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Preface to the Series

The Niels Henrik Abel Memorial Fund was established by the Norwegian gov-
ernment on January 1, 2002. The main objective is to honor the great Norwegian
mathematician Niels Henrik Abel by awarding an international prize for outstand-
ing scientific work in the field of mathematics. The prize shall contribute towards
raising the status of mathematics in society and stimulate the interest for science
among school children and students. In keeping with this objective the Board of the
Abel Fund has decided to finance an annual Abel Symposium. The topic may be
selected broadly in the area of pure and applied mathematics. The Symposia should
be at the highest international level, and serve to build bridges between the national
and international research communities. The Norwegian Mathematical Society is
responsible for the events. It has also been decided that the contributions from these
Symposia should be presented in a series of proceedings, and Springer Verlag has
enthusiastically agreed to publish the series. The board of the Niels Henrik Abel
Memorial Fund is confident that the series will be a valuable contribution to the
mathematical literature.

Helge Holden
Chairman of the board of the Niels Henrik Abel Memorial Fund



Preface

The topic of the 2010 Abel Symposium was Nonlinear Partial Differential Equa-
tions. The study of differential equations is of fundamental importance in math-
ematics and in almost all of the applications of mathematics in natural sciences,
economics, and engineering. This area of mathematics is currently in the midst of
an unprecedented development worldwide. Differential equations are used to model
phenomena of increasing complexity, and in areas that have traditionally been out-
side the realm of mathematics. New analytical tools and mathematical theories, cou-
pled with new numerical methods, are dramatically improving our understanding of
nonlinear models. Nonlinearity gives raise to solutions having singularities, oscilla-
tions, or concentration effects, which in the real world are reflected in the appearance
of shock waves, turbulence, material defects, etc. These effects frequently require
new techniques, and offer challenging novel problems for mathematicians. On the
other hand, new mathematical developments provide (numerical) solutions and new
insight in many applications. The purpose of these Abel Symposium proceedings is
to present a selection of the latest exciting results by world leading researchers in
the area of nonlinear partial differential equations.

The Abel Symposium was hosted at the Norwegian Academy of Science and
Letters, Oslo, from September 28 to October 2, 2010. Attendance was by invita-
tion only, and the symposium had a total of 74 participants, out of which 32 were
from Norwegian universities. The Scientific Committee consisted of Alberto Bres-
san (Penn State), Helge Holden (Trondheim), Kenneth H. Karlsen (Oslo), Sergiu
Klainerman (Princeton), and Eitan Tadmor (Maryland).

Talks were presented by

Luigi Ambrosio (Pisa)
Alberto Bressan (Penn State)
Luis A. Caffarelli (Texas)
Gui-Qiang Chen (Oxford)
Camillo De Lellis (Ziirich)
Maria J. Esteban (Paris)
Eduard Feireisl (Prague)
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These proceedings include most of the lectures presented at the Abel Sympo-
sium, and the editors appreciate the efforts made by the speakers to present their

talks in these proceedings.
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Andreianov, Boris
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Convergence of Wigner Transforms
in a Semiclassical Limit

Luigi Ambrosio

Abstract We prove convergence of the Wigner transforms of solutions to the
Schrodinger equation, in a semiclassical limit, to solutions to the Liouville equation.
We are able to include in our convergence result rough or singular potentials (with
Coulomb repulsive singularities), provided convergence is understood for “almost
all” initial data. The rigorous statement involves a suitable extension of the DiPerna—
Lions theory to the infinite-dimensional space of probability measure, where both
the Wigner and the Liouville dynamics can be read.

1 Introduction

In this paper, which reflects with minor changes the talk given in Oslo, I would
like to illustrate the content of the papers [4, 5]. The goal of these papers is a rig-
orous derivation of classical dynamics as a limit of quantum dynamics, based on
Schrodinger’s equation (semiclassical limit)

2
€
ied ) = —?Alﬁf +Uy;.

The main new ingredient, with respect to Gerard [11], Lions—Paul [12], is the intro-
duction of physically relevant potentials as (here n = 3M and x; € R?)

ZyZg . . .
Uxy,...,xpy) = Z m + Up(x), with Up bounded, Lipschitz.
l<a<p<M ¢ T B

In the first paper, assuming that Uy, is also C!, we show the validity of the Li-
ouville equation in the semiclassical limit. In the second paper [5] we relax the
assumption on U, and study the problem of uniqueness of the limit, i.e. full conver-
gence as ¢ — 0. This requires an extension of the theory of Lagrangian flows to the
case when the state space is not RY x R but (R} x RY)), see also the CRAS note
[3], where this extension is briefly presented.

L. Ambrosio ()
Scuola Normale Superiore, Pisa, Italy
e-mail: l.ambrosio @sns.it

H. Holden, K.H. Karlsen (eds.), Nonlinear Partial Differential Equations, 1
Abel Symposia 7, DOI 10.1007/978-3-642-25361-4_1,
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2 L. Ambrosio

Let us consider solutions ¥° (¢, x) = v (x) of the linear Schrédinger equations

2
&
iedyf = _?Mf’g + Uy = Heyy,

1/’8 = 1/f0,£'

(SE¢)

Here U satisfies standard Kato conditions, hence H; is self-adjoint in LZ(R”; ©)
with domain H2(R"; C), the Cauchy problem is well posed and norms and scalar
products are preserved.

Assuming that

/ [Y0,e1*(x)dx = 1
Rn

the goal is to describe the limit of /7 (more precisely of their Wigner transforms)
when ¢ — 0.
The Wigner transform maps L2(R"; C) in L®(R?"; C):

Wertrp)i= o [ (s 5 )u(x=Sy)ea
s x,p._(zn)n - X 2y X 2ye y.

By symmetry in y, Wy is real valued. In addition, its (formal, because W, need
not be integrable) marginals are nonnegative, the so-called position and momentum
densities:

/Rn W (x, p)dp = || (x),

1 n
/stf(x,p)dx:(—z ) H,(z)
Rn e e

where F stands for Fourier transform.
An elementary computation, going back to Wigner, shows that W solve, in
the sense of distributions in R x R?",

2

’

athl/ff +p- vaellftE =& (U, 1!/[5),

where &; (U, ¥)(x, p) is given by

; Ux+£y)—U(x — £ e\
o [T (e Sy o (5= 5o ).

Adding and subtracting VU (x) - y in the term between square brackets and using
ye Py = iVye™'PY we get

WU, ¥) =VUX) - VW + & U, ¥),
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where —i 27)" &/ (U, ¥)(x, p) is given by

e 2 2

/[U(x 2ot O y):|w<x + fy)¢<x - fy)e"'”” dy.

Hence, W,y solves the continuity equation with velocity (Hamiltonian, divergence-
free)

b(x,p) = (p, —VU(x))
and right hand side &/ (U, ¥f):

IWey + Vi p - (BWetr() = & (U, ¥)).

The goal is to show that the right hand side is infinitesimal, at least in the duality
with nice test functions ¢. In the study of éas’ (U, ¥), Coulomb singularities are a
source of difficulty. But, even if U were Lipschitz, the analysis would not be triv-
ial. Indeed, denoting by A, (-, z) the difference between e-difference quotient of U
along z and the partial derivative along z, it holds

/éi;w, Wdxdp = / / A, y)w(x 4 %y)@b(x - %y)quﬁ(x, v dxdy.

The basic idea is to use the decay of F,¢ (x, y) per y “large” (]y|/¢ > 1) and the
differentiability of U for y “small”. But, if A;(x,z) — O as ¢ | 0 only for £"-a.e.
x, we need that |/ |> does not concentrate as & — 0!

On the other hand, this estimate is not compatible with families of initial con-
ditions ¥ ¢ in (SE), displaying concentration of positions and/or momentum (in
some respect, the most natural when studying a semiclassical limit). An example

—w

YE(x) =g—"“/2¢o<x )e“q'x/“, ac(0,1], weR", geR".

In this case

liir(} Wepg dxdp = dS g (x, p) VY € (0, 1),
&

“ﬁ} Weré dx dp = d8,,(x) x | Fol*(p —q)dp, a=1.
&

We would like to include potentials U of the form U = Uy, + U,,, with

ZoZ
Unn (x) = Z % s
I<a<B<M Yo = Xp
and (n =3M, M = number of atomic nuclei, N = number of electrons)

Upe(x) := lnf{ (Qos Hne(x)(p> : /;

lpl*dy = 1}.
R3xZp)N
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Here Hy,(x) is the operator in R3V given by

N/ Mo 7z, 1
Hne(x):=Z<—§Ay,.—Z—)+ oo —

P am Vimxal ) = i =y

Since Uy, is defined by a minimization problem, the best we can hope for is
that U, is bounded and Lipschitz, and that VU, € BVj,.. Indeed, at points where
more than one minimizer occurs we expect a jump discontinuity in the gradient (this
corresponds to the so-called eigenvalue crossings, whose structure can be in some
cases studied in detail, see [8, 9]). The first convergence result reads as follows:

Theorem 1 (A, Friesecke, Giannoulis, [4]) Assume that U = Uy, + Uy, with Uy
bounded, Lipschitz and C'. Let Yo,e be such that | o ¢ % is equi-tight and

82
sup/ <——A+U>wo,g
& n 2

Then the family of Wigner transforms has limit points (in a suitable weak topology
in phase space, pointwise in time) as € — 0, and any limit point u; € Z(R¥") is
concentrated in R*" \ ¥ and satisfies

2
dx < 00.

d
TV ((p, =VU ) =0 inR R>".

In the statement of the theorem

XY= U{xa =xs}

a<p

is the set of Coulomb singularities. The key point is to show not only that 1, do not
charge X', but even the validity of the Liouville equation up to X'. The proof uses
the pointwise estimate |VU,,| < C U,%n and the uniform bound on f | He wo,gl2 dx
(propagated in time) to get

supsup/ U2 W12 dx < oo. (%)

& teR

The estimate () is much stronger than the one given by energy conservation:

3 [ EvuP v Pax =3 [ R19pel + Ul
2 Jgrn 2 Jrn
and it depends in a very specific way on the Coulomb structure of U,,;,.

In the second paper [5] our goals have been the relaxation from C! to Lipschitz
of the assumptions on Uj, (in such a way to include more general potentials Uj, as
U,,) and a to achieve a full convergence as ¢ — 0.
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The second goal basically amounts to look for well-posedness results for
measure-valued solutions p, to the Liouville equation

d .
oV ((p, =VU@)) =0 inR x R>"
without assuming that VU is Lipschitz (in our model, at most we can hope for
VU € BV out of Coulomb singularities).

In the next sections we shall describe more carefully the ideas underlying the
proof of these convergence results.

2 Well Posedness of the Liouville Equation and Flows

The first seminal results are due to DiPerna—Lions [7], under Sobolev regularity
assumptions on VU.

Theorem 2 (Bouchut, [6]) Assume b(x, p) = (p, —VU (x)) with U Lipschitz and
VU € BVioc(R"™; R™). Then the Liouville equation is well posed in

L>®([0, TT; L' 0 L®(R™)).

Under these assumptions on U it is hard to imagine well-posedness results in the
class of measure-valued solutions. A basic difficulty is, for instance, the definition of
moments by; when p; has a singular part with respect to .#>". On the other hand,
thinking of the Liouville equation as an infinite-dimensional ODE in P (R¥") (with
constant, but rough coefficients), we can still try to obtain a unique flow of solutions
in 2(R?"), using the finite-dimensional theory as an analogy. In this theory, due to
DiPerna-Lions [7], one does not try to show that the solution to the ODE

x(t) = ¢ (x(1)),

x(0) = xo,

c:[0,T] x R? - R4

is unique and stable for a specific xo € R?; rather one looks at the family of solutions
as a whole, through the concept of flow. This point of view leads to very natural
existence and uniqueness results, in fluid dynamics and in the theory of conservation
laws, relating the “Eulerian” and “Lagrangian” viewpoints even when the velocity
is not so smooth.

I will present the axiomatization of the theory given in [1] and [2], more flexible
than the original one, based on the transport equation. The use of the continuity
equation, instead, allows to deal (at least in some cases) with vector fields with
unbounded divergence and highlights more the connections with the probabilistic
viewpoint.

Definition 1 (v-Regular flow) Let X (7, x) : [0, T] x R — R? and v € Z2(R?) with
v & % and bounded density. We say that X (¢, x) is a v-RF in R4 (relative a ¢) if:
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(i) for v-a.e. x, the path r — X (z, x) is an integral absolutely continuous solution
of the ODE y (t) = ¢;(y(¢)) in [0, T] with X (0, x) = x;
(i) X, )pv < C.Z% for t € [0, T, for some constant C independent of 7.

The second condition, equivalent to
/ cD(X(t,x))dv(x)gC/ D(z)dz, cDeCC(]Rd), b >0
R4 R4

is crucial: it ensures, among other things, invariance of the concept with respect
to modifications of ¢ in .Z!*?-negligible sets. Indeed, if ¢ is a modification of c,
thanks to Fubini’s theorem we see that the set

[xeR!: 2'({rel0,T]: X(t,x) € {c#&}}) >0}
is v-negligible; as a consequence the validity of (i) for ¢ is transferred to (ii).

Theorem 3 [2] Letc: [0, T] x RY — R? pe locally integrable and assume that the
continuity equation d;w; + V - (cw;) = 0 is well posed in

LY([0,T1; L' N L®®R™)).

Then, for all v < £¢ with bounded density the v-RF exists. It is even unique: if X
and Y are . L-RF and g.2°-RF respectively, then

XG,x)=Y(,x) for L qe xe {f>0}Nn{g>0}

Thanks to this, by an exhaustion procedure we can even define a (unique) .29
RF. Let us now transpose these concepts from R to 22 (R?); here the main difficulty
is the role played by .#¢, since no canonical measure in Z2(R9) exists.

In the particular case we are dealing with, namely the velocity is independent
of the density, a satisfactory solution comes with the concept of regular measure.
We say that v € ., (P (R?Y)) is regular if its expected value Ev € .4, (RY) is
absolutely continuous with respect to .2°¢ and has a bounded density, i.e.

/ (/ cbdu>dv(u)§C/ @dx, ®eC.(RY, ®>0.
P (R4) R4 R4

Examples

(1) The law v under .Z? of the map x > 8, is regular; it corresponds to a measure
concentrated on Dirac masses;
(2) ifd =2n and f € L*°(R"), the law under .£" of

X8, X (f£™)

is regular, but not invariant under the Hamiltonian flow (it corresponds to con-
centration of position only).
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The second example shows that the usual paradigm in dynamical systems,
i.e. to consider measures v in %+(Q(Rd)) invariant or quasi-invariant under
the flow might be too restrictive. Another fact suggesting that quasi-invariance
might be too restrictive is infinite-dimensionality: let y be a Gaussian probabil-
ity measure in a Hilbert space H, b = v € H, so that X(¢,x) = x + tv. Then
X(t,)sy < y if and only if v belongs to the Cameron—Martin subspace H, a
much smaller subspace, since y () = 0 whenever dim(H) = oo.

Definition 2 Let p : [0, 7] x Z(RY) — Z[R?) and v € 4, (P R?)). We say
that u is a v-RLF in Z2(R?) (relative a ¢) if

(i) for v-a.e. u, t — uy ;= p(t, u) is a solution of the continuity equation with
velocity ¢ and u(0, u) = u;
(i) E(u(t, )gv) < C.Z% forall t € [0, T], for some constant C independent of .

Again, condition (ii) is crucial to relate the different ODE trajectories, to hope
for an invariant theory and to hope for existence, uniqueness and stability.

Let us discuss now the relation between the flows in the “base space” R? in the
“lifted space” Z2(RY).

(Existence) If a v-RF X in R? exists, then a v-RF g in Z2(RY) exists for all v such
that Ev = v, given by

n(, p) = / 8x(r.x) dp(x). ()
R4

(Uniqueness) Because of (), uniqueness (and stability) results are stronger when
stated at the level of v-RF in Z(R%), instead of v-RF in R,

Theorem 4 (A, Figalli, Friesecke, Giannoulis, Paul, [5]) Let ¢ : [0, T] x RY —
R? be locally integrable and let us assume that the continuity equation d;w; + V -
(cwy) =0 is well-posed in

LY([0,T]; L' N L®RY)).

Then, for all v € M (P R?)) regular, the v-RF w is unique, and therefore related
to the unique Ev-RF X as in (sx).

We now discuss existence of the flow in the case of potentials U, + Uy.

Theorem 5 (A, Figalli, Friesecke, Giannoulis, Paul, [5]) Assume U = U,,, + Uy,
with Up bounded, Lipschitz and VUp, € BV)oc(R"; R™). Then the continuity equa-
tion with velocity ¢(x, p) = (p, —VU (x)) is well posed in

LE([0, T]; L' N L®[®R™)).

As a consequence, both the v-RF X and the v-RF | exist and are unique.
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The strategy of proof is a localization in phase space, using that the energy
E(x, p) = %| p|? + U(x) is formally preserved. Since the sublevels of the energy
{E <k} are distant from Coulomb singularities, the “classical” theory with bounded
BV vector fields is applicable. Notice that the argument would not work in the
Coulomb attractive case!

3 Stability of the Flows

In order to discuss stability, let us assume to have v,-RF p,, where v, €
M (P (RY)) are generated in this way:

vo=(in):P withi,: W — 2R, i, — i P-ae.

Here (W, F,P) is a given finite measure space and v := iy is the limit measure.
This assumption is not particularly restrictive, since a classical result of Skorokhod
shows that any weakly convergent sequence of measures has this representation
(with W = [0, 1] endowed with the standard probability structure).

In our model, namely the convergence of Wigner transforms, this assumption is
natural as well. We may for instance consider:

xX—w)\ ;
ig(w) :=Weyg,, Wwithyg,(x) = 8_n/2¢)0<—)el(qv‘/5)7
) , .
with g and ¢q given. In this case i = lim; i, is given by

di(w)(x, p) = d8y(x) x |Feol*(p — q)dp.

We can now state the stability result for vector fields (p, —VU) of Hamiltonian
type, under the same assumptions on U which ensure existence and uniqueness of
generalized flows.

1. (Uniform regularity) For all ¢ € C.(R%) > 0 it holds

Sur)// ¢>dﬂn(t,in(w))dIP’(w)§C/ ¢dx;
w JRA R4

neN

2. (Uniform decay near to Coulomb singularities) For all R > 0 it holds

T
1
sup lim su —dn, (t,i,(w)dt dP(w) < oo;
e ,Hoop/wfo /BR dist?(x, X)+ 8 (1 (10)) ()

3. (Compactness in space) For all ¢ > 0 it holds

lim ]P’([w eW: sup  p,(tin(w)(RY\ Bg) > 8]) —0:
Rfoo neN, 1€[0.7T]
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dt>M})=0;

T
/'fo [¢/(t)f¢dﬂn(t’in(w)) +<p(t)/(b,V¢)dﬂn(t,in(w))} dt
=0

4. (Compactness in time) For all ¢ € C2° (R?) it holds

T /
Alﬁr;()l?’({we W:sgp/o (/Rliqbdun(t,zn(w)))

5. (Limit continuity equation)

dP(w)

is infinitesimal for all ¢ € CZ?O(R“' \(Z xR"), e C0,T).

Under these 5 assumptions it holds

lim sup dop(p, (t,in(w)), u(t,i(w))) dP(w) =0.
=00 Jw t€[0,T]

Here u(z, i) is the v-RF and d . is any distance in Z2(R9) (e.g. an optimal trans-
portation distance). Of course, since sequences converging in L' have subsequences
converging a.e., the previous convergence result can also be seen as an almost sure
convergence result.

4 Convergence of Wigner/Husimi Transforms

In order to apply the abstract stability result to the convergence of Wigner transforms
we have to check that the assumptions are satisfied for suitable families of initial
conditions. Let us consider, for instance, the family

V6.0 () = 8_"a/2¢0(x—; Z)e"wm,

corresponding to the choice of the “random” parameter w = (z, ¢). We shall denote
by 1/ff,w the solution of (SE), at time ¢, starting from V’aw at time O.

In order to work with genuine probability measures even on the “scale” ¢ we
consider, as in Lions—Paul [12], the Husimi transforms of 1//iw:

e~ (xIP+lpP)/e
(718)”

Notice that the asymptotic behavior as ¢ — 0 of the two transforms (in weak
topologies) is the same.

The verification of the compactness in space/time is standard and suffices to in-
tegrate in dIP estimates with w fixed. The same happens for the verification of the
uniform decay out of Coulomb singularities, a byproduct of the “deterministic” es-

Wer = (We) % G2V with GV (x, p) =



10 L. Ambrosio

timate

supsup/ Un2n|wiw|2dx <00
teR e>0JR"
of the first paper.

On the other hand, both the verification of uniform regularity and of the limit
continuity equation depend on two a priori estimates on the averages of ¥/, with
respect to w. The first one is

sup sup
e>01reR

< 00,
LOO(RZH)

/ (Werf ) GEP(x, p) dP(w)
w

which is nothing but a uniform L* bound on [}, Wel/ff,w(x, p)dP(w).
The second, instead, requires convolutions on scale g2

< Q.
LOO(]RZVL)

sup sup
& teR

f Ve * GOV P, p)dP(w)
w

Both the first and the second can be derived by inserting suitable “test” ¢ = ¢y p
in the operator inequality in L(L2(R™); L2(R™)):

sup &" /W pVin dP(w) < Cld (p%¢ = (. $)).

£>0,1eR

This operator inequality (thanks to the unitary structure of the Schrodinger evo-
Iution) has the nice feature of being propagated in time; so, suffices to impose it just
on the initial conditions (see also [10] for a more detailed discussion).

In conclusion, given & € (0, 1) and g € L' N L>°(R?") nonnegative and the initial
conditions (but other choices are possible and compatible with the uniform operator
inequality)

,(//(()E’w(x)=8—nl¥/2¢0<x€;az>ei(q-x/£), wz(z’q)
the stability theorem with P = g.#?" gives

lim sup  dop(Wedrf s 8xtuy)g(w)dw =0 VT >0,
e—0 JRr2n te[-T,T] !

where X (7, w) is the flow in R?" induced by (p, —VU (x)). In general, we should
replace dx (¢, w) by the superposition flow induced by the limiting initial conditions,
ie. p(t,w) = [Sxq.x) di(w)(x).

This way, we get full convergence as ¢ — 0 even for fields not of class C2.
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5

Conclusions

. The “flow” viewpoint is very common in Probability, and the regularizing effect

due to the addition of noise has been studied by many authors and in many con-
texts. In our case the equation is not stochastically perturbed, but convergence is
studied with analytic and probabilistic tools.

The case of attractive potentials U seems for the moment to be completely out
of reach.

. The transfer mechanisms from flows in R¢ to flows in Z(R9) rely on the fact

that the equation is linear (in the abstract perspective, on the fact that the ODE in
QZ(Rd ) has constant coefficients). The extension to non-linear equations, as for
instance Vlasov—Poisson (where density is coupled to the velocity by Poisson’s
equation)

—AU,(x)szt(x,p)dp

also seems at this moment to be out of reach.
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Contractive Metrics for Nonsmooth Evolutions

Alberto Bressan

Abstract Given an evolution equation, a standard way to prove the well posedness
of the Cauchy problem is to establish a Gronwall type estimate, bounding the dis-
tance between any two trajectories. There are important cases, however, where such
estimates cannot hold, in the usual distance determined by the Euclidean norm or
by a Banach space norm.

