a1, 02, yan) = [ 1= [T (1= pta, )™ H Vol (1.50)
j=1

and w = (wy,ws, - ,wy,)7T is the weighting vector associated with the IFOWA oper-
n
ator, with w; € [0, 1], j =1,2,--- ,n, and ij = 1. In particular, if po, +va; =1,

j=1
j=1,2,--- n, then Eq.(1.50) reduces to the following:

TFOWA,, (a1, a9, ) = [ 1= ] (1= pra, ;)" H — Py )" (1.51)
L e

Definition 1.3.4 (Xu and Yager, 2006)  An intuitionistic fuzzy ordered weighted
geometric (IFOWG) operator is a mapping IFOWG : ©™ — O, such that

IFOWG, (a1, a9, -+ ,an) = aa(l) ®a ( )& ® a;"("n) (1.52)



1.3 Intuitionistic Fuzzy Aggregation Operators 23

where (0(1),0(2),---,0(n)) is a permutation of (1,2,---,n), such that ag_1) >
Qy(;), for any j. In particular, if w = (1/n,1/n, - - -, 1/n)T, then the IFOWG operator
reduces to an intuitionistic fuzzy geometric (IFG) operator.

Similar to Theorem 1.3.2, we have
Theorem 1.3.8 (Xu and Yager, 2006) The aggregated value by using the IFOWG
operator is also an IFN, where

TFOWGy, (a1, @, an) = | [[ w2, 1= ] (1= vay,)™ (1.53)
j=1 j=1

In particular, if jo; +va; =1, j =1,2,--- ,n, then Eq.(1.53) reduces to:

IFOWG,, (a1, a9, - o) = H LLZZ(J_V 1-— H ,ugi(j) (1.54)
j=1 =1

The weighting vector associated with the IFOWA and IFOWG operators can be
determined similar to that of the OWA operator (Xu(2005a) gives an overview of
methods for determining OWA weights). For example, we can use the normal distri-
bution based method to determine the IFOWA weights. The prominent characteristic
of the method is that it can relieve the influence of unfair arguments on the decision
results by assigning low weights to those “false” or “biased” ones.

Example 1.3.2 Let oy = (0.5, 0.3), ag = (0.1, 0.4), a3 = (0.8, 0.1) and ay =
(0.3, 0.4) be IFNs. Then by Eq.(1.10), we can calculate the scores of o; (j = 1,2, 3,4):

s(a1) =05-03=02, s(az)=0.1-04=-03

s(as) =08 —0.1=0.7, s(as)=03-04=-0.1

Since
s(az) > s(aq) > s(ayg) > s(az)

we have

az1) = (0.8, 0.1), ay@2) = (0.5, 0.3)
Qg3 = (0.3, 0.4), agu) = (0.1, 0.4)

Suppose that w = (0.155,0.345,0.345,0.155) T (obtained by the normal distribution
based method (Xu, 2005a)) is the weighting vector associated with the IFOWA and
FOWG operators. Then by Eqs.(1.50) and (1.53), we get

4 4
IFOWA,, (a1, ag,as,aq) = | 1 — H (1- ﬂag(j))“’j, H 1/&”5(_]_)
j=1 j=1
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_ (1 o 0.20.155 % 0.50.345 % 0.70.345 % 0.90.155
0.10.155 X 0.30.345 X 0.40.345 X 0.40.155)
— (0.466, 0.292)

4

IFOWG,, (a1, ao, a3, cq) = H u%(]>7 H 1/%(])

— (0.80'155 % 0.50.345 % 0.30.345 % 0.10.155 1 — (1 B 0.1)0,155
X (1 _ 0.3)0.345 X (1 _ 0.4)0.345 X (1 _ 0.4)0.155)
= (0.351, 0.326)

In this example, if we replace ay = (0.3, 0.4) by ay = (0.3, 0.1), then
s(as) =0.3—0.1=0.2

which is the same as s(a7). Thus, we need to calculate the accuracy degrees of
and ay:

h(a1) =0540.3=0.8, h(as)=03+0.1=04

Since h(aq) > h(as), then by Definition 1.1.3, we have a3 > ay4. Therefore
Oz(,(l) = (0.8, 0.1)7 Oz(,(g) = (0.5, 0.3)

a3y = (0.3, 0.1), gy = (0.1, 0.4)

Then
4 4
IFOWA,, (a1, g, as, ay) H ﬂag(]) i H VZE(]_)
—(1- 0.20.155 % 0.50-345 5.7(1).345 % 0.90155,
0.10:155 5 0,30:345  (7,10:345 () 40-155)
= (0.466, 0.191)
4
IFOWG,, (a1, ao, a3, cq) = H,u%(]), H 1/%(])

— (0.80'155 X 0‘50.345 % 0.30.345 % 0.10_155
1—(1—0.1)%%5% x (1 —0.3)%3%% x (1 -0.1)3%5 x (1 — 0.4)%1%
= (0.351, 0.225)

The IFOWA and IFOWG operators have some desirable properties similar to the
IFWA and IFWG operators:
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Theorem 1.3.9 (Xu, 2007e; Xu and Yager, 2006) If all IFNs «; (j =1,2,---,n)
are equal, i.e., a; = o, for any j, then

IFOWA,, (a1, 00, ,an) = a, IFOWG,(a1,a0, - ,a,) =«

Theorem 1.3.10 (Xu, 2007e; Xu and Yager, 2006) Let

o = (i o, b () * = (G, ), i () )

Then
a~ <IFOWA, (a1, a9, ,an) < a®
a” <IFOWGy (a1, a0, - ,an) < at

Theorem 1.3.11 (Xu, 2007e; Xu and Yager, 2006) Let a; = (pa,, Va,) (j =

1,2,---,n) and o = (ua;, Va;) (j = 1,2,---,n) be two collections of IFNs. If

o, < ,Ufa;f and Vaj > Va;fa for any jv then
IFOWAw(ala Qg, - ,Oén) g
IFOWGy, (a1, a2, -+ ,an) <

IFOWA,, (a7, a5, -, )
IFOWG,, (af, a5, -+ ,al)

n

In addition to the properties described as above, the IFOWA and IFOWG opera-
tors also have the following desirable properties:
Theorem 1.3.12 (Xu, 2007e; Xu and Yager, 2006) (Commutativity) Let a; =
(Hay» Vay;) (3 =1,2,--+,n) and o = (pas, va3) (j =1,2,---,n) be two collections
of IFNs. Then

IFOWA,, (a1, o, - -+ ) = IFOWA,, (o, oy, -+, al) (1.55)
IFOWG, (a1, g, ,a,) = IFOWG,, (o], a, -+, al) (1.56)
where (af, b, -+ ,al,) is any permutation of (aq, ag, -, ap).

Proof Let

IFOWAw(alv Qg, - 7an) = wlao(l) @ w2aa'(2) DD wnag(n)
IFOWA,, (a7, b, -+, @) = Wi, 1y @ wa, o) @ - -+ B wpa, )
Since (o), ab, -+, ) is any permutation of (aq, g, -+ ,ay), we have

ao(j):alg—(j)v j:]-vza"'an
Thus Eq.(1.55) holds. Similarly, we can prove that Eq.(1.56) also holds. The proof is
completed.
From Theorem 1.3.12, both the IFOWA and IFOWG operators possess the com-
mutativity property, but the IFWA and IFWG operators do not.
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Theorem 1.3.13 (Xu, 2007e; Xu and Yager, 2006)
(1) If w = (1,0,---,0)T, then

IFOWAw (a1, az, -+ , o) = max{a;}

IFOWGy (a1, 02, , an) = max{a;}
(2) If w = (0,0,---,1)T, then

IFOWAw(a1, a2, , an) = min{a;}

IFOWG,, (a1, a2, - -+ , o) = min{ey; }
J
B) fw; =1, w; =0 and ¢ # j, then
IFOWA (a1, a2, an) = Qg ()

IFOWG,, (o, az, -+, o) = Qy(j)

where ;) is the j-th largest of o; (i = 1,2,--- ,n).

We know that the IFWA and IFWG operators only weight the IFNs, while the
IFOWA and IFOWG operators weight the ordered positions of the IFNs instead of
the IFNs themselves. Therefore, the weights represent two different aspects in these
operators. However, each of the operators considers only one of the two aspects.
To overcome this limitation and motivated by the idea of combining the weighted
average and the OWA operator (Torra, 1997; Xu and Da, 2003b), we now introduce
two intuitionistic fuzzy hybrid aggregation operators, which weight both the given
IFNs and their ordered positions.

Definition 1.3.5 (Xu, 2007¢)  An intuitionistic fuzzy hybrid averaging (IFHA)
operator is a mapping IFHA : ©™ — 6, such that

IFHA  w (1,02, an) = W1dg(1) © W2l (2) @ - B Wnlio(n) (1.57)
where w = (w1, ws,- -+ ,wy,)T is the weighting vector associated with the IFHA op-

erator, with w; € [0, 1] (j =1,2,--- ,n) and ij =1; & = nwjay, j=1,2,--- | n,

j=1
(Gio(1), Co(2), *+ » Qo(ny) is any permutation of a collection of the weighted IFNs (c,
G, ,0y), such that do,y = Ao = 1,2,--,n — 1); w = (wi,we,

-, wp) T is the weight vector of aj (j = 1,2,---,n), withw; € [0, 1] (j =1,2,-- ,n)
and ij =1, and n is the balancing coefficient, which plays a role of balance (in
j=1
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such a case, if the vector (wy,ws, -+ ,wy,) T approaches (1/n,1/n,---,1/n)T, then
the vector (nwiay, nweasg, -+ ,nwyay) T approaches (o, ag, -+, ) 1).

Let do(j) = (Kéryeys Vo) (3 = 1,2,--+,n). Then similar to Theorem 1.3.1, we
have

IFHA, w(01, 00, - & 1-— ﬂdg(]) U(]) (1.58)

|
=
u:::

and the aggregated value by using the IFHA operator is also an IFN. In particular,
if pa, g =1 -V, for any j =1,2,--- n, then Eq.(1.58) reduces to the following

form:

’:]:

IFHA, w(aq, 00, ,apn) = | 1 — (1- ﬂdg(]) ,u%(]) wi (1.59)

Jj=1 J:1

Definition 1.3.6 (Xu and Yager, 2006)  An intuitionistic fuzzy hybrid geometric
(IFHG) operator is a mapping IFHG : ©™ — O, such that

IFHG,, (o1, a2, o) = d;“(ll) ® d;“fz) R ® d;”(”n) (1.60)
where ¢&; = a;“"] (4 = 1,2,---,n), (Go1),Go(2), " ;s Og(n)) is any permutation of
a collection of the exponential weighted IFNs (¢, dg, - ,dy), such that dqg) >

é20’(]’«%1) (.7 = 1725 N — 1)
Let Gg(j) = (Kéy s Veg) (3 = 1,2,+++,n). Then similar to Theorem 1.3.2, we

9 )

have
IFHG,, (a1, a2, - ,a Hu%(]>, H o) (1.61)

and the aggregated value by using the IFHG operator is also an IFN. In particular,
if i, =1 — Vi, forany j =1,2,--- n, then Eq.(1.61) reduces to the following
form:

IFHG, (o1, a2, , o H ﬂag(]) H ,uaa(]) (1.62)

Clearly, from Definitions 1.3.5 and 1.3.6, we know that the IFHA and IFHG op-
erators are composed of the following three phases:

(1) They weight the IFNs aj (j =1,2,--- ,n) by the associated weights w; (j =
1,2,---,n) and get w;q; or a (1 =1,2,- n) Then they multiply these values
by the balancing coefficient n, and then get the weighted TFNs nwja; or a; ™ (j =
1,2,---,n).
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’ j
descending order (cio(1), Qo(2); " » Qo(n)) OF (Gu(1); Go(2), " » Ga(n)), Where d ()
nw; (Z

%

(2) They reorder the weighted IFNs & = nw;a; or & = « (j=1,2,---,n)in

1S

the j-th largest of nw;a; (i = 1,2,---,n), and Gy, ;) is the j-th largest of a
1,2,---,n).

(3) They weight these ordered weighted IFNs dy,(jy or dy(;) (j = 1,2,---,n) by
the IFHA or IFHG weights w; (j = 1,2,---,n) and then aggregate all the weighted

wi

IFNs wjdy,(j) or do(]j) (j =1,2,--- ,n) into the collective ones.

Example 1.3.3 (Xu, 2007e) Let a3 = (0.2, 0.5), ap = (0.4, 0.2), a3 = (0.5, 0.4),
as= (0.3, 0.3) and a5 = (0.7, 0.1) be IFNs, and w = (0.25,0.20, 0.15, 0.18,0.22)T
the weight vector of o; ( =1,2,---,5).

We first utilize the operational laws (4) and (6) in Definition 1.2.2 to get the
weighted TFNs:

dl — (1 _ (1 _ 0.2)5><O.25’ 0.55><O.25) _ (0243’ 0420)

G = (1 — (1 —0.4)°*0200.25%020) = (0.4, 0.2)
d = (1 — (1 —0.5)*0150.45%0-1%) = (0.405, 0.503)
dy = (1 —(1—0.3)°*018 0.35%0-18) = (0.275, 0.338)
ds = (1—(1—0.7)°%220.15922) = (0.734, 0.079)

By Eq.(1.10), we calculate the scores of &; (j =1,2,---,5):
s(c) = 0.243 — 0.420 = —0.177, s(62) = 0.4— 0.2 =0.2

s(ci3) = 0.405 — 0.503 = —0.098,  s(cv4) = 0.275 — 0.338 = —0.063
s(cis) = 0.734 — 0.079 = 0.655

Since
s(cs) > s(ag) > s(dy) > s(asz) > s(aq)

we have
Go1y = (0.734, 0.079), dy(2) = (0.4, 0.2)

3y = (0.275, 0.338),  cip(a) = (0.405, 0.503)
G (s) = (0.243, 0.420)

Suppose that w = (0.112, 0.236, 0.304, 0.236, 0.112)T (derived by the normal dis-
tribution based method (Xu, 2005a)) is the weighting vector of the IFHA operator.
Then by Eq.(1.58), we get

IFHA, (01, a2, a3, g, as)
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5 5

— _ . wj Wj

= ! H (1= Hag )™ H Vao )

j=1 j=1
(1= (1 —0.734)%112 5 (1 — 0.4)%2%6 x (1 — 0.275)0-304

x (1 —0.405)%2%6 x (1 — 0.243)0112,

0.079%112 x 0.292%6 % 0.338%3%* x 0.503°2% x 0.420°''?)

= (0.406, 0.286)

If we utilize the IFHG operator to aggregate the given IFNs, then by the opera-
tional laws (5) and (7) in Definition 1.2.2, we obtain the weighted IFNs:

a1 = (0.25%9% 1 — (1 —0.5)°<02%) = (0.134, 0.580)

do = (0.4°%9% 1 — (1 —0.2)°<02%) = (0.318, 0.243)
dg = (0.5°%0% 1 — (1 —0.4)°<02%) = (0.420, 0.472)
Gy = (0.3°%92 1 — (1 -0.3)°%%25) = (0.222, 0.360)
ds = (0.7°%0% 1 — (1 —0.1)°%02%) = (0.640, 0.123)

By Eq.(1.10), we calculate the scores of &; (j =1,2,---,5):
s(é1) = 0.134 — 0.580 = —0.446

s(éip) = 0.318 — 0.243 = 0.075
s(éis) = 0.420 — 0.472 = —0.052
s(ciy) = 0.222 — 0.360 = —0.138

s(éis) = 0.640 — 0.123 = 0.517

Since
S(Oé5) > S(dg) > S(Ckg) > S(Ck4) > S(dl)

we can see that
Gq(1) = (0.640, 0.123), d,(2) = (0.318, 0.243)
do(3) = (0.420, 0.472), d,(4) = (0.222, 0.360)
dq(5) = (0.134, 0.580)

Assume that w = (0.112, 0.236, 0.304, 0.236, 0.112)T (derived by the normal dis-
tribution based method (Xu, 2005a)) is the weighting vector of the IFHG operator.
Then by Eq.(1.62), we get

IFHGw,w(ala 2, (3, (g, 015)
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5

H ‘uoéa(])’ H U(J)

= (0.6400'112 x ().3180~236 x 0.420°29% x 0.2220-236 x 0.1340-112,
(1 —0.123)%112 % (1 —0.243)%236 x (1 — 0.472)°-304
x (1 —0.360)%23% x (1 —0.580)%112)

= (0.312, 0.379)

Theorem 1.3.14 (Xu, 2007¢) The IFWA and IFOWA operators are special cases
of the IFHA operator.
Proof (1) Let w = (1/n,1/n,---,1/n)™. Then

IFHAw7w(C¥1, g, ,an) = ’wldg(l) ©® w2do(2) S D wpe a(n)
1 . . .
= n(ao(l) D Go(2) D+ D Go(n))
= w101 Dwog P -+ D WyQy

=IFWA, (a1, a2, -, o)
(2) Let w = (1/n,1/n,---,1/n)T. Then &; = a; (j = 1,2, ,n) and

IFHA, w(on, a2, - ) = W11y © Waliga) @ -+ - D Wnlly(n)
= W1045(1) D W2p(2) D+ - D Wnip(n)

=IFOWA, (a1, a2, , )

which completes the proof.

Theorem 1.3.15 (Xu and Yager, 2006) The IFWG and IFOWG operators are
special cases of the IFHG operator.

Proof (1) Let w= (1/n,1/n,---,1/n)T. Then

TFHG (01, 02,y 00n) = G4 @ 6% ® - @ G
. . 1
= (Go(1) @ o) ®"'®%<n>)"

=o' ®a5?® - @arr

:IFWGUJ(CU17O[27"' 7an)
(2) Let w = (1/n,1/n,---,1/n)T. Then é&; = a; (j =1,2,--- ,n) and

IFHG (01, g, -+ () = d;l)(ll) ® d;”gz) QR ® d;”(”n)
O‘Z}U(ll) ® a:;”é) R a;”("n)
=IFOWG, (a1, az, -+, an)
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which completes the proof.

Obviously, from Theorems 1.3.14 and 1.3.15, we can see that the IFHA operator
generalizes both the IFWA and IFOWA operators, and the IFHG operator generalizes
both the IFWG and IFOWG operators. The desirable characteristic of both the IFHA
and IFHG operators is that they can take into account not only the importance of
the given IFNs themselves, but also that of the ordered positions of the given IFNs.

In the following, we apply the IFHA and IFHG operators to multi-attribute deci-
sion making:

For a multi-attribute decision making problem, let ¥ = {1, Y2, ---,Y,} be a
finite set of alternatives, G = {G1, Ga, -+, G} a set of attributes, and w = (wy,
wa, W) T the weight vector of attributes, where w; € [0,1] (j =1,2,---,m) and

m

ij = 1. Suppose that the characteristics of the alternatives Y; (i = 1,2,--- ,n)
j=1

are represented by the IFNs:

Y = {(Gj, 1y, (Gj), vy, (G))|G; € G}, i=1,2,---,n (1.63)

where py,(G;) indicates the degree that the alternative Y; satisfies the attribute Gj,
vy,(G;) indicates the degree that the alternative Y; does not satisfy the attribute G;,
and

py;(G5) € [0,1], vy (Gy) € [0,1], py (G) + v (G) <1 (1.64)

For convenience, let rgj = (tij, fi;) denote the characteristic of the alternative Y;
with respect to the attribute G, where t;; indicates the degree that the alternative Y;
satisfies the attribute G, and f;; indicates the degree that the alternative Y; does not
satisfy the attribute G;. Therefore, the characteristics of all the alternatives Y; (i =
1,2,---,n) with respect to the attributes G (j = 1,2,--- ,m) can be contained in an
intuitionistic fuzzy decision matrix R’ = (77;)nxm (Table 1.1), where r{; = (tij, fij),
tij S [0, 1], fij S [0, 1], and tij + fij <1

Table 1.1 Intuitionistic fuzzy decision matrix R’

G1 Gy Gom

Y1 (t11, f11) (t12, f12) (tim, f1m)
Y2 (t21, f21) (t22, f22) (tam, fam)
Yn (tnly fnl) (tn27 fn2) (tnm» fnm)

If all the attributes G, (j =1,2,---,m) are of the same type, then the attribute
values do not need normalization. However, there are generally benefit attributes
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(the bigger the attribute values the better) and cost attributes (the smaller the at-
tribute values the better) in multi-attribute decision making. In such cases, we may
transform the attribute values of cost type into the attribute values of benefit type,
then R’ = (rgj)nxm can be transformed into the intuitionistic fuzzy decision matrix

R = (i )nxm, Where

,,,,/
_ _ ) T
Tij = (Wij, Vij) = { 7
s

for benefit attribute Gj,

for cost attribute Gj, i=52m (1.65)

where 77; is the complement of 77;, such that 77, = (fi;, ;).
In what follows, we introduce an approach to multi-attribute decision making with
intuitionistic fuzzy information (adapted from Xu and Yager (2006)):

Step 1 Utilize the IFHA operator:
7 = IFHA, o (731, a2, 5 Tim), i =1,2,---.n (1.66)

or the IFHG operator:

fi:IFHGw)w(Til,TiQ,“-7Tim), 7;:172,“-7” (167)
to aggregate the characteristics rj; = (w5, v4i5) (j = 1,2,--- ,m) of the alternative
Y; with respect to the attributes G; (j = 1,2,---,m), where w = (w1, wa, + ,wy,)T

is the weighting vector associated with the IFHA and IFHG operators, with w; €

[0,1)(j = 1,2,---,m) and ij = 1. This can be determined by the normal dis-
j=1

tribution based method (Xu, 2005a), and thus yields the overall attribute values

7 = (b, ;) (or #; = (fi;, ¥;)) of the alternative Y;.

Step 2 Utilize Eq.(1.10) to calculate the scores s(i;) (or s(#;)) of the overall
attribute value 7; (or #;) of the alternative Y;.

Step 3 Utilize the score s(r;) (or s(#)) (i = 1,2,--- ,n) to rank and select the
alternative ¥; (¢ = 1,2,--- ,n) (if the two scores s(7;) (or s(#;)) and s(r;) (or s(¥;))
are equal, then we need to calculate the accuracy degree h(r;) (or h(#;)) and h(7;) (or
h(#;)) of the overall attribute values 7; (or #;) and 7; (or #;), and then utilize h(7;)
(or h(#;)) and h(r;) (or h(¥;)) to rank the alternatives Y; and Yj).

Example 1.3.4 Let us consider a customer who intends to buy a car. Five types
of cars (alternatives) Y; (i = 1, 2,---,5) are available. The customer takes into
account six attributes to decide which car to buy (Herrera and Martinez, 2000b): @
G1: Fuel economy; @ Gs: Aerod. degree; @ Gj3: Price; @ G4: Comfort; & Gi:
Design; and ® Gg: Safety. The weight vector of the attributes G; (j = 1,2,---,6)
is w = (0.15, 0.25, 0.14, 0.16, 0.20, 0.10)T. Assume that the characteristics of
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the alternatives Y; (¢ = 1, 2,---,5) are represented by the IFNs, as shown in the

intuitionistic fuzzy decision matrix R’ = (7};)sx¢ (Table 1.2):

Yy
Ys
Y3
Y
Ys

G1
(0.3, 0.5)
(0.6, 0.3)
(0.4, 0.4)
(0.2, 0.4)
(0.5, 0.2)

Table 1.2 Intuitionistic fuzzy decision matrix R’

G3 Gy
(0.3, 0.4) (0.8, 0.1
(0.1, 0.6) (0.7, 0.1
(0.1, 0.5) (0.6, 0.2
(0.0, 0.9) (0.8, 0.1
(0.3, 0.6) (0.7, 0.1

Considering that the attributes have two different types, we first transform the

attribute values of cost type into the attribute values of benefit type by using Eq.
(1.65). Then R’ = (r{;)sx¢ is transformed into R = (r;;)5x6 (Table 1.3):

Yy
Yo
Y3
Yy
Ys

G1
(0.3, 0.5)
(0.6, 0.3)
(0.4, 0.4)
(0.2, 0.4)
(0.5, 0.2)

Table 1.3 Intuitionistic fuzzy decision matrix R

G3 G4
(0.4, 0.3) (0.8, 0.1
(0.6, 0.1) (0.7,0.1
(0.5, 0.1) (0.6, 0.2
(0.9, 0.0) (0.8, 0.1
(0.6, 0.3) (0.7,0.1

To get the most desirable alternative, the following steps are involved:
We first weight all the attribute values r;; (¢ = 1,2,---,5; j = 1,2,---,6) by

the weight vector w =

(0.15, 0.25, 0.14, 0.16, 0.20, 0.10)T of the attributes G;

(j =1,2,---,6) and multiply these values by the balancing coefficient m = 6, and
j = 1727"' 36)7 as
listed in the weighted intuitionistic fuzzy decision matrix R = (6w;ri;)sxe (Table 1.4):

then get the weighted attribute values 6w;r;; (¢ = 1,2,---,5

Y1
Ya
Y3
Yy
Ys

Yy
Yo
Y3
Yy
Ys

)

Table 1.4 The weighted intuitionistic fuzzy decisi on matrix R

G1
(0.275, 0.536)
(0.562, 0.338)
(0.369, 0.438)
(0.182, 0.562)
(0.464, 0.765)

Gy
(0.787, 0.110)
(0.585, 0.213)
(0.585, 0.213)
(0.787, 0.890)
(0.685, 0.251)

Go2
(0.747, 0,032)
(0.646, 0.089)
(0.911, 0.032)
(0.535, 0.032)
(0.414, 0.465)
Gs
(0.119, 0.542)
(0.348, 0.542)
(0.458, 0.435)
(0.235, 0.435)
(0.667, 0.145)

G3
(0.349, 0.364)
(0.537, 0.145)
(0.441, 0.855)
(0.855, 0.000)
(0.537, 0.636)

Ge
(0.340, 0.577)
(0.264, 0.586)
(0.193, 0.381)
(0.514, 0.251)
(0.340, 0.486)
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Then, by Definition 1.1.3, we reorder the weighted attribute values of each alter-
native in descending order, and utilize the IFHA operator (1.66) (let w = (0.0865,
0.1716, 0.2419, 0.2419, 0.1716, 0.0865)T be its weighting vector as derived by the
normal distribution based method of Xu (2005a), which can relieve the influence of
unfair arguments on the decision results by assigning low weights to those unduly
high or unduly low ones) to derive the overall attribute values r; (i = 1,2,---,5) of
the alternatives Y; (i =1,2,---,5):

7 = IFHA,, , ((0.3, 0.5), (0.6, 0.1), (0.4, 0.3), (0.8, 0), (0.1, 0.6), (0.5, 0.4))
= (0.4728, 0.2672)

7o = IFHA,, ,, ((0.6, 0.3), (0.5, 0.2), (0.6, 0), (0.7, 0.1), (0.3, 0.6), (0.4, 0.3))
= (0.5342, 0.2224)

rg = IFHA,, ,, ((0.4, 0.4), (0.8, 0.1), (0.5, 0.1), (0.6, 0.2), (0.4, 0.5), (0.3, 0.2))
= (0.5260, 0.2330)

rq4 = IFHA,, ,, ((0.2, 0.4), (0.4, 0.1), (0.9, 0), (0.8, 0.1), (0.2, 0.5), (0.7, 0.1))
= (0.5749, 0)

75 = IFHA,, ,, ((0.5, 0.2), (0.3, 0.6), (0.6, 0.3), (0.7, 0), (0.6, 0.2), (0.5, 0.3))
= (0.5315, 0.3034)

Utilizing Eq.(1.10) to calculate the scores of 7; (i = 1,2,---,5), we can get
s(f1) = 0.4728 — 0.2672 = 0.2054,  s(i5) = 0.5342 — 0.2224 = 0.3118

s(3) = 0.5260 — 0.2330 = 0.2930, s(r4) = 0.5749 — 0 = 0.5749
s(r5) = 0.5315 — 0.3034 = 0.2281
Since
s(74) > s(r2) > s(r3) > s(r5) > s(r1)
we have

Y=Y =YY~V

Thus the best car is Yy, where “>~" denotes “be superior to”.

If we utilize the IFHG operator (1.67) to aggregate the given intuitionistic fuzzy
information, then by the weight vector w = (0.15, 0.25, 0.14, 0.16, 0.20, 0.10)T of
the attribute weights G; (j = 1,2,---,6), we can first weight exponentially all the
attribute values r;; (¢ =1,2,---,5; j=1,2,---,6) and multiply these values by the
balancing coefficient m = 6, and then get the exponentially weighted attribute values
r?fj (i=1,2,---,5 j=1,2,---,6) as listed in the weighted intuitionistic fuzzy

decision matrix R = (7“?;” )sxe (Table 1.5):
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Table 1.5 The weighted intuitionistic fuzzy decision matrix R

G1 G2 G3
Y1 (0.338, 0.464) (0.465, 0.146) (0.463, 0.259)
Yo (0.631, 0.275) (0.354, 0.284) (0.651, 0.085)
Y3 (0.438, 0.369) (0.716, 0.146) (0.559, 0.085)
Ya (0.235, 0.369) (0.253, 0.146) (0.915, 0.000)
Ys (0.536, 0.182) (0.164, 0.747) (0.651, 0.259)
Gy Gs Ge
Y1 (0.807, 0.096) (0.063, 0.667) (0.660, 0.264)
Yo (0.710, 0.096) (0.236, 0.667) (0.577, 0.193)
Y3 (0.612, 0.193) (0.333, 0.565) (0.486, 0.125)
Ya (0.807, 0.096) (0.145, 0.565) (0.807, 0.061)
Ys (0.710, 0.096) (0.542, 0.235) (0.660, 0.193)

After that, we can reorder the exponentially weighted attribute values of each
alternative in descending order, and utilize the IFHG operator (1.67) (let w = (0.0865,
0.1716, 0.2419, 0.2419, 0.1716, 0.0865)T be its weighting vector) to derive the overall
attribute values 7; (i =1,2,---,5) of the alternatives ¥; (i =1,2,---,5):

iy = IFHG, ., ((0.3, 0.5), (0.6, 0.1), (0.4, 0.3), (0.8, 0), (0.1, 0.6), (0.5, 0.4))
= (0.4138, 0.3110)

iy = IFHG,, ., ((0.6, 0.3), (0.5, 0.2), (0.6, 0), (0.7, 0.1), (0.3, 0.6), (0.4, 0.3))
= (0.5228, 0.2625)

i3 = IFHG,, 4, ((0.4, 0.4), (0.8, 0.1), (0.5, 0.1), (0.6, 0.2), (0.4, 0.5), (0.3, 0.2))
= (0.5183, 0.2311)

iy = IFHG,, ., ((0.2, 0.4), (0.4, 0.1), (0.9, 0), (0.8, 0.1), (0.2, 0.5), (0.7, 0.1))
= (0.4366, 0.1979)

i = IFHG,,.,, ((0.5, 0.2), (0.3, 0.6), (0.6, 0.3), (0.7, 0), (0.6, 0.2), (0.5, 0.3))
= (0.5410, 0.2807)

Utilizing Eq.(1.10) to calculate the scores of #; (i =1,2,--- | 5), we get
s() = 0.4138 — 0.3110 = 0.1028
s(3) = 0.5228 — 0.2625 = 0.2603
s(73) = 0.5183 — 0.2311 = 0.2872

s(4) = 0.4366 — 0.1979 = 0.2387

s(#'5) = 0.5410 — 0.2807 = 0.2603
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Since s(74) # s(i's), we calculate the accuracy degrees of 7"y and #s:
h(#4) = 0.4366 + 0.1979 = 0.6345

h(#s) = 0.5410 + 0.2807 = 0.8217

Since h(is) > h(¥4), we can see, from Definition 1.1.3, that 75 > #4. Thus
s(Fg) > s(f2) > s(¥5) > s(Fa) > s(F1)

and then the best alternative is Y3.

In the above example, the ranking of the alternatives Y and Y3 changes signifi-
cantly by using the IFHA and IFHG operators respectively. This is because that the
IFHG operator is much more sensitive to the given arguments than the IFHA op-
erator. When using these two operators, the two low attribute values r4;=(0.2,0.4)
and 745=(0.2,0.5) of the alternative Y, have great influence on their positions in the
ranking of all the alternatives Y; (i =1,2,---,5).

In order to enable decision making to be more scientific and democratic, modern
decision making problems often require multiple decision makers to participate in
the decision making process. In the following, we consider a multi-attribute group
decision making problem with intuitionistic fuzzy information:

For a multi-attribute group decision making problem, let Y = {Y1,Y2,---,Y,} be
a finite set of alternatives, E = {FEy, Fa,--- , E;} T the set of decision makers, and ¢ =
(€1,&, - ,&)T the weight vector of decision makers, where &, > 0, k = 1,2,--- [,

l
and Z{k =1. Let G = {Gy, Ga, -+, Gpn} be the set of attributes, and w =
k=1

(w1, wa, -+ ,wm)T the weight vector of attributes, where w; € [0,1] (j = 1,2,--- ,m)

and ij = 1. A is the set of the known information about attribute weights given
j=1

by the decision makers, which can be constructed in the following forms, for i # j
(Kim and Ahn, 1999; Kim et al., 1999; Xu and Chen, 2007b; Xu, 2007a; 2006d):

(1) A weak ranking: {w; > w;};

(2) A strict ranking: {w; —w; > 6; (> 0)};

(3) A ranking with multiples: {w; > d;w;}, 0<d; < 1;

(4) An interval form: {0; <w; < d; +¢&;},0<0; <d;+¢; < 1;

(5) A ranking of differences: {w; —w; > wr —wi}, for j #k # L.

Let R; = (r;;-k))nxm be the intuitionistic fuzzy decision matrix given by the de-

;k) = (tgf), £ is the attribute value given by Ej for the

?
alternative Y; with respect to the attribute G; € G. tgf

’
cision maker Ej, where r;

) indicates the degree that
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the alternative Y; satisfies the attribute G;, and fi(f) indicates the degree that the
alternative Y; does not satisfy the attribute G;, where

) efo,1, P ef0,1), ¢+ <

1=1,2,---,n; j=1,2,---,m; k=1,2---1 (1.68)
By Eq.(1.65), we normalize R’y = (r ’Z(]))nXm as R, = (rg?))nxm, where r( ) =
(,ugf), Z(]k)) (in the case where all the attributes are of the same type, the attribute
values do not need normalization). In the process of group decision making, in order
to get the final decision, it is necessary to fuse all individual opinions into a collective
one. Accordingly, we can utilize the IFHA operator:

Fij = IFHA o (), 72 rl)), i=1,2, ny j=1,2,--,m (1.69)

or the IFHG operator

. 1) (2 l ; .

Tij = IFHG57w(r§j)7rEj), cee Z(j)) 1=1,2,---,n; j=1,2,---,m (1.70)
to aggregate all the intuitionistic fuzzy decision matrices Ry = (Tfjk ))nXm (k =
1,2,---,1) into a collective intuitionistic fuzzy decision matrix R = (Tij)nxm (or
R = (7 nxm), Where 55 = (fuij, Vi), #ij = (jlij, 9ij), 1 = 1,2, ,n; j=1,2,---,m,
and w = (w1, ws, -+ ,wy,)T is the weighting vector associated with the IFHA and

IFHG operators, with w; € [0,1](j = 1,2,---,m) and ij = 1, which can be

j=1
derived by the normal distribution based method (Xu, 2005a).
If the attribute weights are predefined, i.e., the weight vector (wi,ws, -+ ,wy,)T of
the attributes G; (j = 1,2,---,m) is given in advance, then based on the collective

intuitionistic fuzzy decision matrix R = (Fij )nxm (Or R= (Fij )nxm), We can utilize
the IFWA operator (or the IFWG operator):

i = IEWAL (Fi1, Fio, -+ Tam), 1=1,2,---,n (1.71)

or
'].':i:IFWGw('].':Z']_7’Fi2,"‘ ,ﬂ'm% Z':].,27~-~ ,n (172)

to get the overall attribute value of the alternative Y;.

We can utilize Eq.(1.10) to calculate the scores s(r;) (or s(#;)) (¢ = 1,2,---,n)
of the overall attribute values 7; (or #;) (i = 1,2,--- ,n) of the alternatives Y; (i =
1,2,---,n), and then utilize the scores s(r;) (or s(7;)) (i = 1,2,---,n) to rank and
select the alternatives Y; (i = 1,2,---,n) (if two scores s(r;) (or s(#;)) and s(7;) (or
s(#;)) are equal, then we need to calculate respectively the accuracy degree h(7;) (or
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h(#;)) and h(7;) (or h(¥;)) of the overall attribute values #; (or #;) and 7; (or #;).
After that, we can utilize h(7;) (or h(#;)) and h(7;) (or h(#;)) to rank the alternatives
Y; and Yj).

We will now discuss situations where the information about the attribute weights
is incomplete (Xu, 2007i):

From Section 1.1, we can see that the score s(a) can be used as an index to
measure the magnitude of the IFN «. This means that we can utilize the score
function to define the following concept (for convenience, we denote both the collective
intuitionistic fuzzy decision matrices derived by the IFHA and IFHG operators as
R = (rij)nxm):

Definition 1.3.7 (Xu, 2007i) Let R = (rij)nxm be the collective intuitionistic
fuzzy decision matrix. Then S = (8;j)nxm is called the score matrix of R = (7i;)nxm.,
where

Sij:S(rij):,ufij_Vij; ’L.:].72,-~-7TL; j:]_72’...’m (173)

and s(d;;) is the score of the IFN ;.
Based on the score matrix, the overall attribute value of each alternative can be
expressed as:

si(w):ijsij, 1=1,2,---,m (1.74)
j=1

Obviously, the larger s;(w), the better the alternative Y;. If we only consider the
single alternative Y;, then a reasonable vector w = (w1, ws, - ,wy, )T of the attribute
weights should be obtained by maximizing s;(w). Consequently, we can establish the
following optimization model:

(M-1.1) max s;(w) = ijsij
j=1
s.t. w:(wl,w27~-~7wm)T€/1

m
Wj>07j:1,27"'7m7 ZwJ:]'
j=1

By solving the model (M-1.1), we can get the optimal solution w(® = (wgi), wéi)7 e
w%))T corresponding to the alternative Y;.

However, in the process of determining the weight vector of attribute weights, it
generally needs to consider all the alternatives Y; (i = 1,2,---,n) simultaneously.

For this purpose, we consider a combination of the weight vectors:

w =W + 0@ 4. 4 p,w™
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(1) (2) (m)

wl wl DY wl U
1
1 2 m
A ||
= ) ) ) . =Wv (1.75)
PRI U
where
wgl) w§2) wgm)
wél) w§2) . wém)
W = . . . (1.76)
UJSLl) w7(12) wELm)
and v = (vy, v, -+ ,v,)T is a non-negative vector to be determined, with:
vl =1 (1.77)
Let s; = (si1,8i2, - ,8im)* (i = 1,2,---,n). Then the score matrix S can be

expressed as S = (1,52, - ,5,)". By Eqs.(1.74) and (1.75), we get
ijs” =wls; = (Wu)Ts (1.78)

In order to determine the combined weight vector (wi,ws,- - ,wm)T, we shall
maximize the overall attribute values s;(w) (i = 1,2,---,n), which is to maximize
s(w) = (s1(w),s2(w), -+, sp(w)) under the constraint (1.77). Accordingly, we can
establish the following multi-objective optimization model:

(M-1.2) max s(w)=(s1(w),s2(w), -, sn(w))
st. vTo=1

By the equal weighted summation method (French et al., 1983), the model (M-1.2)
can be transformed into a single objective optimization problem:
(M-1.3) max s(w)Ts(w)

st. vTo=1
Let f(v) = s(w)"s(w). Then by Eq.(1.78), we have

f(v) = s(w)s(w) = vT(STW)T(STW)w (1.79)

Let S = (STW)T(STW). Then ST = (STW)T(STW) = S, i.e., S is a real symmet-
rical matrix. Moreover, S > 0. Therefore, Sisa nonnegative definite matrix.
Theorem 1.3.16 (Horn and Johnson, 1990) Let U be a real symmetrical matrix,
i.e., UT = U. Then

vTUw

= Amax 1.80
max . (1.80)
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where Apax is the largest eigenvalue of U, and v is a nonzero vector.
Theorem 1.3.17 (Horn and Johnson, 1990)  Let U be areal irreducible nonnegative
matrix. Then

(1) U has the largest eigenvalue Apnax, which is also a unique eigenvalue of U.

(2) Let v = (v1,v2, - ,vm)T be the eigenvector of Amax. Then v; > 0 (j =
1,2,---,m), i.e., v is a positive eigenvector.

By Theorems 1.3.16 and 1.3.17, we know that f(v) has the largest value max f(v),
which is also the largest eigenvalue Amax 0f 5. v = (v1,va, - , v )T is the eigenvector
of Amax, Where A\pax is unique, and all v; >0 (j=1,2,--- ,m).

After normalizing the eigenvector v, we can utilize Eq.(1.75) to derive the weight
vector w = (w1,wa,*+ ,wm) .

Based on the analysis above and the IFHA (or IFHG) operator, we now introduce
an approach to multi-person multi-attribute intuitionistic fuzzy decision making with
incomplete attribute weight information (Xu, 2007i):

Step 1 Utilize the IFHA operator (or IFHG) operator to aggregate all individ-
ual intuitionistic fuzzy decision matrices R = (rg?))nxm (k =1,2,---,1) into the
collective intuitionistic fuzzy decision matrix R = (7i;)nxm-

Step 2 Calculate the score matrix S = (si;)nxm of the collective intuitionistic
fuzzy decision matrix D.

Step 3 Utilize the model (M-1.1) to get the optimal weight vectors w(® =

(w%i),wy),--- ,wal))T (i = 1,2,---,n) corresponding to the alternatives Y; (i = 1,
2,-+-,n), and construct the weight matrix W.

Step 4 Calculate the normalized eigenvector v = (vy,va, -+ ,v,,)T of the matrix
(STW)T(STW).

Step 5 Utilize Eq.(1.75) to get the weight vector w = (w1, wa, + ,wm)T.

The other steps are the same as those with the attribute weights known completely.
Example 1.3.5 (Xu, 2007i) Counsider a problem in a manufacturing company,
which aims to search for the best global supplier for one of its most critical parts used
in its assembling process (Chan and Kumar, 2007). Five potential global suppliers
Y; (i = 1,2,3,4,5) have been identified. The attributes to be considered in the
selection process are: O G1: Total cost of the product; @ Ga: Quality of the product;
® G'3: Service performance of the supplier; @ G4: Supplier’s profile; and ® G5: Risk
factor. An expert group is formed which consists of four experts (decision makers):
Ey (k= 1,2,3,4) (whose weight vector is £ = (0.3, 0.2, 0.3, 0.2)"). The experts
E, (k = 1,2,3,4) represent, respectively, the characteristics of the potential global
suppliers Y; (¢ = 1,2,3,4,5) by the IFNs rgc) (1,5 = 1,2,3,4,5) with respect to the
attributes G; (i = 1,2,3,4,5), as listed in Tables 1.6-1.9 (i.e., intuitionistic fuzzy

decision matrices R} = (’I"/Z(-?))5><5 (k=1,2,3,4)):
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Table 1.6 Intuitionistic fuzzy decision matrix R} (Xu, 2007i)

G1 G2 G3 Gy Gs
v (0.4, 0.5) (0.5, 0.2) (0.6, 0.2) (0.8, 0.1) (0.3, 0.7)
Ya (0.6, 0.2) (0.7, 0.2) (0.3, 0.4) (0.5, 0.1) (0.2, 0.8)
Y3 (0.7, 0.3) (0.8, 0.1) (0.5, 0.5) (0.3, 0.2) (0.3, 0.6)
Yy (0.3, 0.4) (0.7, 0.1) (0.6, 0.1) (0.4, 0.3) (0.1, 0.9)
Ys (0.8, 0.1) (0.3, 0.4) (0.4, 0.5) (0.7, 0.2) (0.2, 0.5)
Table 1.7 Intuitionistic fuzzy decision matrix R5 (Xu, 2007i)
G1 G2 Gs G4 Gs
v (0.5, 0.3) (0.6, 0.1) (0.7, 0.3) (0.7, 0.1) (0.2, 0.8)
Ya (0.7, 0.2) (0.6, 0.2) (0.4, 0.4) (0.6, 0.2) (0.3, 0.7)
Y3 (0.5, 0.3) (0.7, 0.2) (0.6, 0.3) (0.4, 0.2) (0.1, 0.6)
Yi (0.5, 0.4) (0.8, 0.1) (0.4, 0.2) (0.7, 0.2) (0.3, 0.7)
Ys (0.7, 0.3) (0.5, 0.4) (0.6, 0.3) (0.6, 0.2) (0.1, 0.5)
Table 1.8 Intuitionistic fuzzy decision matrix R3 (Xu, 2007i)
G1 G2 Gs G4 Gs
v (0.6, 0.3) (0.5, 0.2) (0.6, 0.4) (0.8, 0.1) (0.3, 0.7)
Ya (0.8, 0.2) (0.5, 0.3) (0.6, 0.4) (0.5, 0.2) (0.3, 0.6)
Ys (0.6, 0.1) (0.8, 0.2) (0.7, 0.3) (0.4, 0.2) (0.1, 0.8)
Yy (0.6, 0.3) (0.6, 0.1) (0.5, 0.4) (0.9, 0.1) (0.2, 0.5)
Ys (0.8, 0.1) (0.6, 0.2) (0.7, 0.3) (0.5, 0.2) (0.1, 0.7)
Table 1.9 Intuitionistic fuzzy decision matrix Ry (Xu, 2007i)
Gl Gz Gg G4 G5
v (0.3, 0.4) (0.9, 0.1) (0.8, 0.1) (0.5, 0.5) (0.6, 0.4)
Ya (0.7, 0.1) (0.7, 0.3) (0.4, 0.2) (0.8, 0.2) (0.1, 0.3)
Ys (0.4, 0.1) (0.5, 0.2) (0.8, 0.1) (0.6, 0.2)) (0.3, 0.6)
Yy (0.8, 0.2) (0.5, 0.1) (0.6, 0.4) (0.7, 0.2) (0.2, 0.7)
Ys (0.6, 0.1) (0.8, 0.2) (0.7, 0.2) (0.6, 0.3) (0.1, 0.8)

Since G5 is an attribute of cost type different from the benefit type of the other

attributes, we employ Eq.(1.65) to normalize R’ = (’I"/l(»;c))5><5 (k=1,2,3,4) into the
intuitionistic fuzzy decision matrices Ry = (TZ(J]?))5X5 (k=1,2,3,4)(Tables 1.10-1.13)
respectively:

Table 1.10 Intuitionistic fuzzy decision matrix R1 (Xu, 20071i)

Gl Gz Gg G4 G5
Yy (0.4, 0.5) (0.5, 0.2) (0.6, 0.2) (0.8, 0.1) (0.7, 0.3)
Ya (0.6, 0.2) (0.7, 0.2) (0.3, 0.4) (0.5, 0.1) (0.8, 0.2)
Y3 (0.7, 0.3) (0.8, 0.1) (0.5, 0.5) (0.3, 0.2) (0.6, 0.3)
Ya (0.3, 0.4) (0.7, 0.1) (0.6, 0.1) (0.4, 0.3) (0.9, 0.1)
Ys (0.8, 0.1) (0.3, 0.4) (0.4, 0.5) (0.7, 0.2) (0.5, 0.2)
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Table 1.11 Intuitionistic fuzzy decision matrix Ra (Xu, 2007i)

G1 Ga Gs Gy Gs
v (0.5, 0.3) (0.6, 0.1) (0.7, 0.3) (0.7, 0.1) (0.8, 0.2)
Ya (0.7, 0.2) (0.6, 0.2) (0.4, 0.4) (0.6, 0.2) (0.7, 0.3)
Y3 (0.5, 0.3) (0.7, 0.2) (0.6, 0.3) (0.4, 0.2) (0.6, 0.1)
Yy (0.5, 0.4) (0.8, 0.1 (0.4, 0.2) (0.7, 0.2) (0.7, 0.3)
Ys (0.7, 0.3) (0.5, 0.4) (0.6, 0.3) (0.6, 0.2) (0.5, 0.1)

Table 1.12 Intuitionistic fuzzy decision matrix R3 (Xu, 2007i)

G1 G2 Gs G4 Gs
v (0.6, 0.3) (0.5, 0.2) (0.6, 0.4) (0.8, 0.1) (0.7, 0.3)
Ya (0.8, 0.2) (0.5, 0.3) (0.6, 0.4) (0.5, 0.2) (0.6, 0.3)
Y3 (0.6, 0.1) (0.8, 0.2) (0.7, 0.3) (0.4, 0.2) (0.8, 0.1)
Yy (0.6, 0.3) (0.6, 0.1 (0.5, 0.4) (0.9, 0.1) (0.5, 0.2)
Ys (0.8, 0.1) (0.6, 0.2) (0.7, 0.3) (0.5, 0.2) (0.7, 0.1)

Table 1.13 Intuitionistic fuzzy decision matrix R4 (Xu, 2007i)

G1 G2 G3 Ga Gs
v (0.3, 0.4) (0.9, 0.1) (0.8, 0.1) (0.5, 0.5) (0.4, 0.6)
Ya (0.7, 0.1) (0.7, 0.3) (0.4, 0.2 (0.8, 0.2) (0.3, 0.1)
Y3 (0.4, 0.1) (0.5, 0.2) (0.8, 0.1) (0.6, 0.2)) (0.6, 0.3)
Yy (0.8, 0.2) (0.5, 0.1 (0.6, 0.4) (0.7, 0.2) (0.7, 0.2)
Ys (0.6, 0.1) (0.8, 0.2) (0.7, 0.2) (0.6, 0.3) (0.8, 0.1)

Suppose that the weight vector w = (0.2, 0.15, 0.2, 0.3, 0.15)T. If the information
about attribute weights is completely known in advance, then we can first utilize the
score weighting function (Chen and Tan, 1994) to handle the above problem, which
involves the following steps:

Step 1 Utilize Eq.(1.73) to construct the score matrices S, = (SZ(-;»C))5><5 (k =
1,2,3,4) of Ry, = (r(k))5x5 (k=1,2,3,4) (Tables 1.14-1.17) respectively.

ij

Table 1.14 Score matrix S (Xu, 20071)

Gy Ga G3 Gy Gs
Y1 —0.1 0.3 0.4 0.7 0.4
Yo 0.4 0.5 —0.1 0.4 0.6
Ys 0.4 0.7 0 0.1 0.3
Ya —0.1 0.6 0.5 0.1 0.8
Y5 0.7 —0.1 —0.1 0.5 0.3

Table 1.15 Score matrix Sz (Xu, 20071)

Gy Ga Gs Gy Gs
Y1 0.2 0.5 0.4 0.6 0.6
Yo 0.5 0.4 0 0.4 0.4
Y3 0.2 0.5 0.3 0.2 0.5
Ys 0.1 0.7 0.2 0.5 0.4
Ys 0.4 0.1 0.3 0.4 0.4
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Table 1.16 Score matrix S3 (Xu, 20071)

G1 Ga G3 Gy Gs
Y1 0.3 0.3 0.2 0.7 0.4
Yo 0.6 0.2 0.2 0.3 0.3
Ys 0.5 0.6 0.4 0.2 0.7
Yu 0.3 0.5 0.1 0.8 0.3
Ys 0.7 0.4 0.4 0.3 0.6

Table 1.17 Score matrix Sy (Xu, 20071)

G1 G2 G3 Gy Gs
Y1 —-0.1 0.8 0.7 0 —-0.2
Yo 0.6 0.4 0.2 0.6 0.2
Y3 0.3 0.3 0.7 0.4 0.3
Yy 0.6 0.4 0.2 0.5 0.5
Ys 0.5 0.6 0.5 0.3 0.7

Step 2  Utilize the weight vector £ = (0.3, 0.2, 0.3, 0.2)T and the score weighting
function:

4
Sij = ngsl(*f), k=1,2,3,4
k=1

to aggregate the individual score matrices Sy = (Sl(»f))sm (k = 1,2,3,4) into the
collective score matrix S = (s;;)5x5 (Table 1.18):

Table 1.18 Collective score matrix S (Xu, 20071)

Gy Ga Gs Gy Gs
Y1 0.08 0.52 0.37 0.20 0.60
Yo 0.44 0.37 0.55 0.55 0.23
Y3 0.44 0.07 0.28 0.25 0.25
Ya 0.47 0.38 0.19 0.39 0.35
Y5 0.28 0.36 0.39 0.48 0.43

Step 3 Utilize the weight vector w = (0.2, 0.15, 0.2, 0.3, 0.15)™ and the score
weighting function:

to get the overall scores s; (i = 1,2,3,4,5) of the alternatives Y; (i = 1,2,3,4,5):
s1 = 0.3530, s =0.3430, s3=0.3280, s4=0.3615, s5=0.3740

Thus
S5 > S84 > S1 > Sg > S3
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Step 4 Rank the alternatives Y; (i = 1,2, 3,4,5) according to the overall scores
si (1=1,2,3,4,5):
Ys -Yi-Y1>-Yo - Y3

Then, the most desirable global supplier is Y5.

If we apply the procedure proposed above to tackle the problem, then we can
first determine the associated vector w = (0.155, 0.345, 0.345, 0.155)T of the IFHG
operator by using the normal distribution based method (Xu, 2005a), and then use
the IFHG operator (1.70) to aggregate the individual intuitionistic fuzzy decision
matrices Ry, = (TZ(;))5X5 (k=1,2,3,4) into the collective intuitionistic fuzzy decision
matrix R = (ri;)s5x5 (Table 1.19):

Table 1.19 Collective intuitionistic fuzzy decision matrix R (Xu, 20071)

G1 Ga G3 Gy Gs
Vi (0.449,0.370)  (0.565, 0.162)  (0.705, 0.232)  (0.730, 0.170)  (0.646, 0.354)
Yo (0.719,0.188)  (0.630, 0.232)  (0.448, 0.378)  (0.557, 0.160)  (0.597, 0.192)
Ys  (0.546, 0.192)  (0.727, 0.182)  (0.641, 0.322)  (0.399, 0.200)  (0.658, 0.192)
Y (0.520,0.337)  (0.630,0.100)  (0.539, 0.271)  (0.679, 0.188)  (0.708, 0.198)
Ys  (0.727,0.128)  (0.520, 0.209)  (0.619, 0.318)  (0.618, 0.220)  (0.609, 0.120)

Based on the collective intuitionistic fuzzy decision matrix R, we can utilize the
IFWG operator (1.72) to get the overall values ; (i = 1,2,3,4,5) of the alternatives
Yi (i =1,2,3,4,5):

r1 = (0.6215, 0.2541), re = (0.5776, 0.2293), rs = (0.5509, 0.2207)

rq = (0.6116, 0.2265), 75 = (0.6209, 0.2245)

Then we can utilize Eq.(1.10) to calculate the scores s(r;) (i = 1,2,3,4,5) of the
overall values r; (i = 1,2,3,4,5):

s(r1) =0.3674, s(r2) = 0.3483, s(rs) = 0.3302

s(rq) = 0.3851, s(r5) = 0.3964

Thus
s(rs) > s(re) > s(r1) > s(ra) > s(rs)

which yields:
Ys =Y, =Y >-Y, - Y3

Consequently, the most desirable global supplier is Ys.

Compared to the former approach, the latter can not only relieve the influence
of unfair arguments on the decision results, but also avoid losing or distorting the
original decision information in the process of aggregation.
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The decision makers may, however, only provide the information about attribute
weights with value ranges or order relations, perhaps because of time pressure or lack
of sufficient knowledge. For example, the information about attribute weights given
by the decision makers may be described as follows, respectively:

FEi: w; €03, 02<ws<0.5;

Ey: 01<wy<0.2, ws <04

E3: w3 —wy 2> ws —wy, Wi = wi;

FEy: wsg—wi <01, 0.1 <wy <0.3.

Then

A={w; €03, 02 < w3 <05, 0.1 Cws 0.2, ws <04, w3 —wa > ws — wy,
w4>w1, W3—W1§01 01 w4<03}

Many approaches have been developed to deal with decision making problems
based on intuitionistic fuzzy set theory. However, none of them seems to be suitable
to handle this case. In the following, we shall select the best global supplier following
the procedure we propose above (Xu, 20071):

Step 1 Calculate the score matrix of the collective intuitionistic fuzzy decision
matrix D (Table 1.20):

Table 1.20 Score matrix S (Xu, 20071)

G1 Gz G3 G4 G5
Y 0.079 0.403 0.473 0.560 0.292
Y> 0.531 0.398 0.070 0.397 0.405
Y3 0.354 0.545 0.319 0.199 0.466
Y 0.183 0.530 0.268 0.491 0.510
Ys 0.599 0.221 0.301 0.389 0.489

Step 2 Utilize the model (M-1.1) to calculate the optimal vectors w(? = (wgi)7

wé )7w§ ), wfl R ( )T of attribute weights corresponding to each alternative Y;:

w® =1(0.1, 0.2, 0.2, 0.3, 0.2)T
w® =(0.3, 0.1, 0.2, 0.3, 0.1)T
w® =(0.16, 0.2, 0.26, 0.16, 0.22)T
w® = (0.1, 0.2, 0.2, 0.25, 0.25)T
w® =(0.3, 0.1, 0.2, 0.3, 0.1)T

and construct the weight matrix:



46 Chapter 1  Intuitionistic Fuzzy Information Aggregation

0.1 03 016 0.1 0.3
02 01 02 02 0.1
W=102 02 026 02 0.2
0.3 03 0.16 0.25 0.3
0.2 0.1 022 025 0.1

Thus

)

0.7443 0.7101 0.7222 0.7462 0.7101
0.7099 0.6871 0.6915 0.7122 0.6871
(STWHT(STW) = | 0.7222 0.6917 0.7033 0.7248 0.6917
0.7752 0.7302 0.7454 0.7685 0.7302
0.7204 0.6872 0.6917 0.7124 0.6872

Step 3 Calculate the normalized eignvector v of the matrix (STW)T(STW):
v = (0.2029, 0.1948, 0.1974, 0.2095, 0.1954)T

Step 4 Utilize Eq.(1.75) to get the weight vector w:

0.1 03 016 01 0.3 0.2029
02 01 02 02 0.1 0.1948
w=Wv=1]02 02 026 02 0.2 0.1974
0.3 03 016 0.25 0.3 0.2095
0.2 0.1 022 025 0.1 0.1954

= (0.1899, 0.1610, 0.2118, 0.2619, 0.1754)T
Step 5 Utilize the IFWG operator (1.72) to calculate the overall attribute values
r; (1 =1,2,3,4,5) of the alternatives Y; (i = 1,2,3,4,5):
r1 = (0.6211, 0.2570), 1y = (0.5767, 0.2331), 73 = (0.5633, 0.2218)

ry = (0.6122, 0.2249), 15 = (0.6187, 0.2248)
Step 6 Utilize Eq.(1.10) to get the scores s(r;) (i = 1,2,3,4,5) of the overall at-
tribute values r; (i = 1,2,3,4,5) corresponding to the alternatives Y; (i = 1,2,3,4,5):

s(r1) =0.3641, s(r2) = 0.3436, s(rs) = 0.3415

s(ry) = 0.3873, s(rs) =0.3939
Thus
s(rs) > s(ra) > s(r1) > s(re) > s(rs)
Step 7 Utilize the scores s(r;) (i = 1,2,3,4,5) to rank the alternatives Y; (i =
1,2,3,4,5):
Ys =Y, =Y =Y = Y3
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To conclude, the most desirable global supplier is Ys.

If the information about the attribute weights in the problem considered is com-
pletely unknown, then we need to determine the attribute weights in advance. To do
so, Xu (2010a) introduces the following definition:

Definition 1.3.8 (Xu, 2010a) Let a1 = (ftay,Va,) and oz = (fay, Va,) be two
IFNs. Then we call

1
d(alaOQ) = 2(|:u041 - Ua2| + |V041 - VOé2|) (181)

the distance between o and as.

By Definition 1.3.8, we have
Theorem 1.3.18 (Xu, 2010a) Let a; (i = 1,2,3) be any three IFNs. Then

(1) 0 < d(a,a2) < 1, especially, d(ag,ar) = 0;

(2) d(a, az) = d(az, a1);

(3) d(a1, a3) < d(ag,as) + d(asz, as).

According to the information theory, if all alternatives have similar attribute values
with respect to an attribute, then a small weight should be assigned to this attribute,
because such an attribute does not help in differentiating alternatives (Zeleny, 1982).
As a result, based on the collective intuitionistic fuzzy decision matrix R = (73;)nxm
and by Eq.(1.81), we introduce the deviation between the alternative Y; and all the
other alternatives with respect to the attribute G;:

dij(w):Zd(nj,rkj)wj, i=1,2,"' , N j:1,2,-'- ,m (182)

ki

Let .

=33 dlri,ra)wy, j=1,2,--,m (1.83)
i=1 ki
denote the sum of all the deviations d;;(w) (j = 1,2,--- ,m), and construct the devi-
ation function:
d(w) = Zd](w) :ZZdU = d(nj,rkj)wj (184)
j=1 j=1i=1 J=1i=1 ki

Obviously, a reasonable vector of attribute weights w = (w1, ws, -+ ,wy, )T should

be determined so as to maximize d(w). For this purpose, we establish the following
optimization model (Xu, 2010b):

max d(w iiZd(rij7r;€j)w

j=11i=1 k#i

wa:l,wje[o,l], j=1,2,---,m
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To solve this model, we construct the Lagrange function:

L(w,<) = d(w Zw -1 (1.85)

where ¢ is the Lagrange multiplier.
Differentiating Eq.(1.85) with respect to w; (i = 1,2,---,m) and ¢, and setting
these partial derivatives equal to zero, we can obtain the following set of equations:

8Lw§ ZZ
drzjaTkj +§w_7 —0
i= 1k751

aL (1.86)
(w,5) 9
Zw] —1=0
By solving Eq.(1.86), we can get the optimal solution w* = (w},ws,--- ,w?,)", where
DD dririy)
. i=1 ki .
wi = . i=12,---.,m (1.87)

Obviously, w; € [0,1], for all j. Normalizing Eq.(1.87), we can get the normalized

attribute weights (Xu, 2010b):

) j:1a27"'7m (188)

m
In such a case, we have w; € [0,1] (j = 1,2,---,m), and ij = 1. Then, based
j=1

on the attribute weights derived by Eq.(1.88), we can utilize the approach introduced
previously to rank the given alternatives and then to get the most desirable one(s).

Example 1.3.6 (Xu, 2010b) Consider a multi-attribute group decision making
problem involving the prioritization of a set of information technology improvement
projects (adapted from Ngwenyama and Bryson(1999)): The information manage-
ment steering committee of Midwest American Manufacturing Corp. must prioritize
for development and implementation a set of six information technology improvement
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projects Y; (i =1,2,---,6), which have been proposed by area managers. The com-
mittee hope that the projects are prioritized from highest to lowest according to their
potential contributions to the firm’s strategic goal of gaining competitive advantage in
the industry. In assessing the potential contribution of each project, three factors are
considered: @O G1—Productivity; @ Gs—Differentiation; and & G3— Management,
whose weight vector is to be determined. The productivity factor assesses the poten-
tial of a proposed project to increase effectiveness and efficiency of the firm’s manu-
facturing and service operations. The differentiation factor assesses the potential of a
proposed project to fundamentally differentiate the firm’s products and services from
its competitors, and to make them more desirable to its customers. The management
factor assesses the potential of a proposed project to assist management in improving
their planning, controlling and decision making activities. The following is the list
of proposed information systems projects, @ Y;—Quality management information;
@ Yo—Inventory control; @ Y3—Customer order tracking; @ Y;—Materials purchas-
ing management; ® Ys;—Fleet management; and ® Yg— Design change management.
Suppose that there are four decision makers Ej (k = 1,2, 3,4), whose weight vector
is € = (0.4, 0.2, 0.3, 0.1)T. These four decision makers represent, respectively, the
characteristics of the projects Y; (i = 1, 2, --- ,6) by the IFNs r}; (i = 1,2,---,6; j =
1, 2,3) with respect to the factors G; (j = 1,2, 3), as listed in Tables 1.21-1.24 (i.e.,
intuitionistic fuzzy decision matrices R) = (Tlgf))exs (k=1,2,3,4)).

Since all the attributes G; (j = 1,2, 3) are of benefit type, we do not have to nor-
malize the given intuitionistic fuzzy decision matrices R} = (T'Z(-?))zes (k=1,2,3,4).
We can use the approach introduced above to rank the projects:

Table 1.21 Intuitionisitc fuzzy decision matrix R} (Xu, 2010a)

G1 G2 G3
vi (0.5, 0.3) (0.6, 0.2) (0.3, 0.4)
Yo (0.4, 0.2) (0.5, 0.4) (0.8, 0.1)
Y3 (0.7, 0.1) (0.2, 0.7) (0.5, 0.2)
Yy (0.2, 0.3) (0.5, 0.3) (0.7, 0.1)
s (0.6, 0.1) (0.4, 0.2) (0.1, 0.6)
Yo (0.3, 0.5) (0.7, 0.1) (0.6, 0.2)

Table 1.22 Intuitionisitc fuzzy decision matrix Ry (Xu, 2010a)

G1 Ga G3
vi (0.6, 0.2) (0.7, 0.1) (0.5, 0.4)
Yo (0.5, 0.4) (0.3, 0.3) (0.8, 0.1)
Y3 (0.7, 0.2) (0.4, 0.4) (0.5, 0.2)
A (0.4, 0.5) (0.8, 0.1) (0.5, 0.3)
s (0.5, 0.1) (0.7, 0.2) (0.4, 0.5)
Yo (0.4, 0.2) (0.6, 0.3) (0.5, 0.1)
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Table 1.23 Intuitionisitc fuzzy decision matrix R3 (Xu, 2010a)

G1 G2 G3
vi (0.7, 0.2) (0.5, 0.3) (0.5, 0.4)
Ya (0.6, 0.3) (0.4, 0.4) (0.5, 0.2)
Y3 (0.5, 0.1) (0.8, 0.1) (0.3, 0.6)
Yy (0.4, 0.5) (0.7, 0.2) (0.5, 0.3)
s (0.4, 0.4) (0.6, 0.2) (0.5, 0.1)
Yo (0.7, 0.1) (0.4, 0.5) (0.6, 0.2)

Table 1.24 Intuitionisitc fuzzy decision matrix Ry (Xu, 2010a)

G1 Ga G3
vi (0.6, 0.1) (0.4, 0.5) (0.7, 0.1)
Yo (0.5, 0.2) (0.6, 0.3) (0.7, 0.2)
Y3 (0.4, 0.4) (0.7, 0.1) (0.6, 0.3)
A (0.6, 0.3) (0.7, 0.2) (0.5, 0.4)
Ys (0.8, 0.1) (0.4, 0.4) (0.3, 0.5)
Yo (0.4, 0.5) (0.8, 0.1) (0.5, 0.2)

Firstly, we give the associated vector w = (0.155, 0.345, 0.345, 0.155)T of the
IFHA operator by using the normal distribution based method (Xu, 2005a). Based on
the weight vector ¢ = (0.4, 0.2, 0.3, 0.1)T, we utilize the IFHA operator to aggregate
the individual intuitionistic fuzzy decision matrices R, = ('\)oxs (k = 1,2,3,4)
into the collective intuitionistic fuzzy decision matrix R} = (Tlgf))ﬁxg (Table 1.25):

Table 1.25 Collective intuitionisitc fuzzy decision matrix R’ (Xu, 2010a)

G1 G2 G3
Vi (0.600,0.136) (0.584,0.109) (0.447,0.266)
Yo (0.523,0.222) (0.416,0.261) (0.561,0.073)
Y3 (0.613,0.084) (0.332,0.262) (0.601,0.207)
Vs (0.371,0.353) (0.671,0.135) (0.560,0.167)
Ys (0.518,0.094) (0.441,0.114) (0.295,0.321)
Yo (0.447,0.175) (0.581,0.120) (0.569,0.087)

Secondly, we utilize Eq.(1.88) to derive the weight vector of the attributes G; (j =
1,2,3):
w = (0.321, 0.332, 0.347)T

and then utilize the IFWA operator to get the overall values r; (i = 1,2,--- ,6) of the
alternatives V; (i =1,2,---,6):

ry = (0.547, 0.159), 15 = (0.504, 0.159), rs = (0.531, 0.168)

ry = (0.552, 0.198), 75 = (0.422, 0.153), 7 = (0.537, 0.121)
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Thirdly, we utilize Eq.(1.10) to calculate the scores s(r;) (i = 1,2,---,6) of the
overall values r; (i =1,2,---,6) of the alternatives Y; (i =1,2,---,6):

s(r1) =0.388, s(r2) =0.345, s(rs) = 0.363

s(re) =0.354, s(r5) = 0.269, s(rg) = 0.416

Since

s(re) > s(r1) > s(rs) > s(re) > s(re) > s(rs)

we have
Ye -Y1>-Ys =Y, =Y, - Y5

Therefore, the project Yg has the highest potential contribution that should be se-
lected.

1.4 Intuitionistic Fuzzy Bonferroni Means

The Bonferroni mean (BM) was originally introduced by Bonferroni (1950) and then
more recently generalized by Yager (2009). The desirable characteristic of the BM
is its capability to capture the interrelationship between input arguments. Neverthe-
less, it seems that the existing literature only considers the BM for aggregating crisp
numbers instead of any other types of arguments. Xu and Yager (2011) investigate
the BM under intuitionistic fuzzy environments. They develop an intuitionistic fuzzy
BM, discuss a variety of special cases, and apply the weighted intuitionistic fuzzy BM
to multi-attribute decision making.

Definition 1.4.1 (Bonferroni, 1950) Let p,q > 0, and a; (i = 1,2,---,n) be a
collection of non-negative numbers. If

1
p+q

1
Bp7q(a1ua2u"' 7an) = n(n_ 1) a g (189)

k2

Je
w.l

then BP9 is called the Bonferroni mean (BM).

Obviously, the BM has the following properties (Yager, 2009):

(1) B”4(0,0,---,0) =0;

(2) BPY(a,a,--- ,a) = a, if a; = a, for all i;

(3) BP%(ay,as, -+ ,a,) = BP(dy,da, - ,dy), i.e., BP? is monotonic, if a; > d;,
for all 4;

(4) miin{ai} < BPY(ay,az, - ,an) < mzax{ai}.
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Furthermore, if ¢ = 0, then it follows from Eq.(1.89) that
1
p+0 1
BPYay, a9, ,a,) = 1 Zn:ap 1 Xn:aq = ! Xn:a’-’ ’ (1.90)
T n \n-1o nig "
i -

which is a generalized mean operator discussed by Dyckhoff and Pedrycz (1984).
Especially, the following cases hold (Xu and Yager, 2011):
(1) If p=2 and g = 0, then Eq.(1.90) reduces to the square mean:

1
1 n 2
B*%(ay,ag,--- ,an) = ( g af) (1.91)
n
i=1

(2) If p=1 and ¢ = 0, then Eq.(1.90) reduces to the usual average:
BLO(al ag, -+ ,Qp) = ! Zn:ai (1.92)
) ) ) n 221

(3) If p — +o0 and ¢ = 0, then Eq.(1.90) reduces to the max operator:

1

I ’
i pro R I e li p = i 1.93
im (a1, as an) im (n ;:1 %) mlax{a } (1.93)

p—+o0 p——+o0

(4) If p — 0 and ¢ = 0, then Eq.(1.90) reduces to the geometric mean:

1 1
1 n P n n
lim BP° R i p = i 1.94
Xu and Yager (2011) investigate the BM in intuitionistic fuzzy environments.
Based on Eq.(1.89), they give the definition of intuitionistic fuzzy Bonferroni mean
as follows:
Definition 1.4.2 (Xu and Yager, 2011)  For any p, ¢ > 0, if

1 n r+q
IFB”(aq, -+ ) = (n(n 1) <1§91 (ozf ®o¢?)>> (1.95)

i#]

then IFB?? is called the intuitionistic fuzzy Bonferroni mean (IFBM).
Based on the operational laws described in Subsection 1.1, we can derive the
following result:
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Theorem 1.4.1 (Xu and Yager, 2011) The aggregated value by using the IFBM
is an IFN, and

IFB?Y(aq, g, -+ 5 )
P‘}’q
n n nlfl)
=1~ IT (v mzms, )™ ,
i,j=1 ’
i
1
p+q
m 1
1= 1= J] (=@ = va)P(1 = va,)?) 0 (1.96)
i,j=1
i#j

Proof By the operational laws (5) and (7) in Definition 1.2.2, we have
af = (uo, 1= =va)"), of = (ud;, 1= (1 —va;)?) (1.97)
and then
o @ af = (il . 1= (1 )P+ 1= (L= v T (1= (1=, )") (1= (1-0,))7))
= (hpts 1= (= va )P (1 = va,)?) (1.98)

In what follows, we first prove

i) i,j=1
i#]

(@ (o ®“5‘>): T (). TT (- (v e))
i i,j=1
i#]

(1.99)

by using mathematical induction on n:
(1) For n = 2, we have

9, (o ®af) = (o] ®af) & (af ®af)
i#]

= (b, 1y 1= (1= a,)P(1 = vay)?)
S (Hh,nd,, 1= (1= vay)P(1 = va,)?)

= (b, pd, + b, pd, — bt BT (1= (1= vay )P (1 = vay)?)
(1= (1 =va,)P(1 = va,)?)

= (1= (1= pB,pud,) (L= pBopd), (1= (1 =va,)P(1 = va,)?)
(1= (1= va,)P(1 - va,)9)) (1.100)

(2) If Eq.(1.99) holds for n = k, that is
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k k k
@ (erea) = 1= I (1-mug,). T - 0w 0=,
L#] i,j=1 i,j=1
i#j i#j

(1.101)
then when n =k + 1, by the operational laws (1)-(3) in Section 1.2, we have

k k
k
IE_B (a ®ak+1) < H(l—ﬂgiﬂgk+l>7 H 1_ I_Va p(l Vak+1) ))
- =1 =1
(1.103)
by using mathematical induction on k:

(i) For k = 2, then by Eq.(1.98), we have

af ® aL21+1 = (ﬂgi/‘bg&2+17 1- (1 - Vaz‘)p(l - Va2+1)q> , =12
and thus
2
f:Bl (f ®aj ) = () ®af,,) ® (ah®al,,)

(1.104)

= (Hb il + Moy — 1o Mo pas, (1= (1= v0,)P(1 = vag)?)
(1= (1 = vap)"(1 = vay)"))

2 2
= <]‘ - H 1- Ma /J“ag, ) H I/OCL (]‘ - 1/063)q)> (]‘]‘05)

i=1 i=1
(ii) If Eq.(1.103) holds for k = ko, that is

k ko
ﬁ:% (af ® aZO‘H) N <1 a H (1 N ’ugi’ug‘koﬂ)’ H 1 = (1 =wa,)P(1 ~ Vako+1)q)

i=1

(1.106)
then when k = ko + 1, by Eq.(1.98) and the operational laws (5) and (7) in Definition
1.2.2, we obtain
ko+1 ko
& (af®af 15) = & (@) @ af, 1) & (0f, 11 @)

1=

ko

- <1 - H (1= st ) TT (0= (1= va)r1 - >)>
i=1

i=1
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D (ﬂgkOJrlﬂgzkoJrQﬂ 1- (]- - Vak0+1)p(]- - Vak0+2)q>

ko
= <1 -1 (1 - uiiuikw) S A

=1
ko
_ <]. - H (]- - /*L:gziﬂ“gszJrQ)) (Ngkoﬂﬂgkaz) 9
i=1

ko
<H (1 - (l—l/ai)p(l _VakOJrz)q)) (1_ (1 _Vak-0+1)p(1 _Vak-0+2)q)>

i=1

k)o kO
(T (T st ) ()

=1 i=1

ko+1
IT G- -va)r— uak0+2)‘1)>

i=1

ko+1 ko+1
- <1_ H (1_“&“3%0”)’ H (1_(1_’/041')17(1_V‘lko+2)q)>(1'107)

i=1 i=1

i.e., Eq.(1.103) holds for k = ko + 1. Thus Eq.(1.103) holds for all .

