

Queueing Theory

Second Edition

Lester Lipsky

Queueing Theory

A Linear Algebraic Approach

Second Edition

123

Lester Lipsky
Professor Emeritus
Department of Computer Science

and Engineering
University of Connecticut
Storrs, CT 06268-2155
lester.lipsky@uconn.edu

ISBN: 978-0-387-49704-4 e-ISBN: 978-0-387-49706-8
DOI 10.1007/978-0-387-49706-8

Library of Congress Control Number: 2008937578

Mathematics Subject Classification (2000): 60XX, 68XX, 90XX, 60K25, 60J27, 90B22, 60K05

The first edition of this book was first published by: Macmillan (now Pearson Publications, Inc.)

c© Springer Science+Business Media, LLC 2009
All rights reserved. This work may not be translated or copied in whole or in part without the written per-
mission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013,
USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with
any form of information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

Printed on acid-free paper

springer.com

Dedication

To my wife, Sue, with whom each day is

fresh and new, a truly Markovian relationship.

A Path to Discovery

Theories of the known which are described by different ideas, may be equiv-
alent in all their predictions and are hence scientifically indistinguishable.
However, they are not psychologically identical when trying to move from
that base into the unknown. For different views suggest different kinds of
modifications which might be made. Therefore, a good scientist today might
find it useful to have a wide range of viewpoints and mathematical expres-
sions of the same theory available to him. This may be asking too much of
one person. The new students should as a class have this. If every individual
student follows the same current fashion in expressing and thinking about the
generally understood areas, then the variety of hypotheses being generated to
understand the still open problems is limited. Perhaps rightly so, . . . BUT if
the truth is in another direction, who will find it?

Richard P. Feynman

So spoke an honest man, the outstanding intuitionist of our age and a
prime example of what may lie in store for anyone who dares to follow the
beat of a different drum.

Julian Schwinger

From a special issue on Richard Feynman (who died on 15 February 1988)
in Physics Today, February 1989. Feynman’s quote (slightly paraphrased here)
was taken from his Nobel lecture in June 1965.

[Note: Feynman and Schwinger shared the Nobel prize with S. Tomon-
aga in 1965 for their work on quantum electrodynamics in the late forties.
Working independently, and using radically different methods, they ended up
with mathematically equivalent theories. Schwinger and Tomonaga were the
“mainstreamers,” but everyone calculates using Feynman’s method to this
day.]

vii

Contents

Preface to Second Edition xv

Preface to First Edition xvii

1 INTRODUCTION 1
1.1 Background . 1

1.1.1 Basic Formulas . 1
1.1.2 Markov Property . 10
1.1.3 Notation, Pronouns, Examples 12

1.2 Distribution Functions Over Time 13
1.2.1 Exponential Distribution (Continuous Time, t) 14
1.2.2 Geometric Distribution (Discrete Time, nnn) 17

1.3 Chapman-Kolmogorov Equations 18
1.3.1 Continuous Time . 19
1.3.2 Discrete Time . 24
1.3.3 Time-Dependent and Steady-State Solutions 25

1.3.3.1 Some Properties of Matrices 25
1.3.3.2 How a System Approaches Its Steady State . . 27

2 M/M/1 QUEUE 33
2.1 Steady-State M/M/1-Type Loops 33

2.1.1 Time-Dependent Solution for N = 2N = 2N = 2 36
2.1.2 Steady-State Solution for Any NNN 38
2.1.3 Open M/M/1 Queue (N →∞N →∞N →∞) 41
2.1.4 Buffer Overflow and Cell Loss for M/M/1/NNN Queues . . 44
2.1.5 Load-Dependent Servers 50
2.1.6 Departure Process . 56

2.2 Relaxation Time for M/M/1/ /N Loops 58
2.3 Other Transient Parameters . 61

2.3.1 Mean First-Passage Times for Queue Growth 62
2.3.2 kkk-Busy Period . 66

2.3.2.1 Mean Time of a Busy Period 67
2.3.2.2 Probability That Queue Will Reach

Length k . 69
2.3.2.3 Maximum Queue Length During a Busy

Period . 72

ix

x Contents

3 M. E. FUNCTIONS 77
3.1 Properties of a Subsystem, S 77

3.1.1 Mean Time to Leave S 79
3.1.2 Service Time Distribution of S 81
3.1.3 Properties of B and V 83
3.1.4 Numerical Algorithm for Evaluating b(x)b(x)b(x) and R(x)R(x)R(x) . . . 85

3.2 Matrix Exponential Distributions 87
3.2.1 Commonly Used Distributions 88

3.2.1.1 Erlangian Distributions 88
3.2.1.2 Hyperexponential Distributions 94

3.2.2 Sums of Erlangian Functions 100
3.2.3 Other Examples of ME Functions 104

3.2.3.1 A 4-State Hyper-Erlangian 105
3.2.3.2 A Non PHase Distribution 108

3.3 Distributions With Heavy Tails 111
3.3.1 Subexponential Distributions 111
3.3.2 Power-Tailed (PT) Distributions 114
3.3.3 What Do PT Distributions Look Like? 116
3.3.4 Statistical Behavior of Large Samples 117
3.3.5 The Central Limit Theorem and Stable Distributions . . 121

3.3.5.1 Distributions with Finite Variance 121
3.3.5.2 Distributions with Infinite Variance 124
3.3.5.3 Stable Distributions and Measured Averages . 128

3.3.6 Truncated Power-Tailed (TPT) Distributions 129
3.3.6.1 Truncation and Range of a Distribution 130
3.3.6.2 An ME Representation of a TPT

Distribution 133
3.3.6.3 A TPT Distribution Where f(0) = 0f(0) = 0f(0) = 0 140

3.4 Equivalent Representations . 142
3.4.1 The Canonical Minimal Representation 142
3.4.2 Isometric Transformations 143

3.4.2.1 Summary . 149
3.4.2.2 Hierachy of ME Functions 150

3.4.3 Examples of Equivalent Representations 152
3.4.4 On the Completeness of ME Distributions 156
3.4.5 Setting Up Matrix Representations 157

3.5 Renewal Processes and Residual Times 158
3.5.1 Matrix Representations for the pdf of Yn 160
3.5.2 Renewal Function and Transient Renewal Processes . . 164
3.5.3 Residual Times and Delayed Intervals 170

3.5.3.1 Residual Vector 170
3.5.3.2 Renewal Processes 173

3.5.4 Two Illustrations of Renewal Processes 175
3.5.4.1 The Poisson Process 175
3.5.4.2 Renewal Process with E2E2E2 Interdeparture

Times . 176

Contents xi

4 M/G/1 QUEUE 185
4.1 S.S. M/ME/1//N (and M/ME/1/N) Loop 185

4.1.1 Balance Equations . 187
4.1.2 Steady-State Solution 190
4.1.3 Departure and Arrival Queue-Length Probabilities . . . 195

4.2 Open M/ME/1 Queue . 200
4.2.1 Steady-State M/ME/1 Queue 201
4.2.2 System Times: Pollaczek-Khinchine Formulas 204

4.2.2.1 Mean Queue Length 205
4.2.2.2 Queue-Length Probabilities of M/PT/1

Queues . 207
4.2.2.3 Throughput 208
4.2.2.4 Z-Transform 209

4.2.3 System Time Distribution 211
4.2.4 Buffer Overflow and Customer Loss 215
4.2.5 Distribution of Interdeparture Times 221

4.3 M/G/1 Queue Dependence On n 229
4.3.1 Residual Time as Seen by a Random Observer 229
4.3.2 Weighted Averages of Matrix Operators 232
4.3.3 Waiting Time as Seen by an Arriving Customer 234
4.3.4 System Time of an Arriving Customer 236

4.4 Relation To Standard Solution 237
4.4.1 Exponential Moments, αk(s)αk(s)αk(s), and Their Meaning 238
4.4.2 Connection to Laguerre Polynomials 239
4.4.3 Connection to Standard Solution 242
4.4.4 M/M/X//N Approximations to M/ME/1//N Loops . . 245

4.5 Transient Behavior of M/ME/1 Queues 250
4.5.1 First-Passage Processes for Queue

Growth . 250
4.5.1.1 Conditional Probabilities for Queue Growth . 250
4.5.1.2 Mean First-Passage Time for Queue

Growth . 255
4.5.2 Formal Procedure for Finding System Parameters . . . 263
4.5.3 Properties of the k-Busy Period 263

4.5.3.1 Conditional Probabilities for Queue
Decrease . 264

4.5.3.2 Mean First-Passage Times for Queue
to Drop . 265

4.5.3.3 Probability That Queue Will Reach
Length n . 268

4.5.3.4 Maximum Queue Length of a Busy Period . . 276
4.5.4 Mean Time to Failure with Backup and Repair 282

5 G/M/1 QUEUE 287
5.1 Steady-State Open ME/M/1 Queue 288

5.1.1 Steady-State Probabilities of the G/M/1 Queue 290
5.1.2 Arrival and Departure Probabilities 295

xii Contents

5.1.3 Properties of Geometric Parameter s 297
5.1.4 Systems Where Interarrival Times Are Power-Tailed . . 308
5.1.5 Buffer Overflow Probabilities for the G/M/1 Queue . . 311

5.2 ME Representation of Departures 313
5.2.1 Arrival Time Distribution Conditioned by a Departure . 313
5.2.2 Distribution of Interdeparture Times 318

5.3 ME/M/1/N and ME/M/1//N Queues 323
5.3.1 Steady-State Solution of the ME/M/1/N Queue 324
5.3.2 Arrival Probabilities and Customer Loss 328

5.4 Steady-State ME/M/C-Type Queues 331
5.4.1 Steady-State ME/M/X/ /N Loops 333
5.4.2 Steady-State ME/M/C Queue 338
5.4.3 Arrival and Departure Points 341

5.5 Transient Behavior of G/M/1 Queues 346
5.5.1 First-Passage Times for Queue Growth 346
5.5.2 The k-Busy Period . 351

6 M/G/C-TYPE SYSTEMS 357
6.1 Introduction . 357
6.2 Steady-State M/ME/2//N Loop 359

6.2.1 Definitions . 359
6.2.2 Balance Equations . 365
6.2.3 Solution of Probability Vectors 366

6.3 Steady-State M/G/C//N-Type Systems 371
6.3.1 Steady-State M/ME/C//N Loop 371
6.3.2 Alternate Representation of M/ME/C//N Systems . . . 380
6.3.3 Generalized M/ME/C//N System 381
6.3.4 Relation to Jackson Networks 384
6.3.5 Time-Sharing Systems with Population Constraints . . 385

6.4 Open Generalized M/G/C Queue 390
6.5 Transient Generalized M/ME/C Queue 391

6.5.1 Queue Reduction at S1 with No New Arrivals 391
6.5.2 Markov Renewal (Semi-Markov Departure)

Processes . 399
6.5.3 A Little Bit of Up and Down, with Arrivals 403

6.5.3.1 First-Passage Processes for Queue Growth . . 403
6.5.3.2 First Passages for Queue Decrease 411
6.5.3.3 MTTF with Backup and Repair 417

6.6 Conclusions . 419

7 G/G/1/ /N LOOP 421
7.1 Basis-Free Expression for PPPr[X1 < X2] 421
7.2 Direct Products of Vector Spaces 424

7.2.1 Kronecker Products . 425
7.2.2 Ψ Projections onto Subspaces 427

7.3 Steady-State ME/ME/1/ /N Loop 430
7.3.1 Balance Equations . 430

Contents xiii

7.3.2 Steady-State Solution 435
7.3.3 Outline of an Efficient Algorithm 441
7.3.4 An Example . 444

7.4 A Modicum of Transient Behavior 448

8 SEMI-MARKOV PROCESS 453
8.1 Introduction . 454

8.1.1 Matrix Representations of Subsystems 454
8.2 Markov Renewal Processes . 455

8.2.1 Interdeparture Time Distributions 455
8.2.2 Correlation of Departures 458
8.2.3 Laplace Transforms . 462

8.3 Some Examples . 462
8.3.1 Departures from Overloaded Server: Renewal Process . 463
8.3.2 Markov Modulated (or Regulated) Processes 464

8.3.2.1 The Underlying Generator, QQQ 464
8.3.2.2 Markov Regulated Departure

Process (MRDP) 467
8.3.2.3 Markov Modulated Poisson

Process (MMPP) 470
8.3.2.4 Augmented MMPP’s (AMMPP) 473
8.3.2.5 ON-OFF Models (Bursty Traffic) 474

8.3.3 Merging Renewal Processes 486
8.3.4 Departures from Overloaded Multiprocessor Systems . . 488
8.3.5 Departures from ME/ME/1 Queues 489

8.3.5.1 If S2 Is Exponential (M/ME/1 Queues) 489
8.3.5.2 If S1 Is Exponential (ME/M/1 Queues) 492
8.3.5.3 Both S1 and S2 Are Nonexponential 496
8.3.5.4 M/M/1//N Queues 497

8.4 MRP/M/1 Queues . 498
8.4.1 Balance Equations . 499
8.4.2 Some Performance Measures 502
8.4.3 The G/M/1 Queue as an Example 503

9 L A Q T 505
9.1 Isometric Transformations . 506
9.2 Linear Algebraic Formulation 508

9.2.1 Description of a Single Server 508
9.2.2 Residual Vector and Related Properties 511

9.3 Networks of Nonexponential Servers 512
9.3.1 Description of System 512
9.3.2 Service Time Distribution 516

9.4 Systems With Two Servers . 519
9.4.1 G/M/1 Queue . 519
9.4.2 Two Nonexponential Servers 520
9.4.3 Review of Transient Behavior 522

9.5 Concluding Remarks . 524

xiv Contents

Symbols 527

Abbreviations 531

Bibliography 533

Index 543

Preface to Second Edition

We have a habit in writing articles published in scientific journals to
make the work as finished as possible, to cover up all the tracks, to
not worry about the blind alleys or describe how we had the wrong

idea first, and so on. So there isn’t any place to publish, in a dignified
manner, what we actually did in order to get to do the work.

Richard P. Feymann, Nobel Lecture, 1965.

When the first edition of this book first appeared, there were few books that
covered Linear Algebraic Queueing Theory (LAQT), all at a higher level. At
that time I made the claim that this would become the approach of choice.
Now, some 15 years later, the claim has largely been realized, particularly
in problems concerning semi-Markov processes and system reliability. The
prediction that because transient phenomena could now be expressed in a
computationally manageable form, this subject would also become more im-
portant, seems to be slowly coming true as well. Many research papers have
been published, resulting in several books containing collections of these pa-
pers, mostly on computational methods, as in for instance, [Stewart95],
[Chak-Alfa97]i, and [LatoucheTaylor00]. The monograph by Latouche
and Ramaswami (leaders in the field) [Latouche-Ram99] covers the sub-
ject well, but at a higher level. (Their title, Introduction to Matrix Analytic
Methods ... could be modified to Introduction to Advanced Matrix Analytic
Methods ...†.) Yet no new book at the intermediate level has emerged that
takes a linear algebraic approach. That is, when possible, theorems are proven
by matrix algebraic manipulation, rather than using explicit properties of ma-
trices or probabilistic arguments. Therefore, an updated version of the original
is needed.

This second edition, in addition to making many corrections and improve-
ments, is larger by a third than the first edition. The increase in size reflects
the growing recognition of the importance of processes that generate unbound-
edly large variances or long-range autocorrelation, as seen in CPU times, file
sizes, telecommunications traffic, finance, and insurance claims. Thus an ex-
tensive amount of material has been added to Chapter 3 describing a broad
set of ME functions. In particular there is an entire section on power-tail
(PT), or Pareto distributions (they form a proper subset of the heavy-tailed
distributions), including a section showing how they can be represented by
ME distributions within the Markovian structure, even though they have in-
finite moments. They are then used in Chapters 4 and 5 to study queues with

†A definition of elementary, or introductory is: “that which the author understands.”
Advanced means: “that which the author is not sure about,” whereas intermediate is: “that
which the author figured out while writing the book.”

xv

xvi Preface To Second Edition

PT service times, and to see how PT renewal processes affect system times.
A new Chapter 8 has been added that covers Semi-Markov processes

(SMP), an important topic that is used extensively in queueing models of
performance from system reliability to telecommunications systems to perfor-
mance of computer clusters to inventory problems in operations research. We
first give a formal mathematical description of the properties of SMPs and
the related Markov Renewal Processes (MRP). Several detailed examples are
then presented, each with a different state-space construction. We then look
at some ON-OFF models used in modeling telecommunications traffic.

The old Chapter 8 is now Chapter 9, and includes a new section on how
to deal with networks of nonexponential servers.

Acknowledgments

When I decided to write a second edition in 2000 I realized that the original
text, written in DITROFF, would have to be translated to LATEX. Lucky
for me that my friend, Dr. Michael Greiner, willingly took on the task of
writing the translator and overseeing its execution by Michael Schneider.
Without their efforts I might still be doing the translation by hand. I must
thank my friends at Technical University of Munich, Prof. Eike Jessen and
Dr. Manfred Jobmann, for their longtime support and encouragement from
the time I spent my sabbatical year at TUM in 1994. Manfred has carefully
read the original and now the final version and has found more errata than I
can afford to pay at $1 per error. Don Costello invited me to give a series of
lectures and then encouraged me to write the second edition with expanded
coverage of heavy-tailed distributions. Thanks to former Dean Amir Fagri
and the School of Engineering at UCONN, and my department chair, Reda
Ammar, for providing funding and a sabbatical so I could work on the book
and hire Justin Besiglio and Robert Sheahan to produce many of the figures
herein. In the last two years, Robert and Feng Zhang have generated the
rest of the graphs and helped with the formatting of the book. I don’t know
how I can show proper appreciation of their extraordinary efforts. Thanks to
my former students, Jisung Woo, Steve Thompson, Marwan Sleiman, Sarah
Tasneem, Cindy Siriwong, Gehan Verasinghe and the many students who
have taken my LAQT course but whose names have slipped from my grasp,
for sharing in the proofreading. Special thanks to my former students and
present collaborators, Hans-Peter Schwefel, Pierre Fiorini, Ahmed Mohamed,
and Imad Antonios for their invaluable input. Prof. So/ren Asmussen provided
valuable suggestions on making tighter definitions, in particular on defining
heavy-tailed distributions and their subsets. I also want to thank Peter
Kühl for spending so much time editing the entire book, as well as other
suggestions for improving the text. Any errors that remain are mine alone.
My thanks to Springer-Verlag for their offer to publish the book, and thanks
most of all to my wife, Sue, for persevering through it all.

Storrs, CT, April 2008 Lester Lipsky

Preface to First Edition

“Necessity is the mother of invention” is a misleading proverb.
“Necessity is the mother of temporary fixups” is much nearer to

the truth. The basis of the growth of modern invention is science,
and science is largely the outgrowth of intellectual curiosity.

Alfred North Whitehead

At least 50 worthwhile books on queueing theory have been written in the
last 35 years. Two or three times as many books have been published in
which queueing theory and Markov chains play an important part. Most of
these books, even the older ones, are still useful for understanding at least
some part of the subject. Why, then, should yet another book be published?
The answer, simply, is that there is no book (or even collection of papers)
that covers intermediate queueing theory using what I call “Linear Algebraic
Queueing Theory” (LAQT). There are in fact only two books which use a
linear algebraic approach, both by Marcel Neuts [Neuts81] and [Neuts89],
and both of them are written for experts in the field. I waited five years for
someone to write a book that could be used for a first or second course in the
subject (never do anything if someone else is going to do it), but to no avail.
So in 1988 I started to write it myself.

The reason that LAQT should become familiar to novices as well as to
those who are already knowledgeable in intermediate and advanced queueing
theory is that any problems that can be cast into a matrix-vector format can
easily be adapted to make use of the high-speed parallel and vector processors
available today. Also, many problems in queueing theory that traditionally are
solved by unrelated mathematical techniques can now be solved in a consistent
integrated fashion. This allows for better physical insight. But, most impor-
tant, many system performance measures that are normally ignored because
of their computational and formulational difficulties can be dealt with easily in
LAQT. Some examples are: properties of the busy period, departure processes,
first-passage times, residual times, distinctions between what an observer sees
and what a customer sees, and compound processes in general. Each of these
topics is treated here without requiring prior knowledge of the reader. This
book makes the following claim. “Any problem that can be solved for expo-
nential servers can somehow be extended to treat nonexponential servers.” Of
course, it remains to be seen whether the future will vindicate this optimism.

Many decisions had to be made before this book could be written. First,
who is the intended audience? There are a half a dozen disciplines that claim
queueing theory as one of their “bread-and-butter” techniques. Applied prob-
ability, computer science, electrical engineering, management science, oper-
ations research, systems engineering, and even physics lay claim to various

xvii

xviii Preface To First Edition

parts of this subject as their own, each with its own terminology. Because I
dabble in all these fields, I decided to try to write a generic book that could
be understood by all. The terms used are defined in relation to customers ar-
riving at, being served by, and departing from subsystems, from the different
viewpoints of the customer and of an outside (sometimes random) observer.
The mental image one gets is of humans being served by mechanical objects,
while being observed by other human beings.

Another decision to be made was the level at which to present the ma-
terial, namely, as a first or second course in queueing theory, as a reference
book for practitioners, or as a monograph for would-be researchers in the
field. Once again, I decided to try to aim for all. There is no reason why
this material cannot be taught to mathematically mature college seniors or
new graduate students who have already had courses in linear algebra and
probability theory, but have not necessarily had any queueing theory. Unfor-
tunately this would have required that the first two chapters be expanded to
more than twice their present size without ever mentioning LAQT. There are
already many books available that give an excellent introduction to queueing
theory. Therefore I opted for either a first course, where the student already
has had some background in Markov processes and elementary queueing the-
ory, or a second course. For instance, many students in computer science and
electrical engineering take a course in applied probability covering material
such as that in Chapters 7 and 8 of Trivedi’s book [Trivedi82]. Alternately,
many courses in performance modeling (e.g., courses using [Molloy89] or
[Lazowskaetal84]) are adequate to serve as an introduction to this book.

We assume that the reader is already familiar with matrix theory. However,
except for such elementary formulas as that defining matrix multiplication,
we do not expect the student to have any particular theorem at his or her
fingertips. Therefore background information is introduced as needed. There
is no special section put aside for reviewing linear algebra. We assume the
same about the reader’s knowledge of integral and differential calculus (in
particular, Taylor’s series and l’Hospital’s rule) and elementary probability
theory. For those whose mathematics is a bit rusty, we recommend that an
elementary text in each of these areas be kept handy. But worry not; for all
the mathematical content, this is not a rigorous text. It is a “why and how
to” book. Whenever we would like a matrix to have a particular property, we
assume it is so, whether or not we can prove it.

The material is rather densely packed, so several readings and rereadings
may be necessary for the less experienced queueing theorist, particularly be-
cause there are numerous definitions in the text, and definitions do not usually
stick in one’s mind without some effort. This problem is reduced somewhat
by the book’s layout. We are inclined to introduce an idea in one chapter,
and then use it again in a subsequent section, but in a more intricate way. We
have done our best to give explicit reference to material previously discussed.

Preface To First Edition xix

For Instructors and Practitioners

One might say that the “father” of LAQT is Victor Wallace, who in the 1960s
introduced the concept of Quasi Birth-Death (QBD) processes and proved
that there exists a matrix geometric solution for a large class of such systems,
including the open G/G/C queue [Wallace69]. His presentation, although
motivated by queueing theory [Wallace72], was couched in terms of abstract
Markov chains, and so was acknowledged, but was not picked up as a practical
way of dealing mathematically, conceptually, or computationally with specific
problems in elementary or intermediate queueing theory.

The first researcher actually to take this viewpoint in solving problems spe-
cific to queueing theory was Marcel Neuts, who in the mid-1970s introduced
PHase distributions [Neuts75] and showed that they had matrix represen-
tations which could be manipulated algebraically, while operating on state
vectors corresponding to the queue length probabilities (one vector for each
value of n, the queue length). He strongly argued that a matrix formulation
could more easily be handled by computers than could integration or differen-
tiation [Neuts81]. Also, since so many problems seemed to have a recursive
solution, algorithms for their numerical evaluation became straightforward.
However, he and his students concentrated most of their efforts attacking
hitherto unsolved problems, and thus remained too abstract to be appreci-
ated by the practical users (as I was then) of queueing theory. It seemed as
though this was just another one of the many techniques one might use to
solve a small set of problems.

This researcher became interested in the subject in the late 1970s in study-
ing the problem of what happens to a subnetwork of exponential servers when
the number of customers who can be active simultaneously is restricted. My
students and I soon realized that if the subsystem was restricted to one ac-
tive customer, then that subsystem was equivalent to a single server with
a nonexponential (Coxian, or Kendall [Kendall64], or RLT, or matrix ex-
ponential) distribution. Then, after John Carroll reduced the balance equa-
tions from second-order to first-order difference equations [Carroll79], we
independently, and virtually simultaneously with Neuts, found the explicit
matrix geometric solution to M/G/1 and G/M/C queues. The two papers
appeared back-to-back in the May-June 1982 issue of Operations Research
[CarrollLipvdL82], [Neuts82]. I consider this to be the true beginning of
LAQT, for then it became clear that many seemingly diverse problems could
be solved using one technique and one viewpoint.

It is interesting to realize that the basis for LAQT was established by Er-
lang himself [Erlang17] when he represented a single server by a series of
exponential stages, but linear algebra was not in vogue at the turn of this
century, so queueing theory had to be developed entirely within the frame-
work of what is called “modern analysis.” The “method of stages” is really a
part of LAQT, distorted so it could fit into the classical view, whereas D. R.
Cox’s work in the 1950s [Cox55], showing iin effect that “every pdf can be
approximated arbitrarily closely by a function whose Laplace transform can
be written as the ratio of two polynomials (RLT functions)” is really the basis

xx Preface To First Edition

for claiming that there exists a linear algebraic formulation of every problem
which can be formulated otherwise.

You might question whether LAQT really is a peer to the standard variety
of queueing theory. Well, for decades now, it has been standard technique in
various areas of applied mathematics to replace differential operators on a so-
lution function by an equivalent linear operator on a vector in Hilbert space.
In fact, the pair of representations of quantum theory, Werner Heisenberg’s
matrix mechanics and Erwin Schrödinger’s wave mechanics , is the prime ex-
ample of this duality. The proof by John von Neumann that they are math-
ematically equivalent is closely related to Cox’s completeness statement in
extending A. K. Erlang’s method of stages to include all functions with ratio-
nal Laplace transforms [Cox55]. Fortunately for physics, linear algebra was a
known quantity by the 1920s, so the two viewpoints grew together and have
become so intertwined that the typical quantum practitioner switches from
one to the other and back again with little difficulty. A similar statement
can be made about linear control theory . Both of those disciplines deal with
functions of complex variables, even though what is actually observed must
be real. If physicists can talk about the charm of quarks, which can never be
seen outside their nuclear home, and electrical engineers can have imaginary
currents, surely our customers should be allowed to travel with negative prob-
abilities and complex service times from one phase to another, as long as they
remain inside one subsystem or another, and as long as all observable entities
are real.

The reader should avoid mapping this material onto already familiar tech-
niques, at least until Chapter 4 has been covered. By then you will see the
power and elegance of this methodology, as well as its usefulness, and be able
to “switch back and forth without difficulty.” Furthermore, because most so-
lutions are in terms of matrix operations rather than integrals, or roots of
equations, highly efficient algorithms for both single and parallel computer
systems can easily be written. There are several mathematical tool kits read-
ily available (e.g., MATLAB, Mathematica, Maple) that execute matrix equa-
tions directly.

Organization

The book is laid out by chapter in order of increasing complexity of structure.
There is more than enough material for a two-semester course, but a one-
semester first course or a one-semester second course can easily be fashioned.

In Chapter 1 we make a quick survey of those topics normally connected
to Markov chains. Chapter 2 starts out as a continuation of Chapter 1 by
using the Chapman-Kolmogorov equations to set up the M/M/1 queue. But
we soon switch to the simpler and intuitively more satisfying view associated
with steady-state transition diagrams. Every queueing system is made up of
two subsystems, each of which contains one exponential server. In Chapter 3
we show that by adding structure to a subsystem we give it a nonexponential
(called Matrix Exponential, ME) service time distribution. In Chapter 4 we

Preface To First Edition xxi

combine the ideas of the two previous chapters to study the M/G/1 queue (i.e.,
one nonexponential and one exponential subsystem). As long as our system
is closed (finite population of customers), there is no difference between an
M/G/1//N loop and a G/M/1//N loop. But if the population is increased
unboundedly, one or the other server will saturate. So, if the nonexponential
server is the faster one, we have the open M/G/1 queue as given in Chapter 4.
However, in Chapter 5 we assume that the exponential server is faster, and
derive the properties of an open G/M/1 queue.

In Chapter 6 two or more customers can independently be active at once
in one subsystem, the M/G/C system. This increases the complexity of the
mathematics required, as well as the computational complexity and sizes of
matrices. But it also enormously increases the range of problems that can be
solved, the so-called “generalized M/G/C systems.” In Chapter 7 we revert to
one active customer per subsystem, but now both subsystems have structure,
and we are dealing with a G/G/1//N loop. This leads to a different increase
in complexity, requiring a direct product of vector spaces, which we must first
discuss before actually finding the steady-state solution.

Finally, in Chapter 8 we try to give a linear algebraic formulation that
does not depend upon a physical interpretation of individual states. As such,
it acts as a review of the book.

The chapters are all structured in more or less the same way, with obvi-
ous deviations because of the material. First we find the closed steady-state
solution. Then we “open” the loop by increasing the customer population un-
boundedly. Then we look at certain specialized topics (e.g., load-dependent
servers, renewal theory, comparison with other methods). Finally we explore
the transient behavior of the appropriate queue.

A one-semester first course would cover Chapter 1 and the steady-state
parts of Chapters 2, 3, 4, and 5. Depending on the background of the students,
the instructor might add some descriptive material to Chapters 1 and 2.

Assuming that students have already had a course in queueing theory,
but not one that covered LAQT, a one-semester second course would skim
through Chapter 1 and the first part of Chapter 2. But then Section 2.3
must be covered in earnest, as must the first part of Chapter 3. Except for
the material on residual times, which must be covered, Section 3.5 can be
omitted. Most of Chapters 4 and 5 should be covered, but the instructor can
skip Chapter 6 if desired and go directly to Chapter 7. However, Chapter 6 is
potentially of great practical importance, therefore the instructor may prefer
to skip Chapter 7 instead. Chapter 9 can be put in or left out, as per taste.

A two-semester course can be given that combines the two one-semester
courses in the order just described, or one can go sequentially from beginning
to end, skipping those topics which seem inappropriate. However, one cannot
study Section 6.5, for example, without first covering the related material in
Chapters 2, 4, and 5.

xxii Preface To First Edition

Acknowledgments

I would like to thank Professor Howard Sholl and BECAT of the University
of Connecticut for continued support in the technical creation of this book.
In particular, Anthony Guzzi has rewritten DITROFF† so it actually does
what it is supposed to do (at least on my workstation). His devotion to my
needs has been beyond the call. Also, I thank John Marshall and Sue Zajac∗

for keeping the system up (most of the time) and the secretaries (Jean, Sue,
Ruth, Sandi, and Sherry) for keeping me up (most of the time). To my
former students, now collaborators, Appie van de Liefvoort (University of
Missouri-KC), Aby Tehranipour (Eastern Michigan University), and Yiping
Ding (now at BGS Systems, Inc.), I give thanks for technical advice in the
various chapters where they are experts. Thanks to Seva nanda Adari, Jinzhu
(Jim) Chen, and Houzhong Yan for reading the first draft and pointing
out how ideas could be made clearer. I thank the students who were in my
class in the fall of 1990 (Somnath Deb, Sharad Garg, Rudi Hackenberg,
Chengdong Lu, Jim Moriarty, Carolyn Pe, and Cien Xu), who used the
second version of this book and searched for errors of content. Siddhartha
Roy and Dilip Tagare meticulously went through the final draft, searching
for errors of all kinds (and they found many). Dilip and Ed Bigos were also
responsible for generating most of the graphs. To Professors Joseph Macek
(University of Tennessee); George Nagy (Rensselaer Polytechnic Institute);
Don Costello and Sharad Seth (University of Nebraska); Don Towsley
(University of Massachusetts); Victor Wallace (University of Kansas); and
Arnie Russek (my thesis advisor), Jim Galligan, and Krishna Pattipati (all
of the University of Connecticut), thanks for useful critical comments. I
must also thank Macmillan Publishing Company’s Ed Maura for taking the
initiative in inviting me to do the book, John Griffin who oversaw the project
from cover to cover, the unknown proofreader who went through the text
with the devotion of a mother combing her daughter’s hair, and especially
Leo Malek who was determined that this would be a good-looking book.
Thanks to Erikson/Dillon Art services for creating such fine figures and page
layout, and finally, Janet Pecorelli and the American Mathematical Society’s
printing service in Providence, RI, for producing such high-quality galley
proofs at short notice.

Storrs, CT, November 1991 Lester Lipsky

†DITROFF is a registered trademark of AT&T.
∗As of May 4, 1996, now known as Sue Marie Lipsky.

Chapter 1
INTRODUCTION

The ultimate Markov observation:
“Today is the first day of the rest of your life.”

This author is often asked what queueing theory is. First we state that queue-
ing is the only word in the English language with five successive vowels (there
is an alternative spelling that deletes the second e, but it is obviously inferior)
and that a queue is a line of customers waiting to be served, such as one sees
in banks, supermarkets, and fast-food outlets. More often than not, the ques-
tioner will interrupt to say, “You’ve been doing a bad job, and common sense
would tell us how to do things better.” Of course we have not even begun to
explain where the theory comes in (“So, you’re in queueing?”). The goal of
a mathematical modeler (the class of researchers to which queueing theorists
belong) is to describe and understand what is really going on, for only then
can someone (not necessarily the modeler) make an informed decision on what
should be done to improve things. You, the reader, presumably already know
what a queue is and will have the patience to learn some of the theory, par-
ticularly that related to our Linear Algebraic Approach to Queueing Theory
(LAQT), which doesn’t show up until Chapter 3.

1.1 Background

Any system in which the available resources are not sufficient to satisfy the de-
mands placed upon them at all times is a candidate for queueing analysis. This
is quite a general statement, but in this treatise we have tried to keep our pic-
ture as simple and as explicit as possible. We deal with subsystems (or ser-
vice centers), denoted by S1, S2, . . . , Sm. Customers then wander from one
subsystem to another, perhaps forever. We are not so ambitious as to consider
in detail more than two subsystems at a time, but we do allow each subsystem
to have one or more servers in it, where each server is itself made up of one or
more stages, or phases. But we are getting ahead of ourselves with such detail.

1.1.1 Basic Formulas

What can we say about such systems? What do we know? Well, the single
most important rule is Little’s formula (1.1.2) [Little61], which we now de-
scribe. Consider an arbitrary subsystem, as shown in Figure 1.1.1. Customers

L. Lipsky, Queueing Theory, DOI 10.1007/978-0-387-49706-8 1, 1
c© Springer Science+Business Media, LLC 2009

2 1.1 Background

come and go and wander from one service center to another. An outside ob-
server can count the number of customers who enter that subsystem over a
period of time t, symbolizing that count by N(t). The same customers may

Figure 1.1.1: Arbitrary subsystem of servers. Any number of customers
may enter the subsystem (therefore, it is open) and travel from one server to
another repeatedly before leaving. Customers are not marked, therefore if one
leaves and reenters, he is counted twice.

have come and gone more than once, but they are counted each time. After
a very long period of time, we would suppose that the difference between the
number who have arrived and the number who have left is negligible com-
pared to either (no one stays forever). Then the observer might find that the
measured arrival rate, N(t)/t, approaches a constant,

Λ :=
N(t)

t

after a very long time t. †

“How long is very long?” is an important question, so it pays to pause for
a moment to discuss it. Mathematicians and statisticians have a procedure
for dealing with this; they say, “In the limit as t goes to infinity,” or

Λ = lim
t→∞

N(t)
t
· (1.1.1a)

Because it actually is important, we discuss seriously what is really meant
by this limit. A mathematician would assume that N(t) is a monotonic, non-

† The symbol “:=”, as used in expressions of the form

A := B,

means “symbol A is defined by expression B.” In such cases, A is (almost surely) appearing
for the first time.

1 Introduction 3

decreasing function of t that is the same from day to day. His definition of
(1.1.1a), as you may recall, is the following.

Definition 1.1.1
If for all ε > 0, there exists a to such that for all t > to, the following
is true ∣∣∣∣N(t)

t
− Λ
∣∣∣∣ < ε ,

then (1.1.1a) is true in the mathematical sense. (We use |X| to denote
absolute value of X.) ��� †

On the other hand, the outside observer, as she counts the arriving cus-
tomers, would note that N(T) is a stochastic function (also monotonic non-
decreasing) that varies from day to day. Her definition of (1.1.1a) is the fol-
lowing:

Definition 1.1.2
If for all δ and ε > 0, there exists a to such that for all t > to, the
following is true,

PPPr
(∣∣∣∣N(t)

t
− Λ
∣∣∣∣ > ε

)
< δ,

then (1.1.1a) is true in the probabilistic sense. (The symbol PPPr(X)
stands for the phrase “the probability that the expression represented
by X is true.”) ���

The additional assumption (in both cases) is that the underlying conditions
do not change from day-to-day, even though, for the observer, the count will
be different each day. Depending on the context, we mean one or the other
definition when we write something like (1.1.1a). The reader should spend a
few moments reviewing these two ideas.

We now return to our discussion of Little’s formula. As a second mea-
surement, our observer could keep track of how long each customer spends
in the subsystem, for each visit, calling it xi for the i-th visitor. Then the
average time spent in the subsystem by a typical customer is given by

T̄ =
1

N(t)

N(t)∑
i=1

xi (1.1.1b)

for very large t (as t→∞).
As a third measurement, or set of measurements, our observer might at

random times count how many customers are in the subsystem, and call it ni .
(We were rather flippant in the use of random times. By that we mean the
random observer takes measurements at times that are separated by intervals
that are independent and taken from the same exponential distribution, the
definition of a Poisson process.) If she does this often enough, say, m times, she

†Symbol � designates end of definition.

4 1.1 Background

can claim that the average number of customers in S (or the queue length
at S) up to any time is given by

q̄ =
1
m

m∑
i=1

ni . (1.1.1c)

If m and t are large enough Little’s formula relates these three measurements
by the simple formula

q̄ = ΛT̄ . (1.1.2)

Little published his proof in 1961 [Little61], but it was not satisfactory,
and several papers were published subsequently, including S. Stidham’s “Last
Word” in 1974 [Stidham74]. But even that was unsatisfactory to F. J. Beut-
ler who “Revisited” it in 1980 [Beutler83]. Since then, rigorous proofs
have been published for specific systems (see e.g. [Glynn-Whitt93] and
[Asmussen03]). To this day it is more likely to be called Little’s formula in-
stead of Little’s theorem or Little’s law. Even so, it is used broadly and widely,
and no counterexamples of consequence have surfaced. See [Kleinrock75] or
[Molloy89] for a constructive (and instructive) proof .

Little’s formula tells us that given any two of the performance parameters,
the third parameter is uniquely determined by (1.1.2). In other words, the
three measurements, in principle, are not independent of each other. In fact,
Little’s formula is true even if T̄ , q̄, and Λ do not approach a limit, just as long
as ni/N(t) << 1. In studying real-world systems, cautious experimenters will
usually measure all three parameters and then use Little’s formula to check
for self-consistency and/or reliability of data. In mathematical modeling the
limit as t goes to infinity can be taken correctly, therefore (1.1.2) holds exactly
(except for some pathological systems that we ignore here).

The second most important formula, and the first one always derived in
any discussion of queueing systems, is the steady-state solution of the open
M/M/1 queue. We derive and discuss this in Chapter 2, but for now we merely
look at the result. Suppose that customers arrive randomly and independently
of each other to a lone server and that the average rate at which they arrive is
given by the parameter λ. Suppose further that the time between arrivals is a
random number taken from the exponential distribution, with mean x̄2 = 1/λ
and that the arrivals are independent of each other. This is known as a Poisson
arrival process, which we run across again and again throughout the book. Let
X be the random variable (r.v.) denoting the time needed by a customer once
he gets to be served. The actual time he needs is also taken from an exponential
distribution, but with mean x̄1. We have thus described the M/M/1 queue.
The M stands for “Memoryless”, or ”Markovian” (nobody seems to know
which†), and means for us that the process being represented by M comes

†However, according to Peter Kühl (University of Basel, Switzerland), D. G. Kendall
first introduced the symbols, M, D, and G in order to indicate various distributions of the
generation time of bacteria [Kendall52]. The following year Kendall applied this notation,
supplemented with GI, for characterizing queueing systems [Kendall53]. He used M for
Markovian, D for Deterministic, G for General, and GI for General Independent. Kendall
never used the term, memoryless. In fact, Kühl points out that using M for Memoryless is
a misnomer. Instead, if used at all, ML should be used for MemoryLess.

1 Introduction 5

from an exponential distribution. The first symbol, [A], in Kendall notation
[Kendall53]

A/B/C

describes the arrival process, the second symbol, [B], describes the service
distribution, and the third symbol, [C], tells us how many servers there are
in the subsystem. Thus we have a Poisson arrival process [A = M] to a single
[C = 1] exponential server [B = M].

We next define the utilization factor (or utilization parameter) to be

ρ := λx̄1 =
x̄1

x̄2
· (1.1.3)

Suppose, for instance, that customers need 9 minutes of service, on average,
and that they are arriving at the rate of 6 per hour (or 10 minutes between
arrivals, on average); then ρ = 0.9, and we would expect our server to be busy
90% of the time. Therefore, it will be idle 1− ρ = 0.1, or 10% of the time. In
Chapter 2, Equation (2.1.6b), we show that

q̄ =
ρ

1− ρ
, (1.1.4a)

and from Little’s formula

EEE[T] =
q̄

λ
=

x̄1

1− ρ
· (1.1.4b)

According to these formulas, the average customer (remember, a very large
number of customers has gone through) will arrive at a queue that already
has nine other customers in it (including the one in service) and will have to
wait 90 minutes (on average) from the time he arrives at the subsystem to
the time he leaves. This behavior is represented in Figure 1.1.2 by the curve
labeled M/M/1.