In alternative, one can construct different distance functions, related to a Rieman-
nian structure or to an optimal transportation problem. This paper reviews various
cases where this approach can be implemented, in connection with discontinuous
ODEs on R", nonlinear wave equations, and systems of conservation laws. For all
the evolution equations considered here, a metric can be constructed such that the
distance between any two solutions satisfies a Gronwall type estimate. This yields
the uniqueness of solutions, and estimates on their continuous dependence on the
initial data.

1 Introduction

Consider an abstract evolution equation in a Banach space

%u(t) = Fu()). (1)

If F is a continuous vector field with Lipschitz constant L, the classical Cauchy—
Lipschitz theory applies. For any given initial data

u(0) =1, 2

the solution of (1) is thus unique, and depends continuously on u«. Indeed, the dis-
tance between any two solutions grows at a controlled rate:

d
7,1t @ —vOl = Llu@®) —v@)]. (P
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In this case, the classical Gronwall’s estimate yields
u(®) —v(@®)|| = CO)[|u0) —v(O)], (P2)

with C(7) = e!’. Semigroup theory has extended the validity of estimates such as
(P1), (P2) to a wide class of right hand sides, including differential operators, which
generate a continuous flow [18, 24, 29, 34].

On the other hand, there are cases (such as the Camassa—Holm equation) where
the flow generated by (1) is not Lipschitz continuous w.r.t. the initial data, in any
standard Holder or Sobolev norm. In other cases, such as hyperbolic systems of
conservation laws, the generated semigroup is globally Lipschitz continuous w.r.t.
the L! norm but does not satisfy an estimate of the form (P1), for any constant L.
In all these situations, a natural problem is to seek an alternative distance d<>(~,-),
possibly not equivalent to any of the usual norm distances, for which (P1) or (P2)
still hold.

Aim of this note is to discuss a few examples where this goal can be achieved.
Typically, the distance d* is defined as a Riemann type distance. In other words,
one starts with a Banach space E and a family X' of sufficiently regular paths y :
[0, 1] — E, for which some kind of “weighted length” |y |, can be defined. This
needs not be equivalent to the length derived from the norm distance. Given two
elements u, v € E, one first defines

d*(u,v) =inf{|yl;y € Z,y(0) =u,y(1) = v}, 3)
and then takes the lower semicontinuous envelope (w.r.t. convergence in norm):

d°u,v) = liminf d*@/’,v). 4)

u'—u,v'—v

Besides achieving a proof of uniqueness and continuous dependence, estimates of
the form (P2) are useful for establishing error estimates. Indeed, adopting a semi-
group notation, call # — S;u the solution to the Cauchy problem

d

—u=F®), 0)=1u. 5
T () u)=1u %)
Assume that, for any couple of initial data u, v, there holds

d® (S, S;v) <Cd® @, v), te[0,T). (6)

Then for any Lipschitz continuous trajectory ¢ — w(#) one can deduce the error
estimate [4]

r o
do(w(T),STw(O)) SC-/ {liminfd (w(t+h), Shw(t))
0 h—0+ h

}dt. 7)

Here the left hand side is the distance at time 7 between the approximate solution
w(-) and the exact solution of (1) with the same initial data w(0). The right hand
side is the integral of an instantaneous error rate.
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The estimate (P1) can be also useful in order to understand which kind of Lips-
chitz perturbations preserve the well-posedness property.

In the following sections we shall review three different settings where these
ideas can be implemented. Section 2 is devoted to discontinuous ODE:s in a finite
dimensional space [21]. Following [5], for a vector field F = F (¢, x) having finite
directional variation, a general formula yielding a time-dependent contractive Rie-
mann metric can here be given. Section 3 reviews two different constructions of
a distance functional which satisfies an estimate of the form (P1), in connection
with the Camassa—Holm equation [10, 23]. Finally, in Sect. 4 we discuss distance
functionals which are contractive for the flow generated by a hyperbolic system of
conservation laws [3, 12].

2 Discontinuous ODEs

To motivate the search for contractive metrics, we start with two elementary exam-
ples.

Example 1 The ODE % = |x|'/? yields a textbook case of a Cauchy problem with
multiple solutions. Yet, there is a simple way to select a unique solution for each
initial data x (0) = x. Let us define a solution ¢ > x (¢) to be “admissible” if and only
if it is strictly increasing. These admissible solutions are then unique, and depend
continuously on the initial data. For x = 0, the corresponding admissible solution
is t — S;x = (signt) t2/4. Notice that the trajectory w(¢) = 0 is not an admissible
solution, but the error |w(t) — S;w(0)| = 12 /4 cannot be estimated integrating the
“instantaneous error rate” | (¢) — |w(t)|'/2| = 0.
On the other hand, a direct computation shows that the Riemann distance

Y ds
<& _
¢ (x’y)_‘/x 5172

is invariant w.r.t. the flow of admissible solutions. Namely d¥ (S;X, S;7) = d (X, ¥)
for every x, y, t. Using this distance, the error estimate (7) retains its validity. Indeed

T2/4 g
d®(w(T), STw(0)) =d® (0, T?/4) =f S5 =T
0 N

T d° h), S T d®(0, h?/4
/ {liminf (WG +h) hw(m}d;:/ {1iminf4( /)}dt
0 h—0+ h 0 h—0+ h

T
=/ 1dt=T.
0
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Example 2 Consider the discontinuous ODE

1 ifx <O,

xzf@)={3 if x> 0. ®)

For any initial data x(0) = x, the Cauchy problem is well posed. Indeed, any two
solutions satisfy

lx1(2) — x2()| < 3]x1(0) — x2(0)]. 9)
The estimate (9) alone, however, does not tell for which vector fields g(-) the ODE
= f(x)+gk)

generates a continuous semigroup. For example, taking g(x) = 2, the Cauchy prob-
lem is well posed, while taking g(x) = —2 it is not. The difference between the two
above cases becomes apparent by introducing the equivalent distance

3ly —x| ifx<y<0,
d®(x,y) = ly—x| if0<x<y,
3lx|+1y] ifx<0<y.
Notice that d is invariant w.r.t. the flow generated by (8). Denote by S¢ and S, *

the semigroups generated by the ODEs x = g(x) and x = —g(x), respectively. Then
for every x,y € R and r > 0 we have

d°(SFx, S{y) <d®(x. ). (10)
On the other hand, taking x <0, y > 0, one has

i OGRS —dOE )
h—0-+ h ’

(1)

Comparing (10) with (11), we see that the flow generated by g contracts the dis-
tance d°, while the flow generated by —g can increase it, at a rate which does not
approach zero as d< (%, y) — 0.

Next, consider a general ODE with bounded, possibly discontinuous right hand
side

X=f(t,x), xeR" (12)

In the Euclidean space R+ consider the cone with opening M:

r™={( y):lyl <Mz}
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Fig. 1 Left: the vector field f is transversal to the surface where it is discontinuous. The directional
variation V™ is a bounded function. Right: the vector field g is not transversal to the surface where
it has a discontinuity. Its directional variation is thus unbounded

Following [2], the total directional variation of the vector field f up to the point
(t, x) is defined as

N
VM@, x) = sup{ SIFP) = fFPDEN =1, P =Py eI™ Py =(t,x)¢.
i=1
13)
Notice that, in order that V¥ be bounded the jumps in f must be located along
hypersurfaces which are transversal to the directions in the cone I' . Otherwise,
one can choose a large number of points P;, alternatively on opposite sides of the
discontinuity, and render the sum in (13) arbitrarily large (see Fig. 1).
Given two constants 0 < L < M, we define the weighted length of a Lipschitz
continuous path y : [0, 1] — R”" at time ¢ as

! VI y )Y, .
||y||t—/0 exp(—ﬁ)wws. (14)

The weighted distance between two points x, y € R" at time # is defined as
di(x,y)= inf{ ¥ |l¢; yis a Lipschitz path joining x with y}. 15)

Notice that, as 7 increases, the directional variation V™ (¢, -) also increases. Hence,
by (14), the weighted length of the path y becomes smaller.

We recall that a Carathéodory solution to the (possibly discontinuous) ODE (12)
is an absolutely continuous function ¢ — x(¢) that satisfies (12) for a.e. time ¢. The
main result proved in [5] is as follows.

Theorem 1 Let f = f(t,x) be a time dependent vector field on R". Assume that
there exist constants L < M such that | f (¢, x)| < L for all t, x, and the directional
variation VM of f defined at (13) is locally bounded.

Then, for every initial data x(ty) = xo, the ODE (12) has a unique, globally
defined Carathéodory solution. Any two solutions x(-), y(-) of (12) satisfy

de(x(7), y(1)) =di(x(1), y(1)) forallt <t. (16)
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Remark 1 Since the Euclidean distance between two nearby trajectories can rapidly
increase across a surface where f is discontinuous, to achieve the contractive prop-
erty (16) this must be compensated by the decrease of the exponential weight inside
the integral in (14).

3 Nonlinear Wave Equations

The Camassa—Holm equation can be written as a scalar conservation law with an
additional integro-differential term:

e+ W?/2)5 + Py =0, (17)

where P is defined as the convolution
1 2
P=e s <u2+—“2)‘>. (18)

For the physical motivations of this equation we refer to [14-16]. One can regard
(17) as an evolution equation on a space of absolutely continuous functions with
derivatives u, € L2. In the smooth case, differentiating (17) w.r.t. x one obtains

2 2 ”)zc _
Uyt + Uty +uy — | u +7 + P =0. (19)

Multiplying (17) by u and (19) by u, one obtains the two balance laws

N (1 rup) —up ) (ME_C) — e o)
2 ), \3 L 2 ), 2 3). 7

As a consequence, for regular solutions the total energy

E(1) ﬁ/[u2(z,x)+u§(t,x)]dx (21)

remains constant in time.

As in the case of conservation laws, because of the strong nonlinearity of the
equations, solutions with smooth initial data can lose regularity in finite time. For the
Camassa—Holm equation (17), however, the uniform bound on |Juy||;» guarantees
that only the L° norm of the gradient can blow up, while the solution u itself
remains Holder continuous at all times.

The equation (17) admits multi-peakon solutions, depending on finitely many
parameters. These have the form

N
u(t,x) =y pi()e 40l (22)

i=1
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Fig. 2 A solution consisting
of two peakons with opposite u(0

strengths ‘ql V—( X

u® (t<T)

u()

u(t) — t>T)

where the coefficients p;, g; are obtained by solving the Hamiltonian system of
ODEs

a
4i=7—H(p.q), N
opi, H(p.q) i% Y pipjeT Tl (23)
pi=———H(p,q), ij=1
9gi
According to (22), the coefficient p; determines the amplitude of the i-th peakon,
while g; describes its location.

By (20), the H' norm is constant in time along regular solutions. The space
H'(R) = W1'2(R) thus provides a natural domain where to construct global solu-
tions to the Camassa—Holm equation. Observe that, for u € wlr with p <2, the
convolution (18) may not be well defined. On the other hand, if p > 2, the Sobolev
norm [|u(t)|ly1.» of a solution can blow up in finite time.

Given an initial condition

u(0) =up € H' (R), (24)

by a solution of the Cauchy problem (17)—(24) on [0, T] we mean a Holder con-
tinuous function u = u(¢, x) defined on [0, 7] x R with the following properties.
At each fixed 7 one has u(z, -) € H'(R). Moreover, the map ¢ — u(t, -) is Lipschitz
continuous from [0, 7] into L(R), satisfying the initial condition (24) together with

d
Eu:—uux—Px 25)

for a.e. t. Here (25) is understood as an equality between functions in L2(R). The
solution is called conservative if the corresponding energy E(¢) in (21) coincides
a.e. with a constant function.

A globally defined flow of conservative solutions was constructed in [8]. One
should be aware, however, that the Cauchy problem for the Camassa—Holm equa-
tion is not well posed, even in the “natural” space H L(R). Failure of continuous
dependence on initial data can be seen by looking at special solutions with two op-
posite peakons (Fig. 2). In this case we have pi(z) + p2(t) =0, q1(t) + q2(t) = 0.
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Let T be the interaction time, so that ¢1 (7)) = g2(T) =0. As t — T —, one has
p1(t) > +o0, p2(t) = —o0, q1(1) =0, q2(t) > 0, (26)

q2(1)
lu(®)|lz0 — O, lu(®) |2 — O, / u,zc(t, x)dx — Ey, 27
q1(7)
where Ej is the energy of the solution, which is a constant (except at t = T).
For detailed computations we refer to Sect. 5 in [8]. The last limit in (27) shows
that, as + — T —, nearly all the energy is concentrated within the small interval
[q1(?), g2(t)] between the two peakons.
Next, in addition to this special solution u, consider a family of solutions defined
asu®(t,x) =u(t —e,x). Attime t =0, as ¢ — 0 we have ||u®(0, ) —u(0, ) || g1 —
0. However, for any ¢ > 0, as t — T — one has

() — ut ()12, = /Rm(r,x)—u*f(r,x)ﬁdx

+</ +/ )mx(t,x)—ui(z,x)ﬁdx
R\ [q1(1), q2(1)] [q1(1), q2(1)]

—>/|u£(T,x)|2dx+/ s (T, x)|?dx + E} =2E3.  (28)
R R

According to (28), solutions u® which initially start arbitrarily close to u, within
finite time split apart at a uniformly positive distance v/2 Eg.

3.1 A Metric Induced by Optimal Transportation

In order to analyze uniqueness questions for solutions to the Camassa—Holm equa-
tions, it is of interest to construct an alternative distance functional J(-,-) on H!.
For any two solutions of (17), this distance should satisfy an inequality of the form

%J(u(t),v(t)) <« -Ju(@),v@)), (29)

with a constant ¥ depending only on the maximum of the two norms |[u(?)| g1,
lv(#)]l 1 (which remain a.e. constant in time). For spatially periodic conservative
solutions to the Camassa—Holm equation, this goal was achieved in [10], building
on insight gained in [7]. We describe here the key steps of this construction.

Consider the unit circle T = [0, 2] with endpoints identified. The distance be-
tween two angles 6, 6 € T will be denoted as |# — 6],. Consider the manifold
X =R x R x T with distance

d*((x,u,0), (F,i,0)) = (Ix — F| + |u—ii| +10 —0],) AL, (30)
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where a A b = min{a, b}. Let H [ier be the space of absolutely continuous periodic
functions u, with u(x) = u(x + 1) for every x € R, and such that

1 12
lullpy,, = (/0 [uz(x)+u§(x)]dx) < o0.

Givenu € H!, (R), define its extended graph

per
Graph(u) = {(x, u(x), 2arctanu, (x)); x € R} cX.

Moreover, let u" be the measure supported on Graph(u), whose projection on the
x-axis has density 1 + u)% w.r.t. Lebesgue measure. In other words, for every open
set A C X we require

ML[(A) 2/ (1 + u)zc (x)) dx.
{x; (x,u(x),2arctanu, (x))€A}

The distance J (u, v) between two functions u, v € H ll,er is determined as the min-

imum cost for a constrained optimal transportation problem. More precisely, con-
sider the measures u*, u”, supported on Graph(u) and on Graph(v), respectively.
An absolutely continuous strictly increasing map v : R + R satisfying the period-
icity condition

vx+D=yx)+1 VxeR

will be called an admissible transportation plan (see Fig. 3). Given ¥, we can
move the mass u* to uV, from the point (x, u(x),2arctanu,(x)) to the point
(¥ (x), v(¥(x)), 2arctan vy (¥ (x))). In general, however, the measure ' is not
equal to the push forward of the measure u" determined by the map . We thus
need to introduce an additional cost, penalizing this discrepancy. Using the function

P1(0) = suplo €10, 1160 - (1 +u2(0) = (1 + @2 W) ) ],

the cost associated to the transportation plan v is now defined as

1 1
J ‘/’(u, v) = / [distance] - [transported mass] + / [excess mass]
0 0
1
= / d*((x, u(x), 2arctanux(x)), (W(x), u(y(x)), 2arctanﬁx(1p(x))))
0

1 (0) (14 u?(x)) dx

1
+/0 |(1+u2(x)) — (1 + @2 )y ()] dx. 31)
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xerdx W00 + ¥ (x)dx
Y(x)

Fig. 3 Transporting the mass from the graph of u to the graph of v

Minimizing over all admissible transportation plans, one obtains a distance func-
tional:

J(u,v) = i{;fJ‘”(u, v). (32)

The analysis in [10] shows that this functional is indeed a distance on H ;e,, and
grows at the controlled rate (29) along any couple of conservative solutions to the
Camassa—Holm equation. In turn, this yields the uniqueness of conservative solu-

tions, and a sharp estimate on their continuous dependence on initial data.

Remark 2 In the definition of the distance functional J, the requirement that the
transportation must be achieved in terms of a non-decreasing function v plays an
essential role. Indeed, the topology generated by the distance J is different from the
topology of weak convergence of measures, corresponding to the standard trans-
portation distance

d(u“,u”)=sup{‘ffdu”—/fdu”

M llLip < 1}, (33)

where the supremum is taken over all Lipschitz continuous functions with Lipschitz
constant 1.

For example, consider the sequence of saw-tooth functions as in Fig. 4, where
up, is defined as the unique function of period 27" such that

Uy (x) =min{x, 27" —x}, x€[0,27"].

Observe that u"m is a measure supported on Graph(u,,), whose projection on the
x-axis has constant density 1+ (um))% =2 w.r.t. Lebesgue measure. As m — 00, one
has the weak convergence u'" — w, where p is the sum of two copies of Lebesgue
measure, one on the line {(x, 0, 7); x € R}, and one on the line {(x, 0, —7); x € R}.
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Fig. 4 If one allows um

transportation plans un

x + ¥ (x) which are not

monotone, the optimal 0 2™ X
transportation of the measure

uHn to the measure p“n can 2 arctan uy

be achieved with a much v
smaller cost. However, such ‘ ‘ ‘ ‘ ‘

plans are not allowed by the ; ; ; ; ; X
definition (32) | L

In particular, the sequence (u*"),,>1 is a Cauchy sequence w.r.t. the distance (33).
However, (u,,),>1 is not a Cauchy sequence w.r.t. the distance (32).

3.2 A Metric Induced by Relabeling Equivalence

Next, we discuss an alternative approach to the construction of a distance func-
tional J, having the controlled growth property (29) along solutions to the Camassa—
Holm equation. Here the starting point is the representation of solutions in terms of
new variables, introduced in [8].

As independent variables we use time ¢ and an “energy” variable & € R, which
is constant along characteristics (see Fig. 5). This means that, in the ¢-x plane, for
each fixed & the curve 7 — y(¢, &) provides a solution to the Cauchy problem

d _
Ey(t)=u(t,y(t)), y(0,8) =y().
In addition, we use the three dependent variables

dy
9’

U=u, v=2arctanu,, q=(1+u§)~

There is considerable freedom in the parameterization of characteristics. A natural
way to choose the function & — y (&) is to require that

y&)
/ (1+a2)dx =&.
0

At time ¢ = 0, this achieves the identity ¢ (0, &) = 1.
As proved in [8], for a given initial data u(0) =u € H I(R), a conservative so-
lution to the Camassa—Holm equation (17) can be constructed as follows. As a first
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X

Fig. 5 Characteristic curves, for a solution to the Camassa—Holm equation. It is quite possible that
characteristics join together at an isolated time 7. This happens, for example, when two peakons
cross each other as in Fig. 2. In this case, as t — T —, the measure with density 1 +u2 approaches
a point mass at P. However, in the variables (U, v, q), the solution of (34) remains smooth. As
uy — £oo we simply have 2arctanu, — £, and the singularity is completely resolved by the
variable transformation

step, we solve the Cauchy problem

W _ _p
ar U0,8) =u(y()),
v 5 2V I ,v _ -
EZZ(U — P)cos 5 Esm X v(o,g)zzarctanux(y(gr)),
dq _ ! q(0,8)=1.
E—<U———P>smv q, (34)
P, E)_ = exp{ ‘/ cos? q( )ds }
-|:U2($/)Cosz%é)+zsm U(é):| (&) d¢g'.

This can be regarded as a Cauchy problem for an ODE on the Banach space
E=H'@L® L™

By a fixed point argument, one obtains a unique solution, globally defined for all
t € R. In turn, from a solution (U, v, q)(z, &) of (34) one recovers a solution u(¢, x)
of the Camassa—Holm equation (17) by setting

t
y(t,s>£y<s)+/o U(r.£)de

and then defining
ut,x)=U@,§&) ifx=y(@,§). (35)

As proved in [8], this procedure yields a group of solutions continuously de-
pending on the initial data. Namely, given a sequence of initial data such that
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lit, —it]| 1 — O, the corresponding solutions u,, (f, x) converge to u(, x) uniformly
for ¢, x in bounded sets.

By itself, this result does not guarantee the uniqueness of conservative solutions.
In principle one may use a completely different construction procedure (say, by
vanishing viscosity approximations as in [32, 33]) and generate different solutions.

To construct a distance functional providing precise information on the continu-
ous dependence of solutions, the approach developed in [23] is based on a relabeling
technique. See also [13] for an earlier result in connection with the Hunter—Saxton
equation.

As motivation, observe that the same solution u(z, x) of the Camassa—Holm
equation (17) corresponds to infinitely many equivalent solutions (U, v, g)(¢, &) of
the system (34). Indeed, here the variable & is simply used as a label to identify
different characteristics. A smooth relabeling & — ¢(£) would produce a different
solution (U, 9, §) of (34), with

~ 5 - 9§
U, 5)=U(,%), v(t,8) =v(t, §), CI(I,C)ZCIU,S%&-
However, the corresponding solution u (¢, x) would be the same.
Given u € H', consider the set of triples

F(u) = {(U, v, q); there exists y(-) such that U (&) = u(y(&)),
d
V() = 2arctanu, (y(€)), ¢(6) = (1 + u3 (y(§))) - gy(é)}'

One can define the functional
TP, @) = inf || (U, v, q) — (U. 3, .

where the infimum is taken over all triples such that (U, v, ¢) € % (u), (ﬁ ,0,G) €
Z (i1). To achieve the triangle inequality, one needs to introduce a further functional

N
J(u,ﬁ)iinf:ZJn(u,',u,-_l);uozu,uNzﬁ ) (36)

i=1

As shown in [23], in connection with spatially periodic solutions to the Camassa—
Holm equation, this approach yields an alternative construction of a distance func-
tional which satisfies the crucial property (29).

Remark 3 While the well-posedness issue for the Camassa—Holm equation is now
well understood, it remains a challenging open problem to establish similar results
for the nonlinear wave equation

rr — c()(c@uy), = 0. (37)
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In this case, for each given data (u,u;) € H Iy L2, one can define not one but
two measures u', ", accounting for the energy transported by forward and by
backward moving waves. Given two couples (u, u;), (v, vy), it is not clear how to
extend a functional of the form (31) to a “double transportation problem”, relating
the two couples of measures (u'}, u" ) and (uly, u?).