Similarly, we can prove

(1 B Nak-;-lﬂm)’ ﬁ (1 -(1- Vak+1)p(1 - Vo‘j)q)

1 j=1

_:1??

k D q) _
& (ks ®af) = | 1~

’ (1.108)

Thus, by Eqgs.(1.101), (1.103) and (1.107), we further transform Eq.(1.102) to

k k
D ereal) = 1o I (1-mm, ). TT -0 v -v,))
i%j ij=1 =1

i# i#

(1 - (]- - Vai)p(]- - Vak+1)q)>

—

k
=TT (- wtms, L)

i=1 %

(
. (1 ()

j=1 J

1

(]. — (]. - Vak+1)p(]' - Vaj)q)

—

1
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i,j=1 i,j=1
i# ] i#
® ( - (H (1 uzluzm)) IT (= stnt,) ]
i=1 j=1
k k
<H (1 — (1 =wa,)P(1 = Vak-Jrl)q)) H (1 -(1- Vagiq )P(1— Vaj)q)
i=1 j=1
k+1 k+1
=(1-1I (1 - #’o’zmij)a IT - =va)P(@—va,)9) (1.109)
ij=1 ij=1
i#] i#j

i.e., Eq.(1.99) holds for n = k + 1. Thus Eq.(1.99) holds for all n.
Then, by Eq.(1.99) and the operational law (6) in Definition 1.2.2, we get

o (B eroan)

i#j

1
n(n—1)

n
=== (=TT (v -z ,
'L:LJ#=J1

1
n(n—1)

1
n(n—1)

ﬁ (1= (1= va,)P(1 — va,)7) "0 (1.110)

Using Eq.(1.110) and the operational law (7) in Definition 1.2.2, it yields

IFBPH(QI’ Qg, - :an)

N (n(nl— 1) <§n91 (af ® a?)))
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1
p+aq
n 1
~ 1= H (1—%’41.#3].)"(“71) :
1
p+q
n 1
1= 1= J] (0= (1= va)P(1 = va,)?) "0 (1.111)
117:11
i.e., Eq.(1.96) holds. In addition, since
Piq
H ]' - ﬂa ﬂa n(nl_l) <1 (1]‘12)
=1
it
1
p+q
n 1
0<1— 1= J] =@ =va)?(d—va,)9) D <1 (1.113)
117:11
and using Eq.(1.9), we have
1
n r+aq
T (- )
i,j=1
i#]
1
" r+aq
1= (1= J] (1= (= va)P(1 = va,)?) "0
1
p+q
_]_+ ]_— H (1_#a1ﬂa]>n(n 1)
1
n p+aq
— (1= J] (1= (1 =) (1 = va)?) "m0
i,;;:]l
1
" r+aq
T [ 1= I (1= (1= va)P(1 = v,)7) "0
1
p+q
— (1= J] (0= (0= va)P(Q = va)?) v
il;il

=1 (1.114)
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which completes the proof.
Now let us look at some desirable properties of the IFBM (Xu and Yager, 2011):
(1) If o = (fay,va;) (@ = 1,2,--- ,n) are a collection of the smallest IFNs, i.e.,
a; = ai. = (0, 1), for all 4, then
IFB”Y(ay, o, -+ - 5 )

= IFBPY (v, i, -+ u)

1
r+q
n

- Ty |

i,j=1
i#]

which is also the smallest IFN.
(2) If «; = (fa;,va,) (2 = 1,2,--- ,n) are a collection of the largest IFNs, i.e.,
a; = a* = (1,0), for all 4, then
IFB?Y(aq, o, -+ 5 )
=IFB”»Y(a*, ", - ,a")
1
p+q

= 1- H (1 - ug*ﬂg*)n(nl_l) 3

i,j=1
i#]

which is also the largest IFN.
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(3) (Idempotency): If all o; (i =1,2,---,n) are equal, i.e., oy = & = (fta, Va),
for all 4, then

IFB”Y (a1, o, -+, )

=IFB"Y(a,a, - , )

1 1
pt+a pt+a
1 1
ol | RS D (CEGATAREEEN I E BE | (RN NN DR
k7 o

_ ((1 ~ (- ﬂgﬂ))piq C1-(1-(1-(1- Va)mq))piq)
_ ((N?q)piq C1- (- Va)p+q)piq>
(
= (1.117)

(4) (Monotonicity): Let a; = (fta;,Va,;) (0 = 1,2,---,n) and §; = (us,,vs,)
(i=1,2,--- ,n) be two collections of IFNs, if p1o, < pg, and vy, > vg,, for all ¢, then

IFBp7q(Oél, Qg, - 7O[n) g IFprq(ﬂhﬁQa e 7ﬂn) (1118)

Proof Since po, < pg, and v, > vg,, for all 4, then

[, 1a, < pg g, for all ij (1.119)
. P q n(nl—l) L P q n(nl—l)
ke e
n 1 . n 1 )
1= IT (-pn)™ " <= I (1-spy)™ " (az)
1;];]‘1 1{];‘1
1 1
rt+q pta
n 1 n 1
1- 11 (1 - ﬂiiuij) ey <[1-1] (1 - uﬁiu%j) e (1.122)
11];]1 i,_j;_l
(1 —=va,)P(1 —va,)T < (1 —vp,)’(1 —vg,)?, for all i,j (1.123)

H (1 - (1 - VOéi)p(l - Vaj)q) n(nlil) P H (1 - (1 - Vﬁ'i)p(l - Vﬁj)q) "(ntl)
B,j=1 i,j=1
i3] i#j

(1.124)
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1
p+q

p+q

<|1- H (1= (1= vg)P(1 — ,)7) " (1.125)

p+q
- (1 - H (1 — (1 —va,)P(1 - Vaj)q) =)

r+aq
>1-— (1 — JI =@ =vs)@—vp,)7) =) (1.126)

1
p+q

i,j=1
i
1
n r+q
1
o H (1 - (1 - V(xi)p(l — ]/aj)q) n(n—1)
i,j=1
i
1
r+q
- n(nl—l)
11 (1 B “m“m)
1
n p+aq
1
H (L= (=) (1= ) )) .

Let a = IFBP% (a1, a0, - -+ , o) and B = IFBP9(5y, B2, - -+, Bn), and let s, and sg
be the scores of o and §. Then Eq.(1.101) is equal to s, < sg. Now we discuss the
following cases (Xu and Yager, 2011):

Case 1 If s, < sg, then it can be obtained from Definition 1.1.3 that

IFBP(ay, g, -+, ap) < IEBP9(By, B, -+, Br) (1.128)
Case 2 If s, = s, then

1
p+q
n

1
1- ] (1 - uiiuij) e

i,j=1
i#]
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Piq
1
—[1-11=J] O = @ =va)P(1 = vg,)?) "0
ko
1
p+q
L n(nl—l)
— p 9
- ]'_AH (l_uﬁ'i’uﬂj>
'Llj#zjl
1
p+q
1
—[1-]1-J] =@ =vs)P@—vp,)7) e (1.129)
11;:]1
Since o, < pg, and v, = vg,, for all 4, then
1 1
r+aq p+aq
n 1 n 1
-1 (1 —ﬂﬂiuij)"("_l) ~[1-T] (1 —uﬁiu%j) e (1.130)
ki R
1
n p+q
1
1= 1= J] =@ =va)P(1 = va,)?) 0
11;:]1
1
" p+q
1
=1—|1- J] =@ =vp)(Q —wp,)?) (1.131)
and thus
1
p+q
_ _ _,p ,a D
ha=| 1= ]1 (1 /Lamaj)
'Llj#zjl
1
p+q
=11 ] O-Q-va)P@=va)9) >
117;]1
1
pt+q
_ p g "D
=|1- H (1 h 'U’Bi'uﬁj)
'Llj#zjl
1
pt+q
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=hg (1.132)
Then, it follows from Definition 1.1.3 that
IFBP,Q(al’ g, 7O[n) = IFprq(ﬂh BQa o 7ﬂn) (1133)

Thus, Eqgs.(1.129) and (1.133) indicate that Eq.(1.118) holds.
(5) (Commutativity):

IFBPY (1, gy -+ ) = IFBP(évy, cug, -+ -, 6 (1.134)
where (&, o, -+, &y,) is any permutation of (aq, s, -, ay).
Proof Since (&1,do, - ,d&,) is any permutation of (a1, g, -+ ,ay), then
1 " pt+q
P,q = p 4
IFBPY (o, g, -+ ) (n(n— 3 (1%1 (of ®a])>>
i# ]
rta (1.135)
(! & (o ®ad)
n(n —1) Ehe ’ J
= IFBp’q(dl,dg, s ,Ozn)

(6) (Boundedness): Let
o = (minfpa,} max{ra,}),  a* = (max{ua,} min{va,}) (1.136)
Then
a” <IFB”Y(ay, a0, ,ap) < at (1.137)

Proof Since min{uq, } < pla; < max{fq, } and min{v,, } < vq,

i

< max{v,, }, for all

i, then

(min{pea, )P < pb, pid, < (max{pa, })PHe (1.138)
n 1) n P\ n(n-1) p+a
I1 (1 - uiiuij) < ]I (1 - (min{ﬂai}) ) =1- (min{"‘“i})
(1.139)
L i n pa\ n(n-1) ptq
11 (1 —uﬂiuij) | (1 - (max{ﬂai}) ) =1- (max{uai})
(1.140)
Therefore,
1
p+a
n 1 1 ptq p-}—q
=TT ()| < (1 (1 (mecta)™)) T = i)
i,j=1
i#£]

(1.141)
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Piq 1
e n(n— p+q p+q
=TT ()| = (1 (1 (ningee)™)) T = min)
(1.142)
In addition, we have
p+q p+q
(1 - max{yai}) <(1—va)P(1—va,)? < (1 - mjn{yai}) (1.143)
n n +q\ n(n-1)
1 pHa\ nin-
IT (- (1= va)?(t = va))?) 0 = ] (1 - (1 - mjn{uai}> )
ptq
—1- (1 - min{yai}> (1.144)
n n +q\ n(n-1)
1 pHa nin-
H (1= (1 = va,)P(1 = vg,)?) " < H (1 - (1 - max{uai}> )
Z
ptq
—1- (1 - max{yai}> (1.145)
and thus
1
p+aq
L= 1= J] (1= (1= va)P(1 = va,)?) "0
i,j=1
. (1.146)
p+q p+a
>1- (1— (1— (l—mjn{yai}) >>
— min{ve,}
Piq
1
L= 1= J] (1= (1= va)P(1 = va,)®) "0
i,j=1
. . (1.147)
p+q p+a
<1- (1— (1— (l—max{yai}) >>
— max{va,}
Let o = IFB?%(aq, g, -+ , ) = (fhas Vo). Then
Sa = Mo — Vo < max{fia, } — min{vy, } = so+ (1.148)

Sa = Pa — Vo = min{pg, } — max{vy, } = So- (1.149)
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In what follows, three cases are discussed:
Case 1 If s, < so+ and $4 > s,-, then it follows from Definition 1.1.3 that

a” <IFBPY(ay, a9, ,ap) < ot (1.150)

Case 2 If s, = 54+, 1.6, pla — Vo = max{iia, } — min{v,, }, then by Eqgs.(1.141)
and (1.146), we have p1, = max{ o, } and v, = min{v,, . Thus

ha = fa + Vo = max{ e, } + min{vy, } = ho+ (1.151)
then it follows from Definition 1.1.3 that
IFB”(ay, , -+ ) = (1.152)

Case 3 If s, = 84—, 1€, fto — Vo = min{ gy, } —max{v,, }, then from Eqs.(1.142)
and (1.147), we can obtain u, = min{ﬂaZ} and v - max{v,, . Consequently, we
have l '

ho = flo + Vo = miin{,uai} + m?x{yai} = ho- (1.153)

Thus, it follows from Definition 1.1.3 that
IFBPY (0, 09, -+ ,0m) = (1.154)

Therefore, according to all the cases above, it is clear that Eq.(1.137) holds.

Let us now consider some special cases of the IFBM by taking different values of
the parameters p and ¢ (Xu and Yager, 2011):

Case 1 If ¢ — 0, then it follows from Eq.(1.95) that

1 n p+q
3 s . H p q

i#£]
1
r+aq
. 2 n(nl—l)
iy
1
p+q
1—1- (1= (1= va,)P(1 = vq,)?) 0
117:11
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1
P

(M-t ) e (- TTo- e vt
i=1 i=1

-(2 ()

= IFBP’O(ahaQ, Cee Q)

(1.155)

which we call a generalized intuitionistic fuzzy mean.
Case 2 If p =2 and g — 0, then Eq.(1.95) can be transformed to:

1 n
IFB* (a1, a0, ,a) = ( (EB a?)
n \i=1
1 1

>;
) <1_f[1(1—uii)3‘>;v _<—f[(1—(1_ym>2>*>%

1

(1.156)

which we call an intuitionistic fuzzy square mean.
Case 3 If p=1 and g — 0, then Eq.(1.95) reduces to the IFA average:

IFBLO(al7 Qg Q)

- <<1—2H1(1—um)">a 1- (1_}1(1_(1_’/"‘1'))”)) (1.157)

Case 4 If p=g=1, then Eq.(1.95) reduces to the following:

1
1 n 2
IFB" (a1, 02, om) = (n(n ) (@ C %)))

i#]

1
[ T O paey | (1.155)

i,j=1
i#j

1= {1= J] (1= (1 = )@ = vay)) D
ii=1
i#£]

which we call an intuitionistic fuzzy interrelated square mean.

Example 1.4.1 (Xu and Yager, 2011)  Assume we have four IFNs: oy = (0.3, 0.5),
as = (0.6, 0.2), as = (0.8, 0.1), and oy = (0.7, 0.2). Here we use the IFBM to fuse
these intuitionistic fuzzy data. Without loss of generality, we let p = ¢ = 1, then
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a1 ®az = (0.3 % 0.6, 0.5+ 0.2 — 0.5 x 0.2) = (0.18, 0.60)
as ®@ a1 = a1 @ ay = (0.18, 0.60)

a1 ®as = (0.3x 0.8, 0.5+ 0.1 — 0.5 x 0.1) = (0.24, 0.55)
a3 ®@ a1 = a1 @ az = (0.24, 0.55)

a1 ®ag = (0.3 % 0.7, 0.5+ 0.2 — 0.5 x 0.2) = (0.21, 0.60)
ay ®a; = a1 ® ag = (0.21, 0.60)

as ®az = (0.6 x 0.8, 0.2+ 0.1 — 0.2 x 0.1) = (0.48, 0.28)
as ®@a; = as @ az = (0.48, 0.28)

as @y = (0.6 x 0.7, 0.2+ 0.2 — 0.2 x 0.2) = (0.42, 0.36)
ay @ as = as @ ay = (0.42, 0.36)

a3 ®as = (0.8 % 0.7, 0.1+ 0.2 — 0.1 x 0.2) = (0.56, 0.28)
ay ® az = as ® ag = (0.56, 0.28)

and thus, by Eq.(1.96), we get

1
1 ( a ’
IFBl’l(oz17oz2,o¢37oz4) = <12 <§51 (o ® aj))) = (0.60, 0.24)

i#]

In the analysis above, only the input data and their interrelationships are involved
in the aggregation process. The importance of each datum is not emphasized. Nev-
ertheless, in many practical situations, the weights of the data should be taken into
account. For example, in multi-attribute decision making, the considered attributes
usually have different importance, and thus need to be assigned different weights.
Now we introduce a weighted intuitionistic fuzzy Bonferroni mean:

Definition 1.4.3 (Xu and Yager, 2011) Let a; = (o, Va,;) (i =1,2,---,n) be a
collection of IFNs, and w = (w1, wa, -+ ,wy) T the weight vector of o; (i = 1,2,--- ,n),
where w; indicates the importance degree of a;, satisfying w; € [0,1] (i =1,2,--- ,n)

and iwi =1.1If
i=1

pta
IFB, (a1, a, -+ ,ap) = <n(n1— 3 <§1 (wias)? ® (wjaj)q)>> , p,g>0
o (1.159)
then IFB? is called a weighted intuitionistic fuzzy Bonferroni mean (WIFBM).
Similar to Theorem 1.4.1, we have
Theorem 1.4.2 (Xu and Yager, 2011) The aggregated value by using the WIFBM

(1.159) is an IFN, and

IFB2Y (o, o, -+ 5 )
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1
p+q
n

== T O == =g (= =)y |

i,j=1

1
p+q

1—[1- ﬁ (1= (-we)” (1-w2)") = (1.160)

In what follows, we apply the WIFBM to multi-attribute decision making, which
involves the following steps (Xu and Yager, 2011):

Step 1 For a multi-attribute decision making problem, let Y, G and w be defined
as in Section 1.3. The characteristic (attribute value) of the alternative Y; with
respect to the attribute G is measured by an IFN r{;. All7';; (i =1,2,--- ,n; j =
1,2,---,m) are contained in an intuitionistic fuzzy decision matrix R = (7};)nxm- By
using Eq.(1.65), we can transform R’ into the normalized intuitionistic fuzzy decision
matrix R = (74 )nxm, where r;; = (ij, vij), tij € [0,1], vi5 € [0,1], and p5 + 145 < 1.

Step 2 Utilize the WIFBM (in general, we can take p = ¢ = 1):

i = (i, vi) = IEBY(rin, mig, -+, i) (1.161)

to aggregate all the characteristics r; (j = 1,2,---,m) of the i-th line, and get the
overall attribute values r; corresponding to the alternative Y;.

Step 3 Utilize the method in Definition 1.1.3 to rank the overall attribute values
r, (1=1,2,-- n).

Step 4 Rank all the alternatives Y; (i = 1,2,--- ,n) in accordance with r; (i =
1,2,---,n) in descending order, and then select the most desirable alternative with
the largest overall attribute value.

In the above procedure, we have utilized the WIFBM to aggregate the character-
istics of each alternative with respect to a collection of the pre-given attributes, so
as to rank and select the alternatives. The desirable characteristic of the WIFBM
is that it can not only consider the importance of each attribute but also the inter-
relationship of the individual attributes, and thus can take as much as possible the
decision information into account.

Below let us give a detailed illustration of the decision making procedure above
with a numerical example:

Example 1.4.2 (Xu and Yager, 2011) A city is planning to build a municipal
library. One of the problems facing the city development commissioner is to determine
what kind of air-conditioning system should be installed in the library (Yoon, 1989).
The contractor offers five feasible alternatives Y; (i = 1,2,3,4,5), which might be
adapted to the physical structure of the library. Suppose that three attributes: @ Gf:
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Economic; @ Gs: Functional; and & G3: Operational, are taken into consideration
in the installation problem, the weight vector of the attributes G; (j =1,2,3) isw =
(0.3, 0.5, 0.2)T. Assume that the characteristics of the alternatives Y; (i = 1,2,3,4,5)
with respect to the attribute G; (j = 1,2,3) are represented by the IFNs r;; =
(tij,vij), and all 7; (i = 1,2,3,4,5; j = 1,2,3) are contained in the intuitionistic
fuzzy decision matrix R = (r;)5x3 (Table 1.26):

Table 1.26 Intuitionistic fuzzy decision matrix R’ (Xu and Yager, 2011)

G1 G2 Gs
Y1 (0.3, 0.4) (0.7,0.2) (0.5, 0.3)
Y2 (0.5, 0.2) (0.4, 0.1) (0.7, 0.1)
Y3 (0.4, 0.5) (0.7, 0.2) (0.4, 0.4)
Ya (0.2, 0.6) (0.8, 0.1) (0.8, 0.2)
Ys (0.9, 0.1) (0.6, 0.3) (0.2, 0.5)

Considering all the attributes G (j = 1,2, 3) are the benefit attributes, the char-
acteristics of the alternatives Y; (i = 1,2, 3,4,5) do not need normalization.
Now we first utilize the WIFBM (here, we take p = ¢ = 1):

i = (s, vi) = IFB&))l(Tgldevr;B) (1.162)

to aggregate all the characteristics rgj (j = 1,2,3) of the i-th line, and get the overall
attribute value r; corresponding to the alternative Y;:

) =(0.198, 0.681), 74 = (0.209, 0.531), r4 = (0.202, 0.723)

r), = (0.266, 0.668), % = (0.278, 0.654)

Then we can calculate the scores of all the alternatives:
s(ry) =0.198 — 0.681 = —0.483, s(ry) = 0.209 — 0.531 = —0.322

s(rf) =0.202 — 0.723 = —0.521, s(r}) = 0.266 — 0.668 = —0.402
s(rl) = 0.278 — 0.654 = —0.376

Since

s(ry) > s(r5) > s(ry) > s(r1) > s(r3)

then we can get the ranking of the IFNs by Definition 1.1.3:

rh>rL > > >
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and thus the ranking of the alternatives Y; (i = 1,2,3,4,5) is:
Yo-Ys =Y, -1 > Y35

Hence Y5 is the best alternative.
If we take p = ¢ = 2, then by 7} = (u;, v;) = IFB2? (1), v}y, 715), We get

= (0.209, 0.673), 75 = (0.209, 0.525), 4 = (0.214, 0.713)

ry = (0.302, 0.647), 4 = (0.328, 0.625)

Then we can calculate the scores of all the alternatives:
s(r)) = —0.464, s(ry) = —0.316, s(ry) = —0.499

s(ry) = —0.345, s(ri) = —0.297

Since
s(rg) > s(ry) > s(ry) > s(ry) > s(r3)

then by Definition 1.1.3, we can get the ranking of the IFNs:
TS > Th >l > >

by which we have
Y =Yoo =Y, =Y - Y3

Hence, in this case, Y5 is the best alternative.

In the above numerical results, the WIFBM IFB&;1 produces the ranking of all
the alternatives as Y5 = Y5 = Y, = Y7 > Y3, in which the alternative Y5 ranks
first. This ranking result is slightly different from the ranking of the alternatives:
Ys = Yy = Yy = Y = Y3, derived by the WIFBM IFBZ?. That is, the ranking of
Y5 and Y3 is reversed while the ranking of the other alternatives keeps unchanged.
Therefore, the decision results may be different with the change of the parameters p
and q.

For intuitiveness and simplicity, we usually take the values of the two parameters
as p = ¢ = 1 in practical applications.

1.5 Generalized Intuitionistic Fuzzy Aggregation Operators

Yager (2004b) extends the OWA operator to provide a new class of operators called the
generalized OWA (GOWA) operators. These operators add to the OWA operator an
additional parameter controlling the power to which the argument values are raised.
He also proves that the GOWA operators are mean operators. Yet it is worthy
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of pointing out that the GOWA operators have not been extended to accommodate
intuitionistic fuzzy environment. Recently, based on the GOWA operators, Zhao et al.
(2010) develop some intuitionistic fuzzy aggregation operators, such as the generalized
intuitionistic fuzzy weighted averaging (GIFWA) operator, generalized intuitionistic
fuzzy ordered weighted averaging (GIFOWA) operator, and generalized intuitionistic
fuzzy hybrid averaging (GIFHA) operator, etc.

Definition 1.5.1 (Yager, 2004b) A generalized weighted averaging (GWA) oper-
ator of dimension n is a mapping GWA: (Re)™ — (Re)™", which has the following

form:
1
n A
GWA, (a1,az, - ,an) = ija;‘ (1.163)
j=1
where A > 0, w = (w1,wa, -+ ,w,)T is the weight vector of the nonnegative real

numbers a; (j =1,2,---,n), with w; € [0,1] (j =1,2,---,n) and ij =1.
j=1

Another aggregation operator called the GOWA operator (Yager, 2004b) is the
generalization of the OWA operator:
Definition 1.5.2 (Yager, 2004b) A generalized ordered weighted averaging
(GOWA) operator of dimension n is a mapping GOWA: I™ — I, which has the
following form:

1
A

GOWA (a1, az, - ,an) = ijb;‘ (1.164)
j=1
where A > 0, w = (wy,ws, - ,w,)T is the weighting vector associated with the

GOWA operator, such that w; € [0,1], j =1,2,---,n, and ij =1, b; is the j-th
j=1
largest of a;, I = [0,1]. ’

Corresponding to certain choices of the parameters A and w, we get some special
cases. Some of the special operators have been used in situations where the input
arguments are IFNs; such as the IFWA and IFOWA operators (Xu, 2007¢), the IFWG
and IFOWG operators (Xu and Yager, 2006). But there are still a large number of
special operators that have not been extended to situations where the input arguments
are IFNs. Zhao et al. (2010) extend the GWA and GOWA operators to accommodate
situations where the input arguments are IFNs.

Definition 1.5.3 (Zhao et al., 2010) Let GIFWA: 0™ — 6O, if

GIFWA,, (a1,a2, -+ ,an) = (W10} Bws) G-+~ ® cunozi‘l)1 (1.165)
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then the function GIFWA is called a generalized intuitionistic fuzzy weighted aver-
aging (GIFWA) operator, where A\ > 0, w = (wy,ws, - ,w,)T is a weight vector of
n

a; (j=1,2,-,n), withw; €[0,1], j=1,2,--- ,n,and Y w; = 1.

Theorem 1.5.1 (Zhao et al., 2010) The aggregated value by using the GIFWA
operator is an IFN, and

GIFWA,, (a1, i, - -+, i)
N 1
n A n *

= lr-TIa-wm)= | . 1= {1-J[0—Q=va)» (1.166)

j=1 j=1

Proof The first result follows quickly from Definition 1.2.2 and Theorem 1.2.2. In
the following, we first prove

w10} B Wl & Buwnad = (1 [T —ud)*, [T 0~ —va))™ | (1.167)
j=1

Jj=1
by using mathematical induction on n:
(1) For n = 2: Since
al _(:u'ala _(I_Val))\)7 aé\:(ﬂézvl—(l—Vaz)A)

then
2

2
wia} Duwgay = [1— H (1 - Mg_]) ’ ,H 1-01- Vaj))‘)wj

j=1 j=1

(2) If Eq.(1.167) holds for n = k, that is

k k
wlai@wzaé\@-~-@wka2= I_H(l_’ug\‘a) H l— l—ya])k)wj
i=1 i=1

then, when n = k + 1, by the operational laws (4), (6) and (7) in Definition 1.2.2, we
have

ok
wlai\@u&ag\@...@wk+la2+1: 1_H<1_/~L2j> ]7H(1—(1—1/aj)>\)w3

j=1 j=1
Wk+1 w
@ (1 - (1 - M2k+1> ) (]‘ - (]‘ Vak+1)>\) k+1)
k+1 W k+1
(-TH 0 To-a-wny
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i.e. Eq.(1.167) holds for n = k + 1. Thus, Eq.(1.167) holds for all n. Then

GIFWA, (a1, a9, -+ ,ap)

=|1- ﬁ (]_ — Né]) ﬁ Va] )\)wj
B :; !

Example 1.5.1 (Zhao et al., 2010) Let a3 = (0.1, 0.7), s = (0.4, 0.3), a3 = (0.6,
0.1) and a4 = (0.2, 0.5) be four IFNs, and w = (0.2, 0.3, 0.1, 0.4)™ the weight vector
of aj (j =1,2,3,4). Let A =2, then

GIFWA, (a1, g, a3, cug)

= (1= (1=0.1%)%2 x (1—0.4%)%3 x (1 - 0.62)%" x (1 —0.22)04)3,
1—(1—(1—(1=0.7)%)%% x (1— (1 —0.3)?)"3
(1= (1= 0.1)2)% x (1— (1—0.5)%)04))

= (0.3381,0.3717)

Based on Theorem 1.5.1, we have the following properties of the GIFWA operators:
Theorem 1.5.2 (Zhao et al., 2010) If all IFNs o; (j = 1,2,--- ,n) are equal, i.e.
aj = a, for all j, then

GIFWA, (a1, a9, -+ ,ap) =«

Proof By Theorem 1.5.1, we have

GIFWA, (a1, a9, - ,ap) = (wlal ®w2a2 D P cuncuﬁ)i
(wloz B woa @ - EBwnoz)‘)i
= (W1 +wa 4 +wp)at)r
= (0/‘)i =«

Theorem 1.5.3 (Zhao et al., 2010)  Let

o = (winGua, maxtv,) ) = () min(, )

Then
~ < GIFWA, (a1, a9, -+ ,ap) < ot (1.168)
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< max(vy, ), for all

Proof Since min(pa,) < pa,; < max(iy,) and min(vy,;) < va,
J J j J

j, then

n A\ @i A
IR (1 - (mxtoe) ) ) — 1 (max(in,)
, . J J '
and then
n A
I-JJa-p)< ] < o 1.169

( [T0-m) | <max(ua,) (1.169)

Similarly, we have

(1 TL-w) s min(pa, ) (1.170)

ﬁ (1—(1—vy,))" < ﬁ (1 —(1- mfx(yaj))k>w'j =1- (1 — mjax(l/aj ))A
- n - A
1- 1;[1 (1-(1-va)) > (1 - mjax(l/a].)>

J=1 ’
. A
- 1-J[@-0=va)M)™ | < max(va,) (1.171)
j=1 !
In a similar way, we get
. A
- (1T 0= 0= va))™ ) > minga,) (1172
j=1

Let GIFWA, (a1, 9, - ,an) = @ = (la, Va). Then
() = plo = Vo < max(pa,;) — min(va,) = s(a™)
j J '

5(0) = o — Vo > min(ia, ) — max(va,) = s(0”)
J : J :
If s(a) < s(a™) and s(a) > s(a™), then we get by Definition 1.1.3 that

a” < GIFWA (a1, a9, , o) < a™ (1.173)
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If s(a) = s(a™), ie. pa — Vo = max(pa,) — min(vy,), then by Eqgs.(1.169) and
J j
(1.172), we have

So
W) = pia + Vo = max(fq, ) +min(vy,) = h(a™)
J J

Then it follows from Definition 1.1.3 that
GIFWA, (a1, a, -+ ,o) = a™ (1.174)

If s(a) = s(a™), ie. fia — Vo = min(pia;) — max(vy, ), then by Eqs.(1.170) and
j J
(1.171) we obtain

Hao = rnjin(,u'aj)v Va = m?X(Vaj)

So
h(Oé) = lo + Vo = m,in(,u'aj) + maX(l/a].) = h(ai)
J ’ J ’

Thus, it follows from Definition 1.1.3 that
GIFWA, (a1, a9, -+ ,ap) = a” (1.175)

and then from Eqs.(1.173)—(1.175), we know that Eq.(1.168) always holds.
Theorem 1.5.4 (Zhao et al., 2010)  Let a; = (fta,,Va;) (1 =1,2,--+ ,n) and o =
(Haz,var) (j = 1,2,---,n) be two collections of IFNs, A > 0. If pia; < prar and
Va; Z Vas for all j, then

GIFWA, (a1, a9, ,ap) < GIFWA, (o, a5, -+, ) (1.176)

Proof Since i, < far and v,; > Var for all 7, then

I1(-u)" =TT (1)
Jj=1 Jj=1
T G-m) <=1 (1-m)”
Jj=1 Jj=1
1_H(1_u3])“’ < 1—H(1—N3*)]
j=1 j=1 !
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_ﬁ(l—(l—y% ﬁ(l—l—ya )Wj

=1

<
I
—
<.

Jj=1 j=1
1- 1—ﬁ(1—(1—uaj)k)““ >1- 1—ﬁ(1—(1—ua)k)%
Jj=1 j=1
n ) >1‘ n A
(1—H (1—%)“") - ( [T )
Jj=1 j=1
( H (1-m ) ) ( H (1= (1= veg) )Wj) (1.177)
Let o = GIFWA,, (a1, a2, , o) and a* = GIFWA,, (a],a3,--- ,a). Then by

Eq.(1.177), we have s(a) < s(a*).
If s(a) < s(a*), then by Definition 1.1.3 we can get

GIFWA, (a1, o, - -+ ,ap) < GIFWA (o, a3, -+, ) (1.178)

rn

- (1—12[(1—#})%) = 1—(1—12[(1—(1—%&)%)
j=1 j=1

//
—
/
—
|
=
L
N—
N——
>
Il
//
[a—
|
—
/
—
|
=
Q>
N—
&
N——
>
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Hence

PO

PO

thus, it follows from Definition 1.1.3 that

GIFWA,, (a1, g, ,ap) =

Intuitionistic Fuzzy Information Aggregation

1
A

ﬁ 1-— 1—Va )‘)wj
j=1

1
A

fi(l— 1—MXV)%

<.
—

GIFWA, (o], 05, -+ ,ar)

n

(1.179)

From Eqgs.(1.178) and (1.179), we can see that Eq.(1.176) always holds.
We now look at some special cases corresponding to different choices of the pa-

rameters w and A:
Theorem 1.5.5 (Zhao et al., 2010)

(1) If A=1, then the GIFWA operator (1.165) reduces to the IFWA operator.

2)fw=>1/n,1/n,---
duces to the IFA operator.
Definition 1.5.4 (Zhao et al.,

,1/n)T

2010)

Let aj = (fta; Va,;) (3 = 1,2,---,

and A=1, then the GIFWA operator (1.165) re-

n) be a

collection of IFNs, and let GIFOWA,,: O™ — 6. If

GIFOWAw (0417 g,

where A > 0, w = (w1, wa, -+ ,w,) "

[Oa]-]aj:]-a27"'

Jj=1

,Oén) = (wloz (1) @’UJQOCG_(Q) b Dwyo a'(n)) *

1

(1.180)

is an associated weight vector such that w; €

,n, and ij =1, ay(j) is the j-th largest of a; (j =1,2,--- ,n),

then the function GIFOWA is called a generalized intuitionistic fuzzy ordered weighted

averaging (GIFOWA) operator.

The GIFOWA operator has some properties similar to those of the GIFWA oper-

ator:
Theorem 1.5.6 (Zhao et al., 2010)
operator is an IFN, and

GIFOWA (a1, cg, - -+, i)

1
A

= 1- H(l_:ug\za(j))wj ) 1-
j=1

The aggregated value by using the GIFOWA

(1.181)
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Example 1.5.2 (Zhao et al., 2010) Let oy = (0.3, 0.6), a2 = (0.4, 0.5), a3z =
(0.6, 0.3), ay = (0.7, 0.1), and a5 = (0.1, 0.6) be five IFNs, w = (0.1117, 0.2365,
0.3036, 0.2365, 0.1117)" the weight vector of a; (j = 1,2,3,4,5), and A=2. Then

oy = 0.3, pa, =04, pa, =0.6, pa, =07, pe, =0.1

Vo, = 0.6, Vo, =05, 14, =03, vy, =01, vy, =06

Let us calculate the scores of o (j =1,2,3,4,5):
s$(a1) =03-0.6=-0.3, s(az)=04—-05=-0.1, s(as)=06-0.3=0.3

s(as) =0.7—0.1=06, s(as)=0.1-06=-05

Since
s(aa) > s(ag) > s(az) > s(ar) > s(as)

we have
Oég(l) = (07, 0].), ag(z) = (06, 03), Ckg(g) = (04, 05)

Oz(,(4) = (0.3, 0.6)7 O[o-(g)) = (0.1,0.6)

and thus using Eq.(1.180), we can get
GIFOWAw (al, g, (3, (4, Ck5) = (047627 03762)

Theorem 1.5.7 (Zhao et al., 2010) If all IFNs o; (j = 1,2,--- ,n) are equal, i.e.
aj = a, for all j, then
GIFOWA (a1, a2, - ,ap) =

Theorem 1.5.8 (Zhao et al., 2010)  Let

0 = (wminGa, max(v,) ) o = (max(u ) min(o) )

Then
a” < GIFOWA, (ai, a9, - ,ap) < ot

Theorem 1.5.9 (Zhao et al., 2010) Let a; = (fta;,Va,;) (j = 1,2,---,n) and
o = (ftay,vaz) (j = 1,2,---,n) be two collections of IFNs. If yiq;, < par and

Vaj

> Vot for all j, then
GIFOWA (a1, g, -+ ,ap) < GIFOWA,, (o, o, -+ ,al)

Theorem 1.5.10 (Zhao et al., 2010) Let a; = (fta,,v%,) (j = 1,2,---,n) and

o) = (Ko Vasy) (7 =1,2,- -+ ,n) be two collections of IFNs. Then

GIFOWA,, (a1, a9, -+ ,a,) = GIFOWA,, (o], o, -+ , ) (1.182)
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where (o}, b, -+ ,al)T is any permutation of (a1, a9, -+, an)T.

From Eq.(1.182), we know that the GIFOWA operator possesses the commutativ-
ity property we desire to have. It is worth noting that the GIFWA operator does not
have this property.

We now examine some special cases corresponding to different choices of the pa-
rameters w and A:

Theorem 1.5.11 (Zhao et al., 2010)

(1) If A=1, then the GIFOWA operator (1.180) reduces to the IFOWA operator.

(2) If w = (1/n,1/n,---,1/n)T and A=1, then the GIFOWA operator (1.180)
reduces to the IFA operator.

(3) If w = (1,0,---,0)T, then the GIFOWA operator (1.180) reduces to the fol-
lowing:

IFMAX,, (a1, g, -+, ap) = max(a;)
J

which is called an intuitionistic fuzzy maximum operator (Chen and Tan, 1994).
(4) If w = (0,0,---,1)T, then the GIFOWA operator (1.180) reduces to the fol-
lowing:

IFMIN,, (a1, a2, - - -, ) = min(eyj)
J

which is called an intuitionistic fuzzy minimum operator (Chen and Tan, 1994).
Note that the GIFWA operator weights only the IFNs, while the GIFOWA oper-
ator weights only the ordered positions of the IFNs instead of the IFNs themselves.
To overcome this limitation, in what follows, we introduce a generalized intuitionistic
fuzzy hybrid aggregation (GIFHA) operator, which weights both the given IFNs and
their ordered positions:
Definition 1.5.5 (Zhao et al., 2010) A GIFHA operator of dimension n is a map-
ping GIFHA : ©" — O, which has an associated vector w = (wy,ws, - -+ ,w,)T, with

wj €10,1] (j=1,2,---,n) and ij =1, such that
j=1

GIFHA, (01, 02, o) = (W1 (6 (1)) © W2 (1 (2))* B+ B (Gip(n))*)  (1.183)

where A > 0, d,(;) is the j-th largest of the weighted IFNs &; (&; = nw;ay, j =
1,2, ,n), w = (w1,ws, -+ ,wy)T is the weight vector of a; (j = 1,2,---,n) with

w;j €[0,1] 5=1,2,--- ,n, ij =1, and n is the balancing coefficient.
j=1

Let do(j) = (K, ) Vén,)- Then, similar to Theorem 1.5.6, we have

GIFHA,, ., (1,00, -+, an)
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1 1
n A n A

- 1- H(l o /“Lg:r(.j))wj N e H (1 —(1- Vdg(j))h)wj (1.184)

j=1 j=1

and the aggregated value derived by using the GIFHA operator is an IFN. Especially,

if A =1, then Eq.(1.184) reduces to the IFHA operator.

Theorem 1.5.12 (Zhao et al., 2010) The GIFOWA operator is a special case of

the GIFHA operator.

Proof Letw = (1/n,1/n,---,1/n)T. Then ¢&; = a; (j = ,n), so we have

. 1

X (n) )X) A
1

= (W10%(1) B w25 B -+ B wWaa(,)) >

= GIFOWA (a1, v, - -+ , )

1,2, ,n)
GIFHA o (01, a2, -+, ) = (01 (br(1))™ B W2 (dip(a)) & -+ - @ wh

This completes the proof.
Example 1.5.3 (Zhao et al., 2010) Let oy = (0.2, 0.5), a2 = (0.4, 0.2), a3 = (0.5,
0.4), aq = (0.3, 0.3) and a5 = (0.7, 0.1) be five IFNs, and w = (0.25, 0.20, 0.15, 0.18,
0.22)T the weight vector of a; (j = 1,2,3,4,5). Then, by the operational law (6) in
Definition 1.2.2, the weighted IFNs can be obtained as:
ap = (0.234,0.42), do = (0.4,0.2), ds = (0.405,0.503)
dy = (0.275,0.338), &5 = (0.734,0.079)
Using Eq.(1.10), we can compute the scores of &; (j =1,2,3,4,5):
s(61) = —0.177, s(dn) =02, s(ds) = —0.098
s(ay) = —0.063, s(as) = 0.655
Since
s(cs) > s(ag) > s(dy) > s(asz) > s(aq)
we can get
Gq(1) = (0.734, 0.079), dy(2) = (0.4, 0.2), dy(3) = (0.275, 0.338)
Gy = (0.405, 0.503), dos) = (0.234, 0.42)

Suppose that w = (0.112, 0.236, 0.304, 0.236, 0.112)" (derived by the normal
distribution based method (Xu, 2005a) is the weighting vector of the GIFHA operator.
Then, it follows from Eq.(1.182) that

GIFHAwM (al, g, (3, (4, Ck5) = (042957 02767)

Similar to the IFWA, IFOWA and IFHA operators, the GIFWA, GIFOWA and
GIFHA operators can also be applied to multi-attribute decision making based on
intuitionistic fuzzy information.
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1.6 Intuitionistic Fuzzy Aggregation Operators Based on Cho-
quet Integral

The intuitionistic fuzzy aggregation operators presented previously only consider sit-
uations where all the elements in an IFS are independent, i.e., they only consider the
addition of the importance of individual elements. However, in many practical situ-
ations, the elements in an IFS are usually correlative. For instance, Grabisch (1995)
and Torra (2003) described such an example: “We are to evaluate a set of students in
relation to three subjects: {mathematics, physics, literature}, we want to give more
importance to science-related subjects than to literature, but on the other hand we
want to give some advantage to students that are good both in literature and in any
of the science related subjects”.

As shown by the example, we need to find new ways to deal with these situations
in which the considered decision data are correlative. Choquet integral (Choquet,
1953) is a very useful means of measuring the expected utility of an uncertain event,
which can be used to depict the correlations of the considered data. Motivated by the
correlation properties of Choquet integral, Xu (2010c) proposes some intuitionistic
fuzzy aggregation operators, whose prominent characteristic is that they can address
not only the importance of the elements or their ordered positions, but also the
correlations of the elements or their ordered positions.

Let a finite set X = {21,292, -+ ,x,} be fixed. In some situations, the weight of
each element z; € X should be taken into account. For example, in multi-attribute
decision making, the considered attributes usually have different importance, and thus
need to be assigned different weights.

Let ¢ ({z;}) (i = 1,2,--- ,n) be the weights of the elements z; € X (i = 1,2,--- ,n),
where ( is a fuzzy measure, which can be defined as follows:

Definition 1.6.1 (Wang and Klir, 1992) A fuzzy measure ¢ on the set X is a set
function ¢ : X — [0, 1] satisfying the following axioms:

(1) ¢(0) = 0, ¢(X) = 1;

(2) B C C implies ((B) < ¢(C), for all B,C C X;

(3) C((BUC) =({(B)+¢(C)+ p¢(B)X(C), for all B,C C Xand BNC = @, where
p € (—1,00).

Especially, if p = 0, then (3) in Definition 1.6.1 reduces to the axiom of additive
measure:

((BUC)=¢(B)+<¢(C), for all B,CCX and BNC=0 (1.185)
In this case, all the elements in X are independent, and we have

= > ¢({xi}), for all BCX (1.186)
r,EB
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Based on Definition 1.6.1, Xu (2010c) used the well-known Choquet integral to
develop some operators for aggregating IFNs together with their correlative weights:
Definition 1.6.2 (Xu, 2010c) Let o(z;) = (ta(®i),va(zi)) (i = 1,2,--- ,n) be n
IFNs, and ¢ a fuzzy measure on X. Then we call

(1) /adq ZIFCA (a(zn), alzs), - alwn)

= (C(Bs(1)) = C(Bs(0))) (1)) @ (C(Bs2)) — ((Bo1)))(To(2))
DD (C(Bo(n)) - C(Ba(n—l)))a(xa(n)) (1187)

an intuitionistic fuzzy correlated averaging (IFCA) operator, where (C4) / ad( is a

notation of Choquet integral, (J( ), 0(2) -+ ,0(n)) is a permutation of (1,2,--- ,n)
such that a(z,1)) > a(z,(2)) = A Zo(n))s Bor) = {Zo(j)lJ < k}, when & > 1
and BG'(O) =0Q.

With the operations of IFNs, the IFCA operator (1.187) can be transformed into
the following form by using mathematical induction on n:

(Cl)/adc =IFCA (a(z1), a(zs),-- -, a(x,))
< ﬁ — ta(To))) (Ba(i))—C(BU(Pl))?

=1

n

II (Va(%(n))C(B”(i))C(B”“_”)> (1.188)

i=1
whose aggregated value is an IFN.
Now we consider three special cases of the IFCA operator (Xu, 2010c):
(1) If Eq.(1.186) holds, then

¢ ({zo}) = ¢(Boiy) = C(Boi-1y) (1.189)
In this case, the IFCA operators (1.187) and (1.188) reduce to the IFWA operator:

IFWA (a(z1), a(ze), -, a(zy,))
=C({z}) alz1) ® C({z2}) ala2) & - & C({2n}) alan)

= <1 ) (CERES R §| <ua<xi>><““”> (1.190)

i=1 i=1

1
Especially, if ¢ ({z;}) = . for all ¢ = 1,2,--- ,n, then the IFWA operator (1.190)

reduces to the IFA operator:

IFWA (a(z1), a(xe), -, a(x,)) = ; (a(z1) ® afz2) ® - B alzy))
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. 1/n " 1/n
- <H (1 —,U'a(xi))> ) <H Va(xi)>

(1.191)
(2) If
| Bl
B)=) wi, for al BCX (1.192)
i=1
where |B| is the number of the elements in the set B, then
Wi :C(Bo'(z)) _C(Bo'(ifl)% i = 1a27"' y T (1193)
where w = (w1, wa, -+ ,wn) T, w; €[0,1] (i =1,2,--- ,n) and Zwi = 1. In this case,
i=1
the IFCA operators (1.187) and (1.188) reduce to the IFOWA operator.
B
Especially, if ((B) = |n |, for all B C X, then the IFCA operator (1.187) reduces
to the IFA operator.
(3) It
=9 (Z C({xi})> , for all BC X (1.194)
z,€EB

where 1 is a basic unit-interval monotonic (BUM) function (Yager and Xu, 2006; Xu,
2005¢) ¢ = [0,1] — [0,1] and is monotonic with the properties: (i) ¥(0) = 0, (ii)
¥(1) =1, and (iil) ¥(x) > ¥(y), for © > y. Then we let

wi = {(Boiy) = C(Boi—1)) =¥ [ D¢ {zan}) | —v [ D¢ {zon}) | »
j<s 7<i
i=1,2,---,n (1.195)

where w = (w1, wa, - - 7wn)T, w; € [0,1] (¢ = 1,2,---,n) and sz = 1. In this
i=1
case, the IFCA operators (1.187) and (1.188) reduce to the following form:

IFWOWA (0(a1). a(z2), -+ alra) = & (wia(zew))
= <1 H 1_,U/a xo’(z ) H Vo -To'z >
i=1 i=1

(1.196)
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which we call an intuitionistic fuzzy weighted ordered weighted averaging (IFWOWA)

1
operator. Especially, if ¢ ({z;}) = ~, for all ¢ = 1,2,--- /n, then the IFWOWA
n

operator reduces to the IFOWA operator.

Note Torra (1997) defined a weighted ordered weighted averaging (WOWA)
operator which is used to aggregate numerical values, and thus the IFWOWA operator
can be regarded as an extension of the WOWA operator.

Definition 1.6.3 (Xu, 2010c)  An intuitionistic fuzzy correlated geometric (IFCG)
operator is defined as:

(€2) [ adg IFCG (a(e). alzz), -+ alzn)
Boy)—C(Bs Bo(2))—¢(B,
_ (a(xg(l)))C( 1)) —C(Bo(0)) ® (a(xg(z)))C( 2))—C(Bs(1)) Q-
@ (@@ ny)) ¢ P 6 Bonn) (1.197)
where (CQ)/adC is a notation of Choquet integral, (o(1),0(2),--- ,0(n)) is a per-

mutation of (1,2,---,n) such that a(z,1)) = a(zs(2)) = -+ = (Zen)), Bom) =
{zo(jy| 7 <k}, for k> 1 and B,y = O.

With the operations of IFNs, the IFCG operator (1.197) can be transformed into
the following form by using mathematical induction on n:

(02)/adg ZIFCG (a(z1), alza), - -, aan))

s C(Boiy)—¢(Bogi_1))
:< (1 (o)) o) 7B,
=1
1-I10- Va(xa(w))C(B”(”)_C(B““”) (1.198)
=1

whose aggregated value is also an IFN.

Below we discuss three special cases of the IFCG operator (Xu, 2010c):

(1) If Egs.(1.186) and (1.189) hold, then the IFCG operators (1.197) and (1.198)
reduce to the IFWG operator.

Especially, if ¢ ({z;}) = ;L, foralli=1,2,---,n, then the IFCG operator reduces
to the IFG operator.

(2) If Eqs.(1.192) and (1.193) hold, then the IFCG operators (1.197) and (1.198)
reduce to the IFOWG operator.

B
Especially, if ((B) = |n|’

and the IFOWG operator reduce to the IFG operator.

for all B C X, then both the IFCG operator (1.197)
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(3) If Eqs.(1.194) and (1.195) hold, then the IFCG operators (1.197) and (1.198)
reduce to the following:

IFWOWG (a(z1), a(ze), - -, a(zy))
(a(zom))™" ® (Uzg@))™ @ & (U@om))""

(H (alo))™, 1= (1- Va(%@)))wi) (1.199)

i=1 i=1

which we call an intuitionistic fuzzy weighted ordered weighted geometric (IFWOWG)

1

operator. Especially, if ¢ ({z;}) = , for all ¢ = 1,2,--- ,n, then the IFWOWG
n

operator reduces to the IFOWG operator.

In the following we apply the above aggregation operators to a practical decision

making problem involving the prioritization of a set of ten information technology
improvement projects (Ngwenyama and Bryson, 1999; Xu, 2010c¢):
Example 1.6.1 The information management steering committee of Midwest
American Manufacturing Corp.(MAMC) must prioritize for development and imple-
mentation a set of ten information technology improvement projects Y = {Y; | i =
1,2,---,10}, which have been proposed by area managers, where @ Y;—Quality
management information; @ Ys—Inventory control; @ Y3—Customer order tracking;
@ Y;—Materials purchasing management; & Y;—Fleet management; ©® Yg—Design
change management; (7) Yr—Electronic mail; 8 Yg—Customer returns and com-
plaints; © Yy—Employee skills tracking; and @0 Yio—Budget analysis. The com-
mittee aims to prioritize the projects from highest to lowest potential contribution to
the firm’s strategic goal of gaining competitive advantage in the industry. In assess-
ing the potential contribution of each project, a set of three factors are considered:
G = {G1,G2,G3} = {Productivity, Differentiation, Management}. The committee
evaluates the projects Y; (¢ = 1,2,---,10) in relation to the factors G; (j = 1,2, 3),
and gives more importance to G; and Go than to G3, but on the other hand the
committee gives some advantage to the projects that are good both in G5 and in any
of G; and Gs. Let

@) =0, ¢(G)=C({G1, G, G3}) =1, C({G1}) =C({G2}) =04

C({Gs}) =03, C(({G1,G2}) =06, (({G1,G3}) =(({G2,G3}) =0.8
The evaluation information about the projects Y; (i = 1 27 o ) under the
factors Gj (j = 1,2,3) is represented by the IFNs ay,(G;) (i = -, 10; j =
1,2,3), as shown in Table 1.27:
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Table 1.27 The evaluation information about projects (Xu, 2010c)

G1 G2 G3
Vi (0.7, 0.3) (0.8, 0.1) (0.9, 0.1)
Yo (0.6, 0.2) (0.8, 0.2) (0.8, 0.1)
Y3 (0.4, 0.1) (0.6, 0.1) (0.5, 0.2)
Yi (0.7, 0.3) (0.8, 0.2) (0.6, 0.3)
Ys (0.5, 0.5) (0.7, 0.3) (0.4, 0.2)
Yo (0.4, 0.3) (0.6, 0.2) (0.8, 0.1)
Yr (0.3, 0.6) (0.4, 0.3) (0.2, 0.2)
Ys (0.6, 0.1) (0.5, 0.1) (0.8, 0.2)
Yo (0.4, 0.5) (0.9, 0.1) (0.3, 0.1)
Yio (0.3, 0.5) (0.6, 0.4) (0.4, 0.1)

We can rearrange the IFNs corresponding to each project in descending order by using
the method presented in Section 1.2:

Qy, (Go'(l)) = (09, 01)3 Qy, (GU(2)) = (O8a 01)3 Ay (GU(S)) = (07703)

v, (Go1)) = (0.8,0.1),  ay,(Gor2)) = (0.8,0.2), ay,(Gysy) = (0.6,0.2)

ay; (Go1)) = (0.6,0.1),  ay,(Gorz)) = (0.5,0.2), ay,(Gysy) = (0.4,0.1)

ay,(Go1y) = (0.8,0.2),  ay,(Go(2)) = (0.7,0.3), oy, (Gogs)) = (0.6,0.3)

ay; (Go1)) = (0.7,0.3),  ay;(Gorz)) = (0.4,0.2), ay;(Gysy) = (0.5,0.5)

vy (Go1)) = (0.8,0.1),  ay,(Gorz)) = (0.6,0.2), ay,(Gysy) = (0.4,0.3)

ay,(Go)) = (0.2,0.2), ay,(Gy2)) = (04,0.3), ay,(Gyz)) = (0.3,0.6)

ayy(Go1)) = (0.8,0.2), ay;(Go2)) = (0.6,0.1),  ay;(Gy(z)) = (0.5,0.1)

ay, (Goy) = (0.9,0.1),  ay,(Go2y) = (0.3,0.1),  ay,(Gyz)) = (0.4,0.5)
ay,,(Ge1)) = (0.4,0.1),  ay,,(Go(2)) = (0.6,0.4), ay,,(Gos)) = (0.3,0.5)
With the IFCA operator (1.188), we can calculate the overall evaluation informa-

tion corresponding to each project:

IFCA (ay, (G1), ay, (G2), ay, (G3)) = (0.82,0.16)
IFCA (ay, (G1), ay, (Ga), ay, (G3)) = (0.77,0.16)
IFCA (ay, (G1), ay, (Ga), ay, (G3)) = (0.53,0.13)
IFCA (ay, (G1), ay, (G2), ay, (G3)) = (0.71,0.26)
IFCA (ay, (G1), ay, (Ga), ay, (G3)) = (0.56,0.28)
IFCA (ay, (G1), ay, (G2), ay, (G3)) = (0.65,0.19)
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IFCA (ay, (G1), oy, (G2), ay, (Gs)) = (0.33,0.31)

IFCA (v, (G1), oy, (G2), ay, (Gs)) = (0.66,0.12)

IFCA (ay, (G1), ay, (G2), ay, (G3)) = (0.69,0.14)
IFCA (ay,,(G1), vy (G2), ay,, (G3)) = (0.49,0.28)

Finally, we can rank the above IFNs by using the method presented in Definition
1.1.3:

(0.82,0.12) > (0.77,0.16) > (0.69,0.14) > (0.66,0.12) > (0.65,0.19)
> (0.71,0.26) > (0.53,0.13) > (0.56,0.28) > (0.49,0.28) > (0.33,0.31)

Hence, the ranking of the ten projects Y¥; (i = 1,2,---,10) is:
Yi-=Yo-Yy>=Ys>Ys =Y, >=Ys>Ys > Yo~ Yr

If we use the IFCG operator (1.196) to calculate the overall evaluation information
corresponding to each project, then

IFCG (ay, (G1), ay, (Ga), ay; (G3)) = (0.81,0.14)
IFCG (ay,(G1), ay, (Ga), ay, (G3)) = (0.76,0.17)
IFCG (ay, (G1), ay, (Ga), ay, (G3)) = (0.51,0.14)
IFCG (ay, (G1), ay, (Ga), ay, (G3)) = (0.69,0.26)
IFCG (ay, (G1), ays (Ga), ay, (G3)) = (0.52,0.31)
IFCG (ay, (G1), oy, (Ga), oy, (G3)) = (0.60,0.19)
IFCG (ay, (G1), ay, (Ga), ay, (G3)) = (0.31,0.35)
IFCG (ay, (G1), av, (Ga), av, (G3)) = (0.63,0.13)
IFCG (ay, (G1), ay, (Ga), ay, (G3)) = (0.49, 0.20)

IFCG (ay,, (G1), avyy (G), ayyy (G3)) = (0.46,0.35)

Thus the ranking of the above IFNs is:
(0.81,0.14) > (0.76,0.17) > (0.63,0.13) > (0.69,0.26) > (0.60, 0.19)
> (0.51,0.14) > (0.49,0.20) > (0.52,0.31) > (0.46,0.35) > (0.31,0.35)
and then the ranking of the ten projects Y; (i = 1,2,---,10) is:
Yi=-Yor-Y-Ya-Ys =Yz =Yy =Ys =Yoo =Y

From the above numerical results, we know that the ranking results by using the
IFCA and IFCG operators are slightly different, but both the operators get the same
best project Y.
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1.7 Induced Generalized Intuitionistic Fuzzy Aggregation Op-
erators

Based on Definition 1.6.1 and the idea of order induced aggregation (Yager, 2004a;
2003a, Yager and Filev, 1999), we can utilize the Choquet integral to develop some
generalized aggregation operators for IFNs:

Definition 1.7.1 (Xu and Xia, 2011)  An induced generalized intuitionistic fuzzy
correlated averaging (IGIFCA) operator of dimension n is a function IGIFCA: 6™ —
©, which is defined to aggregate the set of second arguments of a list of 2-tuples
((V1,01),(Va,a2), -+ ,(Vp,ay)) according to the following expression:

IGIFCA ((V1,01), (Va,a2) -+, (Vy, o))
= ((C(Aa(n) — C(Ag)) 1y ® (C(Ag(2)) — C(Ao1))) (g
&+ (((Aotr) = ClAauor ) (1.200)

where A > 0, V; in 2-tuples (V;, ;) is referred to as the order-inducing variable and

«; as the argument variable, o(4): {1,2,--- ,n} — {1,2,---,n} is a permutation such
that va'(l) = VU(Q) Z ez vo(n)v Aa’(i) = {aa(l)vao@)v o aaa'(i)} when ¢ > 1 and
Ao(o) = @

According to Zhao et al (2010), we can get
IGIFCA ((V1,a1) ,(V2,a2) -+, (Vy, o))

n 1/
— <1 _ H(l _ ’ulég(i))q(Aa(i))C(Aa(i—l))> \

=1

i=1

n 1/X
- (1 Io-a- uw»w“f‘w)<<Av<i—l>>> (1.201)

Especially, if there exist two 2-tuples (V;, ;) and (V, ;) such that V; = V;, then
we can replace the arguments of the tied 2-tuples by the average of their arguments,
i.e., replace a; and a; by (a; @ «;)/2. If k items are tied, then we replace these by k
replica’s of their average.

In the case where Vg(l) > VU(Q) = 2 Vg(n) and Qp(1) Z Qg(2) 2 2 Og(n)s
the IGIFCA operator becomes the generalized intuitionistic fuzzy correlated averaging
(GIFCA) operator (Xu and Xia, 2011):

GIFCA (a1, a9, -+ ,an)
= ((C(Aa(n) — C(Ae)) 1y ® (C(As(2)) — ((Aon))) 2

1/
©---D (C(Ao(n)) - C(Aa(n—l)))ag(n))
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1/X
- H #%(]) (Ao())—C(Ac(i—1))
j=1
1/A
1= [ 1=J] (= (0 = va, ;)N A0 A=) (1.202)
j=1

where o, ;) is the j-th largest of a; (i = 1,2,--- ,n).
We can easily prove that the IGIFCA operator is commutative, monotonic, bounded,
and idempotent, which are presented as follows:
Theorem 1.7.1 (Xu and Xia, 2011) (Commutativity) If ((Vy(1), @0(1)),(Ve(2)s
aa(2)>a ) <VU(’I’L)? aa(n)>) is aly permutation of (<V1a 0¢1> ) <v27 O[2> P <V7L7 O[n>)7
then
IGIFCA (<V1, Ck1> s <VQ7 a2> gty <Vn7 an>)
= IGIFCA ({Vo(1), @(1)) s (Vo2): Qo))+ 5 (Von)s Qo(m))) (1.203)
Theorem 1.7.2 (Xu and Xia, 2011)(Monotonicity) Let ((V1,a1), (Va,a2), -,
(Vs o)), ((V1,41), (Va, G2, -+, (Vi, ) be two sets of 2-tuples, such that o <
Qi, 1 =1,2,--- ,n. Then
IGIFCA (<V1, Ck1> s <V27 a2> gty <Vn7 an>)
< IGIFCA (Wl, a1> , <%, a2> e <©m an>) (1.204)

Theorem 1.7.3 (Xu and Xia, 2011)(Boundedness) Let o~ = (min(uy, ), max(va;)),
J J

ot = (max(fia, ), min(v,, ). Then
j J :

< IGIFCA ((Vi, 1), (Va,a), -+, (V) < at (1.205)

Theorem 1.7.4 (Xu and Xia, 2011) (Idempotency) Ifo; = a (i =1,2,---,n),
then
IGIFCA (<V17 OZ1> 5 <V2, Ck2> Tty <Vn, Ckn>) =« (1206)

Especially, if A = 1, then Eq.(1.201) reduces to

IIFCA (<v17 CV1> ) <V27 O[2> [ <vn7 an>)

= (C(As(1)) — C(As0))) o1y ® (C(As(2)) — C(As(1)))Xo(2)
© - D (C(Agn)) = C(Ao(n-1))) %% (n)

s )€Co ) =C(Aati-n) . C(Au(iy)—¢(Aiiry)
( 1 _ Ma,( ) (4) (i—=1) , H (Vaa(i)) (4) (i—1) > (1207)
=1 =1
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which we call an induced intuitionistic fuzzy correlated averaging (IIFCA) operator
(Xu and Xia, 2011).

Furthermore, if V (1) 2 Vy2) 2 -+ 2 Vi, and ag1) 2 ap2) 2 0 2 Qo(n)s
then the ITFCA operator (1.207) becomes the IFCA operator (Xu, 2010c):

IFCA (a1, g, ,ay)
= (C(As1)) — C(As(0))) o) @ (((Asi2)) — C(As1))) X (2)
SERR (C(Aa(n)) - C(Ao(n—l)))acr(n)

- ) $(Ar)=€Artn) - (Ao 1) =C(Anis-1)
H U(J) &) G-n) H(Vag(j)) ) G-1 (1.208)

Jj=1

where a;) is the j-th largest of a; (i =1,2,---,n).
In the case where A = 0, we have

nrCG (<V1, 0¢1> ) <V27 O[2> 3T <V7L7 O[n>)
_ (ao(l))C(Ao(l))*C(Aa(o)) ® (aU(Q))C(Ao(z))*C(Ao(l)) R ® (ao(n))C(Ao(n))*C(Aa(n—l))

= <H (B ) A7) g T (1 - V%(i))C(A”(i))qA"“‘”) (1.209)

i=1 =1

which is called an induced intuitionistic fuzzy correlated geometric (IIFCG) operator
(Xu and Xia, 2011).

Especially, if VU(l) > VG-(Q) =2 Va(n and Qp(1) Z Qg(2) 2 2 Qg(n)s then
the ITFCG operator (1.209) reduces to the IFCG operator (Xu, 2010c):

IFCG (a1, g, -+ ,a)
_ (aa(l))C(AU(l))_C(Aa(O)) ® (aa(2))C(Ag(2))—C(Aa(1)) R ® (ao_(n))C(Aa(n))_C(Aa(nfl))

n

_ H (Iu%(j))C(Aau))*C(A(,(j_n)7 1 H (1 _ V%(j))C(A,(j))fq(Aa(j_l)) (1.210)
Jj=1 j=1

where a,(;) is the j-th largest of o; (i = 1,2,--- ,n).

With the results as discussed above, we can now introduce a method for decision
making based on the IGIFCA operator (Xu and Xia, 2011):

Assume that there is a decision making problem with a collection of alternatives
Y = {Y1,Ys,---,Y,} and a set of the states of nature, G = {G1,Ga, -+ ,G,,}. If
the alternative Y; is selected under the state G, then «;; is the payoff value which is
denoted by IFNs. To get the optimal alternative, we can follow the following steps:

Step 1 Calculate the correlations between the states of nature using the Choquet
integral.
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Step 2 Calculate the inducing variables matrix V = (Vy;), ..
Step 3 Utilize Eq.(1.201) to get the expected result C; for the alternative Y;:

C; =IGIFCA ((Vi1, ai2) , (Vi2, a62) s -+, (Vim, Qim))
= ((C(Gau)) — ((Go(0) @) @ (C(Go(2) = C(Co@)) Aoy & -

/A
(Com)) — CCrton))my ). (1211)

where A > 0, 0(j): {1,2,---,m} — {1,2,--- ,m} is a permutation such that V;, ) >
Vie2) 2+ 2 Vig(m)-

Step 4 Get the priority of C; according to the ranking method of IFNs, and
then generate the ranking of the alternatives Y; (i =1,2,---  n).

We now use an example given by Merigé and Casanovas (2009) to illustrate the

method developed above:
Example 1.7.1 (Xu and Xia, 2011)  Assume that an investor wants to invest some
money in an enterprise in order to get the highest possible profit. Initially, he considers
five possible alternatives: O Y] is a computer company; @ Y5 is a chemical company;
® Y3 is a food company; @ Yy is a car company; and & Y5 is a TV company. In
order to evaluate these alternatives, the investor has brought together a group of
experts. This group considers that the key factor is the economic environment in the
global economy. After careful analysis, they consider four possible situations for the
economic environment: @ Gy : Negative growth rate; @ G : Low growth rate; @
G3 : Medium growth rate; and @ Gy : High growth rate.

The expected results of evaluations, depending on the situation G; that occurs
and the alternative Y; that the investor chooses, are given as IFNs a;; = (5, Vij),
where 11;; denotes the degree that the alternative Y; satisfies the situation G, and
v;; denotes the degree that the alternative Y; does not satisfy the situation G;. The
results are shown in Table 1.28:

Table 1.28 Payoff matrix (Xu and Xia, 2011)

Gy G2 G3 Gy
vi (0.5,0.3) (0.1,0.6) (0.5,0.4) (0.3,0.5)
Ya (0.6,0.1) (0.3,0.6) (0.4,0.3) (0.6,0.3)
Y3 (0.5,0.1) (0.4,0.5) (0.3,0.2) (0.4,0.4)
Ya (0.8,0.1) (0.2,0.5) (0.7,0.1) (0.2,0.4)
Ys (0.6,0.3) (0.6,0.2) (0.5,0.3) (0.5,0.2)

Next, we use the method developed above to get the ranking of the companies:
Step 1 Assume that the weights of the situations have correlations with each
other, as shown below:

() =0, (({G1}) =03, C({G2}) =02, C({Gs}) =04, (({Ga}) =01
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C({G1,Ga}) = 0.6, (({G1,G3}) = 0.5,
C({G2,G4}) = 0.5,
C{G1,G2,G4}) =038,

(({G1,G4}) =04, (({G2,G3}) =0.5
(({G5,G4}) = 0.6, (({G1,G2,G3}) =07
(({G1,G5,Ga}) =0.7, (({G2,G3,Ga}) =09

C({G1,G2,G3,G4}) =1.0

Step 2 As the attitudinal character is very complex because it involves the
opinion of different members of the board of directors, the experts may use order-
inducing variables to represent it. The results are shown in Table 1.29:

Table 1.29 Inducing variables (Xu and Xia, 2011)

Gy G2 G3 Gy
Y1 17 15 22 12
Yo 15 22 25 13
Y3 24 20 22 15
Ya 16 21 25 28
Ys 18 26 23 21

Step 3 With this information, we can aggregate the expected result for each
state of nature using Eq.(1.211). Table 1.30 shows the results which are different
when the parameter A changes:

Table 1.30 Aggregated results

A=1 A=2 A=5 A=10

1 (0.3779,0.4507) (0.3998,0.4457) (0.4399,0.4295) (0.4667,0.4047)
Co (0.5025,0.2581) (0.5108,0.2517) (0.5350,0.2330) (0.5607,0.2053)
Cs (0.4142,0.2402) (0.4183,0.2313) (0.4320,0.2064) (0.4508,0.1772)
Cy (0.5735,0.1862) (0.6047,0.1777) (0.6582,0.1573) (0.6925,0.1376)
Cs (0.5324,0.2352) (0.5337,0.2344) (0.5389,0.2316) (0.5493,0.2266)

Step 4 According to the ranking method of IFNs in Section 1.2, we can get the
rankings of the alternatives in Table 1.31:

Table 1.31 Rankings of the alternatives

A Rankings

1 Ys>-Ys =Y >-Ys -V
2 Yi-Ys =Y >=Y3>Y]
5 Yi-Ys =Y >=Y3>Y]
10 Ys>-Yo Y5 >-Ys =Y
0 Ys - Yo -Ya>Y3>Y1

As we can see, as the parameter A of the aggregation operator used changes, the
rankings of the alternatives may be different, which reflects the indeterminacy of the
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final decision. The investor can decide to select the desirable alternative in accordance
with his interest and actual needs.

Xu and Xia (2011) also give some induced intuitionistic fuzzy aggregation opera-
tors based on the Dempster-Shafer belief structure.

The concept of Dempster-Shafer belief structure was provided by Dempster (1968)
and Shafer (1976) as follows:
Definition 1.7.2 (Dempster, 1968; Shafer, 1976) A Dempster-Shafer belief struc-
ture defined on a space X consists of a collection of n non-null subsets B; (j =
1,2,---,n) of X, called focal elements, and a mapping ( called the probability as-
signment, defined as (: 2% — [0, 1] such that

(1) ¢(By) € 0.1
ODWICHESE

(3) C(4) = 0, VA # B;.

As mentioned above, a main characteristic of the Dempster-Shafer belief structure
is that it can represent some traditional cases of uncertainty. If it consists of n focal
elements such that B; = {x;} in which each focal elements is a singleton, then
we can evidently make decision in a risk environment with B; = P; = prob {z;}.
Another special case is that when the belief structure consists of only one focal element
B; which comprises all the states of nature (By = X = {z1,22, -+ ,2Zn}), where
¢ (X) = 1. Then we have to make decision in ignorance environment.

Definition 1.7.3 (Xu and Xia, 2011) Let ((Vi,a1),{Va,a2), -+ ,{Vp,an)) be
a collection of 2-tuples on X, where V; is the order-inducing variables and «; (i =
1,2,---,n) are the aggregated arguments in the form of IFNs, and

M = (Mg| My = {{(V;,a;)|x; € Dy,i=1,2,--- ;n},k=1,2,---,7)
= ((Vi,o11) ,(Var,a01) -, (Vg,ag01) 5 (Vi ar)
(Var,azr) - (Vg g,r))
are a collection of 2-tuple arguments with r focal elements, By (k =1,2,---,7). A

BSI-GIFOA operator of dimension 7 is a function BSI — GIFOA: 8" — 6 defined by

1\ 22 1/22
B 6B <(§1 (wjkﬂj’%)) )
2/ M1 1/Az
<k L (C(Bk) (jglgl (wﬁ?ﬁ))A : )) (1.212)

q
where _651 (wjkﬁj,i) = wikBi B wafol & B w kB, and A > 0, Ay > 0, Wy, =
]:

BSI — GIFOA (M)

Il
I D=

| P
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(W1k, Wok, * 7quk)T is the weighting vector for the k-th focal element By such that
dk
ijk =landwj; €[0,1],i=1,2,-- -, qx, where g is the number of elements in By,
j=1

Bk is the o), value of the pair (V;i, ayi) having the j-th largest Vi, (i = 1,2, -+, qx),
Vik is the order-inducing variable, a;j is the argument variable in the form of IFNs,
and ((By) is the basic probability assignment.

By the operational laws of IFNs, the BSI-GIFOA operator (1.212) can be trans-
formed into the following form (Xu and Xia, 2011):

BSI — IFOA (M)

A2/A1 ¢(Br) 1/ 22
T qk

= [1=T] |- 1-J@—m ) ,
k=1 j=1

Az2/A1 ¢(Bx) e
T qk
1= [1=J] | 1-[1-JJ A==, ) ) ;AL X>0

k=1 j=1

(1.213)

Let b= {i,k |k=1,2,---,r; i=1,2,--- g }. Motivated by Merigé and
Casanovas (2009) and Zhao et al. (2010), we can show that the BSI-GIFOA op-
erator has some good properties, such as commutativity, monotonicity, boundedness,

and idempotency.
Theorem 1.7.5 (Xu and Xia, 2011) (Commutativity) If M* = {(V}.,al)|i, k€ U}
is any permutation of M = {(V, au)|i, k € U}, then

BSI — GIFOA (M) = BSI — GIFOA (M*) (1.214)

Theorem 1.7.6 (Xu and Xia, 2011)(Monotonicity)  Let M = {(V, aur)|i, k € U}
and M = {(Vi, &) i,k € G} If Vi, k €0, ag < dig. Then

BSI — GIFOA (M) < BSI — GIFOA (M) (1.215)

Theorem 1.7.7 (Xu and Xia, 2011)(Boundedness) Let o~ = (.Iilirzls(/iaik%
1,kE{

+ _ .

max (Vay, ), o = (maX (fa, ), min (va,,)). Then
a~ < BSI— GIFOA (M) < ot (1.216)

Theorem 1.7.8 (Xu and Xia, 2011)(Idempotency) If Vi,k € U, aur = «, then

BSI — GIFOA (M) = « (1.217)
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Next, we discuss some special cases of the BSI-GIFOA operator (Xu and Xia,

2011):
(1) If Ay = A2 = A, then it follows from Eq.(1.210) that

msi-moaan = (3, (40 £, (o))

k=1

. 1/A
s k
- | (- T )
k=1 j=1
1/X
7 gk
1= (1= [T TIQ - (@ = v, ) )=oncBe) (1.218)
k=1j=1

(2) If Ay = A2 = 1, then Eq.(1.212) becomes the BSI-IFOAA operator:

BSI — IFOAA (M) = & (Cﬁ%ﬂj%lﬂ%kﬂﬂ))

k=1

— l_ﬁH 1—pu Jk w]kC(Bk) HH

k=17=1 k=17=1

kaC Bk)
(1.219)

(3) If A1 =0 and Ay = 1, then we have

BSI—IFOAG (M) = ké:al (g(Bk)j‘i_él (5j,gk)>

. o ¢(Bk) 0 ¢(Bk)
= 1_1_[ (I_H (“ﬁjk)wjk) ’H ( H (L=, UJ]k)
k=1 Jj=1

k=1 j=1
(1.220)

which we call a BSI-IFOAG operator.
(4) If Ay =1 and Ay = 0, then we have

¢(Bk)
T qk
BSL—HNDGA(AJ):k_lCél@ﬁw%kD
C(B) . ¢(By)

T qk 4k
1- H (l_ﬂ'ﬂjk)wjk ’I_H I_H (Vﬁjk)wjk
j=1 k=1 j=1

k=1
(1.221)

which we call a BSI-IFOGA operator.
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(5) If A1 =0 and Ay = 0, then we have

ﬂ?ﬁ’“))C(Bk))

ﬁ ﬁ (15,) ) 1] H (1= vy, )6
ik

k=1j=1 k=1j=1

BSI - IFOGG (M) = & <(% (

k=1 Jj=1

(1.222)

which we call a BSI-IFOGG operator.

Xu and Xia (2011) apply the BSI-GIFOA operator to decision making. As-
sume that there is a decision making problem with a collection of alternatives Y =
{Y1,Ya2,---,Y,} and a set of the states of nature, G = {G1, G2, -+ , Gy, }. If the alter-
native Y; is selected under the state G, then oy; is the payoff value which is denoted
by IFNs. The knowledge of the state G; (j = 1,2,---,m) is captured in terms of a
belief structure ¢ with the focal elements By, Bs, - - - , B,., each of which is associated
with a weight ¢ (By). The problem is to select the alternative with the best result.
To do so, Xu and Xia (2011) proposed a method based on the BSI-GIFOA operator,
which involves the following steps:

Step 1 Calculate the attitudinal character of the decision maker to determine
the inducing values matrix V = (Vi;)nxm.-

Step 2 Find My, = {(Viy,i;)|Gj € By, j=1,2,---,m} = {(Vi, o),
<Vzk, > s (VS alk)}, the set of payoff values that are possible if we select the
alternatlve Y; and the focal element Bj occurs, where ¢ is the number of elements

in Bk.

Step 3 Utilize one of the existing methods (Xu, 2005a) to determine the weight

T

vector W,, = (wék), wéi), e ,wéZ’“)> for aggregating the g arguments in M;y.

Step 4 Calculate the aggregated payoff value, Vi, for Y; when the focal element
By, occurs:

1/)\1
Vi, = (wgi) B @w@EPM e - @ wggw(ﬂ;‘jk))*l) (1.223)

where A\; > 0, ﬂg,z) is the aEQ value of the pair <V527a52> with the j-th largest of

V(l) (l = 172a e an)-
Step 5 For each alternative Y;, utilize the BSI-GIFOA operator (1.212) to cal-
culate the aggregated payoff value Cj:

Ci = (¢(B1) (Vi)™ @ ((B2)(Vi2) > & )(Vir)

_ <I§1 (g(Bk)<’“1< (ﬂZ WM)) C AL >0 (1.224)

)l/)\z
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Step 6 Select the alternative Y; with the largest C; as the optimal one.

