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Preface

Quantum mechanics was one of the very important new theories of the 20th century.
John von Neumann worked in Göttingen in the 1920s when Werner Heisenberg
gave the first lectures on the subject. Quantum mechanics motivated the creation
of new areas in mathematics; the theory of linear operators on Hilbert spaces was
certainly such an area. John von Neumann made an effort toward the mathematical
foundation, and his book “The mathematical foundation of quantum mechanics” is
still rather interesting to study. The book is a precise and self-contained description
of the theory, some notations have been changed in the mean time in the literature.

Although quantum mechanics is mathematically a perfect theory, it is full of in-
teresting methods and techniques; the interpretation is problematic for many people.
An example of the strange attitudes is the following: “Quantum mechanics is not a
theory about reality, it is a prescription for making the best possible prediction about
the future if we have certain information about the past” (G. ‘t’ Hooft, 1988). The
interpretations of quantum theory are not considered in this book. The background
of the problems might be the probabilistic feature of the theory. On one hand, the
result of a measurement is random with a well-defined distribution; on the other
hand, the random quantities do not have joint distribution in many cases. The latter
feature justifies the so-called quantum probability theory.

Abstract information theory was proposed by electric engineer Claude Shannon
in the 1940s. It became clear that coding is very important to make the informa-
tion transfer efficient. Although quantum mechanics was already established, the
information considered was classical; roughly speaking, this means the transfer of
0–1 sequences. Quantum information theory was born much later in the 1990s. In
1993 C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres and W. Wootters
published the paper Teleporting an unknown quantum state via dual classical and
EPR channels, which describes a state teleportation protocol. The protocol is not
complicated; it is somewhat surprising that it was not discovered much earlier. The
reason can be that the interest in quantum computation motivated the study of the
transmission of quantum states. Many things in quantum information theory is re-
lated to quantum computation and to its algorithms. Measurements on a quantum
system provide classical information, and due to the randomness classical statistics
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vi Preface

can be used to estimate the true state. In some examples, quantum information can
appear, the state of a subsystem can be so.

The material of this book was lectured at the Budapest University of Technol-
ogy and Economics and at the Central European University mostly for physics and
mathematics majors, and for newcomers in the area. The book addresses graduate
students in mathematics, physics, theoretical and mathematical physicists with some
interest in the rigorous approach. The book does not cover several important results
in quantum information theory and quantum statistics. The emphasis is put on the
real introductory explanation for certain important concepts. Numerous examples
and exercises are also used to achieve this goal. The presentation is mathematically
completely rigorous but friendly whenever it is possible. Since the subject is based
on non-trivial applications of matrices, the appendix summarizes the relevant part of
linear analysis. Standard undergraduate courses of quantum mechanics, probability
theory, linear algebra and functional analysis are assumed. Although the emphasis
is on quantum information theory, many things from classical information theory
are explained as well. Some knowledge about classical information theory is conve-
nient, but not necessary.

I thank my students and colleagues, especially Tsuyoshi Ando, Thomas Baier,
Imre Csiszár, Katalin Hangos, Fumio Hiai, Gábor Kiss, Milán Mosonyi and József
Pitrik, for helping me to improve the manuscript.

Dénes Petz
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Chapter 1
Introduction

Given a set X of outcomes of an experiment, information gives one of the possible
alternatives. The value (or measure) of the information is proportional to the size
of X . The idea of measuring information regardless of its content dates back to
R. V. L. Hartley (1928). He recognized the logarithmic nature of the natural mea-
sure of information content: When the cardinality of X is n, the amount of infor-
mation assigned to an element is logn. (The base of the logarithm yields a constant
factor.)

When a probability mass function p(x) is given on X , then the situation is
slightly more complicated. Claude Shannon proposed the formula

H(p) =− ∑
x∈X

p(x) log2 p(x),

so he used logarithm to the base 2 and he called this quantity “entropy”. Assume
that #(X ) = 8 and the probability distribution is uniform. Then

H =−∑ 1
8

log2
1
8

= 3,

in accordance with the fact that we need 3-bit strings to label the elements of X .
Suppose eight horses take part in a race and the probabilities of winning are

(
1
2
,

1
4
,

1
8
,

1
16

,
1

64
,

1
64

,
1
64

,
1

64

)
. (1.1)

If we want to inform somebody about the winner, then a possibility is to send the
index of the winning horse. This protocol requires 3 bits independently of the ac-
tual winner. However, it is more appropriate to send a shorter message for a more
probable horse and to send a longer for the less probable one. If we use the strings

0,10,110,1110,111100,111101,111110,111111, (1.2)

then the average message length is 2 bits. This coincides with the Shannon entropy
of the probability distribution (1.1) and smaller than the uniform code length. From
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2 1 Introduction

the example, one observes that coding can make the information transfer more effi-
cient. The Shannon entropy is a theoretical lower bound for the average code length.
It is worthwhile to note that the coding (1.2) has a very special property. If the race
is repeated and the two winners are messaged by a sequence

11110010,

then the first and the second winners can be recovered uniquely:

111100 + 10.

Physics of the media that is used to store or transfer information determines how
to manipulate that information. Classical media, for example magnetic domains or
a piece of paper, determine classical logic as the means to manipulate that infor-
mation. In classical logic, things are true or false; for example, a magnetic domain
on the drive either is aligned with the direction of the head or is not. Any memory
location can be read without destroying that memory location. A physical system
obeying the laws of quantum mechanics is rather different. Any measurement per-
formed on a quantum system destroys most of the information contained in that
system. The discarded information is unrecoverable. The outcome of the measure-
ment is stochastic, in general probabilistic predictions can be made only. A quantum
system basically carries quantum information, but the system can be used to store
or transfer classical information as well.

The word teleportation is from science fiction and it means that an object disin-
tegrates in one place while a perfect replica appears somewhere else. The quantum
teleportation protocol discovered in 1993 by Richard Jozsa, William K. Wootters,
Charles H. Bennett, Gilles Brassard, Claude Crépeau and Asher Peres is based on 3
quantum bits. Alice has access to the quantum bits X and A, Bob has the quantum
bit B. The bits A and B are in a special quantum relation, they are entangled. This
means that the bit B senses if something happens with the bit A. The state of the bit
X is not known, and the goal is to transfer its state to Bob. Alice performs a partic-
ular measurement on the quantum bits X and A. Her measurement has 4 different
outcomes and she informs Bob about the outcome. Bob has a prescription: each of
the four outcomes corresponds to a dynamical change of the state of the quantum bit
B. He performs the change suggested by Alice’s information. After that the state of
the quantum bit B will be exactly the same as the state of the quantum bit X before
Alice’ measurement. The teleportation protocol is not in contradiction to the uncer-
tainty principle. Alice does not know the initial state of X and Bob does not know
the final state of B. Nevertheless, the two states are exactly the same.

The teleportation protocol is based on entanglement. The state of a quantum bit
is described by a 2×2 positive semidefinite matrix which has complex entries and
trace 1. Such a matrix is determined by 3 real numbers. Two quantum bits form
a 4-level-quantum system, and the description of a state requires 15 real numbers.
One can argue that 15− 2× 3 = 9 numbers are needed to describe the relation of
the two qubits. The relation can be very complex, and entanglement is an interesting
and important example.



Chapter 2
Prerequisites from Quantum Mechanics

The starting point of the quantum mechanical formalism is the Hilbert space. The
Hilbert space is a mathematical concept, it is a space in the sense that it is a com-
plex vector space which is endowed by an inner or scalar product 〈 · , · 〉. The linear
space Cn of all n-tuples of complex numbers becomes a Hilbert space with the inner
product

〈x,y〉=
n

∑
i=1

xiyi = [x1,x2, . . .xn]

⎡
⎢⎢⎢⎢⎣

y1

y2

.

.
yn

⎤
⎥⎥⎥⎥⎦ ,

where z denotes the complex conjugate of the complex number z ∈ C. Another
example is the space of square integrable complex-valued functions on the real Eu-
clidean space R

n. If f and g are such functions then

〈 f ,g〉=
∫

Rn
f (x)g(x)dx

gives the inner product. The latter space is denoted by L2(Rn) and it is infinite
dimensional contrary to the n-dimensional space Cn. We are mostly satisfied with fi-
nite dimensional spaces. The inner product of the vectors |x〉 and |y〉will be often de-
noted as 〈x|y〉; this notation, sometimes called “bra” and “ket,” is popular in physics.
On the other hand, |x〉〈y| is a linear operator which acts on the ket vector |z〉 as

(|x〉〈y|) |z〉= |x〉〈y|z〉 ≡ 〈y|z〉 |x〉.

Therefore,

|x〉〈y|=

⎡
⎢⎢⎢⎢⎣

x1

x2

.

.
xn

⎤
⎥⎥⎥⎥⎦ [y1,y2, . . .yn]

is conjugate linear in |y〉, while 〈x|y〉 is linear.
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4 2 Prerequisites from Quantum Mechanics

In this chapter I explain shortly the fundamental postulates of quantum mechan-
ics about quantum states, observables, measurement, composite systems and time
development.

2.1 Postulates of Quantum Mechanics

The basic postulate of quantum mechanics is about the Hilbert space formalism.

(A0) To each quantum mechanical system a complex Hilbert space H is associ-
ated.

The (pure) physical states of the system correspond to unit vectors of the Hilbert
space. This correspondence is not 1–1. When f1 and f2 are unit vectors, then the
corresponding states are identical if f1 = z f2 for a complex number z of modulus 1.
Such z is often called phase. The pure physical state of the system determines a
corresponding state vector up to a phase.

Example 2.1. The two-dimensional Hilbert space C2 is used to describe a 2-level
quantum system called qubit. The canonical basis vectors (1,0) and (0,1) are usu-
ally denoted by | ↑〉 and | ↓〉, respectively. (An alternative notation is |1〉 for (0,1)
and |0〉 for (1,0).) Since the polarization of a photon is an important example of a
qubit, the state | ↑〉may have the interpretation that the “polarization is vertical” and
| ↓〉 means that the “polarization is horizontal”.

To specify a state of a qubit we need to give a real number x1 and a complex
number z such that x2

1 + |z|2 = 1. Then the state vector is

x1 | ↑〉+ z | ↓〉 .

(Indeed, multiplying a unit vector z1 | ↑〉+ z2 | ↓〉 by an appropriate phase, we can
make the coefficient of | ↑〉 real and the corresponding state remains the same.)

Splitting z into real and imaginary parts as z = x2 + ix3, we have the constraint
x2

1 + x2
2 + x2

3 = 1 for the parameters (x1,x2,x3) ∈R
3.

Therefore, the space of all pure states of a qubit is conveniently visualized as the
sphere in the three-dimensional Euclidean space; it is called the Bloch sphere. �

Traditional quantum mechanics distinguishes between pure states and mixed
states. Mixed states are described by density matrices. A density matrix or sta-
tistical operator is a positive operator of trace 1 on the Hilbert space. This means
that the space has a basis consisting of weigenvectors of the statistical operator and
the sum of eigenvalues is 1. (In the finite dimensional case the first condition is auto-
matically fulfilled.) The pure states represented by unit vectors of the Hilbert space
are among the density matrices under an appropriate identification. If x = |x〉 is a
unit vector, then |x〉〈x| is a density matrix. Geometrically |x〉〈x| is the orthogonal
projection onto the linear subspace generated by x. Note that |x〉〈x| = |y〉〈y| if the
vectors x and y differ in a phase.
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(A1) The physical states of a quantum mechanical system are described by statis-
tical operators acting on the Hilbert space.

Example 2.2. A state of the spin (of 1/2) can be represented by the 2×2 matrix

1
2

[
1 + x3 x1− ix2

x1 + ix2 1− x3

]
. (2.1)

This is a density matrix if and only if x2
1 + x2

2 + x2
3 ≤ 1 (Fig. 2.1). �

The second axiom is about observables.

(A2) The observables of a quantum mechanical system are described by self-
adjoint operators acting on the Hilbert space.

A self-adjoint operator A on a Hilbert space H is a linear operator H →H
which satisfies

〈Ax, y〉= 〈x, Ay〉

for x,y ∈H . Self-adjoint operators on a finite dimensional Hilbert space Cn are
n×n self-adjoint matrices. A self-adjoint matrix admits a spectral decomposition

Fig. 2.1 A 2× 2 density matrix has the form 1
2 (I + x1σ1 + x2σ2 + x3σ3), where x2

1 + x2
2 + x2

3 ≤ 1.
The length of the vectors (x1,x2,x3) is at most 1 and they form the unit ball, called Bloch ball, in
the three-dimensional Euclidean space. The pure states are on the surface
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A = ∑iλiEi, where λi are the different eigenvalues of A, and Ei is the orthogo-
nal projection onto the subspace spanned by the eigenvectors corresponding to the
eigenvalue λi. Multiplicity of λi is exactly the rank of Ei.

Example 2.3. In case of a quantum spin (of 1/2) the matrices

σ1 =
[

0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]

are used to describe the spin of direction x,y,z (with respect to a coordinate system).
They are called Pauli matrices. Any 2×2 self-adjoint matrix is of the form

A(x0,x) := x0σ0 + x1σ1 + x2σ2 + x3σ3

if σ0 stands for the unit matrix I. We can also use the shorthand notation x0σ0 +x ·σ .
The density matrix (2.1) can be written as

1
2 (σ0 + x ·σ), (2.2)

where ‖x‖ ≤ 1. x is called Bloch vector and these vectors form the Bloch ball.
Formula (2.2) makes an affine correspondence between 2× 2 density matrices

and the unit ball in the Euclidean 3-space. The extreme points of the ball corre-
spond to pure state and any mixed state is the convex combination of pure states
in infinitely many different ways. In higher dimension the situation is much more
complicated. �

Any density matrix can be written in the form

ρ =∑
i

λi|xi〉〈xi| (2.3)

by means of unit vectors |xi〉 and coefficients λi ≥ 0, ∑iλi = 1. Since ρ is self-
adjoint such a decomposition is deduced from the spectral theorem and the vectors
|xi〉 may be chosen pairwise orthogonal eigenvectors and λi are the corresponding
eigenvalues. The decomposition is unique if the spectrum of ρ is non-degenerate,
that is, there is no multiple eigenvalue.

Lemma 2.1. The density matrices acting on a Hilbert space form a convex set whose
extreme points are the pure states.

Proof. Denote by Σ the set of density matrices. It is obvious that a convex combi-
nation of density matrices is positive and of trace one. Therefore Σ is a convex set.

Recall that ρ ∈ Σ is an extreme point if a convex decomposition ρ = λρ1 +(1−
λ )ρ2 with ρ1,ρ2 ∈ Σ and 0 < λ < 1 is only trivially possible, that is, ρ1 = ρ2 = ρ .
The Schmidt decomposition (2.3) shows that an extreme point must be a pure state.

Let p be a pure state, p = p2. We have to show that it is really an extreme point.
Assume that p = λρ1 +(1−λ )ρ2. Then
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p = λ pρ1 p +(1−λ )pρ2p

and Tr pρi p = 1 must hold. Remember that Tr pρi p = 〈p,ρi〉, while 〈p, p〉 = 1 and
〈ρi, ρi〉 ≤ 1. In the Schwarz inequality

|〈e, f 〉|2 ≤ 〈e,e〉〈 f , f 〉

the equality holds if and only if f = ce for some complex number c. Therefore,
ρi = ci p must hold. Taking the trace, we get ci = 1 and ρ1 = ρ2 = p. �


The next result, obtained by Schrödinger [105], gives relation between different
decompositions of density matrices.

Lemma 2.2. Let

ρ =
k

∑
i=1

|xi〉〈xi|=
k

∑
j=1

|y j〉〈y j|

be decompositions of a density matrix. Then there exists a unitary matrix (Ui j)k
i, j=1

such that
k

∑
j=1

Ui j|x j〉= |yi〉. (2.4)

Let ∑n
i=1λi|zi〉〈zi| be the Schmidt decomposition of ρ , that is, λi > 0 and |zi〉 are

pairwise orthogonal unit vectors (1≤ i≤ n). The integer n is the rank of ρ , therefore
n ≤ k. Set |zi〉 : = 0 and λi : = 0 for n < i ≤ k. It is enough to construct a unitary
transforming the vectors

√
λi|zi〉 to the vectors |yi〉. Indeed, if two arbitrary decom-

positions are given and both of them connected to an orthogonal decomposition by
a unitary, then one can form a new unitary from the two which will connect the two
decompositions.

The vectors |yi〉 are in the linear span of {|zi〉 : 1≤ i≤ n}; therefore

|yi〉=
n

∑
j=1
〈z j|yi〉|z j〉

is the orthogonal expansion. We can define a matrix (Ui j) by the formula

Ui j =
〈z j, |yi〉√

λ j
(1 ≤ i≤ k,1≤ j ≤ n).

We can easily compute that

k

∑
i=1

UitU
∗
iu =

k

∑
i=1

〈zt , |yi〉√
λt

〈yi, |zu〉√
λu

=
〈zt |ρ |zu〉√

λuλt
= δt,u,
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and this relation shows that the n column vectors of the matrix (Ui j) are orthonormal.
If n < k, then we can append further columns to get a k× k unitary. �

Quantum mechanics is not deterministic. If we prepare two identical systems in
the same state, and we measure the same observable on each, then the result of
the measurement may not be the same. This indeterminism or stochastic feature is
fundamental.

(A3) Let X be a finite set and for x ∈X an operator Vx ∈ B(H ) be given such
that ∑x V ∗x Vx = I. Such an indexed family of operators is a model of a mea-
surement with values in X . If the measurement is performed in a state ρ ,
then the outcome x ∈X appears with probability TrVxρV ∗x and after the
measurement the state of the system is

VxρV ∗x
TrVxρV ∗x

.

A particular case is the measurement of an observable described by a self-adjoint
operator A with spectral decomposition ∑i λiEi. In this case X = {λi} is the set of
eigenvalues and Vi = Ei. One can compute easily that the expectation of the random
outcome is TrρA. The functional A �→ TrρA is linear and has two important proper-
ties: 1) If A≥ 0, then TrρA≥ 0, 2) TrρI = 1. These properties allow to see quantum
states in a different way. If ϕ : B(H )→ C is a linear functional such that

ϕ(A)≥ 0 if A≥ 0 and ϕ(I) = 1, (2.5)

then there exists a density matrix ρϕ such that

ϕ(A) = TrρϕA. (2.6)

The functional ϕ associates the expectation value to the observables A.
The density matrices ρ1 and ρ2 are called orthogonal if any eigenvector of ρ1 is

orthogonal to any eigenvector of ρ2.

Example 2.4. Let ρ1 and ρ2 be density matrices. They can be distinguished with
certainty if there exists a measurement which takes the value 1 with probability 1
when the system is in the state ρ1 and with probability 0 when the system is in the
state ρ2.

Assume that ρ1 and ρ2 are orthogonal and let P be the orthogonal projection
onto the subspace spanned by the non-zero eigenvectors of ρ1. Then V1 := P and
V2 := I−P is a measurement and TrV1ρ1V ∗1 = 1 and TrV1ρ2V ∗1 = 0.

Conversely, assume that a measurement (Vi) exists such that TrV1ρ1V ∗1 = 1 and
TrV1ρ2V ∗1 = 0. The first condition implies that V ∗1 V1 ≥ P, where P us the support
projection of ρ1, defined above. The second condition tells is that V ∗1 V1 is orthogonal
to the support of ρ2. Therefore, ρ1 ⊥ ρ2. �

Let e1,e2, . . . ,en be an orthonormal basis in a Hilbert space H . The unit vector
ξ ∈H is complementary to the given basis if
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|〈ei,ξ 〉|= 1√
n

(1≤ i≤ n). (2.7)

The basis vectors correspond to a measurement, |e1〉〈e1|, . . . , |en〉〈en| are positive
operators and their sum is I. If the pure state |ξ 〉〈ξ | is the actual state of the quantum
system, then complementarity means that all outputs of the measurement appear
with the same probability.

Two orthonormal bases are called complementary if all vectors in the first basis
are complementary to the other basis.

Example 2.5. First we can note that (2.7) is equivalent to the relation

Tr |ei〉〈ei| |ξ 〉〈ξ |= 1
n

(2.8)

which is about the trace of the product of two projections.
The eigenprojections of the Pauli matrix σi are (I±σi)/2. We have

Tr
( I±σi

2
I±σ j

2

)
=

1
2

for 1 ≤ i �= j ≤ 3. This shows that the eigenbasis of σi is complementary to the
eigenbasis of σ j if i and j are different. �

According to axiom (A1), a Hilbert space is associated to any quantum mechani-
cal system. Assume that a composite system consists of the subsystems (1) and (2),
they are described by the Hilbert spaces H1 and H2. (Each subsystem could be a
particle or a spin, for example.) Then we have the following.

(A4) The composite system is described by the tensor product Hilbert space
H1⊗H2.

When {e j : j ∈ J} is a basis of H1 and { fi : i ∈ I} is a basis of H2, then
{e j⊗ f j : j ∈ J, i∈ I} is a basis of H1⊗H2. Therefore, the dimension of H1⊗ H2

is dim H1× dim H2. If Ai ∈ B(Hi) (i = 1,2), then the action of the tensor product
operator A1⊗A2 is determined by

(A1⊗A2)(η1⊗η2) = A1η1⊗A2η2

since the vectors η1⊗η2 span H1⊗H2.
When A = A∗ is an observable of the first system, then its expectation value in

the vector state Ψ ∈H1⊗H2 is

〈Ψ,(A⊗ I2)Ψ〉 ,

where I2 is the identity operator on H2.

Example 2.6. The Hilbert space of a composite system of two spins (of 1/2) is C2⊗
C2. In this space, the vectors
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e1 := | ↑〉⊗ | ↑〉, e2 := | ↑〉⊗ | ↓〉, e3 := | ↓〉⊗ | ↑〉, e4 := | ↓〉⊗ | ↓〉

form a basis. The vector state

Φ=
1√
2
(| ↑〉⊗ | ↓〉− | ↓〉⊗ | ↑〉) (2.9)

has a surprising property. Consider the observable

A :=
4

∑
i=1

i|ei〉〈ei|,

which has eigenvalues 1, 2, 3 and 4 and the corresponding eigenvectors are just
the basis vectors. Measurement of this observable yields the values 1, 2, 3 and 4
with probabilities 0, 1/2, 1/2 and 0, respectively. The 0 probability occurs when
both spins are up or both are down. Therefore in the vector state Φ the spins are
anti-correlated. �

We can consider now the composite system H1⊗H2 in a state Φ ∈H1⊗H2.
Let A∈ B(H1) be an observable which is localized at the first subsystem. If we want
to consider A as an observable of the total system, we have to define an extension
to the space H1⊗H2. The tensor product operator A⊗ I will do, I is the identity
operator of H2.

Lemma 2.3. Assume that H1 and H2 are finite dimensional Hilbert spaces. Let
{e j : j ∈ J} be a basis of H1 and { fi : i ∈ I} be a basis of H2. Assume that

Φ=∑
i, j

wi j e j⊗ fi

is the expansion of a unit vector Φ ∈H1⊗H2. Set W for the matrix which is deter-
mined by the entries wkl . Then W ∗W is a density matrix and

〈Φ, (A⊗ I)Φ〉= TrAW ∗W .

Proof. Let Ekl be an operator on H1 which is determined by the relations Ekle j =
δl jek (k, l ∈ I). As a matrix, Ekl is called “matrix unit”; it is a matrix such that (k, l)
entry is 1, all others are 0. Then

〈Φ, (Ekl⊗ I)Φ〉 =

〈
∑
i, j

wi j e j⊗ fi, (Ekl⊗ I)∑
t,u

wtu eu⊗ ft

〉
=

=∑
i, j
∑
t,u

wi jwtu〈e j, Ekleu〉〈 fi, ft〉=

=∑
i, j
∑
t,u

wi jwtu δluδ jkδit =∑
i

wikwil .
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Then we can arrive at the (k, l) entry of W ∗W . Our computation may be summa-
rized as

〈Φ, (Ekl⊗ I)Φ〉= TrEkl(W ∗W ) (k, l ∈ I).

Since any linear operator A ∈ B(H1) is of the form A =∑k,l aklEkl (akl ∈ C), taking
linear combinations of the previous equations, we have

〈Φ, (A⊗ I)Φ〉= TrA(W ∗W ) .

W ∗W is obviously positive and

TrW ∗W =∑
i, j

|wi j|2 = ‖Φ‖2 = 1 .

Therefore it is a density matrix. �

This lemma shows a natural way from state vectors to density matrices. Given a

density matrix ρ on H1⊗H2, there are density matrices ρi ∈ B(Hi) such that

Tr(A⊗ I)ρ = TrAρ1 (A ∈ B(H1)) (2.10)

and
Tr(I⊗B)ρ = TrBρ2 (B ∈ B(H2)). (2.11)

ρ1 and ρ2 are called reduced density matrices. (They are the quantum analogue of
marginal distributions.)

The proof of Lemma 2.3 contains the reduced density of |Φ〉〈Φ| on the first sys-
tem; it is W ∗W . One computes similarly the reduced density on the second subsys-
tem; it is (WW ∗)T , where XT denotes the transpose of the matrix X . Since W ∗W and
(WW ∗)T have the same non-zero eigenvalues, the two subsystems are very strongly
connected if the total system is in a pure state.

Let H1 and H2 be Hilbert spaces and let dimH1 = m and dimH2 = n. It is well
known that the matrix of a linear operator on H1⊗H2 has a block-matrix form,

U = (Ui j)m
i, j=1 =

m

∑
i, j=1

Ei j⊗Ui j,

relative to the lexicographically ordered product basis, where Ui j are n×n matrices.
For example,

A⊗ I = (Xi j)
m
i, j=1 , where Xi j = Ai jIn

and
I⊗B = (Xi j)

m
i, j=1 , where Xi j = δi jB.

Assume that

ρ = (ρi j)m
i, j=1 =

m

∑
i, j=1

Ei j⊗ρi j
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is a density matrix of the composite system written in block-matrix form. Then

Tr(A⊗ I)ρ =∑
i, j

Ai jTr Inρi j =∑
i, j

Ai jTrρi j

and this gives that for the first reduced density matrix ρ1, we have

(ρ1)i j = Trρi j. (2.12)

We can compute similarly the second reduced density ρ2. Since

Tr(I⊗B)ρ =∑
i

TrBρii

we obtain

ρ2 =
m

∑
i=1

ρii. (2.13)

The reduced density matrices might be expressed by the partial traces. The map-
pings Tr 2 : B(H1)⊗B(H2)→ B(H1) and Tr 1 : B(H1)⊗B(H2)→ B(H2) are
defined as

Tr2(A⊗B) = ATrB, Tr1(A⊗B) = (TrA)B . (2.14)

We have
ρ1 = Tr2ρ and ρ2 = Tr1ρ . (2.15)

Axiom (A4) tells about a composite quantum system consisting of two quantum
components. In case of more quantum components, the formalism is similar, but
more tensor factors appear.

It may happen that the quantum system under study has a classical and a quantum
component; assume that the first component is classical. Then the description by
tensor product Hilbert space is still possible. A basis (|ei〉)i of H1 can be fixed and
the possible density matrices of the joint system are of the form

∑
i

pi|ei〉〈ei|⊗ρ (2)
i , (2.16)

where (pi)i is a probability distribution and ρ (2)
i are densities on H2. Then the

reduced state on the first component is the probability density (pi)i (which may be

regarded as a diagonal density matrix) and ∑i piρ
(2)
i is the second reduced density.

The next postulate of quantum mechanics tells about the time development of a
closed quantum system. If the system is not subject to any measurement in the time
interval I ⊂ R and ρt denotes the statistical operator at time t, then

(A5) ρt = U(t,s)ρsU(t,s)∗ (t,s ∈ I),

where the unitary propagator U(t,s) is a family of unitary operators such that

(i) U(t,s)U(s,r) = U(t,r),
(ii) (s, t) �→U(s,t) ∈ B(H ) is strongly continuous.
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The first-order approximation of the unitary U(s,t) is the Hamiltonian:

U(t +Δt,t) = I− i
h̄

H(t)Δ t,

where H(t) is the Hamiltonian at time t. If the Hamiltonian is time independent,
then

U(s,t) = exp

(
− i

h̄
(s− t)H

)
.

In the approach followed here the density matrices are transformed in time, and
this is the so-called Schrödinger picture of quantum mechanics. When discrete
time development is considered, a single unitary U gives the transformation of the
vector state in the form ψ �→Uψ , or in the density matrix formalism ρ �→UρU∗.

Example 2.7. Let |0〉, |1〉, . . . , |n− 1〉 be an orthonormal basis in an n-dimensional
Hilbert space. The transformation

V : |i〉 �→ 1√
n

n−1

∑
j=0

ω i j| j〉 (ω = e2π i/n) (2.17)

is a unitary and it is called quantum Fourier transform. �

When the unitary time development is viewed as a quantum algorithm in connec-
tion with quantum computation, the term gate is used instead of unitary.

Example 2.8. Unitary operators are also used to manipulate quantum registers and
to implement quantum algorithms.

The Hadamard gate is the unitary operator

UH :=
1√
2

[
1 1
1 −1

]
. (2.18)

It sends the basis vectors into uniform superposition and vice versa. The Hadamard
gate can establish or destroy the superposition of a qubit. This means that the basis
vector |0〉 is transformed into the vector (|0〉+ |1〉)/√2, which is a superposition,
and superposition is created.

The controlled-NOT gate is a unitary acting on two qubits. The first qubit is
called “a control qubit,” and the second qubit is the data qubit. This operator sends
the basis vectors |00〉, |01〉, |10〉, |11〉 of C4 into |00〉, |01〉, |11〉, |10〉. When the first
character is 1, the second changes under the operation. Therefore, the matrix of the
controlled-NOT gate is

Uc−NOT :=

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ . (2.19)
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Fig. 2.2 The unitary made of
the Hadamard gate, and the
controlled-NOT gate trans-
forms the standard product
basis into the Bell basis

H

The swap gate moves a product vector |i〉⊗| j〉 into | j〉⊗|i〉. Therefore its matrix is
⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦ . (2.20)

Quantum algorithms involve several other gates. �

Example 2.9. The unitary operators are used to transform a basis into another one.
In the Hilbert space C4 = C2⊗C2 the standard basis is

|00〉, |01〉, |10〉, |11〉.

The unitary

(UH ⊗ I2)Uc−NOT =
1√
2

⎡
⎢⎢⎣

1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

⎤
⎥⎥⎦ .

moves the standard basis into the so-called Bell basis:

1√
2
(|00〉+ |11〉), 1√

2
(|01〉+ |10〉), 1√

2
(|00〉− |11〉), 1√

2
(|01〉+ |10〉).

This basis is complementary to the standard product basis (Fig. 2.2).

2.2 State Transformations

Assume that H is the Hilbert space of our quantum system which initially has a
statistical operator ρ (acting on H ). When the quantum system is not closed, it is
coupled to another system called environment. The environment has a Hilbert space
He and statistical operator ρe. Before interaction the total system has density ρe⊗ρ .
The dynamical change caused by the interaction is implemented by a unitary, and
U(ρe⊗ρ)U∗ is the new statistical operator and the reduced density ρ̃ is the new
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statistical operator of the quantum system we are interested in. The affine change
ρ �→ ρ̃ is typical for quantum mechanics and is called state transformation. In
this way the map ρ �→ ρ̃ is defined on density matrices but it can be extended by
linearity to all matrices. In this way we can obtain a trace-preserving and positivity
preserving linear transformation.

The above-defined state transformation can be described in several other forms,
and reference to the environment could be omitted completely. Assume that ρ is an
n×n matrix and ρe is of the form (zkzl)kl , where (z1,z2, . . . ,zm) is a unit vector in the
m-dimensional space He (ρe is a pure state). All operators acting on He⊗H are
written in a block-matrix form; they are m×m matrices with n× n matrix entries.
In particular, U = (Ui j)m

i, j=1 and Ui j ∈Mn. If U is a unitary, then U∗U is the identity
and this implies that

∑
i

U∗
ikUil = δklIn (2.21)

Formula (2.13) for the reduced density matrix gives

ρ̃ = Tr 1(U(ρe⊗ρ)U∗) =∑
i
(U(ρe⊗ρ)U∗)ii = ∑

i,k,l

Uik(ρe⊗ρ)kl(U∗)li

= ∑
i,k,l

Uik(zkzlρ)(Uil)∗ =∑
i

(
∑
k

zkUik

)
ρ
(
∑

l

zlUil

)∗
=∑

i

AiρA∗i ,

where the operators Ai := ∑k zkUik satisfy

∑
p

A∗pAp = I (2.22)

in accordance with (2.21) and ∑k |zk|2 = 1.

Theorem 2.1. Any state transformation ρ �→ E (ρ) can be written in the form

E (ρ) =∑
p

ApρA∗p,

where the operator coefficients satisfy (2.22). Conversely, all linear mappings of
this form are state transformations.

The first part of the theorem was obtained above. To prove the converse part, we
need to solve the equations

Ai :=∑
k

zkUik (i = 1,2, . . . ,m).

Choose simply z1 = 1 and z2 = z3 = . . . = zm = 0 and the equations reduce to Up1 =
Ap. This means that the first column is given from the block-matrix U and we need
to determine the other columns in such a way that U should be a unitary. Thanks to
the condition (2.22) this is possible. Condition (2.22) tells us that the first column
of our block-matrix determines an isometry which extends to a unitary. �
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The coefficients Ap in the operator-sum representation are called the opera-
tion elements of the state transformation. The terms quantum (state) operation and
channeling transformation are also often used instead of state transformation.

The state transformations form a convex subset of the set of all positive trace–
preserving linear transformations. (It is not known what the extreme points of this
set are.)

A linear mapping E is called completely positive if E ⊗ idn is positivity preserv-
ing for the identical mapping idn : Mn(C)→Mn(C) on any matrix algebra.

Theorem 2.2. Let E : Mn(C)→Mk(C) be a linear mapping. Then E is completely
positive if and only if it admits a representation

E (A) =∑
u

VuAV ∗u (2.23)

by means of some linear operators Vu : Cn → Ck.

This result was first proven by Kraus. (Its proof and more detailed discussion of
completely positive maps will be presented in the Appendix.) It follows that a state
transformation is completely positive and the operator-sum representation is also
called Kraus representation. Note that this representation is not unique.

Let E : Mn(C)→ Mk(C) be a linear mapping. E is determined by the block-
matrix (Xi j)1≤i, j≤k, where

Xi j = E (Ei j) (2.24)

(Here Ei j denote the matrix units.) This is the block-matrix representation of E .

Theorem 2.3. Let E : Mn(C)→Mk(C) be a linear mapping. Then E is completely
positive if and only if the representing block-matrix (Xi j)1≤i, j≤k ∈Mk(C)⊗Mn(C)
is positive.

Example 2.10. Consider the transpose mapping A �→ AT on 2×2 matrices:
[

x y
z w

]
�→
[

x z
y w

]
.

The representing block-matrix is

X =

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦ .

This is not positive, so the transpose mapping is not completely positive. �

Example 2.11. Consider a positive trace–preserving transformation E : Mn(C)→
Mm(C) such that its range consists of commuting operators. We can show that E is
automatically a state transformation.
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Since a commutative subalgebra of Mm(C) is the linear span of some pairwise
orthogonal projections Pk, one can see that E has the form

E (A) =∑
k

PkTrFkA, (2.25)

where Fk is a positive operator in Mn(C); it induces the coefficient of Pk as a linear
functional on Mn(C).

The positivity of the representing block-matrix is

∑
i j

Ei j⊗
(
∑
k

PkTr(FkEi j)
)

=∑
k

(
∑
i j

Ei j⊗Pk

)
◦
(
∑
i j

Ei jTr(FkEi j)⊗ I
)
,

where ◦ denotes the Hadamard (or entry-wise product) of nm×nm matrices. Recall
that according to Schur’s theorem the Hadamard product of positive matrices is
positive. The first factor is

[Pk,Pk, . . . ,Pk]∗[Pk,Pk, . . . ,Pk]

and the second factor is Fk⊗ I; both are positive.
Consider the particular case of (2.25) where each Pk is of rank one and∑r

k=1 Fk =
I. Such a family of Fk’s describe a measurement which associates the r-tuple
(TrρF1,TrρF2, . . . ,TrρFr) to the density matrix ρ . Therefore a measurement can
be formulated as a state transformation with diagonal outputs. �

The Kraus representation and the block-matrix representation are convenient
ways to describe a state transformation in any finite dimension. In the 2× 2 case
we have the possibility to expand the mappings in the basis σ0,σ1,σ2,σ3.

Any trace-preserving mapping E : M2(C)→M2(C) has a matrix

T =
[

1 0
t T3

]
(2.26)

with respect to this basis, where T3 ∈M3 and

E (w0σ0 + w ·σ) = w0σ0 +(t + T3w) ·σ . (2.27)

Since E sends self-adjoint operators to self-adjoint operators, we may assume that
T3 is a real 3× 3 matrix. It has a singular value decomposition O1ΣO2, where O1

and O2 are orthogonal matrices and Σ is diagonal. Since any orthogonal transfor-
mation on R

3 is induced by a unitary conjugation on M2(C), in the study of state
transformations we can assume that T3 is diagonal.

The following examples of state transformations are given in terms of the
T -representation.

Example 2.12 (Pauli channels). t = 0 and T3 = Diag(α,β ,γ). Density matrices are
sent to density matrices if and only if
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−1≤ α,β ,γ ≤ 1

for the real parameters α,β ,γ .
It is not difficult to compute the representing block-matrix, we have

X =

⎡
⎢⎢⎢⎣

1+γ
2 0 0 α+β

2

0 1−γ
2

α−β
2 0

0 α−β
2

1−γ
2 0

α+β
2 0 0 1+γ

2

⎤
⎥⎥⎥⎦ . (2.28)

X is unitarily equivalent to the matrix

⎡
⎢⎢⎢⎣

1+γ
2

α+β
2 0 0

α+β
2

1+γ
2 0 0

0 0 1−γ
2

α−β
2

0 0 α−β
2

1−γ
2

⎤
⎥⎥⎥⎦ .

This matrix is obviously positive if and only if

|1± γ| ≥ |α±β |. (2.29)

This positivity condition holds when α = β = γ = p > 0. Hence the next example
gives a channeling transformation. �

Example 2.13 (Depolarizing channel). This channel is given by the matrix T from
(2.26), where t = 0 and T3 = pI. Assume that 0 < p < 1.

Since

Ep( 1
2σ0 + w ·σ) = p( 1

2σ0 + w ·σ)+ (1− p) 1
2σ0 = 1

2σ0 + p(w ·σ),

the depolarizing channel keeps the density with probability p and moves to the com-
pletely apolar state σ0/2 with probability 1− p.

Extension to n-level system is rather obvious. Ep,n : Mn →Mn is defined as

Ep,n(A) = pA +(1− p)
I
n

TrA . (2.30)

is trivially completely positive for 0 ≤ p ≤ 1, since it is the convex combination of
such mappings. In order to consider the negative values of p we should study the
representing block-matrix X . One can see that

X = p∑
i j

Ei j⊗Ei j +
1− p

n
I⊗ I.

The matrix 1
n ∑i j Ei j⊗Ei j is a self-adjoint idempotent (that is, a projection), so its

spectrum is {0,1}. Consequently, the eigenvalues of X are
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pn +
1− p

n
,

1− p
n

.

They are positive when

− 1
n2−1

≤ p≤ 1 . (2.31)

This is the necessary and sufficient condition for the complete positivity of Ep,n. �

Example 2.14 (Phase-damping channel). t = 0 and T3 = Diag(p, p,2p− 1). This
channel describes decoherence, the decay of a superposition into a mixture;

E

[
a b
b c

]
= (1− p)

[
a b
b c

]
+ p

[
a 0
0 c

]
.

�

Example 2.15 (Fuchs channel). This channel is not unit preserving and maps σ2

into 0:

T =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0
1√
3

0 0

0 0 0 0
1
3

0 0
1
3

⎤
⎥⎥⎥⎥⎥⎦

The Fuchs channel is an extreme point in the convex set of channels M2(C) →
M2(C). Figure 2.3 is an illustration. �

Example 2.16 (Amplitude-damping channel).

T =

⎡
⎢⎢⎣

1 0 0 0
0
√

1− p 0 0
0 0

√
1− p 0

p 0 0 1− p

⎤
⎥⎥⎦

or equivalently

E

[
a b
b c

]
=
[

a + pc
√

1− pb√
1− pb (1− p)c

]
.

The Bloch ball shrinks toward the north pole (Fig. 2.4). �

Example 2.17 (The Holevo–Werner channel). Set a linear mapping E : Mn → Mn

as
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2.2 State Transformations 21

E (D) =
1

n−1
(Tr(D)I−DT ),

where DT denotes the transpose of D. The positivity is not obvious from this form
but it is easy to show that

E (D) =
1

2(n−1)∑i, j

(Ei j−E ji)∗D(Ei j−E ji),

where Ei j denotes the matrix units. This is the Kraus representation of E which must
be completely positive.

In the space of matrices the following matrices are linearly independent.

dk = Diag(1
1
�

,1
2
�

, . . . ,1
n− k
�

,−(n− k),0,0, . . . ,0).

For k = 0 we have the unit matrix and d1, d2, dn−1, are traceless matrices. Moreover,
set

ei j = Ei j−E ji (1 ≤ i < j ≤ n),
fi j = −iEi j + iE ji (1≤ i < j ≤ n).

The matrices {dk : 0≤ k ≤ n−1}∪{ei j : 1≤ i < j ≤ n}∪{ fi j : 1≤ i < j ≤ n}
are pairwise orthogonal with respect to the Hilbert Schmidt inner product, and up
to a normalizing factor they form a basis in the Hilbert space Mn. (Actually these
matrices are a kind of generalization of the Pauli matrices for n > 2.)

The mapping E is unital, hence E (d0) = d0. For 0 < k < n we have

E (dk) =
1

n−1
dk

and for 1≤ i < j ≤ n we have

E (Ei j) = Ei j

E (Fi j) = −Fi j.

Hence our basis consists of eigenvectors, the spectrum of E is {1, −1, 1
n−1} with

the multiplicities n (n− 1)/2 + 1, n(n− 1)/2, n− 2, respectively. Although E is
completely positive, its spectrum contains negative numbers; therefore it is not true
that E is positive definite with respect to the Hilbert–Schmidt inner product. �

Example 2.18 (Transpose depolarizing channel). Let E T
p,n : Mn →Mn is defined as

E T
p,n(A) = tAT +(1− t)

I
n

TrA , (2.32)

where AT is the transpose of A. In order to decide the complete positivity, we should
study the representing block-matrix X :
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X = t∑
i j

Ei j⊗E ji +
1− t

n
I⊗ I.

The matrix ∑i j Ei j⊗E ji is self-adjoint and its square is the identity. Therefore, its
spectrum is {±1}. Consequently, the eigenvalues of X are

−t +
1− p

n
, p +

1− t
n

.

They are positive when

− 1
n−1

≤ t ≤ 1
n + 1

. (2.33)

This is the necessary and sufficient condition for the complete positivity of E T
p,n. The

Holevo–Werner channel is a particular case. �

2.3 Notes

There are several books about the mathematical foundations of quantum mechanics.
The book of von Neumann [78] has a historical value; it was published in 1932.
Holevo’s lecture note [56] is rather comprehensive and [19] treats unbounded linear
operators of Hilbert spaces in detail.

The axioms of quantum mechanics are not so strict as in mathematics.

2.4 Exercises

1. Show that the vectors |x1〉, |x2,〉, . . . , |xn〉 form an orthonormal basis in an n-
dimensional Hilbert space if and only if

∑
i
|xi〉〈xi|= I.

2. Express the Pauli matrices in terms of the ket vectors |0〉 and |1〉.
3. Show that the Pauli matrices are unitarily equivalent.
4. Show that for a 2×2 matrix A the relation

1
2

3

∑
i=0

σiAσi = (TrA)I

holds.
5. Let t be a real number and n be a unit vector in R

3. Show that

exp(itn ·σ) = cost (n ·σ)+ i sint (n ·σ).

6. Let v and w be complex numbers and let n be a unit vector in R
3. Show that

exp(vσ0 + w(n ·σ)) = ev ((coshw)σ0 +(sinhw)n ·σ) . (2.34)
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7. Let |1〉, |2〉, |3〉 be a basis in C3 and

|v1〉 =
1√
3
(|1〉+ |2〉+ |3〉),

|v2〉 =
1√
3
(|1〉− |2〉− |3〉),

|v3〉 =
1√
3
(|1〉− |2〉+ |3〉),

|v4〉 =
1√
3
(|1〉+ |2〉− |3〉).

Compute ∑4
i=1 |vi〉〈vi|.

8. Show the identity

(I2−σk)⊗ (I2 +σk)+ (I2 +σk)⊗ (I2−σk) = I4−σk⊗σk (2.35)

for k = 1,2,3.
9. Let e and f be unit vectors in C2 and assume that they are eigenvectors of two

different Pauli matrices. Show that

|〈e, f 〉|2 =
1
2
.

10. Consider two complementary orthonormal bases in a Hilbert space. Let A and
B operators be such that TrA = TrB = 0; A is diagonal in the first basis, while
B is diagonal in the second one. Show that TrAB = 0.

11. Show that the number of pairwise complementary orthonormal bases in an
n-dimensional Hilbert space is at most n + 1. (Hint: Estimate the dimension of
the subspace of traceless operators.)

12. Show that the quantum Fourier transform moves the standard basis to a com-
plementary basis.

13. What is the 8× 8 matrix of the controlled-swap gate? (This unitary is called
Fredkin gate.)

14. Give the density matrix corresponding to the singlet state (2.9) and compute the
reduced density matrices.

15. Let ρ be a density matrix. Show that ρ corresponds to a pure state if and only if
ρ2 = ρ .

16. Compute the dimension of the set of the extreme points and the dimension of
the topological boundary of the n×n density matrices.

17. Compute the reduced density matrices of the state

1
3

⎡
⎢⎢⎣

1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎤
⎥⎥⎦ .
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18. Let 0 < p < 1. Show that the Kraus representation of the depolarizing channel
on M2 is

Ep,2(A) =
3p + 1

4
A +

1− p
4

σ1Aσ1 +
1− p

4
σ2Aσ2 +

1− p
4

σ3Aσ3.

19. Assume that E : Mn(C)→Mn(C) is defined as

E (A) =
1

n−1
(I TrA−A).

Show that E is positive but not completely positive.
20. Let p be a real number. Show that the mapping Ep,2 : M2 →M2 is defined as

Ep,2(A) = pA +(1− p)
I
2

TrA

is positive if and only if −1 ≤ p ≤ 1. Show that Ep,2 is completely positive if
and only if −1/3≤ p≤ 1. (Hint: Ep,2 is a Pauli channel.)

21. Let Ep,2 : M2 →M2 be the depolarizing channel and AT is the transpose of A.
For which values of the parameter p will A �→ Ep,2(A)T be a state transforma-
tion?

22. What is the spectrum of the linear mapping Ep,2? Can a positive mapping have
negative eigenvalues?

23. Give the Kraus representation of the phase-dumping channel.
24. Show that

1
3

⎡
⎢⎢⎣

5 0 0
√

3
0 1 i

√
3 0

0 −i
√

3 3 0√
3 0 0 3

⎤
⎥⎥⎦

is the representing block-matrix of the Fuchs channel.
25. Show that the matrix

T =

⎡
⎢⎢⎣

1 0 0 0
0 cosδ 0 0
0 0 cosγ 0

sinγ sinδ 0 0 cosγ cosδ

⎤
⎥⎥⎦

determines a state transformation of a qubit.
26. Compute the limit of E n if E is the amplitude-damping channel.
27. Assume that E : Mn(C)→Mn(C) acts as

E (A)i j = δi jAi j,

that is, E kills all off-diagonal entries. Find the Kraus representation of E .



Chapter 3
Information and its Measures

Information must be written on some physical substance, which could be the neural
connections in our brain, a piece of paper, some magnetic media, electrons trapped
in quantum dots, a beam of photons, and there are many other possibilities. Shortly
speaking, “information is physical.” Physics of the media that is used to store in-
formation determines the way how to manipulate that information. Classical media,
for example transistors, magnetic domains, or paper, determine classical logic as the
means to manipulate that information. In classical logic things are true or false; for
example, a magnetic domain on the drive either is aligned with the direction of the
head or is not. Any memory location can be read without destroying that memory
location.

Given a set X of outcomes of an experiment, information gives one of the pos-
sible alternatives. The value (or measure) of the information is proportional to the
size of X . The idea of measuring information regardless of its content dates back
to R.V.L. Hartley (1928). Hartley made an attempt at the determination of an in-
formation measure and he recognized the logarithmic nature of the natural measure
of information content: When the cardinality of X is n, the amount of information
assigned to an element is logn. In this spirit, the information content of a word of
a dictionary of n words equals to logn. Actually, Hartley took the logarithm to the
base 10, but a different base yields only an extra constant factor. The choice of base
2 could be more natural. Suppose that X is the set of natural numbers {1, 2, . . . , n}
and they are written in a binary way in the form of a 0–1 sequence. Then we need
�log2 n� binary digits to describe an outcome. (Here �log2 n� denotes the smallest
integer which is not smaller than log2 n.)

Quantum information is carried by a physical system obeying the laws of quan-
tum mechanics. Any measurement performed on a quantum system destroys most
of the information contained in that system and leaves the system in one of the so-
called basis states. The discarded information is unrecoverable. The outcome of the
measurement is stochastic; in general, only probabilistic predictions can be made.
Quantum information can be transferred with perfect fidelity, but in the process the
original must be destroyed (see Chap. 4). The quantum teleportation protocol was

D. Petz, Information and its Measures. In: D. Petz, Quantum Information Theory and Quantum Statistics, Theoretical
and Mathematical Physics, pp. 25–51 (2008)
DOI 10.1007/978-3-540-74636-2 3 c© Springer-Verlag Berlin Heidelberg 2008
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first described only in 1993, in spite of the fact that all the physical background
was known already in the 1920s. (An experimental demonstration was carried out
in 1998.)

