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Preface

In the first two editions of the book ‘“Probability,” which appeared in 1980 and
1989 (see [118]), and were translated into English in 1984 and 1990 (see [119]), all
chapters were supplemented with a fairly comprehensive and diverse set of relevant
exercises. The next two (considerably revised and expanded) editions appeared in
2004 and 2007 (see [121]) in two volumes entitled “Probability 17 and “Probability
2.” While the work on the third edition was still in progress, it was determined
that it would be more appropriate to publish a separate book that includes all “old”
exercises, i.e., exercises included in the previous two editions, and many “new”
exercises, i.e., exercises, which, for one reason or another, were not included in
any of the previous editions (the main reason for that was the constrain on the size
of the volume that could go to print). This is how the present volume “Problems
in Probability” came to life. On the most part, this book includes problems and
exercises that I have created, collected and compiled over the course of many years,
while working on topics and subjects that interested me the most. These problems
derive from a rather diverse set of sources: textbooks, lecture notes, exercise
manuals, monographs, research papers, private communications and such. Some
of the problems came out of discussions that took place during special seminars for
graduate and undergraduate students in which I was involved.

It is impossible to cite here with complete accuracy all of the original sources
from which the problems and the exercises are derived. The bibliography included
at the end of the book and the citations throughout the main text are simply the result
of my best effort to give credit where credit is due.

I would like to draw the reader’s attention to the appendix included at the end of
the book. I strongly recommend that anyone using this book becomes familiar—
at least in passing—with the material included in the Appendix. There are two
reasons for this recommendation. First, the appendix contains a summary of the
main results, notation and terminology from probability theory, that are used not
only throughout this book, but also throughout the books “Probability.” Second,
the appendix contains additional material from combinatorics, potential theory and
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Markov chains, which is not covered in these books, but is nevertheless needed for
many of the exercises included here.

The following referencing conventions are adopted throughout the book:

(a) All references to the books “Probability” (see [121]) start with the token P .
For example, “[ P §1.1, 3]” points to Part 3 of Sect. 1 in Chap. 1 in [121], “[ P §2.6,
(6)]” and “[P §2.6, Theorem 6]” point, respectively, to (6) and Theorem 6 from
Sect. 6 in Chap.2 in [121]—and so on.

(b) Problems included in this book are referenced, for example, as “Prob-
lem 1.4.9,” which points to Problem 1.4.9 from Sect. 1.4 in Chap. 1 below.

The reader must be forewarned that the problems and the exercises collected in
the present volume differ from each other in nature:

(a) Some problems are simply meant to test the reader’s understanding of the
basic concepts and facts from the books “Probability.” For example, the exercises
from Sects. 1.1 and 1.2 in Chap. 1 relate to the various combinatorial methods for
counting the favorable outcomes of an event and illustrate the important notions of
partial factorial (N),, combinations Cy, and Cy ., , Catalan numbers C,, Stirling
numbers of the first and second kind s% and S}, Bell numbers By, Fibonachi
numbers F),, etc.

(b) Other problems are of a medium-to-high degree of difficulty and require
more creative thinking. A good example is Problem 7.4.3, which is asking for a
unified proof of Lebesgue’s dominated convergence theorem and Levy’s theorem of
convergence of conditional expectations.

(c) Some of the problems are meant to develop additional theoretical concepts
and tools that supplement the material covered in the books “Probability,” or simply
to familiarize the reader with various facts that, typically, are not covered in the
mainstream texts in probability theory, but are nevertheless “good to know”—or at
least good to know that such results exist and be aware of the respective sources.
One such example is M. Suslin’s result (see Problem 2.2.27 below), which states
that the projection of a Borel set in the plane onto one of the coordinate axes may
not be a Borel set inside the real line, or the result describing the set-operations
that allow one to produce the smallest algebra or o-algebra that contains a given
collection of sets—see Problems 2.2.25,2.2.26 and 2.2.32. One must realize that, in
fact, many problems of this type represent fairly difficult theorems. The formulation
of such theorems in the form of exercises has the goal of inviting the reader to think
and to ask questions like: how does one construct a o-algebra anyway? The answer
to this and similar questions is of paramount importance in the study of models and
phenomena that pertain to what one may call “non-elementary probability theory.”

(d) Some of the problems are related to the passage from random walks to Brow-
nian motions and Brownian bridges—see Sect. 3.4, for example. The statements in
these problems are intimately related to what is known as the “invariance principle”
and may be viewed as some sort of a prelude by way of problems and exercises to
the general theory of stochastic processes in continuous time and, in particular, to
the functional limit theorems.
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Many (but not all, by far) of the problems included in this book contain hints and
other relevant comments. I very much hope that these hints and comments will be
helpful not only for deriving the solution, but also for learning how to think about
the related concepts and problems.

Over nearly 50 years several of my colleagues at MSU have published exercise
manuals in probability theory that have been in continuous use in courses offered at
MSU, as well as in other institutions of higher education. I would like to mention
them:

1963 — L. D. Meshalkin. Exercise Manual in Probability Theory. Moscow
University Press, Moscow;

1980 — B. A. Sevastyanov, V. P. Chistyakov, A. M. Zubkov. Exercise Manual in
Probability Theory. Nauka, Moscow;

1986 — A. V. Prohorov, V. G. Ushakov, N. G. Ushakov. Exercises in Probability
Theory: Basic Notions, Limit Theorems, Random Processes. Nauka, Moscow;
1989 — A. M. Zubkov, B. A. Sevastyanov, V. P. Chistyakov. Exercise Manual in
Probability Theory, a-ed.. Nauka, Moscow;

1990 — M. V. Kozlov. Elements of Probability Theory Through Examples and
Exercises. Moscow University Press, Moscow.

Since this last book was published nearly 15 years ago, the curriculum in most
graduate-level courses in probability theory has changed considerably. Some new
directions have emerged, new areas of research were developed, and new problems
were formulated. An earnest effort was made to adequately reflect these changes in
the books “Probability” and, naturally, in the present volume, which first appeared
in 2006. At the same time, the traditional coverage of all classical domains of
probability theory was kept intact. At the end more than 1,500 problems (counting
the various parts of problems) found their way into the present volume.

As was the case with the books “Probability,” the final edit, arrangement and
proof-reading of the text was done by Tatyana Borisovna Tolozova, to whom I am
deeply indebted.
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Finally, I would like to express my gratitude to Andrew Lyasoff not only for
translating the present volume into English, but also for making a number of
corrections in the original and for enriching the text with many comments and
clarifications.

Moscow Albert N. Shiryaev
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Chapter 1
Elementary Probability Theory

1.1 Probabilistic Models for Experiments with Finitely
Many Outcomes

Problem 1.1.1. Verify the following relations involving the operations N (intersec-
tion) and U (union):

AUB =BUA, AN B = B N A (commutativity),
AUBUC)=(AUB)UC,AN(BNC)= (AN B)N C (associativity),
AN(BUC) = (ANB)U(ANC), AU(BNC) = (AUB)N(AUC) (distributivity),
AUA = A, AN A = A (idempotent property of N and U).

Then prove that
AUB=ANB and ANB=AUB,

where = stands for the operation “complement of a set.”

Problem 1.1.2. (Various interpretations of the partial factorial (N),=N(N — 1)
...(N —n + 1), i.e., the number of permutations N take n—see Sect. A.1.) Prove
that:

(a) The number of all ordered samples (. ..) without replacement (equivalently,
samples without repetition) of size n drawn from any finite set A of size |A| = N,
1 <n < N,equals (N),.

(b) The number of all words of length n composed from different letters selected
from an alphabet that consists of N letters, 1| <n < N, equals (N),.

(c) Given a finite set X of size |X| = n and a finite set ¥ of size |Y| = N,
n < N, the number of all functions f: X + Y such thatif xi, x, € X and x; # x;
then f(x1) # f(x2) (i.e., the number of all injections from X to Y') equals (N),.

Problem 1.1.3. (Various interpretations of the binomial coefficients Cy =

ﬁ—see Sect. A.1.) Prove that:

A.N. Shiryaev, Problems in Probability, Problem Books in Mathematics, 1
DOI 10.1007/978-1-4614-3688-1_1,
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2 1 Elementary Probability Theory

(a) The number of all unordered samples [. . .] without replacement (equivalently,
samples without repetition) of size n, drawn from any finite set A of size |A| = N,
1 <n=<N,equalsCy .

(b) The number of all ordered finite 0-1-sequences (. . .) of length N that contain
exactly n 1’s and exactly (N —n) 0’s,1 <n < N, equals Cy, .

(c) The number of all possible placements of n indistinguishable particles into N
distinguishable cells, 1| < n < N, in such a way that each cell can contain at most
one particle (the so called “placement with locks”), equals Cy; .

(d) The number of all possible nondecreasing paths on the two-dimensional
lattice Zﬁ_ ={(i,j):i,j =0,1,2,...}, that start from the point (0, 0) and end at
the point (n, N —n),0 <n < N, equals C}, (a path on the two-dimensional lattice
is said to be nondecreasing if at each step the path moves either up by +1 or to the
right by +1—notice that Cz(\)/ =1).

(e) The number of all different subsets D of size | D| = n that are contained in
some finite set 4 of size |A| = N,n < N, equals C}} .

Hint. Assuming that (a) has already been established, then one can establish
(b), (¢), (d) and (e) by proving the equivalence relations (a) <= (b), (@) <
(c),...—exactly as this is done in [ P §1.1, Example 6].

Problem 1.1.4. Similarly to Part (d) in the previous problem, consider the class
of all nondecreasing paths on the lattice Zi_ = {(i,j):i,j =0,1,2,...}, that
start from the point (0, 0) and end at the point (n, ), while never moving above the
diagonal, i.e. all paths that go from (0, 0) to (n,n) and remain in the set {(i, j) €
Zi_, 0 < j <i < n}. Prove that the number of paths in this class is given by the
(n + 1) Catalan number C, 11, the n™ Catalan number, n > 1, being defined as

1
C,=-Ccr-t .
n n 2(n—1)

Note: Sometimes the Catalan numbers are defined as ¢, = nl? Cy, (=Cuy1),
n > 0 (see, for example, [6]).
Prove that Cy, ..., Cy equal, respectively, 1, 1, 2, 5, 14,42, 132, 429, 1430.

Problem 1.1.5. The Catalan numbers C,, n > 1, show up in many combinatorial
problems. Consider, for example, the number of binary bracketings of n letters—
this is the number of all possible ways in which one can compute the sum of n
numbers that are arranged in a row by adding only 2 neighboring numbers at the
time. For instance, one can compute the sum a + b + ¢ either as ((a + b) + ¢) or
as (@ + (b + c)). Thus, the number of binary bracketings of three letters equals 2. It
is not hard to see that there is a total of 5 binary bracketings of 4 letters:

a+b+c+d=a+b)+(c+d)
=(((a+b)+¢)+d)
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=@+ OB+0)+d)
=@+ ({(b+c)+4d))
=@+ b+ (c+d))).

(a) Prove that for any integer n > 3, the number of all binary bracketings of n
letters is given by the Catalan number C,,.

(b) Consider Euler’s polygon divison problem: In how many different ways can a
plane convex polygon of n sides, n > 4, be divided into triangles by non-intersecting
diagonals? Prove that the answer to Euler’s polygon divison problem is given by the
Catalan number C,,_;.

Hint. If a convex n-gone is divided into (non-intersecting) triangles whose
vertices are also vertices of the n-gone, then there would be exactly (n — 2)
triangles and any such division corresponds to the choice of (7 —3) non-intersecting
diagonals.

(c) Consider the numbers C,*, n > 0, defined recursively by the relations:

C;=0, Cf=1 and C* Zc

i=l1

v, forn>1. (%)

Prove that, for any n > 1, the number C;* coincides with the n™ Catalan number
C,; in other words, prove that the Catalan numbers can be defined equivalently by
way of the recursive relation ().

(d) Prove that the generating function F*(x) = ) _, C x", associated with
the sequence (C*),> and defined by the recursive relation (x) above, satisfies the
following relation:

F*(x) = x + (F*(x))~

(e) By taking into account that F*(0) = 0, prove that

iy ) !
Fro) =31-01-40").  |x <.

and conclude that, just as one would expect, the coefficients C,* in the expansion of
the function F*(x) coincide with the Catalan numbers C,;:

Cy

n

__‘C 2( 4)n_ 2(n 1) =Cy.

(For the definition of the quantity C 1”/2 see Problem 1.2.22.)

Problem 1.1.6. (Various interpretations of the binomial coefficients Cy ., _;.)
Prove that:

(a) The number of all unordered samples with replacement [. ..] of size n drawn
from any finite set A of size |A| = N equals Cy,_, .
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(b) The number of all ordered lists (ny,--- ,ny), N > 1, whose entries n;, i =
1,..., N, are non-negative integer numbers that satisfy the relationn; +---+ny =
n, for some fixed n > 1, equals C1’\1/+n—l .

(c) The number of all possible placements of n > 1 indistinguishable particles
into N > 1 distinguishable cells without a restriction on the number of particles in
each cell (the so-called “placement without locks”), equals Cy, ;.

Hint. Follow the hint to Problem 1.1.3.

Problem 1.1.7. (Continuation of Part (b) in the previous problem.) Given some
fixed integers, N > 1 and n > 1, consider the collection of all unordered
solutions [n1,...,ny] to the equation n; + --- + ny = n, in terms of some non-
negative integers n; > 0,7 = 1,..., N. What is the total number of solutions in
this collection? What is the total number of all—still unordered—strictly positive
solutions n; > 0,7 = 1,..., N? What is the total number of all ordered solutions
(ny,...,ny) to the same equation, | + --- + ny = n, in terms of positive integers
n>0,i=1,...,N?

Problem 1.1.8. (Continuation of Part (b) in Problem 1.1.6 and Problem 1.1.7.)
Given some fixed integers,n > 1 and N > 1, consider the inequalityn;+---+ny <

n. Count the total number of all ordered solutions (71, . .., ny) and the total number
of all unordered solutions [y, ...,ny] to this inequality, in terms of non-negative
or strictly positive integers n;, i = 1,..., N.

Problem 1.1.9. Prove that:
(a) The maximal number of disjoint regions in the plane R?, determined by n
different lines that are placed arbitrarily in the plane R?, equals

n(n+1)
+ R

1

(b) The maximal number of disjoint regions in the space R?, determined by n
different planes that are placed arbitrarily in the space R?, equals

1
6(113 +5n +6).

Problem 1.1.10. Suppose that A and B are any two subsets of the set £2. Prove that
the algebra, a(A4, B), generated by these two sets—i.e., following the terminology
introduced in [P §1.1, 3], the algebra generated by the system <% = {A, B}—
consists of the following N(2) = 16 subsets of §2:

{A,B, A, B, ANB, ANB, A\ B, B\ A,
AUB, AUB, AUB, AUB, AAB, AAB, 2, @},
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where AA B = (A\ B) U (B \ A) is the so called “symmetric difference” of the
sets A and B (see [P §2.1, Table 1]).

Find those partitions & (see [P §1.1, 3]) of the set §2, for which the algebra
a(2), i.e., the algebra generated by &, coincides with «(A4, B).

Finally, prove that the algebra a(4y, ..., A,), generated by the system o) =
{Ay,..., A}, where A; € 2,i = 1,...,n, consists of N(n) = 2% different
subsets of £2, so that N(2) = 16, N(3) = 256, and so on.

Problem 1.1.11. Prove Boole’s inequalities

(a) P(OA,) < zn:P(Af), P(ﬁAi) = I—ZHIP@‘)'

i=1 i=1 i=1 i=1

Prove that for any integer n > 1 the following inequality is in force

(b) P(ﬂ Ai) > 3 P~ (1 1).
i=1

i=1

Prove the Kounias inequality

(©) P(O Ai) 5mkin{ Xn:P(Ai)—ZP(Ai ﬂAk)} )
i=1

i=1 ik

Prove the Chung-Erdos inequality

@ P(Lm_JAi)S (£ Pe)

b Y= PAinA))”

Hint. With n = 3 Part (b) comes down to the inequality P(4, N 4, N
As) > P(Ay) + P(A4;) + P(A43) — 2, which can be established with elementary
considerations. The general case can then be handled by using induction with
respect to n. To prove (c), it is enough to establish that the following inequality

holds: ., .,
P(U A,») <Y PUN— Y PN A,
i=1

i=1 2<i<n
This inequality, too, can be established by induction.

Problem 1.1.12. Prove the “inclusion—exclusion formulas” (also known as
Poincaré’s formulas, Poincaré’s theorems, Poincaré’s identities) for the probability
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of a union of events and the probability of an intersection of events; namely, prove
that, for any n > 1 and for any choice of the events A4, ..., 4,, one has:

@ PAU...U4)=> (D" " P, N...N4,)

m=1 1<ii<...<ip<n
= > PUA)— Y PU,NA)+ > P4, NA,NA)
1<i;<n 1<ij<iz<n 1<iy<iy<iz<n

+. .+ (=D"MPUAIN...NA)

and

(b) P(Am...mA,,)=Z(—1)m+1 Z P4, U...UA4,,)

m=1 1<i)<...<ip<n
= > PUA)- Y PA,UA)+ Y P4, UA,UA)
1<ii<n 1<iy<iz<n 1<iy<ip<iz<n

+... 4+ =D"TPA UL U Ay,

Note 1. The formula in Part (a) is often written in the form

P(UA,-) =8 =8 +...+(=D)""Ls,,

i=1

where
Sw= Y PA,N...N4,).

1<i|<..<ip<n

while the formula in Part (b) is often written in the form

P(ﬂAi) =85 —=S+...+=1)"1S,,

i=1

where ~
S, = Z P(4;,U...UA4;).

1<ii<..<ip<n

Note 2. Although the inclusion—exclusion formulas are considered here in the
context of [ P Chap. 1], which deals only with finite probability spaces (§2, <7, P),
it is important to recognize that, in fact, these formulas are valid on any (finite or
infinite, countable or uncountable) probability space (§2,.%, P), regardless of its
nature (see [ P Chap. 2]).
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Nevertheless, in order to use the inclusion—exclusion formulas in concrete
situations, one must be able to compute somehow the quantities S,,, or, which
amounts to the same, the probabilities P(A4;, N...NA;, ). Usually, such computations
take into account the concrete probabilistic structure of the model encoded in
the space (§2, .o/, P)—the models associated with the Bose—Einstein statistics and
Fermi—Dirac statistics illustrate this point rather well.

Hint. The formula in Part (a) can be established by induction with respect to the
number of events n, after showing first that for n = 2 one has

P(A; U Ay) = (P(A)) + P(42)) — P(4; N Ay).

(See also Problem 1.4.9).
To prove the formula in Part (b), notice first that

(1) =#(07) -1+

and then apply the formula from Part (a) to the events Ay, ..., A,, instead of the
events Ay,..., A,.

Oz,-).

i=1

Note 3. Anticipating the use of the inclusion—exclusion formulas later in
this book, notice that P(ﬂ" Zi) is the probability that neither of the events

i=1
Ay, ..., A, occurs.

Problem 1.1.13. Let B,, denote the event that exactly m of the events Ay,..., A,
occur, the integers n > m > 0 being fixed. Assuming that the quantities Sy, ..., S,
are defined as in Problem 1.1.12, prove that

n

P(Bn) = ) (=D)*"Cp" Sk

k=m
which can be written also as
P(B,) =S, — CVL+1 Sp+1+ ...+ (_l)n—mc:—m S, .

and conclude that the probability P(Bs,,) of the event Bs,, that at least m of the
events Ay, ..., A, occur, is given by

P(Bzw) = P(Bn) + ...+ P(B)) = Y _ (=DF"C3! Sk,

k=m

which can be written also as

P(Bzn) = Sp = Cpy Syt + .+ (=1 "CI S,



8 1 Elementary Probability Theory

Hint. The formula for P(B,,) is known as Waring’s formula and can be proved
by using the method of “inclusion—exclusion,” just as in Problem 1.1.12. Such a
proof can be found, for example, in W. Feller’s book [39, vol. 1, Chap. IV, §3].
However, readers familiar with the notions of random variables and expected values
(see [P §1.4] and [P §2.6, 4]) may follow these steps:

Givenany i = 1,...,n, let X; = I, denote the indicator of the event 4; and
consider the sum

doXi X, (=X (=X, (%)

where the summation is taken over all C)” possible choices of the (unordered) list
[i1,..., 0] fromthe list [1,...,n] and

Utseoos Jn—ml = [L.coon] \ i1, ..., im].

When evaluated at a particular outcome w, the sum in (x) is equal to 1 precisely
when o belongs to exactly m of the events Ay,..., A, and is equal to O in all
other cases. Consequently, the quantity P(B,,) is nothing but the expected value
of the sum (x). The remaining steps are similar to those described in the hint to
Problem 1.4.9. (See also Problem 2.6.31.)

Problem 1.1.14. By using the formulas for P(B,,) and P(Bs,) obtained in
Problem 1.1.13, derive Bonferroni formulas: for any even integer number r > 2
one has

r+1 r
Sw 4 Y (=DFCE i Sk SP(Bw) < Sw+ D (=1 CE xSt
k=1 k=1
r+1 r
S+ Y (=D Cpihey Sk <P(Bzp) < Sp+ D) (=1 Chpiy Stk
k=1 k=1
where the quantities Sy, . .., S, are defined as in Problem 1.1.12.

Hint. One possibility is to prove first the following (also very useful) identities:

S0 =3 CIPBY. Su= 3 P

r=m

Problem 1.1.15. By using the definition of the quantities Si,...,S, given in
Problem 1.1.12, derive:

(a) Bonferroni inequalities (this is a special case of the formulas obtains in the
previous problem): for any integer k > 1 with the property 2k < n, one has
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Sl—S2+...—S2k§P<UAi) <SI =S4+ Sy

i=1

(b) Fréchet inequality: for any integer 0 < r < n — 1 one has

(c) Gumbel inequality: for any integer | < r < n — 1 one has

Cit' =S _Cp =S,

n

r — r—1
Cn—l Cn—l

Problem 1.1.16. (“The matching problem.”) Given some fixed integer n > 1,
consider the set of all possible permutations of the list (1, ..., n), suppose that one
permuatation is chosen at random from that set and denote this randomly chosen
permutation by (iy,...,i,). Assuming that all permutations are equally likely to
occur, i.e., each permutation is chosen with probability 1/n!, prove that:

(a) The probability P, that exactly m of the numbers 1,...,n, 1 < m < n,
appear in the permutation (ij,...,i,) in their own positions (i.e., in the same
positions in which they appear in the list (1, ..., n)) is given by

LY R B Ly 1 e”!
— -4+ === +... — P XN —, n—>00|.
m! 2t 3 (n —m)! m

(b) The probability P> that at least one of the numbers 1, ..., n appears in the
permutation (i, .. ., i,) in its own position is given by

1——+——...+(—1)”_1’% (1—-e', n— o0),
and, consequently, the probability for a complete “disorder” (i.e., a situation where
none of the numbers 1,...,n appears in its own position in the list (iy,...,i,)) is
givenby 1 — Py = 3 (_]—1,)/ ~ e~ whenn — 00).

Hint. Forany 1 <i < n let A; denote the event that the number i is located in
the i position of the list (i1,...,i,). The probability P,y is then the same as the
probability P(B,,) in the previous problem, so that

Piny = S —Cpsi St + oo+ (=1)""CIT S,

Showing that in the present setting one has Sy = 1/k! forany m < k < n would
complete the proof.
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In order to establish the formula for P(>1), it is enough to notice that, using again
the results from the previous problem, one has

Poiy =P(Bz1) = $1 = S1+ 83— ...+ (-1)""'S,,

(n—k)!

where, in this case, Sy = —

Problem 1.1.17. (“The absent-minded secretary problem.”) There are n different
letters and n envelopes addressed to the respective recipients of the letters. The
secretary who prepares the letters is absent-minded and stuffs the letters into the
envelopes at random. Assume the “classical,” i.e., equal-likelihood-of-outcomes,
definition of the probabilities involved (see [P §1.1, 5]), and let P, denote the
probability that exactly m of the letters will reach their (correct) recipients.

Prove that
n—m
(— 1)’
Py = ( y CU)
j=0

Hint. 1. First, one must clarify the assumption that “the secretary stuffs the letters
into the envelopes at random.” If we are to assume that the secretary chooses at
random one of the n envelopes and stuffs the first letter into that envelope, then
chooses at random one envelope from the remaining n — 1 envelopes and stuffs
the second letter into that envelope, and so on, then the entire procedure would
be tantamount to taking an ordered sample of size n without repetion from the
set of symbols (ay, ..., a,) that represent the different envelopes and then making
the assumption that any such sample is equally likely to occur, according to the
principles described in [P §1.1, 5]. This means that we have an experiment with
(n), = n! possible outcomes, every one of which occurs with probability 1/n!.

2. Denote by A; the event that the i-th letter is placed in its own envelope. Then
Pny = P(By,) (see Problem 1.1.13) and, consequently,

Py = ) (=DF7"CP" Sk

After noticing that in this setting Sy = 1/k!, 1 < k < n, one obtains the desired
formula for P,,. Notice that the probability P o) that none of the letters reaches
its recipient equals Y ;_, (—1)* ., which is close to 1 — e~ even for relatively
small values for n—for example, with n = 5 this sum equals 0.633333, while
1—e !~ 0.632121.

Problem 1.1.18. There are n children in a given kindergarten. When leaving the
kindergarten each child chooses at random one left and one right shoe. Prove that:

(a) The probability P, that none of the children will bring home his or her own
pair of shoes is given by
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n
. ¢ (n—=k)!
Fa=2.D) kint
k=1
(b) The probability P, that none of the children will bring home at least one of
his or her own shoes is given by

n 1 2
P, = (Z(—ng) :
k=2

Hint. First, one must give meaning to the phrase “each of the n children chooses
at random one left and one right shoe”—this can be done by following the principle
outlined in the hint to Problem 1.1.17.

(a) Let A; denote the event that the i™ child takes both his or her left and right
shoes. According to the inclusion—exclusion formula, we have

pazp(ﬁzi) =1—P(LnJAi) = 1=8i+ 8-+ (1)'S,,

i=1 i=1

(N—k)!
Kial

and one must show that in this case S =
for P,.

(b) In order to established the formula for P, it is enough to notice that Py is
simply the product of the probability that none of the children brings home his or
her left shoe and the probability none of the children brings home his or her right
shoe, after which the statement in (b) follows with a straight-forward application of
the result established in Problem 1.1.17.

which gives the desired formula

Problem 1.1.19. There are n particles that are distributed in M boxes according
to the Maxwell-Boltzmann statistics (placement without locks of distinguishable
particles in distinguishable cells). By following the classical method of Laplace for
counting probabilities (see [ P §1.1, (10)]), which encodes, so to speak, “the random
nature” of the placement of the particles, prove that the probability, Py (n; M), that
exactly k particles appear in any fixed cell is given by

(M _ l)n—k
Conclude from the above formula that when n — oo and M — oo in such a way

thatn/M — A > 0, then
/\k
P(n; M) — e h

(Comp. with the Poisson distribution—see [P §1.6] and [P §2.3, Table 2].)
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Problem 1.1.20. (Continuation of Problem 1.1.19.) Let R,,(n; M) stand for the
probability that exactly m cells remain empty. Prove that

M=m m+ k\"
R,(n;M)=C" —1"c"_m(1——),
(M) =Ciy ) (=D'Cy i

and conclude that if » — oo and M — o0 in such a way that Me™/M 5 ) >0,
then

m

A
Ry(n: M) — e =—.
m!

Problem 1.1.21. Consider again a random placement of n particles into M cells,
but according to the Bose—Einstein statistics (placement without locks of indistin-
guishable particles in distinguishable cells). Denote by Qy(n; M) the probability
that there are exactly k particles in any fixed cell. Prove that

Cn—k
Qk(nyM) — Mn+n—k—2
CM+n—l

and conclude that when n — oo and M — oo in such a way thatn/M — A > 0,

then
1

1+A
(Compare with the geometric distribution—see [ P §2.3, Table 2].)

Qx(n; M) — p(1 — p)*,  where p =

Problem 1.1.22. A box contains N balls labeled 1,..., N. A ball is sampled n
times from the box randomly and with repetition (i.e., the ball is returned to the box
after each sample). Given any fixed k € {1, ..., N}, let A; denote the event that the
largest label found among the sampled balls equals k. Prove that

km — (k —1)"

P(Ay) = —

In addition, prove that if the balls are sampled randomly but without repetition, then
forany n < k < N one has
G
P(4) = o5
N
Problem 1.1.23. Verify the Leibniz formula for the N'" derivative of the product of
two functions f and g:

N
DN(fg) =) Cy (D" )(D""g).

n=0
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Hint. Consider using induction and the property Cyy ;| = Cy +C K,—l ,1.e., the
so called “Pascal triangle property.”

1.2 Some Classical Models and Distributions

Problem 1.2.1. Prove that:

(x+y)' = ZCf xK y"=k " (binomial identity),
k=0

x4+ y), = ZC: (X)k V)n—k  (Vandermonde’s identity),
k=0

[x+y], = ZC: [xlx V]n=k  (Norlund’s identity),
k=0

where
X =xx—-Dx=-2)...(x=n+1),
X =x(x+Dx+2)...(x +n—-1).

Hint. Consider using Taylor’s expansion for polynomials.

Problem 1.2.2. By using probabilistic, combinatorial, or geometric arguments
(say, by counting the number of favorable outcomes, or, counting the number of
paths that connect one point with another), or some other type of reasoning (say,
by way of some algebraic argument analogous to identifying the coefficients for x”
in identities of the form (1 + x)“(1 + x)? = (1 + x)?*?)), verify the following
claims about the binomial coefficients (below |x | denotes the integer part of the
real number Xx, i.e., the largest integer number which is not greater than x, while
[x] denotes the smallest integer number which is not smaller than x):

e 1=C<Cl<...<cl =c/" > scrtscr=1

(symmetry and unimodality);
° C]]f,_l + C]/\‘, = Cll\(l+1 (this is the Pascal triangle rule)
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o CK=ck, 20k +ck2:

N N
o Y Ch =2 > (Ck)r=qcy:
k=0 k=0

N N
° szC}; =3V, ZkC}Q = N1
k=0 k=1

N
o > (-DVFcl =Cy.,. M=N+1
k=0

N
o Y k(k—1C{ =NN -2V N=>2
k=0

N
o kCy =NCVZ\. D Ch=cCyith:

m=k
e CHCl=CLCYL. 1<k<N;

k

k
o Y ¢l =) 2Cc,. k=N-1;
j=0 j=0

k
J _ k .
® ZCN+j =CNtitrs
—

N

k k— k .
Ch—t +Ch okt = N % SNk 0<k=<N;
Ni
cr =) Ck Ch* (Vand de’s binomial lution);
Ni+N, = Ny Ny andermonadade s binomial convo ullOl’l),
k=0
Cy'=<cCp, 1<n< N;FI;

cy'eytt <€y n=N-1L

MA~\N N\ M

N - 0 .

Clion = (1) (1+57)
(M + N)! M!N!

or, equivalently, M + NV = MMNN;
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N¥ k N¥
K =Cy =+
k k!

N
o Zc}‘v (=N k2k = 1;
k=0

N
o Cp =) (-DVFffchcr2. 1<n<N;

k=n

N N

o Y CyCp =2NTey . Y cxtiot =y, 1=n<N:
k=0 k=0

o CYT =Y -yt +...xCy, M <N;
M

o > (=Dfck =(nMc:
k=0
N (=1)y"C” | if N =2m

o D (-DACy) = { e :
o 0 if N #2m

N .

o Nk k N3 (=D"@Bm)!(m))3, if N =2m

k2=(:)( Ve = {0 iEN £ 2m
N N

g (=D 1

. kz::lcN p _kZE’

=1

N .
0 ifl <N
. =DV Eey =47 ;
kz:% YNy ifr=N

N

N—k ik 2N

° ZCZ(N—k) Cyp =277
k=0

(See also Problem 1.2.22.)

Problem 1.2.3. Prove that if p is a prime number and 1 < k < p — 2, then p
divides C;‘ and one has Czpp =2 (mod p).

Problem 1.2.4. Prove that the number of different ways in which a set of N objects
can be split into no more than two disjoint sets, the order in the sets being irrelevant,
equals [ N/2]| + 1, where | x| is the integer part of the real number x.

Problem 1.2.5. Given N > n > 1, the Stirling number of the second kind, S}, is
defined as the number of all possible partitions of a set of N objects, say, the set
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{1,2,..., N}, into n disjoint and non-empty sets with no regard of the order in the
sets.!
Prove that the following relations are in force:

(@ Sy=8Sy=1, Sy=2N1-1, si'=cC};

d) Sy =Sy'+nSy, 1<n<N;

N
© Shpy =Y ChSi™ (S =0p>k):
k=0

1 N—1
d s ’?Z(—l)ka (n—kN;
T k=0

1 . —krk N .
© Sy =—> (1)K
k=0
® Sy <nVTrerh .

Hint. To prove (b), which is the key to deriving (c) and (d), use the relation
xN = Zﬁ:o Sy (x), (see page 376 in the Appendix) and the relation (x),+; =
(x —n) (X).

Problem 1.2.6. By using the relation x¥ = "_ 8% (x),, itis shown in Sect. A.3
that the exponential generating function

N

n X
Esn(x) =) Sy 57
N>0 .

associated with the sequence S”" = (S}, ),>0, consisting of Stirling numbers of the
second kind, has the property

(" = 1)

Esn(x) = p

Prove the above identity by using property (e) in the previous problem.

'The definitions and some basic facts concerning the Stirling numbers (of the first and the second
kind), and also of the Bell numbers, can be found in Sect. A.1.
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Problem 1.2.7. According to one of the definitions of the Stirling numbers of the
first kind, s7,, (see page 377 in Sect. A.3), the number (—I)N_”s}’v gives the total
number of permutations of the set {1,2,..., N} with exactly n cycles (note that
S?v = 0).

Prove that

(b) sy, =sy'—Nsy., 1<n<N,
N N

© Y =DV =D Iskl =N
n=1 n=1

In addition, prove that the numbers s%,, 0 < n < N, satisfy the following algebraic
relation (see page 377)

N
@ @)y =) spx",
n=0

where (x)y =x(x—1)...(x =N +1).
Hint. The recursive relation (b) may be established by way of combinatorial
reasoning. Alternatively, it may be derived directly from the algebraic relation (d).

Problem 1.2.8. Prove the following duality property of the Stirling numbers of the

first and second kinds:
Z S;{;S,jlu = 8NM s
n>0
where 8, is the Kronecker symbol associated with the quantities ¢ and b, i.e., 8,5 =
lifa=>bandé,, = 0ifa # b.
Problem 1.2.9. Prove that the exponential generating function
N

n X
Ea(x) = Y sk 4y
N>0 :

associated with the sequence s” = (s ) y>0, comprised of Stirling numbers of the
first kind, is given by the following formula

(In(1 + x))"

En (X) = n

Problem 1.2.10. Givenany N > 1, the Bell number By is defined as (see page 362
in the Appendix) the number of all possible partitions of the set {1,2,..., N}, or,
which amounts to the same,
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N
BN = ZS" 5
n=1

where Si;, 1 <n < N are the Stirling numbers of the second kind.
Setting By = 1, prove that:
(a) The following recursive relation is in force

N
By =) CKZ\ By«
k=1

(b) The exponential generating function Eg(x) = > N>0 BN ’% is given by the
formula
Ep(x) = exp{e* — 1}.

(c) By < N'andlimy_o(By/NH/N = 0.

Finally, verify that the numbers By, ..., Bs equal, respectively, 1, 2, 5, 15, 52.
Hint. To prove (b), use (a) and check that the function x —> Ez(x) satisfies the
following first-order equation

M = eXEB(x)’
dx

with boundary condition E5(0) = 1. In order to prove the second property in (c),

. . T 1/N . N
consider the radius of convergence R = 1/ lim (%) "™ for the series > n=0 BN Fs

which, as is easy to see, converges for all real x.
Problem 1.2.11. (Fibonacci numbers.) Given any integer n > 1, let F, denote the
number of all possible representations of the number 7 as the sum of an ordered list
of 1’sand 2’s. Thus, one has F; = 1, F, =2 (since2 =1+ 1 = 2), F; = 3 (since
3=14+14+1=142=2+1),F4,=5Ginced=14+1+1+1=24+14+1=
1+24+1=14+1+2=2+42),and so on.

(a) Setting Fy = 1, prove that for any n > 2 the Fibonacci numbers F,, satisfy
the following recursive relation

F,=F,_1+F,—, n=>2. (%)

(b) By using the above relation, prove that

o AR N

S

> ~ —0.6180339887 ... .

Notice that /3 ~ 1.6180339887... and 1=
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(c) By using (x), prove that the generating function F(x) = ano F,x",
associated with the sequence (F},),>0, is given by the formula

1

Fo)= ——— .
) 1 —x—x2

(k)

(d) The Fibonacci numbers®> have many interesting properties. For example,
setting F_; = 0, for any choice of the integers m,n > 0 one can write:

Fo+Fi+...+F =F—1, F? |+ F?> = Fy,,
Fo By + FyFi = Fopgas FnFy + Fpo1 Foet = Fgn

Verify the last four identities.
(e) Prove that for any n > 0 the n' Fibonacci number is given by

Ln/2]
Fn = Z Cr]f_k .
k=0

For example, convince yourself that the list of the first 18 Fibonacci numbers
{Fo, F1, ..., F17} is given by

{1,1,2,3,5,8,13,21, 34, 55,89, 144, 233,377,610, 987, 1597, 2584}.

(f) Prove that for any n < 9 one has

Fu

et/ =
but for n = 10 one has Fjo/[e®?] < 1 and
F,
lim ————— =0. (koK)

n—oo [e=D/2] ~

Hint. (b) To prove (%), start by looking for a sequences of the form (F, =
a"),>1 that satisfies the recursive relation F,, = F,—;+ F,—>. The formula (xx*) may
be obtained also by considering the coefficients for x” in Taylor’s expansion of the
function (xx*). In this context it is useful to notice that 1 —x—x? = (1—ax)(1—bx),

fora = (1 ++/3)/2andb = (1 — v/3)/2.

2Tradtionally linked to the population growth of a colony of rabbits, and described as early as the
thirteenth century AD, by Leonardus Pisanus de filiis Bonaccii, widely known under the nickname
“Fibonacci,” in his book “Liber Abaci,” probably written around 1202 CE.
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(f) To prove (sx*xx), notice that (xx) implies F,, ~ c¢; (1.618...)", while
[e=D/2] ~ ¢, (1.648...)", with some appropriate constants c; and c,. Try to find
these two constants.

Problem 1.2.12. Prove that the multinomial (polynomial) coefficients

N!
Cy(mny,....,.ny) = ——, ny+...+n,=N, n >0,
ni!...n!

satisfy the following formula, known as Vandermonde’s multinomial convolution
formula:

Crviama (i) =Y Cny(ki. . k) Cyy (g — Ky oone = ki)

the summation being taken over all possible choices of the integers {k;;i =
l,....r},sothat 0 < k; < m;, forany i = 1,...,r, >.\_k; = Nj, and
ny+...+n. =N+ Ns.

Problem 1.2.13. Prove that
(1 4...+x)V = ZCN(nl,...,n,.)x?‘ coxir

the summation being taken over all possible choices for the integers ny,...,n,, in
such a way thatn; > 0, foranyi =1,...,r,and ) ;_,n; = N.

Problem 1.2.14. Prove that the number of nondecreasing paths on the integer
lattice 77, = {(i1,...,i;) :i1,....i, = 0,1,2,...} that start at the origin (0, ..., 0)
and end at some point (ny,...,n,) with Z;=1 n; = N, equals Cy(ny,...,n,).
(A path on the lattice Z', is said to be nondecreasing if at every step only one of the
coordinates changes by +1.)

Problem 1.2.15. Consider the sets A and B, chosen so that the numbers of their
elements, resp. N = |A| and M = | B|, are both finite, and:

letF: A — B denote any function from A to B, i.e., any rule that assigns a unique
b € Btoanya € A (one and the same b € B can be assigned to many a € A);

let I: A — B denote any injection of A into B, i.e., any rule that assigns to
different elements of A different elements of B, so that no two elements of A are
assigned one and the same element from B (for this to be possible one must have
|A] < |B]);

let $: A — B denote any surjection of A into B, i.e., any function from A into
B with the property that for every b € B there is at least one a € A with $(a) = b
(for this to be possible one must have |A| > | B|);

and, finally, let B: A — B denote any bijection from A into B, i.e., any function
from A into B which is both surjection and injection (for this to be possible one
must have |[A| = | B|);
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Prove that the total number of: all functions from A into B, of all injections of A
into B, of all surjections from A onto B, and of all bijections between A and B, are
given, respectively, by:

N(@F)=MY, N@O) = M)y, NG =M!SyY, and N(B)=N!.

Problem 1.2.16. Prove that the numbers Py = Z,]LO(N )n, N >0, with (N)g=1
and (N), = N(N —1)...(N —n + 1), satisfy the following recursive relation:

Py = NPy_; + 1, N > 1.
In addition, prove that

1
Py = N! —,
n!

n=0

and that Py is the nearest integer to e N !.

Problem 1.2.17. Prove that the exponential generating function
o0 X N
Ep(x) = NX:O Py N

associated with the sequence P = (Py)ny>0, Which is defined in the previous
problem, satisfies the relation

ex

1—

Ep(x) =

Problem 1.2.18. An urn contains M balls labeled 1, 2, ..., M. Each ball is painted
in either red or blue. Let M, denote the number of red balls in the urn and let M,
denote the number of blue balls in the urn (M; + M, = M ). Consider an unordered
sample from the urn without a replacement of size n = n; +n, < M andlet B, ,,
denote the random event that there are exactly 7| red and n, blue balls in the sample.
Suppose that M — oo, M| — oo and M, — oo in such a way that, for some finite
number 0 < p < 1, one has M/M| — p and M/ M, — 1 — p. Prove that

P(Buin,) — C,’ (1 —p).

ni+na

Hint. Use the identity

C M M2
P(Buny) = nM—lnz

Problem 1.2.19. Prove that in the multinomial distribution {P(A4,,.._,,)} the prob-
ability {P(A,,. )} is the largest when the list (ky,...,k,) is chosen so that
npi—l<ki<m+r—1p;,i=1,...,r.
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Problem 1.2.20. (One-dimensional Ising model.) There are n particles placed at
locations 1, ...,n. Each particle is either type-1 particle or type-2 particle. The
total number of type-1 particles is 7, the total number of type-2 particles is n,
(n1 + ny = n) and all n! placements of the particles are equally likely.

Describe the associated probabilistic model and compute the probability of the
event A,,(m“,mlz,mﬂ,ng) = {V“ = mMily...,Vn = ng}, where Vij denotes
the total number of type-i particles that are placed immediately after a type j
particle (i, j = 1,2).

Problem 1.2.21. Suppose that one must estimate the size N of a certain population
and that the estimation effort must be “minimal”; in particular, straight counting of
all individuals in the population cannot be used as a method. Such problems are of
interest when one must estimate, for example, the total number of citizens in a given
country, large city, etc.

In 1786 Pierre-Simon Laplace proposed the following method for estimating the
total number N of all French citizens:

Take some number, say, M, of French citizens and record their names. Then
return those citizens back in the general population so that they are “perfectly
mixed” with unrecorded individuals. Then choose a “perfectly random” sample
of n individuals and denote by X the total number of recorded individuals in that
sample.

(a) Given some fixed N, M and n, prove that the probability Py s, {X = m},
i.e., the probability that the number of recorded individuals in the sample is exactly
equal to m, is given by the formula for the hyper-geometric distribution (see [P §1.2,
@D: n Cn—m

Pyua{X =m} = S “ho
5 cy

(b) For some fixed M, n and m find the maximum of Py 5,,{X = m} for various
choices of N. If N denotes the value for N at which that maximum is achieved,
ie., if N is the “most likely” size of the entire population, given that the number
of recordeded individuals in the sample is m (this is also known as the maximim
likelihood estimate of N'), prove that

N - \;ﬂJ7
m

where |- ]| is the “integer part” function. (This problem continues in Problem 1.7.4.)

Problem 1.2.22. In the (elementary) combinatorial theory the binomial coefficients
Cy = (A:!)” = % (denoted equivalently by (]ZI)) and the number of ordered
samples (M), = M(M —1)...(M —n+1) are defined usually for integer numbers
n,M € N = {1,2,...}. In some areas of analysis it is often useful to define “the
number of ordered samples (M),” and “the binomial coefficient Cjy, > with M
replaced by some arbitrary X € R. Assuming that n € {0,+1,+£2,...} define

0l=1X) = 1,C§ = 1, and the define
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X)n
Xy=XX-1D...(X—-n+1), Cyg zg, foranyn > 0,
n!

and Cy = 0, for any n < 0. In conjunction with the above definitions (and
some of the relations established in Problem 1.2.2) prove the following identities
for arbitrary X, Y € Randn € Z = {0, £1,£2,...}):

Cy ' +Cy =C}§,, (Pascal triangle property);

n
n _ k ~n—k Vandermonde’s binomial
Cyyr = Z Cx Cy (convolution ’
k=0

Choy =Y (=)"*ck:
k=0

Gy =) (=D ey Crys
k=0

n
n _ n—k k .
CX+Y+n—l - ZCX+VI—](—1 CY+k—l ’
k=0

Cly = (D"Cxypr-

Problem 1.2.23. Consider ordered samples without repetition of size M, taken
from an urn that has N > 2 balls, of which n > 2 are white and N —n are black. Let
A; ; be the event that the i and the ;™ balls in the sample are white, i < j < M,
and let A; ; be the event that the i, the j™ and the k™ balls in the sample are
white, i < j < k < M. Compute the probability of the events A; ; and A4; ;.

Problem 1.2.24. Find a formula for the probability P, of having n spades in a hand
of 13 cards, taken at random from a full deck of 52 playing cards.

Problem 1.2.25. Consider n > 3 different points on a circle and suppose that 2 of
these points are chosen at random. What is the probability that these two points are
“neighbors”?

Problem 1.2.26. (“The married couples problem,” a.k.a. “probleme des ménage.”)
In how many different ways can n married couples (n > 3) be seated at a round table
in such a manner that men and women alternate, i.e., there are no two men or two
women sitting next to each other, and, at the same time, there are no husband and
wife sitting next to each other?

Hint. Suppose that the seats around the table are labeled (say, clockwise)
1,...,2n, and that seat 1 is always occupied by a woman. Given some 1 < k < 2n,
let A denote the event that seats k and k + 1 are occupied by some married couple,
with the understanding that seat 2n 4 1 is identified with seat 1. Then the event
that there are no husband and wife sitting next to each other can be expressed as
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i';l Ay By the inclusion—exclusion formula (see Part (b) of Problem 1.1.12) one
can write

2n 2n
P(ﬂZk) :1—P(UAk) =1-Y PA)+ Y PANA)—... .
k=1 k=1 i

i<j

A straight-forward calculation shows that, for any 1 <i < 2n, one has

2
P(4) =n((”_”’) ,
n!

forany 1 <i < j < 2n one has

2
non—1)(S2) i -1 1,
0, if|i —j| =1,

P(A4; N A;) =

where P(A4; N A,,) = 0, and, in general, for any i; < ... < i} one has

2
n! —k)! if |7 ]
(n—‘k)!((nn! )) o il =il = 2for 1 <k <k,
P(A;,0...NA;) and 2n 4+ i —ix > 2,

0 in all other cases.

Consequently,
2n i n . (l’l —k)' .
Pl A ) =2 D ——=d;.
k=1 k=0 :

where d,f denotes the number of all possible choices of k& non-intersecting pairs of
neighboring seats (the pairs (i,i + 1) and (j, j + 1) are said to be non-intersecting
if, eitheri + 1 < j, or j + 1 < i). After showing that

2n
k k
dy = Copse 5 —7

one arrives at the following conclusion: the probability that no married couple is
seated on two neighboring seats is given by

1 & 2n
— S (=D = k) ck . .
n!;( )1 — k) S Gy

Problem 1.2.27. (Latin squares.) A Latin square of size n X n is simply a square
matrix of size n x n which is filled with the numbers 1, 2, ..., n in such a way that
each of these numbers appears precisely once in every column and precisely once
in every row. For example,
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12 and 21
21 12

are Latin squares of size 2 x 2, while

123 123
231 and 312
312 231

are Latin squares of size 3 x 3. If L,, stands for the total number of all Latin squares
of size n x n, prove that

Ly=nl(n—1!.. .11 (=]_[k!).
k=1

Remark. One can show, for example, that L, = 2, Ly = 12, Ly = 576, etc.;
however, an exact general formula for L, is rather difficult to obtain. Nevertheless,
the following asymptotic result is well known:

InL, =n’*Inn+ 0n?), as n — oo.

Problem 1.2.28. (G. Pdlya’s urn scheme.) Suppose that an urn contains r red and
b black balls and consider the following trial: one ball is drawn at “random” from
the urn, after which that ball and a new ball of the same color are placed back into
the urn. Suppose that this trial is repeated many times and let S, denote the number
of red balls that have been drawn from the urn during the first n trials. Prove that

r—1 b—1
Cr+x—l Cb+n—x—l

n b
Cr+b+n—l

P{S, = x} =

0<x<n.

Problem 1.2.29. In the context of Pélya’s urn scheme described in the previous
problem, set

r b 1
rvb T T U
and suppose that when n — oo one has p — 0 and y — 0 in such a way that
np — A and ny — 1/p. Prove that for any fixed x one has

p:

P{Sy = x} = C,qvmi (%)lp(ﬁ)x as n — 0o.

Problem 1.2.30. Consider the random placement of 2n balls, of which n are white
and n are black, into m boxes, labeled 1, ..., m. The probability for a black ball to
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be placed in the j™ box is p; (p1 + -+ + pm = 1) and the probability for a white
ball to be placed in the j" box is ¢ j (qi+---+qn = 1). Let v denote the number of
boxes that contain exactly one white and one black balls. Calculate the probability
P{v =k}, k =0,1,...,m, and the expected value Ev.

Problem 1.2.31. (On Stirling’s formula—see also Problem 1.3.16 and Problem
8.8.1.) By the well known asymptotic series expansion for the gamma function,

one has
nn 1 1 139 1
t=2mn (B) (14 — ~ 7 _1o(=)).
" i (e) ( t 120 T 288m2 " S180m3 T (n4))

By using the relations

n n
lnn!zzmk and 1n(n—1)!</ Intdt <Inn!,
k=2 !

in which | 1" Intdt = nlnn —n + 1, derive the following (rough) lower and upper

bounds for n!: o o
e(z) <n!<en(z) , (%)

which leads to Stirling’s formula:

n n
n!'~2mn (—) .
e

Problem 1.2.32. (On the asymptotic decomposition of harmonic numbers.) A
harmonic number is a number of the form H,, = ZZ=1 %, n > 1. From the well
known asymptotic expansion of the digamma function, one has

] 1 1 1
ke e rof3)
Yt o T 2 T 0w T\

where y = 0.5772... is the Euler constant (a.k.a. the Euler-Mascheroni constant).
By using the method developed in the previous problem, for estimating certain
sums in terms of integrals, prove that for any n > 1 one has

1
Inn+—-<H,<Inn+1,
n

and conclude that lim,, (H,,/Inn) = 1.
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1.3 Conditional Probability: Independence

Problem 1.3.1. Prove by way of example that, in general, the following identities
do not hold:

P(B|A)+P(B|A) =1,
P(B|A)+P(B|A) =1.

Problem 1.3.2. An urn contains M balls of which M| are white. Consider a
random sample of size n and let B; denote the event that the ball taken at the
j™ drawing in the sample is white. Let A; denote the event that there are exactly
k white balls in the entire sample of size n. Prove that, regardless of whether the
sampling is with replacement or without replacement, one must have

P(Bj|Ax) =k/n.

Hint. Prove that in the case of sampling with replacement one must have

Ck=l MF(M — M)

P(B; N Ay) = o :
Ck Mk M—-M n—k
Py = T

while in the case of sampling without replacement one must have

C,f__ll (Ml)k(M - Ml)n—k

P(B; N Ay) = a6 ’
k —
P(A4y) = G, (Ml)k(%n M)n—k

Problem 1.3.3. Let A4, ..., A, be independent events with P(4;) = p;.
(a) Prove that

n n
P(U Ai) =1-[[P). ()
i=1 i=1

(b) Let Py be the probability that none of the events Ay, ..., A, occurs. Prove
that

n
Py=[]a—=p.
i=1
Hint. Give a direct proof of the identity in (%), i.e., a proof that makes no
use of the inclusion—exclusion formula (see Problem 1.1.12), tg showirvlg that if

Ay, ..., A, are independent events, then any events of the form A4, ..., A,, where
A; is taken to be either A;, or A;, are also independent.



28 1 Elementary Probability Theory

Problem 1.3.4. Suppose that the events A and B are independent. Calculate the
probabilities that exactly k, at least k and at most k of the events A and B occur,
k = 0,1,2—comp. with Problem 1.1.13.

Problem 1.3.5. Suppose that the event A4 is such that it is independent from itself; in
other words, one can claim that the events A and A are independent. Prove that P(A)
equals either O or 1. In addition, prove that if the events A and B are independent
and A C B, then either P(4) = 0, or P(B) = 1.

Problem 1.3.6. Suppose that the event A is such that either P(4) = 1 or P(4) = 0.
Prove that, given any event B, one can claim that A and B are independent events.

Problem 1.3.7. Consider the electric circuit from [P §1.4, Fig. 4]. Each of the
relays A, B,C, D and E function independently, and can be either off (i.e., not
allow electric current to pass through), or on (i.e., allow electric current to pass
through), respectively, with probabilities p and g. What is the probability for a signal
submitted at the input to eventually get transmitted through the circuit all the way
to the output? What is the conditional probability for the relay E to have been on,
given that the signal has been transmitted through the circuit and has reached the
output?

Hint. (a) Let S denote the event that the signal submitted at the input has been
received at the output. Then

P(SIE)=1-2p"+p*. P(SIE)=2¢"~q",
and, according to the total probability formula, one has
P(S) =q(1=p*’ + pg*2 ¢,
while the Bayes formula implies that
(1-p*?
(1=p>)?+pgQ2—q*)
Problem 1.3.8. Suppose that P(4 + B) > 0. Prove that

P(4)
P(4) + P(B)

P(E|S) =

P(A|A+ B) =

Problem 1.3.9. Suppose that the event A is independent from each of the
events B,,n > 1, chosenso that B; N B; = @, # j. Argue that the events 4 and
UsZ, B, are independent.

Problem 1.3.10. Prove that if P(4|C) > P(B|C) and P(A|C) > P(B|C),
then P(4) > P(B).

Problem 1.3.11. Prove that

P(A|B) =P(A|BC)P(C|B)+ P(A| BC)P(C | B).
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Problem 1.3.12. Suppose that X and Y are two independent binomial random
variables with parameters n and p. Prove that

crep*

PX =k|X +Y =m)=—"_x
2n

, forany kK =0,1,... ,min(m,n).

Problem 1.3.13. Suppose that A, B and C are pair-wise independent events, with
AN BN C = @.Find the largest possible value for P(A).

Problem 1.3.14. Consider an urn which already contains one white ball. One
randomly chosen ball—either white or black, with equal probability—is added to
the urn, after which one ball is taken from the urn at random. Assuming that this last
ball happens to be white, what is the probability that the ball left in the urn is also
white?

Problem 1.3.15. If the events A and B are independent, then, just by definition,
one has P(AB) = P(A)P(B). What conditions for A and B would gurantee that
P(AB) < P(A)P(B), or that P(AB) > P(A)P(B)?

Problem 1.3.16. In conjunction with the generalization of Stirling’s formula (in

the form n! ~ V2mxnn"e™, n — 00), prove that the gamma-function I"(v) =
o v—1,—u

fo u’~'e ™ du, v > 0 has the property:

'(v) ~~2anv’e™, v—00.

1.4 Random Variables and Their Characteristics

Recall that in the present chapter the underlying sample space, §2, is assumed to be
finite and, therefore, all random variables under consideration can take only finitely
many values.

Problem 1.4.1. Verify the following properties of the indicators 14 = I4(®):

Iz =0, Ipo=1 Iz=1-14,
Iap=14-1p, Iyup =14+ 1p— 143,

Ing =I1a(1=1p), Iing=(Is—15)* =14+ 1 (mod?2),

Ig_a = 1=T10= 1), I =10 =1 Ig 4= La

i=1 i=1 i=1

where AA B is the symmetric difference of the sets A and B, i.e., the set (A \ B) U
(B \ A), and the summation symbol Y stands for union (| J) of non-intersecting
events.
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Problem 1.4.2. Conclude from the statement in Problem 1.4.1 that the following
“inclusion—exclusion” formula for the indicators of the events A, B and C is in
force:

Iyupuc = 14+ 1p + Ic —[lanp + Lanc + Inc]l + Lanenc.

Find the analogous representation for the indicator /4,u._u4, of the union of
A, ... A,

Problem 1.4.3. Suppose that &, ..., &, are Bernoulli random variables with

P& =0} =1-144
P& = 1} = 1.4,

for some small number A > 0, and for some choice of A; > 0. Prove that

Pl +...+& =1} = (ZA,-)A—%— 0(4?),

i=1

P +...4+ & > 1} = 0(4A%).

Problem 1.4.4. Prove that inf_so<4<00 E(§ —a)? is achieved with @ = E£ and that,
consequently,
inf E(§£—a)’>=DE.
—o0<a<oo
Hint. Assuming that E§ = 0, prove that E(§ — a)?> = D¢ + a? > DE.
Problem 1.4.5. Let £ be any random variable with distribution function Fg(x) =
P{£ < x} and with median u = (&) = p(Fz), defined as the only ;1 € R with

Felpo) < 5 < Felu).

(For an alternative definitions of the notion of median see Problem 1.4.23 below.)
Prove that
inf E|§—a| =E[§—pul

—o0<a<oo

Hint. Assuming that 4 = 0, prove that for @ > 0 one has

E[§ —al =E|§[+ES(©).

where
a, x <0,
J(x)=4a—-2x, 0<x<a,

—a, X >a.
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Since f(x) > 0, we have Ef(§) > 0 and E|§ — a| > E|£|. Analogous statement
can be made for the case a < 0.

Problem 1.4.6. Let P:(x) = P{£ = x} and F:(x) = P{§ < x}. Prove that for
a > 0 and —oo < b < oo one has

Pagp(x) = Ps(xa_b),

x—=b
Fagp(x) = Fs( p )
In addition, prove that for y > 0 one has
Fa(y) = Fe(+y) — Fe (=) + P:(=/)

and, with £* = max(€, 0), one has

0, x <0,

FEJF(X) - Fe(x), x>0.

Hint. Use the following relations:

{aé‘+b=x}={%‘=x_b}, {a§+b§x}={§§x_b§,
a a
E <y =E=-VUUE<+M\E=-VI}.
+ < _ z, x <0,
E =90 x=0.

Problem 1.4.7. Let £ and 5 be any two random variables with D& > 0 and Dy > 0,
and let p = p(&, n) denote the correlation between & and 7. Prove that |p| < 1. In
addition, prove that |p| = 1 implies that there are constants ¢ and b, for which one
can write n = a& + b. Furthermore, if p = 1, then

n—En &—E&

vDn  JDE
(so that p = 1 implies that a > 0) and, if p = —1, then

n—Enp _ §-E§

NI

(so that p = —1 implies a < 0).
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Problem 1.4.8. Suppose that £ and n are two random variables with EE = En =0
and D€ = Dn = 1 and with correlation coefficient p = p(&, n). Prove that

Emax(£2,7°) <1+ 1 —p2.

Hint. Use the identity

max(€, 1) = 3@ + 7 +18 )

and the Cauchy—Bunyakovski inequality.

Problem 1.4.9. By using the property /i jp_ 4, = 1 — [T/2, (1 — 14,), associated
with the indicators from Problem 1.4.1, verify the following “inclusion—exclusion”
formula:

P(AU...UA) = Y PAy)— Y P, NA,)+...+

1<ii<n 1<iy<i2=<n
+ =DM P, NN A
1<i| <...<im<n
+(=D)"MPUA; N...N4,)
(comp. with Problem 1.1.12).

Hint. With the substitution X; = 1,, prove first that the following “inclusion—
exclusion” formula for indicators is in force:

-TJa-x0=>Y xi— > X Xo+..+

i=1 1<i<n 1<ij<ir<n

+ D Xy X L CDTTX X

1<ii|<...<ijp<n
After that use the relation P(U?:l 1 A,.) = EIly_, 4 (comp. with the hint in
Problem 1.1.13).

Problem 1.4.10. Suppose that&y,..., &, are independent random variables and that
o1 = o1&, ..., &) and ¢ = ©2(§k+1, - - -, &) are any two random variables that
can be written as functions, respectively, of &1, ..., & and &4, ..., &,. Prove that
¢ and ¢, are independent.

Problem 1.4.11. Prove that the random variables &, ..., §, are independent if and
only if for every choice of the real numbers xi, ..., x,, one has

Fe g, (X1, xn) = Fe(x1) ..o Fe, (X),

where Fg, g (x1,...,%,) = P& <x1,...,§ < x,).
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Problem 1.4.12. Prove that the random variable £ is independent from itself, i.e.,
one can claim that £ and £ are independent, if and only if £ (w) = const, w € £2.

Problem 1.4.13. Under what condition for the random variable £ can one claim
that £ and (sin §) independent?

Problem 1.4.14. Suppose that £ and 7 are independent random variables and that
n # 0. Find expressions for P{én < z} and P{% < z} in terms of the probabilities
Pi§ < x}j and P{n < y}.

Problem 1.4.15. Suppose that the random variables &, n and ¢ are such that |§| < 1,
In| < 1, |¢| < 1. Prove Bell’s inequality: |EEC — En¢| < 1 — E&n (see [62], for
example).

Hint. Use the inequality £(1 +7n) <1+ 7.

Problem 1.4.16. One throws, one-by-one and at random, k balls in n boxes (the
probability that a given ball would fall in a given box is 1/n). Find the expected
number of the non-empty boxes.

Problem 1.4.17. Suppose that &;,...,&, are independent and identically dis-
tributed random variables with P{§;, = 1} = p and P{§, = 0} = 1| — p, for
some ) < p < 1l,andlet Sy = & + ... + &, k < n. Prove that, for | <m < n,
one has

Ck Cl:k
PS, =k|S,=1)= —mC7 e
Problem 1.4.18. Suppose that &y, ..., &, are independent random variables and let

gmin = min(gl, cees gn) and Smax = max(&, e gn) .
Prove that
Piémn > x} = [[P& = x} and Péma < x} = [[Pl& < x}.
i=l1 i=1

Problem 1.4.19. Let Sy, = & + ...+ &, and set My, = max(Sy,..., Sz,). Prove
that, for any k < n, one must have

P{M,, > k, S,, = 0} = P{S,, = 2k}
and that, therefore,

P{S,, =2k cntk
n 2n
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Conclude from the last relation that

1 1
E(MZnISZn =O) = E[m_l}

Problem 1.4.20. Give an example of two random variables, & and 7, that share the
same distribution function (Fz = F),) and have the property P{§ # n} > 0.

Problem 1.4.21. Suppose that &, 1 and ¢ are random variables, chosen so that
the distribution functions of & and 7 coincide. Can one claim that the distribution
functions of £¢ and n¢ also coincide?

Problem 1.4.22. Give an example of two independent random variables, £ and 7,
for which &2 and ? are dependent.

Problem 1.4.23. Suppose that £ is some discrete random variable. Consider the
following three definitions of the median, u = (), of & (see Problem 1.4.5):

(a) max(P{§ > pu}, P{§ < pu}) = 1/2;
() P& <} <1/2 < P{§ < uj;
() u =inf{x € R: P{§ < x} > 1/2}.

Let M,, My, and M. denote the sets of “medians” associated with definitions (a),
(b) and (c), respectively. How do these three sets relate to each other?

Problem 1.4.24. A urn contains N balls, of which a are white, b are black and ¢
are red, a + b + ¢ = N. Suppose that n balls are taken from the urn and suppose
that among those n balls there are £ white balls and 7 red balls. Prove that: if the
balls are sampled with replacement, one has

cov(§,n) = -npq,
where p = a/N and ¢ = b/ N, and if the balls are sampled without replacement,
one has
N —n
N-1"

cov(§,n) =-npgq

Finally, prove that in both cases the correlation is given by

_ pq
PEN == pi—g

1.5 Bernoulli Scheme I: The Law of Large Numbers

Problem 1.5.1. Suppose that £ and 7, are two random variables with correlation co-
efficient p. Verify the following two-dimensional analog of Chebyshev’s Inequality:

1
P{I§ — E&| = ev/DE or [n— En| = ey/Dr} = S (1 4+ V1= p2).
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Hint. Without a loss of generality suppose that EE = En = 0 and D¢ = Dy =
1, in which case P{|§] > eor|n| > &} = P{max(£%,1?) > &?}. Then use the
(“‘usual”) Chebyshev inequality and the inequality established in Problem 1.4.8.

Problem 1.5.2. Suppose that f = f(x) is some non-negative function which is
even and is also non-decreasing for positive x. Given any random variable £ =
&(w), with |§(w)| < C, C > 0, verify the following estimate:

Ef©) — fle)

il = ) 2 =

In particular, for f(x) = x? one must have

EE2 — &2 D
S <rls-Eza (<3).

Hint. Use the following relation
Ef(¢) =Ef(&) = F(CP{IEl = &} + f(e).

Problem 1.5.3. Let &,,...,&, be any sequence of independent random variables
with D§; < C. Prove that

P”&+...+§n CEGi+. 6
n

28}<£.
n

~ ne?

(With the conventions adopted in [ P §1.5, (8)], the above inequality gives a version
of the law of large numbers, which is more general than the version obtained in the
context of the Bernoulli scheme.)

Problem 1.5.4. Suppose that &;,...,§, are independent Bernoulli random vari-
ables with P{§; = 1} = p > Oand P{§ = —1} = 1 — p. Verify Bernstein’s
estimate: there is some a > 0, for which

P{\% —@p- 1|z ef =207,

where S, =& + ...+ &,ande > 0.
Hint. See the proof of [P §1.6, (42)].

Problem 1.5.5. Let £ be any non-negative random variable and let @ > 0. Find the
maximal possible value for the probability P{é > a} in each of the following three
cases (m and o are given real numbers):

(@) E§ =m;
(i) E¢ = m, DE = o2,
(iii) E = m, D& = o2 and £ is symmetric relative to its mean value .



36 1 Elementary Probability Theory

Problem 1.5.6. Let So =0and S, =& + ...+ &,,n < N, where &,...,§,isa
Bernoulli sequence of independent random variables, with P{§, = 1} = p > 0 and
P{& = 0} = ¢, n < N, and let P,(k) = P{S, = k}. Prove that, forn < N and
k > 1, one has
Pyyi(k) = an(k_1)+an(k)

Problem 1.5.7. Suppose that &,..., &y are independent Bernoulli random vari-
ables, with P{¢; = 1} = P{§ = -1} = 1/2,i = 1,...,N, and let S, =
& + ...+ &,. Prove that for 2m < N one has

P{S|... Sy, # 0} =272"CJ" .
Problem 1.5.8. Consider M cells, labeled 1, ..., M. Suppose that the cell with

label n contains one white ball and n black balls. Consider a random sample of balls
from the M cells, let

g, = 1, if a white ball is drawn from the cell with label n,
" ]o, ifablack ball is drawn,

and let Sy = & + ... + &y denote the total number of white balls in the sample.

Prove that for large M the quantity Sy, “has order” In M, in the sense that, for any
g > 0, one has, as M — oo,
g

(with the convention adopted in formula [P §1.5, (8)]).

Su
InM

—1

Zs} —0

Problem 1.5.9. Suppose that &,...,&, are some independent Bernoulli random
variables, with P{§, = 1} = prand P{§ =0} = 1 — pi, 1 <k < n, and let
a = % ZZ=1 Pk Prove that, for any fixed 0 < a < 1, the variance, DS,,, of the
variable S, = & + ... + &, attains its maximal value when p; = ... = p, = a.
Problem 1.5.10. Suppose that &, ..., £, are some independent Bernoulli random
variables, with P{§, = 1} = pand P{§ = 0} = 1 —p, 1 < k < n.
Find the conditional probability that the first 1 (“success”) appears in the m™ step,
conditioned to the event that in all n steps “success” occurs exactly once.

Problem 1.5.11. Let (py,..., p;) and (¢i, - .., q,) be any two probability distribu-
tions. Prove the Gibbs inequality:

r r
=Y pilnp; <= pilng;.
i=1 i=1

In particular, the entropy H = — ) ' _, p; In p; must satisfy the relation H < Inr—
see [P§1.5, 4].



1.6 Bernoulli Scheme II: Limit Theorems (Local, Moivre-Laplace, Poisson) 37

Problem 1.5.12. In the context of Problem 1.5.10, prove the Rényi inequality:
|

1.6 Bernoulli Scheme II: Limit Theorems
(Local, Moivre-Laplace, Poisson)

n82

2pq(1 +¢/(2pq))*) "

Sn
— =D
n

- 2o -

Problem 1.6.1. Letn = 100 and consider the choices p = 1/10,2/10,3/10,4/10,
5/10. By using the relevant tables for the binomial and the Poisson distributions
(see [12], for example), or by using a computer, compare the exact values of the
following probabilities:

P{lO < S100 < 12}, P{ZO < S100 < 22}, (1.1)
P{33 < S100 < 35}, P{40 < S0 < 42}, (1.2)
P{50 < Sig0 < 52, (1.3)

with the respective values obtained by the normal and the the Poisson
approximations.

Problem 1.6.2. Let p = 1/2 and let Z, = 28, — n (the aggregate excess of 1’s
vs. 0’s in 7 trials, the outcome from each trial being O or 1). Prove that

sup\«/nn P{Z,, :j}—e_jz/‘w\ —0, asn—>o0.
J

Hint. Setting 2n = m and k = j/2 + n, the proof comes down to showing that

—mp)2
Vo PiSy =k — e T

With this relation in mind, one must prove that

sup
k

(Esgps(k,m)) — 0, as m— oc0.

sup e(k, m) = max(ay,, by) ,
k

where

ay = sup e(k,m), by, = sup e(k,m),
{k:lk—mp|<(mpq)*} {k:lk—mp|>(mpq)s}

for some s € (1/2,2/3), and then verify that a,, — 0 and b,, — 0 as m — oc.
Problem 1.6.3. Prove that in the Poisson theorem (with p = A/n, A > 0) one has

Ake=* A2
<
k! 1= n’

sup| P, (k) —
k
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Hint. Letny,...,n, and {y,..., ¢, be two different sets of independent random
variables, distributed, respectively, according to Poisson’s law with parameter A/n
and Bernoulli’s law with

P{&i=0=e*"(1—X/n) and P{{ =1} =1—e"(1-1/n).

Setting
%_‘ _ O, ifﬂ,’ =O,§i =O,
l 1 1in all other cases,
notice that &, ..., &, are independent Bernoulli random variables with

A A
P& =0 =1——, P& =11 = —,
n n

and that the distribution of £ = &, + ... + §, is given by P{§ = k} = P, (k). Then
take into account that n = n; + ... + 1, is distributed according to the Poisson law
with parameter A, and that, given any k = 0,1, 2,.. ., one has

AZ
P& =ki—Pin=kil =P #n =

(Comp. with the results and the proofs in [ P §3.12].)

Problem 1.6.4. Let £,...,§, be independent and identically distributed random
variables with P{§ = 1} = P{& = —1} = 1/2 (this is a symmetric Bernoulli
scheme), let S, = & + ... + &,, and let P,(k) = P{S, = k}, for k €
E, = {0,%1,..., £n}. By using the total probability formula (see [P §1.3, (3)]),
verify the following recursive relation (a special case of the Kolmogorov—Chapman
equation—see [P §1.12]):

1 1
Popi(k) = 5 Pulk + 1) + 5 Pu(k = 1), k€ Eyp, ()
which is equivalent to

Py (k) = Py(k) = 5 [Pu(k + 1) = 2P, (k) + Py(k = D)]. (k)

N =

Problem 1.6.5. (Continuation of Problem 1.6.4.) The sequence of random vari-
ables S§o = 0,8, =&, =& +6&,.... 8, =& + ... + &, may be identified
with the trajectory of a random walk of a particle that starts from 0 and moves one
unit up or down at integer times.

Suppose now that the up and down moves in the random walk occur only at times
A2A, ... ,nA, for some A > 0, and that the particle move up or down at distance
Ax. Instead of the probabilities P,(k) = P{S, = k}, introduced in the previous
problem, consider the probabilities
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P,,A(kAx) = P{S,,A = kAx}

Analogously to the recursive relation (), we find that

PuinyakAx) — Pya(kAx) 1
= —|P,Aa((k +1)Ax)—
2 3| Paatle + D ax)

2P, s(kAX) + Poa((k — )AY)].

i.e., the (discrete) “first derivative” in the time-parameter coincides up to a factor
of % with the (discrete) “second derivative” in the space variable.

With Ax = \/Z, t > 0, x € R, consider the special limiting procedure with
n — oo and k — oo, taken so that nA — ¢ and k/A — x, and prove that for this
procedure one can claim that

(a) the limit P, (x) = lim P, 4 (k+/A) exists, and,

(b) as a function of ¢, satisfies the heat equation, namely,

P(x) 1 9* P, (x)
g 2 ox2

(L. Bachelier, A. Einstein).

Problem 1.6.6. To generalize the result in the previous problem, suppose that the
particle moves up at distance Ax with probability p(A) = % + Ax, and moves down

at distance Ax with probability g(A) = % — Ax. Again set Ax = +/A and suppose

that nA — ¢ and k+/A — x. Prove that, just as in the previous problem, one can
claim that the limit P, (x) = lim P, 4 (k+/A) exists and satisfies the equation

P IR PR
a 0x 2 ox?

Problem 1.6.7. What should be changed in the limiting procedures in the last two
problems, in order to claim that the function obtained in the limit satisfies the
equation
P (x) P (x) 1 ,0*Pi(x)
o MTax T2 o
known as the Fokker—Planck equation, or Kolmogorov forward equation.

Problem 1.6.8. Suppose that F, = F,(t),t € [0,1], n > 1, is some sequence of
nondecreasing functions, with the property F,(t) — t, for all rational t € QN [0, 1].
Prove that this convergence must be uniform, i.e.,

sup |F,(t)—t| >0 as n— oo
1€[0,1]

(see also [P §3.1, (5)]).
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Problem 1.6.9. Prove that, given any x > 0, one has

1-1)—C S 9(x) <1-—&(x )<ﬂ
where ¢(x) = \/#2743_“‘2/2 and @(x) = [*__p(y)dy.
Hint. Take the derivatives ¢’(x) and (x ~'¢(x))’.

Problem 1.6.10. Prove that the Poisson distribution satisfies the following local

theorem: given any k = 0, 1,2, ..., as A — 0o one has
Vi M e o ! { Lk A)z} 0
—e "t — exp{ — —(k — —
k! N7 i )

Hint. Use Stirling’s formula.

1.7 Estimate of the Probability for Success in Bernoulli Trials

Problem 1.7.1. A priori, it is known that the parameter 6 takes values in the set
®y C [0, 1]. Explain when it might be possible to find an unbiased estimate for the
parameter 6, that takes values only in the set ©y.

Hint. If © is a singleton (& = {6}), then the value 6y must be the estimate
itself. If ®, contains at least two points, then the following condition is necessary
and sufficient for the existence of an unbiased estimate: {0} € ®, and {1} € ©,.
Verify this claim.

Problem 1.7.2. In the context of the previous problem, find an analog of the Rao—
Cramér inequality and investigate the efficiency of the estimate.

Problem 1.7.3. In the context of the first problem, investigate the construction of
confidence intervals for 6.

Problem 1.7.4. As a continuation of Problem 1.2.21, investigate whether the
estimate N is unbiased and/or efficient, assuming that N is sufficiently large,
N > M, N > n. Analogously to the confidence intervals for the parameter 0
(see [P1 §1.7, (8) and (9)]), construct confidence intervals [ — a(N) N + b(N)]
for N with the property

P, s {ﬁ_a(ﬁ)ENSZ/\\’—i—b(f\\/)}z l1—¢,

where ¢ is some small positive number.

Problem 1.7.5. (y’—goodness-of-fit test). Suppose that £, ..., &, are independent
Bernoulli random variables with P{§; = 1} = pandP{&; =0} =1—p,1 <i <n.
Unlike the main discussion in [P §1.7], which is concerned with estimates of the
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probability for “success,” p, here we are concerned with the problem of festing,
based on the observations x = (xy, ..., x;,), of the hypothesis Hy: p = py, i.e., the
hypothesis that the true value of the parameter p equals some given number 0 <
po<1l.LetS,(§) =& +...+§&, and set

(S.(6) = npo)*

2 _
1) = npo(1 — po)

Assuming that the hypothesis Hj is true, prove that, for any x > 0, one must have

ol
P{xn(§) < x / «/—e_md, as n — 0o.
{6 (8) }— A —27ty y

(According to [P §2.3, Table 3], F(x) = [y leTy e™/2dy is the cumulative

distribution function of a )(z-random variable with one degree of freedom, i.e., the
square of a standard (0, 1)-Gaussian random variable.)

The y?—goodness-of-fit criterion for testing the hypothesis Hy: p = py is based
on the following argument. Choose the number ¢ > 0 so small that, in a single
experiment, events that have probability ¢ are extremely unlikely to occur. (If ¢ is,
say, 0.01, then by the law of large numbers—see the remark related to formula (8)
in [P §1.5]—an event that occurs in each trial with probability 0.01 will occur “on
average” only once in 100 independent trials.)

Next, consider ¢ > 0 as fixed and choose A(&) so that |’ f(j) \/2;? e 2 dy = e.

One can now test the hypothesis Hy: p = po (by the y’—goodness-of-fit test) in
the following manner: if the value )(ﬁ (x), calculated from the observations x =
(x1,...,Xx,), exceeds the quantity A(g), then Hy is rejected and if )(ﬁ (x) < A(e)
then Hj is accepted, i.e., one assumes that the observation x = (x,...,X,) is in
agreement with the property p = po.

(a) Based on the law of large numbers (see [ P §1.5]), argue that, at least for very
large values of 1, using the y>—goodness-of-fit criterion for testing Hy: p = py is
quite natural.

(b) By using the Berry—Esseen inequality [P §1.6, (24)], prove that, under the
hypothesis Hy: p = po, one must have

S| 2
P 2 < _ —y/2 < —_—
() < x} /0 ez eV dy| < TR

(c) Suppose that 4, (¢) is chosen so that P{x2(§) > A,(e)} < e. Find the rate
of convergence of A, (¢) — A(¢) and, this way, determine the error resulting from
replacing the event “x2(§) > A,(¢)” with the event “y2(£) > A(s),” which is used
in the y?>—goodness-of-fit test.

sup
X

Problem 1.7.6. Let £ be any binomial random variable with distribution

Polé =k} =Crlo*(1—0y"*, 0<k=<n,
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where n is some given number and 6 is an “unknown parameter,” which must be
estimated by the (unique) observation over the random variable £.

A standard estimator for 6 is given by the value 7'(§) = % This estimator is
unbiased: given any 6 € [0, 1], one has

EqT(E)=0.

Prove that, in the class of unbiased estimators T = 7(5 ), the estimator 7'(§) is also
efficient: "
Eo(T(§) —6)* = infEqg(T(§) — 6).
T

Argue that, for n = 3, if it is a priori known that 6 € (%, %), then the estimator

?(E) = %, which is unbiased for every choice of 6 # %, is “better” than the

unbiased estimator T'(§) = %:
Eo[T(§) — 61 < Eq[T(€) — 6T,

i.e.,

Eg[l - 9]2 < E9[§ = 9]2.

2 3

Investigate the validity of this statement for arbitrary n.
Problem 1.7.7. Two correctors, A and B, are proof-reading a book. As a result,
A detects a misprints and B detects b misprints, of which ¢ misprints are detected
by both A and B. Assuming that the two correctors work independently from each
other, give a “reasonable” estimate of the number of misprints that have remained
undetected.

Hint. Based on a probabilistic argument, assuming that the number n of all
missprints in the book is quite large, one can suppose that ¢ and s are reasonably
close to the probabilities p, and p; for a misprint to be detected, respectively, by
corrector A and corrector B.

1.8 Conditional Probabilities and Expectations with Respect
to Partitions

Problem 1.8.1. Give an example of two random variables, £ and 7, that are not
independent and yet the relation

E[n) = E§

still holds (see [P §1.8, (22)]).
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Problem 1.8.2. The conditional variance of the random variable & with respect to
the partition & is defined as the random variable

D(|2) = E[¢ —E(¢2))12).
Prove that the variance of £ satisfies the relation:
D¢ =ED(|2) +DEE|2).
Hint. Convince yourself that
ED(|2) =EE —E[E(|2))] and DE|2) =E[EE|2) — (E§).

Problem 1.8.3. Starting from the relation [P §1.8, (17)], prove that, given any
function f = f(n), the conditional expectation E(& | n) has the property:

E[f(EE[m] = E[E/(].

Problem 1.8.4. Given two random variables, § and 75, prove that inf,; E(n —
f(£))? is achieved with the function f*(§) = E(n|£). (This way, the optimal
mean-square-error-minimizing estimator of n given £ can be identified with the
conditional expectation E(n | £).)

Hint. Convince yourself that, for any function f = f(x), one has

E(—/f(§))” = E(—f () +2E[(1— ) (f* )~ FEN+E(f ()~ f(§))°,

where the expected value of the variable in box brackets E[ -] actually vanishes.

Problem 1.8.5. Let &,...,§, and t be independent random variables, such that
&1,...,&, are identically distributed and t takes its values in the set 1, ..., n. Prove
that the sum of random number of random variables, namely S; := & + ... + &,
satisfies the relations

E(S, | ) = tE&;, D(S,|7) = tD§
and
ES, = Er-E§, DS, = Et-D§ + Dt - (E§)?.

Hint. Use the relations
E(S:|t) =tE& and D(S;|t) = tD§.

Problem 1.8.6. Suppose that the random variable £ is independent from the partion
2 (i.e., for any D; € 2, the random variables £ and I, are independent). Prove
that

E¢|2) =E§.
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Problem 1.8.7. Let & be some experiment, with associated space of possible
outcomes 2 = {wi,...,wy}, the respective probabilities (i.e., “weights” for the
outcomes) being given by p; = p(w;), Zi;l pi = 1. Itis established in [P §1.5,
(14)] that the formula H = — Zf;l pi In p; gives the entropy of the distribution
(p1,--., pk), defined as a measure of the “uncertainty” in the experiment &. In the
same section it is also shown that the uncertainty is maximal in experiments where
all k outcomes are equally likely to occur, in which case one has H = Ink.

The fact that, in the case where all outcomes are equally likely, the logarithmic
function is a natural measure for the degree of uncertainty in the outcome of the
experiment can be justified with the following argument, which is offered here as an
exercise.

Suppose that the degree of uncertainty in an experiment &', with k outcomes, is
given by some function f(k), chosen so that /(1) = Oand f(k) > f(I)ifk > [.In
addition, suppose that f(kl) = f(k)+ f(/). (This reflects the requirement that, for
independent experiments, &) and &>, respectively, with k outcomes and / outcomes,
the degree of uncertainty in the experiment &; ® &>, which comes down to carrying
out simultaneously & and &,, must be the sum of the degrees of uncertainty in the
two experiments.)

Prove that under the above conditions f(k) must be of the form: f (k) = c log, k,
where ¢ > 0 is some constant and the logarithm log, k is taken with an arbitrary
base b > 0.

Remark. As the transition from one logarithmic base to another is given by
log, k = log, a-log, k, it is clear that such a transition comes down to changing the
unit in which the uncertainty is being measured. The most common choice is b = 2,
which gives log, k = 1 for k = 2 and therefore allows one to identify the selected
unit of uncertainty with the uncertainty in an experiment with two equally likely
outcomes. In communication theory (and, in particular, in coding theory) such an
unit of uncertainty is called bit of information, or simply bit, which originates from
the term Blnary digiT. For example, in an experiment & with k = 10 equally likely
outcomes, the degree of uncertainty equals log, 10 ~ 3.3 bits of information.

Problem 1.8.8. Let (£2,.%, P) be any discrete probability space and suppose that
¢ = &(w), o € £2, is any random variable that takes its values in the set
{x1,..., X}, with respective probabilities P{§ = x;} = p;. The entropy of the
random variable £ (or, equivalently, of the experiment &;, which comes down to
observing the realization of &) is defined as

k
HE) =—Y pilog, pi.

i=1

(Comp. with [P §1.5, (14)], where, instead of the binary logarithm log,, the natural
logarithm In is used—as explained above, this choice is inessential.)

Analogously, given a pair (£, ) of random variables with P{§ = x;,n = y;} =
pij,i=1,....k, j =1,...,1, the entropy H(§,n) is defined as
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k 1
HEn) ==Y pijlog, pi .

i=1j=1

Prove that if £ and 7 are independent, then H (&, ) = H(§) + H(n).

Problem 1.8.9. Consider a pair (§,7) of random variables with values (x;,y;),
i=1,....k,j =1,...,1. The conditional entropy of the random variable 7, given
the event {§ = x;}, is defined as

1
Hy () =-Y P{n=y;|E=ux}log,P{n=y,€=0x}.
ji=1

Then the mean conditional entropy of 1 given £ is defined as

k
He(n) =) P{E = xi}Hy ().

i=1
Prove that:

(@) H(§.n) = H(§) + H:(n);
(b) if & and n are independent, then

H(E.n) = H(E) + H:(n);

(©) 0 = He(n) = H(n).
Problem 1.8.10. For a pair of random variables, (€, 1), the quantity

Ie(n) = H(n) — H:(n)

gives the amount of information for the variable 1 that is contained in the variable .
This terminology is justified by the fact that the difference H () — He (1) represents
the amount by which observations over £ decrease the uncertainty of 7, i.e., decrease
the quantity H(n).

Prove that:

@ Ie(n) = 1,(6) > 0;

(b) I¢(n) = H(n) if and only if  happens to be a function of §;

(c) given any three random variables, &,  and ¢, one has

Leoy(m) = Hm) — Heey(n) = Ie(n),

i.e., the information about 1 contained in observations over (£, {) cannot be less than
the information about 7 contained in £ alone.
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Problem 1.8.11. Let &,...,&, be independent and identically distributed
Bernoulli random variables, with P{§&; = 1} = p and P{§; = 0} = 1 — p,
andlet S, = & + ... + &,. Prove that

I (k

@ P(%'l=x1,...,.§n:xn|Sn:k)={’C}—£),
CryCi™
(b) P(Sn=x|Sn+m=k)=Ck—,
n+m

where x = x1 + ... +x,,x; =0,1,sothat x < k.

1.9 Random Walk I: Probability of Ruin and Time Until
Ruin in Coin Tossing

Problem 1.9.1. Verify the following generalization of [P §1.9, (33) and (34)]:

ESL =x+ (p —q)Ez,).

x =
Tn

E[S}; — 5 E&]* = D& - Exy 4 x7.

Problem 1.9.2. Consider the quantities «(x), B(x) and m(x), which are defined
in [P §1.9], and investigate the limiting behavior of these quantities as the level A
decreases to —o0 (A | —00).

Hint. The answer is this:

i a(s) {0, P>4q.
im a(x) =
A (q/p)P—(q/p)*
o @pf - P=4
B—x N
lim m(x) =479 p>9,
A—>—00 00, p < q.

Problem 1.9.3. Consider a Bernoulli scheme with p = ¢ = 1/2 and prove that

2
E|Sn|~,/;n, as n — oo. (%)

Hint. One can verify directly the following discrete version of Tanaka’s formula
(see Problem 7.9.8): for any n > 1, one has

Syl =) sign(Si—1) ASi + N, (%)
k=1
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where So =0, Sk = & + ... + &, ASk = &,

1, x>0,
sighx = {0, x=0,
-1, x<0,

and N, =#{0 <k <n—1:8; = 0} is the number of integers k, 0 <k <n —1,
for which Sy = 0. Then prove that

n—1

n—1
EIS,| =EN, =E) I(Sx =0) =) P{S; =0} (xx%)
k=0 k=0

and use the fact that P{Sy = 0} = 272*C%, and that P{S; = 0} = 0 for odd k.

Remark. One can conclude from (s33) that

2
EN, ~/—n, asn— 0.
bis

(See [P §7.9, Example 2]—in formula (15) in that example 27z must be changed to
2/m.)

Problem 1.9.4. Two players are tossing symmetric coins (each player tosses his
own coin). Prove that the probability that both players will have the same numbers
of heads after n tosses is given by 272" Y} _, (CF)? and conclude that the following
identity must hold: Y} _(CX)? = CJ/ (see Problem 1.2.2).

Let o, be the first instant when the number of heads obtained by the two players
in a total of n trials coincide, with the understanding that o, = n + 1, if coincidence
does not occur in the first n trials. Calculate the probability P{o, = k}, 1 < k <
n + 1, and the expected value E min(o,,, n).

Hint. Let Ei(k) = 1 (or —1), if player k, k = 1, 2, obtains a head (or a tail) in the
i™ trial. Then

the numbers of heads obtained by | _ . n _ - 2)
P% the players after n trials coincide } - P% Z & = Z i }

i=1 i=1

= zn:P% zn:&(l) =2j _”*angi(z) =2j _n} - anz_zn(c’{ )y
=0 i=1 =0

i=1

and s
Pl et = e =p{ Lo =o] =2y,
i=1 i=1 i=1

1 2 1 2
Where’]l :Sl( ), 772:_%'1( ), n3 :gé )a 7']4:&‘;), .
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Problem 1.9.5. Suppose that &,..., &y are independent Bernoulli random vari-
ableswithP{§; = 1} =P{§ = -1} =1/2andlet S, = & +...+&,1 <n < N.
Compute
P( U ts=0),
Ni<n<N,
i.e., compute the probability that at some momentn € (N; + 1,...,Ny), N < N,

one has S, = 0.

Problem 1.9.6. Suppose that &,...,&y are independent Bernoulli random vari-
ables with P{§ = 1} = P{§ = -1} =1/2,1 <i < N.SetS, =& + ...+ &,
and consider the discrete telegraph signal X, = £(—1)%, 1 < n < N. Find the
values and the variance of the random variables X,,, 1 < n < N. Find also the
conditional distribution P{X,, = 1|& =i},i = 1,1 <n < N.

Problem 1.9.7. Let &,...,&y be independent Bernoully random variables, with
P& =1} =pandP{§ =—1} =1—p,andletS; =& +...+§&,1 <i <N,
So = 0. Let Zy be the span (or the breadth) of—i.e., the total number of locations
visited by—the random walk {Sy, Sy, ..., Sy}.

Calculate EZy and DZy . Explain for what values of p one can claim that the
variables Zy satisfy the following version of the law of large numbers

P”%—c)>e}—>0, N = oo,

where ¢ > 0 and c is some constant. (See Problem 2.6.87 and Problem 8.8.16.)

Problem 1.9.8. Let &,...,&y be identically distributed random variables (not
necessarily of Bernoulli type) and set So =0, S; =& +...+&,1 <i < N.
Let

N, = anz(sk > 0)

k=1

be the total number of positive elements of the sequence Sy, Sy, ..., S,. Prove the
Sparre-Andersen identity:

P{N, =k} =P{Ny = k}P{N,—r =0}, 0<k<n.

Problem 1.9.9. Let &,...,&y be the Bernoulli random variables from
Problem 1.9.7 and define the variables X, ..., Xy by

Xi=§&, X,=AX,—1+&, 2<n<N,reR

Calculate EX,,, DX, and cov(X,,, X,,+x).
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1.10 Random Walk II: The Reflection Principle
and the Arcsine Law

Problem 1.10.1. Define 0y, = min{l < k < 2n : Sy = 0}, with the understanding
that 0y, = oo (or 02, = 2n),if Sy # 0 forall 1 < k < 2n. What is the rate of
convergence in E min(oy,,2n) — oo asn — oo?

Hint. Note that according to [P §1.10, 1] one must have

n

Emin(crz,,, 2}1) = Z Uz(k—1) + 2n uyy, ,
k=1

where uy, ~ 1/+/mn, and conclude that

E min(o,,2n) ~ 4 ﬁ, n— oo.
V =

Problem 1.10.2. Let 7, = min{l < k < n:S; = 1}, with the understanding that
7, = c0if Sy < 1,forall 1 <k < n. What is the limit of E min(z,,n) asn — oo
in the case of a symmetric (p = ¢ = 1/2) and non-symmetric (p # ¢) Bernoulli
walk?

Hint. The answer here is this:

-1
E min(z,. n) — g(p—q) . P>,
o0, D =q.
Problem 1.10.3. Based on the concepts and the methods developed in [P §1.10],
prove that the symmetric (p = ¢ = 1/2) Bernoulli random walk {Sj, k < n}, given
by So = 0and Sy = & + ... + &, k > 1, satisfies the following relations (N is
any positive integer):

P{max S, > N, S, <N}:P{Sn>N},

1<k<n

P! max Sk>N}—2P{S > N} —P{S, = N},

1<k<n

Ln+N+l
PmaxSkzN}zP{S,,zN}+P{Sn=N+1} 27¢, :

%
L
%
f

Pl max S <0} = P{s, = 0} + PLS, —1y=2ctt

1<k<n

P! max Sy <0,S, >0}—P{51750 ,Sn #0,8,41 =0},

1<k<n—1
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1
P{S1>0,....8,-1>0,8, =0} = . 270y,

1
P{S1>0,...,85-1>0,8,=0=——272C) .
{ 1 = n—1 = 2 } " 1 s
In addition, prove that the relations

P{S,, =2k} =272"Cy~* | k=0,%1,....4n,
and

P{Swys1 =2k + 1} =2"2""Cot . k=-m+1),0,£1,...,%+n,

can be re-written in the form:

271" itk =n  (mod 2),

P{S, =k} =
" in all other cases,

where k = 0, £1,..., £n.
In addition to the above formula for P{max;<x<, Sx = N} for positive integers
N, prove that

P{ max Sy = r} = C,IL("_’)/2J -2,

0<k<n
forr =0,1,...,n.
Problem 1.10.4. Let &, ..., &, be independent Bernoulli random variables with

P& =1} =Pl =—1}=1/2,k <2n.Let S = 0and S, = & + ...+ &, for
k > 1, and, finally, let

g2 = max{0 < 2k <2n: Sy = 0}

be the moment of the last zero in the sequence (S7, S4, ..., S2,), where we set
g2» = 0 if no such moment exists.
Prove that
P{an = 2k} = UppU2(n—k), 1<k=<n,
where uy = P{Sxy = 0} =27 C} .
By comparing the distribution of g, with the probability Py », of the event that
on the interval [0, 2n] the random walk spends 2k units of time in the positive axis

(see formula [P §1.10, (12)]), one finds that, just as in formula [P §1.10, (15)], the
following property holds for 0 < x < 1:

2
Z P{gy, = 2k} — = arcsiny/x, as n — oo;
T

{k:0<k<x}

i.e., the probability distribution of the last zero satisfies the asymptotic arcsine law.
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Problem 1.10.5. In the context of the previous problem, let 6, denote the moment
of the first maximum in the sequence Sy, S1,..., S, ie., 01, = k, if Sy <
Sky.ooySk—1 < Sk, while Sg+1 < Sk,...,S2%m < Sk, and 6, = 0 if no such
k > 1 exists. Prove that

1
P{6y, =0} = uz,, P{6, =2n} = 5 Uzp ,
and that, for0 < k < n,
1
P{@z,, = 2k or 2k + 1} = E Udj Uy —2k -

Then conclude that, just as in the previous problem, the law of the moment of the
first maximum satisfies the arcsine law: given any 0 < x < 1, one has

2
Z P{0,, = 2k or 2k + 1} — = arcsin V/x, n — oo.
b
{k:0<% <x}

Consider also the case x = 0and x = 1.

Problem 1.10.6. LetS; = & +...+&,k < 2n,where &y, ..., &, are independent
and identically distributed random variables with P{§; = 1} = P{§; = -1} = 1/2.
Prove that:

(a)Forr = %1,...,£n, one has

P{S1 #0,...,8-1 #0,8, =2r} = Cjt" Il 272,
n
(b) Forr =0,+£1,...,+£n, one has
P{Sy, = 2r} = Cy" 277",

Problem 1.10.7. Let {Si,k < n}, givenby So = Oand Sy = & + ... + &, for
k > 1, be a symmetric Bernoulli random walk (with independent and identically
distributed &, ..., &, with P{&; = 1} = P{§; = —1} = 1/2). Setting

M, = max Sy, m, = min S,
0<k<n 0<k<n

prove that

law law

(Mn =S80, Sy —my, Sn) = (_mnans Sn) = (an_mns Sn)s

law

where “ = ” means that the respective triplets share the same joint distribution.
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Problem 1.10.8. Let Sy = Oand Sy = & + ... + &, k > 1, where &,&,, ...
are independent random variables with P{§, = 1} = p and P{§, = —1} = ¢,
p + g = 1. Prove that

P{ max Sy > N, S, = m} =C/p'q"",

1<k=<n

whereu = N +(n—m)/2and v = (n+m)/2, and conclude that, for p = g = 1/2
and m < N, one has

P{ max Sk:N,Sn:m}:P{Sn:2N—m}—P{Sn:2N—m+2}.