As proved in [11], global conservative solutions to Eq. (37), continuously de-
pending on the initial data, can also be obtained by a nonlinear transformation
of independent and dependent variables. However, a relabeling technique here
is hard to implement. Indeed, in (35) the independent variables are related by
(t,x) = (¢, y(t,&)). On the other hand, for Eq. (37), it is convenient to use in-
dependent variables X, Y which are constant along forward and backward char-
acteristics, respectively. This yields a transformation (X, Y) — (#(X, Y),x(X,Y))
where the time variable has no preferred status. In general, for any constant c the set
{(X,Y);t(X,Y) =c} has an awkward structure.

4 Hyperbolic Conservation Laws

In this last section we discuss the construction of a contractive metric for the system
of conservation laws

ur+ f)x =0. (38)

Here u = (uy,...,u,) € R" is the vector of conserved quantities and f =
(f1,---, fu) : R" > R" is the flux function [4, 19, 25, 30, 31]. For smooth solu-
tions, this can be written in quasilinear form

U+ A@uy =0, A@) = Df ).

We recall that the system is strictly hyperbolic if each Jacobian matrix A(u) =
Df (u) has real distinct eigenvalues A1 (u) < A2(u) < --- < A, (u). In this case, one
can find dual bases of right and left eigenvectors r; (), [ ; (1), normalized so that

1 ifi=],
Iri ()| =1, Lj(u) - ri(u) = o (39)
ifi #j.

The existence and uniqueness of entropy admissible weak solutions to (38) was ini-
tially developed relying on the following assumption, stating that the directional
derivative of eigenvalue in the direction of the corresponding eigenvector is identi-
cally zero, or has always the same sign [22, 27].

Lax Conditions For each i € {1, ..., n}, the i-th characteristic field is either lin-
early degenerate, so that DX; - r; =0, or genuinely nonlinear, so that DX; - r; > 0
atevery u € R",
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—— shocksin u

---- shocksin U

la-ull

T+h -

T+h

X

Fig. 6 The L' distance between two nearby solutions can increase rapidly, during a short interval
of time

In the case of a scalar conservation laws, a fundamental result of Kruzhkov [26]
valid also in several space dimensions shows that the L! distance between solutions
does not increase in time. Indeed,

lu(t, ) —u(t, g < u(0, ) — a0, )L, (40)

where u(t, x), u(t, x) are any two bounded, entropy-admissible solutions of (38).
Thanks to this property, solutions to a scalar conservation law can also be con-
structed relying on the abstract theory of contractive semigroups [17].

For systems of two or more conservation laws, however, this contractive property
fails. In general one cannot even find any constant L for which the property (P1)
holds. For example, consider a solution u = u(¢, x) which initially contains two
shocks, interacting at time t and producing a third outgoing shock (see Fig. 6, left).
Let u be a perturbed solution, containing the same shocks, but slightly shifted in
space. As a result, the interaction occur a bit later, say at time 7 + A. In this case,
the L! distance between the two solutions remains constant, except during the short
interval [7, T + h] where it increases very rapidly (Fig. 6, right).

Under the Lax conditions, two approaches are now available, in order to construct
a distance functional on a domain d of functions with small total variation.

4.1 An Explicit Functional

In [12] an explicit formula was introduced, providing a functional ¢ such that
lu = vl = @@, v) < Cllu — v, (41)
and satisfying
D', ), v, ) <@ult, ), v(t, ), 1<t (42)

for any couple of entropy-admissible weak solutions u, v to (38), with sufficiently
small total variation. We review here the basic step of this construction.
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1. Measuring the Strength of Shock and Rarefaction Waves Fix a state
up € R" and an index i € {1,...,n}. As before, let r{(u),...,r,(u) be the right
eigenvectors of the Jacobian matrix A(u) = Df (u), normalized as in (39). The inte-
gral curve of the vector field r; through the point u is called the i-rarefaction curve
through ug. It is obtained by solving the Cauchy problem in state space:

. w0 =uo, 3)
do

This curve, parameterized by arc-length, will be denoted as
o+ R;i(0)(ug). (44)

Next, for a fixed ug € R" and i € {1, ..., n}, one can show that there exists (lo-
cally, in a neighborhood of u#() a unique smooth curve of states u which can be
connected to the right of ug by an i-shock, satisfying the Rankine-Hugoniot equa-
tions

Au —uo) = f(u) — f(uo), (45)

for some scalar speed A, with A — A; (ug) as u — ug. This will be called the i -shock
curve through the point ug and parameterized by arc-length:

o+ S;(0)(ug). (46)

It is well known that the two curves R;, S; have a second order contact at the point
up. More precisely, the following estimates hold,

Ri(0) (o) = ug + ori(ug) + 6(1) - 02,

47
Si (o) (uo) = ug + ori (o) + O(1) - 2. “47)

|Ri (o) (10) — Si (@) ()| = (1) - 0. (48)

Here and throughout the following, the Landau symbol &(1) denotes a quantity
whose absolute value satisfies a uniform bound, depending only on the system (30).

Notice that the orientation of the unit vector r;(1g) determines an orientation
of the curves R;, S;. Recalling the Lax conditions, if the i-th characteristic field
is genuinely nonlinear, the orientation is chosen so that the characteristic speed A;
increases along the curves, as the parameter ¢ increases. On the other hand, if the
i-th field is linearly degenerate, one can prove that R; (o) = S; (o) for every o, and
that A; is constant along these curves. In this case, the orientation can be chosen
arbitrarily.

2. The Interaction Potential It will be convenient to work within a special class
of functions, which we call #?% .7, consisting of all piecewise constant functions
u: R~ R?, with simple jumps. We say that the jump at x is simple if either
u(x+)=R;(c)(m(x—)) forsome o > 0oru(x+) = S;(0)(u(x—)) for some o < 0.
In both cases, we regard |o| as the strength of the jump at x.
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Fig. 7 Estimating the change c
in the total variation at a time
where two fronts interact

G' G“

For a piecewise constant function u € €., let x4, « =1, ..., N, be the loca-
tions of the jumps in u(-). Moreover, let |o,| be the strength of the wave-front at x,
say of the family k, € {1, ..., n}. Following [22], we consider the two functionals

N
V) =) loal, (49)
a=1
measuring the total strength of waves in u, and
Qu)= Y loaogl, (50)
(a,B)ed

measuring the wave interaction potential. In (50), the summation ranges over the set
&/ of all couples of approaching wave-fronts. More precisely, two fronts, located at
points x, < xg and belonging to the characteristic families ky, kg € {1, ...,n} re-
spectively, are approaching if ky, > kg or else if ky = kg and at least one of the wave-
fronts is a shock of a genuinely nonlinear family. Roughly speaking, two fronts are
approaching if the one behind has the larger speed (and hence it can collide with the
other, at a future time).

If now u = u(¢, x) is a piecewise constant approximate solution, a key observa-
tion is that the total strength of waves V (u(¢)) can increase in time, but the interac-
tion potential is monotone decreasing. Indeed, consider a time T where two fronts
of strength |o”’|, || collide. Then the changes in V, Q are estimated by

AV =V (+) = V(=)= 0(1)-|o'd"], (51)

AQ(T) = Q(t+) = Q(r—) =—|o'0"| + O(1) - [o'0"| - V(1)

//l

- lo’'o (52)
= >
provided that V (r—) is sufficiently small. Indeed (see Fig. 7), after time t the two
colliding fronts o’, c” are no longer approaching. Hence the product |c’c”| is no
longer counted within the summation (50). On the other hand, the new waves oy
emerging from the interaction (having strength &'(1) - |o’c”|) can approach all the
other fronts not involved in the interaction (which have total strength < V (t—)).
By (51) and (52) we can thus choose a constant Cp large enough so that the
quantity V (u(t)) + CoQ(u(t)) is monotone decreasing, provided that V remains
sufficiently small.
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Fig. 8 Decomposing a jump ®3= v(x)
(u(x), v(x)) in terms of n j s o, Xo
(possibly non-admissible) a3 v
shocks ®,
A o u
q, -
0= u(x)
X X

In turn, this yields an estimate on the total variation, globally in time:
Tot.Var.{u()} < V(u()) < V(u(0)) + CoQ (u(0)). (53)

By Helly’s theorem, this provides a crucial compactness property, toward a proof of
the existence of globally defined weak solutions [22].

3. A Weighted Distance Functional Relying on the concepts and notations de-
veloped above, we can now describe the construction of a functional @ (u, v), mea-
suring the distance between solutions to the hyperbolic system (38) and satisfying
the key properties (41)—(42).

Given two piecewise constant functions with simple jumps u, v : R — R", recall-
ing the construction of shock curves at (46), consider the scalar functions g; defined
implicitly by

v(x) = S (gn(x)) 0+ 0 S1(q1(x)) (u(x)). (54)
Defining the intermediate states (see Fig. 8)

w; iS,-(qi(x)) o~-~oS](q1(x))(u(x)), i=0,1,2,...,n,

this means that each couple of states w;_1, w; is connected by an i-shock of size
qi(x). We regard |g; (x)| as the strength of the i-th component in the jump v(x) —
u(x), measured along shock curves. Since these curves are parameterized by arc
length, as long as u(x), v(x) vary in a small neighborhood of the origin one clearly
has

) —u)] <D |gi0)] < C1 - o) —u(x)] (55)

i=1

for some constant C;. We can now define the functional
n 00
@(u,mﬁZ/ g3 ()| Wi () dix, (56)
i=1Y7%

where the weights W; are defined by setting:

Wix) =14« - [total strength of waves in u and in
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v which approach the i-wave g; (x)]
+ 3 - [wave interaction potentials of u and of v]

=1+ x14i(x) +12[ Q) + Q)] (57)

The quantity A;(x), accounting for the total strength of waves approaching an i-
wave located at x, is defined as follows. If the i-th characteristic field is linearly
degenerate, we simply take

Ai(X)i[ >+ ) }|aa|. (58)

Xq<X,i<kg<n xog>x,1<kq<i

The summations here extend to waves both of u and of v. Here k, € {1,...,n} is
the family of the jump located at x,, with size o,,. On the other hand, if the i-th field
is genuinely nonlinear, the definition of A; contains an additional term, accounting
for waves in # and in v of the same i-th family:

A,-<x>ﬁ[ o+ ) }w

ae fw)U_7(v) ae Zwl_ g (v)

X <X,i<kq<n Xo>x,1<ky<i
[ oo+ Y }w if i (x) <0,
ko =i ko =i
+ ae f(u)xg<x  a€_Z(v),xg>x (59)
oo+ ) :||aa| if i (x) > 0.
ko =i ko=i
ae 7 (v),xq <X ae g (u),xq>x

Here _7(u) and _# (v) denote the sets of all jumps in u and in v, while ¢ =
BAMISBAME

As soon as the functional @ is defined for piecewise constant functions, it can
be extended to all functions € L' (RR") having suitably small total variation, by
taking the lower semicontinuous envelope:

P(u,v) = liminf @', v). (60)

By choosing the constants «3 > k1 >> 1 in (57) sufficiently large, if the total vari-
ation of the functions u, v remains small, the analysis in [12] shows that this func-
tional is equivalent to the L! distance and is non-increasing in time along couples
of entropy-weak solutions to the system (38).

We remark that the functional @,(-, -) in (60) is still not a distance, because it
may not satisfy the triangle inequality. To achieve a distance, as in (36) one should
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define

N

d®(u,v) =inf §:¢OuJu4xu0:u,mV:ﬂ}.
i=1

In practice, it is more convenient to work out all the estimates on piecewise constant

approximate solutions, using the explicit formula (57). The limits of approximate

solutions, providing exact solutions, are taken only at the end.

An extension of these ideas to the initial-boundary value problem can be found
in [20].

4.2 A Riemann Type Distance

With this approach, introduced in [3], one considers a family of sufficiently regular
paths y : [0, 1]+ L!, for which a weighted length can be defined. For any couple
of functions u, i, the weighted distance d° (u, u) is then defined as the infimum of
lengths of all paths connecting u# with .

In connection with the system (38) we say that a function u : R > R” is in
the class PLSD (Piecewise Lipschitz with Simple Discontinuities) if u is piecewise
Lipschitz continuous with finitely many jumps, each jump consisting of a single,
entropy admissible shock. In other words, at each point x, where u has a jump, the
left and right stated are related by

u(xe+) = S (00) (U (xg—)), (61)

for some genuinely characteristic field i, and for some amplitude o, < 0. The con-
dition on the sign of o, guarantees that the shock is admissible.

If u is in PLSD and has N discontinuities at the points x| < - -- < xp, the space of
generalized tangent vectors at u is defined as T, = L! x RY. Adopting the point of
view of differential geometry, elements in 7;, can be interpreted as first order tangent
vectors as follows. On the family X, of all continuous paths y : [0, gg] — L! with
¥ (0) = u, define the equivalence relation

1
y~y' iff  lim —|y(e) —y'(e)|. =0. (62)
e—>0+ &

We say that a continuous path y € X, generates the tangent vector (v,&) € T, if y
is equivalent to the path y(y ¢.,) defined as

Vg€ =utev+ ) [ued) —uCo) g, e,
50 <0

= D G —uGD]t ey (63)

£q>0
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Fig. 9 A piecewise Lipschitz

u+€v ‘

continuous function # and a 1
. . L
perturbation y (&) described i
e

o

by the tangent vector u

& eT, 7

where y; denotes the characteristic function of the interval /. Up to higher order
terms, the perturbation y (¢) is thus obtained from u by adding ev and by shifting
the points x,, where the discontinuities of u# occur, by €&, (see Fig. 9).

To define a norm on each tangent space T,, we proceed as follows. Let u be a
function in the class PLSD, with jumps at the points x| < x < --- < xx. For any
w,8)eT, = L! x RY, define the scalar components

v (0) =1 (u(x)) - v(x). (64)

Here [y, ..., 1, are the left eigenvectors of the Jacobian matrix A(u) = Df (u), nor-
malized as in (39). Following [3], the weighted norm is defined as

N m 00
. &), = loalléal W (xa) + Z/ vi (@)W (x)dx,  (65)
a=1 i=1Y ">

where W/ (x) is the weight given to an i-wave located at x. More precisely:
Wi (x) =1+ k1 Af (x) + k20 (w), (66)

where

(0.¢] X
Af () = [Z/ +Z/ }mimmw[ >+ Z}w
jsi ot jzi 7T ke<i  koZi
Xog>X X <X
measures the total amount of waves in u approaching an i-wave located at x, while
Q(u) is the interaction potential, introduced at (50), and 1 < k1 < k7 are suitable
constants.

Let now y : [0, 1] — L! be a Lipschitz continuous curve such that, for all but
finitely many values of 6, the functions y(6) is in PLSD and the tangent vector
Yy = (v(0),£(0)) € T (p) is well defined. One can then define the weighted length
of y by integrating the weighted norm of its tangent vector:

1
Iyl = /0 17©)] @) do. ©7)
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In turn, this provides a notion of distance between two functions u, i, as in (3)—(4).
By choosing the constants «1, k2 large enough, this distance is non-increasing

along any couple of entropy-weak solutions to the hyperbolic system (38), having

suitably small total variation. See [6, 9] for two implementations of this approach.

Remark 4 All of the previous analysis dealt with solutions having small total vari-
ation. An extension to large BV data has been achieved in [28]. In this case, a con-
tractive metric can be constructed on a domain of functions consisting of small BV
perturbations of a (possibly large) Riemann solution. While the total strength of
waves V (u) here can be large, the interaction potential Q(x) must remain suffi-
ciently small.

We remark that, for general initial data with large interaction potential, the a
priori BV estimates in [22] do not apply and even the global existence of weak
solutions remains an open problem.

Remark 5 For strictly hyperbolic systems which do not satisfy the Lax conditions, a
Lipschitz semigroup of globally defined, entropy weak solutions was constructed in
[1], taking limits of vanishing viscosity approximations. In this general case, a dis-
tance which is contractive w.r.t. the flow generated by (38) has not yet been con-
structed. Extending the explicit definition (56)—(57) appears to be a very difficult
task. On the other hand, since the continuous dependence of viscous approxima-
tions was proved in [1] by studying the weighted length of smooth paths of solu-
tions, constructing a Riemann type metric as in (65)—(67) may be a more promising
approach.
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Non-local Diffusions, Drifts and Games

Luis Caffarelli

Abstract This is a brief discussion of the properties of solutions to several non-
linear elliptic equations involving diffusive processes of non-local nature. These
equation arise in several contexts: from continuum mechanics and phase transition,
from population dynamics, from optimal control and game theory. The equations
coming from continuum mechanics exhibit a variational structure and a theory par-
allel to the De Giorgi—-Nash—Moser was necessary to show existence of regular solu-
tions. Population dynamics suggests “porous media like equations” with a non-local
pressure, and from optimal control we obtain fully non-linear equations that require
methods of the type of the Krylov—Safonov—Evans theory. Finally, we discuss some
non-local p and infinite Laplacian models coming from game theory.

1 Introduction

We are interested in integral diffusion equations:

ur(x, 1) =[Lw)](x,1)

where the operator L takes the form

Lu(x,1)) = /[u(y) —u(x)]K(x, y)dy

for some positive kernel (or measure) K (x, y) (or K, (y)).

We call the equation a diffusion equation because solutions try to revert to some
sort of “integral average” of u.

Indeed, if u(xg) is “smaller than” its surrounding values, as weighted by K (x, y),
u(xg, t) will tend to increase, if “bigger”, to decrease (i.e., u; > 0 or u; < 0).

We may think of the heat equation as an infinitesimal version of this process.
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Indeed the Laplacian, Au, is the limit of

1
Au(xg) = lim —f u(x) —u(xp)dx.
r—0 r2 By (x0)

In fact, if

1 /1 xX—y 1
Kg(x,y)=;(8—n<p< - ))=8—2<pg(x—y)

for ¢ a probability density (a mollifier), the corresponding solutions u, should con-
verge to a solution uq(x, t) of

(o) = a;jDijug

where q;; are the second moments of ¢.

These types of equations (and the associated non-linear ones that we will dis-
cuss shortly) have roots in different phenomena and, as their second order counter-
part, they naturally divide between those with variational structure and those coming
from probabilistic considerations.

A familiar example for the first case is prescribing Neumann boundary data (for
instance zero). Insulating a wall implies some temperature diffusivity along the sur-
face, expressed by inverting the Dirichlet to Neumann map. A non-local related
equation is the quasi-geostrophic equation that describes the evolution of tempera-
ture on the ocean surface, due to the (one-side) atmospheric conditions.

On the probabilistic side let us recall the Levy—Khintchine formula. In an infor-
mal “black-box” approach suppose we can observe the transition probability of a
distribution of particles, for any sequence of times #;, and we realize that the transi-
tion from #; to t, only depends on #; and #,, in facton t, —#1.

Then, for any k, we can write the transition probability from #; to 7, as the com-
position (convolution) k times of the transition from ¢t =0 to t = %(tz — t1). This
suggests the possibility, as §¢ goes to zero, of describing the process through a “heat
equation”—as a properly scaled infinitesimal limit of the §¢ transition.

This is what the Levy—Khintchine formula asserts: That the probability density
evolves according to a heat equation

ut —_— ...
consisting of a continuous part
--~=aijDiju+iju+~-~

a symmetric jump process

/[u(x +y) Fulx —y) = 2u(x)]dpu(y)
+ - -+ an asymmetric part that we will discuss later

dp“="K(y)dy.
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Here, it is required to make sense for a C 2, bounded u, i.e.,

/ Iy I2du(y) < oo
B1(0)

and

/ du(y) < oo.
% (B1(0))

Between divergence and non-divergence lie the equations invariant under trans-
lations, i.e., where the kernel K (x, y) = K (x — y). In this case, the equation can be
thought of as having both divergence and non-divergence structure and also, being
of convolution type, they enjoy the advantage of allowing for methods of harmonic
analysis.

That is the case, for instance, with the family of fractional Laplacians: For 0 <
a<l

1
“A%(x) = C(a) /[u(y) U g Ay = G

|
The constant C(«) ~ (1 — «) to recuperate the standard Au, as o goes to one.
Notice that the range of «’s is such that it makes these kernels satisfy the Levy—
Khintchine condition to be an infinite divisible distribution.
In fact the fractional Laplacians are also called “stable processes”.
On the other hand, the fractional Laplacians is what we obtain as an Euler—
Lagrange equation for the energy integral corresponding to the W*? (the L? norm
of the “alpha” fractional derivatives of u):

1
13 o — 2
D) = [ty = uwl ey
And finally, convolution with the A* kernel corresponds after Fourier transform
to the multiplier

(A%) = —|g .

In that sense, the fractional Laplacian serves as a basic model for the three clas-
sical methods of second order PDE’s.

e Superposition (potential theory, harmonic analysis)
e Energy method (calculus of variations, DeGiorgi—-Nash—Moser)
e Probabilistic (optimal control-Krylov—Safonov)

Since we are interested in regularity properties of solutions to such an “elliptic”
or “parabolic” equation, the kernel K (x) should be singular at the origin to force
u to be somewhat “special” in order to satisfy the equation: To know that after
convolution with a smooth function u is smooth does not reflect so much on the
regularity of u, at least at first glance.

In that sense, the fractional Laplacians provide a natural comparison scale of
“order of differentiation” of the operator to help us develop a general setting.
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2 Divergence Structure

Equations with “divergence” structure arise from continuum mechanics and calculus
of variations.

A rough characterization would be that the kernel K (x, y) is symmetric.

That makes the equation

/[u(y) —u(OIK (x, y) dy =0

the Euler-Lagrange equation of

E@)T (u) = / [u(x) —u(PK (x, y) dx dy

and thus puts the problem in the framework of weak variational solutions test func-
tions methods, etc.:
For a test function ¢(x), the bilinear form

B(u,<p>=f [u(y) — u(IK (v, Vi) — 90O,

depending on the problem at hand, must be zero, or prescribed or equal to

/@(y)ur(x, 1)

in the parabolic setting.
The general “non-linear calculus of variations” framework becomes then the
study of the minimizers of the form:

/¢><u(x> — U)K (x — y)dxdy

with ¢ convex (quadratic for “uniform” fractional ellipticity).

The first, natural problem to study is that of regularity of local minimizers (the
equivalent of the DeGiorgi solution of the Hilbert problem and the development of
the DeGiorgi—-Nash—Moser theory of regularity of solutions). Let us recall that in
the second order case, the theory proceeds as follows:

A local minimizer, u, of the functional

E(w) = / F(Vw)dx
satisfies the Euler—Lagrange equation
Dy, Fi(Vu) =0
or, in non-divergence form:

F;j (Vu)Dxixju =0.
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If we would known that Vu is continuous Shauder estimates would allow us to
bootstrap the solution to higher regularity. In turn, first derivatives D,u = w satisfy

Dy, F,-j(Vu)ij w=0.
But at this point we only know that Vu is in L? and, from the uniform convexity of
F, that the matrix Fj;(-) = A;;(x) is strictly positive:
A < Fij() < AL

But then, the celebrated DeGiorgi theorem establishes that solutions of an elliptic
equation

Diaijj(x)Djw =0

with no regularity assumption on g;; are Holder continuous.

In particular, Vu is Holder continuous and higher regularity follows.