3.1 Shannon’s Approach

In his revolutionary paper Shannon proposed a statistical approach and he posed the
problem in the following way: “Suppose we have a set of possible events whose
probabilities of occurrence are p1, p2, . . . , pn. These probabilities are known but
that is all we know concerning which event will occur. Can we find a measure of
how much “choice” is involved in the selection of the event or how uncertain we are
of the outcome?” Denoting such a measure by H(p1, p2, . . . , pn), he listed three
very reasonable requirements which should be satisfied. He concluded that the only
H satisfying the three assumptions is of the form

H(p1, p2, . . . , pn) =−K
n

∑
i=1

pi log pi , (3.1)

where K is a positive constant. Nowadays we call this quantity Shannon entropy. It
is often said that Shannon’s proofs were rather sketchy. His postulational approach
to the amount of information was improved by others and the following axioms are
standard today:

(1) Continuity: H(p, 1− p) is a continuous function of p.
(2) Symmetry: H(p1, p2, . . . , pn) is a symmetric function of its variables.
(3) Recursion: For every 0 ≤ λ < 1 the recursion H(p1, . . . , pn−1, λ pn,

(1−λ )pn) = H(p1, . . . , pn)+ pnH(λ ,1−λ ) holds.

Beyond the postulational approach to the information measure, the following ar-
gument provides a justification of the quantity H. Assume that the outcomes of an
experiment show up with probabilities p1, p2, . . . , pn; the experiment is performed
but the actual outcome is recorded by another person who is willing to answer af-
firmative questions (answered by “yes” or “no”). If one aims to learn the result of
the experiment by interrogating the observer, the number of necessary questions
depends on both the probabilities p1, p2, . . . , pn and the questioning strategy. Sup-
pose that the interrogator wants to minimize the number of questions on the basis
of the probability distribution known to him. He divides the outcomes into two dis-
joint subsets A and B, so that the probability of A and B are approximately the same,
that is, about one half. A good first question is to ask whether the outcome belongs
to A. In this way the interrogator can strike out half of the possibilities (measured
in probability) regardless of the answer “yes” or “no”. After the first question, the
interrogator divides the remaining possibilities into two parts of equal probability,
etc. The expected number of questions is the Shannon entropy, when this strategy is
followed. (The constant K is chosen to be 1 and logarithm is based to 2.)
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Since the Shannon entropy is mostly a non-integer and the division of the pos-
sibilities into events of equal probability is usually not possible, the above scheme
must be slightly refined. Assume that the experiment is performed N times under
independent circumstances and the outcome is recorded by the same observer who
is interrogated afterwards about all outcomes. In this way the interrogator can find
events of probability 1/2 for the repeated observation more easily, but the number of
necessary questions will increase with N. However, the expected number of ques-
tions divided by the number N of repetitions tends to the Shannon entropy. (The
result explained in this interrogative scheme is the noiseless channel coding theo-
rem. This theorem is independent of the axiomatic characterization of entropy and
provides another interpretation of this quantity.)

The Shannon entropy is maximal on the uniform distribution:

H(p1, p2, . . . , pn)≤ logn (3.2)

This property follows easily from the concavity of the logarithm and has the inter-
pretation that our uncertainty about the result of an experiment is maximal when all
possible outcomes are equally probable.

Let X and Y be random variables with values in the sets X and Y . The following
notation will be used.

p(x) = Prob(X = x), p(y) = Prob(Y = y),
p(x,y) = Prob(X = x,Y = y), p(x|y) = Prob(X = x|Y = y).

If X1, X2, . . . , Xk are random variables (with finite range), then the notation
H(X1, X2, . . . , Xk) stands for the Shannon entropy of the joint distribution. In
particular,

H(X ,Y ) :=− ∑
x∈X

∑
y∈Y

p(x,y) log p(x,y) . (3.3)

The Shannon entropy is subadditive:

Theorem 3.1. If X1, X2, . . . , Xk are random variables of finite range, then

H(X1,X2, . . . ,Xk)≤
k

∑
i=1

H(Xi).

The proof gives occasion to introduce the conditional entropy. With the above
notation

H(X |Y ) :=− ∑
y∈Y

p(y) ∑
x∈X

p(x|y) log p(x|y) . (3.4)

or equivalently
H(X |Y ) :=− ∑

y∈Y
∑

x∈X

p(x,y) log p(x|y) . (3.5)

The first equation shows that H(X |Y ) is the convex combination of some Shannon
entropies, therefore H(X |Y )≥ 0.
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To prove Theorem 3.1 (for k = 2), we may proceed as follows. First verify the
chain rule

H(X ,Y ) = H(X)+ H(Y |X) (3.6)

and then use the property
H(X |Y )≤ H(X) . (3.7)

(Note that H(X)−H(X |Y) is the mutual information, which is positive, see (5.3).)
A little modification of this argument yields a stronger result. By addition of the

relations

H(X ,Y,Z) = H(X ,Y )+ H(Z|X ,Y)
H(Y )+ H(Z|Y ) = H(Y,Z)

H(Z|X ,Y )≤ H(Z|Y )

we can conclude the strong subadditivity.

Theorem 3.2. If X , Y and Z are random variables of finite range, then

H(X ,Y,Z)≤ H(X ,Y )+ H(Y,Z)−H(Y) .

Note that the strong subadditivity may be written in the form

H(X |Y,Z)≤ H(X |Y ) . (3.8)

A basic estimate for the conditional entropy is provided by the Fano’s inequality:

Theorem 3.3. Let X and Y be random variables such that their range is in a set of
cardinality d and let p := Prob(X �= Y ). Then

H(X |Y )≤ p log(d−1)+ H(p,1− p).

3.2 Classical Source Coding

In this section the setting of the classical source coding is used to give motivation to
Shannon’s entropy and to the relative entropy.

Let X be a random variable with a finite range X . A source code C for X is a
mapping from X to the set of finite-length strings of symbols of a d-ary alphabet,
which is assumed to be the set {0, 1, 2, . . . , d−1}. Let C(x) denote the codeword
corresponding to x and let �(x) denote the length of C(x). If p(x) is the probability
of x ∈X , then the expected length of a source code C is given by

L(C) :=∑
x

p(x)�(x).

Since the transmission of lengthy codewords could be costly, the aim of source
coding is to make the expected code-length as small as possible. It is obvious that
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to meet this requirement the most frequent outcome of X must have the shortest
codeword. For example, in the Morse code the letter e (which is the most frequent
one in both English and Hungarian) is represented by a single dot. (The Morse code
uses an alphabet of four symbols: a dot, a dash, a letter space and a word space.)
The extension of a code C to the finite-length strings of X is defined by

C∗(x1x2 . . .xn) = C(x1)C(x2) . . .C(xn) ,

where the right-hand side is the concatenation of the corresponding codewords.
A code C is uniquely decodable if C∗(x1x2 . . .xn) = C∗(x′1x′2 . . .x′m) implies that

x1x2 . . .xn = x′1x′2 . . .x′m, that is, n = m and xi = x′i for all 1≤ i≤ n. A code is called
prefix code if no codeword is a prefix of any other. In case of a prefix code the
end of a codeword is immediately recognized and hence such a code is uniquely
decodable. For example, if 0, 10, 110 and 111 are the binary codewords (of a prefix
code), then the binary string 1011001101110 is easily decomposed into 6 code-
words: 10,110,0,110,111,0.

Theorem 3.4 (Kraft–MacMillan). The codeword lengths �(x) of a uniquely decod-
able code over an alphabet of size d satisfy the inequality

∑
x

d−�(x) ≤ 1.

Conversely, given a set of codeword lengths that satisfy this inequality, there exists
a prefix code with these codewords lengths.

The proof is available in several standard books, for example [26]. It follows
from the theorem that a uniquely decodable code could always be replaced by a
prefix code which has the same codeword lengths.

Let �t� denote the smallest integer ≥ t ∈ R. The codeword lengths �(x) :=
�− logd p(x)� satisfy the Kraft inequality

∑
x

d−�(x) ≤∑
x

p(x) = 1.

According to the theorem there exists a prefix code with these codeword lengths.
(Such a code is called Shannon code.) Since − logd p(x)≤ �(x)≤ − logd p(x)+ 1,
we have

−∑
x

p(x) logd p(x)≤ L(C)≤ 1−∑
x

p(x) logd p(x).

for the expected code-length L(C). For the rest let us assume that d = 2. Then the
bounds are given in terms of the Shannon entropy H(p(x)) :=−∑x p(x) log p(x) as

H(p(x))≤ L(C)≤ H(p(x))+ 1.

According to the next theorem the Shannon code is close to optimal.
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Theorem 3.5. The expected code-length of any prefix code is greater than or equal
to the Shannon entropy of the source.

Proof. L−H(p(x))≥ 0 can be shown as follows:

L−H(p) =∑
x

p(x)�(x)+∑
x

p(x) log p(x)

= −∑
x

p(x) log2−�(x) +∑
x

p(x) log p(x)

=∑
x

p(x) log
p(x)
r(x)

− logc ,

where r(x) = c−12−�(x) and c = ∑x 2−�(x). The relative entropy of two probability
distributions is defined as

D(p‖r) :=∑
x

p(x)
(

log p(x)− logr(x)
)

(3.9)

and this quantity is known to be positive and 0 if and only if p = q. In terms of the
relative entropy we have

L−H(p) = D(p‖r)+ log
1
c
.

Since D(p||r) ≥ 0 and c ≤ 1 from the Kraft–McMillan inequality, this shows
L−H(p)≥ 0. �


The Shannon code is close to optimal only if we know correctly the distribution
of the source X . Assume that it is not the case, and associate to x the codeword length
�− logq(x)�, where q is another probability distribution on X , possibly different
from the true distribution p. One can compute that in this case

H(p)+ D(p‖q)≤ L(C)≤ H(p)+ D(p‖q)+ 1. (3.10)

For the use of the wrong distribution the relative entropy is the penalty in the ex-
pected length.

The optimal coding is provided by a procedure due to Huffman. The Huffman
code is not easy to describe, therefore I will show another coding due to Fano. The
Fano code is nearly optimal, and it satisfies the inequality

L(C)≤ H(p)+ 2.

In the Fano coding the probabilities p(x) are ordered decreasingly as p1 ≥ p2 ≥
p3 ≥ . . .≥ pm. k is chosen such that

∣∣∣∣∣
k

∑
i=1

pi−
m

∑
i=k+1

pi

∣∣∣∣∣
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is minimal. The division of the probabilities into the two classes divides the source
symbols into two classes. Assign 0 for the first bit of the lower class and 1 for the
first bit of the upper class. The two classes have nearly equal probabilities. Then we
can repeat the procedure for each of the two classes to determine the further bits of
the code strings. This is Fano’s scheme.

Up to now we have dealt with uniquely decodable codes. If the transmission of
lengthy codewords is expensive, we might give up the exact decodability provided
that the probability of mistake is small and long codewords can be avoided. This
is a different approach to coding and decoding. Assume that the source emits the
symbols X1, X2, X3, . . . , Xn (independently and according to the same distribu-
tion p, typical for the source). We can fix a coding procedure and all the emitted
symbols are coded by this procedure, which could be the Fano code, for exam-
ple. Let L1, L2, . . . , Ln be the code-length of X1, X2, . . .Xn, respectively. Both
X1, X2, . . . , Xn and L1, L2, . . . , Ln are identically distributed independent random
variables, and the expectation of Li is L(C). The law of large numbers tells us that
the probability of the event

L1 + L2 + · · ·+ Ln ≥ n
(
L(C)+ ε

)
(3.11)

goes to 0 as n→ ∞. When x1, x2, . . . , xn is a string of source symbols such that the
corresponding code string is shorter than n(L(C)+ ε), then we can code the string
x1x2 . . .xn perfectly, otherwise we can use always the same code string. If the latter
case happens to occur, then we cannot recover the emitted symbol string from the
code string. However, the probability of this error is exactly the probability of the
event (3.11), which tends to 0. What did we win in this way? The number of source
strings is |X |n and the number of binary strings used in the coding is 2n(L(C)+ε).
When L(C) < log |X |, then

2n(L(C)+ε) � |X |n.

Hence the cardinality of our code book is much smaller than the cardinality of the
source strings if a small probability of error is allowed. We can also say that the
data set X n is compressed to a set of binary strings of length n(L(C)+ε). What we
have is an example of data compression. Efficient data compression is the same as
source coding by short binary code strings. Since we need n(L(C)+ε) binary digits
for a source string of length n, L(C) + ε is called code rate. (It is the number of
binary digits needed for a single source symbol, in the average.) Using the Shannon
code, we can achieve a code rate H(p)+ ε . However, if we mistake the distribution
of the source and assume q instead of p, then the rate is higher; it is about H(p)+
D(p||q)+ ε . Hence the above method is very sensitive for the distribution of the
source. To avoid this and to achieve slightly better code rate block coding can be
used. Shortly speaking, block coding means that the source string is not coded letter
by letter but the whole string gets a code string.

A block code (2nRn , n) for a source X1, X2, . . . , Xn is given by two (sequences
of) mappings:
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fn : X n →{1,2, . . . ,2nRn} , φn : {1,2, . . . ,2nRn}→X n.

Here fn is the encoder, φn is the decoder and R := limRn is called the rate of the
code. The probability of error of the code is

P(n)
e := Prob (φn · fn(X1, . . . ,Xn) �= (X1, . . .Xn)).

Shannon’s source coding theorem is as follows.

Theorem 3.6. Let H be the entropy of the source and R > H. There exists a sequence

of (2nRn , n) block codes with error probability P(n)
e such that P(n)

e → 0 and Rn → R.

More precisely, this is only the positive part of Shannon’s theorem telling that
any rate ≥ H + ε is achievable under an arbitrary small bound on the probability
of error. (The negative part tells that rates < H are not achievable under the same
constraint.)

Before we enter the proof let me give an outline of the method of types. Let x ∈
X n. The type of x = (x1, x2, . . . , xn) ∈X n is a probability mass function on X .
The mass of x ∈X is the relative frequency of x in the sequence (x1, x2, . . . , xn):

Px(x) :=
1
n

#{1≤ i≤ n : xi = x} .

The type of a sequence is another name for the empirical distribution. Let Pn denote
the set of all types Px when x ∈X n. The elements of Pn are called n-types. The
number of possible n-types is

#(Pn) =
(

n + #(X )−1
#(X )−1

)
≤ (n + 1)#(X ).

The upper estimate is useful in estimations.
For P ∈Pn the type class of P is defined as the set of all sequences of type P:

Type(P) := {x ∈X n : Px = P}.

The cardinality of a type class Type(P) is a multinomial coefficient

n!

∏x(nPx(x))!
(Px ∈ P(T ))

but the following exponential bounds are good enough:

1

(n + 1)#(X ) 2nH(P) ≤ #(Type(P))≤ 2nH(P). (3.12)

(A proof could be based on Stirling’s formula on factorial functions, see [26] p. 282
or [30] p. 430 for other proofs.)
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Example 3.1. In this example an application of the method of types is shown.
Let p be a probability measure on X and set d := #(X ). For each n ∈ N and

δ > 0 Δ(p;n,δ ) is the set of all sequences x ∈X n such that |Px(x)− p(x)|< δ for
all x ∈X . One can say that Δ(p;n,δ ) is the set of all δ -typical sequences (with
respect to the measure p).

Let μn,δ be the maximizer of the Shannon entropy on the set of all types Px, x ∈
X n, such that |Px(x)− p(x)|< δ for every x∈X . We can use the cardinality of the
type class corresponding to μn,δ to estimate the cardinality of Δ(p; n,δ ):

(n + 1)−d2nH(μn,δ ) ≤ #(Δ(p;n,δ ))≤ 2nH(μn,δ )(n + 1)d,

see (3.12). (Indeed, the lower estimate is from the size of type class of μn,δ and the
upper estimate is the bound for the number of type classes multiplied with the bound
for the previously mentioned type class.) It follows that

lim
n→∞

1
n

log#Δ(p;n,δ ) = sup {S(q) : |q(x)− p(x)|< δ for every x ∈X },

moreover

S(p) = lim
δ→+0

lim
n→∞

1
n

log#Δ(p;n,δ ). (3.13)

The Shannon entropy is obtained from the size of the typical sequences. �

Assume that a probability measure Q on X is the common distribution of the
random variables X1, X2, . . . , Xn and let Qn be the product measure on X n, that
is, the joint distribution of X1, X2, . . . , Xn. The probability of a sequence x ∈X n

depends only on the type Px of x. A straight calculation gives that

Qn({x}) =∏
x

Q(x)nPx(x) = 2−nH(Px)−nD(Px‖Q).

The probability of a type class has exponential bounds:

1

(n + 1)#(X ) 2−nD(P‖Q) ≤ Qn(Type(P)) = Qn({x})×#(Type(P))≤ 2−nD(P‖Q)

for P ∈Pn.

Proof of Theorem 3.6: Let {Q(x) : x ∈ X } be the probability distribution of the
given source and assume that R > H(Q). Following the idea of Csiszár and Körner
[29], set

Rn := R−#(X )
log(n + 1)

n

and

An := {x ∈X n : H(Px)≤ Rn}.
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Then

#(An) =∑#(T (P))≤∑2nH(P) ≤∑2nRn

≤ (n + 1)#(X )2nRn = 2nR ,

where all summations are over the set {P ∈Pn : H(P)≤ Rn}.
We can easily define an encoding and a decoding such that elements of An are

encoded correctly and the other sequences give an error. (Elements of An are as just
used codewords.) Then the probability of error is

P(n)
e = 1−Prob(An) =∑Qn(T (P)) ,

where the summation is over all P ∈Pn such that H(P) > Rn. Estimating the sum
by the largest term, we can obtain

P(n)
e ≤ (n + 1)#(X )2−nminS(P‖Q) , (3.14)

where min is over all P ∈Pn such that H(P) > Rn. When N is large enough then
RN > H(Q)+δ and Q /∈ {P : H(P)≥ RN}. We need a lower bound which does not
depend on n > N:

min{D(P‖Q) : P ∈Pn,H(P)≥ Rn} ≥min{D(P‖Q) : H(P)≥ H(Q)+ δ}> 0.

The minimum in the exponent is strictly positive and we can conclude that the prob-
ability of error converges to 0 exponentially fast as n→ ∞. �


The interesting feature of the block code constructed in the proof of the theorem
is the fact that the distribution Q of the source does not appear, only its entropy
H(Q) should be known to construct the universal encoding scheme.

3.3 von Neumann Entropy

In the traditional approach to quantum mechanics, a physical system is described in
a Hilbert space: Observables correspond to self-adjoint operators, and statistical op-
erators are associated with the states. von Neumann associated an entropy quantity
to a statistical operator in 1927 [77] and the discussion was extended in his book
[78]. His argument was a gedanken experiment on the grounds of phenomenolog-
ical thermodynamics which is not repeated here, only his conclusion. Assume that
the density ρ is the mixture of orthogonal densities ρ1 and ρ2, ρ = pρ1 +(1− p)ρ2.
Then

pS(ρ1)+ (1− p)S(ρ2) = S(ρ)+κ p log p +κ(1− p) log(1− p) , (3.15)

where S is a certain thermodynamical entropy quantity, relative to the fixed tem-
perature and molecule density. (Remember that the orthogonality of states has a
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particular meaning in quantum mechanics, see Example 2.4 in Chap. 2.) From
the two-component mixture, we can easily move to an arbitrary density matrix
ρ = ∑iλi|ϕi〉〈ϕi| and we have

S(ρ) =∑
i
λiS(|ϕi〉〈ϕi|)−κ∑

i
λi logλi. (3.16)

This formula reduces the determination of the (thermodynamical) entropy of a
mixed state to that of pure states. The so-called Schatten decomposition, ∑iλi|ϕi〉
〈ϕi|, of a statistical operator is not unique although 〈ϕi,ϕ j〉= 0 is assumed for i �= j.
When λi is an eigenvalue with multiplicity, then the corresponding eigenvectors can
be chosen in many ways. If we expect the entropy S(ρ) to be independent of the
Schatten decomposition, then we are led to the conclusion that S(|ϕ〉〈ϕ |) must be
independent of the state vector |ϕ〉. This argument assumes that there are no super-
selection sectors; that is, any vector of the Hilbert space can be a state vector. (Von
Neumann’s argument was somewhat different, see the original paper [77] or [97].)
If the entropy of pure states is defined to be 0 as a kind of normalization, then we
have the von Neumann entropy formula:

S(ρ) =−κ∑
i
λi logλi = κTrη(ρ) (3.17)

if λi are the eigenvalues of ρ and η(t) = −t logt. For the sake of simplicity the
multiplicative constant κ will mostly be omitted.

After von Neumann, it was Shannon who initiated the interpretation of the quan-
tity−∑i pi log pi as “uncertainty measure” or “information measure.” Von Neumann
himself never made any connection between his quantum mechanical entropy and
information. Although von Neumann’s entropy formula appeared in 1927, there was
not much activity concerning it for several decades.

It is worthwhile to note that if S(ρ) is interpreted as the uncertainty carried by
the statistical operator ρ , then (3.15) seems to be natural,

S(pρ1 +(1− p)ρ2) = pS(ρ1)+ (1− p)S(ρ2)+ H(p,1− p) , (3.18)

holds for an orthogonal mixture and Shannon’s classical information measure is
involved. The mixing property (3.18) essentially determines the von Neumann
entropy and tells us that the relation of orthogonal quantum states is classical. A
detailed axiomatic characterization of the von Neumann entropy is Theorem 2.1
in [83].

Theorem 3.7. Let ρ1 and ρ2 be density matrices and 0 < p < 1. The following in-
equalities hold:

pS(ρ1)+ (1− p)S(ρ2) ≤ S(pρ1 +(1− p)ρ2)
≤ pS(ρ1)+ (1− p)S(ρ2)+ H(p,1− p).
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Proof. The first inequality is an immediate consequence of the concavity of the
function η(t) = −t logt (see (11.20)). In order to obtain the second inequality we
can use the formula

TrA
(

log(A + B)− logA
)

=
∫ ∞

0
TrA(A + t)−1B(A + B + t)−1 dt ≥ 0 (A,B≥ 0)

and infer

Tr pρ1 log(pρ1 +(1− p)ρ2)≥ Tr pρ1 log pρ1

and

Tr(1− p)ρ2 log(pρ1 +(1− p)ρ2)≥ Tr(1− p)ρ2 log(1− p)ρ2 .

Adding the latter two inequalities, we can obtain the second inequality of the
theorem. �


The von Neumann entropy is the trace of a continuous function of the density
matrix, hence it is an obviously continuous functional on the states. However, a
more precise estimate for the continuity will be required in approximations.

Theorem 3.8. Let ρ1 and ρ2 be densities on a d-dimensional Hilbert space and let
p : = ‖ρ1−ρ2‖1/2. Then

|S(ρ1)−S(ρ2)| ≤ p log(d−1)+ H(p,1− p)

holds.

Proof. Let λ1 ≥ λ2 ≥ . . .≥ λn and μ1 ≥ μ2 ≥ . . .≥ μn be the eigenvalues of ρ1 and
ρ2, respectively. Then S(ρ1) = H(λ1, λ2, . . . , λn), S(ρ2) = H(μ1, μ2, . . . , μn) and
Lemma 11.1 tells us that

‖ρ1−ρ2‖1 ≥ ‖(λ1,λ2, . . . ,λn)− (μ1,μ2, . . . ,μn)‖1,

therefore it is enough to prove the theorem for probability distributions, or for ran-
dom variables:

H(λ1,λ2, . . . ,λn)−H(μ1,μ2, . . . ,μn)≤ p log(d−1)+ H(p,1− p),

where p is half of the L1 distance of the distributions (λ1,λ2, . . . , λn) and
(μ1, μ2, . . . , μn). From the Fano’s theorem we have

H(X)−H(Y)≤ H(X |Y )≤ q log(d−1)+ H(q,1−q),

where X and Y are random variables with distributions (λ1, λ2, . . . , λn) and
(μ1, μ2, . . . , μn); moreover q = Prob(X �= Y ) (see Theorem 3.3). It isknown in
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probability theory that the random variables X and Y can be chosen such that q = p,
this is called “the coupling inequality” (see [74]). This proof is due to Imre Csiszár.

�

Note that on an infinite-dimensional Hilbert space the von Neumann entropy is

not continuous (but it is restricted to a set {ρ : S(ρ) ≤ c}). Note that an equally
useful estimate follows from Theorem 5.1.

Most properties of the von Neumann entropy will be deduced from the behavior
of the quantum relative entropy.

3.4 Quantum Relative Entropy

The relative entropy, or I-divergence of the probability distributions p1(x) and p2(x),
is defined as

D(p1‖p2) =
∫ ∞

−∞
p1(x) log

p1(x)
p2(x)

dx. (3.19)

The quantum relative entropy was introduced first in the setting of von Neumann al-
gebras by Umegaki [115] in 1962; it was used in mathematical physics by Lindblad
[73] and the definition was extended by Araki to arbitrary von Neumann algebras
[7]. Relative entropy showed up in quantum ergodic and information theory not
earlier than in the 1980s.

Assume that ρ1 and ρ2 are density matrices on a Hilbert space H , then

S(ρ1‖ρ2) =

{
Trρ1(logρ1− logρ2) if suppρ1 ≤ suppρ2

+∞ otherwise.
(3.20)

The relative entropy expresses statistical distinguishability and therefore it de-
creases under stochastic mappings. Note that it is not a symmetric function of the
two arguments. To provide some motivation to study this quantity, I present an ex-
ample (which is nothing else but the quantum Stein lemma).

Example 3.2. In the hypothesis testing problem we have to decide between the
states ρ0 and ρ1. The first state is the null hypothesis and the second one is the
alternative hypothesis. The decision is performed by a two-valued measurement
{P, I−P}, where the projection P corresponds to the acceptance of ρ0 and I−P
corresponds to the acceptance of ρ1. P is called test. α := Trρ0(I−P) is the error
of the first kind. This is the probability that the null hypothesis is true but we have
to decide the alternative hypothesis. β := Trρ1P is the error of the second kind,
which is the probability that the alternative hypothesis is true but we choose the null
hypothesis.

The problem is to decide which hypothesis is true in an asymptotic situation,

where the n-fold product states ρ (n)
0 and ρ (n)

1 are at our disposal. The decision is
performed by a test Pn. The errors of the first and second kind depend on n.
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Set

β ∗(n,ε) := inf{Trρ (n)
1 Pn : Trρ (n)

0 (I−Pn)≤ ε} ,

which is the infimum of the error of the second kind when the error of the first kind
is at most ε . In mathematical statistics ε is usually prescribed and the sample size n
is chosen to make the error of the first kind to be small. The minimal error of second
kind converges to 0 exponentially fast:

lim
n→∞

1
n

logβ ∗(n,ε) =−S(ρ0‖ρ1) (3.21)

is known as quantum Stein lemma, (see Theorem 8.1).
In this hypothesis testing problem the null hypothesis and the alternative hypoth-

esis play different roles, which corresponds to the fact that the relative entropy is
not symmetric in its two variables. �

Example 3.3. Let ρ be an n×n density matrix. I/n is the density of the tracial state.
Then

S(ρ‖I/n) = logn−S(ρ) .

Therefore up to some constants, the relative entropy is the extension of the von
Neumann entropy. If the background state is uniform, then the relative entropy re-
duces to the von Neumann entropy. �

Theorem 3.9. Let ρ1 and ρ2 be density matrices in B(H ) and let E : B(H )→
B(K ) be a state transformation. Then the monotonicity

S(ρ1‖ρ2)≥ S(E (ρ1)‖E (ρ2))

holds.

The presented proof, which is based on the relative modular operator method,
follows [88].

Let ρ1 and ρ2 be density matrices acting on the Hilbert space H and assume
that they are invertible. The set B(H ) of bounded operators acting on H becomes
a Hilbert space when the Hilbert–Schmidt inner product

〈A,B〉 := TrA∗B

is regarded. On the Hilbert space B(H ), one can define an operatorΔ(ρ2/ρ1)≡Δ as

Δa = ρ2aρ−1
1 (a ∈ B(H )). (3.22)

(If ρ1 is not invertible, then ρ−1
1 is a generalized inverse defined on the range of ρ1,

ρ1ρ−1
1 = ρ−1

1 ρ1 = suppρ1.) This is the so-called relative modular operator and it
is the product of two commuting positive operators: Δ= LR, where
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La = ρ2a and Ra = aρ−1
1 (a ∈ B(H )).

Since logΔ= logL+ logR, we have

Trρ1(logρ1− logρ2) =−〈ρ1/2
1 ,(logΔ)ρ1/2

1 〉.

The relative entropy S(ρ1‖ρ2) is expressed by the quadratic form of the logarithm
of the relative modular operator. This is the fundamental formula that we use (and
actually this is nothing else but Araki’s definition of the relative entropy in a gen-
eral von Neumann algebra [7]). Replacing − log by a function f : R

+ → R, the
generalization

S f (ρ1‖ρ2) = 〈ρ1/2
1 , f (Δ(ρ2/ρ1))ρ

1/2
1 〉 (3.23)

is introduced and is called quasi-entropy. This generalization is the quantum me-
chanical counterpart of the f -entropy introduced by Csiszár for probability distribu-
tions [27]. The monotonicity holds for the quasi-entropies under some condition on
the parameter function f .

Theorem 3.10. Let ρ1 and ρ2 be density matrices in B(H ) and let E : B(H )→
B(K ) be a state transformation. For an operator monotone decreasing continuous
function f : R

+ → R, the monotonicity

S f (ρ1‖ρ2)≥ S f (E (ρ1)‖E (ρ2))

holds.

Proof. For the sake of simplicity we should assume that all the densities have only
non-zero eigenvalues. The general case can be covered by an approximation argu-
ment. Due to the simple transformation formula S f+c = S f + c for a real constant c,
we may assume that f (0) = 0.

Set the relative modular operators Δ and Δ0 on the spaces B(H ) and B(K ),
respectively, as follows.

Δa = ρ2aρ−1
1 (a ∈ B(H )) and Δ0x = E (ρ2)xE (ρ1)−1 (x ∈ B(K )).

Note that both spaces become a Hilbert space with the Hilbert–Schmidt inner prod-
uct. E ∗ : B(K )→ B(H ) stands for the adjoint of E .

The operator

VxE (ρ1)1/2 = E ∗(x)ρ1/2
1 (x ∈ B(K )) (3.24)

is a contraction:

‖E ∗(x)ρ1/2
1 ‖2 = Trρ1E

∗(x∗)E ∗(x)≤ Trρ1E
∗(x∗x) = TrE (ρ1)x∗x = ‖xE (ρ1)1/2‖2

since the Schwarz inequality is applicable to E ∗. A similar simple computation gives
that

V ∗ΔV ≤ Δ0 . (3.25)
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Since f is operator monotone decreasing, we have f (Δ0)≤ f (V ∗ΔV ). Recall that
f is operator convex, therefore f (V ∗ΔV )≤V ∗ f (Δ)V and we shall conclude

f (Δ0)≤V ∗ f (Δ)V . (3.26)

(See the Appendix about operator monotone functions and related inequalities).

Since VE (ρ1)1/2 = ρ1/2
1 , this implies

〈E (ρ1)1/2, f (Δ0)E (ρ1)1/2〉 ≤ 〈ρ1/2
1 , f (Δ)ρ1/2

1 〉 ,

which is our statement. �

Now let us return to the proof of Theorem 3.9. In order to deduce the mono-

tonicity theorem for the ordinary relative entropy, we can apply Theorem 3.10 to
the function fε (t) =− log t+ε

ε for ε→ 0. �

Example 3.4. Assume that an inequality

S f (ρ1||ρ2)≥ G(‖ρ1−ρ2‖1)

holds classically, that is, for commuting ρ1 and ρ2. Then the inequality holds gener-
ally in the quantum case.

For example.
2D(μ1||μ2)≥ (‖μ1− μ2‖1)2 (3.27)

is the Pinsker–Csiszár inequality, which extends to the quantum case.
Consider the commutative subalgebra generated by ρ1 and ρ2. The reduction of

ρ1 and ρ2 can be viewed as probability distributions μ1 and μ2 and ‖ρ1− ρ2‖1 =
‖μ1− μ2‖1. From the monotonicity of the quasi-entropy S f , we have

S f (ρ1||ρ2)≥ S f (μ1||μ2)≥ G(‖μ1− μ2‖1) = G(‖ρ1−ρ2‖1).

In particular,
2S(ρ1||ρ2)≥ (‖ρ1−ρ2‖1)2. (3.28)

A different estimate is (11.22). �

Example 3.5. It follows from the monotonicity (or from the definition directly) that
the relative entropy is invariant under unitary conjugation:

S(ρ ||ω) = S(UρU∗||UωU∗)

for every unitary U .
Consider the densities

ρ := 1
2 (I + u ·σ) and ω := 1

2(I + v ·σ)

of a qubit, where u and v are vectors in the Bloch ball. Due to the rotation invari-
ance (coming from the unitary invariance), the relative entropy S(ρ ||ω) depends on
‖u‖,‖v‖ and on the angle of u and v. By rotation we can assume that both u and v
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Fig. 3.1 The levels of the relative entropy of ρ = 1
2 (I +(x, 0, z) ·σ ) with respect to the density

ω := 1
2 (I +(0, 0, 0.8) ·σ )

are in the x–y plane, v = (xv, 0, 0) and u = (xu, yu, 0). In Fig. 3.1 one can see the
level of the relative entropy with respect to ω when v = (0.8, 0, 0). �


The monotonicity is a very strong property. The monotonicity of the quasi-
entropy implies some other general properties.

Theorem 3.11. For an operator monotone decreasing function f : R
+ → R, the

quasi-entropy S f (ρ1,ρ2) is jointly convex,

S f
(
λρ1 +(1−λ )ω1‖λρ2 +(1−λ )ω2

)≤ λS f (ρ1‖ρ2)+ (1−λ )S f (ω1‖ω2)

and

S f (ρ1‖ρ2)≥ f (1).

When f is not affine, then the equality holds here if and only if ρ1 = ρ2.

Concerning the full proof, refer to the original paper [88] or the monograph [83].
Since the joint convexity of the relative entropy is rather important, I will show how
to deduce it from the monotonicity.

Let ρ1, ρ2, ω1 and ω2 be density matrices on a Hilbert space H . Consider the
following density matrices on H ⊗C2:
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ρ :=
(
λρ1 0

0 (1−λ )ρ2

)
and ω :=

(
λω1 0

0 (1−λ )ω2

)
.

Then we have

S(ρ‖ω) = λS(ρ1‖ρ2)+ (1−λ )S(ω1‖ω2)

and

S
(
λρ1 +(1−λ )ω1‖λρ2 +(1−λ )ω2

)

is exactly the relative entropy of the reduced densities of ρ and ω . Hence the mono-
tonicity yields the convexity.

Example 3.6. Let ρ1 and ρ2 be n×n density matrices with diagonal (p1, p2, . . . , pn)
and (q1, q2, . . . , qn), respectively. Then

S(ρ1‖ρ2)≥∑
i

pi(log pi− logqi).

We can apply the monotonicity theorem to the mapping E which annuls all the off-
diagonal entries of a density matrix. The right-hand side of the above inequality
is the classical Kullback–Leibler relative entropy of the probability distributions
(p1, p2, . . . , pn) and (q1, q2, . . . , qn).

Choosing ρ2 = I/n, we have the entropy inequality

S(ρ1)≤ H(p1, p2, . . . , pn), (3.29)

the von Neumann entropy is majorized by the Shannon entropy of the diagonal. �

This example might be generalized to a measurement.

Example 3.7. Let ρ1 and ρ2 be statistical operators acting on the Hilbert space H .
Suppose that a measurement is given by the positive operators Fx ∈ B(H ) such
that ∑x Fx = IH . ρ1 and ρ2 induce the a posteriori distributions p(x) = Trρ1Fx and
q(x) = Trρ2Fx. Then

S(ρ1‖ρ2)≥ D(p(x)‖q(x)) .

Measurement is a coarse-graining, and a loss of information takes place. �

Theorem 3.12. Let ρ12 and ω12 be density matrices acting on the Hilbert space
H1⊗H2. Assume that ρ12 = ρ1⊗ρ2 is a product and let ω1 be the reduced state of
ω12. Then

S(ω12‖ρ12) = S(ω1‖ρ1)+ S(ω12‖ω1⊗ρ2).

The theorem tells us that the difference S(ω12‖ρ12) of ρ12 and ω12 comes from
two reasons. The difference of the two states reduced to the first system and the con-
ditioned difference with respect to the first system. (ω and ω ′ have the same reduced
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density on H1.) The proof is easy and follows from the definitions. The identity
is called conditional expectation property, since the existence of the conditional
expectation preserving ρ12 is assumed. A possible axiomatization of the relative
entropy is based on the conditional expectation property (see Chap. 2 in [83]).

Example 3.8. The invertible density matrices form a manifold which has two natural
parameterizations, affine and exponential. (The latter appears when the density is a
Gibbs state corresponding to a self-adjoint Hamiltonian.)

Let ρ ≡ eH , ω1 and ω2 be three invertible densities. The e-geodesic connecting
ρ and ω2 is the curve

γe(t) =
exp(H + tA)

Tr exp(H + tA)
(t ∈ [0,1]),

where A = logω2− logρ . Then γe(0) = ρ and γe(1) =ω2. The m-geodesic connect-
ing ρ and ω1 is the curve

γm(t) = (1− t)ρ+ tω1 = ρ+ t(ω1−ρ) (t ∈ [0,1]),

γm(0) = ρ and γe(1) = ω1. The e-geodesic is the natural path in the exponential
parameterization and the m-geodesic corresponds to the mixture or affine parame-
terization. If we want to compute the tangent vector of curve, we should choose a
parameterization. In the exponential parameterization

∂
∂ t

logγ(t)
∣∣∣
t=0

is the tangent vector at t = 0 for a curve γ . In case of the exponential geodesic we
can get A trivially. For the mixture geodesic,

∂
∂ t

log(ρ+ t(ρ−ω1))
∣∣∣
t=0

=
∂
∂ t

∫ ∞

0
(1 + s)−1− (s+ρ+ tρ− tω1)−1 ds

=
∫ ∞

0
(ρ+ s)−1(ω1−ρ)(ρ+ s)−1 ds .

Assume that the e-geodesic connecting ρ and ω2 is orthogonal to the m-geodesic
connecting ρ and ω1 with respect to the inner product

〈B,C〉ρ :=
∫ ∞

0
Tr(ρ+ s)−1B∗(ρ+ s)−1C ds . (3.30)

A plain computation yields

S(ω1,ρ)+ S(ρ ,ω2)−S(ω1,ω2) = TrA(ω1−ρ) = 〈A,ω1−ρ〉HS .

For the superoperator



44 3 Information and its Measures

Tρ : X �→
∫ ∞

0
(ρ+ s)−1X(ρ+ s)−1 ds (3.31)

we have

〈X ,Y 〉HS = 〈Tρ (X),Y 〉ρ . (3.32)

Therefore,

〈A,ω1−ρ〉HS = 〈Tρ(A),ω1−ρ〉ρ = 〈γ̇e(0), γ̇m(0)〉ρ
and we can conclude that

S(ω1,ρ)+ S(ρ ,ω2) = S(ω1,ω2). (3.33)

This relation is sometimes called Pythagorean theorem (Fig. 3.2). (The relative
entropy plays the role of the square of the Euclidean distance.)

In the light of the Pythagorean theorem, Theorem 3.12 has a very nice geometric
interpretation. Let S be the convex set of all densities on H1⊗H2 which have the
form D⊗ ρ2. The density ω12 has a best approximation from S and it is ω1⊗ρ2.
The three densities ω12, ω1⊗ρ2 and ρ1⊗ρ2 form a triangle. The relation

S(ω12‖ρ12) = S(ω1⊗ρ2‖ρ1⊗ρ2)+ S(ω12‖ω1⊗ρ2)

is equivalent to the statement of the theorem and shows that the triangle is
rectangular. �


Example 3.9. We can use the notation

λn := 1/n and μn = 1−λn (n ∈ N).

Let ρ and σ be invertible density matrices. Then

S(ρ‖μnρ+λnσ)→ 0

Fig. 3.2 The Pythagorean
theorem for relative en-
tropy: S(ω1, ρ)+S(ρ , ω2) =
S(ω1, ω2) m-geodesic

e-geodesic

ω2

ω1
ρ
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as n→∞, since μnρ+λnσ → ρ . We shall prove that the convergence is fast, that is,

nS(ρ‖μnρ+λnσ)→ 0.

As per the definition of the relative entropy, we have

nS(ρ‖μnρ+λnσ) = nTrρ
(

logρ− log(μnρ+λnσ)
)
.

Using the formula

logx =
∫ ∞

0

1
1 + t

− 1
t + x

dt

we can transform the right-hand side:

nS(ρ‖μnρ+λnσ) = n
∫ ∞

0
Trρ
(
− (t +ρ)−1 +(t + μnρ+λnσ)−1

)
dt

=
∫ ∞

0
Trρ(t +ρ)−1(ρ−σ)

(
t + μnρ+λnσ

)−1
dt.

The integrand is majorized by an integrable function C(t + ε)−2 and has the limit

Trρ(t +ρ)−2(ρ −σ)

as n→ ∞. The integral of this quantity can be computed and we can get Tr(ρ−σ),
which is 0. �


3.5 Rényi Entropy

The Rényi entropy of order α �= 1 of the probability distribution (p1, p2, . . . , pn)
is defined by

Hα(p1, p2, . . . , pn) =
1

1−α log
n

∑
k=1

pαk . (3.34)

(In this section log denotes the logarithm of base 2.) The limit α → 1 recovers the
Shannon entropy. If (p1, p2, . . . , pn) is the distribution of a random variable X ,
then instead of (3.34) we may write Hα(X).

It follows from the definition that the Rényi entropies are additive: When X and
Y are independent random variables, then

Hα(X ,Y ) = Hα(X)+ Hα(Y ) . (3.35)

The additivity is crucial in axiomatization.

Theorem 3.13. Assume that for any collection (p1, p2, . . . , pn) of positive numbers
such that 0 <∑i pi≤ 1 a function H(p1, p2, . . . , pn) is defined and has the following
properties:
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(1) H is symmetric and continuous.
(2) H is additive (3.35).
(3) H has the decomposition property:

H(p1, p2, . . . , pn,q1,q2, . . . ,qn) = g−1(βH(p1, p2, . . . , pn)
+(1−β )H(q1,q2, . . . ,qn)),

where

β = ∑i pi

∑i pi +∑i qi
.

If g(x)≡ 1, then (up to a constant factor)

H(p1, p2, . . . , pn) =−∑i pi log pi

∑i pi
.

If g(x) = 2(α−1)x with 1 �= α > 0, then

H(p1, p2, . . . , pn) = Hα(p1, p2, . . . , pn).

�

The Rényi entropies can be defined by optimal coding, similar to the Shannon

entropy.
Let X be a random variable with a finite range X . A source code C for X is a

mapping from X to the set of finite-length strings of symbols of a binary alphabet.
Let C(x) denote the codeword corresponding to x and let �(x) denote the length of
C(x). If p(x) is the probability of x ∈X , then we can define

Lβ (C) :=
1
β

log∑
x

p(x)2β �(x)

to be the cost of the coding. When the code is uniquely decodable, the Kraft–
MacMillan inequality tells us that

∑
x

2−�(x) ≤ 1.

The Hölder inequality

∑
j

x jy j ≥
(
∑

j
xp

j

)1/p(
∑

j
yq

j

)1/q

holds when p < 1 and q = p/(p−1). For β >−1, this gives

∑
x

2−�(x) =∑
x

(p−1/β
j 2−�(x))p1/β

j ≥
(
∑
x

p(x)2β �(x)
)−1/β(

∑
x

p(x)α
)1/(1−α)

,
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where α = 1/(1 +β ). Since the left-hand side is bounded by 1, we have

(
∑
x

p(x)2β �(x)
)1/β ≥

(
∑
x

p(x)α
)1/(1−α)

.

After taking the logarithm, we can conclude the first half of the following result of
Campbell [23].

Theorem 3.14. Let β >−1. For a uniquely decodable code, the inequality

Lβ (C)≥ Hα(X)

holds when α = 1/(1+β ). Moreover, there exists a uniquely decodable code C such
that

Lβ (C)≤ Hα(X)+ 1 .

This theorem actually gives the value of the Rényi entropy only approximately.
To have a complete determination, one has to pass to multiple use of the source.

The Rényi entropies are strongly related to the Lp-norm of a probability vector:

‖(x1,x2, . . . ,xn)‖p :=
( n

∑
i=1
|xi|p
)1/p

Since the L2-norm is the most convenient in several situations, the entropy of order 2

H2(p) =−2log‖p‖2

is frequently used.
For the Rényi entropies, the interesting value of the parameter is α > 0. One can

check that

∂
∂α

Hα ≤ 0,
∂
∂α

(1−α)Hα ≤ 0,
∂ 2

∂α2 (1−α)Hα ≥ 0. (3.36)

Therefore, Hα is a decreasing function and (1−α)Hα is a convex function of the
parameter α .

The entropy of degree α is defined as

Hα(p1, p2, . . . , pn) =
1

21−α −1

( n

∑
k=1

pαk −1
)
. (3.37)

It is easy to transform Hα and Hα into each other but the two quantities have differ-
ent properties. The limit α → 1 gives back the Shannon entropy again.

Hα is a symmetric function of its variables and satisfy the recursion

Hα(p1, p2, . . . , pn) = Hα(p1 + p2, p3, . . . , pn)
+(p1 + p2)αHα(p1/(p1 + p2), p2/(p1 + p2)) .
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These two properties together with a normalization characterize the entropy of de-
gree α , (see p. 189 in [2]). The usual additivity (3.35) does not hold, but we have
the so-called additivity of degree α:

Hα(X ,Y ) = Hα(X)+ Hα(Y )+ (21−α−1)Hα(X)Hα(Y ) , (3.38)

when X and Y are independent. When the value of the parameter α is kept fixed,
a constant multiple of Hα can be equally good. In the literature several constant
multiples appear. For example,

21−α −1
1−α Hα

was popularized by Tsallis [112]. For the sake of simplicity, I insist on the original
notation Hα .

The quantum analogues of Hα and Hα are as follows.

Sα(ρ) =
1

21−α −1

(
Trρα −1

)
. (3.39)

and

Sα(ρ) =
1

1−α logTrρα (3.40)

for a density matrix ρ .
The relative α-entropy is defined as

Sα(ρ1||ρ2) =
1

α(1−α)
Tr(I−ρα2 ρ−α1 )ρ1 . (3.41)

This is a particular quasi-entropy corresponding to the function

fα (t) =
1

α(1−α)
(
1− tα

)
,

which is operator monotone decreasing for α ∈ (−1,1). (For α = 0, the limit is
taken as f0(t) =− logt.)

It follows from Theorem 3.10 that the relative α-entropy is monotone under
coarse-graining:

Sα(ρ1‖ρ2)≥ Sα(E (ρ1)‖E (ρ2)) .

If follows also from the general properties of quasi-entropies that Sα(ρ1‖ρ2) is
jointly convex and positive.



3.6 Notes 49

3.6 Notes

The von Neumann entropy was introduced by von Neumann in 1927, earlier than
Shannon’s work about information theory. When Shannon invented his quantity and
consulted von Neumann on what to call it, von Neumann replied, “Call it entropy.
It is already in use under that name and besides, it will give you a great edge in
debates because nobody knows what entropy is anyway.”

The relative entropy of measures was introduced by Kullback and Leibler in
1951 in connection with sufficiency. “Kullback–Leibler distance” and “information
divergence” are other frequently used names [26, 29].

The quasi-entropies were introduced by Petz as a quantum counterpart of the
f -divergences of Csiszár [87, 88]. Actually, the definition was slightly more general:

SK
f (ρ1‖ρ2) = 〈Kρ1/2

1 , f (Δ(ρ2/ρ1))Kρ
1/2
1 〉, (3.42)

where K is a fixed matrix and Δ(ρ2/ρ1) is the relative modular operator. For exam-
ple, for f (x) = xt we have

SK
f (ρ1‖ρ2) = TrK∗ρ t

2Kρ1−t
1 . (3.43)

The monotonicity theorem holds in the setting in the form

SE ∗(K)
f (ρ1‖ρ2)≤ SK

f (E (ρ1)‖E (ρ2)), (3.44)

where E ∗ is the unital adjoint of E and f is an operator monotone function. Mono-
tonicity implies joint concavity. In particular, the joint concavity of (3.43) is known
as Lieb’s concavity theorem.

With regard to inequality (3.27), it can be noted that Csiszár improved the con-
stant in the inequality due to Pinsker in 1967 (see [27]). The quantum version (3.28)
in the von Neumann algebra setting was established in [52].

It was conjectured by Diósi, Feldmann and Kosloff [34] that

S(Rn)− (n−1)S(ρ)−S(σ)→ S(σ‖ρ), (3.45)

where

Rn :=
1
n

(
σ ⊗ρ⊗(n−1) +ρ⊗σ⊗ρ⊗(n−2) + · · ·+ρ⊗(n−1)⊗σ

)

as n→ ∞. The proof was given by Csiszár, Hiai and Petz [31].
Details about entropy and relative entropy in the von Neumann algebra setting

are in the monograph [83].
The exponential and affine parameterization of the state space are dual. Details

of their relation and the Pythagorean theorem are important features of the informa-
tion geometry (see [5]). Formula (3.30) gives the Kubo–Mori inner product in the
exponential parameterization.
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For probability distributions, the Rényi entropy was introduced in 1957; however,
the work [104] is the standard reference, the axiomatization in Theorem 3.13 is
contained here. The entropy of degree α was introduced in 1967 by Havrda and
Charvát [48]. The monographs [2] contains the details.

