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T o my mother, and

in remembrance of my father



MTSE : Editorial for Volume I

Recent years have witnessed an extraordinarily rapid advance in the direction of infor-

mation technology within both the scientific and engineering disciplines. In addition, the

current profound technological advances of data acquisition devices and transmission sys-

tems contribute enormously to the continuing exponential growth of data information that

requires much better data processing tools. To meet such urgent demands, innovative math-

ematical theory, methods, and algorithms must be developed, with emphasis on such ap-

plication areas as complex data organization, contaminated noise removal, corrupted data

repair, lost data recovery, reduction of data volume, data dimensionality reduction, data

compression, data understanding and visualization, as well as data security and encryption.

The revolution of the data information explosion as mentioned above demands early math-

ematical training and emphasis on data manipulation at the college level and beyond. This

new Atlantis/Springer book series, “Mathematics Textbooks for Science and Engineering

(MTSE)” is founded to meet the needs of such mathematics textbooks that can be used for

both classroom teaching and self-study. For the benefit of students and readers from the

interdisciplinary areas of mathematics, computer science, physical and biological sciences,

and various engineering specialities, contributing authors are requested to keep in mind that

the writings for the MTSE book series should be elementary and relatively easy to read,

with sufficient examples and exercises. We welcome submission of such book manuscripts

from all who agree with us on this point of view.

This first volume is intended to be an elementary textbook for “Mathematics of Approx-

imation”, with emphasis on constructive methods and derivation of error formulas. This

book is elementary, self-contained, and friendly towards teacher and reader. It is a suitable

textbook for teaching in a variety of courses both at the undergraduate and beginning grad-

uate levels. The author, Professor Johan de Villiers, is congratulated for contributing this

very nice textbook.
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Foreword

Mathematics of approximation plays a key role in bridging the gap between abstract math-

ematical theory and numerical implementation. With the recent exponential increase of

available data that are easily accessible and relevant to our daily lives, understanding of

such data often requires sophisticated mathematical manipulation by taking advantage of

the continuing rapid technological advancement of computational capability. However,

without assurance of accuracy in mathematical manipulation, results from simply number

crunching by the powerful computer might be meaningless. In addition, for those data

governed by certain physical phenomena or biological models, approximate solutions of

the associated complex systems in terms of commonly used basis functions must guarantee

accurate representation within a given tolerance.

This book by a leading expert in the field is intended to meet the need of such mathe-

matical contents for classroom teaching, particularly for the undergraduate college level.

Approximation and interpolation by algebraic and trigonometric polynomials for global

representation, and spline functions for local analysis, are discussed from first principles

with examples and full sets of carefully prepared exercises for each chapter. Convergence

results are derived to assure meaningful mathematical manipulation, and error estimates are

developed for data representation, with a guarantee of accuracy within a given tolerance.

On the other hand, in contrast with the vast literature on Approximation Theory and Com-

putational Mathematics, Professor De Villiers has taken great care to avoid using powerful

advanced mathematics from Real Analysis and Functional Analysis, in that only elemen-

tary theory and methods from Linear Algebra and basic Advanced Calculus are applied in

the derivations and discussions throughout the entire presentation. As a result, the writing

is elementary and self-contained.

Furthermore, by including all necessary computational details, the writing of the book is

friendly for classroom teaching as well as for self-reading. For adoption as a textbook, a

ix
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variety of courses are mentioned with teaching guides outlined in the Preface. The author

has taught from the preliminary notes that constitute the contents of this most welcomed

textbook from a span of some twenty-five years to undergraduate students.

Charles K. Chui

Menlo Park, California



Preface

The approximation of functions by algebraic polynomials, trigonometric polynomials, and

splines, is not only an important topic of mathematical studies, but also provides powerful

mathematical tools to such application areas as data representation, signal processing, non-

parametric time-series analysis, computer-aided geometric design, numerical analysis, and

solutions of differential equations. This book is an introduction to the mathematical analy-

sis of such approximation, with a strong emphasis on explicit approximation formulations,

corresponding error bounds and convergence results, as well as applications in quadrature.

A mathematically rigorous approach is adopted throughout, and, apart from an assumed

prerequisite knowledge of advanced calculus and linear algebra, the presentation of the

material is self-contained.

The book is suitable for use as textbook for courses at both upper undergraduate and grad-

uate level. Each of the ten chapters is concluded by a set of exercises, with a total of

altogether 220 exercises, some of which are routine, whereas others are concerned with

further development of the material.

The book evolved from lecture notes compiled by the author during approximately 25 years

of teaching courses in Computational Mathematics and Approximation Theory at Depart-

ment of Mathematical Science, Stellenbosch University. Several standard textbooks were

consulted and used, some more extensively than others, during the preparation of the lecture

notes and the resulting book, and include the following, as listed alphabetically according

to author:

• N.I. Achieser, Theory of Approximation (translated by C.J. Hyman), Frederick Ungar

Publishing Co., New York, 1956.

• H. Brass, Quadraturverfahren, Vandenhoek & Rupert, Göttingen, 1977.

• E.W. Cheney, Introduction to Approximation Theory, McGraw-Hill, New York, 1966.

xi



xii Mathematics of Approximation

• Ronald A. DeVore and George G. Lorentz, Constructive Approximation, Springer,

Berlin, 1993.

• Walter Gautschi, Numerical Analysis: An Introduction, Birkhäuser, Boston, 1997.

• Eugene Isaacson and Herbert Bishop Keller, Analysis of Numerical Methods, John

Wiley & Sons, Inc., New York, 1966.

• Gunther Nürnberger, Approximation by Spline Functions, Springer, Berlin, 1989.

• M.J.D. Powell, Approximation Theory and Methods, Cambridge University Press,

Cambridge, 1981.

• T.J. Rivlin, An Introduction to the Approximation of Functions, Blaisdell Publishing

Co., Waltham, Mass, 1969.

• L.L. Schumaker, Spline Functions: Basic Theory, John Wiley & Sons, Inc., New York,

1981.

It should be pointed out that, whereas in some of the above-listed books concepts from

Functional Analysis, like metric spaces, normed linear spaces and inner product spaces, as

well as operators on those spaces, are assumed as prerequisite knowledge, the approach

followed in this book is to develop any such concepts from first principles.

The contents of the respective chapters of the book can be summarized as follows.

• Chapter 1: Polynomial Interpolation Formulas
The specific approximation method of polynomial interpolation is introduced, for

which an existence and uniqueness theorem is then established by means of a Vander-

monde matrix. Next, both the Lagrange and Newton interpolation formulas, as based

on, respectively, the Lagrange fundamental polynomials and divided differences, are

derived. Finally, an existence and uniqueness result, as well as a recursive computa-

tional method, are developed for Hermite interpolation, where also function derivatives

are interpolated.

• Chapter 2: Error Analysis for Polynomial Interpolation
A formulation in terms of a divided difference is established for the polynomial inter-

polation error, and a corresponding error bound is derived. Chebyshev polynomials

are introduced, and shown to possess real zeros which yield interpolation points which

minimize the error bound for polynomial interpolation.

• Chapter 3: Polynomial Uniform Convergence
The concept of uniform convergence of a sequence of polynomial approximations to a

given continuous function on a bounded interval is defined, and shown to apply in se-

lected polynomial interpolation examples. It is then proved rigorously that, in contrast,
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divergence to infinity occurs in the Runge example. Next, the Bernstein polynomials

are introduced and their properties analyzed, by means of which it is then proved that

the sequence of Bernstein polynomial approximations to any given continuous func-

tion on a bounded interval uniformly converges to that function, and thereby immedi-

ately yielding also the Weierstrass theorem, according to which a continuous function

on a bounded interval can be uniformly approximated with arbitrary “closeness” by a

polynomial. It is furthermore shown that a Bernstein polynomial approximation has

remarkable shape-preservation properties, and, in addition, a convergence rate result

is established for the case where the approximated function is continuously differen-

tiable.

• Chapter 4: Best Approximation
In the general setting of normed linear spaces, it is proved that, if the approximation

set is a finite-dimensional subspace, then the existence of a best approximation is guar-

anteed. In addition, a uniqueness result for best approximation is established for those

cases where the norm is generated by an inner product. The examples of best uni-

form polynomial approximation and best weighted L2 polynomial approximation are

highlighted as applications of the theoretical results.

• Chapter 5: Approximation Operators
The notion of an approximation operator from a normed linear space to an approx-

imation set is introduced, and examples from previous chapters are provided. The

properties of linearity, exactness and boundedness with respect to approximation oper-

ators are discussed and analyzed, with particular attention devoted to operator norms,

or Lebesgue constants. In addition, the Lebesgue inequality for bounding an approx-

imation error with respect to the best approximation error is derived. Applications of

the theory to particularly the polynomial interpolation operator are provided.

• Chapter 6: Best Uniform Polynomial Approximation
It is proved that the equi-oscillation property of a polynomial approximation error is

a necessary and sufficient condition for best uniform polynomial approximation, by

means of which the uniqueness of a best uniform polynomial approximation is then

established. The resulting best uniform polynomial approximation operator is shown in

particular to satisfy a convergence rate which increases with the number of continuous

derivatives of the approximated function, and by means of which, together with the

Lebesgue inequality from Chapter 5, an interpolation error bound is obtained, from

which it is then immediately seen that uniform convergence is obtained for the Runge
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example of Chapter 3 if the uniformly distributed interpolation points are replaced by

the Chebyshev points of Chapter 2. Finally, examples are provided of cases where

explicit calculation of the best uniform polynomial approximation can be performed

in a straightforward manner.

• Chapter 7: Orthogonality
In the general setting of inner product spaces, it is proved that best approximation with

respect to the norm generated by an inner product is achieved if and only if the ap-

proximation error is orthogonal to the approximation subspace, and properties of the

corresponding best approximation operator are established. For those cases where the

approximation subspace is finite-dimensional, a construction procedure for the best

approximation, as based on the inversion of the corresponding Gram matrix, is de-

rived, and it is moreover shown that the availability of an orthogonal basis yields an

explicitly formulated best approximation. The Gram-Schmidt procedure for the con-

struction of an orthogonal basis from any given basis is then derived by means of best

approximation principles. For polynomials, an efficient three-term recursion formula

for orthogonal polynomials with respect to any weighted inner product is obtained, and

specialized to the important cases of Legendre polynomials and Chebyshev polynomi-

als.

• Chapter 8: Interpolatory Quadrature
After defining an interpolatory quadrature rule for the numerical approximation of a

weighted integral as the (weighted) integral of a polynomial interpolant of the inte-

grand, and introducing the concept of the polynomial exactness degree of a quadrature

rule, it is shown that non-negative quadrature weights guarantee quadrature conver-

gence for continuous integrands, with convergence rate increasing with the number of

continuous derivatives of the integrand. Next, by choosing the underlying interpola-

tion points as the zeros of a certain orthogonal polynomial, it is shown that optimal

polynomial exactness is achieved, and thereby yielding the Gauss quadrature rules,

for which the weights are then proved to be positive. The related Clenshaw-Curtis

quadrature rule, as based on interpolation points obtained from extremal properties

of Chebyshev polynomials, is shown to possess positive weights with explicit formu-

lations. The rest of the chapter is devoted to Newton-Cotes quadrature, as based on

uniformly distributed interpolation points. By employing results on polynomial inter-

polation from Chapters 1 and 2, explicit formulations in terms of Laplace coefficients

of Newton-Cotes weights and error expressions are derived. In addition, compos-
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ite Newton-Cotes quadrature rules, including the trapezoidal, midpoint and Simpson

rules as special cases, are explicitly constructed and subjected to error and convergence

analysis.

• Chapter 9: Approximation of Periodic Functions
The trigonometric polynomials are introduced and analyzed, with the view to using

them to approximate any given continuous periodic (with period = 2π) function. Next,

as a Weierstrass-type theorem, it is proved that any continuous periodic function can

be approximated with arbitrary “closeness” in the maximum norm by a trigonometric

polynomial. The Fourier series operator is defined as the best L2 approximation oper-

ator into the finite-dimensional space of trigonometric polynomials of a given degree,

and explicitly calculated in terms of Fourier coefficients expressed as integrals. For

those instances where these integrals are to be numerically approximated, the Euler-

Maclaurin formula is derived, and shown to imply the remarkable efficiency of the

trapezoidal rule when applied to the integral of a smooth periodic function over its

full period, as in the Fourier coefficient case, and thereby yielding the discrete Fourier

series operator. In the limit, the Fourier series operator yields the (infinite) Fourier

series of a continuous periodic function, and for which L2 convergence is immediately

deduced. In order to investigate the uniform convergence of Fourier series, upper and

lower bounds for the Lebesgue constant (with respect to the maximum norm) of the

Fourier series operator are first derived, thereby showing that this Lebesgue constant

grows to infinity at a logarithmic rate. After furthermore establishing two Jackson the-

orems on best approximation convergence rates, the Lebesgue inequality of Chapter 5

is then applied to prove the Dini-Lipschitz theorem, according to which Lipschitz con-

tinuity of a periodic function is a sufficient condition for the uniform convergence of

its Fourier series, that is, the Fourier series converges pointwise to the function itself.

• Chapter 10: Spline Approximation
Splines are introduced as piecewise polynomials of a given degree, and with break-

points, or knots, at a finite number of specified points, together with the maximal

smoothness requirement providing a proper extension of the corresponding polyno-

mial space. Preliminary properties of splines are established, and it is shown that

truncated powers provide a basis for spline spaces. Next, the compactly supported,

and hence more efficient, B-spline basis is constructed and analyzed, with particu-

lar attention devoted to the case where the knots are placed at the integers, yielding

the cardinal B-splines. The Schoenberg-Whitney theorem, which is an existence and
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uniqueness result for (non-local) spline interpolation, is then proved. In order to ob-

tain a local spline approximation method, an explicit construction method is developed

for spline quasi-interpolation, which combines the approximation properties of linear-

ity, optimal polynomial exactness, and locality. In order to achieve, in addition, the

property of interpolation, it is shown that such a local spline interpolation operator

can be constructed explicitly by choosing the interpolation points as a specified subset

of the spline knots. The Schoenberg operator is introduced, and shown to be a local

spline approximation operator, which, for any fixed spline degree, and for the maxi-

mum spacing between spline knots tending to zero, possesses the uniform convergence

property with respect to any continuous function on a bounded interval, and thereby

establishing a Weierstrass-type theorem for splines. Similarly, sufficient conditions on

the spline knot placement for the uniform convergence of the above-mentioned local

spline interpolation operator are derived, as well as a corresponding convergence rate

result by means of the Peano kernel theorem. Finally, the interpolatory quadrature rule

obtained from the uniformly distributed knots case of this local spline interpolation

operator is analyzed, and shown to yield a class of trapezoidal rules with endpoints

corrections, which are precisely the classical Gregory rules of even order, after which

results from Chapter 8 are employed to explicitly evaluate, in terms of Laplace coeffi-

cients, the weights and error expressions for these Gregory rules, and with particular

attention devoted to the special case of the Lacroix rule.

Examples of courses that could be taught from this book are as follows:

• A one-semester mathematics course of “Mathematics of Approximation” can be taught

from Chapters 1-8. If the course is oriented towards numerical methods and numerical

analysis, then Chapters 9-10 can be adopted to replace Chapters 6-7.

• A one-year course of “Mathematics of Approximation” can be taught with first

semester based on Chapters 1-7, and second semester on Chapters 8-10.

• A one-semester course “Polynomial and Spline Approximation” can be taught from

Chapters 1-7 and Chapter 10 up to Section 10.6.

• A one-semester course of “Polynomial Approximation and Quadrature” can be taught

from Chapters 1-8.

• A one-semester course of “Polynomial Approximation and Fourier series” can be

taught from Chapters 1-7 and Chapter 9.
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Material that could be regarded as optional in the courses listed above are Sections 6.5,

8.3 and 10.7; Section 9.3 from Theorem 9.3.3 onwards; as well as the proof of (3.1.8) in

Example 3.1.3 of Section 3.1.

The author wishes to express his sincere gratitude to:

• Lauretta Adams, who expertly LATEX-ed the entire manuscript, and whose friendly

and kind attitude throughout is much appreciated;

• Maryke van der Walt, who displayed excellent skills in proofreading the whole text

and preparing the index, and whose many meaningful suggestions enhanced the pre-

sentation of the material;

• Charles Chui, whose academic inspiration and generous editorial leadership con-

tributed substantially to this book project;

• Carl Rohwer, for productive research collaboration yielding the local spline interpola-

tion operator of Section 10.5 onwards;

• Nick Trefethen, whose plenary lecture in March 2011 at the SANUM conference in

Stellenbosch was the inspiration for the inclusion of Sections 6.5 and 8.3;

• Mike Neamtu, Dirk Laurie, Sizwe Mabizela, André Weideman, David Kubayi and Ben

Herbst, for many stimulating discussions which contributed to improving the author’s

insight into the book’s material;

• Department of Mathematical Sciences, Stellenbosch University, and in particular its

Head, Ingrid Rewitzky, for providing the author with a friendly and conducive envi-

ronment for the writing of this book;

• The students in the author’s courses in Computational Mathematics and Approxima-

tion Theory since 1986 at Stellenbosch University, for their enthusiastic participation,

and whose consistent feedback contributed significantly to the gradual improvement

of the lecture notes on which this book is based;

• Keith Jones of Atlantis Press, for his encouragement and patience;

• My wife, Louwina, who sacrificed much as a result of the many hours I spent on the

preparation of the manuscript, and without whose unconditional love and devotion this

book would not have been possible.

Johan de Villiers

Stellenbosch, South Africa
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Chapter 1

Polynomial Interpolation Formulas

When an (algebraic) polynomial P is used to approximate a certain function f , the polyno-

mial P is said to interpolate the function f on a given finite sample set of distinct points in

the domain of f , if P is obtained to satisfy the condition that P agrees with f on the sample

set. The objective of this chapter is to establish a fundamental existence and uniqueness

result for polynomial interpolation as well as to derive explicit formulations of the interpo-

lation polynomial P.

1.1 Existence based on the Vandermonde matrix

For any non-negative integer k, we write πk for the set of algebraic polynomials of degree

� k, and with real coefficients. Then πk is a finite-dimensional linear space with dimension

dim(πk) = k+ 1, (1.1.1)

and where the standard basis of πk is given by {1,x, . . . ,xk}.

Let f denote a real-valued function with domain D f ⊂ R, with R denoting the set of real

numbers, and, for any given non-negative integer n, suppose

�n := {x0, . . . ,xn} (1.1.2)

is a sequence of n+ 1 distinct points in D f . We investigate the existence and construction

of a polynomial P satisfying the interpolatory conditions

P(x j) = f (x j), j = 0, . . . ,n, (1.1.3)

in which case we say that the polynomial P interpolates the function f at the interpolation

points �n. Based on (1.1.1), together with the fact that there are precisely n+ 1 interpola-

tion conditions in (1.1.3), we consider the polynomial construction

P(x) :=
n

∑
j=0

c jx j , (1.1.4)

1
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with {c0, . . . ,cn} denoting a real coefficient sequence, that is, P ∈ πn. By substituting

(1.1.4) into (1.1.3), we deduce that there exists a polynomial P ∈ πn satisfying the interpo-

lation conditions (1.1.3) if and only if there exists a (column vector) solution

c = [c0,c1, . . . ,cn]
T ∈ R

n+1 (1.1.5)

of the (n+ 1)× (n+ 1) linear system

Vnc = f, (1.1.6)

where

V0 := 1 ; Vn :=

⎡⎢⎢⎢⎢⎢⎣
1 x0 x2

0 · · · xn
0

1 x1 x2
1 · · · xn

1
...

...
...

...

1 xn x2
n · · · xn

n

⎤⎥⎥⎥⎥⎥⎦ if n � 1, (1.1.7)

a socalled (n+1)× (n+1) Vandermonde matrix, and where the column vector f ∈Rn+1 is

defined by

f := [ f (x0), . . . , f (xn)]
T . (1.1.8)

Here, as throughout the book, we adopt, for any m ∈ N, the notation Rm to denote the

m-dimensional Euclidean space, according to which R
1 = R.

In order to investigate the invertibility of the Vandermonde matrix Vn in (1.1.7), we proceed

to prove the following determinant formula, where, as in the rest of this book, we use the

convention
τ

∏
j=σ

a j := 1 if τ < σ .

Theorem 1.1.1. For a non-negative integer n, and any sequence {x0, . . . ,xn} of n+ 1 (not

necessarily distinct) points in R, the Vandermonde matrix Vn in (1.1.7) has determinant

det(Vn) =
n−1

∏
j=0

n

∏
k= j+1

(xk − x j). (1.1.9)

Proof. After first noting from (1.1.7) that (1.1.9) trivially holds for n = 0, we suppose next

that n � 1, and consider the sequence of functions defined, for x ∈ R, by

D0(x) := 1; (1.1.10)

Dr(x) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x0 x2
0 · · · xr

0

1 x1 x2
1 · · · xr

1
...

...
...

...

1 xr−1 x2
r−1 · · · xr

r−1

1 x x2 · · · xr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, r = 1, . . . ,n. (1.1.11)
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Let r ∈ {1, . . . ,n} be fixed. Observe from (1.1.11) that

Dr(x j) = 0, j = 0, . . . ,r− 1. (1.1.12)

Moreover, from the co-factor expansion with respect to the last row of the determinant in

(1.1.11), we deduce that

Dr(x) = Dr−1(xr−1)xr +E(x), (1.1.13)

where E ∈ πr−1, after having used also (1.1.10) for the case r = 1.

Next, we use (1.1.12), together with the fact that, from (1.1.13), the polynomial Dr(x) has

degree � r, to deduce that

Dr(x) = Kr

r−1

∏
j=0

(x− x j),

for some constant Kr, and thus

Dr(x) = Krxr +F(x), (1.1.14)

where F ∈ πr−1. It follows from (1.1.13) and (1.1.14) that Kr = Dr−1(xr−1) and E = F ,

yielding the formula

Dr(x) = Dr−1(xr−1)
r−1

∏
j=0

(x− x j). (1.1.15)

Now use (1.1.7) and (1.1.11), before repeatedly applying (1.1.15), and eventually (1.1.10),

to deduce that

det(Vn) = Dn(xn) = Dn−1(xn−1)
n−1

∏
j=0

(xn − x j)

=

[
Dn−2(xn−2)

n−2

∏
j=0

(xn−1 − x j)

]
n−1

∏
j=0

(xn − x j)

= · · ·

= [D0(x0)(x1 − x0)]

[
1

∏
j=0

(x2 − x j)

]
· · ·
[

n−1

∏
j=0

(xn − x j)

]

=
n−1

∏
k=0

k

∏
j=0

(xk+1 − x j) =
n−1

∏
j=0

n−1

∏
k= j

(xk+1 − x j),

which is equivalent to the desired formula (1.1.9). �
According to a standard result in linear algebra, a (square) matrix is invertible if and only

if its determinant is non-zero. Now observe from (1.1.9) in Theorem 1.1.1 that det(Vn) �= 0

if and only if the points {x0, . . . ,xn} are distinct. Since also the interpolation conditions
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(1.1.3) are satisfied by a polynomial P of the form (1.1.4) if and only if there exists a solu-

tion c ∈Rn+1 of the (n+1)×(n+1) linear system (1.1.6), we therefore have the following

fundamental existence and uniqueness result with respect to polynomial interpolation.

Theorem 1.1.2. For any non-negative integer n, let {x0, . . . ,xn} denote any sequence of

n+ 1 distinct points in R. Then the Vandermonde matrix Vn in (1.1.7) is invertible, and the

polynomial

P(x) = PI
n(x) :=

n

∑
j=0

(V−1
n f) jx j, (1.1.16)

with the column vector f∈Rn+1 defined by (1.1.8), is the unique polynomial in πn satisfying

the interpolation conditions (1.1.3).

Observe from the uniqueness statement in Theorem 1.1.2 that PI
n is the polynomial of least

degree such that P = PI
n satisfies the interpolation conditions (1.1.3).

Example 1.1.1. According to Theorem 1.1.2, there exists a unique polynomial P= PI
3 ∈ π3

satisfying the interpolatory conditions

P(−1) = 1; P(0) =−1; P(2) = 3; P(3) = 2. (1.1.17)

Since we have here n = 3, and

{x0,x1,x2,x3}= {−1,0,2,3}, (1.1.18)

the corresponding Vandermonde matrix in (1.1.7) is given by

V3 =

⎡⎢⎢⎢⎢⎣
1 −1 1 −1

1 0 0 0

1 2 4 8

1 3 9 27

⎤⎥⎥⎥⎥⎦ , (1.1.19)

the inverse matrix of which is calculated to be given by

V−1
3 =

1
12

⎡⎢⎢⎢⎢⎣
0 12 0 0

−6 2 6 −2

5 −8 4 −1

−1 2 −2 1

⎤⎥⎥⎥⎥⎦ . (1.1.20)

Also, (1.1.8) is given here by

f = [1,−1,3,2]T ,

and thus

V−1
3 f =

1
12

[−12,6,23,−7]T ,
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so that, by using the formula (1.1.16), we obtain

PI
3(x) =

1
12
(−12+ 6x+ 23x2− 7x3) . (1.1.21)

�

Although Theorem 1.1.2 is a useful existence and uniqueness result, the resulting poly-

nomial interpolation formula (1.1.16) involves the computation of the inverse of the Van-

dermonde matrix Vn. We proceed in Section 1.2 to deduce a more efficient interpolation

formula than (1.1.16), by expressing PI
n in terms of a basis for πn that is better suited to

polynomial interpolation than the standard basis {1,x, . . . ,xn}.

1.2 The Lagrange interpolation formula

As in Section 1.1, for any non-negative integer n, let {x0, . . . ,xn} denote a sequence of n+1

distinct points in R. The polynomials

L0,0(x) := 1; Ln, j(x) :=
n

∏
j �=k=0

x− xk

x j − xk
, j = 0, . . . ,n, (if n � 1), (1.2.1)

are called the Lagrange fundamental polynomials with respect to the sequence {x0, . . . ,xn},

and satisfy the following properties, in which we adopt the Kronecker delta notation

δ j :=

{
1, j = 0;

0, j ∈ Z\ {0}, (1.2.2)

with Z denoting the set of integers.

Theorem 1.2.1. The Lagrange fundamental polynomials, as given by (1.2.1), satisfy:

(a)

Ln, j(x�) = δ j−�, j, � = 0, . . . ,n; (1.2.3)

(b) the sequence {Ln, j : j = 0, . . . ,n} is a basis for πn.

Proof. (a) The interpolatory property (1.2.3) is an immediate consequence of (1.2.1).

(b) Since (1.1.1) gives dim(πn) = n+ 1, and since the sequence {Ln, j : j = 0, . . . ,n} con-

tains precisely n+1 functions, with, from (1.2.1), Ln, j ∈ πn for j = 0, . . . ,n, it will suffice to

prove, according to a standard result in linear algebra, that {Ln, j : j = 0, . . . ,n} is a linearly

independent set. Suppose therefore that {c0, . . . ,cn} are real coefficients such that
n

∑
j=0

c jLn, j(x) = 0, x ∈ R. (1.2.4)



6 Mathematics of Approximation

For any � ∈ {0, . . . ,n}, it follows from (1.2.4), (1.2.3) and (1.2.2) that

0 =
n

∑
j=0

c jLn, j(x�) =
n

∑
j=0

c jδ j−� = c�,

that is, c j = 0, j = 0, . . . ,n, which proves the desired linear independence. �
The following alternative to the polynomial interpolation formula (1.1.16) then holds.

Theorem 1.2.2 (Lagrange interpolation formula). The interpolation polynomial PI
n of The-

orem 1.1.2 satisfies the formulation

PI
n(x) =

n

∑
j=0

f (x j)Ln, j(x), (1.2.5)

where the Lagrange fundamental polynomials {Ln, j : j = 0, . . .n} are defined by (1.2.1).

Proof. Since PI
n ∈ πn, it follows from Theorem 1.2.1(b) that there exists a (unique) real

coefficient sequence {α0, . . . ,αn} such that

PI
n(x) =

n

∑
j=0

α jLn, j(x), x ∈ R. (1.2.6)

For any � ∈ {0, . . . ,n}, we may now choose x = x� in (1.2.6), and apply (1.1.3), as well as

(1.2.3) in Theorem 1.2.1(a), to obtain

f (x�) = PI
n(x�) =

n

∑
j=0

α jLn, j(x�) =
n

∑
j=0

α jδ j−� = α�,

which, together with (1.2.6), proves the formula (1.2.5). �
We proceed to prove the following polynomial identity.

Theorem 1.2.3. The Lagrange fundamental polynomials {Ln, j : j = 0, . . . ,n}, as defined

by (1.2.1), satisfy the identity
n

∑
j=0

P(x j)Ln, j(x) = P(x), x ∈ R, P ∈ πn, (1.2.7)

with, in particular,
n

∑
j=0

Ln, j(x) = 1, x ∈ R. (1.2.8)

Proof. Let P ∈ πn. According to Theorem 1.2.2, the polynomial

PI
n(x) :=

n

∑
j=0

P(x j)Ln, j(x) (1.2.9)

then satisfies the interpolatory conditions

PI
n(x j) = P(x j), j = 0, . . . ,n.
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Since also P trivially interpolates itself at the points {x0, . . . ,xn}, and since P and PI
n both

belong to πn, we deduce from the uniqueness statement in Theorem 1.1.2 that P = PI
n ,

which, together with (1.2.9), yields the desired identity (1.2.7).

The identity (1.2.8) follows immediately by choosing in (1.2.7) the polynomial

P(x) = 1, x ∈R,

which belongs to πn for each non-negative integer n. �

Example 1.2.1. Consider the interpolation conditions (1.1.17) of Example 1.1.1. Then, by

using (1.2.1) and (1.1.18), we calculate the Lagrange fundamental polynomials

L3,0(x) =
(x− 0)(x− 2)(x− 3)

(−1− 0)(−1− 2)(−1−3)
= − 1

12
x3 +

5
12

x2 − 1
2

x;

L3,1(x) =
(x− (−1))(x− 2)(x− 3)
(0− (−1))(0− 2)(0− 3)

=
1
6

x3 − 2
3

x2 +
1
6

x+ 1;

L3,2(x) =
(x− (−1))(x− 0)(x− 3)
(2− (−1))(2− 0)(2− 3)

= −1
6

x3 +
1
3

x2 +
1
2

x;

L3,3(x) =
(x− (−1))(x− 0)(x− 2)
(3− (−1))(3− 0)(3− 2)

=
1

12
x3 − 1

12
x2 − 1

6
x,

from which we verify that the identity (1.2.8) is indeed satisfied. By using the Lagrange

interpolation formula (1.2.5), together with (1.1.17), we obtain

PI
3(x) = 1

(
− 1

12
x3 +

5
12

x2 − 1
2

x
)
+(−1)

(
1
6

x3 − 2
3

x2 +
1
6

x+ 1
)

+3
(
−1

6
x3 +

1
3

x2 +
1
2

x
)
+ 2

(
1

12
x3 − 1

12
x2 − 1

6
x
)

=
1

12
(−7x3 + 23x2 + 6x− 12

)
, (1.2.10)

which agrees with (1.1.21) in Example 1.1.1. �
In the notation of Theorems 1.1.2 and 1.2.2, suppose one more interpolation point xn+1 is

added such that {x0, . . . ,xn,xn+1} is a sequence of n+ 2 distinct points in R. Then, if the

Lagrange interpolation formula (1.2.5) is used to calculate the corresponding interpolation

polynomial PI
n+1, the updated Lagrange fundamental polynomials {Ln+1, j : j = 0, . . . ,n+

1} need to be calculated from scratch, without recourse to {Ln, j : j = 0, . . . ,n}. We proceed,

in Section 1.3, to establish yet another basis for πn, which will allow the computation of

PI
n+1 from PI

n by the addition of a single term.
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1.3 Divided differences and the Newton interpolation formula

Let the interpolation polynomial PI
n be as in Theorem 1.1.2. Then the Lagrange interpola-

tion formula (1.2.5), together with (1.2.1), yields

PI
0(x) = β0; PI

n(x) = βnxn +Q(x), n ∈ N, (1.3.1)

with N := {1,2, . . .}, where Q ∈ πn−1, and with the leading coefficient of the polynomial

PI
n given by

β0 := f (x0); βn :=
n

∑
j=0

f (x j)
n

∏
j �=k=0

(x j − xk)

, n ∈ N. (1.3.2)

Adopting the notation

f [x0, . . . ,xn] := βn, (1.3.3)

we see from (1.3.2) that, for n = 0 and n = 1,

f [x0] = f (x0); f [x0,x1] =
f (x1)− f (x0)

x1 − x0
. (1.3.4)

We call f [x0, . . . ,xn] the nth-order divided difference of f with respect to the (distinct) point

sequence �n := {x0, . . . ,xn}.

Now introduce an additional interpolation point xn+1, such that

�n+1 :=�n ∪{xn+1} (1.3.5)

is a sequence of n+ 2 distinct points in R. The following recursive result for polynomial

interpolation then holds.

Theorem 1.3.1. The interpolatory polynomial PI
n+1 ∈ πn+1, as uniquely defined by the in-

terpolatory conditions

PI
n+1(x) = f (x), x ∈�n+1, (1.3.6)

with �n+1 as in (1.3.5), satisfies

PI
n+1(x) = PI

n(x)+ f [x0, . . . ,xn+1]
n

∏
j=0

(x− x j), (1.3.7)

with PI
n denoting the interpolation polynomial of Theorem 1.1.2.
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Proof. Let

P(x) := PI
n(x)+ f [x0, . . . ,xn+1]

n

∏
j=0

(x− x j), (1.3.8)

according to which, since also PI
n ∈ πn,

P(x) = ( f [x0, . . . ,xn+1])xn+1 + P̃(x), (1.3.9)

where P̃ ∈ πn. Next, we use (1.3.1) and (1.3.3) to obtain

PI
n+1(x) = ( f [x0, . . . ,xn+1])xn+1 + Q̃(x), (1.3.10)

where Q̃ ∈ πn. It follows from (1.3.9) and (1.3.10) that the difference polynomial Q :=

P−PI
n+1 satisfies Q ∈ πn. Moreover, from (1.3.8) and (1.3.6), together with the fact that

PI
n(x) = f (x), x ∈�n, we have, for j = 0, . . . ,n,

Q(x j) = P(x j)−PI
n+1(x j) = PI

n(x j)−PI
n+1(x j) = f (x j)− f (x j) = 0.

Hence Q is a polynomial in πn with n+1 distinct zeros at the points {x0, . . . ,xn}. It follows

that Q must be the zero polynomial, and thus P= PI
n+1, which, together with (1.3.8), proves

(1.3.7). �
Motivated by the recursive formulation (1.3.7) in Theorem 1.3.1, we now define, for any

distinct point sequence {x j : j = 0,1, . . .} in R, the polynomial sequence

Q0(x) := 1; Q j(x) :=
j−1

∏
k=0

(x− xk), j = 1,2, . . . , (1.3.11)

which satisfies the following properties:

Theorem 1.3.2. The polynomial sequence {Q j : j = 0,1, . . .}, as defined by (1.3.11), sat-

isfies:

(a)

Q j ∈ π j, j = 0,1, . . . ; (1.3.12)

(b) for any non-negative integer n, the sequence {Q j : j = 0, . . . ,n} is a basis for πn.

Proof (a) The property (1.3.12) is an immediate consequence of the definition (1.3.11).

(b) Since the case n = 0 is trivial, we suppose next n ∈ N. As in the proof of Theo-

rem 1.2.1(b), it will suffice to prove that {Q j : j = 0, . . . ,n} is a linearly independent set.

To this end, we let the real sequence {c0, . . . ,cn} be such that
n

∑
j=0

c jQ j(x) = 0, x ∈ R. (1.3.13)
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By setting x = x0 in (1.3.13), and using (1.3.11), we obtain c0 = 0, which, together with

(1.3.13), implies
n

∑
j=1

c jQ j(x) = 0, x ∈ R. (1.3.14)

According to (1.3.11), we may now divide the identity (1.3.14) by x− x0, and set x = x1

in the resulting identity, to obtain c1 = 0. Repeated further applications of this procedure

yield c2 = · · ·= cn = 0, and thereby completing our linear independence proof. �
It follows from Theorem 1.3.2(b) that there exists a unique real coefficient sequence

{β0, . . . ,βn} such that the interpolation polynomial PI
n of Theorem 1.1.2 is given by

PI
n(x) =

n

∑
j=0

β jQ j(x). (1.3.15)

By applying the formula (1.3.7) of Theorem 1.3.1 recursively, we obtain the coefficient

sequence

β j = f [x0, . . . ,x j], j = 0, . . . ,n, (1.3.16)

which is consistent with (1.3.1)–(1.3.4). The following interpolation formula is now an

immediate consequence of (1.3.15) and (1.3.16).

Theorem 1.3.3 (Newton interpolation formula). The interpolation polynomial PI
n of Theo-

rem 1.1.2 satisfies the formulation

PI
n(x) =

n

∑
j=0

f [x0, . . . ,x j]Q j(x), (1.3.17)

with the divided differences { f [x0, . . . ,x j ] : j = 0, . . . ,n} defined by (1.3.3), (1.3.2), and

with the polynomial sequence {Q j : j = 0, . . . ,n} given as in (1.3.11).

Observe from (1.3.4) that the second order divided difference is given by

f [x0,x1] =
f [x1]− f [x0]

x1 − x0
. (1.3.18)

We proceed to prove that the divided difference property of the right hand side of (1.3.18)

extends to higher order divided differences. To this end, for integers m and n, with n � 0,

let

�m,n := {xm, . . . ,xm+n} (1.3.19)

denote a sequence of n+ 1 distinct points in R. Then Theorem 1.1.2 implies the existence

of a (unique) polynomial PI
m,n in πn such that the interpolation conditions

PI
m,n(x) = f (x), x ∈�m,n, (1.3.20)
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are satisfied, where the function f is such that �m,n ⊂D f . The n-th order divided difference

f [xm, . . . ,xm+n] of f with respect to the point sequence �m,n is then defined by means of

the leading coefficient property

PI
m,n(x) = ( f [xm, . . . ,xm+n])xn +Q(x),

where Q ∈ πn−1. Observe that the case m = 0 corresponds precisely with (1.3.1)–(1.3.4).

Our following result extends (1.3.18) recursively.

Theorem 1.3.4. For integers j and k, with k � 0, let {x j, . . . ,x j+k+1} denote a sequence of

k+ 2 distinct points in R. Then

f [x j, . . . ,x j+k+1] =
f [x j+1, . . . ,x j+k+1]− f [x j, . . . ,x j+k]

x j+k+1 − x j
. (1.3.21)

Proof. Define the polynomial

Q(x) :=
(x− x j+k)PI

j+1, j+k+1(x)+ (x j+k+1 − x)PI
j, j+k(x)

x j+k+1 − x j
, (1.3.22)

with PI
j+1, j+k+1 and PI

j, j+k denoting the interpolation polynomials in πk as uniquely de-

termined by means of (1.3.20), (1.3.19). It follows from (1.3.22) that Q ∈ πk+1, with,

moreover,

Q(x�) = f (x�), �= j, . . . , j+ k+ 1, (1.3.23)

and thus, from Theorem 1.1.2, we have Q = PI
j, j+k+1, which, together with (1.3.22), yields

PI
j, j+k+1(x) =

(x− x j+k)PI
j+1, j+k+1(x)+ (x j+k+1 − x)PI

j, j+k(x)

x j+k+1 − x j
. (1.3.24)

The desired result (1.3.21) is then obtained by equating the leading coefficients of the two

sides of equation (1.3.24), and using the definition of a divided difference. �
We see from (1.3.21) that, for example,

f [x0,x1,x2] =
f [x1,x2]− f [x0,x1]

x2 − x0
,

which does indeed extend the divided difference pattern of (1.3.18).

The recursive computation of divided differences by means of (1.3.21) is considerably

more efficient than using instead the explicit formulation (1.3.3), (1.3.2). The resulting

iterative scheme for calculating the interpolation polynomial PI
n by means of the Newton

interpolation formula (1.3.17), together with (1.3.21), is illustrated in Figure 1.3.1.
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x0 f (x0)

f [x0,x1]

x1 f (x1) f [x0,x1,x2]

. . .

f [x1,x2] f [x0, . . . ,xn−1]

x2 f (x2) f [x0, . . . ,xn]
...

... f [x1, . . . ,xn−1]

xn−1 f (xn−1)

f [xn−1,xn]

xn f (xn)

Figure 1.3.1 Divided differences by means of the recursive formulation (1.3.21)

Example 1.3.1. Consider, as was also done in Example 1.2.1, the interpolation conditions

(1.1.17) of Example 1.1.1. As in Figure 1.3.1, we calculate the relevant divided differences

in (1.3.17) by means of (1.3.21), as follows:

x j f (x j) order 1 order 2 order 3

−1 1

−2

0 −1 4
3

2 − 7
12

2 3 −1

−1

3 2

The above table of values are obtained by the calculations

f [−1,0] =
f (0)− f (−1)

0− (−1)
=

−1− 1
1

= − 2;

f [0,2] =
f (2)− f (0)

2− 0
=

3− (−1)
2

= 2;

f [2,3] =
f (3)− f (2)

3− 2
=

2− 3
1

= − 1;

f [−1,0,2] =
f [0,2]− f [−1,0]

2− (−1)
=

2− (−2)
3

=
4
3

;
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f [0,2,3] =
f [2,3]− f [0,2]

3− 0
=

−1− 2
3

= − 1;

f [−1,0,2,3] =
f [0,2,3]− f [−1,0,2]

3− (−1)
=

−1− 4
3

4
= − 7

12
.

The Newton interpolation formula (1.3.17), together with (1.3.11), then yields the interpo-

lation polynomial

PI
3(x) = 1+(−2)(x− (−1))+

4
3
(x− (−1))(x− 0)− 7

12
(x− (−1))(x− 0)(x− 2)

= 1− 2(x+ 1)+
4
3

x(x+ 1)− 7
12

x(x+ 1)(x− 2)

=
1

12
(−12+ 6x+ 23x2− 7x3),

which agrees with (1.1.21) and (1.2.10) in, respectively, Examples 1.1.1 and 1.1.2. �
We proceed to state the following identity, the proof of which, as based on Theorems 1.3.3

and 1.1.2, is analogous to the proof of Theorem 1.2.3.

Theorem 1.3.5. The polynomials {Q j : j = 0,1, . . .}, as given by (1.3.11), satisfy, for any

non-negative integer n, the identity
n

∑
j=0

P[x0, . . . ,x j]Q j(x) = P(x), x ∈ R, P ∈ πn, (1.3.25)

with the divided differences {P[x0, . . . ,x j] : j = 0, . . . ,n} obtained from (1.3.2), (1.3.3).

Divided differences satisfy the following symmetry condition, which is an immediate con-

sequence of the definition (1.3.2), (1.3.3), and which, along with Theorem 1.3.5, we shall

rely on in Section 1.4.

Theorem 1.3.6. For any positive integer n and (distinct) point sequence {x0, . . . ,xn} in R,

the divided difference f [x0, . . . ,xn], as defined by (1.3.2), (1.3.3), is a symmetric function of

its arguments, that is, for any permutation { j0, . . . , jn} of the index set {0, . . . ,n}, we have

f [x j0 , . . . ,x jn ] = f [x0, . . . ,xn]. (1.3.26)

Observe in particular that, throughout Sections 1.1, 1.2 and 1.3, the (distinct) interpola-

tion points {x0, . . . ,xn} have not been required to satisfy any ordering condition like, for

example, x0 < x1 < · · ·< xn.



14 Mathematics of Approximation

1.4 Hermite interpolation

As in the preceding sections, for any non-negative integer n, let �n := {x0, . . . ,xn} de-

note a sequence of n+ 1 distinct points in R. We proceed to investigate the existence and

construction of a polynomial P satisfying the interpolatory conditions

P(k)(x j) = f (k)(x j), k = 0, . . . ,r j; j = 0, . . . ,n, (1.4.1)

with {r0, . . . ,rn} denoting a given sequence of n+ 1 non-negative integers, and where f

is a real-valued function such that �n ⊂ D f , and f has all the derivatives implied by the

right hand side of (1.4.1). The conditions (1.4.1) are called Hermite polynomial interpo-

lation conditions, and a polynomial P satisfying (1.4.1) is called a Hermite interpolation

polynomial of f with respect to the points �n and the sequence r = {r0, . . . ,rn}.

Observe that the precise number of Hermite interpolation conditions in (1.4.1) is given by
n

∑
j=0

(r j + 1) = (n+ 1)+
n

∑
j=0

r j.

Based on (1.1.1), we therefore consider the polynomial construction

P(x) :=
ν

∑
j=0

c jx j , (1.4.2)

where

ν := n+
n

∑
j=0

r j, (1.4.3)

and with {c0, . . . ,cν} denoting a real coefficient sequence, that is, P ∈ πν . For any k ∈
{1, . . . ,ν}, we now differentiate (1.4.2) k times to obtain the formula

P(k)(x j) =
ν

∑
�=k

[k!
(�

k

)
x�−k

j ]c�, j = 0, . . . ,n. (1.4.4)

By substituting (1.4.4) into (1.4.1), we deduce that there exists a polynomial P ∈ πν sat-

isfying the Hermite interpolation conditions (1.4.1) if and only if there exists a (column

vector) solution

c = [c0,c1, . . . ,cν ]
T ∈ R

ν+1 (1.4.5)

of the (ν + 1)× (ν + 1) linear system

Wn,rc = f, (1.4.6)

where the successive rows of the (square) matrix Wn,r are defined by setting, in (1.4.4),

k = 0, . . . ,r j for j = 0,1, . . . ,n, and where the column vector f ∈Rν+1 is defined by

f := [ f (x0), f ′(x0), . . . , f (r0)(x0), f (x1), . . . , f (rn)(xn)]
T . (1.4.7)

The following result then holds.

Theorem 1.4.1. The (ν + 1)× (ν + 1) matrix Wn,r in (1.4.6) is invertible.



Polynomial Interpolation Formulas 15

Proof. Let c = {c0, . . . ,cν}T ∈ Rν+1 be such that

Wn,rc = 0. (1.4.8)

We proceed to prove that c = 0, the zero sequence, from which, according to a standard

result in linear algebra, it will then follow that Wn,r is indeed an invertible matrix.

To this end, we first use (1.4.4), (1.4.6), (1.4.7) and (1.4.8) to deduce that the polynomial

P ∈ πν defined by

P(x) :=
ν

∑
j=0

c jx j (1.4.9)

satisfies

P(k)(x j) = 0, k = 0, . . . ,r j, j = 0, . . . ,n,

and thus

P(x) = K
n

∏
j=0

r j+1

∏
k=1

(x− x j)
k = Kxν+1 + P̃(x), (1.4.10)

for some constant K, where P̃ ∈ πν , and with ν defined by (1.4.3). It follows from (1.4.9)

and (1.4.10) that K = 0, which, together with the first equation in (1.4.10), shows that P is

the zero polynomial, and thus, from (1.4.9), c0 = c1 = · · ·= cν = 0, as required. �
As an immediate consequence of Theorem 1.4.1, together with (1.4.1)–(1.4.7), we have the

following existence and uniqueness result for Hermite polynomial interpolation.

Theorem 1.4.2. For any non-negative integer n, let {x0, . . . ,xn} denote a sequence of n+1

distinct points in R, and let r = {r0, . . . ,rn} be a given sequence of non-negative integers.

Then there exists a unique Hermite interpolation polynomial P = PI
n,r in πν , with ν defined

by (1.4.3), such that the conditions (1.4.1) are satisfied.

Note from Theorems 1.1.2 and 1.4.2 that

PI
n,0 = PI

n .

We proceed to establish an explicit construction method for the Hermite interpolation poly-

nomial PI
n,r of Theorem 1.4.2. To this end, we first observe from (1.3.18) that, for a function

f that is differentiable in the smallest interval containing x0 and x1, we have

f [x0,x1] =

∫ 1

0
f ′(t(x1 − x0)+ x0)dt. (1.4.11)

In general, for sufficiently differentiable functions f , divided differences of order m � 2

can be expressed as follows in terms of an iterated integral. We shall denote by f (n) the nth

derivative of a function f , with the convention also that f (0) := f .
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Theorem 1.4.3. For any integer n ∈ N, let {x0, . . . ,xn} denote a sequence of n+ 1 dis-

tinct points in R, and suppose the real-valued function f has n continuous derivatives

in the smallest interval containing the points {x0, . . . ,xn}. Then the divided difference

f [x0, . . . ,xn], as obtained from (1.3.2), (1.3.3), satisfies the iterated integral formulation

f [x0, . . . ,xn] =

∫ t0

0
· · ·
∫ tn−1

0
f (n)(tn(xn − xn−1)+ · · ·+ t1(x1 − x0)+ x0)dtn . . .dt1, (1.4.12)

where

t0 := 1. (1.4.13)

Remark. For any integer n ∈ N, observe that the number

γn := tn(xn − xn−1)+ · · ·+ t1(x1 − x0)+ x0

satisfies

γn = (1− t1)x0 +(t1 − t2)x1 + · · ·+(tn−1 − tn)xn−1 + tnxn,

and thus, with the notation

αn := min{x0, . . . ,xn} ; βn := max{x0, . . . ,xn},

we have, for 0 � tn � tn−1, . . . ,0 � t2 � t1,0 � t1 � t0 = 1, the inequalities

αn[(1−t1)+(t1−t2)+ · · ·+(tn−1−tn)+tn]� γn � βn[(1−t1)+(t1−t2)+ · · ·+(tn−1−tn)+tn],

which yields αn � γn � βn. Hence the argument (= γn) of the integrand f (n) in (1.4.12) is

indeed in the smallest interval containing the points {x0, . . . ,xn}, and thereby guaranteeing

the existence of the iterated integral in (1.4.12).

Proof of Theorem 1.4.3. Our proof is by induction on the integer n. After noting from

(1.4.11) that (1.4.12), (1.4.13) are satisfied for n= 1, we suppose next that (1.4.12), (1.4.13)

hold for any fixed integer n ∈N. But then, by using also (1.3.21) in Theorem 1.3.4, as well

as Theorem 1.3.6, we obtain, by integrating with respect to tn+1,∫ t0

0
· · ·
∫ tn

0
f (n+1)(tn+1(xn+1 − xn)+ · · ·+ t1(x1 − x0)+ x0)dtn+1dtn . . .dt1

=
1

xn+1 − xn

[∫ t0

0
· · ·
∫ tn−1

0
f (n)(tn(xn+1 − xn−1)+ tn−1(xn−1 − xn−2)+ · · ·

+t1(x1 − x0)+ x0)dtn−1 . . .dt1

−
∫ t0

0
· · ·
∫ tn−1

0
f (n)(tn(xn − xn−1)+ · · · +t1(x1 − x0)+ x0)dtn−1 . . .dt1

]
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=
f [x0, . . . ,xn−1,xn+1]− f [x0, . . . ,xn−1,xn]

xn+1 − xn

=
f [x0, . . . ,xn−1,xn+1]− f [xn,x0, . . . ,xn−1]

xn+1 − xn

= f [xn,x0, . . . ,xn−1,xn+1] = f [x0,x1, . . . ,xn,xn+1],

and thus (1.4.12), (1.4.13) are satisfied with n replaced by n+ 1, which completes our

inductive proof. �
The definition (1.3.2), (1.3.3) of the divided difference f [x0, . . . ,xn] holds for any distinct

point sequence {x0, . . . ,xn}. Based on (1.4.12), (1.4.13) in Theorem 1.4.3, we now define,

for any non-negative integer ν and (not necessarily distinct) point sequence {ξ0, . . . ,ξν}
in R, the ν th order divided difference of a function f , with ν continuous derivatives in the

smallest interval containing the points {ξ0, . . . ,ξν}, by

f [ξ0] := f (ξ0);

f [ξ0, . . . ,ξν ] :=

t0∫
0

· · ·
tν−1∫
0

f (ν)(tν(ξν − ξν−1)+ · · ·+ t1(ξ1 − ξ0)+ ξ0)dtν . . .dt1, if ν � 1,

where

t0 := 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(1.4.14)

Observe from Theorem 1.4.3 that the definition (1.4.14) yields (1.3.2), (1.3.3) if

{ξ0, . . . ,ξν} is a distinct point sequence in R.

As an immediate consequence of the definition (1.4.14), we have the following continuity

result.

Theorem 1.4.4. For any non-negative integer ν , let {ξ0, . . . ,ξν} denote a (not necessarily

distinct) point sequence in R, and suppose the real-valued function f has ν continuous

derivatives in the smallest interval containing the points {ξ0, . . . ,ξν}. Then the divided

difference f [ξ0, . . . ,ξν ], as defined by (1.4.14), is a continuous function on Rν+1.

Henceforth in this section we shall assume that the sequence {x0, . . . ,xn} of Theorem 1.4.2

is strictly increasing, that is,

x0 < x1 < · · ·< xn. (1.4.15)
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In the notation of Theorem 1.4.2, according to which the integer ν is defined by (1.4.3), we

now define the sequence {ξ0, . . . ,ξν} of ν + 1 points in R by

ξ0 = · · · = ξr0 := x0;

ξr0+1 = · · · = ξr0+r1+1 := x1;

...
...

ξν−rn = · · · = ξν := xn,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(1.4.16)

and, for k ∈ N, we denote by {ξ0,k, . . . ,ξν,k} any sequence of ν + 1 distinct points in R,

such that

ξ0,k < ξ1,k < · · ·< ξν,k, (1.4.17)

with, moreover,

lim
k→∞

ξ j,k = ξ j, j = 0, . . . ,ν. (1.4.18)

Following (1.3.11), the polynomial sequences {Q̃ j : j = 0, . . . ,ν} and {Q̃ j,k : j = 0, . . . ,ν}
are then defined accordingly by

Q̃0(x) := 1; Q̃ j(x) :=
j−1

∏
�=0

(x− ξ�), j = 1, . . . ,ν, (1.4.19)

and

Q̃0,k(x) := 1; Q̃ j,k(x) :=
j−1

∏
�=0

(x− ξ�,k), j = 1, . . . ,ν, (1.4.20)

for k = 1,2, . . ..

Since, according to (1.4.17), {ξ0,k, . . . ,ξν,k} is, for any fixed k ∈ N, a sequence of ν + 1

distinct points in R, and since the Hermite interpolation polynomial PI
n,r of Theorem 1.4.2

satisfies PI
n,r ∈ πν , we may apply (1.3.25) in Theorem 1.3.5 to obtain the identity

PI
n,r(x) =

ν

∑
j=0

PI
n,r[ξ0,k, . . . ,ξ j,k]Q̃ j,k(x), x ∈ R, (1.4.21)

for k = 1,2, . . ..

By applying Theorem 1.4.4, we may now deduce from (1.4.18) that

lim
k→∞

PI
n,r[ξ0,k, . . . ,ξ j,k] = PI

n,r[ξ0, . . . ,ξ j], j = 0, . . . ,ν, (1.4.22)

whereas (1.4.20), (1.4.18) and (1.4.19) imply

lim
k→∞

Q̃ j,k(x) = Q̃ j(x), j = 0, . . . ,ν, (1.4.23)
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and for any x ∈ R. Since, moreover, the left hand side of (1.4.21) is independent of k, we

may now combine (1.4.21), (1.4.22) and (1.4.23) to obtain the identity

PI
n,r(x) =

ν

∑
j=0

PI
n,r[ξ0, . . . ,ξ j]Q̃ j(x), x ∈ R. (1.4.24)

The recursive computation of the divided differences in the right hand side of (1.4.24) will

be based on the following polynomial extension of Theorem 1.3.4.

Theorem 1.4.5. Let P be any polynomial, and, for integers j and k, with k � 0, let

{ξ j, . . . ,ξ j+k+1} be a sequence of k+ 1 points in R such that

ξ j � ξ j+1 � · · ·� ξ j+k+1. (1.4.25)

Then the divided difference P[ξ j, . . . ,ξ j+k+1], as obtained from (1.4.12), (1.4.13), satisfies

P[ξ j, . . . ,ξ j+k+1] =

⎧⎪⎪⎨⎪⎪⎩
P[ξ j+1, . . . ,ξ j+k+1]−P[ξ j, . . . ,ξ j+k]

ξ j+k+1 − ξ j
, if ξ j �= ξ j+k+1;

P(k+1)(ξ )
(k+ 1)!

, if ξ j = ξ j+1 = · · ·= ξ j+k+1 =: ξ .
(1.4.26)

Proof. Suppose first ξ j �= ξ j+k+1. For � ∈ N, analogously to (1.4.17), (1.4.18), let {ξr,� :

r = j, . . . , j+ k+ 1} denote a sequence of k+ 2 distinct points in R such that

ξ j,� < ξ j+1,� < · · ·< ξ j+k+1,�, (1.4.27)

with, moreover,

lim
�→∞

ξr,� = ξr, r = j, . . . , j+ k+ 1. (1.4.28)

Based on (1.4.27) and (1.4.28), we may now apply (1.3.21) in Theorem 1.3.4, as well as

Theorem 1.4.4, to deduce that, for � ∈ N,∣∣∣∣P[ξ j, . . . ,ξ j+k+1]−
P[ξ j+1, . . . ,ξ j+k+1]−P[ξ j, . . . ,ξ j+k]

ξ j+k+1 − ξ j

∣∣∣∣
� |P[ξ j, . . . ,ξ j+k+1]−P[ξ j,�, . . . ,ξ j+k+1,�]|

+

∣∣∣∣P[ξ j+1,�, . . . ,ξ j+k+1,�]−P[ξ j,�, . . . ,ξ j+k,�]

ξ j+k+1,�− ξ j,�
− P[ξ j+1, . . . ,ξ j+k+1]−P[ξ j, . . . ,ξ j+k]

ξ j+k+1 − ξ j

∣∣∣∣
→ 0+ 0 = 0, �→ ∞,

and thereby proving the first line of (1.4.26).
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Next, if ξ j = ξ j+k+1, and thus, from (1.4.25), ξ j = ξ j+1 = · · · = ξ j+k+1 =: ξ , it follows

from (1.4.12), (1.4.13) that

P[ξ j, . . . ,ξ j+k+1] = P(k+1)(ξ )
∫ t0

0

∫ t1

0
· · ·
∫ tk

0
dtk+1dtk . . .dt1

= P(k+1)(ξ )
∫ t0

0
· · ·
∫ tk−1

0
tkdtk . . .dt1

=
P(k+1)(ξ )

2

∫ t0

0
· · ·
∫ tk−2

0
(tk−1)

2dtk−1 . . .dt1

= · · ·

=
P(k+1)(ξ )

k!

∫ t0

0
(t1)kdt1 =

P(k+1)(ξ )
k!

∫ 1

0
(t1)kdt1 =

P(k+1)(ξ )
(k+ 1)!

,

which gives the second line of (1.4.26). �
It follows from (1.4.26) in Theorem 1.4.5 that the divided differences {PI

n,r[ξ0, . . . ,ξ j ] : j =

0, . . . ,ν} in the right hand side of (1.4.24) are determined uniquely by the values

{(PI
n,r)

(k)(x j) : k = 0, . . . ,r j; j = 0, . . . ,n}.

Since also the Hermite interpolation conditions (1.4.1) are satisfied, we deduce from

(1.4.24), together with Theorem 1.4.5, the following Hermite interpolation formula.

Theorem 1.4.6. The Hermite interpolation polynomial PI
n,r of Theorem 1.4.2 satisfies the

formulation

PI
n,r(x) =

ν

∑
j=0

f [ξ0, . . . ,ξ j]Q̃ j(x), (1.4.29)

with the polynomial sequence {Q̃ j : j = 0, . . . ,ν} given by (1.4.19) in terms of the se-

quence {ξ0, . . . ,ξν} defined in (1.4.16), and with the divided differences { f [ξ0, . . . ,ξ j] :

j = 0, . . . ,ν} defined for 0 � j < j+ k+ 1 � ν by

f [ξ j , . . . ,ξ j+k+1] :=

⎧⎪⎪⎨⎪⎪⎩
f [ξ j+1, . . . ,ξ j+k+1]− f [ξ j, . . . ,ξ j+k]

ξ j+k+1 − ξ j
, if ξ j �= ξ j+k+1;

f (k+1)(ξ )
(k+ 1)!

, if ξ j = ξ j+k+1 =: ξ .

(1.4.30)

Example 1.4.1. According to Theorem 1.4.2, there exists a unique polynomial P = PI
2,r ∈

π5, where r = {r0,r1,r2} := {1,0,2}, such that the Hermite interpolation conditions

P(0) = 2; P′(0) =−2; P(2) = 3; P(3) =−1; P′(3) = 1; P′′(3) = 2
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are satisfied. Observe that here n = 2, ν = 5, {x0,x1,x2} = {0,2,3} and, from (1.4.16),

{ξ0,ξ1,ξ2,ξ3,ξ4,ξ5}= {0,0,2,3,3,3}. The divided differences in the formula (1.4.29) are

then computed by means of (1.4.30), as follows:

ξ j f (ξ j) order 1 order 2 order 3 order 4 order 5

0 2

−2

0 2 5
4

1
2 − 11

12

2 3 − 3
2

37
36

−4 13
6 − 37

36

3 −1 5 − 37
18

1 −4

3 −1 1

1

3 −1

The above table of values are obtained by the calculations
f [0,0] = f ′(0) =−2;

f [0,2] =
f (2)− f (0)

2− 0
=

3− 2
2

=
1
2

;

f [2,3] =
f (3)− f (2)

3− 2
=

−1− 3
3− 2

=−4;

f [3,3] = f ′(3) = 1;

f [0,0,2] =
f [0,2]− f [0,0]

2− 0
=

1
2
− (−2)

2
=

5
4

;

f [0,2,3] =
f [2,3]− f [0,2]

3− 0
=

−4− 1
2

3
=−3

2
;
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f [2,3,3] =
f [3,3]− f [2,3]

3− 2
=

1− (−4)
1

= 5;

f [3,3,3] =
f ′′(3)

2
=

2
2
= 1;

f [0,0,2,3] =
f [0,2,3]− f [0,0,2]

3− 0
=

−3
2
− 5

4
3

=−11
12

;

f [0,2,3,3] =
f [2,3,3]− f [0,2,3]

3− 0
=

5− (−3
2
)

3
=

13
6

;

f [2,3,3,3] =
f [3,3,3]− f [2,3,3]

3− 2
=

1− 5
1

=−4;

f [0,0,2,3,3] =
f [0,2,3,3]− f [0,0,2,3]

3− 0
=

13
6

− (−11
12

)

3
=

37
36

;

f [0,2,3,3,3] =
f [2,3,3,3]− f [0,2,3,3]

3− 0
=

−4− 13
6

3
=−37

18
;

f [0,0,2,3,3,3] =
f [0,2,3,3,3]− f [0,0,2,3,3]

3− 0
=

−37
18

− 37
36

3
=−37

36
.

The Hermite interpolation polynomial PI
2,r is then given, according to (1.4.29) and (1.4.30),

by

PI
2,r(x) = 2− 2(x− 0)+

5
4
(x− 0)2 − 11

12
(x− 0)2(x− 2)

+
37
36

(x− 0)2(x− 2)(x− 3)− 37
36

(x− 0)2(x− 2)(x− 3)2

=
1
36

(72− 72x+ 999x2− 995x3+ 333x4− 37x5).

�

1.5 Exercises

Exercise 1.1 For the Vandermonde matrix V3 corresponding to the point sequence

x j = j2, j = 0,1,2,3,

calculate the inverse matrix V−1
3 , and then apply the interpolation formula (1.1.16) in The-

orem 1.1.2 to obtain the polynomial P of least degree such that the interpolation conditions

P(x j) =
√

x j, j = 0,1,2,3,

are satisfied.
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Exercise 1.2 Verify the polynomial P calculated in Exercise 1.1 by means of (a) the La-

grange interpolation formula; (b) the Newton interpolation formula. In (a), it should also

be verified that the corresponding Lagrange fundamental polynomials {L3, j : j = 0, . . . ,3}
satisfy the identity (1.2.8) in Theorem 1.2.3.

Exercise 1.3 Let {PI
j : j = 0, . . . ,4} denote the sequence of interpolation polynomials, with

PI
j ∈ π j, j = 0, . . . ,4, such that

PI
j (xk) = f (xk), k = 0, . . . , j; j = 0, . . . ,4,

with

{x0, . . . ,x4}= {0, . . . ,4},
and where

f (x0) = 1; f (x1) =−1; f (x2) = 0; f (x3) = 3; f (x4) =−2.

Calculate the sequence {PI
j : j = 0, . . . ,4} by means of (a) the Lagrange interpolation for-

mula; (b) the Newton interpolation formula, and compare the efficiency of the two methods.

Exercise 1.4 For the function

f (x) = ex,

calculate the divided difference f [0,1,1,1] (a) directly by means of an iterated integral as

in (1.4.14); (b) recursively as in Example 1.4.1.

Exercise 1.5 For the function

f (x) =
16
x
,

use the recursive method, as applied in Example 1.4.1, to find the polynomial P of least

degree such that P satisfies the Hermite interpolation conditions

P(1) = f (1); P′(1) = f ′(1); P′′(1) = f ′′(1);

P(2) = f (2);

P(4) = f (4) ; P′(4) = f ′(4).

Exercise 1.6 As a continuation of Exercise 1.5, write down the corresponding vector r and

matrix W2,r, as appearing in equation (1.4.6).

Exercise 1.7 As a further continuation of Exercise 1.5, write down the corresponding point

sequences {x0,x1,x2} and {ξ0, . . . ,ξ5}, as appearing in (1.4.16), and give an explicit for-

mulation of a sequence {ξ j,k : k = 0,1, . . . ; j = 0, . . . ,5} satisfying (1.4.17) and (1.4.18).
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Exercise 1.8 Show that the set

S := {1,x,x(x− 1),x(x− 1)2,x(x− 1)3,x(x− 1)3(x− 2)}

is a basis for the polynomial space π5.

Exercise 1.9 As a continuation of Exercise 1.8, formulate and solve, by means of the re-

cursive method as in Example 1.4.1, the Hermite interpolation problem for the function

f (x) =
1

x+ 1
,

and in which S is the appropriate basis for π5.

Exercise 1.10 Verify Theorem 1.3.6 for the case n = 3; {x0,x1,x2,x3} = {0,1,2,3};

{ j0, j1, j2, j3}= {2,0,3,1}, and

f (x0) = 3; f (x1) =−2; f (x2) = 1; f (x3) =−1,

by calculating both sides of equation (1.3.26) by means of the recursive formulation

(1.3.21) in Theorem 1.3.4.



Chapter 2

Error Analysis For Polynomial Interpolation

As a continuation of Chapter 1, the notion of divided difference is applied to deduce the

uniform error bound for polynomial interpolation for any given finite sample point set.

In addition, an optimal sample point set, on which the minimum uniform error bound is

achieved among all sample point sets with the same cardinality, is derived.

2.1 General error estimate

Let [a,b] denote a bounded interval in R, and suppose f ∈ C[a,b], with C[a,b] denoting

the linear space of continuous functions f : [a,b]→ R. For any non-negative integer n, let

�n := {x0, . . . ,xn} be a sequence of n+ 1 distinct points such that

�n ⊂ [a,b], (2.1.1)

and, as in Theorem 1.1.2, denote by PI
n the unique polynomial in πn satisfying the interpo-

lation conditions

PI
n(x) = f (x), x ∈�n. (2.1.2)

The corresponding polynomial interpolation error function is then defined by

EI
n := f −PI

n. (2.1.3)

Hence EI
n ∈C[a,b], with

EI
n(x) = 0, x ∈�n. (2.1.4)

The function EI
n has the following explicit formulation in terms of a divided difference.

Theorem 2.1.1. The error function EI
n, as defined by (2.1.3), satisfies, for any non-negative

integer n,

EI
n(x) =

⎧⎨⎩0 , x ∈�n;

f [x,x0, . . . ,xn]Qn+1(x) , x ∈ [a,b]\�n,
(2.1.5)

25
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with Qn+1 ∈ πn+1 defined as in (1.3.11), that is,

Qn+1(x) :=
n

∏
j=0

(x− x j). (2.1.6)

Proof. The first line of (2.1.5) has already been noted in (2.1.4).

Let x ∈ [a,b] \�n be fixed, and denote by P the unique interpolation polynomial in πn+1

such that

P(t) = f (t), t ∈�n ∪{x}. (2.1.7)

It follows from (2.1.1) and (1.3.7) in Theorem 1.3.1 that

P(t) = PI
n(t)+ f [x0, . . . ,xn,x]Qn+1(t), (2.1.8)

with the polynomial QI
n+1 defined as in (2.1.6). By setting t = x in (2.1.8), and using (2.1.7),

we obtain

f (x) = PI
n(x)+ f [x0, . . . ,xn,x]Qn+1(x). (2.1.9)

The second line of (2.1.5) is now a consequence of (2.1.8), (2.1.3), as well as the symmetry

result of Theorem 1.3.6. �
In order to obtain a useful estimate for the error function EI

n, we first prove the following

property of divided differences.

Theorem 2.1.2. For any non-negative integer n, let �n := {x0, . . . ,xn} denote a sequence

of n+ 1 distinct points in R, and suppose f has n continuous derivatives in the smallest

interval containing the points {x0, . . . ,xn}. Then the divided difference f [x0, . . . ,xn], as

defined by (1.3.2), (1.3.3), satisfies

f [x0, . . . ,xn] =
f (n)(ξ )

n!
, (2.1.10)

for some point ξ in the smallest interval containing the points {x0, . . . ,xn}.

Proof. By applying (1.4.12), (1.4.13) in Theorem 1.4.3, and recalling the remark follow-

ing the statement of Theorem 1.4.3, we deduce by means of the mean value theorem for

integrals, together with (2.1.1), that there is a point ξ in the smallest interval containing the

points {x0, . . . ,xn} such that

f [x0, . . . ,xn] = f (n)(ξ )
∫ t0

0
· · ·
∫ tn−1

0
dtndtn−1 . . .dt1

= f (n)(ξ )
∫ t0

0
· · ·
∫ tn−2

0
tn−1dtn−1 . . .dt1
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= · · ·= f (n)(ξ )
n!

,

analogously to the final argument in the proof of Theorem 1.4.5. �
We now combine Theorems 2.1.1 and 2.1.2, and use the fact that (2.1.6) implies

Qn+1(x) = 0, x ∈�n, (2.1.11)

to immediately deduce the following result, in which, as throughout the book, we adopt,

for any non-negative integer m, the notation Cm[a,b] to denote the linear space of functions

f : [a,b]→ R such that f (k) ∈C[a,b],k = 0, . . . ,m, according to which C0[a,b] =C[a,b].

Theorem 2.1.3. For a non-negative integer n, suppose f ∈ Cn+1[a,b]. Then, for any x ∈
[a,b], there is a point ξ ∈ (a,b) such that the error function EI

n in (2.1.3) satisfies

EI
n(x) =

f (n+1)(ξ )
(n+ 1)!

Qn+1(x), (2.1.12)

with the polynomial Qn+1 ∈ πn+1 given by (2.1.6).

Next, for any function g ∈C[a,b], we introduce the notation

||g||∞ := max
a�x�b

|g(x)|, (2.1.13)

in terms of which the following interpolation error estimate holds.

Theorem 2.1.4. The interpolation error function EI
n in Theorem 2.1.3 satisfies the estimate

||EI
n||∞ � || f (n+1)||∞

(n+ 1)!
||Qn+1||∞. (2.1.14)

Proof. Let x ∈ [a,b] be fixed. It follows from (2.1.12) in Theorem 2.1.3, together with

(2.1.13), that

|EI
n(x)|�

|| f (n+1)||∞
(n+ 1)!

||Qn+1||∞,

from which the desired estimate (2.1.14) then immediately follows. �

Example 2.1.1. Consider the case f (x) = cosx, and [a,b] = [0, π
2 ].

(a) For n = 2, let

�2 = {x0,x1,x2} := {0,
π
4
,

π
2
}. (2.1.15)

Then, by using either of the interpolation formulas (1.2.5) or (1.3.17), we obtain

PI
2(x) =

8
π2 (1−

√
2)x2 +

2
π
(2
√

2− 3)x+ 1.
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Moreover, the error estimate (2.1.14) yields

max
0�x� π

2

∣∣cosx−PI
2(x)

∣∣ � 1
3!

[
max

0�x� π
2

|sin x|
]

max
0�x� π

2

∣∣∣x(x− π
4

)(
x− π

2

)∣∣∣
=

1
6

√
3π3

288
=

√
3π3

1728
≈ 0.031. (2.1.16)

(b) For n = 9, let �9 = {x0, . . . ,x9} denote any sequence of 10 distinct points in [0, π
2 ].

Then the corresponding interpolation polynomial PI
9 can be calculated by means of

either (1.2.5) or (1.3.17), and the error estimate (2.1.14) gives

max
0�x�2

∣∣cosx−PI
9(x)

∣∣ � 1
10!

[
max

0�x� π
2

|cosx|
]

max
0�x� π

2

9

∏
j=0

|x− x j|

� 1
10!

(π
2

)10
≈ 2.52× 10−5. (2.1.17)

�

Observe that the upper bound on ||EI
n||∞, as given by the right hand side of (2.1.14), depends

on f , n and �n := {x0, . . . ,xn}, with the dependence on �n entirely restricted to the factor

||Qn+1||∞. Moreover, ||Qn+1||∞ is independent of f . We shall proceed in Section 2.2 to

investigate the existence of a sequence �n which minimizes ||Qn+1||∞.

2.2 The Chebyshev interpolation points

The Chebyshev polynomials {Tj : j = 0,1, . . .} are defined recursively by

T0(x) := 1 ; T1(x) := x ;

Tj+1(x) := 2xTj(x)−Tj−1(x), j = 1,2, . . . .

⎫⎬⎭ (2.2.1)

By using (2.2.1), we obtain

T2(x) = 2x2 − 1 ; T3(x) = 4x3 − 3x ; T4(x) = 8x4 − 8x2 + 1;

T5(x) = 16x5 − 20x3+ 5x ; T6(x) = 32x6 − 48x4+ 18x2 − 1.

⎫⎬⎭ (2.2.2)

The following properties are satisfied by the Chebyshev polynomials.

Theorem 2.2.1. For j ∈N, the Chebyshev polynomial Tj, as defined in (2.2.1), satisfies:

(a) Tj is a polynomial of degree j such that the leading coefficient in

Tj(x) =
j

∑
k=0

c j,kxk (2.2.3)

is given by

c j, j = 2 j−1; (2.2.4)
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(b)

Tj(x) = cos( j arccosx), x ∈ [−1,1]; (2.2.5)

(c)

|Tj(x)|� 1, x ∈ [−1,1]; (2.2.6)

(d)

Tj

(
cos
(

j− k
j

π
))

= (−1) j−k, k = 0, . . . , j; (2.2.7)

(e)

Tj

(
cos
(

2 j− 1− 2k
2 j

π
))

= 0, k = 0, . . . , j− 1; (2.2.8)

(f)

Tj(x) = 2 j−1
j−1

∏
k=0

[
x− cos

(
2 j− 1− 2k

2 j
π
)]

, x ∈ R. (2.2.9)

Proof. (a) The properties (2.2.3) and (2.2.4) follow inductively from the definition (2.2.1).

(b) Let the function sequence {g j : j = 0,1, . . .} be defined by

g j(x) := cos( j arccosx), x ∈ [−1,1], j = 0,1, . . . , (2.2.10)

and introduce the one-to-one mapping between the intervals [0,π ] and [−1,1] as given by

x = cosθ , θ ∈ [0,π ], (2.2.11)

or equivalently,

θ = arccosx, x ∈ [−1,1], (2.2.12)

in terms of which (2.2.10) may be written as

g j(x) = cos( jθ ), θ ∈ [0,π ], j = 0,1, . . . . (2.2.13)

The trigonometric identity

cos[( j+ 1)θ ]+ cos[( j− 1)θ ] = 2(cosθ )cos( jθ ),

together with (2.2.13) and (2.2.11), yields the identity

g j+1(x)+ g j−1(x) = 2xg j(x), x ∈ [−1,1], j = 1,2, . . . ,

and thus, by using also (2.2.13) for j = 0 and j = 1, as well as (2.2.11), we obtain

g0(x) = 1; g1(x) = x;

g j+1(x) = 2xg j(x)− g j−1(x), j = 1,2, . . . ,

⎫⎬⎭ x ∈ [−1,1]. (2.2.14)
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It follows from (2.2.1) and (2.2.14) that g j(x) = Tj(x),x ∈ [−1,1], j = 0,1, . . ., which,

together with (2.2.10), proves the formula (2.2.5).

(c) The property (2.2.6) is an immediate consequence of (2.2.5).

(d) For j ∈ N and k = 0, . . . , j, we have, from (2.2.5),

Tj

(
cos
(

j− k
j

π
))

= cos
(

j arccos
(

cos
(

j− k
j

π
)))

= cos(( j− k)π) = (−1) j−k,

which proves (2.2.7).

(e) Similarly, for j ∈N and k = 0, . . . , j− 1, we deduce from (2.2.5) that

Tj

(
cos
(

2 j− 1− 2k
2 j

π
))

= cos
(

j arccos
(

cos
(

2 j− 2k− 1
2 j

π
)))

= cos
((

j− k− 1
2

)
π
)
= 0,

and thereby proving (2.2.8).

(f) The explicit formulation (2.2.9) is an immediate consequence of (2.2.3), (2.2.4) and

(2.2.8). �
Observe from Theorem 2.2.1(f) that, for j ∈ N, the Chebyshev polynomial Tj of degree j

has precisely j distinct zeros in (−1,1), with, more precisely,

Tj(t j,k) = 0, k = 0, . . . , j− 1, (2.2.15)

where

t j,k := cos
(

2 j− 1− 2k
2 j

π
)
, k = 0, . . . , j− 1, (2.2.16)

and thus

−1 < t j,0 < t j,1 < · · ·< t j, j−1 < 1. (2.2.17)

Moreover, according to Theorem 2.2.1(d), the Chebyshev polynomial Tj attains, for j ∈N,

its maximum (= 1) and minimum (=−1) on [−1,1] alternately, in the sense that

Tj(ξ j,k) = (−1) j−k, k = 0, . . . , j, (2.2.18)

where

ξ j,k := cos
(

j− k
j

π
)
, k = 0, . . . , j, (2.2.19)

and thus

−1 = ξ j,0 < ξ j,1 < · · ·< ξ j, j = 1. (2.2.20)
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For any non-negative integer k, if P(x) =
k

∑
j=1

c jx j , with leading coefficient ck = 1, we say

that P is a monic polynomial. The set of all monic polynomials in πk will be denoted by the

symbol π̃k. Observe from Theorem 2.2.1(a) that the normalized Chebyshev polynomials

T̃j := 21− jTj, j = 1,2, . . . , (2.2.21)

are monic polynomials, that is,

T̃j ∈ π̃ j, j ∈ N. (2.2.22)

We shall rely on the following minimization property of T̃j.

Theorem 2.2.2. For any j ∈ N,

min
P∈π̃ j

max
−1�x�1

|P(x)|= max
−1�x�1

|T̃j(x)|= 21− j, (2.2.23)

where T̃j is the normalized Chebyshev polynomial defined by (2.2.21).

Proof. Let j ∈N. First, observe that (2.2.21), (2.2.6) and (2.2.7) imply the second equation

in(2.2.23).

We use a proof by contradiction to prove the first equation in (2.2.23). Suppose therefore

that there exists a polynomial Q ∈ π̃ j such that

max
−1�x�1

|Q(x)|< 21− j, (2.2.24)

according to which Q �= T̃j, and define the polynomial

R := (−1) j(T̃j −Q), (2.2.25)

for which it then follows that R is not the zero polynomial. Since T̃j and Q are both monic

polynomials in π̃ j , it follows from (2.2.25) that

R ∈ π j−1. (2.2.26)

Now observe from (2.2.21) and (2.2.18) that

T̃j(ξ j,k) = (−1) j−k21− j, k = 0, . . . , j, (2.2.27)

where the sequence {ξ j,k : k = 0, . . . , j} is given by (2.2.19), and satisfies (2.2.20).

By using (2.2.25), (2.2.27) and (2.2.24), we deduce that

R(ξ j,0) = 21− j − (−1) jQ(ξ j,0)> 0;

R(ξ j,1) = −21− j − (−1) jQ(ξ j,1)< 0,
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and it follows from the intermediate value theorem that there is a point η1 ∈ (ξ j,0,ξ j,1)

such that R(η1) = 0. Similarly it can be shown by means of (2.2.25), (2.2.27) and (2.2.24)

that R(ξ j,k) alternates in sign for k = 1, . . . , j, and that there consequently exist points

ηk ∈ (ξ j,k−1,ξ j,k), k = 2, . . . , j, such that R(ηk) = 0, k = 2, . . . , j. Hence R has j dis-

tinct real zeros at {η1, . . . ,η j}. Since also (2.2.26) holds, it follows that R must be the zero

polynomial, which is a contradiction, and thereby concluding our proof of the first equation

in (2.2.23). �
We proceed to show how Theorem 2.2.2 can be used to minimize the factor

||Qn+1||∞ := max
a�x�b

|Qn+1(x)| (2.2.28)

in (2.1.14) with respect to the choice of the interpolation point sequence�n := {x0, . . . ,xn}.

To this end, we introduce the one-to-one mapping between the intervals [−1,1] and [a,b]

as given by

x =
1
2
(b− a)t+

1
2
(a+ b), t ∈ [−1,1], (2.2.29)

or equivalently,

t =
2

b− a

[
x− 1

2
(a+ b)

]
, x ∈ [a,b]. (2.2.30)

Based on (2.2.15), (2.2.16) and (2.2.17), for n ∈N and j = n+1, we now define the Cheby-

shev interpolation points

xC
n, j :=

1
2
(b− a)cos

(
2n+ 1− 2 j

2n+ 2
π
)
+

1
2
(a+ b), j = 0, . . . ,n, (2.2.31)

which then satisfy

a < xC
n,0 < xC

n,1 < · · ·< xC
n,n < b. (2.2.32)

Observe from (2.2.31) that the Chebyshev interpolation points are concentrated more

densely towards the endpoints of the interval [a,b]. The following minimization property

can now be proved by means of Theorem 2.2.2.

Theorem 2.2.3. The factor ||Qn+1||∞ in the polynomial interpolation error estimate

(2.1.14) of Theorem 2.1.4 is minimized by

min
x0,...,xn∈[a,b]

||Qn+1||∞ = max
a�x�b

∣∣∣∣∣ n

∏
j=0

(x− xC
n, j)

∣∣∣∣∣= 2−n
(

b− a
2

)n+1

, (2.2.33)

with {xC
n, j : j = 0, . . . ,n} denoting the Chebyshev interpolation points, as defined in

(2.2.31).
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Proof. First, we use the one-to-one mapping (2.2.29), (2.2.30) between the intervals [a,b]

and [−1,1] to deduce that

min
x0,...,xn∈[a,b]

max
a�x�b

∣∣∣∣∣ n

∏
j=0

(x− x j)

∣∣∣∣∣
= min

x0,...,xn∈[a,b]
max

−1�t�1

∣∣∣∣∣ n

∏
j=0

b− a
2

[
t − 2

b− a

(
x j − 1

2
(a+ b)

)]∣∣∣∣∣
=

(
b− a

2

)n+1

min
t0,...,tn∈[−1,1]

max
−1�t�1

∣∣∣∣∣ n

∏
j=0

(t − t j)

∣∣∣∣∣ . (2.2.34)

For the sequence {tn+1, j : j = 0, . . . ,n} as defined by means of (2.2.16), it follows from

Theorem 2.2.2, together with (2.2.21) and (2.2.9), that

2−n = max
−1�t�1

∣∣∣T̃n+1(t)
∣∣∣= max

−1�t�1

∣∣∣∣∣ n

∏
j=0

(t − tn+1, j)

∣∣∣∣∣ � min
t0,...,tn∈[−1,1]

max
−1�t�1

∣∣∣∣∣ n

∏
j=0

(t − t j)

∣∣∣∣∣
� min

P∈π̃n+1
max

−1�t�1
|P(t)|= 2−n,

and thus

min
t0,...,tn∈[−1,1]

max
−1�t�1

∣∣∣∣∣ n

∏
j=0

(t − t j)

∣∣∣∣∣= max
−1�t�1

∣∣∣∣∣ n

∏
j=0

(t − tn+1, j)

∣∣∣∣∣= 2−n,

which, together with (2.2.34), and (2.1.6), yields the desired result (2.2.33). �
By combining Theorems 2.1.4 and 2.2.3, we immediately derive the following optimal

polynomial interpolation error estimate.

Theorem 2.2.4. In Theorem 2.1.3, for any positive integer n, let the interpolation points be

chosen as the Chebyshev interpolation points, that is,

x j = xC
n, j, j = 0, . . . ,n, (2.2.35)

as defined by (2.2.31). Then the error estimate

||EI
n||∞ � 1

2n(n+ 1)!

(
b− a

2

)n+1

|| f (n+1)||∞ (2.2.36)

is satisfied.

Example 2.2.1. As in Example 2.1.1, we consider the case f (x) = cosx, and [a,b] = [0, π
2 ],

in which case, for any n ∈ N, the Chebyshev interpolation points are given, according to

(2.2.31), by

xC
n, j =

π
4

[
cos
(

2n+ 1− 2 j
2n+ 2

π
)
+ 1
]
, j = 0, . . . ,n, (2.2.37)
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and the corresponding error estimate (2.2.36) is

max
0�x� π

2

∣∣cosx−PI
n(x)

∣∣� 1
2n(n+ 1)!

(π
4

)n+1
. (2.2.38)

(a) For n = 2, it follows from (2.2.37) that

{xC
2,0,x

C
2,1,x

C
2,2}=

{
2−√

3
8

π ,
π
4
,

2+
√

3
8

π

}
,

and (2.2.38) gives the estimate

max
0�x� π

2

∣∣cosx−PI
2(x)

∣∣� 1
24

(π
4

)3
≈ 0.02,

which improves on the error estimate (2.1.16) in Example 2.1.1(a).

(b) For n = 9, the formula (2.2.37) yields the Chebyshev interpolation points

xC
9, j =

π
4

[
cos
(

19− 2 j
20

π
)
+ 1
]
, j = 0, . . . ,9,

and (2.2.38) gives the estimate

max
0�x� π

2

∣∣cosx−PI
9(x)

∣∣� 1
2910!

(π
4

)10
≈ 4.81× 10−11,

which is a considerable improvement on the error estimate (2.1.17) in Exam-

ple 2.1.1(b).

�

2.3 Exercises

Exercise 2.1 For the function

f (x) =
1√
x
,

find a point ξ ∈ [ 1
9 ,1], as guaranteed by Theorem 2.1.2, for which it holds that

f [ 1
9 ,

1
4 ,1] =

1
2 f ′′(ξ ).

Exercise 2.2 Let

f (x) = ln(x+ 2), x ∈ [0,2],

and, for n ∈ {1,2}, denote by PI
n the interpolation polynomial in πn such that

PI
n(x) = f (x), x ∈�n,

where

�1 := { 1
2 ,

3
2} ; �2 := { 1

2 ,1,
3
2}.
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For n = 1 and n = 2, calculate the polynomial PI
n , as well as the interpolation error estimate

(2.1.14) in Theorem 2.1.4, with [a,b] = [0,2]. Also, for n = 1 and n = 2, investigate the

sharpness of these estimates by calculating the exact value of ||EI
n||∞.

Exercise 2.3 As a continuation of Exercise 2.2, let n be any positive integer, and suppose

�n := {x0, . . . ,xn} ⊂ [0,2]

is an arbitrary point sequence in [0,2]. Apply the interpolation error estimate (2.1.14) in

Theorem 2.1.4 to show that

max
0�x�2

| ln(x+ 2)−PI
n(x)|�

1
n+ 1

, (∗)
with PI

n denoting the interpolation polynomial in πn with respect to the interpolation point

sequence �n.

Exercise 2.4 Calculate the Chebyshev polynomials T7 and T8, thereby extending the for-

mulas in (2.2.2).

Exercise 2.5 Calculate, for n = 1 and n = 2, the sequences �C
n defined by

�C
n := {xC

n,0, . . . ,x
C
n,n}, n ∈N,

with {xC
n,0, . . . ,x

C
n,n} denoting the Chebyshev interpolation points, as given in (2.2.31), for

the interval [0,2].

Exercise 2.6 As a continuation of Exercise 2.5, repeat Exercises 2.2 and 2.3 with �n re-

placed by �C
n , and with the interpolation error estimate (2.1.14) replaced by (2.2.36) in

Theorem 2.2.4. In particular, obtain the analogue of the estimate (∗) in Exercise 2.3.

Exercise 2.7 As a continuation of Exercise 2.6, find, according to the error estimate ob-

tained there, the smallest possible value of n for which it holds that

max
0�x�2

| ln(x+ 2)−PI
n(x)|<

1
100

.

Exercise 2.8 Apply Theorem 2.2.2 to obtain the minimum value

min
a,b,c∈R

max
−1�x�1

|x3 + ax2 + bx+ c|,

as well as the corresponding optimal values of the coefficients a,b and c.

Exercise 2.9 Prove that, for any fixed j ∈ N, the sum of the coefficients of the Chebyshev

polynomial Tj is equal to one.

[Hint: Use Theorem 2.2.1(b).]

Exercise 2.10 Prove that the Chebyshev polynomials {T0,T1, . . .} satisfy the condition∫ 1

−1

1√
1− x2

Tj(x)Tk(x)dx = 0, if j �= k.

[Hint: Apply the transformation (2.2.11), (2.2.12).]



Chapter 3

Polynomial Uniform Convergence

For a sequence of polynomials that approximate a function f ∈ C[a,b], an important is-

sue for investigation is if the corresponding sequence of approximation errors converges

uniformly to zero on [a,b]. In this chapter, we first show that such convergence is not guar-

anteed in the case that the polynomials are constructed to interpolate f ∈ C[a,b] on some

sequence of equally-spaced sample point sets with cardinalities increasing to infinity. We

then proceed to give an explicit construction of polynomials that approximate any given

function f ∈C[a,b], for which the sequence of approximation errors does indeed converge

uniformly to zero, as the degrees of the polynomials tend to infinity.

3.1 General definition and examples

Let f ∈C[a,b]. If a function sequence { fn : n = 1,2, . . .} ⊂C[a,b] is such that

|| f − fn||∞ := max
a�x�b

| f (x)− fn(x)| → 0, n → ∞, (3.1.1)

we say that the sequence { fn} converges uniformly on [a,b] to f .

We proceed to provide two examples from polynomial interpolation.

Example 3.1.1. As in Examples 2.1.1 and 2.2.1, let f (x) = cosx, and [a,b] = [0, π
2 ], and de-

note by PI
n the interpolation polynomial with respect to the Chebyshev interpolation points

(2.2.37). Then, since
1

2n(n+ 1)!

(π
4

)n+1
→ 0, n → ∞,

the corresponding polynomial interpolation error estimate (2.2.38) yields

max
0�x� π

2

∣∣cosx−PI
n(x)

∣∣→ 0, n → ∞,

that is, the sequence {PI
n : n = 1,2, . . .} converges uniformly on [0, π

2 ] to f . �

37
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Example 3.1.2. Let f (x) = lnx, and [a,b] = [ 1
2 ,

5
2 ]. Then, for n = 1,2, . . ., the Chebyshev

interpolation points are given, according to (2.2.31), by

xC
n, j = cos

(
2n+ 1− 2 j

2n+ 2
π
)
+

3
2
, j = 0, . . . ,n,

and the corresponding interpolation polynomial sequence {PI
n : n = 1,2, . . .} can be com-

puted by means of, for example, the Newton interpolation formula (1.3.17). Moreover, we

may apply (2.2.36) in Theorem 2.2.4 to obtain the error estimate

max
1
2�x� 5

2

∣∣lnx−PI
n(x)

∣∣� 1
2n(n+ 1)!

max
1
2�x� 5

2

∣∣∣∣∣
(

d
dx

)n+1

(lnx)

∣∣∣∣∣ , (3.1.2)

for n = 1,2, . . .. But (
d
dx

)n+1

(lnx) = (−1)n n!
xn+1 ,

and thus

max
1
2�x� 5

2

∣∣∣∣∣
(

d
dx

)n+1

(lnx)

∣∣∣∣∣= n! max
1
2�x� 5

2

1
xn+1 =

n!
( 1

2 )
n+1

= n!2n+1,

which, together with (3.1.2), gives

max
1
2�x� 5

2

∣∣lnx−PI
n(x)

∣∣ � 2
n+ 1

. (3.1.3)

Since
2

n+ 1
→ 0, n → ∞,

we deduce from (3.1.3) that

max
1
2�x� 5

2

∣∣lnx−PI
n(x)

∣∣→ 0, n → ∞,

that is, the interpolation polynomial sequence {PI
n : n = 1,2, . . .} converges uniformly on

[ 1
2 ,

5
2 ] to f . �

The uniform convergence result

|| f −PI
n||∞ := max

a�x�b

∣∣ f (x)−PI
n(x)

∣∣→ 0, n → ∞, (3.1.4)

is not obtained for all choices of f ∈C[a,b], �n := {x0, . . . ,xn} and [a,b], as illustrated by

the following example.

Example 3.1.3. (Runge example) For [a,b] = [−5,5], let

f (x) =
1

1+ x2 , (3.1.5)
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and choose, for n = 1,2, . . ., the interpolation points

x j = xn, j :=−5+
10 j
n

, j = 0, . . . ,n, (3.1.6)

that is, {xn, j : j = 0, . . . ,n} are the uniformly distributed partition points of the interval

[−5,5], with

−5 = xn,0 < xn,1 < · · ·< xn,n = 5. (3.1.7)

We proceed to prove the divergence result

max
−5�x�5

∣∣EI
n(x)

∣∣ := max
−5�x�5

∣∣∣∣ 1
1+ x2 −PI

n(x)
∣∣∣∣→ ∞, n → ∞. (3.1.8)

To this end, we let {x̃n : n∈N} denote the midpoints of the intervals {[xn,n−1,xn,n] : n∈N},

that is,

x̃n :=
1
2
(xn,n−1 + xn,n) = 5− 5

n
, n ∈N, (3.1.9)

from (3.1.6). We shall show that

|En(x̃n)| → ∞, n → ∞, (3.1.10)

which will then imply the desired divergence result (3.1.8).

To prove (3.1.10), we first apply the second line of (2.1.5) in Theorem 2.1.1, together with

the definition (2.1.6), to obtain

EI
n(x̃n) = f [x̃n,xn,0, . . . ,xn,n]

n

∏
j=0

(x̃n − xn, j), n ∈N. (3.1.11)

Our next step is to explicitly calculate the divided difference in (3.1.11). To this end, for

any integer m ∈ N, let {t0, . . . , tm} denote a point sequence in R satisfying

t0 < t1 < · · ·< tm, (3.1.12)

as well as symmetry with respect to the origin, in the sense that

tm− j =−t j, j = 0, . . . ,m. (3.1.13)

Observe from (3.1.13) that then

tm/2 = 0, if m is even. (3.1.14)

Also, let x ∈R\ {t0, . . . , tm}.

For the case m = 1 in (3.1.12), (3.1.13), according to which t1 = −t0, we now apply the

recursive formulation (1.3.21) in Theorem 1.3.4, together with the definition (3.1.5), to

obtain, for x ∈ R\ {t0, t1},

f [x, t0, t1] =
1

t1 − x

⎡⎣ 1
1+t2

1
− 1

1+t2
0

t1 − t0
−

1
1+t2

0
− 1

1+x2

t0 − x

⎤⎦=
1

t0 + x

[
x2 − t2

0

(t0 − x)(1+ t2
0)(1+ x2)

]
,
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and thus

f [x, t0, t1] =− f (x)
1+ t2

0
. (3.1.15)

Next, for the case m = 2 in (3.1.12),(3.1.13), for which, by using also (3.1.14), we have

{t0, t1, t2}= {t0,0,−t0}, it follows from (1.3.21) and (3.1.5) that

f [x, t0, t1] = f [x,t0,0] =
1

0− x

⎡⎣1− 1
1+t2

0

0− t0
−

1
1+t2

0
− 1

1+x2

t0 − x

⎤⎦=
t0x− 1

(1+ t2
0)(1+ x2)

, (3.1.16)

whereas

f [t0, t1, t2] = f [t0,0, t2] =
1

t2 − t0

⎡⎣ 1
1+t2

2
− 1

t2 − 0
−

1− 1
1+t2

0

0− t0

⎤⎦=
1

2t0

[ −t0
1+ t2

0
+

−t0
1+ t2

0

]
,

that is,

f [t0, t1, t2] =− 1
1+ t2

0
. (3.1.17)

It follows from (1.3.21), (3.1.16) and (3.1.17), as well as t2 =−t0, that

f [x, t0, t1, t2] =
1

t2 − x

[
− 1

1+ t2
0
− t0x− 1

(1+ t2
0)(1+ x2)

]
=

1
x+ t0

[
x(x+ t0)

(1+ t2
0)(1+ x2)

]
,

and thus

f [x, t0, t1, t2] =
x f (x)
1+ t2

0
. (3.1.18)

Now observe from (3.1.15) and (3.1.18) that the statement

f [x, t0, . . . , tm] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)(m+1)/2 f (x)
(m−1)/2

∏
j=0

(1+ t2
j )

, if m is odd;

(−1)(m/2)−1 x f (x)
(m/2)−1

∏
j=0

(1+ t2
j )

, if m is even,
(3.1.19)

is true for m = 1 and m = 2.

Proceeding inductively, suppose that (3.1.19) holds for a fixed m ∈ N, with {t0, . . . , tm}
denoting any sequence in R such that (3.1.12) and (3.1.13) are satisfied. Let {t0, . . . , tm+2}
denote any sequence in R satisfying

t0 < t1 < · · ·< tm+2; (3.1.20)

tm+2− j =−t j, j = 0, . . . ,m+ 2, (3.1.21)
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and define the function

g(x) := f [x, t1, . . . , tm+1], x ∈R\ {t0, . . . , tm+2}. (3.1.22)

By applying the recursive formulation (1.3.21) in Theorem 1.3.4, as well as the symmetry

result (1.3.26) of Theorem 1.3.6, it follows from (3.1.22) that, for any x ∈R\{t0, . . . , tm+2},

g[x, t0, tm+2] =
1

tm+2 − x

[
g(tm+2)− g(t0)

tm+2 − t0
− g(t0)− g(x)

t0 − x

]

=
1

tm+2 − x

[
f [t1, . . . , tm+2]− f [t0, . . . , tm+1]

tm+2 − t0

− f [t1, . . . , tm+1, t0]− f [x, t1, . . . , tm+1]

t0 − x

]

=
f [t0, . . . , tm+2]− f [x, t1, . . . , tm+1, t0]

tm+2 − x

=
f [t0, . . . , tm+2]− f [x, t0, . . . , tm+1]

tm+2 − x
= f [x, t0, . . . , tm+2],

that is,

g[x, t0, tm+2] = f [x, t0, . . . , tm+2], x ∈ R\ {t0, . . . , tm+2}. (3.1.23)

With the definition

τ j := t j+1, j = 0, . . . ,m, (3.1.24)

it follows from (3.1.20), (3.1.21) that

τ0 < τ1 < · · ·< τm; (3.1.25)

τm− j = tm+2−( j+1) =−t j+1 =−τ j, j = 0, . . . ,m. (3.1.26)

Hence we may apply the inductive hypothesis (3.1.19) to deduce from (3.1.22) that

g(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)(m+1)/2 f (x)
(m−1)/2

∏
j=0

(1+ τ2
j )

, if m is odd;

(−1)(m/2)−1 x f (x)
(m/2)−1

∏
j=0

(1+ τ2
j )

, if m is even,

and thus, from (3.1.24),

g(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)(m+1)/2 f (x)
(m+1)/2

∏
j=1

(1+ t2
j )

, if m is odd;

(−1)(m/2)−1 x f (x)
m/2

∏
j=1

(1+ t2
j )

, if m is even.
(3.1.27)
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Suppose m is odd. It then follows from the first line of (3.1.27), together with (1.3.3),

(1.3.2), that

g[x, t0, tm+2] =
(−1)(m+1)/2

(m+1)/2

∏
j=1

(1+ t2
j )

f [x, t0, tm+2]. (3.1.28)

With the definition

τ̃0 := t0; τ̃1 := tm+2, (3.1.29)

we observe from (3.1.20), (3.1.21) that

τ̃0 < τ̃1; τ̃1 =−τ̃0.

Hence we may apply (3.1.15) and (3.1.29) to obtain

f [x, t0, tm+2] = f [x, τ̃0, τ̃1] =− f (x)
1+ τ̃2

0
=− f (x)

1+ t2
0
,

which can now be substituted into (3.1.28) to obtain

g[x, t0, tm+2] =
(−1)(m+3)/2

(m+1)/2

∏
j=0

(1+ t2
j )

f (x). (3.1.30)

It follows from (3.1.30) and (3.1.23) that the first line of (3.1.19) also holds with m replaced

by m+ 2, and thereby completing our inductive proof of the first line of (3.1.19).

Next, suppose m is even. Analogously to the derivation (3.1.28), we deduce from the

second line of (3.1.27) that

g[x, t0, tm+2] =
(−1)(m/2)−1

m/2

∏
j=1

(1+ t2
j )

h[x, t0, tm+2], (3.1.31)

where

h(x) := x f (x) =
x

1+ x2 , (3.1.32)

from (3.1.5). By applying (1.3.21), (3.1.32), and tm+2 =−t0, as follows from (3.1.21), we

obtain

h[x, t0, tm+2] = h[x, t0,−t0] =
1

−t0 − x

⎡⎣ (−t0)
1+t2

0
− t0

1+t2
0

−2t0
−

t0
1+t2

0
− x

1+x2

t0 − x

⎤⎦
=− 1

x+ t0

[
1

1+ t2
0
+

t0x2 − (1+ t2
0)x+ t0

(x− t0)(1+ t2
0)(1+ x2)

]
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=− 1
x+ t0

[
1

1+ t2
0
+

t0x− 1
(1+ t2

0)(1+ x2)

]

=− x
(1+ t2

0)(1+ x2)
,

which can now be substituted into (3.1.31) to obtain

g[x, t0, tm+2] =
(−1)((m+2)/2)−1

m/2

∏
j=0

(1+ t2
j )

[x f (x)]. (3.1.33)

It follows from (3.1.33) and (3.1.23) that the second line of (3.1.19) also holds with m re-

placed by m+2, and thereby completing our inductive proof of the second line of (3.1.19).

Observing from (3.1.6) that, for any n ∈ N, it holds that

xn,n− j =−5+
10(n− j)

n
=−

(
−5+

10 j
n

)
=−xn, j, j = 0, . . . ,n, (3.1.34)

and recalling also (3.1.7), it follows that the sequence

{t0, . . . , tn}= {xn,0, . . . ,xn,n} (3.1.35)

satisfies the conditions (3.1.12),(3.1.13), with m = n. Also, the definition (3.1.9), together

with (3.1.6), shows that x̃n ∈R\{xn,0, . . . ,xn,n}. Hence we may apply (3.1.19) with m = n,

and with the sequence {t0, . . . , tn} given by (3.1.35), to obtain the formulas

f [x̃n,xn,0, . . . ,xn,n] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)(n+1)/2 f (x̃n)
(n−1)/2

∏
j=0

(1+ x2
n, j)

, if n is odd;

(−1)(n/2)−1 x̃n f (x̃n)
(n/2)−1

∏
j=0

(1+ x2
n, j)

, if n is even.
(3.1.36)

Next, to evaluate the product in (3.1.11), suppose first n is odd, and denote by ν the non-

negative integer such that n = 2ν + 1. It then follows from (3.1.34), with n = 2ν + 1, that

n

∏
j=0

(x̃n − xn, j) =
2ν+1

∏
j=0

(x̃2ν+1 − x2ν+1, j)

=
ν

∏
j=0

(x̃2ν+1 − x2ν+1, j)
2ν+1

∏
j=ν+1

(x̃2ν+1 − x2ν+1, j)

=
ν

∏
j=0

(x̃2ν+1 − x2ν+1, j)
ν

∏
j=0

(x̃2ν+1 − x2ν+1,2ν+1− j)
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=
ν

∏
j=0

(x̃2ν+1 − x2ν+1, j)(x̃2ν+1 + x2ν+1, j) =
ν

∏
j=0

(x̃2
2ν+1 − x2

2ν+1, j),

and thus, since ν = (n− 1)/2,

n

∏
j=0

(x̃n − xn, j) =
(n−1)/2

∏
j=0

(x̃2
n − x2

n, j), if n is odd. (3.1.37)

If n is even, and ν denotes the positive integer such that n = 2ν , we apply (3.1.34), together

with the fact that

xn,n/2 = x2ν,ν = 0, (3.1.38)

as follows from (3.1.34), to obtain
n

∏
j=0

(x̃n − xn, j) =
2ν

∏
j=0

(x̃2ν − x2ν, j)

=

[
ν−1

∏
j=0

(x̃2ν − x2ν, j)

]
x̃2ν

[
2ν

∏
j=ν+1

(x̃2ν − x2ν, j)

]

= x̃2ν

ν−1

∏
j=0

(x̃2ν − x2ν, j)
ν−1

∏
j=0

(x̃2ν − x2ν,2ν− j)

= x̃2ν
ν−1

∏
j=0

(x̃2ν − x2ν, j)(x̃2ν + x2ν, j)

= x̃2ν
ν−1

∏
j=0

(x̃2
2ν − x2

2ν, j) =
1

x̃2ν

ν

∏
j=0

(x̃2
2ν − x2

2ν, j),

and thus, since ν = n/2,

n

∏
j=0

(x̃n − xn, j) =
1
x̃n

n/2

∏
j=0

(x̃2
n − x2

n, j), if n is even. (3.1.39)

By substituting (3.1.36), (3.1.37) and (3.1.39) into (3.1.11), and by using also the fact that

(3.1.38) implies
(n/2)−1

∏
j=0

(1+ x2
n, j) =

n/2

∏
j=0

(1+ x2
n, j), if n is even,

we obtain the interpolation error expression

EI
n(x̃n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−1)(n+1)/2 f (x̃n)

(n−1)/2

∏
j=0

x̃2
n − x2

n, j

1+ x2
n, j

, if n is odd;

(−1)(n/2)−1 f (x̃n)
n/2

∏
j=0

x̃2
n − x2

n, j

1+ x2
n, j

, if n is even.

(3.1.40)



Polynomial Uniform Convergence 45

With the standard notation 
x� for the largest integer � x, it follows from (3.1.40) that

|EI
n(x̃n)|= | f (x̃n)|


n/2�
∏
j=0

|x̃2
n − x2

n, j|
1+ x2

n, j
, n ∈ N. (3.1.41)

Since (3.1.9) gives x̃n ∈ [0,5),n∈N, whereas (3.1.5) yields f (x)� 1
26 ,x∈ [−5,5], it follows

that

| f (x̃n)|� 1
26

, n ∈ N,

which, together with (3.1.41), yields

|EI
n(x̃n)|� 1

26


n/2�
∏
j=0

|x̃2
n − x2

n, j|
1+ x2

n, j
, n ∈ N. (3.1.42)

By noting from (3.1.9) and (3.1.6) that, for any n ∈N,

x̃2
n − x2

n, j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

5− 5
n

)2

− 25 = 25

[(
1− 1

n

)2

− 1

]
< 0, j = 0;(

5− 5
n

)2

−
(

5− 10 j
n

)2

> 0, j = 1,2, . . . ,
n/2�,

we deduce that, with the convention that
j2

∏
j= j1

a j := 1 if j2 < j1,


n/2�
∏
j=0

|x̃2
n − x2

n, j|
1+ x2

n, j
=

25
26

(
2n− 1

n2

) 
n/2�
∏
j=1

x̃2
n − x2

n, j

1+ x2
n, j

, n ∈ N. (3.1.43)

By using (3.1.43) in (3.1.42), we obtain the lower bound

|EI
n(x̃n)|� 25

(26)2 αn, n ∈N, (3.1.44)

where

αn :=
2n− 1

n2


n/2�
∏
j=1

x̃2
n − x2

n, j

1+ x2
n, j

, n ∈N. (3.1.45)

We proceed to prove that

αn → ∞, n → ∞, (3.1.46)

which, together with (3.1.45) and (3.1.44), will then yield the desired divergence result

(3.1.10).

To this end, we note from (3.1.45) that

αn = eβn , n ∈ N, (3.1.47)
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where, with the convention that
j1

∑
j= j0

a j := 0 if j1 < j0,

βn := ln(2n−1)−2lnn+

n/2�
∑
j=1

ln(x̃n + xn, j)+

n/2�
∑
j=1

ln(x̃n − xn, j)−

n/2�
∑
j=1

ln(1+ x2
n, j), n ∈N.

(3.1.48)

We shall show that

βn → ∞, n → ∞, (3.1.49)

which, together with (3.1.47), will then prove the desired divergence result (3.1.46).

To prove (3.1.49), we fix n ∈ N, and first note from (3.1.9) and (3.1.6) that


n/2�
∑
j=1

ln(x̃n + xn, j)+

n/2�
∑
j=1

ln(x̃n − xn, j)

= 2(ln5)
n/2�− 2(lnn)
n/2�+

n/2�
∑
j=1

ln(2 j− 1)+

n/2�
∑
j=1

ln(2n− 1− 2 j)

� (ln5)(n− 1)− n lnn+

n/2�−1

∑
j=1

ln(2 j+ 1)+

n/2�
∑
j=1

ln(2n− 1− 2 j). (3.1.50)

Let the piecewise constant functions un and vn be defined by

un(x) := ln(2 j+ 1), x ∈ [ j, j+ 1), j = 1, . . . ,
n/2�− 1 (if n � 4); (3.1.51)

vn(x) := ln(2n− 1− 2 j), x ∈ [ j, j+ 1), j = 1, . . . ,
n/2� (if n � 2). (3.1.52)

It then follows from (3.1.51), (3.1.52) that

un(x)� ln(2x− 1), x ∈ [1,
n/2�] (if n � 4); (3.1.53)

vn(x)� ln(2n− 1− 2x), x ∈ [1,
n/2�+ 1] (if n � 2). (3.1.54)

By using (3.1.51) and (3.1.53), together with the fact that 
n/2� � (n− 1)/2, as well as

integration by parts, we deduce that, for n � 4,


n/2�−1

∑
j=1

ln(2 j+ 1) =
∫ 
n/2�

1
un(x)dx

�
∫ 
n/2�

1
ln(2x− 1)dx

�
∫ (n−1)/2

1
ln(2x− 1)dx
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=
1
2

∫ (n−1)/2

1
ln(2x− 1)

d
dx

(2x− 1)dx

=
1
2

⎧⎨⎩
[
(2x− 1) ln(2x− 1)

](n−1)/2

1

− 2
[

n− 1
2

− 1
]⎫⎬⎭

=
1
2
(n− 2) ln(n− 2)− 1

2
n+

3
2
, (3.1.55)

and similarly, from (3.1.52) and (3.1.54), for n � 2,

n/2�
∑
j=1

ln(2n− 1− 2 j) =
∫ 
n/2�+1

1
vn(x)dx

�
∫ 
n/2�+1

1
ln(2n− 1− 2x)dx

�
∫ (n+1)/2

1
ln(2n− 1− 2x)dx

=−1
2

∫ (n+1)/2

1
ln(2n− 1− 2x)

d
dx

(2n− 1− 2x)dx

=−1
2

⎧⎨⎩
[
(2n− 1− 2x) ln(2n− 1− 2x)

](n+1)/2

1

+ 2
[

n+ 1
2

− 1
]⎫⎬⎭

=−1
2
(n− 2) ln(n− 2)+

1
2
(2n− 3) ln(2n− 3)− 1

2
n+

1
2
. (3.1.56)

It follows from (3.1.50), (3.1.55) and (3.1.56) that, for n � 4, we have

n/2�
∑
j=1

ln(x̃n + xn, j)+

n/2�
∑
j=1

ln(x̃n − xn, j)

� (ln5)(n− 1)− n lnn+
(

n− 3
2

)
ln(2n− 3)− n+ 2

= n
[

ln
5(2n− 3)

n
− 1
]
− 3

2
ln(2n− 3)− ln5+ 2. (3.1.57)

Next, to bound the third sum in (3.1.48), we define, for n � 2, the piecewise constant

function wn by

wn(x) := ln

(
1+ 25

(
2 j
n
− 1
)2
)
, x ∈ [ j, j+ 1), j = 1, . . . ,
n/2�. (3.1.58)

It follows from (3.1.58) that

wn(x)� ln

(
1+ 25

(
2x
n
− 1
)2
)
, x ∈ [1,
n/2�+ 1] (if n � 2). (3.1.59)
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By using (3.1.6), (3.1.58) and (3.1.59), together with the fact that 
n/2�� n/2, as well as

integration by parts, we deduce that, for n � 2,

−

n/2�
∑
j=1

ln(1+ x2
n, j)

=−

n/2�
∑
j=1

ln

(
1+ 25

(
2 j
n
− 1
)2
)

=−
∫ 
n/2�+1

1
wn(x)dx

�−
∫ 
n/2�+1

1
ln

(
1+ 25

(
2x
n
− 1
)2
)

dx

�−
∫ (n+3)/2

1
ln

(
1+ 25

(
2x
n
− 1
)2
)

dx

=− n
10

∫ 15/n

−5(1− 2
n )

ln(1+ ξ 2)dξ

=− n
10

⎧⎨⎩
[

ξ ln(1+ ξ 2)

]15/n

−5(1− 2
n )

− 2
∫ 15/n

−5(1− 2
n )

(
1− 1

1+ ξ 2

)
dξ

⎫⎬⎭
=− n

10

{
15ln(1+ 225

n2 )

n
+ 5

(
1− 2

n

)
ln

(
1+ 25

(
1− 2

n

)2
)

−10
(

1+
1
n

)
+ 2

(
arctan

(
15
n

))
+ arctan

(
5
(

1− 2
n

))}

= n

[
−1

2
ln

(
1+ 25

(
1− 2

n

)2
)
+ 1− 1

5

{
arctan

(
15
n

)
+ arctan

(
5
(

1− 2
n

))}]

− 3
2

ln
(

1+
225
n2

)
+ ln

(
1+ 25

(
1− 2

n

)2
)
+ 1. (3.1.60)

It now follows from (3.1.48), (3.1.57) and (3.1.60) that, for n � 4,

βn � ln(2n− 1)− 2lnn+
{

n
[

ln
5(2n− 3)

n
− 1
]
− 3

2
ln(2n− 3)− ln5+ 2

}

+

{
n

[
−1

2
ln

(
1+ 25

(
1− 2

n

)2
)
+ 1− arctan

( 15
n

)
+ arctan(5(1− 2

n ))

5

]
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−3
2

ln
(

1+
225
n2

)
+ ln

(
1+ 25

(
1− 2

n

)2
)
+ 1

}

= ann+ bn, (3.1.61)

where

an := ln

⎛⎜⎜⎜⎜⎝
5
(

2− 3
n

)
√

1+ 25
(

1− 2
n

)2

⎞⎟⎟⎟⎟⎠−
arctan

(
15
n

)
+ arctan

(
5
(

1− 2
n

))
5

− lnn
n

− 3
2

ln(2n+ 3)
n

; (3.1.62)

bn := ln
(

2− 1
n

)
− 3

2
ln
(

1+
225
n2

)
+ ln

(
1+ 25

(
1− 2

n

)2
)
− ln5+ 3. (3.1.63)

Since applications of L’Hospital’s rule yield

lim
x→∞

lnx
x

= lim
x→∞

1/x
1

= 0; lim
x→∞

ln(2x− 3)
x

= lim
x→∞

2/(2x− 3)
1

= 0,

according to which

lim
n→∞

lnn
n

= 0; lim
n→∞

ln(2n− 3)
n

= 0,

we deduce from (3.1.62) that

γ := lim
n→∞

an = ln
10√
26

− arctan5
5

≈ 0.399, (3.1.64)

and thus

γ > 0, (3.1.65)

whereas (3.1.63) gives

δ := lim
n→∞

bn = 3+ ln
52
5

≈ 5.342, (3.1.66)

so that also

δ > 0. (3.1.67)

It follows from (3.1.64) - (3.1.67) that there exists a positive integer Ñ such that

− γ
2

< an − γ <
γ
2
,

−δ
2
< bn − δ <

δ
2
,

⎫⎪⎬⎪⎭ n � Ñ,
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and thus

an >
γ
2

> 0,

bn >
δ
2
> 0,

⎫⎪⎬⎪⎭ n � Ñ. (3.1.68)

By applying (3.1.68) in (3.1.61), we deduce that

βn � (γ/2)n+(δ/2), n � Ñ,

and thus, for any given positive number M, if we define the positive number N by

N := max{Ñ,�2(M− (δ/2))/γ�},

with �x� denoting the smallest integer � x, we have

βn > M, n > N,

according to which (3.1.49) holds, and thereby completing our proof of the desired diver-

gence result (3.1.10).