In this context, with Chan and Vasseur [9], we develop the DeGiorgi regularity
theory for the parabolic case:

Let u(x, t) be the solution of

ur(XJ)Z/fV(M(X) —u(y)K(x—y)

with “¢ symmetric and quadratic” (i.e., A < ¢” < A) and
(1 —aym|z| ") < K(2) < (1 —a)M|z| """

Then u# becomes instantaneously smooth.
As in the second order case, the central step is to prove that first derivatives,
w = Dyu, satisfy a “rough equation” and are Holder continuous:

Wi (x, 1) = f[w(y, £ — wix, 16"y, 1) — u(x, K (x — y) dy

“symmetric, measurable
fractional Laplacian like
kernel” K (x,y,t)

(see also related articles by Barlow, Bass, Chen, Kassman, and of Komatsu [1, 3,
14, 15)).

The study of non-local, non-linear equations with “variational structure” has sev-
eral motivations:

e What we could call surface diffusion: the quasigeostrophic equation that models
ocean atmosphere interaction, the theory of semi-permeable membranes, planar
fracture dynamics (see [5, 11]).

e Problems in statistical mechanics, like phase transition problems with long range
interactions (as opposed to neighbor to neighbor). See for instance the work of
Giacomin-Lebowitz and of Presutti [12].

e Material sciences, for instances polymers where many scales interact.

e Image processing, see for instance the work of Gilboa and Osher [13].
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3 Non-divergence Equations

“Non-divergence” equations arise instead from probability (Levy processes), opti-
mal control and game theory.

Suppose for instance that particles generate at some point xq of a domain §2 and
bounce randomly until they exit £2.

At that moment they release an amount of energy u(y) depending on the point y
where they land.

In principle to find out the expectation for future released energy u(xp) when
starting at xg, we should just solve Lu = 0 in 2 with external data u(y) and the
diffusion associated to the process.

In the case of optimal control we are able to “design” the jump process (the
media) to maximize the expected value u(xg).

That is: We have a family of possible diffusion processes given by the kernels

Lou(x) = f[u(x +y) —u(x)]Ky(y)dy

and at each x we want to chose the optimal jump distribution

Lutwy = [[1Gx +3) = ) Koo ().
In order to achieve that we have to find a solution ug of the equation

F(ug) =supLyug=0
o

with exterior data u(y).

Indeed, this equation means that “u( is a supersolution of all the admissible op-
erators, and at each point is the solution of at least one of the L,.” Therefore on one
hand it is better than any choice and at the same time is an admissible distribution.

In the case of second order equations, the central result of the theory is the Evans—
Krylov theorem:

In that case, the family of operators are second order

Ly(u) = Zaf‘jD,-ju,

the non-linear equation is
2 o
F(D“u) = sup E a’Djiu
o ij

and the Evans—Krylov theorem asserts that solutions to F (D?u) =0 are C%# and
thus classical (i.e., the derivatives involved are continuous).

In collaboration with Silvestre, we reproduce their theory for the corresponding
non-local equations [6-8].
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If the kernels K, are all comparable to the s-Laplacian:
ML= 5)y[7") < Ko(y) < AL = s)ly] "

and they are symmetric in y (no “drift”), then solutions to F(u) = 0 are C>*# that
makes the corresponding integrals convergent and the solutions “classical”.

One of the main features of the work is the proof of a theorem equivalent to the
Krylov—Safonov Harnack inequality for “bounded measurable” kernels:

If w is for every x a solution of a different equation

Li(w) = f[w(x +3) = w@)IKs () dy =0

with K changing discontinuously with x “bounded measurable coefficients”, w is
still Holder continuous.

4 Drifts

What I want to discuss now is the relation, or interaction between diffusion and drift
in the optimal control context:

For second order equations, when addressing gradient dependence of an equa-
tion, we have two different issues. On one hand semilinear equations, say, for in-
stance

Au=g(u,Vu)
with an associated idea of drift or transport and on the other quasilinear equations:
a;j(Vu)Djju =0
for instance those coming from the calculus of variations.

Semilinear equations with fractional diffusions arise for instance in the case of
the quasigeostrophic equation:

“up — Au = g(u, Vu)”
and assuming nice dependence on u, there is here a clear competition between dif-
fusion and transport that becomes critical where s = 1/2.
But there is a second, implicit form of drift in the asymmetry of the kernel for a
Levy process:

The most general “heat equation” for an infinite divisible distribution, leaving
aside the continuous part and the standard drift is

1
up = /[u(x +y) +ulx —y) —2ux)]du(y)

1
t3 /([u(x +y) —u(x — )1 = 2(Vu(x), y) x, di) dp

= symmetric + antisymmetric.
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Note that the antisymmetric part has in it an extra cancellation to ensure that the
process does not drift to infinity.

For quasilinear equations, one equivalent framework to the second order case is,
of course, through the calculus of variations.

For instance, one defines the p- (s-Laplacian), i.e., s-derivatives in L”, as the
Euler—Lagrange equation of the L” norm of the s-derivatives of a function

||u||€vs,p=/ dedy.

|x — y[r+sp

This p-fractional Laplacian is naturally studied through “energy” and “test functions
methods” (see [10]). But the p-Laplacian also can also be written in non-divergence
form as

(p — Au = |Vu|"2(Au + (p — 2)ttnn)

where u,, denotes the second derivative in the direction of the gradient of u.
And this has a game-theoretical interpretation (Peres—Sheffield [16]): Let us go
back to the example of expected energy release u(x) of the random particle.
Suppose that as before the random process has the (“almost continuous”) diffu-
sion equation (§; ~ &2)

1
azu(x,r):/[u@ F00.0 =40 D)5 dy

i.e., the particle at position x at time ¢, jumps, by time 7 + €2, to a position epsilon-
away, according to the radially symmetric probability density ¢, (y) = slngo( yv/e).

Then, as discussed before, when € goes to zero, we would get the standard “heat”
equation.

But, assume now that competing players P, P> are able to impose on the jump
an epsilon-drift in their preferred direction, randomly in time, trying to maximize,
respectively minimize, the expected value u.

That is, depending on which player has the input, the particle at x will jump to
the position (x + y), with probability density (7; = 71 or 12, a unit vector)

1 AT
(Ps(Y+)\Ti)=—n<(P<y+ ‘r>>
& &

As a consequence, the jump probability density ¢, has drifted in the direction t; or
7> depending on which player imposed the drift. Here A is the intensity of the drift
and the expected value u will then satisfy the Isaac’s equation

1
inf sup [E/[u(x—l—y)—u(x)]fﬂs()’—i-An)+<pe(y+th)dy:| =0.

1
T1€S nes!

The natural choice for 3 is to push the drift in the direction of Vu, and for 7 in that
of —Vu. Therefore, if both players use the optimal strategy, the combination of

0 (y +AT1) + @ (y +A12)
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will shift the mass of ¢, symmetrically in the directions of £Vu, increasing the
second moment in that direction so that the limiting equation, as epsilon goes to
zero becomes

Au~+ C(MNuyy,

i.e., the non-divergence form of the fractional Laplacian.

A similar argument can be made for jump processes:

In work with Bjorland and Figalli, we have studied existence and regularity prop-
erties of this “tug of war” game for jump processes. Let me start by pointing out that
there are different ways to “influence the drift” that give rise to structurally different
mathematical problems. A possible one is for shifted kernels:

That is, for kernels of the form

K. (y)=Ko(»[1+ A(y1)]

with Ko(y) a symmetric kernel of the size of a fractional Laplacian, and A(y;) a
smooth odd function, |[A(y1)| <1 —36.
That is, we look at the Isaac’s equation:

1
infsup 3 /[M(x +y) —u@)]Ko(MI2+ A(y - vi) + A(y - v2)ldy

Vi %

(i.e., each player adds the implicit drift A(y - v) in his optimal direction v or vy).

Another possible way is that the player chooses a direction and it is this direction
that suffers a random deviation (an “unsteady hand”). In that case the corresponding
basic kernel K., (y) should be of the form

K. (y) = Ko(y)n(o -e1)

where 1 may vanish outside a neighborhood of e;.

The final operator is as before, the inf sup over all rotations of K, (y).

In both cases, it follows from the non-local Harnack inequality and ABP theorem
[6] that solutions are C* for some «.

In fact, let me take this opportunity to discuss informally the non-local ABP
theorem, that is central to many of the developments for non-local optimal control.

The local version of the ABP theorem needed for the Harnack inequality (as
presented in [4]) is the following:

Theorem 1 u > 0 in By, Lu = a;j(x)D;ju <0, u(0) < 1. Then, 3¢9, such that
Hu <2}| > eo(A, A) > 0.

Proof We add to u a negative paraboloid in By:

i

u(:O) =1
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and construct its convex envelope in Bj:

w = Tw) w= E(W%_ w(x) = u(x) + a(x)

AN

We will estimate |{w = " (w)}| by below.
Indeed, in this set w is negative and

T'(w™ ) = convex
envelope of -w”

u=w—a<0+2.

For this purpose, we use the classical A-B-P argument, i.e., we estimate the volume
of the image of the gradient map: VI" : By — R”". To do that, we lift from minus
infinity a plane with generic slope v:

N TS
T 1 — T T 7+ (nx)
Ay ”/T/
o= atd
T T (x) =14 (v,x)
with |[v| <h/3

If £(x) =1+ (v, x) with |v] < h/3, for some value £y, £ is a supporting plane of
I'(w™) at some interior point xg € {I" = w}. Thus “the image of {w™ = I'(w)} by

the map: x — VI (x) contains the ball of “v’s” of radius % = Sup3w_ > %, i.e.,

1 n
(g) <CVol[VI({w™ =T w)}].
We now ‘“‘change variables”, from v to x

1§CV01[VF({w_=Fw})]=/1dv=/ |det DV I |dx.
{w=I"(w)}

But DV =D?I",a non-negative matrix, since I” is convex, SO

1 n
(—) < / det DT < / det D2 < / [tmar (D2 @)
3 {w=r"(w)) {w=r"(w)) {w=rw)

with 1 the largest eigenvalue of D?w (at a contact point w = I"(w), D*w > D*I" >
0). Since all max eigenvalues of D*w >0,

Lw = Aftmax, butalso Lw <Lh<2nA.

15c(ﬁ>nf 1=C(£>n|{w=F(w)}|.
A ) Jw=rw) A

This is “almost” the proof of the ABP version we need for the Harnack inequality.

We then get
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What we are missing is the localization property:
“Cfw=Tw)}N Q1/a(y) for|y|<1/4” instead of {w=TI"(w)},
i.e., we need the extra fact that we can get the contact set to be inside of any cube of
size 1/4 close to the origin in order to make a C-Z decomposition. For that, all we
need is to change & by an A’ with: Lh’ < 0 outside Q; /4 (so that Lw < 0 outside

01/4 and contact cannot occur), h'(0) < —2 so infw < —1, and LA’ still bounded
above, so Lw is bounded above. O

S The Corresponding ABP for Integral Diffusions [6]

As before, we assume u# > 0 in B3, Lu <0, u(0) < 1. Now

Lu(x) = /[M(x +y)+ulx —y) = 2u(x)]K:(y)dy = [5214()6, VK.
For simplicity we will truncate K :

A2 =T xp, () < Kx(p) < AR = 9)|yI" " xp, ()

and restrict ourselves to x € B;(0), so L is well defined.
We want to show:

“IM,e >0, M,e(A, A,s), suchthat [{u<M}NBy|>¢”
M, ¢ deteriorate with s only for .

We proceed as before. Consider w = u +a, with a = 2(|x|*> — 1) A0 and construct
the convex envelope I"'(w™) in B3

As before

Vol VI ({w = ' (2)}) > ('iniw) .

The problem is how to relate |{w = I"(w)}| with its image (no good change of
variables formula).
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Consider a point xg in w = I"(w). We have the following local geometry

>0, W) =0 .

w_ T r
Subtract /7.
It does not change L X0
since K is symmetric. Liv(xo) = /JZW(X(]’),)K(),)

is bounded above (< Cp)

r since Lh is bounded above.

We are going to prove the following family of steps. Consider x( as above.

(a) For some small diadic ring Ry = By« \ By—«+1 w “grows quadratically on
average” in the sense that

f B<Ci)? (=275,
Ry
(b) Of course, this does not imply that w < clr,f, but since 0 < f(d)) < w, and r
is convex. (a) does imply that
[l g < C,27%* and VI By sy < 27k

(k = k(xq) of course).
(c) In particular:

Vol VI'(B...) = Vol VI (By—a+2 (x0)) < C|By—w+2 (x0)|.

We now extract a covering of {w = I"(w)} with the family of these balls By () (x)
and we have

1<VOIVI({w=T}) <CY B,y (xj)l-

But in each B,;, (-)w differs from I" by at most (r j)2 in a large portion of By (y;)
since

usw+2 [u<3)=CY |Bpl=1.

We divide the integration in diadic rings around xg
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Since w(xp) =0, and w > 0, the integrand in all of the rings is positive and

Lw~(2—5) Z(rk)—<"+s)f w<C.

Ry

(a) We first show that if C; = M C is a large multiple of C there is at least one ring

where
f w=<C 1}’]3 .
Ry
If not

C>Lu)—(2—s)z ("+S)/w>(2—s)2rk f —2(:2)

~ C1, a contradiction.
In fact, if M is large, we can start the sum from k = ky and we get

2-9) Q—s)k
CzCi s 2

still a contradiction.
Of course, w may still be highly oscillatory but

(a) In 99% of the rings, w < 100C1r,%, that is, in the original configuration w stays
close to its convex envelope I".
(b) Further, since0 <1 <w

f f*sclr,f.
Ry

But I is convex, so this implies a bound I < Czr,g in By41 and VI <ry in
Biyo.

_ .2
Letto =ry

sup I" = 1o attained at yo (€ 9By 1)

By
I'>t¢t
supporting plane to { T <t} is
tangent to By |
>z

By

- I'>C1ty, acontradiction.
Ry

. . . i 2
In turn, this implies that suppg, ., VI'<Cr.



50 L. Caffarelli

Finally, it is a general fact that
If I is convex in B,,

oscI”
slope of ¢ < 7>
( (r/2)

A covering lemma completes the proof.

This proof, of course, requires in principle that the kernels be symmetric (some
asymmetry is “tolerated” by the fact that the gradient of I" is bounded, as in the
second order case).

But the nature of the “game” symmetrizes the kernel:

From the “inf sup” property, for any x, there exists a direction v+ so that

0= /[u(x +y)+ulx —y) = 2w@x)IK,+ + K,
for any p (in particular —v™) and vice versa, a v~ so that
0= [l +3) +ux =) ~ 01K, +K,

for any w, and this property is all that’s needed.

Going back to the two possible “integral drifts”, in the first case it is also possible
to prove that solutions are in fact C>%7, i.e., the integrals converge and the solution
is classical (see [7]).

This is because the nature of the drift is such that, as the problem is rescaled the
perturbation term A(x1) drifts to infinity.

6 Non-local Infinite Laplacian

Finally, I would like to discuss briefly the “tug of war” non-local “infinite Lapla-
cian”.

The Infinite Laplacian appears in the case when there is no diffusion left, i.e.,
when it is just the players taking random turns in choosing the direction of the drift
(tug of war).

For the infinitesimal case, when the length of the jump is predetermined you
formally get “u,, =07, n the direction of the gradient (Peres—Schramm-—Sheffield—
Wilson [17]).
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Also, in collaboration with Bjorland and Figalli [2], we consider the case in
which the jump of the particle follows the distribution of the s-Laplacian

t ) —2
inf sup/M()H_v1 ) ulx + vat) u(x)dtzo.

vy es! yes? t1+2s
(That is, each player pulls in the directions v; and v5.)

Formally, for s > 1/2, the direction of the jump is given by Vu: Since the inte-
grals diverge, each players is “forced” to take that choice.

We prove existence, uniqueness and (some) regularity, under a monotone geom-
etry, for s > 1/2.

We assume that the domain £2 is “strip like”, i.e., between bounded Lipschitz
graphs with uniform separation and pay off is respectively 1 and —1. We show that
there exists a unique viscosity solution (the least supersolution and larger subsolu-
tion coincide), and it is C=~1,

(1x|?~" are the “cones” for this problem, note that for s = 1/2 the theory breaks
down.)

We end up with some comments:

e The case s < 1/2 seems very interesting since “Vu” does not fix the direction of
the jump any more, and players will choose to jump in “non-opposite directions”
most of the time.

e Instead of prescribing boundary values, it seems more natural to prescribe upper
and lower obstacles where it would be optimal for one of the players to stop
playing (execute an option).

,q)+

Target value for player 1

Target value for player 2
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We can prove in this case similar results as to the boundary value problem discussed
before [2].

Acknowledgements The author was partially supported by National Science Foundation Grant
DMS-0654267.
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Characteristic Discontinuities and Free
Boundary Problems for Hyperbolic
Conservation Laws

Gui-Qiang Chen and Ya-Guang Wang

Abstract We are concerned with entropy solutions of hyperbolic systems of con-
servation laws in several space variables. The Euler equations of gas dynamics and
magnetohydrodynamics (MHD) are prototypes of hyperbolic conservation laws.
In general, there are two types of discontinuities in the entropy solutions: shock
waves and characteristic discontinuities, in which characteristic discontinuities can
be either vortex sheets or entropy waves. In gas dynamics and MHD, across a vortex
sheet, the tangential velocity field has a jump while the normal velocity is contin-
uous; across an entropy wave, the entropy has a jump while the velocity field is
continuous. A vortex sheet or entropy wave front is a part of the unknowns, which
is a free boundary. Compressible vortex sheets and entropy waves, along with shock
and rarefaction waves, occur ubiquitously in nature and are fundamental waves in
the entropy solutions to multidimensional hyperbolic conservation laws. The lo-
cal stability of shock and rarefaction waves has been relatively better understood.
In this paper we discuss the stability issues for vortex sheets/entropy waves and
present some recent developments and further open problems in this direction. First
we discuss vortex sheets and entropy waves for the Euler equations in gas dynamics
and some recent developments for a rigorous mathematical theory on their nonlin-
ear stability/instability. Then we review our recent study and present a supplement
to the proof on the nonlinear stability of compressible vortex sheets under the mag-
netic effect in three-dimensional MHD. The compressible vortex sheets in three
dimensions are unstable in the regime of pure gas dynamics. Our main concern is
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whether such vortex sheets can be nonlinearly stabilized under the magnetic fields.
To achieve this, we first set up the current-vortex sheet problem as a free boundary
problem; then we establish high-order energy estimates of the solutions to the lin-
earized problem, which shows that the current-vortex sheets are linearly stable when
the jump of the tangential velocity is dominated by the jump of the non-paralleled
tangential magnetic fields; and finally we develop a suitable iteration scheme of
the Nash—-Moser—Hormander type to obtain the existence and nonlinear stability of
compressible current-vortex sheets, locally in time. Some further open problems and
several related remarks are also presented.

1 Introduction

We are concerned with entropy solutions of hyperbolic systems of conservation laws

in several space variables:
d

U+ 3, f;(U) =0, (M
j=1

where U = (Uy, ..., Um)—r and f; : R™ — R™, j =1,...,d, are nonlinear smooth
functions. System (1) consists of m quasilinear hyperbolic equations in the d-dimen-
sional space variables x = (xg, ..., x4). The prototypes of hyperbolic conserva-
tion laws include the Euler equations of gas dynamics and magnetohydrodynamics
(MHD).

Let the level set surface I := {®(¢,x) = 0} of &(¢,x) be a discontinuity of a
piecewise smooth entropy solution:

Ut x) = {U (t,x) for @(t,x) <0,
UT(t,x) for @(t,x) >0,
where U*(z,x) are smooth solutions of (1) in the respective domains separated

by I'. Then U*| and & must satisfy the Rankine—Hugoniot jump conditions
across I':

2

d
% ®IUI+ Y dy, PIf;(U)] =0, 3)
j=1
where the bracket [-] stands for the jump of the associated function across I, that
is,
U=U%-U"Ir,
with U* | as the traces of U* taken on the respective sides of I".

In general, there are two types of discontinuities in the entropy solutions of (1).
The first type of discontinuities is called shock waves (or fronts), across which the
strict Lax entropy inequality holds for at least one convex entropy-entropy flux pair
0, @) = (.41, -, qa), V21 (U) = 0:

d
AP+ Y8y, @lq,;(U)] > 0. €
j=1
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The second type of discontinuities is called characteristic discontinuities, which are
characteristic surfaces of the hyperbolic system (1). That is, for this case, the func-
tion @ (¢, x) satisfies the eikonal equation on I" = {®(t, x) = 0}:

3P + A(UT: V@) =0, )

where A(U; é) is an eigenvalue of the matrix 27:1 éjf’j(U) for & = (€1, ..., Eq).
Usually, there are two different kinds of characteristic discontinuities: vortex sheets
and entropy waves. In gas dynamics and MHD, across a vortex sheet, the tangential
velocity field has a jump, while the normal velocity is continuous; across an entropy
wave, the entropy has a jump while the velocity field is continuous. A vortex sheet
or entropy wave front I" is a part of the unknowns, which is a free boundary. This
free boundary is a characteristic surface with respect to either side of I".

Compressible vortex sheets and entropy waves, along with shock and rarefaction
waves, are fundamental waves in the entropy solutions to multidimensional hyper-
bolic systems of conservation laws. They occur ubiquitously in nature including
slip-stream interfaces, lifting of aircrafts, galactic jets, tornadoes, Mach configura-
tions in the shock reflection-diffraction patterns, and interactions among nonlinear
waves; see [1, 3—14, 24, 25, 28, 34-36, 40, 41] and the references cited therein. The
stability of shock and rarefaction waves has been studied in Majda [32], Métivier
[33], and Alinhac [2]; also see [30].

In this paper, we discuss the stability issues for vortex sheets/entropy waves,
present some recent developments, and address further open problems in this direc-
tion.

In Sect. 2, we discuss vortex sheets and entropy waves for the Euler equations
in gas dynamics. It was observed in Miles [34, 35], by mode analysis, that the vor-
tex sheets in two-dimensional isentropic gas dynamics are linearly stable when the
Mach number is larger than /2 and are violently unstable when the Mach number is
less than +/2, while they are always unstable in three space variables no matter how
large the Mach number is. A rigorous mathematical theory on the nonlinear stability
of the two-dimensional vortex sheets with the Mach number larger than +/2 locally
in time was obtained recently by Coulombel-Secchi [21, 22] when the initial data
is in a class of small perturbation functions of a planar vortex sheet.