Below we use the problem in Example 1.7.1 to illustrate the application of the
BSI-GIFOA operator in decision making (Xu and Xia, 2011):
Example 1.7.2 In Example 1.14, assume that the states of nature representing
the different economic situations are evaluated by the following world growth rates:
@ Gy : Strong recession; @ Gy : Weak recession; @ G5 : Growth rate near zero;
@ G4 :Very low growth rate; ® G5 : Low growth rate; ® Gg : Medium growth
rate; 0 Gy : High growth rate; and (8) Gg : Very high growth. The possible results,
depending on the future of nature, are represented as IFNs in Table 1.32:

Table 1.32 Payoff matrix (Xu and Xia, 2011)

G1 Gz G3 G4 G5 GG G? GS
y:  (0.3,04) (0.7,0.1) (0.4,04) (0.8,0.2) (0.4,0.5) (0.5,0.2) (0.1,0.5) (0.5,0.4)
Yo (0.5,0.3) (0.5,02) (0.7,0.1) (0.6,0.1) (0.6,0.2) (0.7,0.2) (0.3,0.6) (0.4,0.3)
Yz  (0.4,0.5) (0.6,0.1) (0.50.1) (0.6,0.2) (0.7,0.3) (0.8,0.1) (0.4,0.5) (0.3,0.2)
Y, (0.3,04) (0.4,0.2) (0.8,0.1) (0.8,0.1) (0.3,04) (0.7,0.1) (0.2,0.5) (0.7,0.1)
Ys (0.5,0.3) (0.4,06) (0.6,0.3) (0.7,0.1) (0.8,0.1) (0.3,0.4) (0.6,0.2) (0.5,0.3)

Some probabilistic information about the states of nature is represented by the
following belief function (:

C(B1) = C({G1,G5,Ge,G7}) =04, ((B2) =(({G1,G35,Gs}) = 0.3

((Bs) = ({G2,G3,G4}) = 0.3

Next, we use the method above to select the best alternative:

Step 1 Suppose that the induced aggregation variables are represented in Table
1.33:

Table 1.33 Inducing variables (Xu and Xia, 2011)

G1 Gz Gg G4 G5 GG G? GS
Y1 25 16 24 18 20 13 19 14
Y2 18 34 22 12 24 16 20 26
Y3 13 21 28 22 19 25 16 26
Ya 20 24 14 31 27 25 19 18
Ys 25 16 23 30 15 21 18 26

Step 2 Find My, = {(Vij,aiy)|Gj € B} = {(Vi,ah),(Vi,a3),- -,
(Vi o)}

Y : My, = {(25,(0.3,0.4)), (20, (0.4,0.5)) , (13, (0.5,0.2)} , (19, (0.1,0.5))}

My = {(25,(0.3,0.4)) , (24, (0.4,0.4)) , (14, (0.5, 0.4))}
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M3 = {(16,(0.7,0.1)), (24, (0.4,0.4)), (18, (0.8,0.2)) }
Yo 1 My = {(18,(0.5,0.3)), (24, (0.6,0.2)) , (16, (0.7,0.2)) , (20, (0.3,0.6)) }
Mse = {(18,(0.5,0.3)), (22, (0.7,0.1)) , (26, (0.4,0.3)) }
Mag = {(34,(0.5,0.2)) , (22, (0.7,0.1)) , (12, (0.6,0.1))}
Y3 1 M3 = {(20,(0.4,0.5)), (19, (0.7,0.3)), (25, (0.8,0.1)), (13, (0.4,0.5)) }
My = {(13, (0.4,0.5)) , (28, (0.5,0.1)), (26, (0.3,0.2))}
Mss = {(21,(0.6,0.1)), (28,(0.5,0.1)) , (22, (0.6,0.2)) }
Yy My = {(20,(0.3,0.4)), (27,(0.3,0.4)), (25, (0.7,0.1)), (19, (0.2,0.5)) }
Mys = {(20,(0.3,0.4)), (14, (0.8,0.1)), (18, (0.7,0.1)) }
Mg = {(24,(0.4,0.2)) , (14, (0.8,0.1)) , (31, (0.8,0.1))}
Y5 : M5, = {(25,(0.5,0.3)),(15,(0.8,0.1)), (21,(0.3,0.4)) , (18, (0.6,0.2)) }
Mse = {(25,(0.5,0.3)), (23, (0.6,0.3)) , (26, (0.5,0.3)) }
Mss = {(16, (0.4,0.6)) , (23, (0.6,0.3)), (30, (0.7,0.1)) }

Step 3 Utilize the normal distribution based method (Xu, 2005a) to determine

the weight vector W,, with g elements to aggregate the g, arguments in Mj:

Step 4 Calculate the aggregated payoff by using Eq.(1.223).

W5 = (0.4, 0.4, 0.2)"

presented in Table 1.34 when Ay = 0,1, 2,5, 10:

Via
Vis

Vaz
Vas
Va1
Va2

Vi
Vi
Vis
V51
Vs2

Table 1.34
A1 =0
(0.2908, 0.4198)
(0.3728, 0.4000)
(0.5903, 0.2700)
(0.4846, 0.3673)
(0.5232, 0.2260)
(0.5933, 0.1414)
(0.5825, 0.3402)
(0.3898, 0.2366)
(0.5578, 0.1414)
(0.3567, 0.3467)
(0.5123, 0.2347)
(0.6063, 0.1414)
(0.4887, 0.2782)
(0.5186, 0.3000)
(0.5885, 0.3079)

W, = (0.3, 0.3, 0.2, 0.2)T

The results are

Aggregated payoffs for all Vi, (i =1,2,3,4,5; k=1,2,3)

A =1
(0.3429, 0.3893)
(0.3847, 0.4000)
(0.6634, 0.2297)
(0.5329, 0.3016)
(0.5616, 0.1933)
(0.6102, 0.1320)
(0.6495, 0.2647)
(0.4067, 0.1821)
(0.5627, 0.1320)
(0.4424, 0.2759)
(0.6118, 0.1741)
(0.6896, 0.1320)
(0.5596, 0.2421)
(0.5218, 0.3000)
(0.6134, 0.2221)

A =2
(0.3616, 0.3815)
(0.3900, 0.4000)
(0.6770, 0.2246)
(0.5463, 0.2913)
(0.5722, 0.1898)
(0.6142, 0.1313)
(0.6627, 0.2533)
(0.4137, 0.1771)
(0.5640, 0.1313)
(0.4763, 0.2644)
(0.6327, 0.1686)
(0.7034, 0.1313)
(0.5789, 0.2371)
(0.5229, 0.3000)
(0.6188, 0.2124)

M =5

(0.3990, 0.3538)
(0.4085, 0.4000)
(0.7105, 0.2093)
(0.5805, 0.2666)
(0.6044, 0.1788)
(0.6277, 0.1297)
(0.6961, 0.2219)
(0.4352, 0.1646)
(0.5686, 0.1292)
(0.5597, 0.2304)
(0.6775, 0.1540)
(0.7355, 0.1292)
(0.6315, 0.2212)
(0.5272, 0.3000)
(0.6340, 0.1888)

A1 =10

(0.4324, 0.3093)
(0.4345, 0.4000)
(0.7410, 0.1877)
(0.6148, 0.2444)
(0.6406, 0.1614)
(0.6476, 0.1256)
(0.7280, 0.1855)
(0.4589, 0.1507)
(0.5760, 0.1256)
(0.6212, 0.1887)
(0.7123, 0.1372)
(0.7619, 0.1256)
(0.6885, 0.1966)
(0.5370, 0.3000)
(0.6517, 0.1638)



98 Chapter 1 Intuitionistic Fuzzy Information Aggregation

Step 5 Let Ay =1 and Ay = 0. Calculate the expected value of each alternative

by using Eq.(1.224). The results are given in Tables 1.35-1.36, respectively:

Table 1.35 Aggregated payoffs for all Y; (1 = 1,2,3,4,5) with A2 =1

A1 C1 Co Cs Cy Cs

0 (0.4202, 0.3624) (0.5310, 0.2384) (0.5240, 0.2344) (0.4891, 0.2357)  (0.5295, 0.2934)
1 (0.4729, 0.3350) (0.5659, 0.2060) (0.5614, 0.1920)  (0.5804, 0.1926)  (0.5659, 0.2516)
2 (0.4867, 0.3301) (0.5754, 0.2017) (0.5700, 0.1868)  (0.6030, 0.1873)  (0.5757, 0.2462)
5 (0.5196, 0.3136) (0.6023, 0.1903) (0.5934, 0.1725) (0.6558, 0.1716)  (0.6037, 0.2311)
10 (0.5519, 0.2876) (0.6327, 0.1767)  (0.6180, 0.1550)  (0.6966, 0.1518)  (0.6372, 0.2113)

Table 1.36 Aggregated payoffs for all ¥; (i = 1,2,3,4,5) with A2 =0

A1 C1 Cs Cs Cy Cs

0  (0.3874, 0.3721) (0.5269, 0.2634) (0.5097, 0.2540)  (0.4662, 0.2564) (0.5260, 0.2938)
1 (0.4326, 0.3487)  (0.5638, 0.2216) (0.5406, 0.2021) (0.5570, 0.2047)  (0.5633, 0.2542)
2 (0.4465, 0.3441) (0.5738, 0.2158) (0.5482, 0.1955) (0.5830, 0.1978)  (0.5728, 0.2494)
5 (0.4778, 0.3286) (0.6015, 0.2012) (0.5690, 0.1778)  (0.6433, 0.1783)  (0.5989, 0.2364)
10 (0.5090, 0.3049) (0.6322, 0.1855) (0.5909, 0.1575) (0.6881, 0.1548) (0.6286, 0.2198)

Step 6 Select the best alternative with different values A1 and As, as listed in
Table 1.37:

Table 1.37 Rankings of the alternatives

Al Ao =0 Ao =1

0 Yor-Ys>=Ys =Yy Y1 Ys>-Yo =Yy Y5 - Y1
1 Yi-Yo-Ys>=Ys =Y Ys>=Ys-Yo-Ys =Y
2 Yo Yo -Y3 Y5 >-Y Yi-Ys Yo -Y5>-Y
5 Yo -Yo-Y3 Y5>~V Yi-Ys Yo -Y5 >V
10 Yi-Yo-Ys>=Ys =Y Ya-Ys =Yoo >-Ys =Y

As we can see from Table 1.37, with the change of the parameters A\; and g,
the rankings of the alternatives may be different. Thus, the investor can select the
desirable alternative according to his interest and actual needs.
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Chapter 2

Interval-Valued Intuitionistic Fuzzy
Information Aggregation

In many real-world decision problems the values of the membership function and the
non-membership function in an IFS are difficult to be expressed as exact numbers.
Instead, the ranges of their values can usually be specified. In such cases, Atanassov
and Gargov (1989) generalized the concept of IFS to interval-valued intuitionistic
fuzzy set (IVIFS), and define some basic operational laws of IVIFSs. Xu (2007h)
defined the concept of interval-valued intuitionistic fuzzy number (IVIFN), and gave
some basic operational laws of IVIFNs. He put forward an interval-valued intuition-
istic fuzzy weighted averaging operator and an interval-valued intuitionistic fuzzy
weighted geometric operator, and defines the score function and the accuracy func-
tion of IVIFNs. He further presents a simple ranking method for IVIFNs, based on
which an approach is proposed for multi-attribute decision making with intuitionistic
fuzzy information. Xu and Chen (2007a) define an interval-valued intuitionistic fuzzy
ordered weighted averaging operator and an interval-valued intuitionistic fuzzy hybrid
averaging operator. Xu and Chen (2007c) investigate an interval-valued intuitionistic
fuzzy ordered weighted geometric operator and an interval-valued intuitionistic fuzzy
hybrid geometric operator. Xu and Yager (2011) extended the IFBMs to accommo-
date interva-valued intuitionistic fuzzy environments. Zhao et al.(2010) developed
a series of generalized aggregation operators for IVIFNs. Xu (2010c) used Choquet
integral to propose some operators for aggregating IVIFNs together with their correl-
ative weights. All these aggregation techniques for interval-valued intuitionistic fuzzy
information are generalizations of the intuitionistic fuzzy aggregation techniques in-
troduced in Chapter 1.

2.1 Interval-Valued Intuitionistic Fuzzy Sets

Atanassov and Gargov (1989) defined the concept of interval-valued intuitionistic
fuzzy set:
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Definition 2.1.1 (Atanassov and Gargov, 1989) Let X be a fixed set. Then

A={{z,i5(2), 74(2))|x € X} (2.1)

is called an interval-valued intuitionistic fuzzy set (IVIFS), where fi;(x) C [0,1] and
vi(x) C [0,1], x € X, with the condition:

supfiz(z) +supvz(z) <1, ze€X (2.2)

Clearly, if inf ji (z) = supjiz(r) and inf 7 ;(z) = sup#;(x), then the IVIFS A
reduces to a traditional IF'S.

Atanassov and Gargov (1989) further gave some basic operational laws of IVIFSs:
Definition 2.1.2 (Atanassov and Gargov, 1989) Let A = {(x,/i;(2),7;(2))|z €
X}, Ay = {{z i, (2), 73, @) € X} and Ay = {{z, i, (2), 7, (2) = € X} be
three IVIFSs. Then

(1) A= {(@.74(@). iz(@)] = € X}

(2) A1 N Az = {{z, [min{inf i (z),inf iz, (z)}, min{sup fiz (z),sup fiz,(7)}],

[max{inf 75 (v),inf 7 (7)}, max{supi; (z),supvy, (v)}])|re X};

(3) A1 U Az = {(z, [max{inf i ; (z),inf fi 5,(7)}, max{sup i 5, (¥),sup fiz,(z)}],

[min{inf 73 (v),inf 75, (2)}, min{sup 73 (v)),sup vy, ()}])|r€ X},
(4) Ay + Az = {(z, [inf fiz () +inf fi g, (v) —inf iz (@) -infjig, (2),
sup iz, () + sup fiz, (x) — sup fig, (x) - sup fig, ()],
[inf 7z (v)-inf o4, (z),supig (z)-supig (z)])|z € X}
(5) A1~ Ay = {(z, [inf fig (2) - inffig, (z),sup fig, () -supfig, (z)],
[inf oz (v) +infig (z) —infig (z). infig (),
supvz, (z) +sup?y,(v) —supvg (z) -sup vz, (z)])| v € X}.

Considering the needs in applications, Xu and Chen (2007c) introduced other two
operational laws:

(6) M = {{a, [1 = (1 — inf iz (), 1 — (1 — sup iz (),

[(inf 75 (z))*, (sup 7 5(2))> ] >|lze X}, A>0;

(7) A = {{a, [(nf fo4(@))*, (sup fi3(2)),

[1—(1—infozz)* 1 -1 —supfiz(z) >|ze X}, A>0.

2.2 Operational Laws of Interval-Valued Intuitionistic Fuzzy
Numbers

According to Definition 2.1.1, the basic component of an IVIFS is an ordered pair,
characterized by an interval-valued membership degree and an interval-valued non-
membership degree of  in A. This ordered pair is called an interval-valued intuition-
istic fuzzy number (IVIFN) (Xu, 2007h).
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For convenience, an IVIFN is generally simplified as ([a,b],[c,d]) (Xu, 2007h),
where

[a,b] € [0,1],[c,d] € [0,1], b+d<1 (2.3)

and O is the set of all IVIFNs. Obviously, @* = ([1,1],[0,0]) is the largest IVIFN,
and &~ = ([0,0],[1,1]) is the smallest IVIFN.

In particular, if &3 = ([a1,b1], [c1,d1]) and &z = ([az, b2], [c2, d2]) are IVIFNs, then
dl = 5[2 if and Ol’lly if a] = az, bl = bQ, C1 = C9 and d1 = d2.

Similar to Definition 2.1.2, we introduce some operational laws of IVIFNs as fol-
lows:
Definition 2.2.1 (Xu, 2007h) Let @ = ([a,b],[c,d]), &1 = ([a1,b1],[c1,d1]) and
ao = ([ag, ba], [c2, d2]) be IVIFNs. Then

(1) o= ([C’ d}v [avbD§
(2) a1 A &2 = ([min{aq, as}, min{by, ba}], [max{cy,c2}, max{dy,da}]);
(3) a1 V &2 = ([max{ai,az}, max{by, b2}|, [min{cy,co}, min{dy,da}]);
(4) &1 ® @2 = ([a1 + a2 — a1a2,b1 + ba — b1y, [cic2, dida));
(5) ] ® g = ([alag,bleL [Cl 4+ co — c1e9,dy + dy — dldg]);
(6) Aa = ([1 — (1 —a)*,1—(1—=0b)*], [*,d*]), A > 0;

A

(7) & = ([, b, [1 = (1 —¢)*, 1— (1 —d)*]), A > 0.
Theorem 2.2.1 (Xu, 2007h)  All the operational results in Definition 2.2.1 are
IVIFNs.
Proof (1) Since & = ([a, b], [c,d]) is an IVIFN, & = (¢, d], [a, b]) satisfies the condi-
tion (2.3). Thus, & is an IVIFN.

(2) Since both & = ([a1,b1],[c1,d1]) and Go = ([az, ba), [c2, d2]) are IVIFNs, a;
and dag satisfy the condition (2.3), we have

[min{ay, as}, min{by, ba}] C [0, 1]
[max{c1,co}, max{di,ds2}] C [0, 1]

min{bh b2} + max{dl, d2} < 1

Then &; A aq satisfies the condition (6), i.e., &1 A &g is an IVIFN.
(3) Similar to (2), we can prove that &; V as is also an IVIFN.
(4) Since both &y and @g satisfy the condition (2.3), it follows that

a1 +az—araz =a1(l—a2)+ax 2a2>20, cica >0

b1 + by — b1by + dida < by + by — b1bsy + (1 — bl)(l — bg) =1
Therefore, the value of &1 @ éo is an IVIFN. In a similar way, (5) can be proven.
(6) Since 1 —(1—a)* > 0,¢* > 0and 1 — (1 —-b) +d* <1—(1-b) +(1-b)* =1,
the value of A& is an IVIFN.
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(7) can be proven similarly. This completes the proof.

Theorem 2.2.2 (Xu, 2007h) Let A, A1, A2 > 0. Then
(1) &1 ® a2 = G2 @ aa;

(2) & ® &g = G2 ®

(3) Ma1 @ a2) = Adg @ Aaw;

(4) (61 ® 42)* = 63 ® G35

(5) Ma® Aaa = (A1 + A2)@;

(6) aM @ at2 = aM e,

f

Proof (1) By (4) in Definition 2.2.1, we have

a1 @ az = ([ar + ag — araz, by + by — biba], [c1c2,d1da])
= ([az + a1 — azay,by + by — bgbl], [0201, dzdl])

=a2®aq
(2) According to (5) in Definition 2.2.1, we can get

[araz, b1ba], [c1 + c2 — cica,dy + do — did3))
[a2ay, bab1], [c2 + c1 — cocr,do + di — dady])

a1 ® g = (
= (

G2 ®
(3) It follows from (4) in Definition 2.2.1 that
a1 @ ag = ([a1 + a2 — arag, by + by — b1ba], [c1c2,d1d2])
According to (6) in Definition 2.2.1, we get

M@ @ ag) =([1—(1— (a1 +az—ara2)*, 1— (1= (b1 +ba—b1b2)*], [(c1¢2)*, (dida)™))
= (1 - (1—a)*1—a2)*, 1= (1= b) 1= b)Y, [(cre2), (drd2)™])
Also since
>‘6‘1 = ([1 - (1 - al))\a 1- (1 - bl))\]v [Ci\’di\])
>\612 - ([1 - (1 - a2))\a 1- (1 - b2))\]7 [C%’d%\])
we have
Ay D MG :([1 — (1 — a1)>‘ + (1 — a2)>‘ — (1 — (1 — 0,1))\)(1 — a2)>‘,
IT—(1=b) 4+1—(1=b)* = (1= (1=b)M(1 = (1—by)"],
[(c162)*, (drda) ™))
=([1 - (1 —a1)*(1—ax)*, 1= (1= b)) (1 —b2)"], [(crc2)*, (drd2)?])
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Thus
AMar @® a2) = Adq @ Aae

Similarly, we can prove (4).
(5) Since
A1y = ([1 - (1 - al))\lﬂ 1- (1 - bl))\l]v [ci\lvdi\l])
Aadiy = ([1 - (1 - al))\zﬂ 1- (1 - bl))\z]v [Ci\27di\2])

we can obtain

Mg &b = (2-(1—a)M —(1—a)® —(1—(1—a))1 -1 —-a)),
2 (b~ -b) (1 (b)) (- (b)), el )
= (1=(=a)™(1=a)*, 1= (1=b)* (1=b1)*], [(er) 2, (da)M1H72])
(1 (L= a2 L (1 b)), [fe) 5, (0]
= (A1 + X)d

In a similar way, (6) can be proven. The proof is completed.

2.3 Interval-Valued Intuitionistic Fuzzy Aggregation Opera-
tors

We now introduce, based on Definition 2.2.1, some operators for aggregating IVIFNs:
Definition 2.3.1 (Xu, 2007h) Let &; (j =1,2,---,n) be a collection of IVIFNs,
and let IIFWA : " — 6. If

IIFWAw(dl, Qg, - - ,dn) = w101 B wolig B -+ D wyly, (24)

where w = (w1, wa, - ,wy) T is the weight vector of &; (j=1,2,---,n), with w; €
n

0,1], j =1,2,--- ,n, and Y w; = 1, then the function IIFWA is called an interval-
j=1

valued intuitionistic fuzzy weighted averaging (IITFWA) operator. In particular, if

w = (1/n,1/n,---,1/n)T, then the IIFWA operator reduces to an interval-valued

intuitionistic fuzzy averaging (IIFA) operator:
IIFA(Gy, dg, -+ , (i) = i(dl DA DD ay) (2.5)
Definition 2.3.2 (Xu, 2007h)  Let IIFWG : O™ — O. If
LIFWG,, (@1, 2, ,0,) = 6 @ @82 @ --- @ @2r (2.6)

then the function ITFWG is called an interval-valued intuitionistic fuzzy weighted
geometric (IIFWG) operator. In particular, if w = (1/n,1/n,---,1/n)T, then the
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ITFWG operator reduces to an interval-valued intuitionistic fuzzy geometric (IIFG)

operator:
TIFG (611, &g, -+ 5 Gin) = (G ® Gy @+ - @ i) ™ (2.7)

Theorem 2.3.1 (Xu, 2007h) Let &; = ([ay,b)], [¢;,d;]) (4 ,n) be a
collection of IVIFNs. Then the aggregated value by using Eq.(2 ) is an IVIFN and

IIFWA,, (@1, g, - )= [ [1—- H 1—a;)*/,1— Hl b;) ﬁ f[
j=1 j=1

Jj=1

(2:8)

where w = (w1, ws, - - ,wn) is the weight vector of &; (j = 1,2,---,n), with w; €
[07]‘] (.7 = 1727"' ,TL) and ij =1.

Proof We prove Eq.(2.8) by using mathematical induction on n:
(1) When n = 2,
IIFWAW(OQ, Oég) = w10 P walia

According to Theorem 2.2.2, we can see that both wid; and wods are IVIFNs,
and the value of widy ® wady is an IVIFN. By the operational law (6) in Definition
2.3.1, we have

widr = ([1 = (1 —a1)“", 1= (L= b)), [, d7"])
wody = ([1 = (1 —a2)*?, 1 — (1 —b2)*?], [c5*,d5%])
Then

ITFWA,, (5[1, dg) =w10q D waliy
=(2-(1—-a)” = (1 —a2)”* = (1 = (1 —a1)*")(1 — (1 — a2)*?),
2 (1= bt (1 b — (1 (1= b)) (1= (1))
[c7¢5?, di" d3?])

=([1—=(1—a1)*" (1—a2)**, 1= (1=b1)*" (1 = b2)*?], [c]"c5?, dT" d57])

(2) Suppose that n =k, Eq.(2.8) holds, i.e.,

k k k
IFWA,, (61, a2, ax)= [ [1=]] @—a;)*, 1= @ =b)=|, |[] <" H

j=1 j=1 j=1
Then when n =k + 1, by (4) and (6) in Definition 2.3.1, we get

IIFWA,, (61, Ga, - -+, Gg1)
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k k
= [1-1T1 Q@ = ap) + (1= =anr)*) = (1= (1 = a))“" | 0= (1=aps1)+),
=1 j=1
k k
=T (1=0)“ + (1= (1 =bgr)*+)— [1-]] (1—- = (I =brs1) )|,
j=1 Jj=1
k+1 k+1
H CJ]’ H dj]
j=1 j=1
k41 k41 k41 k41
= {1-J]a-ap,1=JTa=b)= |, [ 1] <7 I 4"
j=1 j=1 j=1 j=1

i.e., when n =k + 1, Eq.(2.8) also holds.

From (1) and (2), Eq.(2.8) holds for any n. The proof is completed.

In particular, if a; =b; and ¢;=d, for all j=1,2,--- ,n,ie.,alla; (j=1,2,--- ,n)
reduce to IFNs, then the IIFWA operator reduces to an IFWA operator.

Similarly, we can prove the following theorem:
Theorem 2.3.2 (Xu, 2007h) The aggregated value by using Eq.(2.6) is also an
IVIFN, and

MFWG,, (61, d, -+, dn)= | [ ] a5 ,H H(1—cj)“f,1— (1—dj)~s
j=1  j=1
(2.9)
In particular, if all &; (j =1,2,---,n) reduce to IFNs, then the IIFWG operator

reduces to the IFWG operator.

Exampe 2.3.1 Suppose that a; = ([0.3,0.5], [0.2,0.3]), &2 = ([0.4,0.7], [0.1,0.2]),
as = ([0.1,0.2], [0.7,0.8]), a4 = ([0.5,0.7], [0.1,0.3]), and w = (0.2,0.3,0.1,0.4)T
the weight vector of &; (j =1,2,3,4). Then

ITFWA,, (a1, g, &g, d4) =([1 — (1 —0.3)%2(1 — 0.4)°3(1 — 0.1)°* (1 — 0.5)%4,
1—(1-0.5%%1-0.7)%3(1-0.2)%1 - 0.7)°4],
[0.292%0.19% % 0.7%1 % 0.194,0.3%2 x 0.2°3 x 0.8%1 x 0.3%4))
=([0.4009, 0.6335], [0.1395,0.2930))

ITFWG,, (@1, G, a3, dg) =([0.3%2 % 0.4%3 % 0.1%1 % 0.5%4,0.5%2 x 0.7%-3 % 0.2°1 % 0.7°4],
[1—(1-0.2)%2%(1-0.1)"%1 - 0.7)%(1 —0.1)°4,
1—(1-0.3)%(1-0.2)°3(1 - 0.8)°%(1 - 0.3)°4)
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=([0.3594, 0.5774], [0.2124,0.3572])

In order to rank the IVIFNs, we now introduce the score function and the accuracy
function of IVIFNs:
Definition 2.3.3 (Xu, 2007h; Xu, 2010b) Let & = ([a,b], [c¢,d]) be an IVIFN.
Then we call

1
s(a) = 2(a—c+b—d) (2.10)
the score of &, where s is the score function of &, s(&) € [-1,1].
Clearly, the greater the s(&), the larger the &. In particular, if s(&) = 1, then
& is the largest IVIFN: ([1,1],[0,0]); If s(&) = —1, then & is the smallest IVIFN:
(0,0}, [1,1]).

However, if we take & = ([0.4,0.5], [0.4,0.5]) and a2 = (]0.2,0.3], [0.2,0.3]), then
s(@1) = s(@2) = 0. In this case, the score function cannot distinguish between the
IVIFNs & and @z. To solve this issue, Xu (2007h) defined an accuracy function:
Definition 2.3.4 (Xu, 2007h) The accuracy function of an IVIFN & is defined as:

h@):;m+b+c+® (2.11)

where h(&) € [0, 1].
For the above IVIFNs: a; = ([0.4,0.5], [0.4,0.5]) and as = ([0.2,0.3], [0.2,0.3)),
by using Eq.(2.11) we can get

h(d1) =09, h(a)=05

Based on the above analysis, we introduce an approach to ranking the IVIFNs as
follows:
Definition 2.3.5 (Xu, 2007h) Let &; and &2 be any two IVIFNs. Then

o If S(O~é1) < S(CNVQ) then a; < ao;

o If s(@1) = s(@z), then
(1) If h(aq) = h(&2), then aq ~ do;
(2) If h(an) < h(&z), then &y < ao;

(3) If h(an) > h(&z), then &y > ao.

Recently, Wang et al.(2009) gave another two indices called the membership un-
certainty index:

q(@) =b+c—a—d (2.12)

and the hesitation uncertainty index:
gla@)=b+d—-a—c (2.13)

respectively, to supplement the above procedure. In the case where s(@1) = s(az)
and h(&1) = h(asg), one can further consider these two indices, i.e.,
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(a) If g(&1) < q(&2), then &y is larger than &g, denoted by &1 > aq.

(b) If ¢(&1) = q(&2), then

(i) If g(61) < g(@2), then &, is larger than do, denoted by &1 > Go;

(ii) If g(&1) = g(a2), then &; is equal to &gz, denoted by &1 = @o.

Based on Definitions 2.2.1 and 2.3.5, in what follows, we introduce some ordered
weighted aggregation operators for IVIFNs:
Definition 2.3.6 (Xu and Chen, 2007a) Let IIFOWA : 6" — 6. If

IIFOWA,, (a1, a9, -+ ,0) = wlda(l) ® wg@g(g) - D wnda(n) (2.14)

where w = (wy,ws, -+ ,w,)T is the weighting vector associated with the function
IIFOWA, with w; € [0,1] (j = 1,2,---,n) and ij =1, (o(1),0(2),---,0(n))

is any permutation of (1,2,---,n), such that a,j_1) > Gs(j), for any j, then the
function IIFOWA is called an interval-valued intuitionistic fuzzy ordered weighted
averaging (IIFOWA) operator.

In particular, if w = (1/n,1/n,---,1/n)T, then the function IIFOWA reduces to
the ITFA operator.
Definition 2.3.7 (Xu and Chen, 2007c) Let IIFOWG : O™ — 0. If

IFOWG (61, G2, -+, Gn) = G0y @ G2y @ - ® G (2.15)

where (0(1),0(2),--- ,0(n)) is any permutation of (1,2,---,n), such that &,(;—1) >
Qg(jy, for any j, then the function IFOWG is called an interval-valued intuitionistic
fuzzy ordered weighted geometric (ITFOWG) operator.

In particular, if w = (1/n,1/n,---,1/n)T, then the function IIFOWG reduces to
an interval-valued intuitionistic fuzzy geometric (IIFG) operator.

Similar to Theorems 2.3.1 and 2.3.2, we can show the following result:
Theorem 2.3.3 (Xu and Chen, 2007c)  Let (dy(1), @y(2), " s @s(n)) be any per-
mutation of (&i,dq, -, &), such that dy;—1) > (), for any j, and &, =
([ao(jys ba()]s [co(i)» do(jy]). Then the aggregated value by using Eq.(2.14) is an IV-
IFN, and

IIFOWA,, (&1, g, -+ , () = H 1 —a(;))"7,1 H 1—by())™ |,

n

1L <t H o(n) (2.16)
j=1

In particular, if all &; (j = 1,2,---,n) reduce to the IFNs, then the IIFOWA
operator reduces to the IFOWA operator.
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Theorem 2.3.4 (Xu and Chen, 2007c) The aggregated value by using Eq.(2.15) is
also an IVIFN, and

HFOWG, (@1, dz, -+, an) = | | [T aglyy TT000 | -
=1 =

1-T @ = co)™ 1= ] A =dogsy)™| | (2.17)
j=1 j=1

In particular, if all &; (j = 1,2,---,n) reduce to the IFNs, then the IIFOWG
operator reduces to the IFOWG operator.
Note The weighting vector associated with the IIFOWA and IIFOWG operators
can be obtained by using one of the methods (Xu, 2005a) for determining the OWA
weights.
Example 2.3.2  Suppose that &; =([0.5, 0.7], [0.1, 0.2]), &2 =([0.1, 0.6], [0.2, 0.4]),
as = ([0.2, 0.3], [0.4, 0.5]) and &4 = ([0.3, 0.5], [0.2, 0.5]). Then we can utilize
Eq.(2.10) to calculate the score of &; (i =1,2,3,4):

1
s(@) = (0.5 —0.140.7-0.2) =045

1

s(d2) = (0.1 -0.240.6 —0.4) = 0.0
1

5(d3) = (02 - 0.4+ 0.3 -0.5) = 0.2

1
5(d4) = (03 =02+ 0.5~ 0.5) = 0.05

Therefore
8(5[1) > 8(5[2) = S(d4) > S(dg)
Since s(&2) and s(&4) are equal, we need to calculate the accuracy degree of &q

and a4 by using Eq.(2.11):

1
h(Gz) = (01 +0.640.2+0.4) = 0.65

1
h(ay) = 9 (0.3+0.5+0.240.5) =0.75
Then
5(1 > 644 > 6[2 > 643
and hence

do1) = ([0.5, 0.7], [0.1, 0.2]), g = ((0.3, 0.5], [0.2, 0.5])
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dg3) = (0.1, 0.6], [0.2, 0.4]), du(y) = ([0-2, 0.3], [0.4, 0.5])

If we use the normal distribution based method (Xu, 2005a) to determine the
weighting vector associated with the IIFOWA and ITFOWG operators, then we get
w = (0.155, 0.345, 0.345, 0.155)T, and thus

ITFOWA,, (&1, G2, ég, dg) =([1 — (1 — 0.5)%15% x (1 —0.3)°34% x (1 —0.1)0-345
X (1—0.2)%155 1 — (1 —0.7)%15% x (1 —0.5)034
x (1—-0.6)"3% x (1 —0.3)%159],
[0‘10.155 % 0.20.345 % 0.20.345 % 0.40.155
0.20.155 % 0.50.345 % 0.40.345 % 0.50.155])

=([0.2602, 0.5494], [0.2000, 0.4017])

HFOWGw(dl’ as, dS, d4) :([0.50.155 % 0.30.345 % 0.10.345 % 020.1557
0.70.155 % 0.50.345 % 0.60'345 % 0.30.155]’
[1—(1=0.1)""% x (1-0.2)"%% x (1 -0.2)%%%
X (1—0.4)%19%5 1 — (1 —0.2)%1% x (1 —0.5)%34
x (1 —0.4)3% x (1 —0.5)%1%9))
=([0.2087, 0.5183], [0.2208, 0.4273])

If we revise the IVIFNs Gz = ([0.1, 0.6], [0.2, 0.4]) and &= ([0.3, 0.5], [0.2, 0.5))
in Example 2.3.1 as a5 = ([0.2, 0.6], [0.2, 0.4]) and &) = ([0.3, 0.5], [0.1, 0.5]), then
we can utilize Eq.(2.10) to calculate the scores of &.(i = 2,4):

1
s(dp) = (0202406 —0.4) = 0.1

1
s(@) = (03 0.1+0.5-0.5) = 0.1

Thus s(a2) = s(a@s). In such a case, we need to calculate the accuracy degree of ao
and &y by using Eq.(2.11):

1
h(Gz) = (02406 +0.240.4) = 0.7

1
h(Gs) = (03 +0.540.1405) =07

i.e., h(ag) = h(dy). Then we calculate the membership uncertainty index by using
Eq.(2.12):
q(é2) = 0.6+ 0.2—0.2— 0.4 = 0.2
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q(ds) =05+0.1—03—0.5=-0.2

To conclude, q(é4) < q(&2), i-e., Gu > G2. Accordingly,

IIFOWA,, (a1, &, éis, ay) =([1 — (1 — 0.5)%155 x (1 —0.3)%3% x (1 —0.1)%34°
x (1—0.2)%155 1 — (1 —-0.7)%15° x (1 —0.5)034
x (1— 0.6)0'345 x (1— 0.3)0.155]7
[0.10.155 % 0.20.345 % 0.20.345 % 0.40.155’
0.20.155 % 0.50.345 % 0.40.345 % 0.50.155])

=([0.26, 0.62], [0.20, 0.40])
If we use the IIFOWG operator to aggregate the IVIFNs &; (i = 1,2,3,4), then

HFOWGw(dl’ C~k127 O~l3, dﬁ;) :([0.50.155 % 0.30.345 % 0.10.345 % 020.1557
0.70.155 x 0.50.345 x 0.60'345 x 0.30.155]’
[1—(1—0.1)%1% x (1 -0.2)%3% x (1 —0.2)%3%
x (1-0.4)%1951 — (1 -0.2)%"% x (1—0.5)%3%
X (1 _ 0‘4)0.345 % (1 _ 0.5)0.155])
=([0.21, 0.50], [0.22, 0.43])

We can see that the IIFWA and IIFWG operators only consider the importance
degree of each given IVIFN, while the ITFOWA and ITFOWG operators only weight
the ordered position of each IVIFN instead of the IVIFN itself. Thus, these operators
consider only one of the two different aspects. To overcome this limitation, Xu and
Chen (2007a, 2007c) investigated the hybrid aggregation techniques for IVIFNs:
Definition 2.3.8 (Xu and Chen, 2007a) Let ITFHA : @ — 6. Suppose

IIFHA, (61, G2, Gin) = W1Gp(1) B Wallp(a) ® O Wnllo(n) (2.18)
where w = (wy,ws, -+ ,w,)T is the weighting vector associated with the function

ITFHA, with w; € [0,1], j = 1,2,--- ,n, and Zw]— =1. &U(j) is the j-th largest
j=1

of the weighted IVIFNs d; (i = 1,2,---,n), here & = nwdy (i =1,2,---,n),

w = (w1,wa, -+ ,wp)T is the weight vector of a collection of the IVIFNs &; (i =

1,2,---,n), with w; € [0,1] (j =1,2,---,n) and ij =1, and n is the balancing
j=1
coefficient. Then the function IIFHA is called an interval-valued intuitionistic fuzzy

hybrid averaging (IIFHA) operator. In particular, if w = (1/n,1/n,---,1/n)T, then
the function IIFHA reduces to an IIFWA operator; if w = (1/n,1/n,---,1/n)T, then
the function ITFHA reduces to the IIFOWA operator.
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Definition 2.3.9 (Xu and Chen, 2007c) Let IIFHG : 6" — ©. Suppose
HFHGe (A1, @2, -+, 6n) = 4l @ 023 © - @ & (2.19)

where c:ug(j) is the j-th largest of the exponential weighted IVIFNs é; (i = 1,2,--- ,n),

~NW;

here &; = ;" (i=1,2,---,n), and n is the balancing coefficient. Then the function
ITFHG is called an interval-valued intuitionistic fuzzy hybrid geometric (IIFHG) oper-
ator. In particular, if w = (1/n,1/n,---,1/n)T, then the function IIFHG reduces to
the IIFWG operator; if w = (1/n,1/n,---,1/n)"T, then the function IIFHG reduces
to the IIFOWG operator.

Clearly, the IIFHA operator generalizes both the IIFWA and IIFOWA operators,
and the ITFHG operator generalizes both the IIFWG and IIFOWG operators. They
can consider not only the importance of each given IVIFN itself, but also the impor-
tance of the ordered position of the IVIFN.

Similar to Theorems 2.3.3 and 2.3.4, we can get the following results:

Theorem 2.3.5 (Xu and Chen, 2007a)  Assume that é; = ([as,bi], [éi,ds]) (i =
1,2,---,n) and OLéU(j) = ([dg(j),i)g(j)], [ég(j),da(j)]) (j =1,2,--- ,n). Then the ag-
gregated value by using Eq.(2.18) is an IVIFN, and

IFHA (61, g, -+ ) = | [1= ] (1 = o)™ 1= T (1 = o)™ |,
j=1 j=1
L0 1145 (2.20)
j=1 j=1

In particular, if all &; (j =1,2,---,n) reduce to the IFNs, then Eq.(2.20) reduces to
Eq.(1.58).
Theorem 2.3.6 (Xu and Chen, 2007c)  Suppose that &; = ([&i,éi], [cl,dz]) (i =

1,2,--,n) and o0y = ([do(j), boh)s [E0j)»do(i)]) (G = 1,2,+++,n). Then the ag-
gregated value by using Eq.(2.19) is an IVIFN, and

TIFHG 0 (61, b2, ) = | [ [ty [T 0oty |+
j=1 J=1

1-TJ A=éo) 1= A —doi)™| | (2-21)
j=1 j=1

In particular, if all &; (j =1,2,--- ,n) reduce to the IFNs, then Eq.(2.21) reduces to
Eq.(1.61).

Example 2.3.3 Suppose that @; = ([0.2,0.3], [0.5,0.6]), a2 = ([0.7,0.8], [0.1,0.2]),
ds = ([0.5,0.6], [0.2,0.4]), Gu = ([0.3,0.4], [0.4,0.6]) and as = ([0.6,0.7], [0.2,0.3]),
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and let w = (0.25,0.20,0.15,0.18,0.22) " be the weight vector of &; (j = 1,2, - - -,
we utilize the IIFHA operator to aggregate the given data, then we first determine the
weighting vector w = (0.112,0.236,0.304,0.236,0.112)T
operator by using the normal distribution based method (Xu, 2005a). After that, by

the operational law (6) in Definition 2.2.1, we have

a=(1-(1

_ 0.2)5><0.25’ 1— (1 _ 0.3)5><0.25]7 [0.55X0'2570.65X0'25])

= ([0.2434,0.3597], [0.4204,0.5281])

Similarly, we get

Qz
Il
P N

0.7,0.8], [0.1,0.2])

[0.4054,0.4970], [0.2991,0.5030])
0.2746,0.3686], [0.4384,0.6314])
[0.6350,0.7340], [0.1703,0.2660])

Qz
Il

Then we can utilize Eq.(2.10) to calculate the score of &; (i = 1,2,---,5):

s(dn) =

() =
s(és) =
s(aa) =
s(as) =
Since
we have

;(0.2434 —0.4204 + 0.3597 — 0.5281) = —0.3450
;(0.7 — 0.1+ 0.8 —0.2) = 0.6000

;(0.4054 —0.2991 + 0.4970 — 0.5030) = 0.0502
;(0.2746 —0.4384 4+ 0.3686 — 0.6314) = —0.2133

1
9 (0.6350 — 0.1703 + 0.7340 — 0.2660) = 0.4664

5(542) > s(&5) > 8(5&3) > 5(5@) > s(&l)

([0.7,0.8] ,[0.1,0.2])

([0.6350, 0.7340], [0.1703, 0.2660
([0.4054,0.4970], [0.2991,0.5030
([0.2746,0.3686], [0.4384,0.6314
([0.2434,0.3597], [0.4204,0.5281

)
)
)
)

and by Eq.(2.20), we can obtain

IIFHA,, (a1, a2, a3, a4, s)

Interval-Valued Intuitionistic Fuzzy Information Aggregation

associated with the IIFHA
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=([1 — (1 —0.7)%2 x (1 — 0.6350)"%3¢ x (1 — 0.4054)0-304
x (1 —0.2746)%236 x (1 —0.2434)%M2 1 — (1 —0.8000)°1*2 x (1 — 0.7340)°-236
x (1 —0.4970)%3% x (1 — 0.3686)%23¢ x (1 — 0.3597)°-11%],
[0.19-112 % 0.1703%23¢ x 0.2991°-304 x 0.4384°-236 x (.4204°-112,
0.29112 % 0.2660°2%% x 0.5030"*** x 0.6314%2%% x 0.5281%112])
=([0.4715,0.5769], [0.2634,0.4141])

If we utilize the ITFHG operator to aggregate the IVIFNs &; (j = 1,2,---,5),
then similar to the ITFHA operator, we first determine the exponential weighted
vector w = (0.112, 0.236, 0.304, 0.236, 0.112)T associated with the IIFHG operator
by using the normal distribution based method (Xu, 2005a). After that, by the
operational law (7) in Definition 2.2.1, we have

5;1 — ([0.25><0.25’ 0.35><0.25]’ [1 _ (1 _ 0‘5)5><0.257 1 _ (1 _ 0.6)5XO'25])
= ([0.1337,0.2220], [0.5796,0.6819])

In a similar way, we get

0.7,0.8], [0.1,0.2])

0.5946,0.6817], [0.1541,0.3183))
0.3384,0.4384], [0.3686,0.5616))
0.6314,0.7254], [0.2177,0.3245))

~ o~ ~~

[
[
[
[

0
a3
ay
as

Then we can utilize Eq.(2.10) to calculate the scores of é; (i =1,2,--- ,5):

s(&y) = ;(0.1337 — 0.5796 + 0.2220 — 0.6819) = —0.4529
s(dp) = ;(0.7 — 0.1+ 0.8—0.2) = 0.6000

s(ds) = ;(0.5946 —0.15410 + 0.6817 — 0.3182) = 0.4020
s(dy) = ;(0.3384 — 0.3686 + 0.4384 — 0.5616) = —0.0767
s(ds) = ;(0.6314 — 0.2177 + 0.7254 — 0.3245) = 0.4073

Since
5(542) > 3(55) > s(&g) > s(éu) > s(él)

we have

o) = ([0.7,0.8], [0.1,0.2])
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:g(z = ([0.6314,0.7254], [0.2177,0.3245))
ag(g = ([0.5946,0.6817], [0.1541,0.3183])
dip(1) = ([0.3384,0.4384], [0.3686,0.5616])
dip(5) = ([0.1337,0.2220], [0.5796,0.6819])

Accordingly, by Eq.(2.20) we get

HFHG,, (a1, @g, @3, 4, as) =([0.7%1? x 0.6314°-236 x 0.59640-304
% 0.33849236 % 0.1337°9-112 0.80-112  (.72549-236
x 0.6817%-39% x 043849236 x (0.2220°- 112,
[1—(1-0.1)"M"2x (1-0.2177)%230 x (1 — 0.1541)"-30
x (1-0.3686)%230 x (1-0.5796)* 2 1— (1 — 0.2)°112
x (1 —0.3245)%236 x (1 —0.3183)%-30
x (1 —0.5616)%23¢ x (1 — 0.6819)%112))

=([0.4554, 0.5597], [0.2783,0.4270])

We now apply the IFWA and IIFWG operators to multi-attribute decision making
problems in interval-valued intuitionistic fuzzy environments:

For a multi-attribute decision making problem, let Y, G and w be defined as
in Section 1.3. Suppose that the characteristic information on the alternative Y; is
expressed in IVIFSs:

_{< Ja;UfYL( )Vyz( j)>|Gj€G}7 1=1,2,---,n

where fiy,(G;) indicates the degree that the alternative Y; satisfies the attribute G;,
and vy, (G;) indicates the degree that the alternative ¥; does not satisfy the attribute
G;. Here, fiy,(G;) and Dy, (G;) are given in the value ranges, i.e., interval numbers,
and

fiy;(G;) C [0,1], Dy, (G;) C[0,1], supfiv,(Gj) +sup vy, (z) <1

For convenience, let fiy, (G;) = fui; = [ff;, i) and Dy, (Gy) = vy = [0y, 0], i =

1,2,---,n; 7=1,2,--- ,m. Consequently, we can get the interval-valued intuitionis-
tic fuzzy de(31510n matrix R’ = (7 Tij )nxm, where 7, = (fi};, Vj;) = ([“w’“w] 1% 5‘717:?])

In general, there are two types of attrlbutes, i.e., benefit attributes and cost at-
tributes. Similar to Section 1.3, we can normalize R = (ng)nxm into the interval-
valued intuitionistic fuzzy decision matrix R= (Tij )nxm, Where

for benefit attribute G,

~/
Fo= gL 5Uny = & T
Pij = (fiag Oi) = ([/”L”’/”L”] (055, 935]) { ., for cost attribute G,

Tijs
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i=1,2,--,m; j=1,2,---,m (2.22)

2o - A R O RN 57, WPV o B D) e o
and 7; is the complement of 7, i.e., 7; = (7}, fuy; ) = ([0, 735 ), [y, i35 ])-
Xu (2007h) utilized the IIFWA (or IIFWG) operator to develop an approach to

multi-attribute decision making with interval-valued intuitionistic fuzzy information,

which involves the following steps:
Step 1 Utilize the IIFWA operator:

i = HFWA, (Fi1, Fi2, -+, Fim),  1=1,2,--+,n (2.23)
or the ITIFWG operator:
7 = IIFWG,, (i1, Fio, -+ > Fim), 1=1,2,---,n (2.24)

to aggregate all the elements 7;; (j = 1,2,---,m) in the i-th line of the interval-
valued intuitionistic fuzzy decision matrix R, and get the overall values i (or Fz)
(i=1,2,---,n) corresponding to the alternatives ¥; (i = 1,2,--- ,n).

Step 2 Utilize the score function (2.10) and the accuracy function (2.11) to
calculate the scores s(7) (or (7)) (i = 1,2, ,n) and the accuracy degrees h(7;)
(or h(7)) (i =1,2,---,n) of 7 (or 73) (i =1,2,---,n).

Step 3 By Definition 2.3.5, rank the alternatives Y; (i = 1,2,--- ,n), and then

derive the most desirable alternative.
Example 2.3.4 (Xu, 2007h) A practical use of the developed approach involves the
evaluation of staff for tenure and promotion in a unit. The attributes which are con-
sidered here in evaluation of five candidates Y; (i=1,2,--- ,5) are: @ Gy: Moral level;
@ Go: Work attitude; @ Gs: Working style; @ Gy4: Literacy level and knowledge
structure; & G5: Leadership ability; and ® Gg: Exploration capacity. The weight
vector of the attributes G; (j=1,2,---,6) is w=(0.20, 0.10, 0.25, 0.10, 0.15, 0.20).
The evaluation information on the candidates Y; (i=1,2,---,5) with respect to the
attributes G; (i=1,2,---,6) is characterized by IVIFNs, which are contained in the
interval-valued intuitionistic fuzzy decision matrix R, as shown in Table 2.1:

Table 2.1 Interval-valued intuitionistic fuzzy decision matrix R

Gy Ga G3
Yi (10.2,0.3],[0.4,0.5]) ([0.5,0.6],[0.1,0.3]) ([0.4,0.5], [0.2,0.4])
Ys (10.6,0.7], [0.2,0.3]) ([0.5,0.6], [0.1,0.3]) ([0.6,0.7], [0.2,0.3])
Y3 (10.4,0.5], [0.3,0.4]) ([0.7,0.8], [0.1,0.3]) ([0.5,0.6], [0.3,0.4])
Ya ((0.6,0.7], [0.2,0.3)) ([0.5,0.7], [0.1,0.3]) ([0.7,0.8], [0.1,0.2])
Ys ([0.5,0.6],[0.3,0.5]) ([0.3,0.4],[0.3,0.5)) ([0.6,0.7],[0.1,0.3])
G4 Gs Gs
Y; ([0.7,0.8],[0.1,0.2]) ([0.1,0.3], [0.5,0.6]) ([0.5,0.7], [0.2,0.3])
Ya (j0.6,0.7], [0.1,0.2]) ([0.3,0.4], [0.5,0.6]) ([0.4,0.7], [0.1,0.2])
Y3 ((0.6,0.7], [0.1,0.3]) (10.4,0.5], [0.3,0.4]) ([0.3,0.5], [0.1,0.3])
7 ([0.3,0.4], [0.1,0.2]) ([0.5,0.6], [0.1,0.3]) ([0.7,0.8], [0.1,0.2])
Ys ((0.6,0.8], [0.1,0.2]) (10.6,0.7], [0.2,0.3]) ([0.5,0.6], [0.2,0.4])
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In what follows, we use the approach developed to rank and select the candidates
Y (i=1,2,---,5):

Step 1 Utilize the IIFWA operator (2.23) to aggregate all the elements 7, (j =
1,2,---,6) in the i-th line of the interval-valued intuitionistic fuzzy decision matrix
R, and get the overall values 7; (i = 1,2,---,5) corresponding to the candidates
Y i=1,2,---,5):

i = (]0.4165,0.5597], [0.2459,0.3804])

7y = ([0.5176,0.6574], [0.1739,0.2947))
i3 = (]0.4703,0.5900], [0.1933,0.3424))
74 = (]0.5407,0.6702], [0.1149,0.2400))

= ([0.5375,0.6536], [0.1772, 0.3557))

Step 2 Utilize the score function (2.10) to calculate the scores s(7) (i = 1,2, - - - ,5)
of 7 (i=1,2,---,5):

s(71) = 0.1749, s(72) = 0.3532, s(i3) = 0.2623
s(74) = 0.4280, s(75) = 0.3291
Step 3 According to s(7;) (i = 1,2, ,5), rank the candidates Y; (i = 1,2,--- ,5):
Y=Y =Ys =YY

Therefore, the best alternative is Yy.

We can utilize the IIFWG operator (2.24) to aggregate all the elements 7;; (j =
1,2,---,6) in the i-th line of the interval-valued intuitionistic fuzzy decision matrix
R, and get the overall values 7; (i = 1,2,---,5) corresponding to the candidates
Y, (i=1,2,---,5):

[0.3257,0.4848], [0.2878,0.4132]

[0.4896,0.6338], [0.2185,0.3301]
[0.4398,0.5673], [0.2260, 0.3533]
[0.4972,0.6190], [0.1210, 0.2467]
= ([0.5204,0.6307], [0.1991,0.3782])

Then we can utilize the score function (2.10) to calculate the scores s(r;) (i =
1,2,---,5)of y (i=1,2,---,5):

)

(
(
(
(

)

s(r1) = 0.0547, s(7) = 0.2874, s(r3) = 0.2139

s(74) = 0.3742, s(75) = 0.2869
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According to s(7;) (i = 1,2,--- ,5), we can rank the candidates Y; (i = 1,2,--- ,5):
Yi-Yo=Ys>-Y;>-Y;

To conclude, Yj is also the best alternative.

Below we consider the multi-attribute group decision making problem with interval-
valued intuitionistic fuzzy information:

Let Y, E, £ and w be defined as in Section 1.3, and let R, = (Fgc))nxm be the
interval-valued intuitionistic fuzzy decision matrix given by the decision maker Fj,

(k) _ ((k) ~ (k)

where 7 Rij' Vi

) is the attribute value given by the decision maker Ej, for the
alternatwe Y; with respect to the attribute G; € G. [LE;) indicates the degree that

the alternative Y; satisfies the attribute G;, and 7" indicates the degree that the

ij
alternative Y; does not satisfy the attribute G;. Here /]( and I/(J) are given in the

(k) _ [~L(k) ~U(k )] ~(’?) _ [ﬁ;(k) ~U(k)]’ and

value ranges, denoted by fi;; Rij sy ] vy ' Vij

~(k ~(k ~ ~U(k
FLE]) [0’ 1]’ ( ) [0’ 1]’ Mw( )+V (k)

Zj <]-a Z:13271n7]:17277m7
k=121 (2.25)

In order to fuse the individual opinions into the group one, we utilize the IITFHA
operator:

Fij = IFHAe (7)), 70 7)), i=1,2,-,n; j=1,2,-,m  (2.26)

or the ITIFHG operator:

Fij = FHGe o (70,72 o 7Dy i=1,2, m; j=1,2,--,m (2.27)

Tig T om 5T
to aggregate all the interval-valued intuitionistic fuzzy decision matrices R, =

(Rgc))nxm (k=1,2,---,1) into the collective interval-valued intuitionistic fuzzy de-
cision matrix ]‘:L) = (;ij)nxm (OI‘ I‘:L) = (".:.ij)nxm), where ’I:Z] = (ﬁija ljij), 7:1] = ([1’1]7];2])
(i=1,2,--,n; j=12---,m), w= (wy,ws, - ,wy,)T is the weighting vector

associated with the IIFHA and IIFHG operators, with w; € [0,1], j = 1,2,--- ,m,

and Z w; = 1, which can be determined by the normal distribution based method

j=1
or the others (Xu, 2005a).

Based on the collective interval-valued intuitionistic fuzzy decision matrix R =
(7ij)nxm (Or R = (¥i;)nxm), we utilize the IFWA (or IIFWG) operator:

TLi:IIFWAw(”%i17TLi2,"‘ 77L°im), ’L':].72,-~- ,n (228)

or
i = HIFWG, (i1, Ti2, -+, Fim ), 1 =1,2,--,n (2.29)
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to get the overall attribute value of the alternative Y;.

After that, we utilize Eq.(2.10) to calculate the scores s(7;) (or s(7)) (i = 1,2, ,
n) of the overall attribute values 7; (or ;) (i = 1,2,--- ,n) of the alternatives Y; (i =
1,2,---,n), and then utilize the scores s(7;) (or s(r;)) (i = 1,2,---,n) to rank the
alternatives Y; (i = 1,2,--- ,n). If two scores s(;) (or s(74)) and s(i;) (or s(;)) are
equal, then we need to calculate respectively the accuracy degree h(r;) (or h(r;)) and
h(#;) (or h(;)) of the overall attribute values #; (or 7;) and #; (or 7;). After that,
we can utilize h(#;) (or h(r;)) and h(F;) (or h(r;)) to rank the alternatives Y; and Y;.
In the case where both the score function and the accuracy function cannot be used
to distinguish between the overall attribute values 7; (or 7;) and #; (or 7)), Wang et
al.(2009)’ s method can be applied (see Section 2.3).
Example 2.3.5 We use Example 1.3.5 to illustrate the above approach. Suppose
that the experts By, (k = 1,2,3,4) (whose weight vector is & = (0.3,0.2,0.3,0.2)T) uti-
lize the IVIFNs T;gk) (i,5 =1,2,3,4,5) to describe the characteristics of the potential
global suppliers Y; (¢ = 1,2, 3,4,5) with respect to the attributes G; (j =1, 2,3,4,5);
see Tables 2.2-2.5 (i.e., the interval-valued intuitionistic fuzzy decision matrices Rgg =
(figk))5><5 (k =1,2,3,4)), and w = (0.2,0.15,0.2, 0.3,0.15)T is the weight vector of
the attributes G; (7 =1,2,3,4,5):

Table 2.2 Interval-valued intuitionistic fuzzy decision matrix RZ

G1 G2 Gs G4 Gs
Yi ([0.3,0.4],00.4,0.6]) ([0.5,0.6],[0.1,0.2]) (]0.6,0.7],[0.2,0.3]) (]0.7,0.8],[0.0,0.1]) ([0.2,0.3],[0.6,0.7])
Y2 ([0.6,0.8],0.1,0.2]) ([0.6,0.7],[0.2,0.3]) (]0.2,0.3],[0.4,0.6]) ([0.5,0.6],(0.1,0.3]) ([0.0,0.2],(0.7,0.8])
Y3 ([0.5,0.8],00.1,0.2]) ([0.7,0.8],[0.0,0.1]) ([0.5,0.5],0.4,0.5]) ([0.2,0.3],[0.2,0.4]) ([0.2,0.3],[0.4,0.6])
Ys ([0.2,0.3],00.4,0.5]) ([0.5,0.7],[0.1,0.3]) (]0.6,0.7],(0.1,0.2]) (]0.4,0.5],[0.1,0.3]) ([0.0,0.1],[0.6,0.9])
Ys ([0.6,0.8],00.1,0.2]) (]0.3,0.5],[0.4,0.5]) ([0.4,0.6],[0.3,0.4]) ([0.6,0.8],[0.1,0.2]) ([0.2,0.3],[0.5,0.6])

Table 2.3 Interval-valued intuitionistic fuzzy decision matrix R,

G1 Gz Gg G4 G5
Yi ([0.4,0.5],00.3,0.4]) ([0.5,0.6],[0.1,0.2]) (]0.6,0.7],[0.2,0.3]) (]0.7,0.8],[0.1,0.2]) ([0.0,0.2],[0.7,0.8])
Ya ([0.6,0.8],00.1,0.2]) ([0.5,0.6],[0.3,0.4]) ([0.4,0.5],[0.3,0.4]) ([0.4,0.6],[0.3,0.4]) ([0.1,0.3],0.4,0.7])
Ys ([0.5,0.6],[0.3,0.4]) ([0.5,0.7],[0.1,0.2]) (]0.5,0.6],[0.3,0.4]) (]0.3,0.4],[0.2,0.5]) ([0.2,0.3],[0.6,0.7])
Yy ([0.5,0.6],0.3,0.4]) (]0.7,0.8],[0.0,0.1]) ([0.4,0.5][0.2,0.4]) ([0.5,0.7],[0.1,0.2]) ([0.2,0.3],[0.5,0.7])
Ys ([0.4,0.7],00.2,0.3]) ([0.5,0.6][0.2,0.4]) ([0.3,0.6],[0.3,0.4]) ([0.6,0.8],[0.1,0.2]) ([0.2,0.3],[0.4,0.5])

Table 2.4 Interval-valued intuitionistic fuzzy decision matrix I’%Vg

G Ga G3 Ga Gs
Y1 ([0.4,0.6],0.3,0.4]) ([0.5,0.7],[0.0,0.2]) ([0.5,0.6],[0.2,0.4]) ([0.6,0.8],(0.1,0.2]) ([0.2,0.3],[0.4,0.7])
Ya ([0.5,0.8],0.1,0.2]) ([0.3,0.5],[0.2,0.3]) ([0.3,0.6],[0.2,0.4]) ([0.4,0.5],(0.2,0.4]) ([0.2,0.3],[0.3,0.6])
Y3 ([0.5,0.6],(0.0,0.1]) ([0.5,0.8],[0.1,0.2]) ([0.4,0.7],[0.2,0.3]) ([0.2,0.4],[0.2,0.3]) ([0.0,0.2],[0.5,0.8])
Y, ([0.5,0.7],0.1,0.3]) ([0.4,0.6],(0.0,0.1]) ([0.3,0.5],[0.2,0.4]) ([0.7,0.9],(0.0,0.1]) ([0.2,0.2],[0.3,0.5])
Ys ([0.7,0.8],(0.0,0.1]) ([0.4,0.6],[0.0,0.2]) ([0.4,0.7],[0.2,0.3]) ([0.3,0.5],[0.1,0.3]) ([0.1,0.2],[0.6,0.7])
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Table 2.5 Interval-valued intuitionistic fuzzy decision matrix E

G1 Go Gs Gy Gs

Y1 ([0.3,0.4],(0.4,0.5]) ([0.8,0.9],[0.1,0.1]) ([0.7,0.8],[0.1,0.2]) ([0.4,0.5],[0.3,0.5]) ([0.3,0.6],[0.2,0.4])
Y ([0.5,0.7],00.1,0.3]) ([0.4,0.7],[0.2,0.3]) ([0.4,0.5],[0.2,0.2]) ([0.6,0.8],[0.1,0.2]) ([0.0,0.1],[0.2,0.3])
Yz ([0.2,0.4],00.1,0.2]) (]0.4,0.5],[0.2,0.4]) ([0.5,0.8],[0.0,0.1]) ([0.4,0.6],[0.2,0.3]) ([0.2,0.3],[0.5,0.6])
Yy ([0.7,0.8],(0.0,0.2]) ([0.5,0.7],[0.1,0.2]) ([0.6,0.7],[0.1,0.3]) ([0.4,0.5],[0.1,0.2]) ([0.1,0.2],[0.7,0.8])
Ys ([0.5,0.6],00.2,0.4]) (]0.5,0.8],[0.0,0.2]) ([0.4,0.7],[0.2,0.3]) ([0.3,0.6],[0.2,0.3]) ([0.0,0.1],[0.7,0.8])

Since G5 is an attribute of cost type and the other attributes are benefit type, we
employ Eq.(2.22) to normalize R’y = (F;gk))5x5 (k=1,2,3,4) into the interval-valued
intuitionistic fuzzy decision matrices Ry = (7 )sx5 (k = 1,2,3,4) (Tables 2.6-2.9)

respectively:

Table 2.6 Interval-valued intuitionistic fuzzy decision matrix va

G1 Ga G3 Gy Gs

Y1 ([0.3,0.4],(0.4,0.6]) ([0.5,0.6],[0.1,0.2]) ([0.6,0.7],[0.2,0.3]) ([0.7,0.8],[0.0,0.1]) ([0.6,0.7],[0.2,0.3])
Y ([0.6,0.8],(0.1,0.2]) ([0.6,0.7],[0.2,0.3]) ([0.2,0.3],[0.4,0.6]) ([0.5,0.6],[0.1,0.3]) ([0.7,0.8],[0.0,0.2])
Y3 (]0.5,0.8],(0.1,0.2]) ([0.7,0.8],[0.0,0.1]) ([0.5,0.5],[0.4,0.5]) ([0.2,0.3],[0.2,0.4]) ([0.4,0.6],[0.2,0.3])
Yy ([0.2,0.3],00.4,0.5]) ([0.5,0.7],[0.1,0.3]) ([0.6,0.7],[0.1,0.2]) ([0.4,0.5],[0.1,0.3]) ([0.6,0.9],[0.0,0.1])
Ys ([0.6,0.8],(0.1,0.2]) ([0.3,0.5],[0.4,0.5]) ([0.4,0.6],[0.3,0.4]) ([0.6,0.8],[0.1,0.2]) ([0.5,0.6],[0.2,0.3])

Table 2.7 Interval-valued intuitionistic fuzzy decision matrix Ry
G1 Gz Gg G4 G5

Y1 ([0.4,0.5],(0.3,0.4]) ([0.5,0.6],[0.1,0.2]) ([0.6,0.7],[0.2,0.3]) ([0.7,0.8],[0.1,0.2]) ([0.7,0.8],[0.0,0.2])
Y ([0.6,0.8],(0.1,0.2]) ([0.5,0.6],[0.3,0.4]) ([0.4,0.5],[0.3,0.4]) ([0.4,0.6],[0.3,0.4]) ([0.4,0.7],[0.1,0.3])
Yz ([0.5,0.6],(0.3,0.4]) ([0.5,0.7],[0.1,0.2]) ([0.5,0.6],[0.3,0.4]) ([0.3,0.4],[0.2,0.5]) ([0.6,0.7],[0.2,0.3])
Y, ([0.5,0.6],0.3,0.4]) (]0.7,0.8],[0.0,0.1]) ([0.4,0.5][0.2,0.4]) ([0.5,0.7],[0.1,0.2]) ([0.5,0.7],[0.2,0.3])
Ys ([0.4,0.7],00.2,0.3]) ([0.5,0.6][0.2,0.4]) ([0.3,0.6],(0.3,0.4]) ([0.6,0.8],[0.1,0.2]) (]0.4,0.5],[0.2,0.3])

Table 2.8 Interval-valued intuitionistic fuzzy decision matrix R;

G1 Ga G3 Gy Gs

Y1 ([0.4,0.6],(0.3,0.4]) (]0.5,0.7],[0.0,0.2]) ([0.5,0.6],[0.2,0.4]) ([0.6,0.8],[0.1,0.2]) ([0.4,0.7],[0.2,0.3])
Y ([0.5,0.8],(0.1,0.2]) ([0.3,0.5],[0.2,0.3]) ([0.3,0.6],[0.2,0.4]) ([0.4,0.5],[0.2,0.4]) ([0.3,0.6],[0.2,0.3])
Y3 ([0.5,0.6],00.0,0.1]) ([0.5,0.8],[0.1,0.2]) ([0.4,0.7],[0.2,0.3]) ([0.2,0.4],[0.2,0.3]) ([0.5,0.8],[0.0,0.2])
Y2 ([0.5,0.7],00.1,0.3]) ([0.4,0.6],[0.0,0.1]) ([0.3,0.5],[0.2,0.4]) ([0.7,0.9],[0.0,0.1]) ([0.3,0.5],[0.2,0.2])
Ys ([0.7,0.8],(0.0,0.1]) ([0.4,0.6],[0.0,0.2]) ([0.4,0.7],[0.2,0.3]) ([0.3,0.5],[0.1,0.3]) ([0.6,0.7],[0.1,0.2])

Table 2.9 Interval-valued intuitionistic fuzzy decision matrix R4
G1 Gz Gg G4 G5

Y1 ([0.3,0.4],(0.4,0.5]) ([0.8,0.9],[0.1,0.1]) ([0.7,0.8],[0.1,0.2]) ([0.4,0.5],[0.3,0.5]) ([0.2,0.4],[0.3,0.6])
Ya ([0.5,0.7],00.1,0.3]) ([0.4,0.7],[0.2,0.3]) ([0.4,0.5],[0.2,0.2]) ([0.6,0.8],(0.1,0.2]) ([0.2,0.3],[0.0,0.1])
Yz ([0.2,0.4],00.1,0.2]) ([0.4,0.5],[0.2,0.4]) ([0.5,0.8],[0.0,0.1]) ([0.4,0.6],[0.2,0.3]) ([0.5,0.6],[0.2,0.3])
Y, ([0.7,0.8],00.0,0.2]) ([0.5,0.7],[0.1,0.2]) ([0.6,0.7],0.1,0.3]) ([0.4,0.5],(0.1,0.2]) ([0.7,0.8],[0.1,0.2])
Ys ([0.5,0.6],(0.2,0.4]) ([0.5,0.8],[0.0,0.2]) ([0.4,0.7],[0.2,0.3]) ([0.3,0.6],[0.2,0.3]) ([0.7,0.8],[0.0,0.1])

Without loss of generality, here we utilize the IIFHA and ITFWA operators to
aggregate the given data: We first utilize the normal distribution based method (Xu,
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2005a) to determine the weighting vector w = (0.155, 0.345, 0.345, 0.155)T associated
with the IIFHA operator, and then utilize the IIFHA operator (2.26) to aggregate the
individual interval-valued intuitionistic fuzzy decision matrices Rk = (Ffjk ))5x5 (k=
1,2,3,4) into the collective interval-valued intuitionistic fuzzy decision matrix R =

(f“ij)5x53

Table 2.10 Collective interval-valued intuitionistic fuzzy decision matrix R

Gy Ga Gs Gy Gs
y, (03480471, ((0577,0741],  ([0.595.0.608],  ([0.5640.735],  ([0.536.0.716)]
(0.338,0.473])  [0.000,0.162])  [0.165,0.296)) [0.000,0.254]) [0.000,0.284])
y, (05190790, ((0.4200.616],  ([0.3822.0.462],  ((0.447,0670],  ([0.4170.652],
(0.100,0.210])  [0.210,0.311])  [0.288,0.382)) 0.153,0.278]) 0.000,0.243])
yvo  (0.4700.630],  ([0.535,0.749),  ([0.489,0.667],  ([0.273,0.428],  ([0.493,0.675],
3 [0.000,0.120))  [0.000,0.192])  [0.000,0.306])  [0.2000,0.360])  [0.000,0.278])
y, (04880638, ([05200.707),  ([0.470.0.605],  ((0.498,0678],  ([0.521,0.730],
[0.000,0.340]))  [0.000,0.144])  [0.145,0.325])  [0.000,0.208])  [0.000,0.185))
y, (05640756, ((0.420,0631],  ([0.388.0.650],  ([0.460.0.682],  ([0.574,0.678]
[0.000,0.214])  [0.000,0.324])  [0.249,0.350])  [0.109,0.249])  [0.000,0.205))

Then, we utilize the IIFWA operator (2.28) to aggregate the elements in each line
of the collective interval-valued intuitionistic fuzzy decision matrix R, and get the
overall attribute values 7; (i = 1,2,3,4,5) of the alternatives Y; (i = 1,2,3,4,5):

71 = ([0.5321,0.6855], [0.0000, 0.2819])

= ([0.4386,0.6572], [0.0000, 0.2791]

[0.4365,0.5694], [0.0000, 0.2449]
0.4975,0.6703], [0.0000, 0.2333]
= ([0.4825, 0.6850], [0.0000, 0.2613]

7o = ( )
iy = ( )
7y = ( )
75 = ( )
After that, we utilize Eq.(2.10) to calculate the scores s(7;) (i = 1,2,3,4,5) of the
overall attribute values 7; (i = 1,2,3,4,5) of the alternatives Y; (i = 1,2,3,4,5):

s(r1) = 0.4678, s(72) = 0.4084, s(r3) = 0.3805

s(74) = 0.4672, s(75) = 0.4531

Then
s(fl) > 5(7&4) > s(?5) > s(fg) > s(?g)

Consequently,
Yi=-Yis-Ys =Y - Y3

To conclude, the best potential global supplier is Y.
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To tackle the problem where the information about the attribute weights in the
problem considered is completely unknown, Xu (2010a) introduces the following def-
inition:

Definition 2.3.10 (Xu, 2010a) Let &1 =([a1, b1], [c1,d1]) and Go = ([az, ba], [c2, d2])
be two IVIFNs. Then we call

. 1
d(Oél,OéQ) = 4(\a1 — a2| + |b1 — b2| + |Cl — 02| + |d1 — d2|) (230)

the distance between &; and as.

By Definition 2.3.10, we have
Theorem 2.3.7 (Xu, 2010a) Let &; (¢ = 1,2, 3) be any three IVIFNs. Then

(1) 0 < d(@q,a2) < 1, especially, d(&q, 1) = 0;

(2) d(dh 5[2) = d(ONZQ7 5[1);

(3) d(dh 5[3) < d(dh 5[2) + d(dg, C~k3).

Similar to Section 1.3, we can obtain the following formula to derive the attribute
weights:

>N dlig, i)

=1 R j=1,2,---,m (2.31)

Then, based on the attribute weights derived by Eq.(2.31), we can utilize the approach
introduced previously to rank the given alternatives and then to get the most desirable
one(s).

2.4 Interval-Valued Intuitionistic Fuzzy Bonferroni Means

Xu and Chen (2011) extended the IFBMs to accommodate interval-valued intuition-
istic fuzzy environments. They defined the interval-valued intuitionistic fuzzy Bon-
ferroni mean as follows, which is to be used to aggregate interval-valued intuitionistic
fuzzy information:

Definition 2.4.1 (Xu and Chen, 2011)  Let &; = (fia,,7a,) = (3%, i5.], 75,75 ])
(i=1,2,---,n) be a collection of IVIFNs, and p,q > 0. If

IIFBP Y (qy, g, 5 Q) = (n(nl_ ) (ég (df ® @g))) (2.32)

then ITFB?9 is called an interval-valued intuitionistic fuzzy Bonferroni mean (ITFBM).
Based on the operational laws described in Section 2.2, and similar to Eq.(1.96),
it can be proven that the aggregated value by using the IIFBM (2.32) is an IVIFN,
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and

IIFBp’q(dl, C~k2, s 75[”)

n P‘}'A’Z Piq
- - n(n—1) - - n(n—1)
=1 ||1= IT (r—Gak vk, ) A= 1T (- @8 @g, ) 7
i,j=1 i,j=1
i#j i#j
r 1
r+q
n 1
(=TT (-a-dkra-sk)n) |
i,j=1
i#£j
i 1
r+q
n 1
~ ~ n(n—1)
1= 1= I1 (1-a-a)ra—-a2)7) (2.33)
ij=1
i#j

The ITFBM has the following properties (Xu and Chen, 2011):
(1) If &; = &, = ([0,0],[1,1])) (¢ =1,2,--- ,n), then

IIFBPY (G, G, -+, &) = ([0,0], [1,1]) (2.34)
(2) If &; = & = ([1,1],[0,0]) (i = 1,2,--- ,n), then
IIFBP9(&*, a*,--- ,&*) = ([1,1], [0,0)) (2.35)

(3) (Idempotency): If all the IVIFNs &; (i = 1,2,---,n) are equal, i.e., & = &,
for all 4, then

[IFB*(&, &, - ,&) = & (2.36)
(4) (Monotonicity): Let &; = (fia,, va,) = (0%, 25,1, 75,05 ]) (i=1,2,--- ,n)
and B = (fg,,75,) = ([ﬂEA,ﬂg_], [17][;_,175]) i = 1,2,---,n) be two collections of

IVIFNs. If /1]541- < [L}i, ﬁgi < ﬂgg vl > ot and 7Y > NEL_, for all 4, then
IIFBP?(Gy, dia, - - - an) < IIFBP9(By, Ba, -+, Bn) (2.37)
(5) (Commutativity): Let &; (i =1,2,--- ,n) be a collection of IVIFNs. Then
IIFBP9(@y, g, - - - , ) = LIFBP (G, g, - - - , i) (2.38)

where (G, &, -+, 0p) is any permutation of (@, &g, - - - , dy).
(6) (Boundedness): Let

a” = ([miin{ﬁlgéi}mliin{ﬁgi}} ; [mz?lx{ﬁ{;jihm?x{z}gi}}) (2.39)
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& = ([max(it Jmax(7l)] . [mingek pomin(e8)])  (240)

Then
&~ < IIFBPY(ay, a9, -+ ,an) < at (2.41)

Now we discuss some special cases of the IIFBM with respect to the parameters
p and ¢ (Xu and Chen, 2011).
Case 1 If ¢ — 0, then it follows from Eq.(2.32) that

1 n r+q
i PUG, g,y ) = i AP G
Z}I_T%IIFB (1,49, ,an) (}I_I% (n(n— 3 (11621 (at ®aj)>>

Il
7N
S
T
E
jo)
S
N———
N———
k]

Il
Tl
|
—
=
|
—
=
er‘
S~—
3
~
8-
Tl
|
—
=
|
—
=
e
N
=
~——
K

¥

1— <1—ﬁ(1—(1—ﬁgi)1’)i>
= IIFBP%(Gy, 4o, - -+ , i) (2.42)

which we call a generalized interval-valued intuitionistic fuzzy mean.
Case 2 If p =2 and ¢ — 0, then by Eq.(2.32), we have

IFB*°(ay, ag, - - -, én)

Il
—
I
—
—~
—
|
—
=
er‘
N
o
SN—
3
~—
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/N
—
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—
—
—
|
—
=
sic
S~—
S
SN—
3
~—
M

(711 (é df)) é (2.43)

which we call an interval-valued intuitionistic fuzzy square mean.
Case 3 If p=1 and g — 0, then Eq.(2.32) reduces to the IIFA operator:
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IFB"°(ay, g, -, dy)
n 1 n 1 n 1 n 1
(| (Tt ) (- Tre- a0t [TTent TTen¢))
i=1 i=1 i=1 i=1
1/ n _
_ (@ ai) (2.44)
n \i=1

Case 4 If p=g =1, then we get from Eq.(2.32):

1
I - 1 noo o)
HFB (@i, G2+ ) = <n(n— 1) <@ ) ))

i#]
1
2 2
n 1 n 1
_ ~1, ~L, \n(-1) U ~U \ n(n-1
- 1- H ( MQ1MQJ> 9 1- H (1 - MQ1MQJ> )
"G oy
r 1
2
1-|1- ] (1—(1—5{;1)(1—5{; ))"(" Sl
i,j=1
i#£j
- 1
2
i n nlfl)
1-1-] (1—(1—&51_)(1—&5]_)) ( (2.45)
i,j=1
i#]

which we call an interval-valued intuitionistic fuzzy interrelated square mean.