3.7 Exercises

1. Use the Stirling formula

√
2πn
(n

e

)n ≤ n!≤
√

2πn
(n

e

)n
exp(1/12n) (3.46)

to show that

lim
n→∞

1
n

log
n!

(p1n)!(p2n)! . . .(pkn)!
=−

k

∑
i=1

pi log pi ≡ H(p1, p2, . . . , pk)

for a probability distribution (p1, p2, . . . , pk).
2. Use the fact that f (t) = log t is strictly concave to show that

k

∑
i=1

pi(log pi− logqi)≥ 0,

if (p1, p2, . . . , pk) and (q1, q2, . . . , qk) are the probability distributions.
3. Compute the relative entropy of a probability distribution on R with respect to

a Gaussian distribution

pm,σ (x) :=
1

σ
√

2π
exp
(
− (x−m)2

2σ2

)
.

4. Compute the differential entropy

H(p) :=−
∫ ∞

−∞
p(x) log p(x)dx

of a Gaussian distribution. Show that if the mean m and the variance σ are fixed,
then the Gaussian distribution maximizes the differential entropy.

5. Show that

log
I + x ·σ

2
=

I
2

log
1−‖x‖2

4
+(tanh−1 ‖x‖) x

‖x‖ ·σ

for x ∈R
3 with ‖x‖< 1. (Hint: Use (2.36).)

6. Use Theorem 3.10 to show that S f (ρ1‖ρ2)≥ f (1) holds for a quasi-entropy S f

and for arbitrary densities ρ1 and ρ2.
7. Let f (x) = (1 + x)−1. Show that
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S f (ρ1‖ρ2) =
∫ ∞

0
Tr exp(−tρ2)ρ2

1 exp(−tρ1)dt .

Simplify the formula for commuting ρ1 and ρ2.
8. Prove that H(X |Y ) = H(X) if and only if the random variables X and Y are

independent.
9. Show that equality holds in (3.29) if and only if the matrix ρ is diagonal.

10. Let A be a subalgebra of B(H ) such that A ∗ = A and IH ∈ A and assume
that ρ ∈ B(H ) is a density operator with non-zero eigenvalues. Show that the
conditional expectation E : B(H )→A preserving ρ is an orthogonal projec-
tion with respect to the inner product 〈A, B〉 : = TrρA∗B.

11. Let ρ ∈ Mn(C) be a density matrix. Show that the ρ-preserving conditional
expectation from the full matrix algebra onto the diagonal matrices exists if and
only if ρ is diagonal.

12. Prove relation (3.32).
13. Let β > 0 and H be a self-adjoint matrix. Use the relative entropy to show that

the minimum of the functional

F(ρ) = TrρH− 1
β

S(ρ)

defined on density matrices is reached at

1
Z

exp(−βH) ,

where the constant Z is for normalization. (This means that the minimum of the
free energy is at the Gibbs state.)



Chapter 4
Entanglement

It is a widely accepted statement that entanglement is one of the most striking fea-
tures of quantum mechanics. If two quantum systems interacted sometime in the
past, then it is not possible to assign a single state vector to the subsystems in the
future. This is one way to express entanglement that was historically recognized
by Einstein, Podolsky and Rosen and by Schrödinger. Later Bell showed that en-
tanglement manifests in non-locality of quantum mechanics. The information theo-
retic aspect of entanglement was observed by Schrödinger himself: “Best possible
knowledge of a whole does not include best possible knowledge of its parts.” In this
formulation entanglement does not sound so striking, an individual component of
an entangled system may exhibit more disorder than the whole system.

4.1 Bipartite Systems

The physical setting to see entanglement is the bipartite system which corresponds
to tensor product in mathematical terms. Let B(HA) and B(HB) be the algebras
of bounded operators acting on the Hilbert spaces HA and HB. The Hilbert space
of the composite system A + B is HAB := HA⊗HB. The algebra of the operators
acting on HAB is B(HAB) = B(HA)⊗B(HB).

Let us recall how to define ordering in a vector space V . A subset V+⊂V is called
positive cone if v, w ∈ V+ implies v + w ∈ V+ and λv ∈ V+ for any positive real λ .
Given the positive cone V+, f ≤ g means that g− f ∈V+. In the vector space B(H )
the standard positive cone is the set of all positive semidefinite matrices. This cone
induces the partial ordering

A≤ B ⇐⇒ 〈η ,Aη〉 ≤ 〈η ,Bη〉 for every vector η .

In the product space B(HAB) = B(HA)⊗B(HB), we have two natural positive
cones, B(HAB)+ consists of the positive semidefinite matrices acting on HAB :=
HA⊗HB, and the cone S consists of all operators of the form

D. Petz, Entanglement. In: D. Petz, Quantum Information Theory and Quantum Statistics, Theoretical
and Mathematical Physics, pp. 53–71 (2008)
DOI 10.1007/978-3-540-74636-2 4 c© Springer-Verlag Berlin Heidelberg 2008
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∑
i

Ai⊗Bi,

where Ai ∈ B(HA)+ and Bi ∈ B(HB)+. It is obvious that S ⊂ B(HAB)+. A state
is called separable (or unentangled) if its density belongs to S . The other states
are the entangled states. Therefore the set of separable states is the convex hull
of product states, or the convex hull of pure product states (since any state is the
convex combination of pure states).

A pure state is separable if and only if it is a product state. Indeed, pure states
are extreme points in the state space (see Lemma 2.1). If a pure state is a convex
combination ∑i piPi⊗Qi of product pure states, then this convex combination must
be trivial, that is, P⊗Q.

Let (ei)i be a basis of HA and ( f j) j be a basis of HB. Then the doubled indexed
family (ei ⊗ f j)i, j is a basis of HAB. (Such a basis is called product basis.) An
arbitrary vector Ψ ∈HAB admits an expansion

Ψ=∑
i, j

ci j ei⊗ f j (4.1)

for some coefficients ci j, ∑i, j |ci j|2 = ‖Ψ‖2.
If hi = ∑ j ci j f j , then Ψ= ∑i ei⊗hi; however, the vectors hi are not orthogonal.

We may want to see that a better choice of the representing vectors is possible.

Lemma 4.1. Any unit vector Ψ ∈HAB can be written in the form

Ψ=∑
k

√
pk gk⊗hk, (4.2)

where the vectors gk ∈HA and hk ∈HB are pairwise orthogonal and normalized;
moreover (pk) is a probability distribution.

Proof. We can define a conjugate-linear mapping Λ : HA →HB as

〈Λα,β 〉= 〈Ψ,α⊗β 〉

for every vector α ∈HA and β ∈HB. In the computation we can use the bases (ei)i

in HA and ( f j) j in HB. If Ψ has the expansion (4.1), then

〈Λei, f j〉= ci j

and the adjoint Λ∗ is determined by

〈Λ∗ f j,ei〉= ci j.

(Concerning the adjoint of a conjugate-linear mapping, see (11.4) in the Appendix.)
One can compute that the reduced density matrix ρA of the vector state |Ψ〉 is

Λ∗Λ. It is enough to check that

〈Ψ, |ek〉〈e�|Ψ〉= TrΛ∗Λ|ek〉〈e�|
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for every k and �.
Choose now the orthogonal unit vectors gk such that they are eigenvectors of ρA

with corresponding non-zero eigenvalues pk, ρAgk = pkgk. Then

hk :=
1√
pk
|Λgk〉

is a family of pairwise orthogonal unit vectors. Now

〈Ψ,gk⊗h�〉= 〈Λgk,h�〉=
1√
p�
〈Λgk,Λg�〉= 1√

p�
〈g�,Λ∗Λgk〉= δk,�

√
p�

and we arrive at the orthogonal expansion (4.2). �

Expansion (4.2) is called Schmidt decomposition.
Let dimHA = dimHB = n. A pure state |Φ〉〈Φ| on the Hilbert space HA⊗HB

is called maximally entangled if the following equivalent conditions hold:

• The reduced densities are maximally mixed states.
• When the vector |Φ〉 is written in the form (4.2), then pk = n−1 for every 1 ≤ k
≤ n.

• There is a product basis such that |Φ〉 is complementary to it.

The density matrix of a maximally entangled state on Cn⊗Cn is of the form

ρ =
1√
n∑i, j

ei j⊗ ei j (4.3)

in an appropriate basis.
A common example of maximally entangled state is the singlet state

|Φ〉=
1√
2
(|10〉− |01〉). (4.4)

(HA = HB = C
2, which has a basis {|0〉, |1〉}.) In the singlet state there is a partic-

ular correlation between the two spins (see Example 2.6).
It is worthwhile to note that formula (4.2) also shows how to purify an arbitrary

density matrix ρ =∑i pi|gi〉〈gi| acting on HA. It is enough to choose an orthonormal
family (hi) in another Hilbert space HB, and (4.2) gives a pure state whose reduction
is ρ . In this case |Ψ〉 is called the purification of ρ .

Example 4.1. Entanglement is a phenomenon appearing in case of two quantum
components (Fig. 4.1). If the system is composite but one of the two components is
classical, then the possible states are in the form

ρcq =∑
i

pi|ei〉〈ei|⊗ρq
i , (4.5)

where (pi)i is a probability distribution, ρq
i are densities on Hq, and (|ei〉)i is a fixed

basis of Hc. (4.5) is in the convex hull of product states, therefore it is separable.
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Composite systems of type classical-quantum appear often; for example, the
measurement on a quantum system is described in this formalism. �


Let E : Mn(C)→Mk(C) be a linear mapping. According to Theorem 11.24 the
condition

∑
i, j

Ei j⊗E (Ei j)≥ 0 (4.6)

is equivalent to the complete positivity of E . Therefore the following is true.

Theorem 4.1. The linear mapping E : Mn(C)→Mk(C) is completely positive if and
only if there exists a maximally entangled state ρ ∈Mn(C)⊗Mn(C) such that

(idn⊗E )(ρ)≥ 0

holds.

Fig. 4.1 Entanglement is a very special relation of two quantum systems. The sculpture “Entan-
glement” made by Ruth Bloch (bronze, 71 cm, 1995) might express something similar
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Example 4.2. Let E : Mn(C)→ Mk(C) be a channel. E is called entanglement
breaking if the range of id⊗E contains only separable states for the identical chan-
nel id : Mn(C)→Mn(C). This condition is very restrictive; an entanglement break-
ing channel has the form

E (ρ) =∑
i

ρiTrSiρ

where ρi is a family of states and Si are positive matrices such that ∑i Si = I. See
also Exercise 7. �

Theorem 4.2. If the state ρ ∈AAB is entangled, then there exists W ∈A sa

AB such that

Tr W (P⊗Q)≥ 0

for all pure states P ∈AA and Q ∈AB but Tr Wρ < 0.

Proof. Let S denote the set of separable states and assume that ρ /∈S . Then

inf{S(ρ ,Ds) : Ds ∈S }> 0

and let D0 be the minimizer.
It is well known that

∂
∂ε

log(X + εK) =
∫ ∞

0
(X + t)−1K(X + t)−1 dt,

and so

∂
∂ε

S(ρ ,(1− ε)D0 + ερ ′) = −Tr(ρ−D0)
∫ ∞

0
(D0 + t)−1ρ ′(D0 + t)−1 dt

= 1−Trρ
∫ ∞

0
(D0 + t)−1ρ ′(D0 + t)−1 dt,

for any density ρ ′, both derivatives taken at ε = 0.
Let

W := I−
∫ ∞

0
(D0 + t)−1ρ(D0 + t)−1 dt

and we have

TrW Ds =
∂
∂ε

S(ρ ,(1− ε)D0 + εDs) = lim
ε→0

S(ρ ,(1− ε)D0 + εDs)−S(ρ ,D0)
ε

≥ 0

for an arbitrary Ds ∈S , since (1− ε)D0 + εDs ∈S and S(ρ , (1− ε)D0 + εDs)≥
S(ρ , D0).
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Due to the convexity of the relative entropy we have

S(ρ ,(1− ε)D0 + ερ)−S(ρ ,D0)≤−εS(ρ ,D0) .

Divided by ε > 0 and taking the limit ε → 0 we arrive at

TrWρ ≤−S(ρ ,D0) < 0.

�

The operator W appearing in the previous theorem is called entanglement

witness.

Example 4.3. Let

W := σ1⊗σ1 +σ3⊗σ3 =

⎡
⎢⎢⎣

1 0 0 1
0 −1 1 0
0 1 −1 0
1 0 0 1

⎤
⎥⎥⎦ .

For any product state ρ1⊗ρ2, we have

Tr(ρ1⊗ρ2)W = Trρ1σ1×Trρ2σ1 + Trρ1σ3×Trρ2σ3

≤
√

(Trρ1σ1)2 +(Trρ1σ3)2×
√

(Trρ2σ1)2 +(Trρ2σ3)2

≤ 1 ,

since

(Trρσ1)2 +(Trρσ2)2 +(Trρσ3)2 ≤ 1

for any density matrix ρ . It follows that Tr DW ≤ 1 for any separating state D on C4.
Consider now the density

ω :=
1
6

⎡
⎢⎢⎣

2 0 0 2
0 1 x 0
0 x 1 0
2 0 0 2

⎤
⎥⎥⎦ , (4.7)

where 0 < x < 1. Since

TrωW = 1 +
x
3

> 1,

ω must be an entangled state. �

Example 4.4. An entanglement witness determines a linear functional that may sep-
arate a state from the convex hull of product state. The separation can be done by
means of non-linear functionals.

Let ρ be a state and X be an observable. The variance
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δ 2(X ;ρ) := TrρX2− (TrρX)2 (4.8)

is a concave function of the variable ρ .
Let Xi be a family of observables on the system A and assume that

∑
i
δ 2(Xi;ρA)≥ a

for every state ρA. Similarly, choose observables Yi on the system B and let

∑
i
δ 2(Yi;ρB)≥ b

for every state ρB on HB.
Let ρAB now be a state on the composite (or bipartite) system HA ⊗HB. The

functional
ψ(ρAB) :=∑

i
δ 2(Xi⊗ I + I⊗Yi;ρAB) (4.9)

is the sum of convex functionals (of the variable ρAB), therefore it is convex. For a
product state ρAB = ρA⊗ρB we have

∑
i

δ 2(Xi⊗ I + I⊗Yi;ρAB) =∑
i

δ 2(Xi;ρA)+∑
i

δ 2(Yi;ρB)≥ a + b.

It follows that ψ(ρAB)≥ a + b for every separable state ρAB. If

ψ(ρAB) < a + b,

then the state ρAB must be entangled. �

Theorem 4.3. Let ρAB be a separable state on the bipartite system HA⊗HB and
let ρA be the reduced state. Then ρAB is more mixed than ρA.

Proof. Let (rk) be the probability vector of eigenvalues of ρAB and (ql) is that for
ρA. We have to show that there is a double stochastic matrix S which transform (ql)
into (rk).

Let

ρAB =∑
k

rk|ek〉〈ek|=∑
j

p j|x j〉〈x j|⊗ |y j〉〈y j|

be decompositions of a density matrix in terms of unit vectors |ek〉 ∈HA⊗HB, |x j〉 ∈
HA and |y j〉 ∈HB. The first decomposition is the Schmidt decomposition and the
second one is guaranteed by the assumed separability condition. For the reduced
density ρA we have the Schmidt decomposition and another one:

ρA =∑
l

ql| fl〉〈 fl |=∑
j

p j|x j〉〈x j|,
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where f j is an orthonormal family in HA. According to Lemma 2.2 we have two
unitary matrices V and W such that

∑
k

Vk j
√

p j|x j〉⊗ |y j〉 =
√

rk|ek

∑
l

Wjl
√

ql| fl〉 =
√

p j|x j〉.

Combine these equations to have

∑
k

Vk j∑
l

Wjl
√

ql| fl〉⊗ |y j〉=
√

rk|ek

and take the squared norm:

rk =∑
l

(
∑
j1, j2

V k j1Vk j2W j1lWj2l〈y j1 ,y j2〉
)

ql

Introduce a matrix

Skl =
(
∑
j1, j2

V k j1Vk j2W j1lWj2l〈y j1 ,y j2〉
)

and verify that it is double stochastic. �

Separable states behave classically in the sense that the monotonicity of the von

Neumann entropy holds.

Corollary 4.1. Let ρAB be a separable state on the bipartite system HA⊗HB and
let ρA be the reduced state. Then S(ρAB)≥ S(ρA).

Proof. The statement is an immediate consequence of the theorem, since the von
Neumann entropy is monotone with respect to the more mixed relation. However, I
can give another proof.

First we observe that for a separable state ρAB the operator inequality

ρAB ≤ ρA⊗ IB . (4.10)

holds. Indeed, for a product state the inequality is obvious and we can take convex
combinations. Since log is matrix monotone, we have

− logρAB ≥−(logρA)⊗ IB. (4.11)

Taking the expectation values with respect to the state ρAB, we get S(ρAB)≥ S(ρA).
Both proofs show that instead of the von Neumann entropy, we can take an

α-entropy as well. �

Theorem 4.4. Let ρAB be a state on the bipartite system HA⊗HB and let ρA be the
reduced state. If S(ρAB) < S(ρA), then there is ε > 0 such that all states ω satisfying
the condition ‖ω−ρAB‖< ε are entangled.
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Proof. Due to the continuity of the von Neumann entropy S(ω) < S(ωA) holds in a
neighborhood of ρAB. All these states are entangled. �

Theorem 4.5. ρ ∈AAB is separable if and only if for any k ∈ Nρ has a symmetric

extension to A
1
�

A ⊗A
2
�

A ⊗ . . .⊗A
k
�

A ⊗AB.

Proof. For a separable state the symmetric extension is easily constructed. Assume
that

ρ =∑
i

λiAi⊗Bi,

then

∑
i

λiAi⊗Ai⊗·· ·⊗Ai⊗Bi

is a symmetric extension.
Conversely, let ρn be the assumed symmetric extension and let the state ϕ of the

infinite product algebra be limit points of ρn’s. Since all ρn’s are extensions of the
given ρ , so is ϕ . According to the quantum de Finetti theorem (see Notes), ϕ is
an integral of product state and so is its restriction ρ . This shows that ρ is separable.

�

Theorem 4.6. Let ρ ∈AAB. If there is a positive mapping Λ : AB →AB such that
(id⊗Λ)ρ is not positive, then ρ is entangled.

Proof. For a product state ρA ⊗ρB we have

(idA ⊗Λ)(ρA ⊗ρB) = ρA ⊗Λ(ρB)≥ 0 .

It follows that (idA ⊗Λ)D is positive when D is separable. �

In place of Λ, there is no use of completely positive mapping but matrix transpo-

sition (in any basis) could be useful.

Example 4.5. Consider the state

1
4

⎡
⎢⎢⎣

1 + p 0 1− p p
0 1− p 0 1− p

1− p 0 1− p 0
p 1− p 0 1 + p

⎤
⎥⎥⎦ ,

where 0≤ p≤ 1. The partial transpose of this matrix is

1
4

⎡
⎢⎢⎣

1 + p 0 1− p 0
0 1− p p 1− p

1− p p 1− p 0
0 1− p 0 1 + p

⎤
⎥⎥⎦ .
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If this is positive, so is
[

1− p p
p 1− p

]
.

For 1/2 < p this matrix is not positive, therefore Theorem 4.6 tells us that the state
is entangled for these values of the parameter. �

Example 4.6. Let |Ψ〉〈Ψ| ∈ C2⊗C2 be a maximally entangled state and τ be the
tracial state. Since τ is separable

ρp := p|Ψ〉〈Ψ|+(1− p)τ (0≤ p≤ 1) (4.12)

is an interpolation between an entangled state and a separable state. ρp is called
Werner state; its eigenvalues are

p +
1− p

4
,

1− p
4

,
1− p

4
,

1− p
4

(4.13)

and the eigenvalues of the reduced density matrix are (1/2, 1/2). (4.13) is more
mixed than this pair if and only if p ≤ 1/3. Therefore, for p > 1/3, the state ρp

must be entangled as per Theorem 4.3.
We can arrive at the same conclusion also from Theorem 4.6. In an appropriate

basis, the matrix of ρp is

1
4

⎛
⎜⎜⎝

1− p 0 0 0
0 1 + p 2p 0
0 2p 1 + p 0
0 0 0 1− p

⎞
⎟⎟⎠ . (4.14)

The partial transpose of this matrix is

1
4

⎛
⎜⎜⎝

1− p 0 0 2p
0 1 + p 0 0
0 0 1 + p 0

2p 0 0 1− p

⎞
⎟⎟⎠ (4.15)

which cannot be positive when (1− p)2 < 4p2. For p > 1/3 this is the case and
Theorem 4.6 tells us that ρp is entangled.

If p = 1/3, then ρp is

1
6

⎛
⎜⎜⎝

1 0 0 0
0 2 1 0
0 1 2 0
0 0 0 1

⎞
⎟⎟⎠ .

and it can be shown that this is separable by presenting a decomposition. We have
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⎛
⎜⎜⎝

1 0 0 0
0 2 1 0
0 1 2 0
0 0 0 1

⎞
⎟⎟⎠=

1
3

⎛
⎜⎜⎝

3 0 0 0
0 3 3 0
0 3 3 0
0 0 0 3

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎟⎠ .

Here the first summand has a decomposition
(

1 1
1 1

)
⊗
(

1 1
1 1

)
+
(

1 ε
ε2 1

)
⊗
(

1 ε
ε2 1

)
+
(

1 ε2

ε 1

)
⊗
(

1 ε2

ε 1

)
,

where ε := exp(2π i/3) and the second summand is
(

1 0
0 0

)
⊗
(

0 0
0 1

)
+
(

0 0
0 1

)
⊗
(

1 0
0 0

)
.

Since separable states form a convex set, we can conclude that ρp is separable
for every p≤ 1/3. �


4.2 Dense Coding and Teleportation

Quantum information and classical information are very different concepts and,
strictly speaking, it has no meaning to compare them. However, transmission of
a single qubit can carry two bits of classical information and transmitting classical
information of two bits can yield the teleportation of the state of a quantum spin.
From this point of view a qubit is equivalent to two classical bits. Both protocols
use a basis consisting of maximally entangled states on the four-dimensional space.

The Bell basis of C2⊗C2 consists of the following vectors

|β0〉 =
1√
2
(|00〉+ |11〉),

|β1〉 =
1√
2
(|10〉+ |01〉) = (σ1⊗ I)|β0〉,

|β2〉 =
i√
2
(|10〉− |01〉) = (σ2⊗ I)|β0〉,

|β3〉 =
1√
2
(|00〉− |11〉) = (σ3⊗ I)|β0〉.

All of them give maximally entangled states of the bipartite system.
Assume that Alice wants to communicate an element of the set {0, 1, 2, 3} to

Bob and both of them have a spin. Assume that the two spins are initially in the
state |β0〉. Alice and Bob may follow the following protocol called dense coding.

1. If the number to communicate to Bob is k, Alice applies the unitary σk to her
spin. After this the joint state of the two spins will be the kth vector of the Bell
basis.
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2. Alice sends her qubit to Bob and Bob will be in the possession of both spins.
3. Bob performs the measurement corresponding to the Bell basis, and the outcome

will exactly be k.

Next we shall turn to the teleportation protocol initiated by Bennett et al. in 1993
[14]. Consider a 3-qubit system in the initial state:

|ψ〉A⊗|β0〉XB.

(So the spin A is statistically independent of the other two spins.) Assume that Alice
is in a possession of the qubits A and X , and the spin B is at Bob’s disposal. The aim
is to convert Bob’s spin into the state |ψ〉. Alice and Bob are separated; they could
be far away from each other but they can communicate in a classical channel. How
can this task be accomplished?

1. Alice measures the Bell basis on the spins A and X . The outcome of the measure-
ment is an element of the set {0,1,2,3}.

2. Alice communicates this outcome to Bob in a classical communication chan-
nel.This requires the transmission of two classical bits to distinguish among
0,1,2,3.

3. Bob applies the unitary σk to the state vector of spin B if the message of Alice is
“k.”

Then the state of spin B is the same as was the state of spin A at the beginning of
the procedure.

This protocol depends on an important identity

|ψ〉A⊗|β0〉XB =
1
2

3

∑
k=0

|βk〉AX ⊗σk|ψ〉B. (4.16)

The measurement of Alice is described by the projections Ei := |βi〉〈βi|⊗ IB (0≤
i≤ 3). The outcome k appears with the probability

〈η ,
(|βk〉〈βk|⊗ IB

)
η〉,

where η is the vector (4.16) and this is 1/4. If the measurement gives the value k,
then after the measurement the new state vector is

Ekη
‖Ekη‖ = |βk〉AX ⊗σk|ψ〉B.

When Bob applies the unitary σk to the state vector σk|ψ〉B of his spin, he really
gets |ψ〉B.

There are a few important features concerning the protocol. The actions of Alice
and Bob are local, they manipulate only the spins at their disposal and they act
independently of the unknown spin X . It is also important to observe that the spin A
changes immediately after Alice’s measurement. If this were not the case, then the
procedure could be used to copy (or to clone) a quantum state which is impossible;
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Wooters and Zurek argued for a “no-cloning” theorem [120]. Another price the two
parties have to pay for the teleportation is the entanglement. The state of AX and B
becomes separable.

The identity (4.16) implies that

Ek

(
|ψ〉〈ψ |A⊗|β0〉〈β0|XB

)
Ek =

1
4
|β0〉〈β0|AX ⊗

(
σk|ψ〉〈ψ |Bσk

)
.

Both sides are linear in |ψ〉〈ψ |, which can be replaced by an arbitrary density matrix
ρ :

Ek

(
ρ⊗|β0〉〈β0|XB

)
Ek =

1
4
|β0〉〈β0|AX ⊗

(
σkρBσk

)
, (4.17)

This formula shows that the teleportation protocol works for a density matrix ρ
as well. The only modification is that when Bob receives the information that the
outcome of Alice’s measurement has been k, he must perform the transformation
D �→ σkDσk on his spin.

We can generalize the above protocol. Assume that H is n-dimensional and we
have unitaries Ui (1≤ i≤ n2) such that

TrU∗
i Uj = 0 if i �= j . (4.18)

These orthogonality relations guarantee that the operators Ui are linearly indepen-
dent and they must span the linear space of all matrices.

Let Φ ∈H ⊗H be a maximally entangled state vector and set

Φi := (Ui⊗ I)Φ (1≤ i≤ n2).

One can check that (Φi)i is a basis in H ⊗H :

〈(Ui⊗ I)Φ,(Uj⊗ I)Φ〉 = 〈Φ,(U∗
i Uj⊗ I)Φ〉= Tr(U∗

i Uj⊗ I)|Φ〉〈Φ|
= TrTr2

(
U∗

i Uj⊗ I)|Φ〉〈Φ|
)

= Tr
(
U∗

i Uj
)
Tr2|Φ〉〈Φ|

=
1
n

TrU∗
i Uj .

Consider three quantum systems, similar to the spin- 1
2 case; assume that the sys-

tems X and A are localized at Alice and B is at Bob. Each of these n-level systems
are described an n-dimensional Hilbert space H . Let the initial state be

ρA⊗|Φ〉〈Φ|XB.

The density ρ is to be teleported from Alice to Bob by the following protocol:

1. Alice measures the basis (Φi)i on the quantum system A + X . The outcome of
the measurement is an element of the set {1,2,3, . . . ,n2}.

2. Alice communicates this outcome to Bob in a classical communication channel.
3. Bob applies the state transformation D �→UkDU∗

k to his quantum system B if the
message of Alice is “k” (1≤ k ≤ n2).
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The measurement of Alice is described by the projections Ei := |Φi〉〈Φi|⊗ IB (1 ≤
i ≤ n2). The state transformation D �→ UkDU∗

k corresponds to the transformation
A �→U∗

k AUk; hence to show that the protocol works we need

∑
k

TrEk(ρ⊗|Φ〉〈Φ|)Ek
(
IAX ⊗UkAU∗

k

)
= TrρA (4.19)

for all A ∈ B(H ). Indeed, the left-hand side is the expectation value of A after
teleportation, while the right-hand side is the expectation value in the state ρ .

Since this equation is linear both in ρ and in A, we may assume that ρ = |φ〉〈φ |
and A = |ψ〉〈ψ |. Then the right-hand side is |〈ψ ,φ〉|2 and the left-hand side is

∑
k

|〈φ ⊗Φ,(Uk⊗ I)Φ⊗U∗
kψ〉|2 =∑

k

|〈U∗
k φ ⊗Φ,Φ⊗U∗

kψ〉|2 .

Since 〈η1⊗Φ,Φ⊗η2〉= n−1〈η1,η2〉, the above expression equals

∑
k

|〈U∗
k φ ⊗Φ,Φ⊗U∗

kψ〉|2 =
1
n2 ∑

k

|〈U∗
k φ ,U∗

k ψ〉|2 = |〈φ ,ψ〉|2 .

This proves (4.19), which can be written more abstractly:

∑
k

Tr(ρ⊗ω)(Ek⊗Tk(A)) = TrρA (4.20)

for all ρ ,A ∈ B(H ), where Ek is a von Neumann measurement on H ⊗H and
Tk : B(H )→ B(H ) is a noiseless channel, Tk(A) = UkAU∗

k for some unitary Uk.
In this style, the dense coding is the equation

Trω(Tk⊗ id)E� = δk,�. (4.21)

Recall that in the teleportation protocol we had a maximally entangled state ω =
|Φ〉〈Φ|, a basis Uk of unitaries which determined the measurement

Ek = |Φk〉〈Φk|, Φi := (Ui⊗ I)Φ

and the channels Tk(A) = UkAU∗
k . These objects satisfy equation (4.21) as well, so

the dense coding protocol works on n level systems.
Next we will see how to find unitaries satisfying the orthogonality relation (4.18).

Example 4.7. Let e0,e1, . . . ,en−1 be a basis in the n-dimensional Hilbert space H
and let X be the unitary operator permuting the basis vectors cyclically:

Xei =

{
ei+1 if 0≤ i≤ n−2,

e0 if i = n−1.

Let q := ei2π/n, and another unitary be Yei = qiei. It is easy to check that Y X = qXY ,
or more generally the commutation relation
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ZkX � = qk�X �Zk (4.22)

is satisfied. For S j,k = Z jXk, we have

S j,k =
n−1

∑
m=0

qm j|em〉〈em+k| and S j,kSu,v = qkuS j+u,k+v,

where the additions m+ k, j + u, k + v are understood modulo n. Since Tr S j,k = 0
when at least one of j and k is not zero, the unitaries

{S j,k : 0≤ j,k ≤ n−1}

are pairwise orthogonal.
Note that S j,k and Su,v commute if ku = jv mod n. These unitaries satisfy a dis-

crete form of the Weyl commutation relation and the case n = 2 simply reduces
to the Pauli matrices: X = σ1 and Z = σ3. (This fact motivated our notation.) �


4.3 Entanglement Measures

The degree of entanglement of a state ρAB on the bipartite Hilbert space HA⊗HB

is its distance from the convex set of separable states. One possibility is to use the
relative entropy as a distance function. In this way, we can arrive at the concept of
the relative entropy of entanglement:

ERE(ρAB) := inf{S(ρAB||D) : D ∈S 1}

where D runs over the set of separable states on HA⊗HB. If ρAB is faithful, then the
minimizer is unique and can be called “the best separable approximation of ρAB.”

Theorem 4.7. Let ρAB be a state on a bipartite system. Then

ERE(ρ)≥ S(ρA)−S(ρAB), S(ρB)−S(ρAB).

If ρ is pure, then eRE(ρ) = S(ρA).

Proof. Let D be a separable state. Then− logD≥− logDA⊗ IB (see (4.11)) and we
have

S(ρAB||D) = −S(ρAB)−TrρAB logD≥−S(ρAB)−TrρAB(logDA⊗ IB)
= −S(ρAB)−TrρA logDA =−S(ρAB)+ S(ρA)+ S(ρA||DA).

This gives the first inequality and the second is proven similarly.
If ρAB is pure and given by a vector ∑i

√
pi|αi〉 ⊗ |βi〉 (where |αi〉 and |βi〉 are

orthogonal systems), then the state
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D :=∑
i

pi |αi〉〈αi|⊗ |βi〉〈βi|

is separable and S(ρAB||D) = S(ρA). This D is not the only minimizer, since the
condition ρA = DA does not determine D. �


The relative entropy of entanglement is a possible measure of entanglement;
however, there are several different possibilities. What are the minimal requirements
for the quantification of entanglement?

A bipartite entanglement measure E(ρ) is a mapping from density matrices into
positive real numbers: ρ �→ E(ρ) ∈ R

+ defined for states of arbitrary bipartite sys-
tems.

1. E(ρ) = 0 if the state ρ is separable.
2. For pure state ρ the measure is the von Neumann entropy of the reduced density:

E(ρ) = S(ρA).

Another common example for an additional property required from an entangle-
ment measure is the convexity which means that we require

E(∑i piρi)≤ ∑i piE(ρi).

For a state ρ the entanglement of formation is defined as

EF(ρ) := inf{∑i piE(|ψi〉〈ψi|) : ρ = ∑i pi|ψi〉〈ψi|}. (4.23)

It follows from the definition that this is the maximal convex entanglement measure.
Let ρAB be a state on the bipartite Hilbert space HA⊗HB. The squashed entan-

glement is defined as follows:

Esq(ρAB) := 1
2 inf{S(ρAC|C)−S(ρABC|BC) : ρABC is an extension of

ρAB to HA⊗HB⊗HC}

Due to the strong subadditivity of the von Neumann entropy, this quantity is positive.
When the infimum is taken in the definition, one can restrict to finite-dimensional
spaces HC.

Example 4.8. Assume that ρAB is a pure state. Then any extension is of the form
ρAB⊗ρC and we have

S(ρAC)+ S(ρBC)−S(ρABC)−S(ρC)
= S(ρA)+ S(ρC)+ S(ρC)+ S(ρB)−S(ρAB)−S(ρC)−S(ρC) = 2S(ρA).

Therefore in this case Esq(ρAB) = S(ρA). �

Example 4.9. Assume that ρAB is separable. It can be shown that in this case Esq

(ρAB) = 0.
We have
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ρAB =∑
i

piρ i
A⊗ρ i

B

for some pure states ρ i
A⊗ρ i

C. If we choose pairwise orthogonal pure states ρ i
C, then

ρACB =∑i piρ i
A⊗ρ i

C⊗ρ i
B will make the infimum 0 in the definition of the squashed

entanglement. �

All extensions of ρAB can be obtained from a purification. Assume that ρABC0 is

a purification of ρAB, and ρABC is an arbitrary extension. One can purify the latter
state into ρABCD, which is also a purification of ρAB. Two purifications of a state are
related by an isometry or coisometry U : HC0 →HCD in a way that E := idAB⊗
U( ·)U∗ sends ρABC0 into ρABCD. Therefore, we can reformulate the definition of the
squashed entanglement:

Esq(ρAB) = 1
2 inf{S(ρAE|E)−S(ρABE|BE) : ρABE = (idAB⊗E )(|Φ〉〈Φ|ABC},

(4.24)

where the infimum is over all state transformations E : B(HC0) → B(HE), and
|Φ〉ABC0 is a fixed purification of ρAB.

This form of the definition allows us to prove the continuity.

Theorem 4.8. The squashed entanglement is continuous with respect to the trace
norm.

Proof. Let ρAB and ωAB be states on the bipartite Hilbert space HA ⊗HB. Given
ε > 0, there is δ > 0 such that |ρAB−ωAB|1≤ δ implies the existence of purifications
ρABC0 and ωABC0 such that |ρABC0−ωABC0 |1 ≤ ε . Since the state transformations are
contractions with respect to the trace norm, we have |ρABE −ωABE|1 ≤ ε . Now we
can use Theorem 5.1 and obtain that

|S(ρAE |E)−S(ωAE|E)|, |S(ρABE |BE)−S(ωABE|BE)| ≤ 4ε logd + 2H(ε,1− ε)

(with d = dimHA) and this estimate implies

|Esq(ρAB)−Esq(ωAB)| ≤ 4ε logd + 2H(ε,1− ε).

The continuity is proven. �


4.4 Notes

Theorem 4.3 was proved by Nielsen and Kempe [79].
The quantum de Finetti theorem is about the states of the infinite product

A ⊗B⊗B⊗ . . .

which remain invariant under the fine permutations of the factors B. Such states are
called symmetric. The theorem obtained in [39] tells us that symmetric states are in
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the closed convex hull of symmetric product states. (For other generalization of the
de Finetti theorem, see [83].)

Example 4.4 is from [54].
The unitaries S jk in Example 4.7 give a discrete form of the Weyl commutation

relation

U(h1)U(h2) = U(h1 + h2)exp
(
i Im〈h1,h2〉

)
,

where the unitary family is labeled by the vectors of a Hilbert space [92]. The con-
struction in Example 4.7 is due to Schwinger [107].

The bases (ei) and ( f j) have the property

|〈ei, f j〉|2 =
1
n
.

Such bases are called complementary or unbiased. They appeared in connection
with the uncertainty relation (see [67], or Chap. 16 of [83]). A family of mutually
unbiased bases on an n-dimensional space has cardinality at most n + 1. It is not
known if the bound is reachable for any n. (It is easy to construct n + 1 mutually
unbiased bases if n = 2k.) More details about complementarity are also in [99].

Theorem 4.7 was obtained in [101].

4.5 Exercises

1. Let e1,e2, . . . ,en be a basis in the Hilbert space H . Show that the vector

1√
n

n

∑
i, j=1

Ui jei⊗ e j

gives a maximally entangled state in H ⊗H if and only if the matrix (Ui j)n
i, j=1

is a unitary.
2. Let Φ be a unit vector in H ⊗H and let n be the dimension of H . Show that

Φ gives a maximally entangled state if and only if

〈η1⊗Φ,Φ⊗η2〉= n−1〈η1,η2〉

for every vector, η1,η2 ∈H .
3. Let Φ be a maximally entangled state in H ⊗H and W be a unitary on H .

Show that (W ⊗ I)Φ gives a maximally entangled state.
4. Use the partial transposition and Theorem 4.6 to show that the density (4.7) is

entangled.
5. Show that the matrix of an operator on C2⊗C2 is diagonal in the Bell basis if

and only if it is a linear combination of the operators σi⊗σi, 0≤ i≤ 3.
6. Use Theorem 4.3 to show that the density (4.7) is entangled.
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7. Let E : Mn(C)→Mk(C) be a channel and assume that

id⊗E (|Φ〉〈Φ|)

is separable for a maximally entangled state |Φ〉〈Φ| in Mn(C)⊗Mn(C), where
idn is the identity Mn(C)→Mn(C). Show that E has the form

E (ρ) =∑
i

ρiTrSiρ (4.25)

where ρi is a family of states and Si are positive matrices such that ∑i Si = I.
8. Show that

1
12

3

∑
k=1

(I4−σk⊗σk)

is a Werner state. Use identity (2.35) to show that it is separable.
9. Show that the range of Ep,2⊗Ep,2 does not contain an entangled state if Ep,2 :

M2(C)→M2(C) is the depolarizing channel and 0≤ p≤ 1/2.
10. Assume that three qubits are in the pure state

1√
2
(|000〉+ |111〉)

(called GHZ state, named after Greeneberger–Horne–Zeilinger). Show that all
qubits are in a maximally mixed state and any two qubits are in a separating state.

11. Let |Ψ〉〈Ψ| ∈ B(Cn⊗Cn) be a maximally entangled state (n≥ 3) and assume that
for another state ρ we have ‖|Ψ〉〈Ψ|−ρ ‖1 ≤ 1/3. Show that ρ is entangled.

12. Let |Ψ〉〈Ψ| ∈ B(Cn⊗Cn) be a maximally entangled state and τ be the tracial
state on B(Cn⊗Cn). When will be the Werner state

ρp := p|Ψ〉〈Ψ|+(1− p)τ (0 ≤ p ≤ 1) (4.26)

entangled?
13. Compute the state of the spin X after the teleportation procedure between Alice

and Bob.
14. Compute the joint state of the spins A and B after the teleportation procedure.
15. Show that relation (4.18) implies the condition

∑
i

U∗
i AUi = n(TrA)I

for every A ∈ B(H ).



Chapter 5
More About Information Quantities

In the previous chapter the Shannon entropy, its quantum analogue, the von Neumann
entropy and the relative entropy were introduced and discussed. They are really the
fundamental quantities and several others are reduced to them. In this chapter more
complex quantities will be introduced.

5.1 Shannon’s Mutual Information

The Shannon entropy measures the amount of information contained in a probability
distribution. In the mathematical sense, the concept of mutual information is the
extension of the entropy to two probability distributions. The mutual information
measures the amount of information contained in a random variable about another
random variable.

I(X ∧Y ) =∑
xy

p(x,y) log
p(x,y)

p(x)q(y)
, (5.1)

where p(x,y) is the joint distribution, p is the distribution of X and q is the distribu-
tion of Y .

The mutual information is a symmetric function of the two variables. If X and Y
coincide, then I(X ∧Y ) reduces to the entropy and it becomes zero when they are
independent. I(X ∧Y ) is a relative entropy, that of the joint distribution with respect
to the product of the marginals. This observation makes sure that I(X ∧Y )≥ 0.

In the case where X and Y are the source and the output of a communication
channel, the quantity I(X ∧Y ) measures the amount of information going through
the channel. This amount cannot exceed the information of the source or that of the
output. Therefore,

I(X ∧Y )≤ H(X) and I(X ∧Y )≤ H(Y ). (5.2)

D. Petz, More About Information Quantities. In: D. Petz, Quantum Information Theory and Quantum Statistics,
Theoretical and Mathematical Physics, pp. 73–82 (2008)
DOI 10.1007/978-3-540-74636-2 5 c© Springer-Verlag Berlin Heidelberg 2008
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The mutual information is expressed as

I(X ∧Y ) = H(X)−H(X |Y) (5.3)

in terms of the conditional entropy.
The quantum analogue of the mutual information is a bit problematic. The clas-

sical formulation “the amount of information contained in a random variable about
another random variable” is not extendable since the concept of random variable
is missing in the quantum setting. However, when ρAB is a density matrix of the
composite system HA⊗HB, ρA and ρB are the reduced density matrices, then the
relative entropy

S(ρAB‖ρA⊗ρB) = S(ρA)+ S(ρA)−S(ρAB) (5.4)

resembles Shannon’s mutual information and it can be interpreted as the mutual in-
formation of the subsystems A and B. It follows from the properties of the relative
entropy that this quantity is positive and vanishes if and only if ρAB is a product.

5.2 Markov Chains

The random variables X ,Y and Z (with joint distribution p(x,y,z)) form a Markov
chain if

p(x,y,z) = p(x)p(y|x)p(z|y) . (5.5)

X → Y → Z is a frequently used notation for a Markov chain. Markovianity implies
that

p(z|y) = p(z|y,x). (5.6)

If Z has the interpretation as “future,” Y is the “present” and X is the “past,” then “fu-
ture conditioned to past and present” is the same as “future conditioned to present.”
From (5.6) we can deduce

H(Z|Y ) = H(Z|X ,Y ) . (5.7)

This condition can be written in other equivalent forms as

H(X ,Y,Z) = H(X ,Y )+ H(Y,Z)−H(Y) , (5.8)

or
H(Z|X ,Y ) = H(Y |X) . (5.9)

Actually both conditions are equivalent forms of the Markovianity. (5.8) tells us that
in the strong subadditivity inequality of Theorem 3.2 the equality holds.

Example 5.1. Let X ′,Y ′ and Z′ be random variables with joint distribution q(x,y,z).
One can define a probability distribution
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p(x,y,z) = q(x,y)q(z|y) (5.10)

of random variables X ,Y and Z. Then the joint distribution of (X ,Y ) is the same as
that of (X ′,Y ′) and the same relation holds for (Y,Z) and (Y ′,Z′). Hence

p(z|x,y) =
p(x,y,z)
p(x,y)

= q(z|y) = p(z|y)

and we can conclude that X → Y → Z. This is a naturally constructed Markov chain
from the arbitrary triplet (X ′,Y ′,Z′).

Let q(x,y,z) be the probability distribution of an arbitrary triplet (X ′,Y ′,Z′) and
p(x,y,z) be that of X → Y → Z. Then

S(q‖p) = ∑
x,y,z

q(x,y,z) log
q(y)q(z|y)q(x|y,z)
p(y)p(z|y)p(x|y)

= ∑
x,y,z

q(x,y,z)
(

log
q(y)
p(y)

+ log
q(z|y)
p(z|y) + log

q(x|y,z)
p(x|y)

)

= S(q(y)‖p(y))+∑
y,z

q(y)q(z|y) log
q(z|y)
p(z|y) +∑

x,y,z
q(x,y,z) log

q(x|y,z)
p(x|y)

= S(q(y)‖p(y))+∑
y

q(y)S(q(z|y)‖p(z|y))+∑
x,y,z

q(x,y,z) log
q(x|y)q(z|x,y)
p(x|y)q(z|y)

= S(q(y)‖p(y))+∑
y

q(y)S(q(z|y)‖p(z|y))+∑
y

q(y)S(q(x|y)‖p(x|y))

+∑
x,y,z

q(x,y,z) log
q(z|x,y)
q(z|y) .

According to our computation S(q||p) consists of three relative entropy terms de-
pending on p and a fourth term which does not depend on p. This is

∑
x,y,z

q(x,y,z) log
q(z|x,y)
q(z|y) = H(X ′,Y ′,Z′)+ H(Y ′)−H(X ′,Y ′)−H(Y ′,Z′).

If we want to minimize S(q||p), then we should make the relative entropy terms 0.
They will vanish exactly in the case (5.10). Therefore,

inf{D((X ′,Y ′,Z′)‖(X ,Y,Z)) : X → Y → Z}
= H(X ′,Y ′,Z′)+ H(Y ′)−H(X ′,Y ′)−H(Y ′,Z′)

and the minimizer is the natural Markovianization of the triplet (X ′,Y ′,Z′). �
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5.3 Entropy of Partied Systems

Let ρAB be a density matrix of the composite system HA⊗HB and let ρA be the
reduced density matrix on HA. On the basis of analogy with classical information
theory the difference

S(ρAB|B) := S(ρAB)−S(ρB)

is regarded as conditional entropy given the subsystem B. The useful identity

S(ρAB|B) = logdimHA−S(ρAB‖τA⊗ρB),

where τA is the tracial state, can be used to conclude a few properties of the con-
ditional entropy. The joint convexity of the relative entropy implies that the condi-
tional entropy is concave. The concavity yields a lower bound which is sufficient to
be shown for the extreme points. Recall that for a pure state ρAB, the reduced density
matrices ρA and ρB have the same non-zero eigenvalues and the same von Neumann
entropies. Therefore in this case we have

S(ρAB|B) =−S(ρB) =−S(ρA)≥− logdimHA

and the same lower bound holds for any state. On the other hand, the positivity of
the relative entropy implies S(ρAB|B)≤ logdimHA. Therefore, we have

|S(ρAB|B)| ≤ logdimHA. (5.11)

As the example of pure state shows, the quantum conditional entropy could be
negative.

Lemma 5.1. Let ρAB and ωAB be states on HA⊗HB, 0 < ε < 1 and DAB := (1−
ε)ρAB + εωAB. Then

|S(ρAB|B)−S(DAB|B)| ≤ 2ε logd + H(ε,1− ε),

where d = dimHA.

Proof. First we can benefit from the concavity of the conditional entropy

S(ρAB|B)−S(DAB|B) ≤ S(ρAB|B)− (1− ε)S(ρAB|B)− εS(ωAB|B)
= ε(S(ρAB|B)−S(ωAB|B))
≤ 2ε logd

and this gives immediately a good upper bound.
To have a lower bound, we should estimate some von Neumann entropies. From

the concavity of the von Neumann entropy

S(DB)≥ (1− ε)S(ρB)+ εS(ωB).
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and we have the complementary inequality

S(DAB)≤ (1− ε)S(ρAB)+ εS(ωAB)+ H(ε,1− ε),

see Theorem 3.7. Putting together, we obtain

S(ρAB|B)−S(DAB|B) = S(ρAB)−S(ρB)−S(DAB)+ S(DB)
≥ S(ρAB)−S(ρB)− (1− ε)S(ρAB)− εS(ωAB)−H(ε,1− ε)

+(1− ε)S(ρB)+ εS(ωB)
= ε(S(ρAB|B)−S(ωAB|B)−H(ε,1− ε)
≥ −2ε logd−H(ε,1− ε)

which is the lower bound. �

The lemma gives a continuity estimate for the conditional entropy on the line

segment connecting two states. Continuity in full generality may be reduced to the
lemma.

Theorem 5.1. Let ρAB andωAB be states on HA⊗HB, and ε := ||ρAB−ωAB||1 < 1.
Then the following estimate holds.

|S(ρAB|B)−S(ωAB|B)| ≤ 4ε logd + 2H(ε,1− ε),

where d = dimHA.

Remember that ε = Tr |ρAB−ωAB|. The basic idea is to introduce the auxiliary
states

DAB := (1− ε)ρAB + |ρAB−ωAB|,
σAB := ε−1|ρAB−ωAB|,
σ̂AB := ε−1

(
(1− ε)(ρAB−ωAB)+ |ρAB−ωAB|

)
.

Direct computation shows that

DAB = (1− ε)ρAB + εσAB = (1− ε)ωAB + εσ̂AB;

Now we can estimate

|S(ρAB|B)−S(ωAB|B)| ≤ |S(ρAB|B)−S(DAB|B)|+ |S(ωAB|B)−DAB|B)
≤ 4ε logd + 2H(ε,1− ε),

where the first inequality is obvious and the second comes from the lemma. �

Note that the particular case when the B component is missing gives an estimate

for the continuity of the von Neumann entropy.
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5.4 Strong Subadditivity of the von Neumann Entropy

The von Neumann entropy of a density matrix ρ is defined by S(ρ) :=−Tr(ρ logρ).
Suppose ρABC is a density matrix for a system with three components, A, B and C,
The strong subadditivity inequality states that

S(ρABC)+ S(ρB)≤ S(ρAB)+ S(ρBC), (5.12)

where notations like ρB denote the appropriate reduced density matrices of ρABC ∈
B(HA⊗HB⊗HC).