If, however, we replace the uniformly distributed interpolation points (3.1.6) by the Cheby-

shev interpolation points, that is, from (2.2.31),

x j := xC
n, j = 5cos

(
2n+ 1− 2 j

2n+ 2
π
)
, j = 0, . . . ,n, (3.1.69)

thereby concentrating the interpolation points more densely towards −5 and 5, the uniform

convergence result (3.1.4) is indeed satisfied, as will follow from Theorem 6.5.3 in Section

6.5 of Chapter 6. �

The results of Example 3.1.3 lead to the following interesting question: For any prescribed

sequence

�n := {xn,0, . . . ,xn,n}, n = 1,2, . . . , (3.1.70)

of (distinct) interpolation point sequences satisfying (2.1.1), like, for example, the Cheby-

shev interpolation points (2.2.31), is it possibly true that the uniform convergence result

(3.1.4) is obtained for each f ∈C[a,b]? The answer is negative, due to a known result, the

proof of which is beyond the scope of this book, and according to which, for any prescribed

sequence {�n : n = 1,2, . . .}, there exists a function f ∈C[a,b] such that

|| f −PI
n||∞ → ∞, n → ∞. (3.1.71)

Hence, to investigate whether the uniform convergence result (3.1.4) holds for given f ∈
C[a,b],�n and [a,b], error estimates like (2.2.36) in Theorem 2.2.4 need to be applied.
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In the rest of this chapter, we proceed to establish, for any given f ∈ C[a,b], a sequence

{Pn : n = 1,2, . . .} of approximating polynomials such that

|| f −Pn||∞ := max
a�x�b

| f (x)−Pn(x)| → 0, n → ∞. (3.1.72)

Observe from (3.1.72) that any given function f ∈ C[a,b] can therefore be approximated

with arbitrary (uniform) “closeness” by a polynomial, and thereby providing justification

to the attention given to specifically polynomial approximation.

3.2 The Bernstein polynomials

For any non-negative integer j, and k ∈ Z, we adopt the standard binomial coefficient

notation (
j
k

)
:=

⎧⎪⎨⎪⎩
j!

k!( j− k)!
, k = 0, . . . , j;

0 , k �∈ {0, . . . , j},
(3.2.1)

and with the convention that 0! := 1.

Let n denote any non-negative integer, and suppose [a,b] is a bounded interval in R. The

polynomials

Bn, j(x) :=
(

n
j

)(
x− a
b− a

) j(b− x
b− a

)n− j

, j = 0, . . . ,n, (3.2.2)

are called the Bernstein polynomials of degree n with respect to the interval [a,b].

We shall rely on the one-to-one mapping between the intervals [a,b] and [0,1] given by

t =
x− a
b− a

, a � x � b, (3.2.3)

or equivalently,

x = (b− a)t + a, 0 � t � 1. (3.2.4)

By using (3.2.3), (3.2.4), we observe from (3.2.2) that

where
Bn, j(x) =

(
n
j

)
t j(1− t)n− j, j = 0, . . . ,n,

t :=
x− a
b− a

.

⎫⎪⎬⎪⎭ (3.2.5)

We proceed to prove the following properties of the Bernstein polynomials.

Theorem 3.2.1. For any non-negative integer n, and bounded interval [a,b]⊂ R, the cor-

responding Bernstein polynomials, as defined by (3.2.2), satisfy:
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(a)

Bn, j(a) = δ j,

Bn, j(b) = δn− j,

⎫⎬⎭ j = 0, . . . ,n; (3.2.6)

(b)

Bn, j(x)> 0, x ∈ (a,b); (3.2.7)

(c)
n

∑
j=0

Bn, j(x) = 1, x ∈ R; (3.2.8)

(d) the polynomial sequence {Bn, j : j = 0, . . . ,n} is a basis for πn.

Proof. (a), (b) These properties are immediate consequences of the definition (3.2.2).

(c) For any x ∈R, an application of (3.2.5) yields
n

∑
j=0

Bn, j(x) =
n

∑
j=0

(
n
j

)
t j(1− t)n− j = [t +(1− t)]n = 1n = 1,

which proves (3.2.8).

(d) As in the proofs of Theorem 1.2.1(b) and Theorem 1.3.2(b), it will suffice to prove

that {Bn, j : j = 0, . . . ,n} is a linearly independent set. After noting that such linear inde-

pendence is trivial if n = 0, we suppose next that n � 1, and let the coefficient sequence

{c0,c1, . . . ,cn} ⊂ R be such that
n

∑
j=0

c jBn, j(x) = 0, x ∈R,

or equivalently, from (3.2.5),
n

∑
j=0

c j

(
n
j

)
t j(1− t)n− j = 0, t ∈ R. (3.2.9)

By setting successively t = 0 and t = 1 in (3.2.9), we obtain c0 = cn = 0, which then proves

the desired linear independence result for n = 1. If n � 2, we may set c0 = cn = 0 in (3.2.9)

to obtain

t(1− t)
n−1

∑
j=1

c j

(
n
j

)
t j−1(1− t)n−1− j = 0, t ∈ R, (3.2.10)

and thus
n−1

∑
j=1

c j

(
n
j

)
t j−1(1− t)n−1− j = 0, t ∈ R. (3.2.11)

If n = 2, (3.2.11) immediately gives c1 = 0, and thus c0 = c1 = c2 = 0,which shows that

linear independence is also obtained for n = 2. If n � 3, we may successively set t = 0 and



Polynomial Uniform Convergence 53

t = 1 in (3.2.11) to obtain c1 = cn−1 = 0. By applying the same argument as in (3.2.10) and

(3.2.11), sufficiently many times, we eventually prove that c0 = · · · = cn = 0, and thereby

establishing the desired linear independence result. �
It follows from Theorem 3.2.1(d) that, for any polynomial P ∈ πn, there exists a unique

coefficient sequence {bn, j : j = 0, . . . ,n} ⊂ R such that

P(x) =
n

∑
j=0

bn, jBn, j(x). (3.2.12)

The expression (3.2.12) is called the Bernstein representation in πn with respect to the in-

terval [a,b] of the polynomial P, and has practical applications in e.g. interactive geometric

design.

We proceed in Section 3.3 to construct a polynomial approximation in πn of a given func-

tion f ∈ C[a,b] by means of an appropriate choice of the coefficient sequence {bn, j : j =

0, . . . ,n} in (3.2.12).

3.3 Bernstein polynomial approximation

For a given function f ∈C[a,b] and any integer n ∈N, we define the Bernstein polynomial

approximation PB
n in πn of f with respect to the interval [a,b] by

where
PB

n (x) :=
n

∑
j=0

f (xn, j)Bn, j(x),

xn, j := a+ j
(

b− a
n

)
, j = 0, . . . ,n.

⎫⎪⎪⎬⎪⎪⎭ (3.3.1)

Observe that the point sequence {xn, j : j = 0, . . . ,n} in (3.3.1) partitions the interval [a,b]

into n subintervals of equal length
(
=

b− a
n

)
, and with

a = xn,0 < xn,1 < · · ·< xn,n = b. (3.3.2)

The following properties of Bernstein polynomial approximations can now be proved by

means of Theorem 3.2.1.

Theorem 3.3.1. Let f ∈ C[a,b] and n ∈ N, and denote by PB
n the Bernstein polynomial

approximation in πn of f with respect to [a,b], as defined in (3.3.1). Then:

(a) The polynomial PB
n interpolates f at a and b, that is,

PB
n (a) = f (a) ; PB

n (b) = f (b). (3.3.3)
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(b) Sign-preservation on [a,b] is satisfied, in the sense that, if

f (x) � 0, x ∈ [a,b], (3.3.4)

then

PB
n (x)� 0, x ∈ [a,b]. (3.3.5)

(c) Linear polynomials are reproduced, that is, if

f ∈ π1, (3.3.6)

then

PB
n = f . (3.3.7)

Proof. (a) By using (3.3.1) and Theorem 3.2.1(a), we obtain

PB
n (a) =

n

∑
j=0

f (xn, j)δ j = f (xn,0) = f (a),

and

PB
n (b) =

n

∑
j=0

f (xn, j)δn− j = f (xn,n) = f (b).

(b) If (3.3.4) is satisfied, it follows from (3.3.1) and (3.2.7) that (3.3.5) holds.

(c) Let f ∈ π1, that is,

f (x) = c0 + c1x, (3.3.8)

for some real coefficients c0 and c1. It follows from (3.3.1), (3.3.8), Theorem 3.2.1(c) and

(3.2.5) that, for any x ∈R,

PB
n (x) = c0

n

∑
j=0

Bn, j(x)+ c1

n

∑
j=0

[
a+ j

(
b− a

n

)]
Bn, j(x)

= c0 + c1

[
a+(b− a)

n

∑
j=1

j
n

(
n
j

)
t j(1− t)n− j

]
, (3.3.9)

where

t :=
x− a
b− a

. (3.3.10)

Now use (3.2.1), and the index transformation k = j− 1, to deduce that
n

∑
j=1

j
n

(
n
j

)
t j(1− t)n− j =

n

∑
j=1

(n− 1)!
( j− 1)!(n− j)!

t j(1− t)n− j

=
n−1

∑
k=0

(n− 1)!
k!(n− (k+ 1))!

tk+1(1− t)n−(k+1)
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= t
n−1

∑
k=0

(n− 1)!
k!(n− 1− k)!

tk(1− t)n−1−k

= t
n−1

∑
k=0

(
n− 1

k

)
tk(1− t)n−1−k

= t[t +(1− t)]n−1 = t(1n−1) = t. (3.3.11)

It follows from (3.3.9), (3.3.11), (3.3.10) and (3.3.8) that

PB
n (x) = c0 + c1

[
a+(b− a)

x− a
b− a

]
= c0 + c1x = f (x),

which completes the proof. �
Our next result shows that, although quadratic polynomials are not reproduced by Bernstein

polynomial approximation, the uniform convergence result

|| f −PB
n ||∞ := max

a�x�b
| f (x)−PB

n (x)| → 0, n → ∞, (3.3.12)

is indeed achieved for any f ∈ π2.

Theorem 3.3.2. (a) Let the function f in the definition (3.3.1) be given by

f (x) = x2, x ∈ [a,b]. (3.3.13)

Then, for any n ∈N, the corresponding Bernstein polynomial approximation PB
n in πn of f

is given by

PB
n (x) = x2 +

(x− a)(b− x)
n

, (3.3.14)

with, moreover,

|| f −PB
n ||∞ =

(b− a)2

4n
. (3.3.15)

(b) The uniform convergence result (3.3.12) is satisfied for any f ∈ π2.

Proof. (a) First, we observe from (3.3.1), (3.3.13), Theorem 3.2.1(c), as well as (3.2.5) and

(3.3.11), that, for any x ∈ R,

PB
n (x) =

n

∑
j=0

[
a+ j

(
b− a

n

)]2

Bn, j(x)

= a2
n

∑
j=0

Bn, j(x)+ 2a(b− a)
n

∑
j=0

j
n

(
n
j

)
t j(1− t)n− j +(b− a)2

n

∑
j=0

j2

n2

(
n
j

)
t j(1− t)n− j
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= a2 + 2a(b− a)
(

x− a
b− a

)
+(b− a)2

n

∑
j=1

j2

n2

(
n
j

)
t j(1− t)n− j

= 2ax− a2+(b− a)2
n

∑
j=1

j2

n2

(
n
j

)
t j(1− t)n− j, (3.3.16)

where t is given by (3.3.10). For n � 2, we now use (3.2.1), as well as the index transfor-

mations k = j− 1 and �= k− 1, to obtain, with the convention
j1

∑
j= j0

α j := 0 if j1 < j0,

n

∑
j=1

j2

n2

(
n
j

)
t j(1− t)n− j =

n

∑
j=1

j2

n2
n!

j!(n− j)!
t j(1− t)n− j

=
n

∑
j=1

j
n

(n− 1)!
( j− 1)!(n− j)!

t j(1− t)n− j

=
n−1

∑
k=0

k+ 1
n

(n− 1)!
k!(n− (k+ 1))!

tk+1(1− t)n−(k+1)

= t
n−1

∑
k=1

k
n

(n− 1)!
k!(n− 1− k)!

tk(1− t)n−1−k

+
t
n

n−1

∑
k=0

(n− 1)!
k!(n− 1− k)!

tk(1− t)n−1−k

=
t
n

n−1

∑
k=1

(n− 1)!
(k− 1)!(n− 1− k)!

tk(1− t)n−1−k

+
t
n

n−1

∑
k=0

(
n− 1

k

)
tk(1− t)n−1−k

=
t
n

n−2

∑
�=0

(n− 1)!
�!(n− 1− (�+ 1))!

t�+1(1− t)n−1−(�+1)

+
t
n
[t +(1− t)]n−1

=
(n− 1)t2

n

n−2

∑
�=0

(n− 2)!
�!(n− 2− �)!

t�(1− t)n−2−�+
t
n
(1n−1)

=
(n− 1)t2

n

n−2

∑
�=0

(
n− 2
�

)
t�(1− t)n−2−�+

t
n



Polynomial Uniform Convergence 57

=
(n− 1)t2

n
[t +(1− t)]n−2+

t
n

=
(n− 1)t2

n
(1n−2)+

t
n

=
(n− 1)t2

n
+

t
n
= t2 +

t(1− t)
n

. (3.3.17)

Observe that (3.3.17) also holds for n = 1. It follows from (3.3.16), (3.3.17) and (3.3.10)

that

PB
n (x) = 2ax− a2+(b− a)2

[(
x− a
b− a

)2

+
1
n

(
x− a
b− a

)(
b− x
b− a

)]

= 2ax− a2+
(
x2 − 2ax+ a2)+ 1

n
(x− a)(b− x),

which gives the formula (3.3.14).

We deduce from (3.3.14) and (3.3.13) that

|| f −PB
n ||∞ = max

a�x�b

∣∣∣∣x2 −
[

x2 +
(x− a)(b− x)

n

]∣∣∣∣
= max

a�x�b

(x− a)(b− x)
n

=
1
n

[
1
2
(a+ b)− a

][
b− 1

2
(a+ b)

]
=

(b− a)2

4n
,

which proves (3.3.15).

(b) Let f ∈ π2, that is,

f (x) = c0 + c1x+ c2x2

for some real coefficients c0,c1 and c2, so that (3.3.1), Theorem 3.3.1(c), together with

(3.3.14), yield, for any x ∈ R,

PB
n (x) =

n

∑
j=0

{
c0 + c1

[
a+ j

(
b− a

n

)]
+ c2

[
a+ j

(
b− a

n

)]2
}

Bn, j(x)

=
n

∑
j=0

{
c0 + c1

[
a+ j

(
b− a

n

)]}
Bn, j(x)+ c2

n

∑
j=0

[
a+ j

(
b− a

n

)]2

Bn, j(x)

= (c0 + c1x)+ c2

(
x2 +

(x− a)(b− x)
n

)

= f (x)+ c2
(x− a)(b− x)

n
,
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and thus

|| f −PB
n ||∞ = |c2|

[ 1
2(a+ b)− a][b− 1

2 (a+ b)]
n

=
|c2|(b− a)2

4n
,

which implies the uniform convergence result (3.3.12). �
Observe that (3.3.14) in Theorem 3.3.2(a) is in accordance with Theorem 3.3.1(a) and (b).

Also, observe from (3.3.14) that, if f is given by (3.3.13), then PB
n ∈ π2 for each n= 1,2, . . ..

According to (3.2.8), (3.2.5), (3.3.11) and (3.3.17), the three identities
n

∑
j=0

(
n
j

)
t j(1− t)n− j = 1; (3.3.18)

n

∑
j=1

j
n

(
n
j

)
t j(1− t)n− j = t; (3.3.19)

n

∑
j=1

j2

n2

(
n
j

)
t j(1− t)n− j = t2 +

t(1− t)
n

, (3.3.20)

are satisfied for all t ∈ R and n ∈ N. We proceed to show how these identities can be

used to prove the following theorem, which extends the uniform convergence result of

Theorem 3.3.2(b) from π2 to all of C[a,b].

Theorem 3.3.3. Let f ∈C[a,b]. Then the corresponding Bernstein polynomial approxima-

tion sequence {PB
n : n = 1,2, . . .}, as defined in (3.3.1), satisfies the uniform convergence

result (3.3.12).

Proof. Let ε > 0. We shall prove that there exists an integer N = N(ε) ∈ N such that

|| f −PB
n ||∞ := max

a�x�b
| f (x)−PB

n (x)|< ε, n > N, (3.3.21)

which is equivalent to (3.3.12).

Let x ∈ [a,b], and for any n ∈ N, denote by {xn, j : j = 0, . . . ,n} the uniform partition

points of [a,b], as given in the second line of (3.3.1). Since f is continuous on the closed

and bounded interval [a,b], we know from a standard result in calculus that f is uniformly

continuous on [a,b], according to which there exists a positive number δ = δ (ε), which is

independent of x, and such that

| f (x)− f (xn, j)|< ε
2
, j ∈ J, (3.3.22)

where

J := { j ∈ {0, . . . ,n} : |x− xn, j|< δ}. (3.3.23)
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With the definition

J̃ := { j ∈ {0, . . . ,n} : |x− xn, j|� δ}, (3.3.24)

it follows that

J ∪ J̃ = {0, . . . ,n}; J∩ J̃ = /0. (3.3.25)

By using (3.3.1), Theorem 3.2.1(c), (3.3.25), as well as Theorem 3.2.1(b), we obtain

| f (x)−PB
n (x)|=

∣∣∣∣∣ n

∑
j=0

[ f (x)− f (xn, j)]Bn, j(x)

∣∣∣∣∣
�

n

∑
j=0

| f (x)− f (xn, j)|Bn, j(x)

= ∑
j∈J

| f (x)− f (xn, j)|Bn, j(x)+ ∑
j∈J̃

| f (x)− f (xn, j)|Bn, j(x). (3.3.26)

Now apply (3.3.22) and Theorem 3.2.1(b) to deduce that

∑
j∈J

| f (x)− f (xn, j)|Bn, j(x)<
ε
2 ∑

j∈J
Bn, j(x)�

ε
2

n

∑
j=0

Bn, j(x) =
ε
2
,

from Theorem 3.2.1(c), and thus

∑
j∈J

| f (x)− f (xn, j)|Bn, j(x)<
ε
2
. (3.3.27)

Next, with the notation

M := max
a�x�b

| f (x)|, (3.3.28)

and observing from (3.3.24) that

(x− xn, j)
2

δ 2 � 1, j ∈ J̃, (3.3.29)

we obtain

∑
j∈J̃

| f (x)− f (xn, j)|Bn, j(x)� ∑
j∈J̃

[| f (x)|+ | f (xn, j)|]Bn, j(x)

� 2M ∑
j∈J̃

Bn, j(x)

� 2M ∑
j∈J̃

(x− xn, j)
2

δ 2 Bn, j(x)

� 2M
δ 2

n

∑
j=0

(x− xn, j)
2Bn, j(x), (3.3.30)
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after recalling also Theorem 3.2.1(b).

By applying (3.2.5) and the definition in (3.3.1) of the point sequence {xn, j : j = 0, . . . ,n},

as well as the identities (3.3.18), (3.3.19) and (3.3.20), we deduce that
n

∑
j=0

(x− xn, j)
2Bn, j(x) =

n

∑
j=0

[
{a+(b− a)t}−

{
a+ j

(
b− a

n

)}]2

Bn, j(x)

= (b− a)2
n

∑
j=0

(
t − j

n

)2(n
j

)
t j(1− t)n− j

= (b− a)2

[
t2 − 2t

n

∑
j=0

j
n

(
n
j

)
t j(1− t)n− j +

n

∑
j=0

j2

n2

(
n
j

)
t j(1− t)n− j

]

= (b− a)2
[

t2 − 2t(t)+
(

t2 +
t(1− t)

n

)]

= (b− a)2
[

1
n

(
x− a
b− a

)(
b− x
b− a

)]
=

(x− a)(b− x)
n

. (3.3.31)

It follows from (3.3.30) and (3.3.31) that

∑
j∈J̃

| f (x)− f (xn, j)|Bn, j(x)�
2M
δ 2

(x− a)(b− x)
n

�
2M[ 1

2 (a+ b)− a][b− 1
2(a+ b)]

δ 2n
=

M(b− a)2

2δ 2n
. (3.3.32)

Let the positive integer N = N(ε) be defined by

N :=
⌈

M(b− a)2

εδ 2

⌉
, (3.3.33)

where we adopt the standard notation �y� for the smallest integer � y. Observe from

(3.3.33) that N is independent of x. It follows from (3.3.33) that the inequality n > N

implies

n >
M(b− a)2

εδ 2 ,

or equivalently,

M(b− a)2

2δ 2n
<

ε
2
,

which, together with (3.3.32), implies that

∑
j∈J̃

| f (x)− f (xn, j)|Bn, j(x)<
ε
2
, n > N. (3.3.34)
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Finally, we combine (3.3.26), (3.3.27) and (3.3.34) to deduce that

| f (x)−PB
n (x)|< ε, n > N,

from which, since N = N(ε) is independent of x, the desired result (3.3.21) then follows.

�
The following result can now easily be deduced from Theorem 3.3.3.

Theorem 3.3.4 (Weierstrass). Let f ∈C[a,b]. Then, for each ε > 0, there exists a polyno-

mial P such that

|| f −P||∞ := max
a�x�b

| f (x)−P(x)|< ε. (3.3.35)

Proof. Let ε > 0. According to (3.3.21) in the proof of Theorem 3.3.3, the polynomial

P := PB
N+1, (3.3.36)

where N = N(ε) ∈ N is defined by (3.3.33), satisfies the inequality (3.3.35). �

3.4 Shape-preservation

In this section we show that, in Theorem 3.3.3, if f has a continuous k-th derivative f (k) on

[a,b], then Bernstein polynomial approximation is shape-preserving in the sense that the

sequence {(PB
n )

(k) : n = 1,2, . . .} is uniformly convergent to f (k) on [a,b]. We shall rely on

the following explicit formulation for divided differences in the special case of uniformly

spaced points.

Theorem 3.4.1. Let {x j : j ∈ Z} denote a uniformly spaced point sequence in R, that is,

x j+1 − x j = h, j ∈ Z, (3.4.1)

for a constant h > 0. Then, for any integers μ and ν , with ν −μ � 1, the divided difference

f [xμ , . . . ,xν ] has the explicit formulation

f [xμ , . . . ,xν ] =
(−1)ν−μ

(ν − μ)!hν−μ

ν−μ

∑
j=0

(−1) j
(

ν − μ
j

)
f (xμ+ j). (3.4.2)

Proof. Our proof is by induction on the integer ν − μ . If ν − μ = 1, the right hand side of

(3.4.2) is given by

f (xν )− f (xμ)

h
=

f (xν )− f (xμ)

xν − xμ
,

from (3.4.1), and it follows from (1.3.21) in Theorem 1.3.4 that (3.4.2) holds.
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Suppose next that (3.4.2) is satisfied for any integers μ and ν such that ν − μ � 1. By

applying the inductive hypothesis (3.4.2), together with (3.4.1), as well as (1.3.21) in The-

orem 1.3.4, we obtain
ν−μ+1

∑
j=0

(−1) j
(

ν − μ + 1
j

)
f (xμ+ j)

=
ν−μ+1

∑
j=0

(−1) j
[(

ν − μ
j

)
+

(
ν − μ
j− 1

)]
f (xμ+ j)

=
ν−μ

∑
j=0

(−1) j
(

ν − μ
j

)
f (xμ+ j)+

ν−μ+1

∑
j=1

(−1) j
(

ν − μ
j− 1

)
f (xμ+ j)

=
ν−μ

∑
j=0

(−1) j
(

ν − μ
j

)
f (xμ+ j)−

ν−μ

∑
j=0

(−1) j
(

ν − μ
j

)
f (xμ+ j+1)

= (−1)ν−μ(ν − μ)!hν−μ { f [xμ , . . . ,xν ]− f [xμ+1, . . . ,xν+1]
}

= (−1)ν−μ+1(ν − μ)!hν−μ {(xν+1 − xμ) f [xμ , . . . ,xν+1]
}

= (−1)ν−μ+1(ν − μ)!hν−μ {(ν + 1− μ)h f [xμ, . . . ,xν+1]
}

= (−1)ν−μ+1(ν − μ + 1)!hν−μ+1 f [xμ , . . . ,xν+1],

which shows that (3.4.2) holds if the index difference ν − μ is advanced to ν − μ + 1, and

thereby completing our inductive proof. �
For a function f ∈ C[a,b] with a continuous k-th order derivative f (k) on [a,b], it follows

from Theorem 3.3.3 that the polynomial sequence

where
PB,k

n (x) :=
n

∑
j=0

f (k)(xn, j)Bn, j(x), n = 1,2, . . . ,

xn, j := a+ j
(

b− a
n

)
, j = 0, . . . ,n,

⎫⎪⎪⎬⎪⎪⎭ (3.4.3)

satisfies the uniform convergence result

|| f (k)−PB,k
n ||∞ := max

a�x�b
| f (k)(x)−PB,k

n (x)| → 0, n → ∞. (3.4.4)

We proceed to show how (3.4.4) can be used to prove the following shape-preserving prop-

erty of Bernstein polynomial approximation.

In our proof below, we shall rely, for sufficiently differentiable functions u and v, on the

Leibniz formula

(uv)(k) =
k

∑
�=0

(
k
�

)
u(k−�)v(�), (3.4.5)
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(see Exercise 3.8), and the fact that the one-to-one transformation (3.2.3), (3.2.4) implies

u(k)(x) =
1

(b− a)k

(
d
dt

)k

u(a+(b− a)t). (3.4.6)

Also, we shall use the differentiation formula(
d
dt

)�

t j = �!
(

j
�

)
t j−�, (3.4.7)

for any non-negative integers j and �, with the binomial coefficient
( j
�

)
defined as in (3.2.1).

Theorem 3.4.2. In Theorem 3.3.3, suppose that, moreover, f ∈ Cm[a,b] for an integer

m ∈ N. Then

|| f (k)− (PB
n )

(k)||∞ := max
a�x�b

∣∣∣ f (k)(x)− (PB
n )

(k)(x)
∣∣∣→ 0, n → ∞, (3.4.8)

for any k ∈ {1, . . . ,m}.

Proof. Let k ∈ {1, . . . ,m}, and observe that, for n = 1,2, . . ., we have

|| f (k)− (PB
n )

(k)||∞ � || f (k)−PB,k
n ||∞ + ||PB,k

n − (PB
n )

(k)||∞, (3.4.9)

with the polynomial sequence {PB,k
n : n = 1,2, . . .} defined as in (3.4.3). It follows from

(3.4.9) and (3.4.4) that it will suffice to prove that

||PB,k
n − (PB

n )
(k)||∞ → 0, n → ∞. (3.4.10)

We shall in fact prove that

||PB,k
n − (PB

n+k)
(k)||∞ → 0, n → ∞, (3.4.11)

which is equivalent to (3.4.10). Hence, for each ε > 0, we shall prove the existence of a

positive integer N = N(ε) such that

||PB,k
n − (PB

n+k)
(k)||∞ < ε, n > N. (3.4.12)

To this end, we fix x ∈ R, and use (3.3.1), (3.2.5) and (3.4.6) to obtain

(PB
n+k)

(k)(x) =
1

(b− a)k

n+k

∑
j=0

f (xn+k, j)

(
n+ k

j

)(
d
dt

)k [
t j(1− t)n+k− j

]
. (3.4.13)

Now use (3.4.5) and (3.4.7) to deduce that, for any j ∈ {0, . . . ,n+ k},(
d
dt

)k [
t j(1− t)n+k− j

]
=

k

∑
�=0

(
k
�

)
(k−�)!

(
j

k− �

)
t j−k+�(−1)��!

(
n+ k− j

�

)
(1−t)n+k− j−�.

(3.4.14)
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By substituting (3.4.14) into (3.4.13) and interchanging the summation order (see Exercise

3.9), we get, by recalling also the definition (3.2.1),

(PB
n+k)

(k)(x) =
1

(b− a)k

k

∑
�=0

(−1)�(k− �)!�!
(

k
�

) n+k−�

∑
j=k−�

f (xn+k, j)

(
n+ k

j

)

×
(

j
k− �

)(
n+ k− j

�

)
t j−k+�(1− t)n+k− j−�

=
1

(b− a)k

k

∑
�=0

(−1)�
(

k
�

)n+k−�

∑
j=k−�

f (xn+k, j)
(n+ k)!

j!(n+ k− j)!
j!

( j− k+ �)!

× (n+ k− j)!
(n+ k− j− �)!

t j−k+�(1− t)n+k− j−�

=
1

(b− a)k

k

∑
�=0

(−1)�
(

k
�

)n+k−�

∑
j=k−�

f (xn+k, j)
(n+ k)!

( j− k+ �)!(n+ k− j− �)!

× t j−k+�(1− t)n+k− j−�

=
(n+ k)!
(b− a)kn!

k

∑
�=0

(−1)�
(

k
�

) n

∑
j=0

f (xn+k, j+k−�)
n!

j!(n− j)!
t j(1− t)n− j

=
(n+ k)!
(b− a)kn!

n

∑
j=0

[
k

∑
�=0

(−1)�
(

k
�

)
f (xn+k, j+k−�)

]
Bn, j(x), (3.4.15)

from (3.2.5).

Since the second line of (3.3.1) gives

xn+k, j+1 − xn+k, j =
b− a
n+ k

, j = 0, . . . ,n+ k− 1,

we may now apply the formula (3.4.2) in Theorem 3.4.1 to deduce that

k

∑
�=0

(−1)�
(

k
�

)
f (xn+k, j+k−�) =

k

∑
�=0

(−1)�
(

k
k− �

)
f (xn+k, j+k−�)

= (−1)k
k

∑
�=0

(−1)�
(

k
�

)
f (xn+k, j+�)

= k!
(

b− a
n+ k

)k

f [xn+k, j, . . . ,xn+k, j+k]. (3.4.16)

Next, we apply Theorem 2.1.2 to deduce the existence of a point

ξn, j ∈ [xn+k, j,xn+k, j+k] (3.4.17)
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such that

f [xn+k, j , . . . ,xn+k, j+k] =
f (k)(ξn, j)

k!
. (3.4.18)

By combining (3.4.3), (3.4.15), (3.4.16) and (3.4.18), we obtain

PB,k
n (x)− (PB

n+k)
(k)(x) =

n

∑
j=0

[
f (k)(xn, j)− (n+ k)!

n!(n+ k)k f (k)(ξn, j)

]
Bn, j(x),

and thus, by using also Theorem 3.2.1(b),

|PB,k
n (x)− (PB

n+k)
(k)(x)|�

n

∑
j=0

∣∣∣∣ f (k)(xn, j)− (n+ k)!
n!(n+ k)k f (k)(ξn, j)

∣∣∣∣Bn, j(x). (3.4.19)

Let ε > 0 be given. Since f ∈Cm[a,b] and k ∈ {1, . . . ,m}, we know that f (k) ∈C[a,b], and

hence f (k) is uniformly continuous on [a,b], thereby implying the existence of a positive

number δ = δ (ε)< b− a, which is independent of n and j, such that

| f (k)(xn, j)− f (k)(ξn, j)|< ε
2

(3.4.20)

for all n and j ∈ {0, . . . ,n} satisfying

|xn, j − ξn, j|< δ . (3.4.21)

Now observe from the second line of (3.3.1), together with (3.4.17), that, for n ∈ N and

j = 0, . . . ,n,

xn, j − ξn, j �
[

a+ j
(

b− a
n

)]
−
[

a+ j
(

b− a
n+ k

)]

= (b− a)
(

j
n

)
k

n+ k
� (b− a)

k
n+ k

,

whereas

xn, j − ξn, j �
[

a+ j
(

b− a
n

)]
−
[

a+( j+ k)
(

b− a
n+ k

)]

=−(b− a)
(

1− j
n

)
k

n+ k
�−(b− a)

k
n+ k

,

and thus

|xn, j − ξn, j|� (b− a)
k

n+ k
. (3.4.22)

With the definition

Ñ = Ñ(ε) :=
⌈

k(b− a− δ )
δ

⌉
, (3.4.23)

it follows that (3.4.21), and therefore also (3.4.20), are satisfied for n > Ñ and j = 0, . . . ,n.
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Next, we observe that
(n+ k)!

n!(n+ k)k =
(n+ k)(n+ k− 1) . . .(n+ k− (k− 1))

(n+ k)k

= 1
(

1− 1
n+ k

)
. . .

(
1− k− 1

n+ k

)
→ 1, n → ∞,

according to which there is a positive integer N∗ = N∗(ε) such that∣∣∣∣ (n+ k)!
n!(n+ k)k − 1

∣∣∣∣< ε
2Mk

, n > N∗, (3.4.24)

where

Mk := max
a�x�b

| f (k)(x)|. (3.4.25)

Hence, if we define

N := max{Ñ,N∗},
it follows from (3.4.20), (3.4.25), and (3.4.24) that, for n > N and j = 0, . . . ,n,∣∣∣∣ f (k)(xn, j)− (n+ k)!

n!(n+ k)k f (k)(ξn, j)

∣∣∣∣
�
∣∣∣ f (k)(xn, j)− f (k)(ξn, j)

∣∣∣+ ∣∣∣∣ (n+ k)!
n!(n+ k)k − 1

∣∣∣∣ | f (k)(ξn, j)|

<
ε
2
+

ε
2Mk

Mk = ε. (3.4.26)

By inserting (3.4.26) into (3.4.19), and using Theorem 3.2.1(c), we obtain∣∣∣PB,k
n (x)− (PB

n+k)
(k)(x)

∣∣∣ < ε, n > N,

which then immediately implies the desired result (3.4.12). �
Observe that, if in (3.4.15) we set k = 1 and replace n by n− 1, we obtain

(PB
n )

′(x) =
n

b− a

n−1

∑
j=0

[
f (xn, j+1)− f (xn, j)

]
Bn−1, j(x), (3.4.27)

after having noted also that (3.4.15) holds for any f ∈ C[a,b] and n ∈ N. It follows from

(3.4.27) and (3.3.2), together with (3.2.7) in Theorem 3.2.1(b), that, if f is strictly increas-

ing on [a,b], then (PB
n )

′(x)> 0,x ∈ [a,b], whereas, if f is strictly decreasing on [a,b], then

(PB
n )

′(x)< 0,x ∈ [a,b]. Hence we have the following strict monotonicity-preserving result.

Theorem 3.4.3. For n ∈ N, the Bernstein polynomial approximation PB
n in πn to any f ∈

C[a,b], as defined by (3.3.1), satisfies the following:

(a) If f is strictly increasing on [a,b], then PB
n is strictly increasing on [a,b].

(b) If f is strictly decreasing on [a,b], then PB
n is strictly decreasing on [a,b].
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3.5 Convergence rate

We proceed to investigate, for a function f in Theorem 3.3.3 that is also continuously

differentiable on [a,b], the rate of convergence at which || f −PB
n ||∞ tends to zero for n→∞.

Specifically we shall establish an explicit bound of the form

|| f −PB
n ||∞ � g(n)|| f ′||∞, n = 1,2, . . . , (3.5.1)

where g(n)→ 0, n → ∞.

Let the function H : R→R be defined by

H(x) :=

⎧⎨⎩1, x � 0;

0, x < 0.
(3.5.2)

Observe that, for f ∈ C1[a,b] and [α,β ] ⊂ [a,b], the definition (3.5.2) yields, for any x ∈
[a,b], ∫ β

α
H(x− t) f ′(t)dt =

∫ x

α
f ′(t)dt = f (x)− f (α),

and thus

f (x) = f (α)+

∫ β

α
H(x− t) f ′(t)dt. (3.5.3)

The following convergence rate result is satisfied by Bernstein polynomial approximation.

Theorem 3.5.1. In Theorem 3.3.3, suppose that, moreover, f ∈C1[a,b]. Then

|| f −PB
n ||∞ � b− a

n
|| f ′||∞, n = 1,2, . . . . (3.5.4)

Proof. Let x ∈ [a,b], and for any fixed n ∈N, denote by k the (unique) integer in {0, . . . ,n−
1} such that

x ∈ [xn,k,xn,k+1), (3.5.5)

where {xn, j : j = 0, . . . ,n} is the uniform partition of [a,b] as given in the second line of

(3.3.1). By choosing [α,β ] = [xn,k,xn,k+1] in (3.5.3), we obtain

f (x) = f (xn,k)+

∫ xn,k+1

xn,k

H(x− t) f ′(t)dt, (3.5.6)

where the function H is defined by (3.5.2). It then follows from (3.3.1) and (3.5.6), together

with Theorem 3.2.1(c), that

PB
n (x) = f (xn,k)

n

∑
j=0

Bn, j(x)+
n

∑
j=0

[∫ xn,k+1

xn,k

H(xn, j − t) f ′(t)dt
]

Bn, j(x)
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= f (xn,k)+

∫ xn,k+1

xn,k

[
n

∑
j=0

H(xn, j − t)Bn, j(x)

]
f ′(t)dt,

which, together with (3.5.6), yields

f (x)−PB
n (x) =

∫ xn,k+1

xn,k

[
H(x− t)−

n

∑
j=0

H(xn, j − t)Bn, j(x)

]
f ′(t)dt,

and thus, by using also (3.5.2), Theorem 3.2.1(b) and (c), (3.5.5), and the second line of

(3.3.1), we deduce that

| f (x)−PB
n (x)|� || f ′||∞

∫ xn,k+1

xn,k

∣∣∣∣∣H(x− t)−
n

∑
j=0

H(xn, j − t)Bn, j(x)

∣∣∣∣∣dt

= || f ′||
{∫ x

xn,k

∣∣∣∣∣1− n

∑
j=k+1

Bn, j(x)

∣∣∣∣∣dt +
∫ xn,k+1

x

∣∣∣∣∣ n

∑
j=k+1

Bn, j(x)

∣∣∣∣∣dt

}

= || f ′||∞
{[

k

∑
j=0

Bn, j(x)

]
(x− xn,k)+

[
n

∑
j=k+1

Bn, j(x)

]
(xn,k+1 − x)

}

� || f ′||∞
{[

k

∑
j=0

Bn, j(x)

]
(xn,k+1 − xn,k)+

[
n

∑
j=k+1

Bn, j(x)

]
(xn,k+1 − xn,k)

}

=
b− a

n
|| f ′||∞

[
n

∑
j=0

Bn, j(x)

]
=

b− a
n

|| f ′||∞,

which is independent of k, and therefore implies the desired result (3.5.4). �

3.6 Exercises

Exercise 3.1 For any sequence {�n : n ∈ N}, with

�n := {xn,0, . . . ,xn,n} ⊂ [0,π ], n ∈ N,

let {PI
n : n ∈ N} denote the polynomial sequence in πn such that, for each n ∈ N, the poly-

nomial PI
n interpolates the function

f (x) = sinx, x ∈ [0,π ],

at the points �n. Use the interpolation error estimate (2.1.14) in Theorem 2.1.4 to prove

the uniform convergence result

max
0�x�π

|sinx−PI
n(x)| → 0, n → ∞.
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Exercise 3.2 By arguing as in the derivation of (3.3.17), prove, for any n ∈ N, the identity
n

∑
j=1

j3

n3

(
n
j

)
t j(1− t)n− j = t3 +

3n− 2
n2 t(1− t)

(
t +

1
3n− 2

)
, t ∈ R,

and thereby extending the identities (3.3.18) - (3.3.20).

[Hint: Apply the identity j2 = ( j− 1)( j− 2)+ 3( j− 1)+1, j ∈ N.]

Exercise 3.3 As a continuation of Exercise 3.2, prove that, analogously to (3.3.13) in The-

orem 3.3.2(a), and for any bounded interval [a,b]⊂ R, the Bernstein polynomial approxi-

mation PB
n in πn of the function

f (x) = x3, x ∈ [a,b], (∗)
is given by

PB
n (x) = x3 +

(x− a)(b− x)
n

[(
3− 2

n

)
x+

a+ b
n

]
,

and then use this formula to verify that

PB
n ∈

{
πn, if n ∈ {1,2};

π3, if n � 3.

Exercise 3.4 As a continuation of Exercise 3.3, prove that, analogously to (3.3.15) in The-

orem 3.3.2(a),

|| f −PB
n ||∞ � (b− a)2

4n
Kn,

where

Kn := max
{∣∣∣∣3a+

b− a
n

∣∣∣∣ , ∣∣∣∣3b− b− a
n

∣∣∣∣} .

Exercise 3.5 For the function f given by (∗) in Exercise 3.3, and by using the results of

Exercises 3.3 and 3.4, verify the results of (a) Theorem 3.3.1(a); (b) Theorem 3.3.1(b), with

a = 0; (c) Theorem 3.3.3; (d) Theorem 3.4.3(a), with a = 0; (e) Theorem 3.5.1.

[Hint: In (e), consider separately the three cases 0 � a < b; a < 0 � b; a < b < 0.]

Exercise 3.6 According to Theorem 3.2.1(d), there exists, for integers k � 0 and n � k, a

(unique) coefficient sequence {βn,k, j : j = 0, . . . ,n} such that

tk =
n

∑
j=0

βn,k, j

(
n
j

)
t j(1− t)n− j, t ∈R.

By applying the identities (3.3.18) - (3.3.20), as well as the identity derived in Exercise

3.2, calculate the coefficient sequences {βn,k, j : j = 0, . . . ,n} for k = 0,1,2, and 3, and any

n � k.

Exercise 3.7 Apply the results of Exercise 3.6 to obtain, in the form (3.2.12), the Bernstein

representation in πn with respect to the interval [a,b] of the polynomial P if:
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(a) P(x) = 2x−3; n = 5; [a,b] = [−1,2]; (b) P(x) = x2 + x+1; n = 2; [a,b] = [0,3];

(c) P(x) = x(x− 1)(x− 2); n = 4; [a,b] = [0,2].

Exercise 3.8 Prove the Leibniz formula (3.4.5) by means of a proof by induction, together

with the product rule for differentiation.

Exercise 3.9 For n ∈ N, and any sequence {a j,k : j,k = 0, . . . ,n}, verify the interchange of

summation order result
n

∑
j=0

j

∑
k=0

a j,k =
n

∑
k=0

n

∑
j=k

a j,k,

as applied to establish (3.4.15) in the proof of Theorem 3.4.2.

Exercise 3.10 For the function

f (x) = tanx, x ∈ [0, π
4 ],

find the smallest value of the integer n for which, according to the convergence rate result

(3.5.4) in Theorem 3.5.1, the Bernstein polynomial approximation PB
n in πn of f satisfies

max
0�x� π

4

| tanx−PB
n (x)|<

1
10

,

and explicitly write down the formula for the polynomial PB
n for this specific value of n.



Chapter 4

Best Approximation

This chapter is concerned with the study of best polynomial approximation. For example,

for any non-negative integer n and any function f ∈ C[a,b], the problem to be considered

is the existence of some polynomial P∗ ∈ πn, such that || f −P∗||∞ � || f −P||∞, for all

polynomials P ∈ πn. We shall study this problem in the more general setting of normed

linear spaces.

4.1 Existence in normed linear spaces

For a linear (vector) space X , let || · || : X → R denote a function such that the following

conditions are satisfied:

(i)

|| f ||� 0, f ∈ X ; (4.1.1)

(ii)

|| f ||= 0 if and only if f = 0; (4.1.2)

(iii)

||λ f ||= |λ | || f ||, λ ∈ R, f ∈ X ; (4.1.3)

(iv)

|| f + g||� || f ||+ ||g||, f ,g ∈ X (triangle inequality). (4.1.4)

We then call (X , || · ||) a normed linear space, with corresponding norm || · ||.
For any f ,g ∈ X , we see from (4.1.4) that

|| f ||= ||( f − g)+ g||� || f − g||+ ||g||,

71
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and

||g||= ||(g− f )+ f ||� ||g− f ||+ || f ||= || f − g||+ || f ||,

by using (4.1.3) with λ =−1, and thus

−|| f − g||� || f ||− ||g||� || f − g||,

or equivalently,

| || f ||− ||g|| |� || f − g||. (4.1.5)

Example 4.1.1. For n ∈ N, the Euclidean n-dimensional space X = Rn, together with the

associated Euclidean norm (or length)

||x||E :=

√
n

∑
j=1

(x j)
2, x = (x1, . . . ,xn) ∈ R

n, (4.1.6)

constitute the Euclidean normed linear space (Rn, || · ||E). �

Example 4.1.2. For a bounded interval [a,b], the linear space X = C[a,b], together with

the maximum norm (or sup norm, or L∞ norm, or Chebyshev norm)

|| f ||∞ := max
a�x�b

| f (x)|, f ∈C[a,b], (4.1.7)

as introduced in (2.1.13), constitute the normed linear space (C[a,b], || · ||∞) (see Exercise

4.1). �

For a given normed linear space (X , || · ||), suppose f ∈ X , and let A ⊂ X denote an approx-

imation set. If there exists an element f ∗ ∈ A such that

|| f − f ∗||� || f − g||, g ∈ A, (4.1.8)

we say that f ∗ is a best approximation from A to f . Our following result establishes a

sufficient condition on the approximation set A for the existence of f ∗.

Theorem 4.1.1. For a normed linear space (X , || · ||), let f ∈ X, and suppose A ⊂ X is an

approximation set such that A is a finite-dimensional subspace of X. Then there exists a

best approximation f ∗ from A to f .

Proof. Define d := dim(A), and let { f1, . . . , fd} ⊂ A denote a basis for A. Our first step is

to prove that, for the function w : R
d →R defined by

w(x) :=

∣∣∣∣∣
∣∣∣∣∣ d

∑
j=1

x j f j

∣∣∣∣∣
∣∣∣∣∣ , x = (x1, . . . ,xd) ∈ R

d , (4.1.9)
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there exists a positive constant m such that

w(x)� m||x||E , x ∈ R
d . (4.1.10)

To this end, we first use consecutively (4.1.9), (4.1.5), (4.1.4), (4.1.3) and (4.1.6) to obtain,

for any x = (x1, . . . ,xd) and y = (y1, . . . ,yd) in Rd ,

|w(x)−w(y)|=
∣∣∣∣ ∥∥∥∥ d

∑
j=1

x j f j

∥∥∥∥−∥∥∥∥ d

∑
j=1

y j f j

∥∥∥∥ ∣∣∣∣ (4.1.11)

�
∣∣∣∣∣
∣∣∣∣∣ d

∑
j=1

(x j − y j) f j

∣∣∣∣∣
∣∣∣∣∣ �

d

∑
j=1

|x j − y j| || f j ||

=
d

∑
j=1

√
(x j − y j)2 || f j ||

�
[

d

∑
j=1

|| f j ||
]
||x− y||E,

and thus

lim
y→x

w(y) = w(x), x ∈ R
d , (4.1.12)

that is, w is a continuous function on Rd . Hence, since also

S := {x = (x1, . . . ,xd) ∈R
d : ||x||E = 1} (4.1.13)

is a closed and bounded (or compact) subset of Rd , a standard result from calculus guar-

antees that the function w attains its minimum value on S, that is, there exists a point

y∗ = (y∗1, . . . ,y
∗
d) ∈ S such that

m := w(y∗)� w(y), y ∈ S. (4.1.14)

Note from (4.1.14), (4.1.9) and (4.1.1) that m � 0. If m = 0, then (4.1.14), (4.1.9) and

(4.1.2) imply
d

∑
j=1

y∗j f j = 0,

and thus, since { f1, . . . , fd} is a basis for A, and therefore a linearly independent set, we

must have y∗1 = · · · = y∗d = 0, which contradicts the fact that, since y∗ = (y∗1, . . . ,y
∗
d) ∈ S,

(4.1.13) and (4.1.6) give
d

∑
j=1

(y∗j)
2 = 1. Hence m > 0.

Let x ∈ Rd \ {0}, and define

y :=
x

||x||E ,
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according to which ||y||E = 1, so that, from (4.1.13), y ∈ S, and thus, by virtue of (4.1.14),

w
(

x
||x||E

)
� m. (4.1.15)

Now observe that (4.1.9) and (4.1.3) yield

w
(

x
||x||E

)
=

1
||x||E w(x). (4.1.16)

It follows from (4.1.15) and (4.1.16) that the inequality in (4.1.10) is satisfied for x ∈
R

d \ {0}. Since (4.1.9) gives w(0) = 0, we see that (4.1.10) holds with both sides equal to

zero if x = 0, and thereby completing our proof of (4.1.10).

Next, we define the function v : Rd → R by

v(x) :=

∣∣∣∣∣
∣∣∣∣∣ f − d

∑
j=1

x j f j

∣∣∣∣∣
∣∣∣∣∣ , x = (x1, . . . ,xd) ∈ R

d , (4.1.17)

for which, by applying the inequality (4.1.5), as well as (4.1.3) with λ = −1, we deduce

that, for any x = (x1, . . . ,xd) ∈Rd and y = (y1, . . . ,yd) ∈ Rd ,

|v(x)− v(y)|=
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ f − d

∑
j=1

x j f j

∣∣∣∣∣
∣∣∣∣∣−
∣∣∣∣∣
∣∣∣∣∣ f − d

∑
j=1

y j f j

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣�

∣∣∣∣∣
∣∣∣∣∣ d

∑
j=1

(x j − y j) f j

∣∣∣∣∣
∣∣∣∣∣ . (4.1.18)

It then follows as in the steps leading from (4.1.11) to (4.1.12) that v is a continuous func-

tion on Rd . A standard result from calculus then guarantees that the function v attains its

minimum value on the closed and bounded (or compact) subset

T :=
{

x = (x1, . . . ,xd) ∈ R
d : ||x||E � 2|| f ||

m

}
(4.1.19)

of Rd , that is, there exists a point x∗ = (x∗1, . . . ,x
∗
d) ∈ T such that

v(x∗)� v(x), x ∈ T. (4.1.20)

Let A0 ⊂ A be defined by

A0 :=

{
g ∈ A : g =

d

∑
j=1

x j f j; x = (x1, . . . ,xd) ∈ T

}
, (4.1.21)

with the subset T of Rd given by (4.1.19), and define

f ∗ :=
d

∑
j=1

x∗j f j , (4.1.22)

for which, since x∗ = (x∗1, . . . ,x
∗
d) ∈ T , it follows from (4.1.21) that f ∗ ∈ A0.

Now let g ∈ A0, according to which, from (4.1.21),

g =
d

∑
j=1

x j f j , (4.1.23)
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for some x = (x1, . . . ,xd) ∈ T . By using (4.1.23), (4.1.17), (4.1.20) and (4.1.22), we obtain

|| f − g||= v(x)� v(x∗) = || f − f ∗||,

according to which we have now shown that

|| f − f ∗||� || f − g||, g ∈ A0. (4.1.24)

We proceed to prove that also

|| f − f ∗||< || f − g||, g ∈ A\A0, (4.1.25)

which, together with (4.1.24), then shows that (4.1.8) is satisfied by f ∗, and would therefore

complete our proof.

To prove (4.1.25), we let g ∈ A \ A0, so that, from (4.1.21) and (4.1.19), g is given by

(4.1.23) for some x = (x1, . . . ,xd) ∈Rd satisfying

||x||E >
2|| f ||

m
. (4.1.26)

It follows from (4.1.23), (4.1.9), (4.1.10) and (4.1.26) that

||g||= w(x)� m||x||E > 2|| f ||,

and thus, by using also (4.1.3) and (4.1.5),

|| f − g||= ||g− f ||� | ||g||− | f || |� ||g||− || f ||> || f ||. (4.1.27)

Now observe from (4.1.21) and (4.1.19) that the zero element 0 of the subspace A ⊂ X

satisfies 0 ∈ A0, and it follows that we may choose g = 0 in (4.1.24) to deduce that

|| f ||= || f − 0||� || f − f ∗||. (4.1.28)

By combining (4.1.27) and (4.1.28), we obtain the desired result (4.1.25). �
Since the polynomial space πn, with the polynomial domains restricted to [a,b], is a finite-

dimensional subspace of C[a,b], the following existence result is an immediate conse-

quence of Theorem 4.1.1.

Theorem 4.1.2. Let f ∈ C[a,b]. Then, for each non-negative integer n, there exists a best

approximation P∗ from πn to f with respect to the maximum norm on [a,b], that is,

|| f −P∗||∞ � || f −P||∞, P ∈ πn. (4.1.29)
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Before proceeding to investigate the issue of uniqueness in best approximation, as will be

done in Section 4.2, we first prove, in the setting of Theorem 4.1.1, a property of the set

A∗
f := { f ∗ ∈ A : f ∗ is a best approximation from A to f}. (4.1.30)

A non-empty subset Y of a linear space X is called a convex set if the condition

{λ f +(1−λ )g : λ ∈ [0,1]} ⊂ Y, f ,g ∈ Y, (4.1.31)

is satisfied. Observe that a convex subset Y of X has either precisely one element, or

infinitely many elements.

Theorem 4.1.3. For a normed linear space (X , || · ||), let f ∈ X, and suppose A ⊂ X is an

approximation set such that A is a subspace of X, and such that the set A∗
f , as defined by

(4.1.30), is non-empty. Then A∗
f is a convex set.

Proof. Suppose f ∗,g∗ ∈ A∗
f , define

d∗ := min{|| f − g|| : g ∈ A}= || f − f ∗||= || f − g∗||, (4.1.32)

and let λ ∈ [0,1]. It follows from (4.1.4), (4.1.3) and (4.1.32) that

|| f − [λ f ∗+(1−λ )g∗]||= ||λ ( f − f ∗)+ (1−λ )( f − g∗)||

� ||λ ( f − f ∗)||+ ||(1−λ )( f − g∗)||

= λ || f − f ∗||+(1−λ )|| f − g∗||= λ d∗+(1−λ )d∗ = d∗,

that is,

|| f − [λ f ∗+(1−λ )g∗]||� d∗. (4.1.33)

Since A is a subspace of X , we have λ f ∗+(1−λ )g∗ ∈ A, and thus, from the definition in

(4.1.32) of d∗,

|| f − [λ f ∗+(1−λ )g∗]||� d∗. (4.1.34)

It follows from (4.1.33), (4.1.34) and (4.1.32) that

|| f − [λ f ∗+(1−λ )g∗]||= d∗ = min{|| f − g|| : g ∈ A},
and thus, from (4.1.30), λ f ∗+(1−λ )g∗ ∈ A∗

f , which proves that A∗
f is a convex set. �

We deduce that, in the setting of Theorem 4.1.3, there either exists a unique best approx-

imation f ∗ from A to f , or there exist infinitely many best approximations f ∗ from A to

f .

In the next section, we identify a class of normed linear spaces (X , || · ||) for which f ∗ is

indeed unique.
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4.2 Uniqueness in inner product spaces

For a linear (vector) space X , let 〈·, ·〉 : X×X →R denote a function such that the following

conditions are satisfied:

(i)

〈 f , f 〉 � 0, f ∈ X ; (4.2.1)

(ii)

〈 f , f 〉 = 0 if and only if f = 0; (4.2.2)

(iii)

〈 f + g,h〉= 〈 f ,h〉+ 〈g,h〉, f ,g,h ∈ X ; (4.2.3)

(iv)

〈λ f ,g〉= λ 〈 f ,g〉, λ ∈ R, f ,g ∈ X ; (4.2.4)

(v)

〈 f ,g〉 = 〈g, f 〉, f ,g ∈ X . (4.2.5)

We then call (X ,〈·, ·〉) an inner product space, with corresponding inner product 〈·, ·〉.
Observe that the choice λ = 0 in (4.2.4), together with (4.2.5), yields

〈 f ,0〉= 〈0,g〉= 0, f ,g ∈ X . (4.2.6)

Example 4.2.1. For n ∈ N, the Euclidean n-dimensional space X = R
n, together with the

associated Euclidean inner product (or dot product, or scalar product)

〈x,y〉E := x ·y =
n

∑
j=1

x jy j, x = (x1, . . . ,xn) ∈ R
n, y = (y1, . . . ,yn) ∈ R

n, (4.2.7)

constitute the Euclidean inner product space (Rn,〈·, ·〉E). �

Example 4.2.2. Let w denote a real-valued function that is integrable on a bounded interval

[a,b], and such that the conditions

(a) ∫ b

a
w(x)dx > 0; (4.2.8)

(b)

w(x)� 0, x ∈ (a,b); (4.2.9)

are satisfied,
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in which case w is called a weight function on [a,b]. For any such weight function w on

[a,b], the linear space X =C[a,b], together with the weighted inner product

〈 f ,g〉2,w :=
∫ b

a
w(x) f (x)g(x)dx, f ,g ∈C[a,b], (4.2.10)

constitute the inner product space (C[a,b],〈·, ·〉2,w) (see Exercise 4.8). In the special case

where the weight function w is given by

w(x) = 1, x ∈ [a,b], (4.2.11)

we write

〈 f ,g〉2 :=
∫ b

a
f (x)g(x)dx (4.2.12)

for the corresponding inner product. �

The following fundamental inequality is satisfied in inner product spaces.

Theorem 4.2.1 (Cauchy-Schwarz inequality). Let (X ,〈·, ·〉) be any inner product space.

Then

|〈 f ,g〉|�
√

〈 f , f 〉
√
〈g,g〉, f ,g ∈ X . (4.2.13)

Proof. If either f = 0 or g= 0, it follows from (4.2.6) that (4.2.13) is satisfied as an equality

with both sides equal to zero.

Suppose next f ,g ∈ X , with f �= 0 and g �= 0, and let λ ∈ R. Then (4.2.1), (4.2.3), (4.2.4)

and (4.2.5) yield

0 � 〈 f +λ g, f +λ g〉= 〈 f , f 〉+ 2λ 〈 f ,g〉+λ 2〈g,g〉,
that is,

〈g,g〉λ 2 + 2〈 f ,g〉λ + 〈 f , f 〉 � 0, λ ∈ R, (4.2.14)

where, since g �= 0, (4.2.2) and (4.2.1) imply 〈g,g〉 > 0. It follows from (4.2.14) that the

corresponding discriminant is non-positive, that is,

[2〈 f ,g〉]2 − 4〈g,g〉〈 f , f 〉� 0,

and thus

[〈 f ,g〉]2 � 〈 f , f 〉〈g,g〉,
which, together with (4.2.1), yields the desired inequality (4.2.13). �
The Cauchy-Schwarz inequality (4.2.13) is instrumental in proving the following result,

according to which every inner product space generates a normed linear space.

Theorem 4.2.2. Suppose (X ,〈·, ·〉) is an inner product space. Then (X , || · ||), where

|| f || :=
√
〈 f , f 〉, f ∈ X , (4.2.15)

is a normed linear space.
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Proof. First, note from (4.2.15) that (4.2.1) and (4.2.2) imply, respectively, (4.1.1) and

(4.1.2), whereas (4.2.4) and (4.2.5) yield

||λ f ||=
√
〈λ f ,λ f 〉 =

√
λ 2〈 f , f 〉 = |λ | || f ||,

for any λ ∈R and f ∈ X , and thereby proving (4.1.3). It therefore remains to verify that the

triangle inequality (4.1.4) is satisfied by the definition (4.2.15). To this end, we let f ,g ∈ X ,

and use (4.2.15), (4.2.3) and (4.2.5), as well as the Cauchy-Schwarz inequality (4.2.13), to

obtain

|| f + g||2 = 〈 f + g, f + g〉

= 〈 f , f 〉+ 2〈 f ,g〉+ 〈g,g〉

= || f ||2 + 2〈 f ,g〉+ ||g||2

� || f ||2 + 2|〈 f ,g〉|+ ||g||2

� || f ||2 + 2
√
〈 f , f 〉

√
〈g,g〉+ ||g||2

= || f ||2 + 2|| f || ||g||+ ||g||2 = (|| f ||+ ||g||)2,

from which (4.1.4) then immediately follows. �
Observe that if, in Theorem 4.2.2, we choose (X ,〈·, ·〉) = (Rn,〈·, ·〉E), then the definition

(4.2.15), together with (4.1.6) and (4.2.7), shows that the normed linear space thus gener-

ated is the Euclidean n-dimensional space (Rn, || · ||E) of Example 4.1.1.

Next, following Example 4.2.2, we choose (X ,〈·, ·〉) = (C[a,b],〈·, ·〉2,w) in Theorem 4.2.2,

to obtain the normed linear space (C[a,b], || · ||2,w), where, from (4.2.15) and (4.2.10), the

weighted L2 norm is given by

|| f ||2,w :=

√∫ b

a
w(x)[ f (x)]2dx, f ∈C[a,b], (4.2.16)

for some weight function w on [a,b] satisfying the conditions (4.2.8) and (4.2.9). For the

special case where the weight function w is given by (4.2.11), we obtain the normed linear

space (C[a,b], || · ||2), where, from (4.2.15) and (4.2.12), the L2 norm is given by

|| f ||2 :=

√∫ b

a
[ f (x)]2dx, f ∈C[a,b]. (4.2.17)

Analogously to Theorem 4.1.2, the existence result of Theorem 4.1.1 now immediately

implies the following.

Theorem 4.2.3. Let f ∈C[a,b]. Then, for each non-negative integer n, there exists a poly-

nomial P̃∗ such that

|| f − P̃∗||2,w � || f −P||2,w, P ∈ πn. (4.2.18)
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We proceed to prove a uniqueness result for best approximation in inner product spaces.

We shall rely on the fact that, in the setting of Theorem 4.2.2, it follows from (4.2.15),

(4.2.3), (4.2.4) and (4.2.5), that, for f ,g ∈ X ,

|| f + g||2 + || f − g||2 = 〈 f + g, f + g〉+ 〈 f − g, f − g〉

= [〈 f , f 〉+ 2〈 f ,g〉+ 〈g,g〉]+ [〈 f , f 〉− 2〈 f ,g〉+ 〈g,g〉]

= 2|| f ||2 + 2||g||2. (4.2.19)

Our uniqueness result is then as follows.

Theorem 4.2.4. For a normed linear space (X , || · ||) as in Theorem 4.2.2, let f ∈ X, and

suppose A ⊂ X is an approximation set such that A is a subspace of X, and such that there

exists a best approximation f ∗ from A to f . Then f ∗ is the only best approximation from A

to f .

Proof. Suppose g∗ ∈ A is such that

|| f − g∗||= || f − f ∗||= min{|| f − g|| : g ∈ A}=: d∗. (4.2.20)

Since A is a subspace of X , we know that 1
2 f ∗ + 1

2 g∗ ∈ A, so that we may apply Theo-

rem 4.1.3 to deduce that the convex combination 1
2 f ∗ + 1

2 g∗ is a best approximation from

A to f , that is, from (4.2.20),

|| f − ( 1
2 f ∗+ 1

2 g∗)||= d∗. (4.2.21)

By using (4.1.3), (4.2.19), (4.2.20) and (4.2.21), we obtain

|| f ∗ − g∗||2 = ||g∗ − f ∗||2

= ||( f − f ∗)− ( f − g∗)||2

= 2|| f − f ∗||2 + 2|| f − g∗||2 −||( f − f ∗)+ ( f − g∗)||2

= 2(d∗)2 + 2(d∗)2 − 4|| f − ( 1
2 f ∗+ 1

2 g∗)||2

= 2(d∗)2 + 2(d∗)2 − 4(d∗)2 = 0,

which, together with (4.1.2), yields g∗ = f ∗, and thereby completing our proof. �
By combining Theorems 4.1.1 and 4.2.4, we immediately deduce the following result.

Theorem 4.2.5. In Theorem 4.1.1, suppose (X , || · ||) is a normed linear space of the type

described in Theorem 4.2.2. Then f ∗ is the only best approximation from A to f .



Best Approximation 81

An application of Theorem 4.2.5 now immediately yields the following improved formula-

tion of Theorem 4.2.3.

Theorem 4.2.6. Let f ∈C[a,b]. Then, for any non-negative integer n, there exists precisely

one polynomial P̃∗
n ∈ πn such that

|| f − P̃∗
n ||2,w � || f −P||2,w, P ∈ πn. (4.2.22)

The polynomial P̃∗
n of Theorem 4.2.6 is called the best weighted L2 (or weighted least-

squares) approximation on [a,b] from πn to f . For the special case where the weight func-

tion w is given by (4.2.11), we have

|| f − P̃∗
n ||2 � || f −P||2, P ∈ πn, (4.2.23)

in which case we call P̃∗
n the best L2 (or least-squares) approximation on [a,b] from πn to

f .

Observe from Theorem 4.2.6 that the best weighted L2 approximation P̃∗
n on [a,b] from πn

to f satisfies the condition

|| f − P̃∗
n ||2,w < || f −P||2,w, for P ∈ πn, with P �= P̃∗

n . (4.2.24)

4.3 Exercises

Exercise 4.1 Verify, as stated in Example 4.1.2, that (C[a,b], || · ||∞), with || · ||∞ defined

by (4.1.7), is a normed linear space, by showing that || · || = || · ||∞ satisfies the properties

(4.1.1) - (4.1.4).

Exercise 4.2 For any normed linear space (X , || · ||), let f ∈X be fixed, and define, for r > 0,

the sets
B( f ,r) := {g ∈ X : || f − g||< r};

B( f ,r) := {g ∈ X : || f − g||� r};

∂B( f ,r) := {g ∈ X : || f − g||= r}.
(a) Show, as used in the proof of Theorem 4.1.1, with (X , || · ||) = (Rd , || · ||E) as in Exam-

ple 4.1.1, that B( f ,r) and ∂B( f ,r) are closed and bounded (or compact) subsets of X .

[Recall that A is a bounded subset of X if

||g||� M, g ∈ A,

for some constant M, whereas A is a closed subset of X if the limit (in X) of any

convergent sequence {gn : n = 0,1, . . .} ⊂ A belongs to A, that is,

||g− gn|| → 0, n → ∞ ⇒ g ∈ A.]
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(b) Show that B( f ,r) and B( f ,r) are both convex sets, whereas ∂B( f ,r) is not a convex

set.

Exercise 4.3 Prove that (R2, || · ||E), (R2, || · ||1), and (R2, || · ||∞), where

||x||E :=
√

x2 + y2,

||x||1 := |x|+ |y|,
||x||∞ := max{|x|, |y|},

⎫⎪⎪⎪⎬⎪⎪⎪⎭ x = (x,y) ∈ R
2,

are normed linear spaces, by showing that each of || · ||= || · ||E , || · || = || · ||1, and || · ||=
|| · ||∞, satisfies the properties (4.1.1) - (4.1.4).

Exercise 4.4 As a continuation of Exercise 4.3, let y∈R2 be given by y = (1,
√

3). For any

r > 0, make a sketch of the set B(y,r), as defined in the general setting of Exercise 4.2, for

each of the three normed linear spaces (R2, || · ||E),(R2, || · ||1), and (R2, || · ||∞).
Exercise 4.5 As a continuation of Exercise 4.4, find, for each of the three normed linear

spaces (R2, || · ||E),(R2, || · ||1), and (R2, || · ||∞), the set A∗
y of best approximations from A

to y if

(a) A := {(x,0) : x ∈ R}; (b) A := {λ (1,1) : λ ∈ R},

as well as the corresponding minimum values. Explain the consistency of the results thus

obtained with Theorems 4.1.1, 4.1.3 and 4.2.4.

Exercise 4.6 For n = 0 and n = 1, and by arguing in a heuristic manner, find polynomials

{P∗
n,k : k = 0,1,2} ⊂ πn satisfying the best approximation condition

max
0�x�1

|xk −P∗
n,k(x)|� max

0�x�1
|xk −P(x)|, P ∈ πn, k = 0,1,2,

and the existence of which is guaranteed by Theorem 4.1.2.

Exercise 4.7 Suppose (X , || · ||) is a normed linear space, and let f ∈ X . For any two subsets

A0 and A1 of X satisfying A0 ⊂ A1 ⊂ X , suppose f ∗ ∈ A1 and f ∗∗ ∈ A0 are such that f ∗

is a best approximation from A1 to f , whereas f ∗∗ is a best approximation from A0 to f ∗.

Investigate whether it is true or false that f ∗∗ is then necessarily a best approximation from

A0 to f .

[Hint: Consider first the special case provided by Exercise 4.6.]

Exercise 4.8 Verify, as stated in Example 4.2.2, that (C[a,b],〈·, ·〉2,w), with 〈·, ·〉2,w defined

as in (4.2.10) in terms of a weight function w satisfying (4.2.8), (4.2.9), is an inner product

space, by showing that 〈·, ·〉= 〈·, ·〉2,w satisfies the properties (4.2.1) - (4.2.5).

Exercise 4.9 For any inner product space (X ,〈·, ·〉), and f ,g ∈ X , with f �= 0 and g �= 0,

prove that the Cauchy-Schwarz inequality (4.2.13) in Theorem 4.2.1 holds with equality,
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that is,

|〈 f ,g〉|=
√
〈 f , f 〉

√
〈g,g〉,

if and only if

f ∈ {λ g : λ ∈ R\ {0}}.

[Hint: For the proof in the “only if” direction, let h ∈ X be defined by

h :=

⎧⎪⎪⎨⎪⎪⎩
√〈g,g〉 f −√〈 f , f 〉 g, if 〈 f ,g〉� 0;

√〈g,g〉 f +
√〈 f , f 〉 g, if 〈 f ,g〉< 0,

and use the fact that, according to (4.2.2), 〈h,h〉= 0 implies h = 0.]

Exercise 4.10 By applying a minimization method based on differentiation, find, for k ∈N,

the polynomial P∗
w,k ∈ π0 satisfying the best approximation condition√∫ 1

0
w(x)[xk −P∗

w,k(x)]
2dx �

√∫ 1

0
w(x)[xk −P(x)]2dx, P ∈ π0,

and the existence and uniqueness of which are guaranteed by Theorems 4.2.3 and 4.2.6, for

each of the following weight functions:

(a) w(x) = 1, x ∈ [0,1]; (b) w(x) = x, x ∈ [0,1]; (c) w(x) =
1√
x
, x ∈ (0,1].



Chapter 5

Approximation Operators

In the previous chapters, we have studied the existence and formulations of certain poly-

nomials P ∈ πn for the approximation of a given function f ∈ C[a,b]. In other words, we

may formulate such results in terms of some projection P from C[a,b] to πn ⊂C[a,b], in

that for each f ∈ C[a,b], P f = P ∈ πn. In this chapter, we proceed to consider a more

general point of view by introducing the concept of approximation operators P defined on

a normed linear space and study various properties of P and the norm of the error function

f −P f .

5.1 Linearity and exactness

For a given linear space X , any approximation procedure which assigns to each f ∈ X a

unique approximation g f belonging to some fixed approximation set A ⊂ X , can be associ-

ated with the corresponding approximation operator A : X → A defined by

A f := g f , f ∈ X . (5.1.1)

We have the following examples from previous chapters.

Example 5.1.1. For any non-negative integer n, and a sequence {x0, . . . ,xn} of n+ 1 dis-

tinct points in a given bounded interval [a,b], the Lagrange polynomial interpolation oper-

ator P I
n : C[a,b]→ πn is defined by

P I
n f := PI

n , f ∈C[a,b], (5.1.2)

with PI
n denoting the interpolation polynomial of Theorem 1.1.2, and where, from Theo-

rem 1.2.2, we have the explicit formulation

(P I
n f )(x) =

n

∑
j=0

f (x j)Ln, j(x) (5.1.3)

85
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in terms of the Lagrange fundamental polynomials {Ln, j : j = 0, . . . ,n}, as defined in

(1.2.1).

�

Example 5.1.2. For any non-negative integer n and bounded interval [a,b], the Bernstein

polynomial interpolation operator PB
n : C[a,b]→ πn is defined by

PB
n f := PB

n , f ∈C[a,b], (5.1.4)

with PB
n denoting the Bernstein polynomial approximation in πn on [a,b] of f , as given in

(3.3.1), that is,

(PB
n f )(x) =

n

∑
j=0

f (xn, j)Bn, j(x),

where

xn, j := a+ j
(

b− a
n

)
, j = 0, . . . ,n,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(5.1.5)

and where the Bernstein polynomial sequence {Bn, j : j = 0, . . . ,n} is defined by (3.2.2).

�

Example 5.1.3. For any non-negative integer n, bounded interval [a,b], and weight func-

tion w on [a,b] satisfying the conditions (4.2.8) and (4.2.9), the best weighted L2 approxi-

mation operator P̃∗
n : C[a,b]→ πn is defined by

P̃∗
n f := P̃∗

n , f ∈C[a,b], (5.1.6)

with the polynomial P̃∗
n as in Theorem 4.2.6, so that, from (4.2.24),

|| f −P̃∗
n f ||2,w < || f −P||2,w, for P ∈ πn, with P �= P̃∗

n f . (5.1.7)

�

For a normed linear space (X , || · ||), let A ⊂ X denote a fixed approximation set. If an

approximation operator A : X → A satisfies the condition

A (λ f + μg) = λ (A f )+ μ(A g), λ ,μ ∈R, f ,g ∈ X , (5.1.8)

we say that A is linear. By choosing λ = μ = 0 in (5.1.8), we deduce that

A 0 = 0, if A is linear. (5.1.9)

It is immediately evident from (5.1.3) and (5.1.5) that the approximation operators P I
n and

PB
n are both linear. We shall in fact prove in Chapter 7 that the best approximation operator

P̃∗
n of Example 5.1.3 is also linear.
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If an approximation operator A : X → A satisfies the condition

A f = f , f ∈ M, (5.1.10)

for some subset M ⊂ A, we say that A is exact on M. Note that optimal exactness is

achieved in the case M = A.

Observe from (5.1.3), together with the identity (1.2.7) in Theorem 1.2.3, that the approx-

imation operator P I
n is exact on πn, whereas, according to (5.1.5) and Theorem 3.3.1(c)

and Theorem 3.3.2(a), the approximation operator PB
n is exact on π1, but not exact on πn

for n � 2.

To investigate the property of exactness with respect to the best approximation operator

P̃∗
n of Example 5.1.3, let f ∈ πn, so that

|| f − f ||2,w = 0 � || f −P||2,w, P ∈ πn,

and thus

P̃∗
n f = f , f ∈ πn. (5.1.11)

In summary, we have therefore now proved the following result.

Theorem 5.1.1. For any non-negative integer n and bounded interval [a,b], the approxi-

mation operators P I
n,P

B
n and P̃∗

n , as defined by, respectively, (5.1.2), (5.1.4) and (5.1.6),

satisfy the following properties:

(a) P I
n and PB

n are linear;

(b) P I
n and P̃∗

n are exact on πn;

(c) PB
n is exact on πn if and only if n = 1.

5.2 Boundedness and Lebesgue constants

For a normed linear space (X , || · ||), if a non-empty subset Y ⊂ X satisfies the condition

||g||� K, g ∈ Y,

for some constant K, we say that Y is a bounded set. We proceed to introduce the notion

of boundedness for approximation operators on X . For an approximation set A ⊂ X , let

A : X → A be an approximation operator. If{ ||A f ||
|| f || : f ∈ X ; f �= 0

}
(5.2.1)
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is a bounded set, we say that A is bounded with respect to the norm || · ||, with correspond-

ing operator norm

||A || := sup
{ ||A f ||

|| f || : f ∈ X ; f �= 0
}
. (5.2.2)

For any bounded operator A , the operator norm ||A || in (5.2.2) will be referred to as the

Lebesgue constant of A with respect to the norm || · ||. If the set (5.2.1) is unbounded, we

say that A is unbounded with respect to the norm || · ||.
As an immediate consequence of the definition (5.2.2), we observe that, for any bounded

approximation operator A : X → A, we have

||A f ||� ||A || || f ||, f ∈ X . (5.2.3)

If, moreover, A is linear, it follows from (5.1.8) and (5.2.3) that, for any f , f̃ ∈ X ,

||A f −A f̃ ||= ||A ( f − f̃ )||� ||A || || f − f̃ ||. (5.2.4)

Suppose we wish to approximate a given element f ∈ X by A f ∈ A, and suppose that,

perhaps due to measuring errors, or computer rounding errors, we are instead actually

computing A f̃ , where f̃ ∈ X and || f − f̃ || is “small” in some sense. If A is linear and

bounded, it follows from (5.2.4) that, for f̃ �= f , the quotient ||A f −A f̃ ||/|| f − f̃ || is

bounded above by the Lebesgue constant ||A ||. Since we would ideally like ||A f −A f̃ ||
to have at most the same order of “smallness” as || f − f̃ ||, it follows that a relatively small

value of ||A || reflects favourably on an approximation operator A .

The following result on the size of approximation operator norms should however be kept

in mind.

Theorem 5.2.1. For a normed linear space (X , || · ||) and an approximation set A ⊂ X,

suppose the approximation operator A : X → A is bounded, and exact on M ⊂ A, in the

sense of (5.1.10), with M �= {0}. Then the corresponding Lebesgue constant ||A || satisfies

the inequality

||A ||� 1. (5.2.5)

Proof. Since (5.1.10) gives

||A f ||
|| f || = 1, for f ∈ M, with f �= 0,

it follows from the definition (5.2.2) that the inequality (5.2.5) is satisfied. �
The Lebesgue constant with respect to the maximum norm on [a,b] of the Bernstein ap-

proximation operator PB
n can now be computed as follows.
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Theorem 5.2.2. For any non-negative integer n and bounded interval [a,b], the Bernstein

approximation operator PB
n : C[a,b]→ πn, as given by (5.1.5), is bounded with respect to

the maximum norm on [a,b], and has corresponding Lebesgue constant

||PB
n ||∞ = 1. (5.2.6)

Proof. Let f ∈ C[a,b], with f �= 0, and choose x ∈ [a,b]. It follows from (5.1.5), together

with Theorem 3.2.1(b) and (c), that

|(PB
n f )(x)| �

n

∑
j=0

| f (xn, j)|Bn, j(x)� || f ||∞
n

∑
j=0

Bn, j(x) = || f ||∞,

and thus

||PB
n f ||∞ � || f ||∞,

so that

||PB
n f ||∞

|| f ||∞ � 1. (5.2.7)

Hence, by using (5.2.7) and the definition (5.2.2), we conclude that the approximation

operator PB
n is bounded with respect to the maximum norm on [a,b], with corresponding

Lebesgue constant satisfying

||PB
n ||∞ � 1. (5.2.8)

Next, we apply Theorem 5.1.1(c) and Theorem 5.2.1 to deduce that ||PB
n ||∞ � 1, which,

together with (5.2.8), implies the desired result (5.2.6). �
Note from (5.2.6) that, subject to the constraint implied by exactness on π1, the Lebesgue

constant ||PB
n ||∞ is optimally small.

In order to compute the Lebesgue constant of the Lagrange polynomial interpolation op-

erator P I
n with respect to the maximum norm on [a,b], we first establish the following

simplified operator norm formulations for linear approximation operators.

Theorem 5.2.3. For a normed linear space (X , || · ||) and an approximation set A ⊂ X, sup-

pose A : X → A is a linear approximation operator. Then the following three statements

are equivalent:

(i) A is bounded;

(ii) the set {||A f || : f ∈ X ; || f ||� 1} is bounded;

(iii) the set {||A f || : f ∈ X ; || f ||= 1} is bounded.
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Moreover, if any one of the statements (i), (ii) or (iii) holds, then the Lebesgue constant

||A || satisfies the formulations

||A ||= sup{||A f || : f ∈ X ; || f ||� 1}; (5.2.9)

||A ||= sup{||A f || : f ∈ X ; || f ||= 1}. (5.2.10)

Proof. First, observe that

f ∈ X , || f ||� 1, f �= 0 imply ||A f ||� ||A f ||
|| f || ,

and A 0 = 0,

⎫⎪⎬⎪⎭ (5.2.11)

from (5.1.9), since A is linear, whereas the linearity of A also gives

f ∈ X , f �= 0 imply
||A f ||
|| f || = ||A g||,

where g :=
f

|| f || , and thus ||g||= 1.

⎫⎪⎪⎬⎪⎪⎭ (5.2.12)

We shall show that (i) ⇒ (ii) ⇒ (iii) ⇒ (i), which will then imply the equivalence of the

three statements (i), (ii) and (iii). Suppose therefore that (i) holds, that is, the set (5.2.1) is

bounded. But then (5.2.11) shows that (ii) holds, and thus (i) ⇒ (ii). Next, since

{||A f || : f ∈ X ; || f ||= 1} ⊂ {||A f || : f ∈ X ; || f ||� 1}, (5.2.13)

we deduce that (ii) ⇒ (iii). If (iii) holds, we deduce from (5.2.12) that the set (5.2.1) is

bounded, that is, (i) holds, so that (iii) ⇒ (i), and thereby completing our proof of the

equivalence of (i), (ii) and (iii).

Suppose that any one of the statements (i),(ii) or (iii) holds. It follows from the equivalence

of (i), (ii) and (iii) that the definitions

k := sup
{ ||A f ||

|| f || : f ∈ X , f �= 0
}

; � := sup{||A f || : f ∈ X , || f ||� 1};

m := sup{||A f || : f ∈ X ; || f ||= 1}
yield, k, �,m ∈ R.

We shall show that k = � = m, which, together with (5.2.2), will then imply the formulas

(5.2.9) and (5.2.10).

To this end, we first note from (5.2.11) that �� k, whereas (5.2.12) shows that k � m. Since

(5.2.13) implies m � �, it follows that �� k � m � �, and thus k = �= m, as required. �
The formula (5.2.10) in Theorem 5.2.3 enables us to obtain the following boundedness

result, and explicit formulation of the Lebesgue constant, with respect to the maximum

norm on [a,b] of the Lagrange polynomial interpolation operator P I
n.
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Theorem 5.2.4. For any non-negative integer n, and a sequence {x0, . . . ,xn} of n + 1

distinct points in a given bounded interval [a,b], the Lagrange interpolation operator

P I
n : C[a,b] → πn, as defined by (5.1.2), is bounded with respect to the maximum norm

on [a,b], and has corresponding Lebesgue constant

||P I
n||∞ = max

a�x�b

n

∑
j=0

|Ln, j(x)|, (5.2.14)

with the Lagrange fundamental polynomials {Ln, j : j = 0, . . . ,n} defined as in (1.2.1).

Proof. Let f ∈C[a,b], with f �= 0, and choose x ∈ [a,b]. It follows from (5.1.3) that

|(P I
n f )(x)| �

n

∑
j=0

| f (x j)||Ln, j(x)|� || f ||∞
n

∑
j=0

|Ln, j(x)|� || f ||∞ max
a�x�b

n

∑
j=0

|Ln, j(x)|,

and thus

||P I
n f ||∞ � || f ||∞ max

a�x�b

n

∑
j=0

|Ln, j(x)|,

so that
||P I

n f ||∞
|| f ||∞ � max

a�x�b

n

∑
j=0

|Ln, j(x)|. (5.2.15)

According to (5.2.15), the set {||P I
n f ||∞/|| f ||∞ : f ∈C[a,b]; f �= 0} is bounded, that is, the

approximation operator P I
n is bounded with respect to the maximum norm on [a,b], with,

from the definition (5.2.2), corresponding Lebesgue constant satisfying

||P I
n||∞ � max

a�x�b

n

∑
j=0

|Ln, j(x)|. (5.2.16)

We shall show that also

||P I
n||∞ � max

a�x�b

n

∑
j=0

|Ln, j(x)|, (5.2.17)

which, together with (5.2.16), will then complete our proof of the formula (5.2.14).

To prove the inequality (5.2.17), we choose a fixed x ∈ [a,b], and let f denote any (for

example piecewise linear) function in C[a,b] satisfying || f ||∞ = 1, and

f (x j) =

⎧⎨⎩ 1, if Ln, j(x)� 0;

−1, if Ln, j(x)< 0,
(5.2.18)

according to which the choice of f depends on the chosen value of x.

By applying (5.2.18) and (5.1.3), and using the facts that || f ||∞ = 1 and P I
n is bounded, we

obtain
n

∑
j=0

|Ln, j(x)|=
∣∣∣∣∣ n

∑
j=0

f (x j)Ln, j(x)

∣∣∣∣∣
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� max
a�t�b

∣∣∣∣∣ n

∑
j=0

f (x j)Ln, j(t)

∣∣∣∣∣
= max

a�t�b

∣∣(P I
n f
)
(t)
∣∣

= ||P I
n f ||∞

� sup{||P I
n f ||∞ : f ∈C[a,b]; || f ||∞ = 1}= ||P I

n||∞, (5.2.19)

from the formula (5.2.10) in Theorem 5.2.3, after having recalled also from Theo-

rem 5.1.1(a) that the approximation operator P I
n is linear. Since the right hand side of

(5.2.19) is independent of x, it follows that the required inequality (5.2.17) is indeed satis-

fied. �

Example 5.2.1. In Example 5.1.1, let n= 1, [a,b] = [0,1], and {x0,x1}= {0,1}, so that, for

any f ∈ C[0,1], the graph of the interpolation polynomial P I
1 f is the straight line joining

the points (0, f (0)) and (1, f (1)). Moreover, the definition (1.2.1) yields the Lagrange

fundamental polynomials

L1,0(x) = 1− x; L1,1(x) = x. (5.2.20)

The formula (5.2.14), together with (5.2.20), gives the Lebesgue constant

||P I
1||∞ = max

0�x�1
[(1− x)+ x] = 1, (5.2.21)

which, in view of Theorem 5.1.1(b) and Theorem 5.2.1, and subject to the constraint im-

plied by exactness on π1, is an optimally small Lebesgue constant. �

Let us also consider the question of whether the approximation operator P I
1 of Exam-

ple 5.2.1 is also bounded with respect to the L2 norm on [0,1], as defined in (4.2.17). To

this end, we define the polynomial sequence {e j : j = 0,1, . . .} by

e j(x) := x j, j = 0,1, . . . . (5.2.22)

Then, since for each j = 0,1, . . ., it holds that P I
1e j ∈ π1, with (P I

1e j)(0) = e j(0) = 0, and

(P I
1e j)(1) = e j(1) = 1, we deduce that

P I
1e j = e1, j = 0,1, . . . , (5.2.23)

and thus, from (4.2.17) and (5.2.22),

||P I
1e j||2 = ||e1||2 =

√∫ 1

0
x2dx =

1√
3
, j = 0,1, . . . . (5.2.24)
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Since, moreover, (4.2.17) and (5.2.22) yield

||e j||2 =
√∫ 1

0
x2 jdx =

1√
2 j+ 1

, j = 0,1, . . . , (5.2.25)

we may deduce from (5.2.24) and (5.2.25) that

||P I
1e j||2

||e j||2 =

√
2 j+ 1

3
→ ∞, j → ∞. (5.2.26)

We see from (5.2.26) that the set{ ||P I
1 f ||2

|| f ||2 : f ∈C[0,1]; f �= 0
}

is unbounded, and it follows that the approximation operator P I
1 is unbounded with respect

to the L2 norm on [0,1].

5.3 The approximation error

For a normed linear space (X , || · ||) and an approximation set A ⊂ X , let A : X → A denote

an approximation operator. For any f ∈ X , the quantity

|| f −A f || (5.3.1)

is then called the corresponding approximation error with respect to the norm || · ||. It is

evident that A f will be considered to be a “good approximation” from A to f with respect

to the norm || · || if the corresponding approximation error (5.3.1) is appropriately “small”.

The approximation error (5.3.1) evidently depends on the choice of the norm || · ||. Our

following result establishes a fundamental inequality between the two norms we have thus

far established for the linear space C[a,b].

Theorem 5.3.1. For a bounded interval [a,b] and a weight function w on [a,b] satisfying

the conditons (4.2.8) and (4.2.9), let the norms || · ||∞ and || · ||2,w be as defined in, respec-

tively, (4.1.7) and (4.2.16). Then

|| f ||2,w �

√∫ b

a
w(x)dx || f ||∞, f ∈C[a,b]. (5.3.2)

Proof. Let f ∈C[a,b]. By using (4.2.16), (4.2.8) and (4.2.9), we obtain

(|| f ||2,w)2 =

∫ b

a
w(x)[ f (x)]2dx � (|| f ||∞)2

∫ b

a
w(x)dx,

which then implies (5.3.2). �
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As an immediate consequence of (5.3.2) in Theorem 5.3.1, we observe that, for any approx-

imation operator A : C[a,b]→ A, with A ⊂C[a,b] denoting an arbitrary approximation set,

the corresponding approximation error satisfies

|| f −A f ||2,w �

√∫ b

a
w(x)dx || f −A f ||∞, f ∈C[a,b], (5.3.3)

and thus, for the special case where the weight function w is given by (4.2.11),

|| f −A f ||2 �
√

b− a || f −A f ||∞. (5.3.4)

The inequality (5.3.4) may, for example, be applied to deduce from Theorem 3.3.3, together

with (5.1.5), that, for any f ∈C[a,b],

|| f −PB
n f ||2 �

√
b− a || f −PB

n f ||∞ → 0, n → ∞, (5.3.5)

that is, by using also (4.2.17),√∫ b

a
[ f (x)− (PB

n f )(x)]2dx → 0, n → ∞. (5.3.6)

In general, we deduce from (5.3.3) that, provided the value of

√∫ b

a
w(x)dx is not “large”

in some sense, then the approximation error || f −A f ||2,w has at least the same order of

“smallness” as the approximation error || f −A f ||∞.

The converse does not hold, in the sense that there does not exist a positive constant K such

that

|| f ||∞ � K|| f ||2,w, f ∈C[a,b],

as is evident by considering the polynomial sequence {e j : j = 0,1, . . .} defined by (5.2.22),

for which we calculate as in (5.2.25) that, for [a,b] = [0,1],
||e j||∞
||e j||2 =

1

(2 j+ 1)−
1
2
=
√

2 j+ 1 → ∞, j → ∞.

For a certain class of approximation operators, the size of the corresponding approximation

error can be bounded in terms of the best approximation error, as follows.

Theorem 5.3.2 (Lebesgue inequality). For a normed linear space (X , || · ||), let A ⊂ X de-

note an approximation set such that A is a subspace of X, and such that there exists a best

approximation from A to each f ∈ X. Furthermore, suppose that A : X → A is an approx-

imation operator which is linear and bounded, and such that A is exact on A. Then the

corresponding approximation error satisfies

|| f −A f ||� (1+ ||A ||)min
g∈A

|| f − g||, f ∈ X , (5.3.7)

with ||A || denoting the corresponding Lebesgue constant, as defined by (5.2.2).
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Proof. Let f ∈ X , and suppose f ∗ is a best approximation from A to f , that is

|| f − f ∗||= min
g∈A

|| f − g||. (5.3.8)

Observe that, since f ∗ ∈ A, and since A is exact on A, we have

A f ∗ = f ∗. (5.3.9)

By using the triangle inequality (4.1.4), as well as (5.3.9) and the linearity of A , and finally

the inequality (5.2.3), we deduce that

|| f −A f ||� || f −A f ∗||+ ||A f ∗ −A f ||= || f − f ∗||+ ||A ( f ∗ − f )||

� || f − f ∗||+ ||A || || f ∗ − f ||

= (1+ ||A ||)|| f − f ∗||,

which, together with (5.3.8), then yields (5.3.7). �
Since the approximation operator A in Theorem 5.3.2 is exact on a subspace A of X , with

A �= {0}, we deduce from (5.2.5) in Theorem 5.2.1 that the constant (1+ ||A ||) appearing

in the Lebesgue inequality (5.3.7) satisfies

1+ ||A ||� 2. (5.3.10)

By combining Theorem 5.3.2, Theorem 4.1.2, Theorem 5.1.1(a) and (b), and Theo-

rem 5.2.4, we deduce the following upper bound for the approximation error in polynomial

interpolation.

Theorem 5.3.3. For any non-negative integer n, and a sequence {x0, . . . ,xn} of n+ 1 dis-

tinct points in a bounded interval [a,b], the approximation error corresponding to the La-

grange polynomial interpolation operator P I
n : C[a,b]→ πn, as defined by (5.1.2), satisfies

the Lebesgue inequality

|| f −P I
n f ||∞ �

(
1+ max

a�x�b

n

∑
j=0

|Ln, j(x)|
)

min
P∈πn

|| f −P||∞, f ∈C[a,b], (5.3.11)

where the Lagrange polynomials {Ln, j : j = 0, . . . ,n} are given by (1.2.1).

Example 5.3.1. The approximation error corresponding to the Lagrange polynomial inter-

polation operator P I
1 : C[0,1]→ π1 of Example 5.2.1 satisfies, from (5.2.21) and (5.3.11),

the Lebesgue inequality

|| f −P I
1 f ||∞ � 2 min

P∈π1
|| f −P||∞, f ∈C[0,1]. (5.3.12)
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It follows from (5.3.12) that, in the || · ||∞ norm, and for any f ∈C[0,1], the approximation

error || f −P I
1 f ||∞ is at most twice the (minimum) approximation error corresponding to a

best approximation in the || · ||∞ norm from π1 to f . �

Example 5.3.2. In Theorem 5.3.3, let n = 2, {x0,x1,x2}= {−1,1,2}, and [a,b] = [−1,2].

Then (1.2.1) gives

L2,0(x) =
(x− 1)(x− 2)

(−1− 1)(−1− 2)
=

1
6
(x2 − 3x+ 2) =

1
6

x2 − 1
2

x+
1
3

;

L2,1(x) =
(x− (−1))(x− 2)
(1− (−1))(1− 2)

=−1
2
(x2 − x− 2) =−1

2
x2 +

1
2

x+ 1;

L2,2(x) =
(x− (−1))(x− 1)
(2− (−1))(2− 1)

=
1
3
(x2 − 1) =

1
3

x2 − 1
3
,

and thus

2

∑
j=0

|L2, j(x)|=
⎧⎨⎩L2,0(x)+L2,1(x)−L2,2(x) = u(x), x ∈ [−1,1];

−L2,0(x)+L2,1(x)+L2,2(x) = v(x), x ∈ [1,2],
(5.3.13)

where

u(x) :=−2
3

x2 +
5
3

; v(x) :=−1
3

x2 + x+
1
3
. (5.3.14)

But (5.3.14) implies

max
−1�x�1

u(x) = max{u(−1),u(0),u(1)}= max{1, 5
3 ,1}= 5

3 ;

max
1�x�2

v(x) = max{v(1),v( 3
2),v(2)}= max{1, 13

12 ,1}= 13
12 ,

and thus, from (5.2.14) and (5.3.13), the corresponding Lagrange interpolation operator

P I
2 : C[−1,2]→ π2 has Lebesgue constant given by

||P I
2||∞ = max

−1�x�2

2

∑
j=0

|L2, j(x)|= max
{

5
3
,

13
12

}
=

5
3
. (5.3.15)

By using (5.3.15), it follows from (5.3.11) in Theorem 5.3.3 that the corresponding approx-

imation error satisfies the Lebesgue inequality

|| f −P I
2 f ||∞ � 8

3
min
P∈π2

|| f −P||∞, f ∈C[−1,2]. (5.3.16)

�
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5.4 Exercises

Exercise 5.1 For a bounded interval [a,b] ⊂ R, and any non-negative integer n, let

{x0, . . . ,xn} be a sequence of n+1 distinct points in [a,b], and denote by r = {r0, . . . ,rn} a

sequence of non-negative integers. Also, let the integers ν and k be defined by, respectively,

(1.4.3) and

k := max{r0, . . . ,rn}.
Prove that the Hermite interpolation operator P I

n,r : Ck[a,b]→ πν , as defined by

P I
n,r f := PI

n,r, f ∈Ck[a,b],

with PI
n,r denoting the Hermite interpolation polynomial of Theorem 1.4.2, is linear.

[Hint: Use Theorem 1.4.1 to derive a Hermite interpolation formula analogous to (1.1.16)

in Theorem 1.1.2.]

Exercise 5.2 As a continuation of Exercise 5.1, prove that the Hermite interpolation oper-

ator P I
n,r is exact on πν .

Exercise 5.3 Calculate, for n = 1 and n = 2, the Lebesgue constant ||P I
n||∞ of the La-

grange interpolation operator P I
n defined by (5.1.2), with [a,b] = [0,2], and where PI

n is the

interpolation polynomial of Exercise 2.2.

Exercise 5.4 As a continuation of Exercise 5.3, for n = 1 and n = 2, write down the cor-

responding Lebesgue inequality, and then use this inequality, together with the exact value

of ||EI
n||∞, as obtained in Exercise 2.2, to obtain a lower bound on the minimum value

min
P∈πn

max
0�x�2

| ln(x+ 2)−P(x)|.
Exercise 5.5 Repeat Exercises 5.3 and 5.4, with the interpolation sequences�n of Exercise

2.2 replaced, as in Exercise 2.6, by the Chebyshev interpolation points �C
n , as calculated

in Exercise 2.5.

Exercise 5.6 Calculate the Lebesgue constant ||P I
2||∞ with respect to the interval [0,4] and

the interpolation points {1,2,4}.

Exercise 5.7 Prove the existence of an interpolation operator

L : C[0,2]→ A := span{1,x,x3}
with the defining property

(L f )( j) = f ( j), j = 0,1,2, f ∈C[0,2].

[Hint: Argue analogously to the reasoning which led from (1.1.3) to (1.1.8), and show that

the resulting determinant is non-zero, after which a definition analogous to (5.1.2) may be

used.]
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Exercise 5.8 As a continuation of Exercise 5.7, obtain a sequence {P0,P1,P2} ⊂ A satisfy-

ing, analogously to (1.2.3) in Theorem 1.2.1(a), the condition

Pj(k) = δ j−k, j,k = 0,1,2,

and express L f , for any f ∈ C[0,2], and analogously to the Lagrange polynomial inter-

polation formula (1.2.5) in Theorem 1.2.2, in terms of the sequence {P0,P1,P2}. Then use

this formula to show that the interpolation operator L is linear, and exact on A.

Exercise 5.9 As a continuation of Exercise 5.8, argue as in the proof of Theorem 5.2.4 to

prove that, with || · ||∞ denoting the maximum norm on [0,2], the Lebesgue constant ||L ||∞
of the interpolation operator L is given explicitly by

||L ||∞ = max
0�x�2

2

∑
j=0

|Pj(x)|,

and then use this formula to calculate the value of ||L ||∞.

Exercise 5.10 As a continuation of Exercise 5.9, write down the Lebesgue inequality for

the interpolation operator L , after first having explained why, for any f ∈ C[0,2], there

exists a best approximation with respect to the maximum norm on [0,2] from A to f . Now

use the interpolation formula derived in Exercise 5.8 to calculate, for the function

f (x) = x2, x ∈ [0,2],

its corresponding interpolant L f ∈ A, and then calculate the exact value of the correspond-

ing error || f −L f ||∞. By combining this result with the Lebesgue inequality for L , derive

a lower bound on the minimum value

min
α ,β ,γ∈R

max
0�x�2

|αx3 + x2 +β x+ γ|,

and give the corresponding optimal values of α,β and γ .

[Hint: Observe that

min
α ,β ,γ∈R

max
0�x�2

|αx3 + x2 +β x+ γ|= min
α ,β ,γ∈R

max
0�x�2

|x2 − (αx3 +β x+ γ)|.]



Chapter 6

Best Uniform Polynomial Approximation

This chapter is a continuation of Chapter 4, in that the best uniform polynomial approx-

imation P∗ ∈ πn of f ∈ C[a,b], with existence of P∗ guaranteed by Theorem 4.1.2, will

be characterized in terms of the alternation properties of the error function f −P∗. As an

application, the uniqueness of P∗ ∈ πn as the only best uniform polynomial approximant of

f ∈C[a,b] is assured.

6.1 A necessary condition

According to Theorem 4.1.2, there exists, for f ∈ C[a,b] and any non-negative integer n, a

polynomial P∗ ∈ πn such that

|| f −P∗||∞ � || f −P||∞, P ∈ πn. (6.1.1)

The following necessary condition is satisfied by the error function f −P∗.

Theorem 6.1.1. For f ∈C[a,b] and any non-negative integer n, let P∗ denote a polynomial

such that the best approximation property (6.1.1) holds. Then there exist points ξ , ξ̃ ∈ [a,b],

with ξ �= ξ̃ , such that

| f (ξ )−P∗(ξ )|= | f (ξ̃ )−P∗(ξ̃ )|= || f −P∗||∞, (6.1.2)

and

f (ξ )−P∗(ξ ) =−[ f (ξ̃ )−P∗(ξ̃ )]. (6.1.3)

Proof. If f ∈ πn, then P∗ = f , and the theorem holds for arbitrary points ξ , ξ̃ ∈ [a,b], with

ξ �= ξ̃ , and where both left hand and right hand sides of (6.1.2) and (6.1.3) are equal to

zero.

99



100 Mathematics of Approximation

Suppose next f �∈ πn, so that || f −P∗||∞ > 0, and suppose that there do not exist points

ξ , ξ̃ ∈ [a,b], with ξ �= ξ̃ , such that (6.1.2) and (6.1.3) are satisfied. We shall prove the

existence of a polynomial Q ∈ πn such that

0 < || f −Q||∞ < || f −P∗||∞, (6.1.4)

which contradicts (6.1.1), and would therefore complete our proof.

Introducing the notation

m := min
a�x�b

[ f (x)−P∗(x)] ; M := max
a�x�b

[ f (x)−P∗(x)] ; d∗ := || f −P∗||∞, (6.1.5)

we see that, since f �= P∗, we have either −m < M or −m > M, since −m = M implies the

existence of points ξ , ξ̃ ∈ [a,b], with ξ �= ξ̃ , such that (6.1.2) and (6.1.3) are satisfied.

(a) Suppose first −m < M. Then M > 0, for if not, that is, M � 0, then −m < M � 0, and

thus m > 0 � M, so that m > M, which contradicts the definitions of m and M in (6.1.5). It

then follows from the definitions in (6.1.5) that d∗ = M, and thus

c :=
m+ d∗

2
=

m+M
2

> 0. (6.1.6)

With the definition

Q(x) := P∗(x)+ c, (6.1.7)

according to which Q ∈ πn, we have

f (x)−Q(x) = [ f (x)−P∗(x)]− c,

and it follows from (6.1.5) and (6.1.6) that, for any x ∈ [a,b],

m− c � f (x)−Q(x)� M− c = d∗ − c. (6.1.8)

Since also (6.1.6) gives 2c = m+ d∗, and thus m− c = −(d∗ − c), it follows from (6.1.8)

that

−(d∗ − c)� f (x)−Q(x)� d∗ − c,

that is,

| f (x)−Q(x)|� d∗ − c,

from which, together with (6.1.6) and (6.1.5), we deduce that

0 < || f −Q||∞ = d∗ − c < d∗ = || f −P∗||∞,
and thereby yielding the desired result (6.1.4).

(b) Suppose next −m > M. But then, since (6.1.1), together with the fact that

{−P : P ∈ πn}= πn,
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yields

||(− f )− (−P∗)||∞ = || f −P∗||∞ = min
P∈πn

|| f −P||∞

= min
P∈πn

||− f +P||∞ = min
P∈πn

||(− f )−P||∞,
and since

min
a�x�b

[(− f (x))− (−P∗(x))] = max
a�x�b

[ f (x)−P∗(x)] ;

max
a�x�b

[(− f (x))− (−P∗(x))] = min
a�x�b

[ f (x)−P∗(x)] ,

we may appeal to the proof in (a) to deduce the existence of a polynomial Q̃ ∈ πn such that

0 < ||(− f )− Q̃||∞ < ||(− f )− (−P∗)||∞,
according to which Q :=−Q̃ is a polynomial in πn satisfying (6.1.4), as required. �
The necessary condition in Theorem 6.1.1 enables us to obtain the constant polynomial P∗

satisfying (6.1.1) for n = 0, as follows.

Theorem 6.1.2. Let f ∈C[a,b]. Then the constant polynomial

P∗(x) = P∗
0 (x) :=

1
2

[
max

a�x�b
f (x)+ min

a�x�b
f (x)

]
, (6.1.9)

is the only polynomial in π0 such that the best approximation condition (6.1.1) is satisfied

for n = 0, with, moreover,

|| f −P∗
0 ||∞ =

1
2

[
max

a�x�b
f (x)− min

a�x�b
f (x)

]
. (6.1.10)

Proof. According to Theorem 4.1.2, there exists a constant polynomial P∗ that satisfies the

condition (6.1.1) for n = 0. Suppose P∗ is not given by (6.1.9). Then there do not exist

points ξ , ξ̃ ∈ [a,b], with ξ �= ξ̃ , such that (6.1.2) and (6.1.3) hold. It follows from Theo-

rem 6.1.1 that P∗ does not satisfy the condition (6.1.1) for n = 0, which is a contradiction.

Hence P∗ = P∗
0 , as given by (6.1.9), is the only constant polynomial satisfying (6.1.1) for

n = 0. The maximum error value (6.1.10) is then an immediate consequence of (6.1.9). �

Example 6.1.1. In Theorem 6.1.2, if we choose [a,b] = [0,1], and, for any k ∈ N,

f (x) = xk, x ∈ [0,1], (6.1.11)

then the constant polynomial P∗
0 is given by

P∗
0 (x) =

1
2
. (6.1.12)

�
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6.2 The equi-oscillation property

Observe from Theorem 6.1.1 that the error function f −P∗ in polynomial best approxi-

mation attains each of the two extreme values || f −P∗||∞ and −|| f −P∗||∞ at least once

on [a,b]. We proceed to show that, if P∗ ∈ πn is such that f −P∗ equi-oscillates at least

n+ 2 times between || f −P∗||∞ and −|| f −P∗||∞, then P∗ satisfies the best approximation

condition (6.1.1).

Theorem 6.2.1. For f ∈ C[a,b] and any non-negative integer n, suppose the polynomial

P∗ ∈ πn is such that there exists a sequence {ξ0, . . . ,ξn+1} of n+ 2 distinct points in [a,b]

satisfying the conditions

a � ξ0 < ξ1 < · · ·< ξn+1 � b; (6.2.1)

| f (ξ j)−P∗(ξ j)|= || f −P∗||∞, j = 0, . . . ,n+ 1; (6.2.2)

f (ξ j)−P∗(ξ j) =−[ f (ξ j+1)−P∗(ξ j+1)], j = 0, . . . ,n. (6.2.3)

Then P∗ satisfies the best approximation condition (6.1.1).

Proof. Suppose that f ∈ πn, and thus f −P∗ ∈ πn. If f −P∗ is not the zero polynomial,

then || f − P∗||∞ > 0, and it follows from (6.2.1), (6.2.2) and (6.2.3), together with the

intermediate value theorem, that f −P∗ has at least one zero in each of the n+ 1 distinct

intervals (ξ0,ξ1), . . . ,(ξn,ξn+1). Hence f −P∗ is a polynomial in πn with at least n+ 1

distinct real zeros, and thus f −P∗ is the zero polynomial, which is a contradiction. Hence

P∗ = f , and it follows that P∗ satisfies the condition (6.1.1).

Suppose next f �∈ πn, according to which P∗ �= f , and thus || f −P∗||∞ > 0. Using a proof

by contradiction, we next suppose that P∗ does not satisfy the condition (6.1.1), that is,

there exists a polynomial Q ∈ πn such that

0 < || f −Q||∞ < || f −P∗||∞, (6.2.4)

according to which it then also holds that P∗ �= Q. With the definition

R := P∗ −Q, (6.2.5)

it follows that R ∈ πn, and R is not the zero polynomial.

Now observe from (6.2.2) that either f (ξ0)−P∗(ξ0) = || f −P∗||∞, or f (ξ0)−P∗(ξ0) =

−|| f −P∗||∞. If the first alternative holds, it follows from the assumption (6.2.4) that

f (ξ0)−Q(ξ0)< || f −P∗||∞ = f (ξ0)−P∗(ξ0),



Best Uniform Polynomial Approximation 103

and thus

R(ξ0) = P∗(ξ0)−Q(ξ0)< 0. (6.2.6)

Next, we use (6.2.3) and (6.2.4) to deduce that

f (ξ1)−Q(ξ1)>−|| f −P∗||∞ = f (ξ1)−P∗(ξ1),

so that

R(ξ1) = P∗(ξ1)−Q(ξ1)> 0. (6.2.7)

It follows from (6.2.6), (6.2.7), together with the intermediate value theorem, that the poly-

nomial R has a zero η0 ∈ (ξ0,ξ1).

Repeated further applications of the same procedure yield the existence of zeros η j ∈
(ξ j,ξ j+1), j = 0, . . . ,n, of the polynomial R. Hence R is a polynomial in πn with at least

n+ 1 real zeros, and thus R is the zero polynomial, which is a contradiction. The case

f (ξ0)−P∗(ξ0) = −|| f −P∗||∞ similarly yields the same contradiction (see Exercise 6.2).

Hence there does not exist a polynomial Q ∈ πn such that (6.2.4) holds, from which we

then deduce that P∗ does indeed satisfy the best approximation condition (6.1.1). �
Observe that the result (2.2.23) of Theorem 2.2.2 can immediately be deduced from Theo-

rem 6.2.1, as follows. For any j ∈ N, we have

min
P∈π̃ j

max
−1�x�1

|P(x)|= min
c0,...,c j−1∈R

max
−1�x�1

∣∣∣∣∣x j +
j−1

∑
k=0

ckxk

∣∣∣∣∣
= min

c0,...,c j−1∈R
max

−1�x�1

∣∣∣∣∣x j −
j−1

∑
k=0

ckxk

∣∣∣∣∣
= min

P∈π j−1
max

−1�x�1

∣∣x j −P(x)
∣∣= max

−1�x�1

∣∣∣T̃j(x)
∣∣∣= 21− j,

as deduced from (2.2.21), (2.2.22), together with Theorem 2.2.1(a), (c), (d), and an appli-

cation of Theorem 6.2.1 with [a,b] = [−1,1], f (x) = x j and n = j− 1.

According to Theorem 6.2.1, the equi-oscillation property (6.2.1), (6.2.2), (6.2.3) is a suffi-

cient condition on a polynomial P∗ ∈ πn to satisfy the best approximation condition (6.1.1).

We proceed to prove that the same equi-oscillation property is also a necessary condition,

as follows.

Theorem 6.2.2. For f ∈ C[a,b] and any non-negative integer n, let P∗ be a best approx-

imation from πn to f with respect to the maximum norm on [a,b] as in Theorem 4.1.2.

Then there exists a sequence {ξ0, . . . ,ξn+1} of n+ 2 distinct points in [a,b] such that the

conditions (6.2.1), (6.2.2), (6.2.3) are satisfied.
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Proof. If f ∈ πn, then P∗ = f , and it follows that (6.2.2) and (6.2.3) are satisfied, with both

left hand and right hand sides equal to zero, for any choice of a sequence {ξ0, . . . ,ξn+1} in

[a,b] satisfying (6.2.1).

Next, for f �∈ πn, we denote by k the largest positive integer for which there exists a point

sequence {ξ0, . . . ,ξk} in [a,b] such that the conditions

a � ξ0 < ξ1 < · · ·< ξk � b; (6.2.8)

| f (ξ j)−P∗(ξ j)|= || f −P∗||∞, j = 0, . . . ,k; (6.2.9)

f (ξ j)−P∗(ξ j) =−[ f (ξ j+1)−P∗(ξ j+1)], j = 0, . . . ,k− 1, (6.2.10)

hold. Observe in particular from Theorem 6.1.1 that k � 1. Note also that if such a largest

integer k does not exist, our result immediately follows. We shall prove that the assumption

1 � k � n (6.2.11)

yields the existence of a polynomial Q ∈ πn such that

0 < || f −Q||∞ < || f −P∗||∞, (6.2.12)

which contradicts the best approximation property (6.1.1) of P∗, and from which it will

then follow that k � n+ 1, and thereby completing our proof.

Suppose therefore that the integer k satisfies the inequalities (6.2.11). With the notation

E∗ := f −P∗; d∗ := ||E∗||∞, (6.2.13)

it follows from f �∈ πn that d∗ > 0. Since E∗ ∈ C[a,b], we know that E∗ is uniformly

continuous on [a,b], and thus there exists a positive constant δ such that

x,y ∈ [a,b], with |x− y|< δ ⇒ |E∗(x)−E∗(y)|< d∗

2
. (6.2.14)

Let μ be any positive integer such that

μ >
b− a

δ
, (6.2.15)

and define

t j := a+ j
(

b− a
μ

)
, j = 0, . . . ,μ , (6.2.16)

according to which

t j+1 − t j =
b− a

μ
< δ , j = 0, . . . ,μ − 1. (6.2.17)

Observe from (6.2.14) and (6.2.17) that

x,y ∈ [t j, t j+1]⇒ |E∗(x)−E∗(y)|< d∗

2
, j = 0, . . . ,μ − 1. (6.2.18)
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Next, we define the interval sets

M := {[t j, t j+1] : j = 0, . . . ,μ − 1}; (6.2.19)

M+ := {[t j, t j+1] ∈ M : there exists a point t ∈ [t j, t j+1] such that E∗(t) = d∗}; (6.2.20)

M− := {[t j, t j+1]∈ M : there exists a point τ ∈ [t j, t j+1] such that E∗(τ) =−d∗}. (6.2.21)

It then follows from (6.2.18), (6.2.20) and (6.2.21) that

I ∈ M+ ⇒ E∗(x)>
d∗

2
> 0, x ∈ I;

I ∈ M− ⇒ E∗(x)<−d∗

2
< 0, x ∈ I,

⎫⎪⎬⎪⎭ (6.2.22)

and thus

M+∩M− = /0. (6.2.23)

Also, we deduce from (6.2.22), together with E∗ ∈C[a,b], that

I ∈ M+, Ĩ ∈ M− ⇒ I∩ Ĩ = /0. (6.2.24)

Consider now the interval sequence

{I1, . . . , IN} := M+∪M−, (6.2.25)

where, for each j ∈ {1, . . . ,N − 1}, the interval I j+1 is situated, along [a,b], to the right of

the interval I j. Suppose I1 ∈ M+. It then follows from the definition of the integer k, along

with the definitions (6.2.19), (6.2.20) and (6.2.21), that the interval sequence {I1, . . . , IN}
may be partitioned into the k+ 1 subsequences

{I1, . . . , I j0} ⊂ M+;

{I j0+1, . . . , I j1} ⊂ M−;
...

...

{I jk−1+1, . . . , I jk} ⊂ M(−)k
,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(6.2.26)

with jk = N, and where

(−)k :=

⎧⎨⎩+ , if k is even;

− , if k is odd.