Below we give an example to illustrate the IIFBM:
Example 2.4.1 Suppose that there are four IVIFNs: &; = (]0.1,0.3], [0.5,0.6]),
as = ([0.4,0.5], [0.3,0.4]), and a3 = ([0.5,0.7], [0.2,0.3]). Then we can utilize the
ITFBM to aggregate these IVIFNs. Assume that p = ¢ = 2, and since

2 2
aoar=(|(mn)" (8) ]

{1 - ((1 — k(1 - ﬁgj))z 11— ((1 — ) - agj)fD (2.46)

we have
ai ®as = ([(0.1 x 0.4)%,(0.3 x 0.5)?],
[1—((1-05)x(1-0.3))*1—((1-0.6)x (1—0.4))%])
= ([0.0016,0.0225], [0.8775,0.9424]) = a3 ® &3
ai ® a3 = ([(0.1 x 0.5)%,(0.3 x 0.7)*],
[1—((1-05)x(1-0.2))*1—((1-0.6)x (1-0.3))%])
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= ([0.0025, 0.0441], [0.8400, 0.9216]) = &3 ® &;

a3 ® a3 = ([(0.4 x 0.5)%,(0.5 x 0.7)],
[1-((1-0.3)x(1-0.2))%1—((1—04) x (1-0.3))%])
= ([0.0400, 0.1225], [0.6864, 0.8236]) =a3®a

Then, it follows from Eq.(2.32) that

1
1( s ’
IIFB*? (6, s, d3) = (6 <_€_91 (df@d?)»
i

= ([0.349,0.503], [0.329,0.430])

Considering that the input data may have different importance degrees, we now
introduce the concept of weighted interval-valued intuitionistic fuzzy Bonferroni mean:
Definition 2.4.2 (Xu and Chen, 2011) If

TIFBZ (A, Gig, -« - , (i) = (n(nl_ ) (&i (widi)? @ (wjdj)4)>> (2.47)

then ITFB?9 is called a weighted interval-valued intuitionistic fuzzy Bonferroni mean
(WIIFBM), where w = (wy,ws, - ,wy,)T is the weight vector of &; (i = 1,2,---,n),
and w; indicates the importance degree of &;, satisfying w; € [0,1] (: = 1,2,--+ ,n),

sz =1.
Slmllar to Eq.(2.32), Eq.(2.47) can also be transformed into the following form:
HFijq(dh Qo, -+ ,dn)

p+q

(- (o)) )

=

= 1—

i,j=1
i#]

1
r+q
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whose aggregated value is an IVIFN.

In the above we have developed an approach to multi-attribute decision making
in intuitionistic fuzzy environments, where the performance values (attribute values)
are measured in IFNs. We now apply the WIIFBM to multi-attribute decisionmaking
with interval-valued intuitionistic fuzzy information, which involves the following steps
(Xu and Chen, 2011):

Step 1 For a multi-attribute decision making problem, let Y,G and w be de-
fined as in Subsection 1.3. The performance of the alternative Y; € Y with re-
spect to the attribute G € G is measured by an IVIFN 7, = (i;,7;;), where
fit; = [pi}, ] indicates the degree range that the alternative Y; satisfies the at-

U

tribute G, 7j; = [ﬂg“, 7;;] indicates the degree range that the alternative Y; does

not satisfy the attribute G, such that jj; C [0,1], 7j; C [0,1], @5 + 77 < 1. All
ng = ([ngﬂ?;») (i=1,2,---,n; j =1,2,--- ;m) are contained in an interval-valued
intuitionistic fuzzy decision matrix R’ = (fgj)nxm.

If all the attributes G; (j = 1,2, - - - ,m) are of the same type, then the performance
values do not need normalization; Otherwise, using Eq.(2.22), we normalize the matrix

R = (7};)nxm into the matrix R = (i) nxm, Where

Fij = (flj, Vij),  flij = [ﬂ{'}vlazuj]v Vij = ['75"175]7 /12‘ + 175‘ <1

i=1,2,---mn; j=1,2,---.,m (2.48)
Step 2 Utilize the WIIFBM (in general, we can take p = ¢ = 1):
7 = HFBLY(Fiy, Figy -+ ) Fim) (2.49)
to aggregate all the performance values 7;; (¢ =1,2,---,m) of the j-th column, and

get the overall performance value 7; = (fi;, ;) = ([i¥, Y], [7F, 77]) corresponding to
the alternative Y;.

Step 3 Utilize the method presented in Definition 2.3.5 to rank the overall per-

formance values 7; (i =1,2,--- ,n).
Step 4 Rank all the alternatives Y; (i = 1,2,--- ,n) in accordance with 7; (i =
1,2,---,n) in descending order, and then select the best one.

Example 2.4.2 Let us continue Example 1.4.2. If the characteristics of the alterna-
tives Y; (i = 1,2, 3,4, 5) with respect to the attributes G; (j = 1,2, 3) are represented
by the IVIFNs 1/;; = (i, 7);) (i =1,2,3,4,5; j = 1,2,3) as shown in the matrix
R/ = (ﬂj)5><3 (Table 2].].)

Table 2.11 Interval-valued intuitionistic fuzzy decision matrix R

G Ga G
Y; (10.2,0.4],[0.4,0.5]) ([0.6,0.8],[0.1,0.2]) ([0.4,0.5],[0.2,0.4])
Ys ([0.5,0.7],[0.1,0.2] ([0.4,0.7],0,0.1]) ([0.7,0.8],0.1,0.2])
Y3 ([0.2,0.4],[0.4,0.5]) ([0.6,0.7],0.2,0.3]) ([0.3,0.4],[0.4,0.6])
7 ([0.2,0.3],[0.4,0.6]) ([0.7,0.8],[0.1,0.2]) ((0.6,0.8],0,0.2])
Ys (0.,7,0.9],[0,0.1]) ([0.5,0.6],[0.3,0.4]) (10.1,0.3],[0.4,0.6])
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Since all the attributes are benefit attributes, the characteristics of the alternatives
do not need normalization. To get the decision results, we first utilize the WIIFBM
(without loss of generality, we take p = ¢ = 1):

(/1,;7 N:) = IIFBl 1( zlvf:2ﬂ ~;3) (250)

to aggregate all the performance values 77; (j = 1,2,3) of the i-th line, and get the
overall performance value 7} correspondmg to the alternative Y;:

7 = ([0.148,0.238], [0.624,0.723])

7 = ([0.209,0.340], [0.397,0.567))
7 = ([0.134,0.202], [0.701,0.778))
7 = ([0.198,0.283], [0.356,0.698))
7 = ([0.186,0.290], [0.500,0.697))

Then we calculate the scores of all the alternatives:

1
s(7) = ,(0.148 — 0.624 4 0.238 — 0.723) = —0.480

1

s(75) = ,(0.209 — 0.397 4 0.340 — 0.567) = ~0.207
1

s(7) =, (0.134 — 0.70140.202 — 0.778) = ~0.572
1

s(7) = ,([0.198 — 0.356 +0.283 — 0.698) = —0.286

1
s(7g) = (0 186 — 0.500 4 0.290 — 0.697) = —0.360

by which we have s(7) > s(7#) > s(75) > s(7#}) > s(7;). Therefore, from the ranking
procedure of IVIFNs introduced in Definition 2.3.5, we get 75 > 7, > 7t > 7 > 7%,
and thus Yo > Yy > Y5 = Y7 > Y3. To conclude, the optimal alternative is Y5.

2.5 Generalized Interval-Valued Intuitionistic Fuzzy Aggrega-
tion Operators

Based on the aggregation techniques introduced in Section 1.5, Zhao et al. (2010)
developed a series of generalized aggregation operators for IVIFNs:
Definition 2.5.1 (Zhao et al, 2010) Let GIIFWA : 6" — 6. If

GIIFWA (81, o, -+, () = (W1G] B wodd & -+ B wydld) > (2.51)
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then the function GIIFWA is called a generalized interval-valued intuitionistic fuzzy
weighted averaging (GIIFWA) operator, where A > 0, w = (w1,ws, -+ ,wy)?T is the
weight vector of &; = ([aj,b;], [¢j,d;]) (7 = 1,2,---,n), with w; € [0,1] (j =

1,2,---,n) and ij =1.
j=1

Similar to the discussion of Section 1.5, we have
Theorem 2.5.1 (Zhao et al., 2010) The aggregated value by using the GITFWA
operator is an IVIFN, and

1 1
n A A

GIIFWA,, (G1, do, -+, Gn) = 1-JJa=ap)= | [1-]J@—b}) :
j=1 j=1

>

n

1-(1-J[a-@=c)M)™

j=1

1
A

1—|1- ﬁ (1—(1—d)N)™ (2.52)
j=1

Especially, we have

(1) If a; = bj, and ¢; = dj, for all j, ie., all &; (j = 1,2,---,n) reduce to the
IFNs, then the GIIFWA operator reduces to the GIFWA operator, which has the
following form:

1 1
n A n A

GIFWA, (1, g, an)= | [1=][ (1 =a})™ | 1= {1=]](1 = (1 —¢j)*)

j=1 j=1

(2)Ifaj =bj,c;j=djand aj+c; =1, forall j,ie,ala; (j=1,2,---,n) reduce
to the traditional fuzzy numbers, then the GIIFWA operator reduces to the GFWA
operator, which has the following form:

1 1
n A n A

GFWA,, (41, dg, -, ap) = 1—H(1—a;)%‘ 11— 1—H(1—a;)%‘

j=1 j=1

We now examine some special cases obtained by using different choices of the
parameters w and A (Zhao et al., 2010):

(1) If A=1, then the GIIFWA operator (2.52) reduces to the IIFWA operator.

(2) Ifw = (1/n,1/n,---,1/n)T and A=1, then the GIIFWA operator (2.52) re-
duces to the ITFA operator.
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Definition 2.5.2 (Zhao et al., 2010) Let GIIFOWA : 6" — 0. If
GIIFOWAw(dl, dg, s ,@n) = (wl (ONég(l))A @w2(0~¢a(2))>\ - ®wn(da(n))>\)’l\ (253)

then the function GIIFOWA is called a generalized interval-valued intuitionistic fuzzy
ordered weighted averaging (GIIFOWA) operator, where A > 0, w = (w1, ws, - - ,wy) T
is the weight vector associated with the GIIFOWA operator, with w; € [0,1] (j =

1,2,---,n) and ij =1, Gy(j) is the j-th largest of &; (j = 1,2,--- ,n).
j=1
Similar to Theorem 2.5.1, we have
Theorem 2.5.2 (Zhao et al., 2010) The aggregated value by using the GIIFOWA

operator is also an IVIFN, and

1 1
n A n A
GIIFOWA , (é, G2, -+, )= | || 1= ][ (1=ad)™ | (1-]](A=000)" ,
j=1 j=1
1
n A
- 1-JJa-Q=co))™ | .
j=1
1
n A
L= 1= [T == dag)M)™ (2.54)
j=1

where A > 0 and &a(j) = ([ag(j),bg(j)], [Cg(j),dg(j)]) is the j-th largest of &; (j =
1,2,---,n).

Especially, we have

(1) If aj = bj,c; = d; for all j, ie., all @; (j = 1,2,---,n) reduce to the IFNs,
then the GIIFOWA operator reduces to the GIFOWA operator.

(2) If aj =bj,c;j =d;j and aj+c¢; =1forall j,ie,all &; (j =1,2,---,n) reduce
to the ordinary fuzzy numbers, then the GIIFOWA operator reduces to the GFOWA
operator, which has the following form:

1 1
n A A

GFOWA,, (@1, dg, -+ , Gy ) = 1—H(1—a§(j))wj ,1— 1_H<1_a<>r\(j))wj
j=1

Jj=1

We now study some special cases obtained by using different choices of the pa-
rameters w and A (Zhao et al., 2010):

(1) If A=1, then the GIIFOWA operator (2.54) reduces to the IIFOWA operator.

(2) Ifw=(1/n,1/n,1/n,---,1/n)" and A=1, then the GIIFOWA operator (2.54)
reduces to the ITFA operator.
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(3) If w = (1,0,---,0)", then the GIIFOWA operator (2.54) reduces to the fol-
lowing:

IIFMAX.,, (1, @2, - - - , @) = max(d;) (2.55)
J

(4) If w = (0,0,---,1)T, then the GIIFOWA operator (2.54) reduces to the fol-
lowing:

IIFMIN,, (&1, G, - - - , 4,) = min(a,) (2.56)
J

The GIIFWA operator weights only the IVIFNs, while the GIIFOWA operator
weights only the ordered positions of the IVIFNs instead of the IVIFNs themselves. To
overcome this limitation, we now introduce a generalized interval-valued intuitionistic
fuzzy hybrid aggregation (GIIFHA) operator, which weights both the given IVIFNs
and their ordered positions:

Definition 2.5.3 (Zhao et al., 2010) A generalized interval-valued intuitionistic
fuzzy hybrid averaging (GIIF HA) operator of dimension n is a mapping GIIFHA :
0" — O, which has an associated vector w = (w1, ws, -+ ,w,)T, with w; € [0,1]

(j=1,2,---,n) and ij =1, A > 0, such that
j=1

GIIFHAw,w (dh Qgy ey dn) = (wl (&0(1)))\ b we (aa(2))>\ b---Dwn, (do(n))k) A (257)

where &U(j) is the j-th largest of the weighted IVIFNs &j (&j =nw;&;, j=1,2,--- ,n),

T

w = (w1,ws, -+ ,wy) " is the weight vector of &; (j = 1,2,---,n) with w; € [0,1],

ij =1, and n is the balancing coefficient, which plays a role of balance.
=1
Let &U(j) = ([C'lg(j), i)a(j)], [ég(j), dg(j)]). Then, similar to Theorem 2.5.1, we have

1 1
n A n A
GIIFHA,, (a1, a2, -+, dn)=| [[1=]](1 =TI ) |
j=1 j=1
r 1
n A
A w 4
H - ])) ) ’ )
j=1

>

wj

(- d,,(j))h) (2.58)

—_
|
[a—
|

<.

Il 3

—

/N

—

and the aggregated value derived by using the GITFHA operator is an TVIFN.
Especially, if A = 1, then Eq.(2.58) reduces to the IIFHA operator.
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Theorem 2.5.3 (Zhao et al, 2010) The GIIFOWA operator is a special case of the
GIIFHA operator.

Proof Letw = (1/n,1/n,1/n,---,1/n)T. Then &; = &; (j = 1,2,---,n), so we
have

GIIFHA (@1, 2, - 5 &) = (w1 (Go(1) @ wa (@)
= (wn (dg(l))A ©® w2(dg(2)))\
= GIIFOWA (a1, @z, - - - ,dn)

D wn(@a(n))A)
- D wn(dg(n)))\)

> >

D
D

which completes the proof.

Similar to the IIFWA, IIFOWA and IFHA operators, the GIIFWA, GIIFOWA
and GIIFHA operators can also be applied to multi-attribute decision making based
on interval-valued intuitionistic fuzzy information.

2.6 Interval-Valued Intuitionistic Fuzzy Aggregation Opera-
tors Based on Choquet Integral

Based on Definition 1.5.1, Xu (2010¢) uses Choquet integral to propose some operators
for aggregating IVIFNs together with their correlative weights:

Definition 2.6.1 (Xu, 2010c) Let a(z;) = ([a(z:), b(x;)], [c(z:), d(z:)]) (i =1,2,---
n) be n IVIFNs, and ¢ a fuzzy measure on X = {x1, 22, -, 2, }. Then we call

(03)/ad< = IIFCA (6(x1), @(a2), - , &(zn))

= (((Bo(1)) = C(Bs(0)))a@(75(1)) ® (C(Bs(2)) = C(Bo(1)))M(To(2))
DD (C(Bo(n)) - C(Brr(n 1) ))d( a'(n)) (259)

an interval-valued intuitionistic fuzzy correlated averaging (ITFCA) operator, where
(Cs) / @d( is a notation of Choquet integral, &(x,(;)) indicates that the indices have
been permuted so that &(z1)) = @(2,(2)) = - 2 &(Ton))s Boky = {To)l i < k},
when £ > 1 and B, ) = O.

With the operations of IVIFNs, the IIFCA operator (2.59) can be transformed
into the following form by using mathematical induction on n:

(Cs) / Gd¢ = TIFCA (6(z1), G(z2), - , &(zn))

— <[1 _ H (1 - a(xa(i)))C(B“(“)_C(B”(i*”),
i=1

1= H (1 - b(ffg(i)))C(B"(“)*C(Bﬂi—l)) ’
i=1
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f[ C(Ba( ) Boi—1)) ﬁ C(Ba( )~ C(Ba(i—l))]>

i=1 =1

(2.60)
whose aggregated value is an IVIFN.
In what follows we discuss some special cases of the IIFCA operator (Xu, 2010c):
(1) If Egs.(1.186) and (1.189) hold, then the IIFCA operators (2.59) and (2.60)
reduce to the IIFWA operator

IEWA (a(21), a(2), -+, &(n))
=C({z1}) a(z1) & ¢ ({w2}) alz2) & -~ & C({an}) alan)

n

([ ﬁ 1— a(z;) = 1 - H(l_b(xi))q{zi})]’

i=1 i=1

[ﬁ (eh ﬁ (e D (2.61)
=1

i=1

1

Especially, if ¢ ({x;}) = , for all § = 1,2,--- ,n, then the IIFWA operator (2.60)
n

reduces to the ITFA operator:

n 1/n n 1/n
[(H c(xz)) , (H d(ml)> ]) (2.62)

(2) If Eqgs.(1.192) and (1.193) hold, then the IIFCA operators (2.59) and (2.60)
reduce to the IIFOWA operator:
ITFOWA (&(z1), &(x2), -, 0(xn))

:wld(%u)) S3] wz@(%@)) DD wn@(%(n))

= (|} - H (1 — a(xa(i)))wi, 1- H (1 - b(xa(i)))Wi] )

i=1 i=1

[H (C(xa(i)))Wiv H (d(ffo(i)))Wi]> (2.63)

i=1 i=1

B
Especially, if ¢((B) = ‘n‘, for all B C X, then both the IIFCA operator (2.59) and
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the IIFOWA operator (2.63) reduce to the IIFA operator.
(3) If Eqgs.(1.194) and (1.195) hold, then the IIFCA operators (2.59) and (2.60)
reduce to the following form:

IIFWOWA (&(z1), é&(z2), - - -, &(z,))

Zwld(l‘g(l)) D wav ( ) - D wnd(xo(n))

= (ll - 1:[ (1—a(ze@))" 1 - H (1- b(l‘au)))wi] ;
[H (elra@)™ 11 (d(%(i)))wi] ) (2.64)
i=1 i=1

which we call an interval-valued intuitionistic fuzzy weighted ordered weighted aver-
1

aging (IIFWOWA) operator. Especially, if ¢ ({z;}) = , foralli =1,2,---,n, then
n

the IIFWOWA operator reduces to the IIFOWA operator.

Definition 2.6.2 (Xu, 2010c)  An interval-valued intuitionistic fuzzy correlated
geometric (IIFCG) operator is defind as:

(C4) / Gd¢ = TIFCG (&(a1), (xa), - )

_( g(l )C(Bam) <( a<o>) ( (x Zo )))4(30(2))_4(36(”)
5 C(Bo(n))—¢(Bo(n—-1))
Q-+ (a( U(n))) ) (=1 (265)

where (Cy) / ad( is a notation of Choquet integral, &(z(;)) indicates that the indices
have been permuted so that &(z,(1)) = &(Zs(2)) = -+ 2 &(Zo(n))s Bor) = {Zo(j)] J <
k}, when k > 1 and B,y = ©.

With the operations of IVIFNs, the IIFCG operator (2.65) can be transformed
into the following form by applying mathematical induction on n:

(@)/aaq =IIFCG (a(x1), dl(x2), -, a(zn))

all
-

1—

(a(mo(z)))(C(B"()) ¢(Bo(i-1)) H g(i)))C(Ba(i))7C(B0(i—l))
i=1

=

)

Els”

C(Bo())—=¢(Bo(i-1))
(l—c( ())) (@) (i-1)

)

1

C(Bu(i))~¢(Ba(i1
(1 = g y)) *Pro) B ))D (2.66)

'I:ls 0

Il
-

7

whose aggregated value is an IVIFN.
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Below we discuss some special cases of the IIFCG operator (Xu, 2010c):
(1) If Egs.(1.184) and (1.187) hold, then the IIFCG operators (2.65) and (2.66)
reduce to the IIFWG operator:
ITFWG (a(z1), a(x2), -, &(xy))
= (a(z ))g({zl}) ® (a(x ))C({Iz}) Q- ® (d(zn))g({z"})

([H e H Jyedted
l ﬁ 1= () SD) 1 ﬁ(l—d(m))“{“})]) (2.67)

=1

1

Especially, if ¢ ({z;}) = , for all ¢ = 1,2,--- ,n, then the IIFWG operator (2.67)
n

reduces to the IIFG operator:

IIFG (a(z1), alas), - - @(In))

n 1/n
— (H a(sci)> Hb 3:1

1/n n 1/n
1—<' (1—c(a:z))> < H (1-d x) (2.68)

(2) If Eqs.(1.192) and (1.193) hold, then the IIFCG operators (2.65) and (2.66)
reduce to the IIFOWG operator:

-

[ H (1= elzow)) " 1= (1 - d(a;,,(i)))“iD (2.69)
Especially, if pu(B) = | , for all B C X, then both the IIFCG operator (2.65) and

the IIFOWG operator (2.69) reduce to the IIFG operator.
(3) If Eqgs.(1.194) and (1.195) hold, then the IIFCG operators (2.65) and (2.69)
reduce to the following form:

HFWOWG (&(1), &(x2),- -, &(wy,))
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= (a(x a(l) )" @ (alz, (2)))w2®" ® (@(wom))""

z:l 1:1
[ H (1= c(zo0:)) )wi,l—H(l—d(xg(i)))M1> (2.70)
i=1 i=1

which we call an interval-valued intuitionistic fuzzy weighted ordered weighted geo-

1
metric (IIFWOWG) operator. Especially, if ¢ ({z;}) = ,foralli=1,2,--- n, then
n
the IFWOWG operator reduces to the IIFOWG operator.
Example 2.6.1 (Xu, 2010c) If the evaluation information in Example 1.6.1 is
represented by the IVIFNs &y, (G;) (i =1,2,---,10; j =1,2,3), as shown in Table
2.12:

Table 2.12 The evaluation information about projects

Gy Ga
v ([0.7,0.8],[0.1,0.2)) (0.8,0.9],[0.0,0.1]) ([0.6,0. 9},[0 0,0.1])
Yo (0.6,0.7),[0.1,0.3]) ([0.7,0.8],[0.1,0.2]) (10.5,0.6],[0.2,0.3])
Y3 ([0.4,0.5],[0.3,0.4)) (0.6,0.7],[0.2,0.3)) (10.4,0.6],[0.1,0.2])
Yy (10.5,0.7),[0.1,0.2]) (10.6,0.7],[0.1,0.2]) (10.5,0.6],[0.3,0.4])
Ys ([0.3,0.4],[0.4,0.5)) (0.4,0.6],[0.2,0.3)) (0.3,0.4],[0.3,0.5])
Yo (10.4,0.5),[0.2,0.3]) (10.3,0.6],[0.1,0.2]) (10.5,0.8,[0.1,0.2])
Yy (0.2,0.3],[0.4,0.6]) (10.3,0.5),[0.4,0.5]) (10.2,0.4],[0.4,0.5])
Ys ([0.4,0.6],[0.1,0.3)) (0.5,0.7],[0.1,0.3)) (0.7,0.8],[0.1,0.2])
Yo (10.4,0.5),[0.3,0.4]) (10.7,0.8],[0.1,0.2]) (10.2,0.3],[0.1,0.3])
Yio ([0.1,0.3],[0.5,0.7)) (0.6,0.7],[0.2,0.3)) (0.3,0.5],[0.3,0.4])

then we can rearrange the IVIFNs corresponding to each project in descending order
by using the method presented in Section 2.2:

dy, (Goy) = ((0.8,0.9], [0.0,0.1]), @y, (Goz)) = ([0.6,0.9], [0.0,0.1])
dy, (Gys) = ([0.7,0.8], [0.1,0.2])

dy, (Goy) = ((0.7,0.8], [0.1,0.2]),  dy,(Goz)) = ([0.6,0.7], [0.1,0.3])
ay, (Goe) = ([0.5,0.6], [0.2,0.3))

v, (Gony) = ([0.6,0.7], [0.2,0.3]), vy (Gogz)) = ([04,0.6], [0.1,0.2])
ay, (Gog) = ([0.4,0.5], [0.3,0.4])

ay, (Gy1)) = ([0.6,0.7], [0.1,0.2]), dv,(Gogz)) = ([0-5,0.7], [0.1,0.2])

Gy, (Gos) = ([0.5,0.6], 0.3,0.4])
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dy, (Goy) = ((0.4,0.6], [0.2,0.3]),  dvs(Goz)) = ([0.3,0.4], [0.3,0.5))
ay, (Gos) = ([0.3,0.4], [0.4,0.5])

dyy (Goy) = ((0.5,0.8], [0.1,0.2]),  dvy(Goz)) = ([0-3,0.6], [0.1,0.2])
ay, (Gos)) = ([0.4,0.5], [0.2,0.3])

dy; (Goy) = ((0.3,0.5], [0.4,0.5]), s (Goz)) = ([0.2,0.4], [0.4,0.5))
ay; (Gos) = ((0.2,0.3], [0.4,0.6])

dy, (Goy) = ((0.7,0.8], [0.1,0.2]),  dvy(Goz)) = ([0.5,0.7], [0.1,0.3])
ay, (Gos)) = ([0.4,0.6], [0.1,0.3])

dyy (Goy) = ((0.7,0.8], [0.1,0.2]),  dv, (Goz)) = ([0:4,0.5], [0.3,0.4])
ayy (Gos) = ((0.2,0.3], [0.1,0.3])

vy (Gony) = ([0.6,0.7], [0.2,0.3]),  dvyo(Gorz)) = ([0.3,0.5], [0.3,0.4])
vy (Go) = ([0.1,0.3], 0.5,0.7])

If we use the IIFCA operator (2.60) to calculate the overall evaluation information
corresponding to each project, then

IIFCA (ay, (G1), ay, (G2), ay, (G3))

([0.71,0.89], [0.00,0.11])

IIFCA (G, (G1), dy, (G2), dy, (Gs)) = ([0.61,0.71], [0.13,0.26])
IIFCA (Gy, (G1), dy, (G2), dy, (Gs)) = ([0.49,0.63], [0.16,0.27])
IIFCA (G, (G1), Gy, (G2), y,(G3)) = ([0.54,0.66], [0.16,0.26])
IIFCA (&, (G1), dy, (G2), dy, (Gs)) = ([0.34,0.50], [0.29,0.41])
IIFCA (Gy, (G1), Gy, (Ga), dy, (Gs)) = ([0.39,0.66], [0.11,0.22])
IIFCA (&, (G1), dy, (Ga), dy, (Gs)) = ([0.24,0.42], [0.40, 0.52])
IIFCA (Gy, (G1), Gy, (G2), dya (Gs)) = ([0.56,0.72], [0.10,0.27])
IIFCA (Gy, (G1), dy, (G2), dy, (G3)) = ([0.49,0.60], [0.12,0.27])

IIFCA (dy,, (G1), dy,y (G2), dyyo (Gs)) = ([0.41,0.56], [0.25,0.37))

After that, we can rank the above IVIFNs by using the method presented in
Section 2.2:

([0.71,0.89], [0.00,0.11]) > ([0.61,0.71], [0.13,0.26]) > ([0.56,0.72], [0.10,0.27])
> ([0.54,0.66], [0.16,0.26]) > ([0.39,0.66], [0.11,0.22])
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> ([0.49, 0.60], [0.12,0.27]) > ([0.49,0.63], [0.16,0.27])
> ([0.41,0.56], [0.25,0.37]) > ([0.34,0.50], [0.29,0.41])
> ([0.24,0.42], [0.40,0.52])

The ranking of the four projects Y; (i = 1,2,---,10) can now be obtained:
Yi-Yo-Yg-Ys>Ys =Yy >-Ys>Y0>Y; >V

If we use the IIFCG operator (2.66) to calculate the overall evaluation information
corresponding to each project, then

ITFCG (@y, (G1), ay, (G2), ay, (G3))

([0.69,0.88], [0.02,0.12])

IIFCG (dy, (G1), y, (Ga), dy, (Gs)) = ([0.59,0.69], [0.14,0.26])
IIFCG (Gy, (G1), dy, (Ga), iy, (Gs)) = ([0.47,0.62], [0.18,0.28])
IIFCG (dy, (G1), &y, (Ga), dy, (Gs)) = ([0.54,0.66], [0.19,0.29])
IIFCG (Gy, (G1), dy, (Ga), dy, (Gs)) = ([0-34,0.47], [0.31,0.43])
IIFCG (dy, (G1), iy (Ga), iy, (Gs)) = ([0.37,0.63], [0.14,0.24])
IIFCG (ay, (G1), y, (Ga), dy, (Gs)) = ([0.24,0.41], [0.40,0.52))
IIFCG Gy, (G1), iy (Ga), iy (Gs)) = ([0.53,0.71], [0.10,0.27])
IIFCG (dy, (G1), iy, (Ga), iy, (Gs)) = ([0.38,0.49], [0.14,0.28])
IIFCG (G, (G1), Gy (Ga), Giyyy (Gs)) = ([0.32,0.52], [0.31,0.44])

We can rank the above IVIFNs by using the method presented in Section 2.2:

([0.69,0.88], [0.02,0.12]) > ([0.59, 0.69], [0.14,0.26]) > ([0.53,0.71], [0.10,0.27])
> ([0.54,0.66], [0.19,0.29]) > ([0.47,0.62], [0.18,0.28])
> ([0.37,0.63], [0.14,0.24]) > ([0.38,0.49], [0.14,0.28))
> ([0.32,0.52], [0.31,0.44]) > (]0.34,0.47], [0.31,0.43])
> ([0.24,0.41], [0.40,0.52))

Thus the ranking of the ten projects Y; (i = 1,2,---,10) is:
Yi-Yo-Ys =Y, >-Ys>-Ys Yy >Yio>Ys; -V

which indicates that the IIFCA and IIFCG operators produce slightly different rank-
ing results, but the best project is Y7 in both the cases.
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2.7 Induced Generalized Interval-Valued Intuitionistic Fuzzy
Aggregation Operators

Xu and Xia (2011) extend the generalized intuitionistic fuzzy correlated averaging
operators to aggregate interval-valued intuitionistic fuzzy information:

Definition 2.7.1 (Xu and Xia, 2011)  An induced generalized interval-valued intu-
itionistic fuzzy correlated averaging IGIIFCA operator of dimension n is a function
IGIIFCA : @™ — 6, which is defined to aggregate the set of second arguments of a list
of 2-tuples {(V1,a1),(Va,da), - ,(Vn, &n)} according to the following expression:

IGIIFCA ((V1,a1), (Va,a2) -+, (Vn, Gn))
= (¢4 ) = C(A00))a0) ® (C(Ar@)) = C(Ao(r))ad) @ -

} 1/A

O Aom) = C(Aon-1))E () (2.71)
where A > 0, V; in 2-tuples (V;, &;) is referred to as the order-inducing variable and
&; as the argument variable, o(4): {1,2,--- ,n} — {1,2,---,n} is a permutation such
that va'(l) = vo 2) Z ez vo(n)v Aa’(z) - {da'(l)vdo(Q)v o ada'(i)} when ¢ > 1 and

Agoy) = ©. Using the operations for IVIFNs, we can get

IGIIFCA ((V1,61),(Va,a2) -+, (Vp, én))

n 1/X
= (1 _ H(l — ([ng(i)))‘)C(Aa(i))C(Aa(i—l))> ,

=1

n 1/X
< H Ma () C(Aa< ) —C(Agqiz 1)))
i=1
N 1/
_ _ _ (1L M C(Ao))—C(As(i-1))
| (1 [10 (1 - 5k, )ttt ) ,

n 1/A
1— (1 - 1‘[1(1 —(1=pg,, )" A <<Aw—1>>> (2.72)
In particular, if V; = V; in two 2-tuples (V;, &;) and (V;, &;), then we can replace
&; and &; by their average, i.e., (&; @ &;)/2. If k items are tied, we can replace these
by k replica’s of their average.
In the case where V(1) = Vo) 2 -+ 2 V) and Gg1) 2 Gg(2) 2+ 2 Qo(n),
the IGIIFCA operator (2.72) becomes

GITFCA (@1, 2, -+ , i)
=(C(As(1)) = C(Ax(0))) (1) @ (C(As(2)) — C(Ap(1)))bo2) @ - - -
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C(A, (Ag(n-1))) 00 (n)

1/x

e | R e
Jj=1

g
3
ol

Jj=1
1/X
H 1 (1 _ )X)C(Aa(j))—C(Aa(j—l))
ao(z) ’
j=1
1/A
1—{1- (1 - (-5, ) )¢ =C(Ao-1) (2.73)

which we call a generalized interval-valued intuitionistic fuzzy correlated averaging
(GIIFCA) operator, where &,(;) is the j-th largest of &; (i = 1,2,---,n) (Xu and
Xia, 2011).

Especially, if A = 1, then Eq.(2.73) reduces to the induced interval-valued intu-
itionistic fuzzy correlated averaging (IIIFCA) operator (Xu and Xia, 2011):

IIFCA ((V1,84) , (Va,a2) -+, Vi, @n))

=(C(Ao(1)) = C(A0(0))) (1) @ (C(Ao(2)) — ((As(1)))Co(2) & -+
® (C(Ag(n)) = C(Ag(n-1)))@o(n)

C(Asi))—C(As(iz1)) n C(Asi))—C(Asi—1))
([1 H(l_“%m) _H( “%u) 1 )
n 5 C(Asi)—ClAniion)) 5 C(Asi))—C(Asiiz1))
[H (%) TI62.) D (2.1)

=1 i=1
Furthermore, if uy(1) 2 Ug2) = *+* 2 Ug(n) and Gy(1) = Qp(2) =+ 2 Qu(n), then
the IIIFCA operator (2.74) becomes the IIFCA operator (Xu, 2010c):
IIFCA(ah Qg -+ CNV )
=(((As1)) = C(As(0)))@o(1) @ (C(As(2)) — ((As(1)))bo(2) & - -
©® (C(Aa(n)) - C(Aa(nfl)))do(n)

n C(As))—C(Asii—1)) n U C(As))—C(Asii—1))
= H ( Ma,(])> 1 H (1 - “&au)) ’

Jj=1 Jj=1
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n C(Aa(i)—CAsi-1) & As())—C(As(j-1))

~L
H (V&am) ’H ( am) (2.75)
j=1

J=1
where G, ;) is the j-th largest of &; (i = 1,2,--- ,n).
If A =0, then we have
HIFCG ((V1,@1),{(Va, @), -+, (Va, an))
:(da(l))C(Agu))—C(Aa(m) ® (da(m)c(Ag(Q))—g(Aa(n) Q...
® (dc,(n))C(Av(m)*C(Aa(n—l))

n C(Asi)—C(Agii—1)) 1 C(Asi))—C(Asi—1))
_ ~L
~(|Ge..) 116w.) |

1 =1
n C(Asi))—C(Asii—1)) n Agiy)—C(Agiz1))
L,
CTTG-) 116, D (2.76)
i=1

which we call an induced interval-valued intuitionistic fuzzy correlated geometric
(ITFCG) operator (Xu and Xia, 2011).

Especially, if VU(l) > VG-(Q) =2 Vg(n) and &a(l) = @0(2) =2 @U(n), then
the ITFCG operator (2.76) reduces to the interval-valued intuitionistic fuzzy correlated
geometric (ITFCG) operator (Xu, 2010c):

IIFCG(ay, aa, -+, &)

:(do(l))C(Ao(l))*C(Aam)) @ (dry @ ))C(Ao(z))*C(Aau)) ® -

® (ay ) Asn))—C(Ag(n—1))

i <<Aa<]>> C(As—1) 42 ¢(Ae(i))—C¢(Asii-1))
~U

H am H (“&om) )

j=1 j=1

Ae())—C(Asi-1)) i As(i) € (Asi-1))
-0~ %) A1) (277)

Jj=1

HE:

where @, ;) is the j-th largest of &; (i = 1,2,--- ,n).

If each payoff value of the alternative Y; under the state Gj in Section 1.7 is given
by an IVIFN ¢&;;, then we can develop a method for decision making based on the
IGITFCA operator (Xu and Xia, 2011).

Step 1 Calculate the correlations between the states of nature using the Choquet
integral.

Step 2 Calculate the inducing variables matrix V = (Vy;), .

Step 3 Utilize Eq.(2.72) to get the expected result C; for the alternative Y;:

éi =IGIIFCA ((Vﬂ, 0~411> y <vi2, 6412> PN <Vim7 d2m>)
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= ((¢(As1) = C(Ao0))r) @ (((Ao(z) = C(Ag(1))adoizy @ -+

/2
(Ao m) = C(Aotm—1)) &) ) (2.78)

Step 4 Derive the priority of C; according to the comparison method of IVIFNs,
and generate the ranking of the alternatives Y; (i = 1,2,--- ,n).

Xu and Xia (2011) further extend the intuitionistic fuzzy Dempster-Shafer oper-
ators to interval-valued intuitionistic fuzzy environments:
Definition 2.7.2  Let

M =((V11,811), (Va1 @21) - (Va1 Qq1) s,
<v1’r7 éVkl’l“> ) <V2T7 d2r> y Ty <vqw‘7 dq7~r>)

be a collection of 2-tuple arguments with r focal elements, By (k = 1,2,---,r). A
BSI-GIIFOA operator of dimension r is a function BSI-GIVIFCOA : 6" — 6 defined

by
~ T qk ~ )‘2/>\1 1/)\2
BSI-GIIFOA (M) = (ke_sl (g(Bk) (j@l (%kﬁ?ﬁ)) )) (2.79)

q ~ ~ ~ ~
where él (wjkﬁj,i) = wikBil S wa ol & B w kB, and A > 0, Ay > 0, Wy, =
]:

(w1k7w2k7 e aquk}
dk 5
ijk =1 and wji, € [0, 1], gx is the number of elements in By, B;i is the &, value
j=1

of the pair (Vik, &;;) having the j-th largest of V(i = 1,2, ,q, ), wix is the order-

)T is the weighting vector of the k-th focal element Bj such that

inducing variable, @&; is the argument variable, and ((By) is the basic probability
assignment.

By the operational laws of IVIFN, the BSI-GIIFOA operator (2.79) can be trans-
formed into the following form by using mathematical induction on n:

Na /o) CBON A2
r qk
BSI-GHFOA(M): A O TR |
k=1 j=1 !
Na/an\ (BT
r qk
1— 1— I—H(l_(ﬂgjk))\l)wjk :
k=1 j=1
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A2/A1 ¢(Br) 1/ 32

T dk
1-[1=-T[ |- [1-JJ-a- }[;M)M)“jk ;
k=1 j=1
Na /A \CBO/ 2
T dk
- 1= |- 1—H(1—(1—ﬁgjk)h)wjk
k=1 j=1
(2.80)

Some special cases of the BSI-GIIFOA can be given as follows (Xu and Xia, 2011):
(1) If Ay = A2 = A, then Eq.(2.80) reduces to

BSI-GITFOA (M) = (él (C (By) ;:151 (wjkﬁ?k>>)1m

1/x
— _ _ w;ikC(B)
= 1 H H 1 ”B]k ROk
k=1j=1
1/x
— — w;ikC(Bk)
=11 H 1 /‘ﬁjk e
k=1j=1
— /A
1—(1— H H(l —(1- ﬂ[%‘jk))‘)wjkC(Bk)
k=1j=1
T 9k L/
1-{1-J[I[a-a- ﬁgjk)’\)“ﬂ“Bk) (2.81)
k=1j=1
(2) If Ay = A2 = 1, then Eq.(2.80) becomes:
BSLITFOAA (17) =& (((Bk) %1 (wjkﬁjk»
-1 j=
T dk T
. ~L ]kc( k w_]k( Bk)
= (|- TIIL G-, )™ =TT 1L -55,) :
k=1j=1 k=1 jk=1
T kaC Bk r ij'C(Bk)
[T ()" T (5,) 252)
k=1j=1 k=1j=1

which we call a BSI-IIFOAA operator.
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(3) If A1 =0 and Ay = 1, then we have

BSI-LIFOAG (M) = & (C (Bx) El (Bj@)

, 0 ¢(Bk)
_ ~L\
- 1= H 1= H (ﬂféﬂc) ’
k=1 j=1
, . ¢(Bk)
c(-fie)) |
k=1 Jj=1
, “ ¢(Bk)
~L Wik
1 (1 - Vﬁjk> ,
k=1 je=1
. 0 ¢(Bk)
1- 1] (1 —ﬁgjk) " (2.83)
k=1 je=1

which we call a BSI-IIFOAG operator.
(4) If Ay =1 and Ay = 0, then we obtain the BSI-ITFOGA operator:

_ - an 5 ¢(Bk)
BSLIFOGA (1) = & (je_al (wjk/@jk)>

k=1
. o ¢(Bk)
B B o W
o ! H (1 uﬁﬂﬁ) ’
k=1 j=1
. o ¢(Bk)
U \Wik
1= (1 B “é_jk> ’
k=1 Jj=1
. N ¢(Bk)
~L Wik
=TT (=11 (7%.) :
k=1 Jj=1
- . ¢(Bk)
1 1- (f/gjk) " (2.84)
k=1 j=1

which we call a BSI-ITFOGA operator.
(5) If A1 = 0 and Ay = 0, then we have

. . ¢(Bk)
BSLUFOGG (1) = & ((J,%_@l (ﬁfﬁk» )
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L ¢ - ¢(Bk)
= (I )™ LI ()™
k=1j=1 k=1j=1
q
ST e T T o)
k=1j=1 k=1j=1

(2.85)
which we call a BSI-IIFOGG operator.

If each payoff value of the alternative Y; under the state G; in Section 1.7 is given
by an IVIFN &;;, then we can develop a method for decision making based on the
BSI-GITFOA operator (Xu and Xia, 2011) as follows:

Step 1 Calculate the attitudinal character of the decision maker to determine
the inducing values matrix V = (Vi;)nxm.-

Step 2 Find the set of payoff values:

Mik = {<Vij7 dij>| Gj € Bk} = {<vzlkﬂ dzlk> ) <V12k7 dz?k> PR <v3]};70~‘?]];>} (2'86)

T
Step 3 Determine the weight vector Wy, = (wék),wgi), e ,wgg’“)> , and calcu-
late the aggregated payoff Vi

Vzk ( (1)(ﬂ1(1)))\1 (2)(ﬂ1(2)))\1 @w qzc (ﬂz(qk)) ) /X (2.87)

where BZ(,JC) is the dg? value of the pair <V(Q,a(k)> with the j-th largest of V( )(l

172a"' 7Qk)'
Step 4 Utilize the BSI-GITFOA operator (2.80) to calculate the aggregated pay-
off C; for each alternative Y;:

oo (o3 ) )

Step 5 Select the best alternative Y; with the largest C;.
One can apply the above method to Example 1.7.2 with the evaluation information
expressed in IVIFNs.

I/AQ

(2.88)
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Chapter 3

Correlation, Distance and Similarity
Measures of Intuitionistic Fuzzy Sets

Correlation, distance and similarity measures are an important research topic in the
IFS theory, which has received great attention in recent years. In this chapter, we
shall give a thorough and systematic introduction to the existing research results on

this topic.

3.1 Correlation Measures of Intuitionistic Fuzzy Sets

Gerstenkorn and Mafiko (1991) suggest a correlation measure function of IFSs, and
define the concept of correlation coefficient. Bustince and Burillo (1995) define the
correlation degree of IVIFSs, and also introduce two decomposition theorems, one on
the correlation of interval-valued fuzzy sets and the entropy of IFSs, and the other
on the correlation of IFSs. Hong and Hwang (1995) study the concepts of correlation
and correlation coefficient of IFSs in probability spaces. Hung and Wu (2002) propose
a method to calculate the correlation coefficient of IFSs by means of “centroid”. The
method reflects not only the strength of relationship between IFSs, but also their
positive or negative correlation. Furthermore, they extend the “centroid” method to
IVIFSs. Hung (2001) investigates the correlation measure of IFSs from the viewpoint
of statistics. Hong (1998) generalizes the concepts of correlation and correlation
coefficient of IVIFSs to a general probability space and extends the results of Bustince
and Burillo (1995). Xu et al. (2008) define a correlation coefficient of IFSs from the
set-theoretic viewpoint. Xu (2006h) provides a survey on correlation analysis of IFSs,
and proposes a new method for deriving the correlation coefficients of IFSs, which has
some advantages over the existing methods. Furthermore, the developed method is
extended to the IVIFS theory, and an application in medical diagnosis is illustrated.
These results are described in more details below:

Let X = {x1,22, -+ ,x,} be a fixed finite set, A; = {{(;, pa, (x;),va, (z;)) | z; €
X} and Ay = {{@;, ppa, (i), va,(x;)) |2 € X} two IFSs. If
C1 (Al, Az)

Pl(A17A2) =
(e1(A1, A1) - e1(As, Ag)) '/

(3.1)
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where

1(Ar, Ag) =Y (i (@i) - pag () + i (i) - va, () (32)
=1

then p; (A1, Ag) is called the correlation coefficient of the IFSs A; and Ay (Gerstenkorn
andMafiko, 1991).
Definition 3.1.1 (Gerstenkorn and Manko, 1991) A correlation coefficient p; (A1, A2)
should satisfy the following properties:

(1) 0 < p1(A1, A2) <1

(2) Ay = Ay = p1(A1, Ag) = 1,

(3) p1(A1, A2) = p1(Az, Av).

Hong and Hwang (1995) consider situations where the set X is an infinite set, and
define

ca(A1, A
p2(A1, A2) = 2l ) 1/2 (3:3)
(c2(A1, A1) - c2(A2, A2))
as a correlation coefficient of the IFSs A; and As, where
c2(A1, Az) = / (1ay (@)pa, (z) +va, (2)va, (z)) de (3.4)
X

Clearly, p2(A1, Ag) also has all the properties in Definition 3.1.1.
Hung (2001) defines the correlation coefficient of IFSs A; and As from the view-
point of statistics:

1
p3(Ar, Az) = 2(91,1 + p2,2) (3.5)

where

/X (i (&) — ias) X (1ay (2) — iny)de

P11 = 1/2 (36)
([ tn@) = maras [ Guasto) = s, fae)
X b's
is the correlation coefficient of 4, (z) and pa,(x), and
[ a @) = 2) % (as(0) = 2 )
p2,2 = x (3.7)

(/Xl (va,(x) — va,)*dz /X1 (v, () — VAQ)ng;>1/2

is the correlation coeflicient of v4, (z) and va,(x), 4, and i, are, respectively, the
sample means of the membership functions pa, (z) and pa,(x); 74, and v4, are the
sample means of the non-membership functions v, (z) and v, (x).

Mitchell (2004) gives an improved version of Hung’s results. He interprets the

IFSs A; and A as the ensembles of the ordinary membership functions 905:1) (z) and

e (@) (s,k=1,2,--- ,n):
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(@) = pa, (@) +7a, (2) X ps(x), O3 (@) = pa, (@) + 7a, () x pr(z)  (3.8)

where for each x € X, ps(z) and pg(x) are two uniform random numbers chosen

from the interval [0, 1]. The correlation coefficient p, j of each pair of membership

functions goifl) (z) and apiﬁ) (z) can be calculated as follows:

s _(s k _(k
/X %) (@) - ) x (6P (@) — gP)dz
(s) (s) k) (k Yz
( [ @ - eiras [ —wAz))dw>

s _(k
541) and <pf42)

Ps,k = (3.9)

where ps, € [-1, 1], @ are, respectively, the sample means of the ordinary
membership functions <pf451) (z) and @%Q)(x) (s,k =1,2,---,n). Then he defines the

correlation coefficient of the IFSs A; and As as:
PB(A17A2) :f(ps,k | Sak: 1a27"' 7n) (310)

where f is a mean aggregation function.
Huang and Wu (2002) propose a method to calculate the correlation coefficient of
the IFSs A; and As by means of “centroid”, as follows:

ca(Ar, A2)

pa(Ar, Az) = (3.11)
(ca(Ar, A) - ea(Az, A2))?
where
C4(‘41a AQ) = m(MAl)m(MAz) + m(UAl)m(UAz)
is the correlation of A; and As, and
/ xpa, (z)de / vy, (z)dz
m(pa,) = "7 , om(va,) =" (3.12)
/ wa, (z)dx / va, (z)dz
b'e b'e
/ Tpa, (z)de / v 4, (z)d
m(pa,) = "7 ;o om(va,) =" (3.13)
/ ta,(x)dx / va,(z)dr
b'e b'e

are, respectively, the centroids of pa,, va,, pa, and va4,.
Huang and Wu (2002) further extend the “centroid” method to the IVIF'S theory:
Let Ay = {(z,/14,(2), 74, (2)) [z € X} and Ay = {(x, iz, (), 74, (2)) [ € X} be
two IVIFSs, where

iz, (@) =[5 @), 7S @), g, (@) = 7% (@), 7Y (@)]
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7, (@) = 7% (), i{l @) 7, = % (@), 7Y (@)
Bk (@) =inf iz, (o), AY () =supfiz, (e), Y (&) = infig (2)
Dgl (z) = sup Ui, (z), ( ) = inf fi 4, (z), /]%2 (z) = sup fi g, (z)

171];12 (z) =infvg (z), ﬁgz (z) =supig, (v)

e L U SL SU L ~U SL ~U ~L
and let the centroids of Bgo g Vas Vi Bz g, VA, and Vi, be m(uAl)7
m(ﬂ%l), m(ﬂfh), m(ﬂgl)7 m(,&i), m(,&%Q), m(ﬁf;lz) and m(ﬁgz) respectively. Then

the correlation coefficient of the IVIFSs A; and A, is defined as:

Cs (Ala AQ)

ps(Ay, Ay) = o Y (3.14)
<C5(A17A1) : Cs(A27A2)>
where
cs (A1, Ay) = ( 5 ym(fi,) +m(ag )m(iy,)
m(Ps ym(Ps ) +m(@F Jm(7Y) (3.15)

is the correlation measure of the IVIFSs A; and As.
Bustince and Burillo (1995) also investigate the correlation coefficient of the IV-
IF'Ss /11 and 1212, and define it as:

po(Ar, Az) = ca( A, ) L2 (3.16)
c6(A1, Ay) - cg(As, flg))
where
ol d2) = o - (i, it (@) + 75, (201, (@)
=1
0% (20)75 (@) + 05 (2:)7y (-Ti)) , meX (3.17)

is the correlation measure of [11 and flg.
Hong (1998) introduces the concept of correlation coefficient of the IVIFSs A; and
Ay in a general probability space. This is given as:

07(1417 AQ)

pr(Aq, Ag) = o Y
<C7(A17 Ay) - cr(Aa, Az))

(3.18)

where

er(Ay, Ay) = | /X (%, @ik, @) + 7Y, @)Y, (@)
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(@) + 59 ()5, (g;)) da (3.19)

is the correlation measure of [11 and flg.

All the correlation coefficients p; (A1, A2) (i = 3,4) and p;(A1, A3) (i = 5,6,7)
have the properties (2) and (3) in Definition 3.1.1, and satisfy the following:

(1) [pi(A1, Ag)[ < 1,0 = 3,4;

(2) |P5(x‘~11,{12)|~< L

(3) 0 < pi(Ar,A42) <1,i=6,7.

Xu (2006h) develops a new method to calculate the correlation coefficient of the
IFSs A; and As:
Definition 3.1.2 (Xu, 2006h) Let Ay = {(x;, pa, (x;),va,(z;)) |2; € X} and Ay =
{{@s, ppa, (@), va,(x:))| z; € X} be two IFSs. Then

o 1 - A/«Lmin + A,Ufmax AI/min + AI/max
ps(A1, Ag) = m Z ( At + Afimax + Av; + Ao ) (3.20)

1=

is called the correlation coefficient of A; and As, where
Api = |pay (@) — pa, (@i)|,  Avi = [va, (z:) — va,(z:)]
A,umin = Iniinﬂlu’Al ('TZ) — HA, (-771)|}, A'Umin = Inzln {|VA1 ('TZ) — VA, (.731)|}

Apimax = m§X{|ﬂA1($i) — pa, (i)}, Avmax = m?X{|VA1 (z:) — va, (@:)[}

In many situations, the weight of the element x; € X should be taken into account.
For example, in multi-attribute decision making, the considered attributes usually
have different importance, and thus need to be assigned different weights. As a
result, Xu (2006h) further extends Eq.(3.20) as:

" A/«Lmin + A,Ufmax AI/min + AI/max
Al’ A2 2 Z ( A,Ui + A,Umax - Av; + AVpax ) (321)

where w = (wy,ws, -+ ,wy)T is the weight vector of x; (i = 1,2,--- ,n), with w; €

[0,1),4=1,2,---,n, and Zwi = 1. In particular, if w = (1/n,1/n,--- ,1/n)T, then
i=1
Eq.(3.21) reduces to Eq.(3.20).
Xu (2006h) also generalizes Definition 3.1.2 to the IVIFS theory:
Definition 3.1.3 (Xu, 2006h) The correlation coefficient of two IVIFSs A; and A,
is defined as:

A A 1 S A~L' +A~§1ax A~U' +A~glax
pro(Ar, A) = ) uian fi Nin[}n fILJ
an A:uz + A:umax A:uz + A:umax
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A mln + AVmaX + A m1n + AVmax (3 22)
ATE + AL, ATY + ADY, ’
where
Ay = |5 (w) = B (xa)l, AR = |53 (@) — iy (22)]
ATE = |05 (0) = 7% (@), AP = 7Y (2) — 7Y ()]

A[L;in = miin{“]‘%l (ml) - N% (‘Tl)l} A1u’mm mln{|ﬂ‘4 ( ) :&’%2 (1’1)|}
Ay, = miin{|l7i§1 (i) — 17,122 (@)}, Ay, = miin{|z7A1 (i) — 1722 (z)]}
Aﬁﬁlax = mZaX{LIjL%l (.731) - ,D'EQ (Iz)|}7 Alagax = mlaxﬂ,&'%l (.731) - ,D'EQ (Iz)|}

A e = macl |7, (21) — 7%, (@)}, AP = max{[5Y, () — 7Y, (1)}

Eq.(3.22) can be generalized to a more general form:

(D + At | A, + A,
A A ; min max min max
p11(Ar, Ag) Z” ( ARE o+ ARLL AR £ ARY,
AV + AL Ay + Al
min max 1’1’111’1 max 3-23
ATE + AL - Ay + Ay ) )

max max

where w = (wy,ws, -+ ,wy)T is the weight vector of x; (i = 1,2,--- ,n), with w; €

[0,1),i=1,2,---,n, and Zwi = 1. In particular, when w = (1/n,1/n,---,1/n)7T,
i=1
then Eq.(3.23) reduces to Eq.(3.22).

However, from Definition 3.1.1 we notice that all the correlation coefficients above
cannot guarantee that the correlation coefficient of any two IFSs (or IVIFSs) equals
one when these two IFSs (or IVIFSs) are the same. Thus, how to derive the correlation
coefficients of the IFSs (or IVIFSs) that satisfy this desirable property is an interesting
research topic. To resolve this issue, below we improve Eq.(3.20) as:

1 - A,U/min + Aﬂmax AVmin + AVmax
pa(Ar, Ag) = 3n2< At A+ Aot Ay

A7Tmi1r1 + A7Tmax)

.24
Aﬂ'i + A77'maLx (3 )

where
TA; ('TZ) =1- HAy ('TZ) — VA, (.731), TAs ('TZ) =1- HA, ('TZ) — VA, ('7;1)
ATy = [may (20) = Tag (20)], - Aftmin = min {|ma, (1) — 7, ()]}

ATtmax = m;clx {Ima, (w:) — ma, ()]}
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If we take the weights w; (1 = 1,2,---,n) of the elements z; (i = 1,2,--- ,n) into
account, then Eq.(3.24) can be extended as:

n

A,Umin + A,U'max AVmin + AVmax
0(A1, As) i
b 2 Zw ( Aﬂz + Aﬂmax Al/i + AVmax
A7rmin + A77'1“1“130(
2
AT + ATmax > (3.25)

In particular, if w = (1/n,1/n,---,1/n)T, then Eq.(3.25) reduces to Eq.(3.24).

Obviously, the correlation coefficient derived by Egs.(3.24) and (3.25) not only
involve the first two parameters (the membership degree and the non-membership
degree) describing IFSs, but also contain the third parameter (the indeterminacy
degree), and thus can take all the information into account.

By Eq.(3.25), we have
Theorem 3.1.1 The correlation coefficient pjy(A1, A2) of two IFSs A; and A,
satisfies the following properties:

(1) 0 < py(A1,A2) <1

(2) Al = A2 4 pé(A],AQ) =1;

(3) Po(A1, A2) = py(Az, Ar).

Similar to Eq.(3.25), we can improve Eq.(3.23) as

i Ay = LN (Dt Al A Aji Ak, + A7
plll(AlaAQ): Z ( Fnin + /Lmax+ ﬂmm—"_ :u’max + mm+ Vmax

6 i=1 Aﬁ% + Aﬁlr‘;lax A/“Lz + A:umax AV =+ Ayr%lax
A mln + Aymax A mln + Aﬂ.max A I[IJlln + Aﬂ.max (3 26)
A + ADY, Arl + ARL ATY + ARY .. ’
where
Thy () = 1= iy, () = 04, (@), 74, (23) = 1= flg, () — 7%, ()
Tha () = 1= i, () = U4, (@), 74, (23) = 1 — flf, () — 0%, ()
ARE = 7% () = 7% (@)l ARV = 7Y (@) — 7Y (2)]
At = mjn{|7~rﬁl (i) — 7T (mz)l} Ay = mi n{lﬂ' (%) 7T ($Z)|}
Aftax = m?X{|7~T,Iil (i) — ﬁ,liz (@)}, Afpax = m?X{|7~Tgl (i) — ﬁgz (zi)[}

In particular, if w = (1/n,1/n,---,1/n)T, then Eq.(3.26) reduces to the counterpart

of Eq.(3.22):
S Aﬂﬁlil’l + Aﬁﬁlax A:u’mm + Aﬁr[ﬂax A Viin + AVmax
Plo (Alv A2 6n Z (

i=1 Aﬁ% + Aﬁlr‘;lax A/“Lz + Aﬁgax AV + AVIIﬁaX
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AVU + Au}r{ax ARE + Aﬂr%lax A7T + Aﬁ}r{ax ’

Similar to Theorem 3.1.1, we have
Theorem 3.1.2 The correlation coefficient p/; (A, Az) (derived by Eq.(3.26)) of
two IVIFSs A; and A, satisfies the following properties:

(1) 0 < ply (A1, 4g) < 1

(2) Al = AQ - plll(Ah/iQ) =1;

(3) P11 (A1, A2) = piy(Ag, Ay).

Furthermore, Xu et al. (2008) define a correlation coefficient of IFSs from the
set-theoretic viewpoint:
Definition 3.1.4 (Xu et al, 2008) The correlation coefficient of two IFSs A; and
Ag can be defined as:

012(A17A2)
Z(ILLAI (i) - pay (2) +va, (2:) - va, (@) + ma, (2:) - wa,(20))
_ =1 : (3.28)
max (Z i, @)+ 03, (@) 475, (22)), Zw%;Z(m>+u§‘2<xi>+wiz<m>>
=1 =1
Obviously, Eq.(3.28) satisfies the three properties in Theorem 3.1.1.
If we take the weights of the elements x; (i = 1,2,---,n) into account, then
Eq.(3.28) can be extended as:
P13(A1, Az)
> wilpa, (i) - pag () +va, (@3) - vay (@) + 7a, () - 7a, (25))
= — . (3.29)
max (Zwi(uil (@) + 14, (@) +73, (), Y wilph, () + V3, () +7T,242(33i))>
i=1 =1
where w = (wy,ws, -+ ,wy)T is the weight vector of x; (i = 1,2,---,n), with w; €

[0,1],i=1,2,--- ,n, and Zwi = 1. In particular, if w = (1/n,1/n,---,1/n)T, then
i=1
Eq.(3.29) reduces to Eq.(3.28).
If the universe of discourse X and the weights of its elements are continuous, and

b
the weight of z € X = [a,b] is w(z), where w(z) € [0, 1] and / w(z)dz = 1, then

Eq.(3.29) can be transformed into its continuous form:

P14 (Al, Az)
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b
/ w()(pa(e) - pas (x) +va, () - va, (x) + ma, (2) - 74, (2))dz

b

b
max ( / w(@) (i, (1) + 3, (1) +73, (2)de, /

a

w(w) (i, (2)+v4, (2)+3, (w))dl">

(3.30)

If w(z) =1/(b— a), for any = € [a,b], then Eq.(3.30) reduces to the following:
Pls(Ah Az)

b
/ (na(x) - pa, () +va, (z) - va, (x) + ma, (2) - 74, (z))dz

b b
max ( / (14, (@) + v, (@) +73, (2))dz, / w(w)(ui($)+V32($)+W32($))d$>

(3.31)
In what follows, we generalize Definition 3.1.4 to the IVIFS theory:
Definition 3.1.5 (Xu et al, 2008) Let X = {x1, 22, -+, 2, } be a finite universe of
discourse, Ay = { (w4, fiz, (i), V1, (z:)) | v € X} and Ay = {(wi, fi g, (i), V4, (%)) | i €
X} two IVIFSs, where fig (z:) = [i5 (i), 43 (2:)], fig, (@) = [3% (z:), 2% (i),

D4, () = [F (), 75 ()], P, (2:) = [P§ (2:), 75 (2:)]. Then

n
D04, 4, ()
i=1

pr6(A1, Ay) = . . (3.32)
max <Z 01, (i), w4, (Jﬂi)>
i=1 i=1
is called the correlation coefficient of A; and 1212, where
ea, (@) = (% (@) + (7% (@) + (7% (@) + (i (w:))?
+ (75 ()% + (75, (2:))?
G an (@) = (5 (@0))2 + (5 (@0)? + (7% (@0)? + (7Y, (2:))?
+ (7 ()% + (7], (2:))?
0, i, (@) = g (@) - i (20) + Y, (20) - B3, (@) + 0% (@) - 0% (23)
+ 0 (w0) Dy (20) + 75 (@) - 75 () + 73 (@) - 73 ()
If we take the weights of the elements x; (i = 1,2,---,n) into account, then
Eq.(3.32) can be extended as the weighted form:
Y wivd, 4, ()
pi7(Ar, Ag) = =t (3.33)

o (z o (0, i, <xi>)
=1 i=1
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where w = (w1, wa, - ,wy,)T is the weight vector of z; (i = 1,2,--- ,n), w; € [0,1],

i =1,2,---,n, and Zwi = 1. In particular, if w = (1/n,1/n,---,1/n)", then
i=1
Eq.(3.33) reduces to Eq.(3.32).
If the universe of discourse X and the weights of its elements are continuous, and
b
the weight of z € X = [a,b] is w(x), where w(z) € [0, 1] and / w(x)dx = 1, then

Eq.(3.33) can be transformed into its continuous form:

b
- [ wtaos, s
plg(Al, AQ) = b @ b (334)
max ( [ w@ps @, [ w(m)soAQ(x)dm)
where
b, (@) = (% (@) + (7% (0) + (7% (2))2 + (Y, (@) + (7Y (2))2 + (7Y (2))?
b, () = (75 (@) + (7% (@) + (7% (@))? + (35, (@))? + (Y (2)) + (7Y, (@))”
a,2,@) = % (@) % (2)+ Y (@) - 15 (@) + 7% (2) - 0% (2) + 7Y (2) - 7Y (a)
+ 7 (@) 7 (0)+ 7Y (@) 7Y ()
Especially, if the elements x; (i = 1,2,---,n) have the same importance, i.e.,
w=(1/n,1/n,---,1/n)", then Eq.(3.34) reduces to:
b
o / P i, 4,(®)dz
p1o(A1, Az) = “ (3.35)

max </ab ¢4, (z)dz, /ab YA, (m)dx)

We now apply Eqgs.(3.20) and (3.28) to an example in medical diagnosis (adapted
from Szmidt and Kacprzyk (2004))
Example 3.1.1 To make a proper diagnosis D = {Viral fever, Malaria, Typhoid,
Stomach problem, Chest problem} for a patient with the given values of the symp-
toms: S = {Temperature, Headache, Stomach pain, Cough, Chest pain}, a medical
knowledge base is necessary that involves elements described in terms of IFSs. The
data are given in Table 3.1—each symptom is described by a pair of parameters (u, v/),
i.e., the membership p and the non-membership v. The set of patients is Y = {Al,
Bob, Joe, Ted}. The symptoms are given in Table 3.2. We need to seek a diagnosis
for each patient Y; (i = 1,2,3,4).

We utilize the correlation measure (3.20) to derive a diagnosis for each patient.
All the results for the considered patients are listed in Table 3.3:



3.1 Correlation Measures of Intuitionistic Fuzzy Sets 161

Table 3.1 Symptoms characteristic for the considered diagnoses
(Szmidt and Kacprzyk, 2004)

Viral fever Malaria Typhoid Stomach problem Chest problem

Temperature (0.4, 0.0) (0.7, 0.0) (0.3, 0.3) (0.1, 0.7) (0.1, 0.8)
Headache (0.3,05)  (0.2,0.6) (0.6, 0.1) (0.2, 0.4) (0.0, 0.8)
Stomach pain (0.1, 0.7) (0.0, 0.9) (0.2, 0.7) (0.8, 0.0) (0.2, 0.8)
Cough (0.4,03)  (0.7,0.0) (0.2, 0.6) (0.2, 0.7) (0.2, 0.8)
Chest pain (0.1,07)  (0.1,0.8) (0.1, 0.9) (0.2, 0.7) (0.8, 0.1)

Table 3.2 Symptoms characteristic for the considered patients
(Szmidt and Kacprzyk, 2004)

Temperature Headache Stomach pain Cough Chest pain
Al (0.8, 0.1) (0.6, 0.1) (0.2, 0.8) (0.6, 0.1) (0.1, 0.6)
Bob (0.0, 0.8) (0.4, 0.4) (0.6, 0.1) (0.1, 0.7) (0.1, 0.8)
Joe (0.8, 0.1) (0.8, 0.1) (0.0, 0.6) (0.2, 0.7) (0.0, 0.5)
Ted (0.6, 0.1) (0.5, 0.4) (0.3, 0.4) (0.7, 0.2) (0.3, 0.4)

Table 3.3 Correlation coefficients of symptoms for each patient to the considered set of
possible diagnoses (Xu, 2006h)

Viral fever Malaria Typhoid Stomach problem Chest problem
Al 0.7918 0.7705 0.7485 0.7308 0.6258
Bob 0.7332 0.6688 0.7536 0.8000 0.7381
Joe 0.8207 0.7459 0.7529 0.7121 0.7092
Ted 0.9167 0.6977 0.8435 0.6862 0.7702

From the arguments in Table 3.3, we can derive a proper diagnosis as follows: Al
suffers from malaria, Bob from a stomach problem, and both Joe and Ted from viral
fever.

If we utilize the correlation formulas (3.1) and (3.2) to derive a diagnosis, then we
can get the results as shown in Table 3.4:

Table 3.4 Correlation coefficients of symptoms for each patient to the considered set of
possible diagnoses (Xu, 2006h)

Viral fever Malaria Typhoid Stomach problem Chest problem
Al 0.8856 0.9003 0.8316 0.4546 0.4194
Bob 0.6096 0.4258 0.7872 0.9714 0.6642
Joe 0.8082 0.7066 0.8822 0.5083 0.4828
Ted 0.8709 0.8645 0.7548 0.5997 0.5810

If we utilize the correlation formula (3.28) to derive a diagnosis, then we can get
the results as shown in Table 3.5.

The results in Tables 3.4 and 3.5 show that Al suffers from malaria, Bob from a
stomach problem, Joe from typhoid, and Ted from viral fever. The difference between
the results derived by the above three methods is only the diagnosis for Joe.
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Table 3.5 Correlation coefficients of symptoms for each patient to the considered set of

possible diagnoses

Viral fever Malaria Typhoid Stomach problem Chest problem
Al 0.7721 0.8377 0.7941 0.4779 0.4048
Bob 0.5815 0.4318 0.7741 0.9556 0.5863
Joe 0.6806 0.6591 0.7708 0.4965 0.4315
Ted 0.8190 0.7013 0.6692 0.5451 0.4464

From the data in Table 3.3, we know that for Joe the correlation coefficient of his
symptoms and the symptoms characteristic for viral fever is the largest one, while the
correlation coefficient of his symptoms and the symptoms characteristic for typhoid
ranks second. But in Tables 3.4 and 3.5, the ranking is just reversed. The difference
is because the results derived by using Eqgs.(3.1), (3.2) and (3.24) are prone to the
influence of unfair arguments with too high or too low values, while Eq.(3.21) can re-
lieve the influence of these unfair arguments by emphasizing the role of the considered
arguments as a whole.

3.2 Distance and Similarity Measures of Intuitionistic Fuzzy
Sets

The IFS was originally introduced by Atanassov (1986; 1983). Since then, many
different distance and similarity measures of IFSs have been proposed. Xu and Chen
(2008) give a comprehensive overview of distance and similarity measures of IFSs,
and propose some new distance and similarity measures of IFSs. They also extend
these distance and similarity measures for IVIFSs.

Let X be a finite universe of discourse, and #(X) the set of all IFSs on X. Li and
Cheng (2002) define the concept of the similarity measure of IFSs:
Definition 3.2.1 (Li and Cheng, 2002) Let 9 : (¢(X))? — [0, 1] be a mapping,
and let A; € &(X) (j =1,2,3). Then 9(A;, As) is called the similarity degree of A;
and Ag, if it satisfies the following conditions:

(1) 0 < 9(A1, Az) <

(2) If A1 As, then 19(A17A2) =1

(3) ¥(A1, A2) = 9(A2, Ar);

(4) If Ay C Ay C Az, then ¥(A1, As) < 9(Aq1, A2) and 9(Aq, A3) < 9(Ag, A3).

The condition (2) in Definition 3.2.1 only considers the sufficiency “if”, and hence
has some limitations. Mitchell (2003) improves it by this condition with the following:

(2") 9(A1, A2) =1 if and only if A; = As.

Distance measure is another important measure in the IFS theory. In what fol-
lows, we introduce, based on the similarity measures of IF'Ss, the concept of distance
measure of IFSs:



3.2 Distance and Similarity Measures of Intuitionistic Fuzzy Sets 163

Let d be a mapping d : (#(X))? — [0, 1]. Then the distance between A; and Ay

can be defined as:
d(A1,A2) =1 —9(A1, Ag) (3.36)

where d(A1, Ay) satisfies the following conditions:

(1) 0<d(Ar1,42) < 1

(2) d(A1, A3) = 0 if and only if A7 = Ag;

(3) d(A1, Ay) = d(Az, Ay);

(4) If Ay C Ay C Ag7 A17A2,A3 € @()()7 then d(Al,Ag) > d(Al,AQ) and
d(Al, Ag) > d(AQ, Ag)

Let X = {x1,22, -+ ,x,} be a finite universe of discourse Bustince and Burillo
(1995) define two distance measures for IFNs:

(1) The normalized Hamming distance:

n

di(Ar, Ag) = ;n D (@) = pay ()] + [va, (25) = vag (7)) (3.37)
j=1

(2) The normalized Euclidean distance:

da(Ar, A2) = 21n > ((nay (m5) = pay (23))% + (va, () — va, (25))?)  (3.38)
j=1

Obviously, the distance measures (3.37) and (3.38) only involve the first two pa-
rameters describing IFSs. Szmidt and Kacprzyk (2000) indicate that distance mea-
sures should take into account all three parameters of IFSs, that is, the third param-
eter should not be omitted when calculating distance between IFSs. As a result, they
propose the following distances to improve Eqs.(3.34) and (3.38):

(1) The normalized Hamming distance:

n

dy(Ar, A2) = o S, () = s ()] + o, () — vas ()]

j=1
+|ma, (25) — 7a, (25)]) (3.39)
(2) The normalized Euclidean distance:

ds(A1, Az)
1 n
=1\l 9 D (s (w5) =y (1)) 4 (va, (@5) —vay ()2 4+ (74, (25) =7, (25))?) (3.40)
j=1
Szmidt and Kacprzyk (2004) define a similarity measure combining the distance
measure of A; and A,, and the distance measure of A; and A,:
d(Aq, Ag)

Nl Ada) = gy, Ay

(3.41)
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where d(A1, A) and d(A1, As) can be calculated by Egs.(3.39) and (3.40), Az is the
complement of Ay (see Definition 1.2.1).

The similarity measure (3.41) contains both the similarity and dissimilarity be-
tween two IFSs, which has the following properties:

(1) ¥1(A1, A2) = 0 indicates that the IFSs 4; and A, are equal, i.e., A; = Ao;

(2) ¥1(A1, A2) = 1 indicates that the similarity degree between the IFSs A; and
Ay is the same as the similarity degree between the IFSs A; and As;

(3) ¥1(A1, Ag) — 400, ie., Ay = Ay (or Ay = Ay) indicates that the IFSs A; and
Ay are completely dissimilar (or 4; = As);

(4) A; = Ay = A; indicates that the entropy between the IFSs A; and A, is the
highest (Szmidt and Kacprzyk, 2004).

Note that 0 < 91(A1, A2) < +0o does not satisfy the condition (1) in Definition
3.2.1. Motivated by the idea of the TOPSIS of Hwang and Yoon (1981), Xu and Chen
(2008) adjust Eq.(3.41) as:

d(Ay, A) B d(Ay, Ay)

Do(Ay, Ag) =1 — = _
2(41, 42) d(Ay, As) +d(A1, As) — d(A;, As) + d(Aq, Ay)

(3.42)
where 0 < ¥5(A1, Az) < 1. In particular, if A1 = Ag, then ¥2(A;, Ag) = 1.

The prominent characteristic of the similarity measures (3.41) and (3.42) is that
they not only take into account the pure distance between IFSs, but also examine
whether the IFSs compared are more similar, or more dissimilar, to each other so as
to avoid drawing conclusions on the basis of small distances.

Based on the geometric distance model, Xu (2007k) generalizes the distance mea-
sures (3.27) and (3.28):

d5(Ay, As) ={2 D (na () = pay (@) + lva, (25) = vay (z;))

= 1/
+ |7a, (25) — 7a, ()| (3.43)

where A > 1
In particular, if A = 1, then Eq.(3.43) reduces to Eq.(3.43); If A = 2, then Eq.(3.43)
reduces to Eq.(3.37); if A — +oo, then Eq.(3.43) reduces to:

im ds(Ar, Az) =max{lpa, (27) = pas (25)l, |va, (@)
— VA, ('rj)|’ A, ('T]) — TA, ('Tj)|} (3.44)

In fact, we can let

EmeX{luAl(ﬂfj)—ﬂAz(ij)la [va, (7)) = va,(z;)], |ma,(2;) — ma,(x5)[} (3.45)
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Then by Eq.(3.43), we have

A——400 A——+o00

lim ds(A;, A2) = lim [ ! D (may (@5) = pas ()] + [va, (25) = va, (@)

o 1 (e, () = pay (z)] )
_)\BTOOE{QTL;< 14

4 ('Wﬂ - m(xjn)* . <|m1<xj> TAQ@J.N)TM

l
e (5) - [ (M )
+ ('ij) - VA2<xj>|>A . <|m<x]—) ;mmn)AT/A
- (3.46)

i.e., Eq.(3.44) holds.
Xu (2007k) takes into account the weight of the element x; € X, and generalizes
Eq.(3.43) to the weighted form:

do( Ay, Az) = [ij (s (23) — a (e + vay (25) — van ()

1/
+as o) = o)) (3.47)
where A > 1, w = (w1, wa, -+ ,wy,) T is the weight vector of z; (j = 1,2, ,n), with

€ [Oal]a]:1,27 , N, and ijzl_

In particular, if A = 1, then Eq.(3.47) reduces to the weighted Hamming distance:

dr(Ay, Ag) = ij |ay (25) = pa, (25)] + [va, (25) — va, ()]

+ |7TA1(%‘) — ma,(z5)]) (3.48)

If w= (1/n,1/n,---,1/n)", then Eq.(3.47) reduces to Eq.(3.43), and Eq.(3.48)
reduces to Eq.(3.39).
If A =2, then Eq.(3.47) reduces to the weighted Euclidean distance:

ds (A1, A2) = Zwy pay (7)) = pay (25)) + (va, (25) = vay(2;))
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1/2
+ (74, (x5) — A, (25))?) (3.49)

If w=(1/n,1/n,---,1/n)T, then Eq.(3.49) reduces to Eq.(3.40).