The strong subadditivity inequality appears quite mysterious at first sight. Some
intuition is gained by reexpressing strong subadditivity in terms of the conditional
entropy S(ρAB|B) := S(ρAB)−S(ρB). Classically, when the von Neumann entropy
is replaced by the Shannon entropy function, the conditional entropy has an inter-
pretation as the average uncertainty about system A, given knowledge of system B
(see (3.5)). Although this interpretation is more problematic in the quantum case —
for one thing, the quantum conditional entropy can be negative! — it can still be
useful for developing intuition and suggesting results. In particular, we can see that
strong subadditivity may be recast in the equivalent form

S(ρABC|BC)≤ S(ρAB|B). (5.13)

That is, strong subadditivity expresses the intuition that our uncertainty about sys-
tem A when systems B and C are known is not more than when only system B is
known. (Inequality (5.13) is to be compared with the classical situation (3.8).)

Our proof strategy is to show that strong subadditivity is implied by a related
result, the monotonicity of the relative entropy. To see that monotonicity of the
relative entropy implies strong subadditivity, we can reexpress strong subadditivity
in terms of the relative entropy, using the identity

S(ρAB|A) = logdB−S(ρAB
∥∥ρA⊗dB

−1IB), (5.14)

where dB is the dimension of HB. Proving this identity is a straightforward appli-
cation of the definitions. Using this identity we may recast the conditional entropic
form of strong subadditivity, (5.13), as an equivalent inequality between relative
entropies:

S(ρAB‖dA
−1IA⊗ρB)≤ S(ρABC‖dA

−1IA⊗ρBC) (5.15)

This inequality obviously follows from the monotonicity of the relative entropy, and
thus strong subadditivity also follows from the monotonicity of the relative entropy.

Another proof can be given using Lieb’s extension of the Golden–Thompson
inequality, (Theorem 11.29).

The operator

exp(logρAB− logρB + logρBC)
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is positive and can be written as λω for a density matrix ω . We have

S(ρAB)+ S(ρBC)−S(ρABC)−S(ρB) (5.16)

= TrρABC (logρABC− (logρAB− logρB + logρBC))
= S(ρABC‖λω) = S(ρABC‖ω)− logλ

Therefore, λ ≤ 1 implies the positivity of the left-hand-side (and the strong subad-
ditivity). Due to Theorem 11.29, we have

Tr exp(logρAB− logρB + logρBC))≤
∫ ∞

0
TrρAB(tI +ρB)−1ρBC(tI +ρB)−1 dt

Applying the partial traces we have

TrρAB(tI +ρB)−1ρBC(tI +ρB)−1 = TrρB(tI +ρB)−1ρB(tI +ρB)−1

and that can be integrated out. Hence
∫ ∞

0
TrρAB(tI +ρB)−1ρBC(tI +ρB)−1 dt = TrρB = 1.

and λ ≤ 1. This gives the strong subadditivity. If the equality holds in (5.12), then
exp(logρAB− logρB + logρBC) is a density matrix and

S(ρABC‖exp(logρAB− logρB + logρBC)) = 0

implies

logρABC = logρAB− logρB + logρBC. (5.17)

This is the necessary and sufficient condition for the equality.
A more general form of the subadditivity is discussed in Chap. 9.

5.5 The Holevo Quantity

Let E : B(H )→ B(K ) be a state transformation. The Holevo quantity is defined
as

I((px),(ρx),E ) := S(E (ρ))−∑
i

pxS(E (ρx)) , (5.18)

where ρ = ∑x pxρx, (px) is a probability distribution and ρx are densities. Equiva-
lently we have

I((px),(ρx),E ) =∑
x

p(x)S(E (ρx)‖E (ρ)) . (5.19)

From this relative entropic form some properties are observed more easily. For
example,
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I((px),(ρx),E )≥ I((px),(ρx),E ′ ◦E )

is a sort of monotonicity.
The Holevo quantity is related to transmission of classical information through

the quantum channel E . Let X be the input alphabet and Y be the output alphabet.
Assume a quantum channel E : B(H )→ B(K ) is at our disposal and we want
to use it to transmit classical information. Choose a input distribution p(x) on X
and code an input character x ∈X by a state ρx ∈ B(H ). The receiver performs a
measurement on the output system K . This means that for every y ∈ Y a positive
operator Fy ∈ B(K ) is given and ∑y Fy = IK . The coding and the measurement
makes a classical channel from E , the probability that y ∈ Y is observed when
x ∈X was sent is

Tyx = TrρxFy .

The amount of classical information going through the channel is bounded by the
Holevo quantity:

I(X ∧Y )≤ I((px),(ρx),E ) . (5.20)

Holevo proved this inequality in 1973, when the concept of quantum relative entropy
was not well understood yet. The inequality is written as

∑
x

p(x)D(TrE (ρx)Fy‖TrE (ρ)Fy)≤∑
x

p(x)S(E (ρx)‖E (ρ)) .

This holds, since

D(TrE (ρx)Fy‖TrE (ρ)Fy)≤ S(E (ρx)‖E (ρ))

for every x as per Example 3.7.
Equation (5.20) bounds the performance of the detecting scheme. One can see

that in most cases the bound cannot be achieved.

5.6 The Entropy Exchange

Let E : B(H )→ B(K ) be a state transformation with Kraus representation

E (D) =∑
i

ViDV ∗i (Vi : H →K ).

For any density matrix ρ , the matrix

(
TrViρV ∗j

)n

i, j=1
(5.21)

is positive and has trace 1. Its von Neumann entropy is called entropy exchange:
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S(ρ ;E ) := S
(
TrViρV ∗j

)
(5.22)

Although the Kraus representation is not unique, this quantity is well defined.
Assume that

E (D) =∑
i

WiDW ∗
i (Wi : H →K )

is a different representation. Then there is a unitary matrix (ci j) such that

Vi =∑
j

ci jWj,

see Theorem 11.25. We have

TrViρV ∗j = Tr ∑k UikWkρ
(
∑l UjlWl

)∗ =
(

U
(
TrWkρW ∗

l

)
U∗
)

i j

and this shows that the density matrices

(
TrViρV ∗j

)n

i, j=1
and

(
TrWiρW∗

j

)n

i, j=1

are unitarily equivalent. Consequently, they have the same von Neumann entropy.
To indicate the reason of the terminology “entropy exchange,” we can consider

the unitary dilation of E : B(H )→ B(H ). The density E (ρ) is the reduction of
U(ρe⊗ρ)U∗, where U is a unitary acting on He⊗H , that is,

E (ρ) = TreU(ρe⊗ρ)U∗.

Before the interaction of our system and the environment the total state is ρe⊗ρ ,
whose entropy is S(ρ) providedρe is a pure state. After the interaction the entropy of
the total system remains the same but the entropy of the reduced densities changes.
The state of our system is E (ρ), while the density of the environment becomes
(5.21). Therefore, the entropy exchange is the entropy of the environment after the
interaction.

5.7 Notes

The proof of the strong subadditivity of the von Neumann entropy was first proven
by Lieb and Ruskai in 1973 before the quantum relative entropy was known [72].
The proof based on Lieb’s extension of the Golden–Thompson inequality is due
to József Pitrik. Another proof can be given by differentiating inequality (11.26)
at r = 1 [24]. The case of equality in SSA was first studied in 1988 by Petz [91].
Theorem 5.1 was proved by Alicki and Fannes [4].
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5.8 Exercises

1. Let X , Y and Z be random variables and assume that they form a Markov chain
in this order. Show that Z, Y and X form a Markov chain as well.

2. Let X and Y be random variables. Show that

I(X ∧Y ) = inf{S((X ,Y)‖(X ′,Y ′)) : X ′ and Y ′ are independent}.

3. Show that the entropy exchange S(ρ ;E ) is a concave function of E .
4. Give a proof for the strong subadditivity of the von Neumann entropy by differ-

entiating inequality (11.26) at r = 1.



Chapter 6
Quantum Compression

A pure state of a quantum mechanical system is given by a unit vector of a Hilbert
space. Assume that a quantum mechanical source emits a pure state |ϕ〉. If after
encoding and decoding we arrive at a state |ϕ ′〉 instead of |ϕ〉, our error could be
small when the vectors |ϕ〉 and |ϕ ′〉 are close enough. Hence to discuss the problem
of source coding, or data compression in the quantum setting, we need to know how
close two quantum states are.

6.1 Distances Between States

How close are two quantum states? There are many possible answers to this ques-
tion. Restricting ourselves to pure states, we have to consider two unit vectors,
|ϕ〉 and |ψ〉. Quantum mechanics has used the concept of transition probability,
|〈ϕ | ϕ〉|2, for a long time. This quantity is phase invariant, and it lies between 0
and 1. It equals 1 if and only if the two states coincide, that is, |ϕ〉 equals |ψ〉 up to
a phase.

The square root of the transition probability is called fidelity: F (|ϕ〉, |ψ〉) :=
|〈ϕ |ψ〉|. Shannon used a nonnegative distortion measure, and we may regard 1−F
(|ϕ〉, |ψ〉) as a distortion function on quantum states.

Under a quantum operation pure states could be transformed into mixed states,
hence we need extension of the fidelity:

F(|ϕ〉〈ϕ |,ρ) =
√
〈ϕ | ρ | ϕ〉, (6.1)

or in full generality

F(ρ1,ρ2) = Tr
√
ρ1/2

1 ρ2ρ
1/2
1 (6.2)

for positive matrices ρ1 and ρ2. This quantity was studied by Uhlmann in a different
context [113] and he proved a variational formula:

D. Petz, Quantum Compression. In: D. Petz, Quantum Information Theory and Quantum Statistics, Theoretical
and Mathematical Physics, pp. 83–90 (2008)
DOI 10.1007/978-3-540-74636-2 6 c© Springer-Verlag Berlin Heidelberg 2008
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Theorem 6.1. For density matrices ρ1 and ρ2

F(ρ1,ρ2) = inf
{√

Tr(ρ1G)Tr(ρ2G−1) : 0≤ G is invertible
}

holds.

Proof. The polar decomposition of the operator ρ1/2
2 ρ1/2

1 is

ρ1/2
2 ρ1/2

1 = V
√
ρ1/2

1 ρ2ρ
1/2
1 ,

where V is a unitary. Hence

F(ρ1,ρ2) = TrV ∗ρ1/2
2 ρ1/2

1 = Tr(V ∗ρ1/2
2 G−1/2)(G1/2ρ1/2

1 )

for any invertible positive G. Application of the Schwarz inequality (for the Hilbert–
Schmidt inner product) yields ≤ in the theorem.

To complete the proof, it is enough to see that the equality may occur for invert-

ible ρ1 and ρ2. It is easy to see that G = ρ1/2
2 V ∗ρ−1/2

1 is positive and makes equality.
�


From Theorem 6.1 the symmetry of F(ρ1,ρ2) is obvious and we can easily de-
duce the monotonicity of the fidelity under state transformation:

F(E (ρ1),E (ρ2))2 ≥ TrE (ρ1)GTrE (ρ2)G−1− ε
≥ Trρ1E

∗(G)Trρ2E
∗(G−1)− ε,

where E ∗ is the adjoint of E with respect to the Hilbert–Schmidt inner product,
ε > 0 is arbitrary and G is chosen to be appropriate. It is well known that E ∗ is
unital and positive, hence E ∗(G)−1 ≥ E ∗(G−1) (see Theorem 11.23).

Trρ1E
∗(G)Trρ2E

∗(G−1) ≥ Trρ1E
∗(G)Trρ2E

∗(G)−1

≥ F(ρ1,ρ2)2 .

In this way the monotonicity is concluded.

Theorem 6.2. For a state transformation E the inequality

F(E (ρ1),E (ρ2))≥ F(ρ1,ρ2)

holds.

From the definition (6.2) one observes that F(ρ1,ρ2) is concave in ρ2. (Remem-
ber that

√
t is operator concave, see Example 11.24.) However, the monotonicity

gives that F(ρ1,ρ2) is jointly concave as well. Consider the state transformation

E :

[
A B
C D

]
�→ A + D
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Then

λF(ρ1,ρ2)+ (1−λ )F(ρ ′1,ρ
′
2) = F

([
λρ1 0

0 (1−λ )ρ ′1

]
,

[
λρ2 0

0 (1−λ )ρ ′2

])

≤ F(λρ1 +(1−λ )ρ ′1,λρ2 +(1−λ )ρ ′2)

as an application of monotonicity and the concavity is obtained.
Another remarkable operational formula is

F(ρ1,ρ2) = max {|〈ψ1|ψ2〉| : E (|ψ1〉〈ψ1|) = ρ1, (6.3)

E (|ψ2〉〈ψ2|) = ρ2 for some state transformation E }.

This variational expression reduces the understanding of the fidelity of arbitrary
states to the case of pure states. The monotonicity property is implied by this for-
mula easily.

Convergence in fidelity is equivalent to convergence in trace norm: F(ρn,ρ ′n)→ 1
if and only if Tr |ρn−ρ ′n| → 0. This property of the fidelity is a consequence of the
inequalities

1−F(ρ1,ρ2)≤ 1
2

Tr |ρ1−ρ2| ≤
√

1−F(ρ1,ρ2) . (6.4)

6.2 Reliable Compression

Let (pi, |ψi〉) be a source of pure quantum states on a Hilbert space H . What is
mean by a reliable compression of the source (pi, |ψi〉)? The compression scheme
consists of two quantum operations C n : B(H n)→ B(Kn) and Dn : B(Kn)→
B(H n). Kn is a Hilbert space of dimension 2nRn . Let us assume that Kn ⊂H n and
Dn(D) = D⊕0. This compression scheme is reliable and has rate R when

(i) Rn → R,
(ii) ∑I pIF(|ψI〉〈ψI |,Dn ◦C n(|ψI〉〈ψI |))→ 1 as n→ ∞, where summation is over

the multiindeces I = (i1, i2, . . . , in); moreover, pI = pi1 pi2 . . . pin and |ψI〉 =
|ψi1〉⊗ |ψi2〉⊗ . . .⊗|ψin〉.

The first condition tells that asymptotically 2R dimension is used for the compres-
sion of a single emission of the source on the average. (This dimension is equivalent
to the use of R qubits.) On the other hand, the second condition tells that the emit-
ted state and the compressed one are close in the average; the expectation value of
the fidelity is converging to 1. (Note that this definition of the reliable compression
scheme is not the most general, since the form of Dn is restricted.)

The compression theorem depends on the high probability subspace theorem
obtained by Ohya and Petz (Theorem. 1.18 in [83]).

Theorem 6.3. Let ρ be a density matrix acting on the Hilbert space H . Then the
n-fold tensor product ρn := ρ⊗ρ⊗·· ·⊗ρ acts on the n-fold product space Hn :=
H ⊗H ⊗·· ·⊗H . For any 1 > ε > 0 we have
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lim
n→∞

1
n

inf{logTr Qn : Qn is a projection on Hn, Tr ρnQn ≥ 1− ε}= S(ρ).

Roughly speaking, the theorem tells that a projection Qn of large probability has the
dimension exp(nS(ρ)) at least.

Proof. First we should construct projections of high probability and of small dimen-
sion. Fix δ > 0 and let P(n,δ ) be the spectral projection of− 1

n logρn corresponding
to the interval (S(ρ)− δ ,S(ρ)+ δ ). It follows that

(S(ρ)− δ )P(n,δ )≤
(
−1

n
logρn

)
P(n,δ )≤ (S(ρ)+ δ )P(n,δ )

and hence
e−n(S(ρ)+δ )P(n,δ ) ≤ ρnP(n,δ )≤ e−n(S(ρ)−δ )P(n,δ ). (6.5)

From the first inequality, we can easily conclude

1
n

logTrP(n,δ )≤ S(ρ)+ δ .

and limsupn→∞ ≤ S(ρ) follows concerning the limit in the statement.
Let now Qn be a projection on Hn such that Tr Qnρn ≥ 1− ε . This implies

liminf
n→∞

TrρnQnP(n,δ )≥ 1− ε,

since

TrρnQnP(n,δ ) = TrρnQn−TrρnQnP(n,δ )⊥

≥ TrρnQn−TrρnP(n,δ )⊥

and P(n,δ )→ I from the law of large numbers.
Next we can use the second inequality of (6.5) and estimate as follows:

TrQn ≥ TrQnP(n,δ )

≥ Tr ρnQnP(n,δ )en(S(ρ)−δ )

= en(S(ρ)−δ ) ·TrρnQnP(n,δ )

and

1
n

logTrQn ≥ S(ρ)− δ+
1
n

logTrρnQnP(n,δ ).

When n→ ∞ the last term of the right-hand side converges to 0. Since δ > 0 can be
arbitrarily small, we can conclude that

liminf
n→∞

1
n

logTrQn ≥ S(ρ).

�
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The positive part of Schumacher’s source coding theorem is the following.

Theorem 6.4. Let (pi, |ψi〉) be a source of pure states on a Hilbert space H and
let S be the von Neumann entropy of the density matrix ∑i pi|ψi〉〈ψi|. If R > S, then
there exists a reliable compression scheme of rate R.

Proof. Let ρ be the density matrix∑i pi, |ψi〉〈ψi| and apply the high probability sub-
space theorem with a sequence εn → 0. We can obtain a high probability subspace
Kn ⊂H n with orthogonal projection Pn such that

dimKn ≤ 2nR and TrρnPn → 1.

Fix a basis (ξi) in the Hilbert space H n such that {ξi : i ∈ A} is a basis of Kn

and {ξi : i ∈ B} is a basis of K ⊥
n .

Next give the quantum operations C n : B (H n)→B (Kn) and Dn : B (Kn)→
B (H n). Set

C n(σ) = PnσPn +∑
i∈B

XiσX∗i ,

where Pn is the orthogonal projection H n →Kn, Xi = |ξ 〉〈ξi| with a fixed vector
ξ ∈Kn. Since

∑
i∈B

X∗i Xi =∑
i∈B
|ξi〉〈ξi|= P⊥n ,

C n is really a state transformation.
For ρ ∈B, we have (Kn) Dn(ρ) acting on Kn⊂H n, and ρ and 0 on H n�Kn.

Our task is to show that

Fn :=∑
I

pIF(|ψI〉〈ψI |, Dn ◦C n(|ψI〉〈ψI |)

converges to 1. Give a lower estimate simply by neglecting the second term in the
definition of C n(σ) (see Exercise 3):

Fn ≥∑
I

pI〈ψI ,PnψI〉= TrρnPn

that converges to 1. Hence Fn → 1. �

Note that the pure state |ψi〉 compressed into mixed state in the scheme we have

constructed. It is also remarkable that the statistical operator ∑ pi|ψi〉〈ψi| of the
ensemble played a key role and not the ensemble itself. (Many different ensembles
may have the same statistical operator.)

Now let us turn to the negative part of Schumacher’s theorem.

Theorem 6.5. Let (pi, |ψi〉) be a source of pure states on a Hilbert space H and
let S be the von Neumann entropy of the density matrix ∑i pi|ψi〉〈ψi|. If R < S, then
reliable compression scheme of rate R does not exists.
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Proof. Assume that a reliable compression scheme of rate R < S exists. Then

Fn : =∑
I

pIF(|ψI〉〈ϕI |, Dn ◦C n(|ψI〉〈ψI |)

=∑
I

pI

√
〈ψI |C n(|ψI〉〈ψI |)|ψI〉

≤
√
∑

I
pI〈ψI |C n(|ψI〉〈ψI |)|ψI〉

by concavity of the square root function. Moreover,

∑
I

pI〈ψI |C n(|ψI〉〈ψI |)|ψI〉 = ∑
I

pITr |ψI〉〈ψI |PnC
n(|ψI〉〈ψI |)

≤∑
I

pITr |ψI〉〈ψI |Pn = TrρnPn

for the projection Pn of H n onto Kn. Since the compression is of rate R we have

lim
n

1
n

logdimPn ≤ R .

On the other hand, the high probability subspace theorem tells us that in this case

limsup
n

TrρnPn ≥ 1− ε

is impossible for any 0 < ε < 1. We have arrived at a contradiction with the assump-
tion that the average fidelity is converging to 1. In fact, it has been shown that for
any compression scheme of rate R the average fidelity converges to 0. �


6.3 Universality

The data compression protocol depends heavily on the high probability subspace
theorem. The construction of the previous section gives that the compression scheme
can be constructed from the statistical operator ∑i pi, |ψi〉〈ψi|. If the high probabil-
ity subspace can be constructed universally for many statistical operators, then we
can have a universal compression scheme as well. Since the von Neumann entropy
is included in the properties of the subspace, this must be given. It turns out that this
information is sufficient to construct a universal scheme for all densities of smaller
entropy.

A density matrix is given by the eigenvalues λ j and by the eigenvectors ξ j. First
we should make the large probability subspace universal in the spectrum than in
the eigenbasis. When the eigenbasis is fixed, we are essentially in the framework
of classical information theory and may follow the method of types developed by
Csiszár and Körner (see the proof of Theorem 3.6).
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Let ξ1,ξ2, . . . ,ξk be the eigenvectors of the density matrix ρ and assume that
S(ρ)≤ R. The corresponding eigenvalues (λ1,λ2, . . . ,λk) form a probability distri-
bution on the set X := {1,2, . . . ,k} and H(λ1,λ2, . . . ,λk) = S(ρ).

Let

An :=
{

(x1,x2, . . . ,xn) ∈X n : H(λx1 ,λx2 , . . .λxn)≤ R− k
log(n + 1)

n

}
.

We learnt in the proof of Theorem 6.6 that the cardinality of An is at most 2nR.
Therefore the dimension of the subspace K 0

n generated by the vectors

{ξx1⊗ ξx2⊗·· ·⊗ ξxn ∈H : (x1,x2, . . . ,xn) ∈ An}

is at most 2nR. Denote by P0
n the orthogonal projection onto the subspace K 0

n .
When ω = ∑ j κ j|ξ j〉〈ξ j| is a density matrix such that

S(ω) = H(κ1,κ2, . . . ,κk) < R,

then
TrωnP0

n ≥ 1− (n + 1)k2−nC (C > 0) (6.6)

as per (3.14). So the convergence is uniform and exponential. The subspace K 0
n is

already universal in the class of density matrices which have eigenbasis ξ1,ξ2, . . . ,ξk

(and von Neumann entropy smaller than R).
Let U be a unitary acting on H . The subspace

K U
n := (U⊗U⊗·· ·⊗U)K 0

n

is universally good for the class of densities with eigenvectors Uξ1,Uξ2, . . . ,Uξk.
Let Kn be the subspace generated by the subspaces K U

n and denote by Qn the
corresponding projection. Since Kn ⊃K U

n , we still have

TrωnQn → 1 .

What we should do is the estimation of the dimension of Kn. If M denote the
dimension of the linear space generated by the n-fold products U ⊗U ⊗ . . .⊗U
when U runs over the unitaries on H , then dimKn ≤ dimK 0

n ×M. U ⊗U ⊗ . . .
⊗ U belongs to the symmetric tensor power of the space of k × k matrices.
Therefore,

M ≤ (n + k2−1)!
(k2−1)!n!

≤ (n + 1)k2
.

This estimate guarantees

lim
n

1
n

logdimQn ≤ R .
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The above arguments lead to the following.

Theorem 6.6. Let R > 0 and H be a Hilbert space. There is a projection Qn acting
on the n-fold product space H ⊗H ⊗·· ·⊗H such that

limsup
n

1
n

logTrQn ≤ R (6.7)

and for any density matrix ρ acting on the Hilbert space H with von Neumann
entropy S(ρ) < R

lim
n

TrρnQn = 1, (6.8)

where ρn = ρ⊗ρ⊗·· ·⊗ρ is the n-fold product state.

6.4 Notes

The operational expression (6.3) for the fidelity is from [35]. The universal com-
pression in the setting was initiated in [65].

Let An be the n-fold tensor product of the matrix algebra Mm. When we want
to work with these algebras with infinitely many values of n, or with arbitrarily
large value of n, it is useful to consider the infinite tensor product A . The finite-
dimensional algebra An is identified with the subalgebra An⊗CI of An+1. So the
union ∪nAn becomes an algebra, called “local algebra.” This is not complete with
respect to the operator norm; its norm completion is the so-called quasi-local alge-
bra A . The quasi-local algebra plays an important role in the thermodynamics of
quantum spin system, but it is the natural formalism to describe a quantum source
as well. The product states are particular ergodic states of A , and most of the results
of the chapter hold for general ergodic states, (see [16, 66]).

6.5 Exercises

1. Check that (6.2) reduces to (6.1).
2. Let

ρ1 := 1
2 (σ0 + x ·σ) and ρ2 := 1

2 (σ0 + y ·σ)

be the representation of the 2×2 density matrices in terms of the Pauli matrices
(cf. (2.2)). Compute the trace distance ‖ρ1−ρ2‖1 and the fidelity F(ρ1,ρ2) in
terms of the vectors x and y.

3. Use Theorem 11.9 to show that the fidelity F(A,B) = Tr
√

A1/2B A1/2 of positive
matrices is a monotone function of any of the two variables.



Chapter 7
Channels and Their Capacity

Roughly speaking, classical information means a 0–1 sequence and quantum infor-
mation is a state of a quantum system. An information channel transfers information
from the input, Alice, to the output, Bob. During the transmission, damage may oc-
cur due to the possible channel noise. One aim of information theory is to optimize
the use of the transmission.

7.1 Information Channels

Let X and Y be two finite sets, X will be called the input alphabet and Y is
the output alphabet. A classical channel sends a probability measure on X into a
probability measure on Y , or formulated in a different way: Assume that a random
variable X with values in X is the random source and another random variable Y
with values in Y is the output. The conditional probabilities

Tyx := Prob(Y = y |X = x)

are characteristic for the channel. Given the input distribution p, the distribution
of the output is

q(y) =∑
x

Tyx p(x). (7.1)

The function T : Y ×X → [0,1] is a Markov kernel,

∑
y

Tyx = 1. (7.2)

In the matrix notation (7.1) may be written as q = T p and condition (7.2) says that
T is a column stochastic matrix.

A simple example of a channel is the noisy typewriter. The channel input is re-
ceived exactly with probability 1/2 and it is transformed into the next letter (cycli-
cally) with probability 1/2. The Markov kernel is

D. Petz, Channels and Their Capacity. In: D. Petz, Quantum Information Theory and Quantum Statistics, Theoretical
and Mathematical Physics, pp. 91–107 (2008)
DOI 10.1007/978-3-540-74636-2 7 c© Springer-Verlag Berlin Heidelberg 2008
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Tyx =

{
1/2 if y = x or y = x + 1,

0 otherwise.

Assume that the input has 26 symbols. It is easy to use this channel in a noiseless
way; if we use only every alternate symbol, then we can transmit without error.
The capacity of the noisy typewriter is at least the capacity of a noiseless channel
transmitting 13 symbols.

In quantum probability it is difficult to speak about conditional probabilities;
therefore the quantum channel is formulated slightly differently. The channeling
transformation is an affine mapping of the density matrices acting on the input
Hilbert space H into density matrices on the output Hilbert space K . A channeling
transformation extends to all linear operators; however, not all such transformations
are regarded as a channel. The representation

E : B(H )→ B(K ), E (ρ) =∑
i

ViρV ∗i

is required with some operators Vi : H →K satisfying

∑
i

V ∗i Vi = I.

In other words, the quantum channel is a completely positive and trace-preserving
linear mapping.

A simple quantum channel is given as

Ep

(
1
2σ0 + w ·σ

)
= p
(

1
2σ0 + w ·σ

)
+(1− p) 1

2σ0 (0 < p < 1)

on 2× 2 density matrices. The so-called depolarizing channel keeps the state of
the qubit with probability p and moves it to the completely apolar state σ0/2 with
probability 1− p.

It is a crucial difference between classical and quantum mechanical channels that
in the classical setting the joint distribution of the random input and output is the
tool describing the transmission. In the quantum case, one cannot speak about joint
distribution and even something analogous is not available.

7.2 The Shannon Capacity

When X is the input and Y is the output of a classical channel, the mutual informa-
tion quantity I(X ∧Y ) measures the amount of information going through the chan-
nel. The Shannon capacity is the maximum of all mutual informations I(X ∧Y )
over distributions of the input X :

C = sup
p

I(X ∧Y ). (7.3)
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(Concerning the mutual information, see (5.1).) Note that the distribution of the
output and the joint distribution of the input and the output are determined by the
channel when the input distribution p is given. (It can be misleading that the standard
notation does not include the Markov kernel.)

Example 7.1. Assume that the noisy typewriter (described above) handles an al-
phabet of 2n characters. Let the input distribution be p(x), then the joint distribution
of the input and output is

p(x,y) =
p(x)

2
when y = x or y = x + 1.

For the mutual information we obtain

−∑
x

p(x)+ p(x−1)
2

log
p(x)+ p(x−1)

2
−1.

Since the first term is the Shannon entropy of a distribution on a 2n-point space, the
maximum of the mutual information is log2n−1 = logn. The maximum is attained
when

p(x)+ p(x−1)
2

=
1

2n

for every x. The capacity can be reached by using only the alternate symbols, but
there are many other input distributions giving the same result. �

Example 7.2. The classical counterpart of the depolarizing channel has {0, 1} as
the input and the output alphabet. If the input is preserved by probability t, then
Prob(Y = X) = t. This is the symmetric binary channel with the transfer matrix

[
t 1− t

1− t t

]
.

The conditional entropy H(Y |X) is η(t)+η(1− t) = H(t, 1− t) and this does not
depend on the input distribution (p, 1− p). Therefore, the maximum of H(Y )−
H(Y |X) is reached when the input and the output are uniform. The capacity is

1−H(t,1− t).

If t = 1/2, then the capacity is 0. In this case the input and the output are independent
and information transfer is not possible. In all other cases, the capacity is strictly
positive. It will turn out that information transfer is possible with an arbitrary small
probability of error.

An extension of the example is in Exercise 1. �

Assume that we have two channels given by the Markov kernels T and T ′. If T

is used to transfer the input X1 and T ′ is used to transfer X2 in a memoryless way,
then the Markov kernel of the joint use is
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T ′′(y1,y2)(x1,x2) = Ty1x1T ′y2x2
.

If the joint channel gives the output (Y1, Y2) from the input (X1, X2), then Y1 does
not depend on X2 and Y2 does not depend on X1.

The next theorem tells us the additivity of the Shannon capacity.

Theorem 7.1. In the above setting

C(T ′′) = C(T )+C(T ′).

holds.

Proof. It is enough to show that

I((X1,X2)∧ (Y1,Y2))≤ I(X1∧Y1)+ I(X2∧Y2) .

This implies that C(T ′′)≤C(T )+C(T ′) and the converse is rather obvious.

I((X1,X2)∧ (Y1,Y2)) = H(Y1,Y2)−H(Y1,Y2|X1,X2)
= H(Y1,Y2)−H(Y1|X1,X2)−H(Y2|Y1,X1,X2)
= H(Y1,Y2)−H(Y1|X1)−H(Y2|X2),

since Yi depends only on Xi and it is conditionally independent of everything else.
From the subadditivity

H(Y1,Y2)−H(Y1|X1)−H(Y2|X2)≤ H(Y1)−H(Y1|X1)+ H(Y2)−H(Y2|X2)

and this is the inequality I wanted to show. �

Assume that the channel is used to communicate one of the messages {1, 2, . . . ,

2m} to the receiver. Since m could be very large, we can use the channel n times.
The mathematical form of memoryless is the condition

T(y1,y2,...,yn)(x1,x2,...,xn) =
n

∏
i=1

Tyixi .

A (2m, n) code for the channel consists of an encoding and a decoding function.
The encoding fn : {1, 2, . . . , 2m}→X n associates a codeword to a message. The
decoding function

gn : Y n → {1,2, . . . ,2m}

assigns a message to each channel output. Let λi be the probability that 1 ≤ i ≤ 2m

was sent over the channel but i was not received. Then λi is a probability of error
and

P(n)
e =

1
2m

2m

∑
i=1

λi
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is the average probability of error.
The aim of channel coding is to keep the transmission rate

R =
m
n

high and the error probability small. The transmission rate tells us how long 0–1
sequences are sent by one use of the channel.

A rate R is achievable if there exists a sequence of (2nR, n) codes such that the
average probability of error tends to 0 as n→ ∞.

Shannon’s noisy channel coding theorem tells us that the capacity is exactly
the maximal achievable transmission rate.

Theorem 7.2 (The channel coding theorem). If R < C then there exists a sequence
of (2nR, n) codes such that the average probability of error Pn

e tends to 0. Conversely,
if a sequence of (2nR, n) codes has average probability of error tending to 0, then
R≤C.

The theorem remains true if the average probability of error is replaced by the
maximal probability of error. The theorem has a positive and a negative part. The
transmission rate R < C is achievable, while R > C is not.

7.3 Holevo Capacity

Let H and K be the input and output Hilbert spaces of a quantum communication
system. The channeling transformation E : B(H )→ B(K ) sends density oper-
ators acting on H into those acting on K . A quantum code is a probability dis-
tribution of finite support on the input densities. So ((px), (ρx)) is a quantum code
if (px) is a probability vector and ρx denotes states of B(H ). The quantum states
ρx are sent over the quantum mechanical media, for example optical fiber, and yield
the output quantum states E (ρx). The performance of coding and transmission is
measured by the quantum mutual information

χ((px),(ρx),E ) =∑
x

pxS(E (ρx)‖E (ρ)) = S(E (ρ))−∑
x

pxS(E (ρx)), (7.4)

where ρ =∑x pxρx. Taking the supremum over certain classes of quantum codes, we
can obtain various capacities of the channel. Here all quantum codes are allowed.

CHo(E ) := sup
{
χ((px),(ρx),E ) : ((px),(ρx)) is a quantum code

}
. (7.5)

Since (7.4) is also called Holevo quantity, CHo(E ) is often referred as Holevo ca-
pacity. Taking the supremum over all mutual information χ((px), (ρx), E ) such
that ρx belongs to a fixed convex set S in the state space, we can get the restricted
Holevo capacity CS

Ho(E ).
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The Holevo capacity provides a bound on the performance when classical infor-
mation is transmitted through the channel. In order to transmit classical informa-
tion, the sender uses a quantum code and a measurement is performed on the output
Hilbert space K by the receiver. The measurement of a family (Ay) of positive op-
erators on K is given such that∑y Ay = I. Assume that the states ρx are fixed. Given
the input distribution (px), the output distribution is

q(y) =∑
x

Tr pxE (ρx)Ay

after the channeling and measurement. What we have is a classical channel with
transition probabilities Tyx = TrE (ρx)Ay. Shannon’s mutual information of the input
and the output is

∑
x

pxD(TrE (ρx)Ay‖TrE (ρ)Ay), (7.6)

where the relative entropy D is classical; we have two distributions parameterized
by y.

D(TrE (ρx)Ay‖TrE (ρ)Ay)≤ S(E (ρx)‖E (ρ)) (7.7)

holds due to the monotonicity of the relative entropy (applied here to the measure-
ment channel). When we multiply this inequality by px and sum up over x, we can
conclude as follows.

Theorem 7.3. Shannon’s mutual information (7.6) is bounded by the Holevo quan-
tity (7.4).

This statement was proved first by Holevo in 1973. That time relative entropy
was not in use yet. The above argument shows us that the classically accessible
information reaches the Holevo quantity if and only if in (7.7) equality holds for
every x. (This happens very rarely, and the condition is related to sufficiency.)

In order to estimate the quantum mutual information, I introduce the concept of
relative entropy or divergence center. Let S be a family of states and let R > 0.
We can say that the state ρ is a divergence center for S with radius ≤ R if

S(ρs‖ρ)≤ R for every ρs ∈S . (7.8)

In the following discussion about the geometry of relative entropy the ideas of
[28] can be recognized very well.

Lemma 7.1. Let (px) be a probability distribution and (ρx) be a family of states on
the input Hilbert space of a channel E . If D is a relative entropy center with radius
≤ R for {E (ρx) : x}, then

χ((px),(ρx),E )≤ R.

Proof. We have

S(E (ρx)‖D) =−S(E (ρx))−TrE (ρx) logD≤ R
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hence

∑
x

pxS(E (ρx)‖E (ρ)) = −∑
x

pxS(E (ρx))−TrE (ρ) logE (ρ)

≤ R−TrE (ρ)(logE (ρ)− logD)
= R−S(E (ρ)‖D).

It is quite clear, that the previous inequality is close to equality, if S(E (ρx)‖‖D) is
close to R and ∑x pxE (ρx) is close to D. �


Let S be a family of states. The state ρ is said to be an exact relative entropy
center with radius R if

R = inf
D

sup{S(ρs‖D) : ρs ∈S } and ρ = argminD sup{S(ρs‖D) : ρs ∈S },

where inf is over all densities D. (When R is finite, then there exists a minimizer,
because D �→ sup{S(ρs‖D) : ρs ∈ S )} is lower semi-continuous with compact
level sets, cf. Proposition 5.27 in [83].)

Lemma 7.2. Let D0, D1 and ρ be states of B(K ) such that the Hilbert space K is
finite dimensional and set Dλ = (1−λ )D0 +λD1 (0≤λ ≤ 1). If S(D0‖ρ), S(D1‖ρ)
are finite and

S(Dλ‖ρ)≥ S(D1‖ρ) (0≤ λ ≤ 1)

then

S(D1‖ρ)+ S(D0‖D1)≤ S(D0‖ρ).

Proof. Due to the assumption S(Dλ‖ρ) < +∞, the kernel of D is smaller than that
of Dλ . The function

f (λ ) := S((Dλ‖ρ) =−S((1−λ )D0 +λD1)− (1−λ )D0 logρ−λD1 logρ

is convex on [0, 1]. Our condition is f (λ ) ≥ f (1). It follows that f ′(1) ≤ 0. Hence
we have

f ′(1) = Tr(D1−D0)(I + logD1)−Tr(D1−D0) logρ
= S(D1‖ρ)−S(D0‖ρ)+ S(D0‖D1)≤ 0.

This is the inequality we had to obtain.
We can note that in the differentiation of the function f (λ ) the well-known

formula

∂
∂ t

TrF(A + tB)
∣∣∣
t=0

= Tr
(
F ′(A)B

)

can be used. (See also Theorem 11.9.) �
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Lemma 7.3. Let {ρi : 1≤ i≤ n} be a finite set of states on B(K ) and assume that
the Hilbert space K is finite dimensional. Then the exact relative entropy center is
unique and it is in the convex hull of the states {ρi : i}.
Proof. Let K be the (closed) convex hull of the states ρ1, ρ2, . . . , ρn and let ρ be
an arbitrary state such that S(ρi‖ρ) < +∞. There is a unique state ρ ∈ K such
that S(ρ ′‖ρ) is minimal (where ρ ′ runs over K) (see Theorem 5.25 in [83]). Then
S((1−λ )ρi +λρ ′‖ρ)≥ S(ρ ′‖ρ) for every 0≤ λ ≤ 1 and 1≤ i≤ n. It follows from
the previous lemma that

S(ρi‖ρ)≥ S(ρi‖ρ ′).

Hence the relative entropy center of ρi’s must be in K. The uniqueness of the exact
relative entropy center follows from the fact that the relative entropy functional is
strictly convex in the second variable. �


The following result is due to Ohya, Petz and Watanabe [84]. It tells us that the
capacity is the exact relative entropy radius of the range (on density matrices).

Theorem 7.4. Let E : B(H )→ B(K ) be a channel and S be a convex set of
states on H . Then

sup
{
χ((px),(ρx),E ) : (px) is a probability distribution and ρx ∈S

}

equals the relative entropy radius of the set E (S ).

Proof. Let ((px), (ρx)) be a quantum code such that ρx ∈S . Then χ((px), (ρx), E )
is at most the relative entropy radius of {E (ρx)} (according to Lemma 7.2), which
is obviously majorized by the relative entropy radius of E (S ). Therefore, the re-
stricted capacity does not exceed the relative entropy radius of E (S ).

To prove the converse inequality, let us assume that the exact divergence radius
of E (S ) is larger than t ∈ R. Then we can find densities ρ1, ρ2, · · · , ρn ∈ B(H )
such that the exact relative entropy radius R of E (ρ1), . . . , E (ρn) is larger than t.
Lemma 7.3 tells us that the relative entropy center ρ of E (ρ1), . . . , E (ρn) lies in
their convex hull K′. By possible reordering of the states ρi we can achieve that

S(E (ρi)‖ρ)

{
= R if 1≤ i≤ k,

< R if k < i≤ n.

Choose ρ ′ ∈ K′ such that S(ρ ′‖ρ) is minimal (ρ ′ is running over K′). Then

S(E (ρi)‖ερ ′+(1− ε)ρ) < R

for every 1≤ i≤ k and 0 < ε < 1, as per Lemma 7.2. However,

S(E (ρi)‖ερ ′+(1− ε)ρ) < R

for k ≤ i ≤ n and for a small ε by a continuity argument. In this way, it can be
concluded that there exists a probability distribution (q1, q2, . . . , qk) such that
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k

∑
i=1

qiE (ρi) = ρ , S(E (ρi)‖ρ) = R.

Consider now the quantum code ((qi), (ρi)) as above and have

∑k
i=1 qiS(E (ρi)‖E (∑k

j=1 q jρ j)) = ∑k
i=1 qiS(E (ρi)‖ρ) = R.

So we have found a quantum code which has quantum mutual information larger
than t. The channel capacity must exceed the entropy radius of the range. �

Example 7.3. Consider the symmetric binary channel on 2×2 matrices:

E (w0σ0 + w ·σ) = w0σ0 +(αw1,βw2,γw3) ·σ , (7.9)

where

0≤ α ≤ β ≤ γ

for the real parameters α, β , γ and

1− γ ≥ β −α.

The range of the symmetric channel (acting on density matrices) has the shape of
an ellipsoid.

The relative entropy radius of the range must exceed the relative entropy radius
of the two-point-set:

1
2 (σ0± γσ3) = 1

2

[
1± γ 0

0 1∓ γ
]
.

The relative entropy center is on the line segment connecting the two points, and
due to symmetry it is the middle point, that is, the tracial state τ . Hence the relative
entropy radius is

S

(
1
2

(
1± γ 0

0 1∓ γ
)∥∥∥ 1

2

(
1 0
0 1

))
= η
(

1 + γ
2

)
+η
(

1− γ
2

)
.

It is easy to see that S(E (ρ)‖τ) is less or equal to this relative entropy, since

S
(1

2 (σ0 + w ·σ)
∥∥τ)

depends on ‖w‖ and it is an increasing function of it. Therefore, τ is the exact
relative entropy center and the capacity of the channel is

CHo(E ) = η
(

1+γ
2

)
+η
(

1−γ
2

)
(7.10)

which is H((1− γ)/2, (1 + γ)/2). �
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The covariance of a channel under some unitaries can be used to determine
the relative entropy center of the range. Let E : B(H )→ B(K ) be a channeling
transformation and U be a set of unitaries acting on H . Assume that for every
U ∈U there exists a unitary α(U) on K such that

E (U ·U∗) = α(U)E ( ·)α(U)∗ (7.11)

holds for every U ∈U . Assume that the relative entropy center of the range is E (ρ).
Since

S(E (ω)||α(U)∗E (ρ)α(U) = S(α(U)E (ω)α(U)∗||E (ρ))
= S(E (UωU∗||E (ρ))≤ radius

holds for every ω , the uniqueness of the relative entropy center implies that

α(U)E (ρ)α(U)∗ = E (ρ) (7.12)

for every U ∈U .

Example 7.4. The depolarizing channel Ep,n : Mn →Mn is defined as

Ep,n(A) = pA +(1− p)
I
n

TrA , where − 1
n2−1

≤ p≤ 1

(see Example 2.13). The covariance (7.11) holds for every unitary U = α(U),
and (7.12) tells us the relative entropy center must be the tracial state. Moreover,
S(Ep,n(ρ)) has the same value for every pure state ρ and the relative entropy radius
of the range is

S(Ep,n(ρ)‖τ) = logn−H
(

p +
1− p

n
,

1− p
n

, . . . ,
1− p

n

)
. (7.13)

which is also the Holevo capacity of the channel as per Theorem 7.4.
The classical capacity of a channel is bounded by the Holevo capacity (see The-

orem 7.3). In this example the classical capacity reaches the Holevo capacity.
Let e1, e2, . . . , en be a basis in the Hilbert space. Use the pure state |ex〉〈ex|

to encode 1 ≤ x ≤ n and consider the measurement given by the partition of unity
{|ex〉〈ex| : 1≤ x≤ n}. Then the induced classical channel is described by the matrix

Tyx = pδx,y +
1− p

n
.

The Shannon capacity is exactly (7.13) as it is stated in Exercise 7.7. �

If the relative entropy center of the range of a state transformation E : B(H )→

B(K ) is the tracial trace τ , then the Holevo capacity is

CHo(E ) = sup{S(E (ρ)‖τ) : ρ}= logn− inf{S(E (ρ)) : ρ} ,
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where n is the dimension of the Hilbert space K and ρ runs over the density
matrices in B(H ). The quantity

h(E ) := inf{S(E (ρ)) : ρ} (7.14)

is called the minimum output entropy.

Theorem 7.5. Let E , F : B(H )→ B(K ) be channels with finite-dimensional K
and let S denote the set of all separable states on H ⊗H . Then

CS
Ho(E ⊗F ) = CHo(E )+CHo(F ) .

Proof. The inequality ≥ is obvious.
To prove the converse, take states ρi such that

S(E (D)‖E (ρ1))≤CHo(E )+ ε and S(F (D)‖F (ρ2))≤CHo(F )+ ε

for a given ε > 0 and for all densities D. It suffices to show that

S(E ⊗F (ρ̄)‖E ⊗E (ρ1⊗ρ2))≤CHo(E )+CHo(F )+ 2ε

for every separable state ρ̄ . Assume that ρ̄ = ∑iλiρ ′i ⊗ρ ′′i . Then

S
(
(E ⊗F )(∑iλiρ ′i ⊗ρ ′′i )‖(E ⊗F )(ρ1⊗ρ2)

)
≤∑

i

λiS
(
(E ⊗F )(ρ ′i ⊗ρ ′′i )‖(E ⊗F )(ρ1⊗ρ2)

)

=∑
i

λi

(
S(E (ρ ′i )‖E (ρ1))+ S(F (ρ ′′i )‖F (ρ2))

)

≤∑
i

λi

(
CHo(E )+CHo(F )+ 2ε

)
= CHo(E )+CHo(F )+ 2ε,

where the joint convexity was used first and then the additivity. This shows that the
relative entropy radius of (E ⊗F )(S ) cannot exceed CHo(E )+CHo(F ) and the
statement follows. �


The theorem shows that using separable states for a quantum code the capacity
of the product channel E ⊗F will not exceed CHo(E )+CHo(F ). What happens
when entangled states are used? This is the additivity question for the capacity; it
is an open problem. There is no example of channels such that the capacity is not
additive.

Theorem 7.6. Let E : B(H ) → B(H ) be a channel with finite-dimensional
Hilbert space H . Then the following conditions are equivalent.

(a) E has the form

E (B) =∑
i

XiTr(YiB)
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with some positive operators Xi and Yi.
(b) The range of id⊗E does not contain an entangled state.
(c) id⊗E (|Φ〉〈Φ|) is separable for a maximally entangled state |Φ〉〈Φ|.
(d) E has a Kraus representation

E (B) =∑
j

V ∗j BVj

with operators Vj of rank one.

Proof. While proving that (a) implies (b), it may be assumed that E (B) = XTr(Y B).
Then

(id⊗E )(A⊗B) = Tr(Y B)(A⊗X) = F (A⊗B)⊗X ,

where F is a positive linear mapping determined by A⊗ B �→ (TrBY )A. It can
be concluded that (id⊗ E )(W ) = F (W )⊗ X and any state in the range must be
separating.

(b)⇒ (c) is obvious. Assume (c), this means that

∑
i j

Ei j⊗E (Ei j) =∑
k

λk pk⊗qk (7.15)

for some projections pk and qk of rank one and positive numbers λk. (Recall that Ei j

are the matrix units.)
From (7.15) we can deduce that

E (Ei j) =∑
k

λk〈ηk,Ei jηk〉qk

where pk = |ηk〉〈ηk| for some vectors ηk. In place of Ei j we can put an arbitrary
operator B, and can arrive at the Kraus representation stated in (d).

Finally, (d)⇒ (a), since

(|x〉〈y|)∗B|x〉〈y|= |y〉〈y|TrB|x〉〈x| ,

and this completes the proof. �

A channel satisfying the conditions of the previous theorem is called entangle-

ment breaking channel. It follows from condition (a) that the range of E ⊗F does
not contain entangled states if E is an entanglement breaking channel and F is an
arbitrary channel. Indeed, assume that E is in the form of (a) and set the positive
mapping αi as

αi(A⊗B) = BTrYiA

for every i. Then

E ⊗F (W ) =∑
i

Xi⊗F (αi(W ))
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and all states in the range are separable. Now application of Theorem 7.5 gives the
following.

Theorem 7.7. For an entanglement breaking channel E : B(H ) → B(H ) and
for an arbitrary channel F : B(H )→ B(H ), the additivity of the capacity holds,
that is,

CHo(E ⊗F ) = CHo(E )+CHo(F ) .

The lack of entanglement makes the situation close to the classical case.

Example 7.5. In this example, I want to compute the Holevo capacity of the square
of the depolarizing channel (see (2.32)). The majorization of density matrices will
be used.