By using also (6.2.24), we deduce that

I j� ∩ I j�+1 = /0, �= 0, . . . ,k− 1,
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and hence there exists a point sequence {x� : � = 0, . . . ,k − 1} such that, for each � ∈
{0, . . . ,k− 1},

x� > x, x ∈ I j� ; x� < x, x ∈ I j�+1. (6.2.27)

For the polynomial

P(x) :=
k−1

∏
�=0

(x�− x), (6.2.28)

it then follows from the assumption (6.2.11) that P ∈ πk ⊂ πn. Moreover, we deduce from

(6.2.28), (6.2.27) and (6.2.26), together with the assumption I1 ∈ M+, that

I ∈ M+ ⇒ P(x)> 0, x ∈ I;

I ∈ M− ⇒ P(x)< 0, x ∈ I,

⎫⎬⎭ (6.2.29)

and thus also

P(x) �= 0, x ∈ I j, j = 1, . . . ,N. (6.2.30)

Next, with the interval set M given as in (6.2.19), we define the interval set

S := M \
N⋃

j=1

I j. (6.2.31)

Then S is the union of a finite number of (closed) intervals, so that we may define

d̃ := max
x∈S

|E∗(x)|. (6.2.32)

It then follows from (6.2.32), (6.2.31), (6.2.25), (6.2.19), (6.2.20), (6.2.21) and (6.2.13) that

d̃ < d∗, according to which we may define the constant λ to be any real number satisfying

0 < λ <
min{d∗ − d̃, d∗

2 }
||P||∞ . (6.2.33)

Let

Q := P∗+λ P, (6.2.34)

so that P∗,P ∈ πn implies Q ∈ πn. We proceed to show that Q satisfies the condition

(6.2.12), which will then complete our proof for the case I1 ∈ M+.

To this end, we first observe from (6.2.34), (6.2.13), (6.2.32) and (6.2.33) that, for any

x ∈ S,

| f (x)−Q(x)|= |E∗(x)−λ P(x)|� |E∗(x)|+λ |P(x)|< d̃ +
d∗ − d̃
||P||∞ ||P||∞ = d∗,

and thus

| f (x)−Q(x)|< d∗, x ∈ S. (6.2.35)
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Next, since (6.2.33) yields

|λ P(x)|< d∗/2
||P||∞ ||P||∞ =

d∗

2
, x ∈ [a,b],

it follows from (6.2.25), (6.2.20), (6.2.21) and (6.2.22) that, with the definition

J :=
N⋃

j=1

I j, (6.2.36)

we have

|E∗(x)|> d∗

2
> |λ P(x)|, x ∈ J. (6.2.37)

Next, we note from (6.2.22), (6.2.29), (6.2.36) and (6.2.25), together with λ > 0, that E∗(x)
and λ P(x) have the same sign for x ∈ J, according to which, by using also (6.2.33), (6.2.13)

and (6.2.37), we obtain, for any x ∈ J,

| f (x)−Q(x)|= |E∗(x)−λ P(x)|= |E∗(x)|− |λ P(x)|� d∗ −λ |P(x)|. (6.2.38)

Finally, since the definition (6.2.36) implies that J is a closed subset of [a,b], we use

(6.2.30) and (6.2.36) to obtain

min
x∈J

|P(x)|> 0. (6.2.39)

Since also λ > 0, we deduce from (6.2.38) and (6.2.39) that

| f (x)−Q(x)|< d∗, x ∈ J. (6.2.40)

Since (6.2.31), (6.2.19), (6.2.16) and (6.2.36) imply that S ∪ J = [a,b], it follows from

(6.2.35) and (6.2.40) that

| f (x)−Q(x)|< d∗, x ∈ [a,b], (6.2.41)

which, together with (6.2.13), yields the desired result (6.2.12).

The proof for the case I1 ∈ M− is similar (see Exercise 6.3). �
Together, Theorems 6.2.1 and 6.2.2 imply the following full characterisation of polynomial

best approximation with respect to the maximum norm on [a,b].

Theorem 6.2.3. For f ∈ C[a,b] and any non-negative integer n, a polynomial P∗ ∈ πn

satisfies the best approximation condition (6.1.1) if and only if there exists a sequence

{ξ0, . . . ,ξn+1} of n+2 distinct points in [a,b] such that the equi-oscillation property (6.2.1),

(6.2.2), (6.2.3) is satisfied.
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6.3 Uniqueness

The necessary condition in Theorem 6.2.2 enables us to establish, analogously to Theo-

rem 4.2.6 for the case of best weighted L2 polynomial approximation, the following im-

proved formulation, which includes uniqueness, of Theorem 4.1.2.

Theorem 6.3.1. Let f ∈ C[a,b]. Then, for each non-negative integer n, there exists pre-

cisely one polynomial P∗
n ∈ πn such that

|| f −P∗
n ||∞ � || f −P||∞, P ∈ πn. (6.3.1)

Proof. According to Theorem 4.1.2, there exists a polynomial P∗ ∈ πn such that the best

approximation property (6.1.1) is satisfied.

To prove the uniqueness in πn of P∗, suppose Q∗ ∈ πn is such that

|| f −Q∗||∞ = || f −P∗||∞ = min
P∈πn

|| f −P||∞ =: d∗. (6.3.2)

By applying Theorem 4.1.3, we deduce from (6.3.2) that

|| f − ( 1
2 P∗+ 1

2 Q∗)||∞ = d∗, (6.3.3)

and thus, from Theorem 6.2.2, there exists a sequence {ξ0, . . . ,ξn+1} of n+2 distinct points

in [a,b] such that

a � ξ0 < ξ1 < · · ·< ξn+1 � b; (6.3.4)

| f (ξ j)− [ 1
2P∗(ξ j)+

1
2 Q∗(ξ j)]|= d∗, j = 0, . . . ,n+ 1; (6.3.5)

f (ξ j)− [ 1
2P∗(ξ j)+

1
2 Q∗(ξ j)] =−{ f (ξ j+1)−

[ 1
2 P∗(ξ j+1)+

1
2 Q∗(ξ j+1)

]}
, j = 0, . . . ,n.

(6.3.6)

Consider first the case where (6.3.5) gives

f (ξ0)−
[1

2 P∗(ξ0)+
1
2 Q∗(ξ0)

]
= d∗, (6.3.7)

or equivalently,

1
2 [ f (ξ0)−P∗(ξ0)]+

1
2 [ f (ξ0)−Q∗(ξ0)] = d∗. (6.3.8)

It follows from (6.3.2) and (6.3.8) that
d∗

2
� 1

2
[ f (ξ0)−P∗(ξ0)] = d∗ − 1

2
[ f (ξ0)−Q∗(ξ0)]� d∗ − d∗

2
=

d∗

2
,

and thus
d∗

2
=

1
2
[ f (ξ0)−P∗(ξ0)] = d∗ − 1

2
[ f (ξ0)−Q∗(ξ0)],
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from which it then follows that

d∗ = f (ξ0)−P∗(ξ0) = f (ξ0)−Q∗(ξ0),

and thereby yielding

P∗(ξ0) = Q∗(ξ0). (6.3.9)

Next, we use (6.3.7) and (6.3.6) to obtain

f (ξ1)− [ 1
2 P∗(ξ1)+

1
2 Q∗(ξ1)] =−d∗,

or equivalently,

1
2 [ f (ξ1)−P∗(ξ1)]+

1
2 [ f (ξ1)−Q∗(ξ1)] =−d∗. (6.3.10)

It follows from (6.3.2) and (6.3.10) that

−d∗

2
� 1

2
[ f (ξ1)−P∗(ξ1)] =−d∗ − 1

2
[ f (ξ1)−Q∗(ξ1)]�−d∗+

d∗

2
=−d∗

2
,

and thus

−d∗

2
=

1
2
[ f (ξ1)−P∗(ξ1)] =−d∗ − 1

2
[ f (ξ1)−Q∗(ξ1)],

from which it follows that

−d∗ = f (ξ1)−P∗(ξ1) = f (ξ1)−Q∗(ξ1),

which gives

P∗(ξ1) = Q∗(ξ1). (6.3.11)

Repeated applications of the procedure which led to (6.3.9) and (6.3.11) eventually yield

P∗(ξ j) = Q∗(ξ j), j = 0, . . . ,n+ 1. (6.3.12)

For the case where (6.3.5) gives

f (ξ0)− [ 1
2 P∗(ξ0)+

1
2 Q∗(ξ0)] =−d∗, (6.3.13)

it is similarly shown that (6.3.12) is also satisfied (see Exercise 6.4).

Hence, if we define the polynomial R∗ := P∗−Q∗, so that R∗ ∈ πn, it follows from (6.3.12)

and (6.3.4) that R∗ has at least n+2 distinct real zeros, and thus R∗ is the zero polynomial,

that is, Q∗ = P∗, and thereby completing our proof. �
The polynomial P∗

n of Theorem 6.3.1 is called the best uniform (or Chebyshev, or minimax)

approximation on [a,b] from πn to f .
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6.4 The approximation operator

Based on Theorem 6.3.1, we may now define, for any bounded interval [a,b] and non-

negative integer n, the best uniform polynomial approximation operator P∗
n : C[a,b]→ πn

by

P∗
n f = P∗

n , f ∈C[a,b]. (6.4.1)

The following example shows that P∗
n is not linear.

Example 6.4.1. Let [a,b] = [−1,1], and

f (x) = x2 ; g(x) = x,

so that, from (6.4.1), together with the formula (6.1.9) in Theorem 6.1.2, the approximation

operator P∗
0 : C[−1,1]→ π0 satisfies

(P∗
0 f )(x) =

1
2

; (P∗
0 g)(x) = 0,

whereas, since also

max
−1�x�1

(x2 + x) = 2 ; min
−1�x�1

(x2 + x) = (− 1
2)

2 +(− 1
2) =− 1

4 ,

we have

P∗
0 ( f + g) =

1
2

(
2− 1

4

)
=

7
8
.

Hence

P∗
0 f +P∗

0 g =
1
2
+ 0 =

1
2
�= 7

8
= P∗

0 ( f + g),

according to which the best approximation operator P∗
0 is not linear. �

The approximation operator P∗
n possesses the following properties.

Theorem 6.4.1. For any bounded interval [a,b] and non-negative integer n, the best uni-

form polynomial approximation P∗
n : C[a,b]→ πn, as defined by (6.4.1), satisfies:

(a) P∗
n is exact on πn.

(b) The uniform convergence property

|| f −P∗
n f ||∞ → 0, n → ∞, f ∈C[a,b], (6.4.2)

holds.
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(c) If f ∈Ck[a,b] for an integer k ∈ N, the convergence rate result

|| f −P∗
n f ||∞ � (b− a)k (n− k)!

n!
|| f (k)||∞, n = k,k+ 1, . . . , (6.4.3)

holds, with, in particular,

|| f −P∗
n f ||∞ � b− a

n
|| f ′||∞, n = 1,2, . . . , f ∈C1[a,b]. (6.4.4)

Proof. (a) If f ∈ πn, then, since

|| f − f ||∞ = 0 � || f −P||∞, P ∈ πn,

it follows from (6.4.1) and (6.1.1) that P∗
n f = f .

(b) From (6.4.1) and (6.1.1), we deduce that

|| f −P∗
n f ||∞ � || f −PB

n f ||∞, n = 1,2, . . . , f ∈C[a,b], (6.4.5)

with PB
n : C[a,b]→ πn denoting the Bernstein polynomial approximation operator, as de-

fined by (5.1.5). The uniform convergence result (6.4.2) is then an immediate consequence

of (6.4.5) and Theorem 3.3.3.

(c) If f ∈ C1[a,b], it follows from (6.1.1), (6.4.1), (6.4.5) and (5.1.4), together with the

inequality (3.5.4) in Theorem 3.5.1, that

min
P∈πn

|| f −P||∞ = || f −P∗
n f ||∞ � b− a

n
|| f ′||∞, n = 1,2, . . . , (6.4.6)

which shows that (6.4.3) holds for k = 1, and is indeed precisely (6.4.4).

Proceeding inductively, suppose next that (6.4.3) is satisfied for a fixed integer k ∈ N, and

let f ∈Ck+1[a,b]. Then f ′ ∈Ck[a,b], and it follows from the inductive hypothesis (6.4.3),

with n replaced by n− 1, that

|| f ′ −P∗
n−1( f ′)||∞ � (b− a)k (n− 1− k)!

(n− 1)!
|| f (k+1)||∞, n = k+ 1,k+ 2, . . . . (6.4.7)

Now define

Q(x) :=
∫ x

a
(P∗

n−1( f ′))(t)dt, (6.4.8)

according to which, since P∗
n−1( f ′)∈ πn−1, we have Q∈ πn, and thus, by using also (6.1.1)

and (6.4.1),

|| f −P∗
n f ||∞ = min

P∈πn
|| f −P||∞ = min

P∈πn
|| f − (P+Q)||∞ = min

P∈πn
||( f −Q)−P||∞. (6.4.9)

By applying (6.4.9), (6.4.6), (6.4.8) and (6.4.7), we deduce that, for n = k+ 1,k+ 2, . . .,

|| f −P∗
n f ||∞ � b− a

n
|| f ′ −Q′||∞ =

b− a
n

|| f ′ −P∗
n−1( f ′)||∞



112 Mathematics of Approximation

� b− a
n

[
(b− a)k (n− 1− k)!

(n− 1)!
|| f (k+1)||∞

]

= (b− a)k+1 (n− (k+ 1))!
n!

|| f (k+1)||∞,

that is, (6.4.3) is satisfied with k replaced by k+ 1, and thereby completing our inductive

proof of (6.4.3). �
As an application of the uniform convergence result (6.4.2) in Theorem 6.4.1(b), and by

using also Theorem 5.3.1, we prove next the following weighted L2 convergence property

of the best approximation operator P̃∗
n .

Theorem 6.4.2. For any bounded interval [a,b] and weight function w on [a,b] such that

(4.2.8) and (4.2.9) hold, let {P̃∗
n : n = 0,1, . . .} denote the corresponding sequence of best

weighted L2 approximation operators, as defined by (5.1.6). Then

|| f −P̃∗
n f ||2,w → 0, n → ∞, f ∈C[a,b], (6.4.10)

with the norm || · ||2,w defined by (4.2.16).

Proof. Let f ∈C[a,b]. Then, from the defining property (4.2.23) of the polynomial P̃∗
n f :=

P̃∗
n , we have, for any non-negative integer n,

|| f −P̃∗
n f ||2,w � || f −P∗

n f ||2,w, (6.4.11)

with P∗
n : C[a,b] → πn denoting the best uniform approximation operator defined by

(6.4.1), whereas also, from the inequality (5.3.2) in Theorem 5.3.1,

|| f −P∗
n f ||2,w �

√∫ b

a
w(x)dx || f −P∗

n f ||∞. (6.4.12)

It follows from (6.4.11) and (6.4.12), together with the uniform convergence result (6.4.2)

in Theorem 6.4.1(b), that

|| f −P̃∗
n f ||2,w �

√∫ b

a
w(x)dx || f −P∗

n f ||∞ → 0, n → ∞,

from which (6.4.10) then immediately follows. �
Let f ∈ C[a,b], and observe from (6.4.1) and Theorem 6.2.3 that, according to the equi-

oscillation condition (6.2.1), (6.2.2), (6.2.3), there exists, for any non-negative integer n,

a sequence of n+ 1 distinct points {xn,0, . . . ,xn,n} in [a,b], with xn, j ∈ (ξn, j,ξn, j+1), j =

0, . . . ,n+ 1, where we have replaced ξ j by ξn, j in (6.2.1), (6.2.2) and (6.2.3), such that

(P∗
n f )(xn, j) = f (xn, j), j = 0, . . . ,n. (6.4.13)
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Hence, if we denote by P I
n : C[a,b] → πn the Lagrange polynomial interpolation opera-

tor with respect to the interpolation points {xn,0, . . . ,xn,n}, it follows from (5.1.2) and the

uniqueness statement in Theorem 1.1.2 that

P I
n f = P∗

n f , n = 0,1, . . . . (6.4.14)

Hence we may apply the uniform convergence result (6.4.2) in Theorem 6.4.1(b), together

with (6.4.14), to deduce that

|| f −P I
n f ||∞ → 0, n → ∞. (6.4.15)

We may therefore conclude that, for any f ∈C[a,b], there exists a sequence

�n := {xn,0, . . . ,xn,n} ⊂ [a,b], n = 0,1, . . . , (6.4.16)

of (distinct) interpolation point sequences such that the uniform convergence condition

(6.4.15) is satisfied. On the other hand, as mentioned before in Section 3.1 of Chapter 3,

for any given sequence {�n : n = 0,1, . . .} of (distinct) interpolation point sequences as in

(6.4.16), there exists a function f ∈C[a,b] such that the divergence result (3.1.71) holds.

6.5 An application in polynomial interpolation

In this section, we show how the convergence rate result (6.4.3) of Theorem 6.4.1(c), to-

gether with the Lebesgue inequality (5.3.11) in Theorem 5.3.3, may be applied to prove

uniform convergence for polynomial interpolation with respect to the Chebyshev interpo-

lation points (2.2.31), for a class of functions f which includes the Runge example (3.1.5)

in Example 3.1.3. We shall rely on the following properties of the first derivative of a

Chebyshev polynomial.

Theorem 6.5.1. For an integer j ∈ N, let the Chebyshev polynomial Tj be defined as in

(2.2.1), and denote by {t j,k : k = 0, . . . , j − 1} the zeros, as described in (2.2.15), (2.2.16)

and (2.2.17), of Tj. Then:

(a)

T ′
j (t j,k) = (−1) j−k+1 j

sin
(

2 j−1−2k
2 j π

) , k = 0, . . . , j− 1; (6.5.1)

(b)

T ′
j (−1) = (−1) j+1 j2;

T ′
j (1) = j2;

⎫⎬⎭ (6.5.2)
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(c)

max
−1�x�1

∣∣T ′
j (x)

∣∣ = |T ′
j (−1)|= |T ′

j (1)|= j2. (6.5.3)

Proof. (a) By differentiating the formula (2.2.5), we obtain

T ′
j (x) =

j sin( j arccos x)√
1− x2

, x ∈ (−1,1). (6.5.4)

Now observe that (2.2.16) yields

sin( j arccost j,k) = sin
(
(2 j− 1− 2k)

π
2

)
= (−1) j−k+1, k = 0, . . . , j− 1, (6.5.5)

as well as √
1− (t j,k)2 = sin

(
2 j− 1− 2k

2 j
π
)
, k = 0, . . . , j− 1. (6.5.6)

The formula (6.5.1) is a consequence of (6.5.4), (6.5.5) and (6.5.6).

(b) In terms of the one-to-one mapping (2.2.11), (2.2.12) between the intervals [0,π ] and

[−1,1], the equation (6.5.4) has the equivalent formulation

T ′
j (x) =

j sin( jθ )
sinθ

, θ ∈ (0,π). (6.5.7)

Now observe that

lim
θ→0+

[
sin( jθ )

sin θ

]
= j lim

θ→0+

[
sin( jθ )

jθ
1

sinθ
θ

]
= j, (6.5.8)

and similarly, since

sin( j(π −θ )) = sin( jπ)cos( jθ )− cos( jπ)sin( jθ )

= (0)cos( jθ )− (−1) j sin( jθ ) = (−1) j+1 sin( jθ ),

we have

lim
θ→π−

[
sin( jθ )

sinθ

]
= (−1) j+1 j lim

θ→π−

[
sin( j(π −θ ))

j(π −θ )
1

sin(π−θ)
π−θ

]
= (−1) j+1 j. (6.5.9)

It follows from (6.5.7), (6.5.8) and (6.5.9), together with (2.2.11), (2.2.12), that (6.5.2) is

satisfied.

(c) Since, for any integer m ∈ N, and θ ∈ (0,π), we have∣∣∣∣ sin((m+ 1)θ )
sinθ

∣∣∣∣= ∣∣∣∣ sin(mθ )
sinθ

cosθ + cos(mθ )
∣∣∣∣� ∣∣∣∣ sin(mθ )

sinθ

∣∣∣∣+ 1,

it follows inductively (see Exercise 6.13) that∣∣∣∣ sin(mθ )
sinθ

∣∣∣∣� m, θ ∈ (0,π), m ∈ N. (6.5.10)
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We deduce from (6.5.7) and (6.5.10), together with (2.2.11), (2.2.12), that

|T ′
j (x)|� j2, x ∈ (−1,1). (6.5.11)

The result (6.5.3) is an immediate consequence of (6.5.11) and (6.5.2). �
By using Theorem 6.5.1, we proceed to establish the following bound on the Lebesgue con-

stant of the Lagrange polynomial interpolation operator for the case when the Chebyshev

interpolation points are used.

Theorem 6.5.2. For a bounded interval [a,b] and any integer n ∈ N, let P I
n : C[a,b]→ πn

denote the Lagrange polynomial interpolation operator defined by (5.1.2), and where the

interpolation points are chosen as the Chebyshev interpolation points, that is,

x j = xC
n, j, j = 0, . . . ,n, (6.5.12)

as defined by (2.2.31). Then the corresponding Lebesgue constant satisfies the bound

||P I
n||∞ � 2(n+ 1)2. (6.5.13)

Proof. By using the formula (5.2.14) of Theorem 5.2.4, as well as (1.2.1), (6.5.12), and

the one-to-one mapping (2.2.29), (2.2.30) between the intervals [−1,1] and [a,b], together

with the definitions (2.2.31) and (2.2.16), we deduce that

||P I
n||∞ = max

a�x�b

n

∑
j=0

∣∣∣∣∣ n

∏
j �=k=0

x− xC
n,k

xC
n, j − xC

n,k

∣∣∣∣∣
= max

−1�t�1

[
n

∑
j=0

Fn, j(t)

]
�

n

∑
j=0

[
max

−1�t�1
Fn, j(t)

]
, (6.5.14)

where

Fn, j(t) :=

∣∣∣∣∣ n

∏
j �=k=0

t − tn+1,k

tn+1, j − tn+1,k

∣∣∣∣∣ , (6.5.15)

and with the sequence {tn+1,k : k = 0, . . . ,n} defined as in (2.2.16).

Let j ∈ {0, . . . ,n} be fixed. It follows from (6.5.15) that

Fn, j(tn+1,k) = δ j−k, k = 0, . . . ,n. (6.5.16)

Next, by noting from (2.2.9) in Theorem 2.2.1(f), together with (2.2.16), that

Tn+1(t) = 2n
n

∏
k=0

(t − tn+1,k), (6.5.17)

and thus

T ′
n+1(tn+1, j) = 2n

n

∏
j �=k=0

(tn+1, j − tn+1,k), (6.5.18)
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we deduce from (6.5.15), together with the formula (6.5.1) in Theorem 6.5.1(a), that, for

t ∈ [−1,1]\ {tn+1, j},

Fn, j(t) =
∣∣∣∣ 1
T ′

n+1(tn+1, j)

Tn+1(t)
t − tn+1, j

∣∣∣∣= sin
(

2n+1−2 j
2n+2 π

)
n+ 1

∣∣∣∣ Tn+1(t)
t − tn+1, j

∣∣∣∣
� 1

n+ 1

∣∣∣∣ Tn+1(t)
t − tn+1, j

∣∣∣∣ . (6.5.19)

Now observe that, for t ∈ [−1,1]\ {tn+1, j},

d
dt

[
Tn+1(t)

t − tn+1, j

]
=

(t − tn+1, j)T ′
n+1(t)−Tn+1(t)

(t − tn+1, j)2 ,

and thus

d
dt

[
Tn+1(t)

t − tn+1, j

]
= 0 if and only if

Tn+1(t)
t − tn+1, j

= T ′
n+1(t). (6.5.20)

Next, we use (2.2.7), (2.2.16) and (2.2.17) to obtain∣∣∣∣ Tn+1(−1)
−1− tn+1, j

∣∣∣∣= 1
|− 1− tn+1, j|

� 1
|− 1− tn+1,0| =

1
1+ tn+1,0

=
1

1+ cos
( 2n+1

2n+2 π
)

=
1− cos

( 2n+1
2n+2 π

)
sin2 ( 2n+1

2n+2 π
)

� 2
sin2 ( 2n+1

2n+2 π
) = 2

sin2( π
2(n+1) )

, (6.5.21)

and similarly, ∣∣∣∣ Tn+1(1)
1− tn+1, j

∣∣∣∣� 1
1− tn+1,n

=
1

1+ tn+1,0
� 2

sin2( π
2(n+1) )

. (6.5.22)

By applying (6.5.16), (6.5.19), (6.5.20), (6.5.21) and (6.5.22), we deduce that

max
−1�t�1

Fn, j(t)� max

⎧⎨⎩1,
1

n+ 1
max

−1�t�1
|T ′

n+1(t)|,
2

(n+ 1)sin2
(

π
2(n+1)

)
⎫⎬⎭ . (6.5.23)

Now observe from (6.5.3) in Theorem 6.5.1(c) that

1
n+ 1

max
−1�t�1

|T ′
n+1(t)|= n+ 1. (6.5.24)
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Next, we note that the definition

G(x) := sinx− 2x
π

yields

G′(x) = cosx− 2
π

; G′′(x) =−sinx,

and thus

G(0) = G(π
2 ) = 0; G′(0) = 1− 2

π > 0;

G′′(x)< 0, x ∈ (0, π
2 ],

⎫⎬⎭
according to which we may deduce that

G(x)� 0, x ∈ [0, π
2 ],

that is,

sin x � 2x
π
, x ∈ [0, π

2 ]. (6.5.25)

Hence we may apply (6.5.25) to obtain

sin2
(

π
2(n+ 1)

)
�
[

2
π

π
2(n+ 1)

]2

=
1

(n+ 1)2 ,

and thus
2

(n+ 1)sin2
(

π
2(n+1)

) � 2(n+ 1). (6.5.26)

It follows from (6.5.23), (6.5.24) and (6.5.26) that

max
−1�t�1

Fn, j(t)� 2(n+ 1),

which, together with (6.5.14), yields the desired upper bound in (6.5.13). �
Finally, we combine the results of Theorem 6.5.2 and Theorem 6.4.1(c) to deduce the

following result by means of the Lebesgue inequality (5.3.11) in Theorem 5.3.3.

Theorem 6.5.3. Suppose f ∈Ck[a,b] for an integer k ∈N, and denote by P I
n the Lagrange

polynomial interpolation operator of Theorem 6.5.2. Then:

(a)

|| f −P I
n f ||∞ � (b− a)k [1+ 2(n+ 1)2](n− k)!

n!
|| f (k)||∞, n = k,k+ 1, . . . ; (6.5.27)

(b) if k � 3, then

|| f −P I
n f ||∞ → 0, n → ∞, (6.5.28)

with, in particular,

|| f −P I
n f ||∞ � (b− a)3 11/2

n− 2
|| f ′′′||∞, n = 3,4, . . . . (6.5.29)
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Proof. (a) According to Theorem 5.3.3, the Lebesgue inequality (5.3.7) in Theorem 5.3.2

may be applied to the Lagrange polynomial interpolation operator P I
n, as defined by

(5.1.2), and thus, by using also (6.5.13) in Theorem 6.5.2, as well as (6.4.3) in Theo-

rem 6.4.1(c), we obtain (6.5.27).

(b) If f ∈Ck[a,b] for an integer k � 3, then f ∈C3[a,b], and it follows from (6.5.27) that

|| f −P I
n f ||∞ � (b− a)3 1+ 2(n+ 1)2

n(n− 1)
1

n− 2
|| f ′′′||∞, n = 3,4, . . . . (6.5.30)

The upper bound in (6.5.29) then follows by applying the inequality

1+ 2(n+ 1)2 � 11
2 n(n− 1), n = 3,4, . . . , (6.5.31)

(see Exercise 6.14) in (6.5.30). Finally observe that (6.5.29) implies the uniform conver-

gence result (6.5.28).

�
Observe that the Runge example (3.1.5) in Example 3.1.3 satisfies f ∈ Ck[−5,5] for each

integer k � 3, so that (6.5.28) in Theorem 6.5.3(b) verifies our statement in Example 3.1.3

that

max
−5�x�5

∣∣∣∣ 1
1+ x2 −PI

n(x)
∣∣∣∣→ 0, n → ∞,

if the Chebyshev interpolation points (3.1.69) are chosen.

6.6 Explicit computation for specific cases

Finally in this chapter, we provide examples of functions f ∈ C[a,b] for which the corre-

sponding best uniform approximation P∗
n f = P∗

n can be computed explicitly.

First, for any non-negative integer n, let f ∈ πn+1, that is,

f (x) =
n+1

∑
j=0

c jx j (6.6.1)

for some coefficient sequence {c0, . . . ,cn+1}. It follows from (6.6.1) that the error function

E∗(x) := f (x)−P∗
n (x), (6.6.2)

with P∗
n denoting the best uniform approximation on [a,b] from πn to f , satisfies

E∗(x) = cn+1xn+1 +Q∗(x), (6.6.3)

for some polynomial Q∗ ∈ πn.
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Now observe from Theorem 2.2.1(a), (c) and (d), together with the one-to-one mapping

(2.2.29), (2.2.30) between the intervals [−1,1] and [a,b], that the polynomial

P(x) := cn+1

(
b− a

2

)n+1 1
2n Tn+1

(
2

b− a
x− a+ b

b− a

)
(6.6.4)

satisfies

P(x) = cn+1xn+1 + Q̃∗(x), (6.6.5)

for some polynomial Q̃∗ ∈ πn, and

||P||∞ = |cn+1|
(

b− a
2

)n+1 1
2n , (6.6.6)

as well as, for the points

ξ j :=
(

b− a
2

)n+1

cos
(

n+ 1− j
n+ 1

π
)
− a+ b

2
, j = 0, . . . ,n+ 1, (6.6.7)

a = ξ0 < ξ1 < · · ·< ξn+1 = b, (6.6.8)

the conditions

|P(ξ j)|= ||P||∞, j = 0, . . . ,n+ 1, (6.6.9)

and

P(ξ j) =−P(ξ j+1), j = 0, . . . ,n. (6.6.10)

By applying the characterisation result of Theorem 6.2.3, as well as the uniqueness result

of Theorem 6.3.1, we now deduce from (6.6.2) - (6.6.10) that we must have

E∗(x) = f (x)−P∗
n (x) = P(x), (6.6.11)

with the polynomial P defined by (6.6.4), from which we can solve for P∗
n (x) to obtain the

following results from (6.6.4) and (6.6.6).

Theorem 6.6.1. For a non-negative integer n, let f ∈ πn+1, with leading coefficient cn+1 in

the formulation (6.6.1). Then, for any bounded interval [a,b], the best uniform approxima-

tion on [a,b] from πn to f is given by the formula

(P∗
n f )(x) = P∗

n (x) = f (x)− cn+1

(
b− a

2

)n+1 1
2n Tn+1

(
2

b− a
x− a+ b

b− a

)
, (6.6.12)

with Tn+1 denoting the Chebyshev polynomial of degree n+ 1, as defined in (2.2.1). More-

over,

|| f −P∗
n f ||∞ = |cn+1|

(
b− a

2

)n+1 1
2n . (6.6.13)
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Observe from (6.6.12) and (6.6.13) that the case cn+1 = 0 of Theorem 6.6.1, in which case

f ∈ πn, is consistent with Theorem 6.4.1(a).

Example 6.6.1. For the case [a,b] = [0,1], f (x) = x2 and n = 1, it follows from (6.6.12)

and (2.2.2) that

(P∗
1 f )(x) = x2 − 1

(1
2

)2 1
2 [2(2x− 1)2 − 1] = x− 1

8 , (6.6.14)

with, moreover, from (6.6.13),

|| f −P∗
1 f ||∞ = 1

( 1
2

)2 1
2 = 1

8 . (6.6.15)

Recall now, from (5.3.12), in Example 5.3.1, the Lebesgue inequality

|| f −P I
1 f ||∞ � 2|| f −P∗

1 f ||∞, f ∈C[0,1], (6.6.16)

with P I
1 : C[0,1] → π1 denoting the (linear) Lagrange polynomial interpolation operator

with respect to the interpolation points {x0,x1}= {0,1}.

For f (x) = x2, it follows that (P I
1 f )(x) = x, and thus

|| f −P I
1 f ||∞ = max

0�x�1
|x2 − x|=

∣∣∣( 1
2

)2 − 1
2

∣∣∣= 1
4 . (6.6.17)

It follows from (6.6.15) and (6.6.17) that the Lebesgue inequality (6.6.16) is satisfied as an

equation for the case f (x) = x2. Hence the inequality (6.6.16) is sharp, in the sense that the

constant 2 in the right hand side of (6.6.16) can not be replaced by a smaller constant. �

Example 6.6.2. Let [a,b] = [0,2],

f (x) =
3

x+ 1
, (6.6.18)

and n = 1, and set

(P∗
1 f )(x) = P∗

1 (x) =−αx+β (6.6.19)

for some positive coefficients α and β . Based on the characterisation result of Theo-

rem 6.2.3, and since (6.6.18) and (6.6.19) give
d
dx

( f (x)−P∗
1 (x)) =− 3

(x+ 1)2 +α,

according to which

d
dx

( f (x)−P∗
1 (x)) = 0 for x > 0 if and only if x =

√
3
α
− 1,

we choose

ξ0 = 0; ξ1 =

√
3
α
− 1; ξ2 = 2, (6.6.20)
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and, with the notation

h := || f −P∗
1 f ||∞, (6.6.21)

proceed to solve for α,β and h from the system

f (ξ0)−P∗
1 (ξ0) = h

f (ξ1)−P∗
1 (ξ1) = −h

f (ξ2)−P∗
1 (ξ2) = h

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (6.6.22)

which, from (6.6.18) and (6.6.19), is equivalent to the non-linear system

3−β = h

2
√

3α −α −β = −h

1+ 2α −β = h

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (6.6.23)

It follows from the first and third equations in (6.6.23) that α = 1, which, when substituted

into the second equation of (6.6.23), yields

2
√

3− 1−β =−h. (6.6.24)

It then follows from the first equation of (6.6.23), together with (6.6.24), that β = 1+
√

3

and h = 2−√
3. Hence

(P∗
1 f )(x) = P∗

1 (x) =−x+(1+
√

3),

with, moreover, from (6.6.21),

|| f −P∗
1 f ||∞ = 2−

√
3,

since we can now verify that the sequence {ξ0,ξ1,ξ2}= {0,
√

3−1,2} and the polynomial

P∗
1 f then does indeed satisfy the required equi-oscillation property (6.2.1), (6.2.2), (6.2.3).

�

Next, we consider a case where f is a continuous piecewise linear function, as follows:

Example 6.6.3. Let [a,b] = [−1,2],

f (x) = |x|, (6.6.25)

and n = 2, and set

(P∗
2 f )(x) = P∗

2 (x) = αx2 +β x+ γ, (6.6.26)
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for some coefficients α,β and γ such that α > 0,β < 1 and γ > 0. Based on the character-

isation result of Theorem 6.2.3, and since (6.6.25) and (6.6.26) give, for x > 0,

d
dx

[ f (x)−P∗
2 (x)] = 0 if and only if x =

1−β
2α

,

we choose

ξ0 =−1; ξ1 = 0; ξ2 =
1−β

2α
; ξ3 = 2, (6.6.27)

and, with the notation

h := || f −P∗
2 f ||∞, (6.6.28)

proceed to solve for α,β ,γ and h from the system

f (ξ0)−P∗
2 (ξ0) = h

f (ξ1)−P∗
2 (ξ1) = −h

f (ξ2)−P∗
2 (ξ2) = h

f (ξ3)−P∗
2 (ξ3) = −h

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
, (6.6.29)

which, from (6.6.25) and (6.6.26), is equivalent to the non-linear system

1−α +β − γ = h

−γ = −h

1−β
2α

−α
(

1−β
2α

)2

− β (1−β )
2α

− γ = h

2− 4α − 2β − γ = −h

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (6.6.30)

It follows from the second and fourth equations of (6.6.30) that β = 1− 2α , and thus also

(1−β )/(2α) = 1, which, together with the second and third equations of (6.6.30), gives

α = 2h, and thus β = 1− 4h. By substituting these values of α and β , together with

γ = h, into the first equation of (6.6.30), we obtain h = 1
4 , from which it then follows that

α = 1
2 ,β = 0 and γ = 1

4 . Hence, from (6.6.26),

(P∗
2 f )(x) = 1

2 x2 + 1
4 ,

with, moreover, from (6.6.28),

|| f −P∗
2 f ||∞ = 1

4 ,

since we can now verify that the sequence {ξ0,ξ1,ξ2,ξ3} = {−1,0,1,2} and the polyno-

mial P∗
2 f then does indeed satisfy the required equi-oscillation property (6.2.1), (6.2.2),

(6.2.3).

�
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Example 6.6.4. Let [a,b] = [−π ,π ] and f (x) = sin(4x). Since then || f ||∞ = 1, with f (x)

attaining the values 1 and −1 with alternating sign at precisely 8 successive, and strictly

increasing, points in (−π ,π), we deduce from Theorem 6.2.3 that P∗
n f is the zero polyno-

mial if and only if n ∈ {0, . . . ,6}. �

Example 6.6.5. Let [a,b] = [−1,2], f (x) = 2x3 − x and n = 2. An application of the for-

mula (6.6.12) in Theorem 6.6.1, together with (2.2.2), then yields

(P∗
2 f )(x) = P∗

2 (x) = 2x3 − x− 2( 3
2)

3 1
4

[
4
(

2x− 1
3

)3

− 3
(

2x− 1
3

)]

=
1

16
(48x2 + 14x− 23),

with, moreover, from (6.6.13),

|| f −P∗
2 f ||∞ = 2

(3
2

)3 1
4 = 27

16 . �
In general, it is not possible, for an arbitrary choice of f ∈ C[a,b], to explicitly compute

the best uniform polynomial approximation P∗
n f on [a,b] from πn to f , as in the examples

provided in this section. In such cases iterative methods like the exchange algorithm, or

Remez algorithm, the presentation of which is outside the scope of this book, can be applied

to approximate P∗
n f arbitrarily well within a finite number of iterations.

6.7 Exercises

Exercise 6.1 Investigate whether it is true or false that the polynomial

P∗(x) := (e− 1)x+
9

10
satisfies the best approximation condition

max
0�x�1

|ex −P∗(x)|� max
0�x�1

|ex −P(x)|, P ∈ π1.

[Hint: Consider first the applicability of Theorem 6.1.1.]

Exercise 6.2 In the proof of Theorem 6.2.1, show that the case

f (ξ0)−P∗(ξ0) =−|| f −P∗||∞
also yields the contradiction that R is the zero polynomial.

Exercise 6.3 In the proof of Theorem 6.2.2, show that the case I1 ∈ M− also yields the

inequality (6.2.41).

Exercise 6.4 In the proof of Theorem 6.3.1, show that the case (6.3.13) also yields the

result (6.3.12).
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Exercise 6.5 Suppose f ∈ C[−a,a], where a > 0, and, for any non-negative integer n,

denote by P∗
n the best uniform polynomial approximation on [−a,a] from πn to f . Prove

that:

(a) If f is an even function, then P∗
n is an even polynomial;

(b) If f is an odd function, then P∗
n is an odd polynomial.

[Hint: Apply the uniqueness result of Theorem 6.3.1.]

Exercise 6.6 For the function

f (x) = ln(x+ 2), x ∈ [0,2],

calculate the linear polynomial P∗
1 f , with P∗

1 : C[0,2] → π1 denoting the best uniform

linear polynomial approximation operator on the interval [0,2]. Compute also the corre-

sponding minimum value || f −P∗
1 f ||∞, and verify that

|| f −P∗
1 f ||∞ < ||EI

1||∞,
with ||EI

1||∞ evaluated as in both Exercise 2.2 and Exercise 2.6.

Exercise 6.7 Calculate the following minimum values, as well as the corresponding optimal

linear polynomials P∗
1 ∈ π1:

(a) min
P∈π1

max
0�x�1

|ex −P(x)|; (b) min
P∈π1

max
0�x�4

|√x−P(x)|.
Also, verify that the result for (a) is consistent with the conclusion in Exercise 6.1.

Exercise 6.8 Find the minimum value

min
α ,β∈R

max
0�x�1

|x3 +αx+β |,

as well as the corresponding optimal values of α and β .

Exercise 6.9 Find the best uniform polynomial approximation P∗
4 on [−1,2] from π4 to the

function

f (x) = x2(x+ 1)(2x− 1)(x− 2), x ∈ [−1,2],

as well as the corresponding minimum value.

[Hint: Consider first the applicability of Theorem 6.6.1.]

Exercise 6.10 Apply Example 6.6.1 to verify the polynomial P∗
1,2 in Exercise 4.6.

Exercise 6.11 Find the best uniform polynomial approximation P∗
2 on [−2,2] from π2 to

the function

f (x) = |x+ 1|, x ∈ [−2,2],

as well as the corresponding minimum value || f −P∗
2 ||∞, with || · ||∞ denoting the maximum

norm on [−2,2].
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Exercise 6.12 Let Tj denote the Chebyshev polynomial of degree j ∈N. Prove that the best

uniform polynomial approximation P∗
n, j from πn to Tj with respect to the interval [−1,1]

satisfies

P∗
n, j is the zero polynomial ⇔ n ∈ {0, . . . , j− 1}.

Exercise 6.13 Provide the details of the inductive proof of the inequality (6.5.10).

Exercise 6.14 Prove the inequality (6.5.31).

Exercise 6.15 For n ∈ N, denote by P I
n the Lagrange polynomial interpolation operator

with respect to the Chebyshev interpolation points {xC
n,0, . . . ,x

C
n,n} for the interval [0,10], as

obtained from (2.2.31), and let

f (x) = ln(x+ 2), x ∈ [0,10].

(a) Apply Theorem 6.5.2 to deduce the uniform convergence result

|| f −P I
n f ||∞ → 0, n → ∞, (∗)

with || · ||∞ denoting the maximum norm on [0,10].

(b) Verify that the interpolation error estimate (2.2.36) in Theorem 2.2.4 does not yield the

uniform convergence result (∗) in (a).



Chapter 7

Orthogonality

For f ∈ C[a,b] and any non-negative integer n, the best weighted L2 polynomial approxi-

mation P̃∗
n f = P̃∗

n , as considered in Theorem 4.2.6 and (5.1.6), satisfies the condition

|| f −P̃∗
n f ||2,w � || f −P||2,w, P ∈ πn,

or equivalently,√∫ b

a
w(x)[ f (x)− (P̃∗

n f )(x)]2dx �

√∫ b

a
w(x)[ f (x)−P(x)]2dx, P ∈ πn,

where w denotes any weight function on [a,b] that satisfies the conditions (4.2.8), (4.2.9). In

this chapter, we derive a full characterisation of P̃∗
n in terms of the orthogonality property in

the general inner product setting, and study the special case of best weighted L2 polynomial

approximation P̃∗
n f = P̃∗

n .

7.1 The fundamental characterising condition

Let (X ,〈·, ·〉) denote any inner product space. If f ,g ∈ X satisfy the condition 〈 f ,g〉 = 0,

we say that f and g are orthogonal with respect to the inner product 〈·, ·〉, and we write

f ⊥ g. Observe from (4.2.6) that the zero element 0 of X is orthogonal to each f ∈ X .

For f ∈ X and a subset Y of X , if it holds that

〈 f ,g〉= 0, g ∈Y,

we say that f is orthogonal to Y , and write f ⊥ Y .

Consider the Euclidean inner product space (R2,〈·, ·〉E) and its corresponding normed lin-

ear space (Rn, || · ||E), as defined in, respectively, Examples 4.1.1 and 4.2.1. Let A denote

the one-dimensional subspace of R2 consisting of all the points on a straight line through

127
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the origin 0 = (0,0). Then, for any x ∈ R2 \A, we may apply Theorem 4.1.1 and Theo-

rem 4.2.5 to deduce the existence of a unique point x∗ ∈ A such that

||x− x∗||E � ||x− y||E, y ∈ A. (7.1.1)

It is geometrically evident that x∗ is uniquely characterised by the orthogonality condition

x− x∗ ⊥ A, that is, from (4.2.7),

(x− x∗) ·y = 0, y ∈ A. (7.1.2)

Our following result shows that the characterisation property (7.1.2) of best approximation

in (R2, || · ||E) generalizes to all inner product spaces.

Theorem 7.1.1. For an inner product space (X ,〈·, ·〉), let f ∈ X, and suppose A ⊂ X is an

approximation set such that A is a subspace of X. Then f ∗ ∈ A is a best approximation

from A to f with respect to the norm || · || defined by (4.2.15), if and only if f − f ∗ ⊥ A, that

is,

〈 f − f ∗,g〉= 0, g ∈ A. (7.1.3)

Proof. Suppose f ∗ ∈ A satisfies the orthogonality condition (7.1.3), and let g ∈ A. By using

(4.2.15), (4.2.3) and (4.2.5), we obtain

|| f − g||2 = ||( f − f ∗)+ ( f ∗ − g)||2

= || f − f ∗||2 + 2〈 f − f ∗, f ∗ − g〉+ || f ∗− g||2. (7.1.4)

Since A is a subspace of X , it follows that f ∗ − g ∈ A, according to which (7.1.3) yields

〈 f − f ∗, f ∗ − g〉= 0. (7.1.5)

By substituting (7.1.5) into (7.1.4), we obtain

|| f − g||2 = || f − f ∗||2 + || f ∗ − g||2. (7.1.6)

We deduce from (7.1.6) and (4.1.2) that f ∗ satisfies the condition

|| f − f ∗||< || f − g||, for g ∈ A, with g �= f ∗, (7.1.7)

and thus f ∗ is the (unique, in accordance also with Theorem 4.2.4) best approximation

from A to f with respect to the norm || · || defined by (4.2.15).

Conversely, suppose f ∗ ∈ A satisfies the best approximation condition

|| f − f ∗||� || f − g||, g ∈ A. (7.1.8)
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If f ∈ A, then f ∗ = f , and thus, from (4.2.6),

〈 f − f ∗,g〉= 〈0,g〉= 0, g ∈ A,

which shows that (7.1.3) holds for this case.

Suppose next f �∈ A, so that f ∗ �= f , and thus, from (4.1.1) and (4.1.2), || f − f ∗||> 0. Using

a proof by contradiction, we proceed to prove that if the condition (7.1.3) is not satisfied

then there exists an element g∗ ∈ A such that

0 < || f − g∗||< || f − f ∗||, (7.1.9)

which contradicts (7.1.8), and would thereby conclude our proof.

Suppose therefore that (7.1.3) does not hold, that is, there exists an element h ∈ A such that

δ := 〈 f − f ∗,h〉 �= 0, (7.1.10)

and let the function u : R→R be defined by

u(λ ) := || f − ( f ∗+λ h)||2, λ ∈ R. (7.1.11)

By using (7.1.11), (4.2.15), (4.2.3), (4.2.4) and (4.2.5), we deduce that

u(λ ) = 〈( f − f ∗)−λ h,( f − f ∗)−λ h〉
= || f − f ∗||2 − 2λ 〈 f − f ∗,h〉+λ 2||h||2 = ||h||2λ 2 − 2δλ + || f − f ∗||2,

(7.1.12)

from (7.1.10). Since also (7.1.10) and (4.2.6) imply h �= 0, so that (4.1.2) yields ||h||2 > 0,

we deduce from (7.1.12) that u is a quadratic polynomial in λ , with minimum value

u
(

δ
||h||2

)
= || f − f ∗||2 − δ 2

||h||2 . (7.1.13)

Now define

g∗ := f ∗+
δ

||h||2 h, (7.1.14)

according to which, since A is a subspace of X , we have g∗ ∈ A. Moreover, it follows from

(7.1.14), (7.1.11) and (7.1.13) that

0 < || f − g∗||=
√
|| f − f ∗||2 − δ 2

||h||2 < || f − f ∗||,

which yields (7.1.9), as required. �
We next deduce the following Pythagoras rule for inner product spaces from Theorem 7.1.1

and its proof.
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Theorem 7.1.2. For a normed linear space (X , || · ||) as in Theorem 4.2.2, let f ∈ X, and

suppose A ⊂ X is an approximation set such that A is a subspace of X, and such that there

exists a best approximation f ∗ from A to f with respect to the norm || · || defined by (4.2.15).

Then

|| f − g||2 = || f − f ∗||2 + || f ∗ − g||2, g ∈ A, (7.1.15)

with, in particular,

|| f ||2 = || f − f ∗||2 + || f ∗||2. (7.1.16)

Proof. Let f ∗ ∈ A be such that the best approximation condition (7.1.8) is satisfied. It

follows from Theorem 7.1.1 that f ∗ satisfies the orthogonality condition (7.1.3). Hence we

may follow the steps in the first part of the proof of Theorem 7.1.1 to deduce (7.1.6), which

is precisely (7.1.15).

Since A is a subspace of X , we know that the zero element 0 belongs to A, so that we may

set g = 0 in (7.1.15) to obtain (7.1.16). �
We proceed to show how the results of Theorem 7.1.1 and Theorem 7.1.2 may be applied to

prove the following properties of the best approximation operator with respect to the norm

generated by an inner product space as in Theorem 4.2.2.

Theorem 7.1.3. For a normed linear space (X , || · ||) as in Theorem 4.2.2, let A ⊂ X be an

approximation set such that A is a subspace of X, and such that, for each f ∈ X, there exists

a (unique, according to Theorem 4.2.4) best approximation f ∗ from A to f with respect to

the norm || · || defined by (4.2.15). Then the corresponding best approximation operator

A ∗ : X → A defined by

A ∗ f := f ∗, f ∈ X , (7.1.17)

satisfies the following:

(a) A ∗ is linear;

(b) A ∗ is exact on A;

(c) A ∗ is bounded, with corresponding operator norm

||A ∗||= 1. (7.1.18)

Proof. (a) For any f , f̃ ∈ X and λ ,μ ∈ R, define

h := λ f + μ f̃ ; h∗ := λ (A ∗ f )+ μ(A ∗ f̃ ), (7.1.19)
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so that, since A is a subspace of X , and A ∗ : X → A, we have h∗ ∈ A. It then follows from

(7.1.19), (4.2.3) and (4.2.4), together with Theorem 7.1.1, that, for any g ∈ A,

〈h− h∗,g〉= 〈λ ( f −A ∗ f )+ μ( f̃ −A ∗ f̃ ),g〉

= λ 〈 f −A ∗ f ,g〉+ μ〈 f̃ −A ∗ f̃ ,g〉= 0+ 0 = 0,

and thus, again from Theorem 7.1.1,

h∗ = A ∗h,

that is, from (7.1.19),

λ (A ∗ f )+ μ(A ∗ f̃ ) = A ∗(λ f + μ f̃ ),

according to which A ∗ satisfies the characterising property (5.1.8) of linearity for approx-

imation operators.

(b) If f ∈ A, then (4.2.1) and (4.2.2) yield

|| f − f ||= 0 � || f − g||, g ∈ A,

and it follows that

A ∗ f = f , f ∈ A, (7.1.20)

that is, A ∗ is exact on A.

(c) Let f ∈ X , with f �= 0. By applying (7.1.17) and (7.1.16), we obtain

||A ∗ f ||=
√
|| f ||2 −|| f −A ∗ f ||2 � || f ||,

and thus
||A ∗ f ||
|| f || � 1, (7.1.21)

according to which {||A ∗ f ||/|| f || : f ∈X , f �= 0} is a bounded set, that is, A ∗ is bounded.

Moreover, the operator norm definition (5.2.2), together with (7.1.21), yields

||A ∗||� 1. (7.1.22)

By applying also (7.1.20) and Theorem 5.2.1, we deduce that

||A ∗||� 1,

which, together with (7.1.22), then gives the desired result (7.1.18). �
Note from (7.1.18) and Theorem 5.2.1 that, subject to the constraint of exactness on a non-

trivial subset of X , the best approximation operator A ∗ of Theorem 7.1.3 possesses the

favourable property of having the optimally small operator norm value of one.
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The choices (X , || · ||) = (C[a,b], || · ||2,w) and A = πn in Theorem 7.1.3 yield A ∗ = P̃∗
n , as

defined by (5.1.6), from which we immediately deduce the following result, the first part

of which extends Theorem 5.1.1(a).

Theorem 7.1.4. For any bounded interval [a,b] and non-negative integer n, the best

weighted L2 approximation operator P̃∗
n : C[a,b]→ πn, as defined by (5.1.6), satisfies:

(a) P̃∗
n is linear;

(b) P̃∗
n is bounded, with corresponding Lebesgue constant

||P̃∗
n ||2,w = 1. (7.1.23)

The following formulations of the approximation error in the context of Theorem 7.1.2 are

useful in applications.

Theorem 7.1.5. In Theorem 7.1.2, the corresponding approximaton error satisfies

|| f − f ∗||=
√
〈 f , f − f ∗〉, (7.1.24)

and

|| f − f ∗||=
√
|| f ||2 −|| f ∗||2. (7.1.25)

Proof. Let f ∈ X . It follows from (4.2.15), (4.2.3), (4.2.4) and (4.2.5) that

|| f − f ∗||2 = 〈 f − f ∗, f − f ∗〉= 〈 f , f − f ∗〉− 〈 f ∗, f − f ∗〉

= 〈 f , f − f ∗〉− 〈 f − f ∗, f ∗〉. (7.1.26)

Since f ∗ ∈ A, it follows from Theorem 7.1.1 that

〈 f − f ∗, f ∗〉= 0,

which, together with (7.1.26), then implies (7.1.24). Finally, we note that (7.1.25) is an

immediate consequence of (7.1.16) in Theorem 7.1.2. �

7.2 The Gram matrix

Let (X , || · ||) denote a normed linear space as in Theorem 4.2.2, that is, with norm || · ||
generated by an inner product as in (4.2.15), and suppose A ⊂ X is an approximation set

such that A is a finite-dimensional subspace of X , with dim(A) = d ∈ N. As was done in

Theorem 4.2.5, it follows from Theorem 4.1.1 and Theorem 4.2.4 that we may define, as

in Theorem 7.1.3, the corresponding best approximation operator A ∗ : X → A by means
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of (7.1.17). We proceed to demonstrate how an application of the characterisation result

of Theorem 7.1.1 yields, for any f ∈ X , a matrix-inversion method for the construction of

A ∗ f .

We shall rely on the following result.

Theorem 7.2.1. For an inner product space (X ,〈·, ·〉), suppose A is a finite-dimensional

subspace of X, with dim(A) = d ∈ N. Let f ∈ X, and suppose { f1, . . . , fd} is a basis for A.

Then f ⊥ A, that is,

〈 f ,g〉= 0, g ∈ A, (7.2.1)

if and only if

〈 f , f j〉= 0, j = 1, . . . ,d. (7.2.2)

Proof. Suppose (7.2.1) holds. Since f j ∈ A, j = 1, . . . ,d, it then follows that (7.2.2) is

satisfied.

Conversely, suppose (7.2.2) holds, and let g ∈ A. Since { f1, . . . , fd} is a basis for A, it

follows that

g =
d

∑
j=1

c j f j (7.2.3)

for some coefficient sequence {c1, . . . ,cd} ⊂ R. By applying (7.2.3), (4.2.3), (4.2.4) and

(7.2.2), we obtain

〈 f ,g〉 =
d

∑
j=1

c j〈 f , f j〉= 0,

that is, (7.2.1) is satisfied. �
For any basis { f1, . . . , fd} of A, as in Theorem 7.2.1, there exists a unique coefficient se-

quence {c∗1, . . . ,c
∗
d} ⊂ R such that

A ∗ f =
d

∑
k=1

c∗k fk. (7.2.4)

Moreover, Theorem 7.1.1 shows that f −A ∗ f ⊥ A, which, according to (7.2.4), together

with Theorem 7.2.1, is equivalent to

〈 f −
d

∑
k=1

c∗k fk, f j〉= 0, j = 1, . . . ,d,

or equivalently, from (4.2.3), (4.2.4) and (4.2.5),
d

∑
k=1

〈 f j , fk〉c∗k = 〈 f , f j〉, j = 1, . . . ,d. (7.2.5)
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Hence c∗ := (c∗1, . . . ,c
∗
d) is the unique solution in Rd of the linear system

Gc∗ = f, (7.2.6)

where G is the d× d matrix

G :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈 f1, f1〉 〈 f1, f2〉 · · · 〈 f1, fd〉

〈 f2, f1〉 〈 f2, f2〉 · · · 〈 f2, fd〉
...

...
...

〈 fd , f1〉 〈 fd , f2〉 · · · 〈 fd , fd〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7.2.7)

and with f ∈ R
d denoting the (column) vector

f := [〈 f , f1〉, . . . ,〈 f , fd〉]T . (7.2.8)

The matrix G in (7.2.7) is called the Gram matrix corresponding to the sequence

{ f1, . . . , fd}. Note from (7.2.7) and (4.2.5) that G is a symmetrix matrix.

Since the d × d linear system (7.2.6) is uniquely solved by c∗ = (c∗1, . . . ,c
∗
d), a standard

result from linear algebra implies that the Gram matrix G in (7.2.7) is invertible, which,

together with (7.2.4), then yields the following formulation of the best approximation A ∗ f .

Theorem 7.2.2. For a normed linear space (X , || · ||) as in Theorem 4.2.2, let A ⊂ X be an

approximation set such that A is a finite-dimensional subspace of X, with dim(A) = d ∈N.

Also, denote by { f1, . . . , fd} any basis for A, and let the best approximation operator A ∗ :

X → A, with respect to the norm defined by (4.2.15), be given by (7.1.17) in Theorem 7.1.3.

Then the Gram matrix G , as given by (7.2.7), is invertible, and

A ∗ f =
d

∑
j=1

(G−1f) j f j , f ∈ X , (7.2.9)

where the (column) vector f ∈Rd is defined by (7.2.8).

An advantage of best approximation from a finite-dimensional subspace A of X with respect

to a norm generated by an inner product as in (4.2.15), is that the system (7.2.6) to be

solved is a linear one, whereas the use of specifically the maximum norm was shown in

Examples 6.6.2 and 6.6.3 to depend on solving non-linear systems.

Example 7.2.1. Consider the case where, in Theorem 7.2.2, we choose X =C[0,1], || · ||=
|| · ||2 as in (4.2.17), A = π1, { f1, f2} = {1,x} and f (x) = x2. Observe that here A ∗ =
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P̃∗
1 : C[a,b]→ π1, as defined in (5.1.6). By using (4.2.12) and (4.2.5), we obtain the inner

products

〈 f1, f1〉2 =
∫ 1

0
(1)(1)dx =

∫ 1

0
dx = 1;

〈 f1, f2〉2 =
∫ 1

0
(1)(x)dx =

∫ 1

0
xdx = 1

2 ;

〈 f2, f1〉2 = 〈 f1, f2〉2 =
1
2 ;

〈 f2, f2〉2 =

∫ 1

0
(x)(x)dx =

∫ 1

0
x2dx = 1

3 ,

which can be substituted into (7.2.7) to give the Gram matrix

G =

⎡⎣1 1
2

1
2

1
3

⎤⎦ . (7.2.10)

Also, from (4.2.12),

〈 f , f1〉2 =
∫ 1

0
(x2)(1)dx =

∫ 1

0
x2dx = 1

3 ;

〈 f , f2〉2 =

∫ 1

0
(x2)(x)dx =

∫ 1

0
x3dx = 1

4 ,

which, together with (7.2.8), yield

f =

⎡⎣ 1
3

1
4

⎤⎦ . (7.2.11)

From (7.2.10) we now calculate the inverse matrix

G−1 =

⎡⎣ 4 −6

−6 12

⎤⎦ . (7.2.12)

It follows from (7.2.12) and (7.2.11) that

G−1f =

⎡⎣ 4 −6

−6 12

⎤⎦ ⎡⎣ 1
3

1
4

⎤⎦=

⎡⎣− 1
6

1

⎤⎦ . (7.2.13)

Finally, we use (7.2.13) in the formula (7.2.9) to obtain

(P̃∗
1 f )(x) =− 1

6 + x. (7.2.14)

To compute the corresponding best approximation error, it is convenient to use the formula

(7.1.24), together with (4.2.12), according to which

|| f −P̃∗
1 f ||2 =

√
〈 f , f −P̃∗

1 f 〉2 =

√∫ 1

0
x2 [x2 − (x− 1

6

)]
dx
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=

√∫ 1

0

(
x4 − x3 + 1

6 x2)dx =
√

1
5 − 1

4 +
1
18 = 1

6
√

5
.

(7.2.15)

�
It is interesting to compare the two best approximation polynomials P∗

1 f and P̃∗
1 f from

Examples 6.6.1 and 7.2.1, as given, according to (6.6.14) and (7.2.14), by

(P∗
1 f )(x) = x− 1

8 ; (P̃∗
1 f )(x) = x− 1

6 . (7.2.16)

According to the formula (7.2.9) in Theorem 7.2.2, the calculation of the best approxima-

tion A ∗ f involves the computation of the inverse G−1 of the Gram matrix G, as given in

(7.2.7). We proceed in the next section to show that it is always possible to choose a basis

{ f1, . . . , fd} for A such that G is a diagonal matrix, in which case the calculation of the

inverse matrix G−1 is trivial.

7.3 Orthogonal bases

For an inner product space (X ,〈·, ·〉), let A ⊂ X denote a finite-dimensional subspace of X ,

with dim(A) = d ∈ N. If, for d � 2, a basis { f1, . . . , fd} of A satisfies the condition

f j ⊥ fk, j,k = 1, . . . ,d, j �= k,

that is,

〈 f j , fk〉= 0, j,k = 1, . . . ,d, j �= k,

⎫⎪⎪⎬⎪⎪⎭ (7.3.1)

we say that { f1, . . . , fd} is an orthogonal basis for A, in which case it follows that the

corresponding Gram matrix G in (7.2.7) is a diagonal matrix, with inverse

G−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
|| f1||2 0 · · · 0

0
1

|| f2||2 · · · 0

...
...

...

0 0
1

|| fd ||2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7.3.2)

in terms of the norm || · || defined by (4.2.15). If d = 1, any non-zero element f1 ∈ A yields

the orthogonal basis { f1} of the one-dimensional subspace A of X , and G−1 is the 1× 1
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matrix given by [|| f1||−2]. Hence, for the case where, in Theorem 7.2.2, { f1, . . . , fd} is an

orthogonal basis for A, the following explicit formulation for A ∗ f is a direct consequence

of (7.2.9), (7.3.2) and (7.2.8).

Theorem 7.3.1. In Theorem 7.2.2, suppose that { f1, . . . , fd} is an orthogonal basis for A.

Then

A ∗ f =
d

∑
j=1

〈 f , f j〉
|| f j||2 f j , f ∈ X . (7.3.3)

We proceed to show that, for any finite-dimensional subspace A of an inner product space

(X ,〈·, ·〉), there exists an orthogonal basis for A. We shall rely on the following preliminary

result.

Theorem 7.3.2. For an inner product space (X ,〈·, ·〉), suppose { f1, . . . , fd} ⊂ X, with d �
2, is a sequence such that the orthogonality condition (7.3.1) is satisfied, and f j �= 0, j =

1, . . . ,d. Then { f1, . . . , fd} is a linearly independent set.

Proof. Let the coefficient sequence {c1, . . . ,cd} be such that

d

∑
j=1

c j f j = 0. (7.3.4)

For any integer k ∈ {1, . . . ,d}, it follows from (7.3.4), (4.2.6), (4.2.3), (4.2.4) and (7.3.1)

that

0 =

〈
d

∑
j=1

c j f j , fk

〉
=

d

∑
j=1

c j〈 f j , fk〉= ck〈 fk, fk〉,

and thus, since also fk �= 0, so that (4.2.2) implies 〈 fk, fk〉 �= 0, we have ck = 0. Hence

c j = 0, j = 1, . . . ,d, which completes our proof. �
For any inner product space (X ,〈·, ·〉), let A ⊂ X denote a finite-dimensional subspace of

X , with dim(A) = d � 2, and suppose {g1, . . . ,gd} is any basis for A. We proceed to

show how the results of Theorems 7.3.1 and 7.3.2 can be applied to explicitly construct

from {g1, . . . ,gd}, by means of a recursive method called the Gram-Schmidt procedure, an

orthogonal basis { f1, . . . , fd} for A.

Since {g1, . . . ,gd} is a basis for A, we know that {g1, . . . ,gd} is a linearly independent set,

and thus {g1, . . . ,g j} is a linearly independent set for any j ∈ {1, . . . ,d}. Hence, if we

define

A j := span{g1, . . . ,g j}, j = 1, . . . ,d, (7.3.5)
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it follows that

dim(A j) = j, j = 1, . . . ,d, (7.3.6)

and, for each j = 1, . . . ,d, {g1, . . . ,g j} is a basis for A j. Moreover, the definition (7.3.5)

implies the nesting property

A j ⊂ A j+1, j = 1, . . . ,d− 1, (7.3.7)

as well as

Ad = span{g1, . . . ,gd}= A. (7.3.8)

Moreover,

g j �∈ A j−1, j = 2, . . . ,d, (7.3.9)

since if not, that is g j ∈ A j−1 for some integer j ∈ {2, . . . ,d}, then, according to (7.3.5), g j

is a linear combination of the sequence {g1, . . . ,g j−1}, which contradicts the linear inde-

pendence of the sequence {g1, . . . ,g j}.

Now define

f1 := g1, (7.3.10)

which, together with (7.3.5) and (7.3.6), implies that { f1} is an orthogonal basis for the

one-dimensional space A1. By applying the formula (7.3.3) in Theorem 7.3.1, we deduce

that the (unique) best approximation f ∗1 from A1 to g2, with respect to the norm || · || in

(4.2.15), is given by

f ∗1 =
〈g2, f1〉
|| f1||2 f1, (7.3.11)

with, moreover, from Theorem 7.1.1,

〈g2 − f ∗1 , g〉= 0, g ∈ A1,

and thus

〈g2 − f ∗1 , f1〉= 0. (7.3.12)

Let

f2 := g2 − f ∗1 , (7.3.13)

according to which (7.3.12) gives

〈 f2, f1〉= 0. (7.3.14)
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Observe that f2 �= 0, since if not, then (7.3.13) yields g2 = f ∗1 ∈ A1, which contradicts

(7.3.9). Also, f1 �= 0, as follows from (7.3.10), together with the fact that g1 �= 0, since

{g1, . . . ,gd} is a basis for A. Hence, since the orthogonality condition (7.3.14) is satisfied,

with, moreover, f1 �= 0 and f2 �= 0, we may apply Theorem 7.3.2 to deduce that { f1, f2} is a

linearly independent set. Since, moreover, { f1, f2}⊂ A2, as follows from (7.3.10), (7.3.13),

(7.3.11) and (7.3.5), and since also dim(A2) = 2, from (7.3.6), a standard result from linear

algebra implies that { f1, f2} is a basis for A2. Hence the definitions (7.3.10) and (7.3.13)

have yielded an orthogonal basis { f1, f2} for A2, and thus

A2 = span{ f1, f2}. (7.3.15)

Also,

f2 ∈ A2 \A1, (7.3.16)

since the assumption f2 ∈ A1 = span{ f1} contradicts the linear independence of the set

{ f1, f2}. Moreover, the orthogonality condition

f2 ⊥ A1, (7.3.17)

is satisfied, by virtue of (7.3.14), together with the fact that A1 = span{ f1}.

If d � 3, we continue similarly, by first deducing from the fact that { f1, f2} is an orthogonal

basis for A2, together with (7.3.3) in Theorem 7.3.1, that the best approximation f ∗2 from

A2 to g3, with respect to the norm || · || defined by (4.2.15), is given by

f ∗2 =
〈g3, f1〉
|| f1||2 f1 +

〈g3, f2〉
|| f2||2 f2, (7.3.18)

with, moreover, from Theorem 7.1.1,

〈g3 − f ∗2 ,g〉= 0, g ∈ A2,

according to which the definition

f3 := g3 − f ∗2 , (7.3.19)

together with (7.3.15), yields

〈 f3, f1〉= 0 ; 〈 f3, f2〉= 0. (7.3.20)

Also, f3 �= 0, for if not, then (7.3.19) yields g3 = f ∗2 ∈ A2, from (7.3.18) and (7.3.15), which

contradicts (7.3.9). Hence, from (7.3.20) and (7.3.14), we have

〈 f j , fk〉= 0, j,k = 1,2,3; j �= k, (7.3.21)

with also f j �= 0, j = 1,2,3, so that we may appeal to Theorem 7.3.2 to deduce that

{ f1, f2, f3} is a linearly independent set. Moreover, since f3 ∈ A3, as follows from
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(7.3.19), (7.3.5), (7.3.18) and (7.3.15), together with A2 ⊂ A3, as given in (7.3.7), with

also { f1, f2} ⊂ A2 ⊂ A3, from (7.3.15), and dim(A3) = 3, from (7.3.6), it follows that

{ f1, f2, f3} is a basis for A3. Hence the definitions (7.3.19), (7.3.13) and (7.3.10) have

yielded an orthogonal basis { f1, f2, f3} for A3, and thus

A3 = span{ f1, f2, f3}. (7.3.22)

Also,

f3 ∈ A3 \A2, (7.3.23)

since the assumption f3 ∈ A2 = span{ f1, f2}, as in (7.3.15), contradicts the linear indepen-

dence of the set { f1, f2, f3}. Also (7.3.20), together with (7.3.14) and (7.3.15), implies the

orthogonality condition

f3 ⊥ A2. (7.3.24)

Repeated applications for d � 4, d � 5, . . ., of the above procedure establish the following

result, as based on (7.3.5)–(7.3.24).

Theorem 7.3.3. (Gram-Schmidt procedure) For any inner product space (X ,〈·, ·〉), let A

denote a finite-dimensional subspace of X, with dim(A) = d � 2. Suppose, moreover, that

{g1, . . . ,gd} is a basis for A, and let

A j := span{g1, . . . ,g j}, j = 1, . . . ,d. (7.3.25)

Then the sequence { f1, . . . , fd} defined recursively by

f1 := g1;

f j := g j −
j−1

∑
k=1

〈g j, fk〉
|| fk||2 fk, j = 2, . . . ,d,

⎫⎪⎪⎬⎪⎪⎭ (7.3.26)

with || · || denoting the norm defined by (4.2.15), satisfies the following:

(a)

f j ∈
⎧⎨⎩A1, if j = 1;

A j \A j−1, if j = 2, . . . ,d.
(7.3.27)

(b)

f j ⊥ A j−1, j = 2, . . . ,d. (7.3.28)

(c) For j = 1, . . . ,d, the sequence { f1, . . . , f j} is an orthogonal basis for A j.

(d) The sequence { f1, . . . , fd} is an orthogonal basis for A.
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Hence the Gram-Schmidt procedure (7.3.26) uses any basis {g1, . . . ,gd} of a finite-

dimensional subspace A of an inner product space (X ,〈·, ·〉) to recursively construct an

orthogonal basis { f1, . . . , fd} of A, and thereby proving the existence of an orthogonal ba-

sis for any such finite-dimensional subspace A of X .

Example 7.3.1. In Theorem 7.3.3, choose X = C[0,1], || · || = || · ||2, as given in (4.2.17),

A = π2, so that d = 3, and {g1,g2,g3} = {1,x,x2}. By applying the first line in the Gram-

Schmidt procedure (7.3.26), we obtain

f1(x) = 1.

Next, we apply (4.2.12) and (4.2.17) to calculate

〈g2, f1〉2 =

∫ 1

0
(x)(1)dx =

∫ 1

0
xdx = 1

2 ,

and

(|| f1||2)2 =
∫ 1

0
(1)2dx =

∫ 1

0
dx = 1,

and thus, from the second line of (7.3.26),

f2(x) = x− 1/2
1 (1) = x− 1

2 .

By using again (4.2.12) and (4.2.17), we obtain

〈g3, f1〉2 =
∫ 1

0
(x2)(1)dx =

∫ 1

0
x2dx = 1

3 ;

〈g3, f2〉2 =

∫ 1

0
(x2)

(
x− 1

2

)
dx =

∫ 1

0

(
x3 − 1

2 x2)dx = 1
4 − 1

6 = 1
12 ;

(|| f2||2)2 =

∫ 1

0

(
x− 1

2

)2
dx =

∫ 1

0

(
x2 − x+ 1

4

)
dx = 1

3 − 1
2 +

1
4 = 1

12 ,

and thus, from (7.3.26),

f2(x) = x2 − 1/3
1 (1)− 1/12

1/12

(
x− 1

2

)
= x2 − 1

3 −
(
x− 1

2

)
= x2 − x+ 1

6 .

It follows from Theorem 7.3.3 that

{ f1, f2}= {1,x− 1
2} (7.3.29)

is an orthogonal basis for π1, whereas

{ f1, f2, f3}= {1,x− 1
2 ,x

2 − x+ 1
6} (7.3.30)

is an orthogonal basis for π2, with respect to the L2 norm || · ||2 on the interval [0,1].
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Hence we may use the orthogonal basis (7.3.29) to calculate, for f (x) = x2, the best ap-

proximation P̃∗
1 f of Example 7.2.1 by means of the formula (7.3.3) of Theorem 7.3.1 .

Since (4.2.12) and (7.3.29) yield the inner products

〈 f , f1〉2 =

∫ 1

0
(x2)(1)dx =

∫ 1

0
x2dx = 1

3 ;

〈 f , f2〉2 =

∫ 1

0
(x2)

(
x− 1

2

)
dx =

∫ 1

0

(
x3 − 1

2 x2)dx = 1
4 − 1

6 = 1
12 ,

we may apply (7.3.3) and (7.3.29) to obtain

(P̃∗
1 f )(x) = 1/3

1 (1)+ 1/12
1/12

(
x− 1

2

)
= 1

3 +
(
x− 1

2

)
= x− 1

6 ,

which agrees with (7.2.14) in Example 7.2.1. �

Next we prove, analogously to Theorem 7.1.5, a formulation of the approximation error

|| f −A ∗ f || in terms of an orthogonal basis.

Theorem 7.3.4. In Theorem 7.3.1, the corresponding approximation error satisfies

|| f −A ∗ f ||=
√√√√|| f ||2 −

d

∑
j=1

[ 〈 f , f j〉
|| f j ||

]2

, f ∈ X . (7.3.31)

Proof. Let f ∈ X . By applying (4.2.15), the formula (7.3.3) in Theorem 7.3.1, as well as

(4.2.3) and (4.2.4), and finally (7.3.1), we obtain

||A ∗ f ||2 =
〈

d

∑
j=1

〈 f , f j〉
|| f j ||2 f j,

d

∑
k=1

〈 f , fk〉
|| fk||2 fk

〉
=

d

∑
j=1

〈 f , f j〉
|| f j ||2

[
d

∑
k=1

〈 f , fk〉
|| fk||2 〈 f j , fk〉

]

=
d

∑
j=1

〈 f , f j〉
|| f j ||2

[ 〈 f , f j〉
|| f j ||2 〈 f j , f j〉

]

=
d

∑
j=1

[ 〈 f , f j〉
|| f j ||

]2

. (7.3.32)

The formula (7.3.31) is then an immediate consequence of (7.1.25) in Theorem 7.1.5, as

well as (7.1.17) in Theorem 7.1.3, together with (7.3.32). �

Example 7.3.2. As in Examples 7.2.1 and 7.3.1, let f (x) = x2. Then, by using (4.2.17), we

obtain

(|| f ||2)2 =

∫ 1

0
(x2)2dx =

∫ 1

0
x4dx = 1

5 ,
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whereas, from the calculations in Example 7.3.1,[ 〈 f , f1〉2

|| f1||2

]2

=
[

1/3
1

]2
= 1

9 ;[ 〈 f , f2〉2

|| f2||2

]2

=
[

1/12
1/

√
12

]2
= 1

12 ,

and it follows from (7.3.31) that

|| f −P̃∗
1 f ||2 =

√
1
5 − 1

9 − 1
12 = 1

6
√

5
,

which agrees with (7.2.15) in Example 7.2.1. �

Finally in this section, we prove that the orthogonal basis { f1, . . . , fd} in Theorem 7.3.3, as

constructed from the basis {g1, . . . ,gd} by means of the Gram-Schmidt procedure (7.3.26),

is unique up to a multiplicative constant, as follows.

Theorem 7.3.5. In Theorem 7.3.3, suppose the sequence {h1, . . . ,hd} is an orthogonal

basis for A, and such that

(a)

h j ∈
⎧⎨⎩A1, if j = 1;

A j \A j−1, if j = 2, . . . ,d;
(7.3.33)

(b)

h j ⊥ A j−1, j = 2, . . . ,d. (7.3.34)

Then

h j = c j f j , j = 1, . . . ,d, (7.3.35)

for some coefficients {c1, . . . ,cd} ⊂ R, with c j �= 0, j = 1, . . . ,d.

Proof. For any fixed j ∈ {1, . . . ,d}, it follows from (7.3.33) and Theorem 7.3.3(c) that

h j =
j

∑
k=1

c j,k fk, (7.3.36)

for some coefficient sequence {c j,k : k = 1, . . . , j} ⊂ R. If j = 1, it follows from (7.3.36)

that h1 = c1,1 f1. Since {h1, . . . ,hd} is a basis for A, we have h1 �= 0, so that also c1,1 �= 0,

and thereby proving (7.3.35), for j = 1, with c1 := c1,1.

Suppose next j ∈ {2, . . . ,d}, and let � ∈ {1, . . . , j − 1} . Since { f1, . . . , fd} is an orthogo-

nal basis for A, and therefore satisfies (7.3.1), we may now deduce from (7.3.34), Theo-

rem 7.3.3(c), (7.3.36), (4.2.3), (4.2.4), and (4.2.15) that

0 = 〈h j, f�〉=
〈

j

∑
k=1

c j,k fk, f�

〉
=

j

∑
k=1

c j,k〈 fk, f�〉= c j,�〈 f�, f�〉= c j,�|| f�||2. (7.3.37)
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Since { f1, . . . , fd} is a basis for A, we know that f� �= 0, and thus, from (4.2.2), || f�||2 �= 0,

which, together with (7.3.37), yields c j,� = 0. Hence we have shown that

c j,k = 0, k = 1, . . . , j− 1,

which we may now insert into (7.3.36) to obtain h j = c j, j f j . Since {h1, . . . ,hd} is a basis

for A, we have h j �= 0, and thus also c j, j �= 0, so that the definition c j := c j, j yields the

desired result (7.3.35), and thereby completing our proof. �
We proceed in Section 7.4 to specialize the results of this section to the case X = C[a,b],

〈·, ·〉= 〈·, ·〉2,w and A = πn, for any positive integer n.

7.4 Orthogonal polynomials

By applying Theorem 7.3.3, Theorem 7.3.5 and Theorem 7.3.1 for the case X = C[a,b],

|| · || = || · ||2,w as in (4.2.16), A = πn, with n ∈ {0,1, . . .}, so that d := dim(A) = n+ 1,

and {g1, . . . ,gd} = {g1, . . . ,gn+1} = {1,x, . . . ,xn} if n � 1, we immediately deduce the

following result.

Theorem 7.4.1. For a given bounded interval [a,b], and any weight function w on [a,b]

satisfying the conditions (4.2.8) and (4.2.9), let the polynomial sequence {P⊥
j : j = 0,1, . . .}

be defined recursively by means of the Gram-Schmidt procedure

P⊥
0 (x) := 1;

P⊥
j (x) := x j −

j−1

∑
k=0

⎡⎢⎢⎣
∫ b

a
w(x)x jP⊥

k (x)dx∫ b

a
w(x)[P⊥

k (x)]2dx

⎤⎥⎥⎦P⊥
k (x), j = 1,2, . . . .

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(7.4.1)

Then:

(a) For j = 0,1, . . . ,P⊥
j is a monic polynomial, with, more precisely,

P⊥
j ∈ π̃ j, j = 0,1, . . . . (7.4.2)

(b) {P⊥
j : j = 0,1, . . .} is an orthogonal sequence, with respect to the inner product 〈·, ·〉2,w

as in (4.2.10), that is,∫ b

a
w(x)P⊥

j (x)P
⊥
k (x)dx = 0, for j,k ∈ {0,1, . . .}, with j �= k. (7.4.3)

(c)

P⊥
j ⊥ π j−1, j = 1,2, . . . . (7.4.4)
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(d) For any non-negative integer n, the sequence {P⊥
j : j = 0, . . . ,n} is an orthogonal basis

with respect to the inner product 〈·, ·〉2,w, as given by (4.2.10), for the polynomial space

πn, and {P⊥
j : j = 0, . . . ,n} is, moreover, the only orthogonal basis for πn with respect

to the inner product 〈·, ·〉2,w such that (7.4.2) and (7.4.4) hold.

(e) For any non-negative integer n, the best weighted L2 polynomial approximation oper-

ator P̃∗
n : C[a,b]→ πn, as defined by (5.1.6), satisfies the explicit formulation

P̃∗
n f =

n

∑
j=0

⎡⎢⎢⎣
∫ b

a
w(x) f (x)P⊥

j (x)dx∫ b

a
w(x)[P⊥

j (x)]
2dx

⎤⎥⎥⎦P⊥
j . (7.4.5)

The sequence {P⊥
j : j = 0,1, . . .} of Theorem 7.4.1 will be called the orthogonal polyno-

mials with respect to the weight function w on the interval [a,b].

Although the Gram-Schmidt formula (7.4.1) provides an explicit construction method for

the orthogonal polynomials {P⊥
j : j = 0,1, . . .}, it has the disadvantage of increasing in

length with the degree j of P⊥
j . We proceed to show that the sequence {P⊥

j : j = 0,1, . . .}
satisfies a three-term recursion formula, which, for j � 3, then yields a more efficient

construction method than the Gram-Schmidt procedure (7.4.1).

To this end, we define the polynomials

Q j(x) := xP⊥
j (x), j = 0,1, . . . , (7.4.6)

with {P⊥
j : j = 0,1, . . .} denoting the orthogonal polynomials of Theorem 7.4.1, as obtained

by means of the Gram-Schmidt procedure (7.4.1). It then follows from (7.4.6) and (7.4.2)

that, for each j ∈ {0,1, . . .},Q j is a monic polynomial, with, more precisely,

Q j ∈ π̃ j+1, j = 0,1, . . . . (7.4.7)

According to Theorem 7.4.1(d), the sequence {P⊥
k : k = 0, . . . , j} is, for each non-negative

integer j, a basis for π j, so that we may deduce from (7.4.7) that

Q j =
j+1

∑
k=0

c j,kP⊥
k , j = 0,1, . . . , (7.4.8)

for some (unique for each j) coefficient sequence {c j,k : k = 0,1, . . . , j+1}⊂R. Moreover,

it follows from (7.4.7) and (7.4.2) that, in (7.4.8), we have c j, j+1 = 1, and thus

Q j =
j

∑
k=0

c j,kP⊥
k +P⊥

j+1, j = 0,1, . . . . (7.4.9)

For any fixed j ∈ {0,1, . . .}, let �∈ {0, . . . , j}. It follows from (7.4.9) and Theorem 7.4.1(b),

together with (4.2.3), (4.2.4) and (4.2.15), that

〈Q j,P⊥
� 〉2,w =

〈
j

∑
k=0

c j,kP⊥
k +P⊥

j+1,P
⊥
�

〉
2,w
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=
j

∑
k=0

c j,k〈P⊥
k ,P⊥

� 〉2,w + 〈P⊥
j+1,P

⊥
� 〉2,w

= c j,�〈P⊥
� ,P⊥

� 〉2,w + 0 = c j,�

(
||P⊥

� ||2,w
)2

,

and thus

c j,� =
〈Q j,P⊥

� 〉2,w

(||P⊥
� ||2,w)2

, �= 0, . . . , j. (7.4.10)

We may now use (7.4.9), (7.4.10), (7.4.6), (4.2.10) and (4.2.16) to obtain, for j = 0,

P⊥
1 (x) =

⎛⎜⎜⎝x−

∫ b

a
w(x)x[P⊥

0 (x)]2dx∫ b

a
w(x)[P⊥

0 (x)]2dx

⎞⎟⎟⎠P⊥
0 (x), (7.4.11)

whereas, for j = 1,

P⊥
2 (x) =

⎛⎜⎜⎝x−

∫ b

a
w(x)x[P⊥

1 (x)]2dx∫ b

a
w(x)[P⊥

1 (x)]2dx

⎞⎟⎟⎠P⊥
1 (x)−

⎡⎢⎢⎣
∫ b

a
w(x)xP⊥

1 (x)P⊥
0 (x)dx∫ b

a
w(x)[P⊥

0 (x)]2dx

⎤⎥⎥⎦P⊥
0 (x),

(7.4.12)

and, for j � 2,

P⊥
j+1(x) =

⎛⎜⎜⎝x−

∫ b

a
w(x)x[P⊥

j (x)]
2dx∫ b

a
w(x)[P⊥

j (x)]
2dx

⎞⎟⎟⎠P⊥
j (x)−

⎡⎢⎢⎣
∫ b

a
w(x)xP⊥

j (x)P
⊥
j−1(x)dx∫ b

a
w(x)[P⊥

j−1(x)]
2dx

⎤⎥⎥⎦P⊥
j−1(x)

−

⎡⎢⎢⎣ j−2

∑
k=0

∫ b

a
w(x)xP⊥

j (x)P
⊥
k (x)dx∫ b

a
w(x)[P⊥

k (x)]2dx

⎤⎥⎥⎦P⊥
k (x). (7.4.13)

Now observe from (7.4.6), (7.4.7) and (4.2.10), together with (7.4.4) in Theorem 7.4.1,

that, for j � 2 and k ∈ {0,1, . . . , j− 2},∫ b

a
w(x)xP⊥

j (x)P
⊥
k (x)dx =

∫ b

a
w(x)P⊥

j (x)Qk(x)dx = 〈P⊥
j ,Qk〉2,w = 0, (7.4.14)

since Qk ∈ π̃k+1 ⊂ π j−1. Hence we may substitute (7.4.14) into (7.4.13) to obtain, for j � 2,

P⊥
j+1(x) =

⎛⎜⎜⎝x−

∫ b

a
w(x)x[P⊥

j (x)]
2dx∫ b

a
w(x)[P⊥

j (x)]
2dx

⎞⎟⎟⎠P⊥
j (x)−

⎡⎢⎢⎣
∫ b

a
w(x)xP⊥

j (x)P
⊥
j−1(x)dx∫ b

a
w(x)[P⊥

j−1(x)]
2dx

⎤⎥⎥⎦P⊥
j−1(x).

(7.4.15)

Next, with the definition

Q̃ j(x) := P⊥
j (x)− xP⊥

j−1(x), j = 1,2, . . . , (7.4.16)
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we deduce from (7.4.2) in Theorem 7.4.1(a), that

Q̃ j ∈ π j−1, j = 1,2, . . . . (7.4.17)

It follows from (7.4.17), and (7.4.4) in Theorem 7.4.1(c), together with (4.2.10) and

(7.4.16), that, for any j ∈ {1,2, . . .},

0 = 〈P⊥
j , Q̃ j〉2,w =

∫ b

a
w(x)P⊥

j (x)[P
⊥
j (x)− xP⊥

j−1(x)]dx

=

∫ b

a
w(x)[P⊥

j (x)]
2dx−

∫ b

a
w(x)xP⊥

j (x)P
⊥
j−1(x)dx,

and thus ∫ b

a
w(x)xP⊥

j (x)P
⊥
j−1(x)dx =

∫ b

a
w(x)[P⊥

j (x)]
2dx. (7.4.18)

By substituting (7.4.18) into (7.4.15), we obtain, for j � 2, the formula

P⊥
j+1(x) =

⎛⎜⎜⎝x−

∫ b

a
w(x)x[P⊥

j (x)]
2dx∫ b

a
w(x)[P⊥

j (x)]
2dx

⎞⎟⎟⎠P⊥
j (x)−

⎡⎢⎢⎣
∫ b

a
w(x)[P⊥

j (x)]
2dx∫ b

a
w(x)[P⊥

j−1(x)]
2dx

⎤⎥⎥⎦P⊥
j−1(x).

(7.4.19)

According to (7.4.11), (7.4.12) and (7.4.19), together with the first line of (7.4.1), we have

therefore established the following three-term recursion formulation.

Theorem 7.4.2. The orthogonal polynomials {P⊥
j : j = 0,1, . . .} of Theorem 7.4.1 satisfy

the recursion formulation

P⊥
0 (x) = 1;

P⊥
1 (x) = (x−α0)P⊥

0 (x);

P⊥
j+1(x) = (x−α j)P⊥

j (x)−β jP⊥
j−1(x), j = 1,2, . . . ,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (7.4.20)

where

α j :=

∫ b

a
w(x)x[P⊥

j (x)]
2dx∫ b

a
w(x)[P⊥

j (x)]
2dx

, j = 0,1, . . . ; (7.4.21)

β j :=

∫ b

a
w(x)[P⊥

j (x)]
2dx∫ b

a
w(x)[P⊥

j−1(x)]
2dx

, j = 1,2, . . . . (7.4.22)
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In the next section, we analyze the special case of Theorem 7.4.2 where the weight function

w on [a,b] is given by (4.2.11).

Analogously to Theorem 6.6.1, we proceed to obtain an explicit formulation of the best

weighted L2 polynomial approximation on [a,b] from πn to any f ∈ πn+1. To this end, for

any non-negative integer n, we let

f (x) =
n+1

∑
j=0

c jx j, (7.4.23)

for some coefficient sequence {c0, . . . ,cn+1}. For any bounded interval [a,b], let P̃∗
n :

C[a,b]→ πn denote the corresponding best weighted L2 polynomial approximation opera-

tor. It then follows from (7.4.23) that

f (x)− (P̃∗
n f )(x) = cn+1xn+1 + Q̃(x), (7.4.24)

for some polynomial Q̃ ∈ πn. But, from the characterisation result of Theorem 7.1.1, we

must have

〈 f −P̃∗
n f , P〉2,w = 0, P ∈ πn. (7.4.25)

Hence, by recalling also (7.4.2) in Theorem 7.4.1(a), as well as (7.4.4) in Theorem 7.4.1(c),

it follows from (7.4.24) that we must have

f −P̃∗
n f = cn+1P⊥

n+1, (7.4.26)

with P⊥
n+1 denoting the orthogonal polynomial of degree n+1 as in Theorem 7.4.1. We can

therefore solve for P̃∗
n f from the equation (7.4.26) to obtain the following result.

Theorem 7.4.3. For any non-negative integer n, let f ∈ πn+1, with leading coefficient cn+1

in the formulation (7.4.23). Then, for any bounded interval [a,b] and weight function

w on [a,b] satisfying the conditions (4.2.8) and (4.2.9), the best weighted L2 polynomial

approximation on [a,b] from πn to f is given by the formula

P̃∗
n f = f − cn+1P⊥

n+1, (7.4.27)

with P⊥
n+1 denoting the orthogonal polynomial of degree n+ 1 in Theorem 7.4.1, and with

corresponding approximation error

|| f −P̃∗
n f ||2,w = |cn+1| ||P⊥

n+1||2,w. (7.4.28)
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7.5 The Legendre polynomials

For the case where, in Theorem 7.4.1, we choose [a,b] = [−1,1] and the weight function

w(x) = 1, x ∈ [−1,1], (7.5.1)

the resulting orthogonal polynomials are called the Legendre polynomials, and will be de-

noted by {L⊥
j : j = 0,1, . . .}, for which we therefore have, from (7.4.3) in Theorem 7.4.1(b),∫ 1

−1
L⊥

j (x)L
⊥
k (x)dx = 0, for j,k = 0,1, . . . , with j �= k. (7.5.2)

Also,the three-term recursion formulation (7.4.20) of Theorem 7.4.2 yields

L⊥
0 (x) = 1;

L⊥
1 (x) = (x−α0)L⊥

0 (x);

L⊥
j+1(x) = (x−α j)L⊥

j (x)−β jL⊥
j−1(x), j = 1,2, . . . ,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (7.5.3)

where, from (7.4.21) and (7.4.22),

α j :=

∫ 1

−1
x[L⊥

j (x)]
2dx∫ 1

−1
[L⊥

j (x)]
2dx

, j = 0,1, . . . ; (7.5.4)

β j :=

∫ 1

−1
[L⊥

j (x)]
2dx∫ 1

−1
[L⊥

j−1(x)]
2dx

, j = 1,2, . . . . (7.5.5)

We proceed to explicitly compute the coefficient sequences {α j : j = 0,1, . . .} and {β j :

j = 1,2, . . .} in (7.5.4) and (7.5.5), and thereby yielding an explicit formulation for the

corresponding recursion relations in (7.5.3).

Our first step is to prove inductively that

L⊥
2 j is an even polynomial,

L⊥
2 j+1 is an odd polynomial,

⎫⎬⎭ j = 0,1, . . . . (7.5.6)

To this end, we first note from the first line of (7.5.3) that∫ 1

−1
x[L⊥

0 (x)]
2dx =

∫ 1

−1
xdx = 0,

which, together with (7.5.4), implies α0 = 0, and thus, by using also the second line of

(7.5.3), we have

L⊥
1 (x) = x, (7.5.7)
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according to which, by recalling also from the first line of (7.5.3) that L⊥
0 (x) = 1, we have

now shown that (7.5.6) holds for j = 0. Suppose next that (7.5.6) is satisfied for a fixed

non-negative integer j. Our inductive proof of (7.5.6) will be complete if we can show that

then

L⊥
2 j+2 is an even polynomial

L⊥
2 j+3 is an odd polynomial

⎫⎬⎭ . (7.5.8)

To prove (7.5.8), we note that 2 j+ 2 � 2, so that we may apply the third line of (7.5.3) to

obtain

L⊥
2 j+2(x) = (x−α2 j+1)L⊥

2 j+1(x)−β2 j+1L⊥
2 j(x). (7.5.9)

From the inductive hypothesis that L⊥
2 j+1 is an odd polynomial, it follows that x[L⊥

2 j+1(x)]
2

is an odd polynomial, and thus ∫ 1

−1
x[L⊥

2 j+1(x)]
2dx = 0,

which, together with (7.5.4), gives α2 j+1 = 0, and it follows from (7.5.9) that

L⊥
2 j+2(x) = xL⊥

2 j+1(x)−β2 j+1L⊥
2 j(x). (7.5.10)

Hence, from (7.5.10) and the inductive assumption (7.5.6), we deduce that the first line of

(7.5.8) is satisfied.

Next, we apply the third line of (7.5.3) to obtain

L⊥
2 j+3(x) = (x−α2 j+2)L⊥

2 j+2(x)−β2 j+2L⊥
2 j+1(x). (7.5.11)

Since, as already shown, L⊥
2 j+2 is an even polynomial, we see that x[L⊥

2 j+2(x)]
2 is an odd

polynomial, and thus ∫ 1

−1
x
[
L⊥

2 j+2(x)
]2

dx = 0,

which, together with (7.5.4), yields α2 j+2 = 0, and it follows from (7.5.11) that

L⊥
2 j+3(x) = xL⊥

2 j+2(x)−β2 j+2L⊥
2 j+1(x). (7.5.12)

Since, as already shown, L⊥
2 j+2 is an even polynomial, whereas L⊥

2 j+1 is an odd polynomial

from the inductive assumption (7.5.6), it follows from (7.5.12) that L⊥
2 j+3 is an odd poly-

nomial. Hence the second line of (7.5.8) also holds, so that we have now completed our

inductive proof of the statement (7.5.6).

It follows from (7.5.6) that x[L⊥
j (x)]

2 is an odd polynomial for each j = 0,1, . . ., and thus∫ 1

−1
x[L⊥

j (x)]
2dx = 0, j = 0,1, . . . ,
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which we can now use in (7.5.4) to obtain

α j = 0, j = 0,1, . . . . (7.5.13)

By inserting (7.5.13) into the third line of (7.5.3), we obtain

L⊥
j+1(x) = xL⊥

j (x)−β jL⊥
j−1(x), j = 1,2, . . . . (7.5.14)

In order to find an explicit formulation for the sequence {β j : j = 1,2, . . .} in (7.5.14), we

first use integration by parts to obtain, for any j ∈ {0,1, . . .},∫ 1

−1

[
L⊥

j (x)
]2

dx =
[{

L⊥
j (x)

}2
x
]1

−1
−
∫ 1

−1
2L⊥

j (x)(L
⊥
j )

′(x)xdx

= 2
[
L⊥

j (1)
]2 − 2

∫ 1

−1
xL⊥

j (x)(L
⊥
j )

′(x)dx, (7.5.15)

after having used also the fact that, according to (7.5.6), [L⊥
j (x)]

2 is an even polynomial,

and thus [L⊥
j (−1)]2 = [L⊥

j (1)]
2. Now observe that, for any j ∈ {0,1, . . .}, the polynomial

P̃j(x) := x(L⊥
j )

′(x)− jL⊥
j (x) (7.5.16)

satisfies, from (7.4.2) in Theorem 7.4.1(a), P̃j ∈ π j−1, and thus, from (7.4.4) in Theo-

rem 7.4.1(c), together with (4.2.12) and (7.5.16),

0 = 〈L⊥
j , P̃j〉2 =

∫ 1

−1
L⊥

j (x)
[
x(L⊥

j )
′(x)− jL⊥

j (x)
]

dx

=

∫ 1

−1
xL⊥

j (x)(L
⊥
j )

′(x)dx− j
∫ 1

−1
[L⊥

j (x)]
2dx,

and hence ∫ 1

−1
xL⊥

j (x)(L
⊥
j )

′(x)dx = j
∫ 1

−1
[L⊥

j (x)]
2dx,

which can now be substituted into (7.5.15) to obtain∫ 1

−1
[L⊥

j (x)]
2dx = 2[L⊥

j (1)]
2 − 2 j

∫ 1

−1
[L⊥

j (x)]
2dx,

from which it then follows that∫ 1

−1
[L⊥

j (x)]
2dx =

2
2 j+ 1

[L⊥
j (1)]

2, j = 0,1, . . . . (7.5.17)

Observe from (7.5.5) and (7.5.17) that

β j =
2 j− 1
2 j+ 1

(γ j)
2, j = 1,2, . . . , (7.5.18)

where

γ j :=
L⊥

j (1)

L⊥
j−1(1)

, j = 1,2, . . . , (7.5.19)
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after having also noted from (7.5.17) that

L⊥
j (1) �= 0, j = 0,1, . . . . (7.5.20)

In order to find an explicit formula for γ j in (7.5.19), we first set x = 1 in (7.5.14), and use

(7.5.18) to obtain, for j = 1,2, . . .,

L⊥
j+1(1) = L⊥

j (1)−
2 j− 1
2 j+ 1

(γ j)
2 L⊥

j−1(1),

which we now divide by L⊥
j (1) to deduce, by using also the definition (7.5.19), the formula

γ j+1 = 1− 2 j− 1
2 j+ 1

γ j, j = 1,2, . . . , (7.5.21)

with also

γ1 = 1, (7.5.22)

from (7.5.19), together with the first line of (7.5.3), and (7.5.7).

We proceed to prove inductively from (7.5.21) and (7.5.22) that

γ j =
j

2 j− 1
, j = 1,2, . . . . (7.5.23)

After first noting from (7.5.22) that (7.5.23) holds for j = 1, we suppose next that (7.5.23)

is true for a fixed integer j ∈ N. But then (7.5.21) yields

γ j+1 = 1− 2 j− 1
2 j+ 1

(
j

2 j− 1

)
= 1− j

2 j+ 1
=

j+ 1
2 j+ 1

,

which shows that (7.5.23) also holds with j replaced by j+ 1, and thereby completing our

inductive proof of (7.5.23).

By substituting (7.5.23) into (7.5.18), we obtain

β j =
j2

(2 j− 1)(2 j+ 1)
, j = 1,2, . . . . (7.5.24)

According to the first line of (7.5.3), together with (7.5.7), (7.5.14) and (7.5.24), we have

now established the following explicit three-term recursion formulation for Legendre poly-

nomials.

Theorem 7.5.1. The Legendre polynomials {L⊥
j : j = 0,1, . . .}, which are precisely the

orthogonal polynomials {P⊥
j : j = 0,1, . . .} of Theorem 7.4.1 for the case [a,b] = [−1,1]

and weight function w on [−1,1] given by (7.5.1), satisfy the recursion formulation

L⊥
0 (x) = 1 ; L⊥

1 (x) = x;

L⊥
j+1(x) = xL⊥

j (x)−
j2

(2 j− 1)(2 j+ 1)
L⊥

j−1(x), j = 1,2, . . . .

⎫⎪⎬⎪⎭ (7.5.25)
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By using (7.5.25), we calculate the Legendre polynomials

L⊥
2 (x) = x2 − 1

3 ; L⊥
3 (x) = x3 − 3

5 x; L⊥
4 (x) = x4 − 6

7 x2 + 3
35 ;

L⊥
5 (x) = x5 − 10

9 x3 + 5
21 x; L⊥

6 (x) = x6 − 15
11 x4 + 5

11 x2 − 5
231 .

⎫⎬⎭ (7.5.26)

By considering the one-to-one mapping (2.2.29), (2.2.30) between the intervals [−1,1] and

[a,b], we now define the polynomials

Pj(x) :=
(

b− a
2

) j

L⊥
j

(
2

b− a
x− a+ b

b− a

)
, j = 0,1, . . . , (7.5.27)

for which it then follows, since L⊥
j ∈ π̃ j, j = 0,1, . . . , that

Pj ∈ π̃ j, j = 0,1, . . . . (7.5.28)

Moreover, for j,k ∈ {0,1, . . .}, with j �= k, (4.2.12), (2.2.29), (2.2.30) and (7.5.27) yield

〈PjPk〉2 =
∫ b

a
Pj(x)Pk(x)dx =

(
b− a

2

) j+k+1 ∫ 1

−1
L⊥

j (t)L
⊥
k (t)dt = 0, (7.5.29)

from (7.5.2). It follows from (7.5.29) and Theorem 7.3.2 that, for each j =

0,1, . . . ,{P0, . . . ,Pj} is a linearly independent set, and therefore an orthogonal basis for

π j. Hence, if for any j ∈ N we let P ∈ π j−1, there exists a (unique) coefficient sequence

{c0, . . . ,c j−1} ⊂ R such that P =
j−1

∑
k=1

ckPk, and thus, from (4.2.3), (4.2.4), (4.2.5) and

(7.5.29),

〈Pj,P〉2 =
j−1

∑
k=1

ck〈Pj,Pk〉2 = 0,

according to which

Pj ⊥ π j−1, j = 1,2, . . . . (7.5.30)

It then follows from (7.5.28), (7.5.29) and (7.5.30) that we may apply the uniqueness state-

ment in Theorem 7.4.1, together with the definition (7.5.27), to deduce the following result.

Theorem 7.5.2. In Theorem 7.4.1, let the weight function w on [a,b] be given by (4.2.11),

that is,

w(x) = 1, x ∈ [a,b]. (7.5.31)

Then the corresponding orthogonal polynomials {P⊥
j : j = 0,1, . . .} are given by

P⊥
j (x) =

(
b− a

2

) j

L⊥
j

(
2

b− a
x− a+ b

b− a

)
, j = 0,1, . . . , (7.5.32)

with {L⊥
j : j = 0,1, . . .} denoting the Legendre polynomials as in Theorem 7.5.1.
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According to the formula (7.4.5) in Theorem 7.4.1(e), for the case when the weight func-

tion w on [a,b] is given by (7.5.31), the corresponding best L2 polynomial approximation

operator P̃∗
n : C[a,b]→ πn is given by

P̃∗
n f =

n

∑
j=0

⎡⎢⎢⎣
∫ b

a
f (x)P⊥

j (x)dx∫ b

a
[P⊥

j (x)]
2dx

⎤⎥⎥⎦P⊥
j , f ∈C[a,b], (7.5.33)

with {P⊥
j : j = 0,1, . . .} denoting the orthogonal polynomials in Theorem 7.5.2.

Now observe from (2.2.29), (2.2.30), (7.5.32) and (7.5.17) that, for j = 0,1, . . .,∫ b

a
[P⊥

j (x)]
2dx =

(
b− a

2

)2 j+1 ∫ 1

−1
[L⊥

j (t)dt]2dt =
(

b− a
2

)2 j+1 2
2 j+ 1

[
L⊥

j (1)
]2
.

(7.5.34)

By using (7.5.19) and (7.5.23), as well as L⊥
0 (x) = 1, we obtain, for any j ∈ N,

L⊥
j (1) =

j
2 j− 1

L⊥
j−1(1) =

j
2 j− 1

j− 1
2 j− 3

L⊥
j−2(1) (if j � 2)

= · · ·

=
j

2 j− 1
j− 1

2 j− 3
· · · 1

1
L⊥

0 (1)

=
j!(2 j)(2 j− 2) . . .(2)

(2 j)!
=

2 j( j!)2

(2 j)!
=

2 j(2 j
j

) . (7.5.35)

By inserting (7.5.35) into (7.5.34), we obtain the explicit formula∫ b

a
[P⊥

j (x)]
2dx =

(b− a)2 j+1

2 j+ 1
1(2 j
j

)2 , j = 0,1, . . . . (7.5.36)

It follows from (7.5.33), (7.5.36), and (4.2.17), that we have now established the following

result.

Theorem 7.5.3. For a bounded interval [a,b] and any non-negative integer n, the best L2

polynomial approximation operator P̃∗
n : C[a,b]→ πn, as defined uniquely by the condition√∫ b

a
[ f (x)− (P̃∗

n f )(x)]2dx �

√∫ b

a
[ f (x)−P(x)]2dx, P ∈ πn, (7.5.37)

satisfies the explicit formulation

P̃∗
n f =

n

∑
j=0

[
2 j+ 1

(b− a)2 j+1

(
2 j
j

)2 ∫ b

a
f (x)P⊥

j (x)dx

]
P⊥

j , f ∈C[a,b], (7.5.38)

with {P⊥
j : j = 0,1, . . .} denoting the orthogonal polynomials of Theorem 7.5.2. Moreover,

||P⊥
j ||2 :=

√∫ b

a
[P⊥

j (x)]
2dx =

√
(b− a)2 j+1

2 j+ 1
1(2 j
j

) , j = 0,1, . . . . (7.5.39)
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The formula (7.5.38) holds for arbitrary f ∈C[a,b]. Recall from Theorem 7.4.3 the simple

formulation of P̃∗
n f for the case when f ∈ πn+1. In the following example, we apply the

explicit formulation (7.5.32) of Theorem 7.5.2 to solve the following best approximation

problem in the settting of Theorem 7.4.3.

Example 7.5.1. As in Example 6.6.5, let [a,b] = [−1,2], f (x) = 2x3 − x and n = 2. Then,

for the weight function

w(x) = 1, x ∈ [−1,2],

it follows from (7.4.27) in Theorem 7.4.3, together with (7.5.32) and (7.5.26), that

(P̃∗
2 f )(x) = 2x3 − x− 2

(
3
2

)2
[(

2
3

x− 1
3

)3

− 3
5

(
2
3

x− 1
3

)]

= 3x2 +
1
5

x− 11
10

,

with, from (7.4.28) and (7.5.39),

|| f −P̃∗
2 f ||2 = 2

√
37

7
1

20 = 27
√

3
10

√
7
. �

By combining Theorem 5.1.1(b), according to which the best approximation operator P̃∗
n

in Theorem 7.5.3 is exact on πn, with the formula (7.5.38) in Theorem 7.5.3, we immedi-

ately deduce the following polynomial identity.

Theorem 7.5.4. For a bounded interval [a,b] and any non-negative integer n,

P =
n

∑
j=0

[
2 j+ 1

(b− a)2 j+1

(
2 j
j

)2 ∫ b

a
P(x)P⊥

j (x)dx

]
P⊥

j , P ∈ πn, (7.5.40)

with {P⊥
j : j = 0,1, . . .} denoting the orthogonal polynomials of Theorem 7.5.2.

For any polynomial P ∈ πn, the finite sum in the right hand side of (7.5.40) is called the

Legendre expansion with respect to the interval [a,b] in πn of P.

7.6 Chebyshev polynomials and orthogonality

In this section, we let [a,b] = [−1,1], and consider the weight function w on [−1,1] as

given by

w(x) =
1√

1− x2
, x ∈ (−1,1), (7.6.1)
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for which, since∫ 1−δ

−1+ε

1√
1− x2

dx = arcsin(1− δ )− arcsin(−1+ ε)→ π
2
−
(
−π

2

)
= π ,

for ε → 0+, δ → 0+,

and thus ∫ 1

−1

1√
1− x2

dx = π ,

we see that w is integrable on [−1,1], and with w also satisfying the required conditions

(4.2.8) and (4.2.9) to qualify as a weight function on [−1,1].

Let {Tj : j = 0,1, . . .} denote the Chebyshev polynomials, as defined by (2.2.1). By using

the one-to-one mapping (2.2.11), (2.2.12) between the intervals [0,π ] and [−1,1], it follows

from (4.2.10) and (7.6.1), together with the formula (2.2.5) in Theorem 2.2.1(b), that, for

j,k ∈ {0,1, . . .}, with j �= k,

〈Tj,Tk〉2,w =

∫ 1

−1

1√
1− x2

Tj(x)Tk(x)dx

=

∫ π

0
Tj(cosθ )Tk(cosθ )dθ

=

∫ π

0
cos( jθ )cos(kθ )dθ =

1
2

∫ π

0
[cos(( j+ k)θ )+ cos(( j− k)θ ))]dθ

=
1
2

[
sin(( j+ k)θ )

j+ k
+

sin(( j− k)θ )
j− k

]π

0

=
1
2
[0− 0] = 0. (7.6.2)

Hence, if we define

P̃0 := T0 ; P̃j = 21− jTj, j = 1,2, . . . , (7.6.3)

we may deduce from (7.6.2) that

〈P̃j, P̃k〉2,w = 0, for j,k = 0,1, . . . , with j �= k. (7.6.4)

It follows from (7.6.4) and Theorem 7.3.2 that, for each j = 0,1, . . ., the polynomial se-

quence {P̃0, . . . , P̃j} is a linearly independent set, and therefore an orthogonal basis for

π j. Hence, if for any j ∈ N we let P ∈ π j−1, then there exists a (unique) coefficient se-

quence {c0, . . . ,c j−1} ⊂ R such that P =
j−1

∑
k=0

ckP̃k, and thus, from (4.2.3), (4.2.4), (4.2.5)

and (7.6.4),

〈P̃j,P〉2,w =
j−1

∑
k=0

ck〈P̃j, P̃k〉2,w = 0,
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from which we deduce that

P̃j ⊥ π j−1, j = 1,2, . . . . (7.6.5)

Also, observe from (7.6.3), together with Theorem 2.2.1(a), that

P̃j ∈ π̃ j, j = 0,1, . . . . (7.6.6)

It follows from (7.6.6), (7.6.4) and (7.6.5), together with (7.6.3), that we may apply the

uniqueness statement in Theorem 7.4.1 to deduce the following analogue of Theorem 7.5.2.

Theorem 7.6.1. In Theorem 7.4.1, let [a,b] = [−1,1], and let the weight function w on

[−1,1] be defined by (7.6.1). Then the corresponding orthogonal polynomials {P⊥
j : j =

0,1, . . .} are given by

P⊥
0 = T0; P⊥

j = 21− jTj, j = 1,2, . . . , (7.6.7)

with {Tj : j = 0,1, . . .} denoting the Chebyshev polynomials as defined in (2.2.1).

According to the formula (7.4.5) in Theorem 7.4.1(e), for the case [a,b] = [−1,1], and with

the weight function w on [−1,1] defined by (7.6.1), we may apply (7.6.7) in Theorem 7.6.1

to deduce that the corresponding best weighted L2 polynomial approximation operator is

given by

P̃∗
n f =

n

∑
j=0

⎡⎢⎢⎣
∫ 1

−1

1√
1− x2

f (x)Tj(x)dx∫ 1

−1

1√
1− x2

[Tj(x)]2dx

⎤⎥⎥⎦Tj, f ∈C[−1,1], (7.6.8)

with {Tj : j = 0,1, . . .} denoting the Chebyshev polynomials as defined in (2.2.1).

By using (2.2.11), (2.2.12), as well as the formula (2.2.5) in Theorem 2.2.1(b), we obtain,

for any f ∈C[−1,1],∫ 1

−1

1√
1− x2

f (x)Tj(x)dx =
∫ π

0
f (cosθ )cos( jθ )dθ , j = 0,1, . . . , (7.6.9)

and ∫ 1

−1

1√
1− x2

[Tj(x)]2dx =
∫ π

0
cos2( jθ )dθ . (7.6.10)

But

∫ π

0
cos2( jθ )dθ =

⎧⎪⎨⎪⎩
π , if j = 0;∫ π

0

1− sin(2 jθ )
2

dθ =
π
2
, if j = 1,2, . . . .

(7.6.11)

According to (7.6.7)–(7.6.10), together with (2.2.1), we have now established the following

analogue of Theorem 7.5.3.
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Theorem 7.6.2. For any non-negative integer n, the best weighted L2 polynomial approxi-

mation operator P̃∗
n : C[−1,1]→ πn, as defined uniquely by the condition√∫ 1

−1

1√
1− x2

[ f (x)− (P̃∗
n f )(x)]2dx �

√∫ 1

−1

1√
1− x2

[ f (x)−P(x)]2dx, P ∈ πn,

(7.6.12)

satisfies the explicit formulation

P̃∗
n f =

1
π

∫ π

0
f (cosθ )dθ +

2
π

n

∑
j=1

[∫ π

0
f (cosθ )cos( jθ )dθ

]
Tj, f ∈C[−1,1], (7.6.13)

with {Tj : j = 1,2, . . .} denoting the Chebyshev polynomials defined in (2.2.1).

By combining Theorem 5.1.1(b), according to which the best approximation operator P̃∗
n

in Theorem 7.6.2 is exact on πn, with the formula (7.6.13) in Theorem 7.6.2, we immedi-

ately deduce the following analogue of Theorem 7.5.4.

Theorem 7.6.3. For any non-negative integer n,

P =
1
π

∫ π

0
P(cosθ )dθ +

2
π

n

∑
j=1

[∫ π

0
P(cosθ )cos( jθ )dθ

]
Tj, P ∈ πn, (7.6.14)

with {Tj : j = 0,1, . . .} denoting the Chebyshev polynomials defined in (2.2.1).

For any polynomial P ∈ πn, the right hand side of (7.6.13) is called the Chebyshev expan-

sion in πn of P.

We proceed to show, as will also be relied on in Section 8.3, that the integrals in the right

hand side of the Chebyshev expansion (7.6.14) in Theorem 7.6.3 can be expressed as fi-

nite sums involving Chebyshev polynomial evaluations at the points where the Chebyshev

polynomial Tn attains its extreme values.

We shall rely on the following result, in which we adopt, for n ∈ N, the notation
n

∑
j=0

′ a j := 1
2 a0 +

n−1

∑
j=1

a j +
1
2 an. (7.6.15)

Theorem 7.6.4. For any positive integer n, let the point sequence {ξn, j : j = 0, . . . ,n} be

as in (2.2.19), (2.2.20), that is,

ξn,� := cos
(

n− �

n
π
)
, �= 0, . . . ,n, (7.6.16)

according to which

−1 = ξn,0 < ξn,1 < · · ·< ξn,n = 1. (7.6.17)
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Then
n

∑
�=0

′ Tj(ξn,�)Tk(ξn,�) = 0, for j,k = 0, . . . ,n, with j �= k; (7.6.18)

n

∑
�=0

′ [Tj(ξn,�)
]2

=

⎧⎨⎩n, for j = 0, or j = n,

1
2 n, for j = 1, . . . ,n− 1 (if n � 2),

(7.6.19)

where {Tj : j = 0,1, . . .} are the Chebyshev polynomials as in (2.2.1), and with the symbol

Σ′ defined by (7.6.15).