1<k<n
Problem 1.10.9. Let £, &,, ... be any infinite sequence of independent Bernoulli
random variables with P{§, = +1} = P{§ = —1} = 1/2. Define Sy = 0,

Sy =& +---+&,n>1,and, givenany x € Z = {0, +1,+2,...}, consider the
moment (of the first visit of x after time zero):

op(x) =inf{n >0: S, = x},

with the understanding that o;(x) = oo, if {-} = @.

Prove that, forx = 1,2, ..., one has

—2n—1
Pio(x) > n} = P{Orél]?; S < x} Pl =2+ ="y,
P{oy(x) = n} = %2—" CotI2 - Ploy(l) > n} =27 ¢

Remark. With regard to the question of existence of an infinite sequences of
independent random variables &}, &, ..., see [P §1.5, 1].

Problem 1.10.10. Let everything be as in the previous problem. In addition to the
moments o (x), define the moments

op(x) =inf{n > o1 (x) : S, =x}, k=2,3,...,

with the understanding that oy (x) = oo if {-} = @. (The meaning of these
moments should be clear: o (x) is the moment of the k™" visit to x.)

Prove that, forn = 1,2, ..., one has
P{01(0) = 2n} = 272"y~ 1L P{01(0) < 0o} =1,
P{01(0) > 2n} = 272'C}, = P{S,, = 0}, Eo1(0) = oo.

Show also that 0;(0), 02(0) — 01(0), 03(0) — 02(0), . . . is a squence of independent
and identically distributed random variables. (This property is the basis for the
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method of “regenerating cycles,” which is crucial in the study of random walk
sequences—see Sect. A.7 in the Appendix for details.)

Problem 1.10.11. Let &, &, ... be any infinite sequence of independent Bernoulli
random variables and let Sp = Oand S, = & + --- + &,, n > 1. Define

L,(x) =#k,0<k <n:S =x}

and notice that L, (x) is nothing but the total number of moments 0 < k < n, at
which the random walk (Sk)o<k<» happens to be in state x, x = 0, +1, +2,...—
comp. this definition with the related quantity N, (x), introduced in Problem 7.9.8;
see also Problem 1.9.3. The quantities L, (x) and N,(x) are commonly referred to
as (discrete) local times in state x on the time interval {k : 0 < k < n}.

Prove that, fork = 0, 1,...,n, one has:

P{L5,(0) = k} = P{L2,41(0) = k} = 27" F¢Cp,

P{L,(0) =k} = 2—2[n/2]+kCLn/zJ

2ln/2]—k *
k—1 )
P{L2,(0) < k} = P{ox(0) > 2n} =27" > "2/C}, .
j=0

P{L,(x) =0} = Ploy(x) > n} = Y 272U+,

j=n+1 J
and, for x = &1, £2,..., one has:
2|x|—1
P{Lo0)(x) =0} = TR ELy(x) =1.

(The quantities o (x) are defined in Problem 1.10.10.)

Problem 1.10.12. In the context of the previous problem, set

p(n) Zmin{k,()fk <n:Sk zogljai(ij},

and prove that

lk/2] . ~n—lk/2] . H5—2n—1 _
Csz/2J ’CZn—ZI_k/2J 27 k=1,2,3,...,2n,

Pin2n) =k} =
cy, 27, k=0.
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1.11 Martingales: Some Applications to the Random Walk

Problem 1.11.1. Let %y < 2, < --- < %, be any nondecreasing sequence of
partitions of £2, such that %y = {£2}, and let n;, 1 < k < n, be some random
variables on £2, chosen so that each n; is Z-measurable. Prove that the sequence
& = (&, Zk)1<k<n, given by

k

Ee= Y In—Em| 2.

=1

is a martingale.
Hint. Prove that E(§,41 — & | Zk) = 0.

Problem 1.11.2. Suppose that the random variables 7, ..., n, are chosen so that
Eny = 0and E(ni | n1,...,mk—1) = 0, 1 < k < n. Prove that the sequence
§ = (§k)1<k<n- given by & = 7 and

k
Eerr=_ filn....m)miy. k<n,

i=1
for some choice of the functions f; (11, ..., n;), represents a martingale.

Problem 1.11.3. Prove that any martingale § = (&, Zk)i1<k<n has independent
increments: ifa < b < ¢ < d, then

COV(Sd - %‘m Eb - ga) =0.

(Recall that in the present chapter all random variables are assumed to take only
finitely many values.)

Problem 1.11.4. Let £ = (&;,...,&,) be any random sequence in which each &
is Yx-measurable (7, < 2> <X ... < %,). Prove that in order for this sequence to
be a martingale (relative to the partitions (%)), it is necessary and sufficient that,
for any stopping time t (relative to (%)), one has E§&, = E&;. (The phrase “for
any stopping time” may be replaced by “for any stopping time that takes only two
values”.)

Hint. Let EE, = E&, for any stopping time 7 that takes only two values. For a
fixedk € {1,...,n — 1} and A € %, consider the moment

k. if §(w) ¢ A,
T(w) =
k+1, if&(w)e A.

After showing that E§; = E& 7 + E& 14, conclude that E&, 4174 = E& 14.
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Problem 1.11.5. Provethatif& = (&, Zk)1<k<n is @ martingale and 7 is a stopping
time, then for any k < n one has

El&nlio=k3] = E[&x Iir=k3] -

Problem 1.11.6. Let ¢ = (&, Zk)i<k<n and 1 = (i, Dk)1<k<n be any two
martingales with §; = n; = 0. Prove that

E&umn = Y E(E — &—1) (i — 1)
k=2

and that, in particular,
n
B =) E( — &)
k=2
Problem 1.11.7. Let 71;,...,7n, be any sequence of independent and identically

distributed random variables with En; = 0. Prove that the sequence § = (&x)1<k<n>
given by

§k=<im)2_k% by & = SR E k)

(Eexp{Ambt

i=1
represents a martingale.

Problem 1.11.8. Let 71;,...,7, be any sequence of independent and identically
distributed random variables that take values only in the (finite) set Y. Let fo(y) =
P{np, = y} > 0, y € Y, and let fi(y) be any non-negative function with
Zer /1(y) = 1. Prove that the sequence § = (£, Z)1<k<n, With

_ Sim) - .. fi(k)
Sfom) ... folme)

forms a martingale. (The variables & are known as likelihood ratios and play a
fundamental role in statistics.)

§k

Problem 1.11.9. We say that the sequence & = (§k, Zk )o<k<a 1S @ Supermartingale
(submartingale) if P-a.s. one has

EGir1 1 %) <& (=&).0<k<n.

Prove that every supermartingale (submartingale) can be represented (and in a
unique way) in the form

&k =mr—ar (+ap),
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where m = (my, Pk )o<k<n is @ martingale and a = (ax, Zk)o<k<n 1S a non-
decreasing sequence such that ¢y = 0 and each a; is ) -measurable.

Problem 1.11.10. Let § = (&, Zk)o<k<n and n = Mk, Di)o<k<n be any two
supermartingales and let T be any stopping time, relative to the partition (% )o<k<n>
chosen so that P{§; > n.} = 1. Prove that any sequence { = ({i, Zk)o<k<n that
switches from 7 to £ at the random moment t, i.e., any ¢ given either by

S =&l(t > k) +ml(r <k),
or by

=81t >k)+nl(t <k),
is also a supermartingale.
Problem 1.11.11. Let & = (&, Zk)o<k<n be any submartingale of the form

& = Z 14,
m<k

where A,, € %,. Find the Doob decomposition for this submartingale.
Problem 1.11.12. Let & = (&, Zk)1<k<n be any submartingale. Verify the follow-

ing “maximal” inequality:

Emax < —— (1 +EE In" ).
<n — e

where In™ x = max(In x, 0).

1.12 Markov Chains: The Ergodic Theorem: The Strong
Markov Property

Problem 1.12.1. Let § = (&.&,...,&,) be a Markov chain with values in the
space X and let f = f(x) (x € X) be some function on X. Does the sequence
(f (&), f(&1),..., f(&))) represent a Markov chain? Does the “reverse” sequence
(&4, 80—1, ..., &) represent a Markov chain?

Problem 1.12.2. Let P = | p;;j||, 1 <i,j < r be any stochastic matrix and let A
be any eigenvalue of that matrix, i.e., A is a solution to the characteristic equation
det[P — AI] = 0. Prove that A; = 1 is always an eigenvalue and that the absolute
values of all remaining eigenvalues A,, ..., A, cannot exceed 1. Furthermore, if
there is a number n, such that P” > 0 (in the sense that p;;t) > 0), then |A;] < 1,
i = 2,...,r. Show also that if all eigenvalues A,..., A, are different, then the

transition probabilities pi(f) can be written as
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where the quantities 7, a;;(2),...,a;; (r) can be expressed in terms of the entries
of the matrix P. (In particular, as a result of this algebraic approach to the study of
the asymptotic properties of Markov chains, we find that, if |[A,| < 1,...,|A,| < 1,

then the limit lilgl pi(f) exists for any j and, in fact, does not depend on i.)

Problem 1.12.3. Let & = (&,¢&,...,&,) be any homogeneous Markov chain with
(finite) state space X and with transition probability matrix P = || py, [|. Denote by

To() =ElpE) |6 =x] (=Y ¢(0)p)
y

the associated one-step transition operator and suppose that the function ¢ = ¢(x)
satisfies the equation
Te(x)=¢x), xeX,

i.e., happens to be “harmonic.” Prove that for any such choice of the function ¢, the
sequence

¢ = (G D )osken . with & = (&),

Problem 1.12.4. Let ¢ = (§,,11,P) and é = (é,,ﬁ P) be any two Markov
chains that share the same transition matrix P = || p;; ||, 1 < i,j < r, but have
two different initial distributions, resp. [T = (py,..., pr) and = (P1s---s Dr)-
Letting 1™ = (p®, ..., p™)and T™ = (5", ..., p*) denote the respective
n-steps distributions, prove that if min; ; p;; > ¢ > 0, then

,
1M = pl <201 —re)".

i=1
Hint. Use induction in 7.

Problem 1.12.5. Let P and Q be any two stochastic matrices. Prove that PQ and
aP + (1 —a)Q, for any choice of 0 < o < 1, are also stochastic matrices.

Problem 1.12.6. Consider any homogeneous Markov chain (&, &,...,§,) with
state-space X = {0, 1} and with transition probability matrix of the form

(l—a a)
B 1-8)"

forsome 0 <o < 1land0 < B < 1,andset S, = & +...+&,. As a generalization
of the Moivre—Laplace theorem (see [ P §1.6]), prove that

Sy — =2=n
et <y — ®P(x), as n—o0.

naf(2—a—p)
Vo @tp)?
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Argue that if « + 8 = 1 one can claim that the variables &, ..., §, are independent
and that the last relation comes down to
S —
P "—anfx — ®(x), as n— 00.
vnapf
Problem 1.12.7. Let &, &;,...,&Ey be any Bernoulli sequence of independent
random variables with P{§; = 1} = P{§ = —1} = 1/2. Consider the variables
Nos N1, 1y, defined by no = & and n, = #=18 1 <n < N.
(a) Is the sequence 19, 11, . . . , ny Markovian?

(b) Is the sequence &y, {1, ..., y, givenby &y = &, and {, = &§,1&,, 1 <n <
N, Markovian?

Problem 1.12.8. Let X|,..., X, be any collection of independent and identically
distributed random variables. With any such collection one can associate what

is known as the order statistics and is defined as the sequence X 1(") xm
obtained by arranging the values Xi,..., X,, in non-decreasing order. (So that
Xl(") = min(X1,.... Xn), ..., X = max(Xi,...,X,), with the understanding
that when X;, = ... = X;, = min(X,...,Xy)andi; < ... < iy, then Xl(") is the

variable X;, . Similar convention is made in all analogous cases (see Problem 2.8.19,
for example).

Note that, in general, the elements of the order statistics X 1(”) . ¢ ,ﬁ”) (known
as rank statistics) will not be independent even if the variables X1, ..., X,, are.

Prove that when each variable X; takes only two values, the rank statistics form a
Markov chain. Prove by way of example that, in general, this claim cannot be made
if each X; takes three values. (Note that if each X; is continuously distributed (see
[P §2.3]), then the rank statistics always form a Markov chain.)



Chapter 2
Mathematical Foundations
of Probability Theory

2.1 Probabilistic Models of Experiments with Infinitely
Many Outcomes: Kolmogorov’s Axioms

Problem 2.1.1. Let £2 = {r:r € [0, 1] N Q} denote the set of all rational numbers
inside the interval [0, 1], let o7 be the algebra of sets that can be expressed as finite
unions of non-intersecting sets A of the form {r:a < r < b}, {r:a <r < b},
{rra <r <b},or{r:a <r < b}, and let P(A) = b — a. Prove that the set-
function P(A), A € <7, is finitely additive but not countably additive.

Problem 2.1.2. Let §2 be any countable set and let .# denote the collection of all
subsets of £2. Set (A) = 0if A is finite and u(A) = oo if A4 is infinite. Prove that
the set-function u is finitely additive but not countably additive.

Problem 2.1.3. Let u be any countably additive measure on (§2, .%). Prove that
(@ 1f 4, 1 A, then 11(4,) 1 p(A);
(b)If A, | Aand u(Ay) < oo for some k, then ((A4,) | n(A);
(c) If w is finite (1 (§2) < c0)and A = 1lim A4,, ie., A = limA, = lim A,,, then
pu(A) = lim pn(4,).
(This problem continues in Problem 2.1.15.)
Hint. Use the relations

o0 o0 o0 o0
limd, = J ()4 and Tim4, =] 4.
n=1k=n n=1k=n

Problem 2.1.4. Verify the following properties of the symmetric difference be-
tween sets:

(AAB)AC = AN(BAC), (AAB)A(BAC) = AAC,
AAB =C < A= BAC.
A.N. Shiryaev, Problems in Probability, Problem Books in Mathematics, 59

DOI 10.1007/978-1-4614-3688-1_2,
© Springer Science+Business Media New York 2012



60 2 Mathematical Foundations of Probability Theory

Problem 2.1.5. Prove that the “metrics” p; (A4, B) and p2(A, B), defined by
p1(A4, B) = P(A A B),

P(A4AB) .
p2(A, B) = | P(AUB) if P(AU B) #0,
0, if P(AU B) =0,

where A A B is the symmetric difference of A and B, satisfy the “triangular
inequality.”
Hint. Use the relation AAC C (AA B)U (B AC).

Problem 2.1.6. Let p be any finitely additive measure on some algebra .o7. Show
that if the sets Ay, A, - € &/ are non-intersecting and, in addition, one has A =
Y72, A; € o, then one can claim that u(A) > Y 72, u(4;).

Problem 2.1.7. Prove that

limsup A, = liminf 4,, liminf A4, = lim sup A,,
liminf A, C limsup 4,, limsup(4, U B,) = limsup A, U limsup B,
liminf(A4, N B,) = liminf A, N liminf B,

limsup 4, N liminf B, C limsup(A4, N B,) C limsup 4, N limsup B,.
Prove also that if 4,, 1 A, orif A, | A, then

liminf A, = limsup A4,,.

Problem 2.1.8. Let (x,) be any sequence of real numbers and let A, = (—o0, X;,).
Prove that for x = limsupx, and A = limsup 4, one has (—oo,x) € A C
(—00, x]. (In other words, A must be either (—o0, x) or (—o0, x].)

Problem 2.1.9. Lt A}, A, ... be any sequence of subsets of the set £2. Prove that
limsup (A, \ A1) = limsup (4,41 \ 4,) = (limsup 4,) \ (liminf 4,).

Problem 2.1.10. Give an example showing that, in general, a measure that can take
the value +oo could be countably additive, but still not continuous at “the zero” &.

Problem 2.1.11. We say that the events {A; € #:1 < i < n} are exchangeable
(or interchangeable) if all probabilities P(4;, ... A;,) are identical (= p;) for every
choice of the indices 1 <i; < -+ < i; < n, and this property holds separately for
every 1 < [ < n. Prove that for such events the following “inclusion—exclusion”
formula is in place (see Problem 1.1.12):

P(U Ai) =np —C,,2P2+C3 p3—-+ (_l)n—lpn'

i=1



2.1 Probabilistic Models of Experiments with Infinitely Many Outcomes. . . 61

Problem 2.1.12. Let (Ax)r>1 be any infinite sequence of exchangeable events, i.e.,
for every [ > 1 one can claim that the probability P(4;, ... 4;,) (= p;) does not
depend on choice of the indices 1 <i; < --- < i;. Prove that in any such situation

one has
oo
P(ima0) =P ) = pm
o o
P(lim4,) = P(kL_J1 Ak) = 1— lim (=)'’ (py).
where po = 1, A'(pa) = put1 — pur Al (pa) = AYA (pa)), 1 = 2.

Problem 2.1.13. Let (4,),>: be any sequence of sets and let /(A,), n > 1, be the
associated sequence of indicator functions. Prove that

(@) I(IiTmAn):hTmI(An), 1(Tim 4,) = Tim 1(4,),

(b)  Tim(4,) ~lim /(4,) = 1 (Tm 4, \ lim 4,),
n n n n

(©) I(U An) <Y I(Ay).
n=1

n=1

Problem 2.1.14. Prove that

o0 o0
I (L=J1 A,,) = max/(4,), [ (Q A,,) = min [(4,).

Problem 2.1.15. (Continuation of Problem 2.1.3.) Let i be any countably additive
measure on (§2,.%). Prove that

(@) p(lim A,) < lim p(A4,).
(b) If, in addition, the measure p happens to be finite (1 (§2) < 00), then

(lim A,) > Tim p(A,).
(c) In the special case of probability measures P, one has
P(lim 4,) < limP(4,) < TmP(4,) < P(lim 4,)

(“Fatou’s lemma for sets”).

Deduce from the above relations the following generalization of the “continuity”
properties (2) and (3) i the probability P, mentioned in the Theorem of [P §2.1, 2]:
if A = lim, A4, (i.e.,lim A, = lim A, = A), then P(A4) = lim, P(4,).



62 2 Mathematical Foundations of Probability Theory

Problem 2.1.16. Let A* = 1limA, and let A, = limA,. Prove that
P(4, — Ax) = 0 and P(4* — 4,) — 0.

Problem 2.1.17. Suppose that 4, — A (in the sense that A = A* = A,; see
Problem 2.1.16). Prove that P(AAA,) — 0.

Problem 2.1.18. Suppose that the sets A4, converge to the set A, in the sense
that P(AAlim 4,) = P(AAlim A,) = 0. Prove that in that case one must have
P(AAA,) — 0.

Problem 2.1.19. Let Ao, Ay,... and By, By, ... be any two sequences of subsets
of £2. Verify the following properties of the symmetric difference:

Ao A By = Ay A By,

a0t (U 8:) € U2 B,

n>1 n>1

A0 () Ba) 2 (Ao & By,

n>1 n>1

(Ua)a(Us) e H(A” A By).

n>1 n>1

(N4)2a(N8) U aBy.

n>1 n>1 n>1
Problem 2.1.20. Let A, B, C be any three random events. Prove that
[IP(ANB)—P(ANC)| <P(BAC).

Problem 2.1.21. Prove that for any three events, A, B and C, the probability that
exactly one of these events will occur can be expressed as P(A4) + P(B) + P(C) —
2(P(AB) + P(AC) + P(CD)) + 3P(ABC). (Comp. with Problem 1.1.13.)

Problem 2.1.22. Let (A4,),>: be any sequence of events in .%#, for which
D P(A, A Ayy) < oo,

Prove that
P{(lim4,) A (lim4,)} = 0.

Problem 2.1.23. Prove that, for any two events A and B, one has

max(P(A4),P(B)) < P(A4U B) < 2max(P(A4),P(B))
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and
P(AU B)P(AN B) <P(A)P(B).

When can one claim that the last relation is actually an identity?
Show also the Boole inequality: P(A N B) > 1 —P(A) — P(B).

Problem 2.1.24. Let (4,),>1 and (B,),>1 be any two sequences of events chosen
so that A, € B, for every n > 1. Prove that {4, i.0. } C {B, i. 0.} (“i.0.” stands
for “infinitely often,” meaning that infinitely many events in the associated sequence
occur).

Problem 2.1.25. Suppose again that (A4,),>1 and (B,),>1 are two sequences of
events such that

P{4,i.0.} =1 and P{B,i.o.}=0.
Prove that P{4, N B, i.0.} = 1.

Problem 2.1.26. Give an example of two finite measures, ;41 and p,, defined on
the same sample space §2 (i.e., two measures with jt1(£2) < oo and 2 (§2) < 00),
for which the smallest measure, v, with the property v > p; and v > , is not, as
one might think, max (i, i;), butis actually p; + us.

Problem 2.1.27. Suppose that the measure space (£2,.%) is endowed with a
sequence of probability measures, Py, P, ..., and suppose that P(4), 4 € Z#, is
some set-function on .%#, for which the following relation holds for every A € .%:

P.(4) — P(A).

Prove the following properties, known as the Vitali-Hahn—Saks theorem:

(a) The set-function P = P(:) is a probability measure on (£2, 7).

(b) For any sequence Ay, A,... € % with Ay | @ as k — oo, one must have
sup, P,(Ax) | 0ask — oo.

Problem 2.1.28. Consider the measure space (R, (R)) and give an example of a
sequence of measures , = u,(A), A € B(R), n > 1, such that for every 4 €
AB(R) the sequence (i1, (A)),>1 is decreasing, but the limit v(4) = lim, u,(A4),
A € A(R), does not represent a finitely-additive set function and, therefore, cannot
be treated as a measure.

Problem 2.1.29. Let (£2,.#,P) be any probability space and let (4,),>1 be any
sequence of events inside .%. Suppose that P(4,) > ¢ > 0,n > 1,and let 4 =
lim A,. Prove that P(A) > c.

Problem 2.1.30. (The Huygens problem.) Two players, A and B, take turns tossing
two fair dice. Player A wins if he gets a six before player B gets a seven (otherwise
player A looses and player B wins). Assuming that player A tosses first, what is the
probability that player A wins?

Hint. One must calculate the probability P4 = Z;?o:o P(Ay), where Ay is the
event that player A wins after the (k + 1)* turn. (The answer is: P4 = 30/61.)
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Problem 2.1.31. Suppose that the set §2 is at most countable and let .% be any
o-algebra of subsets of §2. Prove that it is always possible to find a partition ¥ =
{D1.Ds,.. } (Uien Di = 2,DiND; = @,i # j, N ={1,2,...}) that generates
Z,i.e.,
7 ={JDimcn)
ieM

(Comp. with the analogous statement for the case of a finite set £2 formulated in
[P§1.1,3])

Hint. Consider constructing & from the equivalence classes in the set §2
associated with the relation

W) ~wy & (W €A w € Aforevery A € F).

2.2 Algebras and o -algebras: Measurable Spaces

Problem 2.2.1. Let %, and %, be any two o-algebras of subsets of the space 2.
Can one claim that the following collections of sets form o-algebras

3310%25{/1:/16331 andAe%z},
331U%2£{A2A€331 01’A€%2}?

Let A, v A, be the smallest o-algebra, o (%, %,), that contains A and %,.
Prove that %, Vv %, coincides with the smallest o-algebra that contains all sets of
the form B; N B,, for all choices of By € %, and B, € %,.

Hint. Convince yourself that %, N %, is a o-algebra and prove by way of
example that, in general, %, U %, is not a o-algebra. (Such an example can be
constructed with a set £2 that has only three elements.)

Problem 2.2.2. Let ¥ = {Dy, D,, ...} be any countable partition of the set £2 and
let # = 0(Z). What is the cardinality of the o-algebra %?

Hint. With any sequence x = (X1, X2, ... ), that consists of 0’s and 1’s, one can
associate the set D¥ = D{'UD5?U..., where D;' = @, ifx; = 0,and D;" = D;,
if Xi = 1.

Problem 2.2.3. Prove that
BR") Q@ B(R) = %’([R”H).

Problem 2.2.4. Prove that the sets (b)—(f) from [P §2.2, 4] belong to Z(R*°).
Hint. In order to show, for example, (b), notice that

{x:@xnfa}zﬁ[oj ﬂ%x:xn<a+%}.

k=1m=1n=m
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_ 1
In other words, lim, x, <a < Vke Ndm e N :Vn>m, x, <a + E.One

can derive (c)—(f) with a similar argument.

Problem 2.2.5. Prove that the sets A, and A3 from [P §2.2, 5] do not belong to
A(RO1),

Hint. As is the case with the set A, the desired property of A, and A3 can be
established by contradiction.

Problem 2.2.6. Verify that the function in [P §2.2, (18)] is indeed a metric.
Problem 2.2.7. Prove that Zy(R") = Z(R"),n > 1, and %,(R*°) = B(R*°).

Problem 2.2.8. Let C = C|[0, co) be the space of continuous functions x = (x;),
defined for ¢ > 0. Prove that, relative to the metric

oo
p(x,y):ZZ_"min[ sup |x, —y|, 1], x,yeC,

n=1 0<t<n

this space is a Polish space (just as C = C|[0, 1]), i.e., a complete, separable metric
space, and the o-algebra %,(C), generated by all open sets, coincides with the o-
algebra #(C), generated by all cylinder sets.

Problem 2.2.9. Show the equivalence between the group of conditions {(,), (1),
(A¢)} and the group of conditions {(A,), (A}), (A%)} in [ P §2.2, Definition 2]).

Problem 2.2.10. Prove [P §2.2, Theorem 2] by using the statement in [P §2.2,
Theorem 1].

Problem 2.2.11. In the context of [P §2.2, Theorem 3], prove that the system .
is a A-system.

Problem 2.2.12. A o-algebra is said to be countably generated, or separable, if it
is generated by some countable collection of sets.

Prove that the o-algebra %, comprised of all Borel sets inside £2 = (0, 1], is
countably generated.

Prove by way of example that it is possible to find two o-algebras, .%| and .%,,
such that .%; is countably generated, one has .%; C .%,, and yet .% is not countably
generated.

Problem 2.2.13. Prove that, in order for the o-algebra ¢ to be countably generated,
it is necessary and sufficient that 4 = o (X), for some appropriate random variable
X (see [P §2.2, 4] for the definition of o (X)).

Problem 2.2.14. Prove that (X, X2,...) are independent random variables
([P §2.2, 4] and [P §2.2, 5]) whenever o(X,) and o(Xi,...,X,—1) are
independent for every n > 1.

Problem 2.2.15. Let (£2,.%,P) be any complete (see [P §2.3, 1] and Problem
2.2.34) probability space, let 4 be any sub-o-algebraof # (¢ C .%) and let (&,),>1
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be any non-increasing sequence of sub-c-algebrasof 7 (6 2 & 2 ...; &, C .Z,
n > 1). Suppose that all o-algebras under consideration are completed with all P-
negligible sets from .. It may appear intuitive that, at least up to sets of measure

zero, one must have
No@.6)=0a(9.N&). (*)
n n
or, in a different notation,

@V éE)=9v()é. (%)

where ¥ v &, = 0(¥,&,) is the smallest o-algebra generated by the sets from
¢ and &, and the identity in (*) and (%) is understood as “identity up to sets of
measure zero” between two complete o-algebras, say 74 C % and % C %, in
the sense that, for every A € J# one can find some B € %—and vice versa, for
every B € J% one can find some A € 7/ —so that P(AAB) = 0.

Nevertheless, the following example taken from [134] shows that, in general, the
operations V (the supremum) and N (the intersection) between o-algebras cannot
be interchanged.

(a) Let &,&1,&,... be any sequence of Bernoulli random variables with
P{§& =1} =P{§& = —1} = 1/2,and let X,, = &&, ... &,,

4 =0(&,8,...), and &, =o(Xk,k > n).

Prove that
No@. &) #o(9.N ).

Hint. Prove that & is measurable with respect to (), 0(¥¢, &,) (= 0(¥. &)), but
is still independent from the events in 6(¥, ("), &,) (= 9).

(This problem continues in Problem 7.4.25 below.)

(b) The fact that for o-algebras the operations v and N do not commute follows
from the (considerably simpler than (a)) claim (see [23]) that, if & and &, are any two
of the random variables described in (a) (i.e., any two independent and symmetric
Bernoulli random variables) and if &1 = 0 (&), & = 0(&) and ¢ = o (£,1£2), then

GVvEaE)N(EGVE) GV (ENE) and (YNE)V(9NE) #YGN(EVE).
Prove this last statement.

Problem 2.2.16. Let «/; and % be any two independent collections of sets,
every one of which represents a m-system. Prove that o (27 ) and o (%) are also
independent. Give an example of two independent collections of sets, 7 and .o%,
neither of which is a 7-systems, and o (7)) and o (.@%) are not independent.
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Problem 2.2.17. Assuming that . is a A-system, prove that (A, B € £, AN B =
g) = (AU B e %).

Problem 2.2.18. Let .%, and .%, be any two o-algebras of subsets of the set £2
and let
d(F,F) =4  sup  |P(4142) — P(A4))P(42)].
A€EF ), AT

Prove that the above quantity, which can be viewed as a measure of the dependence
between % and .%;, has the following properties:

(@) 0=<d(FH, 7)) =1;

(b) d(F, %) = 0if and only if .%| and .%, are independent;

(c) d(F1, Z,) = 1 if and only if the intersection .#; and .%, contains an event
that has probability equal to 1/2.

Problem 2.2.19. Following the proof of [P §2.2, Lemma 1], prove the existence
and the uniqueness of the classes A(&) and 7(&°), which contain the system of
sets &.

Problem 2.2.20. Let <7 be any algebra of sets that has the following property: for
any sequence, (A4,),>1, of non-intersecting sets A, € <7, one has U:o=1 A, € .
Prove that o7 is actually a o-algebra.

Problem 2.2.21. Suppose that (:%,),> is some increasing sequence of o-algebras,
ie., , C %y4+1,n > 1. Prove that, generally, U:o=1 %, could only be claimed to
be an algebra.

Problem 2.2.22. Let .# be any algebra (resp., o-algebra) and let C be any set
which does not belong to .%. Consider the smallest algebra (resp., o-algebra), which
contains the family .# U {C }. Prove that this algebra (resp., o-algebra) is comprised
of all sets of the form (4 N C) U (B N C), for all choices of 4, B € .Z.

Problem 2.2.23. Let R = RU{—0c0} U{oo} be the extended real line. The Borel o-
algebra Z(R) may be defined (comp. with [P §2.2, 2]) as the o-algebra generated
by the sets [—o0, x], x € R, where [—o0, x] = {—o0} U (—o0, x]. Prove that the
o-algebra Z(R) coincides with any of the o-algebras that generated, respectively,
by any of the following families of sets:

(a) [-o0,x), x € R;

(b) (x, 0], x € R (where (x, 00] = (x, 00) U {o0});

(c) All finite intervals and {—oo} and {oo}.

Problem 2.2.24. Consider the measurable space (C, %, (C)), in which C = C|0, 1]
is the space of all continuous functions x = (x;)o<;<1 and %y(C) is the Borel o-
algebra for the metric p(x, y) = supy<,«; |X; — y:|. Prove that:

(a) The space C is complete (relative to the metric p(-, ).

(b) The space C is separable (relative to the metric p(-, -)).

Hint. Use the Bernstein polynomials—see [ P §1.5].
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(c) If treated as a subset of C [0, 1], the subspace
C?0,1] = {x € C[0, 1] : x is differentiable},

is not a Borel set.

Problem 2.2.25. Let < be any non-empty system of subsets of the sample
space £2. Prove that a(.%), defined as the algebra generated by the system .,
can be constructed as follows: Set &/} = .o/ U {@, 2} and define, forn > 1,

%_H:{AUEIA,BE%}.
Then oy C oy C ... C &, C...and
a(eh) = .
n=1

Problem 2.2.26. For a given non-empty system of subsets of the sample space £2,
denoted 2%, in Problem 2.2.25 we gave a method for constructing the smallest
algebra, o(2%), that contains the system 2%. Analogously, we now define the
systems:

=y U{D, 2},

ah = U

o0
UBn:Bl,Bz,...em},

n=1

o = o U{B: B € o},

Ay = 3 U

oo
UBn:Bl,Bz,...e%},

n=1

ofs = oy U{B : B € o4},

o0
oy =503 | Bu:Bi.Ba.... 65375},
n=1
It may seem intuitive that the system @, = (7o | <, should give the smallest o-

algebra, 0 (%), that contains the system %, however, in general, this claim cannot
be made: one always has %, C 0(%), while, in general, 2/, # 0(%%), i.e., the
above procedure may not give the entire o-algebra o (Ap). Prove by way of example
that o (<) can be strictly larger than @

Hint. Consider the case where .2 is the system of all intervals on the real line R.



2.2 Algebras and o-algebras: Measurable Spaces 69

Note that if one is to follow the above procedure, starting with @7 instead of .7,
in general, one still cannot claim that o (%) will be produced at the end. In order
to produce o (2%), one must use transfinite induction (X “times”). We refer to [47,
vol. 1, p. 235, vol. 2, p. 1068] for further explanation of G. Cantor’s cardinality (or
power) numbers and the related continuum hypothesis.

Problem 2.2.27. (Suslin’s counterexample.) The construction and the conclusion
given in the previous problem show that, in principle, a c-algebra may have a rather
complicated structure. In 1916 M. Suslin produced a counterexample, which proved
that the following statement, due to H. Lebesgue is not true in general: the projection
of every Borel set B inside R? onto one of the coordinate axes is a Borel set
inside R'. Just as M. Suslin did in 1916, construct a counterexample that disproves
this statement.

Hint. M. Suslin’s idea was to construct a concrete sequence, 41, A,, ..., of open
sets in the plain R? so that the projection of the intersection () A, on one of the
coordinate axes is not a Borel set.

Problem 2.2.28. (Sperner’s lemma.) Consider the set A = {1,...,n} and let
{A1, ..., Ar} be any family of subsets of 4, chosen so that no member of this family
is included in some other member of the same family. Prove that the total number
K satisfies the estimate K < C"/? .

Problem 2.2.29. Let & be any system of subsets of 2 and let .# = (&) be the
smallest o-algebra that includes the system & (i.e., the o-algebra generated by &).
Suppose that A € .%. By using the “suitable sets principle,” prove that one can
always find a countable family, " C &, for which one can claim that A € ¢(%).

Problem 2.2.30. The Borel o-algebra & associated with the metric space (E, p)
is defined as the o-algebra generated by all open sets sets inside E (relative to the
metric p—see [P §3.1, 3]). Prove that, for certain metric spaces, the o-algebra &,
generated by all open balls, may be strictly smaller than & (& C &).

Problem 2.2.31. Prove that there is no o-algebra of cardinality 8¢ (“aleph-naught,”
the cardinality of the set of natural numbers), that has countably infinitely many
elements. Plainly, the structure of any o-algebra is always such that it has either
finitely many elements (see Problem 1.1.10) or has uncountably many elements. For
example, according to the next problem, as a set, the collection of all Borel subsets
of R” has power ¢ = 280 (i.e., the power of the continuum), which is the same as
the power of the collection of all subsets of the set of natural numbers.

Problem 2.2.32. Just as in the previous problem, let ¢ = 2% denote the power of
the continuum. Prove that, as a set, the collection of all Borell subsets of R” has
power ¢, while the o-algebra of all Lebesgue subsets has power 2°.

Problem 2.2.33. Suppose that B is some Borel subset of the real line R and let A
denote the Lebesgue measure on R. The density of the set B is defined as the limit
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MAN[-T.T]}

D(B) = lim o7
—00

()
provided that the limit exists.

(a) Give an example of a set B for which the density D(B) does not exist, in that
the limit () does not exist.

(b) Prove that if By and B, are two non-intersecting Borel subsets of the real line,
then

D(B, + By) = D(By) + D(B),

in the sense that if either side of the above identity exists then so does also the other
side and the identity holds.

(c) Construct a sequence, By, Bs, ..., of Borel sets inside R, every one of which
admits density D(B;), but, nevertheless, countrary to the intuition, one has

D(i&) = iD(B,-).

i=1 i=1

Problem 2.2.34. (Completion of o-algebras.) Let (£2,.%,P) be any probability
space. We say that this probability space is complete (or, equivalently, P-complete,
or, complete relative to the measure P), if B € .% and P(B) = 0 implies that any
set A with A € B must be an element of .%.

Let .4 denote the collection of all subsets N C 2 with the property that there
is a set (possibly depending on N), By € %, with P(By) = 0 and N € By. Let

F (sometimes written as .ZF or F ) denote the collection of all sets of the form
A U N, for some choice of A € % and N € /. Prove that:

(a) Fisa o-algebra;

(b) If B C £2 and there are sets, A; and A,, from .%, with A; € B C A, and
P(A4; \ Aj) =0, then B € .Z;

(c) The probability space (£2,.7, P) is complete.

2.3 Methods for Constructing Probability Measures
on Measurable Spaces

Problem 2.3.1. Suppose that P is a probability measure on (R, Z(R)) and let
F(x) = P(—o00, x], x € R. Prove that

P(a,b] = F(b) — F(a), P(a,b) = F(b—) — F(a),
Pla,b] = F(b) — F(a—), Pla,b) = F(—-)— F(a—),
P(x}) = F(x) — F(x-),

where F'(x—) = lim 4 F(y).

Problem 2.3.2. Verify formula [P §2.3, (7)].
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Problem 2.3.3. Give a complete proof of [ P §2.3, Theorem 2].

Problem 2.3.4. Prove that a (cumulative) distribution function F = F(x), defined
on the real line R can have at most countably many points of discontinuity. Does
this statement have an analog for distribution functions defined on R"?

Hint. Consider using the relation {x : F(x) # F(x—)} = Uno{x : F(x) —
F(x—) > nl}. In general, for distribution functions defined in R”, one cannot claim
that the points of discontinuity are at most countably many. To find a counter-
example, consider the delta-measure

I, if0e€ A,

A€ BRY.
0, if0¢ A,

So(A) = §

Problem 2.3.5. Prove that each of the functions

I, x4+y=>0,

G(x,y) =
{Q x+y<0,

G(x,y) = |x + y| = the integer part of x + y,

is right continuous and increasing in each variable but, nevertheless, cannot be
treated as a (generalized) distribution function in R>.

Problem 2.3.6. Let 1« denote the Lebesgue—Stieltjes measure associated with some
generalized distribution function and let A be any at most countable set. Prove that

uw(4) =0.

Problem 2.3.7. Prove that the Cantor set .4 is uncountable, perfect (meaning, a
closed set in which every point is an accumulation point, or, equivalently, a closed
set without isolated points), nowhere dense (meaning, a closed set without interior
points) and has vanishing Lebesgue measure.

Problem 2.3.8. Let (£2,.%, P) be any probability space and let </ be any algebra
of subsets of §2, such that o (/) = .%. Prove that, for every ¢ > 0 and for every set
B € .7, one can find a set A, € <7, with the property

P(4.AB) <.

Hint. Consider the family = {B € .% : Ve > 034 € &/ : P(AA B) < ¢}
and prove that 4 is a g-algebra, so that &% 2 B D o(&) = F.

Problem 2.3.9. Let P be any probability measure on (R", Z(R")). Prove that,
given any ¢ > 0 and any B € #(R"), one can find a compact set A, and an open
set A; sothat Ay € B C A, and P(A; \ A1) < e. (This result is used in the proof
of [P §2.3, Theorem 3].)
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Hint. Consider the family

B € B(R"):Ve > 0 there is a compact set A; and

B = an open set A,, so that the closure A is compact

andone has A C B C A, and P(4,\ 4) <¢

and then prove that Z constitutes a o-algebra.

Problem 2.3.10. For a given probability measure P, verify the compatibility of
the measures {P.}, defined by P.(B) = P(.#;(B)) (see (21) and Theorem 4 in
[P§23, 5]).

Problem 2.3.11. Verify that [P §2.3, Tables 2 and 3] represent probability distri-
butions, as claimed.

Problem 2.3.12. Prove that the system o , introduced in [P §1.2, 3], is a o-
algebra.

Problem 2.3.13. Prove that the set function u(A4), A € o, introduced in Remark 2
in [P §2.3, 1] is a measure.

Problem 2.3.14. Prove by way of example that if the measure ¢, defined on the
algebra o7, is finitely additive but is not countably additive, then p cannot be
extended to a countably additive measure on o (.</).

Problem 2.3.15. Prove that any finitely additive probability measure, defined on
some algebra, <7, of subsets of £2, can be extended to a finitely additive probability
measure defined on all subsets of §2.

Problem 2.3.16. Let P be any probability measure defined on some o-algebra .%
that consists of subsets of §£2 and suppose that the set C < £2 is chosen so that
C ¢ 7. Prove that the measure P can be extended (countable additivity preserved)
to a measure on the o-algebra o (% U {C}).

Problem 2.3.17. Prove that the support, denoted by supp F, of any continuous
distribution function F must be a perfect set, i.e., a closed set without isolated
points. (Recall that, for a given cumulative distribution function F defined on R,
supp F' is the smallest closed set G with the property (R \ G) = 0, where  is the
measure associated with F'—see Sect. A.2.)

Give an example of a cumulative distribution function F, associated with some
discrete probability measure on R, for which one has supp F' = R, i.e., the support
of F is the entire real line R.

Problem 2.3.18. Prove the following fundamental result (see the end of
[P §2.3, 1]): every distribution function F = F(x) can be expressed in the
form

F=a1Fqs+ axFape + a3 Fy

where o; > 0, 01 + o + @3 = 1, and
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Fy  is adiscrete distribution function (with jumps px > 0 at the points xj):
Fo= Y pis
{kixg<x}

Fyne is an absolutely continuous ditribution function:

Fac= [ fa
—00
with density f = f(¢), which is non-negative, Borel-measurable and
Lebesgue-integrable, i.e., ffzo f@®)ydt =1;

F. is a continuous and singular distribution function, i.e., continuous distribution
function for which the points of increase form a set of Lebesgue measure 0.

What can be said about the uniqueness of the above decomposition of the distribu-
tion function F = F(x)?

Problem 2.3.19. (a) Prove that every real number w € [0, 1] admits a ternary (i.e.,
base 3) expansion of the form

where w, € {0,1,2},n > 1.

(b) Prove that if w € [0, 1] admits two ternary expansions, @ = Z,fil % and

/
w = Y 22, %, both of which are non-terminating (i.e., Y.~ |w,| = oo and
Yoo lwp| = o0), then one must have , = w), for all n > 1 (uniqueness of

the non-terminating expansions).

Notice that non-uniqueness of the ternary expansion is possible for reals w €
[0, 1] that admit a terminating expansions of the formw = Y ", F,m < oo. In
any such case, the following “canonical” expansion may be chosen:

LIfw=3Y,") %+ 2, set

n=1 3n
wp, n<m-—1,
/
w, =12, n=m,
0, n>m+1;

2. Andifw = Y07} 2 4 b set

w,, n<m-—1,
r_
w, =410, n=m,

2, n>m+ 1.
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(c) Suppose that the set .4 < [0, 1] comprises all points of increase for the
Cantor function on the interval [0, 1] (recall that the Cantor function is a canonical
example of a distribution function which is both continuous and singular—see
[P §2.3, 1]). Prove that every w € .4 admits an expansion of the form

where w, € {0,2},n > 1.

Remark. 1t is interesting that (see [132]) if decimal expansions for the numbers
w € A are considered, then there will be precisely 14 numbers in the Cantor set
/ that admit terminating expansions. These numbers are

P31 3 7 9 1 3 9 13 27 31 37 39
4747 107 107 107 107 40" 40" 40" 40" 40" 40" 40" 40

Problem 2.3.20. Let .4 denote the Cantor set inside the interval [0, 1].

(a) Prove that .4 has the same cardinality as the set [0, 1].

(b) Describe the sets that can be identified with 4~ @& .4 and A4 © ./, i.e., the
sets{w+ o' :we N, 0 e N} and{w - 0w e N, 0 €N}

Problem 2.3.21. Let C be any closed subset of the real line R. Give an example of
a distribution function F, for which one can claim that the support of F is precisely
the set C,i.e.,supp FF = C.

Problem 2.3.22. Give an example of a o-finite measure © which is defined on
(R, Z(R)) and

(a) is not a Lebesgue—Stieltjes measure, in other words, one cannot find a non-
decreasing and right-continuous function G = G(x) (i.e., a generalized distribution
function) with the property p((a,b]) = G(b) — G(a),a < b;

(b) is not a locally finite measure, in other words, every open neighborhood of
every point x € R has infinite measure.

Problem 2.3.23. Find a subset of the interval [0, 1], which does not belong to the
collection of all Lebesgue-measurable sets #4([0, 1])—see [P §2.3, 1].

Problem 2.3.24. Give a probabilistic proof of Euler’s product formula for the
Riemann zeta function; namely, consider the Riemann zeta function {(«) =
> nl(,, 1 < a < oo, and prove that the following representation, in which

P1, P2, ... 18 the sequence of all prime numbers greater than 1, is in force:

(e =] (1 - i).

o
n=1 Pn
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Hint. Let N = {1,2,...} be the set of all natural numbers endowed with the
o-algebra N comprised of all possible subsets of the (countable) set N—see the
notation for N(<7) at the end of [P §1.1, 3]. Then define a probability measure P
on (N, Z'N) so that, given any A C N, one has

P(4) = ()™ Y n.

neA

Let A(p;) = {pi,2pi,...} denote the collection of those numbers n € N for
which p; is a factor (i.e., a divisior) of n. Prove that

(@) P(A(pi)) = pi™:

(b) The events A(p1), A(p2), ... are independent;

© N, A(pi) = {1}, o

Furthermore, argue that, since (b) implies that the events A(p;), A(p2), ... are
also independent, then (c) and (a) imply that

P(ﬂZ(p,»)) — P = (@]

i=1

and, at the same time, that

P(ﬁz(pi)) - ﬁ [1-P(p))] = ﬁ (1 - %)

i=1 i=1 i=1 i
which completes the proof.

Problem 2.3.25. Give a probabilistic proof of Euler’s product formula for Euler’s
totient function ¢(n), which, for any n € N, gives the total number of positive
integers p that do not exceed n and are also relatively prime to n (i.e., the only
common divisor of n and p is 1); namely, by using probabilistic reasoning, prove

that
pn) 1
il (1 )

p
pln

where the product is taken over all prime numbers p that divide n (i.e., all prime
numbers p that are factors of n).

Hint. Consider the usual uniform probability distribution P({k}) = 1/n, 1 <
k < n on the set {1,...,n}. For a fixed n € N, let A(p) = {k < n
p is a factor of k} and let py, p», ... denote the (distinct) prime numbers that divide
n. Prove that:

(a) P(A(p1) = p;".

(b) That the events A(p), A(p2), . .. are independent.

(c) That [ pln A(p) can be identified with the event that k < n is a prime number.
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Then argue that

@(n) - 1
) —p(T4w) =TT -Paen =TT (1-+).

pln pln pln

Problem 2.3.26. Prove that the Lebesgue measure on (R”, Z(R")) is invariant
under translation when n > 1, and invariant under rotation when n > 2.

Problem 2.3.27. In the context of Carathéodory’s theorem, prove by way of
example that the requirement for the system of sets .o to be an algebra is essential
for both the existence and the uniqueness of the extension of the probability measure
P, originally defined on 7, to a measure defined on the o-algebra .# = o(<7).
Specifically:

(a) Construct a sample space £2, two systems of subsets of §2, & and .#, such
that & is not an algebra and .# = 0(&), and then construct a probability measure
P, defined on &, which cannot be extended to a probability measure on the o-
algebra 7.

(b) Construct a sample space §2, two systems of subsets of £2, & and .# with
F = 0(&), and also two distinct probability measures, P and Q, defined on the
o-algebra .%, such that their restrictions to &, i.e., the measures P|& and Q|&—see
[P §2.3, 4 ]—coincide.

Hint. To prove (a), consider the sample space 2 = {1, 2, 3}, set

& ={o,{1},{1,2},{1,3}, 2},

define .# to be the o-algebra of all subsets of 2, and, finally, set P(£2) =
P({1.2}) = P({1.3}) = 1, P({1}) = 1/2,P(2) = 0.
To prove (b), consider the sample space 2 = {1, 2, 3, 4}, set

¢ = {{1.2}.{1.3}},

define .% to be the g-algebra of all subsets of §2 and, finally, define P({2}) =
P4} =1/2,Q({2}) = Q({3}) = 1/2.

Problem 2.3.28. Let FF = F(x), x € R, be any distribution function. Prove that
for any @ > 0 one has

/[F(x—i—a)—F(x)]dx =a.
R

Problem 2.3.29. The density of a given distribution function F'(x) is defined as any
non-negative and Riemann integrable function f(x), x € R, for which one can write
F(x) = ffoo f(t)dt, forall x € R. Sometimes (say, when integrals are considered
only in the sense of Riemann—not in the sense of Lebesgue) one does not suppose
that the function f(x) is Borel measurable.
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Give an example of a function f(x) which is not Borel measurable, but
nevertheless represents a probability density (in the sense described above) and
defines a probability measure on the Borel subsets B of the real line R, according to
the formula u(B) = [°0 f(x)Ip(x)dx.

Hint. The collection of all Borel subsets of the interval [0, 1] has cardinality c,
i.e., the cardinality of the continuum, while the cardinality of the Lebesgue subsets
of [0, 1] is 2¢ (see Problem 2.2.32). By using this fact conclude that if .4~ denotes the
Cantor set inside the interval [0, 1], then one can find a subset D < [1/2,1] N ./,
which is not a Borel-measurable set and has a Lebesgue measure 0. Then convince
yourself that the function f(x) = 2121\ p (x), not being Borel measurable, is
actually Riemann integrable and the integral [ f(x)Ip(x)dx is well defined and
gives rise to a probability measure on the Borel sets B < [0, 1].

Problem 2.3.30. Find two sets, A and B, inside the real line R, which have
Lebesgue measure equal to 0, and yet have the property A & B = R.

Problem 2.3.31. Let </ be any o-algebra of subsets of the set £2 and let . =
o(27). Let i be any o-finite measure on .%. Prove that:

(a) The measure  may not be o-finite on .27

(b) If the measure u is o-finite on .2/ then the analog of the property stated in
Problem 2.3.8 still holds, i.e., for every ¢ > 0 and every B € . with u(B) < oo
one can find a subset A, € o/ such that u(4. A B) < ¢.

(c) If the measure p is not o-finite on <7, then the claim made in b) may be false.

Problem 2.3.32. Prove that a probability measure y defined on (R?, Z(R?)) is
always regular, in the sense that for any Borel set B € Z(R?)) one has

w(B) = igf{ w(U) : U 2 B, U is an open set},

and w(B) =sup{u(F): F C B, F isaclosed set}.
F

In addition, prove that the following relation holds for any Borel set B € %(R?)):

w(B) =sup{ u(K) : K € B, K is a compact set}.
K

Problem 2.3.33. (Bertrand’s Paradox.) The well known Bertrand’s Paradox is a
good illustration of the fact that in many probabilistic models (in particular, models
involving geometric probabilities, which the paradox is concerned with) one must
be careful in the formulation of the model and in giving meaning to phrases like
“a randomly chosen point,” “a randomly chosen figure,” etc. (This was already
discussed in Problem 1.1.12.)

The problem, found in Bertrand’s book [7], and its contradicting answers
(whence the term‘“paradox”), found by using different calculation methods, were
understood to imply that in random experiments with infinitely many outcomes there
are events to which it is impossible to assign probabilities in a meaningful way.
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Bertrand’s problem may be stated as follows: Suppose that a chord A B, with end-
points A and B, is chosen at random on a circle of radius r. What is the probability
that the length | A B| of the (random) chord A B is smaller than the radius r?

Consider the following three possible formulations of this problem:

(a) The phrase “the chord A B is chosen at random” is understood to mean that
the points A and B are sampled independently from the uniform distribution on the
circle.

Prove that in this case P,{|AB| < r} = 1/3. (Fix the point A and consider the
regular hexagon inscribed in the circle so that one of its vertices coinsides with A.)

(b) Every chord A B is uniquely determined by the point M € A B, chosen so that
OM 1 AB, O being the center of the circle. The phrase “the chord A B is chosen
at random” is understood to mean that the point M is sampled from the uniform
distribution on the disc (surrounded by the circle).

Prove that in this case Py{|AB| < r} = 1/4. (Convince yourself that the event
{|AB| < r} is the same as the event that M belongs to the ring surrounded by the
circle of radius r and radius r \/3/4.)

(c) As the length of the chord A B is determined by its distance to the center of
the circle and not by its position on the circle, one may suppose that A B is parellel
to the horizontal diameter CD, while the random point M € AB, defined as the
intersection between A B and the vertical diameter EF (which is perpendicular to
CD) is uniformly distributed on EF'.

Prove that in this case

PA|AB| <r}=1— ? (~0.13).

(One must prove that the event {|AB| < r} coincides with the event {|{OM| >
V/3r/2}, where |OM | is the distance between M and the center, O, of the circle.)

Problem 2.3.34. (Continuation of Problem 2.3.33.) Argue that the situation de-
scribed in Problem 2.3.33 can actually be connected to three different problems.
More specifically, let p = |OM |, where O is the center of the circle and the point
M is defined as in part (b) in the previous problem, and let 6 denote the angle
between the chord A B and some fixed direction, so that, assuming that » = 1, for a
chord with |AB| > 0 one musthave 0 < p < 1,0 < 6 < 2.

Prove that in parts (a), (b) and (c) in the previous problem the joint distribution
of (p, 0) is given, respectively, by the densities

1 o 1
a 56 ) ,0 - —, C ,9 = —.
Palp. 9) T po(p.0) = — pelp.0) = ——

Consequently, there is no “paradox”, as the phrase “the chord AB is chosen at
random” is given a completely different probabilistic meaning in parts (a), (b)
and (c).
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Problem 2.3.35. Let (X, .2, u) be the space associated with some measurable
structure (X, Z°) and some countably additive measure p (see [ P §2.3, Definitions
5 and 6]).

A measurable set A is said to be an afom relative to the measure pu, or,
equivalently, a u-atom, if u(A) > 0 and for every measurable set B one has either
w(AN B) = 0or w(A\ B) = 0. The measure y is said to be atomic, if every
measurable set with a positive p-measure contains an atom.

The measure u is said to be non-atomic if no p-atoms exist.

The measure pu is said to be a diffusion measure if every one-point set is a
measurable p-null set.

Give examples of atomic, non-atomic and diffusion measures and also an
example of a measure which is simultaneously an atomic measure and a diffusion
measure.

Prove that the sum of an atomic and a non-atomic measure may be an atomic
measure.

Problem 2.3.36. Let P and Pbe any two probability measures on (£2, .%) such that
P(A4) = P(A), forany A € .% with P(A) < 1/2. Prove that when this condition is
satisfied then P(A4) = P(A) for every set A € F.

2.4 Random Variables I

Problem 2.4.1. Prove that the random variable £ has a continuous distribution, or,
“£ is continuous” for short, if and only if P{§ = x} = 0 for any x € R.

Problem 2.4.2. Can one claim that if |§| is .% -measurable then & also must be .%-
measurable?

Problem 2.4.3. Prove that x", x* = max(x,0), x~ = —min(x,0) and |x| = x T+
x~ are all Borel functions of x. Prove that the following more general statement:
every continuous function f = f(x), x € R is Borel measurable.

Hint. Given any o € R, consider the open set {w € R : f(w) < o} and use the
result established in Problem 2.2.7.

Problem 2.4.4. Prove that if £ and 7 are .%-measurable then
{w: §(w) =n(w)} € Z.

Problem 2.4.5. Let £ and 1 be any two random variables on (§2,.%) andlet A € .Z.
Then the function

{(w) = E(w) 4+ n(w) Iz
also must be a random variable.

Problem 2.4.6. Leté&y,..., &, beanyn > 1 random variables and let ¢ (x1, ..., x,)
be any Borel-measurable function. Prove that ¢(&(®), ..., &, (®)) is a random
variable.
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Hint. Show first that the map

o~ (§1(@).....E(w)) € R

is % /A (R")-measurable. Then use the fact that the map w ~ ¢(&1(w), ..., & (w))
is a composition of measurable maps.

Problem 2.4.7. Let £ and 1 be any two random variables with values in the
set {1,..., N} and suppose that .%#; = .%,. Prove that there is a permutation
(i1,...,in)of theset (1,..., N) for which one can claim that forany j = 1,..., N
the sets {w: & = j} and {w:n = i;} coincide.

Hint. Consider using [P §2.4, Theorem 3], according to which there are
functions ¢ and v such that £ = ¢(n) and n = ¥ (&). Then argue thati; = ¥ (j)
gives the desired permutation.

Problem 2.4.8. Give an example of a random variable £ that admits a probability
density f(x) such that lim,—, f(x) does not exist and, therefore, the function
f(x) does not vanish at infinity.

Problem 2.4.9. Let £ and 1 be any two bounded random variables with |§] < ¢y,
[n| < ¢y. Prove that if

Eém n}‘l — E%-m . En}‘l’
for any m,n > 1, then £ and n must be independent.

Problem 2.4.10. Let £ and 1 be any two random variables whose distribution
functions, F; and F), coincide. Prove that if x € R and {w:£(w) = x} # O,
then there is a real number y € R such that {w: &(w) = x} = {w:n(w) = y}.

Problem 2.4.11. Let E be any at most countable subset of R and consider the map
£: 2 — E. Prove that £ is a random variable on (£2, .%) if and only if {w: £ (w) =
x} € 7 forany x € E.

Problem 2.4.12. Let £ be any random variable with the property P{£ # 0} > 0.
Suppose that for some a and b the random variables a§ and b§¢ have one and the
same distribution, i.e., Fug(x) = Fpe(x), x € R. Can one claim that this is possible
only if @ = b? Does the assumption @ > 0 and b > 0 change the answer to the last
question?

Problem 2.4.13. Let (£2,.%,P) be any probability space and let (Q,?P, P) be
its completion relative to the measure P (see Problem 2.2.34 and Remark 1
in [P §2.3, 1]). Prove that, given any random variable £ = £(w) on (.Q,?P, P),
it is always possible to find a random variable § = &(w), defined on (£2,.7,P),
for which one can claim that P{§ # £} = 0, i.e., £ and £ differ only on a set with
probability 0.

Problem 2.4.14. Let £ be any random variable and B be any Borel set in R.
Prove that

o(§1(5 € B) = £ (B)Na(§).
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Problem 2.4.15. Let £, &, ... be any sequence of independent random variables
every one of which is uniformly distributed in the interval [0, 1]. Given any w € £2,
consider the set A(w) < [0, 1] which consists of all values & (), &(w), . ... Prove
that for almost every @ € §2 one can claim that the set A(w) is everywhere dense
in [0, 1].

Problem 2.4.16. Let &,£,,... be any sequence of Bernoulli random variables,
such that P{& = 1} = P{§ = —1} = 1/2, k > 1. Consider the random walk
S = (Sy)u>0, defined by So = 0and S, = & + ... + &, forn > 1.

Let op = inf{n > 0 : S, = 0} be the first moment (after n = 0) at
which the random walk returns to 0, with the understanding that o9y = oo if
{n>0:8,=0}=0.

Prove that

P{oo > 2n} = CJ, (%)2’1 and P{op =2n} = ﬁcgn (%)2’1.

By using Stirling’s formula, argue that for large n one has

1
P{oy > 2n} ~ —— and P{og =2n} ~

Jn

(comp. with the formulas for uy; and f5 givenin [ P §1.10]). For example, the above
formulas imply that P{oy < oo} = 1 and Eo§ < oo if and only if « < 1/2—see
[P §1.9] for related results.

1
2/ n3/?

Problem 2.4.17. In the context of the previous problem, let oy = inf{n > 1: S, =
k}, k=1,2,... Prove that

Plo = n} = P(s, =k}

and conclude that

Pioy = n) = K3 (1)
n 2
Problem 2.4.18. Let £ = £(w) be any non-degenerate random variable, such that,
with some constants @ > 0 and b, the distribution of a§ + b coincides with the
distribution of £. Prove that this is only possible if a = 1 and b = 0.

Problem 2.4.19. Let & and &, be any two exchangeable random variables, i.e., &
and &, are such that the distribution law of (£, &) coincides with the distribution
law of (&, &)). Prove that if f = f(x) and g = g(x) are any two non-negative and
non-decreasing functions, then

EfEDgE) = Ef(5)g(&2).
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Problem 2.4.20. (On [P §2.4, Theorem 2].) Let &, &,, ... be any sequence of real-
valued random variables. Prove that

B = {w : lim§,(w) exists and is finite} € 7.
Hint. Use the fact that B may be expressed as:

B = {lim§, > —oo} N {mén <oo} N {mén —lim§, = 0}.

Problem 2.4.21. Let &,&,,... be any sequence of independent and identically
distributed random variables that share the same continuous distribution function.
Let Ay, A», ... be any sequence of events, such that A} = §2 and

A, =& > &, forallm <n}, n>2,

i.e., A, is the event that a “record” occurs at time n. Prove that the events 4, 4, ...
are independent and that P(A4,) = 1/n,n > 1.

Problem 2.4.22. Let £ and 7 be any two random variables, such that Law(7), i.e.,
the distribution law of 7, is absolutely continuous (in the sense that the associated
distribution function F; is absolutely continuous). Prove that:
(a) If £ and n are independent, then Law(§ + n) is also absolutely continuous.
(b) If £ and 7 are not independent, then Law(§ + 1) may not be absolutely
continuous.

Problem 2.4.23. Let £ and n be any two random variables, such that & is discrete
and 7 is singular, i.e., F; is a discrete distribution function and F; is a singular
distribution function. Prove that the distribution function F¢,, associated with the
random variable £ + 7, is singular.

Problem 2.4.24. Let (§2,.7) be any measurable space, such that the o-algebra .7
is (countably) generated by some partition & = {D, D,,...} (see [P §2.2, 1]).
Prove that the o-algebra .# can be identified with the o-algebra .#x, generated by
the random variable

> ol
X@) = 3 24,
n=1

where ¢(0) = 3 and ¢(1) = 5.

Problem 2.4.25. (a) Suppose that the random variable X has a symmetric distribu-
tion, i.e., Law(X) = Law(—X). Prove that Law(X) = Law(£Y), where £ and Y
are independent random variables, such that P{§ = 1} = P{§ = —1} = 1/2 and
Law(Y) = Law(] X]).

(b) Suppose that £ and Y are two independent random variables and that
P{¢ =1} = P{§ = —1} = 1/2. Prove that £ and £Y are independent if and only if
Y has a symmetric distribution, i.e., Law(Y) = Law(—Y).
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Problem 2.4.26. Suppose that the random variable X takes only two values, x; and
X2, X] # X2, and that the random variable Y also takes only two values y; and y,,
y1 # y». Prove that if cov(X, Y) = 0 then X and Y must be independent.

Problem 2.4.27. Suppose that &}, &, ... are independent and identically distributed
random variables, all being uniformly distributed in the interval [0, 1]. Given any
0<x <1,set

t(x)=min{n >1:& +---+ & > x}.

Prove that P{t(x) > n} = x"/nl,n > 1.

Problem 2.4.28. Suppose that X;, X, and X3 are independent and identically
distributed random variables with exponential density f(x) = e *I(x > 0). Define
the random variables

X X1+ X,

Y:—’ o .
TX X T X+ X+ X

and Y3 =X+ X7 + X;.

Prove that the above random variables, Y7, Y> and Y3 are independent.

Problem 2.4.29. Suppose that X; and X, are independent random variables,
both having a y2-distribution, respectively, with r; and r, degrees of freedom
(see formula [P §2.8, (34)], or [P §2.3, Table 3]). Prove that the random variables
Y, = Xi/X; and Y, = X; 4+ X, are independent (comp. with the statements of
Problems 2.13.34 and 2.13.39).

2.5 Random Elements

Problem 2.5.1. Let &, ..., &, be any family of n discrete random variables. Prove
that these random variables are independent if and only if for every choice of the
real numbers xy, ..., x, one has

PlEr =xi.....6 =x} = [ [Pt& = x).

i=1

Problem 2.5.2. Give a complete proof of the fact that every random function
X(w) = (&(w));er is a random process in the sense of [P §2.5, Definition 3]
and vice versa.

Hint. If X = X(w) is a .% /%(RT)-measurable function, then for every t € T
and B € A(R) one has

{w: &) eBY={w:X(w)eC}le.F, whereC ={xeR’:x eB).

Conversely, it is enough to consider sets C € Z(RT) of the form {x : x, €
Bi,...,x;, € B,}, By, ..., B, € Z(R), which, obviously, belong to .%.
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Problem 2.5.3. Let X|,..., X, be random elements with values, respectively, in

(E1, &), ..., (E4. &,). Furthermore, suppose that (E{, &), ..., (E,, &) are mea-

surable spaces and that g, ..., g, are, respectively, &1/&7, ..., &,/&,-measurable

functions. Prove that if Xi,..., X, are independent, then the random elements

gi1oX1,..., g,0X, also must be independent, where g; 0 X; = g;(X;),i = 1,...,n.
Hint. It is enough to notice that forany B; € &;,i = 1,...,n, one has

P{gi(X1) € Bi,....gu(X,) € By} = P{X; € g7 (B1),.... X, € g, (Bu)}.

Problem 2.5.4. Let X, X2, ... be any infinite sequence of exchangeable random
variables, i.e., the joint distribution of any k elements of the sequence with distinct
indices, say, Xj,,...,X;,, depends on k but not on the choice or the order of
the indices iy, ..., iy—comp. with the definition in Problem 2.1.11. Prove that if
Ean < 00, n > 1, then the covariance of X| and X, satisfies cov(X;, X;) > 0.

Hint. Using the exchangeability, write the variance D( YU X i) in terms of the
first two moments and the covariances and then take the limit as n — oo.

Problem 2.5.5. Let &,...,&, and 7y, ..., 7, be any two (arbitrarily chosen) sets
of random variables. Define the vectors X = (&;,...,&,) and Y = (n1,..., 1)
and suppose that the following conditions are satisfied:

(i) the random variables &, .. ., &, are independent;
(ii) the random variables 7y, ..., n, are independent;
(iii) the random vectors X and Y, treated as (random) elements of, respectively,
R™ and R" are independent.

Prove that the random variables &1, ..., &, 11, ..., n, are independent.

Problem 2.5.6. Consider the random vectors X = (&,...,&,) and ¥ =
(N1,...,ny) and suppose that their components &,...,&,,7n1,...,n, are
independent.

(a) Prove that the random vectors X and Y, treated as random elements, are
independent (comp. with Problem 2.5.5).

(b) Let f:R™ — Rbe g: R” — R be two Borel functions. Prove that the random
variables f(&;,...,&,) and g(ny, ..., n,) are independent.

Problem 2.5.7. Suppose that (§2,.%) is a measurable space and let (E, &, p) be
a metric space endowed with metric p and a Borel g-algebra &, associated with
the metric p—see [P §2.2]. Let X|(w), X2(w), ... be some sequence of .7 /&-
measurable functions (i.e., random elements), such that for any w € £2 the limit

exists. Prove that the limit X(w), treated as a function of w € £2, must be .%/&-
measurable.
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Problem 2.5.8. Let £,&,... be any sequence of independent and identically
distributed random variables, let .%, = o(§,&,...), n > 1, and let T be any
stopping time (relative to (:%,),>1). Set

(@) = gn+t(a)) (w).

Prove that the sequence (71,72,...) has the same distribution as the sequence

¢1,5....).

2.6 The Lebesgue Integral: Expectation

Problem 2.6.1. Prove that the representation in [ P §2.6, (6)] is indeed in force.

Hint. Let S denote the space of simple functions 5. If s € {s € § : s < &}
and if (§,),>1 is some sequence of simple random variables such that &, 1 £,
then max(,,s) 1 & and Es < Emax(§,,s). From the last inequality one can
conclude that Es < E& and that supgeg.,<sy Es < E&. The opposite inequality
follows directly from the construction of E£.

Problem 2.6.2. Verify the following generalization of property E, described in
[P §2.6, 3]. Suppose that £ and n are two random variables for which the
expectations EE and Ep are well defined and the expression E§ + En is meaningful,
in the sense that it does not have the form co — oo or the form —oo + oo. Then one
can write

E¢ +n) =EE+ En.

Hint. Just as in the proof of property E, one must consider the infinities arrising
from the representations § = £+ —£~ and n = n* —n~. If, for example, EET = oo,
then, by using the assumptions in the problem, one can prove by contradiction that
EE+n)T = oo

Problem 2.6.3. Generalize property G in [P §2.6, 3] by showing that if £ = p
(a.e.) and E£ is well defined, then En also well defined and En = EE.

Problem 2.6.4. Let £ be any extended random variable and let ; be any o-finite
measure with the property [, [§|di < oo. Prove that |§] < oo (u-a.e.). (Comp.
with Property J.)

Problem 2.6.5. Suppose that p is some o-finite measure and that £ and n are
extended random variables for which f €dp and [ ndp are well defined. Prove
that if one can claim that [, § du < [, ndpu for any set A € .7, then one can also
claim that £ < n (u-a.e.). (Comp. with property I.)

Problem 2.6.6. Assuming that £ and 1 are two independent random variables,
prove that EEn = E& - En.
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Hint. Instead of £ and 1 consider the simple random variables &, and 7, chosen
so that & 1 & and 1, 1 7. According to [P §2.6, Theorem 6] one must have
E&,n, = E&,En,. The proof can be completed by using the monotone convergence
theorem.

Problem 2.6.7. By using Fatou’s lemma prove that

P(lim 4,) < limP(4,), P(lim 4,) < limP(4,).

Problem 2.6.8. Construct an example that proves that, in general, in the dominated
convergence theorem one cannot relax the condition “|&,| < n, En < 00”.

Hint. Let 2 = [0,1], let .# = Z([0, 1]), suppose that P is the Lebesgue
measure on [0, 1], and then consider the random variables &, (w) = —nl(w < 1/n),
n>1.

Problem 2.6.9. By way of example, prove that, in general, in the dominated
convergence theorem one cannot remove the condition “§, < n, En > —00”.

Problem 2.6.10. Prove the following variant of Fatou’s lemma: if the family of
random variables {%-:_ ,n > 1} is uniformly integrable, then

limE§, < Elimé,.
Hint. Use the fact that for any ¢ > 0 one can find some ¢ > 0 such that
EE, 1(&, > ¢) < e, foralln > 1.
Problem 2.6.11. The Dirichlet function is given by

1, is rational
d(x) = X 18 rationa Cxefo1].
0, x isirrational

This function is Lebesgue-integrable (on [0, 1]), but is not Riemann-integrable.
Why?

Problem 2.6.12. Give an example of a sequence of Riemann-integrable functions
(f4)n>1, which are defined on [0, 1] and are such that | f,| < 1, f, — f Lebesgue-
almost everywhere, and yet the limit f is not Riemann-integrable.

Hint. Consider the function f,(x) = Y /_, I,3(x), where {g1.¢>, ...} is the
set of all rational numbers in [0, 1].

Problem 2.6.13. Let {a;;;i,j > 1} be any sequence of real numbers with
Zi,j |aj;| < oo. By using Fubini’s theorem, prove that

Yag =2 (Xan) =2 (X ay)- ()

(@) i 7 J i
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Hint. Consider an arbitrary sequence of positive numbers pj, pp,... with
> 2, pi = 1 and define the probability measure P on 2 = N = {1,2,...}
according to the formula P(A) = ) ;. , pi. Then define the function f(i,j) =

AU observe that
PiPj

/Q @0 d®xP) = Y116 Dlpips = L lay| <o,
i, i,

and use Fubini’s theorem.

Problem 2.6.14. Give an example of a sequence (a;;;i,j > 1) for which
Zi!]‘ |a;;| = oo, but the second identity in (*) (Problem 2.6.13) does not hold.
Hint. Consider the sequence

0, i=j
dij =9 . . . L
(=7 i #]
Problem 2.6.15. Starting with simple functions and using the results concerning
the passage to the limit under the Lebesgue integral, prove the following version of
the change of variables theorem.

Let &~ = h(y) be any non-decreasing and continuously differentiable function
defined on the interval [a, b] and let f(x) be any integrable (relative to the standard
Lebesgue measure dx) function on the interval [h(a),(b)]. Then the function
f(h(y))I' () is Lebesgue-integrable on the interval [a, b] and

h(b) b
fwdr= [ foDE ).
h(a) a
Hint. First prove the result for functions f that can be written as finite linear
combinations of indicators of Borel sets. By using the monotone convergence
theorem then extend the result for all non-negative functions f and, finally, prove
the result for arbitrary functions f by using the usual representation f = f ™ — f~.

Problem 2.6.16. Verify formula [P §2.6, (70)].

Hint. Consider the random variable § = —£, which has a distribution function
F(x) = 1 — F((—x)—), and notice that [°__|x|" dF(x) = [°x" dF(x). Use
formula [P §2.6, (69)].

Problem 2.6.17. Let £,&,,&,... be any sequence of non-negative random
variables that converges in probability P to the random variable £, i.e.,

P(&, — & > ) = 0, n — oo (notation: &, —P> &—see [P §2.10]).

(a) Generalize [ P §2.6, Theorem 5] by showing that if E§, < oo, n > 1, then the
following claim can be made: E§, — E£ < oo if and only if the family {§,,n > 1}
is uniformly integrable; in other words, the statement of Theorem 5 remains valid if
the convergence with probability 1 is replaced by convergence in probability.
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(b) Prove that if all random variables &, &, &,, ... are integrable, i.e., EE < oo
and E§, < oo, n > 1, then

E{, > Ef — E[6 —§—0.

Hint. (a) The sufficiency follows from [ P §2.6, Theorem 4] and Problem 2.10.1.
The necessity can be established, as in [P §2.6, Theorem 5], by replacing the
almost everywhere convergence with convergence in probability (one must again
use Problem 2.10.1).

(b) Given any ¢ > 0 one has

El§ =&l <El§ —CE A +EIEAC)—Enc)+E[EAc)—El

By keeping ¢ > 0 fixed and by choosing ¢ > 0 so that E|§ — (§ A ¢)| < ¢, one can
claim (due to the assumptions) that E|(§Ac)—(E,Ac)| < e and E|(§,Ac)—E,| < 3e,
for all sufficiently large n. Consequently, E|§ —§&,| < 5¢, for all sufficiently large n.

Problem 2.6.18. Let £ be any integrable random variable, i.e., E|¢| < oo.

(a) Prove that for any € > 0 one can find some § > 0 with the property that for
any A € . with P(A) < § one has E14|&| < € (absolute continuity property of the
Lebesgue integral).

(b) Conclude from (a) that if (A4,),>1 is some sequence of events for which
lim, P(4,) = 0, then E(§1(A,)) — 0, as n — oo. Hint. Use Lemma 2 in
[P§2.6, 5].

Remark. Comp. with (b) from [P §2.6, Theorem 3].
Problem 2.6.19. Suppose that the random variables &, 1, ¢ and &,,7n,,¢,, n > 1,

P
are such that (see the definition of convergence in probability — in Problem 2.6.17)

P P P
= Em—>n0—>0 m=<&E=<C.n>1,

E¢, — E., En, — En,

and the expectations E&, En, EC are all finite. Prove the following result known as
Pratt’s lemma:

(a) E§, — E&.

(b) If, in addition, n, < 0 < ¢,, then E|§, — &| — 0.

P
Conclude that if §, — &, E|§,| — E|&] and E|§| < oo, then E|§, — &] — 0.
Give an example showing that if condition (b) is removed then it is possible that

El§, — &1 /0.
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Hint. For the random variables 77, = 0, En = & — N, ?n = ¢, — n, and

7= O,E =§&— n,?: ¢ — 1, one has 0 < ?n 5 ¢ and E¢, — EC{. According
to part (a) in Problem 2.6.17 the family {{,,n > 1} is uniformly integrable and,
since 0 < &, < ¢,, the family {gn,n z~1} also must be uniformly integrable.
Consequently, one can claim that EE, — E£ (and even that E|¢,, —&| — 0). Because
of the assumption En, — En, it follows that E§, — E£.

Problem 2.6.20. Prove that L, f < L* f and, if the function f is bounded and the
measure . is finite, then L, f = L* f (see Remark 2 in [P §2.6, 11]).

Problem 2.6.21. Prove that for any bounded function f one has Ef = L. f (see
Remark 2 in [P §2.6, 11]).

Problem 2.6.22. Prove the final statement in Remark 2 in [P §2.6, 11].
Problem 2.6.23. Let FF = F(x) be the distribution function of the random
variable X . Prove that:

0 00
(a) E|X| <o <:>/ F(x)dx < oo and / (1—=F(x))dx < oc;
—00 0

1

dx < oo for some a.
F(x)

o0
(b) EX'T <o0 <:>/ In
a
Hint. (b) Verify the following inequality

E[XI(X>a)]§/ooln%dx§%E[Xl(x>a)], a>0.

Problem 2.6.24. Prove that if p > 0 and lim,_,o x?P{|€] > x} = 0, then
E|£]" < oo forall ¥ < p. Give an example showing that if r = p then one can
have E|&|" = oo.

Problem 2.6.25. Give an example of a probability density f(x), which is not an
even function, but nevertheless all odd moments vanish, i.e., f_ozo xk f(x)dx =0,
k=1,3,....

Problem 2.6.26. Give an example of a sequence of random variables &,, n > 1,
that has the following property:

EY & #) Eb
n=1 n=1

Problem 2.6.27. Suppose that the random variable X is such that for any o > 1
one has

P{|X| > an}
P{|X| > n}

Prove that then X admits finite moments of all orders.

—0 as n— oo.
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Hint. Use the formula
o0
ElX|N = N/ NP1 X > x) dx, N > 1.
0

Problem 2.6.28. Let X be any random variable that takes the values k = 0,1,
2,... with probabilities py. The function G(s) = Es* (= 372 pisb), |s] < 1, is
known as the generating function of the random variable X (see Sect. A.3). Verify
the following formulas:
(a) If X is a Poisson random variable, i.e., py = e *A%/k!,k =0,1,2,...,, for
some A > 0, then
G(s) = EeX =079 |5 < 1.

(b) If the random variable X has a geometric distribution, i.e., if py = pg~¥,

k=0,1,2,...,forsome 0 < p < land g = 1 — p, then

G =—L— |s|=<1
1 —sq

(c) If Xy,..., X, are independent and identically distributed random variables
with P{X; =1} = p,P{X, =0} = p (¢ = 1 — p), then

n

G(s) = (ps+q)" (= pN (e p"q”"‘]sk)

k=0

and, consequently, P{X| + ... + X, = k} = Ck pkg"~*.

Problem 2.6.29. Let X be any random variable that takes values in the set
{0,1,2,...}and let G(s) = Y% pis*, where pr = P{X = k}, k > 0. Assuming
that r > 1, prove that:

(a)IfFEX" < oo, then the factorial moment E(X), = EX(X—1)...(X—r+1)is
finite and E(X), = limy—.; G")(s) (= G")(1)), where G (s) is the r-th derivative
of G(s).

(b) IFEX" = oo, then E(X), = co and lim,_,; G") = o0

Problem 2.6.30. Let X be any random variable which is uniformly distributed in
the set {0, 1,...,n}, i.e., P{X = k} = where k = 0,1,...,n. Prove that

1 1=t
G(S) ~ n+l 1-s
relations:

+1’
and, after computing EX and EX?, establish the following

k= n(n+1) Zkz n(n+1)(n+2)
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Problem 2.6.31. (Continuation of Problem 1.1.13.) Consider the (not-necessarily
independent) events A, ..., A, let X; = I4,,1 = 1,...,n,and let X, = I4, +
...+14,. Prove that the generating function Gz, (s) = Es*" is given by the formula:

Gs,(s) = Suls =1,
=0

Sw= Y. P(Ay+...+4,) (= > P{Xn=1,---,Xfm=1})

I<i|<..<ip=<n 1<ii<..<ip<n

(see Problem 1.1.12). Conclude that the probabilities of the events B,,={X, = m}
are given by the formula

P(Bn) = Y (=) "C/" S

k=m

Hint. Use the relations Gy, (s) = E][/_,(1 + X;(s — 1)) and

[Ja+Xis=1D) =14+ Xis—D+ D Xy Xo(s— D7+ +] [ Xi(s—1)".

i=1 i=1 l§i1<i2§n i=1

Problem 2.6.32. In addition to the generating functions G(s), it is often useful
to work with moment generating functions, which are defined as M(s) = Ee*¥,
assuming that s is chosen so that Ee** < oo. Note that if the random variable X
is non-negative and s = —A, where A > 0, then the function /IE(A) = M(-A)
(= Ee™X) is nothing but the Laplace transform of the random variable X with
cd.f. F = F(x).

(a) Prove that if the moment generating function M(s) is defined for all s in
some neighborhood of the origin (s € [—a, a], a > 0), then all derivatives M ®) (s),
k=1,2,...,existats = 0 and

M®0) = Ex*.

This observation justifies the term “moment generating function” in reference to the
function M (s).
(b) Give an example of a random variable for which M (s) = oo forevery s > 0.
(c) Prove that if X has a Poisson distribution with A > 0 then M(s) = e *(1=¢")
forall s € R.
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(d) Give an example of two random variables, X and Y, which are not
independent and, at the same time, My y(s) = Ee*X*Y) is the product of the
moment generating functions My (s) = Ee** and My (s) = Ee*?.

Problem 2.6.33. Prove that if 0 < r < oo, X, € L" and X,,iX , then the
following conditions are equivalent:

(i) The family {|X,|",n > 1} is uniformly integrable.
(i) X, — Xin L".
(iii) E|X,|" — E|X]|" < oc.

Problem 2.6.34. (Spitzer identity.) Let X, X5, ... be independent and identically
distributed random variables with E| X ;| < oo, and let Sy = X + -+ + Xy, My =
max(0, Sy, ..., Sk), k > 1. Prove that, forany n > 1,

1
EM, =) - ES, (%)
k=1

where Sk+ = max(0, Sk).
Hint. By using the relations

M, = I(S, > 0)M, + (S, < 0)M,,
E[I(Sn > O)Mn] = E[I(Sn > O)Xl] + E[I(Sn > O)Mn—l]
and E[/(S, > 0)X,] = n~'ES,', one can prove by induction that

1
n—1

1 1
EM, = —-ES;} + EM,_, = —ES,,++[ Es,f_1+EMn_2} =..=
n n

1 1
=) [ ESS+EMi =) L ESf
k=2 k=1

Remark. One can derive (x) by differentiating in ¢ the more general Spitzer
identity, according to which, for any 0 < u < 1, one has

oo oo

kE itMy, uk E itSkJr
u e = X —_— .
E p E k e

k=0 k=1

The proof of the above relation is somewhat more involved than the proof of (x).

Problem 2.6.35. Let So =0, S, = X; + -+ + X,,, n > 1, be a simple random
walk (see [P §8.8]) and let 0 = min {n > 0: S, > 0}. Prove that

E min(o, 2m) = 2E|S,,,| = 4mP{S,,, =0}, m > 0.



2.6 The Lebesgue Integral: Expectation 93

Problem 2.6.36. (a) Let £ be any standard Gaussian random variable (§ ~
(0, 1)). By using integration by parts, prove that EEX = (k — 1)EEF=2, k > 2,
and conclude that, for k > 1,

Ee*'=0 and EE* =1-3-----(2k—3)-2k—1) (= 2k — D).
(b) Prove that for any random variable X that has Gamma distribution (see
[P §2.3, Table 3]) with 8 = 1 one has

Exk = LT
I'(e)
In particular, EX = o, EX 2 = a(a + 1) and, therefore, DX = «. Find an analog
of the above formula when 8 # 1.
(c) Prove that for any Beta-distributed random variable X (see Table 3 in § 3)
one must have

_ B(r+k,s)

Ex* = k> 1.

B(r,s) -
Problem 2.6.37. Prove that the function

E(wr, ) = €019 — 272192 gy € 2, =[1,00), w, € 2, = (0, 1],

has the following properties:
(a) for any fixed w», £ is Lebesgue-integrable in the variable w; € §2;;
(b) for any fixed wy, & is Lebesgue-integrable in the variable w, € 25,

and yet Fubini’s theorem does not hold.

Problem 2.6.38. Prove Beppo Levi’s theorem, which claims the following: if the
random variables £, §&,,... are integrable (i.e., E|§,| < oo for all n > 1), if
sup, E§, < oo, and if §, 1 & for some random variable &, then £ is integrable
and one has E£, 1 E£ (comp. with [P §2.6, Theorem 1a]).

Problem 2.6.39. Prove the following variation of Fatou’s lemma: if 0 < &, — &
(P-a.s.) and E§, < A < 0o, n > 1, then £ must be integrable and EE < A.

Problem 2.6.40. (On the connection between the Riemann and the Lebesgue
integrals.) Suppose that the Borel function f = f(x), x € R, is integrable with
respect to the Lebesgue measure A, i.e., er | f(x)| A(dx) < oo. Prove that for any
& > 0 one can find:

(a) a step function of the form f.(x) = Y '_, fils (x), the sets A; being
bounded intervals, such that er | f(x) = fe(x)| Aldx) < &

(b) an integrable continuous function g.(x) that has bounded support and is such

that ¢ | f(x) — g:(x)| A(dx) < &.
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Problem 2.6.41. Prove that if £ is any integrable random variable then

[e9) 0
E¢ = P — P .
& /0 {£ > x}dx /_Oo {§ <x}dx
Show also that for any @ > 0 one must have
EEI(¢E >a)] = /oo P{& > x}dx + aP{& > a}
and that if £ > 0 then
EfE1(¢ <) = [ Plx<¢<ajdx
0

Problem 2.6.42. Let £ and 1 be any two integrable random variables. Prove that

&—En=[_Pw<x§&—P&<xsmwx

Problem 2.6.43. Let § be any non-negative random variable (§ > 0) with Laplace
transform F (1) = Ee ™, 1 > 0.
(a) Prove that for any 0 < r < 1 one has

. °°1—F()k)
ES F(l—r)/ Artl

Hint: use the fact that

1 © 1 _ —sA
—F(l—r)sr=/ —edk,
r 0

Ar+l

foranys > 0O0andany 0 < r < 1.

(b) Prove that for any » > 0 one has

—-r _ 1 RN 1/r
E¢ _rF(r)/O FOMyda.

Hint: use the fact that

r o0 .
‘TﬁﬁBA exp{—(A/s)"} dA,

forany s > O and any r > 0.
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Problem 2.6.44. (a) Prove that in Holder’s inequality [ P §2.6, (29)] the identity is
attained if and only if |£|” and |7|? are linearly dependent P-a.e., i.e., one can find
constants a and b, that are not simultaneously null, for which one has P-a.e. a|£|? =
bln|?.

(b) Prove that in Minkowski’s inequality [P §2.6, (31)] (with 1 < p < o0) the
identity is attained if and only if one can find two constants, a and b, that are not
simultaneously null, for which one has a¢ = by, P-a.e..

(c) Prove that in Cauchy—Bunyakovsky’s inequality [ P §2.6, (24)] the identity is
attained if and only if £ and 7 are linearly dependent P-a.e., i.e., a§ = b, P-ae.,
for some constants a and b that are not simultaneously null.

Problem 2.6.45. Suppose that X is a random variable with P{a < X < b} =1,
for some choice of a,b € R, a < b. Setting m = EX and o2 = DX, prove
that 0> < (m — a)(b — m), where equality is reached if and only if P{X = a}+
P{X =b}=1.

Problem 2.6.46. Assuming that X is a random variable with E|X| < oo,

prove that:
(a) If X > 0 (P-a.s.) then

1 1
E—>—, ElnhX<mhEX, EXIhX)>EX-InEX,
X TEX

where we suppose that 0 - In0 = 0.
(b) If X takes values only in the interval [a,b], 0 < a < b < oo, then

2
1§EX.El§M
X 4ab

(when do the equalities in the last relation hold?).

(c) If the random variable X is positive and if EX? < oo, then the following
lower bound estimate, known as the Paley—Zygmund inequality, holds: for any 0 <
A<l
(EX)?

Ex2 -’

(d) By using the above inequality, prove that if P{X < u} < ¢ for some u > 0

and ¢ > 0, then for every r > 0 one has

P{X > AEX} > (1-21)2

r

EX" < - .
- 1— (CEXZr)l/Z/EXr

provided that the expression in the denominator is well defined and strictly positive.
(e) Prove that if X is a non-negative integer-valued random variable then

(EX)

PLX > 05 = = 5
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Problem 2.6.47. Suppose that £ is a random variable with EE = m and E(§ —
m)? = 0. Prove Cantelli’s inequalities:

2

max(P{g—m>8},P{§—m<e})§020—4_62, e>0;
202
Pl —mlze} = 5. &>0.

Problem 2.6.48. Suppose that £ is some random variable with E|§| < oo and let
g = g(x) be any strictly convex function defined on the real line R. Prove that
Eg(¢) = g(E§) if and only if § = E¢ (P-a.s.).

Problem 2.6.49. Let £ be any integrable random variable, i.e., E|| < oo. Prove
that for any ¢ one can find a simple random variables & > 0 so that E|§ — &,| < ¢.

Problem 2.6.50. Consider the equation

Z, = B(t) + / t Z,_dA(s)
0

(comp. with equation [P §2.6, (74)]), where A(¢) and B(¢) are functions with
locally bounded variations, which are right-continuous (for ¢+ > 0), admit left
limits (for ¢t > 0) and are such that A(0) = B(0) = 0, AA(t) > —1, where
AA(t) = A(t) — A(t—), t > 0, AA(0) = 0).

Prove that, in the class of all locally bounded functions, the above equation
admits a unique solution &; (A4, B), which, for any ¢ > 0, is given by the formula:

1
&—(4)

£(4, B) = &_(4) /0 t dB(s).

Problem 2.6.51. Let V(¢) be any function with locally bounded variation, which is
right-continuous (for # > 0), admits left limits (for # > 0), and satisfies the relation

V() < K + /t V(s—) dA(s),
0

with some constant K > 0 and some non-decreasing and right continuous function
A(t), which admits left limits and has the property A(0) = 0.
Prove that

V(t) < K& (A), t>0;

in particular, if A(¢) = fot a(s)ds, a(s) > 0, then the function V(¢) satisfies the
Gronwall-Bellman inequality:

V(t)fKexp{ /ta(s)ds}, t>0.
0
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Problem 2.6.52. The derivation of Holder’s inequality [P §2.6, (29)] uses the
inequality
ab < — + —,
p q
in whicha > 0,5 > 0and p > 1 and g > 1 are such that % + é = 1. Prove that

the above inequality is a special case (with h(x) = x?~") of Young’s inequality:
ab<H@)+ H®b), a>0, b>0,
where
X —_ X~
e = [Chordy @ = [ Ho.

and i = h(y), y € R4, is some continuous and strictly increasing function with
h(0) = 0, lim,_o h(y) = oo, while o= h(y) y € Ry, is the inverse of the
function h = h(y), i.e.,

h(y) = inflt : h(t) > y}.
Note that since & = h(y) is continuous and strictly increasing then one has 7{( y) =

().

Problem 2.6.53. Let X be any random variable. Prove that the following implica-
tions are in force for any a > 0:

EIX|" <00 ¢ > n“'P{X|=n} < occ.

n=1

Problem 2.6.54. Let £ be any non-negative random variable. Prove that for any

r > 1 one has
/oo de = LEgl/r‘
0 r—l

xr

In particular,

® EE AX?) B

Problem 2.6.55. Let £ be any random variable with E§ > 0, 0 < E£? < oo and let
¢ € [0, 1]. Verify the following “inverse” of the Chebyshev inequality

2(E§)?

PiE > eEE} = (1-0) ~g

Problem 2.6.56. Let (£2,.%) be any measurable space and define the set function
uw = u(B), B € .%,so that

|B|, if B is finite,

B) =
w(B) if B is not finite,
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where | B| denotes the cardinality of the set B. Prove that the set function y defined
above is a measure (in the sense of [P §2.1, Definition 6]). This measure is known
as counting measure. It is o-finite if and only if the set §2 is at most countable.

Problem 2.6.57. (On the Radon—Nikodym Theorem I.) Let A, u and v be o-
finite measures defined on the measurable space (§2,.%#) and suppose that the
Radon-Nikodym derivatives 3—; and Z—’; exist. Then show that the Radon—Nikodym

derivative j—; also exists and

dv  dv du
d7 = @ d7 (l-a.e.).

Problem 2.6.58. (On the Radon—Nikodym Theorem II.) Consider the measure
space (£2,.#) = ([0,1],4([0, 1])), let A be the Lebesgue measure and let u be
any counting measure (as in Problem 2.6.56) on .%#. Prove that & < A, but, at
the same time, the Radon—-Nikodym theorem, which guarantees the existence of the
density %, is not valid.

Problem 2.6.59. Let A and u be any two o-finite measures on (£2,.%) and let
f = Z—A. Prove that if u{w : f = 0} = 0, then the density Z—’; exists and can
be represented by the function

% on the set { ' # 0},
=9
¢ ontheset{f = 0},

where ¢ is some arbitrary constant.

Problem 2.6.60. Prove that the following function on the interval [0, co)

1, x =0,
ﬂm={%¥x>a
is Riemann-integrable (in fact, (R) fooo f(x)dx = %), but is not Lebesgue

integrable.

Problem 2.6.61. Give an example of a function f = f(x) defined on [0, 1], which
is bounded and Lebesgue integrable, and yet one cannot find a Riemann integrable
function g = g(x) which coincides with f = f(x) Lebesgue-almost everywhere
in [0, 1].

Problem 2.6.62. Give an example of a bounded Borel function f = f(x,y)

defined on R?, which is not Lebesgue-integrable on (R?, Z(R?)), but is such that,
for every y € R and every x € R, one has, respectively,

/fuynwm=0am /fuynwwza
R R

where both integrals are understood to exist in the sense of Lebesgue.
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Problem 2.6.63. (On Fubini’s Theorem L) Let A = A(dx) denote the Lebesgue

measure on [0, 1] and let £ = p(dy) be any counting measure on [0, 1]. Let D
denote the diagonal of the unit square [0, 1]*. Prove that

/ [ / Ip(x. y) A(dx) |udy) = 0
[0,1] [0,1] n

and

/ [ / Ip(roy) u(dy) |A(dx) = 1.
[0,1] [0,1] n

The above relations show that the property [P §2.6, (49)], in the conclusion of
the Fubini theorem ([P §2.6, Theorem 3]), cannot hold without the finiteness
assumption for the measure.

Problem 2.6.64. (On Fubini’s Theorem II.) Prove that Fubini’s theorem remains
valid even if the requirement for the two participating measures to be finite is
replaced with the requirement that these measures are o-finite. Prove that, in
general, the assumption for o-finiteness of the participating measures cannot be
relaxed further (see Problem 2.6.63).

Problem 2.6.65. (Part a) in [P §2.6, Theorem 10].) Give an example of a
bounded non-Borel function which is Riemann integrable (a reformulation of
Problem 2.3.29).

Problem 2.6.66. Let f = f(x) be any Borel-measurable function defined on the
measurable structure (R”, Z(R")), which is endowed with the Lebesgue measure
A = A(dx). Assuming that [, | f(x)| A(dx) < oo, prove that:

]}g}})/m |f(x +h) = f()[A(dx) = 0.

Hint. Use part (b) in Problem 2.6.40.

Problem 2.6.67. For any finite number of independent and integrable random
variables &, ..., &, one has

E]]& =[] E&
k=1 k=1

(see [P §2.6, Theorem 6]). Prove that if &1, &, ... is any sequence of independent
and integrable random variables, then, in general, one has

E]]& #[]Es.
k=1 k=1
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Problem 2.6.68. Suppose that the random variable & is such that EE < 0 and
Ee% = 1 for some 6 # 0. Prove that this is only possible if 6 > 0.

Problem 2.6.69. Let 1 = h(t, x) be any function defined on the set [a,b] x R,
wherea,b € Randa < b.

(a) Suppose that

1. For any fixed x° € R the function h(¢, x°), ¢ € [a, b], is continuous;

2. For any fixed ¢° € [a, b] the function A(z°, x), x € R, is B(R)-(i.e., Borel)-
measurable,

and prove that when the above conditions are satisfied one can claim that the
function h = h(t,x),t € [a,b], x € R, is B([a, b]) x B(R)-measurable.

(b) Assume that & is a random variable, defined on some probability space, and
that when conditions 1 and 2 above are satisfied, together with the condition

3. The family of random variables {h(¢, &), ¢ € [a, b]} is uniformly integrable.
Show that:
(i) The expected value Eh(z, §) is a continuous function of the variable ¢t €
[a, b].
Gi) If H(t,x) = fat h(s,x)ds, then the derivative %EH(I, §€) exists for all
t € (a,b) and equals EA(z,§), i.e.,

d t
EE/O h(s,£)ds = Eh(,£).

Problem 2.6.70. (On [P §2.6, Lemma 2].) (a) Let £ be any random variable with
E|£| < oco. Prove that for any ¢ > 0 one can find a§ > 0, so that P(4) < §, A € F,
implies E(|€]|14) < e. Conclude that, given any random variable & with E|§| < oo
and any ¢ > 0, one can find a constant K = K(¢) so that

E(&: 151 > K) = E[§[I(§] > K) <e.

(b) Prove that if {£,,n > 1} is a uniformly integrable family of random variables,
then the family {nl i Ekon > 1} also must be uniformly integrable.