If A — 400, then Eq.(3.47) reduces to Eq.(3.44).

Based on Eq.(3.47), Xu (2007k) defines a similarity measure between the IFSs A,
and As:

U3(A1, A2) =1 — ; Z%(Wm(l‘j) — pay () + wa, (25) = va, ()
’ 1/A
+ |7, (25) —WAQ(%‘)IA)l (3.50)

where A > 1, 95(A1, As) is a similarity measure between the IFSs A; and As.
In particular, if all the elements have the same importance, i.e.,w = (1/n,1/n,-- -,
1/n)T, then Eq.(3.50) reduces to:

n

Z(I/ml () = 1y (@) + [va, (25) = va, ()

1
A, Ay) =1 —
U4(A1, Az) l2n

1/x
+|ma, (25) — 7a, (:@)P)} (3.51)

where A > 1.
Assuming that the universe of discourse X and the weights of its elements are
continuous, and the weight of x € X = [a,b] is w(z), where w(z) € [0, 1] and

b
/ w(z)dr = 1, Xu (2007k) defines the following distance and similarity measures
based on Eqgs.(3.47) and (3.50):

b
i (s, 42) =y [ ol () = nas@)P + o (@) = v o)
‘ 1/x
 ras (o) = a0 )] (3.52)
b
(1,42 =1~ [ [ o@lias o) = @ + o, () - vas )

/2
T s () — 7y <x>|A>dx] (3.53)

where A\ > 1.
If w(z) = 1/(b — a), for any x € [a,b], then Eq.(3.52) reduces to Eq.(3.54), and
Eq.(3.53) reduces to Eq.(3.55):
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b
d10 (AlaAQ) :(2b _12a)1/)\ |:/a (|IU'A1 ('7;) - /“LA2('7;)‘>\ + |VA1 ('T) - VAz(x)‘)\
/7
T s () — 7y <x>|A>dx} (3.51)
b
196 (A 1;A2) =1- (2b —12&)1/)‘ |:/a (l;U'A1 (1‘) - /‘LAQ(I.”)\ + |VA1 (‘r) - VAz(‘T)V\
/7
T () — 7y <m>|A>dx} (3.55)
where \ > 1.

For any A € #(X), let

pa(zj) +1—va(z))

) (3.56)

pa(z;) =

Li and Cheng (2002) define a similarity measure based on the membership degrees
and the non-membership degrees of IFSs:
1/x

O7(A1, Ag) = 1— | Y wiloa, () — pa, (@)}, A1 (3.57)
j=1

In particular, if all the elements have the same importance, i.e., w = (1/n,1/n,-- -,
1/n)T, then Eq.(3.57) reduces to:
1/A

1 n
198(A17A2) =1- Z |30A1 (‘rj) - @Az(xj”)\ , Azl (358)
n

If the universe of discourse X and the weights of its elements are continuous,
and the weight of z € X = [a,}] is w(x), as defined before, then Eq.(3.57) can be
transformed into the following form:

. 1/x
Y9(A1, Ag) =1 — l/ w(z)|pa, (z) — @Az(m)v‘dm} , A=l (3.59)
If w(z) =1/(b— a), for any = € [a,b], then Eq.(3.59) reduces to:
. . 1/x
Dio(Ar, Ag) = 1 - [b AR smx)mx] CAz1 o (360)
Liang and Shi (2003) use several examples to show that Eqgs.(3.57) and (3.59) are

not always reasonable in some cases (i.e., the modified condition 2’) in Definition 3.2.1
sometimes does not hold, and propose to improve (3.57) as:
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n 3
1911(141,142) =1- ij (Z ,Bi(pi(l'j)> 5 )\ 2 1 (361)

j=1 i=1
3

where 3; € [0, 1] (i = 1,2,3), _f; =1, and
i=1

¥1 (1‘]) = Puajay (1‘]) + Pra; Ay (Ij)
P2(z5) = |pa, (75) — pa,(z;)]
p3(w;) = max{la, (z;),la,(x;)} — min{la, (;),1a,(7;)}

La, (-Tg) _ 1 —wva, ('Tj) - :LLAl(xj)

la,(z;) =

Prag ay (1‘]) =

lva, (z;) — va, (z;)]
SOVAIAQ(xj): s 9 2

They also propose to improve (3.59) as:

1/x

>
WV
—

(3.62)

b 3 A
1912(1417 AQ) =1- / w(m) (Z ,BZQOZ(I')> dx
a i=1

If w= (1/n,1/n,---,1/n)", and for any z € [a,b], w(z) = 1/(b — a), then
Eqgs.(3.61) and (3.62) reduce to Eqs.(3.63) and Eq.(3.64) respectively:

" 3 A7 /A
D13(Ar, A2) =1 — [i Z (Zﬂm(xj)) ] , A1 (3.63)
o N /A
1
(A1, Ag) = 1 — [n/ (Zﬁi%(x)) dx} A1 (3.64)

Compared to Egs.(3.57) and (3.59), Egs.(3.61) and (3.62) contain more intuition-
istic fuzzy information. Consequently, in general, the latter can distinguish more
effectively IFSs.

Mitchell (2004) modifies the similarity measure (3.57) by adopting a statistical

approach:
(A1, Az) + 9, (Ay, Az)

V15(A1, A2) = 9

(3.65)
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where

79;4(1417 A2) - 19(;“’141 3 ;U'Az)

r 1/2
1 n
=l=1, D olnag(ey) —pay () A=1 (3.66)
L =t
9, (A1, Ag) =0(1 —va,, 1 —va,)
r 1/2
1 n
=1- n;|VAl(xj)_VA2(xj)|>\ , A=l (3.67)

¥, (A1, As) and 9, (A1, A2) denote the similarity measures of the “low” membership
functions pa, and pa,, and the “high” membership functions 1 —v4, and 1 — vg4,
respectively.

The modified similarity measures (3.65)—(3.67) satisfy the conditions (1), (3) and
(4) in Definition 3.2.1, and the revised condition (2).

Considering that the elements in the universe may have different importance, here
we define the weighted forms of Egs.(3.62) and (3.63) respectively:

ﬂ,lu(Ah A2) = 19/(“141 y ,u'Az)

~ 1/
=1— > wilpa, (@) — pas (@) A>1 (3.68)
j=1
19;(1417142) = 19/(1 — I/A17 1 — VAQ)
_ 1/
=1— | wjlva, (@) —va, ()| . A>1 (3.69)
_‘j:l

If w= (1/n,1/n,---,1/n)", then Eqgs.(3.68) and (3.69) reduce to Eqs.(3.66) and
(3.67) respectively.

Assuming that the universe of discourse X and the weights of its elements are
continuous, Xu and Chen (2008) define the continuous forms of Egs.(3.68) and (3.69)
as follows:

19:: (Ala AQ) = 19”(/“‘141 s ,u'Az)

, 1/x
—1- / w<x>|m1<x>—%<xvdx] CA1 (370)

19;’(141, AQ) = 19"(1 — VA, 1— VAQ)

b /A
—1- /w(x)|VA1(x)—VA2(x))‘dx] ,oA>1 (3.71)
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In particular, if w(z) = 1/(b — a), for any = € [a,b], then Eqgs.(3.70) and (3.71)
reduce to Egs.(3.72) and (3.73) respectively:
19;:(‘417 A2) = 19”(:”’141 ) ,u'Az)

/2

1

=1= o /I/ml MAQ(I)Adx] »oAz1l o (372)
1%

19;’(1417142) = 19/’(]. — VA, 1-—
1/X

Az
=1- (b _t)l/A / [va, () — VA2(£)AdI] oAzl (3.73)

The Hausdorff distance (Nadler 1978) is a measure on how much two non-empty
compact (closed and bounded) sets differ and resemble each other with respect to
their positions in a metric space, it has the properties: homogeneity, symmetry and
triangular inequality.

Let @ = [a",aY] and b = [b",bY] be two interval numbers. Then the Hausdorff

distance a(d7 b) is defined as:
d(@,b) = max{|a" — b*|,[a" — bV} (3.74)

Hung and Yang (2004) present a method to calculate the distance between IFSs
on the basis of the Hausdorff distance (3.74), which is described as follows:
Let Ia, (z;) and I4,(z;) be the subintervals on [0,1], denoted by

I~A1 ('7;]) = [IU’AI (Ij)7 1- Va, ('7;])] (375)
Ta, (25) = [pa, (z;),1 = va, (z;)] (3.76)
Then, the distance between the IFSs A; and A, is defined as:

dy1 (A1, As) ij (Ta (25), Lay (7)) (3.77)

If the universe of discourse X and the weights of its elements are continuous, then
Eq.(3.77) can be transformed into the following form:

b ~ ~
dis(Ar, Ag) = / w(@)d(Ta, (@), Ia, ())dz (3.78)

Based on Egs.(3.77) and (3.78), Xu and Chen (2008) define the similarity measure
between the IFSs A; and A, as:

D16(A1, A2) = 1= wjd(La, (z;), L1, (x5)) (3.79)
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b —
(A, Ag) = 1— / w(@)d(Ta, (), Ia, (2))ds (3.80)

If w= (1/n,1/n,---,1/n)T, and w(z) = 1/(b — a), for any = € [a,b], then
Eqgs.(3.79) and (3.80) reduces to:

Drs(Ar, Az) = 1= S (T (), T (7)) (381)
j=1
b
oA, Ag) = 1— bia / d(Fa, (), La, (2))dz (3.82)

The similarity measures (3.79)—(3.82) are not only simple, but also suitable for
measuring linguistic variables.

Grzegorzewski (2004) also proposes some distance measures based on Hausdorff
metric, which are the generalizations of the normalized Hamming and Euclidean dis-
tances:

(1) The normalized Hamming distance based on Hausdorff metric:

di3(Ar, Ag) = Zmax{lﬁml () = paz (@), [va, (25) — va, (25)} (3.83)
(2) The normalized Euclidean distance based on Hausdorff metric:
2 2
dia(A1, Az) = Z max{(pa, (zj) — pa, ()7, (va, (7)) —va, ()"} (3.84)

Obviously, the distance between A and As derived by Eq.(3.83) is actually com-
pressed after squaring each difference value. Here, we modify Eq.(3.84) as follows:

di5(A1, Az) = 711 Z max{(pa, (z;) — pa, (7)), (va, (z5) —va,(2;))?}  (3.85)

and generalize Eqgs.(3.83) and (3.85) to their weighted forms respectively:
(1) The weighted Hamming distance based on Hausdorff metric:

di6(A1, Az) = ZwymaX{WAl(l‘y) pas (5)]s va, (x5) — va, (z;)|} (3.86)
Jj=1

which is equivalent to Eq.(3.77).
(2) The weighted Euclidean distance based on Hausdorff metric:

di7(A1, As) = | Y wymax{(pa, (7)) — pa, ()% (va, (25) —va,(z))?}  (3.87)
j=1
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If the universe of discourse X and the weights of its elements are continuous, then
we can define the continuous weighted Euclidean distance:

b
dig(Ar, Az) = \// w(x) max{(pa, (x) — pa, (7)), (va, (z) —va,(2))?}dz (3.88)

Based on the geometric distance model, we can further generalize the distance
measures (3.77) and (3.78):
- 1 1/A

dio(A1, Ag) = | > wimax{(pa, (x;) = pay (@), (va, (@) — va, (@)}
=1 J

A>1 (3.89)
_ S1/A

b
doo (A1, A2) = / w(x) max{(pa, (x) = pag (), (va, (2) = vay (2)) ydz |,

A>1 (3.90)

Based on Egs.(3.89) and (3.90), Xu and Chen (2008) define two similarity measures
between the IFSs A; and As:

_ < 1/A
D20(A1, A2) =1 — | Y wymax{(pa, () — pay (), (va, (25) — va, (@)}
=1 l
) A1 (3.91)
o 11/x
U21(A1, A2) =1 — / w() max{(pa, (x) — pa, (@), (va, (x) — va, (@) }dz|

A>1 (3.92)

Ifw=(1/n,1/n,---,1/n)T and w(z) = 1/(b—a), for any = € [a, b], then Egs.(3.91)
and (3.92) reduce to the following forms:

1/2

1922(‘417‘42) =1- i Zmax{(uAl ('7;]) — KA, (Ij)))\7 (VAl ('7;]) - VA2('7;]')))\} )
A>1 (3.93)
. , /2
V23(A1, A2) =1~ (b_a)l/)\ [/a max{(:u’Al (x)—pa, ('T)))\’ (va, (x)—va, ('T)))\}dx )
A1 (3.94)

The similarity measures (3.91)—(3.94) are not only simple but also convenient for
practical applications.
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Wang and Xin (2005a) show that the normalized Hamming distance measure
satisfies the conditions of the metric and has some good geometric properties, but it
may not fit quite well with the reality. To overcome this drawback, they define the
following distance:

d21 (A1, Az) :iwg‘ [luAl (25) = oz ()] I va, (25) — va, (z;)]
j=1

mascf i, () = pas(@)ls v (2) = va @] 500

* 2

Clearly, the distance measure (3.95) is the combination of the normalized Ham-
ming distance and Hausdorff distance. It can not only satisfy all the conditions of the
metric, but also avoid the unreasonable results produced by the normalized Hamming
distance in practical applications.

If the universe of discourse X and the weights of its elements are continuous, then
the continuous counterpart of Eq.(3.95) is as follows:

b
daa(r, Ap) = [ (o) [“fu ()= aalo)]+ o, 0) = (o)

_gMWﬂ%MﬁW%@_%@&m (3.96)

Based on Eqgs.(3.95) and (3.96), Xu and Chen (2008) define the following two
similarity measures of A; and As respectively:

1924(141,142) =1 — iwj |:|/~LA1 (xj) - ;U'Az(l'j)| + |VA1 (I'J) — VAQ(-Tj)|

4
j=1
+maX{| pa, () — uA2(x;')|7 va, (z;) —va, (“”J’)”} (3.97)
b
¥a5(A1, A2) =1 _/ w(z) [Wh et 1_ ez
L max{|pa, (z) — pa, <s;>|, |vay (&) = va <w>l}} dr (3.98)

Eqs.(3.97) and (3.98) can be further generalized:

Do( Ay, Ag) =1 — li% [ml(xj) — @)+ [va, () = vas (a)

- 4
j=1

sl i, (2) = )P i o)~ %(xj)P}H "
2 )

A>1 (3.99)



174 Chapter 3  Correlation, Distance and Similarity Measures of Intuitionistic...

4

L max{p, (2) = pay (@) o, () - ”‘“(””)A}] daj N
2 b

T L L

A>1 (3.100)

If w= (1/n,1/n,---,1/n)T and w(z) = 1/(b—a), for any = € [a,b], then
Eqgs.(3.99) and (3.100) reduce to Eqgs.(3.101) and (3.102) respectively:

as(A1, 43) =1 - l:& 3 [l e o) =

Jj=1

sl i, (2) = ) P i o)~ %(xﬂv}ﬂ "

2
A>1 (3.101)
1 " [lhas () = pay (@) + [vay (@) = vy (@)
Uag(A1, As) =1 — b — )/ [/ﬂ [ A A ) A A
L ma{p, () = pay (@) v, (2) - VA2<x>A}] dx} v
2 )
A>1 (3.102)

If A =1, then Eqgs.(3.99) and (3.100) reduce to Eqgs.(3.97) and (3.98) respectively.
Thus, Eqgs.(3.97) and (3.98) are the special cases of Egs.(3.99) and (3.100) respectively.

If A = 2, then Eqs.(3.99) and (3.100) reduce to the following similarity measures
respectively:

n (2 A NE
1930(1417142 _].— [Z |:|FLA1 ‘TJ :U‘Az(xj)l IlVAl(xj) VA2($J)|

, v 171/2
sl 5) =) o 03) ) }” (3.103)

1931(A1,A2) =1- |:/bw(,7;) |:|N’A1 (I) - :u'Az('T)|2 1‘ |VA1 ('7;) - VA2(JU)|2

N max{| pa, () — pa, (CE;|27 [va, (r) —va, ($)2}] dm} i (3.104)

Obviously, the similarity measure (3.103) is based on the weighted Euclidean dis-
tance and Hausdorff metric, and the similarity measure (3.104) is the continuous
counterpart of the similarity measure (3.103).

In the next section, we present the generalized results of this section to the IVIFS
theory (Xu and Chen, 2008).
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3.3 Distance and Similarity Measures of Interval-Valued Intu-
itionistic Fuzzy Sets

Let A; € #(X) and Ay € #(X) be two IVIFSs. Atanassov and Gargov (1989) define
two operational laws of the IVIFSs A; and As:

(1) Ay € Ay if and only if 45 (z) < i _(2), p% (z) < pi (2), 7Y (2) = DY (2)
and 17%1 (x) = Dkz (z), for any x € X;

(2) Ay = Ay if and only if Ay C Ay and Ay D As.

In what follows, we introduce the concept of similarity measure between two IV-
IFSs:
Definition 3.3.1 (Xu and Chen, 2008) Let 9 be a mapping: ¥ : (#(X))? — [0,1].
Then 19([11, Ag) is called the similarity degree between A; and 12127 if it satisfies the
following conditions:
(1) 0 < 9(Ay, A) <1
( ) (A],AQ) =11if and only if Al = AQ;
(3) 9(A1, Ag) = 9(As, Ay);
(4) If A} C Ay C A3, Ay, Ay, A3 € &(X), then 9(A;, A3) < 9(A;, Ay) and
(A1, As) < 9(Ag, As).
Definition 3.3.2 (Xu and Chen, 2008) Let d be a mapping: d : (#(X))? — [0,1].
Then the distance between fll and /ng is defined as:

d(Ay, Ag) =1 —9(A;, Ag) (3.105)

which satisfies the properties:

(1) 0 < d(Ay, Ay) < 1

(2) d(/il, Ag) =0 if and only if Al = AQ;

(3) d(A1, Az) = d(As, Ay);

(4) If Al - /12 - /137 /1171212,143 € §~.b()()7 then d(z‘il,Ag) > d(A],AQ) and
d(Ay, A3) > d(Ay, As).

Let X = {x1,22, -+ ,2Zn} be a finite universe of discourse. Then similar to those
in Section 3.1, Xu and Chen (2008) propose some distance and similarity measures
based on geometric distance model and set-theoretic approach.

3.3.1 Distance and Similarity Measures Based on Geometric Distance
Models

We first define the following distance measure of the IVIFSs Ay and As:

das (A, Ay) = Zwy |HA Tj) — (%’)P + |/3%1 (25) — ﬂ%Q(xj”/\
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/2

17 (@) — 7% (@) 4+ 19Y () = 9 @)M)| . AZ1 (3.106)

where w = (wy,wa, -+ ,w,)T is the weight vector of z; (j = 1,2,---,n), w; €
n
[O’I]a ,]: 172,"' ,n, and ij =1.

The distance measure (3.106) involves not only the lower and upper limits of the
membership degree and the non-membership degree describing IVIFSs, but also the
positive parameter \. Especially, if A = 1, then Eq.(3.106) reduces to the weighted
Hamming distance:

daa(Ay, Ag) = Z% |, (25) = A4, ()] + |fia, (25) — 74, ()]

+ |VA1 (z5) — 04, ()| + |74, () — 04, (5)]) (3.107)

If w= (1/n,1/n,---,1/n)T, then Eq.(106) reduces to the normalized Hamming
distance:

+175, (25) - ﬂzzum +17Y () - ﬂ;i(xjm (3.108)

If A =2, then Eq.(3.106) reduces the weighted Euclidean distance:

dog (A1, Az) = ij i (@) = Al (2))? + (B, () — Ay, (25))

1/2
+ (0% (2) = 0% ()% + (75 (z5) — ﬂgz(xm?)] (3.109)

If w= (1/n,1/n,---,1/n)T, then Eq.(109) reduces to the normalized Euclidean
distance:

o ST ) = i, () + (Y, (o) = 79, ()

If A — 400, then Eq.(3.106) reduces to:

~L ~L ~U ~U
Jm da3(Ay, Ag) = m;lx{lu,:h (@) — Bz, (@)] g () — Az (@)l
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7% () = 7% ()], 175, (25) — 7Y, ()]}

Based on Eq.(3.106), we introduce a similarity measure between the IVIFSs A
and flg:

P32 (A, As) —1—[ ij i () — 5 (@) + 189, (ay) — 7Y, ()

1A
+|a{gl<xj>—a{;gmu|agl<xj>—aga<xj>|k>] Cas1 @i

If the universe of discourse X and the weights of its elements are continuous, then
Eqgs.(3.106) and (3.111) can be transformed into Eqs.(3.112) and (3.113) respectively:

. 1 b
das(i An) =y [ el ()~ 5, P + 18, ()~ 75, 0
1/A
105, (@) = PR @+ 175, (@)~ P8, 0P ae] L A1 @)
. 1 [ ~L ~L A ~U ~U A
U33(A1, A2) =1 — {4/ w(£)(|ugl($)—l$42($)\ +|M41(I) —MAQ(IN
1/A
105, (@) = PR @ 175, (@)~ P8, @Pae] L A1 @

In particular, if w(z) = 1/(b— a), for any = € [a, b], then Egs.(3.112) and (3.113)
reduce to Egs.(3.114) and (3.115) respectively:

- . 1 b -1, ~L A ~U ~U A
ool An) = | [ )= i @ 41, ) - 15, (o)

1/2
17 (@) = 7% (@) + 199 (2) - 7Y, (a )A)dx} L A1 (3114)

1

Ay, Ay) =1 —
U34(A1, A2) (4b — 4a

b
| [ 0 5 @ + 125, @) = 78,
1/2
+ 0%, (@) = 75 (@) + (7% (2) = 7§, (= )A)dx} . A=1 (3.115)

Similar to Eqgs.(3.65), (3.68) and (3.69), we introduce a similarity measure between
the IVIFSs A; and Ay:
07 (A1, Az) +95(A1, Az)

Da5(A1, Ag) = 5

(3.116)

where
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n

o 1 1/2
() = 1= |3 D )~ 5 (o) + 178, o), (o))
j=1

A1 (3.117)
o 1 n 1/A
Dp(Ar, Ag) =1 - [2 S i (7% () — 7% () + 7Y <xj)—ﬂ;%2<xj>|k>] 7
j=1
A1 (3.118)

Obviously, the similarity measure (3.116) is very similar to (3.111).
Assuming that the universe of discourse X and the weights of its elements are
continuous, and the weight of x € X = [a,b] is w(z), where w(z) € [0, 1] and

b
/ w(z)dz =1, Xu and Chen (2008) define the following similarity measures:

L 1 /b 1/
19;<A1,A2>=1—[2/ w(@)(Ii%, (@) - @5 @) + 7Y, @)Y, (@) )dx} ,
A >

(3.119)

o 1 b i i i N 1/A
PRy, ) =1 [2 [ w5, (@) = o5, @ + 158, (-5, <m>|A>dm] |
A1 (3.120)
In particular, if w(z) = 1/(b— a), for any = € [a, b], then Egs.(3.119) and (3.120)

reduce to:

L 1 b 1/2
O =1 | [ @) - 0P+ -, o]
A>1 0 (3.121)
and o X , ™
D) =1 o | [0 @) = P+ 158 )-8, s
A>1 0 (3.122)

respectively.

3.3.2 Distance and Similarity Measures Based on Set-Theoretic
Approaches

Based on Hausdorff metric, Xu and Chen (2008) first define some distance measures
between the IVIFSs A; and 1212, which are generalizations of the normalized Hamming
and Euclidean distances:

(1) The normalized Hamming distance based on Hausdorff metric:

d3o(A1, Az) = ZmaX{WA (x;) = 5, (x))], 183, (25) — B3, (7)),
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7, (w5) = 7%, )l 195, (25) = 0, (a5} (3.123)

(2) The normalized Euclidean distance based on Hausdorff metric:

ds1(Ay, Ag) = Zmax{ ;) — i, (2;))% (%, (x5) — Ay, (25))%
1/2
(%, (x5) = 75 (@))%, (75 (x5) = 75 (7))} (3.124)
In many practical situations, the elements z; € X (j = 1,2,---,n) usually have

different importance, and thus need to be assigned different weights. This motivates
us to generalize Eqs.(3.123) and (3.124) to their weighted forms respectively (Xu and
Chen, 2008):

(1) The weighted Hamming distance based on Hausdorff metric:

ds2(Ay, Ay) Zwymax{luA () — 1% ()], |G, (x5) = @Y, (25)],
j=1

0% (x5) — o5 (a5)|, 195 (2) — 75, ()]} (3.125)

(2) The weighted Euclidean distance based on Hausdorff metric:

dss(Ay, Ay) = ij max{(@5, (z;) — 15, (7)), (A%, (x;) — A%, (2;))%,

1/2
(7% () = 7% (2)))%, (95 (z) = P (24))} (3.126)

Obviously, if w = (1/n,1/n,---,1/n)", then Eqgs.(3.125) and (3.126) reduce to
Eqgs.(3.123) and (3.124) respectively.

Xu and Chen (2008) further generalize Eqgs.(3.125) and (3.126) to the following
form:

dsa(A1, Ap) =| D w; max{|i (z;) — @5 (@) |25, (2;) — 2% (25,
j=1
1/

7% () = 7% ()P 0% @) - 0 @)PY| . A1 (320)

In particular, if A = 1, then Eq.(3.127) reduces to Eq.(3.123); If A = 2, then
Eq.(3.127) reduces to Eq.(3.124); If A\ — +o00, then Eq.(3.127) reduces to the following
form:

JJm dsa(Ay, Ay) = maX{|/~LA (x) = i, ()|, |5, (x5) — A5, (25)];
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7% (25) = 95, ()], 195 (25) = 75, (@)1} (3.128)

If the universe of discourse X and the weights of its elements are continuous, then
Eq.(3.127) can be transformed to:

b
das( Ap) = | [ oy maxlal (o) -l (@), |75, (o) - 5, )"
1/x
7% () = 0% (@), 7] (2) = 7Y (@)P}dz| , A=1  (3.129)

In particular, if A = 1,2, then Eq.(3.127) reduces to the following distance mea-
sures:
(1) The continuous weighted Hamming distance based on Hausdorff metric:

b
dao(r, Ay) = [ (o) max{|i, (o) - i @), 185, (2) - 7,

7 (@) — o (@) 7Y, (2) — 7Y, (@)} (3.130)

(2) The continuous weighted Euclidean distance based on Hausdorff metric:

b
it o) = | [ty () 7. 6, 0~ 5, 0",

1/2
(75, (@) = 75 (@), (75, (2) — %, (m))2}dm] (3.131)

Based on Eqs.(3.127) and (3.129), Xu and Chen (2008) define two similarity mea-
sures of A; and Ay as follows:

Va6(A1, Ag) =1 — [Z%‘ max{|is (z;) — @ (2)*, |25, (2;) — 25, (2;)],
=1

/X
7% () = 0% ()], |Dgl(x)—ﬁgz(x)|’\}dx] ., A>1 (3.133)

In particular, if w(xz) = 1/(b — a), for any z € [a, b], then Eqs.(3.129) and (3.133)
reduce to Eqs.(3.134) and (3.135) respectively:
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das(Ar Ap) = /bmaX{I*L- (@) — iy, @), 1A, (@) — i, (@)
SSWEL A2 = g |, Fa, Ha, A, Ha, ’
1/A
7% () = 7% ()], |Dgl(x)—ﬁgz(x)|’\}dx} ;o oA=1 (3.134)
das(Ap ) =1 mea {1, (@) = i3, @), |ig, (@) = 5%, (@)
38\ /11, 12) — (b—a)l/A ; X /~LA1 /~LA2 ) /~LA1 /~LA2 ’

1/x
75, (2) = 75 (@), |~El(w)—~22(w)lA}dx} . A=1 (3.135)

Although the weighted Hamming distance measure (3.107) satisfies the conditions
of the metric and has some good geometric properties, it may not fit the reality quite
well. As such, let us now combine its generalized form Eq.(3.106) and the distance
measure (3.127) to get the following distance formula (Xu and Chen, 2008):

do(Ay, Ay) = ijl (U85 () — i (o) + 1Y, (2;) = 19, ()
+ 0% (a5) = 0% () + 17 (2) = 05 (2)]*)
1 . - -
- ma{li (5) = i ()P 18, () — 2, ()P
1/A
7% () — 7% (@), 199, () — Y, wm” (3.136)
where A > 1

If the universe of discourse X and the weights of its elements are continuous, then
Eq.(3.136) can be transformed as:

du(drd2) = | [ o) [;ﬂﬂzlm i @)+ [3Y (@) - 7Y (@)
175 () — o @) + 7Y, (@) — 7, (@))
b (max{lis, (@) — i, ()P 17, () — %, (@)
7 (2) = % (@), |~gl<x>—ﬁi<x>k}>]dx] T e
where A > 1

Based on Eqgs.(3.136) and (3.137), we can define the following two similarity mea-
sures of A; and Aj respectively (Xu and Chen, 2008):

Dgo (A, Az) =1 — [ij [ (% (ay) = i (o) + 1Y () — 2, ()

j=1
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17 () — 7% ()P + 19Y, () — 9%, () )
A

4 macl i, () — i, () 1Y, () — B, (o)1,
1/x
B4 o) = e 19 2 %)) (3139

L b 1
§4O<A1,A2>:1—[/ w<>[8<|u,41<> i @) + 15y (@) - i @)
75 (2) = 7% @) + 109 (@) = 7Y (@)

 (max{lits () 5 (@), [, () ~ 35, (@),

1/
75, (@) = 75 (@), 7] (2) = 73 (x>|A}>] dx] (3.139)

where A > 1
If w= (1/n,1/n,---,1/n)T and w(z) = 1/(b — a), for any = € [a,b], then
Eqgs.(3.138) and (3.139) reduce to Eqs.(4.140) and (4.141) respectively:

. 1 "1 . _ .
I (A ) =1- [Z [80@1(%) — ik ()P + 1Y () — 7Y ()
]_

+17g (25) = 0%, () + 175 () = 75, (2)])

4 ma{ ity (o) — i, (o) 1S, () — 1S, ()P,

1/A
7% () — 7% (@), 199, () — 7Y, () })H (3.140)

b
Da(Ay, Ay) =1 - - o | [ [ 075, @) = 5 @ + 125, (@) = i, (o)
0= 0P+ 15,0~ o

+ <max{|uA( ) = i (@) |RY, (@) — iy, (@),

/A
7% (2) — 0% (@), 7], (2) — 7§, (m)m)] dm] (3.141)

where A > 1
If A =1, then Eqgs.(3.138) and (3.139) reduce to Egs.(3.142) and (3.143) respec-
tively:

Pas( A, Az) —1—2%[ (8% (a5) — @5 (@) + 189 (@) — @Y, ()]
Jj=1
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+ 0% (25) = 0%_(2)| + 7Y (2) = 7§ (25)])
b (x| () — 7%, ()], 185, (2) — 5, ()],
(@)l 175 (25) = 73 (z5)]}) (3.142)

L, (@) = il ()] + |9, (2) — S, (@)
17k (@) - 7% @) + 7Y, (2) - 7Y, ()
4 lmax{lity () i (@), 12, (2) — 1Y, &),

75, (@) = 2% (@)l |75 () = 7§, (2)]})]dz (3.143)

where A > 1
If A =2, then Eqs.(3.138) and (3.139) reduce to Eqgs.(3.144) and (3.145) respec-
tively:

Das( A1, Az) =1 - [Z%[ (% (ay) = i (o)) + 179, (a5) — 7Y, ()2

j=1

1

1Y () — 7% () + 7Y, (25) — 7Y (2)?)
+, (max{|i5 (x

= i @) (8Y (@) — i ()
1/2
9% () = 7% ()% 179 (a5) — 7Y, ()| })H (3.144)

L b 1
Dao( Ay, As) =1 - [ / w(@) [80&31@) — i @) + (7Y, (@) — i, (@)

174, () = 7%, @) + 175, (@) = 75, (@)

b (max{is (@) — i, ()P, |9, (@) — 2, ()P,
1/2
75 (@) = 7% (@), |75 (x) — 7§, (w)lk})] dx} (3.145)

where A > 1

Clearly, the similarity measure (3.142) is based on the weighted Hamming distance
and Hausdorff metric, and the similarity measure (3.144) is based on the weighted
Euclidean distance and Hausdorff metric, while the similarity measures (3.143) and
(3.145) are the continuous counterparts of the similarity measures (3.142) and (3.144)
respectively.
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Let us now utilize two practical examples to illustrate the above distance and
similarity measures:
Example 3.3.1 Consider four building materials: sealant, floor varnish, wall paint,
carpet, and polyvinyl chloride flooring, which are represented by the IFSs A; (j =
1,2,3,4) in the feature space X = {z1,x2, - ,x12}. The weight vector of x; (i =
1,2,---,12) is:

w = (0.12, 0.10, 0.08, 0.05, 0.10, 0.11, 0.09, 0.06, 0.12, 0.10, 0.07)"

Now we consider another kind of unknown building material A, with data as listed
in Table 3.6. Based on the weight vector w and the data in Table 3.6, we can use
the above distance and similarity measures to identify to which type the unknown
material A belongs:

(1) By Egs.(3.39) and (3.42), we have

92(Ar, A) = 0.480, 2(As, A) = 0.476

0a(As, A) = 0.714, 95(Ag, A) = 0.941

Table 3.6 The data on building materials

Aq Ao As Ay A
1 (0.173,0.524)  (0.510,0.365)  (0.495,0.387)  (1.000,0.000) (0.978,0.003)
T2 (0.102,0.818) (0.627,0.125) (0.603,0.298) (1.000, 0.000) (0.980,0.012)
T3 (0.530, 0.326) (1.000, 0.000) (0.987,0.006) (0.857,0.123) (0.987,0.132)
24 (0.965,0.008)  (0.125,0.648)  (0.073,0.849)  (0.734,0.158)  (0.693,0.0876)
5 (0.420,0.351) (0.026,0.823) (0.037,0.923) (0.021, 0.896) (0.051,0.876)
z6 (0.008,0.956)  (0.732,0.153)  (0.690,0.268)  (0.076,0.912) (0.123,0.756)
T7 (0.331,0.512) (0.556,0.303) (0.147,0.812) (0.152,0.712) (0.152,0.732)
s (1.000,0.000)  (0.650,0.267)  (0.213,0.653)  (0.113,0.756) (0.113,0.732)
9 (0.215,0.625)  (1.000,0.000)  (0.501,0.284)  (0.489,0.389) (0.494, 0.368)
z10 (0.432,0.534) (0.145,0.762) (1.000, 0.000) (1.000, 0.000) (0.987,0.000)
11 (0.750,0.126)  (0.047,0.923)  (0.324,0.483)  (0.386,0.485) (0.376,0.423)
T12 (0.432,0.432) (0.760,0.231) (0.045,0.912) (0.028,0.912) (0.012,0.897)
Then

192(1447 A) > 192(143, A) > 192(141, A) > 192(142, A)
(2) By Eq.(3.50) (without loss of generality, let A = 1), we get
93(Ay, A) = 0.511, 05(Aa, A) = 0.527

193(1437 A) = 0737, 'U3(A4, A) = 0.874

Then
U3(As, A) > 93(Az, A) > U3(A2, A) > J5(A1, A)
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(3) By Eq.(3.57) (let A =1), we have
97(A1, A) = 0.685, 97(As, A) = 0.578

97(As, A) = 0.796, ¥7(Ay, A) = 0.974

Then
U7(As, A) > 97(Az, A) > U7(A1, A) > 97(A2, A)

(4) According to Eq.(3.61) (let A =1 and 5y = B2 = O3 = 1/3), we have
Y11(A1, A) = 0.693, UJ11(A2, A) = 0.705

011 (As, A) = 0.854, 11 (Aq, A) = 0.976

Then
V11(Ag, A) > V11(As, A) > V11(A2, A) > V11(A1, A)

(5) Tt follows from Eqgs.(3.65), (3.68) and (3.69) (let A = 1) that
D15(A1, A) = 0.563, 915(Az, A) = 0.575

O15(Az, A) = 0.795,  915(As, A) = 0.972

Then
V15(Asg, A) > V15(As, A) > V15(A2, A) > V15(A1, A)

(6) By Eq.(3.81), we can obtain
V18(A1, A) = 0.522, ¥15(Az, A) = 0.529

Y18(Asz, A) = 0.767, U15(A4, A) = 0.958

Then
V18(Ag, A) > V15(As, A) > V15(A2, A) > V18(A1, A)
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Obviously, the ranking result derived by Eq.(3.89) (let A = 1) is the same as that

derived by Eq.(3.81).
(7) Using Eq.(3.99) (let A = 1), we get

VUa6(A1, A) = 0.542,  J96(Az, A) = 0.552

Da6(As, A) = 0.781, 26(As, A) = 0.966

To conclude
Vo6(As, A) > V26(As, A) > Va6(A2, A) > V26(A1, A)



186 Chapter 3  Correlation, Distance and Similarity Measures of Intuitionistic...

From the above numerical results, we know that the degree of similarity between
A, and A is the largest one as derived by each similarity measure. That is, all the
similarity measures assign the unknown building material A to the class of building
material A, according to the principle of the maximum degree of similarity between
IFSs. Yet, there exist two slightly different ranking results: the similarity measures
(3.42) and (3.57) derive the same ranking of the building materials, in which the
degree of similarity between Az and A ranks the second, the degree of similarity
between A; and A ranks the third, and the degree of similarity between Ay and A
is the smallest one. While the similarity measures (3.50), (3.61), (3.65), (3.81) and
(3.99) derive the same ranking of the building materials, the ranking of the degree
of similarity between A; and A, and the degree of similarity between A, and A, is
reversed.
Example 3.3.2 Consider three kinds of mineral fields, represented by the IVIFSs
/Nlj (j = 1,2,3), each of which is featured by the content of six minerals in the feature
space X = {x1,22, -+ ,26}. The weight vector of z; (i =1,2,---,6) is:

w = (0.20, 0.10, 0.15, 0.25, 0.10, 0.20)T

Cosndier another kind of mineral A (the data are listed in Table 3.7). Our aim is to
justify to which field the mineral A should belong.

Table 3.7 The data on minerals

Ay

Az

o1 ([0.72,0.74], [0.10,0.12]) ([0.42,0.45], [0.38,0.40))
2 ([0.00,0.05], [0.80,0.82]) ([0.65,0.67], [0.28,0.30))
z3 ([0.18,0.20], [0.62,0.63]) ([1.00,1.00], [0.00,0.00))
x4 ([0.49,0.50], [0.35,0.37]) ([0.70,0.90], [0.00,0.10))
x5 ([0.01,0.02], [0.60,0.63]) ([0.80,1.00], [0.00,0.00))
z6 ([0.72,0.74], [0.12,0.13]) ([0.90,1.00], [0.00,0.00))
As A
1 (10.30,0.32], [0.45,0.47]) ([0.60,0.63], [0.30,0.35))
2 ([0.90,1.00], [0.00,0.00]) ([0.50,0.53], [0.34,0.36))
z3 ([0.18,0.20], [0.70,0.73]) ([0.20,0.21], [0.68,0.70))
x4 ([0.15,0.16], [0.75,0.78]) ([0.20,0.22], [0.75,0.77))
5 ([0.00,0.05], [0.88,0.90]) ([0.05,0.07], [0.87,0.90))
z6 ([0.65,0.68], [0.25,0.30]) ([0.65,0.70], [0.25,0.30))

(1) According to Eq.(3.111) (without loss of generality, let A = 2), we have

Then

V32(Ay, A) = 0.744,

V32 (Ag, A) = 0.446,

¥32(As, A) = 0.806

1932(1213, fi) > 1932(1211, A) > 1932(142, A)



References 187

(2) By Egs.(3.116)—(3.118) (let A = 2), we get
Vss5(A1, A) = 0.747, 935(As, A) = 0.465, 135(As, A) = 0.838

Thus
U32(Az, A) > U32(A1, A) > U32(A2, A)

(3) It follows from Eq.(3.132 ) (let A = 2) that
V36(A1, A) = 0.729, U36(Az, A) = 0.458, V36(A3, A) = 0.794

To conclude
1936(A3, A) > 1936(A1, A) > 1936(A2, A)

(4) Using Eq.(3.144) (let A = 2), we have
Uas(Ay, A) = 0.722, U45(Az, A) = 0.436, U45(As, A) =0.813

Then
Ua5(Asz, A) > U45(A1, A) > U45(A2, A)

In the above numerical results, all the similarity measures derive the same ranking,
in which the degree of similarity between As and A is the largest one, the degree of
similarity between A; and A ranks the second, and the degree of similarity between
A, and A is the smallest one. Therefore, the mineral A should belong to the kind
of mineral field Ag according to the principle of the maximum degree of similarity
between IVIFSs.
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Chapter 4

Decision Making Models and Approaches
Based on Intuitionistic Preference
Relations

In real-life situations, such as partner selection in supply chain management, and per-
formance assessment of military systems, a decision maker may be unable to express
accurately his/her preferences for alternatives, because O the decision maker may not
possess a precise or sufficient level of knowledge (i.e., lack of knowledge to a certain
degree (Mitchell, 2004), and @ he/she is unable to discriminate explicitly the degree
to which one alternative is better than the others (Herrera-Viedma et al., 2007), and
so there is a certain degree of hesitation (Szmidt and Kacprzyk, 2000). The decision
maker may express, to a certain degree, his/her preferences for alternatives, but it is
possible that he/she is not so sure about it (Deschrijver and Kerre, 2003a). In these
problems, it is very suitable to study the decision maker’s preferences using IFNs
rather than exact numerical values or linguistic variables (Dai et al., 2007; Herrera et
al., 2005; Szmidt and Kacprzyk, 2003; 2002; Xu, 2007¢c; 2007f; Xu and Chen, 2007a).

We examine this issue in this chapter. We will present approaches to group de-
cision making based on intuitionistic preference relations or incomplete intuitionistic
preference relations. We will first introduce concepts such as intuitionistic preference
relation, consistent intuitionistic preference relation, incomplete intuitionistic prefer-
ence relation, etc. We will then introduce their properties, and give the relationships
among the interval-valued intuitionistic preference relation, intuitionistic preference
and fuzzy preference relation. After that, we will utilize some aggregation tools such
as the IFWA operator, etc., to establish the model for multi-attribute decision mak-
ing based on intuitionistic preference relation or incomplete intuitionistic preference
relation. We will also develop a model for multi-attribute group decision making
based on intuitionistic preference relation and incomplete intuitionistic preference re-
lation. We will introduce a number of approaches to multi-attribute decision making
with distinct preference structures. Moreover, we will describe some decision making

approaches under different interval-valued intuitionistic fuzzy environments by using
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aggregation tools including the ITFA and IIFG operators.

4.1 Intuitionistic Preference Relations

Preference relation is a common and effective way for a decision maker to express
his/her preferences over objects (or alternatives).

For a decision making problem, let Y = {Y¥1,Y3,---,Y,} be a discrete set of
alternatives. In the process of decision making, a decision maker generally needs
to provide his/her preferences for each pair of alternatives, and then constructs a
preference relation, which can be defined as follows:

Definition 4.1.1 (Herrera-Viedma et al., 2007) A preference relation P on the
set Y is characterized by a function up : ¥ x Y — (2, where {2 is the domain of
representation of preference degrees.

A number of studies have been conducted on decision making problems with pref-
erence relations (Chen and Fan, 2005; Chiclana et al., 2002; 2001a; 2001b; 1998; Fan
et al., 2002; Herrera and Herrera-Viedma, 2000a; 2000b; Herrera et al., 2005; 2000;
1997; 1996a; 1996b; Herrera and Martinez, 2000a; 2000b; Ma et al., 2006; Orlovsky,
1978; Saaty, 1980; Tanino, 1984; Wang and Xu, 2005; 1990; Xu, 2008b; 2007b; 2007f;
2007j; 2006a; 2006¢; 2006e; 2006f; 2005b; 2005d; 2004a; 2004b; 2004c; 2004e; 2001a;
2001b; 1999; Xu and Da, 2005). These preference relations can be grouped into the
following three main categories:

(1) Multiplicative preference relation (Saaty, 1980). A multiplicative preference
relation P on the set Y is represented by a reciprocal matrix P = (p;j)nxn CY XY
with:

pij >0, pij-pjs =1, py=1, foralli,j=1,2,---,n (4.1)

where p;; is interpreted as the ratio of the preference intensity of the alternative Y;
to that of Y. In particular, p;; = 1 indicates indifference between Y; and Y}, p;; > 1
indicates that Y; is preferred to Y}, and p;; < 1 indicates that Y} is preferred to Y;.
(2) Fuzzy preference relation (Orlovsky, 1978). A fuzzy preference relation B on
the set Y is represented by a complementary matrix B = (b;j)nxn C Y X Y with:

bij =0, byj+byi=1 b;=05 1ij=12"-,n (4.2)

where b;; denotes the preference degree of the alternative Y; over Y;. In particular,
bi; = 0.5 indicates indifference between Y; and Yj, b;; > 0.5 indicates that Y is
preferred to Yj, and b;; < 0.5 indicates that Y; is preferred to Y;.

(3) Linguistic preference relation (Herrera and Herrera-Viedma, 2000b). Consider
a finite and totally ordered discrete linguistic label set I' = {r;| i = —¢,--- ,t},
where 7; represents a linguistic variable (Zadeh, 2005) and satisfies the following
characteristics:
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(1) The set is ordered: ; > 7; if i > j;

(2) There is a negation operator: neg(r;) = 7—;. The cardinality of I" must be
small enough so as not to impose useless precision on the decision maker and it
must be rich enough in order to allow a discrimination of the performances of each
alternative in a limited number of grades (Bordogna et al., 1997). To preserve all the
given information, the discrete label set I" should be extended to a continuous label
set I' = {74| a € [—q,q]}, where g(q > t) is a sufficiently large positive integer. If
Ta € I', then 7, is termed an original linguistic label; Otherwise, 7, is termed a virtual
linguistic label (Xu, 2005b).

Note In general, a decision maker uses the original linguistic labels to evaluate
alternatives, and the virtual linguistic labels can only appear in operation.

Considering any two linguistic labels 7,7, € I', we define their operational laws
as follows (Xu, 2005b):

(1) 7o & ™o = Tatp;

(2) ATa = Taa, A €10,1].

A linguistic preference relation L on the set Y is represented by a linguistic decision
matrix L = (I;)nxn C Y x Y with:

lij S F7 lz] @l]z = 70, lii = 70, Zv] = ]-72a S [ (43)

where [;; denotes the preference degree of the alternative Y; over Y;. In particular,
l;; = 7o indicates indifference between Y; and Y}, l;; > 79 indicates that Y; is preferred
to Yj, and l;; < 79 indicates that Y; is preferred to Y;.

In some real-life situations, a decision maker may provide his/her preferences for
alternatives to a certain degree, but it is possible that he/she is not so sure about it
(Deschrijver and Kerre, 2003a). Thus, it can be more comprehensive, detailed and
visually effective for decision makers to describe and characterize their preferences over
the alternatives by means of IFNs rather than exact numerical values or linguistic
variables. Szmidt and Kacprzyk (2003) generalize the fuzzy preference relation to
the intuitionistic preference relation, and define the concepts of intuitionistic fuzzy
core and consensus winner. They aggregate the individual intuitionistic preference
relations into a social fuzzy preference relation on the basis of fuzzy majority equated
with a fuzzy linguistic quantifier. Xu (2007f) introduces the concept of intuitionistic
preference relation as follows:

Definition 4.1.2 (Xu, 2007f)  An intuitionistic preference relation @ on the set Y is
represented by a matrix Q= (¢ij)nxn CY XY with ¢;; =((¥3,Y;), u(Yi, Y;),v(Yi, Y;)),
for all ¢,7 = 1,2,---,n. For convenience, we let ¢;; = (ui;,vi;), for all 4,j =
1,2,---,n, where ¢;; is an IFN, composed by the certainty degree p;; to which Y; is
preferred to Y; and the certainty degree v;; to which Y; is non-preferred to Y;, and
mij = 1 — pi; — V45 is interpreted as the indeterminancy degree to which Y; is preferred
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to Y;. Furthermore, u;; and v;; satisfy the following characteristics: 0 < pg5 +v45 < 1,
Wji = Vij, Vii = hij, Wi = Vg = 0.5, for all 4,5 =1,2,--- n.

In particular, if 1 — p;; — v45 = 0, for any ¢, 7, then the intuitionistic preference
relation @ can be decomposed into two fuzzy preference relations (Xu, 2007b): Q1 =
(Hij)nxn and Q2 = (Vij)nxn, Where pij,vi; € [0,1], wij + pjs = 1, vy +vj = 1,
wis =05 v; =054, =1,2,--- ,n.

According to Definition 4.1.2, we can see that each element g;; of the intuitionistic
preference relation @ is an ordered pair (u;5, vi;), which satisfies the condition: p;; +
vij < 1,1ie, pi; < 1— 14, from which Xu (2007b) transforms the element ¢;; =
(135, vij) into an interval value ¢;; = [p;5, 1 — vi;]. Consequently, the intuitionistic
preference relation @ = (¢;j)nxn is in fact equivalent, mathematically, to an interval-
valued fuzzy preference relation @ = (¢ij)nxn, Where ¢;; = 655, Gi7] = [pij> 1 — vig),
i, =1,2,--- 'n, and

QG +dp=do+dp=1, d,=2d; >0, ¢, =d¢; =05, i,j=12,---,n (44)

Definition 4.1.3 (Xu, 2007f) Let @ = (¢ij)nxn be an intuitionistic preference
relation. If it satisfies

then @ is called a consistent intuitionistic preference relation.

A consistent intuitionistic preference relation can be interpreted as follows: For all
i < k < j, the alternative Y; is preferred to Y; with an IFN g;, that should be equal
to the product of the intensities of preferences when using an intermediate alternative
Yi.

From Definition 4.1.2, we can derive directly the following theorem:
Theorem 4.1.1 (Xu, 2007f) If we remove the i-th row and é-th column from an
intuitionistic preference relation @, then the preference relation composed by the
remainder (n — 1) rows and (n — 1) columns of @ is also an intuitionistic preference
relation.
Proof It follows immediately from Definition 4.1.2.

Based on Definitions 1.1.3 and 4.1.2, we can introduce the following properties of
an intuitionistic preference relation (Xu, 2007f) Q = (¢ij)nxn:

(1) If ¢ix ® qrj > qij, forall i, j,k =1,2,--- ,n, then we say @ satisfies the triangle
condition.

This condition can be explained geometrically: if we regard the alternatives Y;,
Y, and Y; as the vertices of a triangle with length sides g, gr; and g¢;;, then the
length corresponding to the vertices Y;, Y; should not exceed the sum of the lengths
corresponding to the vertices Y3, Y, and Y%, Y;.
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(2) If ¢;1 > (0.5,0.5), gi; = (0.5,0.5) = ¢;; > (0.5,0.5), for all 4,5,k =1,2,--- |n,
then we say @ satisfies the weak transitivity property.

This property can be interpreted as follows: If the alternative Y; is preferred to
Yy, and Y}, is preferred to Yj, then Y; should be preferred to Y;.

(3) If ¢i; > min{qix, qx;}, for all i,5,k = 1,2,--- ,n, then we say @ satisfies the
max-min transitivity property.

The max-min transitivity property is that the IFN derived from a direct compari-
son between two alternatives should be equal to or greater than the minimum partial
values derived from comparing both alternatives with an intermediate one.

(4) If g;; > max{qir, qx; }, for all 4,5,k = 1,2,--- ,n, then we say @Q satisfies the
max-max transitivity property.

The max-max transitivity property can be described as follows: The IFN derived
from a direct comparison between two alternatives should be equal to or greater
than the maximum partial values derived from comparing both alternatives with an
intermediate one.

(5) If ¢ir > (0.5,0.5), qx; > (0.5,0.5) = ¢;; > min{qix,qx;}, for all 4,5,k =
1,2,--- ,n, then we say @ satisfies the restricted max-min transitivity property.

The restricted max-min transitivity property can be interpreted in the following
way: When the alternative Y; is preferred to Y with an IFN g¢;, and Y} is preferred
to Y; with a value qi;, then Y; should be preferred to Y; with at least an IFN g
equal to the minimum of the above values. The equality holds only when there is
indifference between at least two of the three alternatives.

(6) If g > (0.5,0.5), qx; = (0.5,0.5) = ¢;; > max{ ¢k, qx;}, for all 4,5,k =
1,2,--- ,n, then we say @ satisfies the restricted max-max transitivity property.

The restricted max-max transitivity property implies that when the alternative Y;
is preferred to Y3 with an IFN g, and Y}, is preferred to Y; with an IFN g;, then
Y; should be preferred to Y; with at least an IFN ¢;; equal to the maximum of the
above values. The equality holds only when there is indifference between at least two
of the three alternatives.

4.2 Group Decision Making Based on Intuitionistic Preference
Relations

In this section, we introduce an approach to group decision making based on intu-
itionistic preference relations, which can be described as follows (Xu, 2007f):

Step 1 Consider a group decision making problem. Let Y, E and £ be defined
as in Section 1.3. The decision maker Ej € FE provides his/her intuitionistic fuzzy
preference for each pair of alternatives, and constructs an intuitionistic preference
relation Qr = (qg?))nxn, where
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k k k k k k k
Qz(j) (IU’Z(])7 ’L(]))7 O<M()+V()\1’ 'u;i):yi(j)’ ()_’UEJ)

W =B =05, foralli,j=1,2-,n

'L’L

Step 2 Utilize the IFA operator:

k (k k )
qz( )= (qz(l)@qﬂ)@ @q( ))7 i=1,2,---,n (4'6)
to aggregate all q( ) (j = 1,2,---,n) corresponding to the alternative Y;, and then

get the averaged IFN q( ) of the alternative Y; over all the other alternatives.
Step 3 Utilize the IFWA operator:

—agV oo o6l i=12-n (4.7)
to aggregate all q( ) (k=1,2,---,1) corresponding to [ decision makers into a collec-
tive IFN ¢; of the alternative Y; over all the other alternatives.

Step 4 Rank all ¢; (¢ = 1,2,--- ,n) by means of the score function (1. 10) and
the accuracy function (1.11), and then rank all the alternatives Y; (i = 1,2,--- ,n)
and select the best one in accordance with the values of ¢; (1 = 1,2,--- ,n).

4.3 Incomplete Intuitionistic Preference Relations

A complete preference relation needs all n(n — 1)/2 judgments in its entire top trian-
gular portion. Sometimes, however, it is difficult to obtain such a preference relation,
especially for the preference relation with high order, because of time pressure, lack of
knowledge, and the decision maker’s limited expertise related to the problem domain.
An incomplete preference relation may be developed, in which some of the elements
cannot be provided. Xu (2007f) investigates the decision making problem with in-
complete intuitionistic preference relations. He first defined the concept of incomplete
intuitionistic fuzzy relation:

Definition 4.3.1 Let @ = (¢ij)nxn be an intuitionistic preference relation, where
qij = (pij, vij), for all 4,5 =1,2,--- ,n. Then @ is called an incomplete intuitionistic
preference relation, if some of its elements cannot be given by the decision maker,

4( bh)

which we denote by the unknown variable , and the others can be provided by the

decision maker, which satisfy
0<pij+vig <L, pji =vig, Vi = pij, i = Vii = 0.5

Similar to the properties of an intuitionistic preference relation, Xu (2007f) intro-
duces the properties of an incomplete intuitionistic preference relation:
Let @ = (¢ij)nxn be an incomplete intuitionistic preference relation, where ¢;; =
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(tij,vij), 4, =1,2,--- ,n, and let A be the set of all the known elements. Then

(1) If g ® qrj > qij, for all g, qrj,q5 € A, we say @ satisfies the triangle
condition.

(2) If gir, > (0.5,0.5), qi; > (0.5,0.5) = ¢;; > (0.5,0.5), for all g, qij, qij € A, we
say @ satisfies the weak transitivity property.

(3) If g;; > min{qik, qx; }, for all gk, qrj, qi; € A, we say @ satisfies the max-min
transitivity property.

(4) If ¢;; > max{qix, qx; }, for all ¢ix, qrj, qi; € A, we say @ satisfies the max-max
transitivity property.

(5) If ¢ir = (0.5,0.5), gi; = (0.5,0.5) = ¢;; > min{ gix, qx; }, for all gix, qij, qij €
A, we say (Q satisfies the restricted max-min transitivity property.

(6) If g > (0.5,0.5), gr; = (0.5,0.5) = ¢;; > max{qir,qx; }, for all gix, qr;,qij €
A, we say @ satisfies the restricted max-max transitivity property.
Definition 4.3.2 (Xu, 2007f) Let @ = (gij)nxn be an incomplete intuitionistic
preference relation. If it satisfies

Gij = Gt ® qrj, for all qip,qrj qi; € 4, i<k <j (4.8)

then @ is called a consistent incomplete intuitionistic preference relation.
Definition 4.3.3 (Xu, 2007f) Let @ = (gij)nxn be an incomplete intuitionistic
preference relation. If (4, j) N (k,s) # @, then the elements ¢;; and gxs are said to be
adjoining. For the unknown element g;;, if there exist two adjoining known elements
¢ir and qxj, then g;; is called available. The element ¢;; can be obtained indirectly
by using ¢;; = ¢ir ® qxj, which means that the estimated element g;; should be taken
according to the known elements ¢;; and gy;.
Definition 4.3.4 (Xu, 2007f) Let @ = (gij)nxn be an incomplete intuitionistic
preference relation. If each unknown element can be derived from its adjoining known
elements, then @) is called acceptable; Otherwise, @ is called unacceptable.

Obviously, for an incomplete intuitionistic preference relation @ = (gi;)nxn, if @
is acceptable, then there exists at least one known element (except diagonal elements)
in each line or each column of @, i.e., there exist at least (n — 1) judgments provided
by the decision maker (that is to say, each one of the alternatives is compared at least
once).

Let @ = (¢ij)nxn be an acceptable incomplete intuitionistic preference relation.
Then based on Eq.(4.8), each unknown element ¢;; can be obtained indirectly from:

1

Gij = ( ® (qir ® ij)> " (4.9)

kENij

where N;; = {k|gix,qr; € 4, ¢ < k < j}, nyj is the number of the elements in N;;.
Therefore, we get an improved intuitionistic preference relation Q = (Gij )nxn, where
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. %ijs 4ij €A
w={ 4 1% (10

Clearly, an unknown element ¢;; can be estimated if there exists at least one k
so that the elements ¢;; and g; are known. The improved intuitionistic preference
relation Q contains both the direct intuitionistic preference information given by the
decision maker and the indirect intuitionistic preference information derived from the
known intuitionistic preference information.

4.4 Group Decision Making Based on Incomplete Intuitionis-
tic Preference Relations

We now introduce an approach to group decision making based on incomplete intu-
itionistic preference relations (Xu, 2007f):

Step 1 Consider a group decision making problem. Let Y, E and ¢ be defined as
in Section 1.3. The decision maker Fjy € F provides his/her intuitionistic preferences
by comparing at least n — 1 pairs of the alternatives (Y;,Y;) (1 =1,2,--- ,n—1; j =
i+1), and constructs an incomplete intuitionistic preference relations Qy = (qz(;c ))nxn,

where
k k k k k k .o
qZ(]) (N'Ej)’ ’L(]))7 0 /J“'E]) + V( ) \ ]" /‘l’§z) = V(])’ /‘L'Ez) = I/'L(’L) = 05’ 1,7 € A

Step 2 Utilize Eq.(4.9) to construct the improved intuitionistic preference rela-
tions Qr = (4 )uxn (k=1,2,---,1) of Q = (¢ nxn (k= 1,2,---,0).
Step 3 Utilize the IFA operator:

to aggregate all q( ) (j = 1,2,---,n) corresponding to the alternative Y;, and then
get the averaged IFN q( ) of the alternative Y; over all the other alternatives.
Step 4 Utilize the IFWA operator:

:5145” @6V e-eoad, i=1,2,-n (4.12)

to aggregate all q (k = 1,2,---,1) corresponding to ! decision makers into a col-
lective intuitionistic fuzzy preference value g; of the alternative Y; over all the other
alternatives.

Step 5 Rank all ¢; (i = 1,2,---,n) by means of the score function (1. 10) and
the accuracy function (1.11), and then rank all the alternatives Y; (i = 1,2,--- ,n)
and select the best one in accordance with the values of ¢; (i = 1,2, ,n).
Example 4.4.1 (Xu, 2007f) We now utilize a practical example (adapted from
Li et al.(2005)) involving the assessment of a set of agroecological regions in Hubei
Province, China, to illustrate the developed approaches.
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Locating in Central China and the middle reaches of the Changjiang (Yangtze)
River, Hubei Province is distributed in a transitional belt where physical conditions
and landscapes are on the transition from north to south and from east to west.
Thus, Hubei Province is well known as “a land of rice and fish” since the region en-
joys some of the favorable physical conditions, with a diversity of natural resources
and the suitability for growing various crops. At the same time, however, there are
also some restrictive factors for developing agriculture such as a tight man—land re-
lation between a constant degradation of natural resources and a growing population
pressure on land resource reserve. Despite cherishing a burning desire to promote
their standard of living, people living in the area are frustrated because they have
no ability to enhance their power to accelerate economic development because of a
dramatic decline in quantity and quality of natural resources and a deteriorating en-
vironment. Based on the distinctness and differences in environment and natural
resources, Hubei Province can be roughly divided into seven agroecological regions:
@ Y;—Wuhan-Ezhou Huanggang; @ Y;—Northeast of Hubei; & Y3;—Southeast of
Hubei; @ Y;— Jianghan region; ® Ys;—North of Hubei; ® Ys—Northwest of Hubei;
and @ Y7— Southwest of Hubei. In order to prioritize these agroecological re-
gions Y; (i =1,2,---,7) with respect to their comprehensive functions, a commit-
tee comprised of three decision makers Ej (k = 1,2,3) (whose weight vector is
¢ = (0.5,0.2,0.3)") has been set up to provide assessment information on Y; (i =
1,2,---,7). The decision makers Ej (k = 1,2,3) provide intuitionistic preferences for
each pair of agroecological regions with respect to their comprehensive functions and

construct the intuitionistic preference relations Qp = (qZ(ch ))7X7 (qgf) = (ugf),yi(f )),
i,7=1,2,---,7; k=1,2,3) as follows respectively:
7(0.5,0.5) (0.5,0.2) (0.7,0.1) (0.5,0.3) (0.6,0.4) (0.9,0.1) (0.8,0.1)]
(0.2,0.5) (0.5,0.5) (0.6,0.2) (0.3,0.6) (0.7,0.1) (0.8,0.2) (0.6,0.3)
(0.1,0.7) (0.2,0.6) (0.5,0.5) (0.3,0.6) (0.4,0.5) (0.7,0.1) (0.7,0.2)
Qi1=|(0.3,05) (0.6,0.3) (0.6,0.3) (0.5,0.5) (0.6,0.1) (0.8,0.1) (0.7,0.3)
(0.4,0.6) (0.1,0.7) (0.5,0.4) (0.1,0.6) (0.5,0.5) (0.5,0.2) (0.4,0.1)
(0.1,0.9) (0.2,0.8) (0.1,0.7) (0.1,0.8) (0.2,0.5) (0.5,0.5) (0.3,0.7)
| (0.1,0.8) (0.3,0.6) (0.2,0.7) (0.3,0.7) (0.1,0.4) (0.7,0.3) (0.5,0.5)]
7(0.5,0.5) (0.6,0.1) (0.8,0.2) (0.6,0.3) (0.7,0.2) (0.8,0.1) (0.8,0.2)]
(0.1,0.6) (0.5,0.5) (0.5,0.1) (0.3,0.7) (0.6,0.1) (0.7,0.2) (0.6,0.2)
(0.2,0.8) (0.1,0.5) (0.5,0.5) (0.4,0.6) (0.3,0.5) (0.6,0.2) (0.5,0.1)
Qo= | (0.3,0.6) (0.7,0.3) (0.6,0.4) (0.5,0.5) (0.7,0.3) (0.8,0.2) (0.6,0.2)
(0.2,0.7) (0.1,0.6) (0.5,0.3) (0.3,0.7) (0.5,0.5) (0.6,0.2) (0.4,0.3)
(0.1,0.8) (0.2,0.7) (0.2,0.6) (0.2,0.8) (0.2,0.6) (0.5,0.5) (0.3,0.6)
| (0.2,0.8) (0.2,0.6) (0.1,0.5) (0.2,0.6) (0.3,0.4) (0.6,0.3) (0.5,0.5)]
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(0.5,0.5) (0.6,0.2) (0.8,0.1) (0.7,0.2) (0.8,0.2) (0.9,0.1) (0.7,0.1)
(0.2,0.6) (0.5,0.5) (0.6,0.1) (0.2,0.7) (0.6,0.2) (0.8,0.1) (0.8,0.2)
(0.1,0.8) (0.1,0.6) (0.5,0.5) (0.2,0.3) (0.3,0.4) (0.9,0.1) (0.6,0.1)
Qs=|(02,0.7) (0.7,0.2) (0.3,0.2) (0.5,0.5) (0.6,0.2) (0.8,0.1) (0.7,0.2)
(0.2,0.8) (0.2,0.6) (0.4,0.3) (0.2,0.6) (0.5,0.5) (0.7,0.2) (0.7,0.3)
(0.1,0.9) (0.1,0.8) (0.1,0.9) (0.1,0.8) (0.2,0.7) (0.5,0.5) (0.2,0.8)
(0.1,0.7) (0.2,0.8) (0.1,0.6) (0.2,0.7) (0.3,0.7) (0.8,0.2) (0.5,0.5)

We first use Szmidt and Kacprzyk’s approach (2002) to derive the decision result,
which involves the following steps:
Step 1 Based on Qi (k = 1,2,3), we construct the following matrices respec-

tively: i i
— 0 0 0 0 0 0
1 — 0 1 0 0 0
1 1 — 1 1 0 0
Ti=t)mr=|1 0 0 — 0 0 0
1 1 0 1 — 0 [0
11 1 1 1 — 1
11 1 1 [0 0 |
[— 0 0o 0 0 0 0]
1 — 0 1 0 0 0
1 1 — 1 1 0 0
To=)r=1 0 0 — 0 0 0
1 1 0 1 0 [o]
1 1 1 1 1 — 1
1 1 1 1 0] 0 —
[— 0 0 0 0 0 0]
1 — 0 1 0 0 0
1 1 — [0 [0] 0 0
Ty=(t)r=| 1 0 [0] — 0 0 0
1 1 0] 1 — 0 0
11 1 1 1 — 1
1 1 1 1 1 0 —
[ — 03 02 02 0 0 0.1
03 — 02 01 02 0 0.1
02 02 — 01 01 02 0.1
m=()r=1]02 01 01 — 03 01 0
0 02 01 03 — 03 05
0O 0 02 01 03 — 0
01 01 01 0 05 0 — |
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— 03 0 01 01 01 O

03 — 04 0 03 01 02
0 04 — 0 02 02 04
o= (7 )rxr=]01 0 0 — 0 0 02
01 03 02 0 — 02 02
01 01 02 0 02 — 0.1

0 02 04 02 03 01 —
— 02 01 01 O 0 0.2

02 — 03 01 02 01 0
01 03 — 05 03 0 0.3
Iy = (r))rr = | 01 01 05 — 02 01 01
0 02 03 02 — 01 O
0 01 0 01 01 — O
| 02 0 03 01 0 0 — |
where
- b(’?) _ (/J( ) (k))
k
R — L, ,uZ(J)<O5andv < 0.5,
Y (k)
0, Wi > 0.5,
[0], others
and 7szk) =1- ,u,gf) — ijk), ,j=1,2,--- .7 k=1,2,3. tl(»f) = “—” means q“) does
not matter, tz(j) = 1 means that the decision maker Ej, prefers Y; over Y, tz(-j =0

means that the decision maker Ej prefers Y; over Yj, and tz(-;c) = [0] means no option
is preferred.
Step 2 Use the formula:

to calculate the extent to which all the decision makers Ej, (k = 1,2, 3) are not against
Y;:

Step 3 Use the formula:

i 1) > i B 1=3 m=7 j=1,2,--,7

k:l i=1,i#£j
to calculate the hesitation margin related to Y:

2 31 36 22

18" 7 180" ™ T 1807 ™7 180

™ =
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33 S 16 S 25
180" "° 180" T 180
Step 4 Add the value 7; to t;, which gives the upper bound of the interval

Ty =

t; = [t;, t; +m;], and thus get the following ranges:

20 12 151 6 96 14 162
T 18]’ 187 180]° 187 180" 187 180

v 6 93 oo 16 v 3 55
5711871807 S |7 1800 T |18 180

Step 5 Assume a fuzzy majority given as a fuzzy linguistic quantifier “most”:

17 X 2 087
6“most” = 2x — 06, 03<zr< 08,
0, < 0.3
and use )\(J ) » = Jumost? (£5) to calculate the extent to which most decision makers
most 7

are not against Y:
66 6 42 86
L=1, 2B = 1, A® = AW = 1
? most 90 ’ ? most 90 ’ 90 ’ most 90 ’

) _ |6 39 ©  _ M _ o 1
A"‘most’7 - |:907 90|’ A“most’7 =0, A"‘most’7 =10, 90

Then, by the definition of the intuitionistic fuzzy core (Szmidt and Kacprzyk, 2000),

NO

most

we have

66 6 42 86
(7“1‘1103‘577 _l/Yl + |:90a ]-:| /Y2 + |:907 90:| /YS + |:907 ]-:| /Yzl

6 39 1
Y: 0 Y,
which means that Y7 is certainly an element of the intuitionistic fuzzy “most”-core,
Ys is certainly not, and Y3, Y3, Yy, Y5, and Y7 belong to this core to the extent as

. 66 6 42 86 6 39
measured by values from the intervals [907 1}, [90, 90]7 [907 1}, {90, 90]7 and

1
[O, 90] respectively.

Clearly, Szmidt and Kacprzyk’s approach aggregates the individual intuitionistic
preference relations into the group opinion on the basis of fuzzy majority equated with
a fuzzy linguistic quantifier. A main limitation to this approach appears because it not
only loses some original decision information in the process of information aggregation,
but also is unable to prioritize the given alternatives. To resolve this issue, we now
apply the algorithm introduced in Subsection 4.2 to the ranking and selection of the
agroecological regions:
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Step 1 Use Eq.(4.6) to aggregate all q( ) (j =1,2,---,7) corresponding to the

(k)

agroecological region Y;, and then get the averaged IFN ¢, of the agroecological

region Y; over all the other agroecological regions:

M = (0.6861, 0.1982), ¢S = (0.5707, 0.2918)

(1)

0.4587, 0.3853), ¢\ = (0.6112, 0.2536

(1)

0.3769, 0.3732), ¢S = (0.2281, 0.6847

(1)

0.3527, 0.5441), ¢\ = (0.7055, 0.1982

(2)

0.5023, 0.2617), ¢$* = (0.3933, 0.3826

(2)

0.2536, 0.6488), ¢'* = (0.3240, 0.5072

(3)

0.7440, 0.1694), ¢5* = (0.5870, 0.2617

= (
= (
= (
= (
= (
= (
= (
¢ = y

0.4892, 0.3120), ¢{¥ =

= ( )

= ( )

= ( )

= ( )
¢\¥ = (0.6268, 0.3306), ¢\¥ =

= ( )

= ( )

=( ) 0.5880, 0.2469

= ( )

)
)
)
)
0.3933, 0.4283)
)
)
)
)

at¥ = (0.4575, 0.4271), ¢ = (0.1999, 0.7590

¥ = (0.3773, 0. 5562)

Step 2 Utilize Eq.(4.7) to aggregate all q (k = 1,2,3) into a collective IFN
q; of the agroecological region Y; over all the other agroecological regions:

= (0.7085, 0.1891), go = (0.5629, 0.2763)

g3 = (0.4558, 0.3612), q4 = (0.6076, 0.2653)
g5 = (0.4054, 0.3995), g6 = (0.2250, 0.6986)
g7 = (0.3546, 0.5401)

Step 3 By Eq.(1.10), calculate the scores s(g;) (i =1,2,---,7) of the IFN g;:
s(q1) = 0.5194, s(g2) = 0.2866, s(g3) = 0.0946, s(qs) = 0.3423

s(gs) = 0.0059, s(gs) = —0.4736, s(g7) = —0.1855

Then
g1 >qa>q2>43 > g5 > q7 > Ge

Hence
Yi-Y, =Yoo -Ys5>-Ys >=-Y; - Y5
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Therefore, the agroecological region with the most comprehensive functions is
Wuhan-Ezhou-Huanggang.

From the above example, we know that the approach developed uses the IFA and
IFWA operators, rather than fuzzy majority, to aggregate the intuitionistic preference
information, and applies the order relation between any pair of IFNs to prioritize the
agroecological regions. The main advantage over Szmidt and Kacprzyk’s approach
is that the approach developed here can not only prioritize the agroecological re-
gions, but also preserve the information in the process of aggregation. Note that the
aggregated preference values are also expressed in IFNs.