Proof. Let j,k ∈ {0, . . . ,n}, with j � k. It follows from (7.6.16), (7.6.17), the formula

(2.2.5) in Theorem 2.2.1(b), as well as the definition (7.6.15), that
n

∑
�=0

′ Tj(ξn,�)Tk(ξn,�) =
n

∑
�=0

′ cos
(

j(n− �)

n
π
)

cos
(

k(n− �)

n
π
)

=
n

∑
�=0

′ cos
(

j�
n

π
)

cos
(

k�
n

π
)

=
1
2

[
n

∑
�=0

′
{

cos
(
( j+ k)�

n
π
)
+ cos

(
( j− k)�

n
π
)}]

=
1
2

[
n

∑
�=0

′ cos
(
( j+ k)�

n
π
)
+

n

∑
�=0

′ cos
(
( j− k)�

n
π
)]

. (7.6.20)

Note that (7.6.20) also holds for the case j < k.

Now observe that, if m = 2μn for some μ ∈ Z, then

n

∑
�=0

′ cos
(

m�

n
π
)
=

⎧⎨⎩
1
2 +

1
2 = 1, if n = 1;

1
2 +(n− 1)+ 1

2 = n, if n � 2,

and thus
n

∑
�=0

′ cos
(

m�

n
π
)
= n, if m = 2μn, for some μ ∈ Z. (7.6.21)

Next, if m �= 2μn for μ ∈ Z, with the standard notation Re(α + iβ ) = α , where i =
√−1,

for the real part of a complex number α + iβ , we apply De Moivre’s theorem, together with

the geometric series summation formula
n−1

∑
�=0

(α + iβ )� =
1− (α + iβ )n

1− (α + iβ )
, if α + iβ �= 1,

to deduce that
n−1

∑
�=0

cos
(

m�

n
π
)
=

n−1

∑
�=0

Re
(

cos
(

m�

n
π
)
+ isin

(
m�

n

))



160 Mathematics of Approximation

= Re
n−1

∑
�=0

[
cos
(
�
(mπ

n

))
+ isin

(
�
(mπ

n

))]

= Re
n−1

∑
�=0

[
cos
(mπ

n

)
+ isin

(mπ
n

)]�

= Re

[
1− (cos

(mπ
n

)
+ isin

(mπ
n

))n

1− (cos
(mπ

n

)
+ isin

(mπ
n

)) ]

= Re

[
1− (cos(mπ)+ isin(mπ))(
1− cos

(mπ
n

))− isin
(mπ

n

)]

= Re

[
(1− (−1)m)

((
1− cos

(mπ
n

))
+ isin

(mπ
n

))(
1− cos

(mπ
n

))2
+ sin2 (mπ

n

) ]

=
(1− (−1)m)

(
1− cos

(mπ
n

))
2
(
1− cos

(mπ
n

)) =
1
2
(1− (−1)m),

that is,
n−1

∑
�=0

cos
(

m�

n
π
)
=

1
2
(1− (−1)m), if m �= 2μn for μ ∈ Z. (7.6.22)

By using (7.6.22), together with the definition (7.6.15) of the symbol Σ′, we obtain

n

∑
�=0

′ cos
(

m�

n
π
)
=

1
2
+

[
n−1

∑
�=0

cos
(

m�

n
π
)
− 1

]
+

1
2
(−1)m

=
1
2
+

[
1
2
(1− (−1)m)− 1

]
+

1
2
(−1)m = 0,

and thus
n

∑
�=0

′ cos
(

m�

n
π
)
= 0, if m �= 2μn for μ ∈ Z. (7.6.23)

If j �= k, then 1� j+k � 2n−1 and 1� j−k � n, so that we may use (7.6.20) and (7.6.23)

to deduce that
n

∑
�=0

′ Tj(ξn,�)Tk(ξn,�) =
1
2 [0+ 0] = 0,

which proves (7.6.18).

Next, if j = k, with either j = 0 or j = n, then (7.6.21) and (7.6.20) yield
n

∑
�=0

′ [Tj(ξn,�)
]2

= 1
2 [n+ n] = n,

which proves the first line of (7.6.19).
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Finally, if j = k, with 1 � j � n− 1 (for n � 2), it follows from (7.6.23) that
n

∑
�=0

′ cos
(
( j+ k)�

n
π
)
=

n

∑
�=0

′ cos
(

2 j�
n

π
)
= 0. (7.6.24)

Hence, by using (7.6.24) and (7.6.21) in (7.6.20), we obtain
n

∑
�=0

′ [Tj(ξn,�)]
2 = 1

2 [0+ n] =
n
2
,

which proves the second line of (7.6.19). �
Suppose now P ∈ πn, for a non-negative integer n. Since, according to Theorem 7.6.1 and

Theorem 7.4.1(d), the Chebyshev polynomial sequence {Tj : j = 0, . . . ,n} is a basis for πn

we know that there exists a unique coefficient sequence {c0, . . . ,cn} ⊂ R such that

P =
n

∑
j=0

c jTj. (7.6.25)

Let k ∈ {0, . . . ,n}. It then follows from (7.6.25) that, with {ξn,� : �= 0, . . . ,n} denoting the

point sequence (7.6.16) in Theorem 7.6.4, we have

n

∑
�=0

′ P(ξn,�)Tk(ξn,�) =
n

∑
�=0

′
[

n

∑
j=0

c jTj(ξn,�)

]
Tk(ξn,�)

=
n

∑
j=0

c j

n

∑
�=0

′ Tj(ξn,�)Tk(ξn,�)

= ck

n

∑
�=0

′ [Tk(ξn,�)
]2
,

by virtue of (7.6.18) in Theorem 7.6.4, and thus

ck =

n

∑
�=0

′ P(ξn,�)Tk(ξn,�)

n

∑
�=0

′ [Tk(ξn,�)]2
, k = 1, . . . ,n,

since (7.6.19) assures that the denominator is non-zero, and which can now be substituted

into (7.6.25) to yield the formula

P =
n

∑
j=0

⎡⎢⎢⎢⎣
n

∑
�=0

′ P(ξn,�)Tj(ξn,�)

n

∑
�=0

′ [Tj(ξn,�)]2

⎤⎥⎥⎥⎦Tj. (7.6.26)

It follows from (7.6.26), (7.6.19), (7.6.16), the formula (2.2.5) in Theorem 2.2.1(b), to-

gether with the definition (7.6.15) of the symbol Σ′, that we have now established the fol-

lowing alternative formulation of the Chebyshev expansion (7.6.14) in Theorem 7.6.3.



162 Mathematics of Approximation

Theorem 7.6.5. For any non-negative integer n,

P =
2
n

n

∑
j=0

′
[

n

∑
�=0

′ P
(

cos
(
�

n
π
))

cos
(

j�
n

π
)]

Tj, P ∈ πn, (7.6.27)

with {Tj : j = 0,1, . . .} denoting the Chebyshev polynomials in (2.2.1), and with the symbol

Σ′ defined by (7.6.15).

7.7 Exercises

Exercise 7.1 By applying Theorem 7.2.2, find the polynomial

f ∗ ∈ A := span{1,x2}
for which it holds that

d∗ :=

√∫ 2

1
[
√

x− f ∗(x)]2dx <

√∫ 2

1
[
√

x− g(x)]2dx, g ∈ A, g �= f ∗,

and then use the error expression (7.1.24) in Theorem 7.1.5 to evaluate d∗.

Exercise 7.2 For the constant polynomials {P∗
w,k : k ∈N} of Exercise 4.10, apply Theorem

7.2.2 to prove the explicit formulation

P∗
w,k(x) = cw,k :=

∫ 1

0
tkw(t)dt, x ∈R, k ∈ N,

and then verify that this formula yields, for each k ∈ N, the same constant polynomials as

those obtained in (a), (b) and (c) of Exercise 4.10.

Exercise 7.3 As a continuation of Exercise 7.2, apply the error expression (7.1.25) in The-

orem 7.1.5 to obtain, for any k ∈ N, an explicit formulation of the error√∫ 1

0
w(x)[xk −P∗

w,k(x)]
2dx,

and then use this formula to evaluate the corresponding approximation error for each of the

cases (a), (b) and (c) of Exercise 4.10.

Exercise 7.4 For any inner product space (X ,〈·, ·〉), prove that a set { f1, . . . , fd} ⊂ X is

linearly independent if and only if the corresponding Gram matrix G, as given by (7.2.7),

is invertible.

[Hint: Observe that the proof in the “only if” direction may be obtained directly from

Theorem 7.2.2.]

Exercise 7.5 Prove that {1,ex,e−x} is a linearly independent set, to deduce that the linear

space

A := span{1,ex,e−x}
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satisfies dim(A) = 3, and {1,ex,e−x} is a basis of A.

[Hint: As in a standard result from linear algebra based on the Wronskian determinant for

the set {1,ex,e−x}, differentiate the identity

α +β ex+ γe−x = 0, x ∈ R,

with {α,β ,γ} ⊂ R denoting a coefficient sequence, twice, and show that the determinant

of the 3× 3 coefficient matrix obtained by setting x = 0 in the resulting system of three

identities, is not equal to zero.]

Exercise 7.6 As a continuation of Exercise 7.5, use the Gram-Schmidt procedure of Theo-

rem 7.3.3, together with the basis {1,ex,e−x} of A, to obtain an orthogonal basis for A with

respect to the inner product space (C[−1,1],〈·, ·〉), where

〈 f ,g〉 :=
∫ 1

−1
(1− x2) f (x)g(x)dx, f ,g ∈C[−1,1].

Exercise 7.7 As a continuation of Exercise 7.6, apply Theorem 7.3.1 to find the function

f ∗ ∈ A satisfying the best approximation condition

d∗ :=

√∫ 1

−1
(1− x2)[x− f ∗(x)]2dx <

√∫ 1

−1
(1− x2)[x− g(x)]2dx, g ∈ A, g �= f ∗,

and then use Theorem 7.3.4 to evaluate the minimum value d∗.

Exercise 7.8 For an inner product space (X ,〈·, ·〉), suppose A is a finite-dimensional sub-

space of X , with dim(A) = d ∈N, and let { f1, . . . , fd} denote an orthogonal basis for A. By

applying Theorem 7.3.4, show that, for any f ∈ X , the infinite series
∞

∑
j=1

[ 〈 f , f j〉
|| f j ||

]2

,

with the norm || · || given by (4.2.15), is convergent, and, moreover, prove the Bessel in-

equality
∞

∑
j=1

[〈 f , f j〉
|| f j ||

]2

� || f ||2, f ∈ X .

Exercise 7.9 Apply the three-term recursion formulation of Theorem 7.4.2 to obtain the se-

quence {P⊥
j : j = 0,1,2,3} of (monic) orthogonal polynomials, with P⊥

j ∈ π̃ j, j = 0,1,2,3,

such that ∫ 1

−1
x2P⊥

j (x)P
⊥
k (x)dx = 0, j,k = 0, . . . ,3; j �= k.

Exercise 7.10 As a continuation of Exercise 7.9, apply Theorems 7.4.1 and 7.3.4 to calcu-

late the minimum value

min
P∈π3

√∫ 1

−1
x2[|x|−P(x)]2dx,
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as well as the corresponding optimal polynomial P = P̃∗
3 ∈ π3.

Exercise 7.11 By using the recursion formulation in Theorem 7.5.1, extend the formulas in

(7.5.26) by computing the Legendre polynomials L⊥
7 and L⊥

8 .

Exercise 7.12 For the function

f (x) = ln(x+ 2), x ∈ [0,2],

by applying (7.5.38) in Theorem 7.5.3, calculate the linear polynomial P̃∗
1 f , with P̃∗

1 :

C[0,2]→ π1 denoting the best L2 polynomial approximation operator on the interval [0,2].

Compute also the corresponding minimum value

d̃∗ :=

√∫ 2

0
[ f (x)− (P̃∗

1 f )(x)]2dx,

and verify that, with P∗
1 f denoting the linear polynomial of Exercise 6.6, the inequalities

d̃∗ <

√∫ 2

0
[ f (x)− (P∗

1 f )(x)]2dx; || f −P∗
1 f ||∞ < || f −P̃∗

1 f ||∞,

are satisfied, where || · ||∞ denotes the maximum norm on [0,2].

Exercise 7.13 Find the minimum value

min
P∈π1

√∫ 1

0
[ex −P(x)]2dx,

as well as the corresponding optimal linear polynomial P̃∗
1 .

Exercise 7.14 By applying Theorem 7.4.3, find the best L2 polynomial approximation P̃∗
6

on [0,2] from π6 to the polynomial function

f (x) = x3(1− 2x4), x ∈ [0,2],

as well as the corresponding minimum value√∫ 2

0
[ f (x)− P̃∗

6 (x)]
2dx.

Exercise 7.15 Prove the following analogue of Theorem 2.2.2 : For n ∈N, and any weight

function w on [a,b], it holds that

min
P∈π̃n

√∫ b

a
w(x)[P(x)]2dx =

√∫ b

a
w(x)[P⊥

n (x)]2dx,

with P⊥
n denoting the orthogonal polynomial of Theorem 7.4.1.

[Hint: Apply Theorem 7.4.3.]

Exercise 7.16 By using Exercise 7.15, find the minimum values
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(a) min
P∈π̃3

√∫ 2

−1
[P(x)]2dx; (b) min

P∈π̃3

√∫ 1

−1

1√
1− x2

[P(x)]2dx,

as well as the corresponding optimal polynomials.

[Hint: Use also Theorems 7.5.1, 7.5.2 and 7.6.1, as well as (7.6.10), (7.6.11).]

Exercise 7.17 Prove that the Legendre polynomials {L⊥
j : j = 0,1, . . .} satisfy the Rodrigues

formula

L⊥
j (x) =

j!
(2 j)!

(
d
dx

) j

(x2 − 1) j, j = 0,1, . . . .

[Hint: Show that the polynomial sequence

Pj(x) :=
j!

(2 j)!

(
d
dx

) j

(x2 − 1) j, j = 0,1, . . . ,

satisfies Pj ∈ π̃ j, j = 0,1, . . ., with also, by using integration by parts, Pj ⊥ π j−1, j = 1,2, . . .,

before applying the uniqueness result implied by Theorem 7.4.1(d).]

Exercise 7.18 Verify that the Legendre polynomial formulation in Exercise 7.17 yields, for

j = 0, . . . ,4, the formulas in the first lines of (7.5.25) and (7.5.26).

Exercise 7.19 Find the minimum value

min
a,b,c∈R

√∫ 1

−1

1√
1− x2

[|x|+ ax2 + bx+ c
]2

dx,

as well as the corresponding optimal values of a,b and c.

[Hint: Apply Theorem 7.6.2.]

Exercise 7.20 Find (a) the Legendre expansion with respect to the interval [−1,1] in π6;

(b) the Chebyshev expansion in π6, of the polynomial

P(x) = x3,

by applying, respectively, Theorems 7.5.4 and 7.6.3. Verify the result of (b) by an applica-

tion of Theorem 7.6.5.



Chapter 8

Interpolatory Quadrature

It is well-known that if the anti-derivative F of a given function f ∈C[a,b] is available, then

the definite integral of f on [a,b] can be evaluated by applying the fundamental theorem of

calculus, namely: ∫ b

a
f (x)dx = F(b)−F(a).

Unfortunately, with the exception of only a handful of functions f , it is not feasible to

find their anti-derivatives F . Examples of functions that do not have simple expressions of

anti-derivatives include

f (x) = ex2
; f (x) =

sinx
x

; f (x) =
1

lnx
; f (x) =

√
1+ x3.

For this reason, only numerical methods can be used to approximate
∫ b

a
f (x)dx within

certain desirable error tolerance. In this chapter, we investigate the method of interpolatory

quadrature, by considering definite integrals of the polynomial interpolant of f ∈ C[a,b],

as numerical approximation of the definite integral of f .

8.1 General formulation, exactness and convergence

For a bounded interval [a,b] and a weight function w on [a,b] satisfying the conditions

(4.2.8) and (4.2.9), we define the functional I : C[a,b]→ R as the weighted integral

I [ f ] :=
∫ b

a
w(x) f (x)dx, f ∈C[a,b]. (8.1.1)

Next, for any non-negative integer n, we denote by

�n := {xn,0, . . . ,xn,n} (8.1.2)

a sequence of n+ 1 distinct points in [a,b] such that

a � xn,0 < xn,1 < · · ·< xn,n � b, (8.1.3)

167
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in terms of which we introduce the numerical approximation method

I [ f ]≈ I [P I
n f ], f ∈C[a,b], (8.1.4)

where P I
n : C[a,b]→ πn is the Lagrange polynomial interpolation operator with respect to

the interpolation points �n, as defined in (5.1.2). Hence, with the functional Qn : C[a,b]→
R defined by

Qn[ f ] := I [P I
n f ], f ∈C[a,b], (8.1.5)

the numerical approximation method (8.1.4) has the equivalent formulation

I [ f ]≈ Qn[ f ], f ∈C[a,b]. (8.1.6)

The functional Qn defined by (8.1.5) is called an interpolatory quadrature rule (or formula).

Observe from (8.1.5) and (8.1.1), together with (5.1.2) and the Lagrange interpolation for-

mula (1.2.5) in Theorem 1.2.2, that, for any f ∈C[a,b],

Qn[ f ] =
∫ b

a
w(x)

[
n

∑
j=0

f (xn, j)Ln, j(x)

]
dx =

n

∑
j=0

f (xn, j)

[∫ b

a
w(x)Ln, j(x)dx

]
,

and thus

Qn[ f ] =
n

∑
j=0

wn, j f (xn, j), (8.1.7)

where

wn, j :=
∫ b

a
w(x)Ln, j(x)dx, j = 0, . . . ,n, (8.1.8)

with {Ln, j : j = 0, . . . ,n} denoting, as given in (1.2.1), the Lagrange fundamental polyno-

mials with respect to the sequence �n. The real numbers {wn,0, . . . ,wn,n}, as defined by

(8.1.8), are called the weights of the interpolatory quadrature rule Qn.

Observe from (8.1.1) and (8.1.7) that the functionals I and Qn are both linear, that is,

I [λ f + μg] = λI [ f ]+ μI [g], λ ,μ ∈ R, f ,g ∈C[a,b]; (8.1.9)

Qn[λ f + μg] = λQn[ f ]+ μQn[g], λ ,μ ∈ R, f ,g ∈C[a,b]. (8.1.10)

By using the definition (8.1.8), together with the identity (1.2.8) in Theorem 1.2.3, we

deduce that
n

∑
j=0

wn, j =
n

∑
j=0

[∫ b

a
w(x)Ln, j(x)

]
dx =

∫ b

a
w(x)

[
n

∑
j=0

Ln, j(x)

]
dx =

∫ b

a
w(x)dx. (8.1.11)

Suppose, in an application of the quadrature rule Qn as in (8.1.5), as a result of measuring

errors, or computer rounding errors, we are instead actually computing Qn[ f̃ ], where

| f (xn, j)− f̃ (xn, j)|� ε, j = 0, . . . ,n, (8.1.12)
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for a given tolerance ε > 0, and thus, from (8.1.10) and (8.1.7),

|Qn[ f ]−Qn[ f̃ ]|= |Qn[ f − f̃ ]|=
∣∣∣∣∣ n

∑
j=0

wn, j[ f (xn, j)− f̃ (xn, j)]

∣∣∣∣∣
�

n

∑
j=0

|wn, j| | f (xn, j)− f̃ (xn, j)|� ε
n

∑
j=0

|wn, j|. (8.1.13)

Since, ideally, we would like the absolute difference |Qn[ f ]−Qn[ f̃ ]| to be “small”, we see

from (8.1.13) that it reflects favourably on an interpolatory quadrature rule Qn if the points

�n are chosen in such a way that the quantity
n

∑
j=0

|wn, j| is minimized. Now observe from

(8.1.11) and (4.2.8) that
n

∑
j=0

|wn, j|�
n

∑
j=0

wn, j =

∫ b

a
w(x)dx > 0,

that is,
n

∑
j=0

|wn, j|�
∫ b

a
w(x)dx, (8.1.14)

for any choice of �n as in (8.1.2) and (8.1.3). Moreover,

wn, j � 0, j = 0, . . . ,n ⇒
n

∑
j=0

|wn, j|=
n

∑
j=0

wn, j =
∫ b

a
w(x)dx, (8.1.15)

which, together with (8.1.14), and the fact that
∫ b

a
w(x)dx is independent of �n, implies

that, if the points �n are chosen in such a way that the weight sequence is non-negative,

that is,

wn, j � 0, j = 0, . . . ,n, (8.1.16)

then the quantity
n

∑
j=0

|wn, j| in the right hand side of the inequality (8.1.13) is indeed mini-

mized.

Next, we note from (8.1.5), together with the exactness on πn of the approximation operator

P I
n, as given in Theorem 5.1.1(b), that

Qn[P] = I [P], P ∈ πn. (8.1.17)

The degree of exactness of an interpolatory quadrature rule Qn is now defined as the largest

non-negative integer m for which it holds that

Qn[P] = I [P], P ∈ πm. (8.1.18)

As an immediate consequence of the fact that (8.1.17) is satisfied, we then have the follow-

ing minimum degree of exactness in interpolatory quadrature.
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Theorem 8.1.1. For any non-negative integer n, the degree of exactness m of an interpola-

tory quadrature rule Qn as in (8.1.5) satisfies the inequality

m � n. (8.1.19)

We proceed to apply Theorem 6.4.1 and Theorem 8.1.1 in order to show that the non-

negative weight condition (8.1.16) guarantees interpolatory quadrature rule convergence

on C[a,b], as follows.

Theorem 8.1.2. Suppose the sequence {�n : n = 0,1, . . .}, as in (8.1.2), (8.1.3), is cho-

sen in such a way that the corresponding sequence {Qn : n = 0,1, . . .} of interpolatory

quadrature rules, as defined by (8.1.5), and as given in terms of weights in (8.1.7), (8.1.8),

satisfies the non-negative weight condition (8.1.16) for n = 0,1, . . .. Then:

(a) Convergence on C[a,b] holds, that is,

|I [ f ]−Qn[ f ]| → 0, n → ∞, f ∈C[a,b], (8.1.20)

with I [ f ] denoting the weighted integral in (8.1.1).

(b) If f ∈Ck[a,b] for an integer k ∈ N, the convergence rate result

|I [ f ]−Qn[ f ]|� 2
[∫ b

a
w(x)dx

]
(b− a)k (mn − k)!

(mn)!
|| f (k)||∞, n = k,k+ 1, . . . ,

(8.1.21)

holds, where, for n = 0,1, . . ., the non-negative integer mn denotes the degree of exact-

ness of Qn, so that, according to Theorem 8.1.1,

mn � n, n = 0,1, . . . , (8.1.22)

and with, in particular,

|I [ f ]−Qn[ f ]|� 2
[∫ b

a
w(x)dx

]
b− a
mn

|| f ′||∞, n = 1,2, . . . , f ∈C1[a,b]. (8.1.23)

Proof. (a) Let f ∈ C[a,b], and, for n = 0,1, . . ., and with mn denoting the degree of ex-

actness of Qn, let P∗
mn

: C[a,b] → πmn denote the sequence of best uniform polynomial

approximation operators, as obtained by replacing n by mn in the definition (6.4.1). Then

P∗
mn

f ∈ πmn , n = 0,1, . . . ,

and thus, since Qn has degree of exactness mn,

I [P∗
mn f ] = Qn[P

∗
mn f ], n = 0,1, . . . . (8.1.24)
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By using, consecutively, (8.1.24), (8.1.9), (8.1.10), (8.1.1), (8.1.7), the non-negativity

(4.2.9) on (a,b) of the weight function w, (8.1.16) and (8.1.11), we deduce that, for

n = 0,1, . . .,

|I [ f ]−Qn[ f ]|= |(I [ f ]−I [P∗
mn

f ])+ (Qn[P
∗
mn

f ]−Qn[ f ])|

� |I [ f ]−I [P∗
mn

f ]|+ |Qn[P
∗
mn

f ]−Qn[ f ]|

= |I [ f −P∗
mn f ]|+ |Qn[P

∗
mn f − f ]|

=

∣∣∣∣∫ b

a
w(x)[ f (x)− (P∗

mn f )(x)]dx
∣∣∣∣+
∣∣∣∣∣ n

∑
j=0

wn, j[(P
∗
mn f )(xn, j)− f (xn, j)]

∣∣∣∣∣
�
∫ b

a
w(x)| f (x)− (P∗

mn f )(x)|dx+
n

∑
j=0

wn, j|(P∗
mn f )(xn, j)− f (xn, j)|

� || f −P∗
mn

f ||∞
[∫ b

a
w(x)dx+

n

∑
j=0

wn, j

]

= 2
[∫ b

a
w(x)dx

]
|| f −P∗

mn
f ||∞. (8.1.25)

Now observe from (8.1.22) that

πn ⊂ πmn , n = 0,1, . . . , (8.1.26)

and thus

|| f −P∗
mn f ||∞ = min

P∈πmn
|| f −P||∞ � min

P∈πn
|| f −P||∞ = || f −P∗

n f ||∞, (8.1.27)

for n = 0,1, . . .. It follows from (8.1.25) and (8.1.27) that

|I [ f ]−Qn[ f ]|� 2
[∫ b

a
w(x)dx

]
|| f −P∗

n f ||∞, n = 0,1, . . . . (8.1.28)

The convergence result (8.1.20) is now an immediate consequence of (8.1.28), together

with the uniform convergence result (6.4.2) in Theorem 6.4.1(b).

(b) Suppose f ∈ Ck[a,b] for an integer k ∈ N, and let n ∈ {k,k+ 1, . . .}. But then (8.1.22)

implies mn ∈ {k,k + 1, . . .}, so that we may apply the convergence rate result (6.4.3) in

Theorem 6.4.1(c) to deduce that

|| f −P∗
mn

f ||∞ � (b− a)k (mn − k)!
(mn)!

|| f (k)||∞,

which, together with (8.1.25), then yields (8.1.21). Finally observe that (8.1.23) is obtained

by setting k = 1 in (8.1.21). �
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Observe from (8.1.22) that, in the right hand side of the convergence rate result (8.1.21) in

Theorem 8.1.2(b), for any k ∈ N, and n = k,k+ 1, . . .,

(mn − k)!
(mn)!

=
1

(mn)(mn − 1) . . .(mn − k+ 1)

� 1
n(n− 1) . . .(n− k+ 1)

=
(n− k)!

n!
, (8.1.29)

which, together with (8.1.21), yields the inequality

|I [ f ]−Qn[ f ]|� 2
[∫ b

a
w(x)dx

]
(b− a)k (n− k)!

n!
|| f (k)||∞, n = k,k+ 1, . . . . (8.1.30)

We proceed in the next section to construct an interpolatory quadrature rule sequence {Qn :

n= 0,1, . . .} satisfying the conditions of Theorem 8.1.2, and with, moreover, corresponding

degrees of exactness mn,n = 0,1, . . ., which significantly exceed the lower bound (8.1.22)

in Theorem 8.1.2(b).

8.2 Gauss quadrature

According to (8.1.17), and as stated in Theorem 8.1.1, the degree of exactness m of an

interpolatory quadrature formula Qn satisfies the inequality m � n for any choice of the

sequence �n in (8.1.2), (8.1.3). Noting from (8.1.2) that the sequence �n has precisely

n+ 1 (distinct) points, we proceed to show that there exists an optimal choice of �n for

which the corresponding interpolatory quadrature formula Qn has degree of exactness

m = n+(n+ 1) = 2n+ 1. (8.2.1)

We shall rely on the following result on the zeros of the orthogonal polynomials studied in

Chapter 7.

Theorem 8.2.1. For j ∈ N, the orthogonal polynomial P⊥
j in Theorem 7.4.1 has precisely

j distinct real zeros in (a,b), each of which corresponds to a sign change of P⊥
j .

Proof. Let the non-negative integer r denote the number of distinct real zeros in (a,b)

of P⊥
j , such that each such zero corresponds to a sign change of P⊥

j . Our proof will be

complete if we can show that

r = j. (8.2.2)

Using a proof by contradiction, suppose

r � j− 1, (8.2.3)
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and, if r � 1, suppose that the sign changes in (a,b) of P⊥
j occur at the points {x1, . . . ,xr},

where

a < x1 < · · ·< xr < b. (8.2.4)

For the polynomial

Q(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if r = 0;

r

∏
k=1

(xk − x), if r � 1,

(8.2.5)

it follows from the assumption (8.2.3) that Q ∈ πr ⊂ π j−1, so that Q ∈ π j−1, and thus, from

(7.4.4) in Theorem 7.4.1(c), ∫ b

a
w(x)P⊥

j (x)Q(x)dx = 0. (8.2.6)

Next, we observe from (8.2.5), together with the definitions of the non-negative integer r

and the sequence {x1, . . . ,xr} if r � 1, that the product P⊥
j (x)Q(x) is of one sign on the set

(a,b), if r = 0;

(a,b)\ {x1, . . . ,xr}, if r � 1,

⎫⎪⎪⎬⎪⎪⎭
and thus, by recalling also the properties (4.2.8) and (4.2.9) of the weight function w, we

deduce that ∫ b

a
w(x)P⊥

j (x)Q(x)dx �= 0,

which contradicts (8.2.6). Hence (8.2.3) is not true, that is, r � j. But, according to (7.4.2)

in Theorem 7.4.1(a), the polynomial P⊥
j can have at most j distinct zeros in (a,b), and thus

r � j, which, together with r � j, then yields the desired result (8.2.2). �
Our next result now specifies the choice of �n which yields the degree of exactness (8.2.1).

Theorem 8.2.2. For any non-negative integer n, let the sequence �n in (8.1.2) be chosen,

as guaranteed by Theorem 8.2.1, as the n+ 1 distinct zeros in (a,b), ordered as in (8.1.3),

of the orthogonal polynomial P⊥
n+1 in Theorem 7.4.1, with weight function w on [a,b] as

in (8.1.1). Then the corresponding interpolatory quadrature rule Qn =: QG
n , as given by

(8.1.5), has degree of exactness

m = 2n+ 1. (8.2.7)



174 Mathematics of Approximation

Proof. Our first step is to show that m � 2n+ 1, for which, according to Theorem 8.1.1, it

will suffice to prove that, if P ∈ π2n+1, with deg(P)� n+ 1, then

I [P] = QG
n [P]. (8.2.8)

Suppose therefore that P is a polynomial, with

n+ 1 � deg(P)� 2n+ 1. (8.2.9)

Since (7.4.2) in Theorem 7.4.1(a) gives

deg
(

P⊥
n+1

)
= n+ 1, (8.2.10)

we may now deduce from the polynomial division theorem that there exist polynomials Q

and R, with deg(R)< deg(P⊥
n+1) = n+ 1, or R is the zero polynomial, that is,

R ∈ πn, (8.2.11)

such that

P = QP⊥
n+1 +R. (8.2.12)

Observe from (8.2.12) that the assumption that Q is the zero polynomial yields P = R,

which is not possible, by virtue of the first inequality in (8.2.9), together with (8.2.11).

Hence Q is not the zero polynomial, according to which we may deduce from the second

inequality in (8.2.9), together with (8.2.12), (8.2.10) and (8.2.11), that

2n+ 1 � deg(P) = deg(QP⊥
n+1 +R)

= deg(QP⊥
n+1) = deg(Q)+ deg(P⊥

n+1) = deg(Q)+ n+ 1,

and thus

deg(Q)� n,

that is,

Q ∈ πn. (8.2.13)

Next, we apply (8.2.12), (8.1.9) and (8.1.1) to obtain

I [P] = I [QP⊥
n+1]+I [R] =

∫ b

a
w(x)P⊥

n+1(x)Q(x)dx+I [R]. (8.2.14)

But, from (4.2.10) and (8.2.13), together with (7.4.4) in Theorem 7.4.1(c),∫ b

a
w(x)P⊥

n+1(x)Q(x)dx = 〈P⊥
n+1,Q〉2,w = 0,
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which, together with (8.2.14), yields

I [P] = I [R]. (8.2.15)

By using (8.2.12), (8.1.10) and (8.1.7), we furthermore deduce that

QG
n [P] = QG

n [QP⊥
n+1]+QG

n [R] =
n

∑
j=0

wn, jQ(xn, j)P⊥
n+1(xn, j)+QG

n [R]. (8.2.16)

Since {xn,0, . . . ,xn,n} are the zeros of the polynomial P⊥
n+1, it follows that

n

∑
j=0

wn, jQ(xn, j)P⊥
n+1(xn, j) = 0,

which, together with (8.2.16), gives

QG
n [P] = QG

n [R]. (8.2.17)

Finally, observe from (8.2.11) and (8.1.17) that

QG
n [R] = I [R]. (8.2.18)

The desired result (8.2.8) then follows from (8.2.15), (8.2.17) and (8.2.18).

We have therefore now shown that the exactness condition (8.1.18) holds for m = 2n+ 1,

and thus m � 2n+ 1. Hence, to establish the fact that the degree of exactness result (8.2.7)

is satisfied, it remains to find a polynomial P̃ of degree 2n+ 2 such that

QG
n [P̃] �= I [P̃]. (8.2.19)

To this end, we let

P̃ := (P⊥
n+1)

2,

according to which (7.4.2) in Theorem 7.4.1(a) then implies that deg(P̃) = 2n+ 2. Also,

from (8.1.7), and the fact that {xn,0, . . . ,xn,n} are the zeros of P⊥
n+1, we have

QG
n [P̃] =

n

∑
j=0

wn, j[P⊥
n+1(xn, j)]

2 = 0. (8.2.20)

Moreover, (8.1.1) and (4.2.9) yield

I [P̃] =
∫ b

a
w(x)[P⊥

n+1(x)]
2dx > 0,

which, together with (8.2.20), then implies the desired result (8.2.19). �
The interpolatory quadrature rule QG

n in Theorem 8.2.2 is known as the Gauss quadrature

rule of degree n for the weight function w on the interval [a,b].

We proceed to show that Gauss quadrature rules satisfy the condition (8.1.16) of non-

negative weights, as required in Theorem 8.1.2.

Theorem 8.2.3. For any non-negative integer n, let QG
n denote the Gauss quadrature rule

in Theorem 8.2.2. Then the corresponding weights {wn,0, . . . ,wn,n}, as in (8.1.7), (8.1.8),

satisfy the positivity condition

wn, j > 0, j = 0, . . . ,n. (8.2.21)
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Proof. For any k ∈ {0, . . . ,n}, define the polynomial

P(x) := [Ln,k(x)]2, (8.2.22)

where Ln,k denotes the Lagrange fundamental polynomial with respect to the sequence

{xn,0, . . . ,xn,n} in Theorem 8.2.2, as defined, according to (1.2.1), by

Ln,k(x) :=
n

∏
k �=�=0

x− xn,�

xn,k − xn,�
.

Since deg(Ln,k) = n, it follows from (8.2.22) that deg(P) = 2n, and thus

P ∈ π2n. (8.2.23)

Also, from (1.2.3) in Theorem 1.2.1(a), together with (8.2.22), we obtain

P(xn, j) = δk− j, j = 0, . . . ,n. (8.2.24)

From the degree of exactness m = 2n+ 1 of the Gauss quadrature rule QG
n , as given in

(8.2.7) of Theorem 8.2.2, and since π2n ⊂ π2n+1, we deduce from (8.2.23) that

QG
n [P] = I [P]. (8.2.25)

It then follows from (4.2.9), (8.1.1), (8.2.22), (8.2.25), (8.1.7) and (8.2.24) that

0 <

∫ b

a
w(x)[Ln,k(x)]2dx =

n

∑
j=0

wn, jP(xn, j) =
n

∑
j=0

wn, jδk− j = wn,k,

and thereby completing our proof of (8.2.21). �
Observe from Theorems 8.2.2 and 8.2.3 that the Gauss quadrature formula QG

n satisfies the

conditions of Theorem 8.1.2, with

mn = 2n+ 1, n = 0,1, . . . , (8.2.26)

and thus we immediately have the following result as a special case of Theorem 8.1.2.

Theorem 8.2.4. Let {QG
n : n = 0,1, . . .} denote the sequence of Gauss quadrature rules of

Theorem 8.2.2. Then:

(a) Convergence on C[a,b] holds, that is,

|I [ f ]−QG
n [ f ]| → 0, n → ∞, f ∈C[a,b], (8.2.27)

with I [ f ] denoting the weighted integral in (8.1.1).

(b) If f ∈Ck[a,b] for an integer k ∈ N, the convergence rate result

|I [ f ]−QG
n [ f ]|� 2

[∫ b

a
w(x)dx

]
(b− a)k (2n+ 1− k)!

(2n+ 1)!
|| f (k)||∞, n = k,k+ 1, . . . ,

(8.2.28)

holds, with, in particular,

|I [ f ]−QG
n [ f ]|� 2

[∫ b

a
w(x)dx

]
b− a

2n+ 1
|| f ′||∞, n = 1,2, . . . , f ∈C1[a,b]. (8.2.29)
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A remarkable implication of the convergence result (8.2.27) in Theorem 8.2.4(a) is the

following. Let the sequence {�n : n = 0,1, . . .} be chosen as in Theorems 8.2.2 and 8.2.4.

As mentioned immediately after Example 3.1.3, there exists a function f ∈C[a,b] such that

|| f −P I
n f ||∞ → ∞, n → ∞, (8.2.30)

with {P I
n : n = 0,1, . . .} denoting the sequence of Lagrange interpolation operators, as

defined in (5.1.2), with respect to the interpolation point sequence {�n : n = 0,1, . . .}.

Nevertheless, according to (8.2.27) in Theorem 8.2.4(a), the corresponding quadrature for-

mula sequence converges for this function f , that is, by using also (8.1.5),

|I [ f ]−I [P I
n f ]|= |I [ f ]−QG

n [ f ]| → 0, n → ∞. (8.2.31)

The specific Gauss quadrature formula QG
n obtained by choosing the weight function w on

[a,b] as given by (7.5.31), is known as the Gauss-Legendre quadrature rule QGL
n , that is,

QGL
n := QG

n , if w(x) = 1, x ∈ [a,b]. (8.2.32)

Example 8.2.1. Consider the problem of designing the Gauss-Legendre quadrature rule

QGL
1 for the integral

I [ f ] =
∫ 2

0
f (x)dx, (8.2.33)

where f ∈C[0,2]. It follows from Theorem 8.2.2, together with (8.1.7), that

QGL
1 [ f ] = w1,0 f (x1,0)+w1,1 f (x1,1), (8.2.34)

where {x1,0,x1,1} are the zeros in (0,2) of the orthogonal polynomial P⊥
2 of Theorem 7.5.2,

as guaranteed by Theorem 8.2.1, and where, from (8.1.8), (8.2.32) and (1.2.1), the weights

{w1,0,w1,1} are given by the formulas

w1,0 =

∫ 2

0

x− x1,1

x1,0 − x1,1
dx; (8.2.35)

w1,1 =

∫ 2

0

x− x1,0

x1,1 − x1,0
dx. (8.2.36)

By using the formula (7.5.32) in Theorem 7.5.2, together with (7.5.26), we obtain the

orthogonal polynomial

P⊥
2 (x) = L⊥

2 (x− 1) = (x− 1)2 − 1
3 = x2 − 2x+ 2

3 ,

the zeros of which are given by

x1,0 = 1− 1√
3
; x1,1 = 1+ 1√

3
, (8.2.37)

both of which are indeed in the interval (0,2), as guaranteed by Theorem 8.2.1.
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Next, we substitute (8.2.37) into (8.2.35) and (8.2.36) to obtain

w1,0 =
∫ 2

0

x− (1+ 1√
3
)

(1− 1√
3
)− (1+ 1√

3
)

dx = −
√

3
2

[
(x− (1+ 1√

3
))2

2

]2

0

= 1; (8.2.38)

w1,1 =

∫ 2

0

x− (1− 1√
3
)

(1+ 1√
3
)− (1− 1√

3
)

dx =

√
3

2

[
(x− (1− 1√

3
))2

2

]2

0

= 1. (8.2.39)

By inserting (8.2.37), (8.2.38) and (8.2.39) into (8.2.34), we obtain the Gauss-Legendre

quadrature rule

QGL
1 [ f ] = f

(
1− 1√

3

)
+ f

(
1+

1√
3

)
. (8.2.40)

According to (8.2.7) in Theorem 8.2.2, the quadrature rule QGL
1 has degree of exactness

m = 3, that is,

QGL
1 [P] =

∫ 2

0
P(x)dx, P ∈ π3, (8.2.41)

an illustration of which is provided by the choice P(x) = x3, in which case∫ 2

0
P(x)dx =

∫ 2

0
x3dx = 4,

whereas (8.2.40) gives

QGL
1 [P] =

(
1− 1√

3

)3

+

(
1+

1√
3

)3

=

(
1−

√
3+ 1− 1

3
√

3

)
+

(
1+

√
3+ 1+

1
3
√

3

)
= 4,

which verifies (8.2.41) for this case.

Next, for the choice f (x) = ex, we obtain∫ 2

0
f (x)dx =

∫ 2

0
exdx = e2 − 1 ≈ 6.389056, (8.2.42)

whereas (8.2.40) yields

QGL
1 [ f ] = e1− 1√

3 + e1+ 1√
3 ≈ 6.368108, (8.2.43)

and thus the corresponding quadrature error is given by∣∣∣∣∫ 2

0
f (x)dx−QGL

1 [ f ]
∣∣∣∣ ≈ 2.095× 10−2, (8.2.44)

which illustrates the accuracy of the quadrature rule QGL
1 for this choice of f . �
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8.3 The Clenshaw-Curtis quadrature rule

The Gauss-Legendre quadrature rule (8.2.32) for the numerical approximation of the inte-

gral I [ f ] in (8.1.1), for the weight function w as given by (7.5.31), that is,

I [ f ] :=
∫ b

a
f (x)dx, f ∈C[a,b],

is an interpolatory quadrature rule such that the corresponding weights satisfy the non-

negativity condition (8.1.16), and for which the convergence results of Theorem 8.1.2

therefore hold. As a further example of this kind, we present in this section, for the nu-

merical approximation of the integral I [ f ], the Clenshaw-Curtis quadrature rule QCC
n , as

defined for any positive integer n by

QCC
n [ f ] := I [P I

n f ] =
∫ b

a
(P I

n f )(x)dx, f ∈C[a,b], (8.3.1)

where P I
n : C[a,b]→ πn is the Lagrange polynomial interpolation operator with respect to

the interpolation points

x j = xCC
n, j := 1

2(b− a)ξn, j +
1
2(a+ b), j = 0, . . . ,n, (8.3.2)

where, as in (7.6.16),

ξn, j := cos
(

n− j
n

π
)
, j = 0, . . . ,n, (8.3.3)

and thus

a = xCC
n,0 < xCC

n,1 < · · ·< xCC
n,n = b. (8.3.4)

Recall from (2.2.18), (2.2.19), (2.2.20) that {ξn, j : j = 0, . . . ,n} are the points in [−1,1]

where the Chebyshev polynomial Tn alternatively attains its extreme values 1 and −1. It

follows from (8.3.1) and (8.3.2), together with (8.1.7) and (8.1.8), that

QCC
n [ f ] =

n

∑
j=0

wn, j f (xCC
n, j ), f ∈C[a,b], (8.3.5)

where

wn, j :=
∫ b

a
Ln, j(x)dx, j = 0, . . . ,n, (8.3.6)

with {Ln, j : j = 0, . . . ,n} denoting the Lagrange fundamental polynomials in πn, as ob-

tained by setting x j = xCC
n, j , j = 0, . . . ,n, in (1.2.1), so that, according to (1.2.3) in Theo-

rem 1.2.1,

Ln, j(xCC
n,k) = δ j−k, j,k = 0, . . . ,n. (8.3.7)
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We proceed to find explicit formulations of the Clenshaw-Curtis weights {wn, j : j =

0, . . . ,n} in (8.3.5), (8.3.6). To this end, we first observe from (8.3.6), together with the

one-to-one mapping (2.2.29), (2.2.30) between the intervals [−1,1] and [a,b], that

wn, j =
1
2
(b− a)

∫ 1

−1
L̃n, j(t)dt, j = 0, . . . ,n, (8.3.8)

where

L̃n, j(t) := Ln, j
( 1

2 (b− a)t+ 1
2 (a+ b)

)
, j = 0, . . . ,n, (8.3.9)

and thus, by using also (8.3.7) and (8.3.2),

L̃n, j(ξn,k) = δ j−k, j,k = 0, . . . ,n. (8.3.10)

Since Ln, j ∈ πn, j = 0, . . . ,n, it follows from (8.3.9) that L̃n, j ∈ πn, j = 0, . . . ,n, so that we

may apply the Chebyshev expansion (7.6.27) in Theorem 7.6.5, together with (8.3.3) and

(8.3.10), to deduce that, for j = 0, . . . ,n,

L̃n, j =
2
n

n

∑
k=0

′
[

n

∑
�=0

′ L̃n, j

(
cos
(
�

n
π
))

cos
(

k�
n

π
)]

Tk

=
2
n

n

∑
k=0

′
[

n

∑
�=0

′ L̃n, j

(
cos
(

n− �

n
π
))

cos
(

k(n− �)

n
π
)]

Tk

=
2
n

n

∑
k=0

′
[

n

∑
�=0

′ L̃n, j(ξn,�)cos
(

k(n− �)

n
π
)]

Tk

=
2
n

n

∑
k=0

′
[

n

∑
�=0

′ δ j−� cos
(

k(n− �)

n
π
)]

Tk. (8.3.11)

By recalling the definition (7.6.15) of the symbol Σ′, as well as the fact that the first line of

(2.2.1) gives T0(x) := 1, we deduce from (8.3.11) that

L̃n,0 =
1
n

n

∑
k=0

′ (−1)kTk =
1
2n

[
1+ 2

n−1

∑
k=1

(−1)kTk +(−1)nTn

]
; (8.3.12)

L̃n, j =
2
n

n

∑
k=0

′ cos
(

k(n− j)
n

π
)

Tk =
1
n

[
1+ 2

n−1

∑
k=1

cos
(

k(n− j)
n

π
)

Tk +(−1)n− jTn

]
,

j = 1, . . . ,n− 1 (if n � 2); (8.3.13)

L̃n,n =
1
n

n

∑
k=0

′ Tk =
1
2n

[
1+ 2

n−1

∑
k=1

Tk +Tn

]
. (8.3.14)
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Next, we use the formula (2.2.5) in Theorem 2.2.1(b), together with the one-to-one map-

ping (2.2.11), (2.2.12) between the intervals [0,π ] and [−1,1], to obtain by means of inte-

gration by parts, for any integer k � 2,∫ 1

−1
Tk(t)dt =

∫ π

0
cos(kθ )sin θdθ

=
[
cos(kθ )(−cosθ )

]π

0
− k

∫ π

0
sin(kθ )cosθdθ

= [(−1)k + 1]− k
{[

sin(kθ )sin θ
]π

0
− k

∫ π

0
cos(kθ )sin θdθ

}
= 1+(−1)k+ k2

∫ 1

−1
Tk(t)dt,

and thus ∫ 1

−1
Tk(t)dt =

1+(−1)k

1− k2 , k = 2,3, . . . . (8.3.15)

Also, observe from the first line of (2.2.1) that∫ 1

−1
T0(t)dt =

∫ 1

−1
dt = 2;

∫ 1

−1
T1(t)dt =

∫ 1

−1
tdt = 0,

which, together with (8.3.15), yields

∫ 1

−1
Tk(t)dt =

⎧⎨⎩
2

1− k2 , if k is even,

0, if k is odd,

⎫⎬⎭k = 0,1, . . . . (8.3.16)

It follows from (8.3.12), (8.3.13), (8.3.14) and (8.3.16) that∫ 1

−1
L̃n,0(t)dt =

1
n

⎡⎣1− 2

 1

2 (n−1)�
∑
k=1

1
4k2 − 1

+
1
2
(−1)n

∫ 1

−1
Tn(t)dt

⎤⎦ ; (8.3.17)

∫ 1

−1
L̃n, j(t)dt =

2
n

⎡⎣1− 2

 1

2 (n−1)�
∑
k=1

1
4k2 − 1

cos
(

2 jk
n

π
)
+

1
2
(−1)n− j

∫ 1

−1
Tn(t)dt

⎤⎦ ,
j = 1, . . . ,n− 1 (if n � 2); (8.3.18)

∫ 1

−1
L̃n,n(t)dt =

1
n

⎡⎣1− 2

 1

2 (n−1)�
∑
k=1

1
4k2 − 1

+
1
2

∫ 1

−1
Tn(t)dt

⎤⎦ . (8.3.19)

Now observe that, for any positive integer μ ,
μ

∑
k=1

1
4k2 − 1

=
1
2

μ

∑
k=1

[
1

2k− 1
− 1

2k+ 1

]

=
1
2

[(
1− 1

3

)
+

(
1
3
− 1

5

)
+ · · ·+

(
1

2μ − 1
− 1

2μ + 1

)]
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=
1
2

[
1− 1

2μ + 1

]
=

μ
2μ + 1

,

that is,
μ

∑
k=1

1
4k2 − 1

=
μ

2μ + 1
, μ ∈ N, (8.3.20)

according to which


 1
2 (n−1)�
∑
k=1

1
4k2 − 1

=

⎧⎪⎪⎨⎪⎪⎩
1
2 (n− 2)

(n− 2)+ 1
=

1
2

n− 2
n− 1

, if n is even, n � 4;
1
2 (n− 1)

(n− 1)+ 1
=

1
2

n− 1
n

, if n is odd, n � 3.
(8.3.21)

By combining (8.3.8) and (8.3.16)–(8.3.21), we obtain the following explicit formulation

for the weights of the Clenshaw-Curtis quadrature rule, where we adopt once again the

convention
j1

∑
j= j0

α j := 0, if j1 < j0.

Theorem 8.3.1. For any positive integer n, the Clenshaw-Curtis quadrature rule QCC
n , as

given by (8.3.5), (8.3.6), (8.3.2), (8.3.3), has weights {wn, j : j = 0, . . . ,n} given explicitly

by

(a) if n is even,

wn,0 = wn,n =
b− a

2(n2 − 1)
; (8.3.22)

wn, j =
b− a

n

⎡⎣1− 2

1
2 (n−2)

∑
k=1

1
4k2 − 1

cos
(

2 jk
n

π
)
+

(−1) j

1− n2

⎤⎦ ,
j = 1, . . . ,n− 1 (if n � 2); (8.3.23)

(b) if n is odd,

wn,0 = wn,n =
b− a
2n2 ; (8.3.24)

wn, j =
b− a

n

⎡⎣1− 2

1
2 (n−1)

∑
k=1

1
4k2 − 1

cos
(

2 jk
n

π
)⎤⎦ ,

j = 1, . . . ,n− 1 (if n � 3). (8.3.25)

We proceed to show that the weights {wn, j : j = 0, . . . ,n} in Theorem 8.3.1 are positive.

First, observe from (8.3.22) and (8.3.24) that

wn,0 > 0, wn,n > 0, for n = 1,2, . . . . (8.3.26)
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Next, if n is even, with n� 4, we use (8.3.21) to deduce from (8.3.23) that, for j = 1, . . . ,n−
1,

wn, j �
b− a

n

⎡⎣1− 2

1
2 (n−2)

∑
k=1

1
4k2 − 1

− 1
n2 − 1

⎤⎦
=

b− a
n

[
1− n− 2

n− 1
− 1

n2 − 1

]
=

b− a
n2 − 1

> 0, (8.3.27)

whereas

w2,1 =
b− a

2

[
1+

1
3

]
=

2(b− a)
3

> 0. (8.3.28)

Similarly, if n is odd, with n � 3, we use (8.3.21) to deduce from (8.3.25) that

wn, j �
b− a

n

⎡⎣1− 2

1
2 (n−1)

∑
k=1

1
4k2 − 1

⎤⎦=
b− a

n

[
1− n− 1

n

]
=

b− a
n2 > 0. (8.3.29)

By combining (8.3.26)–(8.3.29), it follows that we have proved the following result.

Theorem 8.3.2. For any positive integer n, the weights {wn, j : j = 0, . . . ,n} of the

Clenshaw-Curtis quadrature rule QCC
n , as given in Theorem 8.3.1, are positive, that is,

wn, j > 0, j = 0, . . . ,n. (8.3.30)

Our next step is to find, for any n ∈ N, the degree of exactness mn of the Clenshaw-Curtis

quadrature rule. Since QCC
n is, according to (8.3.1), an interpolatory quadrature rule, we

deduce from Theorem 8.1.1 that

mn � n, n = 1,2, . . . . (8.3.31)

Hence we proceed to investigate the validity of the statement∫ b

a
P(x)dx = QCC

n [P], P ∈ πn+1. (8.3.32)

To this end, for any positive integer n, let P ∈ πn+1, with deg(P) = n+ 1. By using the

one-to-one mapping (2.2.29), (2.2.30) between the intervals [−1,1] and [a,b], we deduce

that ∫ b

a
P(x)dx =

b− a
2

∫ 1

−1
P̃(t)dt, (8.3.33)

where

P̃(t) := P
( 1

2 (b− a)t+ 1
2 (a+ b)

)
, (8.3.34)

or equivalently,

P(x) = P̃
(

2
b− a

x− a+ b
b− a

)
. (8.3.35)
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Since P ∈ πn+1, it follows from (8.3.34) that P̃ ∈ πn+1, so that we may deduce from Theo-

rem 7.6.3 that

P̃ =
n+1

∑
k=0

ckTk, (8.3.36)

where the coefficient sequence {c j : j = 0, . . . ,n+1} can be obtained from the Chebyshev

expansion (7.6.14). Note from (8.3.35) and (8.3.36), together with Theorem 2.2.1(a), that,

since deg(P) = n+ 1, we have cn+1 �= 0. It follows from (8.3.33) and (8.3.36), together

with (2.2.29), (2.2.30), that∫ b

a
P(x)dx =

∫ b

a
Q(x)dx+ cn+1

b− a
2

∫ 1

−1
Tn+1(t)dt, (8.3.37)

where

Q(x) :=
n

∑
j=0

c jTj

(
2

b− a
x− a+ b

b− a

)
, (8.3.38)

or equivalently,
n

∑
j=0

c jTj(t) = Q
( 1

2 (b− a)t+ 1
2 (a+ b)

)
. (8.3.39)

Next, we use (8.3.5), (8.3.2), (8.3.34), (8.3.36) and (8.3.39) to obtain

QCC
n [P] =

n

∑
j=0

wn, jP
( 1

2 (b− a)ξn, j +
1
2 (a+ b)

)
=

n

∑
j=0

wn, jP̃(ξn, j)

=
n

∑
j=0

wn, jQ
( 1

2(b− a)ξn, j +
1
2 (a+ b)

)
+ cn+1

n

∑
j=0

wn, jTn+1(ξn, j)

= QCC
n [Q]+ cn+1

n

∑
j=0

wn, jTn+1(ξn, j). (8.3.40)

Since (8.3.38) and Theorem 2.2.1(a) imply Q ∈ πn, we may now apply (8.1.17) to obtain∫ b

a
Q(x)dx = QCC

n [Q]. (8.3.41)

It follows from (8.3.37), (8.3.40) and (8.3.41), together with cn+1 �= 0,that (8.3.32) holds if

and only if

b− a
2

∫ 1

−1
Tn+1(t)dt =

n

∑
j=0

wn, jTn+1(ξn, j),

or equivalently, from (8.3.3) and the formula (2.2.5) in Theorem 2.2.1(b),

b− a
2

∫ 1

−1
Tn+1(t)dt =

n

∑
j=0

wn, j cos
(
(n+ 1)(n− j)

n
π
)
. (8.3.42)
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Note from the formulas (8.3.22)–(8.3.25) in Theorem 8.3.1 that the Clenshaw-Curtis

weights {wn, j : j = 0, . . . ,n} satisfy the symmetry condition

wn,n− j = wn, j, j = 0, . . . ,n. (8.3.43)

It then follows from (8.3.43) that the condition (8.3.42) has the equivalent formulation

b− a
2

∫ 1

−1
Tn+1(t)dt =

n

∑
j=0

wn, j cos
(
(n+ 1) j

n
π
)
. (8.3.44)

Suppose first n is even, that is, n = 2ν for a positive integer ν . By using (8.3.43), we obtain

2ν

∑
j=0

w2ν, j cos
(
(2ν + 1) j

2ν
π
)

=
ν−1

∑
j=0

w2ν, j cos
(
(2ν + 1) j

2ν
π
)
+w2ν,ν cos

((
ν +

1
2

)
π
)

+
2ν

∑
j=ν+1

w2ν,2ν− j cos
(
(2ν + 1) j

2ν
π
)

=
ν−1

∑
j=0

w2ν, j

[
cos
(
(2ν + 1) j

2ν
π
)
+ cos

(
(2ν + 1)(2ν − j)

2ν
π
)]

=
ν−1

∑
j=0

w2ν, j

[
cos
(
(2ν + 1) j

2ν
π
)
− cos

(
(2ν + 1) j

2ν
π
)]

= 0. (8.3.45)

Also, since n+ 1 is odd, it follows from (8.3.16) that∫ 1

−1
Tn+1(t)dt = 0,

which, together with (8.3.45), shows that (8.3.44), and therefore also (8.3.32), do indeed

hold. Hence the exactness condition (8.3.32) is satisfied if n is even, and thus

mn � n+ 1, if n is even. (8.3.46)

Suppose next n is odd, and thus n+ 1 is even, so that we may apply the formulas (8.3.24)

and (8.3.25) in Theorem 8.3.1, as well as (7.6.22) and (8.3.21), to obtain, for n � 3,

n

∑
j=0

wn, j cos
(
(n+ 1) j

n
π
)

=
b− a

n2

⎡⎣1+ n
n−1

∑
j=1

⎛⎝1− 2

1
2 (n−1)

∑
k=1

1
4k2 − 1

cos
(

2 jk
n

π
)⎞⎠cos

(
(n+ 1) j

n
π
)⎤⎦
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=
b− a

n2

⎡⎣1+ n
n−1

∑
j=1

cos
(
(n+ 1) j

n
π
)

−2n

1
2 (n−1)

∑
k=1

1
4k2 − 1

n−1

∑
j=1

cos
(

2 jk
n

π
)

cos
(
(n+ 1) j

n
π
)⎤⎦

=
b− a

n2

[
1+ n

{
n−1

∑
j=0

cos
(
(n+ 1) j

n
π
)
− 1

}

−n

1
2 (n−1)

∑
k=1

1
4k2 − 1

{
n−1

∑
j=0

cos
(
(2k+ n+ 1) j

n
π
)
− 1

}

−n

1
2 (n−1)

∑
k=1

1
4k2 − 1

{
n−1

∑
j=0

cos
(
(2k− n− 1) j

n
π
)
− 1

}⎤⎦
=

b− a
n2

[
1+ n(0− 1)− n

{
1

4( 1
2(n− 1))2 − 1

(n)− n− 1
2n

}
− n

{
0− n− 1

2n

}]

=− b− a
n(n− 2)

, (8.3.47)

whereas, if n = 1, it follows from (8.3.24) that
1

∑
j=0

w1, j cos(2 jπ) = b− a,

from which we then deduce that the formula (8.3.47) is valid for any odd integer n � 1.

Since n+ 1 is even, with n+ 1 � 2, it follows from (8.3.16) that

b− a
2

∫ 1

−1
Tn+1(t)dt =

b− a
2

[
2

1− (n+ 1)2

]
=− b− a

n(n+ 2)
. (8.3.48)

It follows from (8.3.47) and (8.3.48) that

b− a
2

∫ 1

−1
Tn+1(t)dt −

n

∑
j=0

wn, j cos
(
(n+ 1) j

n
π
)
=

4(b− a)
n(n2 − 4)

, (8.3.49)

according to which (8.3.44), and therefore also (8.3.32), are not satisfied if n is odd, which,

together with (8.3.31), implies that

mn = n, if n is odd. (8.3.50)

Hence it remains to establish the value of mn if n is even. Suppose therefore that n is

even, and let P ∈ πn+2, with deg(P) = n+ 2. Analogously to the argument which led from
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(8.3.32) to (8.3.44), and by also using the fact that mn satisfies the inequality (8.3.46), we

deduce that the exactness condition∫ b

a
P(x)dx = QCC

n [P] (8.3.51)

holds if and only if

b− a
2

∫ 1

−1
Tn+2(t)dt =

n

∑
j=0

wn, j cos
(
(n+ 2) j

n
π
)
. (8.3.52)

First, since n+ 2 is even, we deduce from (8.3.16) that

b− a
2

∫ 1

−1
Tn+2(t)dt =

b− a
2

[
2

1− (n+ 2)2

]
=− b− a

(n+ 1)(n+ 3)
. (8.3.53)

Next, we apply the formulas (8.3.22) and (8.3.23) in Theorem 8.3.1, as well as (7.6.22) and

(8.3.21), together with the fact that n+2 is even, whereas n+1 and n+3 are odd, to obtain,

for n � 4,
n

∑
j=0

wn, j cos
(
(n+ 2) j

n
π
)

= (b− a)

⎡⎣ 1
n2 − 1

+
1
n

n−1

∑
j=1

⎧⎨⎩1− 2

1
2 (n−2)

∑
k=1

1
4k2 − 1

cos
(

2 jk
n

π
)
+

cos( jπ)
1− n2

⎫⎬⎭
× cos

(
(n+ 2) j

n
π
)⎤⎦

= (b− a)

[
1

n2 − 1
+

1
n

{
n−1

∑
j=0

cos
(
(n+ 2) j

n
π
)
− 1

}

− 1
n

1
2 (n−2)

∑
k=1

1
4k2 − 1

{
n−1

∑
j=0

cos
(
(2k+ n+ 2) j

n
π
)
− 1

}

− 1
n

1
2 (n−2)

∑
k=1

1
4k2 − 1

{
n−1

∑
j=0

cos
(
(2k− n− 2) j

n
π
)
− 1

}

− 1
2n(n2− 1)

{
n−1

∑
j=0

cos
(
(n+ 3) j

n
π
)
+

n−1

∑
j=0

cos
(
(n+ 1) j

n
π
)
− 2

}]

= (b− a)

[
1

n2 − 1
+

1
n
{0− 1}− 1

n

{
1

4( 1
2 (n− 2))2− 1

(n)− 1
2

n− 2
n− 1

}

−1
n

{
0− 1

2
n− 2
n− 1

}
− 1

2n(n2 − 1)
{1+ 1− 2}

]
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=−(b− a)
n+ 3

n(n+ 1)(n−3)
. (8.3.54)

It follows from (8.3.53) and (8.3.54) that, for n � 4,
b− a

2

∫ 1

−1
Tn+2(t)dt −

n

∑
j=0

wn, j cos
(
(n+ 2) j

n
π
)
=

9(b− a)
n(n2 − 9)

, (8.3.55)

whereas, if n = 2, it follows from (8.3.53), (8.3.22) and (8.3.23) that

b− a
2

∫ 1

−1
T4(t)dt −

2

∑
j=0

w2, j cos(2 jπ) =−(b− a)
[

1
15

+

{
1
3
+

1
2

(
1+

1
3

)}]

=−16(b− a)
15

. (8.3.56)

It follows from (8.3.55) and (8.3.56) that (8.3.52), and therefore also (8.3.51), are not sat-

isfied if n is even, from which, together with (8.3.46), we deduce that

mn = n+ 1, if n is even. (8.3.57)

Hence, according to (8.3.50) and (8.3.57), together with (8.3.37), (8.3.40), (8.3.41) and

(8.3.49) if n is odd, and, analogously, (8.3.55) and (8.3.56) if n is even, we have now

established the following.

Theorem 8.3.3. For any positive integer n, the degree of exactness mn of the Clenshaw-

Curtis quadrature rule QCC
n in Theorem 8.3.1 satisfies

mn =

⎧⎨⎩n+ 1, if n is even;

n, if n is odd.
(8.3.58)

Also,

(a) if n is odd, and P ∈ πn+1, with

P(x) =
n+1

∑
j=0

c jx j,

then ∫ b

a
P(x)dx−QCC

n [P] = cn+1(b− a)
4

n(n2− 4)
; (8.3.59)

(b) if n is even, and P ∈ πn+2, with

P(x) =
n+2

∑
j=0

c jx j,

then

∫ b

a
P(x)dx−QCC

n [P] = cn+2(b− a)

⎧⎪⎨⎪⎩
−16

15
, if n = 2;

9
n(n2 − 9)

, if n � 4.
(8.3.60)
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Observe from Theorems 8.3.2 and 8.3.3 that the Clenshaw-Curtis quadrature rule QCC
n

satisfies the conditions of Theorem 8.1.2, with degree of exactness mn given by (8.3.58) in

Theorem 8.3.3, according to which

m = 2
n/2�+ 1, n = 1,2, . . . , (8.3.61)

and thus we immediately have the following result as a special case of Theorem 8.1.2.

Theorem 8.3.4. Let {QCC
n : n= 1,2, . . .} denote the sequence of Clenshaw-Curtis quadra-

ture rules of Theorem 8.3.1. Then:

(a) Convergence on C[a,b] holds, that is,∣∣∣∣∫ b

a
f (x)dx−QCC

n [ f ]
∣∣∣∣→ 0, n → ∞, f ∈C[a,b]. (8.3.62)

(b) If f ∈Ck[a,b] for an integer k ∈ N, the convergence rate result∣∣∣∣∫ b

a
f (x)dx−QCC

n [ f ]
∣∣∣∣� 2(b− a)k+1 (2
n/2�+ 1− k)!

(2
n/2�+ 1)!
|| f (k)||∞, n = k,k+ 1, . . . ,

(8.3.63)

holds, with, in particular,∣∣∣∣∫ b

a
f (x)dx−QCC

n [ f ]
∣∣∣∣� 2(b− a)2

2
n/2�+ 1
|| f ′||∞, n = 1,2, . . . , f ∈C1[a,b], (8.3.64)

that is, ∣∣∣∣∫ b

a
f (x)dx−QCC

2n [ f ]
∣∣∣∣� 2(b− a)2

2n+ 1
|| f ′||∞, n = 1,2, . . . , f ∈C1[a,b]; (8.3.65)

∣∣∣∣∫ b

a
f (x)dx−QCC

2n−1[ f ]
∣∣∣∣� 2(b− a)2

2n− 1
|| f ′||∞, n = 1,2, . . . , f ∈C1[a,b]. (8.3.66)

Example 8.3.1. To obtain the Clenshaw-Curtis quadrature rule QCC
6 for the numerical ap-

proximation of the integral
∫ 2

0
f (x)dx, f ∈ C[0,2], we first set [a,b] = [0,2] and n = 6 in

the formulas (8.3.22) and (8.3.23) of Theorem 8.3.1, to obtain

w6,0 = w6,6 =
1

35
;

w6,1 =
1
3

[
1− 2

2

∑
k=1

1
4k2 − 1

cos
(

kπ
3

)
+

1
35

]
=

16
63

;

w6,2 =
1
3

[
1− 2

2

∑
k=1

1
4k2 − 1

cos
(

2kπ
3

)
− 1

35

]
=

16
35

;

w6,3 =
1
3

[
1− 2

2

∑
k=1

1
4k2 − 1

cos(kπ)+
1

35

]
=

164
315

,
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and thus, by using also the symmetry condition (8.3.43),

w6,4 = w6,2 =
16
35

; w6,5 = w6,1 =
16
63

.

Next, we use (8.3.2) and (8.3.3) to obtain{
xCC

6,0,x
CC
6,1,x

CC
6,2,x

CC
6,3,x

CC
6,4,x

CC
6,5,x

CC
6,6
}
=

{
0,1−

√
3

2
,

1
2
,1,

3
2
,1+

√
3

2
,2

}
.

Hence, according to (8.3.5), we have the formulation

QCC
6 [ f ] =

1
35

f (0)+
16
63

f

(
1−

√
3

2

)
+

16
35

f
(

1
2

)
+

164
315

f (1)+
16
35

f
(

3
2

)

+
16
63

f

(
1+

√
3

2

)
+

1
35

f (2). (8.3.67)

For the case f (x) = ex, we calculate by means of (8.3.67), together with (8.2.42), that the

corresponding quadrature error is given by∣∣∣∣∫ 2

0
f (x)dx−QCC

6 [ f ]
∣∣∣∣ ≈ 5.597× 10−8. �

8.4 Newton-Cotes quadrature

In this section, we consider the numerical approximation of the integral

I [ f ] :=
∫ b

a
f (x)dx, f ∈C[a,b], (8.4.1)

by means of the Newton-Cotes quadrature rule QNC
n , which, for any non-negative integer

n, is defined by

QNC
n [ f ] := I [P I

n f ] =
∫ b

a
(P I

n f )(x)dx, f ∈C[a,b], (8.4.2)

where P I
n : C[a,b]→ πn is the Lagrange interpolation operator, as defined by (5.1.2), with

respect to the equispaced interpolation points

x0,0 := a;

xn, j := a+ j
(

b− a
n

)
, j = 0, . . . ,n, if n � 1.

⎫⎪⎬⎪⎭ (8.4.3)

Note that, if n � 1, the points {xn, j : j = 0, . . . ,n} in the second line of (8.4.3) are equis-

paced, with

xn, j+1 − xn, j =
b− a

n
, j = 0, . . . ,n− 1, (8.4.4)

and such that

a = xn,0 < xn,1 < · · ·< xn,n = b. (8.4.5)
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According to (8.4.2), QNC
n is an interpolatory quadrature rule, as given by (8.1.7), that is,

QNC
n [ f ] =

n

∑
j=0

wn, j f (xn, j), (8.4.6)

where

wn, j :=
∫ b

a
Ln, j(x)dx, j = 0, . . . ,n, (8.4.7)

with the Lagrange fundamental polynomials {Ln, j : j = 0, . . . ,n} given as in (1.2.1).

We proceed to obtain explicit formulations for the Newton-Cotes weights {wn, j : j =

0, . . . ,n} in (8.4.6) and (8.4.7). To this end, we first observe from (8.4.7) and (1.2.1) that

w0,0 =

∫ b

a
dx = b− a, (8.4.8)

which, together with (8.4.6) and the first line of (8.4.3), yields the quadrature formula

QNC
0 [ f ] = (b− a) f (a). (8.4.9)

Suppose next that n ∈ N, and let the integer j ∈ {0, . . . ,n} be fixed. By using (8.4.7),

(1.2.1), and the one-to-one mapping between the intervals [0,n] and [a,b] given by

t = n
x− a
b− a

, a � x � b, (8.4.10)

or equivalently,

x = a+
(

b− a
n

)
t, 0 � t � n, (8.4.11)

we deduce that

wn, j =
b− a

n

∫ n

0
L̃n, j(t)dt, (8.4.12)

where

L̃n, j(t) := Ln, j

(
a+

(
b− a

n

)
t
)
. (8.4.13)

Observe from (8.4.13), together with (1.2.3) in Theorem 1.2.1, as well as (8.4.11), that

L̃n, j(k) = δ j−k, k = 0, . . . ,n. (8.4.14)

Now apply Theorem 1.1.2 to deduce that there exists a (unique) polynomial g j ∈ πn+1 such

that the interpolation conditions

g j(k) =

⎧⎨⎩−1, k = 0, . . . , j;

0, k = j+ 1, . . . ,n+ 1,
(8.4.15)

are satisfied, and in terms of which we define

h j(t) := g j(t + 1)− g j(t). (8.4.16)
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Since g j ∈ πn+1, we deduce from (8.4.16) that h j ∈ πn.

Observe from (8.4.16) and (8.4.15) that

h j(k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1− (−1) = 0, if k = 0, . . . , j− 1 (if j � 1);

0− (−1) = 1, if k = j;

0− 0 = 0, if k = j+ 1, . . . ,n, (if j � n− 1),

that is,

h j(k) = δ j−k, k = 0, . . . ,n. (8.4.17)

Since Ln, j ∈ πn, we see from (8.4.13) that L̃n, j ∈ πn. But also h j ∈ πn, so that (8.4.14)

and (8.4.17), together with the uniqueness statement in Theorem 1.1.2 with respect to the

interpolation points {0, . . . ,n}, imply that

h j = L̃n, j. (8.4.18)

By combining (8.4.12), (8.4.18) and (8.4.16), we deduce that

wn, j =
b− a

n

∫ n

0
[g j(t + 1)− g j(t)]dt. (8.4.19)

Now observe that∫ n

0
[g j(t + 1)− g j(t)]dt −

∫ 1

0
[g j(n+ 1− t)− g j(t)]dt

=−
[∫ n

0
g j(t)dt −

∫ 1

0
g j(t)dt

]
+

[∫ n

0
g j(t + 1)dt −

∫ 1

0
g j(n+ 1− t)dt

]

=−
∫ n

1
g j(t)dt +

[∫ n+1

1
g j(t)dt −

∫ n+1

n
g j(t)dt

]
=−

∫ n

1
g j(t)dt +

∫ n

1
g j(t)dt = 0,

and thus ∫ n

0
[g j(t + 1)− g j(t)]dt =

∫ 1

0
[g j(n+ 1− t)− g j(t)]dt,

which, together with (8.4.19), yields

wn, j =
b− a

n

∫ 1

0
[g j(n+ 1− t)− g j(t)]dt. (8.4.20)

Since g j ∈ πn+1, we may apply the identity (1.3.25) in Theorem 1.3.5, together with the

definition (1.3.11), and the first definition in (1.3.2), to deduce that

g j(t) = g j(0)+
n+1

∑
k=1

g j[0, . . . ,k]
k−1

∏
�=0

(t − �) =−1+
n+1

∑
k=1

g j[0, . . . ,k]
k−1

∏
�=0

(t − �), (8.4.21)
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since the first line of (8.4.15) gives g j(0) =−1, and similarly, with the definition

g̃ j(t) := g j(n+ 1− t), (8.4.22)

according to which g j ∈ πn+1 implies g̃ j ∈ πn+1, we have

g̃ j(t) = g̃ j(0)+
n+1

∑
k=1

g̃ j[0, . . . ,k]
k−1

∏
�=0

(t − �),

and thus, from (8.4.22),

g j(n+ 1− t) = g j(n+ 1)+
n+1

∑
k=1

g̃ j[0, . . . ,k]
k−1

∏
�=0

(t − �)

=
n+1

∑
k=1

g̃ j[0, . . . ,k]
k−1

∏
�=0

(t − �), (8.4.23)

since the second line of (8.4.15) yields g j(n+ 1) = 0.

Next, we prove that

g j[m, . . . ,m+ k] =
1
k

h j[m, . . . ,m+ k− 1], m ∈ Z, k = 1,2, . . . , (8.4.24)

where h j is defined by (8.4.16), and similarly,

g̃ j[m, . . . ,m+ k] =
1
k

h̃ j[m, . . . ,m+ k− 1], m ∈ Z, k = 1,2, . . . , (8.4.25)

where

h̃ j(t) := g̃ j(t + 1)− g̃ j(t). (8.4.26)

In order to prove (8.4.24) inductively, we first note from (1.3.4) and (8.4.16) that (8.4.24)

is satisfied for k = 1. Moreover, if (8.4.24) holds for a fixed k ∈ N, we may apply the re-

cursion formula (1.3.21) in Theorem 1.3.4, together with the inductive hypothesis (8.4.24),

to deduce that, for any m ∈ Z,

h[m, . . . ,m+ k] =
h[m+ 1, . . . ,m+ k]− h[m, . . . ,m+ k− 1]

k

=
1
k

{
kg j[m+ 1, . . . ,m+ k+ 1]− kg j[m, . . . ,m+ k]

}
= (k+ 1)

{
g j[m+ 1, . . . ,m+ k+ 1]− g j[m, . . . ,m+ k]

k+ 1

}
= (k+ 1)g j[m, . . . ,m+ k+ 1],

according to which (8.4.24) also holds with k replaced by k+ 1, and thereby completing

our inductive proof of (8.4.24). Similarly, it follows inductively from (8.4.26) that (8.4.25)

holds (see Exercise 8.11).
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Hence we may now use the case m = 0 of (8.4.24) and (8.4.25) in, respectively, (8.4.21)

and (8.4.23), to obtain

g j(t) =−1+
n+1

∑
k=1

h j[0, . . . ,k− 1]
k

k−1

∏
�=0

(t − �); (8.4.27)

g j(n+ 1− t)=
n+1

∑
k=1

h̃ j[0, . . . ,k− 1]
k

k−1

∏
�=0

(t − �). (8.4.28)

By noting from (8.4.22) and (8.4.15) that

g̃ j(k) =

⎧⎨⎩ 0, k = 0, . . . ,n− j;

−1, k = n− j+ 1, . . . ,n+ 1,
(8.4.29)

we may now deduce from (8.4.26) that

h̃ j(k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0− 0 = 0, if k = 0, . . . ,n− j− 1 (if j � n− 1);

−1− 0 = −1, if k = n− j;

−1− (−1) = 0, if k = n− j+ 1, . . . ,n (if j � 1),

that is,

h̃ j(k) =−δn− j−k, k = 0, . . . ,n. (8.4.30)

Next, for k = 1, . . . ,n, we apply the formula (3.4.2) in Theorem 3.4.1, with, respectively,

f = h j and f = h̃ j, and with μ = 0, ν = k−1, {xμ , . . . ,xν}= {0, . . . ,k−1}, and h = 1, to

obtain

h j[0, . . . ,k− 1] =
(−1)k−1

(k− 1)!

k−1

∑
m=0

(−1)m
(

k− 1
m

)
h j(m),

h̃ j[0, . . . ,k− 1] =
(−1)k−1

(k− 1)!

k−1

∑
m=0

(−1)m
(

k− 1
m

)
h̃ j(m),

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭k = 1, . . .n. (8.4.31)

It then follows from (8.4.27) and the first line of (8.4.31), together with (8.4.17), and keep-

ing in mind also the second line of (3.2.1), that

g j(t) =−1+
n+1

∑
k=1

(−1)k−1

k!

k−1

∑
m=0

(−1)m
(

k− 1
m

)
δ j−m

k−1

∏
�=0

(t − �)

=−1+(−1) j
n+1

∑
k=1

(−1)k−1

k!

(
k− 1

j

) k−1

∏
�=0

(t − �), (8.4.32)

and similarly, from (8.4.28), and the second line of (8.4.31), together with (8.4.30), we

obtain

g j(n+ 1− t) =
n+1

∑
k=1

(−1)k−1

k!

k−1

∑
m=0

(−1)m
(

k− 1
m

)
(−δn− j−m)

k−1

∏
�=0

(t − �)
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= (−1)n− j+1
n+1

∑
k=1

(−1)k−1

k!

(
k− 1
n− j

) k−1

∏
�=0

(t − �). (8.4.33)

Let the polynomial sequence
{(

t
k

)
: k = 0,1, . . .

}
be defined by

(
t
k

)
:=

⎧⎪⎪⎨⎪⎪⎩
1, k = 0;

1
k!

k−1

∏
�=0

(t − �), k = 1,2, . . . .
(8.4.34)

Observe that if we set t = m ∈ {0,1, . . .} in (8.4.34), then, for k = 0, . . . ,m,(
m
k

)
=

m(m− 1) . . .(m− k+ 1)
k!

=
m!

k!(m− k)!
,

which is consistent with the binomial coefficient definition in (3.2.1). It follows from

(8.4.32), (8.4.33) and (8.4.34) that

g j(t) = −1+(−1) j
n+1

∑
k=1

(−1)k−1
(

k− 1
j

)(
t
k

)
;

g j(n+ 1− t) = (−1)n− j+1
n+1

∑
k=1

(−1)k−1
(

k− 1
n− j

)(
t
k

)
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (8.4.35)

By substituting (8.4.35) into (8.4.20), we obtain

wn, j =
b− a

n

[
1− (−1) j

{
n+1

∑
k=1

(−1)k−1
(

k− 1
j

) ∫ 1

0

(
t
k

)
dt

+ (−1)n
n+1

∑
k=1

(−1)k−1
(

k− 1
n− j

)∫ 1

0

(
t
k

)
dt

}]
. (8.4.36)

The real numbers {Λk : 0,1, . . .} defined by

Λk := (−1)k−1
∫ 1

0

(
t
k

)
dt, k = 0,1, . . . , (8.4.37)

with the polynomial sequence
{(

t
k

)
: k = 0,1, . . .

}
given in (8.4.34), are known as the

Laplace coefficients.

According to (8.4.8), (8.4.36) and (8.4.37), we have therefore now established the following

formulation of the Newton-Cotes weights.

Theorem 8.4.1. For any non-negative integer n, the Newton-Cotes quadrature rule QNC
n ,

as given by (8.4.6), (8.4.7), (8.4.3), has weights {wn, j : j = 0, . . . ,n} given by

w0,0 = b− a;

wn, j =
b− a

n

[
1− (−1) j

n

∑
k=0

Λk+1

{(
k
j

)
+(−1)n

(
k

n− j

)}]
, j = 0, . . . ,n (if n � 1),

⎫⎪⎪⎬⎪⎪⎭
(8.4.38)

with the Laplace coefficients {Λ1, . . . ,Λn+1} defined as in (8.4.37).
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We proceed to derive a recursive formulation for the Laplace coefficients {Λk : k = 0,1, . . .}
in (8.4.37), for which we shall require the following polynomial identity.

Theorem 8.4.2. For any non-negative integer k,
k

∑
�=0

(
s
�

)(
t

k− �

)
=

(
s+ t

k

)
, s, t ∈ R, (8.4.39)

with the polynomials
{(

t
�

)
: �= 0, . . . ,k

}
defined as in (8.4.34).

Proof. Our first step is to prove that (8.4.39) is satisfied for all non-negative integer values

of s and t, that is,
k

∑
�=0

(
μ
�

)(
ν

k− �

)
=

(
μ +ν

k

)
, μ ,ν = 0,1, . . . . (8.4.40)

To this end, for any non-negative integers μ and ν , by keeping in mind also the second line

of (3.2.1), we obtain, for any x ∈ R,
μ+ν

∑
k=0

[
k

∑
�=0

(
μ
�

)(
ν

k− �

)]
xk =

μ+ν

∑
�=0

(
μ
�

)[μ+ν

∑
k=�

(
ν

k− �

)
xk

]

=
μ

∑
�=0

(
μ
�

)[μ+ν−�

∑
k=0

(
ν
k

)
xk+�

]

=
μ

∑
�=0

(
μ
�

)[ ν

∑
k=0

(
ν
k

)
xk1ν−k

]
x�

=
μ

∑
�=0

(
μ
�

)
(x+ 1)νx�

= (x+ 1)ν
μ

∑
�=0

(
μ
�

)
x�1μ−�

= (x+ 1)ν(x+ 1)μ = (x+ 1)μ+ν =
μ+ν

∑
k=0

(
μ +ν

k

)
xk,

and thus
μ+ν

∑
k=0

[
k

∑
�=0

(
μ
�

)(
ν

k− �

)
−
(

μ +ν
k

)]
xk = 0, x ∈ R,

from which (8.4.40) then immediately follows.

Hence, if we define the bivariate polynomial

F(s, t) :=
k

∑
�=0

(
s
�

)(
t

k− �

)
−
(

s+ t
k

)
, s, t ∈ R, (8.4.41)
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it follows from (8.4.40) that

F(μ ,ν) = 0, μ ,ν = 0,1, . . . . (8.4.42)

Now observe from (8.4.41) and (8.4.34) that

F(s, t) =
k

∑
i=0

k

∑
j=0

ai jsiti, (8.4.43)

for some coefficient sequence {ai j : i, j = 0, . . . ,k}. It follows from (8.4.43) and (8.4.42)

that
k

∑
i=0

mi
k

∑
j=0

ai jn j = 0, m,n = 0, . . . ,k. (8.4.44)

Let the (k+ 1)× (k+ 1) matrix V be defined by

V :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 x0 x2
0 · · · xk

0

1 x1 x2
1 · · · xk

1

...
...

...
...

1 xk x2
k · · · xk

k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (8.4.45)

where

xμ := μ , μ = 0, . . . ,k. (8.4.46)

By comparing (8.4.45) and (1.1.7), we see that V is a Vandermonde matrix, and thus,

since (8.4.46) shows that {xμ : μ = 0, . . .k} is a sequence of k + 1 distinct points in R,

we may apply Theorem 1.1.1 to deduce that V is an invertible matrix. Moreover, with the

(k+ 1)× (k+ 1) matrix A defined by

A := [ai j]1�i, j�n, (8.4.47)

we deduce from (8.4.45), (8.4.46) and (8.4.47) that (8.4.44) is equivalent to the matrix

equation

VAV T = 0, (8.4.48)

the zero matrix. Since V is invertible, we know from a standard result in linear algebra that

V T is invertible, so that we may deduce from (8.4.48) that

0 =V−1(0)(V T )−1 =V−1(VAV T )(V T )−1 = (V−1V )A(V T (V T )−1) = IAI = A,

and thus A = 0, the zero matrix, and it follows from (8.4.47) that ai j = 0, i, j = 0, . . . ,n,

which, together with (8.4.43), implies that

F(s, t) = 0, s, t ∈ R. (8.4.49)
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The desired result (8.4.39) is then an immediate consequence of (8.4.41) and (8.4.49). �
The computation of the Laplace coefficients is facilitated by the following recursive formu-

lation, the proof of which is based on the polynomial identity (8.4.39) in Theorem 8.4.2.

Theorem 8.4.3. The Laplace coefficients {Λk : k = 0,1, . . .}, as defined by (8.4.37), satisfy

the recursive formulation

Λ0 = −1;

Λk =
k−1

∑
�=0

Λ�

�− k− 1
, k = 1,2, . . . .

⎫⎪⎪⎬⎪⎪⎭ (8.4.50)

Proof. First, observe from (8.4.37) and the first line of (8.4.34) that

Λ0 =−
∫ 1

0
dt =−1,

which proves the first line of (8.4.50).

Next, by using (8.4.39) in Theorem 8.4.2, as well as (8.4.34), we obtain, for any k ∈ N,

t ∈ R and h ∈ R\ {0},

1
h

[(
t + h

k

)
−
(

t
k

)]
=

1
h

[
k

∑
�=0

(
h
�

)(
t

k− �

)
−
(

t
k

)]

=
1
h

k

∑
�=1

(
h
�

)(
t

k− �

)

=
1
h

k

∑
�=1

h(h− 1) . . .(h− �+ 1)
�!

(
t

k− �

)

=
k

∑
�=1

(h− 1) . . .(h− (�− 1))
�!

(
t

k− �

)
,

and thus
d
dt

(
t
k

)
:= lim

h→0

1
h

[(
t + h

k

)
−
(

t
k

)]
=

k

∑
�=1

(−1)�−1

�

(
t

k− �

)
. (8.4.51)

It follows from (8.4.51) and (8.4.37) that, for k ∈N,∫ 1

0

d
dt

(
t
k

)
dt =

k

∑
�=1

(−1)�−1

�

∫ 1

0

(
t

k− �

)
dt =

k−1

∑
�=0

(−1)k−1−�

k− �

∫ 1

0

(
t
�

)
dt

= (−1)k
k−1

∑
�=0

Λ�

k− �
. (8.4.52)

Moreover, the fundamental theorem of calculus gives∫ 1

0

d
dt

(
t
k

)
dt =

(
1
k

)
−
(

0
k

)
=

⎧⎨⎩1− 0 = 1, if k = 1;

0− 0 = 0, if k = 2,3, . . . ,
(8.4.53)
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by virtue of (8.4.34).

By combining (8.4.52) and (8.4.53), we deduce that

(−1)k+1
k

∑
�=0

Λ�

k+ 1− �
=

⎧⎨⎩ 1, if k = 0;

0, if k = 1,2, . . . ,

and thus

(−1)k+1

[
Λk +

k−1

∑
�=0

Λ�

k+ 1− �

]
= 0, k = 1,2, . . . ,

which is equivalent to the second line of (8.4.50). �
By applying the recursive formulation (8.4.50), we obtain (see Exercise 8.12) the Laplace

coefficients

Λ1 =
1
2 ; Λ2 =

1
12 ; Λ3 =

1
24 ; Λ4 =

19
720 ; Λ5 =

3
160 ;

Λ6 =
863

60480 ; Λ7 =
275

24192 ; Λ8 =
33953

3628800 ; Λ9 =
8183

1036800 ; Λ10 =
3250433

479001600 .

⎫⎬⎭ (8.4.54)

By using the formula (8.4.38), together with the Laplace coefficient values in (8.4.54), we

obtain (see Exercise 8.12) the Newton-Cotes weights as given in Table 8.4.1.

Table 8.4.1 The Newton-Cotes weights wn, j = [(b−a)/n]σn, j , j = 0, . . . ,n, for n = 0, . . . ,8.

n {σn, j}
0 {1}

1
{

1
2
,

1
2

}
2

{
1
3
,

4
3
,

1
3

}
3

{
3
8
,

9
8
,

9
8
,

3
8

}
4

{
14
45

,
64
45

,
8

15
,

64
45

,
14
45

}
5

{
95
288

,
125
96

,
125
144

,
125
144

,
125
96

,
95

288

}
6

{
41
140

,
54
35

,
27

140
,

68
35

,
27

140
,

54
35

,
41

140

}
7

{
5257

17280
,

25039
17280

,
343
640

,
20923
17280

,
20923
17280

,
343
640

,
25039
17280

,
5257

17280

}
8

{
3956

14175
,

23552
14175

,− 3712
14175

,
41984
14175

,−3632
2835

,
41984
14175

,− 3712
14175

,
23552
14175

,
3956
14175

}
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Observe from the formula in the second line of (8.4.38) in Theorem 8.4.1 that the Newton-

Cotes weights satisfy, for j = 0, . . . ,n,

wn,n− j =
b− a

n

[
1− (−1)n− j

n

∑
k=0

Λk+1

{(
k

n− j

)
+(−1)n

(
k
j

)}]

=
b− a

n

[
1− (−1) j

n

∑
k=0

Λk+1

{
(−1)n

(
k

n− j

)
+

(
k
j

)}]
= wn, j,

that is, the symmetry condition

wn,n− j = wn, j, j = 0, . . . ,n, (8.4.55)

is satisfied, as illustrated for n = 0, . . . ,8 in Table 8.4.1.

Example 8.4.1. To obtain the Newton-Cotes quadrature rules QNC
1 , QNC

2 , QNC
3 and QNC

4

for the numerical approximation of the integral (8.4.1), we apply (8.4.6) and (8.4.3), to-

gether with (8.4.38) in Theorem 8.4.1, to deduce from Table 8.4.1 that, for any f ∈C[a,b],

QNC
1 [ f ] =

b− a
2

[ f (a)+ f (b)] ; (8.4.56)

QNC
2 [ f ] =

b− a
6

[
f (a)+ 4 f

(
a+ b

2

)
+ f (b)

]
; (8.4.57)

QNC
3 [ f ] =

b− a
8

[
f (a)+ 3 f

(
2a+ b

3

)
+ 3 f

(
a+ 2b

3

)
+ f (b)

]
; (8.4.58)

QNC
4 [ f ] =

b− a
90

[
7 f (a)+ 32 f

(
3a+ b

4

)
+ 12 f

(
a+ b

2

)
+ 32 f

(
a+ 3b

4

)
+ 7 f (b)

]
.

(8.4.59)

�

8.5 Error analysis for Newton-Cotes quadrature

In the general setting of Section 8.1, for any non-negative integer n, let the functional

En : C[a,b]→ R be defined by

En[ f ] := I [ f ]−Qn[ f ], f ∈C[a,b], (8.5.1)

with the functionals I and Qn defined as in (8.1.1) and (8.1.5). For any f ∈ C[a,b] and

non-negative integer n, we call En[ f ] the corresponding quadrature error. Observe from

(8.5.1), (8.1.9) and (8.1.10) that En is a linear functional, that is,

En[λ f + μg] = λEn[ f ]+ μEn[g], λ ,μ ∈ R, f ,g ∈C[a,b], (8.5.2)
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for n = 0,1, . . ..

The principal aim of this section is to investigate the Newton-Cotes quadrature error

E NC
n [ f ] :=

∫ b

a
f (x)dx−QNC

n [ f ], f ∈C[a,b], (8.5.3)

with QNC
n as given in (8.4.6), (8.4.7), (8.4.3).

Our first step in this direction is to prove the following general result for linear functionals

on C[a,b].

Theorem 8.5.1. Suppose L : C[a,b] → R is a linear functional such that, for some non-

negative integer k, it holds that either:

(a)

f ∈Ck[a,b], with f (k)(x)> 0,x ∈ [a,b]⇒ L [ f ]> 0; (8.5.4)

or

(b)

f ∈Ck[a,b], with f (k)(x)> 0, x ∈ [a,b]⇒ L [ f ]< 0. (8.5.5)

Then, for f ∈ Ck[a,b], and any monic polynomial P ∈ π̃k, there exists a number ξ ∈
[a,b] such that

L [ f ] =
f (k)(ξ )

k!
L [P]. (8.5.6)

Proof. Suppose first that L satisfies the condition (8.5.4). Let f ∈Ck[a,b], P ∈ π̃k, and, for

any ε > 0, with the definitions

m := min
a�x�b

f (k)(x); M := max
a�x�b

f (k)(x), (8.5.7)

define the polynomials

g :=
1
k!
(m− ε)P; h :=

1
k!
(M + ε)P. (8.5.8)

Since P ∈ π̃k implies

P(k)(x) = k!, x ∈ R, (8.5.9)

it follows from (8.5.8), (8.5.7), and ε > 0, that

g(k)(x) = m− ε � f (k)(x)− ε < f (k)(x),

h(k)(x) = M+ ε � f (k)(x)+ ε > f (k)(x),

⎫⎬⎭ a � x � b,
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and thus

( f − g)(k)(x) > 0,

(h− f )(k)(x) > 0,

⎫⎬⎭ a � x � b. (8.5.10)

Hence, from (8.5.10) and (8.5.4), together with the linearity of L , we have

L [ f ]−L [g] = L [ f − g] > 0;

L [h]−L [ f ] = L [h− f ] > 0,

⎫⎬⎭
and thus

L [g]< L [ f ]< L [h]. (8.5.11)

By using again the linearity of L , we deduce from (8.5.8) and (8.5.11) that

m− ε
k!

L [P]< L [ f ]<
(M + ε)

k!
L [P]. (8.5.12)

Now observe from (8.5.9) that

P(k)(x)> 0, x ∈ [a,b],

according to which (8.5.4) gives L [P]> 0, so that we may divide the inequalities (8.5.12)

by 1
k!L [P] to deduce that

m− ε <
k!L [ f ]
L [P]

< M+ ε. (8.5.13)

Since ε is an arbitrary positive number, it follows from (8.5.13), together with (8.5.7), that

min
a�x�b

f (k)(x) = m � k!L [ f ]
L [P]

� M = max
a�x�b

f (k)(x). (8.5.14)

Hence, since also f (k) ∈ C[a,b], we may apply the intermediate value theorem, to deduce

from (8.5.14) that there exists a number ξ ∈ [a,b] such that

k!L [ f ]
L [P]

= f (k)(ξ ), (8.5.15)

which is equivalent to (8.5.6).

If L satisfies the condition (8.5.5), we may apply the argument which led from (8.5.7) to

(8.5.14) with L replaced by −L , to obtain, by using also the linearity of L ,

k!L [ f ]
L [P]

=
k!(−L [ f ])
−L [P]

=
k!(−L )[ f ]
(−L )[P]

= f (k)(ξ ),

as in (8.5.15), and thereby completing our proof. �
Before proceeding to prove that the Newton-Cotes error functional E NC

n in (8.5.3) belongs

to the class of linear functionals L of Theorem 8.5.1, it is first necessary to establish the

following property of divided differences. Here, and in the rest of the chapter, we shall rely
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on the mean value theorem for integrals which states that, if f ,g ∈ C[a,b], and g(x) does

not change sign on [a,b], then there exists a point ξ ∈ (a,b) such that∫ b

a
f (x)g(x)dx = f (ξ )

∫ b

a
g(x)dx, (8.5.16)

and similarly for iterated integrals.

Theorem 8.5.2. Suppose f ∈ Ck+2[a,b] for a non-negative integer k, and let {x0, . . . ,xk}
denote a sequence of k+ 1 distinct points in [a,b]. Then, for any x ∈ [a,b], there is a point

ξ ∈ [a,b] such that

d
dx

( f [x,x0, . . . ,xk]) =
f (k+2)(ξ )
(k+ 2)!

, (8.5.17)

with the divided difference f [x,x0, . . . ,xk] defined as in (1.4.14).

Proof. Our first step is to prove that, for g ∈C1[a,b], and any x,α and β such that

a < t(x−α)+β < b, t ∈ (0,α),

we have
d
dx

[∫ α

0
g(t(x−α)+β )dt

]
=

∫ α

0
tg′(t(x−α)+β )dt, x �= α. (8.5.18)

To prove (8.5.18), we suppose x �=α , and use the fundamental theorem of calculus to obtain

d
dx

[∫ α

0
g(t(x−α)+β )dt

]
=

d
dx

⎡⎣ ∫ α(x−α)

0
g(s+β )ds

x−α

⎤⎦

=
αg(α(x−α)+β )

x−α
−

∫ α(x−α)

0
g(s+β )ds

(x−α)2

=
αg(α(x−α)+β )

x−α
−

∫ α

0
g(t(x−α)+β )dt

x−α
,

(8.5.19)

whereas integration by parts yields∫ α

0
tg′(t(x−α)+β )dt =

[
tg(t(x−α)+β )

x−α

]t=α

t=0
−
∫ α

0

g(t(x−α)+β )
x−α

dt

=
αg(α(x−α)+β )

x−α
−

∫ α

0
g(t(x−α)+β )dt

x−α
, (8.5.20)

and it follows from (8.5.19) and (8.5.20) that (8.5.18) holds for x �= α .
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By first noting that Theorem 1.3.6 is also valid for the more general definition (1.4.14)

of divided differences, we now apply Theorem 1.3.6, the definition (1.4.14), (8.5.18), the

remark following the statement of Theorem 1.4.3, as well as the mean value theorem for

iterated integrals, as given similarly to (8.5.16), to deduce that, for x ∈ [a,b] \ {xk}, there

exists a point ξ ∈ [a,b] such that, with t0 := 1,

d
dx

( f [x,x0, . . . ,xk]) =
d
dx

( f [x0, . . . ,xk,x])

=
d
dx

[∫ t0

0
· · ·
∫ tk−1

0

∫ tk

0
f (k+1)(tk+1(x− xk)+ tk(xk − xk−1)+ . . .

+t1(x1 − x0)+ x0)dtk+1dtk . . .dt1

]

=
∫ t0

0
· · ·
∫ tk−1

0

d
dx

[∫ tk

0
f (k+1)(tk+1(x− xk)+ tk(xk − xk−1)+ · · ·

+t1(x1 − x0)+ x0)dtk+1

]
dtk . . .dt1

=

∫ t0

0
· · ·
∫ tk−1

0

∫ tk

0
tk+1 f (k+2)(tk+1(x− xk)+ tk(xk − xk−1)+ · · ·

+ t1(x1 − x0)+ x0)dtk+1dtk . . .dt1

= f (k+2)(ξ )
∫ t0

0
· · ·
∫ tk−1

0

∫ tk

0
tk+1dtk+1dtk . . .dt1

=
f (k+2)(ξ )

2

∫ t0

0
· · ·
∫ tk−1

0
t2
k dtk . . .dt1

= · · ·

=
f (k+2)(ξ )
(k+ 1)!

∫ t0

0
tk+1
1 dt1 =

f (k+2)(ξ )
(k+ 1)!

∫ 1

0
tk+1
1 dt1 =

f (k+2)(ξ )
(k+ 2)!

,

which proves (8.5.17) for x ∈ [a,b]\ {xk}.

If x = xk, we use the fact that

f [x,x0, . . . ,xk−1,xk] = f [x0, . . . ,xk,xk−1,x],

and argue as above, with x ∈ [a,b] \ {xk−1}, to deduce that (8.5.17) is also satisfied for

x = xk, and thereby completing our proof. �
By using Theorem 8.5.2, we can now prove that the Newton-Cotes error functional E NC

n

is a linear functional as in Theorem 8.5.1. Note that the case n = 0 is not included in
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Theorem 8.5.3 below, but will be covered later in Theorem 8.6.4, in the context of the

rectangle rule QRE
n , with n = 1.

Theorem 8.5.3. For any positive integer n, the Newton-Cotes quadrature error functional

E NC
n , as defined by (8.5.3), satisfies the following:

(a) if n is even, then

f ∈Cn+2[a,b], with f (n+2)(x)> 0, x ∈ [a,b]⇒ E NC
n [ f ]< 0; (8.5.21)

(b) if n is odd, then

f ∈Cn+1[a,b], with f (n+1)(x)> 0, x ∈ [a,b]⇒ E NC
n [ f ]< 0. (8.5.22)

Proof. First, we apply (8.5.3), (8.4.2) and (2.1.3), together with the formulation (2.1.5),

(2.1.6) of Theorem 2.1.1, to deduce that, for n = 0,1, . . .,

E NC
n [ f ] =

∫ b

a
f [x,xn,0, . . . ,xn,n]

n

∏
j=0

(x− xn, j)dx, f ∈C[a,b], (8.5.23)

where the divided difference f [x,xn,0, . . . ,xn,n] is defined by (1.4.14), and with the sequence

{xn, j : j = 0, . . . ,n} given by (8.4.3).

(a) Suppose n is even, with n � 2, and let f ∈Cn+2[a,b], with

f (n+2)(x)> 0, x ∈ [a,b]. (8.5.24)

By applying integration by parts, we deduce from (8.5.23) that

E NC
n [ f ] =

[
f [x,xn,0, . . . ,xn,n]Gn(x)

]x=b

x=a
−
∫ b

a

d
dx

( f [x,xn,0, . . . ,xn,n])Gn(x)dx, (8.5.25)

where we define

Gn(x) :=
∫ x

a

n

∏
j=0

(σ − xn, j)dσ , n = 0,1, . . . . (8.5.26)

Now use the one-to-one mapping (8.4.10), (8.4.11) between the intervals [0,n] and [a,b],

together with (8.4.3), to deduce that, with the definition

G̃n(t) :=
(

n
b− a

)n+2

Gn

(
a+

(
b− a

n

)
t
)
, (8.5.27)

we have

G̃n(t) =
∫ t

0

n

∏
j=0

(τ − j)dτ. (8.5.28)

It follows from (8.5.28) that

G̃n(n) =
∫ n

2

0

n

∏
j=0

(τ − j)dτ +
∫ n

n
2

n

∏
j=0

(τ − j)dτ. (8.5.29)
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But, by using the fact that n+ 1 is odd, we note that∫ n

n
2

n

∏
j=0

(τ − j)dτ =

∫ n
2

0

n

∏
j=0

[(n− s)− j]ds

= (−1)n+1
∫ n

2

0

n

∏
j=0

[s− (n− j)]ds

=−
∫ n

2

0

n

∏
j=0

[s− (n− j)]ds =−
∫ n

2

0

n

∏
j=0

(s− j)ds,

which, together with (8.5.29), and (8.5.28), yields

G̃n(0) = 0; G̃n(n) = 0, (8.5.30)

so that, from (8.5.27),

Gn(a) = 0; Gn(b) = 0. (8.5.31)

Hence we may use (8.5.31) to deduce from (8.5.25) that

E NC
n [ f ] =−

∫ b

a

d
dx

( f [x,xn,0, . . . ,xn,n])Gn(x)dx. (8.5.32)

Our next step is to show that

Gn(x)� 0, x ∈ [a,b], (8.5.33)

or equivalently, from (8.5.27),

G̃n(t)� 0, t ∈ [0,n].

Since n is even, we shall use an inductive proof to show that

G̃2ν(t)� 0, t ∈ [0,2ν], ν = 1,2, . . . . (8.5.34)

First, note from (8.5.28) that

G̃2(t) =
∫ t

0
τ(τ − 1)(τ − 2)dτ = 1

4 t2(t − 2)2, (8.5.35)

(see Exercise 8.16), according to which (8.5.34) holds for ν = 1. Suppose next that (8.5.34)

is satisfied for a fixed positive integer ν . It follows from (8.5.28), together with integration

by parts, as well as (8.5.30), that

G̃2ν+1(t) =
∫ t

0
(τ − 2ν − 1)

2ν

∏
j=0

(τ − j)dτ

=
[
(τ − 2ν − 1)G̃2ν(τ)

]t

0
−
∫ t

0
G̃2ν(τ)dτ
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= (t − 2ν − 1)G̃2ν(t)−
∫ t

0
G̃2ν(τ)dτ, (8.5.36)

and similarly,

G̃2ν+2(t) =
[
(τ − 2ν − 2)G̃2ν+1(τ)

]t

0
−
∫ t

0
G̃2ν+1(τ)dτ

= (t − 2ν − 2)G̃2ν+1(t)−
∫ t

0
G̃2ν+1(τ)dτ. (8.5.37)

It follows from (8.5.36) and the inductive hypothesis (8.5.34) that

G̃2ν+1(t)� 0, t ∈ [0,2ν], (8.5.38)

and hence, from (8.5.37) and (8.5.38),

G̃2ν+2(t)� 0, t ∈ [0,2ν]. (8.5.39)

Next, we use (8.5.28) to obtain, for any t ∈ [0,ν + 1],

G̃2ν+2(2ν + 2− t)− G̃2ν+2(t)

=

∫ 2ν+2−t

t

2ν+2

∏
j=0

(τ − j)dτ

=
∫ ν+1

t

2ν+2

∏
j=0

(τ − j)dτ +
∫ 2ν+2−t

ν+1

2ν+2

∏
j=0

(τ − j)dτ

=

∫ ν+1

t

2ν+2

∏
j=0

(τ − j)dτ +
∫ ν+1

t

2ν+2

∏
j=0

[(2ν + 2− s)− j]ds

=

∫ ν+1

t

2ν+2

∏
j=0

(τ − j)dτ +(−1)2ν+3
∫ ν+1

t

2ν+2

∏
j=0

[s− (2ν + 2− j)]ds

=

∫ ν+1

t

2ν+2

∏
j=0

(τ − j)dτ −
∫ ν+1

t

2ν+2

∏
j=0

(s− j)ds = 0,

and thus, from (8.5.39) and 2ν + 2 � 2,

G̃2ν+2(t) = G̃2ν+2(2ν + 2− t)� 0, t ∈ [2ν,2ν + 2],

which, together with (8.5.39), shows that (8.5.34) holds with ν replaced by ν + 1, and

thereby completing our inductive proof of (8.5.34).

Since (8.5.34), and therefore also (8.5.33) hold, we may apply the mean value theorem

(8.5.16) for integrals to deduce from (8.5.32) that there exists a point x̃ ∈ [a,b] such that

E NC
n [ f ] =−

[
d
dx

( f [x,xn,0, . . . ,xn,n])

]
x=x̃

∫ b

a
Gn(x)dx. (8.5.40)
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But then, from f ∈ Cn+2[a,b] and x̃ ∈ [a,b], we may apply Theorem 8.5.2 with k = n to

deduce that there exists a point ξ ∈ [a,b] such that[
d
dx

( f [x,xn,0, . . . ,xn,n])

]∣∣∣∣
x=x̃

=
f (n+2)(ξ )
(n+ 2)!

, (8.5.41)

which can now be substituted into (8.5.40) to yield

E NC
n [ f ] =− f (n+2)(ξ )

(n+ 2)!

∫ b

a
Gn(x)dx. (8.5.42)

By observing from (8.5.33) and (8.5.26) that∫ b

a
Gn(x)dx > 0, (8.5.43)

we may now deduce from (8.5.42), (8.5.24) and (8.5.43) that E NC
n [ f ]< 0, which completes

our proof of (8.5.21).

(b) Suppose n is odd, and f ∈Cn+1[a,b], with

f (n+1)(x)> 0, x ∈ [a,b].

It follows from (8.5.23), since also n � 1, that

E NC
n [ f ] =

∫ b

a
(x− xn,n) f [x,xn,0, . . . ,xn,n]

n−1

∏
j=0

(x− xn, j)dx. (8.5.44)

Now observe from the recursion formula (1.3.21) in Theorem 1.3.4 that

(x− xn,n) f [x,xn,0, . . . ,xn,n] = f [x,xn,0, . . . ,xn,n−1]− f [xn,0, . . . ,xn,n], (8.5.45)

for x ∈ [a,b] \ {xn,0, . . . ,xn,n}. But, since f ∈ Cn+1[a,b], we deduce from Theorem 1.4.4

that both sides of (8.5.45) are continuous for x ∈ [a,b], and it follows that (8.5.45) holds for

each x ∈ [a,b].

Hence we may substitute (8.5.45) into (8.5.44) to obtain

E NC
n [ f ] =

∫ b

a
( f [x,xn,0, . . . ,xn,n−1]− f [xn,0, . . . ,xn,n])

n−1

∏
j=0

(x− xn, j)dx,

to which we may now apply integration by parts to obtain

E NC
n [ f ] =

[
( f [x,xn,0, . . . ,xn,n−1]− f [xn,0, . . . ,xn,n])Gn−1(x)

]x=b

x=a

−
∫ b

a

d
dx

( f [x,xn,0, . . . ,xn,n−1])Gn−1(x)dx, (8.5.46)

where Gn−1 is defined as in (8.5.26), with n replaced by n− 1.

If n = 1, it follows from (8.4.3) that

| f [x,xn,0, . . . ,xn,n−1]− f [xn,0, . . . ,xn,n]|x=b = f [b,a]− f [a,b] = 0,
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from Theorem 1.3.6, whereas (8.5.26) gives G0(a) = 0, and it follows from (8.5.46) that

(8.5.32) holds with n replaced by n− 1, if n = 1. Moreover, (8.5.26) and (8.4.3) yield

G0(x) =
∫ x

a
(σ − a)dσ =

(x− a)2

2
� 0, x ∈ [a,b],

and thus also
∫ b

a
G0(x)dx > 0.

Since n−1 is an even positive integer for n � 3, we may now argue as in (8.5.27)–(8.5.43)

for n � 3, where Theorem 8.5.2 is applied with k = n − 1, and, similarly, argue as in

(8.5.40)–(8.5.43) for n = 1, to deduce that E NC
n [ f ]< 0, which then proves (8.5.22).

�
It follows from Theorem 8.5.3 that the Newton-Cotes quadrature error functional E NC

n be-

longs to the class of linear functionals L in Theorem 8.5.1, based on which we can now

prove the following result.

Theorem 8.5.4. For any positive integer n, the Newton-Cotes quadrature error functional

E NC
n , as defined by (8.5.3), satisfies

E NC
n [ f ] =

⎧⎪⎪⎨⎪⎪⎩
−
(

b− a
n

)n+3

(2Λn+3 −Λn+2) f (n+2)(ξ ), f ∈Cn+2[a,b], if n is even;

−2
(

b− a
n

)n+2

Λn+2 f (n+1)(ξ ), f ∈Cn+1[a,b], if n is odd,

(8.5.47)

for some ξ ∈ [a,b], and where the Laplace coefficients {Λk : k = 0,1, . . .} are defined by

(8.4.37).

Proof. According to (8.5.21) and (8.5.22) in Theorem 8.5.3, the linear functional L = E NC
n

satisfies the condition (8.5.5) of Theorem 8.5.1, with k = n+2 if n is even, and k = n+1 if

n is odd. Hence, with the polynomial Pn defined for any non-negative integer n by

Pn(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n+1

∏
j=0

(x− xn, j), if n is even;

n

∏
j=0

(x− xn, j), if n is odd,
(8.5.48)

with the points {xn, j : j = 0, . . . ,n} as in (8.4.3), and where

xn,n+1 := a+(n+ 1)
(

b− a
n

)
, (8.5.49)

according to which

Pn ∈
⎧⎨⎩ π̃n+2, if n is even;

π̃n+1, if n is odd,
(8.5.50)
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we may apply (8.5.6) in Theorem 8.5.1 to obtain, for n = 0,1, . . .,

E NC
n [ f ] =

⎧⎪⎪⎨⎪⎪⎩
f (n+2)(ξ )
(n+ 2)!

E NC
n [Pn], f ∈Cn+2[a,b], if n is even;

f (n+1)(ξ )
(n+ 1)!

E NC
n [Pn], f ∈Cn+1[a,b], if n is odd,

(8.5.51)

for some ξ ∈ [a,b]. By observing from (8.4.6) and (8.5.48) that, for n = 0,1, . . .,

QNC
n [Pn] =

n

∑
j=0

wn, jPn(xn, j) =
n

∑
j=0

wn, j(0) = 0,

we deduce from (8.5.3) that

E NC
n [Pn] =

∫ b

a
Pn(x)dx, n = 0,1, . . . . (8.5.52)

Now use the one-to-one mapping (8.4.10), (8.4.11) between the intervals [0,n] and [a,b],

together with (8.5.48), (8.4.3) and (8.5.49), to deduce that, for n = 0,1, . . .,

∫ b

a
Pn(x)dx =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

b− a
n

)n+3∫ n

0

n+1

∏
j=0

(t − j)dt, if n if even;(
b− a

n

)n+2∫ n

0

n

∏
j=0

(t − j)dt, if n is odd,

and thus, by recalling the definition (8.4.34),

∫ b

a
Pn(x)dx =

⎧⎪⎪⎨⎪⎪⎩
(

b− a
n

)n+3

(n+ 2)!
∫ n

0

(
t

n+ 2

)
dt, if n is even;(

b− a
n

)n+2

(n+ 1)!
∫ n

0

(
t

n+ 1

)
dt, if n is odd.

(8.5.53)

It follows from the definition (8.4.34) that, for t ∈ R and k ∈N,(
t
k

)
+

(
t

k+ 1

)
=

t(t − 1) . . .(t − k+ 1)
k!

+
t(t − 1) . . .(t − k)

(k+ 1)!

=
t(t − 1) . . .(t − k+ 1)

(k+ 1)!
[(k+ 1)+ (t− k)]

=
(t + 1)t(t − 1) . . .((t + 1)− (k+ 1)+ 1)

(k+ 1)!

=

(
t + 1
k+ 1

)
, (8.5.54)

which is consistent with the standard combinatorial identity obtained by setting t = m ∈
{0,1, . . .} in (8.5.54). Hence we may use (8.5.54) in (8.5.53) to deduce that, for n= 0,1, . . .,

∫ b

a
Pn(x)dx =

⎧⎪⎪⎨⎪⎪⎩
(

b− a
n

)n+3

(n+ 2)!
∫ n

0

[(
t + 1
n+ 3

)
−
(

t
n+ 3

)]
dt, if n is even;(

b− a
n

)n+2

(n+ 1)!
∫ n

0

[(
t + 1
n+ 2

)
−
(

t
n+ 2

)]
dt, if n is odd,
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from which, as in the argument which led from (8.4.19) to (8.4.20), we deduce that

∫ b

a
Pn(x)dx =

⎧⎪⎪⎨⎪⎪⎩
(

b− a
n

)n+3

(n+ 2)!
∫ 1

0

[(
n+ 1− t

n+ 3

)
−
(

t
n+ 3

)]
dt, if n is even;(

b− a
n

)n+2

(n+ 1)!
∫ 1

0

[(
n+ 1− t

n+ 2

)
−
(

t
n+ 2

)]
dt, if n is odd.

(8.5.55)

Suppose now that n is an even non-negative integer. It then follows from (8.4.34) and

(8.5.54), and the fact that n+ 3 is odd, that, for t ∈ R,(
n+ 1− t

n+ 3

)
=

(n+ 1− t)(n− t) . . .(−1− t)
(n+ 3)!

= (−1)n+3 (t + 1)t . . .((t + 1)− (n+ 3)+ 1)
(n+ 3)!