Problem 2.6.71. Prove that Jensen’s inequality [ P §2.6, (25)] remains valid even
when the function g = g(x), assumed to be convex, is defined not on the entire real
line R, but only on some open set G € R, and the random variable & is such that
P{¢ € G} = 1 and E|¢| < oco. Prove that a function g = g(x), which is defined
on an open set G and is convex, must be continuous. Prove that any such function
admits the representation:

g(x) =sup,(a,x +b,), xe€G,

where a,, and b, are some appropriate constants.
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Problem 2.6.72. Prove that for any a,b € R and any r > 0 one has
la +0b|" = cr(la]” + [b]"),

where ¢, = 1 whenr < 1 and ¢, = 277! when r > 1. The above relation is known
as the ¢, -inequality.

Problem 2.6.73. Assuming that £ and 1 are two non-negative random variables
with the property

P{€ > x} < x'E[nI(§ > x)], forevery x >0,

prove that

P
E&Z < (Ll) En?, forevery p > 1.
P

Hint. Consider first the case where £ is bounded, i.e., replace £ by £, = £ A ¢,
¢ > 0, in which case, according to [ P §2.6, (69)], one must have

EEr = p/ocxp_lp{é > x}dx.

Then prove the required property for E£Z and pass to the limit as ¢ 1 oo.

Problem 2.6.74. Prove the following analog of the integration-by-substitution rule
(see Problem 2.6.15 and [P §2.6, Theorem 7], regarding the change of variables in
the Lebesgue integral).

Let I be any open subset of R” and let y = ¢(x) be any function which is defined
on / and takes values in R” (if x = (xy,...,x,) € I, then y = (yy,...,y,) with
yi = @i(xX1,...,x,),i = 1,...,n). Suppose that all derivatives gTW; are well defined
and continuous and that |J,(x)| > 0, x € I, where J,(x) stands for the determinant
of the Jacobian of the function ¢, i.e.,

%, l=<i,j<n
3xj

As a consequence of the above assumptions, the set ¢ (/) € R” is open, the function
@ admits an inverse 7 = ¢!, and the Jacobian J;,(y) exists and is continuous on
o(I), with [ J5(y)| > 0, y € o(1).

Prove that for every non-negative or integrable function g = g(x), x € I,
one has

Jy(x) = det

/gqu=/'gMWMhunw,
1 o(l)

which can be written also as
[emax=[ e Nl mla
1 o(l)

where all integrals are understood as Lebesgue integrals in R”.
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Problem 2.6.75. Let F = F(x) be a cummulative distribution function with
F(0) = 0and F(1) = 1, which is Lipschitz continuous, in that | F(x) — F(y)| <
L|x —yl,x,y € [0, 1]. Let m be the measure on [0, 1] given by m(B) = [, dF(x),
B € %(]0, 1]), and let A be the Lebesgue measure on [0, 1].

Prove that m < A and

dm

m <L (A-ae.).
Problem 2.6.76. Suppose that g = g(x) is some function which is defined on the
interval [a, b] € R and is convex, i.e., g((1 —=A)x +Ay) < (1—A)g(x)+Ag(y) for
any x,y € [a,b] and any O < A < 1). Prove that this function must be continuous
on the interval (a, b) and conclude that it is a Borel function.

Hint. Argue that convexity implies that for every choice of x,y,z € [a,b],

X <y <z, one has

g —gx) _ 8@ —¢gW)
y-x T z-y
By using the above relation conclude that g = g(x) must be continuous on the
interval (a, b).

Problem 2.6.77. Consider the generating function G(s) = Z;?O:o pisk, associated
with the discrete random variable X with P{X = k} = pi, k = 0,1,2,..,
Y i Pk = 1 (see Problem 2.6.28), and let

qr = P{X > kj}, r = P{X <k}, k=0,1,2,....

Prove that the generating functions for the sequences ¢ = (qx)k>0 and r = (rx)k>0
are given, respectively, by
1—-G(s)
l—s °

G
S<l Go= <

Gy(s) =
Problem 2.6.78. (On the “probability for ruin”—see [ P §1.9].) Let Sy = x and let
Sy =x+&+...+&,n > 1, where (§)r>1 is some sequence of independent and
identically distributed random variables with P{& = 1} = p, P{& = —1} = ¢,
p + g =1, and x is some integer number with 0 < x < A. Consider the stopping
time for the random walk (or for the “game” between two players—see [ P §1.9]),
which is given by

t=inf{fn >0:S5, =0o0r S, = A4}.
Consider also the probability p,(n) = P{t = n, S, = 0} for the stopping to occur
with “ruin” (i.e., {S, = 0}) in the n""-period.
Prove that the generating function G, (s) = Y oo p«(n)s" satisfies the follow-
ing recursive relation:

Gi(s) = psGyy1(s) + g5 Gry(s),
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with Go(s) = 1 and G4(s) = 0. By using this relation prove the formula

M) — M)
&0 =) “Ho-1w

’

where

1 1
Ai(s) = 2—{1 + V1 —4pgs?} and Ay(s) = 2—{1 — /1 —4pgs?}.
ps ps

Problem 2.6.79. Consider a lottery with tickets numbered 000000, ..., 999999
and suppose that one of these tickets is chosen at random. Find the probability, P,
that the sum of the six digits on this ticket equals 21.

Hint. Use the methodology based on generating functions, developed
in Sect. A.3 (pp. 372-373). The answer is P»; = 0.04.

Problem 2.6.80. Suppose that ¢ is a random variable with unimodal probability
density f(x) that has maximum at the point xo (referred to as the mode, or the
peak, of the respective distribution), so that f(x) is non-decreasing for x < x, and
is non-increasing for x > xj.

Prove Gauss inequality:

P{|E — xo| > cE|E — xo|*} < —,
{1 — xol = ¢ElE — xol’) < o

Hint. If the function g(y) does not increase for y > 0, then

forevery e > 0.

2 o 4 e 2
6/ g(y)dy§§/0 y*g(y)dy, foranye > 0.
&

One can conclude from the above inequality that, given any & > 0 and d> = E|§ —
Xo|?, one has
4 E[(§ —x0)/d]* _ 4

Pl —xol 2 ed} = 5 —0 O = 2

Problem 2.6.81. Suppose that the random variables &1, . . . , &, are independent and
identically distributed, with P{§&; > 0} = 1 and DIn&; = o>. Given any ¢ > 0,
prove that

2

o
P{& ... < (Eln&)"e"} > 1 — et
Hint. Use Chebyshev’s inequality
DY,
P{|Y, —EY,| <ne} = 1- =2,
n’e

with ¥, = Y'_ In§;.
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Problem 2.6.82. Let P and P be probability measures on (§2,.%), such that Pis
absolutely continuous with respect to P (P < P), with density that is bounded by

some constant ¢ > 1: .

dP

— <c¢ (P-as.).

dP — ( )
Prove that there is a number « € (0, 1] and a probability measure Q for which one
can write

P=aP+(1-a)Q.
Hint. Choose an arbitrary constant C > ¢ and set« = 1/C and

1 dP

Problem 2.6.83. Let £ and n be any two independent random variables with
E& = 0. Prove that E|§ — | > E|n|.

Problem 2.6.84. Let &,&,,... be any sequence of independent and identically
distributed random variables taking values in R = (—o00,00) and set Sy = 0,
S, = & + ...+ &,. The so-called “ladder indexes” (a.k.a. “ladder moments”) are
defined by the following recursive rule:

To = 0, T = mf{n > Ti—1: S, — Skal > 0}, k>1,
where, as usual, we set inf @ = oo. It is clear that
P{TlZH}ZP{Slfo,...,Sn_lfO,S,,>O}, foralln > 1.

Prove that the generating function G(s) = 2211 fns" for the random variable T
(with f, = P{Ty = n}) is given by the formula

G(s) = exp% —Z%P{Sn > 0}}, s| < 1.
n=1

Problem 2.6.85. With the notation adopted in the previous problem, setting

> 1 21
A_;nP{Snfm, B_;nP{Sn>O},
prove that
1 if B = oo,

P{T1<OO}= ’
1—e B, if B <o



2.6 The Lebesgue Integral: Expectation 105

Show also that if B = oo, then

e, if A < oo,

ET, =
oo, ifA=o0.

Problem 2.6.86. Just as in Problem 2.6.84, let &;,&,,... be any sequence of
independent and identically distributed random variables with E&; > 0, set Sp = 0,
Sy =&+---+§&,, and let

t = inf{n >: S, > 0}.

Prove that ET < oc.

Problem 2.6.87. Leteverything be as in Problem 2.6.84, let Z denote the breadth
(span) of the sequence Sy, S, ..., Sy, i.e., the total number of different values that
can be found in that sequence, and let

o(0) =inf{n > 0: S, = 0}
be the moment of the first return to 0.
Prove that for N — oo one has

E% — P{0(0) = oco}.

Note that P{o(0) = oo} is the probability for no-return to 0—comp. this result with
Problem 1.9.7.

Remark. According to Problem 8.8.16, in the case of a simple random walk with
P{& = 1} = p and P{§; = —1} = ¢, one must have

K73
ETN—>|p—q| as N — o0}

in other words,
—q, ifp>1/2,
XN, (])) ' 'fp 1/2
N £ 1 p - / )
q—p, ifp<l1/2.
Problem 2.6.88. Let £, &, ... be any sequence of independent random variables

that are uniformly distributed in the interval (0, 1) and let

v=min{n >2:§, > §,_}, pw(x) =min{fn > 1:& +---+§, > x},
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where 0 < x < 1. Prove that:
(@) P{u(x) >n} =x"/nl,n>1,
(b) Law(v) = Law((1));
(©)Ev =Eu(l) =e.
Hint. (a) Consider proof by induction.
(b) One must show that P{v > n} = P{§; > & > --- > §,} = 1/nl.

2.7 Conditional Probabilities and Conditional Expectations
with Respect to o -algebras

Problem 2.7.1. Suppose that & and 1 are two independent and identically dis-
tributed random variables, such that E£ exists. Prove that

EE 6+ =EQlE+n =" e

Hint. Observe that for any A € o(§ 4+ n) one has E§1, = Enly.

Problem 2.7.2. Suppose that &, &,, ... are independent and identically distributed
random variables, such that E|&;| < oco. Prove that

Sn
E(El | Su, Sn+l»---) = 7 (a.e.),

where S, =& +---+&,.
Hint. Use the fact that E§; 14 = E£; 14 forany A € 0(Sy, Sut1,-..).

Problem 2.7.3. Suppose that the random elements (X, Y) are such that there is
a regular distribution of the form P,(B) = P(Y € B|X = x). Prove that if
E|g(X,Y)| < oo, for some appropriate function g, then P,-a.e. one has

amXYnX=ﬂ=/£uJﬂuwy

Hint. By using the definition of a regular conditional distribution and the notion
of “m-A-system” (see [P §2.2]), prove that for any function g(x, y) of the form
¥ Aily,, where A; € Z(R?), the map

x»ﬁﬂmwm@w
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must be A(R)/%A(R)-measurable and

Eg(X,Y)Ip = /B (/{Rg(x,y) Px(dy))Q(dx), forevery B € Z(R),

where Q stands for the distribution of the random variable X. Prove that these
properties hold for all bounded %(R?)-measurable functions, and then conclude
that they must hold for all g(x, y) with E|g(X,Y)| < oco.

Problem 2.7.4. Let & be a random variable with (cummulative) distribution func-
tion F¢(x). Prove that
[? x dF:(x)

a

E(§|a<§§b)=m,

where we suppose that F¢(b) — Fg(a) > 0.
Hint. Use the fact that, by the very definition of conditional expectation, if
E[/(a < & < b)] > 0 one can write

E[fl(a <& < D)]
Ell(a <& <b)]

E¢la<§=b)=

Problem 2.7.5. Let g = g(x) be any function defined on R which is convex and is
such that E|g(§)| < oco. Prove that Jensen’s inequality holds P-a. e. for conditional
expected values, namely,

gEE[9) <E@E®)|9) (ae.).

Hint. First use the fact that for the regular conditional distribution Q(x; B),
associated with the random variable &, relative to the o-algebra & one can write

Eg(5) |4) (@) = /[R () 0(: dx)

(see [P §2.7, Theorem 3]), and then use Jensen’s inequality for standard expected
values.

Problem 2.7.6. Prove that the random variable & and the o-algebra ¢ are indepen-
dent (i. e., the random variables £ and /p(w) are independent for every choice of
B € @) if and only if E(g(§)|¥) = Eg(§) for any Borel function g(x), such that
Elg(§)] < oo.

Hint. If A € ¢ and B € #(R), then, due to the independence between & and ¥,
we have P(A N {g(§) € B}) = P(A)P{g(&£) € B}, and, therefore, E(g(£) |¥) =
Eg(£). Conversely, when the last relation holds, setting g(§) = I(¢ € B), one finds
that

P(AN{& e B}) =P(A)P{¢ € B}.
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The independence between & and ¢ follows from the fact that in the last relation
A €9 and B € A(R) are chosen arbitrarily.

Problem 2.7.7. Suppose that £ is a non-negative random variable and let ¢ be some
o-algebra, 4 C %. Prove that E(§ |¢) < oo (a.e.) if and only if the measure Q,
defined on the sets A € 4 by Q(A) = [, £ dP, is o-finite.

Hint. To prove the sufficiency part, set Ao = {E(|¥Y) = oo}, 4, =
{E(£|¥) < n}, and check that Q(A4,) < n, which implies that Q is o-finite.

To prove the necessity part, one must conclude from the existence of the sets
Ay, As, ... €9, with 72, A, = 2and Q(4;) < o00,i =1,...,n,thatE(§ |¥) <
oo (P-a.s.).

Problem 2.7.8. Prove that the conditional probability P(A4 | B) can be claimed to
be “continuous”, in the sense that if lim,, 4, = A andlim, B, = B, withP(B,) > 0
and P(B) > 0, then lim, P(4,, | B,) = P(4| B).

Problem 2.7.9. Let 2 = (0,1), # = %((0,1)), and let P denote the Lebesgue
measure. Suppose that X(w) and Y(w), @ € §£2, are two independent random
variables that are uniformly distributed on (0, 1). Consider a third random variable,
Z(w) = |X(w) — Y(w)|, which represents the distance between the random points
X(w) and Y (w). Prove that the distribution of Z(w) admits density f7(z) = 2(1—z),
0 <z <1, and conclude that EZ = 1/3.

Problem 2.7.10. Two points, A; and A,, are chosen at random on the circle
{(x,y):x% + y? < R?}; more specifically, 4 and A, are sampled independently
and in such a way that (in polar coordinates, A; = (p;, 0;),i = 1,2)

rdrd6
R2

Prove that the random variable p, which represents the distance between A; and A,,
admits density f,(r), given by

fo(r) = %[2 arccos(é) — % 1-— (é)z}

where 0 < r < 2R.

P(p,-edr,@ied@)z y l=1,2

Problem 2.7.11. The point P = (x, y) is sampled randomly (clarify!) from the
unit square, i.e., from the square with vertices (0, 0), (0, 1), (1, 1), (1, 0). Find the
probability that the point P is closer to the point (1, 1), than to the point (1/2,1/2).

Problem 2.7.12. (The “random meeting” problem.) Person A and person B have
agreed to meet between 7:00 p.m. and 8:00 p.m. at a particular location. They have
both forgotten the exact meeting time and choose their respective arrival times
randomly and independently from each other between 7:00 p.m. and 8:00 p.m.,
according to the uniform distribution on the interval [7:00, 8:00]. They both have
patience to wait no longer than 10 min. Prove that the probability that A and B will
actually meet equals 11/36.
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Problem 2.7.13. Let X, X»,... be a sequence of independent random variables
and let S, = Z;’:l X;. Prove that S| and S; are conditionally independent relative
to the o-algebra o (S,), generated by the random variable S5.

Problem 2.7.14. We say that the o-algebras ¢ and % are conditionally
independent relative to the o-algebra ¥ if

P(A1A2 |%3) = P(Al |%3) P(Az I %3), for all A,‘ € %,i = 1,2.

Prove that the conditional independence of ¢ and %, from %; is equivalent to
the claim that any of the following conditions holds P-a.e.:

(a) P(A1 IG(%Q U %3)) = P(Al |%3), for all A1 S %1;

(b) P(B|0(¢% U%)) = P(B|¥4) forall B € &, where & is any m-system
of subsets of 41, such that 4, = o(%);

(¢) P(B1By|0(% U %)) = P(B1|4;)P(By| %) for all sets B € &) and
B, € &,, where &) and &2, are any two m-systems of subsets of, respectively, ¢
and ¥, chosen so that 4| = 0(%)) and % = o (S%);

(d) E(X|0(4% U %)) = E(X|%) for any 0(¢% U ¥;)-measurable random
variable X, for which the expectation EX exists (see Definition 2 in § 6).

Problem 2.7.15. Prove the following generalization of Fatou’s lemma for condi-
tional expectations (comp. with (d) from [P §2.7, Theorem 2]).

Let (£2,.%#,P) be any probability space and let (§,),>; be any sequence of
random variables, chosen so that the expectations E§,, n > 1, are well defined
and the limit E lim &, exists (and may equal +co—see [P §2.6, Definition 2]).

Suppose that ¢ is some o-algebra of events inside .% chosen so that

supE(¢, I1(§, > a)|¥9) -0 asa —oo (P-a.e.).
n>1

Then
E(limé§, |¢) <LimE(, |9) (P-a.e.).

Problem 2.7.16. Just as in the previous problem, let (£,),>1 be any sequence of
random variables, chosen so that all expectations E,, n > 1, exist, and suppose
that ¢ is some o-algebra of events inside .# chosen so that

sup lim E(|&,[1(8 = k)|9) =0 (P-a.e.). ()

Prove that if §, — & (P-a.e.) and the expected value E§ exists, then
E¢, |9) - EE|9Y) (P-ace.). (x%)
Problem 2.7.17. Let everything be as in the previous problem, but suppose that ()

is replaced with the condition sup, E(|§,|* |¥) < oo (P-a.e.), for some o > 1.
Prove that the convergence in () still holds.
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Problem 2.7.18. Prove that if §, L—p> &, for some p > 1, then

EG, |9) > EE|9),

for any sub-o-algebra ¥ C .#.
Problem 2.7.19. Let X and Y be any two random variables with EX? < oo and
ElY| < co.

(a) Setting D(X | Y) = E[(X —E(X | Y))?| Y], prove that DX = ED(X | Y) +
DE(X | Y) (see Problem 1.8.2).

(b) Prove that cov(X,Y) = cov(X, E(Y | X)).

Problem 2.7.20. Is the sufficient statistics 7' (@) = s(X1(®)) + -+ + s(X,(w)) in
[P §2.7, Example 5] minimal?

Problem 2.7.21. Prove the factorization identity [P §2.7, (57)].
Problem 2.7.22. In the context of [P §2.7, Example 2], prove that E¢(X; | T) =

”;;IT, where X;(w) = x; forw = (x1,....,x,),i =1,...,n.
Problem 2.7.23. Let (£2,.%, P) be a probability space, let A, B and Cy,...,C, be
events chosen from the o-algebra .%, and suppose that forany i = 1,...,n one has

P(C)) >0, PA|C)=P(B|C),

and | J/_, C; = £2. Can one claim that P(4) > P(B)?

Problem 2.7.24. Let X and Y be any two random variables with E|X| < oo,
E|Y| < oo,suchthat E(X |Y) > Y and E(Y | X) > X (P-a.e.). Provethat X =Y
(P-a.e.).

Hint. Prove that it is enough to consider the case where the inequalities > are
replaced by equalities.

Method 1. Consider the function g(u#) = arctanu. Then (X — Y)(g(X) —
g(Y)) >0 (P-a.e.), and, at the same time, one can show that E[(X — Y)(g(X) —
g(¥))] = 0, from where one can conclude that X = Y (P-a.e.).

Method II. Argue that E ifii: =1,E f;ii = 1. Then conclude setting Z =

);IE , show that E(v/Z — ﬁ)z = 1. Then conclude that P{X ™ = Y} = 1. One
can show, analogously, that P{X~ =Y~} = 1.

Method III. Prove that if P{X < Y} > 0 then there is a constant ¢ with the
property P{X < ¢ < Y} > 0. Consider the sets A = {X < c}and B = {Y > ¢}
and argue that

/(Y—X)dP:/(Y—X)dP+ (Y—X)dP+/7(Y—X)dP<O,
2 A B\A

ANB

which contradicts to [, (Y — X)dP = 0.
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Remark. Ttis not possible to find two random variables X and Y with E| X | < oo
and E|Y| < oo, such that the strict inequalities E(X |Y) > Y and E(Y | X) > X
both hold with probability 1. Indeed, assuming that such random variables exist
would lead to a contradiction: EX = EE(X |Y) > EY = EE(Y | X) > EX.

Problem 2.7.25. Assuming that X is some geometrically distributed random vari-
able with

PIX=ki=pg~" k=12.., 0<p<l g=1-p (¥

prove that
PiX>n+m|X >n}=P{X >m}, form,ne{l,2,..}. (%)

What is the interpretation of the above property?

In addition, prove the converse statement: if a discrete random variable takes
values in the set {1,2,...} and has the property (), then it must also have the
property ().

(Comp. with Problem 2.7.45.)

Problem 2.7.26. Prove that the random vectors (X, Y') and (Y, Y) share the same

distribution ((X,Y) £ (X,Y)), if and only if P{X € A|Y} = P{X € A|Y}
(P-a.e.), for any event A.

Problem 2.7.27. Let X and Y be any two independent Poisson random variables
with parameters, respectively, A > 0 and u > 0. Prove that the conditional
distribution Law(X | X + Y) is binomial, i.e.,

A, k H I’L—k
PX=k|X+Y=n=CF— | = , for 0<k<n.
( X+ ") ”(lﬂt) (Aﬂt) o m=Rs

Problem 2.7.28. Suppose that £ is a random variable that is uniformly distributed
in the interval [—a, b], with @ > 0, b > 0, and, setting ¢4, = o(|§]) and % =
o (sign £), calculate the conditional probabilities P(A4 |¥;), i = 1,2, for the events
A={¢>0}and A = {£ < a}, where ¢ € [—a, b].

Problem 2.7.29. Prove by way of example that the relation E(§ + n|¥) =
E¢|9) + E(n|¥) (P-a.e.) does not always hold (comp. with property D*
in[P§2.7, 4]).

Hint. It may happen that the expected value E(¢§ + 1|¥) is well defined and
equals zero (P-a.e.), while, at the same time, the sum E(§ |¥) 4+ E(n|9) is not
defined.

Problem 2.7.30. In the definition of the conditional probability P(B | ¢)(w) (of the
event B € .7 relative to the o-algebra 4 C .%—see Definition 2 in [P §2.7, 2]),
the map P(-|¥)(w) is not required to be a measure on (§2,.%) for P-a.e. w € £2.
Prove that such a requirement cannot be imposed; namely, construct an example
where the set of all @ € §2 for which P(-|¥)(w) fails to be a measure is not P-
negligible.
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Problem 2.7.31. Give an example of two independent random variables, X and Y,
and a o-algebra ¢, chosen so that for some choice of the events A and B one has

P(X €AY € B|9)(0) #P(X € A|9)()P(Y € B|9)(w).

for all w inside some set of positive P-measure. In other words, show that
independence does not imply conditional independence.

Problem 2.7.32. If the family of random variables {£,},>1 is uniformly integrable
and &, — £ (P-a.e.), then E§, — E£ (see b) in Theorem 4 from [P §2.6]). At
the same time the P-a.e.convergence of the conditional expectations E(§, |¥) —
E(¢|¥) can be established (see a) in Theorem 2 from [P §2.6]) under the
assumption that |§,| <n, En <oo,n > 1,and §, — & (P-a.e.).

Give an example showing that if the condition “|¢,| < n, En < oo, n > 17
is replaced by the condition “the family {&,},>: is uniformly integrable,” then
the convergence E(§, |¥9) — E(§|¥) (P-a.e.) may not hold. Analogous claim
can be made about condition a) in [P §2.6, Theorem 4] (i.e., Fatou’s Lemma for
uniformly integrable random variables) in the case of conditional expected values
(see, however, Problems 2.7.15-2.7.17 above).

Problem 2.7.33. Suppose that (£2,.%, P) is identified with the probability space
([0, 1], %, 1), where A is the Lebesgue measure and .% is the Borel o-algebra on
[0, 1]. Give an example of a sub-o-algebra 4 C .%, chosen so that the Dirichlet
function

1, if w isirrational,
d(w) = L
0, if w is rational,

is a version of the conditional expectation E(1 | ) (w). In particular, the conditional
expectation E(¢|¥%)(w) of some “smooth” function § = &(w) (for example,
&(w) = 1) may have a version, which, as a function of w, may be “extremely non-
smooth”.

Problem 2.7.34. If, given a random variable &, the expected value E£ exists, then,
by property G* in [P §2.7, 4], one can write E(E(§ | n)) = E£ for any random
variable 1. Give an example of two random variables ¢ and 7, for which E(E(§ | 1))
is well defined, while E£ is not.

Problem 2.7.35. Consider the sample space £2 = {0,1,2,...} and suppose that
this space is endowed with a family of Poisson distribution laws Py{k} = #,
k € $£2, parameterized by 6 > 0. Prove that it is not possible to construct an
unbiased estimator 7 = T (w) for the parameter %, i.e., one cannot construct a
random variable 7 = T(w), w € £2 with the property Ey|T| < oo, forall 8 > 0,

and E¢T = %,for all 8 > 0.

Problem 2.7.36. Consider the statistical model (2, %, &), where & = {P} is
some dominated family of probability measures P. Prove that if 4 C .% is some
sufficient o-algebra then any o-algebra G with & - % C .7 is also sufficient.
(Burkholder’s example [18] shows that if the family &2 is not dominated, then, in
general, this claim cannot be made.)
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Problem 2.7.37. Prove that each of the following structures represents a Borel
space:

(@) (R", Z(R"));

(b) (R, A(R>));

(c) any complete separable metric space, i.e., any Polish space.

Problem 2.7.38. Assuming that (E,&’) is a Borel space, prove that there is a
countably-generated algebra <7, for which one can claim that o (2/) = &.

Problem 2.7.39. (On the property K*.) Let n be any ¥-measurable random
variable, £ be any .%-measurable random variable and suppose that E[n]? < oo
and E|&|? < oo, where p > 1 and % + 3 = 1. Prove that E(¢n|¥) = nE(§ | 9).

Problem 2.7.40. Given some symmetrically distributed random variable X (i.e.,
Law(X) = Law(—X)), calculate the conditional distribution

PX =x|o([X])(@). x€eR,

in terms of the (cumulative) distribution function F(x), where o (| X |) stands for the
o-algebra generated by | X|.

Problem 2.7.41. Assuming that A and B are two events with P(4) = « and
P(B) =1— B, where 0 < < l and 8 < «, prove that

_13<
=g =PUAIB).

Problem 2.7.42. Let p; denote the probability that a given family has k children,
and suppose that

po=pi=a (<1/2) and pr=(1-2a)27%D  k>2.

It is assumed that in any given birth the probability for a boy and the probability for
a girl both equal to 1/2.

Assuming that a particular family already has two boys, what is the probability
that:

(a) The family has only two children;

(b) The family also has two girls.

Hint. The solution is a straight-forward application of Bayes’ formula. The two
probabilities are respectively 27/64 and 81/512.

Problem 2.7.43. Suppose that X is some symmetrically distributed random vari-
able (i.e., X i —X) and the function ¢ = ¢@(x), x € R, is chosen so that
E|p(X)| < co. Prove that

1
Ele(X) [1X1] = 5le(XD + o(=[XD]  (P-a.e.).
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Problem 2.7.44. Assuming that X is some non-negative random variable, calculate
the conditional probabilities

P(X < x[[X]) and P(X <x[[X]),

where | X | stands for the largest integer which does not exceed X and [ X] stands
for the smallest integer which is greater than or equal to X.

Problem 2.7.45. Assuming that X is some exponentially distributed random vari-
able with parameter A > 0, i.e., P{X > x} = e™*, x > 0, prove that for any two
non-negative real numbers, x and y, one has

PX>x+y|X>x)=P{X >y}

The last relation is often interpreted as the “lack of memory” in the values of X.
Prove that if some extended (i.e., with values in [0, oo]) random variable X lacks
memory, i.e., has the above property, then only one of the following three cases is
possible: P{X = 0} = 1, or P{X = oo} = 1, or X is exponentially distributed
with some parameter 0 < A < oo.

Hint. Setting f(x) = P{X > x}, the lack of memory property can be expressed
as f(x +y) = f(x)f(»). Consequently, the proof comes down to showing that, in
the class of all right-continuous functions f(-) with values in the interval [0, 1], the
solution to the equation f(x + y) = f(x)f(y) can be either of the form f(x) =
0, or of the form f(x) = 1, or of the form f(x) = e**, for some parameter
0<A<oo.

Problem 2.7.46. Assuming that the random variables X and Y have finite second
moments, prove that:

(a)cov(X,Y) =cov(X,E(Y | X));

bYIfE(Y|X)=1then DX <DXY.

2.8 Random Variables 11

Problem 2.8.1. Establish the validity of formulas (9), (10), (24), (27), (28) and
(34)—(38)in [P §2.8].

Problem 2.8.2. Suppose that &,...,§,, n > 2, are independent and identically
distributed random variables with (cumulative) distribution function F(x) and, if it

exists, density f(x). Let § = max (&, ..., €:),§ =min(§,....§)andp =§ —§.
Prove that:

_)FEOG)) = (FO) - FX)", y>x,

(0.
R oy V<
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oy, x) = nn—1D[F()—FOI"2fx)f(), y>x,
(0, o

) y=x

- — _ n—1
Fy(x) = ”/_ [F() = Fy =0l f()dy. x =0,

o0

0, x <0;

n(n — 1)/_ [F(y)— F(y —x)" 2 f(y —x) f(y)dy. x>0,
0, x < 0.

Solx) =

Problem 2.8.3. Assuming that & and &, are two independent Poisson random
variables with parameters, respectively, A; > 0 and A, > 0, prove that:

(a) &1 + & has Poisson distribution with parameter A; + A,.

(b) The distribution of & — &, is given by

A1\ K72
P& — 6 =k} = e—WHz)(A—l) L2VMAs), k=0,£1,42,...,
2

where
. e x2r
I 2 = —_—mmm
K2x) = x ;r!F(k+r+1)

is the modified Bessel function of the first kind and of order k.
Hint. One possible proof of Part (b) is based on the series expansion of the
generating function of the random variable &, — &—see Sect. A.3.

Problem 2.8.4. Setting m; = m, = 0 in formula [P §2.8, (4)], show that

0107 1— p2
m(032% — 2p01022 + 07)

Jem(@) =

Problem 2.8.5. The maximal correlation coefficient between the random variables
& and 7 is defined as the quantity p*(§,n7) = sup,, p (u(§),v(n)), where the
supremum is taken over all Borel functions u = u(x) and v = v(x), for which the
correlation coefficient p (#(§), v(n)) is meaningful. Prove that the random variables
& and 7 are independent if and only if p*(&, ) = 0—see Problem 2.8.6 below.

Hint. The necessity part of the statement is obvious. To prove the sufficiency part,
given two arbitrarily chosen sets A and B, set u(§) = 14(§) and v(n) = I5(n) and
show that sup, , p(u(§), v(n)) = 0 implies

P{§ € A.ne B} —P{§ € A}P{n € B} = p(14(§). 13(n) = 0.
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As the sets A and B are arbitrarily chosen, the last relation guarantees that & and 7
are independent.

Problem 2.8.6. (Continuation of Problem 2.8.5.) Let (§2, .7, P) be a probability
space, let #; C %, and %, C % be any two sub-c-algebras of .%, and let
Lz(.Q, Zi,P),i = 1,2, be the usual spaces of random variables with finite second
moment.

Set

p*(F1, F2) = sup|p(61. &),

where p(&1, &) is the correlation coefficient between & and &, and the supremum is
taken with respect to all pairs of random variables (£, &) with & € L*(2,.%;,P),
i=1,2.

(a) Prove that if #; = o(X}) and .%; = 0(X>), for some random variables X
and X; on (§2, %, P), then

p*(0(X1),0(X2)) = [p(X1, X2).

(b) Let 71 = Vie; % (= Uie; @) and 72 = V) B (= Uie; #i) , where
I is some index set. Assuming that all o-algebras o (<, %;), i € I, are jointly
independent (o (<7;, %;) stands for the o-algebra generated by the sets A; € % and
B; € %;), prove that

p*(\/,gf,-,\/%) = sup p* (/. %1).

iel iel iel

Problem 2.8.7. Let (£2,.%, P) be any probability space and let % C .% and %, C
Z be any two sub-o-algebras of .7. Define the following quantities, every one of
which measures the degree of mixing between .7, and .%:

a(F1..F) = sup{|P(AN B) —P(A)P(B)|: A € F|, B € F>};
@(F1, F>) = sup{|P(B| A) —P(B)|: A € #,, B € %>, P(4) > 0};

P(AN B)

V(F1, F) = Sup{ ‘—P(A)P(B) -

1‘:/1 € 71, B e %, P(A)P(B) > 0! .

In addition, let

N M
BT P2 = sup 5 3 D IP(A; 1 By) — P(A)P(B))]

i=1j=1

where the supermum is taken over all finite partitions {A;,..., Ay} and
{Bl,...,BM}, with A4; € eg.l and Bj € yg,l <i<N,1< j =< M and
N>1,M>1.
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Verify the following inequalities, in which the quantity p*(.%, .%>) is as defined
in Problem 2.8.6:

a(F1, F) < B(F, F2) < o(F1, F2) < Y(F1, F),

and
a(F1, Fo) < p*(F1, Fn) < 20'(F1, o),
P (1. F) < 20'(F1, Fo)p' 2 (T, F).
Problem 2.8.8. Assuming that 7j,..., 7 are independent and identically dis-

tributed random variables, all having exponential distribution with density
f@) =2, 10,

prove that t; + - - + 71 is distributed with density

Ak pk=1p=At
7 1Ny r = Os
&k =1 =
and .
_y, (A1)
P(ti 441 > 1) = il
(o 4+ >1) ;e 7

Problem 2.8.9. Assuming that § ~ .#(0, ), prove that for every p > 1 one has

El§]” = Cpo?,
where e ol
e ( 2 )
and I'(s) = fooo e *x*"!dx is Euler’s Gamma function. In particular, for any

integer n > 1 one can write (see Problem 2.6.36)
EE¥ = 2n—1o?".

Problem 2.8.10. Prove that if £ and 1 are two independent random variables, such
that the distribution of & 47 coincides with the distribution of &, then n = 0 (P-a.e.).

Hint. Use the fact that if 7y,...,n,, n > 1, are independent random variables,
all having the same distribution as 7, then, for any n > 1, the distribution of § +
N1 + - -+ + n, coincides with the distribution of &.
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If £ and n admit moments of all orders, then one can use the relationship between

the semi-invariants sgf:n and sék), k > 1 (see [P §2.12]).

Problem 2.8.11. Suppose that the random point (X, Y) is distributed uniformly in
the unit disk {(x, y):x? + y?> < 1},let W = X2 + Y2, and set

[ 2InW [ 2InW
U=X,- , V=YY= .
w w

Prove that U and V' are independent .4 (0, 1)-distributed random variables.

Problem 2.8.12. Suppose that U and V are two independent random variables that
are uniformly distributed in the interval (0, 1), and set

X =+~—InVcos2rU), Y =+~—=InVsin(2nU).

Prove that X and Y are independent .4 (0, 1)-distributed random variables.

Problem 2.8.13. Consider some positive random variable R, which is distributed
according to Rayley law, i.e., has density

72

fR(r)=§exp{—ﬁ

}, r>0,

with some o2 > 0, and suppose that the random variable @ is uniformly distributed
in the interval (o, o + 27k), where k € N = {1,2,...} and @ € [0, 27).

Prove that the random variables X = Rcosf and Y = Rsin 6 are independent
and distributed with law .4 (0, 02).

Problem 2.8.14. Give an example of two Gaussian random variables, £ and 7, for
which & + 7 is not Gaussian.

Problem 2.8.15. Let X1, ..., X, be independent and identically distributed random
variables with density f = f(x) and let

Ky, = max(Xy,...,X,) —min(Xy,..., X,)

denote the “range” of the sample (X1, ..., X;). Prove that the density of the random
variable %, is given by

Sz, (x) =n(n — 1)/_ [F(y) = F(y =" /() f(y =x)dx, x>0,

where F(y) = [?_ f(z) dz. In particular, if X;...., X, are uniformly distributed
in the interval [0, 1], then one has

nin—1Dx"2(1-x), 0<x<1,

0, x<0orx>1.

J,(x) = {
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Problem 2.8.16. Let F(x) be any (cummulative) distribution function. Prove that
for any a > 0 the functions

x+a x+a
Gi(x) = 2/ Fu)du and Gi(x) = %/ F(u)du

X—a
are also (cummulative) distribution functions.

Problem 2.8.17. Suppose that X is some exponentially distributed random variable
with parameter A > 0, i.e., X has density fx(x) = Ae **I(x > 0).

(a) Find the density of the distribution law of the random variable ¥ = X e
o > 0, which is known as the Weibull distribution.

(b) Find the density of the distribution law of the random variable ¥ = In X,
which is known as the double exponential law.

(c) Prove that the integer part and the fractional part of the random variable
X,ie., | X]| and {X} = X — | X, are independent random variables. Find the
distribution of | X | and {X}.

Problem 2.8.18. Let X and Y be any two random variables with joint density of
the form f(x,y) = g(v/x2 + y?).

Find the density of the joint distribution of the random variables p = /X2 4 Y2
and 6 = tan~!(Y/X), and prove that p and 6 are independent.

Setting U = (cosa)X + (sina)Y and V = (—sina) X + (cosa)Y, o € [0, 2x],
prove that the joint density U and V coincides with f(x, ¥). (This property reflects
the fact that the distribution of the vector (X, Y) is invariant under rotation in R?.)

Problem 2.8.19. Let X|,..., X, be independent and identically distributed random
variables with continuous (cummulative) distribution function F = F(x). As this
assumption implies P{X; = X;} = 0,7 # j (see Problem 2.8.76 below), it follows
that

P{X, = X, forsomei # j} = P[U{X,- = X,-}} <Y PXi=X;}=0.

i<j i<j

Consequently, one can claim that with probability I the numbers X (w), ..., X, (@)
can be arranged (and in a unique way) in a strictly increasing sequence. The ele-

ments of this sequence, which we denote by X 1(") (w),.... X ,5") (w), are well-defined
random variables that are commonly referred to as order statistics—see also
[P §3.13] and Problem 1.12.8. Thus, with probability 1 we have

XM () < < X (w)

and

X" (@) = min(X,(@).... . X, (@), .... X"(0)=max(X;().....X,()).
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In addition, we will suppose that the distribution ' = F(x) admits density f =

J ().
Prove that:
(a) The density of X 15”) is given by

nf(x)CE [F)F 1 = Fo)" .

(b) The joint density, £ (xy,...,x,), of Xl(n), e, X,f") is given by

FO(x, X)) = n! f(x1)... f(xy), ifx;<---<xy,
o 0 in all other cases.
(© If f(x) = Ijp1(x) (i.e., if the random variables X; are distributed uniformly
in [0, 1]), then

r(n—p+1)

EX™ = —_—
(n + 1)2(n +2)

r

and cov(X™, X"y = r<p.
s X", X, =p
Problem 2.8.20. Let &y,...,&, be independent and identically distributed random

variables with normal distribution .4 (m, 02). The quantities § and s2, given by

_ 1< 1 " _
§=;Z§i and S2=m2(§i—5)2’ n>1,

i=1 i=1

are known, respectively, as sample mean and sample variance (for the sample
&1 €.

Prove that:

(a) Es? = o?2.

(b) The sample mean § and the sample variance s~ are independent.

(c) & has normal .4 (m,o?/n)-distribution, while (n — 1)s2/o® has x2-
distribution with (n — 1) degrees of freedom.

2

Problem 2.8.21. Suppose that X,..., X, are independent and identically dis-
tributed random variables, let v be any random variable with values in the set
{1,...,n}, which is independent from Xi,..., X, and set S, = X; +--- + X,.
Prove that

DS, DX, Dv

DS, = DXE EX|)’Dv, — =_—"—- +EX,—
1By 4 (BX)Dv, g = gy TENE

Problem 2.8.22. Let M(s) = Ee** be the moment generating function for the
random variables X (see Problem 2.6.32). Prove that P{X > 0} < M(s) for
any s > 0.
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Problem 2.8.23. Let X, X|,..., X, be independent zﬂi identically distributed
random variables and set S, = Z?=1 Xi, So = 0, M, = maxo<;<,S; and
M = sup, o Su. Prove that (“§ 4 n” means that the distribution laws of & and
n coincide):

@M, < Mooy + X) 0 > 1.

(b) If S, — 0o (P-a.e.), then M < (M + X)™.

(c)If —oo < EX < 0nd EX? < oo, then

DX —D(S + X)~

EM =
—2EX

Problem 2.8.24. Let everything be as in the previous problem and let M(e) =
sup,>o(Sy — ne), for e > 0. Prove that lim, o eM (¢) = (DX)/2.

Problem 2.8.25. Suppose that £ and 7 are two independent random variables with
densities f¢(x), x € R,and f,(y) = Ijo11(¥), ¥ € R (i.e., nis distributed uniformly
in [0, 1]). Prove that in this special case formulas [P §2.8, (36) and (37)] can be
written as

>0,

[ s

f‘g‘n(z) = z
0, 7 <0,

and
1
/ xfe(zx)dx, 0=<z<1,
0

_ 1
Jem(@) = ZLZ/O xfe(x)dx, z>1,

0, z<0.

In particular, prove that if £ is also uniformly distributed in [0, 1], then

1

N O< <la

> <z<
Sem(2) =

2z b

0, z<0.

Problem 2.8.26. Let £ and n be two independent random variables that are
exponentially distributed with the same parameter A > 0.

(a) Prove that the random variable % is distributed uniformly in [0, 1].
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(b) Prove that if £ and 5 are two independent and exponentially distributed
random variables with parameters, respectively, A; nd A5, A; # A,, then the density
of £ 4+ n is given by

e—t/M _ gt/

f§+n(z) = A — A,

10,00 (2)-

Problem 2.8.27. Suppose that £ and 7 are two independent standard normal (i.e.,
A4(0, 1)) random variables and prove that:
(a) Both £/7 and £/|n| have Cauchy distribution with density

(b) |€]/|n| has density 0.

1
X € R.

2
EET R
Problem 2.8.28. Let X;,..., X, be independent and exponentially distributed
random variables with parameters, respectively, A1, ..., A,, and suppose that A; #
Aj, i # j.Setting T, = X| 4+ ... + X, prove that the probability P{7,, > ¢} can
be expressed in the form

n
P{T, >t} =) apme ™

i=1
and find the coefficients a;,,i = 1,...,n. (Comp. with Problem 2.8.8.)

Problem 2.8.29. Let £, &, ... be any sequence of random variables with E§, = 0,
E&2 = 1landlet S, =& + ...+ &, Prove that for any positive a and b one has

1
P{S, > an + b for somen > 1} < T<ab

Problem 2.8.30. Suppose that the random variable £ takes values in the finite set
{x1,...,x¢}. Prove that

lim (E&M)"/" = max(x, ..., xp).
n—>oo

Problem 2.8.31. Suppose that £ and 7 are two independent random variables that
take values in the set {1, 2, ...} and are such that either E§ < oo, or En < oco. Prove
that

Emin(§, 1) = ) P{§ = k}P{n = k}.

k=1

Problem 2.8.32. Let & and & be any two independent and exponentially dis-

tributed random variables with parameters, respectively, A; and A,. Find the

distribution functions of the random variables —— and SIELI&

E1+6
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Problem 2.8.33. Let X and Y be two random matrices and suppose that EY Y *
is invertible. Prove the following matrix version of the Cauchy-Bunyakovsky
inequality:

(EXY*)EYY*) (EYX*) <EXX*,

where the relation < is understood as the difference between the right and the left
side being non-negative definite.

Problem 2.8.34. (L. Shepp.) Suppose that X is a Bernoulli random variable with
P{X=1}=p,P{X=0}=1-—p.

(a) Prove that one can find a random variable Y which is independent from X
and is such that X + Y has symmetric distribution (X + Y L —(X +7Y)).

(b) Among all random variables Y that have the above property, find the one that
has the smallest variance DY .

Problem 2.8.35. Suppose that the random variable U is uniformly distributed in
the interval (0, 1). Prove that:

(a) Given any A > 0, —% In U is exponentially distributed with parameter A.

(b) tan (U — %) is distributed according to the Cauchy law with density
x e R.

(c) [nU | + 1 is distributed uniformly in the (discrete) set {1,2,...,n}.

(d) Given any 0 < ¢ < 1, the random variable X = 1 + L%J has geometric

distribution with P{X =k} = ¢*~'(1 —¢), k > 1.

1
w(14+x2)°

Problem 2.8.36. Give an example of a sequence of independent and identically
distributed random variables { X, X», ...} with sup, EX) < oo, forall p > 0, but
such that

P{sngnj < oo} =0

for any sub-sequence {ni, n,,...}.

Problem 2.8.37. Let £ and 7 be any two independent random variables with (cum-
mulative) distribution functions F = F(x) and G = G(x). Since P{max(§,n) <
x} = P{& < x}P{n < x}, itis easy to see that the distribution function of max (¢, )
is nothing but F(x)G(x). Give an alternative proof of the last claim by identifying
the event {max(¢,7) < x} with the union of the events {§ < x,& > 5} and
{n < x,& < n}, and by expressing the probabilities of these events in terms of
the conditional probabilities (in the final stage use formula (68) from § 6).

Problem 2.8.38. Suppose that £ and 1 are two independent random variables
whose product & 7 is distributed with Poisson law of parameter A > 0. Prove that
one of the variables £ and 7 takes values in the set {0, 1}.
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Problem 2.8.39. Prove that, given a standard normal, i.e., .#(0,1), random
variable £, one has the following asymptotic result (see Problem 1.6.9):

@(x)

Pe=x}~ 22, asx— oo, where p(x) = 2

e—X

1
V2
What is the analog of this result for a random variable y which has gamma-
distribution (see [ P §2.3, Table 3])?

Problem 2.8.40. Let £ be any random variable and let M, be the collection of all
medians of £, as defined in part (a) of Problem 1.4.23. This object is meaningful
for arbitrary random variables (Problem 1.4.23 refers to discrete random variables).
Prove that for any b € R and any p > 1 with E|¢|? < 0o, one must have

lu —b|” < 2E[§ — b,

where 1 = p(€§) € M, is a median for &. In particular, if E|§|> < oo, then |u —
E¢| < y2D§.)

Problem 2.8.41. Suppose that £ and n are two independent random variables with
finite second moments. Prove that the random variables & 4+ n and § — 5 are
uncorrelated if and only if D = Dn.

Problem 2.8.42. Given any two L'-functions, f and g, their convolution, f * g,
is defined as f x g = fR f(»)g(x — y) dy. Prove Young’s inequality:

/IRI(f*g)(x)ldxfAIf(x)ldx-Alg(x)ldx-

Problem 2.8.43. According to formula [P §2.8, (22)] the density, f,(y), of the
random variable n = ¢(§) can be connected with the density, f¢(x), of the random
variable £ by the relation

’

fi() = fe(h(») W ()

where /1(y) = ¢~ (y).
Suppose that 7 is some open subset of R” and that y = ¢(x) is some R”-valued

function defined on I (for x = (x1,...,x,) € T andy = (y1,...,y,) € R, the
relation y = ¢(x) is understood as y; = ¢;(x1,...,x,), i = 1,...,n). Suppose
that all derivatives g% exist and are continuous and that | J,(x)| > 0, x € I, where
J,(x) stands for the determinant of the Jacobian of ¢, i.e.,

dp:
M y1<ij<n

Jy(x) = det %,
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Prove thatif £ = (&;,...,§,) is some /-valued random vector with density f:(x)
and if n = ¢(), then the density f,(y) is well defined on the set (/) ={y : y =
@(x),x € I} and can be written as

S () = fe(hODITa ()],

where h = ¢!

|Jp(x)[ > 0).
Hint. Use the multivariate analog of the integration-by-substitution rule (Prob-
lem 2.6.74), with g(x) = G(¢(x)) fe(x), for some appropriate function G.

Problem 2.8.44. Letn = A&+ B, where: £ = (&1,.... &), n=(N1,....0n), A is
an n X n-matrix with | det A| > 0, and B is an n-dimensional vector. Prove that

is the inverse of the function ¢ (we have |J;(y)| > 0, as long as

1 -
F0) = gy AT 0= B,

Hint. Use the result established in Problem 2.8.43 with ¢(x) = Ax 4+ B and
prove that |J,—1(y)| = 1/| det 4].

Problem 2.8.45. (a) Let p(&, n) be the correlation coefficient between two given
random variables, £ and 7. Prove that

pei§ +ca,can +ca) = p(§. 1) - sign(cica),

where sign x = 1 for x > 0, signx = 0 for x = 0 and signx = —1 for x < 0.
(b) Consider the random variables &, &;, &3, &, with correlation coefficients

p(&,&;).i # j,and prove that
p€1 + 6.6 + &) = [p(51, &) + p61. E)] + [p(52. &) + p(62.64)].

Problem 2.8.46. Let X = (X|,...,X,) be any Gaussian random vector whose
components are independent and identically distributed with X; ~ .47(0,02),i =

1,...,n. Consider the spherical coordinates, {R, @1, ..., ®,_1}, of the vector X =
(X1,...,X,); in other words, suppose that
X] = Rsin ¢1 s

Xy = Rsin®,,cos®D,,,—1...cos®;, 2<m<n-—1,
X, = Rcos®,_1cosD,_,...cos Py,
where R > 0, ®; € [0,27),1 <i <n — 1. Prove that, forr > 0, ¢; € [0,27),i =

I,...,n—1,n > 2, the joint density, f(r,¢1,...,@,—1), of the random variables
(R, ®y,...,®,_)) is given by
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n—1 2
r"~lexp (—#)
(2m)n/20m

3

n—2 n—
S ... on—1) = COs™ Q1 COS" " @r...COSPp—2,

where we set by convention ¢y = 0.

Problem 2.8.47. Suppose that X is a random variable with values in the interval
[0, 1] and such that the distribution of X is given by the Cantor function (see § 3).
Compute all moments EX", n > 1.

Problem 2.8.48. (a) Verify that each of the following functions is a (cummulative)
distribution function:

Fg(x) = exp(—e™), x € R;

0, 07
Fr(x) = s where o > 0;
exp(—x~%), x>0,

ERPAL”
Fw(x) = {exp( ). <0, where a > 0.

1, x>0,

These functions are known, respectively, as the Gumbel’s distribution, or double
exponential distribution; comp. with Problem 2.8.17 (Fg(x)), Fréchet distribution
(Fr(x)), and Weibull distribution (Fw(x)).

These distributions are special cases of the following three types (everywhere
below we suppose that & € R, 0 > 0, and o > 0):

Type 1 (Gumbel-type distributions):

Fs(x) = exp { — e‘ﬁ}.

Type 2 (Fréchet-type distribution):

O, x < /\‘La
T ()
expy — [ —— , X > .

(o2

Type 3 (Weibull-type distribution):

ex%_((')c_—pL)z)a} x<M
Fu(x) = 1P o S

1, X > U.
(b) Prove that if X has Type 2 distribution, then the random variable

Y =In(X —p)
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has Type 1 distribution. Similarly, if X has Type 3 distribution, then
Y =—In(nu—X)

also must have Type 1 distribution.

Remark. This explains why Type 1 distributions, which are often referred to as
extreme value distributions, are fundamental in the “extreme value theory”.

Problem 2.8.49. (Factorial moments.) Given some random variable X, its factorial
moments are defined as

mepy=EXX-1)...(X—-r+1), r=12,...,

ie., mgy = E(X)r
If X has Poisson distribution law of parameter A, then for r = 3 one has
m3) = A. Calculate m ) for an arbitrary r.

Problem 2.8.50. Suppose that 8; and 6, are two independent random variables that
are distributed uniformly in [0, 277), and let X| = cos 8; and X, = cos 6,.
Prove that

law

1
E(Xl +X3) = X1X;

(recall that «aw ) or “é,” means “identical in law”).
Problem 2.8.51. The random variable 6 is distributed uniformly in the interval
[0,27) and the random variable C is distributed in the real line R according to
the Cauchy law with density m, x eR.

(a) Prove that the random variables cos®6 and 1/(1 + C?) share the same
distribution law (i.e., cos26 = 1/(1 + C?)).

(b) Prove that cot % e

(c) Find the densities of the distribution laws of the random variables sin(6 + ¢),
¢ € R,andatan 6, a > 0.

Problem 2.8.52. Let £ be any exponentially distributed random variable with
P{¢ >t} = e ', t > 0, and let N be any standard normal random variable (i.e.,
N ~ 4(0, 1)), which is independent from &. Prove that

law
§ = V2N,
i.e., the distribution law of & coincides with the distribution law of /2& |N|.

Problem 2.8.53. Suppose that X is a random variable that takes values in the set
{0,1,..., N} and has binomial moments by, by, ...,by, given by b, = C§ =
HZEX)e = FEX(X —1)...(X —k + 1)—see Sect. A.3.
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Prove that the moment generating function of X is given by

N N N
Gx(s) = " = Y5 = 1f = 05" (Lt b ).
k=0 n=0 k=n
and that, consequently, foranyn = 0,1, ..., N, one has
N
PIX =n} =) (-)""C{ by.
k=n

Problem 2.8.54. Suppose that X and Y are two independent random variables that
are distributed uniformly in the interval [0, 1]. Prove that the random variable
7 - X +7, 0<X+Y =<1,
X+Y)—-1, 1<X+4+Y <2,

is also uniformly distributed in [0, 1].

Problem 2.8.55. Suppose that Xi,..., X, are independent and identically dis-
tributed random variables that take the values 0, 1 and 2 with probability 1/3 each.
Find a general formula for the probabilities

Pok) = P{X1 4+ X, =k}, 0<k<2n
(for example, P,(0) = 37", P,(1) =n3™", P,(2) = C2,, 37", P,(5) = (C),, —
nCZ,.,)-37", and so on).

Problem 2.8.56. The random variables £ and 7 are such that E£? < oo and En? <
o0. Prove that:

(a) D(§ £ n) = D& + Dy = 2 cov(§, n);

(b) If, in addition, £ and 7 are independent, then

D(én) = D¢ - Dn + D - (En)® + Dn - (E€)*.

(See Problem 2.8.69.)

Problem 2.8.57. The joint density, f(x,y), for the pair of random variables
(X,7Y), is said to be “spherically symmetric” if it can be expressed as

fxy) =g(x* +y%),

for some choice of the probability density function g = g(z), z > 0. Assuming that
R and 6 represent the polar coordinates of (X,Y),i.e., X = Rcosf,Y = Rsinf,
prove that 6 is uniformly distributed in [0, 277), while R is distributed with density
h(r) = 2mrg(r?).
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Problem 2.8.58. Given a pair of random variables, (X, Y), with density f(x, y),
consider the complex random variables

Z,=Zeé', teR, whereZ=X+iY.

Prove that in order to claim that the distribution law of Z; does not dependon? € R
it is necessary to assume that f(x, y) has the form f(x,y) = g(x? + y?), where,
just as in the previous problem, g is some probability density function.

Problem 2.8.59. Let £ and 1 be any two independent and exponentially distributed
random variables with density f(x) = Ae ™, x > 0. Prove that the random
variables £ + n and % are independent.

Problem 2.8.60. Suppose that £ and n are two independent random variables with
densities
1 1 y _2
ff(‘x):_—v |x|<17 and f?](y)z_ze 2029 y>07 o> 0.
T 1—x? o
Prove that the random variable £ 7 is normally, .4 (0, o'%)-distributed.

Problem 2.8.61. Consider the random matrix ||&;; || of size n x n, whose (random)
entries are such that P{§;; = £1} = 1/2. Prove that the expected value and the
variance of the determinant of this random matrix are equal, respectively, to O and n!.

Problem 2.8.62. Suppose that X, X»,... are independent random variables that
are distributed uniformly in the interval [0, 1]. Prove that

n n —1
EZX,?[ZX;{} —>§ as n — oo.

k=1 k=1

Problem 2.8.63. Suppose that the random vector X = (X, X, X3) is distributed
uniformly in the tetrahedron

2y ={(x1,x2,%3) 1 x1 =2 0,x2>0,x3 >0 x; +x2 + x3 < c},

where ¢ > 0 is some fixed constant. Find the marginal distributions of the random
vector X = (X1, X2, X3), associated with the components X; and (X, X>).

Hint. The density, f(x1, X2, x3), of the vector X = (X, X5, X3) is equal to the
constant V!, where V = ¢3 /6 is the volume of X5. With this observation in mind,
prove that the density of (X1, X3) is given by f(x1,x2) = 6(c — x; — x2)/c and
then calculate the density of X.

Problem 2.8.64. Let X,,..., X, be positive, independent and identically dis-
tributed random variables with EX; = pu, EXI_l =rand S, = X;+---+ X,
1 < m < n. Prove that:

@ES; ' <r;

(b) EX,-Sn_l =1/n,i=1,...,n
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(©) ESmSn_1 =m/n,ifm <n;
() ES,S,)' =14 (m—m)ES, ' ifm <n.
Problem 2.8.65. (Dirichlet distribution.) In [ P §2.3, Table 3] the beta-distribution,

with parameters & > 0 and 8 > 0, is defined as a probability distribution on [0, 1]
with density

_ B xe(1 —x)’g_l
S(x;a, B) = W,

where

B(w, ) = /le“—l(l —x)Pldx

(_ I'la + B)

: _ * a—1 ,—x
_F(TF(,B)’ with F(ot)—/o x* e dx).

The Dirichlet distribution, is a multivariate analog of the beta-distribution and is
defined as the probability distribution on the set

Aoy = {1,y Xpj—1) 1 X > 0,0 < x; 4+ ...x4—1 < 1}, for k >2,
given by the density

S, Xm0 Ok, 0) =

P+t g e L
= 1— ),
I(ar)... [(ar) X1 Xr_1 ( (x1 + + Xr—1))

where o; > 0,7 = 1,...,k, are given parameters. Alternatively, the Dirichlet
distribution can be defined on the simplex {(xy,...,xx) : x; >0, Zf'{=1 x; = 1} by
specifying the “density”

I'lop+ ... 4+ o) R
I()... () 0777k

S, X o, ok, o) =

(the quotation marks around the word “density” are simply a reference to the

fact that the function 7(x1, ce, Xk, ..., 01, 0 ) does not represent a density
relative to the Lebesgue measure in R¥).

Suppose that all component of the random vector X = (X,..., Xx) are non-
negative, i.e., X; > 0, and are such that the sum X; + -+ + X; = 1 has
Dirichlet distribution with density f(x1,...,Xp—1;Q1,...,0—1,0;) on Ar_y (in
the sense that this function represents the joint density of the first k — 1 components,
Xi,..., Xk—1, of the vector (X, ..., X), after eliminating the last component, Xy,

from the relation X =1 — (X| + ... + Xx—1)).
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(a) Prove that

k
a; O‘J’<Zi=1°‘i_“j)
EX; = = DX; = 3 ,
D (Zﬁ;l a,-) (Zf;l o + 1)
o . .
COV(X]I’ ij) = - k zjl ]Zk ’ jl 7é 12-
(Zi:l O‘i) (Zi:l a; + 1)
(b) Prove that for every choice of non-negative integer numbers, ry, . .., Iy, one
can write
F(Zle Ol,') 1_[54(:1 I'(a; + 1)
EX]' ... X[ = .
k k
l_[i=l I'(a;) F(Zi=1(0‘i + ri))
(c) Find the conditional density, fx,|x,,..x,_, (Xk | X1,...,Xx—1), of the random
variables X, given X1, ..., Xj—1.

Problem 2.8.66. The concentration function of a random variable X is defined as

Q(X;l)=supP{x < X <x+13}, [ >0.
xeR
Prove that:
(@) If X and Y are two independent random variables, then

O(X + Y:1) <min(Q(X:1). Q(Y:1)), foralll > 0.

(b) There is a number x;°, for which one can write Q(X;/) = P{x < X <
x4 1}, and the distribution function of X can be claimed to be continuous if and
only if Q(X;0) = 0.

Hint. (a) If Fx and Fy stand for the distribution functions of X and Y, then

[e.]

Plz<X+7Y §z+l}=/ [Fx(z+1—y)— Fx(z— y)]dFy(y).

—00

Problem 2.8.67. Suppose that £ ~ .4 (m,c?), i.e., £ has normal distribution with
parameters m and 02, and consider the random variable n = %, which has log-
normal distribution with density (see formula [P §2.8, (23)])

_ 2
P
-

0, y =0.
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Given any « € [—1, 1] define the function

f(“)(y) _ f,,(y){l —a sin[no_z(m — lny)]}, y >0,
0, y =0.

(a) Prove that f@(y) is a probability density function, i.e., f©®(y) > 0 and
S F@ydy =1.

0 yyay

(b) Suppose that ¢ is some random variable with density fz(y) = /@ (y), a #
0, and prove that 7 and ¢ have identical moments of all orders: En" = E{", n > 1.
(This shows that the log-normal distribution admits moments of all orders, and yet
this distribution is not uniquely determined by its moments.)

Problem 2.8.68. Let (§,),>0 be any sequence of independent, identically, and
symmetrically distributed random variables, and, given any n > 1, let So = 0
and S, = & + ... + &,. Define the respective sequences of partial maximums and
partial minimums, M = (M),>0 and m = (m,),>0, given by

M, = max(Sy, S1,...,S,) and m, = min(Sy, S1,...,Sy).

As a generalization of Problem 1.10.7, prove that for any fixed n one has

law law

(Mn_SnvSn_mn7Sn) = (_mnaMnaSn) = (Mna_mnaSn)y

i.e., the joint distribution laws of the above triplets of random variables coincide.
Hint. Use the following relation, which is easy to verify:

(Sy — Sy—k:k <n) faw (Sk;k <n) foranyn >1.

Problem 2.8.69. The random variables & and 7 are such that D < oo and Dy < oo.
Prove that
cov’(, 1) < D& D

and explain when does the identity in this relation hold.

Problem 2.8.70. Let &y,... &, be independent and identically distributed random
variables. Prove that

P{min(é,....&) =&} =n"".

Show also that the random variables min(§,...,&,) and I —min,..¢,)) are
independent.
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Problem 2.8.71. Let X be any random variable with distribution function F' =
F(x) and let C be any constant. Find the distribution functions for the following
random variables:

X, if|X|<cC,

XVvC =max(X,C), XAC =min(X,C), X¢ =
0, if|X|>C.

Problem 2.8.72. Let X be any random variable, let A > 0 and let ¢(x) = T
X
Prove the following inequalities:

Ep(1X*)
E[p(IX") — p(x*)] < P{|X| > x} < %

Problem 2.8.73. Let £ and 5 be two independent random variables that have
gamma-distribution with parameters, respectively, («;, 8) and (a2, B) (see [P §2.3,
Table 3]). Prove that:

(a) The random variables § + 1 and 5
§+m

are independent.

(b) The random variable

(see also [P §2.3, Table 3]).

has beta distribution with parameters (¢, o)

Problem 2.8.74. (Bernoulli Scheme with random probability for success.) Suppose

that the random variables &,,...,£&, and & are chosen so that & is uniformly
distributed in (0,1), &, i = 1,...,n, take values 1 and 0 with conditional
probabilities

P& =1|r=p) =p, P& =0|r=p)=1-p,

and, furthermore, are conditionally independent, in the sense that (in what follows
X;, stands for a number that is either O or 1, fori = 1,...,n)

P& =xi.....6 = x,|m) =P = xi|7) ... P& = x| 7).

Prove that:
(a) One has the identity

1

P& =xi,....6 :xn}:m

’

where x = x; + ... + x,.
(b) The random variable S, = & + ... + &, is uniformly distributed in the
(discrete) set {0, 1,...,n}.
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(¢) The conditional distributions P(7r < p|& = x1,...,& = x,) and P(zr <
p1S, =x1 4+ ...+ x,) coincide, for any p € (0, 1).

(d) The conditional distribution P(x < p|S, = x), where x = x| + ... + X,
has density

fris,(p1x) = (n+DC; p*(1—p)"™,

x+1

n+2

Problem 2.8.75. Let ¢ and n be two non-negative, independent and identically

distributed random variables with P{§ = 0} < 1, and suppose that min(&, n) and

& /2 have the same distribution. Prove that £ and n must be exponentially distributed.
Hint. Consider the relation

andone has E(xr | S, = x) =

(P{€ > x})* = P{min(§. 1) > x} = P{§ > 2x},

and conclude that (P{§ > x})*" = P{£ > 2nx}. Then conclude that for every
a > 0 and for every non-negative rational x one has P{§ > x} = e "/ where
A = —InP{£ > a}. Finally, conclude that P{§ > x} = ¢™**/¢ forall x > 0.

Problem 2.8.76. Let & and 7 be two independent and identically distributed random
variables with distribution function F = F(x). Prove that

Plg=n} =) |F(x)— F(x-)|~

xeR

(Comp. with Problem 2.12.20.)

Problem 2.8.77. Consider the random variables X1, ..., X, and prove the follow-
ing “inclusion—exclusion” formula (for the maximum of several random variables—
comp. with Problems 1.1.12 and 1.4.9):

max(X1.....X,) =Y Xi— Y min(X;. X,,)

i=1 1<ii<iz<n

+ Y min(Xy. X, Xi) 4.4 (D" min(X. LX),

1<ii<iz<iz<n

By choosing the random variables X1, ..., X, accordingly, prove the “inclusion—
exclusion” formula for the probability P(4; U... U A,) (see again Problems 1.1.12
and 1.4.9).

Problem 2.8.78. Let &,&,,... be any sequence of independent and identically

distributed Bernoulli random variables with P{&, = 1} = P{§ = -1} = 1/2
1

and let z,(w) = 3 Yy Sk;:))

distribution function F(x) = P{zeo(w) < x} is the Cantor function (see [ P §2.3]).

and Zeo(®) = lim,_ 00 24(@). Prove that the
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In particular, this means that Law(zs,) refers to a probability distribution concen-
trated on the Cantor set. The random variables zoo = zoo(®) is an example of what is
known as fractal random variable (its distribution is neither discrete nor absolutely
continuous—see Problem 2.3.18).

Problem 2.8.79. Prove that in the binomial case (see [P §1.2, 1] and [P §2.3,
Table 2]) the distribution function

m

B,(m;p)=) Ciprq"™*,  0<m<n,
k=0

can be expressed in terms of the (incomplete) beta-function:

1 1
Bn : — me — n—m—ld ;
(m: p) —B<m+1,n_m)/p X(1 =)' dx

where

1
B(p.q) = /0 11— 0 d

( _I'(prg)

o0
= , with I” ):/ xPle™ dx).
F(p+q) =],

Problem 2.8.80. Prove that the Poisson distribution function F(m;A) =
Yoo #, m = 0,1,2,..., can be expressed in terms of the (incomplete)
gamma-function as

1 *© m _,—Xx
F(m;k)z% A x"e " dx.

Problem 2.8.81. In addition to the mean and the variance, another important
characteristics of the shape of the density f = f(x) are the “skewness” parameter,
given by
o3 = &
o3’
and the “kurtosis” or “peakedness” parameter, given by

o 4
4= —
o4’

where jp = [ (x — p)* f(x)dx, p = [ xf(x)dx, and 0% = p».
What are the values of the parameters o3 and a4 for the distributions listed in
[P §2.3, Table 3]?
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Problem 2.8.82. Suppose that X is some binomial random variable with parame-
ters n and p (see Table 2 in [P §2.3, 1]). Analogously to Problem 2.8.81), define
the “skewness” parameter

E(X —EX)?
w0 = (=g )
and prove that (withg = 1 — p)
sdkw(X)=1—2
V1pq

(If0 < p < 1/2, then skw(X) > 0, in which case one says that the distribution
has “long right tail”.) Find also the value of the “kurtosis” parameter kur(X) = o4
(= E(X—EXx)* )

- (DXx)?

Problem 2.8.83. Suppose that &;,...,&, are independent and identically dis-
tributed random variables with “skewness” parameter o3 (= skw(&;)) and with
“kurtosis” parameter oy (= kur(&))). Prove that

skw(£) + ... + &) = n~/2skw(§))

and
kur(§) + ... + &) =3 +n Ykur(§) — 3}.

Problem 2.8.84. The well known binomial distribution arises as the distribution
law of the total number of “successes,” v, in n independent trials, with probability
for success in each individual trial 0 < p < 1. More precisely, this distribution
can be identified with the collection of probabilities P,{v = r} = C, p"q¢"™",
r =0,...,n, for some fixed integer n and fixed 0 < p < 1. The negative binomial
distribution P"{t = k} (a.k.a. the Pascal distribution) arises as the probability
distribution of the trial, 7, during which r-“successes” are observed for the first
time. Prove that, for any r = 1,2, ... and any k > r, one has

P(t=k =C/Zlp'g"", k=rr+1,...,

where p is the probability for success in a single trial. The negative binomial
distribution can be identified with the collection of all probabilities P"{t = k},
k =rr+1,..., for fixed r. Given any fixed r, prove that E't = rq/p, where
g=1=p.

Problem 2.8.85. The (discrete) random variable &, with values in the set {1,2, ...},
is said to have a discrete Pareto law with parameter p > 0, if
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Prove that

o o
“iern ™ BTy

where £(s) = Y 07, ;7 stands for Riemann’s zeta function (for a description of the
continuous Pareto law see Problem 3.6.23).

Problem 2.8.86. Let &y, ..., &, be independent and identically distributed random
variables with distribution function F(x | 6), which depends on some (random)
parameter 6, with prior distribution I7(6), known to be in some class . Let
I1(0 | x1,...,x,) be the posterior distribution, calculated from the Bayes formula,
where x1, ..., x, are the observed values of &, ..., &,. If the posterior distribution
also belongs to the class %", we say that the distribution I7(6) is the .%# -conjugate
of the distribution F(x | 0).

Prove that:

(@ IfF(-|0)~ W(@,ao_l) and I1(0) ~ A (my, bo_l), then

H(QIXI,...,xn)~ﬂ(b0m0+a0(x1+---+Xn) 1 )

by + nag " by + nag

(b) If F(-|10) ~ 40,07y and IT(#) ~ I'(k:A) = gamma-distribution with
density

k k—le—/\x

W I[O,oo) (%),

Yien(x) =

where k > 0 and A > 0, then
1 L, )
I | xy,...,xy) ~T k—l—zn;k—kz(xl—i—...—i—xn).

(¢) If F(-|08) ~ exp(f) = exponential distribution with parameter 6, and
I1(0) ~ I'(k; A), then

OO | x1,...,x0) ~T'k+nm A+ (xi1 4+ ...+ x0)).
(d) If F(-|0) ~ Poisson(8) and I1(0) ~ I'(k;A), then
OO | x1,...,x0) ~T'(k+ (x1+ ...+ x); A +n).
(e) If F(-|0) ~ Bernoulli(f) and I1(f) ~ B(k; L) = beta-distribution with
density

xk—l (1 _ x)L—l

IB(k;L)(x) = B(k: L)

To.1)(x),

then

e | xy,....,.xp)) ~Bk+ (1 +...+x,); L+n—(x1+...+ x,)).
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Problem 2.8.87. Suppose that X is a random variable with one of the following
distributions: binomial, Poisson, geometric, negative-binomial, or Pareto. Find the
probability of the event {X is even}. If, for example, X has geometric distribution
with parameter p (see [ P §2.3, Table 2]), then P{X iseven} = (1 — p)/(2 — p).

Problem 2.8.88. (Exponentially distributed random variables.) Let &, ...,&, be
independent and exponentially distributed random variables with parameters, re-
spectively, Ay, ..., A,.

(a) Prove that P{&; < &} = A1 /(A1 + Ao).

(b) Prove that min;<x<, & has exponential distribution with parameter A =
> i —1 Ax and conclude from part (a) that

Pl = min 6} =4/ L
== k=1

(c) Assuming that A; # A;, i # j, find the density of the random variable
& + -+ + &, (for the case n = 2, see Problem 2.8.26).

(d) Prove that Emin(§, &) = 1/(A; + A,) and find E max (&, &).

(e) Find the distribution density of the random variable & — &,.

(f) Prove that the random variables min(&;, &) and &; — &, are independent.

2.9 Construction of Stochastic Processes with a Given
System of Finite-Dimensional Distributions

Problem 2.9.1. Let £2 = [0, 1], let .# be the class of Borel sets in [0, 1], and let
P stand for the Lebesgue measure on [0, 1]. Prove that (£2,.%,P) is a universal
probability space, in the sense that, given any distribution functions F(x), one can
construct on (§2,.%,P) a random variable £ = &(w), w € §2, whose distribution
function, F¢(x) = P{§ < x}, coincides with F(x).

Hint. Set £(w) = F~'(w), where F~'(w) = sup{x: F(x) < },0 < 0 < 1,
(£(0) and £(1) may be chosen arbitrarily).

Problem 2.9.2. Verify the consistency of the families of probability distributions
described in the corollaries to [ P §2.9, Theorems 1 and 2].

Problem 2.9.3. Prove that Corollary 2 to [ P §2.9, Theorem 2] can be derived from
[P §2.9, Theorem 1].

Hint. Show that the measures defined in [ P §2.9, (16)] form a consistent family
of (finite-dimensional) distributions.

Problem 2.9.4. Consider the random variables 7,,, n > 1, from [P §2.9, 4] and
let F,,, n > 1, denote their respective distribution functions. Prove that F,, () =
fy Fu(t —s)dF(s),n > 1, where F; = F.
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Problem 2.9.5. Prove that P{N; = n} = F,(t) — F,+:(¢) (see [P §2.9, (17)]).

Problem 2.9.6. Prove that the renewal function m(¢) from [P §2.9, 4] satisfies
what is known as the recovery equation:

m(t) = F(t) + /Ot m(t — x)dF(x). (%)

Problem 2.9.7. Prove that the function defined by formula [P §2.9, (20)] is the
only solution to equation (x), within the class of functions that are bounded on
every finite interval.

Problem 2.9.8. Let T be an arbitrary set.

(a) Suppose that forevery ¢ € T there is a probability space (£2;,.%;, P;), and let
2 =[1,er $2¢ and F = Q;er%;. Prove, that there is a unique probability measure
P, defined on the (£2,.%), for which the following independence property holds:

P(H B,) =[[Po.

teT teT

where B; € %#;,t € T, and B, = £2; for all but finitely many indices ¢ € T .
Hint. Define P on the some appropriate algebra and use the argument of the
proof of the Ionescu-Tulcea Theorem.

(b) Suppose that for every ¢t € T there is a measurable space (E;,&;) and a
probability measure P, defined on that space. Prove the following result, which is
due to Lomnicki and Ulam: there is a probability space (£2, .%, P) and independent
random elements (X;);e7, such that each X, is .%# /& -measurable and P{X, € B} =
P.(B), B € &;.

2.10 Various Types of Convergence of Sequences
of Random Variables

Problem 2.10.1. By using [P §2.10, Theorem 5] prove that in [P §2.6, Theo-
rems 3 and 4] one can replace “convergence almost surely” with “convergence in
probability”.
P
Hint. If §, — &, |&,] < n, En < o0, and E|§, — &| A 0, then one can find

some ¢ > 0 and a sub-sequence (7 )x>1, such that E|§,, — §| > ¢ and §,, i £
Furthermore, according to [ P §2.10, Theorem 5], one can find such a sub-sequence
(k1)1>1, that énk’ -+ & (P-a.e.). The next step is to use [ P §2.6, Theorem 3] to find
a contradiction to the assumption E|§, — &| /A 0.
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Problem 2.10.2. Prove that the space L*° is complete.
Hint. Take a sequence (§;)x>1, which is fundamental in L°°, in the sense that
I — EnllLee < ay, forn < m, with a, — 0 as n — oo, and set

0, if lim, &, (w) = oo.

Prove that, as defined above, £(w) is a well defined random variable and, further-
more, ||§ —&,||Lc <a, = 0asn — oc.

P P
Problem 2.10.3. Prove that if §,—§& and, at the same time, &,—n, then & and 7 are
equivalent, in the sense that P{§ # n} = 0.

P P
Problem 2.10.4. Let £,—£ and n,—n and suppose that the random variables & and
n are equivalent. Prove that for any ¢ > 0 one has

P{l& —nu| = e} —> 0asn — oo.

Problem 2.10.5. Let Enié and nnin. Prove that if ¢ = ¢(x,y) is some

P
continuous function, then ¢(&,, n,)—@(&, n). (Slutsky’s lemma.)
Hint. Given some ¢ > 0, choose ¢ > 0 so that

P{léil > c} <&, Pliml>ct<e, n>1,
P{él >ct<e, P{n>c}<e

As the function ¢ = ¢(x, y) is continuous, it must be uniformly continuous on
the compact [—c, ¢] x [—c, ¢]. Therefore one can find some § > 0 so that for any
x,y € [—c,c] with p(x, y) <8, one has |p(x) — @(y)| < & (p(x,y) = max(|x' —
Y 1x2 = y?)), x = (x', x?), y = (¥'. y?)). Finally, consider the estimate

PilleEn.nn) — (. m| > e} < P{[&:] > ¢} + P{lm| > ¢}
+ P{EN > ¢} + P{inl > ¢} + P{[§ — [ > 8} + P{ln. — nl > 6},

and prove that for large n the right side does not exceed 6¢.
P P
Problem 2.10.6. Let (£, — £)?> — 0. Prove that £2 — £2.

d
Problem 2.10.7. Prove that if § — C, where C is some constant, then the
convergence must hold also in probability; in other words

gn i) C = éniC
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Hint. For a given ¢ > 0, consider the function f;(x) = (1 — @)Jr and notice
that

P{l&, —c| <&} > Efe(§) = Efe(c) = 1.

Problem 2.10.8. Let the sequence (&,),>1 be such that Y oo, E[§,|P < oo, for
some p > 0. Prove that §, — 0 (P-a.e.).
Hint. Use Chebyshev’s inequality and the Borel-Cantelli lemma.

Problem 2.10.9. Let (£,),>1 be a sequence of identically distributed random
variables. Prove the following implications:
o0
Elgi| <oo <= ) P{l&i| > en} <00, £6>0 <

n=1
— ip{
n=1

Hint. Use the following easy to verify inequalities:

En

g—" >s}<oo,s>0 = = —>0 (P-a.e.).
n n

ey Pl >en} <ElEi| <e+e) P{&]|>en.

n=1 n=1

Problem 2.10.10. Let (&,),>1 be some sequence of random variables and let £ be
arandom variable.

(a) Prove thatif P{|§, — &| > ei.0.} = 0 forevery ¢ > 0O, then §, — & (P-a.e.).

(b) Prove that if one can find a sub-sequence (ny), such that §,, — & (P-a.e.)
and max,, _,<;<n, 1§ — &u,_,| = 0 (P-a.e.) for k — oo, then §, — & (P-a.e.).

(c) Prove thatif §, — & (P-a.e.), then P{|§, —&| > ¢i.0.} =0, forevery ¢ > 0.
(This is the converse of property (a).)

Problem 2.10.11. Define the distance, d (&, n), between two random variables, &

and n, as
|§ —nl
d.n =E—"—7r—0.
L+ 1§ —nl
and prove that the function d = d(-,-) defines a metric in the space of all

equivalence classes of random variables (on a given probability space) for the
relation “identity almost everywhere.” Prove that convergence in probability is
equivalent to convergence in the metric d (-, -).

Hint. Check the triangle inequality and convince yourself that

5 =5 <Pty — £ < o) + Pl — 81 > o)

&
1—+8P{|§n—§|>8}§Em_

for every ¢ > 0.
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Problem 2.10.12. Prove that the topology of convergence almost surely is not
metrizable.
Hint. Suppose that there is metric, p, which defines convergence almost surely,

P
and consider some sequence (§,),>1, chosen so that §, — 0, but &, /4 0 (P-a.e.).
Then, for some ¢ > 0, one can find a sub-sequence (7nx)x>1 so that p(§,,,0) > ¢

. P . .
and, at the same time, &,, — 0. Finally, by using [ P §2.10, Theorem 5] one can
find a contradiction to the claim that convergence in the metric p is the same as
convergence almost surely.

Problem 2.10.13. Prove that if X; < X, < ... and X, E) X, then one also has
X, —> X (P-a.e).

Problem 2.10.14. Let (X,),>1 be a sequence random variables. Prove that:
(a) X, > 0(P-a.e.) = S, /n — 0 (P-a.e.), where, as usual, S, = X;+---+
Xy

' P P
(b) X, L—)O = S,/n L—)O, if p > 1 and, in general,
x,0s 3 o,
n

P P
(c) In general, X,, — 0 does not imply the convergence S, /n —> 0 (comp. with
the last statement in Problem 2.10.34).

(d) S,/n — 0 (P-a.e.) if and only if S, /n E) 0 and S /2" — 0 (P-a.e.).
Problem 2.10.15. Let (£2,.%,P) be a probability space, on which one has the

P
convergence X,, — X. Prove that if P is an atomic measure, then X,, — X also
with probability 1 (for the definition of atomic measure, see Problem 2.3.35).

Problem 2.10.16. According to part (a) in the Borel-Cantelli lemma (the “first
Borel-Cantelli lemma”), if Y .- | P(|&,| > &) < oo for some & > 0, then §, — 0
(P-a.e.). Give an example of a sequence {£,} for which &, — 0 (P-a.e.), and yet
Y02 P(l&:] > &) = oo, for some & > 0.

Problem 2.10.17. (On part (b) in the Borel-Cantelli lemma;, i.e., on the “second
Borel-Cantelli lemma.”) Let 2 = (0,1), Z = 2((0,1)), and let P stand
for the Lebesgue measure. Consider the events 4, = (0,1/n) and prove that
> P(A,) = oo, even though every @ € (0, 1) can belong only to finitely many
sets Ai,..., Anjw), ie., P{4,1.0} = 0.

Problem 2.10.18. Prove that in the second Borel-Cantelli lemma, instead of requir-
ing that the events A, A,, ... are independent, it is enough to require only that these
events are pair-wise independent, in that P(4; N A;) —P(A4;)P(4;) =0,i # j;in
fact, it is enough to require only that Ay, A,, ... are pair-wise negatively correlated,
in that P(4; N Aj) - P(A,)P(AJ) <0,i #j.
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Problem 2.10.19. (On the second Borel-Cantelli lemma.) Prove the following
variants of the second Borel-Cantelli lemma: given an arbitrary sequence of (not
necessarily independent) events A, A,, ..., one can claim that:

(a) If
Sl PAAD)

o0

Z P(A,) =00 and liminf - 5 =
n=1 " [> k=1 P(Ai)]
then (Erdos and Rényi [37]) P(4,, i.0.) = 1.

(b) If
Z P(4,) = oo and liminf M -
n=l " k= P(AR)]

then (Kochen and Stone [64], Spitser [125]) L > 1 and P(4, i.0.) = 1/L.
(o) If

- o 2i<ick<nP(Ai Ak) — P(A4;)P(Ap)]
P(4,) =00 and liminf == <0
,; " [kt PO

then (Ortega and Wschebor [92]) P(4,, i.0.) = 1.
() IfY 2, P(A,) = oo and

3

> i<i<k<nP(Ai Ax) — HP(A4;)P(Ay)]
[ -1 P(ADP

oy = liminf
n

where H is an arbitrary constant, then (Petrov [95]) P(4, i.0.) > m and H +
200 > 1.

Problem 2.10.20. Let A, A>,... be some sequence of independent events and
suppose that Y °2 | P(4,) < oo. Prove that for S, = Y }_, I(A) the following
stronger version of the “second Borel-Cantelli lemma” is in force:

ht?lE_g,, =1 (P-a.e.).
Problem 2.10.21. Let (X,),>1 and (Y¥;),>1 be any two sequences of random
variables with identical finite-dimensional distributions, i.e., Fx, _x, = Fy,..v,,

P . .
n > 1, and suppose that X,, — X. Prove that there is a random variable Y, whose

distribution is identical to the distribution of X (notation: Law(X) = Law(Y), or
law

X =Y,or X S Y), for which one can claim that Y, i Y.

Problem 2.10.22. Let (X,),>; be a sequence independent random variables with

P .
X, — X, for some random variable X. Prove that X must be a degenerate random
variable.
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Problem 2.10.23. Prove that for every sequence of random variables, &, &,, ..., it
is possible to find a sequence of constants, ay, as, ..., so that &, /a, — 0 (P-a.e.).

Problem 2.10.24. Let &}, &, ... be a sequence random variables and let S, = & +
-+ &,, n > 1. Prove that the set {S, — }, i.e., the set of all w € £2, for which the
series Y «>1 5k (w) converges, can be represented in the form:

{Sx e}—ﬂUﬂ{supm/ Skl < NT }

Nelm>lk>m =k

Similarly, the set {S, -/ }, on which the series ), ., & (w) diverges, can be
represented in the form

{Sn ﬁ}—UﬂU{supm/ Si| >N~ }

N=lm=lk>m =k

Problem 2.10.25. Consider the probability space (.Q , P), in which the sample

space §2 is at most countable, and prove that if &, it &, then &, — £ (P-a.e.).

Problem 2.10.26. Give an example of a sequence of random variables, such that
with probability 1 one has lim sup §, = oo, liminf§, = —oo, but, nevertheless, one

P
can find a random variable n with §, — 7.

Problem 2.10.27. Prove the following version of the the 0—1 law (comp. with the
0-1law of [ P §4.1]): if the events A, A,, ... are pairwise independent, then

0. if Y P(4,) < oo,

P{4,i0} =
o] 1, if Y P(4,) = oo

Problem 2.10.28. Let A4;, 45, . e be an arbitrary sequence of events, such that
lim, P(4,) =0and ), P(4, N A,41) < oo. Prove that P{4, i.0.} = 0.

Problem 2.10.29. Prove, thatif )", P{|§,| > n} < oo, then limsup,,(|§,|/n) <1
(P-a.e.).

Problem 2.10.30. Suppose that &, | & (P-a.e.), E|§,| < oo,n > 1, and inf, EE, >
—o0. Prove that &, —>§ ie., El§, — & — 0.

Problem 2.10.31. In conjunction with the second Borel-Cantelli lemma, prove that
P{A4, i.0.} = lifandonlyif ), P(4 N A4,) = oo, for every set A with P(4) > 0.

Problem 2.10.32. Suppose that the events A;, A,, ... are independent and chosen
so that P(4,) < 1, for all n > 1. Prove that P{A4, i.0.} = 1 if and only if

P(A4,) =1.



2.10 Various Types of Convergence of Sequences of Random Variables 145

Problem 2.10.33. Let X, X»,... be any sequence of independent random vari-
ables with P{X,, =0} = 1/nand P{X, =1} =1—1/n.Set E,, = {X,, = 0}. By
using the properties Y o2 | P(E,) = 00, Y o2, P(E,) = oo, conclude that lim, X,
does not exist (P-a.e.).

Problem 2.10.34. Let X, X>, ... be any sequence of random variables. Prove that

X, 5 0if and only i

| Xal”

m — 0, forsomer > 0.
n

In particular, if S, = X + --- + X,,, then

S, —ES, p (S, —ESy)?
——0 <— E 0.
. n? + (S, —ES,)?
Show also that, given any sequence of random variables X, X5, ..., one can claim
that g
max |Xk|3>0 == —"10.
1<k<n n

Problem 2.10.35. Let X, X»,... be any sequence of independent and identically
distributed Bernoulli random variables with P{X; = 1} = 1/2. Setting U, =
ZZ:l %, n > 1, prove that U, — U (P-a.e.), where U is some random variable,
which is distributed uniformly on [—1, +1].

Problem 2.10.36. (Egoroff’s Theorem.) Let (§2, .7, 1) be any measurable space,
endowed with a finite measure w, and let fi, f5,... be some sequence of Borel

. . . . . I
functions, which converges in measure u to the Borel function f, i.e., f, — f.
Egoroff’s Theorem states that for every given ¢ > 0 it is possible to find a set

A, € %‘, with u(A4,) < g, such that f,(w) — f(w) uniformly for all ® € A,
where A, = §2 \ A, is the complement of A,. Prove this statement.

Problem 2.10.37. (Luzin’s theorem.) Let (2, #,P) = ([a,b],.%,A), where A
stands for the Lebesgue measure on [a, b] and .Z is the collection of all Lebesgue
sets. Let f = f(x) be any finite .%-measurable function. Prove Luzin’s Theorem:
for every given ¢ > 0 one can find a continuous function f, = f.(x), such that

P{x €la,b]: f(x) # fe(x)} <e.

Problem 2.10.38. The statement of Egoroft’s Theorem leads naturally to the notion
of almost uniform convergence. We say that the sequence of functions fi, f3,...
converges almost uniformly to the function f, if, for every ¢ > 0, it is possible to
find a set A, € .7 with ju(A4,) < &, so that f;,(w) — f(w) uniformly forall w € 4,
(notation: f, = f).
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Prove that the almost uniform convergence f, = f implies both convergence in

measure ( f, 5 f) and convergence almost surely ( f,,u_—a}e' .

Problem 2.10.39. Let X, X»,... be a sequence random variables and let {X,, /~}
denote the set of those w € §2 for which X, (w) does not converge as n — co. Prove
that
{X, A} = Jlliminf X, < p < ¢ <limsup X,},
p<q

where the union is taken over all pairs of rational numbers, (p, g), with p < g.

Problem 2.10.40. Let X, X,,... be any sequence of random variables defined
on some complete probability space, which converges with probability 1 to the
random variable X . Show that the o-algebras o (X, X»,...) and 0 (X1, X», ..., X),
generated, respectively, by the random elements (X, X»,...) and (X, X5,...,X)
(see [P § 2.5]) coincide.

Problem 2.10.41. Let X, X5, ... be any sequence of independent and identically
distributed random variables, such that their distribution function F = F(x)
satisfies the condition

lim x*[1 — F(x)] = 0.
X—>00

Prove that

1 P
\/_ﬁllélﬁani_)O as n — oo.
Problem 2.10.42. Let &;,£,,... be any sequence of independent and identically
distributed random variables with E§; = u, D& = 02 < oo and P{§; = 0} = 0.
Prove that

ZZ:l & P H

— as n — oQ.
2
> k=i & p* + o’

Problem 2.10.43. Suppose that &, 5 &, M £ nand P{§, <n,} = 1,n > 1.
Prove that P{§ < n} = 1.

Problem 2.10.44. Let &, &, ... be any sequence of non-negative random variables
P
and suppose that the o-algebras %, .%,, ... are such that E(§, | .%,) — 0. Prove
P
that &, — 0.

d d d .
Problem 2.10.45. Let £ — ¢ and c,& — & (“—” means convergence in
distribution), where £ is some non-degenerate random variable and ¢, > 0. Prove
thatc, — 1.

Problem 2.10.46. Let A, A, ... be any sequence of random events. Setting A =
lim, A,, prove that, if Zi‘il P(A4,) = oo, then the following relation, known as
the Kochen—Stone inequality (see [64]), must hold:

2
oo (Znei PA)
>
)=z W Y1 = P(Ar A4y
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Problem 2.10.47. Let &;,£,,... be any sequence of independent and identically
distributed random variables with E[§;| < oo. Given some positive constant, e, set
A, = {|&,] > an},n > 1, and prove that P(lim 4,) = 0.

Problem 2.10.48. Prove that in the space of continuous functions, C, there is no
metric p for which the convergence p(f,, f) — 0 is equivalent to the point-wise
the convergence f, — f (comp. with Problem 2.10.12).

Problem 2.10.49. Assuming that ¢ > 0 is an arbitrary constant, give an example
of a sequence of random variables &, £, &, ..., such that E§, = —c foralln > 1,
&, (w) — &(w) in point-wise sense, and yet EE = c.

Problem 2.10.50. For each of the three definitions in Problem 1.4.23 find the
median g, = w(§,) of the random variables &, = Ig<1y—1/s}), Where 1 is a
standard Gaussian random variable.

Problem 2.10.51. Let u, = n(&,) be the uniquely defined medians (see Prob-
lem 1.4.23) of the random variables &,, n > 1, which converge almost surely to
a random variable §. Give an example showing that, in general, lim, ;) may
not exist.

Problem 2.10.52. Let &}, &,, ... be any sequence of independent, non-negative and
identically distributed non-degenerate random variables with EE; = 1. Setting T, =
HZ=1 &, n > 1, prove that 7, — 0 (P-a.e.).

Problem 2.10.53. Let £, &, ... be any sequence of independent and identically
distributed random variables and let S, = & + --- + &,, n > 1. Prove that:

Sn
(a) E§1+ =o0 and Eff =00 = — — +oo (P-a.e.);
n

max(|&1],...,]&|)
Sl

(b) E|&| <o and E& #0 = — 0 (P-a.e.);
max([§1. ... |5])

NG — 0 (P-a.e.).

() Ef<o0 =

Problem 2.10.54. Let &, &,, ... be any sequence of random variables and let £ be a
random variable. Prove that for every p > 1 the following conditions are equivalent:

L
(@) & — & (e, E[§, —§[7 — 0);
(b) &, 5 ¢ and the family {|&,|?,n > 1} is uniformly integrable.

Problem 2.10.55. Let &1, &, ... be some sequence of independent and identically
distributed random variables, chosen so that P{§; > x} = ¢™*, x > 0 (i.e., each
random variable is exponentially distributed). Prove that

1, ifa<l,

P{¢, > alnn, i.0.} =
& ) 0, ifa>1.
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Convince yourself that the above statement can be further refined as follows:

1, ifa<l1,

P{§{, >Inn +alnlnn, i.o.} =
0, ifa>1,

and, in general, for every k > 1 one has

1, ifa <1,
P{¢, >Inn +Inlnn+...+In...Inn +aln...Innio.} = o=
~ > 0, ifa>1.
k times k1 times

Problem 2.10.56. Prove the following generalization of [P §2.10, Theorem 3],
which is concerned with situations where convergence in L' comes as a conse-
quence of convergence a. e.: if § is a random variable and (§,),>1 is some sequence
of random variables, chosen so that that E|§| < oo, E|§,| < o0, and &, — & (P-
a.e.), then E|§, — &| — 0 if and only if E|§,| — E|&] as n — oo. This statement is
known as Scheffe’s lemma. (Comp. with the statement in Problem 2.6.19).

Problem 2.10.57. Let &,&,,... be any sequence of positive, independent and
identically distributed random variables that share one and the same density f =
f(x), with lim, o f(x) = A > 0. Prove that

) d
nmin(§, ..., &) — 1,

where 7 is an exponentially distributed random variable with parameter A.

Problem 2.10.58. Prove that if one of the conditions (i), (ii), or (iii) in the
assumptions of Problem 2.6.33 holds, then

E|X,|” — E|X|?, forall0< p<r.

Problem 2.10.59. Let (§,),>1 be any sequence of independent and normally
distributed random variables, i.c., § ~ 4 (is,0;). Prove that the series ), &,
converges in L' if and only if

> (up +0y) < o0

n>1

Show also that when the above condition holds the series > 53 converges in L”

forall p > 1.

n>1
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Hint. To prove the second statement, one has to establish that

Pt

< oo, forall p>1.
P

Problem 2.10.60. Let X, X5, ... be independent random variables that are uni-
formly distributed on the interval [0, 1]. Setting Y;, = X; ... X,,, n > 1, consider the
series Y o2, Z'Y, and prove that its radius of convergence, R = R(w), equals the
constant e with probability 1.

Hint. Use the relation 1/R = lim, |, |'/".

Problem 2.10.61. Let (£2,.7,P) = ([0,1),4([0,1)),A), where A denotes the
Lebesgue measure, and let @ = (aj,as,...) be the continued fraction expansion
of w € [0,1) (in particular, a, = a,(w) are integer numbers)—see [2]. Prove that
as n — oo one has

1+1/k
n[ ]

Mo a() =k} — = 1 T+1/k+1)

In2

Remark. Discussion of the origins of this problem and various approaches to its
solution can be found in the “Essay on the history of probability theory” in the book
“Probability-2” (see [121]) and on p. 101 in Arnold’s book [3].

Problem 2.10.62. Let X, X5, ... be independent and identically distributed ran-
dom variables with P{X; = 0} = P{X; = 2} = 1/2. Prove that

(a) The series Y oo | % converges almost surely to some random variable X .

(b) The distribution function of the random variable X is the Cantor function
(see [P §2.3]).

2.11 Hilbert Spaces of Random Variables with Finite
Second Moments

Problem 2.11.1. Prove that if § = Li.m. §,, then ||&,]| — ||€].

Problem 2.11.2. Prove that if £ = l.im.§, and n = Lim.n,, then (§&,,n,) —
(& m).

Problem 2.11.3. Prove that the norm || - || satisfies the “parallelogram law:”

1§ + 1l + 115 = nll> = 211 + Inl1*).
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Problem 2.11.4. Let {&;,...,£&,} be any family of orthogonal random variables.
Prove that

HZ& I Zns, I~

This property is known as the “Pythagorean theorem.”

Problem 2.11.5. Let &,£,,... be any sequence of orthogonal random variables
andlet S, = & +---+&,. Prove thatif ) - | E&2 < oo, then one can find a random
variable S with ES? < oo, so thatLi.m. S, = S, i.e., ||S,—=S|?> = E|S,—S|> = 0
asn — oo.