Before going on, we must clarify what is meant by “will see, on average,”
because in this case an arriving customer will see more than nine customers
in the queue one-third of the time, and one-third of the time he will see three
or fewer. In fact, he will see exactly nine customers less than 4% of the time.
Actually we are still being loose with our words. What we really mean is that
“a customer will find nine customers in the queue with a probability less than
0.04.” More rigorously, we write the following:

PPPr(N = 9) < 0.04.

For averages, we use the following definition.

Definition 1.1.3
Let N be a random variable denoting the number of customers an
arriving customer finds in the queue. Then the mean number of
customers is given by

EEE[N] :=
∞∑

n=0

nPPPr(N = n), (1.1.5a)

6 1.1 Background

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

1

2

3
4

5
6 7

Utilization factor, ρ

M
ea

n
re

sp
on

se
(o

r
sy

st
em

)
ti

m
e,

T̄

1 M/G
10

/1

2 M/G
5
/1

3 M/G
2
/1

4 M/M/1
5 M/D/1
6 D/M/1
7 D/D/1

Figure 1.1.2: Steady-state mean response times for various single-
server queues. The horizontal axis is the utilization factor ρ from (1.1.3). The
average arrival rate must be smaller than the service rate (ρ < 1), otherwise the
queue will back up indefinitely. All but two of the curves represent queues with Pois-
son arrivals, for which (1.1.6) is applicable. The squared coefficients of variation
for the various service time distributions are C2

v = 0 (M/D/1), C2
v = 1 (M/M/1),

and C2
v = 2, 5, 10 (worse than exponential, G2, G5, G10). The other two curves

have deterministic arrivals (the time between successive arrivals is constant) cor-
responding to the D/M/1 and D/D/1 queues, respectively. It is clear that all the
curves blow up at ρ = 1.

where for any function of N we say that

EEE[f(N)] :=
∞∑

n=0

f(n)PPPr(N = n), (1.1.5b)

is the expected value (or expectation value) of f(n). We also use
“average value” although it has a broader meaning in everyday usage.
It is common notation in queueing theory books to use q̄ for EEE[N]. We
do so here. ���

Because the precise terminology is so bulky, we tend to use the vague
expressions that we hope we have clarified in this section. The reader should
always be prepared to insert the precise wording when necessary.

Returning to the M/M/1 queue, we see an apparent contradiction. From
an outside observer’s (e.g., manager’s) viewpoint, the server is idle (dawdling)
10% of the time, whereas from a customer’s point of view, the queue is (almost)
always very long. The explanation has to do with the unpredictability of
arrivals and time for service, for sometimes customers will seem to come in
bunches, and sometimes one customer will require far more than the average
service time. For instance, the probability that 2 or more customers will arrive

1 Introduction 7

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

1

2

3
4

5

6 7

Utilization factor, ρ

T̄
×

(1
−

ρ)

1 M/G
10

/1

2 M/G
5
/1

3 M/G
2
/1

4 M/M/1
5 M/D/1
6 D/M/1
7 D/D/1

Figure 1.1.3: T × (1 − ρ)T × (1 − ρ)T × (1 − ρ) versus ρρρ for the same service distributions
as in Fig 1.1.2. All but the D/M/1 queue (6) are straight lines, and all are finite
at ρ = 1.

in one mean interarrival time, is greater than 26% PPPr(n ≥ 2) = 2/e], and 13%
(1/e2) of the customers will need more than twice the mean service time. These
large fluctuations will cause the queue to back up at times. Once the queue
backs up, it will be difficult for it to drain quickly. As an example, suppose
that at some time there are 10 customers at S. Then it will take about 90
minutes (on average) to service them. But in that time, approximately 9 new
customers will arrive, and it will take another 81 minutes to satisfy them.
So on and on it goes. The inverse question, “How long will it take to get 10
customers in the queue in the first place?” is also important. After all, some
systems may not exist long enough to reach their steady state. In this case,
(2.3.3b) tells us that we can expect over 13 hours to elapse before an observer
will find 10 customers in the queue, and over 80 customers will have come and
gone by then. We look at this transient behavior very closely throughout the
book.

This very simplest of systems tells us that if you try to keep your server
busy most of the time, you will have to pay for it in vastly degraded service
to your customers. This has nothing to do with overworking your servers and
thereby making them less efficient or tired or lazy. Nor is it due to the arrival
of an unexpectedly large group of customers all at once. It is due entirely to
the irregularity and unpredictability of arrivals and service demands. More
complicated or more sophisticated or more realistic systems share this be-
havior; that is, they all depend on the term 1/(1− ρ). Unfortunately, these
explanations are not intuitively satisfying to the typical observer, despite their
validity. Somehow, people always say, “If I were in charge, I would do things
better.” Even people who are in charge say it, but they say, “If I really were

8 1.1 Background

in charge” This only points out all the more strongly that we, the human
species, have extremely poor intuition concerning statistically fluctuating phe-
nomena. This is all the more reason to have mathematical models to protect
us from our faulty feelings. That is why the M/M/1 queue is so important
even though it oversimplifies almost all real systems. However inaccurate it is,
it is far more reliable than our intuition, because it contains that ubiquitous
denominator, 1− ρ.

What, then, can be done to improve service? Obviously, more servers can
be added (i.e., go to an M/M/C queue in Section 2.1.5, where C is the number
of customers who can be served simultaneously), if more money is available.
Alternatively, the behavior of the customers can be controlled for example,
by not permitting them to demand much more service time than the average
customer gets. (“Sorry, your time is up”.)† In the early 1930s, F. Pollaczek
[Pollaczek30] and A. Y. Khinchine [Khinchine32] separately studied the
steady-state M/G/1 queue (the G means that the service distribution is Gen-
eral; i.e., it can be almost anything) and derived what has come to be known
as the P-K formula, which we discuss in detail in Chapter 4. That formula
[Equations (4.2.6)] shows that the mean number of customers waiting for ser-
vice (including the one being served) depends only on their arrival rate λ,
and the mean (x̄ = EEE[X]) and variance ([σ2 := EEE[X2] − x̄2) of the service
time distribution. It is usually expressed in terms of the squared coefficient of
variation, C2

v := σ2/x̄2, as given here.

q̄ := EEE[N] = ρ +
λ2

1− ρ
· EEE[X2]

2
=

ρ

1− ρ
+

ρ2

1− ρ
· C

2
v − 1
2

, (1.1.6a)

The mean system time comes from Little’s formula (1.1.2), using ρ = λx̄ and
Λ = λ:

EEE[T] =
q̄

λ
= x̄ +

λ

1− ρ
· EEE[X2]

2
=

x̄

1− ρ
+

ρx̄

1− ρ
· C

2
v − 1
2

· (1.1.6b)

These reduce to Equations (1.1.4) when C2
v = 1. Equation (1.1.6a) shows that

even if every customer were given exactly the same amount of service time
(i.e., C2

v = 0), the mean queue length would only be reduced to half, and
1− ρ is still in its denominator. Furthermore, if no constraint were placed
on the customers with the greatest demands, the mean queue length (and
mean waiting time) could become arbitrarily large (i.e., when C2

v � 1). That
is, there is no upper bound on how bad it could get. The mean system time
from Equation (1.1.6b) for C2

v = 0 is plotted in Figure 1.1.2 with the label
best of Poisson arrivals (M/D/1). The worse cases are for various values of C2

v

greater than 1. There is no worst case, because we can always find a service
distribution with a larger C2

v .
A more convenient way to compare system times is to look at g(ρ) :=

(1− ρ)EEE[T], for this function does not blow up as ρ approaches 1. In fact, for

†Note, however, that if this is done, not only will the fluctuations be reduced, but the
mean service time will be reduced as well. Customers will not necessarily get what they
came for.

1 Introduction 9

M/G/1 queues, from (1.1.6b)

g(ρ) = x̄ + ρx̄ · C
2
v − 1
2
·

That is, g(ρ) is a straight line with g(0) = x̄ for all service time distributions,
and g(1) = x̄(C2

v + 1)/2. This is seen in Figure 1.1.3. For G/M/1, and other
queues, g(ρ) is not a straight line, but for well-behaved systems g(1) is still
finite, as seen by the D/M/1 queue, labelled 6.

One way to modify the performance of a single steady-state queue is to
control the arrival pattern of customers by, for instance, scheduling them
to come at 10-minute intervals, as doctors and dentists do. In Chapter 5 we
look at the G/M/1 queue and see that even if customers come exactly at their
appointed times, the waiting time, [from Equation (5.1.7c)], will again only be
cut approximately in half (again with a variant of 1− ρ in its denominator),
because of the uncertainty of how long service will take. This is shown in
Figures 1.1.2 and 1.1.3 with the curve labeled best of exponential servers
(D/M/1) [Cohen82].

Only complete control of both arrivals and service times will yield the de-
sired efficiency of no waiting. This is shown in Figure 1.1.2 by the horizontal
line labeled ideal (D/D/1). But in that case, will the customers get anything
near what they came for? The job of queueing theorists is to analyze systems
with given, or possible, performance characteristics as described by their ar-
rival and service distributions. Optimally, we would prefer to leave the arrival
and service demands (needs) alone and change the inanimate system charac-
teristics. We leave it to the CEOs, politicians, management consultants, and
other (so-called) efficiency experts to modify or control customer and server
behavior to suit their goals.

Since the early 1970s, networks of queues have been studied and applied to
numerous areas in computer science and engineering with a high degree of suc-
cess. The basis for this success was due to Jackson [Jackson63] and Gordon
and Newell [Gordon-Newell67], who showed that certain classes of steady-
state queueing networks with any number of service centers could be solved
using a product-form solution. Subsequently, Buzen [Buzen73] showed
that the ominous-looking formulas the previous researchers had derived were
actually computationally manageable, and thereafter the performance analy-
sis of queueing networks began to blossom into a research field of its own. The
theory has ultimately been extended to include, for instance, multiple classes,
other service time distributions if the queueing discipline is not first-come,
first-served (FCFS), and state-dependent routing [Basketetal75]. Jackson
networks, as they are now called, have been so successful in so many areas
that it is hard to see where they do not apply. Their success lies in their ability
to fit the measurements of any given queueing network. The reason is that the
product-form solution has enough free parameters in it to fit anything (see
Section 4.4.4). They also contain, hidden within them, the all-important de-
nominator 1− ρ. The fact that it is hidden within the complex formalism can
be valuable, because questioners are then unlikely to say “I can do better.”
One is far less likely to argue with the output of a sophisticated computer pro-

10 1.1 Background

gram that requires an enormous amount of data input than with an algebraic
formula or the verbal arguments of an “expert.”

But the ability of Jackson networks to predict is an open question. It is
important to emphasize that they do not apply to systems where there are
population size constraints, or to non-steady-state systems, or nonexponential
servers with FCFS queueing discipline. This book therefore goes in a direc-
tion orthogonal to that covered by Jackson networks. Only in Chapters 4
and 6 do we discuss the connection. We show in Section 4.4.4 in what sense
they are not valid for FCFS M/G/1 queues. In Section 6.2.4 we introduce
generalized M/G/C//N networks and show that they reduce to (single-class)
Jackson networks only when N ≤ C. The meaning of all this becomes clear
as the reader goes through the book. At the moment it is only important for
those already familiar with Jackson networks to realize that there is much in
queueing theory that is not covered by Jackson networks.

As you might surmise from this discussion, just about everything that
has been done in queueing theory has assumed the steady state. Very little
is known about transient behavior, for one of two reasons. We do not know
which of these two statements is valid:

1. Transient behavior is unimportant; therefore, it is not studied.

2. Transient behavior is too difficult to measure and analyze; therefore, it
is declared to be unimportant.

A growing number of researchers (including this author) have “declared” that
transient behavior should be considered important (see, e.g., [Neuts77]);
therefore, we devote a considerable amount of space and effort in each chapter
to its analysis. If it should no longer prove too difficult to study, perhaps more
researchers will agree that it is important.

1.1.2 Markov Property

The reader is not expected to know anything special about Markov chains,
the property that Markov introduced and built on in 1907 [Markov07]. It is,
however, an important underpinning of the approach expounded here. There
are many books that cover this in detail at multiple levels, from basic (e.g.,
[Gross-Harris98], [Trivedi02], and [Kleinrock75], and many more) to
advanced (e.g., [Heyman-Sobel82], [Feller71], and [Asmussen03]). We
assume that the reader already has some passing knowledge of the subject,
but we introduce concepts as needed.

We first describe what we mean by a state. A complete specification of a
system or subsystem is collectively called a state. No two states can have the
same complete specification; therefore, they must differ in at least one aspect.
For example, for the purposes of coin-flipping, a coin can be in only one of two
states, heads or tails. Two coins, collectively, can be in one of three states,
HH, HT, or TT. So after the flips we could say (assuming it is true) that
“the system is in state HT.” We also use the word to describe the probability
that the flips will result in one state or another. That is, we could say before

1 Introduction 11

the flips (or without having seen the results) that “the system is in state p,”
where

p = [0.25 , 0.50 , 0.25],

corresponding to the probability for each of the three states to occur. If we
must make a distinction, we will call the former a pure state, and the latter
a composite state. We will also refer to the triplet of values, p, as a state
vector. Now you might ask if HT is completely specified, because it could
have been ht or th. From the coin flipping game point of view, or if we cannot
tell which coin is which, there is only the one external state, HT , but it
has two internal states. The other two external states, HH and TT, have
only one internal state each. The set of internal states corresponding to an
external state is referred to as its state space. Thus we say that

ΞHT := {ht , th }

or that ”ht is an element of ΞHT ,” written

ht ∈ ΞHT .

If this seems confusing, it should become clearer over time, because we use
these terms regularly. For instance, suppose that we are studying a subsys-
tem, represented by the symbol S. If we could look inside we would see, say,
three exponential servers (which we call phases). Next suppose that only one
customer can be inside the subsystem at a time, and there are five customers
there altogether (one inside and four outside). Then we say that the subsys-
tem is in external state [5] and that the system has three internal states. We
might write Ξ5 = {1, 2, 3}.

In general, the sum of probabilities of being in a set of internal states with
the same external state will be the probability of being observed in that ex-
ternal state. This is quite analogous to the terms “sample” and “event” used
in many probability texts, where an event is a set of samples, and the prob-
ability of an event is the sum (or integral) of probabilities over the sample
points [Trivedi02]. In our case, the external states are mutually exclusive,
and the internal states (sample points) may not be individually measurable
or even physically meaningful (we may not always be allowed to look inside
S). Even so, we use the rather picturesque description of customers meander-
ing, sometimes with negative probabilities, through networks of exponential
servers (phases), whose service times may be complex numbers. Even if this
annoys the realist within each of us, it helps us to picture and remember
the process being discussed and to distinguish it from similar processes that
might also be of interest. But in the end, the mathematical conclusions must
be correct if the theory is to be meaningful.

Suppose that a system can be completely described as being in one of a
countable (either finite or infinite) number of states. The set of states is dis-
crete, thus the system cannot gradually go from one state to another. There-
fore at a later time it will hop to another of those states. In time, then, the
history of the system can be described by a sequence of states. Such a sequence

12 1.1 Background

is called a chain. The Markov property states that the probability that the
system will be in a particular state at the next moment of time (i.e., after the
next hop) depends only on the state it is in now, not where it was previously.
A Markov chain is a sequence of states generated by a process that satisfies
the Markov property. This abstract idea becomes meaningful once we look
at some simple systems. For now we give the formal definition of a discrete
Markov chain.

Definition 1.1.4
Let Ξ be a countable set of states. Furthermore, let SSS =
{Io, I1, I2, . . . , In, . . .} be a discrete sequence of random variables,
each of which takes its values from Ξ. In general we might expect that
the value In takes on would depend on the values taken by Io through
In−1. But if

PPPr(In = �n | Io = �o, I1 = �1, · · · , In−1 = �n−1)

= PPPr(In = �n | In−1 = �n−1),

where �k ∈ Ξ, then SSS is a discrete Markov chain. ���

Although not all aspects of queueing theory are described by Markov pro-
cesses, there are few known analytical techniques that go beyond the Markov
property. Thus we should say a few words about the so-called memoryless
property. Only a system with one state is truly memoryless. (See Section
1.2.1). A system can be extended to include pseudostates that serve the pur-
pose of “remembering” some of the past. It is not uncommon to construct
such states even though they are not observable, as long as the formalism is
maintained.

The question then is: “what is a non-Markovian system?” This can be an-
swered in the following way. In general, a system’s future behavior depends on
its entire past history and thus it must “remember” everything. A Markovian
system, on the other hand, can remember only a part of its history and thus
must discard old information as new events occur. Two points follow directly
from this idea. First, for short amounts of time (depending on the size of the
state space), a Markovian model would be an excellent representation of a
non-Markovian system.

Over long periods of time, however, a Markovian system will forget its
initial state and thus would be a poor approximation for those systems that
do depend on their initial state.

1.1.3 Notation, Pronouns, Examples

The following notational standards are adhered to as closely as possible. All
matrices (two-subscripted arrays) are represented by boldface capital letters
(e.g., M), while their components are noted in either of two ways, Mij or
(M)ij , depending on the context. Similarly, all vectors (single-subscripted
arrays) are represented by boldface lowercase letters [e.g., v has components
vi or (v)i]. Row vectors and column vectors play distinctly different roles

1 Introduction 13

in the formalism presented here. As in many books on matrix theory, the
symbol “ ′ ”, means transpose, but we are always interested in an object or
its transpose, never both, so v′ always denotes a column vector. Sometimes
we discuss a set of vectors or matrices, such as {v1,v2,v3}. In this case, the
subscripts are also set in boldface type. So the j-th component of the i-th
vector is (vi)j .

We also strictly adhere to the following convention on the use of pronouns.
We are always talking about “customers”, the “author”, random observer
(or outside observer), “servers” (or “service centers” or “subsystems”), and
the “reader”. To minimize the ambiguity, we always refer to the reader as
“you”; a customer is “he”; an observer (random or outside) is “she;” and a
“server” (service center, or subsystem), is “it.” Thus the following statement
has an unambiguous meaning: “We point out to you that she sees him enter
it.” Translation: “The reader should note that the observer sees the customer
enter the subsystem.” However she may not be able to see what he does after
he enters (although she might figure out what he is probably doing).

All equations, definitions, figures, examples, and exercises are numbered
in sequence by chapter and section (but not subsection). Thus “Figure 2.3.4”
is the fourth figure in Section 2.3. Also, “(4.1.13d)” is the fourth [d] equation
in the thirteenth set of equations in Section 4.1, whereas “Equations (4.1.13)”
refers to all four of (4.1.13a), (4.1.13b), (4.1.13c), and (4.1.13d). Note that an
object such as “(4.1.13)” without a qualifier always refers to an equation. Oth-
erwise we say “Definition 4.5.7,” and so on. Since lemmas are really theorems,
and both can have corollaries, we have chosen to number them together in
a single sequence. Thus we have Lemma 4.2.1, Theorem 4.2.2, and Corollary
4.2.2, but no Theorem 4.2.1. Clearly, Corollary 4.2.2 is a corollary to Theorem
4.2.2.

To help the reader quickly locate a word or phrase from the index, such
objects usually appear on the page referenced in bold-faced, italic font.
This is particularly true if the term is defined or extensively discussed there.

We have given many examples throughout the book, most of them involv-
ing numerical computation, invariably summarized by a family of curves in a
graph. Most of the exercises we have asked the student to perform are proofs
or other mathematical manipulations. The examples can easily be made into
exercises by having the student redo the example using a different distribu-
tion function. In a class environment, each student can be assigned a different
function. Then a comparison study can be made by the class as a whole to see
how the different functions affect the particular phenomenon being studied.

1.2 Distribution Functions Over Time

We use the word system in referring to a closed entity, one in which customers
neither enter nor leave. Yet we often use closed system to retain clarity. On
the other hand, a subsystem is one to which customers come and go. The
simplest of all subsystems has only one state, with at most one customer.
Then that state is either occupied or unoccupied. In the next two sections we

14 1.2 Distribution Functions Over Time

show how such a simple system evolves in time, where we assume that events
could occur at any time (continuous) or at equally spaced moments (discrete).

1.2.1 Exponential Distribution (Continuous Time, t)

We start with a single customer and a single subsystem S. Let R(t) be the
probability that the customer is in the subsystem at time t, where t is a
continuous parameter. Assume that at t = 0 he definitely was there [R(0) = 1].
We can also think of R(t) as the probability that he left after t. That is

R(t) = PPPr(T > t),

where T is the random variable denoting the time he leaves S. The probability
that he will still be in S at a time t + δ is equal to the probability that he
was there at time t, [R(t)], times the probability that he is still there a time
δ later, [R(δ|t)], that is, R(t + δ) = R(t)×R(δ|t). Now, whatever else R(δ|t)
is, it must have R(0|t) = 1, and if we assume that it is a smooth function, it
is expandable in a Maclaurin series, R(δ, t) = 1− μ(t)δ + O(δ2), where μ may
depend on t (but not on δ). At this point we make the memoryless assumption
that R(x|t) does not depend on its second argument [i.e., R(x|t1) = R(x|t2)],
thus making μ a constant. Then

R(t + δ) = R(t)[1− μδ + O(δ2)].

Subtracting R(t) from both sides of this equation and dividing by δ, we get

R(t + δ)−R(t)
δ

= −μR(t) + O(δ).

Next let δ go to 0 and get

dR(t)
dt

= −μR(t). (1.2.1a)

It is well known, and can be proven by direct substitution, that the solution
of (1.2.1a) is

R(t) = e−μt, (1.2.1b)

an exponential function.
Let us pause here to discuss some notational difficulties and conventions.

First we enumerate some well-known terms from probability theory. As al-
ready mentioned, R(t) is the probability that the event being awaited has not
yet occurred by time t (or equivalently, will occur after time t), and is often
called the reliability function for the subsystem. The probability that it
will have occurred by t is

F (t) := PPPr(T ≤ t) = 1 − R(t) (1.2.2a)

and is called the Probability Distribution Function (PDF), (or simply
distribution function) with derivative

f(t) :=
dF (t)

dt
(1.2.2b)

1 Introduction 15

called the probability density function (pdf) (or simply density func-
tion). Because R(t) = 1 − F (t), R(t) is also known as the complementary
distribution function and is often denoted as F̄ (t).

A slight terminology problem shows up when we deal with functions. For
instance, is f(x) different from f(t)? If one is thinking of the function as a
whole (i.e., the entire set of points {(x, f(x))|0 ≤ x < ∞}, or equivalently
{t, f(t) | 0 ≤ t < ∞}, they are the same set. In other words, the graphs of
the two expressions are the same curve. Therefore, the notation f(·) is often
used to mean that any symbol could go inside the parentheses. Extending the
confusion, we often write

t̄ :=
∫ ∞

o

t f(t) dt,

but t is a dummy variable, so this integral is the same as∫ ∞

o

x f(x) dx

(or any other symbol), which we would be inclined to represent by x̄. We see
then, that the important information is the f , not the variable symbol. Also,
the bar notation can be ambiguous. The situation gets even more complicated
when we are dealing with several functions at the same time. To get around
this (and for other reasons), random variables are used to denote possible
values of a given function. One now says rthe following.

Definition 1.2.1
Let T be a random variable, distributed according to f(t) [or f(x),
or even fT (x)]. Then we can write

EEE[T] :=
∫ ∞

o

tf(t) dt =
∫ ∞

o

xf(x) dx. (1.2.3a)

(Random variables are always capital letters.) In words, we read this
as: “The expected value (or expectation value) of T is equal to · · · .”
When we are dealing with time variables, the expected value is often
referred to as the mean lifetime, or mean service time, or simply,
lifetime. In general, we can write

EEE[Tn] :=
∫ ∞

o

tnf(t) dt. (1.2.3b)

We read this as: “The expected value of Tn” or “the n-th moment of
f(t).” This notation extends to any function as

EEE[h(T)] :=
∫ ∞

o

h(t) fT (t) dt, (1.2.3c)

The symbol EEE[X] is a different object, because X must be a random
variable distributed according to a different function, perhaps g(x) or
fX(x), or even fX(t). ���

16 1.2 Distribution Functions Over Time

It is common practice to use t̄ for EEE[T]. We often do that here, but will
generally avoid expressions such as t̄2. Also, both letters, x and t, will be used
as the time variable. We try our best not to use x̄ and t̄ in the same context.

Another much used function is the variance, symbolized by σ2 and de-
fined by

σ2 := EEE

[
(T −EEE[T])2

]
=
∫ ∞

o

(t− t̄)2 f(t) dt (1.2.4a)

which can be shown to be equal to

σ2 = EEE[T 2]−EEE[T]2 = EEE[T 2]− t̄2. (1.2.4b)

The standard deviation of f(t) is symbolized by σ, which satisfies the ob-
vious, σ :=

√
σ2. In words, σ is a measure of the spread about the mean; the

smaller σ is, the narrower the distribution. We usually deal with functions
that are defined only for positive t, therefore a relative width is often useful.
Hence we have the coefficient of variation, whose square is defined by

C2
v =

σ2

(EEE[T])2
· (1.2.4c)

We hope this discussion has not brought on more confusion than it has allayed.
We have found that trivial notational problems such as these often prevent
understanding of expressions with which the reader would otherwise have no
trouble.

Let us return to where we were before the pause. Continuing from (1.2.1b)
and (1.2.2a), the pdf for the exponential distribution is

f(t) = −dR(t)
dt

= μ e−μt. (1.2.5a)

The mean lifetime for the process is

EEE[T] :=
∫ ∞

o

t f(t) dt =
∫ ∞

o

t μ e−μ t dt =
1
μ
· (1.2.5b)

The reciprocal of the mean lifetime, in this case μ, is interpretable as the
service rate, or the rate of leaving. The n-th moment for the exponential
distribution is

EEE[Tn] =
n!
μn
· (1.2.5c)

The variance is σ2 = 1/μ2 and the squared coefficient of variation C2
v = 1.

Finally, we show that exponential distributions have the memoryless prop-
erty [the reverse of what we did to get (1.2.1)]. Let T be the random variable
denoting the time that the subsystem stops being active. Suppose that the
subsystem has been actively servicing the customer for some time, t. What is
the probability that it will continue to be active more than a further time x?
By definition

R(t + x) = PPPr(T > t + x).

1 Introduction 17

That is, R(x + t) is the probability that activity will last longer than t + x,
and R(t) is the probability that it will last longer than t. From the rule of
conditional probabilities for any two events A and B we have

PPPr(A |B) =
PPPr(A ∩B)

PPPr(B)
·

(Read: “probability that A occurs, given that B occurs.”) Let A be the event
that the process finished after time t+x (T > x+t), and let B be the event that
the process ended after time t (T > t). Clearly, A∩B = A, PPPr(A) = R(t + x)
and PPPr(B) = R(t), so

PPPr(T > t + x |T > t) =
R(t + x)

R(t)
. (1.2.6a)

If R(t) = e−μt, as given by (1.2.1b), then

PPPr(T > t + x |T > t) =
e−μ(t+x)

e−μt
= e−μx. (1.2.6b)

This tells us that the time remaining does not depend on how long the process
has already been active. The exponential distribution is the only distribution
with this property. Clearly it is memoryless.

The assumption at the beginning of this section that R(x| t) is independent
of t (we assume that μ is independent of t) is also known as memoryless. Each
implies the other. We use this idea to get another expression of memoryless.
Independence of the past tells us that PPPr(T > t + x |T > t) = PPPr(T > x) =
R(x). Thus (1.2.6a) becomes R(x) = R(t + x)/R(t), or

R(t + x) = R(t)R(x). (1.2.6c)

This is known as the semigroup property † (see, for instance, [Feller71]).
The exponential function (with any value for μ) is the only scalar function of
a single continuous variable that satisfies (1.2.6c).

Exercise 1.2.1: Prove that e−μt for any μ is the unique solution to
(1.2.6c) in the following way. Subtract R(x) from both sides of the
equation, divide by x, take the limit as x → 0, and let R′(0) = −μ,
thereby yielding (1.2.1a).

1.2.2 Geometric Distribution (Discrete Time, nnn)

Suppose that events can occur only at discrete moments of time, such as at
the tick of a clock, and suppose that the subsystem stays busy at each tick

†A semigroup is a set SSS whose elements satisfy the following. Let A, B, C ∈ SSS. Then
AB ∈ SSS (closure) and (AB)C = A(BC) (associative law).

18 1.3 Chapman-Kolmogorov Equations

with probability p. If Ro = 1, then R1 = p and R2 = pR1 = p2. In general, the
probability Rn that it will still be busy by the n-th step is equal to p ·Rn−1,
from which it follows that

Rn = pn. (1.2.7a)

Rn is the discrete analogue of R(t), so we could call it the discrete re-
liability function. The analogue to f(t) (sometimes called the probability
mass function or discrete density function), symbolized by fn, is the prob-
ability that the server will finish in exactly n steps. It is known that bn is
the geometric distribution, or the negative binomial distribution of order
1, but we calculate it here by doing the analogue of differentiation:

fn = Rn−1 −Rn = (1− p)pn−1. (1.2.7b)

Let N be the random variable denoting the number of steps taken before
completion. Then

EEE[N] =
∞∑

n=1

n fn = (1− p)
∞∑

n=1

n pn−1 =
1

1− p
· (1.2.7c)

Equation (1.2.1b) and Equations (1.2.5) are much closer to Equations
(1.2.7) than it would seem by superficial examination. Suppose that although
time is a continuous parameter, the system of Section 1.2.1 is examined only
at regular intervals, as with the cinema or video. Let δ be the time between
snapshots. Then t = nδ. Using this in (1.2.1b), we get

R(t) = e−μnδ =
(
e−μδ

)n
. (1.2.8a)

Let p = e−μδ; then R(t) = Rn. At least as far as the reliability function
is concerned, a discrete time system is indistinguishable from a continuous-
time system in which observations are made at regular intervals. Equations
(1.2.5b) and (1.2.7c) do not yield identical values, but the following inequality
is satisfied.

δ (EEE[N]− 1) < EEE[T] < δ EEE[N]. (1.2.8b)

The proof follows directly by substituting for p and letting u = μδ. Then
(1.2.8b) converts [after multiplying all terms by (eu−1)/ δ] to the inequality

1 <
eu − 1

u
< eu, for u > 0.

Equation (1.2.8b) says that the uncertainty in EEE[T], when measured to the
nearest (rounded up) multiple of δ, is less than one time unit, which is as close
as a discrete and continuous system can come to each other. This is true even
for more general systems, where the strict inequality may be replaced by ≤.

1.3 Chapman-Kolmogorov Equations

We now consider a system that has many states of possible existence. In
Chapter 2, when we deal with queues the states are explicitly described. For

1 Introduction 19

now it is sufficient to consider a state to be one possible complete specification
of the system’s condition. The system can be in one and only one state at a
time, and in the course of time it will change from one state to another. The set
of all possible states is called the state space. Probability books often identify
these with samples in a sample space. If the space is finite, or at most countably
infinite, we have a discrete state space. We are interested exclusively in systems
with discrete state spaces. As our system evolves in time, it must “jump” from
one state to the next, because there is no continuum of states in a discrete
space to match the continuous time parameter. A sequence of such states is
called a chain, and if the Markov property holds, we have a Markov chain.
Of course, time can be continuous or discrete, giving a continuous Markov
chain or discrete Markov chain. If the state space is uncountable, change
chain to process.

1.3.1 Continuous Time

As with most expositions purporting to start from scratch, the first few sec-
tions are overladen with definitions. Let i and j take on positive integer values,
corresponding to the possible states of the system. Then

Definition 1.3.1
Ξ := {i | i is a state of the system}. We read this as: “Ξ is the set
of all i, such that i is a state of the system.” We also call i a pure
state of the system. If Ξ is a finite set of states with, say, m members
(i.e., m = |Ξ|), we can write 1 ≤ i ≤ m, or i ∈ Ξ (i is an element of Ξ).
���

Next, define the following.

Definition 1.3.2
πi(t) := probability that the system will be in state i ∈ Ξ at time t. πππ(t)
is an m-dimensional row vector whose i-th component is πi(t), and is
called the state probability vector or just the probability vector.
πππ(0) is referred to as the initial state of the system. ���

We often say that “the system is in state πππ” when we mean that “the
system is in state i ∈ Ξ with probability πi.” If a distinction between the
two ideas is necessary, we say that the system is in composite state πππ, as
opposed to pure state i. In this case, πj = δij , where δ is defined as follows.

Definition 1.3.3
The Kronecker delta has the values

δij =
{

0 for i
= j
1 for i = j

·

It can be thought of as the ij-th component of the identity matrix. ���

The movement of the system from state to state is governed by the following.

20 1.3 Chapman-Kolmogorov Equations

Definition 1.3.4
Pij := probability that the system will jump to j ∈ Ξ upon leaving state
i ∈ Ξ. The matrix PPP , defined by (PPP)ij = Pij , is called a transition
matrix if Pij ≥ O and

∑m
j=1 Pij ≤ 1 for all i and j. It is also referred

to as a Markov matrix or a stochastic matrix if
∑m

j=1 Pij = 1. If∑m
j=1 Pij < 1 for some i, then PPP is called a substochastic matrix.

Formally we follow Definition 1.1.4 and write

Pij = PPPr(In = j | In−1 = i).

We assume that transition probabilities are independent of how long
the process was running. That is, PPP is independent of n, (i.e., the
number of steps that have already been made). This is known as a
stationary process [Feller71]. ���

Because a system, by definition, is closed, the sum of probabilities of all
possible jumps must be 1. That is,

m∑
j=1

Pij = 1. (1.3.1a)

By introducing the special row vector,

εεε := [1, 1, 1, · · · , 1] ,

with ε′ε′ε′ being the transpose (i.e., column vector) of εεε, (1.3.1a) can be rewrit-
ten in matrix form as

PPPε′ε′ε′ = ε′ε′ε′. (1.3.1b)

Many matrices in this book have this property so we give it a special name.

Definition 1.3.5
Any matrix that satisfies (1.3.1b) is called an isometric matrix. Thus
PPP is isometric. Using an extended view of the definition, we can say
that ε′ε′ε′ itself is isometric, because its row sum (only one term) is 1. In
Section 3.4.2 we give an extended rationale for this nomenclature when
we show that many formulas are invariant to isometric transformations.
���

Note that (1.3.1b) is a matrix equation, whereas (1.3.1a) looks explicitly
at the components. The reader need not be concerned at the moment with the
subtle distinction we are trying to makei here. However, as the book evolves,
we will tend to ignore the properties of the individual matrix elements. It is
the matrix as a whole that operates on the system’s present state vector and
changes it to the future state vector. Therefore, we almost never make use of
the property Pij > 0. However, we are always concerned to see if a matrix is
isometric, for this is an algebraic property of the matrix. When we prove that
a square matrix is isometric, the reader is welcome to think of it as being a
stochastic matrix, but we seldom prove it.

1 Introduction 21

We next derive the generalization of (1.2.1a), keeping in mind that the
system can go to any state, including the one it is in presently, or one it pre-
viously visited. However, not only is there more than one server, but there
are two time parameters. t is the time from when the process began being
observed, and x is the time since the last event occurred. Without the mem-
oryless assumption, it would be almost impossible to find a solvable analytic
formulation. Therefore, Ri(δ|t, x) (the probability that the system will be in
state i at time t + δ, given that it was in state i at time t and has been there
continuously for a time interval x) reduces to Ri(δ). With this understood,
we have

πi(t + δ) = πi(t)Ri(δ) +
∑

j

πj(t)[1−Rj(δ)]Pji + O(δ2).

In words, the probability that the system will be in state i at time t + δ,
[πi(t+δ)], is equal to the probability that it was in state i at time t [πi(t)], and
has remained there for time δ [Ri(δ)], plus the sum of probabilities that it was
in some other state, j (including i), at time t [πj(t)], left that state within the
interval δ, [1−Rj(δ)], and went to i [Pji], plus multiple transitions [O(δ2)]. As
with the derivation of (1.2.1a), replace Ri with its Taylor expansion, subtract
πi(t) from both sides of the equation, divide by δ and take the limit for δ goes
to 0, and get

dπi(t)
dt

=
∑

j

πj(t)μjPji − πi(t)μi. (1.3.2a)

This is one form of the Chapman-Kolmogorov (C-K) equation. It can be
expressed more elegantly as a matrix equation in the following way. We have
already defined the row vector:

πππ(t) := [π1(t), π2(t), · · ·],

and now introduce a diagonal matrix.

Definition 1.3.6
(MMM)ij = μiδij , where δij , is the Kronecker delta defined above. In other
words, MMM is a diagonal matrix, with diagonal elements Mii = μi, where
μi is the rate of leaving state i. MMM is called the completion rate
matrix. It is also referred to as the holding rate matrix, but that
term is not used here. ���

We now can rewrite (1.3.2a) as

dπππ(t)
dt

= πππ(t)MPMPMP − πππ(t)MMM = −πππ(t)QQQ, (1.3.2b)

where the transition rate matrix (also called the infinitesimal rate ma-
trix, or simply rate matrix) QQQ, is defined by

QQQ := MMM(III −PPP). (1.3.2c)

22 1.3 Chapman-Kolmogorov Equations

Although equivalent to the usual definition (most researchers define −QQQ as
the transition rate matrix), QQQ is given in a somewhat different form because
we have separated the process of leaving a state [MMM] from that of deciding
which state to go to next [PPP]. This is most useful to us in succeeding chapters.
MMM governs the time between events and PPP controls what happens when an
event occurs. Thus we can look at the behavior of systems conditioned by the
occurrence of specific events. For instance, in Chapter 4 we not only study
the steady-state probabilities of finding an M/G/1 queue in a given state, but
also analyze the probabilities of being in a given state after a departure or
after an arrival.

Let us define o to be the row vector of all 0s. It is clear from (1.3.1b) and
(1.3.2c) that Q ε′Q ε′Q ε′ = o′, so upon multiplying (1.3.2b) from the right with ε′ε′ε′, it
follows that

d

dt
[πππ(t)ε′ε′ε′] = 0. (1.3.2d)

In other words, πππ(t) ε′ε′ε′ is a constant that we may presume to be 1 for all t,
because [

πππ(t)ε′ε′ε′
]
t=o

=
∑

i

πi(0) = 1

This is no more than would be expected in a closed system.
The solution to (1.3.2b), another form of the C-K equation, is the matrix

equivalent of (1.2.1b), namely

πππ(t) = πππ(0)GGG(t), (1.3.2e)

where
GGG(t) = exp(−tQQQ). (1.3.3a)

Some explanation is required, however. Only multiplication, addition and sub-
traction of matrices are defined. Division is replaced by taking the inverse, if
it exists. Therefore, a function of a matrix must be defined in terms of these
primitives. So, in general, any function of a matrix is formally defined by a
Maclaurin series expansion, satisfying:

Theorem 1.3.1: Let f(t) be any function of t whose Maclaurin
series converges for all | t |< r (its radius of convergence), and let ξ be
the spectral radius of any square matrix, X. If X is of finite dimension,
then

ξ := max
i
| λi |,

where the λs are the eigenvalues of X. The matrix function f(tX) is
well defined by the Maclaurin expansion of f(·), for all t < r < ξ.
Note that f(·) takes on the algebraic structure of its argument. If its
argument is a scalar [t] then f(t) is a scalar. If its argument is a square
matrix [X] then f(X) is a square matrix, with the same dimension.�†

†The symbol � designates the end of a theorem, lemma, or corollary.

1 Introduction 23

For example,

exp(−tX) := I− tX +
t2

2!
X2 − t3

3!
X3 + · · · . (1.3.3b)

The radius of convergence for the exponential function is infinite, so (1.3.3b)
is valid for all t.

Corollary 1.3.1: Let f(t) be any function of t whose Maclaurin series
converges for all | t |< r. Then f(tX) commutes with X whenever
f(tX) is defined. That is,

f(tX)X = Xf(tX)

for all | t |< r/ξ, as defined in Theorem 1.3.1. �

Exercise 1.3.1: Use (1.3.3b) to show that (1.3.2e) satisfies (1.3.2b).

Because QQQε′ε′ε′ = o′, it is a straightforward step using (1.3.3b), to show that

GGG(t)ε′ε′ε′ = ε′ε′ε′ for all t, (1.3.4a)

so GGG(t) is an isometric matrix. It can also be shown that if PPP is a stochastic
matrix, then GGG(t) is also, but only for t ≥ 0. That is, [GGG(t)]ij ≥ 0 if t ≥ 0. (It
is dangerous to try to go backward in time.)

One cannot take it for granted that all relations in elementary algebra
follow through for matrix algebra. For instance,

Theorem 1.3.2: Let A and B and be two square matrices of the
same dimension, then

exp[t(A + B)] = exp(tA) exp(tB) for all t, iff AB = BA.

(iff stands for if and only if). We restate for emphasis: if A and B do
not commute, the equation is not valid. �

Exercise 1.3.2: Prove Theorem 1.3.2 by direct substitution of the
appropriate Taylor expansions.

It is clear from (1.3.3a) that G(t) is the operator that translates a system
directly from time 0 to time t. Theorem 1.3.2 allows the most familiar form
of the C-K equation to be written:

GGG(s + t) = GGG(s)GGG(t). (1.3.4b)

Remember that GGG(t) is an isometric matrix (think “transition matrix”) whose
elements change with t. Comparing with (1.2.6c), we see that GGG(t) also satisfies
the semigroup property, but here, GGG is a matrix function of t.

24 1.3 Chapman-Kolmogorov Equations

Exercise 1.3.3: Let

MMM =
[

1 0
0 2

]
and PPP =

[
0 1
1 0

]
·

Find GGG(t). Show that it is a transition matrix. What is GGG(t) in the limit
as t goes to infinity?