In Sects. 3—5, we review our recent study and present a supplement to the proof
on the stability of three-dimensional compressible vortex sheets under the magnetic
effect, that is, the nonlinear stability of current-vortex sheets in three-dimensional
MHD in Chen—-Wang [17]. As we mentioned above, the compressible vortex sheets
in three dimensions are unstable in the regime of pure gas dynamics. Our main con-
cern is whether such vortex sheets can be nonlinearly stabilized under the magnetic
fields. In Sect. 3, we first set up the current-vortex sheet problem as a free boundary
problem and state the main results. In Sect. 4, we establish high-order energy esti-
mates of the solutions to the linearized problem, which shows that the current-vortex
sheets are linearly stable when the jump of the tangential velocity is dominated by
the jump of the non-paralleled tangential magnetic fields in the sense that A* deter-
mined by (39) satisfy condition (38), as observed in [37]. To achieve this, our key
observation is that the linearized problem (41), equivalently (43), for current-vortex
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sheets is endowed with a well-structured decoupled formulation so that the linear
problem is decoupled into one standard initial-boundary value problem (48) for a
symmetric hyperbolic system and the other problem (52) for an ordinary differen-
tial equation for the front. This decoupled formulation is essential for us to estab-
lish our desired high-order energy estimates of solutions, which is one of the key
ingredients for developing our nonlinear approach for the stability problem. Also
see Trakhinin [38] for a different approach to make related estimates. The energy
estimates of the linearized problems have a loss of regularity with respect to the
nonhomogeneous terms and initial data, mainly due to that the front is characteristic
in the current-vortex sheets. As in [2, 22], this has inspired us to develop a suit-
able iteration scheme of the Nash-Moser—Ho6rmander type to obtain the existence
and structural stability of compressible current-vortex sheets, locally in time, in the
three-dimensional MHD. This is done in Sect. 5. In Sect. 6, we present further open
problems and several related remarks.

2 Characteristic Discontinuities for the Euler Equations in Gas
Dynamics

In this section we discuss vortex sheets and entropy waves for the Euler equations
in gas dynamics.
2.1 Isentropic Euler Equations

The isentropic Euler equations in gas dynamics in R? describing the motion of
inviscid gases take the following form:

{8tp+V-(pv)=0, ©)
3 (pv) + V- (pv®V)+Vp=0,
where p and v= (v, ..., vd)T e R? are the density and velocity, respectively; the
pressure p is a function of the density p:
p=rpp) (7
with p’(p) > 0 when p > 0.
For a piecewise smooth weak solution U(¢, x) of (6):
UGt x) = {U (t,x) for @(t,x) <O, )
Ut(t,x) for @(t,x) >0
on the front I" := {® (¢, x) = 0}, the Rankine-Hugoniot conditions must be satisfied:
[my]=0,
my[vn]+ [Vx®*[p] =0, ©)

my[v:] =0,
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where vy :=v-Vy® and v; € R4~ are the normal and tangential components of v
onI',and my = p(vy + @) is the mass transfer flux.

Suppose that my = 0 on I, i.e., no mass transfer flux across the front, so
(U%, I') is a characteristic discontinuity for (6). Then, on I',

[p]=[vn]=0. (10

In this case, there is only one kind of characteristic discontinuities, vortex sheets,
since the tangential velocity field (with respect to the interface I") is the only quan-
tity that experiences a jump across I :

[ve]1#0, [p]=[vn]=0. Y

2.2 Full Euler Equations

The full Euler equations for gas dynamics in R? take the following form:
dhp+V-(pv)=0,
3 (pvV) +V - (pv®V) +Vp =0,

1 2 1 2
0r EpIVI +te|+V- §P|V| +pe+p|v)=0,

where p = p(p, S) and e = e(p, S) are the pressure and internal energy with the
entropy S, respectively.
Let a piecewise smooth function U(z, x):
Ul x) = {U (t,x) for @ (t,x) <O,
UT(¢,x) ford(t,x)>0
be a weak solution to (12). Then, on the front I" := {& (¢, x) = 0}, U(z, x) must
satisfy the Rankine—Hugoniot conditions:

12)

13)

[my]=0,
mylvn]+ V@2 [p] =0,
mylve]=0, (14)

1
my [e +5 |VI2] +[pun1=0,

where vy :=Vv - Vx@|r and v, are the normal and tangential components of v on
I',and my = p(vy + @) is the mass transfer flux.

As above, we consider the case that my = 0 on I, i.e., no mass transfer flux
across the front; so (U, I') is a characteristic discontinuity for (12). Then, on I,

[p]=[vn]=0. 15)

Different from the isentropic case, there are two different kinds of characteristic
discontinuities on which [p] =[vy] =my =0:

(i) Vortex sheets:

[ve] #0; (16)
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(i) Entropy waves:

[ve]1=0, [p]1#0, [S1#0. a7

2.3 Stability of Vortex Sheets for the Two-Dimensional Isentropic
Euler Equations

Choose
P(t,x1,x2) = x1 — @(t, x2).
Then
I'={x1=¢(,x):t>0,x R}
The vortex sheet I” satisfies that

(i). The isentropic Euler equations (6) are satisfied on either side of I";
(i1). The Rankine—Hugoniot jump relations are satisfied on I":

o =v"-(1,=0,0) =V - (1, =0,90), p =pT .

As usual, p*, vt denote the traces of p, v taken on either side of I". The vortex
sheet I" is a part of the unknowns, which is a free boundary. This free boundary is a
characteristic with respect to either side of I".

Consider a planar vortex sheet Iy with constant states on either side. Then, by
the Galilean invariance of frame, such a vortex sheet can be always reformulated as
the following form:

U =(p5,0,+p0)",  £x1 >0, (18)

where p > 0 is a fixed density, v > 0 is a fixed tangential velocity, while the normal
velocity vanishes. The sonic speed on I is ¢ = /p’(p), and the relative Mach
number M is

M=

[SYRIRS]

By mode analysis, it was observed by Miles in [34, 35] that the vortex sheets in
two-dimensional isentropic gas dynamics are linearly stable when the Mach number
M > +/2 and violently unstable when M < /2.

A rigorous mathematical theory on the nonlinear stability of the two-dimensional
vortex sheets with M > +/2 locally in time was obtained recently by Coulombel—
Secchi [21, 22] when the initial data function is in a class of small perturbation func-
tions of a planar vortex sheet I'y. On the other hand, the seminal work by Artola—
Majda [4-6] indicates that the stability of compressible vortex sheets depends on
the class of initial perturbation functions, even when M > /2.

For the two-dimensional full Euler equations, as indicated in Sect. 2.2, there is
an additional type of characteristic discontinuities, called entropy waves. Across an
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entropy wave, the velocity and pressure are continuous, though the entropy, equiv-
alently the density, has a jump. It would be interesting to analyze the stability of
entropy waves to understand fundamental features of entropy solutions.

For the Euler equations in three space-dimensions, every compressible vortex
sheet is violently unstable, and this violent instability is the analogue of the Kelvin—
Helmbholtz instability for incompressible fluids (cf. Fejer—Miles [25]). In the next
sections, Sects. 3—5, we analyze whether compressible vortex sheets in three di-
mensions (which are unstable in the regime of pure gas dynamics) become stable
under the magnetic effect in three-dimensional MHD.

3 Compressible Current-Vortex Sheets in MHD: Main Theorem

The equations for three-dimensional MHD describing the motion of inviscid MHD
fluids take the following form:

0p+V-(ov)=0,

1
3t(PV)+V'(pV®V—H®H)+V<p+§|H|2> =0,
oH—V x (vxH)=0,

3z<%mV|2 + pe + IHI2) +V. ((%pIVI2 + pe + p>V+H x (V X H)) =0,
(19)
and
V-H=0, (20)

where p, v = (vy, vy, v3)T, H=(H, H, H3)T, and p = p(p, S) are the density,
velocity, magnetic field, and pressure, respectively; e = e(p, S) is the internal en-
ergy; and S is the entropy.

For smooth solutions, the equations in (19) are equivalent to

(0 +Vv-V)p+pc?V-v=0,
p0+v-VIV+Vp —(VxH) xH=0,
(0 +v-VVH-—H-V)vy+HV -v=0,
0 +v-V)S=0,
where ¢ = /p,(p, S) is the sonic speed of the fluid. The equations in (21) can be
written as a 8 x 8 symmetric hyperbolic system for U= (p,v,H, S) " of the form:

2n

3
Bo(U)o,U + ZB./(U)BXJ.U:O (22)
j=1
Let a piecewise smooth function U(z, x):
U (¢t,x) forx; < ¥(t, x2,x3),

Ut(t,x) forx; > ¥ (t, x2, x3) 23)

U, x) = {
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be a weak solution to (19). Then, on the front I" := {x; = ¥ (¢, x2, x3)}, U(¢, X) must
satisfy the Rankine—Hugoniot conditions:

[mn]=[HN]=0,

mylon]+ (1 + 97, +¥7)lg] =0,

my[v:]= Hy[H:],

H,
mN[_} = HN[V‘L’]v
P
2
my |:e + %<|V|2 + |H7|>] +[qvy —Hy(H-v)] =0,

(24)

where (vy, vy) (resp. (Hy,H;)) are the normal and tangential components of v
(resp. H)on I, i.e.,

UN ‘=11 — 17”)(2”2 - 1/fx31)3,
T T
Ve = (Vg Upy) 1= (Y, U1 + 02, Yagv1 +03)
HN = H] - ‘WXZHZ - WX3H3’
H, = (Hy,, Hy,) " := (U, Hi + Ha, Vs H 4+ H3) T,
2
mpy = p(vy — ) is the mass transfer flux, and g = p + % is the total pressure.
As in Sect. 2.2, we consider the case that my =0 on I, i.e., no mass transfer
flux across the front, so (U, I') is a characteristic discontinuity for (19). We now
focus on the current-vortex sheets:

HY =H, =0, H; fH;. (25)
Then the Rankine—Hugoniot conditions are equivalent to
H 2
¢1=U;:U;ﬁ |:p+%i|=0 onI’ (26)

and generically ([p], [v.], [S]) # 0.
First, we have

Lemma 1 Let (U, yr) be a current-vortex sheet defined as above for 0 <t < T.
Then, if

Hlrnp=0y =0,  V-H*(0,x) =0,
we have

Hilr =0, V- -H(,x) =0, forallt€[0,T). (27)

By a direct calculation, one knows that both H ﬁ and V - HT satisfy a homoge-
neous transport equation tangential to I", so assertion (27) follows immediately if it
holds initially.

This lemma shows that both the divergence-free condition (20) and the condition
H ﬁl r = 0 are only the constraints on the initial data.
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Set
~ 1 LHT Ol x3
D(x,U) 0 I pe?
D, U):= < (O ) 1) withD(A, U) := | ApH I; —prl3
O3x1  —Al3 I
As in Trakhinin [37], we know from Lemma 1 that system (19)—(20) is equivalent
to the following system on both sides of I":

3
D(.F, U%) (Bo(Ui)a,Ui +Y B, (Ui)ax_,Ui> +AFGEV-HF =0, (28
j=1
provided V - H(0, x) = 0, where
Gt =—(1,0,0,0,H,0)T,

and AT = AE(UT, U™) will be determined later.

System (28) can be rewritten as the following symmetric form

3
Ap(UH)9,U* + > A;(UF)a,, U* =0. (29)
j=l1
System (29) is still hyperbolic, provided that
1

P+ /()2
The main task of this section and Sects. 4-5 is to study the existence and stability

of the states U¥(z, x) and a free boundary I' = {x; = ¥ (t,x2,x3)} for 0 <t < T
such that

05?2 <

(30)

3
Ap(UH)3,U* + > A;(UH)0,, U =0 for + (x1 — ¥ (t, x2.x3)) >0,

j=1 3D
Ug(x)  for x1 > 9o(x2, x3),

Ulj—o =
== Um0 forn < ot 1)

with the transmission conditions on I":

L HJ?

Y =vy =y, P+T =0, (32)
provided that Hy | rg—o; = 0, V - H (x) = 0, and H Jf H; hold at = 0, where
Yo(x2, x3) = ¥ (0, x1, x2).

In the above problem, the front I" is unknown. To deal with such a free boundary
problem, it is convenient to use the following standard transformation:

=1, xy=5X, x3=3i,
{X1=Wi(f,fl,fz,i3) &)
with ¥+ satisfying
:I:(llfjt))?1 >k >0,
{‘1’+|21:0 — U gm0 = W (E 2 ) GV
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for some constant « > 0. Under (33), the domains 2% := {£(x] — Y (t, x3,x3)) > 0}
are transformed into {X; > 0} and the free boundary I" into the fixed boundary
{x; =0}.

The natural candidates of ¥+ can be proper extensions of v/ (f, %, ¥3) in {¥] > 0}
satisfying the first non-degenerate condition (34);. With this in mind, we choose ¥+
to be the solutions to the following problem:

JUE — v + 070, 0E + 00,0 E=0, 1,01 >0,

35
WE|Zo = Wi (%) 1= £x1 + x (Fx1)Po(x2, x3), 53

where we drop the tildes in the formula for simplicity, x (s) is a smooth cut-off func-
tion that is 1 for |s| < 1 and O for |s| > 2 such that :I:(l,llojt)x1 >k > 0in {x; > 0}.
Under transformation (33), it is easy to know that problem (31)—(32) is equivalent

to that U (7, X) = U*(z, x) satisfy the following problem with a fixed boundary
{x1 =0}:

LUT, ¢HUT =0 in{x; >0},

B(U', U™, ¥)[x,=0 =0, (36)

(U*, ¥)li=0 = (Ug (%), Yo(x2, x3)),

where the tildes have also been dropped,

3
LU, ¥)V = Ag(0)3,V + A (U, )3, V+ > A; (U)o, V
j=2

with Ay (U, ¥) = WLXI(AI(U) — WAN(U) = Y3, W, Aj(U)), and

BUT U y)=—U,y.qt —¢)'

Wlth UfN = U2i B waU:;E - 1//x3U4i and q = Ul + %|UH|2 fOI' UH = (US’ U6,
U7) ", under the constraints that
Uﬁ,N = Usi - szUgt — Y UF =0 on {x; =0},
VB = 0, U + (0 500y — 0,050, UG + (00, W 500 — 0,050, U5
=0 in{x; >0}
(37)

hold at {r = 0}.

The main feature of problem (36) is that the fixed boundary {x; = 0} is a char-
acteristic plane of constant multiplicity. To solve (36), as in [2, 18, 29], it is natural
to introduce the weighted anisotropic Sobolev spaces defined on 27 := {(¢,Xx) €
[0, T] x R3:x; > 0}:

B}(2r) :={u € L*(2r) : e " M*d} u € L*(22r) for || + 2k <5}

for all s € N and u > 0, where the tangential vectors M = (Mo, M1, M, M3) of
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{x1 = 0} are given by

Mo =9, My =0 (x1)3y, My = 0y,, M3 = 0y,
with
x1 forO<x; <1,
o(xy):=
2 forx; >2.

The norms in B; (§27) are as usual:

T 1/2
||u||s,M,T:=( / ||u<r,-)||§,udr> :
0

2 . 2(s—|a| -2k —ut k 2
(e, )2, = Y WO e ML u (e, )17,
loe|4+2k<s

with

We will also use a similar notation for the spaces with u = 0, B*(§27), with norm:
1/2
. ok 2
lulls,7 := ( > M axluan(m)) :
lo|4+2k<s

Also denote bS27 :={(t, x2,x3) :t €[0, T], (x2,x3) € ]Rz}, and denote by |u|, 7 the
norm of u in H*(bS27).

Consider the initial data functions U§ = (ﬁi, vE, I:Ii, S‘i) and Y that are a
small perturbation of a planar current-vortex sheet (U*, v/) for constant states UT
and ¥ = 0 with (25)—(26) so that the following stability condition holds:

A 1
() < s
P+ B2/
for A% uniquely determined by
A —Hy\ (it by — 0y
2 2 2 2
N N ~_ )= . - on {x; =0}. 39)
(e e ) ()=o) ommmo

Then we have the following main result.

(38)

Theorem 1 (Chen—Wang [17]) Assume that, for any fixed o > 15 and s € [a +
7, 2a — 51, the initial data functions Vo € H*3(R?) and Uat —U* e B26TD(RY)
satisfy constraints (37), the compatibility conditions of problem (36) up to order
s + 2, and the stability condition (38)—(39). Then there exists a solution (U*, V) of
the initial-boundary value problem (36) such that

Ut — Ut € BY(R27) and v € H*'(b27).

Remark 1 The stability conditions (38) and (39) for the initial data functions U=

(ﬁi, ¥, I:Ii, S’i) and Y are equivalent to
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max{|H, (05 — 03) — Hy (05 — ;)1 |1Hy (0 = 83) — Hy (35 — )1}
H Ay — Hy Hy
< | 2773 2773 | .
VB + AR )2

Also see Trakhinin [37] for another equivalent form and [38] for a similar result but
different proof independently.

(40)

Remark 2 Using the same argument as in Coulombel-Secchi [23], we conclude that
the above current-vortex sheet solution to system (19) is also uniquely determined
by its initial data.

To establish Theorem 1, in Chen—Wang [17], we developed an approach by com-
bining a well-structured decoupled formulation of a linearized problem derived from
the current-vortex sheet and careful high-order energy estimates of the solutions
of the linearized problem with a suitable iteration scheme of the Nash-Moser—
Hormander type. In order to establish the energy estimates, especially high-order
energy estimates, of solutions to the linearized problem, one of the main contribu-
tions in [17] is to identify the well-structured decoupled formulation so that the lin-
ear problem decoupled into one standard initial-boundary value problem (48) for a
symmetric hyperbolic system and the other problem (52) for a transport equation for
the front. This decoupled formulation is essential for us in a much more convenient
way to establish the desired high-order energy estimates of solutions and to develop
the suitable iteration scheme of the Nash—Moser—Hormander type that converges.
On the other hand, in [17], there is a gap in the presentation for constructing the
iteration scheme of Nash—Moser—-Hormander type for the nonlinear problem (36).
In Sects. 4-5, we provide a supplement and describe the complete arguments of the
proof of Theorem 1 here, i.e., Theorem 2.1 in [17].

4 Compressible Current-Vortex Sheets in MHD: Linear Stability

To study the linear stability of current-vortex sheets, we first derive a linearized
problem from the nonlinear problem (36). By a direct calculation, we have

d
- (LOU+ sV, ¥ +5®)(U+5sV))|s—0

=LU,Y)W+EU, ¥)W + WE(L(U, H)U)y,,

X1
where W=V — q,ile is the good unknown as introduced in [2] (see also [26,
.X’]
33]), and

3
EU ¥)W=W Vy@A U, ¥)U; + > W-VyA;(O)U,;.
j=2
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Then we obtain the following linearized problem of (36):

L(U%, yHWE + E(UT, ¢ )W = F* in {x; > 0},
b — Wy =Yy Wy = Yy W) + Us by + Uy ey =hy on {x1 =0},
’ (41)
Wi — W]—+Z(U;fwj+—uj—wj—):h2 on {x; =0},
j=5
(W, $)]1=0 =0,

for some functions F*, hf, and hp, where lIfi(t,x) are proper extensions of
Y (t, x2,x3) in {x1 > 0} satisfying (34).
To simplify problem (41), we introduce J* = J(U*, ¥*) as an 8 x 8 regular
matrix such that
X*=(J5H'wE (42)

satisfy

7
X{=WE+) UFwy,
j=5
X3 =Wy — @5, Wi — @), Wi,
X5 =W —(WH), W — (W5, Wy,
(X3, X3, X5, X7, X3) = (Wi, Wi, Wa, Wi, W),

which means that X, X», Xs, and Xg represent the linearized total pressure, nor-
mal velocity, normal magnetic field, and entropy respectively, while (X3, X4) and
(X6, X7) are the associated tangential velocity and magnetic fields.

Under transformation (42), problem (41) for (W*, ¢) is equivalent to the follow-
ing problem for (X*, ¢):

L(U%, oH)XE + E(UE, ¢HXE=F* in{x; > 0},

O — X5+ U, + Uy = h on {x; =0}, @)
XF =Xy =h on {x; =0},
X*, ¢)i=0 =0,

where F* = (J*) TF+,
3
L(U*, o) = Ag(UF, v5)d, + Y " A;(U*, vH)a,,
j=1
with
A(UE, o) = () TA (U, w ) 5%,
AjUS o) = IHTA;UHIT, j#1
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_ By a direct calculation, we see that the coefficient matrix Al(Ui, wt) in
L(U*, *) can be decomposed into three parts:

AU U = AT AT AT

with
+ +
ATO _ 1 0 a :I:,lijt UUNAil
! ¥y, al 0747 1 (),
+
+2 UinN <42
1 + Al s
F*)x,
where
a=(1,0,0,—1%,0,0,0),
Uky=Uy — @H),Uf — @5, U,
and

Up y=Us — (W), U — (), U5
When the states (UT, ¥™) satisfy the boundary conditions given in (36) and
constraints (37), i.e.,
Yr —Uyy =0,  Ugpy=0 onfx; =0},

the boundary {x; = 0} is a characteristic plane of constant multiplicity for the oper-
ator L(UT, ¥¥). Then, from (43), we obtain that, on {x; = 0},

AUty 0 X+\ (X* +
<< 0 A1(U‘,W‘)>(X)’(X )> 2XTIX2 =2 Xs], (4

when [X{]=0on {x; =0}.
In order to decouple the front unknown ¢ from the boundary condition (43),, we
use the linearization of the constraints H i lx;=0 =0:

XF —UF¢py, —Ufpy, =h3 on{x; =0} (45)
to obtain
[X2 — AX5] = ¢x,[U3 — AUgl + ¢x;[Us — AU7] — [h1 + Ah3]. (46)
From the assumption H }f H; on {x; = 0}, there exist unique

A =2 T of, HY, HY)
such that

+ — + -
H, H
U3 Uz H; H;
that is, [U3 — AUg] = [Us — AU7] = 0. In this case, (46) is simplified as
[X2 — AX5]=—[h1 + Ah3].
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Therefore, with the aid of (45) and the choice of A* in (47), we deduce from (43)
that X* satisfy the following problem:

LU, ¢H)XE + E(UE, ¢HXE =F* in{x; >0},
[X2 — AX5] = —[h1 + Ah3] on {x; =0},

_ (48)
XF—X7=h on {x; =0},
X*t<0=0
From (44), we know that the homogeneous boundary conditions:
[X1]=[X2—AX5]=0 on{x; =0} (49)

are nonnegative for the operator
~ ~ 3 ~
LU, w) = Ag(UF, wh)d, + ) AU, wh)a,,.
j=1

Moreover, by noting that, on the boundary {x; = 0},

- 1 0 a
AUE O = ——
1( ) (l]/i)xl |:aT O7><7i|
with a = (1,0, 0, —2%,0,0, 0), the bounNdary conditions (49) on {x; = 0} are also
maximally nonnegative for the operator L(U*, ¥*). Then, by employing the Lax—
Friedrichs theory (Theorem 1.1 in [27]) for (48), we conclude that there exists a
unique solution X* of problem (48) satisfying the following energy estimates:

Theorem 2 For any fixed so > 17/2, there exist constants Coy and o depending
only on ||coef |5y, T for the coefficient functions in (48) such that, for any s > so and
> [Lo, the estimate:

max I XF ()17, + X

0<i< s, u, T
Co + 2 Ty) + 2 2
< m ¥~ s, p, 1 + IIhIIHﬁH(mr) + llcoef II5 . 7 NFT IS, 7 + hig 11 1)
(50)

holds, provided that the eikonal equations:
Vi =U =¥ Us =¥ Uy
and the constraints:
Uy = U5 =¥iUs =¥ Uy =0

are valid for (UT, ) on {x; =0}, and \* determined in (47) satisfy condition
(30), where h = (hf, hy, hgt)T and the norms in H,i (bS27) are defined as that of
BfL (827) with functions independent of x1, and coef (t,x) = coef (t,X) — coef (0)
with coef (1, x) being the coefficient functions in the linear operators L(U*, g*)
and E (U, ¥*) in the equations in (48).
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By fixing 1 > 1 in (50), we conclude

Corollary 1 For any fixed so > 17/2, there exists a constant Co > 0 depending only
on |coeflls,, 7 and T such that, for any s > so, the following estimate holds:

IXE)2 7 < co(uFinf,T + b3,y 7 + llcoef I3 7 (IFF13, 7 + hlZ 4 7 ) (51)

Finally, let us study the determination of the perturbation @ of the front func-
tions ¥*. From problem (41), the natural idea is to solve the following problems:

+ + + + + +_ g+
{atqb — X5 + U5 00, @F + U; 0, T =hy in{x; >0}, (52)

P9 =0.