Hint. According to Problem 2.11.4 one must have

n+k

1Stk = Sull> =D lEnl™

m=n+1

Problem 2.11.6. Prove that Rademacher’s functions R, can be defined by the
relation
R,(x) =sign(sin 2"7x), 0<x<1,n=1,2,...

Problem 2.11.7. Prove, that for any £ € L*(£2,.%,P) and for any sub-o-algebra
¢ C ¥ one has

€1 = IEE DIl .
with equality taking place if and only if £ = E(§ |¥) (P-a.e.).
Problem 2.11.8. Prove that if X,Y € L?*(2,.#,P), E(X|Y) = Y and

E(Y | X) = X, then X =Y (P-a.e.). In fact, the assumption X, Y € L*(£2,.%,P)
can be relaxed to X,Y € LY(2,.Z, P), but under this weaker assumption the
property X = Y (P-a.e.) is much harder to establish—see Problem 2.7.24.

Problem 2.11.9. Suppose that .% is a g-algebra and that (%(1) ), (%(2) ) and (%(3) )
are three sequences of sub-o-algebras that are contained in .% and are chosen so
that

%(1) - %(2) - %(3), for every n.

Then suppose that £ is some .% -measurable and bounded random variable, for which
one can find a random variable 1 with

EG|9") S>n and EE|9Y) >0

P
Prove, that when the above conditions hold one must also have E( | @@ ) = 1.

Problem 2.11.10. Let x ~> f(x) be any Borel-measurable function, which is
defined on [0, co) and is such that fooo e f(x)dx = 0, for any A > 0. Prove
that f = 0 almost surely relative to the Lebesgue measure on [0, 00).
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Problem 2.11.11. Suppose that the random variable 7 is uniformly distributed in
[—1, 1] and let £ = 5?. Prove that:

(a) The optimal (in terms of the mean-square distance) estimate for £ given 7,
and for 7 given &, can be expressed, respectively, as

EE¢n) =n" and E(n|§) =0.

(b) The respective optimal linear estimates can be expressed as

E¢|n) =1/3 and E(y]§) =0.

2.12 Characteristic Functions

Problem 2.12.1. Let& and 7 be two independent random variables and suppose that

f(x) = filx) +ifa(x), g(x) = g1(x) +ig2(x), where fi(x), g (x), k = 1,2, are
Borel functions. Prove that if E| f(£)| < oo and E|g(§)| < oo, then

Elf(§)g(n)| < oo

and

Ef@©gm =Ef(&)-Eg.

(Recall that by definition E f(§) = Ef1(§) + iEf2(§), E| f(§)| = E(flz(é) +
FHENY2)

Problem 2.12.2. Let £ = (§&1,...,§,) and E|&]|” < oo, where ||§] = \/Zéiz.

Prove that

0(t) = Y HECE + a0l
k=0 "

wheret = (t1,...,t,), (t,§) =66 + ...+ ,&,,and g,(t) — O as ||¢|| = O.
Hint. The proof should be analogous to the one in the one-dimensional case,
after replacing ¢ £ with (7, ).

Problem 2.12.3. Prove [P §2.12, Theorem 2] for n-dimensional distribution func-
tions of the form F = F,(xy,...,x;) and G = G, (x1,...,X,).

Problem 2.12.4. Let F = F(xy,...,x,) be any multivariate distribution function
and let ¢ = ¢(t1,...,1,) be the associated characteristic function. By using the
notation from equation [ P §2.3, (12)], prove the multivariate conversion formula:

—ll‘kak _ e—ll‘kbk
P(a,b] = lim / / ot ...t dt ...dt
o0 <2n)" Y
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(In the above formula it is assumed that the set («, b], where a = (ay,...,a,)
and b = (by,...,b,), is a continuity interval for the function P(a, b], in the sense
that for all k = 1, ..., n the marginal distribution functions Fj (x;), obtained from
F(xi,...,x,) by setting all arguments except x; to +o00, are continuous at the
points ay, by.)

Problem 2.12.5. Let ¢ (), k > 1, be any sequence of characteristic functions and
let A¢, k > 1, be any sequence of non-negative numbers with Y A = 1. Prove that
t ~ Y Argi (t) must be a characteristic function.

Problem 2.12.6. Assuming that ¢(¢) is a characteristic function, is it true that
Re ¢(¢) and Im ¢ () are also characteristic functions?

Hint. Let ¢ = ¢(t) be the characteristic function for some distribution P. To
answer the question regarding Re ¢(¢), consider the distribution Q with Q(A4) =
%[P(A) + P(—A)], where —A = {—x : x € A}. To answer the question regarding
Im ¢(¢), consider the characteristic function ¢(¢) = 1.

Problem 2.12.7. Let ¢, @2, 3 be any three characteristic functions with ¢;¢, =
¢1¢3. Can one conclude that ¢, = ¢3?

Problem 2.12.8. Prove the formulas for the characteristic functions listed in
[P §2.12, Tables 4 and 5].

Hint. The characteristic functions for the first five discrete distributions can be
obtained with elmentary calculations.

In the case of the negative binomial distribution (C,::l1 p"qk_’, k=rr+1,...
andr = 1,2,...), notice that for |z| < 1 one has

o0
Yoot =a-97.
k=r

In the case of the characteristic function ¢(t), associated with the normal
distribution .4 (m, 6%), notice that withm = O and 0> = 1, according to the general
theory of functions of complex variables, one must have

1 . x2 2 1 (x—in)? 2
(1) = —/ e T dx=e7 /e_ T dx =e? / f@dz,
V2w JR V2 JR L

(—it)?
2

where f(z) = J%e , L ={z:Imz =0}, and

/Lf(z)dz=/yf(z)dz=\/Lz_ﬁ/[ke_yzzdyzl,

where L' = {z:Imz = t}.
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The characteristic function of the gamma-distribution can be computed in a
similar fashion.

As for the characteristic function ¢(¢), associated with the Cauchy distribution,
notice that for > 0 one has

eitx@
(p(t):/ij(xz—{—Qz)dx:/Lf(Z)dZ,

54

where L = {z: Imz = 0} and f(z) = m.
and the Jordan lemma (see [47, vol. 1]) one has

By the Cauchy’s residue theorem

/ f(R)dz=2mires f = e
L i0

Similarly, for # < 0 one can prove that ¢(f) = e'?, so that ¢(r) = e~?V"! for any
real 7.

Problem 2.12.9. Let & be any integer-valued random variable and let ¢ (¢) be its
characteristic function. Prove that

b

1 .
P{¢ =k} = E/ e Mptydt, k=0,%£1,+£2,... .

-

Problem 2.12.10. Consider the space L? = L?([—x, 7r]), endowed with the Borel

o-algebra Z[—m, ] and the Lebesgue measure, and prove that the collection of
functions {\/;2716" Mo =0,41,42,... } forms an orthonormal basis in that space.

Hint. Use the following steps:
(a) For a given ¢ > 0 find a constant ¢ > 0 such that

lo = fli2 <e,

where f(x) = ¢(x)I(Jo(x)] = ¢).
(b) By using Lusin’s theorem (see Problem 2.10.37), find a continuous function
f:(x) such that | f,(x)| < ¢ and

pix € [-m, 7w« fe(x) # f(X)} <&,
sothat || f — fill.2 < 2c4/e.

(c) Find a continuous function 75 (x) with the property 78(—7r) = 78 () and

If = fell> < e
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(d) By using the Weierstrass theorem find a function 7£(x) = Y i__,ake' fx
with the property

sup | fe(x) = f.(x)| <.
X€[—m,7]
which implies ||?S — 75|IL2 <e.
Conditions (a)-(d) above imply that the collection of all finite sums
of the form ZZ=_H age’™®™ s everywhere dense in L% ie., the system

{ﬁe“", n=0,=%1,%£2,... } forms and orthonormal basis.

Problem 2.12.11. In the statement of the Bochner—Khinchin theorem it is assumed
that the function under consideration, ¢(t), is continuous. Prove the following result
(due to F. Riesz), which shows to what extent it may be possible to remove the
continuity assumption from the Bochner—Khinchin theorem.

Let ¢ = ¢(¢) be any complex-valued and Borel-measurable function with the
property ¢(0) = 1. Then one can claim that the function ¢ = ¢(#) is positive
definite if and only if it coincides with some characteristic function Lebesgue-almost
everywhere on the real line.

Problem 2.12.12. Which of the functions

o) = e 0<a<2, () = e o> 2,
o) = (1+th7", o) = (1+1H7",

L3 el <1, L—1e], |t] =1/2,
p(t) = p(t) =

0, lt] > 1, 1/(4t]),  t] > 1/2,

can be claimed to be a characteristic function?

Hint. In order to demonstrate that some of the above functions are not char-
acteristic, use [P §2.12, Theorem 1] and also the inequalities established in
Problem 2.12.21 below.

Problem 2.12.13. Prove that the function z ~> ¢(t), given by

1—12, |t <1,

p(t) =
0, [t] > 1,

cannot be identified with the characteristic function of any random variable.
Can one make the same claim about the function ¢ ~> ¢(t) = “tﬂ?

Problem 2.12.14. Prove that if the function r ~> ¢() is a characteristic, then so is
also the function t ~ |p(7)|>.
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Problem 2.12.15. Prove that if the function # ~> @(¢) is characteristic, then so is
also the function t ~» e*@®=1D for every A > 0. Can one claim that the function

t ~ o(t) = "= is characteristic?

Problem 2.12.16. Prove that if ¢t ~> ¢(¢) is a characteristic function, then the
following functions must be characteristic, too:

1 [e9)
t«»/ o(ut) du, t«»/ e "o(ut) du.
0 0
Problem 2.12.17. Prove that for every n > 1 the function

(!
@@t)r/n!

can be identified with the characteristic function of some random variable.

nlt) =

Problem 2.12.18. Let ¢y, (¢) be the characteristic function of the random variable
X, which is uniformly distributed in the interval (—n, n). Prove that

I, 1=0
lim @y, (1) = § ’
n—oo 0, 140

Problem 2.12.19. Let (m®™),>; be the sequence of all moments of the random
variable X, which has distribution function F = F(x), i.e., m® = f_ozo x" dF(x).

Prove that if the series ) o, %s" converges absolutely for some s > 0, then
the sequence (m™), > uniquely defines the distribution function F = F(x).
Problem 2.12.20. Let F = F(x) be any distribution function and let ¢(t) =

[25, e'"* dF(x) be its characteristic function. Prove that

lim L /C e "p(t)dt = F(x) — F(x—)

c—>o002¢ J_.
and
: 1 ¢ 2 2
L R > 1R~ .

In particular, the distribution function F = F(x) can be claimed to be continuous
if and only if its characteristic function ¢(¢) satisfies the condition

c—>00 C

N Y )
lim — o)~ dt = 0.
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Problem 2.12.21. Prove that any characteristic function ¢ = ¢(¢) must satisfy the
following inequalities:

1 —Regp(nt) <n[l —(Reg(t))"] <n?[l —Rep(t)], n=0,1,2,...; (%)
[Img() < 311 ~Rep0)]: 1 -Reg(21) = AReg (1))

lp(t) — p($)]* < 4p(O)|1 —p(t —s); 1 — QN[> < 4[1 — o)
lo(t) — @(s)|* < 2[1 —Reg(t —s)];

1 t+h
ﬁ/ o) du< (1+Regph)'/? t >0.
t—h

(The last two relations are known as the Raikov inequalities.)

Hint. The proof is based on the relation ¢(1) = [° e™*dF(x) (and the
associated relations for Re ¢(f) and Im ¢(¢)). Thus, for example, in order to prove
the inequality

1 —Reg(2t) < 4[1 —Re ()] ()

(a special case of (x) with n = 2) it is enough to notice that
o0
1 —Reg(2t) = / (1 —cos 2tx)dF(x) and 1 —cos 2tx < 4(1— cos tx).
—00

Problem 2.12.22. Suppose that the characteristic function ¢ = ¢(¢) is such that
o) =1+ f(t)+o0(t?) ast — 0, where f(t) = —f(—t). Prove that ¢(z) = 1.
Hint. Use the relation () in the previous problem.

Problem 2.12.23. Let ¢ = ¢(t) be the characteristic function of some random
variable X, which has distribution function F = F(x).

1 —Reop(z
(a) Prove that [°_|x|dF(x) < oo if and only if /7 t:‘/’( )

that these conditions imply

= I [*® 1—Regp(t 2 (%1 _Reol
E|X|E/ |x|dF(x):—/ #()dt:—/ :(p()dt.
T J—oo t T Jo t

dt < oo and

—00

(b) Prove thatif [ |x| dF(x) < oo then one has

© 1 [* Re¢/(¢
ElX| E/ x| dF (x) =——/ e‘f()dt.
oo 7)o

(See Problem 2.12.37.)



2.12  Characteristic Functions 157

Hint. (a) Use the following easy to check formula

1 [ 1—cos xt
|x|:—/ AR
T

oo 12

(b) Use the fact that |x| = x sign x, where

1, x>0,
sighx = 10, x =0,
-1, x<0,

in conjunction with the relation

. 1 [ sin xt
signx = — dx.
T Joo

Problem 2.12.24. Consider a characteristic function of the form ¢(t) = 1 +
O(|t|*) for t — 0, where a € (0, 2]. Prove that if £ is a random variable with
characteristic function ¢(t), then the following property must hold:

P{El > x} = O(x™) as x — 0.

Problem 2.12.25. Let X and Y be any two independent and identically distributed
random variables with vanishing means and standard deviations equal to 1. By using
characteristic functions prove that if the distribution of the random variable (X +
Y)/~/2 coincides with the distribution of X and Y, then X and Y must be Gaussian.

Problem 2.12.26. The Laplace Transform of a non-negative random variable X,
yith d,i\stribution function F = F(x), is defined (see Problem 2.6.32) as the function
F = F(A),A >0, given by

F(A) = Ee ™™ = / e ™ dF(x), forA>0.
[0,00)

Prove the following criterion, which is due to S.N. Bernstein: the function
F=F (A), defined on (0, 00), is the Laplace transform of some distribution function
F = F(x) on [0, 00), if and only if F is completely monotone, in the sense that all
derivatives F ™ (1), n > 0, exist and satisfy (—1)" F (1) > 0.

Problem 2.12.27. Suppose that the distribution function F = F(x) admits density
f = f(x), has characteristic function ¢ = ¢(¢), and suppose that at least one of
the following conditions holds:

(a) /oo lo()|dt < o0 or (b) /oo A (x)dx < oo.
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Prove Parseval’s formula:

o0 1 o0
| rwar= o [ pora <.

(Comp. with Parseval’s idenity—see [ P §2.11, (14)].)

Problem 2.12.28. Prove that if the distribution function F = F(x) has density
f = f(x), then its characteristic function ¢ = ¢(¢) must be such that ¢(t) — 0 as
r — o0.

Problem 2.12.29. Let F = F(x) and F = F(x) be any two distribution functions
on (R, Z(R)) and let ¢(¢) and @(¢) be their respective characteristic functions.
Prove Parseval’s relation: for every t € R one has

/ P — 1) dF(x) = / () dF(). (%)

In particular, if F is the distribution function associated with the normal distribution
law 47 (0, 0?), then

X 2a—n? 1 R ity »?
e 2 dF(kx) = / e 'We 202 dy. *k
/| == o) dy. ()

(Comp. with the result in Problem 2.12.40.)

Problem 2.12.30. By using (xx) in the previous problem, conclude that if the
distribution functions F; and F, share the same characteristic function, then one
must have F; = F,. (Comp. with the result in Problem 2.12.41.)

Problem 2.12.31. By using Parseval’s relation () in Problem 2.12.29, prove the
following result: if ¢¢(¢) is the characteristic function of the random variable &, then
the Laplace transform of the random variable |£| is given by the formula

_ o A
—0Q

(Comp. with the statement in Problem 2.12.23.)

Problem 2.12.32. Let F = F(x) be any distribution function and let ¢(#) =
ffzo e’ dF(x) be its characteristic function. According to [P §2.12, Theorem
3-b)], the property ffzo lp(t)| dt < oo guarantees the existence of a continuous
density f(x). Give an example of a distribution functions F' = F(x) which admits
a continuous density, and yet f_ozo lo(t)| dt = oo.
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Problem 2.12.33. Let ¢(t) = er e dF(x) be some characteristic function.
According to [P §2.12, Theorem 1], if [ |x|dF(x) < oo, then ¢(t) must be
differentiable. By using appropriate examples, prove that, in general, the converse
statement does not hold. Prove that, in fact, it is possible to find a characteristic
function ¢(¢), which is infinitely differentiable, and yet [ |x| dF(x) = oo.

Problem 2.12.34. (The “inversion formula.”) By using the argument in the proof
of [P §2.12, Theorem 3], prove that, for any distribution function F = F(x) and
any a < b, the following general “inversion formula” is in force:

c ,—ita __ ,—ith
lim / %qp(z)dt - %[F(b) +F(b—)] - %[F(a) 1 F(a-)].

Problem 2.12.35. (a) Prove that the probability distribution with density

1 —cosx
fx)=—5— x€R
X
has characteristic function given by
1—z], |¢] <1,
p(1) =
0, [t] > 1.

(b) What is the characteristic function of the distribution with density

1 —cos
fo) = —2" xeRr?
=X

(c) Prove that the characteristic functions of the probability densities

1
= ——— and = —, € R,
Ni(x) 7 cosh x f2x) 2 cosh? x *
are given, respectively, by
wt
t) = and 1) = ——,
i(0) cosh %m #2(1) 2 sinh %m

where coshy = (¢¥ + e¢7™)/2 and sinhy = (¥ + e77)/2.
(d) Find the probability distributions associated with the following characteristic
functions:

1+ it I —it t 2 ., 1 1,,
e T+ -+ e

1+ 14220 %2 3a—10 2 376
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Problem 2.12.36. Let m* = [, x*dF(x), k > 1, be the moments of the
probability distribution ' = F(x). Prove that

_ a® o
/{R cosh(ax) dF(x) = Zk: aor™

Problem 2.12.37. Suppose that, just as in Problem 2.12.23, ¢ = ¢(¢) is the
characteristic function of some random variable X, which has distribution function
F = F(x). Prove that

/oo |x|P dF(x) < oo for B € (0,2)

if and only if

dt < oo,

/oo 1 —Rep(r)

o t|'TP

in which case

00 % | _Rep(r)
B 8 _
E|X| _/_Oo|x| dF(x)—C,g/_oo iEe dt

where

-1
Cﬂ=|:/_ —1_C0Stdt:| =—F(l+'3) sin'BTﬂ.

|[|1+/3 T

Hint. Use the relation

1 —cos xt
B _— T
|x] —Cﬂ/ Tk B dt

Problem 2.12.38. Prove the statement in Problem 2.8.27 by calculating the charac-

teristic functions of the random variables &, £ lel and the characteristic function

n’ Inl> Inl>

of the random variable C that has Cauchy distribution with density x eR.

1
z(1+x2)°
Problem 2.12.39. (Non-uniqueness in the problem of moments.) It was shown in
[P §2.12, 9] that it is possible to find two different distribution functions that,
nevertheless, have identical moments of all orders n > 1. Here is one such
construction in terms of densities.
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Let n be any standard normally distributed random variable ( ~ .47(0, 1)) and
let & = e”. Prove that:
(a) The density f¢(x) is given by the formula

_ (In x)?2

1 -1
X e 2 x>0

Je(x) = Nor

(comp. with [P §2.8, (23)]).
(b) The function

g(x) = fe(x)[1 + sin(27 Inx)], x>0,

is such that g(x) > O and [;° g(x)dx = 1.
(c) For all n > 1 one has

/000 X" fe(x)dx = /Ooox”g(x) dx.

Problem 2.12.40. Let £ and 7 be two independent random variables, such that n
has standard normal distribution (i.e., n ~ -47(0,1)) and let f = f(x) be any
bounded Borel function with compact support. Prove that for every ¢ > 0 one has

Er(+ ) =5 [ T a0 T 0 ()

.
21 J s

where ¢:(t) = Ee'’ and f (1) = [, €' f(x) dx. (Comp. with the result in
Problem 2.12.29.) Formulate an analogous result for multivariate random variables
& and 7.

Problem 2.12.41. By using the relation (x) in the previous problem, prove that the
characteristic function ¢z (¢) of any random variable § completely determines the
probability distribution of £. (Comp. with [P §2.12, Theorem 2].)

Hint. Convince yourself that, under the assumptions of the previous problem,
the relation () implies that

[} 2

1 _1 ~
Ef(¢) = lim —— e 202 e (1) f (—1) dt, (k)

o—00 2

and conclude (using the fact the f = f(x) is an arbitrary bounded function with
compact support), that the characteristic function ¢¢ () indeed uniquely determines
the distribution of the random variable &. Verify that the relation (xx) holds also for
multivariate random variables, £ and obtain a multivariate analog of the relation ().
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Problem 2.12.42. Let ¢ = ¢(¢) be a characteristic function and suppose that for
some b > 0 and some 0 < @ < 1 one has

() <a, forany |t]|>b.
Show the Cramér’s inequality: for any |¢t| < b one has

2

O] = 1= (1 —a?) .

Hint. Use the inequality 1 — |¢(2¢)|*> < 4(1 — |@(¢)|*) from Problem 2.12.21.

Problem 2.12.43. (Addendum to the inequalities in Problem 2.12.21.) Let F =
F(x) be any distribution function and let ¢ = ¢(¢) be its characteristic function.
Show the von Bahr—Esseen inequality:

Il —o(t)| <C,BD|t|", forevery 1<r <2,

where B = f_ozo |x|" d F(x) and C, is some constant.

Problem 2.12.44. For integer numbers n > 1 the moments m™ = EX" and the
absolute moments 8, = E|X|" of the random variable X can be expressed in terms
of derivatives of order at most n of the characteristic function ¢(t) = Ee!’*,t € R
(see formula [P §2.12, (13)] or (c) in Problem 2.12.23). In order to obtain similar
representation for the moments m® = EX® and B, = E|X|* for arbitrary a > 0,
one must resort to fractional derivatives, as explained below.

Let o« = n + a, for some integer number # and some 0 < a < 1. The fractional

d(){
derivative D@ f(t) (= It f(2)) of the function f = f(¢),t € R, is defined as
the function

a [ FO0) = fOs)
r(i—a) /_oo ds.

(t _s)1+o¢

assuming that the integral in the above expression is well defined for any r € R. In
particular, if f(z) = ¢(¢t) (= ffzo e'™ d F(x)) is some characteristic function, then

nta _ 1 © ™) — £ (—u)
b "’(’)Lo =TT /0 du

ulta

_ 1\ +1 o 00
:%%/0 [/_ x"(1 —cosux) dF(x) (*)

+ i/ x" sinuxdF(x):| cf—f}
u a

—0o0
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Prove that for even numbers n the absolute moments f3,,+, are finite, i.e., B,4+, < 00,
if and only if:

(i) Bn < 005

(i) Re[D" T4 ¢(t)|;=0] exists.

Prove that when these conditions hold one must have

1
,3n+a = @ Re [(_l)n/zDan([)L:O] :

Hint. Use (x) and the fact that for every 0 < b < 2 one has the following

formula: % 1 5
—Ccosu s
A Wdl/l = —F(—b)COST.

Remark. A detailed discussion of the calculation of E| X |14, for arbitrary n > 0
and 0 < a < 1, can be found in the book [84].

Problem 2.12.45. Prove that the following inequality is in force for every charac-
teristic function ¢ = ¢(¢) and every u and s:

o+ )| = le@)] - @) = [1 = @1/ [1 = lo(s) 7]/
Hint. Use Bochner—Khinchin’s theorem (see [P §2.12, 6]).

Problem 2.12.46. Suppose that (§,7) is a pair of random variables with joint
density

1
foyy = {1+ xy(x® =y (x| < 1,]y| < 1).

Prove that £ and 7 are two dependent random variables with densities

1 1
o =310 <D, £ = 510y] <D,
Show also that the characteristic function, @¢,(f), of the sum § + 7, equals the
product of the characteristic functions @¢(¢) and ¢, (¢), i.e., pz1,(t) = @e(t) @,().

Problem 2.12.47. Let &,&,... be a sequence of independent and identically
distributed random variables that take the values 0, 1,...,9 with probability 1/10

and let
Z" Ex
Xn - £ 1_0k

Prove that the sequence (X, ),>1 converges not only in distribution, but also almost
surely to a random variable that is uniformly distributed in the interval [0, 1].
Hint. Use the method of characteristic functions.
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2.13 Gaussian Systems of Random Variables

Problem 2.13.1. Prove that, given any Gaussian system of random variables,
(¢, m1,...,1n,), the conditional expectation E(¢|n,...,n,) coincides with the
conditional expectations in wide sense E(§ | 11, ...,n,).

Problem 2.13.2. Let (§,7;,...,n%) be a Gaussian system. Describe the structure

of the conditional expectations E(§” | ny, ..., nx), n > 1, as functions of the random
variables 1y, ..., nk.

Problem 2.13.3. Let X = (Xi)1<k<n and ¥ = (¥i)1<k< be two Gaussian random
sequences with EX; = EYy, DX, = DYy, 1 <k <n, and

cov(Xi, X;) <cov(Yy, V), 1<k, =<n.

Prove the Slepyan’s inequality: for every x € R one has

P{ sup Xj <x} < P{ sup Yx <x}.

I<k<n 1<k<n

Problem 2.13.4. Let £, &,,&; be three independent standard Gaussian random
variables, i.e., & ~ A47(0,1),i = 1,2, 3. Prove that

&1+ 66
VitE

(This gives rise to the interesting problem of describing the family of all nonlinear
transformations of a given family of independent Gaussian random variables,
&,...,&,n > 2, that yield a Gaussian distribution.)

~ ¥ (0,1).

Problem 2.13.5. In the context of [P §2.13], prove that the “matrix” R =
(r(s,1))s.rea, associated with the function r(s, ) from [P §2.13, (25), (29) and
(30)], is non-negative definite.

Problem 2.13.6. Let A be any matrix of order m x n. We say that the matrix A®,
of order n x m, is the pseudo-inverse of the matrix A, if one can find two matrices,
U and V, such that

AA®PA = A, A® =UA* = A*V.

Prove that the matrix A®, defined by the above conditions, exists and is unique.

Problem 2.13.7. Prove that formulas (19) and (20) in the Theorem of the Normal
Correlation (Theorem 2 in [P §2.13, 4]) remains valid in the case of a degenerate
matrix Dgg, provided that the inverse Dé_é‘l is replaced by the pseudo-inverse Dg%.
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Problem 2.13.8. Let (0,§) = (01,...,6k;&1,...,&) be a Gaussian vector and
suppose that the matrix A = Dyy — D& Dj: is non-degenerate. Prove that the
conditional distribution function P(0 < a|§) = PO, < ai,....0 < ar|§)
admits density given by (P-a.e.)

|A|_l/2

p(al,.--,ak|$):W

exp{—3 (@~ E616)" 47 @ ~E6 ).

Problem 2.13.9. Let £ and 7 be two independent standard Gaussian random vari-
ables (i.e., Gaussian random variables with vanishing mean and standard deviation
equal to 1).

(a) Prove that the random variables £ 4+ 7 and £ — 5 are also independent and
Gaussian.

(b) By using (a) and the result in Problem 2.8.27, prove that

Cldwé—f-?]ldw 1+g lﬂv 1+C lﬂvi
S E-n 1=f 1-C  C

113 dW”

where C is a random variable with Cauchy density ——— stands

for “equality in distribution”).

0 + 5 (recall that

Problem 2.13.10. (S. N. Bernstein.) Let £ and 1 be any two independent and
identically distributed random variables with finite variance. Prove that if £ 4 n
and £ — 7 are independent, then & and 1 must be Gaussian. (For a generalization of
this result, see the Darmois—Skitovich Theorem stated in Problem 2.13.44.)

Hint. Use the following line of reasoning (by ¢¢(¢) we denote the characteristic
function of the random variable ¢):

(a) From ¢ (1) = @@(t) 2= (t) = @e44(t/2) + @:—,(t/2) conclude that

or= (e () 1 (1)
0= (e (3)) b (3)

(b) By using (a) conclude that |@¢ (¢)| = |¢, ()| and that |@, (¢)| = |<p§(%)|4.

(c) By using (b) conclude that ¢, (f) # 0 for every ¢t € R, so that one can define
the function f(¢) = In|p,(t)|, with f(1) = 4f(/2),t € R.

(d) From En? < oo conclude that ¢, (1) € C2(R) and by using (c) conclude that

2
, teR,

and, analogously,

2
, teR.

=g (5) == () > 700 rer

so that f”(¢) = const.
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(e) By using (d) conclude that f(¢) = at?> + bt + ¢, which, in conjunction with
(c), gives f(t) = at’.

() By using (e) conclude that ¢, (1) = e/“)+4* where the function a(r) should
be continuous as long as ¢, (¢) is continuous.

(g) Convince yourself that «(¢) has the property

at) =2a (%), t €R.

(h) By using the relation En?> < oo conclude that @y (1) is differentiable at 0 and
by using (g) conclude that as k — oo one must have

alt) alt/25)
Tt )2k

—d'(0), t#£0,

which shows that «(7) = o’ (0)z.
As aresult, g, (t) = €@ je phas Gaussian distribution. With a similar

line of reasoning one can show that the random variable £ is also Gaussian.

Problem 2.13.11. (Mercer Theorem.) Let r = r(s,t) be any continuous covari-
ance function defined on the rectangle [a, b] x [a, b], where —0co < a < b < oo.
Prove that the equation

b
A/ r(s,u(t)dt = u(s), a<s<b

admits a continuous solution, u(¢), for infinitely many values A = A, > 0,k > 1,
and the respective system of solutions {uy = ur(s),k > 1} forms a complete
orthonormal system in Lz(a, b), such that

oo

r(s,1) = Z M

A
k=1 k

where the series converges absolutely and uniformly on [a, D] X [a, b].

Problem 2.13.12. Let X = {X;,¢ > 0} be any Gaussian process with EX; = 0 and
with covariance function r (s, ) = e"’_“", s,t > 0.Givenany 0 < #; < -+ < 1,, let
St (X1,..., Xx,) denote the (joint) density of the random variables X, ..., X;,.
Prove, that this density admits the following representation:

~1/2

i=2

2 n C_eltimi—=ti) . )2
X1 1 (-xz e xl—l)
X exp{_7 - 5 Z 1 _ eZ(t,-_l—t,-) :
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Problem 2.13.13. Let f = {f, = f.(u),n > l;u € [0,1]} be a complete
orthonormal (for the Lebesgue measure on [0, 1]) system of L2-functions and let
(&1)n>1 be any sequence of independent and identically distributed .4 (0, 1)-random
variables. Prove that the process B, = anl & fot fow)du, 0 <t < lisa
Brownian motion.

Problem 2.13.14. Prove, that if B° = (B;)o<:<1 is a Brownian bridge process,
then the process B = (B;);>0 givenby B; = (1 + t)B;’/(HI) is a Brownian motion.

Problem 2.13.15. Verity that if B = (B;);>0 is a Brownian motion, then each of
the following processes is also a Brownian motion:

B =—B,, 1>0;
B? =tBy,, t>0, B =0
B® =B, —B,, s>0,1>0;

BY =Br— By, for0<t<T,T>0;

1
Bt(s) = —Byp;,, a>0,1t>0 (scaling property).
a

Problem 2.13.16. Let B* = (B; + pit):>o be a Brownian motion with drift.
(a) Find the distribution of the random variables B,’f + Bt’; ,forty < 1.
(b) Calculate EB,’;BZ’Ii and EB,’;B,’ILB” forty < t] < ta.

n»

Problem 2.13.17. Consider the process B* from the previous problem and calcu-
late the conditional distributions

P(Bge'lBtlf, forty <ty andt) > 15,

and
P(B;;€|B;;,Btlf, forto <t <ty.

Problem 2.13.18. Let B = (B;);>0 be a Brownian motion process. Prove that the
process Y = (Y;);er, given by Y; = e~ B,x, is an Ornstein-Uhlenbeck process,
i.e., a Gauss—Markov process with EY, = 0 and EY,Y, = el

Problem 2.13.19. Let Y = (Y;),er be an Ornstein—Uhlenbeck process. Prove that

the process
_ ‘/t(l—t)Y%mﬁ, 0<t<l,
0, t=0,1,

BO

t

is a Brownian bridge.

Problem 2.13.20. Let &, &), &, ... be independent and identically distributed stan-
dard Gaussian (i.e., .4#'(0, 1)) random variables. Prove that the series
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2, V/2sin knt
Z . 0=t=1,
defines a Brownian bridge, while, just as the series in [ P §2.13, (26)], the series

V2sinkmt
Bt_§01+zgkﬂ, 0<r<1,
k=1

defines a Brownian motion.

Problem 2.13.21. Give a detailed proof of the fact that the processes (B;)o</<i,
defined in [P §2.13, (26) and (28)], and the process

\/— an — COS nnt’

where &,, n > 1, are chosen as in [P §2.13, (26) and (28)], are all Brownian
motions.

Problem 2.13.22. Let X = (Xx)i<k<» be any Gaussian sequence, let

m = max EX;, o> = max DXy,
I<k<n 1<k<n

and suppose that

P{ max (X — EXy) > a} <1/2, forsomea.

1<k<n

Prove the following inequality, which is due to E. Borel:

P{ max Xj > x} < 2W($),

1<k<n

where ¥(x) = 2m)~'/2 fxoo e V2 dy.

Problem 2.13.23. Let (X,Y) be any bi-variate Gaussian random variable

with EX = EY = 0, EX? > 0, EY? > 0, and with correlation coefficient
EXY

P= Jexer

(a) Prove that the variables X and Z = (Y —pX)/+/1 — p? are independent and
normally distributed.

(b) Prove that

P{XY <0} =1-2P{X >0,Y >0} = = arccos p,
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and conclude that

1 1
P{X>O,Y>0}=P{X<O,Y<O}=Z+2—arcsinp,
7

1
2w /1=p2

1 1
P{X>O,Y<O}:P{X<O,Y>O}:Z—z—arcsinp.
b4

iP{X>O,Y>O}:
dp

(c) Let Z = max(X,Y), where EX? = EY? = 1. Prove that

1_
EZ=,-—" Ez*=1.
T

(d) Prove that for arbitrary a and b one has the following inequalities:

(1—=@@@)(1—-D(c)) <P{X >a,Y > b}

pe(b)(1 - @(d))
p(a)

where ¢ = (b —ap)/+/1 —p* d = (a —bp)/+/1—p? and ¢(x) = P'(x) is the
standard normal density.
Hint. Property (b) can be derived from property (a).

Problem 2.13.24. Let Z = XY, where X ~ A47(0,1) and P{Y = 1} = P{Y =
-1} = % Prove that Z ~ _47(0, 1), find the distribution of the pairs (X, Z) and
(Y, Z), and find the distribution of the random variable X + Z. Convince yourself
that X and Z are uncorrelated and yet dependent.

= (I =2(a@)(1 = 2(c)) +

Problem 2.13.25. Let £ be any standard normal random variable, i.e., & ~
A7(0,1), and let

A THErS
=g il > a.

Prove that n, ~ .47(0, 1) and that with « chosen so that

“pmac=l (ferm - ?)
/Ost(X)dX—4 o = =)

the variables £ and 7,/4 are uncorrelated and yet dependent Gaussian random
variables (comp. with [P §2.13, Theorem 1-a)]).
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Problem 2.13.26. Let £ and 71 be two normally distributed random variables with
Ef = En =0, EE? = En? = 1 and E£n = p. Prove that:

(@ Emax(§n) = /(1 —p)/;

(b) EE[n)=pn DE|n=1-p%

© EGlé+n=2=2/2. DElE+n=2=(1-p)/2
) EE+nl&>0,n>0) =22/

Give the analogs of the above formulas for the case where D = o7 and Dy =
o3, for arbitrary o1 > 0 and 03 > 0.
Problem 2.13.27. Let () be any bi-variate Gaussian random variable with co-

variance matrix
2 2
o o
cov(X,Y) = ( ) 2) .
o o

(v)=2()

where Q is an orthogonal matrix and & and 7 are two independent Gaussian random
variables.

Write (§ ) in the form

Problem 2.13.28. Let ¢ = (§&;,...,&,) be any non-degenerate Gaussian vector
with vanishing mean and with covariance matrix R = ||E§;§; ||, and suppose that
Ay, ..., A, are the eigenvalues of the matrix R. Prove that the characteristic function,
(1), of the random variable £ + ... + &2 coincides with the characteristic function
of a random variable of the form A, rﬁ +...+A,n2, whereny, ..., n, are independent
standard Gaussian random variables (7 ~ -47(0, 1)), and, furthermore, one has

o) =[] 11—2ita,; 7"

Jj=1

Problem 2.13.29. Let &,...,§,, n > 2, be any set of independent and identically
distributed random variables. Prove that the distribution of the vector (§1,...,§,)
is rotation invariant if and only if each of the variables &i,...,§, is normally
distributed with vanishing mean.

Hint. Use characteristic functions.
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Problem 2.13.30. (Statistics of the normal distribution A (m,o?): part 1) Sup-
pose that &,...§,, n > 2, are independent and identically distributed normal,
N (m, 02), random variables. Prove that the variables

_ 1 - _
E=-) & and sf=-—1) (& -8’
k=1 k=1
are independent and

n—1
(n—1s? £ (& —m)>.
k=1

Hint. Use the statement in the previous problem.

Problem 2.13.31. (Statistics of the normal distribution . (m,o?): part II.) Let

& ...,&, be any set of independent and identically distributed random variables
with normal distribution .4 (m, 0?), and let x = (xi,...,X,) be some sample of
observations over § = (§,...,§,),n > 1.

(a) Prove that the pairs of statistics

Ti(x) = in, h(x) = lez

i=1 i=1

and
__Ig 2 I ¢ —\2
X =- Xi, s (x) = — Xi —X
. ; (x) =~ ; )
are sufficient.
(b) Convince yourself that

1 n

2 E: 2 =2

S7(X) = — X — X",
( ) i

i=1

Problem 2.13.32. (Statistics of the normal distribution A (m,o?): part IlIl—m
is unknown and o® = ag.) In this and the following problem it is assumed
that &,...,£, is a set of independent and identically distributed .4 (n,0?)-
random variables and the notation from Problem 2.13.30 (with n > 2) and from
Problem 2.13.31 (with n > 1) is assumed.

Suppose that m is unknown, o is known to be 0> = 0.

(a) Prove that, for § = 13" & (= 17;(£)), one has

2
E¢ = m (unbiased estimate) and D¢ = 0—0.
n
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(b) Prove that (for 02 = og) the sample mean X is an effective estimate, i.e., un-
biased estimate with minimal dispersion. For that purpose, prove that in this case the
unbiased estimate, 7' (x), for the parameter m satisfies the Rao—Cramér’s inequality:

1 1
> p—
DT = TPy © (1) ’
nkE om Ug
where
1 _ (x*m)2

2
e 2(10

Pimot)(X) = >
\/ 27oy

(c) Prove that the variable B
E—m

(%)

has a standard normal, i.e., .47(0, 1), distribution, and, furthermore, if A(¢) is chosen
so that

Ae)

)
21 J-(e)

where 0 < ¢ < 1, then the interval

l—e= e At (= 2000(e)) — 1),

— 0o _ (o1}

X——AE),x + —=A(e
(7= pre+ pro)

is a confidence interval for m with confidence level 1 — ¢, i.e., the “probability for

cover,” satisfies

- [oNy) = (o)
P(m,ag){é“— WA(S) =m=§+ EA(S)} =1l-g¢
wherei .P(m,.(rg) stands for the probability law with density p,, ,2). (Comp. with the
Definitionin [P §1.7, 21].)

Problem 2.13.33. (Statistics of the normal distribution A (m,o?): part IV—m =
mo, but 02 is unknown.)

If m is known (m = my), then it is natural to estimate o> not by the variable
s2(x) = 2 37, (x; — X)?, but, rather, by the variable

56(x) = ’%Z(xi —mo)>.

i=1
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(a) Prove that

2 4
EsZ(§) = 0® (unbiased estimate) and Ds2(§) = %.

(b) Prove that the sample dispersion s3(x) (withm = my) is an effective estimate
of the variable o2, i.e., unbiased estimate with a minimal dispersion. To this end,
prove that the Rao—Cramér inequality for the unbiased estimate 7 (x) of the variable
o2 has the form:

DT > 1 _ 1

= 3l :
nE (np(g+[2)(§)) (#)

Remark. As for the accuracy of the estimate sg(x), one can construct a confi-
dence interval for o2 by using the following considerations.

Given x = (xq,...,X,), let

n 2
2 _ Xi — Mo
po =y (M)

i=1

Since
d n
LE =Y 0 (=),
i=1
according to [P §2.8, (34)], the variable y2(§) has y*-distribution with n degrees

of freedom; more specifically, it has density (x > 0)

x%—le—x/Z

16 = 3T r)

(see also [P §2.3, Table 3]). Since, at the same time, one can write

2 2
1 (x)o
55 (x) = .

one must have

s2(x)n x
P(mo,ag){ o) Sx} 2/0 fedr.

o2
For this reason, given any 0 < ¢ < 1, it is possible to find a A’(g) and A" (¢) so that

A (e) e

o e
fxz(l) dt = - and fxz(t) dt = - .
" 2 A (&) " 2
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Consequently,
k”(s)
/ fp@®dt =1—e.
/V(S) n

Furthermore, the interval

s3(x)n s (x)n
(M@) T A(e) )

is a confidence interval for o2 with confidence level (1 — &), since

2 2
$p(x)n 2 _ S / 2 "
< < = < <A .
{ A//(s) =0 = A/(S) { (8) — Xn(x) — (8)}
Finally, we note that the choice of ¢ > 0 does not determine uniquely a’(¢) and
a” (&) from the relation

Ll//(g)
/ fp@)dt =1—s.
ae

(¢) How should one choose a’(¢) and a”(¢) in order to define the narrowest
possible confidence interval for o> with confidence level (1 — )? Are these values
for a’(¢) and a” (&) going to be the same as A'(¢) and 1" (g)?

Problem 2.13.34. (Statistics of the normal distribution A (m,c?): part V—m is
unknown and o? is unknown).

(a) Prove that in this case, for any n > 1, the unbiased estimates for m and o2
are given by

1 « | J—
X=— . and s(x) = 2(x) = — i — %)
X an and s7(x) n—ls (x) n_IZ(x X)

i=1 i=1
(b) Prove that the statistics
X—m
()
N
has Student distribution with n — 1 degrees of freedom—see [ P §2.3, Table 3].
Hint. Write the variables 7, (x) in the form

ti—1(x) =
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and notice that:

(i) The numerator in the last expression has standard normal, .47(0, 1),
distribution.

(ii) The denominator %E) has the same distribution as the random variable

[ .
Vit x2_. where y2_, = Y'Z1n? and 7;.....n,— are independent standard

normal, .47(0, 1), random variables.

(ifi) The variables =" \/n and &

are independent.

The desired statement with regard to the variables f,—; (§) follows from (i), (ii),
(iii), and the formula [ P §2.8, (38)]. B
(c) By taking into account that the variable #,—;(x) = (“‘S_l’") has Student

N
distribution, construct confidence intervals for the parameter m with confidence

level 1 —e.

(d) Prove that the variable (n — 1) (%‘)2 has y2-distribution with (n — 1) degrees
of freedom and, by using this property, construct a confidence interval for the
parameter o with confidence level (1 — ¢).

Problem 2.13.35. Suppose that ¢(¢) is the characteristic function from Prob-
lem 2.13.28 and prove that for every choice of 0 < a; < ... < a, and pr > O,
1 <k <n,with >} _, px = 1, the function

n
t
HOEDY pkw(—)
ag
k=1
is characteristic.

Problem 2.13.36. Consider the Gaussian sequences X = (X,),>0, with covari-
ance function of the form

eI or minGi, j) (= 27N (il + 11 =i = j). 1) =0.12.....

What structural properties (such as independent increments, stationarity, Markovian,
etc.) does this sequence have?

Problem 2.13.37. Let N be a standard Gaussian random variable (N ~ .47(0, 1)).
Prove that for any o < 1 one has

1 1 1
EW:WF(E‘%)-

Problem 2.13.38. Let X and Y be two independent standard normal (.4"(0, 1))
random variables. Prove that

1
E((Xz T Yz)m) <00

if and only if p < 2.
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Problem 2.13.39. Let everything be as in Problem 2.13.38 and suppose that

X2

1 2 2

Prove that:
(a) T and g are independent;
(b) T has exponential distribution (P{T >t} = e~*, ¢t > 0);
(c) g has arcsin-distribution (with density Ty Y € (0, 1)).

Problem 2.13.40. Let B = (B;);>0 be a Brownian motion and let
T, =inf{t > 0: B, = a}

be the first passage time to level @ > 0, with the understanding that 7,, = oo, if the
set in the right side of the last relation is empty.

By using the reflection principle, i.e., the property P{sup,_, B; > a} = 2P{B; >
a} (see [17], [103]), prove that the density p,(¢) = W, t > 0, is given by the
formula

Palt) = —= ™/,
213

Hint. Use the fact that P{T,, <t} = 2P{B, > a}.

Problem 2.13.41. Let T = T}, where T, is the first passage time defined in the
previous problem. Prove that
T N2

where N is a standard normal (N ~ .47(0, 1)) random variable. In addition, prove
that the Laplace transform of T is given by

_22 _2 1 _
Ee 2l =Ee 23 =¢™*, 1>0,

’

while the Fourier transform of 7 is given by

. S 1 t
Ee''T = Ee''v? = exp{— |t|1/2(1 —1i m)}, t € R.

(The above relations may be viewed as a constructive definition of the random
variable 1/N?2, which has a stable distribution with parameters o = %, B =0,
0 =—1,andd = 1 (see [P §3.6, (9) and (10)]).
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Problem 2.13.42. Let X and Y be two independent normally distributed
(A (0, 0?)) random variables.
(a) Prove that the variables

2XY and X?-Y?
VX212 VX212

are independent and normally distributed with mean 0 and dispersion 1/2.

(b) Conclude that

X Y 2C,
Y X

where C is a Cauchy random variable with density 1/(z(1 4+ x?)), x € R, and that
I jaw
C—-— =2C.
C

(c) Generalize this result by showing that for every a > 0 one has

a Jaw

C-% = (+aC.

X
(d) Prove that the variables X2 + Y2 and W are independent.

Hint. (a) Use the representation for the variables X and Y obtained in Prob-
lem 2.8.13.
(b) Use the result in Problem 2.8.27 (a).
-1
—ax

(c) For the proof it suffices to show that if f(x) = xlT’ then for any
a

bounded function g(x) the integrals [°__ g(f(x)) o2 and [°° g(x) i

coincide.

Problem 2.13.43. Prove that for any 0 < H < 1 the function
1
R(s.t) = E(tZH + 52— — 5P, s,0>0

is non-negative definite (see formula [P §2.13, (24)]) and that, therefore, one can
construct a Gaussian process B = (B/!),~, with mean 0 and covariance function
R(s,t). (By using Kolmogorov’s criterion—see, for example, [ 17]—it is possible to
show that, in fact, B = (B/!),>( may be chosen to have continuous sample paths.
Such a process is commonly referred to as a fractal Brownian motion with Hurst
parameter H.)

Convince yourself that for H > 1 the function R(s,t) is not non-negative
definite.
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Problem 2.13.44. (The Darmois—Skitovich theorem.) Let £y, ..., &, be independent
and identically distributed random variables and let ay,...,a, and by,...,b, be
some non-zero constants. Prove that the following characterization holds: if the
random variables Z?=1 a;& and Z?=1 b;&; are independent, then the variables
&1, ..., &, must have normal distribution. (Withn = 2 and witha; = a, = 1, b; =
1 and b, = —1 this is nothing but the Bernstein theorem from Problem 2.13.10.)

Problem 2.13.45. Let &, &, ... be any sequence of independent standard normal
(4(0, 1)) random variables. Prove that as n — oo the random variables

"X "X
Xn — \/E Zl—l Y _ Zl—l

nX? " . 172
2z X ( Yo X} )
converge in distribution to a standard normal (.#"(0, 1)) random variable.

Problem 2.13.46. Let (X, Y) be any pair of Gaussian random variables with EX =
EY = 0,DX = DY = 1, and with correlation coefficient py y. Prove that the
correlation coefficient pp(x)a(r) of the variables @(X) and @(Y), where @(x) =

Qm)~ V2 [~ e™¥’/2 dy, is given by the formula

_ 6 . PXY
p¢(X),¢(Y) = ; arcsin T

Problem 2.13.47. Let (X,Y,Z) be any 3-dimensional Gaussian random vector
with EX = EY = EZ = 0,DX = DY = DZ = 1 and with correlation
coefficients p(X,Y) = p1, p(X,Z) = p2, p(Y,Z) = p3. Prove that (comp. with
statement (b) in Problem 2.13.23)

1 1 . . .
P{X >0,Y >0,Z >0} = 3 + 4—{arcsm p1 + arcsin p, + arcsin p3}.
7T

Hint. Let A = {X > 0}, B = {Y > 0}, C = {Z > 0}. Then, for p =
P(A N B N C), by the “inclusion—exclusion formula” (Problem 1.1.12), one has

1—p=P(AUBUC)=[P(4) +P(B) + P(C)]
—[P(ANB)+PANC)+PBNC)]+ p.
Finally, use the result in Problem 2.13.23(b).

Problem 2.13.48. Prove that the Laplace transform, Ee™* Rz, A > 0, of the square
of the “span”, of the Brownian bridge B® = (B, )o<:<1, namely, the quantity

2 o : o
R =4/—( max B, — min B, |,
T \o<t<l 0<r<l1
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is given by the formula
Eo R ( Var )2
sinhv/Aw )

Problem 2.13.49. (0. V. Viskov.) Let n and ¢ be any two independent standard
normal (.#(0, 1)) random variables. Prove that:

(a) For any given function f = f(z),z € C, with E| f(x + (n +i{))| < oo, the
following “averaging” property is in force

f(x) =Ef(x+ (0 +i0).

(b) For any Hermite polynomial He, (x), n > 0 (see p. 380 in the Appendix) the
following representation is in force

He, (x) = E(x +i0)".



Chapter 3

Topology and Convergence in Spaces
of Probability Measures: The Central
Limit Theorem

3.1 Weak Convergence of Probability Measures
and Distributions

Problem 3.1.1. We say that the function F = F(x), defined on R”, is continuous
at the point x € R™ if, for every ¢ > 0, one can find a § > 0, such that
|F(x) — F(y)| < eforall y € R that satisfy

x —dfe <y <x+de,

where e = (1,...,1) € R™. The sequence of distribution functions (F,),>1 is
said to converge in general to the distribution function F' (notation: F,, = F) if
F,(x) - F(x) asn — oo, for any x € R™ at which the function F = F(x) is
continuous.

Prove that the statement in [P §3.1, Theorem 2] also holds for the spaces R™,
m > 1 (see Remark 1 after [P §3.1, Theorem 1]).

Hint. In the context of [P §3.1], it is enough to show only the equivalence
(1) & (4). To prove the implication (1) = (4), suppose that x € R” is a
continuity point for F, and convince yourself that if d(—oo, x] is the boundary of
the set (—oo, x] = (=00, x1] X -+ X (=00, X;,], then P(d(—00, x]) = 0, so that
P,((—o0, x]) = P((—o0, x]), i.e., F,,(x) — F(x). The proof of the implication
(4) = (1) in the m-dimensional case is analogous to the one-dimensional argument
in the proof of [P §3.1, Theorem 2].

Problem 3.1.2. Prove that in the spaces R™ the class of “elementary” sets, 7, is a
convergence defining class.

Problem 3.1.3. Let E be one of the space R*, C or D (see [ P §2.2]). The sequence
of probability measures (P,,),>1 (defined on the Borel o-algebra, &, generated by
the open sets in the respective space) converges in general, in the sense of finite-

£
dimensional distributions, to the probability measure P (notation: P, = P), if
P,(A) — P(A) as n — oo, for all cylindrical sets A with P(dA) = 0.

A.N. Shiryaev, Problems in Probability, Problem Books in Mathematics, 181
DOI 10.1007/978-1-4614-3688-1_3,
© Springer Science+Business Media New York 2012
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Prove that in the case of the space R one has
f
(P,=P) < (P, = P). (%)

Can one make the same statement for the spaces C and D?
Hint. The implication < in (x) is straight-forward. Therefore it is enough to

f
prove only that (P, = P) = (P, — P). Let f be any bounded (| /| < ¢) function
from the space C(R*°). Given any m € N = {1,2,...}, define the functions
fm:R® — R by

T (X1, e Xy Xt 1s -2 o) = (X1, .00, X, 0,0,..0).

Clearly, one has f,, € C(R*®), |fi| < c and f,(x) — f(x), for every x € R*.
Next, consider the sets

An = {x € B 1 fu0) = ()] < 6.

and convince yourself that the following estimate holds for all sufficiently large n
and m:

< eP,(A,) +2cP(4,) <es+4ce.

‘/[RoofmdPn—/[RoofdPn

Then notice that [ fin Py — [goo fin dP for every m and by using the above
estimate prove that

m/ fdPn—/ fndP| <e+4ce,
n Ro° R
lim fdP,,—/ fmdP| <e+4+4ce.
n Roe R

for all sufficiently large m. The Lebesgue dominated convergence theorem yields
eroo fmdP — erOO f dP, and the previous two inequalities yield:

im| fdP,—| fdP

mJRoo Roe

u_m/ fdPn—/ fdP
n [Roo Ro©

Since ¢ > 0 is arbitrarily chosen, it follows that

<eg+d4dce;

<e+4dce.

/ fdP, — fdP, n— o0o.
o0 IROO
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Problem 3.1.4. Let F and G be any two distribution functions on the real line
and let

L(F,G) = inf{h >0:F(x —h)—h < G(x) < F(x+h)+h}

be the Lévy distance between them. Prove that the convergence in the Lévy metric,
L(-,-),1is equivalent to the convergence in general, i.e.

(F, = F) < (L(F,,F)—0).

Hint. The implication (L(F,, F) — 0) = (F, = F) follows directly from
the definition. The inverse implication can be established by contradiction, i.e.,
by showing that F, = F, while, at the same time, L(F,, F) # 0, leads to a
contradiction.

Problem 3.1.5. Suppose that F;,, = F and that the distribution function F is
continuous. Prove that the functions F, (x) converge uniformly to F(x) as n — oo
(comp. with Problem 1.6.8):

sup | F,(x) — F(x)| = 0, n — oo.
X

Hint. Choose an arbitrary ¢ > 0 and let m > 1/¢. Taking into account that F'

is continuous, choose the points x, ..., x;;—; so that F(x;) = IE and | F,(x;) —
F(x;)| <e,i=1,...,m—1, for any sufficiently large n. Conclude that for any
X € [Xk, Xk+1] (with the understanding that xo = —oo and x,,, = 0o) one must have

Fo(x) — F(x) < Fu(xk4+1) — F(xi) < F(xp41) +e— F(xg) = e+ % <2e.

Analogously, F(x)— F,(x) < 2¢ and, therefore, | F,,(x)— F(x)| < 2eforall x € R.

Problem 3.1.6. Prove the statement formulated in Remark 1 after Theorem 1 in
[P §3.1].

Problem 3.1.7. Prove the equivalence of conditions (I*)—(IV*), formulated in
Remark 2 after Theorem 1 in [P §3.1].

Problem 3.1.8. Prove that P, P (X> stands for “weakly converges to”) if and
only if every sub-sequence, (P,), of the sequence (P,,) contains a sub-sub-sequence

(P,») with the property P,» — P.
Hint. The necessity part is obvious. For the sufficiency part, it is enough to notice

w
that if P,-4P, then one can find: some continuous and bounded function f, some
¢ > 0, and some sub-sequence (n’), so that

‘/EfdPn/—/EfdP

By using this property, one can show that the existence of a sub-sub-sequence

> €.

(n") € (') with P,» > P leads to a contradiction.
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Problem 3.1.9. Give an example of probability measures P, P,, n > 1, on

(R, B(R)), such that P, — P, and, at the same time, it is not true that P,(B) —
P(B) for all Borel sets B € A(R).

Problem 3.1.10. Give an example of distribution functions F = F(x), F, =
F,(x),n > 1, such, that F, X F,butsup, |F,(x) — F(x)| / 0,n — oo.

Problem 3.1.11. In many probability theory texts, the implication (4) = (3) in
[P §3.1, Theorem 2], concerning the convergence of the distribution functions F,,,
n > 1, to the distribution function F, is attributed to E. Helly and H. E. Bray. Prove
one more time the following statements:

(a) Helly—Bray Lemma. If F,, = F (see Definition 1), then

b b
lim / () dF, (x) = / ¢() dF (),

where a and b are any two continuity points for the distribution function F = F(x),
and g = g(x) is any continuous function on the interval [a, b].
(b) Helly—-Bray Theorem. If F,, = F, then

lim /_ () dF, (x) = /_ (1) dF(x),

(o]

for any bounded and continuous function g = g(x) defined on the real line R.

Problem 3.1.12. Suppose that F,, = F and that for some b > 0 the sequence
( / |x|® dF, (x)) happens to be bounded. Prove that:
n>1

lim/ |x|* dF,(x) = / x| dF(x), 0<a<b;

lim/xk dF,(x) = /xk dF(x) foreveryk =1,2,...,[b],k #b.

Problem 3.1.13. Let F;, = F and let x = med(F) and u, = med(F,) denote,
respectively, the medians of the distributions F and F,, n > 1 (see Problem 1.4.5).
Assuming that the medians @ and u, are uniquely defined for all n > 1, prove
that w,, — w.

Problem 3.1.14. Suppose that the distribution function F is uniquely determined
by its moments m®) = f_ozo x*dF(x), k = 1,2,..., and let (F,),>; be any
sequence of distribution functions, such that

o0
m,(f) = / x*dF,(x) > m® = /
—00

o0

xK dF(x), k=12,....
o0

Prove that F,, = F.
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Problem 3.1.15. Let u be any o-finite measure on the Borel o-algebra, &, for some
metric space (E, p). Prove that for every B € & one has

w(B) = sup{u(F); F C B, Fisclosed} = inf{u(G); G 2 B, G is open)}.

Problem 3.1.16. Prove that a sequence of distribution functions, F,,, n > 1, defined

on the real line R, converges weakly to the distribution functions F (F), 5 F )
if and only if there is a set D which is everywhere dense in R and is such that
F,(x) - F(x) forevery x € D.

Problem 3.1.17. Suppose that the functions g(x) and (g,(x)),>1, x € R, are

continuous and have the properties:

sup [g,(x)] < ¢ < o0;
x,n

limsup |g,(x) — g(x)| =0,
" xeB

for every bounded interval B = [a, b].
Prove that the convergence of distribution functions F,, = F implies

lim /ﬂ; gn(x) dEy (x) = /ﬂ; () dF ().

By constructing appropriate examples, prove that, in general, the point-wise conver-
gence g,(x) — g(x), x € R, is not enough to guarantee the above convergence.

Problem 3.1.18. Suppose that the following convergence of distribution functions
takes place: F,, = F asn — oo.
(a) By constructing appropriate examples, prove that, in general,

/[Rxan(x)%)/n;xdF(x).

(b) Prove that if sup, er |x|k dF, < ¢ < oo, for some k > 1, then for all
1 <[/ <k — 1 one must have

/[Rxl dF,,(x)—>/[Rxl dF(x).

Problem 3.1.19. As a generalization of the previous problem, prove that if f =
f(x) is some continuous function, not necessarily bounded, but such that

Sl _,

m =
|x|—>00 g(x)
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for some positive function g = g(x) with sup,, [, R &(x) dF,(x) < c¢ < oo, then

/ £ dEy(x) — / F(x) dF ().
R R

3.2 Relative Compactness and Tightness of Families
of Probability Distributions

Problem 3.2.1. Prove Theorems 1 and 2 from [ P §3.2] for the spaces R", n > 2.

Problem 3.2.2. Let P, be a Gaussian measure on the real line, with parameters m,,
and 02, for every a € 2. Prove that the family & = {P,;a € 21} is tight if and
only if there are constants, @ and b, for which one can write

|me| < a, offb,ate.

Hint. The sufficiency statement follows from the fact that for every o € 2 one
can find a random variable n, ~ .47(0, 1), such that §, = my + 041,. With this
observation in mind, one can conclude that P{|&,| > n} < P{|na| < ";“}. As a
result, the family {P,} must be tight. The necessity statement can be established by
contradiction.

Problem 3.2.3. Give examples of tight and non-tight families of probability mea-
sures & = {P,; o € 2}, defined on the measure space (R*, B(R*)).

Hint. Consider the following families of measures:

(a) {Py}, where P, = P is such that

1, if(0,0,...) € 4,

P(4) =
) 0, if(0,0,...) & A4;

(b) {P,,n € N}, where P, is a probability measure concentrated at the point
X, = (n,0,0,...).

Problem 3.2.4. Let P be a probability measure, defined on the Borel o-algebra, &,
in some metric space (E, p). We say that the measure P is tight (comp. with [ P §3.2,
Definition 2]), if for any ¢ > 0 one can find a compact set K C E, such that
P(K) > 1 — &. Prove the following result, known as “Ulam theorem”: every
probability measure P, defined on the Borel o-algebra in some Polish space (i.e.,
some complete and separable metric space) is automatically tight.

Problem 3.2.5. Suppose that X = {X, € R?;a € 2} is some family of random
vectors in R?, chosen so that sup E||X,||” < oo for some r > 0. Setting P, =
o

Law(Xy), o € 2, show that family &7 = {P,; o € 2} is tight.
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Problem 3.2.6. The family of random vectors {£; € R"; ¢ € T'} is said to be tight, if
lim sup P{||& || > a} = 0.
a—>00 rer
(a) Prove that {& € R"; k > 0} is tight if and only if
lim lim P{||&] > a} = 0.
a—>00 k—00

(b) Prove that the family of non-negative random variables {&; k > 0} is tight if

and only if
limlim[1 — Ee %] = 0.
Mok

Problem 3.2.7. Let (& )0 be any sequence of random vectors in R”, and suppose

d
that & — &, i.e., the distributions Fy of the vectors & converge weakly (equiva-
lently, converge essentially) to the distribution F of some random vector €. Prove
that family {&; k > 0} is tight.

Problem 3.2.8. Let (& )x>0 be any tight sequence of random variables and suppose
P
that the sequence (i )r>o is such that ny — 0 as k — o0o. Conclude from these
P
conditions that &y — 0 as k — oo.

Problem 3.2.9. Let X, X, ... be any infinite sequence of exchangeable random
variables (for a definition, see Problem 2.5.4) and suppose that the variables X; take
only the values O or 1.

Prove the following result: there is a probability distribution function G = G (1)
on the interval [0, 1], such that, for every 0 < k < n, and every n > 1, one has

1
P{X;=1,....Xc=1.Xe41 =0,.... X, =0}=/ KA =1)"Fac).
0

(This is a special case of B. de Finetti’s Theorem, according to which the distribution
law of every infinite sequence of exchangeable random variables can be identified
with the distribution law of a (convex) mixture of infinite sequences of independent
and identically distributed random variables—see [1] and [29].)

Hint. Consider the event

Ar={Xi=1,..., Xk = 1, X441 =0,..., X, =0}
and write the probability P(Ay ) in the form

P(4x) = > P(Ax | S = j)P{Sn = j}, ()

J=0
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where m > n and S,, = Y ', X;. Next, by using the exchangeability property,
prove that the right side of (*) may be re-written as

k—1 n—k—1

1
ET (Y, —i)x (m(1 = Yp) = j) X ———
Ll 1 oD

where Y,, = S,,/m. (Notice that for large m this expression is close to E[Y ¥ (1 —
Y,,)"*].) Finally, pass to the limit as m — oo and conclude that the limit can be
expressed as fol AK(1 = 1)""k dG (L), where G(A) is some distribution function on
the interval [0, 1].

Problem 3.2.10. Leté&,...,§, be any sequence of exchangeable random variables,
which take the values 0 and 1. Prove that:

Sh
@PE =11]8,) = 7,whereSn =&+...+&;

Sn Sn -1 . .
OPE =1,& =1[S,) = ¥,Wherez #J.
nn—1)
Problem 3.2.11. As a generalization of [P §1.11, Theorem 2], prove that if
N1, - .., Ny is some set of exchangeable random variables with valuesin {0, 1, 2, ...},

andif Sy =+ ...+, 1 <k <n, then

+

W

P(Sk <kf0ra111§k§n|Sn):<1——) .
n

3.3 The Method of Characteristic Functions for Establishing
Limit Theorems

Problem 3.3.1. Prove the statement in [P §3.3, Theorem 1] in the case of the
spaces R, n > 2.

Hint. The proof is analogous to the one-dimensional case, except for [ P §3.3,
Lemma 3]. The multidimensional analog of this lemma can be stated in the form:

k
[arw == [ a-regna
A a* Jg
where
A= {xe R" : |x;| < %,...,Ixnl < l},

a

B:{te[R”:Oftlfa,...,Oft,,fa}.
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Problem 3.3.2. (The law of large numbers.)

(a) Let &1, &,, ... be any sequence of independent random variables with finite
expected values E[&,| and dispersions D§, < K, n > 1. Prove that the law of large
numbers holds: for every ¢ > 0

Ei 4. +& EE+...+&)
n n

P

zs}—>0 as n — oo. (%)

(b) Let &y, &, ... be any sequence of random variables with finite expected values
E|&,|, dispersions D§, < K, n > 1, and covariances cov(§;,&;) < 0,i # j. Prove
that the law of large numbers () holds.

Hint. To prove (a) and (b), use Chebyshev’s inequality.

(c) (S. N. Bernstein.) Let &1, &,, ... be any sequence of random variables with
finite expected values E|£,| and dispersions D§, < K, n > 1, and suppose that the
covariances are such that cov(§;,§;) — O as |[i — j| — oco. Prove that when these
conditions are satisfied the law of large numbers (*) holds.

Hint. Convince yourself that under the specified conditions one has

D& +...+&)/n—>0 asn— oo

(d) Let &, &, ... be independent and identically distributed random variables,
let u, = E[£11(]&1] < n)], and suppose that

lim xP{|&| > x} = 0.
X—>00

Prove the following version of the law of large numbers:

S, p
__Mn_>07
n

where, as usual, S, = & + ... + &,. (See also Problem 3.3.20.)
Hint. Given some s > 0, set Si(s) =& 1(&| <s)and my = E[Efs) +...+ E,SS)],
and prove that

Plgi+.. + & —mPl >0 =D (6 +... +82)

+P{& 4+ ...+ & #Sf“+...+§,§”}.
By using this estimate, convince yourself (setting s = n and 7 = ¢n, ¢ > 0) that

P”é‘1+...+§n

n

~Eal(E] <) > ef

2 n
= T/ xP{|& | > x}dx + nP{|&| > n},
e“n Jo

which leads to the desired property.
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Problem 3.3.3. In the setting of Theorem 1, prove that the family {¢,,n > 1} is
uniformly equicontinuous and the convergence ¢, — ¢ is uniform on every finite
interval.

Hint. The uniform equicontinuity of the family {¢,, n > 1} means that for every
& > O onecan finda§ > 0, such that, for every n > 1 and every s, ¢ with |t —s| < &,
one has |@, (1) — . (s)| < e.

Assuming that F), X F , the Prokhorov Theorem (see [P §3.2, Theorem 1])
implies that, given any ¢ > 0, one can find some a > 0 so that f‘x dF, < e,
n > 1. Consequently,

|>a

lon(t + 1) — g (0)] < / e — 1] dF, + 26,

lx|<a
from where the desired uniform equicontinuity property easily follows. By using

this property one can prove that

sup |@,(t) — )] -0 as n — oo,
t€fab]

for every finite interval [a, D].

Problem 3.3.4. Let &,, n > 1, be any sequence of random variables with

characteristic functions ¢g, (¢), n > 1. Prove that §, 4 0 if and only if ¢g, (1) — 1
as n — 0o, in some neighborhood of the point # = 0.

Hint. For the proof of the sufficiency part, consider using Lemma 3, according
to which the family of measures {Law(§,),n > 1} is tight.

Problem 3.3.5. Let X, X5, ... be independent and identically distributed random
vectors in R¥ with vanishing mean and with (finite) covariance matrix I". Prove that

X+ 4 X,
Liﬂ/((),p)_
Jn

(Comp. with Theorem 3.)
Hint. According to Problem 3.3.1, it is enough to prove that, for every ¢ € RF,
one has

Ee'5n) — Ee'"9  as n — oo,
where &, = n7V2(X; +---+ X)) and € ~ A4 (0,T).
Problem 3.3.6. Let &,%,,... and n;,7n,,... be two sequences of random vari-
d
ables, chosen so that &, and 5, are independent for every n, and suppose that £, — &

d
and n, — n asn — oo, where £ and 7 are also independent.
(a) Prove that the sequence of bi-variate random variables (§,, n,) converges in
distribution to (£, n).
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(b) Let f = f(x,y) be any continuous function. Verify that the sequence
f(&,, n,) converges in distribution to f(&, n).

d
Hint. The convergence (§,,7,) — (&,n) obtains from the statement in

d
Problem 3.3.1. In order to establish the convergence f(§,,n,) — f (&, n), consider
the composition ¢ o f: R? — R, where ¢: R — R is some continuous and bounded
function.

Problem 3.3.7. By constructing an appropriate example, prove that in part (2) of
[P §3.3, Theorem 1] the continuity condition at O for the limiting characteristic
function ¢(¢) = lim, ¢, (¢) cannot be weakened in general. (In other words, if ¢(¢)
is not continuous at 0, then it is possible that ¢, (1) — ¢(¢), but there is no function
F for which anF .) Convince yourself by way of example that if the continuity
at 0 for the limiting function ¢(¢) fails, then the family of probability distributions
{P,,n > 1}, with characteristic functions ¢, (¢), n > 1, may no longer be tight.

Hint. Take F,, to be the distribution function of a Gaussian random variable with
mean 0 and dispersion 7.

Problem 3.3.8. As an extension to inequality [P §3.3, (4)] from [P §3.3,
Lemma 3], prove that if £ is a random variable with characteristic function ¢(¢),
then:

(a) For any a > 0 one has

P{é| <a™'} < %/ lo(1)| dt.

|t|<a

(b) For any positive b and § one has
2
14+ 32)"
Plg| = b} < %/ [1 —Rep(n)] dr.
0
(c) If £ is a non-negative random variable and ¥ (a) = Ee™%, a > 0, is its
Laplace transform, then
P{E > a™"} <2(1 - y(a)).

Problem 3.3.9. Suppose that £,£;,&,,... is some sequence of random vectors

. d . .
in R". Prove that § — & as k — oo if and only if for any vector 1 € R” one
has the following convergence of the respective scalar products

Ee.t) > (E.0).

(This result is the basis for the Cramér—Wold method, which comes down to
replacing the test for convergence in distribution of random vectors from R” to the
test for convergence in distribution of certain scalar random variables.)
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Problem 3.3.10. As a continuation to Theorem 2, which is known as Khinchin law
of large numbers (or Khinchin criterion), prove the following statement.

Let &,&,... be some sequence of independent and identically distributed
random variables and let S, = & + ... + §,,0 < p < 2. Then there is a constant,
¢ € R, for which

nVrs, £ c,
if and only if one can claim that as r — 0:

(@) rPP{l&| >r} > 0andc =0,if p < 1;

(®) rP{[&1] > r} — Oand E[§ [(|61] = )] = c,if p=1;

) rPP{l&)| >r} - 0andE§ =c =0,if p > 1.

Problem 3.3.11. Let &}, &,, ... be a sequence of independent and identically dis-
tributed random variables and let S, = & 4+ ... + §,. Prove that the variables
n~1/28, converge in probability as n — oo if and only if P{&; = 0} = 1.

Problem 3.3.12. Let F(x) and (F,(x)),>1 be some distribution functions and let
@(t) and (¢, (?)),>1 be their respective characteristic functions. Prove that if

sup |@, (1) — ¢(t)| — 0,
t

then

sup | F,(x) — F(x)| — 0.

Problem 3.3.13. Let £, &, ... be independent and identically distributed random

variables with distribution function F = F(x) and let S, = £ + -+ + &,,n > 1.
Prove the following version of the law of large numbers (due to A. N. Kol-

mogorov): for the existence of a sequence of numbers (a,),>1, such that

S P
—~—a,—>0 asn— oo, (%)
n
it is necessary and sufficient that
nP{|&|>n} -0 as n— oo, (x%)

or, equivalently, that
x[1=—F(x)—F(—x)] =0 as x - .

Furthermore, when these conditions hold one has a, — E(§,1(|&;| < n)) — 0 as
n — oo. (The existence of a sequence (a,),>1 for which the property () holds is
known as “stability of the sequence (%)n>l in the sense of Kolmogorov™.)

Problem 3.3.14. In the context of the previous problem, prove that if E|&;| < oo
then the condition (xx*) holds and it is possible to take a, = m, where m = E§;.
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(Comp. with [ P §3.3, Theorem 2], Khinchin criterion for the law of large numbers,
and Problems 3.3.10 and 3.3.13.)

Problem 3.3.15. Let &,&,,... be any sequence of independent and identically
distributed random variables that take values +3, £4, ... with probabilities

4
P{Slzix}zm, X=3,4,...,

where the normalizing constant ¢ is given by

oo

= (X )

x=3

Prove that in this case E|&;| = oo, but condition (%) from Problem 3.3.13 holds

and it is possible to take a,, = 0, i.e., with this choice one has % — 0.

Remark. As the random variables &, &, ... do not possess finite first moments
(EJ&;| = 00), it is not possible to formulate the law of large numbers in the sense of
Khinchin (n~'S, — m, where m = E§;—see [P §3.3, Theorem 2]). Nevertheless
the random variables &;, &, ... exhibit stability in the sense of Kolmogorov (see
Problem 3.3.13), in that

Sn P
— —m (: 0)7
n
where m = E& is the generalized expected value, which was defined by
A. N. Kolmogorov (see [66, Chap. VI., §4]) by the formula

Eti = lim E(/(& < n)).

Later A. N. Kolmogorov called this generalized expected value the “A-integral”. (It
is common in analysis to say that the function f = f(x), x € R, is A-integrable, if:
(i) f belongs to the space L' in weak sense (i.e., lim, nA{x : | f(x)| > n} — 0);
and
(i) The limit lim, [ (el f ) <} f(x)A(dx) exists, where A is the Lebesgue
measure on (R, Z(R)).
Usually this integral is denoted by (A) [ f(x) A(dx). One must be aware that
many of the usual properties of the Lebesgue integral—the additivity property, for
example—may not hold for the A-integral.)

Problem 3.3.16. Let &,&,,... be a sequence of independent random variables
(with finite expected values), such that

1 n
WZEI&P-’—S_)O as n — oo,

i=1
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for some § € (0, 1). Prove that this “(1 + §)-condition” guarantees that the law of
large numbers is in force, i.e.,

%Z(&—E&)io as n — oo.

i=1

Problem 3.3.17. (Restatement of [P §3.3, Theorem 3] for the case of non-
identically distributed random variables.) By using the continuity theorem ([ P §3.3,
Theorem 1]) and the method of characteristic functions, the central limit theorem
was established in Theorem 3 in the case of independent and identically distributed
random variables. By using the same method, prove the central limit theorem for
the case of independent but not necessarily identically distributed random variables
by using the following scheme.

Let Ay, A, ... be a sequence independent events, chosen so that P(4,) = 1/n
(for examples of such events, see Problem 2.4.21). Setting £ = I,4, and S, =
& + ...+ &,, prove that

1
ES"ZZE (~Inn as n — o),

k<n
1 1
DS, = —(1—=) (~Inn as n— ).
2 (-7

Next, consider the characteristic functions ¢, (¢) of the random variables S”_T\/ETSK’

n > 1, and prove that ¢,(t) — e /2, Finally, conclude that the central limit
theorem ([P §3.3, Theorem 1]) holds: as n — 0o one has

S, — ES,
fi

< x} — d(x), x€eR.
DS,

Problem 3.3.18. As a supplement to inequality [P §3.3, (4)] from [P §3.3,
Lemma 3], show that the following double-sided inequality holds for any a > 0:

1 a
(1—sin1) dF(x) < —/ [1 —Reg(r)]dr < 2/ dF(x) + 2.
lel=1/a aJo x|z /T/a 2

Hint. To prove the right inequality, write 1 — Re ¢(¢) in the form

1 —Reo(t) = /R(l —costx)dF(x) =

(1 —costx) dF(x) +/ (1 —costx)dF(x),

/lez«/l/a |x|</1/a

estimate the above integrals in the obvious way, and, just as in Lemma 3, use
Fubini’s theorem.
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Problem 3.3.19. Let (§,),>1 be a sequence of independent random variables,
distributed according to the Cauchy law with density

0
— 0>0, € R.
207 + %) x
Prove that the distributions F;, of the random variables % max; <, & converge weakly
to the Fréchet distribution with parameter « = 1 (see Problem 2.8.48), i.e., the
distribution of a random variable of the form 1/7,, where T, has exponential
distribution with parameter ¢ = 6/x:

1 :
P{— <x} =e %, x>0.

c

Problem 3.3.20. (Continuity theorem for discrete random variables.) Let
£, &1,&, ... beasequence of random variables taking integer valuesk = 0, 1,2, ...
and let

G(s) =) P{E=kis" and G,(s) =) P&, = k}s*
k=0

k=0

be the generating functions, respectively, of the variables £ and &,, n > 1.
Prove that

limP{§, =k} =P{e =k}, k=012,...,

if and only if
lim G, (s) = G(s), s €[0,1).

Problem 3.3.21. Prove the statement in Problem 2.10.35 by using the method of
characteristic functions.

Hint. The characteristic function of the random variable U, which is uniformly

distributed in the interval [—1, 1], is the function Slti’

3.4 The Central Limit Theorem for Sums of Independent
Random Variables 1. Lindeberg’s Condition

Problem 3.4.1. Let &;,&,,... be a sequence of independent and identically dis-
tributed random variables with E&? < co. Prove that (comp. with Problem 2.10.53)

max(|&1], ..., [ <0
NG

as n — 0.
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Hint. Use the relation

o max(|sl|ﬁ..,|sn|) <ol Z[pie < ne)]

and the fact that ne?P{£, > ne} — 0 asn — oo.

Problem 3.4.2. Give a direct proof of the fact that in the Bernoulli scheme the
variable sup, | Fr, (x) — @(x)| has order \/LE asn — oQ.

Problem 3.4.3. Let X|, X5, ... be any infinite sequence of exchangeable random
variables (see Problem 2.5.4) with EX,, = 0, Ean =1,n>1,and let

cov(Xy, X5) = cov(X?, X3). (%)

Prove that the central limit theorem holds for any such sequence, i.e.,

[~ d
— X; — A(0,1). *k
NG ; 0.1) (%)
Conversely, if EX? < 0o, n > 1, then (xx*) implies (*).

Problem 3.4.4. (a) (The local limit theorem for random variables on a lattice.) Let
£1,&, ... be independent and identically distributed random variables with mean
value i = E£; and with dispersion 0> = D§;. Set S, = & + ...+ £,,n > 1, and
suppose that the variables &1, &, . .. take values on a lattice of step-size & > 0, i.e.,
take the values a + hk, k =0, £1,+2, ..., for some h > 0.

Prove that as n — o0 one has

N 1 (hk +an —np)? ‘
sup |— P{S, = an + hk} — expy — — 0.
Up |7 PUSu = an & hiey = == exp 20%n

(Comp. with the local limit theorem in [P §2.6].)
Hint. The proof can be carried out with the following line of reasoning, which
involves characteristic functions. By Problem 2.12.9 one can write

PIS, = an + k) = P{(S, —amh™' =k} = /_ e o 5)]

where ¢(u) stands for the characteristic function of the variable &;. It is clear that

—72/2 1 /oo iuz —uz/2d
e = — e''*e u,
vV 21 J—oc0
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and, therefore,

Jno -
n

2

1
P{S, =an + hk} — — e /?
2

l " _ —t2/2‘ —12)2
[(p(_aﬁ)] e dt+ ﬂ“f” e dr.

<

- /ms”Tﬁ" >
The expression in the right side does not depend on k and it only remains to show
that as n — oo this expression converges to 0.

(b) (The local limit theorem for random variables with density.) Let &1, &, ... be
independent and identically distributed random variables with mean value u = E§;
and dispersion 0> = DE;. Suppose that the characteristic function ¢ = ¢(t) of the
variable & is integrable and, consequently, &, admits a probability density given by

1 o0 .
o) =5 / () di

—00

(see [P §2.12, Theorem 3]).
Let f, = f.(x) denote the probability density function of the variable S, =
&+ ...+ &, n > 1.Prove that as n — 0o one has

— 0.

1 (x—nu)z}

Sl;p ﬁfn (x) - \/ﬁ()’ exp{ - 20_2’1

Hint. Follow the argument used in the case of lattice-valued random variables.

Problem 3.4.5. Let X, X5, ... be independent and identically distributed random
variables with EX; = 0 and EXl2 = 1, and let dy, d3, . .. be any sequence of non-
negative constants, such that d, = o(D,), where D? = Y ;_, d?. Prove that the
“weighted sequence” d; X1, d>X», .. . satisfies the central limit theorem:

1 — d
oo > di XA (0. 1).
k=1

Problem 3.4.6. Let &;,&,,... be independent and identically distributed random
variables with E§; = 0 and E§7 = 1 and suppose that (7,),>1 is some sequence of

. . . P
random variables with values in the set {1,2, ...}, chosen so that t,,/n — ¢, where
¢ > 01is some fixed constant. Setting S, = & + ... + &,, prove that

Law (‘Cn_l/ZSIn) — @,

ie., rn_l/zSt” 4 &, where § ~ 47(0,1). (Note that the sequences (t,),>1 and
(&1)n>1 are not assumed to be independent.)
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Problem 3.4.7. Let &, &,,... be independent and identically distributed random
variables with E§; = 0 and E£? = 1. Prove that

Law(n_l/2 max S ) — Law(|£]), where & ~ .47(0,1);

1<m

in other words, for any x > 0 one has

P{n—l/Z max. S, < x} N \/g/()x e dy (: %erf(x)).

Hint. First prove the statement for symmetric Bernoulli random variables
£1,&,... with P{§, = £1} = 1/2, and then use — or, better yet, prove, which
is non-trivial — the fact that the limiting distribution would be the same for any
sequence &1, &, ... with the specified properties. (The independence of the limiting
distribution from the particular choice of the independent and identically distributed
random variables &,&,,..., with E§, = 0, Eéf = 1, is known as “invariance
principle”; see, for example, [10] and [17].)

Problem 3.4.8. In the context of the previous problem (and hint) prove that

P{n_l/2 max |Sy |<x}—>H(x) x>0,

1<m=<n

where

Z (- 1)k 2k + 1)*x?
2k + 1€ 8x2 '
Problem 3.4.9. Let X, X5, ... be independent random variables with

1
P{X, = +n"} = P{X, =0} =1-—. where2a>f—1.
n

2nb’

Prove that in this case the Lindeberg condition holds if and only if 0 < 8 < 1.

Problem 3.4.10. Let X, X5, ... be independent random variables chosen so that
| X, < C, (P-a.e.) and let C,, = o(D,,), where

2 _ ZE(Xk—EXk)2—>oo.
k=1

Prove that

S, — ES),

D L oVO.1), where S, = X; 4+ X, .
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Problem 3.4.11. Let X, X5, ... be any sequence of independent random variables
with EX,, = 0 and EX? = o2. In addition, suppose that this sequence satisfies the
central limit theorem and has the property

k
. 2k)!
E(DH—I/ZZX,) — (Zkk)' forsome k > 1.

i=1

Prove that Lindeberg’s condition of order k holds, i.e.,
Z/ Ix[*dF;(x) = o(DX), £>0.
{lx[>¢}

Note that the usual “Lindeberg condition” is of order k = 2—see [P §3.4, (1)].

Problem 3.4.12. Let X = X(A) and ¥ = Y(u) be two independent random
variables having Poisson distribution with parameters, respectively, A > 0 and
n > 0. Prove that

(X)) —A) —(F() —p) ¢

VXQ) + Y ()

Problem 3.4.13. Given any n > 1, suppose that the random vector

— A4(0,1) asA — oo, 4 — o0.

o) ()
(X7 X,

is uniformly distributed on the unit sphere in R”*!. Prove the following statement,
due to H. Poincaré: for every x € R,

—u2/2
YV

Problem 3.4.14. Let &,&,... be a sequence of independent and .47(0,1)-
distributed random variables. Setting S, = & + ... + §,, n > 1, find the limiting
probability distribution (as n — 00) of the random variables

1 n
ZZ'Sk—” -1, nx=1
k=1

Problem 3.4.15. Let &1, &, ... be a symmetric Bernoulli scheme (i.e., a sequence
of independent and identically distributed random variables with P{& = 1} =
P{&, =—1}=1/2)andlet So =0and Sy =& + ...+ &,k > 1.
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Define the continuous processes X @ = (X*")o<<| so that

S2nt
v2n7

where, given any u# > 0, S, is defined by way of linear interpolation from the nearest
integer values.

Hint. Prove the following—difficult but important—statements:

(a) The distributions P?" = Law(X ,(2") ,0 <t < 1) converge (in terms of finite
dimensional distributions and in terms of the weak convergence of distributions on
the metric space C, endowed with the uniform distance) to the distribution law P =
Law(B;,0 <t < 1) of the Brownian motion B = (B;)o<,<1. (The statement about
the weak convergence in C is a special case of the Donsker—Prokhorov invariance
principle—see [P §7.8, 1].)

(b) The conditional distributions 0% = Law(X*”,0 <1 < 1| X 21y converge
(in the same sense as in (a)) to the distribution 0 = Law(B;,0 < t < 1) of the
Brownian bridge B° = (B, )o</<1-

Hint. Use the same line of reasoning as in the derivation of Kolmogorov’s
limiting distribution in [ P §3.13]. For more details see the books [10] and [17].

X@ =

Problem 3.4.16. Conclude from the results in the previous problem (and compare
these results with the statements in Problems 3.4.7 and 3.4.8) the following limiting
relations: for any x > 0 one has:

@) Pl muy e =] > P{max B <] (=PYBI < 2y
1
(e2) P% o omax, 15kl < x} ~ P{02?§1 1Bl < x}’
and

0<r<I

1
(by) P( max Sp <x|S,, =0 —>P{ max Btc’fx};
21 0<k<2n

1 o
(b2) P(E o ISkl < x| S2 = 0) - P{Olgg; |B/| = x}.

Problem 3.4.17. As a continuation of Problems 3.4.15 and 3.4.16, verify the
following relations:

1
P [ Sy — min S ] < P{ B; — min B, < };
@ { 2n og}é’én k oérizlgnzn k= x} - orgtagxl ! 0211}21 =X
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and

1 .
®) P(./zn [og}é’én Sk = 02k 2o Sk] =X ‘ S = O)

— P{ max B — min B < x}.
0<r<l1 0<r<1

Problem 3.4.18. Assuming that N € [0, c0) and A € (0, 00), prove that

) 1, ifN > A,

. —An n _ . _

Jim eTh YT me = 01/20 0N = A
ksnN 0, ifN <A

Show also that

- ( 3 (xn)k)‘/" et if N <A,
n—00 P k! o e—Nln%-{-N’ itN > .

Hint. Let (§,),>1 be any sequence of independent Poisson random variables with
expected value 1, i.e., P{§, = k} = e *A*/k!, k > 0. Convince yourself that

P{é1+...+i~'n SN}:e_M )3 (b

n k!
k<nN

and then use the central limit theorem.
Problem 3.4.19. Prove that

1 n+1

n_—x
- x"e dx—>§ as n — oo,
n:. Jo

and, more generally, that

lim

1 ya/n+1+n+1)
- m/o x"e ™ dx = qj(y), y > 0.

Show also that

n+1 n+ 1)2 n+1)" 1
PRCE N R L e

1+ I 2 .. o Ee as n — oo.

Hint. Use the result from Problem 2.8.80 and the statement in the previous
problem (in the case N = A).
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Problem 3.4.20. Let &,&,,... be any sequence of independent and identically
distributed random variables such that the expected value u = E£; is well defined
and 02 = D < oo. Setting Sy = 0 and S, = & + ... + &, prove that the
sequence of partial maxima M, = max(Sy, Si,...,Sy), n > 0, satisfies the central
limit theorem: if 0 < u < oo, then

hm P{ hdad < x} =®(x), xeR,

o f
where @(x) is the distribution function of the standard normal distribution.

Problem 3.4.21. Let &;,&,,... be any sequence of independent and identically
distributed random variables with E&; = 0 and ng =02.SetS, =& +...+ &,
n > 1, and let {N;,t > 0} be any family of random variables with values in the set

{1,2,...}, such that N, /¢ —P> Aast — 00,0 < A < o0.
Prove the following version of the central limit theorem (due to F. J. Anscombe):
ast — oo one has
P{ Sn_ }—>¢>() and P{ }—>q>()
— <ux X X) .
o/N; «/— f

Hint. For the sake of simplicity set 0 = 1 and let no = |Af]. The expression
S,/ ~/N; can now be written in the form

SN[ - ( Sno + SN[ Sno) no
N Yo o N

Since P {SnO/A/no < x} — @(x) and no/N; —P> 1 ast — oo, it only remains

P
to show that (Sy, — S,,)/ /Mo — 0. For that purpose it is enough to write the
probability P{|Sy, — Sy,| > €4/n0} as the sum

P{|Sn, — Su,| > e+/n0, Ny € [n1,n2]} + P{|Sy, — Sn| > e4/n0, Ny & [n1,n2]},

with ny = [no(1 — &*)| + 1, ny = [no(1 + &*)]. The convergence of the
above probabilities to 0 can be established by using Kolmogorov’s inequality (see
[P §4.2)).

Problem 3.4.22. (On the convergence of moments in the central limit theorem.)
Let &, &, ... be any sequence of independent and identically distributed random
variables with E§; = 0 and E§? = 02 < oco. According to [P §3.3, Theorem 3]
and part (b) of [P §3.4, Theorem 1], one has

S, d
— N,
o/n

where N is a standard normal (.#"(0, 1)) random variable.
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Prove that if E|&,|" < oo, for some 7 > 2, then for any 0 < p < r the following
convergence of moments takes place

p

5 — E|N|”.

n
o /n

i

Hint. Prove that the family of random variables { Gs”n

n > 1} is uniformly
integrable and then use the statement in part (b) of Problem 2.10.54.

Problem 3.4.23. Let (£,),>1 be a sequence of independent and identically dis-
tributed standard normal random variables (i.e., & ~ .47(0,1)) and suppose that
the random variable £ ~ .47(0, 1) is independent from the sequence (£,),>1.

Prove that the limit
S+...+&

NG -

limE
exists and equals 2/ /7.
Hint. Convince yourself that the family of random variables {S,/+/n — &:
n > 1}, where S, = £ + ... + &,, is uniformly integrable.

Problem 3.4.24. Let P and Q be two probability measures on (£2,.%), chosen so
that Q is absolutely continuous with respect to P (Q <« P), and suppose that,
relative to P, X, X, ... is a sequence of independent and identically distributed
random variables with m = EpX;, 0> = Ep(X; —m)?, where Ep means expectation
with respect to P.

According to [ P §3.3, Theorem 3], the central limit theorem holds: as n — oo
one has

P{%Z(Xi—m)fx} — @d(x), X € R,

i=1

1 2
where ®@(x) = ﬁfjw eV /2 dy.
Now consider the measure Q. Even if Q « P, the sequence Xi, X>, ... will

not, in general, represent a sequence of independent random variables relative to Q.
Prove that, nevertheless, the central limit theorem still holds in the following form,
which is due to A. Rényi: as n — 0o one has

Q{%Z(X,- —m) < x} — ®(x), x€R.

i=1

Hint. One has to prove that if f = f(x) is some bounded and continuous
function, then

Eaf(S,) = Epf(N(0,1)),
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where 3‘n = #ﬁ Y (X; —m) and N(0,1) is a standard normal (.4(0, 1))

random variable. For that purpose, consider the Radon—Nikodym density D = %

and the random variables Dy = Ep(D | %), where %, = o(Xy,..., Xk), and
write Eq f(S,) in the following form
Ea/(5,) = Epl(D — Di) f(S)] + Ep[Dic f(S)]-
Then prove that limy sup,, |Ep[(D — Dk)f(g,,)ﬂ = 0and
Ep[Dkf(gn)] — Epf(N) asn — oo, forevery k > 1.

Problem 3.4.25. Let &, &, ... be a sequence of independent and identically dis-
tributed random variables, such that

P{& >x} =P{§ <—x}, xeR, and P{&|>x}=x"2 x>1.

Prove that as n — oo

A\
P <x; > ®x), xe€R,
{\/nlnn_ } (x)

where S, =& + ... +&,.

Remark. This problem shows that, after a suitable normalization, the distribution
of the sums S, may converge to the standard normal distribution even if E&‘lz = 00.

Hint. Consider the random variables £, = & I(|&x| < +/n Inlnn) and convince
yourself that:

() > Pléu # &) — Oasn — oo;
k=1
(i) EE%, ~Innasn — oo;
(iii) by Lindeberg’s Theorem (Theorem 1) one has

1
vnlnn

S S A (0. 1);
k=1

(iv) P{Sn # anénk} — 0asn — oo.

k=1
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3.5 The Central Limit Theorem for Sums of Independent
Random Variables II. Non-classical Conditions

Problem 3.5.1. Prove formula [P §3.5, (5)].
Hint. By using the relations

/xzank(x) < oo and /xzdcpnk(x) < 00,
R R

conclude that the integrals in the left and the right sides of [P §3.5, (5)] are finite
and then use the relation

[oe] ) 12 2
/ (eltx —itx + TX) d(Fnk — q)nk) =

—00
2,2
= lim (e”x —itx + ITX) (Fak (x) = @i (x))

a
a—>00 —a

—it /oo(e"’f — 1 —itx)[Fpyr(x) — @i (x)] dx.

Problem 3.5.2. Verify the relations [P §3.5, (10) and (12)].

Problem 3.5.3. Let N = (NV,);>0 be the renewal process introduced in [P §2.9, 4]
(i.e., N, = Z;O:I 7, <t),T, =04+ 0,, where 01,0, ... is a sequence of
independent and identically distributed positive random variables). Assuming that
= Eo; < o0oand 0 < Doy < oo, prove that the Central Limit Theorem holds:

Ny —tp™!
T4 N, 1,
ti=3Doy

where N (0, 1) is a standard normal random variable.

3.6 Infinitely Divisible and Stable Distributions

Problem 3.6.1. Prove thatif &, i &and§, i n, then & L n.

Problem 3.6.2. Prove that if ¢; and ¢, are two infinitely divisible characteristic
functions, then ¢, - ¢, is also an infinitely divisible characteristic function.

Problem 3.6.3. Let ¢, = ¢,(¢), n > 1, be infinitely divisible characteristic
functions and suppose that there is a characteristic function ¢ = @(¢) for which
one can claim that ¢, (t) — ¢(t), for each ¢t € R. Prove that ¢(¢) must be infinitely
divisible.
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Hint. Use the fact that if ¢, is infinitely divisible, then one can find some
independent and identically distributed random variables &, .. ., &,, such that S, =

d
& + --- + &, has characteristic function ¢, and S, — T, where T is infinitely
divisible.

Problem 3.6.4. Prove that the characteristic function of an infinitely divisible
distribution cannot be equal to O (see also Problem 3.6.12).

Hint. The required statement follows directly from the Kolmogorov—Lévy—
Khinchin formula, but one can give an independent proof by using the following
argument: if ¢(¢) is the characteristic function of some infinitely divisible distri-
bution, then for every n > 1 one can find a characteristic function ¢,(¢), such
that ¢(t) = (@,(t))", and, setting ¥,(t) = |@,(¢)|>, prove that the function
¥(t) = lim, ¥, (¢) must be identically 1.

Problem 3.6.5. Prove that the gamma-distribution is infinitely divisible but is not
stable.

Hint. The proof can be constructed by analogy to the following line of rea-
soning. A random variables £, which is distributed according to the Poisson law
P{¢ = k} = e ¥ /k!, must be infinitely divisible (see Problem 2.8.3). However,
such a random variable does not have a stable distribution. Indeed, assuming that

+& e aé + b, wherea > 0,b € R, and & and &, are two independent copies of

&, argue that it must be thata = 1 and b = 0. This means that & + &, Ca &, which
is not possible.

Problem 3.6.6. Prove that for a stable random variable £ one must have E|£|" < oo,
forall r € (0,@) andall 0 < o < 2.

Hint. By using the Lévy—Khinchin representation of the characteristic function
@(t) of the stable random variable &, conclude that there exists some § > 0, such
that for any ¢ € (0,6) and any « < 2 one has Re p(¢) > 1 — c|¢|*, where ¢ > 0. By
[P §3.3, Lemma 3], for « € (0, §) one has

1 K
Pligl = —} = ",
a a+1

and therefore

cK
o+ 1

o0
nrEET <1+ ) P{EN =} < oo,

n=1

P{EI" = n} <

ifr € (0,0)and 0 < o < 2.