1.3.2 Discrete Time

The discrete-time analogue of (1.3.2b) is self-evident from the definition of
the transition matrix PPP . Let πd(n) be the vector whose i-th component is the
probability that the system will be in state i at step n. Then

πdπdπd(n) = πdπdπd(n− 1)PPP = πdπdπd(0)PPPn. (1.3.5a)

The discrete analogue to GGG(t) is GdGdGd(n) = PPPn. The obvious analogue to
(1.3.4b) is

GdGdGd(n + m) = GdGdGd(n)GdGdGd(m). (1.3.5b)

As in Section 1.2, if a continuous-time system is observed only at integral
multiples of some time interval δ, that system is indistinguishable from a
discrete-time system with transition matrix

PdPdPd = GdGdGd(1) = GGG(δ) = exp(−δQQQ).

Although every QQQ maps onto some PdPdPd, not every transition matrix can be
expressed in this way. In general, all elements of PdPdPd will be greater than 0,
unless:

1. The graph associated with QQQ is made up of two or more disjoint
subgraphs (this would be the case iff 1 is a multiple eigenvalue of QQQ).
We would then say that QQQ is reducible.
2. There exists a state, or set of states, that are transient, (i.e., states
that cannot be reached from, but can reach, the rest of the network).

If it is possible to get from state i to state j at all, then (PdPdPd)ij > 0 and in
fact, is of order δn, where n is the number of steps it takes to get there. One
might say that for every QQQ, the matrix PdPdPd = exp(−δQQQ) exists, but we cannot
say the inverse for every PPP . [“log (PPP)” (whatever that is) does not necessarily
exist for a given PPP , because log(x) does not have a Maclaurin expansion,
although log(1 + x) does.]

1 Introduction 25

Exercise 1.3.4: A simple example of both (1) and (2) is given by

PPP =

⎡
⎢⎢⎣

0 1 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ ·

Find the eigenvalues and eigenvectors of PPP . Clearly, states 1 and 2 are
disjoint from 3 and 4, and state 1 is transient.

1.3.3 Time-Dependent and Steady-State Solutions

As you may have seen from Exercise 1.3.3, (1.3.2e) is not as explicitly useful
as it seems. More useful solutions of this are covered in depth in the literature.
We discuss it slightly here, enough to see how πππ(t) varies with time, and do
some examples in detail in Chapter 2. First we review a little matrix theory.

1.3.3.1 Some Properties of Matrices

The eigenvalues of a matrix (also called proper values, or characteristic
values) X are the roots of its characteristic equation,

φ(λ) :=| λI−X | = 0, (1.3.6)

where | · | denotes the determinant of any square matrix. In other words, λi

is an eigenvalue of X if and only if it is a root of φ(λ) [i.e., φ(λi) = 0]. If X
is of finite dimension, say m, then φ(λ) is a polynomial of degree m, with m
roots. If a particular root appears more than once, it is a multiple root, and
we say there is a degeneracy in that eigenvalue. Otherwise, it is a simple
root.

Corresponding to each λi is at least one left eigenvector and one right
eigenvector (also called proper vector), satisfying the following.

uiX = λiui and Xv′
i = λiv′

i. (1.3.7a)

For any square matrix the number of right eigenvectors belonging to each
eigenvalue is greater than or equal to one, and less than or equal to the
degree of multiplicity of that root. If the number of eigenvectors belonging to
a given eigenvalue is strictly less than the degree of multiplicity of that root,
then the matrix is said to be a defective matrix. There are as many left
as there are right eigenvectors, and they satisfy the following orthogonality
condition:

uiv′
j = 0 for λi
= λj . (1.3.7b)

This condition guarantees that eigenvectors belonging to different eigenvalues
are automatically linearly independent. The general case can be treated with
some difficulty, but for now assume that the λ′

is are distinct. Then the set of

26 1.3 Chapman-Kolmogorov Equations

left (or right) eigenvectors forms a complete set. That is, every m-dimensional
row (column) vector can be written as a linear combination of left (right)
eigenvectors. Then we say that each eigenvector is a basis vector, and the
set of left (right) eigenvectors is a basis set for all row (column) vectors.

It can also be assumed that

uiv′
i = 1. (1.3.7c)

Note that each ui is a row vector with m components [(ui)k, 1 ≤ k ≤ m] and
that each v′

i is a column vector, also with m components. Consider the m×m
matrices

(U)ik := (ui)k

and
(V)ki := (v′

i)k.

Equations (1.3.7) imply that U and V are inverses of each other, (i.e., UV =
VU = I).

If all the eigenvalues of X are distinct, the spectral decomposition the-
orem states that (where m is the dimension of X)

X =
m∑

i=1

λiv′
i ui and I =

m∑
i=1

v′
i ui. (1.3.8a)

Note that whereas

ui v′
j =

m∑
k=1

(ui)k (v′
j)k

(inner, dot or scalar product) is a scalar, the object v′
j ui (outer product)

is an m-dimensional matrix of rank 1, where all rows are proportional to
each other and to ui. That is, (v′

j ui)kl = (v′
j)k (ui)l. It follows from the

orthogonality conditions above that

Xk =
m∑

i=1

λk
i v

′
i ui (1.3.8b)

and more generally,

f(tX) =
m∑

i=1

f(tλi)v′
i ui, (1.3.8c)

where f(x) is any function expressible in a Maclaurin series. Theorem 1.3.1
follows directly from this.

We make a final comment in this section that will be useful in Chapter 3.
Each of the eigenvectors, ui and v′

i of (1.3.7a) is determined by a homogeneous
equation. Thus if ui satisfies (1.3.7a) so does cui, where c
= 0. Similarly with
c′v′

i. The product of the constants can be determined by (1.3.7c). That is,
let ūi and v̄′

i be the computed solutions to (1.3.7a) for eigenvalue λi, but

1 Introduction 27

ūi v̄′
i = d
= 1. In order to satisfy (1.3.7a), we must multiply each of them by

a constant, and fix those constants by satisfying

cūi c
′v̄′

i = c c′ d = 1.

This only determines the product of the two constants. Usually one fixes c
or c′ in some arbitrary manner and then determines the other. In Chapter 3
we have reason to use the following normalization formula. Determine c by
satisfying, if possible, cūi ε

′ε′ε′ = 1, and then let c′ = 1/c d. By doing this, the
matrix U, defined above as the matrix whose rows are the (ui)s, is isometric,
and thus so is V. There can be a problem here, because sometimes ūi ε

′ε′ε′ = 0,
so one cannot solve for c in this way. In the application we have in mind this
will not be a burden, but rather will allow us to reduce the dimension of X.

1.3.3.2 How a System Approaches Its Steady State

Recall that for the transition rate matrix QQQε′ε′ε′ = o′ = 0ε′ε′ε′, so ε′ε′ε′ is a right eigen-
vector of QQQ with eigenvalue 0. Every eigenvalue must have a left eigenvector
as well. We have assumed that all eigenvalues are distinct, therefore a unique
πππ satisfying

πππQQQ = o and π ε′π ε′π ε′ = 1 (1.3.9a)

exists and is known as the steady-state (s.s) vector or equilibrium vec-
tor. Because the order in which eigenvalues and eigenvectors are labeled is
arbitrary, let λ1 = 0, u1 = πππ, and v′

1 = ε′ε′ε′. Then (1.3.3a) and (1.3.2e) become

GGG(t) = ε′ε′ε′ πππ +
m∑

i=2

e−tλiv′
i ui, (1.3.9b)

and [where αi := πππ(0)v′
i]

πππ(t) = πππ +
m∑

i=2

αi e−tλiui. (1.3.9c)

Recall from the theory of complex variables that if z is a complex number,
then z = x + iy, where x and y are real numbers. x := �(z) is the real part of
z, y := �(z) is the imaginary part, (±i)2 = −1, and | z2 |:= (x+ iy)(x− iy) =
x2 + y2. Therefore,

| e−z |=| e−xe−iy |=| e−x || e−iy |= e−x,

because e±iy = cos y ± i sin y, and | e±iy |=
√

cos2 y + sin2 y = 1. It follows
that if �(λj) > 0 for all j > 1 (which is the case for transition rate matrices
as defined so far),

lim
t→∞G(t) = ε′ πε′ πε′ π (1.3.10a)

and
lim

t→∞πππ(t) = πππ. (1.3.10b)

Clearly, the asymptotic behavior of πππ(t) is independent of its initial state,
πππ(0). We summarize all this in a theorem.

28 1.3 Chapman-Kolmogorov Equations

Theorem 1.3.3: Let a system S have m states. The time
spent in state i is exponentially distributed with parameter μi. Let
πππ(t), PPP and MMM be as described in Definitions 1.3.2, 1.3.4, and 1.3.6,
respectively. Define QQQ as in (1.3.2c). Then πππ(t) evolves in time accord-
ing to (1.3.9c). It approaches its limit πππ as t approaches ∞. πππ satisfies
(1.3.9a), which can be rewritten in the following way.

πππMMM = πππM PM PM P.

This is called the (vector) steady-state balance equation (or just
vector balance equation, and πππ is the steady-state vector. This
equation has the following physical interpretation. πiμi (the i-th
component of vector πππMMM) is the probability rate of leaving state i.∑m

j=1 πj μj Pji (the i-th component of the vector πππM PM PM P) is the proba-
bility rate of entering state i from all other states. The equality of the
two flows, together with πππε′ε′ε′ = 1, uniquely determines πππ. �

Before going on, we note that if the set of states can be partitioned into two
subsets, such that there is no way to get from one subset to the other, then
limt→∞ πππ(t) depends on the probability that the system began in one subset
or the other. But this also implies that the eigenvalue 0 is degenerate, and
there are at least two left eigenvectors with eigenvalue 0, call them π1π1π1 and
π2π2π2. In other words, limt→∞ πππ(t) = aπ1π1π1 + (1− a)π2π2π2. It is not hard to see that
if such a partition exists, we can treat both subsets independently and solve
them separately. Therefore, we can assume that our system is connected (i.e.,
irreducible), so the 0 eigenvector πππ is unique.

The question, “How long will it take to get to the asymptotic region?”
is not easy to answer, but one rule of thumb involves the relaxation time
(RT) [Morse58], (also called the settling time) defined by

1
RT

:=
m

min
i=2

[�(λi)]. (1.3.11)

In words, list the real parts of all the eigenvalues of QQQ. (They all must be
positive, or else we are in trouble.) Pick the smallest one. Then the reciprocal
of that number is RT . If t is much greater than RT , we can expect that πππ(t)
will be close to πππ. For t small enough, the system is said to be in a transient
region and displays transient behavior. But as t gets larger, the difference
between πππ(t) and πππ eventually becomes small. Look at the following string of
inequalities for the k-th component of their difference.

|[πππ(t)− πππ]k| =
∣∣∣∣∣

m∑
i=2

αie
−tλi(ui)k

∣∣∣∣∣ ≤
m∑

i=2

|αi| |(ui)k| exp[−t�(λi)]

≤ e−t/RT
m∑

i=2

|αi| |(ui)k| = Ce−t/RT .

We see that the upper bound of the difference drops at least by a factor of e
for each time unit RT , but C could be enormous, so it could take a long time
before the actual difference |πππ(t)− πππ| shows this behavior.

1 Introduction 29

Equations (1.3.10) can be interpreted in the following way. Set the sys-
tem of interest going and wait some time longer than RT before determining
the state of the system. The probability that it is in state k is close to πk.
But one observation is meaningless, so more data must be taken. After the
measurement, the system continues to evolve as though it just started in the
measured state. Thus one must wait another long time before measuring it
again.

This is not a particularly efficient way to validate (1.3.10b). Consider,
instead, the conceptual experiment of setting up a large number of identical
systems (sometimes called an ensemble), let them all run simultaneously,
and observe the state each is in after a time t. The fraction of them that are
in state k should be close to [πππ(t)]k. The different systems are perpetually
changing state, but after a long period of time, the fraction of systems that
leave a state in some small time interval is the same as the fraction that enter
that state in the same time interval. Therefore, the fraction of systems that
are in state k no longer changes, i.e. the ensemble is in its steady state.

A more practical viewpoint is available. Suppose that one wishes to know
the fraction of time a system spends in each state over a long period of time
T . This would correspond to the time average of πππ(t),

π̄ππ(T) :=
1
T

∫ T

o

πππ(t)dt = πππ(0)ḠGG(T), (1.3.12a)

where

ḠGG(T) :=
1
T

∫ T

o

exp(−tQQQ)dt =
1
T

∫ T

o

[
ε′ε′ε′ πππ +

m∑
i=2

e−tλiv′
iui

]
dt

= ε′ πε′ πε′ π +
m∑

i=2

v′
i ui

[
1− e−Tλi

Tλi

]
· (1.3.12b)

Again, as long as �(λi) > 0,

lim
T→∞

ḠGG(T) = ε′ πε′ πε′ π (1.3.13a)

and
lim

T→∞
π̄ππ(T) = πππ, (1.3.13b)

the same as their unbarred counterparts in (1.3.10).

Exercise 1.3.5: Prove that (ε′ πε′ πε′ π)2 = ε′ πε′ πε′ π. More generally, show that
for any two vectors satisfying uv′ = 1 it follows that (v′u)2 = v′u.
Matrices that have this property are said to be idempotent.

Note that whereas GGG(t) and πππ(t) converge exponentially to their asymp-
totic limits according to Equations (1.3.9) (which may be a very long time if

30 1.3 Chapman-Kolmogorov Equations

RT is very large), Ḡ̄ḠG(T) and π̄ππ(T) approach their limits much more slowly,
as 1/T and Equations (1.3.12). That is, although the initial state has little
influence on the long-term behavior of a system, its effect on the time average
of system behavior lingers on.

As an aside, it is interesting to note that researchers in discrete simulation
methods usually throw away the first 100 or more data points if they want their
results to converge more rapidly to the steady state. Accumulated simulation
statistics are equivalent to π̄ππ(T). One is led to question the significance of the
steady-state πππ, for those systems that run only for a time T comparable to,
or less than, RT . In the succeeding chapters we discuss other parameters that
describe relatively short-term behavior of queueing systems.

Discrete systems behave in a manner similar to continuous systems with
one exception, namely those that are periodic. Intuitively, these are systems
that have at least one state to which the system returns in exactly n, n > 1
steps. These correspond to transition matrices that have at least one eigen-
value with modulus 1, other than 1 itself.

We now turn our attention to Equations (1.3.5), and as in the continuous
case, let λi be the set of eigenvalues of PPP , while ui and v′

i are its left and right
eigenvectors, respectively. Note that except for v′

1 = ε′ε′ε′, these objects are
different from those for QQQ in the continuous case. Also, λ1 = 1, and πdπdπd = u1

satisfies
πdπdπdPPP = πdπdπd and πdπdπd ε′ε′ε′ = 1 (1.3.14a)

and is not the same πππ as that defined in (1.3.9a), although they are closely
related.

Exercise 1.3.6: Prove that the πππ in (1.3.9a), when right-multiplied
by MMM , is a constant times the πdπdπd in (1.3.14a). That is, πππM = cπd.

The limit of (1.3.5a) as n goes to infinity can be evaluated with the aid of the
spectral decomposition theorem. Inserting (1.3.8a) (with PPP replacing QQQ) into
(1.3.5a) leads to

lim
n→∞πdπdπd(n) = lim

n→∞πdπdπd(0)PPPn = πdπdπd(0) lim
n→∞

[
ε′ πdε′ πdε′ πd +

m∑
i=2

λn
i v′

iui

]

= πdπdπd +
m∑

i=2

[πdπdπd(0)v′
i]
[

lim
n→∞λn

i

]
ui. (1.3.14b)

Clearly, if | λi |< 1 for i > 1, then limn→∞ λn
i = 0 and

lim
n→∞πdπdπd(n) = πdπdπd. (1.3.14c)

Similarly, again with | λi |< 1,

lim
n→∞PPPn = ε′ε′ε′πdπdπd. (1.3.14d)

1 Introduction 31

As already mentioned, although all irreducible chains have only one eigenvalue
equal to 1, they can have other eigenvalues whose modulus is 1. For example,
the PPP in Exercise 1.3.3 has eigenvalues +1 and -1. When this is the case, the
limit as n goes to infinity of λn

i does not exist for some i, so πdπdπd(n) has no
limit [unless πdπdπd(0)v′

i = 0]. In other words, there may be no steady state.
What, then, does πdπdπd mean? The answer comes from the discrete-time

average equivalent to Equations (1.3.12). Define

ḠdḠdḠd(N) :=
1
N

(
III + PPP + · · ·+ PPPN−1

)
= ε′ πdε′ πdε′ πd +

1
N

N−1∑
k=0

(
m∑

i=2

λk
i v

′
iui

)

= ε′ πdε′ πdε′ πd +
1
N

m∑
i=2

v′
iui

(
N−1∑
k=0

λk
i

)

or

ḠdḠdḠd(N) = ε′ πdε′ πdε′ πd +
1
N

m∑
i=2

v′
iui

(
1− λN

i

1− λi

)
· (1.3.15a)

Clearly, as long as | λi |≤ 1 (the term corresponding to λi = 1 has already
been excluded), we can write

lim
n→∞

1− λn
i

n(1− λi)
= 0,

so
lim

n→∞ ḠdḠdḠd(n) = ε′ πdε′ πdε′ πd (1.3.15b)

even for cyclic chains. We see, then, that the “average” interpretation for
πdπdπd still holds, even though there may be no steady state. Is it disturbing
that discrete chains have at least one property that continuous chains do
not have? This dilemma can be resolved by the following argument. Discrete
chains assume that exactly n transitions have occurred by time n, whereas
for continuous t, even after a relatively short time, one cannot be sure exactly
how many steps have occurred. So even if the system is cyclic in the physical
sense, one cannot be sure how many cycles have occurred. This carries over to
the discrete chain if one loses track of the exact number of steps. For instance,
suppose that a system has been running for 10,000 units of time, take or leave
a few. Then the average of πdπdπd(n) over those few would be πdπdπd. Mathematically,
suppose that our system has a cycle of length k > 1, so that

lim
n→∞[πdπdπd(n + j)− πdπdπd(n)] = 0

only if j is a multiple of k. Then

πdπdπd = lim
n→∞

1
k

k∑
j=1

πdπdπd(n + j).

32 1.3 Chapman-Kolmogorov Equations

Exercise 1.3.7: Let (where 0 < a < 1)

PPP =

⎡
⎣ 0 a 1− a

1 0 0
1 0 0

⎤
⎦ ·

Find all the eigenvalues and eigenvectors of PPP , solve for πdπdπd(n), and
show that for large n, 1

2 [πdπdπd(n) + πdπdπd(n + 1)] approaches πdπdπd.

Despite the fact that there was much matrix theory in this chapter, we
have not yet touched upon what is meant by LAQT. That must wait until
Chapter 3. From now on we consider only continuous-time systems. It should
not be inferred from this that discrete-time systems are less utilitarian. There
is some belief, in fact, that they could be more useful. Some day we may try
to treat the queueing world as a movie in discrete time.

Chapter 2
M/M/1 QUEUE

I’m sure that I’ve never been in a queue as slow as this.
Any Customer, Anywhere, Anytime

Nobody goes there anymore. It’s too crowded.
Yogi Berra

The M/M/1 queue, the simplest and most elementary of all queues, is cov-
ered it here in some detail. But what we discuss differs from that covered
in the usual first course in queueing theory, and we use different techniques
to accomplish our goals. Our purpose is threefold. First, we want to connect
Chapter 1 with queueing theory and familiarize the reader with our terminol-
ogy. Second, we want to set up points of view and techniques that are used in
later chapters when LAQT is finally introduced. Third, we want to reinforce
the view that the behavior of a queueing system in the transient or small time
region may be important more often than we have thought heretofore, and
that it is possible to study that region realistically and perform calculations
relatively easily, in fact, in some cases with the same ease (or difficulty) as
with the steady state.

All systems treated in this book are closed . That is, there is always a
fixed number of customers in the system. Each system is made up of two
subsystems that interact with each other exclusively by exchanging customers.
If N , the fixed number of customers, is large enough, we show that one of
the subsystems must become saturated (PPPr(subsystem is idle) → 0). It then
becomes a steady source of customers to the other subsystem. Open systems,
then, are those where N is so large that one of the subsystems is continuously
fed by the other which is at full capacity (almost) all the time. We make this
clear in what follows.

2.1 Steady-State M/M/1-Type Loops

Consider the system shown in Figure 2.1.1. It is made of two subsystems,
called S1 and S2. At any time, S1 has n customers, S2 has k customers, and
the system as a whole has N = n + k customers. In this chapter both S1 and
S2 are memoryless and thus have exponential service time pdfs of the form
μ exp(−μx) and λ exp(−λx), respectively (which from a formal point of view

L. Lipsky, Queueing Theory, DOI 10.1007/978-0-387-49706-8 2, 33
c© Springer Science+Business Media, LLC 2009

34 2.1 Steady-State M/M/1-Type Loops

means that each external state has only one internal state, but more of that
in Chapter 3). The system is completely specified at any time if n and k are
known. Since N is fixed, k is known if n is known, so the states of the system
can be labeled by n = 0, 1, 2, . . . N (i.e., there are N + 1 states).

The notation M2/M1/1/ /N corresponds to Figure 2.1.1 in the following
way. First assume that S1 has a shorter mean service time than S2. The first
symbol [M2] indicates that S2 is memoryless or Markovian or exponential, or
equivalently, has only one internal state. M1 says the same thing about S1.
The third position, containing the number “1”, means that S1 can serve only
one customer at a time. The space between the third and fourth slashes tells
us that there is no limit as to how many customers can be in the queue at
S1. If there had been a number there, S1 would have had a finite waiting
room or finite buffer. We look at this slot when discussing the customer loss
problem. The last symbol N indicates that there are a total of N customers
in the system. Some books assume that S2 has N identical servers, so all
customers at S2 can be served simultaneously, as in the machine minding
model (also known as machine repairman model) or in a time-sharing
system . This is discussed in detail in Section 2.1.4, and again in Section 6.3.5.

 μ

λ

n
S1

S2

k = N - n

Figure 2.1.1: Closed loop made up of two subsystems, S1 and S2. The
number of customers at S1 (including the one in service) is n, and k is the number
at S2. Their sum N = k + n is fixed, thus the system is closed.

Recall from Equations (1.3.2) that the completion rate matrix, MMM , is di-
agonal, where Mii is the rate at which the system leaves state i given that it
is in state i. Here i stands for the integer pair (n,N − n), so, for instance, for
n = 0, all customers are at S2, and because only one can be served at a time,
M00 = λ. Similarly, when all the customers are at S1 (n = N), no customers
can be served at S2, so MNN = μ. However, for n in between, both subsys-
tems are servicing customers, so the total departure rate is the sum of two
service rates, namely, Mii = μ+λ. We prove this by deriving the density func-
tion for the first subsystem to complete service. First let R1(x) = exp(−μx)
be the probability that S1 will still be unchanged at time x. Similarly, let
R2(x) = exp(−λx). Then R1(x)R2(x) = exp[−(μ + λ)x] is the probability

2 M/M/1 Queue 35

that both S1 and S2 are unchanged at time x. Next define

B<(x) := 1−R1(x)R2(x)

as the probability that at least one of the subsystems has done something by
time x. Then

b<(x) :=
d

dx
B<(x) = (μ + λ)e−(μ+λ)x

is the desired pdf. Therefore the process in which one of two things can happen
is exponentially distributed, with service (departure in this case) rate (μ+λ).

In summary, the completion rate matrix looks like

MMM =

⎡
⎢⎢⎢⎢⎢⎣

λ 0 0 · · · 0
0 μ + λ 0 · · · 0
0 0 μ + λ · · · 0
...

...
... · · · ...

0 0 0 · · · μ

⎤
⎥⎥⎥⎥⎥⎦ . (2.1.1a)

The transition matrix PPP from Equations (1.3.1) has the following values. For
n = 0, the only thing that can happen is for a customer to leave S2 and go
to S1, so P01 = 1. Similarly, PN,N−1 = 1. For all other n, one of two things
could happen. Either a customer could leave S2 and go to S1, or the reverse.
In the first case the system would go from state n to n + 1, and in the other
case the system would go from n to n − 1. The probability that one would
happen over the other is proportional to the separate subsystems’ (servers’)
service rates, μ and λ. In other words, Pn,n+1 = λ/(μ + λ). We show this by
evaluating the probability that S2 will finish before S1. This will occur if S2

finishes around time t [b2(t)dt] while S1 is still running [R1(t)] for any t > 0
(integrate over t). This gives us

PPPr(S2will finish before S1) =
∫ ∞

o

b2(t)R1(t)dt

=
∫ ∞

o

λe−λ te−μ tdt = λ

∫ ∞

o

e−(μ+λ)tdt =
λ

μ + λ
· (2.1.1b)

What we have just shown is important enough to be summarized in a theorem.

Theorem 2.1.1: Let X1 and X2 be independent random variables
having exponential distribution functions with rates μ and λ, respec-
tively. Then the PDF for the first one to finish, given that both have
already started, but have not finished, by time x = 0, is also exponen-
tially distributed, with parameter μ + λ. That is, let

X = min[X1, X2].

Then
Pr(X < x) := B<(x) = 1− e−(λ+μ)x,

36 2.1 Steady-State M/M/1-Type Loops

and
b<(x) = (μ + λ)e−(λ+μ)x.

Furthermore, Pr(X2 < X1) is given by (2.1.1b). Because both X1 and
X2 are exponentially distributed, these results do not depend upon
which server started first. �

The entire PPP matrix is the following.

PPP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 · · · 0 0 0
μ

μ+λ 0 λ
μ+λ 0 · · · 0 0 0

0 μ
μ+λ 0 λ

μ+λ · · · 0 0 0
: : : : · · · : : :
0 0 0 0 · · · 0 λ

μ+λ 0
0 0 0 0 · · · μ

μ+λ 0 λ
μ+λ

0 0 0 0 · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.1.1c)

Finally, QQQ = MMM(I − PI − PI − P) can easily be calculated to give us

QQQ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ −λ 0 0 · · · 0 0 0
−μ μ + λ −λ 0 · · · 0 0 0
0 −μ μ + λ −λ · · · 0 0 0
: : : : · · · : : :
0 0 0 0 · · · μ + λ −λ 0
0 0 0 0 · · · −μ μ + λ −λ
0 0 0 0 · · · 0 −μ μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.1.1d)

This procedure of calculating QQQ in two steps rather than directly, as is usually
done, seems cumbersome, but its utility becomes clear in later chapters.

QQQ matrices of the form in (2.1.1d) (i.e., those that are tridiagonal) generate
what are known as birth-death processes. In general, if the states can be
linearly ordered, and transitions only occur between neighboring states (i.e.,
given that the system is in state n, it can only go to n− 1, n, or n + 1), then
we have a birth-death process. This can be generalized in the following way.
Suppose that the states of the system can be partitioned into subsets that are
linearly ordered as {Ξo, Ξ1, Ξ2, . . . , Ξn−1, Ξn, Ξn+1, . . . }. If transitions can
only occur between adjacent sets, we have a Quasi Birth-Death (QBD)
process [Wallace69]. The QQQ matrix for a QBD process looks like (2.1.1d),
except that each of the elements is itself a matrix. All the processes discussed
in this book are QBD. This means leaving out such topics as bulk arrival
processes, a typical topic in other queueing theory books.

2.1.1 Time-Dependent Solution for N = 2N = 2N = 2

The time-dependent solution for N = 1 was actually done in Exercise 1.3.3.
The next simplest nontrivial case is N = 2. Here

QQQ =

⎡
⎣ λ −λ 0
−μ μ + λ −λ
0 −μ μ

⎤
⎦ . (2.1.2)

2 M/M/1 Queue 37

Obviously, ε′ε′ε′ (εεε = [1, 1, 1]) is a right eigenvector of QQQ with eigenvalue 0, and it
is not hard to find its companion, the left eigenvector with eigenvalue 0 [i.e.,
πππ(2)QQQ = o]. One proves by direct substitution that

πππ(2) =
1

1 + ρ + ρ2
[1, ρ, ρ2],

where ρ = λ/μ and π ε′π ε′π ε′ = 1. The components of the total probability vector
[πππ(2)]j are the steady-state probabilities of finding (j − 1) customers at S1.
Put colloquially, after a long time, a random observer who may come along
will find j − 1 customers at S1 with probability [πππ(2)]j . The eigenvalues of QQQ
satisfy the polynomial equation coming from Equations (1.3.6),

φ(β) = β3 − 2(μ + λ)β2 + (μ2 + μλ + λ2)β = 0. (2.1.3a)

The roots of this equation are (for convenience we let the indices take on
values 0 to N = 2 rather than the convention used in Chapter 1)

βo = 0
β1 = μ(1 + ρ +

√
ρ)

β2 = μ(1 + ρ−√ρ).
(2.1.3b)

βo is the root corresponding to the steady-state solution, whereas β1and β2

moderate the transient behavior. Now β2 < β1, so the relaxation time from
Equations (1.3.11) is 1/β2. Because the time units are arbitrary, we must
establish some comparison to learn something from the formula. One conve-
nient time unit to use in this case is the mean time for a single customer
to go around the loop once, unimpeded. A simple way to do this is to let
1/μ + 1/λ = 1; then, from Equations (1.3.11),

RT (ρ) =
ρ

(1 + ρ)(1 + ρ−√ρ)
·

In this case it should be easy to see that RT is maximal when ρ = 1 and that
RT (ρ) = RT (1/ρ). We examine the general case in Section 2.2, but we note
that these results are typical.

Exercise 2.1.1: For a cycle time of 1 (1/μ + 1/λ = 1) show that
the formula above is true, and draw a graph of RT versus ρ. When is
RT a maximum? Prove that RT (ρ) = RT (1/ρ).

Exercise 2.1.2: Find all the left and right eigenvectors of QQQ
and verify that Equations (1.3.8a) are satisfied. Construct GGG(t) from
(1.3.9a), and then πππ(t; 2), where πππ(0; 2) is one of [1 0 0], or [0 1 0], or
[0 0 1].

38 2.1 Steady-State M/M/1-Type Loops

2.1.2 Steady-State Solution for Any NNN

The steady-state solution for the M/M/1/ /N queue is, of course, well known
and is shown in every book that discusses queueing theory to any extent. We
discuss it briefly here to show how one goes from closed to open systems. Our
assumption in this section is that S2 is load independent. That is, the service
rate of S2 is the same irrespective of how many customers are in its queue.

From (1.3.9) and (1.3.10), the steady-state solution of our loop satisfies
πππQQQ = o, which from (1.3.2c) is the same as πππMMM = πππMMM PPP . (See Theorem
1.3.3 for a summary.) These equations are referred to as the steady-state
balance equations. In the notation of Chapter 1, the left-hand side (πi μi) is
interpreted as the probability rate of leaving state i, and the right-hand side
is the probability rate of entering state i. And, of course, they are equal when
a system reaches its steady state.

At this point it is advantageous for us to change our notation, to be con-
sistent with succeeding chapters, where πππ takes on a different meaning. The
abstract state i stands for there being n = i−1 customers at S1, we therefore
define the following.

Definition 2.1.1
r(n;N) := steady-state probability that there are n customers at S1,
where N is the (fixed) number of customers in the system overall . Then
r(n;N) replaces [πππ(N)]i (n = i− 1) everywhere. ���

Figure 2.1.2: State transition rate diagram for an M/M/1/ /NNN queue,
representing the probability rate of going from the tail to the head of each arrow.
The three closed, dashed curves correspond to the three equations of (2.1.4a).

For the M/M/1/ /N queue, these equations become, using (2.1.1d),

λr(0; N) = μ r(1;N),
(μ + λ)r(n; N) = λr(n− 1; N) + μ r(n + 1; N),

μ r(N ; N) = λ r(N − 1; N),
(2.1.4a)

where 0 < n < N . It is common to represent these equations graphically
by what are called state transition rate diagrams (or simply transition
diagrams), as shown in Figure 2.1.2. Each arrow corresponds to going from
the state represented by the circle at the tail to the state represented by the
circle at the head, with probability rate equal to the probability of being
at the tail times the rate corresponding to the arrow. Every closed curve
encompassing part of the graph represents a valid balance equation, where

2 M/M/1 Queue 39

the sum of the rates represented by the arrows going into the loop equals the
sum of the rates leaving the loop. In particular, each closed loop enclosing
only one state (circle) yields one of the equations in (2.1.4a).

In any case, the solution to (2.1.4a) is well known to be

r(n;N) =
ρn

K(N)
, 0 ≤ n ≤ N, (2.1.4b)

where

K(N) :=
N∑

n=0

ρn =
1− ρN+1

1− ρ
(ρ
= 1). (2.1.4c)

The proof follows by substituting (2.1.4b) into (2.1.4a). Equation (2.1.4c)
follows from the requirement that

∑N
n=0 r(n;N) = 1. For future reference,

observe that K(N) satisfies the recurrence relation

K(N) = 1 + ρK(N − 1). (2.1.4d)

When ρ = 1, r(n;N) = 1/(N + 1) for all n. That is, the steady-state proba-
bility for all queue lengths is the same. Yet if the system initially had all its
customers at S1, it would be a long time indeed before a majority of them
would be found at S2. Of course, for very large N , and after a long period
of time, we are unlikely to find the system in any particular state. Thus the
steady-state solution, if anything, is warning our random observer to be wary
of any conclusions concerning the behavior of a system that are based on
short-term observations. We look at this again in Section 2.3.

Example 2.1.1: In Figure 2.1.3 we have plotted the steady-state queue
length probabilities for the M/M/1/ /20 queue for various values of ρ. Notice
that when ρ < 1, r(n; 20) is a monotonically decreasing function of n, and
when ρ > 1, it is a monotonically decreasing function of N −n. As you might
expect, the curves labeled ρ = 0.5 and ρ = 2 are mirror images of each other.
The most significant feature of these curves is that they are so broad, partic-
ularly when ρ is near 1. It is best to think of r(n;N) as being the fraction of
time that n customers will be at S1 over a very very long period of time. �†

What is often of interest in closed systems is the activity of each of the
servers. The probability that a server is busy is equivalent to the fraction of
time it is busy over a long period of time. This, in turn, determines the amount
of “work” done per unit time by that server. Now suppose that customers
somehow enter our closed loop, travel around until they have received a total
of Ti units of service from Si (i = 1, 2), and then leave, being replaced instantly
by a statistical clone. By definition, T1/T2 = ρ. Next define the steady-state
probabilities.

Definition 2.1.2
Pi(N) := steady-state probability that Si, i = 1, 2, is busy, given that

†Symbol � designates the end of the example

40 2.1 Steady-State M/M/1-Type Loops

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ρ = 0.5

ρ = 0.9
ρ = 1.0

ρ = 2.0

Number of customers at S1, n

St
ea

dy
−

st
at

e
pr

ob
ab

ili
ty

,
r(

 n
;2

0)

Figure 2.1.3: Steady-state probabilities r(n; 20) that there will be n
customers at or in S1, for ρ = 0.5, 0.9, 1, and 2. The curves for ρ = 0.5 and
2 are mirror images of each other. Also, the curve for ρ = 1 is a constant; that is,
all queue lengths are equally likely. These observations are not necessarily true for
more general queues. Equations (2.1.4b) and (2.1.4c or d) are used to compute
the values plotted.

there are N customers in the loop. Then

Λ(N) :=
Pi(N)

Ti
(2.1.5a)

is the rate at which customers enter and leave the loop, and is indepen-
dent of i. Λ(N) can be referred to as the system throughput . In fact,
this formula is valid for networks of any number of servers, as long as
customers do not have the option of using a different server if the one
they want is busy, and if the servers are not load dependent. ���

P1(N) is 1 minus the probability that S1 is idle, so from (2.1.4b) with n = 0,
and (2.1.4d),

P1(N) = 1− r(0;N) = 1− 1
K(N)

=
K(N)− 1

K(N)
= ρ

K(N − 1)
K(N)

· (2.1.5b)

Similarly, from (2.1.4c),

P2(N) = 1− r(N ;N) =
K(N)− ρN

K(N)
=

K(N − 1)
K(N)

· (2.1.5c)

2 M/M/1 Queue 41

Then, because ρ = T1/T2, we show that the throughput as seen at S1 is the
same as that seen at S2:

Λ(N) =
P1(N)

T1
=

1
T2

K(N − 1)
K(N)

=
P2(N)

T2
· (2.1.5d)

Example 2.1.2: We can understand the throughput behavior by look-
ing at Figure 2.1.4, which shows Λ(N) as a function of N for several values
of ρ. Note that Λ(N ; ρ) = Λ(N ; 1/ρ). In all cases, Λ(N) saturates as N be-
comes increasingly large, and we see behavior typical of even more complicated
queueing systems. That is, Λ(N + 1) > Λ(N) for all N , but

[Λ(N + 2)− Λ(N + 1)] < [Λ(N + 1)− Λ(N)].

This is the law of diminishing returns. “Adding yet one more customer to the
system will increase throughput, but the increase will not be as much as it
was in adding the previous customer.” Finally,

lim
N→∞

[P1(N) + P2(N)] = 1 + ρ, for ρ ≤ 1.

That is, in general, only one server will saturate, and the other will be busy
only a fraction of the time. Only when ρ = 1 will both servers approach full
capacity with ever-increasing N . �

Exercise 2.1.3: Prove that the limit given in the preceding equa-
tion is indeed true. What is the limit when ρ is greater than 1? Also
prove that Λ(N ; ρ) = Λ(N ; 1/ρ) when T1 + T2 = 1.

2.1.3 Open M/M/1 Queue (N →∞N →∞N →∞)

We can find the open system solution by doing the following. When ρ < 1,
Equations (2.1.4) retain their meaning for large N . In this case,

lim
N→∞

K(N) =
1

1− ρ
,

so
r(n) := lim

N→∞
r(n;N) = (1− ρ)ρn (2.1.6a)

and
lim

n→∞ r(n) = 0.

That is, when N is very large, the probability that S2 will be idle is negli-
gible, so it is continually serving customers whose interdeparture times are
exponentially distributed. Each new customer starts up in the same way the
previous one did, so S2 becomes a steady Poisson process of arrivals to S1.

42 2.1 Steady-State M/M/1-Type Loops

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ρ = 0.5, 2.0

ρ = 0.8
ρ = 0.9ρ = 1.0

System population, N

Sy
st

em
 th

ro
ug

hp
ut

, Λ
(

N
)

Figure 2.1.4: Throughput for steady-state M/M/1//N queues,
where the total resource time needed for a customer to go around
once is T1 + T2 = 1. The curves for ρ = 0.5 and ρ = 2 are identical because ρ
and 1/ρ yield the same system with S1 and S2 interchanged. All the curves will
saturate (become horizontal) if N is made large enough. Use Equations (2.1.5c),
(2.1.5d), and (2.1.4d).

Thus we have the equivalent of an open M/M/1 queue, with a mean queue
length of

q̄s :=
∞∑

n=1

n r(n) = (1− ρ)
∞∑

n=1

nρn =
ρ

1− ρ
· (2.1.6b)

When ρ > 1 it follows from (2.1.4c) that 1/K(N) becomes vanishingly small
for very large N , and thus for small n, r(n;N) is essentially zero. Now S1 is
never idle and becomes a Poisson source for S2. One would expect a certain
duality between S1 and S2, which indeed is the case. Simply interchange 1
and 2, and thus replace ρ by 1/ρ.

It is also interesting to evaluate the asymptotic throughput of our loop.
We are thus interested in [from (2.1.5d)]

lim
N→∞

Λ(N) =
1
T2

K(N − 1)
K(N)

·

We have already noted that when ρ < 1, K(N) approaches (1 − ρ)−1, but
from (2.1.4c), K(N) grows as ρN when ρ is greater than 1. This leads easily
to the following limiting values.

lim
N→∞

Λ(N) =
1
T2

for ρ ≤ 1

2 M/M/1 Queue 43

and
lim

N→∞
Λ(N) =

1
T2

1
ρ

=
1
T1

for ρ ≥ 1.

In other words, we have proven what should be obvious. The throughput of
the system is bounded by the maximal throughput of the slower server, the
bottleneck . The two equations can be summarized by

lim
N→∞

Λ(N) = min
(

1
T1

,
1
T2

)
· (2.1.6c)

A perhaps more interesting question to answer is: how long will a customer
be at S1, both waiting for and being served? This turns out to be easy to
answer once the mean queue length is known. The relevant expression, Little’s
formula, which we introduced in (1.1.2), existed for many years before being
proven under certain conditions by J. D. C. Little in 1961 [Little61]. Recall
that it is valid for any subsystem that has been in operation long enough so
that the number of customers who have come and gone is far greater than the
number presently there or who were there originally. Restated simply,

q̄s = ΛT̄s, (2.1.7a)

where Λ is the mean arrival rate to (and departure rate from) the subsystem
and T̄s is the mean time spent there by each customer. In our case, Λ = λ
and ρ = λ/μ, so from (2.1.6b), we have proven (1.1.4b)

T̄s =
q̄s

λ
=

x̄

1− ρ
, (2.1.7b)

where x̄ = 1/μ is the mean service time of S1. Note that if ρ = 0 (no customers
waiting at all), the mean time a customer remains in the system is the expected
x̄, and as with the mean queue length, the time a customer must wait grows
unboundedly as ρ approaches 1.

It is useful to tighten up our terminology somewhat. Often, one wishes to
make a distinction between the time spent waiting for service and the time in
service. We use the term system time or total time spent in, say, S1 as the
time spent by a customer from the moment he enters S1’s queue until he leaves
that subsystem. In a closed loop, this also corresponds to the time interval
from the moment the customer leaves S2 until he returns. For that reason,
this time interval is also called the response time for S1. We use the three
terms interchangeably, tending to prefer the first two when discussing open
systems, whereas the latter tends to be used more in dealing with time-sharing
systems.

In many applications, the time spent being served is considered useful, and
only the time spent waiting in the queue is wasted. This time is called both
queueing time and waiting time. We try to use the latter term, for there
is some ambiguity here when load-dependent servers are considered (see the
following section and Section 5.4), or when we consider “generalized M/G/C
systems” in Chapter 6, for then it is not always clear when waiting ends and
service begins. We often talk about queue length , or the number of customers

44 2.1 Steady-State M/M/1-Type Loops

in the queue, and when we do, we invariably mean “the number of customers
at, or in, Si,” that is, including those being served.