By easy computation we have

(Ep⊗Ep)(X) = p2X +
p(1− p)

n
I⊗Tr1X +

p(1− p)
n

Tr2X⊗ I +
(1− p)2TrX

n2 I⊗ I

Let us study the action of (Ep⊗Ep) on projections of rank 1. If X is such a projec-
tion, then D1 := Tr 2X and D2 := Tr 1X have the same spectrum. In particular,

(Ep⊗Ep)(R⊗R) = p2R⊗R +
p(1− p)

n
I⊗R +

p(1− p)
n

R⊗ I +
(1− p)2

n2 I⊗ I.

To show that

S
(
(Ep⊗Ep)(Q)

)≥ S
(
(Ep⊗Ep)(R⊗R)

)
,

the majorization relation ≺ is used. Recall that A ≺ B means that σk(A) ≤ σk(B)
for every k (see the Appendix). It can be shown that

np Q+(1− p)I⊗D2 +(1− p)D1⊗ I ≺ npR⊗R +(1− p)I⊗R +(1− p)R⊗ I .
(7.16)

The right-hand side of (7.16) consists of commuting operators and it is easy to
compute the eigenvalues: np+2(1− p) with multiplicity 1, (1− p) with multiplicity
2(n− 1), and 0 with multiplicity (n− 1)2. Therefore, σk = np +(k + 1)(1− p) for
1≤ k≤ 2n−1 and σk = np + 2n(1− p) for 2n≤ k≤ n2.

To analyze the left-hand side of (7.16), the decreasingly ordered eigenvalues of
D1 and D2 are denoted by λ1, λ2, . . . , λn. Then the eigenvalues of I⊗D2 + D1⊗ I
are λi +λ j(1 ≤ i, j ≤ n). The largest eigenvalue of the left-hand side of (7.16) is at
most np+2λ1(1− p), which cannot exceed the largest eigenvalue of the right-hand
side of (7.16); in fact, it is strictly smaller when Q is not a product. To estimate the
sums of the largest eigenvalues, we can use the fact

σk(npQ+(1− p)I⊗D2 +(1− p)D1⊗ I)≤ np +(1− p)σk(I⊗D2 + D1⊗ I)

and separate two cases. If λi ≤ 1/2 for all i, then
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σk(I⊗D2 + D1⊗ I)≤ k (1≤ k≤ 2n−1)

and if λ1 > 1/2, then

σk(I⊗D2 + D1⊗ I)≤ 2λ1 +(k−1)≤ k + 1 (1≤ k ≤ 2n−1).

We still need to treat 2n≤ k ≤ n2. Then

σk(npQ+(1− p)I⊗D2 +(1− p)D1⊗ I)
≤ Tr(npQ+(1− p)I⊗D2 +(1− p)D1⊗ I) = np + 2n(1− p)= σk.

This completes the majorization.
Our calculation gives that

S
(
(Ep⊗Ep)(Q),τ ⊗ τ)≤ S

(
(Ep⊗Ep)(R⊗R),τ⊗ τ)= 2S

(
Ep(R),τ

)
.

Since the latter is twice the capacity of the depolarizing channel Ep, in this case the
capacity is additive. �

Theorem 7.8. Assume that E : B(H ) → B(K ) is a channeling transformation
and C := ((px), (ρx)) is a quantum code with Holevo quantity

χ := χ((px),(ρx),E ) =∑
x

pxS(E (ρx)‖E (ρ)),

where ρ =∑x pxρx. For every ε > 0, there is a natural number n and a measurement
(Ay) on K n⊗ such that the Shannon’s mutual information M of the classical channel
induced by the product quantum code Cn⊗ and the measurement satisfies

M/n≥ χ− ε .

This means that the Holevo bound can be reached by the classical mutual informa-
tion pro channel use asymptotically.

7.4 Classical-quantum Channels

Let X be a finite set, called “classical alphabet” or “classical input.” Each x∈X is
transformed into an output quantum state ρx ∈ B(K ), and the mapping W : x �→ ρx

is a classical-quantum channel.
The classical-quantum channel shows up if classical information is transferred

through a quantum channel E : B(H )→ B(K ). When x∈X is signaled by a state
σx ∈ B(H ), which is transformed into E (σx) ∈ B(K ), then W : x �→ E (σx) is a
classical-quantum channel.

If a classical random variable X is chosen to be the input, with probability a
distribution p on X , then the corresponding output is the quantum state ρX :=
∑x∈X p(x)ρx. The probability distribution p plays the role of coding and decoding
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is a measurement performed on the output quantum system: For each x ∈ X a
positive operator Fx ∈ B(K ) is given such that ∑x∈X Fx ≤ I. (The positive operator
I−∑x∈X Fx corresponds to failure of decoding.) The output random variable Y is
jointly distributed with the input X :

Prob(Y = y |X = x) = Tr ρxFy (x,y ∈X ).

and

Prob(Y = y) = ∑
x∈X

Prob(Y = y |X = x)Prob(X = x) = TrρX Fy.

The probability of error of the coding and decoding is defined as Prob(X �= Y ).
The channel is used to transfer sequences from the classical alphabet.
A code for the channel W⊗n is defined by a subset Kn ⊂ X n, which is called

“codeword set”. The codewords are transfered in a memoryless way:

W⊗n(x1,x2, . . . ,xn) = Wx1 ⊗Wx2⊗ . . .⊗Wxn

A number R > 0 is called “an ε-achievable rate” for the memoryless channel
{W⊗n : n = 1,2, . . .} if for every δ > 0 and for sufficiently large n, the channel E ⊗n

has a code with at least en(R−δ ) codewords and a measurement scheme with error
probability not exceeding ε . The largest R which is an ε-achievable rate for every
0 < ε < 1 is called “the channel capacity,” given by the notation Cc(W ).

Theorem 7.8 contains the important result about capacity.

Theorem 7.9. Let W : X → B(K ) be a classical-quantum channel. Then

Cc(W ) = sup{S(Wp)− ∑
x∈X

p(x)S(Wx) : p is a measure on X },

where Wp = ∑x∈X p(x)Wx.

7.5 Entanglement-assisted Capacity

The entanglement-assisted capacity of a channel E is related to a protocol extending
the dense coding.

Assume that the bipartite system HA⊗HB is in a pure state ρAB. The classical
signal i is encoded by a quantum channel E i

A : B(HA)→ B(HA) and if the signal
i is sent, then the receiver receives (E ◦ E i

A⊗ idB)(ρAB) and he tries to extract the
maximal amount of classical information by a measurement on the system B.

The one-shot entanglement-assisted classical capacity is defined as the supre-
mum of some Holevo quantities as
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C(1)
ea (E ) := sup

{
πiS
(
∑i(E ◦E i

A⊗ idB)(ρAB)
)−∑i S

(
(E ◦E i

A⊗ idB)(ρAB)
)}

,

(7.17)

where the supremum is over all possible probability distributions πi over the signals,
all encodings E i

A and all pure initial states ρAB. Using n copies of the channel one has

C(n)
ea (E ) = C(1)

ea (E ⊗n) (7.18)

and the full entanglement-assisted classical capacity is

Cea(E ) = lim
n→∞

1
n

C(n)
ea (E ). (7.19)

7.6 Notes

Quantum communication channels were formulated already in the 1970s, see for ex-
ample the paper [55] summarizing the subject. The capacity problem was unsolved
for many years. First Hausladen, Jozsa, Schumacher, Westmoreland and Wooters
proved the capacity theorem when all signal states are pure [49]. The result was
presented in the 3rd Conference on Quantum Communication and Measurement in
Hakone, Japan, September 1996, by Richard Jozsa. The extension to general signal
states, Theorem 7.9, was made by Holevo after the conference in November, but the
paper appeared in 1998 [57].

Theorem 7.6 is from [60]. Equivalent forms of the additivity question are dis-
cussed by Shor in [110], and for entanglement breaking channels see [109].

7.7 Exercises

1. Let X = Y = {1,2, . . . ,n} be the input and output alphabets of a classical chan-
nel given by

Tyx = pδ (x,y)+
1− p

n
.

Show that the capacity is

C = logn−H
(

p +
1− p

n
,

1− p
n

, . . . ,
1− p

n

)
.

2. Compute the Holevo capacity of the phase-dumping channel.
3. Show that the depolarizing channel Ep,2 : M2(C)→ M2(C) is not entanglement

breaking for 1/2 < p≤ 1.
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4. Let E : B(H )→ B(K ) be a state transformation and U ⊂ B(H ) be a compact
group of unitaries such that (7.11) holds and α : U → B(K ) is an irreducible
group representation. Show that in this case the relative entropy center of the
range of E is the tracial state.

5. Let E : Mn(C) → Mn(C) be an entanglement breaking channel and let α :
Mn(C) → Mn(C) be a positive trace–preserving mapping. Show that α ◦ E is
a state transformation.



Chapter 8
Hypothesis Testing

One of the most basic tasks in quantum statistics is the discrimination of two
different quantum states. In the quantum hypothesis testing problem, one has to
decide between two states of a system. The state ρ0 is the null hypothesis and ρ1 is
the alternative hypothesis. The problem is to decide which hypothesis is true. The
decision is performed by a two-valued measurement {T, I−T}, where 0≤ T ≤ I is
an observable. T corresponds to the acceptance of ρ0 and I−T corresponds to the
acceptance of ρ1. T is called a test. When the measurement value is 0, the hypothe-
sis ρ0 is accepted, otherwise the alternative hypothesis ρ1 is accepted. The quantity
α[T ] = Trρ0(I−T ) is interpreted as the probability that the null hypothesis is true
but the alternative hypothesis is accepted. This is the error of the first kind. Simi-
larly, β [T ] = Trρ1T is the probability that the alternative hypothesis is true but the
null hypothesis is accepted. It is called the error of the second kind. Of course, one
would like both the first and the second kind of errors to be small.

A single copy of the quantum system is not enough for a good decision. One
should make independent measurements on several identical copies, or joint mea-
surements. In the asymptotic theory of the hypothesis testing, the measurements are
performed on composite systems. Suppose that a sequence (Hn) of Hilbert spaces

is given, ρ (n)
0 and ρ (n)

1 are density matrices on Hn. The typical example I have in
mind is

ρ (n)
0 = ρ0⊗ρ0⊗·· ·⊗ρ0 and ρ (n)

1 = ρ1⊗ρ1⊗·· ·⊗ρ1 . (8.1)

On the composite system, a positive contraction Tn ∈ B(Hn) is considered as a test.
So (Tn, I− Tn) represents a {0,1}-valued measurement on Hn for the hypothesis

(ρ (n)
0 ,ρ (n)

1 ). Now the errors of the first and second kind depend on n:

αn[Tn] = Trρ (n)
0 (I−Tn) and βn[Tn] = Trρ (n)

1 Tn. (8.2)

In mathematical statistics, a bound is prescribed for the error of the first kind,
while the error of the second kind is made small by choosing a large-enough sample
size n. This approach leads to the Stein lemma in which the rate of the exponential
convergence of the error of the second kind is the relative entropy. In a Bayesian

D. Petz, Hypothesis Testing. In: D. Petz, Quantum Information Theory and Quantum Statistics, Theoretical
and Mathematical Physics, pp. 109–120 (2008)
DOI 10.1007/978-3-540-74636-2 8 c© Springer-Verlag Berlin Heidelberg 2008
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setting, a prior probability p is associated to the null hypothesis ρ0 (and q := 1− p
to the alternative hypothesis). Then the error probability is

Err(Tn) := pα[Tn]+ qβ [Tn].

The aim is the minimalization of the error probability, and the asymptotics is about
convergence of the error in the function n. We have again exponential convergence
and the rate is the Chernoff bound.

8.1 The Quantum Stein Lemma

Set

β ∗(n,ε) = inf{Trρ (n)
1 An : An ∈ B(Hn), 0≤ An ≤ I, Trρ (n)

0 (I−An)≤ ε} ,
(8.3)

which is the infimum of the error of the second kind when the error of the first
kind is at most ε . The importance of this quantity is in the customary approach to
hypothesis testing: A bound is prescribed for the error of the first kind, while the
error of the second kind is made small by choosing a large-enough sample size n.

The following result is the quantum Stein lemma. It is clear from the proof
that the asymptotic behavior of β ∗(n,ε) remains the same if in the infimum in the
definition of β ∗(n,ε) is restricted to projection operators An.

Theorem 8.1. In the setting (8.1), the relation

lim
n→∞

1
n

logβ ∗(n,ε) =−S(ρ0‖ρ1)

holds for every 0 < ε < 1.

Proof. Let us assume that ρ0 and ρ1 are invertible. First we should treat the case
when ρ0 and ρ1 commute. �


Let δ > 0 and let Pn(δ ) be the spectral projection of the operator

1
n
(logρ (n)

0 − logρ (n)
1 ) (8.4)

corresponding to the interval (h− δ , h + δ ), where h abbreviates S(ρ0‖ρ1). It fol-
lows that

(h− δ )Pn(δ )≤ 1
n

(
logρ (n)

0 − logρ (n)
1

)
Pn(δ )≤ (h + δ )Pn(δ )

and hence
en(h−δ )ρ (n)

1 Pn(δ )≤ ρ (n)
0 Pn(δ )≤ en(h+δ )ρ (n)

1 Pn(δ ) . (8.5)
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The expectation value of (8.4) with respect to ρ (n)
0 is h and according to the ergodic

theorem (which reduces to the law of large numbers in this case), (8.4) converges to
h, and we have

lim
n→∞

Pn(δ ) = I

(in the strong operator topology in the GNS space of ρ (∞)
0 ). This implies that

Trρ (n)
0 (I−Pn(δ ))→ 0 and for large n, we have Trρ (n)

0 (I−Pn(δ )) < ε
From the first inequality of (8.5), we can easily conclude

1
n

logTrρ (n)
1 Pn(δ )≤−h + δ .

and limsupn→∞ ≤−h follows concerning the limit in the statement.

Now let Tn be a positive contraction on Hn such that Trρ (n)
0 Tn ≥ 1− ε . This

implies

liminf
n→∞

Trρ (n)
0 Pn(δ )Tn ≥ 1− ε

since

Trρ (n)
0 TnPn(δ ) = Trρ (n)

0 Tn−Trρ (n)
0 TnPn(δ )⊥

≥ Trρ (n)
0 Tn−Trρ (n)

0 Pn(δ )⊥ .

Next we can estimate as follows:

Trρ (n)
1 Tn ≥ Trρ (n)

1 TnPn(δ )

≥ Trρ (n)
0 TnPn(δ )e−n(h+δ )

= e−n(h+δ ) ·Trρ (n)
0 TnPn(δ )

and

1
n

logTrρ (n)
1 Tn ≥−h− δ+

1
n

logTrρ (n)
0 TnPn(δ ) .

When n→∞ the last term of the right-hand side converges to 0 and we can conclude
that liminfn→∞ ≥ −h in the statement. The proof is complete under the additional
hypothesis that ρ0 and ρ1 commute. Although ρ0 and ρ1 do not commute in general,

the commutator of n−1 logρ (n)
0 and n−1 logρ (n)

1 goes to 0 in norm when n → ∞.
Heuristically, this is the reason that the statement holds without the assumption on
commutativity.

The next lemma is fundamental; it allows to reduce the general case to the com-
muting one.
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Lemma 8.1. For �∈N, let C� be the commutant of ρ (�)
1 . Then for any density matrix

ω on H� the inequality

S(ω‖ρ (�)
1 )≤ S(ωC�

‖ρ (�)
1 )+ k log(�+ 1)

holds, where k is the dimension of H1 and on the right-hand side the reduced density
matrix of ω in C� appears.

Proof. Proof of the lemma. Let

ρ (�)
1 =

N

∑
j=1

μ je j

be the spectral decomposition of the density ρ (�)
1 . N is the number of different eigen-

values; it is easy to see that

N ≤ (�+ 1)k.

The conditional expectation
E� : a �→∑

j

e jae j (8.6)

leaves the state ρ (�)
1 invariant and maps B(H�) onto the commutant of ρ (�)

1 . From
the conditional expectation property we have

S(ω‖ρ (�)
1 ) = S(E�(ω)‖ρ (�)

1 )+ S(ω‖E�(ω)) (8.7)

and so S(ω‖E�(ω)) is to be estimated for a density ω . It follows from the convexity
of S(ω‖E�(ω)) that we may assume ω to be pure. Then S(ω‖E�(ω)) = S(E�(ω)).
Each operator e jωe j has rank 0 or 1. Hence the rank of the density of E�(ω) is at
most N. It follows that the von Neumann entropy S(E�(ω)) is majorized by logN.
This completes the proof of the lemma. �


Now let us return to the case when ρ0 and ρ1 do not commute. Fix arbitrary ε > 0
and use the lemma to choose � so large that

1
�

S(ρ (�)
0 ‖ρ (�)

1 )− 1
�

S(E�(ρ
(�)
0 )‖ρ (�)

1 )≤ ε, (8.8)

where E� is the conditional expectation onto the subalgebra C� constructed in the

previous lemma. Let ω0 := E�(ρ
(�)
0 ) and ω1 := ρ (�)

1 . These densities commute and
the above argument works but needs some completion. The quantity β ∗(n,ε) is
defined from the tensor powers of ρi’s but we moved to the powers of ωi’s. The
change in the states needs control. This sketches the main idea of the proof of the
theorem.
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Let P�m(δ ) be the spectral projection of

1
m

(logω(m)
0 − logω(m)

1 ) (8.9)

corresponding to the interval (S(ω0‖ω1)−δ ,S(ω0‖ω1)+δ ). Similarly to (8.5), we
have

em(h(�)−δ )ω(m)
1 P�m(δ )≤ ω(m)

0 P�m(δ )≤ em(h(�)+δ )ω(m)
1 P�m(δ ) , (8.10)

where h(�) = S(ω0‖ω1).
By the law of large numbers

Trρ (m�)
0 P�m(δ ) = Trω(m)

0 P�m(δ )→ 1 (8.11)

and

1
�m

logTrρ (m�)
1 P�m(δ ) =

1
�m

logTrω(m)
1 P�m(δ )

≤ 1
�

(−S(ω0‖ω1)+ δ )+
1
�m

logTrω(m)
0 P�m(δ )

≤ −S(ρ0‖ρ1)+ ε+
δ
�

+
1
�m

logTrω(m)
1 P�m(δ ).

Let the test Tn be defined as

Tn = P�m if n = m�+ �0, 0≤ �0 < �.

This gives limsupn→∞ ≤ −S(ρ0‖ρ1) in the general case, since ε and δ could be
arbitrarily small and the last term goes to 0 as m→ ∞. Note that we proved more
than it is stated in the theorem because the tests that were proposed are projections.

To prove liminfn→∞ ≥ −S(ρ0‖ρ1) =: h, let us take δ1 > 0 and a sequence Tn of
positive contractions such that

Trρ (n)
1 Tn ≤ en(h−δ1)

and we shall show that Trρ (n)
0 Tn goes to 0.

Choose � such that (8.8) holds. Identify the mth tensor power of C� with the
appropriate commutative subalgebra of B(Hm�).

Similarly to the definition of P�m(δ ), P�m(δ )′ can be defined as the spectral pro-
jection of

− 1
m

logω(m)
0 (8.12)

corresponding to the interval (S(ω0)− δ , S(ω0)+ δ ). Then

em(−S(ω0)−δ )P�m(δ )′ ≤ ω(m)
0 P�m(δ )′ ≤ em(−S(ω0)+δ )P�m(δ )′ (8.13)
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and
Trρ (m�)

0 P�m(δ )′ = Trω(m)
0 P�m(δ )′ → 1 (8.14)

Let Q�m = P�m(δ )′ ×P�m(δ ); this is a projection in B(Hm�).

Lemma 8.2. Let Q≤ Q�m be a minimal projection in B(H�m). Then we have

Trρ (�m)
1 Q≤ exp(m(−S(ω0)−h(�)+ 2δ )) (8.15)

and
Trρ (�m)

1 Q≥ exp(m(−S(ω0)−h(�)−2δ )) (8.16)

Proof.

Trρ (�m)
1 Q = Trω(m)

1 Q
≤ exp(m(−S(ω0)+ δ ))× exp(−m(h(�)− δ )×TrQ
≤ exp(m(−S(ω0)−h(�)+ 2δ ))

from the upper estimates of (8.10) and (8.13). The second inequality is shown simi-
larly but the lower estimates are used. �


Lemma 8.3. Assume that δ2,δ3 > 0. Then

Tr(Q�mω
(m)
0 Q�m)T�m ≤ exp(−m(S(ω0)− δ2))TrQ�mT�m + δ3

if m is large.

Proof. Let E(�m,δ2) be the spectral projection of Q�mω
(m)
0 Q�m corresponding to the

interval (−∞,exp(−mS(ω0)− δ2)). Then

1≥ TrQ�mω
(m)
0 Q�m ≥ exp(−m(S(ω0)− δ2))TrE(�m,δ2)⊥.

This is equivalently written as

1
�m

logTrE(�m,δ2)⊥ ≤ S(ω0)− δ2

and implies that

Trω(m)
0 E(�m,δ2)⊥ → 0.

We have

Tr(Q�mω
(m)
0 Q�m)T�m = TrE(�m,δ2)(Q�mω

(m)
0 Q�m)T�m +TrE(�m,δ2)⊥(Q�mω

(m)
0 Q�m)T�m

≤ exp (−k(S(ω0)−δ2))TrQkTk +Trω(m)
0 E(�m,δ2)⊥

and for large m the second term is smaller than δ3. �
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Now let us turn to the estimation of Trρ (�m)
0 T�m. We have

Trρ (�m)
0 T�m ≤ 2Trρ (�m)

0 Q�mT�mQ�m + 2Trρ (�m)
0 Q⊥�mT�mQ⊥�m. (8.17)

(Recall T ≤ 2QTQ + 2Q⊥T Q⊥ holds for any positive operator T and for any pro-
jection Q, see Exercise 24 in the Appendix). For the second term we have

Trρ (�m)
0 Q⊥�mT�mQ⊥�m ≤ Trρ (�m)

0 Q⊥�m → 0,

since in a commutative algebra (8.11) and (8.14) hold.
To handle the first term of (8.17), we can apply the previous lemma. Represent

the projector Q�m as the sum of minimal projections in B(H�m):

Q�m =∑
i

Q�m(i).

Since exp(m(S(ω0)+ h(�)+ 2δ ))Trρ (�m)
0 Q�m(i)≥ 1, we have

TrQ�mT�m =∑
i

TrQ�m(i)T�m

≤∑
i

(
exp(m(S(ω0)+ h(�)+ 2δ ))Trρ (�m)

0 Q�m(i)
)

TrQ�m(i)T�m

= exp(m(S(ω1)+ h(�)+ 2δ ))Trρ (�m)
1 Q�mT�m.

Then

Tr(Q�mω
(m)
0 Q�m)T�m ≤ exp(−m(S(ω0)− δ2))TrQ�mT�m + δ3

≤ exp(m(δ2 + h(�)+ 2δ ))Trρ (�m)
1 Q�mT�m + δ3

≤ exp(m(δ2 + h(�)+ 2δ )+ �m(−S(ρ0‖ρ1)− δ1))+ δ3

The exponent

m�

(
δ2

�
+

S(ω0‖ω1)
�

−S(ρ0‖ρ1)+
2δ
�
− δ1

)

should be negative to conclude Trρ (n)
0 Tn → 0. Recall that δ1 is given but the other

parameters δ ,δ2 and δ3 can be chosen. The choice

δ2

l
+

2δ
�

< δ1

will do. �
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8.2 The Quantum Chernoff Bound

The Bayesian error probability is

Err(Tn) = pTrρ (n)
0 (I−Tn)+ qTrρ (n)

1 Tn = p + Tr(Tn(qρ
(n)
1 − pρ (n)

0 )) (8.18)

when the state ρ0 has prior probability p and q := 1− p. The asymptotics of Chernoff
type is about

lim
n→∞

1
n

loginf{Err(Tn) : 0≤ Tn ≤ I}.

For a fixed n, Err(Tn) will be minimal if Tn is the support Qn of the negative part of

qρ (n)
1 − pρ (n)

0 . The self-adjoint matrix qρ (n)
1 − pρ (n)

0 has some negative eigenvalues
and the optimal projection Qn maps onto the subspace spanned by the corresponding
eigenvectors. In general, a self-adjoint matrix A is written as A = A+−A−, where the
positive matrices A+ and A− have orthogonal support and |A|= A+ +A−. Therefore,

Qn(qρ
(n)
1 − pρ (n)

0 ) =−(qρ (n)
1 − pρ (n)

0 )− and the minimal error probability is

p−Tr(qρ (n)
1 − pρ (n)

0 )− =
1
2

(
1−Tr |qρ (n)

1 − pρ (n)
0 |
)

(8.19)

It follows that the Chernoff type asymptotics is

lim
n→∞

1
n

log
(

1− Tr |qρ (n)
1 − pρ (n)

0 |
2

)
.

The limit will be identified by a lower and an upper estimate.
When the densities commute and have eigenvalues p0(k) and p1(k), then the

minimal error probability is

(
p−∑

k

(qp1(k)− pp0(k))−
)

=
(
∑
k

pp0(k)−∑
k

(qp1(k)− pp0(k))−
)

=∑
k

min{pp0(k),qp1(k)}. (8.20)

For the probability distributions p0 and p1, we shall use the notation

Δ(p0, p1) :=∑
k

min{pp0(k),qp1(k)}

for the minimal error. The classical Chernoff theorem is the following.

Theorem 8.2. In the above notation

lim
n→∞

1
n

logΔ(pn⊗
0 , pn⊗

1 ) = inf
{

log∑
k

p0(k)1−s p1(k)s : 0≤ s≤ 1
}

holds.
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It is remarkable that the effect of the prior probability is washed out in the limit.
In the proof of the quantum extension, we shall need the above classical result and
the following lemmas.

Lemma 8.4. Let x,y be two vectors in a Hilbert space H and λ ,μ be positive
numbers. Then

λ |〈Px|y〉|2 + μ |〈(P⊥x|y〉|2 ≥ 1
2
|〈x|y〉|2 min{λ ,μ}

for any projection P.

Proof. It is sufficient to prove the statement when λ = μ = 1. Let x1 := Px and x2 :=
P⊥x. Then x = x1 +x2. All inner products depend on the the projection of y onto the
subspace spanned by x1 and x2. Therefore, we may assume that y = ax1 +bx2. After
the reductions our inequality has the form:

|a|2‖x1‖4 + |b|2‖x2‖4 ≥ 1
2

∣∣∣a‖x1‖2 + b‖x2‖2
∣∣∣2

This obviously holds. �

Consider two arbitrary density operators ρ0 and ρ1 on a k-dimensional Hilbert

space H . They have spectral representations

ρ0 =
k

∑
i=1

λi|xi〉〈xi| and ρ1 =
k

∑
i=1

μi|yi〉〈yi|, (8.21)

that is, |xi〉 and |yi〉 (i = 1, . . . ,k) are two orthonormal bases consisting of eigenvec-
tors and λi and μi are the respective eigenvalues of ρ0 and ρ1. Then

β (ρ0,ρ1)0(i, j) := λi|〈xi|y j〉|2 and β (ρ0,ρ1)1(i, j) := μ j|〈xi|y j〉|2 (8.22)

are probability distributions (1≤ i, j ≤ k). They have nice behavior concerning ten-
sor product and Rényi relative entropy.

Lemma 8.5. The mapping β satisfies the following conditions:

(i) If ρ0,ρ1,ω0 and ω1 are density matrices, then

β (ρ0,ρ1)m⊗β (ω0,ω1)m = β (ρ0⊗ω0,ρ1⊗ω1)m

for m = 0,1.
(ii) If u and v are positive numbers and u + v = 1, then

Trρu
0ρ

v
1 =∑

i, j

β (ρ0,ρ1)0(i, j)uβ (ρ0,ρ1)1(i, j)v
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Proof. (i) is an immediate consequence of the definitions. (ii) follows from the
formula

Trρu
0ρ

v
1 =∑

i
λ u

i μ
v
j Tr |xi〉〈xi||y j〉〈y j|=∑

i
λ u

i μ
v
j |〈xi|y j〉|2

�

The Chernoff type lower bound in the asymptotics is due to Nussbaum and Szkola
[81]. The very essential point in the proof is the construction (8.22) of probability
distributions from density matrices. Given n× n density matrices, we can obtain
probability distributions on an n2-point-space.

Theorem 8.3. Let ρ0 and ρ1 be density matrices and (Tn, I−Tn) be a sequence of
tests to distinguish them. The Bayesian error probability (8.18) has the asymptotics

liminf
n→∞

1
n

logErr(Tn)≥ inf{logTrρ1−s
0 ρ s

1 : 0≤ s≤ 1} .

Proof. The optimal tests are projections, so in place of Tn we can put projections Pn:

Err(Pn) = pTrP⊥n ρ
(n)
0 + qTrPnρ

(n)
1

Now we can use the spectral decompositions of ρ (n)
0 and ρ (n)

1 , similarly to (8.21),
and have

Err(Pn) = pTrP⊥n ρ
(n)
0 + qTrρ (n)

1 Pn

=∑
i, j

(
pλi(n)|〈P⊥n xi(n)|y j(n)〉|2 + qμ j(n)|〈Pnxi(n)|y j(n)〉|2

)
,

since

TrP⊥n |xi(n)〉〈xi(n)|= ‖P⊥n xi(n)‖2 =∑
j

|〈Pnxi(n)|y j(n)〉|2

and similarly for the other term. Now we can use Lemma 8.4 to arrive at a lower
bound:

Err(Pn)≥ 1
2∑i, j

min{pλi(n),qμ j(n)}|〈xi(n)|y j(n)〉|2

The right-hand side is

1
2
Δ(β (ρn⊗

0 ,ρn⊗
1 )0,β (ρn⊗

0 ,ρn⊗
1 )1) =

1
2
Δ(β (ρ0,ρ1))n⊗

0 ,β (ρ0,ρ1)n⊗
1 )

and we have
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liminf
n→∞

1
n

logErr(Pn) ≥ liminf
n→∞

1
n
Δ(β (ρ0,ρ1)n⊗

0 ,β (ρ0,ρ1)n⊗
1 )

= inf
{

log∑
i, j
β (ρ0,ρ1)0(i, j)1−sβ (ρ0,ρ1)1(i, j)s : 0≤ s≤ 1

}

= inf
{

logTrρ1−s
0 ρ s

1 : 0≤ s≤ 1
}
,

where the classical Chernoff theorem was used. �

The upper estimate for the Chernoff type asymptotics is due to Audenaert et al.

[10].

Theorem 8.4. Let ρ0 and ρ1 be density matrices and let Qn be the support of the

negative part of ρ (n)
1 − ρ (n)

0 to be used for testing. The Bayesian error probability
(8.18) has the asymptotics

limsup
n→∞

1
n

logErr(Qn)≤ inf{logTrρ1−s
0 ρ s

1 : 0≤ s≤ 1} .

Proof. We have to estimate

limsup
n→∞

1
n

log(1−Tr |pρ (n)
0 −qρ (n)

1 |) (8.23)

according to (8.19). Since the trace inequality

1
2

Tr(A + B−|A−B|)≤ TrAsB1−s (8.24)

holds for positive operators A,B and for any number 0≤ s≤ 1 (see the Appendix),
we have

1−Tr |pρ (n)
0 −qρ (n)

1 | ≤ 2qs p1−sTr(ρ (n)
1 )s(ρ (n)

0 )1−s = 2qs p1−s(Trρ s
1ρ

1−s
0 )n.

This gives the upper bound logTrρ1−s
0 ρ s

1 for (8.23). �


8.3 Notes

The quantum Stein lemma was conjectured by Hiai and Petz in [53], where limsup≤
−S(ρ0‖ρ1) was also proved. The converse inequality was first shown by Ogawa and
Nagaoka in the general case [82]. The proof presented here benefits from the disser-
tation [15] (see also [17]).

The lower estimate for the quantum Chernoff bound is due to Nussbaum and
Szkola [81] and the upper estimate was proven by Audenaert et al. [10], both results
are from 2006. The proof of the classical Chernoff theorem, Theorem 8.2 is available
in the book [26].
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8.4 Exercises

1. Compute the marginals of the probability distributions β (ρ0,ρ1)0 and β (ρ0,ρ1)1

in (8.22).
2. Let f (s) = Trρ s

1ρ
1−s
0 . Show that f is convex. What are f ′(0) and f ′(1)?



Chapter 9
Coarse-grainings

A quantum mechanical system is described by an algebra M of operators, and the
dynamical variables (or observables) correspond to the self-adjoint elements. The
evolution of the system M can be described in the Heisenberg picture, in which
an observable A ∈M moves into α(A), where α is a linear transformation. α is
induced by a unitary in case of the time evolution of a closed system but it could
be the irreversible evolution of an open system. The Schrödinger picture is dual, it
gives the transformation of the states:

〈α(A),ρ〉= 〈A,E (ρ)〉,

where E is the state transformation and the duality means 〈B,ω〉 = TrωB. State
transformation is an essential concept in quantum information theory and its role is
the performance of information transfer. However, state transformation may appear
in a different context as well. Shortly speaking, the dual of a state transformation
will be called coarse-graining, in particular in a statistical context.

Assume that a level of observation does not allow to know the expectation value
of all observables, but only a part of them. In our algebraic approach it is assume
that this part is the self-adjoint subalgebra N of the full algebra M . The positive
linear embedding α : N →M is a coarse-graining. It provides partial information
of the total quantum system M . If the algebra N is “small” compared with M ,
then loss of information takes place and the problem of statistical inference is to
reconstruct the real state of M from partial information.

9.1 Basic Examples

Assume that the Hilbert space describing our quantum system is H . A completely
positive identity preserving linear mapping from an algebra N to B(H ) will be
called coarse-graining. It will be mostly assumed that N is a subalgebra of B(K ),
where K is another Hilbert space. In the algebraic approach followed here, this

D. Petz, Coarse-grainings. In: D. Petz, Quantum Information Theory and Quantum Statistics, Theoretical
and Mathematical Physics, pp. 121–142 (2008)
DOI 10.1007/978-3-540-74636-2 9 c© Springer-Verlag Berlin Heidelberg 2008
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Hilbert space is not specified always. It is well known that a completely unit-
preserving mapping α satisfies the Schwarz inequality

α(A∗A)≥ α(A)∗α(A). (9.1)

Example 9.1. The simplest example of coarse-graining appears if a component of a
composite system H ≡H1⊗H2 is neglected. Assume that we restrict ourselves
to the observables of the first subsystem. Then the embedding

α : B(H1)→ B(H ), α : A �→ A⊗ I2

is the relevant coarse-graining. This is not only positive, but also a multiplicative
isometry; therefore it is called “embedding.”

The dual of α is the partial trace Tr 2:

〈α(A),B⊗C〉= Tr(A∗B)⊗C = TrA∗BTrC = 〈A,E (B⊗C)〉,

where E defined as E (B⊗C) = BTrC is the so-called partial trace over the second
factor. �

Example 9.2. Consider a composite system of n identical particles: H ⊗H ⊗ . . .⊗
H and assume that we restrict ourselves to the symmetric observables. Each per-
mutation of the particles induces a unitary U and set N := {A : UAU∗ = A for
every permutation unitary U}. The embedding of N is again a coarse-graining.
The algebra N is not isomorphic to a full matrix algebra but it is a subalgebra of
B(H n⊗). �


The coarse-graining of the previous two examples were embeddings which are
multiplicative. A general coarse-graining is not fully multiplicative but it satisfies a
restricted multiplicativity.

Lemma 9.1. Let α : N →M be a coarse-graining. Then

Nα := {A ∈N : α(A∗A) = α(A)∗α(A) and α(AA∗) = α(A)α(A)∗} (9.2)

is a subalgebra of N and

α(AB) = α(A)α(B) and α(BA) = α(B)α(A) (9.3)

hold for all A ∈Nα and B ∈N .

Proof. The proof is based only on the Schwarz inequality (9.1). Assume that
α(AA∗) = α(A)α(A)∗. Then

t
(
α(A)α(B)+α(B)∗α(A)∗

)
= α(tA∗+B)∗α(tA∗+B)− t2α(A)α(A)∗−α(B)∗α(B)

≤ α
(
(tA∗+ B)∗(tA∗+ B)

)− t2α(AA∗)−α(B)∗α(B)
= tα(AB + B∗A∗)+α(B∗B)−α(B)∗α(B)

for a real t. Divide the inequality by t and let t →±∞. Then
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α(A)α(B)+α(B)∗α(A)∗ = α(AB + B∗A∗)

and similarly

α(A)α(B)−α(B)∗α(A)∗ = α(AB−B∗A∗).

Adding these two equalities we have

α(AB) = α(A)α(B).

The other identity is proven similarly. �

The subalgebra Nα is called the multiplicative domain of α .

Example 9.3. The algebra of a quantum system is typically non-commutative but the
mathematical formalism supports commutative algebras as well. A measurement is
usually modeled by a positive partition of unity (Fi)n

i=1, where Fi is a positive op-
erator in M = B(H ) and ∑i Fi = I. The mapping β : Cn →M , (z1,z2, . . . ,zn) �→
∑i ziFi is positive and unital mapping from the commutative algebra Cn to the non-
commutative algebra M . Every positive unital mappings Cn →M corresponds in
this way to a certain measurement. Measurements are coarse-grainings from com-
mutative algebras.

The n-tuple (z1,z2, . . . ,zn) can be regarded as a diagonal matrix and N is a sub-
algebra of a matrix algebra. �


Assume that A is a subalgebra of B(H ). If ρ is a density matrix in B(H ), then
the reduced density matrix ρ0 ∈A is uniquely determined by the equation

Trρ0A = TrρA for every A ∈A .

The mapping E : ρ �→ ρ0 is a state transformation and it is a sort of generalization
of the partial trace. Sometimes ρ |A is written instead of ρ0. For example,

S(ρ |A ‖ω |A ) := S(ρ0‖ω0)

if ρ and ω are density matrices.

9.2 Conditional Expectations

Conditional expectation is a transformation of the observables. Let A be a subalge-
bra of B(H ) such that A ∗ = A and IH ∈ A . More generally, in place of B(H )
we can consider a matrix algebra B. A conditional expectation E : B → A is a
unital positive mapping which has the property

E(AB) = AE(B) for every A ∈A and B ∈B. (9.4)
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Choosing B = I, it can be seen that E acts identically on A . It follows from the
positivity of E that E(B∗) = E(B)∗. Therefore,

E(BA) = E((A∗B∗)∗) = E(A∗B∗)∗ = (A∗E(B∗))∗ = E(B∗)∗A = E(B)A (9.5)

for every A ∈A and B ∈B.

Example 9.4. Let B be a matrix algebra and ρ ∈ B an invertible density matrix.
Assume that α : B→B is a coarse-graining such that

Trρ α(B) = TrρB for every B ∈B.

Let A := {A ∈B : α(A) = A} be the set of fixed points of α . First I show that
A is an algebra. Assume that A ∈A . Then

TrρA∗A = Trρα(A∗A)≥ Trρα(A)∗α(A) = TrρA∗A.

Since ρ is invertible, α(A∗A) = A∗A and A∗A ∈ A and similarly AA∗ ∈ A . This
gives that A ⊂Nα . Therefore for A1,A2 ∈A we have α(A1A2) = α(A1)α(A2) =
A1A2 and A1A2 ∈A . Hence we can conclude that A is a subalgebra of Nα .

When B is endowed with the inner product 〈B1,B2〉 := TrρB∗1B2, then α be-
comes a contraction and as per the von Neumann ergodic theorem

sn(B) :=
1
n
(B +α(B)+ . . .+αn−1(B))→ E(B),

where E : B → A is an orthogonal projection. Since sn’s are coarse-grainings, so
is their limit E . In fact, E is a conditional expectation onto the fixed-point algebra
A . It is easy to see that for A ∈A and B ∈B, sn(AB) = Asn(B). The limit n→ ∞
gives E(AB) = AE(B).

A conditional expectation E : B →A was obtained as the limit of sn under the
condition that there is an invertible state left by α invariant. (This result is often
referred to as the Kovács–Szűcs theorem.) �


Heuristically, E(B) is a kind of best approximation of B from A . This is justified
in the next example.

Example 9.5. Assume that τ is a linear functional on a matrix algebra B such that

(i) τ(B)≥ 0 if B≥ 0,
(ii) If B≥ 0 and τ(B) = 0, then B = 0,

(iii) τ(B1B2) = τ(B2B1).

(These conditions say that τ is a positive, faithful and tracial functional.) B becomes
a Hilbert space when it is endowed with the inner product

〈B1,B2〉 := τ(B∗1B2).

Recall that B ∈B is positive if (and only if) τ(BB1)≥ 0 for every positive B1.
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Let A be a unital subalgebra of B. We can claim that the orthogonal projection
E with respect to the above-defined inner product is a conditional expectation of B
onto A .

Since I ∈A , we have E(I) = I and E is unital. Let B ∈B be positive. To show
the positivity of E , we have to show that E(B)≥ 0. We have

τ(A0E(B)) = 〈A∗0,E(B)〉= 〈E(A∗0),B〉= 〈A∗0,B〉= τ(A0B)≥ 0

for every positive A0 ∈A . It follows that E(B) ∈A is positive.
Condition (9.4) is equivalent to

τ(A1E(AB)) = τ(A1AE(B))

for every A1 ∈A . This is true since

τ(A1E(AB)) = 〈A∗1A,E(AB)〉= 〈E(A∗1),AB〉= 〈A∗1,AB〉= τ(A1AB)

and

τ(A1AE(B)) = 〈A∗A∗1,E(B)〉= 〈E(A∗A∗1),B〉= 〈A∗A∗1,B〉= τ(A1AB).

In the proof of both the positivity and the module property (9.4) of E the tracial
condition (iii) of τ was used. �


A conditional expectation E : B→A is automatically completely positive. For
Ai ∈A and Bi ∈B we have

∑
i j

A∗i E(B∗i B j)A j = E
((

∑i BiAi

)∗(
∑ j B jA j

))
≥ 0 (9.6)

due to the positivity and the module property of E .
The mapping E in Example 3.6 is a conditional expectation from the n× n ma-

trices to the algebra of diagonal n×n matrices.
Given a conditional expectation E : B(H )→A and a density matrix ρ0 ∈ A ,

the formula

TrρB = Trρ0E(B) (B ∈ B(H ))

determines a density ρ such that the reduced density is ρ0. The correspondence
E : ρ0 �→ ρ is a state transformation and called state extension. The state extension
E is the dual of the conditional expectation E . The converse is also true.

Theorem 9.1. Let A be a subalgebra of the matrix algebra B. If E : A →B is
a positive trace-preserving mapping such that the reduced state of E (ρ0) is ρ0 for
every density ρ0 ∈A , then the dual of E is a conditional expectation.

Proof. The dual E : B →A is a positive unital mapping and E(A) = A for every
A ∈A . For a contraction B, ‖E(B)‖2 = ‖E(B)∗E(B)‖ ≤ ‖E(B∗B)‖ ≤ ‖E(I)‖= 1.
Therefore, we have ‖E‖= 1.
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Let P be a projection in A and B1,B2 ∈B. We have

‖PB1 + P⊥B2‖2 = ‖(PB1 + P⊥B2)∗(PB1 + P⊥B2)‖
= ‖B∗1PB1 + B∗2P⊥B2‖
≤ ‖B∗1PB1‖+‖B∗2P⊥B2‖
= ‖PB1||2 +‖P⊥B2||2.

Using this, we estimate for an arbitrary t ∈R as follows.

(t + 1)2‖P⊥E(PB)‖2 = ‖P⊥E(PB)+ tP⊥E(PB))‖2

≤ ‖PB + tP⊥E(PB)‖2

≤ ‖PB‖2 + t2‖P⊥E(PB)‖2

Since t can be arbitrary, P⊥E(PB) = 0, that is, PE(PB) = E(PB). We may write P⊥
in place of P:

(I−P)E((I−P)B) = E((I−P)B), equivalently, PE(B) = PE(PB).

Therefore we can conclude PE(B) = E(PB). The linear span of projections is the
full algebra A and we have AE(B) = E(AB) for every A ∈A . This completes the
proof. �

It is remarkable that in the proof of the previous theorem it was shown that if E :
B→A is a positive mapping and E(A)= A for every A∈A , then E is a conditional
expectation. This statement is called Tomiyama theorem. Actually, the positivity
is equivalent to the condition ‖E‖ = 1 (when E(I) = I is assumed). This has the
consequence that in the definition of the conditional expectation, it is enough if
(9.4) holds for B = I.

We can say that the conditional expectation E : B(H )→A preserves the state
ρ if

TrρB = TrρE(B) for every B ∈ B(H ). (9.7)

Takesaki’s theorem tells about the existence of a conditional expectation.

Theorem 9.2. Let B #Mn(C) be a matrix algebra and A be its subalgebra. Sup-
pose that ρ ∈B is an invertible density matrix. The following conditions are equiv-
alent:

(i) A conditional expectation E : B→A preserving ρ exists.
(ii) For every A ∈A and for the reduced density ρ0 ∈A

ρ1/2Aρ−1/2 = ρ1/2
0 Aρ−1/2

0 (9.8)

holds.
(iii) For every A ∈A

ρ1/2Aρ−1/2 ∈A (9.9)

holds.
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Proof. Recall that the reduced density in A is determined by the equation

TrρA = Trρ0A for every A ∈A .

Assume that E : B→A is a conditional expectation preserving ρ . We can con-
sider B as a Hilbert space with the inner product

〈B1,B2〉= TrρB∗1B2.

Then the adjoint of the embedding A → B is the conditional expectation E :
B→ A :

〈A,B〉= TrρA∗B = TrρE(A∗B) = TrρA∗E(B) = 〈A,E(B)〉

for A ∈A and B ∈B.
Define a conjugate linear operator:

S : B→B, S(B) = B∗ (B ∈B).

We can compute its adjoint S∗, which is determined by the equation

〈S(B1),B2〉= 〈S∗(B2),B1〉 (B1,B2 ∈B).

We can show that S∗(B2) = ρB∗2ρ−1:

〈S(B1),B2〉= TrρB1B2 = TrB∗2B∗1ρ = TrρB∗1ρB∗2ρ−1 = 〈B1,ρB∗2ρ−1〉.

Due to the positivity of the conditional expectation, ES = SE . This implies that
the positive operator Δ := S∗S leaves the subspace A invariant. The action of Δ is

ΔB = ρBρ−1 (B ∈B).

For A ∈A , we have

〈A,ΔA〉= TrρAA∗ = Trρ0AA∗ = 〈A,Δ0A〉

if Δ0A = ρ0Aρ−1
0 . Since the restriction of Δ to A is Δ0, we have

Δ1/2
0 A = ρ1/2

0 Aρ−1/2
0 = Δ1/2A = ρ1/2Aρ−1/2 (A ∈A ).

This is exactly (9.8) and (i)⇒ (ii) is proven.
The conditional expectation F : B→A preserving Tr exists; it is constructed in

Example 9.5. The mapping

Eρ(B) := ρ−1/2
0 F(ρ1/2Bρ1/2)ρ−1/2

0 (9.10)

is completely positive and preserves the state ρ . Indeed,

TrρEρ(B) = Trρ0Eρ(B) = TrF(ρ1/2Bρ1/2) = Tr(ρ1/2Bρ1/2) = TrρB.
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Eρ is canonically determined and it is often called generalized conditional
expectation.

Under Takesaki’s condition (9.8), it can be shown that Eρ is really a conditional
expectation. Actually, we can prove more. Assume that A∈A satisfies the condition

ρ1/2Aρ−1/2 = ρ1/2
0 Aρ−1/2

0 . Then

Eρ(A) = ρ−1/2
0 F(ρ1/2Aρ−1/2ρ)ρ−1/2

0 = ρ−1/2
0 F(ρ1/2

0 Aρ−1/2
0 ρ)ρ−1/2

0

= ρ−1/2
0 ρ1/2

0 Aρ−1/2
0 F(ρ)ρ−1/2

0 = Aρ−1/2
0 F(ρ)ρ−1/2

0 = A.

It follows that A ∈ A is in the multiplicative domain of Eρ . If this holds for ev-
ery A ∈A , then E is really a conditional expectation. This completes the proof of
(ii)⇒ (i).

(ii)⇒ (iii) is obvious and we can show the converse. Endow B with the Hilbert–
Schmidt inner product. Condition (iii) tells us that the positive operator

ΔB = ρBρ−1 (B ∈B)

leaves the subspace A invariant. This is true also for Δit . For every A ∈A ,

ρ itAρ−it ∈A .

Now let us apply Theorem 11.26 for the unitaries ρ it . In the decomposition of A

P(m,d)ρ =
K(m,d)

∑
i=1

ρL
i ⊗ρR

i ⊗Em,d
i,i ,

since the permutation σ must be identity. We have

P(m,d)ρ0 =
K(m,d)

∑
i=1

Im⊗ρR
i ⊗Em,d

i,i .

Assume that A ∈A . Then P(m,d)A has the form

K(m,d)

∑
i=1

Im⊗A(m,d, i)⊗Em,d
i, i .

and

P(m,d)ρ1/2Aρ−1/2 =
K(m,d)

∑
i=1

Im⊗ (ρR
i )1/2A(m,d, i)(ρR

i )−1/2⊗Em,d
i, i

and this is the same as P(m,d)ρ
1/2
0 Aρ−1/2

0 . Hence (iii)⇒ (ii) is shown. �

An important property of the relative entropy is related to conditional expectation.

Theorem 9.3. Let A ⊂ B(H ) be a subalgebra and ρ ,ω ∈ B(H ) be the density
matrices with reductions ρ0,ω0 ∈A . Assume that there exists a conditional expec-
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tation E : B(H )→A onto A which leaves ω invariant. Then

S(ρ‖ω) = S(ρ0‖ω0)+ S(ρ‖ρ ◦E). (9.11)

Proof. Denoting the density of ρ ◦E by ρ1, we need to show that

Trρ logρ−Trρ logω = Trρ logρ0−Trρ logω0 + Trρ logρ−Trρ logρ1.