Problem 3.6.7. Prove that if £ is a stable random variable with parameter 0 < o <
1, then its characteristic function ¢(¢) cannot be differentiable at = 0.
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Problem 3.6.8. Give a direct proof of the fact that the function e~¢I'" is a
characteristic functiond > 0and 0 < o« < 2,butnotif d > 0 and o > 2.

Problem 3.6.9. Let (b,),>1 be any sequence of real numbers, chosen so that for all

|t| < 8 and 8 > 0 the limit lim e!"?" exists. Prove that lim |b,| < co.
n n

Hint. The statement can be proved by contradiction. Let lim, b, = +oo0.
Switching, if necessary, to a subsequence, one can claim that b, — oo as n — oo.
Then, setting /(t) = lim, e''? fort € [8, §], one can write for any [a, 8] € [6, §]

) 8
/ Tiw g (A(2) dt = lim/ I g (l‘)eitb” dt = 0.
) noJ—s

By using the suitable sets principle (see [P §2.2]), it is possible to conclude that
ffé 14(t)h(t) dt = 0, for every Borel set A € A([—5, §]). Consequently, one must
have h(t) = O for any ¢ € [—§, §]. At the same time, since |e!’’"| = 1, one must
have |h(t)| = 1, for any ¢ € [—§, §]. This contradiction shows that lim,, |b,| < occ.

Problem 3.6.10. Prove that the binomial, the uniform and the triangular distribu-
tions are not infinitely divisible. (Recall that the triangular distribution on (—1, 1)
has density f(x) = (1 — |x|)I(=1,1)(x).)

Prove the following more general statement: a non-degenerate distribution with
finite support cannot be infinitely divisible.

Problem 3.6.11. Suppose that the distribution function F and its characteristic
function @ admit the representations F = F® x-..x F( (n times) and ¢ = [p™]",
for some distribution functions F and their respective characteristic functions
@™, n > 1. Prove that it is possible to find a (sufficiently “rich”) probability space
(£2, .7, P) and random variables T and (M )k<n,n > 1, defined on that space (T has
distribution F', while n(ln) s 77,(1") are independent and identically distributed with
law F®) and such that T 4 77(1") + -4 n,(,n), n>1.

Problem 3.6.12. Give examples of random variables that are not infinitely divisi-
ble, and yet their characteristic functions never vanish (see Problem 3.6.4).

Problem 3.6.13. Prove that:

(a) The function ¢ = ¢() is a characteristic function of an infinitely divisible
distribution if and only if for every n > 1 one can claim that the n™ root
'/"(t) = e ne(®) (here In stands for the principle value of the logarithmic function)
is a characteristic function.

(b) The product of finitely many characteristic functions associated with in-
finitely divisible distributions is an infinitely divisible characteristic function.

(c) If the characteristic functions ¢,(¢), n > 1, associated with some infinitely
divisible distributions, converge in point-wise sense to the function ¢(¢), which
happens to be characteristic function, then ¢(#) must be the characteristic of some
infinitely divisible distribution.
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Problem 3.6.14. By using the results established in the previous problem and the
fact that

@(t) = exp{A(e’™ — 1) +itB}, A>0, ue R, BeER,

is known to be a characteristic function of an infinitely divisible distribution law (of
Poisson type), prove that the following functions (studied by B. de Finetti) have the
same property:

k

ot) = exp{ S 1)+ itﬂ;]}

J=1

and
o) = exp{itﬂ + /_ (e —1) dG(u)},

where G = G(u) is some bounded and increasing function.

Problem 3.6.15. Let ¢ = ¢(¢) be the characteristic function of some distribution
that has a finite second moment. Prove that ¢ (f) can be a characteristic function of an
infinitely divisible distribution law if and only if it admits the so-called Kolmogorov
representation:
@(1) = expy (1)
with
co 1
Y(t) =ith + / (e —1-— itu)— dGu),
00 u

where » € R and G = G(u) is a non-decreasing and left-continuous function with
G(—00) = 0 and G(oc0) < oo (comp. with de Finetti’s function from the previous
problem).

Problem 3.6.16. Prove that if ¢(¢) is the characteristic function of some infinitely
divisible distribution, then for every A > 0 the function *(¢) is characteristic.

Problem 3.6.17. (On the Kolmogorv—Lévy—Khinchin representation.) Let h =
h(x) be a cutoff function, defined for x € R (i.e, a bounded and continuous function
chosen so that 2(x) = x in some neighborhood of x = 0).

Prove that:

(a) The Kolmogorov-Lévy-Khinchin representation [P §3.6, (2)] can be re-
written in the form

@(t) = exp¥n(1)
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with
. [Zc o it .
Yn(t) =ith — — + ("™ —1—ith(x)) F(dx),
2 —o0
where b = b(h) € R, ¢ > 0 and F(dx) is ameasure on (R, (R)) with F({0}) =0
and [(x*> A1) F(dx) < oo.

(b) For two different cutoff functions /2 and 4’ the coefficients b(h) and b(h’) are
linked through the relation

b(h') = b(h) + /(h’(x) — h(x)) F(dx).
(c) If ¢(t) corresponds to a distribution that has a finite second moment
(comp. with Problem 3.6.15), then [ x? F(dx) < occ.
Problem 3.6.18. Prove that the probability distribution with density
1
f(x) = — eV x>0,
27 x3

is stable for @ = %, B =0and 6 = —1 (see formula [P §3.6, (10)]).

Problem 3.6.19. One says that random variable &,, has generalized Poisson distri-
bution with parameter A({x,,}) > 0, if

MDA (5, })

P{Sm = kxm} = X! s

k=0,1,2,...,

where x,, € R\ {0}.

Let &, ..., &, be n mutually independent random variables that share the above
distribution. Let A = A(dx) denote the measure on R\ {0} which is supported on the
set {x,, :m = 1,...,n}, consisting of n different points and let A({x,,}) denote the
probability mass of the point x,,. The probability distribution of the random variable
T, =& + ...+ &, is known as the compound Poisson distribution.

Prove that the characteristic function ¢z, (#) of such a random variable is
given by:

or, (1) = exp{ /[R\{O}(e"”‘ — 1) A(dx);.

(It is clear from the above formula that the compound Poisson distribution is
infinitely divisible. In conjunction with the Kolmogorov—Lévy—Khinchin formula
[P §3.6, (2)] this illustrates the “generating role” that this distribution plays in the
class of all infinitely divisible distributions. Formally this property can be stated as
follows: every infinitely divisible distribution is a (weak) limit of some sequence of
compound Poisson distributions.)

Problem 3.6.20. On the probability space (£2,.%#,P) consider the observation
scheme consisting of the events AW = (Aux, 1 < k < n),n > 1, chosen so
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that for every n the events A4,, ..., A,, are independent. Let

lim max P(4,;) =0

no 1<k<n

and

lim Y "P(Ay) =4, A >0.
k=1

Prove the “rare events law:” the sequence of random variables £™ = Y} _, I(Aux)
converges in distribution to a random variable ¢ that has Poisson distribution with
parameter A > 0.

Problem 3.6.21. Let X and Y be any two independent random variables, dis-
tributed with Poisson law of parameter A > 0. Find the characteristic function ¢(¢)
of the random variable X — Y which is often referred to as a double-sided Poisson
random variable. Prove that the probability distribution of the random variable X —Y
is the compound Poisson distribution (see Problems 3.6.19 and 2.8.3).

Problem 3.6.22. Let E(”) = (&1, 1 < k < n),n > 1, be an observation series of
random variables, such that for any n the variables &, ..., &,, are independent. Let
Ouk = @nk (¢) denote the characteristic functions of the random variables &,;. Prove
that the following conditions are equivalent:

(a) lim, max; <k <y, P{|&:x| > €} = 0 (limiting, or asymptotic, negligibility of the
series £, n > 1);

(b)lim, maxj<k<n |1 — @ik (t)| = 0 forevery ¢t € R.

Problem 3.6.23. The random variable £ is said to be distributed according to the

(continuous) Pareto law (with parameters p > 0, b > 0), if its density is given by

pb?
xprtl

Jon(x) = I(x = D).

Prove that this distribution is infinitely divisible.
Remark. The discrete Pareto Law is defined in Problem 2.8.85.
Problem 3.6.24. The random variable £ with values in (0, 00) is said to have a

logistic distribution with parameters (i, p), where € R and p > 0, if

1

= —1 T e—(X—M)/P’ X > O

P{§ < x}

Prove that this distribution is infinitely divisible.
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3.7 Metrizability of the Weak Convergence

Problem 3.7.1. Prove that, in the case of the space £ = R, the Lévy—Prokhorov
distance L(P, P) between the distribution laws P and P is not smaller than the
Lévy distance L LF , F ) between the distribution functions F' and F , associated with
the laws P and P (see Problem 3.1.4). By constructing appropriate examples, prove
that the inequality between these two metrics can be strict.

Hint. To prove that L(F, F') < L(P, P), it is enough to show that

L(F,F) =inf{e > 0: P(D) < P(D?) +cand P(D) < P(D®) + ¢
for all sets D of the form (—o0, x], x € R}

and

L(P,P)=inf{e >0: P(D) < P(D?) +eand P(D) < P(D®) +¢
for all closed sets D C R}.

In order to obtain the strict inequality, take P = §; and P = %(8_1 + 81), where §,
is the measure concentrated at the point a:

1, ifaeA,

8.(A) =
) 0, ifadA.

In this case L(F, F) = l and L(P, ﬁ) = l—prove these two identities.

Problem 3.7.2. Prove that formula [P§3.7, (19)] deﬁnes a metric in the space BL.

Hint. To prove that | P — P|| 3. =0= P = P (the remaining properties of
the metric are easy to verify), given any closed set A and any ¢ > 0, consider the
function f(x), defined by formula [P §3.7, (14)]. Since as & | 0 one has

/ fi(x) P(dx) — P(A) and / fL(x) P(dx) — P(A),

then P(A) = ﬁ(A) for every closed set A. Finally, consider the class .# = {A €
HB(E) : P(A) = P(A)} and by using the suitable sets principle and the w-A-
systems from [ P §2.2], conclude that .#Z = A(E).

Problem 3.7.3. Prove the inequalities [ P §3.7, (20), (21) and (22)].
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Problem 3.7.4. Let F = F(x) and G = G(x), x € R, be any two distribution
functions and suppose that P, and Q. are the intersecting points of their graphs
with the graph of the line x + y = c. Prove that the Lévy distance L(F, G) (see
Problem 3.1.4) can be expressed as

P.Q.
—ﬁ ,

where P, Q. is the length of the segment connecting the points P, and Q..

L(F,G) = sup

Problem 3.7.5. Prove that the space of all distribution functions is complete for the
Lévy metric.

Problem 3.7.6. Consider the Kolmogorov distance between the distribution func-
tions F and F', which is given by

K(F.F) = sup|F(x) = F(x)].
and let L(F, F) be the Lévy distance from Problem 3.7.4. Prove that
L(F,F) < K(F,F)
and that, if the distribution function Fis absolutely continuous, then

K(F,F) < (1 + sup |F/(x)|)L(F, 7).

Problem 3.7.7. Let X and X be ‘two random variables defined on one and the same
probability space and let F and F be their respective distribution functions. Prove
that the Lévy distance L(F, F) is subject to the following inequalities:

L(F,F)<d+P{X—-X|>d}, Vd>0,

and

LF,F) < (c + De T (E|X = X[)7, Ve>1.
Problem 3.7.8. By using the results in Problems 3.7.6 and 3.7.7, prove that if X
and X are two random variables defined on one and the same probability space, if
F and F denote their respective distribution functions, and if @ = @(x) stands
for the distribution function of the standard normal law .47 (0, 1), then the following
inequality holds for any o > 0:

X 1
F(X)_(D(C_’) = (1+ «/Zsz) [Sgp

F(x)—¢(§)‘+2(E|X—3(’|2)1/2}.

sup
X
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3.8 The Connection Between Almost Sure Convergence
and Weak Convergence of Probability Measures
(the “Common Probability Space” Method)

Problem 3.8.1. Prove that if E is a separable metric space with metric p(-, -), and
X(w) and Y (w) are any two random elements in £, defined on the probability space
(£2, .7, P), then one can claim that p(X(w), Y (w)) is a real random variable on
(22, %,P).

Hint. Let{z;, z,, ...} be any countable and everywhere dense subset of E. Prove
that for every a > 0

{o:p(X(0).Y(0)) <a} =

=NU ({wip(X(a)),zm) < %} n {wZP(Y(w),zm) <a—%}),

n=1m=1

and, by using [P §2.4, Lemma 1], conclude that p(X(w), Y(w)) must be a .%#-
measurable function on £2.

Problem 3.8.2. Prove, that the function dp(X, Y), as defined in [P §3.8, (2)], is a
metric in the space of random elements in E.

Hint. The statement in the previous problem shows that the set {p(X,Y) < &}
is measurable, and therefore dp (X, Y) is a well-defined random variable. The proof
of the fact that dp(X, Y) actually represents a metric is straight-forward.

Problem 3.8.3. Prove the implication [ P §3.8, (5)].

Problem 3.8.4. Setting A, = {x € E : h(x) is not p-continuous at the point x},
prove that A, € &.

Hint. Let {a,,a,, ...} be any countable and everywhere dense subset of £. In
order to prove that A, € &, it is enough to establish the following representation

o

0o 00
An = U ﬂ An,m,k s

n=1m=1k=1

where the sets

Bijm(ar), if one can find y,z € By/m(ax)
Anmpe = so that |h(y) — h(z)| > 1,

%) otherwise

all belong to &.
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Problem 3.8.5. Suppose that (¢, ) and (§ , 1) are two identically distributed pairs

of random variables, i.e., (£, 1) 4 (é, n), with E|é| < oo. Prove that E(§¢ | ) 4
EE D).

Problem 3.8.6. Let £ and 1 be any two random elements (defined on a sufficiently
rich probability space) which take values in the Borel space (E, &) (see [P §2.7,
Definition 9]). Prove that one can find a measurable function f = f(x, y), defined
on E x [0,1] and taking values in E, and also a random variable «, which is
uniformly distributed in the interval [0, 1], so that the following representation holds
with probability 1

§= /().

Problem 3.8.7. Let &,&,,... be any sequence of independent and identically
distributed random variables with E§; = 0, EEIZ < ooandlet X, = Y j_, &,
n = 1. Prove the following result (known as Skorokhod’s embedding): there is a
probability space ([2 Z, P), on which one can construct a Brownian motion B =
(B ):>0 and a sequence of stopping times T = (Tx)k>o With0 =7 <7} < ..., s0
that

(Xn)nzl i (E?n)nzl

~ d,, .
and E(t, — 1,—1) = Eélz, n > 1. (As usual, the symbol “=" is understood to mean
“identity in distribution”.)

Problem 3.8.8. Let F = F(x) be a distribution function on R and define its inverse
F'u),0<u< 1, by

inf{x : F(x) >u}, u<lI|,

Flw) =
00, u=1.
Prove that:

@) {x; F(x) > u} C{x; F7'(u) < x} C {x; F(x) > u};

(b) F(F~'(w)) = u, FY(F(x)) > x;

(c) if the function F = F(x) is continuous, then F~'(u) = inf{x; F(x)
ul, F7Y(u) = max{x; F(x) = u}, F(F~'(u)) > u, and {x; F(x) > u}
(s F ) < s

(d) inf{x; F(x) > u} = sup{x; F(x) < u}.

v

Remark. In Statistics the function Q(u) = F~'(u) is known as the quantile
function of the distribution F.

Problem 3.8.9. Let F = F(x) be any distribution function and let F~! = F~!(u)
be its inverse.

Prove that if U is any random variable which is uniformly distributed on [0, 1],
then the distribution of the random variable F~'(U) is precisely F,i.e.,

P{F~'(U) < x} = F(x).
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In addition, prove that if the distribution function F = F(x), associated with the
random variable X, happens to be continuous, then the random variable F(X) must
be uniformly distributed in [0, 1].

Remark. If C(u) = P{U < u} is the distribution function of the random
variables U, which is uniformly distributed in [0, 1], then one must have C(F(x)) =
F(x)—see Problem 3.8.12.

Problem 3.8.10. Let F(x, y) be the distribution function of the pair of random
variables (£,7) and let Fi(x) = P{f < x} and Fo(y) = P{n < y} be the
distribution functions of £ and 7. Prove the Fréchet—Hoeffding inequality:

max(Fi(x) + F»(y) — 1,0) < F(x,y) < min(Fi(x), F»(y)), forall x,y € R.

Problem 3.8.11. Let (U, V) be some random vector in [0, 1]> with distribution
function
Clu,v) =P{U <u,V <v},

and suppose that U and V' are both uniformly distributed in [0, 1]. Let F;(x) and
F>(y), x,y € R, be any two continuous distribution functions.
Prove that the function

F(x,y) = C(Fi(x), Fa(y)).  x.y €R, ()

is a bi-variate distribution function with marginal distributions F;(x) and F>(y).

Remark. For a given bi-variate distribution function F(x,y), with marginal
distributions Fj(x) and F»(y), x,y € R, it is interesting to know how to construct
the function C(u, v) so that property () holds. Functions that share this property and
can be written as bi-variate distributions of the form P{U < u, V' < v}, for some
random variables U and V' that take values in [0, 1], were introduced by A. Sklar
in 1959 under the name copula. His work [122] contains existence and uniqueness
results for such functions. The next problem provides an example.

Problem 3.8.12. Consider the bi-variate distribution function
F(x,y) = max(x + y — 1,0),

where 0 < x,y < 1.

Prove that the associated marginal distribution functions, F|(x) and F>(y), give
the uniform distribution on [0, 1].

Show also that for the copula

C(u,v) = max(u+v—1,0), O0<uv<l,

one must have
F(x,y) = C(Fi(x), 2(»)).

Remark. Compare the statement in this problem with the one in Problem 3.8.9.
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Problem 3.8.13. Suppose that the random variables & and &, &, . .. are chosen so
that &, > 0 and Law(§,) — Law(§). Prove that

Eé <limE§,.

Hint. Use [P §3.8, Theorem 1] and [ P §2.6, Theorem 2] (Fatou’s Lemma).

3.9 The Variation Distance Between Probability Measures.
The Kakutani-Hellinger Distance and the Hellinger
Integral. Applications to Absolute Continuity
and Singularity of Probability Measures

Problem 3.9.1. Adopting the notation introduced in [ P §3.9, Lemma 2], set
PAP= Eo(zN2Z),
where z A Z = min(z, 7). Prove that
|P—P|=2(1—P AP)
and conclude that &t (P, Fﬁ) = PAP (for the definition of &t (P, ?) see

[P§3.9,1]).
Hint. Use the relationa A b = %(a +b—la—b|).

Problem 3.9.2. Let P, P,, n > 1, be probability measures on (R, Z#(R)) with
densities (relative to the Lebesgue measure) p(x), p,(x), n > 1, and suppose that
pn(x) = p(x) for Lebesgue-almost every x. Prove that

o0
||P—P,,||:/ |[p(x) — pp(x)|dx -0 asn — oo .
—00

Hint. Consider the inequality
o0
| 1pa - p1ax s/{l )= pld + s

oo {lx[>a}
+ / pa(x) dox,
{lx|>a}
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where a > 0 is chosen so that f{\x\<a} p(x)dx > 1 — ¢ forevery ¢ > 0. By Fatou’s
lemma B

n

1im/ p(x)dx > 1—e.
{lx|<a}

Problem 3.9.3. Let P and P be any two probability measures. The Kullback
information K(P, P), which measures the “divergence” of P from P, is defined as

= JE[m%]. e <P,
K(P,P) = ap
00 otherwise.
Prove that
K(P,P) > =2In(1 - p*(P, P)) = 2p*(P. P),
where p(P, FI;) is the Kakutani—Hellinger distance between the measures P and P.

Hint. The second inequality follows from the relation —In(1 —x) > x,0 < x <
1. To prove the first inequality, show that

—21In(1 — p*(P,P)) = -2 Ep ﬁ
Z

and then conclude from Jensen’s inequality that

—2InEp \/? < K(P,P).
Z

Problem 3.9.4. Prove formulas [P §3.9, (11) and (12)].
Problem 3.9.5. Prove the two inequalities in [P §3.9, (24)].

Hint. With Q = %(P + ?), z= Z—g, and7 = Z;g, setting y = z — 1, one finds
that7 = 2 —z = 1 — y and that [P §3.9, (24)] can be written in the form

2(1+ Eo f(y) =2E¢|y| = \Jea(l = Eg f(¥)) .

where f(y) = (1 + y)%(1 — y)'™%, y € [-1, 1]. By analyzing the functions f'(y)
and f”(y) on the interval (—1, 1), one can prove that:

(a) f = f(y)isconcaveon [—1,1]and f(y) >1—|y[;

B) f() < 1+ f/O)y =Ty y € [-1, 1], with T, = a(1 —a)/4.

Finally, the first inequality can be deduced from (a), while the second one can be
deduced from (b).
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Problem 3.9.6. Let P, P, 0 be probability measures on (R, Z(R)) and let P % Q
and P x Q stand for the respective convolutions (see [ P §2.8, 4]). Show, that

|P*Q—PxQ| <|P-P|

Hint. Use [P §3.9, Lemma 1].

Problem 3.9.7. Prove the relations (30) from [ P §3.9, Example 2].
Hint. By using straight-forward calculation, prove that

H(%;P,};) :exp{ —%g(\/ﬁ—\/i)z}

and then use [P §3.9, Theorems 2 and 3].

Problem 3.9.8. Let £ and 7, be any two random elements on (§2, .%, P) with values
in the measurable space (E, &). Prove that

P e A} —P{ne A} <P(E #n), Aeé.
Hint. Use the relation
[[(Ee€A)—Ine A =1 e A)—1neAEFn.

Problem 3.9.9. The Hellinger integral of order « for the measures P and P is
defined by (see formula [P §3.9, (20)])

H(a; P,P) = / (dP)*(dP)"“.
2

A useful tool in the study of many statistical experiments is what is known as the
Hellinger transformation H («; &), which is defined as follows:

Consider the statistical experiment & = (2,.%; Py, Py, ..., P;), which con-
sists of the measurable space (£2,.%) and the finite family of probability mea-
sures Py, Py, ..., P, defined on that space.

In symbolic form the Hellinger transformation H(o; &) of the experiment & is
defined by the formula:

H(; &) = /Q (dPy)® ... (dPy)*, (%)

where ¢ = (w, . .., o) belongs to the symplex

k
Yr+1 = {OZZ(Olo,...,Olk)ZOl,‘ ZO,ZO{,‘ =1,;.
i=0
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Similarly to the case k = 1, give meaning to the “integral” in (x) (by using
the concept of “dominating measures”) and prove the corresponding analog of
Lemma 3.

Problem 3.9.10. Let (X}, #(X))) denote the simplex

k
X = {x:(xl,...,xk):x,- EO,ZX,' =1y,
i=0

equipped with the associated Borel o-algebra Z(Xy).
Let u = p(dx) be any measure on (X, Z(Xy)), such that (%) < oo and

/ xipudx)y=1, i=1,...,k.
Py

(In the theory of statistical experiments measures, w, with the above properties are
known as standard measures.)

In Mathematical Analysis the Hellinger transformation, H(o; 1), of the mea-
sure  is defined by the formula

H(o; p) = / xit g u(dx),
Py

forall @ € Xy.

Prove the following statements:

(a) If pu; and p, are two standard measures, such that H(e; n1) = H(e; u»), for
all @ € X, then one must have ©; = u».

(b) The sequence of standard measure u, converges weakly to the standard
measure u if and only if H(; ) — H(o; ) asn — oo, forall ¢ € Xy.

Let & = (2, %; Py, Py,..., P;) be some statistical experiment, let Q be some
probability measure that dominates the measures Py, P, ..., P, and let
dPp;
fi=—, i=0,1,... k.
do
Setting

1(A) = 0w : (folw), ..., fi(®)) € A}, A€ B(Zyt1),

prove that u is a standard probability measure on the space (X, %( X)) that shares
the property

H(a; &) = H(a; p).
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Problem 3.9.11. Let& = (2,.% : Py, P1, ..., P¢) be some statistical experiment,

suppose that the measure Py dominates the measures Pj, ..., Pk, and let
dP;
zi=——, [i=1,...,k.
" dPy

In probability theory, the Mellin transformation of the experiment & is defined as a
function of the argument § € A, given by

M(,B;é”):/zf‘ L Pdw) (= B,
2

where .
a={p= g0 =<1 0p <l.
i=1
In mathematical analysis, the Mellin transformation M(; v) of the measure v is
defined somewhat differently. Specifically, if

RY = {x=(x,....x) : x; > 0,i =1,...,k},
and v is a probability measure on (RX_, %([R]f'_)), chosen so that
/ x;v(dx) <1
[Rk
+

a measures v on [Rk with this property is commonly referred to as standard
+ property y
measure), then one sets

M(B:v) = /[Rk XX,

+

where 8 = (B1,..., Br) € Ax.

Prove that:

(a) if v; and v, are any two standard measures for which M(8;v;) = M(B; v2)
forall B € Ag, then vy = vy;

(b) the sequence of standard measures (v,) converges weakly to the standard
measure v if and only if

M(B;v,) = M(B;v), forall B e Ag;
©)

M(B:&) = M(B:v).
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Problem 3.9.12. Prove thatif « = («, ..., ) € Xk4+ and g > 0, then
H(a; &) = M(B;8),

where (B1,...,Br) = (o1, ..., o).
Convince yourself thatif &« = («g, ..., 0x) € Y41, withoy > 0,and L; = Inz;,

i =1,...,k, then
k
H(a; &) = Egexp { ZaiL,'} ,
i=1
i.e., the Hellinger transformation H(«; &) coincides with the Laplace transforma-
tion of the vector (L, ..., L) with respect to the measure P.

Problem 3.9.13. Suppose that P = ||p;;|,] < i,j < N < oo, is a stochastic
matrix (see [ P §1.12]). The variable

N
1
b(p) =3 sup Y | pik — piil

b k=1

is known as the Dobrushin ergodicity coefficient of the matrix P.
Prove that:

(@) D(P) = sup; ; Il pi-—pj-l;
(b) D(P) = 1—inf;; Y g0, (pik A Pjk);
(c)if P and Q are any two stochastic matrices of the same dimension, then

D(PQ) = D(P)D(Q);
(difpu=(y,...,un)and v = (vy,...,vy) are any two distributions, then
[uP" —vP"|| < |l — ] (D(P))".

Problem 3.9.14. Suppose that £ and 7 are two random variables with probability
distributions P and Q. Show the coupling inequality:

PlE=n) <1 51P -0

and compare this relation with the statement in Problem 3.9.8. In particular, if £ and
n are two random variables with densities p(x) and g(x), then

1
Ple=m<1- E/R 1p(0) — 4] dx.

Give examples in which the above inequality turns into equality.
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Problem 3.9.15. Let X = (X,).>0 and ¥ = (¥,)»>0 be any two random se-
quences, defined on some probability space (§2, .%, P). Let 7 be a random moment,
such that X, (w) = Y, (w) for all n > t(w) (the moment t is sometimes referred to
as the coupling time). Letting P, and Q,, denote the probability distributions of the
variables X, and Y,,, prove the coupling inequality:

1
E”Pn — O, <= P{r = nj}.
Problem 3.9.16. Let f = f(x) and g = g(x) be any two probability densities on

(R, (R)). Prove that:
@ / () — ()] dx =2 / (f() — g(x)* dx =2 / (g() — F()* dxs

2
(b) (/ f(x)g(x) dx) < Z/min(f(x),g(x)) dx:
©f 1 f(x) = g(x)ldx < 2K(f.g), where K(f.g) = [ f(x)In L2 dx is

Kullback’s information (see Problem 3.9.3) and the probability distribution Py,
associated with the density f, is assumed to be absolutely continuous with respect
to the distribution P,, associated with the density g;

@ [ min(/ 0. g dx = 56U,

Problem 3.9.17. Suppose that the random vector X = (X}, ..., Xi) is uniformly
distributed inside the set

k
T =$x = (x1,..., %), X; ZO,ZM‘ <l,.

i=1

Prove that the probability density of the random vector X is given by the formula
fx)=k!, x¢eTk.

Problem 3.9.18. Let X and Y be any two random variables with EX? < oo and
EY? < oo, let cov(X,Y) = E(X — EX)(Y — EY), and let F(x,y), Fi(x),
and F,(y) denote, respectively, the distribution functions of the random elements
(X,Y), X,and Y.

Prove the Hoeffding formula:

cov(X,Y) = // (F(x, y) — Fl(x)Fz(y)) dxdy.
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3.10 Contiguity (Proximity) and Full Asymptotic Separation
of Probability Measures

Problem 3.10.1. Let P" = P'x---x P} and P = P” x?" n > 1, where P/
and P % are Gaussian measures with parameters (a;/, 1) and (a 1) Find COHdlthl’lS
for (ak) and (a}) that ensure the relations (P") <1 (P") and (P") < (P").

Hint. Use direct calculation to show that

H P P =ew | - S0 S o -]
k=1

and take into account the relations [ P §3.10, (11) and (12)].

Problem 3.10.2. Let P" = P{' x ---x P! and P = P” - X P” where P/
and P” are probability measures on ([R %’([R)) such that P”(dx) = Ijo1(x) dx
and P #(dx) = Ijg, 1+44,)(x) dx, for some choice of 0 < a, < 1. Prove that
H(a:; P, P}) =1—a, and

(P") < (P") <= (P") < (P") < Timna, =0,
(P"A(P") < limna, = .
n
Problem 3.10.3. Consider the structure (£2,.%,(%,)n>0), Which consists of a

measurable space (§2, %) and a flow of o-algebras (,),>0, chosen so that F# C
F1 C - C F.Set F = o(JF), suppose that P and P are two probability

measures on (§2,.%), and denote by P, = P|.%, and ?n = F13|35n their respective
restrictions to .%,,. Prove that

(P) <1 (P,) < P« P,
(P,) <> (P,) < P ~ P,
(P,) < (P) < PLP

Problem 3.10.4. Consider the probability space (§2,.%,P), in which 2 =
{—1,1}*° is the space of binary sequences w = (w;, ws,...) and the probability

measure P is chosen so that P{w : (@1,...,w,) = (ai,...,a,)} = 27", for every
ai = =x1,i =1,...,n.Givenany n > 1, let ¢,(w) = w,. (In particular, under the
measure P, the sequence ¢ = (g1, ¢&z,...) is a sequence of independent Bernoulli
random variables with P{e, = 1} = P{g, = —1} = %.)

Next, define the sequence S = (S,),>0 according to the recursive rule Sp = 1
and S, = S,—1(1 + p,), where p, = w, + on&n, 0, > 0, w, > 0, — 1. (In the
context of financial mathematics the random variable S, > 0 is usually interpreted

s “the price” of a given security in period n—see [P §7.11].)
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Let P" = P|.%,, where 35,15 o(e1,...,&,). On the probability space (£2, F)
one can define a new measure P in such a way that under P the random variables
€1, &2, . .. are again independent, but also share the property

~ 1 ~ 1 n
Ples =1} = 5(1+b).  Ple,=—1}=5(1-b). where b, = —‘;—.

Prove that the sequence S = (S,),>0 forms a martingale relative to the measure P
(see [P §1.11]and [P §7.1]).
Setting P" = P|.%,, prove that

ey = ][ LAY F0=07]
k=1

Finally, by using [ P §3.10, Theorem 1] conclude that

o0
PH<(P) & Y bl <o
k=1
(In the context of “large” financial markets the previous statement implies that

2
the condition ) 7o, (’;—’;) < oo is necessary and sufficient for the absence of
asymptotic arbitrage—for more details see § 3, Chap. VI, in the book [120].)
Problem 3.10.5. Suppose that, unlike the security-pricing model discussed in the
previous problem, one sets Sy = 1 and S, = e Tt »n > 1, where hy =
Uk + oxek, for some o > 0 and some sequence (&1, &, . ..) of independent and
identically distributed Gaussian (.# (0, 1)) random variables.

With .7, = o(ey,....&,) and P" = P|%,, n > 1, prove that the sequence
(Sn)n>0 forms a martingale (see [P §7.11]) relative to the measure P, which is
defined by P|.%, = P", where dP" = z, dP" with

n n 2

_ Mk Ok 1 MKk | Ok
zn—exp{ ;(Uk + 2)8k+2kz=:l(ak + 2) }

Show also that
~ al—a) = (k. ox\’
H(a;P" P") = - — 4+ —
(« ) exp{ 7 ;(Uk + 2)

and

n 2
PH<P) & Z(ﬁ+o—k) < 0.

o 2
k=1 K
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2
(The condition >} _, (’;—: + %") guarantees the absence of asymptotic arbitrage

in this financial market—see § 3¢, Chap. VI, in the book [120].)

3.11 Rate of Convergence in the Central Limit Theorem

Problem 3.11.1. Prove the inequalities in [P §3.11, (8)].

Problem 3.11.2. Let &,£&,,... be a sequence of independent and identically
distributed random variables with E§, = 0, D& = o2 and E|§|> < oo. The
following non-uniform estimate is well known:

CEfgf 1
odyn (14 |x])?
Prove this result at least in the case of Bernoulli random variables. (The statements

in this problem and in Problems 3.11.5-3.11.7 bellow are discussed, for example,
in the book [94].)

|Fo(x) — @(x)] < forall —oco < x < 00.

Problem 3.11.3. Let (§)r>1 be a sequence of independent and identically dis-
tributed random variables that take two values 1 with equal probability (1/2).
Setting ¢5(t) = Ee'™ = L(e' + e7") and Sx = & + -+ + &, show, following
Laplace, that

1 (7 1
P{S:, =0} = ;/0 @5’(1)dt~ﬁ as n — oo.

Problem 3.11.4. Let (§:)r>1 be a sequence of independent and identically dis-
tributed random variables, taking 2a + 1 integer values O, £1,..., £a, and set
@rar1(t) = Eel'® = H_%(1 +2)%_, costk).

Just as in the previous problem, prove—again, following Laplace—that

17 3
P{Sn=0}=;/0 <p§u+l(z)dz~L as n — 0o,

V2m(a+ Dn

In particular, for a = 1, i.e., in the special case where & takes the values —1,0, 1,
one must have

P{S, = 0} ~ as n — oo.

V3
W
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Problem 3.11.5. Prove that if ¥ = F(x) and G = G(x) are two distribution
functions, associated with two integer-valued random variables, and if f(t) and
g(t) denote their respective characteristic functions, then

At {1

t

sup | F) = Gl = ¢ [

Problem 3.11.6. Prove that if F' and G are two distribution functions, f(¢) and
g(t) are their respective characteristic functions, and L(F, G) is the Lévy distance
between F and G (see Problem 3.1.4), then for every 7" > 2 one must have

T

L(F,G)<—/ dt+2
T Jo

Problem 3.11.7. Let F,(x) be the distribution function of the normalized sum
# Y, & of some finite collection of independent and identically distributed

random variables, such that E§; = 0, EE? = 0% > 0 and E|&|* = B3 < oo. Setting
— ﬂz
75w -o(*27)
]

p = 5, prove that
p
3.12 Rate of Convergence in the Poisson Limit Theorem

< =

NS

" (a.0)

Problem 3.12.1. Prove that with A; = — In(1— py) the variation distance || B(px)—
IT(Ay)| satisfies the relation

1B(pe) = T = 2(1 —e™ = Age™) (< A7)

and, therefore, || B — IT|| < >} _; A7
Hint. The inequality || B(pr) — IT(Ar)] < Ai follows from the formula

IB(pr) — Tl =|(1 = pr) — e | + | px — Ake |+
he o A A A
—Ak Mk =M —Ak
+e Z_; o= 2(1—e Are k)
and the fact that 2(1 — e™ — xe™) < x2, for x > 0.

Problem 3.12.2. Prove the relations [P §3.12, (9) and (10)].
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Problem 3.12.3. Let &;,...,&, be independent Bernoulli random variables that
take the values 1 and O with probabilities P{&, = 1} = p, P{& = 0} = 1 — px,

1 <k <n.Givenany0 <t <land A > 0, set§ = 0,

Lnt]
Sult) = )&,
k=0

k ,—At
PO = PLS,(0) = k). melr) = % k=0.1.2.....
and
|nt]
A0 =) pr (=ES,(0).
k=0

Prove that the probabilities Pk(n) (t) and 7y (¢) satisfy the following relations:
t
PO =1- [ PP da,
0

P (1) = - /0 f [P (s—) — P (s—)] dAn(s), k=1,

and

o) = /0 70(s—) d(As),

m0) = [ [r6s-) = ma )] dGs). k=1,

()

(k)

Problem 3.12.4. By using the relations () and () in the previous problem, prove

that

o0

Y P @0) =m0 < 2/0 PP (s—) — m(s—)| d(As)
k=0

k=0
+(2+44,0)) [max |A,(s) — As|.
<s<t

(k)

Problem 3.12.5. By using the Gronwall-Bellman inequality (see Problem 2.6.51)

and the notation adopted in Problem 3.12.3, conclude from () that

Y|P (0) = me(0)] < e+ 2+ 44,(0) max |4, (s) = As|.
k=0 -
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Then conclude from the last relation that

Lns)

z{:[ﬁk—-ks
k=0

where the min is taken with respect to all permutations i = (iy,...,i,) of the
numbers (1,...,n) and p;, = 0.
By using the above inequality, prove thatif Y, _, px = A then

)

I o<s<l1

Z |P{S,,(1) =k} — nk(1)| < (2 + 4Zpk)eu min sup
k=0 k=1

Lns]

Zpik —As

k=0

n k,—A

-

=1

< C(A)min sup

Ioo<s<l

< C(4) max pg,
k=0 1<k=<n

where C(1) = (2 + 41)e?*.

3.13 The Fundamental Theorems of Mathematical Statistics

Problem 3.13.1. Prove formula [P §3.13, (18)].

Problem 3.13.2. By using the notation adopted in [P §3.13, 4], prove that the
convergence P V) Ny (in (D, 2, p)) implies the convergence f(X ™)) i) f(X).
Problem 3.13.3. Verify the implication [P §3.13, (22)].

Problem 3.13.4. Let &,& ... and 7n,712,... be two sequences of independent
and identically distributed random variables with continuous distribution functions,
respectively, F = F(x) and G = G(x). Consider the empirical distribution
functions

N N
Fy(x;0) = % Z I(E(w) <x) and Gy(x;w) = % Z (i (®) < x)
k=1 k=1

and set
Dy y(w) = sup |Fy(x;0) — G (x; w)]

and
DJJ\?,M(O)) = sup(Fn(x; ) — Gy (x; w)).

In the case of two samples, of the type described above, it is well known that

{ e y} — K(). ¥ >0, (%)

where K = K(y) denotes the Kolmogorov distribution (see [P §3.13, 5]).
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By following the ideas on which the proof of [ P §3.13, (25)] is based, sketch the
main steps in the proof of () and the proof of [P §3.13, (27) and (28)].

Problem 3.13.5. Consider the “omega-square statistics”

o0
i) = [ IFy(xio) - FOR dF e, (%)
—00
associated with the continuous distribution function F = F(x). Prove that,

similarly to the statistics Dy (w) and va' (w), the distribution of the statistics @3 (w)
is one and the same for all continuous distribution functions F' = F(x). Show also
that

1 4N -3
Problem 3.13.6. Let &;,&,,... be a sequence of independent and identically dis-
tributed random variables, chosen so that E§; = 0 and D§; = 1. Setting

s ts) (s ).

<n
prove that
e@n d .
= max |B; —tB;| — min | B; — tBy|
S {e=k/nk=0,1,...n} {t=k/n:k=0.1,...n}
£ max B — B?

= p min P
{t=k/n:k=0.1....n} {r=k/n:k=0.1....n}

where B = (B;),< is a Brownian motion, B®° = (B),<; is a Brownian bridge and,

d . e
as usual, “=" stands for “identity in distribution.”
Show also that

(Comp. with Problem 2.13.48.)

Problem 3.13.7. Let F = F(x) and G = G(x) be any two distribution functions,
let F7(¢) = inf{x : F(x) >t} and G~'(¢) = inf{x : G(x) > t}, let § stand for
the space of all distribution functions F with ffzo x2dF(x) < oo, and let

1 1/2
d>»(F,G) = (/O |F~1(t) —G—l(r)|2dz) ., F,Ge%.

(a) Prove that the function d, = d,(F, G), which is known as the Wasserstein
metric, is indeed a metric and the space §, is complete for the metric d5.
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(b) Let &,...,&, be independent and identically distributed random _variables,
which share one and the same distribution function F € §,, and let F, be the
empirical distribution function associated with the sample &, .. ., &,. Prove that one

has (P-a.e.) ~
dr(F,F,) — 0 as n— oo.

(c) Prove that for any F, G € §, the following (coupling-type) relation is in force
d>(F,G) = infE(§ —n)?,

where the inf is taken over all possible pairs of random variables (£, 1), chosen so
that £ has distribution function F € §, and 5 has distribution function G € 3J,.

Problem 3.13.8. Let §; stand for the space of all distribution functions F with
JZ00 1x] dF(x) < o0 and let

1
dl(F,G)z/ |[F7'(t) -G~ '(t)|dt, F.G € 3.
0

(a) Prove that the function d = d;(F, G), which is known as the Dobrushin
metric, is indeed a metric and the space §; is complete for the metric d;.

(b) Prove thatif F, F|, F>, ... € §1,thend,(F, F,,) — 0asn — oo if and only if
F, = Fand [ |x|dF,(x) — [ |x|dF(x) (the symbol “=" stands for “converges
essentially” —see [P §3.1]).

(c) Prove that for any F, G € § the following (coupling-type) relation is in force

di(F,G) =infE|§ — 1],

where the infimum is taken over all possible pairs of random variables (£, 1), chosen
so that & has distribution function F' € § and 7 has distribution function G € §.

(d) Let &,,...,&, be independent and identically distributed random variables,
which share one and the same distribution function F' € §; and let F » 1S the
empirical distribution function associated with the sample &, .. ., &,. Prove that one
has (P-a.e.)

di(F, I?,,) — 0 as n — oo.

Problem 3.13.9. Let F = F(x), x € R, be the distribution function of some
random variable X andlet F~' = F~!(u), u € [0, 1], be the inverse of F, as defined
in Problem 3.8.8. Given any 0 < p < 1, the quantity x, = F~'(p) is known
as the p-quantile of the random variable X, or, equivalently, of the distribution
function F = F(x). (The quantity F~'(1/2) is often referred as the “median,”
while F~'(1/4) and F~'(3/4) are commonly referred to, respectively, as the “lower
quantile” and the “upper quantile”.)

Give the conditions under which the p-quantile x, can be characterized as the
unique root of the equation F(x) = p.
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Problem 3.13.10. Let X;,...,X,,... be independent and identically distributed
random variables, which share one and the same distribution function F = F(x),
and let

Fo(x) = Fy(xio) = 1Y I(X (@) < x)
k=1

be the empirical distribution function constructed from the sample X, ..., X,, (see
formula [P §3.13, (1)]).

Prove that if X (l”) R X ,(1”) are the ordered statistics constructed from the
observations X1, ..., X, (in Problems 1.12.8 and 2.8.19 these statistics are denoted
by X 1(") ..... X"y, then the empirical distribution function F,, = F,(x) admits the
following representation:

0, ifx<x\,
F,(x)=1k/n, if)?]((n)fx<)?]((n_il, k=1,....,.n—1,
1, ifx> X",

Problem 3.13.11. Let everything be as in the previous problem, let x, be the p-
quantile of the distribution function F = F(x) and let % ,(n) = I?,jl (p) be the

p-quantile of the distribution F n = ﬁn (x). Prove that if », is the unique value with
the property F(x,—) < p < F(x,), then as n — oo one has

%p(n) — x, (P-a.e.).

Hint. Notice that x ,(n) = X ?—ZL 1 and convince yourself that for every ¢ > 0 one
has

P{tim ¥{1, > 2, — o) = P R{; <y 48 = 1.

where, just as before, [x] stands for the smallest integer that is greater than or equal
to x.

Problem 3.13.12. Let X, X5, ... be independent and identically distributed ran-
dom variables that share one and the same continuous distribution function F =
F(x). In addition, suppose that the following conditions hold: for any given 0 <
p < 1 the equation F(x) = p has unique solution x,; the derivative F’(x) exists

and is continuous at the point x = X, and, furthermore, F ! (p) > 0. Let X (inv ]
denote the p-quantile in the sample.
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Prove that as n — oo the random variables \/ﬁ(f (F’;iﬂ — xp,) converge in
distribution to a Gaussian random variable N that has zero mean and dispersion

p(1 = p)(F'(xp)), ie.,

S(n) law
\/E(Xrnp] — }f],) — N.
Hint. Suppose that the random variables &, ..., &, are independent and uni-
formly distributed in the interval [0, 1], and let Aﬁ") e ,A,(ll) denote the associated

ordered statistics. In order to prove the required statement, notice first that the
variables X (’ZD —x, and F _1@\(2) ) — F~'(p) coincide in distribution, and then
use the statement in [P §3.13, Lemma 2] and the Central Limit Theorem in terms
of Lindeberg’s conditions (see [ P §3.4, Theorem 1]).



Chapter 4
Sequences and Sums of Independent Random
Variables

4.1 0-1Laws

Problem 4.1.1. Prove the Corollary to Theorem 1 in [P §4.1].
Hint. Use the fact that the distribution function of the variable n takes only the
values 0 and 1.

Problem 4.1.2. Prove that if (§,),>; is some sequence of independent random
variables, then the random variables Hgn and lim§&, are degenerate (i.e., have
vanishing dispersion).

Hint. Show first that Esn and lim§, are 2 -measurable, where 2~ is the
associated tail o-algebra

Problem 4.1.3. Let (§,),>1 be any sequence of independent random variables,
let S, = & + ... + &, and suppose that the constants b, are chosen so that
0 < b, 1 co. Prove that the random variables lim i—; and lim g—: are degenerate (i.e.,
have vanishing dispersion).

Hint. Fix some integer N in the set {1,2, ...} and set

T Oa ana
! S, — Sy, n>N.

By using the property lim, l‘j—;’ = lim, ‘Z—: conclude that the variable lim,, l‘j—;’ must
be measurable for ﬂ;oz ~ Zn and, therefore, since N is arbitrarily chosen, must be
measurable also for 2.

Problem4.14. Let S, = & + ...+ &, n > 1, and Z(S) = (.ZF>(S),
FX(S) = o{w: Sy, Sp+1, ...}. Prove that all events in the tail o-algebra 2°(S)
are trivial.

Problem 4.1.5. Let (§,),>1 be any sequence of random variables. Prove that
{lim§, > ¢} 2 lim{§, > ¢} for every constant c.

A.N. Shiryaev, Problems in Probability, Problem Books in Mathematics, 233
DOI 10.1007/978-1-4614-3688-1_4,
© Springer Science+Business Media New York 2012
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Hint. It is enough to notice that

lim{§, > ¢} = {w : &(w) > ¢ 0.}
Problem 4.1.6. Give examples of tail events A (i.e., events in the o-algebra 2~ =
ﬂ;ozl F2°, where #° = 0(&,. 141, . . .), for some sequence of random variables
(&1)n>1) that have the property 0 < P(A4) < 1.

Problem 4.1.7. Let &,&,,... be any sequence of independent random variables
with E§, = 0 and Eg,f = 1, n > 1, for which the central limit theorem holds, i.e.,
P{S.//n < x} - ®(x), x € R, where S, = & + ... + &,). Prove that

Iim n7'%S, = 400 (P-a.e.).
n—>o00

In particular, this property must hold when &1, &, . . . are independent and identically
distributed with E§; = 0 and E&} = 1.

Problem 4.1.8. Let &;,&,,... be any sequence of independent and identically
distributed random variables with E|&;| > 0. Prove that

D&
k=1

=400 (P-a.e.).

lim
n—o00

Problem 4.1.9. Let £;,&,... be any sequence of independent and identically
distributed random variables with E§; = O and E|&;| > Oandlet S, = & +...+&,.
Prove that (P-a.e.)

lim n_l/zS,, = +o0o0 and lim n_l/zSn = —00.
n—o0 n—>oo

(Comp. with the statements in Theorem 2 and Problem 4.1.7.)

Problem 4.1.10. Let .%,.%,, ... be any sequence of independent o-algebras and
let9 = N2, 0( Ujsn Z. j). Prove that every set G € ¥ satisfies the “zero-one”
law: P(G) is either O or 1.

Problem 4.1.11. Let A;, A, ... be some sequence of independent rand_om events,
chosen so that P(4,) < 1,n = 1,and P ({J;2, 4,) = 1. Show that P(lim 4,,)) = 1.

Problem 4.1.12. Let A;, Ay, ... be any sequence of independent random events
and let p, = P(4,), n > 1. The “zero-one” law implies that the probabilities
P(lim A4,) and P(lim 4,)) must equal either zero or one. Give conditions, expressed
in terms of the probabilities p,, n > 1, which guarantee that: (a) P(lim 4,) = 0;
(b) P(lim 4,)) = 1; (¢) P(lim 4,)) = 0; and (d) P(lim 4,,) = 1.

Problem 4.1.13. Let &, &,, ... be any sequence of non-degenerate and identically
distributed random variables and let S, = & + ... + §,. Prove that:
(a) P{S, € Ai.o.} = 0or 1 for every Borel set A € Z(R).
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_(b) Only the following two relations are possible: either lim S, = oo (P-a.e.), or
lim S, = —oo (P-a.e.); furthermore,

1

P{limS, = oo} =1, if Y —P{S, >0} =ooc,
n
n=1

o0
1
P{limS, = —co} =1, if Y —P{S, >0} <oo.
n

n=1

(c) If the distribution of the variables &, is symmetric, then limS, = oo and
lim S, = —oo (P-a.e.).

Problem 4.1.14. According to the corollary to [ P §4.1, Theorem 1], every random
variable 7, which is measurable for the fail o-algebra 2", associated with some
sequence of independent (say, relative to some measure P) random variables
£1,&, ..., must be constant P-a.e., i.e., P{n = Cp} = 1, for some constant Cp.
Let Q be another probability measure, relative to which the variables &1, &, . .. are
also independent. Then it must be the case that Q{n = Cq} = 1, for some constant
Cq. Can one claim that the constant Cq must coincide with the constant Cp?

Problem 4.1.15. LetS,, = & +...4+&,,m > 1, where &, &, ... is some sequence
of independent Bernoulli random variables, such that P{§; = 1} = P{§ = —1} =
1/2,i > 1.Let oy = inf{n > 1 : S, = 0}, with the understanding that oy = oo
if S, # 0 for all n > 1. Prove that the random walk (S, ) >0, which starts from 0
(So = 0), is recurrent, in that P{oy < oo} = 1. By using this property argue that
P{S, =01i.0.} = 1.

Hint. Use the result established in Problem 1.5.7, according to which

1 2m
P{S|...Su, #0} = (5) Cy,, ., foreverym > 1.

Problem 4.1.16. Let &;,&,,... be any sequence of independent and identically
distributed random variables with E|&;| < oco. Assuming that E§; = 0 and setting
S, =& + ...+ &, n> 1, prove that one has (P-a.e.)

lim |S,| <oo.
n—o00

Problem 4.1.17. Let X = (X, X»,...) be any infinite sequence of exchangeable
random variables (for the definition of “exchangeable,” see Problem 2.5.4), let
Zn = 0(Xy, Xpg1....) and let 27 = (), 2, be the “tail” o-algebra, associated
with the sequence X . Prove that for every bounded Borel function g = g(x) one
must have (P-a.e.)

Elg(X1) | 2] = E[g(X) | Z2].
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Show also that the random variables X, X,,... are conditionally independent
relative to the “tail” o-algebra 2.

Problem 4.1.18. Let (X,..., Xy) be any Gaussian vector of exchangeable ran-
dom variables. Prove that there is a vector (g,...,&y), of independent standard
normal random variables (g; ~ .47(0, 1)), for which one can write

N
X, lga—i—ben—}—cZe,-, 1<n<N,

i=1
for some choice of the constants a, b and c.

Problem 4.1.19. Let (X, X3, ...) be any infinite Gaussian sequence of exchange-
able random variables. Prove that one can find a sequence (s,¢j,...), that
consists of independent and identically distributed Gaussian random variables &; ~
A(0,1),i > 0, so that

X faw a—+bey+ce,, n=>1.

Problem 4.1.20. Let £, &, ... be any sequence of independent random variables
with exponential distribution P{§, > x} = e¢™, x > 0. Consider the event A, =
{& = h(n)}, n > 1, where h(n) is any of the functions (¢ Inn), (Inn + ¢ Inlnn), or
(Inn 4+ Inlnn + cInlnlnn).
Prove that
P4, i0.) = Tl
1, ifc <1.

Hint. Use the Borel-Cantelli lemma.

Problem 4.1.21. Let &,&,,... be any sequence of independent and identically
distributed Bernoulli random variables with P{§, = 1} = P{§, = 0} = 1/2,
n > 1. Consider the the events

A, = {$n+l

lv-'-v%.n-l-[logzlogzn]:l}v n>4.

(a) Prove that P(4, i.0.) = 1.
Hint. Consider first the sequence the events Aym, m > 2.

(b) Calculate the probability P(B, i.0. ), where

Bﬂ = {gn+l = la---’Sn+[log2n] = 1}, n > 2.

Problem 4.1.22. Let A}, A, ... be some sequence of independent events and let

Bﬁx ==

o
N — <
a),h;nnkg_llAk_x§, xeR.
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Prove that for every x € R one has

P(B<x) =0or 1.

4.2 Convergence of Series of Random Variables

Problem 4.2.1. Let &,&;,... be any sequence of independent random variables
andlet S, = & + ... + &,. By using the “three series theorem” prove that:

(a) If Y &2 < oo (P-a.e.), then the series Y &, converges with Probability 1 if
and only if the series E&; I(|&;| < 1) converges.

(b) If the series Y &, converges (P-a.e.), then Y £2 < oo (P-a.e.), if and only if

> ElEl (& < 1))? < oo.

Problem 4.2.2. Let £, &,,... be any sequence of independent random variables.
Prove that ) €2 < oo (P-a.e.), if and only if

[ &
S| i <o

Hint. Use the “three series theorem” and notice that

2
25[1352}@0 — [ZEéil(lénlsl)mo ZP{|§,,|>1}<OO]

Problem 4.2.3. Let £,,&,,... be any sequence of independent random variables.
Prove that the following three conditions are equivalent:

1. The series Y &, converges with Probability 1.

2. Series Y _ &, converges in probability.

3. Series Y _ &, converges in distribution.

Hint. Consider proving the implications (1) = (3) = (2) = (1). The first
implication follows from [P §2.10, Theorem 2]. The implication (3) = (2) can be
proved by contradiction by using the Prokhorov Theorem. To prove the implication
(2) = (1), show first that the following inequality holds for arbitrary m < n and
C>0:

P{ max [S — Sp| > 2c} <2 max P{|S, —Si| > C}.

m<k=<n

If the series Y _ &, converges in probability, then for every ¢ > 0 one can find an
integerm € N = {1,2,...}, so that the following inequality holds for every n > m:
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max P{| S, — Sk| > ¢} < e

Finally, conclude from the last relation that the series Y &, converges with
Probability 1.

Problem 4.2.4. By providing appropriate examples, prove that, in general,
in [P §4.2, Theorems 1 and 2] one cannot remove the uniform boundedness
requirement, i.e., the condition: for every given n > 1 one has P{|§,| < c¢,} = 1 for
some appropriate constant ¢, > 0.

Hint. Consider the sequence of independent random variables &}, &,, ... chosen
so that

Ple =0} =1— 5. Ple,=n=Ple == n>1.
n n
Problem 4.2.5. Let £,...,§, be independent and identically distributed random
variables with E§; = 0 and E§? < oo, and let Sy = & + ... + &, k < n.
Prove the following one-sided analog (due to A. V. Marshall) of the Kolmogorov’s
inequality [P §4.2, (2)]:

ES?
Plmes, Sz = og 02

Problem 4.2.6. Let &, &, ... be any sequence of random variables. Prove that if
> us1El&:] < 0o, then the series ), - &, converges absolutely with Probability 1.

Problem 4.2.7. Let £, £,,... be any sequence of independent and symmetrically
distributed random variables. Prove that

E|:(Z gn)z A 1} < Z E(E2 A ).

Problem 4.2.8. Let &,&,,... be any sequence of independent random variables
with finite second moments. Prove that the series Y_ £, converges in L? if and only
if the series ) E&, and ) Dg, both converge.

Problem 4.2.9. Let &,&,,... be any sequence of independent random variables
and suppose that the series Y &, converges (P-a.e). Prove that the value of the
sum Y &, does not depend on the order of summation (P-a.e.) if and only if

ZIE(gl‘lv |§n| = 1)| < 0.

Problem 4.2.10. Let £, &, ... be any sequence of independent random variables
with EE, = 0, n > 1, and suppose that
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S EE (] < 1) + [l 1(E] > D] < oo.

n=1

Prove that the series Y .- | &, converges (P-a.e.).

Problem 4.2.11. Let A, A>,... be any sequence of independent events
with P(4,) > 0,n > 1, and suppose that Y - | P(4,) = oo. Show that

ZH:I(Aj)/Zn:P(AJ»)el as n — oo (P-a.e.).
j=1

j=1

Problem 4.2.12. Let £, &, ... be any sequence of independent random variables

with mean values E£, and dispersions o2, chosen so that imE§, = ¢ and
n

o 2 _
Y e 0, > = oo. Prove that

i%/i%_}c as n — oo (P-a.e.).
, : f

Problem 4.2.13. Let &,&,,... be any sequence of independent and identically
exponentially distributed random variables, so that P{§; > x} = et x> 0.

Prove that if the positive numbers a,, n > 1, are chosen so that the series
> .= an converges, then the series Y, ., a,&, converges with Probability 1 and
also in L”-sense for every p > 1. -

Problem 4.2.14. Let (71,75,...) be the moments of jumps for some Poisson

process (see [P §7.10]) and let @ € (0,1). Prove that the series Y20, 7, '/*
converges with Probability 1.

Problem 4.2.15. Let &, &, ... be any sequence of independent random variables,
chosen so that &, is uniformly distributed in [—1, 1], n > 1. Prove that (P-a.e.):

() the series ), &, converges;

(b)Y, [&] = +oo.

Hint. Use the two-series and three-series theorems of A. Khinchin and A. N. Kol-
mogorov ([P §4.2, Theorem 2] and [ P §4.2, Theorem 3]).

Problem 4.2.16. The three-series theorem ([P §4.2, Theorem 3]) guarantees that,
if £,&,... is any sequence of independent random variables, then the series
Zn>1 &, converges (P-a.e.), if one can find a constant ¢ > 0, for which the
following three series happen converge (with £¢ = &,1(|£,] < ¢)):

Do BE D DEL D PG>l
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By using appropriate examples, prove that if any one of the above series fails to
converge for some ¢ > 0, then the convergence (P-a.e.) of the series ) . & may
not hold.

Problem 4.2.17. Let &, &, ... be any sequence of random variables, chosen so
that Y 2, E|&|" < oo, for some r > 0. Prove that §, — 0 as n — oo with
Probability 1.

Problem 4.2.18. Let &1, &, ... be any sequence of independent Bernoulli random
variables with P{&, = 1} = P{& = —1} = %, k > 1. Prove that the random

variable Y 72 i—’,ﬁ is well defined (P-a.e.) and is uniformly distributed in [—1, 1].

Problem 4.2.19. Let &, &,, ... be any sequence of independent and symmetrically
distributed random variables. Prove that the following conditions are equivalent:

1. The series Y _ &, converges with Probability 1.
2.3 &2 < 0o, P-ace.
3. E(E2 A1) < oo

Problem 4.2.20. Let ¢ be any random variable and let £ denote its symmetrization,
ie., £ = £ — &, where £ is independent of £ and has the same distribution as £.
(We suppose that the probability space is sufficiently rich to support both & and £.)
Let © = (&) denote the median of the random variable £, defined by max(P{¢ >
uh P{E <) < % (comp. with Problem 1.4.23). Prove that for every a > 0 one

Pile — ul > a} < 2P(E| > a} < 4P {j&] > 3.

Problem 4.2.21. Let £, &, ... be any sequence of independent random variables
with
P{é-n:l}:Z_na P{gn:()}zl_z_n‘

Prove that the series Y ., &, converges with Probability 1 and the following
relations hold:

P{ ién = 0} = l°_°[(1 -2 >0
n=1 n=1
and
| 3o of -3 T2
n=1 n=1 n=1

Problem 4.2.22. Suppose that &}, &,, ... is some sequence of independent random
variables and let S,, = & + ...&,, m > 1. Prove Etemadi’s inequality: for every
& > 0 and every integer n > 1 one has
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P{ max |Sp| > 48} <4 max P{|S,| > &).
1<m=<n

1<m=<n

(This inequality may be used in the proof of the implication (2) = (1) in
Problem 4.2.3.)

Problem 4.2.23. Let &,...,&, be independent random variables with E& = 0,
chosen so that for any given &7 > 0 one has Ee’% < oo, k = 1,...,n. Setting
St =& + ...+ &, 1 < k < n, prove the exponential analog of Kolomogorov
inequality: for every & > 0 one has

P{ max Sy > 8} < e heEehSH
1<k<n

Hint. Just as in the proof of the (usual) Kolomogorov inequality, one must
introduce the sets A = {max|<x<, Sx > e}and Ay ={S; <&, 1 <i <k—1,8 >
e}, 1 <k < n, and, by using Jensen’s inequality, establish the following relations:

n
EeS' > EeMSip, = Z EeSily, > ... > e"P(A).
k=1

Problem 4.2.24. Let Y be a random variable and let (Y,),>1 be a sequence random

. d d T
variables, such thatY,, — Y asn — oo (“—" means convergence in distribution). In
addition, suppose that {N,;¢ > 0} is some family of positive integer-valued random

. . . P
variables, which are independent of (Y,),>1, and are such that N; — oo as t — oo.

d
Prove that Yy, — Y ast — oo.
Hint. Use the method of characteristic functions.

Problem 4.2.25. Let Y be a random variable, let (Y,),>1 be some sequence of
random variables, chosen so that

Y,—>Y a n— oo(P-ae),

and let {N,,t > 0} be some family of positive integer-valued random variables.
(Unlike in Problem 4.2.24, the independence between (¥, ),>1 and {N;,t > 0} is no
longer assumed.)

Prove the following properties:

(@) If N; - oo (P-a.e.), then Yy, - Y ast — oo P-a.e.

(b) If N; - N (P-a.e.), then Yy, — Yy ast — oo, P-a.e.

P P
(©)If Ny = oo, thenYy, — Y ast — oo.
Hint. For the proof of (c), use the fact that a sequence that converges in
probability must contain a sub-sequence that converges almost surely.
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Problem 4.2.26. Let £, &, ... be any sequence of independent Bernoulli random
variables with P{§, = +1} = 1/2, n > 1. Prove that the random variable X =

> % is well defined and its distribution function admits a probability density.

Problem 4.2.27. Let£,&,, ... be some sequence of independent Bernoulli random
variables with P{§, = 0} = P{§, = 1} = 1/2,n > 1. Leta, > 0, b, > O,
da, +b, =1,n > 1, and let

X, = 2asp!~5n,

Prove that the following statements are equivalent:

1. ]_[;oz | X, converges almost surely (i.e., limy ]_[f:':l X, exists and does not
vanish almost surely);

2.T152,(2 — X,,) converges almost surely;

3. [152, anby converges.

Hint. To prove that (3) = (1), consider the quantities E1n X,, and D1n X,, and
use the Three-Series Theorem.

Problem 4.2.28. Let &,&,,... be any sequence of independent and identically

distributed random variables with (Cauchy) density f(x) = m, x € R. Prove

. . P
that there is no constant m for which the property % >, & — m can hold.

Problem 4.2.29. Let &,&,,... be any sequence of independent and identically
distributed random variables with E§; = u and D§; < co. Prove that

1

P
rob Z §& - as n— oo,

1<i<j<n

where, as usual, an stands for the number of combinations n choose 2 (= n(n —
1)/2).

Problem 4.2.30. Let &, &;, ... be any sequence of independent Bernoulli random
variables with P{§, = 0} = P{§, = 1} = 1/2,n > 1. Given any n > 1, let
Z, denote the length of the maximal block inside the set of values &,, ..., §,, that
contains only 1’s. Prove that

V4
lim——= =1 (P-a.e.).
n Inn

Hint. Prove that with Probability 1 lim,, Z,/Inn > 1 and lim, Z,/Inn < 1.

Problem 4.2.31. Let &, £, ... be any sequence of independent Bernoulli random
variables with P{§, = 1} = p, and P{§, =0} =1—p,,n > 1.

(a) Prove that if Z]fo: | PkPrk+1 < 0o, then the series Z]fo: 1 Ex€r 1 converges
with Probability 1.
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(b) Prove the Persi Diaconis Theorem: if p, = 1/n for any n > 1, then the
random variable S = Y > | £,&,+1 has Poisson distribution of parameter A = 1.

4.3 The Strong Law of Large Numbers

Problem 4.3.1. Prove that EE? < oo if and only if Y o2, nP{|&| > n} < oo.
Hint. Prove that

Y nP{lg] > n} <EE* <144 nP{l§] > n}.

n=1 n=1

Problem 4.3.2. Assuming that &,&,,... is some sequence of independent and
identically distributed random variables, prove the Marcinkiewicz—Zygmund strong

law of large numbers: if E|&|* < oo, for some 0 < @ < 1, then n‘f’;u — 0 (P-a.e.),

and if E|&,|# < oo for some 1 < B < 2, then S”n_l’}fs‘ — 0 (P-a.e.).

Problem 4.3.3. Let &,&,... be any sequence of independent and identically
distributed random variables with E|§;| = oco. Prove that the following relation
holds for any sequence of real numbers (a,),>1:

— 1S
lim‘—n—an =o0 (P-a.e.).
nln

Problem 4.3.4. Can one claim that all rational numbers in the interval [0, 1) are
normal, in the context of Example 2 in [P §4.3, 4]?

Problem 4.3.5. Consider the decimal expansions @ = 0.ww; ... of the num-
bers w € [0, 1).

(a) Formulate the decimal-expansions analog of the strong law of large numbers,
formulated in [ P §4.3, 4] for binary expansions.

(b) In terms of decimal expansions, are the rational numbers normal, in the sense
that % Yo [(Ek(w) =1i) — 11—0 (P-a.e.)asn — oo, foranyi =0,1,...,9?

(c) Prove the Champernowne’s proposition: the number

w = 0.123456789101112...,
where the (decimal) expansion consists of all positive integers (written as decimals)

arranged in an increasing order, is normal, as a decimal expansion—see [P §4.3,
Example 2].
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Problem 4.3.6. (N. Etemadi) Prove that the statement in [P §4.3, Theorem 3]
remains in force even if the “independence” of the random variables &, &,, ... is
replaced with “pairwise independence”.

Problem 4.3.7. Prove that under the conditions in [P §4.3, Theorem 3] one can

also claim convergence in the first-order mean: E

%—m‘ — 0asn — oo.
Problem 4.3.8. Let &,&,,... be independent and identically distributed random

variables with E|£,|> < co. Prove that

nP{|&| >eyn} — 0 and 1213X|$k|—P>0.
<n

<

(Comp. with Problem 2.10.41.)
Problem 4.3.9. Construct a sequence of independent random variables

§1,6,...,

with the property that lim,,_, oo ’%(51 + .-+ 4 §,) exists as a “limit in probability” but
not as a “limit almost surely”.

Hint. Consider the independent random variables &1, &,, . . ., chosen so that
1 1
P, =0=1— ——, P{&, = £n} = .
nlnn 2nlnn

By using the second Borel-Cantelli lemma, in conjunction with the fact that ES? <
n%/1Inn and that Y oo | P{|,| > n} = 1, conclude that P{|§,| > ni.o.} = 1.

Problem 4.3.10. Let &,&,,... be a sequence of independent random variables,
chosen so that P{§, = £n“} = 1/2. Prove that this sequence satisfies the strong
law of large numbers if and only if a < 1/2.

Problem 4.3.11. Prove that the Kolmogorov strong law of large numbers
(Theorem 3) can be formulated in the following equivalent form: for any sequence
of independent and identically distributed random variables &}, &, ... one has

El&| <o < n”'S, » Ef (P-a.e.),

El§)| =00 < limn~!S, = +00 (P-a.e.).

In addition, prove that the first relation remains valid even if “independent” is
replaced by “pair-wise independent”.
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Problem 4.3.12. Let £, &, ... be independent and identically distributed random
variables. Prove that

E sup 5_‘ <00 <= El&|Int|E] < 0.
7

Problem 4.3.13. Let £, &, ... be independent and identically distributed random
variables and let S, = & + --- + &,, n > 1. Prove that for any given o € (0, 1/2]
one of the following properties holds:

(a)n7*S, — oo (P-a.e.);

b)yn™*S, - —oo (P-a.e.);

(c)limn=S, = oo, limn=°S, = —oo (P-a.e.).

Problem 4.3.14. Let £, &,, ... be independent and identically distributed random
variables and let So = 0and S, = & + ... 4+ &,, n > 1. Prove that:
(a) If ¢ > 0 then

o0
> P{S,| = ne} <00 <= Ef =0, E£] < 0.
n=1

(b) If E&; < 0, then for any p > 1 one has

E(sup S,)” ' <00 < E(§)? < .

n>0

(c)If E§ = 0and 1 < p < 2, then there is a constant C,, for which the
following relations are in force:

iP{I}g’)’( S > n} < C,E|& |7, ip{l}(lélﬂsﬂ > ﬂ} < 2C,E|&]".

n=1 - n=1
(d) IfE& = 0, EE} < oo and M(g) = sup,>o(S, —ne), e > 0, then
lim eM(e) = 0?/2.
E—>00

Problem 4.3.15. (On [P §4.3, Theorem 2].) Let £, &,, ... be independent random
variables, chosen so that

Plg, = 1} = P(E, = —1} = 7(1-27),

P{, = 2"} = P{, = —2"} = 270"+D).
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Prove that Z:o=1 ?fz” = oo (comp. with [P §4.3, (3)]), but nevertheless one has
(P-a.e.)

§l+---+§n
n

i.e., the strong law of large numbers holds, in that [P §4.3, (4)] holds (notice that
E¢& =0,n>1).

— 0,

Problem 4.3.16. Let &1, &, ... be independent and identically distributed random
variables with E|&;| = oo. Prove that at least one of the following two properties
must be satisfied:

1<
{ 1’£nn kilgk =400, = or

1n
lim — =—ocop =1.
lim 7 26 °°§

Problem 4.3.17. As a generalization of the Kolomogorov strong law of large
numbers [ P §4.3, Theorem 2] prove the following result, which is due to M. Loeve:
if &1, &, ... are independent random variables, chosen so that

00 a
SOEll

nen
n=1

where 0 < &, < 2, and, moreover, E§, = 0 for 1 < o, < 2, then % Z?:l & —0
almost everywhere.

Problem 4.3.18. Give an example of a sequence &1, &, . . . of independent random
variables such that EE, = 0,n > 1, and

’% Z g — —oo (P-a.e)).

i=1

Hint. Choose, for example, the random variables &, so that P{§, = —n} =
l—n2andP{§, =n’—n}=n"2,n> 1.

Problem 4.3.19. Let &, &,, ... be any sequence of independent random variables,
such that E&, = 0, k > 1. Setting

m _ )&k if|&| <n,
k 0, if|&|>n,

prove the following version of the law of large numbers, which is due to A. N. Kol-
mogorov: in order to claim that

1 & P
—ng—>0 as n — oo,
n

k=1
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it is necessary and sufficient that the following relations hold as n — oo,

Y P{&| > n} -0,

k=1
1< .
= :Eg,g)—m,
n
k=1

1 n
(n)
— 2 D" —0.
k=1

By using appropriate examples, prove that the last condition (as a necessary
condition) cannot be replaced by the condition

1 & .
ﬁZE@,ﬁ 2 0.
k=1

Problem 4.3.20. Let N = (N,);>o be the renewal process from Example 4 in
[P§4.3,4]ie, N, => 02 (T, <t),where T, =01 + ...+ 0, and (0,)n>1 is
some sequence of independent and identically distributed random variables, chosen
so that Eo; = p, 0 < < oo. By the strong law of large numbers, one has % — ﬁ

ast — oo (P-a.e.). Prove that
N\ 1
E(—) - — ast— o0, forevery r >0,
t nr

and notice that these results remain valid even with ;& = oo, in which case 1/ = 0.

Problem 4.3.21. Let &,&,,... be any sequence of independent and identically
distributed random variables, set S, = & + ... + &,, and let {N,,t > 0} be any
family of random variables that take values in the set {1,2, ...} and are chosen so
that N, - oo ast — oo, (P-a.e.).

Prove that:
(a) IfE|&|" < 0o, r > 0, then
s —0 ast—oo0 (P-ae),
(Nt)l/r

and if, moreover, N;/t — A (P-a.e.), for some 0 < A < o0, then

En,

tl/r

—0 ast—oo (P-ae).
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(b) If E|&,]" < oo for some 0 < r < 2, with the understanding that E&; = 0 if
1 <r < 2,then

Sw,
(Nt)l/r

—0 ast—>o0 (P-ae.).

and if, in addition, N,/t — A (P-a.e.), for some 0 < A < oo, then

SN,
ti/r

—0 ast—>o0 (P-ae).
() IfE|&| < oo and E&| = u, then
— —>u ast—oo (P-ae).
and if, in addition, N,/t — A (P-a.e.), where 0 < A < o0, then

- —uA ast—>oo (P-ae).

Hint. To prove (a), use the Borel-Cantelli lemma, in conjunction with the result
established in Problem 4.2.25(a). To prove (b), use Marcinkiewicz-Zygmund’s
strong law of large numbers, established in Problem 4.3.2. To prove (c), use
Kolmogorov’s strong law of large numbers [P §4.3, Theorem 3] and recall the
statement in Problem 4.2.25(a).

Problem 4.3.22. Let f = f(x) be any bounded and continuous function defined
on (0, o). Prove that for every a > 0 and every x > 0 one must have

00 k
i 3 e+ e
k=1 ’

Problem 4.3.23. Let £, &, ... be independent and identically distributed random
variables, chosen so that E|&| < oo and E§; = w. Prove that as n — oo one has:

Inn . %‘k .
(a) T};ﬂ_’“ (P-a.e.);

(b) n*! Z li—]; —u (P-a.e), forany0 <o < 1.
k=1
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4.4 The Law of the Iterated Logarithm

Problem 4.4.1. Let &,&,,... be any sequence of independent and identically
distributed random variables with &, ~ .47(0, 1). Prove that:

=— & | .
(a) P§ lim TR 1} =1;
0, if ), P{& > a,} < oo,

(b) P{& >a,io} = § LAY PlE > an) = oo

Hint. (a) Given some fixed ¢ > 0 and setting A, = {§, > c+/21nn}, by using
[P §4.4, (10)] one can show that

n=e’
P4, ~ ———.
(4n) cv/4minn
The required statement then follows from the Borel-Cantelli Lemma (}_ P(4,) <
oo for ¢ > 1 and Y P(4,) = oo for 0 < ¢ < 1), in conjunction with the
implications [ P §4.4, (3) and (4)].
Problem 4.4.2. Let &, &,,... be any sequence of independent random variables,

which are identically distributed with Poisson law of parameter A > 0. Prove that
(independently of 1) one has

P mén Inlnn
Inn

=1, =1

Hint. Consider the event A, = {§, > c¢,}, where ¢ > 0 and ¢, = %, and

notice that > P(A4,) < oo forc¢ > 1,and Y _P(A4,) = oo for 0 < ¢ < 1. Then use
the Borel-Cantelli Lemma and the implications [ P §4.4, (3) and (4)].

Problem 4.4.3. Let £,&,,... be a sequence of independent and identically dis-
tributed random variables with

Eet = ¢ " 0<a <2
(comp. with [ P §3.6, 4]). Prove that

J
P{m) Sn Inlnn :el/a} — 1
nl/e :

Problem 4.4.4. Let &, &, ... be any sequence of Bernoulli random variables with
P{&, = 1} = 1/2and let S, = & + ... + &,. Prove the following result, which
is due to G. H. Hardy and J. E. Littlewood:

S,
lim |50l

——— <1 with Probability 1.
n 2nlnn — Y
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Hint. By showing that
P{S, > a} < e "Ee"S" | fora>0,h>0,

and that cosh & < exp {%}, conclude that

aZ
PLS, za}sexp{—z—} .
n

Finally, set a = 1 + ¢, ¢ > 0, and use the Borel-Cantelli Lemma. (See also
the bibliographical notes for [ P Chap.4] and [P Chap. 7] at the end of the book
“Probability-2").

Problem 4.4.5. Prove the following generalization of the inequality [ P §4.4, (9)].
Let &, ..., &, be independent random variables and set So = O and S} = & +...+
&, k < n. Then for every real a one has (Lévy’s inequality):

P{Omkax [Sk + p(Sy — SK)] > a} <2P{(S, > al,

where 1 (£) stands for the median of the random variable £, i.e., the constant defined
by the relation

max(P{§ > u(§)} P& < n(®))) = %

(For the various definitions of the notion of “median,” see Problem 1.4.23.)
Hint. Let
T =inf{0 <k <n: S+ u(S, — Sk) > a},

with the understanding that inf @ = n + 1, and prove that

1< 1
P{Sn>a}2§]§)P{r=k}= EP{

[k — 1(S, — S0 > af

max
0<k<n
Problem 4.4.6. Let&y, ..., £, be independent random variables with E; = 0,1 <

i <nandlet Sy =& + ...+ &. Prove that

P{ max Sy > a} <2P{S, > e¢—E|S,|} foralla > 0.

1<k<n
Problem 4.4.7. Let &,...,§, be independent and identically distributed random
variables, such that E§; = 0, 02 = E&? < oo, and || < ¢ (P-a.e.), i < n. Setting

Sy =& +---+ &, prove that

Ee*S' < exp{2™'nx?02(1 + xc)} forevery 0 < x <2¢7'.



4.4 The Law of the Iterated Logarithm 251

Prove under the same assumptions that if (a,) is some sequence of real numbers,
chosen so that a,/+/n — oo and a, = o(n) as n — oo, then for every ¢ > 0 and
for all sufficiently large n one has

a2
P{S, >a,} >expy — —=(1+¢)

2no?

Problem 4.4.8. Let &,....§, be independent and identically distributed random
variables, such that E§; = O and |&;| < ¢ (P-a.e.),i <n.Setting S, =& +...4+§,
and D, = Y _!_, D&, prove the Prokhorov inequality:

P{Snza}fexp{—iarcsin ac , a€R.

2¢ 2D,

Problem 4.4.9. Let £,&,... be any sequence of independent and identically
distributed random variables, such that E|&,|* = oo, for some o < 2. Prove that

lim Ifnl =o0 (P-as.)
nl/e

(and that, consequently, the law of the iterated logarithm does not hold for this
particular sequence).

Problem 4.4.10. Let &,&,,... be any sequence of independent and identically
distributed random variables with E§, = 0 and EE2 = 1. Setting S, = & +...+&,,

n > 1, prove that with Probability 1 the collection of all limiting points of the
sequence (—TSln —

Problem 4.4.11. Let &,&,,... be any sequence of independent and identically
distributed random variables, all having normal distribution .#"(m, 6%). Setting

m, = %ZSZ

i=1

) 1 coincides with the interval [—1, 1].
n>

and using the result in the previous problem, prove that with Probability 1 the

my—m

collection of limiting points of the sequence (ﬁ W) coincides with the
nlnlnn /;>1

interval [—o, o].

Problem 4.4.12. Let &,&,,... be any sequence of independent and identically
distributed random variables that share one and the same continuous distribution
function F(x), x € R, and let

1 n
Fi(xiw) =~ IE@ <x). xeR, nz1,
k=1

be the associated sequence of empirical distribution functions.
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Prove that with Probability 1

T nsup, | F,(x;w) — F(x)|
im
n +/2Inlnn

Problem 4.4.13. Let £, &, ... be any sequence of independent and identically dis-
tributed random variables with exponential distribution, chosen so that P{§; > x} =
e ", x > 0. By using the argument of the Borel-Cantelli lemma (see also
Problem 4.1.20), prove that with Probability 1

=supVF(x)(1— F(x)).

— & — & —Inn — & —Inn—1Inlnn
lim—-— =1, lim-—— =1, and lim-———7—7—=
Inn Inlnn Inlnlnn

—Ax

How will this result change if P{§; > x} = e¢™*, x > 0, for some A > 0?

Problem 4.4.14. Let everything be as in the previous Problem (with P{§; > x} =
e x>0,1> 0). Setting M,, = max(§y,...,§,), prove that

Tm M S
Alnn Alnn

(P-a.e.).

Problem 4.4.15. Let &, ..., &, be independent random variables and set Syp = 0
and Sy = & + -+ + &, k < n. Prove that:
(a) (As a continuation of Problem 4.4.5)

P{ max |Si + (S, - S0l = a} < 2P{IS,| = a},

where ((§) stands for the median of the random variable .
(b)If &, ..., &, are identically distributed and symmetric, then

1 — e—nPlEI>x} < p{ max |&| > x} < 2P{[S,| > x}.
<k<n

1

Problem 4.4.16. Leté&,...,§, be independent random variables and set Sy, = &+
...+ &, 1 <k < n. Prove the Skorokhod inequality: for every ¢ > 0 one has

P{ max |S| > 25} < inf P{S, —Si| <e}-P{S,| = ).

1<k<n

Hint. Consider the stopping time t = inf{l < k < n : |S¢| > 2¢&} (with
the understanding that inf@ = n 4 1) and use the idea outlined in the hint for
Problem 4.4.5.

Problem 4.4.17. Let§,...,§, be some random variables and set Sy = & + ...+
&, 1 < k < n. Prove that for every ¢ > 0 one has
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&
P{ max [ > ef < 2P| max |Si| > 2},
1<k<n I<k<n 2
and if, furthermore, the random variables £i,...,§, are independent and have

symmetric distributions, then for every € > 0 one has

P{ max [&] = ef = 2P{Is,| = .

1<k=<n

4.5 Rate of Convergence in the Strong Law
of Large Numbers

Problem 4.5.1. Prove the inequalities [ P §4.5, (8) and (20)].
Hint. Set & = —£ and convince yourself that

ﬁ(a) = iug[ak — ¥ (A)] = H(-a).

In addition, use the inequality [ P §4.5, (7)].

Problem 4.5.2. Consider the set A defined in [P §4.5, (5)] and verify the claim
that in the interior of the set A the function ¥ (1) is convex (in fact, strictly convex,
if the random variable £ is non-degenerate) and infinitely differentiable.

Hint. Setting A, = infaea A and A* = sup,c, A, prove that (under the
assumption [P §4.5, (3)])

—00 <Ay <0< A*<00.

Then prove that the function ¢(1) = Ee’¢ is infinitely differentiable on the interval
(Ax, A™). The convexity of the function ¥(1) = In@(A) follows from the Holder
inequality.

Problem 4.5.3. Assuming that the random variable & is non-degenerate, prove that
the function H(a) is differentiable on the entire real line and is also convex.

Problem 4.5.4. Prove the following inversion formula for the Cramér transform:
¥(A) = sup [Aa — H(a)],

for all A, except, perhaps, at the endpoints of the the set A = {A: /(1) < oo}.

Problem 4.5.5. LetS, =& +...4+§&,, where &,...,§,,n > 1, are assumed to be
independent and identically distributed simple random variables with E&; < 0 and
P{£; > 0} > 0. Let (1) = Ee*¥! and letinf; ¢(1) = p (0 < p < 1).
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Prove the Chernoff theorem:

1
lim — InP{S,, > 0} = Inp. (%)
non

Problem 4.5.6. By using (x), prove that in the Bernoullian case (i.e., when
P{& =1} = pand P{§; = 0} = ¢), with p < x < 1, one has

1
lim —InP{S, > nx} = —H(x), (%)
non

where (comp. with the notation in [ P §1.6])

1—x
l—p

Hx)=xIn> +(1—x)In
p

Problem 4.5.7. Let &,&,,... be independent and identically distributed random
variables with E€; = O and D§; = 1 andlet S, = & + ... + &, n > 1. Let
(xn)n>1 be some sequence of real numbers, chosen so that x, — oo and 317 -0
asn — 0o.

Prove that

7
P{S, > x,/n} = e 2 1T
where y, — 0, n — oo.

Problem 4.5.8. By using (), conclude that in the Bernoullian case (i.e., when
P{& = 1} = p and P{§; = 0} = ¢) one can claim that:
(a) For p < x < 1 and for x, = n(x — p) one has

P{S, = np + x,,} :exp{ —nH(p+ Z—n)(l+0(1))§. (%)

(b) For x,, = a,+/npq, with a,, — oo and % — 0, one has

2
X

P{S, = np + x,} = eXp{ - 2npq

(1 +0(1))} . (sk3k3k)

Compare the relations (x*x) and (x*==) and then compare these two relations with
the respective results in [P §1.6].

Problem 4.5.9. Let&;, £, ... be any sequence of independent random variables, all
distributed according to the Cauchy law with density f(x) = x € R. Prove
that

1
7(1+x2)°

1<k<n

1
limP{— max & <x} 3
n n
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Problem 4.5.10. Let £, &, ... be independent and identically distributed random
variables with E|&| < oco. Prove that

1
lim — E( max |§k|) =0.
n n 1<k=<n

(Comp. with the statement in Problem 4.3.8.)

Problem 4.5.11. Suppose that £ is some random variable chosen so that EE = 0
and ¢ < £ < b, for some constants @ and b. Show that the moment generating
function of £ satisfies the relation

EeM < e$M =" forall > 0.

hx

Hint. Use the fact that the function x ~ ¢™* is convex.

Problem 4.5.12. Let &,...,&, be independent and identically distributed
Bernoulli random variables with P{§; = 1} = p, P{§ =0} = ¢, p+ ¢ = 1, and
let S, =& + ...+ &,. Prove the Chernoff inequalities: for any x > 0 one has

P{S, —np > nx} < e~
P{|S, —np| = nx} < 2e72"
Hint. Just as in many of the following problems, here one must use the relation
P{S, > y} <e™Ee"", y>0,h>0,

which is often referred to as the Bernstein inequality.

Problem 4.5.13. Prove that, in the setting of the previous problem, the following
stronger result, known as “the maximal inequalities” is in force:

P{ max (S —kp) > nx} < e_z’”z,
1<k<n

P{ max |S; — kp| > nx} < 2o~
1<k<n

Hint. Use the exponential analog of the Kolmogorov inequality
P{ max (Sk —kp) > 8} < e—haEeh(Sn_np)
I<k=n

(see Problem 4.2.23).
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Problem 4.5.14. Let &,...,§, be independent (but not necessarily identically
distributed) random variables with values in the interval [0, 1] and let S, = & +
...+ &,. Setting p = Ens” and ¢ = 1 — p, prove that, for every 0 < x < g, the
following inequality is in force

P{S, — ES, > nx} < e’“ﬁ(x)’

B p pt+x q q—x
w=n[(G5) (G5) ]

Hint. First, use the inequalities

where

e"P{S, > y} < Ee"Sr = Ee"S—1Ee
<Ee"1(1—p+pe)y<...<(1—p+ pe"),
and then choose & > 0 accordingly.

Problem 4.5.15. Let everything be as in the previous problem, prove the Ho-
effding inequality, which is a generalization of the Chernoff inequality from
Problem 4.5.12: for any x > 0 one has

P{S, —ES, > nx} < e_z’”z,

x2

P{|S, —ES,| > nx} < 2¢72"

Hint. Use the result established in the previous problem and remark that
V(x) < —2x2

Problem 4.5.16. Let&,...,§, be independent random variables with values in the
interval [0, 1]. Prove that for every ¢ > 0 the following inequalities are in force:

1
P{S, < (1 —¢)ES,} <exp % —ESZESH} ,

52 Jil
P{S, > (1 + ©)ES,} <exp{—[(1 + &) In(l + &) — £]ES, } ( < e—zuffm) .

Hint. For the proof of the first inequality use the result from Problem 4.5.14 and
remark that ¥ (—xp) < —px2/2,0 < x < 1. For the proof of the second inequality
use the hint for Problem 4.5.14, which implies the relation

P{S, —ES, > nx} < [e"@T" (1 — p + pe")]".

Problem 4.5.17. Let &;,...,§, be independent random variables, chosen so that
a; <& < b;, for some constants ¢; and b;, i = 1,...,n. As a generalization of the
Hoeffding inequality from Problem 4.5.15, prove that, for any x > 0, one has
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P{Sn —ES, > x} =< e—2x2 Zi:l(bk_ak)zs

P{|S, — ES,| > x} < 2¢7 2 Ximi(—a0)”

Hint. First, use the inequality established in Problem 4.5.11 to derive the
estimates

P(S, — ES, > x} < e EHSES) < bt Bl iar”

and then choose / accordingly.

Problem 4.5.18. (“Large deviations.”) Let (§,),>1 be any sequence of independent
standard Gaussian random variables (i.e., Law(§,) = .4#7(0,1)) and let S, = & +
...+ &,. Prove that for any set A € #A(R)

n—00 n

1 S, 2
lim —lnPg—" EA} = —essinf {% :xeA}.
n

(Given any real Borel function f(x) defined on (R, Z%(R)), by definition,
essinf{ f(x) : x € A} is understood as sup{c € R : A{x € 4 : f(x) < ¢} = 0},
where A is the Lebesgue measure—comp. with the definition of essential supremum
in Remark 3 in [P §2.10].)

Hint. The following relation “nearly holds” for a “very large” n:

P{&eA} = wli/e_"xz/zdx.
n 2 J4

Problem 4.5.19. Leté = (&4,...,§&,) be some Gaussian vector, such that E§; = 0,
i =1,...,n. Prove that

li 1lP > —1
g&;“*@%&—ﬁ—‘z?

Hint. Setting o = maxls,-s,,(ng)l/Z, show that, for every r > 0,

2
P{ max & > E max $i+0r} <e /7,
1<i<n 1<i<n

and then check that

P{gggn& > r} zl—qb(é) > %

forevery 1 <i <n.



Chapter 5
Stationary (in Strict Sense) Random Sequences
and Ergodic Theory

5.1 Stationary (in Strict Sense) Random Sequences:
Measure-Preserving Transformations

Problem 5.1.1. Let T be any measure preserving transformation acting on the
sample space §2 and let £ = £(w), w € §2, be any random variable, chosen so
that the expected value E£(w) exists. Prove that E§ (w) = E§(Tw).

Hint. If § = [I4, A € 7, then the identity E£ (w) = E&(T (w)) follows from
the definition of a “measure-preserving transformation.” By linearity, this property
extends for all random variables £ of the form Y _, Axl4,, Ax € .Z. In addition,
for £ > 0, one has to use the construction of the expected value as an “integral,”
in conjunction with the monotone convergence theorem. For a general £, use the
representation § = £+ — £,

Problem 5.1.2. Prove that the transformation 7, from [ P §5.1, Examples 1 and 2]
is measure-preserving.!

Hint. (Example 2) The identity P(4) = P(T~!(A)) is trivial for sets A of the
form A = [a, b) C [0, 1). For the general case, consider the system

M =1{A € B(0,1]): P(4) = P(TT(4))}
and, by using “the suitable sets method,” prove that .Z = ([0, 1)).

Problem 5.1.3. Let 2 = [0, 1), let # = ([0, 1)), and let P be any probability
measure on (§2,.%), chosen so that the associated distribution function on [0, 1) is
continuous. Prove that the transformations Tx = Ax,0 < A < 1, and Tx = x?2 are
not measure-preserving.

Hint. Due to the continuity assumption, it is possible to find some points

a,b € (0,1), such that

't is assumed throughout the entire chapter that the probability space (£2,.%7, P) is complete.

A.N. Shiryaev, Problems in Probability, Problem Books in Mathematics, 259
DOI 10.1007/978-1-4614-3688-1_5,
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Pl0.0) =5, P0.6) =5

By using this property one can easily show that the transformations 7x = Ax,
0 < A < 1,and Tx = x? are not measure-preserving.

Problem 5.1.4. Let £2 denote the space of all real sequences of the form
w=_(..,0-1,0p,01,...),

let .% denote the o-algebra generated by all cylinder sets
{w: (@, ..., Ok4n—1) € By},

for all possible choices of n = 1,2,..., k = 0,£1,+2,..., and B, € A(R").
Given some probability measure P on (§2,.%), prove that the double sided
transformation 7', defined by

T(...,0_1,w0,w1,...) = (..., 00, 01,2, ...),
is a measure-preserving if and only if
P{w: (wy,...,w,—1) € By} = P{w: (wk,...,0k+n—1) € By}

foralln =1,2,...,allk =0,£1,+2,...,and all B, € Z(R").

Problem 5.1.5. Let &, &, ... be a stationary sequence of random elements with
values in the Borel space S (see [P §2.7, Definition 9]). Prove that one can
construct (perhaps on some enlargement of the underlying probability space)
random elements §_,&_,, ..., with values in S, so that the double-sided sequence
oo 621,80, &1, ... 1s stationary.

Problem 5.1.6. Let (£2,.%, P) be any probability space, let 7 be any measurable
transformation of §2, and let & be any w-system of subsets of §2 that generates .%
(i.e., m(&) = .F). Prove that if the identity P(T~'A4) = P(A) holds forall 4 € &,
then it must hold for all 4 € .Z.

Problem 5.1.7. Let T be any measure-preserving transformation on (£2, .%, P) and
let ¢ be any sub-g-algebra of .%. Prove that the following relation must hold for
every A € F:

P(A|9)(Tw) = P(TT'A|T7'9)(w) (P-a.e.). (%)
In particular, if §2 is taken to be the space R of all real sequences of the form
o = (0, wy,...), i & (w) = wi, k > 0,is the associated family of coordinate maps

on R*, and if T denotes the shift-transformation on R*, given by T (wy, w1, ...) =
(w1, w,,...) (e, & (Tw) = wr+1, k > 0), then () can be written as

P(4]§)(Tw) = P(TT' A|§11) (@) (P-a.e).
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Problem 5.1.8. Let 7' be any measurable transformation acting on (£2,.%#) and
let & stand for the collection of all probability measures, P, on (£2,.%) with the
property that 7' is P-measure preserving. Prove that:

(a) The set of measures &7 is convex.

(b) The transformation 7" is an ergodic transformation of the measure P if and
only if P is an extremal element of the set & (i.e., P cannot be written as P =
A1P1 4+ A,P,, forsome A; > 0and A, > Owith A + A, = 1 and some P, P, € &
with Py # P»).

Problem 5.1.9. Let T be any measure preserving transformation acting on the
probability space (£2,.%#,P) and let £ = &(w), w € §2, be any random variable on
that space. Prove that § = £(w) is almost invariant under 7" (i.e., § () = §(Tw) (P-
a.e.)) if and only if for any bounded and .# ® Z(R)-measurable functions G(w, x)
one can write

EG(w.§(w)) = EG(Tw, §(w)).

Hint. Consider first functions G (w, x) of the form G (w)G2(x).

5.2 Ergodicity and Mixing

Problem 5.2.1. Prove that the random variable & is invariant if and only if it is
_¥ -measurable.

Problem 5.2.2. Prove that the set A is almost invariant if and only if P(T7'4 \
A) = 0. Show also that if the random variable X is almost invariant (i.e.,
X(w) = X(Tw) (P-a.e.)), then one can find an (everywhere) invariant random
variable X = Y(a)) (.e., F)?(a)) = f(Ta)) for all w € §2) with the property
P{X(w) = X(w)} = 1.

Problem 5.2.3. Prove that the transformation 7" represents mixing if and only if for
any two random variables £ and 7, with E€? < oo and En? < oo, one has

E&(T"w)n(w) — Eé(w) En(w) as n — oco. (%)

Hint. If n = I4 and £ = I, then (%) is precisely the mixing property. Each of
the variables & and 1 is in L? and can be approximated (in the metric of L?) with any
precision by linear combinations of indicator functions. The required convergence
of the expected values then follows easily from the mixing property.

Problem 5.2.4. Give an example of a measure preserving ergodic transformation
which is not mixing.

Hint. Take 2 = {a,b}, set P({a}) = P{b}) = 1/2, and consider the
transformation 7', givenby Ta = b and Th = a.
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Problem 5.2.5. Let T be a measure preserving transformation acting on (£2, .%, P)
and let .# = o(&/), where & is some algebra of sub-sets of £2. Suppose that in
[P §5.2, Definition 4] one assumes that

Tim P(ANT™"B) = P(4) P(B)

only for sets A and B that are chosen from .27. Prove that the above property will
then be satisfied for all sets A and B that belong to .# = o(«/) (and, as a result,
one can claim that 7" represents mixing).

Show also that this statement remains valid if .7 is required to be a 7-system and
F = n(H).

Problem 5.2.6. Let (£2,.%) = (R*°, #(R*°)) and suppose that T is the usual
shift-transformation on £2, given by T (x;, x2,...) = (x2,X3,...), for any ® =
(x1,x2,...). Prove that any event from . = Z(R) that is invariant under T
must be a “tail” event; in other words, the entire o-algebra ¢, which comprises
all T-invariant sets, is included in the “tail” o-algebra 2~ = [().#°, where
FX =0(® : Xu, Xp41,...). Give examples of tail events which are not 7'-invariant.