=−
(

t + 1
n+ 3

)
=−

(
t

n+ 3

)
−
(

t
n+ 2

)
,

and thus∫ 1

0

[(
n+ 1− t

n+ 3

)
−
(

t
n+ 3

)]
dt =−

[
2
∫ 1

0

(
t

n+ 3

)
dt +

∫ 1

0

(
t

n+ 2

)
dt
]
. (8.5.56)

Now observe from the definition (8.4.37) of the Laplace coefficients {Λk : k = 0,1, . . .}
that

2
∫ 1

0

(
t

n+ 3

)
dt +

∫ 1

0

(
t

n+ 2

)
dt = 2(−1)n+2Λn+3 +(−1)n+1Λn+2

= 2Λn+3 −Λn+2, (8.5.57)

since n+ 2 is even and n+ 1 is odd. The result in the first line of (8.5.47) is now obtained

from the first line of (8.5.51), (8.5.52), and the first line of (8.5.55), together with (8.5.56)

and (8.5.57).

Suppose next that n is an odd positive integer. It then follows from (8.4.34), and the fact

that n+ 2 is odd, that, for t ∈ R,(
n+ 1− t

n+ 2

)
=

(n+ 1− t)(n− t) . . .(−t)
(n+ 2)!

= (−1)n+2 t(t − 1) . . .(t − (n+ 2)+ 1)
(n+ 2)!

=−
(

t
n+ 2

)
,

and thus, by using also (8.4.37),∫ 1

0

[(
n+ 1− t

n+ 2

)
−
(

t
n+ 2

)]
dt =−2

∫ 1

0

(
t

n+ 2

)
dt =−2(−1)n+1Λn+2

=−2Λn+2, (8.5.58)
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since n+ 1 is even. The result in the second line of (8.5.47) is now obtained by using the

second line of (8.5.51), (8.5.52), and the second line of (8.5.55), together with (8.5.58),

which then completes our proof. �
We may now apply Theorems 8.5.3 and 8.5.4 to establish the following result.

Theorem 8.5.5. For any non-negative integer n,

(a) the Laplace coefficients Λn+2 and Λn+3, as appearing in (8.5.47) of Theorem 8.5.4,

satisfy

2Λn+3 −Λn+2 > 0;

Λn+2 > 0;

⎫⎬⎭ (8.5.59)

(b) the degree of exactness mn of the Newton-Cotes quadrature rule QNC
n in (8.4.6), (8.4.7),

(8.4.3) is given by

mn =

⎧⎨⎩n+ 1, if n is even;

n, if n is odd.
(8.5.60)

Proof. With the definition

Qn(x) :=

⎧⎨⎩ xn+2, if n is even;

xn+1, if n is odd,
(8.5.61)

we see that

Q(n+2)
n (x) = (n+ 2)! > 0, x ∈ R, if n is even; (8.5.62)

Q(n+1)
n (x) = (n+ 1)! > 0, x ∈ R, if n is odd. (8.5.63)

It follows from (8.5.47) in Theorem 8.5.4, together with (8.5.62) and (8.5.63), that

E NC
n [Qn] =

⎧⎪⎪⎨⎪⎪⎩
−
(

b− a
n

)n+3

(n+ 2)! (2Λn+3 −Λn+2), if n is even;

−2
(

b− a
n

)n+2

(n+ 1)! Λn+2, if n is odd.
(8.5.64)

Also, (8.5.21) and (8.5.22) in Theorem 8.5.3, together with the strict inequalities in (8.5.62)

and (8.5.63), imply

E NC
n [Qn]< 0, n = 0,1, . . . . (8.5.65)

The inequalities in (8.5.59) are now immediate consequences of (8.5.64) and (8.5.65).

Next, we observe from (8.5.64) and (8.5.59) that

E NC
n [Qn] �= 0, n = 0,1, . . . . (8.5.66)
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Also, the definition (8.5.61) shows that

Qn ∈
⎧⎨⎩πn+2, if n is even;

πn+1, if n is odd.
(8.5.67)

It follows from (8.5.66) and (8.5.67) that the degree of exactness mn of QNC
n satisfies

mn �

⎧⎨⎩n+ 1, if n is even;

n, if n is odd.
(8.5.68)

Suppose now that n is even, and let P ∈ πn+1. But then P(n+2) is the zero polynomial, so

that we may deduce from (8.5.3) and the first line of (8.5.47) that∫ b

a
P(x)dx−QNC

n [P] = E NC
n [P] = 0,

that is, ∫ b

a
P(x)dx = QNC

n [P], P ∈ πn+1,

and thus mn � n+ 1, which, together with the first line of (8.5.68), implies the first line of

(8.5.60).

Finally, if n is odd, we deduce from (8.4.2) and Theorem 8.1.1 that mn � n, which, together

with the second line of (8.5.68), yields the second line of (8.5.60), and thereby completing

our proof. �
As our final result of this section, we state, as an immediate consequence of (8.5.47) in

Theorem 8.5.4, as well as (8.5.59) in Theorem 8.5.5(a), the following quadrature error

bounds for Newton-Cotes quadrature.

Theorem 8.5.6. For any non-negative integer n, the Newton-Cotes quadrature rule QNC
n ,

as given in (8.4.6), (8.4.7), (8.4.3), satisfies the error bounds

∣∣∣∣∫ b

a
f (x)dx−QNC

n [ f ]
∣∣∣∣�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
b− a

n

)n+3

(2Λn+3 −Λn+2)|| f (n+2)||∞,
f ∈Cn+2[a,b], if n is even;

2
(

b− a
n

)n+2

Λn+2|| f (n+1)||∞,
f ∈Cn+1[a,b], if n is odd,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(8.5.69)

with {Λk : k = 0,1, . . .} denoting the Laplace coefficients as defined in (8.4.37).

Example 8.5.1. For the Newton-Cotes quadrature rules QNC
n , n= 1, . . . ,4, as formulated in

(8.4.56)–(8.4.59) of Example 8.4.1, we apply the result (8.5.69) in Theorem 8.5.6, together

with (8.4.54), to obtain the corresponding quadrature error bounds:
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∣∣∣∣∫ b

a
f (x)dx−QNC

1 [ f ]
∣∣∣∣� 1

12
(b− a)3|| f ′′||∞, f ∈C2[a,b]; (8.5.70)

∣∣∣∣∫ b

a
f (x)dx−QNC

2 [ f ]
∣∣∣∣� 1

90

(
b− a

2

)5

|| f (4)||∞, f ∈C4[a,b]; (8.5.71)

∣∣∣∣∫ b

a
f (x)dx−QNC

3 [ f ]
∣∣∣∣� 3

80

(
b− a

3

)5

|| f (4)||∞, f ∈C4[a,b]; (8.5.72)

∣∣∣∣∫ b

a
f (x)dx−QNC

4 [ f ]
∣∣∣∣� 8

945

(
b− a

4

)7

|| f (6)||∞, f ∈C6[a,b]. (8.5.73)

�

8.6 Composite Newton-Cotes quadrature

According to Table 8.4.1, the Newton-Cotes quadrature rule sequence {QNC
n : n = 0,1, . . .}

does not satisfy the non-negative weight condition (8.1.16), since negative weights occur

for n � 8. Hence the convergence result∫ b

a
f (x)dx−QNC

n [ f ]→ 0, n → ∞, f ∈C[a,b], (8.6.1)

is not guaranteed by Theorem 8.1.2. It can in fact be shown, by means of a method beyond

the scope of this book, that, for the integrand f chosen as the Runge example (3.1.5) in

Example 3.1.3, it holds that∣∣∣∣∫ 5

−5
f (x)dx−QNC

n [ f ]
∣∣∣∣→ ∞, n → ∞. (8.6.2)

In order to counteract such divergence phenomena in the Newton-Cotes setting, we present

in this section, for any fixed non-negative integer ν , the composite Newton-Cotes quadra-

ture rules {QNC
ν,n : n= ν,2ν, . . .} for the numerical approximation of the integral

∫ b

a
f (x)dx,

according to which, for each n = ν,2ν, . . ., the Newton-Cotes quadrature rule QNC
ν is ap-

plied n/ν times on successive sub-intervals of [a,b], as formulated more precisely in the

following.

Let ν and n denote positive integers satisfying the condition

n
ν
∈ N, (8.6.3)

and let the point sequence {xn, j : j = 0, . . . ,n} be defined by (8.4.3), according to which

also (8.4.4) and (8.4.5) are then satisfied. Then, for any f ∈C[a,b], we deduce from (8.4.3)
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and (8.6.3) that∫ b

a
f (x)dx =

n
ν −1

∑
j=0

∫ xn,( j+1)ν

xn, jν
f (x)dx =

n
ν −1

∑
j=0

∫ xn,ν

xn,0

f
(

x+ jν
(

b− a
n

))
dx,

that is, ∫ b

a
f (x)dx =

n
ν −1

∑
j=0

∫ xn,ν

a
f j(x)dx, (8.6.4)

where

f j(x) := f
(

x+ jν
(

b− a
n

))
, j = 0, . . . , n

ν − 1. (8.6.5)

Based on (8.6.4) and (8.6.5), we now consider the numerical approximation∫ b

a
f (x)dx ≈ QNC

ν,n[ f ], f ∈C[a,b], (8.6.6)

where the composite Newton-Cotes quadrature rule QNC
ν,n is defined by

QNC
ν,n[ f ] :=

n
ν −1

∑
j=0

QNC
ν [ f j ], f ∈C[a,b], (8.6.7)

with the functions { f j : j = 0, . . . , n
ν −1}⊂C[a,b] defined by (8.6.5), and with QNC

ν denot-

ing the Newton-Cotes quadrature rule, as given in (8.4.2), with respect to the interpolation

points {xn,0, . . . ,xn,ν}. Note from (8.6.7) and (8.6.5) that

QNC
ν,ν = QNC

ν . (8.6.8)

Observe from (8.6.7), (8.6.5), (8.4.2) and (8.4.3) that, if n ∈ {2ν,3ν, . . .}, then

QNC
ν,n[ f ] =

∫ b

a
FI

ν,n(x)dx, f ∈C[a,b], (8.6.9)

where, for each f ∈ C[a,b],FI
ν,n is the continuous piecewise polynomial function on [a,b],

with polynomial pieces in πν , and breakpoints at {xn, jν : j = 1, . . . ,( n
ν − 1)ν}, such that

FI
ν,n interpolates f at the points {xn, j : j = 0, . . . ,n}, that is,

FI
ν,n(xn, j) = f (xn, j), j = 0, . . . ,n, f ∈C[a,b]. (8.6.10)

For any positive integers ν and n satisfying (8.6.3), it follows from (8.4.6), (8.6.5) and

(8.4.3), that, for any j ∈ {0, . . . , n
ν − 1},

QNC
ν [ f j ] =

ν

∑
k=0

wν,k f
(

xn,k + jν
(

b− a
n

))
=

ν

∑
k=0

wν,k f
(

a+(k+ jν)
(

b− a
n

))

=
( j+1)ν

∑
k= jν

wν,k− jν f (xn,k), (8.6.11)
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where, from (8.4.38) in Theorem 8.4.1, with b− a replaced by xn,ν − xn,0 = ν
(

b− a
n

)
,

from (8.4.4), and with n replaced by ν , we have

wν,k =
b− a

n

[
1− (−1)k

ν

∑
�=0

Λ�+1

{(
�

k

)
+(−1)ν

(
�

ν − k

)}]
, k = 0, . . . ,ν, (8.6.12)

with {Λ1, . . . ,Λν+1} denoting the Laplace coefficients in (8.4.37). By using also the fact

that

wν,ν = wν,0, (8.6.13)

as follows from the symmetry property (8.4.55), we obtain the following formulation of

composite Newton-Cotes quadrature as an immediate consequence of (8.6.7), (8.6.11),

(8.6.12) and (8.6.13).

Theorem 8.6.1. For any positive integers ν and n satisfying the condition (8.6.3), the com-

posite Newton-Cotes quadrature rule QNC
ν,n, as defined by (8.6.7), (8.6.5), satisfies the for-

mulation

QNC
ν,n[ f ] =

n

∑
k=0

w[ν]
n,k f (xn,k), f ∈C[a,b], (8.6.14)

where the weights {w[ν]
n,k : k = 0, . . . ,n} are given by

w[ν]
n, jν =

⎧⎨⎩wν,0, for j = 0, or j = n
ν ;

2wν,0, for j = 1, . . . , n
ν − 1 (if n � 2ν);

(8.6.15)

w[ν]
n, jν+k = wν,k, k = 1, . . . ,ν − 1, for j = 0, . . . , n

ν − 1 (if ν � 2), (8.6.16)

with {wν,k : k = 0, . . . ,ν} given as in (8.6.12) in terms of the Laplace coefficients

{Λ1, . . . ,Λν+1} in (8.4.37), and where the points {xn,k : k = 0, . . . ,n} are given by (8.4.3).

For the choices ν = 1, . . . ,4 in Theorem 8.6.1, the corresponding composite Newton-Cotes

rules are known as, respectively,

the trapezoidal rule

QT R
n := QNC

1,n , n = 1,2, . . . ; (8.6.17)

the Simpson rule

QSI
n := QNC

2,n , n = 2,4, . . . ; (8.6.18)

the 3/8 rule

Q
3/8
n := QNC

3,n , n = 3,6, . . . ; (8.6.19)
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and the Boole rule

QBO
n := QNC

4,n , n = 4,8, . . . . (8.6.20)

By using (8.6.12)–(8.6.20), and Table 8.4.1, with the notation

fn, j := f (xn, j), j = 0, . . . ,n, (8.6.21)

for n = 1,2, . . ., where the points {xn, j : j = 0, . . . ,n} are given as in (8.4.3), we obtain, for

any f ∈C[a,b], the following explicit formulations in composite Newton-Cotes quadrature:

QT R
n [ f ] =

b− a
2n

[ fn,0 + 2 fn,1 + 2 fn,2 + · · ·+ 2 fn,n−1 + fn,n] , n = 1,2, . . . ;

(8.6.22)

QSI
n [ f ] =

b− a
3n

[ fn,0 + 4 fn,1 + 2 fn,2 + 4 fn,3 + 2 fn,4 + · · ·+ 2 fn,n−2

+ 4 fn,n−1 + fn,n], n = 2,4, . . . ; (8.6.23)

Q
3/8
n [ f ] =

3(b− a)
8n

[ fn,0 + 3 fn,1 + 3 fn,2 + 2 fn,3 + 3 fn,4 + 3 fn,5 + 2 fn,6 + · · ·

+2 fn,n−3 + 3 fn,n−2 + 3 fn,n−1+ fn,n] , n = 3,6, . . . ;

(8.6.24)

QBO
n [ f ] =

2(b− 4)
45n

[7 fn,0 + 32 fn,1 + 12 fn,2 + 32 fn,3 + 14 fn,4+ 32 fn,5 + 12 fn,6 + 32 fn,7

+14 fn,8 + · · ·+ 14 fn,n−4 + 32 fn,n−3+ 12 fn,n−2+ 32 fn,n−1+ 7 fn,n] , n = 4,8, . . . .

(8.6.25)

Example 8.6.1. For the numerical approximation of the integral
∫ 2

0
f (x)dx, f ∈C[0,2], it

follows from (8.6.21)–(8.6.25), together with (8.4.3), that

QT R
12 [ f ] =

1
12
[

f (0)+ 2 f ( 1
6 )+ 2 f ( 1

3)+ 2 f ( 1
2)+ 2 f ( 2

3)+ 2 f ( 5
6)+ 2 f (1)+ 2 f ( 7

6)

+2 f ( 4
3)+ 2 f ( 3

2)+ 2 f ( 5
3)+ 2 f ( 11

6 )+ f (2)
]

;

QSI
12[ f ] =

1
18
[

f (0)+ 4 f ( 1
6 )+ 2 f ( 1

3)+ 4 f ( 1
2)+ 2 f ( 2

3)+ 4 f ( 5
6)+ 2 f (1)+ 4 f ( 7

6)

+2 f ( 4
3)+ 4 f ( 3

2)+ 2 f ( 5
3)+ 4 f ( 11

6 )+ f (2)
]

;

Q
3/8
12 [ f ] =

1
16
[

f (0)+ 3 f ( 1
6 )+ 3 f ( 1

3)+ 2 f ( 1
2)+ 3 f ( 2

3)+ 3 f ( 5
6)+ 2 f (1)+ 3 f ( 7

6)
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+3 f ( 4
3)+ 2 f ( 3

2)+ 3 f ( 5
3)+ 3 f ( 11

6 )+ f (2)
]

;

QBO
12 [ f ] =

1
135

[
7 f (0)+ 32 f ( 1

6)+ 12 f ( 1
3)+ 32 f ( 1

2)+ 14 f ( 2
3)+ 32 f ( 5

6)+ 12 f (1)

+32 f ( 7
6)+ 14 f ( 4

3)+ 32 f ( 3
2)+ 12 f ( 5

3)+ 32 f ( 11
6 )+ 7 f (2)

]
,

which yields, for the case f (x) = ex, the quadrature errors∣∣∣∣∫ 2

0
f (x)dx−QTR

12 [ f ]
∣∣∣∣ ≈ 1.478× 10−2;∣∣∣∣∫ 2

0
f (x)dx−QSI

12[ f ]
∣∣∣∣ ≈ 2.730× 10−5;

∣∣∣∣∫ 2

0
f (x)dx−Q

3/8
12 [ f ]

∣∣∣∣ ≈ 6.122× 10−5;∣∣∣∣∫ 2

0
f (x)dx−QBO

12 [ f ]
∣∣∣∣ ≈ 2.856× 10−7.

�

We proceed to analyze the composite Newton-Cotes quadrature error

E NC
ν,n [ f ] :=

∫ b

a
f (x)dx−QNC

ν,n[ f ], f ∈C[a,b]. (8.6.26)

First, observe from (8.6.26), (8.6.4) and (8.6.7) that, for any positive integers ν and n such

that (8.6.3) holds, we have

E NC
ν,n [ f ] =

n
ν −1

∑
j=0

{∫ xn,ν

xn,0

f j(x)dx−QNC
ν [ f j]

}
, f ∈C[a,b], (8.6.27)

with the functions { f j : j = 0, . . . ,n} ⊂ C[a,b] defined by (8.6.5), and where the points

{xn, j : j = 0, . . . ,n} are given by (8.4.3). It follows from (8.6.27) and (8.6.5), together with

(8.5.47) in Theorem 8.5.4, with b− a replaced by ν
n (b− a), and with n replaced by ν , that

there exist points {ξ j : j = 0, . . . , n
ν − 1} in [a,b] such that

E NC
ν,n [ f ] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
(

b− a
n

)ν+3

{2Λν+3 −Λν+2}
n
ν −1

∑
j=0

f (ν+2)(ξ j),

f ∈Cν+2[a,b], if ν is even;

−2
(

b− a
n

)ν+2

Λν+2

n
ν −1

∑
j=0

f (ν+1)(ξ j),

f ∈Cν+1[a,b], if ν is odd,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(8.6.28)

with the Laplace coefficients {Λ j : j = 0,1, . . .} defined as in (8.4.37).
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Since, for g ∈C[a,b], a non-negative integer m, a point sequence {ξ0, . . . ,ξm} ⊂ [a,b], and

a sequence {α0, . . . ,αm} ⊂ R, with α j > 0, j = 0, . . . ,m, we have

min
a�x�b

g(x)
m

∑
j=0

α j �
m

∑
j=0

α jg(ξ j)� max
a�x�b

g(x)
m

∑
j=0

α j,

and thus

min
a�x�b

g(x)�

m

∑
j=0

α jg(ξ j)

m

∑
j=0

α j

� max
a�x�b

g(x),

according to which the intermediate value theorem yields
m

∑
j=0

α jg(ξ j)

m

∑
j=0

α j

= g(ξ ),

for some ξ ∈ [a,b], that is,
m

∑
j=0

α jg(ξ j) = g(ξ )
m

∑
j=0

α j , (8.6.29)

we can now deduce from (8.6.28) and (8.6.29), with g = f (ν+1), m = n
ν − 1, and α j = 1,

j = 0, . . . ,m, that, for any f ∈C[a,b], there exists a point ξ ∈ [a,b] such that

E NC
ν,n [ f ] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
(

b− a
n

)ν+3

{2Λν+3 −Λν+2}
[ n

ν
f (ν+2)(ξ )

]
,

f ∈Cν+2[a,b], if ν is even;

−2
(

b− a
n

)ν+2

Λν+2

[ n
ν

f (ν+1)(ξ )
]
,

f ∈Cν+1[a,b], if ν is odd,

that is,

E NC
ν,n [ f ] =−(b− a)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
b− a

n

)ν+2 [2Λν+3 −Λν+2

ν

]
f (ν+2)(ξ ),

f ∈Cν+2[a,b], if ν is even;(
b− a

n

)ν+1 [2Λν+2

ν

]
f (ν+1)(ξ ),

f ∈Cν+1[a,b], if ν is odd.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(8.6.30)

Since, according to (8.6.26) and (8.6.14), E NC
ν,n is a linear functional, and since E NC

ν,n satisfies

(8.6.30), an analogous argument to the one which led from (8.5.61) to (8.5.69) now yields

the following results.
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Theorem 8.6.2. For any positive integers ν and n satisfying the condition (8.6.3), the com-

posite Newton-Cotes quadrature rule QNC
ν,n, as defined by (8.6.7), (8.6.5), has degree of

exactness mν given by

mν =

⎧⎨⎩ν + 1, if ν is even;

ν, if ν is odd,
(8.6.31)

and with corresponding quadrature error satisfying

∣∣∣∣∫ b

a
f (x)dx−QNC

ν,n[ f ]
∣∣∣∣� (b− a)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
b− a

n

)ν+2 [2Λν+3 −Λν+2

ν

]
|| f (ν+2)||∞,

f ∈Cν+2[a,b], if ν is even;(
b− a

n

)ν+1 [2Λν+2

ν

]
|| f (ν+1)||∞,

f ∈Cν+1[a,b], if ν is odd,

(8.6.32)

with {Λ j : j = 0,1, . . .} denoting the Laplace coefficients defined in (8.4.37).

Observe from (8.4.4) that the factor (b− a)/n appearing in the right hand sides of (8.6.32)

represents the spacing between the points {xn, j : j = 0, . . . ,n} in (8.4.3), and which halves

for each doubling of n.

For the composite Newton-Cotes quadrature rules in (8.6.22)–(8.6.25), we use (8.6.17)–

(8.6.20), together with (8.6.31) and (8.6.32) in Theorem 8.6.2, and (8.4.54), to deduce that:

(a) the trapezoidal rule QT R
n has degree of exactness m = 1, and∣∣∣∣∫ b

a
f (x)dx−QT R

n [ f ]
∣∣∣∣� b− a

12

(
b− a

n

)2

|| f ′′||∞, f ∈C2[a,b], n = 1,2, . . . ; (8.6.33)

(b) the Simpson rule QSI
n has degree of exactness m = 3, and∣∣∣∣∫ b

a
f (x)dx−QSI

n [ f ]
∣∣∣∣� b− a

180

(
b− a

n

)4

|| f (4)||∞, f ∈C4[a,b], n = 2,4, . . . ;

(8.6.34)

(c) the 3/8 rule Q
3/8
n has degree of exactness m = 3, and∣∣∣∣∫ b

a
f (x)dx−Q

3/8
n [ f ]

∣∣∣∣� b− a
80

(
b− a

n

)4

|| f (4)||∞, f ∈C4[a,b], n = 3,6, . . . ;

(8.6.35)

(d) the Boole rule QBO
n has degree of exactness m = 5, and∣∣∣∣∫ b

a
f (x)dx−QBO

n [ f ]
∣∣∣∣� 2(b− a)

945

(
b− a

n

)6

|| f (6)||∞, f ∈C6[a,b], n = 4,8, . . . .

(8.6.36)
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We proceed to prove the following convergence result for composite Newton-Cotes quadra-

ture.

Theorem 8.6.3. The sequence {QNC
ν, jν : j = 1,2, . . .} of composite Newton-Cotes quadra-

ture rules, as defined in (8.6.7), (8.6.5), satisfies the convergence result∣∣∣∣∫ b

a
f (x)dx−QNC

ν, jν [ f ]
∣∣∣∣→ 0, j → ∞, f ∈C[a,b]. (8.6.37)

Proof. Let f ∈ C[a,b] and choose ε > 0. Our proof of (8.6.37) will be complete if we can

establish the existence of a positive integer J = J(ε) such that∣∣∣∣∫ b

a
f (x)dx−QNC

ν, jν [ f ]
∣∣∣∣ < ε, j > J. (8.6.38)

To this end, we fix j ∈ N, and, for the equispaced sequence {x jν,k : k = 0, . . . , jν} defined

according to (8.4.3) by

x jν,k := a+ k
(

b− a
jν

)
, k = 0, . . . , jν, (8.6.39)

we let {Ljν,k : k = 0, . . . ,ν} ⊂ πν denote the corresponding Lagrange fundamental polyno-

mials, as given in (1.2.1) by

Ljν,k(x) :=
ν

∏
k �=i=0

x− x jν,i

x jν,k − x jν,i
, k = 0, . . . ,ν. (8.6.40)

By using (8.6.7), (8.6.5), (8.6.3), (8.6.39), (8.4.2), (8.6.40), as well as (5.1.2) and the La-

grange interpolation formula (1.2.5) in Theorem 1.2.2, together with the identity (1.2.8) in

Theorem 1.2.3, we obtain∫ b

a
f (x)dx−QNC

ν, jν [ f ] =
j−1

∑
�=0

∫ x jν,(�+1)ν

x jν,�ν
f (x)dx−

j−1

∑
�=0

QNC
ν [ f�]

=
j−1

∑
�=0

[∫ x jν,ν

a
f
(

x+ �

(
b− a

j

))
dx−

∫ x jν,ν

a

ν

∑
k=0

f
(

a+
(
�+

k
ν

)(
b− a

j

))
Ljν,k(x)dx

]

=
j−1

∑
�=0

∫ x jν,ν

a

ν

∑
k=0

{
f
(

x+ �

(
b− a

j

))
− f

(
a+

(
�+

k
ν

)(
b− a

j

))}
Ljν,k(x)dx,

and thus∣∣∣∣∫ b

a
f (x)dx−QNC

ν, jν [ f ]
∣∣∣∣

�
j−1

∑
�=0

∫ x jν,ν

a

ν

∑
k=0

∣∣∣∣ f (x+ �

(
b− a

j

))
− f

(
a+

(
�+

k
ν

)(
b− a

j

))∣∣∣∣ |Ljν,k(x)|dx.

(8.6.41)
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Now observe from (8.6.39) that, for x ∈ [a,x jν,ν ],k ∈ {0, . . . ,ν}, and i ∈ {0, . . . ,ν} \ {k},

we have ∣∣∣∣ x− x jν,i

x jν,k − x jν,i

∣∣∣∣ � x jν,ν − a
(b− a)/ jν

=
(b− a)/ j
(b− a)/ jν

= ν,

which, together with (8.6.40), yields the bound

|Ljν,k(x)|� ν2, x ∈ [a,x jν,ν ], k = 0, . . . ,ν. (8.6.42)

Hence we may apply the bound (8.6.42) in (8.6.41) to deduce that∣∣∣∣∫ b

a
f (x)dx−QNC

ν, jν [ f ]
∣∣∣∣

� ν2
j−1

∑
�=0

∫ x jν,ν

a

ν

∑
k=0

∣∣∣∣ f (x+ �

(
b− a

j

))
− f

(
a+

(
�+

k
ν

)(
b− a

j

))∣∣∣∣dx.

(8.6.43)

Since f ∈C[a,b], we know from a standard result in calculus that f is uniformly continuous

on [a,b], that is, there exists a positive number δ = δ (ε) such that

x,y ∈ [a,b]; |x− y|< δ ⇒ | f (x)− f (y)| < ε
ν2(ν + 1)(b− a)

. (8.6.44)

Now observe from (8.6.39) that, for any x ∈ [a,x jν,ν ], k ∈ {0, . . . ,ν} and �∈ {0, . . . , j−1},

we have

− k
ν

(
b− a

j

)
�
[

x+ �

(
b− a

j

)]
−
[

a+
(
�+

k
ν

)(
b− a

j

)]
� ν − k

ν

(
b− a

j

)
,

and thus∣∣∣∣[x+ �

(
b− a

j

)]
−
[

a+
(
�+

k
ν

)(
b− a

j

)]∣∣∣∣� b− a
j

, x ∈ [a,x jν,ν ];

k = 0, . . . ,ν; �= 0, . . . , j− 1. (8.6.45)

Hence, if we define the positive integer J = J(ε) by

J := �(b− a)/δ�, (8.6.46)

according to which

0 <
b− a

J
� δ , (8.6.47)

it follows from (8.6.45), (8.6.47) and (8.6.44) that, for any j > J, it holds that∣∣∣∣ f (x+ �

(
b− a

j

))
− f

(
a+

(
�+

k
ν

)(
b− a

j

))∣∣∣∣< ε
ν2(ν + 1)(b− a)

,

x ∈ [a,x jν,ν ]; k = 0, . . . ,ν; �= 0, . . . , j− 1. (8.6.48)
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By applying the bound (8.6.48) in (8.6.43), and using (8.6.39), we deduce that, for j > J,∣∣∣∣∫ b

a
f (x)dx−QNC

ν, jν [ f ]
∣∣∣∣< ε

b− a

j−1

∑
�=0

∫ x jν,ν

a
dx =

ε
b− a

j−1

∑
�=0

[
b− a

j

]
= ε,

and thereby showing that the desired result (8.6.38) holds, with the positive integer J = J(ε)
given by (8.6.46). �
Finally in this section, we consider two composite quadrature rules based on the interpola-

tion by means of piecewise constants of the integrand f ∈C[a,b] in the integral
∫ b

a
f (x)dx.

In particular, with the points {xn, j : j = 0, . . . ,n} given as in (8.4.3), we define the rectangle

rule

QRE
n [ f ] :=

∫ b

a
HI

n(x)dx, f ∈C[a,b], n = 1,2, . . . , (8.6.49)

where

HI
n(x) := f (xn, j), x ∈ [xn, j,xn, j+1), j = 0, . . . ,n− 1, (8.6.50)

according to which we have the formulation

QRE
n [ f ] =

b− a
n

n−1

∑
j=0

f (xn, j), f ∈C[a,b], n = 1,2, . . . , (8.6.51)

thereby extending the Newton-Cotes quadrature rule QNC
0 , as given by (8.4.9), to the com-

posite setting, and, secondly, the midpoint rule

QMI
n [ f ] :=

∫ b

a
H̃I

n(x)dx, f ∈C[a,b], n = 1,2, . . . , (8.6.52)

where

H̃I
n(x) := f

(
xn, j + xn, j+1

2

)
, x ∈ [xn, j,xn, j+1), j = 0, . . . ,n− 1, (8.6.53)

which yields the formulation

QMI
n [ f ] =

b− a
n

n−1

∑
j=0

f
(

xn, j + xn, j+1

2

)
, f ∈C[a,b], n = 1,2, . . . . (8.6.54)

We proceed to establish the following results with respect to the rectangle and midpoint

quadrature rules.

Theorem 8.6.4. For any integer n � 2, the rectangle rule QRE
n , as defined by (8.6.49),

(8.6.50), has degree of exactness m = 0, whereas the midpoint rule QMI
n , as defined by

(8.6.52), (8.6.53), has degree of exactness m = 1. Moreover, the corresponding quadrature

errors satisfy the bounds∣∣∣∣∫ b

a
f (x)dx−QRE

n [ f ]
∣∣∣∣� b− a

2

(
b− a

n

)
|| f ′||∞, f ∈C1[a,b], n = 1,2, . . . ; (8.6.55)

∣∣∣∣∫ b

a
f (x)dx−QMI

n [ f ]
∣∣∣∣� b− a

24

(
b− a

n

)2

|| f ′′||∞, f ∈C2[a,b], n = 1,2, . . . . (8.6.56)
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Proof. For an integer n ∈ N and any f ∈ C1[a,b], it follows from (8.6.49) and (8.6.50),

together with the mean value theorem (8.5.16) for integrals, that, with the points {xn, j : j =

0, . . . ,n} as in (8.4.3), so that (8.4.4) holds, we have

∫ b

a
f (x)dx−QRE

n [ f ] =
n−1

∑
j=0

∫ xn, j+1

xn, j

f (x)dx−
n−1

∑
j=0

∫ xn, j+1

xn, j

f (xn, j)dx

=
n−1

∑
j=0

∫ xn, j+1

xn, j

[ f (x)− f (xn, j)]dx

=
n−1

∑
j=0

∫ xn, j+1

xn, j

[∫ x

xn, j

f ′(t)dt
]

dx

=
n−1

∑
j=0

∫ xn, j+1

xn, j

[∫ xn, j+1

t
dx
]

f ′(t)dt

=
n−1

∑
j=0

∫ xn, j+1

xn, j

(xn, j+1 − t) f ′(t)dt

=
n−1

∑
j=0

f ′(ξ j)

∫ xn, j+1

xn, j

(xn, j+1 − t)dt =
1
2

(
b− a

n

)2
[

n−1

∑
j=0

f ′(ξ j)

]
,

(8.6.57)

for some points {ξ j : j = 0, . . . ,n} ⊂ [a,b]. But, as noted before in (8.6.29), an application

of the intermediate value theorem yields the existence of a point ξ ∈ [a,b] such that

n−1

∑
j=0

f ′(ξ j) = n f ′(ξ ), (8.6.58)

which, together with (8.6.57), yields∫ b

a
f (x)dx−QRE

n [ f ] =
b− a

2

(
b− a

n

)
f ′(ξ ), f ∈C1[a,b], n = 1,2, . . . . (8.6.59)

From (8.6.59) we see that the rectangle rule QRE
n has degree of exactness m = 0, and

(8.6.59) also immediately implies the upper bound in (8.6.55).

In order to analyze the midpoint rule QMI
n , we let f ∈ C2[a,b], and first note that for any

x,α ∈ [a,b], we may use integration by parts to obtain∫ x

α
(x− t) f ′′(t)dt =

[
(x− t) f ′(t)

]t=x

t=α
+

∫ x

α
f ′(t)dt

=−(x−α) f ′(α)+ [ f (x)− f (α)],
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and thus

f (x) = f (α)+ f ′(α)(x−α)+

∫ x

α
(x− t) f ′′(t)dt. (8.6.60)

It follows from (8.6.52), (8.6.53), as well as (8.6.60), together with the mean value theorem

(8.5.16) for integrals, that, for n ∈ N, and with the points {xn, j : j = 0, . . . ,n} as in (8.4.3),

so that also (8.4.4) holds, we have (see also Exercise 8.21)∫ b

a
f (x)−QMI

n [ f ] =
n−1

∑
j=0

∫ xn, j+1

xn, j

f (x)dx−
n−1

∑
j=0

∫ xn, j+1

xn, j

f
(

xn, j + xn, j+1

2

)
dx

=
n−1

∑
j=0

∫ xn, j+1

xn, j

[
f (x)− f

(
xn, j + xn, j+1

2

)]
dx

=
n−1

∑
j=0

∫ xn, j+1

xn, j

[
f ′
(

xn, j + xn, j+1

2

)(
x− xn, j + xn, j+1

2

)

+
∫ x

1
2 (xn, j+xn, j+1)

(x− t) f ′′(t)dt
]

dx

=
n−1

∑
j=0

∫ xn, j+1

xn, j

[∫ x

1
2 (xn, j+xn, j+1)

(x− t) f ′′(t)dt
]

dx

=
n−1

∑
j=0

{∫ 1
2 (xn, j+xn, j+1)

xn, j

[∫ 1
2 (xn, j+xn, j+1)

x
(t − x) f ′′(t)dt

]
dx

+
∫ xn, j+1

1
2 (xn, j+xn, j+1)

[∫ x

1
2 (xn, j+xn, j+1)

(x− t) f ′′(t)dt
]}

dx

=
n−1

∑
j=0

{∫ 1
2 (xn, j+xn, j+1)

xn, j

[∫ t

xn, j

(t − x)dx
]

f ′′(t)dt

+

∫ xn, j+1

1
2 (xn, j+xn, j+1)

[∫ xn, j+1

t
(x− t)dx

]
f ′′(t)dt

}

=
1
2

n−1

∑
j=0

{∫ 1
2 (xn, j+xn, j+1)

xn, j

(t − xn, j)
2 f ′′(t)dt

+

∫ xn, j+1

1
2 (xn, j+xn, j+1)

(xn, j+1 − t)2 f ′′(t)dt
}

=
1
2

n−1

∑
j=0

{
f ′′(ξ j)

∫ 1
2 (xn, j+xn, j+1)

xn, j

(t − xn, j)
2dt

+ f ′′(ξ̃ j)
∫ xn, j+1

1
2 (xn, j+xn, j+1)

(xn, j+1 − t)2dt
}
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=
1
2

n−1

∑
j=0

{
f ′′(ξ j)

1
3

(
b− a

2n

)3

+ f ′′(ξ̃ j)
1
3

(
b− a

2n

)3
}

=
1

48

(
b− a

n

)3
{

n−1

∑
j=0

f ′′(ξ j)+
n−1

∑
j=0

f ′′(ξ̃ j)

}
, (8.6.61)

for some points {ξ j : j = 0, . . . ,n− 1}, {ξ̃ j : j = 0, . . . ,n− 1} ⊂ [a,b]. But, by applying

again (8.6.29), we deduce the existence of points ξ̃ ,ξ ∗ ∈ [a,b] such that
n−1

∑
j=0

f ′′(ξ j)+
n−1

∑
j=0

f ′′(ξ̃ j) = n f ′′(ξ̃ )+ n f ′′(ξ ∗) = n( f ′′(ξ̃ )+ f ′′(ξ ∗))

= 2n f ′′(ξ ), (8.6.62)

for some ξ ∈ [a,b], after another application of (8.6.29). Hence we may substitute (8.6.62)

into (8.6.61) to obtain∫ b

a
f (x)dx−QMI

n [ f ] =
b− a

24

(
b− a

n

)2

f ′′(ξ ), f ∈C2[a,b], n = 1,2, . . . . (8.6.63)

It follows from (8.6.63) that the midpoint rule QMI
n has order of exactness m = 1, whereas

(8.6.63) also immediately implies the upper bound in (8.6.56). �
According to (8.6.51) and (8.6.54), QRE

n [ f ] and QMI
n [ f ] are both Riemann sums for

f ∈ C[a,b] with respect to the partition points {xn, j : j = 0, . . . ,n} of [a,b], as defined by

(8.4.3), and therefore satisfying also (8.4.4) and (8.4.5), so that we may state, by virtue of a

standard result in calculus for the convergence of a Riemann sum, the following analogue

of Theorem 8.6.3.

Theorem 8.6.5. In Theorem 8.6.4,∣∣∣∣∫ b

a
f (x)dx−QRE

n [ f ]
∣∣∣∣→ 0, n → ∞, f ∈C[a,b]; (8.6.64)

∣∣∣∣∫ b

a
f (x)dx−QMI

n [ f ]
∣∣∣∣→ 0, n → ∞, f ∈C[a,b]. (8.6.65)

It is interesting to observe that, although the trapezoidal rule QT R
n , as given in (8.6.17),

is obtained by integrating a (continuous) piecewise linear interpolant of the integrand f ,

whereas the midpoint rule QMI
n , as defined by (8.6.52), (8.6.53), is obtained by integrating

a (discontinuous) piecewise constant interpolant of f , the quadrature rules QTR
n and QMI

n

have, according to Theorems 8.6.2 and 8.6.4, the same degree of exactness m = 1. More-

over, note that the constant 1
12 in the upper bound (8.6.33) for QT R

n is twice as large as the

constant 1
24 appearing in the analogous upper bound in (8.6.56) of Theorem 8.6.4 for QMI

n .
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Example 8.6.2. For the numerical approximation of the integral
∫ 2

0
f (x)dx, f ∈C[0,2], it

follows from (8.6.51), (8.6.54) and (8.4.3) that

QRE
n [ f ] =

2
n

n−1

∑
j=0

f
(

2 j
n

)
, n = 1,2, . . . ; (8.6.66)

QMI
n [ f ] =

2
n

n−1

∑
j=0

f
(

2 j+ 1
n

)
, n = 1,2, . . . . (8.6.67)

For the case f (x) = ex, an application of (8.6.66) and (8.6.67) yields the corresponding

quadrature errors ∣∣∣∣∫ 2

0
f (x)dx−QRE

8 [ f ]
∣∣∣∣ ≈ 7.654× 10−1;

∣∣∣∣∫ 2

0
f (x)dx−QMI

8 [ f ]
∣∣∣∣ ≈ 1.661× 10−2.

�

8.7 Exercises

Exercise 8.1 Design the Gauss-Legendre quadrature rule QGL
2 for the numerical approxi-

mation of the integral

I [ f ] :=
∫ 1

−1
f (x)dx,

where f ∈ C[−1,1], and verify that the weights {w2,0,w2,1,w2,2} thus obtained satisfy the

property (8.1.11), with w(x) = 1, x ∈ [−1,1], as well as the positivity condition (8.2.21) in

Theorem 8.2.3. Also, verify that, as given in (8.2.7) of Theorem 8.2.2, QGL
2 has degree of

exactness m = 5, that is,

E GL
2 [ f ] :=

∫ 1

−1
f (x)dx−QGL

2 [ f ] = 0, f ∈ π5,

by explicitly calculating E GL
2 [ f ] for, respectively,

(a) f (x) =
5

∑
j=0

α jx j; (b) f (x) = x6,

where, in (a), {α0, . . . ,α5} denotes an arbitrary coefficient sequence in R.

Exercise 8.2 As a continuation of Exercise 8.1, for both of the respective integrands

(a) f (x) = ln(x+ 2); (b) f (x) = x6,

and after applying integration by parts to obtain∫ 1

−1
ln(x+ 2)dx = 3ln3− 2 ≈ 1.296,
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verify that the corresponding quadrature errors E GL
2 [ f ] satisfy the upper bound in (8.2.28)

of Theorem 8.2.4(b), with QG
n = QGL

2 , and for each k = 1,2.

Exercise 8.3 Obtain real numbers A,B,α and β such that the condition∫ 4

0

√
x f (x)dx = A f (α)+B f (β ), f ∈ π3, (∗)

is satisfied.

[Hint: Apply Theorem 8.2.2.]

Exercise 8.4 As a continuation of Exercise 8.3, for any f ∈ C1[0,4], apply (8.2.29) in

Theorem 8.2.4(b) to obtain an upper bound on the quadrature error∣∣∣∣∫ 4

0

√
x f (x)dx− [A f (α)+B f (β )]

∣∣∣∣ ,
and investigate the sharpness of this upper bound for the integrand f (x) = x4.

Exercise 8.5 Repeat Exercise 8.3, with the condition (∗) replaced by each of the following:

(a)
∫ 1

−1
|x| f (x)dx = A f (α)+B f (β ), f ∈ π3;

(b)
∫ 1

0
x f (x)dx = A f (α)+B f (β ), f ∈ π3;

(c)
∫ 1

−1

1√
1− x2

f (x)dx = A f (α)+B f (β ), f ∈ π3.

Exercise 8.6 As a continuation of Exercise 8.5, repeat Exercise 8.4, with f ∈ C1[0,4] re-

placed by, respectively, (a) f ∈C1[−1,1]; (b) f ∈C1[0,1]; (c) f ∈C1[−1,1].

Exercise 8.7 By explicitly integrating the Chebyshev polynomials in (2.2.2), verify the

formula in the first line of (8.3.16) for k = 0,2,4,6.

Exercise 8.8 Apply Theorem 8.3.1 to construct the Clenshaw-Curtis quadrature rule QCC
4

for the numerical approximation of the integral

I [ f ] :=
∫ 5

−5
f (x)dx, f ∈C[−5,5],

and verify that the weights {w4,0, . . . ,w4,4} thus obtained satisfy the property (8.1.11), with

w(x) = 1, x ∈ [−5,5], as well as the positivity condition (8.3.30) in Theorem 8.3.2.

Exercise 8.9 As a continuation of Exercise 8.8, verify that, as given in the first line of

(8.3.58) in Theorem 8.3.3, QCC
4 has degree of exactness m = 5, that is,

E CC
4 [ f ] :=

∫ 5

−5
f (x)dx−QCC

4 [ f ] = 0, f ∈ π5,

by explicitly calculating E CC
4 [ f ] for, respectively, f chosen as in (a) and (b) of Exercise 8.1.

Exercise 8.10 As a continuation of Exercise 8.9, for each of the integrands

(a) f (x) =
1

1+ x2 (that is, the Runge example (3.1.5)); (b) f (x) = x6,
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verify that the quadrature error E CC
4 [ f ] satisfies the upper bound (8.3.63) of Theorem

8.3.4(b), with [a,b] = [−5,5], n = 4, and for each k = 1, . . . ,4.

Exercise 8.11 Prove inductively from (8.4.26) that (8.4.25) holds.

Exercise 8.12 Verify, by means of the recursive formulation (8.4.50) in Theorem 8.4.3, the

Laplace coefficient values in (8.4.54), as well as, by applying the formulation (8.4.38) in

Theorem 8.4.1, the Newton-Cotes weights in Table 8.4.1.

Exercise 8.13 Extend the quadrature formulas (8.4.56)–(8.4.59) by obtaining explicit for-

mulations for the Newton-Cotes quadrature rules QNC
5 and QNC

6 .

Exercise 8.14 As a continuation of Exercise 8.13, extend the quadrature error estimates

(8.5.70)–(8.5.73) by obtaining analogous quadrature error bounds with respect to QNC
5 and

QNC
6 .

Exercise 8.15 For the function

f (x) = x4, x ∈ [0,1],

find a point ξ ∈ [0,1], the existence of which is guaranteed by Theorem 8.5.2, such that, as

in (8.5.17) with k = 0 and x0 = 1,[
d
dx

( f [x,1])
]∣∣∣∣

x= 1
2

=
1
2

f ′′(ξ ).

Exercise 8.16 Verify the integral G̃2(t) in (8.5.35).

Exercise 8.17 Verify the result (8.5.21) of Theorem 8.5.3(a) for the case n= 2, [a,b] = [0,2]

and

f (x) =
1

(1+ x)2 .

[Hint: Apply the formula (8.4.57).]

Exercise 8.18 As a continuation of Exercise 8.17, find a point ξ ∈ [0,2], the existence of

which is guaranteed by Theorem 8.5.4, such that the first line of (8.5.47) is satisfied, with

[a,b],n, and f given as in Exercise 8.17.

[Hint: Use (8.4.54).]

Exercise 8.19 Obtain the explicit formulations of the composite Newton-Cotes quadrature

rules QNC
5,n and QNC

6,n , thereby extending the quadrature formulas (8.6.22)–(8.6.25).

Exercise 8.20 As a continuation of Exercise 8.19, obtain quadrature error estimates with

respect to QNC
5,n and QNC

6,n , thereby extending the error estimates (8.6.33) - (8.6.36).

Exercise 8.21 For a bivariate function f that is continuous on a square [α,β ]× [α,β ] in

R2, verify the interchange of integration order result∫ β

α

[∫ β

x
f (x, t)dt

]
dx =

∫ β

α

[∫ t

α
f (x, t)dx

]
dt,
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as used to establish (8.6.61) in the proof of Theorem 8.6.4.

Exercise 8.22 For any positive integer ν , let {QNC
ν, jν : j = 1,2, . . .} denote the correspond-

ing sequence of composite Newton-Cotes quadrature rules for the numerical approximation

of the integral ∫ b

a
f (x)dx, f ∈C[a,b].

Apply the quadrature error estimate (8.6.32) in Theorem 8.6.2 to show that, for a fixed

integer ν ∈N, and any given integrand f ∈C�ν [a,b], with

�ν :=

⎧⎪⎪⎨⎪⎪⎩
ν + 2, if ν is even;

ν + 1, if ν is odd,

it holds that

E NC
ν, jν [ f ] :=

∣∣∣∣∫ b

a
f (x)dx−QNC

ν, jν [ f ]
∣∣∣∣ � Kj, j ∈N,

where the upper bounds {Kj : j ∈ N} satisfy the decay condition

Kj+1 =
1

(1+ 1
j )

�ν
Kj , j ∈ N. (∗)

Exercise 8.23 As a continuation of Exercise 8.22, by computing the quadrature error

E NC
ν, jν [ f ], with [a,b] = [0,4] and

f (x) =
1

(1+ x)2 ,

and for j = 1, . . . ,4; ν = 1, . . . ,4, investigate numerically whether, analogously to (∗) in

Exercise 8.22, the decay rate∣∣∣E NC
ν,( j+1)ν [ f ]

∣∣∣ ≈ 1
(1+ 1

j )
�ν

∣∣E NC
ν, jν [ f ]

∣∣
is achieved for this choice of f .

Exercise 8.24 By using the quadrature error estimates (8.6.55) and (8.6.56) in Theorem

8.6.4, and after arguing as in Exercises 8.22 and 8.23, investigate numerically, for the same

choices of [a,b] and f as in Exercise 8.23, whether the quadrature errors

E RE
n [ f ] :=

∫ 4

0
f (x)dx−QRE

n [ f ]; E MI
n [ f ] :=

∫ 4

0
f (x)dx−QMI

n [ f ],

satisfy the decay rates∣∣E RE
2n [ f ]

∣∣≈ 1
2 |E RE

n [ f ]|; |E MI
2n [ f ]| ≈ 1

4 |E MI
n [ f ]|,

for n = 1, . . . ,4.
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Exercise 8.25 For the function

f (x) = e−x2
, x ∈ [0,1],

calculate a numerical approximation Q[ f ] of the integral

I [ f ] :=
∫ 1

0
f (x)dx

such that

|I [ f ]−Q[ f ]|< 1
100

,

by means of

(a) Gauss-Legendre quadrature;

(b) Clenshaw-Curtis quadrature;

(c) the trapezoidal rule;

(d) the Simpson rule;

(e) the midpoint rule.



Chapter 9

Approximation of Periodic Functions

In the study of approximation of functions in Chapters 1 to 8, the emphasis is on (algebraic)

polynomial approximation on the bounded interval [a,b]. Since algebraic polynomials are

not periodic functions, they are not suitable basis functions for representing and approx-

imating periodic functions on the entire real line R. On the other hand, many natural

phenomena can only be represented by periodic functions. It is therefore essential to study

approximation of periodic continuous functions f : R→R, by the linear span of some ele-

mentary periodic functions. This chapter is devoted to the study of this topic by considering

basis functions that are formulated in terms of the sine and cosine functions.

9.1 Trigonometric polynomials

Let f̃ ∈C(R), with C(R) denoting the linear space of continuous functions f : R→R, and

suppose that, moreover, f̃ is periodic, with period K, that is, K is a positive number such

that

f̃ (x+K) = f̃ (x), x ∈R. (9.1.1)

For the function f ∈C(R) defined by

f (x) := f̃
(

K
2π

x
)
, x ∈ R, (9.1.2)

it then follows from (9.1.2) and (9.1.1) that, for any x ∈ R,

f (x+ 2π) = f̃
(

K
2π

(x+ 2π)
)
= f̃

(
K
2π

x+K
)
= f̃

(
K
2π

x
)
,

and thus, from (9.1.2),

f (x+ 2π) = f (x), x ∈R, (9.1.3)

233
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that is, f is periodic on R, with period 2π . Hence we shall, without loss of generality,

restrict our attention in this chapter to the approximation of functions f ∈C2π , where

C2π := { f ∈C(R) : f (x+ 2π) = f (x), x ∈ R}, (9.1.4)

since any periodic function f̃ in C(R) with period K �= 2π can be transformed by means of

(9.1.2) into a function f ∈C2π .

For use as approximation set for a given function f ∈ C2π , we define, for any n ∈ N, the

linear space

τn := span{1,cosx, . . . ,cos(nx),sinx, . . . ,sin(nx)}, (9.1.5)

for which it is then immediately evident that

τn ⊂C2π , n ∈ N. (9.1.6)

In order to determine the dimension of τn, we first observe that (C2π ,〈·, ·〉2) is an inner

product space with respect to the inner product

〈 f ,g〉2 :=
∫ π

−π
f (x)g(x)dx, f ,g ∈C2π , (9.1.7)

after having noted in particular that, if f ∈C2π is such that

0 = 〈 f , f 〉2 =

∫ π

−π
[ f (x)]2dx,

then f ∈ C(R) implies f (x) = 0, x ∈ [−π ,π ], and thus, from (9.1.3), f (x) = 0,x ∈ R, as

required in the condition (4.2.2).

For any inner product space (X ,〈·, ·〉), we say that a subset Y of X is an orthogonal set in

(X ,〈·, ·〉) if the condition

〈 f ,g〉= 0, f ,g ∈Y, f �= g,

is satisfied.

The following result then holds.

Theorem 9.1.1. For any n ∈ N, the set {1,cosx, . . . ,cos(nx),sinx, . . . ,sin(nx)} is an or-

thogonal set in the inner product space (C2π ,〈·, ·〉2), with 〈·, ·〉2 given as in (9.1.7).

Proof. For j,k ∈ {0,1, . . . ,n}, with j �= k, we have∫ π

−π
cos( jx)cos(kx)dx =

1
2

∫ π

−π
[cos(( j+ k)x)+ cos(( j− k)x)]dx

=
1
2

[
sin(( j+ k)x)

j+ k
+

sin(( j− k)x)
j− k

]π

−π
= 0, (9.1.8)
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and ∫ π

−π
sin( jx)sin(kx)dx =

1
2

∫ π

−π
[cos(( j− k)x)− cos(( j+ k)x)]dx

=
1
2

[
sin(( j− k)x)

j− k
− sin(( j+ k)x)

j− k

]π

−π
= 0, (9.1.9)

whereas, for j ∈ {0, . . . ,n} and k ∈ {1, . . . ,n},∫ π

−π
cos( jx)sin(kx)dx = 0, (9.1.10)

since the integrand in (9.1.10) is an odd function on R. It follows from (9.1.8), (9.1.9) and

(9.1.10), together with the definition (9.1.7), that {1,cosx, . . . ,cos(nx),sinx, . . . ,sin(nx)} is

an orthogonal set in (C2π ,〈·, ·〉2). �
We may now apply Theorem 9.1.1 to deduce from Theorem 7.3.2 that {1,cosx, . . . ,cos(nx),

sinx, . . . ,sin(nx)} is a linearly independent set, so that we have now established the follow-

ing.

Theorem 9.1.2. For any n ∈ N, let the linear space τn be defined by (9.1.5). Then:

(a)

dim(τn) = 2n+ 1; (9.1.11)

(b)

the set {1,cosx, . . . ,cos(nx),sinx, . . . ,sin(nx)} is an orthogonal basis for τn.

Hence, each Q ∈ τn has a unique representation of the form

Q(x) =
1
2

a0 +
n

∑
j=1

a j cos( jx)+
n

∑
j=1

b j sin( jx), (9.1.12)

for some coefficient sequence {a0, . . . ,an,b1, . . . ,bn} ⊂R, where the reason for the appear-

ance in (9.1.12) of the factor 1
2 before the coefficient a0 will become apparent in Section

9.3.

We proceed to prove the following fundamental properties of the linear space τn.

Theorem 9.1.3. For n ∈N, let the linear space τn be defined by (9.1.5). Then:

(a) For any non-negative integers j and k satisfying j+ k � n ∈ N, the function Q defined

by

Q(x) := (cosx) j(sin x)k, (9.1.13)

satisfies

Q ∈ τn. (9.1.14)
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(b) For any positive integers m and n, if

Q ∈ τm ; Q̃ ∈ τn, (9.1.15)

then

QQ̃ ∈ τm+n. (9.1.16)

(c) For any n ∈N, if Q ∈ τn, and Q has more than 2n distinct zeros in the interval (−π ,π ],
then Q is the zero function.

Proof. (a) We use a proof by induction on the integer n. After noting first from (9.1.5) that

(9.1.13) trivially implies (9.1.14) if n = 1, we suppose next that (9.1.13) implies (9.1.14)

for a fixed integer n ∈ N. For non-negative integers j and k satisfying j + k � n+ 1, we

shall show that the function Q given by (9.1.13) then satisfies

Q ∈ τn+1, (9.1.17)

which will complete our inductive proof.

To this end, we apply the inductive hypothesis, and the representation formula (9.1.12),

to deduce that, for some coefficient sequence {a0, . . . ,an,b1, . . . ,bn} ⊂ R, it holds that, if

k � 1, so that j+(k− 1)� n,

Q(x) =
[
(cosx) j(sinx)k−1

]
sinx

=

[
1
2

a0 +
n

∑
�=1

a� cos(�x)+
n

∑
�=1

b� sin(�x)

]
sinx

=
1
2

a0 sinx+
1
2

n

∑
�=1

a� [sin((�+ 1)x)− sin((�− 1)x)]

+
1
2

n

∑
�=1

b� [cos((�− 1)x)− cos((�+ 1)x)] , (9.1.18)

whereas, if k = 0 and j � 1, so that j− 1 � n,

Q(x) = (cosx) j−1 cosx

=

[
1
2

a0 +
n

∑
�=1

a� cos(�x)+
n

∑
�=1

b� sin(�x)

]
cosx

=
1
2

a0 cosx+
1
2

n

∑
�=1

a� [cos((�+ 1)x)+ cos((�− 1)x)]

+
1
2

n

∑
�=1

b� [sin((�+ 1)x)+ sin((�− 1)x)] , (9.1.19)
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and, if j = k = 0, then (9.1.13) yields

Q(x) = 1, x ∈ R. (9.1.20)

It then follows from (9.1.18), (9.1.19) and (9.1.20), together with the definition (9.1.5), that

the desired result (9.1.17) does indeed hold.

(b) Suppose the functions Q and Q̃ are such that (9.1.15) is satisfied for two given positive

integers m and n. The result (9.1.16) is then obtained by formulating Q and Q̃ by means of

(9.1.12), and using the identities

cos( jx)cos(kx) = 1
2 [cos(( j+ k)x)+ cos(( j− k)x)], j ∈ {0, . . . ,m}, k ∈ {0, . . . ,n};

cos( jx)sin(kx) = 1
2 [sin(( j+ k)x)− sin(( j− k)x)], j ∈ {0, . . . ,m}, k ∈ {1, . . . ,n};

sin( jx)sin(kx) = 1
2 [cos(( j− k)x)− cos(( j+ k)x)], j ∈ {1, . . . ,m}, k ∈ {1, . . . ,n},

as well as the definition (9.1.5).

(c) For an integer n ∈ N, let Q ∈ τn be such that Q has more than 2n distinct zeros in the

interval (−π ,π ].
With the complex number notation i =

√−1, we now deduce from the representation for-

mula (9.1.12), together with De Moivre’s theorem, and
1
i
=−i, that, for any x ∈ R,

Q(x) =
1
2

a0 +
1
2

n

∑
j=1

a j [{cos( jx)+ isin( jx)}+ {cos(− jx)+ isin(− jx)}]

+
1
2i

n

∑
j=1

b j [{cos( jx)+ isin( jx)}−{cos(− jx)+ isin(− jx)}]

=
1
2

a0 +
1
2

n

∑
j=1

a j
[
(cosx+ isinx) j +(cosx+ isinx)− j]

− 1
2

i
n

∑
j=1

b j
[
(cosx+ isinx) j − (cosx+ isinx)− j]

=
1
2

a0 +
1
2

n

∑
j=1

(a j − ib j)(cosx+ isinx) j +
1
2

n

∑
j=1

(a j + ib j)(cosx+ isinx)− j,

and thus

Q(x) =
n

∑
j=−n

α j(cosx+ isinx) j , x ∈R, (9.1.21)

where

α j :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2 (a j + ib j), j =−n, . . . ,−1;

1
2 a0, j = 0;

1
2 (a j − ib j), j = 1, . . . ,n.

(9.1.22)



238 Mathematics of Approximation

Observe from (9.1.21) that, for any x ∈ R,

Q(x) =
1

(cosx+ isinx)n

2n

∑
j=0

α j−n(cosx+ isinx) j

=
1

cos(nx)+ isin(nx)

2n

∑
j=0

α j−n(cosx+ isinx) j , (9.1.23)

after another application of De Moivre’s theorem.

With the definition

P(z) :=
2n

∑
j=0

α j−nz j, z ∈ C, (9.1.24)

with {α j : j = −n, . . . ,n} given as in (9.1.22), it follows that P is a polynomial with

coefficients in C, with C denoting the set of complex numbers, and such that deg(P)� 2n.

Since also

z = cosx+ isinx ⇒ |z|=
√

cos2 x+ sin2 x = 1,

we deduce from (9.1.23) and (9.1.24), together with the fact that Q has more than 2n distinct

zeros on the interval (−π ,π ], that the polynomial P has more than 2n distinct zeros on the

unit circle |z|= 1 of the complex plane C, that is,

P(z) = P̃(z)
k

∏
j=1

(z− z j), z ∈ C, (9.1.25)

with k � 2n+ 1, where {z j : j = 1, . . . ,k} are k distinct points in C such that |z j|= 1, j =

1, . . . ,k, and where P̃ is a polynomial with coefficients in C. Since, moreover, deg(P)� 2n,

we deduce from (9.1.25) and k � 2n+ 1 that P̃, and therefore also P, must be the zero

polynomial. It then follows from (9.1.24) that α j = 0, j = −n, . . . ,n, according to which

we deduce from (9.1.21) that Q is the zero function, which completes our proof. �
Based on the structural similarities between the linear spaces πn and τn, as is evident from

Theorem 9.1.3, we call any function Q ∈ τn, as given by the representation (9.1.12), and

with either an �= 0, or bn �= 0, a trigonometric polynomial of degree n.

Recalling also the inclusion (9.1.6), we proceed in the rest of this chapter to analyze the

trigonometric polynomial space τn as an approximation set for a given function f ∈C2π .

9.2 A Weierstrass result for periodic functions

First in this section, we introduce the normed linear space (C2π , || · ||∞) with respect to the

maximum norm

|| f ||∞ := max−π�x�π
| f (x)|, f ∈C2π , (9.2.1)
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after having noted in particular that if f ∈ C2π is such that || f ||∞ = 0, then (9.2.1) yields

f (x) = 0,x ∈ [−π ,π ], and thus, from (9.1.3), f (x) = 0,x ∈ R, as required in the condition

(4.1.2).

We proceed to prove the following analogue for trigonometric polynomials of the Weier-

strass theorem, as given in Theorem 3.3.4.

Theorem 9.2.1. Let f ∈C2π . Then, for each ε > 0, there exists a trigonometric polynomial

Q such that

|| f −Q||∞ := max
−π�x�π

| f (x)−Q(x)|< ε. (9.2.2)

Proof. First, observe that

f = f1 + f2, (9.2.3)

where

f1(x) := 1
2 [ f (x)+ f (−x)], x ∈ R; (9.2.4)

f2(x) := 1
2 [ f (x)− f (−x)], x ∈ R. (9.2.5)

Note from (9.2.4), (9.2.5) and (9.1.3) that, for any x ∈R,

f1(x+ 2π) = 1
2 [ f (x+ 2π)+ f (−x+ 2π)] = 1

2 [ f (x)+ f (−x)] = f1(x);

f2(x+ 2π) = 1
2 [ f (x+ 2π)− f (−x+ 2π)] = 1

2 [ f (x)− f (−x)] = f2(x),

from which we deduce that

f1 ∈C2π ; f2 ∈C2π . (9.2.6)

Also, (9.2.4) and (9.2.5) yield, for any x ∈ R,

f1(−x) = 1
2 [ f (−x)+ f (x)] = f1(x);

f2(−x) = 1
2 [ f (−x)− f (x)] = − f2(x),

according to which

f1 is an even function on R;

f2 is an odd function on R.

⎫⎬⎭ (9.2.7)

Let ε > 0. We shall prove that there exist trigonometric polynomials Q1 and Q2 such that

|| f1 −Q1||∞ <
ε
4

;

|| f2 −Q2||∞ <
3ε
4
,

⎫⎪⎬⎪⎭ (9.2.8)
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which, together with (9.2.3), and the triangle inequality (4.1.4), will then imply that the

trigonometric polynomial Q := Q1 +Q2 satisfies

|| f −Q||∞ = ||( f1 −Q1)+ ( f2 −Q2)||∞

� || f1 −Q1||∞ + || f2 −Q2||∞ <
ε
4
+

3ε
4

= ε,

which immediately yields the desired inequality (9.2.2).

To establish the existence of a trigonometric polynomial Q1 such that the first line of (9.2.8)

holds, we first define

g1(t) := f1(arccost), t ∈ [−1,1], (9.2.9)

according to which, since f1 is continuous on R, we have g1 ∈ C[−1,1]. Hence we may

apply the Weierstrass theorem in Theorem 3.3.4 to deduce the existence of an algebraic

polynomial P1 such that

|g1(t)−P1(t)|< ε
4
, t ∈ [−1,1],

and thus

|g1(cosx)−P1(cosx)|< ε
4
, x ∈ [0,π ]. (9.2.10)

Now observe from (9.2.9) that

g1(cosx) = f1(x), x ∈ [0,π ]. (9.2.11)

Also, it follows from Theorem 9.1.3(a) that, since P1 is an algebraic polynomial, the defi-

nition

Q1(x) := P1(cosx), x ∈ R, (9.2.12)

implies that Q1 is a trigonometric polynomial. Hence we have established the existence of

a trigonometric polynomial Q1 such that, from (9.2.10), (9.2.11) and (9.2.12),

| f1(x)−Q1(x)|< ε
4
, x ∈ [0,π ]. (9.2.13)

According to the first line of (9.2.7), as well as (9.2.12), f1 and Q1 are both even functions

on R, and therefore the difference f1 −Q1 is an even function on R, so that we may deduce

from (9.2.13) that

| f1(x)−Q1(x)|< ε
4
, x ∈ [−π ,π ],

from which, together with the definition (9.2.1), the desired inequality in the first line of

(9.2.8) then immediately follows.
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It therefore remains to prove the existence of a trigonometric polynomial Q2 such that the

second line of (9.2.8) is satisfied. To this end, we first note from (9.2.5) that

f2(0) =
1
2
[ f (0)− f (0)] = 0, (9.2.14)

and

f2(π) =
1
2
[ f (π)− f (−π)] = 0, (9.2.15)

by virtue of (9.1.3). It follows from (9.2.14) and (9.2.15), together with the continuity on

R of f2, that there exist points x0 ∈ (0, π
2 ] and x1 ∈ [π

2 ,π), such that x0 is the largest number

in the interval (0, π
2 ] for which it holds that

| f2(x)|� ε
4
, x ∈ [0,x0], (9.2.16)

whereas x1 is the smallest number in the interval [π
2 ,π) for which it holds that

| f2(x)|� ε
4
, x ∈ [x1,π ]. (9.2.17)

Now define the function f3 : R→R by

f3(x) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f2(x0)

sin x0
, x ∈ [0,x0];

f2(x)
sin x

, x ∈ (x0,x1);

f2(x1)

sin x1
, x ∈ [x1,π ],

(9.2.18)

and

f3(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f3(−x), x ∈ [−π ,0);

f3(x+ 2π), x ∈ (−∞,−π);

f3(x− 2π), x ∈ (π ,∞),

(9.2.19)

from which it follows that f3 ∈C2π , and f3 is an even function on R. Hence, as in the proof

of the first line of (9.2.8), we may deduce that there exists a trigonometric polynomial Q3

such that

|| f3 −Q3||∞ <
ε
4
, (9.2.20)

and where Q3 is an even function on R. Now observe that the definition

Q2(x) := Q3(x)sin x, x ∈ R, (9.2.21)

implies, according to Theorem 9.1.3(a) and (9.1.12), that Q2 is a trigonometric polynomial.

We proceed to prove that Q2 satisfies the second line of (9.2.8), which will then complete

our proof.
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First, by using (9.2.18), (9.2.21) and (9.2.20), and keeping in mind also the inclusion

[x0,x1]⊂ [0,π ], we deduce that

| f2(x)−Q2(x)|= (sinx)| f3(x)−Q3(x)|� | f3(x)−Q3(x)|< ε
4
<

3ε
4
, x ∈ (x0,x1).

(9.2.22)

Now observe from (9.2.21), (9.2.16), (9.2.17) and (9.2.20) that, for any x ∈ [0,x0]∪ [x1,π ],

| f2(x)−Q2(x)|= | f2(x)− f3(x)sin x+ sinx{ f3(x)−Q3(x)}|

� | f2(x)|+ | f3(x)|sin x+(sinx)| f3(x)−Q3(x)|

<
ε
4
+ | f3(x)|sin x+

ε
4
=

ε
2
+ | f3(x)|sin x,

that is,

| f2(x)−Q2(x)|< ε
2
+ | f3(x)|sinx, x ∈ [0,x0]∪ [x1,π ]. (9.2.23)

Moreover, from (9.2.18), (9.2.16) and (9.2.17), we have

| f3(x)|sin x =
( | f2(x0)|

sinx0

)
sinx � | f2(x0)|< ε

4
, x ∈ [0,x0]; (9.2.24)

| f3(x)|sin x =
( | f2(x1)|

sinx1

)
sinx � | f2(x1)|< ε

4
, x ∈ [x1,π ]. (9.2.25)

Hence we may now use (9.2.24) and (9.2.25) in (9.2.23) to obtain

| f2(x)−Q2(x)|< ε
2
+

ε
4
=

3ε
4
, x ∈ [0,x0]∪ [x1,π ]. (9.2.26)

By combining (9.2.22) and (9.2.26), we deduce that

| f2(x)−Q2(x)|< 3ε
4
, x ∈ [0,π ]. (9.2.27)

Since Q3 is an even function on R, it follows from (9.2.21) that Q2 is an odd function on R,

so that, by using also the second line of (9.2.7), the difference f2 −Q2 is an odd function

on R, which, together with (9.2.27), implies

| f2(x)−Q2(x)|< 3ε
4
, x ∈ [−π ,π ]. (9.2.28)

The desired inequality in the second line of (9.2.8) is now an immediate consequence of

(9.2.28) and the definition (9.2.1). �
According to Theorem 9.2.1, any given function f ∈ C2π can be approximated with arbi-

trary uniform “closeness” by a trigonometric polynomial Q as in (9.1.12).



Approximation of Periodic Functions 243

9.3 The Fourier series operator

According to Theorem 4.2.2, the inner product 〈·, ·〉2, as defined by (9.1.7), generates the

inner product space (C2π , || · ||2), with corresponding norm

|| f ||2 :=
√∫ π

−π
[ f (x)]2dx, f ∈C2π . (9.3.1)

By recalling (9.1.5), (9.1.6) and Theorem 9.1.2, we deduce from Theorem 4.1.1 and Theo-

rem 4.2.4 that, for any given f ∈C2π , and for each n ∈N, there exists precisely one best L2

approximation Q∗
n from τn to f , with respect to the norm || · ||2 defined in (9.3.1), that is,

|| f −Q∗
n||2 < || f −Q||2, for Q ∈ τn, with Q �= Q∗

n. (9.3.2)

Hence we may define, for n ∈ N, the best L2 trigonometric polynomial approximation

operator T ∗
n : C2π → τn by

T ∗
n f := Q∗

n , f ∈C2π , (9.3.3)

so that, from (9.3.2), it holds for any f ∈C2π that

|| f −T ∗
n f ||2 < || f −Q||2, for Q ∈ τn, with Q �= T ∗

n f . (9.3.4)

The approximation operator T ∗
n is called the Fourier series operator. The following prop-

erties of T ∗
n are now immediate consequences of Theorem 7.1.3.

Theorem 9.3.1. For any n ∈ N, the Fourier series operator T ∗
n : C2π → τn, as defined by

(9.3.3), satisfies the following properties:

(a) T ∗
n is linear;

(b) T ∗
n is exact on τn, that is,

T ∗
n Q = Q, Q ∈ τn; (9.3.5)

(c) T ∗
n is bounded with respect to the || · ||2 norm in (9.3.1), with corresponding operator

norm

||T ∗
n ||2 = 1. (9.3.6)

Also, according to Theorem 9.1.2(b), the set {1,cosx, . . . ,cos(nx),sinx, . . . ,sin(nx)} is an

orthogonal basis for τn with respect to the inner product 〈·, ·〉2 in (9.1.7), so that we may

apply the formula (7.3.3) in Theorem 7.3.1 to obtain a formulation of the Fourier series

operator T ∗
n . Indeed, since∫ π

−π
[cos( jx)]2dx =

∫ π

−π

1+ cos(2 jx)
2

dx = π ,∫ π

−π
[sin( jx)]2dx =

∫ π

−π

1− cos(2 jx)
2

dx = π ,

⎫⎪⎪⎬⎪⎪⎭ j = 1,2, . . . , (9.3.7)
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whereas ∫ π

−π
12dx = 2π , (9.3.8)

the following formulation follows immediately from (7.3.3) in Theorem 7.3.1, together

with (9.3.7) and (9.3.8).

Theorem 9.3.2. For any n ∈ N, the Fourier series operator T ∗
n : C2π → τn, as defined by

(9.3.3), satisfies the formulation

(T ∗
n f )(x) =

1
2

a∗0 +
n

∑
j=1

a∗j cos( jx)+
n

∑
j=1

b∗j sin( jx), f ∈C2π , (9.3.9)

where

a∗j :=
1
π

∫ π

−π
f (x)cos( jx)dx, j = 0, . . . ,n,

b∗j :=
1
π

∫ π

−π
f (x)sin( jx)dx, j = 1, . . . ,n,

⎫⎪⎬⎪⎭ f ∈C2π . (9.3.10)

Observe that the inclusion of the factor 1
2 before a0 in the general representation formula

(9.1.12) has now been justified, since the first line of (9.3.10) holds for each j = 0,1, . . ..

For those cases where a quadrature rule is required for the computation of the integrals

in (9.3.10) of Theorem 9.3.2, we proceed to establish the fact that specifically the trape-

zoidal rule is remarkably accurate when applied to numerically approximate the integral

of a smooth periodic function over its full period. To this end, we first prove the Euler-

Maclaurin formula, which gives a relationship between the quadrature error for the trape-

zoidal rule and the endpoint derivatives of the integrand.

In our proof below, we shall rely on Taylor’s theorem with explicit integral form of the

remainder, according to which, for any bounded interval [a,b] and non-negative integer k,

it holds for any c ∈ [a,b] that

g(x) =
k

∑
j=0

g( j)(c)
j!

(x− c) j +
1
k!

∫ x

c
(x− t)kg(k+1)(t)dt, x ∈ [a,b], g ∈Ck+1[a,b]. (9.3.11)

For an inductive proof of (9.3.11), we recall first from (3.5.3), (3.5.2) and (8.6.49) that

(9.3.11) holds for k = 0 and k = 1, whereas, if (9.3.11) holds for a fixed integer k ∈ N,

then integration by parts, together with the inductive hypothesis (9.3.11), yields, for any

g ∈Ck+2[a,b] and x ∈ [a,b],

1
(k+ 1)!

∫ x

c
(x− t)k+1g(k+2)(t)dt =

[
(x− t)k+1g(k+1)(t)

(k+ 1)!

]t=x

t=c

+
1
k!

∫ x

c
(x− t)kg(k+1)(t)dt

=−g(k+1)(c)
(k+ 1)!

(x− c)k+1 +

[
g(x)−

k

∑
j=0

g( j)(c)
j!

(x− c) j

]
,
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which shows that (9.3.11) holds with k replaced by k+ 1.

The trapezoidal rule quadrature error has the following representation, in which the con-

vention
j1

∑
j= j0

α j := 0, if j1 < j0, is adopted once again.

Theorem 9.3.3 (Euler-Maclaurin formula). For an arbitrary bounded interval [a,b], and

any positive integer n, the quadrature error corresponding to the trapezoidal rule QT R
n , as

given by (8.6.22), (8.6.21), (8.4.3), satisfies, for m = 0,1, . . . , the formula∫ b

a
f (x)dx−QT R

n [ f ] =−
m

∑
j=1

B2 j

(2 j)!

[
f (2 j−1)(b)− f (2 j−1)(a)

](b− a
n

)2 j

− [(b− a)/n]2m+2

(2m+ 2)!

∫ b

a
K2m

(
x− a

(b− a)/n

)
f (2m+2)(x)dx,

f ∈C2m+2[a,b], (9.3.12)

where the real numbers {B2 j : j = 1,2, . . .} are defined recursively by

B2 j :=
1

2 j+ 1

[
j− 1

2
−

j−1

∑
k=1

(
2 j+ 1

2k

)
B2k

]
, j = 1,2, . . . , (9.3.13)

and where K2m ∈C(R) is a periodic function on R, with period 1, that is,

K2m(t + 1) = K2m(t), t ∈R, (9.3.14)

with

K2m(t) :=
(−1)m−1

2

m

∑
j=0

(−1) j(2m− 2 j)!
(

2m+ 2
2 j+ 2

)
Γ2m−2 j[(1− t)2 j+2+ t2 j+2 − 1],

t ∈ [0,1], (9.3.15)

where the real numbers {Γ2 j : j = 0,1, . . . ,} are defined recursively by

Γ0 := 1;

Γ2 j :=
j

∑
k=1

(−1)k−1

(2k+ 1)!
Γ2 j−2k, j = 1,2, . . . .

⎫⎪⎪⎬⎪⎪⎭ (9.3.16)

Proof. For any non-negative integer m, let � ∈ {0. . . . ,m}, and suppose f ∈C2m+2[a,b], so

that f (2�) ∈C2m−2�+2[a,b]. Also, for any positive integer n, define

x j := a+ j
(

b− a
n

)
, j = 0, . . . ,n, (9.3.17)

according to which

x j+1 − x j =
b− a

n
, j = 0, . . . ,n− 1. (9.3.18)
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Let j ∈ {0, . . . ,n−1} be fixed. By applying Taylor’s theorem (9.3.11) with k = 2m−2�+1,

g = f (2�), and, respectively, c = x j and c = x j+1, and using (9.3.18), we obtain∫ x j+1

x j

f (2�)(x)dx =
1
2

∫ x j+1

x j

[ f (2�)(x)+ f (2�)(x)]dx

=
1
2

[
2m−2�+1

∑
k=0

f (2�+k)(x j)

k!

∫ x j+1

x j

(x− x j)
kdx+

2m−2�+1

∑
k=0

f (2�+k)(x j+1)

k!

∫ x j+1

x j

(x− x j+1)
kdx

]

+
1

2(2m− 2�+ 1)!

[∫ x j+1

x j

{∫ x

x j

(x− t)2m−2�+1 f (2m+2)(t)dt
}

dx

+

∫ x j+1

x j

{∫ x j+1

x
(t − x)2m−2�+1 f (2m+2)(t)dt

}
dx

⎤⎥⎦
=

1
2

2m−2�+1

∑
k=0

[(b− a)/n]k+1

(k+ 1)!

[
f (2�+k)(x j)+ (−1)k f (2�+k)(x j+1)

]
+

1
2(2m− 2�+ 1)!

[∫ x j+1

x j

{∫ x j+1

t
(x− t)2m−2�+1dx

}
f (2m+2)(t)dt

+
∫ x j+1

x j

{∫ t

x j

(t − x)2m−2�+1dx
}

f (2m+2)(t)dt
]

=
1
2

{
m−�

∑
k=0

[(b− a)/n]2k+1

(2k+ 1)!

[
f (2�+2k)(x j)+ f (2�+2k)(x j+1)

]

+
m−�+1

∑
k=1

[(b− a)/n]2k

(2k)!

[
f (2�+2k−1)(x j)− f (2�+2k−1)(x j+1)

]}

+
1

2(2m− 2�+ 2)!

∫ x j+1

x j

[
(x j+1 − t)2m−2�+2+(t − x j)

2m−2�+2
]

f (2m+2)(t)dt

=
b− a

2n

[
f (2�)(x j)+ f (2�)(x j+1)

]
+

m−�

∑
k=1

α2k

⎧⎪⎨⎪⎩b− a
2n

[
f (2�+2k)(x j)+ f (2�+2k)(x j+1)

]

−
(

k+
1
2

)∫ x j+1

x j

f (2�+2k)(x)dx
}
+

1
2(2m− 2�+ 2)!

×
∫ x j+1

x j

[
(x j+1 − x)2m−2�+2+(x− x j)

2m−2�+2 −
(

b− a
n

)2m−2�+2
]

f (2m+2)(x)dx,

(9.3.19)
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where

α2k :=
[(b− a)/n]2k

(2k+ 1)!
, k = 0, . . . ,m. (9.3.20)

By using (9.3.17), (9.3.18), (9.3.19), (8.6.17), (8.6.7), (8.6.5) and (8.4.56), and introducing

the notation

e2� :=
∫ b

a
f (2�)(x)dx−QTR

n [ f (2�)], �= 0, . . . ,m, (9.3.21)

we deduce that

e2�+
m−�

∑
k=1

α2ke2�+2k = g2�+ h2�, �= 0, . . . ,m, (9.3.22)

where

g2� :=
m−�

∑
k=1

α2k(
1
2 − k)

[
f (2�+2k−1)(b)− f (2�+2k−1)(a)

]
, �= 0, . . . ,m; (9.3.23)

h2� :=
1

2(2m− 2�+ 2)!

n−1

∑
j=0

∫ x j+1

x j

⎡⎢⎣(x j+1 − x)2m−2�+2 +(x− x j)
2m−2�+2

−
(

b− a
n

)2m−2�+2
]

f (2m+2)(x)dx,

�= 0, . . . ,m. (9.3.24)

Now observe that the linear system (9.3.22) is equivalent to the matrix-vector equation

Ae = g+h, (9.3.25)

where A is the (m+ 1)× (m+ 1) upper triangular matrix

A :=

⎡⎢⎢⎢⎢⎢⎢⎣
1 α2 α4 · · · α2m

0 1 α2 · · · α2m−2
...

...
...

...

0 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎦ , (9.3.26)

and with e,g,h ∈ Rm+1 denoting the column vectors

e := [e0,e2, . . . ,e2m]
T ; g := [g0,g2, . . . ,g2m]

T ; h := [h0,h2, . . . ,h2m]
T . (9.3.27)

Since (9.3.26) implies det(A) = 1 �= 0, it follows that A is an invertible matrix. By using

the fact that the inverse matrix A−1 satisfies A−1A = I, the identity matrix, we may now use

(9.3.26) to deduce that the first row [β0,β2, . . . ,β2m] of A−1 satisfies the conditions

β2k +
k−1

∑
�=0

α2k−2�β2� = δk, k = 0, . . . ,m, (9.3.28)
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with {δk : k = 0, . . . ,m} denoting the Kronecker delta sequence as in (1.2.2), and thus

β0 = 1;

β2k = −
k−1

∑
�=0

α2k−2�β2�, k = 1, . . . ,m.

⎫⎪⎪⎬⎪⎪⎭ (9.3.29)

We claim that the sequence {β0, . . . ,β2m} given by (9.3.29) satisfies the formulation

β2k = (−1)kΓ2k

(
b− a

n

)2k

, k = 0, . . . ,m, (9.3.30)

where the real numbers {Γ0,Γ2, . . . ,Γ2m} are obtained recursively from (9.3.16). To prove

(9.3.30), we first note from the first lines of (9.3.29) and (9.3.16) that (9.3.30) holds for

k = 0, whereas (9.3.29), (9.3.20) and (9.3.16) give

β2 = −α2β0 = −1
6

(
b− a

n

)2

;

Γ2 =
1
6

Γ0 =
1
6
,

from which it follows that (9.3.30) is also satisfied for k = 1. Suppose next that (9.3.30)

holds for a fixed integer k ∈ {0, . . . ,m− 1}. But then, from the second line of (9.3.29),

together with (9.3.20), and the second line of (9.3.16), we obtain

β2k+2 =−
k

∑
�=0

{
[(b− a)/n]2k−2�+2

(2k− 2�+ 3)!

}{
(−1)�Γ2�

(
b− a

n

)2�
}

=−
(

b− a
n

)2k+2 k

∑
�=0

[
(−1)�

(2k− 2�+ 3)!
Γ2�

]

= (−1)k+1
(

b− a
n

)2k+2 k+1

∑
�=1

[
(−1)�−1

(2�+ 1)!
Γ2k+2−2�

]
= (−1)k+1Γ2k+2

(
b− a

n

)2k+2

,

according to which (9.3.30) holds with k replaced by k+ 1, and thereby completing our

inductive proof of (9.3.30).

Since [β0,β2, . . . ,β2m] is the first row of the inverse matrix A−1, and since (9.3.25) implies

e = A−1(g+h), (9.3.31)

we may now apply (9.3.21), (9.3.27) and (9.3.31) to obtain∫ b

a
f (x)dx−QTR

n [ f ] = e0 =
m

∑
k=0

β2kg2k +
m

∑
k=0

β2kh2k. (9.3.32)

After noting from (9.3.23) that g2m = 0, we next apply (9.3.23), (9.3.30) and (9.3.20) to

deduce that
m

∑
k=0

β2kg2k =
m−1

∑
k=0

β2k

m−1

∑
j=k

α2 j−2k+2(− 1
2 − j+ k)

[
f (2 j+1)(b)− f (2 j+1)(a)

]
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=
m−1

∑
j=0

[
j

∑
k=0

α2 j−2k+2(− 1
2 − j+ k)β2k

][
f (2 j+1)(b)− f (2 j+1)(a)

]

=
m−1

∑
j=0

[
j

∑
k=0

[(b− a)/n]2 j−2k+2

(2 j− 2k+ 3)!
(− 1

2 − j+ k)(−1)kΓ2k

(
b− a

n

)2k
]

× [ f (2 j+1)(b)− f (2 j+1)(a)]

=
m

∑
j=1

[
j−1

∑
k=0

(−1)k ( 1
2 − j+ k)

(2 j− 2k+ 1)!
Γ2k

][
f (2 j−1)(b)− f (2 j−1)(a)

](b− a
n

)2 j

=
m

∑
j=1

(−1) j

[
j

∑
k=1

(−1)k−1 (k− 1
2 )

(2k+ 1)!
Γ2 j−2k

][
f (2 j−1)(b)− f (2 j−1)(a)

](b− a
n

)2 j

=−
m

∑
j=1

B2 j

(2 j)!

[
f (2 j−1)(b)− f (2 j−1)(a)

](b− a
n

)2 j

, (9.3.33)

where

B2 j := (−1) j−1(2 j)!
j

∑
k=1

(−1)k−1(k− 1
2 )

(2k+ 1)!
Γ2 j−2k, j = 1, . . . ,m. (9.3.34)

Observe from (9.3.34) and (9.3.16) that, for j = 1, . . . ,m,

B2 j =
j− 1

2
2 j+ 1

+(−1) j−1(2 j)!
j−1

∑
k=1

(−1)k−1(k− 1
2 )

(2k+ 1)!
Γ2 j−2k

=
j− 1

2
2 j+ 1

+(−1) j−1(2 j)!
j−1

∑
k=1

(−1)k−1(k− 1
2 )

(2k+ 1)!

j−k

∑
�=1

(−1)�−1

(2�+ 1)!
Γ2 j−2k−2�

=
j− 1

2
2 j+ 1

+(−1) j−1(2 j)!
j−1

∑
�=1

(−1)�−1

(2�+ 1)!

j−�

∑
k=1

(−1)k−1(k− 1
2 )

(2k+ 1)!
Γ2 j−2�−2k

=
j− 1

2
2 j+ 1

+(−1) j−1(2 j)!
j−1

∑
�=1

(−1)�−1

(2�+ 1)!

[
(−1) j−�−1

(2 j− 2�)!
B2 j−2�

]

=
j− 1

2
2 j+ 1

− 1
2 j+ 1

j−1

∑
�=1

(
2 j+ 1
2�+ 1

)
B2 j−2� =

1
2 j+ 1

[
j− 1

2
−

j−1

∑
�=1

(
2 j+ 1

2 j− 2�+ 1

)
B2�

]
,

from which it then follows that the sequence {B0,B2, . . . ,B2m} satisfies the recursion for-

mulation (9.3.13). Finally, we use (9.3.24), (9.3.30), (9.3.17) and (9.3.18) to obtain

m

∑
k=0

β2kh2k =
n−1

∑
j=0

∫ x j+1

x j

m

∑
k=0

β2k

2(2m− 2k+ 2)!

⎡⎢⎣(x j+1 − x)2m−2k+2 +(x− x j)
2m−2k+2
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−
(

b− a
n

)2m−2k+2
]

f (2m+2)(x)dx

=− [(b− a)/n]2m+2

(2m+ 2)!

n−1

∑
j=0

∫ x j+1

x j

P2m

(
x− a

(b− a)/n
− j
)

f (2m+2)(x)dx, (9.3.35)

where

P2m(t) :=
(−1)m−1

2

m

∑
k=0

(−1)k(2m− 2k)!
(

2m+ 2
2k+ 2

)
Γ2m−2k[(1− t)2k+2+ t2k+2 − 1].

(9.3.36)

Let K2m ∈ C(R) be defined by (9.3.15) and (9.3.14), according to which K2m is a periodic

function on R, with period 1, and thus also, by noting that the right hand sides of (9.3.15)

and (9.3.36) are equivalent, we have

P2m(t − j) = K2m(t), t ∈ [ j, j+ 1], j = 0, . . . ,n− 1,

so that, by using also (9.3.17) and (9.3.18),

P2m

(
x− a

(b− a)/n
− j
)
= K2m

(
x− a

(b− a)/n

)
, x ∈ [x j,x j+1], j = 0, . . . ,n− 1. (9.3.37)

Hence we may substitute (9.3.37) into (9.3.35) to deduce that
m

∑
k=0

β2kh2k =− [(b− a)/n]2m+2

(2m+ 2)!

∫ b

a
K2m

(
x− a

(b− a)/n

)
f (2m+2)(x)dx. (9.3.38)

The Euler-Maclaurin formula (9.3.12) is now an immediate consequence of (9.3.32),

(9.3.33) and (9.3.38). �
The well-known Bernoulli numbers {B j : j = 0,1, . . .} are defined recursively by

B0 := 1; B j :=− 1
j+ 1

j−1

∑
k=0

(
j+ 1

k

)
Bk, j = 1,2, . . . , (9.3.39)

by means of which we calculate that

B1 =−1
2
. (9.3.40)

Also, it is known (see Exercise 9.5) that

B2 j+1 = 0, j = 1,2, . . . . (9.3.41)

By using (9.3.39), (9.3.40) and (9.3.41), we obtain, for j = 1,2, . . .,

B2 j =− 1
2 j+ 1

2 j−1

∑
k=0

(
2 j+ 1

k

)
Bk

=− 1
2 j+ 1

[
1− ( j+

1
2
)+

2 j−1

∑
k=2

(
2 j+ 1

k

)
Bk

]
=

1
2 j+ 1

[
j− 1

2
−

j−1

∑
k=1

(
2 j+ 1

2k

)
B2k

]
,
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which agrees with (9.3.13). Hence the real numbers {B0,B2, . . . ,B2m} in Theorem 9.3.3

are precisely the Bernoulli numbers with even indices.

In order to be able to apply the mean value theorem (8.5.16) for integrals to the integral in

the right hand side of the Euler-Maclaurin formula (9.3.12), we proceed to first prove the

following properties of the polynomial P2m in (9.3.36), which agrees with K2m on [0,1], as

in (9.3.15).

Theorem 9.3.4. In Theorem 9.3.3, the polynomials {P2m : m = 0,1, . . .}, as defined by

(9.3.36), and the real numbers {B2m : m = 1,2, . . .}, as given by (9.3.13), satisfy the follow-

ing:

(a)

(−1)mP2m(t)> 0, t ∈ (0,1), m = 0,1, . . . ; (9.3.42)

(b) ∫ 1

0
P2m(t)dt = B2m+2, m = 0,1, . . . ; (9.3.43)

(c)

(−1)mB2m > 0, m = 1,2, . . . . (9.3.44)

Proof. (a) Since (9.3.16) yields

Γ0 = 1; Γ2 =
1
6
, (9.3.45)

we calculate from (9.3.36) that

P0(t) = t(1− t); P2(t) =−t2(1− t)2, (9.3.46)

and thus also

P′
0(t) = 1− 2t; P′

2(t) = 2t(1− t)(2t− 1). (9.3.47)

Observe from (9.3.46) that (9.3.42) is satisfied for m = 0 and m = 1.

Let m ∈ N, and note from (9.3.36) that

P′
2m(t) =

(−1)m−1

2

m

∑
j=0

(−1) j(2m− 2 j)!
(

2m+ 2
2 j+ 2

)
Γ2m−2 j(2 j+ 2)[−(1− t)2 j+1+ t2 j+1],

(9.3.48)

according to which

P′
2m(0) = P′

2m(
1
2 ) = P′

2m(1) = 0. (9.3.49)
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We proceed to prove inductively that

(−1)mP′
2m(t)

⎧⎨⎩> 0, t ∈ (0, 1
2 );

< 0, t ∈ ( 1
2 ,1),

(9.3.50)

which, together with the fact that (9.3.36) yields

P2m(0) = P2m(1) = 0, (9.3.51)

will then imply the desired result (9.3.42).

Since, according to the second equation in (9.3.47), the inequalities (9.3.50) are satisfied

for m = 1, suppose next that (9.3.50) holds for a fixed integer m ∈ N. From the fact that

(9.3.36) gives

P2m+2(t) =
(−1)m

2

m+1

∑
j=0

(−1) j(2m+ 2− 2 j)!
(

2m+ 4
2 j+ 2

)
Γ2m+2−2 j[(1− t)2 j+2+ t2 j+2 − 1],

we deduce that

P′′′
2m+2(t) =

(−1)m

2

m+1

∑
j=1

(−1) j (2m+ 4)!
(2 j+ 2)!

Γ2m+2−2 j(2 j+ 2)(2 j+ 1)(2 j)

× [−(1− t)2 j−1+ t2 j−1]

=
(−1)m

2

m+1

∑
j=1

(−1) j (2m+ 4)!
(2 j)!

Γ2m+2−2 j(2 j)[−(1− t)2 j−1+ t2 j−1]

=
(−1)m−1

2
(2m+ 4)(2m+ 3)

m

∑
j=0

(−1) j(2m− 2 j)!
(

2m+ 2
2 j+ 2

)

×Γ2m−2 j(2 j+ 2)[−(1− t)2 j+1+ t2 j+1]

= (2m+ 4)(2m+ 3)P′
2m(t),

by virtue of (9.3.48), and thus, from the inductive hypothesis (9.3.50),

(−1)mP′′′
2m+2(t)

⎧⎨⎩> 0, t ∈ (0, 1
2 );

< 0, t ∈ ( 1
2 ,1).

(9.3.52)

Since also

P′
2m+2(0) = P′

2m+2(
1
2) = P′

2m+2(1) = 0,

from the fact that (9.3.49) is satisfied for each m ∈ N, whereas P′′′
2m+2 = (P′

2m+2)
′′ satis-

fies (9.3.52), it follows that (9.3.50) is satisfied with m replaced by m+ 1, and thereby

completing our inductive proof of (9.3.50).
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(b) For any non-negative integer m, we deduce from (9.3.36) and (9.3.34) that∫ 1

0
P2m(t)dt =

(−1)m−1(2m+ 2)!
2

m

∑
j=0

(−1) jΓ2m−2 j

(2 j+ 2)!

∫ 1

0
[(1− t)2 j+2+ t2 j+2− 1]dt

=
(−1)m(2m+ 2)!

2

m

∑
j=0

(−1) j(2 j+ 1)
(2 j+ 3)!

Γ2m−2 j

= (−1)m(2m+ 2)!
m+1

∑
j=1

(−1) j−1( j− 1
2 )

(2 j+ 1)!
Γ2m+2−2 j = B2m+2,

which proves (9.3.43).

(c) The inequality (9.3.44) is an immediate consequence of (9.3.43) and (9.3.42). �
By using Theorem 9.3.4, we can now prove the following consequence of Theorem 9.3.3.

Theorem 9.3.5. In Theorem 9.3.3, the Euler-Maclaurin formula (9.3.12) has the alterna-

tive formulation∫ b

a
f (x)dx−QTR

n [ f ] =−
m

∑
j=1

B2 j

(2 j)!
[ f (2 j−1)(b)− f (2 j−1)(a)]

(
b− a

n

)2 j

− (b− a)B2m+2

(2m+ 2)!
f (2m+2)(ξ )

(
b− a

n

)2m+2

, f ∈C2m+2[a,b],

(9.3.53)

for some point ξ ∈ [a,b].

Proof. According to (9.3.15), (9.3.14) and (9.3.36), the function K2m satisfies the property

K2m(t − j) = K2m(t) = P2m(t), t ∈ [0,1], j = 0, . . . ,n− 1. (9.3.54)

Also, from (9.3.14) and (9.3.15), together with (9.3.42) in Theorem 9.3.4(a), the function

K2m does not change sign on the interval [0,n], so that we may appy the mean value theorem

(8.5.16) for integrals, as well as (9.3.54) and (9.3.43), to deduce that there exists a point

ξ ∈ [a,b] such that∫ b

a
K2m

(
x− a

(b− a)/n

)
f (2m+2)(x)dx = f (2m+2)(ξ )

∫ b

a
K2m

(
x− a

(b− a)/n

)
dx

= f (2m+2)(ξ )
b− a

n

∫ n

0
K2m(t)dt

= f (2m+2)(ξ )
b− a

n

n−1

∑
j=0

[∫ j+1

j
K2m(t)dt

]
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= f (2m+2)(ξ )
b− a

n

n−1

∑
j=0

[∫ 1

0
K2m(t − j)dt

]

= f (2m+2)(ξ )
b− a

n

n−1

∑
j=0

[∫ 1

0
P2m(t)dt

]

= (b− a)B2m+2 f (2m+2)(ξ ). (9.3.55)

The desired result (9.3.53) then follows immediately by substituting (9.3.55) into the Euler-

Maclaurin formula (9.3.12). �
Calculating by means of (9.3.13), we obtain the values

B2 =
1
6

; B4 =− 1
30

; B6 =
1

42
; B8 =− 1

30
; B10 =

5
66

. (9.3.56)

By setting m = 0 in (9.3.53), and using the value B2 =
1
6 , we obtain∫ b

a
f (x)−QT R

n [ f ] =−b− a
12

(
b− a

n

)2

f ′′(ξ ), f ∈C2[a,b], (9.3.57)

which, since Λ3 =
1

24 from (8.4.54), is consistent with the case ν = 1 in the second line of

(8.6.30), together with (8.6.26) and (8.6.17).

As an immediate consequence of Theorem 9.3.5, we have the following result.

Theorem 9.3.6. For a bounded interval [a,b] and any positive integer m, suppose f ∈
C2m+2[a,b], with, moreover,

f (2 j−1)(a) = f (2 j−1)(b), j = 1, . . . ,m. (9.3.58)

Then, for any positive integer n, the quadrature error corresponding to the trapezoidal rule

QT R
n , as given by (8.6.22), (8.6.21), (8.4.3), satisfies∣∣∣∣∫ b

a
f (x)dx−QTR

n [ f ]
∣∣∣∣� (b− a)|B2m+2|

(2m+ 2)!

(
b− a

n

)2m+2

|| f (2m+2)||∞, (9.3.59)

with the real number B2m+2 given as in (9.3.13).

Returning to the setting of periodic continuous functions in C2π , as given in (9.1.4), we

now define, for any non-negative integer k, the function space

Ck
2π :=C2π ∩Ck(R), (9.3.60)

with Ck(R) denoting the linear space of functions f : R → R such that f (�) ∈ C(R), � =

0, . . . ,k, and thus C0(R) = C(R), according to which then also C0
2π = C2π . Observe from

(9.3.60) that, if f ∈Ck
2π for a positive integer k, then, for any x ∈ R,

f ′(x+ 2π) = lim
h→0

f (x+ 2π + h)− f (x+ 2π)
h

= lim
h→0

f (x+ h)− f (x)
h

= f ′(x),
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and thus, from repeated use of this argument, we deduce that, for any k ∈ N,

f ( j)(x+ 2π) = f ( j)(x), x ∈ R, j = 1, . . . ,k, f ∈Ck
2π , (9.3.61)

or equivalently,

f ∈Ck
2π ⇒ f ( j) ∈C2π , j = 0, . . . ,k. (9.3.62)

In particular, by setting x = 0 in (9.3.61), we deduce that, for any k ∈ N,

f ( j)(2π) = f ( j)(0), j = 1, . . . ,k, f ∈Ck
2π . (9.3.63)

Next, for f ∈C2π , we use (9.1.3) to deduce that, for any α ∈ R,∫ π+α

−π+α
f (x)dx =

∫ 0

−π+α
f (x)dx+

∫ π+α

0
f (x)dx

=

∫ 0

−π+α
f (x+ 2π)dx+

∫ π+α

0
f (x)dx

=

∫ 2π

π+α
f (x)dx+

∫ π+α

0
f (x)dx =

∫ 2π

0
f (x)dx,

that is ∫ π+α

−π+α
f (x)dx =

∫ 2π

0
f (x)dx, α ∈ R, f ∈C2π . (9.3.64)

In particular, by setting α = 0 in (9.3.64), we obtain∫ π

−π
f (x)dx =

∫ 2π

0
f (x)dx, f ∈C2π . (9.3.65)

It follows from (9.3.65) that the formulas (9.3.10) in Theorem 9.3.2 can equivalently be

formulated as

a∗j :=
1
π

∫ 2π

0
f (x)cos( jx)dx, j = 0, . . . ,n,

b∗j :=
1
π

∫ 2π

0
f (x)sin( jx)dx, j = 1, . . . ,n,

⎫⎪⎪⎬⎪⎪⎭ f ∈C2π . (9.3.66)

For any positive integer N, we now apply the trapezoidal rule QT R
N , as obtained from

(8.6.22), (8.6.21), (8.4.3), to the integrals in the right hand side of (9.3.66) to obtain the

numerical approximations

a∗j ≈ ãN, j :=
2
N

N−1

∑
k=0

f
(

2k
N

π
)

cos
(

2k j
N

π
)
, j = 0, . . . ,n,

b∗j ≈ b̃N, j :=
2
N

N−1

∑
k=0

f
(

2k
N

π
)

sin
(

2k j
N

π
)
, j = 1, . . . ,n,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ f ∈C2π , (9.3.67)

after having used also the fact that (9.1.3) implies f (0) = f (2π). The resulting approxima-

tion operator T̃n,N : C2π → τn, as defined by

(T̃n,N f )(x) :=
1
2

ãN,0 +
n

∑
j=1

ãN, j cos( jx)+
n

∑
j=1

b̃N, j sin( jx), f ∈C2π , (9.3.68)
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is called the discrete Fourier series operator.

The remarkable accuracy of the trapezoidal rule numerical approximation in (9.3.67),

for sufficiently differentiable functions f ∈ C2π , can now be derived by means of Theo-

rem 9.3.6, as follows.

Theorem 9.3.7. For any non-negative integer m, let f ∈ C2m+2
2π , and, for n ∈ N, let the

Fourier series approximation T ∗
n f be defined by (9.3.9), (9.3.10). Then, for any N ∈ N,

the trapezoidal rule quadrature error in the numerical approximation (9.3.67) satisfies∣∣∣a∗j − ãN, j

∣∣∣ � 2π |B2m+2|
(2m+ 2)!

(
2π
N

)2m+2

||u(2m+2)
j ||∞, j = 0, . . . ,n;∣∣∣b∗j − b̃N, j

∣∣∣ � 2π |B2m+2|
(2m+ 2)!

(
2π
N

)2m+2

||v(2m+2)
j ||∞, j = 1, . . . ,n,

⎫⎪⎪⎬⎪⎪⎭ (9.3.69)

where

u j(x) :=
1
π

f (x)cos( jx), j = 0, . . . ,n;

v j(x) :=
1
π

f (x)sin( jx), j = 1, . . . ,n,

⎫⎪⎬⎪⎭ (9.3.70)

and with B2m+2 denoting the real number given as in (9.3.13).

Proof. Since f ∈ C2m+2
2π , it follows from (9.3.70) that u j ∈ C2m+2

2π , j = 0, . . . ,n, and v j ∈
C2m+2

2π , j = 1, . . . ,n, according to which, from (9.3.63), we have

u(2k−1)
j (2π) = u(2k−1)

j (0), k = 1, . . . ,m; j = 0, . . . ,n;

v(2k−1)
j (2π) = v(2k−1)

j (0), k = 1, . . . ,m; j = 1, . . . ,n.

⎫⎬⎭ (9.3.71)

Now recall from (9.3.67) that

ãN, j = QT R
N [u j], j = 0, . . . ,n;

b̃N, j = QT R
N [v j], j = 1, . . . ,n,

⎫⎬⎭ (9.3.72)

with QT R
N denoting the trapezoidal rule as given by (8.6.22), (8.6.21), (8.4.3).

It follows from (9.3.71) and (9.3.72) that we may apply (9.3.59) in Theorem 9.3.6 to deduce

that the desired upper bounds in (9.3.69) are satisfied. �
Observe that if, for some positive integer M, we choose N = 2M and n = M in (9.3.67),

then

ã2M, j = A j +B j,

ã2M,M− j = A j −B j,

⎫⎬⎭ j = 0, . . . ,M, (9.3.73)
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where

A j :=
1
M

M−1

∑
k=0

f
(

2k
M

π
)

cos
(

2k j
M

π
)
,

B j :=
1
M

M−1

∑
k=0

f
(

2k+ 1
M

π
)

cos
(
(2k+ 1) j

M
π
)
,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ j = 0, . . . ,M, (9.3.74)

and similarly,

b̃2M, j = Cj +D j,

b̃2M,M− j = −Cj +D j,

⎫⎬⎭ j = 1, . . . ,M, (9.3.75)

where

Cj :=
1
M

M−1

∑
k=0

f
(

2k
M

π
)

sin
(

2k j
M

π
)
,

D j :=
1
M

M−1

∑
k=0

f
(

2k+ 1
M

π
)

sin
(
(2k+ 1) j

M
π
)
,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ j = 1, . . . ,M. (9.3.76)

Hence, if N is even and n = N
2 , the separate computation of the sums A j and B j in (9.3.74)

yields, according to (9.3.73), both ãN, j and ãN, N
2 − j, whereas, similarly, the separate compu-

tation of the sums Cj and D j in (9.3.76) yields, according to (9.3.75), both b̃N, j and b̃N, N
2 − j.

The computational efficiency thus gained is significant; indeed, (9.3.73) - (9.3.76) form the

basis of the widely used Fast Fourier Transform (FFT), a detailed presentation of which is

beyond the scope of this book.

9.4 Fourier series

Our principal aim in the rest of this chapter is to study the convergence properties of the

Fourier series operator T ∗
n . Our first step in this direction is to show, analogously to the

weighted L2 case in Theorem 6.4.2, how the Weierstrass result of Theorem 9.2.1 can be

used to prove the following convergence result.

Theorem 9.4.1. The sequence {T ∗
n : n = 1,2, . . .} of Fourier series operators, as defined

by (9.3.3), satisfies the convergence result

|| f −T ∗
n f ||2 → 0, n → ∞, f ∈C2π , (9.4.1)

with the norm || · ||2 given by (9.3.1).

Proof. Suppose f ∈ C2π , and let ε > 0. Our proof of (9.4.1) will be complete if we can

show that there exists a positive integer N = N(ε) such that

|| f −T ∗
n f ||2 < ε, n > N. (9.4.2)
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To this end, we first apply Theorem 9.2.1 to deduce that there exist a positive integer N =

N(ε) and a trigonometric polynomial Q ∈ τN such that

|| f −Q||∞ <
ε√
2π

, (9.4.3)

with the maximum norm || · ||∞ defined as in (9.2.1). Now observe, analogously to (5.3.4),

that (9.3.1) and (9.2.1) imply

|| f −Q||2 =
√∫ π

−π
[ f (x)−Q(x)]2dx �

√
2π || f −Q||∞. (9.4.4)

It follows from (9.3.4), (9.4.4) and (9.4.3) that

|| f −T ∗
N f ||2 � || f −Q||2 <

√
2π
(

ε√
2π

)
= ε,

that is,

|| f −T ∗
N f ||2 < ε. (9.4.5)

Next, we note from (9.1.5) that the nesting property

τn ⊂ τn+1, n = 1,2, . . . , (9.4.6)

holds. Together, (9.3.4) and (9.4.6) imply

|| f −T ∗
n f ||2 � || f −T ∗

N f ||2, n > N. (9.4.7)

The desired result (9.4.2) is then an immediate consequence of (9.4.7) and (9.4.5). �
Observe from (9.3.9) in Theorem 9.3.2, together with (9.3.1), that the convergence result

(9.4.1) can be formulated as

lim
n→∞

√√√√∫ π

−π

[
f (x)−

{
1
2

a∗0 +
n

∑
j=1

a∗j cos( jx)+
n

∑
j=1

b∗j sin( jx)

}]2

dx = 0, f ∈C2π , (9.4.8)

with the coefficient sequences {a∗j : j = 0, . . . ,n} and {b∗j : j = 1, . . . ,n} given by (9.3.10).

For any given f ∈C2π , the infinite series

1
2

a∗0 +
∞

∑
j=1

a∗j cos( jx)+
∞

∑
j=1

b∗j sin( jx), x ∈R, (9.4.9)

where

a∗j :=
1
π

∫ π

−π
f (x)cos( jx)dx, j = 0,1, . . . ;

b∗j :=
1
π

∫ π

−π
f (x)sin( jx)dx, j = 1,2, . . . ,

⎫⎪⎬⎪⎭ (9.4.10)

is known as the Fourier series of f , and the coefficients {a∗j : j = 0,1, . . .} and {b∗j : j =

1,2, . . .} in (9.4.10) are called the Fourier coefficients of f . The result (9.4.8) shows that
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the Fourier series (9.4.9) of each f ∈C2π converges to f with respect to the || · ||2 norm, as

given by (9.3.1).

We proceed to show how the results of Theorem 7.3.4 and Theorem 9.3.1 can be applied to

yield the following useful identity satisfied by the Fourier coefficients of a function f ∈C2π .

Theorem 9.4.2. (Parseval identity) For any f ∈ C2π , let the Fourier coefficients {a∗j :

0,1, . . .} and {b∗j : j = 1,2, . . .} of f be given as in (9.4.10). Then

1
2
(a∗0)

2 +
∞

∑
j=1

[
(a∗j)

2 +(b∗j)
2]= 1

π

∫ π

−π
[ f (x)]2dx. (9.4.11)

Proof. By applying Theorem 9.1.2(b), and (7.3.31) in Theorem 7.3.4, together with (9.3.7),

(9.3.8), and using the definitions (9.1.7) and (9.3.1), we deduce that, for any n ∈N,

1
2π

[∫ π

−π
f (x)dx

]2

+
1
π

n

∑
j=1

{[∫ π

−π
f (x)cos( jx)dx

]2

+

[∫ π

−π
f (x)sin( jx)dx

]2
}

=

∫ π

−π
[ f (x)]2dx− (|| f −T ∗

n f ||2)2 . (9.4.12)

Now observe from (9.4.10) that∫ π

−π
f (x)cos( jx)dx = πa∗j , j = 0, . . . ,n;∫ π

−π
f (x)sin( jx)dx = πb∗j , j = 1, . . . ,n.

⎫⎪⎬⎪⎭ (9.4.13)

Substitution of (9.4.13) into (9.4.12) yields

1
2
(a∗0)

2 +
n

∑
j=1

[
(a∗j)

2 +(b∗j)
2]= 1

π

∫ π

−π
[ f (x)]2dx− 1

π
(|| f −T ∗

n f ||2)2 ,n = 1,2, . . . .

(9.4.14)

The Parseval identity (9.4.11) now follows by an application in (9.4.14) of the convergence

result (9.4.1) of Theorem 9.4.1. �
A standard result in the theory of infinite series states that, if

∞

∑
j=0

α j is a convergent series,

then we must have α j → 0, j → ∞. Hence we have the following immediate consequence

of Theorem 9.4.2.

Theorem 9.4.3. For any f ∈C2π , the Fourier coefficients {a∗j : j = 0,1, . . .} and {b∗j : j =

1,2, . . .} of f , as given in (9.4.10), satisfy

a∗j → 0, j → ∞; b∗j → 0, j → ∞. (9.4.15)

The Parseval identity (9.4.11) in Theorem 9.4.2 is useful in the calculation of the sum of

certain infinite series, as illustrated by the following example.
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Example 9.4.1. Let f ∈C2π be the “sawtooth” function defined on [−π ,π ] by

f (x) := |x|, x ∈ [−π ,π ]. (9.4.16)

Then the first line of (9.4.10) gives, for j ∈ N,

a∗j =
1
π

∫ π

−π
|x|cos( jx)dx =

2
π

∫ π

0
xcos( jx)dx

=
2
π

{[
xsin( jx)

j

]π

0
− 1

j

∫ π

0
sin( jx)dx

}

=− 2
π j2

[
−cos( jx)

]π

0
=

2
π j2

[
(−1) j − 1

]
, (9.4.17)

and, for j = 0,

a∗0 =
1
π

∫ π

−π
|x|dx =

2
π

∫ π

0
xdx = π , (9.4.18)

whereas the second line of (9.4.10) yields, for j = 1,2, . . .,

b∗j =
1
π

∫ π

−π
|x|sin( jx)dx = 0, (9.4.19)

since the integrand is an odd function on R. Moreover,

1
π

∫ π

−π
[ f (x)]2dx =

2
π

∫ π

0
x2dx =

2π2

3
. (9.4.20)

Observe from (9.4.17) and (9.4.19) that the limits (9.4.15) in Theorem 9.4.3 are satisfied.

By substituting (9.4.17) - (9.4.20) into the Parseval identity (9.4.11), we obtain

π2

2
+

4
π2

∞

∑
j=1

[(−1) j − 1]2

j4 =
2π2

3
,

that is,
π2

2
+

16
π2

∞

∑
j=1

1
(2 j− 1)4 =

2π2

3
,

which is equivalent to
∞

∑
j=1

1
(2 j− 1)4 =

π4

96
.

Also, according to (9.4.9), (9.4.17), (9.4.18) and (9.4.19), the Fourier series of f is given

by
π
2
− 4

π

∞

∑
j=1

1
(2 j− 1)2 cos((2 j− 1)x), x ∈ R, (9.4.21)

for which (9.4.1) in Theorem 9.4.1 yields the convergence result

lim
n→∞

√√√√∫ π

−π

[
|x|−

{
π
2
− 4

π

n

∑
j=1

1
(2 j− 1)2 cos((2 j− 1)x)

}]2

dx = 0. (9.4.22)

�
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We have therefore established that the Fourier series (9.4.9) of any f ∈C2π converges to f

in the sense of (9.4.8). An interesting question is whether the Fourier series of any f ∈C2π

converges pointwise to f on R, that is,

f (x) =
1
2

a∗0 +
∞

∑
j=1

a∗j cos( jx)+
∞

∑
j=1

b∗j sin( jx), x ∈ R. (9.4.23)

The answer is negative, since, as will be explained after the proof of Theorem 9.5.3, there

exists a function f ∈C2π such that

|| f −T ∗
n f ||∞ → ∞, n → ∞, (9.4.24)

with {T ∗
n : n = 1,2, . . .} denoting the Fourier series operators as defined by (9.3.3), and

where || · ||∞ is defined by (9.2.1), which implies that the pointwise convergence result

(9.4.23) does not hold for this particular function f .

Hence we proceed, in the rest of this chapter, to identify a subspace M of C2π for which the

uniform convergence result

|| f −T ∗
n f ||∞ → 0, n → ∞, f ∈ M, (9.4.25)

is satisfied, and from which, together with (9.3.9), (9.3.10) and (9.2.1), it will then follow

that the Fourier series (9.4.9) of each f ∈ M is indeed pointwise convergent to f on R.

According to (9.1.6) and Theorem 9.1.2(a), it holds for any n ∈ N that τn is a finite-

dimensional subspace of C2π , so that we may apply Theorem 4.1.1 to deduce that there

exists a best approximation from τn to each f ∈ C2π with respect to the maximum norm

|| · ||∞ in (9.2.1), and with respect to which we introduce the best approximation error func-

tional E ∗
n : C2π →R defined by

E ∗
n [ f ] := min

Q∈τn
|| f −Q||∞, f ∈C2π , (9.4.26)

for n = 1,2, . . ..