An important question is whether we have @™ = @~ on {x; = 0}. This question is
answered by the following result.

Proposition 1 Let @1 (t,x) be given by problem (52) with the plus sign, and
O(t,x2,x3)=DT |x;=0- IfkjE are given in (47), and the boundary condition:

[X2 —AX5]=—[h1+21h3] on{x; =0} (53)
holds as in (48), with h3i being given by
X5 = Ui, — Ui s =h3  on {x1 =0}, (54)
then we have

9 — Xy + Uy 0, + Uy 0o =h7  on {x; =0} (55)

Proof Notice that (53) and (54) can be rewritten as

Xy +hl — (X5 +h) =2 (X$ —hi) — A7 (X5 —h3), (56)
and
Ug
X3 —hy = (3,9, axm)( i). (57)
U7
Thus, from (52) with the plus sign, we obtain
U+
4

_ (VSN - (Vs
= ant000 1 (1) =+ (2 )|

_ ULy _ (U

—(3x2¢,GX3¢)[<UI) (U;)} (58)

by using (56)—(57) and (47). From (58), we immediately conclude (55). Il
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5 Compressible Current-Vortex Sheets in MHD: Nonlinear
Stability

In this section, we describe the main steps to prove Theorem 1, the existence of
a local solution to the nonlinear problem (36) under constraints (37) for the initial
data, by developing an iteration scheme of the Nash—-Moser—-Hormander type.

5.1 Construction of the Zero-th Order Approximate Solutions

Suppose that the initial data (U(jf, Yo) is a perturbation of a planar current-vortex
sheet (U*, ) with the constant states U* and ¥ = 0 satisfying (25)-(26), o €
H*"(R?), and U(j)E = U(j)E —UteB® (Ri) for any fixed integer s > 9/2. Suppose
that (U(jf, Vo) satisfy the compatibility conditions of problem (36) up to order [5],
and the constraints in (37) with ¥*(0, x) being proper extensions of ¥ (x2, x3) in
{x1 > 0}, satisfying 0, Wi|t:0 >k > 0. In a classical way, one can construct
the zero-th order approximate solutions (U;Jf, 'Ifai) such that Uai = Uai - Ut e
BE/AHIR . x RY), wF Fx1 € BIY/2H2®R, x R3) with £0,, W F|,0 > «/2> 0
satisfying

atj (L(U;t, Wai)Uj)h:O =0 for0<j< [%} —1 (59)
and

B(US, U, , ¥a) =0,

(60)
U;,ZS - (Wa)xz Uj,:ﬁ - (Wa)xs Uz/:zl,:7 =0 on {X1 = O}
with W[y —0 = Ya (. X2, X3).
Set
VE—U*_UE, ot—uwt_yt (61)

Then it follows from (59) and (60) that problem (36) is equivalent to the following
problem for (V*, @%):

L(VE, oF)VE=fF in{tr>0,x; >0},
BNT V-, 9)=0 on {x; = 0}, (62)
Vi|t§0 = 07 ¢|t§0 = 0,

where ¢ (1, x2, x3) = @*|,,—¢ and ££ = —L(UE, v 5)UE,
L(VE, 0F)VE = L(UT + VE, ot 4 0% (UL + V) — LU, w5 UE,
and

BNTV,¢)=BU +VT, U, +V~, ¥, +¢).
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5.2 Iteration Scheme

From the linear stability estimate established in Theorem 2, we observe that there
exists a loss of regularity for the linearized problem (48). This inspires us to use a
suitable iteration scheme of the Nash—Moser—Hormander type (cf. [31]) to study the
nonlinear problem (62).

To do this, we first recall a standard family of smoothing operators (cf. [2, 22]):

{So}o~0: BN (27) — (| BL(821) (63)
s>0
satisfying
ISoulls.r < COS~*||ullq,y  foralls,a >0,
”szu —ulls,r <CO|lullo,r  foralls [0, al, 64
—Spu|  <CO** Nullgr foralls,a >0,
do s.T ’
and

|(Spuy — Spu_)x;=o, < COT | (uy —u_)|y,=0|, , foralls,a>0.
’ ’ (65)

Similarly, one has a family of smoothing operators (still denoted by) {Sg}o=0
acting on H*(bS27), satisfying also (64) for the norms of H*(b§2r) (cf. [2, 22]).

Now we construct the iteration scheme for solving the nonlinear problem (62) in
Ry xR3.

Let V0 =0 and &*° = 0. Assume that (Vi’k, cDi*k) have been known for
k=0,...,n,and satisfy @ % = @k on {x| =0},

(VEE @Ky =0 in{r <0} (66)
Denote the (n + 1) approximate solutions to (62) in Ry x Ri by
V:I:,n-‘rl — V:I:,n + 8vz|:,n ¢:|:,l’l+l — (DZI:,H + 8<p:|:,n. (67)

Let6p>1and 6, =,/ 93 +n forany n > 1. Let Sy, be the associated smoothing
operator defined as above. Denote by

L/ | Svi’n
e, (UE+VE"T2 wiis, o+

— L(UE + V"2, 0 1 5 o5 m)svE"
FE(UE 4 VETD gE 45, pEnysyEn (68)
the effective linearized operator, and

(U£ 4 VED)

SVEN = §VE" — 5=
(e + S, @E),

(69)

the good unknown.
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By a direct computation, we have

n

Dg/p(v:l:,n-‘rl’ @:I:,n-'rl)vﬂ:,n-‘rl — Z L/ o 8Vi»] +ex i),
j_o( e (U +VE/F2 0 45y, 0%d) 2

(70)

. N
where the modified states V¥/*2 will be chosen such that the boundary {x; = 0}
is a uniform characteristic plane of constant multiplicity for the operator

L’ el ~ forall j >0, and
e, (U7 +V=/"2 g, +ngd>i*1)

4
k
erj=p e (71
k=1
with
el =L(U; + VEIT it 4 ob Ity +VEIT
—L(U; + V5, 05 + 05Uy + V)
+,j +,j
- /(Ufwivf,wfwivf)(w 78070, (72)
2 _ +,j +,j
e:t,j _LzUai-‘rVi'j,lI/ai—}-Cbi*j)(aV /’8® /)
_ / i»j i)j
(Ua+8p; VI ,WﬂSe,@*-f)(‘W 097, 73
3 _q/ £ gpEi
Y L<U3+s9jviv-f ,wai+s9jcbivf>(5v 807
Yy _ SVES sty (74)
(U$+Vi’”%,w,,*+se_,a>i»f)(
and
4) _ 8¢i’j

. . 21
(LUE + VEI+3 0 4§, 0%0)(UE + VETH))

x1’

(75)

e, = -
*J (lI/ai + Sﬂjqji’])xl

For the boundary condition given in (62), we have
BNF, 0F) = (B[ (VH, &), 27 (V7,07), BV, V)T,
with
B (VE, @F) = (0 + U 30, + Uy 405 ®F — V" + (UF + 05, V5
+ + +
+(wa +¢ )X3V4 k]
_ _ 1 _ _ _
BN =V =V 4 (VP = IV ) + (U Vi) = (U, Vi),
(76)
U,y =W, 5. U Ui Toand Vi = (V55 Voo, Voo T
Associated with the constraints H ﬁ |x;=0 = 0, denote by
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BE(VE 03 =VE — (W + 0%, VE - (wF + 0%, V5
- (q)i)xz Uaiﬁ - (‘pi)X3 Uaij-
By a direct calculation, for i = 1, 3, we have
%;ii(vi,nﬂ’ @Ently _ {@ii(vzl:,n’ o)

— B* BVE", 505 4 oF (77)

1 )
.t n
l,(V i Z,Sgn¢i’") ’

where

ef = Z eiiﬁk (78)

with the errors:
e;l:r,ll — %?(Vi,n+l’ ¢:|:J’l+1) _ f@iﬂ:(\]:‘:,n7 ¢:|:,n)

- '%l-:f:(/vi,ny(pi,n)(svi’nv 8(pi’n)

_ BDEM LSV 4 (8T SVE", =1,
—(BPEM) LSV — (80N SV, i =3,
T2 + + +, + +, +,
e = B pim OVE SO — B o e BV 50ET)
(1 = Sg)@=") 8VE" + (U — S3,)@*"), 8V, ~"
FOPEM (I = Sg ) V5" + BDEM) (I — Sp,)V"  i=1,
—((I = Sp,)@™") 8V — (U = Sy %), sV
— (BPEM) (I — Sp )V " — (BDEM) (I = S V5", =3,
(79)
and
T3 b N 1 g gtn
el.’n = %i,(SQnVi’n,SQn(pi'")(sv s 8D ) c@i (Vi,rﬂr% 5 (pi’n)(ﬁV s 5P )
1
(S, V" — Vi sy,
1
S vE v TR, =1,
o +.n+3
(Vg "% = 85, VoM (60T,
1
VT s vE soE,, i =3,
ey @VE soEm) — B BVEN s@Em)
n L(VETTD 5, @t L(VETTT 5, @En)
spEn + 7+l .
| wEsemy Er(0n BEVETE Sp,00). =1
o sptn + ytan+d -
@t ez, T (00 B (V22 S, 60). i=3,

(80)

for E7(-) being a proper bounded extension from H*(b§27) to Bt (@2r).
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Using (77) and noting that %li (Vi’o, @i’o) =0, we obtain
n
BEVETL @Eathy N (g SVEI soET) 1) (81
i ) ;0( vt gy i) ) te) @D
fori =1, 3.
Similarly, one has

n

+,n+1 —n+1y _ /
%> (V v )= Z(:)(ﬂz,(v+’j+%,V7’j+%)(8
j=

VHI sV +é35),  (82)
where the errors ¢, ; can be defined as that of efj in (78)—(80) with %’li being
replaced by %,.

Observe that, if the limit of (Vi’", (e} jE'”) exists which is expected to be a solution
of (62), the left-hand sides of Eqs. (70) and (81)—(82) should tend to f;t and zero
respectively when n — oo. Thus, with respect to the well-posed boundary condition
form of the linear problem (48), we define the modified increments SVEN of the
approximate solutions to be the solutions to the following problem:

L ; SVEN = £,
e, (UF+VE"T2 wiFi sy okn)

Bi(8VH", 8V = hi, — hy, + AT (UE + VE 0T

o (83)
— A~ (U7 + V=" )Ry on b27,
B’ SV §V—ny =5 on b2,
2,(V+'"+%,V_’"+%)( ) = &n T
where
Bi(8VH", V™)
=t (Ut + Vi’"+%)(5v5+’" — (W S, @) 8V
— Wt + 59"¢+~")X35V7+’”)
- <8V2+’" — (4 Sg, @M 8V — (0 + Sgn¢+’n)x35v4+’n>
=T VETE 8V = (4 55,08V
— (W + S5, D0V,
+ (SV;’" — (¥, + 80,0 "8V " — (W, + Sg,,¢>—’")x3av4*’”)
with A% (") being defined in (47), £, g,. k7, and h3, are defined by
n n—1 n n—1
fo—i—se,,(Zei,j):Senfi Zz}j—i—S@n(Ze’?,}):O,
j=0 Jj=0 j=0 Jj=0 84)

n n—1 n n—1
+ o + iy
Jj=0 Jj=0 j=0 j=0
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by induction on n, with f(j)E = Sp,f£ and go = hli0 = h;co =0.
To construct §&=" from Q%’li (VE, &%) defined in (76), we clearly have
B (ye ooy (WE 0F) = 0,05 + (U + Vi), 0F + (U7, + Vi), 0F
— Wi+ (W o) W+ (ot WE

(85)
From (81) with i = 1, we first define §@ ™" by the following problem:
RBY . @Vt 8oty =nt  in 27,
]’(V+<n+7 )S9n¢+,n) ’ (86)
sotr |l§0 =0,
where hfn is given in (84). Denote by
hy, =8V — (W 4 S5, @), 8V — (W + Sp, @) 8V
+n4+1
Ut +v, "2
— ((5@4’,"))‘2’ (8¢+,n)x3) < a,6 6i et |- (87)
U+ Vv, 2
and
— 4+ + 4t g
h, =hi, +3+ Uy + VS 2hT
—AT(UE+ VETDRT — BBV, 8V,
Then we determine §@ ~" by solving the following problem:
B~ ) @V, 80" =hy, inS2r,
LV 2 5, 0m) ’ (88)
SP—" |;50 =0.

By employing Proposition 1 for problems (86) and (88), we obtain
§@T" =80 on {x; =0).

In order to keep the boundary {x; = 0} being a uniform characteristic plane of

o . . . 1
constant multiplicity at each iteration step (83), we define the modified state V&7 +2
by requiring

7 £ty
(0 + Ua:%?,axz + U;%4aX3)(S9n¢i’l) - VQ "
+,n4+1 +.n4+4
G S @DV (W 50, 05 VT =0, )
+n+4 +.n+1 +n+4
VS nta _ (lpazl: 4 Sgn(p:t,n)xz V6 N+ _ (Wazl: + S@ﬂ@:l:,iz)x3 V7 nt3
_ (Sen¢ﬂ:,n)leji6 — (Sgngbi,n)x3 Ua:'f7 =0
on {x; = 0}, which leads to define
L
VIt s, vET for j£2.5, (90)

J o
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and
Vf’”% = (W + Sg, @), S, Vi + (WE + S5, @), Sp, Vi
+ B + U300, + Uy y0,)(Sp, @), o1
vf””% = (WE+ S5, %), 80, V" + (W + Sg, D)1, Sg, V"
U (S0, DF M) 0y + U7 (Sg, @FM),15.

The steps for determining (§V*", §@*") are to solve first SVE" from (83) and
then 8&*" from (86) and (88), and to obtain §V*7 finally from (69).

5.3 Convergence of the Iteration Scheme

Fix any s > 9, o > 50 + 6, and s1 € [0 + 7,2« + 4 — 5p]. Let the zero-th order
approximate solutions for the initial data (USE, Yo) constructed in Sect. 5.1 satisfy
1O sy 3.7 + 19 sy aa.7 + 16 sy —a7 <& €y llaa.r /e issmall, (92)

for some small constant & > 0, with ,1‘,;; = x (Ex) Y (t, x2, x3).
The key estimates for proving the convergence of the iteration scheme are as
follows:

Proposition 2 For the solution sequence (SV*", &%) given by (83) and (86)—
(88), we have
I8VE g7 + 18D |ls 7 <e057%72A,  fors €[s0.s1],
|L(VE", @EMVEL 5|07 < 26057973 fors € [s0, 51 — 4],
| BE(VE, @EM) |5 7 < 2605773 for s € [s0, 51 — 4],
| B (VT VM) 1 p <6637 fors € [s0.51 — 2]

for any n > 0, where A, = 6,41 — 6,.

93)

This proposition is obtained by induction on n > 0. Suppose that estimates (93)

hold for all 0 <n <m — 1. From the definition of (ef,’ll, eii’,’lz) (i =1,3) given in
(79), we conclude

ITI Ijl 2 As+so—20—4
s, T s, T = ,i—HU “ An:
e s, r + e Nl < Ce%6 on
2 +2 2 202
”el,n s,z + ”‘33’" ls,r <Ce 9,5+S0 ¥ A
forall0<n <m —1ands € [sg,s1 — 1].
From (91), we have

+.n+3
V, TR oV = (0 + Uy, + U, 0)(Sg, — DOE"

+ (WE A+ 85,05, (Sg, — DV
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+(WE 4 S5, @) 4 (S5, — DVE" + ((Sg, — DOEM), ViE"
+((Sg, — DOEM) VI + BENVET, @),
which implies the estimate:

+ 1
IV, " = VE o < Ce6)
forallso <s<s;—4and0<n<m-—1.
Similarly, one has

1
V"2 —vE Y < cot) e
holding forall sp <s <s; —4and0<n <m — 1.
Therefore, we obtain

1
| BE(VET2, S )57
1
< |BEVE"T2, S5, 00) — BEVE", )51 + 1 BE(VE", $)ls 1
< C89’i+]70(

for sp —1<s<s1—-5,0<n<m-—1, and i = 1,3, by using an estimate of
L@f (VE" @+m) similar to (93) derived from problem (83) (cf. [38]).
Thus, from (80), we deduce

—_~ —_~

+.,4 +.,4 2 ns+s0—2
”el,n s,z + ”63’,1 ls,7 <Ce¢ QJ-HO A, (95)

foralO0<n <m—1ands € [sg, 51 — 6].
Combining (94) with (95), it follows that

—_~

e, s + llex, ls.r < Ce26y7072% A, (96)
forall0 <n <m —1ands € [sg, 51 — 6].

From (84), one immediately deduces

—_~

hlﬂ,:m = (Sem—l - S@,,,)E,':f:m_l + Seme?,:m—]

with E

& =Y Jet, fori = 1,3, which implies

i ls.7 4 11515, < CE20570 72 A, ©7)

for all s > 5.
On the other hand, for f,j,j and g, given in (83), as in [17], we have

IEE 57+ 1&mlss1,7 < C(e8 +€H)05 3 Ay,
for all s > so, with § = ||[f||442.7/¢ being small.

Applying Corollary 1 for problem (83) with n = m and using the above estimate
and (97), we find

ISVE™ 5.7 < C(e8 4+ 10543 A, (98)

for all s > 59, by noting o > 509 + 5.
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By applying a classical estimate for problem (86) of §@ ™ and using (98), it
follows that

8@ ™57 < CT(s8 + £2)65773 A, (99)

for all s > sg.
Thus, from (87), we have

113, lls.7 < C(e8 4+ eD)65 "2 A (100)
for all s > 5. _
For the function |, given in (88), it is easy to have

= hy, + AT UE A VEHGE ity

h 3,m

1,m
— AU+ VETI(hy, — b ),
which implies

1R lls.r < C(ed + 1052 Ay, (101)

for all s > s9.
Applying the classical estimate again for problem (88) and using (101), we have

18D~ ||s.7 < CT(e8 + €205 %2 A,, (102)

for all s > 5.
Thus, from (98), (99), and (102), we have

I8V 5,7 < C(e8+&%)05 % Ap, (103)

for all s > s9.

From (99) and (102)—(103), we immediately obtain the estimates of ||8Vi"" Is.7
and ||6&* ™| ;.7 given in (93) by choosing § = ||f;t||a+2yr/s small. The remaining
estimates of (93) can be verified directly, and the details can be found in [17].

Convergence of the Iteration Scheme From the first result of (93), we have

D IEVE", 80|l 7 < oo, (104)
n>0
which implies that there exist (VE, @%) € BY(27) such that
(VE" ") — (VE @%)  in B*(27). (105)

From the other results given in (93), we obtain that the limit functions (VE, %)
satisfy
LVE OE)WVE=F in 2y,
BEVE, 0F)=0 in 27, (106)
B,(VT,V7)=0 on b2r.

On the other hand, from the second result given in (106), we obtain that the
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constraint
BEVE, o) =0

also holds on b$27 if it is true at {# = 0}, by using Lemma 1 in Sect. 3.

Note that §¢ " = §@ " for all n immediately imply @+ = @~ on {x; = 0} as
well. Thus the second result given in (106) leads to one of the Rankine—Hugoniot
conditions:

given in (26).
Therefore, we conclude

Theorem 3 Let o > 15 and sy € [ + 7, 20 — 5]. Let Yo € H>'*3(R?) and Uy —
Ut € B25112) (Ri) satisfy the compatibility conditions of problem (36) up to order
s1+2, and let conditions (25)—(26) and (92) be satisfied. Then there exists a solution
V* e BY(R27), p € H* 1 (b27) to problem (62).

Then Theorem 1 in Sect. 3 directly follows from Theorem 3.

6 Concluding Remarks and Open Problems

Characteristic discontinuities (compressible vortex sheets and entropy waves), along
with shock and rarefaction waves, occur ubiquitously in nature and are fundamental
waves in the entropy solutions to hyperbolic systems of conservation laws in several
space variables. The stability problems for characteristic discontinuities are fun-
damental, especially in shock reflection-diffraction and various wave interactions.
Their mathematical rigorous treatments are truly challenging. What we have known
is still very limited. Most of problems involving characteristic discontinuities are
longstanding and still open. In particular, the following problems have not well un-
derstood, which deserve our attention:

1 As discussed in Sect. 2.2, another kind of characteristic discontinuities for
the two-dimensional full Euler equations in gas dynamics is entropy waves. Sim-
ilarly, they occur in the higher dimensional situations. It would be interesting to
analyze entropy waves to explore new phenomena and features of these waves in
two-dimensions and even higher dimensions.

2 In Sects. 3-5, we have shown the stability of current-vortex sheets when the
jump of the tangential velocity is dominated by the jump of the non-paralleled tan-
gential magnetic fields in the sense that A* determined in (39) satisfy condition
(38); also see Remark 1. The next concern is the stability/instability issue of current-
vortex sheets in three-dimensional MHD when the jump of the tangential velocity
is not dominated by the jump of the tangential magnetic fields, especially when the
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magnetic fields are parallel to each other on both sides of the front. As a special
example, Wang—Yu [42] recently obtained a stability criterion on the current-vortex
sheets in two-dimensional MHD, in which the tangential magnetic fields are parallel
to each other always on both sides of the front: This stability criterion shows that
there is certain stabilization effect of the magnetic fields in this case.

3 From the Rankine—Hugoniot conditions in (24) with my =0 on I", besides the
case (25)—(26) for the current-vortex sheets, there is another kind of characteristic
discontinuities on which

Yr=vi=vy, Hy=Hy#0 onT,
which implies
[v:]=[H:]=0,
that is,
[H] =[v]=0, [p1=0,
but

[S1#0 equivalently [p]#0.

Such a wave is called a current-entropy wave (an Alfvén wave). It is important to
understand the stability/instability of current-entropy waves in three-dimensional
MHD.

4  There are other different characteristic/noncharacteristic discontinuities in
MHD; see Blokhin—Trakhinin [10], Trakhinin [39], and the references cited therein.
It would be interesting to study these discontinuities and related problems in MHD
and explore their new phenomena/features.