Problem 5.2.7. By providing appropriate examples of measure-preserving trans-
formations 7', acting on (§2, .7, P), prove that: (a) A € F doesnotentail TA € &
(b) one cannot conclude from A € % and TA € % that P(A) = P(TA).

5.3 Ergodic Theorems

Problem 5.3.1. Let £ = (&,&;,...) be some stationary Gaussian sequence with
E&, = 0 and with covariance function R(n) = E&4,&. Prove that the condition
R(n) — 0 is sufficient for claiming that the measure preserving transformation,
associated with the sequence &, represents mixing (and is therefore ergodic).

Hint. f A = {w : (£1.&,...) € Ao}, B = {w : (§1,&,...) € By} and B, =
{w:(&,,&+1,...) € By}, then one must show that

P(AN B,) — P(A)P(B) as n — 0.

The proof can then be established with the following line of reasoning:
1. Given any ¢ > 0, find a number m € N = {1,2,...} and sets Ao € BR™)
and By € A(R™), such that P(4 A A) <eand P(B A B) < &, where 4 = {w :

(E1v....&m) € Ag}and B = {w: E1,....6m) € By).
2. Then choose some open sets Ay € Z(R™) and By € ZA(R™), so that for the
sets

=lo:@. &) e and B={o:E.... .6 € Bof

one has o .
P(AAA)<e and P(BAB)<e.

This would then imply that P(4 A A) < 2¢ and P(B A B) < 2.
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3. The sets B, = {w : (£,.....E+m—1) € By} have the property P(B, A B,)
< 2e.

4. Let P stand for the probability distribution of the vector (&1, ...,&,) and let
0, be the distribution of the vector (§1,...,&,, &, ..., E4m—1). Then

R(n) -0 = QngP@)P as n — oo.
5. In conjunction with [P §3.1, Theorem 1], (iv) gives
lim, P(4 A B,) = P(A)P(B) .

which, taking into account the relations (see above) P(AAA) < 2e and
P(B, A B,) <2¢, gives

lim, P(A N B,) = (P(A) — 2¢)(P(B) — 2¢) — 4,
which, taking into account that ¢ > 0 is arbitrarily chosen, gives
lim, P(4 N B,) > P(A)P(B).
6. In analogous fashion one can prove that
fim, P(4 N B,) < P(4)P(B)

(instead of the open sets Ao and B, one must choose closed sets).

Problem 5.3.2. Prove that for any sequence & = (&,&;,...) that consists of
independent and identically distributed random variables, one can claim that the
associated measure preserving transformation represents mixing.

Hint. (Observe that the ergodicity of the sequence & follows from the “zero-one
law.”) The proof of the mixing-property can be established with the following line
of reasoning:

1. Define the sets

A:{w:(‘;‘l,&,...) EA()} and B :{w:(f;'l,f;'z,...)EBo},

for some choice of Ao, By € #(R*). Given any ¢ > 0, it is possible to find an
integerm € N = {1,2,...} and a set Ay € HB(R™), so that P(4 A A) < ¢ for

:{w;(gl,...,sm)er}.

2. Define the sets

:{w:(gn7é§-n+la---)€BO}v n>1,

and observe that for any n > m

P(A N B,) = P(A)P(B,) = P(A)P(B).
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3. Finally, prove that |P(A N B,) — P(4)P(B,)| < 2¢ and that
P(AN B,) - P(A)P(B) as n — oo.

Problem 5.3.3. Prove that the stationary sequence £ = (&1,&,,...) is ergodic if
and only if for every k = 1,2, ... and every B € %(R*) one has

%ZIB(&,...,SHk_l)—)P{(&,...,Sk)eB} as n —> oo (P-a.e).

i=1

Hint. To prove the necessity part, let Q denote the distribution (on R*) of the
sequence £ = (£, &, ...) and let T stand for the shift

R® > x = (x1,x2,...) » T(x) = (x2,x3,...) € R*™.

In addition, given any k = 1,2,...and any B € %’(IR" ), define the function R* >
x = (x1,x2,...) ~ f(x) = I((x1,...,xx) € B) € R, and then apply to that
function the Birkhoff-Khinchin ergodic theorem.

In order to establish the sufficiency part, one has to prove that the transformation
T, introduced above, is ergodic; in other words, the measure of any set from the
associated collection _# (i.e., any invariant set) is either O or 1.

The property

121(@1,...,&) € B) > P{(,....5) € B} asn— oo (P-ae)
n

i=1

translates into the claim that for every set A € HA(R*), of the form
{(x1,...,xx) € B}, forsome B € %’([Rk), one must have

1 & 4

- ZIA(T’x) — Q(A4) as n— oo (Q-a.e.).

n

i=1

In conjunction with the Birkhoff—Khinchin ergodic theorem, the last relation yields
the identity Eq(/4 | ,#) = Eql4 (Q-a.e.), which, in turn, implies that the sets 4 of
the form {(x,...,xz) € B}, for some choice of B € Z(R¥), do not depend on .
By using the “suitable sets” method, one can then conclude that the collection of
sets

M ={A € B(R™) : Aisindependent from 7}

coincides with Z(R*). Finally, one can conclude that ¢ does not depend on _#
and, therefore, the Q-measure of every invariant set is either O or 1. This proves the
ergodicity of the transformation 7', and, therefore, the ergodicity of the sequence &.
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Problem 5.3.4. Suppose that 7" is some measure-preserving transformation on
(£2, %), under two different measures, P and P. Prove tlzlt if, in adiiition, T happens
to be ergodic relative to both P and P, then either P = P or P L P.

Problem 5.3.5. Let T be any measure preserving transformation on the space
(82, #,P), let & be any algebra of sub-sets of £2, chosen so that o(&/) = Z,
and let

n—l1
a1
1" = - Y L(T*w), Aeca.
k=0

Prove that the transformation 7 is ergodic if and only if at least one of the following
conditions holds:

1. If(ln) 5 P(A) forevery A € «;
2.lim, L Y72V P(A N T*B) = P(4) P(B) forall 4, B € o;

3. Iil”) 5 P(A) forevery A € .Z.

Problem 5.3.6. Suppose that 7 is some measure-preserving transformation on
(22,7, P_). Prove that T is ergodic (for the measure P) if and only if there is no
measure P # P, defined on (£2,.%), that has the property P <« P, and is such that
the transformation 7" is measure-preserving for P.

Problem 5.3.7. (Bernoulli shifts.) Let S be any finite set (say, S = {l,...,N}),
let 2 = S be the space of all sequences of the form w = (wy, ®;,...), w; € S,
and let &, k > 0, be the canonical coordinate maps on $°°, given by & (w) = wg,
w € 2 = §. Define the shift transformation T (wy, w1, ...) = (wy, w2, ...). The
same transformation can be defined in terms of the coordinate maps through the
relations & (Tw) = wk+1, kK > 0. Assume that to every i € {1,2,..., N} one can
attach a non-negative number, p;, so that Z:N=1 pi = 1 (.e, the list (py,..., pn)
represents a probability distribution on §2). With the help of this distribution it is
possible to define a measure P on (S°°, Z(S°°)) (see [P §2.3]), so that

P{w: (w1,....0) = (w1, ..., ux)} = puy - .- Puy -

In other words, the probability measure P can be defined in such a way that the
random variables &(w), & (w), ... become independent. It is common to refer to
the shift transformation 7' as the Bernoulli shift or the Bernoulli transformation
relative to the measure P.

Prove that the Bernoulli transformation, as described above, has the mixing

property.

Problem 5.3.8. Let 7' be a some measure-preserving transformation on (§2, .7, P).
Setting T7".% = {T"A: A € F}, we say that the o-algebra

"%

Foo =

DX

=
I
_
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is trivial (or P-trivial), if the P-measure of every set from .%_, is either O or 1.
If the transformation 7 is such that the associated o-algebra .%_o, is trivial, then
we say that T is “Kolmogorov transformation.” Prove that every Kolmogorov
transformation is ergodic and, furthermore, has the mixing property.

Problem 5.3.9. Let | < p < oo, let T be any measure-preserving transforma-
tion acting on (£2,.%,P), and let £é(w) be any random variable from the space
LP (82, %#,P).

Prove the von Neumann ergodic theorem for L?(§2,.%, P): one can construct a
random variable, n(w), on (£2, %, P), for which

n—1 p
1

E;Zg(Tkw)—n(w) —0 as n— oo.
k=0

Problem 5.3.10. The Borel normal numbers theorem claims that (see [P §4.3,
Example 2]) the proportion of zeroes, or of ones, in the binary expansion of

o € [0, 1) converges almost surely, relative to the Lebesgue measure on [0, 1), to
1/2. Prove this result by introducing the transformation 7°: [0, 1) — [0, 1), given by

T(w) =2w (mod 1),

and by using the ergodic theorem—[ P §5.3, Theorem 1].

Problem 5.3.11. Let everything be as in Problem 5.3.10 and let v € [0, 1).
Consider the transformation 7°: [0, 1) — [0, 1), given by

0, ifow =0,
Ty = (L] ifw 0,

where {x} denotes the fractional part of the number x.
The so called Gauss measure on the interval [0, 1) is defined as

P(4) = 1 dx
S 2,1 +x

. AeB(0,1)).

Prove that the transformation 7" preserves the Gauss measure P.

Problem 5.3.12. By providing appropriate examples, prove that the Poincaré
“reversibility” theorem (see [ P §5.1, 3]) may not hold for measurable spaces with
infinite measures.



Chapter 6
Stationary (in Broad Sense) Random
Sequences: L2-theory

6.1 Spectral Representation of Covariance Functions

Problem 6.1.1. By using [P §6.1, (11)], prove the relation [ P §6.1, (12)].
Hint. The required statement can be established by using appropriate values for
t; and q;. For instance, withm = 2,¢#; = 0 and t, = n, it is easy to prove that

(Ja1|* + |a2|*)R(0) + a1@ R(—n) + @jaxR(n) > 0.

Setting a;y = a, = 1l and a; = 1, a, = i above, and taking into account the
property R(0) € R, one finds that R(n) + R(—n) € R and i(R(n) — R(-n) € R,
and, therefore, R(—n) = R(n).

Problem 6.1.2. Prove that if all zeroes of the polynomial Q(z), defined in [P §6.1,
(27)], happen to be outside of the unit disk, then the auto-regression equation
[P §6.1, (24)] admits unique stationary solution, which can be written in the form
of one-sided moving average.

Problem 6.1.3. In the context of [ P §6.1], prove that the spectral functions for the
sequences (22) and (24) have densities given by, respectively, (23) and (29).

Hint. The formula in (23) may be established as follows: prove first that R(n) =
> an+k@ and after that verify the relation R(n) = [”_e'*" f(X)dA, where
£ () is given by (23). (It is useful to keep in mind that /™ eihn gy = 278,0, Where
8n0 is the usual Kronecker symbol.)

Problem 6.1.4. Prove that if Y °° _|R(n)|> < oo, then the spectral function

n=—0o0

F(Q) has density f(A), given by

— :
SOy == 3 MR,

where the series converges in the complex space L?> = L?([—m, ), B([—m, 7)), L),
A being the usual Lebesgue measure.

A.N. Shiryaev, Problems in Probability, Problem Books in Mathematics, 267
DOI 10.1007/978-1-4614-3688-1_6,
© Springer Science+Business Media New York 2012
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Hint. Use the fact that {\/#Tne”‘”, n=0,=x1,+£2,... } is an orthonormal system
in the space L?([—m, 7), B([—m, 7)), ).

Problem 6.1.5. Let (£,),>0 be any stationary Gauss-Markov sequence with van-
ishing mean. Prove that the associated covariance function, R(n), admits the
representation

R(n) = o?A",
forsome 0 < A < 1.

Problem 6.1.6. Let N = (N;);>0 be a Poisson process (see [ P §7.10]) of param-
eter A > 0. Define the (continuous-time) process £ = & x (—1), where &
is some random variable, which is independent from N, and is chosen so that

PlE=1}=P{f=—1} = % Prove that E§; = 0 and E£ £, = e 2451 5,1 > 0.

Problem 6.1.7. Consider the sequence (§,),>0 defined as

N
& =Y aicos(ben — ).

k=1

where ai,bry > 0, for k = 1,..., N, are given constants, and 71;,...,ny are
independent random variables that are uniformly distributed in (0, 27). Prove that
(&1)n>0 is a stationary sequence.

Problem 6.1.8. Let § = cosng, n > 1, for some random variable ¢, that is
uniformly distributed on [—7, 7r]. Prove that the sequence (&,),> is stationary in
broad sense, but is not stationary in strict sense.

Problem 6.1.9. Consider the one-sided moving average model of order p (MA(p)):
&, = aoen +ajg—1 +...+ ApEn—p,

where n = 0,%1,... and ¢ = (g,) is a white noise sequence (see [P §6.1,
Example 3]). Compute the dispersion DE, and the covariance cov(&,, &,4x).

Problem 6.1.10. Consider the auto-regression model of order 1 (AR(1))
En:a0+alén—l+o-8n7 n>1

(comp. with formula [P §6.1, (25)]) with white noise ¢ = (&,) and suppose that
|aer| < 1. Prove that if E|&)| < oo, then

ao(l —af) L%

E¢, = oE& + as n — oo;
1— (03] 1— (03]
if, furthermore, D&, < oo, then
o2(1 — 2" o2
Dénzozf”D§0+ (I — o) 5 as n— 00,

1—of 1—of
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and -
oo
COV(S,,, En-i—k) g 1 (;2 .

1

Problem 6.1.11. In the setting of the previous problem, suppose that & is normally
distributed with law A4~ (ﬂL o ) Prove that the Gaussian sequence § =

I—ay’ 1—0{12

(&1)n>0 is both strictly and broadly stationary, with

) 2,2
o o (o4
E¢, = , D&, = — and cov(§,. k) = 12'
1— o 1— “1 1— Oll

6.2 Orthogonal Stochastic Measures and Stochastic Integrals

Problem 6.2.1. Prove the equivalence of conditions [P §6.2, (5) and (6)].
Hint. To prove the implication (5) = (6),take A, | @, A, € &, D, = E\ A4,
Dy = @;then £ = Z,‘?O:I(Dk \ Dj—1) and [P §6.2, (5)] implies that Z(A,) =

Z(E)— z(Dn) 5 0.

Problem 6.2.2. Consider the function f € L2. By using the results from
[P Chap.2] (specifically, [P §2.4, Theorem 1], the Corollary to [P §2.6,
Theorem 3], and Problem 2.3.8), prove that there is a sequence, (f,).>1, that
consists of functions of the form specified in [P §6.2, (10)], and is such that
lf — full = 0asn — oco.

Hint. The proof may be established with the following argument. Given any

e > 0, one can construct the simple function g(A) = Z,le Jilp, (L), where
Bi € & and f; € C, in such a way that || f — g||;2 < &/2. Then construct the
sets Ay € &p, so that the quantities m(Ay A Bi), k = 1,..., p, are as small as

needed. Finally, the function k(1) = Z,le Jila, (1) has the form specified in
[P §6.2, (10)] and, furthermore, can be chosen so that || f — &||;2 < e.

Problem 6.2.3. Assuming that Z(A) is some orthogonal stochastic measure, with
structural function m(A), verify the following relations:

E|Z(A1) = Z(A2)P = m(A184y),
Z(A\ Ay) =Z(A)—Z(A N Ay (P-ae),
Z(AAAy) = Z(A) 4+ Z(Ay) —2Z(A1 N Ay)  (P-ace.).
Problem 6.2.4. Let £ = (§,), with E§, = 0, be any stationary sequence with

correlation function R(n), and with spectral measure F(dA). Setting S, = & +
...+ &,, prove that the dispersion DS, can be written in the form:

b3 ni 2
DS, = ¥ (1~ [kDR(K) or DS, =/ (Sm §) F(d2).

_ sin =
k|<n T 2
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Problem 6.2.5. Suppose that f(A) is a spectral density (i.e., for some spectral
measure F one can write F(dA) = f(A)dA), which is continuous at A =
By using the second formula for the dispersion DS, established in the previous
problem, prove that

DS, =27nf(0)-n + o(n).

i 2
(The kernel (%) is known as the Fejér’s kernel—see [P §6.4, 21].)

6.3 Spectral Representations of Stationary (in Broad Sense)
Sequences

Problem 6.3.1. In the notation adopted in the proof of [ P §6.3, Theorem 1], prove
that L2(F) = L2(F).

Hint. According to Problem 6.2.2, every function f(A) € L?(F) can be
approximated arbitrarily closely in the norm of L?(F) with functions of the form
g\ = YF_, filp, (1), where By € <7, o/ being the algebra comprised of all
finite unions of intervals of the form [a,b), —m < a < b < 7. Consequently, it is
enough to prove only that every function [}, »,(4) can be approximated with linear
combinations of functions of the form e, (1) = eM n =0,41,+2,.... However,
a function of the form /|, 4)(A) can be approximated with continuous functions,
which, in turn, can be approximated with linear combinations of functions of the
forme,(1),n = 0,+1,+2,... (the Weierstrass—Stone theorem).

Problem 6.3.2. Let £ = (£,) be any stationary sequence, such that, for some fixed
N, one can claim that §, 4y (w) = &, (w), w € 2,foralln € Z = {0, £1,+£2,...}.
Prove that the spectral representation of any such sequence comes down to the
representation [ P §6.1, (13)].

Hint. Since R(N) = R(0), one can claim that the spectral measure F is piece-
wise constant on [—7, 77) and has jumps at the points

2k
lkZ%—}-szk, k=1,...,N,

where the integers pj are chosen so that Ay € [—m, ). As a result, the spectral
representation of & must have of the form:

N
b= [ e zan =Y e zaa),
[=7.7) k=1

Problem 6.3.3. Let £ = (&,) be any stationary sequence, chosen so that EE, = 0
and

2

N—1N—-1

1 k| —
e Rle=D) =+ 3 R(k)[l——]fCN :
k=0 lk|<N—1

1

\
Il
=)
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for some constants C > 0 and o > 0. By using the Borel-Cantelli lemma, prove
that

N
1
NZ& —0 as N »>o0 (P-a.e.).
k=0
Problem 6.3.4. Suppose that the spectral density f:(A) of the sequence £ = (§,)
is rational, in that

1 [Pai(e )
21 [Qu(e )]

where P,—1(z) = ap +ajz+---+a,—17" 'and Q,(z) = 1 + bjz+---+ b,7" are
given polynomials. In addition, suppose that Q,, has no roots on the unit circle.

Prove that one can construct a white noise sequence ¢ = (g,), m € Z, in
such a way that the sequence (&) is a component of the n-dimensional sequence
(E),....E") (e, € = &,), which is determined by the relations

feQ) =

Eo =& + Biemp, i=1...n—1,

n—1
Emy1 = _an—jﬁiﬂ + Buém+1,
j=0
where ,31 = dy and ,3,' =daj—1 — ;C_:ll ,Bkbi_k,i > 1.

Problem 6.3.5. One says that the stationary (in strict sense) sequence £ = (§,)
satisfies the strong mixing condition if

an () = sup |P(AB) —=P(A)P(B)| = 0 as n — oo,
A€FLoo(§),BEF(E)

where Z7(§) = o(...E-1.&) and F2°E) = 0. Eus1....). (Comp. with
Problem 2.8.7.)

Prove that if X and Y are two bounded (|X| < C; and |Y| < C;) random
variables, that are measurable, respectively, for Z” __(£) and .#°(§), then

IEXY —EX EY| < 4C,Caan (£).

Problem 6.3.6. Let £ = (§,)—co<m<oco be any stationary Gaussian sequence,
and let

P; é = SUpy y EXY,

the supremum being taken over all random variables X and Y, with E[X|*> =
E|Y|* = 1, chosen from the closed linear manifolds L" . (£) and LS°(£), that are
generated, respectively, by the families (£,,)m<o0 and (§y)m>n-

Prove the Kolmogorov—Rozanov inequality:

o, (§) < py(§) < 2ma,(§).

(Comp. with the inequalities in Problem 2.8.7.)
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Problem 6.3.7. Suppose that §¢ = (£,) is some stationary Gaussian sequence, that
has a continuous spectral density, f(4), which is uniformly bounded from below by
some positive constant, i.e., f(1) > C > 0, A € [—x, 7]. By using the inequalities
established in the previous problem, prove that the sequence & must have the strong
mixing property.

Problem 6.3.8. By considering sequences £ = (&,), of the form
&, = Acos(An + 0),

for an appropriate choice of the constant A # 0 and the independent random
variables A and 6, prove that a stationary in broad sense sequence may have periodic
sample paths and non-periodic covariance function.

6.4 Statistical Estimates of Covariance Functions
and Spectral Densities

Problem 6.4.1. Consider the estimation scheme [P §6.4, (15)] and suppose that
en ~ A (0, 1). Prove that for every fixed n one must have

(N — |n|)DRy (n;§) — 27 n(l + ¥y f2(A)dr  as N — oo.

Hint. By using the assumption that ¢, is Gaussian for every fixed n > 0, argue
that

(N —n)DRy (n;€) = 27 /_ﬂ /_ﬂ [1 4 e"* N dy_, (A —v) f(v) fA)dvdA,

where @y_, (1) is the associated Fejér kernel. The required result then follows from
the above relation.

Problem 6.4.2. Prove formula [P §6.4, (16)] and its generalization:

2f2(0), A=v=0,=%m,
Jim cov(fy(:6). fy (i) = f2(A), A =v#0,+m,
0, A F# v,

Problem 6.4.3. Consider the first-order autoregressive model AR(1)
£, =081 +oe,, n>1, & =0,

in which ¢ = (g,) is a Gaussian white noise sequence (comp. with [P §6.1, (25)]
and with the model discussed in Problem 6.1.10). Suppose that in this model o >
0 is a known parameter, while & € R is some unknown parameter, that must be
estimated from the observations &1, &, ... .
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Let é,, = argmax py(xy,...,Xx,) be the maximum likelihood estimate of the
parameter 6, obtained from the joint probability density of &, ..., &,, namely

1 1 ¢
) = e exp == 3 (5 — Bx1)2
po(x1 Xn) N exp ) =5 kzl(xk Xk—1)

Prove that
b= k=1 X1 Xk
> k=1 X/?—l

Problem 6.4.4. Consider the Fisher Information

B 32111179(517---75;1)

1,(6) = Eg .

for the AR(1) model from Problem 6.4.3, Ey stands for the averaging operation,
under the distribution Py, of the sequence &, &, ... .

Prove that

(@) 1,(0) = Eg Xp_, 62,

(b) as n — oo, one has

Lo lel<1,
2
L@ ~{= o =1,
2n

Problem 6.4.5. In the context of the AR(1) model discussed in Problems 6.4.3 and
6.4.4, prove that the maximum likelihood estimate, 6,, has the following asymptotic
properties:

o(x), 0] <1,
lim Py {v/7,(0) (0, — 0) = x} = { H (), |0] =1,
Ch(x), 6] > 1,

where @(x) is the distribution function of the standard normal law and H, él) (x) is

the distribution function of the random variable

y B —1
2V2 [} B2ds’



274 6 Stationary (in Broad Sense) Random Sequences: L>-theory

where B = (B;)o<s<1 is a standard Brownian motion (see [ P §2.13]) and Ch(x)
is the distribution function of the Cauchy distribution law with density (see
[P §2.3, Table 3]).

1
7(1+x2)
Problem 6.4.6. As a continuation of the previous problem, prove that

D), 0] # 1,
H?(x), 6] =1,

lim P@

Yg -0 <xy =
k=1

where H (;2) (x) denotes the distribution function of the random variable
B} —1
24/ [, B2ds

Thus, if (é,, —0) is normalized not by the Fisher information, but by the random vari-

0 x

able (ZZ:l 5,%_1)1/ 2, then one would end-up with only two probability distributions
instead of three.

Problem 6.4.7. Prove that the maximum likelihood estimate, é,,, from Problem
6.4.3 is uniformly asymptotically consistent on average:

supy E@lé,, —60]—0 as n— oo.

6.5 Wold Decomposition

Problem 6.5.1. Prove that any stationary sequence with discrete spectrum (i.e.,
with spectral function F (1) that is piece-wise constant) must be singular.
Hint. If§,,n € Z = {0, +1,42, ...}, is one such sequence, then one can write

00
gn = Z Zke’kkn,

k=—00

with zx = Z({Ar}), k € Z, being orthogonal random variables with Ezz = 0
and E|z|* = Ulf. Consequently, the spectral function can be written in the form
F(A) = Y g2, < 0p» Where Y72 07 < oo. Thus, one must show that H(§) =
S(£), where H(§) is the closed linear sub-space of H?, generated by the random
variables € = (..., &—1,&,...),and S(§) = (oo _.o Hu(§), where each H,(£) is
generated by the family " = (..., &,-1,&,).

In order to prove that H(§) = S(§), itis enoughto prove that &, € S(§), forevery
n € Z. However, due to the stationarity, it is enough to prove only that & € S(§),
i.e., for every integer N € Z and every § > 0, one can find some n € Hy (§) with
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&0 — nllg2 < 8. Thus, it would be enough to show that one can take n = &,, for
some appropriate choice of n < N. For that purpose, given an arbitrary § > 0, one
can choose M so that Z\k|>M o7 < §/2, then prove that

2 iAgn
162 — &oll 2 §§5+ Z a,fle M ],
lk|l<M

and, finally, prove that, for any N € Z and any ¢ > 0, there is an integern < N,
with [/ — 1| < g, for |k| < M.

Problem 6.5.2. Let 02 = E|§, — £,12, where &, = E(& | Ho(£)). Prove that if
U,f = 0, for some fixed n > 1, then the sequence £ must be singular. If, furthermore,
2

0, — R(0) as n — oo, then £ must be also regular.

Problem 6.5.3. Prove that the (automatically stationary) sequence & = (&,), of the
form &, = ™, for some random variable ¢, which is uniformly distributed on
[0, 27], must be regular. Find the linear estimate, &,, of the variable &, and prove
that the non-linear estimate
~ SO n
=)
e

gives an error-free forecast for £,, based on the “past history” £* = (..., £_1.&),
i.e.,

ElE, —&>=0, n>1.

Hint. To prove the regularity of the sequence £ = (&,), convince yourself that
en = &r/~/2m represents a white noise sequence, and, therefore the representation
&, = /2me, is of the same form as in [P §6.5, (3)].

Problem 6.5.4. Prove that the decomposition [P §6.5, (1)] into a regular and a
singular components is unique.

6.6 Extrapolation, Interpolation and Filtartion

Problem 6.6.1. Prove that the assertion of [ P §6.6, Theorem 1] remains valid even
without the assumption that @(z) has radius of convergence r > 1, while all zeroes
of @(z) are in the domain |z| > 1.

Problem 6.6.2. Prove that, for a regular process, the function @(z), which appears
in [P §6.6, (4)], may be written in the form

1 o0
k
ECO+E Ckz}, lz| < 1,

k=1

®D(z) = V2mexp
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where

1 (" .
= — / e*n f(A) dA.
2w J_,
Conclude from the above relation that the error in the one-step forecast 012 = E|.§ 1—
£1|? is given by the Szegd-Kolmogorov formula:

of :2nexp{%/ lnf(k)d)k}.

Hint. The Szegd-Kolmogorov formula may be established with the following
line of reasoning:
(1) First, prove that

o0

of =& —&1l1% :/ e =P f () dA, (*)

—00

where @1(1) is given by [P §6.6, (7)]. In conjunction with the notation adopted
in [P §6.6, Theorem 1], taking into account (%), and the fact that f(1) =
5= |@(e~'*)|%, one can show that 67 = |b|>.

(i1) From the first part of the problem,

o0
D(z) = Zbkzk = /2w exp
k=0

1 o0
k
560+ E CkZ},

k=1

which shows that by = /27 exp{%co}, and, consequently, that

1 1 (7
o = 2mexp { —co} = ZJTexp%—/ lnf(k)dk}.
2 2w J_,
Problem 6.6.3. Prove [P §6.6, Theorem 2] without assuming that [P §6.6, (22)]
is in force.

Problem 6.6.4. Suppose that the signal 6 and the noise 1 are uncorrelated and have
spectral densities

1 1 1

1
Jo(A) = and  f,(1) = Py m-

27 1+ bie= A2
By using [P §6.6, Theorem 3], find the estimate, é,H_m, of the variable 6,,,,, from

the observations &, k < n, where & = 6; + 1. Solve the same problem for the
spectral densities

1 » 1
fg(k)=§|2+e *? and f,,(k):E.
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6.7 The Kalman-Bucy Filter and Its Generalizations

Problem 6.7.1. Prove that in the observation scheme [P §6.7, (1)] the vectors m,
and 6, — m,, are uncorrelated:

Elm?* (6, — m,)] = 0.

Problem 6.7.2. Suppose that in the observation scheme [P §6.7, (1)-(2)] the
variable y, and all coefficients, except, perhaps, ao(n, §) and Ag(n, §), are chosen
to be “event independent,” i.e., independent of &. Prove that the conditional
covariance y, is also “event-independent,” in that y, = Ey,,.

Problem 6.7.3. Prove that the solution to the system [P §6.7, (22)] is given by
formula [P §6.7, (23)].

Problem 6.7.4. Let (6,&) = (0,,&,) be a Gaussian sequence, which is subject to
the following special case of the observation scheme [P §6.7, (1)]:

Opt1 = ab, +bey(n+1) and &41 = A6, + Bes(n + 1).

Prove that if A # 0, b # 0 and B # 0, then the limiting error of the filtration
y = lim, - Y, exists, and is given by the positive root of the equation

B2(1—a?) b2 B2
2 2 _
v +[T_b}”_7_0'

Hint. By using formula [P §6.7, (8)], one can show that

a?c?

ety

Yat1 = b* + a*c* —

. 2.2
where ¢? = (%)2. In other words, y,+1 = f(y,), with f(x) = b* 4+ a’c? — el

x > 0. Furthermore, it is easy to see that f(x) is non-decreasing and bounded. From
this property one can conclude that lim y,, ( = y) exists and satisfies the following
equation

v+ 21 —a®) — by —b*c? =0,
which, due to the Viete formula, can have only one positive root.

Problem 6.7.5. (Interpolation; [80, 13.3].) Let (6,§) be a partially observable
sequence, which is subject to the recursive relations [ P §6.7, (1) and (2)]. Suppose
that the conditional distribution of the vector 6,,, namely

wa(m,m) =P (0, <a|ZF%),

is normal.
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(a) Prove that for any n > m the conditional distribution
wa(m.n) = P(6, < a|.Ff)

is also normal, i.e., 7w, (m,n) ~ A (u(m,n), y(m,n)).
(b) Find the interpolation estimate, p(m, n), of 6,, from 975 . Find also the matrix
y(m,n).
Problem 6.7.6. (Extrapolation; [80, 13.4].) Suppose that in the relations [P §6.7,
(1) and (2)] one has
ao(n, &) = ao(n) +ax(n)é,,  ai(n,§) = ai(n),
Ao(n,§) = Ao(n) + A2x(n)é, A1(n,§) = Ai1(n).

(a) Prove that, with the above choice, one can claim that the distribution
wap(m,n) =P, <a,& <b| 355,), n > m, is normal.
(b) Find the extrapolation estimates

E0,| %) and E(&,|.75). n=>m.

Problem 6.7.7. (Optimal control; [80, 14.3].) Consider some “controlled” and
partially observable system (6,, &,)o<n<n, Where

Onr1 =ty + 0, + ber(n + 1),

Ent1 = Oy +e2(n + 1).
The “control” u, is ﬁf -measurable and such that Euﬁ < oo, forall0 <m <N —1.
The variables &1(n) and e;(n),n = 1,..., N, are chosen as in [P §6.7, (1) and (2)]

and E() =0, 90 ~ JV(I’I’Z, ]/).
We say that the “control” u* = (ug,...,ux_,) is optimal if V(u*) = sup V(u),

where

N—1
V(u) = E[Z(@f +u?) + efv}.

n=0

Prove that the optimal control exists and is given by
u;f:—[l—}—P,,H]@PnHmZ, n=0,...,N—1,

where
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and the quantities (P, )o<n<n are defined recursively through the relation
Py=1+Pyy— Pl [l +P]® Py=1,
while (m}) is defined by the relation
myg =y A+ y) TG —my), 0<n<N-1,
with m§ = m and with
Vit =Vp 1= +yD® 0=n<N-1

where we suppose that y; = y.

Problem 6.7.8. (Nonlinear filtering and the “change-point” detection problem—
see [117].) Typically, in statistical control—and especially in quality control—one
encounters quantities whose probabilistic nature changes abruptly at some random
moment 6. This moment represents “the change-point,” say, in a particular pro-
duction process. In what follows we will describe the Bayesian formulation of the
problem of early detection of “the change-point,” and will address questions related
to the construction of sufficient statistics for this quantity.

Let (£2,.7) be some measurable space, let {P™; = € [0, 1]} be some family of
probability measures on (£2, %), let 6 be some random variable on (£2, %), which
takes values in the space of integers N = {0, 1,2, ...}, and, finally, let X, X, ... be
some sequence of observable random variables, defined on (§2,.%). Next, suppose
that the following relations are in force:

() P™{0 =0} = 7, P™{0 = k} = (1 — 7) p, where px > 0, Y 7o, pr = 1.
(ii) For every 7 € [0, 1] and every n > 1 one has

PYX| <xi..... X, <x,} =7PYX| < x1,.... X, < x,,}
n—1

+(1 =) > prertPUX S X Xk S 0P Xep S X X S )
k=0

+(1 fn)(pn+l + Pn+2 +)P0{X1 < xlf...,X,, <Xx,}, Xxx € R.
(it)) P/ {X) < x1..... X, <) = [Tomy PHXG < 00 j = O, 1.

The practical meaning of the relations (i)—(iii) can be summarized as follows. If 6 =
0 or 8 = 1, then “the change-point” has taken place before the observation process
has begun. In this case, the variables X, X5, ... are all associated with the already
“changed” production process and are independent and identically distributed, with
distribution function Fy (x) = P'{X; < x}.If6 > n, i.e., the “change-point” occurs
after the n-th observation, then the random variables X1, ..., X, are associated with
the “normal” production process and are independent and identically distributed,
with distribution function Fy(x) = P%X, < x}.If = k, forsome 1 < k <
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n, then Xy, ..., Xy— are independent and identically distributed with distribution
function Fy(x), while Xk, ..., X, are also independent and identically distributed,
but with distribution function Fj(x). We suppose that Fy(x) # Fi(x).

Let fy(x) and fi(x) stand for the densities of the distributions Fy(x) and Fi(x),
with respect to some distribution, say, (Fo(x) + F1(x))/2, relative to which Fy(x)
and Fj(x)) are both absolutely continuous.

Let t denote the moment at which the “change-point” is declared. We suppose
that 7 is a Markov moment relative to (.%#,),>0, where .%, = {@, 2} and .%, =
o(X1,...,X,). Essentially, t represents a guess and the quality of this guess will be
measured in terms of the quantities: P™{t < 6}, which is the probability for “false
alarm,” and E™ (t—#)™, which is the expected delay in detecting the “change-point,”
when the “alarm” is real, in that T > 6.

One would like to construct a moment t that minimizes simultaneously the
probability for “false alarm™ and the expected delay in detection. But since such
a moment does not exist (except for some trivial situations), we introduce the
“Bayesian” risk (below we suppose that ¢ > 0 is some appropriately chosen
constant)

R*(t) =P"{t <0} +cE"(r —6)",

and say that the moment t* is optimal, if, for any 7 € [0, 1], one can claim
that P"{t* < oo} = 1 and that R"(t*) < R”™(t), for every P"-finite Markov
moment T.

According to Problem 8.9.8, a moment t* with the above properties exists and,
in the special case where p;y = (1 — p)*~'p,0 < p < 1,k > 1, can be expressed
as:

™ =inf{n >0:m, > A},

where the constant A, which, in general, may depend on ¢ and p, is the “alarm-
trigger” threshold, while i, is the posterior probability for the “change-point” to
occur no later than the n-th observation:

7, =P"0 <nl|%,), n=>0, Ty = 7.

(a) Prove that the posterior probabilities ,, n > 0, are subject to the following
recursive relations:

70 f1(Xn+1) + p(1 — 1) 1 (Xn41)
70 fi(Xug1) + p(1 — 1) fi(Xog1) + (1 = )X = 7) fo(Xpg1)

(b) Prove that if ¢, = 7, /(1 — 7,), then

Tn+1 =

S1(Xnt1)

On+1 = (p + (pn) (1 — p)f()(Xn+l)'
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(c) Setting ¢ = ¢, (p), m = 0 and Y = lim,( ¢,(p)/ p, prove that

fl (Xn+1)
VUnv1 =0+ ¥0) . Yo =0.
" " fo(Xnt1) ’
Remark. 1f we set 6, = I(0 < n), then 7, = E* (0, | %,) is the mean-square
optimal estimate of 6, from the observations X1, ..., X,,. From (a), (b) and (c) one

can conclude that the statistics m,, ¢, and ¥, are governed by nonlinear recursive
relations, which are said to define the nonlinear filter (for the problem of estimating
the values (6,),>0 from the observations X, ..., X,).

(d) Prove that each of the sequences (77,)n>0, (¢n)n>0 and (¥, ),>0 constitutes a
Markov chain.



Chapter 7
Martingale Sequences

7.1 The Notion of Martingale and Related Concepts

Problem 7.1.1. Show the equivalence of conditions [P §7.1, (2) and (3)].
Hint. The proof can be established by contradiction.

Problem 7.1.2. Let o and t be two Markov times. Show that t +0, t Vo and t Ao
are also Markov times, and, if 0(w) < 7(w) for all w € £2, then %, C %,. Does
this property still hold if o < t only with Probability 1?

Hint. If 0(w) < t(w) for all w € £2, then, for every A € .%,, one has

AN{t=n}=AN{o <n}N{t =n} e Fy,
and therefore A € ..

Problem 7.1.3. Prove that T and X, are both .%,-measurable.

Problem 7.1.4. Let Y = (Y,,.%,) be a martingale (submartingale) and let
V = (V,, #,—1) be some predictable sequence, for which one can claim that all
random variables (V' Y),, n > 0, are integrable. Prove that I/ Y is a martingale
(submartingale).

Problem 7.1.5. Let¥) 2D % D ... be any non-increasing sequence of o-algebras,
and suppose that £ is some integrable random variable. Setting X, = E(§1]%9,),
prove that the sequence (X,),>1, forms a reverse martingale, i.e.,

E(X, | Xn+1, Xnt2,...) = Xyy1 (P-ace), forevery n > 1.

Problem 7.1.6. Let £, &, ... be any sequence of independent random variables,
chosen so that P{§¢; = 0} = P{§, =2} = %, and let X,, = []’_, &. Prove that it is
not possible to find an integrable random variable £, and a non-decreasing family of
o-algebras (:#,), so that one can write: X,, = E(§ | .%,) (P-a.e.), for everyn > 1.

A.N. Shiryaev, Problems in Probability, Problem Books in Mathematics, 283
DOI 10.1007/978-1-4614-3688-1_7,
© Springer Science+Business Media New York 2012
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Conclude that there are martingales that cannot be expressed as (E(£ | .%,))n>1, for
some appropriate choice of & and (%,),>1 (comp. with [P §1.11, Example 3]).
Hint. The proof can be established by contradiction.

Problem 7.1.7. (a)Let§,, &, ... be any sequence of independent random variables
with E|§,| < oo and E§, = 0,n > 1. Prove that, for every fixed k > 1, the sequence
xO= 3" & .E. n=kk+1..

1<ij<-<ig<n

forms a martingale.
(b) Let &1, &, ... be any sequence of integrable random variables, for which

EG |61 by = D8y

n
Prove that the sequence X, = nl(él +---+&,),n > 1, forms a martingale.

Problem 7.1.8. Give an example of a martingale X = (X,,, .-%,),>1, for which the
family { X, X», ...} is not uniformly integrable.

Problem 7.1.9. Let X = (X,),>0 be a Markov chain ([P §8.1]) with countable
state-space £ = {i, j,...} and with transition probabilities p;;. Let ¢ = ¥ (x),
x € E, be any bounded function with the property that, for some A > 0, one has

Z}.eE pijV(j) <Ay(i), forany i € E.

(A function v with the above properties is said to be A-excessive, or A-harmonic.)
Prove that the sequence (A7 (X,)),>0 forms a supermartingale.

Problem 7.1.10. Let 7, 12, ... be any sequence of stopping times, chosen so that
either 7, | t, or 7, 1 7, in point-wise sense. Prove that T must be a stopping time
in either case.

Problem 7.1.11. Prove that if o and t are stopping times, then
Frone = Fo N F, and Fyy, = 0(Fy U F7).

Problem 7.1.12. Let o be any (finite) stopping time, and let 7, 1o, ... be any
sequence of stopping times. Prove that if 7, 1 oo, then

tg‘(‘)‘/\tﬂ T yd )

and, if 7, | o, then Z, =), F,.
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Problem 7.1.13. Let &,&,,... be any sequence of independent standard normal
random variables (§, ~ 47 (0,1)) and let S, = & + ... + &,, n > 1. Prove that the
sequence (X,),>1, given by

ol
= ex ,
i1 P 20+ 1)

is a martingale relative to the filtration (ﬁf)nzl, with 5‘,,5 =o(,...,&).

Problem 7.1.14. Let X = (X,, %,),>0 be any stochastic sequence, set AX, =
Xy — Xy—1, n > 1, and let v(w; {n} x dx) = P(AX, € dx|Z,—1)(w) be any
regular version of the respective conditional expectation. Given any u € R, set

Awo=0 and A, = Y (" =1 (0;{k}xdx). n>1.
1<k<n

Prove that the process M (1) = (M, (u), %,), n > 1, with

n
My, (u) = &% =3 " et AA ()
k=1

is a martingale.
Problem 7.1.15. With the notation adopted in the previous problem, given any u €
R, set
Gu)oy=0 and G(u), = l_[ /e’“ v(w;{k} xdx), n>1,
1<k<n

and suppose that G(u), > 0, n > 1. Prove that the (complex-valued) sequence

(eiuX,, )
G )0’

eiuX”
(I_IZ=1 E(eAX Igzk—l))nzl,

i.e., the sequence

is a martingale.

Problem 7.1.16. Let X = (X,,,.%,).>0 be any stochastic sequence, chosen so that
|AX,| < ¢ (P-a.e.), for some constant ¢ > 0 and for all n > 1, where AX, =
X, — Xu—1. Consider the (real-valued) sequence Y = (Y, %, )n>1, given by

EX”

Y, = ,
! 1_[;‘1=1 E(eAXi | Fi-1)

and prove that Y = (¥, %,),>1 is a martingale (comp. with Problem 7.1.15.)
Will this property hold without the requirement for the variables AX, to be
uniformly bounded?
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Problem 7.1.17. Leté£,...,§&, be independent and normally distributed (.47 (0, 1))
random variables, and let S = O and Sy = & + ... + &, 1 < k < n. Let
D(x) = P& < x}let 4 = a(1,...,&), 1 <k <n,andlet %, = {@, 2}.
Prove that, for every a € R, the sequence X = (Xk, Fi )o<k<n, given by

X —q)(a_S")
SRR

is a martingale.

Problem 7.1.18. Let &y,...,&, be independent and identically distributed random
variables, whose distribution is symmetric. Set S = O and Sy = & + ... + &,
1 <k <n.Let F(x;k) = P{Sk < x}. As a generalization of the result stated in
the previous problem, prove that the sequence X = (X, %k )o<k<n, given by

Xk:F(a_Sk,l’l_k) and fg‘k:O—(slv---vgk)s

is a martingale. (An application of this property can be found in Problem 7.2.12.)

Problem 7.1.19. Let &,&,,... be any sequence of independent and identically
distributed random variables with (shared) distribution function F = F(x), x € R,
and let

1 n
Fy(xiw)=—3 IE@ <x). xeR, nz1,
k=1

be the associated sequence of empirical distribution functions (see [P §3.13]).
By using the result in Problem 7.1.5, prove that, for every fixed x € R, the
sequence (Y, (x),%,(x))n>1, given by Y,(x) = F,(x;0) — F(x), % (x) =
o(Y,(x), Y,41(x),...), s a martingale.

Problem 7.1.20. Suppose that X = (X, #,)ns0 and ¥ = (Y,,.%,)n>0 are two
submartingales.

(a) Prove that X VY = (X, vV Yy, Z,)n>0 is also a submartingale.

(b) Can one claim that the following two sequences are submartingales:

X+Y= (XI’L+YI’L’<3ZI’L)I’LZ()3 XY :(Xnang\n)nzO?

If yes, explain under what conditions, if not, explain why?
(c) Answer the analogous questions in the case where X and Y are martingales
and also in the case where X and Y are supermartingales.

Problem 7.1.21. Let &;,&,,... be any infinite sequence of exchangeable random
variables (i.e., random variables with the property that, for every n > 1, the
probability distribution of the vector (§,...,§,) coincides with the probability
distribution of the vector (&, ..., &y, ), for any permutation, (7, . .., 7,), of the set
(1,...,n)—for an equivalent definition see Problem 2.5.4). Suppose that E§; < oo,

S,,:&—}—...—i—énandlet%:0(%,‘2”—3,...).
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As a generalization of [P §1.11, Example 4], prove that one has

Sy Sn+l
—_— = - >
E(n |gn+l) " 1 (P a.e.), n 1,

i.e., the sequence (%, %)n>l forms a reverse martingale.

Problem 7.1.22. Prove that any reverse martingale is automatically uniformly
integrable.

Problem 7.1.23. The o-algebra .%,, associated with the Markov time 7, is defined
as the collection of sets

{Ae F:AN{t =n} e %, foralln > 0}.

Why can’t one define this o-algebra as .7, & o(Fy:n<1)?

Problem 7.1.24. If X = (X,,.%,),>1 is a martingale, then, for every sub-
sequence, (n;) < (n), one can claim that (X,,,.%,, )r>1 is also a martingale. By
providing appropriate examples, prove that, in general, this property may not hold
for local martingales.

Problem 7.1.25. In martingale theory, a uniformly integrable supermartingale
I = (I1,, %#,)n>0, with the property I1,(w) — 0 asn — oo, for every w € §2
(point-wise convergence to 0), is called potential.

Suppose that [T = (I1,,.%,)q>0 is a potential and let .#_; = %,. Prove that
there is a unique predictable and non-decreasing sequence A = (A,, Fn—1)n>o0
starting from 0, i.e., with Ay = 0, for which one can write

M, = E(Aco — Ay | Zn), 1> 0.

Problem 7.1.26. Let X = (X,,.%#,),>0 be a supermartingale. Prove that the
following conditions are equivalent:

(i) There is a submartingale, ¥ = (Y, %,)s>0, for which one can claim that
X, >Y, (P-a.e.), foralln > 0;
(ii) There is a unique Riesz decomposition of the form:

Xn:Mn+Hn7 nzov

in which M = (M,,, %,),>0 is a martingale and IT = (I1,, .%,),>0 is a potential.

Problem 7.1.27. Let X = (X,,-%,)x>0 be any submartingale. Prove that one can
find a non-negative martingale, M = (M,,, %,),>0, with the following properties:

Xn+§Mn, n>0, and supEXj:supEMn.
n n

Hint. Use the fact that X* = (X5, .%,).>0 is also a submartingale and set
M, = lim, 00 E(X,f,,, | ).
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Problem 7.1.28. Suppose that the probability space (£2,.%,P) is endowed with
the filtration .% = (%#,),>0, let 0 and t be any two Markov times (for .%) with the
property o(w) < t(w) forevery w € 2, and let A, = {w : 0(w) < n < t(w)},
n > 1. Prove that A, € .%,_, for every n > 1. In other words, the sequence
(Xn)n=1, given by
Y - 1, ifo(w) <n <1t(w),

! 0 otherwise,

is predictable, in that X, is .%,_;-measurable for every n > 1.

Problem 7.1.29. (On [P §7.1, Theorem 2].) Let X = (X,, %y)u>0 be any
submartingale with Doob-decomposition X, = m, + A,, n > 0, where A9 = 0
and therefore my = X. Prove that if { Xy, X1, ...} is a uniformly integrable family,
then EAs, < oo and the family {mg, my, ...} is also uniformly integrable.

Problem 7.1.30. Suppose that M = (M,, . #,),>0 is a square integrable martin-
gale. Prove that

SpEM; <oco <= > E(My— M)’ < oc.
" k>1

Problem 7.1.31. Let t = t(w) be any Markov time for the filtration (.%,),>0 and
suppose that f = f(n) is a non-decreasing function of n € N = {0,1,2,...},
chosen so that f(n) > n. Prove that T(w) = f(t(w)) is also a Markov time.

Problem 7.1.32. Consider the sequence X = (X,,.%,) and suppose that this
sequence is a martingale with respect to the probability measure P. Then suppose
that Q is another probability measure that is equivalent to P (Q ~ P). Prove by way
of example that the sequence X = (X,, .-%,) is not necessarily a martingale relative
to the measure Q.

Problem 7.1.33. According to [P §7.1, Example 5], if X = (X,,%,) is a
submartingale and g = g(x) is some convex and non-decreasing function with
the property E|g(X,)| < oo, n > 0, then the sequence (g(X,), %) is also a
submartingale. Give an example of a submartingale (X,,) and a function g = g(x),
which is convex but fails to be non-decreasing, for which (g(X,),-%#,) is not a
submartingale.

7.2 Invariance of the Martingale Property Under Random
Time-Change

Problem 7.2.1. Prove that [P §7.2, Theorem 1] remains valid in the case of
submartingales, provided that condition [P §7.2, (4)] is replaced with

lim XtdP=o.

n—>00 J{ry>n}
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Hint. The proof is essentially the same as in [ P §7.2, Theorem 1]. One only has
to notice that the relation X,, < X, implies the following chain of inequalities:

/ szszE[/ X,dP— deP}
BN{ry>n} m=>00 | Jpn{r,>n} BN{ry>m}

> / X,dP— lim X, dP.
BN{ry>n}

m—>00 J BN{t,>m}

Problem 7.2.2. Let X = (X,,, %,),>0 be any square integrable martingale, with
EXo = 0, let T be a stopping time, and suppose that

lim X2dP =0.

n—00 J{r>n}

Prove that
EX? = E(X), (= E> <AX,-)2) :
j=0

where AX) = X(),AXJ' = Xj —Xj_l,j > 1.
Hint. In order to prove the inequality

T
EX? <E) (4X)),
j=0
use [P §7.2, Theorem 1] and Fatou’s lemma (Elimy X2, < limy ES?, ). To
prove the inequality in the opposite direction, observe that

TAN
EX?>EX?,y =E) (AX)),
j=0
and use Fatou’s lemma again.

Problem 7.2.3. Prove that for every martingale, or, for every non-negative sub-
martingale, X = (X,,-%,)n>0, and for every stopping time t, one has

E|X,| < lim E|X,|.
n—>00

Hint. Use the fact that | X | is a submartingale and that, by [ P §7.2, Theorem 1],
E|X:an| < E[Xy]|, forevery N > 1. Consequently, limy E| X An| < limy E|Xy].
The proof can now be completed by using Fatou’s lemma.

Problem 7.2.4. Let X = (X, %,)s>0 be a supermartingale, and suppose that there
is a random variable &, with E|§| < oo, for which one can write X,, > E(£].%,)
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(P-a.e.), forevery n > 0. Prove that if t; and 1, are two stopping times with P{z; <
7} = 1, then
X, > E(Xy, | %) (P-a.e.).

Hint. By using the result from [P §7.2, Theorem 1], verify the relations
E|X: | < o0, E|X4,| < 0o and

lim | Xu| dP = 0.

n J{m>n}

Problem 7.2.5. Let &,&,,... be any sequence of independent random variables
with P{¢; = 1} = P{§ = —1} = 1/2, and let @ and b be any two positive numbers
with b > a. Given any n > 1, set

Xy =ay I =+1)—bY I =-1)
k=1 k=1
and let

t=inf{n > 1:X, <-r}, r>0.

Prove that Ee*” < 0o, for A < a, and that Ee** = oo, for A > «, where

b i 2b n a i 2a
n n )
a+b a+b a+b a+b

oy =

Problem 7.2.6. Suppose that &1, &, ... is some sequence of independent random
variables with E§; = 0 and D& = o2, and let S, = & + --- + &, and

ﬁ,f = o{,...,§,}, for n > 1. Prove the following generalization of Wald’s
identities [P §7.2, (13) and (14)]: if EZ;:I E|§;| < oo, then ES; = 0, and, if
E> o, E&‘]z- < 00, then

ES?—EY & —EY ol
i=1 i=1

Problem 7.2.7. Let X = (X,,, %#,)n>1 be a square integrable martingale and let t
be any stopping time for (.%,). Prove that

EX? <E) (AX,)".
n=1
In addition, prove that if

lim E(X?I(t > n)) <oo, or lim E(|X,|I(r >n)) =0,

n—oQ n—>oo

then E(AX,)> =EY . _, X2
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Problem 7.2.8. Let X = (X,,,.%,),>1 be any submartingale and let 7; < 7, < ...
be stopping times for (.#,), such that the expectations EX,  are well defined and

Tm

lim E(Xn+1(tm >n)=0, m=>1.
n—oo

Prove that the sequence (X, , %, )m>1 is a submartingale. (As usual, we define
G, ={AeF AN{t,=j}e F;,j>1})

Problem 7.2.9. Let X = (X,,.%,).>0 be a non-negative supermartingale and let
79 < 71 < ... be stopping times for (.#,). Show that the sequence (X, ,.%,)n>0 is
also a supermartingale.

Problem 7.2.10. As an extension of the elementary theorem in renewal theory—
see [P §7.2, 4 ]—prove that (under the assumption Do < oo and with the notation
a = (Eop)™") one must have

DN,

— a’Doy  as t — oo.

Furthermore, the central limit theorem holds:

N; —at
P%t—afx}—ﬂp(x) as t — o0.

\/a3DO]Z

Problem 7.2.11. Let &,&,,... be any sequence of independent and identically
distributed random variables, let S, = & + ...+ &,, n > 1, and let

t=inf{n >1:8S, >0}

(as usual, we set T = 00, if §, < Oforalln > 1).
Prove that if EE; = 0 then Et = oc.

Problem 7.2.12. By using the martingale property of the sequence X =
(Xk» Zi)o<k<n from Problem 7.1.18, and also the property EXy = EX,, (see
[P §7.2, Corollary 1]), where 7, = min{0 < k < n : Sy > a}, a > 0 (with the
understanding that t, = n + 1, if Sy < a for all 0 < k < n), prove the inequality
(see [P §4.4, Lemma 1])

P{ max S; > a} <2P(S, > a}.

0<k=<n

Problem 7.2.13. As an extension of the statements in [P §7.2, Theorems 1 and 2],
prove the following result: Consider the martingale X = (X, .%,) and let T be any
stopping time with P{t < co} = a, for which E| X;| < co and lim, . E[ | X,,| I (T >
n)] = 0. Then:

lim E[|X.|I(t > n)] = 0;
n—oo

E|X; — Xian| > 0 as n— oo;

and EX, = EX,.
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Problem 7.2.14. (On [P §7.2, Theorems I and 2].) Suppose that t; and 1, are
two finite stopping times with P{t; < 7} = 1, and let X = (X,),>0 be some
martingale (all defined on the same probability space). Prove that if

E sup | X,| < o0, (%)
n<tn
then E(X, | #;,) = X, (P-a.e.).
Hint. Use the fact that condition (*) implies that the family of random variables
{IXuno0l, | Xya1ls - - -} is uniformly integrable.

Problem 7.2.15. In the context of [ P §7.2, Example 1], consider the stopping time
7 defined in [P §7.2, (16)], and prove that Et” < oo, for every p > 1.

Problem 7.2.16. Give an example of a martingale X = (X,, %,)u>0, and a
stopping time t, with the property that (see [ P §7.2, Theorem 1]) the condition

lim |Xn[dP =0
n J{r>n}
holds, but the condition E| X | < oo fails, i.e., E| X;| = oo.

Problem 7.2.17. Let M = (M,,, %,),>0 be any martingale and, given any N > 1,
set ty = inf{m > 0 : |[M,,| > N}, with the understanding that inf @ = oo. Prove
that the martingale M is uniformly integrable if and only if

lim E| Mo, |1 (zy < 00) = 0.

Problem 7.2.18. (On [P §7.2, Examples 1 and 2].) Let &1, &,, ... be any sequence
of independent and symmetric Bernoulli random variables (P{§; = 1} = P{§ =
—1} = 1/2,fori > 1). Consider the stopping time
t=inf{n >0:85, =1},
where So = 0and S, = & + ... + &, (as usual, we suppose that inf @ = 00).
(a) Prove that, for every A € R, the sequence (X ,%)nzo, given by

X/l _ e/lsn

" (coshA)"’

forms a martingale. By using this property, prove that P{t < oo} = 1, Er = o0
and
E(coshA)™" = e, forevery A >0
(comp. with [P §7.2, (18)]).
(b) With ¢ = 1/ cosh A, the above formula implies that

Eo' = Y a'Ple =nj = [1- VI~ ]

n>1
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(see also Problem 8.8.19). By using the last relation, prove that
P{r =2n—1} = (-1)"*'C}, .
where

cr = XX-1)...(X=n+1)

n!

(see Problem 1.2.22).

(c) Let I = inf{S, : n < t}. Prove that for every k > 0 one has

1
k+1

(d)Letp = inf{fn >0: S, = lorS, = —k}. Show that ty — 7 (P-a.e.)
and S;, — S; ask — oo (P-a.e.), and yet ES;, /4 ES; (in fact, ES;, = 0, while
ES: = 1). Explain why the convergence of the expected values does not hold (ES,
does not converge to ES; as k — 00), in spite of the fact that S;, — S, (P-a.e.).

P{l <k} =

Problem 7.2.19. The argument of [ P §7.2, Theorem 2] is based on the assumption
that the expectation of the stopping time 7 is finite (i.e., Et < 00). Prove that if, for
some 0 < ¢ < | and some integer N, one can write

Pct<n+N|%,)>¢e (P-ae) forevery n>1,

then one can claim Et < oo.
Hint. Show by induction that P{t > kN} < (1 — &)X, k > 1.

Problem 7.2.20. Let m(t) denote the renewal function, introduced in [P §7.2, 4].
The elementary theorem of renewal theory says that m(t)/t — 1/ ast — oo. The
next two statements refine this claim further.

(a) Suppose that the renewal process N = (N,);>o lives on a lattice of size d,
i.e., for some fixed d > 0 one can claim that the the distribution of the random
variable o, is supported by the set {0, d, 2d, .. .}. Then (Kolmogorov, 1936)

ZP{Tkznd}ei as n — oo.
k=1 ®

(b) If there is no d > 0, for which one can claim that the renewal process N =
(N¢)i>0 lives on a lattice of size d, then (Blackwell, 1948)

> h
Y Pi<Ti<t+hi—>— asi—o0, (%)
k=1 K

for every h > 0. (Note that the sum in (x) gives m(t + h) — m(t).)
Argue that the above two statements are plausible, or, better yet, just prove them.
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Hint. With regard to (a), one must become familiar with the proof [P §8.6,
Theorem 2].

Problem 7.2.21. Let &1, &, ... be any sequence of independent Bernoulli random
variables, with P{¢;, = 1} = p, P{§, = -1} = ¢, p + ¢ = 1,i > 1. Given some
integers x, a and b, witha <0 <b,set S,(x) =x+& + ...+ &, and let

7,(x) = inf{n > 0: §,(x) < a},

t?(x) = inf{fn > 0: S,(x) > b},

tf(x) =inf{n > 0: S,(x) <aor S,(x) > b}.
Prove that:

15 f < d ,
P{t,(x) < o0} = fp<qgandx >a
(q/p)**, ifp>gandx > a;

if p >
P{z’(x) < o0} = L if p>gqandx <b,
(p/q)"™. if p<gandx <b;

P{zl(x) < oo} =1, a<x<b;

and that fora < x <b

E b =x—a_b—a[(q/p)“‘—(q/p)“} ,
K e L 0
Ed?(x) = (b—a)(x —a), it p=g=1/2.

Problem 7.2.22. Let &,&,,... be any sequence of independent and identically
distributed random variables, with values in the set {—1, 0, 1, . . .}, and with expected
valuepu < 0.LetSo=1,S, =1+& +...+&,n>1,andlett = inf{n > 1 :
S, = 0}. Prove that Et = ﬁ

7.3 Fundamental Inequalities

Problem 7.3.1. Let X = (X, .%,).>0 be any non-negative submartingale and let
V = (Vu, Zu—1)n>0 be any predictable sequence (as usual, we set F_; = %),
with 0 < V,41 <V, < C (P-a.e.), where C is some constant. Prove the following
generalization of the inequality in [ P §7.3, (1)]: for every fixed A > 0, one has

3P| max kakzx}Jr/ VX, dP < EViAXy.
0<k=<n maxo<k<n Vi Xpe <A k=0

with the understanding that A Xy = Xj.
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Problem 7.3.2. Prove the following result, known as Krickeberg’s decomposition:
every martingale X = (X,, .%#,),>0, that has the property sup E|X,,| < oo, can be
written as the difference between two non-negative martingales.

Problem 7.3.3. Let &, &,,... be any sequence of independent random variables,
let S, =& +---+§&,andlet S,,, = Z’; —m+1§;- Prove the following relation,
which is known as the Ottaviani inequality,

P{|Su| > 1}

P{max S; >2t} - , >0,
1<J<"| | T ominj<j<, P{|S;.] <t}

and conclude that (under the assumption E&; = 0, for i > 1) one must have

[e.]

o0
/ P{lmax 1S;] > Zt}dt < 2E|S, |+2/ PIS,| > 1} dt. (%)
0 =J/=

2E|S,|

Hint. To establish the Ottaviani inequality, let A = { max;<x<, |Sx| = 2¢}, and
let

Ae =1{ISi| <2t,i=1,....k—1;|Sk| =2}, for 1 <k <n.

Then A = )"} _, Ak, and one can show that for any ¢ > 0

P min P{IS;| < 13| = (P(4) -+ P(A))| min P{S;,| <1}]
= P(Al m{|Sn| > t}) +e P(An n {|Sn| > t}) = P{ISnI > t}'

In order to establish () (under the assumption E§; = 0, fori > 1), one only has
to show that

/Ooo P{ max |5 > 2t}d

2E|S,| o0
5/ dt+/ P{|Su| > 1} dr.
0 2

Els,| 1 —maxi<j<n P{S;n| > 1}

and that fort > 2E|S,|

1— max P{|S;,| > 1} > 1 — max P{|S;, > 2E|S, |}
1<j<n 1<j=n

E|S; E|S;jal al 1 1
> 1 — max >1—==_
1<j<n 2E|S,| 2 2
Problem 7.3.4. Let &, &,,... be any sequence of independent random variables,

with E§; = 0,7 > 1. By using (x) in Problem 7.3.3, prove that following stronger
version of the inequality in [P §7.3, (10)]:

ES* < 8E|S,|.
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Problem 7.3.5. Prove the formulain [P §7.3, (16)].
Problem 7.3.6. Prove the inequality in [P §7.3, (19)].

Problem 7.3.7. Consider the o-algebras %, ..., %, with %, C # C --- C .%,,
and let the events Ay € %, k = 1,...,n, be arbitrarily chosen. By using [P §7.3,
(22)], prove Dvoretzky’s inequality:

U

k=1

P Z P(Ax | Fk—1) > Ay, forevery A > 0.

k=1

<A+P

Hint. Define Xy = I4,,k = 1,...,n, and notice that

X*=max [I4|=1p )
n lsksnl i Us=1 4k

If B, =Y i— P(Ax | Zi—1), then [P §7.3, (22)] implies that
P{Xy > 1} <E(By ne) + P{B, > ¢},

from where the required inequality easily follows.

Problem 7.3.8. Let X = (X,),>1 be any square integrable martingale, and let
(bn)n>1 be any non-decreasing sequence of positive real numbers. Prove Hdjek—
Rényi’s inequalitiy:

P%max AXkZXk—Xk_l,X0=O.

1<k<n

X 1 < E(AX)?
_k’zk M’
by A2 b2

Problem 7.3.9. Let X = (X,),>1 be any submartingale and let g(x) be any
increasing function, which is non-negative and convex. Prove that, for every
positive 4, and for every real x, one has

Eg(hX,)
Plmax Xz xf < = G,

In particular, one has the following exponential analog of Doob’s inequality:

P{ max Xj > x} < e Eeh¥n,
1<k<n

(Comp. this result with the exponential analog of Kolmogorov’s inequality, estab-
lished in Problem 4.2.23.)

Problem 7.3.10. Let &,&;,... be independent random variables, with EE, = 0
and Eé,f = I, forn > 1,and let T = inf{fn > 1:)7/_ & > 0}, with the
understanding that inf @ = oco. Prove, that Et!/? < oo.
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Problem 7.3.11. Let £ = (£,),>1 be any martingale difference. Prove that, for
every 1 < p < 2, one can find a constant C,, for which the following inequality is
in force:

Eigg);sj)” = Co 21"

Problem 7.3.12. Let X = (X,),>1 be any martingale, with EX,, =0 and EX,% <
oo =1, for any n > 1. As a generalization of the inequality established in Prob-
lem 4.2.5, prove that, for every fixed n > 1, one has

<

EXx? ; ~o
}_—82+EX,12’ orevery ¢ > 0.

P{ max Xy > ¢
1<k<n

Problem 7.3.13. Let &, &,, ... be any sequence of independent random variables,
with P{§, = 1} = pand P{§, = —1} = ¢, where p +¢ = 1,0 < p < 1, and let
So=0,S, =§1+...+§n.

Prove that the sequence ((¢/p)%"),>0 is a martingale and, if p < ¢, then the
following maximal inequality is in force:

k
P{supS,, zk} < (2) .
n>0 q

(Note that the above inequality is trivial if p > q.)
In addition, prove that when p < g one has

Esup S, < P .
n=>0 q—p
In fact, the above relations are actually identities, which shows that, for p <

g, the random variable sup,-,S, has geometric distribution (see [P §2.3,
Table 2]), i.e.,

k
PlsupS, = k :(3) (1—3), k=012,....
n>0 q q

Problem 7.3.14. Let M = (M, % )o<k<n be a martingale that starts from O,
ie, My = 0, and is such that —a;, < AM; < 1 —ay, fork = 1,...,n,
where AM;, = My — My_; and a; € [0,1]. As a generalization of the result
established in Problem 4.5.14, prove that, for every 0 < x < g, withg =1 — p and
p=1%"_ a onehas

P{M, > nx} < "™

where ¥ (x) = In [(Hp_x)”'x (qﬁx)’i—x]
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Hint. Use the reasoning mentioned in the hint to Problem 4.5.14, and take into
account the fact that

EehM” — E[ehM,,flE(ehAM,, |€g~n_l)]

< E[ehM”*1 ((1 — a,,)e_h“” + aneh(l_“”))].

Problem 7.3.15. Let M = (My, Fi)k>0 be a martingale with M, = 0, chosen so
that for some non-negative constants a; and by one has

where AM; = M), — M;_;.
(a) Prove that, for every x > 0 and every n > 1, one has

P{M, > x} < ex {——2)“2 }
n= =R Yiei(ak + b2y’
2x2
P{M, < —x} <exp! ——=———¢,
{ } p{ ST (@t bm}

which, obviously, implies that

P{|M,| > x} <2e { 207 }
X Py ——=———————— ¢ -
= =Se > oi=1(ak + bi)?
(Comp. with the respective inequalities in [ P §1.6] and [ P §4.5].)
(b) Prove thatif a; = a and b, = b, forall k > 1 (and, therefore, —a < AM), <
b, k > 1), then the following maximal inequalities is in force: for every f > 0 and
every x > 0 one has

8
P{Mn—ﬂnzxforsomen}fexp{_ﬁ}; (%)
furthermore, for every 8 > 0 and every integer m > 1, one has
2 2
P{M, > Bn for somen > m} < exp{ _ (C;T-—i)Z}
(%)
P{M, < —Bn f > m) < 2mp?
n = —pPpniorsomen = my; < e€X B —
P (a +b)?

(Comp. with the inequalities in [ P §4.5].)
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Remark. The inequalities in (a) are known as Hoeffding—Azuma’s inequalities.
The generalization given in (b) is due to S. M. Ross and can be found in the book
[107].

Hint. (a) Given any ¢ > 0, one can write

P{M, > x} < e”“Ee™".
Setting V,, = e“Mrwe have V, = V,_e4Mn g0 that
E(V, | Mymt) = Vit E(eAMr | M, ).

Iterating over n and using the assumption —a; < AM; < by, one can show that

n

P{M, > x} <e™* l—[
k=1

bre % + ape bk
ax + by

n 2
c
< pCX e b 2}'
<e ||exp{8(ak+ k)
k=1
Consequently,

" 2
PiM, zx}fexp{ —cx+czzw},
k=1

8

and, since ¢ > 0 is arbitrary, one can claim that
. ) 2 . (ar + bk)2
P{M, > x} flgligexp% —cx+c ;T

2x2 }

=exXpy ~—=———————
P { S (ax + bi)?

(b) To prove (), introduce the variables
Vi, =exp{c (M, —x —Bn)}, n=>0,

and notice that, with ¢ = 88/(a + b)?, the sequence (V,),>0 is a non-negative
supermartingale. Consequently, for every finite Markov time 7(K) (< K), one must
have

EVik) < EVp = e S#/(@H07,

With ©(K) = min{n : M, > x + fn n = K}, this yields P{Mx) > x +
Bt(K) = P{Vy (k) = 1} < EVy(x) < EVp, and, as a result,

-8

P{M, > x + Bn for somen < K} < eXp{(Cl+—)Cf)2}‘
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Taking K — oo gives the inequality in (), from which (xx) obtains with the
following manipulation:

P{M, > Bn forsomen > m} <

< P{Mn > > + > for some n

- _8mB/2)(B/2)\ _ B 2mp*
=¢ p{ (a + b)? } exp{ (a+b)2}'

Problem 7.3.16. Let M = (M, .%,),>0 be any martingale and, given some A > 0,
let t = inf{n > 0 :|M,| > A}, with the understanding inf @ = oco. Prove that

P{t < oo} < A7'M])i,

where || M || = sup, E|M,|.

Problem 7.3.17. With the notation adopted in the previous problem, prove that

o0
Y EIMy — M I(z > k) < 20| M| .
k=0

where M_; = 0.

Problem 7.3.18. Let M = (M,,.%,),>0 be any martingale with M, = 0,
and let [M] = ([M]y, Fn)n>1, stand for its quadratic variation, i.e., [M], =
> i (AMy)?, where AMy = My — My_;. Prove that

Esup|M,| <o <= E[M]/> <. (%)

Remark. The well known Burkholder—-Davis—Gundi inequalities
A ML, < MG, < BolIMIL N, p =1,

in which MY = sup, [M,| and A, and B, are universal constants (comp. with
[P §7.3, (27), (30)]; see also [79]), can be viewed as an “L?-refinement” of the

property ().

Problem 7.3.19. Let M = (My, % )i>1 be any martingale. Prove the Burkholder’s
inequality: for every r > 2 there is a universal constant B,, such that

n r/2
E|Mn|rsBr{E[ZE((AMk)ﬂ%_I)} +E sup |aMl.
k=1 1<k=<n

where AMj, = My — My—1, k > 1, with My = 0.
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Problem 7.3.20. (Moment inequalities 1.) Let &1, &, ... be any sequence of inde-
pendent and identically distributed random variables with E&; = 0 and E|&,|" < oo,
forsomer > 1,andlet S, = & +...4&,,n > 1. Due to the second Marcinkiewicz-
Zygmund inequality (see [P §7.3, (26)]),

n r/2
e, < 5E(L6)

i=1

for some universal constant B,.
By using Minkowski’s inequality (see [ P §2.6]) with » > 2, and the ¢, -inequality
from Problem 2.6.72 with r < 2, prove that

nE|&|", l<r=<2,

ElS,|" < B,
n'PE|& ", r> 2.

In particular, with r > 2 the last relation gives the inequality

En~'2|S,|” < B,EJ&|".
In conjunction with the result from Problem 3.4.22, one must have lim, En~'/2|S,|"
— E|Z|", where Z ~ .#(0,0?%), 0% = EE2.

Problem 7.3.21. (Moments inequalities I1.) Let &,&,,... be any sequence of

independent and identically distributed random variables, and let Sy = 0 and

Sy, =& +...+§&,n > 1. Let T be any Markov time, relative to the filtration

(Z3) >0, defined by 3569 ={2,2}and F5 = 0(Sy,...,S,), n > 1. Prove that:
(a)If 0 <r < land E|§|" < o0, then

E|S:|" < El&i|"Ex.
O If1 <r <2and E|§|" < 00, EE; = 0, then
E|S:|" < B,E[&|"Ex.
(©) Ifr >2and E|&|" < 00, EE; = 0, then
E|S.|" < B,[(E&))/*Ex"? + E|&|'Ex] < 2B,E|&|"E¢"/?,
where B, is an universal constant, that depends only on r.

Hint. In all cases one must prove the required inequalities first for the “cut-off”
(finite) times T A n, n > 1, and then pass to the limit as n — oco.

Problem 7.3.22. Let &;,...,&, be independent random variables. Prove the
Marcinkiewicz-Zygmund inequality: for every r > 0 and every n > 1, one can
find a constant, B,, which is universal, in that it depends only on r, so that one can
write (comp. with the second inequality in [P §7.3, (26)])
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2r

E

ZS;
j=1

n
< B,n"" Y Elg”.
j=1

Hint. It is enough to consider only the (much simpler) case where r > 1 is an
integer.

Problem 7.3.23. Let (§,),>1 be any orthonormal sequence of random variables in
L? (ie., E&E; = 0,fori # j and EE? = 1 forall i > 1). Prove Rademacher-
Menshov’s maximal inequality: for any sequence of real numbers (c,),>; and for
any integer n > 1, one has

k 2 n
£ 2 2
Eg}g(i}c,g) <In (4n)2;cj .
j= j=

Problem 7.3.24. Let (§,),>1 be any orthonormal sequence of random variables in
L?, and let (¢,),>1 be any sequence real numbers with

o0
> e in*k < oo,
k=1

Prove that the series Y ;- | cx& converges with Probability 1.
Hint. Use the result from the previous problem.

Problem 7.3.25. (On the extremality of the class of Bernoulli random variables:
PartI)Let&, ..., £, be independent Bernoulli random variables with P{§; = 1} =
P{& = -1} =1/2.

(a) Prove that, with p = 2m and m > 1, the second Khinchin inequality in
[P §7.3, (25)] can be written in the form: for every n > 1 and every family,
X1, ..., X,, of independent standard normal (.#(0, 1)) random variables, one has

n n
>k > arXi
k=1 k=1

(b) Let X, denote the class of independent and identically distributed symmetric
random variables X1,..., X,, with DX; = 1,i = 1,...,n. Prove that, for every
n > 1 and every m > 1, one has

2m 2m

E <E
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Hint. (a) It is enough to prove that

PRI P
W |7 a [T
! ]
k=1 bt GROY L 2R
i=0
n e 2m)! m! ", .
EEaka = 2l Z mlall o an P
k=1 kot =m 10 Ky!

ki>0

and that 2"ky!. .. k,! < Qk)!...(2k,), ifk; + ... + k, = m and k; > 0. (Note
that ) = (2m — 1)!! = EX?"—see Problem 2.8.9.)

(b) With m = 1, the required inequality is obvious. In the case m > 2, one must
prove first that the function ¢(¢) = E|x + +/t&|*" is convex in the domain ¢ > 0.
Next, by using Jensen’s inequality for the associated conditional expectations,
prove that, if the sequences (&1,...,§,) and (Xy,..., X,) are independent, then

the following inequality must be in force

n
> ark
k=1

2m 2m

E <E

n
> ari| X
k=1
Finally, prove that

ENXl 8l X D) 2 (X X))

Problem 7.3.26. (On the extremality of the class of Bernoulli random variables:
Part 1) Let Xy, ..., X, be independent random variables, such that P{0 < X; <
1} = land EX; = p;,i = 1,...,n. In addition, let &, ..., &, be independent
and identically distributed Bernoulli random variables with P{§;, = 1} = p and
P{& =0} = 1 — p, where p = (p| + ... + p,)/n. Prove the Bentkus inequality:
foreveryn > 1 andevery x =0, 1,2, ..., one has

PiXi+...+ X, >x} <eP&+...+& > x},

wheree = 2.718....
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7.4 Convergence Theorems for Submartingales
and Martingales

Problem 7.4.1. Let {¢,,n > 1} be some non-increasing family of g-algebras (i.e.,
4 D% D ...) letYy = ﬂ 4,, and let 1 be a some integrable random variable.
Prove the following analog of [P §7.4, Theorem 3]:

EM|¥%,) - E(n|%c) as n— oo (P-a.e.andin L'-sense).

Hint. Let §8,(a,b) denote the number downcrossings of the interval (a, b) for
the sequence M = (My)i<k<n, given by My = E(n|%). Show first that

E
Inl +lal _

Efoc(a.b) < =) — ,

and conclude that B (a,b) < oo (P-a.e.). The rest of the proof is similar to the
proofs of [P §7.4, Theorems 1 and 3].

Problem 7.4.2. Let &,&,,... be any sequence independent and identically dis-
tributed random variables with E|§;| < co and EE; = mand let S, = & +---+ &,
n > 1. Prove that (see Problem 2.7.2)

Sy
E(Sl ISn’ Sn+la . ) = E(SI ISn) = 7 (P-a.e.), n>1.

By using the result from Problem 7.4.1, prove the strong law of large numbers: as
n — oo one has

n .
2 > m (P-a.e andin L'-sense).
n

Hint. Given any B € o(S,, Sy+1,...), show that EI3& = Elg§;,i < n, and
conclude that

E(S,, |S,,,Sn+1,...) = HE(§1|Sn,Sn+1,...);

in particular, E(§ | Sy, Sp+1,...) = % (P-a.e.). In order to prove that % —m
(P-a.e. and in L'-sense), consider the o-algebra 27(s) = (Noe; 0 (Sus Snt1,---)
and, using the result from Problem 7.4.1, conclude that % — E¢& | Z(s)) (P-a.e.
and in L'-sense). Finally, use the fact that the events A € 2 (s) obey the Hewitt—
Savage 0-1 law ([P §2.1, Theorem 3]).

Problem 7.4.3. Prove the following result, which combines H. Lebesgue’s dom-
inated convergence theorem and P. Lévy’s theorem. Let (§,),>1 be any sequence
of random variables, such that §, — £ (P-a.e.) and |§,| < 7, for some random
variable n with En < co. Let (:#,,)m>1 be any non-decreasing family of o-algebras,
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and let Zo, = o(|J %) Then one has (P-a.e.)

lim B | F) = EE | Foo).

n—o00

Hint. Use Lebesgue’s dominated convergence theorem ([P §2.6, Theorem 3])
and P. Lévy’s theorem ([P §7.4, Theorem 3]) to estimate, for large n and m, the
terms in the right side of the representation:

B | Fm) —E(E | F )
= [EGn | Fm) —EEFn)] + [EE | Fn) —EE [Tl

Problem 7.4.4. Prove formula [P §7.4, (12)].

Hint. Notice first that the system {H;(x),..., H,(x)} is a basis in the space
of functions that are measurable for .%, = o(Hi,..., H,). As .%, has finitely
many elements, every function that is measurable for .%, is automatically simple
(see [P §2.4, Lemma 3]). As a result, formula [P §7.4, (12)] must hold for some
constants a; . .., a,. The fact that ar = (f, Hy) follows from the orthonormality of
the basis { Hy(x), ..., H,(x)}.

Problem 7.4.5. Let 2 = [0,1), # = ([0, 1)), let P stand for the Lebesgue
measure, and suppose that the function f = f(x) belongs to L'. Prove that

fu(x) > f(x) (P-a.e.), for

(k+1)27"
fulr) = 2" / FO)dy. k2" <x < (k+ 12"
k

Hint. The main step in the proof is to show that (f,(x), %,),>1, with #, =
o([j27",(j + D27™)],j = 0,1,...,2" — 1), forms a martingale. The result from
[P §7.4, Theorem 1] will then conclude the proof.

Problem 7.4.6. Let 2 = [0,1), # = Z4([0,1)), let P stand for the Lebesgue
measure and suppose that the function f = f(x) belongs to L!. Assuming that the
function f = f(x) is extened to the interval [0, 2) by periodicity in the obvious
way, and setting

2}’1
Sy =) 27" flx 4027,
i=1
prove that

fu(x) = f(x) (P-a.e.).

Hint. Just as in the previous Problem, the key step is to show that the sequence
(fu(x), Zy)n>1, with analogously defined o-algebras (%, ),>1, forms a martingale.
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Problem 7.4.7. Prove that [P §7.4, Theorem 1] remains valid for generalized
submartingales X = (X, .%,), for which

infsup E(X,[ | %) < oo (P-a.e.).

m p>m

Problem 7.4.8. Let (a,),>1 be some sequence of real numbers with the property:
for some § > 0, one can claim that the limit lim,, ¢’/ exists for any ¢ € (=86, §).
Prove that lim,, a,, also exists and is finite.

Hint. The existence of lim, e/’ for every t € (—8,8) is tantamount to the
existence of lim, e’“ for all t+ € R. Thus, it suffices to prove that the function
f(t) = lim, e'"% can be written in the form e’’¢, for some finite constant c. This
last property can be derived from the following properties of the function f(¢):

O [ fOl=11€ekR;
(i) f(t+10)=ft)f(),t,t2eR,;

(iii) the set of continuity points for the function f(¢) is everywhere dense in R.

Problem 7.4.9. Let F = F(x), x € R, be some distribution function, and let
a € (0, 1) be chosen so that, for some 6 € R, one can write F () = «. Define the
sequence of random variables X, X,, ... according to the following rule (known
as the Robbins—Monro procedure):

Xn+l = X, _n_l(Yn —Ol) s
where Y, Y,, ... are random variables, defined in such a way that

P(Yy = 3| Xiveo Xy Yo Yy = | F Kl =1,
1—-F(X,), ify=0,
with the understanding that, for n = 1, the conditional probability in the left side is
to be replaced by P(Y; = y).
Prove the following result from stochastic approximation theory: in the Robbins—
Monro procedure one has E| X, — 8|> — 0 as n — oo.

Problem 7.4.10. Let X = (X,,-%,)s>1 be a submartingale, for which one can
claim that
E(X.I(t < )) # 00,

for every stopping time t. Prove that the limit lim X, exists with probability 1.
n

Problem 7.4.11. Let X =(X,,%,)y,>1 be a martingale and let

Foo=0(Us=; F). Prove that if the sequence (X,),>1 is uniformly integrable,

then the limit X, = limX, exists (P-a.e.), and the “closed” sequence
n

X = (X,...%,)1<n<co is a martingale.
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Problem 7.4.12. Suppose that X = (X,,%,)s>1 is a submartingale and let

Foo = O (U;’il 5‘"). Prove that if the sequence (X n+ )n>1 1s uniformly integrable,
then the limit Xoo = lim, X, exists (P-a.e.), and the “closed” sequence X =

(X, -Zn)1<n<co 1s @ submartingale.

Problem 7.4.13. [P §7.4, Corollary 1 to Theorem 1] states that, for any non-
negative supermartingale X, one can claim the limit Xo, = lim X,, exists and is
finite that with probability 1. Prove that the following properties are also in force:

(@) EXeo | #0) < X, (P-ace),n > 1;

(b) EXoo < lim, EX,;

(¢) E(X; | %#5) < X no for arbitrary stopping times t and o;

(d) Eg(Xs) = lim, Eg(X,), for any continuous function g = g(x), x > 0,
withgTX) — 0as x — o0;

(e) if g(x) > g(0) = 0 for all x > 0, then

Xoo =0 & limEg(X,) =0;
(f) for every given 0 < p < 1, one has
P{Xeo =0} =1 & limEX? =0.
n

Problem 7.4.14. In P. Lévy’s convergence theorem ([P §7.4, Theorem 3]) it is
assumed that E|£| < oo. Prove by way of example that the requirement for E¢ to
exist (min(EET, EE™) < oo) alone, in other words, without insisting that EE1 +
E£™ < oo, cannot guarantee the convergence E(¢ | %,) — E(§| %) (P-a.e.).

Problem 7.4.15. If X = (X,,,.%,),>1 is a martingale with sup, E|X,,| < oo, then,
according to [P §7.4, Theorem 1], lim X,, must exist with Probability 1. Give an
example of a martingale X, for which sup, E|X,| = oo and lim X, does not exist
with Probability 1.

Problem 7.4.16. Give an example of a martingale, (X,),>0, for which one has
X, — —oo as n — oo with Probability 1.

Problem 7.4.17. According to [P §7.4, Theorem 2], given any uniformly in-
tegrable submartingale (supermartingale) X = (X,,.%#,),>1, one can find a
“terminal” random variable X, such that X, — X (P-a.e.). Give an example
of a submartingale (supermartingale) for which the “terminal” variable X, with
X, = Xoo (P-a.e.), exists, but the sequence (X,),>1 is not uniformly integrable.

Problem 7.4.18. Prove that any martingale, X = (X, ).>0, that has the property

sup E(|X,|Int |X,|) < oo,
n

must be a Lévy martingale.
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Problem 7.4.19. Give an example of a non-negative martingale,

X =X, Fdnz1

such that EX,, = 1 foralln > 1, X,(w) — 0 asn — oo for any w, and yet
Esup, X, = oo.
Problem 7.4.20. Assuming that X = (X,,.%,),>1 is a uniformly integrable

submartingale, prove that, for any Markov time t, one has
E(XOO | fg.r) > Xr (P-a. e.) s

where Xo stands for lim X,, which, according to Problem 7.4.12, exists with
Probability 1.

Problem 7.4.21. (On [P §7.4, Theorem 1].) Give an example of a supermartingale,
X = (Xu,Zu)n>1, wWhich satisfies the condition sup, E|X,| < oo, and, therefore,
lim X, ( = Xo) exists with Probability 1, and yet X,, /A X in L',

Problem 7.4.22. Argue that, given any square integrable martingale, M =
(Mn s yn)nzl, the condition

Z E(My — My—1)* < o0,
k=1

or, equivalently, E(M)s, < o0, where (M)s = lim,(M),, guarantees the

Ll
convergence M, — My (P-a.e.), and also the convergence M, — M, for some
random variable Moo, with EM2, < oo.

Problem 7.4.23. Let X = (X,;, %,)u>0 be any submartingale. By the very defini-
tion of submartingale, one must have E| X, | < oo, for every n > 0. Sometimes this
condition is relaxed, by requiring only that EX,” < oo, for n > 0. Which of the
properties of the general class of submartingales, listed in [P §7.4, 2—4], remain
valid under this weaker notion of submartingale?

Problem 7.4.24. Suppose that X = (X,,, .%,).>0 IS a supermartingale, i.e., X, is
F,-measurable, E| X, | < oo and E(X, 41| %) < X, for n > 0. According to
[P §7.4, Theorem 1], if sup, E|X),| < oo, then one can claim that with Probability 1
the limit lim,, X,, = X exists and E| X | < 00.

Notice, however, that the condition E(X,,+ | #,) < X,, is meaningful even with-
out the requirement E| X, 11| < oo, as the conditional expectation E(X,,+1 | %)
would be well defined if, for example, X,,+; > 0, although in this case E(X,,+1 | %)
may take the value +o00 on some non-negligible set.

In lieu with the last observation, we say that X = (X, %, )u>0 is a non-negative
supermartingale sequence, if, for every n > 0, one can claim that X, is .%,-
measurable, P{X, > 0} = 1 and

EXyt1 %) <X, (P-ae.).
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Prove that for any non-negative supermartingale sequence,
X = (Xu. Fu)nz0 .

the limit lim, X,, ( = Xo) exists with Probability 1 and, furthermore, if P{X, <
oo} = 1, then P{Xo < 00} = 1.

Hint. The proof is analogous to the proof of [P §7.4, Theorem 1] and hinges
on the estimate (37) from [P §7.3, Theorem 5] for the number of up-crossings of a
given interval.

Problem 7.4.25. (Continuation of Problem 2.2.15.) As was shown in Prob-
lem 2.2.15, the following relation between o-algebras does not hold in general:

No@. &) = a(g, N 5’)

Show, however, that the last relation is guaranteed by the following condition:

the o-algebras ¢ and &) are conditionally independent, relative to the o-algebra &, for
every n > 1, i.e., one has (P-a.e.)

P(ANB|&) =PA[&)P(B|&).
forany A € 4 and B € &.

Hint. Itis enough to show that, for every ¢ Vv & -measurable and bounded random
variable X, one has (P-a.e.)

E(X ‘ N@ vé’n)) - E(X ‘g v ﬂé;).
Furthermore, it would be enough to consider only random variables X of the form

X =XX,

where the bounded variables X; and X, are such that X is &-measurable and X,
is &-measurable. Finally, use the L'-convergence established in Problem 7.4.1, in
conjunction with the conditional independence established above.

Problem 7.4.26. Let&;, &, ... beindependent non-negative random variables, with
E& < landP{§ =1} < 1.For M,, = & ...&,,n > 1, prove that M,, — 0 as
n — oo (P-a.e.).

Hint. Use the fact that the sequence (M,,),>; forms a non-negative supermartin-
gale.

Problem 7.4.27. Let (£2, (.%;)i>0, P) be any filtered probability space with .%, =
{@, 82}, and let &, &, . .. be any sequence of random variables, chosen so that each
& is F#;-measurable. Assuming that sup; E |§;|* < oo, for some o € (1, 2], prove
that
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1 " a.s., L%
S (6 B | Fia) o,

i=1
(Comp. with the law of large numbers, established in [P §4.3] and the ergodic
theorems of [P §5.3].)

7.5 On the Sets of Convergence of Submartingales
and Martingales

Problem 7.5.1. Prove that any submartingale, X = (X,,.%,), that satisfies the
condition E sup,, | X,,| < oo, must belong to the class C*.

Problem 7.5.2. Provethat [P §7.5, Theorems 1 and 2] remain valid for generalized
submartingales.

Problem 7.5.3. Prove that, for any generalized submartingale, X = (X,, %,), up
to a P-negligible set, one has the inclusion:

{inf sup E(X.[ | .Z,) < oo} C {X, converges }.
m

n>m

Problem 7.5.4. Prove that the corollary to [ P §7.5, Theorem 1] remains valid for
generalized submartingales.

Problem 7.5.5. Prove that any generalized submartingale from the class C™T is
automatically a local submartingale.

Problem 7.5.6. Consider the sequence a, > 0, n > 1, and let b, = ZZ:l aj.

Prove that 32| 93 < oo.
n

Hint. Consider separately the cases: Y .o a, < ocoand Y o, a, = oo.

Problem 7.5.7. Let &y, £&,,&,... be any sequence of uniformly bounded ran-
dom variables, i.e., |§,| < ¢, for n < 1. Prove that the series ano &, and
anl E(, | &1, ..., &) either simultaneously converge or simultaneously diverge
(P-a.e.).

Problem 7.5.8. Let X = (X,).,>0 be any martingale, with the property AX, =
X, —X,—1 <c (P-a.e.), for some constant ¢ < oo (AX(y = Xj). Prove that the sets
{X, converges } and {supn Xy < oo} can differ only with a P-negligible set.

Problem 7.5.9. Let X = (X,,.%,),>0 be any martingale, with
sup, o E[X,| < oo.

Prove that ) (AX,)? < co (P-a.e.). (Comp. with Problem 7.3.18.)

n>1
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Problem 7.5.10. Let X = (X, .%,)n>0 be any martingale, with
Esup,-; [AX,| < oo.

Prove that, up to a P-negligible set,
{Z >1(AXn)2 < oo} C {X, converges }.

In particular, if E(ZnZI(AX,,)z)l/ 2 < oo, then one can claim that the sequence
(X)n>0 converges with Probability 1.

Problem 7.5.11. Let X = (X,,, . %,)n>0 be any martingale with
sup,>o E|[X,| < o0,
andlet Y = (Y,, %#,—1)a>1 be any predictable sequence with
sup, > |[Yu| <00 (P-a.e.).

Prove that the series Z:o=1 Y, AX, converges (P-a.e.).

Problem 7.5.12. Consider the martingale X = (X,,.%,)n>0, chosen so that
sup, E(JAX:|I(r < 00)) < o0, the sup being taken over all finite stopping times 7.
Prove that, up to a P-negligible set, one has

{ZHZI(AX,,)Z < oo} C (X, — ool.

Problem 7.5.13. Let M = (M,,.%,) be any square-integrable martingale. Prove
that, for almost every @ from the set {{M )o, = 00}, one has

. M,
lim
n—00 (M)n

7.6 Absolute Continuity and Singularity of Probability
Distributions on Measurable Spaces with Filtrations

Problem 7.6.1. Prove the inequality in [ P §7.6, (6)].
Problem 7.6.2. Let En ~ P,, forn > 1. Prove that:

P~P = Pz <00} = Plzee >0} = I;
PLP B{zoozoo}zlorP{zoo:O}:l.
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Problem 7.6.3. Let s,, <« P,,n > 1, suppose that 7 is a stopping time (relative to
the filtration (.%,)), and let P, = P|.%; and P, = P |.%; denote, respectively, the
restrictions of the measures P and P _to the o-algebra .%,. Prove that P, <« P if
and only if {T = 00} = {ze0 < 00} (P-a.e.). In particular, this result implies that, if
P{t < o0} =1, then P, < P,.

Problem 7.6.4. Prove the “conversion formulas” [P §7.6, (21) and (22)].
Hint. Show directly that, for every A € .%,_1, one has

E[74E(|-Z0-1)2i—1] = ElLi n2,).
As for the proof of the second formula, it is enough to notice that
P{zy_1 =0} = 0.

Problem 7.6.5. Prove the estimates in [ P §7.6, (28), (29) and (32)].
Problem 7.6.6. Prove the relation [ P §7.6, (34)].

Problem 7.6.7. Suppose that the sequences

fE=(1.6....) and E=(E.bn...).

introducedin [P §7.6, 21, consist of independent and identically distributed random
variables. "
(a) Prove that if P; < Py, then P < P if and only if the measures P, and P,

coincide. Furthermore, if Pz < Py and P # P, then PLP.
(b) Prove that if P§1 ~ P, then the following dichotomy is in force: one has

either P = Por P L P (comp. with the Kakutani Dichotomy Theorem—[P §6.7,

Theorem 3].

Problem 7.6.8. Let P and P be any two probability measures on the filtered space
~ loc ~ ~ ~

(2,7, (F)n>1)- LetP < P (ie., P, <« P,, foralln > 1, where P, = P|.%,

andP, = P|.%,),and letz, = %,forn > 1.

Prove that if t is a Markov time, then, on the set {t < oo}, one has (P-a.e.)

dP,
P,

sf <« P; and Zz-

~ 1
Problem 7.6.9. Prove that P <0<C P if and only if one can find an increasing
sequence of stopping times, (7,),>1, with P{limz, = oo} = 1, and with the
property P, <« P, forn > 1.

~ ~
Problem 7.6.10. Let P 2<C P andletz, = Z—EZ, for n > 1. Prove that
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P{igfzn > o} =1

~ 1 ~
Problem 7.6.11. Let P 2<C P,z, = %, forn > 1, and let Foo = o(|J .%,). Prove

that the following conditions are equivalent:
@) Eoo <« Poo,s WherePFv’oo = F’|900 and P, = P | Zoo;
(if) P{sup,z, < oo} =1;
(iii) the martingale (z,, %, )n>1 is uniformly integrable.

Problem 7.6.12. Let (£2,.7, P) be any probability space and let ¢ be any separa-
ble o-sub-algebra inside .#, which is generated by the sets {G,,,n > 1}, all included
in #.Let¥, = 0(Gy,...,G,) and let &, be the smallest partition of £2, which is
generated by ¢,.

Let Q be any measure on (§2, %) and set

Q(A)
Xo(0) = Y = ()
AZ; P(4)

(with the understanding that 0/0 = 0).

Prove that:

(a) The sequence (X,,%,),>1 forms a supermartingale (relative to the measure
P).

(b) If Q <« P, then the sequence (X, %, ),>1 must be a martingale.

Problem 7.6.13. As a continuation of the pervious problem, prove that, if Q <«
P, then one can find a ¢-measurable random variable, Xoo = Xoo(®), for which

1
X, i> Xoos Xn = E(Xeo |9,) (P-a.e.) and, for every A € ¢, one can claim that

Q) = /xm dP.

This is nothing but a special version of the Radon-Nikodym theorem from
[P §2.6], stated for separable o-sub-algebras ¢ C 7.

Problem 7.6.14. (On the Kakutani dichotomy.) Let o, as,... be any sequence
of non-negative and independent random variables, with Eq; =1, and let z, =
HZ=1 ok, 20 = 1.

Prove that:

(a) The sequence (z,),>0 is a non-negative martingale.

(b) The limit lim,, z,, ( = zco) exists with probability 1.

(c) The following conditions are equivalent:

L
(1) Ezoo = 1; (11) n—>Zo0s

(iii)  the family (z,), is uniformly integrable;
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(v) Y (1-EVa)<oo: (V) [[Eva>o0.
n=1 n=1

7.7 On the Asymptotics of the Probability for a Random
Walk to Exit on a Curvilinear Boundary

Problem 7.7.1. Prove that the sequence defined in [P §7.7, (4)] is a martingale.
Can one make this claim without the condition |« | < ¢ (P-a.e.), forn > 1?