The following result then holds.

Theorem 9.4.4. The best approximation error functionals {E ∗
n : n = 1,2, . . .}, as defined

in (9.4.26), satisfy

E ∗
n [ f ]→ 0, n → ∞, f ∈C2π . (9.4.27)

Proof. Suppose f ∈C2π , and let ε > 0. According to Theorem 9.2.1, there exists a positive

integer N = N(ε) and a trigonometric polynomial Q ∈ τN such that || f −Q||∞ < ε , and

thus, since (9.4.26) implies E ∗
N [ f ]� || f −Q||∞, we deduce that

E ∗
N [ f ]< ε. (9.4.28)
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Moreover, since the nesting property (9.4.6) is satisfied, we have, from (9.4.26), and anal-

ogously to (9.4.7),

E ∗
n [ f ]� E ∗

N [ f ], n > N,

which, together with (9.4.28), yields

E ∗
n [ f ] < ε, n > N. (9.4.29)

The desired result (9.4.27) is equivalent to (9.4.29). �
We shall show that if, in (9.4.26), the function f ∈ C2π is such that the convergence of

the sequence {E ∗
n [ f ] : n = 1,2, . . .} to zero, as given in (9.4.27) of Theorem 9.4.4, occurs

at a sufficiently rapid rate, then the uniform convergence result (9.4.25) is obtained, after

which we shall then identify a subspace M of C2π such that, for any f ∈ M, this required

convergence rate is indeed achieved.

To this purpose, we proceed in the next section to investigate the boundedness of the Fourier

series operator T ∗
n with respect to the maximum norm || · ||∞.

9.5 The Lebesgue constant in the maximum norm

Recalling from Theorem 9.3.1(c) that, for n∈N, the Fourier series operator T ∗
n is bounded

with respect to the || · ||2 norm, with corresponding Lebesgue constant ||T ∗
n ||2 = 1, we

proceed here to show that T ∗
n is also bounded with respect to the maximum norm || · ||∞,

and we investigate the corresponding Lebesgue constant ||T ∗
n ||∞ as a function of n.

First, we prove the following integral representation formula for T ∗
n .

Theorem 9.5.1. For any f ∈ C2π , and n ∈ N, the Fourier series operator T ∗
n : C2π → τn,

as defined by (9.3.3), satisfies the formulation

(T ∗
n f )(x) =

1
π

∫ π

−π
K∗

n (θ ) f (x+θ ) dθ , x ∈ R, (9.5.1)

where the function K∗
n is defined by

K∗
n (θ ) :=

1
2
+

n

∑
j=1

cos( jθ ), θ ∈ [−π ,π ], (9.5.2)

and where also

K∗
n (θ ) =

⎧⎪⎨⎪⎩
sin((n+ 1

2 )θ )
2sin( 1

2 θ )
, θ ∈ [−π ,0)∪ (0,π ];

n+ 1
2 , θ = 0.

(9.5.3)
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Proof. Let x ∈R be fixed. By substituting the formulas (9.3.10) into (9.3.9), we obtain

(T ∗
n f )(x) =

1
2π

∫ π

−π
f (θ )dθ +

1
π

n

∑
j=1

[∫ π

−π
f (θ )cos( jθ )dθ

]
cos( jx)

+
1
π

n

∑
j=1

[∫ π

−π
f (θ )sin( jθ )dθ

]
sin( jx)

=
1
π

∫ π

−π

[
1
2
+

n

∑
j=1

{cos( jθ )cos( jx)+ sin( jθ )sin( jx)}
]

f (θ )dθ

=
1
π

∫ π

−π

[
1
2
+

n

∑
j=1

cos( j(θ − x))

]
f (θ )dθ . (9.5.4)

Now observe that the function

g(θ ) :=
1
2
+

n

∑
j=1

cos( j(θ − x)), θ ∈ R, (9.5.5)

satisfies g(θ +2π)= g(θ ),θ ∈R, and thus g∈C2π , so that we may apply (9.3.64), (9.3.65)

to deduce that ∫ π

−π
g(θ )dθ =

∫ π+x

−π+x
g(θ )dθ =

∫ π

−π
g(θ + x)dx. (9.5.6)

It follows from (9.5.4), (9.5.5) and (9.5.6) that the formulation (9.5.1), (9.5.2) is satisfied.

After noting from (9.5.2) that the second line of (9.5.3) is satisfied, we observe next, for

any θ ∈ [−π ,0)∪ (0,π ], that

sin( 1
2 θ )

n

∑
j=1

cos( jθ ) =
n

∑
j=1

[
cos( jθ )sin( 1

2 θ )
]

= 1
2

n

∑
j=1

[
sin(( j+ 1

2)θ )− sin(( j− 1
2 )θ )

]
= 1

2

{[
sin( 3

2 θ )− sin( 1
2 θ )

]
+
[
sin( 5

2 θ )− sin( 3
2 θ )

]
+ · · ·+ [sin((n+ 1

2)θ )− sin((n− 1
2 )θ )

]}
= 1

2

[
sin((n+ 1

2 )θ )− sin( 1
2 θ )

]
,

and thus

1
2
+

n

∑
j=1

cos( jθ ) =
sin((n+ 1

2)θ )
2sin( 1

2 θ )
, θ ∈ [−π ,0)∪ (0,π ]. (9.5.7)

The first line of (9.5.3) follows immediately from (9.5.2) and (9.5.7). �
The formulas in Theorem 9.5.1 enable us to prove the boundedness with respect to the

maximum norm || · ||∞ of the Fourier series operator T ∗
n , as follows.



264 Mathematics of Approximation

Theorem 9.5.2. For n ∈ N, the Fourier series operator T ∗
n , as defined by (9.3.3), is

bounded with respect to the maximum norm || · ||∞, as given by (9.2.1), with corresponding

Lebesgue constant ||T ∗
n ||∞ bounded above by

||T ∗
n ||∞ � 1+ ln(2n+ 1). (9.5.8)

Proof. Let n ∈ N be fixed. From (9.5.1) in Theorem 9.5.1, and by using also the fact that,

according to (9.5.2), K∗
n is an even function on [−π ,π ], we obtain, for any f ∈ C2π and

x ∈ [−π ,π ],

|(T ∗
n f )(x)|� 1

π

∫ π

−π
|K∗

n (θ )| | f (x+θ )|dθ

�
[

1
π

∫ π

−π
|K∗

n (θ )|dθ
]
|| f ||∞ =

[
2
π

∫ π

0
|K∗

n (θ )|dθ
]
|| f ||∞,

and thus

||T ∗
n f ||∞ �

[
2
π

∫ π

0
|K∗

n (θ )|dθ
]
|| f ||∞,

from which it then follows that
||T ∗

n f ||∞
|| f ||∞ � 2

π

∫ π

0
|K∗

n (θ )|dθ , for f ∈C2π , with f �= 0. (9.5.9)

It follows from (9.5.9) that {||T ∗
n f ||/|| f || : f ∈ C2π ; f �= 0} is a bounded set, and thus

the approximation operator T ∗
n is indeed bounded with respect to the maximum norm

|| · ||∞, with, according to the definition (5.2.2), corresponding Lebesgue constant ||T ∗
n ||∞

satisfying the upper bound

||T ∗
n ||∞ � 2

π

∫ π

0
|K∗

n (θ )|dθ . (9.5.10)

The desired result (9.5.8) will therefore follow if we can prove the inequality∫ π

0
|K∗

n (θ )|dθ � π
2
[1+ ln(2n+ 1)]. (9.5.11)

To prove (9.5.11), we let μ denote an arbitrary number such that 0 < μ < π , and note from

(9.5.2) that ∣∣K∗
n (θ )

∣∣= ∣∣∣∣∣12 +
n

∑
j=1

cos( jθ )

∣∣∣∣∣ � 1
2
+ n, θ ∈ [0,μ ]. (9.5.12)

Next, we observe that the inequality (6.5.25) is equivalent to

sin( 1
2 θ )� θ

π
, θ ∈ [0,π ], (9.5.13)

which, together with the first line of (9.5.3), yields∣∣K∗
n (θ )

∣∣� 1
2|sin( 1

2 θ )| �
π

2θ
, θ ∈ [μ ,π ]. (9.5.14)
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It follows from (9.5.12) and (9.5.14) that∫ π

0

∣∣K∗
n (θ )

∣∣dθ =

∫ μ

0

∣∣K∗
n (θ )

∣∣dθ +

∫ π

μ

∣∣K∗
n (θ )

∣∣dθ

�
∫ μ

0

(
1
2
+ n
)

dθ +

∫ π

μ

π
2θ

dθ

=

(
1
2
+ n
)

μ +
π
2
[lnπ − ln μ ] . (9.5.15)

Recalling that μ is an arbitrary number in the interval (0,π), we may now choose μ =
π

2n+ 1
in (9.5.15) to obtain∫ π

0

∣∣K∗
n (θ )

∣∣dθ � 2n+ 1
2

(
π

2n+ 1

)
+

π
2
[
lnπ −{lnπ − ln(2n+ 1)}]

=
π
2
[1+ ln(2n+ 1)],

and thereby yielding (9.5.11). �
Note that the upper bound in (9.5.8) satisfies

1+ ln(2n+ 1)→ ∞, n → ∞. (9.5.16)

We proceed to show that it in fact holds that

||T ∗
n ||∞ → ∞, n → ∞, (9.5.17)

as follows from our next result.

Theorem 9.5.3. The Lebesgue constant ||T ∗
n ||∞ in Theorem 9.5.2 satisfies

||T ∗
n ||∞ =

2
π

∫ π

0

∣∣K∗
n (θ )

∣∣dθ >
4

π2 ln(n+ 1), n ∈ N. (9.5.18)

Proof. Our first step is to show that

||T ∗
n ||∞ � 2

π

∫ π

0

∣∣K∗
n (θ )

∣∣dθ , (9.5.19)

which, together with (9.5.10), will then yield the formula in (9.5.18) for ||T ∗
n ||∞.

To this end, we fix n∈N, and observe from (9.5.3) in Theorem 9.5.1 that, with the definition

θk :=

⎧⎨⎩
2kπ

2n+ 1
, k = 0, . . . ,n;

π , k = n+ 1,
(9.5.20)

we have (see Exercise 9.18)

K∗
n (θ )> 0,θ ∈ [θ0,θ1); (9.5.21)

(−1)kK∗
n (θ )> 0,θ ∈ (θk,θk+1), k = 1, . . . ,n− 1 (if n � 2); (9.5.22)
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(−1)nK∗
n (θ )> 0,θ ∈ (θn,θn+1], (9.5.23)

with, moreover,

K∗
n (θk) = 0, k = 1, . . . ,n. (9.5.24)

For any j ∈ N, define the points

ψ j,k := θk − π
(2n+ 1)( j+ 2)

, k = 1, . . . ,n;

ψ̃ j,k := θk +
π

(2n+ 1)( j+ 2)
, k = 1, . . . ,n,

⎫⎪⎬⎪⎭ (9.5.25)

with {θ1, . . . ,θn} as in (9.5.20), and according to which, for each j ∈ N, we have (see

Exercise 9.19) the ordering

0 = θ0 < ψ j,1 < θ1 < ψ̃ j,1 < ψ j,2 < θ2 < ψ̃ j,2 < · · ·< ψ j,n < θn < ψ̃ j,n < θn+1 = π .
(9.5.26)

Also, for j ∈ N, let g j ∈C2π be the even function on R, as defined on [0,π ] by

g j(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, x ∈ [θ0,ψ j,1);

(−1)k, x ∈ [ψ̃ j,k,ψ j,k+1), k = 1, . . . ,n− 1;

(−1)n, x ∈ [ψ̃n,θn+1],

(9.5.27)

and

g j(x) := (−1)k (2n+ 1)( j+ 2)
π

(x−θk), x ∈ [ψ j,k, ψ̃ j,k], k = 1, . . . ,n, (9.5.28)

according to which, together with (9.5.21) - (9.5.26), we have (see Exercise 9.19)

K∗
n (θ )g j(θ )� 0, θ ∈ [0,π ], j ∈ N, (9.5.29)

as well as

||g j||∞ = 1, j ∈ N. (9.5.30)

Next, by using (9.5.26) and (9.5.29), as well as (9.5.27), we deduce that, for any j ∈ N,∫ π

0
K∗

n (θ )g j(θ )dθ =

∫ π

0

∣∣K∗
n (θ )g j(θ )

∣∣dθ

=

∫ ψ j,1

0
|K∗

n (θ )|dθ +
n−1

∑
k=1

∫ ψ j,k+1

ψ̃ j,k

|K∗
n (θ )|dθ

+

∫ π

ψ̃ j,n

|K∗
n (θ )|dθ +

n

∑
k=1

∫ ψ̃ j,k

ψ j,k

|K∗
n (θ )g j(θ )|dθ . (9.5.31)

Since (9.5.2) implies

|K∗
n (θ )|� 1

2 + n, θ ∈ [−π ,π ], (9.5.32)
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we may now apply (9.5.32), (9.5.30) and (9.5.25) to obtain, for any j ∈ N,
n

∑
k=1

∫ ψ̃ j,k

ψ j,k

|K∗
n (θ )g j(θ )|dθ � (n+ 1

2 )(ψ̃ j,k −ψ j,k)n =
nπ

j+ 2
,

and thus

lim
j→∞

n

∑
k=1

∫ ψ̃ j,k

ψ j,k

|K∗
n (θ )g j(θ )|dθ = 0. (9.5.33)

By using the implication of the fundamental theorem of calculus that, for any f ∈ C[0,π ],
the integrals

∫ x

0
f (t)dt and

∫ x

π
f (t)dt are both continuous for x ∈ [0,π ], and since (9.5.25)

yields, for any k ∈ {1, . . . ,n}, the limits

lim
j→∞

ψ j,k = θk; lim
j→∞

ψ̃ j,k = θk, (9.5.34)

we further deduce that

lim
j→∞

[∫ ψ j,1

0
|K∗

n (θ )|dθ +
n−1

∑
k=1

∫ ψ j,k+1

ψ̃ j,k

|K∗
n (θ )|dθ +

∫ π

ψ̃ j,n

|K∗
n (θ )|dθ

]

= lim
j→∞

[∫ ψ j,1

0
|K∗

n (θ )|dθ +
n−1

∑
k=1

{∫ ψ j,k+1

0
|K∗

n (θ )|dθ −
∫ ψ̃ j,k

0
|K∗

n (θ )|dθ
}
+

∫ π

ψ̃ j,n

|K∗
n (θ )|dθ

]

=
∫ θ1

0
|K∗

n (θ )|dθ +
n−1

∑
k=1

{∫ θk+1

0
|K∗

n (θ )|dθ −
∫ θk

0
|K∗

n (θ )|dθ
}
+
∫ π

θn

|K∗
n (θ )|dθ

=
n

∑
k=0

∫ θk+1

θk

|K∗
n (θ )|dθ =

∫ π

0
|K∗

n (θ )|dθ , (9.5.35)

by virtue of (9.5.20).

By combining (9.5.31), (9.5.35) and (9.5.33), we obtain the limit

lim
j→∞

[∫ π

0
K∗

n (θ )g j(θ )dθ
]
=

∫ π

0
|K∗

n (θ )|dθ . (9.5.36)

Now let x ∈ [0,π ] be fixed, and define, for j = 1,2, . . .,

f j(θ ) := g j(θ − x), θ ∈ R, (9.5.37)

with g j denoting the function in C2π , as defined by (9.5.27), (9.5.28), and the condition

that g j is even on R. It follows from (9.5.37) that f j ∈ C2π , j ∈ N, with, moreover, from

(9.5.30),

|| f j||∞ = 1, j ∈N. (9.5.38)

Hence we may apply the formula (9.5.1) in Theorem 9.5.1, together with (9.5.37), to obtain,

for any j ∈ N,

(T ∗
n f j)(x) =

1
π

∫ π

−π
K∗

n (θ ) f j(x+θ )dθ =
1
π

∫ π

−π
K∗

n (θ )g j(θ )dθ =
2
π

∫ π

0
K∗

n (θ )g j(θ )dθ ,
(9.5.39)
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since (9.5.2) implies that K∗
n is an even function on R, whereas g j is by definition an even

function on R.

According to Theorem 9.3.1(a) and Theorem 9.5.2, the Fourier series operator T ∗
n is linear,

and bounded with respect to the maximum norm || · ||∞. Hence we may apply the formula

(5.2.10) in Theorem 5.2.3, together with (9.5.38), and (9.5.39), to obtain, for any j ∈ N,

||T ∗
n ||∞ = sup{||T ∗

n f ||∞ : f ∈C2π ; || f ||∞ = 1}

� ||T ∗
n f j ||∞ = max

−1�t�1
|(T ∗

n f j)(t)|� (T ∗
n f j)(x) =

2
π

∫ π

0
K∗

n (θ )g j(θ )dθ ,

and thus, by using also (9.5.36),

||T ∗
n ||∞ � 2

π

∫ π

0
K∗

n (θ )g j(θ )→ 2
π

∫ π

0
|K∗

n (θ )|dθ , j → ∞,

which immediately yields the desired inequality (9.5.19), and thereby completing the proof

of the formula in (9.5.18) for the Lebesgue constant ||T ∗
n ||∞.

Next, to prove the inequality in (9.5.18), we first use (9.5.19), (9.5.20) and (9.5.3) to obtain

||T ∗
n ||∞ >

2
π

∫ θn

0
|K∗

n (θ )|dθ =
2
π

n−1

∑
j=0

∫ θ j+1

θ j

|sin((n+ 1
2 )θ )|

2sin( 1
2 θ )

dθ . (9.5.40)

Now observe that the function

u(θ ) := θ − sinθ

satisfies

u(0) = 0; u′(θ ) = 1− cosθ � 0, θ ∈ R,

and thus

u(θ )� 0, θ ∈R,

from which we then obtain the inequality

sin( 1
2 θ )� 1

2 θ , θ � 0. (9.5.41)

Hence, from (9.5.41) and (9.5.20),
n−1

∑
j=0

∫ θ j+1

θ j

|sin((n+ 1
2 )θ )|

2sin( 1
2 θ )

dθ �
n−1

∑
j=0

∫ θ j+1

θ j

|sin((n+ 1
2 )θ )|

θ
dθ

�
n−1

∑
j=0

1
θ j+1

∫ θ j+1

θ j

|sin((n+ 1
2 )θ )|dθ

=
n−1

∑
j=0

(−1) j

θ j+1

∫ θ j+1

θ j

sin((n+ 1
2)θ )dθ
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=
n−1

∑
j=0

(−1) j

θ j+1

2
2n+ 1

[
cos
(
(n+ 1

2 )θ j
)− cos

(
(n+ 1

2)θ j+1
)]

=
1
π

n−1

∑
j=0

(−1) j

j+ 1
[
(−1) j − (−1) j+1]

=
2
π

n−1

∑
j=0

1
j+ 1

=
2
π

n

∑
j=1

1
j
. (9.5.42)

Finally, we prove the inequality
n

∑
j=1

1
j
> ln(n+ 1), n ∈ N, (9.5.43)

which, together with (9.5.40) and (9.5.42), will then complete our proof of the inequality

in (9.5.18).

To this end, we define, for any n ∈ N, the piecewise constant function

h(x) :=

⎧⎪⎨⎪⎩
1
j
, x ∈ [ j, j+ 1), j = 1, . . . ,n;

1
n+ 1

, x = n+ 1,
(9.5.44)

for which it then follows that
1
x
� h(x), x ∈ [1,n+ 1]. (9.5.45)

By using (9.5.45) and (9.5.44), we deduce that

ln(n+ 1) =
∫ n+1

1

1
x

dx �
∫ n+1

1
h(x)dx =

n

∑
j=1

1
j
,

and thereby proving the desired inequality (9.5.43). �
Since (9.5.17) holds, as follows immediately from (9.5.18) in Theorem 9.5.3, we may apply

the Banach-Steinhaus theorem, that is, the principle of uniform boundedness, which is a

standard result in functional analysis, and the proof of which is beyond the scope of this

book, to deduce the existence of a function f ∈C2π such that

||T ∗
n f ||∞ → ∞, n → ∞,

and thus, from (4.1.3) and (4.1.5),

|| f −T ∗
n f ||∞ = ||T ∗

n f − f ||∞ �
∣∣ ||T ∗

n f ||∞ −|| f ||∞
∣∣� ||T ∗

n f ||∞ −|| f ||∞ → ∞, n → ∞,

and thereby justifying the statement in Section 9.4 that there exists a function f ∈C2π such

that the divergence result (9.4.24) holds.

Finally in this section, we prove the following explicit formulation of the Lebesgue constant

||T ∗
n ||∞.
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Theorem 9.5.4. For any n ∈ N, the Lebesgue constant ||T ∗
n ||∞ in Theorem 9.5.2 is given

explicitly by the formula

||T ∗
n ||∞ =

1
2n+ 1

+
2
π

n

∑
k=1

1
k

tan
(

k
2n+ 1

π
)
. (9.5.46)

Proof. Let the points {θ0, . . . ,θn+1} be defined as in (9.5.20). It then follows from the

formulation of the Lebesgue constant ||T ∗
n ||∞ in (9.5.18) of Theorem 9.5.3, together with

the properties (9.5.21) - (9.5.24) of the function K∗
n , as well as (9.5.2) in Theorem 9.5.1,

that

||T ∗
n ||∞ =

2
π

n

∑
j=0

∫ θ j+1

θ j

|K∗
n (θ )|dθ

=
2
π

n

∑
j=0

(−1) j
∫ θ j+1

θ j

[
1
2
+

n

∑
k=1

cos(kθ )

]
dθ

=
2
π

n

∑
j=0

(−1) j

[
1
2
(θ j+1 −θ j)+

n

∑
k=1

1
k

{
sin(kθ j+1)− sin(kθ j)

}]

=
1
π

n

∑
j=0

(−1) j(θ j+1 −θ j)+
2
π

n

∑
k=1

1
k

n

∑
j=0

(−1) j [sin(kθ j+1)− sin(kθ j)
]
. (9.5.47)

By using (9.5.20), we deduce that

n

∑
j=0

(−1) j(θ j+1 −θ j) =
n−1

∑
j=0

(−1) j(θ j+1 −θ j)+ (−1)n π
2n+ 1

=
n−1

∑
j=0

(−1) j 2π
2n+ 1

+(−1)n π
2n+ 1

=
π

2n+ 1

[
n−1

∑
j=0

2(−1) j +(−1)n

]
. (9.5.48)

Now observe that
n−1

∑
j=0

2(−1) j +(−1)n =

⎧⎨⎩2− 1 = 1, if n is odd;

0+ 1 = 1, if n is even,

and thus, from (9.5.48),
n

∑
j=0

(−1) j(θ j+1 −θ j) =
π

2n+ 1
. (9.5.49)

Next, note from (9.5.20) that, for any k ∈ {1, . . . ,n},
n

∑
j=0

(−1) j [sin(kθ j+1)− sin(kθ j)
]
= [sin(kθ1)− 0]− [sin(kθ2)− sin(kθ1)]
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+[sin(kθ3)− sin(kθ2)]+ · · ·+(−1)n[sin(kπ)− sin(kθn)]

= 2
n

∑
j=1

(−1) j−1 sin(kθ j) = 2
n

∑
j=1

(−1) j−1 sin
(

2k j
2n+ 1

π
)
.

(9.5.50)

But, for any k ∈ {1, . . . ,n},

cos
(

k
2n+ 1

π
) n

∑
j=1

(−1) j−1 sin
(

2k j
2n+ 1

π
)

=
n

∑
j=1

(−1) j−1 sin
(

2k j
2n+ 1

π
)

cos
(

k
2n+ 1

π
)

=
1
2

n

∑
j=1

(−1) j−1
[

sin
(
(2 j+ 1)k

2n+ 1
π
)
+ sin

(
(2 j− 1)k

2n+ 1
π
)]

=
1
2

{[
sin
(

3k
2n+ 1

π
)
+ sin

(
k

2n+ 1
π
)]

−
[

sin
(

5k
2n+ 1

π
)
+ sin

(
3k

2n+ 1
π
)]

+ · · ·+(−1)n−1
[

sin(kπ)+ sin
(
(2n− 1)k

2n+ 1
π
)]}

=
1
2

sin
(

k
2n+ 1

π
)
,

and thus
n

∑
j=1

(−1) j−1 sin
(

2k j
2n+ 1

π
)
=

1
2

tan
(

k
2n+ 1

π
)
, k = 1, . . . ,n. (9.5.51)

The formula (9.5.46) is an immediate consequence of (9.5.47), (9.5.49), (9.5.50) and

(9.5.51). �
Calculating by means of (9.5.46), we obtain the values of ||T ∗

n ||∞ for n = 1, . . . ,10, as

given in Table 9.5.1.

It can in fact be shown that, for any n ∈ N, if A : C2π → τn is a linear approximation

operator satisfying the exactness condition

A f = f , f ∈ τn,

and A is bounded with respect to the maximum norm || · ||∞, then

||A ||∞ � ||T ∗
n ||∞.

It follows from Theorem 9.3.1(a) and (b), as well as Theorem 9.5.2, that we may apply the

Lebesgue inequality in Theorem 5.3.2 to immediately deduce the following upper bound
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Table 9.5.1 The Lebesgue constant ||T ∗
n ||∞ for n = 1, . . . ,10.

n ||T ∗
n ||∞

1 1.436

2 1.642

3 1.778

4 1.880

5 1.961

n ||T ∗
n ||∞

6 2.029

7 2.087

8 2.138

9 2.183

10 2.223

on the approximation error with respect to the maximum norm || · ||∞ for the Fourier series

operator.

Theorem 9.5.5. For any n ∈ N, the uniform approximation error for the Fourier series

operator T ∗
n : C2π → τn, as defined by (9.3.3), satisfies the Lebesgue inequality

|| f −T ∗
n f ||∞ � [2+ ln(2n+ 1)]E ∗

n [ f ], f ∈C2π , (9.5.52)

with E ∗
n : C2π →R denoting the best approximation error functional, as defined by (9.4.26).

After recalling also (9.4.27) in Theorem 9.4.4, as well as (9.5.17), together with the

Lebesgue inequality (5.3.7) in Theorem 5.3.2 for the approximation operator T ∗
n , we

deduce from (9.5.52) in Theorem 9.5.5 the following sufficient condition on a function

f ∈C2π for the uniform convergence result (9.4.25) to be satisfied.

Theorem 9.5.6. In Theorem 9.5.5, suppose f ∈C2π satisfies the condition

[ln(2n+ 1)]E ∗
n [ f ]→ 0, n → ∞. (9.5.53)

Then the uniform convergence result

|| f −T ∗
n f ||∞ → 0, n → ∞, (9.5.54)

holds.

In the next section, we establish a subspace M of C2π for which any f ∈ M satisfies the con-

dition (9.5.53), and therefore also, according to Theorem 9.5.6, the uniform convergence

result (9.4.25).
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9.6 Sufficient condition for uniform convergence

In this section, in order to establish a subspace M of C2π such that the sufficient condition

(9.5.53) in Theorem 9.5.6 holds for each f ∈ M, we investigate the convergence rate with

respect to the result (9.4.27) in Theorem 9.4.4, for specific classes of functions f .

We shall rely on the following trigonometric polynomial interpolation result.

Theorem 9.6.1. For the function

f (x) := x, (9.6.1)

and any n ∈ N, there exists precisely one trigonometric polynomial

Qn ∈ span{sinx,sin(2x), . . . ,sin(nx)} (9.6.2)

satisfying the interpolation conditions

Qn

(
jπ

n+ 1

)
= f

(
jπ

n+ 1

)
, j = 1, . . . ,n, (9.6.3)

with, moreover, ∫ π

0
| f (x)−Qn(x)|dx =

∫ π

0
|x−Qn(x)|dx =

π2

2(n+ 1)
. (9.6.4)

Proof. With the notation

xn, j :=
jπ

n+ 1
, j = 1, . . . ,n, (9.6.5)

the existence and uniqueness statement of the theorem will follow if we can show that the

matrix

An :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

sinxn,1 sin(2xn,1) · · · sin(nxn,1)

sinxn,2 sin(2xn,2) · · · sin(nxn,2)

...
...

...

sinxn,n sin(2xn,n) · · · sin(nxn,n)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(9.6.6)

is invertible, or equivalently, from a standard result in linear algebra, if we can show that

the homogeneous linear system Anc = 0 has only the trivial solution c = 0 ∈ Rn.

To this end, suppose c = (c1, . . . ,cn)
T ∈ Rn is such that Anc = 0. It follows from (9.6.6)

that the trigonometric polynomial

Q(x) :=
n

∑
k=1

ck sin(kx) (9.6.7)

then satisfies

Q(xn, j) = 0, j = 1, . . . ,n. (9.6.8)
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According to (9.6.7), Q is an odd function on R, and thus (9.6.8) implies

Q(−xn, j) = 0, j = 1, . . . ,n. (9.6.9)

By noting from (9.6.5) that

{xn,1, . . . ,xn,n} ⊂ (0,π); {−xn,1, . . . ,−xn,n} ⊂ (−π ,0),

we deduce from (9.6.8) and (9.6.9), together with Q(0) = 0, as follows from (9.6.7), that Q

has at least 2n+1 distinct zeros in (−π ,π). Moreover, (9.6.7) and (9.1.5) imply that Q∈ τn.

Hence we may apply Theorem 9.1.3(c) to deduce that Q must be the zero function, and thus,

from (9.6.7), c = (c1, . . . ,cn) = 0 ∈ Rn, from which it then follows that the matrix An in

(9.6.6) is indeed invertible, thereby yielding the existence of precisely one trigonometric

polynomial Qn as in (9.6.2), and satisfying the interpolation condition (9.6.3) with respect

to the function f given by (9.6.1).

For the error function

En(x) := x−Qn(x), (9.6.10)

it follows from (9.6.1), (9.6.3) and (9.6.5) that

En(xn, j) = 0, j = 1, . . . ,n. (9.6.11)

We claim that {xn, j : j = 1, . . . ,n} are the only zeros of En in (0,π), and are all simple zeros

of En, in the sense that

E ′
n(xn, j) �= 0, j = 1, . . . ,n, (9.6.12)

according to which En has sign changes at all of its zeros {xn, j : j = 1, . . . ,n} in (0,π).
To prove this statement, suppose there exists a point x̃ ∈ (0,π) \ {xn,1, . . . ,xn,n} such that

En(x̃) = 0. Since also, from (9.6.10) and (9.6.2), En(0) = 0, it follows that En has at

least n+ 2 distinct zeros in [0,π). An application of Rolle’s theorem then shows that the

derivative E ′
n has at least n+ 1 distinct zeros in (0,π). But (9.6.10) gives

E ′
n(x) = 1−Q′

n(x), (9.6.13)

which, together with (9.6.2), shows that E ′
n is an even function on R, and thus E ′

n also

has at least n+ 1 distinct zeros in (−π ,0), so that E ′
n has at least 2n+ 2 distinct zeros

in (−π ,π). Moreover, from (9.6.13), (9.6.2) and (9.1.5), we have E ′
n ∈ τn. Hence we

may apply Theorem 9.1.3(c) to deduce that E ′
n is the zero function, that is, from (9.6.13),

Q′
n(x) = 1,x∈R, which, together with (9.6.3), (9.6.1), yields Qn(x) = x,x ∈R, and thus, by

using also (9.6.2), we obtain the contradiction 0=Qn(π)= π . It follows that {xn,1, . . . ,xn,n}
are the only zeros of En in (0,π).
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To prove (9.6.12), suppose E ′
n(xn,k) = 0 for some integer k ∈ {1, . . . ,n}. From (9.6.11) and

En(0) = 0, an application of Rolle’s theorem shows that E ′
n has at least n distinct zeros in

(0,π), all of which are different from xn,k. Hence E ′
n has at least n+ 1 distinct zeros in

(0,π), which has already been shown above to lead to a contradiction, and thereby proving

(9.6.12).

By virtue of the fact that {xn, j : j = 0, . . . ,n} are the only zeros of En in (0,π), and are all

simple zeros, it follows from (9.6.10) and (9.6.5) that∫ π

0
|x−Qn(x)|dx =

n

∑
j=0

∫ ( j+1)π
n+1

jπ
n+1

|x−Qn(x)|dx

=

∣∣∣∣∣ n

∑
j=0

∫ ( j+1)π
n+1

jπ
n+1

(−1) j[x−Qn(x)]dx

∣∣∣∣∣
=

∣∣∣∣∣ n

∑
j=0

(−1) j
∫ ( j+1)π

n+1

jπ
n+1

xdx−
n

∑
j=0

(−1) j
∫ ( j+1)π

n+1

jπ
n+1

Qn(x)dx

∣∣∣∣∣ . (9.6.14)

We claim that
n

∑
j=0

(−1) j
∫ ( j+1)π

n+1

jπ
n+1

Qn(x)dx = 0, (9.6.15)

which, according to (9.6.2), would follow if we can show that

Ik :=
n

∑
j=0

(−1) j
∫ ( j+1)π

n+1

jπ
n+1

sin(kx)dx = 0, k = 1, . . . ,n. (9.6.16)

To prove (9.6.16), let the piecewise constant function σn : R→ R be defined by

σn(x) :=

⎧⎨⎩ (−1) j, x ∈
[

jπ
n+1 ,

( j+1)π
n+1

)
, j = 0, . . . ,n;

(−1)n, x = π ;
(9.6.17)

σn(x) :=−σn(−x), x ∈ (−π ,0); (9.6.18)

σn(x) := σn(x+ 2π), x ∈ (−∞,−π ]; (9.6.19)

σn(x) := σn(x− 2π), x ∈ (π ,∞). (9.6.20)

It follows from (9.6.17)–(9.6.20) that

σn(x+ 2π) = σn(x), x ∈ R; (9.6.21)

σn

(
x+

π
n+ 1

)
=−σn(x), x ∈ [−π ,π ]\

{
− π

n+ 1
,

nπ
n+ 1

}
. (9.6.22)
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Since, as in the argument leading to (9.3.64) and (9.3.65), we can show that, for any α ∈R,

we have ∫ π+α

−π+α
g(x)dx =

∫ π

−π
g(x)dx, (9.6.23)

for any piecewise constant function g satisfying g(x+ 2π) = g(x),x ∈ R, it now follows

from (9.6.16), (9.6.17), (9.6.21), (9.6.22) and (9.6.23) that, for any k ∈ {1, . . . ,n},

Ik =
n

∑
j=0

∫ ( j+1)π
n+1

jπ
n+1

σn(x)sin(kx)dx

=

∫ π

0
σn(x)sin(kx)dx

=
1
2

∫ π

−π
σn(x)sin(kx)dx

=
1
2

∫ π− π
n+1

−π− π
n+1

σn

(
x+

π
n+ 1

)
sin
(

k
(

x+
π

n+ 1

))
dx

=
1
2

∫ π

−π
σn

(
x+

π
n+ 1

)
sin
(

k
(

x+
π

n+ 1

))
dx

=−1
2

∫ π

−π
σn(x)sin

(
kx+

kπ
n+ 1

)
dx

=−1
2

cos
(

kπ
n+ 1

)∫ π

−π
σn(x)sin(kx)dx− 1

2
sin
(

kπ
n+ 1

)∫ π

−π
σn(x)cos(kx)dx

=−cos
(

kπ
n+ 1

)
Ik − 1

2

[
sin
(

kπ
n+ 1

)]
(0),

and thus [
1+ cos

(
kπ

n+ 1

)]
Ik = 0,

from which, since

1+ cos
(

kπ
n+ 1

)
�= 0, k = 1, . . . ,n,

the result (9.6.16), and therefore also (9.6.15), then follow.

By substituting (9.6.15) into (9.6.14), we obtain∫ π

0
|x−Qn(x)|dx =

∣∣∣∣∣ n

∑
j=0

(−1) j
∫ ( j+1)π

n+1

jπ
n+1

xdx

∣∣∣∣∣= π2

2(n+ 1)2

∣∣∣∣∣ n

∑
j=0

(−1) j[( j+ 1)2 − j2]

∣∣∣∣∣
=

π2

2(n+ 1)2

∣∣∣∣∣ n

∑
j=0

(−1) j(2 j+ 1)

∣∣∣∣∣ . (9.6.24)
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We claim that
n

∑
j=0

(−1) j(2 j+ 1) = (−1)n(n+ 1), n ∈ N, (9.6.25)

which, together with (9.6.24), will yield the desired result (9.6.4).

To prove (9.6.25), we note first that, if n = 1, (9.6.25) holds with both sides equal to −2.

To advance the inductive hypothesis from n to n+ 1, we use (9.6.25) to obtain
n+1

∑
j=0

(−1) j(2 j+ 1) = (−1)n(n+ 1)+ (−1)n+1(2n+ 3)

= (−1)n+1(−n− 1+ 2n+3)= (−1)n+1((n+ 1)+ 1),

which shows that (9.6.25) holds with n replaced by n+1, and thereby completing our proof.

�
The result (9.6.4) of Theorem 9.6.1 is instrumental in the proof of the following “Jackson’s

first theorem”, which specifies a convergence rate with respect to the result (9.4.27) in

Theorem 9.4.4 for the error functional E ∗
n corresponding to the Fourier series operator T ∗

n ,

and for functions f ∈C2π that are continuously differentiable on R.

Theorem 9.6.2 (Jackson I). For any positive integer n, the error functional E ∗
n : C2π →R,

as defined by (9.4.26), satisfies

E ∗
n [ f ]�

π
2(n+ 1)

|| f ′||∞, f ∈C1
2π . (9.6.26)

Proof. Let f ∈C1
2π . By using also (9.3.64), (9.3.65), as well as (9.1.3), we deduce by means

of integration by parts that, for any x ∈R,∫ π

−π
θ f ′(θ + x+π)dθ =

[
θ f (θ + x+π)

]θ=π

θ=−π
−
∫ π

−π
f (θ + x+π)dθ

= π [ f (x+ 2π)+ f (x)]−
∫ π+(x+π)

−π+(x+π)
f (θ )dθ

= 2π f (x)−
∫ π

−π
f (θ )dθ ,

and thus

f (x) =
1

2π

∫ π

−π
f (θ )dθ +

1
2π

∫ π

−π
θ f ′(θ + x+π)dθ , x ∈R. (9.6.27)

It follows from (9.4.26), (9.2.1) and (9.6.27) that

E ∗
n [ f ] = min

Q∈τn
max

−π�x�π

∣∣∣∣ 1
2π

∫ π

−π
θ f ′(θ + x+π)dθ −

{
Q(x)− 1

2π

∫ π

−π
f (θ )dθ

}∣∣∣∣
= min

Q∈τn
max

−π�x�π

∣∣∣∣ 1
2π

∫ π

−π
θ f ′(θ + x+π)dθ −Q(x)

∣∣∣∣ , (9.6.28)
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by virtue of the fact that, according to (9.1.5), the function Q(x) = 1,x ∈ R, belongs to the

set τn.

Our next step is to show that, for any given g ∈C2π , and Q ∈ τn, the function

ψ(x) :=
∫ π

−π
Q(θ )g(θ + x)dθ , x ∈ R, (9.6.29)

satisfies

ψ ∈ τn. (9.6.30)

To this end, we first use the fact that, for g ∈C2π and Q ∈ τn, it holds from (9.1.6) that, for

each fixed x ∈ R, the product function Q(·− x)g belongs to C2π , so that we use (9.3.64),

(9.3.65) to deduce from (9.6.29) that

ψ(x) =
∫ π+x

−π+x
Q(θ − x)g(θ )dθ =

∫ π

−π
Q(θ − x)g(θ )dθ , x ∈ R. (9.6.31)

Since Q ∈ τn, it follows from the representation formula (9.1.12) that there exist coefficient

sequences {a j : j = 0, . . . ,n} and {b j : j = 1, . . . ,n} such that, for θ ,x ∈ R,

Q(θ − x) =
1
2

a0 +
n

∑
j=1

a j cos( j(θ − x))+
n

∑
j=1

b j sin( j(θ − x))

=
1
2

a0 +
n

∑
j=1

[a j cos( jθ )+ b j sin( jθ )]cos( jx)

+
n

∑
j=1

[a j sin( jθ )− b j cos( jθ )] sin( jx),

which, together with (9.6.31), yields, for any x ∈ R,

ψ(x) =
[

1
2

a0

∫ π

−π
g(θ )dθ

]
+

n

∑
j=1

{∫ π

−π
[a j cos( jθ )+ b j sin( jθ )]g(θ )dθ

}
cos( jx)

+
n

∑
j=1

{∫ π

−π
[a j sin( jθ )− b j cos( jθ )]g(θ )dθ

}
sin( jx). (9.6.32)

It follows from (9.6.32) and (9.1.5) that ψ ∈ τn, as required.

Since f ∈C1
2π , it follows from (9.3.62) that the function

h(x) := f ′(x+π) (9.6.33)

satisfies h∈C2π . Moreover, note from (9.6.2) and (9.1.5) that the trigonometric polynomial

Qn in Theorem 9.6.1 satisfies Qn ∈ τn. Hence we may choose g = 1
2π h and Q = Qn in

(9.6.29) to deduce from (9.6.30), (9.6.33), as well as (9.6.4) in Theorem 9.6.1, that

min
Q∈τn

max
−π�x�π

∣∣∣∣ 1
2π

∫ π

−π
θ f ′(θ + x+π)dθ −Q(x)

∣∣∣∣
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� max
−π�x�π

∣∣∣∣ 1
2π

∫ π

−π
θ f ′(θ + x+π)dθ − 1

2π

∫ π

−π
Qn(θ ) f ′(θ + x+π)dθ

∣∣∣∣
=

1
2π

max
−π�x�π

∣∣∣∣∫ π

−π
[θ −Qn(θ )] f ′(θ + x+π)dθ

∣∣∣∣
� || f ′||∞

2π

∫ π

−π
|θ −Qn(θ )|dθ

=
|| f ′||∞

π

∫ π

0
|θ −Qn(θ )|dθ =

π
2(n+ 1)

|| f ′||∞, (9.6.34)

since the integrand is an even function on R, by virtue of the fact that, from (9.6.2), Q is

an odd function on R. The desired result (9.6.26) is now an immediate consequence of

(9.6.28) and (9.6.34). �
A function f : R→ R is called a Lipschitz-continuous function on R if there exists a non-

negative constant Kf such that

| f (x)− f (y)|� Kf |x− y|, x,y ∈ R. (9.6.35)

The constant Kf in (9.6.35) is called a Lipschitz constant for f on R. The class of all

functions f that are periodic on R in the sense of (9.1.3), and Lipschitz-continuous on R,

will be denoted by CLip
2π . It follows from (9.6.35) that CLip

2π is a linear space. In fact, CLip
2π is

situated between the two linear spaces C2π and C1
2π , as follows.

Theorem 9.6.3. The linear space CLip
2π of Lipschitz-continuous functions on R, as charac-

terised by the conditions (9.1.3) and (9.6.35), satisfies

C1
2π ⊂CLip

2π ⊂C2π . (9.6.36)

Proof. The second inclusion in (9.6.36) is an immediate consequence of (9.1.3), together

with the fact that (9.6.35) yields

lim
y→x

| f (x)− f (y)|= 0, x ∈ R, f ∈CLip
2π .

To prove the first inclusion in (9.6.36), suppose f ∈C1
2π , and let x,y ∈R. But then the mean

value theorem implies the existence of a point ξ in the interval joining x and y such that

f (x)− f (y) = f ′(ξ )(x− y),

and thus

| f (x)− f (y)|= | f ′(ξ )| |x− y|� || f ′||∞|x− y|, (9.6.37)

after having used also the fact that f ′ ∈ C2π , from (9.3.62). It follows from (9.6.37) that f

is Lipschitz-continuous on R as in (9.6.35), with Lipschitz constant Kf = || f ′||∞. Since f
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also satisfies (9.1.3), we conclude that f ∈ CLip
2π , and thereby proving the first inclusion in

(9.6.36). �

Example 9.6.1. In order to obtain a function f ∈ CLip
2π \C1

2π , let f ∈ C2π be chosen as the

“sawtooth” function, as defined on [−π ,π ] in (9.4.16) of Example 9.4.1, for which we

immediately observe that f �∈C1
2π .

Now let x,y ∈ R. It follows from (9.4.16), together with the facts that f ∈ C2π , and f is

an even function on R, that there exist points x̃, ỹ ∈ [0,π ], with |x̃− ỹ| � |x− y|, such that

f (x̃) = f (x); f (ỹ) = f (y) and thus

| f (x)− f (y)|= | f (x̃)− f (ỹ)|= |x̃− ỹ|� |x− y|,

according to which f satisfies the Lipschitz condition (9.6.35), with Lipschitz constant

Kf = 1. We have therefore shown that it indeed holds that f ∈CLip
2π \C1

2π . �

By using Theorem 9.6.2, we proceed to prove “Jackson’s second theorem” for Lipschitz-

continuous periodic functions, as follows.

Theorem 9.6.4 (Jackson II). For any positive integer n, the error functional E ∗
n : C2π →R,

as defined by (9.4.26), satisfies

E ∗
n [ f ]�

π
2(n+ 1)

Kf , f ∈CLip
2π , (9.6.38)

with Kf denoting a Lipschitz constant of f , as in (9.6.35).

Proof. Let f ∈ CLip
2π . Our method of proof consists of approximating f with arbitrary

uniform “closeness” by a function f̃ ∈ C1
2π , followed by an application of Theorem 9.6.2

to f̃ .

Let δ be an arbitrary positive number, and define the function

f̃ (x) :=
1

2δ

∫ x+δ

x−δ
f (θ )dθ , x ∈ R. (9.6.39)

Since (9.6.39) implies

f̃ (x) =
1

2δ

[∫ x+δ

0
f (θ )dθ −

∫ x−δ

0
f (θ )dθ

]
, x ∈ R,

and since f is continuous on R by virtue of the second inclusion in (9.6.36) of Theo-

rem 9.6.3, we may apply the fundamental theorem of calculus to deduce that f̃ ∈ C1(R),

with

f̃ ′(x) =
1

2δ
[ f (x+ δ )− f (x− δ )], x ∈ R. (9.6.40)
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Moreover, since f satisfies the periodicity condition (9.1.3), we may use (9.3.64), (9.3.65)

to deduce from (9.6.39) that

f̃ (x+ 2π) = f̃ (x), x ∈R,

and thus f̃ ∈C1
2π .

Hence we may apply (9.6.26) in Theorem 9.6.2 to obtain the inequality

E ∗
n [ f̃ ]�

π
2(n+ 1)

|| f̃ ′||∞. (9.6.41)

The fact that f is Lipschitz-continuous on R implies the existence of a constant Kf such

that the Lipschitz condition (9.6.35) holds, which, together with (9.6.40), yields

| f̃ ′(x)|� 1
2δ

Kf |(x+ δ )− (x− δ )|= Kf , x ∈R,

and thus

|| f̃ ′||∞ � Kf . (9.6.42)

It follows from (9.6.41) and (9.6.42) that

E ∗
n [ f̃ ]�

π
2(n+ 1)

Kf . (9.6.43)

Next, we use (9.6.39) and (9.6.35) to obtain, for any x ∈ R,

| f (x)− f̃ (x)|= 1
2δ

∣∣∣∣∫ x+δ

x−δ
[ f (x)− f (θ )]dθ

]
� 1

2δ

∫ x+δ

x−δ
| f (x)− f (θ )|dθ � Kf

2δ

∫ x+δ

x−δ
|x−θ |dθ

=
Kf

2δ

∫ δ

−δ
|θ |dθ =

Kf

δ

∫ δ

0
θdθ =

1
2

Kf δ ,

and thus

|| f − f̃ ||∞ � 1
2

Kf δ . (9.6.44)

Let Q∗ ∈ τn be defined as in (9.4.26) with f replaced by f̃ , that is,

|| f̃ −Q∗||∞ = E ∗
n [ f̃ ]. (9.6.45)

It follows from (9.4.26), the triangle inequality (4.1.4), together with (9.6.44), (9.6.45) and

(9.6.43), that

E ∗
n [ f ]� || f −Q∗||∞

= ||( f − f̃ )+ ( f̃ −Q∗)||∞ � || f − f̃ ||∞ + || f̃ −Q∗||∞ � 1
2

Kf δ +
π

2(n+ 1)
Kf ,

and thus

E ∗
n [ f ]−

π
2(n+ 1)

Kf �
1
2

Kf δ , for each δ > 0,

from which the desired inequality (9.6.38) then immediately follows. �
By combining Theorem 9.5.6 and Theorem 9.6.4, we can now prove the following uniform

convergence result for Fourier series.
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Theorem 9.6.5 (Dini-Lipschitz). The sequence {T ∗
n : n = 1,2, . . .} of Fourier series oper-

ators, as defined by (9.3.3), satisfies the uniform convergence result

|| f −T ∗
n f ||∞ → 0, n → ∞, f ∈CLip

2π , (9.6.46)

according to which the Fourier series of any f ∈CLip
2π converges pointwise to f on R, that

is,
1
2

a∗0 +
∞

∑
j=1

a∗j cos( jx)+
∞

∑
j=1

b∗j sin( jx) = f (x), x ∈R, f ∈CLip
2π , (9.6.47)

with {a∗j : j = 0,1, . . .} and {b∗j : j = 1,2, . . .} denoting the Fourier coefficients of f , as

given in (9.4.10).

Proof. Let f ∈CLip
2π . It follows from (9.6.38) in Theorem 9.6.4 that[

ln(2n+ 1)
]
E ∗

n [ f ]�
πKf

2
ln(2n+ 1)

n+ 1
, n = 1,2, . . . , (9.6.48)

with Kf denoting the Lipschitz constant of f on R, as in (9.6.35). Now observe that an

application of L’Hospital’s rule yields the limit

lim
x→∞

ln(2x+ 1)
x+ 1

= lim
x→∞

[
2

2x+1

1

]
= lim

x→∞

[
2

2x+ 1

]
= 0,

and thus also

lim
n→∞

ln(2n+ 1)
n+ 1

= 0. (9.6.49)

It follows from (9.6.48) and (9.6.49) that

[ln(2n+ 1)]E ∗
n [ f ]→ 0, n → ∞,

which, together with (9.5.54) in Theorem 9.5.6, yields the uniform convergence result

(9.6.46). The pointwise convergence result (9.6.47) is then an immediate consequence of

(9.6.46), (9.3.9), (9.3.10), together with the definition (9.2.1) of the maximum norm || · ||∞.

�
Similar to the Parseval identity (9.4.11) in Theorem 9.4.2, the pointwise convergence result

(9.6.47) in Theorem 9.6.5 is also useful for obtaining the sum of certain convergent infinite

series, as illustrated in the following example.

Example 9.6.2. Let f denote the “sawtooth” function, as in Examples 9.4.1 and 9.6.1.

According to Example 9.6.1, we have that f ∈ CLip
2π , and thus, according to (9.6.47) in

Theorem 9.6.5, the Fourier series (9.4.21) of f converges pointwise to f on R, that is,

π
2
− 4

π

∞

∑
j=1

1
(2 j− 1)2 cos((2 j− 1)x) = f (x), x ∈ R, (9.6.50)
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or, in particular, from (9.4.16),
π
2
− 4

π

∞

∑
j=1

1
(2 j− 1)2 cos((2 j− 1)x) = |x|, x ∈ [−π ,π ]. (9.6.51)

For example, we may set x = 0 in (9.6.51) to obtain

π
2
− 4

π

∞

∑
j=1

1
(2 j− 1)2 = 0,

that is,
∞

∑
j=1

1
(2 j− 1)2 =

π2

8
.

�

9.7 Exercises

Exercise 9.1 In Theorem 9.3.3, by applying the recursive formulation (9.3.16), compute

the numbers {Γ2 j : j = 1, . . . ,4}.

Exercise 9.2 Verify the Euler-Maclaurin formula for the case f (x) = x6, [a,b] = [0,1], n =

m = 2, by explicitly calculating both sides of equation (9.3.12) in Theorem 9.3.3.

[Hint: Use (8.6.22), (8.6.21), (8.4.3), (9.3.56) and (9.3.15), as well as Exercise 9.1.]

Exercise 9.3 Verify the validity of Theorem 9.3.4 (b) for the case m = 2 by explicitly

calculating the integral in the left hand side of equation (9.3.43).

Exercise 9.4 Compute the Bernoulli numbers B12 and B14 by means of (9.3.13) and

(9.3.56), and verify that the condition (9.3.44) in Theorem 9.3.4(c) is satisfied for m = 6

and m = 7.

Exercise 9.5 By applying the recursive formulation (9.3.39), prove that the odd-indexed

Bernoulli numbers {B2 j+1 : j = 1,2, . . .} are all zero, as in (9.3.41).

Exercise 9.6 Let f ∈C2m+2[a,b] for some non-negative integer m, and suppose f satisfies

the condition (9.3.58) of Theorem 9.3.6. Show that the upper bounds {Cn : n ∈ N} in the

trapezoidal rule error estimate∣∣E T R
n [ f ]

∣∣ :=
∣∣∣∣∫ b

a
f (x)dx−QT R

n [ f ]
∣∣∣∣�Cn,

as obtained from (9.3.59), satisfy the decay condition

C2n =

(
1
2

)2m+2

Cn, n ∈N. (∗)

Exercise 9.7 Show that the function

f (x) =
1

2+ sinx
, x ∈ R,
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satisfies the condition (9.3.58) of Theorem 9.3.6, with [a,b] = [−π ,π ], and for each m ∈N.

[Hint: Apply (9.3.62).]

Exercise 9.8 As a continuation of Exercise 9.7, and analogously to Exercises 8.23 and 8.24,

by computing the quadrature error E T R
n [ f ] for n= 1, . . . ,4, investigate numerically whether,

analogously to (∗) in Exercise 9.6, the decay rate∣∣E T R
2n [ f ]

∣∣≈ (1
2

)2m+2 ∣∣E T R
n [ f ]

∣∣
is achieved for this choice of f , and where the non-negative number m may be chosen

arbitrarily.

[Hint: Show first that ∫ π

−π

1
2+ sinx

dx =
2π√

3
≈ 3.62759873,

by setting x = 2arctant.]

Exercise 9.9 For any positive integers n and m, the Euler-Maclaurin quadrature rule QEM
n,m

for the numerical approximation of the integral∫ b

a
f (x)dx, f ∈Cm[a,b],

is defined by

QEM
n,m [ f ] := QT R

n [ f ]−
m

∑
j=1

B2 j

(2 j)!
[ f (2 j−1)(b)− f (2 j−1)(a)]

(
b− a

n

)2 j

, f ∈Cm[a,b],

with QT R
n denoting the trapezoidal rule given by (8.6.22), (8.6.21), (8.4.3), and where {B2 j :

j = 1,2, . . .} are the even-indexed Bernoulli numbers as defined recursively in (9.3.13).

Prove that the quadrature rule QEM
n,m has degree of exactness equal to 2m+ 1, and satisfies

the quadrature error estimate∣∣∣∣∫ b

a
f (x)dx−QEM

n,m [ f ]
∣∣∣∣� (b− a)

|B2m+2|
(2m+ 2)!

(
b− a

n

)2m+2

|| f (2m+2)||∞,

f ∈C2m+2[a,b]. (∗∗)

[Hint: Apply Theorem 9.3.5.]

Exercise 9.10 As a continuation of Exercise 9.9, and as an extension of Exercise 8.25,

calculate the value of QEM
2,m [ f ], with [a,b] = [0,1], and

f (x) = e−x2
, x ∈ [0,1],

and where m is the smallest value for which it holds, according to the quadrature error

estimate (∗∗) in Exercise 9.9, that∣∣∣∣∫ 1

0
f (x)dx−QEM

2,m [ f ]
∣∣∣∣ < 1

100
.
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Exercise 9.11 For the function

f (x) =
1

2+ sinx
, x ∈ R,

apply the method described in (9.3.73) - (9.3.76) to obtain the trigonometric polyno-

mial T̃2,4 f ∈ τ2, with T̃2,4 denoting the discrete Fourier series operator given in (9.3.68),

(9.3.67).

Exerice 9.12 As a continuation of Exercise 9.11, consider the trigonometric polynomial

T ∗
2 f ∈ τ2, with T ∗

2 denoting the Fourier series operator given in (9.3.9), (9.3.10), and

calculate the upper bounds in the Fourier coefficient error estimates (9.3.69).

Exercise 9.13 As a continuation of Exercise 9.12, apply the bounds obtained there to obtain

an upper bound on the quantity

‖T ∗
2 f − T̃2,4 f‖∞ := max

x∈[−π ,π ]

∣∣∣(T ∗
2 f )(x)− (T̃2,4 f )(x)

∣∣∣ .
Exercise 9.14 In each of the following two cases, apply the formulations in (9.4.10) to

calculate the Fourier coefficients {a∗j : j = 0,1, . . .} and {b∗j : j = 1,2, . . .} for the function

f ∈C2π , as given on the interval (−π ,π ] by:

(a) f (x) = x2, x ∈ (−π ,π ];

(b) f (x) = 1− 4
π2

(
x− π

2

)2
, x ∈ [0,π ];

f (x) = − f (−x), x ∈ (0,π).

⎫⎬⎭
Exercise 9.15 As a continuation of Exercise 9.14, verify for each of the cases (a) and (b)

that the Fourier coefficients {a∗j : j = 0,1, . . .} and {b∗j : j = 1,2, . . .} satisfy the property

(9.4.15) in Theorem 9.4.3.

Exercise 9.16 As a further continuation of Exercise 9.14, write down the Fourier series of

the functions f in (a) and (b).

Exercise 9.17 As yet another continuation of Exercise 9.14, apply the Parseval identity

(9.4.11) in Theorem 9.4.2 to each of the functions f in (a) and (b) of Exercise 9.14 to

obtain, respectively, the sum of the infinite series

(a) 1+
1
24 +

1
34 +

1
44 + · · · ; (b) 1+

1
36 +

1
56 +

1
76 + · · · .

Exercise 9.18 In the proof of Theorem 9.5.3, provide the details in the derivations of

(9.5.21) - (9.5.24).

Exercise 9.19 In the proof of Theorem 9.5.3, provide the details in the derivations of

(9.5.26), (9.5.29), (9.5.30).

Exercise 9.20 According to (9.5.8) in Theorem 9.5.2 and (9.5.18) in Theorem 9.5.3, it

holds that
4

π2 ln(n+ 1)< ‖T ∗
n ‖∞ � 1+ ln(2n+ 1), n ∈N.
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Verify these inequalities for n = 1, . . . ,10, by using the computed values of ‖T ∗
n ‖∞ in

Table 9.5.1.

Exercise 9.21 For the case n = 2 of Theorem 9.6.1, use the matrix formulation (9.6.6)

in the proof to obtain the inverse matrix A−1
2 , and write down an explicit formula for the

trigonometric polynomial Q2 of the theorem.

Exercise 9.22 As a continuation of Exercise 9.21, show by means of explicit integration

that (9.6.4) holds for n = 2, that is,∫ π

0
|x−Q2(x)|dx =

π2

6
.

Exercise 9.23 For the function f as in Exercise 9.11, show that

|| f ′||∞ := max
x∈[−π ,π ]

| f ′(x)|= 1
4
,

and then apply this result, together with Jackson’s first theorem, as formulated in (9.6.26)

of Theorem 9.6.2, as well as the Lebesgue inequality (9.5.52) in Theorem 9.5.5, to establish

the error estimate

‖ f −T ∗
n f‖∞ � π

8

[
2+ ln(2n+ 1)

n+ 1

]
, n ∈ N. (∗)

Exercise 9.24 As a continuation of Exercise 9.23, find the smallest value of n for which we

are guaranteed, according to the error estimate (∗) of Exercise 9.23, that

‖ f −T ∗
n f‖∞ <

1
10

.

Exercise 9.25 Prove that the function f ∈C2π , as defined on (−π ,π ] by

f (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xsin 1

x , x ∈ (0,π ];

0, x = 0;

f (−x), x ∈ (−π ,0),

satisfies

f ∈C2π \CLip
2π .

[Hint: To prove that f �∈CLip
2π , show that the definition

x0 := 0 ; xn :=
1
n
, n ∈ N,

yields

f (x0)− f (xn)

x0 − xn
→ ∞, n → ∞.]
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Exercise 9.26 For each of the two functions f ∈C2π of (a) and (b) in Exercise 9.14, show

that

f ∈CLip
2π \C1

2π ,

and give the corresponding Lipschitz constants Kf .

[Hint: Apply the method used in Example 9.6.1.]

Exercise 9.27 As a continuation of Exercise 9.26, and analogously to Exercises 9.23 and

9.24, apply Jackson’s second theorem, as formulated in (9.6.38) of Theorem 9.6.4, together

with the Lebesgue inequality (9.5.52) in Theorem 9.5.5, to find the smallest value of n for

which we are guaranteed that

‖ f −T ∗
n f‖∞ <

1
10

,

for each of the functions f in (a) and (b) of Exercise 9.14.

Exercise 9.28 By applying the Dini-Lipschitz theorem, as formulated by (9.6.46) in Theo-

rem 9.6.5, and using Exercise 9.26, prove the identities

(a) x2 = 1
2 a∗0 +

∞

∑
j=1

a∗j cos( jx)+
∞

∑
j=1

b∗j sin( jx), x ∈ [−π ,π ];

(b) 1− 4
π2 (x−

π
2
)2 =

1
2

a∗0 +
∞

∑
j=1

a∗j cos( jx)+
∞

∑
j=1

b∗j sin( jx), x ∈ [0,π ],

with {a∗j : j = 0,1, . . .} and {b∗j : j = 1,2, . . .} denoting the Fourier coefficients calculated

in Exercise 9.14 for the functions f in, respectively, (a) and (b) of Exercise 9.14.

Exercise 9.29 Apply the identity in Exercise 9.28(a) to obtain the sum of each of the fol-

lowing two infinite series:

(i) 1+
1
22 +

1
32 +

1
42 + · · · ; (ii) 1− 1

22 +
1
32 − 1

42 + · · · .
Exercise 9.30 Apply the identity in Exercise 9.28(b) to obtain the sum of the infinite series

1− 1
33 +

1
53 − 1

73 + · · · .



Chapter 10

Spline Approximation

The main focus in the previous chapters has been approximation of functions by alge-

braic (or trigonometric) polynomials, while achieving arbitrarily desirable approximation

accuracy by increasing the polynomial degrees, at the expense of increasing computational

complexity and undesirable features, such as increase in oscillation of the polynomial ap-

proximant. To avoid the increase of polynomial degrees, this chapter is devoted to the study

of approximation by piecewise polynomials with fixed degrees, while achieving arbitrarily

desirable approximation accuracy by allowing the decrease in spacing of the break-points

of the polynomial pieces. To meet the need of smooth piecewise polynomial approximants

for the representation of functions f ∈ C[a,b], certain smoothing conditions are imposed

on the adjacent polynomial pieces. The resulting basis functions are called B-splines and

the breakpoints of the polynomial pieces that constitute the B-splines are called knots.

10.1 Spline spaces

For integers m � 0 and r � 1, and any sequence {τ1, . . . ,τr} ⊂ R satisfying

τ1 < τ2 < · · ·< τr, (10.1.1)

the spline space σm(τ1, . . . ,τr) is defined as the linear space of all piecewise polynomials S

such that, for some polynomial sequence

{P0, . . . ,Pr} ⊂ πm, (10.1.2)

the function S : R→ R is given by

S(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P0(x) , x ∈ (−∞,τ1);

Pj(x) , x ∈ [τ j ,τ j+1), j = 1, . . . ,r− 1;

Pr(x) , x ∈ [τr,∞),

(10.1.3)

289
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and with S satisfying the continuity condition

S ∈Cm−1(R), if m ∈N. (10.1.4)

The points {τ1, . . . ,τr} are called the knots of the spline space σm(τ1, . . . ,τr), and a piece-

wise polynomial S ∈ σm(τ1, . . . ,τr) is called a spline. Observe that the inclusion

πm ⊂ σm(τ1, . . . ,τr) (10.1.5)

is satisfied, since, if P ∈ πm, we may choose, in (10.1.2),

Pj = P, j = 0, . . . ,r, (10.1.6)

according to which (10.1.3) yields S = P, so that (10.1.4) is also satisfied, and thus P ∈
σm(τ1, . . . ,τr).

To motivate the choice (10.1.4) for the continuity degree of splines in σm(τ1, . . . ,τr), sup-

pose σ̃m(τ1, . . . ,τr) is the linear space of piecewise polynomials as in (10.1.2), (10.1.3), but

with the continuity condition (10.1.4) replaced by

S ∈Cm(R). (10.1.7)

Let S ∈ σ̃m(τ1, . . . ,τr). For any fixed j ∈ {1, . . . ,r}, it then follows from (10.1.3) and

(10.1.7) that

P(k)
j−1(τ j) = P(k)

j (τ j), k = 0, . . . ,m, (10.1.8)

according to which the polynomial

P̃j := Pj −Pj−1 ∈ πm (10.1.9)

satisfies

P̃(k)
j (τ j) = 0, k = 0, . . . ,m. (10.1.10)

Now recall the Taylor expansion polynomial identity

P(x) =
m

∑
k=0

P(k)(c)
k!

(x− c)k, x ∈ R, P ∈ πm, (10.1.11)

for any c ∈ R, as follows immediately from (9.3.11). By applying the identity (10.1.11),

with the choice c= τ j , to the polynomial P̃j in (10.1.9), and using (10.1.10), we deduce that

P̃j is the zero polynomial, and it follows from (10.1.9) that (10.1.6) is satisfied for some

polynomial P ∈ πm, that is, S ∈ πm. Hence we have shown that σ̃m(τ1, . . . ,τr) ⊂ πm, and

since also, analogously to (10.1.5), we have πm ⊂ σ̃m(τ1, . . . ,τr), it follows that

σ̃m(τ1, . . . ,τr) = πm. (10.1.12)
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By recalling also the continuity requirement (10.1.7) for σ̃m(τ1, . . . ,τr), it follows from

(10.1.12) that (10.1.4) is the optimal continuity condition for which the corresponding lin-

ear space of piecewise polynomials S as in (10.1.3), (10.1.2) have the potential to provide

an extension of πm, in the sense that (10.1.5) is a proper inclusion.

For any non-negative integer m, we define the truncated power

xm
+ :=

⎧⎨⎩ xm , x � 0;

0 , x < 0,
(10.1.13)

where 00 := 1. It follows from (10.1.13) (see Exercise 10.1) that

(·)m
+ ∈Cm−1(R), m ∈ N. (10.1.14)

For any spline space σm(τ1, . . . ,τr), we note from (10.1.13) that

(x− τ j)
m
+ =

⎧⎨⎩0, x < τ j ,

(x− τ j)
m, x � τ j ,

⎫⎬⎭ j = 1, . . .r, (10.1.15)

from which, together with (10.1.14), we deduce that

(·− τ j)
m
+ ∈ σm(τ1, . . . ,τr), j = 1, . . . ,r. (10.1.16)

Also, (10.1.15) shows that

(·− τ j)
m
+ �∈ πm, j = 1, . . . ,r, (10.1.17)

and it follows that πm is indeed a proper subspace of σm(τ1, . . . ,τr).

The result (10.1.16) enables us to extend the standard basis {1,x, . . . ,xm} of πm to obtain a

basis for the spline space σm(τ1, . . . ,τr), as follows.

Theorem 10.1.1. The spline space σm(τ1, . . . ,τr) is finite-dimensional, with dimension

dim σm(τ1, . . . ,τr) = m+ 1+ r, (10.1.18)

and the set

X := {1,x, . . . ,xm,(x− τ1)
m
+,(x− τ2)

m
+, . . . ,(x− τr)

m
+} (10.1.19)

is a basis for σm(τ1, . . . ,τr).

Proof. Since, according to (10.1.5) and (10.1.16), the set X in (10.1.19) satisfies X ⊂
σm(τ1, . . . ,τr), with X containing precisely m+ 1+ r elements, our result will be proved if

we can show that

σm(τ1, . . . ,τr) = span X , (10.1.20)
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and

X is a linearly independent set. (10.1.21)

For S ∈ span X , it follows from (10.1.19), (10.1.5) and (10.1.16) that S ∈ σm(τ1, . . . ,τr),

and thus

span X ⊂ σm(τ1, . . . ,τr). (10.1.22)

Next, suppose S∈σm(τ1, . . . ,τr), and denote by {P0, . . . ,Pr} the polynomial sequence in πm

for which (10.1.3) is satisfied. Let j ∈ {1, . . . ,r} be fixed. Since S satisfies the continuity

condition (10.1.4), it follows from (10.1.3) that

P(k)
j−1(τ j) = P(k)

j (τ j), k = 0, . . . ,m− 1, (10.1.23)

and thus the polynomial

P̃j := Pj −Pj−1 ∈ πm (10.1.24)

satisfies

P̃(k)
j (τ j) = 0, k = 0, . . . ,m− 1. (10.1.25)

Moreover, since P̃j ∈ πm, we may apply the Taylor expansion polynomial identity (10.1.11),

with c = τ j, together with (10.1.25), to obtain

P̃j(x) = d j(x− τ j)
m
+, x ∈ R, (10.1.26)

where

d j :=
P̃(m)(τ j)

m!
. (10.1.27)

Note from (10.1.24) and (10.1.26) that

Pj(x) = Pj−1(x)+ d j(x− τ j)
m
+, x ∈ R, j = 1, . . . ,r. (10.1.28)

We claim that (10.1.28) implies the formula

S(x) = P0(x)+
r

∑
j=1

d j(x− τ j)
m
+, x ∈ R. (10.1.29)

To prove (10.1.29), we first note from the first lines of (10.1.3) and (10.1.15) that (10.1.29)

holds for x ∈ (−∞,τ1). Next, for x ∈ [τ1,τ2), it follows from the second line of (10.1.3),

together with (10.1.28), and the second line of (10.1.15), that

S(x) = P1(x) = P0(x)+ d1(x− τ1)
m, (10.1.30)
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which, according to (10.1.15), agrees with (10.1.29). Similarly, for x ∈ [τ2,τ3), we get

S(x) = P2(x) = P1(x)+ d2(x− τ2)
m = P0(x)+

2

∑
j=1

d j(x− τ j)
m,

from (10.1.30), and again yielding (10.1.29). By repeating this argument for the succes-

sive intervals [τ3,τ4), . . . , [τr−1,τr), [τr ,∞), the formula (10.1.29) is proved. Since, more-

over, P0 ∈ πm = span{1,x, . . . ,xm}, it follows from (10.1.29) and (10.1.19) that S ∈ span X .

Hence we have shown that σm(τ1, . . . ,τr) ⊂ span X , which, together with (10.1.22), then

proves (10.1.20).

To prove (10.1.21), suppose the coefficient sequence {c0, . . . ,cm,d1, . . . ,dr} ⊂ R satisfies
m

∑
j=0

c jx j +
r

∑
j=1

d j(x− τ j)
m
+ = 0, x ∈ R. (10.1.31)

It follows from (10.1.31) and the first line of (10.1.15) that
m

∑
j=0

c jx j = 0, x ∈ (−∞,τ1),

and thus

c j = 0, j = 0, . . . ,m, (10.1.32)

which, together with (10.1.31), gives
r

∑
j=1

d j(x− τ j)
m
+ = 0, x ∈R. (10.1.33)

By using (10.1.15), we deduce from (10.1.33) that

d1(x− τ1)
m = 0, x ∈ [τ1,τ2),

and thus d1 = 0, which, together with (10.1.33), implies
r

∑
j=2

d j(x− τ j)
m
+ = 0, x ∈R. (10.1.34)

By repeating the same argument for the successive intervals [τ2,τ3), . . . , [τr−1,τr), [τr ,∞),

we obtain d2 = · · ·= dr = 0, and thus

d1 = · · ·= dr = 0. (10.1.35)

According to (10.1.32) and (10.1.35), we have now proved the desired linear independence

result (10.1.21). �
In Section 10.2 we shall construct a spline sequence that provides a more efficient basis for

σm(τ1, . . . ,τr) than the set X in (10.1.19).

We shall rely on two further properties of spline spaces, as formulated in the following two

theorems.

Theorem 10.1.2. Suppose S∈σm(τ1, . . . ,τr), where m� 2. Then the derivatives of S satisfy

S(k) ∈ σm−k(τ1, . . . ,τr), k = 1, . . . ,m− 1. (10.1.36)
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Proof. Let k ∈ {1, . . . ,m− 1} be fixed. Since (10.1.4) is satisfied, we deduce that

S(k) ∈Cm−1−k(R). (10.1.37)

Also, with {P0, . . . ,Pr} ⊂ πm denoting the polynomial sequence satisfying (10.1.3), it fol-

lows from (10.1.3) and (10.1.37) that

S(k)(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P(k)

0 (x) , x ∈ (−∞,τ1);

P(k)
j (x) , x ∈ [τ j,τ j+1), j = 1, . . . ,r− 1;

P(k)
r (x) , x ∈ [τr,∞).

(10.1.38)

Moreover, (10.1.2) implies

{P(k)
0 , . . . ,P(k)

r } ⊂ πm−k. (10.1.39)

The desired result (10.1.36) is now an immediate consequence of (10.1.39), (10.1.38) and

(10.1.37). �
Our next result shows that, if knots are removed from a spline space σm(τ1, . . . ,τr), then

the new spline space thus obtained is a subspace of σm(τ1, . . . ,τr).

Theorem 10.1.3. For any integers r and ρ such that r � 2 and 1 � ρ � r− 1, suppose the

integer set { j1, . . . , jρ} satisfies

j1 < j2 < · · ·< jρ (10.1.40)

and

{ j1, . . . , jρ} ⊂ {1, . . . ,r}. (10.1.41)

Then

σm(τ j1 , . . . ,τ jρ )⊂ σm(τ1, . . . ,τr). (10.1.42)

Proof. Let S ∈ σm(τ j1 , . . . ,τ jρ ). As in (10.1.2), (10.1.3), it then holds, for some polynomial

sequence {P̃0, . . . , P̃ρ} ⊂ πm, that

S(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P̃0(x), x ∈ (−∞,τ j1);

P̃�(x), x ∈ [τ j� ,τ j�+1), �= 1, . . . ,ρ − 1;

P̃ρ(x), x ∈ [τ jρ ,∞).

(10.1.43)

It then follows from (10.1.40), (10.1.41) and (10.1.43) that the polynomial sequence

{P0, . . . ,Pr} ⊂ πm defined by

Pj :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P̃0, j = 0, . . . , j1 − 1;

P̃1, j = j�, . . . , j�+1 − 1, �= 1, . . . ,ρ − 1;

P̃ρ , j = jρ , . . . ,r,

(10.1.44)

satisfies (10.1.3), from which we then deduce that S ∈ σm(τ1, . . . ,τr), and thereby complet-

ing our proof of the inclusion (10.1.42). �
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10.2 B-splines

If a function f : R→ R satisfies

f (x) = 0, x ∈ R\ [α,β ], (10.2.1)

for some bounded interval [α,β ], we say that f is a finitely supported function.

For any spline space σm(τ1, . . . ,τr), we define the subspace

σm,0(τ1, . . . ,τr) := {S ∈ σm(τ1, . . . ,τr) : S is finitely supported}. (10.2.2)

The following result then holds.

Theorem 10.2.1. The spline subspace σm,0(τ1, . . . ,τr), as defined by (10.2.2), satisfies:

(a) If S ∈ σm,0(τ1, . . . ,τr), then

(i)

S(x) = 0, x ∈ R\ [τ1,τr); (10.2.3)

(ii)

S ∈ span{(·− τ1)
m
+, . . . ,(·− τr)

m
+}. (10.2.4)

(b) The subspace σm,0(τ1, . . . ,τr) is non-trivial, that is

σm,0(τ1, . . . ,τr) �= {0}, (10.2.5)

if and only if

r � m+ 2. (10.2.6)

(c) For r = m+ 2, it holds that

S ∈ σm,0(τ1, . . . ,τm+2) (10.2.7)

if and only if

S(x) = c
m+2

∑
j=1

⎡⎢⎢⎢⎣ 1
m+2
∏

j �=k=1
(τk − τ j)

⎤⎥⎥⎥⎦ (x− τ j)
m
+, x ∈ R, (10.2.8)

with c denoting an arbitrary real constant.
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Proof. (a) Let S ∈ σm,0(τ1, . . . ,τr).

(i) According to the definition (10.2.2), the polynomials P0 and Pr in the formulation

(10.1.3) must both be the zero polynomial, which proves (10.2.3).

(ii) Since σm,0(τ1, . . . ,τr) is a subspace of σm(τ1, . . . ,τr), it follows from Theorem 10.1.1

that S=P+ S̃, where P∈ πm and S̃∈ span {(·−τ1)
m
+, . . . ,(·−τr)

m
+}, and thus, from (10.2.3)

and the first line of (10.1.15),

0 = S(x) = P(x), x ∈ (−∞,τ1),

according to which P is the zero polynomial, and therefore S = S̃, which proves (10.2.4).

(b) Let S ∈ σm,0(τ1, . . . ,τr). It follows from (10.2.4) that

S(x) =
r

∑
j=1

d j(x− τ j)
m
+, x ∈ R, (10.2.9)

for some coefficient sequence {d1, . . . ,dr} ⊂ R. Hence, from (10.2.9), together with

(10.2.3), as well as the second line of (10.1.15), we obtain
r

∑
j=1

d j(x− τ j)
m = 0, x ∈ [τr,∞),

or equivalently,
r

∑
j=1

d j(x− τ j)
m = 0, x ∈ R. (10.2.10)

Since, for any x ∈ R, we have

r

∑
j=1

d j(x− τ j)
m =

r

∑
j=1

d j

m

∑
k=0

(
m
k

)
xm−k(−1)kτk

j =
m

∑
k=0

(−1)k
(

m
k

)[ r

∑
j=1

τk
j d j

]
xm−k,

it follows that (10.2.10) is equivalent to

m

∑
k=0

(−1)k
(

m
k

)[ r

∑
j=1

τk
j d j

]
xm−k = 0, x ∈ R,

which holds if and only if
r

∑
j=1

τk
j d j = 0, k = 0, . . . ,m. (10.2.11)

Hence we have shown that S ∈ σm,0(τ1, . . . ,τr) if and only if S is given by the formulation

(10.2.9), where {d1, . . . ,dr} is a real coefficient sequence satisfying the homogeneous linear

system (10.2.11).

Now observe that (10.2.11) has the matrix-vector formulation

Ad = 0, (10.2.12)
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where A is the (m+ 1)× r matrix

A :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1

τ1 τ2 · · · τr

τ2
1 τ2

2 · · · τ2
r

...
...

...

τm
1 τm

2 · · · τm
r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (10.2.13)

and d ∈ Rr is the (column) vector

d := [d1, . . . ,dr]
T . (10.2.14)

Suppose first r � m+ 1. Then A contains the square r× r submatrix

Ã :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1

τ1 τ2 · · · τr

τ2
1 τ2

2 · · · τ2
r

...
...

...

τr−1
1 τr−1

2 · · · τr−1
r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(where Ã = A if r = m+ 1), with transpose

ÃT =

⎡⎢⎢⎢⎢⎢⎢⎣
1 τ1 τ2

1 · · · τr−1
1

1 τ2 τ2
2 · · · τr−1

2

...
...

...
...

1 τr τ2
r · · · τr−1

r

⎤⎥⎥⎥⎥⎥⎥⎦ ,

which is a Vandermonde matrix as in (1.1.7), so that, since (10.1.1) holds, we may apply

Theorem 1.1.2 to deduce that ÃT is invertible, and hence Ã is invertible. Since A is a matrix

with number of rows at least equal to its number of columns, and A contains an invertible

submatrix, we deduce that a vector d ∈Rr satisfying (10.2.11) must be the zero vector, and

thus, from (10.2.9), if S ∈ σm,0(τ1, . . . ,τr), with r � m+ 1, then S is the zero function, and

thereby completing our proof of the statement that (10.2.5) implies (10.2.6).

Conversely, if the inequality (10.2.6) is satisfied, then the homogeneous linear system

(10.2.11) has more unknowns than equations, and it follows from a standard result in linear

algebra that there exists a non-trivial solution {d1, . . . ,dr} ∈ Rr of (10.2.10), which, to-

gether with (10.2.9), then yields a spline S ∈ σm,0(τ1, . . . ,τr) which is not the zero function,

and thereby completing our proof of the fact that (10.2.6) implies (10.2.5).
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(c) To prove the equivalence of (10.2.7) and (10.2.8), we consider the case r = m+2 of the

matrix A in (10.2.13), to obtain its transpose

AT =

⎡⎢⎢⎢⎢⎢⎢⎣
1 τ1 τ2

1 · · · τm
1

1 τ2 τ2
2 · · · τm

2

...
...

...
...

1 τm+2 τ2
m+2 · · · τm

m+2

⎤⎥⎥⎥⎥⎥⎥⎦ , (10.2.15)

which contains as submatrix the invertible (m+ 1)× (m+ 1) Vandermonde matrix

A∗ :=

⎡⎢⎢⎢⎢⎢⎢⎣
1 τ1 τ2

1 · · · τm
1

1 τ2 τ2
2 · · · τm

2

...
...

...
...

1 τm+1 τ2
m+1 · · · τm

m+1

⎤⎥⎥⎥⎥⎥⎥⎦ . (10.2.16)

Since the matrix AT in (10.2.15) has m+ 1 columns, its rank satisfies

rank(AT )� m+ 1. (10.2.17)

Moreover, since A∗ is invertible, we know from standard linear algebra theory that

dim(row space of A∗) = m+ 1,

and thus, since the rows of A∗ are precisely the first m+ 1 rows of AT , we have

rank(AT ) := dim(row space ofAT )� m+ 1,

which, together with (10.2.17), yields rank(AT ) = m+ 1, and thus, since also rank(AT ) =

rank(A), we deduce that

rank(A) = m+ 1. (10.2.18)

By applying the dimension theorem for matrices, we deduce from (10.2.18) that

dim(nullspace ofA) = (number of columns ofA)− rank(A)

= (m+ 2)− (m+ 1)= 1, (10.2.19)

according to which, together with the case r = m+ 2 of (10.2.12), (10.2.11) and (10.2.9),

we deduce that (10.2.7) is satisfied by a spline S if and only if

S(x) = c
m+2

∑
j=1

d j(x− τ j)
m
+, x ∈ R, (10.2.20)
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with c denoting an arbitrary real constant, and where {d1, . . . ,dm+2} is any non-trivial so-

lution of the (m+ 1)× (m+ 2) homogeneous linear system
m+2

∑
j=1

τk
j d j = 0, k = 0, . . . ,m. (10.2.21)

To obtain an explicit non-trivial solution of (10.2.21), we first use the polynomial iden-

tity (1.2.7) in Theorem 1.2.3, together with the definition (1.2.1) of Lagrange fundamental

polynomials, to deduce that

(−1)m+1
m+2

∑
j=1

τk
j

⎡⎢⎢⎢⎢⎣
m+2

∏
j �=�=1

(x− τ�)

m+2

∏
j �=�=1

(τ�− τ j)

⎤⎥⎥⎥⎥⎦= xk, x ∈ R, k = 0, . . . ,m+ 1, (10.2.22)

according to which

(−1)m+1

⎧⎪⎨⎪⎩
m+2

∑
j=1

τk
j

⎡⎢⎣ 1
m+2

∏
j �=�=1

(τ�− τ j)

⎤⎥⎦
⎫⎪⎬⎪⎭xm+1 +P(x) = xk, x ∈ R, k = 0, . . . ,m+ 1,

(10.2.23)

for some polynomial P ∈ πm. It follows from (10.2.23) that⎧⎪⎨⎪⎩
m+2

∑
j=1

τk
j

⎡⎢⎣ 1
m+2

∏
j �=�=1

(τ�− τ j)

⎤⎥⎦
⎫⎪⎬⎪⎭xm+1 = P̃(x), x ∈R, k = 0, . . . ,m, (10.2.24)

for some polynomial P̃ ∈ πm, from which we deduce that

m+2

∑
j=1

τk
j

⎡⎢⎣ 1
m+2

∏
j �=�=1

(τ�− τ j)

⎤⎥⎦= 0, k = 0, . . . ,m. (10.2.25)

According to (10.2.25), a non-trivial solution of (10.2.21) is given by

d j :=
1

m+2

∏
j �=�=1

(τ�− τ j)

, j = 1, . . . ,m+ 2,

which, together with (10.2.20), then completes our proof of the statement that (10.2.7) and

(10.2.8) are equivalent. �
For a spline space σm(τ1, . . . ,τr) and a bounded interval [a,b] satisfying the condition

[τ1,τr]⊂ (a,b), (10.2.26)

we write σm([a,b];τ1, . . . ,τr) for the linear space of splines in σm(τ1, . . . ,τr) with domains

restricted to [a,b]. Since (10.2.26) is satisfied, we see from (10.1.3) that Theorem 10.1.1

also holds with σm(τ1, . . . ,τr) replaced by σm([a,b];τ1, . . . ,τr), that is:

dim σm([a,b];τ1, . . . ,τr) = m+ 1+ r, (10.2.27)
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and

the set X in (10.1.19) is a basis for σm([a,b];τ1, . . . ,τr). (10.2.28)

Moreover, (10.1.4) implies that

S ∈Cm−1[a,b] for S ∈ σm([a,b];τ1, . . . ,τr), m ∈ N. (10.2.29)

We proceed to show how Theorem 10.2.1 can be used to construct a basis for

σm([a,b];τ1, . . . ,τr) that is more efficient than the one in (10.2.28). To this end, for in-

tegers μ and ν satisfying

μ �−m; ν � r+m+ 1, (10.2.30)

we let {τμ , . . . ,τν} be any extension of the knot sequence {τ1, . . . ,τr}, such that

τμ < · · ·< τ0 := a < τ1 < · · ·< τr < b =: τr+1 < · · ·< τν , (10.2.31)

where we have kept also in mind the conditions (10.1.1) and (10.2.26). The functions

Nm, j(x) := (τ j+m+1 − τ j)
j+m+1

∑
k= j

⎡⎢⎢⎢⎣ 1
j+m+1

∏
k �=�= j

(τ�− τk)

⎤⎥⎥⎥⎦(x− τk)
m
+,

j = μ , . . . ,ν −m− 1, (10.2.32)

as based on the choice c = (−1)m+1(τ j+m+1 − τ j) in (10.2.8) of Theorem 10.2.1, are then

called the B-splines of degree m with respect to the knot sequence {τμ , . . . ,τν}, and for

which we proceed to prove the following result.

Theorem 10.2.2. The B-splines {Nm, j : j = μ , . . . ,ν −m− 1}, as defined by (10.2.32) in

terms of an extended knot sequence {τμ , . . . ,τν} as in (10.2.31), (10.2.30), and with [a,b]

denoting any bounded interval, satisfy:

(a)

Nm, j ∈ σm,0(τ j , . . . ,τ j+m+1),
with

Nm, j(x) = 0, x ∈ R\ [τ j,τ j+m+1),

⎫⎪⎬⎪⎭ j = μ , . . . ,ν −m− 1; (10.2.33)

(b)

{Nm, j : j = μ , . . . ,ν −m− 1}⊂ σm,0(τμ , . . . ,τν ); (10.2.34)

(c)

Nm, j|
[a,b]

∈ σm([a,b];τ1, . . . ,τr), j =−m, . . . ,r; (10.2.35)

(d) the set {
Nm, j|

[a,b]
: j =−m, . . . ,r

}
(10.2.36)

is a basis for σm([a,b];τ1, . . . ,τr).



Spline Approximation 301

Proof. (a) The result (10.2.33) follows from (10.2.32), together with the equivalence of

(10.2.7) and (10.2.8) in Theorem 10.2.1(c), as well as (10.2.3) in Theorem 10.2.1(a)(i).

(b) The inclusion (10.2.34) is a direct consequence of the first line of (10.2.33), together

with (10.2.31) and Theorem 10.1.3.

(c) For any j ∈ {−m, . . . ,r}, it follows from (10.2.33) and (10.2.31) that the restriction to

[a,b] of the B-spline Nm, j satisfies (10.2.35).

(d) Since (10.2.35) and (10.2.27) hold, and since the set (10.2.36) contains precisely m+

1+ r elements, it follows from a standard result in linear algebra that it will suffice to prove

that the set (10.2.36) is linearly independent on [a,b]. Suppose therefore that the sequence

{c−m, . . . ,cr} ⊂ R satisfies the condition
r

∑
j=−m

c jNm, j(x) = 0, x ∈ [a,b]. (10.2.37)

Our proof will be complete if we can show that

c−m = · · ·= cr = 0. (10.2.38)

To this end, we define the function

S(x) :=
r

∑
j=−m

c jNm, j(x), x ∈ R, (10.2.39)

for which it follows from (10.2.34), with μ =−m and ν = r+m+ 1, that

S ∈ σm,0(τ−m, . . . ,τr+m+1). (10.2.40)

Morever, by applying the second line of (10.2.33), as well as (10.2.37), we deduce from

(10.2.39), together with the fact that (10.2.31) gives a = τ0, that

S(x) = 0, x ∈ R\ [τ−m,τ0). (10.2.41)

Since (10.2.40) holds, it follows from (10.2.4) in Theorem 10.2.1(a)(ii) that

S(x) =
r+m+1

∑
j=−m

d j(x− τ j)
m
+, x ∈R, (10.2.42)

for some coefficient sequence {d−m, . . . ,dr+m+1} ⊂ R. Now observe from (10.2.41),

(10.2.42) and (10.1.15) that

0 = S(x) =
0

∑
j=−m

d j(x− τ j)
m, x ∈ [τ0,τ1),

and thus
0

∑
j=−m

d j(x− τ j)
m = 0, x ∈R,
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which, together with (10.2.42) and (10.1.15), yields

S(x) =
r+m+1

∑
j=1

d j(x− τ j)
m
+ = 0, x ∈ [τ1,∞). (10.2.43)

It follows from (10.2.43), and (10.1.15), by choosing successively

x ∈ [τ1,τ2), . . . , [τr+m,τr+m+1), [τr+m+1,∞), that

d1 = · · ·= dr+m+1 = 0, (10.2.44)

which can now be substituted into (10.2.42) to yield

S(x) =
0

∑
j=−m

d j(x− τ j)
m
+, x ∈ R. (10.2.45)

By also noting from (10.1.13) and (10.1.14) that, analogously to (10.1.16), it holds that

(·− τ j)
m
+ ∈ σm(τ−m, . . . ,τ0), j =−m, . . . ,0,

we deduce from (10.2.45) and (10.2.41) that

S ∈ σm,0(τ−m, . . . ,τ0). (10.2.46)

Since the space σm,0(τ−m, . . . ,τ0) has precisely m + 1 knots, it follows from (10.2.46),

together with the fact that (10.2.5) implies (10.2.6) in Theorem 10.2.1(b), that S is the zero

function on R, and thus, from (10.2.39),
r

∑
j=−m

c jNm, j(x) = 0, x ∈ [τ−m,τr+1]. (10.2.47)

Suppose (10.2.38) is not satisfied, and denote by λ the smallest integer in the set

{−m, . . . ,r} for which it holds that cλ �= 0, according to which, by using also (10.2.47),

together with the definition (10.2.32), (10.2.31), as well as (10.1.15), we have, for any

x ∈ (τλ ,τλ+1),

0 = cλ Nm,λ (x) = cλ (τλ+m+1 − τλ )
(x− τλ )

m

λ+m+1

∏
�=λ+1

(τ�− τλ )

�= 0,

from (10.2.31), and thereby yielding a contradiction. Hence (10.2.38) is satisfied, and our

proof is complete. �

Example 10.2.1. By setting m = 0 and m = 1 in (10.2.32), and using (10.1.15), we obtain

(see Exercise 10.6) the B-spline formulations

N0, j(x) =

⎧⎨⎩ 1, x ∈ [τ j ,τ j+1),

0, x ∈R\ [τ j,τ j+1),

⎫⎬⎭ j = μ , . . . ,ν − 1; (10.2.48)
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and

N1, j(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x− τ j

τ j+1 − τ j
, x ∈ [τ j,τ j+1),

τ j+2 − x
τ j+2 − τ j+1

, x ∈ [τ j+1,τ j+2),

0 , x ∈ R\ [τ j,τ j+2),

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ j = μ , . . . ,ν − 2, (10.2.49)

from which we also note in particular that

N1, j(τ j+1) = δ j, j = μ , . . . ,ν − 2. (10.2.50)

�

Observe that the B-spline formulation (10.2.32) is in terms of the truncated powers in the

basis (10.1.19) of the spline space σm(τμ , . . . ,τν ). Our statement that the B-spline basis

(10.2.36) is more efficient than the basis (10.1.19) for σm([a,b];τ1, . . . ,τr), is based on the

fact, to be established below, that B-splines can be computed recursively with respect to the

spline degree m.

Our first step in this direction is the following result, which gives a formulation for B-

splines in terms of the divided difference of a truncated power, and which is an immediate

consequence of (10.2.32), (1.3.3) and (1.3.2).

Theorem 10.2.3. For any j ∈ {μ , . . . ,ν−m−1}, the B-spline Nm, j , as defined by (10.2.32),

(10.2.31), satisfies the formulation

Nm, j(x) = (−1)m+1(τ j+m+1 − τ j)
{
(x−·)m

+[τ j, . . . ,τ j+m+1]
}
, x ∈ R, (10.2.51)

that is, for any fixed x ∈ R, Nm, j(x) is given by (−1)m+1(τ j+m+1 − τ j) times the divided

difference (in terms of the t variable), with respect to the points {τ j, . . . ,τ j+m+1}, of the

function (x− t)m
+, t ∈ R.

The recursion formula for B-splines in Theorem 10.2.5 below will be derived from

(10.2.51) in Theorem 10.2.3, together with the following formula for the divided differ-

ence of the product of two functions.

Theorem 10.2.4. For any non-negative integer n, the divided difference of the product of

two functions f and g with respect to any sequence of n+1 distinct points {x0, . . . ,xn} ⊂R

is given by the formula

( f g)[x0, . . . ,xn] =
n

∑
j=0

f [x0, . . . ,x j]g[x j, . . . ,xn]. (10.2.52)
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Proof. First, observe from the first equation in (1.3.4) that (10.2.52) is satisfied for n =

0. Proceeding inductively, we suppose next that (10.2.52) holds for a fixed non-negative

integer n. Now let {x0, . . . ,xn+1} denote any sequence of n+ 2 distinct points in R. Our

inductive proof will be complete if we can show that then

( f g)[x0, . . . ,xn+1] =
n+1

∑
j=0

f [x0, . . . ,x j ]g[x j, . . . ,xn+1]. (10.2.53)

To prove (10.2.53), we first apply the recursion formula (1.3.21) in Theorem 1.3.4 to obtain

( f g)[x0, . . . ,xn+1] =
( f g)[x1, . . . ,xn+1]− ( f g)[x0, . . . ,xn]

xn+1 − x0
. (10.2.54)

Next, we deduce from the inductive hypothesis (10.2.52), together with (1.3.21), that

( f g)[x1, . . . ,xn+1]− ( f g)[x0, . . . ,xn]

=
n+1

∑
j=1

f [x1, . . . ,x j]g[x j, . . . ,xn+1]−
n

∑
j=0

f [x0, . . . ,x j]g[x j, . . . ,xn]

=
n

∑
j=0

f [x1, . . . ,x j+1]g[x j+1, . . . ,xn+1]−
n

∑
j=0

f [x0, . . . ,x j]g[x j, . . . ,xn]

=
n

∑
j=0

{
f [x1, . . . ,x j+1]− f [x0, . . . ,x j]

}
g[x j+1, . . . ,xn+1]

+
n

∑
j=0

f [x0, . . . ,x j]
{

g[x j+1, . . . ,xn+1]− g[x j, . . . ,xn]
}

=
n

∑
j=0

(x j+1 − x0) f [x0, . . . ,x j+1]g[x j+1, . . . ,xn+1]

+
n

∑
j=0

(xn+1 − x j) f [x0, . . . ,x j]g[x j, . . . ,xn+1]

=
n+1

∑
j=0

(x j − x0) f [x0, . . . ,x j]g[x j, . . . ,xn+1]

+
n+1

∑
j=0

(xn+1 − x j) f [x0, . . . ,x j]g[x j, . . . ,xn+1]

= (xn+1 − x0)
n+1

∑
j=0

f [x0, . . . ,x j]g[x j, . . . ,xn+1],

which, together with (10.2.54), yields the desired result (10.2.53). �
By using Theorems 10.2.3 and 10.2.4, as well as the fact that

xm
+ = x

(
xm−1
+

)
, x ∈ R, m ∈N, (10.2.55)
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as is immediately evident from the definition (10.1.13), we can now establish the following

recursion formula satisfied by B-splines.

Theorem 10.2.5. For m ∈ N, the B-spline sequence {Nm, j : j = μ , . . . ,ν −m − 1}, as

defined by (10.2.32), (10.2.31), satisfies, for any x ∈R, the recursion formulation given by

Nm, j(x) =
x− τ j

τ j+m − τ j
Nm−1, j(x)+

τ j+m+1 − x
τ j+m+1 − τ j+1

Nm−1, j+1(x),

j = μ , . . . ,ν −m− 1, (10.2.56)

together with (10.2.48).

Proof. Let j ∈ {μ , . . . ,ν −m− 1} and x ∈ R be fixed. It follows from (10.2.51) in Theo-

rem 10.2.3, as well as (10.2.55), and (10.2.52) in Theorem 10.2.4, that

Nm, j(x) = (−1)m+1(τ j+m+1 − τ j){((x−·)(x−·)m−1
+

)
[τ j, . . . ,τ j+m+1]}

= (−1)m+1(τ j+m+1 − τ j)
j+m+1

∑
k= j

{(x−·)[τ j, . . . ,τk]}{(x−·)m−1
+ [τk, . . . ,τ j+m+1]}.

(10.2.57)

Now observe from (1.3.4) that

(x−·)[τ j] = x− τ j; (10.2.58)

(x−·)[τ j,τ j+1] =
(x− τ j+1)− (x− τ j)

τ j+1 − τ j
=−1, (10.2.59)

whereas, since (x−·) ∈ π1, we deduce from (2.1.10) in Theorem 2.1.2 that

(x−·)[τ j, . . . ,τk] = 0, if k � j+ 2. (10.2.60)

By substituting (10.2.58), (10.2.59) and (10.2.60) into (10.2.57), and using the recursion

formula (1.3.21) in Theorem 1.3.4, we obtain

Nm, j(x) = (−1)m+1(τ j+m+1 − τ j)[(x− τ j){(x−·)m−1
+ [τ j , . . . ,τ j+m+1]}
−(x−·)m−1

+ [τ j+1, . . . ,τ j+m+1]]

= (−1)m+1(τ j+m+1 − τ j)

{
(x− τ j)

(x−·)m−1
+ [τ j+1, . . . ,τ j+m+1]− (x−·)m−1

+ [τ j, . . . ,τ j+m]

τ j+m+1 − τ j

−(x−·)m−1
+ [τ j+1, . . . ,τ j+m+1]

}
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= (−1)m+1(x− τ j)
{
(x−·)m−1

+ [τ j+1, . . . ,τ j+m+1]− (x−·)m−1
+ [τ j, . . . ,τ j+m]

}
+(−1)m(τ j+m+1 − τ j){(x−·)m−1

+ [τ j+1, . . . ,τ j+m+1]}
= (−1)m[(x− τ j){(x−·)m−1

+ [τ j, . . . ,τ j+m]}
+(τ j+m+1 − x){(x−·)m−1

+ [τ j+1, . . . ,τ j+1+m]}]
=

x− τ j

τ j+m − τ j
Nm−1, j(x)+

τ j+m+1 − x
τ j+m+1 − τ j+1

Nm−1, j+1(x),

from (10.2.51) in Theorem 10.2.3, and thereby completing the proof of (10.2.56). �
The formula (10.2.56), together with (10.2.55) and (10.2.48), can be used for the recur-

sive evaluation of the B-spline value Nm, j(x), for any x ∈ (τ j ,τ j+m+1), as illustrated in

Fig.10.2.1.

N0, j(x) N1, j(x) N2, j(x) · · · Nm−1, j(x) Nm, j(x)

N0, j+1(x) N1, j+1(x) N2, j+1(x) · · · Nm−1, j+1(x)

...

N0, j+2(x)
...

N2, j+m−2(x)

... N1, j+m−1(x)

N0, j+m(x)

Fig. 10.2.1 B-spline evaluation based on the recursion formula (10.2.56), together with (10.2.48).

Note from (10.2.48) and (10.2.55) that, for any given x ∈ (τ j ,τ j+m+1), and with k denoting

the (unique) integer in { j, . . . , j+m} such that x ∈ [τk,τk+1), the first column in Fig 10.2.1

satisfies

N0,�(x) = δk−�, �= j, . . . , j+m. (10.2.61)

Example 10.2.2. For m = 3 and {τ0, . . . ,τ4} = {0,1,2,4,5}, we have N3,0 ∈
σ3,0(τ0, . . . ,τ4), and the B-spline value N3,0(3) can be computed recursively by means of

(10.2.56) and (10.2.61), to obtain Table 10.2.1.
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Table 10.2.1 Recursive computation of N3,0(3) in Example 10.2.2.

j N0, j(3) N1, j(3) N2, j(3) N3, j(3)

0 0 0 1
6

25
72

1 0 1
2

2
3

2 1 1
2

3 0

The values in Table 10.2.1 are obtained by the following calculations by means of (10.2.56),

and by using the second line of (10.2.33) in Theorem 10.2.2 whenever applicable:

N1,0(3) = 0;

N1,1(3) =
3− τ1

τ2 − τ1
N0,1(3)+

τ3 − 3
τ3 − τ2

N0,2(3) =
3− 1
2− 1

(0)+
4− 3
4− 2

(1) =
1
2

;

N1,2(3) =
3− τ2

τ3 − τ2
N0,2(3)+

τ4 − 3
τ4 − τ3

N0,3(3) =
3− 2
4− 2

(1)+
5− 3
5− 4

(0) =
1
2

;

N2,0(3) =
3− τ0

τ2 − τ0
N1,0(3)+

τ3 − 3
τ3 − τ1

N1,1(3) =
3− 0
2− 0

(0)+
4− 3
4− 1

(
1
2

)
=

1
6

;

N2,1(3) =
3− τ1

τ3 − τ1
N1,1(3)+

τ4 − 3
τ4 − τ2

N1,2(3) =
3− 1
4− 1

(
1
2

)
+

5− 3
5− 2

(
1
2

)
=

1
3
+

1
3
=

2
3

;

N3,0(3) =
3− τ0

τ3 − τ0
N2,0(3)+

τ4 − 3
τ4 − τ1

N2,1(3) =
3− 0
4− 0

(
1
6

)
+

4− 3
4− 1

(
2
3

)
=

1
8
+

2
9
=

25
72

.

�
The following two further properties of B-splines, both of which will be required later in

this chapter, can now be proved by means of the recursion formula (10.2.56) in Theo-

rem 10.2.5.

Theorem 10.2.6. For any non-negative integer m, the B-spline sequence {Nm, j : j =

−m, . . . ,r}, as obtained from the formulation (10.2.32), (10.2.31), satisfies:

(a) For any j ∈ {−m, . . . ,r}, it holds that

Nm, j(x)> 0, x ∈ (τ j ,τ j+m+1); (10.2.62)

(b)
r

∑
j=−m

Nm, j(x) = 1, x ∈ [a,b]. (10.2.63)
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Proof. (a) Let m denote any non-negative integer. Now observe from (10.2.48), with μ =

−m and ν = r+m+ 1, that

N0, j(x)> 0, x ∈ [τ j ,τ j+1), j =−m, . . . ,r+m, (10.2.64)

which proves (10.2.62) for m = 0.

We proceed to prove inductively that

Nk, j(x)> 0, x ∈ (τ j,τ j+k+1), j =−m, . . . ,r+m− k, (10.2.65)

in which we may then set k = m to deduce the desired result (10.2.62).

After first observing from (10.2.64) that (10.2.65) is satisfied for m = 0, we suppose next

that (10.2.65) holds for a fixed non-negative integer k. It follows from the recursion formula

(10.2.56) in Theorem 10.2.5 that

Nk+1, j(x) =
x− τ j

τ j+k+1 − τ j
Nk, j(x)+

τ j+k+2 − x
τ j+k+2 − τ j+1

Nk, j+1(x), x ∈ (τ j,τ j+k+2),

j =−m, . . . ,r+m− k− 1. (10.2.66)

After also noting from the second line of (10.2.33) in Theorem 10.2.2(a) that

Nk, j(x) = 0, x ∈ [τ j+k+1,τ j+k+2),

Nk, j+1(x) = 0, x ∈ (τ j,τ j+1),

⎫⎬⎭ j =−m, . . . ,r+m− k− 1,

we deduce from (10.2.66) and (10.2.65) that

Nk+1, j(x)> 0, x ∈ (τ j ,τ j+k+2), j =−m, . . . ,r+m− k− 1,

which then completes our inductive proof of (10.2.65).

(b) Our proof is once again by induction on m. First, observe from (10.2.48) that (10.2.63)

is satisfied for m = 0. Next, suppose that (10.2.63) holds for a fixed non-negative integer

m, and consider a knot sequence as in (10.2.31), with μ = −m− 1 and ν = r +m+ 2.

It follows from (10.2.56), together with the second line of (10.2.33), and the inductive

hypothesis (10.2.63), that, for any x ∈ [a,b] = [τ0,τr+1],
r

∑
j=−m−1

Nm+1, j(x) =
r

∑
j=−m−1

x− τ j

τ j+m+1 − τ j
Nm, j(x)+

r

∑
j=−m−1

τ j+m+2 − x
τ j+m+2 − τ j+1

Nm, j+1(x)

=
r

∑
j=−m−1

x− τ j

τ j+m+1 − τ j
Nm, j(x)+

r+1

∑
j=−m

τ j+m+1 − x
τ j+m+1 − τ j

Nm, j(x)

=
r

∑
j=−m

x− τ j

τ j+m+1 − τ j
Nm, j(x)+

r

∑
j=−m

τ j+m+1 − x
τ j+m+1 − τ j

Nm, j(x)
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=
r

∑
j=−m

(x− τ j)+ (τ j+m+1 − x)
τ j+m+1 − τ j

Nm, j(x) =
r

∑
j=−m

Nm, j(x) = 1,

which completes our inductive proof of (10.2.63). �
Finally in this section, we consider the important special case where the knots {τμ , . . . ,τν}
in (10.2.31), with [a,b] = [0,r+ 1], are chosen as the integers, that is,

τ j = j, j = μ , . . . ,ν, (10.2.67)

for any integers μ and ν satisfying (10.2.30), and for which we proceed to prove the fol-

lowing result.

Theorem 10.2.7. For any j ∈ {μ , . . . ,ν−m−1}, where μ and ν are any integers satisfying

(10.2.30), let Nm, j denote the B-spline defined by (10.2.32), (10.2.31), where [a,b] = [0,r+

1], and with integer knot sequence as in (10.2.67). Then

Nm, j(x) = Nm(x− j), x ∈ R, (10.2.68)

with

Nm(x) := Nm,0(x) =
1

m!

m+1

∑
k=0

(−1)k
(

m+ 1
k

)
(x− k)m

+, x ∈ R, (10.2.69)

and where the spline Nm satisfies:

(a)

with
Nm ∈ σm,0(0, . . . ,m+ 1),

Nm(x) = 0, x ∈ R\ [0,m+ 1);

⎫⎬⎭ (10.2.70)

(b)

Nm(x)> 0, x ∈ (0,m+ 1); (10.2.71)

(c)
r

∑
j=−m

Nm(x− j) = 1, x ∈ [a,b]; (10.2.72)

(d) the recursive formulation

N0(x) =

⎧⎨⎩1, x ∈ [0,1);

0, x ∈R\ [0,1);
Nm(x) =

x
m

Nm−1(x)+
m+ 1− x

m
Nm−1(x− 1), x ∈ R, m = 1,2, . . . ;

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (10.2.73)
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(e) for m ∈ N, the symmetry condition

or equivalently,
Nm(m+ 1− x) = Nm(x), x ∈ R,

Nm

(
m+ 1

2
− x
)

= Nm

(
m+ 1

2
+ x
)
, x ∈ R;

⎫⎪⎬⎪⎭ (10.2.74)

(f)

Nm(k) =
1

m!

k−1

∑
j=0

(−1) j
(

m+ 1
j

)
(k− j)m, k = 1, . . . ,m. (10.2.75)

Proof. Let j ∈ {μ , . . . ,ν −m−1} be fixed. By using (10.2.51) in Theorem 10.2.3, together

with (10.2.67), as well as (3.4.2) in Theorem 3.4.1, we obtain, for any x ∈ R,

Nm, j(x) = (−1)m+1(m+ 1){(x−·)m
+[ j, . . . , j+m+ 1]}

= (−1)m+1(m+ 1)

{
(−1)m+1

(m+ 1)!

m+1

∑
k=0

(−1)k
(

m+ 1
k

)
(x− ( j+ k))m

+

}

=
1

m!

m+1

∑
k=0

(−1)k
(

m+ 1
k

)
((x− j)− k)

m
+,

which proves (10.2.68), (10.2.69).

The properties (10.2.70), (10.2.71) and (10.2.72) of Nm are immediate consequences of

the definition Nm := Nm,0 in (10.2.69), together with, respectively, (10.2.33) in The-

orem 10.2.2(a), (10.2.62) in Theorem 10.2.6(a), and (10.2.63) in Theorem 10.2.6(b),

whereas the recursive formulation (10.2.73) follows likewise from (10.2.48), as well as

(10.2.56) in Theorem 10.2.5, together with the case j = 1 of (10.2.68).

To prove the symmetry condition (10.2.74) for m∈N, we fix x ∈ [0,m+1), and let � denote

the (unique) integer in the integer set {0, . . . ,m} for which x ∈ [�,�+ 1). It then follows

from the formula in (10.2.69), together with (10.1.15), that

Nm(x) =
1

m!

�

∑
k=0

(−1)k
(

m+ 1
k

)
(x− k)m, (10.2.76)

and similarly, since m+1− x∈ (m− �,m− �+1], and using also the fact that Nm(0) = 0 if

m ∈ N, as can be seen from (10.2.69) and (10.1.15), we have

Nm(m+ 1− x) =
1

m!

m−�

∑
k=0

(−1)k
(

m+ 1
k

)
(m+ 1− x− k)m

=
1

m!

m−�

∑
k=0

(−1)k+m
(

m+ 1
k

)
[x− (m+ 1− k)]m

=
1

m!

m+1

∑
k=�+1

(−1)k+1
(

m+ 1
m+ 1− k

)
(x− k)m
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= − 1
m!

m+1

∑
k=�+1

(−1)k
(

m+ 1
k

)
(x− k)m,

which, together with (10.2.76), yields

Nm(x)−Nm(m+ 1− x) =
1

m!

m+1

∑
k=0

(−1)k
(

m+ 1
k

)
(x− k)m. (10.2.77)

Now observe from the second line of (10.2.70), together with (10.2.69), as well as

(10.1.15), that

0 = Nm(x) =
1

m!

m+1

∑
k=0

(−1)k
(

m+ 1
k

)
(x− k)m, x � m+ 1,

and thus also
1

m!

m+1

∑
k=0

(−1)k
(

m+ 1
k

)
(x− k)m = 0, x ∈ R. (10.2.78)

The symmetry result in the first line of (10.2.74) now follows from (10.2.77) and (10.2.78)

for x ∈ [0,m + 1), whereas it follows from the second line in (10.2.70), together with

Nm(0) = 0, for x ∈ R\ [0,m+ 1).

Finally, observe that (10.2.75) is an immediate consequence of the formula in (10.2.69),

together with (10.1.15). �
The spline Nm defined by (10.2.69) in Theorem 10.2.7 is called the cardinal B-spline of

degree m.

Example 10.2.3. By setting m = 1,m = 2 and m = 3 in the formula (10.2.69), and using

(10.1.15), we obtain (see Exercise 10.10) the explicit cardinal B-spline formulations

N1(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x, x ∈ [0,1);

2− x, x ∈ [1,2);

0, x ∈R\ [0,2);

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (10.2.79)

N2(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
2 x2, x ∈ [0,1);

−x2 + 3x− 3
2 , x ∈ [1,2);

1
2 x2 − 3x+ 9

2 , x ∈ [2,3);

0, x ∈ R\ [0,3);

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(10.2.80)

N3(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6 x3, x ∈ [0,1);

− 1
2 x3 + 2x2 − 2x+ 2

3 , x ∈ [1,2);

1
2 x3 − 4x2 + 10x− 22

3 , x ∈ [2,3);

− 1
6 x3 + 2x2 − 8x+ 32

3 , x ∈ [3,4);

0, x ∈ R\ [0,4).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(10.2.81)
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Observe that (10.2.79) corresponds precisely with the integer knot case (10.2.67) of

(10.2.49) in Example 10.2.1.

Also, by using either the formula (10.2.75), or directly the explicit formulations (10.2.80),

(10.2.81), we calculate the values

N2(1) =
1
2

; N2(2) =
1
2

; (10.2.82)

N3(1) =
1
6

; N3(2) =
2
3

; N3(3) =
1
6
. (10.2.83)

�

10.3 Spline interpolation

For a bounded interval [a,b], let the function f : [a,b] → R be given, and, for a positive

integer n, let {x0, . . . ,xn} denote a sequence of n+ 1 distinct points in [a,b], with

a � x0 < · · ·< xn � b. (10.3.1)

In this section, we investigate the existence of a spline S ∈ σm([a,b];τ1, . . . ,τr) which in-

terpolates f at the points {x0, . . . ,xn}, that is,

S(x j) = f (x j), j = 0, . . . ,n. (10.3.2)

By observing that (10.3.2) consists of precisely n+ 1 interpolation conditions, and recall-

ing from (10.2.27) that the spline space σm([a,b];τ1, . . . ,τr) has dimension m+ 1+ r, we

impose the condition

m+ 1+ r = n+ 1. (10.3.3)

Based on (10.3.3), as well as (10.2.31), (10.2.30), for integers n and m satisfying n>m� 0,

and an extended knot sequence {τμ , . . . ,τν} satisfying

τμ < · · ·< τ0 := a < τ1 < · · ·< τn−m < b =: τn−m+1 < · · ·< τν , (10.3.4)

where

μ �−m; ν � n+ 1, (10.3.5)

we shall therefore seek to obtain a spline

S ∈ σm([a,b];τ1, . . . ,τn−m) (10.3.6)

satisfying the interpolation conditions (10.3.2).
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By applying Theorem 10.2.2(d), we deduce that there exists a spline S satisfying (10.3.6)

and (10.3.2) if and only if

S(x) :=
n−m

∑
j=−m

c jNm, j(x), x ∈ [a,b], (10.3.7)

where {c−m, . . . ,cn−m} ⊂ R satisfies the linear system
n−m

∑
j=−m

c jNm, j(xk) = f (xk), k = 0, . . . ,n, (10.3.8)

or equivalently, in matrix-vector formulation, where the (column) vector c =

(c−m, . . . ,cn−m)
T

∈ Rn+1 is a solution of the equation

Am,nc = fn, (10.3.9)

with Am,n denoting the (n+ 1)× (n+ 1)matrix

Am,n :=

⎡⎢⎢⎢⎢⎢⎢⎣
Nm,−m(x0) Nm,−m+1(x0) · · · Nm,n−m(x0)

Nm,−m(x1) Nm,−m+1(x1) · · · Nm,n−m(x1)

...
...

...