The conditional expectation E leaves the states ω and ρ ◦E invariant. According to
(iii) in Theorem 9.8 this condition implies

ρ it
1 ω

−it = ρ it
0ω

−it
0 (t ∈ R)

Differentiating this at t = 0, we have

logρ1− logω = logρ0− logω0.

This relation gives the proof. �

The state ρ ◦E is nothing else than the extension of ρ0 ∈A with respect to the

state ω . Therefore, the conditional expectation property (9.11) has the following
heuristical interpretation. The relative entropy distance of ρ and ω comes from two
sources. First, the distance of their restrictions to A ; second, the distance of ρ from
the extension of ρ0 (with respect to ω).

Note that the conditional expectation property is equivalently written as

S(ρ‖ω) = S(ρ‖ρ ◦E)+ S(ρ ◦E‖ω). (9.12)

Theorem 9.4. Let B be a matrix algebra and A be its subalgebra. Suppose that
ω ,ρ ∈B are invertible density matrices. Then Eρ = Eω if and only if

ρ−1/2
0 ρ1/2 = ω−1/2

0 ω1/2

holds for the reduced densities ω0,ρ0 ∈A .

Proof. Since

Eρ(B) = F(ρ−1/2
0 ρ1/2Bρ1/2ρ−1/2

0 ),

the condition obviously imply Eρ = Eω . To see the converse, refer Theorem 9.7 and
it can be noted that

ρ−1/2
0 ω1/2

0 = ρ−1/2ω1/2

is an equivalent form of the condition. �

A conditional expectation preserving a given state ρ does not always exist. This

simple fact has very far reaching consequences. Those concepts and arguments in
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classical probability which are based on conditioning have a very restricted chance
to be extended to the quantum setting.

Example 9.6. Let ρ12 be a state of the composite system H1⊗H2. Then a condi-
tional expectation B(H1⊗H2)→ B(H1)⊗CI2 (preserving ρ12) exists if and only
if ρ12 is a product state.

When ρ12 = ρ1⊗ρ2, then

E(X⊗Y) = XTrρ2Y (X ∈ B(H1), Y ∈ B(H2)) (9.13)

is a conditional expectation; it does not depend on ρ1.
From Takesaki’s condition we obtain

ρ−1/2
1 ρ1/2

12 (X⊗ I) = (X ⊗ I)ρ−1/2
1 ρ1/2

12

for all X ∈ B(H1). Therefore, ρ−1/2
1 ρ1/2

12 is in the commutant and must have the
form

ρ−1/2
1 ρ1/2

12 = I⊗Y

for some Y ∈ B(H2). This gives the factorization of ρ12.
The example shows that the existence of a ρ12-preserving conditional expectation

is a very strong limitation for ρ12. �

The previous example can be reformulated and it has an interesting interpretation,

the no cloning theorem.

Example 9.7. Similarly to the previous example, consider B(H1) as the subsystem
of B(H1 ⊗H2). The state transformation E : B(H1) → B(H1 ⊗H2) is a state
extension if the reduced state of E (ρ) on the first subsystem is ρ itself, for every
state ρ . Since the a state extension is the dual of a conditional expectation, the only
possible state extension is

E (ρ) = ρ⊗ω , (9.14)

where ω is a fixed state of B(H2).
Assume now that H1 = H2 = H . A state transformation C : B(H ) →

B(H ⊗H ) is called cloning if for any input state ρ both reduced densities of
the output C (ρ) are identical with ρ . The transformation C yields an output which
is a pair of two subsystems, each of them in the state of the input. C is interpreted
as copying or cloning.

Since a cloning is a particular state extension, it must have the form (9.14), which
contradicts the definition of cloning (in the case when the dimension of H is at
least two). Therefore, cloning does not exists. One can arrive at the same conclusion
under the weaker assumption that C clones pure states only. �
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9.3 Commuting Squares

Let A123 be a matrix algebra with subalgebras A12,A23,A2 and assume that A2 ⊂
A12,A23. Then the diagram of embeddings A2 →A12,A2 →A23,A12 →A123 and
A23 →A123 is obviously commutative (see Fig. 9.1).

Assume that a conditional expectation E123
12 : A123→A12 exists. If the restriction

of E123
12 to A23 is a conditional expectation to A2, then (A123,A12,A23,A2,E123

12 )
is called a commuting square. The terminology comes from the commutativity of
Fig. 9.2, which consists of conditional expectations and embeddings.

Theorem 9.5. Let A123 be a matrix algebra with subalgebras A12,A23,A2 and as-
sume that A2 ⊂ A12,A23. Suppose that ω123 is a separating state on A123 and the
conditional expectations E123

12 : A123 → A12 and E23
2 : A23 → A2 preserving ϕ123

exist and (A123,A12,A23,A2,E123
12 ) is a commuting square. Then the following con-

ditions are equivalent:

(1) E123
12

∣∣A23 = E23
2 . (2) E123

23

∣∣A12 = E12
2 .

(3) E123
12 E123

23 = E123
23 E123

12 and A12∩A23 = A2.

(4) E123
12 E123

23 = E123
2 . (5) E123

23 E123
12 = E123

2 .

The idea of the proof is to consider A123 to be a Hilbert space endowed with the
inner product

〈A,B〉 := ω123(A∗B) (A,B ∈A123).

Then E123
12 becomes an orthogonal projection onto the subspace A12 of A123 and all

conditions can be reformulated in the Hilbert space. The details will be skipped.

Example 9.8. Let A123 := B(H1⊗H2⊗H3) be the model of a quantum system
consisting of three subsystems and let A12,A23 and A2 be the subsystems corre-
sponding to the subscript, formally A12 := B(H1⊗H2)⊗CI, A23 := CI⊗B(H1⊗
H2) and A2 := CI⊗B(H2)⊗CI. The conditional expectations preserving the tra-
cial state τ (or Tr ) from A123 onto any subalgebra exist and unique. For example,
the conditional expectation E123

12 : A123 →A12 is of the form

A⊗B⊗C �→ τ(C)A⊗B⊗ I.

Fig. 9.1 Subalgebras of A123 :
A2 ⊂A12,A13
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Fig. 9.2 Commuting square,
E123

12 |A23 = E12
2

Up to a scalar, this is the partial trace over H3. Its restriction to A23 is

I⊗B⊗C �→ τ(C)I⊗B⊗ I

which is really the conditional expectation of A23 to A2. �


Example 9.9. Assume that the algebra A is generated by the elements {ai : 1≤ i≤
n}, which satisfy the canonical anticommutation relations

aia j + a jai = 0

aia
∗
j + a∗jai = δi, jI

for 1 ≤ i, j ≤ n. It is known that A is isomorphic to a matrix algebra M2n(C) #
M2(C)

1
�⊗ ·· ·⊗M2(C)

n
�

, and the isomorphism is called Jordan–Wigner transfor-
mation. The relations

e(i)
11 : = aia∗i , e(i)

12 : = Vi−1ai,

e(i)
21 : = Vi−1a∗i , e(i)

22 : = a∗i ai,

Vi :=∏i
j=1(I−2a∗ja j)

determine a family of mutually commuting 2×2 matrix units for 1≤ i≤ n. Since.

ai =
i−1

∏
j=1

(
e( j)

11 − e( j)
22

)
e(i)

12,

the above matrix units generate A and give an isomorphism between A and
M2(C)⊗·· ·⊗M2(C):

e(1)
i1 j2

e(2)
i2 j2

. . .e(n)
in jn
←→ Ei1 j1 ⊗Ei2 j2 ⊗·· ·⊗Ein jn . (9.15)

(Here Ei j stand for the standard matrix units in M2(C).) It follows from this isomor-
phism that A has a unique tracial state.

Let I12, I23 ⊂ {1,2, . . . ,n} and let I2 = I12 ∩ I23. Moreover, let A123 := A and
A12, A23, A2 be generated by the elements ai, where i belong to the set I12, I23, I2,
respectively. It is known that



9.5 Sufficiency 133

A12∩A23 = A2.

The trace-preserving conditional expectation E123
12 : A123 →A12 exists and we have

a commuting square (A123,A12,A23,A2,E123
12 ). �


9.4 Superadditivity

The content of the next theorem is the superadditivity of the relative entropy for a
commuting square.

Theorem 9.6. Assume that (A123,A12,A23,A2,E123
12 ) is a commuting square, ω123

is a separating state on A123, and E123
12 leaves this state invariant. Let ρ123 be an

arbitrary state on A123 and we denote by ω12,ω23,ω2,ρ12,ρ23,ρ2 the restrictions
of these states. Then

S(ρ123‖ω123)+ S(ρ2‖ω2)≥ S(ρ12‖ω12)+ S(ρ23‖ω23). (9.16)

Proof. The conditional expectation property of the relative entropy tells us that

S(ρ123‖ω) = S(ρ12|ω12)+ S(ρ123‖ρ123 ◦E123
12 ), (9.17)

S(ρ2‖ω2)+ S(ρ23‖ρ23 ◦E23
2 ) = S(ρ23,ω23). (9.18)

The monotonicity and the commuting square property give

S(ρ123‖ρ123 ◦E123
12 )≥ S(ρ23‖ρ123 ◦E123

12 |A23) = S(ρ23‖ρ2 ◦E23
2 ) . (9.19)

By adding (9.17), (9.18) and the inequality (9.19), we can conclude the statement of
the theorem.

It is worthwhile to note that the necessary and sufficient condition for the equal-
ity is

S(ρ123‖ρ123 ◦E123
12 ) = S(ρ23‖ρ123 ◦E123

12 |A23) . (9.20)

This fact will be used later. (This condition means that the subalgebra A23 is suffi-
cient for the states ρ123 and ρ123 ◦E123

12 .) �

The theorem implies the strong subadditivity of the von Neumann entropy for

the tensor product structure as it is in (5.12), but a similar strong subadditivity holds
for the CAR algebra as well.

9.5 Sufficiency

In order to motivate the concept of sufficiency, let us first turn to the setting
of classical statistics. Suppose we observe an N-dimensional random vector X =
(x1,x2, . . . ,xN), characterized by the density function f (x|θ ), where θ is a
p-dimensional vector of parameters and p is usually much smaller than N. Assume
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that the densities f (x|θ ) are known and the parameter θ completely determines the
distribution of X . Therefore, θ is to be estimated. The N-dimensional observation X
carries information about the p-dimensional parameter vector θ . One may ask the
following question: Can we compress x into a low-dimensional statistic without any
loss of information? Does there exist some function t = Tx, where the dimension
of t is less than N, such that t carries all the useful information about θ? If so, for
the purpose of studying θ , we could discard the measurements x and retain only
the low-dimensional statistic t. In this case, t is called a sufficient statistic. The
following example is standard and simple.

Suppose a binary information source emits a sequence of−1’s and +1’s, we have
the independent variables X1,X2, . . . ,XN such that Prob(Xi = 1) = θ . The quantum
mechanical example we may have in our mind is the measurement of a Pauli ob-
servable σ1 on N identical copies of a qubit. The empirical mean

T (x1,x2, . . . ,xN) =
1
N

N

∑
i=1

xi

can be used to estimate the parameter θ and it is a sufficient statistic. (Knowledge
of the empirical mean is equivalent to the knowledge of the relative frequencies of
±1.)

Let B be a matrix algebra. Assume that a family S := {ρθ : θ ∈ Θ} of density
matrices is given. (M ,S ) is called statistical experiment. The subalgebra A ⊂B
is sufficient for (B,S ) if there exists a coarse-graining α : B→A such that

TrρθB = Trρθα(B) (θ ∈Θ, B ∈B). (9.21)

If we denote by ρθ ,0 the reduced density of ρθ in A , then we can formulate suffi-
ciency in a slightly different way. A ⊂B is sufficient for (B,S ) if there exists a
completely positive trace–preserving mapping E : A →B such that

E (ρθ ,0) = ρθ (θ ∈Θ). (9.22)

Indeed, E satisfies (9.22) if and only if its dual α satisfies (9.21).
Before stating the main theorem characterizing sufficient subalgebras, recall the

concept of the Connes’ cocycle. If ρ and ω are density matrices, then

[Dρ ,Dω ]t = ρ itω−it

is a one-parameter family of contractions in B and it is called the Connes’ cocycle
of ρ and ω . When both densities are invertible, the Connes’ cocycle consists of
unitaries. The Connes’ cocycle is the quantum analogue of the Radon–Nikodym
derivative of measures.

The next result is called sufficiency theorem.

Theorem 9.7. Let A ⊂B be matrix algebras and let (B,{ρθ : θ ∈ Θ}) be a sta-
tistical experiment. Assume that there are densities ρn ∈ S := {ρθ : θ ∈ Θ} such
that
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ω :=
∞

∑
n=1

λnρn

is an invertible density for some constants λn > 0. Then the following conditions are
equivalent.

(i) A is sufficient for (B,S ).
(ii) Sα(ρθ ||ω) = Sα(ρθ ,0||ω0) for all θ and for some 0 < |α|< 1.

(iii) [Dρθ ,Dω ]t = [Dρθ ,0,Dω0]t for every real t and for every θ .
(v) The generalized conditional expectation Eω : B→ A leaves all the states ρθ

invariant.

Lemma 9.2. Let ρ0 and ω0 be the reduced densities of ρ ,ω ∈B in A . Assume that
ω is invertible. Then Sα(ρ ||ω) = Sα(ρ0||ω0) implies

ρ it
0ω

−it
0 = ρ itω−it

for every real number t ∈R.

Proof. The relative α-entropies can be expressed by the relative modular opera-
tors Δ acting on the Hilbert space B and Δ0 acting on A :

ΔA = ρAω−1 (A ∈A ) and Δ0B = ρ0Bω−1
0 (B ∈B).

The α-entropies are

Sα(ρ ||ω) =
1

α(1−α)
(1−Trωαρ1−α) (9.23)

but for the sake of simplicity we can neglect the constants:

S0
α(ρ ||ω) = Trωαρ1−α = 〈ω1/2,Δβω1/2〉, (9.24)

where β = 1−α . Assume that 0 < α < 1. (The case of negative α is treated simi-
larly.) From the integral representation of Δβ , we have

S0
α(ρ ||ω) =

sinπβ
π

∫ ∞

0
〈ω1/2,tβ−1Δ(t +Δ)−1ω1/2〉dt

and

S0
α(ρ0||ω0) =

sinπβ
π

∫ ∞

0
〈ω1/2

0 ,tβ−1Δ0(t +Δ0)−1ω1/2
0 〉dt .

Due to the monotonicity of quasi-entropies, there is an inequality between the two
integrands. Therefore, the equality of the entropies is equivalent to the condition

〈ω1/2,Δ(t +Δ)−1ω1/2〉= 〈ω1/2
0 ,Δ0(t +Δ0)−1ω1/2

0 〉 (t > 0),
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or
〈ω1/2,(t +Δ)−1ω1/2〉= 〈ω1/2

0 ,(t +Δ0)−1ω1/2
0 〉 (t > 0). (9.25)

These are equalities for numbers; let us obtain equalities for operators.
The operator V : A →B defined as

VAω1/2
0 = Aω1/2 (A ∈A )

is an isometry and

V ∗ΔV ≤ Δ0 .

The function ft (y) = (y + t)−1− t−1 is operator monotone decreasing, so

(Δ0 + t)−1− t−1I ≤ (V ∗ΔV + t)−1− t−1I.

Moreover, ft is operator convex and ft(0) = 0, therefore

(V ∗ΔV + t)−1− t−1I ≤V ∗(Δ+ t)−1V − t−1V ∗V.

The two equations together give

K := (Δ0 + t)−1− t−1I ≤V ∗(Δ+ t)−1V − t−1V ∗V =: L

Recall that (9.25) is

〈ω1/2
0 ,Kω1/2

0 〉= 〈ω1/2
0 ,Lω1/2

0 〉.

This implies that ‖(L−K)1/2ω1/2
0 ‖2 = 0 and Kω1/2

0 = Lω1/2
0 , or

V ∗(Δ+ t)−1ω1/2 = (Δ0 + t)−1ω1/2
0 (9.26)

for all t > 0. Differentiating by t we have

V ∗(Δ+ t)−2ω1/2 = (Δ0 + t)−2ω1/2
0

and we can infer

‖V ∗(Δ+ t)−1ω1/2‖2 = 〈(Δ0 + t)−2ω1/2
0 ,ω1/2

0 〉
= 〈V ∗(Δ+ t)−2ω1/2,ω1/2

0 〉
= ‖(Δ+ t)−1ω1/2‖2

When ‖V ∗ξ‖= ‖ξ‖ holds for a contraction V , it follows that VV ∗ξ = ξ . In the light
of this remark we arrive at the condition

VV ∗(Δ+ t)−1ω1/2 = (Δ+ t)−1ω1/2
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and from (9.26)

V (Δ0 + t)−1ω1/2
0 = VV ∗(Δ+ t)−1ω1/2

= (Δ+ t)−1ω1/2

The family of functions gt(x) = (t + x)−1 is very large and the Stone–Weierstrass
approximation yields

V f (Δ0)ω
1/2
0 = f (Δ)ω1/2 (9.27)

for any continuous function f . In particular for f (x) = xit we have

ρ it
0ω

−it
0 ω1/2 = ρ itω−it+1/2 . (9.28)

This condition follows from the equality of α-entropies. �

Now we can prove the theorem. (i) implies (ii) due to the monotonicity of the

relative α-entropies. The key point is (ii)⇒ (iii). This follows from Lemma 9.2.
(iii) ⇒ (iv) is rather straightforward:

Trρθ ,0Eω(B) = Trρθ ,0ω
−1/2
0 F(ω1/2Bω1/2)ω−1/2

0 =Trρθ ,0ω
−1/2
0 ω1/2Bω1/2ω−1/2

0

= Trρθω−1/2ω1/2Bω1/2ω−1/2 = TrρθB,

where ρθ ,0ω
−1/2
0 = ρθω−1/2 was used.

Finally, (iv)⇒ (i) due to the definition of sufficiency. �

The density ω appearing in the theorem is said to be dominating for the sta-

tistical experiment S . Given a dominated statistical experiment S , the subalgebra
generated by the operators

{ρ it
θ ω

−it : t ∈ R}

is the smallest sufficient subalgebra. If there are θ1,θ2 ∈ Θ such that ρθ1 and
ρθ2 do not commute, then there exists no sufficient commutative subalgebra for
{ρθ : θ ∈ Θ}.

The formulation of the sufficiency theorem was made a bit complicated, since the
formulation is true for an arbitrary von Neumann algebra and for a family of normal
(and not necessarily faithful) states. For two invertible states in finite dimension
the relative entropy is always finite and we can have a simpler formulation of the
sufficiency theorem.

Theorem 9.8. Let ω ,ρ ∈ B = B(H ) be invertible density matrices on a finite-
dimensional Hilbert space H and let A ⊂B be a subalgebra. Denote by ρ0 and
ω0 the reduced densities in A . Then the following conditions are equivalent.

(i) A is sufficient for {ρ ,ω}.
(ii) Sα(ρ ||ω) = Sα(ρ |A ||ω |A ) for some α such that |α|< 1.

(iii) ρ itω−it = ρ it
0ω

−it
0 for every real t.

(iv) ρ−1/2
0 ρ1/2 = ω−1/2

0 ω1/2 .
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(v) The generalized conditional expectations Eω : B→A and Eρ : B→A coin-
cide.

(vi) ρ itω−it ∈A for all real t.

Proof. The equivalence (i)⇐⇒ (ii)⇐⇒ (iii) was proven in the previous theorem.
(iii)⇒(iv) is obvious, (iv)⇐⇒ (v) is Theorem 9.4. (v)⇒(i) and (iii)⇒(vi) are trivial.

The real problem is to prove (vi)⇒(i). Let A0 be the algebra generated by
{ρ itω−it : t ∈R}. Of course, A0 ⊂A and we can write elements of A0 in the form

K⊕
k=1

IL
k ⊗AR

k ,

(see Sect. 11.8). We have

ρ itA0ρ−it ⊂A0

for every t ∈ R and Theorem 11.27 tells us that

ρ =
K⊕

k=1

AL
k ⊗AR

k and ω =
K⊕

k=1

BL
k ⊗BR

k .

Since ρω−1 ∈A0, AL
k (B

L
k )−1 is a constant multiple of the identity, we may assume

that AL
k = BL

k . The reduced densities are

ρ1 =
K⊕

k=1

(TrAL
k )I

L
k ⊗AR

k and ω1 =
K⊕

k=1

(TrAL
k )I

L
k ⊗BR

k .

We can conclude that

ρ = ρ1D and ω = ω1D,

where D ∈A ′
1 . This relation implies that ρ itω−it = ρ it

1 ω
−it
1 for every t ∈ R. So the

subalgebra A0 is sufficient, and the larger subalgebra A must be sufficient as well.
�


9.6 Markov States

Let ρABC be a density matrix acting on the finite-dimensional tensor product Hilbert
space HA⊗HB⊗HC. The reduced density matrices will be denoted by ρAB,ρBC

and ρB.

Theorem 9.9. The following conditions are equivalent.

(i) The equality

S(ρABC)+ S(ρB) = S(ρAB)+ S(ρBC)

holds in the strong subadditivity of the von Neumann entropy.
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(ii) If τA denotes the tracial state of B(HA), then

S(ρABC‖τA⊗ρBC) = S(ρAB‖τA⊗ρB).

(iii) There exist a subalgebra A and a conditional expectation from B(HA⊗HB⊗
HC) onto A such that

B(HA)⊗CIB⊗CIC ⊂A ⊂ B(HA)⊗B(HB)⊗CIC

and E leaves the state ρABC invariant.
(iv) The generalized conditional expectation

Eρ : B(HA⊗HB⊗HC)→ B(HA)⊗B(HB)⊗CIC

(with respect to ρABC) leaves the operators in B(HA)⊗CIB⊗CIC fixed.
(v) There is a state transformation

E : B(HB)→ B(HB⊗HC)

such that (idA⊗E )(ρAB) = ρABC.

Proof. The equivalence (i)⇐⇒ (ii) is clear from the proof of the strong subadditivity
in Sect. 5.4.

(iii)⇒(ii): To show that E leaves also the state τA⊗ρBC invariant first we should
establish that E(IA⊗XB⊗XC) commutes with every XA⊗ IB⊗ IC; therefore E(IA⊗
XB⊗XC) ∈ CIA⊗B(HB)⊗CIC. We have

(τA⊗ρBC)E(XA⊗XB⊗XC) = (τA⊗ρBC)(XA⊗ IB⊗ IC)E(IA⊗XB⊗XC)
= τA(XA)TrρBCE(IA⊗XB⊗XC)
= (τA⊗ρBC)(XA⊗XB⊗XC).

It follows that

S(ρABC‖τA⊗ρBC) = S(ρABC|A ‖τA⊗ρBC|A ).

Since S(ρAB‖τA⊗ρB) is between the left-hand side and the right-hand side, it must
have the same value.

(iv)⇒(iii): Eρ preserves ρABC and so do its powers. As per the Kovács–Szűcs
theorem,

1
n
(id+ Eρ + · · ·+ En−1

ρ )→ E

where E is a conditional expectation onto the fixed-point algebra.
(ii)⇒(iv) and (v): Condition (v) in Theorem 9.8 tells us that the generalized con-

ditional expectation Eρ has the form

Eρ(X) = (τA⊗ρB)−1/2F
(
(τA⊗ρBC)1/2X(τA⊗ρBC)1/2

)
(τA⊗ρB)−1/2
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where F is the conditional expectation preserving the normalized trace. Let A be
the fixed-point algebra of Eρ . One can compute that Eρ(XA⊗ IB⊗ IC) = XA⊗ IB⊗ IC,
therefore

B(HA)⊗CIB⊗CIC ⊂A ⊂ B(HA)⊗B(HB)⊗CIC. (9.29)

and (iv) is obtained. Relation (9.29) gives that A must be of the form B(HA)⊗
AB⊗CIC with a subalgebra AB of B(HB). It follows that the dual of Eρ has the
form idA⊗E and we can arrive at (v).

(v) implies that E (τA⊗ρB) = ρABC and (ii) must hold. �

If a density matrix ρABC acting on tensor product Hilbert space HA⊗HB⊗HC

satisfies the conditions of the previous theorem, then ρABC will be called a Markov
state.

If the notation

I(A : C|B)ρ := S(ρAB)+ S(ρBC)−S(ρB)−S(ρABC)

is used, then the Markovianity of ρ is the condition I(A : C|B)ρ = 0.

Example 9.10. Assume that HB = HL⊗HR. Consider densities ρAL ∈B(HA⊗HL)
and ρRC ∈ B(HR⊗HC) and let ρABC = ρAL⊗ ρRC. Then ρABC is a Markov state,
and we shall call it “a product type.” It is easy to check the strong additivity of the
von Neumann entropy:

S(ρABC) = S(ρAL)+ S(ρRC), S(ρB) = S(ρL)+ S(ρR),
S(ρAB) = S(ρAL)+ S(ρR), S(ρBC) = S(ρL)+ S(ρRC).

Let P and Q be orthogonal projections. Assume that ρABC and ωABC are Markov
states with support in P and Q, respectively. Computation of the von Neumann en-
tropies yields that any convex combination λρABC +(1−λ )ωABC is a Markov state
as well.

It is the content of the next theorem that every Markov state is the convex com-
bination of orthogonal product type states. �

Theorem 9.10. Assume that ρABC is a Markov state on the finite dimensional tensor
product Hilbert space HA⊗HB⊗HC. Then HB has an orthogonal decomposition

HB =
⊕

k

H L
k ⊗H R

k

and for every k there are density matrices ρk
AL ∈ B(HA⊗H L

k ) and ρk
RC ∈ B(H R

k ⊗
HC) such that ρABC is a convex combination

ρABC =∑
k

pk ρk
AL⊗ρk

RC.

Proof. Let ω := τA⊗ρBC and ρ := ρABC. We know from Theorem 9.9 that Marko-
vianity implies that the generalized conditional expectation
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Eω : B(HA)⊗B(HB)⊗B(HC)→ B(HA)⊗B(HB)⊗CIC

with respect to the state ω is the same as Eρ and the fixed-point algebra A has the
property

B(HA)⊗CIB⊗CIC ⊂A ⊂ B(HA)⊗B(HB)⊗CIC.

It follows that A must be of the form B(HA)⊗AB⊗CIC with a subalgebra AB of
B(HB). Elements of AB have the form

K⊕
k=1

AL
k ⊗ IR

k ,

where AL
k ∈ B(H L

k ), IR
k is the identity on H R

k and

HB =
K⊕

k=1

H L
k ⊗H R

k .

In this way A is isomorphic to

K⊕
k=1

B(HA⊗H L
k )⊗CIR

k ⊗CIC .

Since ρ itA ρ−it ⊂ A holds, Theorem 11.27 can be applied and gives the stated
decomposition. �


9.7 Notes

The conditional expectation in the matrix algebra (or von Neumann algebra) setting
was introduced by Umegaki in [115] and Example 9.5 is due to him. Takesaki’s
theorem was developed in 1972. In the infinite-dimensional von Neumann algebra
case, the modular operators are unbounded and condition (9.9) is replaced by the
equation

Δit
A AΔ−it

A = Δit
BAΔ−it

B

for real t’s. (Note that Δit
A and Δit

B are unitaries and the operatorsΔz
A and Δz

B are not
everywhere defined for a complex z ∈ C.) The generalized conditional expectation
was introduced by Accardi and Cecchini, [90] is a suggested survey.

Example 9.4 is a particular case of the Kovács–Szűcs theorem which concerns a
semigroup of coarse-grainings in von Neumann algebras. That was the first ergodic
theorem in the von Neumann algebra setting.
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In general von Neumann algebras, the Connes’ cocycle is defined in terms of
relative modular operators:

[Dψ ,Dω ]t = Δ(ψ/ω)itΔ(ω/ω)−it

is a one-parameter family of contractions in the von Neumann algebra, although the
relative modular operators Δ(ψ/ω) are typically unbounded.

The conditional expectation property together with invariance, direct sum
property, nilpotence and measurability can be used to axiomatize the relative en-
tropy (see Chap. 2 of [83]). The conditional expectation property in full generality
is Theorem 5.15 in the same monograph.

Sufficiency in the quantum setting was initiated by Petz in [89] for subalgebras
and in [91] for coarse-grainings. Recent paper on the subject is [63], and [64] is a
survey with examples.

The concept of Markov state goes back to Accardi and Frigerio [1]. The original
definition was formulated in terms of generalized or quasi-conditional expectation
(see also Lemma 11.3 in [83]).

Theorem 9.10 is due to Hayden et al. [47], the presented proof follows [76].
The theorem holds in infinite-dimensional Hilbert space if all the von Neumann
entropies S(ρAB),S(ρB),S(ρBC) are finite (see [63]). The Markov property in the
quantum setting is an interesting subject to study (see [61], for example).

9.8 Exercises

1. Let A ⊂B be matrix algebras, ρ ∈B be a density matrix with reduced density

ρ0 ∈A . Endow A with the inner product 〈A1,A2〉 := TrA∗1ρ
1/2
0 A2ρ

1/2
0 and sim-

ilarly let 〈B1,B2〉 := TrB∗1ρ1/2B2ρ1/2 be an inner product on B. Show that the
adjoint of the embedding A →B is the generalized conditional expectation
Eρ defined in (9.10).

2. Let B be a matrix algebra and ρ ∈B be an invertible density matrix. Assume
that α : B →B is a coarse-graining leaving the state ρ invariant and let A be
the set of fixed points of α . Show that for every B ∈B the set

conv{αn(B) : n ∈ Z
+}∩A

is a singleton.



Chapter 10
State Estimation

The goal of state estimation is to determine the density operator ρ of a quantum
system by measurements on n copies of the quantum system which are all prepared
in the state ρ . Since the result of a measurement in quantum mechanics is random,
several measurements should be made to get information. A measurement changes
the state of the system drastically; therefore an identically prepared other system
is used for the next measurement. The number n corresponds to the sample size in
classical mathematical statistics. An estimation scheme consists of a measurement
and an estimate for every n, and the estimation error is expected to tend to 0 when
n tends to infinity. It is also possible that the aim of the estimation is not the density
matrix itself but certain function of the density matrix.

10.1 Estimation Schemas

Let Θ be a set of density matrices acting on a Hilbert space H . For each n ∈ N a
positive-operator-valued measure Fn : B(Xn)→ B(H ⊗n) is given on the Borel sets
of Xn. This means that

(a) for H ⊂Xn a positive (self-adjoint) operator Fn(H) acting on H ⊗n is given,
(b) if H1,H2, · · · ⊂Xn are pairwise disjoint, then

Fn (∪kHk) =∑
k

Fn(Hk),

(c) Fn(Xn) = I.

Such an Fn is regarded as a collective measurement with values in Xn. Sometimes
Xn is a finite set and we have a partition of the identity. When all operators Fn(H)
are projections, we have another important special case which is called simple or
von Neumann measurement.

The probability that for a given state ρ ∈Θ the measurement value is in H ⊂Xn

is given by

D. Petz, State Estimation. In: D. Petz, Quantum Information Theory and Quantum Statistics, Theoretical
and Mathematical Physics, pp. 143–164 (2008)
DOI 10.1007/978-3-540-74636-2 10 c© Springer-Verlag Berlin Heidelberg 2008
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μn,ρ(H) = Trρ⊗nFn(H) (10.1)

which is the so-called Bohr’s rule.
Beyond the measurement an estimatorΦn : Xn →Θ is given. When the value of

the measurement is x ∈Xn, we can infer that the state of the system is Φn(x). The
sequence (Fn,Φn) of pairs is called estimation scheme. The estimation scheme is
called unbiased if the expectation value of Φn under μn,ρ is ρ for every ρ ∈Θ. The
estimation scheme (Fn,Φn) is called consistent if for every ρ ∈ Θ the distribution
of the random variable Φn converges weakly to the point-measure concentrated on
ρ as n→ ∞.

Example 10.1. Fix a vector w on the Bloch sphere. Then

P± := 1
2 (σ0±w ·σ)

are orthogonal projections and P+ + P− = I follows. They form a von Neumann
measurement with values±1: X = {−1,1}, F(−1) = P− and F(1) = P+.

For the density matrix

ρθ = 1
2 (σ0 +θ (w ·σ))

(−1≤ θ ≤ 1), Bohr’s rule gives the probabilities

p = TrρθP+ =
1 +θ

2
and 1− p = TrρθP− =

1−θ
2

,

hence the probability measure on {−1,1} is (1− p, p). (This measure depends on
the parameter θ .)

Let the estimator Φ : {−1,1}→ Θ= {ρθ :−1≤ θ ≤ 1} be given as

Φ(±1) = 1
2(σ0± (w ·σ)).

So Φ always gives a pure state. The expectation value of the estimate is

pΦ(1)+ (1− p)Φ(−1) = 1
2 (σ0 +θ (x ·σ)) = ρθ .

Therefore, this estimation is unbiased.
Note that P± are the spectral projections of the matrix w ·σ , which is the observ-

able corresponding to the spin in the direction w. What we discussed is not a full
estimation scheme, we had a single measurement only. �

In the previous example the set Θ was parameterized with a single real parameter.
Very often Θ= {ρθ : θ = (θ1,θ2, . . . ,θN) ∈ G}, where G⊂ R

N . When the state ρθ
is identified with the N-tuple (θ1,θ2, . . . ,θN), the task of the state estimation is to
determine the correct values of θ1,θ2, . . . ,θN .

Example 10.2. Assume that Θ is a convex set of density matrices acting on a Hilbert
space H , a positive-operator-valued measure F : B(X )→B(H ) and an estimator
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Φ : X → Θ are given in the single measurement case. There is a very natural way
to construct a full state estimation scheme. Take

Xn := X ×X × . . .×X ,

Fn := F⊗F⊗ . . .⊗F,

Φn(x1,x2, . . . ,xn) :=
1
n
(Φ(x1)+Φ(x2)+ · · ·+Φ(xn)) .

Then
μn,ρ = μρ ⊗ μρ⊗ . . .⊗ μρ , (10.2)

where μρ is the distribution of the measurement F in the state ρθ . (In the back-
ground, we have n independent measurements.)

If the expectation value of Φ is the true value of θ , then this estimation scheme
is unbiased. Moreover, the law of large numbers tells us that Φn converges to the
mean of Φ. Therefore the estimation scheme is consistent. �

Example 10.3. Assume that the measures μn,ρ are absolute continuous with respect
to a dominating measure and dμn,ρ(x) = fn,ρ(x)dx for some density functions
fn,ρ(x). Assume that the actual value of the measurement is x ∈Xn. Then the max-
imum likelihood estimate ΦML

n (x) ∈ Θ is the maximizer of the function

ρ �→ fn,ρ (x),

that is, ΦML
n (x) = argmaxρ fn,ρ(x). Since the logarithm is a monotone function, we

can equivalently take

ΦML
n (x) = argmaxρ log fn,ρ (x). (10.3)

�

Example 10.4. Now our aim is to extend Example 10.1 in such a way that it should
cover the reconstruction of a state of a qubit. Θ will be the full state space repre-
sented by the Bloch ball.

For i = 1,2,3, let

Pi := 1
2(σ0 +σi) and Qi := 1

2 (σ0−σi).

These are orthogonal projections and Pi +Qi = I. (The spectral decomposition of σi

is Pi−Qi.) Similarly to Example 10.1, we have three projection-valued measures on
{−1,1} and we can form their product:

F := (δ−1Q1 + δ1P1)⊗ (δ−1Q2 + δ1P2)⊗ (δ−1Q3 + δ1P3)

is a positive-operator-valued measure from X := {−1,1}3→ B(C8). (δx stands for
the Dirac measure concentrated on x.) F is a von Neumann measurement on three
qubits.

For the density matrix
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ρθ = 1
2 (σ0 +θ ·σ)

(θ ∈R
3, ‖θ‖2 ≤ 1), the Bohr’s rule gives the probabilities

pi = TrρθPi =
1 +θi

2
and 1− pi = TrρθQi =

1−θi

2
,

and the a posteriori probability measure is

μθ =⊗3
i=1((1− pi)δ−1 + piδ1).

Assume that the result of the measurement is (ε1,ε2,ε3), where εi =±1. In order
to make a maximum likelihood estimate, we have to maximize

1
8

3

∏
i=1

(1 + εiθi)

on the Bloch ball. Due to symmetry, this can be done without computation. The
maximum likelihood estimate

Φ(ε1,ε2,ε3) =
1√
3
(ε1,ε2,ε3)

always gives a pure state. The Bloch ball cannot be the convex hull of finitely many
points; this implies that the estimator is not unbiased. �


In the next example the state of a qubit is estimated by means of a measurement
of four outcomes.

Example 10.5. Consider the following Bloch vectors

a1 =
1√
3
(1,1,1), a2 =

1√
3
(1,−1,−1),

a3 =
1√
3
(−1,1,−1), a4 =

1√
3
(−1,−1,1).

and form the positive operators

Fi =
1
4
(σ0 + ai ·σ) (1≤ i≤ 4).

They determine a measurement, ∑4
i=1 Fi = I. The probability of the outcome i is

pi = TrFiρθ =
1
4
(1 + ai ·θ ).

The maximum likelihood estimate is
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Φ(i) =
1
2
(σ0 + ai ·σ).

�

Now let us continue Example 10.4 and extend it to a full estimation scheme.

Example 10.6. The result of the measurement in Example 10.4 is a triplet, (ε1,ε2,ε3),
where εi =±1. Remember that εi is the measured value of the spin in direction i. As-
sume that the measurement is performed n times on identical but different systems.
Then the measurement data is a sequence

x := (ε(1)
1 ,ε(1)

2 ,ε(1)
3 ,ε(2)

1 ,ε(2)
2 ,ε(2)

3 , . . . ,ε(n)
1 ,ε(n)

2 ,ε(n)
3 ) .

Assume that the true state is ρθ . Then

μn(x) =
3

∏
i=1

pni(x)
i (1− pi)n−ni(x), where ni(x) = #{1≤ j ≤ n : ε( j)

i = 1} .

In order to estimate, we do not actually need the full sequence x, we may benefit
from a sufficient statistics. What we need is the relative frequencies:

ν(n)
i (x) :=

ni(x)
n

According to the law of large numbers ν(n)
i (x)→ pi = (1 +θi)/2. Therefore,

Φ̃n(x) :=
(
(2ν(n)

1 (x)−1), (2ν(n)
2 (x)−1), (2ν(n)

3 (x)−1)
)

(10.4)

seems to be a good estimate of θ . Let us compute the expectation value

∑
x
Φ̃n(x)

3

∏
i=1

pni(x)
i (1− pi)n−ni(x) .

The ith component is

∑
x

pni(x)
i (1−pi)n−ni(x)(2ν(n)

i (x)−1)=
n

∑
k=0

(
n
j

)
pk

i (1− pi)n−k
(2 j

n
−1
)

=2pi−1=θi.

The expectation value of Φ̃n is the true state. We can arrive at the same conclusion
in a different way. Observe that

Φ̃n(x) =
1
n

n

∑
i=1

Φ̃1(ε
(i)
1 ,ε(i)

2 ,ε(i)
3 ).

Since Φ̃1 is unbiased, Φ̃n is unbiased as well (cf. Example 10.2).
It may happen that the value of Φ̃n is outside of the Bloch ball. (For n = 1 this is

always the case.) Therefore, we can modify Φ̃n as follows:
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Φn(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Φ̃n(x) i f‖Φ̃n(x)‖ ≤ 1,

Φ̃n(x)
‖Φ̃n(x)‖

otherwise.

This modification is natural on the one hand, and it is justified by the method of least
squares on the other hand. Given the observation data (ν(n)

1 (x),ν(n)
2 (x),ν(n)

3 (x)),
minimization of the measure of fit,

3

∑
i=1

(
ν(n)

i (x)− 1 +θi

2

)2

,

yields exactly Φn(x).
To show that Φn is an asymptotically unbiased estimator we should study the

difference

∑
x
Φ̃n(x)p(x)−∑

x
Φn(x)p(x) = ∑

x∈D
(Φ̃n(x)−Φn(x))p(x) , (10.5)

where the latest summation is over all x ∈Xn such that

∑
i

(
2ν(n)

i (x)−1
)2

= ‖Φ̃n(x)‖2 > 1. (10.6)

If the true state is mixed, then the probability of (10.6) tends to 0 as n→∞ according
to the law of large numbers. We can conclude that Φn is asymptotically unbiased.
If the true state is pure, we need a bit longer argument. Let us divide D into two
subsets

D1 := {x ∈ D : ‖Φ̃n(x)‖ > 1 + ε} and D2 := {x ∈ D : 1 < ‖Φ̃n(x)‖ ≤ 1 + ε} .

Then

∑
x∈D
‖Φ̃n(x)−Φn(x)‖p(x)≤ ∑

x∈D1

‖Φ̃n(x)−Φn(x)‖p(x)+ ∑
x∈D2

‖Φ̃n(x)−Φn(x)‖p(x) .

The first term is majorized by 2Prob(D1) and the second one by ε . Since the first
tends to 0 and the latter is arbitrarily small, we can conclude that (10.5) tends to 0.

Let G be an open set such that θ ∈ G. According to the law of large numbers

Prob(Φ̃n(x) /∈ G)→ 0,

however, according to the large deviation theorem the convergence is exponen-
tially fast:

Prob(Φ̃n(x) /∈ G)≤C exp(−nEG),
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where the exponent is the infimum of the so-called rate function:

EG := inf

{
3

∑
i=1

S
(
[(1 + ti)/2,(1− ti)/2)]

∥∥∥[(1 +θi)/2,(1−θi)/2]
)

: t /∈ G

}
.

EG > 0, since the rate function is the sum of relative entropies and it equals 0 if and
only if ti = θi, which is excluded by the condition t /∈ G. (I do not want to justify
here the concrete form of the rate function.)

The exponential convergence tells us that Φ̃n violates the constraint ‖Φ̃n‖ ≤ 1
with very small probability if n is large and ‖θ‖< 1. �

Example 10.7. If we have a k-level quantum system, then its density matrix has
k2−1 real parameters. There are many ways to construct an estimator such that its
values are self-adjoint k× k matrices of trace 1. We can call this Φ̃ unconstrained
estimator, since its values are not always positive semidefinite. We can modify Φ̃
to get really an estimator in the following way:

Φ := argminωTr(Φ̃−ω)2 = argminω∑
i, j

(Φ̃)i j−ωi j)2 , (10.7)

(0,0,1)

(0,1,0)

x = 0

(1,0,0)

y = 0

z = 0

( 1/2, –1/2, 1 )

( 1/6, –1/2, 8/6 )

( –1/12, 0,  13/12 )

( 1/4, 0, 3/4 )

Fig. 10.1 Modification of the unconstrained estimate for 3× 3 matrices is shown on the plane
x+y+z = 1 of R

3. The triangle {(x,y, z) : x,y, z≥ 0} corresponds to the diagonal density matrices.
Starting from the unconstrained estimate Diag(1/2,−1/2,1), the constrained Diag(1/4,0,3/4) is
reached in one step. Starting from Diag(1/6,−1/2,8/6), two steps are needed
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where ω runs over the density matrices. The k× k density matrices form a closed
convex set Dk; therefore the minimizer is unique.

We can change the basis such that Φ̃ becomes diagonal, since the Hilbert–
Schmidt distance is invariant under this transformation. So let UΦ̃U∗ = Diag(x1,x2,
. . . ,xk) for a unitary U . Then we can compute the minimizer in (10.7) by the follow-
ing algorithm. Assume that the sum of the negative entries is C < 0. We can replace
the � negative entries by 0 and add C/(k− �) to the other entries. In this way the
trace remains 1. If there is no negative entry, then we are ready, otherwise we have
to repeat the above procedure. After finitely many steps there is no negative entry
(see Fig. 10.1). �


10.2 Cramér–Rao Inequalities

The Cramér–Rao inequality belongs to the basics of estimation theory in mathemat-
ical statistics.

Assume that we have to estimate the state ρθ , where θ = (θ1,θ2, . . . ,θN) lies in
a subset of R

N . In mathematical statistics the N×N mean quadratic error matrix

Vn(θ )i, j :=
∫

Xn

(Φn(x)i−θi)(Φn(x) j−θ j)dμn,θ (x) (10.8)

is used to express the efficiency of the nth estimation and in a good estimation
scheme Vn(θ ) = O(n−1) is expected. For an unbiased estimation scheme the formula
simplifies:

Vn(θ )i, j :=
∫

Xn

Φn(x)iΦn(x) j dμn,θ (x)−θiθ j, . (10.9)

(In mathematical statistics, this is sometimes called “covariance matrix of the esti-
mate.”)

The mean quadratic error matrix is used to measure the efficiency of an estimate.
Even if the value of θ is fixed, for two different estimations the corresponding ma-
trices are not always comparable, because the ordering of positive definite matrices
is highly partial. This fact has inconvenient consequences in classical statistics. In
the state estimation of a quantum system the very different possible measurements
make the situation even more complex.

Example 10.8. Consider the estimation scheme of Example 10.2. If the mean quad-
ratic error matrix of the first measurement is V (θ ), then

Vn(θ ) =
1
n

V (θ ) .

This follows from the well-known fact that for a sequence of independent (vector-
valued) random variables ξ1,ξ2, . . . ,ξN the covariance matrix of η := (ξ1 + ξ2 +
· · ·+ ξN)/N is the mean of the individual covariance matrices:
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Cov(η) =
1
n

N

∑
i=1

Cov(ξi)

We have the convergence Vn → 0 as n→ ∞. �

Assume that dμn,θ (x) = fn,θ (x)dx and fix θ . fn,θ is called likelihood func-

tion. Let

∂ j =
∂
∂θ j

.

Differentiating the relation
∫

Xn

fn,θ (x)dx = 1,

we have
∫

Xn

∂ j fn,θ (x)dx = 0.

If the estimation scheme is unbiased, then
∫

Xn

Φn(x)i∂ j fn,θ (x)dx = δi, j.

As a combination, we can conclude
∫

Xn

(Φn(x)i−θi)∂ j fn,θ (x)dx = δi, j

for every 1≤ i, j ≤ N. This condition may be written in the slightly different form

∫
Xn

(
(Φn(x)i−θi)

√
fn,θ (x)

) ∂ j fn,θ (x)√
fn,θ (x)

dx = δi, j.

Now the first factor of the integrand depends on i while the second one on j. We
need the following lemma.

Lemma 10.1. Assume that ui,vi are vectors in a Hilbert space such that

〈ui,v j〉= δi, j (i, j = 1,2, . . . ,N).

Then the inequality

A≥ B−1

holds for the N×N matrices

Ai, j = 〈ui,u j〉 and Bi, j = 〈vi,v j〉 (1≤ i, j ≤ N).
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The lemma applies to the vectors

ui = (Φn(x)i−θi)
√

fn,θ (x) and v j =
∂ j fn,θ (x)√

fn,θ (x)

and the matrix A will be exactly the mean square error matrix Vn(θ ), while in place
of B we have

In(θ )i, j =
∫

Xn

∂i( fn,θ (x))∂ j( fn,θ (x))
f 2
n,θ (x)

dμn,θ (x).

Therefore, the lemma tells us the following.

Theorem 10.1. For an unbiased estimation scheme the matrix inequality

Vn(θ )≥ In(θ )−1

holds (if the likelihood functions fn,θ satisfy certain regularity conditions).

This is the classical Cramér–Rao inequality. The right-hand side is called
Fisher information matrix. The essential content of the inequality is that the lower
bound is independent of the estimate Φn but depends on the the classical likelihood
function. The inequality is called “classical” because on both sides classical statis-
tical quantities appear.

Example 10.9. Let F be a measurement with values in the finite set X and assume
that ρθ = ρ+∑n

i=1 θiBi. Let us compute the Fisher information matrix at θ = 0.
Since

∂iTrρθF(x) = TrBiF(x)

for 1≤ i≤ n and x ∈X , we have

Ii j(0) = ∑
x∈X

TrBiF(x)TrB jF(x)
TrρF(x)

�

When the estimation scheme of Example 10.2 is considered, we have In(θ ) =

nI(θ ) and the inequality becomes

Vn(θ )≥ 1
n

I(θ )−1.

The essential point in the quantum Cramér–Rao inequality compared with
Theorem 10.1 is that the lower bound is a quantity determined by the family Θ.
Theorem 10.1 allows to compare different estimates for a given measurement but
two different measurements are not comparable.

As a starting point I give a very general form of the quantum Cramér–Rao in-
equality in the simple setting of a single parameter. For θ ∈ (−ε,ε)⊂R a statistical
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operator ρθ is given and the aim is to estimate the value of the parameter θ close
to 0. Formally ρθ is an m×m positive semidefinite matrix of trace 1 which de-
scribes a mixed state of a quantum mechanical system and it is assumed that ρθ is
smooth (in θ ). Assume that an estimation is performed by the measurement of a
self-adjoint matrix A playing the role of an observable. (In this case the positive-
operator-valued measure on R is the spectral measure of A.) A is unbiased estimator
when TrρθA = θ . Assume that the true value of θ is close to 0. A is called locally
unbiased estimator (at θ = 0) if

∂
∂θ

TrρθA
∣∣∣
θ=0

= 1 . (10.10)

Of course, this condition holds if A is an unbiased estimator for θ . To require
TrρθA = θ for all values of the parameter might be a serious restriction on the
observable A and therefore it is preferred to use the weaker condition (10.10).

Example 10.10. Let

ρθ :=
exp(H +θB)

Tr exp(H +θB)

and assume that ρ0 = eH is a density matrix and TreHB = 0. The Frechet derivative
of ρθ (at θ = 0) is

∫ 1
0 etH Be(1−t)H dt. Hence the self-adjoint operator A is locally

unbiased if
∫ 1

0
Trρ t

0Bρ1−t
0 Adt = 1.