Problem 7.7.2. Prove the formulain [P §7.7, (13)].
Hint. Tt is enough to write the expression Ez" in the form

‘ 1
Ezf = l_[ E(PGXP {Olkék - §“§§) .

k=2

and use the fact that all & are normally (.4(0, 1)) distributed.
Problem 7.7.3. Prove the formulain [P §7.7, (17)].

Problem 7.7.4. Let &,&,,... be any sequence of independent and identically
distributed random variables, and let S, = & + ... + &,, for n > 1. Given any
constant ¢ > 0, set

>0 =inf{n >1:8, >0} and 7t =infiln>1:8, >c},
with the understanding that inf @ = co. Prove that:

(@) P{tz0) <00} =1 & P{lim§, = oo} = 1;
(b) (Et=0) < 00) & (Etr>c) < ooforallc > 0).
Problem 7.7.5. Assume the notation introduced in previous problem, and set
>0 =inf{n > 1: S, >0}, 7<p =inf{n >1:85, <0},

and
(<) = inf{n > 1:§, < 0}.
Prove that
Etso = - and Etig) = ;
P{t(<0) = o0} P{t<0) = oo}

Problem 7.7.6. Let &;,&,,... be any sequence of independent and identically

P
distributed random variables with E|&| > 0, chosen so that % — 0, where
Sy =&4+...+&,.
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Prove that the Markov times 7(>() and 7(<¢), defined in the previous problem, are
finite, and that lim S, = oo and lim S, = —oo, both with Probability 1.

Problem 7.7.7. Let everything be as in the previous problem. Prove that S, — oo
with Probability 1 if and only if one can find a stopping time t (relative to the

filtration (ﬁ,f),,zl, with 9‘5 =o0(&,...,&,)), for which Et < oo and ES; > 0.

Problem 7.7.8. Let (£2,.%, (:Z,)n>0, P) be some filtered probability space, and let
h = (hy),>1 be some sequence of the form

hn:ﬂn+on§n7 n21,

where u, € R and 0, > 0 are .%,_;-measurable random variables and § =
(&1, Zu)n>0 is some stochastic sequence of independent and normally distributed
(4(0, 1)) random variables. Prove that the sequence 7 = (h,, %,),>1 is condi-
tionally Gaussian, i.e.,

Law(hy | Zy-1:P) = A (n.0;)  (P-a.e.).
Setting
n m 1 n L 2
Z,,:exp{— —kék——Z(—k)}, n=1,
=1 Ok 2 =1 Ok

prove that the following properties hold:
(a) The sequence Z,, = (Z,),>1 is a martingale relative to the measure P.
(b) If

1 2
Eexp % 5 Z (ﬁ) } < oo (Novikov’s condition)
2=\ o

and
o Mk I on ()
Zoo = — =g — = - ,
oo exp{ I;ngk 2,;(01{)}

then Z, = (Z,)n>1 is a uniformly integrable martingale, Zo, = lim Z, with
probability 1, and Z,, = E(Z« | %) (P-a.e.), forany n > 1.

Problem 7.7.9. Adopting the notation introduced in the previous problem, let .7 =
o (U Zn), and let P be the probability measure defined by

P(dw) = Zs P(dw).
Prove that if EZ,, = 1, then one can claim that

Law(h, | Z_1:P) = 4(0,02) (P-a.e.).
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If, furthermore, 02 = crnz (w) is independent from w, then

Law(h, |P) = .4 (0,02,

and the random variables A1, h,, ... are independent, relative to the measure P.

Problem 7.7.10. Let uy, ok, & and hy, for k > 1, be as in Problem 7.7.8, let
H,=h +...+h,,n>1,andlet X, = e,
Prove that if

2
%k

i + > =0 (P-a.e)) for k >1,

then the sequence X = (X,,, %,),>1 is a martingale.
Now suppose that, for some k > 1, the above condition fails, and set

(ke Ok I (e o)
R R o e P e A
k=1 k=1
Assuming that EZ, = 1, define the measure
P(dw) = Zo P(dw),

andlet .7 = o (| %). "
Prove that relative to the measure P the sequence (X, %,)n>1, with X,, = e
is a martingale.

Hy
E}

7.8 The Central Limit Theorem for Sums of Dependent
Random Variables

Problem 7.8.1. Consider the random variables &, = 7, + {,, n > 1, and suppose
d d d

that n,, — n and ¢, — 0. Prove that §, — 7.

Problem 7.8.2. Let (§,(g)), n > 1, be some family of random variables, which is

P
parameterized by ¢ > 0, and suppose that §,(¢) — 0 as n — oo, for every ¢ > 0.
By using, for example, the result in Problem 2.10.11, prove that one can construct

P
the sequence ¢, | 0 in such a way that &,(g,) — 0.
Hint. Choose the sequence ¢, | 0 so that P{|§,(¢)| > 27"} <27",n > 1.

Problem 7.8.3. Consider the complex-valued random variables («), 1 < k < n,
n > 1, chosen so that for some constant C > 0 and for some positive sequence
(an)n>1, with a, | 0, one has for every n > 1:

Z|aZ|EC and |of| <a,, for 1 <k <n, (P-ae.).
k=1
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Prove that

n
n11>rrolo l—[ (I+op)e ™ =1 (P-a.e.).
k=1
Problem 7.8.4. Prove the statement formulated in Remark 2, following [P §7.8,
Theorem 1].

Problem 7.8.5. Prove the statement formulated in the remark following the lemma
in[P§7.8, 4].

Problem 7.8.6. Prove [P §7.8, Theorem 3].
Problem 7.8.7. Prove [P §7.8, Theorem 5].

Problem 7.8.8. Assuming that § = (£,)—co<n<co 1S SOme sequence of independent
and identically distributed random variables, with E§, = 0 and D§,, < oo, consider
the sequence 1 = (1,)n>1, given by

]

o0
N = Z cn—j€;,  with Z |cj|2<oo,

j=—00 Jj=—00

and suppose that
Dﬁ =E(m + ...+ n,)* = oo.

Prove the following central limit theorem:

Mot

1 /x _t2/2
<x; > — e dt.
l)n } \/2]1 —00

Problem 7.8.9. Let (£2",.7", (] )o<k<n,P"),n > 1, be some sequence of filtered
probability spaces and suppose that, given any n > 1, the random variables £ =
(6 ) 1<k <n are chosen so that each & is .%}’-measurable.

Let u be any infinitely divisible distribution on (R, Z(R)), with characteristics
(b, c, F) (see Problem 3.6.17 and the continuous cutoff function # = h(x) in that
problem).

Consider the sequence of probability distributions associated with the random
variables Z" = ZZ=1 E,’{’, n > 1, and prove that in order to guarantee the weak con-
vergence of that sequence (of distributions) to some infinitely divisible distribution

M, it is enought to require that the following conditions hold:

P

P
sup P"{|$,’j| > slﬁ,f_l} -0, >0,

1<k<n

3 EE) | F] S b,

1<k<n
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> (BRE) 1 Fi] - e | 7)) ST

1<k<n

3 E'leE) | F] > Fg). g€®,

1<k<n

where ¢ = ¢ + [ h*(x) F(dx), &, = {g} stands for the class of functions of the
form g,(x) = (a|x| — 1)™ A 1 for various choices of the rational number a, and

F(g) = [ g(x) F(dx).

Problem 7.8.10. Let &, £, &, ... be some stationary in strict sense sequence with
E&, = 0. Let (comp. with Problem 6.3.5)

ar =sup|P(AN B)—PA)PB)|, k=1,
where the supremum is taken over all sets
Ae Fy=0k). BeF® =0 br1....).

Prove that if the strong mixing coefficients, ox, k > 1, are such that, for some
p > 2, one has

p=2
a,” <oo and E|[§][’ < oo,
k>1
then the joint distribution, P , , of the variables X, ..., X[, given by
Lyeens k 1 k

1 [nt]
X'=— , t>0,
t Vﬁzgéggk =

converges weakly to the distribution, P;, _;, , of the variables (Wc B, ..., Jc B,).
where B = (B;);>¢ is a Brownian motion process and the constant ¢ is given by

c=E& +2) EE.

k>1

7.9 Discrete Version of the Itdo Formula

Problem 7.9.1. Prove the formulain [P §7.9, (15)].

Problem 7.9.2. Based on the central limit theorem for the random walk § =
(Sn)n>0, establish the following formula
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/2
E|S)|~+/—n, n— oo
7T

(Comp. with the hint to Problem 1.9.3.)

Remark. In formulas (17) and (18) in [P §7.9, Example 2] one can actually
replace 27 in the denominator with /2.

Problem 7.9.3. Prove the formulain [P §7.9, (22)].

Problem 7.9.4. Formula [P §7.9, (24)] remains valid for every function F € C?2.
Try to prove this claim.

Problem 7.9.5. Generalize formula [P §7.9, (11)] for the case where the func-

tion F(Xj) is replaced by a non-homogeneous vector function of the form
Fk, X}, ....X").

Problem 7.9.6. Setting f(x) = F’(x), consider the following trivial identity,
which may be viewed as a discrete version of the It6 formula:

F(Xy) = F(Xo) + ) f(XiD)AXy + Y [F(Xi) = F(Xem1) — f(Xi-) AX,]
k=1 k=1

Outline the reasoning which, starting from the last relation, allows one to obtain the
discrete version of the It6 formula (formula [P §7.9, (24)]), for twice continuously
differentiable functions F = F(x).

Problem 7.9.7. Generalize the identity in the previous problem for the case where
the function F(Xk) is replaced by a non-homogeneous vector function of the form
F(k,X!.....X").

Problem 7.9.8. (Discrete version of Tanaka formula; see Problem 1.9.3.) Consider
some symmetric Bernoulli scheme (i.e., a sequence of independent and identically
distributed random variables), £, &, ..., with P{§, = +1} = P{§, = -1} = 1/2,
n>1l,andlet S =0and S, = & + ...+ &, forn > 1. Givenany x € Z =
{0, £1,£2,.. .}, let

N,(x) =#{k,0<k <n:S =x}

be the number of the integers 0 < k < n, for which Sy = x.
Prove the following discrete analog of Tanaka formula:

Sy — x| = |x| + ) _ sign(Sk—1 — x) AS + Nyi1(x).
k=1

Remark. If B = (B;);>0 is a Brownian motion, then the renowned Tanaka
formula gives

t
1B, — x| = |x] +/ sign(B, — x) dB, + N,(x).
0
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where N(x) = (N:;(x)):>o is the local time of the Brownian motion B at level
x € R. Recall that, originally, P. Lévy defined the local time N;(x) as (see, for
example, [12] and [103]):

1 t
N,(x) = lim—/ I(x —e < By <Xx +¢)ds.
&0 2 Jo

7.10 The Probability for Ruin in Insurance. Martingale
Approach

Problem 7.10.1. Prove that, under assumption A in [ P §7.10, 2], the process N =
(N;)>0 has independent increments.

Problem 7.10.2. Prove that the process X = (X;);>0, defined [P §7.10, 1], also
has independent increments.

Problem 7.10.3. Consider the Cramér-Lundberg model, and formulate the analog
of the Theorem in [P §7.10, 3], for the case where the variables 0;,i = 1,2,...,

are independent and distributed with geometric law, i.e., P{o; = k} = ¢ 'p,
k> 1.
Problem 7.10.4. Let N = (N;);>0 be a Poisson process of parameter A—

see [P §7.10, (3)]. Prove the following “Markov property:” for every choice of
O=th<fh <...<tyband0 <k, <k, <...<k,, onehas

P(Ntn = kn |Nf1 = klv e 7Ntn_1 = kn—l) = P(an = kn |Nt”_1 = kn—l)-

Problem 7.10.5. Let N = (N;);>0 be a standard (i.e., of parameter A = 1) Poisson
process, and suppose that A(¢) is some non-decreasing and continuous function,
with A(0) = 0. Then consider the process N o A = (Nj«))i>o0. Describe the
properties of this process (finite dimensional distributions, moments, etc.).

Problem 7.10.6. Let (71,...,T,) denote the times of the first n jumps of a given
Poisson process, let (X1, ..., X,) be independent and identically distributed random
variables, which are uniformly distributed on the interval [0,¢], and, finally, let
(X()s - .-, X(n)) denote the order statistics of the variables (X1, ..., X,). Prove that

LaW(Tl, ey Tn |Nt = n) = LaW(X(l), e ,X(n)),

i.e., the conditional distribution of the vector (71, ..., T,), given the event N, = n,
coincides with distribution of the vector (X (1), ..., X()).

Problem 7.10.7. Convince yourself that, if (N;),;>o is a Poisson process, then for
any s < f one can write
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Cm (s/H)"(1—s/t)"™, m <n,

s m>n.

P(Ny =m|N; =n) =

Problem 7.10.8. It is an elementary matter to check that, if X; and X, are
two independent random variables that have Poisson distribution with parameters,
respectively, A; and A;, then X; 4+ X, also has Poisson distribution (and with
parameters A; + A,). Prove the converse statement (due to D. Raikov): if X| and
X, are any two independent and non-degenerate random variables, for which one
can claim that X; + X> is distributed with Poisson law, then X; and X, also must
be distributed with Poisson law.

Problem 7.10.9. Suppose that N = (N,);>¢ is a standard Poisson process, which
is independent from the positive random variable 6, and then consider the “hybrid”
process N = (N,);>0, given by N, = N,g. Prove the following properties:

(a) Strong law of large numbers:

N
T[ -0 ast—>oo (P-ae)

(comp. with Example 4 in [ P §4.3, 4]).
(b) Central limit theorem:

P { N; — 0t

Ot

fx} — @(x) ast — oo.

() If DO < oo, then
N, —EN, N 0 —EO
VDN, NOT

Problem 7.10.10. Prove that, for a given u > 0, the “ruin function”

Y =Plinf X, <0} (=P{T <oc}

may be written in the form
v(u) = P{sup Y, > u},
n>1

where ¥, = Y/, (& — coy).

In addition, prove that the estimate Y (u) < e R which, under appropri-
ate assumptions, was derived in [P §7.10] by using “martingale” methods, can
be established by using more elementary tools. Specifically, setting v, (1) =

P{ maxXj<i<p Yk > u}, n > 1, prove first that Y| (1) < e Rt and then prove by

induction that v, (1) < e~ R, for any n > 1, so that ¥ (1) = lim v, (u) < e~ R*.
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Problem 7.10.11. The time of ruin, T, was defined by the formula 7' = inf{t > 0 :
X; < 0}. Alternatively, the time of ruin may be defined as T= inf{r > 0: X, <0}.
Explain how the results established in [ P §7.10] would change if the time T is to be
replaced by the time T.

Problem 7.10.12. As a generalization of the (homogeneous) Poisson process, that
was introduced in [P §7.10, 2], consider the non-homogeneous Poisson process
N = (N:):>0, defined as:

Ni=) ITi<1),
i>1

where 7; = 01+...40; and the random variables o; are independent and identically
distributed with

P{o; <t} = 1—exp{ —/tk(s)ds}.
0

The function A(#) above, which is known as the intensity function of the process N,
is assumed to satisfy: A(f) > 0, [; A(s)ds < oo and [y~ A(s) ds = oo. Prove that

k—1

k
; fo A(s)ds
P{N, <k} =P{T, >t} = ;exp{ _/0 A(S)ds} <0k—!)'

Problem 7.10.13. Let N = (N;);>o be the non-homogeneous Poisson process

defined in Problem 7.10.12 above, let (§,),>0 be a sequence of independent and

identically distributed random variables, which are also independent from N, and,

finally, let g = g (¢, x) be some non-negative function on R x R. Prove the
Campbell formula:

00 T
ED ¢(T6) (T, <0) = [ Elgls.60A) ds
n=1

Problem 7.10.14. Let N = (N;);>0 be ahomogeneous Poisson process, defined by
No=0and N, =), I(T, <t),fort > 0, the random variables 0,41 = T,,41—7T,
(n > 1, Ty = 0) being independent and identically distributed, with law
P{oyt1 > x} =e**, x>0.
Setting U; =t — Ty, and V; = Ty, 41, prove that

P < Vi = v} = [Ty + Ty (1 = e | (1= &™),

(In particular, for any fixed # > 0, the variables U, and V; are independent, and V; is
exponentially distributed with parameter A.) Find the probability P{T,+1 — Ty, >
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x}, and prove that P{Ty, 41 — Ty, > x} # e ™ (= P{T,4+1 — T, > x}). Prove
that, as ¢ — oo, the distribution of T, 4+ — T, converges weakly to the distribution
law of the sum of two independent exponentially distributed random variables of
the same parameter A.

7.11 On the Fundamental Theorem of Financial
Mathematics: Martingale Characterization
of the Absence of Arbitrage

Problem 7.11.1. Prove that with N = 1 the no-arbitrage condition is equivalent to
the inequality [P §7.11, (18)]. (It is assumed that P{AS; = 0} < 1.)

Problem 7.11.2. Prove that in the proof of Lemma 1 in [P §7.11, 4] condition (19)
makes case (2) impossible.

Problem 7.11.3. Prove that the measure P from Example 1 in [P §7.11, S]is a
martingale measure and that this measure is unique in the class M(P).

Problem 7.11.4. Investigate the uniqueness of the martingale measure constructed
in Example 2 in [P §7.11, 5].

Problem 7.11.5. Prove thatin the (B, S)-model the assumption |M(P)| = 1 implies
that the variables %, 1 <n < N, are “conditionally bi-valued.”

Problem 7.11.6. According to Remark 1, following [P §7.11, Theorem 1], the
First Fundamental Theorem remains valid for any N < oo and any d < oo. Prove
by way of example that if d = oo, then it could happen that the market is free of
arbitrage and yet no martingale measure exists.

Problem 7.11.7. In addition to [P §7.11, Definition 1], we say that the (B, S)-
market is free of arbitrage in weak sense, if, for every self-financing portfolio
m = (B,y), with XJ = 0 and X > 0 (P-a.e.), forn < N, one has X}, = 0
(P-a.e.). We say that the (B, S)-market is arbitrage-free in strong sense if, for every
self-financing portfolio 7, with X[ = 0 and XJ > 0 (P-a.e.), one has X7 = 0
(P-a.e.),for0 <n < N.

Assuming that all assumptions in [P §7.11, Theorem 1] are in force, prove that
the following conditions are equivalent:

(i) The (B, S)-market is free of arbitrage.
(i) The (B, S)-market is free of arbitrage in weak sense.
(iii) The (B, S)-market is free of arbitrage in strong sense.

Problem 7.11.8. Just as in [P §7.11, Theorem 1], consider the family of all
martingale measures:

M(P) = {P ~ P :S/B is a P-martingale}
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and let
Mo (P) = {E ~P :S/Bis a P-local martingale},

M, (P) = {Bw P:P ¢ M(P) and %(a)) < C(ﬁ) (F’-a.e.) for some
constant C (B)}

Prove that, in the setting of [P §7.11, Theorem 1], the following conditions are
equivalent:

HMP) # @ (i) Mioc(P) # @1 (iii) My(P) # 2.

7.12 Hedging of Financial Contracts in Arbitrage-Free
Markets

Problem 7.12.1. Find the price, C(fn;P), of a standard call option with payoff
fv = (Sy — K)™, in the (B, S)-market described in Example 2 in [P §7.11, 5].

Problem 7.12.2. Prove the inequality in [P §7.12, (10)] in the opposite direction.
Problem 7.12.3. Prove formulas [P §7.12, (12) and (13)].

Problem 7.12.4. Give a detailed derivation of formula [ P §7.12, (23)].

Problem 7.12.5. Prove formulas [P §7.12, (25) and (28)].

Problem 7.12.6. Give a detailed derivation of formula [P §7.12, (32)].

Problem 7.12.7. Consider the one-period version of the CRR-model formulated in
(17)in [P §7.12, 7]:

By =By(1+r), Si=S8(+p),

where we suppose that p takes two values, @ and b, chosenso that —1 <a <r < b.

Now suppose that p is uniformly distributed in the interval [a, b] (with the same
choice for @ and b) and consider the period 1 payoft f(S;) = f(So(14p)), for some
convex-down and continuous payoff function f = f(x), x € [So (1+a), So (1+b)]
(here we suppose that Sy = const). Prove that the upper hedging price:

f(f;P) =inf{x : 37, XJ = x and X7 > f(So(1 + p)) Vp € [a, b]},

coincides with the upper hedging price in [P §7.12, (19)], with N = 1 and
withP{p =b} =pandP{p=a} =1—p,0 < p < 1, so that

r—a fS+b)  b-r [f(S(+a)
b—a 1+r b—a 1+r ’

C(f:P) =
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Problem 7.12.8. (The Black—Scholes formula.) As a generalization of the discrete-
time (B, S)-market B = (B,)o<n<n and S = (Sy)o<n<nv—see [P §7.12, 2]—
consider the continuous-time (B, S)-market model

B, = Boe™" and S, = SpeMtV . 0<i<T, (%)

in which u,0 € R and r > 0 are exogenously specified constants and W =
(Wi)o<t<t 1s exogenously specified Brownian motion. Analogously to [P §7.12,
()], for a given strike-price K > 0, consider an European-style call-option with
termination payoff fr = (St — K)* = max[Sr — K, 0] and suppose that in (*)
the constant p is chosentobe u = r — %02. Under these conditions, prove that the
following properties:

(a) The process (%’,)OstsT is a martingale.

(b) The “fair” price of the call option, C( f7; P), defined as

C(fr:P) = BOE;;—;,

can be computed according to the Black—Scholes formula:

ln%—l—T(r—f-%z) ; ln%—i-T(r—%z)
C(fr:P)=8y@ —Ke '@ ,
(fr:P) = So o IT I
where @ (x) = «/;271'/.:00 e 2dy, x € R.

Hint. Prove that C(fr;P) = e "TE(a e?$7"/2 — K)*, where a = Spe'T, b =
o+/T and & € 47(0, 1). By using direct calculation prove that

In¢ + 1p? In% —1p?
E(@ets 2Kyt =gl k2" | _gol k2" |
(ae ) a b 5

7.13 The Optimal Stopping Problem: Martingale Approach

Problem 7.13.1. Prove that the random variable (@) = sup,cq, &o(®), intro-
duced in the proof of the Lemma in [P §7.13, 3], satisfies conditions (a) and (b) in
the definition of essential supremum (see [P §7.13, 3]).

Hint. If o ¢ 2, consider the expression E max(§(w), &, ()).

Problem 7.13.2. Prove that the variable £(w) = tan é (w), introduced at the end
of the proof of the Lemma in [P §7.13, 3], satisfies conditions (a) and (b) in the
definition of essential supremum (see [P §7.13, 3]).
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Problem 7.13.3. Let &, &,,... be any sequence of independent and identically
distributed random variables with E|§;] < oo. Consider the optimal stopping
problem within the class IM° = {r:1 < 7 < oo}:

V* = sup E(max& — C‘C) ,

remee N IST

and let t* = inf{n > 1:§, > A*}, where A* stands for the unique root of the
equation E(§; — A*) = ¢, with the understanding that inf@ = oo. Prove that if
P{t* < 0o} = 1, then the time t* is optimal in the class of all finite stopping times

t, for which E(maxifr & — cr) exists. Show also that V* = A*.

Problem 7.13.4. In addition to the notation introduced in [P §7.13, 1] and
[P§7.13, 2], let

M = {t:n <1 < o0},

V> = sup Ef,
TEM

v,> =esssupE(f; | Z),
TEM®

™ = inf{k > n:v° = f,},
and assume that
Esup f, < oo.

Prove that the following statements can be made for the limiting random variables
~ _ 1. N .
vy, = limy oo vy

(a) For every t € 917°, one has

Vn =2 E(f | Z0).
(b) If 7° € IM7°, then
Vn = E(ft,?o |fg.n)7
Vp =v,° (= esssupE(f; | 7).

TEM®

Problem 7.13.5. Adopt the notation introduced in the previous problem and let
72° € M. By using (a) and (b) in the previous problem, conclude that the time

7.° is optimal, in the sense that

esssupE(f; |.7,) = E(fie | %) (P-ae)

TEMS®
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and
sup Eft = Eft,‘,’o s

TEM
e, VO =E foo.

Problem 7.13.6. Suppose that the family of random variables ¥ = {§,(»);a €
2}, defined on some probability space (§2,.%, P), is chosen so that, for some fixed
constant C, one has E|§,| < C forall @ € 2. In addition, suppose that the family X
is “sufficiently rich,” in the sense that: if §,, € ¥ and &,, € X, for some o,y € 2,
then

§=8alatbnlzeX

for every A € %. (A family X with these properties is said to admit needle
variations.) Setting

Q(A) = supE& 14, Ae 7,

a€
prove that:
(a) The set function Q = Q(+) is o-additive.
(b Q «P.

(c) The Radon-Nikodym derivative % is given by

dQ
7P eSocSeSQlllp & (P-a.e.).
(In particular, (c) above may be viewed as a proof of the fact that the essential
supremum of a family of random variables that admits needle variations must be
finite.)
Prove that the statement (a), (b) and (c) above remain valid if the condition
El&y| < C, @ € 2, is replaced with EE, < oo, o € 2.

Problem 7.13.7. Let M = {r : n < t < oo}. Prove that if 71, 7, € IM° and
A € Z,, then the time © = 11/4 + 1215 belongs to M°.

Problem 7.13.8. Let (£2,.%, (%,).>0, P) be any filtered probability space, and let
Ju be any .%,-measurable random variable with E f,~ < oo, for n > 0. Prove that,
for every fixed n > 0, the family of random variables {E( f; | .%#,); T € MS°} admits
needle variations.



Chapter 8
Sequences of Random Variables that Form
Markov Chains

8.1 Definitions and Basic Properties

Problem 8.1.1. Prove the statements formulated as Problems 1a, 1b and 1c in the
proof of [ P §8.1, Theorem 1].

Problem 8.1.2. Prove that in [P §8.1, Theorem 2] the function o — P, (B —
Xy (w)) is #,-measurable.

Problem 8.1.3. By using [P §2.2, Lemma 3], prove the relations [P §8.1,
(11) and (12)].

Problem 8.1.4. Prove the relations [P §8.1, (20) and (27)].
Problem 8.1.5. Prove the identity in [P §8.1, (33)].

Problem 8.1.6. Prove the relations (i), (ii) and (iii), formulated at the end of
[P§8.1, 8].

Problem 8.1.7. Can one conclude from the Markov property [ P §8.1, (3)] that for
any choice of the sets By, By, ..., By, B € & with P{Xy € By, X; € B;,..., X, €
B,} > 0, one must have:

P(X,+1 € B|Xo€ By,X, € By,...,X,€B,)) =P(X,+1 € B|X,, € B,)?

Problem 8.1.8. Consider a cylindrical piece of chalk of length 1. Suppose that
the piece is broken “randomly” into two pieces. Then the left piece is broken at
“random” into two pieces—and so on. Let X, denote the length of the left piece after
the n'h breaking, with the understanding that Xy = 1, and let %, = o(X1,..., X,).
Thus, the conditional distribution of X, given X,, = x must be uniform on [0, x].

Prove that the sequence (X,),>0 forms a homogeneous Markov chain. In
addition, prove that for every o > —1 the sequence

M,=(1+a)'X, n=>0,

A.N. Shiryaev, Problems in Probability, Problem Books in Mathematics, 329
DOI 10.1007/978-1-4614-3688-1_38,
© Springer Science+Business Media New York 2012
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forms a non-negative martingale. Prove that with Probability 1 forevery 0 < p <e
one has
lim p" X, = 0,
n

and for every p > e one has
lim p" X, = cc.
n

(Given that “on average” every piece is broken in half, one may expect that X,
would converge to 0 as 27"*. However, the property lim,, p" X,, = 0 (P-a.e.) implies
that X, converges to 0 much faster—"“almost” as e™".)

Problem 8.1.9. Let &;,&,,... be any sequence of independent and identically
distributed random variables, which can be associated with a Bernoulli scheme, i.e.,
P{&, =1} =P{& =1} =4, n>1andlet Sy =0, S, = & + -+ &, and
M, = max{Sy :0 <k <n},n>1.

(a) Do the sequences (|S,|)n>0, (|Mn])n>0 and (M, — S,)n>0 represent Markov
chains?

(b) Are these sequences going to be Markov chains if So = x # 0 and S, =
Xx4+E 4. +E?

Problem 8.1.10. Consider the Markov chain (X,),>o, with state space £ =
{—1,0, 1}, and suppose that p;; > 0, for i, j € E. Give necessary and sufficient
conditions for the sequence (| X,|),>0 to be a Markov chain.

Problem 8.1.11. Give an example of a sequence of random variables X =
(X)n>0, which is not a Markov chain, but for which the Chapman—Kolmogorov
equation nevertheless holds.

Problem 8.1.12. Suppose that the sequence X = (X,,),>0 forms a Markov chain in
broad sense, and let ¥;, = X,,+; — X,,, for n > 0. Prove that the sequence (X, Y) =
((Xn)n>0, (Yn)n>0) is also a Markov chain. Does any of the following sequences
represent a Markov chain: (X, X,+1)n>0, (X20)n>0, (Xn+k)ns0 for k > 1?

Problem 8.1.13. We say that a sequence of random variables X = (X,),>0, in
which every X, takes values in some countable set E, forms a Markov chain of
orderr > 1,if

P(Xut1 =lny1 | Xo=1d0,.... X,y =iy) =

=PXut+1 = int1 | Xn—rt1 = ln—rt1s oo Xy = i),
forallio,...,i,,+1,n >r.
Assuming that X = (X,),>0 is a Markov chain of order r > 1, let X, =
(Xu, Xu+1, -+ Xntr—1), n > 0. Prove that the sequence X = (X,),>0 represents

a canonical (i.e., of order r = 1) Markov chain.
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Problem 8.1.14. (Random walk on groups.) Let G be some finite group, endowed
with binary operation @, so that the usual group properties hold:

(1) x,y € G impliesx ® y € G;

() ifx,y,ze G,thenx® (Y ®z2) = (xPy) dz

(iii) there is aunique e € G, suchthatx @ e =e @ x = x, forall x € G;

(iv) given any x € G, there is an inverse —x € G, which is characterized by the
property x @ (—x) = (—x) ® x = e.

Let &, &1, &, ... be any sequence random elements in G, which are identically
distributed with law Q(g) = P{¢, = g}, g € G,n > 0.

Prove that the random walk X = (X,),>0, givenby X, = & D& B ... B &,
forms a Markov chain and give the respective transition probability matrix.

Problem 8.1.15. (Random walk on a circle.) Let &,&,,... be any sequence of
independent random variables that are identically distributed in the interval [0, 1],
with a (common) continuous probability density f(x). For a fixed x € [0, 1),
consider the sequence X = (X,),>0, given by Xy = x and

Xo=x+&+...4+§& (mod 1).

Prove that X = (X,),>0 is a Markov chain with state space £ = [0, 1). Find the
transition function for this Markov chain.

Problem 8.1.16. Suppose that X = (X,)u>0 and ¥ = (Y¥,),>0 are two inde-
pendent Markov chains, defined on the same probability space (£2, .7, P), taking
values in the same countable space E = {i, j, ...}, and sharing the same transition
probability matrix. Prove that, for any choice of the initial values, Xy = x € E and
Yo = y € E, the sequence (X,Y) = (X,, Y,)u>0 forms a Markov chain. Find the
transition probability matrix for this Markov chain.

Problem 8.1.17. Let X, X>, ... be any sequence of independent and identically
distributed non-negative random variables, that share a common continuous distri-
bution function. Define the record moments:

I =1, % = mf{n > K12 X, > max(Xl,...,Xn_l)}, k>2,

and prove that Z = (%k)i>1 is a Markov chain. Find the transition probability
matrix for this Markov chain.

Problem 8.1.18. Let X, X5, ... be some sequence of independent and identically
distributed non-negative random variables that share the same discrete range of
values. Assuming that the record times #Z = (% )k>1 are defined as in the previous
problem, prove that the associated sequence of record values V' = (Vi )i>1, with
Vi = X,, forms a Markov chain. Find the transition probability matrix for this
Markov chain.
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Problem 8.1.19. (Time reversibility for Markov chains.) Suppose that X =
(X»)o<n<n is some irreducible Markov chain with a countable state space E,
with transition probability matrix P = || p;; ||, and with invariant initial distribution
q = (qi), such that g; > 0 for all i € E (for the definition of invariant distribution
see [P §8.3, 1]).

Next, consider the sequence XV = (X,)o<n<n, given by X, = Xnem
which is nothing but the sequence X in reverse time. Setting P = 7 || where
Pij = pji, prove that the matrix P is_stochastic. In addition, prove that X X

is a Markov chain with transition matrix P.

Remark. The Markov property comes down to saying that, conditioned to the
“present”, the “past” and the “future” are independent—see [ P §8.1, (7)]. Because
of this symmetry between past and future, one is lead to suspect that the Markov
property of the sequence X = (X,)o<n<ny may be preserved under time reversal,
provided that in reverse time the initial distribution is chosen in a certain way. The
statement in this problem makes this idea precise: the Markov property is preserved
under time-reversal, possibly with a different transition probability matrix, provided
that the initial distribution is chosen to be the invariant one.

Problem 8.1.20. (Reversible Markov Chains.) Let X = (X,),>0 be any Markov
chain with countable state space £, with transition probability matrix P = | p;; ||,
and with invariant distribution ¢ = (g;). We say that the (g, P)-Markov chain X =
(X )n>0 is reversible (see, for example, [22]) if, for every N > 1, the sequence
XM = (X,)o<n<n. givenby X, = Xy_,, is also a (¢, P)-Markov chain.

Prove that an irreducible (g, P)-Markov chain is reversable if and only if the
following condition holds:

qipij = qpji, foralli,j € E.

Convince yourself that, if the distribution A = (4;) (A; > 0, > A; = 1) and the
matrix P satisfy the balance equation

Aipij = Ajpji, 1,] € E,
then A = (A;) coincides with the invariant distribution ¢ = (g;).

Problem 8.1.21. Consider the Ehrenfests” model (see [ P §8.8, 3 ]) with stationary
distribution ¢; = C}, (1/2)¥,i =0, 1,..., N, and prove that the following balance
equation is satified:

qiDii+1 = 4i+1Pi+1.i-
(Note that in this model p;; = 0,if |i — j| > 1.)
Problem 8.1.22. Prove that a Markov chain with transition probability matrix
0 2/31/3

Pp=|1/3 0 2/3
2/31/3 0



8.2 The Strong and the Generalized Markov Properties 333

has invariant distribution ¢ = (1/3,1/3,1/3). Convince yourself that, for any
N > 1, the sequence XV = (XN-n)o<n<n forms a Markov chain with transition
probability matrix P, which is simply the transpose of P. Argue that the chain
X = (Xy)u>0 is not reversible and give the intuition behind this feature.

Problem 8.1.23. Let X = (X,),>0 be any stationary (in strict sense) and non-
negative Gaussian sequence. Prove that this sequence has the Markov property if
and only if the covariance cov(X,,, X;,+), m,n > 0, has the form:

cov( Xy, Xpam) = 02p™,

for some choice of 0 > 0and —1 < p < 1.

8.2 The Strong and the Generalized Markov Properties

Problem 8.2.1. Prove that the function ¥ (x) = E, H, introduced in the Remark in
[P §8.2, 1]is &-measurable.

Problem 8.2.2. Prove the relation in [P §8.2, (12)].
Problem 8.2.3. Prove the relation in [P §8.2, (13)].

Problem 8.2.4. Are the random variables X,, — X, and X;,, from the Example
in [P §8.2, 3], independent?

Problem 8.2.5. Prove the formulain [ P §8.2, (23)]

Problem 8.2.6. Suppose that the space E is at most countable, let (£2,.%) =
(E®°, &), and let 0,: 2 — §2,n > 1, denote the usual shift operators

9}1(0)) = (xl‘hxn‘l'l’ . ')7 w = (XO,XI,...)-

Let X = (X,(®w))n>0 be the canonical coordinate process on £2, defined as
Xy(w) = x,, © = (x9, X1,...), forn > 0.
Given any .% -measurable function H = H(w), set (see [P §8.2, (1)])

(Ho6,) () = Hb: (). n =1,
and, given any B € .%, set (comp. with [P §5.1, Definition 2])
07 (B) ={w:6,(w) € B}, n>1.

With the above definitions in mind, prove the following properties:
(a) Forany m > O and n > 1, one has

Xypob, = Xontn

ie., (Xpo0y)(w) = Xppn(@).
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(b) For any m > 0 and n > 1, one has
O Xp e Ay ={Xp 00, € A} = {Xpin € A}
ie., forevery A € &,
0w : Xp(w) € A} = {0 : (Xp06,) (@) € A} = {0 : Xpin(w) € A};
and, more generally,

0.7{Xo€ Aoy, X € A} = (X000, € Ag,..., X o0, € Ay}
:{Xn EA(),...,Xm_H, EAm}

In addition, prove that
0. (Fn) = 0(Xn, ..o, Xontn), (%)

with the obvious meaning of the symbols 6, Y(Fn)and o (X, ..., Xpin) (explain).

Problem 8.2.7. Adopt the notation introduced in Problem 8.2.6, H = H(w) be
any .% -measurable function on (£2, .%), and let A € Z(R). Prove that

(H 0 6,)7'(4) = 6, (H'(4)). (%)

Problem 8.2.8. Adopt the notation introduced in Problem 8.2.6 and let T = t(w)
be some stopping time (i.e., a finite Markov moment) on (£2,.%, (% )k>0), Where
Fr = 0(Xo, X1....,Xx), k > 0. Based on (xx) and (*) in Problems 8.2.7
and 8.2.6, prove that, for any given n > 0, the moment n + t o 6, is also a stopping
time, i.e, {w : n + (t 0 0,)(w) = m} € F,,, forevery m > n.

Warning: Problems 8.2.9-8.2.21 below assume the notation and the terminology
introduced in Problems 8.2.6 and 8.2.8.

Problem 8.2.9. Let 0 = o(w) be any stopping time on (£2, %, (Z )r>0) and let
H = H(w) be any .#-measurable function on §2. The symbol (H o 6,)(w) is
understood as the function H (05 (w)(w)), i.e., H(O,(w)), forw € {o : o(w) = n}.
As a generalization of Problem 8.2.8, prove that o + t o 6, is also a stopping time.

Problem 8.2.10. Given any two stopping times, t and o, on (£2, %, (Zk)r>0),
the random variable X; o 6, will be understood as X, () (0s(®)), ie., as
X:(6,(0)(On(@)), for € {w : o(w) = n}, for any n > 0. As a generalization
of the property X,, o 6, = X4, from Problem 8.2.6, prove that

X;00, = X1095+0-
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Problem 8.2.11. Given any set B € &, let
tg(w) =inf{n >0: X, (w) € B} and op(w) =inf{n >0: X, (w) € B}

denote, respectively, the time of the first and the time of the first after time 0 visit of
the sequence X to the set B. Suppose that the times tp (@) and op(w) are finite for
all w € £2, and let y = y(w) be any stopping time on (§2, %, (% )ik>0)-

Prove that 73 and op are stopping times and, furthermore,

y+tpob,=inf{n >y :X,eB}, y+opob,=inf{n>0:X, € B}.

Argue that, after appropriate change in the respective definitions, the above relations
remain valid even in the case where the stopping times y, tp and op may take
infinite values and the sets in the right sides may be empty.

Problem 8.2.12. Let t and o be any two Markov times. Prove thatv = t 06, + 0,
with the understanding that v = oo on the set {o = oo}, is also a Markov time.

Problem 8.2.13. Prove that the strong Markov property [P §8.2, (7)], from
[P §8.2, Theorem 2], remains valid for every Markov time 7 < oo, and can be
expressed as

E.[l(t <oo)(Ho8,)|FX]=1(t <o0)Ex,H (Py-a.e.).

(Recall that H is a bounded and non-negative .% -measurable function and Ey_ H is
a random variable of the form v (X;), where ¢ (x) = E,H.)

In addition, prove that, if K = K(w) is some .%,-measurable function and H
and K are either bounded or non-negative, then, for every Markov time 7 < 0o, one
has

Ex[(/(t < 00)K)(H 06,)] = Ex[(I(x < 00)K)Ex, H].

Problem 8.2.14. Prove that the sequence (X;an, Px)n>0, x € E, introduced in
[P §8.2, 3], is a Markov chain. Does this property hold for an arbitrary Markov
chain (with countable state space) and for an arbitrary Markov time of the form
T =inf{n > 0: X, € A}, for some choice of the set A C E (comp. with [P §8.2,
(15)1)?

Problem 8.2.15. Let 4 = h(x) be a non-negative function and let H(x) =
(Uh)(x) be the potential of & (see Sect.A.7). Prove that H(x) is the minimal
solution of the equation V(x) = h(x) + T V(x), within the class of non-negative
functions V = V(x).

Problem 8.2.16. Given any y° € E, prove that the Green function G(x, y°) is the
minimal non-negative solution to the system

1+ TV(x), x=y°,

Vix) =
) TV(x), x# y°.
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Problem 8.2.17. Prove that if 7 and o are any two Markov times and 7,, n > 0,
are the transition operators associated with X = (X,,),>0, then:

T(T Tt - T0+r09(, .

Hint. Use the strong Markov property and the identity X; o 0, = X;o0,+0>
established in Problem 8.2.10.

Problem 8.2.18. Given any domain D € &, let
t(D)=inf{n >0: X, € D} and o(D)=inf{n >0:X, € D}.
Prove that

Xo(p) = X:(Dyos, on {o(D) < oo},

To(y = T Tr(p)-

Problem 8.2.19. With the notation introduced in the previous two problems, let
g > 0and Vp(x) = Ty(p)g(x). Prove that Vp(x) is the smallest non-negative
solution to the system

g(x), x €D,

i P

In particular, if g = 1, then the function Vp(x) = P,{t(D) < oo} is the smallest
non-negative solution to the system

1, x €D,

Vix) =
2 TV(x), x¢&D.

Problem 8.2.20. By using the strong Markov property, prove that the function
mp(x) = E,t(D) solves the system:

0, x €D,

V(ix) =
14+TV(x), x¢D.

In addition, prove that mp(x) is the smallest non-negative solution to the above
system.

Problem 8.2.21. Prove that any non-negative excessive function f = f(x) admits
the Riesz decomposition:

fx) = f(x)+ Uh(x),
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in which

S (@) = lim(T, f)(x).

is a harmonic function and U (x) is the potential of the function

h(x) = f(x) = Tf(x).

Problem 8.2.22. Let X = (X,),>1 and ¥ = (¥,),>1 be any two independent
Markov chains, with the same state space £ = {1,2} and the same transition
probability matrix (lfﬂ 1;”‘ ), for some choice of @, 8 € (0,1). Let t = inf{n >
0: X, =Y,} (with inf @ = o0) be the time of the first meeting between X and Y.
Find the probability distribution of the time 7.

Problem 8.2.23. Let X = (X,, %,).>0 be any stochastic sequence and let B €
AB(R). As was already established, the random variables 73 = inf{n > 0 : X,, € B}
andop = inf{n > 0: X,, € B} (withinf @ = oc0) are Markov times. Prove that, for
any fixed integer N > 0, the last visit of B between times 0 and N, i.e., the random
variable

yp =sup{0 <n <N : X, € B} with(sup@ = 0)

is not a Markov time.

Problem 8.2.24. Prove that the statements in Theorems 1 and 2 in [ P §8.2] remain
valid if the requirement for the function H = H(w) to be bounded is replaced by
the requirement that this function is non-negative.

Problem 8.2.25. Let X = (X,, %,),>0 be any | Marlgv sequence and let T be any
Markov time. Prove that the random sequence X = (X, .% ,)n>0, With

Yn: n+t and ﬁn:yn+rv

is also a Markov sequence, which, in fact, has the same transition function as the
sequence X. (This fact may be seen as the simplest form of the strong Markov

property.)

Problem 8.2.26. Let (X, X2, ...) be any sequence of independent and identically
distributed random variables, with common distribution function F = F(x). Set
Fo =4{2,82}, %, =o(X1,...,Xn),n > 1,let t be any Markov time for (.%,),>0,
andlet A € .%,.

Assuming that 7 is globally bounded, i.e,0 < 7(w) < T < oo, forw € £2, prove
that:

(a) The variables I 4, X1+, X247+, ... are independent.

(b) The variables X4, share the same distribution function F = F(x), i.e.,
Law(X,+.) = Law(X;),n > 1.

(One consequence from (a) and (b) above is that the probabilistic structure of
the sequence (Xi4+¢, X24¢,...) is the same as the probabilistic structure of the
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sequence (X1, X»,...),1.e.,, Law(X 4., Xo4¢,...) = Law(Xy, X5, ...); plainly, the
distribution of the sequence (X},),> is invariant under the random shift n ~> n + 7).

Suppose now that 7 is any, i.e., not necessarily bounded, Markov time, with 0 <
T < oo. Prove that, in this case, property (a) can be written in the form:

P(Aﬂ{t < OO};XH.t <Xl Xngr < Xn)

=P(AN{r < 0o})F(x1)... F(xy),

which relation must hold forall#» > 1 and x,, € R.
Hint. It is enough to notice that

PAN{t <o0o}; Xi4¢ < x1,.. ., Xpte < xp) =

o0
=Y PUAN{T =k} X < x10c Xk < X),
k=0

where the events A N {t = k} and { X4 < x1,..., Xy+k < X, } are independent.

8.3 Limiting, Ergodic and Stationary Distributions
of Markov Chains

Problem 8.3.1. Give examples of Markov chains for which the limit n; =

lim,, pf;') exists and
(a) Does not depend on the initial state i.

(b) Does depend on the initial state 7.
Problem 8.3.2. Give examples of ergodic and non-ergodic chains.

Problem 8.3.3. Give an example of a Markov chain that has a non-ergodic
stationary distribution.

Problem 8.3.4. Give an example of a transition probability matrix for which any
probability distribution on the respective state space is a stationary distribution.

8.4 Markov Chain State Classification Based
on the Transition Probability Matrix

Problem 8.4.1. Formulate the notions of “essential” and “inessential” states (see

[P §8.4, 1]) in terms of the transition probabilities pi(j'?), i,jeE,n>1.
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Problem 8.4.2. Let P be the transition probability matrix for some irreducible
Markov chain, and suppose that P has the additional property that P> = P. Describe
the structure of the matrix [P.

Problem 8.4.3. Let P denote the transition probability matrix for some finite
Markov chain X = (X,),>0. Suppose that 0,05, ... is some sequence of inde-
pendent and identically distributed non-negative integer-valued random variables,
which are also independegt fr0m~X .Lettg =0 ang T, =01 +--+o0,n>1
Prove that the sequence X = (X,)n>0, given by X, = X, is a Markov chain
and find the transition probability matrix [P for this chain. Prove that if the states i
and j commlglicate for the chain X, then these two states must communicate also
for the chain X.

Problem 8.4.4. Consider the Markov chain X = (X,),>0, with state space £ =
{0, 1}, and suppose that its transition probability matrix is given by P = ( 128 IE“ )s
for some choice of &, 8 € (0, 1). Then define the Markov moment

v=inf{n > 1: X, = X, =0}

and prove that
£, _2-@+p)
oV = ———— .
a(l—p)
Problem 8.4.5. Consider the Markov chain with state-space £ = {1,2,3} and
transition probability matrix

a l1l—a O
P= o p 1-8].
-y 0 14

where «, B,y € (0, 1). Prove that this Markov chain is irreducible. What can be said
about the existence of a stationary distribution for this Markov chain?

Problem 8.4.6. Explain whether it may be possible for all states of a given Markov
chain to be inessential in each of the following two cases:

1. The state space is finite.
2. The state space is countably infinite.

8.5 Markov Chain State Classification Based
on the Asymptotics of the Transition Probabilities

Problem 8.5.1. Prove that an irreducible Markov chain, with state space
{0,1,2,...} and with transition probabilities p; ;, is transient if and only if the
system of equations u; = Z,- u;pij, j = 0,1,..., admits a bounded solution u;,
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j =0,1,..., which is not constant (i.e., \uj| < const, for all j, and u; # u;, for at
least one pair (7, j)).

Problem 8.5.2. Prove that, in order for an irreducible Markov chain, with state
space {0, 1,2, ...} and with transition probabilities p; ;, to be recurrent, it is enough
to establish the existence of a sequence (ug, uj, . . .), with lim; . o u; = 00, for which
uj = Zi u,-pij,for all j # 0.

Problem 8.5.3. Prove that an irreducible Markov chain, with state space
{0,1,2,...} and with transition probabilities p; ;, is positive recurrent if and
only if the system of equations u; = Zi u;pij, j = 0,1,..., admits a solution u;,
J=0,1,...,with0 <}, |u;| < oo.

Problem 8.5.4. Consider a Markov chain with state space {0, 1,...} and with
transition probabilities

Poo =To, po1 = po >0,

pi>0, j=i+I1,

=0, j =i,
Pr=lgso0 j=i-1
0 in all other cases.
Setting pp = 1 and p,, = mq’;’l , prove the following statements:

the chain is recurrent <— Z Pm = O0;

the chain is transient <— Z Pm < 00;
1
the chain is positive recurrent <= Pm = 00, < 00
) 2o
1
the chain is null recurrent <= Pm = 00, = 0.
> 2o

Problem 8.5.5. Prove that
Jik = fij fixs

sup p’(]" < fi < Zp(").

n=1

Problem 8.5.6. Prove that, for any Markov chain with countable state space, the
Cesaro limits of the n-step transition probabilities pf;') always exist, and one has

hm Z p(k)



8.5 Markov Chain State Classification Based on the Asymptotics... 341

Problem 8.5.7. Let 7, n,,... be any sequence of independent and identically
distributed random variables, with P{nx = j} = p;, j = 0,1,..., and suppose
that the Markov chain &, &, ... is chosen so that & = (&)F + nx+1, kK > 0.
Compute the transition probabilities for this Markov chain and prove that, if py > 0
and po + p1 < 1, then the chain would be recursive if and only if Y, kpx < 1.

Problem 8.5.8. Leto; = inf{n > 0 : X,, = i} (with inf @ = o0) and then define
o] recursively through the relations:

o' = i

, {a}"l +0i00,,-1, ifol! < oo,
—_ i
1

o0, ifO-l-n_l = Q.
Prove that
Pi{o! < oo} = (Pi{o; <oo})" (= f).

Problem 8.5.9. Let Ny;, denote the number of visits of a particular Markov chain
to the state i.
(a) Prove that

E N — 1 o
P T T T Po; <00t \ 1- £ )

(b) Reformulate the criteria for recurrence and transience of the state i € E from
[P §8.5, Theorem 1] in terms of the average number of visits E; Ny;.
(c) Prove that
E,‘N{j} = P,‘{O’j < OO} . EiN{i}.

Problem 8.5.10. (Necessary and sufficient condition for transience.) Let X =
(Xu)n>0 be some irreducible Markov chain with countable state space E and
transition probability matrix || p,||. Prove that the chain X is transient if and only
if there is a nontrivial and bounded functions /' = f(x) and a state x° € E, for
which one can claim that

S =) pof), x#x°,
y#x°
(harmonicity on the set £ \ {x°}).
Problem 8.5.11. (Sufficient condition for transience.) Let X = (X,),>0 be some

irreducible Markov chain with countable state space E. Suppose that there is a
bounded function f = f(x), such that, for some set B C R, one has

f(x°) < h(x), forsomex° e Bandall x € B,

and

Y pof() S fx), x€B (=E\B)

YEE

(superharmonicity on the set B).
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Prove that if the above condition holds, then the chain must be transient.

Problem 8.5.12. (Sufficient condition for recurrence.) Let X = (X,)n>0 be some
irreducible Markov chain with countable state space E. Suppose that there is a
function h = h(x), x € E, with the property that, for any constant ¢, one can
claim that the set B, = {x : h(x) < c} is finite and, for some finite set 4 C R,
one has

Y poh(y) <h(x). xe4

YEE

(superharmonicity on the A(=E \ 4)).
Prove that the chain X is recurrent.

Problem 8.5.13. Prove that the sufficient condition formulated in the previous
problem is also necessary.

Problem 8.5.14. Let (§,),>1 be any sequence of independent and identically
distributed random variables, and let X = (X,),>1 be the random walk defined
as Xo =0and X, = & + ... + &, forn > 1. Let U(B) = ENp denote the
expected number of the visits, Np = Zn>0 Ig(X},), of the random walk X to the
set B. The set function U( -) is called potential-measure (in this case, for the starting
point x = 0)—see Sect. A.7.

Analogously to the definitions of transience and recurrence for Markov chains
with countable state spaces (see Definitions 1 and 2 in [P §8.5, 2]), we will say
that the random walk X, which, in general, lives in the space R, is recurrent if

U(l) = oo,
and will say that it is transient if
U(l) < oo,

for every finite interval I C R.
Assuming that the expectation E&, is well defined, prove that one of the following
three properties always holds:

1. X,, — oo (P-a.e.) and the random walk X is transient;
2. X, — —oo (P-a.e.) and the random walk X is transient;

3.lim X, = —o0, ﬁXn = +00, i.e., the random walk oscillates between —oo
and +o0, in which case transience and recurrence are both possible.

Problem 8.5.15. Let everything be as in Problem 8.5.14 and again suppose that the
expectation u = E£; is well defined. Prove that:

1.If 0 < u < o0, then X,, — oo (P-a.e.).
2.1f —oo < u < 0, then X,, - —o0 (P-a.e.).

3.1f w = 0, then limX, = —oo, limX, = +oo and the random walk is
recurrent.
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Problem 8.5.16. Prove that a necessary and sufficient condition for the random
walk X = (X},),>0 to be transient is that | X,,| — oo as n — oo with probability 1.

Problem 8.5.17. Consider the Markov chain X = (X,,),>0 with transition proba-
bilities p;;, i, j € E = {0, £1,£2,...}, chosenso that p;; = 0if |i — j| > 1,i.e.,
for every i € E one has

Dii—1+ pii + pii+1 =1,

all probabilities in the left side being strictly positive.

Prove that any such chain must be irreducible and aperiodic. Under what
conditions for the transition probabilities (p;;, pii—1, pii+1:i € E), is the Markov
chain X transient, recurrent, positive recurrent and null-recurrent (comp. with
Problem 8.5.4)?

Hint. Write down the recursive rule that governs the probabilities V(i) =
Pi{tjo = oo}, i € E, for any fixed j°.

Problem 8.5.18. (On the probability for degeneracy in the Galton—Watson model.)
In their study of the extinction of family names in England, in the late nineteenth
century F. Galton and H. W. Watson proposed the following model, which carries
their names:

Let &, &1, &, . .. be some sequence of random variables that take values in N =
{0,1,2,...} and can be written as random sums of random variables:

G =n" 4.+, nzo.

(Comp. with [P §1.12, Example 4].) Suppose further, that the family {nl(-") i >,
n > 0} is comprised of independent random variables, every one of which is
distributed as the random variable 7, chosen so that P{n = k} = pi, k > 0,
and Y 2, pr = 1. In this model, each &, represents “the number of parents” in
the n'"-generation on the family tree, while each nl(") represents the “the number
of offsprings,” produced by the i™ parent. Thus, &, is exactly the number of
offsprings that comprise the (n + 1) generation, with the understanding that if
& = 0,then & =0 forall k > n.

Let t = inf{n > 0 : & = 0} denote the time of extinction for the family, with
the understanding t = oo, if §, > 0 for all # > 0. The main question is how to
calculate the probability for extinction in finite time, namely the probability

q = P{t < o0}.

It turns out that the most efficient method for calculating the above probability is
the method of generating functions (see Problem 2.6.28). Consider the generating
functions g(s) = Es” = Y 72, prs*, |s| < 1,and f,(s) = Es%, n > 1, and prove
the following properties of the Galton—Watson model:
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@ fu(s) = fim1(8() = fu—2(g(g(s)) = ... = fo(g"(s)), where g")(s) =
(go...og)(s) (ntimes);

(b) if & = 1, then fo(s) = s and f,(s) = g™ (s) = g(fu—1(5));

(©) /n(0) = P{§& = 0}

(d) & = 0} S {&4+1 = 0}

@ Pt < oo} = P(Ulil&=0}) = limyoooPléy = 0} =
limy o0 fn(0);

(f)if g = P{t < oo}, then g is one of the roots of equation x = g(x),0 < x < 1.

Problem 8.5.19. (Continuation of Problem 8.5.18.) Let g(s) = Es" be the gener-
ating function of the random variable 7, which takes values in the set {0, 1,2,...}.
Prove that:

(a) The function g = g(s) is non-decreasing and convex on [0, 1].

(b) If P{n = 0} < 1, then the function g = g(s) is strictly increasing.

() If P{n < 1} < 1, then the function g = g(s) is strictly convex.

(d) If P{n < 1} < 1 and En < 1, then the equation x = g(x),0 < x
unique solution ¢ € [0, 1].

(e) If P{n < 1} < 1 and En > 1, then the equation x = g(x), 0 < x < 1, has
two solutions: x = 1 and x = ¢ € (0, 1).

Hint. Show that g’(x) > 0 and g”(x) > 0, x € [0, 1], and consider separately
the graphs of the function g = g(x) in the case En < 1 and in the case En > 1.

Problem 8.5.20. (Continuation of Problems 8.5.18 and 8.5.19.) Consider the
Galton—Watson model with En > 1 and prove that the probability for extinction
q = P{r < oo} can be identified with the only root of the equation x = g(x) that
is located strictly between 0 and 1, i.e.,

IA

1, has

En>1 = 0<P{t <oo} <1.

If En < 1 and p; # 1, then the probability for extinction occurs with probability 1,
ie.,
En<1l = P{r<oo}=1.

Problem 8.5.21. Consider the Galton—Watson model with p;<1. Prove that for
every fixed k>1 one has P{§, = k i0.}=0. Conclude that P {lim, &, €
{0, 00}} =1.

Problem 8.5.22. Consider the Markov chain X = (X,,),>0, with countably infinite
state space £ = {1,2,...}, and suppose that all states are inessential. Prove that
each of the following conditions is necessary and sufficient for the chain to be
irreducible and recurrent:

(a) fij = 1foralli, j € E (ie., Pi{o(j) < oo} = 1, where o(j) = inf{n > 0 :
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(b) Every finite and non-negative function h = h(i), i € E, which is excessive
for the chain X (i.e., h(i) > ZjeE pijh(j), i € E, where p;; are the transition
probabilities for X'), must be a constant.

Hint. The necessity of (b) is established in Sect. A.7 in the Appendix. To
establish the sufficiency, prove that for any i, j € E one must have

fi =Py + Y pikfij-
k#j
and conclude that if all excessive functions are constants, then f;; = 1foralli, j €

E, which, according to (a), is equivalent to the claim that the chain is irreducible
and recurrent.

8.6-7 On the Limiting, Stationary, and Ergodic Distributions
of Markov Chains with at Most Countable State Space

Problem 8.6-7.1. Describe the limiting, stationary and ergodic distributions of the
Markov chain with transition probability matrix

1/2 0 1/20
0 0 01
1/41/21/40
0 1/21/20

P =

Problem 8.6-7.2. Let P = || p;; || be some mxm-matrix (m < oo), whichis doubly-
stochastic (i.e., Z';':l pij = Lfori = 1,....m,and Y /_ p;j = 1, for j =
1,...,m). Prove that the uniform distribution Q = (1/m, ..., 1/m) is stationary
for the associated Markov chain.

Problem 8.6-7.3. Let X = (X,),>0 be some Markov chain with state space £ =
{0, 1} and with transition probability matrix P = (1f5 IE“ ), for some choice of
O<a<land0< B < 1.

Prove that:

(a)
P — 1 (1—,31—0{)+((X+,3—1)"( l—« —(1—0()).
S 2—(@+B \U-Bl-«a 2—(@+pB) \-(1=p) 1= )’

(b) if the initial distribution is &7 = (77(0), 7w (1)), then

B

P {X, =0} = @+ h

fat B 1)"[n(0)— —2_1(;_6@}.
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Problem 8.6-7.4. (Continuation of Problem 8.6-7.3.) Find the stationary distribu-
tion, 7 °, of the Markov chain X and calculate the covariance

COVyo (X,,, Xn-i—l) = En°Xan+l —Ero X, En°Xn+l-
Setting S, = X; + -+ + X,, prove that

E S, = M and Dy.S, <cn,
2—(ax+p)
where ¢ is some constant.
Finally, prove that almost surely (with respect to any of the measures Py, P; and
P.¢) one has
S, l—«

_%—
n 2—(a+p)

Problem 8.6-7.5. Let P = | p;; || be a transition probability matrix (i, ;] € E =
{0,1,2,...}), chosen so that for any i € E \ {0} one has p; ;11 = p; and p;o =
1 — p;i,forsome 0 < p; < l,and fori =0 € E one has p;o = 1.

Prove that all states of the associated Markov chain would be recurrent if and
only if lim, [1}_, p; = 0 (or, equivalently, -2, (1 — p;) = o0).

Show also, that, if all states are recurrent, then all states can be claimed to be
positive recurrent if and only if

asn — oQ.

S [ s <o

k=1j=1

Problem 8.6-7.6. Prove that if X = (Xy)i>o is some irreducible and positive
recurrent Markov chain, with invariant distribution 7°, then, for every fixed x € E,
one has (P -a. e. for every initial distribution )

n—1

1
o Zl{x}(Xk) — °(x) asn — oo,
n

k=0

and

1 n—1
Z Zp;’;) — 7°(x) asn — oo, foreveryye€E.
n

k=0

(comp. with the law of large numbers from [P §1.12].)
In addition, prove that if the chain is irreducible and null recurrent, then one has
(P-a.e., for every initial distribution 7r)

n—1

1
- Z I (Xk) = 0 asn — oo,
n

k=0

and

1 n—1
— E p;’? —0 asn — oo, foreveryy e E.
n

k=0
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Problem 8.6-7.7. Consider the Markov chain X = (X},),>0, with finite state space
E ={0,1,..., N}, and suppose that this chain is also a martingale. Prove that:
(a) The states {0} and {N } must be absorbing (i.e., poo = pyn = 1).

b)Ift(x) =inf{n > 0: X, = x}, then P, {t(N) < t(0)} = x/N.

8.8 Simple Random Walks as Markov Chains

Problem 8.8.1. Prove Stirling’s formula (n! ~ +/27 n"*!/2¢™") by using the
following argument ([9, Problem 27.18]). Let S, = X + ... + X,,, n > 1, where
X1, X5, ... are independent random variables, all distributed with Poisson law of
parameter A = 1. Then:

S,—n\ " (n—k\nk prtl2en
E —e " A e
o f(2F) oS (F )T

(b) Law [(S\/_E") } > Law[N7],

where N is some standard normal random variable;

S,—n - _ 1
E ENT = —;
© [( ) }* Vo
(d) n!~2gn" T2,

Problem 8.8.2. Prove the Markov property in [ P §8.8, (28)].
Problem 8.8.3. Prove the formula in [P §8.8, (30)].

Problem 8.8.4. Consider the Markov chain in the Ehrenfests’ model and prove that
all states in that chain are recurrent.

Problem 8.8.5. Verify the formulas [ P §8.8, (31) and (32)].

Problem 8.8.6. Consider the simple random walk on Z = {0, £1, £2, ...}, with
X

Pxx+1 = P, Pxx—1 = 1 — p, and prove that the function f(x) = (I_TP) , X €,

is harmonic.

Problem 8.8.7. Let &,....§&, be independent and identically distributed random
variables and let Sy = & + ... + &, k < n. Prove that

Z I(Sk>0)imin lfkfn:Sk:maij},
k<n Jj=n



348 8 Sequences of Random Variables that Form Markov Chains

where < stands for “identity in distribution.” (This result, which is due to E. Sparre
Andersen, clarifies why, in the Bernoulli scheme, the law of the time spent on the
positive axis and the law of the location of the maximum are asymptotically the
same as the arc-sine law—see [ P §1.10] and Problems 1.10.4 and 1.10.5.)

Problem 8.8.8. Let &, &, ... be a sequence independent Bernoulli random vari-
ables with P{§, = 1} = P{§, = -1} = 1/2, n > 1. Setting Sy = 0 and
Sy =& + ...+ &, prove that if T is any stopping time and

Sns n>r,

§n = Sn/\‘L' - (Sn - Sn/\‘L') = -
28, —8,, n>r,

then (E,,),,Zo < (Sn)n>o0, i.e., the distribution laws of the sequences (En),,zo
and (S,),>0 coincide. (This result is known as André’s reflection principle for
the symmetric random walk (S,),>0o—comp. with other versions of the reflection
principle described in [P §1.10].)

Problem 8.8.9. Suppose that X = (X,),>0 is a random walk on the lattice 74,
defined by: Xo = 0 and

1
X,=&+...4&, forn>1, and P{§ =e} = R
where the vector e = (ey,...,eq) € R? is chosen so that ¢; = 0,—1,+1 and

le] = lei| +...+|eq| = 1.
Prove the following multivariate analog of the Central Limit Theorem, in which
A stands for any open ball in R? centered at the origin 0 = (0, ..., 0):

X, g
limP%— e A :/ (i) e_d‘Zl dxy...dxg.
n Jn 4\ 21

Hint. Prove first that the characteristic function ¢(¢) = Ee' &) ¢ = (t1, ..., tq),
is given by the formula ¢() = d~! Z?:l cos(t;), and then use the multivariate
version of the continuity theorem (see [ P §3.3, Theorem 1]) and Problem 3.3.5).

Problem 8.8.10. Let X = (X,,),>0 be the random walk introduced in Problem 8.8.9
and let N, = ZZ;}) I1(Xy = 0) be the number of moments k € {0,1,...,n — 1} at

which X; = 0. It is shown in [P §7.9] that, for d = 1, one has EN,, ~ %n as

n — oo. (In formulas [P §7.9, (17) and (18)], one must replace % with %.)
(a) Prove that for d > 2 one has:

%lnn, d=2,

Cd, d >3,

EN, ~

where ¢, = 1/P{oy = oo}, witho; = inf{k > 0 : X; = 0} (04 = oo when the
infimum is taken over the empty set). Calculate the values of the constant ¢, .
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(b) Prove that for d = 2 one has:

N,
limP%—n Zx} =e ™ x>0,
n Inn

and -
P{oy >n} =P{N, =0} ~ — as n - oc.
Inn

(c) Prove that for d > 3 one has, as n — oo:
P{X,, =0}

P{o; = 2n} ~ 5
[1+ 222, Pixa = 03]

(d) Prove that for d > 1 one has:

1
14 Z;o:l P{ Xy = 0}‘

P{o, = o0} =

Remark. Property (d) is essentially established in the proof of [P §8.5, Theo-
rem 1]. It is also useful to notice that Polya’s Theorem:

P{o) < oo} =1 ford = 1andd = 2 (recurrence with probability 1);

P{oy < oo} <1 ford > 3 (transience with positive probability),

obtains directly from property (d), in conjunction with the asymptotic property
P{Xx = 0} ~ <3 ford > 1, and with c(d) > 0.

Problem 8.8.11. Consider the Dirichlet problem for the Poisson equation in the
domain C C E, where E is an at most countable set, namely: find a non-negative
function V' = V(x), such that
LV(x) =—h(x), xe€C,
Vix) =gx), xeD=E\C,

where h(x) and g(x) are given non-negative functions.
Prove that the smallest non-negative solution Vp(x) for this problem is given by:

(D)—1
Vp(x) = Ec[I(t(D) < 00)g(Xe(p)] + Ic (OEc | Y h(Xp) |.
k=0

where 7(D) = inf{n > 0 : X,, € D} (as usual, we suppose that 7(D) = oo, if the
influmum is taken over the empty set).
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Hint. Write the function Vp(x) in the form Vp(x) = ¢p(x) + ¥p(x), where
(D =0C)

¢p(x) = Ex[I(t(D) < 00)g(X+(p))],

©(D)—1

Yo (x) = Ip()Ec | Y h(Xy)
k=0

Then observe that the functions ¢p (x) and ¥p (x) can be written in the form
¢p(x) = Ip(x)g(x) + I5(x)Tpp(x),
Vp(x) = Ip(x)h(x) + I5(x)TYp(x),
and conclude from the last relations that
Vp(x) = Ip(x)g(x) + I5(x)[h(x) + TVp(x)].

which implies that the above function gives a non-negative solution to the system:
LV(x) = —h(x) in the domain C and V(x) = g(x), forx € D.

To prove that V(x) > Vp(x), for every non-negative solution V(x) to this
system, it is enough to notice that V(x) = Ip(x)g(x) + I5(x)[h(x) + TV(x)],
from where one finds that

V(x) =z Ip(x)g(x) + I5(x)h(x),
and conclude by induction that
V(x) = Y (IpTHIpg + Iphl(x),
k=0

for every n > 0. This implies that

V(x) = Y (UpTHIpg + I5hl(x) = ¢p(x) + ¥p(x) = Vp(x).
k>0

Problem 8.8.12. Let X = (X,),>0 be a simple symmetric random walk on the
lattice Z¢ and let

o(D)=inf{n >0 : X, e D}, D cZ,

assuming that the set D is finite. Prove that one can find positive constants ¢ = ¢(D)
and ¢ = (D) < 1, such that

P.{o(D) > n} <c¢",

for all x € D. (Comp. with the inequality in [P §1.9, (20)].)
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Problem 8.8.13. Consider two independent simple symmetric random walks,
X'=(Xu>0 and X? = (X?),>0, that start, respectively, from x € Z and y € Z,
and are defined on the same probability space (£2,.7,P). Let 7' (x) = inf{n >
0 : X! = 0} and t>(y) = inf{n > 0 : X? = 0}. Find the probability
P{z'(x) < °(n)}.

Problem 8.8.14. Prove that for a simple symmetric random walk, X = (X;)n>o0,
on the lattice Z = {0, &1, £2, ...} that starts from 0 € Z, one must have

[y

Po{z(y) = N} ~ N2 as N — oo,

where t(y) = inf{n > 0 : X, = y}, y # 0. (Comp. with the results in
Problem 2.4.16.)

Problem 8.8.15. Consider the simple random walk X = (X,),>0 with X, = x +
& + ...+ &, where £, &, ... are independent and identically distributed random
variables, with P{§; = 1} = p,P{§; = —1} = ¢, p + ¢ = 1, and x € Z. Setting
o(x) =inf{n > 0: X, = x}, prove that

P, {o(x) < oo} =2min(p,q).
Problem 8.8.16. Consider the random walk introduced in the previous problem in

the special case x = 0, and let %, denote the total number of (different) integer
values that appear in the set { Xy, X1, ..., X,,} (note that X, = 0). Prove that

P
Eo— — |p—q| as n — oo.
n

Problem 8.8.17. Let X =(X,),>0 be the simple random walk on Z =
{0,£1,+£2,...}, given by Xog = Oand X, = & + ... + &, n > 1, for some

sequence, &1, &, ..., of independent and identically distributed random variables
with P{§, = 1} = pand P{§;, = —1} = ¢ (=1 — p), for some fixed 0 < p < 1.
Prove that the sequence |X| = (|X,|)»>0 is a Markov chain with state space

E =1{0,1,2,...} and with transition probabilities

i+l it
P +q .
piit1=———;—=1=pii-1, 1>0, po1=1
P +q

In addition, prove that

i

P(Xn :ilanl:i,|X,,_1|:in_l,...,lelzil): , forn>1.

P
P td

Problem 8.8.18. Let &£ = (&,&1,&,...) be any sequence of independent and
identically distributed random variables with P{¢; = 1} = p and P{§; = —1} = ¢,
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p + g = 1, and suppose that the sequence X = (X,),>0 is defined as X,, =
&, &,41. Is this sequence a Markov chain? Is the sequence Y = (Y,),>1, defined as
Y, = %(g,,_l + &,), n > 1, a Markov chain?

Problem 8.8.19. Suppose that X = (X,),>0 is a simple symmetric random walk
on the lattice Z = {0, 1, +2 ...}, which starts from 0, and let 01, 03, ... be the
moments of returnto 0, i.e., 01 = inf{n > 0: X,, = 0}, 0, = inf{n > 0y : X,, = 0},
etc.

Prove that:

(@) Potor < oo} = 1;

(b) Po{ X2, = 0} = > ;- Polox = 2n};

(¢) Eoz% = (Eoz™)*, |z < 1;

(@) 3,50 PotXan = 0}z = =1

() Eoz” = 1—+1—2,s0that ), - Po{Xp, = 0} = \/11_7;

(f) if N (k) denotes the number of visits of state k before the first return to 0, i.e.,
before time o1, then EN(k) = 1, forany z € Z \ {0}, k # 0.

Problem 8.8.20. Let X = (X,),>0and Y = (Y¥,),>0 be any two simple symmetric
random walks on Z9, d > 1, and let

Ry =) Y I(Xi =Y)).
i=0 =0
Prove that when d = 1 the expectation ER,, i.e., the expected number of periods
during which the two random walks meet before time » (taking into account multiple
visits of the same state), behaves, asymptotically, for large values of n, as ¢ n3'2, for
some constant ¢ > 0. It is well known—see [75], for example—that in dimensions
d > 1 one has (for large n)

cn, d=2;
. d=3;
ER, ~ ¢V
clnn, d=4
c, d>>5,
where the constant ¢ = ¢; depends on the dimension d. Verify the above

asymptotics for ER,, and compute the constants ¢ = ¢.

Problem 8.8.21. Suppose that B is some finite set inside Z¢ and the function
f = f(x) is defined for x € B U 0B, where 0B = {x &€ B : |x — y| =
1 for some y € B}. Then suppose that the function f = f(x) is subharmonic in B,
ie, Tf(x) > f(x), x € B, where T is the one-step transition operator. Prove the
following maximum principle:

sup  f(x) = sup f(x).

x€BUJB x€0B
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Problem 8.8.22. Prove that every bounded harmonic function on Z¢ must be
constant.

Problem 8.8.23. Prove that all bounded solutions V' = V(x) to the problem:

AV(x)=0 for x e C, and V(x)=g(x) for x € 9C,

where C C Z¢ is a given domain, and g = g(x) is some (also given) bounded
function on dC, can be written as

V(ix) = Ex[g(Xr(ac))I(r(aC) < oo)] 4+ a P {t(0C) = oo},

for some @ € R, where 7(0C) = inf{n > 0: X, € dC}.

Problem 8.8.24. Prove the following results about the solution to the homogeneous
Dirichlet problem: find a function V' = V/(x) that is harmonic in the domain C C
Z? (ie., AV(x) = 0, x € C) and satisfies the boundary condition V(x) = g(x),
x € dC, for a given function g = g(x) that is defined on dC as follows:

(a) if d <2 and the function g = g(x) is bounded, then, in the class of bounded
functions, the solution is unique and is given by the formula Vyc (x) = E,g(X:@c));

(b)ifd > 3, g = g(x) is bounded and P,{r(dC) < oo} = 1, forall x € C,
then, in the class of bounded functions, the solution is again unique and is given by
the formula in (a).

Problem 8.8.25. Let X = (X,,),>0 be a simple symmetric random walk on 74,
d > 1, and suppose that the domain C C Z is bounded and its boundary dC is
defined as {x € Z¢ : x ¢ C and ||x — y|| = 1 forsome y € C}. Prove that the
Dirichlet problem:

find a function V' = V(x) on C U 9C, such that
AV(x) =—h(x) for x € C, and V(x)=g(x) for x €9C,
where h = h(x),x € C,and g = g(x), x € dC, are given functions,

has a unique solution, given by the formula

T(dC)—1 7(dC)—1
Vic(x) = Exg(Xeoe) +Ex | D k(X | Ec| Y (X0 | < oo.
k=0 k=0

Hint. Use the method described in Sect. A.7 in the Appendix and the fact that,
because of the finiteness of C, one must have P,{t(dC) < o0} = 1,x € C
(comp. with Problem 8.8.11).

Problem 8.8.26. Consider the simple random walk S = (S,),>0, defined on Z =
{0,£1,£2,...} by So =0and S, = & + ... +&,,n > 1, where &, &, ... are
independent Bernoulli random variables, with P{§&; = 1} = P{§& = —1} = 1/2,
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and let 7 = inf{n > 0 : S, = 1}. In Problem 7.2.18 it was proposed to show (by
using martingale methods) that, given any || < 1, one must have

Ea' =a [l = VI —a?].

Derive the last relation from the strong Markov property, by showing first that the
function ¢(«) = Ea" satisfies the relation p(a) = %a + %o«pz(a).

Problem 8.8.27. In this problem it is proposed to carry out certain calculations in
the model developed by T. and P. Ehrenfest, which was meant to explain the absence
of (the seemingly existent) contradiction between “irreversibility” and “recurrence”
in Boltzmann’s kinetic theory of heat propagation.

As is well known, this theory stems from the representation of the molecular
structure of the matter and the consequent treatment of the heat exchange as a
diffusion process. It was developed by Boltzmann for the purpose of explaining the
(mostly phenomenological) theoretical conclusions of thermodynamics, based on
the hypothesis that the distribution of heat is irreversible and moves toward a thermal
equilibrium. Although Boltzmann also believed that thermal equilibrium in the
system prevails and leads to a state that maximizes the entropy, the “stochastic”
theory that he proposed did not exclude—in theory at least—the possibility that over
time the system may return to its original thermodynamic disequilibrium, which
was the basis for criticism of the kinetic theory. (Poincaré noted the possibility
for “recurrence” in the case of dynamical systems described in terms of measure-
preserving transformations—see [P §5.1].)

Boltzmann himself claimed that there was no contradiction between “irreversibil-
ity”” and the physically unobservable “recurrence,” since in a stochastic system the
return to states of macroscopic non-equilibrium is possible, but occurs after such a
long period of time that it is practically unobservable.

From a physical point of view, the model developed by the Ehrenfests’, which
was formulated in terms of the theory of Markov chains, was quite adequate, as it
was able to describe the exchange of heat between two bodies that are in contact
with each other, but are otherwise isolated from their environment. This aspect of
the model allows for an interesting quantitative analysis of the average time for
transition from one state to another.

Let E = {0,1,...,2k}, where “state i” means “there are i molecules in camera
A” (a detailed description of the model proposed by the Ehrenfests can be found in
[P §8.8, 3]). Denote by

t@()=inf{n >0: X, =i} and o()=inf{n >0: X, =i},

respectively, the time of the first visit and the time of the first return to state 7, with
the usual understanding that inf & = oco.
Prove that:

(a) Eio(i) = 22k ”((22];)_!") ! and, in particular, the average recurrence time to the

null state is given by Eqo(0) = 2%;
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(b) Ext(0) = 5 2% (1 + O(k));
(¢)Eot(k) =kInk + k + O(1).

(In [8] one can find the following numerical results: if kK = 10,000 and the exchange

of molecules occurs once per second, then the expected time Egt(k) is less than
29 h, whereas E; 7(0) is astronomically large: 10%%% years (!)).

8.9 The Optimal Stopping Problem for Markov Chains

Problem 8.9.1. Prove by way of example that for Markov chains with countable
state space the optimal stopping time may not exist (within the class 915°).

Problem 8.9.2. Verify that the time t,, introduced in the proof of [P §8.9,
Theorem 2], is a Markov time.

Problem 8.9.3. Prove that the sequence X = (X, X, ...), which was defined in
in [P §8.9, 7] in the description of “the marriage problem,” forms a Markov chain.

Problem 8.9.4. Let X = (X,),>0 be some homogeneous Markov chain with
values in R and with transition function P = P(x;B), x € R, B € #A(R). We
say that the R-valued function f = f(x), x € R, is harmonic (or P-harmonic, or
harmonic relative to the transition function P), if

EL| /(X)) =/R|f(y)|P(x;dy) <o, xeR

and
fx) = / F) P(x:dy). xR (%)
R

If the identity “="in () is replaced by the inequality “>" we say that the function
[ is superharmonic—see also Sect. A.7.

Prove that if f is a superharmonic function, then, for every x € R, the sequence
(f(Xn))n>0, with Xo = x, is a supermartingale (relative to the measure P,.).

Problem 8.9.5. Prove that the time 7, which appears in [P §8.9, (40)], belongs to
the class I17°.

Problem 8.9.6. Analogously to Example 1 in [P §8.9, 6], consider the optimal
stopping problem
sn(x) = sup Erg(Xr)

N
€M

and
s(x) = sup E.g(Xyp),

TEMF®

for all simple random walks from the Examples in [ P §8.8].
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Problem 8.9.7. (Controlled Markov chains and optimization.) Let {P(a),a € A}
be some family of transition probability matrices P(a) = || p;; (a)||, parametrized by
the collection A of all possible choices for the “control.” The associated phase space
E = {i, j,...}is assumed to be either finite or countably infinite and any function
u = u(i), i € E, which takes values in the space A, will be treated as a “possible
control strategy,” i.e., a prescription for the value of the control parameter in every
state7 € E.

Given a particular choice for the control # = u(i), i € E, we denote by [P“ the
associated transition probability matrix || p;; («(i))||, from which one can obtain (see,
for example, the Ionescu Tulcea Theorem in [P §2.9]) the respective probability
distribution, P¥, i € E, in the space E°°—this is nothing but the probability
distribution of the Markov chain X = (X,),>o that starts from state Xo = i and is
being “steered” by the control u.

Let C be some domain inside the phase space E, set D = E \ C, and consider
the functions & = h(i,a),i € C,a € A,and g = g(i, A),i € D,a € A, which, for
now, will be assumed non-negative. For every (fixed) choice of the control u = u(i),
i € E, we write h*(i) = h(i,u(i)) and g"(i) = g(i,u(i)). The “gain” associated
with the control u = u(i), i € E, when the chain is in state j € E is given by

©(D)—1

V'(j) = E! [g“(XﬂD))I(r(D) <o)+ Y h“(Xk)]
k=0
where (D) = inf{n > 0: X, € D}. The meaning of the quantity V*(j) should
be clear: it represents the expected aggregate gains, including the cumulative gains
h* and the termination gain g“, collected while the chain remains in the domain C,
assuming that the initial state is Xo = j and the chain is subjected to the control
u=u(i),i € E.

The optimal control problem associated with the gain function V*(j) comes
down to computing the value function

VE(j) =supV*(j). Jj€E,

and the optimal control u* = u*(i),i € E, if one exist, with V*(j) = sup, V().
Prove the following statement, which is known as the “verification theorem:”
Suppose that

(i) There is a function V = V(j), j € E, such that
V) = sup{ S pi@vi) +hal, jec,
a€A :
JEE
and

V() = sugg(j,a), J €D;
ae
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(ii) In the class of admissible controls, one can find a control u* = u*(i),i € E,
such that for any fixed j both supremums above are achieved with a = u*(j).

Then the control u* = u*(i), i € E, is optimal: for every admissible control u

one has . .
V() =Vvij) and V" (j)=V(), JjEE.

Hint. Use the fact that for every admissible control u one must have

V() zTV()+ 1), JjeC. where T"V(j) = EjV(Xy),

and
V(j)=g"“(j), JeD.

Then use the fact that with u = u* the above inequalities turn into equalities.

Problem 8.9.8. (The “disorder” problem.) Consider the Bayesian risk
R™ (1) =P™{t <0} +cE"(t — )",

which was introduced in Problem 6.7.8. According to that problem, the infimum of
the quantity R™(7), taken over the class 915° of all P™-finite (7 € [0, 1]) Markov
times t, is attained at the Markov time

™ =inf{n >0:m, > A}, (*)
where A is some constant that may depend on ¢ and p.

Prove that
(a) The Bayesian risk R”(t) can be written in the form

—1
R™(7) = E”§(1 — ) +el(r = 1) an} :

k=0

(b) In the optimal stopping problem for the Markov chain (7,,),>0

7—1
R™ = inf E”{(l—nr)+cl(tzl)2nk§,

TEME® =0

the infimum is achieved with the stopping time t* defined in ().



Appendix A

Review of Some Fundamental Concepts
and Results from Probability Theory
and Combinatorics

A.1 Elements of Combinatorics

In its early stages, the “calculus of probability” was comprised mostly of combina-
torial methods for counting the (usually finite) number of configurations that lead
to the realization of certain random events. Even today, these counting techniques
remain indispensable for the theory of probability—especially for “the elementary
theory of probability,” which deals with finite spaces of elementary outcomes.
In fact, combinatorial methods play a crucial role in many domains of discrete
mathematics, including graph theory and the theory of algorithms.

What follows is a brief summary of some basic notions and result from
combinatorics that are used in the books “Probability” and also in the present
collection of problems.

* Let A be some collection of N < oo elements ay,...,ay (so that |A| = N).
If all of these elements are distinct, then the collection A can be referred to as a set
and may be expressed as

A= {al,...,aN}.

In the above notation the order in which the elements a;,...,ay are written
is irrelevant. For example, {1,2,3} and {2,3, 1} refer to one and the same set
comprised of the elements {1}, {2} and {3}.

With each set A = {ay,...,ay} one can associate two different types of samples
(sometimes called sequences) of size n:

(ail, . ,ai”) and [ail, . ,ai”] s

where iy, ...,i, € {l,..., N} and the symbols ai; stand for elements of the set A,
which may or may not coincide for different values of ;.

The token (a;,, ..., a;,) is used to denote ordered samples, i.e., samples identi-
fied not only by the collection of its members, but also by the order in which those
members are listed.

A.N. Shiryaev, Problems in Probability, Problem Books in Mathematics, 359
DOI 10.1007/978-1-4614-3688-1, © Springer Science+Business Media New York 2012
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The token [a;,...,a;,] is used to denote unordered samples, i.e., samples
identified only by the collection of its members, but not by the order in which those
members are listed.

For example, the samples (a4, ay, a3, a;) and (a;,ay, as, as), represent one and
the same collection of elements, but are nevertheless different, because these are
ordered samples that differ in the order in which their (identical) members are listed.
At the same time, the samples [a4, a1, a3, a;] and [ay, a;, aq, as] are two identical
unordered samples.

If samples of the form (a;,, ..., a;,), or of the form [a;,, ..., a;,], are taken from
the set A by way of “sampling without replacement,” obviously, all elements in the
sample must be different and, of course, one must have n < N. If samples of the
form (a;,,....a;,), or of the form [a;,, ..., a;,], are taken from the set A by way of
“sampling with replacement,” obviously, the sample may contain identical elements.
Furthermore, in this case the size of the sample, n, could be arbitrarily large.

A partition of the set A, with |[A| = N, is any collection, ¥ = {Dy,..., D,},
n < N,ofsubsets D; CA,1<i <n,withD; #0,D;ND; =afori # j,
and D| + ... 4+ D, = A. The sets D; are the atoms of the partition Z.

Counting Various Samples
from a generic set A = {ay,...,an};
Combinatorial Numbers and Their Interpretation.

(a (N), = N(N—-1)...(N —n + 1) — The number of ordered samples (.. .)
(“number of placements” N ton, 1 < of size n, comprised of elements of
n<N) the set A with |A| = N, by way of

“sampling without replacement;”

(b)y Cy = (ZZ!)” (= #’_’1),) (“number — The number of unordered samples
of combinations” 1 of N, binomial [ -] of size n, comprised of elements
coefficients) of the set A, with [A| = N, by way

of “sampling without replacement;”

(¢) N7 — The number of ordered samples (.. .)
of size n > 1, comprised of elements
of the set A, with [A| = N, by way
of “sampling with repetition;”

(d Cyi, — The number of unordered samples
[...] of size n > 1, comprised of
elements of the set A, with |A| = N,
by way of “sampling with repetition.”

For various combinatorial interpretations of the above numbers, see the problems
from Sects. 1.1 and 1.2. In particular, according to Problem 1.1.3 the number
of ordered sequences (...) of length N, that consist of n “ones” and N — n
“zeroes”, equals Cy, . This result is particularly important in the elementary theory
of probability, in connection with the binomial distribution.
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Example A.1.1. Consider the set A = {a;, as,as, a4}, in which |A| = 4, and let
n = 2. Then one has
(a) (4), = 4(4—1) = 12. There are 12 ordered samples of size n:

(ar,a2), (ai,a3), (ai,as), (az,a1), (az,az), (az,as),
(az,a1), (az,a2), (az,as), (as,a1), (as,az), (as,as).
(b) C? = 2, 2, = 6. There are 6 unordered samples of size n:
lar.az], lar,as], lai,ad), laz, a3, [az,as],  [as.as].

(c) 4% = 16.In addition to the 12 samples listed in (a) one must include the samples
(ar,a1), (a2, az), (03 as) and (a4, as).

(d) C42+2 , =C2 = 2,3, = 10. In addition to the 6 samples listed in (b) one must
include also the samples [a;, a1], [a2, az], [a3, a3] and [ay, a4].

Counting Subsets and Partitions
of a generic set A = {ay,...,ay};

Combinatorial Numbers and Their Interpretation

(e) 2V — The number of all subsets of A (including
the empty set @ and the set A with |A| =
N).

H Cy= % — The number of subsets D C A, of size
0<n<N (D|=n,|A| = N, with the
understanding that D = {&} whenn = 0
and C](S, =1).

(g Cny(ny,...,n,) = W (the — The number of partitior}s 9 =
“multinomial,” or “polynomial”  {D1,..., D,} of the set A with [A] = N
coefficients, ny +...+n, = N) Intor dlS_]Olnt sets Dy,...,D,, r < n,

with |D1| = I’ll,...,IDrI = n,,
n+...+n.=N.

(h) Dy(A1,...,ANn) — The number of “block™ partitions of the
= N! set A with [A| = N, of the form

(INA(NDAN (A)!.(An)!
(A; = 0 forall i and 2 ={Dy1.....,Dy,;...
Zl{v=l idi = N)
DNty oo Doy s

where the “block” [D;i, ..., D;y,] con-
sists of A; sets, every one of which has
i elements (|[Dix| = i,1 < k < A));
if A, = 0, then the respective block

is undefined and is not included in the
partition Z.
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(i Sy = > Dn(Ar....,Ay)— The number of partitions Z of the set A,
(the summation is taken over  with |[A| = N, that consist of exactly n
all choices of Aq,...,Ay, classes.
for which YN A = n,

SN id = N,and A; > 0 for
all i)

The numbers Sy, 1 < n < N, are known as Stirling numbers of the second kind.!

(G) By = Zflv: 1 Sy — The number of partitions of the set A, with
|A| = N.

The numbers By are known as Bell numbers.

(Some additional properties of the numbers introduced in (f)—(j) above can be found
in the problems from Sect. 1.2.)

Example A.1.2. Consider again the set A = {a;,a2,a3,a4} and let N = |A| = 4
andn = 2.

(e) 2* = 16. The 16 sets are given by:

g, {al}v {a2}v {a3}v {a4}v
la1, a2}, {ar,as}, {ar,as}, {as,as}, {as,as}, {as, a4},

{ai,as,a3}, {ai,az, a4}, {ay,as,as}, {asz,a3,a4), {ai,az, az, a4}
(f) C} = 6. The 6 sets are given by:
{alvaZ}s {alsa3}s {01,04}, {a27a3}s {02,614}, {a37a4}'

(g) If r =2,n; = land np = 3, then Cy(1,3) = % = 4. The 4 partitions are
given by:

a1} and {az, a3, a4}, {as}and{ay,as,aq},

{as} and {a,as,a4}, {a4} and {ay,a,,as}.

() Ai=2A=1,4=024=0> " i1 =4,

'For the Stirling numbers of the first kind, see p. 377 below.
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4!

D4(2,1,0,0) = (1!)2(2!)1(3!)0&4!)02! 1roto!r

The 6 “block” partitions are given by:

[tai}, {a2}] and [{as}, {as}].  [{a1}, {as}] and [{a2}, {as}],
[{a1},{as}] and [{az2}, {as}],  [{az}, {as}] and [{a1}, {a4}],
[{az},{as}] and [{ai}, {as}],  [{as}, {as}] and [{a1}, {aa}].

(i) S? = D4(0,2,0,0) + D4(1,0,1,0) = 3 + 4 = 7. The 7 partitions are: {a,}
and {a,, as, a4},

{az} and {ay,as, a4}, {as}and{a;,az,as}, {as}and{a,az,as},

{a1, a2} and {as,as}, {ai,a3}and {as,as}, {ai,as)and {ay,as}.
For example, analogous calculation shows that:

Si=1, S}=6, S}/=1,

Si=1, S2=15 S3=25 Si=10, S:=1,

Se=1, SZ2=31, S}=90, S{=65 S=15 S =1.

(j) With N = 4 property (i) implies that

By=S{+S;+S;+Si=1+7+6+1=15,
Bs=1+15+25+10+1=52,
Bs=1+431+90+65+15+1=203.

The respective 15 partitions (for N = 4) are:

{ar,az,a3,a4f;  {ai}, {az), {as), {asd:

{a1} and {a,, as,a4}; {az} and {ay, a3, a4};

{as} and {ay, az,a4}; {as} and {ay, az,as};

{ai.ax} and {as. as};  {ar,asfand{az, a4} {ar.as} {az.a3);

{a1},{az} and {az, as};  {ai}, {as} and {az, aq};  {a1}, {as} and {az, as};
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{ax}, {as} and {ay,a4};  {ax}, {as} and {ay,as};  {as}, {as} and {az, as}.

* There is more to combinatorics then the mere counting of all favorable con-
figurations for various events encountered in the elementary theory of probability.
For example, combinatorial reasoning is often used to establish identities like the
following one:

n
nN:ZSff,x(n)k, l<n<N, ()
k=1

where S% are the Stirling numbers of the second kind. (Note that S}, = S¥ = 1
and, by the usual convention, S,?, =0and Sy =0, forn > N.)

The combinatorial proof of the above identity is based on the idea that both
sides represent one and the same number of configurations, except that these
configurations are counted in two different ways. More specifically, let A and B
denote any two finite sets with |[A| = N and |B| = n. Consider a generic function
of the form y = f(x), which is defined for x € A and takes values in the set B. How
many such functions can one find? Since one can assign to each of the N possible
values of x any one of the n possible values y, it is clear that the total number of
functions from A to B must be n".

The total number of functions from A to B can be counted also by considering the
pre-image f~'(y) = {x : f(x) = y} of any given y € B. With this construction
in mind, given any subset C € B with |C| = k, for some 1 < k < n, consider the
collection of all functions y = f(x), for which one can claim that Range( f) = C.
Since |C| = k, then any function f from this collection defines a partition of A that
consists k disjoint classes, characterized by the property that f takes one and the
same value on each class and different values on different classes, i.e., the classes
in the partition are simply the pre-images under f of the elements of C. As the
total number of such partitions is S¥, and for each partition there are (k); = k!
functions that assign different values from the set C to the classes in the partition,
the total number of functions from A to B whose range is precisely C, must be
S jli, x k!.

As there are CF possible selections of the set C with |C| = k, the total number
of functions y = f(x), defined for x € A and taking values in B, with |4| = N
and | B| = n, must be

ZCf x S x k! = ZS}; x (n)g .
k=1 k=1

But the number of the elements in the same collection of functions was also found
to be nV, so that the identity (*) is now established. (Many problems and examples
of the use of “double counting” and other combinatorial techniques can be found in
the books [20,27,46,110,111].)



A.2 Basic Probabilistic Structures and Concepts 365

Table A.1 Factorials and their logarithms

n n! Inn!
L 1 0
2 e 2 0,3010300
22 PP 6 0,7781513
S 120 2,0791812
10 3628 800 6,5597630
15 1307 674 368 000 12,1164996
20 2432902 008 176 640 000 18,3861246
25 L. 15511210043 330985 984 000 000 25,1906457
30 265252859 812191 058 636 308 480 000 000 32,4236601

Table A.2 Binomial coefficients

1
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286
364
455

126
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330
495
715
1001
1365

21
56
126
252
462
792
1287
2002
3003

5

1
7 1
28 8 1
84 36 9 1
210 120 45 10 1
330 165 165 55 11 1
924 792 495 220 66 12 1
1716 1716 1287 715 286 78 13 1
3003 3432 3003 2002 1001 364 91 14 1
5005 6435 6435 5005 3003 1365 455 105 15 1

6 7 8 9 10 11 12 13 14 15

and A.2.

The first several values of the quantities n! and C,f are given in Tables A.1

A.2 Basic Probabilistic Structures and Concepts

The most basic structure, on which essentially any probabilistic or statistical
analysis is usually carried out is that of a probability space, or, a probabilistic model,
which as a triplet of the form (see [P §2.1])

(82, #,P),
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where:

£2 is the space of elementary outcomes w;
Z is a o-algebra of subsets of £2;

P is a probability measure on .#, i.e., o-additive function of the set
A€ .F,suchthat0 < P(A) <1,P(@) =0,P(£2) = 1.

* In addition to the notion of o-algebra, which is an essential ingredient in the
structure of any probability space, sometimes one must work with other systems of
subsets: algebras, separable o-algebras, monotone classes, m-systems, A-systems,
m-A-systems, families of cylindrical sets, etc.—see [ P §2.2].

* The events (or the sets) A and B are said to be independent, if P(A N B) =
P(A4) x P(B).

Two systems, 4, and %, of subsets of .7 are said to be independent if for any set
A € ¢4, and any set B € %, one can claim that A and B are independent.

The sets Ay,..., A, € % are said to be independent, if, forevery k = 1,...,n
and1 <i| <ip <... < <n,onehas

P(4;, N...NAy) = P(A;) ... P(A;).

The independence of the systems ¥, ..., %,, all comprised of sets from .%, can be
defined in a similar fashion.

* A measurable space is a pair of the form (E, &), where E is a set and & is a
o-algebra comprised of subsets of E.