If only one customer can be served at a time, and the performance of S1

is the same no matter how many customers are in its queue, the steady-state
mean system time T̄s and mean waiting time T̄w are related by the simple
relation

T̄s = T̄w + x̄1. (2.1.7c)

From Little’s formula, the number in the queue and the number in S1 are
related by the slightly strange formula

q̄s = q̄w + ρ. (2.1.7d)

The reason ρ appears instead of 1 is that sometimes there is no one wait-
ing when someone is being served. It is pleasant to realize that (2.1.7c) and
(2.1.7d) are true for any distribution, but the reader should be careful to
observe the restrictions as stated in the beginning of this paragraph.

2.1.4 Buffer Overflow and Cell Loss for M/M/1/NNN Queues

An important problem in designing systems with queues involves deciding
how much space should be provided to accommodate waiting customers. We
look at this issue in two ways. First consider that a waiting room is made
up of a primary buffer that can accommodate, say N1 customers, and a
secondary buffer, or backup buffer, that can hold as many as needed. An
example of this might be a cache interfacing a bulk storage device with a
communications channel. Then the question is the following.

(1) What is the probability that an arriving customer will not be able to
fit into the primary buffer, or in other words, will the buffer overflow?

One could instead assume that there is only a primary buffer, with no backup.
Then an arriving customer, seeing a full buffer, would give up and disappear,
or what is mathematically equivalent, return to the queue at S2. The question
then is the following.

(2) What is the probability that an arriving customer will be rejected from
the queue at S1?

The first case corresponds to an M/M/1 queue, and the second corresponds to
an M/M/1/N1/N queue. The latter expression requires some interpretation.
If N1 < N and we are to assume that customers arriving at a full queue
would have to instantly return to the end of the queue at S2, then S2 is
always busy, so N might just as well be ∞. For this reason, the M/M/1/N
queue is considered to be open even though the population at S1 is always
less than or equal to N1.

If, on the other hand, N1 ≥ N the buffer can never be full to an arriving
customer. Therefore,

M/M/1/N1/N ≡
{

M/M/1/N1 for N1 < N
M/M/1//N for N1 ≥ N

2 M/M/1 Queue 45

In general, the solutions for M/G/1//N loops are very similar to those for
M/G/1/N queues. The difference becomes significant in Section 5.3 when we
compare the G/M/1//N and G/M/1/N queues, but we give a short explana-
tion here. When a customer arrives at an M/M/1/N queue that already has N
customers, the arriving customer is turned away. Each subsequent arrival will
be turned away until S1 has a completion. Given that the arrival process is a
Poisson process, the time for the next arrival is exponentially distributed, but
now starting at the time of the departure, having no memory of the previous
arrival. The M/M/1//N loop behaves in the following way. If all N customers
are at S1, there can be no further arrivals until S1 has a completion. After
such a completion, S2 can service its new arrival, thereby preparing a new
arrival for S1. We see that shutting off the arrival process has the same effect
as turning away arrivals, but only if the arrival process is memoryless, that
is, Poisson.

Cases (1) and (2) both talk about an arriving customer, whereas we
have given solutions for a random observer [r(n)]. Therefore we must introduce
some new variables.

Definition 2.1.3
a(n; N) := probability that a customer arriving at S1 in an M/M/1//N
loop will see n customers already in the queue, including the one in
service. By this definition, it must be that

a(N ; N) = 0.

After all, the arriving customer is one of the N customers in the system,
so he can see at most N − 1 customers before him at S1. ���

We give similar definitions for the M/M/1/N queue, using f (for finite
buffer) as the distinguishing marker.

Definition 2.1.4
rf (n; N) := probability that a random observer will see n customers at
or in S1 for an M/M/1/N queue.
af (n; N) := probability that a customer arriving at an M/M/1/N
queue will see n customers already in the queue, including the one in
service. By this definition, af (N ; N) is the probability that an arriving
customer will be turned away (i.e., the customer loss probability).
If we were dealing with the tranmission of packets or cells in telecom-
munications we would call this packet loss probability or cell loss
probability. ���
In Chapters 4 and 5 we give a more rigorous argument for the following

equations, but for the systems of interest here the following arguments are
sufficient. Because we are looking at Poisson arrivals, each arriving customer
has no knowledge of when the previous customer arrived, therefore he will see
the same thing that a random observer does, except that he cannot see N
customers already in the queue. Therefore,

a(n; N) =
{

c(N) r(n; N) for 0 ≤ n < N
0 for n = N

·

46 2.1 Steady-State M/M/1-Type Loops

The sum of the a(n; N)’s must be 1, therefore it follows that c(N) = (1 −
ρN+1)/(1 − ρN). We can now summarize the steady-state properties of the
M/M/1//N queue in the following theorem.

Theorem 2.1.2: The steady-state probabilities of finding n cus-
tomers in an M/M/1//N loop are given by Equations (2.1.4), namely,

r(n;N) =
ρn

K(N)
, 0 ≤ n ≤ N,

where K(N) = N + 1 for ρ = 1, and for ρ
= 1

K(N) :=
N∑

n=0

ρn =
1− ρN+1

1− ρ
= 1 + ρK(N − 1).

The probability that a customer arriving at S1 will find n customers
already there is given by

a(n; N) =
1− ρ

1− ρN
ρn for 0 ≤ n < N, (2.1.8a)

and a(N ; N) = 0. For ρ = 1, a(n; N) = 1/N . In other words,
a(n; N) = r(n; N − 1) for n < N .

The probability that an arriving customer will see N1 ≤ n < N or
more customers already in the queue (overflow probability) is given
by:

Po(N1; N) :=
N−1∑
n=N1

a(n; N) =
ρN1 − ρN

1− ρN
· (2.1.8b)

For ρ < 1 the open M/M/1 queue steady-state probabilities, from
(2.1.6a) and (2.1.8a), are

a(n) = r(n) = lim
N→∞

r(n; N) = (1− ρ)ρn. (2.1.8c)

Here, the arriving customer and the random observer see the same
queue lengths.

The mean queue length, from (2.1.6b) is

q̄s =
ρ

1− ρ

and the mean system time, from (2.1.7b), is

T̄s =
x̄

1− ρ
,

where ρ = λ/μ and x̄ = 1/μ. Also,

Po(N1) := lim
N→∞

Po(N1; N) = ρN1 . (2.1.8d)

We have used the subscript o to denote primary buffer overflow. �

2 M/M/1 Queue 47

The steady-state solutions for the M/M/1/N1 queue are easy to write
down, because an arriving customer in a Poisson arrival process sees the same
thing as the random observer, even if the finite buffer is full. Therefore, we
have the following.

Theorem 2.1.3: Systems with finite buffers have the following
probabilities.

af (n; N1) = rf (n; N1) = r(n; N1) =
1− ρ

1− ρN1+1
ρn. (2.1.9a)

These equations are valid for all ρ. The probability that an arriving
customer will find the buffer full, and be turned away is given by:

Pf (N1) = af (N1; N1) =
1− ρ

1− ρN1+1
ρN1 . (2.1.9b)

In telecommunications systems, this is known as the cell loss proba-
bility or packet loss probability.

The mean queue length, q̄f (N1), is

q̄f (N1) :=
N1∑

n=1

n rf (n; N1)

=
ρ

1− ρ

[
1 + N1ρ

N1+1 − (N1 + 1)ρN1

1− ρN1+1

]
· (2.1.9c)

Note that q̄f (N1) does not blow up at ρ = 1. In fact q̄f (N1|ρ = 1) =
N1/2, and Pf (N1|ρ = 1) = 1/(N1 + 1). In other words, a relatively
small loss of cells can yield a manageable size queue. (Recall that the
mean queue length for a queue with an infinite buffer, where no losses
are allowed, is infinite when ρ = 1).

Let Tf (N) be the random variable denoting the system time for a
customer that is not rejected. Then

EEE[Tf (N1)] =
1/μ

1− ρ

[
1 + N1ρ

N1+1 − (N1 + 1)ρN1

1− ρN1

]
· (2.1.9d)

This last equation requires some explanation which we give in the fol-
lowing proof. �
Proof: In order to get (2.1.9d) from (2.1.9c) using Little’s formula,
one must use the effective arrival rate to the queue. That is, one must
include only those customers that are not turned away. That is,

λf (N1) :=
λ

1− Pff(N1)
=

1− ρN1

1− ρN1+1
λ.

Then (2.1.9d) follows from

EEE[Tf (N1)] =
q̄f (N1)
λf (N1)

.

48 2.1 Steady-State M/M/1-Type Loops

An alternate proof is given as an exercise.

Note that the effective arrival process is no longer a Poisson process.
In fact, it’s no longer a renewal process. Observe that the customers
are not thrown away randomly. If one is thrown away, then the next
one is also likely to be lost. QED†

Exercise 2.1.4: Using (2.1.9b) and given a fixed value for the
probability p� of customer loss, show that ρ must always be less than
1/(1 − p�) in order that Pf (N) ≤ p�, no matter how large N is. [See
Equations (2.1.10) for a general proof.]

Exercise 2.1.5: One can derive (2.1.9d) directly from the definition
of af (n; N1). The service distribution is exponential here, therefore the
mean time remaining for the customer in service at the moment a new
customer arrives is 1/μ, the same as from the beginning of service. If a
customer arrives with n < N already in the queue, then he must expect
to wait [(n + 1)/μ] units of time until all those in front and he himself
are served. The probability that he will find n in the queue, given that
he will be accepted, is given by af (n; N1 | accepted) := af (n; N1)/[1 −
Pf (N1)] Then

T̄f (N1) =
N1−1∑
n=o

[
n + 1

μ

]
af (n; N1 | accepted).

Use this expression to derive (2.1.9d)

Before closing this section we compare Po(N1) and Pf (N1) and discuss
their uses and significance. First note that Pf (N1) < Po(N1) for every ρ,
remembering that Po(N1) is not defined for ρ ≥ 1. The reason should be clear,
because the finite buffer system throws away customers, and thus processes
fewer of them than the overflow system for any given arrival rate. In exchange
for this, the mean queue length and the mean waiting time for the customers
is considerably reduced. For instance, let ρ = 1 and N1 = 10. Then the
mean queue length in the back-up buffer of the M/M/1 queue is infinite, but
q̄f (10) = 5. This can be evaluated from (2.1.9c) by using L’Hospital’s rule,
or by recognizing that af (n; N1; ρ = 1) = 1/(N1 + 1) ∀ n. We see, then, by
throwing away one customer in 11, one allows the others to get decent service;
that is, T̄f (10; ρ = 1) = 5.5/μ.

†These letters stand for the time-honored Latin phrase Quod Erat Demonstrandum,
whose translation is “which was to be demonstrated.” QEDdesignates the end of a
proof.

2 M/M/1 Queue 49

Maximum Cell Loss
Finite buffers can be a useful solution for systems where not all customers
must be served. For instance, one may throw away 10% of the packets carrying
telephone messages or video data over telecommunications networks, and still
be able to recognize the audio or video signal. But as ρ approaches 2, half the
customers have to be rejected, a circumstance that is not acceptable even for
these examples. In any case, as ρ becomes larger, q̄f (N1) approaches N1.

Suppose that a system can tolerate a maximum fractional loss of p�. Then
there exists a maximum ρm above which even an infinite buffer will be inade-
quate. Consider a very large interval of time Δ. During that period, a total of
Na(Δ) customers will have arrived at the server, while Ns(Δ) customers will
have been served. Their difference N(Δ) is the number waiting, or thrown
away. In the limit as Δ becomes unboundedly large, all three must become
unboundedly large. Because we are assuming a finite buffer, if the arrival rate
is greater than the service rate, N(Δ)/Δ must be the rate at which customers
are lost. Therefore, N(Δ)/Na(Δ) must be the fraction that are lost. But

λ := lim
Δ→∞

Na(Δ)
Δ

and μ := lim
Δ→∞

Ns(Δ)
Δ

.

Therefore,

p� > lim
Δ→∞

N(Δ)
Na(Δ)

= lim
Δ→∞

Na(Δ)−Ns(Δ)
Na(Δ)

= 1− μ

λ
= 1− 1

ρ
, (2.1.10a)

and solving for ρ,

ρ < ρm =
1

1− p�
. (2.1.10b)

Note that ρm > 1. Thus, as ρ approaches ρm, the buffer size needed to keep
losses below p� goes to infinity, and excessive losses cannot be prevented. This
is true for all load-independent single-server queues. For load-dependent, or
multiple-server queues the concept of utilization must be generalized, but then
an appropriate bound can be derived.

In many applications, no amount of loss is acceptable, as in the transmis-
sion of data or text over a communications channel. The formulas for Po(N1)
and Pf (N1) show that both are proportional to ρN1 , so to reduce the loss or
overflow, one can either increase the buffer size, or decrease ρ by replacing
the server with a faster one. If delay is not the critical factor, then increasing
the buffer’s capacity may be the cheaper solution. For instance, by doubling
N1, one gets P (2N1) ≈ P (N1)2. If P (N1) is already small, say 0.01, then
P (2N1) ≈ .0001, very small indeed. Thus one often solves such problems by
throwing buffer space at it. In Chapter 4 we show that for certain kinds of
service time distributions, this solution will not work.

Exercise 2.1.6: Draw curves of q̄f (N1) as a function of ρ = 0→ 2
for N1 = 10, 20, and 40. Include q̄s for ρ = 0→ 1 for comparison.

50 2.1 Steady-State M/M/1-Type Loops

Exercise 2.1.7: Suppose that a router has enough space to hold
20 packets, and that ρ = 0.9. What percentage of packets will be lost
if there is no backup buffer? By how much must the service rate [μ]
be increased to reduce losses by a factor of 10? How much buffer space
must be added for the same reduction? Redo the problem for overflow
to a backup buffer.

2.1.5 Load-Dependent Servers

The solutions for the M/M/1 queue can be extended without much difficulty
to the M/M/C/ /N , and even somewhat more general, queues. Suppose that
there are C identical exponential servers in S1, each with service rate μ, feeding
off a single queue. That is, as long as there are n ≥ C customers at S1, all of
the servers will be active, and as long as n ≤ C, none of the customers will
be waiting to be served. As we already know, if several exponential servers
are busy, the probability rate for something to happen is the sum of their
service rates. Therefore, we can define a service rate for S1 that depends on
the number of customers there. That is, let μ(n) be the service rate of S1

when there are n customers there; then

μ(n) =
{

nμ for n ≤ C
C μ for n ≥ C.

(2.1.11a)

We think of S1 as a load-dependent server. Actually, the formulas we derive in
this section do not depend on the explicit form we have just given the μ’s; thus
we can immediately generalize, and let μ(1), μ(2), and so on, be any positive
numbers. The reader may think of Si as a multiple server subsystem, or as
a single server whose service rate changes (not necessarily by integral units)
with change of queue length. See the end of this section for further notational
discussion.

Another formulation, which we adopt here, is to introduce the load-
dependence factor α1(n), which is the ratio of service rates μ(n) and μ(1).
By definition, μ(1) := μ, α1(1) always equals 1, and α1(n) = μ(n)/μ, which
for a subsystem with C identical servers gives the following.

α1(n) =
{

n for n ≤ C
C for n ≥ C.

(2.1.11b)

Clearly, μ(n) = α1(n)μ. Similarly, we can view S2 as a load-dependent server,
with load-dependence factor α2(n). Then λ(n) = α2(n)λ. Next look at Figure
2.1.2. The arrow going from n to n− 1 corresponds to the probability rate of
going from n to n− 1, which can happen only if there is a completion at S1.
The rate for this to happen is μ(n). Similarly, the arrow going from n to n+1

2 M/M/1 Queue 51

corresponds to an arrival from S2, whose rate must be λ(N −n). Then all the
arrows pointing to the left should be labeled (reading from right to left)

μ(N), μ(N − 1), . . . , μ(n + 1), μ(n), μ(n− 1), . . . , μ(1),

and those pointing to the right are labeled (reading, this time, from left to
right)

λ(N), λ(N − 1), . . . , λ(N − n + 1), λ(N − n), λ(N − n− 1), . . . , λ(1).

Before solving for the M/M/C//N loop, let us review the meaning of a
state transition-rate diagram. If, as in Figure 2.1.2, a single node is encircled,
the sum of the probability rates entering the circle minus the sum of those
leaving must be zero in the steady state. Suppose, instead, that two adjacent
nodes are enclosed together. Then the arrows connecting them would not be
included in the balance equations. But this would yield the same as one would
get by adding the single equations together. After all, each of the two arrows
appears in each equation, once as leaving one node, and once as entering the
other, canceling out when the two equations are added. In general, then, we
can say that for any closed curve, what goes in must equal what goes out for
the steady state to occur. Now consider the closed curve that encompasses all
nodes from 0 to n. Only one arrow goes in, and one arrow goes out, so we
have the simple set of first-order difference equations:

λ(N − n)r(n;N) = μ(n + 1)r(n + 1;N) for 0 ≤ n < N. (2.1.12a)

In particular,

r(1;N) =
λ(N)
μ(1)

r(0;N) (2.1.12b)

and

r(2;N) =
λ(N − 1)

μ(2)
r(1;N) =

λ(N)λ(N − 1)
μ(1)μ(2)

r(0;N). (2.1.12c)

Next, following the notation of [Gordon-Newell67], let ρ = λ/μ, βi(0) := 1,
and for n > 0,

βi(n) := αi(n)βi(n− 1) = αi(1)αi(2) · · ·αi(n). (2.1.13a)

For a subsystem with C identical servers, we have

βi(n) :=
{

n! for n ≤ C
C!Cn−c for n ≥ C.

(2.1.13b)

Then with only a little trickery, the general solution becomes

r(n; N) =
1

K(N)
ρn

β1(n)β2(N − n)
, (2.1.14a)

where, owing to the fact that the sum of probabilities must be 1,

K(N) :=
N∑

n=0

ρn

β1(n)β2(N − n)
· (2.1.14b)

52 2.1 Steady-State M/M/1-Type Loops

The reader may recognize this as a discrete convolution of the reciprocals of
the μ’s and λ’s.

Next consider a generalization of the throughput as defined in (2.1.5a).
The probability that S1 is busy no longer can yield the throughput, because
its service rate depends on n. Therefore, it is somewhat more difficult to
express for a load-dependent server, but turns out to be just as simple to
compute. The rate at which S1 serves customers depends on the distribution
of the number in the queue. Then Λ(N) is a weighted average of the μ(n)’s:

Λ(N) =
N∑

n=1

μ(n)r(n;N) =
N∑

n=1

μ α1(n)r(n;N) =
μ

K(N)

N∑
n=1

α1(n)ρn

β1(n)β2(N − n)
·

But α1(n)/β1(n) = 1/β1(n − 1) and μ ρ = λ, so (change the summation
variable from n to n− 1)

Λ(N) =
λ

K(N)

N∑
n=1

ρn−1

β1(n− 1)β2(N − n)
=

λK(N − 1)
K(N)

· (2.1.15a)

This is identical to the throughput for the load-independent system described
in (2.1.5d) with λ = 1/T2, except that now K(N) does not satisfy (2.1.4d).
There is no simple recursive relationship among the K(N)s for arbitrary β’s.

There are three different ways to “open up” our load-dependent system,
two of which yield equivalent results. For the first way, merely let β2(n) = 1
for all n. Then, if λ/μ(N) is less than 1 for large N , S2 is a Poisson source to
S1 and we have the standard M/M/C queue when β1(n) satisfies (2.1.13b).
That is, from Equations (2.1.14),

K := lim
N→∞

K(N) =
∞∑

n=0

ρn

β1(n)
(2.1.15b)

and
r(n) := lim

N→∞
r(n;N) =

1
K

ρn

β1(n)
· (2.1.15c)

Actually, one can make a somewhat more general statement. If

λ∞ := lim
N→∞

λ(N)

exists and λ∞/μ(N) is less than 1 for large N , everything still holds except
that now ρ = λ∞/μ.

A second approach is to argue that λ(n) is really a function of N and n
by way of their difference, N − n. That is, let

λ̄(n) := lim
N→∞

λ(N − n)

and

K =
∞∑

n=0

ρn

β1(n)β̄2(n)
,

2 M/M/1 Queue 53

where ᾱ2(n) := λ̄(n)/λ̄(1), β̄2(0) := 1, and

β̄2(n) := ᾱ2(n) β̄2(n− 1).

The ᾱ2s can be interpreted as a slowdown of the arrival process because of
the increasing queue length, so this is referred to as an M/M/C queue with
discouraged arrivals. This may be a misnomer in some countries where
consumer goods are scarce. In those places, we are told, arrival rates to queues
actually increase with queue length. Mathematically, because K in this case
is not a convolution, β1 and β̄2 can be combined into a single load-dependent
factor. However, for more general queues (e.g., M/G/C and G/M/C) the two
must still be kept separate. The third view, which ends up being the same as
the first, considers all customers, while they are at S2, to act independently.
That is, each customer spends a random amount of time at S2, with mean Z,
and then, independently of the other customers, goes to S1. The completion
rate is exactly (N − n)/Z. Z is called the think time , or delay time , and
S2 is called a think stage or time-sharing stage or delay stage, as well
as some other names. Clearly, as N goes to infinity, the arrival rate grows
unboundedly, thereby swamping S1. In reality, there never are an infinite
number of potential customers, but there may be so many and they may stay
at S2 so long that n (the number at S1) is always small compared to N , so
the departure rate from S2 is more or less constant. In mathematical terms,
let Z grow unboundedly with N , and let

λ∞ = lim
N→∞

N

Z
·

This yields the same solution as case 1.
In all these cases we can make a statement that generalizes (2.1.6c). Let

μ∞ be the limiting value of μ(N); then

lim
N→∞

Λ(N) = min(μ∞, λ∞) . (2.1.16)

Once again, the throughput of the system is bounded by the maximal capacity
of its slowest server.

Example 2.1.3: The simplest example of a load-dependent queue is the
M/M/2 queue. In this case, β1(n) = 2n−1, β̄2(n) = 1,

r(0) =
2− ρ

2 + ρ
,

and
r(n) =

2
K

(ρ

2

)n

for n > 0,

where
K = 2

2 + ρ

2− ρ
·

We leave it for the reader in Exercise 2.1.8 below to show that

q̄s =
4ρ

4− ρ2
, and T̄s =

4x̄

4− ρ2
·

54 2.1 Steady-State M/M/1-Type Loops

Note that the queue doesn’t blow up until ρ approaches 2. �

Finally, let us consider our open M/M/C queue, and let C go to infinity.
Then S1 is a place where customers arrive randomly, “hang around” for a
while, [1/μ], and then leave. The number present at any time is distributed
according to the Poisson distribution. Because β1(n) = n!,

K =
∞∑

n=0

ρn

n!
= eρ,

leading to

r(n) =
ρn

n!
e−ρ. (2.1.17)

This is just one of the many derivations of the Poisson distribution that start
from different assumptions.

Observe that all the formulas are valid whether or not α(n) and μ(n)
satisfy Equations (2.1.11). If they do, we retain the notation “M/M/C//N
loop,” including the system with a time-sharing subsystem, for which we use
the notation “M/M/∞//N” or “M/M/C//C.” If we wish to look at systems
in which the α’s are not necessarily integers but instead satisfy a weakened
version of Equations (2.1.11), namely, for n ≤ C, α1(n) = anything > 0, but

α1(n) = α1(C) for n ≥ C,

then we would refer to it as a generalized M/M/C//N loop. If the α’s can
be anything whatsoever, we use the notation, “M/M/X/ /N loop.” To main-
tain a connection with the outside literature, we refer to all of these generically
as “M/M/C-type systems,” or, systems with load-dependent servers.” We also
adhere to this notation in dealing with more general distributions in Sections
4.4.4 and 5.4, and Chapter 6 (e.g., G/M/X and M/G/C queues). In Chapter
6, we also introduce the generalized M/G/C system.

Exercise 2.1.8: Consider systems (A) through (D) as described
below. What are the formulas for their respective system times? Call
them TA, TB , TC , and TD, respectively. Assume that the service rate
for the base server is μ = 1. Plot the four system times on the same
graph as a function of λ = ρ, for 0 ≤ λ < 2. Of course, TA blows up at
λ = 1, but the other three have the same maximal capacity, and blow
up at λ = 2.

Even the simple M/M/1 queue can have realistic practical applications.
We present one in the following exercises. In most facilities it is generally true
that the demand for a critical resource will always increase in time. This can
be viewed in our simple world as an arrival rate λ that increases monotonically

2 M/M/1 Queue 55

with time. Inevitably then, the system time, as given by (2.1.7b) will become
intolerably long. Call this System (A). This leads to two questions: How can
the service be improved? And for what value of λ should the improvement
be implemented? We consider two possible changes for improvement: either
add a second server, or replace the existing one by another that is faster. For
simple analysis we assume that the new server is twice as fast. In the latter
case, this is still an M/M/1 queue where μ ⇒ 2μ. Call this System (D). In
the former case consider two possible implementations. Arriving customers
come to a dispatching point, and are then randomly assigned (with equal
probability) to either of the two servers, where they then queue for service. It
can be shown that this is equivalent to having each server see a Poisson arrival
stream, but with arrival rate λ/2. This yields two M/M/1 queues. Call this
System (B). Finally, for System (C), customers queue up at the dispatching
point, and are assigned to a processor as soon as it becomes idle. This is the
M/M/2 described in this section. In Chapter 5 we present another dispatching
option.

Exercise 2.1.9: Using the results of the previous exercise, show
that TA > TB > TC > TD for all 0 < λ < 2. In fact, show that:

TB = 2TD and TC = TD +
1

2 + λ
·

We seem to have shown that “twice as fast is always better than twice as
much,” but remember, we have only shown this for Poisson arrivals to
exponential servers. In Chapter 6 we show that if the squared coefficient
of variation, C2

v is large, this is not necessarily the case.

We have seen how a system might be improved, and now we look at the
question as to when it would be cost effective to do so.

56 2.1 Steady-State M/M/1-Type Loops

Exercise 2.1.10: Suppose that one single-speed server costs C dol-
lars per hour to rent, and that each customer is paid S dollars per hour.
Assume that when a customer is waiting for, or receiving service, his
time is being wasted. Then at all times, on average, there are q̄s cus-
tomers wasting their time. The total cost then can be given as

$A = C + S q̄A(λ) and $I = 2C + S q̄I(λ),

where I ∈ {B, C, D}. We are assuming that the double-fast server costs
as much as two single servers. Clearly, for λ very small, $A is smaller
than the other three, and it doesn’t pay to upgrade. But $A blows up
at λ = 1 whereas the others don’t blow up until λ = 2. Therefore,
the curves must cross somewhere for 0 < λ < 1. This must be true
for any values of C and S. In fact, the crossing point depends only on
their ratio, r = S/C. Make a graph of the four $Is for 0 ≤ λ < 1 for
r = 0.1, 1.0, 10.0, showing the crossings in each case. What are the
values of λI at those points? Now draw three curves on the same graph
of λI versus r.

2.1.6 Departure Process

Let us now consider one last steady-state process before moving on to the
transient behavior of the M/M/1 queue. Suppose that an observer is sitting
just downstream from S1, measuring the time between departures, without
knowing the state of the system. What would she expect to see? In other
words, given that a customer has just left, what is the time until the next one
leaves S1? We are asking for the distribution of interdeparture times. First we
give some appropriate definitions.

Definition 2.1.5
Xd(N) :=r.v. denoting the time between departures for a steady-state
M/M/1//N queue (interdeparture times).

Xd := lim
N→∞

Xd(N)

bd(t; N) := bXd(N)(t) = density function for the process. ���

This question was originally considered by P. J. Burke [Burke56] and is easy
enough to find out once we accept a theorem about M/M/1 queues that is
be proven in Section 4.1.3, Theorem 4.1.4. This theorem states that for both
open and closed M/M/1 queues, and more generally, M/G/1 (but not G/M/1)
queues, the steady-state probability that a departing customer will leave n
fellow customers behind at S1 is the same as the steady-state probability of
finding n there, except that he will never leave N customers behind, because
he, at least, must be at S2. Let d(n;N) be this probability; then from (2.1.4b)

2 M/M/1 Queue 57

we can write
d(n;N) =

ρn

c(N)
, (2.1.18)

where c(N) is found by summing over n, from 0 to N − 1. Thus c(N) =
K(N − 1) from (2.1.4c).

Now, as long as S1 is busy, the density function for the departure of the
next customer is simply the same as the pdf of S1 (i.e., μe−μ t). But if S1 is
idle, our downstream observer must wait first for a customer to finish being
served at S2 and then be processed by S1. This is the convolution of the
two pdfs:

[b1 × b2](t) :=
∫ t

o

b1(s)b2(t− s)ds =
∫ t

o

b1(t− s)b2(s)ds,

which for two exponential distributions yields

[b1 × b2](t) : =
∫ t

o

μe−μsλe−λ(t−s)ds = μλe−λ t

∫ t

o

e−(μ−λ)sds

=
μλ

μ− λ

(
e−λ t − e−μ t

)
.

The overall distribution is the weighted average of the two possibilities. Recall
that ρ = λ/μ; then

bd(t;N) = d(0 : N)[b1 × b2](t) + [1− d(0;N)]μe−μ t

=
1− ρ

1− ρN

λ

1− ρ

(
e−λ t − e−μ t

)
+
(

1− 1− ρ

1− ρN

)
μe−μ t.

We can regroup the terms to get the following simple form.

bd(t : N) =
1

1− ρN
λe−λ t − ρN

1− ρN
μe−μ t. (2.1.19a)

For the closed loop, the departure process is not a Poisson process, because the
interdeparture times are not exponentially distributed. For the open queue,
where ρ < 1 and N → ∞, bd(t) is exponential. The mean time between
departures is easy enough to get:

EEE[Xd(N)] =
∫ ∞

o

t bd(t : N) dt =
1− ρN+1

1− ρN

1
λ
· (2.1.19b)

We leave it to the following exercise to show that EEE[Xd(N)] is the reciprocal
of the mean throughput given by (2.1.5d).

Exercise 2.1.11: Verify that (2.1.19b) is true, and show that
EEE[Xd(N)] = 1/Λ(N).

58 2.2 Relaxation Time for M/M/1/ /N Loops

Either from (2.1.19b) or from (2.1.6c), we have

lim
N→∞

EEE[Xd(N)] = max
(

1
λ

,
1
μ

)
· (2.1.20a)

For the open queue, if ρ is less than 1, (λ < μ), the mean departure rate
from S1 is the same as the mean arrival rate. But if ρ is greater than 1, the
mean departure rate is governed by the service rate of S1. We can now prove
the well-known result, first given by P. J. Burke in 1956, that the departures
from an open M/M/1 queue are exponentially distributed. Simply let N go
to infinity on (2.1.19a),

bd(t) := lim
N→∞

bd(t; N) = λ e−λ t for ρ < 1

= μ e−μx for ρ > 1. (2.1.20b)

As long as ρ is less than 1, it is as though S1 did not exist (exponential
in → exponential out). We also see once again that S2, with its unbounded
number of customers, is a Poisson source for S1. But if ρ is greater than 1,
S1 releases customers at its service rate and becomes a Poisson source for S2.
The symmetry of our loop would require this, anyway.

We must emphasize that this result (exponential in→ exponential out, for
an open, unsaturated M/M/1 queue) is indeed extraordinary. It is also valid
for load-dependent (i.e., M/M/C) queues. Note however that it is not true for
first-come first-served M/G/1 queues or even G/M/1 queues. It is not even
true for closed M/M/1/ /N loops. We must be careful not to generalize too
quickly from what we learn about the M/M/1 queue.

2.2 Relaxation Time for M/M/1/ /N Loops

For the rest of this chapter we examine systems for which not enough time
has elapsed to declare that a system is in its steady state. We call this time
range the transient region . In principle we would like to solve the Chapman-
Kolmogorov equations (1.3.2b), but in practice, if N is large, this is not an
easy task. Aside from the M/M/1 queue, there are very few known analytic
solutions to this equation. A rather ingenious solution for the open M/M/1
queue, where N is infinite, is given in [Takacs62]. That may well be the
only explicit solution for an infinite state-space, transient queueing system in
existence. But even the existence of that solution does not help much, because
it is so difficult to evaluate or interpret.∗ Therefore we must find some simpler
ways of parameterizing transient behavior. For our initial view, we remind the
reader of the discussion about relaxation times in Section 1.3.3 and (1.3.11).

∗Takacs actually supplies two different forms for the solution, neither of which is easy
to evaluate. Most texts list the second form, which involves an infinite sum of Bessel func-
tions, but the first form turns out to be more useful (particularly in the region where the
time parameter is neither very small nor very large) if one is comfortable with numerical
integration.

2 M/M/1 Queue 59

In general, finding the eigenvalues of a matrix is not a trivial task, par-
ticularly if one wants to express them in terms of unspecified parameters
rather than numerically. If the dimension of the matrix is small enough, as
with (2.1.2) and (2.1.3), the eigenvalues can be found by straightforward, if
tedious, methods. In the case of our QQQ, one of the eigenvalues is zero, thus
the characteristic equation can be written as degree N rather than N + 1,
the size of QQQ. It is well known that no general formula (such as the quadratic
equation) exists for the roots of polynomials of degree greater than four, nor
can one ever be found. (If you have ever used the cubic or quartic formulas
to get analytic expressions, you might be inclined to say that even four is too
big.) Therefore, unless one is “lucky” (as with the zero eigenvalue), the task
is hopeless for N > 4.

By a fortuitous stroke of good fortune, because the QQQ of (2.1.1c) is so
repetitive, φN (β) = |QQQ− βIII| satisfies a recurrence relation in N which turns
out to be similar to that satisfied by Chebyshev polynomials of the second
kind, from which all the eigenvalues can be obtained. The details can be found
in [Morse58]. As always, βo = 0, and

βk = μ + λ + 2
√

μ λ cos
kπ

N + 1
for k = 1, 2, 3, . . . , N. (2.2.1a)

The smallest β is βN , which therefore must be 1/RT . As in Exercise 2.1.1,
it is convenient to express the relaxation time in units of the time it takes a
lone customer to make one cycle (1/μ + 1/λ). Then, recalling that ρ = λ/μ,
and cos[πN/(N + 1)] = − cos[π/(N + 1)], we get the following expression for
the normalized relaxation time.

T (ρ, N) :=
μλ

μ + λ
RT =

ρ

(1 + ρ)

(
1 + ρ− 2

√
ρ cos

π

N + 1

)−1

· (2.2.1b)

T is invariant to the replacement of ρ with 1/ρ; that is, T (ρ,N) = T (1/ρ,N).
Next, we look at T (ρ,N) when N is very large. For ρ
= 1, T (ρ,N) has a

finite limit as N goes to infinity. Thus the relaxation time for an open system
(normalized so that 1/μ + 1/λ = 1) is

T (ρ) := lim
N→∞

T (ρ,N) =
ρ

(1 + ρ)(1−√ρ)2
= T (1/ρ). (2.2.2a)

It is not hard to show that T (ρ) approaches 0.5/(1 − ρ)2 when ρ is close to
1 [FangLipsky82]. As so often happens, ρ = 1 must be treated as a special
case. We can either set ρ = 1, or let N →∞, but not both at the same time.
T (1, N) goes to infinity as O(N2). We show this by setting ρ equal to 1 in
(2.2.1b) to get

T (1, N) =
1
2

(
2− 2 cos

π

N + 1

)−1

=
1
4

(
1− cos

π

N + 1

)−1

,

and then use Maclaurin’s expansion for cosx [cos x = 1− x2/2 + O(x4)]:

T (1, N) =
1
4

[
1
2

(
π

N + 1

)2

+ O
(

1
N4

)]−1

60 2.2 Relaxation Time for M/M/1/ /N Loops

=
1
2

(
N + 1

π

)2 [
1 + O

(
1

N2

)]
. (2.2.2b)

Naturally, the relaxation time for an open system (N = ∞) is infinite when
ρ = 1. That is, the system never reaches a steady state.

Example 2.2.1: Figure 2.2.1 summarizes what we have said about relax-

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

14

16

 N=1 N=2 N=4

 N=8

 N=16

 N=∞

Utilization factor, ρ

R
el

ax
at

io
n

ti
m

e,
T

(ρ
,N

)

Figure 2.2.1: Relaxation time as a function of ρ for M/M/1/ /N
queues, as given by (2.2.1b). T (ρ, N) is in units of cycle time for one cus-
tomer. All curves peak at ρ = 1, whereas at ρ = 1, T (1, N) goes to infinity as N
becomes increasingly large. For all values of ρ, the relaxation time increases with
N .

ation times. What is most important is to observe that as systems get bigger
(in this case, N larger) and more saturated (ρ close to 1), the time it takes
to approach the steady-state solution grows as well. This puts into question
the steady-state solution as a description of systems that are in existence for
relatively short times. �

Example 2.2.2: Figure 2.2.2 presents the same information in a different
way. Now N varies for fixed ρ = 0.5, 0.9, 0.95, and 1. As with the throughput
curves, T (ρ,N) = T (1/ρ,N), so ρ = 2 yields the same curve as ρ = 1/2.
As N → ∞, each curve approaches its limit as given by (2.2.2a), except, of
course, for ρ = 1, which has no limit. �

Clearly, if ρ is close to 1, the relaxation time can be very large. However, if ρ
is very small (or very large), T (ρ,N) is small. This may be an underestimate
of how long it takes a system to come close to its steady state. If all customers

2 M/M/1 Queue 61

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

ρ=0.5

ρ=0.8

ρ=0.9

ρ=0.95

ρ=1.0

System population, N

R
el

ax
at

io
n

ti
m

e,
T

(ρ
,N

)

Figure 2.2.2: Relaxation times as a function of system population N
for M/M/1/ /N loops. The RT’s for ρ and 1/ρ are identical; therefore, we
only show curves for ρ ≤ 1. As N → ∞, all curves except that for ρ = 1 will
saturate.

are initially at the slower server, very few completions would have to occur
to approach the steady state, because very few customers are ever likely to
be at the faster server at any one time. Even so, the mean time for one slow
server completion (in units of the cycle time) is 1/(1 + ρ), which (for small
ρ) is 1/ρ times larger than T (ρ,N). On the other hand, if all the customers
are initially at the faster server, the steady state cannot be approached until
almost all of them have been served at least once. The mean time for this is
of the order of ρN/(1 + ρ). The two conditions together imply that

0 ≤ RT ≤ N

ρ
T (ρ,N), for ρ < 1. (2.2.2c)

RT could be 0 if the system were initially in its steady state, which means
that all queue lengths are possible from the beginning (i.e., we do not know
anything).

2.3 Other Transient Parameters

In this section we introduce alternative ways (other than RT) of examining
the transient region. We are pleased to find that some of the objects we needed
for the steady-state solution are also used here. As with every Markov chain,
only one thing at a time can happen in a queueing network; the evolution
of the system in time is marked by a discrete sequence of events. We call
the interval after one event up to and including the next event an epoch.

62 2.3 Other Transient Parameters

This deviates from conventional use. Feller [Feller71] prefers to use epoch
to mean the time the event occured (not the interval). Sometimes, the time
between events is called the sojourn time.

Such sequences, or epochs, can be represented by time-dependent state
transition diagrams. The technique described here is easily generalized to
include nonexponential and even more general service centers, and that is
done in succeeding chapters.

2.3.1 Mean First-Passage Times for Queue Growth

As a first application, we examine the time it takes for a queue to grow from
0 to some integer n. Such processes are referred to as first passages, and the
average times for such events to take place are called mean first-passage
times, or simply first-passage times . The points at which a Markov chain
reaches each length for the first time are called ladder points. All the things
that happen from the time the queue reaches j to the time it reaches j + 1 is
said to have “occurred during the j-th epoch.”

Looking at Figure 2.1.1, suppose that initially all the customers are at
S2; then in mean time 1/λ the first event occurs, corresponding to an arrival
to S1 (epoch 0 has ended). After that, one of two events can occur: either
the customer at S1 returns to S2, or another customer from S2 goes to S1.
The sequence of possible events grows factorially after that, and it becomes
thoroughly impractical to enumerate all of them. However, if in any sequence
the system returns to a state it was in previously, a recursive relation can
be set up that may be solvable. This is known as a regenerative process
[Kingman72]. We show how this works in this section and use it frequently in
subsequent chapters. To apply this method, one must start with single jumps.
So we define

Definition 2.3.1
τu(n) := mean first-passage time for the queue at S1 to go from n
to n + 1. The n-th epoch begins with n customers at S1. Customers
may leave and arrive in arbitrary order, but eventually there will be
n+1 customers at S1 for the first time (end of epoch n and beginning of
epoch (n+1). The mean time for this to happen is τu(n). The subscript
u stands for up. (In subsequent sections we will have occasion to use
d for down and m for max.) ���

Consider Figure 2.3.1. The circles on the lowest horizontal line correspond to
the set of states the system can be in initially, which in the present case is
labeled by the number of customers at S1. The second horizontal line repre-
sents the state the system is in after one transition. The average time elapsed
between the two lines depends on the initial state. Thus if the system started
with all customers at S2 [n = 0], the mean time for the first transition would
be 1/λ. Similarly, if all customers were initially at S1[n = N], the average
time elapsed would be 1/μ. For all other initial states, the time would be
1/(μ+λ). A straight arrow corresponds to a single direct transition, with the
probability that it will occur written near it. For instance, the system can go

2 M/M/1 Queue 63

0 1 n-1 n n+1

μ

μ + λ
λ

μ + λ

τu(n-1)

τu(n)

1

2

3

Queue length at S1

E
ve

nt
s

0

Figure 2.3.1: Time-dependent state transition diagram for a closed
M/M/1/ /N loop, describing the mean time [τu(n)] for a queue to grow by
one customer. See text for details.

from n → n + 1 in one step, with probability λ/(μ + λ), with a mean time
delay of 1/(μ + λ). A wavy arrow corresponds to the sum of all possible ways
the system can get from the tail to the head for the first time, irrespective of
the number of transitions taken. Thus the arrow labeled “τu(n)” includes not
only the direct transition (n → n + 1), but also (n → n − 1 → n → n + 1),
and (n→ n− 1→ n− 2→ n− 1→ n→ n− 1→ n→ n + 1) and the infinite
number of other sequences that eventually lead to n + 1.