(Note that ρθ is a quantum analogue of the exponential family; in terms of physics
ρθ is a Gibbsian family of states.) �


Let ϕρ [B,C] = TrJρ(B)C be an inner product on the linear space of self-adjoint
matrices. ϕρ [ · , · ] and the corresponding super-operator Jρ depend on the density
matrix ρ ; the notation reflects this fact. When ρθ is smooth in θ , as was already
assumed, then

∂
∂θ

TrρθB
∣∣∣
θ=0

= ϕρ0 [B,L] (10.11)

with some L = L∗. From (10.10) and (10.11), we have ϕ0[A,L] = 1 and the Schwarz
inequality yields the following.

Theorem 10.2.

ϕρ0 [A,A]≥ 1
ϕρ0 [L,L]

. (10.12)

This is the quantum Cramér–Rao inequality for a locally unbiased estimator.
It is instructive to compare Theorem 10.2 with the classical Cramér–Rao inequality.
If A = ∑iλiEi is the spectral decomposition, then the corresponding von Neumann
measurement is F =∑i δλi

Ei. Take the estimateΦ(λi)= λi. Then the mean quadratic
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error is ∑i λ 2
i Trρ0Ei (at θ = 0), which is exactly the left-hand side of the quantum

inequality provided that

ϕρ0 [B,C] = 1
2 Trρ0(BC +CB) .

Generally, let us interpret the left-hand side as a sort of generalized variance of
A. To do this it is useful to assume that

ϕρ [B,B] = TrρB2 if Bρ = ρB . (10.13)

However, in the non-commutative situation the statistical interpretation seems to be
rather problematic and thus this quantity is called “quadratic cost functional.”

The right-hand side of (10.12) is independent of the estimator and provides a
lower bound for the quadratic cost. The denominator ϕ0[L,L] appears to be in the
role of Fisher information here. It is called quantum Fisher information with re-
spect to the cost function ϕ0[ · , · ]. This quantity depends on the tangent of the curve
ρθ . If the densities ρθ and the estimator A commute, then

L = ρ−1
0

dρθ
dθ

=
d

dθ
logρθ and ϕ0[L,L] = Trρ−1

0

(
dρθ
dθ

)2

= Trρ0

(
ρ−1

0
dρθ
dθ

)2

.

(10.14)
The first formula justifies that L is called logarithmic derivative.

10.3 Quantum Fisher Information

A coarse-graining is an affine mapping sending density matrices into density ma-
trices. Such a mapping extends to all matrices and provides a positivity and trace-
preserving linear transformation. A common example of coarse-graining sends the
density matrix ρ12 of a composite system 1 + 2 into the (reduced) density matrix
ρ1 of component 1. There are several reasons to assume complete positivity about
a coarse-graining and it is done so. Mathematically, coarse-graining is the same as
state transformation in information channels. The terminology “coarse-graining” is
used when the statistical aspects are focused on. Coarse-graining is the quantum
analogue of a statistic.

Assume that ρθ = ρ + θB is a smooth curve of density matrices with tangent
B := ρ̇ at ρ . The quantum Fisher information Fρ(B) is an information quantity as-
sociated with the pair (ρ ,B); it appeared in the Cramér–Rao inequality, and the
classical Fisher information gives a bound for the variance of a locally unbiased
estimator. Now let α be a coarse-graining. Then α(ρθ ) is another curve in the state
space. Due to the linearity of α , the tangent at α(ρ0) is α(B). As it is usual in
statistics, information cannot be gained by coarse-graining; therefore it is expected
that the Fisher information at the density matrix ρ0 in the direction B must be larger
than the Fisher information at α(ρ0) in the direction α(B). This is the monotonicity
property of the Fisher information under coarse-graining:
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Fρ(B)≥ Fα(ρ)(α(B)) (10.15)

Although we do not want to have a concrete formula for the quantum Fisher infor-
mation, we require that this monotonicity condition must hold. Another requirement
is that Fρ(B) should be quadratic in B; in other words, there exists a non-degenerate
real bilinear form γρ (B,C) on the self-adjoint matrices such that

Fρ(B) = γρ (B,B). (10.16)

When ρ is regarded as a point of a manifold consisting of density matrices and B
is considered as a tangent vector at the foot point ρ , the quadratic quantity γρ(B,B)
may be regarded as a Riemannian metric on the manifold. This approach gives a
geometric interpretation to the Fisher information.

The requirements (10.15) and (10.16) are strong enough to obtain a reasonable
but still wide class of possible quantum Fisher informations.

We may assume that
γρ(B,C) = TrBJ

−1
ρ (C) (10.17)

for an operator Jρ acting on all matrices. (This formula expresses the inner product
γρ by means of the Hilbert–Schmidt inner product and the positive linear operator
Jρ .) In terms of the operator Jρ the monotonicity condition reads as

α∗J−1
α(ρ)α ≤ J

−1
ρ (10.18)

for every coarse-graining α . (α∗ stands for the adjoint of α with respect to the
Hilbert–Schmidt product. Recall that α is completely positive and trace-preserving
if and only if α∗ is completely positive and unital.) On the other hand, the latter
condition is equivalent to

αJρα∗ ≤ Jα(ρ). (10.19)

It is interesting to observe the relevance of a certain quasi-entropy in the sense of
(3.42):

〈Bρ1/2, f (LρR
−1
ρ )Bρ1/2〉= SB

f (ρ‖ρ),

where the linear transformations Lρ and Rρ acting on matrices are the left and right
multiplications, that is,

Lρ(X) = ρX and Rρ(X) = Xρ .

When f : R
+ →R is operator monotone, then

〈α∗(B)ρ1/2, f (LρR
−1
ρ )α∗(B)ρ1/2〉 ≤ 〈Bα(ρ)1/2, f (Lα(ρ)R

−1
α(ρ))Bα(ρ)1/2〉

due to the monotonicity of the quasi-entropy. If we set as

Jρ = R
1/2
ρ f (LρR

−1
ρ )R1/2

ρ ,
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then (10.19) holds.

ϕρ [B,B] := TrBJρ(B) = 〈Bρ1/2, f (LρR
−1
ρ )Bρ1/2〉 (10.20)

can be called quadratic cost function, and the corresponding monotone quantum
Fisher information

γρ(B,C) = TrBJ
−1
ρ (C) (10.21)

will be real for self-adjoint B and C if the function f satisfies the condition f (t) =
t f (t−1).

Example 10.11. In order to understand the action of the operator Jρ , assume that ρ is
diagonal, ρ =∑i piEii. Then one can check that the matrix units Ekl are eigenvectors
of Jρ , namely

Jρ(Ekl) = pl f (pk/pl)Ekl .

The condition f (t) = t f (t−1) gives that the eigenvectors Ekl and Elk have the same
eigenvalues. Therefore, the symmetrized matrix units Ekl + Elk and iEkl − iElk are
eigenvectors as well.

Since

B =∑
k<l

ReBkl(Ekl + Elk)+∑
k<l

ImBkl(iEkl − iElk)+∑
i

BiiEii,

we have

γρ(B,B) = 2∑
k<l

1
pk f (pk/pl)

|Bkl|2 +∑
i
|Bii|2 1

pi
. (10.22)

In place of 2∑k<l , we can write ∑k �=l . �

Any monotone cost function has the property ϕρ [B,B] = TrρB2 for commuting

ρ and B. The examples below show that it is not so generally.

Example 10.12. The analysis of operator monotone functions leads to the fact that
among all monotone quantum Fisher informations there is a smallest one which
corresponds to the (largest) function fm(t) = (1 + t)/2. In this case

Fmin
ρ (B) = TrBL = TrρL2, where ρL+ Lρ = 2B. (10.23)

For the purpose of a quantum Cramér–Rao inequality the minimal quantity seems to
be the best, since the inverse gives the largest lower bound. In fact, the matrix L has
been used for a long time under the name of symmetric logarithmic derivative. In
this example the quadratic cost function is

ϕρ [B,C] = 1
2 Trρ(BC +CB) (10.24)

and we have

Jρ(B) = 1
2(ρB + Bρ) and J

−1
ρ (C) = 2

∫ ∞
0 e−tρCe−tρ dt (10.25)
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for the operator Jρ . Since J
−1
ρ is the smallest, Jρ is the largest (among all possibili-

ties).
There is a largest among all monotone quantum Fisher informations and this

corresponds to the function fM(t) = 2t/(1 + t). In this case

J
−1
ρ (B) = 1

2 (ρ−1B + Bρ−1) and Fmax
ρ (B) = Trρ−1B2. (10.26)

It can be proved that the function

fα (t) = α(1−α)
(t−1)2

(tα −1)(t1−α−1)
(10.27)

is operator monotone for α ∈ (0,1) (see the Appendix, Example 11.20). Fα denotes
the corresponding Fisher information metric. When B = i[ρ ,C] is orthogonal to the
commutator of the foot point ρ in the tangent space, we have

Fα
ρ (B) =

1
2α(1−α)

Tr
(
[ρα ,C][ρ1−α ,C]

)
. (10.28)

Apart from a constant factor this expression is the skew information proposed by
Wigner and Yanase some time ago [119]. In the limiting cases α → 0 or 1, we have

f0(t) =
1− t
log t

and the corresponding quantum Fisher information

γ0
ρ(B,C) = Kρ(B,C) :=

∫ ∞

0
TrB(ρ+ t)−1C(ρ+ t)−1 dt (10.29)

will be named here after Kubo and Mori. The Kubo–Mori inner product plays a
role in quantum statistical mechanics. In this case J is the so-called Kubo transform
K (and J

−1 is the inverse Kubo transform K
−1),

K
−1
ρ (B) :=

∫ ∞

0
(ρ+ t)−1B(ρ+ t)−1 dt and Kρ(C) :=

∫ 1

0
ρ tCρ1−t dt . (10.30)

Therefore the corresponding generalized variance is

ϕρ [B,C] =
∫ 1

0
TrBρ tCρ1−t dt . (10.31)

All pieces Fisher information discussed in this example are possible Riemannian
metrics of manifolds of invertible density matrices. (Manifolds of pure states are
rather different.) �


Fisher information appears not only as a Riemannian metric but as an informa-
tion matrix as well. Let M := {ρθ : θ ∈G} be a smooth m-dimensional manifold of
invertible density matrices. The quantum score operators (or logarithmic deriva-
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tives) are defined as

Li(θ ) := J
−1
ρθ
(
∂θiρθ

)
(1 ≤ i≤ m) (10.32)

and
Qi j(θ ) := TrLi(θ )Jρθ

(
Lj(θ )

)
(1≤ i, j ≤ m) (10.33)

is the quantum Fisher information matrix. This matrix depends on an oper-
ator monotone function which is involved in the super-operators J. Historically
the matrix Q determined by the symmetric logarithmic derivative (or the function
fm(t) = (1 + t)/2) appeared first in the work of Helstrøm. Therefore, we call this
Helstrøm information matrix and it will be denoted by H(θ ).

The monotonicity of the Fisher information matrix is the manifestation of infor-
mation loss under coarse-graining [98].

Theorem 10.3. Fix an operator monotone function f to induce quantum Fisher in-
formation. Let α be a coarse-graining sending density matrices on the Hilbert space
H1 into those acting on the Hilbert space H2 and let M := {ρθ : θ ∈ G} be a
smooth m-dimensional manifold of invertible density matrices on H1. For the Fisher
information matrix Q(1)(θ ) of M and for the Fisher information matrix Q(2)(θ ) of
α(M ) := {α(ρθ ) : θ ∈ G}, we have the monotonicity relation

Q(2)(θ )≤ Q(1)(θ ). (10.34)

(This is an inequality between m×m positive matrices.)

Proof. Set Bi(θ ) := ∂θiρθ . Then J
−1
α(ρθ )α(Bi(θ )) is the score operator of α(M ).

Using (10.18), we have

∑
i j

Q(2)
i j (θ )aia j = TrJ−1

α(ρθ )α
(
∑

i
aiBi(θ )

)
α
(
∑

j
a jB j(θ )

)

≤ TrJ−1
ρθ

(
∑

i
aiBi(θ )

)(
∑

j
a jB j(θ )

)

= ∑
i j

Q(1)
i j (θ )aia j

for any numbers ai. �

Assume that Fj are positive operators acting on a Hilbert space H1 on which the

family M := {ρθ : θ ∈G} is given. When ∑n
j=1 Fj = I, these operators determine a

measurement. For any ρθ the formula

α(ρθ ) := Diag(TrρθF1, . . . ,TrρθFn)

gives a diagonal density matrix. Since this family is commutative, all quantum
Fisher informations coincide with the classical (10.14) and the classical Fisher in-
formation stands on the left-hand side of (10.34). We have
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I(θ )≤ Q(θ ). (10.35)

Combination of the classical Cramér–Rao inequality in Theorem 10.1 and (10.35)
yields the Helstrøm inequality:

V (θ )≥ H(θ )−1 . (10.36)

Example 10.13. In this example, let us investigate (10.35), which is equivalently
written as

Q(θ )−1/2I(θ )Q(θ )−1/2 ≤ Im.

Taking the trace, we have
TrQ(θ )−1I(θ )≤ m. (10.37)

Assume that

ρθ = ρ+∑
k

θkBk,

where TrBk = 0 and the self-adjoint matrices Bk are pairwise orthogonal with re-
spect to the inner product (B,C) �→ TrBJ

−1
ρ (C).

The quantum Fisher information matrix

Qkl(0) = TrBkJ
−1
ρ (Bl)

is diagonal due to our assumption. Example 10.9 tells us about the classical Fisher
information matrix:

Ikl(0) =∑
j

TrBkFj TrBlFj

TrρFj

Therefore,

TrQ(0)−1I(0) =∑
k

1

TrBkJ
−1
ρ (Bk)

∑
j

(TrBkFj)2

TrρFj

=∑
j

1
TrρFj

∑
k

⎛
⎝Tr

Bk√
TrBkJ

−1
ρ (Bk)

J
−1
ρ (JρFj)

⎞
⎠

2

.

We can estimate the second sum using the fact that

Bk√
TrBkJ

−1
ρ (Bk)

is an orthonormal system and it remains so when ρ is added to it:
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(ρ ,Bk) = TrBkJ
−1
ρ (ρ) = TrBk = 0

and

(ρ ,ρ) = TrρJ
−1
ρ (ρ) = Trρ = 1.

Due to the Parseval inequality, we have

(
TrρJ

−1
ρ (JρFj)

)2
+∑

k

⎛
⎝Tr

Bk√
TrBkJ

−1
ρ (Bk)

J
−1
ρ (JρFj)

⎞
⎠

2

≤ Tr(JρFj)J−1
ρ (JρFj)

and

TrQ(0)−1I(0) ≤∑
j

1
TrρFj

(
Tr(JρFj)Fj− (TrρFj)2)

=
n

∑
j=1

Tr(JρFj)Fj

TrρFj
−1≤ n−1

if we show that

Tr(JρFj)Fj ≤ TrρFj.

To see this we can use the fact that the left-hand side is a quadratic cost and it can
be majorized by the largest one:

Tr(JρFj)Fj ≤ TrρF2
j ≤ TrρFj,

because F2
j ≤ Fj.

We obtained that
TrQ(θ )−1I(θ )≤ n−1, (10.38)

which can be compared with (10.37). This bound can be smaller than the general
one. The assumption on Bk’s is not very essential, since the orthogonality can be
reached by reparameterization. �


Let M := {ρθ : θ ∈G} be a smooth m-dimensional manifold and assume that a
collection A = (A1, . . . ,Am) of self-adjoint matrices is used to estimate the true value
of θ .

Given an operator J we have the corresponding cost function ϕθ ≡ ϕρθ for every
θ and the cost matrix of the estimator A is a positive definite matrix, defined by
ϕθ [A]i j = ϕθ [Ai,A j]. The bias of the estimator is

b(θ ) =
(
b1(θ ),b2(θ ), . . . ,bm(θ )

)
:=
(
Trρθ (A1−θ1),Trρθ (A2−θ2), . . . ,Trρθ (Am−θm)

)
.

From the bias vector we can form a bias matrix
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Bi j(θ ) := ∂θib j(θ ) (1≤ i, j ≤ m).

For a locally unbiased estimator at θ0, we have B(θ0) = 0.
The next result is the quantum Cramér–Rao inequality for a biased estimate.

Theorem 10.4. Let A = (A1, . . . ,Am) be an estimator of θ . Then for the above-
defined quantities the inequality

ϕθ [A]≥ (I + B(θ )
)
Q(θ )−1(I + B(θ )∗

)

holds in the sense of the order on positive semidefinite matrices. (Here I denotes the
identity operator.)

Proof. Let us use the block-matrix method. Let X and Y be m×m matrices with
n× n entries and assume that all entries of Y are constant multiples of the unit
matrix. (Ai and Li are n×n matrices.) If α is a completely positive mapping on n×n
matrices, then α̃ := Diag(α, . . . ,α) is a positive mapping on block matrices and
α̃(Y X) = Y α̃(X). This implies that TrXα(X∗)Y ≥ 0 when Y is positive. Therefore
the m×m ordinary matrix M which has i j entry

Tr(X α̃(X∗))i j

is positive. In the sequel let us restrict ourselves to m = 2 for the sake of simplicity
and apply the above fact to the case

X =

⎡
⎢⎢⎣

A1 0 0 0
A2 0 0 0

L1(θ ) 0 0 0
L2(θ ) 0 0 0

⎤
⎥⎥⎦ and α = Jρθ .

Then we have

M =

⎡
⎢⎢⎣

TrA1Jρ(A1) TrA1Jρ(A2) TrA1Jρ(L1) TrA1Jρ(L2)
TrA2Jρ(A1) TrA2Jρ(A2) TrA2Jρ(L1) TrA2Jρ(L2)
TrL1Jρ(A1) TrL1Jρ(A2) TrL1Jρ(L1) TrL1Jρ(L2)
TrL2Jρ(A1) TrL2Jρ(A2) TrL2Jρ(L1) TrL2Jρ(L2)

⎤
⎥⎥⎦≥ 0

Now we can rewrite the matrix M in terms of the matrices involved in our Cramér–
Rao inequality. The 2×2 block M11 is the generalized covariance, M22 is the Fisher
information matrix and M12 is easily expressed as I + B. We will get

M =

⎡
⎢⎢⎣
ϕθ [A1,A1] ϕθ [A1,A2] 1 + B11(θ ) B12(θ )
ϕθ [A2,A1] ϕθ [A2,A2] B21(θ ) 1 + B22(θ )
1 + B11(θ ) B21(θ ) ϕθ [L1,L1] ϕθ [L1,L2]

B12(θ ) 1 + B22(θ ) ϕθ [L2,L1] ϕθ [L2,L2]

⎤
⎥⎥⎦≥ 0

The positivity of a block-matrix

M =
[

M1 C
C∗ M2

]
=
[
ϕρ [A] I + B
I + B∗ J(θ )

]
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implies M1 ≥CM−1
2 C∗, which reveals exactly the statement of the theorem. (Con-

cerning positive block-matrices, see the Appendix.) �


10.4 Contrast Functionals

Let MΘ be a smooth manifold of density matrices. The following construction is
motivated by classical statistics. Suppose that a positive functional d(ρ1,ρ2) of two
variables is given on the manifold. In many cases one can get a Riemannian metric
by differentiation:

gi j(θ ) =
∂ 2

∂θi∂θ ′j
d(ρθ ,ρθ ′)

∣∣∣
θ=θ ′

(θ ∈Θ).

To be more precise the positive smooth functional d( · , ·) is called a contrast func-
tional if d(ρ1,ρ2) = 0 implies ρ1 = ρ2.

Following the work of Csiszár in classical information theory, Petz introduced a
family of information quantities parameterized by a function F : R

+ →R

SF(ρ1,ρ2) = 〈ρ1/2
1 ,F(Δ(ρ2/ρ1))ρ

1/2
1 〉, (10.39)

see (3.23), F is written in place of f . (Δ(ρ2/ρ1) := Lρ2R−1
ρ1

is the relative modular
operator of the two densities.) When F is operator monotone decreasing, this quasi-
entropy possesses good properties; for example, it is a contrast functional in the
above sense if F is not linear and F(1) = 0. In particular, for

Fα(t) =
1

α(1−α)
(
1− tα

)

we have

Sα(ρ1,ρ2) =
1

α(1−α)
Tr(I−ρα2 ρ−α1 )ρ1 (10.40)

The differentiation is

∂ 2

∂ t∂u
Sα(ρ+ tB,ρ+ uC) =− 1

α(1−α)
∂ 2

∂ t∂u
Tr(ρ+ tB)1−α(ρ+ uC)α =: Kα

ρ (B,C)

at t = u = 0 in the affine parameterization. The tangent space at ρ is decomposed
into two subspaces: the first consists of self-adjoint matrices commuting with ρ and
the second is {i(Dρ −ρD) : D = D∗}, the set of commutators. The decomposition
is essential both from the viewpoint of differential geometry and from the point of
view of differentiation (see Example 11.8). If B and C commute with ρ , then

Kα
ρ (B,C) = Trρ−1BC
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is independent of α and it is the classical Fischer information (in matrix form). If
B = i[DB,ρ ] and C = i[DC,ρ ], then

Kα
ρ (B,C) = Tr[ρ1−α ,DB][ρα ,DC].

This is related to skew information (10.28).
Ruskai and Lesniewski discovered that all pieces of monotone Fisher information

are obtained from a quasi-entropy as contrast functional [70]. The relation of the
function F in (10.39) to the function f in Theorem 10.3 is

1
f (t)

=
F(t)+ tF(t−1)

(t−1)2 . (10.41)

10.5 Notes

The quantum analogue of the Cramér–Rao inequality was discovered immediately
after the foundation of mathematical quantum estimation theory in the 1960s (see
the book [50] of Helstrom, or the book [56] of Holevo for a rigorous summary of
the subject).

The monotone Riemannian metrics on density matrices were studied by Petz and
he proved that such metrics can be given by an operator monotone function [93, 94].
Theorem 10.3 appeared in [98]. However, particular cases of the monotonicity are
already in the earlier literature: [93] treated the case of the Kubo–Mori inner product
and [22] considered the Helstrøm information matrix and measurement in the role
of coarse-graining. Example 10.13 is from [42].

The Kubo–Mori inner product plays a role in quantum statistical mechanics (see
[40], for example).

For the role of contrast functionals in classical estimation, see [37]. We can note
that a contrast functional is a particular example of yokes (cf. [11]). The Rieman-
nian geometry of Fischer information is the subject of the book [5]. The differential
geometries induced by different contrast functionals have not been studied in detail
in the quantum case. For the contrast functional

d(ρ1,ρ2) = 1− inf{Trρα1 ρ
1−α
2 : 0 < α < 1}

the corresponding inner product was computed in [10].
The efficiency of a state estimation can be measured by the mean quadratic

error matrix. The smaller the matrix is, the better is the efficiency. Since matrices
are typically not comparable, a possibility is to minimize TrGM, where M is the
error matrix and G is a weight matrix. The efficiency of the state estimation can be
increased by an adaptive attitude: Some measurements are made, a rough estimate
is obtained and the refining measurements depend on the rough estimate [42, 46].
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10.6 Exercises

1. Is the estimate Φ in Example 10.4 unbiased?
2. Show that the mean quadratic error of the estimate (10.4) is

Vn(θ ) =
1
n

⎡
⎣1−θ 2

1 0 0
0 1−θ 2

2 0
0 0 1−θ 2

3

⎤
⎦ . (10.42)

3. Calculate the classical Fisher information matrix I(θ ) for Example 10.1.
4. Let B(t) := e−tρBe−tρ . Use the fact

d
dt

B(t) =−ρB(t)−B(t)ρ

to show that

L = 2
∫ ∞

0
e−tρBe−tρ dt

is the solution of the equation ρL+ Lρ = 2B.
5. In the setting of Example 10.4, use the estimate

Φ(i) =
1
2
(I + ai ·σ).

Show that Φ is unbiased.
6. Let ρ be a state and the mapping Kρ(C) =

∫ 1
0 ρ tCρ1−t dt be defined for self-

adjoint matrices. Show that

K
−1
ρ (B) =

∫ ∞

0
(ρ+ t)−1B(ρ+ t)−1 dt .

Show that

Kρ{C : TrρC = 0}= {B : TrB = 0}.

7. Show that there exists no observable which is an unbiased estimator for the fam-
ily in Example 10.10.



Chapter 11
Appendix: Auxiliary Linear
and Convex Analysis

Quantum information theory is an interdisciplinary field: The physical background
is provided by quantum mechanics, the questions are given in the language of infor-
mation theory but the mathematical technicalities are provided by linear analysis.
Since the Hilbert spaces of the quantum mechanical description is finite dimen-
sional in many cases, matrix theory can be the substitute of the much more delicate
operator theory and matrix manipulations play an important role.

11.1 Hilbert Spaces and Their Operators

Let H be a complex vector space. A functional 〈 · , · 〉 : H ×H → C of two vari-
ables is called inner product if

(1) 〈x + y,z〉= 〈x,z〉+ 〈y,z〉 (x,y,z ∈H ),

(2) 〈λx,y〉= λ 〈x,y〉 (λ ∈ C, x,y ∈H ),

(3) 〈x,y〉= 〈y,x〉 (x,y ∈H ),

(4) 〈x,x〉 ≥ 0 for every x ∈H and 〈x,x〉= 0 only for x = 0.

These conditions imply the Schwarz inequality

∣∣〈x,y〉∣∣2 ≤ 〈x,x〉〈y,y〉. (11.1)

The inner product determines a norm

‖x‖ :=
√
〈x,x〉 (11.2)

which has the properties

‖x + y‖ ≤ ‖x‖+‖y‖ and |〈x,y〉| ≤ ‖x‖ · ‖y‖ .

D. Petz, Appendix: Auxiliary Linear and Convex Analysis. In: D. Petz, Quantum Information Theory and Quantum
Statistics, Theoretical and Mathematical Physics, pp. 165–203 (2008)
DOI 10.1007/978-3-540-74636-2 11 c© Springer-Verlag Berlin Heidelberg 2008
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‖x‖ is interpreted as the length of the vector x. A further requirement in the definition
of a Hilbert space is that every Cauchy sequence must be convergent, that is, the
space is complete.

If 〈x,y〉= 0 for vectors x and y of a Hilbert space, then x and y are called orthog-
onal, in notation x⊥ y. When H ⊂H , then H⊥ := {x∈H : x⊥ h for every h∈H}.
For any subset H ⊂H the orthogonal complement H⊥ is a closed subspace.

A family {ei} of vectors is called orthonormal if 〈ei,ei〉 = 1 and 〈ei,e j〉 = 0 if
i �= j. A maximal orthonormal system is called basis. The cardinality of a basis is
called the dimension of the Hilbert space. (The cardinality of any two bases is the
same.)

Theorem 11.1. Let e1,e2, . . . be a basis in a Hilbert space H . Then for any vector
x ∈H the expansion

x =∑
n
〈en,x〉en

holds. Moreover,

‖x‖2 =∑
n
|〈en,x〉|2

Theorem 11.2. (Projection theorem) Let M be a closed subspace of a Hilbert
space H . Any vector x ∈H can be written in a unique way in the form x = x0 + y,
where x0 ∈M and y⊥M .

The mapping P : x �→ x0 defined in the context of the previous theorem is called
orthogonal projection onto the subspace M . This mapping is linear:

P(λx + μy) = λPx + μPy.

Moreover, P2 = P.
Let A : H →H be a linear mapping and e1,e2, . . . ,en be a basis in the Hilbert

space H . The mapping A is determined by the vectors Aek, k = 1,2, . . . ,n. Further-
more, the vector Aek is determined by its coordinates:

Aek = c1,ke1 + c2,ke2 + · · ·+ cn,ken.

The numbers ci, j form an n×n matrix; it is called the matrix of the linear transfor-
mation A in the basis e1,e2, . . . ,en.

The norm of a linear operator A : H →K is defined as

‖A‖ := sup{‖Ax‖ : x ∈H ,‖x‖= 1} .

The linear oparator A is called bounded if ‖A‖ is finite. The set of all bounded
operators H →H is denoted by B(H ).

Let H and K be Hilbert spaces. If T : H →K is a bounded linear operator,
then its adjoint T ∗ : K →H is determined by the formula
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〈x,Ty〉K = 〈T ∗x,y〉H (x ∈K ,y ∈H ). (11.3)

The operator T ∈ B(H ) is called self-adjoint if T ∗ = T . The operator T is self-
adjoint if and only if 〈x,T x〉 is a real number for every vector x ∈H .

Theorem 11.3. The properties of the adjoint are as follows:

(1) (A + B)∗ = A∗+ B∗, (λA)∗ = λA∗ (λ ∈ C),

(2) (A∗)∗ = A, (AB)∗ = B∗A∗,

(3) (A−1)∗ = (A∗)−1 if A is invertible,

(4) ‖A‖= ‖A∗‖, ‖A∗A‖= ‖A‖2.

Example 11.1. Let A : H →H be a linear mapping and e1,e2, . . . ,en be a basis in
the Hilbert space H . The (i, j) element of the matrix of A is 〈ei,Ae j〉. Since

〈ei,Ae j〉= 〈e j,A∗ei〉,

this is the complex conjugate of the ( j, i) element of the matrix of A∗. �

The operators we need are mostly linear, but sometimes conjugate-linear oper-

ators appear. Λ : H →K is conjugate-linear if

Λ(λx + μy) = λx + μy

for any complex numbers λ and μ and for any vectors x,y ∈H . The adjoint Λ∗ of
the conjugate-linear operarator Λ is determined by the equation

〈x,Λy〉K = 〈y,Λ∗x〉H (x ∈K ,y ∈H ). (11.4)

11.2 Positive Operators and Matrices

Let H be a Hilbert space and T : H → H be a bounded linear operator. T is
called positive (or positive semidefinite) if 〈x,T x〉 ≥ 0 for every vector x ∈H , in
notation T ≥ 0. It follows from the definition that a positive operator is self-adjoint.
Moreover, if T1 and T2 are positive operators, then T1 + T2 is positive as well.

Theorem 11.4. Let T ∈ B(H ) be an operator. The following conditions are equiv-
alent.

(1) T is positive.

(2) T = T ∗ and the spectrum of T lies in R
+.

(3) T is of the form A∗A for some operator A ∈ B(H ).
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Example 11.2. Let T be positive operator acting on a finite-dimensional Hilbert
space such that ‖T‖ ≤ 1. Let us show that there is unitary operator U such that

T =
1
2
(U +U∗).

We can choose an orthonormal basis e1,e2, . . . ,en consisting of eigenvectors of
T and in this basis the matrix of T is diagonal, say, Diag(t1, t2, . . . ,tn), 0 ≤ t j ≤ 1
from the positivity. For any 1≤ j ≤ n we can find a real number θ j such that

t j =
1
2
(eiθ j + e−iθ j).

Then the unitary operator U with matrix Diag(exp(iθ1)), . . . ,exp(iθn)) will have the
desired property. �


If T acts on a finite-dimensional Hilbert space which has an orthonormal basis
e1,e2, . . . ,en, then T is uniquely determined by its matrix

[〈ei,Te j〉]ni, j=1.

T is positive if and only if its matrix is positive (semidefinite).

Example 11.3. Let

A =

⎡
⎢⎢⎢⎣
λ1 λ2 . . . λn

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎤
⎥⎥⎥⎦ .

Then

[A∗A]i, j = λ iλ j (1≤ i, j ≤ n)

and this matrix is positive. Every positive matrix is the sum of matrices of this form.
(The minimum number of the summands is the rank of the matrix.) �

Theorem 11.5. Let T ∈ B(H ) be a self-adjoint operator and e1,e2, . . . ,en be a ba-
sis in the Hilbert space H . T is positive if and only if for any 1 ≤ k ≤ n the deter-
minant of the k× k matrix

[〈ei,Te j〉]ki j=1

is positive (that is, ≥ 0).

For a 2×2 matrix, it is very easy to check the positivity:
[

a b
b̄ c

]
≥ 0 if a≥ 0 and bb̄≤ ac. (11.5)
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If the entries are n×n matrices, then the condition for positivity is similar but it is a
bit more complicated. Matrices with matrix entries are called block-matrices.

Theorem 11.6. The self-adjoint block-matrix
[

A B
B∗ C

]

is positive if and only if A,C ≥ 0 and there exists an operator X such that ‖X‖ ≤ 1
and B = C1/2XA1/2. When A is invertible, then this condition is equivalent to

BA−1B∗ ≤C.

For an invertible A, we have the so-called Schur factorization
[

A B
B∗ C

]
=
[

I 0
B∗A−1 I

]
·
[

A 0
0 C−B∗A−1B

]
·
[

I A−1B
0 I

]
. (11.6)

Since
[

I 0
B∗A−1 I

]−1

=
[

I 0
−B∗A−1 I

]

is invertible, the positivity of the left-hand side of (11.6) is equivalent to the positiv-
ity of the middle factor of the right-hand side.

Theorem 11.7. (Schur) Let A and B be positive n×n matrices. Then

Ci j = Ai jBi j (1≤ i, j ≤ n)

determines a positive matrix.

Proof. If Ai j = λ iλ j and Bi j = μ iμ j, then Ci j = λiμiλ jμ j and C is positive as per
Example 11.3. The general case is reduced to this one. �


The matrix C of the previous theorem is called the Hadamard (or Schur) prod-
uct of the matrices A and B. In notation, C = A◦B.

Let A,B ∈ B(H ) be self-adjoint operators. A ≤ B if B−A is positive. The in-
equality A≤ B implies XAX∗ ≤ XBX∗ for every operator X .

Example 11.4. Let K be a closed subspace of a Hilbert space H . Any vector
x ∈H can be written in the form x0 + x1, where x0 ∈K and x1 ⊥K . The lin-
ear mapping P : x �→ x0 is called (orthogonal) projection onto K . The orthogonal
projection P has the properties P = P2 = P∗. If an operator P ∈ B(H ) has the prop-
erty P = P2 = P∗, then it is a (orthogonal) projection (onto its range).

If P and Q are projections then the relation P ≤ Q means that the range of P is
contained in the range of Q. An equivalent algebraic formulation is PQ = P.

If P is a projection, then I−P is a projection as well and it is often denoted by
P⊥, since the range of I−P is the orthogonal complement of the range of P. �
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Example 11.5. Let X be an operator on a Hilbert space H and let P be an orthogonal
projection. The Hilbert space H is decomposed as the direct sum of the ranges of
P and P⊥, so X can be written in a block-matrix form

X =
[

PXP P⊥XP
PXP⊥ P⊥XP⊥

]
.

If X is invertible, then its inverse has a similar form:

X−1 =
[

PX−1P P⊥X−1P
PX−1P⊥ P⊥X−1P⊥

]
.

Formula (11.77) contains the entries of X−1 expressed by the entries of X . In
particular,

PX−1P = (PXP)−1 + another term .

If X is positive, then the other term is positive as well, and we can conclude

PX−1P≥ (PXP)−1 . (11.7)

(On the right-hand side the inverse is in the range space of P, or equivalently it is
the solution of the equations Y P⊥ = 0 and Y (PXP) = P.) �

Theorem 11.8. Let A be a positive n× n block-matrix with k× k entries. Then A
is the sum of block-matrices B of the form [B]i j = X∗i Xj for some k× k matrices
X1,X2, . . . ,Xn.

Proof. A can be written as C∗C for some

C =

⎡
⎢⎢⎢⎣

C11 C12 . . . C1n

C21 C22 . . . C2n
...

...
. . .

...
Cn1 Cn2 . . . Cnn

⎤
⎥⎥⎥⎦ .

Let Bi be the block-matrix such that its ith raw is the same as in C and all other ele-
ments are 0. Then C = B1 +B2 + · · ·+Bn and for t �= i we have B∗t Bi = 0. Therefore,

A = (B1 + B2 + · · ·+ Bn)∗(B1 + B2 + · · ·+ Bn) = B∗1B1 + B∗2B2 + · · ·+ B∗nBn.

The (i, j) entry of B∗t Bt is C∗tiCt j , hence this matrix is of the required form. �


11.3 Functional Calculus for Matrices

Let A ∈Mn(C) and p(x) := ∑i cixi be a polynomial. It is quite obvious that by p(A)
one means the matrix ∑i ciAi. The functional calculus can be extended to other
functions f : C→ C. When
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A = Diag(λ1,λ2, . . . ,λn)

is diagonal and the function f is defined on the eigenvalues of A, then

f (A) = Diag( f (λ1), f (λ2), . . . , f (λn)).

Assume now that A is diagonalizable, that is,

A = S Diag(λ1,λ2, . . . ,λn)S−1

with an invertible matrix S. Then f (A) is defined as

S Diag( f (λ1), f (λ2), . . . , f (λn))S−1

when the complex-valued function f is defined on the set of eigenvalues of A.
Remember that self-adjoint matrices are diagonalizable and they have a spectral
decomposition. Let A = ∑iλiPi be the spectral decomposition of the self-adjoint
A ∈Mn(C). (λi are the different eigenvalues and Pi are the corresponding eigenpro-
jections, the rank of Pi is the multiplicity of λi.) Then

f (A) =∑
i

f (λi)Pi . (11.8)

Usually it is assumed that f is continuous or even smooth on an interval containing
the eigenvalues of A.

Let f be holomorphic inside and on a positively oriented simple contour Γ in the
complex plane and let A be an n× n matrix such that its eigenvalues are the inside
of Γ. Then

f (A) :=
1

2π i

∫
Γ

f (z)(zI−A)−1 dz (11.9)

is defined by a contour integral. When A is self-adjoint, then (11.8) makes sense and
it is an exercise to show that it gives the same result as (11.9).

Theorem 11.9. Let A,B ∈ Mn(C) be self-adjoint matrices and t ∈ R. Assume that
f : (α,β )→ R is a continuously differentiable function defined on an interval and
assume that the eigenvalues of A+ tB are in (α,β ) for small t− t0. Then

d
dt

Tr f (A + tB)
∣∣∣
t=t0

= Tr(B f ′(A + t0B)) ,

Proof. One can verify the formula for a polynomial f by an easy direct computation
and the argument can be extended to a more general f by means of polynomial
approximation. �

Example 11.6. Let f : (α,β )→ R is a continuous increasing function and assume
that the spectrum of the self-adjoint matrices B and C lies in (α,β ). Let us use the
previous theorem to show that

A≤C implies Tr f (A) ≤ Tr f (C). (11.10)
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We may assume that f is smooth and it is enough to show that the derivative of
Tr f (A + tB) is positive when B ≥ 0. The derivative is Tr(B f ′(A + tB)) and this is
the trace of the product of two positive operators. Therefore, it is positive. �

Example 11.7. For a holomorphic function f , we can compute the derivative of
f (A + tB) on the basis of (11.9), where Γ is a positively oriented simple contour
satisfying the properties required above. The derivation is reduced to the differenti-
ation of the resolvent (zI− (A + tB))−1 and we obtain

d
dt

f (A + tB)
∣∣∣
t=0

=
1

2π i

∫
Γ

f (z)(zI−A)−1B(zI−A)−1 dz . (11.11)

When A is self-adjoint, then it is not a restriction to assume that it is diagonal,
A = Diag(t1,t2, . . . ,tn), and we shall compute the entries of the matrix (11.11). So

( d
dt

f (A + tB)
∣∣∣
t=0

)
i j

=
f (ti)− f (t j)

ti− t j
×Bi j , (11.12)

in other words, the derivative is the Hadamard (or entrywise) product of the di-
vided difference matrix [ai j]ni, j=1 defined as

ai j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (ti)− f (t j)
ti− t j

if ti− t j �= 0,

f ′(ti) if ti− t j = 0,

(11.13)

and the matrix B. �

Example 11.8. Next let us restrict ourselves to the self-adjoint case A,B ∈Mn(C)sa

in the analysis of (11.11).
The space Mn(C)sa can be decomposed as MA ⊕M⊥

A , where MA := {C ∈
Mn(C)sa : CA = AC} is the commutant of A and M⊥

A is its orthogonal complement.
When the operator LA : X �→ i(AX−XA)≡ i[A,X ] is considered, MA is exactly the
kernel of LA, while M⊥

A is its range.
When B ∈MA, then

1
2π i

∫
Γ

f (z)(zI−A)−1B(zI−A)−1 dz =
B

2π i

∫
Γ

f (z)(zI−A)−2 dz = B f ′(A)

and we have
d
dt

f (A + tB)
∣∣∣
t=0

= B f ′(A) . (11.14)

When B = i[A,X ] ∈M⊥
A , then we can use the identity

(zI−A)−1[A,X ](zI−A)−1 = [(zI−A)−1,X ]
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and we can conclude

d
dt

f (A + ti[A,X ])
∣∣∣
t=0

= i[ f (A),X ] . (11.15)

To compute the derivative in an arbitrary direction B we should decompose B as
B1⊕B2 with B1 ∈MA and B2 ∈M⊥

A . Then

d
dt

f (A + tB)
∣∣∣
t=0

= B1 f ′(A)+ i[ f (A),X ] , (11.16)

where X is the solution of the equation B2 = i[A,X ]. �

Let J ⊂ R be an interval. A function f : J →R is said to be convex if

f (ta +(1− t)b)≤ t f (a)+ (1− t) f (b) (11.17)

for all a,b ∈ J and 0 ≤ t ≤ 1. This inequality is equivalent to the positivity of the
second divided difference

f [a,b,c] =
f (a)

(a−b)(a− c)
+

f (b)
(b−a)(b− c)

+
f (c)

(c−a)(c−b)

=
1

c−b

( f (c)− f (a)
c−a

− f (b)− f (a)
b−a

)
(11.18)

for every different a,b,c ∈ J.
Definition (11.17) makes sense if J is a convex subset of a vector space and f is

a real functional defined on it. For a convex functional f the Jensen inequality

f
(
∑

i

tiai

)
≤∑

i

ti f (ai) (11.19)

holds whenever ai ∈ J and for real numbers ti ≥ 0 and ∑i ti = 1.
A functional f is concave if − f is convex.

Example 11.9. Using Theorem 11.9 and Example 11.7 we can prove

Tr f (tA +(1− t)B)≤ tTr f (A)+ (1− t)Tr f (B) . (11.20)

for a convex function f : R→ R.
This property follows from the convexity of the function t �→ Tr f (C + tD). The

first derivative is Tr f ′(C + tD)D and the second one is

TrD
∂
∂ t

f ′(C + tD) =∑
i j

Di ja jiD ji

if C is assumed to be diagonal, this is not a restriction, and [ai j]ni, j=1 is the divided
difference matrix of f ′. From the convexity of f , ai j ≥ 0 and the derivative
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∑
i j

a ji|D ji|2

must be positive.
Since the function η(x) := −x logx is concave on R

+, we can conclude that the
von Neumann entropy S(ρ) := −Trρ logρ is a concave functional on the set of
density matrices. �

Theorem 11.10. If fk and gk are functions [α,β ]→R such that for some ck ∈ R

∑
k

ck fk(x)gk(y)≥ 0

for every x,y ∈ [α,β ], then

∑
k

ckTr fk(A)gk(B)≥ 0

whenever A,B are self-adjoint elements in Mn(C) with eigenvalues in [α,β ].

Proof. Let A = ∑λiPi and B = ∑μ jQ j be the spectral decompositions. Then

∑
k

ckTr fk(A)gk(B) = ∑
k
∑
i, j

ckTrPi fk(A)gk(B)Q j

= ∑
i, j

TrPiQ j∑
k

ck fk(λi)gk(μ j)≥ 0

as per the hypothesis. �

In particular, if f is convex then

f (x)− f (y)− (x− y) f ′(y)≥ 0

and
Tr f (A)≥ Tr f (B)+ Tr(A−B) f ′(B) . (11.21)

Replacing f by t logt, we can see that the relative entropy of two states is positive:

S(ρ1||ρ2) = Trρ1 logρ1−Trρ1 logρ2 ≥ Tr(ρ2−ρ1) .

This fact is the original Klein inequality (whose extension is the previous theorem).
From the same theorem we can obtain a stronger estimate. Since

η(x)−η(y)− (x− y)η ′(y)≥ 1
2 (x− y)2,

we have

S(ρ1||ρ2)≥ 1
2 Tr(ρ1−ρ2)2 . (11.22)

Example 11.10. From the inequality 1 + logx≤ x (x > 0) one obtains
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α−1(a−a1−αbα)≤ a(loga− logb)≤ α−1(a1+αb−α −a)

for the numbers a,b,α > 0. If A and B are positive invertible matrices, then Theorem
11.10 gives

α−1Tr(A−A1−αBα) ≤ TrA(logA− logB)
≤ α−1Tr(A1+αB−α −A)

which provides a lower as well as an upper estimate for the relative entropy:

(1−α)Sα(ρ1||ρ2)≤ S(ρ1||ρ2)≤ (1−α)S−α(ρ1||ρ2). (11.23)

11.4 Distances

The linear space Mn(C) of complex n× n matrices is isomorphic to the space Cn2

and therefore (
∑
i, j

|Ai j−Bi j|2
)1/2

is a natural distance between matrices A,B ∈Mn(C). This distance comes from the
2-norm which is a particular case of the p-norm defined as

‖X‖p :=
(
Tr(X∗X)p/2)1/p (1 ≤ p,X ∈Mn(C)). (11.24)

It was von Neumann who showed first that the Hölder inequality remains true in
the matrix setting:

‖XY‖1 ≤ ‖X‖p‖Y‖q (11.25)

when 1/p + 1/q = 1. An application of this inequality to partial trace is due to
Carlen and Lieb.

Theorem 11.11. Let A ∈ B(H1⊗H2) be a positive operator. Then for all numbers
p≥ 1, the inequality

(Tr2(Tr1A)p)1/p ≤ Tr1((Tr2Ap)1/p)

holds.

Proof. According to the Hölder inequality (11.25), we have

Tr(BTr1A)≤ (TrBq)1/q(Tr(Tr1A)p)1/p

for positive B∈ B(H2), when 1/p+1/q = 1. Choose B such that equality holds and
TrBq = 1. Then
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(Tr(Tr1Ap))1/p = TrBTr1(A) = Tr(I⊗B)A
=∑

i, j

〈ei⊗ f j,(I⊗B)A(ei⊗ f j)〉=∑
i, j

〈ei⊗B f j,A(ei⊗ f j)〉

for any pair of orthonormal bases (ei) and ( f j). We may assume that B=∑ j λ j| f j〉〈 f j|.
The right-hand side can be estimated as follows.

∑
i, j
λi〈ei⊗B f j,A(ei⊗ f j)〉 ≤

(
∑

i
λ q

i

)1/q

∑
i

(
∑

j

(
〈ei⊗ f j,A(ei⊗ f j)〉

)p)1/p

=∑
i

(
∑

j

(
〈ei⊗ f j,A(ei⊗ f j)〉

)p)1/p
.

Since

〈ei⊗ f j,A(ei⊗ f j)〉 ≤ (〈ei⊗ f j,A
p(ei⊗ f j)〉)1/p,

we obtain

(Tr(Tr1Ap))1/p ≤∑
i

(
∑

j

(
〈ei⊗ f j,A

p(ei⊗ f j)〉
)1/p

= ∑
i

(〈ei,Tr2Apei〉)1/p.

If the basis (ei) consists of eigenvectors of Tr2Ap, then the right-hand side is
Tr(Tr2Ap)1/p and the proof is completed. �


Let A be a positive operator in B(H1⊗H2⊗H3). Then the inequality

Tr1,3(Tr2Ar)1/r ≤ Tr3(Tr2(Tr1A)r)1/r (11.26)

can be deduced from the previous theorem for 0 < r ≤ 1.
For A ∈ Mn(C), the absolut value |A| is defined as

√
A∗A and it is a positive

matrix. If A is self-adjoint and written in the form

A =∑
i
λi|ei〉〈ei|,

where the vectors ei form an orthonormal basis, then it is defined that

A+ = ∑
i:λi≥0

λi|ei〉〈ei| A− =− ∑
i:λi≤0

λi|ei〉〈ei|. (11.27)

Then A = A+−A− and |A|= A+ + A−. The decomposition A = A+−A− is called
the Jordan decomposition of A.

Lemma 11.1. Let λ1 ≥ λ2 ≥ . . .≥ λn and μ1 ≥ μ2 ≥ . . .≥ μn be the eigenvalues of
the self-adjoint matrices A and B, respectively. Then
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Tr |A−B| ≥
n

∑
i=1
|λi− μi| .

Proof. Let x− y be the Jordan decomposition of A−B. So Tr |A−B|= Trx + Try.
Consider C = B+x = A+y with eigenvalues ν1 ≥ ν2 ≥ . . .≥ νn. Since C≥ A,B we
have

νi ≥ λi,μi (i = 1,2, . . . ,n)

which implies

2νi−λi− μi ≥ |λi−νi| .

Summing up, we obtain

n

∑
i=1
|λi− μi| ≤

n

∑
i=1

(2νi−λi− μi) = Tr(2C−A−B) = Trx + Try

and the lemma is proven. �


11.5 Majorization

For an n-tuple t = (t1,t2, . . . ,tn) of real numbers, t↓ := (t↓1 , t↓2 , . . . ,t↓n ) denotes the
decreasing rearrangement. Given t,u ∈ R

n, we can say that t is weakly majorized
by u if

k

∑
j=1

t↓j ≤
k

∑
j=1

u↓j (11.28)

for every 1 ≤ k ≤ n. In notation we can write t ≺w u. If in addition for j = n the
equality holds, then t is said to be majorized by u, in notation t ≺ u.

There are several equivalent characterizations of the majorization, without using
rearrangement.

An n× n matrix A = (ai j) is called doubly stochastic if ai j ≥ 0, ∑i ai j = 1 and
∑ j ai j = 1, that is, the sum of each row and column is 1.

Example 11.11. Let U = (ui j) be an n×n unitary matrix. Then A = (|ui j|2) is doubly
stochastic.

According to Birkhoff’s theorem the extreme points of the set of all doubly
stochastic matrices are the permutation matrices.

Theorem 11.12. For t,u ∈R
n, the following statements are equivalent.