The most common measurable spaces are (see [ P §2.2]):

(R, Z(R)) — the real line R endowed with the Borel o-algebra %(R)
(often denoted simply by %);

(R", B(R")) — the space R" = Rx...xR endowed with g-algebra Z(R") =
BR)Q...0 B(R);

(R, B(R*®)) — the space R® = Rx...xRx...endowed with the o-algebra
HB(R*), generated by all cylinder sets;

(R, B(R")) — the space R of all functions that map the (generic) set T
into the real line R, endowed with the o-algebra BRT),
generated by all cylinder sets in the space R ;

(¢, $B(€)) — the space € of continuous functions (e.g., continuous func-
tions on [0, 1] or [0, 00)) endowed with the o-algebra B(%),
generated by all open sets for the usual topology of con-
vergence on compacts (or, which amounts to the same,
generated by all cylinder sets);



A.2 Basic Probabilistic Structures and Concepts 367

(D, #B(D)) — the space D of right-continuous functions with left limits
(e.g, function on [0, 1] that are right-continuous at any
t < 1 and have left limits at any ¢+ > 0), endowed
with the o-algebra (D), generated by all open sets for
the Skorokhod’s metric (or, which amounts to the same,
generated by all cylinder sets).

* A random variable is any function X=X (w) which is defined on some
measurable space (§2,.%), takes values in (R, Z(R)), and is .% -measurable, in the
sense that

{w: X(w)e Bye F

for any Borel set B € Z(R).
The simplest, and at the same time very important, example of a random variable
is the indicator, X(w) = 14(w), of a generic set A € .%, which is given by

1, weAd

I4(w) 0. wdA

A random element is any .% /& -measurable map X = X(w) from £2 into E
(ie., {w : X(w) € B} € .Z forany B € &), where (£2,.%) and (E, &) are two
measurable spaces.

A n-dimensional random vector (X(w), ..., X, (®)) is simply an ordered list of
random variables X (w), ..., X, ().

A random sequence, or, equivalently, a random process in discrete time, X =
(X (®w))n>1, is simply a sequence of random variables X (), X2(®), . ..

A random process, X = (X;(®));er, on the time interval 7 C R is simply a
collection of random variables parameterized by the set T: X, (w),t € T.

* A distribution function, F = F(x), on (R, Z(R)), is any #(R)-measurable
function on R which has the following properties:

1. F(x) is non-decreasing;
2. limy_oo F(x) = 0and limy 400 F(x) = 1;
3. F(x) is right-continuous and admits left limits at any point x € R.

If X = X(w) is a random variable defined on the probability space (£2, %, P),
then the probability measure Py on (R, Z4(R)), given by

Py (B) = P{w: X(w) € B},

is known as the probability distribution of the random variable X = X(w). It is
easy to see that the function Fy(x) = Px((—o0,x]) is a distribution function
on (R, A(R)). This function is known as the distribution function of the random
variable X = X(w).

If X = (X;(w))ser is a random process then the probability distributions on R”,
for various choicesof n > l and#; < ... <t,,t; € T, given by
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Py, (B)=Plo: (X,(®),...,X;,(w)) € B}, BeABR",

are known as the finite-dimensional distributions of the random process X. The
associated distribution functions

Ffl ..... tn(xlv'--vxn) = P{(l) : Xt](w) S xlv---vxfn(a)) E xn}

are known as finite-dimensional distribution functions of the random process X .

o If the reference measure of choice on (R, Z(R)) is the Lebesgue measure A =
A(dx), then the “Lebesgue decomposition” (see [P §3.9, (29)] or [P §7.6, (3)])
leads to the following result: any distribution function, F = F(x), on (R, ZA(R))
can be decomposed into the sum

F(.X) = aFabc(x) + bFsing(x) )
where the constants @ > 0 and b > 0 are chosen so thata + b5 = 1 and

Fye(x) is some absolutely continuous distribution function on R with
(Borel-measurable) density f = f(y), ie., f(y) = 0,

T F0)Mdy) = Land Fae) = | f() M), x € B;

Fiing(x) is some singular distribution function on (R, %(R)), in the
sense that the respective probability law, Pgye, on (R, Z(R)) is
singular with respect to the Lebesgue measure A (Pging L A).

The singular function Fij,e(x) can be further decomposed into the sum
Fsing(x) =d- Fd-sing(x) +c- Fc-sing(x) s

in which the constants d > 0 and ¢ > 0 are chosen so that d + ¢ = 1, Fy-sing(X) is
a discrete distribution function with the property that the support of the associated
probability measure, Py-sing, is some set inside R that is at most countable, and
Fe-sing (x) is a continuous distribution function characterized by the property that
the support of the associated probability measure, Pc-ging, iS some uncountable set
inside R which is negligible for the Lebesgue measure A. (The canonical example
of such a function is the Cantor function F-gne(x)—see [P §2.3, 1].)
Recall that the support of any measure p on (R, Z(R)) is defined as the set

supp(u) = {x € R:pudy : [y —x| <r}>0,Vr > 0}.

As a direct application of the above decompositions, one arrives at the canonical
decomposition (see Problem 2.3.18) of a generic distribution function F = F(x)
on (R, A(R)):

F = o1 Fy + ayFape + a3 Fye
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where the constants oy > 0, o > 0 and o3 > 0 are such that oy + o, + a3 =
I, and Fy (= Fy-sing), Fave and Fye (= Feging) are distribution functions on
(R, (R)), which are, respectively, discrete, absolutely continuous, and continuous
and singular.

A.3 Analytical Methods and Tools of Probability Theory

* An important characteristic of any random variable X = X(w), defined on some
probability space (§2, .7, P), is its expected value (or simply “expectation”) EX.

If X = X(w) is a non-negative random variable, then its expected value EX
is defined as the Lebesgue integral of the function w ~> X(w) with respect to the
measure P:

EX = | X(0)P(dw).
/

If X = X(w) is an arbitrary (i.e., not necessarily non-negative) random variable,
then one can write X = Xt — X~ where X* = max(X,0) and X~ =
—min(X, 0), and the expected value EX is said to exist, or to be well defined, if at
least one of the expectations EX ™ and EX ™ is finite (i.e., min(EX T, EX ™) < 00),
in which case EX is defined as

EX =EXT-—EX".

The expectation EX is said to be finite (equivalently, X is said to be integrable), if
EXT < oo and EX™ < oo, which is equivalent to the requirement E|X| < oo,
since |X| = X+ 4+ X~ (see [P §2.6]).

* An important analytical “trick” in probability theory is the passage to the
limit under the Lebesgue integral. This operation is justified by the monotone
convergence theorem, Fatou’s lemma, and Lebesgue’s dominated convergence
theorem. The following tools are fundamental in probability theory: the concept of
uniform integrability, the fundamental inequalities (Chebyshev, Cauchy-Schwarz,
Jensen, Lyapunov, Holder, Minkowski and others), the Radon-Nikodym theorem,
Fubini’s theorem and the “change of variables” theorem for the Lebesgue integral
(see [P §2.6]).

* The dispersion of the random variable X = X(w) is defined as

DX = E(X —EX)>.

The quantity o = ++/DX is known as standard (linear) deviation of the random
variable X (from the mean value EX).
If it exists, the covariance of any given pair of random variables, (X,Y), is
defined as
cov(X,Y)=E(X —EY)(Y —EY).
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If X and Y are random variables with 0 < DX < oo and 0 < DY < oo, then
the quantity

__cov(X,Y)
~vDX DY

is known as the correlation coefficient of X and Y.

For a given random variable X and an integer 7, if it exists, the expectation EX"
is called the moment of order n, or the n'" moment, of X. The quantity E(X), =
EX(X —1)...(X —n + 1) is called factorial moment of order n.

* If F = F(x) is any distribution function, then the function

p(X.Y)

@(t) :/e”xdF(x) (:/costxdF(x)—H/sintxdF(x)), teR,
R R

R

is the characteristic function of F. In particular, if X is a random variable and Fy
is its distribution function, then the characteristic function of Fy, namely,

ox(t) = / e dFy (x) = Ee'™¥@ | 1 eR,
R

is also called characteristic function of the random variable X = X(w) (see
[P §2.12)).

* Given any non-negative random variable X with distribution function Fy =
Fx(x), the Laplace transform of X—or, equivalently, of Fx—is defined as the
function

o0
Fx(A) = /e—“ dFy(x) = Ee ™, 1>0.
0

Tables of the most commonly used discrete probability distributions and distri-
butions with densities can be found in [ P §2.3].

* The method of generating functions is particularly useful in the study of discrete
random variables. This method is widely used also in other areas of mathematics as
a convenient tool for studying some special numerical sequences, whose structure
is not immediately obvious.

In probability theory, the generating function, G(s), of the discrete random
variable X, which takes the values 0, 1,2,... with probabilities py, pi, pa2,...

(pk > 0,372, px = 1), is given by

o]

G(s) = Es* (= Zpksk), Is| < 1.

k=0
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The distribution of the random variable X, namely, (pi)k>o0, is uniquely deter-
mined from the generating function G(s) through the formula

G (0)
k!

pk=P{X =k} = .
If the components of the discrete vector-valued random variable X = (Xi,...,
X4), take values in the set N = {0, 1,2,...}, then its generating function, G(s),
with s = (s1,...,54), is defined by:

X X, k k
G(s1,....8q¢) =Esi' .5 = Z DkiokgSt -850

where pr, .k, =P{Xi=ki,....Xg =ka}, |sk| <L k=1,...,d.
If the variables X1, ..., X, are independent, then

G(s1,...,80) =Gi(s1)...Ga(sq),

where G (s;) = Es,f",k =1,...,d.

The above definition of the generating function G(s) assumes that the random
variable X is non-negative and takes values in the set N = {0, 1,2, ...}. For various
reasons it is useful to expand this construction also for the case where X takes
positive and negative values, i.e., P{X = k} = pi, for k = 0,£1,+2,...,
and Y 72 pr = 1, without supposing that all p_;, p—,,... must vanish. The
generating function, G(s), of any such random variable X is given by the formula

G(s)=Es* = > pis*.
k=—00

for those s for which E|s*| < oo.

Typically, generating functions of the above type are used when working with
the difference, X = X; — X>, of two random variables, X; and X, that take values
in the set N = {0, 1,2,...}. For example, if X, and X, are independent and have
generating functions, respectively, G, (s) and Gy, (s), then

Gy (5) = Gr—1,(5) = G, () Gy (%) -

In particular, if X; is distributed with Poisson law of parameter A;, i = 1,2, then
Gy, (s) = e~*(179) and the generating function Gy (s) of X = X — X is given by

GX(S) — e—(/11+/12)+3/\1+%/12 — e—(ll-‘rlz) X e«//hlz(t-l—%) ,

where t = s\/A1/As.
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It is well known from analysis that, for every fixed x € R, one can write

o0

D) — Z 1 (2x)

k=—00
where I (2x) is the modified Bessel function of the first kind of order k, namely

2r

o0
_ Lk X _
Ii(2x) = x ;r!l"(k+r+1)’ k=0+1,+2,...

(Alternatively, one can say that for every fixed x € R, the generating function of the
sequence (I (2x))g—o.x1... is e¥0T1))

Thus, we find that the probability distribution of the random variable X = X; —
X, can be expressed as

PINZE
PIX = k) = e—ww(f) LV,
2

where k = 0, £1,£2,....

For other examples related to the calculation of some concrete generating
functions, and for various applications of the method of generating functions, see,
Problems 2.6.28,2.6.32,7.2.18, and 8.8.19.

* As was noted earlier, the method of generating functions plays a significant role
in several important domains of mathematics; in particular, in discrete mathematics
and combinatorics.

In fact, it was the method of generating functions that brought to light the
algebraic methods for solving various combinatorial problems, thus giving rise to a
new direction in combinatorics, called algebraic combinatorics.

In general, many important combinatorial properties, operations and relations
can be interpreted in such a way that they become algebraic in nature.

As an illustration of the use of the algebraic properties of certain generating
functions for the purpose of a concrete combinatorial calculation, consider the
following lottery-problem. The tickets in a particular lottery are identified by the
six-digit numbers from 000000 to 999999. Suppose that one must compute the
probability that a randomly chosen ticket has a number in which the sum of the first
three digits equals the sum of the last three digits. Clearly, this is a combinatorial
problem, which comes down to computing the respective number of favorable
configurations. One may try to compute this number by brute force, i.e., by counting
those configurations one-by-one. However, as we are about to see, this number is
quite large (55, 252, to be precise) and straight counting would be rather impractical.

In contrast, the method of generating functions allows one to solve fairly quickly
a more general problem: calculate the probability for a randomly selected ticket in
a lottery with 10%" tickets, identified with the 2n-digit numbers from 0 to 10" — 1,
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to have a number in which the sum of the first n digits equals the sum of the last
n digits. Assuming that n = 3, let X = (X,..., X¢) be a vector of independent
random variables, chosen so that py = P{X; = k} = 1/10,fork = 0,1,...,9,
and consider the generating function

Gy, (5) f: e L iss sy s
x () =) pst=— s+...+s8)=— .
k=0 10 10 1—s

Because of the independence of the random variables X;, 1 <i < 6, one can write

1 (1—510)°
Grpraens(s) = G, (5) % Gra) % Gy 0) = 10 (52 )
Analogous expression can be written also for Gy, xs+x,(s).
Now consider the random variable ¥ = (X + X2 + X3) — (X4 + X5 + Xo).
Clearly, due to the independence, one must have

1 11 (1=5"0\°
Gy (s) = Gx,+x,4+x5(5) GX4+X5+X6(E) = 106 577 )

1—ys

In addition, the coefficient go (for the term s°) in the expansion

Gy(s) =) ais*
k

is nothing but the probability P{Y = 0}, which is precisely the probability that the
sum of the first three digits on the randomly selected ticket equals the sum of the last
three digits. After a somewhat involved but otherwise straight-forward calculation,

1—gl0

6
?) into power series (for

from the expansions of (1 — 5'°)°, (I —5)7° and S%(

the powers s k=0,+1,42,.. .) one finds that

55252

go = = 0.05525

106
(see also Problem 2.6.79).
In general, the generating function associated with an arbitrary numerical
sequence a = (a,),>o is defined as the (formal) power series

G,(x) =ao+ax+ax*+..., xeR.
If the above series has a non-trivial radius of convergence, then it would define a true

(i.e., not just formal) function (on the respective interval of convergence). According
to the general theory of generating functions, the function G,(x) is nothing but
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a special “encryption” of the sequence a = (a,),>0, in that there is a bijective
correspondence
(an) < Gu(x).

It is a trivial matter to check that if (b,) <> Gp(x) and ¢ is some constant, then

(ay + cby) < Gu(x) + cGp(x).

Perhaps the most important features of the bijection “<«” is the relation

(Z a,-bn_,-) < Go(x) X Gp(x),
i=0 n>0

which simply says that under the bijection “<>” the convolution of the sequences
a = (an)n>0 and b = (b,),>0 corresponds to the multiplication of their respective
generating functions. It is not hard to see that the formal operations introduced above
(addition, multiplication by scalars and multiplication between formal series) posses
the associativity, commutativity and distributivity properties, so that the space of all
formal series can be treated as an algebraic structure—for more details, see [27,46,
110,111].

In addition to the power series G,(x), constructed from the sequence (a,), one
can define the exponential generating function

E,(x)= Zan z—’:

n>0

the series again being understood as a formal series. Just as in the case of generating
functions, one has the one-to-one correspondence

(an) < Eq(x)
and the following properties hold

(an + cby) < Ea(x)(CEb(-x))y

(Z C,;‘a,-b,,_i) < E,(x)Ep(x).

i=0

Now we turn to some examples. If the sequence (a, ),>0 is chosen so thata, = 1,

n > 0, then
> 1
G, = " = —, <1
@=3v (=75 W<)
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and one has the formula

o]

N o0
Gl = x| =t
n=0

n=0

which comes as a result of the following argument.
What is the coefficient for x" in the formal expansion of (1 + x + x? +...)"V?
Since

A+x+x24+. )N =0+x+x2+. )0 +x+x2+..) . . (I+x+x2+..),

it is clear that if one extracts from the first factor x"!, extracts from the second factor

x"2, ..., and, finally, extracts from the N th factor the term x”¥, then one would
end up with the term x"'x"2 ... x"¥ = x". The total number of all such choices
(ny,na,...,ny),withn; +n,+...+ny =nandn; > 0, is simply the number of

all non-negative integer-valued solutions to the equationny +n, + ... +ny = n,
which, according to Problem 1.1.6, is precisely Cp ;.

This shows that the generating function of the sequence (Cy ., _;)n>0 is simply
(1 —x)7", |x| < 1. In particular, the following identity must hold:

[e'e)
Zz_ncllz’-l—n—l = 2N .
n=0

Furthermore, the generating function of the sequence (Cy),>0, with the under-
standing that Cy, = 0, n > N, is nothing but (1 + x)N; in other words,

N
1+x)V = ZC]’\’,x".
n=0

The proof of the last relation is analogous to the proof of the formula for the
generating function of the sequence (Cy,, | )n>o0-
Consider the identity

A+)MA +x0)M =1 + )V,

and observe that after expanding both sides in the powers x* and comparing the
respective terms one finds that

N

J k=i _ ~k
ZCNCM =Cyyum-
Jj=0
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The last identity is known as “Vandermonde’s convolution,” or the hypergeometric
identity—see also Problem 1.2.2. Its derivation is a good illustration of the use of
the method of generating functions for deriving various combinatorial identities.

To conclude the discussion of the topic “generating functions,” we now turn to
the Stirling numbers of the second kind, S%,, and the Bell numbers, By, which were
introduced earlier. Recall that S}, gives the number of all partitions Z of a set A
with N elements, such that & consists of exactly n classes. Recall also that By =
2;11\/:1 S} gives the number of all possible partitions of the set A with [A| = N.

In Sect. A.1 we established the formulan™ = Y} _, S% (n)x by using combina-
torial considerations. (Recall that S}, = SY =1, Sy = 0and S% = 0forn > N.)
It is easy to see from this formula that for any N > 1 the polynomial

N
Py (x) =xN—ZS1”V(x)n, xeR,
n=1

has roots x = 1,..., N. Since x = 0 is also a root, it follows that Py (x) = O.
Consequently, forany N > 1 and x € R one has

N
XV =Sk
n=1
If we set Sg =1, (x)o =1and Sj(\), = 0 for N > 1, one finds that

N
XN =T Sh (0
n=0

forall N =0,1,2,...andall x € R.
With the above relations in mind, one can write

> (s yVN,) () = ZYVN,(ZS}@ o)

n>0 “N>0 N>0 """ “n>0

N
- Z (y])\;)i =e =) =0+E"-1)" = Z%(ey =" (),
N>0 : nz0

due to the Taylor expansion (1 + z)* = ano ;—", (x)n. By comparing the left and
right sides of the above chain of identities, one finds that, for every n > 0, the
exponential generating function for the Stirling numbers of the second kind, S},
N >0, is given by the formula
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N
ny _1 y n
ZSNM_E(e -1", n>0.
N=>0

(with the convention S = 1, S§ = 0for N > 1 and S% = 0 for N < n).
In much the same way one can obtain the generating function of the sequence

(SN )nz0:
N

Z Syx" =e" Z mm)'cm . ()

n>0 m=>0

Indeed, taking into account that (m), = 0 form < n — 1, one can write

xi+n x™
n_x __ _ r
xe _Z il _Z(m)”m!'
i>0 m>0
Furthermore, the formulam® = Y § & (m), yields
n>0
xm
X n.n __ n.n_x __ n r
Y shat = o sper = 35k (Lo, )
n>0 n>0 n>0 m=>0
x™ m¥ x™
_ r n _
-X (Tt =2
m=>0 n>0 m=>0

which gives (xx).
With x = 1 (xx) gives Dobinski’s formula for the Bell numbers:

The definition of the Stirling numbers of the second kind, S7,, was based on the
combinatorial interpretation of these quantities as the total number of partitions of
a set A that has N elements into n disjoint classes. Then we showed that x¥ =
2;11\;0 Sy (x)u, forevery N > 0.

The algebraic Stirling numbers of the first kind, s}, 0 < n < N, can be defined
by the relation

N
(I = Y sy (+)
=0

The combinatorial interpretation of the numbers s%; can be explained as follows. Let
m = (my,...,my) be any permutation of the numbers (1, ..., N) and let ¢}, denote
the number of permutations with exactly n cycles. (For example, the permutation

(; % i: gj g) has two cycles.) One can then show that
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cy = c",\,__ll + (N —1Dcy_,

(with cg = 1), and conclude that

N
Zc?’\,x” =x(x+1)...(x+N-1).
n=0
By comparing the above generating function for the sequence c?\,, c }v, cees c% with
the generating function in (), for the sequence of Stirling numbers of the first kind,

0 (1 N
SnsSys---,Sy,one finds that

ch =DV sy

This shows that the Stirling numbers of the first kind s}, coincide up to their sign
with the number of permutations of the set (1, ..., N), that have precisely n cycles.

The generating function G(s) = Es¥, |s| < 1, associated with a discrete random
variable X that takes values in the set N = {0, 1,2, ...} with probabilities p; =
P{X = k}, k € N, can be written as

o0
G(s) =) prs*,
k=0

and therefore can be identified with the generating function of the numerical
sequence (Pi)i>0-

Closely related to the notion of generating function is the notion of moment
generating function (see Problem 2.6.32). The moment generating function of the
random variable X is defined as

M(s) = Ee*¥.

Notice that if X > 0 (a.e.) the expectation Ee*¥ would be well defined for —1 <
s < 0. Assuming that all moments m®¥) = EX¥, k > 1, are finite, the moment
generating function M (s) can be expanded into the (formal) series
— k)~
M(s)=> m R
k=0
which is nothing but the exponential generating function for the sequence (11%)); .
As was noted earlier, in addition to the usual moments m* = EX¥, in probability

theory it is often useful to work with the factorial moments

)y =EX)k = EX(X —1)...(X =k + 1)
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and the binomial moments

(X (mx
P =BT =T
(the term “binomial” is justified by the relation hy) = EC¥, where C& =

(X)x/ kD).
The sequence of factorial moments ((m)x)r>0 and the sequence of binomial
moments (b))r>o give rise, respectively, to the exponential generating function

0 k
(M)(s) = Y m)

k=0

and the generating function
o0
B(s) =Y bus".
k=0

Clearly, one must have
M(s) = G(e’) and (M)(s) = B(s) =G(s+1).

It is useful to point out that the following two identities, established earlier, in which
S% and s}, stand for the Stirling numbers, respectively, of the second and the first
kind,

o0 o0
N = ZSX, X, X)n = Zs"Nx”,
n=0 n=0

entail the following connection between the moments m) = EX" and the factorial
moments (m), = E(X),,n > 0:

N N
™) — ZSZHV (m),, (m)y = Zs"Nm(”).

n=0 n=0

e It is useful to notice that many special sequences in mathematics (e.g.,
Bernoulli, Euler, etc.) and special polynomials (Bernoulli, Euler, Hermite, Appell,
etc.) are defined in terms of generating functions.

(a) The Bernoulli numbers, by, b1,bs,..., and the Bernoulli polynomials,
Bo(x), Bi(x), B2(x), ..., are defined through the respective exponential generating
functions as:
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(The ﬁrst several Bernoulli numbers are: by = 1, b = —% b, b4 = 30,
bs = 42, by = —, bo(x) = 1, Bi(x) = x — %, Ba(x) = x> —x + i, Bs(x) =
x3 = x + 2x see [109], for example.) All odd-numbered Bernoulli numbers
(except forb) = —%) are equal to zero. What follows is a list of some key properties
and relations:

1Ly =30 Clby_y, N =2,3,...;

2. all numbers by are rational;

3. By(0) = by, By(1) = (=1)"by, N > 0;

4. By(x) =N Chb,xN"" N > 1,

5. BJ/V()C) = NBN_l()C), N > 1.

(b) The Euler numbers, ey, ey, ez, . .., and the Euler polynomials Ey(x), E(x),

E>(x), ..., are also defined through the exponential generating functions as:
2e*s o0 s
e and = E,(x)—
ez‘+1 Z”. e+ 1 Z_:O e
Since % = th‘ the exponentlal generating function for the sequence of Euler

numbers ey, €1, €3, . . . is simply cosh?
The above definitions imply that:
ley =2VEyN($), N = 0;
2. En(x) =Y ChHE, A (x =)' N > 0;
3. E;V(x) = NEnN_1(x),N > 1;
4. all odd-numbered Euler numbers are equal to zero, while even-numbered
Euler numbers are integers.
The first several Euler numbers can be computed as: eg = 1,e; = —1,e4 = 5,
e¢ = —601,e5 = 1,385—see [109].
(c) The Hermite polynomials are defined somewhat differently in analysis and
probability theory.
The Hermite polynomials, H, (x), n > 0, of the type commonly used in analysis,
are defined as
D"y (x)

¥ (x)

where ¥ (x) = \/#Zfﬂe_"z. The respective exponential generating function is given by

Hy(x) = (=)' ———

)

ZH(x) =e> % seR, xeR.

The Hermite polynomials, He,(x), n > 0, of the type commonly used in
probability theory, are defined as:

D"p(x)
o 0 "0

He,(x) = (-1)"
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where p(x) = \/Lﬁe"‘z/ 2 is the density of the standard distribution .4 (0, 1). (Note

that in [ P §2.11]—and, commonly, in probability theory—the above polynomials
He, (x) are denoted by H, (x).) The exponential generating function associated with
the sequence He, (x), n > 0, is given by:

S n
N 2

E Hen(x)—'ze“ 20 seR,xeR.
n!

n=0

One can easily verify the relation
He,(x) = 27"/?H,(27"/%x).
The first several Hermite polynomials can be computed as:

Ho(x) =1, Heo(x) =1,
H(x) = 2x, He;(x) = x,
Hy(x) = 4x> =2, Hes(x) = x? — 1,
Hi(x) = 8x3 —12x, Hez(x) = x> —3x.

A more general version of the Hermite polynomials, written as He, (x,¢), n > 0,
x € R, t € R4, can be defined through the relation

2

o0 sn

E He,,(x,t)—‘:e"‘“'_Z’, selR,xeR.
n!

—0

The polynomials He,(x,¢), n > 0, play an important role in the study of the
Brownian motion, due to the following property: if B = (B;);>0 is any standard
Brownian motion, then the following processes can be claimed to be martingales
relative to the filtration of B = (B;)/>o:

2
He,(B;,1));>0, for an n>0, and Bt , for an seR.
> y y
>0

Note that in the literature the polynomials He, (x, ¢) are usually written as H, (x, t),
the exact meaning being made clear from the context.

(d) Suppose that X is some random variable and the associated generating
function,

G(s) = Ee*Y,

is finite for all |s| < A, for some A > 0.
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‘We now define the function

X

A@x%zéay xeR, |s|<A.

s

In actuarial and financial mathematics the map x ~> Wz) is called Escher’s transform
(of the random variable X )—see [P §7.11]. The function A(s, x) gives rise to the
Appell polynomials (also known as Sheffer polynomials) Qy(x), Q1(x), ... through
the expansion

o0 k
As.x) = Y0 04) 7.
k=0 ’

In other words, A(s,x) = é—:{ is simply written as the generating function of the

sequence of polynomials (Q(x))r>0-
The generating function of a random variables X that is uniformly distributed in

the interval [0, 1] is

S
-1
G(s) = Ee’X = ¢
Consequently, in this special case one has
se’*
A(s,x) =
(s, x) =1

and the Appell polynomials Q(x) are nothing but the Bernoulli polynomials
By (x), considered earlier.

If X is a Bernoulli random variable with P{X = 1} = P{X = 0} = 1/2, then
its generating function is

eS+1

G(s) = Ee™* =
(s) e >

and, consequently,
2e%*

es+1°
and that in this case the Appell polynomials coincide with the Euler polynomials.
A standard normal (.#"(0, 1)) random variable X has generating function

A(s,x) =

2
G(s)=e""?,
and it is easy to check that in this case one has
A(S,)C) — exs—sz/Z ,

and that the Appell polynomials Q(x) coincide with the Hermite polynomials
Heyx (x)
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Next, let x, x;, ... denote the cumulants (a.k.a. semi-invariants) of the random
variable X . The following relations are easy to verify:

Qo(x) =1,
01(x) = x — x1,
02(x) = (x — x1)” — 2,

03(x) = (x — }q)3 —3xo(x — 1) — x3.

In the special case where X ~ .47(0, 1), the cumulants are »; = 0, », = 1, and
x3 = x4 = ... = 0. As aresult, one can write:

Qo(x) = Heg(x) = 1,
01(x) = He (x) = x,
0a(x) = Hey(x) = x> — 1,
Q3(x) = Hez(x) = x* — 3x.

Notice that in order to claim that the polynomials Qx(x), k = 1,...,n, are
uniquely defined it is enough to require that E|X|" < oo. Furthermore, one has
(with the understanding that Q¢ (x) = 1):

0,(x) =kQy—i(x), 1<k<n.

The above identities are known as the Appell relations.

* Given any non-negative random variable X, defined on (£2, .%#, P), and given
any o-sub-algebra &4 C .7, the conditional expectation of X relative to ¢ is any
non-negative (not necessarily finite, i.e., with values in the extended real line R)
random variable E(X | ¥4) = E(X | ¢)(w) that shares the following two properties

1. E(X |¥) is ¢Y-measurable,

2. For every set A € ¢ one has:

E[X14] = E[E(X [¢)14].
For a general (i.e., not necessarily non-negative) random variable X ( = X X))
the conditional expectation of X relative to the o-sub-algebra ¥ C % is considered

to be well defined if one has (P-a.e.)

min[E(X* | %) (). E(X ™ |9)()] < o0,
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in which case one can write
E(X|9)(w) =EX™" |9)(0) —EX™|¥9)(w).

If X(w) = I4(w), i.e., if X is the indicator of the set A € .%#, the conditional
expectation E(/4|¥9) = E({4|¥)(w) is usually written as P(4|¥), or as
P(A|¥)(w), and is called the conditional probability of A relative to the o-algebra
Y 7.

If the o-algebra ¢ is generated by the random element ¥ = Y(w) (i.e., Y =
9y = 0(Y)), the quantities E(X | ¥4y) and P(A | %y ) are usually written as E(X | )
and P(A|Y) and are referred to, respectively, as the conditional expectation of X
given Y and the conditional probability of the event A given Y . (See [P §2.7].)

* Just as in mathematical analysis one deals with various types of convergence, in
probability theory, too, one deals with various types of convergence for sequence of

P
random variables: convergence in probability (X,,— X); convergence almost surely
d
or almost everywhere (X,, — X (P-a.e.)); convergence in distribution (X,, — X,
or X, 1d—>w X, or Law(X,) — Law(X), or Law(X,) 5 Law(X)); L?-convergence,

p > 0, (X, = X); point-wise convergence (X,(w) — X(w), v € £2). (See
[P §2.10].)

* In addition to the various types of convergence of sequences of random
variables, in probability theory one also deals with convergence of probability
measures and convergence of probability distributions and their characteristics.

One of the most important types of convergence of probability measures is the

weak convergence P, 5 P, for a given sequence of probability measures P,, n >
1, and a probability measure P, defined on various metric spaces, including the
spaces R", R*°, C and D that were introduced earlier.

Many classical results from probability theory (e.g., the central limit theorem,
Poisson theorem, convergence to infinitely divisible distributions, etc.), are es-
sentially statements about weak convergence of certain sequences of probability
measures—see [ P Chap. 3].

* Most fundamental results in probability theory—e.g., the zero-one law, the
strong law of large numbers, the law of the iterated logarithm—are concerned
exclusively with properties that hold “with Probability 17 (or “almost surely”). A
particularly interesting and useful result is contained in the Borel-Cantelli lemma:

Let A}, Ay, ... be any sequence of events and let {4,, i. o} (= lim, 4, = (oo, Ur=, 4r)
stand for the set of those w € §2 which belong to infinitely many events from the sequence
A], Az, ... Then

(@) Y2 P(A,) < oo implies that P{A4, i. 0.} = 0;

(b) If the events Aj, A,, ... are independent, then Z;X;I P(A4,) = oo implies that
P{4,i.0} = 1.

(See [ P Chap. 4] for more details.)
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A.4 Stationary (in Strict Sense) Random Sequences

e The random sequence X = (X}, X»,...), defined on the probability space
(£2, .7, P) is said to be stationary in strict sense, if its distribution law, Law(X),
(or, equivalently, its probability distribution, Py ) coincides with the distribution law,
Law(6; X), of the “shifted” sequence 6y X = (Xk+1, Xk+2,...), forany k > 1.

It is convenient to study the probabilistic properties of such sequences (as is done
[P Chap. 5]) by using the notions, ideas and methods of the theory of dynamical
systems.

* The main object of study in dynamical systems theory are the (measurable)
measure-preserving transformations of a given configuration space.

The map T:2 — £2 is said to be measurable if, for any given A € Z, the
set T7'A = {w : Tw € A} belongs to .#, or T"'A € .# for short. The map
T:$2 — £2 is said to be a measure preserving transformation (of the configuration
space £2) if it is measurable (for .%) and

P(T~'4) = P(A), forevery Ae.%

The intrinsic connection between “stationary in strict sense random sequences” and
“measure-preserving transformations” can be explained as follows.

Let 7 be any measure-preserving transformation and let X; = X;(w) be any
random variable on §2 (automatically measurable for .%). Given any n > 1, define
X,(0) = X{(T"'w),where T""' = ToTo---0oT ((n— 1)-times) is the (n — 1)*
power of T (as a transformation of §2). The sequence X = (X, X>,...) is easily
seen to be stationary in strict sense.

The converse statement can also be made, if one is allowed to reconstruct the
probability space. Specifically, if X = (X1, X2, ...) is any stationary in strict sense
random sequence (defined on some probability space (§2, 7, P)), then it is possible
to produce a probability space (.Q F , P), on which one can construct a measure-
preserving (for P) transformation T 2 - .Q and a random variable X=X, (@),
so that Law(X) = Law(X), where X = (Xl(a)), Xl(Ta)), ce)e

The main results of [ P Chap. 5] are concerned with the fundamental properties
of certain measure-preserving transformations, such as recurrence (‘“Poincaré re-
currence theorem”), ergodicity and mixing. The key result in that chapter is the
Birkhoff-Khinchin theorem, one invariant of which (that covers both measure-
preserving transformations and stationary in strict sense random sequences) can be
stated as follows:

(a) Let T' be some measure-preserving ergodic transformation on (£2, .#, P) and
let § = £(w) be any random variable on £2 with E|&| < oco. Then

n—1

lim — Zg(T"w) =Et (P-ae).
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(b) Let X = (X1, X2,...) be any stationary in strict sense ergodic sequence of
random variables on (§2,.%, P), for which E|X| < co. Then

n—1

!
lim ~ kz_;)xk(w) = EX;.

A.5 Stationary (in Broad Sense) Random Sequences

From the point of view of both theory and practice, in the study of random sequences
of the form X = (X)), it is important to allow the random variables X, to take
complex values and to be defined for alln € Z = {0,£1, £2,...}. We will then
write X = (..., X_, Xo, X1,...) and will suppose that each X, is a complex
random variable of the form (a, + ib,) with E|X,|*> = E(a,> + b,,z) < oo for
alln € Z—see [P §6.1].

Our main assumption “stationarity in broad sense” comes down to EX,, = EXj
and cov(X,,4+m, X;m) = cov(X,,, Xo), foralln,m € Z.

Without any loss of generality we may and do suppose that EXy = 0, so that
cov(X,, Xo) = EX,Xy. The function R(n) = EX, Xy, n € Z, is called the
covariance function of the sequence X .

* The following two results (the Herglotz theorem and the spectral representation
theorem) demonstrate that, by nature, a stationary in broad sense random sequence
is nothing but an infinite sum of harmonics with random amplitudes, the summation
being taken (with an appropriate limiting procedure) over the entire range of
frequencies of the harmonics.

The first result (see [ P §6.1]) states that every covariance function R(n), n € Z,
admits the spectral representation:

R(n) = /e“" F(d}), forall neZ,
where F = F(B), B € #A([r, x)), is some finite real-valued measure, and the
integral is understood in the sense of Lebesgue—Stiltjes.

The second result (see [ P §6.3]) gives the spectral representation of the random
sequence X = (X,)nez:

X, = /e"“ Z(dA) (P-a.e), forall neZ,

-
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where Z = Z(A), A € HAB([—mn,m)), is some orthogonal (generally, complex-
valued) random measure with EZ(A) = 0 and E|Z(A)|?> = F(A) (recall that in
our setting EXy = 0).

If they exist, the spectral function F = F(dA) and the spectral density f =
f(A) (related by F(B) = [, f(A\)dA, B € Z(|—n,n))), play a fundamental
role in the spectral and correlation analysis of the random sequence X, providing a
description of the “spectral composition” of the covariance function.

At the same time, the relation E| Z(A)|?> = F(A) reveals the connection between
the spectral function and the “stochastic spectral component” in the representation
X, =[" e*ZdMr),neZ.

* Given the intrinsic nature of the spectral properties outlined above, it is
easy to understand why results of this type are so important in the statistics of
stationary sequences and the statistics of random processes in continuous time. More
specifically, these features allow one to construct “reasonably good” estimates of the
covariance function, the spectral density and their characteristics (see [ P §5.4]). All
of this is instrumental for building probabilistic models of observable phenomena,
which are consistent with the data derived from experiments.

Finally, we note that the pioneering work of A. N. Kolmogorov and N. Wiener
on the theory of filtering, extrapolation and interpolation of random sequences and
processes, was developed almost entirely in the context of stationary in the broad
sense random sequences and processes (see [ P §6.6]).

A.6 Martingales

In the very early stages of the development of the general theory of martingales
it was recognized that it would be extremely useful to amend the underlying
probability space (§2, .7, P) with a flow of g-algebras, i.e., a filtration, of the form
(Zn)n>0, Where %, C .Z. The filtration has the meaning of “flow of information,”
i.e., each %, comprises all “pieces of information” that an observer may be able to
receive by time n. The structure (£2,.%, (Z,)u>0, P) is called filtered probability
space. With any such structure one can associate the notions “adapted” (to the

9 <

filtration (%,).>0), “predictable,” “stochastic sequence,” “martingale,” “Markov
times”, “stopping times,” etc.

* The sequence of random variables X = (X,).>0, defined on the structure
(82,.Z,(F1)n>0, P), is said to be adapted to the filtration (%#,),>¢ if X, is .Z,-
measurable for every n > 0. The same sequence is said to be a martingale on
(82,.Z,(Fy)n>0, P) if, in addition to being adapted to (%, ),>0, it is integrable, in
that E| X,,| < oo, n > 0, and has the property

E(X, | %u-1) = X,—, forall n>1.
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If the equality in the above relation is replaced by the inequality E(X,, | #,—1) >
Xy—1, or the inequality E(X,, | #,-1) < X,—1, then the sequence X = (X,,),>0 is
said to be, respectively, submartingale and supermartingale.

* The class of martingales includes many special sequences of random vari-
ables, encountered in many important practical applications (see [P §7.1]). More
importantly, the general theory of martingales provides methods, insights and
computational tools that are indispensable for certain aspects of probability theory
and mathematical statistics—especially in connection with some important practical
applications. The key insights from the martingale theory are: the invariance of
the martingale property under random time-change (see [P §7.2]), the fundamental
inequalities for martingales and submartingales (see [ P §7.3]) and the convergence
theorems for martingales and submartingales (see [ P §7.4]).

Some of the most important practical application of martingale theory, namely:
the probability for ruin in insurance, the martingale characterization of the absence
of arbitrage in financial markets, the construction of hedging strategies in complete
financial markets and the optimal stopping problem, are discussed in [P §7.10]
through [P §7.13].

A.7 Markov Chains

In what follows we will expand and reformulate some of the main results from
the general theory of Markov chains that was developed in [P Chap.8]. The
notation and the terminology introduced in [ P Chap. 8] will be assumed, but will be
modified and expanded, in connection with some new topics that were not included
in [ P Chap. 8].

* Similarly to martingales, a generic Markov chain (in broad sense), X =
(X)n>0, can be treated as a sequence of random variables that are defined on some
filtered probability space (§2, .7, (:%,)u>0, P) and take values in some set E, called
the “state space” of the Markov chain X. The state space E will be endowed with
the structure of a measurable space and will be denoted by (E, &). As a sequence
of random variables, the Markov chain X = (X,),>o will always be assumed to
be adapted to the filtration (.%#,),>0, in the sense that X, is .%, /& -measurable for
every n > (. The fundamental property that characterizes X = (X, ),>0 as a Markov
chain in broad sense can be stated as follows for every n > 0 and every B € & one
has

P(Xut1 € B| F)(0) = P(Xy41 € B| Xy)(w) (P-a.e).

(With a slight abuse of the notation, we will write P(X,,+1 € B | X,,(w)) instead of
P(Xn+l €B | Xn)(a)))

If the filtration (%,),>0 happens to be the natural filtration of the sequence
X = (Xp)nso, €., Ty = ﬁ‘nx = o0(Xo, X1,...,X,) for every n > 0, then the
Markov property in broad sense becomes Markov property in strict sense, and, if
this property holds, the sequence X = (X},),>0 is said to be a Markov chain.
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In the special case where (E,&) is a Borel space, [P §2.7, Theorem 5]
guarantees that for every fixed n > 0 there is a regular conditional probability
P,(x;B),x € E, B € &, with the property that for every B € & one can write

P(X, € B|X,—1(w)) = P,(X,—1(w); B), forP-a.e.w € 2.

In the theory of Markov processes, the regular conditional probabilities P, (x; B),
n > 0, are called transition functions (from E to &), or Markov kernels. In the
special case where the transition functions do not depend on n, i.e., one can write
P,(x; B) = P(x; B), the associated Markov chain (in broad sense or in strict sense)
is said to be homogeneous.

Another important element of the construction of any Markov chain, in addition
to the transition functions P,(x; B), n > 0, is the initial distribution 1 = w(B),
B € &, which is simply the probability distribution of the random variable X, i.e.,

n(B)=P{Xoe B}, Beé&.

The initial distribution and the transition functions, i.e., the entire collection (7, Py,
P, ...), which in the homogeneous case comes down to the pair (7, P), uniquely
determines the probability distribution (as a random sequence) of the Markov chain
X = (Xo, X1,...).

* Following the modern treatment of the subject, [ P Chap. 8] adopts the view that
the main building blocks in the general theory of Markov chains are the state space
(E, &) and the collection of transition functions P,(x;B),x € E,B € & n >0
from E to & (which reduces to a single transition function P(x; B),x € E,B € &
in the homogeneous case). This was a departure from the classical framework,
in which the starting point is the filtered probability space (£2,.%#, (%,)n>0,P),
the state space (E, &), and the sequence X = (Xy, Xi,...) of E-valued random
variables, chosen so that each X, is .%, /& -measurable. According to the Ionescu
Tulcea Theorem (see [P §2.9]), for any given state space (E, &) and any given
family of transition functions from E to &, one can take (£2, .%) to be the canonical
coordinate space (E°°, £°°) and then construct a family of probability measures,
{Py,x € E}, on (£2,.%), in such a way that the sequence of coordinate maps,
X = (Xo, X1,...), given by X, (w) = x, for o = (x¢,x1,...), n > 0, forms
a Markov chain under the probability measure Py, with P.{X, = x} = 1, for
every x € E, i.e., under the probability measure P, (on (E°, &)) the sequence
of coordinate maps X = (Xo, X1, ...) (from §2 into E) behaves as a Markov chain
that starts from x € E with probability 1.

Given any probability law 7 = 7 (B), B € & (think of this law as the “initial”
distribution of some Markov chain), we denote by P, the probability measure on
(E®°, &) given by P,(A) = fE P, (A) w(dx), A € &£°. 1t is not very difficult
to check that under the probability measure P, the sequence of coordinate maps X
behaves as a Markov chain with initial distribution 7, i.e., P,{Xy € B} = mw(B),
forevery B € &.



390 A Review of Some Fundamental Concepts and Results from Probability Theory...

* In order to formulate two new variants of the Markov property—the so called
generalized Markov property and the strong Markov property—we must introduce
the shift operator 6, its “powers” 6,, and the “random power” 6,, for any given
Markov time t. The shift operator 6: 2 — §2 is defined as

O(w) = (x1,x2,...), forw = (xg,x1,...).

In other words, the operator 6 “shifts” the time-scale one period forward (period
1 becomes period 0, period 2 becomes period 1, and so on), as a result of which
the trajectory (xo, X1, ...) turns into (xy, X7, ...). (Recall that in [ P Chap. 5], which
deals with stationary in strict sense random sequences and the related dynamical
systems, we also had to introduce certain transformations of 2 into itself, which
were denoted by 7'.)

If 6y = I stands for the identity map 6y(w) = w, the n-th power, 6,, of the
operator 6, is defined forn > las 0, = 0,100 ( = 0 00,)),1ie, 0,(w) =
Ou—1(6(w)).

Given any Markov time t = 7(w) with T < oo, we denote by 0, the operator
that acts only on the set £2; = {w : T(w) < oo} in such a way that 6; = 6, on the
set {t = n}, i.e., if w € §2 is such that t(w) = n, then

0: () = 0h ().

If H = H(w) is any .%-measurable function of w € £2 (such as, for example,
T = t(w), or X;, = X,,(w)), then the function H o 6, is defined as (H o 6,)(w) =
H(6,(w)), w € £2.

If o is a Markov time, then the function H o 0, is defined on the 2, = {w :
o(w) < oo} so that for every fixed n € {0,1,...} one has H o 0, = H o 6,
everywhere in the subset {0 = n} C £2,, i.e.,, (H o 0,)(w) = (H o 6,)(w) =
H(6,(w)), forevery w € {o =n},andeveryn =0,1,....

In particular, the above relations imply that, for any m,n = 0, 1, ... and for any
Markov time o, one has

Xm0 0y = Xintn,

Xmo0; = Xuts ontheset$2,.
Furthermore, for every two finite Markov times, t and o, one has
X006, = Xt000+a .

The operators 6,: 2 — £2 give rise to the inverse operators 0, 1: % — 7,
defined in the obvious way as

071(A) ={w: O (w) €A}, AeF.
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If in the last relation the set A is replaced by the set {® : X,,(w) € B}, for some
B € &, then one can write

6,1 (4) = (@ : Xpin(®) € B},

which is the same as
0, (X, (B)) = X,,}.,(B).

(Additional properties of the operators 6,,, 6, 6, ! etc., can be found in some of the
problems included in Sect. 8.2 in the present book)

» With the help of the operators 8, one can establish (see [P §8.2, Theorem 1])
the so called generalized Markov property: it H = H(w) is any bounded (or
non-negative) and .%-measurable function, then for every choice of the initial
distribution 7 and for every integer n > 0 one has

E.(H00,| FX)(w) = Ex,w)H (Pr-a.e.).

In the above relation E, denotes the averaging over the measure P, and the
expression E, () H is understood as ¥ (X, (w)), where ¥ (x) = E H.

In fact, the generalized Markov property can be generalized (i.e., weaken) even
further, in that one can replace the deterministic time »n in the above relation with
some finite Markov time . To be precise, one can claim the following: if (H,),>0
is any family of bounded (or non-negative) and .% -measurable functions and if ¢
is any finite Markov time, then the Markov property implies the so called strong
Markov property, according to which for any initial distribution 7 one has

E.(H; 00, | th)(w) =¥ (T(@), Xt (@) (Pr-a.e),

where ¥ (n,x) = E. H,.

Note that the expression H, o 6, = (H, o 6;)(w) is understood as (H, o 6,)(w)
forw € {t = n}.

* As was pointed out earlier, the distribution (as a random sequence) of any
homogeneous Markov chain X = (X,),>0 with state space (E, &), is completely
determined by the initial distribution 7 = m(dx) and the transition function
P = P(x;B), x € E, B € &. Furthermore, the distributions Py, x € E, which are
defined on (E*°, £°°) are determined only by the transition function P = P(x; B).

It is interesting that the concept of transition functions (or Markov kernels) also
lies in the core of the (entirely deterministic) domain of mathematical analysis,
which is known as potential theory. In fact, there is an intrinsic connection between
potential theory and the theory of homogeneous Markov chains. This connection
has been extremely beneficial for both fields.

We will now introduce some important notions in both potential theory and the
Markovian theory, which will be needed later in this section.

The transition function P = P(x;B), x € E, B € &, gives rise to the linear
(one step) transition operator Pg, which acts on functions g = g(x) according to
the formula



392 A Review of Some Fundamental Concepts and Results from Probability Theory...

Pg(x) = /E ¢() P dy).

(It is quite common to also write (Pg)(x).) The domain of the operator P consists of
all g € Z°(E,&: R) (= the space of all &-measurable functions on E with values
in R), for which the integral [, g(v) P(x:dy) is well defined for all x € E. Clearly,
this integral is well defined also on the class of all non-negative and &-measurable
functions on E, which class we denote by LYE,&;Ry), or on the class of all
bounded functions .Zbo(E ,E;R).

Letting I denote the identity operator [g(x) = g(x), one can define the n-step
transition operator P,, as P, = P(P,—;) for n > 1, or, equivalently, P, = P,_;(P)
for n > 1, with the understanding that Py = I.

It is clear that one has

P.g(x) = Exg(X,)

for every g € Z°(E,&;R), for which the integral fE g(y) P"(x;dy) is well
defined, where P" = P"(x;dy) is the n-step transition function (see [ P §8.1]).

Given any Markov time 7 for the filtration (Z,),>0 (ZX = o(Xo, X1,...,
X1)), let P, denote the operator that acts on functions g = g(x) according to the
formula

P.g(x) = Ex[I(z < 00)g(Xo)].
Notice that if g(x) = 1, then

P.1(x) = P, {t < 00}.

The operators P,, n > 0, give rise to the (generally, unbounded) operator

tU:ZPn,

n>0

which is called potential of the operator P (or potential of the associated Markov
chain).
For any g € Z°(E, &; R4) one has

Ug=) Pg=(I+PUg.

n>0

which may be abbreviated as
U=I+PU.

The function Ug is usually called the potential of the function g.

If the function g(x) is taken to be the indicator of the set B € &, i.e., g(x) =
Ig(x), then Ng = >, ., I5(X,) is simply the number of visits of the chain X to
the set B, and one can write:
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Ulg(x) =Y E.dp(X,) = ENp.

n>0

For any fixed x € E, treated as a function of B € &, the quantity U(x, B) =
Ulp(x) gives a measure on &, which is sometimes called potential measure.
Choosing B to be a singleton, namely B = {y}, for y € E, turns U(x, {y}) into a
function of x, y € E, which is usually denoted by G(x, y) and is called the Green
function (of the operator P, or, of the associated Markov chain). The meaning of
the Green function should be clear: G(x, y) = E, Ny, is nothing but the average
number of visits to state y € E, starting from state Xo = x € E.

Analogously to the potential U of the operator [P, one can define the kernel 0 =
Q(x; B) of the transition function P = P(x; B) by the formula

Q(x;B)=Y P"(x:B) (=1Ip(x)+ PO(x:B)).

n>0

Since P, Ip(x) = P"(x; B), itis clear that U(x; B) = Q(x; B).
* The operator P gives rise to another important operator, namely

L="P-T,

where, as usual, I denotes the identity operator. In Markovian theory the operator L
is called the generating operator (a.k.a. the discrete generator) of the homogeneous
Markov chain with transition function P = P(x; B). The domain, %, of the
operator L is the space of all g € .Z°(E, & R) for which the expression Pg — g is
well defined.

Ifh e £°E, <§’;§+) (i.e., h takes values in EJ,— and is &-measurable), then,
since U = I 4 PU, its potential H = Uh satisfies the relation

H=h+PH.
Consequently, if H € 21, then H solves the (non-homogeneous) Poisson equation
LYV =—-h, Ve9.

If one can find a solution, W € Z°(E,&;R,), of the equation W = h + PW
(or to the equation LW = —h, when W € Z), then, since W = h + PW > h,
one can show by induction that W > ZZ:O Pyh foranyn > 1,sothat W > H. As
a result, the potential H = Uh is the smallest solution to the system V = h + PV
within the class Z°(E, &; R4 ) (remind that Uh(x) = E, Y oo h(Xi)).

* A function f = f(x), x € E, that belongs to the class Z°(E,&:R,), is
said to be excessive for the operator P (or, for the associated Markov chain with
transition function P = P(x; B)), if

Pfr=1r.
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or, which amounts to the same, E, f(X;) < f(x), forall x € E. In particular, the
potential H = Uh of any function /2 € ZO(E,&; Ry) is an excessive function.
The function f € L°(E, &; Ry) is said to be harmonic (or invariant), if

Pf=17r.

ie, B, f(X1) = f(x),forallx € E.

The connection between potential theory (to which the notion of excessivity
belongs) and probability theory (specifically, the martingale theory) becomes
evident from the following statement: if X = (X,,),>¢ is any homogeneous Markov

chain with initial distribution 7 and with transition function P = P(x; B), if
the associated distribution in the space (E*°, &) is Py, and if f = f(x) is
any [P-excessive function, then one can claim that ¥ = (Y, 35,5( , Pr)u>0, With

Y, = f(X,), is a non-negative supermartingale sequence, in that:

Y, is 35,5( -measurable, forall n > 0;

Ex(Yyt1 | ZX) <Y, (Pr-a.e). forall n>0.

If, in addition, one can claim that EY, < oo, for all n > 0, then ¥ =
(Yu, ZX, Pr)uso is simply a supermartingale.

It is interesting to point out that some of the main properties of
non-negative supermartingales (see [P §7.4, Theorem 1]) continue to hold also
for non-negative supermartingale sequences of the type described above: the limit
lim, Y, ( = Y) exists with P,-probability 1; furthermore, if P,{Yy < oo} = 1,
then P,{Yo < oo} = 1. The proof of this claim is delegated to Problem 7.4.24.

« Givenany h € L%E,&;Ry), orh € L°(E, &; Ry), the potential, H(x) =
Uh(x), satisfies the relation H(x) = h(x) + P H(x), which, in turn, gives

H(x) > max(h(x),PH(x)), x€E.

Consequently, the potential H(x) = Uh(x) does both: dominates the function
h(x) (i.e., H(x) > h(x), x € E) and belongs to the class of excessive functions
(one usually says that the potential of given function is an example of an excessive
majorant of that function).

In fact, many practical problems—the optimal stopping problem from [P §8.9]
being a typical example—can be formulated as problems for computing the smallest
excessive majorant of a given &-measurable non-negative function g = g(x).
Potential theory provides a special technique for solving such problems, which is
described next.

Let Q denote the operator that acts on all £-measurable non-negative functions
g = g(x) according to the formula

Qg(x) = max (g(x), Pg(x)) .
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Next, notice that the smallest excessive majorant, s(x), of any such function g(x) is
given by the formula
s(x) =1limQ"g(x)

and satisfies the equation
s(x) = max (g(x), [Ps(x)) , xekE.
In particular, the last equation implies that for every s € Z; one must have

Ls(x) =0, x € Cq;
s(x) = g(x), x € Dy,

where Cy = {x : s(x) > g(x)} and Dy = E \ C,. (The proof of this claim can be
found in [ P §8.9], where the token P is replaced by 7, and the token @ is replaced
by Q.)

* One of the central issues in potential theory is the description of the class of
solutions to the Dirichlet problem for the operator P: for a given domain C C E
and two &-measurable non-negative functions 4 and g, defined, respectively, on C
and D = E \ C, one must find a non-negative function V' = V(x), x € E, chosen
from one of the classes Z°(E,&;Ry), LY(E, & Ry), be(E, &; R), etc., which
satisfies the equation

PV(x) + h(x), xe€C;

V(x) =
g(x), x e D.
If one looks for solutions V" only in the class 2 , then the above system is equivalent
to the following one:

LV(x) =—h(x), xe(C;
Vix)=g(x), xeD.

The first equation above is commonly referred to as “the Poisson equation for the
domain C” and, usually, the Dirichlet problem is understood as the problem for
solving the Poisson equation in some domain C, with the requirement that the
solution is defined everywhere in E and coincides on the complement D = E \ C
with a given function g.

It is quite remarkable that the solution to the Dirichlet problem—which is entirely
non-probabilistic—can be expressed in terms of the homogeneous Markov chain
with transition function P = P(x; B), which gives rise to the operator P. To make
this claim precise, let X = (X,),>0 be one such Markov chain and let t(D) =
inf{n > 0: X,, € D} (with the usual convention inf{@} = c0). One can then claim
that for every two functions, & and g, from the class LOE, & EJ,—), a solution to
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the Dirichlet problem exists and the smallest non-negative solution, Vp(x), is given
by the formula:

(D)—1

Vo) = EL[1((D) < c0)e(Xoao)] + IeE| Y h(Xo) |
k=0

(For the proof of the last statement see the hint to Problem 8.8.11.)

Some special choices for / and g are considered next.

(a) If h = 0, i.e., one is looking for a function V' = V(x) which is harmonic in
the domain C and coincides with the function g on D = E \ C, then the smallest
non-negative solution Vp (x) is given by the formula

Vp(x) = E[I(z(D) < 00)g(Xe(p))] -
In particular, if g(x) = 1, x € D, then
Vp(x) = Py{t(D) < oo} .

At the same time, the probability, P {t(D) < oo}, that the Markov chain will
eventually reach D, starting from X, = x, treated as function of x € FE, can be
claimed to be harmonic in the domain C. It is clear that if x € D, then P, {t(D) <
oo} = 1, since in this case (D) = 0.

(b) With g(x) =0, x € D,and h(x) = 1, x € C, the system becomes

PV(x)+1, xeC;

Vix) =
0, x € D.

In this case the smallest non-negative solution is given by the formula

ey }_ {EXT(D), xeC:

1% =1 E, 1
p(x) C(x)“[; 0, x € D.

In particular, treated as a function of x € E, the expected time, E, (D), until the
first visit to D gives the smallest non-negative solution to the system (x).

* A particularly important class of Markov sequences, associated with random
walks on some state space (E, &), is the class of simple symmetric random walks
on the lattice

E=7%={0+1,+2,...}¢,

where d is a finite integer chosen from the set {1,2,...} (see [P §8.8]). Random
walks in the “entire” space E = Z¢, of the form X = (X1)n>0, can be defined
constructively, by setting

Xo=x+&+...+&,
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where &1, &, ... is a sequence of independent R?-valued random variables, which
are defined on some probability space (§2,.%, P), and are distributed uniformly in
the set of all basis vectors e = (e, ...,eq) € R?, defined bye; =0,4+1or —1and
lle]l = |le1| + ..+ |ea]| = 1; in particular

Pl& =e} = 2d)7".

Such a random walk describes the movement of a “particle” which, starting from
some point x € Z¢, during every period moves arbitrarily to one of the 2d
neighboring points on the lattice, and in such a way that each neighboring point
is equally likely to get selected.

The operator P, associated with such a random walk, has a particularly simple
form:

P =Ecf(tE) =573, flx+e).

Consequently, the generating operator (or, the discrete generator) L = P —1I, which
in this case is referred to as the discrete Laplacian and is commonly denoted by A,
has the following form

A = 55 30 G+ o) = F0)

It is natural to reformulate the Dirichlet problem for the simple random walk by
taking into account the fact that exit from C C Z¢ can happen only on the
“boundary”

dC ={x:xeZ’ x¢Cand|x—y| =1forsomeye C}.

This observation leads to the following standard formulation of the (non-
homogeneous) Dirichlet problem on the lattice: given some domain C < Z¢
and functions 7 = h(x),x € C,and g = g(x), x € dC, find a function V' = V(x),
x € C U dC, which satisfies the equations

AV(x) = —h(x), x eC;
V(ix) = g(x), x €adC.
If the domain C consists of finitely many points, then P, {t(dC) < oo} = 1 for all
x € C, where 7(dC) = inf{n > 0 : X,, € dC} (see Problem 8.8.12). By using the

method described earlier, one can show that the solution in the domain C U 9C is
unique and is given by the formula:

“(3C)—1
Vac (x) = Ei [¢(Xr0)) ] + Ex|: Z h(x):| , xeCuaC.
k=0
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Since in this case the domain C is finite, there is actually no need to suppose that
the functions /(x) and g(x) are non-negative. In particular, setting 7 = 0, one finds
that the only function on C U dC, which is harmonic in C and equals g on dC, is
the function

Vac (x) = Exg(Xz0))-

We now turn to the homogeneous Dirichlet problem:

AV(x) =0, xeC,

(k)
Vix) = g(x), x €dC.
treated on some unbounded domain C.

If d < 2,byPdlya’s theorem (see [ P §8.8]) one must have P, {t(dC) < oo} =1,
which, by using the same reasoning as in the case of finite domains, leads to the
following result: if the function g = g(x) is bounded, then, in the class of bounded
functions on C U dC, the solution to () is unique and is given by

Vic(x) = Exg(Xr30)) -

One must realize that even with bounded g = g(x) there could be multiple
solutions in the class of unbounded functions on C U dC. A classical example of
such situation is the following. In dimension d = 1 consider the domain C = Z \
{0}, for which dC = {0}. Setting g(0) = 0, it is easy to see that every (automatically
unbounded) function V(x) = o x, « € R, is a solution to the Dirichlet problem, i.e.,
one has AV(x) =0, x € Z \ {0}, and V(0) = g(0).

In dimension d > 3 the question of existence and uniqueness of the solution
to the Dirichlet problem AV (x) = 0, x € C, and V(x) = g(x), x € dC, even
in the class of bounded functions V(x), x € C U dC, depends on the condition
P.{t(0C) < oo} = 1, for all x € C. If this condition holds and g = g(x)
is bounded, then one can claim that there is precisely one solution in the class of
bounded functions on C U dC, which is given by Vyc(x) = E,g(Xr@oc)), for all
xeCUaIC.

However, if the condition P, {t(dC) < oo} = 1, x € C, does not hold, then,
assuming that g = g(x), x € dC, is bounded, every (automatically bounded)
function of the form

V9 (x) = E.[I(t(0C) < 50)g(Xeacy)] + aPs{(3C) = oo} .

for all choices of « € R, is a solution to the Dirichlet problem AV(x) =0, x € C,
and V(x) = g(x), x € dC—see, for example, [75, Theorem 1.4.9].

* The discussion in [P Chap. 8] of the various aspects of the classification of
Markov chains with countable state space follows the tradition established during
the 1930s in the works of Kolmogorov, Fréhet, Doblin and others, which is based on
the idea that any classification must reflect, on the one hand, the algebraic properties
of the one-step transition probability matrix, and, on the other hand, the asymptotic
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properties of the transition probabilities as the time grows to co. Since then notions
like

essential and inessential states,
reachable and communicating states,

irreducibility and periodicity,

which are determined from the properties of the one-step transition matrix, and
notions like

transience and recurrence,
positive recurrent and null recurrent states,
invariant (stationary) distributions,

ergodic distributions and ergodic theorems,

which are determined from the limiting behavior of the transition probabilities, have
become central in the theory of Markov chains.

Gradually, it became clear that it is more convenient to study the asymptotic
properties of Markov chains by utilizing the tools of potential theory, the basic
ingredients of which (e.g., the notion of potential, the notions of harmonic and
excessive functions, and some basic results involving those notions) were introduced
above.

The exposition in [ P Chap. 8] makes it clear that the primary tool for studying
the limiting behavior of Markov chains is a method that would be rather natural to
call “the method of regenerating cycles,” as is explained next.

Let x € E be any state and let (6%), >0 be the sequence of “regenerating Markov
times,” which is constructed as follows: first, define q,? = 0and 0; = 0y, where

oy =inf{n > 0: X, = x};

then define by induction, for any k > 2,

af = inf{n > af_l : X, = x} ontheset {oX~!

L < o00o}.

Equivalently, one can write

v Yok oy 00, ifol!

X

< 00;

00, if oF =1 = o0.
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The following properties explain the term “regenerating times” and its connection
with the “regenerating cycles™:
1. On the set {0} < oo} one has X, = x.

2. On the set {criC < oo} the sequence (X, ok +n)n>0 is independent from random
vector (Xo, X1,..., ng_l), relative to the measure P,.

3. If Ui‘ (w) < oo for all w € E°, then, relative to P,, the distribution of the
sequence (X(,IH,,)nzo is the same as the distribution of the sequence (X, ),>o0.

4.1f 0¥ (w) < oo forall @ € E, then, relative to Py, the “regenerating cycles”
(X(), X], ey XU}—I)’ ey (X(T/}Yf_l 5 XU,I’C(_IJ'_I’ ey XUI,C(—I)

are independent.
5. P {o% < 0o} = P, {of! < 00}P, {0, < 0o} and, therefore, P, {0" < oo} =
[Pxiox < oo}]".
6. Setting Ny = ) Ig3(X,) (in the notation introduced previously, this is
n>0

nothing but Ny, the number of visits to state x), then the expected time E, N,

(whichis Ey Ny = G(x, x)) is given by

E:Ne =1+ ) P{o} <oo} =1+ ) [P.{or < oo}]".

n>1 n>1
7. The above relations entail

Poy <o} =1 & E;N, =00 & P {N, =00} =1,
P{oy <0} <1 & ExN, <0 & P {N, <00} =1.

8. For any y # x one has
G(X, y) = Px{Uy < OO}G(_)/, y)s

or, equivalently,
E«N, =P,{0, <oo}E,N,.

9.1fP,{o* < co} = 1 forall k > 1, then the sequence of “regenerating periods”,
(Uf - of_l)kzo, is a sequence of independent and identically distributed random
variables.

Recall that according to the definitions in [ P §8.5] the state x € FE is called

recurrent, if P, {o, < oo} =1,

transient, if P, {0, < oo} < 1.
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Since (see [P §8.5, Theorem 1])

Pi{oy <o} =1 & P {X,=xi0}=1,
P {o, <0} <1 & P X, =xi0}=0,

the state x € E is (or may be called that by definition)

recurrent, if P,.{X, = xi.0.} =1,

transient, if P, {X,, = x i.0.} = 0.

In fact, the intrinsic meaning of the terms “recurrent” and “transient” is better
reflected in the relations “P,{X, = xi.0.} = 1”7 and “P,{X, = xio.} = 0,
as opposed to the equivalent relations “P, {0, < oo} = 1”7 and “P,{o, < oo} < 1”.
Indeed, “recurrence of x” is to be understood as “eventual return to x after every
visit to x”” and “transience of x” is to be understood as “non-recurrence of x,” i.e.,
as “non-return after some visit to x”.

Thus, the recurrence of the state x is equivalent to each of the following
properties

PAX, =xi0}=1, or P,{N, =00} =1, or ExN, = o0,
while the transience is equivalent to each of the properties:
P.{X, =xi0} =0, or P,{N, <o0}=1, or E;N, < c0.

» The use of potential theory and, in particular, the technique of “regenerating
cycles” allows one to develop a more or less complete understanding of the structure
of the invariant measures and distributions (i.e., probability distributions). The
exposition below follows [85].

Recall that any (one-step) transition probability matrix P = || py,||, x,y € E,
gives rise to the linear operator P f, which acts on functions f € Z°(E,&;R4)
according to the rule

(PHX) =D pof(y), x€E,

YEE
understood as
(matrix P) ® (vector-column f) = (vector-column Pf).

Letq = q(A), A C E, be any non-trivial (i.e., not identically 0 or co) measure
defined on the subsets of some countable set £. Such a measure is completely
determined by its values, ¢({x}), on the singleton sets {x}, x € E (for the sake
of simplicity we will write g (x) instead of g({x})).
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Let .#4 denote the space of such measures g and let P stand for the linear
operator that transforms measures from ./ into measures from .#4 according
to therule #y > g ~ qP € .# 4, where P is the measure

gP() =Y q(X)pyy. YEE,

xX€E

i.e.,, qP € . is understood as the vector
(vector-column ¢ P) = (vector-column ¢) ® (matrix P).

The measure ¢ € .# is said to be invariant or stationary for the Markov chain
with operator P if gP = ¢. The measure ¢ € .# is said to be excessive, or P-
excessive, if gP < q.

Next, consider the bi-linear form

(0. f) =Y 4@ f(x), feLUEERY), g€y,

The following duality relation is easy to verify:

(quPf>:(qvaf>s fEfO(E,éa;R+),q€%+.

Essentially, the above relation says that the action of the operator P on functions
and the action of the operator [P on measures can be interchanged.

[P §8.6, Theorem 2] shows that, in the case of irreducible (there is only one
class) and positive recurrent Markov chains with countable state space, an invariant
distribution exists, it is unique, and is given by

q(x) = [Exo]™', x€E,

where o, = inf{n > 1 : X,, = x} is the time of the first recurrence to x. (Note that
1<E,op <00, x €E)

As we are about to show, by using the characteristics of the first “regenerating
cycle” the result about the existence and the structure of the invariant sets can
be established for arbitrary irreducible and recurrent Markov chains, without the
requirement for positive recurrence.

More specifically, one can claim the following:

Any irreducible and recurrent Markov chain X = (X,),>0, which has a countable state
space E, admits an invariant measure ¢ = ¢g(A), A € E, which is non-trivial, in that
0 < q(E), q(x) # oo and 0 < g(x) < oo, for any state x € E. This measure is unique up
to a multiplicative constant.
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To prove the above statement, notice that for any fixed state x° € E, one can
always construct an invariant measure, say ¢°, with the property ¢°(x°) = 1. For
example, one can set

o—1

q°(x) = Eye Z LX) | . xeE,
k=0

where o0 = inf{n > 1 : X,, = x°}. In order to show that the above measure is
indeed invariant (and that therefore invariant measures exist), it would be enough to
show that for any function f € .Z°(E, &; R4) one has

(¢°P. f)=(q". f).

In conjunction with the strong Markov property established in Problem 8.2.13, the
last relation follows from the following chain of identities:

oo0—1 oo0—1
4P, ) = (g" P f) = Exo[ ) (Pf)(xk)} - Exo[ )3 Exkf(xl)}
k=0 k=0

= Z Evo[Itk<o,03Ex, f(X1)] = Z Evo{/ik<o,03Exe[f © Ok | Zil}

k>0 k=0
=Y Ew{Belltkcoo} /0 0k | Fal} = Y Eco[liico0} f 0 k]
k>0 k>0
0.0 00—l
=Evo Y Tgcoorf(Xir)) =Evo D f(X) =Ee0 Y f(X)
k>0 =1 k=0
= (¢°, f).

In addition to the normalization ¢°(x°) = 1, the measure ¢° constructed above also
has the property 0 < ¢°(x) < oo, for all x € E. This last property follows from the
following simple fact about excessive measures.

Suppose that the underlying Markov chain is irreducible and that the measure
q € My is excessive, i.e., gP < ¢. If there is a state x° € E for which ¢(x°) = 0
(note that g(x°) < oo), then for any x € E one must have ¢g(x) = 0 (note that
q(x) < 00). To see why this claim can be made, observe that for any x # x° one
can find an integer n > 1, for which pi",)c o > 0. As a result, the relations

0=q(x°) =Y qp\he = q(x)pi .
yEE

imply that g(x) = 0.
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We will now show that, up to a positive multiplicative constant, ¢° is the only
non-trivial invariant measure. For that purpose, suppose that g is some invariant
(and, therefore, also excessive) measure with 0 < g(x) < oo, forall x € E. Set

foy =29 ek,
q°(x)
and define the (dual of py,) function Py, = ’;Zg ; Pyx. Since for every fixed x € E
one has °(r)
q°(x
l)Y = ( ) x = o_ = 1’
yEXE: q°(x ); AETES)

the matrix P = [ Pxy|l can be treated as a transition probability matrix and one can
write

~ - ~ q(y) q°(y)  q(y)
P = x = x x
f@x) yeZE’"yf(y) y;’”qw) yGZEq() ey

1 _oqx)
70 yz,; Py = o5 = ().

The function f = f(x) is therefore P-harmonic. Since Dy = % Dyx by
definition, for every n > 1 one must have

~(n) _ q°(y) (n)

SR

which entails the following relation between the respective Green functions

The last two relations imply that if the Markov chain X = (X},),>0, with operator
[P, happens to be irreducible and recurrent, then the dual chain X = (X,),>o0,
with operator P, must be irreducible and recurrent, too. However, if = fx)is
any (automatically non-negative) excessive function (in particular, if f = f(x) is
harmonic), then the sequence (f(X,)),>0 must be a non-negative supermartingale

G(y,x).

relative to the measure P,, for any initial distribution 7. This property was
mentioned earlier. We also noted that for sequences of that form the limit lim,, X,
(= Xoo) exists /F;ﬂ-almost everywhere, and, therefore the limit lim,, f(X,) (= Z)
must exist /F;n-almost everywhere, too. It is easy to see that if the chain is irreducible
and recurrent, then for any two states, x and y # x, one can claim that X,, visits
infinitely many times both x and y. In particular, this shows that f(x) = f(y), for
every x,y € E, so that f(x) = const.
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We have thus established that any other invariant distribution ¢, such that 0 <
q(x) < oo, x € E, must be a multiple, with some positive constant factor, of the
measure ¢°.

The result that we just established entails the following feature of all irreducible
and recurrent Markov chains, which was mentioned earlier: the only invariant
probability distribution ¢° = (¢°(x).x € E)is givenby ¢°(x) = [Ex0,] ', x € E.

* We now turn to certain ergodic theorems for Markov chains with countable state
spaces, i.e., theorems about convergence almost surely as n — oo of quantities of
the form % Zz;g f(Xk), or, more generally, of the form

n—1 n
PINICOYD I AR
k=0 k=0

for certain classes of functions f and g. We will again rely on the technique of
“regeneration cycles.”

Let X = (X,)u>0 be some irreducible and recurrent Markov chain with
countable state space E and invariant measure ¢°(x), such that 0 < g(x) < oo
forall x € E and ¢°(x°) = 1 for some fixed state x°.

Next, suppose that f = f(x) and g = g(x) are two function from the class
L'(¢°), ie., f = f(x) and g = g(x) are two function on E chosen so that

> vep [ f(0)g°(x) < ooand Y o lg(x)]|g°(x) < oo, and set

leo—l U;"C,Jrl—l
Yo=Y f(X0) and Y, = Y f(X0) (=Yoobm).
k=0 k=0’mo

By the very definition of the invariant distribution ¢° we have

ExYO = (CIO’ f) 5

and, due to the Markov property, for any initial distribution 7 one must have
E.Yn =E, [EXgmo (YO)] =EwYy = (qov f).

Thus, relative to the measure P, the random variables Y}, Y>, ... are independent
and identically distributed, and, furthermore, have the property E, Y,, = (¢°, f)
(<00), m > 1. The strong law of large numbers now implies that for every initial
distribution 7z one must have (P,-a.e.)

J(x°)

n

o’
1 < Y 1
;Zf(Xk)z70+;(Y1+...+Y,,_1)+ —{¢°, f) asn— o0,
k=0
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and, assuming that (¢°, g) # 0, one must have (again, for every )

> X0

’:0 - <(i1]°’f as n —>oo (Pr-ae).
> g(Xy) ’

k=0

n
Next, let vio = > I(X; = x°), and notice that, since the chain is recurrent, one
k=1

. . V" Vo +1
can claim that V", — oo as n — oo (Pr-a.e.). Since 0 3" <n <o’ , the above
convergence entails the ergodic theorem for ratios:

S
ij - (qo’f> as n —> oo (Pr-a.e.).
k_og(Xk) (q°. 8

Finally, suppose that the Markov chain under consideration is irreducible and
positive recurrent. In this case one can replace the measure ¢° with the probability
distribution 7° = (7°(x),x € E), chosen so that n° = 1/(E,0y), and, as a
result, arrive at the following ergodic theorem (for irreducible and positive recurrent
Markov chains):

IS s ) asnoe (Peae.
k=0

for any initial distribution  (in particular, for r = 7°).
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fractional, 162
Diaconis theorem, 243
Dichotomy:
Kakutani, 312,313
Difference:
symmetric
for sets, 5
Diffusion measure, 79
Dirichlet distribution, 130
Dirichlet function, 86
Dirichlet problem:, 353, 395, 397
for the Poisson equation, 349
homogeneous, 353
Discrete generating operator, 393
discrete Laplacian, 397
Discrete telegraph signal, 48
Dispersion, 369
Distance:
Kolmogorov, 212
Lévy, 183
Distribution function:, 367
finite-dimensional
of a stochastic process, 368
inverse, 214
Distribution:
arcsin, 176
Dirichlet, 130
double exponential, 119, 126
extreme value, 127
Fréchet, 126, 195
Gumbel, 126
initial, 389
log-normal, 132
logistic, 210
marginal, 129
negative binomial, 136
of a random variable, 367
Pareto
continuous, 210
discrete, 136
Pascal, 136
Poisson
compound, 209
generalized, 209
probability, 367

triangular, 207

Weibull, 119, 126
Dobrushin coefficient of ergodicity, 221
Dobrushin ergodicity coefficient, 221
Dobrushin metric, 230
Dominated convergence theorem:

H. Lebesgue, 304

Donsker-Prokhorov invariance principle,

200
Doob’s inequality:
exponential analog of, 296

Double exponential distribution, 119, 126

Double-sided:
random variable
Poisson, 210

Duality property of Stirling numbers, 17

Dvoretzky’s inequality, 296

E

Egoroff’s theorem, 145
Ehrenfests’ chain, 347
Ehrenfests’ model, 332
Element:

random, 367
Embedding:

Skorokhod, 214
Entropy:, 44

conditional, 45
Equation:

balance, 332

Fokker-Planck, 39

Kolmogorov forward, 39

Kolmogorov—Chapman, 38

Poisson’s, 393, 395

renewal, 139
Equivalence of random variables, 140
Ergodic theorem, 266
Ergodicity:

Dobrushin coefficient of, 221
Essential supremum, 257
Estimate:

Bernstein, 35

effective, 172

maxium likelihood, 273
Etemadi inequality, 240
Euler constant, 26
Euler’s polygon divison problem, 3
Example:

Burkholder, 112
Excessive function, 284
Excessive measure, 402
Exchangeable random variables, 286
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Exchangeable:
system of events, 60
Expectation, 369
Expected value:, 369
generalized, 193
Experiment:
Mellin transformation of, 220
statistical, 218

Exponential analog of Kolmogorov inequality,

241
Extended real line, 67
Extreme value distribution, 127

F
Factorial moment, 378
Factorial moment of order n, 370
Factorial moments, 127
Factorial:
partial, 1
Farctional derivative, 162
Fatou’s lemma:, 93
for conditional expectations, 109
for sets, 61
Fejér’s kernel, 270
Fibonacci numbers, 18
Filtered probability space, 387
Financial market, 224
Financial mathematics:, 223
fundamental theorem of, 323
Finite group, 331
Finite-dimensional distribution functions:
of a stochastic process, 368
Finite-dimensional distributions:
of a random process, 368
First Borel-Cantelli lemma, 142
Fisher information, 273
Fokker-Planck equation, 39
Formula:
Black—Scholes, 325
Bonferroni, 8
Campbell, 322
conversion
multivariate, 151
Dobinski, 377
Hoeftding, 222
inclusion—exclusion:
for indicators of events, 30
for the maximum of several random
variables, 134
for the probability of intersection of
events, 5
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for the probability of union, 32

for the probability of union of events, 5
inversion, 159
1t6

discrete version of, 319
Kolmogorov—Lévy—Khinchin, 206
Leibniz, 12
Parseval’s, 158
Poincaré, 5
product

Euler, 75

Euler’s, for the Riemann zeta

function, 74

Stirling, 26, 29, 347
Szeg6—Kolmogorov, 276
Tanaka

discrete analog of, 319
Vandermonde

multinomial convolution, 20
Viete, 277
Waring, 8

Forward equation:

Kolmogorov, 39

Fréchet distribution, 126, 195
Fréchet-Hoeffding’s inequality, 215
Fractional Brownian motion, 177
Function:, 20

A-integrable, 193
A-excessive, 284
A-harmonic, 284
Bessel, 115,372
Cantor, 74, 126
characteristic, 370
completely monotone, 157
concentration, 131
continuity interval for, 152
covariance, 386
cutoff, 208
Dirichlet, 86
distribution, 367
inverse, 214
excessive, 393
gamma, 135
generating
exponential, 374
of a numerical sequence, 373
of a random variable, 370
Green’s, 393
harmonic, 355, 394
invariant, 394
quantile, 214
Rademacher, 150
superharmonic, 355
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totient
Euler, 75
transition, 389
Fundamental theorem of financial mathematics,
323

G
Galton-Watson model, 343
Galton-Watson process, 343
Gamma-function, 135
Gauss inequality, 103
Gauss measure, 266
Generalized expected value, 193
Generalized Markov property, 390, 391
Generalized Poisson distribution, 209
Generating function:
exponential, 374
of a numerical sequence, 373
of a random variable, 90, 370
Goodness-of-fit test:
)(2, 40
Green function, 393
Gronwall-Bellman’s inequality, 96
Group property, 331
Group:
finite, 331
Gumbel’s distribution, 126

H
Hajek—Rényi’s inequalitiy, 296
Harmonic function, 284, 355, 394
Harmonic numbers, 26
Hellinger integral:

of order «, 218
Hellinger transformation:

of a measures, 219
Helly—Bray lemma, 184
Helly—Bray theorem, 184
Hermite polynomial, 380
Hoeffding formula, 222
Hoeffding inequality, 256
Hoeffding—Azuma’s inequality, 299
Homogeneous Markov chain, 389
Huygens problem, 63
Hypergeometric identity, 376
Hypothesis:

continuum, 69

I
Idempotent property of N and U, 1
Identities:

Poincaré, 5
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Identity:
binomial, 13
hypergeometric identity, 376
Ngrlund, 13
Spitzer, 92
Vandermonde, 13
Wald’s, 290
Inclusion—exclusion formula:
for indicators of events, 30
Inclusion—exclusion formula:
for the probability of intersection of events,
5
for the probability of union, 32
for the probability of union of events,
5
Incomplete beta-function, 135
Independence:
for events, 366
for systems of subsets, 366
Independent events, 366
Indicator:
of a set, 367
Inequalities:
Burkholder—Davis—Gundi, 300
Cantelli, 96
Chernoff, 255
maximal, 255
Inequality:
¢, 101
Bell, 33
Bentkus, 303
Bernstein, 255
Berry-Esseen, 41
Bonferroni, 8
Boole, 5, 63
Borel, 168
Burkholder’s, 300
Cauchy-Bunyakovsky
for matrices, 123
Chebyshev’s, 97
two-dimensional analog, 34
coupling, 221, 222
Cramér’s, 162
Doob
exponential analog of, 296
Dvoretzky, 296
Etemadi, 240
Fréchet, 9
Fréchet-Hoeffding, 215
Gauss, 103
Gibbs, 36
Gronwall-Bellman, 96
Gumbel, 9
Hajek—Rényi, 296
Hoeffding, 256
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Inequality (Cont.)
Hoeffding—Azuma, 299
Jensen

for conditional expectations, 107
Khinchin
second, 302
Kochen-Stone, 146
Kolmogorov, 202
exponential analog of, 241
one-sided analog of, 238
Kolmogorov-Rozanov, 271
Kounias, 5
Lévy, 250
Marcinkiewicz-Zygmund, 301
maximal, 56,297, 298
Rademacher-Menshov, 302
Ottaviani, 295
Paley—Zygmund, 95
Prokhorov, 251
Rényi, 37
Raikov, 156
Rao-Cramér, 40, 172
Skorokhod, 252
Slepyan, 164
von Bahr—Esseen, 162
Young, 97
Young’s, 124

Infinitely often, 63

Information:
amount of, 45
Fisher, 273
Kullback, 217,222

Initial distribution, 389

Injection, 20

Integral:

-A, 193
Hellinger

of order «, 218
Lebesgue, 93

absolute continuity of, 88
Lebesgue-Stiltjes, 386
Riemann, 93

Interchangeable:
system of events, 60

Invariance principle:, 198
Donsker-Prokhorov, 200

Invariant function, 394

Invariant measure, 402

Invariant:
almost

random variable, 261

Inverse distribution function, 214

Tonescu Tulcea Theorem, 139

Ising model:
one dimensional, 22
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1t6 formula:
discrete version of, 319

J
Jensen’s inequality:
for conditional expectations, 107

K
Kakutani dichotomy, 313
Kakutani dichotomy theorem, 312
Kernel:

Fejér’s, 270

Markov, 389
Khinchin criterion, 192
Khinchin inequality:

second, 302
Khinchin law:

of large numbers, 192
Kochen-Stone inequality, 146
Kolmogorov criterion, 177
Kolmogorov distance, 212
Kolmogorov forward equation, 39
Kolmogorov inequality:, 202

exponential analog of, 241

one-sided analog of, 238
Kolmogorov law of large numbers, 192
Kolmogorov representation:

for characteristic functions of infinitely

divisible distributions, 208

Kolmogorov strong law of large numbers, 244
Kolmogorov transformation, 266
Kolmogorov—Chapman equation, 38
Kolmogorov—Lévy—Khinchin formula, 206
Kolmogorov-Rozanov inequality, 271
Kounias’ inequality, 5
Krickeberg’s decomposition, 295
Kronecker’s symbol, 17
Kullback’s information, 217, 222

L
Lévy distance, 183
Lévy metric, 183
Lack of memory property, 114
Ladder:

indexes, 104

moments, 104
Laplace transformation, 91, 370
Laplacian:

discrete, 397
Large numbers:

law of, 189

Kolmogorov, 192
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Latin square, 24
Law of large numbers:
Kolmogorov, 192
Law:
arcsine, 50, 51
of large numbers, 189, 246
Khinchin, 192
of rare events, 210
Pareto
continuous, 210
discrete, 136
strong, of large numbers
Kolmogorov, 244
Marcinkiewicz-Zygmund, 243
Lebesgue integral, 93
absolute continuity of, 88
Lebesgue-Stiltjes integral, 386
Lemma:
Borel-Cantelli, 252, 384
first, 142
second, 142
Fatou, 93
for conditional expectations, 109
for sets, 61
Helly—Bray, 184
Pratt’s, 88
Scheffe, 148
Slutsky, 140
Sperner, 69
Likelihood ratio, 55
Limit:
in the sense of Cesaro, 340
Lindeberg’s condition, 198
of order k, 199
Lindeberg’s theorem, 204
Local time, 53, 320
Local time:
discrete, 53
Log-normal distribution, 132
Log-normal random variable, 131
Long tail, 136
Luzin’s theorem, 145

M
Map:

measurable, 385
Marcinkiewicz-Zygmund

strong law if large numbers, 243
Marcinkiewicz-Zygmund inequality, 301
Marginal distribution, 129
Market:

financial, 224
Markov chain:, 388

Ehrenfests, 347

homogeneous, 389

of order r, 330

reversible, 332
Markov kernel, 389
Markov property:

generalized, 390, 391
Markov time, 390
Markov times:

regenerating, 399
Married couples problem, 23
Martingale:

reverse, 283, 287
Matching problem, 9
Matrix pseudo-inverse, 164
Maximal correlation coefficient, 115
Maximal inequalities, 255
Maximal inequality:, 56, 297, 298

Rademacher-Menshov, 302
Maximum principle, 352
Maxium likelihood estimate, 273
Mean:

sample, 120
Measurable map, 385
Measurable space, 366
Measure preserving transformation, 385
Measure:

atomic, 79

counting, 98

diffusion, 79

excessive, 402

Gauss, 266

invariant, 402

Mellin transformation of, 220

non-atomic, 79

standard, 219

stationary, 402
Median, 30
Median:

of a random variable, 34, 240
Mellin transformation:

of a measure, 220

of an experiment, 220
Mercer Theorem, 166
Method:

Cramér-Wold, 191
Metric:

Dobrushin, 230

Lévy, 183

‘Wasserstein, 229
Mode:

of a distribution, 103
Model:

auto-regression, 268
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Model (Cont.)
autoregressive, 272
Cramér-Lundberg, 320
Ehrenfest, 332
Galton-Watson, 343
Ising

one dimensional, 22

Moment:
binomial, 127,379
factorial, 127, 378
factorial, of order n, 370

Moments:
record, 331

Multinomial coefficients, 20

Multinomial convolution:
Vandermonde, 20

Multivariate conversion formula, 151

N
Ngrlund’s identity, 13
Needle variations, 327
No-arbitrage condition, 323
Non-atomic measure, 79
Non-negative supermartingale sequence, 308
Nondecreasing path, 2, 20
Normal numbers theorem:
Borel, 266
Novikov’s condition, 315
Number of combinations, 360
Number of placements, 360
Numbers:
Bell, 362
Bernoulli, 379
Catalan, 2
Euler, 380
Fibonacci, 18
harmonic, 26
Stirling
duality property of, 17
of the first kind, 377
of the second kind, 362

(0]
Observation series, 210
Observation series:

asymptotic negligibility, 210

limiting negligibility, 210
omega-square statistics, 229
One-step transition operator, 352
Operation:

binary, 331
Operator:

generating
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discrete, 393
for a Markov chain, 393
shift, 390
transition, 57, 391
one-step, 352
Order statistics, 58, 119
Ordered sample, 359
Ornstein—Uhlenbeck process, 167
Ottaviani’s inequality, 295

P
Pélya’s theorem, 349, 398
Pélya’s urn scheme, 25
Paley—Zygmund inequality, 95
Paradox:

Bertrand, 77
Parameter:

“kurtosis”, 135

“skewness”, 135
Pareto distribution:

discrete, 136
Parseval’s relation, 158
Partial factorial, 1
Partitions, 360
Pascal triangle, 13,23
Path:

nondecreasing, 2, 20
Peak:

of a probability density, 103
Perfect set, 71
Placements:

number of, 360
Plynomials:

Bernstein, 67
Poincaré recurrence theorem, 385
Poisson distribution:

compound, 209

generalized, 209
Poisson process:

non-homogeneous, 322
Poisson random variable:

double-sided, 210
Poisson’s equation, 395
Polish space, 65
Polygon divison problem:

Euler, 3
Polynomial coefficients, 20
Polynomials:

Appell, 382

Bernoulli, 379

Euler, 380

Hermite, 380

Sheffer, 382
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Potential measure , 393
Potential:

in martingale theory, 287

of a function, 392

of a Markov chain, 392

of an operator, 392

Pratt’s lemma, 88
Predictable sequence, 288
Principle:

invariance, 198
Donsker-Prokhorov, 200

maximum, 352

reflection
André, 348
for Brownian motion process, 176

Probleme des ménage, 23
Probability distribution:

of a random variable, 367
Probability space:

complete, 70

filtered, 387

universal, 138

Problem:

Dirichlet, 353, 395, 397
for the Poisson equation, 349
homogeneous, 353

Huygens, 63

married couples, 23

matching, 9

random meeting, 108

the absent-minded secretary, 10

Procedure:

Robbins—Monro, 306

Process:

Galton-Watson, 343

Ornstein—Uhlenbeck, 167

Poisson
non-homogeneous, 322

random, 367

renewal
on a lattice, 293

Product formula:
Euler, 75
for the Riemann zeta function,
74
Prokhorov inequality, 251
Property:

coupling, 230

idempotent of N and U, 1

lack of memory, 114

Markov
generalized, 390

Pascal triangle, 13, 23

Raikov, 321
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Proposition:
Champernowne, 243
Pseudo-inverse:
of a matrix, 164
Pythagorean theorem, 150

Q

Quadratic variation, 300
Quantile, 230
Quantile function, 214

R
Rényi inequality, 37
Rademacher’s function, 150
Rademacher-Menshov’s maximal inequality,
302

Radon-Nikodym theorem, 313
Raikov inequality, 156
Raikov property, 321
Random element, 367
Random meeting problem, 108
Random sequence, 367
Random variable:, 367

almost invariant, 261

extended, 114

fractal, 135

generating function of, 90

log-normal, 131

Poisson

double-sided, 210

Random variables:

exchangeable, 286
Random vector, 367
Random walk:

breadth of, 48

on a group, 331

span of, 48
Random:

process

in discrete time, 367

Rank statistics, 58
Rao-Cramér’s inequality, 40, 172
Rare events:

law of, 210
Ratio:

likelihood, 55
Real line:

extended, 67
Record moments, 331
Recurrence theorem:

Poincaré, 385



426

Reflection principle:

André, 348

for Brownian motion process, 176
Regenerating cycles, 400
Regenerating Markov times, 399
Relation:

Appell, 383

coupling, 230

Parseval, 158
Renewal equation, 139
Renewal process:

on a lattice, 293
Representation:

Kolmogorov

for characteristic functions of infinitely
divisible distributions, 208

Reverse martingale, 283, 287
Reversibility:

for Markov chains, 332
Riemann integral, 93
Riemann zeta-function, 74
Riesz decomposition, 287, 336
Robbins-Monro procedure, 306

S
Sample mean, 120
Sample variance, 120
Sample:

ordered, 359

unordered, 360
Scaling property:

for Brownian motion, 167
Scheffe’s lemma, 148
Scheme:

Bernoulli, 330

with random probability for
success, 133

Polya, 25
Second Borel-Cantelli lemma, 142
Separable o-algebra, 65
Sequence:

non-negative supermartingale,

308

predictable, 288

random, 367
Set-difference:

symmetric, 29
Set:, 359

Borel, 69

Cantor, 71

perfect, 71
Shift operator, 390
Shift transformation, 265
Shifts:

Bernoulli, 265
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Signal:
telegraph
discrete, 48
Skorokhod inequality, 252
Skorokhod’s embedding, 214
Slutsky’s lemma, 140
Space:
Polish, 65
Span of a random walk, 48
Sperner’s lemma, 69
Spitzer identity, 92
Square:
Latin, 24
Stability:
of a sequence in the sense of Kolmogorov,
192
Standard deviation, 369
Stationary measure, 402
Statistical experiment, 218
Statistics:
Bose—Einstein, 12
Maxwell-Boltzmann, 11
omega-square, 229
order, 58, 119
rank, 58
Stirling numbers:
of the second kind, 362
Stirling’s formula, 26, 29, 347
Strong law if large numbers:
Marcinkiewicz-Zygmund, 243
Strong law of large numbers:
Kolmogorov, 244
Strong mixing, 271
Superharmonic function, 355
Support:
of a measure, 368
Supremum:
essential, 257
Surjection, 20
Symbol:
Kronecker, 17
Symmetric difference:
for sets, 5
Symmetric set-difference, 29
System of events:
exchangeable, 60
interchangeable, 60
Szego-Kolmogorov formula, 276

T
Tail:
long, 136
Tanaka formula:
discrete analog of, 319
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Telegraph signal:
discrete, 48
Test:
goodness-of-fit
22,40
Theorem:
Beppo Levi, 93
Bernstein, 165
Birkhoff-Khinchin, 385
Bochner-Khinchin, 154
Borel
normal numbers, 266
Carathéodory, 76
change of variables, 87
Chernoff, 254
Darmois-Skitovich, 165, 177
Diaconis, 243
dichotomy
Kakutani, 312
dominated convergence
H. Lebesgue, 304
Egoroff, 145
ergodic, 266

fundamental, of financial mathematics, 323

Helly—Bray, 184

Tonescu Tulcea, 139, 356, 389

Lindeberg, 204

Luzin, 145

Mercer, 166

P. Lévy, 304

Pélya, 349, 398

Poincaré, 5

Poincaré’s recurrence, 385

Pythagorean, 150

Radon-Nikodym, 313

three series, 239

Ulam, 186

verification, 356

Vitali-Hahn—Saks, 63
Three series theorem, 239
Tight:

family of random vectors, 187
Time reversibility:

for Markov chains, 332
Time:

local, 53

Markov, 390
Totient function:

Euler, 75
Transform:

Escher, 382

Laplace

for non-negative random variables, 157

Transformation:
Bernoulli, 265

Hellinger
of a measures, 219
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Hellinger’s, of a statistical experiment, 218

Kolmogorov, 266
Laplace, 91, 370
measure preserving, 385
Mellin
of a measure, 220
of an experiment, 220
shift, 265
Transition function, 389
Transition operator, 57, 391
Triangle:
Pascal, 13,23

U
Ulam theorem, 186
Uncountably many, 69
Universal probability space, 138
Unordered sample, 360
Urn scheme:

Pélya, 25

\%
Vandermonde’s convolution, 376
Vandermonde’s identity, 13
Variable:

random, 367
Variance:

conditional

with respect to partitions, 42

sample, 120
Variation:

quadratic, 300
Vector:

random, 367
Verification theorem, 356
Viete formula, 277
Vitali-Hahn—-Saks theorem, 63
Von Bahr—Esseen inequality, 162

w

Wald’s identity, 290
Wasserstein metric, 229
Weibull distribution, 119, 126

Y
Young’s inequality, 97

V4
Zeta function:
Riemann, 74



	Problems in Probability
	Preface
	Contents
	Chapter
1 Elementary Probability Theory
	Chapter
2 Mathematical Foundations of Probability Theory
	Chapter
3 Topology and Convergence in Spaces of Probability Measures: The Central Limit Theorem
	Chapter
4 Sequences and Sums of Independent Random Variables
	Chapter
5 Stationary (in Strict Sense) Random Sequencesand Ergodic Theory
	Chapter
6 Stationary (in Broad Sense) Random Sequences: L2-theory
	Chapter
7 Martingale Sequences
	Chapter
8 Sequences of Random Variables that Form Markov Chains
	Appendix
A Review of Some Fundamental Concepts and Results from Probability Theory and Combinatorics
	References
	Author Index
	Subject Index