5 For the Euler equations in gas dynamics, it has been shown in Chen—Zhang—
Zhu [16] and Chen—Kukreja [15] that two-dimensional steady-state vortex sheets
are always stable under the two-dimensional steady perturbations of the incoming
supersonic fluid flow. For shock reflection-diffraction problems, the solutions are
self-similar, and most of Mach reflection-diffraction configurations involve a vor-
ticity wave formed by a vortex sheet. It is important to understand the compressible
vortex sheets for the Euler equations in the self-similar coordinates. In particular,
when a vortex sheet forms a vorticity wave, it is useful to understand to which
spaces of functions the solutions of the vorticity waves belong.

6  Another important direction is to analyze various interaction between shock
fronts and vortex sheets/entropy waves in multidimensional compressible fluid
flows.

It would be interesting to explore possible nonlinear approaches to see whether
the corresponding estimates of solutions have no derivative loss with respect to ini-
tial data for the problems addressed; also see Coutand—Shkoller [19, 20]. It is clear
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that the solution to these problems involving characteristic discontinuities requires
further new mathematical ideas, techniques, and approaches, which will be also
useful for solving other longstanding problems in nonlinear partial differential equa-
tions, especially various boundary value problems, free boundary problems, among
others, in hyperbolic conservation laws.
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h-Principle and Rigidity for C1>* Isometric
Embeddings

Sergio Conti, Camillo De Lellis, and Laszlé Székelyhidi Jr.

Abstract In this paper we study the embedding of Riemannian manifolds in low
codimension. The well-known result of Nash and Kuiper (Nash in Ann. Math.
60:383-396, 1954; Kuiper in Proc. Kon. Acad. Wet. Amsterdam A 58:545-556,
1955; Kuiper in Proc. Kon. Acad. Wet. Amsterdam A 58:683-689, 1955) says that
any short embedding in codimension one can be uniformly approximated by C'
isometric embeddings. This statement clearly cannot be true for C? embeddings
in general, due to the classical rigidity in the Weyl problem. In fact Borisov ex-
tended the latter to embeddings of class C'* with & > 2/3 in (Borisov in Vestn.
Leningr. Univ. 14(13):20-26, 1959; Borisov in Vestn. Leningr. Univ. 15(19):127—
129, 1960). On the other hand he announced in (Borisov in Doklady 163:869-871,
1965) that the Nash—Kuiper statement can be extended to local C** embeddings
with o < (1 +n + nz)_l, where n is the dimension of the manifold, provided
the metric is analytic. Subsequently a proof of the 2-dimensional case appeared
in (Borisov in Sib. Mat. Zh. 45(1):25-61, 2004). In this paper we provide analytic
proofs of all these statements, for general dimension and general metric.

1 Introduction

Let M"™ be a smooth compact manifold of dimension n > 2, equipped with a
Riemannian metric g. An isometric immersion of (M",g) into R™ is a map
u € C1Y(M"; R™) such that the induced metric agrees with g. In local coordinates
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this amounts to the system
Biu~3ju=gij (1)

consisting of n(n + 1)/2 equations in m unknowns. If in addition u is injective, it
is an isometric embedding. Assume for the moment that g € C*°. The two classical
theorems concerning the solvability of this system are:

(A) if m > (n+ 2)(n + 3)/2, then any short embedding can be uniformly approxi-
mated by isometric embeddings of class C*° (Nash [23], Gromov [16]);

(B) if m > n + 1, then any short embedding can be uniformly approximated by
isometric embeddings of class C 1 (Nash [22], Kuiper [20, 21]).

Recall that a short embedding is an injective map u : M"* — R™ such that the metric
induced on M by u is shorter than g. In coordinates this means that (0;u - 9ju) <
(gij) in the sense of quadratic forms. Thus, (A) and (B) are not merely existence
theorems, they show that there exists a huge (essentially C%-dense) set of solutions.
This type of abundance of solutions is a central aspect of Gromov’s A-principle, for
which the isometric embedding problem is a primary example (see [12, 16]).

Naively, this type of flexibility could be expected for high codimension as in (A),
since then there are many more unknowns than equations in (1). The A-principle
for C! isometric embeddings is on the other hand rather striking, especially when
compared to the classical rigidity result concerning the Weyl problem: if (S2, g) is
a compact Riemannian surface with positive Gauss curvature and u € C? is an iso-
metric immersion into R3, then u is uniquely determined up to a rigid motion ([8,
17], see also [31] for a thorough discussion). Thus it is clear that isometric immer-
sions have a completely different qualitative behavior at low and high regularity (i.e.
below and above C 2).

This qualitative difference is further highlighted by the following optimal map-
ping properties in the case when m is allowed to be sufficiently high:

(C) if g € C!'# with [+ B > 2 and m is sufficiently large, then there exists a solution
u € C-B (Nash [23], Jacobowitz [18]);

(D) if g € C!P with 0 <[+ B < 2 and m is sufficiently large, then there exists a
solution u € C1¢ with o < (I 4+ B)/2 (Killen [19]).

These results are optimal in the sense that in both cases there exists g € C-# to
which no solution u has better regularity than stated.

The techniques are also different: whereas the proofs of (A) and (C) rely on the
Nash—Moser implicit function theorem, the proofs of (B) and (D) involve an itera-
tion technique called convex integration. This technique was developed by Gromov
[15, 16] into a very powerful tool to prove the k-principle in a wide variety of geo-
metric problems (see also [12, 33]). In general the regularity of solutions obtained
using convex integration agrees with the highest derivatives appearing in the equa-
tions (see [32]). Thus, an interesting question raised in [16], p. 219 is how one
could extend the methods to produce more regular solutions. Essentially the same
question, in the case of isometric embeddings, is also mentioned in [34] (see Prob-
lem 27). For high codimension this is resolved in (D).
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Our primary aim in this paper is to consider the low codimension case, i.e. when
m = n+ 1. This range was first considered by Borisov. In [6] it was announced that if
g is analytic, then the A-principle holds for local isometric embeddings u € C!¢ for
o< ﬁ A proof for the case n = 2 appeared in [7]. Our main result is to provide
a proof of the h-principle in this range for g which is not necessarily analytic and
general n > 2 (see Sect. 1.1 for precise statements). Moreover, at least for / = 0 and
sufficiently small 8 > 0, we recover the optimal mapping range corresponding to
(D). Thus, there seems to be a direct trade-off between codimension and regularity.

The novelty of our approach, compared to Borisov’s, is that only a finite number
of derivatives need to be controlled. This is achieved by introducing a smoothing
operator in the iteration step, analogous to the device of Nash used to overcome
the loss of derivative problem in [23]. A similar method was used by Killen in [19].
See Sect. 3 for an overview of the iteration procedure. In addition, the errors coming
from the smoothing operator are controlled by using certain commutator estimates
on convolutions. These estimates are in Sect. 2.

Concerning rigidity in the Weyl problem, it is known from the work of Pogorelov
and Sabitov that

1. closed C! surfaces with positive Gauss curvature and bounded extrinsic curva-
ture are convex (see [26]);

2. closed convex surfaces are rigid in the sense that isometric immersions are unique
up to rigid motion [25];

3. a convex surface with metric g € C LB withl>2,0 < B < 1 and positive curva-
ture is of class CH# (see [26, 27]).

Thus, extending the rigidity in the Weyl problem to C¢ isometric immersions can
be reduced to showing that the image of the surface has bounded extrinsic curvature
(for definitions see Sect. 7). Using geometric arguments, in a series of papers [1-5]
Borisov proved that for o > 2/3 the image of surfaces with positive Gauss curvature
has indeed bounded extrinsic curvature. Consequently, rigidity holds in this range
and in particular 2/3 is an upper bound on the range of Holder exponents that can
be reached using convex integration.

Using the commutator estimates from Sect. 2, at the end of this paper (in Sect. 7)
we provide a short and self-consistent analytic proof of this result.

1.1 The h-Principle for Small Exponents

In this subsection we state our main existence results for C'¢ isometric immersions.
One is of local nature, whereas the second is global. Note that for the local result
the exponent matches the one announced in [6]. In what follows, we denote by
sym;’ the cone of positive definite symmetric n x n matrices. Moreover, given an
immersion u : M"* — R™, we denote by u®e the pullback of the standard Euclidean
metric through u, so that in local coordinates

(une)ij = 3,'11 . 8ju.
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Finally, let
_ nn—+1)
= 5 .

Ny

Theorem 1 (Local existence) Let n € N and gy € sym;. There exists r > 0 such
that the following holds for any smooth bounded open set 2 C R" and any Rieman-
nian metric g € CP(2) with B > 0 and ||g — gollco < r. There exists a constant
8o > 0 such that, if u € C2(2; R"*1) and « satisfy

lufe —gllo <83 and 0<a <min ! ,é,
- 14+2n, 2

then there exists a map v € C*(2; R with

1/2

ve=g and |v—ulc <Cllufe— gl

Corollary 1 (Local _h-principle) Let n, go, $2, g, « be as in Theorem 1. Given any
short map u € C L(2: R and any & > 0 there exists an isometric immersion
ve Ch (2, R with |lu — v co <e.

Theorem 2 (Global existence) Let M be a smooth, compact manifold with a Rie-
mannian metric g € CP(M) and let m > n + 1. There is a constant 8y > 0 such that,
ifu e C*(M;R™) and « satisfy

1
||une—g||co§8§ and 0 < o < min 4é ,
14+2(n+ Dn, 2
then there exists a map v € C*(M; R™) with
1/2
vie=g and ||v—u||C1§C||uﬁe—g||C/0.

Corollary 2 (Global k-principle) Let (M", g) and o be as in Theorem 2. Given any
short map u € C 1 (M; R™) withm > n + 1 and any ¢ > 0 there exists an isometric
immersion v e C*(M; R™) with ||u — v||co <é.

Remark 1 In both corollaries, if # is an embedding, then there exists a correspond-
ing v which in addition is an embedding.

1.2 Rigidity for Large Exponents

The following is a crucial estimate on the metric pulled back by standard regular-
izations of a given map.

Proposition 1 (Quadratic estimate) Ler 2 C R" be an open set, v € C1¥(2,R™)
with vie € C? and ¢ € C°(R") a standard symmetric convolution kernel. Then, for
every compact set K C $2,

(v * ge)fe — viellcr gy = 0. 2)
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In particular, fix a map u and a kernel ¢ satisfying the assumptions of the Propo-
sition with o > 1/2. Then the Christoffel symbols of (v % ¢¢)%e converge to those
of vie. This corresponds to the results of Borisov in [1, 2], and hints at the absence
of h-principle for C1: 3+ immersions. Relying mainly on this estimate we can give
a fairly short proof of Borisov’s theorem:

Theorem 3 Let (M2, g) be a surface with C? metric and positive Gauss curvature,
and let u € C14(M?; R3) be an isometric immersion with o > 2/3. Thenu(M) is a
surface of bounded extrinsic curvature.

This leads to the following corollaries, which follow from the work of Pogorelov
and Sabitov.

Corollary 3 Ler (52, g) be a closed surface with g € C* and positive Gauss curva-
ture, and let u € C1%(S%; R?) be an isometric immersion with o > 2/3. Then, u(S?)
is the boundary of a bounded convex set and any two such images are congruent. In
particular if the Gauss curvature is constant, then u(S>) is the boundary of a ball
B, (x).

Corollary 4 Let 2 C R? be open and g € C*P a metric on 2 with positive Gauss
curvature. Let u € CH%(§2; R3) be an isometric immersion with « > 2/3. Then
u(82) is C*P and locally uniformly convex (that is, for every x € 2 there exists
a neighborhood V such that u(§2) NV is the graph of a C*# function with positive
definite second derivative).

1.3 Connections to the Euler Equations

There is an interesting analogy between isometric immersions in low codimension
(in particular the Weyl problem) and the incompressible Euler equations. In [10]
a method, which is very closely related to convex integration, was introduced to
construct highly irregular energy-dissipating solutions of the Euler equations. Being
in conservation form, the “expected” regularity space for convex integration for the
Euler equations should be C°. This is still beyond reach, and in [10] a weak version
of convex integration was applied instead, to produce solutions in L* (see also
[11] for a slightly better space) and, moreover, to show that a weak version of the
h-principle holds.

Nevertheless, just like for isometric immersions, for the Euler equations there
is particular interest to go beyond C: in [24] L. Onsager, motivated by the phe-
nomenon of anomalous dissipation in turbulent flows, conjectured that there exist
weak solutions of the Euler equations of class C* with o < 1/3 which dissipate
energy, whereas for o« > 1/3 the energy is conserved. The latter was proved in [9,
13], but on the construction of energy-dissipating weak solutions nothing is known
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beyond L (for previous work see [28-30]). It should be mentioned that the criti-
cal exponent 1/3 is very natural—it agrees with the scaling of the energy cascade
predicted by Kolmogorov’s theory of turbulence (see for instance [14]).

For the analogous problem for isometric immersions there does not seem to be
a universally accepted critical exponent (cf. Problem 27 of [34]), even though 1/2
seems likely (cf. Sect. 1.2 and the discussion in [7]). In fact, the regularization and
the commutator estimates used in our proof of Proposition 1 and Theorem 3 have
been inspired by (and are closely related to) the arguments of [9].

2 Estimates on Convolutions: Proof of Proposition 1

As usual, we denote the norm on the Holder space CX*(£2) by

a4 —9¢
I fllke:=sup Y_ [0“f()|+ sup 19 £ ) =3 F O

T
xeR la|<k X,yER,x#y lal=k |x — ¥l

Here k =0,1,2,..., a = (ay,...,a,) is a multi-index with |a| =a; + --- + a,
and « € [0, 1[. For simplicity we will also use the abbreviation || f|lx = || fllx.0 and

I flle =1fll0,a-

Recall the following interpolation inequalities for these norms:
1 e < CIFIE, o 1 1R 2y
where C depends on the various parameters, 0 < A < 1 and
k+oa=2xrtk +a)+ (1 =22k +a2).

The following estimates are well known and play a fundamental role in both the
constructions and the proof of rigidity.

Lemma 1 Let ¢ € C°(R") be symmetric and such that [ ¢ = 1. Then for any
r,s > 0and a €10, 1] we have

I f % @ellrts < CE5N F s 3)
If — £ *@elly < CEI fllr+2, )
I(fg) % pe — (f *@e)(g*0)llr < CE* N fllallglla- (5)

Proof For any multi-indices a, b with |a| = r, |b| = s we have 3970 (f @) = 8% f %
8bg05, hence

19T (f % @)l < Co™* || £
This proves (3).
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Next, by considering the Taylor expansion of f at x we see that

fx—y)—fx)=f)y+ry),

where sup, [ry(¥)| < C|y12|| f1l2. Moreover, since ¢ is symmetric,

/w(y)y dy =0.

Thus,
If = f*eel = ‘/W(y)(f(x—y)—f(X))dy’

< C||f||2/e—"

w(%)’mzdy =CO| £l

89

(6)

(7

This proves (4) for the case r = 0. To obtain the estimate for general r, repeat the

same argument for the partial derivatives ¢ f with |a| =r.

For the proof of estimate (5) let a be any multi-index with |a| = r. By the product

rule
3[pe * (f8) — (9 * e x 8)]

=0%ex (f8) =) (Z) @7 x g xg)

b<a

= 0% * (f8) — (3%¢e * f)(@e * &) + (e * [)(3%pe * g)

- (Z) [0%e 5 (f = FONIB™ e % (8 — g ()]

O<b<a

=% [(f = F())(g — 8(x)]
-2 (Z) 0% e x (f = f(0)) -9 Pgpx (g — g(x)),

b<a
where we have used the fact that

fx) ifa=0,

aa‘p‘*'f(x):{o ifa0

Now observe that
0% * [(f — f(x)(g — g
= ‘ /aaw(y)(f(x —¥) = fON(@Egk —y)—gx))dy

®)

€))

(10)

(11)

(12)

13)

(14)

15)
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< f 10%0e Wy dyll fllallglle = Cr2* 11 fllalIglla- (16)

Similarly, all the terms in the sum over b obey the same estimate. This concludes
the proof of (5). O

Proof of Proposition 1 Set g := v?e and g* := (v % @¢)%e. We have
lef; — gijllt < llgi; — &ij * ol + l1gij * e — gij -

The first term can be written as

lgt; — gij * @elli = ]| 90 % @ - v x or — (3jv - iv) * e | ;- (17)

so that (5) applies, to yield the bound ¢2*~! ||v||%,a. For the second term (4) gives
the bound £|| g]|2. Combining these two we obtain

lgf; — gijlle < C@* T, +€lgll).

from which (2) readily follows. O

3 h-Principle: The General Scheme

The general scheme of our construction follows the method of Nash and Kuiper [20-
22]. For convenience of the reader we sketch this scheme in this section. Assume
for simplicity that g is smooth.

The existence theorems are based on an iteration of stages, and each stage con-
sists of several steps. The purpose of a stage is to correct the error g — ue. In order
to achieve this correction, the error is decomposed into a sum of primitive metrics
as

Ny
g— ute = Za,%vk Qv (locally),
k=1

M
g—ule=)" "(Yjajx) vk ®vji (globally).
j k=1
The natural estimates associated with this decomposition are
172
lakllo ~ llg — uellg, (18)
lalln+1 ~ lulln42 for N=0,1,2,.... (19)

A step then involves adding one primitive metric. In other words the goal of a step
is the metric change

uﬁe = uue + a2v X v.
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Nash used spiraling perturbations (also known as the Nash twist) to achieve this;
for the codimension one case Kuiper replaced the spirals by corrugations. Using the
same ansatz (see formula (36)) one easily checks that addition of a primitive metric
is possible with the following estimates (see Proposition 2):

. . 1
C-error in the metric ~ lg — uje||0E,

increase of C'-norm of u ~ lg — uje||(])/2,
increase of C2-norm of u ~ llu|l> K

for any K > 1. Observe that the first two of these estimates is essentially the same as
in [20-22]. Furthermore, the third estimate is only valid modulo a loss of derivative
(see Remark 2).

The low codimension forces the steps to be performed serially. This is in contrast
with the method of Killen in [19], where the whole stage can be performed in one
step due to the high codimension. Thus the number of steps in a stage equals the
number of primitive metrics in the above decomposition which interact. This equals
n, for the local construction and (n + 1)n, for the global construction. To deal with
the loss of derivative problem we mollify the map u at the start of every stage, in
a similar manner as is done in a Nash—Moser iteration. Because of the quadratic
estimate (5) in Lemma 1 there will be no additional error coming from the molli-
fication. Therefore, iterating the estimates for one step over a single stage (that is,
over N, steps) leads to

. . 1
C-error in the metric ~ lg — uje||0E,

increase of C'-norm of u ~ lg — uje||(l)/2,
increase of C?-norm of u ~ [Ju|l K ™V*.

With these estimates, iterating over the stages leads to exponential convergence of
the metric error, leading to a controlled growth of the C!' norm and an exponential
growth of the C2 norm of the map. In particular, interpolating between these two

: Lo
norms leads to convergence in C for o < 17 -

4 h-Principle: Construction Step

The main step of our construction is given by the following proposition.
ProposEion 2 (Construction steg) Let 2 CR", veS" ! and N eN. Let u
CN*2(2; R and a € CNTY(RQ). Assume that y > 1 and £,8 < 1 are constants

such that

1
—I<ufe<yl in$2, (20)
Y
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llallo < é, (21)
lullesz + lalesr < 8¢ fork=0,1,....N. (22)

Then, for any
A= (23)

there exists v e CNH(2; R"YY such that
52
[vie — (uPe +a’v @v)|o < Cﬁ (24)
and
lu—v|; <C8/7" forj=0,1,....,N+1, (25)
where C is a constant depending only onn, N and y .

Remark 2 Observe that if (25) would hold for j = N + 2, then the conclusion of the
proposition would say essentially (with N = 0) that the equation

vue = uue +a2v X v

admits approximate solutions in C? with estimates

1
e — (e +a*v @ v)llo < cszf,
lu —vll2 < Cllull2K.

Here K = A¢ > 1. The fact that (25) holds only for j < N + 1 amounts to a loss of
derivative in the estimate.

In the higher codimension case we need an additional technical assumption in
order to carry on the same result. As usual the oscillation oscu of a vector-valued
map u is defined as sup, , [u(x) —u(y)l.

Proposition 3 (Step in higher codim) Let m,n, N € N with n,N > 1 and m >
n + 1. Then there exist a constant 1o > 0 with the following property. Let $2, g,
a, v and u € C**N(Q2,R™) satisfy the assumptions of Proposition 2 and assume
in addition osc Vu < no. Then there exists a map v € C'tN (2, R™) satisfying the
same conclusion as in Proposition 2.

4.1 Basic Building Block

In order to prove the Proposition we need the following lemma. The function I" will
be our corrugation.
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Lemma 2 There exists 8, > 0 and a function I' € C*([0, 8,] x R; ]R2) with
I',t+2m)=1I(5,t) and having the following properties:

0T (s.0) + 1> =1+57, (26)
050 Ty (s, )|+ [0f T'(s.1)| < Cks for k> 0. 27)

Proof Define H : R? — R? as H(z, 1) = (cos(z sint), sin(t sint)). Then
2 2 b4
Hy(t,t)dt = / sin(t sint) dt = / sin(t sint)dt =0 28)
0 0 -
by the symmetry of the sine function. Set
2

1 1 2
Jo(T) := o Hi(zr,t)dt = g/ cos(t sint) dt. 29)
0 0

Note that Jo € C*°(R) with Jo(0) = 1, Jj(0) =0 and J”(0) < 0. We claim that
there exists § > 0 and a function f € C°°(—4§, §) such that f(0) = 0 and

Jo(f(s)) =

1
. (30)
V1452
This is a consequence of the implicit function theorem. To see this, set

F(s,r) = Jo(r'/?) — (1 4+ s~/

Then F € C°°(R?). Indeed, since the Taylor expansion of cosx contains only even
powers of x, Jo(r!/?) is obviously analytic. Moreover,

1 2 r
JO(rl/z):_/ 1 — —sin’t ) dt + O(?).
21 Jo 2

In particular 9, F (0,0) = —1/4. Since also F (0, 0) = 0, the implicit function theo-
rem yields § > 0 and g € C°°(—34, §) such that g(0) =0 and

F(s,g(s))=0.
Next, observe that d; F (0, 0) = 0 and E)SzF (0,0) = 1. Therefore
2 0)=0 and g"(0)=4.
This implies that f(s) := g(s)l/ 2 is also a smooth function, with
fO=0 and f(0)=v2,

thus proving our claim.
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Having found f € C*° (-4, §) with f(0) = 0 and (30), we finally set

t
I (s,1) :=/ [VI4+52H(f(s).t") —ei]dr’. (31
0

By construction |0; I (s, t) + e1 |2 =1 + s2. Moreover

42w
/ [\/1 L S2H(f(s),1) —el] dr’
t
2
Y1+ s2/ H(f(s),1)di' —2mey
0

@) 5 e, [\/1 52J0(f(s)) — 1] @,

Thus the function I" is 2w -periodic in the second argument.

We now come to the estimates. Fix 8, < 8. Then I" € C([0, 8,] x R; R?), and
since it is periodic in the second variable, I" and all its partial derivatives are uni-
formly bounded. Straightforward computations show that for any k =0, 1, ...