Nm,−m(xn) Nm,−m+1(xn) · · · Nm,n−m(xn)

⎤⎥⎥⎥⎥⎥⎥⎦ , (10.3.10)

and where fn ∈ Rn+1 is the (column) vector

fn := ( f (x0), . . . , f (xn))
T . (10.3.11)

Hence we proceed to establish, in terms of the sequences {x0, . . . ,xn} and {τ−m, . . . ,τn+1},

a necessary and sufficient condition for the invertibility of the matrix Am,n.

To this end, for m ∈ N, and integers κ and λ such that

λ −κ � m+ 1; μ � κ < λ � ν; (10.3.12)

let S denote any finitely supported spline, with

S ∈ σm,0(τκ , . . . ,τλ ), (10.3.13)

according to which, by applying (10.2.3) in Theorem 10.2.1, together with the fact that,

from (10.1.4), S is continuous at τκ , we also have

S(x) = 0, x ∈ R\ (τκ ,τλ ). (10.3.14)

We shall say that S has a sign change in (τκ ,τλ ) if either:
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(i) S changes sign at a point t ∈ (τκ ,τλ ), in the sense that

S(t) = 0;

S(t − ε)S(t + ε)< 0 for sufficiently small ε > 0,

⎫⎬⎭ (10.3.15)

or

(ii) S changes sign with respect to an interval [τ j ,τk]⊂ (τκ ,τλ ), in the sense that

S(x) = 0, x ∈ [τ j ,τk];

S(τ j − ε)S(τk + ε)< 0 for sufficiently small ε > 0.

⎫⎬⎭ (10.3.16)

For m � 2, we observe, if S(ξ1) = S(ξ2) = 0, where τκ � ξ1 < ξ2 � τλ , that we may apply

Rolle’s theorem to deduce that S′ has at least one sign change, of either one of the types

(10.3.15) or (10.3.16) above, in the interval (ξ1,ξ2).

In our investigation of the invertibility of the matrix Am,n in (10.3.10), we shall require the

following result on the zeros of a finitely supported spline.

Theorem 10.3.1. For m ∈ N, let S denote a finitely supported spline as in (10.3.13),

(10.3.12), and suppose that, moreover, S has a finite number of zeros in (τκ ,τλ ). Then

the non-negative integer ρ defined by

ρ := number of distinct zeros of S in (τκ ,τλ ), (10.3.17)

satisfies the inequality

ρ +m+ 1 � λ −κ . (10.3.18)

Proof. Observe that, by applying (10.1.36) in Theorem 10.1.2, as well as (10.3.14), we

have

S(k) ∈ σm−k,0(τκ , . . . ,τλ ), k = 0, . . . ,m− 1, (10.3.19)

and thus

S(k)(τκ ) = S(k)(τλ ) = 0, k = 0, . . . ,m− 1. (10.3.20)

Let m = 1, for which we see from (10.3.19) that S(τk) = S(τλ ) = 0. Also, since (10.3.13)

holds, we note from (10.1.2), (10.1.3) and (10.1.4) that S is a continuous linear piecewise

polynomial with breakpoints at {τκ , . . . ,τλ}, and thus S can have no zeros in (τκ ,τκ+1]

and [τλ−1,τλ ), and at most one zero in each of the λ − κ − 2 successive intervals

[τκ+1,τκ+2], . . . , [τλ−2,τλ−1]. Hence ρ � λ −κ − 2, which proves the inequality (10.3.18)

for m = 1.
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Suppose next m � 2, for which (10.1.4) gives S ∈C1(R). Since (10.3.19) implies S(τκ) =

S(τλ ) = 0, it follows from the definition (10.3.17) that S has ρ +2 distinct zeros in [τκ ,τλ ],

so that an application of Rolle’s theorem yields

number of sign changes of S′ in (τκ ,τλ )� ρ + 1, if m � 2. (10.3.21)

If m = 2, it follows from (10.3.19) that S′ ∈ σ1,0(τκ , . . . ,τλ ), with also, from (10.3.20),

S′(τκ ) = S′(τλ ) = 0. Now observe that

S̃ ∈ σ1,0(τκ , . . . ,τλ )⇒ number of sign changes of S̃ in (τκ ,τλ )� λ −κ − 2, (10.3.22)

since any linear spline S̃∈σ1,0(τκ , . . . ,τλ ) satisfies S̃(τκ ) = S̃(τλ ) = 0, so that S̃ can have no

sign changes in either of the intervals (τκ ,τκ+1] or [τλ−1,τλ ), whereas S̃ can have at most

one sign change in each of the λ −κ−2 successive intervals (τκ+1,τκ+2], . . . ,(τλ−2,τλ−1].

By applying (10.3.22), with S̃= S′, as well as (10.3.21), we obtain ρ+1� λ −κ−2, which

is equivalent to the inequality (10.3.18) for m = 2.

Next, let m � 3, for which (10.1.4) gives S′ ∈ C1(R). Since (10.3.21) then holds, as well

as, from (10.3.20), S′(τκ ) = S′(τλ ) = 0, it follows that S′ has at least ρ +3 distinct zeros in

(τκ ,τλ ), so that an application of Rolle’s theorem yields

number of sign changes of S′′ in (τκ ,τλ )� ρ + 2, if m � 3. (10.3.23)

Moreover, (10.3.19) gives S′′ ∈σ1,0(τκ , . . . ,τλ ), with, from (10.3.20), S′′(τκ ) = S′′(τλ ) = 0,

according to which we may apply (10.3.22), with S̃ = S′′, together with (10.3.23), to obtain

ρ + 2 � λ −κ − 2, which is equivalent to the inequality (10.3.18) for m = 3.

For m � 4, we continue in this fashion, for each m showing that S(m−1) ∈ σ1,0(τκ , . . . ,τλ )

possesses at least ρ +m− 1 sign changes in (τκ ,τλ ), and employing (10.3.22), with S̃ =

S(m−1), to deduce that ρ +m−1 � λ −κ −2, which is equivalent to the desired inequality

(10.3.18). �
By using Theorem 10.3.1, we can now prove the following necessary and sufficient condi-

tion for spline interpolation.

Theorem 10.3.2 (Schoenberg-Whitney). For any bounded interval [a,b], and integers n

and m satisfying n > m � 0, let {x0, . . . ,xn} denote a sequence of n+1 distinct points as in

(10.3.1), and let {τμ , . . . ,τν} be a knot sequence as in (10.3.4), (10.3.5). Then the matrix

Am,n in (10.3.10) is invertible if and only if

Nm, j−m(x j) �= 0, j = 0, . . . ,n, (10.3.24)
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with the B-splines {Nm,−m, . . . ,Nm,n−m} defined as in (10.2.32), in which case there exists

precisely one spline SI
m,n in the space σm([a,b];τ1, . . . ,τn−m) satisfying the interpolation

conditions (10.3.2), where SI
m,n is given by the formula

SI
m,n(x) :=

n−m

∑
j=−m

(A−1
m,nfn) jNm, j(x), x ∈ [a,b], (10.3.25)

with fn ∈ Rn+1 defined by (10.3.11).

Proof. First, we show that if (10.3.24) is not satisfied, then the matrix Am,n is not invertible,

which will then prove that (10.3.24) is a necessary condition for the invertibility of Am,n.

Suppose therefore that (10.3.24) does not hold, and denote by � the smallest integer in the

set {0, . . . ,n} such that

Nm,�−m(x�) = 0. (10.3.26)

By applying the second line of (10.2.33) in Theorem 10.2.2(a), we deduce from (10.3.26)

that either:

(i) x� < τ�−m, in which case (10.3.1) and (10.3.4) imply � � m+ 1, and the last n+ 1− �

columns of Am,n in (10.3.10) each contains at most n−� non-zero entries, all of which occur

in the last n− � positions, according to which these columns form a linearly dependent set

in Rn+1, and thus the columns of Am,n are linearly dependent; or

(ii) x� � τ�+1, in which case (10.3.1) and (10.3.4) imply �� n−m−1, and the last n+1−�

rows of Am,n in (10.3.10) each contains at most n− � non-zero entries, all of which occur

in the last n− � positions, according to which these rows form a linearly dependent set in

Rn+1, and thus the rows of Am,n are linearly dependent.

Hence, either columns or rows of the matrix Am,n are linearly dependent, so that we may

deduce from a standard result in linear algebra that Am,n is not invertible.

Conversely, suppose that the condition (10.3.24) is satisfied, and assume that the matrix

Am,n is not invertible. We shall now proceed to derive a contradiction, which will then

prove that (10.3.24) is a sufficient condition for the invertibility of Am,n.

Since Am,n is not invertible, there exists a non-trivial solution c = (c−m, . . . ,cn−m)
T of the

homogeneous linear system

Am,nc = 0. (10.3.27)

It then follows from (10.3.27) and (10.3.10) that the spline S̃ defined by

S̃(x) :=
n−m

∑
j=−m

c jNm, j(x), x ∈ R, (10.3.28)
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satisfies

S̃(xk) = 0, k = 0, . . . ,n. (10.3.29)

Note from (10.3.28), together with (10.2.34) in Theorem 10.2.2(b), that

S̃ ∈ σm,0(τ−m, . . . ,τn+1). (10.3.30)

Also, since c = (c−m, . . . ,cn−m)
T is not the zero vector, we deduce from (10.3.28), to-

gether with the second line of (10.2.33) in Theorem 10.2.2(a), as well as (10.2.62) in The-

orem 10.2.6(a), that S̃ is not the zero function. Hence, by keeping in mind also (10.1.2),

(10.1.3), and recalling Theorem 10.2.1(b), we deduce from (10.3.29) that there exist inte-

gers κ and λ , with

λ −κ � m+ 1; −m � κ < λ � n+ 1, (10.3.31)

such that the spline S defined by

S(x) :=

⎧⎨⎩ S̃(x), x ∈ [τκ ,τλ );

0, x ∈R\ [τκ ,τλ ),
(10.3.32)

is not identically zero on any of the successive intervals [τκ ,τκ+1), . . . , [τλ−1,τλ ), according

to which S has at most a finite number of zeros in (τκ ,τλ ). Observe from (10.3.32) and

(10.3.28) that

S ∈ σm,0(τκ , . . . ,τλ ). (10.3.33)

Now observe from (10.3.24), together with the second line of (10.2.33) in Theo-

rem 10.2.2(a), that

x j ∈ (τ j ,τ j+m+1), j = κ , . . . ,λ −m− 1, (10.3.34)

and thus, from (10.3.4),

{xκ , . . . ,xλ−m−1} ⊂ (τκ ,τλ ). (10.3.35)

Also, note from (10.3.32) and (10.3.29) that

S(x j) = 0, j = κ , . . . ,λ −m− 1. (10.3.36)

If m = 0, we deduce from (10.3.36), (10.3.34) and (10.3.33) that S is identically zero on at

least one of the intervals [τκ ,τκ+1), . . . , [τλ−1,τλ ), which is a contradiction.

Suppose next m ∈ N. But then we may apply Theorem 10.3.1 to deduce that, with the

non-negative number ρ defined as in (10.3.17), the inequality (10.3.18) is satisfied, that is,

ρ � λ −κ −m− 1. (10.3.37)
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But, according to (10.3.36) and (10.3.35), as well as (10.3.1),

ρ � (λ −m− 1)−κ+ 1 = λ −κ −m,

which contradicts (10.3.37), and thereby completing our proof. �
According to Theorem 10.3.2, we may define the spline interpolation operator S I

m,n :

C[a,b]→ σm([a,b];τ1, . . . ,τn−m) by

S I
m,n f := SI

m,n, f ∈C[a,b], (10.3.38)

with the spline SI
m,n defined by (10.3.25), and for which the following properties can now

be proved.

Theorem 10.3.3. The spline interpolation operator S I
m,n : C[a,b] → σm([a,b];τ1, . . . ,

τn−m), as defined by (10.3.38), with SI
m,n as in Theorem 10.3.2, satisfies the following:

(a) S I
m,n is linear;

(b) S I
m,n is exact on σm([a,b];τ1, . . . ,τn−m), that is,

S I
m,n f = f , f ∈ σm([a,b];τ1, . . . ,τn−m). (10.3.39)

Proof. (a) For f ,g ∈ C[a,b] , and λ ,μ ∈ R, it follows from (10.3.38) and (10.3.25) that,

with the definition

gn := (g(x0), . . . ,g(xn))
T ,

S I
m,n(λ f + μg) =

n−m

∑
j=−m

(
A−1

m,n(λ fn + μgn)
)

j Nm, j

= λ

[
n−m

∑
j=−m

(
A−1

m,nfn
)

j Nm, j

]
+ μ

[
n−m

∑
j=−m

(
A−1

m,ngn
)

j Nm, j

]

= λ (S I
m,n f )+ μ(S I

m,ng),

and thus S I
m,n is linear.

(b) Let S ∈ σm([a,b];τ1, . . . ,τn−m). Then S trivially satisfies the interpolation conditions

(10.3.2) for the choice f = S, and thus, by using also the uniqueness statement in Theo-

rem 10.3.2, as well as the definition (10.3.38), we deduce that the exactness result (10.3.39)

does indeed hold. �

Example 10.3.1. For any function f ∈C[0,5], consider the problem of obtaining a spline

S ∈ σ2([0,5];1,2,3,4) (10.3.40)
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satisfying the interpolation conditions

S(x j) = f (x j), j = 0, . . . ,6, (10.3.41)

where

{x0, . . . ,x6}= {0, 1
2 ,

3
2 ,

5
2 ,

7
2 ,

9
2 ,5}. (10.3.42)

With n = 6 and m = 2, and with the extended knot sequence {τ−2,τ−1, . . . ,τ7} given by

τ j = j, j =−2, . . . ,7, (10.3.43)

so that (10.3.4) is satisfied, with

[a,b] = [0,5], and {μ ,ν}= {−2,7},
it can now be verified by means of (10.3.42), together with (10.2.68) and (10.2.71) in

Theorem 10.2.7, that the condition (10.3.24) of Theorem 10.3.2 is satisfied. It follows

from Theorem 10.3.2, together with (10.3.38) and (10.3.25), that there exists precisely one

spline S I
2,6 f = SI

2,6 in σ2([0,5];1,2,3,4) such that

(S I
2,6 f )(x j) = f (x j), j = 0, . . . ,6, (10.3.44)

and where, by using also (10.2.68) in Theorem 10.2.7,

(S I
2,6 f )(x) =

4

∑
j=−2

(
A−1

2,6f6

)
j
N2(x− j), x ∈ [0,5], (10.3.45)

with N2 denoting the quadratic cardinal B-spline in (10.2.80), where A2,6 is the invertible

7× 7 matrix in (10.3.10), and f6 ∈R7 the vector in (10.3.11).

To compute the matrix A2,6, we first use the formulas in (10.2.80) to obtain the values

N2(
1
2 ) =

1
8 ; N2(

3
2 ) =

3
4 ; N2(

5
2) =

1
8 . (10.3.46)

By using (10.3.46), as well as the values (10.2.82) obtained in Example 10.2.3, it now

follows from (10.3.10) and (10.3.42), together with (10.2.68), that

A2,6 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
2 0 0 0 0 0

1
8

3
4

1
8 0 0 0 0

0 1
8

3
4

1
8 0 0 0

0 0 1
8

3
4

1
8 0 0

0 0 0 1
8

3
4

1
8 0

0 0 0 0 1
8

3
4

1
8

0 0 0 0 0 1
2

1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (10.3.47)
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the inverse of which is given by

A−1
2,6 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5741
2378 − 1970

1189
338

1189 − 2
41

10
1189 − 2

1189
1

2378

− 985
2378

1970
1189 − 338

1189
2

41 − 10
1189

2
1189 − 1

2378

169
2378 − 338

1189
1690
1189 − 10

41
50

1189 − 10
1189

5
2378

− 1
82

2
41 − 10

41
58
41 − 10

41
2
41 − 1

82

5
2378 − 10

1189
50

1189 − 10
41

1690
1189 − 338

1189
169
2378

− 1
2378

2
1189 − 10

1189
58

1189 − 338
1189

1970
1189 − 985

2378

1
2378 − 2

1189
10

1189 − 58
1189

338
1189 − 1970

1189
5741
2378

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10.3.48)

Since, moreover, (10.3.11) and (10.3.42) give

f6 = ( f (0), f ( 1
2 ), f ( 3

2 ), f ( 5
2 ), f ( 7

2 ), f ( 9
2 ), f (5))T , (10.3.49)

it follows from (10.3.45), (10.3.48) and (10.3.49) that the spline interpolant S I
2,6 f is given

explicitly, for x ∈ [0,5], by the formula

(S I
2,6 f )(x) =

[ 5741
2378 f (0)− 1970

1189 f ( 1
2 )+

338
1189 f ( 3

2 )− 2
41 f ( 5

2 )

+ 10
1189 f ( 7

2 )− 2
1189 f ( 9

2 )+
1

2378 f (5)
]

N2(x+ 2)

+
[− 985

2378 f (0)+ 1970
1189 f ( 1

2 )− 338
1189 f ( 3

2 )+
2

41 f ( 5
2 )

− 10
1189 f ( 7

2 )+
2

1189 f ( 9
2 )− 1

2378 f (5)
]

N2(x+ 1)

+
[ 169

2378 f (0)− 338
1189 f ( 1

2 )+
1690
1189 f ( 3

2 )− 10
41 f ( 5

2 )

+ 50
1189 f ( 7

2 )− 10
1189 f ( 9

2 )+
5

2378 f (5)
]

N2(x)

+
[− 1

82 f (0)+ 2
41 f ( 1

2 )− 10
41 f ( 3

2 )+
58
41 f ( 5

2 )

− 10
41 f ( 7

2 )+
2
41 f ( 9

2 )− 1
82 f (5)

]
N2(x− 1)

+
[ 5

2378 f (0)− 10
1189 f ( 1

2 )+
50

1189 f ( 3
2 )− 10

41 f ( 5
2 )

+ 1690
1189 f ( 7

2 )− 338
1189 f ( 9

2 )+
169

2378 f (5)
]

N2(x− 2)

+
[− 1

2378 f (0)+ 2
1189 f ( 1

2 )− 10
1189 f ( 3

2 )+
58

1189 f ( 5
2 )

− 338
1189 f ( 7

2 )+
1970
1189 f ( 9

2 )− 985
2378 f (5)

]
N2(x− 3)

+
[ 1

2378 f (0)− 2
1189 f ( 1

2 )+
10

1189 f ( 3
2 )− 58

1189 f ( 5
2 )

+ 338
1189 f ( 7

2 )− 1970
1189 f ( 9

2 )+
5741
2378 f (5)

]
N2(x− 4). (10.3.50)

�
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According to (10.3.38) and (10.3.25), the computation of (S I
m,n f )(x) depends on the inver-

sion of the matrix Am,n in (10.3.10), which, as follows from the second line of (10.2.33) in

Theorem 10.2.2(a), and as illustrated by (10.3.47) in Example 10.3.1, is a banded matrix.

Moreover, the inverse matrix A−1
m,n is, in general, and as illustrated by (10.3.48) in Exam-

ple 10.3.1, not banded, but a full matrix, with the result that S I
m,n is not a local approxima-

tion operator, in the sense that, for any x ∈ [a,b], the value of (S I
m,n f )(x) depends on all,

or most, of the function values { f (x0), . . . , f (xn)}, as illustrated by the formula (10.3.50) in

Example 10.3.1. In Section 10.4, we shall construct a class of local spline approximation

operators with explicit formulations.

Finally in this section, we show how Theorem 10.3.1 and its proof may be used to prove

the following result, according to which B-splines are “bell-shaped”.

Theorem 10.3.4. For any integer m � 2 and j ∈ {μ , . . . ,ν −m−1}, let Nm, j denote the B-

spline as defined in (10.2.32), (10.2.31). Then, for k = 1, . . . ,m−1, the k-th derivative N(k)
m, j

has precisely k distinct zeros in the interval (τ j ,τ j+m+1), each of which is a sign change of

the type (10.3.15).

Proof. In Theorem 10.3.1, let S = Nm, j , κ = j and λ = j+m+ 1, so that, from (10.2.62)

in Theorem 10.2.6, we have ρ = 0. It follows as in the final paragraph in the proof of

Theorem 10.3.1 that

m− 1 = 0+(m− 1) � number of sign changes of N(m−1)
m, j in (τ j ,τ j+m+1)

� (m+ 1)− 2= m− 1,

and thus N(m−1)
m, j has precisely m − 1 sign changes in the interval (τ j ,τ j+m+1). Since

also, from (10.2.33) in Theorem 10.2.2(a), N(m−1)
m, j vanishes identically on (−∞,τ j ] ∪

[τ j+m+1,∞), and since, moreover, from (10.1.36) in Theorem 10.1.2, we have N(m−1)
m, j ∈

σ1,0(τ j, . . . ,τ j+m+1), that is, N(m−1)
m, j is a continuous linear piecewise polynomial on

[τ j,τ j+m+1], with breakpoints at {τ j+1, . . . ,τ j+m}, we deduce that the m− 1 sign changes

in (τ j,τ j+m+1) of N(m−1)
m, j are the only zeros of N(m−1)

m, j in (τ j ,τ j+m+1), and are all of the

type (10.3.15), with, moreover, these zeros occurring in the m − 1 successive intervals

(τ j+1,τ j+2), . . . , (τ j+m−1,τ j+m). Hence we have now established the theorem for k=m−1.

Next, observe from the proof of Theorem 10.3.1 that

number of sign changes of N(m−2)
m, j in (τ j ,τ j+m+1)� 0+(m− 2) = m− 2. (10.3.51)

Furthermore, observe that N(m−2)
m, j is not identically zero on any of the intervals [τ j,τ j+1],

. . . , [τ j+1,τ j+m+1], for if it did vanish identically on such an interval, then (N(m−2)
m, j )′ =
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N(m−1)
m, j would also be identically zero on that interval, and thereby contradicting the fact

that N(m−1)
m, j has a finite number (= m−1) of zeros in (τ j ,τ j+m+1). Hence the sign changes

of N(m−2)
m, j in (τ j ,τ j+m+1) are all of the type (10.3.15).

Suppose now that

number of distinct zeros of N(m−2)
m, j in (τ j ,τ j+m+1)� m− 1. (10.3.52)

Since also, from (10.3.20) in the proof of Theorem 10.3.1,

N(m−2)
m, j (τ j) = N(m−2)

m, j (τ j+m+1) = 0,

so that N(m−2)
m, j has at least m+ 1 distinct zeros in [τ j ,τ j+m+1], it follows that (N(m−2)

m, j )′ =
N(m−1)

m, j has at least m sign changes in (τ j ,τ j+m+1), which contradicts the fact that N(m−1)
m, j

has precisely m− 1 sign changes in (τ j ,τ j+m+1). Hence (10.3.52) is not true, that is,

number of distinct zeros of N(m−2)
m, j in (τ j ,τ j+m+1)� m− 2. (10.3.53)

It follows from (10.3.51) and (10.3.53) that N(m−2)
m, j has precisely m− 2 distinct zeros in

(τ j ,τ j+m+1), all of which are sign changes. Hence we have established the theorem for

k = m− 2.

By proceeding inductively as above, the cases k = m− 3, . . . ,1, are proved successively.

�

10.4 Local quasi-interpolation

In this section, we shall establish an explicitly formulated spline approximation operator

S : C[a,b]→ σm([a,b];τ1, . . . ,τr) such that S is exact on πm, that is,

(S f )(x) = f (x), x ∈ [a,b], f ∈ πm, (10.4.1)

in which case S is called a quasi-interpolation operator, and, moreover, such that S is

a local approximation operator, in the sense that, for any x ∈ [a,b], the value (S f )(x) is

independent of the values { f (x) : x ∈ [a,b] \ [α,β ]}, for some subinterval [α,β ] of [a,b],

the size of which depends only on the spline degree m.

We shall rely on the following identity for B-splines, in which we employ, as before, the

convention
j1

∏
j= j0

a j := 1, if j1 < j0.

Theorem 10.4.1. (Marsden identity) For any non-negative integer m, and an extended knot

sequence {τ−m, . . . ,τr+m+1} as in (10.2.31), (10.2.30), the B-splines {Nm,−m, . . . ,Nm,r}, as

defined in (10.2.32), satisfy the identity

(t − x)m =
r

∑
j=−m

gm, j(t)Nm, j(x), x ∈ [a,b], t ∈ R, (10.4.2)
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where the polynomial sequence {gm, j : j =−m, . . . ,r} ⊂ πm is defined by

gm, j(t) :=
m

∏
k=1

(t − τ j+k), j =−m, . . . ,r. (10.4.3)

Proof. Let t ∈ R be fixed. Since the inclusion (10.1.5) holds, and (t −·)m ∈ πm, we deduce

from Theorem 10.2.2(d) that there exists a (unique) coefficient sequence {gm, j(t) : j =

−m, . . . ,r} ⊂ R such that the identity (10.4.2) is satisfied.

Next, to prove (10.4.2), (10.4.3), we first note from (10.2.63) in Theorem 10.2.6 that, if

m = 0, then (10.4.2) holds, with

g0, j(t) := 1, j = 0, . . . ,r,

that is, (10.4.2), (10.4.3) are satisfied for m = 0.

Proceeding inductively, we suppose next that (10.4.2), (10.4.3) hold for a fixed non-

negative integer m, and, for an extended knot sequence {τ−m−1, . . . ,τr+m+2} as in (10.2.31),

(10.2.30), denote by {Nm+1,−m−1, . . . ,Nm+1,r} the B-splines as obtained from (10.2.32).

With {gm+1, j(t) : j =−m− 1, . . . ,r} ⊂ R denoting the coefficient sequence obtained from

(10.4.3), we use the recursive formulation (10.2.56) in Theorem 10.2.5, as well as (10.2.31)

and the second line of (10.2.33) in Theorem 10.2.2(a), together with (10.4.3), and eventu-

ally (10.4.2), to obtain, for any x ∈ [a,b],
r

∑
j=−m−1

gm+1, j(t)Nm+1, j(x)

=
r

∑
j=−m−1

gm+1, j(t)
[

x− τ j

τ j+m+1 − τ j

]
Nm, j(x)+

r

∑
j=−m−1

gm+1, j(t)
[

τ j+m+2 − x
τ j+m+2 − τ j+1

]
Nm, j+1(x)

=
r

∑
j=−m−1

gm+1, j(t)
[

x− τ j

τ j+m+1 − τ j

]
Nm, j(x)+

r+1

∑
j=−m

gm+1, j−1(t)
[

τ j+m+1 − x
τ j+m+1 − τ j

]
Nm, j(x)

=
r

∑
j=−m

(x− τ j)gm+1, j(t)+ (τ j+m+1 − x)gm+1, j−1(t)
τ j+m+1 − τ j

Nm, j(x)

=
r

∑
j=−m

[(x− τ j)(t − τ j+m+1)+ (τ j+m+1 − x)(t − τ j)]gm, j(t)
τ j+m+1 − τ j

Nm, j(x)

=
r

∑
j=−m

(t − x)(τ j+m+1 − τ j)gm, j(t)
τ j+m+1 − τ j

Nm, j(x) = (t − x)
r

∑
j=−m

gm, j(t)Nm, j(x)

= (t − x)(t − x)m = (t − x)m+1,

that is, (10.4.2), (10.4.3) also hold with m replaced by m+ 1, and thereby completing our

inductive proof of the formula (10.4.2). �
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For m ∈N, and any integer � ∈ {1, . . . ,m}, we may now differentiate the identity (10.4.2) �

times with respect to t to obtain

(t − x)m−� =
(m− �)!

m!

r

∑
j=−m

g(�)m, j(t)Nm, j(x), x ∈ [a,b], t ∈ R,

or equivalently,

(t − x)� =
�!
m!

r

∑
j=−m

g(m−�)
m, j (t)Nm, j(x), x ∈ [a,b], t ∈ R,

in which we may now set t = 0 to obtain the following result.

Theorem 10.4.2. The B-splines {Nm,−m, . . . ,Nm,r} in Theorem 10.4.1 satisfy the identity

x� = (−1)�
�!
m!

r

∑
j=−m

g(m−�)
m, j (0)Nm, j(x), x ∈ [a,b], �= 0, . . . ,m, (10.4.4)

with the polynomial sequence {gm, j : j =−m, . . . ,r} ⊂ πm defined as in (10.4.3).

We shall also require the following explicit formulation in terms of Lagrange fundamental

polynomials of the inverse of a Vandermonde matrix.

Theorem 10.4.3. For any non-negative integer n, the inverse of the Vandermonde matrix

Vn in Theorem 1.1.2 is given by

V−1
n =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ln,0(0) Ln,1(0) · · · Ln,n(0)

L′
n,0(0) L′

n,1(0) · · · L′
n,n(0)

L′′
n,0(0)
2!

L′′
n,1(0)
2!

· · · L′′
n,n(0)
2!

...
...

...

L(n)
n,0(0)

n!

L(n)
n,1(0)

n!
· · · L(n)

n,n(0)
n!

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (10.4.5)

with {Ln,0, . . . ,Ln,n} ⊂ πn denoting the Lagrange fundamental polynomials, as defined in

(1.2.1).

Proof. First, observe from the interpolation formulas given in (1.1.16) of Theorem 1.1.2,

and in (1.2.5) of Theorem 1.2.2, that
n

∑
j=0

(V−1
n f) jx j = PI

n(x) =
n

∑
j=0

f (x j)Ln, j(x), x ∈ R, (10.4.6)

where f ∈ Rn+1 is defined by (1.1.8). Since PI
n ∈ πn, we may now apply the Taylor ex-

pansion polynomial identity (10.1.11), with P = PI
n and c = 0, to deduce from the second
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equation in (10.4.6) that

n

∑
j=0

f (x j)Ln, j(x) =
n

∑
j=0

⎡⎣ n

∑
k=0

f (xk)L
( j)
n,k(0)

j!

⎤⎦x j =
n

∑
j=0

[
1
j!

n

∑
k=0

L( j)
n,k(0) f (xk)

]
x j, x ∈ R,

(10.4.7)

which, together with (10.4.6), yields

(V−1
n f) j =

1
j!

n

∑
k=0

L( j)
n,k(0) f (xk), j = 0, . . . ,n. (10.4.8)

According to (1.1.8), we have

(V−1
n f) j =

n

∑
k=0

(V−1
n ) jk f (xk), j = 0, . . . ,n,

which, together with (10.4.8), yields
n

∑
k=0

[
(V−1

n ) jk − 1
j!

L( j)
n,k(0)

]
f (xk) = 0, j = 0, . . . ,n. (10.4.9)

Since the function f is arbitrary, we may now, for any fixed � ∈ {0, . . . ,n}, choose f such

that

f (xk) = δ�−k, k = 0, . . . ,n,

with the Kronecker delta sequence {δ j : j ∈ Z} as in (1.2.2), to deduce from (10.4.9) that

(V−1
n ) j� =

L( j)
n,�(0)

j!
, j, �= 0, . . . ,n,

which is equivalent to the desired result (10.4.5). �
In order to obtain an approximation operator S : C[a,b] → σm([a,b];τ1, . . . ,τr) satisfy-

ing the polynomial exactness condition (10.4.1), we let {τ−m, . . . ,τr+m+1} denote a knot

sequence as in (10.2.31), (10.2.30), for integers m � 0 and r � 1 satisfying

m � r+ 1, (10.4.10)

and define, for any coefficient sequence {α j,k : k = j, . . . , j+m; j = −m, . . . ,r}, the spline

approximation operator S by

(S f )(x) :=
r

∑
j=−m

[
j+m

∑
k= j

α j,k f (τk)

]
Nm, j(x), x ∈ [a,b], f ∈C[a,b], (10.4.11)

where the values of f at the knots are extended from {τ0, . . . ,τr+1} to {τ−m, . . . ,τr+m} by

means of the polynomial extrapolation method

f (τk) :=

⎧⎨⎩ (P I
m f )(τk), k =−m, . . . ,−1 (if m � 1);

(P̃ I
m f )(τk), k = r+ 2, . . . ,r+m (if m � 2),

⎫⎬⎭ (10.4.12)
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with P I
m f and P̃ I

m f denoting, as in (5.1.2), the polynomials in πm interpolating f at,

respectively, the point sequences {τ0, . . . ,τm} and {τr+1−m, . . . ,τr+1}, that is,

with

P I
m f ∈ πm ; P̃ I

m f ∈ πm,

(P I
m f )(τk) = f (τk), k = 0, . . . ,m;

(P̃ I
m f )(τk) = f (τk), k = r+ 1−m, . . . ,r+ 1.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (10.4.13)

Note from (10.4.11) and (10.4.12), together with Theorem 5.1.1(a), that S is a linear

approximation operator.

By interchanging the order of summation in the defining formula (10.4.11), we obtain the

formulation

(S f )(x) =
r+m

∑
k=−m

f (τk)Um,k(x), x ∈ [a,b], f ∈C[a,b], (10.4.14)

where

Um,k(x) :=
min{k,r}

∑
j=max{k−m,−m}

α j,kNm, j(x), x ∈ [a,b], k =−m, . . . ,r+m, (10.4.15)

according to which, together with (10.2.34) in Theorem 10.2.2(b), we have

{Um,k : k =−m, . . . ,r+m} ⊂ σm([a,b];τ1, . . . ,τr), (10.4.16)

with also, from (10.4.15), together with the second line of (10.2.33) in Theorem 10.2.2(a),

Um,k(x) = 0, x ∈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[τk+m+1,b], k =−m, . . . ,m (if r � 2m+ 1);

[a,τk−m]∪ [τk+m+1,b], k = m+ 1, . . . ,r−m− 1 (if r � 2m+ 2);

[a,τk−m], k = r−m, . . . ,r+m.

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(10.4.17)

Observe from (10.4.14) and (10.4.17), together with (10.4.12), (10.4.13), that S is a local

approximation operator, in the sense that, for any fixed x ∈ [a,b], the value of (S f )(x)

is independent of the values { f (x) : x ∈ [a,b] \ [τκ ,τλ ]}, for integers κ and λ satisfying

λ −κ � 2m+ 1.

We proceed to show that there exists a unique sequence {α j,k : k = j, . . . , j + m; j =

−m, . . . ,r} ⊂ R such that the operator S in (10.4.11), (10.4.12) satisfies the polynomial

exactness condition (10.4.1), from which it will then follow that S is an optimally local

quasi-interpolation operator.

To this end, we first observe that the polynomial exactness condition (10.4.1) has the equiv-

alent formulation

(S f�)(x) = f�(x), x ∈ [a,b], �= 0, . . . ,m, (10.4.18)
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where

f�(x) := x�, x ∈ [a,b], �= 0, . . . ,m. (10.4.19)

It follows from (10.4.11), (10.4.12), (10.4.13), together with Theorem 5.1.1(b), that

(S f�)(x) =
r

∑
j=−m

[
j+m

∑
k= j

α j,kτ�k

]
Nm, j(x), x ∈ [a,b], �= 0, . . . ,m. (10.4.20)

By applying (10.4.4) in Theorem 10.4.2, we deduce from (10.4.20) and (10.4.19) that the

condition (10.4.18) is equivalent to

r

∑
j=−m

[
j+m

∑
k= j

α j,kτ�k − (−1)�
�!
m!

g(m−�)
m, j (0)

]
Nm, j(x) = 0, x ∈ [a,b], �= 0, . . . ,m, (10.4.21)

with {gm, j : j = −m, . . . ,r} ⊂ πm denoting the polynomial sequence defined by (10.4.3).

By using Theorem 10.2.2(d), it furthermore follows that (10.4.21) holds if and only if the

sequence {α j,k : k = j, . . . , j+m; j =−m, . . . ,r} satisfies the linear system

j+m

∑
k= j

τ�k α j,k = (−1)�
�!
m!

g(m−�)
m, j (0), �= 0, . . . ,m, j =−m, . . . ,r, (10.4.22)

or equivalently, in matrix-vector notation,

Bm, jα j = (−1)�
�!
m!

gm, j, j =−m, . . . ,r, (10.4.23)

where the (m+ 1)× (m+ 1) matrix sequence {Bm, j : j =−m, . . . ,r} is given by

Bm, j :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1

τ j τ j+1 · · · τ j+m

τ2
j τ2

j+1 · · · τ2
j+m

...
...

...

τm
j τm

j+1 · · · τm
j+m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, j =−m, . . . ,r, (10.4.24)

and with {α j : j = −m, . . . ,r} and {gm, j : j = −m, . . . ,r} denoting the (column) vector

sequences in Rm+1 defined by

α j := (α j, j, . . . ,α j, j+m)
T ,

gm, j := (g(m)
m, j(0),g

(m−1)
m, j (0), . . . ,g′m, j(0), gm, j(0))T ,

⎫⎬⎭ j =−m, . . . ,r. (10.4.25)

We have therefore established that the approximation operator S in (10.4.11), (10.4.12)

satisfies the polynomial exactness condition (10.4.1) if and only if the coefficient sequence

{α j,k : k = j, . . . , j + m; j = −m, . . . ,r} satisfies the linear system (10.4.23), (10.4.24),
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(10.4.25). To solve the equation (10.4.23), we fix j ∈ {−m, . . . ,r}, and observe that the

transpose of the matrix Bm, j in (10.4.24) is given by

BT
m, j :=

⎡⎢⎢⎢⎢⎢⎢⎣
1 τ j τ2

j · · · τm
j

1 τ j+1 τ2
j+1 · · · τm

j+1
...

...
...

...

1 τ j+m τ2
j+m · · · τm

j+m

⎤⎥⎥⎥⎥⎥⎥⎦ , (10.4.26)

which, since also (10.2.31) is satisfied, is a Vandermonde matrix as in Theorem 1.1.2.

It follows from Theorem 1.1.2 that BT
m, j is an invertible matrix, with, from (10.4.5) in

Theorem 10.4.3, inverse given by

(BT
m, j)

−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Lm, j(0) Lm, j+1(0) · · · Lm, j+m(0)

L′
m, j(0) L′

m, j+1(0) · · · L′
m, j+m(0)

L′′
m, j(0)

2!

L′′
m, j+1(0)

2!
· · · L′′

m, j+m(0)
2!

...
...

...

L(m)
m, j(0)

m!

L(m)
m, j+1(0)

m!
· · · L(m)

m, j+m(0)

m!

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (10.4.27)

where {Lm, j, . . . ,Lm, j+m}⊂ πm are the Lagrange fundamental polynomials defined, accord-

ing to (1.2.1), by

Lm,k(x) :=
j+m

∏
k �=�= j

x− τ�
τk − τ�

, k = j, . . . , j+m. (10.4.28)

Since the Vandermonde matrix BT
m, j is invertible, a standard result in linear algebra guaran-

tees that the matrix Bm, j is invertible, with inverse given, according to (10.4.27), by

B−1
m, j =

(
(BT

m, j)
T )−1

=
(
(BT

m, j)
−1)T

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Lm, j(0) L′
m, j(0)

L′′
m, j(0)

2!
· · · L(m)

m, j(0)

m!

Lm, j+1(0) L′
m, j+1(0)

L′′
m, j+1(0)

2!
· · · L(m)

m, j+1(0)

m!
...

...
...

...

Lm, j+m(0) L′
m, j+m(0)

L′′
m, j+m(0)

2!
· · · L(m)

m, j+m(0)

m!

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (10.4.29)

and where the unique solution α j = αm, j of the equation (10.4.23) is therefore given by

αm, j = (−1)�
�!
m!

B−1
m, jgm, j. (10.4.30)
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Hence, according to (10.4.30), (10.4.29) and (10.3.25), and by recalling also (10.4.14)-

(10.4.17), we have established the following result.

Theorem 10.4.4. For integers m � 0 and r � 1 satisfying m � r+ 1, and a knot sequence

{τ−m, . . . ,τr+m+1} as in (10.2.31), (10.2.30), let the spline approximation operator S QI
m,r :

C[a,b]→ σm([a,b];τ1, . . . ,τr) be defined by

(S QI
m,r f )(x) :=

r

∑
j=−m

[
j+m

∑
k= j

αm, j,k f (τk)

]
Nm, j(x), x ∈ [a,b], f ∈C[a,b], (10.4.31)

where the values of f at the knots are extended from {τ0, . . . ,τr+1} to {τ−m, . . . ,τr+m} by

means of the polynomial extrapolation method (10.4.12), (10.4.13), and where the coeffi-

cient sequence {αm, j,k : k = j, . . . , j+m; j =−m, . . . ,r} ⊂ R is given by

αm, j,k :=
1

m!

m

∑
�=0

(−1)�L(�)
m,k(0)g

(m−�)
m, j (0), k = j, . . . , j+m; j =−m, . . . ,r, (10.4.32)

with the polynomial sequences {Lm,k : k = j, . . . , j+m; j =−m, . . . ,r} ⊂ πm and {gm, j : j =

−m, . . . ,r} ⊂ πm defined as in, respectively, (10.4.28) and (10.4.3), and with the B-splines

{Nm, j : j =−m, . . . ,r} given as in (10.2.32). Then S QI
m,r is linear, and S QI

m,r is an optimally

local quasi-interpolation operator satisfying the polynomial exactness condition (10.4.1).

Moreover, S QI
m,r satisfies the formulation

(S QI
m,r f )(x) =

r+m

∑
k=−m

f (τk)Um,k(x), x ∈ [a,b], f ∈C[a,b], (10.4.33)

where the splines {Um,k : k =−m, . . . ,r+m} are given by

Um,k(x) :=
min{k,r}

∑
j=max{k−m,−m}

αm, j,kNm, j(x), x ∈ [a,b], k =−m, . . . ,r+m, (10.4.34)

and satisfy the properties (10.4.16) and (10.4.17).

Our next step is to obtain an explicit formulation in terms of the knot sequence

{τ−m, . . . ,τm+r+1} for the expression in the right hand side of (10.4.32), for the purpose

of which we first introduce the following notation.

For any integer sequence {�1, . . . , �n}, we define, for k ∈ N, with k � n,

perk{�1, . . . , �n} := the set of all permutations { j1, . . . , jk} of {�1, . . . , �n}; (10.4.35)

comk{�1, . . . , �n} := the set of all combinations { j1, . . . , jk} of {�1, . . . , �n}; (10.4.36)

per{�1, . . . , �n} := pern{�1, . . . , �n}. (10.4.37)
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Note from (10.4.35) and (10.4.36) that:

number of sequences in perk{�1, . . . , �n}= k!(number of sequences in comk{�1, . . . , �n}).
(10.4.38)

Also, observe from (10.4.36) that, for any coefficient sequence {a1, . . . ,an} ⊂ R, it holds

that
n

∏
j=1

(x− a j) =
n

∑
k=0

(−1)khk(a1, . . . ,an)xn−k, x ∈ R, (10.4.39)

where, for k ∈ {0, . . . ,n}, the function hk : Rn → R is the classical symmetric function

defined by

hk(a1, . . . ,an) :=

⎧⎪⎨⎪⎩ ∑
{ j1,..., jk}∈comk{1,...,n}

k

∏
�=1

a j� , if k = 1, . . . ,n;

1, if k = 0.

(10.4.40)

We shall rely on the following result.

Theorem 10.4.5. For n ∈N, and any real sequences {β1, . . . ,βn},{γ1, . . . ,γn}, let the poly-

nomials P,Q ∈ πn be defined by

P(x) :=
n

∏
j=1

(x−β j); Q(x) :=
n

∏
j=1

(x− γ j). (10.4.41)

Then
n

∑
�=0

(−1)�P(�)(0)Q(n−�)(0) = ∑
{ j1,..., jn}∈per{1,...,n}

n

∏
k=1

(γ jk −βk), (10.4.42)

with the set per{1, . . . ,n} defined as in (10.4.37), (10.4.35).

Proof. First, observe from (10.4.41) and (10.4.39) that

P(�)(0) = (−1)n−��!hn−�(β1, . . . ,βn),

Q(n−�)(0) = (−1)�(n− �)!h�(γ1, . . . ,γn),

⎫⎬⎭ �= 0, . . . ,n,

and thus
n

∑
�=0

(−1)�P(�)(0)Q(n−�)(0) = (−1)n
n

∑
�=0

(−1)��!(n− �)!hn−�(β1, . . . ,βn)h�(γ1, . . . ,γn),

(10.4.43)

with the sequence {h� : �= 0, . . . ,n} defined as in (10.4.40).

Now let the multivariate polynomial F : Rn →R be defined by

F(x) := ∑
{ j1,..., jn}∈per{1,...,n}

n

∏
k=1

(γ jk − xk), x = (x1, . . . ,xn) ∈ R
n. (10.4.44)
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It then follows from (10.4.44), (10.4.37) and (10.4.35) that

F(x) =
n

∑
j1=1

(γ j1 − x1)
n

∑
j2=1
j2 �= j1

(γ j2 − x2) · · ·
n

∑
jn=1

jn �= j1,..., jn−1

(γ jn − xn),

x = (x1, . . . ,xn) ∈ R
n. (10.4.45)

It follows from the multivariate polynomial structure of (10.4.45), together with the mul-

tivariate extension of the Taylor expansion polynomial identity (10.1.11), as well as

(10.4.35), that

F(x) =
n

∑
�=0

1
�! ∑

{ν1,...,ν�}∈ per�{1,...,n}

∂ �F
∂xν1 . . .∂xν�

(0)
�

∏
k=1

xνk ,

x = (x1, . . . ,xn) ∈ R
n. (10.4.46)

By using (10.4.44),(10.4.37), (10.4.35) and (10.4.38), as well as the first line of (10.4.40),

we obtain

F(0) = ∑
{ j1,..., jn}∈per{1,...,n}

n

∏
k=1

γ jk

= n! ∑
{ j1,..., jn}∈comn{1,...,n}

n

∏
k=1

γ jk = n!hn(γ1, . . . ,γn). (10.4.47)

Next, for �∈ {0, . . . ,n}, and any distinct integer sequence {ν1, . . . ,ν�} ⊂ {1, . . . ,n}, by not-

ing also that the order in which the components of x = (x1, . . . ,xn) appear in the definition

(10.4.44) can be permuted arbitrarily without changing F(x), we deduce from (10.4.45),

(10.4.35), (10.4.36), (10.4.38) and (10.4.40) that

∂ �F
∂xν1 . . .∂xν�

(0)

= (−1)�
n

∑
ν1=1

. . .
n

∑
ν�=1;ν� �=ν1,...,ν�−1

[
n

∑
ν�+1=1;ν�+1 �=ν1,...,ν�

γν�+1 . . .
n

∑
νn=1;νn �=ν1,...,νn−1

γνn

]

= (−1)��!

[
n

∑
ν�+1=1;ν�+1 �=ν1,...,ν�

γν�+1 . . .
n

∑
νn=1;νn �=ν1,...,νn−1

γνn

]

= (−1)��! ∑
{ν1,...,νn−�}∈pern−�{1,...,n}

n−�

∏
k=1

γνk

= (−1)��!(n− �)! ∑
{ν1,...,νn−�}∈comn−�{1,...,n}

n−�

∏
k=1

γνk

= (−1)��!(n− �)!hn−�(γ1, . . . ,γn), (10.4.48)
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whereas, for any non-distinct integer sequence {ν1, . . . ,ν�} ⊂ {1, . . . ,n}, with 2 � �� n, it

follows from (10.4.45) that

∂ �F
∂xν1 . . .∂xν�

(x) = 0, x = (x1, . . . ,xn) ∈R
n. (10.4.49)

By using (10.4.47), (10.4.48) and (10.4.49) in (10.4.46), and setting x = β = (β1, . . . ,βn),

we deduce from (10.4.35), (10.4.36), (10.4.38) and (10.4.40) that

F(β ) =
n

∑
�=0

(−1)�(n− �)!hn−�(γ1, . . . ,γn) ∑
{ν1,...,ν�}∈per�{1,...,n}

�

∏
k=1

βνk

=
n

∑
�=0

(−1)�(n− �)!hn−�(γ1, . . . ,γn)

[
�! ∑

{ν1,...,ν�}∈com�{1,...,n}

�

∏
k=1

βνk

]

=
n

∑
�=0

(−1)�(n− �)!�!hn−�(γ1, . . . ,γn)h�(β1, . . . ,βn)

= (−1)n
n

∑
�=0

(−1)��!(n− �)!h�(γ1, . . . ,γn)hn−�(β1, . . . ,βn). (10.4.50)

The desired result (10.4.42) is now an immediate consequence of (10.4.43), (10.4.44) and

(10.4.50). �
For j ∈ {−m, . . . ,r} and k ∈ { j, . . . , j+m}, we now apply the formula (10.4.42) in Theo-

rem 10.4.5, with n = m, and

{β1, . . . ,βm} = {τ j, . . . ,τ j+m} \ {τk};

{γ1, . . . ,γm} = {τ j+1, . . . ,τ j+m},

⎫⎬⎭ (10.4.51)

to deduce from (10.4.32), (10.4.28) and (10.4.3) the following explicit formulation of the

coefficient sequence in Theorem 10.4.4.

Theorem 10.4.6. In Theorem 10.4.4, the coefficient sequence {αm, j,k : k = j, . . . , j+m; j =

−m, . . . ,r} satisfies the explicit formulation

αm, j, j+k =
1

m!

∑
{ν0,...,νm}\{νk}∈per{1,...,m}

m

∏
k �=�=0

(τ j+ν� − τ j+�)

m

∏
k �=�=0

(τ j+k − τ j+�)

,

k = 0, . . . ,m; j =−m, . . . ,r. (10.4.52)

Example 10.4.1. (a) For m = 1, we calculate by means of (10.4.52) that, for j =−1, . . . ,r,

α1, j, j = 0 ; α1, j, j+1 = 1, (10.4.53)
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which, together with (10.4.31), yields the approximation operator

(S QI
1,r f )(x) =

r+1

∑
j=0

f (τ j)N1, j−1(x), x ∈ [a,b], f ∈C[a,b]. (10.4.54)

Also, by inserting the coefficient values (10.4.53) into (10.4.34), we find that U1,−1 is the

zero function, whereas

U1,k(x) = N1,k−1(x), k = 0, . . . ,r+ 1, (10.4.55)

which, together with (10.4.33), and (10.4.12), (10.4.13), is consistent with (10.4.54). Ob-

serve from (10.4.54) and (10.2.50) that

(S QI
1,r f )(τk) = f (τk), k = 0, . . . ,r+ 1, (10.4.56)

that is, S QI
1,r f is the piecewise linear interpolant of f with respect to the interpolation points

{τ0, . . . ,τr+1}, and thus

S QI
1,r f = f , f ∈ π1, (10.4.57)

as also guaranteed by Theorem 10.4.4.

(b) For m = 2, an application of (10.4.52) yields (see Exercise 10.42) the coefficients

α2, j, j = −1
2

(τ j+2 − τ j+1)
2

(τ j+1 − τ j)(τ j+2 − τ j)
,

α2, j, j+1 =
1
2

τ j+2 − τ j

τ j+1 − τ j
,

α2, j, j+2 =
1
2

τ j+1 − τ j

τ j+2 − τ j
,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
j =−2, . . . ,r, (10.4.58)

from which, together with (10.4.34) in Theorem 10.4.4, we obtain, for x ∈ [a,b], the for-

mulas

U2,−2(x) = −1
2

(τ0 − τ−1)
2

(τ−1 − τ−2)(τ0 − τ−2)
N2,−2(x);

U2,−1(x) =
1
2

τ0 − τ−2

τ−1 − τ−2
N2,−2(x)− 1

2
(τ1 − τ0)

2

(τ0 − τ−1)(τ1 − τ−1)
N2,−1(x);

U2,k(x) =
1
2

τk−1 − τk−2

τk − τk−2
N2,k−2(x)+

1
2

τk+1 − τk−1

τk − τk−1
N2,k−1(x)

−1
2

(τk+2 − τk+1)
2

(τk+1 − τk)(τk+2 − τk)
N2,k(x), k = 0, . . . ,r;

U2,r+1(x) =
1
2

τr − τr−1

τr+1 − τr−1
N2,r−1(x)+

1
2

τr+2 − τr

τr+1 − τr
N2,r(x);

U2,r+2(x) =
1
2

τr+1 − τr

τr+2 − τr
N2,r(x).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10.4.59)

According to (10.4.33) in Theorem 10.4.4, as well as (10.4.12), (10.4.13), together with

(5.1.2) and the Lagrange interpolation formula (1.2.5) in Theorem 1.2.2, and the definition
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(1.2.1) of the Lagrange fundamental polynomials, we obtain, for any f ∈ C[a,b], and x ∈
[a,b], the approximation operator formulation

(S QI
2,r f )(x) =

−1

∑
k=−2

[
2

∑
j=0

{
2

∏
j �=�=0

τk − τ�
τ j − τ�

}
f (τ j)

]
U2,k(x)+

r+1

∑
k=0

f (τk)U2,k(x)

+

[
r+1

∑
j=r−1

{
r+1

∏
j �=�=r−1

τr+2 − τ�
τ j − τ�

}
f (τ j)

]
U2,r+2(x), (10.4.60)

with the splines {Um,k : k =−2, . . . ,r+2} defined as in (10.4.59), and for which, according

to Theorem 10.4.4, it holds that

S QI
2,r f = f , f ∈ π2. (10.4.61)

For the case of the integer knot sequence as in (10.2.31), where [a,b] = [0,r + 1], and

satisfying (10.2.67), that is,

τ j = j, j =−2, . . . ,r+ 3, (10.4.62)

it follows from (10.4.59), together with (10.2.68) in Theorem 10.2.7, and with N2 denoting

the quadratic cardinal B-spline as defined in (10.2.69), that (see Exercise 10.42), for any

x ∈ [0,r+ 1],

U2,−2(x) = − 1
4 N2(x+ 2);

U2,−1(x) = N2(x+ 2)− 1
4 N2(x+ 1);

U2,k(x) = 1
4 N2(x+ 2− k)+N2(x+ 1− k)− 1

4 N2(x− k), k = 0, . . . ,r;

U2,r+1(x) = 1
4 N2(x− r+ 1)+N2(x− r);

U2,r+2(x) = 1
4 N2(x− r),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(10.4.63)

and, from (10.4.60), for any f ∈C[0,r+ 1], and x ∈ [0,r+ 1],

(S QI
2,r f )(x) = [6 f (0)− 8 f (1)+ 3 f (2)]U2,−2(x)+ [3 f (0)− 3 f (1)+ f (2)]U2,−1(x)

+
r

∑
k=0

f (k)U2(x− k)+ f (r+ 1)U2,r+1(x)

+[3 f (r+ 1)− 3 f (r)+ f (r− 1)]U2,r+2(x), (10.4.64)

where, according to the middle line of (10.4.63),

U2(x) := 1
4 N2(x+ 2)+N2(x+ 1)− 1

4 N2(x). (10.4.65)

Observe from (10.4.64) and (10.4.65), together with (10.4.63), that

(S QI
2,r f )(x) =

2

∑
k=0

f (k)Ũ2,k(x)+
r−2

∑
k=3

f (k)U2(x− k)+
r+1

∑
k=r−1

f (k)Ũ2,k(x),

x ∈ [0,r+ 1], f ∈C[0,r+ 1], (10.4.66)
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where

Ũ2,0(x) := 7
4 N2(x+ 2)+ 1

4 N2(x+ 1)− 1
4 N2(x);

Ũ2,1(x) := −N2(x+ 2)+N2(x+ 1)+N2(x)− 1
4 N2(x− 1);

Ũ2,2(x) := 1
4 N2(x+ 2)− 1

4 N2(x+ 1)+ 1
4 N2(x)+N2(x− 1)− 1

4 N2(x− 2);

Ũ2,r−1(x) := 1
4 N2(x− r+ 3)+N2(x− r+ 2)− 1

4 N2(x− r+ 1)+ 1
4 N2(x− r);

Ũ2,r(x) := 1
4 N2(x− r+ 2)+N2(x− r+ 1)−N2(x− r);

Ũ2,r+1(x) := 1
4 N2(x− r+ 1)+ 7

4 N2(x− r),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(10.4.67)

with the spline U2 defined by (10.4.65), and by recalling also the convention
j0

∑
j= j1

a j := 0,

if j0 < j1, according to which the middle sum in (10.4.66), that is, the sum containing the

spline U2, is non-vanishing only for r � 5.

(c) For m = 3 and [a,b] = [0,r+ 1] in (10.2.31), and with the knot sequence chosen as the

integers as in (10.2.67), that is,

τ j = j, j =−3, . . . ,r+ 4, (10.4.68)

the formula (10.4.52) yields (see Exercise 10.45) the coefficient values

α3, j, j = 0;

α3, j, j+1 =− 1
6 ; α3, j, j+2 =

4
3 ; α3, j, j+3 =− 1

6 ,

⎫⎬⎭ j =−3, . . . ,r, (10.4.69)

from which, together with (10.4.34) in Theorem 10.4.4, as well as (10.2.68) in Theo-

rem 10.2.7, we obtain (see Exercise 10.45)

U3,−3(x) = the zero function;

U3,−2(x) = − 1
6 N3(x+ 3);

U3,−1(x) = 4
3 N3(x+ 3)− 1

6 N2(x+ 2);

U3,k(x) = − 1
6 N3(x+ 3− k)+ 4

3 N3(x+ 2− k)− 1
6 N3(x+ 1− k),

k = 0, . . . ,r+ 1;

U3,r+2(x) = − 1
6 N3(x− r+ 1)+ 4

3 N3(x− r);

U3,r+3(x) = − 1
6 N3(x− r).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10.4.70)

By using the formula (10.4.33) in Theorem 10.4.4, together with (10.4.12), (10.4.13), as

well as the Lagrange interpolation formula (1.2.5) in Theorem 1.2.2, the definition (1.2.1)

of the Lagrange fundamental polynomials, and the first line of (10.4.70), we deduce that

(see Exercise 10.45), for any f ∈C[0,r+ 1], and x ∈ [0,r+ 1],

(S QI
3,r f )(x) = [10 f (0)− 20 f (1)+ 15 f (2)− 4 f (3)]U3,−2(x)
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+ [4 f (0)− 6 f (1)+ 4 f (2)− f (3)]U3,−1(x)+
r+1

∑
k=0

f (k)U3(x− k)

+ [4 f (r+ 1)− 6 f (r)+ 4 f (r− 1)− f (r− 2)]U3,r+2(x)

+ [10 f (r+ 1)− 20 f (r)+ 15 f (r− 1)− 4 f (r− 2)]U3,r+3(x), (10.4.71)

where, according to the fourth line of (10.4.70),

U3(x) :=− 1
6 N3(x+ 3)+ 4

3 N3(x+ 2)− 1
6 N3(x+ 1). (10.4.72)

Observe from (10.4.71), (10.4.72) and (10.4.70) that

(S QI
3,r f )(x) =

3

∑
k=0

f (k)Ũ3,k(x)+
r−3

∑
k=4

f (k)U3(x− k)+
r+1

∑
k=r−2

f (k)Ũ3,k(x),

x ∈ [0,r+ 1], f ∈C[0,r+ 1], (10.4.73)

where

Ũ3,0(x) := 7
2 N3(x+ 3)+ 2

3 N3(x+ 2)− 1
6 N3(x+ 1);

Ũ3,1(x) := − 14
3 N3(x+ 3)+ 5

6 N3(x+ 2)+ 4
3 N3(x+ 1)− 1

6 N3(x);

Ũ3,2(x) := 17
6 N3(x+ 3)− 2

3 N3(x+ 2)− 1
6 N3(x+ 1)+ 4

3 N3(x)− 1
6 N3(x− 1);

Ũ3,3(x) := − 2
3 N3(x+ 3)+ 1

6 N3(x+ 2)− 1
6 N3(x)+ 4

3 N3(x− 1)− 1
6 N3(x− 2);

Ũ3,r−2(x) := − 1
6 N3(x− r+ 5)+ 4

3 N3(x− r+ 4)− 1
6 N3(x− r+ 3)

+ 1
6 N3(x− r+ 1)− 2

3 N3(x− r);

Ũ3,r−1(x) := − 1
6 N3(x− r+ 4)+ 4

3 N3(x− r+ 3)− 1
6 N3(x− r+ 2)

− 2
3 N3(x− r+ 1)+ 17

6 N3(x− r);

Ũ3,r(x) := − 1
6 N3(x− r+ 3)+ 4

3 N3(x− r+ 2)+ 5
6 N3(x− r+ 1)

− 14
3 N3(x− r);

Ũ3,r+1(x) := − 1
6 N3(x− r+ 2)+ 2

3 N3(x− r+ 1)+ 7
2 N3(x− r),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10.4.74)

with the spline U3 defined by (10.4.72). Note that the middle sum in (10.4.73), that is, the

sum containing U3, is non-vanishing only for r � 7. �

10.5 Local spline interpolation

The non-local interpolation operator S I
m,n of Section 10.3 is exact on the whole spline

space σm([a,b]; τ1, . . . ,τn−m), but not local, whereas the local quasi-interpolation operator
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S QI
m,r of Section 10.4 is exact on the smaller space πm, but interpolatory (at the spline knots

{τ0, . . . ,τr+1}) only for m = 1, as follows from (10.4.56) in Example 10.4.1(a). In this

section, we shall establish an explicitly formulated local spline interpolation operator, with

exactness on πm.

To this end, for positive integers m and n such that

n � m, (10.5.1)

we choose r = nm− 1 in (10.2.31), (10.2.32), thereby yielding, for an arbitrary bounded

interval [a,b], a knot sequence {τ−m, . . . ,τ(n+1)m} satisfying

τ−m < · · ·< τ0 := a < τ1 < · · ·< τnm−1 < b =: τnm < · · ·< τ(n+1)m, (10.5.2)

and, for positive integers p and q such that

p+ q = m, (10.5.3)

we let {x−p, . . . ,xn+q} be any sequence satisfying

x−p < · · ·< x0 := a < x1 < · · ·xn−1 < b =: xn < · · ·< xn+q, (10.5.4)

with, moreover,

x j = τm j , j = 0, . . . ,n. (10.5.5)

We shall construct a spline sequence

{Vk : k =−p, . . . ,n+ q} ⊂ σm([a,b]; τ1, . . . ,τnm−1) (10.5.6)

satisfying the properties

(a)

Vk(x) = 0, x ∈ [a,b]\ (xk−q−1,xk+p+1), k =−p, . . . ,n+ q; (10.5.7)

(b)

Vk(x j) = δk− j, j = 0, . . . ,n; k =−p, . . . ,n+ q; (10.5.8)

(c)
n+q

∑
k=−p

P(xk)Vk(x) = P(x), x ∈ [a,b], P ∈ πm, (10.5.9)
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and in terms of which we shall then define the approximation operator

S : C[a,b]→ σm([a,b];τ1, . . . ,τnm−1) (10.5.10)

by

(S f )(x) :=
n+q

∑
k=−p

f (xk)Vk(x), x ∈ [a,b], f ∈C[a,b], (10.5.11)

where, analogously to (10.4.12), (10.4.13), the function values { f (xk) : k = 0, . . . ,n} are

extended to { f (xk) : k =−p, . . . ,n+ q} according to the polynomial extrapolation method

f (xk) :=

⎧⎨⎩ (P I
m f )(xk), k =−p, . . . ,−1;

(P̃ I
m f )(xk), k = n+ 1, . . . ,n+ q,

(10.5.12)

with P I
m f and P̃ I

m f denoting, as in (5.1.2), the polynomials in πm interpolating f at,

respectively, the point sequences {x0, . . . ,xm} and {xn−m, . . . ,xn}, that is,

P I
m f ∈ πm ; P̃ I

m f ∈ πm,

with

(P I
m f )(xk) = f (xk), k = 0, . . . ,m;

(P̃ I
m f )(xk) = f (xk), k = n−m, . . . ,n.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(10.5.13)

It is immediately evident from the definition (10.5.11), (10.5.12), together with Theo-

rem 5.1.1(a), that S is linear. Also, observe from (10.5.11), (10.5.7) and (10.5.3) that

S is a local approximation operator, in the sense that, for any fixed x ∈ [a,b], the value of

(S f )(x) is independent of the function values { f (x) : x ∈ [a,b]\ [xκ ,xλ ]}, where κ and λ
are integers such that λ −κ � m+ 2.

Moreover, (10.5.11) and (10.5.8) imply that S is an interpolation operator, with

(S f )(x j) = f (x j), j = 0, . . . ,n, f ∈C[a,b], (10.5.14)

whereas, according to (10.5.11), (10.5.12) and (10.5.9), as well as Theorem 5.1.1(b), S is

exact on πm, that is,

(S f )(x) = f (x), x ∈ [a,b], f ∈ πm. (10.5.15)

Our first step is to establish the following general result, according to which the interpola-

tory property (10.5.8) is guaranteed if {V−p, . . . ,Vn+q} satisfies (10.5.7) and (10.5.9).

Theorem 10.5.1. For positive integers m,n, p and q as in (10.5.1), (10.5.3), let

{V−p, . . . ,Vn+q} denote a function sequence in C[a,b] such that the properties (10.5.7) and

(10.5.9) are satisfied. Then the interpolatory property (10.5.8) is satisfied by the sequence

{V−p, . . . ,Vn+q}.
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Proof. Let j ∈ {0, . . . ,n} be fixed. It follows from (10.5.9) and (10.5.7) that

j+q

∑
k= j−p

x�kVk(x j) = x�j, �= 0, . . . ,m, (10.5.16)

or equivalently, in matrix-vector notation,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1

x j−p x j−p+1 · · · x j+q

x2
j−p x2

j−p+1 · · · x2
j+q

...
...

...

xm
j−p xm

j−p+1 · · · xm
j+q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
Vj−p(x j)

Vj−p+1(x j)
...

Vj+q(x j)

⎤⎥⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

x j

x2
j
...

xm
j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10.5.17)

It follows from (10.5.3) that the matrix in (10.5.17) is a square (m+ 1)× (m+ 1) matrix.

Analogously to the argument leading from (10.4.23) to (10.4.30) (see Exercise 10.46), we

now use the fact that the matrix in (10.5.17) is the transpose of an invertible Vandermonde

matrix, and apply the Taylor expansion polynomial identity (10.1.11), with c= 0, to deduce

that, with {Lm,k : k = j− p, . . . , j+q} denoting the Lagrange fundamental polynomials with

respect to the interpolation points {x j−p, . . . ,x j+q}, as obtained from (1.2.1), we have, for

any k ∈ { j− p, . . . , j+ q},

Vk(x j) =
n

∑
�=0

L(�)
m,k(0)

�!
x�j = Lm,k(x j) = δk− j, (10.5.18)

by virtue of (1.2.3) in Theorem 1.2.1(a). It then follows from (10.5.18) and (10.5.7) that

the interpolatory condition (10.5.8) is indeed satisfied. �
Based on Theorem 10.5.1, we therefore proceed to obtain a spline sequence

{V−p, . . . ,Vn+q} satisfying the properties (10.5.6), (10.5.7) and (10.5.9). To this end, for

a sequence

{λ j,k}= {λm j+ρ ,k : k = j− p+1, . . . , j+q+1; j =−1, . . . ,n−1; ρ = 0, . . . ,m−1} ⊂R,

(10.5.19)

we define

Vk(x) :=
min{m(k+p)−1,nm−1}

∑
j=max{m(k−q−1),−m}

λ j,kNm, j(x), x ∈ [a,b], k =−p, . . . ,n+ q, (10.5.20)

with the B-spline sequence

{Nm,−m, . . . ,Nm,nm−1} ⊂ σm(τ−m, . . . ,τ(n+1)m) (10.5.21)



340 Mathematics of Approximation

defined by (10.2.32) in terms of a knot sequence {τ−m, . . . ,τ(n+1)m} as in (10.5.2) and

(10.5.5). Observe that, with the spline sequence {V−p, . . . ,Vn+q} given by (10.5.20), the

spline approximation operator S in (10.5.11) satisfies the formulation

(S f )(x) =
m−1

∑
ρ=0

n−1

∑
j=−1

[
j+q+1

∑
k= j−p+1

λm j+ρ ,k f (xk)

]
Nm,m j+ρ(x),

x ∈ [a,b], f ∈C[a,b]. (10.5.22)

It follows from (10.5.20), together with the second line of (10.2.33) in Theorem 10.2.2(a),

as well as (10.5.3), that the spline sequence {V−p, . . . ,Vn+q} satisfies the conditions (10.5.6)

and (10.5.7).

Next, we deduce from (10.5.11), (10.5.22), together with the identity (10.4.4) in Theo-

rem 10.4.2, with r = nm− 1, that the polynomial exactness condition (10.5.9) holds if and

only if the sequence (10.5.19) satisfies

m−1

∑
ρ=0

n−1

∑
j=−1

[
j+q+1

∑
k= j−p+1

x�kλm j+ρ ,k − (−1)�
�!
m!

g(m−�)
m,m j+ρ(0)

]
Nm,m j+ρ(x),x ∈ [a,b], �= 0, . . . ,m,

which, in view of Theorem 10.2.2(d), with r = nm− 1, is equivalent to

j+q+1

∑
k= j−p+1

x�kλm j+p,k = (−1)�
�!
m!

g(m−�)
m,m j+ρ(0),

�= 0, . . . ,m; j =−1, . . . ,n− 1; ρ = 0, . . . ,m− 1. (10.5.23)

Note from (10.5.3) that, for any fixed ρ ∈ {0, . . . ,m − 1} and j ∈ {−1, . . . ,n − 1}, the

linear system (10.5.23) consists of m+ 1 equations in the m+ 1 unknowns {λm j+ρ ,k : k =

j − p+ 1, . . . , j + q+ 1}. Moreover, since (10.5.23) has a similar structure to the linear

system (10.4.22), we may now argue as in the steps leading from (10.4.22) to (10.4.52) (see

Exercise 10.47) to explicitly solve the linear system (10.5.23), and thereby, after recalling

also Theorem 10.5.1, completing the proof of the following result (see also Exercise 10.48).

Theorem 10.5.2. For positive integers m,n, p and q as in (10.5.1), (10.5.3), and sequences

{τ−m, . . . ,τ(n+1)m},{x−p, . . . ,xn+q} satisfying (10.5.2), (10.5.4), let the spline approxima-

tion operator S LI
m,n : C[a,b]→ σm([a,b];τ1, . . . ,τnm−1) be defined by

(S LI
m,n f )(x) :=

m−1

∑
ρ=0

n−1

∑
j=−1

[
j+q+1

∑
k= j−p+1

λm,m j+ρ ,k f (xk)

]
Nm,m j+ρ (x),

x ∈ [a,b], f ∈C[a,b], (10.5.24)
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where the function values { f (xk) : k = 0, . . . ,n} are extended to { f (xk) : k =−p, . . . ,n+q}
by means of the polynomial extrapolation method (10.5.12), (10.5.13); where the coefficient

sequence (10.5.19) is given by

λm,m j+ρ , j+k :=
1

m!

∑
{ν−p+1,...,νq+1}\{νk}∈per{1,...,m}

q+1

∏
k �=�=−p+1

(τm j+ρ+ν� − x j+�)

q+1

∏
k �=�=−p+1

(x j+k − x j+�)

,

k =−p+ 1, . . . ,q+ 1; j =−1, . . . ,n− 1; ρ = 0, . . . ,m− 1, (10.5.25)

and, moreover, where {Nm,−m, . . . ,Nm,nm−1} is the B-spline sequence, as in (10.2.32), with

respect to the knot sequence {τ−m, . . . ,τnm−1}. Then S LI
m,n is linear, and S LI

m,n is a local

interpolation operator, with

(S LI
m,n f )(x j) = f (x j), j = 0, . . . ,n, f ∈C[a,b], (10.5.26)

and such that the polynomial exactness condition

(S LI
m,nP)(x) = P(x), x ∈ [a,b], P ∈ πm, (10.5.27)

is satisfied. Also, S LI
m,n satisfies the formulation

(S LI
m,n f )(x) =

n+q

∑
k=−p

f (xk)Vm,k(x), x ∈ [a,b], f ∈C[a,b], (10.5.28)

where the splines {Vm,−p, . . . ,Vm,n+q} are given by

Vm,k(x) :=
min{m(k+p)−1,nm−1}

∑
j=max{m(k−q−1),−m}

λm, j,kNm, j(x), x ∈ [a,b], k =−p, . . . ,n+ q, (10.5.29)

and satisfy the properties (10.5.6) - (10.5.9), with Vk =Vm,k,k =−p, . . . ,n+ q.

We proceed to show that, in certain neighbourhoods of the endpoints of the interval [a,b],

the interpolation operator S LI
m,n of Theorem 10.5.2 corresponds to the polynomial interpo-

lation operators Pm and P̃m in (10.5.13), as follows.

Theorem 10.5.3. The local spline interpolation operator S LI
m,n of Theorem 10.5.2 satisfies

the formulation

(S LI
m,n f )(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(P I

m f )(x), x ∈ [a,xp],

n

∑
k=0

f (xk)Vm,k(x), x ∈ (xp,xn−q) (if n > m),

(P̃ I
m f )(x), x ∈ [xn−q,b],

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ f ∈C[a,b], (10.5.30)

with P I
m and P̃ I

m denoting the polynomial interpolation operators as in (10.5.13)



342 Mathematics of Approximation

Proof. Let f ∈C[a,b], and suppose first

x ∈ [a,xp] = [x0,xm−q], (10.5.31)

from (10.5.4) and (10.5.3), according to which it follows from (10.5.28) and (10.5.7) that

(S LI
m,n f )(x) =

m

∑
k=−p

f (xk)Vm,k(x). (10.5.32)

Next, observe from the first line of (10.5.12), as well as the middle line of (10.5.13), that

f (xk) = (P I
m f )(xk), k =−p, . . . ,m. (10.5.33)

By using the notation P I
m f := PI

m as in (5.1.2), we deduce from (10.5.32) and (10.5.33),

together with (10.5.27), and PI
m ∈ πm, that

m

∑
k=−p

f (xk)Vm,k(x) =
m

∑
k=−p

(P I
m f )(xk)Vm,k(x) = (S LI

m,nPI
m)(x) = PI

m(x) = (P I
m f )(x),

which, together with (10.5.32), proves the first line of (10.5.30). The middle line of

(10.5.30) is an immediate consequence of (10.5.28) and (10.5.7), together with (10.5.3),

whereas the proof of the third line of (10.5.30) is similar to the proof of the first line of

(10.5.30). �
For the case n = m, we note from (10.5.30), (10.5.13) and (10.5.3) that S LI

m,m = P I
m =

P̃ I
m, according to which S LI

m,n, with n � m, can be interpreted as a spline extension of the

polynomial interpolation operator P I
m.

We observe furthermore that, since S LI
m,n f ∈ σm([a,b];τ1, . . . ,τnm−1) for each f ∈ C[a,b],

it follows from (10.2.29) that

S LI
m,n f ∈Cm−1[a,b], f ∈C[a,b], (10.5.34)

according to which the piecewise formulation in (10.5.30) yields, for each f ∈ C[a,b], an

interpolant S LI
m,n f with m− 1 continuous derivatives also at the breakpoints xp and xn−q in

(a,b).

We proceed to derive, for n � 2m+1, a convenient expression of the formulation (10.5.30)

in Theorem 10.5.3, as follows. Let {Lm,k : k = 0, . . . ,m} and {L̃m,n−k : k = 0, . . . ,m} denote

the Lagrange fundamental polynomial sequences corresponding to, respectively, the point

sequences {x0, . . . ,xm} and {xn, . . . ,xn−m}, that is, from (1.2.1),

Lm,k(x) :=
m

∏
k �=�=0

x− x�
xk − x�

, k = 0, . . . ,m;

L̃m,n−k(x) :=
m

∏
k �=�=0

x− xn−�

xn−k − xn−�
, k = 0, . . . ,m.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (10.5.35)
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It follows from (10.5.30) in Theorem 10.5.3, together with the Lagrange interpolation for-

mula (1.2.5) in Theorem 1.2.2, as well as (5.1.2), that

(S LI
m,n f )(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

m

∑
k=0

f (xk)Lm,k(x), x ∈ [a,xp],

n

∑
k=0

f (xk)Vm,k(x), x ∈ (xp,xn−q) (if n > m),

m

∑
k=0

f (xn−k)L̃m,n−k(x), x ∈ [xn−q,b],

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
f ∈C[a,b],

(10.5.36)

and by means of which we can now prove the following representation formula for S LI
m,n.

Theorem 10.5.4. For n � 2m+ 1, the local spline interpolation operator S LI
m,n of Theo-

rem 10.5.2 satisfies the formulation

(S LI
m,n f )(x) =

n

∑
k=0

f (xk)Wm,k(x), x ∈ [a,b], f ∈C[a,b], (10.5.37)

where the function sequence {Wm,k : k = 0, . . . ,n} is given by

Wm,k(x) :=

⎧⎨⎩Lm,k(x) , x ∈ [a,xp],

Vm,k(x) , x ∈ (xp,b],

⎫⎬⎭k = 0, . . . ,m; (10.5.38)

Wm,k(x) :=Vm,k(x), k = m+ 1, . . . ,n−m− 1 (if n � 2m+ 2); (10.5.39)

Wm,n−k(x) :=

⎧⎨⎩ L̃m,n−k(x), x ∈ [xn−q,b],

Vm,n−k(x), x ∈ [a,xn−q),

⎫⎬⎭k = 0, . . . ,m, (10.5.40)

with the Lagrange fundamental polynomials {Lm,k : k = 0, . . . ,m}, {L̃m,n−k : k = 0, . . . ,m}
given as in (10.5.35), and where, moreover,

{Wm,k : k = 0, . . . ,n} ⊂ σm([a,b];τ1, . . . ,τnm−1). (10.5.41)

Proof. First, note that the formulation (10.5.37)–(10.5.40) is an immediate consequence of

(10.5.36). It therefore remains to prove (10.5.41).

To this end, for any fixed k ∈ {0, . . . ,m}∪{n−m, . . . ,n}, we choose f ∈C[a,b] such that

f (xk) = δk−�, �= 0, . . . ,n,

for which (10.5.37) then yields

(S LI
m,n f )(x) =Wm,k(x), x ∈ [a,b],

and thus, since also S LI
m,n : C[a,b]→ σm([a,b];τ1, . . . ,τnm−1), we deduce that

Wm,k ∈ σm([a,b];τ1, . . . ,τnm−1), k ∈ {0, . . . ,m}∪{n−m, . . .,n}, (10.5.42)
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which, together with (10.5.39) and (10.5.6), completes the proof of (10.5.41). �
Observe in particular from (10.5.42) and (10.2.29) that the piecewise definitions (10.5.38)

and (10.5.40) yield functions with m− 1 continuous derivatives also at the breakpoints xp

and xn−q in (a,b).

The formulation (10.5.37) in Theorem 10.5.4 enables us to show that the exactness property

(10.5.27) of S LI
m,n holds with πm replaced by a larger space, namely the range of the operator

S LI
m,n, as given in the following result.

Theorem 10.5.5. For n � 2m+1, the range of the local spline interpolation operator S LI
m,n

of Theorem 10.5.2 satisfies

range (S LI
m,n) = span{Wm, j : j = 0, . . . ,n}, (10.5.43)

with the sequence {Wm, j : j = 0, . . . ,n} defined by (10.5.38) - (10.5.40) in Theorem 10.5.4.

Moreover, range (S LI
m,n) is a subspace of the spline space σm([a,b];τ1, . . . ,τnm−1), with

πm ⊂ range (S LI
m,n); (10.5.44)

dim range (S LI
m,n) = n+ 1, (10.5.45)

and the exactness condition

(S LI
m,n f )(x) = f (x), x ∈ [a,b], f ∈ range (S LI

m,n). (10.5.46)

is satisfied.

Proof. First, observe that the results (10.5.43) and (10.5.44) are immediate conse-

quences of, respectively, (10.5.37) in Theorem 10.5.4, and (10.5.27) in Theorem 10.5.2.

Also, it follows from (10.5.43) and (10.5.41) that range (S LI
m,n) is a subspace of

σm([a,b];τ1, . . . ,τnm−1).

Next, we note from (10.5.43) that the result (10.5.45) will follow if we can show that

{Wm, j : j = 0, . . . ,n} is a linearly independent set. Hence we let the coefficient sequence

{c0, . . . ,cn} ⊂ R be such that
n

∑
k=0

ckWm,k(x) = 0, x ∈ [a,b]. (10.5.47)

Now observe from (10.5.38)–(10.5.40), together with (10.5.8), as well as (1.2.3) in Theo-

rem 1.2.1, that

Wm,k(x�) = δk−�, k, �= 0, . . . ,n. (10.5.48)
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For any fixed �∈ {0, . . . ,n}, we now choose x= x� in (10.5.47), and use (10.5.48), to obtain

0 =
n

∑
k=0

ckWm,k(x�) =
n

∑
k=0

ckδk−� = c�,

and thus c0 = · · ·= cn = 0, according to which {Wm, j : j = 0, . . . ,n} is a linearly independent

set, and it follows that (10.5.45) holds.

Finally, to prove the exactness condition (10.5.46), let f ∈ range (S LI
m,n), that is, from

(10.5.43),

f (x) =
n

∑
j=0

α jWm, j(x), x ∈ [a,b], (10.5.49)

for some coefficient sequence {α0, . . . ,αn} ⊂R. Now substitute (10.5.49) into the formula

(10.5.37) of Theorem 10.5.4, to deduce by means of (10.5.48) that, for any x ∈ [a,b],

(S LI
m,n f )(x) =

n

∑
k=0

[
n

∑
j=0

α jWm, j(xk)

]
Wm,k(x)

=
n

∑
k=0

[
n

∑
j=0

α jδ j−k

]
Wm,k(x) =

n

∑
k=0

αkWm,k(x) = f (x),

from (10.5.49), and thereby completing our proof of (10.5.46). �
The following explicit formulations follow from (10.5.38)–(10.5.40), together with

(10.5.35), and the formula (10.5.29) in Theorem 10.5.2, as well as (10.5.5), the second

line of (10.2.33) in Theorem 10.2.2(a), and (10.5.3).

Theorem 10.5.6. The splines {Wm,k : k = 0, . . . ,n}, as defined in (10.5.38)–(10.5.40) of

Theorem 10.5.4, satisfy the formulations

Wm,k(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

m

∏
k �=�=0

x− x�
xk − x�

, x ∈ [a,xp],

m(k+p)−1

∑
j=m(p−1)

λm, j,kNm, j(x), x ∈ (xp,xp+k+1),

0, x ∈ [xp+k+1,b],

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
k = 0, . . . ,m; (10.5.50)

Wm,k(x) =

⎧⎪⎪⎨⎪⎪⎩
m(k+p)−1

∑
j=m(k−q−1)

λm, j,kNm, j(x), x ∈ (xk−q−1,xk+p+1),

0, x ∈ [a,xk−q−1]∪ [xk+p+1,b],

⎫⎪⎪⎬⎪⎪⎭
k = m+ 1, . . . ,n−m− 1 (if n � 2m+ 2); (10.5.51)
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Wm,n−k(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

m

∏
k �=�=0

x− xn−�

xn−k − xn−�
, x ∈ [xn−q,b],

m(n−q)−1

∑
j=m(n−k−q−1)

λm, j,n−kNm, j(x), x ∈ (xn−q−k−1,xn−q),

0, x ∈ [a,xn−q−k−1],

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
k = 0, . . . ,m,

(10.5.52)

where the sequence

{λm, j,k}= {λm,m j+ρ ,k : k= j− p+1, . . . , j+q+1; j = p−1, . . . ,n−q−1; ρ = 0, . . . ,m−1}
(10.5.53)

is defined as in (10.5.25), and where {Nm,m(p−1), . . . ,Nm,m(n−q)−1} is the B-spline sequence,

as formulated in (10.2.32), with respect to the knot sequence {τm(p−1), . . . ,τm(n−q+1)},

which is a subsequence of the knot sequence {τ−m, . . . ,τ(n+1)m} as in (10.5.2).

In view of (10.5.6) and (10.5.3), a natural choice for the integer pair {p,q} is

p = 
 1
2(m+ 1)�; q = 
 1

2 m�, (10.5.54)

thereby, for each fixed k ∈ {−p, . . . ,n+ q}, placing the index k, for which (10.5.8) gives

Vk(xk) = Vm,k(xk) = 1, as close as possible to the middle of the index sequence {k− q−
1, . . . ,k+ p+ 1} in (10.5.7).

Example 10.5.1. (a) In Theorem 10.5.2, choose m = 1,n � 3, and, by following (10.5.54),

let p = 1,q = 0. We then calculate from (10.5.25) and (10.5.5) that, for j =−1, . . . ,n− 1,

λ1, j, j = 0; λ1, j, j+1 = 1, (10.5.55)

which, together with (10.5.24), yields the local linear spline interpolation operator

(S LI
1,n f )(x) =

n

∑
j=0

f (x j)N1, j−1(x), x ∈ [a,b], f ∈C[a,b], (10.5.56)

according to which, as expected from (10.4.56), (10.4.57) and (10.5.5), with m = 1, we

have S LI
1,n = S QI

1,r , the local linear spline quasi-interpolation operator in (10.4.54), with

r = n− 1.

(b) In Theorem 10.5.2, choose m = 2, n � 5, and, by following (10.5.54), let p = q = 1.

By using the formula (10.5.25), as well as (10.5.5), we obtain (see Exercise 10.49) the

coefficients

λ2,2 j, j =
1
2
(x j+1 − τ2 j+1)(x j+2 − x j+1)

(x j+1 − x j)(x j+2 − x j)
,

λ2,2 j, j+1 =
1
2
(τ2 j+1 − x j)(x j+2 − x j+1)+ (x j+1 − x j)(x j+2 − τ2 j+1)

(x j+1 − x j)(x j+2 − x j+1)
,

λ2,2 j, j+2 = −1
2
(x j+1 − x j)(x j+1 − τ2 j+1)

(x j+2 − x j)(x j+2 − x j+1)
,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
j = 0, . . . ,n− 2;

(10.5.57)
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λ2,2 j+1, j = −1
2
(τ2 j+3 − x j+1)(x j+2 − x j+1)

(x j+1 − x j)(x j+2 − x j)
,

λ2,2 j+1, j+1 =
1
2
(x j+1 − x j)(x j+2 − τ2 j+3)+ (τ2 j+3 − x j)(x j+2 − x j+1)

(x j+1 − x j)(x j+2 − x j+1)
,

λ2,2 j+1, j+2 =
1
2
(x j+1 − x j)(τ2 j+3 − x j+1)

(x j+2 − x j)(x j+2 − x j+1)
,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
j = 0, . . . ,n−2,

(10.5.58)

which can now be substituted into the formulas (10.5.50)–(10.5.52) to obtain the sequence

{Wm,k : k = 0, . . . ,n}, and thereby yielding the local quadratic spline interpolation operator

S LI
2,n, as formulated in (10.5.37). �

We proceed to consider the important special case of Theorem 10.5.2 where both the se-

quences (10.5.2) and (10.5.4) are equispaced, with, by keeping in mind also the constraint

(10.5.5),

τ j = a+ j
(

b− a
mn

)
, j =−m, . . . ,(n+ 1)m; (10.5.59)

x j = a+ j
(

b− a
n

)
, j =−p, . . . ,n+ q. (10.5.60)

The following result then holds.

Theorem 10.5.7. In Theorem 10.5.2, suppose that the sequences {τ−m, . . . ,τ(n+1)m} and

{x−p, . . . ,xn+q} are equispaced as in (10.5.59), (10.5.60). Then

(S LI
m,n f )(x) =

n+q

∑
k=−p

f (xk)Vm

(
mn

b− a
(x− a)−mk

)
, x ∈ [a,b], f ∈C[a,b], (10.5.61)

where the spline Vm is given by

Vm(x) :=
mp−1

∑
j=−m(q+1)

λm, jNm(x− j), (10.5.62)

with

λm,m j+ρ :=
(−1)q+1− j

(
m

p− 1− j

)
(m!)2 ∑

{ν−p+1,...,νq+1}\{ν− j}
∈per{1,...,m}

q+1

∏
− j �=�=−p+1

(
ρ +ν�

m
− �

)
,

j =−q− 1, . . . , p− 1; ρ = 0, . . . ,m− 1, (10.5.63)

and where Nm is the cardinal B-spline of degree m, as in (10.2.69) of Theorem 10.2.7.

Moreover, Vm satisfies the following properties:
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(i)

with
Vm ∈ σm,0(−m(q+ 1), . . . ,m(p+ 1)),

Vm(x) = 0, x ∈ R\ (−m(q+ 1),m(p+ 1));

}
(10.5.64)

(ii)

Vm(m j) = δ j, j ∈ Z; (10.5.65)

(iii)
∞

∑
k=−∞

P(mk)Vm(x−mk) = P(x), x ∈ R, P ∈ πm. (10.5.66)

(iv) For even m, and with p and q chosen as in (10.5.54), that is,

p = q = 1
2 m, (10.5.67)

the symmetry condition

Vm(−x) =Vm(x), x ∈R, (10.5.68)

is satisfied.

Proof. First, by applying (10.2.51) in Theorem 10.2.3, together with (10.5.59), and (3.4.2)

in Theorem 3.4.1, as well as the definition (10.2.69) in Theorem 10.2.7, we deduce that,

for any j ∈ {−m, . . . ,nm− 1} and x ∈ R, we have

Nm, j(x) =
[
− (m+ 1)(b− a)

mn

][
− (mn)m+1

(m+ 1)!(b− a)m+1

m+1

∑
k=0

(−1)k
(

m+ 1
k

)

×
(

x− a− ( j+ k)
(

b− a
mn

))m

+

⎤⎥⎦
=

1
m!

m+1

∑
k=0

(−1)k
(

m+ 1
k

)(
mn

b− a
(x− a)− j− k

)m

+

= Nm

(
mn

b− a
(x− a)− j

)
. (10.5.69)

Also, by substituting (10.5.59) and (10.5.60) into (10.5.25), and using the fact (see Exercise

10.50(a)) that
q+1

∏
k �=�=−p+1

(k− �) = (−1)q+1−k m!( m
p−1+k

) , k =−p+ 1, . . . ,q+ 1, (10.5.70)

as well as the condition (10.5.3), we obtain the formulation

λm,m j+ρ , j+k =
(−1)q+1−k

( m
p−1+k

)
(m!)2 ∑

{ν−p+1,...,νq+1}\{νk}∈per{1,...,m}

q+1

∏
k �=�=−p+1

(
ρ +ν�

m
− �

)
,

k =−p+ 1, . . . ,q+ 1; j =−1, . . . ,n− 1; ρ = 0, . . . ,m− 1. (10.5.71)
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Hence we may use (10.5.71) and (10.5.69) in (10.5.29), to obtain, for k ∈ {−p, . . . ,n+ q},

and x ∈ [a,b],

Vm,k(x) =
(−1)q+1−k

(m!)2

m−1

∑
ρ=0

min{k+p−1,n−1}
∑

j=max{k−q−1,−1}
(−1) j

(
m

p− 1+ k− j

)

×
⎡⎣ ∑
{ν−p+1,...,νq+1}\{νk− j}∈per{1,...,m}

q+1

∏
k− j �=�=−p+1

(
ρ +ν�

m
− �

)⎤⎦
×Nm

(
mn

b− a
(x− a)−m j−ρ

)

=
(−1)q+1

(m!)2

m−1

∑
ρ=0

min{p−1,n−k−1}
∑

j=max{−q−1,−k−1}
(−1) j

(
m

p− 1− j

)

×
⎡⎣ ∑
{ν−p+1,...,νq+1}\{ν− j}∈per{1,...,m}

q+1

∏
− j �=�=−p+1

(
ρ +ν�

m
− �

)⎤⎦
×Nm

(
mn

b− a
(x− a)−mk−m j−ρ

)
. (10.5.72)

Next, we apply (10.5.62), together with the second line of (10.2.33) in Theorem 10.2.2(a),

as well as (10.5.63), to deduce that, for any k ∈ {−p, . . . ,n+ q} and x ∈ [a,b],

Vm

(
mn

b− a
(x− a)−mk

)
=

min{mp−1,m(n−k)−1}
∑

j=max{−m(q+1),−m(k+1)}
λm, jNm

(
mn

b− a
(x− a)−mk− j

)

=
(−1)q+1

(m!)2

m−1

∑
ρ=0

min{p−1,n−k−1}
∑

j=max{−q−1,−k−1}
(−1) j

(
m

p− 1− j

)

×
⎡⎣ ∑
{ν−p+1,...,νq+1}\{ν− j}∈per{1,...,m}

q+1

∏
− j �=�=−p+1

(
ρ +ν�

m
− �

)⎤⎦
×Nm

(
mn

b− a
(x− a)−mk−m j−ρ

)
,

which, together with (10.5.72), yields

Vm,k(x) =Vm

(
mn

b− a
(x− a)−mk

)
, x ∈ [a,b], k =−p, . . . ,n+ q. (10.5.73)

The desired result (10.5.61) now follows from (10.5.28) in Theorem 10.5.2, together with

(10.5.73).

It remains to prove the properties (i) - (iv) of the spline Vm.



350 Mathematics of Approximation

(i) The property (10.5.64) is an immediate consequence of the definition (10.5.62), together

with (10.2.70) in Theorem 10.2.7.

(ii) For any j ∈ {0, . . . ,n} and k ∈ {−p, . . . ,n+ q}, we may apply (10.5.8) with Vk = Vm,k,

as well as (10.5.60), (10.5.72) and (10.5.73), to deduce that

δ j−k =Vm,k(x j) =Vm(m( j− k)),

which, together with the second line of (10.5.64), yields the desired interpolation property

(10.5.65).

(iii) Let P ∈ πm, and, for any fixed x ∈R, denote by � the (unique) integer for which it holds

that x ∈ [m�,m(�+ 1)), and in terms of which we now introduce the one-to-one mapping

between the intervals [m�,m(�+ 1)] and [a,b], as given by

ξ = a+
b− a
mn

(x−m�), x ∈ [m�,m(�+ 1)];

x = mn
(

ξ − a
b− a

)
+m�, ξ ∈ [a,b].

⎫⎪⎬⎪⎭ (10.5.74)

Observe that the polynomial

P�(ξ ) := P
(

mn
(

ξ − a
b− a

)
+m�

)
(10.5.75)

satisfies P� ∈ πm, and, from (10.5.75) and (10.5.60),

P�(xk) = P(m(k+ �)), k =−p, . . . ,n+ q. (10.5.76)

Hence we may apply (10.5.9) with Vk =Vm,k, together with (10.5.74), (10.5.75), (10.5.76),

(10.5.73), and finally the second line of (10.5.64), to obtain

P(x) = P�(ξ ) =
n+q

∑
k=−p

P�(xk)Vm,k(ξ )

=
n+q

∑
k=−p

P(m(k+ �))Vm

(
mn

b− a
(ξ − a)−mk

)

=
n+q+�

∑
k=−p+�

P(mk)Vm

(
mn

b− a
(ξ − a)+m�−mk

)

=
n+q+�

∑
k=−p+�

P(mk)Vm(x−mk) =
∞

∑
k=−∞

P(mk)Vm(x−mk),

which completes the proof of (10.5.66).

(iv) Suppose m = 2μ for a positive integer μ , so that (10.5.67) yields p = q = μ . Hence we

may apply (10.5.62) and (10.5.63), as well as the first line of (10.2.74) in Theorem 10.2.7,

to deduce that, for any x ∈ R,
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V2μ(−x) =
2μ2−1

∑
j=−2μ(μ+1)

λ2μ, jN2μ(2μ + 1+ x+ j)

=
(−1)μ+1

[(2μ)!]2
μ−1

∑
j=−μ−1

(−1) j
(

2μ
μ − 1− j

) 2μ−1

∑
ρ=0

∑
{ν−μ+1,...,νμ+1}\{ν− j}∈per{1,...,2μ}[

μ+1

∏
− j �=�=−μ+1

(
ρ +ν�

2μ
− �

)]
N2μ(2μ + 1+ x+ 2μ j+ρ)

=
(−1)μ+1

[(2μ)!]2
μ−1

∑
j=−μ−1

(−1) j
(

2μ
μ + 1+ j

) 2μ−1

∑
ρ=0

∑
{ν−μ+1,...,νμ+1}\{ν j+2}∈per{1,...,2μ}[

μ+1

∏
j+2 �=�=−μ+1

(
ρ +ν�

2μ
− �

)]
N2μ(x− 2μ j− (2μ− 1−ρ))

=
(−1)μ+1

[(2μ)!]2
μ−1

∑
j=−μ−1

(−1) j
(

2μ
μ − 1− j

) 2μ−1

∑
ρ=0

∑
{ν−μ+1,...,νμ+1}\{ν j+2}∈per{1,...,2μ}[

μ+1

∏
j+2 �=�=−μ+1

(
2μ − 1−ρ+ν�

2μ
− �

)]
N2μ(x− 2μ j−ρ)

=
(−1)μ+1

[(2μ)!]2
μ−1

∑
j=−μ−1

(−1) j
(

2μ
μ − 1− j

) 2μ−1

∑
ρ=0

∑
{ν−μ+1,...,νμ+1}\{ν− j}∈per{1,...,2μ}[

μ+1

∏
− j �=�=−μ+1

(−2μ − 1−ρ+ν2−�

2μ
+ �

)]
N2μ(x− 2μ j−ρ)

=
(−1)μ+1

[(2μ)!]2
μ−1

∑
j=−μ−1

(−1) j
(

2μ
μ − 1− j

) 2μ−1

∑
ρ=0

∑
{ν−μ+1,...,νμ+1}\{ν− j}∈per{1,...,2μ}[

μ+1

∏
− j �=�=−μ+1

(
ρ +(2μ + 1−ν2−�)

2μ
− �

)]
N2μ(x− 2μ j−ρ)

=
(−1)μ+1

[(2μ)!]2
μ−1

∑
j=−μ−1

(−1) j
(

2μ
μ − 1− j

) 2μ−1

∑
ρ=0

∑
{ν−μ+1,...,νμ+1}\{ν− j}∈per{1,...,2μ}[

μ+1

∏
− j �=�=−μ+1

(
ρ +ν�

2μ
− �

)]
N2μ(x− 2μ j−ρ), (10.5.77)



352 Mathematics of Approximation

by virtue of the facts that

{2− � : �=−μ + 1, . . . ,μ + 1}= {−μ + 1, . . . ,μ + 1},

and

{2μ + 1−ν2−� : ν2−� ∈ {1, . . . ,2μ}}= {1, . . . ,2μ}.

The desired result (10.5.68) is now an immediate consequence of (10.5.77), (10.5.62) and

(10.5.63). �

Example 10.5.2. In Theorem 10.5.7, let m = 2, and choose p and q as in (10.5.67), that is,

p = q = 1. Calculating by means of the formula (10.5.63), we obtain (see Exercise 10.51)

the coefficients

{λ2,−4,λ2,−3,λ2,−2,λ2,−1,λ2,0,λ2,1}= {− 1
8 ,

1
8 ,1,1,

1
8 ,− 1

8}. (10.5.78)

By substituting the coefficient values (10.5.78) into the formulation (10.5.62), we obtain

the quadratic spline

V2(x) =− 1
8 N2(x+ 4)+ 1

8 N2(x+ 3)+N2(x+ 2)+N2(x+ 1)+ 1
8 N2(x)− 1

8 N2(x− 1),

(10.5.79)

which then satisfies, according to (10.5.64)-(10.5.68) in Theorem 10.5.7, the properties

with
V2 ∈ σ2,0(−4, . . . ,4),

V2(x) = 0, x ∈ R\ (−4,4);

}
(10.5.80)

V2(2 j) = δ j, j ∈ Z; (10.5.81)

∞

∑
k=−∞

P(2k)V2(x− 2k) = P(x), x ∈ R, P ∈ π2; (10.5.82)

V2(−x) =V2(x), x ∈ R. (10.5.83)

Also, by using (10.5.79), (10.2.80) and (10.5.83), we obtain (see Exercise 10.51) the ex-

plicit formulation

V2(x) =
1

16

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

16− 7x2, x ∈ [0,1);

(x− 2)(5x− 14), x ∈ [1,2);

(x− 2)(3x− 10), x ∈ [2,3);

−(x− 4)2, x ∈ [3,4);

0, x ∈ [4,∞);

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(10.5.84)
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V2(x) =V2(−x), x ∈ (−∞,0). (10.5.85)

The corresponding local spline interpolation operator S LI
2,n is then given, according to the

formulation (10.5.61) in Theorem 10.5.7, by

(S LI
2,n f )(x) =

n+1

∑
k=−1

f (xk)V2

(
2n

b− a
(x− a)− 2k

)
, x ∈ [a,b], f ∈C[a,b], (10.5.86)

where the function values { f (xk) : k = 0, . . . ,n} are extended to { f (xk) : k =−1, . . . ,n+1}
by means of quadratic polynomial extrapolation, as in (10.5.12), (10.5.13), with m = 2.

�

Next, by combining Theorems 10.5.4, 10.5.6 and 10.5.7, with particular reference also to

(10.5.60) and (10.5.73), and by using the fact (see Exercise 10.50(b)) that
m

∏
k �=�=0

(k− �) = (−1)k m!(
m
k

) , k = 0, . . . ,m, (10.5.87)

we obtain the following alternative formulation to (10.5.61) in Theorem 10.5.7.

Theorem 10.5.8. For n � 2m+ 1, the local spline interpolation operator S LI
m,n in Theo-

rem 10.5.7 satisfies the formulation

(S LI
m,n f )(x) =

n

∑
k=0

f (xk)Wm,k(x), x ∈ [a,b], f ∈C[a,b], (10.5.88)

where the spline sequence {Wm,k : k = 0, . . . ,n} is given by

Wm,k(x) =

⎧⎪⎪⎨⎪⎪⎩
(−1)k

m!

(
m
k

) m

∏
k �=�=0

(
n

b− a
(x− a)− �

)
, x ∈ [a,xp],

Vm

(
mn

b− a
(x− a)−mk

)
, x ∈ (xp,b],

⎫⎪⎪⎬⎪⎪⎭k = 0, . . . ,m;

(10.5.89)

Wm,k(x) =Vm

(
mn

b− a
(x− a)−mk

)
, x ∈ [a,b], k = m+ 1, . . . ,n−m− 1(if n � 2m+ 2);

(10.5.90)

Wm,n−k(x)=

⎧⎪⎪⎨⎪⎪⎩
(−1)k

m!

(
m
k

) m

∏
k �=�=0

(
n

b− a
(x− a)− (n− �)

)
, x ∈ [xn−q,b],

Vm

(
mn

b− a
(x− a)−m(n− k)

)
, x ∈ [a,xn−q),

⎫⎪⎪⎬⎪⎪⎭k= 0, . . . ,m,

(10.5.91)

with Vm denoting the spline defined by (10.5.62), (10.5.63).
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10.6 Uniform convergence and error analysis

Our first objective in this section is to establish, analogously to the Weierstrass re-

sults for algebraic polynomials and trigonometric polynomials, in, respectively, Theo-

rem 3.3.4 and Theorem 9.2.1, the result that, for a fixed spline degree m, any function

f ∈C[a,b] can be approximated with arbitrary accuracy in the maximum norm by a spline

in σm([a,b];τ1, . . . ,τr), for a sufficiently dense knot sequence {τ1, . . . ,τr}.

To this end, for integers m and n such that m � 0, n � 2, and any bounded interval [a,b],

we let τn = {τn,−m, . . . ,τn,n+m} denote a knot sequence satisfying

τn,−m < · · ·< τn,0 := a < τn,1 < · · ·< τn,n−1 < b =: τn,n < · · ·< τn,n+m, (10.6.1)

and define the Schoenberg operator S SC
m,n : C[a,b]→ σm([a,b];τn,1, . . . ,τn,n−1) by

(S SC
m,n f )(x) :=

n−1

∑
j=−m

f (tn, j)Nm, j(x), x ∈ [a,b], f ∈C[a,b], (10.6.2)

where

tn, j :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max{a, 1

2 (τn, j + τn, j+m+1)}, j =−m, . . . ,−1;

1
2 (τn, j + τn, j+m+1), j = 0, . . . ,n−m− 1;

min{b, 1
2 (τn, j + τn, j+m+1)}, j = n−m, . . . ,n− 1,

(10.6.3)

and with {Nm,−m, . . . ,Nm,n−1} denoting the B-splines with respect to the knot sequence τn,

as obtained from the formulation (10.2.32). The following uniform convergence result then

holds.

Theorem 10.6.1. For a fixed non-negative integer m, let {τn = {τn,−m, . . . ,τn,n+m}, n =

2,3, . . .} denote a sequence of knot sequences satisfying the condition (10.6.1), and with,

moreover,

||τn||∞ := max{τn, j+1 − τn, j : j = 0, . . . ,n− 1}→ 0, n → ∞. (10.6.4)

Then the Schoenberg operator sequence {S SC
m,n : C[a,b]→ σm([a,b];τn,1, . . . ,τn,n−1) : n =

2,3, . . .}, as defined by (10.6.2), (10.6.3), satisfies the uniform convergence result

|| f −S SC
m,n f ||∞ := max

a�x�b
| f (x)− (S SC

m,n f )(x)| → 0, n → ∞, f ∈C[a,b]. (10.6.5)

Proof. Let f ∈C[a,b], and choose ε > 0. To prove the uniform convergence result (10.6.5),

we shall prove the equivalent statement that there exists a positive integer N = N(ε) such

that

|| f −S SC
m,n f ||∞ < ε, for n > N. (10.6.6)
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To this end, let x ∈ [a,b] and n ∈ {2,3, . . .} be fixed, and denote by k the (unique) integer in

the set {0, . . . ,n− 1} for which it holds that

x ∈ [τn,k,τn,k+1). (10.6.7)

By using (10.6.2), together with the identity (10.2.63) in Theorem 10.2.6(b), as well as

(10.6.7), (10.6.3), and the second line of (10.2.33) in Theorem 10.2.2(a), we obtain

f (x)−(S SC
m,n f )(x) =

n−1

∑
j=−m

[ f (x)− f (tn, j)]Nm, j(x)=
k

∑
j=k−m

[ f (x)− f (tn, j)]Nm, j(x). (10.6.8)

It follows from (10.6.8), together with (10.2.62) in Theorem 10.2.6(a), that

| f (x)− (S SC
m,n f )(x)| �

k

∑
j=k−m

| f (x)− f (tn, j)|Nm, j(x). (10.6.9)

Now observe from (10.6.7), (10.6.3), and the definition of ||τn||∞ in (10.6.4), that

|x− tn, j|� 1
2
(m+ 1)||τn||∞, j = k−m, . . . ,k. (10.6.10)

Since f ∈ C[a,b], we know that f is uniformly continuous on [a,b], according to which

there exists a positive number δ = δ (ε) such that

x,y ∈ [a,b], with |x− y|< δ ⇒ | f (x)− f (y)|< ε. (10.6.11)

Next, we deduce from the condition in (10.6.4) that there exists a positive number N =N(ε)
for which it holds that

||τn||∞ <
2δ

m+ 1
, n > N. (10.6.12)

It follows from (10.6.9), (10.6.10), (10.6.11) and (10.6.12) that, for n > N,

| f (x)− (S SC
m,n f )(x)|< ε

k

∑
j=k−m

Nm, j(x) = ε
n−1

∑
j=−m

Nm, j(x) = ε, (10.6.13)

after again recalling the second line of (10.2.33) in Theorem 10.2.2(a), as well as the iden-

tity (10.2.63) in Theorem 10.2.6(b), and thus

| f (x)− (S SC
m,n f )(x)| < ε, x ∈ [τn,k,τn,k+1), n > N. (10.6.14)

By noting that the right hand side of the inequality (10.6.14) is independent of k, we deduce

from (10.6.14) that

max
a�x�b

| f (x)− (S SC
m,n f )(x)|< ε, n > N,

which completes our proof of (10.6.6). �
The following analogue of the Weierstrass results in Theorem 3.3.4 and Theorem 9.2.1 is

now an immediate consequence of Theorem 10.6.1.

Theorem 10.6.2. Let f ∈ C[a,b], and let m denote any fixed non-negative integer.

Then, for each ε > 0, there exists a knot sequence {τ−m, . . . ,τr+m+1} and a spline S ∈
σm([a,b];τ1, . . . ,τr) such that

|| f − S||∞ < ε. (10.6.15)
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A function f : [a,b]→R is called a Lipschitz-continuous function on [a,b] if, analogously

to (9.6.35), there exists a constant Kf such that

| f (x)− f (y)| � Kf |x− y|, x,y ∈ [a,b]. (10.6.16)

The constant Kf in (10.6.16) is called a Lipschitz constant for f on [a,b], and the class of

all Lipschitz-continuous functions on [a,b] will be denoted by CLip[a,b]. Analogously to

(9.6.36) in Theorem 9.6.3, it can be proved that the inclusions

C1[a,b]⊂CLip[a,b]⊂C[a,b] (10.6.17)

hold.

The following error bounds can now be proved.

Theorem 10.6.3. For any integers m � 0 and n � 2, the Schoenberg operator S SC
m,n of

Theorem 10.6.1 satisfies the following error bounds:

(a)

|| f −S SC
m,n f ||∞ � 1

2 (m+ 1)||τn||∞Kf , f ∈CLip[a,b], (10.6.18)

with Kf denoting a Lipschitz constant of f on [a,b];

(b)

|| f −S SC
m,n f ||∞ � 1

2(m+ 1)||τn||∞|| f ′||∞, f ∈C1[a,b]. (10.6.19)

Proof. (a) Let f ∈ CLip[a,b], with Lipschitz constant Kf on [a,b]. For any fixed x ∈ [a,b],

and with the integer k chosen, as in the proof of Theorem 10.6.1, to satisfy (10.6.7), it

follows similarly that (10.6.9) holds, so that, since also (10.6.3) shows that {tn, j : j =

−m, . . . ,n− 1} ⊂ [a,b], we may apply (10.6.16) to the right hand side of (10.6.9) to ob-

tain

| f (x)− (S SC
m,n f )(x)| � Kf

k

∑
j=k−m

|x− tn, j|Nm, j(x). (10.6.20)

By using (10.6.7), (10.6.3), and the definition of ||τn||∞ in (10.6.4), we deduce that

|x− tn, j|� 1
2 (m+ 1)||τn||∞, j = k−m, . . . ,k. (10.6.21)

It follows from (10.6.20), (10.6.21), together with the steps leading to (10.6.13), that

| f (x)− (S SC
m,n f )(x)| � 1

2 (m+ 1)||τn||∞Kf . (10.6.22)

Since the right hand side of (10.6.22) is independent of k, the inequality (10.6.18) immedi-

ately follows.
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(b) If f ∈ C1[a,b], an application of the mean value theorem as in (9.6.37) shows that

f ∈ CLip[a,b], with Lipschitz constant Kf = || f ′||∞ on [a,b], according to which (10.6.19)

follows from (10.6.18). �
Observe from (10.6.18) and (10.6.19) in Theorem 10.6.3 that the corresponding conver-

gence rates are governed by the rate at which ||τn||∞ converges to zero in (10.6.4).

We proceed to investigate the issues of uniform convergence, and corresponding con-

vergence rate, with respect to the local spline interpolation operator S LI
m,n of Section

10.5. For integers m � 1 and n � 2m+ 1, and any bounded interval [a,b], we let τn =

{τn,−m, . . . ,τn,n+m} be a knot sequence as in (10.6.1), and denote by xn = {xn,0, . . . ,xn,n}
an interpolation point sequence such that

a =: xn,0 < · · ·< xn,n := b, (10.6.23)

and with, as in (10.5.5),

xn, j = τn,m j , j = 0, . . . ,n. (10.6.24)

According to the representation formula (10.5.37) in Theorem 10.5.4, we then have

(S LI
m,n f )(x) =

n

∑
j=0

f (xn, j)Wm, j(x), x ∈ [a,b], f ∈C[a,b], (10.6.25)

where the splines {Wm, j : j = 0, . . . ,n} are given by (10.5.50)–(10.5.52), as well as

(10.5.25), with {x j : j = 0, . . . ,n} replaced by {xn, j : j = 0, . . . ,n}. For the sequence

xn = {xn,0, . . . ,xn,n} as in (10.6.23), (10.6.24), we now define the maximum ratio

Rn := max
{ |xn, j − xn, j−1|
|xn,k − xn,k−1| : j,k = 1, . . . ,n; | j− k|= 1

}
, (10.6.26)

according to which Rn � 1, with Rn = 1 if and only if the points {xn,0, . . . ,xn,n} are equis-

paced.

We shall rely on the following uniform bound.

Theorem 10.6.4. For positive integers m and n, with n � 2m+ 1, the splines {Wm, j : j =

0, . . . ,n}, as given by (10.5.50) - (10.5.52), together with (10.5.25), satisfy the uniform

bound

||Wm, j||∞ := max
a�x�b

|Wm, j(x)|�
[

m

∑
i=1

Ri
n

]m

, j = 0, . . . ,n, (10.6.27)

with Rn denoting the maximum ratio as defined in (10.6.26).



358 Mathematics of Approximation

Proof. First, we shall show that the coefficients in (10.5.25) satisfy the uniform bound

|λm, j,k|�
[

m

∑
i=1

Ri
n

]m

, k = 0, . . . ,n; j = 0, . . . ,nm− 1. (10.6.28)

To this end, we first observe from (10.6.1), (10.6.23) and (10.6.24) that, for any j ∈
{0, . . . ,n− 1}, ρ ∈ {0, . . . ,m− 1}, ν ∈ {1, . . . ,m}, and with the positive integers p and

q chosen to satisfy (10.5.3), it holds that

|xn, j+�− τn,m j+ρ+ν |�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|xn, j+�− xn, j+2|, �=−p+ 1, . . . ,0;

max{|xn, j+1 − xn, j|, |xn, j+1 − xn, j+2|}, �= 1;

|xn, j+�− xn, j|, �= 2, . . . ,q+ 1.
(10.6.29)

In order to bound the right hand side of (10.6.29) in terms of the maximum ratio Rn, we

shall use the fact that, for any integers μ ,ν ∈ {0, . . . ,n}, we have

|xn,μ − xn,ν |�
[|μ−ν|−1

∑
i=0

Ri
n

]⎧⎨⎩ |xn,μ − xn,μ−1|, if μ > ν;

|xn,μ − xn,μ+1|, if μ < ν,
(10.6.30)

which follows immediately from the definition (10.6.26) if |μ − ν| = 1, whereas, if |μ −
ν|� 2, the definition (10.6.26) yields, for μ > ν ,

|xn,μ − xn,ν |= xn,μ − xn,ν = (xn,μ − xn,ν+2)+ (xn,ν+2 − xn,ν+1)+ (xn,ν+1 − xn,ν)

� (xn,μ − xn,ν+2)+ (1+Rn)(xn,ν+2 − xn,ν+1)

� · · ·

� (1+Rn+ · · ·+Rμ−ν−1
n )(xn,μ − xn,μ−1),

and, for μ < ν ,

|xn,μ − xn,ν |= xn,ν − xn,μ = (xn,ν − xn,ν−1)+ (xn,ν−1− xn,ν−2)+ (xn,ν−2 − xn,μ)

� (1+Rn)(xn,ν−1 − xn,ν−2)+ (xn,ν−2 − xn,μ)

� · · ·

� (1+Rn+ · · ·+Rν−μ−1
n )(xn,μ+1 − xn,μ),
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and thereby proving (10.6.30) for |μ − ν| � 2. By applying the bounds (10.6.30), with

μ = j+ �, to the right hand side of (10.6.29), we deduce the bounds

|xn, j+�− τn,m j+ρ+ν |�

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[
−�+1

∑
i=0

Ri
n

]
|xn, j+�− xn, j+�+1|, �=−p+ 1, . . . ,0;

max{|xn, j+1 − xn, j|, |xn, j+1 − xn, j+2|}, �= 1;[
�−1

∑
i=0

Ri
n

]
|xn, j+�− xn, j+�−1|, �= 2, . . . ,q+ 1.