If the decision makers Fy (k = 1,2,3) provide with their preference information
over the alternatives Y; (i = 1,2,---,7) by using incomplete intuitionistic preference
relations Qy = (qgf))4x4 (k=1,2,3) as follows:

[(0.5,0.5) (0.5,0.2) (0.7,0.1) (0.5,0.3) (0.6,0.4) (0.9,0.1) z ]
(0.2,0.5) (0.5,0.5) (0.6,0.2) x (0.7,0.1) (0.8,0.2) (0.6,0.3)
(0.1,0.7) (0.2,0.6) (0.5,0.5) (0.3,0.6) (0.4,0.5) (0.7,0.1) (0.7,0.2)
Q1= (0.3,0.5) x (0.6,0.3) (0.5,0.5) (0.6,0.1) (0.8,0.1) (0.7,0.3)
(0.4,0.6) (0.1,0.7) (0.5,0.4) (0.1,0.6) (0.5,0.5) (0.5,0.2) (0.4,0.1)
(0.1,0.9) (0.2,0.8) (0.1,0.7) (0.1,0.8) (0.2,0.5) (0.5,0.5) (0.3,0.7)
o (0.3,0.6) (0.2,0.7) (0.3,0.7) (0.1,0.4) (0.7,0.3) (0.5,0.5)
(0.5,0.5) (0.6,0.1) x (0.6,0.3) (0.7,0.2) (0.8,0.1) (0.8,0.2)
(0.1,0.6) (0.5,0.5) (0.5,0.1) (0.3,0.7) (0.6,0.1) (0.7,0.2) x
x (0.1,0.5) (0.5,0.5) (0.4,0.6) (0.3,0.5) (0.6,0.2) (0.5,0.1)
Q2= (0.3,0.6) (0.7,0.3) (0.6,0.4) (0.5,0.5) (0.7,0.3) @ (0.6,0.2)
(0.2,0.7) (0.1,0.6) (0.5,0.3) (0.3,0.7) (0.5,0.5) (0.6,0.2) (0.4,0.3)
(0.1,0.8) (0.2,0.7) (0.2,0.6) x (0.2,0.6) (0.5,0.5) (0.3,0.6)
(0.2,0.8) x (0.1,0.5) (0.2,0.6) (0.3,0.4) (0.6,0.3) (0.5,0.5) |
(0.5,0.5) (0.6,0.2) (0.8,0.1) (0.7,0.2) (0.8,0.2) (0.9,0.1) (0.7,0.1)
(0.2,0.6) (0.5,0.5) (0.6,0.1) (0.2,0.7) (0.6,0.2) (0.8,0.1) (0.8,0.2)
(0.1,0.8) (0.1,0.6) (0.5,0.5) (0.2,0.3) (0.3,0.4) (0.9,0.1) (0.6,0.1)
Qs=|(02,0.7) (0.7,0.2) (0.3,0.2) (0.5,0.5) (0.6,0.2) (0.8,0.1) (0.7,0.2)
(0.2,0.8) (0.2,0.6) (0.4,0.3) (0.2,0.6) (0.5,0.5) (0.7,0.2) x
(0.1,0.9) (0.1,0.8) (0.1,0.9) (0.1,0.8) (0.2,0.7) (0.5,0.5) (0.2,0.8)
| (0.1,0.7) (0.2,0.8) (0.1,0.6) (0.2,0.7) x (0.8,0.2) (0.5,0.5)

where “x” denotes the unknown variable, then we can use the algorithm introduced
in Section 4.4 to prioritize the agroecological regions, which involves the following
steps:

Step 1 Use Eq.(4.9) to construct the improved intuitionistic preference relations
Qu = (0)7xr (b =1,2,3) of Qi = (¢{ )77 (k =1,2,3):
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[ (0.5,0.5) (0.5,0.2) (0.7,0.1) (0.5,0.3) (0.6,0.4) (0.9,0.1) (0.32,0.51)]
(0.2,0.5)  (0.5,0.5) (0.6,0.2) (0.18,0.68) (0.7,0.1) (0.8,0.2) (0.6,0.3)
(0.1,0.7)  (0.2,0.6) (0.5,0.5) (0.3,0.6) (0.4,0.5) (0.7,0.1) (0.7,0.2)
Ql— (0.3,0.5) (0.68,0.18) (0.6,0.3) (0.5,0.5) (0.6,0.1) (0.8,0.1) (0.7,0.3)
(0.4,0.6) (0.1, 0.7) (0.5,0.4) (0.1, O 6) (0.5,0.5) (0.5,0.2) (0.4,0.1)
(0.1,0.9) (0.2,0.8) (0.1,0.7) (0.1,0.8) (0.2,0.5) (0.5,0.5) (0.3,0.7)
| (0.51, 0.32) (0.3,0.6) (0.2,0.7) (0.3,0.7) (0.1,0.4) (0.7,0.3) (0.5,0.5)
[ (0.5,0.5) (0.6,0.1) (0.30,0.19) (0.6,0.3) (0.7,0.2) (0.8,0.1) (0.8,0.2)
(0.1,0.6) (0.5,0.5) (0.5,0.1) (0.3,0.7) (0.6,0.1) (0.7,0.2) (0.22,0.56)
(0.19,0.30) (0.1,0.5) (0.5,0.5) (0.4,0.6) (0.3,0.5) (0.6,0.2) (0.5,0.1)
Q2= (0.3,0.6) (0.7,0.3) (0.6,0.4) (0.5,0.5) (0.7,0.3)(0.42,0.44) (0.6,0.2)
(0.2,0.7) (0.1,0.6) (0.5,0.3) (0.3,0.7) (0.5,0.5) (0.6,0.2) (0.4,0.3)
(0.1,0.8) (0.2,0.7) (0.2,0.6) (0.44,0.42)(0.2,0.6) (0.5,0.5) (0.3,0.6)
| (0.2,0.8) (0.56,0.22) (0.1,0.5) (0.2,0.6) (0.3,0.4) (0.6,0.3) (0.5,0.5) |
[(0.5,0.5) (0.6,0.2) (0.8,0.1) (0.7,0.2) (0.8,0.2) (0.9,0.1) (0.7,0.1)
(0.2,0.6) (0.5,0.5) (0.6,0.1) (0.2,0.7) (0.6,0.2) (0.8,0.1) (0.8,0.2)
) (0.1,0.8) (0.1,0.6) (0.5,0.5) (0.2,0.3) (0.3,0.4) (0.9,0.1) (0.6,0.1)
Q3=1|(0.2,0.7) (0.7,0.2) (0.3,0.2) (0.5,0.5) (0.6,0.2) (0.8,0.1) (0.7,0.2)
(0.2,0.8) (0.2,0.6) (0.4,0.3) (0.2, O 6) (0.5,0.5) (0.7,0.2) (0.14,0.84)
(0.1,0.9) (0.1,0.8) (0.1,0.9) (0.1,0.8) (0.2,0.7) (0.5,0.5) (0.2,0.8)
_(0.1,0.7) (0.2,0.8) (0.1,0.6) (0.2,0.7) (0.84,0.14) (0.8,0.2) (0.5,0.5)
Step 2 Use Eq.(4.11) to aggregate all g (j =1,2,---,7) corresponding to the

agroecological region Y;, and then get the averaged IFN q'gk)

)

region Y; over all the other agroecological regions:

(1)

(1)
(1)
(1)
(2)
(2)
(2)
(3)
(3)
(3)

= (0.6262, 0.2501),

0.4587, 0.3853),
0.3769, 0.3732),
0.4065, 0.4773),
0.4525, 0.3031),

= ( )
= ( )
= ( )
= ( )
= (0.5655, 0.3701),
= (0.2907, 0.5917),
= (0.7440, 0.1694),
= (0.4892, 0.3120),
= ( )

0.3695, 0.4948),
(3)

@t = (0.5609, 0.2970)

@Y = (0.6234, 0.2358

g\ = (0.2281, 0.6847

@t? = (0.6478, 0.1967

¢{? = (0.3923, 0.3326

@t* = (0.3793, 0.4395

@t¥ = (0.5870, 0.2617

= ( )
= ( )
= ( )
= ( )
¥ = (0.3933, 0.4283)
= ( )
= ( )
i\¥ = (0.5880, 0.2469)
¥ = (0.1999, 0.7590)

= (0.4957, 0.4419)

of the agroecological




204 Chapter 4  Decision Making Models and Approaches Based on Intuitionistic...

Step 3 Use Eq (4.12) to aggregate all q§’“> (k =1,2,3) into a collective IFN ¢;
of the agroecological region Y; over all the other agroecological regions:

¢1 = (0.6703, 0.2121), g2 = (0.5494, 0.2871)

gs = (0.4556, 0.3512), ¢4 = (0.6019, 0.2616)
gs = (0.3780, 0.4175), ¢s = (0.2328, 0.6859)
g7 = (0.4297, 0.4588)
Step 4 By Eq.(1.9), calculate the scores s(¢;) (¢ = 1,2,---,7)of ¢; (1 =1,2,---,
v s(¢1) = 0.4582, s(g2) = 0.2623, s(gs) =0.1044, s(¢s) = 0.3403
s(gs) = —0.0395, s(¢s) = —0.4531, s(g7) = —0.0291
Then
q1>qa > G2 > 43> qGr > 45 > Ge
and hence
Y=Y =Yoo Y3 =-Y: =-Ys5 =Y

Therefore, the agroecological region with the most comprehensive functions is also
Wuhan-Ezhou-Huanggang.

4.5 Interval-Valued Intuitionistic Preference Relations

Due to the complexity of objective things and the ambiguity of human thought, in
the process of decision making, the membership degree and non-membership degree
in the preference information provided by a decision maker are sometimes difficult
to be expressed in exact real values. Instead, it is very convenient and proper to
express them with interval numbers. In what follows, we introduce the concept of
interval-valued intuitionistic preference relation (Xu and Chen, 2007a):

Definition 4.5.1 (Xu and Chen, 2007a)  Let Q = (§ij)nxn be a preference relation,
where ¢;; = (fisj, 7i;) is an IVIFN, [i;; indicates the degree range that the decision
maker prefer the alternative Y; to the alternative Y}, while 7;; means the degree range
that the decision maker prefer the alternative Y to the alternative Y;. fi;; and 7;;
satisfy the following conditions:

Pij = [ﬁ?j,ﬂ};] c0,1], ;= [17{}, ﬁ}j«] C 0,1, fji =iy, Uji = [lij
= e — U 45U =12
flii = Ui = [0.5,0.5],  fi; +7; <1, i,j=1,2,---,n

where ﬁ%j and [L?j indicate, respectively, the lower and upper limits of fi;, ﬁ}j and
175 indicate, respectively, the lower and upper limits of 7;;. Then Q is called an
interval-valued intuitionistic preference relation.
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: e =L _ ~U Lo 5U
In particular, if fi;; = fi;; and v;; = 7,5,

intuitionistic preference relation @) reduces to an intuitionistic preference relation.

for any 4,j, then the interval-valued

Therefore, the intuitionistic preference relation is a special case of the interval-valued
intuitionistic preference relation.

Definition 4.5.2 (Xu and Chen, 2007a) If §;; = Gir ® G;, for all i < k < j, then
Q= (Gij )nxn 1s called a consistent interval-valued intuitionistic preference relation.
Definition 4.5.3 (Xu and Chen, 2007a) Let Q= (Gij )nxn be an interval-valued
intuitionistic preference relation, where

Then S = (8i5)nxn is called the score matrix of Q7 where s;; can be determined by

the score function, i.e.,

1
2

Definition 4.5.4 (Xu and Chen, 2007a) H = (h;;)nxn is called the accuracy matrix
of Q7 where h;; can be determined by the accuracy function, i.e.,

i),

R S L0, Lo
Sij = (Uij_Vij+Nij_Vij ,j=1,2,---,n

1
hij:Z

Theorem 4.5.1 (Xu and Chen, 2007a) Let S be the score matrix of @, and S the
transpose of S. Then S = —S, i.e., S is an anti-symmetrical matrix.
Proof By Definitions 4.5.1 and 4.5.3, we have

(i + 73 + fiiy +755), 6§ = 1,2,

1 . . _ . . . . . .
81322(/1“5_1/1]?‘]+/’L2_V5)7 831_2(1/1]3_/”%]3—"_1/5_”5)7 7/,_721,27"',“
Thus
Si]‘—FSji:O, i,j=1,2,---,n
Then S = —5S.

Theorem 4.5.2 (Xu and Chen, 2007a) Let H be the accuracy matrix of Q, and
H the transpose of H. Then H = H, i.e., H is a symmetrical matrix.
Proof By Definitions 4.5.1 and 4.5.4, we have

hij = ;(ﬂ{fj + UL+ A7), hj = ;(ﬁ}j A+ )+ A, =12 n
Then, h;; = hy;, 1,5 = 1,2,--- ,n, and hence H=H.

The interval-valued intuitionistic preference relation has the following properties:
Theorem 4.5.3 (Xu and Chen, 2007a) If we remove the between row and between
column from the interval-valued intuitionistic preference relation Q7 then the prefer-
ence relation composed by the remainder (n — 1) rows and (n — 1) columns of Q is

also an interval-valued intuitionistic preference relation.
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Theorem 4.5.4 (Xu and Chen, 2007a) Let Q@ = (Gij)nxn be an interval-valued
intuitionistic preference relation, where ¢;; = (fii;, %i5), ¢, 5 = 1,2,--- ,n. Then

(1) If Gir ® Grj = Gij, for all 4,4,k = 1,2,--- ,n, then Q satisfies the triangle
condition.

(2) If G > ([0.5,0.5],10.5,0.5]), Gx; = ([0.5,0.5],[0.5,0.5]) = G;; = ([0.5,0.5],
[0.5,0.5)), for all 4,7,k =1,2,--- ,n, then Q satisfies the weak transitivity property.

(3) If ¢i; > min{Gix, Gx;}, for all 4,5,k =1,2,--- ,n, then Q satisfies the max-min
transitivity property.

(4) If G;; > max{Gk, qx;}, for all 4,5,k =1,2,--- ,n, then Q satisfies the max-max
transitivity property.

(5) I G > (0.5,0.5], [0.5,0.5), Gy > ([0.5,0.5], 0.5,0.5)) = Gy > min{Gun. iy},

for all 4,5,k =1,2,--- ,n, then Q satisfies the restricted max-min transitivity prop-
erty.

(6) If g > ([0.5,0.5], [0.5,0.5]), Gx; = ([0.5,0.5], [0.5,0.5]) = Gi; > max{Gix, Gx;},
for all 4,7,k = 1,2,--- ,n, then Q satisfies the restricted max-max transitivity prop-
erty.

(7) If min{Gix, Ggx;} > ([0.5,0.5],[0.5,0.5]) = G;; > max{Gix, Gr;}, for all ¢,5,k =
1,2,---,n, then Q satisfies the strong stochastic transitivity.

(8) If min{Gix, gr;} > ([0.5,0.5],[0.5,0.5]) = Gi; = min{Gx, §x;}, for all i, j, k =
1,2,---,n, then Q satisfies the moderate stochastic transitivity.

(9) If min{gx,qr;} > ([0.5,0.5],[0.5,0.5]) = ¢;; > ([0.5,0.5],[0.5,0.5]), for all
i,7,k=1,2,--- ,n, then Q satisfies the weak stochastic transitivity.

4.6 Group Decision Making Based on Interval-Valued Intu-
itionistic Preference Relations

We now describe an approach to group decision making with interval-valued intuition-
istic preference relation, which involves the following steps (Xu and Chen, 2007a):
Step 1 For a group decision making problem, let Y, E and £ be defined as
in Section 1.3. The decision maker Ej compares each pair of n alternatives, and
constructs an interval-valued intuitionistic preference relation Qk = (q]%’-c))nXm where

~(k ~(k) ~(k k ~(k ~(k ~(k ~(k
qz(j) = (/’Lz('j)ﬂyi(j))ﬂ FLE]) [0 ]-], Vi(j) c [07 ]-]u Ngz) = 'L(j)7 V](z) = ILL'Ej)

i =5 = (05,05, swpal +suprl) <1, ij=1,2,n k=1,2,---,1
Step 2 Utilize the ITFA operator:
¢ =1rA@E® g0, q®), =12 m k=1,2,00 0 (4.13)
to aggregate all the elements in each line of the interval-valued intuitionistic preference
relation @, and get the overall IVIFNs of each alternative corresponding to each
decision maker Ey.
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Step 3 Utilize the IIFWA operator:
~ ~(1) ~(2 ~(1 .

q~§k) (k = 1,2,---,1), and get the collective overall IVIFNs ¢; (i

1,2,---,n) of the alternatives ¥; (i = 1,2,--- ,n), where £ is the weight vector of the

to aggregate

decision makers.
= 1.2....

9 )

Step 4 Calculate the scores s(g¢;) (i
hg) (i=1,2,--- ,n)of ¢; (i=1,2,--- ,n).
Step 5 Utilize the scores s(¢;) (i = 1,2, --- ,n) and the accuracy degrees h(g;) (¢

,n) and the accuracy degrees

1,2,---,n) to rank and select the alternatives Y; (i = 1,2,--- ,n).
Example 4.6.1 (Xu and Chen, 2007a)
selection of critical factors used to assess the potential partners of a company. Supply

Let us consider a problem concerning the

chain management focuses on strategic relationships between companies involved in
a supply chain. By effective coordination, companies benefit from lower cost, lower
inventory levels, information sharing and thus stronger competitive edge. Many fac-
tors may impact the coordination of companies. Among them, the following is the
list of four critical factors (Chen and Xu, 2001): @ G; : Response time and supply
capacity; @ G : Quality and technical skills; @ G35 : Price and cost; and @ Gy :
Service level. In order to prioritize these five critical factors G; (j = 1,2,3,4), three
decision makers Ey (k = 1,2,3) (whose weight vector is ¢ = (0.35, 0.35, 0.30)T) are
invited to assess them. The decision makers compare each pair of these factors and
provide intuitionistic preferences contained in the intuitionistic preference relations
Qr = (qg-v))4X4 (k =1,2,3) respectively.

Q1=

Q3=

[0.5,0.5],]0.5,0.5]
[0.1,0.2], [0.6,0.7]
[0.2,0.3], 0.5, 0.6]
0.2,0.4],[0.3,0.5]

A~~~

[0.5,0.5],]0.5,0.5]
[0.5,0.6], 0.2, 0.3]
[0.1,0.2], [0.5,0.7]

(
(
(
(10.1,0.3],[0.2, 0.4]
(
(
(

[0.5,0.5],]0.5,0.5]
0.2,0.3],[0.4,0.5]
[0.1,0.2], [0.6,0.7]
([0.2,0.3],[0.5,0.7]

= —

e D — — — = —

[0.6,0.7],[0.1,0.2])
[0.5,0.5], [0.5, 0.5])
[0.1,0.2], [0.4,0.6])
[0.1,0.3], [0.6,0.7])

A~~~

([0.2,0.3],]0.5,0.6])
([0.5,0.5],[0.5,0.5])
([0.1,0.2],0.5,0.8])
([0.2,0.3],[0.3,0.6])
([0.4,0.5],]0.2,0.3])
([0.5,0.5],[0.5,0.5])
([0.2,0.4],0.5,0.6])
([0.1,0.2],0.7,0.8])

([0.5,0.6], 0.2, 0.3]
([0.4,0.6],[0.1,0.2]
([0.5,0.5], 0.5, 0.5]
([0.5,0.6],[0.3,0.4]

([0.5,0.7],[0.1,0.2]
([0.5,0.8],]0.1,0.2]
([0.5,0.5], 0.5, 0.5]
([0.1,0.4], 0.4, 0.6]
([0.6,0.7],[0.1,0.2]
([0.5,0.6],[0.2,0.4]
([0.5,0.5], 0.5, 0.5]
([0.1,0.3],[0.6,0.7]

= = —

NN NN N NN N

([0.3,0.5],[0.2,0.4])
([0.6,0.7],]0.1,0.3])
([0.3,0.4], [0.5,0.6])
([0.5,0.5],0.5,0.5])

0.2,0.4], [0.1,0.3])
[0.3,0.6], [0.2,0.3])
[0.4,0.6], [0.1,0.4])
[0.5,0.5], [0.5, 0.5])
)
1)
)

0.5,0.7],[0.2,0.3
[0.7,0.8],[0.1,0.2
0.6,0.7],[0.1,0.3
[0.5,0.5], 0.5, 0.5])

NN N N S N

In order to select the most influential factor, we first utilize Eq.(4.13) to aggregate
all the elements in each line of the interval-valued intuitionistic preference relation
Qr, and then get the overall IVIFNs of each alternative corresponding to the decision
maker Ej:
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M = ([0.4856, 0.5838], [0.2115,0.3310))
@M = ([0.4267,0.5319], [0.2340,0.3807))
" = (]0.2915,0.3598], [0.4729, 0.5733))
3" = (]0.3486,0.4616], [0.4054, 0.5144))
¥ = ([0.3675,0.4990], [0.2236,0.3663])
¥ = ([0.4561,0.6443], [0.2115,0.3080))
¥ = (10.2979,0.4019], [0.2455, 0.3808))
¥ = ([0.2455,0.3808], [0.3310,0.5180))
¥ = ([0.5051,0.6127], [0.2115,0.3080))
~<3> = ([0.5051,0.5909], [0.2515,0.3761])
~<3> = ([0.3840, 0.4820], [0.3500,0.5010])

[ b [ )

~<4> = ([0.2455,0.3346], [0.5692, 0. 6654}

Then we utilize the IIFWA operator (4.14) to aggregate q (k ,3), and get the
collective overall IVIFNs of each alternative:

= (0.4534,0.5654], [0.2157,0.3356)), G2 = (|0.4615,0.5916], [0.2308, 0.3522))

= ([0.3228,0.4133], [0.3435,0.4771]), Ga = (]0.2833,0.3975], [0.4181,0.5571])
Finally, we calculate the scores of ¢; (i = 1,2,3,4):

s(@1) = 0.2338,  s(G2) = 0.2351
s(G3) = —0.0423,  s(Gu) = —0.1472
Since
s(q2) > 5(q1) > s(Gs) > s(qa)
the ranking of the factors Y; (i = 1,2,3,4) is as follows:
Yor-Y1-Ys -V,

To conclude, the most influential factor is Ys.

4.7 Group Decision Making Based on Incomplete Interval-
Valued Intuitionistic Preference Relations

Sometimes, a decision maker may be unable or unwilling to provide their prefer-
ence over some of the given alternatives, because of time pressure, lack of knowl-
edge, individual emotions, or limited expertise in the problem domain. In such cases,
he/she may construct an incomplete interval-valued intuitionistic preference relation,
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where some of the elements in an interval-valued intuitionistic preference relation
are missing, which we denote by the unknown variable “z”. Xu and Cai (2009)
investigate decision making problems with incomplete interval-valued intuitionistic
preference relations:

Let Q = (Gij)nxn be an incomplete interval-valued intuitionistic preference rela-
tion, where G;; = (55, 7sj5), 4, = 1,2,--- ,n, and let A be the set of all the known
elements in Q Then Q has the following properties:

Theorem 4.7.1 (Xu and Cai, 2009)

(1) If (Gir @ Grj) = Gij, for all Gix, Grj, Gij € A, Q satisfies the triangle condition.

(2) If gix, > ([0.5,0.5],[0.5,0.5]), gx; = ([0.5,0.5],[0.5,0.5]) = #;; > ([0.5,0.5],[0.5,
0.5]), for all ik, Grj, Gij € A, Q satisfies the weak transitivity property.

(3) If G;j; > min{Gix, Gx; }, for all Gix, Grj, Gij € A, Q satisfies the max-min transi-
tivity property.

(4) If ¢i; > max{Gik, Gx; }, for all Gix, Grj, Gij € A, Q satisfies the max-max transi-
tivity property.

(5) If Gix > (]0.5,0.5],[0.5,0.5]), Gx; = ([0.5,0.5],]0.5,0.5]) = G;; > min{ Gix, Gk, },
for all Gix, Grj, Gij € A, Q satisfies the restricted max-min transitivity property.

(6) If gir. > ([0.5,0.5],[0.5,0.5]), Gx; = ([0.5,0.5],[0.5,0.5]) = Gi; > max{ Gix, Gk},
for all Gix, Grj, Gsj € A, Q satisfies the restricted max-max transitivity property.

Xu and Cai (2009) further define some preference relations, including additive
consistent incomplete interval-valued intuitionistic preference relation, multiplicative
consistent incomplete interval-valued intuitionistic preference relation, and acceptable
incomplete interval-valued intuitionistic preference relation:

Definition 4.7.1 (Xu and Cai, 2009) Q= (Gij )nxn is called an additive consistent
incomplete interval-valued intuitionistic preference relation, if it satisfies the arith-

metic average:

1 R o -
Q(Qik ® Grj), for all Gik, Grj, Gij € A (4.15)
Example 4.7.1 (Xu and Cai, 2009) Suppose that an incomplete interval-valued

Gij =

intuitionistic fuzzy preference relation is given as follows:

i ([0.5,0.5,[0.5,0.5]) ([0.5,0.5],[0.5,0.5]) ([0.5,0.5],[0.5,0.5])
B=| ([05,05].[0.5.0.5)) ([0.5,0.5].]0.5,0.5)) x
([0.5,0.5],[0.5,0.5]) x ([0.5,0.5),[0.5,0.5))

Then Eq.(4.15) holds for all Gk, Grj,Gsj € A, where A is the set of all the known
elements in Q, i.e., A = {Gi1, G2, G13, Go1, G22, G31, G33}. Accordingly, Q is an additive
consistent 1ncomplete interval-valued intuitionistic preference relation.

Definition 4.7.2 (Xu and Cai, 2009) @ = (Gij)nxn is called a multiplicative con-
sistent incomplete interval-valued intuitionistic preference relation, if it satisfies the
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geometric mean:
Gij = (Gir ® Grg)'?,  for all Ga, G, Gij € A (4.16)

In Example 4.7.1, Eq.(4.16) holds for all G, qkj,Gi; € A. Thus, Q is also a
multiplicative consistent incomplete interval-valued intuitionistic preference relation.

Note We can also consider to add the more strict condition ¢ < k < j to
Eqgs.(4.15) and (4.16) just as in Definition 4.5.2.
Definition 4.7.3 (Xu and Cai, 2009) Let Q = (Gij)nxn be an incomplete interval-
valued intuitionistic preference relation. If (z,7) N (k,s) # @, then the elements §;;
and Gy, are called adjoining. For the unknown element ¢;;, if there exist two adjoining
known elements G and gx;, then g;; is called available. In this case, we can use some
known function to calculate ¢;; indirectly with the values of the known elements g;s
and gij. For example, we can estimate the element ¢;; indirectly by using Eq.(4.15)
or (4.16).
Definition 4.7.4 (Xu and Cai, 2009) If each unknown element can be estimated
indirectly by using some known function (such as Eq.(4.15) or (4.16)) according to
its adjoining known elements, then the incomplete interval-valued intuitionistic pref-
erence relation Q is called acceptable; Otherwise, @ is called unacceptable.

Based on Definition 4.7.4, the following result can be easily obtained:

Theorem 4.7.2 (Xu and Cai, 2009) If an incomplete interval-valued intuitionistic
preference relation @ is acceptable, then there exists at least one known element
(except diagonal elements) in each line or each column of Q, i.e., there exist at least
n — 1 judgments provided by the decision maker (that is to say, each one of the
alternatives is compared at least once).

Proof Let g;; be an arbitrary unknown element in the interval-valued intuitionistic
preference relation Q. If Q is acceptable, then by Definition 4.7.4, we know that there
must exist at least two adjoining known elements G;; and gi;. Therefore, there is at
least an element G, (¢ # k) in the line ¢, and there is at least an element §x; (k # j)
in the column j. By the arbitrariness property of ¢ and j, there exist at least n — 1
judgments provided by the decision maker. This completes the proof of Theorem
4.7.2.

In order to extend an acceptable incomplete interval-valued intuitionistic pref-
erence relation to a complete interval-valued intuitionistic preference relation, the
following procedure is given based on the acceptable incomplete interval-valued intu-
itionistic preference relation with the least judgments (i.e., n — 1 judgments):

(Procedure 4.1) (Xu and Cai, 2009)

Step 1 For a decision making problem with a collection of alternatives Y; (i =

1,2,---,n), the decision maker compares one alternative with each other alterna-
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tive, and constructs an acceptable incomplete interval-valued intuitionistic prefer-

ence relation Q = (§ij)nxn, with only the n — 1 judgments Giyj,, Gigja»r- " > Giio—1,
Givio+1s """ » iojn- By Definition 4.5.1, we know that the n—1 elements §;, i, @jpios " >
Gio—140> Gio+1i0> " » Gjnio can be determined directly from the n — 1 judgments
Giojrs> Ginas* »Givio—1> Gigiot1s > Giojns Where A = {Gijrs Ginjar " » Gigio—1,
qioio-‘rl’ I qjlio’ q]éio’ T vqio—l 10 Cjio-‘rl 0y "y anio}'

Step 2 Utilize the known elements in Q and a known function (here we use the
arithmetic average G;; = (¢ix @ qx;)/2 or the geometric mean G;; = (Gir @ q~;€j)1/2) to
determine all the unknown elements in Q, and thus get a complete interval-valued
intuitionistic preference relation Q = (éij)nxn, where

1 o .
Gij = { Z(Qik ©drj), Gy ¢ A~7 ik, g € A (4.17)
dij g € A
or e o 5
G = { (Gik ® dxs) 2 Gij & A, Giny Qg € A (4.18)
Qij> gij € A

Based on Procedure 4.1, Xu and Cai (2009) develop a simple approach to the
ranking and selection of the alternatives:

(Approach 4.1)

Step 1 Utilize the ITFA operator:

~ ~ ~ ~ ]- ~ ~ ~ .
¢i = UFA (Gi1, Giz, -+, Gin) = n(%‘l DG ® DB Gin), i=12,---,n (4.19)
or the ITFG operator:
Gi = 1IFG (Gi1, Gins -+ 1 Gin) = (1 @ Gia @ - ®@ Gin)Y™,  i=1,2,---,n  (4.20)

to aggregate all (jij (j =1,2,--+,n) corresponding to the alternative Y;, and then get
the complex IVIFN ¢, of the alternative Y; over all the other alternatives:

Step 2 Rank all §; (i = 1,2,---,n) by means of the score function (1.10) and
the accuracy function (1.11).

Step 3 Rank all the alternatives Y; (¢ = 1,2,---,n) in accordance with the
values of §; (i =1,2,---,n), and then select the best one(s).
Example 4.7.2 (Xu and Cai, 2009) Consider a decision making problem in-
volving the evaluation of five schools Y; (i = 1,2,3,4,5) of a university. Suppose
that the decision maker compares the school Y; with all other schools Y; (i =
2,3,4,5) under the criterion “research”, and gives the judgments by using IVIFNs:
G12 = ([0.2,0.3],[0.4,0.6]), 13 = ([0.4,0.5],[0.2,0.4]), G14 = ([0.5,0.7],[0.1,0.2]), and
G15 = ([0.4,0.6],[0.1,0.3]), respectively. Thus, based on these judgments and Def-
inition 4.5.1, we can construct the following acceptable incomplete interval-valued
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intuitionistic preference relation Q = (Gij)5xs:

([0.5,0.5],[0.5,0.5]) ([0.2,0.3],[0.4,0.6]) ([0.4,0.5],[0.2,0.4])
([0.4,0.6],10.2,0.3]) ([0.5,0.5],[0.5,0.5]) T
Q=1 ([0.2,0.4],[0.4,0.5]) z ([0.5,0.5], [0.5,0.5))
([0.1,0.2],[0.5,0.7]) x T
([0.1,0.3],[0.4,0.6]) x T
([0.5,0.7],10.1,0.2])  ([0.4,0.6],[0.1,0.3])
([0.5,0.5]?[0.5,0.5]) i
T ([0.5,0.5], 0.5, 0.5])

By Eq.(4.17), we have

o3 = 1(621 @ Gi3) = ; (([0.4,0.6],[0.2,0.3]) & ([0.4,0.5], [0.2,0.4]))

2

— ([0.40,0.55], [0.20, 0.35))

i = (@1 ® @) = ((0.4,06],02,038) & (05,07, 01,02))
— ([0.45,0.65], [0.14,0.24])

Gos = ;@21 ® q15) = ; ((0-4,0.6],0.2,0.3)) & ([0-4,0.6], 0.1, 0.3]))
— ([0.40,0.60], [0.14, 0.30])

G3a = ;(531 ® qua) = ; (([0.2,0.4], [0.4,0.5)) & ([0.5,0.7], [0.1,0.2]))
— ([0.37,0.58], [0.20, 0.32])

s = ;(631 ® Gis) = ; (([0.2,0.4],[0.4,0.5)) @ ([0.4,0.6], [0.1,0.3]))

= ([0.31,0.51],[0.20,0.39))

5%:;@M@%@:;«mLQ%maaﬂmﬂw&ﬂﬂmLﬂﬂﬁ
= ([0.27,0.43], [0.22, 0.46])

Then, based on the above judgments and Definition 4.5.1, we can get the following
complete interval-valued intuitionistic preference relation:

([0.5,0.5],[0.5,0.5])  ([0.2,0.3],]0.4,0.6]) ([0.4,0.5],[0.2,0.4])
, ([0.4,0.6],(0.2,0.3))  ([0.5,0.5],[0.5,0.5])  ([0.40,0.55],[0.20,0.35])
Q=1 ([0.2,0.4],[0.4,0.5]) ([0.20,0.35],0.40,0.55])  ([0.5,0.5],[0.5,0.5])
([0.1,0.2],0.5,0.7])  ([0.14,0.24],[0.45,0.65]) ([0.20,0.32],[0.37,0.58))
([0.1,0.3],0.4,0.6]) ([0.14,0.30], [0.40,0.60]) ([0.20,0.39],[0.31,0.51])

)
)
b
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([0.5,0.7],]0.1,0.2]) ([0.4,0.6],]0.1,0.3])
([0.45,0.65], [0.14,0.24]) ([0.40,0.60], [0.14, 0.30])
([0.37,0.58],0.20,0.32]) ([0.31,0.51],[0.20, 0.39])

([0.5,0.5],(0.5,0.5])  ([0.27,0.43],[0.22, 0.46))
([0.22,0.46],[0.27,0.43])  ([0.5,0.5],[0.5,0.5])

By the ITFA operator (2.5), we can aggregate all ij (j =1,2,---,5) corresponding
to the school Y;, and then get the complex IVIFN ¢; of the school Y; over all the other
schools:

[0.409,0.538], [0.209, 0.373]

[0.431,0.583], [0.208, 0.328]

( )
( )
([0.326,0.474], [0.317,0.444])
= ([0.257,0.348], [0.391,0.571])
= ([0.247,0.396], [0.367,0.524])
Hence, by Eq.(2.10), we have
s(q1) = 0.183, s(g@) =0.239, s(¢3) = 0.020
5(Ga) = —0.178,  s(gs) = —0.124
Consequently,
s(G2) > s(G1) > s(ds) > s(G5) > 5(4a)
by which we get
G2 > q1>Gq3 > 45 > 44
Therefore, the ranking of the schools Y; (i = 1,2,3,4,5) is
Yor-Yi=Ys =Y -Y,

i.e, Y5 is the best school.
If we utilize Eq.(4.18) to extend Q = (§i;)sxs5, then we have

21 ® d13) 2 = (([0.4,0.6],[0.2,0.3]) ® ([0.4,0.5],[0.2,0.4]))

23 = (G2
= ([0.40,0.55], [0.20,0.35])
= (Go1 ® qa)® = ((]0.4,0.6],[0.2,0.3]) ® ([0.5,0.7],[0.1,0.2])) 2
= ([0.45,0.65], [0.15,0.25])
= (Go1 ® @u5)® = ((]0.4,0.6],[0.2,0.3]) ® ([0.4,0.6], [0.1,0.3])) 2
= ([0.40,0.60], [0.15,0.30])
G3a = (@31 ® @) = (([0.2,0.4],[0.4,0.5]) ® ([0.5,0.7],[0.1,0.2])) 2
= ([0.32,0.53],[0.27,0.37])
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(@31 ® d15) 2 = (([0.2,0.4],[0.4,0.5]) ® ([0.4,0.6],[0.1,0.3])) 2
([0.28,0.49], [0.27,0.41])
Gas = (41 ® G15) = (((0.1,0.2],]0.5,0.7]) @ ([0.4,0.6], [0.1,0.3])) >
— ([0.20,0.35], [0.33,0.54])

%5

Then, based on the above judgments and Definition 4.5.1, we can get the following
complete interval-valued intuitionistic preference relation:

([0.5,0.5],[0.5,0.5])  ([0.2,0.3],]0.4,0.6]) ([0.4,0.5],[0.2,0.4])

, ([0.4,0.6],(0.2,0.3])  ([0.5,0.5],[0.5,0.5])  ([0.40,0.55],[0.20,0.35])

Q=1 ([0.2,0.4],(0.4,0.5]) ([0.20,0.35],0.40,0.55])  ([0.5,0.5],]0.5,0.5])

([0.1,0.2],0.5,0.7]) ([0.15,0.25],[0.45,0.65]) ([0.27,0.37],[0.32,0.53])
([0.1,0.3], ] ) N ) ([0.27,0.41],0.28,0.49])

4,0.6]) ([0.15,0.30],[0.40, 0.60]

0.
([0.5,0.7],[0.1,0.2]) ([0.4,0.6],]0.1,0.3])
([0.45,0.65], [0.15,0.25])  ([0.40,0.60], [0.15,0.30])
([0.32,0.53],[0.27,0.37]) ([0.28,0.49],[0.27,0.41])
(0.5,0.5],[0.5,0.5])  ([0.20,0.35],[0.33,0.54])

I Al

([0.33,0.54],[0.20,0.35])  ([0.5,0.5],[0.5,0.5])

By the ITFG operator (2.7), we can aggregate all ¢;; (j = 1,2, -+, 5) corresponding
to the school Y;, and then get the complex IVIFN ¢; of the school Y; over all the other
schools:

0.381,0.501], [0.279,0.417]

[0.428,0.578], [0.254, 0.346]

( )
( )
([0.282,0.449], [0.374,0.470))
([0.210,0.318], [0.425,0.592])
= ([0.232,0.398], [0.364,0.516])
Thus, by Eq.(2.10), we have

s(G1) =0.093, s(G2) = 0.203, s(g3) = —0.056

5(Ga) = —0.244, s(gs) = —0.125
Accordingly,
5(q2) > s(q1) > s(q3) > s(q5) > s(qa)

by which we have Go > &1 > G > G5 > qa. Therefore, we get the ranking of the
schools Y; (i = 1,2,3,4,5) as

Yor-Yi =Y -Y; Y,

i.e, the best school is Y5.
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In what follows, we further consider the acceptable incomplete interval-valued
intuitionistic preference relation with more than n — 1 judgments:

(Procedure 4.2) (Xu and Cai, 2009)

Step 1 For a decision making problem, the decision maker compares the given al-
ternatives and constructs an acceptable incomplete interval-valued intuitionistic pref-
erence relation Q = (Gij )nxn, with more than n — 1 judgments.

Step 2 Based on the known elements in Q, each unknown element Gij can be
estimated indirectly by using a known function, such as:

"= s ( Uik D iy ) - D (Gik D Gy 4.21
Ty <k€1\7ia‘ 2( 7 ) 2nj <kel\7u( j)> ( )

1/nij 1/(2nij)
Gij = ( ® (qik ®(§kj)1/2> = < ® (Gir ®(§kj)> (4.22)

]{)ENij kENij

or

where Nij ={k| Gix, Grj € A}, n; is the number of the elements in Nij. Then we can

get a complete interval-valued intuitionistic preference relation Q = (c'jij)nXm where

z Qij» Qij¢% 4.93
% {(jija Gij € A (4.23)

Obviously, the complete interval-valued intuitionistic preference relation Q con-
tains both the direct interval-valued intuitionistic preference information given by the
decision maker and the indirect interval-valued intuitionistic preference information
derived from the known interval-valued intuitionistic preference information.

Based on Procedure 4.2, Approach 4.1 developed previously can be used to the
ranking and selection of the alternatives (Xu and Cai, 2009).

Consider Example 4.7.2 again. Suppose that the decision maker can provide more
than n — 1 judgments, and constructs the following acceptable incomplete interval-
valued intuitionistic preference relation Q = (Gij)5xs5:

([0.5,0.5],[0.5,0.5]) (]0.2,0.3],0.4,0.6]) ([0.4,0.5],[0.2,0.4])
([0.4,0.6],]0.2,0.3]) ([0.5,0.5],[0.5,0.5]) x
Q=1 ([0.2,0.4],]0.4,0.5)) x ([0.5,0.5],]0.5,0.5])
([0.1,0.2],[0.5,0.7)) x ([0.2,0.3],[0.4,0.6])
([0.1,0.3],[0.4,0.6]) (]0.2,0.3],[0.4,0.6]) x
([0.5,0.7],0.1,0.2])  ([0.4,0.6],]0.1,0.3])
x ([0.4,0.6],]0.2,0.3])
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By Eq.(4.19), we have

3 ;@21 ® q13)
; (([04,0.6],[0.2,0.3]) @ (0.4, 0.5], [0.2,0.4]))

([0.40,0.55], [0.20, 0.35))

le((ffm ® Gia) @ (Go5 B Gsa))

- le (([04,0.6],0.2,0.3) @ (0.5,0.7], [0.1,0.2])
([0.4,0.6], [0.2,0.3]) & ([0.2, 0.5, [0.3, 0.4]))
([0.38, 0.61], [0.19, 0.29])

Gos =

i((@sl © G15) © (34 D Gus))

- i (([0.2,0.4], [0.4,0.5]) @ (0.4, 0.6], [0.1,0.3])
@ ([0.4,0.6],[0.2,0.3]) & ([0.3,0.4],[0.2,0.5]))
— ([0.33,0.51],[0.20,0.39))

qLB5 =

Then, based on the above judgments and Definition 4.5.1, we can get the following
complete interval-valued intuitionistic preference relation Q = (ﬁij)5x5:

([0.5,0.5],[0.5,0.5])  ([0.2,0.3],[0.4,0.6)) ([0.4,0.5],0.2,0.4])
([0.4,0.6],(0.2,0.3])  ([0.5,0.5],[0.5,0.5])  ([0.40,0.55],[0.20,0.35])
Q=1 ([0.2,0.4],(0.4,0.5]) ([0.20,0.35],0.40,0.55])  ([0.5,0.5],]0.5,0.5])

([0.1,0.2],0.5,0.7]) ([0.19,0.29],[0.38,0.61])  ([0.2,0.3],[0.4,0.6])

( [0.4,0.6)) ][ ]

0.1,0.3],[0.4,0.6 ([0.2,0.3],[0.4,0.6])  ([0.20,0.39],[0.33,0.51])

([0.5,0.7],[0.1,0.2]) (0.4,0.6],[0.1,0.3))
(0.38,0.61],[0.19,0.29])  ([0.4,0.6],[0.2,0.3])
(0.4,0.6],[0.2,0.3])  ([0.33,0.51],[0.20,0.39])
([0.5,0.5], [0.5,0.5)) ([0.3,0.4],[0.2,0.5))
([0.2,0.5],0.3,0.4]) ([0.5,0.5],]0.5,0.5])

By the ITFA operator (2.5), we can aggregate all ('jij (j =1,2,---,5) corresponding
to the school Y;, and then get the complex IVIFN ¢; of the school Y; over all the other
schools:

([0.409,0.538], [0.209, 0.373])
([0.418,0.574], [0.238,0.340])
([0.336,0.479], [0.317,0.438))
(l ] [ 1)
(I ] [ 1)

»Qz >Qz
I

0.272,0.346], [0.377,0.577
0.254,0.405], [0.438,0.516
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Thus, by Eq.(2.10), we have
s(q1) = 0.183, s(g2) = 0.207, s(g3) = 0.030
s(qa) = —0.168, s(gs) = —0.147
from which we get
5(q2) > s(q1) > s(q3) > s(q) > s(qa)

Hence,

G2>q1>Gqs >G5 > qu
To conclude, we get the ranking of the schools Y; (i = 1,2,--- ,5) as:

Yor-Yi=Ys =Y -Ys

i.e., the best school is Y5.
If we utilize Eq.(4.20) to extend Q = (i;)sx5, then we have

o1 ® Gi3)/?

= (([0.4,0.6],[0.2,0.3]) ® ([0.4,0.5], [0.2,0.4]))*/?
= ([0.40, 0.55], [0.20, 0.35])

= ((G21 ® G14) ® (G25 ® G5a)) /4

= (([0.4,0.6],[0.2,0.3]) ® ([0.5,0.7], [0.1,0.2])
®([0.4,0.6],[0.2,0.3]) ® ([0.2,0.5],[0.3,0.4]))"/*
[0.36, 0.60], [0.20, 0.30])

G31 ® Gi5) @ (434 ® Gus))
0.2,0.4],[0.4,0.5]) ® ([0.4,0.6],[0.1,0.3])
®([0.4,0.6],[0.2,0.3]) ® ([0.3,0.4], [0.2,0.5]))*/*
= ([0.31,0.49],[0.23,0.41])

(
435 = ((G3 1/4
((
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Then, based on the above judgments and Definition 4.5.1, we can get the following

complete interval-valued intuitionistic preference relation Q = (ijij)5x5:

([0.5,0.5],[0.5,0.5])  ([0.2,0.3],[0.4,0.6)) ([0.4,0.5],[0.2,0.4))
i ([0.4,0.6],(0.2,0.3])  ([0.5,0.5],[0.5,0.5])  ([0.40,0.55],[0.20,0.35])
Q= ([0.2,0.4],[0.4,0.5]) ([0.20,0.35],[0.40,0.55])  ([0.5,0.5],
(0.1,0.2],[0.5,0.7])  ([0.20,0.30],0.36,0.60])  ([0.2,0.3],[0.4,0.6])
(0.1,0.3), [0.4,0.6])  ([0.2,0.3].[0.4,0.6])  (0.23,0.41],[0.31,0.49])
([0.5,0.7],[0.1,0.2]) ([0.4,0.6],]0.1,0.3])
(0.36,0.60],[0.20,0.30])  ([0.4,0.6],[0.2,0.3])
([0.4,0.6],(0.2,0.3])  ([0.31,0.49],[0.23,0.41))
([0.5,0.5],]0.5,0.5]) ([0.3,0.4],]0.2,0.5])
([0.2,0.5],[0.3,0.4]) ([0.5,0.5],]0.5,0.5])
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By the IIFG operator (2.7), we can aggregate all éij (j =1,2,---,5) corresponding
to the school Y;, and then get the complex IVIFN ¢; of the school Y; over all the other
schools:

q 0.381,0.501], [0.279,0.417

7= (] I )
¢ = ([0.410,0.569], [0.272,0.355])
g3 = ([0.301,0.460], [0.356,0.459])
d1 = ([0.227,0.325], [0.401,0.587])
s = ([0.215,0.392], [0.386, 0.524])

Thus, by Eq.(2.10), we have
s(q1) = 0.093, s(g2) = 0.176, s(g3) = —0.027

5(Ga) = —0.218, s(gs) = —0.152
by which, we get
s(q2) > s(q1) > s(gs) > 5(¢s) > 5(4a)
and thus

©>q>0>0 >0
Therefore, we get the ranking of the schools Y; (i = 1,2,3,4,5) as:
Yor-Yi =Y -Y; Y,

i.e, the best school is Y5.

In the above example, we have utilized the approach developed based on the
arithmetic average or the geometric mean respectively to derive the ranking of the
given alternatives in two different cases. The numerical results have shown that the
approach is easy to apply and practical, which is suitable for decision making in fuzzy

or uncertain environments.

4.8 Multi-Attribute Decision Making with Intuitionistic Fuzzy
Preference Information on Alternatives

In order to enable the decision maker to exert his/her initiative and make the de-
cision results more scientific and reasonable, it is necessary for the decision maker
to actively participate in the process of decision making. Xu (2007c) investigates
multi-attribute decision making problems in which the attribute values are given as
IFNs and the preference information on alternatives are provided by the decision
maker. In situations where the preference information on alternatives is expressed in
intuitionistic preference relation and the information on attribute weights is incom-
plete, Xu (2007c¢) defines the concepts of additive consistent intuitionistic preference
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relation, multiplicative consistent intuitionistic preference relation and score matrix
of intuitionistic fuzzy decision matrix. On the basis of the score matrix and intu-
itionistic preference relation, he establishes some simple linear programming models
by using two transformation functions, from which the attribute weights can be de-
rived. He further proposes two approaches to multiple attribute decision making with
intuitionistic fuzzy preference information on alternatives.

4.8.1 Consistent Intuitionistic Preference Relations

In what follows, we first introduce the concept of consistent fuzzy preference relation:
Definition 4.8.1 (Xu, 2004e) Let B = (bij)nxn be a fuzzy preference relation. If
bij = by — b +0.5 (4,5,k =1,2,--- ,n), then B is called an additive consistent fuzzy
preference relation.

Let w = (w1, ws, - ,wn)T be the weight vector of the additive consistent fuzzy

n
preference relationB, where w; € [0,1] (j = 1,2,---,n), and ij = 1. Then the
j=1
element b;; in B can be expressed as:

bij:0.5(wi—wj+l), t,j=12---n

Definition 4.8.2 (Xu, 2004e)  If bixbi;bji = bribjrbi; (4,7,k = 1,2,--- ,n), then
B = (bij)nxn is called a multiplicative consistent fuzzy preference relation.

If w = (w1, wa, -+ ,w,)T is the weight vector of the multiplicative consistent fuzzy
preference relation B, then the element b;; in B can be expressed as:
Wi

bij =
j ,
w; + wj

,j=1,2,---,n
In particular, if w; = w; = 0, then we stipulate that b;; = 0.5.

Mikhailov (2002), and Wang and Xu (2005) investigate the interval-valued multi-
plicative preference relation (Arbel, 1989; Haines, 1998; Islam et al., 1997; Mikhailov,
2003; Saaty and Vargas, 1987; Salo and Hamaldinen, 1995; Xu, 2007j; 2005d; 2004e;
Xu and Da, 2003c; Yager and Xu, 2006), and define the concept of consistent interval-
valued multiplicative preference relation.

Based on Definitions 4.8.1 and 4.8.2, we now introduce two intuitionistic preference
relations called additive consistent intuitionistic preference relation and multiplicative
consistent intuitionistic preference relation (Xu, 2007c):

Definition 4.8.3 (Xu, 2007c) Let @ = (¢ij)nxn be an intuitionistic preference
relation, where ¢;; = (i, vij) (4,5 = 1,2,---,n). If there exists a vector w =
(w1, ws, ,wy)T, such that

u¢j§0.5(w¢—wj+l)<1—yij, i,j:l,Q,---,n (424)
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n
where w; € [0,1], j = 1,2,---,n, and ij = 1, then @ is called an additive
j=1
consistent intuitionistic preference relation.
By Eq.(4.4), it can be seen that Eq.(4.24) is equivalent to:

pij < 05(wi —wj +1) <1 -y, i=1,2,---,n—-1j=i+1,---,n (4.25)

Definition 4.8.4 (Xu, 2007c) If there exists a vector w = (w1, ws, -+ ,w,)T, such
that
Wi ..
i’g <]-_ K ) :1727"'7 4.26
Hij wi + wj Vig, 4] n ( )

n
where w; € [0,1] (j = 1,2,---,n) and ij = 1, then @ = (¢ij)nxn is called
j=1
a multiplicative consistent intuitionistic preference relation, where ¢;; = (uij, Vij),
iaj = ]-327"' , 1.
By Eq.(4.4), we know that Eq.(4.26) is equivalent to:

pij < Sl-wy, 1=1,2,---n-1j=i+1,---,n (4.27)

ie.,
pij(wi +wj) Sw; < (1 —v)(ws +wj), i=1,2,--- ,n—1,j=i+1,---,n (428)
4.8.2 Linear Programming Models with Intuitionistic Fuzzy Information

For a multi-attribute decision making problem, let Y, G, R, w and A be defined as
Section 1.3, and w € A. According to Xu (2007b), we know that the interval form of
the element r;; = (145, v45) in the intuitionistic fuzzy decision matrix is equivalent to
rij = [tij, 1 —viy] (6 =1,2,--- ,n; 7 =1,2,---,m). To exert his/her initiative suffi-
ciently, a decision maker can compare each pair of the alternatives Y; (i = 1,2,---  n),
and construct an intuitionistic preference relation Q = (¢ij )nxn, where gi; = (ti5, fij),
0< tij + fij < 1, tji = fij, fji = tij, tii = f“ =05,1,7=1,2,---,n, ti]‘ indicates
the degree that the decision maker prefers the alternative Y; to the alternative Y,
and f;; indicates the degree that the decision maker prefers the alternative Y to the
alternative Y;, 1 — t;; — fi; is interpreted as the uncertainty degree to which Y; is
preferred to Y.

By Definition 1.3.7, the score matrix of the intuitionistic fuzzy decision matrix
D can be denoted as S = (s(7i;))nxm, where s(r;) € [-1,1], ¢ = 1,2,--- ,n; j =
1,2,---,m. We use the following formula to normalize the score matrix S = (s(7i;))nxm
into S = (5(ri5))nxm:
s(rij) — min{s(ri;)}

 =1,2,--- 7 =1.2. ... 429
maX{S(TZ])} - min{s(rij)}7 t ) 4y y 150 ) 4y ,m ( )

5(rij) =
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where 5(r;;) € [0,1],i=1,2,--- ,n; j=1,2,-
According to the normalized score matrix S’ = ( 5(7ij))nxm, the overall score of
each alternative can be denoted as:

)= ws(ry), i=12,-,n (4.30)

In order to derive the attribute weights, in what follows, we establish the deci-
sion models from the viewpoints of the additive transitivity and the multiplicative
transitivity:

1. Linear Programming Models Based on Additive Transitivity

To make the decision information uniform, we utilize the linear transformation func-
tion and the overall scores of all the alternatives Y; (i = 1,2,--- ,n) to construct the
additive consistent fuzzy preference relation Q = (gij)nxn, Where

(jij = 05(§(T1) - 5(7"]‘) + 1)a Z7.] = 172a e, N

(1) If the additive consistent fuzzy preference relation @ is the same as the decision
maker’s intuitionistic preference relation @, then the following inequality holds:

<05(5(ry) —8(r;)+1)<1—fi5, i=1,2,---,n—1;j=i+1,---,n

i.e.,
<0.5 (Zwk 5(rin —s(rjk))+1> <1—fiy, i=1,2,-- ,n—1; j=i+1l,---,n
(4.31)
In general, there exist at least two weight vectors w = (wy,ws, - -+ ,wy,) T satisfying

the condition (4.31), with each weight wy belonging to an interval. Therefore, based
on the inequality (4.31) and the known weight information A, Xu (2007¢) establishes
the following linear programming model:

(M-4.1) w, = minwy

s. t. 05(24% 5(Tik —s(rjk))+1> >ty, i=1,2,-- ,n—1; j=i+1,---,n
05<ZWk 5(rik —S(Tjk))+1><1—fij, i=1,2,---,n—1; j=i+1,---,n

w=(w1,ws, - ,wm)T €4, wr €10,1], k=1 Z =

and



222 Chapter 4  Decision Making Models and Approaches Based on Intuitionistic...

(M-4.2)  w;" = maxwy,

st05<
k
o.5<

k

w:(w17w27"' uw’m)T GAu Wk;e [Oal]a k:1727 , M, Zwk:

Ms

1

NE

1

Solving the models (M-4.1) and (M-4.2), we can get the set of the weight vectors of
attributes:

le{w:(wl,wg,--- cwm) | wi € [wp, wy], wi€[0,1], k=1,2,---,m, Zwkzl}

(4.32)

(2) If there is a difference between the additive consistent fuzzy preference relation

@ and the decision maker’s intuitionistic preference relation @, i.e., the inequality

(4.31) does not hold, then we cannot use the models (M-4.1) and (M-4.2) to derive

the weight vectors. To resolve this issue, Xu (2007c) extends the models (M-4.1)

and (M-4.2) by introducing the deviation variables €;; and 5 - to relax the inequality
(4.31) and get

<0.5 (Zwk le —S(Tjk))+1> ]-_fZ] +5137
Z:1;27"'7n_]-;j:i—’_lv"'vn (433)

where both £;; and s;rj are non-negative real numbers. In particular, if both ¢;; and

5; are zero, then the inequality (4.33) reduces to the inequality (4.31).

,

Clearly, the smaller the values of the deviation variables ¢;; and sj;, the closer the

additive consistent fuzzy preference relation @ and the decmon maker’s intuitionistic
preference relation Q. Therefore, we can establish the following optimization model

(Xu, 2007¢):
n—1 n
(M-4.3)  ¢f=min Y > (g +e5)

i=1 j=i+1
S. t. 05(
k

o.5<

Ms

k(s(rik)—s(rjk))—&-l) €4 oo>ty, =120 m—1; j=it+l,-n
1

NE

Wi (s(rik)—s(rjk))—&—l) — 5;; <1—fij, i=1,2,--n—1; j=i+l---n

o~
I
-
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w:(w17w27"'7wm)T€A7 Wk€[07].]7 k:1327"'7m7 Zwk:

Cij> Cij

WV

0, :=12,---,n—-1;, j=i+1,---.,n

’L’ =

Solving the model, we can get the optimal deviation variables €ij and 513’

1,2,---n—1;5=¢+1,---,n

From the model (M-4.3), we can derive the following theorem:

Theorem 4.8.1 (Xu, 2007c) The additive consistent fuzzy preference relation Q
is the same as the intuitionistic preference relation @ if and only if ¢7 = 0.

If o7 # 0, then based on the optimal deviation variables (Xu, 2007c) ¢;; and ejj
(i=1,2,---,n—1; j=14i+1,--- ,n), and similar to the models (M-4.1) and (M-4.2),
we can further establish the followmg two linear programming models:

(M-4.4) w, = min wy,

bt05<ZWk 5(rik) rjk))+1>+éi_j>tij7 i=1,2,---,n—1; j=i+l,---,n
05<ZWk 5(rik) Tjk))"'l) Zj\l fij, i=1,2,-- n—1; j=i+l,---,n

w=(wi,we, - ,wm)t €4, wp€0,1], k=1,2,---,m, Zwkzl
(M-4.5)  w; = max wy,

s. t. 05<Zwk T’Lk —=S Tjk))+1>+€w>tl]a Z:1a27 77’?,—1, .]:Z+1a ) TV
05(2&% TZ;C Tjk))+l> ZJ\l f”, i=1,2,---,n—1; j=i+1,---,n

m
w=(wi,wa, - wn) €A, wpel0,1], k=1,2,---,m, Zwkzl

Solving the models (M-4.4) and (M-4.5), we can get the set of the weight vectors of
attributes:

ng{w:(wl,w2,~- ywm) T wk € lwp, W], we€[0,1], k=1,2,---,m, Zwkzl}
k=1
(4.34)

2. Linear Programming Models Based on Multiplicative Transitivity

Similar to the subsection 4.8.2’1, we can utilize the overall scores of all the alternatives
Y; (i=1,2,--- ,n) to construct the multiplicative consistent fuzzy preference relation
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Q = (qij)nxna where
5(ri)
§(ri) +5(r;)’

(1) If the multiplicative consistent fuzzy preference relation Q is the same as the

Gij = i,j=1,2,---,n (4.35)

decision maker’s intuitionistic preference relation ), then the following inequality
holds:

5(ri)
s(r) +3(ry)
which is equivalent to the following form:
tij (8(ri) +5(r;)) < 5(ri) < (1= fig) (5(ri) +5(r5))
i=1,2,---,n—1;7=i+1,---,n (4.37)

tij\ l_fij7 7':1725377“_15.]:7'4_17)” (436)

fig (Zwk( (rik) +5(rj5) ) Z“ks rie) <(1 = fij) (Zwk 5(rak +S(’l"jk))>
k=1

1=1,2,--- n—-1j3=i+1,---,n

(4.38)
Generally, the attribute weights wy (K = 1,2,--- ,m) satisfying the condition
(4.38) should belong to an interval. Thus, based on the inequality (4.38) and the
known weight information A, Xu (2007c¢) establishes the following linear programming
model:
(M-4.6) w, = min wy,

. t. Zwk — pij)8(ri) = 8(rjx)) 20, i=1,2,--- ,n—1;j=i+1,--,n
ZWk(fwg(Tzk) (l_f’L]) (T]k)) <0? Z:172a 7n_17.]:Z+15 ,

w=(wi,wa, -, wm)l €A, w;€[0,1], k=1,2,---,m, Zwkzl
k=1

and
(M-4.7)  w;" = max wy,

5. t. Zwk (1= tij)8(rix) = 5(rji)) 20, i=1,2---,n—1;j=i+1,---,n

Zwk(fijg(m (1— fi1)5(rx)) <O, i=1,2,---,n—1; j=i+1,---,n
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w=(wi,wa -, wm)T €A, wp€0,1], k=1,2,--- ,m, Zwkzl

Solving the models (M-4.6) and (M-4.7), we can get the set of the weight vector
of attributes:

ng{w:(wl,w2,~- cwm) | wr € Jwp, wy], wi€[0,1], k=1,2,--- ,m, Zwkzl}

(4.39)

(2) If there is a difference between the multiplicative consistent fuzzy preference
relation Q and the decision maker’s intuitionistic preference relation @, i.e., the in-
equality (4.38) does not hold, then we cannot use the models (M-4.6) and (M-4.7)
to derive the attribute weights. To resolve this issue, Xu (2007c) extends these two
models by introducing the deviation variables €;; and s - to relax the inequality (4.38):

w(Zwk Tzk +S(Tjk))> _€;j gzwkg(rzk 1 fzy <Zwk Tzk +S(Tjk))>+5i+j

k=1
1=1,2,---n—-173=1+1---.n

(4.40)
where both £;; and s;rj are non-negative real numbers. In particular, if both ¢;; and
+

g;; are zero, then the inequality (4.40) reduces to the inequality (4.38).

Note again that the smaller the values of the deviation variables €;; and 6137 the

closer the multiplicative consistent fuzzy preference relation @ to the decision maker’s
intuitionistic preference relation ). Consequently, we can establish the following
optimization model (Xu, 2007c):

(M-4.8) @5 =min Y Y (e +¢5)

i=1 j=i+1
s. t. Zwk ((I—ti)s(rie) —8(rjk))+€;; 20, i=1,2,--- ,n—1; j=i+1,---,n
Zwk (figs(ri) — (1= fij)s(rji)) =55 <0, i=1,2,--- ,n—1; j=i+1,---,n

w=(wi,wa, -, wm) T €A, wpe0,1], k=1,2,--- ,m, Zwkzl
€ €520, i=12-- n—1;j=i+1,---,n

Solving the model, we can get the optimal deviation variables €;; and 6137 i =
1,2,---n—1;,5=i+1,--- |n
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By the model (M-4.8), we can establish the following theorem:
Theorem 4.8.2 (Xu, 2007c) The multiplicative consistent fuzzy preference relation
Q is the same as the intuitionistic preference relation Q if and only if <p§ =0.

If % # 0, then based on the optimal deviation variables g;; and 52 =12, -

1; j=14+1,---,n, and similar to the models (M-4.6) and (M-4.7), we can further
establish the following two linear programming models (Xu, 2007c):
(M-4.9) w, = min wy

s. t. Zwk (1—tij)8(rie) —8(rjn))+65;2 0, i=1,2,-- ,n—1; j=i+1l,-- ,n
Zwk(fijg(rik — (1= fij)8(rjx))—€5<0, i=1,2,-- ,n—1; j=i+1,---,n

w:(w17w27"' :wm)T GAu Wk € [031]1 k:1727 , M, Zwk:

and
(M-4.10)  w;” = max wy,

s. t. Zwk’ 1- tl] rlk) (Tjk)) 1]20 22172, an_]-; j:Z+17 ,
Zwk(fijg(rik —(1=fij)s(rjn)—€5<0, i=1,2,--- ,n—1; j=i+1,---,n

w=(wi,wa, -, wm) T €A, wp€0,1], k=1,2,--- ,m, Zwk—l

Solving the models (M-4.9) and (M-4.10), we can get the set of the weight vector of
attributes:

T4={w:(w1,w2,--- s wm) Y wi € [wE, W], wr€0,1], k=1,2,--- ,m, Zwkzl}
(4.41)

4.8.3 Intuitionistic Fuzzy Decision Making Based on Linear Program-
ming Models

In Subsection 4.8.2°2, we have utilized the known objective decision information and
the decision maker’s subjective preferences to establish the corresponding linear pro-
gramming models so as to derive the weight intervals of attributes. Without loss of

generality, we can uniformly denote them as:

T:{w:(wlvw27"' 7wm)T|w]€€[wII;ﬂwlg]a Wk€[07 1]7 k:172a ) M, Zwk}:]—}
k=1
(4.42)



4.8  Multi-Attribute Decision Making with Intuitionistic Fuzzy Preference... 227

In this section, we utilize, based on the intuitionistic fuzzy decision matrix and
the derived weight intervals of attributes, the decision models above to derive the
weight vector of attributes, and then determine the best alternative, which involves
the following steps (Xu, 2007c):

Step 1 Based on the intuitionistic fuzzy decision matrix and the weight intervals
of attributes derived in Subsection 4.8.2’1, we establish the following linear program-
ming models:

n m

©3 = max ZZ (1 —vij — pij)w;
i=1 j=1

st w=(wi,wo - wm) €T

Solving the above model, we can determine the optimal weight vector of attributes
* )T
)

w*

= (W}, w3, ,w
Step 2 Calculate the overall attribute values of all the alternatives Y; (i =

1,2,--+,n):

zi(W*) = [z (W), 2 (w¥)], i=1,2,--,n
where
zi (W*) = Zw;uij, z (W*) = Zw;(l —vi), 1=1,2,---,n (4.43)
=1 j=1

Step 3 Utilize the possibility degree formula for the comparison between interval
numbers (Xu and Da, 2003a; 2003c¢):

(24" > 25 (w") =max { 1 o) ) 0).0
plzi\w ) =2 Z5(w =Imax max Z;*‘(w*)_z;(w*)+z;'(w*)—z_(w*)’ )
(4.44)
to get the possibility degrees of comparing each pair of the overall attribute values

zi(w*) (1 =1,2,--- ) n):

<L

bU:p(Zl(w*)>ZJ(w*))7 27.721727 ,
and then establish the possibility degree matrix B = (b;j)nxn, Where
bij 20, by +bj;=1, b;=05 4,j=12---,n

Thus, the possibility degree matrix B = (bij)nxn is a fuzzy preference relation.
Step 4 Utilize the formula for the priority of fuzzy preference relation (Xu,
2001a):

1 - n
P = bij -1, +=1,2,---, 4.4
w n(n—1) J; ]—&—2 i n (4.45)
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to derive the priority vector w = (w1, wa, -+ ,w,)" of P.

Step 5 Rank and select the alternatives Y; (i = 1,2,---,n) according to the
elements of w.
Example 4.8.1 (Xu, 2007c) A family has a plan to buy a refrigerator. There are
five kinds of brand refrigerators Y; (: = 1,2,---,5) to be chosen. The evaluation
indices are: O G; : Safety; @ G2 : Refrigeration performance; @ G3 : Structure;
@ Gy : Reliability; ® G5 : Economics; and ® Gg : Appearance. By the statistical
analysis, the characteristics of the alternatives Y; (i = 1,2,---,5) with respect to
the attribute G; (j = 1,2,---,6) are expressed as the IFNs r;; = (pi;,vi5) (0 =
1,2,---,5; 7 =1,2,---,6). All these IFNs are contained in the intuitionistic fuzzy
decision matrix R, as listed in Table 4.1:

Table 4.1 Intuitionistic fuzzy decision matrix R (Xu, 2007c)

Gy Ga Gs Gy Gs Ge
vi (0.3, 0.5) (0.6, 0.3) (0.6, 0.4) (0.8, 0.2) (0.4, 0.5) (0.5, 0.3)
Yo (0.7, 0.3) (0.5, 0.3) (0.7, 0.2) (0.7, 0.1) (0.5, 0.4) (0.4, 0.1)
Y3 (0.4, 0.3) (0.7, 0.2) (0.5, 0.4) (0.6, 0.3) (0.4, 0.3) (0.3, 0.2)
Yy (0.6, 0.2) (0.5, 0.4) (0.7, 0.2) (0.3, 0.2) (0.5, 0.4) (0.7, 0.3)
Ys (0.5, 0.3 (0.3, 0.5) (0.6, 0.3) (0.6, 0.2) (0.6, 0.2) (0.5, 0.2)

The known weight information of attributes is as follows:

A= {wl < 0.3 s 0.2 < w3 < 057 w2 < 0.27 W3 — w2 } W5 — W4, 0.1 < Wws < 0.47
wg <wi, wg<01, ws>02}

and the evaluation information on comparing each pair of five kinds of brand refrig-

erators Y; (i =1,2,---,5) is given in the intuitionistic preference relation @Q:
(0.5,0.5) (0.2,0.7) (0.4,0.6) (0.2,0.3) (0.3,0.4)
(0.7,0.2) (0.5,0.5) (0.6,0.2) (0.5,0.4) (0.6,0.4)
Q=1 (06,04) (0.2,06) (0.5,0.5) (0.3,0.6) (0.4,0.6)
(0.3,0.2) (0.4,0.5) (0.6,0.3) (0.5,0.5) (0.6,0.3)
(0.4,0.3) (0.4,0.6) (0.6,0.4) (0.3,0.6) (0.5,0.5)
Since all the evaluation indices G; (j =1,2,---,5) are of benefit type, we do not
need to normalize the evaluation values r;; (¢ =1,2,---,5;j=1,2,---,6) .

We first calculate the score matrix S of the intuitionistic fuzzy decision matrix R,
as shown in Table 4.2:

Table 4.2 Score matrix S (Xu, 2007c)

G1 G2 G3 Gy Gs Ge
Y1 —-0.2 0.3 0.2 0.6 —-0.1 0.2
Yo 0.4 0.2 0.5 0.6 0.1 0.3
Y3 0.1 0.5 0.1 0.3 0.1 0.1
Ya 0.4 0.1 0.5 0.1 0.1 0.4

Ys 0.2 —-0.2 0.3 0.4 0.4 0.3
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By Eq.(4.29), we normalize the score matrix S into S (Table 4.3):

Table 4.3 Normalized score matrix S (Xu, 2007c)

Gl Gz GS G4 G5 GG
Y1 0 0.714 0.25 1 0 0.333
Ya 1 0.571 1 1 0.4 0.667
Y3 0.5 1 0 0.4 0.4 0
Ya 1 0.429 1 0 0.4 1
Ys 0.667 0 0.5 0.6 1 0.667

By the model (M-4.3), we get ¢ = 0.0907, and the optimal deviation variables:
€ =¢E=0, é,=0, &5=00739, é,=¢,=0
€15 = 5.?_5 =0, éy3= 5.3_3 =0, &= 5.3_4 =0, &5 =
€15 =0.0168, ¢35, =65, =0, éy=¢64=0, é5=¢5:=0
Since @7 # 0, then based on the above optimal deviation variables €ij and é:rj,
i=1,2,---,4; j=1i+1,---,5, we further solve the models (M-4.4) and (M-4.5), and
get
Wl =0.1197, w! =0.2440, wy =0.1605, wy =0.1998
wy =0.2000, wy =0.2788, wi =0.0614, wi = 0.0899
wE =0.1062, wy =0.1474, wf =0.2000, wy = 0.2472

i.e.,

wy € [0.1197, 0.2440], w, € [0.1605, 0.1998]
ws € [0.2000, 0.2788], wy € [0.0614, 0.0899)
ws € [0.1062, 0.1474]), wg € [0.2000, 0.2472]

Based on the intuitionistic fuzzy decision matrix R and the weight intervals of
attributes above, we solve the model (M-4.11), and get the optimal weight vector of
attributes:

w* = (0.1962, 0.1605, 0.2000, 0.0899, 0.1062, 0.2472)*

Then according to Eq.(4.43), we calculate the overall evaluation values:
z1(w*) =[0.5132, 0.6285], 22(w*) = [0.5725, 0.7768]

z3(w*) = [0.4614, 0.7208], z4(w*) = [0.5911, 0.7219]
z5(w*) = [0.5075, 0.7122]

After that, we utilize Eq.(4.44) to get the possibility degrees of comparing each
pair of the overall attribute values z;(w*) (i = 1,2,---,5), and then establish the
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possibility degree matrix:

0.5000 0.1752 0.4460 0.1520 0.3781
0.8248 0.5000 0.6802 0.5422 0.6584
B = 0.5540 0.3198 0.5000 0.3324 0.4596
0.8480 0.4458 0.6676 0.5000 0.6390
0.6219 0.3416 0.5404 0.3610 0.5000

By using Eq.(4.45), we derive the priority vector of the fuzzy preference relation
B:
w = (0.1576, 0.2359, 0.1833, 0.2300, 0.1932)"

by which we rank the five kinds of brand refrigerators Y; (i =1,2,---,5):
Yor-Yi-Ys>-Y3>-Y;

Therefore, the best brand refrigerator is Y5.
If we utilize the model (M-4.8) to derive the weights of attributes, then we get
s = 3.117, and the optimal deviation variables:

€, = 0481, £&f,=0.033, £ =0.010, &3 =0.099
g, =0579, &,=0, é5=0242, £L=0
€53 =0.016, &5, =0, &,,=0333, £5,=0
éy5 = 0.196, &35 =0.010, £5, =0.495 ¢£4,=0
€35 = 0313, &5, =0, £,5,=0220, =0
Considering @3 # 0, we further solve the models (M-4.9) and (M-4.10), and get
wy €[0.0994, 0.1013], wy € [0.1996, 0.2000]
ws €[0.2978, 0.3003], wy € [0.0993, 0.1000]
ws € [0.1000, 0.1008], we € [0.2000, 0.2018]
Solving the model (M-4.11), we get the optimal weight vector of attributes:
w* = (0.1013, 0.1996, 0.2978, 0.1000, 0.0995, 0.2018)T
Then by Eq.(4.43), we calculate the overall attribute values:
21 (w*) = [0.5495, 0.6401], 22(w*) = [0.5796, 0.7802]

z3(w*) = [0.4895, 0.7104],  24(w*) = [0.5901, 0.7200]
25(w*) = [0.5098, 0.7002]

Using Eq.(4.44), we get the possibility degree matrix:
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0.5000 0.2078 0.4835 0.2268 0.4637
0.7922 0.5000 0.6897 0.5752 0.6916
B = 0.5165 0.3103 0.5000 0.3429 0.4877
0.7732  0.4248 0.6571 0.5000 0.6563
0.5363 0.3084 0.5123 0.3437 0.5000

Then we utilize Eq.(4.45) to derive the priority vector of the fuzzy preference relation
B:
w = (0.1691, 0.2374, 0.1829, 0.2256, 0.1850)T

by which we rank the five kinds of brand refrigerators ¥; (i = 1,2,---,5):
Yor-Yi-Ys>-Y3>-Y;

Hence, the best brand refrigerator is Y.

From the above analysis, it can be seen that the calculation process by using the
two approaches introduced in this section are very similar, and the ranking results
derived by these two approaches are also the same.

4.9 Multi-Attribute Decision Making Based on Various Intu-
itionistic Preference Structures

Dai et al (2007) investigate intuitionistic fuzzy multi-attribute decision making prob-
lems, where the attribute values are given as real numbers and the decision makers
have preference information on attributes. The preference information is expressed
in the form of intuitionistic preference relation or incomplete intuitionistic preference
relation. They establish two models for multi-attribute decision making based on
intuitionistic preference relation and incomplete intuitionistic preference relation re-
spectively, and a model for multi-attribute group decision making based on intuition-
istic preference relations and incomplete intuitionistic preference relations. Further-
more, they develop an approach to multi-attribute decision making based on various
intuitionistic preference structures. The method does not need to unify different pref-
erence structures and can derive the optimal weight vector from the established model
directly, which can avoid losing or distorting the original preference information in
the process of unifying the structures. They also apply the developed approach to the

evaluation of the competence of enterprise technology innovation in Jiangsu province.

4.9.1 Multi-Attribute Decision Making Models Based on Intuitionistic
Preference Relations

For a multi-attribute decision making problem, let Y, G, R and w be as defined in
Subsection 4.8.2. Let D = (dij)nxm be the decision matrix , where d;; is the attribute

value, which is expressed in real number, given by the decision maker for the alterna-
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tive Y; with respect to the attribute G;. If all the attributes G; (j =1,2,--- ,m) are
of the same type, then the attribute values do not need normalization. When there
are benefit and cost attributes, we may transform the attribute values of cost type
into the attribute values of benefit type. Let I; and I be the subscript sets of the
benefit attributes and cost attributes respectively. In order to eliminate the impact of
the different physical dimension on the decision results, we can normalize the decision
matrix D by the following formula:

- d
di= "9 jern, i=1,2---, 4.4
7 max(d;j) Jeh " (4.46)
B mln(d”)
dij: ,Ld 9 j6127 'L.:].72,"',TL (447)
ij

and get the normalized decision matrix D = (c?ij)nxm. Based on the decision in-
formation in D, the overall attribute values of all the alternatives can be defined as
follows:

Note that the greater the value z;(w), the better the alternative Y;.

Furthermore, in order to exert the decision maker’s initiative, the decision maker
is asked to compare each pair of the attributes G; (j = 1,2,--- ,m), and construct the
intuitionistic preference relation @ = (gij)mxm, where g;; = (ij, vij), 0< pij+vi; < 1,
Wi = Vij, Vis = Mij, i = Vi = 0.5, 4,7 = 1,2,--- ,m.

Definition 4.8.4 gives the concept of multiplicative consistent intuitionistic prefer-
ence relation, i.e., when the inequality (4.26) holds, @ is a multiplicative consistent
intuitionistic preference relation. However, in general, the inequality (4.26) does not
hold, i.e., @ is not generally a multiplicative consistent intuitionistic preference rela-
tion. In this case, we need to extend the inequality (4.26) by introducing the deviation
variables £;; and s;rj to relax the inequality (4.26):

<wi < (1 —vj)(wi +wj)+e, 4,j=1,2,---,m (4.49)

ﬂij(Wi+Wj)—57 7

(]
where both ¢;; and 5;-; are non-negative real numbers. If both ¢;; and s;rj are zero,
then the inequality (4.49) reduces to the inequality (4.26).

Note that the smaller the values of the deviation variables €;; and 5;, the higher
the consistency degree of the decision maker’s intuitionistic preference relation @. In
order to determine the weight vector of attributes, we establish, by Egs.(4.48) and
(4.49), the following multi-objective optimization model (Dai et al. 2007):

(M-4.11) max (z1(w), z2(w), ", zm(w))

m
min ) (e +<)
i,j=1
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py

i) 2732172u"'7m

s. t. ,uij(wi +wj) _5;]' Cw; < (1- I/ij)(wi +wj) +e
wi€0,1], j=1,2-,m > wj=1
j=1

81'_]" 552()’ iaj:1a27"'am
By the linear equal-weighted summation method (Igizio, 1976), the model (M-
4.11) can be transformed into the following single-objective programming model (Dai

et al. 2007):

(M-4.12) max | Y &= Y (e +¢5)
=1

ij=1
sitoziw) =g, i=1,2,---,n

pij(wi +wj) — e Swi < (L—vy)(wi +wj) +e5, 4,5 =1,2,---,m

wi€0,1], j=1,2-,m, > wi=1
j=1

81'_]" 552()’ iaj:1a27"'am
Solving the model, we can get the optimal weight vector w = (w1, wa, -+ ,wy,)T, and
the deviation variables ¢;; and 557 i,7=1,2,--- ,m. Then by Eq.(4.48), we can get
the overall attribute values z;(w) (i = 1,2,--- ,n) , by which the alternatives can be

ranked and selected.

4.9.2 Multi-Attribute Decision Making Models Based on Incomplete In-
tuitionistic Preference Relations

Based on Definition 4.8.3, in what follows, we introduce the concept of consistent
incomplete intuitionistic preference relation:

Definition 4.9.1 (Dai et al., 2007) Let @ = (gi;j )nxn be an incomplete intuitionistic
preference relation, ¢;; = (uij,v5) € A, and let O = {(4,7) | ¢ij = (1ij, vij) € A}. If
there exists a vector w = (w1, wa, -+ ,wm) " such that

pij(wi +wj) Swi < (1 —vig)(wi +wy), (4,7) €0 (4.50)

m
where w; € [0,1], 7 =1,2,--- ,m, and ij =1, then Q is called a multiplicative
j=1
consistent incomplete intuitionistic preference relation.
If Q is not a multiplicative consistent incomplete intuitionistic preference relation,
then the inequality (4.50) does not hold. Consequently, we extend the inequality
(4.50) to the following form:

prij(wi +wj) — e Swi < (1 —wy)(wi +wj) +e,  (1,5) €A (4.51)
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where both ¢;; and ejj are deviation variables, taking non-negative real values.