Our ability to represent an infinite number of sequences by a single symbol
is the key to setting up a soluble set of recursive relations. If the system starts
with n at S1, an event will occur in mean time 1/(μ + λ). That event can be
one of two things. Either the queue will go directly to n+1, or it will drop to
n− 1, in which case it will take time τu(n− 1) to get back to n, and a further
τu(n) to finally get to n + 1. Mathematically we can write

τu(n) =
λ

μ + λ
· 1
μ + λ

+
μ

μ + λ

[
1

μ + λ
+ τu(n− 1) + τu(n)

]
,

where τu(0) = 1/λ. For convenience, drop the subscript u when no confusion
is likely to arise. The two terms without a τ in them combine to yield the
following.

τ(n) =
1

μ + λ
+

μ

μ + λ
[τ(n− 1) + τ(n)]. (2.3.1a)

We interpret this as follows. It takes a mean time of 1/(μ + λ) for something
to happen. If the event was an arrival, we are done. The probability that it
was not an arrival is μ/(μ + λ), in which case the queue will have dropped
back to n − 1 and take a mean time of [τ(n − 1) + τ(n)] to first get back to
n and then to n + 1. Note that τ(n) appears on both sides of the equation,
indicating that the system got back to where it started, and that is what

64 2.3 Other Transient Parameters

we mean by a regenerative process. We derive equations for more complicated
processes in just this way, so the reader should expect to return to this section
for reference.

We next solve for τ(n) and get the following recursive equation.

τ(n) =
1
λ

[1 + μτ(n− 1)], for n > 0, (2.3.1b)

and τ(0) = 1/λ. By direct substitution into (2.3.1b) it follows that τ(1) =
(1 + 1/ρ)/λ and τ(2) = (1 + 1/ρ + 1/ρ2)/λ. One can guess that the general
expression for τ(n) is

τ(n) =
1
λ

n∑
j=o

1
ρj

, (2.3.2a)

which can be proven by induction to be the solution of (2.3.1b). †. Equation
(2.3.2a) is the well-known (certainly by now) geometric series for which a
closed-form expression exists.

τ(n) =
1
λ

n∑
j=0

1
ρj

=
1/μ

1− ρ

(
1

ρn+1
− 1
)

for ρ
= 1 (2.3.2b)

and
τ(n) =

n + 1
μ

for ρ = 1. (2.3.2c)

We are now ready to find the time it takes for a queue to grow to a given
length.

Definition 2.3.2
tu(0→ n) := mean first-passage time for the queue at S1 to grow from
0 to n customers. The queue could drop to 0 many times before finally
reaching the goal. ���

This parameter satisfies the following.

tu(0→ n) =
n−1∑
j=0

τu(j). (2.3.3a)

After substituting Equations (2.3.2) into the above (and omitting the sub-
script u), the explicit expressions follow.

t(0→ n) =
1/μ

1− ρ

(
1
ρn

1− ρn

1− ρ
− n

)
for ρ
= 1 (2.3.3b)

† We interject a word or two about “guessing.” If science were merely a sequence of
deductions, we all would have already been replaced by computers. Research is a creative
process. The imaginative scientist, mathematician, or engineer plays with the tools of the
trade and regularly makes guesses at what is correct. (These guesses are often credited to
intuition.) Most guesses that prove wrong never come to public light. You, the reader, only
see the successes and thus may think that there is some secret process going on to which you
will never be privy. Nonsense. The creative person who plays long enough with the relevant
material will ultimately make many correct guesses. Remember, proof by induction does
not require that we defend the source of the guess. It must only prove that the guess is
correct (if it is).

2 M/M/1 Queue 65

and

t(0→ n) =
n(n + 1)

2μ
for ρ = 1. (2.3.3c)

Equations (2.3.3) can be thought of as the mean rate at which a queue grows in
time. For instance, we see from (2.3.3c) that for ρ = 1 and large n, t(0→ n)
grows as n2. We can get a different insight to this process by thinking of
t(0→ n) as the independent variable. Then we see that n grows as the square
root of t. This is quite similar to behavior of a random walk process, and
is in fact a special type of random walk with a barrier. [Feller71] considers
such processes to be renewal processes.

For ρ < 1, (2.3.3b) implies that μ t(0→ n) approaches (1/ρ)n/(1− ρ)2 as
n gets increasingly large. Considering n as the dependent variable, it follows
that n grows as the log t. This is indeed an extremely slow growth rate, for
although all queue lengths are possible, when ρ is less than 1, long queue
lengths take exponential time to be reached even once.

Finally, for ρ > 1, (2.3.3b) implies that t(0 → n) and n grow proportion-
ally. This actually makes intuitive sense, whereas the two previous examples
are a consequence of statistical fluctuations. Clearly, the arrival rate exceeds
the service rate, so with every passing unit of time, customers who have yet to
be served accumulate at S1 in proportion to the difference between the arrival
and service rates, namely μ(ρ− 1). Examples for all three cases are shown in
Figure 2.3.2. Asymptotic behavior can be summarized by the following equa-
tions.

n(t)→ log(μ t)
log(1/ρ)

for ρ < 1, (2.3.4a)

n(t)→
√

2μ t for ρ = 1, (2.3.4b)

n(t)→ μ t(ρ− 1) +
1

ρ− 1
for ρ > 1. (2.3.4c)

These three asymptotic forms are quite different, yet if ρ is close to 1, μ t must
be rather large before the three will look considerably different.

Example 2.3.1: It can be seen from Figure 2.3.2 that the closer ρ is to
1, the larger μ t will be before (2.3.4a) or (2.3.4c) deviate from (2.3.4b). An
interesting consequence of this is the following. In taking data of such a system
(or an ensemble of such systems), an observer cannot measure very accurately
what ρ is, without waiting an extremely long time. Also, note that even after
50 cycle times, the queue has not come anywhere near its steady-state mean
queue length for ρ > 0.9. �

66 2.3 Other Transient Parameters

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

ρ=0.5

ρ=0.9 ρ=0.95
ρ=1.0

ρ=1.05
ρ=1.1

ρ=1.5
ρ=2.0

N
um

be
r

of
cu

st
om

er
s

at
S

1
,
n

Mean first-passage time from 0 to n, t(0→ n)

Figure 2.3.2: Number of customers versus mean first-passage time
for the queue at S1 to grow from 0 to n, t(0 → n), as given by
Equations (2.3.3). Equations (2.3.4) show that when ρ < 1, n grows as log t,
but when ρ > 1, n grows linearly with t. Yet t must be very large for this behavior
to become apparent if ρ is close to 1.

Exercise 2.3.1: An interesting variation of t(0 → n) is to find
the mean number of arrivals before the queue reaches its steady-state
mean queue length for the first time. Here ρ must be less than 1, and
λ t(0 → n) is that quantity, for any n. Let n be q̄ from (2.1.6b) and
draw a curve of λ t(0 → q̄) versus ρ, for ρ between 0 and 1. How do
these results compare with Figures 2.2.2 and 2.3.2?

2.3.2 kkk-Busy Period

A much-used view of queueing systems that does not require waiting for the
steady-state is the busy period . By definition, a busy period begins when
a customer arrives at an empty subsystem and ends when a customer leaves
behind an empty subsystem. Put differently, the busy period is the interval
between idle periods. In general, one can imagine starting with k customers at
S1 and then have customers come and go until, eventually, the queue drains.
This is known as the k-busy period, with k = 1 being simply the busy period.
A good insight into system behavior can often be gained by taking data over
several busy periods, and comparing with analytical results. Unlike the steady
state, each period has a well-defined beginning and end.

2 M/M/1 Queue 67

2.3.2.1 Mean Time of a Busy Period

The first parameter we consider is the mean time for the busy period. This
can be calculated in a manner very similar to the preceding section. Whereas
in that section we were interested in queue growth, here we are interested
in queue-length reduction. We use the same symbols as before [τ and t(0 →
n), etc.], and when a distinction between the two types is necessary, we use
subscripts u for “up” and d for “down”. Otherwise, the subscripts are omitted.

In analogy with Section 2.3.1, with the apparent added restriction that
the queue never exceeds N , define the following.

Definition 2.3.3
τd(n;N) := mean first-passage time for the queue at S1 to drop
from n to n− 1, in an M/M/1/ /N loop. Given that there are only N
customers in the system, the queue can never exceed N . The process
begins with n customers at S1 and ends when the queue reaches n− 1
for the first time and could have risen to N any number of times in
that period of time. ���

This actually is exactly analogous to Definition 2.3.1, because τu(n) includes
the self-evident constraint that the queue can never drop below 0.

N-1 Nn-1 n n+1

μ

μ + λ
λ

μ + λ

τd(n)

τd(n+1)

3

2

1

Queue length at S1

E
ve

nt
s

Figure 2.3.3: Time-dependent state transition diagram for a closed
M/M/1/ /N loop describing the mean time [τd(n)] for a queue to decrease by
1 customer. τd(1) is the mean busy period. See text for full details.

Figure 2.3.3 is similar to Figure 2.3.1, but now the τd-s are pointing toward
lower lengths. As before, in mean time 1/(μ + λ), something happens, and if
that something is not a departure, then with probability λ/(μ + λ) it is an
arrival that raises the queue length by 1, after which it will drift back down
to n in time τd(n + 1;N), and finally, to n− 1 in further time, τd(n;N). This
leads to (dropping the subscripts d)

τ(n;N) =
1

μ + λ
+

λ

μ + λ
[τ(n + 1;N) + τ(n;N)], (2.3.5a)

68 2.3 Other Transient Parameters

where τ(N ;N) = 1/μ. Making the substitution ρ = λ/μ and the usual rear-
rangements, we get

μτ(n;N) = 1 + ρμτ(n + 1;N). (2.3.5b)

Directly substituting into (2.3.5b) for n = N − 1 and N − 2, it follows that
μτ(N − 1;N) = 1 + ρ, and μτ(N − 2;N) = 1 + ρ + ρ2. One can easily guess,
and prove by induction, that

τ(N − k; N) =
1
μ

k∑
i=0

ρi =
1− ρk+1

μ(1− ρ)
for ρ
= 1 (2.3.6a)

and
τ(N − k; N) =

k + 1
μ

for ρ = 1, (2.3.6b)

where k = N − n. It is clear that when ρ ≥ 1, τd grows unboundedly with N
(and k), but when ρ < 1, then

τd(n) := lim
N→∞

τd(n; N) =
1/μ

(1− ρ)
· (2.3.6c)

We see then, that for an open system, the mean time for a queue to drop by
1 is the same for all n, a result that some might call obvious.

By definition, the mean time for a busy (1-busy) period is the same as the
mean time to eventually go from n = 1 to n = 0. The k-busy time is defined
as follows.

Definition 2.3.4
td(k → 0; N) := the mean time for the k-busy period of an
M/M/1/ /N loop. The process begins with k customers at S1, and
ends when there are 0 customers there for the first time. ���

First we have

td(1→ 0; N) = τ(1; N) =
1− ρN

μ(1− ρ)
for ρ
= 1 (2.3.7a)

and
td(1→ 0; N) =

N

μ
for ρ = 1. (2.3.7b)

As with the τds, when ρ ≥ 1, the mean extent of the busy period grows
unboundedly with N , but when ρ < 1, the limit for td(1 → 0; N) exists and
approaches [the same as (2.3.6c)]

td := td(1→ 0) = td(1) =
1/μ

(1− ρ)
. (2.3.7c)

This expression looks familiar. It tells us that the mean busy period for an
open M/M/1 queue is the same as its mean system time as given by (2.1.7b).

2 M/M/1 Queue 69

Actually, (2.3.7c) gives the mean time of a busy period for all open M/G/1
queues (but not G/M/1 queues), whereas the expression for the mean system
time for M/G/1 queues [see (4.2.6e) and (4.2.6f)], is more complicated.

An expression for td can be derived in the following way. Any single server
queue (open or closed) will alternate between busy and idle periods. Let Ti

and Xi be the lengths of the i-th busy and idle periods, respectively. Then

Rb(m) :=
∑m

i=1 Ti∑m
i=1(Ti + Xi)

(2.3.7d)

is the fraction of time S1 is busy during the first m cycles. As m gets very
large, (

∑
Ti/m) approaches td, (

∑
Xi)/m approaches the mean idle time (call

it tI), and Rb approaches 1− r(0, N) = Pr(S1 is busy). When we put this all
together, we get

td = tI
1− r(0, N)

r(0, N)
· (2.3.7e)

For every open single-server queue (N →∞), r(0, N)→ 1−ρ, and for Poisson
arrivals, tI = 1/λ. All this yields (2.3.7c).

In direct analogy with Equations (2.3.3) we see that the mean time for the
k-busy period is

td(k → 0;N) =
k∑

j=1

τd(j;N) =
1/μ

1− ρ

k∑
j=1

(1− ρN−j+1),

which after some straightforward manipulation yields

μ td(k → 0;N) =
k

1− ρ
− ρN−k+1

(1− ρ)2
+

ρN+1

(1− ρ)2
for ρ
= 1 (2.3.8a)

and

μ td(k → 0;N) = kN − k(k − 1)
2

for ρ = 1. (2.3.8b)

As with the τds for open systems, the k-busy period is infinite when ρ ≥ 1,
but when ρ < 1,

μ td(k → 0) =
k

1− ρ
. (2.3.8c)

This makes sense, because it takes a time 1/[μ (1 − ρ)] [or what is the same
thing, ρ/[λ(1−ρ)]] for an open queue to drop by 1, so if there were k customers
to start with, it should take k times λρ/(1− ρ) to drop to 0.

2.3.2.2 Probability That Queue Will Reach Length k

Although the time for a busy period may be important, it is by no means
the only parameter worth examining. From an experimental point of view,
it is easy to measure, for instance, the number of busy periods in which a
given queue length was reached or the maximum queue length reached. It is
desirable, therefore, to be able to compute these quantities as well.

70 2.3 Other Transient Parameters

By now we should be getting pretty good at working with time-dependent
state transition diagrams. Unfortunately we now have a new complication. All
objects we looked at previously in this section were certain to happen. The
busy period was certain to end (if ρ ≤ 1), and all queue lengths will occur
eventually. But now we have to worry whether a busy period will end before
reaching a given queue length. Such processes are known as taboo processes
(it is taboo - or tabu - to reach that given length) which we now define.

Definition 2.3.5
Let Ξ be the set of all possible states of a system. Let Ξ1 and Ξ2 be
disjoint proper subsets of Ξ. That is, Ξ1 ∩ Ξ2 = ∅ (empty). Also, let
Ξ1 ∪ Ξ2 ⊂ Ξ (proper subset). That is, Ξ3 := Ξ − [Ξ1 ∪ Ξ2]
= ∅ (not
empty). In other words, Ξ1, Ξ2, and Ξ3 form a partition of Ξ (every
s ∈ Ξ is in one, and only one of the Ξis). A taboo process is one
that starts in some state si ∈ Ξ3, and ends when the system finds
itself in some state sf ∈ Ξ1 ∪ Ξ2. The process succeeded if sf ∈ Ξ1,
and failed if sf ∈ Ξ2 (the taboo states). We are usually interested in
PPPr(sf ∈ Ξ1 | si ∈ Ξ3) (i.e., the probability that the outcome was good).
If Ξ2 is empty then PPPr(·) = 1, unless there is no way to get from si

to Ξ1, in which case PPPr(·) =∞, because by our definition, the process
never ends. ���

The next processes are examples of taboo processses.
The procedure for calculating probabilities for queue changes is similar to

that for calculating the mean time for the change to occur. First we must
calculate the probabilities for one step at a time, and then take the product
of the probabilities (note that we take the sum of the step times) for the
complete process. First define the following.

Definition 2.3.6
Wu(n) := probability that the queue at S1 will go from n to n + 1
during a busy period (i.e., without going to 0). The process begins with
n customers at S1, and ends when the queue (including the active
customer) either reaches n + 1 or 0. The queue can fall and rise any
number of times before the process ends.

This is a taboo process where Ξ = {s | 0 ≤ s < ∞}, Ξ1 = {s | s > n},
Ξ2 = {0} and Ξ3 = {s | 0 < s ≤ n}. The process starts with si = n ∈
Ξ3, and ends when sf = n + 1 ∈ Ξ1 (good) or when sf = 0 ∈ Ξ2 (bad).
So Wu(n) = PPPr(sf ∈ Ξ1 | si = n). The reader should decide if the taboo
concept is helpful for understanding particular processes. ���

The queue either goes up [with probability λ/(μ + λ)], or goes down [μ/(μ +
λ)], in which case it must eventually get back to n without first going to 0
[Wu(n−1)], and then get to n+1, [Wu(n), another regenerative process]. The
equation describing this is

Wu(n) =
λ

μ + λ
+

μ

μ + λ
[Wu(n− 1)Wu(n)]. (2.3.9a)

2 M/M/1 Queue 71

This reorganizes to

Wu(n) = ρ[1 + ρ−Wu(n− 1)]−1, (2.3.9b)

where Wu(1) = λ/(μ + λ) = ρ/(1 + ρ). Our “great” experience with these
things allows us to guess and prove by induction, with K(0) = 1, that

Wu(n) = ρ
K(n− 1)

K(n)
, (2.3.9c)

where K(n) was defined in (2.1.4c) and satisfies the recursive and explicit
formulas

K(n) =
n∑

j=0

ρj = 1 + ρK(n− 1) =
1− ρn+1

1− ρ
for ρ
= 1 (2.3.10a)

and
K(n) = n + 1 for ρ = 1. (2.3.10b)

We will not always be so fortunate to find explicit expressions for more com-
plicated queues.

As the final effort of this section, we calculate the probability that the
queue will get at least to k during a busy period. This is the same as the
following.

Definition 2.3.7
Wu(1→ k) := probability that the queue at S1 will go from 1 to k before
going to 0. The process begins with one customer at S1 and ends when
the queue (including the active customer) reaches either k or 0. This
is another taboo process. ���

Then Wu(1→ 1) = 1, and for k > 1,

Wu(1→ k) =
k−1∏
n=1

Wu(n) := Wu(1)Wu(2) · · ·Wu(k − 1), (2.3.11a)

which due to (2.3.9c) gives us

Wu(1→ k) =
ρ

K(1)
ρ
K(1)
K(2)

ρ
K(2)
K(3)

· · · ρK(k − 2)
K(k − 1)

·

As long as ρ does not equal 1, this conveniently simplifies to

Wu(1→ k) =
ρk−1

K(k − 1)
=

(1− ρ)ρk−1

1− ρk
· (2.3.11b)

For ρ = 1 we get the much simpler expression

Wu(1→ k) =
1
k

(ρ = 1). (2.3.11c)

72 2.3 Other Transient Parameters

Note that (2.3.11a, b, and c) are valid for any customer population as long as
k ≤ N . Thus they are valid for open systems as well. Observe that as might
be expected if ρ ≤ 1, then Wu(1 → k) approaches 0 as k gets increasingly
large. However, if ρ > 1, then

lim
k→∞

Wu(1→ k) = lim
k→∞

(1− ρ)ρk−1

1− ρk
= 1− 1

ρ
· (2.3.11d)

In other words, for an open system with ρ > 1, the probability that the queue
will grow to infinity without the busy period ever ending is 1 − 1/ρ. That
is, the probability that a busy period will end is 1/ρ. A process that is not
guaranteed to end is sometimes referred to as having a defective probability
distribution [Feller71]. When ρ = 1, we have the interesting apparent
contradiction that each busy period will surely end [1−Wu(1→∞) = 1], but
on average it will take an infinite amount of time to do so.

2.3.2.3 Maximum Queue Length During a Busy Period

The last property that we study in this chapter is the probability that S1’s
maximum queue length in a busy period will be k. Call this Wm(k;N), where
N is the total number of customers in the system. To evaluate this, we not only
use the Wu’s of the preceding section, but we also evaluate the probabilities
of coming down without ever exceeding k < N . So, define the following.

Definition 2.3.8
Wd(n, k;N) = probability that the queue at S1 will go from n to n− 1
without exceeding k, where N ≥ k ≥ n > 0. The process begins with n
customers at S1 and ends when the queue either reaches n−1 or k+1.
Put differently, Wd(n, k;N) is also the probability that the queue will
reach n− 1 before going to k + 1. For k = N , then, Wd(n,N ;N) = 1,
because it is certain that the queue will eventually drop by 1 from
any n. This is yet another taboo process, where Ξ1 = {j | j < n},
Ξ2 = {j | k < j ≤ N}, and Ξ3 = {j |n ≤ j ≤ k}. ���
Next we recognize that for k < N ,

Wd(k, k;N) =
μ

μ + λ
=

1
1 + ρ

· (2.3.12a)

For n < k, the recursive formulas are exactly analogous to (2.3.9), namely

Wd(n, k;N) =
μ

μ + λ
+

λ

μ + λ
[Wd(n + 1, k;N)Wd(n, k;N)],

which leads to

Wd(n, k;N) = [1 + ρ− ρWd(n + 1, k;N)]−1. (2.3.12b)

The usual guess and proof by induction gives us an explicit expression for
Wd(n, k;N):

Wd(n, k;N) =
K(k − n)

K(k − n + 1)
for k < N. (2.3.12c)

2 M/M/1 Queue 73

Notice that this expression is independent of N , as long as k < N . For k = N
it is clear that Wd(N,N ;N) = 1, because the queue cannot grow beyond N .
It follows from (2.3.12b) that if Wd(n+1, N ;N) = 1, then Wd(n,N ;N) must
also equal 1. Therefore,

Wd(n,N ;N) = 1 for 1 ≤ n ≤ N. (2.3.12d)

This merely states the obvious, that a closed system will experience every
queue length with certainty (not once, but over and over), and of course,
irrespective of what ρ is. It is nice to know that our mathematics sometimes
produces the expected. Remember, though, that (2.3.12d) is not necessarily
true of open systems.

Exercise 2.3.2: Given Equations (2.3.10) and (2.3.12a), prove by
induction that (2.3.12c) is the unique solution of (2.3.12b).

Our next task is to calculate the object in the following definition.

Definition 2.3.9
Wd(k → 0;N) := probability that the queue at S1 will drop from k → 0
without ever exceeding k, in an M/M/1//N loop. The process begins
with k customers at S1, and ends when it reaches either k + 1 or 0. ���

This must be the product of the probabilities of events cascading downward
one stepat a time. Therefore, given that K(0) = 1, this is

Wd(k → 0;N) =
k∏

n=1

Wd(n, k;N) =
K(k − 1)

K(k)
K(k − 2)
K(k − 1)

. . .
K(1)
K(2)

K(0)
K(1)

·

All but one of the terms cancel, leaving us with the simple formula

Wd(k → 0;N) =
1

K(k)
=

1− ρ

1− ρk+1
, (2.3.13a)

for k = 1, 2, 3, · · · , N − 1, with

Wd(N → 0;N) = 1. (2.3.13b)

This last equation must be true. Because it is impossible for the queue to
exceed N , it must drain eventually.

Our final exercise is to calculate the probability described in this section’s
title. Clearly, this is equal to the probability that the queue at S1 will reach
k [Wu(1→ k)] and then drop to 0 without ever exceeding k [Wd(k → 0;N)].
Therefore, we define for the M/M/1/ /N queue as follows.

Definition 2.3.10
Wm(k;N) := probability that the queue at S1 will reach a maximum of
k during a busy period for an M/M/1//N queue. The process begins
with 1 customer at S1, and ends when there are either k + 1 or 0 cus-
tomers there. The process is a success only if it ends with 0 customers,
and the queue reaches k at least once during the interval. ���

74 2.3 Other Transient Parameters

This turns out to be

Wm(k;N) = Wu(1→ k)Wd(k → 0;N)

=
ρk−1

K(k − 1)
1

K(k)
for 1 ≤ k < N (2.3.14a)

and

Wm(N ;N) = Wu(1→ N) =
ρN−1

K(N − 1)
· (2.3.14b)

Note that Wm(k,N) does not depend on N as long as k < N ; thus we can
write that

Wm(k;N) = Wm(k;∞) for k < N.

The queue at S1 must grow to some maximum length during a busy period,
therefore it must follow that

N∑
k=1

Wm(k;N) = 1. (2.3.15)

This is shown to be true by recognizing that because K(n) = 1 + ρK(n− 1),

Wm(k;N) =
ρk−1

K(k − 1)K(k)
=

ρk−1

K(k − 1)
− ρk

K(k)
· (2.3.16a)

Clearly, in validating that (2.3.16a) satisfies (2.3.15), the negative term of
Wm(k;N) exactly cancels the positive term of Wm(k + 1;N), and given that
Wm(N ;N) has only a positive term, all terms cancel except the positive part
of Wm(1;N), which is ρo/K(0) = 1.

Equation (2.3.16a) tells us something else, which we should have suspected
in the first place. Notice from (2.3.11b) that

Wm(k;N) = Wu(1→ k)−Wu(1→ k + 1), (2.3.16b)

but still, it is nice to know that we have derived it.

Example 2.3.2: As our truly final example for this chapter, we observe
how Wm(k;N) behaves when both k and N are very large. This is shown in
Figure 2.3.4 for N = 10 and various values of ρ. Clearly, when ρ < 1, Wm

goes to 0 as ρk. That is, the probability of reaching long queues becomes
highly unlikely. Now, if ρ = 1, then Wm(k;N) = 1/k(k + 1) for k < N and
Wm(N ;N) = 1/N . Thus very large queue lengths can be expected during a
busy period, in fact, so large that it may take forever for some busy periods
to end. �

Exercise 2.3.3: Evaluate Wm(k;∞) and Wm(N ;N) for all k for
N = 5 and 20, and ρ = 0.1, 0.5, 0.9, 1, 1.1, and 2. Make sure that your
numbers satisfy (2.3.15). How do your numbers compare with Figure
2.3.4?

2 M/M/1 Queue 75

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ=0.5

ρ=0.8

ρ=0.9

ρ=1.0

ρ=2.0

ρ=2.0

ρ=1.0

Number of customers at S1, k

B
us

y
pe

ri
od

m
ax

im
um

,
W

m
(k

,1
0)

Figure 2.3.4: Probability Wm(k; 10)Wm(k; 10)Wm(k; 10) that the queue at S1 will reach a
maximum of k during a busy period of an M/M/1//10 loop. Curves
for ρ = 0.5, 0.8, 0.9, 1.0, and 2.0 are displayed. All the curves decrease for
increasing k, except at k = 10. Given that Wm(k; 10) = Wm(k;∞) for all k < 10,
Wm(10; 10) corresponds to the probability that the open queue will exceed a length
9 during a busy period. At k = 1, Wm(1; 10) decreases with ρ, but at k = 10, the
reverse is true.

Perhaps the most interesting results for maximum queue length occur for
ρ > 1. In this case Wm(k;N) goes to 0 as 1/ρk, just as it does for ρ < 1.
But Wm(N ;N) approaches the finite limit, 1 − 1/ρ. This, of course, is the
probability that the busy period will never end in an open system. For those
busy periods that do end (the probability of which is 1/ρ), Wm(k;∞) is still
the correct probability that k will be the maximum queue length.

Chapter 3
M. E. FUNCTIONS

I shall never believe that God plays dice with the universe
Albert Einstein

Einstein, stop telling God what to do.
Niels Bohr

God not only plays dice. He also sometimes
throws the dice where they cannot be seen.

Stephen Hawking

We are now ready to give structure to the subsystems S1 and S2 . In Chapter
2 we assumed that each subsystem had only one internal state, which was
equivalent to assuming that they were exponential servers. Now we assume
that S1 has m states, but defer consideration of S2 until Chapter 4. Without
loss of generality, a subsystem with m states can be viewed as a network of
exponential phases, or stages, that can be accessed by only one customer at
a time; the rest of the customers wait outside until the active one leaves. We
show that such a subsystem is in turn equivalent to a single server whose pdf is
certainly not exponential. In fact, every pdf that can be written as a finite sum
of terms of the form xk exp(−μx) (any number of terms with any nonnegative
integer k, with any number of different μ’s whose real part is positive) is
equivalent to a subsystem of this form. We know that functions of this type
can approximate every pdf arbitrarily closely in some sense. Therefore, we
can say that the closure of this set (infinite sums) contains all (well, maybe
almost all) pdfs. We also know that every one of these functions has a Laplace
transform that can be written as a ratio of two polynomials. Such functions
are said to have Rational Laplace Transforms (RLT).

3.1 Properties of a Subsystem, S

Once again, we must start with a series of definitions. Let our subsystem
S be made up of a collection of phases as shown in Figure 3.1.1. The term
stage is often used instead of phase, and if we are thinking of a subsystem
made up of real components, each of these phases, or stages, would be an
exponential server in its own right. The reader is welcome to think of them
in this light, and indeed we talk of them as though they are real. However, in

L. Lipsky, Queueing Theory, DOI 10.1007/978-0-387-49706-8 3, 77
c© Springer Science+Business Media, LLC 2009

78 3.1 Properties of a Subsystem, S

the long run they are merely meant to be mathematical building blocks for
constructing the matrix operators we need for Linear Algebraic Queueing
Theory (LAQT). Therefore, we (almost always) adhere to Neuts’ convention
and call them phases [Neuts75], because that word is as far from the real
thing as we can get.

Figure 3.1.1: Typical subsystem SSS, with mmm phases, and where only
one customer can be active at a time. p is the entrance vector, whose
i-th component is the probability that a customer, upon entering S, will go to
phase i. q′ is the exit vector , whose i-th component is the probability that a
customer, upon completing service at phase i, will leave S. P is the substochastic
transition matrix, whose ij-th component is the probability that a customer
who has just finished service at i will go to j. Each phase has exponentially
distributed completion time, with mean completion rate μ i = (M)ii .

As in Section 1.3.1, M is the completion rate matrix whose diagonal
elements are the completion rates of the individual phases in S. P is again
the transition matrix where [P]ij = Pij is the probability that a customer
will go from phase i to phase j when service is completed at i. However, now
P is not isometric, because it does not satisfy (1.3.1b). Now it is possible for
a customer to leave. We define an exit vector q′, where [q′]i = qi, is the
probability of leaving S when service is completed at i. It then follows that

Pε′ε′ε′ + q′ = ε′ε′ε′. (3.1.1a)

If q′
= o′ (with no negative components) and Pij ≥ 0, then P is said to be
substochastic. Assume that for each i there exists a path to some j for which
qj
= 0. This is equivalent to saying that no matter where a customer starts
in S, he will eventually leave. It turns out to be equivalent to the statement
that (I−P) has an inverse. We now show that if (I−P) has an inverse,
the customer can always get out (eventually). Let xi be the probability that a
customer who started at phase i will eventually leave, and let x′ be the column
vector whose i-th component is xi . Then we can say that the probability of
leaving eventually is equal to the probability of leaving immediately [qi] plus

3 M. E. Functions 79

the probability of going instead to some other phase j [Pij] and eventually
leaving from there [xj]. Mathematically, this is

xi = qi +
m∑

j=1

Pijxj ,

or in matrix form (another regenerative process),

x′ = q′ + Px′.

This can be rewritten as (I−P)x′ = q′. If the inverse exists, there is only one
solution to this equation. From (3.1.1a), we have

q′ = (I−P)ε′ε′ε′, (3.1.1b)

so x′ = ε′ε′ε′. In other words, xi = 1 for all i; that is, the customer can always
get out. The converse is a little different. If the customer can always get out,
we only need

lim
n→∞Pn ε′ε′ε′ = o′,

which is a little weaker than requiring that (I−P)−1 exist. If P is substochas-
tic, this must always be true. We avoid the rigorous mathematical issues un-
derlying this by assuming that (I−P) has an inverse, and leave it at that.
A necessary and sufficient condition for this to be true is for P to have no
eigenvalue equal to 1, which physically implies that there are no closed loops
and therefore no absorbing states (or sink states) in S.

Finally we define the entrance vector p whose component pi is the prob-
ability that upon entering S, a customer will go directly to phase i. Because
the customer must go somewhere,

∑m
i=1 pi = 1, or p ε′ε′ε′ = 1 (p is isometric, but

P is not).

3.1.1 Mean Time to Leave S

We are now in a position to find the mean time it takes for a customer to
meander through S and finally leave. Frequently, we extend this to subsys-
tems where a direct physical picture is false, so we are really dealing with a
mathematical analogy rather than a true physical situation. This is no differ-
ent than talking about electrical currents of the form exp(i ω t), rather than
sin(ω t).

Define τ ′τ ′τ ′ to be that column vector whose component τi is the mean time
it will take for a customer to leave S, given that he started at i. The path of
the customer can be described by the following sequence. First the customer
must be served by i, which on the average takes a time of 1/μ i = (M−1ε′ε′ε′)i .
Then either he leaves (with probability qi, using no additional time) or he
goes to phase j with probability Pij . At this point it will take the customer
a time τj to finally leave. Mathematically we have, in vector form,

τ ′τ ′τ ′ = M−1ε′ε′ε′ + 0q′ + Pτ ′τ ′τ ′ = M−1ε′ε′ε′ + Pτ ′τ ′τ ′. (3.1.2a)

80 3.1 Properties of a Subsystem, S

Note both the similarities and differences between this equation and (2.3.1a)
and (2.3.5a). In Chapter 2 the population of S could either increase or de-
crease, whereas here it can either decrease (the customer leaves) or stay the
same. In all cases τ ′τ ′τ ′ appears on both sides of the equation, but here τ ′τ ′τ ′ is a
column vector rather than a scalar, so (3.1.2a) stands for m equations involv-
ing the set of τis (i.e., the m components of τ ′τ ′τ ′). As in Section 2.3.1, this is
also a regenerative process, but with a difference. The subsystem need not
return to the same state, but to any internal state while S is still active. All
m unknowns can be found simultaneously by solving the matrix equation for
τ ′τ ′τ ′ [i.e., τ ′τ ′τ ′ −Pτ ′τ ′τ ′ = (I−P)τ ′τ ′τ ′ = M−1ε′ε′ε′]. Given that (I−P) has an inverse,

τ ′τ ′τ ′ = (I−P)−1M−1ε′ε′ε′ = [M(I−P)]−1ε′ε′ε′.

We can now write in concise form,

τ ′τ ′τ ′ = Vε′ε′ε′, (3.1.2b)

where, because they appear so often throughout this treatise, we define

B := M(I−P) and V := B−1. (3.1.3)

This important relation leads us to give V the name service time matrix.
Its individual components Vij are interpretable as the mean time a customer
spends at j (counting all visits to it) from the time he first visits i until he
leaves S. B, the inverse of V is of equal importance. B looks very similar to
the transition rate matrix Q, defined in Section 1.3.1, with the important ma-
jor difference that Q describes an entire closed system, and Qε′ε′ε′ = o′, whereas
B refers only to a subsystem, and Bε′ε′ε′ definitely does not equal o′. As shown
below, B is the generator of the service time distribution, so we give it the
name service rate matrix. We also express the distributions of other pro-
cesses in terms of matrices. Therefore, B is a process rate matrix, and V
is a process time matrix .

As mentioned above, when a customer first enters S he goes to i with
probability pi, and then spends a total time τi in S before leaving. Let T
be the random variable denoting the time a customer spends in S from the
moment he enters to the moment he leaves. Then EEE[T] is the sum

EEE[T] =
m∑

i=1

piτi,

or in matrix form, using (3.1.2b), the mean service time of S is

EEE[T] = pτ ′τ ′τ ′ = pV ε′ε′ε′. (3.1.4a)

Expressions where p appears on the left of a square matrix, followed by ε′ε′ε′ on
the right, yielding a scalar value, are important and frequent enough to be
given a special notation. Therefore, define

Ψ [X] := pX ε′ε′ε′, (3.1.5)

3 M. E. Functions 81

where X is any square matrix. Then (3.1.4a) can be written as

EEE[T] = Ψ [V] . (3.1.4b)

Ψ [·] is a linear operator , in that it transforms square matrices into complex
numbers (i.e., scalars) and has the following properties. Let α and β be any
scalars, and let X and Y be any square matrices of the same size; then

Ψ [αX + βY] = αΨ [X] + βΨ [Y] .

It is also true that Ψ [·] commutes with integration; that is, for any matrix
function of t, ∫

Ψ [F(t)] dt = Ψ
[∫

F(t) dt

]
.

Exercise 3.1.1: Consider S with two equal phases with completion
rate μ. Assume that a customer always goes to phase 1 upon entering.
After finishing at 1, he goes to 2, and after that, leaves. This produces
what is called an Erlangian-2 (E2) distribution . What are p, P,
q′, M, B, V, τ ′τ ′τ ′, and EEE[T] ?

Exercise 3.1.2: Again there are two phases in S, but with different
completion rates, μ1 and μ2 . Suppose that a customer, upon entering,
goes to 1 with probability p1, or to 2 (with probability p2 = 1 − p1),
and then leaves when finished. This is known as a 2-phase hyperex-
ponential distribution, with PDF H2(x) and pdf h2(x). In this case,
what are: p, P, q′, M, B, V, τ ′τ ′τ ′, and EEE[T]?

The importance of B is displayed in the next sections.

3.1.2 Service Time Distribution of S

Once a customer enters a subsystem, his interaction with the outside world is
suspended until he exits. An outside observer only sees a beginning and an end
to service. One would expect that some density function exists that describes
the time spent in S. This is in fact the case. First define the reliability
matrix function.

Definition 3.1.1
[R(t)]ij := probability that the customer is at phase j in S at time t,
given that he was at phase i at time 0. The associated vector function,
R(t)ε′ε′ε′, is a column vector whose i-th component is the probability
that the customer will still be somewhere in S at time t, given that he
started at phase i at time 0. ���

82 3.1 Properties of a Subsystem, S

The customer will be at phase j at time t + δ if:

1. He was there at time t [Rij(t)], and nothing happened in the
interval δ [1− μjδ]; or

2. He was at another phase at time t, finished service [Mkkδ], and
then went to j [Pkj] in the interval δ; or

3. He made two or more transitions in the interval.

Mathematically, one can write

Rij(t + δ) = Rij(t)(1−Mjjδ) +
m∑

k=1

Rik(t)MkkPkjδ + O
(
δ2
)
,

or in matrix form (make sure you agree before going on),

R(t + δ) = R(t)(I−Mδ) + R(t)MPδ + O
(
δ2
)
.

Next perform the usual procedure of subtracting R(t) from both sides, divid-
ing both sides by δ, and then taking the limit as δ goes to zero. The expected
result is

dR(t)
dt

= −R(t)B. (3.1.6a)

The scalar equivalent of this differential equation has been seen before, in
(1.2.1a). (See Section 1.3.1 for an analogous matrix equation). Its solution,
remembering that R(0) = I, is

R(t) = exp(−tB). (3.1.6b)

This is the matrix equivalent of the reliability function defined in Section
1.2.1, thus we call it the reliability matrix function of S. Because of the
form of this equation, we call a function that is generated by any finite B, a
matrix exponential (ME) function [Liefvoort87]. If it should have the
properties of a probability distribution, it is called an ME distribution . The
definition is extended to include infinite matrices in Section 3.2.1. When we
sum over all possible states (or phases) we get the vector exp(−tB)ε′ε′ε′, whose
i-th component is the probability that the customer is still in S at time t,
given that he was at phase i at time 0. Now, if the customer first entered S at
time 0, he would go to phase i with probability pi. We can define a reliability
vector function as follows.

Definition 3.1.2
[r(t)]i := [pR(t)]i = probability that a customer who entered S at time
0 will be at phase i at time t. The associated scalar probability that
he will still be somewhere in S at time t is the sum over i. That is,
R(t) := r(t)ε′ε′ε′ = Ψ [R(t)]. This is the reliability function for the r.v.
T [see (3.1.7b) below]. ���

3 M. E. Functions 83

r(t) is a row vector satisfying the following.

r(t) := pR(t) = p exp(−tB). (3.1.7a)

The reliability function [the nonexponential generalization of (1.2.1b)] is the
scalar function associated with r(t) and R(t), satisfying

R(t) = PPPr(T > t) = r(t)ε′ε′ε′ = Ψ [R(t)] = Ψ [exp(−tB)] . (3.1.7b)

The Probability Distribution Function (PDF) is

B(t) = 1−R(t) = 1−Ψ [exp(−tB)] , (3.1.7c)

and the probability density function (pdf) is

b(t) =
dB(t)

dt
= Ψ

[
d

dt
[I− exp(−tB)]

]
= Ψ [B exp(−tB)] . (3.1.7d)

To prove that
d r(t)

dt
= −r(t)B,

replace exp(−tB) with its Maclaurin series expansion, differentiate each term
with respect to t, while treating all matrices as constants (they are, because
they do not depend upon t), factor out B, and put everything back together
again.

3.1.3 Properties of B and V

Equation (3.1.7d) can be used to extract many desired properties of S. For
instance, b(0) = Ψ [B]. In fact, all derivatives can be simply computed. Let
b(k)(t) be the k-th derivative of b(t) with respect to t; then

b(k)(t) = −R(k+1)(t) = (−1)kΨ
[
Bk+1 exp(−tB)

]
, (3.1.8a)

and for t = 0,
b(k)(0) = −R(k+1)(0) = (−1)kΨ

[
Bk+1

]
. (3.1.8b)

The moments of the distribution are also easy to get. The formal procedure of
integrating matrix expressions as though they were scalars turns out to give
the correct results, although the proof is a bit cumbersome. Remember that
a matrix commutes with every power of itself, including its inverse, and even
sums of scalars times powers of itself. Also recall that V = B−1, so

EEE
[
T k
]

=
∫ ∞

o

tk b(t) dt =
∫ ∞

o

tkΨ [B exp(−tB)] dt

= Ψ
[∫ ∞

o

tkB exp(−tB)dt

]
= Ψ

[
Vk

(∫ ∞

o

(tB)k exp(−tB)d(tB)
)]

.