(10.6.31)

Next, we observe from (10.6.23) that, for any k ∈ {−p+ 1, . . .,q+ 1}, we have

|xn, j+�− xn, j+k|�
⎧⎨⎩ |xn, j+�− xn, j+�+1|, if k > �;

|xn, j+�− xn, j+�−1|, if k < �.
(10.6.32)

Moreover, the definition (10.6.26) gives

|xn, j+�− xn, j+�+1| � 1
Rn

|xn, j+�− xn, j+�−1|;

|xn, j+�− xn, j+�−1| � 1
Rn

|xn, j+�− xn, j+�+1|.

⎫⎪⎬⎪⎭ (10.6.33)

Now observe from (10.5.25) that

|λm,m j+ρ ,k|� 1
m! ∑

{ν−p+1,...,νq+1}\{νk}∈per{1,...,m}

q+1

∏
k �=�=−p+1

|xn, j+�− τn,m j+ρ+ν� |
|xn, j+�− xn, j+k| . (10.6.34)

By applying the bounds (10.6.31), (10.6.32) and (10.6.33) in (10.6.34), and using the fact

that, in (10.6.34), the number of terms in the product equals p+ q = m, from (10.5.3),

whereas the number of terms in the sum equals m!, we deduce that

|λm, j,k|�
[

max{p+1,q+1}
∑
i=1

Ri
n

]m

, j = 0, . . . ,nm− 1; k = 0, . . . ,n. (10.6.35)

Since, moreover, p and q are positive integers satisfying (10.5.3), we have

max{p+ 1,q+ 1}� m, (10.6.36)

which, together with (10.6.35), yields the desired bound (10.6.28).

Our next step is to show that

m

∏
k �=�=0

|x− xn,�|
|xn,k − xn,�| �

[
m

∑
i=1

Ri
n

]m

, x ∈ [a,xn,p],

m

∏
k �=�=0

|x− xn,n−�|
|xn,n−k − xn,n−�| �

[
m

∑
i=1

Ri
n

]m

, x ∈ [xn,n−q,b],

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭k = 0, . . . ,m. (10.6.37)
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Let k ∈ {0, . . . ,m} and � ∈ {0, . . . ,m}\{k} be fixed. To prove the first line of (10.6.37), we

fix x ∈ [a,xn,p] = [xn,0,xn,p], and observe that then

|x− xn,�|� max{|xn,�− xn,0|, |xn,�− xn,p|}. (10.6.38)

By applying the bounds (10.6.30), we obtain

|xn,�− xn,0|�
[
�−1

∑
i=0

Ri
n

]
|xn,�− xn,�−1|; (10.6.39)

|xn,�− xn,p|�

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
�−p−1

∑
i=0

Ri
n

]
|xn,�− xn,�−1|, if � > p;[

p−�−1

∑
i=0

Ri
n

]
|xn,�− xn,�+1|, if � < p.

(10.6.40)

Moreover, analogously to (10.6.32) and (10.6.33),

|xn,�− xn,k|�
⎧⎨⎩ |xn,�− xn,�+1|, if k > �;

|xn,�− xn,�−1|, if k < �;
(10.6.41)

|xn,�− xn,�+1| � 1
Rn

|xn,�− xn,�−1|;

|xn,�− xn,�−1| � 1
Rn

|xn,�− xn,�+1|.

⎫⎪⎬⎪⎭ (10.6.42)

By noting also that the number of terms in the product in the first line of (10.6.37) equals

m, an application of the bounds (10.6.38)–(10.6.42) yields the first line of (10.6.37). The

proof of the second line of (10.6.37) it similar.

Finally, we deduce from the formulas (10.5.50)-(10.5.52), together with the bounds

(10.6.28) and (10.6.37), as well as (10.2.62) in Theorem 10.2.6(a), and the identity

(10.2.63) in Theorem 10.2.6(b), that the uniform bound (10.6.27) is satisfied. �
By using Theorem 10.6.4, we can now prove, analogously to Theorem 10.6.1, the following

uniform convergence result for S LI
m,n.

Theorem 10.6.5. For a fixed positive integer m, let {τn = {τn,−m, . . . ,τn,(n+1)m} : n = 2m+

1,2m+ 2, . . .} denote a sequence of knot sequences satisfying (10.6.1), and suppose {xn =

{xn,0, . . . ,xn,n} : n = 2m+ 1,2m+ 2, . . .} is a sequence of interpolation point sequences

satisfying (10.6.23) and (10.6.24), as well as the conditions

||xn||∞ := max{xn, j+1 − xn, j : j = 0, . . . ,n− 1}→ 0, n → ∞, (10.6.43)

and

Rn � R, n = 2m+ 1,2m+ 2, . . ., (10.6.44)
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for some constant R � 1, where {Rn : n = 2m+ 1,2m+ 2, . . .} is the maximum ratio se-

quence as defined in (10.6.26). Then the local spline interpolation operator sequence

{S LI
m,n : C[a,b] → σm([a,b];τn,1, . . . ,τn,nm−1) : n = 2m + 1, 2m + 2, . . .} as defined by

(10.5.24), (10.5.25) in Theorem 10.5.2, satisfies the uniform convergence result

|| f −S LI
m,n f ||∞ → 0, n → ∞, f ∈C[a,b]. (10.6.45)

Proof. Let f ∈C[a,b], and choose ε > 0. To prove (10.6.45), we shall prove the equivalent

statement that there exists a positive integer N = N(ε) such that

|| f −S LI
m,n f ||∞ < ε, for n > N. (10.6.46)

To this end, let x∈ [a,b] and n∈ {2m+1,2m+2, . . .} be fixed, and denote by k the (unique)

integer in the set {0, . . . ,n− 1} for which it holds that

x ∈ [xn,k,xn,k+1). (10.6.47)

Let the spline sequence {Wm, j : j = 0, . . . ,n} be defined as in (10.5.50)–(10.5.52). By

choosing the polynomial f in the polynomial exactness condition (10.5.27) to be identically

equal to one, we deduce from the representation formula (10.5.37) in Theorem 10.5.4,

together with (10.6.47), and the bottom lines of (10.5.50)–(10.5.52), that
n

∑
j=0

Wm, j(x) =
νk

∑
j=μk

Wm, j(x) = 1, (10.6.48)

where

μk := max{k− p,0};

νk := min{k+ q+ 1,n}.

⎫⎬⎭ (10.6.49)

Note from (10.6.49) and (10.5.3) that

0 < νk − μk � p+ q+ 2= m+ 2. (10.6.50)

By using (10.5.37) and (10.6.48), as well as the uniform bound (10.6.27) in Theo-

rem 10.6.4, and the condition (10.6.44), we deduce that

| f (x)− (S LI
m,n f )(x)| =

∣∣∣∣∣ νk

∑
j=μk

[ f (x)− f (xn, j)]Wm, j(x)

∣∣∣∣∣
�

νk

∑
j=μk

| f (x)− f (xn, j)| |Wm, j(x)|

�
[

m

∑
i=1

Ri

]m νk

∑
j=μk

| f (x)− f (xn, j)|. (10.6.51)
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Next, we use (10.6.47), (10.6.23) and (10.6.49), together with the definition in (10.6.43),

as well as (10.6.36), to obtain, for j = μk, . . . ,νk,

|x− xn, j| � max{xn,k+1 − xn,μk , xn,νk − xn,k}

� max{p+ 1,q+ 1}||xn||∞ � m||xn||∞. (10.6.52)

Since f ∈ C[a,b], we know that f is uniformly continuous on [a,b], according to which

there exists a positive number δ = δ (ε) such that

x,y ∈ [a,b], with |x− y|< δ ⇒ | f (x)− f (y)|< ε

(m+ 2)

[
m

∑
i=1

Ri

]m . (10.6.53)

Now deduce from the condition in (10.6.43) that there exists a positive integer N = N(ε)
for which it holds that

||xn||∞ <
δ
m
, n > N. (10.6.54)

It then follows from (10.6.51), (10.6.52), (10.6.53), (10.6.54), and (10.6.50), that

| f (x)− (S LI
m,n f )(x)| < ε, n > N. (10.6.55)

Since the right hand side of the inequality (10.6.55) is independent of k, we deduce that

max
a�x�b

| f (x)− (S LI
m,n f )(x)|< ε, n > N,

which is equivalent to the desired inequality (10.6.46). �
Observe that, subject to the constraints (10.6.1), (10.6.23) and (10.6.24), the condition in

(10.6.43) on the sequence {xn : n = 2m+ 1,2m+ 2, . . .} is equivalent to the condition in

(10.6.4) on the sequence {τn : n = 2,3, . . .}. Also, note from (10.6.24) that the conditions

(10.6.43) and (10.6.44) are satisfied for any choice of the knot subsequence {τn, j : j =

1, . . . ,nm− 1} \ {τn,m j : j = 1, . . . ,n− 1}.

Example 10.6.1. In the special case of an equispaced interpolation point sequence {xn, j :

j = 0, . . . ,n} satisfying (10.6.23), that is,

xn, j = a+ j
(

b− a
n

)
, j = 0, . . . ,n, (10.6.56)

it follows from the definition in (10.6.43) that

||xn||∞ =
b− a

n
, n = 2m+ 1, 2m+ 2, . . . , (10.6.57)

whereas the definition (10.6.26) yields

Rn = 1, n = 2m+ 1, 2m+ 2, . . . . (10.6.58)

It follows from (10.6.57) and (10.6.58) that the conditions in (10.6.43) and (10.6.44) are

satisfied, with R = 1, according to which Theorem 10.6.5 implies the uniform convergence

result (10.6.45) for any choice of the knot subsequence {τn, j : j = 1, . . . ,nm− 1} \ {τn,m j :

j = 1, . . . ,m− 1}. �
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By using an analogous argument to the one in the proof of Theorem 10.6.3, and in particular

by referring also to (10.6.51) and (10.6.52) in the proof of Theorem 10.6.5, we obtain the

following error bounds.

Theorem 10.6.6. For any integers m � 1 and n � 2m+ 1, the local spline interpolation

operator S LI
m,n of Theorem 10.6.5 satisfies the following error bounds:

(a)

|| f −S LI
m,n f ||∞ � m

[
m

∑
i=1

Ri

]m

||xn||∞Kf , f ∈CLip[a,b], (10.6.59)

with Kf denoting a Lipschitz constant of f on [a,b];

(b)

|| f −S LI
m,n f ||∞ � m

[
m

∑
i=1

Ri

]m

||xn||∞|| f ′||∞, f ∈C1[a,b]. (10.6.60)

Observe from (10.6.59) and (10.6.60) in Theorem 10.6.6 that, for f ∈ CLip[a,b], or f ∈
C1[a,b], the convergence rate in (10.6.45) of Theorem 10.6.5 is governed by the rate at

which ||xn||∞ converges to zero in (10.6.43).

We proceed to show how the polynomial exactness property (10.5.27) of S LI
m,n can be used

to prove that, in (10.6.45), a convergence rate proportional to (||xn||∞)m+1 is obtained for

f ∈Cm+1[a,b].

For any positive integer m, let f ∈ Cm+1[a,b], so that we may apply Taylor’s theorem, as

given in (9.3.11), with c= a, as well as the truncated power definition in (10.1.13), to obtain

f (x) =
m

∑
j=0

f ( j)(a)
j!

(x− a) j +
1

m!

∫ b

a
(x− t)m

+ f (m+1)(t)dt, x ∈ [a,b]. (10.6.61)

Let n ∈ {2m+ 1,2m+ 2, . . .} be fixed, and use the linearity of S LI
m,n, together with the

polynomial exactness property (10.5.27), as well as the representation formula (10.5.37),

to deduce from (10.6.61) that, for any x ∈ [a,b],

(S LI
m,n f )(x) =

m

∑
j=0

f ( j)(a)
j!

(x− a) j +
1

m!

n

∑
j=0

[∫ b

a
(xn, j − t)m

+ f (m+1)(t)dt
]

Wm, j(x)

=
m

∑
j=0

f ( j)(a)
j!

(x− a) j +
1

m!

∫ b

a

[
n

∑
j=0

(xn, j − t)m
+Wm, j(x)

]
f (m+1)(t)dt.

(10.6.62)

It follows from (10.6.61) and (10.6.62) that

f (x)− (S LI
m,n f )(x) =

∫ b

a
Km,n(x, t) f (m+1)(t)dt, x ∈ [a,b], (10.6.63)
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where

Km,n(x, t) :=
1

m!

[
(x− t)m

+−
n

∑
j=0

(xn, j − t)m
+Wm, j(x)

]
, x ∈ [a,b], t ∈ [a,b]. (10.6.64)

The expression (10.6.63) for the error function f −S LI
m,n is a special case of the Peano

theorem, with corresponding Peano kernel Km,n. It follows immediately from (10.6.63)

that

| f (x)− (S LI
m,n f )(x)| � || f (m+1)||∞

∫ b

a
|Km,n(x, t)|dt, x ∈ [a,b]. (10.6.65)

Let x ∈ [a,b] be fixed, and, after recalling also (10.6.23), denote by k the (unique) integer

for which it holds that

x ∈ [xn,k,xn,k+1). (10.6.66)

Now observe from the representation formula (10.5.37) of S LI
m,n, together with (10.6.66)

and the bottom lines of (10.5.50)–(10.5.52), that the polynomial exactness property

(10.5.27) of S LI
m,n implies

νk

∑
j=μk

(xn, j − t)mWm, j(x) =
n

∑
j=0

(xn, j − t)mWm, j(x) = (x− t)m, t ∈ [a,b], (10.6.67)

with, as in (10.6.49),

μk := max{k− p,0};

νk := min{k+ q+ 1,n},

⎫⎬⎭ (10.6.68)

and where also
n

∑
j=0

(xn, j − t)m
+Wm, j(x) =

νk

∑
j=μk

(xn, j − t)m
+Wm, j(x), t ∈ [a,b]. (10.6.69)

By using (10.6.64), (10.6.69), (10.6.23), (10.6.66), (10.1.13), (10.6.67), (10.6.27) in Theo-

rem 10.6.4, the definition in (10.6.43), and finally (10.6.68), we obtain
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m!
∫ b

a
|Km(x, t)|dt =

n−1

∑
�=0

∫ xn,�+1

xn,�

∣∣∣∣∣(x− t)m
+−

νk

∑
j=μk

(xn, j − t)m
+Wm, j(x)

∣∣∣∣∣dt

=
k−1

∑
�=0

∫ xn,�+1

xn,�

∣∣∣∣∣(x− t)m −
νk

∑
j=�+1

(xn, j − t)mWm, j(x)

∣∣∣∣∣dt

+

∫ x

xn,k

∣∣∣∣∣(x− t)m −
νk

∑
j=k+1

(xn, j − t)mWm, j(x)

∣∣∣∣∣dt

+

∫ xn,k+1

x

∣∣∣∣∣ νk

∑
j=k+1

(xn, j − t)mWm, j(x)

∣∣∣∣∣dt +
n−1

∑
�=k+1

∫ xn,�+1

xn,�

∣∣∣∣∣ νk

∑
j=�+1

(xn, j − t)mWm, j(x)

∣∣∣∣∣dt

=
k−1

∑
�=μk

∫ xn,�+1

xn,�

∣∣∣∣∣ �

∑
j=μk

(xn, j − t)mWm, j(x)

∣∣∣∣∣dt +
∫ x

xn,k

∣∣∣∣∣ k

∑
j=μk

(xn, j − t)mWm, j(x)

∣∣∣∣∣dt

+
∫ xn,k+1

x

∣∣∣∣∣ νk

∑
j=k+1

(xn, j − t)mWm, j(x)

∣∣∣∣∣dt +
νk

∑
�=k+1

∫ xn,�+1

xn,�

∣∣∣∣∣ νk

∑
j=�+1

(xn, j − t)mWm, j(x)

∣∣∣∣∣dt

�
[

m

∑
i=1

Ri
n

]m[ k−1

∑
�=μk

�

∑
j=μk

∫ xn,�+1

xn,�

(t − xn, j)
mdt +

k

∑
j=μk

∫ x

xn,k

(t − xn, j)
mdt

+
νk

∑
j=k+1

∫ xn,k+1

x
(xn, j − t)mdt +

νk

∑
�=k+1

νk

∑
j=�+1

∫ xn,�+1

xn,�

(xn, j − t)mdt

]

=

[
m

∑
i=1

Ri
n

]m[ k−1

∑
j=μk

k−1

∑
�= j

∫ xn,�+1

xn,�

(t − xn, j)
mdt +

k

∑
j=μk

∫ x

xn,k

(t − xn, j)
mdt

+
νk

∑
j=k+1

∫ xn,k+1

x
(xn, j − t)mdt +

νk

∑
j=k+1

j−1

∑
�=k+1

∫ xn,�+1

xn,�

(xn, j − t)mdt

]

=

[
m

∑
i=1

Ri
n

]m[ k−1

∑
j=μk

∫ xn,k

xn, j

(t − xn, j)
mdt +

k

∑
j=μk

(x− xn, j)
m+1 − (xn,k − xn, j)

m+1

m+ 1

+
νk

∑
j=k+1

(xn, j − x)m+1 − (xn, j − xn,k+1)
m+1

m+ 1
+

νk

∑
j=k+1

∫ xn, j

xn,k+1

(xn, j − t)mdt

]

<
1

m+ 1

[
m

∑
i=1

Ri
n

]m[ k−1

∑
j=μk

(xn,k − xn, j)
m+1 +

k

∑
j=μk

(xn,k+1 − xn, j)
m+1
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+
νk

∑
j=k+1

(xn, j − xn,k)
m+1 +

νk

∑
j=k+2

(xn, j − xn,k+1)
m+1

]

� 1
m+ 1

[
m

∑
i=1

Ri
n

]m

(||xn||∞)m+1

[
k−1

∑
j=μk

(k− j)m+1 +
k

∑
j=μk

(k+ 1− j)m+1

+
νk

∑
j=k+1

( j− k)m+1 +
νk

∑
j=k+2

( j− k− 1)m+1

]

<
2

m+ 1

[
m

∑
i=1

Ri
m

]m

(||xn||∞)m+1

[
(k−μk)+1

∑
j=1

jm+1 +
νk−k

∑
j=1

jm+1

]

� 2
m+ 1

[
m

∑
i=1

Ri
n

]m

(||xn||∞)m+1

[
p+1

∑
j=1

jm+1 +
q+1

∑
j=1

jm+1

]
. (10.6.70)

Since the right hand side of (10.6.70) is independent of k, we may now combine (10.6.65)

and (10.6.70) to deduce the following convergence rate result.

Theorem 10.6.7. For any integers m � 1 and n � 2m+ 1, the local spline interpolation

operator S LI
m,n of Theorem 10.6.5 satisfies the error bound

|| f −S LI
m,n f ||∞ �

2

[
m

∑
i=1

Ri

]m

(m+ 1)!

[
p+1

∑
j=1

jm+1 +
q+1

∑
j=1

jm+1

]
(||xn||∞)m+1|| f (m+1)||∞,

f ∈Cm+1[a,b]. (10.6.71)

As before, we observe that the error bound (10.6.71) is independent of the knot subsequence

{τn, j : j = 1, . . . ,nm− 1} \ {τn,m j : j = 1, . . . ,n− 1}.

Example 10.6.2. For the case of equispaced interpolation points {xn, j : j = 0, . . . ,n} as in

(10.6.56) in Example 10.6.1, we deduce from (10.6.71), (10.6.57) and (10.6.58) that

|| f −S LI
m,n f ||∞ � 2mm

(m+ 1)!

[
p+1

∑
j=1

jm+1 +
q+1

∑
j=1

jm+1

](
b− a

n

)m+1

|| f (m+1)||∞,

f ∈Cm+1[a,b]. (10.6.72)

In particular, for the quadratic spline case m = 2, and with, as in Example 10.5.1(b), the

integers p and q chosen as in (10.5.54), that is, p = q = 1, it follows from (10.6.72) that

|| f −S LI
2,n f ||∞ � 24

(
b− a

n

)3

|| f ′′′||∞, f ∈C3[a,b]. (10.6.73)

�
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10.7 Spline quadrature and the Gregory rule

According to (8.6.9) in Section 8.6, the composite Newton-Cotes quadrature rule QNC
ν,n

is obtained by approximating the integrand with a continuous, but non-smooth, piece-

wise polynomial interpolant. In this section, we investigate the interpolatory quadra-

ture rule obtained from approximating the integrand f by the local spline interpolant

S LI
m,n f ∈ Cm−1[a,b] of Theorem 10.5.8 for even m, as based on equispaced knots and in-

terpolation points, and where the integers p and q are given as in (10.5.54). For positive

integers μ ∈N and n � 4μ + 1, we therefore let

m = 2μ , (10.7.1)

and, from (10.5.54) and (10.7.1), choose

p = q = μ . (10.7.2)

Also, for any bounded interval [a,b], we define, as in (10.5.59), (10.5.60), the equi-spaced

sequences

τn, j := a+ j
(

b− a
2μn

)
, j = 0, . . . ,2μn; (10.7.3)

xn, j := a+ j
(

b− a
n

)
, j = 0, . . . ,n. (10.7.4)

According to (10.5.88)–(10.5.91) in Theorem 10.5.8, the local spline interpolation operator

S LI
2μ,n :C[a,b]→σ2μ([a,b];τn,1, . . . ,τn,2μn−1) then satisfies, for n� 4μ+1, the formulation

(S LI
2μ,n f )(x) =

n

∑
j=0

f (xn, j)W2μ, j(x), x ∈ [a,b], f ∈C[a,b], (10.7.5)

where the splines {W2μ, j : j = 0, . . . ,n} are given by

W2μ, j(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−1) j

(2μ)!

(
2μ

j

) 2μ

∏
j �=�=0

(
n

b− a
(x− a)− �

)
, x ∈ [a,xn,μ ],

V2μ

(
2μn
b− a

(x− a)− 2μ j
)
, x ∈ (xn,μ ,b],

⎫⎪⎪⎪⎬⎪⎪⎪⎭ j = 0, . . . ,2μ ;

(10.7.6)

W2μ, j(x) = V2μ

(
2μn
b− a

(x− a)− 2μ j
)
, x ∈ [a,b],

j = 2μ + 1, . . . ,n− 2μ − 1 (if n � 4μ + 2); (10.7.7)

W2μ,n− j(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−1) j

(2μ)!

(
2μ

j

) 2μ

∏
j �=�=0

(
n

b− a
(x− a)− (n− �)

)
, x ∈ [xn,n−μ ,b],

V2μ

(
2μn
b− a

(x− a)− 2μ(n− j)
)
, x ∈ [a,xn,n−μ),

⎫⎪⎪⎪⎬⎪⎪⎪⎭
j = 0, . . . ,2μ , (10.7.8)



368 Mathematics of Approximation

where, as in (10.5.62), (10.5.63), the spline V2μ is given by

V2μ(x) =
2μ2−1

∑
j=−2μ(μ+1)

λ2μ, jN2μ(x− j), (10.7.9)

with

λ2μ,2μ j+ρ =

(−1)μ+1− j
(

2μ
μ − 1− j

)
[(2μ)!]2 ∑

{ν−μ+1,...,νμ+1}\{ν− j}
∈per{1,...,2μ}

μ+1

∏
− j �=�=−μ+1

(
ρ +ν�

2μ
− �

)
,

j =−μ − 1, . . . ,μ − 1; ρ = 0, . . . ,2μ − 1, (10.7.10)

and where N2μ denotes the cardinal B-spline of degree 2μ , as defined in (10.2.69) of

Theorem 10.2.7, with m = 2μ .

The spline interpolatory quadrature rule QLI
2μ,n for the numerical approximation of the in-

tegral ∫ b

a
f (x)dx, f ∈C[a,b], (10.7.11)

is now defined, for n � 4μ + 1, by

QLI
2μ,n[ f ] :=

∫ b

a
(S LI

2μ,n f )(x)dx, f ∈C[a,b], (10.7.12)

with the local spline interpolation operator S LI
2μ,n : C[a,b] → σ2μ([a,b];τn,1, . . . ,τn,2μn−1)

given as in (10.7.5)–(10.7.10).

Observe from (10.7.12) and (10.7.5) that, for any f ∈C[a,b],

QLI
2μ,n[ f ] =

∫ b

a

[
n

∑
j=0

f (xn, j)W2μ, j(x)

]
dx =

n

∑
j=0

[∫ b

a
W2μ, j(x)dx

]
f (xn, j),

and thus

QLI
2μ,n[ f ] =

n

∑
j=0

w2μ, j f (xn, j), f ∈C[a,b], (10.7.13)

where the weights {w2μ, j : j = 0, . . . ,n} are given by

w2μ, j :=
∫ b

a
W2μ, j(x)dx, j = 0, . . . ,n, (10.7.14)

with the splines {W2μ, j : j = 0, . . . ,n} defined as in (10.7.6)–(10.7.10).

We proceed to show that the quadrature rule QLI
2μ,n is in fact a trapezoidal rule with endpoint

corrections, as made precise below.
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Theorem 10.7.1. For any positive integers μ and n, with n � 4μ + 1, the spline interpo-

latory quadrature rule QLI
2μ,n, as defined by (10.7.12), is a trapezoidal rule with endpoint

corrections, in the sense that

QLI
2μ,n[ f ] = QT R

n [ f ]+
b− a

n

2μ

∑
j=0

γ2μ, j[ f (xn, j)+ f (xn,n− j)], f ∈C[a,b], (10.7.15)

with QT R
n denoting the trapezoidal rule, as given in (8.6.22), (8.6.21), and where

γ2μ, j :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

(2μ)!

∫ μ

0

2μ

∏
�=1

(t − �)dt +
∫ μ+1

μ
V2μ(t)dt − 1

2
, j = 0,

(−1) j

(2μ)!

(
2μ

j

)∫ μ

0

2μ

∏
j �=�=0

(t − �)dt +
∫ μ+1+ j

μ
V2μ(t − 2μ j)dt − 1, j = 1, . . . ,2μ ,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(10.7.16)

with V2μ denoting the spline defined by (10.7.9), (10.7.10). Moreover, QLI
2μ,n satisfies the

polynomial exactness condition

QLI
2μ,n[P] =

∫ b

a
P(x)dx, P ∈ π2μ . (10.7.17)

Proof. Suppose f ∈C[a,b], and, for n� 4μ+2, let the integer j ∈ {2μ+1, . . . ,n−2μ−1}
be fixed. It follows from (10.7.14) and (10.7.7), as well as the second line of (10.5.64) in

Theorem 10.5.7, together with (10.7.1) and (10.7.2), that

w2μ, j =

∫ b

a
V2μ

(
2μn
b− a

(x− a)− 2μ j
)

dx

=
b− a

n

∫ n

0
V2μ(2μt − 2μ j)dt

=
b− a

n

∫ n−μ

μ
V2μ(2μt − 2μ j)dt

=
b− a

n

n−μ−1

∑
k=μ

∫ k+1

k
V2μ(2μt − 2μ j)dt

=
b− a

n

n−μ−1

∑
k=μ

∫ 1

0
V2μ(2μt + 2μ(k− j))dt

=
b− a

n

∫ 1

0

n−μ−1

∑
k=μ

V2μ(2μ(t − j)+ 2μk)dt

=
b− a

n

∫ 1

0

∞

∑
k=−∞

V2μ(2μ(t − j)+ 2μk)dt

=
b− a

n

∫ 1

0

∞

∑
k=−∞

V2μ(2μ(t − j)− 2μk)dt =
b− a

n

∫ 1

0
dt =

b− a
n

,
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that is,

w2μ, j =
b− a

n
, j = 2μ + 1, . . . ,n− 2μ − 1, (10.7.18)

after having used also the fact, as obtained from (10.5.66), together with (10.7.1), that
∞

∑
k=−∞

V2μ(x− 2μk) = 1, x ∈ R. (10.7.19)

Next, for any n � 4μ + 1, we prove the symmetry result

W2μ,n− j(a+ b− x) =W2μ, j(x), x ∈ [a,b], j = 0, . . . ,2μ . (10.7.20)

To prove (10.7.20), let j ∈ {0, . . . ,2μ} be fixed, and suppose first x ∈ [a,xn,μ ], so that, from

(10.7.4), a+ b− x∈ [xn,n−μ ,b], and thus, from the first line of (10.7.8),

W2μ,n− j(a+ b− x) =
(−1) j

(2μ)!

(
2μ

j

) 2μ

∏
j �=�=0

(
n

b− a
(b− x)− (n− �)

)

=
(−1) j

(2μ)!

(
2μ

j

) 2μ

∏
j �=�=0

(
n

b− a
(a− x)+ �

)

=
(−1) j

(2μ)!

(
2μ

j

) 2μ

∏
j �=�=0

(
n

b− a
(x− a)− �

)
=W2μ, j(x),

by virtue of the first line of (10.7.6), and thereby establishing (10.7.20) for x ∈ [a,xn,μ ].

Next, for x ∈ (xn,μ ,b], so that (10.7.4) yields a+ b− x ∈ [a,xn,n−μ), we may apply the

second line of (10.7.8), together with the symmetry property (10.5.68) of V2μ in (iv) of

Theorem 10.5.7, to deduce that

W2μ,n− j(a+ b− x) = V2μ

(
2μn
b− a

(b− x)− 2μ(n− j)
)

= V2μ

(
2μn
b− a

(a− x)+ 2μ j
)
=V2μ

(
2μn
b− a

(x− a)− 2μ j
)
=W2μ, j(x),

from the second line of (10.7.6), according to which (10.7.20) also holds for x ∈ (xn,μ ,b],

and thereby completing our proof of (10.7.20). By using (10.7.14) and (10.7.20), we deduce

that, for any j ∈ {0, . . . ,2μ},

w2μ,n− j =

∫ b

a
W2μ,n− j(x)dx =

∫ b

a
W2μ,n− j(a+ b− x)dx =

∫ b

a
W2μ, j(x)dx = w2μ, j,

that is,

w2μ,n− j = w2μ, j, j = 0, . . . ,2μ . (10.7.21)
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Now use (10.7.14) and (10.7.6), together with (10.7.4), as well as the second line of

(10.5.64) in Theorem 10.5.7, with (10.7.1) and (10.7.2), to obtain, for j ∈ {0, . . . ,2μ},

w2μ, j =
(−1) j

(2μ)!

(
2μ

j

)∫ xn,μ

a

2μ

∏
j �=�=0

(
n

b− a
(x− a)− �

)
dx

+
∫ b

xn,μ
V2μ

(
2μn
b− a

(x− a)− 2μ j
)

dx

=
b− a

n

[
(−1) j

(2μ)!

(
2μ

j

)∫ μ

0

2μ

∏
j �=�=0

(t − �)dt +
∫ μ+1+ j

μ
V2μ(t − 2μ j)dt

]
,

which, together with (10.7.13), (10.7.18) and (10.7.21), as well as the formulation in

(8.6.22), (8.6.21) of the trapezoidal rule QT R
n , then yields the desired result (10.7.15),

(10.7.16). Finally, observe that the polynomial exactness condition (10.7.17) is an immedi-

ate consequence of the definition (10.7.12), together with (10.5.27) in Theorem 10.5.2, for

m = 2μ . �
In general, for integers m � 0 and n � m, and a given coefficient sequence {γ0, . . . ,γm} ⊂R

which is independent of n, the quadrature rule

QCT
m,n[ f ] := QT R

n [ f ]+
b− a

n

m

∑
j=0

γ j[ f (xn, j)+ f (xn,n− j)], f ∈C[a,b], (10.7.22)

with the points {xn, j : j = 0, . . . ,n} as in (10.7.4), and where QT R
n denotes the trapezoidal

rule in (8.6.22), (8.6.21), is called a trapezoidal rule with endpoint corrections of order m,

and for which we proceed to prove, by means of the Euler-Maclaurin formula, the following

existence and uniqueness result if m is an even positive integer.

Theorem 10.7.2. For integers μ � 0 and n � 2μ , there exists precisely one sequence

{γ0, . . . ,γ2μ}, which is independent of n, such that QCT
2μ,n, the corresponding trapezoidal

rule with endpoint corrections of order 2μ , as defined by (10.7.22), satisfies the polyno-

mial exactness condition

QCT
2μ,n[P] =

∫ b

a
P(x)dx, P ∈ π2μ . (10.7.23)

Proof. First, we apply the Euler-Maclaurin formula (9.3.12) in Theorem 9.3.3, with m = μ ,

to obtain the polynomial integral identity∫ b

a
P(x)dx = QT R

n [P]−
μ

∑
j=1

B2 j

(2 j)!

[
P(2 j−1)(b)−P(2 j−1)(a)

](b− a
n

)2 j

,

P ∈ π2μ , (10.7.24)
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with {B2 j : j = 1,2, . . .} denoting the Bernoulli numbers with even indexes, as defined

recursively in (9.3.13). It follows from (10.7.24), together with the definition (10.7.22),

that {γ0, . . . ,γ2μ} ⊂R is a sequence such that the polynomial exactness condition (10.7.23)

is satisfied if and only if {γ0, . . . ,γ2μ} satisfies the condition
2μ

∑
j=0

γ j [P(xn, j)+P(xn,n− j)] =−
μ

∑
k=1

B2k

(2k)!

[
P(2k−1)(b)−P(2k−1)(a)

](b− a
n

)2k−1

,

P ∈ π2μ . (10.7.25)

Next, we apply the Taylor expansion polynomial identity (10.1.11), together with (10.7.4),

to obtain, for any fixed j ∈ {0, . . . ,2μ},

P(xn, j) =
2μ

∑
k=0

P(k)(a)
k!

[
j
(

b− a
n

)]k

=
μ

∑
k=0

P(2k)(a)
(2k)!

j2k
(

b− a
n

)2k

+
μ

∑
k=1

P(2k−1)(a)
(2k− 1)!

j2k−1
(

b− a
n

)2k−1

, (10.7.26)

and, similarly,

P(xn,n− j) = P
(

b− j
(

b− a
n

))

=
2μ

∑
k=0

P(k)(b)
k!

[
− j
(

b− a
n

)]k

=
μ

∑
k=0

P(2k)(b)
(2k)!

j2k
(

b− a
n

)2k

−
μ

∑
k=1

P(2k−1)(b)
(2k− 1)!

j2k−1
(

b− a
n

)2k−1

. (10.7.27)

It follows from (10.7.25), (10.7.26) and (10.7.27) that, for any sequence {γ0, . . . ,γ2μ} ∈R,
2μ

∑
j=0

γ j [P(xn, j)+P(xn,n− j)]

=
μ

∑
k=0

[
P(2k)(a)+P(2k)(b)

][ 2μ

∑
j=0

j2k

(2k)!
γ j

](
b− a

n

)2k

−
μ

∑
k=1

[
P(2k−1)(b)−P(2k−1)(a)

][ 2μ

∑
j=0

j2k−1

(2k− 1)!
γ j

](
b− a

n

)2k−1

,

according to which the condition (10.7.25) has the equivalent formulation
μ

∑
k=0

[
P(2k)(a)+P(2k)(b)

][ 2μ

∑
j=0

j2k

(2k)!
γ j

](
b− a

n

)2k

−
μ

∑
k=1

[
P(2k−1)(b)−P(2k−1)(a)

]

×
[

2μ

∑
j=0

j2k−1

(2k− 1)!
γ j − B2k

(2k)!

](
b− a

n

)2k−1

= 0, P ∈ π2μ . (10.7.28)
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We claim that {γ0, . . . ,γ2μ} ⊂ R is a sequence that is independent of n, and such that the

condition (10.7.28) is satisfied, if and only if {γ0, . . . ,γ2μ} is a solution of the (2μ + 1)×
(2μ + 1) linear system

2μ

∑
j=0

jkγ j =

⎧⎨⎩
Bk+1

k+ 1
, k = 1,3, . . . ,2μ − 1;

0, k = 0,2, . . . ,2μ .
(10.7.29)

To prove this statement, we observe first that if the sequence {γ0, . . . ,γ2μ} ⊆ R satisfies

(10.7.29), then (10.7.28) holds. Suppose next that {γ0, . . . ,γ2μ} is a sequence independent

of n, and such that the condition (10.7.28) is satisfied. Let Pμ ∈ π2μ be defined by

Pμ(x) := (x− a)2μ , (10.7.30)

for which we have

αμ,k := P(2k)
μ (a)+P(2k)

μ (b) =

⎧⎪⎨⎪⎩ (2k)!
(

2μ
2k

)
(b− a)2μ−2k, k = 0, . . . ,μ − 1;

2(2μ)!, k = μ ,
(10.7.31)

and

βμ,k := P(2k−1)
μ (b)−P(2k−1)

μ (a) = (2k− 1)!
(

2μ
2k− 1

)
(b− a)2μ−2k+1, k = 1, . . . ,μ .

(10.7.32)

Observe from (10.7.31) and (10.7.32) that the sequences {αμ,k : k = 0, . . . ,μ} and {βμ,k :

k = 1, . . . ,μ} are independent of n, with also

αμ,k �= 0, k = 0, . . . ,μ ;

βμ,k �= 0, k = 1, . . . ,μ .

⎫⎬⎭ (10.7.33)

Let

Aμ,k := αμ,k

2μ

∑
j=0

j2k

(2k)!
γ j, k = 0, . . . ,μ ;

Bμ,k := βμ,k

2μ

∑
j=0

[
j2k−1

(2k− 1)!
γ j − B2k

(2k)!

]
, k = 1, . . . ,μ ,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (10.7.34)

according to which, since the sequences {αμ,k : k = 0, . . . ,μ}, {βμ,k : k = 1, . . . ,μ} and

{γ0, . . . ,γ2μ} are independent of n, it follows that the sequences {Aμ,k : k = 0, . . . ,μ} and

{Bμ,k : k = 1, . . . ,μ} are independent of n.

By choosing P = Pμ ∈ π2μ in (10.7.28), we deduce from (10.7.31), (10.7.32) and (10.7.34)

that
μ

∑
k=0

Aμ,k

(
b− a

n

)2k

−
μ

∑
k=1

Bμ,k

(
b− a

n

)2k−1

= 0, n = 2μ ,2μ + 1, . . . ,
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and thus

n2μ

[
μ

∑
k=0

Aμ,k

(
b− a

n

)2k

−
μ

∑
k=1

Bμ,k

(
b− a

n

)2k−1
]
= 0, n = 2μ ,2μ + 1, . . . ,

or equivalently,
μ

∑
k=0

Aμ,k(b− a)2kn2μ−2k −
μ

∑
k=1

Bμ,k(b− a)2k−1n2μ−2k+1 = 0, n = 2μ ,2μ + 1, . . . ,

and thus, since the zero polynomial is the only polynomial with infinitely many distinct

zeros, it holds that

Aμ,k(b− a)2k = 0, k = 0, . . . ,μ ;

Bμ,k(b− a)2k−1 = 0, k = 1, . . . ,μ .

⎫⎬⎭ (10.7.35)

By recalling also (10.7.34) and (10.7.33), we deduce from (10.7.35) that the sequence

{γ0, . . . ,γ2μ} satisfies the conditions

2μ

∑
j=0

j2kγ j = 0, k = 0, . . . ,μ ;

2μ

∑
j=0

j2k−1γ j =
B2k

2k
, k = 1, . . . ,μ ,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
which is equivalent to (10.7.29), and thereby completing our proof of the equivalence of

(10.7.28) and (10.7.29).

Now observe that the (2μ+1)×(2μ+1) coefficient matrix A of the linear system (10.7.29)

is given by

A :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1

0 1 2 · · · 2μ

0 12 22 · · · (2μ)2

...

0 12μ 22μ · · · (2μ)2μ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10.7.36)

Note from (10.7.36) and (1.1.7) that the transpose AT of A is a Vandermonde matrix. We

may therefore apply Theorem 1.1.2 to deduce that AT is an invertible matrix. Hence A =

(AT )T is an invertible matrix, and it follows that there exists a unique solution {γ0, . . . ,γ2μ}
of the linear system (10.7.29), which completes our proof. �
The (unique) trapezoidal rule QCT

2μ,n with endpoint corrections of order 2μ , and satisfying

the polynomial exactness condition (10.7.23), as established in Theorem 10.7.2, is called

the Gregory rule of (even) order 2μ , and will be denoted here by the symbol QGR
2μ,n. By



Spline Approximation 375

observing from (10.7.16) in Theorem 10.7.1 that the sequence {γ2μ, j : j = 0, . . . ,2μ} is

independent of n, we immediately deduce the following result from Theorems 10.7.1 and

10.7.2, together with the definition (10.7.12).

Theorem 10.7.3. For positive integers μ and n � 4μ + 1, the Gregory rule QGR
2μ,n of order

2μ , as established in Theorem 10.7.2, is an interpolatory quadrature rule, with

QGR
2μ,n[ f ] =

∫ b

a
(S LI

2μ,n f )(x)dx =: QLI
2μ,n[ f ], f ∈C[a,b], (10.7.37)

where QLI
2μ,n denotes the spline interpolatory quadrature rule defined in (10.7.12), that is,

QGR
2μ,n is the trapezoidal rule with endpoint corrections of order 2μ , as given by

QGR
2μ,n[ f ] = QT R

n [ f ]+
b− a

n

2μ

∑
j=0

γ2μ, j[ f (xn, j)+ f (xn,n− j)], f ∈C[a,b], (10.7.38)

with the sequence {γ2μ, j : j = 0, . . . ,2μ} defined by (10.7.16), and where the points {xn, j :

j = 0, . . . ,n} are given by (10.7.4).

According to (10.7.37) in Theorem 10.7.3, we have shown that, for n� 4μ+1, the Gregory

rule QGR
2μ,n is an interpolatory quadrature rule, as obtained, for any integrand f ∈C[a,b], by

integrating the local spline interpolant S LI
2μ,n f of Theorem 10.5.7. Indeed, the coefficients

{γ2μ, j : j = 0, . . . ,2μ} in (10.7.37) may, for any given positive integers μ and n� 4μ+1, be

computed by means of the formulations in (10.7.16). We proceed to show how the formula

(8.4.38) in Theorem 8.4.1 can be used to establish a more efficient computational method

for QGR
2μ,n, for n � 2μ . In particular, we shall express the sequence {γ2μ, j : j = 0, . . . ,2μ}

explicitly in terms of the Laplace coefficients {Λ2,Λ3, . . . ,Λ2μ+1}, as defined in (8.4.37).

We shall rely on the following integral polynomial identity.

Theorem 10.7.4. For any positive integers μ and n � 2μ , it holds that∫ b

a
P(x)dx = QT R

n [P]+
b− a

n

2μ

∑
j=0

γ̃2μ, j[P(xn, j)+P(xn,n− j)], P ∈ π2μ , (10.7.39)

where

γ̃2μ, j :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−

2μ

∑
k=1

Λk+1, j = 0;

(−1) j−1
2μ

∑
k= j

(
k
j

)
Λk+1, j = 1, . . . ,2μ ,

(10.7.40)

with QT R
n denoting the trapezoidal rule as in (8.6.22), (8.6.21), where {Λ2,Λ3, . . . ,Λ2μ+1}

are the Laplace coefficients defined in (8.4.37), and with the points {xn, j : j = 0, . . . ,n}
given as in (10.7.4).
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Proof. Let P ∈ π2μ . Since n � 2μ , we have π2μ ⊂ πn, and thus, from the identity (1.2.7) in

Theorem 1.2.3, we have

P(x) =
n

∑
j=0

P(xn, j)Ln, j(x), (10.7.41)

with {Ln, j : j = 0, . . . ,n} denoting the Lagrange fundamental polynomials, as given in

(1.2.1). Hence we may apply the formula (8.4.38) in Theorem 8.4.1, together with (8.4.7),

to deduce from (10.7.41) that∫ b

a
P(x)dx =

n

∑
j=0

P(xn, j)

[∫ b

a
Ln, j(x)dx

]

=
n

∑
j=0

P(xn, j)wn, j

=
b− a

n

[
n

∑
j=0

P(xn, j)

{
1− (−1) j

n

∑
k=0

Λk+1

((
k
j

)
+(−1)n

(
k

n− j

))}]

=
b− a

n

[
n

∑
j=0

P(xn, j)−
n

∑
j=0

(−1) jP(xn, j)
n

∑
k= j

(
k
j

)
Λk+1

−
n

∑
j=0

(−1) jP(xn,n− j)
n

∑
k= j

(
k
j

)
Λk+1

]

=
b− a

n

[
n

∑
j=0

P(xn, j)−
n

∑
k=0

Λk+1

k

∑
j=0

(−1) j
(

k
j

)
{P(xn, j)+P(xn,n− j)}

]
.

(10.7.42)

Suppose n � 2μ + 1, let k ∈ {2μ + 1, . . . ,n} be fixed, and define the polynomial

P̃(x) := P(x)+P(a+ b− x), (10.7.43)

so that, since P ∈ π2μ , we have P̃ ∈ π2μ . By applying (3.4.2) in Theorem 3.4.1, and using

(10.7.4), we obtain the divided difference

P̃[xn,0, . . . ,xn,k] =
(−1)k

k!

(
n

b− a

)k k

∑
j=0

(−1) j
(

k
j

)
P̃(xn, j),

and thus, by using also (10.7.43) and (10.7.4), we deduce that

k

∑
j=0

(−1) j
(

k
j

)
{P(xn, j)+P(xn,n− j)}= (−1)kk!

(
b− a

n

)k

P̃[xn,0, . . . ,xn,k] = 0, (10.7.44)
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from (2.1.10) in Theorem 2.1.2, together with k � 2μ +1, and the fact that P̃ ∈ π2μ . Hence

we may use (10.7.44) in (10.7.42) to obtain, for any integer n � 2μ ,∫ b

a
P(x)dx =

b− a
n

[
n

∑
j=0

P(xn, j)−
2μ

∑
k=0

Λk+1

k

∑
j=0

(−1) j
(

k
j

)
{P(xn, j)+P(xn,n− j)}

]

=
b− a

n

[
n

∑
j=0

P(xn, j)−
2μ

∑
j=0

(−1) j

{
2μ

∑
k= j

(
k
j

)
Λk+1

}
{P(xn, j)+P(xn,n− j)}

]
.

(10.7.45)

Since (8.4.54) gives Λ1 =
1
2 , it then follows from (10.7.45), together with (8.6.22), (8.6.21),

that (10.7.39), (10.7.40) does indeed hold. �
It follows from (10.7.39) in Theorem 10.7.4 that, for any positive integers μ and n � 2μ ,

the quadrature rule Q̃2μ,n defined by

Q̃2μ,n[ f ] := QT R
n [ f ]+

b− a
n

2μ

∑
j=0

γ̃2μ, j[ f (xn, j)+ f (xn,n− j)], f ∈C[a,b], (10.7.46)

with the sequence {γ̃2μ, j : j = 0, . . . ,2μ} defined by (10.7.40), satisfies the polynomial

exactness condition

Q̃2μ,n[P] =
∫ b

a
P(x)dx, P ∈ π2μ . (10.7.47)

By observing also from (10.7.40) that the coefficient sequence {γ̃2μ, j : j = 0, . . . ,2μ} is in-

dependent of n, we may deduce from the uniqueness statement in Theorem 10.7.2, together

with Theorem 10.7.3, that

Q̃2μ,n = QGR
2μ,n, (10.7.48)

and thus, from (10.7.46), (10.7.40) and (10.7.38), we have now established the following

explicit formulation.

Theorem 10.7.5. For any positive integers μ and n � 2μ , the Gregory rule QGR
2μ,n, as

established in Theorem 10.7.2, satisfies the formulation

QGR
2μ,n[ f ] = QT R

n [ f ]+
b− a

n

2μ

∑
j=0

γ2μ, j[ f (xn, j)+ f (xn,n− j)], f ∈C[a,b], (10.7.49)

where

γ2μ, j :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−

2μ

∑
k=1

Λk+1, j = 0;

(−1) j−1
2μ

∑
k= j

(
k
j

)
Λk+1, j = 1, . . . ,2μ ,

(10.7.50)

with {Λ2,Λ3, . . . ,Λ2μ+1} denoting the Laplace coefficients given in (8.4.37).
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By using the formula (10.7.50), together with the Laplace coefficient values in (8.4.54), we

calculate (see Exercise 10.68), for μ = 1,2,3, the coefficient values for {γ2μ : j = 0, . . . ,2μ}
as given in Table 10.7.1.

Table 10.7.1 The coefficients {γ2μ, j : j = 0, . . . ,2μ} in the formulation
(10.7.49) of the Gregory rule QGR

2μ,n, for μ = 1,2,3.

μ {γ2μ, j}
1 {− 1

8 ,
1
6 ,− 1

24}
2 {− 49

288 ,
77
240 ,− 7

30 ,
73

720 ,− 3
160}

3 {− 3383
17280 ,

6961
15120 ,− 66109

120960 ,
33
70 ,− 31523

120960 ,
1247
15120 ,− 275

24192}

For the choice μ = 1 in Theorem 10.7.5, the corresponding Gregory rule QGR
2,n of order 2 is

known as the Lacroix rule QLA
n , that is,

QLA
n := QGR

2,n , n = 2,3, . . . . (10.7.51)

With the notation (8.6.21), that is,

fn, j := f (xn, j), j = 0, . . . ,n, (10.7.52)

it follows from (10.7.51), (10.7.49), (10.7.50), Table 10.7.1 and (8.6.22) that

QLA
n [ f ] =

b− a
n

[
3
8

fn,0 +
7
6

fn,1 +
23
24

fn,2 + fn,3 + fn,4 + · · ·+ fn,n−3 +
23
24

fn,n−2

+
7
6

fn,n−1 +
3
8

fn,n

]
,

f ∈C[a,b], n = 6,7 . . . . (10.7.53)

Example 10.7.1. For the numerical approximation of the integral
∫ 2

0
f (x)dx, it follows

from (10.7.53), together with (10.7.52) and (10.7.4), that

QLA
12 [ f ] =

1
6

[ 3
8 f (0)+ 7

6 f ( 1
6 )+

23
24 f ( 1

3 )+ f ( 1
2)+ f ( 2

3 )+ f ( 5
6)+ f (1)+ f ( 7

6)+ f ( 4
3 )

+ f ( 3
2 )+

23
24 f ( 5

3 )+
7
6 f ( 11

6 )+ 3
8 f (2)

]
,

which yields, for the case f (x) = ex, the quadrature error∣∣∣∣∫ 2

0
f (x)dx−QLA

12 [ f ]
∣∣∣∣ ≈ 1.089× 10−4.
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Observe from Theorem 10.7.5 that, apart from the condition n � 2μ , the Gregory rule

QGR
2μ,n does not require the integer n to satisfy any further constraints, as is the case for the

composite Newton-Cotes quadrature rule QNC
ν,n in Theorem 8.6.1, where it is required that

n satisfies the divisibility condition (8.6.3). �
We proceed to analyze the Gregory rule quadrature error

E GR
2μ,n[ f ] :=

∫ b

a
f (x)dx−QGR

2μ,n[ f ], f ∈C[a,b]. (10.7.54)

To this end, we first observe from (10.7.54), together with (10.7.37) in Theorem 10.7.3,

that, for any f ∈C[a,b], we have

|E GR
2μ,n[ f ]| =

∣∣∣∣∫ b

a
f (x)dx−

∫ b

a
(S LI

2μ,n f )(x)dx
∣∣∣∣

=

∣∣∣∣∫ b

a
[ f (x)− (S LI

2μ,n f )(x)]dx
∣∣∣∣ � (b− a) max

a�x�b
| f (x)− (S LI

2μ,n f )(x)|,
that is,

|E GR
2μ,n[ f ]| � (b− a)|| f −S LI

2μ,n||∞, f ∈C[a,b]. (10.7.55)

By using also the fact that, according to (10.7.4), the results (10.6.57) and (10.6.58) are

satisfied, the following convergence result and quadrature error estimates are immediate

consequences of (10.6.45) in Theorem 10.6.5, as well as (10.6.59) and (10.6.60) in Theo-

rem 10.6.6, and (10.6.71) in Theorem 10.6.7, with, from (10.7.1) and (10.7.2), m = 2μ and

p = q = μ , together with (10.7.55) and (10.7.54).

Theorem 10.7.6. The Gregory rule QGR
2μ,n of Theorem 10.7.5 satisfies:

(a) The convergence result∣∣∣∣∫ b

a
f (x)dx−QGR

2μ,n[ f ]
∣∣∣∣→ 0, n → ∞, f ∈C[a,b]. (10.7.56)

(b) The quadrature error estimates

(i) ∣∣∣∣∫ b

a
f (x)dx−QGR

2μ,n[ f ]
∣∣∣∣� (b− a)2μ(2μ)2μ

(
b− a

n

)
Kf ,

f ∈CLip[a,b], n = 4μ + 1,4μ + 2, . . . , (10.7.57)

with Kf denoting a Lipschitz constant on [a,b] of f ;

(ii) ∣∣∣∣∫ b

a
f (x)dx−QGR

2μ,n[ f ]
∣∣∣∣� (b− a)2μ(2μ)2μ

(
b− a

n

)
|| f ′||∞,

f ∈C1[a,b], n = 4μ + 1,4μ + 2, . . . ; (10.7.58)
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(iii) ∣∣∣∣∫ b

a
f (x)dx−QGR

2μ,n[ f ]
∣∣∣∣� (b− a)

4(2μ)2μ

(2μ + 1)!

[
μ+1

∑
j=1

j2μ+1

](
b− a

n

)2μ+1

|| f (2μ+1)||∞,

f ∈C2μ+1[a,b], n = 4μ + 1,4μ + 2, . . . . (10.7.59)

Example 10.7.2. For the Lacroix rule QLA
n , as defined in (10.7.51), it follows from

(10.7.59) in Theorem 10.7.6 that∣∣∣∣∫ b

a
f (x)dx−QLA

n [ f ]
∣∣∣∣� 24(b− a)

(
b− a

n

)3

|| f ′′′||∞,

f ∈C3[a,b], n = 5,6, . . . . (10.7.60)

�

Finally, we show how the result of Theorem 8.5.6 can be used to establish, in Theo-

rem 10.7.7 below, and analogously to (8.6.30) in the composite Newton-Cotes case, an

expression in terms of the Laplace coefficients {Λ1,Λ2, . . . ,Λ2μ+1} for the quadrature er-

ror E GR
2μ,n, for integrands f ∈C2μ+2[a,b], and which will then immediately yield the degree

of exactness of QGR
2μ,n, as well as an optimal quadrature error estimate for E GR

2μ,n.

Theorem 10.7.7. For positive integers μ and n � 2μ , let f ∈ C2μ+2[a,b], and denote by

QGR
2μ,n the Gregory rule of order 2μ , as given by (10.7.49), (10.7.50) in Theorem 10.7.5.

Then the corresponding quadrature error E GR
2μ,n[ f ], as given by (10.7.54), satisfies

E GR
2μ,n[ f ] =−

(
b− a

n

)2μ+3 [
(n− 2μ − 1)Λ2μ+2+ 2Λ2μ+3

]
f (2μ+2)(ξ ),

f ∈C2μ+2[a,b], (10.7.61)

for some point ξ ∈ [a,b], and where the Laplace coefficients Λ2μ+2 and Λ2μ+3 are defined

as in (8.4.37).

Proof. Let f ∈ C2μ+2[a,b]. Suppose first n � 2μ + 1, and let j ∈ {0, . . . ,n− 2μ − 1}
and x ∈ [xn, j,xn, j+1] be fixed. By applying the Newton interpolation formula (1.3.17) in

Theorem 1.3.3, together with (2.1.3) and the error expression (2.1.5) in Theorem 2.1.1, as

well as the definitions (1.3.11), (2.1.6) and (10.7.4), we obtain

f (x) = f (xn, j)+
2μ+1

∑
k=1

f [xn, j, . . . ,xn, j+k]
k−1

∏
�=0

(x− xn, j+�)

+ f [x,xn, j , . . . ,xn, j+2μ+1]
2μ+1

∏
�=0

(x− xn, j+�). (10.7.62)
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Now use the definitions (8.4.34) and (8.4.37), as well as the recursion formula (1.3.21) in

Theorem 1.3.4, and the value Λ1 =
1
2 from (8.4.54), to obtain∫ xn, j+1

xn, j

[
f (xn, j)+

2μ+1

∑
k=1

f [xn, j, . . . ,xn, j+k]
k−1

∏
�=0

(x− xn, j+�)

]
dx

=
b− a

n

[
f (xn, j)+

2μ+1

∑
k=1

f [xn, j, . . . ,xn, j+k]

(
b− a

n

)k ∫ 1

0

k−1

∏
�=0

(t − �)dt

]

=
b− a

n

[
f (xn, j)−

2μ+1

∑
k=1

(−1)kk! f [xn, j, . . . ,xn, j+k]

(
b− a

n

)k

Λk

]

=
b− a

n

[
f (xn, j)+

1
2
{ f (xn, j+1)− f (xn, j)}−

2μ+1

∑
k=2

(−1)k(k− 1)!Λk

(
b− a

n

)k−1

× { f [xn, j+1, . . . ,xn, j+k]− f [xn, j, . . . ,xn, j+k−1]}
]

=
b− a

n

[
1
2

f (xn, j)+
1
2

f (xn, j+1)+
2μ

∑
k=1

(−1)kk!Λk+1

(
b− a

n

)k

×( f [xn, j+1, . . . ,xn, j+k+1]− f [xn, j, . . . ,xn, j+k])

]
. (10.7.63)

Next, since the polynomial
2μ+1

∏
�=0

(x − xn, j+�) does not change sign in the interval

(xn, j,xn, j+1), we may apply Theorem 1.4.4, together with the mean value theorem for in-

tegrals, as formulated in (8.5.16), as well as (2.1.10) in Theorem 2.1.2, and the definitions

(8.4.34), (8.4.37) and (10.7.4), to deduce the existence of points η j ∈ (xn, j,xn, j+1) and

ξ j ∈ [xn, j,xn, j+2μ+1] such that

∫ xn, j+1

xn, j

f [x,xn, j, . . . ,xn, j+2μ+1]
2μ+1

∏
�=0

(x− xn, j+�)dx

= f [η j ,xn, j, . . . ,xn, j+2μ+1]

∫ xn, j+1

xn, j

2μ+1

∏
�=0

(x− xn, j+�)dx

=
f (2μ+2)(ξ j)

(2μ + 2)!

(
b− a

n

)2μ+3 ∫ 1

0

2μ+1

∏
�=0

(t − �)dt

= −
(

b− a
n

)2μ+3

Λ2μ+2 f (2μ+2)(ξ j). (10.7.64)
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It follows from (10.7.62), (10.7.63) and (10.7.64), together with the formula (3.4.2) in

Theorem 3.4.1, as well as an application of the intermediate value theorem as in the steps

leading to (8.6.29), that, for some point ξ̃ ∈ [a,b],∫ xn,n−2μ

a
f (x)dx =

n−2μ−1

∑
j=0

∫ xn, j+1

xn, j

f (x)dx

=
b− a

n

[
1
2

n−2μ−1

∑
j=0

{ f (xn, j)+ f (xn, j+1)}+
2μ

∑
k=1

(−1)kk!Λk+1

(
b− a

n

)k

× { f [xn,n−2μ , . . . ,xn,n−2μ+k]− f [xn,0, . . . ,xn,k]}−
(

b− a
n

)2μ+2

Λ2μ+2

n−2μ−1

∑
j=0

f (2μ+2)(ξ j)

]

=
b− a

n

[
1
2

f (xn,0)+
n−2μ−1

∑
j=1

f (xn, j)+
1
2

f (xn,n−2μ)+
2μ

∑
k=1

Λk+1

{
k

∑
�=0

(−1)�
(

k
�

)

×( f (xn,n−2μ+�)− f (xn,�))

}
−
(

b− a
n

)2μ+2

(n− 2μ)Λ2μ+2 f (2μ+2)(ξ̃ )

]

=
b− a

n

[
1
2

f (xn,0)+
n−2μ−1

∑
j=1

f (xn, j)+
1
2

f (xn,n−2μ)+

(
2μ

∑
k=1

Λk+1

)

×{ f (xn,n−2μ)− f (xn,0)}+
2μ

∑
k=1

Λk+1

{
k

∑
�=1

(−1)�
(

k
�

)
( f (xn,n−2μ+�)− f (xn,�))

}

−
(

b− a
n

)2μ+2

(n− 2μ)Λ2μ+2 f (2μ+2)(ξ̃ )

]

=
b− a

n

[
1
2

f (xn,0)+
n−2μ−1

∑
j=1

f (xn, j)+
1
2

f (xn,n−2μ)+

(
2μ

∑
k=1

Λk+1

)

× { f (xn,n−2μ)− f (xn,0)}+
2μ

∑
�=1

(−1)�
(

2μ

∑
k=�

(
k
�

)
Λk+1

)
{ f (xn,n−2μ+�)− f (xn,�)}

]

−
(

b− a
n

)2μ+3

(n− 2μ)Λ2μ+2 f (2μ+2)(ξ̃ ). (10.7.65)

Let QNC
2μ denote the Newton-Cotes quadrature rule, as defined in (8.4.2), with respect to the

interval [xn,n−2μ ,xn,n] = [xn,n−2μ ,b], and the points {xn,n−2μ , . . . ,xn,n} as in (10.7.4). But

then (8.4.6) yields

QNC
2μ [ f ] =

2μ

∑
j=0

w2μ, j f (xn,n−2μ+ j), (10.7.66)

with the Newton-Cotes weights {w2μ, j : j = 0, . . . ,2μ} given explicity by (8.4.38) in The-

orem 8.4.1. Hence we may use (8.4.38) in (10.7.66), as well as the definition of the trape-
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zoidal rule QTR
2μ in (8.6.22), (8.6.21), to deduce that, with the definition

σ2μ, j := 1− (−1) j
2μ

∑
k=0

Λk+1

{(
k
j

)
+

(
k

2μ − j

)}
, j = 0, . . . ,2μ , (10.7.67)

we have

QNC
2μ [ f ] = QT R

2μ [ f ]+
b− a

n

2μ

∑
j=0

γ∗2μ, j[ f (xn,n−2μ+ j)+ f (xn,n− j)], (10.7.68)

where

γ∗2μ, j :=

⎧⎨⎩σ2μ, j − 1
2 , j ∈ {0,2μ};

σ2μ, j − 1, j = 1, . . . ,2μ − 1.
(10.7.69)

By noting from (10.7.69) and (10.7.67) that the sequence {γ∗2μ, j : j = 0, . . . ,2μ} is inde-

pendent of n, and noting from the first line of (8.5.60) in Theorem 8.5.5(b), together with

π2μ ⊂ π2μ+1, that

QNC
2μ [P] =

∫ b

xn,n−2μ
P(x)dx, P ∈ π2μ ,

we may now deduce from (10.7.68) and the uniqueness statement in Theorem 10.7.2 that

QNC
2μ [ f ] = QGR

2μ,2μ [ f ], (10.7.70)

with QGR
2μ,2μ denoting the Gregory rule of order 2μ with respect to the interval

[xn,n−2μxn,n] = [xn,n−2μ ,b]. It follows from (10.7.70) and the formulation (10.7.49) in The-

orem 10.7.5, with n = 2μ , that

QNC
2μ [ f ] = QT R

2μ [ f ]+
b− a

n

2μ

∑
j=0

γ2μ, j[ f (xn,n−2μ+ j)+ f (xn,n− j)], (10.7.71)

with the sequence {γ2μ, j : j = 0, . . . ,2μ} given as in (10.7.50).

By applying (10.7.71), together with (8.5.3) and the quadrature error expression in the

first line of (8.5.47) in Theorem 8.5.4, as well as the definition (8.6.22), (8.6.21) of the

trapezoidal rule QT R
2μ , we deduce that, for some point ξ ∗ ∈ [xn,n−2μ ,b],

∫ b

xn,n−2μ
f (x)dx

= QNC
2μ [ f ]−

(
b− a

n

)2μ+3

(2Λ2μ+3 −Λ2μ+2) f (2μ+2)(ξ ∗)

=
b− a

n

[
1
2

f (xn,n−2μ)+
n−1

∑
j=n−2μ+1

f (xn, j)+
1
2

f (xn,n)−
(

2μ

∑
k=1

Λk+1

)

× { f (xn,n−2μ)+ f (xn,n)}+
2μ

∑
j=1

(−1) j−1

(
2μ

∑
k= j

(
k
j

)
Λk+1

)
{ f (xn,n−2μ+ j)+ f (xn,n− j)}

]

−
(

b− a
n

)2μ+3

(2Λ2μ+3 −Λ2μ+2) f (2μ+2)(ξ ∗). (10.7.72)
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By adding (10.7.65) and (10.7.72), recalling the definition (8.6.22), (8.6.21) of the trape-

zoidal rule QT R
n , and using the formulation (10.7.49), (10.7.50), we obtain (see Exercise

10.69)∫ b

a
f (x)dx = QT R

n [ f ]+
b− a

n

[(
−

2μ

∑
k=1

Λk+1

)
{ f (xn,0)+ f (xn,n)}

+
2μ

∑
j=1

(−1) j−1

(
2μ

∑
k= j

(
k
j

)
Λk+1

)
{ f (xn, j)+ f (xn,n− j)}

]
−
(

b− a
n

)2μ+3

×
[
(n− 2μ)Λ2μ+2 f (2μ+2)(ξ̃ )+ (2Λ2μ+3−Λ2μ+2) f (2μ+2)(ξ ∗)

]
= QGR

2μ,n[ f ]−
(

b− a
n

)2μ+3

{(n− 2μ − 1)Λ2μ+2+ 2Λ2μ+3} f (2μ+2)(ξ ),

(10.7.73)

for some point ξ ∈ [a,b], after having noted from (8.5.59) in Theorem 8.5.5(a) that

2Λ2μ+3 − Λ2μ+2 > 0 and Λ2μ+2 > 0, so that n � 2μ + 1 implies (n − 2μ)Λ2μ+2 > 0,

and applying the intermediate value theorem as in the steps leading to (8.6.29), with

g = f (2μ+2),m = 1, {ξ0,ξ1}= {ξ̃ ,ξ ∗}, and α0 = (n− 2μ)Λ2μ+2; α1 = 2Λ2μ+3 −Λ2μ+2.

The desired quadrature error expression (10.7.61) now follows immediately from (10.7.73)

and (10.7.54).

Finally note that, if n = 2μ , the result (10.7.61) is an immediate consequence of (10.7.70),

together with the error expression in the first line of (8.5.47) in Theorem 8.5.4.

�
The error expression (10.7.61) in Theorem 10.7.7 can now be used to find the degree of

exactness of the Gregory rule QGR
2μ,n, as follows.

First, note from (10.7.61) that, for any n � 2μ + 1,

E GR
2μ,n[P] = 0, P ∈ π2μ+1, (10.7.74)

whereas

P(x) = x2μ+2 ⇒ E GR
2μ,n[P] =−

(
b− a

n

)2μ+3

(2μ + 2)![(n− 2μ− 1)Λ2μ+2+ 2Λ2μ+3] �= 0,

(10.7.75)

by virtue of the second line (8.5.59) in Theorem 8.5.5(a).

It follows from (10.7.74) and (10.7.75), together with (10.7.70) and the first line of (8.5.60)

in Theorem 8.5.5(b), for the case n = 2μ , that the following result holds.

Theorem 10.7.8. For positive integers μ and n � 2μ , the Gregory rule QGR
2μ,n, as given by

(10.7.49), (10.7.50), has degree of exactness 2μ + 1.
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We proceed to show how the error expression (10.7.61) in Theorem 10.7.7 can be used to

obtain a quadrature error bound of the form∣∣∣∣∫ b

a
f (x)dx−QGR

2μ,n[ f ]
∣∣∣∣� (b− a)K2μ

(
b− a

n

)2μ+2

|| f (2μ+2)||∞,

f ∈C2μ+2[a,b], (10.7.76)

with K2μ denoting a constant that is independent of n.

We shall rely on the following result for Laplace coefficients.

Theorem 10.7.9. The Laplace coefficient sequence {Λ1,Λ2, . . .}, as defined in (8.4.37), is

strictly decreasing, with, more precisely,

Λ j+1 <
j

j+ 1
Λ j < Λ j, j = 1,2, . . . . (10.7.77)

Proof. Let j ∈ N be fixed. By using the definitions (8.4.37) and (8.4.34), and, since the

polynomial
j−1

∏
k=0

(k − t) does not change sign on the interval [0,1], by applying the mean

value theorem for integrals, as formulated in (8.5.16), we deduce the existence of a point

ξ ∈ (0,1) such that

Λ j+1 = − 1
( j+ 1)!

∫ 1

0

[
j−1

∏
k=0

(k− t)

]
( j− t)dt

= − j− ξ
j+ 1

[
1
j!

∫ 1

0

j−1

∏
k=0

(k− t)dt

]

= − j− ξ
j+ 1

[
(−1) j

j!

∫ 1

0

j−1

∏
k=0

(t − k)dt

]
=

j− ξ
j+ 1

Λ j <
j

j+ 1
Λ j < Λ j,

since Λ j > 0, by virtue of (8.4.54) and the second line of (8.5.59) in Theorem 8.5.5(a), and

thereby completing our proof of (10.7.77). �
Observe from (10.7.77) in Theorem 10.7.9, together with

Λ j > 0, j = 1,2, . . . , (10.7.78)

as follows from (8.4.54) and the second line of (8.5.59) in Theorem 8.5.5(a), that, for any

positive integer μ , we have

(2μ + 1)Λ2μ+2− 2Λ2μ+3 > 2(Λ2μ+2 −Λ2μ+3)> 0. (10.7.79)

It follows from the error expression (10.7.61) in Theorem 10.7.7, as well as (10.7.79) and

(10.7.78), that, for any f ∈C2μ+2[a,b], we have∣∣∣E GR
2μ,n[ f ]

∣∣∣ � (b− a)
[

Λ2μ+2 − (2μ + 1)Λ2μ+2 − 2Λ2μ+3

n

](
b− a

n

)2μ+2

|| f (2μ+2)||∞

< (b− a)Λ2μ+2

(
b− a

n

)2μ+2

|| f (2μ+2)||∞,
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which, together with the definition (10.7.54), yields the following quadrature error bound

of the form (10.7.76).

Theorem 10.7.10. For positive integers μ and n � 2μ , the Gregory rule QGR
2μ,n, as given

by (10.7.49), (10.7.50), satisfies the error bound∣∣∣∣∫ b

a
f (x)dx−QGR

2μ,n[ f ]
∣∣∣∣� (b− a)Λ2μ+2

(
b− a

n

)2μ+2

|| f (2μ+2)||∞,

f ∈C2μ+2[a,b]. (10.7.80)

For the Lacroix rule QLA
n , as defined for n � 2 by (10.7.51), and given for n � 6 by

(10.7.53), we see from Theorem 10.7.8 that QLA
n has degree of exactness = 3, whereas it

follows from (10.7.80) in Theorem 10.7.10, together with the value Λ4 =
19
720 from (8.4.54),

that ∣∣∣∣∫ b

a
f (x)dx−QLA

n [ f ]
∣∣∣∣� (b− a)

19
720

(
b− a

n

)4

|| f (4)||∞, f ∈C4[a,b]. (10.7.81)

Comparing the optimal error bound (10.7.81) for the Lacroix rule QLA
n with the analogous

error bound (8.6.34) for the Simpson rule QSI
n , we see that the error constant (= 1

180) for

QSI
n is smaller than its counterpart (= 19

720) for QLA
n . Note however that QLA

n is defined for

each n � 2, whereas QSI
n is defined only for n = 2,4,6, . . ..

10.8 Exercises

Exercise 10.1 Verify the smoothness property (10.1.14) of the truncated power function

(·)m
+.

Exercise 10.2 For the knot sequence {τ1,τ2,τ3}= {0,1,2}, and with the polynomials

P0(x) := 0; P1(x) = x2; P2(x) :=−x2 + 4x− 2; P3(x) := 2

in the representation (10.1.3) of the piecewise polynomial S, prove that S satisfies the con-

tinuity condition S ∈C1(R), to deduce that S is a spline in σ2(0,1,2).

Exercise 10.3 For the spline S of Exercise 10.2, find the coefficients {c0,c1,c2} and

{d0,d1,d2}, the existence and uniqueness of which are guaranteed by the second statement

in Theorem 10.1.1, for which it holds that

S(x) =
2

∑
j=0

c jx j +
2

∑
j=0

d j(x− j)2
+, x ∈ R.

[Hint: Apply the method used to establish the result (10.1.20) in the proof of Theorem

10.1.1.]
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Exercise 10.4 As another continuation of Exercise 10.2, by differentiating the polynomials

{P0, . . . ,P3} in Exercise 10.2, prove that S′ ∈ σ1(0,1,2), thereby verifying Theorem 10.1.2

for m = 2,r = 3,{τ1,τ2,τ3}= {0,1,2} and with S given as in Exercise 10.2.

Exercise 10.5 According to the case j = 0 of Theorem 10.2.2(a), it holds that

Nm,0(x) =

⎧⎪⎪⎨⎪⎪⎩
0, x ∈ (−∞,τ0);

Pm,k(x), x ∈ [τk,τk+1), k = 0, . . . ,m;

0, x ∈ [τm+1,∞),

where

Pm,k ∈ πm, k = 0, . . . ,m.

By applying the B-spline formulation (10.2.32), calculate the polynomials {Pm,k : k =

0, . . . ,m} for each of the following cases:

(a) m = 1; {τ0,τ1,τ2}= {0,1,3};

(b) m = 2; {τ0,τ1,τ2,τ3}= {0,1,3,4};

(c) m = 2; {τ0,τ1,τ2,τ3}= {0,1,2,4};

(d) m = 3; {τ0,τ1,τ2,τ3,τ4}= {0,1,2,4,5};

(e) m = 3; {τ0,τ1,τ2,τ3,τ4}= {0,1,2,3,5}.

Exercise 10.6 Verify the formulas (10.2.48) and (10.2.49).

Exercise 10.7 For m = 1, j = 0,{τ0,τ1,τ2} = {0,2,3}, and any fixed x ∈ R, calculate the

right hand side of (10.2.51) by means of the recursive formulation (1.3.21) in Theorem

1.3.4 for divided differences, and verify that the right hand side of the B-spline formula-

tion (10.2.32) is thus obtained for these choices of m, j and {τ0,τ1,τ2}, as guaranteed by

(10.2.51) in Theorem 10.2.3.

Exercise 10.8 For the quadratic B-spline N2,0 of Exercise 10.5(b), apply the recursive

method based on Theorem 10.2.5 to compute the values N2,0(1),N2,0(2) and N2,0(3).

Exercise 10.9 For the cubic B-spline N3,0 of Exercise 10.5(d), and as an extension of Ex-

ample 10.2.2, apply the recursive method based on Theorem 10.2.5 to compute the values

N3,0(1),N3,0(2) and N3,0(4).

Exercise 10.10 Verify the explicit cardinal B-spline formulations (10.2.79), (10.2.80) and

(10.2.81) in Example 10.2.3.

Exercise 10.11 Extend Example 10.2.3 by calculating the explicit piecewise polynomial

formulation of the cardinal B-spline N4.

Exercise 10.12 By using the definition (10.1.13), prove that, for a bounded interval [α,β ]⊂
R, and any non-negative integer k, it holds that∫ β

α
xk
+ =

β k+1
+ −αk+1

+

k+ 1
.
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[Hint: Consider separately the three cases 0 � α < β ; α < 0 � β ; α < β < 0.]

Exercise 10.13 Prove that the cardinal B-spline Nm, as given by (10.2.69) in Theorem

10.2.7, satisfies the recursive formulation

N0(x) =

{
1, x ∈ [0,1),

0, x ∈R\ [0,1);
Nm(x) =

∫ 1

0
Nm−1(x− t)dt =

∫ x

x−1
Nm−1(t)dt, m = 1,2, . . . ,

⎫⎪⎪⎪⎬⎪⎪⎪⎭
and for any x ∈ R.

[Hint: Apply Exercise 10.12.]

Exercise 10.14 Use Exercise 10.13 to prove that the cardinal B-spline Nm satisfies the

differentiation formula

N′
m(x) = Nm−1(x)−Nm−1(x− 1), m � 2.

[Hint: Apply the fundamental theorem of calculus.]

Exercise 10.15 As a continuation of Exercise 10.14, prove inductively the differentiation

formula

N(k)
m (x) =

k

∑
j=0

(−1) j
(

k
j

)
Nm−k(x− j), k = 1, . . . ,m− 1,

where m � 2, and for all x ∈R.

Exercise 10.16 Apply Exercise 10.13 to prove recursively that the cardinal B-spline Nm has

unit integral, that is, ∫ ∞

−∞
Nm(x)dx = 1, m = 0,1, . . . .

Exercise 10.17 Let

Sm(x) := Nm

( x
2

)
,

with Nm denoting the cardinal B-spline of Theorem 10.2.7. By applying the formulation

(10.2.69), show that Sm ∈ σm,0(0,2,4, . . . ,2m+ 2).

Exercise 10.18 As a continuation of Exercise 10.17, apply Theorem 10.1.3 to show that

Sm ∈σm,0(0,1,2, . . .2m+2), and then deduce from Theorem 10.2.2(d) and Theorem 10.2.7

that there exists a unique coefficient sequence {pm, j : j =−m, . . . ,2m+ 1} ⊂ R such that

Sm(x) =
2m+1

∑
j=−m

pm, jNm(x− j), x ∈ [0,2m+ 2].

Exercise 10.19 As a continuation of Exercises 10.17 and 10.18, show that the spline S̃m

defined by

S̃m(x) :=

⎧⎪⎨⎪⎩ Sm(x)−
0

∑
j=−m

pm, jNm(x− j), x ∈ (−∞,1];

0, x ∈ (1,∞),
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satisfies S̃m ∈ σm,0(−m, . . . ,0).

[Hint: Appy (10.2.69) and (10.2.70) in Theorem 10.2.7.]

Exercise 10.20 As a continuation of Exercise 10.19, apply Theorem 10.2.1(b) to deduce

that S̃m is the zero spline, and then use this result, together with Exercise 10.17, to obtain
−1

∑
j=−m

pm, jNm(x− j) = 0, x ∈ (−m,0].

Exercise 10.21 As a continuation of Exercise 10.20, prove that

pm, j = 0, j =−m, . . . ,−1.

[Hint: Apply the second line of (10.2.70) in Theorem 10.2.7(a), and consider succes-

sively the intervals (−m,−m+1],(−m+1,−m+2], . . .,(−1,0], in each case also recalling

(10.2.71) in Theorem 10.2.7(b).]

Exercise 10.22 Use an argument analogous to the one in Exercises 10.19 - 10.21 to prove

that, in Exercise 10.18, it holds that

pm, j = 0, j = m+ 2, . . . ,2m+ 1.

[Hint: Show first, analogously to Exercise 10.19, that the spline S∗ defined by

S∗(x) :=

⎧⎪⎨⎪⎩Sm(x)−
2m+1

∑
j=m+1

pm, jNm(x− j), x ∈ [m+ 1,∞);

0, x ∈ (−∞,m+ 1),

satisfies S∗ ∈ σm,0(2m+ 2, . . . ,3m+ 2).]

Exercise 10.23 Deduce from Exercises 10.17, 10.18, 10.21 and 10.22, and by applying also

the second line of (10.2.70) in Theorem 10.2.7(a), that there exists a bi-infinite sequence

{pm, j : j ∈ Z} ⊂ R, with

pm, j = 0, j �∈ {0, . . . ,m+ 1}, (•)

such that

Nm(x) =
∞

∑
j=−∞

pm, jNm(2x− j) =
m+1

∑
j=0

pm, jNm(2x− j), x ∈ R, (∗)

according to which the cardinal B-spline Nm is a refinable function, in the sense that Nm has

the self-similarity property of being expressible as a linear combination of integer shifts of

its own contraction by the factor 2, as is of fundamental importance with respect to the use

of Nm as basis (or scaling) function in subdivision and wavelet algorithms.
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Exercise 10.24 In order to explicitly calculate the coefficients {pm, j : j = 0, . . . ,m+ 1} in

equation (∗) of Exercise 10.23, first apply (•) and (∗), together with the recursive formu-

lation in Exercise 10.13, to deduce that, for any x ∈R, it holds that
m+2

∑
j=0

pm+1, jNm+1(x− j) = Nm+1

( x
2

)
=

m+1

∑
j=0

pm, j

[∫ 1
2

0
Nm(x− 2t − j)dt +

∫ 1

1
2

Nm(x− 2t − j)dt

]
,

and then use this result, together with (•), to establish the identity
m+2

∑
j=0

[
pm+1, j − 1

2
(pm, j + pm, j−1)

]
Nm+1(x− j) = 0, x ∈ R. (∗∗)

Exercise 10.25 As a continuation of Exercise 10.24, consider the identity (∗∗) successively

on the intervals [0,1), [1,2), . . . , [m,m+1), and apply the second line of (10.2.70) in Theo-

rem 10.2.7(b), together with (10.2.71) in Theorem 10.2.7(b), as well as (•), to deduce the

Pascal triangle-like recursive formula

pm+1, j =
1
2
(pm, j + pm, j−1), j ∈ Z.

Exercise 10.26 By using the explicit formulation in Exercise 10.13 of the cardinal B-spline

N0, show that the equation (∗) in Exercise 10.23 is satisfied by the coefficient sequence

{p0, j : j ∈ Z} given by

p0,0 = p0,1 = 1; p0, j = 0, j �∈ {0,1},
that is,

N0(x) = N0(2x)+N0(2x− 1), x ∈ R.

Exercise 10.27 Apply the results of Exercises 10.25 and 10.26 to prove inductively that the

coefficient sequence {pm, j : j ∈ Z} in equation (∗) of Exercise 10.23 is given explicitly by

the formula

pm, j =
1

2m

(
m+ 1

j

)
, j ∈ Z,

and thus

Nm(x) =
∞

∑
j=−∞

1
2m

(
m+ 1

j

)
Nm(2x− j) =

m+1

∑
j=0

1
2m

(
m+ 1

j

)
Nm(2x− j), x ∈R,

after having kept in mind also the second line of the binomial coefficient definition (3.2.1).

Exercise 10.28 According to Exercise 10.27, the linear cardinal B-spline N1 satisfies the

identity

N1(x) =
1
2

N1(2x)+N1(2x− 1)+
1
2

N1(2x− 2), x ∈R.
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Verify this identity by means of the explicit formulation (10.2.79) of N1.

[Hint: Consider successively the intervals (−∞,0), [0, 1
2 ), [

1
2 ,1), [1,

3
2 ), [

3
2 ,2), [2,∞).]

Exercise 10.29 Explain why the following statement is true: Together, the results of Theo-

rem 10.2.2(a) and Theorem 10.2.6(a) are consistent with the result of Theorem 10.3.1.

Exercise 10.30 Apply the Schoenberg-Whitney theorem, as formulated in Theorem 10.3.2,

to prove that, for any f ∈C[0,2], there exists precisely one spline SI
3,4 ∈ σ3([0,2];1), where

the corresponding extended knot sequence is given by τ j = j, j = −3, . . . ,5, such that the

interpolation conditions

(SI
3,4)

(
j
2

)
= f

(
j
2

)
, j = 0, . . . ,4,

are satisfied.

Exercise 10.31 As a continuation of Exercise 10.30, apply a method based on matrix inver-

sion as in Example 10.3.1 to obtain, for any f ∈ C[0,2], and analogously to (10.3.50), an

explicit formulation for (S I
3,4 f )(x), x ∈ [0,2], with S I

3,4 denoting the spline interpolation

operator defined as in (10.3.38).

Exercise 10.32 Let the function S : [0,2]→ R be defined by

S(x) :=

⎧⎨⎩ x2 − x3, x ∈ [0,1];

−2x2 + 3x− 1, x ∈ (1,2].

Prove that S ∈ σ3([0,2];1), and deduce from Theorem 10.2.2(d), together with (10.2.68) in

Theorem 10.2.7, that there exists a unique coefficient sequence {c j : j = −3, . . . ,1} such

that

S(x) =
1

∑
j=−3

c jN3(x− j), x ∈ [0,2].

Exercise 10.33 By applying the exactness condition (10.3.39) in Theorem 10.3.3(b), and

using Exercise 10.31, calculate the coefficients {c j : j =−3, . . . ,1} of Exercise 10.32.

Exercise 10.34 For m = 2 and m = 3, and any fixed j ∈ {−m, . . . ,r +m+ 1}, by using

(10.2.68) in Theorem 10.2.7, as well the explicit formulations (10.2.80), (10.2.81), verify

the result of Theorem 10.3.4 on the zeros of the derivatives N(k)
m, j,k = 1, . . . ,m− 1.

Exercise 10.35 By applying Theorems 10.2.7 and 10.4.2, prove that, for any fixed r ∈ N,

the cardinal B-spline Nm satisfies the identity

x� =
�!
m!

r

∑
j=−m

g̃(m−�)
m ( j)Nm(x− j), x ∈ [0,r+ 1], �= 0, . . . ,m,

where the polynomial g̃m ∈ πm is defined by

g̃m(t) :=
m

∏
k=1

(t + k).
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Exercise 10.36 Prove that the polynomial g̃m of Exercise 10.35 satisfies the formulation

g̃m(t) = tm +
m−1

∑
k=0

αm,ktk,

for a coefficient sequence {αm,k : k = 0, . . . ,m− 1} ⊂ R such that

αm,m−1 =
m(m+ 1)

2
; αm,m−2 =

(m+ 1)m(m− 1)(3m+ 2)
24

.

[Hint: Recall the formulas
n

∑
k=1

k =
n(n+ 1)

2
;

n

∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
;

n

∑
k=1

k3 =

[
n(n+ 1)

2

]2

.]

Exercise 10.37 Apply the result of Exercise 10.36 in Exercise 10.35 to deduce the identities

x =
r

∑
j=−m

(
j+

m+ 1
2

)
Nm(x− j), for m � 1,

x2 =
r

∑
j=−m

[
j2 +(m+ 1) j+

(m+ 1)(3m+ 2)
12

]
Nm(x− j), for m � 2,

⎫⎪⎪⎪⎬⎪⎪⎪⎭x ∈ [0,r+ 1],

for any fixed r ∈ N.

Exercise 10.38 By using Exercise 10.37, derive the formulas
m

∑
j=1

jNm( j) =
m+ 1

2
;

m

∑
j=1

j2Nm( j) =
(m+ 1)(3m+ 4)

12
.

[Hint: Set x = 0 in Exercise 10.37, and apply (10.2.72) in Theorem 10.2.7(c).]

Exercise 10.39 For each of the cases m = 1,m = 2, and m = 3, calculate the sum
m

∑
j=1

j�Nm( j),

for �= 1 if m = 1, and for �= 1,2 if m � 2, by applying the formula (10.2.75) in Theorem

10.2.7(f), and then use these results to verify the formulas in Exercise 10.38 for m = 1,m =

2, and m = 3.

Exercise 10.40 Calculate the matrix in the right hand side of (10.4.5) for n = 3, by using

the Lagrange fundamental polynomials {L3, j : j = 0, . . . ,3} as obtained in Exercise 1.2.

Confirm that the matrix thus obtained is precisely the inverse matrix V−1
3 calculated in

Exercise 1.1, and thereby verifying Theorem 10.4.3 for this special case.

Exercise 10.41 For each of the cases n = 1 and n = 2, and with polynomials P and Q as

in (10.4.41) of Theorem 10.4.5, calculate separately both sides of the equation (10.4.42),

thereby verifying Theorem 10.4.5 for n = 1 and n = 2.

Exercise 10.42 In Example 10.4.1(b), verify the formulas (10.4.58), (10.4.59), and

(10.4.63) - (10.4.67).
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Exercise 10.43 Let S QI
2,1 : C[0,2]→ σ2([0,2];1) denote the quasi-interpolation spline ap-

proximation operator of Example 10.4.1(b), with respect to the extended integer knot se-

quence {τ j = j : j = −2, . . . ,4}, as in (10.4.62), with r = 1. By applying the formulas in

(10.4.58), obtain an expression as in (10.4.31) of Theorem 10.4.4 for (S QI
2,1 f )(x),x ∈ [0,2],

for any f ∈C[0,2].

Exercise 10.44 According to Theorem 10.4.4, the approximation operator S QI
2,1 of Exercise

10.43 satisfies the polynomial exactness property (10.4.1), with m = 2, that is,

(S QI
2,1 f )(x) = f (x), f ∈ [0,2], f ∈ π2.

By choosing, respectively, f (x) = x and f (x) = x2 in this equation, and applying Exercise

10.43, obtain coefficient sequences {α1, j : j = −2, . . . ,1} and {α2, j : j = −2, . . . ,1} such

that

x =
1

∑
j=−2

α1, jN2(x− j),

x2 =
1

∑
j=−2

α2, jN2(x− j),

⎫⎪⎪⎪⎬⎪⎪⎪⎭x ∈ [0,2],

and then verify that these results correspond precisely to the case m = 2,r = 1 of Exercise

10.37.

Exercise 10.45 In Example 10.4.1(c), verify the coefficient values (10.4.69), and the for-

mulas (10.4.70) - (10.4.74).

Exercise 10.46 In the proof of Theorem 10.5.1, provide the details in the derivation of

(10.5.18) from (10.5.17).

[Hint: Use the same argument as the one leading from (10.4.23) to (10.4.30).]

Exercise 10.47 Show that the linear systems (10.5.23) are uniquely solved by (10.5.25) in

Theorem 10.5.2.

[Hint: Use the same argument as the one leading from (10.4.22) to (10.4.52).]

Exercise 10.48 In Theorem 10.5.2, verify the equivalence of the two formulations (10.5.24)

and (10.5.28), (10.5.29) of (S LI
m,n f )(x),x ∈ [a,b], for any f ∈C[a,b].

Exercise 10.49 In Example 10.5.1(b), verify the formulas (10.5.57), (10.5.58).

Exercise 10.50 Provide the details in the derivations of (a) the formulas (10.5.70) and

(10.5.71) in the proof of Theorem 10.5.7; (b) the formula (10.5.87).

Exercise 10.51 In Example 10.5.2, verify the coefficient values (10.5.78), as well as the

explicit formulation (10.5.84).

Exercise 10.52 Apply Theorem 10.5.7 with m = 3, and where p and q are chosen as in

(10.5.54), to evaluate the corresponding coefficient sequence {λ3,−6, . . . ,λ3,5}, and to ob-

tain an explicit piecewise polynomial formulation for V3(x),x ∈ [−6,9], analogous to the



394 Mathematics of Approximation

one given for V2(x),x ∈ [0,4), in (10.5.84) of Example 10.5.2. Also, write down the ana-

logue of (10.5.79) - (10.5.82) and (10.5.86) for V3 and S LI
3,n.

Exercise 10.53 For [a,b] = [0,n], and the integer knot case

τn, j = j, j =−m, . . . ,n+m,

of the Schoenberg operator S SC
m,n defined in (10.6.2, (10.6.3), and with also m � 2n+ 1,

apply (10.2.68) and (10.2.72) in Theorem 10.2.7, as well as the first identity in Exercise

10.37, to show that S SC
m,n preserves linear polynomials in the interior of [0,n], in the sense

that

(S SC
m,n f )(x) = f (x), x ∈ [m,n−m], f ∈ π1.

Exercise 10.54 For any integer n � 2, let S SC
2,n : C[0,2]→ σ2([0,2];τn,1, . . . ,τn,n−1) denote

the Schoenberg operator with respect to the uniformly spaced knot sequence

τn, j :=
2 j
n
, j =−2, . . . ,n+ 2.

For the function

f (x) =
1

x+ 1
, x ∈ [0,2],

calculate explicit polynomial formulations of the spline S SC
2,2 f ∈ σ2([0,2];1) on each of the

intervals [0,1) and [0,2].

[Hint: Use (10.6.2), (10.6.3), and the explicit piecewise polynomial formulation (10.2.80)

in Example 10.2.3 of the quadratic cardinal B-spline N2.]

Exercise 10.55 As a continuation of Exercise 10.54, find the smallest value of n for which

the error bound (10.6.19) in Theorem 10.6.3(b) guarantees that

‖ f −S SC
2,n f‖∞ <

1
10

.

Exercise 10.56 Prove that the spline sequence {Wm,k : k = 0, . . . ,n} of Theorem 10.5.4

satisfies the condition
n

∑
k=0

f (xk)Wm,k(x) = f (x), x ∈ [a,b], f ∈ πm,

and deduce that
n

∑
k=0

Wm,k(x) = 1, x ∈ [a,b].

Exercise 10.57 Deduce by means of (10.5.37) in Theorem 10.5.4, together with (10.5.50)

- (10.5.52) in Theorem 10.5.6, that, for n � 2m+ 1,

(S LI
m,n f )(x) =

min{n, j+q+1}
∑

k=max{0, j−p}
f (xn,k)Wm,k(x), x ∈ [xn, j,xn, j+1), j = 0, . . . ,n− 1,
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where, as implied by (10.6.24) and (10.5.5), we have written xn, j for x j.

Exercise 10.58 As a continuation of Exercise 10.57, prove that, for n� 2m+1, the operator

S LI
m,n is bounded with respect to the maximum norm on [a,b], with Lebesgue constant

bounded by

‖S LI
m,n‖∞ � (m+ 2)

[
m

∑
i=1

Ri
n

]m

, (∗)

where Rn is the maximum ratio defined in (10.6.26), and satisfying the formulation

‖S LI
m,n‖∞ = max

0� j�n−1
max

xn, j�x�xn, j+1

min{n, j+q+1}
∑

k=max{0, j−p}
|Wm,k(x)|, (∗∗)

with the splines {Wm,k : k = 0, . . . ,n} given as in (10.5.50) - (10.5.52) of Theorem 10.5.6.

Exercise 10.59 Apply the bound (∗) in Exercise 10.58 to show that, for n � 2m+ 1, the

Lebesgue constant of the local spline operator S LI
m,n of Theorem 10.5.7, as based on uni-

formly distributed knots, is bounded independently of n by

‖S LI
m,n‖∞ � (m+ 2)mm.

Exercise 10.60 Show that, for n � 5, the Lebesgue constant of the quadratic local spline

interpolation operator S LI
2,n of Theorem 10.5.7, with m = 2, has the value

‖S LI
2,n‖∞ =

5
4
,

according to which the Lebesgue constant estimate in Exercise 10.59 is a rather crude one

for m = 2.

[Hint: Apply the formula (∗∗) in Exercise 10.58, as well as the formulations (10.5.89)–

(10.5.91) in Theorem 10.5.8, together with the explicit piecewise polynomial formulation

(10.5.84), and the symmetry property (10.5.85), of the spline V2, as obtained in Example

10.5.2. Also, apply the fact, as established in Exercise 10.56, that the sequence {Wm,k(x) :

k = 0, . . . ,n} sums to one for all x ∈ [a,b].]

Exercise 10.61 Show that, in Theorem 10.6.5, the interpolation point sequence

xn, j =
1
2
(b− a)cos

(
n− j

n
π
)
+

1
2
(a+ b), j = 0, . . . ,n,

satisfies the condition (10.6.43), with

‖xn‖∞ � π
2

(
b− a

n

)
, n = 2m+ 1, 2m+ 2, . . . ,

as well as the condition (10.6.44), with R = 3. Observe from (8.3.2) that

xn, j = xCC
n, j , j = 0, . . . ,n,
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the interpolation points for the Clenshaw-Curtis quadrature rule QCC
n , and which are con-

centrated more densely near the endpoints of the interval [a,b].

[Hint: Use the mean value theorem to deduce the bound on ‖xn‖∞; then, from the definition

(10.6.26), by applying also the trigonometric identity

cosA− cosB = 2sin
(

B+A
2

)
sin
(

B−A
2

)
,

show that

Rn = max
1� j�n−1

⎧⎨⎩ sin
(

2 j+1
2n π

)
sin
(

2 j−1
n π

) , sin
(

2 j−1
2n π

)
sin
(

2 j+1
2n π

)
⎫⎬⎭=

sin( 3
2n π)

sin( 1
2n π)

,

before obtaining the results

d
dx

[
sin( 3π

2x )

sin( π
2x )

]
> 0, x � 2; lim

x→∞

sin( 3π
2x )

sin( π
2x )

= 3,

to establish that (10.6.44) holds with R = 3.]

Exercise 10.62 As a continuation of Exercise 10.61, show that the error bound (10.6.71) of

Theorem 10.6.7 yields

‖ f −S LI
m,n f‖∞ � 2

(m+ 1)!

[
3
2
(3m − 1)

]m
[

p+1

∑
j=1

jm+1 +
q+1

∑
j=1

jm+1

]

×
(π

2

)m+1
(

b− a
n

)m+1

‖ f (m+1)‖∞, f ∈Cm+1[a,b].

Exercise 10.63 As a continuation of Exercises 10.61 and 10.62, show that the case m = 2,

[a,b] = [0,2], and where the integers p and q are chosen as in (10.5.54), yields the error

bound

‖ f −S LI
2,n f‖∞ � 864π3

n3 ‖ f ′′′‖∞, f ∈C3[0,2].

Exercise 10.64 As a continuation of Exercise 10.63, for the function

f (x) = ln(x+ 2), x ∈ [0,2],

find the smallest value of n for which the error bound in Exercise 10.63 guarantees that

‖ f −S LI
2,n f‖∞ <

1
10

.

Exercise 10.65 For a quadratic case m = 2 of Theorem 10.5.8, apply the explicit formula-

tions (10.5.89) - (10.5.91), as well as (10.5.84) and (10.5.85), to calculate the constant

M := max
0� j�n

max
a�x�b

|W2, j(x)|,
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and where M is independent of a,b and n, thereby showing also that the estimate M � 4, as

obtained from (10.6.27) in Theorem 10.6.4, is a rather crude one.

Exercise 10.66 The error estimates (10.6.59) and (10.6.60) in Theorem 10.6.6, as well as

(10.6.71) in Theorem 10.6.7, were proved by using, in one of the steps, the uniform bound

(10.6.27) of Theorem 10.6.4, as can be seen, for example, in the derivation of (10.6.70),

which then yielded Theorem 10.6.7. For the quadratic interpolation operator S LI
2,n based

on uniformly spaced knots as in Theorem 10.5.7, and with p = q = 1 as in (10.5.54) with

m = 2, argue as in the proofs of Theorems 10.6.6 and 10.6.7, but with the uniform bound

(10.6.27) replaced by the precise value of M, as obtained in Exercise 10.65, to deduce the

improved error bounds

‖ f −S LI
2,n f‖∞ � 2M

(
b− a

n

)
Kf , f ∈CLip[a,b],

with Kf denoting a Lipschitz constant of f on [a,b];

‖ f −S LI
2,n f‖∞ � 2M

(
b− a

n

)
‖ f ′‖∞, f ∈C1[a,b];

‖ f −S LI
2,n f‖∞ � 6M

(
b− a

n

)3

‖ f ′′′‖∞, f ∈C3[a,b].

Exercise 10.67 As a continuation of Exercise 10.66, for the function

f (x) = ln(x+ 2), x ∈ [0,2],

find the smallest value of n for which, according to the error bounds in Exercise 10.66, with

[a,b] = [0,2], it is guaranteed that

‖ f −S LI
2,n f‖∞ <

1
10

.

Exercise 10.68 Verify the coefficient values in Table 10.7.1.

Exercise 10.69 In the proof of Theorem 10.7.7, provide the details of the derivation of

(10.7.73) from (10.7.65) and (10.7.72).

Exercise 10.70 By using (8.4.54), verify the inequalities (10.7.77) in Theorem 10.7.9 for

j = 1, . . . ,9.

Exercise 10.71 According to Theorem 10.7.8, with [a,b] = [−1,1] and μ = 1, together with

the definition (10.7.51), the degree of exactness of the corresponding Lacroix rule QLA
n is

equal to 3, that is,

E LA
n [ f ] :=

∫ 1

−1
f (x)dx−QLA

n [ f ] = 0, f ∈ π3,

for n = 2,3, . . .. Verify this fact for n = 6, by explicitly calculating E LA
6 [ f ] for, respectively,



398 Mathematics of Approximation

(a) f (x) =
3

∑
j=0

α jx j; f (x) = x4,

where, in (a), {α0, . . . ,α3} denotes an arbitrary coefficient sequence in R.

Exercise 10.72 As a continuation of Exercise 10.71, for each of the respective integrands

(a) f (x) = ln(x+ 2); (b) f (x) = x4,

and recalling the precise value obtained in Exercise 8.2 for the integral
∫ 1

−1
ln(x+ 2)dx,

verify that the corresponding quadrature error E LA
6 [ f ] satisfies the upper bound (10.7.81).

Exercise 10.73 Find the constant K for which it holds that

E GR
4,n [ f ] :=

∣∣∣∣∫ 1

−1
f (x)dx−QGR

4,n [ f ]
∣∣∣∣� K

n6 ‖ f (6)‖∞, f ∈C6[−1,1].

[Hint: Apply the Gregory quadrature estimate (10.7.80) in Theorem 10.7.10.]

Exercise 10.74 As a continuation of Exercise 10.73, for the integrand f as in Exercise

10.72(a), verify that the corresponding quadrature error E GR
4,10[ f ] satisfies the upper bound

established in Exercise 10.73.

Exercise 10.75 As a further extension of Exercises 8.25 and 9.10, apply the Lacroix rule

error estimate in (10.7.81), as well as the estimate for E GR
4,n [ f ] derived in Exercise 10.73, to

calculate the values of QLA
n [ f ] and QGR

4,n [ f ], with

f (x) = e−x2
, x ∈ [0,1],

where n is the smallest value for which it holds, according to these estimates, that:∣∣∣∣∫ 1

−1
f (x)dx−QLA

n [ f ]
∣∣∣∣ < 1

100
;

∣∣∣∣∫ 1

−1
f (x)dx−QGR

4,n [ f ]
∣∣∣∣ <

1
100

.

Exercise 10.76 Apply the identity in Exercise 10.27 for the cardinal B-spline Nm to prove

that the integral moment sequence

μm, j :=
∫ ∞

−∞
x jNm(x)dx =

∫ m+1

0
x jNm(x)dx, j = 0,1, . . . ,

satisfies the identity

μm, j =
1

2m+ j+1

j

∑
k=0

(
j
k

)[m+1

∑
�=0

(
m+ 1
�

)
� j−k

]
μm,k, j = 0,1, . . . .

Exercise 10.77 As a continuation of Exercise 10.76, and by applying Exercise 10.16, show

that the integral moment sequence {μm, j : j = 0,1, . . .} satisfies the recursive formulation

μm,0 = 1;

μm, j =
1

2m+1(2 j − 1)

j−1

∑
k=0

(
j
k

)[m+1

∑
�=0

(
m+ 1
�

)
� j−k

]
μm,k, j = 1,2, . . . .
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[Hint: Observe that the binomial theorem yields

m+1

∑
�=0

(
m+ 1
�

)
=

m+1

∑
�=0

(
m+ 1
�

)
1m+1−�1� = (1+ 1)m+1 = 2m+1.

]
Exercise 10.78 As a continuation of Exercise 10.77, calculate, for each of the cases m =

1,m = 2 and m = 3, the integral moments {μm, j : j = 1,2,3}.

Exercise 10.79 After noting from Exercise 10.16 and (10.2.62) in Theorem 10.2.6(a) that

the weight function w = Nm satisfies the conditions (4.2.8) and (4.2.9), apply the three-

term recursion formulation (7.4.1) in Theorem 7.4.1, together with the integral moments

calculated in Exercise 10.78, to find, for each of the cases m = 1,m = 2 and m = 3, the

orthogonal polynomials {P⊥
m, j : j = 0,1,2} for which it holds that∫ m+1

0
Nm(x)P⊥

m, j(x)P
⊥
m,k(x)dx = 0, j �= k, j,k = 0,1,2.

Exercise 10.80 For each of the cases m = 1,m = 2 and m = 3, apply Theorem 8.2.2, to-

gether with Exercise 10.79, to design the Gauss rule QG
n for the numerical approximation

of the integral ∫ m+1

0
Nm(x) f (x)dx, f ∈C[0,m],

such that the polynomial exactness condition∫ m+1

0
Nm(x) f (x)dx = QG

n [ f ], f ∈ π3,

is satisfied. Also, give the corresponding quadrature error estimates (8.2.28) and (8.2.29)

in Theorem 8.2.4(b).
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operator, 243
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130, 163

error functional, 261, 272, 277, 280
operator, 130–132, 134
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148, 157, 158

approximation, 81, 108, 148
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Binomial theorem, 399
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Continuity
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Convergence
rate, 67, 262, 273, 277, 357, 363
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189, 366
result, 171, 177, 179, 214, 221, 257–260,

379
Convergent

infinite series, 282
series, 259

Convex set, 76

De Moivre’s theorem, 159, 237, 238
Decay

condition, 230, 283
rate, 230, 284

Degree of exactness, see Interpolatory
Diagonal matrix, 136
Dimension theorem for matrices, 298
Dini-Lipschitz theorem, 282, 287
Discrete Fourier series operator, 256, 285
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Divided difference, 8, 10–13, 15–17, 19–21,

23, 25, 26, 39, 61, 202–205, 303, 376, 387
Dot product, see Inner product

Equi-oscillation
condition, 112
property, 103, 107, 121, 122
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quadrature, see Quadrature error
bound, 356, 363, 366, 386, 394, 396, 397
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estimate, 27, 28, 32–35, 37, 38, 50, 68, 125,

229, 286
expression, 44
function, 25–27, 99, 102, 118, 274, 364

Euclidean
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371
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function, 124, 239–242, 264, 266, 268, 274,

279, 280
polynomial, 124, 149–151

Exactness
condition, 175, 185, 187, 271, 325–327,

329, 340, 341, 344, 345, 361, 369,
371, 372, 374, 377, 391, 399

property, 363, 364, 393
result, 318

Exchange algorithm, see Remez algorithm
Extended knot sequence, see Knot sequence

Fast Fourier Transform, 257
FFT, see Fast Fourier Transform
Finitely supported function, 295
Fourier

coefficients, 258, 259, 282, 285, 287
series, 258, 260, 261, 281, 282, 285

approximation, 256
operator, 243, 244, 257, 261–264, 268,

272, 277, 282, 285
Fundamental theorem of calculus, 198, 203,

267, 280, 388

Gauss
quadrature formula, 176, 177
quadrature rule, 175, 176, 399

Gauss-Legendre quadrature rule, 177–179,
227, 231

Geometric series summation formula, 159
Gram matrix, 134–136, 162
Gram-Schmidt

formula, 145
procedure, 137, 140, 141, 143–145, 163

Gregory rule, 374, 375, 377–380, 383, 384,
386, 398
quadrature error, 379

Hermite
interpolation conditions, 14, 20, 23
interpolation formula, 20, 97
interpolation operator, 97
interpolation polynomial, 14, 15, 18, 20, 22,

97
interpolation problem, 24
polynomial interpolation, 15

Identity matrix, 247
Infinite series, 163, 258, 259, 285, 287
Inner product, 77

Euclidean, 77
weighted, 78

Inner product space, 77
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Euclidean, see Euclidean
Integral moment, 398, 399
Interactive geometric design, 53
Intermediate value theorem, 32, 102, 103, 202,

219, 224, 382, 384
Interpolant, 98, 226, 333, 342, 367
Interpolation

conditions, 1–4, 7, 10, 12, 22, 25, 191, 273,
274, 312, 316, 318, 319, 391

formula, 5, 10, 22, 27, 98
operator, 338, 341, 342

local, 341
non-local, 336

point sequence, 32, 35, 50, 113, 177, 357,
360, 362, 395

points, 1, 8, 13, 33, 39, 50, 97, 113, 115,
120, 168, 179, 190, 192, 215, 333,
339, 366, 367, 396

polynomial, 6–8, 10, 11, 13, 23, 26, 28, 34,
35, 37, 38, 85, 92, 97

property, 350
Interpolatory

conditions, 1, 4, 6, 8, 14, 339
polynomial, 8
property, 5, 338
quadrature formula, 168
quadrature rule, 168

convergence, 170
degree of exactness, 169, 170, 172,

173, 176, 178, 183, 188, 189, 212,
213, 220, 223, 224, 226–228, 284,
380, 384, 386, 397

weights, 168, 170, 175, 177, 179, 368

Jackson’s
first theorem, 277, 286
second theorem, 280, 287

Knot sequence, 300, 308, 309, 315, 325, 329,
334, 335, 337, 340, 341, 346, 354, 355, 357,
360, 386, 394
extended, 300, 312, 319, 322, 323, 391, 393

Knot subsequence, 362, 366
Knots, 290, 294, 302, 309, 312, 325, 329, 337,

367, 395, 397
Kronecker delta, 5, 248, 325

L’Hospital’s rule, 49, 282
Lacroix rule, 378, 380, 386, 397, 398
Lagrange

fundamental polynomials, 5–7, 23, 86, 91,
92, 95, 168, 176, 179, 191, 221,
299, 324, 328, 334, 335, 339, 342,
343, 376, 392

interpolation formula, 6–8, 23, 98, 168, 221,
333, 335, 343

polynomial interpolation operator, 85,
89–91, 95–97, 113, 115, 117, 118,
120, 125, 168, 177, 179, 190

Laplace coefficients, 195, 196, 198, 199, 209,
211–213, 216, 218, 220, 229, 375, 377, 378,
380, 385

Leading coefficient property, 11
Lebesgue

constant, 88–92, 94, 96–98, 115, 132, 262,
264, 265, 268–270, 272, 395

inequality, 94–98, 113, 117, 118, 120, 271,
272, 286, 287

Legendre
expansion, 155, 165
polynomials, 149, 152, 153, 164, 165

Leibniz formula, 62, 70
Linear

approximation operator, see Approximation
functional, 168, 200–202, 204, 209, 219
space, 1, 71, 77, 85

Lipschitz
condition, 280, 281
constant, 279, 280, 287, 357
constant for f on [a,b], 356, 363, 379, 397
constant for f on R, 279, 282

Lipschitz-continuous
function on [a,b], 356
function on R, 279, 281
periodic function, 280

Local
approximation operator, see Approximation
quasi-interpolation operator, see

Quasi-interpolation operator
spline approximation operator, see Spline
spline interpolant, see Spline
spline interpolation operator, see Spline

Marsden identity, 322
Maximum

norm, see Norm
ratio, 357, 358, 361, 395

Mean value theorem, 279, 357, 396
for integrals, 26, 203, 207, 224, 225, 251,

253, 381, 385
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for iterated integrals, 204
Midpoint rule, 223, 224, 226, 231
Minimization property, 31, 32
Monic polynomial, 31, 144, 145, 201
Monotonicity-preserving result, 66
Multivariate polynomial, 330, 331

Nesting property, 258, 262
Newton interpolation formula, 10, 11, 13, 23,

38, 380
Newton-Cotes

composite quadrature error, 218
composite quadrature rule, 214–216, 220,

221, 229, 230, 367, 379, 380
error functional, 202, 204, 205, 209
quadrature error, 201
quadrature rule, 190, 200, 212–215, 223,

229, 382
weights, 191, 195, 199, 200, 229, 382

Non-local interpolation operator, see
Interpolation

Non-negative weight condition, 170, 175, 179,
214

Norm, 71
L2, 79, 92, 93, 141
L∞, 72
Chebyshev, 72
Euclidean, 72
maximum, 72, 75, 88–91, 98, 103, 107, 124,

125, 134, 164, 238, 258, 261–264,
268, 271, 272, 282, 354, 395

sup, 72
Weighted L2, 79, 257

Normed linear space, 71
Euclidean, see Euclidean

Nullspace, 298

Odd
function, 124, 235, 239, 242, 260, 274, 279
polynomial, 124, 149, 150

Operator norm, see Approximation
Orthogonal

basis, 136–143, 145, 153, 163, 235, 243
functions, 127
polynomials, 145, 147–149, 152–155, 157,

163, 164, 172, 173, 177, 399
set, 234, 235

Orthogonality condition, 128, 130, 137, 139,
140

Parseval identity, 259, 260, 282, 285
Pascal triangle, 390
Peano

kernel, 364
theorem, 364

Period, 233, 234, 244, 250
Periodic

continuous function, 254
function, 233, 234, 244, 250, 279

Periodicity condition, 281
Piecewise polynomial, 215, 289–291, 314, 367
Pointwise convergence, 261, 282

result, 261, 282
Pointwise convergent, see Pointwise

convergence
Polynomial

division theorem, 174
exactness condition, see Exactness
exactness property, see Exactness
extrapolation, 325, 329, 338, 341, 353
interpolation, 4, 5, 8, 37, 95, 113

error estimate, see Error
error function, see Error

interpolation formula, 5, 6
Positivity condition, 175, 227, 228
Pythagoras rule for inner product spaces, 129

Quadrature error, 178, 190, 200, 218, 220, 223,
227–230, 244, 245, 254, 256, 284, 378, 380,
383, 384, 398
bound, 213, 229, 385, 386
estimate, 229, 230, 284, 379, 380, 399

Quasi-interpolation operator, 322, 393
local, 326, 329, 336, 346

Rank, 298
Rate of convergence, see Convergence
Rectangle rule, 205, 223, 224
Refinable function, 389
Remez algorithm, 123
Riemann sum, 226
Rodrigues formula, 165
Rolle’s theorem, 274, 275, 314, 315
Row space, 298
Runge example, 38, 113, 118, 214, 228

Sawtooth function, 260, 280, 282
Scalar product, see Inner product
Scaling function, see Basis function
Schoenberg operator, 354, 356, 394
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Schoenberg-Whitney theorem, 315, 391
Self-similarity property, 389
Simpson rule, 216, 220, 231, 386
Smoothness property, 386
Spline, 290, 297–299, 312, 314, 316–319,

334–337, 339–341, 345, 347, 352–355, 357,
361, 366–369, 386, 388, 389, 391, 394, 395
approximation operator, 322, 325, 329, 340

local, 321
interpolant, 320, 367

local, 375
interpolation operator, 318, 391

local, 337, 341, 343, 344, 346, 347,
353, 357, 361, 363, 366–368, 395

interpolation, 315
interpolatory quadrature rule, 368, 369, 375
knots, see Knots
space, 289

Standard basis for πn, see Basis for πn
Subdivision algorithm, 389
Sup norm, see Norm
Symmetric function, 13
Symmetry

condition, 13, 185, 200, 310, 348
property, 216, 370, 395

Taylor expansion polynomial identity, 290,
292, 324, 331, 339, 372

Taylor’s theorem, 244, 246, 363
Trapezoidal rule, 216, 220, 226, 231, 244, 245,

254–256, 283, 284, 369, 371, 375, 383, 384
with endpoint corrections, 368, 369, 371,

374, 375
Triangle inequality, 71, 95, 281
Trigonometric polynomial, 238–242, 258, 261,

273, 274, 278, 285, 286, 354
space, 238

Truncated power, 291, 303, 363, 386

Uniform
approximation error, 272
bound, 357, 358, 360, 361, 397
boundedness, 269
convergence, 37, 38, 61, 113, 357

condition, 113
property, 110
result, 38, 50, 55, 58, 62, 68, 111–113,

118, 125, 171, 261, 262, 272, 281,
282, 354, 360–362

Uniformly convergent, see Uniform

Upper triangular matrix, 247

Vandermonde matrix, 2, 4, 5, 22, 197, 297,
298, 324, 328, 339, 374

Vector space, see Linear

Wavelet algorithm, 389
Weierstrass theorem, 61, 239, 240, 257, 354,

355
Weight function, 78, 79, 81–83, 86, 93, 94,

112, 144, 145, 148, 149, 152–157, 164, 167,
173, 175, 177, 179, 399

Weighted
L2 norm, see Norm
inner product, see Inner product

Weights
of Clenshaw-Curtis quadrature rule, see

Clenshaw-Curtis
of interpolatory quadrature rule, see

Interpolatory
of Newton-Cotes quadrature rule, see

Newton-Cotes
Wronskian determinant, 163
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