In order to determine the weight vector of attributes, we can establish, by Eq.(4.51)
and similar to the model (M-4.11), the following single-objective programming model
(Dai et al. 2007):

(M-4.13) max | Y ei— Y. (e +eh)
=1

(i,5)€0

s.t.ozi(w) =2 e, i=1,2,---,n

/Lij(wi—i—wj)—si_j <wi<(l—uij)(wi+wj)+€;;, (i,4) € O

m
wj €0,1], j=1,2,---,m, ij =1
j=1
€7 5Z-+j >0, (i,j) €0
Solving the model, we can get the optimal weight vector w = (w1,wa, -+ ,wm)7,
and the deviation variables £;; and 5;-;, (i,j) € O. Then by Eq.(4.48), we can get
the overall attribute values z;(w) (i = 1,2,---,n), by which the alternatives can be
ranked and selected.

4.9.3 Multi-Attribute Decision Making Models Based on Different Types
of Intuitionistic Preference Relations

In the above, we have discussed situations where a single decision maker provides
his/her preferences over the attributes by means of intuitionistic preference relation or
incomplete intuitionistic preference relation, and established the corresponding multi-
attribute decision models. In some large or important decision making problems, it
is necessary for multiple decision makers to participate in the process of decision
making. Since the decision makers may come from different professional fields and
usually have different knowledge backgrounds, they may have some differences in the
understanding the assessed objects. Thus, in the process of decision making, the
decision makers may use different preference structures to express their preferences
over the objects.

Based on the results presented in Subsections 4.9.1 and 4.9.2, we now consider
multi-attribute group decision making problems in which the decision makers express
their preferences over the attributes by means of intuitionistic preference relations
and incomplete intuitionistic preference relations (Dai et al., 2007):

Suppose that there are [ decision makers Fy (k = 1,2,--- 1), who are asked to
compare each pair of m attributes G; (j = 1,2,--- ,m), and then construct intu-

itionistic preference relations. Let the decision makers Ey, (k =1,2,---,11) construct
(k)

ij

the intuitionistic preference relations Qj = (qg?))mxm (k=1,2,--- 1), where q
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(/,LEJ), Z(J )) 1,7 =1,2,--- ,m, and the decision makers Fy (k =1;+1,--- 1) construct
the incomplete intuitionistic preference relations Qy = (qgv))mXm (k=UL1+1,---,1),

Z(k) (,ugj , Z(]k)) € Ay, Ay is the set of all the known elements in Q.

where ¢
In order to determine the weight vector of attributes, we establish, based on the
models (M-4.12) and (M-4.13), the following single-objective programming model (Dai

et al. 2007):

(M-4.14) max ZE’ Z Z k) +e Z Z (k) + +(k))

k=11,j=1 bt (P eAs
s.t.ozi(w) =g, i=1,2,---,n
p o+ ) — 5 << (1 ) i)+,
i,j=1,2,---,m; k=1,2,---.1;
(k) )

iy @it wp) = e Swi < (1= )(wi+wy) + 50,

(i,§) € Ay, k:l1—|—17~-~,l

€01, j=1,2,-,m Y wj=1
j=1

P 0 =12 m k=120
e e =0, (g) € Ap, k=hi+1,--- 1
where
Ak:{(lj)|q(k) (lugj?z])EA}ﬂ k:ll+1u7l
Solving the model, we can get the optimal weight vector w = (w1, wa, -+ ,wm)T,
and the deviation Varlab1e55 (k ), 5+(k) (,j=1,2,--- ,n; k=1,2,--- 1), z—:i_j(k)7 €; +(k)
((1,7) € A, k=t1+1,---, ) Then by Eq.(4.48), we can get the overall attrlbute

values z;(w) (1 = 1,2,--- m), by which the alternatives Y; (¢ = 1,2,--- ,n) can be
ranked and selected.

Example 4.9.1 (Dai et al., 2007) Technological innovation affects not only an en-
terprise’s survival and development, but also impacts a region as well as the country’s
economic development. Let us now consider a problem of evaluating the technological
innovation ability of six large enterprises Y; (¢ = 1,2,---,6) in Jiangsu province by
means of the following five evaluation indices:

(1) Strategic management innovation (G ): Primarily refers to the formulation and
implementation of an enterprise’s technological innovation strategy; the completeness
degree of an enterprise’s monitoring and evaluation system, etc.

(2) Innovation incentive management (G3): Mainly refers to the ratio of the aver-
age revenue of R & D personnel to the average income of all employees in an enterprise;
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the degree of an enterprise’s distribution system stimulating innovation, etc.

(3) Innovation system management (G3): Mainly refers to the number of coopera-
tion organizations of production, learning, research or other forms that an enterprise
participates in; the number of the certified laboratories; and the number of bases for
post-doctoral researches, etc.

(4) Production strength (G4): Primarily refers to the number of computers owned
by 100 people in an enterprise; the original value of the per capita (production and R
& D) equipment; the advanced degree of the key production technologies of the main
products, etc.

(5) Marketing strength (G5): Mainly refers to the role of market research sectors;
the proportion of marketing costs account to the total sales revenue, etc.

The decision matrix after assessing the six large enterprises Y; (i = 1,2,---,6)
with respect to the above indices G; (j = 1,2,---,5) by using centesimal grade is
shown in Table 4.4. Two decision makers E}, (k = 1,2) provide their preferences over
the five indices above, and construct the intuitionistic preference relation (1 and the
incomplete intuitionistic preference relation Q)2 respectively:

Table 4.4 Decision matrix D (Dai et al., 2007)

G G2 G3 Gy Gs
Y1 80 75 90 85 90
Yo 95 85 70 90 95
Y3 90 80 75 60 95
Ya 70 90 95 65 85
Ys 85 75 90 80 90
Ys 90 85 80 90 80
(0.5,0.5) (0.7,0.2) (0.8,0.2) (0.6,0.3) (0.5,0.4)
(0.2,0.7) (0.5,0.5) (0.6,0.3) (0.4,0.5) (0.3,0.6)
Q1= (0.2,0.8) (0.3,0.6) (0.5,0.5) (0.4,0.6) (0.3,0.4)
(0.3,0.6) (0.5,0.4) (0.6,0.4) (0.5,0.5) (0.4,0.6)
| (0.4,0.5) (0.6,0.3) (0.4,0.3) (0.6,0.4) (0.5,0.5) |
[ (0.5,0.5) (0.6,0.2) x (0.5,0.3) r ]
(0.2,0.6) (0.5,0.5) T T (0.4,0.5)
Q2 = T T (0.5,0.5) (0.3,0.5) T
(0.3,0.5) T (0.5,0.3) (0.5,0.5) (0.3,0.6)
T (0.5,0.4) T (0.6,0.3) (0.5,0.5) |

Considering that all the attributes are benefit attributes, we can utilize Eq.(4.46)
to normalize the decision matrix D, and get the normalized decision matrix D, as
shown in Table 4.5.

By the model (M-4.15), we get the optimal weight vector:

w = (0.3559, 0.1525, 0.1017, 0.1525, 0.2374)"
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Table 4.5 Normalized decision matrix D (Dai et al., 2007)
G1 Ga Gs Gy Gs
Y1 0.842 0.833 0.947 0.944 0.947
Yo 1.000 0.944 0.737 1.000 1.000
Y3 0.947 0.889 0.789 0.667 1.000
Ya 0.737 1.000 1.000 0.722 0.895
Ys 0.895 0.833 0.947 0.889 0.947
Ys 0.947 0.944 0.842 1.000 0.842
and the corresponding deviation variables:
€1 =0.8918, e2 =0.9647, £3=0.8919, &4 =0.8391
£5=0.9023, = 0 9190 el =i =M =t =0
e =5 =0.0102, Y =Y =0
-(1) _ _+(1 1) + -1 +(1 -1 +(1
( = 14( )= 541( _541( ) = 0, 515( ) = 515( ) = 551( ) = 551( =0
- + 1 - - +(1 - +(1
523( ) _ ( ) 532( ) 832( ) _ 0, 524( ) _ 824( ) _ 642( ) _ 842( ) _
—(1 +(1 —(1 —(1 +(1 —(1 +(1
525( )= 525( )= €52( )= 552( )= =0, 534( )= 534( )= 543( )= 543( =0
635(1) — 6;5(1) 653(1) 6;3(1) =0, (1) ( ) _ = 0.0034
—(2 +(2 —(2 —(2 +(2 2 +(2
512( )= 512( )= 521( )= 521( )= 0, 514( ) = 514( ) = 541( )= 541( =0
s;; V=P =00034, 5P = =0
—(2 +(2 —(2 2 +(2 —(2 +(2
534( )= 534( )= ( )= 543( )= 0, 545( )= 545( )= 554( )= 554( =0

Then by Eq.(4.48), we get the overall attribute values of all the enterprises Y; (i =

1,2,---,6):
z1(w) = 0.8918, z3(w) = 0.9647, z3(w) = 0.8920
z4(w) = 0.8391, z5(w) = 0.9023, 2zg(w) = 0.9190
by which we get the ranking of the enterprises Y; (i =1,2,---,6) as follows:
Yor-Ys-Ys>-Y35 =Y, =Y,

Accordingly, the best enterprise is Y5.

4.10 Consistency Analysis on Group Decision Making with
Intuitionistic Preference Relations

Definition 4.10.1 (Xu and Yager, 2009)
be two IFNs. Then

Let aq = (:U'al’ Val) and az = (,U'aw Va2)

1
d(alaOQ) = 2(|:u041 - Ua2| + |V041 - VOé2|) (452)

is called the normalized Hamming distance between «; and as.
Szmidt and Kacprzyk (2004) define a similarity measure between o and as as
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d(oq, 012)

e, a2) = d(on, az)

(4.53)
where aa = (Vay, fla,) 18 the complement of ao = (fay, Vay )-

The prominent characteristic of the similarity measure (4.53) is that: It takes
into account not only a pure distance between two IFNs but also examines if the
compared IFNs are more similar, or more dissimilar to each other. However, in
practical applications, it is generally expected that the degree of similarity would
describe to what extent the IFNs are similar, so the most similar (identical) IFNs
should have the largest degree of similarity, which cannot be reflected by Eq.(4.53).
Moreover, we find that if d(«y, @) — 0, then ¥(aq, as) — oo, which is inconvenient
in practical applications because it is difficult to express these enormous numbers.
To resolve this issue, and motivated by the idea of the TOPSIS of Hwang and Yoon
(1981), Xu and Yager (2009) revise Eq.(4.53) as:

Definition 4.10.2 (Xu and Yager, 2009) Let a7 and as be two IFNs, as is the
complement of as. Then

. L ap = ag = Qg,
I aq, ) = d(on, az)
d(al, CEQ) + d(ah 5[2)

, others (4.54)

is called the similarity degree between oy and aso.
From Eq (4.54), we know that 9(ay, az) has the following desirable properties:
) 0 < Do, a2) < 15
) J
3) ¥
) ¥
(5) 0

is to the same extent similar to a and ao;

(6) D(a1, ) > 0.5 if and only if d(a1,az) < d(a,as), which means that oy is
more similar to ag than as;

(7) 9o, a) < 0.5 if and only if d(ay, as) > d(o,@s), which means that oy is
more similar to &g than as;

o, az) = 19(0427 ay) = (6, ae);
N, a2) = d(an, az);
)a, ag) = 1 if and only if a3 = @, which means the identity of a; and as;

(1
(2
(
(4

a1, az) = 0.5 if and only if d(a1, as) = d(aq, @2) # 0, which means that oy

(8) 19(041, ag) = 0 if and only if o3 = @9, which means the complete dissimilarity
of o1 and ao.

We now apply Eq.(4.54) to the consensus analysis in group decision making based
on intuitionistic preference relations (Xu and Yager, 2009):

Let Y, F and w be defined as in Section 1.3. Suppose that the decision makers
Ey, € E(k=1,2,---,1) compare each pair of the alternatives in Y, and construct the
intuitionistic preference relations Q) = (%(Jk ))an (k=1,2,---,1). Then the following
theorem can be easily established:
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Theorem 4.10.1 (Xu and Yager, 2009) Let Q = (qg?))nxn (k=1,2,---,1) be the

intuitionistic preference relations given by the [ decision makers e, (k = 1,2,---,1),
where q( ) = (ﬂif% Z(j ) (4,5 =1,2,---,n; k=1,2,---,1). Then the aggregation
Q = (Gij )nxn of Qr = (qu))nxn (k =1,2,--- 1) is also an intuitionistic preference

relation, where

l
k .
ql]_(:u’l]’l/l] UZJ_Zwk,Mu ) UZ]:Zkaz(j)7 ,LL’L’L:V’L'L:05? 17.]:1a27"' y
k=1
(4.55)
Definition 4.10.3 (Xu and Yager, 2009) The similarity degree between the individ-

ual intuitionistic preference relation @) and the aggregated intuitionistic preference
relation @ is defined as:

n n

=1 j=1

() and ¢i; (which can be derived

where 19(% +¢ij) is the similarity degree between g;;
by Eq.(4.54)).
19(@;97 Q) has the following properties:
1) 0 <9(Qr Q) < L; .
2) 9(@r, Q) = V(Q, @r) = V(Q, Qn);
3) 9(Qk, Q) = V(Qs, Q);
4) (Qk7 Q) = 1 if and only if Q) and @ are equal;
(5) )(Qx, Q) = 0 if and only if Q; and Q are completely dissimilar.
Definition 4.10.4 (Xu and Yager, 2009) If

9(Qk, Q) > o (4.57)

then the individual intuitionistic preference relation @ and the aggregated intuition-

/\/\/\/\

istic preference relation @ are called of acceptable consensus, where )\ is the threshold
of acceptable consensus, which can be determined by the experts in advance in prac-
tical applications. We take Ay >= 0.5.

In the process of group decision making, if 19(Qk, Q) < \o, then we shall return

Q. together with @ to the expert Ej, and inform him/her of some elements of Qg
with small degrees of similarity, which are needed to be revaluated. We repeat this
procedure until @ and @ are of acceptable similarity.
Example 4.10.1 (Xu and Yager, 2009) Consider a group decision making problem,
where there are four alternatives Y; (i = 1,2,3,4) to be selected, and there are
three decision makers Ey, (k = 1,2, 3)(whose weight vector is £ = (0.5, 0.3, 0.2)T).
The decision makers Ej (k = 1,2,3) compare each pair of the alternatives Y; (i =
1,2,3,4), and construct the intuitionistic preference relations Qr = (qg»c))4x4 (k =
1,2, 3) respectively:
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[ (0.5,0.5) (0.2,0.4) (0.5,04) (0.7,0.1) |
] (04,0.2) (0.5,0.5) (0.3,0.5) (0.4,0.5)
Q1 = (0.4,0.5) (0.5,0.3) (0.5,0.5) (0.8,0.2)
| (0.1,0.7) (0.5,0.4) (0.2,0.8) (0.5,0.5) |
[ (0.5,0.5) (0.3,0.4) (0.4,0.5) (0.6,0.3)
(0.4,0.3) (0.5,0.5) (0.4,0.4) (0.5,0.3)
@2 = (0.5,0.4) (0.4,0.4) (0.5,0.5) (0.7,0.2)
| (0.3,0.6) (0.3,0.5) (0.2,0.7) (0.5,0.5)
[ (0.5,0.5) (0.8,0.1) (0.3,0.4) (0.6,0.4)
1 (0.1,0.8) (0.5,0.5) (0.5,0.3) (0.4,0.5)
@ = (0.4,0.3) (0.3,0.5) (0.5,0.5) (0.3,0.7)
| (0.4,0.6) (0.5,0.4) (0.7,0.3) (0.5,0.5) |
By Eq.(4.55), we can get the overall intuitionistic preference relation Q@ = (g;;)axa:
(0.50, 0.50) (0.25, 0.34) (0.43, 0.43) (0.65, 0.22)
| (0.34,0.25) (0.50,0.50) (0.37,0.43) (0.43, 0.44)
@= (0.43, 0.43) (0.43,0.37) (0.50, 0.50) (0.67, 0.30)
(0.22, 0.65) (0.44, 0.43) (0.30, 0.67) (0.50, 0.50)

Using Eq.(4.54), we get

19(‘]5?7(]11) - Tg(qg;)a Q22) = 79(‘];%)’ Q33) = Tg(qzizll)a Q44) =1
.(fhz ;412 19 q21 ;421 0.73, 79 q13 7(]13) 79 1 7(]31) = 0.50

) = ('3

D), qa) = 0.86,  D(g5y), q23) = 9(qsy), g32) = 0.65
) ( (1)
2) (

0.55,  9(qy, gsa) = (g3, qus) = 0.81
) (CL(; ),CI44) 1
é g21) = ( d13 7‘]13) 79(%1 ,q31) = 0.50
i a11) = 085, (g, az0) = V(a8 432) = 0.05
432 a2) =

(3)

19 Q42 5 442

)=
((J14 . q14)
(%4 s Q24)

)

Qo

2 a22) = V(asy), q33) =

1) = 0.63,

Haqy? s qu
9(q'? 9
(Q12 aCI12)

(g5
(a5
(a5
1) = (g
(¢
(gt 1) = V(g
4) = 9(
q) =
(g5
(a5
(a5

@o

9

-

048a (Q34 7q34) 19(‘]43 7(]43) =0.87

(QQ4 ) 42 9
I(gty qn) = (a3, g22) = (a3, 4s3) = V(a5 qaa) = 1

19(‘1§2 ,q12) ¥ q21 aQ21) = 0.44, ( q13 7‘]13) 79(%1 ,q31) = 0.50

gty s qa) = 0(af) an) = 0.73, 9(gL3, ges) = D(as3), as2) = 0.35

19(‘154 o4) = U q42 ’CI42) = 0.55, (q34 1 Q3a) = 79(‘143 ,qa3) = 0.04

Thus, it follows from Eq.(4.56) that

2 5442

@o
Qo

9(Q1,Q) =0.76, I(Q2,Q) =0.73, I(Qs,Q) = 0.58
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Without loss of generality, suppose that A\g=0.7. Since 19(@1, Q)>0.7, 19(@27 Q)>
0.7 and 19(@3,@) < 0.7, Q1 and @, Q2 and @ are of acceptable consensus, but the

consensus degree between (03 and @ is unacceptable.
Note that the similarity degrees J(q5y,g24), 9(53, ga2), 9(a13 s q12), D(asy,a21),
ﬂ(qég), q23), ﬂ(qég), g32), 19((1;(;?, q34) and ﬂ(qi?é), q43) are less than somewhat small. In

(3

particular, ﬂ(q34), q34) and 19(q43 ,q43) have the smallest similarity degrees. Thus, we

need to return @2 together with R to the decision maker Fs, and return Q)3 together

with @ to the decision maker F3, and suggest them to revaluate the elements qéi)7

qg), qé‘;’,) and qéi)' -

Suppose that the reevaluated intuitionistic preference relations are Q% = (g;; > axa

and Q{S = (qi§3))4><47 i'e'v

(0.5,0.5) (0.3,0.4) (0.4,0.5) (0.6,0.3) ]
, | (0.4,03) (0.5,0.5) (0.4,0.4) (0.4,0.5)
@ =1 (0.5,04) (04,04) (05 05) (0.7,0.2)
| (0.3,0.6) (0.5,04) (0.2,0.7) (0.5,0.5) |
(0.5,0.5) (0.4,0.5) (0.3,0.4) (0.6,0.4) ]
, | (0.5,04) (0.5,0.5) (0.3,0.5) (0.4,0.5)
@ =1 (04,03) (05, 03) (05 05) (0.6 0.3)
| (0.4,0.6) (0.5,04) (0.3,0.6) (0.5,0.5) |

Then by Eq.(4.55), we aggregate the individual intuitionistic preference relations @1,
Q3 and Qy into the collective intuitionistic preference relation Q" = (¢;;)axa, i-e.,

(0.50, 0.50) (0.27, 0.42) (0.43,0.43) (0.65, 0.22)
, | (0.42,0.27) (0.50,0.50) (0.33,0.47) (0.40, 0.50)
@ =| (0.43,043) (0.47,033) (0.50,0.50) (0.73,0.22)
(0.22,0.65) (0.40, 0.45) (0.22,0.73) (0.50, 0.50)

Accordingly, Eq.(4.54) yields

19(‘]51)7%1) 19(‘]52);(122) 19(‘]:(33);(133) 19(Qz(14)aQ44) 1

1 1 . 1 . 1
12 5 L 0(aSy . dis) = D(a5y, ghy) = 0.50

((I12 » d1 2) =4 921 542 1) =
1 . .
(q14 1 qha) = 0 ‘L(u)aq 1) = 19(‘1%)7%3) = ﬁ(q§§)7q§,2) =0.85
1 . .
9(g5y dba) = 9(asy), dh) = 1.00, (g8, dhs) = Dy, dhs) = 0.92
) (2)

(
(
(a

Iy i) = 953 dho) = (a3 abs) = V(a3 dha) =1
(g5
(
(a}

2

ﬂ(qu)a‘hQ) 0 q21 ,q21) =0.83, 19(‘]53)7%3) 19(‘1:(31)7%1) =0.50
2

ﬂ(qg4)aQ14) 9 (L(j)a%n) = 0.85, 79(6153)7(]53) = 79(Q:(32)7Q§2) =0.50

D(g5D, aha) = (@), dho) = 100, 9(q5), gba) = (43, dls) = 0.95
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DD dh1) = (a5, ab) = 03 dbs) = (0, dh) = 1

I(aty) dia) = 0(aSy  aby) = 054, (a1 di5) = D(a5y, ghy) = 0.50
79((]§4), %4) 79((]4(11), CI41) =0.73, 19(‘15?7%3) = 19(‘1:(33)7%2) =0.85
(@D, gha) = (@Y, dho) = 100, 9(qS), gbs) = (a5, dls) = 0.79

Therefore, using Eq.(4.56), we get
)Q1,Q") = 0.87, 9(Qh, Q") =083, Qs Q) =080

As a result, each individual intuitionistic preference relation and the collective intu-
itionistic preference relation are of acceptable consensus.
In the next section, we small extend the similarity measure to the interval-valued

intuitionistic fuzzy set theory.

4.11 Consistency Analysis on Group Decision Making with
Interval-Valued Intuitionistic Preference Relations

Definition 4.11.1 (Xu and Yager, 2009) Let &; = ([a;, bi], [, di]) (i = 1,2) be two
IVIFNs. Then

. 1
d(al,ag) = 4(\a1 — CL2| + |b1 — b2| + |Cl — CQ| + |d1 — d2|) (4.58)

is called the normalized Hamming distance between &1 and as.
Definition 4.11.2 (Xu and Yager, 2009) Let a; and &z be two IVIFNs, and d»
the complement of &s. Then

1, a1 = Qg = ag,
19(6[1,6&2) = d(& =) (459)
(61,0 ., others
d(aq, &) + d(ay, &)
is called the similarity degree between & and aso.
I(aq, 072) has the following properties:

(1) 0 < d(an, a2) < 1;

(2) 19( Gp) = (a2, 61) = 0(0n, Go);

(3) 79(0717&2) ¥(&;a2);

(4) 9(61, a2) =1 if and only if a3 = ao;

(5) ¥(a1,@2) > 0.5 if and only if d(d1,ds) < d(d,ds), which means that & is

more similar to &, than éo;
(6) ’19(641, 042) = 0.5 if and only if d(@l, 6[2) = d(@l, 542) 7é 0, which means that 6&1
is to the same extent similar to & and &o;
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(7) ¥(a1,@2) < 0.5 if and only if d(d1,ds) > d(d, &s), which means that & is
more similar to &, than éo;

(8) ¥(a1,dn) = 0 if and only if &; = &2, which means the complete dissimilarity
of &; and as.

We now apply Eq.(4.59) to the consensus analysis in group decision making with
interval-valued intuitionistic preference relations:

Let YV, FE and £ be defined as in Section 1.3. The decision makers Ey € E (k =
1,2,---,1) compare each pair of the alternatives in Y, and construct the interval-
valued intuitionistic preference relations Q; = (ﬁ“))nxn (k=1,2,---,1). Then we
have the following result:

Theorem 4.11.1 (Xu and Yager, 2009) Let Qy = (cjgc))nxn (k =1,2,---,1) be
the interval-valued intuitionistic preference relations given by the [ decision makers

Ep (k=1,2,--- 1), and let £ = (£1,&,---,&)T be the weight vector of the decision

(k) = (ji (k) 5k ))7 ,&(k) _ [(/1( )) (i (k)) ], ~(k) _ [(V(k))L’(~(k))U]7

Hij™» Yy 7, IU’ZJ 1] ij Vij
J J J

makers, where 4;j ij

& €0,1] (k =1,2,---,1) and ng = 1. Then the aggregation Q = (Gij)nxn of

the individual interval-valued intuitionistic preference relations Qj = (tL(Jk ))an (k =

1,2,---,1) is also the interval-valued intuitionistic preference relation, where
~ - ~ ~L ~U ~ 5L ;U
qij = (MijaVij)7 Hij = [Uijaﬂij]a Vij = Z Vij w]
m
- ~U ~(k)\U
Mzg Zwk NZ] y o Mg = Zwk(/%(‘j))
k=1

k=1 k=1

Definition 4.11.3 (Xu and Yager, 2009) The similarity degree between the indi-
vidual interval-valued intuitionistic preference relation Q) and the collective interval-
valued intuitionistic preference relation @ is defined as:

1 n n

W Q) = 5,3 S 0@l ay) (4.61)

i=1 j=1

where 19(@5;9), Gi;) is the similarity degree between (jg-“)

by Eq.(4.59)).
19(@;97 Q) has the following properties:
)0<79(ka©)<~1§~ o
2) 9@k, Q) = V(Q, Qx) = V(Q, Qp);
DUQLY) =W
4) 9(Qx, Q) = 1 if and only if Q and Q are equal (or completely similar);

and ¢;; (which can be derived

/\/\/\/\
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(5) ﬂ(Qh Q) = 0 if and only if Q) and Q are completely dissimilar.
Definition 4.11.4 (Xu and Yager, 2009) If

Q. Q) > 1o (4.62)

then the individual interval-valued intuitionistic preference relation Qk and the col-
lective interval-valued intuitionistic preference relation Q are called of acceptable con-
sensus, where 79 is the threshold of acceptable consensus, which can be determined
by the experts in advance in practical applications. In general, we take ny >= 0.5.
In the process of group decision making, if 9(Qx, Q) < 1o, then we shall return
Qr together with Q to the decision maker Ej, and inform him /her of some elements
of Qk with small degrees of similarity, which need to be revaluated. We repeat this
procedure until Qk and Q are of acceptable consensus.
Example 4.11.1 (Xu and Yager, 2009)  Suppose that three decision makers Ej, (k =
1,2,3) (whose weight vector is £ = (0.4, 0.3, 0.3)T) compare three alternatives Y; (i =
1,2,3) and construct the following interval-valued intuitionistic preference relations
Qr = (3Y)3x3 (k =1,2,3), respectively:

([0.5,0.5], [0.5,0.5]) (]0.1,0.2], [0.7,0.8])  ([0.6,0.9], [0,0.1])
Q.= | ([0.7,0.8], [0.1,0.2]) ([0.5,0.5], [0.5,0.5]) (]0,0.1], [0.8,0.9])
(10,0.1], [0.6,0.9))  ([0.8,0.9], [0,0.1])  ([0.5,0.5], [0.5,0.5])
[ ([0.5,0.5], [0.5,0.5])  ([0,0.1], [0.7,0.9])  ([0.7,0.8], [0.1,0.2]) ]
Q, = | ([0.7,09], [0,0.1]) ([0.5,0.5], [0.5,0.5]) ([0.2,0.3], [0.5,0.7])
([0.1,0.2], [0.7,0.8]) ([0.5,0.7], [0.2,0.3]) ([0.5,0.5], [0.5,0.5]) |
~ [ ([0.5,0.5], [0.5,0.5]) ([0.2,0.3], [0.4,0.6])  ([0.6,0.8], [0,0.1]) ]
Qs = | ([0.4,0.6], [0.2,0.3]) ([0.5,0.5], [0.5,0.5]) ([0.1,0.2], [0.7,0.8))
| ((0,0.1], [0.6,0.8])  ([0.7,0.8], [0.1,0.2]) ([0.5,0.5], [0.5,0.5]) |

By Eq.(4.60), we get the collective interval-valued intuitionistic preference relation

Q = (Gij)axa:

~ ([0.5,0.5], [0.5,0.5))  ([0.10,0.20], [0.61,0.77]) ([0.63,0.84], [0.03,0.13])
Q=1 ([0.61,0.77], [0.10,0.20])  ([0.5,0.5], [0.5,0.5])  ([0.09,0.19], [0.68,0.81])
([0.03,0.13], [0.63,0.84]) ([0.68,0.81], [0.09,0.19])  ([0.5,0.5], [0.5,0.5])

Then by Eq.(4.59), we have
9@, d11) = 9@, daz) = 935, dss) = 1, 9@, dua) = 9@, Gor) = 0.95
@Y, qis) = (G5, ds1) = 0.95, (G5, dos) = 9(@), Gsa) = 0.88
9@ 2, q11) = 9(G2, Gaz) = 962, Gss) = 1, 9(63), G12) = V(G52 , Go1) = 0.86

932, dis) = (@Y, ds1) = 0.91,  9(3y), Gas) = V(dsy) s Gsa) = 0.79
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@Y, qun) = 0G5y, Goo) = 9(@5y)  d33) = 1, (@), di2) = 9(@s,) s G1) = 0.73
9(GD, dis) = (@Y, ds1) = 0.95, (G, Gas) = (G5, Gaa) = 0.98

Therefore, it follows from Eq.(4.61) that

9(Q1,Q) =0.95, 9(QP,Q)=0.90, QP Q)=0.92

If we take 19 = 0.7, then each individual interval-valued intuitionistic preference
relation and the collective interval-valued intuitionistic preference relation are of ac-
ceptable consensus. Consequently, we do not need to return them to the decision
makers for revaluation.
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Chapter 5

Projection Model-Based Approaches to
Intuitionistic Fuzzy Multi-Attribute
Decision Making

Xu and Hu (2010) investigate intuitionistic fuzzy multi-attribute decision making
problems where the attribute values are expressed in IFNs or IVIFNs. They introduce
some concepts, such as the relative intuitionistic fuzzy ideal solution, the relative
uncertain intuitionistic fuzzy ideal solution, the modules of IFNs and IVIFNs, etc.
They also introduce the cosine of the included angle between the attribute value
vectors of each alternative and the relative intuitionistic fuzzy ideal solution, and the
cosine of the included angle between the attribute value vectors of each alternative
and the relative uncertain intuitionistic fuzzy ideal solution. They further establish
two projection models to measure the similarity degrees between each alternative and
the relative intuitionistic fuzzy ideal solution, and between each alternative and the
relative uncertain intuitionistic fuzzy ideal solution. Based on the projection models,
the given alternatives can be ranked and then the most desirable one can be selected.

5.1 Multi-Attribute Decision Making with Intuitionistic Fuzzy
Information

The intuitionistic fuzzy multi-attribute decision making problem considered in this
Chapter is represented as follows (Xu and Hu, 2010):

Let Y, G and w be defined as in Section 1.3. Let R’ = (rgj)nxm be an intuitionistic
fuzzy decision matrix, with r{; = (¢, fij, mi;) being an attribute value, donated by
an IFN, where ¢;; indicates the degree that the alternative Y; satisfies the attribute
Gj, fi; indicates the degree that the alternative Y; does not satisfy the attribute Gy,
and 7;; indicates the indeterminacy degree such that

tij € [0, 1], fl'j € [0, 1], tij —|—f¢j <1, Tij = 1 —tij — fij7
1=1,2,---,n; 7=12,---'m (51)

There are generally benefit attributes and cost attributes in multi-attribute deci-
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sion making. In such cases, we may transform the attribute values of cost type into
the attribute values of benefit type. Then R’ = (r};)nxm can be transformed into the
intuitionistic fuzzy decision matrix R = (7;)nxm, where

, .
1, for benefit attribute Gj, .

(i U ) = . =-1.2.... 92

711] (;U’zja Vlju ﬂ—lj) { F;j’ fOI‘ cos t attrlbute Gj7 j )<y ,yn (5 )

where 77; is the complement of r;;,
1-— ,U/ij — Vij-

Let us consider first situations where the information about the attribute weights

such that fgj = (fij,tij,ﬂ'ij), 5 = 1-— tij — fij =

is completely unknown:
For convenience of depiction, we denote the alternatives Y; (¢ = 1,2,--- ,n), based

on R = (i )nxm, as:
}/i:(rilaTiQa"' 7rim)a Z:1725 y (53)

and introduce the module of Y; as:
Vil = [ Irijl? (5.4)
j=1

where |r;;| is the module of the attribute value r;;, calculated as follows:

rigl = /1 + 3 + 7 (5.5)
By Eq.(5.4), we have 0 < |Y;| < v/m.
Let of = (uj, v}, 7)) (j =1,2,---,m), where

*_

py = max{py}y, vy =wmin{vi}, w5 =1-p5 - vy =1—max{uy} —min{vi},

j = ]-u 27 R 11
(5.6)
Then we call
Y* = (04;,0&;7"' ,0&:1) (57)

an relative intuitionistic fuzzy ideal solution (RIFIS), whose module is denoted as:
Vo= [ 2l (58)
j=1

where |af| = \/(M;)z + ()2 + (77)? is the module of o,

Based on Eqs.(5.5)-(5.8), we introduce the following concept:
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Definition 5.1.1 (Xu and Hu, 2010) Let Y; = (141,72, - ,7m) be the between
alternative, and Y* = (af, a3, - ,a;,) the RIFIS, where r;; = (uij, vij, mij), @ =
1,2,---,n,and of = (ﬂj, o J) j=1,2,--- ,m. Then we call

> (g + vivy +migmy)
* Jj=1
coslt, 1) e
the cosine of the included angle between Y; and Y.

Obviously, the following theorem holds according to Eq.(5.9):
Theorem 5.1.1 (Xu and Hu, 2010)

(1) cos(Y;, Y*) =cos(Y*,Y;);

(2) 0 < cos(Vi, Y*) < 1

(3) cos(Y;, Y*)=1if Y, =Y™

Note that a vector is composed of direction and module. cos(Y;, Y*), however,
only reflects the similarity measure of the direction of Y; and Y*. In order to measure
the similarity degree between Y; and Y™*, we introduce a formula of projection of Y;

on Y*as follows:

> (e + vy} + 7o)
. * 1
Priy-Yi = Wileos(Vs v ="

= |Y*| Z :u’Z]:u’j +VZJV1 + m;T ) (510)

Obviously, the greater the value Prjy- Y;, the closer Y; to Y*, and thus the closer
the alternative Y; to the IFIS Y* (i.e., the better the alternative Y;).

If the weight vector w = (wy,wa, -+ ,wm,)T of the attributes G; (j = 1,2,---,m)
is known, then we denote

m
Yilw = Z (wjlriz[)? (5.11)
Jj=1
as the weighted module of the alternative Y; = (rj1,7i2, -+ ,Tim), where w = (w1,
wa, ,wy) T is the weight vector of the attributes G; (j = 1,2,--- ,m), with w; €
m
[0,1], j=1,2,--+ ,n, and ij = 1. Furthermore, we denote
j=1
m
V¥ = [ (wslas]) )? (5.12)
j=1

as the weighted module of the RIFIS Y* = (af, o, -, af).

m



252 Chapter 5  Projection Model-Based Approaches to Intuitionistic Fuzzy...

Similar to Eq.(5.9), we introduce the weighted cosine of the included angle between
the alternative Y; = (741,72, -, im) and the RIFIS Y* = (af, 03, -+ ,a},) as:

m
2w (migpy +vigv; + mig;)

=1

cos(V;, Y1), =" (5.13)

Yilw Yo
Then we can introduce a formula of projection of Y; on Y™*:
D i (bt + vigy; + migm;)
=1
Prjy-Y; = |Y;|w cos(Y;, Y, = |Yilo”
Yilw [Y*]o
1
= vl Zw (ijes + vigv; + miym5) (5.14)

In the next section, we shall extend the above results to the interval-valued intu-
itionistic fuzzy set theory.

5.2 Multi-Attribute Decision Making with Interval-Valued In-
tuitionistic Fuzzy Information

Let R/ = (7 ZJ)nxm be an interval-valued intuitionistic fuzzy decision matrix, where
ng =(t 85 f”, 7ij) is an attribute value, denoted by IVIFN, ti i; indicates the degree
range that the alternative Y; satisfies the attribute G;, and fzy indicates the degree
range that the alternative Y; does not satisfy the attribute G;, and 7;; indicates the
indeterminacy degree range. Let fij = [tk 2], fiy = [fE, U], 7y = [7%, 7], and

ﬁgzl—ﬂ“j—?} i=1,2,---,n; j=12---.,m (5.15)

In cases where the attributes are of benefit and cost types, we can normalize R =
(fgj)nxm into the interval-valued intuitionistic fuzzy decision matrix R = (Fij Jnxm,
where

d“ fOI' beneﬁt attribute G
~ ~1 ~U ~ ~ 1] 2
T = /«Lzubzﬂz /L17LLZ zubi‘77 T - T .

J ( J J J) ([ J ]] [ J ]] [ ]) { dij7 for cost attribute Gj,

ijo tig
Z:172a"'7n; j:1727"'am

(5.16)
and ﬂj is the complement of 75, i.e.,

Fij = (fig tigs ig)s g = [, 7))
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-1, U FU ~U _ ~U ~U L 7L oL

Ty =1—ty —fiy=1—[;—vy, m;=1-1;—[f;= 1_/~sz Vi

Based on R = (7ij)nxm, we denote the alternatives Y; (i = 1,2,--- ,n) by Y; (i =
1,2,---,n), where

}/i:(":ila”:iQa"' 77:im)a Z:1725 y (517)

If the information about attribute weights is completely unknown, then we denote

Vil = | D172 (5.18)
j=1
as the module of the alternative Y; = (Fi1,Ti2, -+, Tim), where |7;| is the module of
74, calculated by
75| = \/(ﬁ?j)z + ()% + (753)? + (75)? + (75)% + (75)? (5.19)

s = (i i) = [mgx{ﬂz},mgx{ﬁ};-ﬂ, 77 = 7", 7] = [min{ok }, min{o )]

=, wat=1-pl -V =1 mgX{ﬂZUj} - mz.in{ﬂ}j}
ml=1-gr -t =1- m?x{ﬁ,%} - miin{DZLjL j=1,2,---,m (5.20)
Then we call
V' = (7,05, .05, (5.21)

an relative uncertain intuitionistic fuzzy ideal solution (RUIFIS), whose module is
denoted as:

Y= D la (5.22)
j=1
where |07;| is the module of &7, calculated by

|aj] = \/( 72+ ()2 + (77)2 + (7)) + (7)) + (77)? (5.23)

Based on Egs.(5.20)-(5.23), we have
Definition 5.2.1 (Xu and Hu, 2010) Let Y; = (Fi1,Ti2, - -+ ,Tim) be the between

alternative, and Y* = (a17a27 s, an, ) the RUIFISa where Fij = ([Lijv ﬂija ﬁ—lj) =
([NZJVMz]] [ zjvyg] [ L} m ]) (] —]- 2 ) Then we call
> (st + i + vyt + oo+ wA + R
cos(V;, Y*) =771 - (5.24)

Yal [y
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the cosine of the included angle between Y; and Y*.
Obviously, the following theorem holds according to Eq.(5.24):
Theorem 5.2.1 (Xu and Hu, 2010)
(1) cos(Y;, Y*) = cos(Y*,Y;);
(2) 0 < cos(¥i, ) <1
(3) cos(Y;, Y*) =1if V; =Y*.
Based on Definition 5.2.1, we give a formula about the projection of ¥; on Y*:

PrJY* = |Yi| cos(Y;,Y™)

= }7*| Z ([LZL][L;L + ﬁgﬂ] + sz/j + VZ]VJ + 7k ST Lt 7TU7T;U) (5.25)
j=1

It is clear that the greater the value Prjy. Y;, the closer Y; to )7*, and thus the
better the alternative Y;.

If the weight vector w = (wy,wa, -+ ,wm,)T of the attributes G; (j = 1,2,--- ,m)
is known, then we denote

m

|}~/1|w = Z (wj|7iz])? (5.26)
j=1
as the weighted module of the alternative Y, = (i1, Ti2,+* ,Tim). Furthermore, we
call
|}7*|w = Z wj|a (5.27)
j=1

the weighted module of the RUIFIS Y* = (&},a3, -~ ,a%,).

Based on Egs.(5-25)-(5.27), we can introduce the weighted cosine of the included
angle between the alternative Y= (i1, Ti2, -+, Tim) and the RUIFIS Y*= (a5,a8, -+,
ar):

m

2 (~L ~xL ~U ~ ~L ~*L ~U ~+xU *U
E:wj (“ij“j +'“ij“7 + VU A+ Y +7TZ]7TJ +7TZJ7T] )

cos(Y;, Y*), = - -
Yilo [Y*]o
(5.28)
Similar to Eq.(5.25), we give a formula about the projection of Y; on Y*:

Pris. i = |Vil, cos(V;, Y™),

1 1L~ -
:|)~/*| Z wi (Fighiy™ + g 57 + U5~ + ooy + m Rt + waY) (5.29)
w

j=1
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Clearly, the greater the value Prjg. Y;, the closer Y; to f/*, and thus the better
the alternative }71
Example 5.2.1 (Xu and Hu, 2010) Let us consider a customer who intends to buy
a car. Five types of cars (alternatives) Y; (i = 1,2,3,4,5) are available. The cus-
tomer takes into account six attributes to decide which car to buy (Hung, 2001):
@ Gi: Fuel economy; @ Gs: Aerod. degree; @ Giz: Price; @ G4: Comfort;
® G5: Design; and ® Gg: Safety, where the attribute G3 is a cost attribute, and
the other five attributes are benefit attributes. Assume that the characteristics of
the alternatives Y; (i = 1,2, 3,4, 5) are represented by the intuitionistic fuzzy decision
matrix R’ = (r};)6x5 as shown in Table 5.1:

Table 5.1 Intuitionistic fuzzy decision matrix R’ (Xu and Hu, 2010)

G1 Gz G3 G4 G5 GG
Y:  (0.50.4,0.1) (0.7,0.2,0.1) (0.4,0.3,0.3) (0.6,0.2,0.2 (0.4,0.50.1) (0.3,0.1,0.6)
Ya  (0.4,0.3,0.3) (0.8,0.2,0.0) (0.50.2,0.3)  (0.6,0.3,01)  (0.6,0.4,0.0) (0.7,0.1,0.2)
Ys  (0.50.2,0.3) (0.9,0.1,0.0) (0.6,0.1,0.3) (0.8,0.1,0.1)  (0.3,0.50.2) (0.6,0.2,0.2)
Ys  (0.4,02,04) (0.8,0.0,0.0) (0.7,0.3,0.0) (0.9,0.1,0.0) (0.5,0.3,02)  (0.6,0.1,0.3
Ys  (0.6,0.4,0.0) (0.5,0.2,0.3) (0.8,0.1,0.1)  (0.4,0.2,04)  (0.9,0.0,0.1)  (0.4,0.3,0.3)

Considering that the attributes have two different types, we first transform the
attribute values of cost type into attribute values of benefit type by using Eq.(5.2).
Consequently, R’ = (r};)5xe is transformed into R = (7;;)sx¢ (Table 5.2):

Table 5.2 Intuitionistic fuzzy decision matrix R (Xu and Hu, 2010)

G1 Gz G3 G4 G5 GG
Yi  (0.5,0.4,0.1) (0.7,0.2,0.1) (0.3,04,0.3) (0.6,0.2,02) (0.4,0.50.1)  (0.3,0.1,0.6)
Yz  (0.4,0.3,0.3)  (0.8,0.2,0.0) (0.2,05,0.3) (0.6,0.3,0.1)  (0.6,0.4,0.0) (0.7,0.1,0.2)
Ys  (0.50.2,0.3) (0.9,0.1,0.0) (0.1,0.6,0.3) (0.8,0.1,0.1) (0.3,0.5,0.2)  (0.6,0.2,0.2)
Ys  (0.4,0.2,04) (0.8,0.0,0.0) (0.3,0.7,0.0)  (0.9,0.1,0.0) (0.5,0.3,0.2)  (0.6,0.1,0.3)
Ys  (0.6,0.4,0.0) (0.5,0.2,0.3) (0.1,0.8,0.1) (0.4,0.2,0.4) (0.9,0.0,0.1)  (0.4,0.3,0.3)

To get the most desirable car, the following steps are followed:
Step 1 Based on R = (r;;)5x6, we denote the alternatives Y; (¢ = 1,2,3,4,5) by
=((0.5,0.4,0.1),(0.7,0.2,0.1), (0.3,0.4,0.3),
(0.6,0.2,0.2), (0.4,0.5,0.1), (0.3,0.1,0.6))
((0.4,0.3,0.3),(0.8,0.2,0.0), (0.2,0.5,0.3),
(0.6,0.3,0.1),(0.6,0.4,0.0), (0.7,0.1,0.2))
=( )
© )

(0.5,0.2,0.3), (0.9,0.1,0.0), (0.1,0.6, 0.3),
8,0.1,0.1), (0.3,0.5,0.2), (0.6,0.2,0.2)
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Yy =((0.4,0.2,0.4), (0.8,0.0,0.2), (0.3,0.7, 0.0),
(0.9,0.1,0.0), (0.5,0.3,0.2), (0.6, 0.1,0.3))
Y5 =((0.6,0.4,0.0), (0.5,0.2,0.3), (0.1,0.8,0.1)
(0.4,0.2,0.4), (0.9,0.0,0.1), (0.4, 0.3,0.3))
v =( )
)

)

=((0.6,0.2,0.2), (0.9,0.0,0.1), (0.3,0.4,0.3),
(0.9,0.1,0.0), (0.9, 0.0,0.1), (0.7,0.1,0.2)

Then using Eqs.(5.6) and (5.7), we get the RIFIS Y*:

Y* =((0.6,0.2,0.2), (0.9,0.0,0.1), (0.3,0.4,0.3),
(0.9,0.1,0.0), (0.9,0.0,0.1), (0.7,0.1,0.2))

Step 2 Calculate the projection of ¥; on Y* by using Eq.(5.10):

Prjy.Y; = 1.363, Prjy-Ys =1.584, Prjy-Y;=1.579

Prjy.Y; = 1.661, Prjy.Ys = 1.476

Step 3 Rank the alternatives Y; (i = 1,2, 3,4,5) in accordance with the values
Pr.jY* }/Z (Z = 1a 27 3a 47 5)
Yi-Yo=-Ys>=Y; -1,
Thus, the most desirable car Yy is identified.
If the characteristics of the alternatives Y; (1 = 1,2, 3,4,5) are represented by the

interval-valued intuitionistic fuzzy decision matrix R’ = (77;)5x6 as shown in Table
5.3:

Table 5.3 Interval-valued intuitionistic fuzzy decision matrix R’ (Xu and Hu, 2010)

G Ga G
i ([0.2,0.5],00.4,0.5],[0.0,0.4])  ([0.3,0.4],(0.3,0.4],[0.2,0.4])  ([0.3,0.4],[0.4,0.6],[0.0,0.3])
Ya  ([0.3,0.4],[0.3,0.5],[0.1,0.4])  ([0.7,0.8],[0.0,0.2],[0.0,0.3])  ([0.5,0.6],[0.2,0.4],[0.0,0.3])
Vs ([0.4,0.5],[0.2,0.3],[0.2,0.4])  ([0.8,0.9],[0.0,0.1],[0.0,0.2])  ([0.6,0.7],[0.1,0.3],[0.0,0.3])
Yy ([0.4,0.6],[0.2,0.4],[0.0,0.4])  ([0.8,0.9],[0.0,0.1],[0.0,0.2])  ([0.5,0.6],[0.2,0.3],[0.1,0.3])
Ys  ([0.5,0.6],[0.3,0.4],[0.0,0.2))  ([0.4,0.6],[0.1, 0.2],0.2,0.5])  ([0.8,0.9],[0.0,0.1],[0.0,0.2])
G4 Gs Gs
i ([0.4,0.5],[0.2,0.3],[0.2,0.4])  ([0.2,0.4],[0.5,0.6],[0.0,0.3])  ([0.3,0.4],[0.2,0.5],[0.1,0.5])
Yy ([0.5,0.6],[0.2,0.3],[0.1,0.3))  ([0.4,0.6],[0.2,0.4],[0.0,0.4])  ([0.6,0.7],[0.1,0.3],[0.0,0.3])
Ys  ([0.7,0.8],0.1,0.2],[0.0,0.2])  ([0.3,0.4],(0.4,0.5),[0.1,0.3])  ([0.5,0.6],[0.1,0.2],[0.2,0.4])
Y2 ([0.8,0.9],[0.0,0.1],[0.0,0.2))  ([0.5,0.7],[0.2,0.3],[0.0,0.3])  ([0.6,0.8],[0.1,0.2],[0.0,0.3])
Ys  ([0.3,0.4],[0.2,0.3],[0.3,0.5)  ([0.8,0.9],[0.0,0.1],[0.0,0.2])  ([0.4,0.5],[0.2,0.3],[0.2,0.4])

then, we can first transform the attribute values of cost type into attribute values
of benefit type by using Eq.(5.16). As a result, R’ = (7i;)5x6 is transformed into
R = (fij)5><6 (Table 54)
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Table 5.4 Interval-valued intuitionistic fuzzy decision matrix R (Xu and Hu, 2010)

Y1
Ys
Y3
Y
Y5

Y1
Ys
Y3
Y
Ys

Step 1 Based on R, we denote the alternatives Y; (i=1,2,---

G1
([0.2,0.5],0.4,0.5],[0.0,0.4])
([0.3,0.4],]0.3,0.5],[0.1,0.4])
([0.4,0.5],0.2,0.3,[0.2,0.4])
([0.4,0.6],0.2,0.4],[0.0,0.4])
(10.5,0.6],[0.3,0.4],[0.0,0.2))

Gy
([0.4,0.5],0.2,0.3,[0.2,0.4])
([0.5,0.6],0.2,0.3],[0.1,0.3])
([0.7,0.8],0.1,0.2],[0.0,0.2])
([0.8,0.9],0.0,0.1],[0.0,0.2])
([0.3,0.4],0.2,0.3,0.3,0.5])

KNQOMNAQMNDO
([0.4,
([0.2,
=(([0.3,0.4],[0.3,0.5], [0.1,
([0.2,
([0.4,
:«m40 ],[0.2,0.3],]0.2,0.
([0.1,
([0.3,
«m40 ],[0.2,0.4],]0.0,0.
([0.2
([0.5
«m50][0&0Q[ 0.
(

G2
([0.3,0.4],[0.3,0.4],[0.2,0.4])
([0.7,0.81,[0.0,0.2],[0.0,0.3))
([0.8,0.9],[0.0,0.1],[0.0,0.2])
([0.8,0.9],[0.0,0.1],[0.0,0.2])
(0.4,0.6],0.1,0.2],[0.2,0.5])

Gs
([0.2,0.4],[0.5,0.6],[0.0,0.3))
([0.4,0.6],[0.2,0.4],[0.0,0.4])
([0.3,0.4],[0.4,0.5],[0.1,0.3))
([0.5,0.7],[0.2,0.3],[0.0,0.3))
([0.8,0.9],[0.0,0.1],[0.0,0.2])

0.

Gs
(0.4,0.6],[0.3,0.4],[0.0,0.3])
(0.2,0.4],[0.5,0.6],[0.0,0.3])
(0.1,0.3],[0.6,0.7],[0.0,0.3])
(0.2,0.3],[0.5,0.6],[0.1,0.3])
(0.0,0.1],[0.8,0.9],[0.0,0.2])

Ges
(0.3,0.4],[0.2,0.5],[0.1,0.5])
(0.6,0.7],[0.1,0.3],[0.0,0.3])
(0.5,0.6],[0.1,0.2],[0.2,0.4])
(0.6,0.8],[0.1,0.2],[0.0,0.3])
(0.4,0.5],[0.2,0.3],[0.2,0.4])

,5) by

4]), (0.3,0.4],[0.3,0.4], [0.2,0.4]),
0.6],[0.3,0.4],[0.0,0.3]), ([0.4,0.5], [0.2,0.3], [0.2, 0.4]),
0.4],[0.5,0.6], [0.0,0.3]), ([0.3,0.4],]0.2,0.5], [0.1,0.5]))
4 4]), ([0.7,0.8],[0.0,0.2], [0.0,0.3)),
0.4],[0.5,0.6], [0.0,0.3]), ([0.5,0.6], [0.2,0.3], [0.1,0.3]),
0.6],[0.2,0.4],0.0,0.4]), ([0.6,0.7],]0.1,0.3],[0.0,0.3]))
5 4]), ([0.8,0.9],[0.0,0.1],[0.0,0.23)),
0.3],[0.6,0.7],[0.0,0.3]), ([0.7,0.8], [0.1,0.2], [0.0,0.2]),
0.4],[0.4,0.5],[0.1,0.3]), ([0.5,0.6],[0.1,0.2], [0.2,0.4]))
6 4]), ([0.8,0.9],[0.0,0.1],[0.0,0.2]),
0.3],[0.5,0.6], [0.1,0.3]), ([0.8,0.9], [0.0,0.1], [0.0, 0.2]),
0.7],[0.2,0.3], [0.0,0.3]), ([0.6,0.8],[0.1,0.2], [0.0,0.3]))
6 2]), ([0.4,0.6],[0.1,0.2],[0.2,0.5]),
[0.0,0.1],[0.8,0.9],[0.0,0.2]), ([0.3,0.4], [0.2,0.3], [0.3, 0.5]),
[ ] )

([0.8,0.9],[0.0,0.1],0.0,0.2]), ([0.4,0.5],[0.2,0.3],[0.2,0.4]))

Consequently, by Egs.(5.20) and (5.21), we get the RUIFIS Y*:

=(([0.5,0.6],[0.2,0.3],]0.1,0.3]), ([0.8,0.9], [0.0, 0.1], [0.0, 0.2]),
([0.4,0.6],[0.3,0.4], [0.0,0.3]), ([0.8,0.9], [0.0,0.1], [0.0, 0.2]),
([0.8,0.9],10.0,0.1], [0.0,0.2]), ([0.6,0.8], [0.1,0.2], [0.0, 0.3]))

Step 2 Calculate the projection of ¥; on Y* by using Eq.(5.29):

257
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Prjg. Y1 = 1.694, Prjy.Yo=2.207, Prjg.Ys=2.229

Prjg. Yy =2.525, Pris. Ys =2.074
Step 3 Rank the alternatives Y; (i = 1,2,---,5) in accordance with the values
Prig. Y (i=1,2,---,5):
Y, -Y3>-Yo-Y;>-Y;

and thus, the most desirable car is also Yj.
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Chapter 6

Dynamic Intuitionistic Fuzzy
Multi-Attribute Decision Making

In the previous chapters, we have discussed the problems where all the intuitionstic
fuzzy data are collected in the same time period or at the same stage. However, in
many practical problems, such as multi-period investment decision making, medical
diagnosis, personnel dynamic examination, and military system efficiency dynamic
evaluation, the decision information is usually collected at different periods of time.
Recently, Xu and Yager (2008) investigate aggregation techniques for dynamic intu-
itionistic fuzzy information, develop methods for weighting time series, and propose
an approach to dynamic intuitionistic fuzzy multi-attribute decision making. They
also extend the derived results to uncertain dynamic intuitionistic fuzzy environments.

6.1 Dynamic Intuitionistic Fuzzy Weighted Averaging Opera-
tors

Based on Eq.(1.9), we first introduce the concept of intuitionistic fuzzy variable:

Definition 6.1.1 (Xu and Yager, 2008) Let ¢ be a time variable. Then a(t) =
(Ka(t)s Va(t), Ta(t)) is called an intuitionistic fuzzy variable, where

Pa) € 10,1], Vo) €[0,1],  ta@) +Va@w) <1, Ta@) =1 = ta@) = Vawy  (6.1)

For an intuitionistic fuzzy variable a(t) = (o), Va(t)s Taw)), if t = t1,t2, -+ 1y,
then «(t1), a(tz), -, a(t,) indicate p IFNs collected at p different periods.

Below we slightly improve two operational laws given in Definition 1.2.2:
Definition 6.1.2 (Xu and Yager, 2008)  Let a(t) = (i), Ya(t)s Tar)) be an intu-
itionistic fuzzy variable, a(t1) = (L, (41)s Vo (t1) Tai (t1)) @0d @(t2) = (s (1)) Vas (ts)
Tas(t)) the values of the intuitionistic fuzzy variable a(t) taking ¢ = t1,t2. Then

(1) a(t) @ a(tz) = (Ha(t) + Ha(ts) — Bat)Pa(ts) Ya(t)Ya(ts)s
(1 = Ba(t) (1 = Ha(ts)) = Va(t)Va(ts))i

(2) /\a(tl) = (1 - (1 - ,u'a(tl))k7yé(t1)7 (1 - /“La(t1))>\ - Vé(tl))7 A>0.
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Definition 6.1.3 (Xu and Yager, 2008) Let a(tl) a(tz), -+, a(ty) be a collection of
IFNs collected at p different periods ¢ (k = 1,2, -+ ,p), and w(t) = (w(t1),w(ta), - ,
w(t,))T the weight vector of the periods ty (k = 1,27~-~ ,p), with w(ty) € [0,1],

P
k=1,2,---,p, and Zw(tk) = 1. Then we call
k=1

DIFWA, ) (a(h), altz), -+, alty)) = w(t)a(t) Sw(ts)a(ta)®- - -Bw(t,)alt,) (6.2)

a dynamic intuitionistic fuzzy weighted averaging (DIFWA) operator.
By Definition 6.1.2, Eq.(6.2) can be rewritten as follows:

DIFWA ;) (a(t1), a(t2), - - 7a(tp))

p P
:<1_H(1_,U'a (tk) Hz/ tt:))’ H /Ja(tk Hl/ ::;)

k=1 k=1 k=1

where
p

wit) €[0,1], k=1,2,-,p, Y wlts)=1 (6.4)

k=1
In what follows, we introduce some methods to determine the weight vector w(t) =
(w(t1),w(ta), - ,w(ty))T of the periods t (k =1,2,--- ,p):
(1) Arithmetic series based method (Xu, 2008¢c): Suppose that the difference value
between the weight w(tx41) and its adjacent weight w(ty) is a constant 3, i.e.,

w(thrl)_ W(tk):ﬁ7 k:1727 7p_]- (65)

In this case, we have

wltr) =n+(k-1)8, n+(k-1)3=0 (6.6)

under the condition (6.4).

From Eq.(6.4), we have

(i) If 8 =0, then n =1/n, ie., w(ty) =1/n(k=1,2,---,p), which indicates that
all the weights w(tx) (k=1,2,---,p) are equal.

(ii) If B8 > 0, then w(ty) < w(tpt1) (K =1,2,--- ,p— 1), ie., {w(tx)} is a strictly
monotonically increasing sequence;

(iii) If B < 0, then w(ty) > w(tk+1) (K =1,2,--- ,p—1), i.e., {w(ty)} is a strictly
monotonically decreasing sequence.

(2) Geometric series based method (Xu, 2008¢): Suppose that the weight w(tg4+1)
is 0 times as good as its adjacent weight w(ty), i.e

W(tk_i,_l):ﬂ(.AJ(tk), ﬂ>07 k:1727 7p_1 (67)
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In this case, we have

w(tk):nﬂkilv m, /8>07 k:17217p_]- (68)
Using Eq.(6.4), we have
1
n=, , B>0 (6.9)
Zﬂkfl
k=1
Hence
ﬂk_l
w(tk}) = ) /8 > 07 k= ]-727 Y4 (6]‘0)

g

From Eq.(6.10), we have

(i) If =1, then n=1/n, ie., w(ty) =1/n(k=1,2,---,p). In this case, all the
weights w(tg) (k=1,2,--- ,p) are equal.

(i) If 8 > 1, then w(ty) < w(tr41) (K =1,2,--- ,p—1). In this case, {w(tx)} is a
strictly monotonically increasing sequence;

(iii) If B < 1, then w(ty) > w(tp+1) (k=1,2,--- ,p—1). In this case, {w(tx)} is a
strictly monotonically decreasing sequence.

(3) BUM function based method (Xu and Yager, 2008): Let f be a BUM function.
Then we can obtain the weight vector w(ty) as follows:

W(tk):f<]k)>—f(k;1>7 k=1,2,--,p (6.11)

under the condition (6.4). For example, if f(z) = 2", r > 0, then

SR (0 0 B ) PSP

Let
@=a= (o1} vz (6.13)
glz)=a" — |z — , T = .
p p
Then
1 r—1 1 r—1
1 r—1 r—1
g (x)=rz —rl|lx— =r|x —|z— 6.14
et (o) e (o)) e
Thus

(i) Ifr > 1, then ¢'(z) > 0, i.e., g(z) is a strictly monotonically increasing function;
(ii) If r = 1, then ¢'(z) = 0, i.e., g(x) is a constant;
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(iii) If » < 1, then ¢'(z) < 0, i.e., g(z) is a strictly monotonically decreasing
function.

Consequently, from Eq.(6.11), we have

(i) If » > 1, then w(tgpt1) > w(te), k =1,2,--- ,p—1, ie, {w(ty)} is a strictly
monotonically increasing sequence. In particular, if » = 2, then

A 0 R (I Y ) R
k=1,2,-,p—1

i.e., {w(tg)} is a strictly monotonically increasing arithmetic sequence;
(ii) If r = 1, then

w(tk):f)— =, k=1,2,---,p (6.16)

hence w(t) = (l/pa ]-/pv T ]-/p)T;

(iii) If » < 1, then w(tpy1) < w(te), k= 1,2,--- ,p—1, ie,, {w(tx)} is a strictly
monotonically decreasing sequence.

(4) Normal distribution based method (Xu and Yager, 2008): The normal distri-
bution is one of the most commonly observed and is the starting point for modeling
many natural processes. It is usually found in events that are aggregation of many
smaller, but independent random events.

The probability density function of a normally distributed variable x is defined as
follows:

g(x) = ! e o , —oo<x< oo (6.17)
V2o
where u is the mean and (o > 0) is the standard deviation.
We can utilize the normal distribution based method to determine the weight

vector of the time series {t;} (k=1,2,---,p) (Xu, 2005a):

1 _(k—115)2
w(ty) = Voo e * , k=1,2,,p (6.18)
P
where [ip is the mean of the collection of 1,2,--- ,p, and o, (o, > 0) is the standard
deviation of the collection of 1,2,---,p. [, and o, can be obtained by using the

following formulas respectively:

_Ip(l+p) 1+4p

[ 6.19

op = | L3 k= i) (6.20)
p k=1
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It follows from Eqgs.(6.4) and (6.18) that

7("*!’!21))2
e 20p
w(ty) = » G k=1,2,---,p (6.21)
e 2a§
k=1

According to Eq.(6.20), we have
(i) The weights w(tx)(k =1,2,---,p) are symmetrical, i.e.,

W(tk) = w(tlﬂ*lfk)a k= ]-7 23 Y 4 (622)

(11) (a) w(tk}) < Ld(t}ngl), k=1,---,round (1 ;]Q);

(b) If p is odd, then

1
w(ty) > w(tk+1), k =round ( —;—p) ,o D (6.23)

(c) If p is even, then

1
w(ty) > w(tkt1), Kk =round ( ;-p) +1,--,p (6.24)

where “round” is the usual round operation. In particular, if p is odd, and k =

1
round( 42—p>’ then the weight w(ty) reaches its maximum; if p is even, and k =

1 1
round ( —;—p) or 1+ round ( —;—p>’ then the weight w(tx) reaches its minimum.

Clearly, the normal distribution based method assigns the intermediate period the
maximal weight. Then the farther the period deviated from the intermediate period,
the smaller the weight assigned.

(5) Exponential distribution based method (Sadiq and Tesfamariam, 2007): The
exponential distribution is a memoryless continuous distribution. The exponential
distribution is often used to model the time between random arrivals of events that
occur at a constant average rate. The probability density function of an exponential
variable x is defined as follows:

glz)= _e i, >0 (6.25)

where [i is the mean time between failures.
To generate the weight vector w(t) using the probability density function of an
exponential distribution, Eq.(6.25) can be rewritten as follows:

1 ok
wlt) = e B, k=1,2,,p (6.26)
P
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where i, can be determined by Eq.(6.19).
According to Eqgs.(6.4) and (6.25), we have

e Fr
P )
_J
E e Fr

J=1

From Eq.(6.27), we know that {w(t;)} is a strictly monotonically decreasing se-

w(ty) = k=1,2,---,p (6.27)

quence, i.e., the larger k, the smaller the weight assigned to the period ty.
If we use the inverse form of exponential distribution to determine the weight
vector w(t), then

1
wity) = _ efr, k=1,2,--,p (6.28)
Hop
By Eqgs.(6.4) and (6.28), we have
err

p

J
D e
=1

where {w(tr)} is a strictly monotonically increasing sequence, i.e., the larger k, the

w(ty) = , k=1,2,---.p (6.29)

T

greater the weight assigned to the period ty.

Clearly, the weights generated by the exponential distribution based method are
similar to those generated by the BUM function based method.

(6) Poisson distribution based method (Xu, 2011): Poisson distribution, developed
by Poisson in 1837, is a discrete probability distribution for the counts of events that
occur randomly in a given interval of time (or space), which satisfies:

(i) The number of successes in two disjoint time intervals (or regions of space) is
independent;

(ii) The probability of a success during a small time interval or region of space is
proportional to the entire length of time interval or region of space.

Poisson distribution is most commonly used to model the number of random oc-
currences of some phenomenon in a specified unit of space or time. The formula for
Poisson probability density function is given by

k
P(z=k)= 2! e,

where z denotes the number of events in a given time interval, A is the shape parame-

A>0, k=0,1,2,-- (6.30)

ter, equal to the mean number of events in the given time interval, and e is the base of
the natural logarithm (e = 2.71828 - - -). Fig. 6.1 gives a graph of Poisson distribution
taking some special values of the parameter A:
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Fig. 6.1 A graph of Poisson distribution taking A =1, 3,5,7,9 (Xu, 2011)

The characteristics of the Poisson distribution (6.30) make it more suitable than
the other probability distributions to derive the weights of the time series (different
stages, or disjoint time intervals). As a result, by Eq.(6.30), we can develop a Poisson
distribution based method for determining the weight vector w(t) = (w(t1),w(t2),- -,
w(tp))T as follows:

e

w(tk) = L e A> 07 k= ]-127 D (63]‘)

Considering that the weight vector needs to satisfy the condition (6.4), we can
obtain, by Eq.(6.31):

wity) = - k!A A>0, k=1,2-,p (6.32)

[]=
> >
— T
(DI

>
(7=
=

k=1 k=1

Clearly, Eq.(6.32) has the following properties (Xu, 2011):

DIf0< X< 2, then w(tpyr) <w(ty), k=1,2,--- ,p—1, ie., {w(ty)} is a strictly
monotonically decreasing sequence;

@ If A > 2, then

(i) If X is a non-negative integer, then there exists an integer kg = int (\)(here,
“int” indicates the integral part of A), such that

(a) w(tps1) > w(ty) (B = 1,--- ko), Le, {w(ty)} (k = 1,--- ko) is a strictly
monotonically increasing sequence;

(b) w(tp+1) < w(ty) (k = ko, ,p— 1), Le, {w(sk)} (k = ko,---,p—1) is a
strictly monotonically decreasing sequence;

(ii) If A is a non-negative integer, there exist two integers kg = int (A) — 1 and
ko + 1, such that

(a) w(tps1) > w(ty) (B = 1,--- ko), Le, {w(ty)} (K = 1,--- ko) is a strictly
monotonically increasing sequence;
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(b) w(tho+1) = w(try);

() w(th1) <w(ty)(k=ko+1,---,p—1), ie, {w(tr)} (k=ko,---,p—1)isa
strictly monotonically decreasing sequence.

If we use the inverse form of Poisson distribution to determine the weight vector,

then
(ty) = 1 —k!eA A>0, k=1,2 (6.33)
Wk_Ak_)\_Ak7 ) — 4,4 y P .
k€

From Eqs.(6.4) and (6.33), we have

AN k!
Ak© Ab
wity) = = . A>0, k=1,2-,p (6.34)
N RN
POV D
k=1 k=1

Eq.(6.34) has the following properties (Xu, 2011):

D If0 < X< 2, then w(tpyr) > w(te), k=1,2,--- ,p—1,ie., {w(tg)} is a strictly
monotonically increasing sequence;

@ If A > 2, then

(i) If X is a non-negative integer, then there exists an integer ko = int (A\), such
that

(a) wtk+1) < wl(te) (B = 1,--- ko), Le., {w(tr)} (kK = 1,--- ko) is a strictly
monotonically decreasing sequence;

(b) w(tky1) > w(tr) (k= ko, -+ ,p—1), ie., {w(tr)} (k = ko, -+ ,p—1) is a strictly
monotonically increasing sequence;

(ii) If X is a non-negative integer, then there exist two integers ko = int (A) — 1
and ko + 1, such that

(a) wtk+1) < wl(tey) (B = 1,--- ko), Le., {w(tr)} (kK = 1,--- ko) is a strictly
monotonically decreasing sequence;

(b) wltkgt1) = w(tho);

(¢) wtkyr) > w(ty) (k=ko+1,---,p—1), ie, {w(te)} (k=ko,---,p—1)isa
strictly monotonically increasing sequence.

(7) Binomial distribution based method (Xu, 2007d): The binomial distribution
is one of the most commonly used probability distributions, which arises in many
practical situations, such as quality control, public opinion surveys, medical research,
and insurance problems. In statistics the binomial distribution describes the possible
number of times that a particular observation will succeed in a sequence of observa-
tions. The observation is binary, which may succeed or fail. The binomial distribution
is specified by the number of observations, p — 1, and the probability of occurrence,
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denoted by u. It is a discrete probability distribution:

Plz=k)=Ck ju"(1—u)’'"% k=0,1,2---,p—1, ue(0,1) (6.35)

of obtaining exactly k successes in p—1 observations, where P(z = k) is the probability
of exactly k successes, and C’;_l is a binomial coefficient with:
p—1)!
o= , k=012, ,p—1 6.36
P17 El(p—1— k) b (6.36)

The binomial distribution assumes that

(i) The number of observations p — 1 is fixed;

(ii) Each observation is independent;

(iii) Each observation represents one of two outcomes (“success” or “failure”);

(iv) The probability of “success” wu is the same in each observation.
It follows from Eq.(6.36) that

p—1 p—1
> Ple=k)=> Ch vl —wf " =u+1-upr =1 (6.37)
k=0 k=0

By Eq.(6.37), we can develop a binomial distribution based method to determine
the time series weights (Xu, 2007d):
W(tk) = C,;—luk(l _u)p_l_k7 k :071725"' D — 17 u € (031) (638)

which satisfies the condition (6.4).

In Fig. 6.2, we give a graph to show the time series weights derived by the bino-
mial distribution based method (6.38) taking p = 10 and some special values of the
parameter u:

0.40 T T T T T T

I e u=01 /EB\E
0.35F\ ——u=0.3 /

\ ——u=0.5 /

0.30

0.251
5 0.20f
0.15}
0.10f
0.05F

o

Fig. 6.2 Some special time series weights derived by the binomial distribution based
method (Xu, 2007d)
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In particular, if we take u = 1/2, then Eq.(6.38) can be transformed into the

following form:
k

Cr_
w(tk) = 2;:_117 k= Oa ]-727 Y Z 1 (639)

The time series weights w(tx) (K = 0,1,2,---,p — 1) derived from Eq.(6.39) has
the similar properties as those of the normal distribution based method:

(i) w(tg) (k=0,1,2,--- ,p— 1) are symmetry, i.e.,
w(ty) = w(tp—1-x), k=0,1,2,--- ,p—1 (6.40)

(ii) If p is odd, then

@ w(t) < wltin) (k=017 1))

(b) w(ty) > w(try1) (k:p;17... ,p—2>;

() w(t(p-1)/2) = max{w(tr)};
(iii) If p is even, then
P
() wits) <witrsr) (k=017 —2);

(b) w(ts) > w(trs1) (k — ?2? o 2>;

(¢) w(tpja—1) = wltp)2) = m,?x{w(tk)}.

(8) Average age method (Xu and Yager, 2008): We can associate with a set of
weights w(tx) (k=1,2,---,p) a concept of the average age of the data (Yager, 2008).
Assume that w(t1),w(t2), - ,w(tp) are the weights with ¢, being the most recent and
t; being the earliest. We can then calculate

E=> (p—kw(ts) (6.41)
k=1

where ¢ indicates the average age of the data. Note that for the BUM approach the
area under Z can be used to approximate t:

1
t=~(p— 1)/0 Z(x)dx (6.42)

More generally, we can obtain the weights by specifying a value for £ and then find
a set of weights that satisfies the following mathematical programming model for the
w(tr) (Xu and Yager, 2008):
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max

s.t.

(w(ti))”

(p = K)w(tr) = ¢

M= 1=

b
I
—

Mw

w(tk)zl, w(tk)20, k=1,2,---,p

~
Il
—

To solve this model, we can construct the Lagrange function:

P
L(w(t),1,52) =
k=1

(w(t))? — 2 (Z (b — Flte) - t) 2, (Zwuk) : 1)

k=1 k=1
(6.43)

where w(t) = (w(t1),w(t2), -+ ,w(ty))T, 1 and ¢z are the Lagrange multipliers.
Differentiating Eq.(6.43) with respect to w(tx) (K = 1,2,---,p), ¢1 and ¢, and
setting these partial derivatives equal to zero, the following set of equations are ob-

tained:
OL
OL

oL

Simplifying Eqgs.(6

Combining Eqs.(6.47)

Since

w(t),s1, u T
( E%)hq $2) _ 9 (,; (p— k)w(ty) — t) =0 (6.45)
(w(t),§1,§2) _ d _
D S (g_jlw(tk) - 1) =0 (6.46)
.44)—(6.46), we have
wty) =(p—k)s1 + < (6.47)

(p—kw(tr) =t (6.48)

M= I

wity) =1 (6.49)

~
Il

1

and (6.48), (6.47) and (6.49), we obtain

aY (p—kP+e) (p—k=t (6.50)
k=1 k=1
1 Z (p—Fk)+ep=1 (6.51)
k=1
d p—k)?= ép(p +1)(2p+1) — p? (6.52)

k=1
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and

S -k = plo-1) (6.5)

k=1
We get by solving Eqgs.(6.50) and (6.51):

12— 6(p — 1)

= - D)o+ 1) (654
_4p—-2-— 6t
@= (6.55)

Thus, it follows from Eq.(6.47) that

_(12t—6p+6)(p—k)+(dp—2-6t)(p—1) 1
wlte) = plp—1)(p+1) b bRe (650

Since w(ty) = 0, for all k, we have

(12 — 6p +6)(p — k) + (4p — 2 — 68)(p — 1)

207 k:1727"'7p 6.57
pp—1)(p+1) (657

ie,
Bp—6k+3)t>(p-1)(p—3k+1), k=12,---,p (6.58)
Thus,
DIE3p—6k+3=0 ie. k="T1 then BEq.(6.58) holds, for all T
P

1 B _
(i) It 3p — 6k +3 > 0, e, k < p; . then Ba.(6.58) holds, for £> 7 %

1 ~ op—1
(iii) If 3p — 6k + 3 < 0, e, k > p‘; , then Eq.(6.58) holds, for < 7 .

Therefore, we can obtain the weights w(ts) (kK = 1,2,---,p) by using Eq.(6.56)
with the following condition (Xu and Yager, 2008):

p;2<t’<2p3_1 (6.59)
If we let _
o) = (12t—6p+6)(pp(p—_x)1)—:p(ilfl—)2—65)(p— 1) (6.60)
then 12t — 6p + 6
7@ = - D+ 1) (6:61)
As a result,

2 p1
P <i<?

5 g then ¢’(x) > 0, i.e., g(x) is a strictly monotonic increasing



6.2 Dynamic Intuitionistic Fuzzy Multi-Attribute Decision Making 271

function.
_ -1
(ii) If t = b g then ¢’'(z) = 0, i.e., g(x) is a constant function.

-1 - 2p—1
(iii) If b 5 < t < p3 , then ¢'(z) < 0, ie., g(x) is a strictly monotonic

decreasing function.
Consequently, by Eq.(6.61), Xu and Yager (2008) get that

-2 _ -1
Q) 1 ? , <i< P 5 then w(tin) > wltn) (k= 1,2, ,p— 1), ie. {w(ta)}

is a monotonic increasing sequence. Also since
(12t—6p+6)(p— (k+1)+ (4p—2—6t)(p—1)
plp—1)(p+1)
(12— 6p+6)(p— k) + (4p—2—68)(p — 1)
plp—1(p+1)
(12t — 6p + 6)

- >0, k=1,2,---,p—1 6.62
plp—1)(p+ 1) (6.62)

then {w(tx)} is an increasing arithmetic sequence.

w(tkt1) —w(te) =

o op—1
(ii) Ift:p2 , then

_ (12t—6p+6)(p—k)+(Up—2—-6t)(p—1) 1 o
w(ty) = pp— D(p+1) = k=1,2,---,p (6.63)
Hence, w(t) = (1/p,1/p,---,1/p)T.