I'(s,t+2m)—1I(s,t)

3kr©,n=0 and 8;05r(0,1)=0 forallz.
Hence, integrating in s, we conclude that
10F (5. 1)| < 511859 T [lo.
|050f Ty (s, )] < 5119707 T o,

which give the desired estimates. U

4.2 Proof of Proposition 2

Throughout the proof the letter C will denote a constant, whose value might change
from line to line, but otherwise depends only on n, N and y. Fix a choice of or-
thonormal coordinates in R”. In these coordinates the pullback metric can be writ-
ten as (ue);j = d;u - dju or, denoting the matrix differential of u by Vu = (d;u’);;,
as

ute =vulvu.

From now on we will work with this notation.
Let

E=Vu-(Vu'Vu)y™' v, C=0UADUN-Adyu. (32)

Because of (20) the vectorfields &, ¢ are well-defined and satisfy

<IE@LIEx)=C forx e 2 (33)

Q-
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with some C > 1. Now let

sl=&, Ez=|€|§W, W) =6 ()@ el +00) B e,
and
a=|¢a.
Then
VuTtp:iu@)el, q/Ttp:il,
55 HE
and

11 < Cllullj+1,
lallj < Cdlallj + llallollullj+1),
for j =0,1,..., N + 1. Finally, let
1 -
v(x):=ulx)+ XlI/(x)F(a(x), Ax - v),
where I' = I" (s, t) is the function constructed in Lemma 2.
Proof of (24) First we compute Vv Vv. We have

Vo=Vu+¥ -3, F @v+r~w.o,r@va+r~'ve.r.
——

A Eq E

Using the notation sym(A) = (A + A”)/2 one has

Vol vu=AT A+ 2sym(ATE| + AT Ey) + (E1 + E)T (E1 + E»).

Using (34) and (26):
T T 1 2
1
=VuTVu+@&2v®v=VuTVu+a2v®v.

Next we estimate the error terms. First of all

1 1
ATE, = X(WTW)(&YF ® V) + (v ® 0, M)W W), ® Va)

1 3
= W(asrl +8,T -3,V ® Va).

Note that (27) together with (35) implies:

11710 19: I"llo, 195 I llo < Cliallo-

95

(34)

(35)

(36)

(37

(38)

(39)

(40)
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Therefore
C 3 82
I sym(A”Enllo < —llallollalh < €.
and similarly
I sym(A" Ea)llo < < lallollull2 < C(S2 (4D
sym —llallollu —.
y Do =~ oliuliz = €57
Finally,
c . C 8
IE1+ Ezllo < —(lalli + llallollull2) = —(llally + dllull2) = C—. (42)
A A A
In particular || E1 + E2]lo < C§ and hence
T 82
I(E1 + E2) (E1+E2)||0§Cﬁ- (43)
Putting these estimates together we obtain (24) as required. 0
Proof of (25) In fact
I I <C31
u—v —
0="%
is obvious, whereas the estimates for j = 1,..., N will follow by interpolation,

provided the case j = N + 1 holds. Therefore, we now prove this case. A simple
application of the product rule and interpolation yields

C
o —ullnr = Uyl llo + 1 loll I llv+1)
C .
= Ululivs2lalio + I v +1)- (44)

Denoting by DJ any partial derivative in the variables xi, ..., x, of order j, the
chain rule can be written symbolically as

DY r=3" @8/ MY Cijo(Drd)" (D2)7 - (DY Hlayve,
i+j<N+1 o

where the inner sum is over all o with

o1+ Fony =1,

o1+20+---+(N+Doyy1+j=N+1.

These relations can be checked by counting the order of differentiation. Therefore,
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by using (21), (22) and (23)

||D)}cv+1r||0 <C Z ||8;8f1"||0)»j3ig*(1\/+1*j)
i+j<N+1

<c > 8i8;] Illos'AN+! < coaN+!, (45)
i+j<N+1

In particular, since ||I"|jo < 8, we deduce that || I" || y4+1 < CSAYT!. Therefore

C
v — w1 = —@lluln + 8Ny < csal. (46)

This concludes the proof of the proposition. U

4.3 Proof of Proposition 3

The proof of Proposition 2 would carry over to this case if we can choose an ap-
propriate normal vector field ¢ as at the beginning of the proof of Proposition 2,
enjoying the estimate (33) with a fixed constant.

To obtain ¢ (x) let T (x) be the tangent plane to u(R") at the point u(x), i.e. the
plane generated by {d;u, ..., d,u}. Denote by . the orthogonal projection of R™
onto 7 (x). Assuming that Vu has oscillation smaller than 7g, there exists a vector
w € §"! such that |, w| < 1/2 for every x € £2. Hence, we can define

(x) i =w—mew.

It is straightforward to see that this choice of ¢ gives a map enjoying the same
estimates as the ¢ used in the proof of Proposition 2.

5 h-Principle: Stage

Proposition 4 (Stage, local) Forall gg € symi there exists 0 < r < 1 such that the
following holds for any 2 C R" and gEC/3 (£2) with ||g — gollo < r. There exists a
8o > 0 such that, if K > 1 and u € Cz(.Q, R"‘H) satisfies

lufe — gllo < 8% < 53 and ||lul2 <,

then there exists v € C*(2, R"*1) with

1
[vie — gllo < C52<E + a”uﬂ), (47)

vl < Cuk™, (48)
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lu —vl = Cé. (49)
Here C is a constant depending only on n, gg, g and S2.

The Proposition above is the basic stage of the iteration scheme which will prove
Theorem 1. A similar proposition, to be used in the proof of Theorem 2 will be
stated later.

5.1 Decomposing a Metric into Primitive Metrics

Lemma 3 Ler gg € syml‘f. Then there exists r > 0, vectors vy, ..., vy, € S" ! and
linear maps Ly : sym, — R such that

My
g= ZLk(g)vk ®vx forevery g € sym,
k=1

and, moreover, Li(g) > r for every k and every g € sym} with |g — go| <r.

Proof Consider the set S :={(e; +¢;) ® (¢; +¢;),i < j}, where {e;} is the standard
basis of R". Since the span of S contains all matrices of the forme; ® ¢; +¢; ® ¢;,
clearly S generates sym,,. On the other hand S consists of n, matrices with n, =
dim(sym,,). So § is a basis for sym, . Let us relabel the vectors ¢; +e; (i < j) as
f1,..., fn,,and let

Ny

h:ka®fk~

k=1

Then h € sym; and hence there exists an invertible linear transformation L such
that LhLT = g¢. In particular, writing vy = Lfi/|Lfi| € S*~', we have

Ny Ny
g0=Y LA®Lfi=Y |Lfil*vk ®v.
k=1 k=1

Note that the set {vx ® v} is also a basis for sym,, and therefore there exist linear
maps Ly : sym, — R such that > Ly(A)vx ® v is the unique representation of
A € sym,, as linear combination of vy ® vi. In particular, L;(go) = |L fx|? > 0. The
existence of r > 0 satisfying the claim of the lemma follows easily. O
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5.2 Proof of Proposition 4

Choose r > 0 and y > 1 so that the statement of Lemma 3 holds with gg and 2r,
and so that

1
—I1<h<y foranyh esym/ with|h— go| <2r.
Y

Moreover, extend u and g to R” so that

lullc2rny < Cllull 2 (g lgllcsmny = Cligllcs(g)-

The procedure of such an extension is well known, with the constant C depending
on n, B and £2. In what follows, the various constants will be allowed to depend in
addition on r and y.

Step 1. Mollification = We set

and let

U=ux*qq, g=8g*w, (50)

where ¢ € C2°(B;(0)) is a symmetric nonnegative convolution kernel with f p=1.
Lemma 1 implies

lii —ully < Cllull2£ < C8, (51)
I8 —gllo < Cligligt?, (52)
lillk+2 < Cllulle™* < cse=* D, (53)
and
liie — glix < llii*e — (u¥e) x pell + | (ue) x pp — g * pellk
< COMul + cetute — gllo < €827, (54)
where k =0, 1, ..., n,. Moreover, since the set {h € symflr :|h — go| <r}isconvex,

g also satisfies ||g — gollo <.

Step 2. Rescaling  First of all, observe that

~ r

— 5 o _ 7t
h.—g—i-@(g—u e)

satisfies the condition |A(x) — go| < &Hé — ii%e|lo + r < 2r. Therefore, using
Lemma 3 we have

Co . O
(I+Crolodg —ife=——h=) avi @,
i=1
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where ad; (x) = (C‘Sr—zL,- (ﬁ(x)))l/z. In particular g; is smooth and

IL: (R) |l

~ . nl1/2
IL: (il

llllx < C8 < C8|lhlk

- | S .
=< C8<|Igllk+5—2llg—unellk) <cset

for k=0,1,2,...,n, (note that the first inequality is achieved through interpola-
tion). Let

1 1

YT ar et YT et

Then we have

Nx
g— u(ﬁ)e = Zaizvi R v;,
i=1

with
& —uoll < C8, (55)
lla:llo < Cs, (56)
luollksa + llai x4 < C8~* D, (57)
fork=0,1,...,n* Notice that the constants above depend also on k, but since we

will only use these estimates for k < n,, this dependence can be suppressed.
Finally, using (54) we have |lufe — gollo < r + C82, so that y~'I <ube < y1,
provided &y is sufficiently small.

Step 3. Iterating One-Dimensional Oscillations We now apply n, times suc-
cessively Proposition 2, with

—j i+1,—1 .

i =LK T )Lj:K/J'_Z s Nj=n,—j
for j =0, 1,..., ny. In other words we construct a sequence of immersions u ; such
that %I < ug.e <yl and

lujllerz < €8¢, 4D fork=0,1,....N;. (58)

To see that Proposition 2 is applicable, observe that A ; = K K;l . Therefore it suffices
to check inductively the validity of (58). This follows easily from (25). The constants
will depend on j, but this can again be suppressed because j < n.
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In this way we obtain the functions uy, uz, ..., u,, with estimates

lujlla < Cs8C'KY,
2 1
I, e — (Whe + a2, v @ vyl < C—— = C82—,
’ )‘jgj K
and moreover
lujrr —ujlly < C8. (59)
Observe also that ””56 — gollo < r + €82, so that, provided & is sufficiently small,
y < ui»e <yl forall j.

Thus v := u,, satisfies the estimates
IvFe - gllo < 82,
K
vl < CuK™,
lv—uoll = C4.

The estimates (47), (48) and (49) follow from the above combined with (51), (52)
and (55).

5.3 Stage for General Manifolds

Given M as in Theorem 2 we fix a finite atlas of M with charts £2; and a corre-
sponding partition of unity {¢;}, so that ) _¢; = 1 and ¢; € C2°(£2;). Furthermore,
on each £2; we fix a choice of coordinates.

Using the partition of unity we define the space C*(M). In particular, let

luellg ==Y llpielx-
i

Similarly, we define mollification on M via the partition of unity. In other words we
fix ¢ € C2°(B1(0)), and for a function u on M we define

wxgp =y (piu) * . (60)

It is not difficult to check that the estimates in Lemma 1 continue to hold on M with
these definitions.

Next, let g be a metric on M as in Theorem 2. Since M is compact and g is
continuous, there exists y > 0 such that

1
—I<g<yl inM. 61)
14
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Moreover, also by compactness, there exists rog > 0 such that Lemma 3 holds with
r = 2rq for any gg satisfying %I < go < yI. Therefore there exists pyp > 0 so that

U C £2; forsomei and oscy g <rp

whenever U C M with diamU < pg. (62)

Here oscy g is to be evaluated in the coordinates of the chart £2;.
In the following we will need coverings of M with the following property:

Definition 1 (Minimal cover of M) For p > 0 a finite open covering C of M is a
minimal cover of diameter p if:

1. the diameter of each U € C is less than p;
2. C can be subdivided into n 4+ 1 subfamilies F;, each consisting of pairwise dis-
joint sets.

The existence of such coverings is a well-known fact. For the convenience of the
reader we give a short proof at the end of this section.

We are now ready to state the iteration stage needed for the proof of Theorem 2.
Recall that no > 0 is the constant from Proposition 3.

Proposition 5 (Stage, global) Let (M", g) be a smooth, compact Riemannian man-
ifold with g € CP (M), and let C be a minimal cover of M of diameter p < po, where
po is as in (62). There exists 8 > 0 such that, if K > 1 and u € C*(M, R™) satisfies

lube — gllo < 8% < 83, (63)
lullz < u, (64)
oscy Vu <no/2 forallU eC, (65)

then there exists v € C2(M, R™) with

1
mﬂe—gnoscw2<if+sﬂ4ufﬂ>, (66)
vl < CpK D (67)
lu — vl < C8. (68)

The constants C depend only (M", g) and C.

5.4 Proof of Proposition 5

We proceed as in the proof of Proposition 4. Enumerate the covering as C =
{U;}jes, and for each j choose a matrix g; € sym;” such that

lg(x) —gjl<ro forxeUj.
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Furthermore, fix a partition of unity {v;} for C in the sense that ¢; € C2°(U;) and
Y ¥i=1onM.

Step 1. Mollification The mollification step is precisely as in Proposition 4. We
set

! =

)
o
and let

U=u*@e,  §=g*epu, (69)

where now the convolution is defined in (60) above. Then, as before,

llii —ully < C8, (70)
18— gllo < Cliglgl?, (71)

i lese < €8 KD, (72)
life — gl < C827F, (73)

fork=0,1,..., (n+ 1)ny. In particular, for any j € J and any x € U
- 8 g _3
[g(x) —gjl <ro+ CtF <rg+ C§, 5570

provided &g > O is sufficiently small.

Step 2. Rescaling We rescale the map analogously to Step 2 in Proposition 4.
Accordingly,

=g+ oo (§ — iie)
2C82
satisfies
() — gj1 < —>— 1 — iiello + 2ro<2r inU;.
1T =2cs? 27~ J

Therefore, using Lemma 3 for each g; and introducing

1

uog = ——lﬁ
(14 Cryls2)1/2

we obtain (as in Proposition 4)

"
~ ot 2 .
§ —uge= E ai’jvi,j®v,-,j inU;

i=1

for some functions a; ; € C*°(U}) satisfying the estimates

lai, jlcxsi ;) < cse~ %D for jeJandk=0,1,...,(n+ Dn,.
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In particular, using the partition of unity {/;} we obtain

Nx
§—Mg€=22(1ﬁjai,j)2vi,j Vi j, (74)
jed i=1
with
lu —uolly < C8, (75)
IVjai jllo < C8, (76)
ol + I1vrjai jllk1 < €3¢~ *HD (77)

fork=0,1,...,(n 4+ n,.

Step 3. Iterating One-Dimensional Oscillations We now argue as in the Step 3
of the proof of Proposition 4. However, there are two differences. First of all we
apply Proposition 3 in place of Proposition 2. This requires an additional control of
the oscillation of Vu in each U;. Second, the number of steps is (n + 1)n,. Indeed,
observe that (74) can be written as

n+1l ny

g-uge =3 0 > (jai ) vi; @i, (78)

o=1i=1 jel,

where the index set J is decomposed as J = J; U --- U J,41 so that U; € Fy if
and only if j € J,. The point is that the sum in j consists of functions with disjoint
supports, and hence for this sum Proposition 3 can be performed in parallel, in one
step. Thus, the number of steps to be performed serially is the number of summands
in ¢ and i, which is precisely (n + 1)n..

To deal with the restriction on the oscillation of u; in each step, observe that
oscy; Vu < no/2 by assumption, and clearly the same holds for uo. Also, at each
step we have the estimate ||ux4+1 — ur|l1 < Cé < Cép. Therefore, choosing §o > 0
sufficiently small (only depending on the constants and on 7), we ensure that the
condition remains satisfied inductively (n + 1)n, times.

Thus, proceeding as in the proof of Proposition 4 we apply Proposition 3 suc-
cessively with £ = LK% = K11 and Ny = (n + Dny — k. In this way we
obtain a final map v := u(,41),, such that

1
i ~ 2
vie — <Cé —,
I gllo = C8*
vl < CpK D
lv—uoll1 < Cé.

The above inequalities combined with (70), (71) and (75) imply the estimates (66),
(67) and (68). This concludes the proof.
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Fig. 1 The triangulation T
and the covering for a
2-dimensional manifold

5.5 Existence of Minimal Covers

We fix a triangulation 7" of M with simplices having diameter smaller than p /3. We
let Sp be the vertices of the triangulation, S7 be the edges, Si be the k-faces. Fy is
made by pairwise disjoint balls centered on the elements of Sy, with radius smaller
than p/2. We let My be the union of these balls. Next, for any element o € S;, we
consider 6’ = o \ My. The o’ are therefore pairwise disjoint compact sets and we
let F be a collection of pairwise disjoint neighborhoods of ¢’, each with diameter
less than p. We define M to be the union of the elements of ] and Fy. We proceed
inductively. At the step k, for every k-dim. face F € S; we define F/ = F \ A;_;.
Clearly, the F' are pairwise disjoint compact sets and hence we can find pairwise
disjoint neighborhoods of the F’ with diameter smaller than p. Figure 1 shows the
elements of F; for a 2-d triangulation.

Clearly, the collection Fo U --- U F, covers any simplex of 7', and hence is a
covering of M.

6 h-Principle: Iteration

6.1 Proof of Theorem 1

Let g, 6o > 0 be such that
lufe — gllo < 85,
llullz < wo.

Let also K > 1. Later on we are going to adjust the parameters po and K in order
to achieve the required convergence in C:%. Applying Proposition 4 successively,
we obtain a sequence of maps uy € C%($2, R"+1) such that
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ft 2
luze —gllo < 8,
luill2 < g,

lugs1 — uglly < Céyg,

where

1

2 2 -2 -

8H1=C%<?4wf Wﬁ) (79)
M1 = CuiK"™. (80)

Substituting K with max{C I/n« K 'K} we can absorb the constant in (80) to achieve

Wi+1 = i K™, at the price of getting a possibly worse constant in (79). In particular
wr = o K*™ . Next, we show by induction that for any

‘< min{— pn. } (81)

2’28
there exists a suitable initial choice of K and g so that
8k < 8ok k.
The case k = 0 is obvious. Assuming the inequality to hold for k, we have
8]%+1 < CS%K—Zak—l + Caguaﬁ[(—ﬂk(a-ﬁ—n*).
Therefore 8,1 < 80K ~**+D provided
2C < K]72a and 2C < /LgSS_ﬁ Kk[ﬂ(a+n*)72a]72a.

By choosing first K and then uo > ||u|; sufficiently large, these two inequalities
can be satisfied for any given a in the range prescribed in (81). This proves our
claim.

Next we show that for any

. I B
o <miny ——, — (82)
14+2n, 2

the parameters pop and K can be chosen so that the sequence u; converges in
CLo(2; R™1). To this end observe that to any « satisfying (82) there exists an
a satisfying (81) such that

a
o<

a—+ny

Then, choosing o and K sufficiently large as above, we obtain a sequence u; such
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that

kst —urlly < CSoK ~%,

k+1)n,

k1 — ukllo < pisr + pi < 2p0K *FD,

Therefore, by interpolation
1—
Nkt — uill,e < Nugpr — wrlly”* Nugr — uglly
< éK—[(l—Ol)a—Oln*]k. (83)

Thus the sequence converges in C'* to some limit map v € C1%(2; R"*!). Since
8r — 0, the limit satisfies vfe = g in £2.
Finally, choosing K so large that K~ < 1/2, we have

lv—ulli < C8 ) K~ <2Cs.
k

6.2 Proof of Theorem 2

Recall from Sect. 5.3 that for the whole construction we work with a fixed atlas {£2;}
of the manifold M, and that to the given metric g € C B(M) there exist constants
y > 1 and pg > 0 such that (61) and (62) hold.

Since u € C 2(M ; R™) and there are a finite number of charts £2;, there exists
p < po such that

oscy Vu < no/4 whenever U C M with diamU < p.
Fix a minimal cover C of M with diameter p and let wg, 89 > 0 be such that
lu*e — gllo < &5,
lullz < wo.

The iteration now proceeds with respect to this fixed cover, parallel to the proof
of Theorem 1. More precisely, arguing as in Theorem 1, Proposition 5 yields a
sequence uy € C2(M; R™) with

# 2
||uk€ —gllo <6,
luglla < poK*+Dms
g1 —uklly < Céy,

where

1 _
87y, = c5,3<? +of 21(*”“”“’”*). (84)
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The proof that o and K can be chosen so that u; converges in C for
. 1 B
o <ming ————, = (85)
1+2(n+ Dn, 2
follows entirely analogously. Recall that this argument yields in particular

S < 80K .

The only difference is that the estimates (63) and (65) need to be fulfilled at each
stage. To this end note that 6 < §¢, so that (63) will hold at stage k if it holds at the
initial stage. Moreover,

k-1
oscy Vuy <oscy Vu +ZZ||uj+1 —ujl1 < % +2C802K*“" < % +4Céy,
Jj=0 J

so that (65) is fulfilled by u; provided & is sufficiently small (depending only on
the various constants).

6.3 Proof of Corollaries 1 and 2

The corollaries are a direct consequence of the Nash—Kuiper theorem combined
with Theorems 1 and 2 respectively. For simplicity, we allow M to be either £2 for
a smooth bounded open set £2 C R” or a compact Riemannian manifold of dimen-
sion n, and assume that g € C#(M) is satisfying either the assumptions of Theo-
rem 1 or those of Theorem 2. We then set g = min{(2n, + n-1 B/2} in the first
case, and ag = min{(2(n + Dny + )7L, B/2} in the second.

Let u € C'(M;R™) be a short map and ¢ > 0. We may assume without loss
of generality that ¢ < §g. Using the Nash—Kuiper theorem together with a standard
regularization, there exists ug € C%(M; R™) such that

lu —uollh <e/2,

2
g, < (&
lluge — gllo < <2C) :

where C is the constant in Theorems 1 and 2 respectively. Then the theorem, applied
to ug, yields an isometric immersion v € C1*(M; R™) for any a < «, such that
lv—ugll1 <e&/2,sothat |[v—ul|; <e. This proves the corollaries.

We now come to Remark 1. This follows immediately from the fact that the
Nash—Kuiper theorem also works for embeddings, and that the set of embeddings of
a compact manifold is an open set in C 1 (M; R™). Indeed, if u is an embedding, the
Nash—Kuiper theorem gives the existence of an embedding u¢ with the estimates
above. Ensuring in addition that ¢ is so small that any map v € C'(M; R"™) with
lv —ull; < e is an embedding, we reach the required conclusion.



h-Principle and Rigidity for C!'* Isometric Embeddings 109
7 Rigidity: Proof of Theorem 3

7.1 Curvature and Brouwer Degree

Let (M, g) be as in Theorem 3. As usual, we denote by d A the area element in M
and by « the Gauss curvature of (M, g). Consider next a C? isometric embedding
v: M — R3. The unit normal N (p) to v(M) is the unique vector of RR? such that,
given a positively oriented basis ey, e for T),(M), the triple (dvp(er),dvp(e2),
N(p)) is an orthonormal positively oriented frame of R3.

As it is well known, if do denotes the area element in S2, then N¥do = k dA.
Therefore, for every open set V € M and for every f € C!(S?), the usual change of
variable formula yields

/Vf(N(X))K(X)dA(X) = /sz f(y)deg(y, V, N)do(y), (86)

where deg(y, V, N) denot