The expression inside the large round brackets (which is a square matrix)
actually turns out to be k!I, so

EEE
[
T k
]

= k!Ψ
[
Vk
]
. (3.1.9)

84 3.1 Properties of a Subsystem, S

The mean service time of S, as given in (3.1.4b) is a special case of (3.1.9) for
k = 1.

The Laplace transform of b(t) can be found in a similar fashion. By
definition,

B∗(s) =
∫ ∞

o

e−stb(t) dt,

so [using (3.1.7d)],

B∗(s) = Ψ
[∫ ∞

o

Be−st exp(−tB)dt

]
= Ψ

[∫ ∞

o

B exp[−t(sI + B)]dt

]

= Ψ
[
B(sI + B)−1

(∫ ∞

o

exp[−t(sI + B)]d[t(sI + B)]
)]

.

Again, the expression inside the large round brackets is I, so

B∗(s) = Ψ
[
B(sI + B)−1

]
= Ψ

[
(I + sV)−1

]
. (3.1.10)

Equations (3.1.7d), (3.1.8b), (3.1.9), and (3.1.10) are all equivalent in that
each can be derived from the others, assuming that b(t) is not too badly
behaved. These results are important enough to summarize in a theorem.

Theorem 3.1.1: If a vector-matrix pair 〈〈〈p , B 〉〉〉 (or equivalently,
〈〈〈p , V 〉〉〉 with V = B−1) satisfies any one of the following properties
of a probability distribution [(3.1.7b), (3.1.7d), (3.1.8b), (3.1.9), and
(3.1.10) respectively]:

R(t) = 1−B(t) = Ψ [exp(−tB)] , (3.1.7b)

b(t) =
dB(t)

dt
= Ψ [B exp(−tB)] , (3.1.7d)

b(k)(0) = −R(k+1)(0) = (−1)kΨ
[
Bk+1

]
, (3.1.8b)

EEE
[
T k
]

= k!Ψ
[
Vk
]
, (3.1.9)

B∗(s) =
∫ ∞

o

e−stb(t)dt

= Ψ
[
B(sI + B)−1

]
= Ψ

[
(I + sV)−1

]
, (3.1.10)

then the other four relations must also be true (i.e., each equation can
be used to prove the other four). The pair 〈〈〈p , V 〉〉〉 (or 〈〈〈p , B 〉〉〉), is said
to be a generator , or representation , of the process whose proba-
bility distribution is B(t) [and therefore of b(t) and R(t)]. The matrix,
(I+sV)−1, appears often, and is sometimes called the resolvent ma-
trix. �

The Laplace transform has an interesting interpretation. Suppose that new
customers are arriving at S with exponential interarrival times with parameter
s. Then B∗(s) is the probability that the customer in service will finish before
the next customer arrives, given that service has just begun. [See (2.1.1b).]

We have occasion to describe processes other than the time a customer
spends in S. Therefore we provide the following generic definition.

3 M. E. Functions 85

Definition 3.1.3
Let X be the random variable for some process (e.g., system time, or
interdeparture time) whose pdf is bX(t). Then 〈〈〈px , Bx 〉〉〉 is a generator
of process X if the equations of Theorem 3.1.1 are satisfied. px is the
startup vector or initial vector for the process (or startup process
vector), and Bx is the process rate matrix, or the rate matrix
for the process X. Only when we are dealing with the service time
distribution of S do we use the terms entrance vector and service rate
matrix. ���

What If Phases are Nonexponential?

In deriving Theorem 3.1.1 we have assumed that each of the phases in S is
exponential. One might ask what happens if this constraint is relaxed. Given
that the customer wanders sequentially from phase to phase until he leaves,
it would be expected that EEE[T] would depend only on the mean time for each
of the phases. (Recall that for sequential processes, the sum of the means is
equal to the mean of the sum.) In Section 9.3 we prove that this is so. But
the higher moments and the overall distribution are different. In particular,
the variance for a network of nonexponential servers is given by:

σ2 = σ2
e + Ψ [VTΓΓΓ] , (3.1.11)

where T = M−1 and ΓΓΓ is a diagonal matrix with [ΓΓΓ]ii = (C2
i − 1). For expo-

nential distributions, C2
i = 1, so ΓΓΓ = 0 and thus the second term on the right

is 0, as it should be. If all the distributions are deterministic, then C2
i = 0,

and
σ2

D = σ2
e −Ψ [VT] .

For more information the reader is referred to Section 9.3.

3.1.4 Numerical Algorithm for Evaluating b(x)b(x)b(x) and R(x)R(x)R(x)

The formulas given in Theorem 3.1.1 are not merely formal connections be-
tween functions and matrices. They can actually be used to calculate, effi-
ciently and accurately, the values of b(x), R(x), and therefore B(x), over a set
of equally spaced values of x. First note that because of Theorem 1.3.2, and
Equation (3.1.6b),

R(x + y) = exp[−(x + y)B] = R(x)R(y),

for any x and y. This is often called the semigroup property, and is part
of all Markov processes. This equation reduces to (1.2.6c) for 1-dimensional
matrices. However, in general the semigroup property does not hold for the
reliability functions themselves. That is,

R(x + y) = p exp(−(x + y)B)ε′ε′ε′ = p exp(−xB) exp(−yB)ε′ε′ε′ = pR(x)R(y)ε′ε′ε′,

but
R(x)R(y) = p exp(−xB) ε′ε′ε′p exp(−yB)ε′ε′ε′ = pR(x)QR(y)ε′ε′ε′.

86 3.1 Properties of a Subsystem, S

The ε′ε′ε′p = Q in the middle prevents R(x)R(y) from being equal to R(x + y)
unless Q = 1, which can only occur if m = 1, that is, only if R(x) is an
exponential function.

Now pick some small, positive δ and some positive integer k (bigger than
1, but not too big - more about this later), and evaluate

R(δ) ≈ I− δB +
1
2
δ2B2 − 1

6
δ3B3 + · · ·+ 1

k!
(−δ)kBk. (3.1.12)

If this expression is sufficiently accurate (it certainly can be if δ and k have
been chosen wisely), then we have for x = nδ:

R(x + δ) = [R(δ)]n+1 = R(x)R(δ),

where n can be as large as one needs to get sufficiently large x = nδ.
If it is desired that R(x) be evaluated on N equally spaced points then, us-

ing Horner’s rule [Conte-Deboer80] (a nested multiplication algorithm),
to evaluate (3.1.12), N + k matrix-matrix multiplications and k matrix addi-
tions are required. The computational complexity is linear in the number of
points (one multiplication for each successive point) and of order m3 in the
dimension of the matrix. That is, the computational complexity is of order

O
(
(N + k)m3

)
.

We can do much better if we are interested only in the vector r(x) and the
scalars b(x), R(x), and B(x). We can compute them in the following way.
Given a matrix representation, 〈〈〈p , B 〉〉〉:

1. Calculate b′ := Bε′ε′ε′; b(0) = pb′; R(0) = 1.

2. Calculate R(δ) from (3.1.12) using Horner’s rule.

3. Set r(0) = p.

4. Then (where xn = nδ),

BEGIN FOR n = 1 to n = N , calculate

r(xn) = r(xn−1)R(δ)

R(xn) = r(xn)ε′ε′ε′

b(xn) = r(xn)b′.

END FOR

This involves only k matrix multiplications and additions, N matrix on vector
multiplications, and 2N vector on vector multiplications (dot products). This
means, then, that the computational complexity is of order

O
(
Nm2

)
+ O

(
km3

)
.

The term with N is sure to be the larger by far, therefore we see that this
algorithm saves a factor of m in computational time over the brute-force pro-
cedure with which we started. Throughout this book, judicious selection of

3 M. E. Functions 87

procedures can make many computations feasible that were previously impos-
sible by other methods.

We point out from numerical analysis that the problem of selecting appro-
priate δ and k is the same as the problem one has in trying to solve (3.1.6a)
as m coupled differential equations, using k-th order Ordinary Differential
Equation (ODE) methods. In fact, the method we gave above is related to a
method gaining favor in some quarters for more general ODEs, namely the
Taylor series expansion method . We can even claim that our method is very
stable, because all the eigenvalues of B have positive real parts (so there is no
exponential blowup, the primary cause of instability). There may be a stiff-
ness problem if the smallest eigenvalue is very small compared to the desired
distance between points; we must make δ small enough to accommodate this.

Our last point has to do with accuracy. From Taylor’s remainder theorem,
we know that the error in R(δ) is of order

O
(
δk+1

)
.

Because the method is stable, the roundoff error accumulates linearly with n;
therefore, the roundoff error at x is

Err(x) = nO
(
δk+1

)
= xO

(
δk
)
.

This expression can actually be used to estimate the error by evaluating for
two different δ’s, and performing an extrapolation procedure. See, for example,
[Conte-Deboer80], or any standard text on numerical analysis for more
insight.

Exercise 3.1.3: Evaluate R(x), B(x), b(x), b(�)(0), EEE[T �], and B∗(s)
for an Erlangian-2 distribution, using the formulas of this section. Let
0 ≤ x ≤ 10EEE[T], δ = 0.1EEE[T], and k = 6 in evaluating R(x), B(x),
and b(x). Compare with the exact answers.

Exercise 3.1.4: Repeat Exercise 3.1.3 for a 2-phase hyperexponential
distribution.

3.2 Matrix Exponential Distributions

Up to now we have been vague about the constraints for p and P, and so
on. As long as Mii > 0, Pij ≥ 0, (Pε′ε′ε′)i ≤ 1 for all i, j, and (I−P)−1 exists,
proofs abound that guarantee good behavior. Such distributions are called
PHase (PH) distributions ∗ by Marcel F. Neuts [Neuts75], [Neuts81],

∗In order to distinguish between PHase distributions and the phase components that
are used to build ME distributions we always use the double capital PH to refer to PHase
distributions only.

88 3.2 Matrix Exponential Distributions

who has studied them extensively. On the other hand, there is a larger class of
pdfs for which the conditions may not hold, yet still have a matrix representa-
tion. In fact, any pdf that has a rational Laplace transform (RLT) also has a
matrix representation [Lipsky-Ram85]. Such functions are sometimes called
Kendall distributions [Kendall64], with symbol, Km (m is the number
of phases), and their representations are often referred as Coxian servers
[Cox55], [Lipsky-Fang86], with symbol Cm. We will not use those notations
further.

An interesting and mathematically important point of view is to start
with a representation and see if it corresponds to a true pdf. This and related
questions are discussed in great detail in the literature, so we only summarize
here. By a matrix representation of some distribution function, we mean
a vector-matrix pair 〈〈〈p , B 〉〉〉 (or equivalently, 〈〈〈p , V 〉〉〉, because B = V−1)
which can be used in (3.1.7) to (3.1.10), and thus generates that function.
This much we know. As long as B is finite-dimensional (as is always the case
here unless we say otherwise), B∗(s) as defined in (3.1.10) will always be a
ratio of two polynomials, and b(t), from(3.1.7d), will always be a sum of terms
of the form [fn(x)e−μx], where fn is a polynomial of degree n, and �(μ) > 0.
Furthermore, if all the eigenvalues of B have positive real parts, then b(t) is
integrable and integrates to 1. The critical question remains as to whether
b(t) is a pdf [i.e., is it true that b(t) ≥ 0 for all real t > 0?]. At present, there
is no way one can look at 〈〈〈p , B 〉〉〉, or B∗(s) to answer this. The only sure way
that it can be done is to examine b(t) for all relevant t.

We first describe the simple and well-known Erlangian [Erlang17] and
hyperexponential distributions. We then introduce several useful and inter-
esting distributions, including one with phases having complex service rates.
We then introduce a canonical form for representations, namely Erlangians
in parallel, sometimes with complex parameters. It turns out (see Section
3.4) that every representation is equivalent to one of these. Furthermore, the
canonical representation is of minimal dimension.

3.2.1 Commonly Used Distributions

Before we look at the general classes of ME distributions, we discuss the two
most commonly used, overused, and abused types. The reader was already
introduced to their simplest nontrivial representatives in the exercises, but it
pays to discuss them in some depth.

3.2.1.1 Erlangian Distributions

The Erlangian-m distribution [for which we use the symbol Em(t;μ)] describes
the time it takes for a customer to be served by m identical exponential servers,
one at a time (or one server exactly m times). Formally, let Xi be the random
variable representing the time it takes for a customer to be served by the i-th
server, with pdf, μe−μt (same μ for each server). Let Yi be the total time it
takes for the customer to be served by i servers (i.e., Yi = X1 +X2 + · · ·+Xi).
Obviously Y1 = X1, so its pdf is also E1(t;μ) := μe−μt. The pdf for Y2 is the

3 M. E. Functions 89

convolution of X1 with X2. That is,

E2(t;μ) :=
∫ t

o

bX1(s) bX2(t− s) ds =
∫ t

o

μe−μsμe−μ(t−s)ds

= μ2e−μt

∫ t

o

ds = μ(μt)e−μt.

We deliberately introduced the notation bXi
(t) to represent the pdfs of the

Xi, even though in this case they are the same exponential function. Then by
the definition of the Erlangians, we can say that bYi

(t) = Ei(t;μ). It is well
known in general that

bYm
(t) =

∫ t

o

bYm−1(s)bXm
(t− s)ds,

which gives us, for exponentials (provable by induction),

Em(t;μ) :=
∫ t

o

Em−1(s;μ)μe−μ(t−s)ds = μ
(μt)m−1

(m− 1)!
e−μt. (3.2.1a)

The n-th moment for the Erlangian-m† is known from elementary calculus to
be

EEE [Y n
m] =

∫ ∞

o

tn Em(t;μ) dt =
(n + m− 1)!
μn(m− 1)!

· (3.2.1b)

In particular, the first two moments are

EEE[Ym] =
m

μ
, and EEE[Y 2

m] =
m2 + m

μ2
,

with a variance of
σ2

m := EEE[Y 2
m]− (EEE[Ym])2 =

m

μ2
,

giving a squared coefficient of variation of

C2
m =

σ2
m

(EEE[Ym])2
=

1
m
· (3.2.1c)

For completeness and for future reference we also evaluate the Laplace
transform for the Erlangian-m distribution. It is well known that the Laplace
transform distribution of the sum of two random variables is the product of
the Laplace transforms of the two distributions. That is, if Z = X + Y , then

B∗
Z(s) = B∗

X(s)B∗
Y (s).

The Laplace transform for the exponential distribution is simply:

B∗
Y1

(s) =
∫ ∞

o

E1(t; μ)e−st dt =
∫ ∞

o

μe−μt e−st dt =
μ

s + μ
·

†Observe that we use the italic E for the ”Erlangian” pdf and a fancy EEE for the ”EEExpected
value” symbol.

90 3.2 Matrix Exponential Distributions

Figure 3.2.1: Subsystem containing mmm phases arranged into a string.
Each phase has completion rate μ. A customer, upon entering, always goes to
phase m. When finished there he goes to phase m − 1, and so on until phase 1,
after which he leaves. The density function for this excursion is the Erlangian-m,
Em(t; μ), as given in (3.2.1a). Note that the phase numbers are in reverse order.)

It then follows, either by direct integration, or by use of the above product
theorem, that

B∗
Ym

(s) =
∫ ∞

o

Em(t, μ)e−st dt =
(

μ

s + μ

)m

· (3.2.1d)

We make three trivial observations before moving on. The Erlangian-1 is an
exponential distribution; only two parameters (μ and m) need be specified,
and; all other Erlangians have C2

v < 1.
There is a natural extension of this distribution, the gamma distribu-

tion, where m can take on noninteger as well as integer values. The gamma
density function is defined in [AbramowitzStegun64] as

g(x|α;μ) := μ
(μx)α−1

Γ(α)
e−μx, (3.2.2a)

where Γ(α) is the gamma function, defined by

Γ(α + 1) :=
∫ ∞

o

xα e−x dx. (3.2.2b)

By integrating by parts, it is easy to see that Γ(α + 1) = αΓ(α). Also,

EEE[X�] =
Γ(� + α)
μ� Γ(α)

(3.2.2c)

Furthermore, if α = m, a positive integer, then Γ(m + 1) = m!, and from
(3.2.1a)

g(x|m;μ) = Em(x;μ).

Although the nonintegral gamma distributions have awkward mathemat-
ical properties at t = 0 (try to find their derivatives there), they are used
by many researchers because any coefficient of variation less than 1 can be
fit by these. We do not use them, because they cannot be represented by
finite-dimensional matrices. Besides, we have other ways to fit any C2

v .

3 M. E. Functions 91

From our own description, Erlangian distributions should be generated by
the subsystem that looks like Figure 3.2.1. Since this is merely a representation
of a distribution, we change our terminology for each component from server
to phase. Remember, a phase is always has an exponential distribution, with
a completion rate that may be a complex number, but its real part is always
positive. For Erlangian-m distributions, all the phases have the same μ, so
the completion rate matrix is the m-dimensional matrix satisfying M = μI.
The transition matrix is given by the following.

P =

⎡
⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
: : : · · · : :
0 0 0 · · · 0 1
0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

m rows and columns. (3.2.3a)

Note that, as in the figure, the matrix elements are in reverse order from the
formulas. That is, the 1 in the second column of the first row corresponds to
the customer going from phase m to m − 1. This convention is adhered to
whenever we deal with Erlangians.

Next define the auxiliary matrix

L := I−P =

⎡
⎢⎢⎢⎢⎣

1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
: : : · · · : :
0 0 0 · · · 1 −1
0 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎦ · (3.2.3b)

The completion rate matrix for the process is

B = M(I−P) = μIL = μL,

with service time matrix
V = B−1 =

1
μ
L−1

and m-dimensional entrance vector

p = [1 0 0 · · · 0].

One can verify directly that the inverse of L is given by

L−1 =

⎡
⎢⎢⎢⎢⎣

1 1 1 · · · 1 1
0 1 1 · · · 1 1
: : : · · · : :
0 0 0 · · · 1 1
0 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎦ · (3.2.3c)

From the well-known summation rule of binomial coefficients,(
n + m + 1

m

)
=

m∑
j=0

(
n + j

j

)
, (3.2.4a)

92 3.2 Matrix Exponential Distributions

it follows that [
L−n

]
ij

=
(

n + j − i− 1
j − i

)
for i ≤ j. (3.2.4b)

For instance (if you are concerned, just try a few matrix multiplications),

L−3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 3 6 10 15 · · ·
0 1 3 6 10 · · ·
0 0 1 3 6 · · ·
0 0 0 1 3 · · ·
0 0 0 0 1 · · ·
: : : : : :

⎤
⎥⎥⎥⎥⎥⎥⎦
·

Note that all these matrices are triangular, in that every element below
the diagonal is 0 (e.g., Lij = 0 if i > j). If P (or B or V) is of this form, this
is referred to as a feedforward network . In any case, it can be shown that
these matrices reproduce Equations (3.2.1) by purely algebraic manipulation
of the equations in Theorem 3.1.1. Indeed, 〈〈〈p , B 〉〉〉 as given here is a faithful
representation of the Erlangian-m pdf.

Example 3.2.1: The values of Erlangians for several values of m have

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

E20(t)

E10(t)

E5(t)

E4(t)

E3(t)
E2(t)

E1(t) = e−t

Service time, t

D
en

si
ty

fu
nc

ti
on

,
E

m
(t

;m
)

Figure 3.2.2: The pdfs for the Erlangian distributions Em(x; m)Em(x; m)Em(x; m) [see
(3.2.1a)], with parameter m = 1m = 1m = 1, 2, 3, 4, 5, 10, and 20. All have a mean
of 1. They all peak at a value less than their means, namely 1 − 1/m, and get
narrower with increasing m, agreeing with the fact that C2

v = 1/m also gets
smaller.

been calculated and plotted in Figure 3.2.2. These all have a mean of 1 (we

3 M. E. Functions 93

set μ = m) and, except for the exponential, are 0 at t = 0. Consistent with
their values for C2

v , these functions get narrower and narrower with increasing
m (σm = 1/

√
m). In fact, the Dirac delta function δ(x) [see (5.1.12a) and

following] can be defined by the limit

δ(t− T) := lim
m→∞Em(t;m/T) (3.2.5a)

and is a representation of the deterministic distribution, the one that
always gives a service time of T. In fact one can use the same matrices to
represent the Uniform distribution (with r.v. U) with pdf

bU (x) =
{

1/2 for 0 < x < 2T
0 otherwise , (3.2.5b)

having EEE[U] = T . This is done by replacing p = [1 0 0 · · · 0] with
p = [1 1 1 · · · 1]/m. This is discussed further below, and in Exercise 3.5.8.�

The representation as given in Figure 3.2.1 always has the customer start-
ing at phase m. Suppose instead, that he starts at phase j with proba-
bility pj , where

∑m
j=i pj = 1. In other words, the entrance vector is p =

[pm, pm−1, . . . , p1], where pε′ε′ε′ = 1. Then the pdf for such a process is:

b(t) =
m∑

j=1

pj Ej(t; μ) = μ e−μt

⎡
⎣ m∑

j=1

pj
(μ t)j

(j − 1)!

⎤
⎦ = f(t) e−μt. (3.2.6a)

This then, tells us that any polynomial multiplying an exponential function
e−μt can be written as a sum of Ej pdfs with parameter μ. The constraint
that pε′ε′ε′ = 1 is equivalent to ∫ ∞

o

b(t) dt = 1.

The condition that pi ≥ 0 guarantees that b(t) ≥ 0 ∀ t ≥ 0.
It easily follows from (3.2.1d) that the Laplace transform is

B∗(s) =
∫ ∞

o

b(t) e−st dt =
m∑

j=1

pj

(
μ

s + μ

)j

=
q1(s)

(s + μ)m
. (3.2.6b)

The rightmost term comes from combining fractions, and q1(s) is a polynomial
of degree less than m.

We know from Equations (3.2.1) that Em(t; μ) gives C2
m = 1/m. But we

can get other values of C2
v between 1/m and 1 by varying the pjs in (3.2.6a).

In particular, the reliability function,

R(t) = (1 + pμt)e−μt

can give any value for C2
v between 1/2 and 1 by varying 0 ≤ p ≤ 1. Obviously,

for p = 1, C2
v = 1/2, whereas for p = 0, C2

v = 1. This is considered further in
the following exercise.

94 3.2 Matrix Exponential Distributions

Exercise 3.2.1: Give algebraic expressions for Ψ [V] and Ψ
[
V2
]

in
terms of p and μ, where

p = [p (1− p)], M = μI,

and P is given in (3.2.3a) for m = 2. Show that this produces the relia-
bility function given by the equation just before this exercise. Express
p and μ in terms of EEE[X] and C2

v . In particular, show that

p =
1− C2

v +
√

2(1− C2
v)

1 + C2
v

·

Show by direct substitution that this gives the correct values for p when
C2

v = 1/2 and 1.

We have one last comment concerning Erlangians. The matrix L from
(3.2.3b) as well as all its powers, including its inverse, is tridiagonal, with all
its diagonal elements being equal (Lii = 1). Therefore, all m of its eigenvalues
are equal to 1, but interestingly enough, it only has one left- and one right-
eigenvector. Thus, L is called a defective matrix. In general, if the number
of pairs of eigenvectors is less than the dimension of a matrix, then the matrix
is defective. This can only happen if at least one eigenvalue is multiple valued
(as is the case here), because every eigenvalue must have at least one pair of
eigenvectors.

3.2.1.2 Hyperexponential Distributions

The other widely used class of functions is the family of hyperexponential
distributions with density functions of the form

hm(t) := p1[μ1e
−μ1t] + p2[μ2e

−μ2t] + · · ·+ pm[μme−μmt]

=
m∑

j=1

pj [μj e−μjt], (3.2.7a)

and reliability function,

Rm(t) :=
m∑

j=1

pj e−μjt, (3.2.7b)

where μj and pj > 0 are real, and
∑m

j=1 pj = 1. We can assume without loss
of generality that the exponents [μj] are all distinct. Otherwise, we could com-
bine two equal ones together. Also, we can assume that pj
= 0∀j. Otherwise
we could just throw that term away. In both cases, we just make m smaller.
With these conditions we can say that for m ≥ 1, it follows that C2

v ≥ 1.
C2

v = 1 only when all the μs become equal, reducing to h1(t), the exponential

3 M. E. Functions 95

distribution. Let Zm be the random variable described by the distribution
hm(t); then its moments are

EEE[Zn
m] = n!

m∑
j=1

pj

μn
j

, (3.2.7c)

and its Laplace transform is

B∗
Zm

(s) =
m∑

j=1

pj
μ j

μ j + s
=

q1(s)
q2(s)

, (3.2.7d)

where
q2(s) = (μ1 + s)(μ2 + s) · · · (μ j + s) · · · (μm + s)

is a polynomial of degree m, and q1(s) is a polynomial of degree m− 1. When
a function has a Laplace transform that is a ratio of polynomials we say it has
a Rational Laplace Transform (RLT). Note that (3.2.6b) is of the same
form. In fact, all ME distributions are RLT, and all RLT functions have an
ME representation.

The Hm distributions have an obvious representation. A customer enters
a subsystem, and with probability pj goes to phase j, which has a completion
rate of μ j . When finished, he leaves. Then Mjj = μj , P = O, and p is the
entrance vector whose j-th component is pj . From this it follows that B = M
(pretty simple). It is trivial to show that this is a faithful representation of
the hms. Also, q2(−s) is the characteristic function for B. That is,

q2(s) = Det[B + sI].

We show later that this is true for the minimal representation of all ME
distributions.

Hyperexponential Distributions with Two States

The family of hyperexponentials is so rich in parameters that one is usually
left in a quandary as to what values to give them. Even the h2 function has
three free parameters (e.g., p1, μ1, and μ2), with the following representation:

p = [p1 p2], B =
[

μ1 0
0 μ2

]
, and V =

[
T1 0
0 T2

]
(3.2.8a)

where Ti := 1/μ i. After a specific EEE[Z2] and σ2
2 have been chosen, one more

condition is still needed. One should try to fix the third parameter based on the
physical system being examined. One possibility is to use the third moment.
Assuming that the first three moments are known, one can find T1, T2, and
p1 by solving the simultaneous equations:

x̄ = EEE[Z2] = p1 T1 + p2 T2

EEE[Z2
2] = 2(p1 T 2

1 + p2 T 2
2)

EEE[Z3
2] = 6(p1 T 3

1 + p2 T 3
2),

(3.2.8b)

96 3.2 Matrix Exponential Distributions

remembering that p1 + p2 = 1. An alternative to using EEE[Z3
2] could be to fit

the value of the density function at 0. That is, use

b(0) = p1μ1 + p2μ2. (3.2.8c)

In any case, recalling that σ2 = EEE[Z2
2]− (EEE[Z2])2, and manipulating the first

two of the above equations, it follows that

C2
v =

σ2

x̄2
= 1 + 2 p1 p2

(
T1 − T2

x̄

)2

· (3.2.8d)

Clearly, C2
v ≥ 1 as long as p1, p2 ≥ 0. C2

v = 1 only if p1 = 0, or p2 = 0, or
T1 = T2. In all such cases, h2 reduces to the exponential distribution.

Another popular choice for parametric studies is to express T1 and T2 in
terms of the first two moments and p1. Under certain conditions there are two
choices. First let

γ :=
C2

v − 1
2

.

Then (p1 + p2 = 1)

for T2 < T1

⎧⎪⎪⎨
⎪⎪⎩

T1 = x̄
[
1 +
√

p2 γ / p1

]

T2 = x̄
[
1−√p1 γ / p2

]
⎫⎪⎪⎬
⎪⎪⎭ (3.2.8e)

but only if p1 γ < p2; that is,p1 < 2/(C2
v +1) Violation of this inequality yields

unphysical parameters (if p1γ > p2 then T2 < 0). Alternatively,

for T1 < T2

⎧⎪⎪⎨
⎪⎪⎩

T1 = x̄
[
1−√p2 γ / p1

]

T2 = x̄
[
1 +
√

p1 γ / p2

]
⎫⎪⎪⎬
⎪⎪⎭ (3.2.8f)

but only if p2 γ < p1; that is, p1 > (C2
v − 1)/(C2

v + 1). Only for 1 < C2
v < 3

(or equivalently, 0 < γ < 1) do both sets of equations apply.
One interesting way to pick p1 is to make the two phases contribute equally

to the mean. That is, let p1 T1 = p2 T2 = x̄/2. It then follows that

p1|2 =
1
2

(
1±
√

γ

(1 + γ)

)
,

and
T1|2 = x̄

[
1 + γ ∓

√
γ(1 + γ)

]
.

Obviously, EEE[Z2
2] = x̄2(1 + C2

v), and

EEE[Z3
2] = 3x̄3 C2

v (C2
v + 1).

One advantage of this choice for parameterization is that it is valid for all
1 ≤ C2

v <∞.

3 M. E. Functions 97

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C2
v = 100

C2
v = 10

C2
v = 5

C2
v = 2

C2
v = 1

Service time, x

D
en

si
ty

fu
nc

ti
on

,
H

2
(x

)

Figure 3.2.3: The density functions for a family of hyperexponen-
tial distributions with two phases, all with a mean value of 1, with
C2

v = 1, 2, 5, 10, and 100C2
v = 1, 2, 5, 10, and 100C2
v = 1, 2, 5, 10, and 100, respectively. The curve for C2

v = 1 is the exponen-
tial distribution. The third condition chosen for this three-parameter family was
2αC2

v = 1+α2 (α = μ2/μ1) for no good reason, except that we had to do some-
thing. Although the graph does not show it, all the curves cross twice, so they
asymptotically are in the same sequence as they were at x = 0, ordered according
to their value of C2

v .

Example 3.2.2: The hyperexponential distribution h2(x), with mean of
1, has been calculated and plotted in Figure 3.2.3 for several different values
for C2

v . For mathematical convenience we have let α2 − 2αC2
v + 1 = 0, where

α = μ2/μ1. This yielded third moments EEE[X3], with values of 6.0, 18.0, 90.0,
330.0, and 30300.0, respectively. The pdfs themselves are as innocent looking
as their representations, but as we show in Chapters 4 and 5, because they can
have any value for the coefficient of variation (as long as it is greater than 1),
they can disastrously affect mean system times. All true hyperexponentials
are strictly greater than 0 at x = 0 and decay smoothly thereafter. Note that
with this family, the larger C2

v , the bigger h(0) is. But as t gets larger, they
all cross (not necessarily at the same place), and in the intermediate region
they are in reverse order. An important aspect of these curves, which is shown
clearly in Figure 3.2.4, is that they cross over once more, so for very large t
they are in the same order in which they began.

The curves in Figure 3.2.4 display log[h2(x)] versus x, and it is not hard
to show that

lim
x→∞ log[h2(x)] = log(p2μ2)− μ2x,

so each curve approaches a straight line with slope −μ2. The higher mo-
ments of these distributions are completely dominated by this tail behavior. �

98 3.2 Matrix Exponential Distributions

0 5 10 15 20 25 30
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

C2
v = 100

C2
v = 10

C2
v = 5

C2
v = 2

C2
v = 1

Service time, x

D
en

si
ty

fu
nc

ti
on

,
H

2
(x

)

Figure 3.2.4: The same curves as Figure 3.2.3 but now the dependent
variable is log[h2(x|C2

v)], thus showing some of the second crossings.
The exponential function is a straight line on this graph. Also notice that the
curves for C2

v > 1 change from one straight line to another. That is because
μ1 � μ2, and p1 � p2, so they all start off (small x) with slope −μ1. The second
term doesn’t contribute until μ1x � 1. The asymptotic slopes of all the curves
are −μ2.

We are reluctant to make general claims about the behavior of functions
beyond the significance of their second moments.

Distributions Coming from Singular B or V

An interesting special case of h2 functions occurs when p1γ = 1− p1, for then
T1 = x̄/p1 and T2 = 0. For x > 0

lim
T2→0

e−x/T2/T2 = lim
μ2→∞μ2 e−μ2 x = 0.

In which case, the density function reduces to

b(x) =
p1

T1
e−x/T1 for x > 0

and C2
v = (2− p1)/p1. So, depending on what is picked for p1, C2

v can range
anywhere from 1 to ∞. Because of the simple form for b(x), this is sometimes
called a generalized exponential function. Gupta et.al [Guptaetal07]
refer to it as a degenerate hyperexponential. But it really is an exponential
with an initial impulse, because

R(x) =
∫ ∞

x

b(t) dt = p1 e−x/T1 .

3 M. E. Functions 99

Therefore, R(0+) = p1 < 1. In other words, there is a finite probability that
the event will take 0 time. That is, the pdf is more appropriately written as

b(x) = p2 δ(x) +
p1

T1
e−x/T1 ,

where δ(x) is the Dirac δ function introduced in Example 3.2.1. From (3.2.8a),
the service rate matrix B, no longer exists (because μ2 →∞). Even so, matrix
methods can still be used as long as all measurable quantities can be expressed
in terms of the service time matrix,

V =

⎡
⎣ T1 0

0 0

⎤
⎦ .

Clearly, V no longer has an inverse, but (3.1.9) and the rightmost term in
(3.1.10) are still valid. This generalizes to any distribution. That is, if V is not
invertible, it must have a 0 eigenvalue with corresponding state with 0 service
time (multiple 0 eigenvalues can be collapsed to 1 state). The probability of
going to this state is the size of the initial impulse.

We have seen that V has a meaning even when it has no inverse. The case
where B has no inverse also has a meaning. In this case we have what Feller
[Feller71] calls a defective distribution, in that

lim
x→∞R(x) = lim

x→∞PPPr(X > x) > 0.

That is, there is a finite probability that the process will never end, so it
has a defective probability measure. (Note that defective distributions
and defective matrices are unrelated concepts. Defective distributions may
have nondefective representations, and nondefective distributions may have
defective representations.) In this case,

R(x) = p + (1− p)Rd(x),

where Rd(x) has all the properties of a reliability function; that is, it is mono-
tonic, nonincreasing, Rd(0) = 1 and Rd(∞) = 0. In this case, (3.1.7d),
(3.1.8b), and (3.1.10) (the expression with B in it) are still valid. Only the
moments are meaningless.

Exercise 3.2.2: Show by direct integration and use of (3.1.9) and
(3.1.10) that b(x) and V produce the same moments and Laplace
transform.

Distribution functions with impulse at x = 0 are used in Section 4.5.4,
and fully discussed in Section 5.1.3. Researchers who use this function as a
simple way to get a large variance are introducing a highly singular behavior
that may not be reflected in the actual system being investigated.

Often, abuse comes in when the functional form is picked for mathematical
convenience, which may badly distort physical reality. We may be guilty of
that in the various examples given in this chapter, but we are not looking at
any particular system at present, so there should be no harm.

100 3.2 Matrix Exponential Distributions

3.2.2 Sums of Erlangian Functions

We now generalize the Erlangian functions and hyperexponential functions to
yield a class of functions that is equivalent to all possible ME functions, and
are in fact the matrices of smallest dimension. This is proven in Section 3.4,
but for now, consider functions of the form

b(t) =
K∑

k=1

fk(t)e−μkt with �(μk) > 0, (3.2.9a)

where fk(t) is a polynomial of degree mk − 1, and mk can be any positive
integer. That is, b(t) is a sum of polynomials times exponentials, where

fk(t) =
mk−1∑
j=0

ajk tj .

We give a different look to the equation by introducing the Erlangian functions
of order j as given in (3.2.1a). Then the expression for b(t) can be rewritten
in the form

b(t) =
K∑

k=1

ak

⎛
⎝mk∑

j=1

p
(k)
j Ej(t;μk)

⎞
⎠ . (3.2.9b)

We have split ajk into two terms such that

mk∑
j=1

p
(k)
j = 1 for 1 ≤ k ≤ K.

Furthermore, because ∫ ∞

o

b(t)dt = 1,

we must also have
∑K

k=1 ak = 1. The number of terms all told is m =∑K
k=1 mk. As you might expect, m turns out to be the dimension of the rep-

resentation we are constructing. In general, from (3.2.1b) we can write down
the moments of b(t) in terms of the binomial coefficients. If T is the random
variable described by this process, we can write, with the aid of (3.2.1b) and
(3.2.8b),

EEE[Tn] :=
∫ ∞

o

tn b(t) dt = n!
K∑

k=1

ak

μn
k

⎡
⎣mk∑

j=1

(
n + j − 1

j − 1

)
p
(k)
j

⎤
⎦ · (3.2.10)

The only requirement for these integrals to exist is that the real part of each
μk be positive, which we have already assumed. We can even let the ak and
p
(k)
n be complex (negative or positive) numbers, as long as they appear in

complex conjugate pairs to guarantee that b(t) and its moments are real (this
is a subsidiary requirement, which we assume here).

3 M. E. Functions 101

Figure 3.2.5: Subsystem containing mmm exponential phases. The phases
are arranged into K strings, where string k has mk identical phases in tandem,
each with completion rate μk. A customer can go to any phase (with probability

akp
(k)
j), but then must proceed along that string until the end, and then leave.

Note that phase 1 for each string is the last one before leaving. The probability
density function for this excursion is b(t) as given in (3.2.9b). ak and p

(k)
mk are

assumed to be nonzero, otherwise the corresponding phases can be eliminated,
yielding a smaller representation. Every representation is equivalent to one and
only one of these, whereak, μk, and pk are allowed to be complex, if necessary.
No equivalent representation can have fewer dimensions.

Next we give a pseudophysical interpretation to b(t). Look at Figure 3.2.5.
This exactly describes the expression for b(t). A customer enters a subsystem
and goes to string k (made up of mk identical phases with completion rate
μk) with probability ak. He then goes directly to phase j (counting from the
departing end) of that string with probability p

(k)
j , and proceeds to the end,

being served en route by each of the j phases. The customer then leaves.
We now construct a matrix representation for this process. The transition
matrix for a single line Pk, is an mk−dimensional matrix of form given in
(3.2.3a): The completion rate matrix for the k-th string is also of dimension
mk, and because all the completion rates for that string are equal, it is simply
Mk := μkIk. Next let Lk be the square matrix of dimension mk of the form in
(3.2.3b). The m-dimensional completion and transition matrices for the entire
process can be written as

P :=

⎡
⎢⎢⎢⎢⎣

P1 0 0 · · · 0
0 P2 0 · · · 0
: : : · · · :
0 0 0 · · · 0
0 0 0 · · · PK

⎤
⎥⎥⎥⎥⎦; M :=

⎡
⎢⎢⎢⎢⎣

M1 0 0 · · · 0
0 M2 0 · · · 0
: : : · · · :
0 0 0 · · · 0
0 0 0 · · · MK

⎤
⎥⎥⎥⎥⎦ ,

where each entry is an appropriately sized and valued matrix (e.g., 0 is a
matrix of all 0’s). The entrance or initial vector for the process is given by

102 3.2 Matrix Exponential Distributions

the direct sum (the components of the vectors are concatenated to produce
a single vector with as many components as all the others put together):

p := a1p(1) ⊕ a2p(2) ⊕ · · · ⊕ aKp(K), (3.2.11a)

where p(k) = [p(k)
mk p

(k)
mk−1 · · · p

(k)
2 p

(k)
1], and p

(k)
mk
= 0. See the comments

after (3.2.3a) concerning the reverse order of the components.
We next construct the m-dimensional service rate matrix for this subsys-

tem:

B := M(I−P) =

⎡
⎢⎢⎢⎢⎣

μ1L1 0 0 · · · 0
0 μ2L2 0 · · · 0
: : : · · · :
0 0 0 · · · 0
0 0 0 · · · μKLK

⎤
⎥⎥⎥⎥⎦ . (3.2.11b)

Because all the elements below the diagonal are zero (remember, the L matri-
ces are triangular), we see that μk is an eigenvalue of B, with multiplicity mk.
We know this because there is an obvious theorem in matrix theory which
states that the eigenvalues of a triangular matrix are its diagonal elements.

If none of the μ’s is equal to 0, we can let

V = B−1, (3.2.11c)

where V looks just like B with each μkLk replaced by (1/μk)L−1
k .

Our purpose now is to show that the important properties of matrix repre-
sentations are valid for purely algebraic reasons. To do this, first recall (3.2.4).
Then look at the scalar reduction of the matrices by multiplying both sides
of L−n

k with the vectors p(k) and ε′kε
′
kε
′
k to get

p(k)L−n
k ε′kε

′
kε
′
k =

mk∑
j=1

p
(k)
j

(
n + j − 1

j − 1

)
. (3.2.12)

This expression is identical to the term in the brackets in (3.2.10).
Now when we put (3.2.10) to (3.2.12) together and recall the definition of

Ψ [·], we get
EEE[Tn] = n!Ψ [Vn] .

Note that this relation is valid even if b(t) is not a pdf. It only requires that
the moments exist (i.e., the moments must be finite). Because we are dealing
with finite sums of terms, the moments exist if and only if �(μk) > 0. No
probability assumptions are required for the component parts.

By algebraic manipulations and arguments similar to the preceding para-
graph, noting that (I + sV)−1 is a block diagonal and triangular matrix, we
can show that the Laplace transform of b(t) satisfies the following.

B∗(s) :=
∫ ∞

o

e−st b(t) dt = Ψ
[
(I+sV)−1

]
=

q2(s)
q1(s)

.

3 M. E. Functions 103

But from (3.2.6b) and (3.2.7d) we have (after combining fractions)

B∗(s) =
K∑

k=1

ak

mk∑
j=1

p
(k)
j

(
μk

s + μk

)j

=
q2(s)
q1(s)

. (3.2.13a)

Clearly, q1(s) and q2(s) have no common roots, q1(s) is a polynomial of degree
m, and q2(s) is of degree m2 < m. In fact, from (3.2.13a) it must follow that

q1(s) = (s + μ1)m1 (s + μ2)m2 · · · (s + μK)mK . (3.2.13b)

The relation between Ψ
[
(I + sV)−1

]
and q2(s)/q1(s) is valid even if �(μk) < 0

for some k. In other words, this equation is an algebraic relation among V,
p, and the polynomials, qi(s). It reduces to the Laplace transform when all
the μks have positive real parts.