-1 _ 2p—-1
(i) T © , <i< P70 then w(tpsr) < w(tn) (k=1,2,-- ,p—1), ie., {w(ty)}
is a monotonic decreasing sequence. Similar to Eq.(6.62), we have w(tg+1) — w(tx) =
(12t — 6p + 6) . . . .
— <0(k=1,2,---,p—1). Thus, {w(tx)} is a decreasing arithmetic
pp—1p+1) <° - s, felt)) ;
sequence.

6.2 Dynamic Intuitionistic Fuzzy Multi-Attribute Decision
Making

In this section, we consider dynamic intuitionistic fuzzy multi-attribute decision mak-
ing problems where all the attribute values are expressed in IFNs, which are collected
at different periods of time. The following notations are used to depict the problems
(Xu and Yager, 2008):

e Y w and G are defined as in Section 1.3.

e There are p periods ty (kK =1,2,---,p), whose weight vector is w(t) = (w(t1),

p
w(ta), - ,w(ty))T, where w(ty) > 0(k=1,2,--- ,p) and > w(ty) = 1.
k=1
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o R'(tx) = (r};(tk))nxm: An intuitionistic fuzzy decision matrix of the period ty,
where r};(tr) = (ui;(tk), vi;(te), 7;(tx)) is an attribute value, denoted by an IFN,
,uij (tx) mdlcates the degree that the alternative Y; should satisfy the attribute G; at
the period tg, szj (tx) indicates the degree that the alternative Y; should not satisfy
the attribute G; at the period ¢z, and 7r§j (tx) indicates the degree of indeterminacy
of the alternative Y; to the attribute G;, such that

pij(te) € [0, 1], v (te) € [01], gy () + v (t) <1,

. . (6.64)
(tk)_l_ﬂz](tk)_y (tk?) i=12--,n, j=12,---,m

In cases where the attributes are of benefit and cost types, we can normalize
R'(tr) = (17 (tk))nxm into the intuitionistic fuzzy decision matrix R(tx) = (7 (tk))nxm,
where
v} (tg), for benefit attribute G,

T (k) = (wig (th), vij (tr), mij (tk)) = { v

7 (tg), for cost attribute Gj,
i=1,2,---,n; j=1,2,---,m (6.65)

and 77, (tx) is the complement of 77, (ty), i.e., 7, (tx) = (vi; (tk), pi; (tr), mi; (tr)).
Based on the above decision mformation, we now introduce a practical procedure
to rank and select the most desirable alternative(s) (Xu and Yager, 2008):
Step 1 Utilize the DIFWA operator:

73 =DIFWA 4y (135 (t1), 735 (2), -+, 135 ()

P p
:(1 =TT (@ = i )= H w) <,

k=1 k=1
P P
H (1= pij(t1)*™ = 11 (Vz‘j(tk))w(t"')> (6.66)
k=1 k=1
to aggregate all the intuitionistic fuzzy decision matrices R(tx) = (7 (tx))nxm (k =
1,2,---,p) into a complex intuitionistic fuzzy decision matrix R = (7i;)nxm, where
P P
rig = (wigovigy )y g = 1= [T (0= @), vy = T g))=®
k=1 k=1
P P
Tij = H (]‘ - /Llj(tk?))w“k) - H (Vij(tk))W(tk)ﬂ i= ]-327 1 J = ]-127 e,
k=1 k=1
Step 2 Define Y* = (af,a7,---,0;5)T and o= = (a],a5,-++,a;,,)T as the

intuitionistic fuzzy ideal solution (IFIS) and the intuitionistic fuzzy negative ideal
solution (IFNIS) respectively, where o = (1,0,0) (i = 1,2,--- ,m) are the m largest
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IFNs, and a; = (0,1,0) (¢ = 1,2,---,m) are the m smallest IFNs. Furthermore,
we denote the alternatives Y; (i = 1,2,---,n) by Y; = (1,72, ,7im) L (i =
1,2,---,n).

Step 3 Calculate the distance between the alternative Y; and the IFIS Y and
the distance between the alternative Y; and the IFNIS Y~ respectively:

d(Yi, Y) Zwy rij, Y, Z% i — 1| + |vig — O] + |mi; — 0])

1
9 ij(l Wij + Vi + 7sz)
j=1

w; (1 = pij) (6.67)

d(Y;,Y7) =Y wjd(rij,a ij (|tij — O] 4 |vij — 1| + |mi; — O])

1 m
9 > wi(l+ iy — vy + mig)
j=1

m

1
= QZWj(l—i—ulj vi; +1— ,u,ij—Vij)
j=1
1 m
=, D will—wy) (6.68)
j=1
where T‘Z'j = (/iij;Viijij) (Z = ].72,-“ , N j = ].,27“- ,m).

Step 4 Calculate the closeness coefficient of each alternative:

d(Y;,Y™)

V= v v vy yo)

i=1,2,-,n (6.69)

Since

Ms

d(Yi, YT) +d(Yi,Y7) = ) wi(l — pij) ij 1 —vy)

<.
Il
—

I
NE

Wj(Q — Mg — Vij)

<.
Il
—

I
NE

Wj(l +7T'ij) (670)

<.
Il
—
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Eq.(6.69) can be transformed as:

> wi(l—viy)
e(vi)="" L =120 (6.71)

ij(l + 771‘]‘)
7j=1

Step 5 Rank all the alternatives Y; (¢ = 1,2,--- ,n) according to the close-
ness coefficients ¢(Y;) (i = 1,2,--- ,n): the greater the value ¢(Y;), the better the
alternative Yj.

6.3 Uncertain Dynamic Intuitionistic Fuzzy Multi-Attribute
Decision Making

Similar to Definition 6.1.1, we introduce the concept of uncertain intuitionistic fuzzy
variable (or called interval-valued intuitionistic fuzzy variable):

Definition 6.3.1 (Xu and Yager, 2008) Let ¢t be a time variable. Then a(t) =
(A5 i) (P54 P [Th sy Tan)) s called an uncertain intuitionistic fuzzy vari-
able, where

[,&'g(t)a ﬂg(t)] C [Oa 1]3 [ﬂé(tﬁ ﬂ(g(t)] C [Oa 1]3 /:Lg(t) + ﬁg(t) <1

[ﬁ-é(tﬁ 7~Tg(t)] = [1 - /jg(t) - ﬁg(t)a 1- :&'g(t) - ﬁo%(t)] (6~72)
) be an uncertain intuitionistic

Let a(t) = ([A% ) faw) 75 )7 Dy [T Ta)]
1),G(t2), - ,a&(t,) denote p IVIFNs

fuzzy variable. If t = tq,t9,--- ,t,, then &(t
collected at p different periods.

Based on Eq.(6.72), Xu and Yager (2008) modify two operational laws of IVIFNs
defined in Section 2.2 as follows:
Definition 6.3.2 (Xu and Yager, 2008) Let a(t) = ([[‘Ié(tk)’ ,&g(tk)], [ﬂ{;(tk), ﬁg(tk)],
(75 1) Taen))) (K =1,2) be two IVIFNs. Then

(1) a(tr) ® alt2) = (5 ,) + gy — Aagen) ae) Baw) T Fa) — Baw) Pac))
L ~L  ~U ~U U “U  ~U
7560y Pa e Paten) Pateay b [ = G0 (L= BG(1)) = Paen) Pata)
(1 - /N‘]é(tl))(l - [Lg(tz)) - Dé(tl)ﬂé(h)]); (6‘73)
(2) Nai(t) = ([1 = (1= Al )M 1= (1= i M [P ) (78 )N,

[(1- ﬂU(tl))k - (Néf(tl)) (1- ,aL(tl))k - N{i(tl))A])v A>0. (6.74)

Definition 6.3.3 (Xu and Yager, 2008) Let a(t1), &(t2),---,a(t,) be a collec-
tion of IVIFNs collected at p different periods ¢ (k = 1,2,---,p), and w(t) =
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(w(t1),w(ta), - ,w(tp))" the weight vector of the time series {t;} (k = 1,2,---,p),
which can be obtained by the methods proposed in Section 6.1, with w(¢x) € [0, 1] (k =
P
1,2,---,p) and Zw(tk) = 1. Then we call
k=1

UDIFWA, 1 (@(0), @(t2), -+ . 6(t,)) = w(t)i(t) & w(t2)(te) & - & wlty)alt,)

(6.75)
an uncertain dynamic intuitionistic fuzzy weighted averaging (UDIFWA) operator,
which can be rewritten as follows:

UDIFWAw(t)(o?(t ) @lta), -+, a(ty))

P
H 1 - [ —ﬂw“’”] |

k=1 k=1

[H (ﬁ{i(tk))w(t"')’ H (ﬁg(tk))w(t"')] )
k=1

p

P
IT =il " = T[T,

k=1 k=1

[T —agq ) - H(’7§<tk))w(tk)D (6.76)

k=1 k=1

with the condition (6.4).

Below we consider dynamic intuitionistic fuzzy multi-attribute decision making
problems under interval uncertainty where all the attribute values are expressed in
IVIFNs, which are collected at different periods. The following notations are used to
depict the problems:

Let Y, G, w and w(t) be defined as in Section 6.2, and let R'(t;) = (735 (k) Jnxem
be an interval-valued intuitionistic fuzzy decision matrix of the period tx, where

7y (te) =(fii; (£, ~{](tzc) o (tk))

= ([} (), M” § ()], 725 (1), 735 (8],

(2 (1), 735 (60))) (6.77)
is an attribute value, denoted by an IVIFN, and [fi;}(x), fi;} (t)] indicates the un-
certain degree that the alternative Y; should satisfy the attribute G; at the period
t, [VZ] (tk), Vi Y(ty)] indicates the uncertain degree that the alternative Y; should not

satisfy the attribute G; at the period tx, and [7} (1), 7,7 (tx)] indicates the range of
indeterminacy of the alternative Y; to the attrlbute G, such that

(s (b, iy (8] € 0,1], [k (), 7Y (t)] € [0,1], Y (b)) + 7Y (8) < 1,
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[ (tk)ﬂ T4 (tk)] []' - ﬂzy (tk) - V (tk?) 1- [L;?(tk) - ﬁZI:‘](tk):L i= ]-727 1
j=1,2,---,m (6.78)

In cases where the attributes are of benefit and cost types, we can normalize
R'(ty) = (74 (tk))nxm into the interval-valued intuitionistic fuzzy decision matrix
R(tx) = (7ij (tk))nxm, where

} 5 } y 75 (t), for benefit attribute G
Tij(te) = (fij (th), Ui (tk), g (tk)) = =

r'i;(te), for cost attribute G, (6.79)
i:]-vza"'an; j:1727"'7m

and 7, ; () is the complement of 7 (¢x), i.e., ?gj(tk) = (0 (tr), i (b ), 735 (k)
Sumlar to Section 6.2, a procedure for solving the above problems can be described
as follows (Xu and Yager, 2008):
Step 1 Utilize the UDIFWA operator:

Tij ZUDIFWAw(t)(fij(fl) Fij(ta), - Tij(tp))
P
( H (1= figy (t)) ™)1 = [T (1= <tk>>w<tk->] ,

;- I

(tr)= ), H(ﬂ%(m))w@“] :

p
k

(1 500~ TT 500
k=1

p
(- e - [0} w“wD (6.80)

ﬁ:‘ i ::w

i~

1

to aggregate all the interval-valued intuitionistic fuzzy decision matrices R(tk) =
(Fij (te))nxm (K =1,2,---,p) into a complex interval-valued intuitionistic fuzzy de-
cision matrix R(ty) = (7ij(tk))nxm, Where 7y; = (5, gy (7, o) (7, 7)), 0 =
1,2+ ,m;j=1,2,--,m

Step 2 Define Y = (a],a4,--,a&5)T and Y~ = (& ,d85, - ,a;,)T as the
uncertain intuitionistic fuzzy ideal solution (UIFIS) and the uncertain intuitionistic
fuzzy negative ideal solution (UIFNIS) respectively, where &; = ([1, 1], [0, 0], [0, 0])
(¢ = 1,2,---,m) are the m largest IVIFNs, and &; = ([0,0],[1,1],[0,0]) (i =
1,2,---,m) are the m smallest IVIFNs. Moreover, denote the alternatives Y; (i =
1,2,---,n)as Y; = (Fi1,Fia, -+ »Tim) L, i =1,2,--- .

Step 3 Calculate the distance between the alternative Y; and the UIFIS YT and
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the distance between the alternative Y; and the UIFNIS Y~ respectively:

277

d(Y;, Y't) ij ij (1A% — 1]+ a5 — 1| + |75 — o + 7] — 0

+ |7Tij - 0|+ |7Tij - |)

L, U =L | =U
ZWJ (i + fiy) + 23 + Dy + 75 + 735

42% (f5 + ) + i + g + 1 = figg — U5 + 1 — i

=4 Z%‘[‘l = 275 + )]
jfl

ij ,U'z] + ,u'zg)]

m

}/uy Z sza

Jj=1

—_

1 _ _
42 |Nz3_0|+|/~%g_0|+|V1L}_1|+|V5_

+ |7Tij -0/ + |7Tij —0})

1 & L . y

j=1

1 m
:4ij[4_2(a}j+z>U ij (75 + 7))

ij 1/ N )]

where

Fij:([luzymum] [ z%’ﬁg] [7711;77?5])7 1=1,2,---,n; j=1,2,---

Step 4 Calculate the closeness coefficient of each alternative:

d(Y;,Y™)

V= v v vy yo)

i=1,2,-,n

Since

d(Y;, YT) +d(Yi, Y ™)

~L
ij

(6.81)

)

(6.82)

(6.83)
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i L = o
=, D wil2 = (g + )+, w2 — (7 + )]
j=1 j=1
1 & N R
=, D wil2 — (i + i) — (75 + 7))

:; iwj[z + (7L + 70)] (6.84)

vy =" . i=1,2,--,n (6.85)
> wil2 + (7 + 7))
j=1

Step 5 Rank all the alternatives Y; (i = 1,2,---,n) according to the close-
ness coefficients é(Y;) (i = 1,2,--- ,n): the greater the value ¢(Y;), the better the
alternative Yj.

Example 6.3.1 (Xu and Yager, 2008) Here we use a slightly revised version of
Example 4.4.1 to illustrate the decision making approaches developed above:

In order to prioritize these agroecological regions Y; (i = 1,2,---,7) with respect
to their comprehensive functions, a committee has been set up to provide assessment
information on the agroecological regions Y; (i = 1,2,---,7). The attributes which
are considered here in assessment of Y; (i = 1,2,---,7) are: O G is ecological benefit;
@ G4 is economic benefit; and ® Gj is social benefit. The committee evaluates the
performance of agroecological regions z; (i = 1,2,---,7) in the years 2004-2006 ac-
cording to the attributes G; (j = 1,2, 3) and constructs, respectively, the intuitionistic
fuzzy decision matrices R(tx) (k = 1,2,3, and t; denotes the year “2004”, ¢o the year
“2005”, and t3 the year “2006”), see Tables 6.1~6.3. Let w(t) = (1/6, 2/6, 3/6)T be

Table 6.1 Intuitionistic fuzzy decision matrix R(¢1) (Xu and Yager, 2008)

G1 Ga Gs
Yi (0.8,0.1,0.1) (0.9,0.1,0.0) (0.7,0.2,0.1)
Ya (0.7,0.3,0.0) (0.6,0.2,0.2) (0.6,0.1,0.3)
Ys (0.5,0.4,0.1) (0.7,0.3,0.0) (0.6,0.1,0.3)
Y (0.9,0.1,0.0) (0.7,0.1,0.2) (0.8,0.2,0.0)
Ys (0.6,0.1,0.3) (0.8,0.2,0.0) (0.5,0.1,0.4)
Yo (0.3,0.6,0.1) (0.5,0.4,0.0) (0.4,0.5,0.1)
Yr (0.5,0.2,0.3) (0.4,0.6,0.0) (0.5,0.5,0.0)
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Table 6.2 Intuitionistic fuzzy decision matrix R(t2) (Xu and Yager, 2008)

Y1
Ys
Y3
Yy
Y5
Ys
Y7

G1
0.9,0.1,0.0)

(

(0.8,0.2,0.0)
(0.5,0.5,0.0)
(0.9,0.1,0.0)
(0.5,0.2,0.3)
(0.4,0.6,0.0)
(0.3,0.5,0.2)

Ga
0.8,0.2,0.0

( )
(0.5,0.1,0.4)
(0.7,0.2,0.1)
(0.9,0.1,0.0)
(0.6,0.3,0.1)
(0.3,0.4,0.3)
(0.5,0.3,0.2)

G3
(0.8,0.1,0.1

)
(0.7,0.2,0.1)
(0.8,0.2,0.0)
(0.7,0.3,0.0)
(0.6,0.2,0.2)
(0.5,0.5,0.0)
(0.6,0.4,0.0)

Table 6.3 Intuitionistic fuzzy decision matrix R(t3) (Xu and Yager, 2008)

Y
Yo
Y3
Yy
Y5
Ys
Y7

G
0.7,0.1,0.2)

(

(0.9,0.1,0.0)
(0.4,0.5,0.1)
(0.8,0.1,0.1)
(0.6,0.3,0.1)
(0.2,0.7,0.1)
(0.4,0.6,0.0)

Go2
0.9,0.1,0.0

( )
(0.6,0.2,0.2)
(0.8,0.1,0.1)
(0.7,0.2,0.1)
(0.8,0.2,0.0)
(0.5,0.1,0.4)
(0.7,0.3,0.0)

G3
(0.9,0.1,0.0

)
(0.5,0.2,0.3)
(0.7,0.1,0.2)
(0.9,0.1,0.0)
(0.7,0.2,0.1)
(0.3,0.1,0.6)
(0.5,0.5,0.0)
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the weight vector of the years ¢, (k = 1,2,3), and w = (0.3, 0.4, 0.3)T the weight

vector of the attributes G; (j = 1,2, 3).

Since all the attributes G; (j = 1,2, 3) are of benefit type, normalization is not

needed. Now we utilize the approach introduced in Section 6.3 to prioritize these

agroecological regions:
Step 1 Utilize the DIFWA operator (6.2) to aggregate all the intuitionistic fuzzy
decision matrices R(tx) (k = 1,2, 3) into a complex intuitionistic fuzzy decision matrix

R (Table 6.4):

Table 6.4 Complex intuitionistic fuzzy decision matrix R (Xu and Yager, 2008)

Y1
Yo
Y3
Ya
Y5
Ys
Y7

G1
0.806,0.100,0.094

( )
(0.849,0.151,0.066)
(0.452,0.482,0.066)
(0.859,0.100,0.041)
(0.569,0.218,0.213)
(0.289,0.648,0.063)
(0.387,0.470,0.143)

G2
0.874,0.126,0.000

( )
(0.569,0.159,0.272)
(0.755,0.151,0.094)
(0.792,0.141,0.067)
(0.748,0.229,0.023)
(0.441,0.200,0.359)
(0.601,0.337,0.062)

G3
0.849,0.112,0.039

( )
(0.594,0.214,0.192)
(0.725,0.126,0.149)
(0.838,0.162,0.000)
(0.640,0.178,0.182)
(0.390,0.224,0.383)
(0.536,0.464,0.000)
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Step 2 Denote the IFIS Y+, IFNIS Y ~, and the alternatives ¥; (i = 1,2,---,7)

by
=((1,0,0),(1,0,0),(1,0,0)T, Y~ =((0,1,0),(0,1,0),(0,1,0))T
= ((0.806,0.100,0.094), (0.874, 0.126,0.000), (0.849, 0.112,0.039))"
= ((0.849,0.151,0.000), (0.569, 0.159, 0.272), (0.594, 0.214, 0.192))*
= ((0.452,0.482,0.066), (0.755,0.151,0.094), (0.725,0.126, 0.149)) T
= ((0.859,0.100,0.041), (0.792, 0.141,0.067), (0.838, 0.162, 0.000)) ™
= ((0.569,0.218,0.213), (0.748, 0.229, 0.023), (0.640, 0.178,0.182)) "
= ((0.289,0.648,0.063), (0.441, 0.200, 0.359), (0.390, 0.224, 0.386)) T
= ((0.387,0.470,0.143), (0.601, 0.337, 0.062), (0.536, 0.464, 0.000)) T

and utilize Eq.(6.71) to calculate the closeness coefficient of each alternative:
c(Y1) =0.852, ¢(Y2) =0.709, ¢(Y3)=0.687, c(Ys)=0.833

c(Ys) = 0.700, ¢(Yg) =0.515, c(Y7) = 0.548

Step 3 Rank all the alternatives Y; (i = 1,2,---,7) according to the closeness
coefficients ¢(Y;) (i =1,2,---,7):

Yi=-Yis=-Yo Y5 =-Ys=-Y: =Y

Thus the agroecological region with the most comprehensive functions is Wuhan-
Ezhou-Huanggang.

The committee can also evaluate the performance of agroecological regions Y; (i =
1,2,---,7) in the years 2004-2006 according to the attributes G; (j = 1,2,3) and
construct, respectively, the interval-valued intuitionistic fuzzy decision matrices R(ty)
(k=1,2,3) as listed in Tables 6.5-6.7:

Table 6.5 Interval-valued intuitionistic fuzzy decision matrix R(¢1) (Xu and Yager, 2008)

G1 Ga Gs

Y1 ([0.8, 0.9], [0.0, 0.1], [0.0, 0.2]) (]0.7, 0.8], [0.1, 0.2], [0.0, 0.2]) ([0.6, 0.8], [0.0, 0.2], [0.0, 0.4])
Yy ([0.6, 0.7], [0.2, 0.3], [0.0, 0.2]) ([0.5, 0.7], [0.2, 0.3], [0.0, 0.3]) ([0.5, 0.6], [0.2, 0.3], [0.1, 0.3])
Ys ([0.4, 0.5], [0.2, 0.4], [0.1, 0.4]) ([0.5, 0.6], [0.2, 0.3], [0.1, 0.3]) ([0.4, 0.6], [0.1, 0.2], [0.2, 0.5])
Yy ([0.7, 0.8], [0.1, 0.2], [0.0, 0.2]) (]0.6, 0.8], [0.0, 0.1], [0.1, 0.4]) ([0.6, 0.7], [0.1, 0.2], [0.1, 0.3])
Ys ([0.5, 0.7], [0.1, 0.3], [0.0, 0.4]) ([0.7, 0.8], [0.1, 0.2], [0.0, 0.2]) ([0.4, 0.5], [0.2, 0.4], [0.1, 0.4])
Ys ([0.2, 0.3], [0.5, 0.6], [0.1, 0.3]) ([0.3, 0.5], [0.4, 0.5], [0.0, 0.3]) ([0.4, 0.6], [0.3, 0.4], [0.0, 0.3])
( ], [ [ ) ( 1, [ D ([ 10 1)

Ys ([0.4, 0.5], [0.3, 0.4], [0.1, 0.3]) ([0.2, 0.5], [0.3, 0.5], [0.0, 0.5]) ([0.4, 0.7], [0.2, 0.3], [0.0, 0.4
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Table 6.6 Interval-valued intuitionistic fuzzy decision matrix R(t2) (Xu and Yager, 2008)

Yy
Y>
Y3
Yy
Y5
Ye
Y7

G1
0.7, 0.8], [0.1, 0.2], [0.0, 0.2]

( ], [ [ )
([0.5, 0.7], [0.1, 0.2], [0.1, 0.4])
(j0.3, 0.5], [0.1, 0.3], [0.2, 0.6])
(j0.6, 0.7], [0.1, 0.2], [0.1, 0.3])
([0.5, 0.7, [0.2, 0.3], [0.0, 0.3])
([0.3, 0.4], [0.4, 0.6], [0.0, 0.3])
(j0.3, 0.5], [0.3, 0.5], [0.0, 0.4])

G2
0.8, 0.9], [0.0, 0.1], [0.0, 0.2

( ], [ 1)
([0.6, 0.7], [0.1, 0.3], [0.0, 0.3])
(j0.4, 0.5], [0.1, 0.3], [0.2, 0.5])
(j0.7, 0.8], [0.1, 0.2], [0.0, 0.2])
([0.5, 0.7, [0.1, 0.3], [0.0, 0.4])
([0.2, 0.4], [0.5, 0.6], [0.0, 0.3])
(j0.4, 0.6], [0.3, 0.4], [0.0, 0.3])

G3
0.7, 0.9], [0.0, 0.1], [0.0, 0.3

(I ], [ 1)
([0.4, 0.5], [0.2, 0.4], [0.1, 0.4])
([0.3, 0.6], [0.3, 0.4], [0.0, 0.4])
([0.5, 0.7], [0.1, 0.3], [0.0, 0.4])
([0.4, 0.6], [0.2, 0.3], [0.1, 0.4])
([0.4, 0.5], [0.4, 0.5], [0.0, 0.2])
([0.4, 0.5], [0.2, 0.4], [0.1, 0.4])

Table 6.7 Interval-valued intuitionistic fuzzy decision matrix R(t3) (Xu and Yager, 2008)

Y;
Yo
Y3
Yy
Y5
Yo
Y7

G1
0.6, 0.7], [0.1, 0.3], [0.0, 0.3]

( ] [ [ )
([0.4, 0.6], [0.1, 0.2], [0.2, 0.5])
(0.2, 0.4], [0.2, 0.3], [0.3, 0.6])
(j0.7, 0.8], [0.0, 0.1], [0.1, 0.3])
([0.5, 0.6], [0.2, 0.3], [0.1, 0.3])
([0.2, 0.3], [0.5, 0.6], [0.1, 0.3])
([0.5, 0.6], [0.3, 0.4], [0.0, 0.2])

these agroecological regions.

G2
0.7, 0.9], [0.0, 0.1], [0.0, 0.3

( ], [ 1)
([0.5, 0.7], [0.1, 0.2], [0.1, 0.4])
(0.3, 0.6], [0.2, 0.3], [0.1, 0.5])
(j0.8, 0.9], [0.0, 0.1], [0.0, 0.2])
(j0.4, 0.5], [0.1, 0.2], [0.3, 0.5])
(0.3, 0.5], [0.3, 0.4], [0.1, 0.4])
(0.2, 0.3], [0.4, 0.5], [0.2, 0.4])

Gs
0.8, 0.9], [0.0, 0.1], [0.0, 0.2

(I ], [ 1)
([0.6, 0.7], [0.1, 0.3], [0.0, 0.3])
([0.4, 0.6], [0.2, 0.4], [0.0, 0.4])
(j0.4, 0.7], [0.2, 0.3], [0.0, 0.4])
([0.6, 0.7], [0.2, 0.3], [0.0, 0.2])
(0.3, 0.6], [0.2, 0.4], [0.0, 0.5])
([0.7, 0.8], [0.1, 0.2], [0.0, 0.2])

In such a case, we can utilize the approach introduced in Section 6.3 to prioritize

To do so, we first utilize the UDIFWA operator (6.80) to aggregate all the interval-

valued intuitionistic fuzzy decision matrices R(ty) (k = 1,2, 3) into a complex interval-

valued intuitionistic fuzzy decision matrix R:

Table 6.8 Complex interval-valued intuitionistic fuzzy decision matrix R (Xu and Yager,

Yy

Y

Y3

Y

Ys

Ys

Y7

G1
([0.676, 0.782], [0, 0.218],
[0.000, 0.324])
([0.472, 0.654], [0.112, 0.214],
[0.132, 0.416))
([0.271, 0.452], [0.159, 0.315],
[0.233, 0.570])
([0.670, 0.771], [0, 0.141],
[0.088, 0.330])
([0.500, 0.654], [0.178, 0.300],
[0.046, 0.322))
([0.235, 0.335], [0.464, 0.600],
[0.065, 0.301])
([0.423, 0.553], [0.300, 0.431],
[0.016, 0.277))

2008)

G2
([0.738, 0.888], [0, 0.112],
[0.000, 0.262))
([0.536, 0.700], [0.112, 0.245],
[0.055, 0352])
([0.371, 0.569], [0.159, 0.300],
0.131, 0.470])
([0.743, 0.859], [0, 0.126],
0.015, 0.257))
(0.497, 0.638], [0.100, 0.229],
0.333, 0.403])
([0.268, 0.469], [0.373, 0.475],
[0.056, 0.359])
([0.273, 0.450], [0.346, 0.464],
[0.086, 0.381])

G3
([0.743, 0.888], [0, 0.112],
[0.000, 0.257])
([0.525, 0.627], [0.141, 0.330],
[0.043, 0.334])
([0.368, 0.600], [0.204, 0.356],
[0.044, 0.428])
([0.472, 0.700], [0.141, 0.280],
[0.020, 0.387])
([0.510, 0.640], [0.200, 0.315],
[0.045, 0.290])
([0.352, 0.569], [0.270, 0.431],
[0.000, 0.378])
([0.576, 0.710], [0.141, 0.270],
[0.020, 0.283])
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and then denote the UIFIS YT, UIFNIS Y ~, and the alternatives ¥; (i = 1,2,---,7)
by

Y-‘r
Y™

(([1,1],[0,0], [0,0]), ([1, 1], [0, 0], [0, 0]), ([1,1], [0, 0], [0, 0] ))*

(([0,0], [1, 1, [0,0]), ([0, 0], [1, 1], [0, 0)), ([0, 0], [1, 1], [0, 0]))*
(([0.676,0.782], [0.000, 0.218], [0.000, 0.324]), ([0.738, 0.888],

0.000,0.112], [0.000, 0.262]), ([0.743, 0.888], [0.000, 0.112], [0.000, 0.257]))™
([0.472,0.654], [0.112, 0.214], [0.132, 0.416]), ([0.536, 0.700], [0.112, 0.245],
055, 0.352]), ([0.525, 0.627], [0.141,0.330], [0.043, 0.334])) ™
([0.271,0.452], [0.159, 0.315], [0.233, 0.570]),

71,0.569], [0.159, 0.300], [0.131, 0.470
68,0.600], [0.204, 0.356], [0.044, 0.428

[0
[

, )
[ i ), ([0.743,0.859], [0.000, 0.126],

0.015,0.257)), ([0.472, 0.700], [0.141, 0.280], [0.020, 0.387)))T
([0.500,0.654], [0.178,0.300], [0.046, 0.322]), ((0.497, 0.638], [0.100, 0.229],
0.333,0.403)), ([0.510, 0.640], [0.200, 0.315], [0.045, 0.290]))T
(([0.235,0.335], [0.464, 0.600], [0.065, 0.301]), ([0.268, 0.469), [0.373, 0.475],
0. [ Al ]
( [ 1 ]
[0 Al ]

[
(

[0

(
([0.3 D
([0-3 D
=(([0.670,0.771], [0.000, 0.141], [0.088, 0.330
[

=(

[

[0.056, 0.359]), ([0.352, 0.569], [0.270, 0.431], [0.000, 0.378]))™
=(([0.423,0.553], [0.300, 0.431], [0.016, 0.277]), ([0.273, 0.450], [0.346, 0.464],
0.086, 0.381]), ([0.576, 0.710], [0.141,0.270], [0.020, 0.283]))™

By Eq.(6.85), we can calculate the closeness coefficient of each alternative as fol-
lows:
é(Y1) =0.814, ¢(Y2) =0.663, ¢&(Ys) =0.574, ¢&(Ya) =0.794

&(Ys) = 0.627, &(Yg) =0.474, &(Y7) = 0.564

and rank all the alternatives Y; (i = 1,2,---,7) according to the values ¢(Y;) (i =
1,2, ,7):
Yi=-Yis =Yoo Y5 -Ys=-Y; =Y

Thereby, the best alternative is also ¥; (Wuhan-Ezhou-Huanggang).
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Chapter 7

Nonlinear Optimization Models for
Multi-Attribute Group Decision Making
with Intuitionistic Fuzzy Information

Xu and Cai (2010) investigate multi-attribute group decision making problems in
which the attribute values provided by experts are expressed in IFNs. FEach of the
attributes is composed of a membership degree, a non-membership degree, and an
indeterminancy degree, and the weight information about both the experts and the
attributes is to be determined. They first unify different types of attribute values so
as to facilitate inter-attribute comparisons, and employ the simple additive weighting
method to fuse all the individual opinions into the group one. They then develop
two nonlinear optimization models, one minimizing the divergence between each in-
dividual opinion and the group one, and the other minimizing the divergence among
the individual opinions, from which two exact formulas can be obtained to derive the
weights of experts. To maximize group consensus, they establish a nonlinear opti-
mization model based on all the individual intuitionistic fuzzy decision matrices to
determine the weights of attributes. The simple additive weighting method is used to
aggregate all the intuitionistic fuzzy attribute values corresponding to each alterna-
tive, and then the score function and the accuracy function are employed to rank and
select the given alternatives. Moreover, they extend all the above results to interval
intuitionistic fuzzy situations, and apply the models developed to an air-condition
system selection problem.

7.1 Nonlinear Optimization Models for Determining Decision
Makers’ Weights

Definition 7.1.1 (Xu and Cai, 2010) Let a1 = (fay s Var s Taq ) a0d a2 = (Has, Vas,
Tasy) be two IFNs. Then

d(alﬂ 042) = (:u‘Oél - /J“az)Q + (Va1 - Va2)2 + (ﬂ—al - 7T0¢2)2 (71)

is called the square deviation between a; and as:



286 Chapter 7 Nonlinear Optimization Models for Multi-Attribute Group...

If we take the weight of each IFN into account, then it follows from Eq.(7.1) that
d(wiar,wa0n) = (W1 fta, — Waltay)? + (W1la, — Wolay)? + (01T, — waTa,)?  (7.2)

which is called the weighted square deviation between a; and as, where w; and ws
are the weights of a; and ag, respectively, w = (wy,w2)T, w; € [0,1], i = 1,2, and
w1+ we =1.

In the decision making field, IFNs are a very useful tool used by experts to depict
their fuzzy preference information over objects. Now, we consider the group decision
making problem with intuitionistic fuzzy information, which can be briefly described
as follows (Xu and Cai, 2010):

Let Y,G,w, E and £ be defined as in Section 1.3, where w and & are to be de-
termined. Experts (decision makers) E € E (k= 1,2,---,1) are invited to provide
their assessment information on the alternatives Y; € Y (i = 1,2,--- ,n) with respect
to the attributes G; € G (j = 1,2,--- 7m)7 and construct ! intuitionistic fuzzy de-
cision matrices R) = (T’;J(k))nxm (k= 1 2,-+- 1), where r(k) = ( i ,fl(k) T ) is an
attribute value, donated by an IFN, t ) indicates the degree that the alternative Y;
should satisfy the attribute G expressed by the expert Ey, f () indicates the degree
that the alternative Y; should not satisfy the attribute G; expressed by the expert
FEj, and ijk ) indicates the indeterminacy degree of the alternative Y; to the attribute
G, such that

k k k k k k k
7':1727""”; j:1727"'7n

If all the attributes G;(j = 1,2,---,m) are of the same type, then the at-
tribute values do not need normalization. In the case where there are benefit at-
tributes and cost attributes in multi-attribute decision making, we may transform
the attribute values of cost type into the attribute values of benefit type. Then

. = (r;g»k))nxm (k =1,2,---,1) are transformed into the intuitionistic fuzzy deci-
sion matrices Ry = (rgc))nxm (k=1,2,---,1), where

"(k) :
) _ ( k) ) w(k)) r;; » for benefit attribute Gy,
i Heij™s Vij s Tij ' (k)

Tij s for cost attribute Gy,
7;:1’27...777,; k:1’27...’l (74)
and f/(k) is the complement ofr;;k), ie., F;]( ) = (tgf), f(k), T ), 7rg-€) = 1—/12(-;) Z(Jk)

t<k> £,
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Based on Eq.(7.4), Xu and Cai (2010) introduce the weighted square deviation
between each pair of the individual intuitionistic fuzzy decision matrices (R, Rs) as:

d(&x Ry, € Ry) ZZ (&n = &nl)? + (@) — &) + (Gery) — €n)?)
i=1 j=1
(7.5)
If we consider the weighted square deviations among all pairs of the individual
intuitionistic fuzzy decision matrices, then from Eq.(7.5), we can define

l l
Z > d(& Ry, &Ry)

k=1 s=1,s#k
l l

—

I
NE
NE

k

Il
-

1=1,k#s i=1 j=1

((6ny = &nl)? + @y — &) + (@ry) —&r$)?)  (76)
In the case where all the individual weighted intuitionistic fuzzy decision matrices

Ry = (r Uk))nxm (k=1,2,---,s) are the same, it is obvious that the group is of high

consensus. Nevertheless, in actual applications this case generally does not occur since

the experts may have different experiences and specialties. Consequently, we construct

the following nonlinear optimization model so as to make the group consensus as high

as possible (Xu and Cai, 2010):
(M-7.1)

l l n m
min f(§) =miny> > 3°H
() = &)+ (rlf) — i) + (6mly) — eam())?)
st. & el0,1], k=1,2,--- 1, ngzl

k=1

Below we employ the Lagrange multiplier technique to solve the model (M-7.1).
The Lagrange function can be written as:

l l n m
L&)=Y, > ZZ((&W — &) + (&)
— &)+ (Gl — ) ) 2 (Z&—l) (7.7)

where ¢ is the Lagrange multiplier.
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Differentiating Eq.(7.7) with respect to & (k = 1,2, - ,1) and setting these partial
derivatives equal to zero, the following set of equations are obtained:
l

2
Lagi =2 ) ZZ ( (Gnly) = oy iy + Gy

s=1,k#s i=1 j=1
— &V, (S)) Vij (gkﬂ'(k) &sr (S)) I(Jk)> 26=0, k=1,2,---.I (78)

which can be simplified as:

(- (2y (W2 + 052+ @5)?) | &

Z (51(;)51(;6) + VZ.(;)I/i(JI»C) + WE;)WZ(?)> & —5=0,

k=1,2,---,1 (7.9)
Eq.(7.9) can be rewritten in the matrix form as follows:
D¢ —ce=0 (7.10)
where e = (1,1,---,1)T and
1 1 1
=1 [ oD ()2 + w5+ =)?)
i=1 j=1
-3 (Mff)ugj) + 2D 47D (}))

l l l
_ZZ(MZ(J)MEJ)+V() ()+7r() I(Jl))

=1 j=1
_Zz(ug;)ugj)Jr 1) ()+7T<1)7T1(]2))
i=1 j=1
* — 2 2 2
=D | 23 (W) + w2+ )2
i=1 j=1

l l l
IS (D o )
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m

1 1) (1 l
_ZZQ‘EJ)MJ v ()+7T( )W()>
=1 j=1
2 2
_ZZO‘EJ)MJ Dy 4 72 )W()>
=15=1 (7.11)

=0 | N (@2 + w2+ =9)?)
1j5=1

1=

Obviously, from Eq.(7.11), the determinant of the matrix D is zero if and only

if R = (rgc))nxm (k=1,2,---,1) are proportional to one another. In this case, it
follows from Eq.(7.3) that all Ry = (r\ )uxm (k = 1,2, 1) are the same. Thus,
it is reasonable to assign the experts Ey (k= 1,2, -- 1) with the same weights, i.e.,

€= (1/1,1/1,--- ,1/1)T. In real situations it is very unlikely that all the different

individuals’ intuitionistic fuzzy decision matrices would be the same. Consequently,
1

D is positive definite and invertible. Also, noting Z{k =1 can be rewritten as:
k=1

efe=1 (7.12)

Then, solving Egs.(7.10) and (7.12), we get

1
g = eTDfle (7.13)
and D1
e
= 7.14
€= 1p1, (7.14)

Since D is a positive definite matrix, eTD~'e > 0 and D~! is nonnegative. Thus,
£>0,ie, & €[0,1] (k=1,2,---,1).

In what follows, we give another similar method for deriving the weights of the
experts Ey (k=1,2,---,1) from the angle of minimizing the divergence between each
individual opinion and the group one:

In order to get the group opinion, we aggregate all the individual intuitionistic
fuzzy decision matrices Ry = (rgc))nxm (k=1,2,---,1) into the collective decision
matrix R = (i )nxm, Where 755 = (tij, vij, mij), 1 = 1,2,--- ,n; 7 =1,2,--- ,m, and

l l l

k k k

g =Y Gty vig = G, my= G
k=1 k=1 k=

foralli=1,2,---,n; j=1,2,---,m (7.15)



290 Chapter 7 Nonlinear Optimization Models for Multi-Attribute Group...

Clearly, all r;; (¢ = 1,2,---,n; j = 1,2,---,m) are IFNs, and thus R is an
intuitionistic fuzzy decision matrix.

Based on Eq.(7.2), we define the square deviation between each individual in-
tuitionistic fuzzy decision matrix Ry and the collective intuitionistic fuzzy decision
matrix R as:

(£

=1 j=1

! 2
+ vf?—Z@vf?) +<7r§§-“> ng <5>> ) (7.16)
s=1

from which we can define the square deviations among all the individual intuitionistic
fuzzy decision matrices Ry, (k = 1,2,--- 1) and the collective intuitionistic fuzzy
decision matrix R as:

! I n m l 2
f& =S drn, R =%} ((uﬂ“ Zﬁsu5§)>
1 j s=1
< (k) Zfs (s)) i <7r(k> Zgg <5>> ) (7.17)

In group decision making, a desirable decision result should be reached with a high
group consensus. Consequently, we establish the following nonlinear optimization
model (Xu and Cai, 2010):

(M-7.2)

min f (¢ niii((ﬂm Zﬁs%)Q

k=11i=1 j=1

1 2 1 2
k s k 2 : s
+ <Vi(j) - fsVi(j)> + <7Tz(j) - fsﬂgj)> )
s=1 s=1

l
st &Ge0,1], k=121, Y &=1

k=1
The solution to the this model can be derived as follows:
Q_le (1 — eTQ_1T>
eTN-1e
which is the weight vector of the experts Fy (k= 1,2,--- 1), where

n m 1
TZ(ZZZ(@(%U 4O 1 a D),

i=1 j=1 k=1

€= + 07 (7.18)
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M=
KMS
MN

<
Il
-
<
Il
-
~
Il
-

(K02 + o0 D72 o

l

[M]=
AMS

©
Il
-
<
I
-
=~
Il
-

T

and

51 (D) 4 0,6 4 1 (D6)
ZZZ<’U'1J Mig- T Vig Vi T T )
j{:l(ug)u$)4—v5) f>4_ﬁ<>ﬂ<>>

3o ()" ()" (7))

2 2 2
S 3 () A )

NE
NE

l@&mg+ym()+ﬁnuv

©
Il
-
AN
I
-

NE
NE

l (ﬂﬁf)uﬁj) + 1/(2) ( ) + 7r(2) Z(Jl)) (7.20)

()" () + ()

1 Ix1

©
Il
-
AN
I
-

3

M

o
Il

where 2 is a positive definite matrix, and eTR1e>0.

In what follows, we further investigate the approach to determining the weight
vector w = (w1, wa,++ ,wm) T of the attributes G, (j =1,2,--+ ,m);

In cases where the expert Ej’s opinion is consistent with the group opinion, the
individual intuitionistic fuzzy decision matrix Rj should be equal to the collective
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intuitionistic fuzzy decision matrix R, i.e, ’I“Z(Jk) =1y, for all i = 1,2,--- ,n; j =
1,2,---,m. By Eq.(7.15), we have
(s) (k) (s)
;) Z’ieuw : ng iy s Z&
(7.21)

foralli=1,2,---,n; j=1,2,---,m

Noting that each attribute G; has its own importance weight w;, we can express

the weighted form of Eq.(7.21) as:

l
s k s
E wggg () Wjﬂ'gj) = E wjfsﬂ'gj),
s=1

w]lu'lj § :w]£91u1j ’ WiV, 1] 1] ’

foralli=1,2,---,n; j=1,2,--- ,m (7.22)

However, Eq.(7.22) generally does not hold because the experts may have different
; (k)
' as:
ij

b
experiences and specialties. Consequently, we introduce a deviation variable e

2 1 2
k y ;
Z(J) = <w]'u'lj ijgsliu ) <wﬂ Vij ijfg Vij > < jﬂgj)_zwj&m(j))
s=1
2 1 2 2
(uff) Z&@?) <Z.‘>_Z§su§j> < Zﬁs (5)> w;

s=1
com (7.23)

forall k=1,2,---,;i=1,2,---,n; j=1,2,--

and construct a deviation function:

l n m
ew) =333 e

k=11=1 j=1

l n m 2
TS (- et
l 2 ! 2
s k s
+ (fo) —Zéwfﬁ) + <w§j) —Zésﬂj)) )wj? (7.24)
s=1 s=1

In order to reach a desirable decision result with as high group consensus as
possible, we establish the following nonlinear optimization model (Xu and Cai, 2010):
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(M-7.3)
l n m 2
mincto) = min "33 ( (1)~ Yea |
k=1i=1 j=1
! 2 ?
+ <u§f> —nguﬁ)) + (ij > & w) )
s=1
st. w;€[0,1], j=1,2,---,m, ij =1
j=1

In the following, we utilize the Lagrange multiplier technique to solve the model
(M-7.3). We first introduce the Lagrange function:

I n m l 2 l 2
k s k s
b =35 ([ - ety ) + (- Tt
= s=1 s=1

k=1i=1 j=1

< ng (5)> )w?—Qg iwj -1 (7.25)

where ¢ is the Lagrange multiplier.

oL
Letting a(w <) =0, forall j =1,2,---,m, we get the following set of equations:

aL (w; ) zzii < (um 255“27 )2

k=1 1i=1

2 2
(St + (-6 oo

s=1
ji=12,---'m (7.26)
which can be simplified as:

>y ( (um Z&ME?)Q

k=111=1

l 2 ! 2
N <V;;> _zgsyg;>> s (ﬂ? _ngﬁ;y) >wj o
s=1 s=1

i=1,2,-,m (7.27)
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S

l n 2 s 2 l
5 (ugﬂ Z&uﬁ?) <v§f>—25zv§f>> +(w$f>—zfssw£?)
=1 s=1

i—1

2 )

a~
Il
-
-

J=12,--.m (7.28)

Since ij =1, from Eq.(7.28), we can obtain
j=1

S 1
j; I n ! 2 ! 2
5 (o) (4 Set)
s=1 s=1

k=1i=1

(w Z& )

(7.29)
Thus, by Eqgs.(7.28) and (7.29), we have

1
1

l n 2 5
> <<u5f> ngu@) +<u§’“) ZEM”) +<’f§k> ngﬂ@)) )

I

Il
-

J

k=11i=

1
n 2 2 2
2( (-2 ) + (-3 ety) 40 st@))

k=1j=1

E]

ji=12-- 'm (7.30)
Based on the collective decision matrix R = (7i;)nxm and the weight vector w
of the attributes G, (j = 1,2,---,m), we can utilize the simple additive weighting

method to get the overall IFN r; = (u;, v, ;) corresponding to each alternative Y;,
where

m m l m m l
Wi = ijuij = Z ijﬁkuz(-f)7 v = ijVij = Z ijfkw(f)
j=1 G=1 k=1 j=1

j=1k=1

m l

= wimy = i ijgk% , i=1,2,--.n (7.31)

j=1 j=1k=1

Then, we need to rank the IFNs r; = (u;, vi,m;) (¢ = 1,2,--- ;n). This is described
as follows:

We first calculate the scores s(r;) (i = 1,2,---,n) and the accuracy degrees
h(r;) (i=1,2,--- ,n) of the IFNs r; = (u;, v, m) (i =1,2,--- ,n), where

s(ri) =wi — vy, h(ri)=pi+wvi, 1=12,---,n (7.32)
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We then rank the IFNs according to Definition 1.1.3, and finally, we rank the al-
ternatives Y; (i = 1,2,--- ,n) in accordance with the ranking of the IFNs r; (i =
1,2,---,n), and then select the optimal one.

7.2 Extended Nonlinear Optimization Models in
Interval-Valued Intuitionistic Fuzzy Situations

Definition 7.2.1 (Xu and Cai, 2010) Let a1 = ([a% .3 ], (75,75 ]) and ag =
(185, 1S, ], [P%,. 75 ]) be two IVIFNs. Then

d(an,a2) = (g, — fig,)” + (s, — fig,)> + (75, — 05,)> + (75, — 75,)*  (7.33)
is called the square deviation between &; and &g, whose weighted form is:

d(w1 6, wadty) =(wifig, — waflh,) + (wifig, — waflg,)?

+ (iP5, — wals))? + (w1, — waly,)? (7.34)

where wy and ws are the weights of a1 and ag, respectively, w = (w1, ws) T, w; € [0, 1],
1=1,2, and wy +wy = 1.

Below we consider the group decision making problem with interval-valued intu-
itionistic fuzzy information (Xu and Cai, 2010):

Let Y, G, w and & be defined as in Section 1.3. The decision makers Ej, (k =
1,2,---,1) provide their assessment information on the alternatives Y; (i = 1,2,--- ,n)
with respect to the attributes G, (j =1,2,---,m), and construct the interval-valued
intuitionibtic fuzzy decision matrices R = (F;S»k))nxm (k=1,2,---,1), where f;;k) -

— ([P U0 FL0) FUR)y | :
( p ,fl ) = ([t;;" ti; L 1S3 i; 1) is an attribute value, donated by an IVIFN,

and

&y =" e, AP =17 M e o, 5P+ 50 <,

1] 1]
i=1,2,---.n; j=1,2--.m (7.35)

In cases where the attributes are of benefit and cost types, we can normalize
R = (Fig»k))nxm (k=1,2,---,1) into the interval-valued intuitionistic fuzzy decision

matrices Ry, = (Fgf))nxm (k=1,2,---,1), where

ORI .
A Utk K Uk 7.5, for benefit attribute G,
iy = U oo™ ) =4

Tij s for cost attribute Gy,

1=1,2,---.n; k=1,2,---,n (7.36)
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"(k)

and 7 ) e 7 = (FO 70,

is the complement of 7,;™, i.e., i o bij

Based on Eq.(7.35), we can define the weighted square deviation between each
pair of the individual interval-valued intuitionistic fuzzy decision matrices (Rk, RS)
as:

d(&k R, A Ry) ZZ(ﬁk% Eottiy V) + (G — € )2

=1 j=1

+ (G = v 2 + (G ™ — & U(S))) (7.37)

and define the weighted square deviation among all the pairs of the individual interval-
valued intuitionistic fuzzy decision matrices as:

l !
FO=>"Y" d(&PR &R,)

L(k L(s U(k U(s
k=1 s=1,k#s i=1 j=1
+ (&M — e 4 (G — e ) (7.38)
Then, similar to (M-7.1), we can construct the following nonlinear optimization model

(Xu and Cai, 2010):

(M-7.4)
l l n m
min (&) =min Y~ D7 D7D (G — i)+ € — o)

Hg’“”}j(k) - 55’/;‘(5))2 + (§k”5‘(k) - £su§§(s))2)

If Ry, = (7 zf))nxm (k=1,2,---,1) are the same, then it is reasonable to assign the
decision makers Ey, (k = 1,2, -+ 1) with the same weights, i.e., ¢ = (1/1,1/1,---,1/)T;
Otherwise, solving the model (M-7.4), we have

D~ 'e

€= 1, (7.39)

where e = (1,1,---,1)T, and
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L(1 U@ L(1 U1
=1 3D (™2 + (™) + )2 + i ™)?)
i=1 j=1
—~ U L(2) L U(2), U
_ - Z Z (ﬁ%] /%] 4 Nq( )ﬂij(l) + Vij(Q)Vij(l) + Vij(Q)Vij(l))
D= i=1 j=1

R () L(1 U U 1) L(1 U() U(1L
_ZZ(% )ﬂw Jr%()%()Jr w() Z( )Jr () w( ))
i=1 j=1

She U(2 L(1) L(2 U(1) U(2
>y (F‘w F‘w JrMw( )%( ) 4 Vij( )l/ij( ) 4 Vij( )Vij( ))
=1 j=1

(= 1) ()2 + 2 + W52 + (v )?)

A L(l) L(2 1) U L(l) L(2 1) U2
_ZZ(NW()%()+/~%( 0@ 0L 0, ))

SIS (O 4 fS OO B B0, U0
i=1 j=1
SIS (P 4 fSOUEO B 8,80
i=1j=1 (7.40)
C « L u(l
(1—-1) ZZ(M” ) z()) +(Vij())2+(’/ij())2>
i=1j=1 Ix1

Since D is a positive definite matrix, e*D~te > 0, and D! is nonnegative. Thus,
£>0,ie,&20(k=1,2,---,1).

Analogous to Section 7.1, we now propose another method for deriving the weights
of the decision makers Ej, (k=1,2,---,1):

We first aggregate all the individual interval-valued intuitionistic fuzzy decision
matrices Ry = (7 I(Jk))nxm (k=1,2,---,1) into the collective interval-valued intuition-
istic fuzzy decision matrix R= (Fij )mxn, where 75 = (fij, Uij), 1 = 1,2,--- ,n; j =
1,2,---,m, and

= [, ] = Z&cuz " Zf ey
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~ L
Vij_ 1]7 1]

~ I *L”Zf ]

k=1
forallz:l,Z,---, ,]:1,2,---,m (7.41)

On the basis of Eq.(7.33), we define the square deviation between each individ-
ual interval-valued intuitionistic fuzzy decision matrix Ry, and the collective interval-
valued intuitionistic fuzzy decision matrix R as:

2 2
d(Ry, R ZZ((NL(“ Zfs/iw ) <ug(k) ZESMU )
e 2 2
Zg;“ )> +< ZQJU“)) ) (7.42)

and define the square deviation among all the individual interval-valued intuition-
istic fuzzy decision matrices Ry (k = 1,2,---,1) and the collective interval-valued
intuitionistic fuzzy decision matrix R as:

n m I 2 )
= Z Z < (ﬁ?j(k) _ Z &[L?j(s)) (ug(k) Z i ~U(l )
l 2 5

Then, similar to the model (M-7.2), we establish the followmg nonlinear optimiza-
tion model (Xu and Cai, 2010):
(M-7.5)

X I m n 2 2
min f(g) :minzz < </J“U ngﬂw > (Ng(k) Z£s~U 9)>
=1

k=1 i=1 j

2 2
+ (v Z&‘;L( >> + (ﬂ}j Z&‘;U“)> )
s=1

!
st. &el0,1], k=1,2,--- 1, ng =1
The solution to the model (M 7.5) can be derived as:

6(1 077) + (7.44)

le
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which is the weight vector of the decision makers Ey (k=1,2,---,1), where
n m 1
1) |, ~Uk)~U k) SL(1 U(k) ~U
:<Zzz(% /‘u( )+“m( )M”( )+1/ (k)5 ( )+1/ (k) ~ ij( ))ﬁ
i=1 1k=1

m 1
L(k) ~L(2 U(k) ~U(2) ~L(k) L(2) ~U(k) ~U(2)
ZZZ i /‘Lw +”U fug = + U +v Vij )f",

T
~U( ~L(k) ~L(l ~U(k) ~U(l
kD U0 o0 4 g gLt | i M}j“)) 7

i=1 j=1k=1
e=(1,1,---,1)" (7.45)
and
- (L) _uQ) L2, (~U())2
Do (s i + Vij + (Vi
i=1 j=1

L(1) ~L(2 U(1) ~U PLOFLE) | jUW) U
ZZZ ('uw( )/”Lw( )"‘/‘zg( )/”Lw( ) ( )Vij( ) +Vij( )Vij( ))

joll
Il
s
Il
—
~
I
—

L(1 l 1)-U( ~L 1)L _U(1) ~U(l
Zzl (“w( )'“w( ) ‘H‘w( )'“w( . ( ) ;( ) 4 Vij( )Vij( ))
i=1j=1

n

L(1) ~L(2 1 2 ~L(1) ~L(2 ~U1 SU(2
S0 (FEOE 1 GO 4 EVFHD 4 5L

i=1j=1
) il ((’152))2 * (ﬁ?j@))z + (ﬂ}j@)f n (55(2))2>

=1 j=1
L(2) ~L() | ~U@2)-U@) | ~L(2)L(l ~U u(l
ZZ!(#J VO 4 fU@ U0 | pL@) L) U w())
=1 j=1
Zzl (ﬂ?j(l)ﬂ?j(l) —&—[ij(l)ﬂfj(l) _~_I;1Lj( )5, ()—H/ ey E(D)
i=1 j=1
Z Zl (,U,?J@),U,ZJ( ) n ,Uf”( ),[I'Z['Jj(l) + 55(2)1;;(1) + 55(2)175(1)>
p (7.46)

=1 7=1 Ix1
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In the following, we investigate the approach to deriving the attribute weights

from the angle of maximizing the group consensus:

We first introduce a weighted deviation variable égf):

2 2
ot ) (ot )
- 2 B 2
<w3 N;(k) Z%fs Vij ) + (wj Vij ZWJ55~U S)>
2 2
(o) 5ot
2 2
(e Z’**“S) (5 Zﬁ*‘“) )
1=1

forall k=1,2,---,1; , 2, m; j=1,2,--- 'm (7.47)

and construct a deviation function:

n m ! 2 )
S-St o (i et

! 2 )
A N P

to measure the deviation between each individual interval-valued intuitionistic fuzzy
decision matrix Ry, and the collective interval-valuedintuitionistic fuzzy decision ma-
trix R. Then, based on Eq.(7.48), we define

!
Zék(w)
k=1
! m 2 2
> ((MU Zé“suff) +<u5<k) Z&NUS))
3 =1

k=1i=1j

2 2
( Z&;L( )> + (u‘j Zg;U( )> >w§ (7.49)

to measure all the deviation among all the individual interval-valued intuitionistic

é(w)

3

fuzzy decision matrices Ry, (k = 1,2,--- 1) and the collective interval-valued intu-
itionistic fuzzy decision matrix R.
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In order to make the divergence among the individual opinions and the group

opinion as small as possible, we establish the following nonlinear optimization model
(Xu and Cai, 2010):

(M-7.6)

2 2
miné(w) Zminzzz < <’UJU Z§9~L s)) + <ﬁ5(k) Z£S~U s))

! 2 2
~L(k ~L(s ~U(s
+<y;< PN e >> ( ng o ) )
s=1
s.t. w]€[071]7 j:1727"'7m7 Zw]:]'
=1

By using the Lagrange multiplier technique, the solution to the model (M-7.6) can
be derived as:

1

m 1

;1 I n l 2 ! 2
—1i=1 s= s=

bt n 2 2
kziligl ((ﬁ%j(k)is§1 gsg?j(s}) +<ﬁ3(k>—l§§1 gSﬂ;Jj(S)) +<{/1Lj(k)7szil gsa}j(”) +(95(k)7.élgsfz};(s)) )
i=12--- 'm (7.50)
On the basis of the derived weight vector w and the collective interval-valued
intuitionistic fuzzy decision matrix R = (Tij )nxm, we can utilize the simple addi-

tive weighting method to get the overall IVIFN 7; = (fi;, #;) corresponding to each
alternative Y;, where

[Li = :&’%7[”1 ZWJ#ZJVZWJNz]

m

m l
Z Z Wjékﬂg} ) Z Z WyifkuU( )
k=1

j=1k= j=1k=1

~ ~L~
Vi Vi E w] U’E :wj Vij

m l
3o wig ZZ%&MU( | i=12-n (751

j=1k=1 j=1k=1
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Then, we can rank the IVIFNs 7, = (fi;,7;) (i = 1,2,--- ,n) according to Definition
(2.3.5).

After that, we can rank the alternatives Y¥; (i = 1,2,---,n) in accordance with
the ranking of the IVIFNs 7; (i = 1,2,--- ,n), and then select the optimal one.

7.3 Numerical Analysis

Consider an air-condition system selection problem (adapted from Yoon (1989), Xu
and Cai (2010)). Suppose that there are three air-condition systems Y; (i = 1,2, 3)
to be selected, and the following is the list of five attributes G; (j = 1,2,3,4,5) to
consider (whose weight vector w = (wy,ws, w3, ws,ws)T is to be determined): @ G;:
Good quality; @ Gy: Easy to operate; @ Gs: Economical; @ G4: Good service after
selling; and & G5 : Cost. Among these attributes, G; (j = 1,2,3,4) are of benefit
type, and Gj is of cost type. An expert group which consists of three experts (decision
makers) Ey (k = 1,2,3) (whose weight vector £ = (&1,&2,£3)T is to be determined)
has been set up. These experts evaluate the air-condition systems Y; (i = 1,2,3)
with respect to the attributes G; (j = 1,2,3,4,5), and construct the following three
intuitionistic fuzzy decision matrices R} = (T;J(»k))3x5 (Tables 7.1-7.3):

Table 7.1 Intuitionistic fuzzy decision matrix R} (Xu and Cai, 2010)
G1 G Gs G Gs
Yi  (08,01,01)  (0.7,01,02) (07,02 01)  (0.9,00,01) (0.4, 0.5,0.1)
Y>  (0.7,01,02) (0.8 0.2 00) (0.6, 04,00)  (0.7,0.1,02) (0.6, 0.4, 0.0)
Ys  (08,02,00)  (0.9,01,00)  (0.7,00,03)  (0.7,0201) (0.5 0.5, 0.0)

Table 7.2 Intuitionistic fuzzy decision matrix R5 (Xu and Cai, 2010)
G1 G Gs G Gs
vi  (0.9,01,00) (0.8 0.1,01) (0.7 00, 03)  (0.9,0.1,00) (0.3 0.7, 0.0)
Y  (0.7,02,01)  (0.80.1,01)  (0.9,0.1,00)  (0.7,03,00)  (0.7,0.20.1)
Y;  (0.7,0.1,02)  (0.9,00,0.1) (0.8 00,02 (0.8 02 00) (0.6 0.3,0.1)

Table 7.3 Intuitionistic fuzzy decision matrix R4 (Xu and Cai, 2010)

G1 Gz G3 G4 G5
Yy (0.8, 0.0, 0.2) (0.7, 0.1, 0.2) (0.9, 0.0, 0.1) (0.8, 0.1, 0.1) (0.4, 0.6, 0.0)
Ya (0.8, 0.2, 0.0) (0.7, 0.3, 0.0) (0.8, 0.1, 0.1) (0.9, 0.1, 0.0) (0.6, 0.3, 0.1)
Y3 (0.9, 0.1, 0.0) (0.8, 0.0, 0.2) (0.8, 0.1, 0.1) (0.9, 0.0, 0.1) (0.5, 0.4, 0.1)

Considering that the attributes have two different types (benefit and cost types),
we first transform the attribute values of cost type into the attribute values of benefit
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type by using Eq.(74), then R}, = (r;§k)
(r"sys (k =1,2,3) (Tables 7.4-7.6):

ij

Jaxs (k= 1,2,3) are transformed into Ry =

Table 7.4 Intuitionistic fuzzy decision matrix R (Xu and Cai, 2010)

G1 Gz G3 G4 G5
i (0.8, 0.1, 0.1) (0.7, 0.1, 0.2) (0.7, 0.2, 0.1) (0.9, 0.0, 0.1) (0.5, 0.4, 0.1)
Y (0.7, 0.1, 0.2) (0.8, 0.2, 0.0) (0.6, 0.4, 0.0) (0.7, 0.1, 0.2) (0.4, 0.6, 0.0)
Ys (0.8, 0.2, 0.0) (0.9, 0.1, 0.0) (0.7, 0.0, 0.3) (0.7, 0.2, 0.1) (0.5, 0.5, 0.0)

Table 7.5 Intuitionistic fuzzy decision matrix R (Xu and Cai, 2010)

G1 Gz G3 G4 G5
i (0.9, 0.1, 0.0) (0.8, 0.1, 0.1) (0.7, 0.0, 0.3) (0.9, 0.1, 0.0) (0.7, 0.3, 0.0)
Y (0.7, 0.2, 0.1) (0.8, 0.1, 0.1) (0.9, 0.1, 0.0) (0.7, 0.3, 0.0) (0.2, 0.7, 0.1)
Ys (0.7, 0.1, 0.2) (0.9, 0.0, 0.1) (0.8, 0.0, 0.2) (0.8, 0.2, 0.0) (0.3, 0.6, 0.1)

Table 7.6 Intuitionistic fuzzy decision matrix Rz (Xu and Cai, 2010)

G1 Ga Gs Gy Gs
Yi  (08,0.0,02)  (0.7,0.1,02)  (0.9,0.0,01) (0.8 0.1,01) (0.6, 0.4, 0.0)
Y>  (0.8,0.2,00)  (0.7,0.3,00) (0.8 01,01  (0.9,0.1,00) (0.3 0.6 0.1)
Ys  (0.9,0.1,00) (0.8 00, 02) (0.8 01,01)  (0.9,00,01) (0.4, 0.5,0.1)

Then, by Eq.(7.14) (or the model (M-7.1)), we can derive the weight vector of the
experts B (k=1,2,3):
¢ = (0.344,0.328,0.328) " (7.52)

By Egs.(7.15) and (7.54), we aggregate all the individual intuitionistic fuzzy de-
cision matrices Ry = (rgf))gxg, (k = 1,2,3) into the collective intuitionistic fuzzy
decision matrix R = (r;;)3x5 (Table 7.7):

Table 7.7 Collective intuitionistic fuzzy decision matrix R (Xu and Cai, 2010)

G1 G2 G3 Gy Gs
vi (0.83,0.07, 0.10) (0.73, 0.10, 0.17) (0.77, 0.07, 0.16) (0.87, 0.07, 0.06) (0.60, 0.37, 0.03)
Y> (0.73, 0.17, 0.10) (0.77, 0.20, 0.03) (0.74, 0.20, 0.06) (0.77, 0.17, 0.06) (0.30, 0.63, 0.07)
Y3 (0.80, 0.13, 0.07) (0.87,0.03, 0.10) (0.77, 0.03, 0.20) (0.80, 0.13, 0.07) (0.40, 0.53, 0.07)

After that, we employ Eq.(7.30) (or the model (M-7.3)) to derive the weight vector
of the attributes G; (j = 1,2,3,4,5):

w = (0.200, 0.299, 0.106, 0.156, 0.239)T (7.53)
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Then, based on the collective decision matrix R = (r;;)3x5 and the weight vector
(7.53), we utilize the simple additive weighting method (7.31) to get the overall IFNs
r; (1 = 1,2,3) corresponding to the air-condition systems Y; (i = 1,2, 3):

ri = (0.745, 0.151, 0.104), 75 = (0.646, 0.292, 0.062), 75 = (0.722, 0.185, 0.093)

In order to rank the IFNs r; (i = 1,2,3), we first calculate the scores s(r;) (i =
1,2,3):
s(r1) =0.594, s(r2) =0.354, s(r3) =0.537

and thus 1 > r3 > ro, by which we get the ranking of the alternatives: x1 > x3 > xs.
Therefore, Y7 is the optimal air-condition system.
If we utilize Eq.(7.18) (or the model (M-7.2)) to determine the expert weights,
then
¢€=(1/3, 1/3, 1/3)" (7.54)

Clearly, the weight vectors of the experts Fy (k = 1,2,3) derived by Eqgs.(7.14)
and (7.18) are almost the same, which lead to the same ranking of the air-condition
systems Y; (i = 1,2, 3). Similarly, if the preferences given by the experts are expressed
in interval-valued intuitionistic fuzzy decision matrices, then we can utilize the mod-

els (M-7.4), (M-7.5) and (M-7.6) to derive the weights of both the experts and the
attributes.
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Basic unit-interval monotonic function 82

Benefit attribute 31

Binomial distribution based method 266,
267

Bonferroni mean 51

Boundedness 19

BSI-GIFOA operator 92

BSI-GIIFOA operator 145

BSI-IFOAA operator 94

BSI-IFOAG operator 94

BSI-IFOGA operator 94

BSI-IFOGG operator 95

BSI-ITFOAA operator 146

BSI-ITFOAG operator 147

BSI-ITFOGA operator 147

BSI-ITFOGG operator 148

BUM function based method 261, 264
C

Choquet integral 80

Closeness coefficient 273

Collective interval-valued intuitionistic
fuzzy decision matrix 121, 124

Collective interval-valued intuitionistic
preference relation 244, 245

Collective intuitionistic fuzzy decision
matrix 37,38

Collective intuitionistic fuzzy preference
value 196

Collective intuitionistic preference relation
241, 242

Collective interval-valued intuitionistic
fuzzy decision matrix 300, 301

Commutativity 9

Complex interval-valued intuitionistic
fuzzy decision matrix 276, 281

Complex intuitionistic fuzzy decision
matrix 272, 279

Consensus analysis 238

Consistent incomplete intuitionistic
preference relation 195, 233

Consistent interval-valued intuitionistic
preference relation 205

Consistent interval-valued multiplicative
preference relation 219

Consistent intuitionistic preference
relation 189

Continuous weighted Euclidean distance
172, 180

Continuous weighted Hamming distance
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Correlation coefficient 151

Correlation measure 151

Cost attribute 32
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Dempster-Shafer belief structure 92

Deviation function 47

Deviation variable 222, 223

Discrete probability distribution 264, 267

Distance measure 162

Dynamic intuitionistic fuzzy multi-attribute
decision making 259

Dynamic intuitionistic fuzzy weighted
averaging operator 259

E

Equal weighted summation method 39

Exponential distribution based method 263,

264
Exponential weighting vector 6

F

Fuzzy linguistic quantifier 191, 200
Fuzzy measure 80, 81

Fuzzy preference relation 189
Fuzzy set 2

G

Generalized interval-valued intuitionistic
fuzzy correlated averaging operator 142

Generalized interval-valued intuitionistic
fuzzy hybrid aggregation operator 134

Generalized interval-valued intuitionistic
fuzzy mean 127

Generalized interval-valued intuitionistic
fuzzy ordered weighted averaging
operator 133

Generalized interval-valued intuitionistic
fuzzy weighted averaging operator 132

Generalized intuitionistic fuzzy hybrid
aggregation operator 70, 78

Generalized intuitionistic fuzzy correlated
averaging operator 87

Generalized intuitionistic fuzzy mean 65

Generalized intuitionistic fuzzy ordered
weighted averaging operator 70, 76

Generalized intuitionistic fuzzy weighted
averaging operator 70, 71

Generalized ordered weighted averaging

Index

operator 70
Generalized weighted averaging operator
70
Geometric distance model 164
Geometric mean 52
Geometric series based method 260
Group consensus 285
Group decision making 36, 37

H

Hausdorff distance 170, 173
Hausdorff metric 171

Hesitancy degree 3, 4

hesitation uncertainty index 110

I

Idempotency 18

Improved intuitionistic preference relation
195, 196

Incomplete intuitionistic preference
relation 194

Incomplete preference relation 194

Indeterminancy degree 3

Indeterminacy degree range 252

Individual interval-valued intuitionistic
fuzzy decision matrix 124

Individual interval-valued intuitionistic
preference relation 243~245

Individual intuitionistic fuzzy decision
matrix 290, 291

Individual intuitionistic preference relation
239

Individual interval-valued intuitionistic
fuzzy decision matrix 296~298

Individual weighted intuitionistic fuzzy
decision matrix 287

Induced generalized interval-valued
intuitionistic fuzzy correlated averaging
operator 142

Induced generalized intuitionistic fuzzy
correlated averaging operator 87

Induced interval-valued intuitionistic fuzzy
correlated averaging operator 143

Induced interval-valued intuitionistic fuzzy
correlated geometric operator 144
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Induced intuitionistic fuzzy correlated
averaging operator 89
Induced intuitionistic fuzzy correlated
geometric operator 89
Inducing variables matrix 90
Information theory 47
Interval-valued fuzzy preference relation
Interval-valued intuitionistic fuzzy
averaging operator 107
Interval-valued intuitionistic fuzzy
Bonferroni mean 125
Interval-valued intuitionistic fuzzy
correlated averaging operator 135
Interval-valued intuitionistic fuzzy
correlated geometric operator 137
Interval-valued intuitionistic fuzzy
decision matrix 118
Interval-valued intuitionistic fuzzy
geometric operator 108
Interval-valued intuitionistic fuzzy
hybrid averaging operator 114
Interval-valued intuitionistic fuzzy
hybrid geometric operator 115
Interval-valued intuitionistic fuzzy
interrelated square mean 128
Interval-valued intuitionistic fuzzy
ordered weighted averaging operator
Interval-valued intuitionistic fuzzy
ordered weighted geometric operator
Interval-valued intuitionistic fuzzy
variable 274
Interval-valued intuitionistic fuzzy
weighted averaging operator 103
Interval-valued intuitionistic fuzzy
weighted geometric operator 103
Interval-valued intuitionistic fuzzy
weighted ordered weighted averaging
operator 137
Interval-valued intuitionistic fuzzy
weighted ordered weighted geometric
operator 139
Interval-valued intuitionistic fuzzy
103, 104
Interval-valued intuitionistic preference
relation 204

number

103
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Interval-valued intuitionistic fuzzy set
103

Interval-valued intuitionistic fuzzy square
mean 127

Interval-valued membership degree 104

Interval-valued multiplicative preference
relation 219

Interval-valued nonmembership degree
104

Intuitionistic fuzzy averaging operator 2

Intuitionistic fuzzy Bonferroni mean 51

Intuitionistic fuzzy correlated averaging
operator 142

Intuitionistic fuzzy correlated geometric
operator 83

Intuitionistic fuzzy decision matrix 31

Intuitionistic fuzzy geometric operator 2

Intuitionistic fuzzy hybrid averaging
operator 2

Intuitionistic fuzzy hybrid geometric
operator 2

Intuitionistic fuzzy ideal solution 253

Intuitionistic fuzzy interrelated square
mean 65, 128

Intuitionistic fuzzy maximum operator
78

Intuitionistic fuzzy minimum operator
78

Intuitionistic fuzzy multi-attribute
decision making 249

Intuitionistic fuzzy negative ideal solution
272, 276

Intuitionistic fuzzy number 2, 3 7

Intuitionistic fuzzy ordered weighted

2, 22

Intuitionistic fuzzy ordered weighted

2, 103

Intuitionistic fuzzy preference 193

averaging operator
geometric operator

Intuitionistic fuzzy variable 259

Intuitionistic fuzzy weighted ordered
weighted averaging operator 83

Intuitionistic fuzzy weighted averaging
operator 259

Intuitionistic fuzzy weighted geometric

operator 2, 103
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Intuitionistic fuzzy weighted ordered weighted
geometric operator 84

Intuitionistic fuzzy set 2

Intuitionistic fuzzy square mean 65

Intuitionistic index 3

Intuitionistic preference relation 189

L

Lagrange function 48

Lagrange multiplier 48

Linear equal-weighted summation method
233

Linear programming model 219~221

Linguistic preference relation 190

M

Mathematical induction 15

Mathematical programming model 268

Max and min operations 4, 5

max-max transitivity 193

Max operator 52

Membership function 1, 2

Membership uncertainty index 110, 113

Module 250

Monotonicity 20

Multi-attribute decision making 4

Multi-attribute group decision making 36

Multi-objective optimization model 39

Multi-person multi-attribute intuitionistic
fuzzy decision making 40

Multiplicative consistent fuzzy preference
relation 219, 223~226

Multiplicative consistent incomplete interval-
valued intuitionistic preference relation
209, 210

Multiplicative consistent incomplete
intuitionistic preference relation 233

Multiplicative consistent intuitionistic
preference relation 219~220

Multiplicative preference relation 190

N

Negation operator 191
Nonlinear optimization model 285
Non-membership function 2

Index

Nonnegative real number 70
Normal distribution based method 23
Normalized attribute weight 48
Normalized decision matrix 232
Normalized eigenvector 40
Normalized Euclidean distance 163
Normalized Hamming distance 163
Normalized intuitionistic fuzzy decision
matrix 67

o

Operational law 7

Optimal deviation variable 223
Optimal weight vector 230

Order induced aggregation 87
Order-inducing variable 87

ordered pair 104

Ordered position 7

Ordered weighted averaging operator 5
Ordered weighted geometric operator 5
Original linguistic label 191

Overall attribute value 32

Overall performance value 130, 131

P

Partial derivative 48

Payoff value 89

Performance value 130

Poisson distribution based method 264,
265

Poisson probability density function 264

Position weight 7

Positive definite matrix 289

Positive eigenvector 40

Possibility degree 227

Possibility degree matrix 227

Preference relation 189

Probability density function 262~264

Projection 249

R

Real symmetrical matrix 39

Relative intuitionistic fuzzy ideal solution
249, 250

Relative uncertain intuitionistic fuzzy ideal
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solution 249
Restricted max-max transitivity 193
Restricted max-min transitivity 193

S

Score function 2~4

Score matrix 38~40

Similarity degree 162

Similarity measure 151

Simple additive weighting method 285

Single-objective programming model
233~235

Square deviation 285

Square mean 52

Standard deviation 262

Subscript set 232

Symmetrical matrix 205

T

Time series 275
Transpose 205
Triangle condition 192

U

Uncertain dynamic intuitionistic fuzzy
weighted averaging operator 275
Uncertain intuitionistic fuzzy ideal
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solution 276

Uncertain intuitionistic fuzzy negative
ideal solution 276

Uncertain intuitionistic fuzzy variable
274

\%

Vague set 4
Virtual linguistic label 191

W

Weak transitivity 193

Weight vector 5

Weighted averaging operator 5

Weighted cosine 252, 254

Weighted deviation variable 300

Weighted Euclidean distance 165

Weighted geometric operator 5

weighted Hamming distance 165

Weighted interval-valued intuitionistic
fuzzy Bonferroni mean 129

Weighted intuitionistic fuzzy Bonferroni
mean 66

Weighted module 251

Weighted ordered weighted averaging
operator 83

Weighted square deviation 286, 287
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