(1) ∑n
j=1 |t j− x| ≤ ∑n

j=1 |u j− x| for every x ∈ R.

(2) t ≺ u.
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(3) t belongs to the convex hull of the vectors obtained by permuting the coordi-
nates of u.

(4) There exists a doubly stochastic matrix A such that t = Au.

Example 11.12. Let

ρ =
k

∑
i=1

λi|zi〉〈zi|=
k

∑
i=1

μi|wj〉〈wi|

be decompositions of a density matrix ρ such that |zi〉 and |wi〉 are unit vectors. As-
sume that the first decomposition is orthogonal, that is, the Schmidt decomposition.

Consider the unitary matrix constructed in the proof of Lemma 2.2:

k

∑
j=1

Ui j

√
λ j|z j〉=

√
μi|wi〉.

It is remarkable that

μi =
k

∑
j=1

|Ui j|2λ j, (11.29)

holds, that is, the probability vector (μi)i is the image of the probability vector (λ j) j

under the bistochastic matrix (|Ui j|2)i j. Consequently,

(μ1,μ2, . . . ,μk)≺ (λ1,λ2, . . . ,λk). (11.30)

The k-tuple of the coefficients of an arbitrary decomposition is majorized by the
k-tuple of the eigenvalues of the density matrix. This is a characteristic property of
the Schmidt decomposition. �


The n-tuples of real numbers may be regarded as diagonal matrices and the ma-
jorization can be extended to self-adjoint matrices. Suppose that A,B ∈Mn are so.
Then A ≺ B means that the n-tuple of eigenvalues of A is majorized by the n-tuple
of eigenvalues of B; similarly for the weak majorization.

The following result, known as Ky Fan’s maximum principle, is sometimes
useful to establish a (weak) majorization relation.

Theorem 11.13. Let A be a self-adjoint matrix with decreasingly ordered eigenval-
ues λ1,λ2, . . . ,λn. Then

σk(A) : =
k

∑
i=1

λi = sup{TrAP : P = P2 = P∗, TrP = k}

= sup{TrAC : 0≤C ≤ I, TrC ≤ k} .

Since the majorization depends only on the spectrums, A ≺ B holds if and only
if UAU∗ ≺VBV ∗ for some unitaries U and V . Therefore, it follows from Birkhoff’s
theorem that A≺ B implies that
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A =
n

∑
i=1

piUiBU∗
i (11.31)

for some pi > 0 with ∑i pi = 1 and for some unitaries Ui.
In the notation used in the previous theorem, the weak majorization A ≺w B is

equivalent to σk(A) ≤ σk(B) for all k. The majorization A ≺ B holds if and only if
A+aI≺ B+aI for some a∈R. By shifting a self-adjoint matrix, we can make it to
be positive always. When discussing the properties of majorization, we can restrict
ourselves to positive (definite) matrices.

A positive unital mapping α : B(H ) → B(H ) is called doubly stochastic if
Tr ◦α = Tr. A state ρ1 is called more mixed than the state ρ2 if there exists a
doubly stochastic map β such that ρ1 = βρ2.

The following theorem tells that the more mixed relation of quantum states is
essentially the same as the majorization relation of self-adjoint matrices. (Therefore,
the majorization is mostly used.)

Theorem 11.14. Let ρ1 and ρ2 be states. Then the following statements are equiva-
lent.

(1) ρ1 ≺ ρ2.

(2) ρ1 is more mixed than ρ2.

(3) ρ1 =∑n
i=1λiUiρ2U∗

i for some convex combination λi and for some unitaries Ui.

(4) Tr f (ρ1)≤ Tr f (ρ2) for any convex function f : R→ R.

Since the function η(t) = −t logt is concave we can conclude that the more
mixed state has larger von Neumann entropy. An example of doubly stochastic map-
ping is

[β (A)]i j = δi jAi j (11.32)

which tranforms matrices into diagonal ones. β is obviously positivity and trace
preserving, hence sends density matrix into density matrix. The von Neummann
entropy increases under this transformation.

Example 11.13. Let

ρ =
k

∑
i=1

λi|zi〉〈zi|=
k

∑
i=1

μi|wj〉〈wi|

be decompositions of a density matrix ρ such that |zi〉 and |wi〉 are unit vectors. As-
sume that the first decomposition is orthogonal, that is, the Schmidt decomposition.
Then

S(ρ)≡−
k

∑
i=1

λi log(λi)≤−
k

∑
i=1

μi log(μi) (11.33)

is the consequence of Example 11.12. This relation was recognized by E. T. Jaynes
in 1956 before the majorization appeared in quantum mechanics. �
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Theorem 11.15. Let f : I → R be a convex function defined on an interval I. If A
and B are self-adjoint matrices with spectrum in I, then

f (tA +(1− t)B)≺w t f (A)+ (1− t) f (B)

for 0 < t < 1.

This result extends (11.20).

Theorem 11.16. (Wehrl) Let ρ be a density matrix of a finite quantum system
B(H ) and f : R

+ → R
+ a convex function with f (0) = 0. Then ρ is majorized

by the density

ρ f =
f (ρ)

Tr f (ρ)
.

Proof. Set λ1,λ2, . . . ,λn for the decreasingly ordered eigenvalue list of ρ . Under the
hypothesis on f , the inequality f (x)y ≤ f (y)x holds for 0 ≤ x≤ y. Hence for i≤ j,
we have λ j f (λi)≥ λi f (λ j) and

(
f (λ1)+ · · ·+ f (λk)

)
(λk+1 + · · ·+λn)

≥ (λ1 + · · ·+λk)
(

f (λk+1)+ · · ·+ f (λn)
)
.

Adding to both sides the term ( f (λ1)+ · · ·+ f (λk))(λ1 + · · ·+λk) we arrive at

( f (λ1)+ · · ·+ f (λk))
n

∑
i=1

λi ≥ (λ1 + · · ·+λk)
n

∑
i=1

f (λi) .

This shows that the sum of the k largest eigenvalues of f (ρ)/Tr f (ρ) must exceed
that of D, λ1 + · · ·+λk. �

Example 11.14. The canonical (Gibbs) state ρβc at inverse temperature β = (kT )−1

possesses the density e−βH/Tre−βH . Choosing f (x) = xβ
′/β with β ′ > β the Theo-

rem 11.16 tells us that
ρβ

′
c & ρβc , (11.34)

that is, at higher temperature the canonical state is more mixed. (The most mixed
tracial state is canonical at infinite temperature.) According to the remark before the
previous theorem, the entropy S(ρβc ) is an increasing function of the temperature.

�


11.6 Operator Monotone Functions

Let J ⊂ R be an interval. A function f : J → R is said to be operator monotone
if f (A) ≤ f (B) whenever A and B are self-adjoint operators acting on the same
Hilbert space, A ≤ B and their spectra are in J. One can see by an approximation
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argument that if the condition is fulfilled for matrices of arbitrarily large order, then
it holds also for operators of infinite-dimensional Hilbert spaces. Note that an opera-
tor monotone function is automatically continuous and even smooth (see [20] about
operator monotone functions).

Example 11.15. Let t > 0 be a parameter. The function f (x) =−(t +x)−1 is operator
monotone on [0,∞].

Let A and B positive invertible matrices of the same order. Then

A≤ B ⇐⇒ B−1/2AB−1/2 ≤ I ⇐⇒ ‖B−1/2AB−1/2‖ ≤ 1 ⇐⇒ ‖A1/2B−1/2‖ ≤ 1.

Since the adjoint preserves the norm, the latest condition is equivalent to ‖B−1/2

A1/2‖ ≤ 1, which implies that B−1 ≤ A−1. �

Example 11.16. The function f (x) = logx is operator monotone on (0,∞).

This follows from the formula

logx =
∫ ∞

0

1
1 + t

− 1
x + t

dt .

which is easy to verify. The integrand

ft(x) :=
1

1 + t
− 1

x + t

is operator monotone according to the previous example. The linear combination of
operator monotone functions is operator monotone if the coefficients are positive.
Taking the limit, we have a similar conclusion for an integral of operator monotone
functions.

There are several other ways to show the operator monotonicity of the
logarithm. �

Example 11.17. To show that the square root function is operator monotone, con-
sider the function

F(t) :=
√

A + tX

defined for t ∈ [0,1] and for fixed positive matrices A and X . If F is increasing, then
F(0) =

√
A≤√A + X = F(1).

In order to show that F is increasing, it is enough to see that the eigenvalues of
F ′(t) are positive. Differentiating the equality F(t)F(t) = A + tX , we get

F ′(t)F(t)+ F(t)F ′(t) = X .

As the limit of self-adjoint matrices, F ′ is self-adjoint and let F ′(t) = ∑iλiEi be its
spectral decomposition. (Of course, both the eigenvalues and the projections depend
on the value of t.) Then

∑
i
λi(EiF(t)+ F(t)Ei) = X
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and after multiplication by E j from the left and from the right, we have for the trace

2λ jTrE jF(t)E j = TrE jXE j.

Since both traces are positive, λ j must be positive as well.
The square root is matrix monotone for arbitrary matrix size and it follows by

approximation that it is operator monotone as well. �

The previous example contained an important idea. To decide about the operator

monotonicity of a function f , one has to investigate the derivative of f (A + tX).

Theorem 11.17. A smooth function f : J → R is operator monotone if and only if
the divided difference matrix D := [ai j]ni, j=1 defined as

ai j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (ti)− f (t j)
ti− t j

if ti− t j �= 0,

f ′(ti) if ti− t j = 0,

(11.35)

is positive semi-definite for all n and t1,t2, . . . ,tn ∈ J.

It could be interesting to explain the background of this theorem. The argument
given below is the essence of the proof. Let A be a self-adjoint and B be a positive
semidefinite matrix. When f is operator monotone, the function t �→ f (A+ tB) is an
increasing function of the real variable t. Therefore, the derivative, which is a matrix,
must be positive semidefinite. To compute the derivative, we can use formula (11.9)
(see Example 11.7).

It is easy to see that D must be positive if the Hadamard product D◦B is positive
for every positive B. Therefore, the positivity of the derivative in all positive direc-
tions implies the positivity of the divided difference matrix. We can conclude that
the latter is a necessary condition for the operator monotonicity of f .

To show that this condition is sufficient, we need to show that the derivative D◦B
is positive semidefinite for all positive semidefinite B. This follows from the Schur
therem, which claims that the Hadamard product of positive semidefinite matrices
is positive semidefinite.

Example 11.18. The function f (x) := expx is not operator monotone, since the di-
vided difference matrix

⎛
⎜⎝

expx
expx− expy

x− y
expy− expx

y− x
expy

⎞
⎟⎠

does not have a positive determinant. �

Operator monotone functions on R

+ have a special integral representation
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f (x) = f (0)+βx +
∫ ∞

0

λx
λ + x

dμ(λ ) , (11.36)

where μ is a measure such that

∫ ∞

0

λ
λ + 1

dμ(λ )

is finite. This result is called Löwner theorem. Since the integrand

λx
λ + x

= λ − λ 2

λ + x

is an operator monotone function of x (see Example 11.15), one part of the Löwner
theorem is straightforward.

It is not always easy to decide if a function is operator monotone. An effi-
cient method is based on holomorphic extension. The set C+ := {a + ib : a,b ∈
R and b > 0} is called “upper half-plain.” A function J → R is operator mono-
tone if and only if it has a holomorphic extension to the upper half-plain such that
its range is in C+.

Example 11.19. The representation

xt =
sinπt
π

∫ ∞

0

λ t−1x
λ + x

dλ (11.37)

shows that f (x) = xt is operator monotone when 0 < t < 1. In other words,

0≤ A≤ B imply At ≤ Bt ,

which is often called Löwner–Heinz inequality.
We can arrive at the same conclusion by holomorphic extension. If

a + ib = Reϕi with 0≤ ϕ ≤ π ,

then a+ ib �→ Rt etϕi is holomorphic and it maps C+ into itself when 0≤ t ≤ 1. This
shows that f (x) = xt is operator monotone for these values of the parameter but not
for any other value. �

Example 11.20. Let

fp(x) = p(1− p)
(x−1)2

(xp−1)(x1−p−1)
. (11.38)

This function is operator monotone if −1 < p < 2. The key idea of the proof is an
integral representation:

1
fp(x)

=
sin pπ
π

∫ ∞

0
dλ λ p−1

∫ 1

0
ds
∫ 1

0
dt

1
x((1− t)λ +(1− s))+ (tλ+ s)

, (11.39)



184 11 Appendix: Auxiliary Linear and Convex Analysis

if 0 < p < 1, the other values of p can be treated similarly. The integrand is operator
monotone decreasing (as a function of t, s and λ ) and so is the triple integral. Since
fp(x)−1 is operator monotone decreasing, fp(x) is operator monotone. �

Theorem 11.18. Let f : R

+ → R be an operator monotone function. For positive
matrices K and L, let P be the projection onto the range of (K−L)+. Then

TrPL( f (K)− f (L)) ≥ 0. (11.40)

Proof. From the integral representation

f (x) =
∫ ∞

0

x(1 + s)
x + s

dμ(s)

we have

TrPL( f (K)− f (L)) =
∫ ∞

0
(1 + s)sTrPL(K + s)−1(K−L)(L+ s)−1 dμ(s).

Hence it is sufficient to prove that

TrPL(K + s)−1(K−L)(L+ s)−1 ≥ 0

for s > 0. Let Δ0 := K−L and observe the integral representation

(K + s)−1Δ0(L+ s)−1 =
∫ 1

0
s(L+ tΔ0 + s)−1Δ0(L+ tΔ0 + s)−1 dt.

So we can make another reduction:

TrPL(L+ tΔ0 + s)−1tΔ0(L+ tΔ0 + s)−1 ≥ 0

is enough to be shown. If C := L+ tΔ0 and Δ := tΔ0, then L = C−Δ and we have

TrP(C−Δ)(C + s)−1Δ(C + s)−1 ≥ 0. (11.41)

Let us write our operators in the form of 2×2 block-matrices:

(C + s)−1 =
[

V1 V2

V ∗2 V3

]
, P =

[
I 0
0 0

]
, Δ=

[
Δ+ 0
0 −Δ−

]
.

The left-hand side of the inequality (11.41) can then be rewritten as

TrP(C−Δ)(VΔV ) = Tr [(C−Δ)(VΔV )]11

= Tr [(V−1−Δ− s)(VΔV )]11

= Tr [ΔV − (Δ+ s)(VΔV )]11
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= Tr(Δ+V11− (Δ+ + s)(VΔV)11)
= Tr(Δ+(V −VΔV )11− s(VΔV)11). (11.42)

Because of the positivity of L, we have V−1≥Δ+s, which implies V =VV−1V ≥
V (Δ+ s)V = VΔV + sV 2. As the diagonal blocks of a positive operator are them-
selves positive, this further implies

V1− (VΔV )11 ≥ s(V 2)11.

Inserting this in (11.42) gives

Tr [(V−1−Δ− s)(VΔV )]11 = Tr(Δ+(V −VΔV )11− s(VΔV )11)
≥ Tr(Δ+s(V 2)11− s(VΔV )11)
= sTr(Δ+(V 2)11− (VΔV )11)
= sTr(Δ+(V1V1 +V2V

∗
2 )− (V1Δ+V1−V2Δ−V ∗2 )

= sTr(Δ+V2V ∗2 +V2Δ−V ∗2 ))

This quantity is positive. �

Theorem 11.19. Let A and B be positive operators, then for all 0≤ s≤ 1,

2TrAsB1−s ≥ Tr(A + B−|A−B|). (11.43)

Proof. In the proof we may assume that 0≤ s≤ 1/2 and apply the previous theorem
to the case f (x) = xs/(1−s), K = A1−s and L = B1−s, since 0 ≤ s/(1− s) ≤ 1 and
f (x) is operator monotone. With P the projection on the range of (A1−s−B1−s)+,
this yields

TrPB1−s(As−Bs) = TrPB1−sAs−TrPB≥ 0.

A simple rearrangment yields

TrAsP(A1−s−B1−s)≤ TrP(A−B). (11.44)

Since P is the projection on the range of the positive part of (A1−s− B1−s), the
left-hand side can be rewritten as TrAs(A1−s−B1−s)+ and

TrAs(A1−s−B1−s)≤ TrAs(A1−s−B1−s)+ = TrAsP(A1−s−B1−s).

On the other hand, the right-hand side of (11.44) is upper-bounded by Tr(A−B)+;
thus we have

Tr(A−AsB1−s)≤ Tr(A−B)+ =
1
2

Tr((A−B)+ |A−B|).

This is equivalent to the statement. �
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Operator monotone functions on R
+ may be used to define positive operator

means. A theory of means of positive operators was developed by Kubo and Ando
[69]. Their theory has many interesting applications. Here I do not go into the details
concerning operator means but let us confine ourselves to the essentials and restrict
ourselves to matrices mostly. Operator means are binary operations on positive op-
erators acting on a Hilbert space and they satisfy the following conditions.

(1) M(A,A) = A for every A,

(2) M(A,B) = M(B,A) for every A and B,

(3) if A≤ B, then A≤M(A,B)≤ B,

(4) if A≤ A′ and B≤ B′, then M(A,B)≤M(A′,B′),

(5) M is continuous.

Note that the above conditions are not independent, (1) and (4) imply (3).
An important further requirement is the transformer inequality:

(6) C M(A,B)C∗ ≤M
(
CAC∗,CBC∗

)
for all not-necessary self-adjoint operators C.

The key issue of the theory is that operator means are in a 1-to-1 correspondence
with operator monotone functions satisfying conditions f (1) = 1 and t f (t−1) =
f (t). Given an operator monotone function f , the corresponding mean is

Mf (A,B) = A1/2 f
(
A−1/2BA−1/2)A1/2 (11.45)

when A is invertible. (When A is not invertible, take a sequence An of invertible
operators approximating A and let Mf (A,B) = limn Mf (An,B).)

An important example is the geometric mean

A#B = A1/2(A−1/2BA−1/2)1/2
A1/2 (11.46)

which corresponds to f (x) =
√

x. The geometric mean A#B is the unique positive
solution of the equation

XA−1X = B (11.47)

and therefore (A#B)−1 = A−1#B−1.

Theorem 11.20. Let A and B be n× n positive matrices. The geometric mean A#B
is the largest self-adjoint matrix X such that the block-matrix

[
A X
X B

]

is positive.

The relevance of the operator means to quantum information theory is demon-
strated by the following example.
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Example 11.21. Let ω and ρ be density matrices. Their fidelity can be written as

F(ω ,ρ) = Trω(ω−1#ρ). (11.48)

From this observation the symmetry of the fidelity follows.

F(ω ,ρ) = Trω(ω−1#ρ) = Tr(ω−1#ρ)ω(ω−1#ρ)(ω−1#ρ)−1

= Trρ(ω−1#ρ)−1 = Trρ(ω#ρ−1) = F(ρ ,ω)

�

Example 11.22. Let ω and ρ be density matrices. The function f (x) = logx is op-
erator monotone but t f (t−1) = f (t) does not hold, so (11.45) gives an asymmetric
mean.

TrMf (ω ,ρ) = Trω log(ω−1/2ρω−1/2). (11.49)

This is a relative entropy quantity studied by Belavkin and Staszewski [13] (up to
sign). Hiai and Petz proved the inequality

Trω log(ω−1/2ρω−1/2)≥ Trω(logρ− logω). (11.50)

�

Let J ⊂ R be an interval. A function f : J →R is said to be operator convex if

f (tA +(1− t)B)≤ t f (A)+ (1− t) f (B) (11.51)

for all self-adjoint operators A and B whose spectra are in J and for all numbers
0≤ t ≤ 1. f is operator concave if − f is operator convex.

Since self-adjoint operators may be approximated by self-adjoint matrices,
(11.51) holds for operators when it holds for matrices. It is a standard argument
that the convex combination (tA+(1− t)B) can be replaced by a more general one,
∑n

k=1 tkAk, where∑n
k=1 tk = 1 and tk ≥ 0. However, it is not at all trivial that one may

consider operator coefficients as well.

Theorem 11.21. Let f be an operator-convex function and let T1,T2, . . . ,Tn be op-
erators (acting on the same space) such that

n

∑
k=1

T ∗k Tk = I.

Then

f

(
n

∑
i=k

T ∗k AkTk

)
≤

n

∑
k=1

T ∗k f (Ak)Tk . (11.52)

Since the sum ∑n
k=1 T ∗k AkTk is sometimes called C*-convex combination, one can

say that an operator-convex function is C*-convex as well.
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Proof. of the theorem: To show the inequality Tk’s are regared as a column of a
unitary matrix (with operator entries). There exists an n×n unitary matrix (Ui j)n

i, j=1
such that (Ti) is its last column, that is, Tk = Ukn. Then

n

∑
i=k

T ∗k AkTk =
(

U∗Diag(A1,A2, . . . ,An)U
)

nn
.

Let
W = Diag(θ ,θ 2, . . . ,θ n−1,1),

where θ = exp(2π i/n). We have

f

(
n

∑
i=k

T ∗k AkTk

)
= f

(( n

∑
k=1

1
n

W−k(U∗Diag(A1,A2, . . . ,An)U)W k
)

nn

)

= f

(
n

∑
k=1

1
n

W−k(U∗Diag(A1,A2, . . . ,An)U)W k

)

nn

≤
(

n

∑
k=1

1
n

f
(
W−kU∗Diag(A1,A2, . . . ,An)UW k)

)

nn

=

(
n

∑
k=1

1
n

W−kU∗Diag( f (A1), f (A2), . . . , f (An)UW k

)

nn

=
(

U∗Diag( f (A1), f (A2), . . . , f (An)U
)

nn
=

n

∑
k=1

T ∗k f (Ak)Tk.

and conclude (11.52). �

Example 11.23. The function f (t) = t2 is operator convex on the whole real line.
This follows from the obvious inequality

(
A + B

2

)2

≤ A2 + B2

2
.

It is remarkable that

(T ∗1 AT1 + T ∗2 BT2)2 ≤ T ∗1 A2T1 + T ∗2 B2T2

does not seem to have an easy direct proof. (This inequality is a particular case of
(11.52).) �

Corollary 11.1. Let f be an operator-convex function on an interval J such that
0 ∈ J. If ‖V‖ ≤ 1 and f (0)≤ 0, then

f (V ∗AV )≤V ∗ f (A)V (11.53)

if the spectrum of A = A∗ lies in J.
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Proof. Choose B = 0 and W such that V ∗V +W∗W = I. Then

f (V ∗AV +W ∗BW )≤V ∗ f (A)V +W ∗ f (B)W

holds and gives our statement. �

Example 11.24. The function f (x) = (x + t)−1 is operator convex on [0,∞] when
x > 0. It is enough to show that

(
A + B

2

)−1

≥ A−1 + B−1

2

which is equivalent with

(
B−1/2AB−1/2 + I

2

)−1

≥
(
B−1/2AB−1/2

)−1 + I

2
.

This holds, since

(
X + I

2

)−1

≥ X−1 + I
2

is true for an invertible operator X ≥ 0. �

The integral formula in Example 11.16 gives that f (x) = logx is operator con-

cave; however, much more is true. It follows from the Löwner theorem that any
operator monotone function on R

+ is operetor concave.

11.7 Positive Mappings

Let α : B(H )→ B(K ) be a linear mapping for finite-dimensional Hilbert spaces
H and K . α is called positive if it sends positive (semidefinite) operators to posi-
tive (semidefinite) operators.

Theorem 11.22. Let α : Mn(C)→ Mk(C) be a positive unital linear mapping and
f : R→R be a convex function. Then

Tr f (α(A)) ≤ Trα( f (A))

for every A ∈Mn(C)sa.

Proof. By means of the spectral decompositions A = ∑ j ν jQ j and α(A) = ∑i μiPi

we have

μi = Tr(α(A)Pi)/TrPi =∑
j
ν jTr(α(Q j)Pi)/TrPi ,
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whereas the convexity of f yields

f (μi)≤∑
j

f (ν j)Tr(α(Q j)Pi)/TrPi .

Therefore,

Tr f (α(A)) =∑
i

f (μi)TrPi ≤∑
i, j

f (ν j)Tr(α(Q j)Pi) = Trα( f (A)) ,

which was to be proven. �

If we apply this result to the mapping α : Mn(C)⊕Mn(C)→Mn(C) defined by

α(A⊕B) = tA +(1− t)B

for some 0 < t < 1, then we obtain the convexity

Tr f (tA +(1− t)B)≤ tTr f (A)+ (1− t)Tr f (B) . (11.54)

Example 11.25. Let E : Mn(C)→Mn(C) be a positive unital trace-preserving map-
ping. Therefore E sends the density matrix ρ into a density matrix E (ρ). It can be
shown that

S(E (ρ))≥ S(ρ).

Our argument is based on the fact that −S(ρ) can be obtained by differentiating
Trρ p. If p > 1, then f (t) = t p is convex, hence

Tr(E (ρ)p−E (ρ))≤ Tr(ρ p−ρ)

according to Theorem 11.22. Dividing by p− 1 and letting p → 1, we obtain the
statement. �


The dual α∗ : B(K )→ B(H ) of α is defined by the equation

Trα(A)B = TrAα∗(B) (A ∈ B(H ),B ∈ B(K ))) . (11.55)

It is easy to see thatα is positive if and only ifα∗ is positive andα is trace preserving
if and only if α∗ is unit preserving.

The operator inequality

α(AA∗)≥ α(A)α(A)∗

is called Schwarz inequality. If α is a positive mapping, then the ineqiality holds
for normal operators. This result is called Kadison inequality. (The Schwarz in-
equality holds for an arbitrary operator A if α is completely positive, or 2-positive.)

Theorem 11.23. Let α : B(H )→ B(K ) be a positive unit-preserving mapping.
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(1) If A ∈ B(H ) is a normal operator (that is, A∗A = AA∗), then

α(AA∗)≥ α(A)α(A)∗.

(2) If A ∈ B(H ) is a positive operator such that A and α(A) are invertible, then

α(A−1)≥ α(A)−1.

Proof. A has a spectral decomposition ∑i λiPi, where Pi’s are pairwise orthogonal
projections. We have A∗A = ∑i |λi|2Pi and

[
I α(A)

α(A)∗ α(A∗A)

]
=∑

i

[
1 λi

λi |λi|2
]
⊗α(Pi)

Since α(Pi) is positive, the left-hand side is positive as well. Reference to Theorem
11.6 gives the first inequality.

To prove the second inequality, use the identity
[
α(A) I

I α(A−1)

]
=∑

i

[
λi 1
1 λ−1

i

]
⊗α(Pi)

to conclude that the left-hand side is a positive block-matrix. The positivity implies
our statement. �


If we fix bases in H and in K , then B(H ) can be identified by a matrix algebra
Mn(C), and similarly B(K ) is Mk(C) (when n is the dimension of H and k is the
dimension of K ).

Theorem 11.24. Let E : Mn(C)→Mk(C) be a linear mapping. Then the following
conditions are equivalent.

(1) E ⊗ idn is a positive mapping, when idn : Mn(C)→Mn(C) is the identity map-
ping.

(2) The block-matrix X defined by

Xi j = E (Ei j) (1 ≤ i, j ≤ n) (11.56)

is positive.
(3) There are operators Vt : Cn → Ck (1≤ t ≤ k2) such that

E (A) =∑
t

VtAV ∗t . (11.57)

(4) For finite families Ai ∈Mn(C) and Bi ∈Mk(C) (1≤ i≤ n), the inequality

∑
i, j

B∗i E (A∗i A j)B j ≥ 0

holds.
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Proof. (1) implies (2): The matrix

∑
i, j

Ei j⊗Ei j =
1
n

(
∑
i, j

Ei j⊗Ei j

)2

is positive. Therefore,

(
idn⊗E

)(
∑
i, j

Ei j⊗Ei j

)
=∑

i, j
Ei j⊗E (Ei j) = X

is positive as well.
(2) implies (3): Assume that the block-matrix X is positive. There are orthogonal

projections Pi (1≤ i≤ n) on Cnk such that they are pairwise orthogonal and

PiXPj = E (Ei j).

We have a decomposition

X =
nk

∑
t=1
| ft 〉〈 ft |,

where | ft〉 are appropriately normalized eigenvectors of X . Since Pi is a partition of
unity, we have

| ft 〉=
n

∑
i=1

Pi| ft〉

and set Vt : Cn → Ck by

Vt |s〉= Ps| ft〉.

(|s〉 are the canonical basis vectors.) In this notation

X =∑
t
∑
i, j

Pi| ft〉〈 ft |Pj =∑
i, j

Pi

(
∑

t
Vt |i〉〈 j|V ∗t

)
Pj

and

E (Ei j) = PiXPj =∑
t

VtEi jV
∗

t .

Since this holds for all matrix units Ei j, we obtain

E (A) =∑
t

VtAV ∗t .

(3) implies (4): Assume that E is in the form of (11.57). Then
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∑
i, j

B∗i E (A∗i A j)B j =∑
t
∑
i, j

B∗i Vt(A∗i A j)V ∗t B j

=∑
t

(
∑

i
AiV

∗
t Bi

)∗(
∑

j
A jV

∗
t B j

)
≥ 0

follows.
(4) implies (1): We have

E ⊗ idn : Mn(B(H ))→Mn(B(K )).

Since any positive operator in Mn(B(H )) is the sum of operators in the form
∑i, j A∗i A j⊗Ei j (Theorem 11.8), it is enough to show that

X := E ⊗ idn

(
∑
i, j

A∗i A j⊗Ei j

)
=∑

i, j

E (A∗i A j)⊗Ei j

is positive. On the other hand, X ∈Mn(B(K )) is positive if and only if

∑
i, j

B∗i Xi jB j =∑
i, j

B∗i E (A∗i A j)B j ≥ 0.

The positivity of this operator is supposed in (4), hence (1) is shown. �

When the linear mapping E is between abstract C∗-algebras, then the equivalent

conditions (1) and (4) can be used.

Example 11.26. A typical completely positive mapping is the partial trace. Let H
and K be Hilbert spaces and ( fi) be a basis in K . For each i set a linear operator
Vi : H →H ⊗K as Vie = e⊗ fi (e ∈H ). These operators are isometries with
pairwise orthogonal ranges and the adjoints act as V ∗i (e⊗ f ) = 〈 fi, f 〉e. The linear
mapping

Tr2 : B(H ⊗K )→ B(H ), A �→∑
i

ViAV ∗i (11.58)

is called partial trace over the second factor. The reason for that is the formula

Tr 2(X⊗Y) = XTrY. (11.59)

Note that the partial trace is a conditional expectation up to a constant factor; its
complete positivity follows also from this fact (see (9.6)). �

Example 11.27. The trace Tr : Mk(C) → C is completely positive if Tr ⊗ idn :
Mk(C)⊗Mn(C) → Mn(C) is a positive mapping. However, this is a partial trace
which is known to be positive (even completely positive).

It follows that any positive linear functional ψ : Mk(C)→ C is completely pos-
itive. Since ψ(A) = TrρA with a certain positive ρ , ψ is the composition of the
completely positive mappings A �→ ρ1/2Aρ1/2 and Tr. �
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Example 11.28. Let E : Mn(C) → Mk(C) be a positive linear mapping such that
E (A) and E (B) commute for any A,B ∈Mn(C). We can show that E is completely
positive as follows.

Any two self-adjoint matrices in the range of E commute, so we can change the
basis such that all of them become diagonal. It follows that E has the form

E (A) =∑
i
ψi(A)Eii,

where Eii are the diagonal matrix units and ψi are positive linear functionals. Since
the sum of completely positive mappings is completely positive, it is enough to
show that A �→ ψ(A)F is completely positive for a positive functional ψ and for a
positive matrix F . The complete positivity of this mapping means that for an m×m
block-matrix X with entries Xi j ∈Mn(C), the block-matrix (ψ(Xi j)F)n

i, j=1 should be
positive. This is true, since the matrix (ψ(Xi j))n

i, j=1 is positive (due to the complete
positivity of ψ). �


The next result tells that the Kraus representation of a completely positive map-
ping is unique up to a unitary matrix.

Theorem 11.25. Let E : Mn(C) → Mm(C) be a linear mapping which is repre-
sented as

E (A) =
k

∑
t=1

VtAV ∗t and E (A) =
k

∑
t=1

WtAW ∗
t .

Then there exist a k× k unitary matrix (ctu) such that

Wt =∑
u

ctuVu .

Proof. Let xi be a basis in Cm and y j be a basis in Cn. Consider the vectors

vt :=∑
i j

xi⊗Vty j and wt :=∑
i j

xi⊗Wty j .

We have

|vt〉〈vt |= ∑
i ji′ j′

|xi〉〈xi′ |⊗Vt|y j〉〈y j′ |V ∗t

and

|wt 〉〈wt |= ∑
i ji′ j′

|xi〉〈xi′ |⊗Wt|y j〉〈y j′ |W ∗
t .

Our hypothesis implies that

∑
t
|vt〉〈vt |=∑

t
|wt〉〈wt | .
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Lemma 2.2 tells us that there is a unitary matrix (ctu) such that

wt =∑
u

ctuvu .

This implies that

〈xi|Wt |y j〉= 〈xi|∑
u

ctuVu|y j〉

for every i and j and the statement of the theorem can be concluded. �


11.8 Matrix Algebras

Let H be a Hilbert space. The set of bounded operators B(H ) has an algebraic
structure, B(H ) is a unital ∗-algebra. If the space H is n-dimensional, then B :=
B(H ) can be identified with the algebra Mn(C) of n× n complex matrices. The
subalgebras of B containing the identity and closed under adjoints will be called
matrix algebras.

Example 11.29. Assume that A is a subalgebra of B. If we choose the basis of H
properly, then elements of A can be written in block-diagonal form, for example as

⎡
⎢⎢⎢⎢⎣

A 0 0 0 0
0 A 0 0 0
0 0 A 0 0
0 0 0 B 0
0 0 0 0 C

⎤
⎥⎥⎥⎥⎦= (I3⊗A)⊕B⊕C, (11.60)

where, say, A is an r×r matrix, B is s×s and C is q×q. Of course, the equality 3r+
s + q = n should hold. The algebra of matrices (11.60) is algebraically isomorphic
to Mr(C)⊕Ms(C)⊕Mq(C). In order to recover the subalgebra, the knowledge of
the summands Mr(C), Ms(C) and Mq(C) is not enough; we should know that the
multiplicity of Mr(C) is 3, while the multiplicity of Ms(C) and Mq(C) is 1. �


Any subalgebra A of B(H ) induces a decomposition

K⊕
k=1

H L
k ⊗H R

k , (11.61)

of H and elements of A have the form

K⊕
k=1

AL
k ⊗ IR

k , where AL
k ∈ B(H L

k ) (11.62)

and IR
k is the identity on H R

k . In this case A is isomorphic to
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K⊕
k=1

B(H L
k ) and

K

∑
k=1

dimH L
k ×dimH R

k = n.

The operators commuting with (11.62) have the form

K⊕
k=1

IL
k ⊗AR

k , where AR
k ∈ B(H R

k ) (11.63)

and they form the commutant A ′ of A .
In the decomposition of A , we can group the terms with the same dimension

d = dimH L
k and multiplicity m = dimH R

k together. Let K(d,m) be the number of
k’s with multiplicity m and dimension d. An equivalent decomposition is

H =
⊕
(d,m)

H(d,m) and H(d,m) = Hd⊗Hm⊗Hm,d, (11.64)

where
dimHd = d, dimHm = m, dimHm,d = K(d,m).

Elements of A in this representation have the form

A =
⊕
(d,m)

K(d,m)

∑
i=1

A(d,m, i)⊗ Im⊗Em,d
i, i , A(d,m, i) ∈ B(Hd), (11.65)

where Em,d
i, j is the set of matrix units in Hm,d . If we denote by P(d,m) the projection

onto H(d,m), then P(d,m) is in the center of A and

P(d,m)A =
K(d,m)

∑
i=1

A(d,m, i)⊗ Im⊗Em,d
i, i .

The next theorem describes the structure of unitaries such that the corresponding
conjugation leaves a subalgebra globally invariant.

Theorem 11.26. Assume that A ⊂ B(H ) is a subalgebra and U ∈ B(H ) is a uni-
tary such that UAU∗ ∈ A for every A ∈ A . Then it follows that in terms of the
decomposition (11.65) U commutes with all projections P(d,m) and

P(d,m)U =
K(d,m)

∑
i=1

UL
i ⊗UR

i ⊗Em,d
σ(i),i,

where UL
i ∈ B(Hd) and UR

i ∈ B(Hm) are unitaries and σ is a permutation of the
set {1,2, . . . ,K(d,m)}.

If instead of a single unitary, we have a continuous one-parameter family Ut

of unitaries such that UtA U∗
t ⊂ A , then the permutation σ must be a continuous
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function of t ∈ R. The only possibility is σ=identity. Therefore, we do not need the
decomposition (11.64), the simpler (11.61) is good enough to see the
structure

Ut =
K⊕

k=1

(UL
k )t ⊗ (UR

k )t =
( K⊕

k=1

(UL
k )t ⊗ IR

k

)( K⊕
k=1

IL
k ⊗ (UR

k )t

)
(11.66)

where (UL
k )t and (UR

k )t are one-parameter families of unitaries. Note that the first
factor of (11.66) is in A ′, while the second one is in A .

Theorem 11.27. Let A ⊂ B(H ) be a subalgebra with decomposition (11.62) and
let ρ be a density matrix. If ρ itA ρ−it ⊂A for every t ∈R, then ρ has the form

ρ =
K⊕

k=1

AL
k ⊗AR

k

or
ρ = ρ0D,

where ρ0 ∈A is the reduced density of ρ and D ∈A ′.

Assume that M is a matrix algebra. The center {A0 ∈M : A0A = AA0 for ev-
ery A ∈ M } is an algebra as well. Suppose that it has the minimal projections
p1, p2, . . . , pm. Then piM is isomorphic to a full matrix algebra Mmi(C) and A
is isomorphic to the direct sum

Mk1(C)⊕Mk2(C)⊕ . . .⊕Mkm(C).

Up to an isomorphism the algebra M is determined by the vector k := (k1,k2, . . . ,
km)T . Let N be another matrix algebra with minimal central projections q1,q2, . . . ,
qn and let q jN be isomorphic to a full matrix algebra Mn j (C). Then N is deter-
mined by the vector � := (l1, l2, . . . , ln)T .

Assume now that N ⊂M . Then piq jN is a subalgebra of piM if piq j �= 0.
The (i, j) element of the matrix ΛM

N is 0 if piq j = 0 and the multiplicity of piq jN
in piM otherwise. The matrix ΛM

N is called the inclusion matrix of the relation
N ⊂M . The matrix ΛM

N is an m×n matrix and has the property

ΛM
N � = k .

If N and the inclusion matrix ΛM
N are given, then the algebra M is determined, but

the inclusion N ⊂M can be reconstructed only up to a unitary transformation.
In Example 11.29, the inclusion matrix is [3,1,1], � = (r,s,q)T and

k = (3r + s+ q).
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11.9 Conjugate Convex Function

Let V be a finite-dimensional vector space with dual V ∗. Assume that the duality
is given by a bilinear pairing 〈 · , · 〉. For a convex function F : V → R∪{+∞} the
conjugate convex function F∗ : V ∗ → R∪{+∞} is given by the formula

F∗(v∗) = sup{〈v,v∗〉−F(v) : v ∈V}.

F∗ is sometimes called the Legendre transform of F .

Theorem 11.28. If F : V → R∪{+∞} is a lower semi-continuous convex function,
then F∗∗ = F.

Example 11.30. Fix a density matrix ρ = eH and consider the functional F

F(X) =

{
TrX(logX− logρ) ifX ≥ 0 and TrX = 1

+∞ otherwise.

defined on self-adjoint matrices. F is essentially the relative entropy with respect
to ρ .

The duality is 〈X ,B〉= TrXB if X and B are self-adjoint matrices.
Let us show that the functional B �→ logTreH+B is the Legendre transform or the

conjugate function of F :

logTreB+H = max{TrXB−S(X‖ρ) : X is positive, TrX = 1} . (11.67)

On the other hand, if X is positive invertible with TrX = 1, then

S(X ||ρ) = max{TrXB− logTreH+B : B is self-adjoint} . (11.68)

Introduce the notation

f (X) = TrXB−S(X ||ρ)

for a density matrix X . When P1, . . . ,Pn are projections of rank one with ∑n
i=1 Pi = I,

we can write

f

( n

∑
i=1

λiPi

)
=

n

∑
i=1

(λiTrPiB +λiTrPi logρ−λi logλi) ,

where λi ≥ 0, ∑n
i=1λi = 1. Since

∂
∂λi

f

( n

∑
i=1

λiPi

)∣∣∣∣∣
λi=0

= +∞ ,

we can see that f (X) attains its maximum at a positive matrix X0, TrX0 = 1. Then
for any self-adjoint Z, TrZ = 0, we have
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0 =
d
dt

f (X0 + tZ)
∣∣∣∣
t=0

= Tr Z(B + logρ− logX0) ,

so that B+H− logX0 = cI with c ∈R. Therefore X0 = eB+H/TreB+H and f (X0) =
logTr eB+H by simple computation.

Let us next prove (11.68). It follows from (11.67) that the functional B �→
logTreH+B defined on the self-adjoint matrices is convex. Let B0 = logX−H and

g(B) = TrXB− logTreH+B

which is concave on the self-adjoint matrices. Then for any self-adjoint S we have

d
dt

g(B0 + tS)
∣∣∣∣
t=0

= 0,

because TrX = 1 and

d
dt

TrelogX+tS

∣∣∣∣
t=0

= TrXS .

Therefore g has the maximum g(B0)= TrX(logX−H), which is the relative entropy
of X and ρ . �

Example 11.31. Let ω and ρ be density matrices. By modification of (11.68) we
may set

Sco(ω ||ρ) = max{TrωB− logTrρeB : B is self-adjoint} . (11.69)

It is not difficult to see that

Sco(ω ||ρ) = max{S(ω |C ‖ρ |C ) : C } (11.70)

where C runs over all commutative subalgebras. It follows from the monotonicity
of the relative entropy that

Sco(ω ||ρ)≤ S(ω‖ρ). (11.71)

The sufficiency theorem tells that the inequality is strict if ω and ρ do not
commute. �


11.10 Some Trace Inequalities

The Golden–Thompson inequalilty tells us that

TreA+B ≤ TreAeB

holds for self-adjoint A and B.
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The Golden–Thompson inequalilty can be deduced from inequality (11.71).
Putting X = eA+B/TreA+B for Hermitian A and B we have

logTreAeB ≥ TrXA−Sco(X ,eB)≥ TrXA−S(X ,eB) = logTreA+B,

which further shows that TreA+B = TreAeB holds if and only if AB = BA.
According to Araki,

Tr(X1/2YX1/2)rp ≤ Tr(Xr/2Y rXr/2)p (11.72)

holds for every number r ≥ 1, p > 0 and positive matrices X ,Y . (11.72) is called
Araki–Lieb–Thirring inequality [8] and it implies that the function

p �→ Tr(epB/2epAepB/2)1/p (11.73)

is increasing for p > 0. Its limit at p = 0 is TreA+B. Hence we have a strengthened
variant of the Golden–Thompson inequality.

The formal generalization

TreA+B+C ≤ TreAeBeC

of the Golden–Thompson inequality is false. However, if two of the three matrices
commute then the inequality holds obviously. A nontrivial extension of the Golden–
Thompson inequality to three operators is due to Lieb [71].

Theorem 11.29. Let A, B and C be self-adjoint matrices. Then

TreA+B+C ≤
∫ ∞

0
Tr(t + e−A)−1eB(t + e−A)−1eC dt

11.11 Notes

Theorem 11.11 and inequlity (11.26) are from the paper [24] of Carlen and Lieb.
The classical source about majorization is [75]. In the matrix setting [6] and [51]

are good surveys. The latter discusses log-majorization as well. Theorem 11.16 was
developed by A. Wehrl in 1974.

The operator monotonicity of the function (11.38) is discussed in [96, 111]. The-
orem 11.18 was developed in [10]. Operator means have been extended to more than
two operators in [100].

11.12 Exercises

1. Show that
‖x− y‖2 +‖x + y‖2 = 2‖x‖2 + 2‖y‖2 (11.74)

for the norm in a Hilbert space. (This called “parallelogram law.”)
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2. Give an example of A ∈Mn(C) such that the spectrum of A is in R
+ and A is

not positive.
3. Let A∈Mn(C). Show that A is positive if and only if X∗AX is positive for every

X ∈Mn(C).
4. Let A ∈Mn(C). Show that A is positive if and only if TrXA is positive for every

positive X ∈Mn(C).
5. Let ‖A‖ ≤ 1. Show that there are unitaries U and V such that

A =
1
2
(U +V).

(Hint: Use Example 11.2.)
6. Let V : Cn → Cn⊗Cn be defined as Vei = ei⊗ ei. Show that

V ∗(A⊗B)V = A◦B (11.75)

for A,B ∈Mn(C). Conclude the Schur theorem.
7. Let A ∈ Mn(C) be positive and let X be an n× n positive block-matrix (with

k× k entries). Show that the block-matrix

Yi j = Ai jXi j (1≤ i, j ≤ n)

is positive. (Hint: Use Theorem 11.8.)
8. Let α : Cn→Mm(C) be a positive mapping. Show that α is completely positive.
9. Let α : Mn(C)→Mm(C) be a completely positive mapping. Show that its ad-

joint α∗ : Mm(C)→Mn(C) is completely positive.
10. Give a proof for the strong subadditivity of the von Neumann entropy by dif-

ferentiating inequality (11.26) at r = 1.
11. Let α : Mn(C)→Mn(C) be a positive unital mapping and let 0 < t < 1. Show

that for every positive matrix A ∈Mn(C), the inequality

α(At)≤ α(A)t

holds. (Hint: f (x) = xt is operator monotone function.)
12. Use the Schur factorization (11.6) to show that

det

([
A B
B∗ C

])
= detA×det(C−B∗A−1B)

if A is invertible. What is the determant if A is not invertible?
13. Deduce the subadditivity of the von Neumann entropy differentiating the in-

equality in Theorem 11.11 at p = 1.
14. Assume that the block-matrix [

A B
B∗ C

]
(11.76)

is invertible. Show that A and C−B∗A−1B must be invertible.
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15. Use the factorization (11.6) to show that the inverse of the block-matrix
(11.76) is
[

A−1 + A−1B(C−B∗A−1B)−1B∗A−1 −A−1B(C−B∗A−1B)−1

−(C−B∗A−1B)−1B∗A−1 (C−B∗A−1B)−1

]
. (11.77)

16. Show that for a self-adjoint matrix A definitions (11.8) and (11.9) give the same
result.

17. Use the Frobenius formula

f (s)− f (r)
s− r

=
1

2π i

∫
Γ

f (z)
(z− s)(z− r)

dz (11.78)

to deduce (11.12) from (11.11).
18. Show that f (x) = x2 is not operator monotone on any interval.
19. Deduce the inequality

√
xy≤ x− y

logx− logy
(11.79)

(between the geometric and logarithmic means) from the operator monotonicity
of the function logt. (Hint: Apply Theorem 11.17.)

20. Use Theorem 11.17 and the formula

Det
([ 1

ai + b j

]n
i, j=1

)
= ∏

1≤i< j≤n

(ai−a j) ∏
1≤i< j≤n

(bi−b j) ∏
1≤i, j≤n

(ai + b j)−1

(11.80)
to show that the square root is operator monotone.

21. Let P and Q be projections. Show that

P#Q = lim
n→∞

(PQP)n .

Is this a projection?
22. Show that f (x) = xr is not operator monotone on R

+ when r > 1. A possibility
is to choose the real positive parameters b1 and b2 such that for the matrices

A :=
[

1 1
1 1

]
and B :=

[
b1 0
0 b2

]

0≤ A≤ B holds but Ar ≤ Br does not.
23. Let A and B be self-adjoint matrices and P be a projection. Give an elementary

proof of the inequality

(PAP+ P⊥BP⊥)2 ≤ PA2P + P⊥B2P⊥,

where P⊥ stands for I−P.
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24. Let A≥ 0 and P be a projection. Show that

A≤ 2(PAP+ P⊥AP⊥),

where P⊥ = I−P.
25. Let A≥ 0 and P be a projection. Representing A and P as

A =
[

A11 A12

A21 A22

]
and P =

[
I 0
0 0

]

show that A≤ 2PAP+ 2P⊥AP⊥, where P⊥ = I−P.
26. Deduce (11.52) for the square root function from the properties of the geometric

mean.
27. Use (11.12) to show that

∂
∂ t

eA+tB
∣∣∣
t=0

=
∫ 1

0
euABe(1−u)B du

for matrices A and B.
28. Let α : Mn(C)→Mk(C) be linear mapping given by

α(A) = Tr2X(I⊗A),

where Tr2 denotes the partial trace over the second factor and X ∈ Mk(C)⊗
Mn(C) is a fixed positive matrix. Show that α is positive. Give an example such
that α is not completely positive. (Hint: Write the transpose mapping in this
form.)

29. Let A ∈Mn(C) be a positive matrix and define E : Mn(C)→Mn(C) as E (D) =
A◦D, the Hadamard product by A. Show that E is completely positive.

30. Let C be a convex set in a Banach space. For a smooth functional Ψ : C→ R,

DΨ(x,y) :=Ψ(x)−Ψ(y)− lim
t→+0

t−1
(
Ψ(y + t(x− y))−Ψ(y)

)

is called the Bregman divergence of x,y ∈C. Let C be the set of density ma-
trices and let Ψ(ρ) = Trρ logρ . Show that in this case the Bregman divergence
is the quantum relative entropy.

31. Show that for density matrices D and ρ = eH ,

S(D||ρ) = sup{TrDB− logTreH+B : B is self-adjoint} . (11.81)

holds.
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29. I. CSISZÁR AND J. KÖRNER, Information theory. Coding theorems for discrete memoryless

systems, Akadémiai Kiadó, Budapest, 1981.
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