Let φ(y) be the characteristic polynomial of B. Then from (3.2.11b), φ(y)
has K distinct roots, each with multiplicity mk (1 ≤ k ≤ K ≤ m), that is,

φ(y) = Det[yI−B] = (y − μ1)m1(y − μ2)m2 · · · (y − μK)mK , (3.2.13c)

where 1 ≤ mk ≤ m and
∑K

k=1 mk = m. Comparing (3.2.13b) and (3.2.13c),
we get the important relation:

q1(s) = (−1)m φ(−s). (3.2.13d)

If K = m the distribution is a pure hyperexponential, but if K < m, or
equivalently, if mk > 1 for at least one k, then B is a defective matrix. We
elaborate on this further in Section 3.4.

The third relationship that can be proven by direct algebraic manipulation
is the following:

b(t) = Ψ [B exp(−tB)] :=
∞∑

n=0

(−t)n

n!
Ψ
[
Bn+1

]
. (3.2.13e)

Whereas (I+sV)−1 has a direct matrix meaning, exp(−tB) is only defined in
terms of its Maclaurin series expansion (as given in the rightmost expression of
the equation above). However, the exponential function has an infinite radius
of convergence, therefore this formula is also valid for all B. That is why it
is so tempting to call this class of functions matrix exponential . We have now
shown that for functions of the form of Figure 3.2.5 our wonderful formulas
from Theorem 3.1.1, namely,

b(t) = Ψ [exp(−tB)] , (3.2.14a)

B∗(s) := Ψ
[
(I + sV)−1

]
=

q2(s)
q1(s)

, (3.2.14b)

where
q1(s) = (−1)m φ(−s) (3.2.14c)

104 3.2 Matrix Exponential Distributions

and (if the moments exist)

EEE [Tn] = n!Ψ [Vn] (3.2.14d)

are purely matrix identities, having no dependence on probability laws. We
define the vector-matrix pair 〈〈〈p , B 〉〉〉 (or 〈〈〈p , V 〉〉〉) to be a faithful repre-
sentation of b(t) if these equations hold.

So, in summary, every distribution of the form in Figure 3.2.5 has a faithful
matrix exponential representation as given by Equations (3.2.11). Later we
show that this is true for all 〈〈〈p , B 〉〉〉.

3.2.3 Other Examples of ME Functions

The class of ME functions described in the previous section are as general as
one can get, even if complex probabilities and service rates are allowed. But
before proving this assertion we discuss several specific representations. These
will be used in succeeding chapters to examine the dependence of performance
on variation of distributions. First we provide a definition for describing func-
tions that “look alike”.

Definition 3.2.1
Two random variables T1 and T2 have distributions with the same
shape, or of the same type if T1 = cT2, or equivalently, if their PDFs
satisfy:

F1(t) = F2(ct), where c > 0. (3.2.15a)

We also say that “F1(t) and F2(t) are similar distributions if they
have the same shape.” It follows that f1(t) = c f2(ct), and

EEE[T �
2] = c�

EEE[T �
1] ∀ � ≥ 0. (3.2.15b)

In Definition 3.4.1 of Section 3.4.2 we introduce the idea of equiva-
lent representations. Anticipating that, we can say the following.
Let Fi(t), i = 1, 2 be ME distributions that have the same shape; that
is, they satisfy (3.2.15a). Then their representations satisfy:

〈〈〈p1, B1 〉〉〉 ≡ 〈〈〈p2, cB2 〉〉〉. (3.2.15c)

In other words, 〈〈〈p2, cB2 〉〉〉 is a faithful representation of F1(t), and
〈〈〈p1, c−1B1 〉〉〉 is a faithful representation of F2(t).

If T1 and T2 are ME, then (3.2.15a), (3.2.15b), and (3.2.15c) are equiv-
alent in that each can be used to prove the others. Even in cases where
moments and representations do not exist (we show a few in what
follows), (3.2.15a) still is meaningful.

Functions that have the same shape form an equivalence class. We can
write

F1(·) ∼ F2(·)
if F1 and F2 have the same shape, and ‘∼’ is an equivalence relation
in that it is symmetric, transitive, and reflexive.

3 M. E. Functions 105

[Note: Feller [Feller71] says that “two distributions F1 and F2, are
of the same type if

F1(x) = F2(ax + b),

or equivalently, if their random variables satisfy

X1 = aX2 + b.

He was concerned with distributions that could be greater than 0 for
all values of −∞ < x < ∞. In such cases, b allows the two func-
tions to align their origins, often to let EEE[X1] = 0. We, however, are
only concerned with distributions over the range 0 ≤ x < ∞; that is,
Fi(x) = 0 for x < 0. In other words, we are willing to scale the means,
but not shift them. For example, we would not consider the uniform
distribution for x ∈ [0, 1] to be similar to the uniform distribution for
x ∈ [1, 2], whereas Feller, by setting b = 1 would say they are the same
type. In any case, the two ideas are the same as long as b = 0.] ���

From this definition then, all exponential distributions have the same shape.
Also, all Erlangians of the same degree have the same shape. But not all
hyperexponential distributions have the same shape, even if they have the
same degree.

3.2.3.1 A 4-State Hyper-Erlangian

In various modeling applications, the class of Erlangian distributions is used
when studying systems where it is expected that C2

v < 1, whereas hyperex-
ponentials are used when it is expected that C2

v > 1. But both classes have
properties that may be unrealistic in certain applications. For instance, we
show in Chapter 5 that the behavior of a G/M/1 queue depends heavily on
the behavior of b(x) near x = 0. But all Erlangians have the property that
Em(0) = 0 for all m ≥ 2. On the other hand, all true hyperexponentials have
the property that hm(0) > 0. What does one do if the true b(x) has high
variance but is still 0 at x = 0? What if the reverse is true? We show how to
get large variance and still have b(0) = 0 in examining a 4-state representation
made up of two Erlangian-2 distributions in parallel.

Consider the following representation (where as before, Ti = 1/μ i),

p = [p1 0 p2 0], (3.2.16a)

and

B =

⎡
⎢⎢⎣

μ1 −μ1 0 0
0 μ1 0 0
0 0 μ2 −μ2

0 0 0 μ2

⎤
⎥⎥⎦, V =

⎡
⎢⎢⎣

T1 T1 0 0
0 T1 0 0
0 0 T2 T2

0 0 0 T2

⎤
⎥⎥⎦ · (3.2.16b)

This represents two Erlangian-2 functions in parallel (as in Figure 3.2.5),
namely,

b(x) = p1

[
μ1(μ1 x)e−μ1 x

]
+ p2

[
μ2(μ2 x)e−μ2 x

]
, (3.2.16c)

106 3.2 Matrix Exponential Distributions

with the properties, b(0) = 0, and, as we now show, 0.5 ≤ C2
v <∞. In direct

analogy with Equations (3.2.8b) we can write:

x̄ = EEE[Z2] = 2(p1 T1 + p2 T2)

EEE[Z2
2] = 6(p1 T 2

1 + p2 T 2
2)

EEE[Z3
2] = 24(p1 T 3

1 + p2 T 3
2),

(3.2.16d)

which we manipulate to get:

C2
v =

σ2

x̄2
=

1
2

+ 6 p1 p2

(
T1 − T2

x̄

)2

· (3.2.16e)

Clearly, when T1 = T2, C2
v = 1/2. Also, the difference between T1 and T2 can

be made as large as desired, so C2
v is unbounded from above.

Next, we express Ti in terms of the parameters x̄, C2
v , and p1. First let

γ =
2C2

v − 1
3

·

Then

for T2 < T1

⎧⎪⎪⎨
⎪⎪⎩

2T1 = x̄
[
1 +
√

p2 γ / p1

]

2T2 = x̄
[
1−√p1 γ / p2

]
⎫⎪⎪⎬
⎪⎪⎭ (3.2.16f)

but only if p1 γ < p2; that is, p1 < 3/2(C2
v + 1). Alternatively,

for T1 < T2

⎧⎪⎪⎨
⎪⎪⎩

2T1 = x̄
[
1−√p2 γ / p1

]

2T2 = x̄
[
1 +
√

p1 γ / p2

]
⎫⎪⎪⎬
⎪⎪⎭ (3.2.16g)

but only if p2 γ < p1; that is, p1 > (2C2
v−1)/[2(C2

v +1)]. Only for 1/2 < C2
v < 2

(or equivalently, 0 < γ < 1) do both sets of equations apply.
As with the hyperexponential distribution, p1 can be chosen so that the

two Erlangians contribute the same to the mean. That is,

p1 T1 = p2 T2 = x̄/4

p1|2 =
1
2

(
1±
√

γ

1 + γ

)
,

T1|2 =
x̄

2

[
1 + γ ∓

√
γ(1 + γ)

]
,

EEE[Z2
2] = x̄2(1 + C2

v),

and
EEE[Z3

2] =
2
3
x̄3(C2

v + 1)(4C2
v + 1).

3 M. E. Functions 107

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4
C2

v = 100
← C2

v = 10
← C2

v = 5
← C2

v = 2

C2
v = 1

Service time, x

D
en

si
ty

fu
nc

ti
on

,
H

E
2
(x

)

Figure 3.2.6: Density functions for a family of hyper-Erlangian-2
distributions with four phases, as defined by Equations (3.2.16). All have
a mean value of 1, with C2

v = 1, 2, 5, 10, and 100, respectively. The curve
corresponding to C2

v = 1 is the exponential distribution. The third condition was
chosen to have the same EEE[X3] as the hyperexponentials in Figure 3.2.3.

Note that these formulas are valid for all 1/2 ≤ C2
v < ∞, but the third

moments are somewhat different from those of the hyperexponential distribu-
tions.

Example 3.2.3: The density function in (3.2.16c) with x̄ = 1 has been
plotted in Figure 3.2.6 for the same values of C2

v and EEE[X3] as for the hy-
perexponential in Figure 3.2.3. There are several differences between the two
sets of curves despite the fact that they have the same first three moments.
In addition to having b(0) = 0 (except for the exponential curve, which is in-
cluded here for comparison), most of these curves are bimodal. That is, they
have two relative maxima. This cannot be seen on the regular graphs, but are
clear in Figure 3.2.7 in the region T2 � T1.

Clearly, looks can be deceiving. Although these curves look very much
like the Erlangian-2 (but with EEE[X] ≈ 0.5 in Figure 3.2.2), these all have
C2

v > 1, whereas the Erlangian-2 has C2
v = 1/2. These functions do not even

have tails similar to the corresponding ones for the h2(x) functions. They
don’t look alike for small x, and they don’t look alike for large x (different
slopes on the semilog plots), even though they have the same first three
moments. �

In studying various queues in Chapters 4 and 5, we use this class of func-
tions together with the hyperexponentials in order to study how different pdfs
with the same first three moments can affect performance.

108 3.2 Matrix Exponential Distributions

0 1 2 3 4 5 6 7 8
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

C2
v = 100

C2
v = 10

C2
v = 5

C2
v = 2

C2
v = 1

Service time, x

D
en

si
ty

fu
nc

ti
on

,
H

E
2
(x

)

Figure 3.2.7: The same curves as in Figure 3.2.6 except that the
dependent variable is log[HE2(x|C2

v)]. In this form it is seen that for functions
with large C2

v , the curves reach a relative minimum and then rise again before
finally going to 0 as x → ∞. In other words, these functions are bimodal.

3.2.3.2 A Non PHase Distribution

We now present an interesting function, first presented by O’Cinneide
[O’Cinneide91], whose usefulness in queueing theory has not as yet been
demonstrated, but it nonetheless shows that non-PHase distributions exist.

Consider the function:

b(x) = c [1 + a cos(ω x + δ)] e−μ x. (3.2.17a)

Assume that all the constants (c, a, ω, δ, and μ) are real. Then, as long as
μ > 0, the function is integrable over the interval [0, ∞). Furthermore, if
| a | ≤ 1 it follows that b(x) ≥ 0 for all x ≥ 0. Under these conditions, b(x) is
a perfect candidate to be a pdf. Subject to the constraints mentioned above,
the parameters ω, δ, and μ are arbitrary, but c must be picked to satisfy:∫ ∞

o

b(x) dx = 1.

Note that if a = ±1 then b(x) = 0 for an infinite number of values of x.
Neuts [Neuts89] has shown that if a function has n roots, it must have a PH
(all states are real) representation of dimension of at least n. Therefore there
exists no (finite) PHase representation of this b(x). But we now find an ME
(complex) representation with only three states.

If one recalls the calculus, and has a table of integrals available, it is
straightforward, but rather tedious, to perform the integration needed to de-
termine c. However, with the aid of complex analysis, it is possible to rewrite

3 M. E. Functions 109

(3.2.17a) so it has the simple form of a hyperexponential distribution with
three terms. First let i =

√−1, and recall that:

e±i t = cos(t)± i sin(t),

or equivalently,

cos(t) =
ei t + e−i t

2
, and sin(t) =

ei t − e−i t

2 i
·

Then let t = ω x + δ and insert the expression for cos(t) into (3.2.17a) to get

b(x) = c
[
1 +

a

2

(
ei(ω x+δ) + e−i(ω x+δ)

)]
e−μ x.

Multiplying out and regrouping, we get a sum of three terms:

b(x) = p1

[
μ e−μ x

]
+ p2

[
(μ− iω)e−(μ−iω)x

]
+ p3

[
(μ + iω)e−(μ+iω)x

]
,

where

p := [p1 p2 p3] = c

[
1
μ

a eiδ

2(μ− iω)
a e−iδ

2(μ + iω)

]
. (3.2.17b)

This is exactly in the form of (3.2.7a), with the faithful ME representation,
〈〈〈p, B 〉〉〉, where

B =

⎡
⎣ μ 0 0

0 μ− iω 0
0 0 μ + iω

⎤
⎦ · (3.2.17c)

We still must find c, but that is simple enough, because p ε′ε′ε′ = 1. Evaluating
this expression yields:

1
c

=
1
μ

+ a
μ cos(δ)− ω sin(δ)

μ2 + ω2
=

1
μ

+
a cos(δ + θ)√

μ2 + ω2
, (3.2.17d)

where cos θ = μ/
√

μ2 + ω2. Because B is diagonal, it follows that

R(x) := exp(−xB) = e−μ x

⎡
⎣ 1 0 0

0 eiω x 0
0 0 e−iω x

⎤
⎦ ·

From this we can get the reliability function:

R(x) = Ψ[R(x)]

= ce−μ x

[
1
μ

+
a

μ2+ω2
[μ cos(ωx +δ)− ω sin(ω x+δ)]

]
. (3.2.17e)

As is required, this equation satisfies R(0) = 1. One, of course, could get the
same expression by evaluating

∫∞
x

b(x) dx. Try it.

110 3.2 Matrix Exponential Distributions

The service time matrix V, is obvious, and after some work, one can
write down the mean, namely:

EEE[X] = Ψ[V] =
∫ ∞

o

x b(x) dx

=c

[
1
μ2

+
a

(μ2+ω2)2
[2(μ2−ω2)cos(δ) + 4μ ω sin(δ)]

]
. (3.2.17f)

It’s easy enough to write down the general expression for the n-th moment
using (3.2.7c), but it takes some effort to express it as a manifestly real num-
ber. We leave special cases to the following example and exercise.

Example 3.2.4: In examining this function we have selected two extreme
cases. Let a = ±1, δ = 0, and ω = μ = 1. Then

b±(x) :=
2

2± 1
[1± cos(x)]e−x,

and
R±(x) =

1
2± 1

(2± [cos(x)− sin(x)]) e−x.

Both sets of functions are plotted in Figure 3.2.8 together with e−x for com-
parison. On Figure 3.2.9 the y-axis is presented on a log scale. In this mode,
the exponential function shows up as a straight line, and the zeros of b± show
up as downward spikes at x = nπ, even n for b+, and odd n for b−. After
some manipulation, and using (1± i) =

√
2 e±iπ/4, we get the moments:

EEE[Xn
±] =

2n!
2± 1

[
1± 1 + i

4

(
1 + i

2

)n

± 1− i

4

(
1− i

2

)n]

=
2n!

2± 1

[
1±
(

1√
2

)n+1

cos[(n + 1)π/4]

]
.

In particular, for n = 0, this expression is 1. Other parameters are

EEE[X+] =
2
3
; EEE[X2

+] = 1; σ2
+ =

5
9

and C2
+ =

5
4
,

and
EEE[X−] = 2; EEE[X2

−] = 5; σ2
− = 1 and C2

− =
1
4
.

Obviously, this class of functions can yield C2
v both greater than and less

than 1. �

Exercise 3.2.3: Put in all the missing steps in deriving Equations
(3.2.17). Also, redo all of Example 3.2.4, but with δ = π/2. That is,
replace cos(x) with sin(x) in b±(x).

3 M. E. Functions 111

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

e−x

b+(x)
R+(x)

R−(x)

b−(x)

Service time, x

b ±
(x

)
an

d
R

±
(x

)

Figure 3.2.8: Density and reliability functions b±(x) and R±(x)b±(x) and R±(x)b±(x) and R±(x) of
Equations (3.2.17), where a = ±1, δ = 0, and μ = ω = 1. Although b±(x)
increase and decrease an infinite number of times (not visible on this scale), the
R±(x) are monotonically nonincreasing functions of x, as they must be. The
exponential function, e−x, is included for comparison.

3.3 Distributions With Heavy Tails

As might be presumed, and is shown in Section 3.4.2.2, all ME distributions
have exponential tails. The tail refers to the behavior of R(x) when x is
very large. That is, for ME distributions, when x is very large,

R(x)→ c xn e−ax.

In recent years there has been an increasing interest in distributions that are
“not well behaved”. That is, they go to 0 more slowly than ME functions.
Some common terms used are subexponential, heavy-, fat-, or long-tailed dis-
tributions. Loosely they have the property

lim
x→∞

xn e−α x

R(x)
= 0, ;∀ α > 0, and ∀ n. (3.3.1a)

Equivalently, such functions satisfy the property:∫ ∞

o

eax R(x) dx =∞ ∀ a > 0. (3.3.1b)

Hence the term subexponential.

3.3.1 Subexponential Distributions

The expressions above are good enough for most applications, but some re-
searchers (see e.g. [Asmussen03]) have need for a tighter definition. Consider

112 3.3 Distributions With Heavy Tails

0 1 2 3 4 5 6 7 8 9 10
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

e−x

b+(x) R+(x)

b−(x)

R−(x)

Service time, x

b ±
(x

)
an

d
R

±
(x

)

Figure 3.2.9: log[b±(x)b±(x)b±(x)] and log[R±(x)R±(x)R±(x)], as defined in Figure 3.2.8, as
functions of x. The exponential function e−x shows up as a straight line. The
rapid dips of b±(x) actually extend infinitely downward, because b±(x) = 0 at
x = 2nπ for b+, and x = (2n + 1)π for b−. The corresponding R± has zero slope
at those points.

one whose reliability function R(x) = PPPr(X > x) satisfies the following.

lim
x→∞

R(x + t)
R(x)

= 1, ∀ t ≥ 0. (3.3.1c)

It says that if a process has been going on for a very long time [x], then it is
likely to last for an unboundedly longer time [t].

A stronger condition, useful for studying waiting time tails is given by
Asmussen [Asmussen03] as

lim
x→∞

PPPr[X1 + X2 > x]
PPPr[X1 > x]

= 2, (3.3.1d)

where X1 and X2 are independent and identically distributed.
Every function that satisfies (3.3.1c) also satisfies (3.3.1a) or (3.3.1b), but

there are functions satisfying (3.3.1b) that do not satisfy (3.3.1c), so (3.3.1c)
defines a class of functions that is a proper subset of the class of functions
defined by (3.3.1b). The same is true for the classes defined by (3.3.1d) and
(3.3.1c).

Some researchers use the term long-tailed distribution for functions sat-
isfying (3.3.1c), and subexponential for those satisfying (3.3.1d). Others use
heavy-tailed for functions satisfying (3.3.1a) or (3.3.1b). This can be confus-
ing, because (3.3.1b) should be the natural owner of subexponential. Following
[Asmussen03] we summarize these terms in the following. Other definitions

3 M. E. Functions 113

are also in use. See, for instance, Trivedi [Trivedi02] and the discussion fol-
lowing Definition 3.3.3 below.

Definition 3.3.1
Let L1 be the set of functions that satisfy (3.3.1a) or (3.3.1b). That is,

L1 := {R(x) | (3.3.1b) is satisfied}.

Then L1 is the set of heavy-tailed distributions. Next let

L2 := {R(x) | (3.3.1c) is satisfied}.

Then L2 is the set of long-tailed distributions. Finally, let

L3 := {R(x) | (3.3.1d) is satisfied}

Members of L3 are called subexponential distributions. It can be
shown [Embr-Klup-Mik07] that

L3 ⊂ L2 ⊂ L1.

We use all the terms interchangably here, since we will never have a
need to make a distinction. We also say that such functions are ill-
behaved functions, or not well behaved. All other functions are
well behaved. ���

Subexponential distributions can be divided into two classes: those for which
EEE[X�] <∞ for all �, and those that have infinite moments for � > α > 0. An
example of the former is given here.

Example 3.3.1: An example of a function that can be heavy-tailed and
has all finite moments is the Weibull distribution (see, e.g., [Trivedi02]).
Its reliability function is given by

R(x) = e−λxa

, for λ, a > 0, (3.3.2a)

with pdf

f(x) = − d

dx
R(x) = λaxa−1 e−λxa

. (3.3.2b)

We use (3.3.1c) to get

φ(t;x) :=
R(x + t)

R(x)
= e−λ[(x+t)a−xa] = e−λxa[(1+t/x)a−1] −→ e−aλt xa−1

,

where we have replaced (1+ t/x)a with 1+at/x, its linear Taylor approxima-
tion for large x. It is not hard to see that

lim
x→∞φ(t, x) =

⎧⎨
⎩

0 for a > 1
e−λt for a = 1

1 for a < 1

114 3.3 Distributions With Heavy Tails

We see then, that for a < 1 the Weibull distribution is subexponential (actu-
ally, heavy-tailed); for a = 1 it has an exponential tail; and for a > 1 it is,
shall we say, superexponential. Equations (3.3.1a) and (3.3.1b) can easily be
applied to yield the same conclusions, and thus, that the Weibull distributions
are heavy-tailed for a < 1. However (3.3.1d) requires more effort.

The moments can be found by direct integration:

EEE[X�] =
∫ ∞

o

x�λaxa−1 e−λxa

= λa

∫ ∞

o

x�+a+1 e−λxa

dx

=
(

1
λ

)�/α ∫ ∞

o

u�/ae−u du =
(

1
λ

)�/α

Γ(1 + �/a),

where we made the substitution xa → u. Γ(x) is the gamma function given
by (3.2.2b). �

We do not dwell further on this class of functions, except to say that they
can be quite troublesome in trying to solve queueing systems using matrix
methods, because they need ME representations of large dimension to be
approximated adequately. But they do have all their moments about them.

3.3.2 Power-Tailed (PT) Distributions

For the rest of this section we focus on distributions for which EEE[X�] =∞ for
� greater than some α > 0, the very troublesome, but very interesting, class
of Power-Tailed (PT) distributions. Suppose a random variable, X, has
a reliability function R(x) satisfying

R(x) =⇒ c

xα
· (3.3.3a)

Obviously, its tail goes to 0 as some power of x, hence the term power-tail.
Then it must have infinite moments. Its pdf satisfies

f(x) = −dR(x)
dx

=⇒ cα

xα+1
,

implying, therefore:

EEE[X�] =
∫ ∞

o

x� f(x) dx

= A(z) + cα

∫ ∞

z

x�−1−α dx =∞, for � > α, (3.3.3b)

where z is a value for x above which the asymptotic behavior in (3.3.3a) is
satisfied, and A(z) is the value of the integral from 0 to z. But (3.3.3a) doesn’t
have to be precisely true for (3.3.3b) to be true. The more general formula,

lim
x→∞x� R(x) =

{
0 for � < α
∞ for � > α

(3.3.3c)

3 M. E. Functions 115

is more useful (see Figure 3.3.10 below). However, a definition that reflects
the property of interest is best. By integrating by parts we can show that for
� > 0,

EEE[X�] =
∫ ∞

o

x� f(x) dx = �

∫ ∞

o

x�−1 R(x) dx.

Definition 3.3.2
A random variable X is power-tailed with parameter, ααα, if its reli-
ability function R(x) satisfies the following:

EEE[X�] = �

∫ ∞

o

x�−1 R(x) dx =∞ for � > α,

.. (3.3.3d)

EEE[X�] = �

∫ ∞

o

x�−1 R(x) dx <∞ for � < α,

These functions are often called Pareto distributions after the 19th-
century economist, Vilfredo Pareto, who used densities of the form
cxμ−1/(1 + x)α+μ to describe the distribution of wealth in the indus-
trialized world. They are also known as Lévy distributions, or Lévy-
Pareto distributions, because P. Lévy defined and found the class of
stable distributions that have these power-tails (but only 0 < α < 2
give non-Gaussian results). ���

Feller defines a slowly varying function as one which satisfies

lim
t→∞

L(tx)
L(t)

= 1.

He then says that R(x) is regularly varying with exponent −α if

R(x) =
L(x)
xα

and L(x) is slowly varying. Although this is an interesting property in
its own right, it is too restrictive and doesn’t explain the vast num-
ber of phenomena that have PT behavior. Therefore we do not rely on
this property in our presentation. See for example, [Feller71] for a gen-
eral discussion, [Sam-Taqqu94] for details about stable distributions, and
[Grein-Job-Lip99] and [Klinger97] for full details of material covered here.

The conclusion that a process can have infinite moments requires some
discussion. If α < 2 then X has an infinite variance, and if α < 1 then X
has an infinite mean! What does an infinite moment indicate? Or, it might be
asked, why should we consider them at all? Such questions would normally be
outside the scope of this book, but in recent years processes that are important
in areas where queueing theory is applied seem to show this kind of behavior.
Therefore we must provide some insight to PT behavior so that we can make
sense of the solutions to various queues we solve in the next chapters. The
rest of this section can be skipped over on first reading.

116 3.3 Distributions With Heavy Tails

This subject has been of interest to statisticians for many years, and in
recent years it has shown up in many places. It appears that the size of earth-
quakes, avalanches (see [Bak96]), solar flares, and white noise are power-
tailed. Health insurance claims also are PT ([Lowrie-Lip93]). Although it
is considered controversial, it appears that the distribution of wealth is also
power-tailed. After all, it is a fact that 1% of the population owns 40% of ev-
erything in this country, just as it did in the 19th century when Pareto did his
studies. (This percentage was at its lowest in the mid 1970’s when it dipped to
28% [Phillips02].) In subjects closer to queueing applications, in particular
computer science and telecommunications, Leland and Ott [Leland-Ott86]
found that the distribution of CPU times at BELLCORE satisfied the PT
properties we discuss in this section. (The longest job took over 1,200,000
seconds, 2 weeks, whereas the mean time for the 6 million jobs measured
was about 1 second.) Garg et al. [LipGargRobbert92], Hatem [Hatem97],
Crovella and Bestavros [CrovellaBestavros96], and others have found
that file sizes stored on disks, and even Web page sizes are PT for many
orders of magnitude beyond the mean. In a related phenonemon, Leland et
al., [Lelandetal94], followed by many others, found that Ethernet, and tele-
comunications traffic generally, are self-similar. If these observations are cor-
rect, then system performance prediction must be able to include power-tail
behavior, or some truncated version of it.

3.3.3 What Do PT Distributions Look Like?

How can we tell that a process is PT, and why is it only recently being
observed? The first question is easy enough to show, but part of the second is
answered in Chapter 4. The most characteristic feature of PT distributions is
masked when one looks at a plot of R(x) or B(x) versus x, since they are both
monotonic, approaching a horizontal limit. But if one plots log(R(x)) versus
log(x) then one gets a straight line with slope −α, because, from (3.3.3a),

log(R(x)) =⇒ log(c)− α log(x)

This characteristic is unmistakable, as we now show with a simple example.

Example 3.3.2: Consider the r.v., Xa, with reliability function

Ra(x) = a · e−x +
1− a

(1 + x)2
for 0 ≤ a ≤ 1. (3.3.5)

It is easy to show that EEE(Xa] = 1 for all a. But for a < 1, it has a power tail
with α = 2, and thus has infinite variance. Figure 3.3.1 shows this function for
a ∈ {0.0, 0.5, 0.8, 1.0}. For a = 1 we have the pure exponential function, but
on a normal scale (left-hand figure) the other three curves look very similar
to the first, so one would expect no surprises, even though they actually
have infinite variance. However, in the log-log plot (right-hand figure) the
different behavior of the tails becomes visible: all three PT functions show
the straight-line behavior described above, with negative slope α = 2. �

3 M. E. Functions 117

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

a=0.0

← a=0.5

← a=0.8

a=1.0

x

R
a
(x

)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

a=1.0

a=0.8

a=0.5

a=0.0

x

R
a
(x

)
Figure 3.3.1: Four reliability functions, three with power-tails and
infinite variance (plotted on both linear and log-log scale). These are all taken
from Equation (3.3.5), for a ∈ {0.0, 0.5, 0.8, 1.0}. All the curves are equal at
exp(x/2) = (1 + x), but this is just an artifact of the functional form chosen.

This characteristic can be duplicated with real data if enough data are
available. Let {yi | 0 ≤ i ≤ N, yi ≥ 0}, with yo := 0, be a set of experimental
data points of, say CPU times. Let {xi} be the same set of data points,
reordered in size place. That is, xo = yo = 0 ≤ x1 · · · ≤ xn ≤ · · · xN . Then
the function

Re(x |N) :=
N − n

N
, for xn < x ≤ xn+1 (3.3.4a)

should approach the underlying reliability function for the process being mea-
sured. That is,

lim
N→∞

Re(x |N) = R(x) (3.3.4b)

in the sense that |R(x)−Re(x |N)| = O(1/N). Note that Re(x) is a monotonic
non-increasing function of x, Re(0 |N) = 1, and Re(x > xN |N) = 0.

As an example of the statistical behavior of (3.3.4), we have done the
following simulation.

Example 3.3.3: We have simulated two sets of 1,000,000 random samples
from (3.3.5) for a = 0. Ro(x) and the two sets are plotted together in Figure
3.3.2 using the expression for Re(x |106) from (3.3.4a). The three sets of curves
are very close. On a normal plot there would be little else to say, but on the
log-log plot shown, the match is precise up to 100 times the mean, and we
see, for both Re(x) curves, a more or less straight line stretching out for three
orders of magnitude beyond the mean. The largest dozen or so points cover
most of that range. This is typical of PT distributions. We discuss these data
in more detail in the next few sections. �

3.3.4 Statistical Behavior of Large Samples

The behavior shown in the above example, together with some insight as to
the significance of infinite moments, may be understood in the following way.

118 3.3 Distributions With Heavy Tails

10
−1

10
0

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

x

R
e(x

|1
06)

A seed = 100
B seed = 101
C theoretical
D last 12 of A
E last 12 of B

Figure 3.3.2: Comparison of Ro(x) = 1/(1 + x)2Ro(x) = 1/(1 + x)2Ro(x) = 1/(1 + x)2 and two sets of
1,000,000 randomly generated samples taken from that distribu-
tion, and presented as Re(x)Re(x)Re(x). On a standard (linear) plot, we would see no
difference whatsoever, but even on a log-log plot the three curves are virtually
indistinguishable except for the last dozen or so points. The largest 12 samples for
each set are shown with +s and �s. There are not enough data at the end of the
curve to give a smooth fit, but those last points still track the straight line. If we
had sampled 10,000,000 points instead, the fit would have extended out farther.

First we discuss residual time behavior, that is, time remaining after some time
has already elapsed. Trivedi [Trivedi02] calls this the conditional mean
exceedance (CMExCMExCMEx).

Definition 3.3.3
Let X>(x) be the r.v. denoting the time for a task, given that it is
greater than x. It is not hard to show that the mean remaining time is

CMEx := EEE[X>(x)]− x =

∫∞
x

yf(y) dy

R(x)
=

∫∞
x

R(y) dy

R(x)
, (3.3.6a)

where the last expression comes from the previous one by integrating
by parts. ���

Obviously, EEE[X>(x)] > x, but how much greater? If R(x) = 0 for x > C, as is
the case for the uniform distribution, then EEE[X>(x)] can never exceed C, so

lim
x→C

{EEE[X>(x)]− x} = lim
x→C

CMEx = 0. (3.3.6b)

3 M. E. Functions 119

One way to interpret this is to observe that as a task progresses (x increases)
the expected time remaining goes to zero. This would seem to be trivially
obvious, but consider the following. If R(x) is exponentially distributed, say
R(x) = e−μx, then

EEE[X>(x)] = x +

∫∞
x

e−μy dy

e−μx
= x +

1
μ
·

In this case then,

EEE[X>(x)]− x = CMEx =
1
μ
·

In other words, no matter how long a task has been running, if the task hasn’t
finished yet it still has time 1/μ remaining. This is no more than another
example of the memoryless property of the exponential distribution.

It can be shown that all ME distributions satisfy

lim
x→∞CMEx =

1
μK

, (3.3.6c)

where 1/μK is the largest eigenvalue of V. [We might mention that μK must
be real and positive in order for 〈〈〈p, B 〉〉〉 to generate a (real, positive) PDF.]
In other words, the mean time remaining will approach a constant. This may
be larger or smaller than the mean. For Erlangians, this is smaller, whereas
for hyperexponentials it will be larger than the mean. But it is not easy to
say in general which way it will go.

As implied by Definition 3.3.1, subexponential distributions have the prop-
erty that

lim
x→∞ {EEE[X>(x)]− x} → ∞. (3.3.6d)

In other words, the longer a task has already taken, the longer it has yet
to go. According to Trivedi [Trivedi02], distributions satisfying (3.3.6d)
are heavy-tailed. Distributions satisfying (3.3.6c) are medium-tailed, and
(3.3.6b) he calls light-tailed. We prefer to call distributions that satisfy
(3.3.6c) exponential-tailed distributions.

We now look at CMEx for PT distributions. Consider (3.3.6a) and suppose
that x is large enough so that (3.3.3a) is valid. Then for α > 1

EEE[X>(x)]− x = CMEx ≈
∫∞

x
c/yα dy

c/xα

= xα

∫ ∞

x

dy

yα
=

xα

α− 1
1

xα−1
=

x

α− 1
· (3.3.7a)

This tells us that if a task has already lasted a time x, it’s likely to last a
comparable amount of time longer, and the longer it has run, the longer it is
likely to run. In fact, if 1 < α < 2 the task will last an additional time longer
than it has already run. Of course, if α ≤ 1 the mean time is itself infinite.

The random variable X>(x) can be interpreted in a somewhat different
way in examining a set of independent samples. Let us suppose that a set

120 3.3 Distributions With Heavy Tails

of N samples, sN := {xn | 1 ≤ n ≤ N}, has already been picked from R(x).
Then we would hope that if N is large enough, the average satisfies

x̄(N) =
1
N

N∑
n=1

xn ≈ EEE[X]. (3.3.7b)

Let
y1 := max

xn∈sN

{xn};
then we continue to pick more samples. Let Y2 be the r.v. denoting the value
of the first sample subsequently chosen that is bigger than y1. Then y2 :=
EEE[Y2] = EEE[X>(y1)], and 1/R(y1) is an estimate of the number of samples
chosen before the bigger sample came. Let M1 be the actual number of new
samples taken. All the other samples are less than y1, so they collectively
should not change the average very much. Let N2 = N + M1 − 1; then,

x̄(N2) =
1

N2

N2∑
n=1

xn

will probably not be much different from x̄(N). Only y2 can appreciably affect
the running average. But for well behaved distributions, when N is large
enough y2 is only, on average, 1/μK bigger than y1, whereas, N2 is usually
more than twice as big as N1. Its contribution to the average, R(y1) × y2 is
small and goes to 0 as the number of samples increases. That is, as y1 gets
bigger, R(y1) goes to 0 faster than Y2 goes to ∞. Put another way, when the
sample size is large, out-of-range events are so rare that they have little effect
on the running average.

The above statement holds true for the estimate of any moment of X,
because R(y1)y�

2 ≈ (y1 + 1/μK)�/ey1μk goes to zero for any �. However, the
number of samples must be larger with increasing � for the running average
to settle down.

What we have just said applies only to well-behaved functions. From
(3.3.7) we see that for PT functions

R(y1)EEE[X>(y1)]� ≈ c

yα
1

[
y1

α− 1

]�

=
c

(α− 1)�
y�−α
1 .

We see here that for � > α the contribution of y2 to the running average is
likely to grow with increasing number of samples. That is, xN may appear to
stabilize for a while [1/R(y1) new samples], but then y2 arrives, and is so much
bigger than y1 that it causes the running average of {x�

n} to be even bigger
than its previous maximum. A formal statement of this is the following. Let

x�(N) :=
1
N

N∑
n=1

x�
n.

Then for � < α, and for any z,

PPPr
(
x�(N) > z

)
= 1 for some N large enough.

3 M. E. Functions 121

This is another way of saying that if one selects enough samples, one will (al-
most surely) get a running average bigger than any previously chosen number,
or limN→∞ x�(N) =∞. That’s the statistical meaning of EEE[X�] =∞.

3.3.5 The Central Limit Theorem and Stable Distributions

In the previous section we loosely discussed the “closeness of x̄(N) to EEE[X].”
Here we give it some quantitative meaning. We invoke the Central Limit
Theorem (CLT) and describe what is meant by a stable distribution. In par-
ticular, we show by example that distributions with finite means, but infinite
variance, do not satisfy the CLT as usually applied, and thus cause problems
with statistical convergence. For a fuller understanding, the books by Feller
[Feller71], and Samorodnitsky and Taqqu [Sam-Taqqu94] are necessary.
We restrict ourselves to the range 1 < α ≤ 2.

3.3.5.1 Distributions with Finite Variance

The concept of a stable distribution is of some use in understanding the
advanced literature concerning PT distributions and self-similar traffic. We
follow Feller (with a slight modification) [Feller71], in defining it now. First
let X1, X2, X3, . . . , Xn, . . . be independent random variables with the same
distribution F (·). Define the random variable corresponding to their statistical
average

An :=
1
n

n∑
j=1

Xj . (3.3.8)

Definition 3.3.4
The distribution, F (·), with random variable X is Stable if for
each n there exist constants cn > 0 and γn such that

An
d= cnX + γn (3.3.9a)

and F (·) is not concentrated at one point. The symbol d= indicates that
the r.v. on the left has the same distribution as the r.v. on the right.
It can be shown that

cn =
1
nκ

, where κ =

⎧⎨
⎩

1− 1/α for α < 2

1/2 otherwise
·

This is the same α as the power-tail exponent if α < 2. For all functions
with finite variance, including well-behaved functions, κ = 1/2. Also,
if α > 1,

γn = EEE[X].

What does all this mean? Well, we hope it becomes clear as we go
through the rest of this section. ���

122 3.3 Distributions With Heavy Tails

If the mean and variance of F (·) exist, call them x̄ = EEE[X] and σ2, respec-
tively, and define the random variable

Zn := n1/2(An − x̄). (3.3.9b)

Next define the r.v.,
Z := lim

n→∞Zn.

The central limit theorem states that Z is normally distributed with
mean of 0 and variance σ2. Let φ(w) = exp(−w2/2)/

√
2π be the pdf of the

standard normal distribution (x̄ = 0 and σ = 1), and Φ(w) be its PDF. Then
for n “large enough”, An is normally distributed with mean x̄ and variance
σ2/n. From a measurement viewpoint, we can state that the probability that
An will be within w standard deviations of its mean is given by

PPPr
(

x̄− w
σ√
n

< An < x̄ + w
σ√
n

)
= Φ(w)−Φ(−w) = 2Φ(w)− 1. (3.3.10a)

[We have used the fact that φ is symmetric, so Φ(w) = 1− Φ(−w).] Equiva-
lently,

PPPr
(∣∣∣∣An − x̄

x̄

∣∣∣∣ > ε

)
= 2[1− Φ(w)] = 2Φ(−w), (3.3.10b)

where ε = wσ/(x̄
√

n) is the relative error. In other words, for a fixed prob-
ability (or fixed w), the range of An − x̄ contracts as 1/

√
n. Thus one can

be 95% sure [2Φ(2) − 1 = .9545] that the average of 10,000 samples taken
from a normal distribution with σ = 1 [or any other well-behaved distribu-
tion] will agree with its expectation value to within two parts in 100, (I.e.,
wσ/x̄

√
n = 2/

√
10, 000 = 0.02).

Loosely speaking, we can say that

|An − x̄| = O
(

1√
n

)
· (3.3.10c)

This tells us that if one wants to double the accuracy (reduce ε to ε/2), one
must sample four times as many points.

Example 3.3.4: For demonstrative purposes, we have simulated 100,000
realizations of An for each of n = 10, 100, 1000, and 10,000. Each random
number was taken from the exponential distribution with x̄ = 1. That is,
F (x) = 1 − e−x. In Figure 3.3.3, we have plotted the number of realizations
of An that fall in each 0.1 interval. It is seen how the distribution for An

narrows as n increases, according to (3.3.10a). The number of realizations of
Zn from (3.3.9b) (where EEE[Zn] = 0) in each 0.1 interval, is plotted in Figure
3.3.4, where it is seen that the distributions approach φ(x) (the normal
distribution with 0 mean and unit variance) as n increases. The different
curves visually have approximately the same width and shape, verifying
that the original distributions do narrow according to 1/

√
n. Note that

even though the exponential distribution is highly unsymmetric, Zn looks

3 M. E. Functions 123

0

5000

10000

15000

20000

25000

30000

35000

40000

0.6 0.8 1 1.2 1.4

of

 A
n’

s

An

n=10
n=100

n=1000
n=10000

Figure 3.3.3: The measured average interarrival time for a Poisson
distribution. The figure shows 100,000 samples of An as defined by (3.3.8),
with a mean of 1.0, for n = 10, 100, 1000 and 10000. The curves get narrower
with n, showing how the measured average approaches its mean as the number
of samples increases.

symmetric, even for n = 10. �

Now let us go back to our definition of stable distributions. We see that Z
is normally distributed with a mean of 0, and σ2 = 1. Suppose we added two
such normal random variables together. We know from elementary calculus
that the distribution of their sum is also normal, with variance 1/2, and a mean
of 0. That is, the convolution of the normal distribution with itself is a normal
distribution with one half the variance. Now look at (3.3.9a) (c2 = 1/

√
2 and

γ2 = 0).

Z + Z
d=

1√
2
Z.

This equation says exactly the same thing. In other words, the normal distri-
bution is stable. In fact, it is the only distribution with finite variance that is
stable. As supported in Figure 3.3.4, all well-behaved functions tend toward
the normal, and thus can be considered to be asymptotically stable, in that
if n is large enough, the distribution of the sum approaches a fixed function
(the normal distribution).

We next see that for functions with infinite variance, an entire 4-parameter
family of stable distributions must be considered.

124 3.3 Distributions With Heavy Tails

0

500

1000

1500

2000

2500

3000

3500

4000

4500

-3 -2 -1 0 1 2 3 4 5

of

 Z
n’

s

Zn’s

n=10
n=100

n=1000
n=10000

Figure 3.3.4: This figure shows curves for 100,000 samples of Zn,
matching those for An in Figure 3.3.3. Zn is defined in (3.3.9b). The
shapes tend toward the normal distribution with 0 mean and unit variance as n
increases (see [Klinger97])

3.3.5.2 Distributions with Infinite Variance

The problem becomes much more complex if F (·) has infinite variance. Various
researchers have shown (see Feller [Feller71] or Samorodnitsky and Taqqu
[Sam-Taqqu94] for details) that if X is power-tailed with 1 < α ≤ 2, Zn

must be modified to

Zn := nκ(An − x̄), where κ = 1− 1/α. (3.3.11)

As n grows larger, Zn approaches Z, a random variable from a 4-
parameter family of distributions, the ααα-stable distributions described in
[Sam-Taqqu94]. They label them as Sα(σ, β, μ), where for 1 < α < 2, σ is a
generalized width (or scale parameter), μ is the mean, and β is a gener-
alized skewness parameter. From its definition, Z has zero mean, and because
we are here dealing only with one-sided distributions [F (x) = 0 for x < 0], it
turns out that β = 1. Thus, for distributions of interest in this chapter, Zn

approaches the α-stable random variable Sα(σ, 1, 0), and thus Z has the same
distribution as Sα(σ, 1, 0). That is,

Z = lim
n→∞Zn

d= Sα(σ, 1, 0).

Let φα(x|σ, 1, 0) be the pdf for Sα(σ, 1, 0), and Φα(x|σ, 1, 0) be its PDF,
satisfying

Φα(x|σ, 1, 0) :=
∫ x

−∞
φα(x′|σ, 1, 0) dx′.

3 M. E. Functions 125

For convenience, we also define the reliability function

Rα(x|σ, 1, 0) := 1− Φα(x|σ, 1, 0).

That σ is a scale parameter is verified by the following property.

φα(x|σ, 1, 0) =
1
σ

φα(x/σ| 1, 1, 0),

or equivalently,

Φα(x|σ, 1, 0) = Φα(x/σ| 1, 1, 0) and
Rα(x|σ, 1, 0) = Rα(x/σ| 1, 1, 0).

From [Sam-Taqqu94], Sα(σ, 1, 0) has the following behavior for large x,

lim
x→∞Rα(x|σ, 1, 0) = Cα

(σ

x

)α

, (3.3.12a)

where
Cα =

α− 1
Γ(2− α)| cos(πα/2)| · (3.3.12b)

As x goes to −∞, Φα(x) has the property (drops very rapidly to 0)

lim
x→−∞[Φα(x| 1, 1, 0)] = O

(
exp [−c2(α)|x|ϕ]

|x|ϕ/2

)
, (3.3.12c)

where ϕ := α/(α − 1). The equations in V. M. Zolotarev [Zolotarev86]
imply that

Φα(0|1, 1, 0) =
1
α

for 1 < α < 2. (3.3.12d)

That is, the probability that a given sample will be below the mean is 1/α,
which is greater than 1/2. This seems to agree with our simulations and
with the tables in [DuMouchel71]. This formula also shows that for α = 2,
Φ2(0| 1, 1, 0) = 1/2, agreeing with our knowledge that Φ2(x| 1, β, 0) is sym-
metric for all β. However, as α⇒ 1+, the probability that a single sample will
be less than the mean approaches 1. In other words, very few samples will be
greater than the mean, but, boy will they be big. Of course, for α ≤ 1 there
is no mean, so for such cases, the formula is meaningless.

The generalization of (3.3.10a) is given by

PPPr
(
x̄− w

σ

nκ
< An < x̄ +

σ

nκ

)
= Φα(w| 1, 1, 0)− Φα(−w| 1, 1, 0) (3.3.13a)

for n large enough. To demonstrate this, Klinger [Klinger97] performed
calculations similar to those used for Figures 3.3.3 and 3.3.4, but for the
power-tail function given in Section 3.3.6.2 below. He set x̄ = 1 and α = 1.4.
The results are displayed in Figures 3.3.5 and 3.3.6. He was also able to
calculate the generalized width to be σ = 0.581259 The partial curve in
Figure 3.3.6 is for S1.4(0.581259, 1, 0), as given by [DuMouchel71]. For full
details, see [Klingeretal97].

126 3.3 Distributions With Heavy Tails

0

1000

2000

3000

4000

5000

6000

7000

0.6 0.8 1 1.2 1.4

of

 A
n’

s

An

n=10
n=100

n=1000
n=10000

Figure 3.3.5: 100,000 samples of the average of nnn power-tail samples
of AnAnAn, for n = 10, 100, 1000, and 10, 000n = 10, 100, 1000, and 10, 000n = 10, 100, 1000, and 10, 000. The PT distribution function is taken
from Section 3.3.6.2, with x̄ = 1, α = 1.4, and θ = 0.5. The scale parameter σ
was measured to be ≈ 0.58126 (this is not the standard deviation, which is infinite
because α < 2; see text and [Klingeretal97]). Note how broad the curves are,
even for the average of 10,000 samples.

There are several interesting features displayed in Figure 3.3.5. First ob-
serve how broad the distributions are, even for n = 10, 000. Next note that
the peaks occur well below the mean, indicating that most measurements (re-
alizations of An) will underestimate the mean. Third, observe that the distri-
butions do not tend to become symmetric, a consequence of the one-sidedness
of RY (x) [RY (x) = 0 for x < 0]. Next, it can be seen from Figure 3.3.6 that
the Zn for different n have more or less the same width, with peaks at about
the same position, albeit of different heights. They clearly are approaching
the α-stable distribution for Sα(σ, 1, 0), but more slowly than well-behaved
functions approach the normal distribution. This also demonstrates that the
distributions become narrower as n increases, according to 1/nκ. Last, it ap-
pears that convergence to the α-stable distribution starts at the tail (very
large x) and gradually converges below the mean [EEE[Zn] = 0].

There is further discussion of convergence in the next section. But before
going on, observe that if (X − x̄) d= Sα(σ, 1, 0) [i.e., if X is itself an α-stable
variable, which strictly speaking, can’t be if F (·) is one-sided, see below], then
Zn

d= Sα(σ, 1, 0) for all n, or

(An − x̄) d= Sα(σ/nκ, 1, 0). (3.3.13b)

Therefore the random variables, A1, A2, A3, . . . , An, . . . have distributions that
are similar in that they have the same shape, differing only by the scale σ/nκ

3 M. E. Functions 127

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-3 -2 -1 0 1 2 3 4 5

of

 Z
n’

s

Zn’s

n=10
n=100

n=1000
n=10000

DuMouchel

Figure 3.3.6: The sample sets of Figure 3.3.5 were modified by
(3.3.11) to get samples of Zn, where EEE[Zn] = 0. The most salient fea-
tures are: the curves do not approach a symmetric limit; the peaks occur at
≈ −α; the power-tail behavior is still there. The α−stable distribution, taken
from [DuMouchel71], is also plotted, but only for Z ≥ −1.

(see Definition 3.2.1). In this sense, An − x̄ is self-similar (S-S). But because
Z = lim Zn for any distribution F (·), one can say that every distribution is
asymptotically self-similar. This is again a generalization of the CLT which
states that all sums of random variables with finite variance approach the
normal distribution (Compare Figures 3.3.4 and 3.3.6). However, the term,
self-similar, is reserved for distributions with infinite variance, the α-stable
distributions Sα(σ, β, μ).

Admittedly, this material may be difficult to absorb, and one should read
[Sam-Taqqu94] and [Feller71] for greater insight to this subject. However,
for our purposes, we can summarize all this by the generalization of (3.3.10c).
Thus, the deviation of a measured average from its mean satisfies

|An − x̄| = O
(

1
nκ

)
, (3.3.13c)

where κ is given in Definition 3.3.4. Equation (3.3.10c) told us that if a distri-
bution is well behaved (and κ = 1/2), then a factor of two increase in accuracy
requires four times as many data points. But if α < 2, the number of samples
needed is much bigger. A typical value for α as seen in data-file sizes or CPU
times is α ≈ 1.4. In this instance, κ = 1 − 1/1.4 = 2/7 = .2857. In order for
|An2 − x̄| to be half as large as |An1 − x̄|, according to (3.3.13c) it is required
that

nκ
2

nκ
1

= 2,

128 3.3 Distributions With Heavy Tails

or for κ = 1− 1/α = 1− 1/1.4 = .4/1.4 = 2/7,

(
n2

n1

)
= 21/κ = 23.5 = 11.3137.

That is, one would need over 11 times as many samples to increase accuracy
by a factor of 2. We pursue this further in the next section.

3.3.5.3 Stable Distributions and Measured Averages

From (3.3.13a) and Figure 3.3.5, it can be seen that as with normal distribu-
tions, for fixed w, as n is increased the range of (An − x̄) contracts for PT
distributions, but now as 1/nκ. Because κ < 1/2 the contraction iwith increas-
ing n is much slower than for distributions with finite variance. Furthermore,
because Rα(x|σ, 1, 0) drops off as 1/xα, there will always be a nonnegligible
probability that the deviation will be large. In other words, no matter how
large w is chosen to be, there will always be a non-negligible (i.e., power-tail
law) probability that the error bound will be exceeded, but on the high side
only. To give some practical meaning to this, consider the following hypothet-
ical situation.

Suppose that responses to requests over the Internet are sent in some
orderly fashion (e.g., a burst of packets with exponential interarrival times
- Poisson arrivals), but that the amount of data (in packet units) in each
burst-response is distributed according to a PT distribution F (·), with mean
x̄ and parameter α. A potential design criterion could be to create a host node
that can handle a given traffic rate λ (in packets/sec), for some specified time
interval, with the understanding that it will sometimes be exceeded by more
than fraction δ. p is the probability that it will be exceeded. Let An be the
r.v. denoting the average number of packets contained in each of n successive
bursts (i.e., An × n is the total number of packets). Then,

PPPr(An > x̄ + wσ/nκ) = Rα(w| 1, 1, 0),

where σ is the generalized width of F (·). We have assumed that n is large
enough so that the difference between the distributions for Zn and Z is negligi-
ble, an assumption that must still be investigated. Based on their definitions,
p and δ must satisfy

p = Rα(w| 1, 1, 0), and δ = wσ/(x̄ nκ). (3.3.14)

The equation for p allows us to find w, and then the equation for δ allows
us to solve for n, the number of burst-responses needed to have the specified
stability. n/λ is the mean time interval one must wait for the n bursts to
arrive.

To see how this works, we set p ∈ {0.1, 0.05, 0.01}; δ = 0.1, x̄ = σ = 1.0,
and solved for T = n/λ for various values of α. The following table gives the
values of w, as a function of p and α. The entries for α =∞ are for the normal

3 M. E. Functions 129

distribution.

Table 3.3.1 : www as a Function of ppp and ααα.
(w is the Number of “Standard Deviations” One Must

Go Above The Mean to Get a Reliability of p.)

α 1/κ p = 0.10 p = 0.05 p = 0.01
∞ 2.0 1.281 1.644 2.32
2.0 2.0 1.812 2.326 3.29
1.5 3.0 2.146 3.824 11.65
1.4 3.5 2.209 4.343 15.08
1.1 11.0 −0.521 4.355 36.81

Note that for α = 1.1, the entry for p = 0.1 is negative. This is a consequence
of (3.3.12d), where it is seen that Zn falls below 0 over 90% of the time
(1/α = 1/1.1 = 0.90909 · · · > 1− p).

The next table shows T in seconds, as a function of p and α. For conve-
nience, λ = 328.48 bursts, or requests/second was chosen.

Table 3.3.2 : Time (in Seconds) Needed for a System
to Stabilize to a Given Probability, ppp.

α p = 0.10 p = 0.05 p = 0.01
∞ 0.500 0.823 1.639
2.0 1.000 1.647 3.295
1.5 30.087 170.233 4, 813.587
1.4 154.233 1, 643.446 128, 202.284
1.1 − 1.03× 108 years 5× 1020 years

We see that under normal operations (Poisson arrivals) for intervals of
0.5 seconds, only one interval in ten will have an arrival rate greater than
(1 + δ)λ = 1.1× λ. If the measurement interval is increased to 1.639 seconds,
then only one such interval in a hundred will see an arrival rate greater than
1.1×λ. The story is entirely different for PT processes. For α = 1.5 an interval
of 30.087 seconds must be taken for overloads to occur in only one interval in
10. To reduce that to one interval in one hundred, intervals of over one hour
in duration are required. If α = 1.4, then the situation worsens by an order
of magnitude, and for α = 1.1, the concept of stability no longer exists!

3.3.6 Truncated Power-Tailed (TPT) Distributions

Many researchers have argued that PT distributions cannot actually exist.
After all, we live in a finite world, and there must be a biggest member of
any set. In principle, this may be true for items such as file sizes that are
presently in existence, but it certainly cannot apply to such items as program
execution time, if one replaces the concept of ∞ with unboundedness. Yes
it’s true that only a finite number of programs have run since computers were
invented, and therefore there must be one that ran for the longest time (not
counting the ones that are still running, a nontrivial complication). But that

130 3.3 Distributions With Heavy Tails

does not guarantee that a future program will not run even longer. In fact we
can be sure that ultimately many will. In other words, the size of execution
times to come is unbounded. (That’s also true of files to come, but we are
usually interested in files that presently exist.)

3.3.6.1 Truncation and Range of a Distribution

What we are really interested in is finding a function that represents well
the behavior of a given process that produces a large number of samples.
If that process is well behaved, then it doesn’t make any difference whether
the domain of F (·) is allowed to be finite or infinite. (See Section 3.3.4 for
further discussion.) If for instance, F (x) = 1 − e−x, then the probability
that we will ever get a sample more than 50 times greater than the mean
is e−50 = 1.93 × 10−22. If we selected a sample from this distribution every
nanosecond, it would take over 160,000 years before even one such sample
is likely to occur. Therefore, the debate between finite and infinite extent is
meaningless. Thus the practical people let us theoreticians integrate from 0
to ∞ without any worries.

The problem is quite different when we are dealing with PT functions,
because, as shown in Section 3.3.4, very big samples occur often enough to
affect system averages. For R(x) = 1/(1+x)2, a sample greater than 50 times
the mean would occur once every 2500 times, or 400 times in a million samples.
In fact, a sample more than 1000 times the mean would very likely occur in
a million samples, as occurred more than once in Figure 3.3.2. We are really
dealing with two issues that are interrelated.

(1) Is the distribution limited in range (or at least does it have an expo-
nentially decaying tail; i.e., is it well behaved)?

(2) Will the system of interest be measured long enough to produce a
number of samples N sufficient to produce a stable average, as in (3.3.7b)?

If both are true, then we can say that the system is in its steady state. If
(2) is false, then the system is still in its transient region. If (1) is not true,
then (2) may never be true, no matter what N is.

The trouble is, unless there are good theoretical reasons, we can never
really know if either of (1) and (2) is true. After all, it would take an infinite
number of samples (and an infinite amount of time) to test the entire tail.
The best that can be done is to collect data, and do some statistical analysis.
One direct way is to plot the data according to (3.3.4a) on a log-log scale, as
was done in Figure 3.3.2. If the process is well behaved, and enough samples
have been taken, then the curve will drop rapidly above some value of x = xr,
which we might call the Range of the distribution. In Figure 3.3.1 we see
that the exponential curve (a = 1) drops rapidly for x > 2, whereas, the
other curves never drop below a straight line. Figure 3.3.2 shows that the two
Re(x|106) curves don’t drop rapidly, they just stop at about x = 1074.47 and
x = 1624.53, respectively. (Remember that x̄ = 1, we’re seeing events that
are over 1000 times the mean.) Does this mean that:

(1) 1624.53 is the largest value that will ever be seen (rigid cutoff); or

3 M. E. Functions 131

(2) Only somewhat larger values will be seen (exponential drop in the
curve); or

(3) Much larger values will occur as the number of samples increases (the
curve continues in a straight line); or

(4) The curve will take some other unknown path?

Of course, without taking any further measurements, we can’t tell which of
the four will happen. But surely the third option is most likely, at least for one
more unit to the right. Since this is a logarithmic scale, multiple samples bigger
than 5000 would be expected in the course of selecting another 10,000,000
samples.

Suppose that there are about 106 events in the course of the busy part of
any given day. Then the two sets of samples of Figure 3.3.2 could be considered
typical days. But one day in ten (a total of 107 events) there will be one or
more events that are over 5000 time units. So if we used either of these data
sets as the model for a typical day, one day in ten would be very much out of
the ordinary.

The example we have chosen has α = 2, so although it (just barely) has an
infinite variance, it has a finite mean that can be measured with the same ac-
curacy as well-behaved functions. That is, given that κ = 1−1/α = 1−1/2 =
1/2, (3.3.10c) applies. For instance, the measured parameters for the two sam-
ple sets have averages of x̄1 = 0.998606 and x̄2 = 0.996596, respectively. Both
are within a few parts per thousand of each other and of the true mean,
satisfying O(1/

√
106) = 1/1000. However, the variances of the two sets are,

respectively, Var1 = 11.7748 and Var2 = 16.3986. Clearly, these give no rea-
sonable estimate of anything. If we had chosen a function that has α < 2,
then x̄1 and x̄2 would not be so close to each other or the theoretical mean,
and Var1 and Var2 would both most likely be much bigger (depending on α)
and much further apart. In choosing α = 2 we demonstrated the best of the
worst.

Let us construct a truncated test function version of R(x) = 1/(1 + x)2,
with random variable XT (xr), that satisfies (2) above as follows.

RT (x|xr) =

⎧⎨
⎩

1/(1 + x)2 for x < xr

e(1−x/xr)/(1 + xr)2 for x > xr

, (3.3.15)

where xr is the range of RT (x|xr). It can be shown that

EEE[XT] = 1− 1
(1 + xr)2

and

EEE[X2
T] = 2 log(xr + 1) +

2xr(1 + 3xr)
(1 + xr)2

.

If we let xr = 1624.53, then this function very well represents the second set
of data, but it may be a little too extended for the first set. Plugging into the
above equations, we get:

EEE[XT (1624.53)] = 0.999, 999, 620, EEE[XT (1074.45)] = 0.999, 999, 135,

132 3.3 Distributions With Heavy Tails

and

σ2(1624.53) = 19.781, σ2(1074.45) = 18.952.

Obviously, any value picked for xr that’s in this range or bigger will have a
negligible affect on the measured mean, but the variance grows as log(xr),
and any performance parameters that depend on the variance will be affected
strongly by what is selected for xr. If we had chosen a function with 1 <
α < 2 then even the mean, although it exists, would be unstable to numerical
measurement, and the variance would grow linearly with xr. In the following
chapters we give numerous examples of various performance parameters that
depend heavily on the variance (and higher moments), and even other factors
such as the value of the pdf near x = 0.

So the big question for this section is: “What value for xr should be chosen
for a given application?” This has not been studied significantly until now, but
it is worthy of serious research. In any case, based on what has been discussed
here, we summarize what can be said at present about TPT distributions with
respect to xr.

First determine how many events [N] are likely to occur during the time
period of interest. If the distribution is truly truncated, and:

(1) the number of events is large enough for samples comparable to or
bigger than xr to occur [N > 1/R(xr)], then standard steady-state analytic
techniques or simulations will give acceptable results for describing perfor-
mance during a typical time period; or

(2) the number of events is too small for events as big as xr to occur even
once with significant probability, then for more accurate results, methods
designed for transient systems should be used if possible. As a first approxi-
mation, reduce xr to match the sample size and apply standard steady-state
techniques. The results should be interpreted as good “most of the time,” with
the expectation that once in a while performance will be much worse. How
often? About once in every 1/(1 − (F (x̂r))N) time periods, where x̂r is the
range that matches the sample size. How bad the extreme periods are likely
to be depends upon xr. The bigger xr is, the worse the extreme periods are
likely to be.

Note that if xr � x̂r, then it is not possible to tell the difference between
a truncated tail and an infinite one. The extreme periods will occur equally
often, and will be very different from the “usual” periods. To put this into
everyday perspective, consider the occurence of earthquakes (the size of earth-
quakes have been measured to be PT over at least 10 orders of magnitude of
energy released). On most days the subterranean earth moves very little, and
no quakes, or quakes that measure less than 3.0 on the Richter scale occur.
Thus no public action is needed. But every few years an earthquake of >7.0
occurs, causing serious damage. In terms of planning, it is of no interest to be
told that quakes of size >12.0 can never occur.

3 M. E. Functions 133

3.3.6.2 An ME Representation of a TPT Distribution

In the previous section we examined reasons why we should look at trun-
cated versions of PT distributions, and showed in (3.3.15) that truncation
was easy enough to implement if an appropriate choice could be made for the
range [xr] of the process. However, when one takes integrals involving such
functional forms (i.e., functions that explicitly have terms such as 1/xα), nu-
merical techniques often must be used. Furthermore, they are ill-suited for
use in Markov-type modeling. In particular, they are not ME distributions.

In this section we present a model that mimics in a simple way what could
be causing PT behavior. It thus gives some insight as to why power-tails
occur. At the same time it provides us with a functional form (first introduced
in [Lipsky86]) that has a power-tail, can be truncated, and, depending on
the base function used, can be matrix-exponential, and thus can be used
for analytic Markov modeling. The contents of this section are taken from
[Grein-Job-Lip99].

First consider the following scenario, a variant of which was known in
the eighteenth century as Bernoulli’s St. Petersberg paradox [Jensen67].
Suppose a typical computer user chooses to run a program whose CPU time
is best described by a distribution function Fo(x), with a mean of 1.0 seconds.
After receiving the result, he decides, with probability 1/2, to run the program
again, but with modifications that increase its CPU time by a factor of 2. After
receiving the second result, he decides (again with probability 1/2) whether to
run the program yet again, with more modifications which increase its CPU
time by another factor of 2. Even if this looping continued indefinitely, only
1/2 the users would run their programs more than once, only 1 in 4 users
would run their programs more than twice, and less than 1 in a thousand
(1/210) would run their programs more than 10 times. Call each run a job.
On average, each user will only run two jobs. So, the frequent user is not
common, yet the mean CPU time per job grows unboundedly. If all the
jobs executed are taken collectively, then 1/2 of them will be first runs, 1/4
will be second runs, and so on. The mean time per job is given by:

x̄ =
1
2
· 1 +

1
4
· 2 +

1
8
· 4 +

1
16
· 8 + · · ·+ =

1
2

+
1
2

+
1
2

+
1
2

+ · · · =∞.

Of course, it would take an infinite amount of time and an infinite number of
users for this sum to be complete. But what would be seen over time is a user
behavior that seems to stabilize (an average of two runs per user), but with
the infrequent arrival of very big jobs, that get bigger, and cause the mean
CPU time per use to grow ever bigger as well. This is a reasonable qualitative
description of power-tail behavior generally, where “�-th moment” (� ≥ α)
replaces “mean CPU time.”

A formal mathematical description of the above process is as follows. Let
Xo, X1, . . . Xn, . . . be random variables representing the time for the n-th
rerun of a program, given that it will run at least that many times (Xo is the
initial run, X1 is the first rerun, etc.). Let Fn(x) be the distribution function
for Xn, with reliability function Rn(x), and density function fn(x). Next, let

134 3.3 Distributions With Heavy Tails

0 < θn ≤ 1 be the conditional probability that a program will be run at least
one more time, given that it ran n times. Now define

γn := EEE[Xn]/EEE[Xn−1].

For the example just given, we have for n > 0, θn = 1/2, γn = 2, and
EEE[Xo] = 1.

For notational convenience, we define

θ(n) := θ1θ2 · · · θn

starting with θo := 1, θ(0) := 1, and

γ(n) := γ1γ2 · · · γn = EEE[Xn]/EEE[Xo].

Then

ΘT :=
T−1∑
n=0

θ(n), (3.3.16a)

where ΘT is the expected number of times a user will run a program (original
or modified), with up to T − 1 modifications. The random variable YT given
by

YT :=
1

ΘT

T−1∑
n=0

θ(n)Xn (3.3.16b)

represents the CPU time of a program, among all those that have not run
more than N jobs. The distribution function for YT is given by

FYT
(x) =

1
ΘT

T−1∑
n=0

θ(n)Fn(x), (3.3.16c)

with mean

EEE[YT] =
EEE[Xo]
ΘT

T−1∑
n=0

θ(n)γ(n). (3.3.16d)

These formulas are far too rich in parameters for our expository purposes,
so we now make some simplifying assumptions. We point out, however, that
the power-tail behavior we demonstrate is valid for this general expression as
long as θ(n) → 0 and γ(n) → ∞, with 1 ≥ θn ≥ a > 0 and γn ≥ b > 1, for
some infinite subset of the positive integers, and for some a and b.

Assume that

θn = θ and γn = γ for all n > 0. (3.3.17a)

Then θ(n) = θn, and γ(n) = γn. Consequently,

ΘT =
T−1∑
n=0

θn =
1− θT

1− θ
· (3.3.17b)

3 M. E. Functions 135

For demonstrative purposes let us make the simplifying assumption that all
the Fn(x)s have the same shape as Fo(x), and that Fo(x) is well behaved.
That is,

Fn(x) = Fo(x/γ n), and thus EEE(Xn] = γ n
EEE[Xo] ∀ n. (3.3.18a)

The corresponding formula for Rn(x) is obvious, but

fn(x) = γ−n fo(x/γn). (3.3.18b)

The density function for YT becomes

fYT
(x) =

1− θ

1− θT

T−1∑
n=0

(
θ

γ

)n

fo(x/γn), (3.3.19a)

with reliability function

RYT
(x) =

1− θ

1− θT

T−1∑
n=0

θn Ro(x/γn). (3.3.19b)

We presently show that these are TPT distributions. They are well behaved
if Ro(x) is, and converge to

f(x|θ, γ) := lim
T→∞

fYT
(x) = (1− θ)

∞∑
n=0

(
θ

γ

)n

fo(x/γn), (3.3.20a)

and

R(x|θ, γ) := lim
T→∞

RYT
(x) = (1− θ)

∞∑
n=0

θn Ro(x/γn). (3.3.20b)

Although RYT
(·) is well behaved for all T , the limit function R(x) is not (see

Definition 3.3.1). The moments of FYT
(·) are easy to find. From the definition,

EEE[Y �
T] =

1− θ

1− θT

T−1∑
n=0

(
θ

γ

)n ∫ ∞

o

x� fo(x/γ n) dx.

We make the substitution, x = uγ n, and get

EEE[Y �
T] =

1− θ

1− θT

T−1∑
n=0

(
θ

γ

)n

γ n(�+1)

∫ ∞

o

u� fo(u) du

=
1− θ

1− θT

T−1∑
n=0

(
θ γ �
)n

EEE[X�
o],

and finally,

EEE[Y �
T] =

1− θ

1− θT
· 1− (θ γ �)T

1− θ γ �
·EEE[X�

o]. (3.3.21)

136 3.3 Distributions With Heavy Tails

As long as θ γ � < 1, the limit can be taken to get (where Y := limYT)

EEE[Y �] := lim
T→∞

EEE[Y �
T] =

1− θ

1− θ γ�
·EEE[X�

o]. (3.3.22a)

But if θ γ� ≥ 1 the limit diverges (infinite moments). We identify α by the
relation

θ γα = 1 or α := − log(θ)
log(γ)

· (3.3.22b)

This is the same α as in Definition 3.3.2, leading to the typical power-tail
relation for moments:

EEE[Y �] <∞ ⇐⇒ � < α. (3.3.22c)

Therefore, for any well-behaved f(x), Y is power-tailed.

Example 3.3.5: We now give a specific example of (3.3.19b). Let

10
0

10
2

10
4

10
6

10
8

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

T=1 T=10 T=20 T=30 T=40

X

R
T
(x

)
=

 P
r(

B
ur

st
Le

ng
th

 >
 x

) R∞(x) → c x−α

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

TPT−20 (α=1.4)

Phase 1

Phase 5

Phase 10

Phase 15

Phase 20

X

P
r(

B
ur

st
Le

ng
th

 >
 x

)

T

Figure 3.3.7: A family of TPT reliability functions from (3.3.23b),
where T ∈ {1, 10, 20, 30, 40, ∞} and EEE[XT] = 1T ∈ {1, 10, 20, 30, 40, ∞} and EEE[XT] = 1T ∈ {1, 10, 20, 30, 40, ∞} and EEE[XT] = 1. The left-hand graph shows
these curves on a log-log plot. The curve labeled T = 1 is the exponential function.
Note the straight-line behavior for increasing orders of magnitude as T is increased.
The right-hand graph shows RY20(x) and several of the exponential terms that
contribute to the sum.

Ro(x) = e−μ(T)x, where μ(T) =
1− θ

1− γ θ
· 1− (θ γ)T

1− θT
· (3.3.23a)

This choice for μ(T), from (3.3.21), guarantees that EEE[YT] = 1 for all T . Also,
we have

RYT
(x) =

T−1∑
n=0

pn(T)e−x μ(T)/γn

. (3.3.23b)

and

pn(T) =
θn(1− θ)
1− θT

, for 0 ≤ n ≤ (T − 1). (3.3.23c)

3 M. E. Functions 137

In general, from (3.3.21), all the moments are given by

EEE[Y �
T] =

1− θ

1− θT
· 1− (θ γ �)T

1− θ γ �
· �!
[μ(T)�]

. (3.3.23d)

Obviously, the additional assumptions (3.3.17a), (3.3.18a), and (3.3.23a) cause
YT to be hyperexponentially distributed, as shown in Figure 3.3.8, with the
ME represention 〈〈〈p(T), B(T) 〉〉〉:

p(T) =
1− θ

1− θT
[1, θ, θ2, . . . , θ(T−1)],

and

B(T) = μ(T)

⎡
⎢⎢⎢⎢⎣

1 0 0 · · · 0
0 1/γ 0 · · · 0
0 0 1/γ 2 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1/γ T−1

⎤
⎥⎥⎥⎥⎦ · (3.3.24)

The individual phases are exponentially distributed with parameter μ(T)/γ�

and p(T)ε′ε′ε′ =
∑T−1

j=0 pj(T) = 1. Figure 3.3.8 is a diagram of this representa-
tion.

��
��

X0

��
��

X1

�

��
��
XT−1

��
�
�
�
�
�
��� �

�
�
�
�
�
���

�
�
�
�
�
�
��� �

�
�
�
�
�
���

��
�

��� 	
	

		
���

po(T)

pT−1(T)

p1(T) 1

1

1

Figure 3.3.8: Canonical representation of fYT . The Xjs are exponentially
distributed with rates μ(T)/γj , the diagonal elements of B(T) in (3.3.24). pj(T)
is the j-th component of p(T).

We have made some specific calculations of (3.3.23b) with parameters
α = 1.4, θ = 0.5, γ = 1/θ1/α = 1.64067, EEE[YT] = 1.0, and T ∈
{1, 10, 20, 30, 40, ∞}, and have presented them as log-log graphs in Fig-
ure 3.3.7. The left-hand graph shows all six functions, and the ever-increasing

138 3.3 Distributions With Heavy Tails

extension of the straight line (T = ∞). The right-hand graph shows RY20(x)
and the contributions of the terms for n + 1 = 1, 5, 10, 15, and 20. For
instance, the curve labeled “Phase 1” is 0.5e−μ(20)x, where μ(20) = 2.729958
from (3.3.23a). Here we see how the tail “fills in” for increasing T . In some
sense, this mimics the way data points accumulate for real systems. For a
given set of data, there is a largest member, and very few other elements of
comparable size. As more samples are added, a few will be much larger than
all previous ones, and the tail fills in. Thus we can map, at least qualitatively,
the increase in number of samples (N) with increase in T .

We explore the structure of (3.3.23b) further by evaluating RY (x) (T =∞)
for various values of α, with EEE[Xα] = 1. The results are plotted in Figure
3.3.9, both on linear scale and log-log scale. The unlabeled curve is the ex-
ponential (α = ∞). All start at Rα(0) = 1. The smaller α is, the faster the
curve drops initially, but eventually the curves cross, with smaller α ending
up on top. This is a manifestation of the property described earlier for PT
distributions, namely that an individual event is likely to be well below aver-
age, but when an above average event occurs, it will likely be well above the
mean. This statement becomes more extreme with decreasing α [see (3.3.12d)
and surrounding discussion]. The log-log graph shows the crossings and the
straight-line behavior.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

α=∞
α=3.0

α=2.0

α=1.7

α=1.5

α=1.2

α=1.1

x

R
(x

)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

α=∞

α=3.0

α=2.0

α=1.1
α=1.2

α=1.5
α=1.7

x

R
(x

)

Figure 3.3.9: R(x|θ, γ)R(x|θ, γ)R(x|θ, γ) as a function of xxx (plotted on both linear and log-log
scale) for α = − log(θ)/ log(γ) ∈ {1.1, 1.2, 1.5, 1.7, 2.0, 3.0, ∞} and θ = 0.5
[See (3.3.20b)]. At x ≈ 3 the curves start to cross until finally for x ≈ 216 the
curves for α = 1.1 and α = 1.2 cross and complete the reordering of the curves.
As α approaches ∞, R(x) approaches e−x for finite x.

The class of functions given by (3.3.23b) is clearly of the hyperexponential
type, as in (3.2.7b). But, as seen in Figure 3.3.7, depending on the size of T ,
RYT

(x) looks very much like a PT distribution for several orders of magnitude.
The concept of range was discussed in the previous section, and can be taken
here to be (see [Schwefel00] for a detailed discussion):

xr(T) =
γ T

μ(T)
·

From this formula we see that an increase of T by 1 increases the range of YT

3 M. E. Functions 139

by a factor of γ. On a log-log scale, this would appear as equal spacing, as it
is in Figure 3.3.7. Note that γ = 1/θ1/α, so for a fixed α, the bigger θ is, the
smaller γ is. That means that bigger θ (smaller γ) requires a bigger T to get
the same range xr.

0.1
100 1000 10000

(x
^a

lp
ha

)*
R

(x
)

X

theta=.1
theta=.2
theta=.3
theta=.4
theta=.5
theta=.6
theta=.7
theta=.8
theta=.9

Figure 3.3.10: The PT function of (3.3.23b) (T = ∞T = ∞T = ∞) multiplied by
xα, for α = 1.4xα, for α = 1.4xα, for α = 1.4 and various values of θθθ. If R(x) were a true power-tail func-
tion, all these curves would be asymptotic straight lines. Although the vertical
axis has no scale marked on it, the horizontal line is at c ≈ .214, and the relative
fluctuations are all less than 2%. In any case, (3.3.3a) is still valid, and R(x) is
bounded from above and below by true PT functions.

As a final example, we display in Figure 3.3.10 the function c(x) := xα R(x)
[from (3.3.23b) with T =∞] for various values of θ. We see that the “straight
lines” are not as straight as we might think from Figures 3.3.7 and 3.3.9.
However, the relative fluctuations are never more than 2%. We also see that
c(x) is very stable to changes in θ (same 2% variation for 0.1 ≤ θ ≤ 0.9).
Note that the period of the oscillation on the log scale is log(γ). That is,
c(log(x)) = c(log(xγ)). This is proven below for any Ro(x). �

We next show that R(x) given in (3.3.20b) is asymptotically bounded
by c/xα for any well-behaved (and continuous) Ro(x). Consider (3.3.20b),
evaluated at x = γ t,

R(γ t) = (1− θ)
∞∑

n=0

θnRo(t/γ n−1) = (1− θ)
∞∑

n=−1

θn+1Ro(t/γ n)

= θ(1− θ)
∞∑

n=0

θnRo(t/γ n) + (1− θ)Ro(γ t) = θR(t) + (1− θ)Ro(γ t).

140 3.3 Distributions With Heavy Tails

But Ro(t) is well behaved, and drops off at least as fast as some negative
exponential, so for t large enough, Ro(γ t) must be small compared to the
sum, therefore,

R(γ t) −→ θR(t) as t −→∞.

This can be done any number of times, so we have, for large t

R(γ kt) = θkR(t).

Let u = γ k, solve for k [k = log(u)/ log(γ)], and substitute for it to get

θk = ek log(θ) = elog(θ) log(u)/ log(γ).

But from (3.3.22b), α = − log(θ)/ log(γ), so

θk = e−α log(u) = elog(u−α) = u−α.

Therefore
R(γkt) = R(ut) = R(t)/uα.

Let t be large enough, but fixed, and let x = ut; then finally

R(x) = R(t)/(x/t)α =
R(t)tα

xα
=

c

xα
.

Figure 3.3.10 already showed that c is not really constant, but is a periodic
function of log(x). What we have proven is that c(x) := xα R(x) satisfies
c(x) = c(γ x) = c(γ 2x) = · · · = c(γ nx) = · · · for x large enough. But R(x)
still satisfies the most critical property of PT functions, namely Equation
(3.3.22c), or (3.3.3b).

Now it is clear why we called YT truncated power-tailed : YT is well-behaved
for finite T , but exhibits the characteristic power-tail properties and there-
fore behaves as a power-tailed random variable in the limit T → ∞. In the
following chapters, we use the family of functions in Example 3.3.5 to study
the behavior of various queues.

3.3.6.3 A TPT Distribution Where f(0) = 0f(0) = 0f(0) = 0

In general, the distribution of YT [as defined in (3.3.16b)] has a matrix ex-
ponential representation if each Xk does. If every Xk satisfies (3.3.18a), then
YT is ME if Xo is. The example we presented is quite specific. It was pre-
sented to show how one can build a power-tail distribution in the first place.
The behavior of the distribution for small x may also be important for spe-
cific applications, so the first few terms can be modified to accomodate those
properties, without affecting the properties of the tail. One can also use a dif-
ferent base function for Ro(x). Alternatively, our RT (x) can be mixed with,
or convoluted with, any other reliability function to get additional desired
properties. For instance, 〈〈〈p(T), B(T) 〉〉〉 of (3.3.24) represents a true hyperex-
ponential, therefore it follows that fT (0) > 0 (see Section 3.2.1.2). If it were
necessary to have a function for which f(0) = 0, then one could replace the

3 M. E. Functions 141

exponential terms with say, Erlangian distributions, as was done in Section
3.2.3.1. However this would double the dimension of the representation from
T to 2T . Another way to achieve the same effect is to convolute (3.3.24) with
a single exponential function, that is, have an exponential of the form ν e−νx

follow the TPT function. Then the new PDF, call it G(x) with pdf g(x), has
a representation of the form:

p =
1− θ

1− θT
[1, θ, θ2, . . . , θ(T−1), 0],

and

B = μ

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 −1
0 1/γ 0 · · · 0 −1/γ
0 0 1/γ 2 · · · 0 −1/γ2

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1/γ T−1 −1/γT−1

0 0 0 · · · · · · ν/μ

⎤
⎥⎥⎥⎥⎥⎥⎦
· (3.3.25)

This only increases the dimension by one, from T to T + 1. An alternate
representation that is equivalent to G(x) puts the extra exponential in front
of the TPT function. This is left as an exercise.

Exercise 3.3.1: Find V from (3.3.25) for arbitrary μ, T , and ν, and
evaluate the first three moments of g(x) using Theorem 3.1.1. Show,
using (3.1.8b), that g(0) = 0. Why must this be true?

Exercise 3.3.2: Construct a representation of G(x) where the expo-
nential with parameter ν is in front of the TPT distribution. Find V,
and evaluate the first three moments. These should be identical to those
in the previous example. Why do the two representations yield the same
G(x)?

As a final comment, TPT distributions are clearly characterized by their
very large C2

v . A common belief about distributions with very large coefficient
of variation is that most tasks are small to reasonable in magnitude, but
every once in a while a big one comes along. This allows for the interpretation
that the big ones are exceptional and can be ignored as outliers (lightning
struck again). For TPT’s this is clearly untrue, for there is no clear boundary
between big and small. Consider, for instance, the α-th moment over scaled
intervals. We can say that any TPT density function has asymptotic form
f(x) ⇒ c/xα+1 up until x approaches its range xr, when it then drops off
more rapidly. Let γ be any number greater than 1, and consider all k such
that γk < xr. Then the partial integrals given by

EEEk(Xα) :=
∫ γk+1

γk

xα f(x) dx ≈
∫ γk+1

γk

cxα

xα+1
dx

142 3.4 Equivalent Representations

=
∫ γk+1

γk

c dx

x
= c[log(γk+1 − log(γk)] = c log γ

are all the same size. That is, each interval in the power-tail region [γk, γk+1]
contributes exactly the same amount to EEE[Xα]. Tasks of all sizes (up to xr)
contribute significantly to the α-th moment. There are no boundaries between
large and small.

The TPT introduced in this section shows the same behavior, component
by component. That is, each term in the sum of (3.3.19a) contributes exactly
the same amount to EEE[Xα]. We show this in the following equation.

EEE[Xα
T] =

∫ ∞

o

xαfYT
(x) dx =

1− θ

1− θT

T−1∑
n=o

(
θ

γ

)n ∫ ∞

o

xαfo(x/γn) dx

=
1− θ

1− θT

T−1∑
n=o

(
θ

γ

)n

(γn)α+1

∫ ∞

o

uαfo(u) du =
1− θ

1− θT

T−1∑
n=o

(θγα)n
EEE[Xα

o].

But from (3.3.22b), θγα = 1, so every term contributes the amount (1−θ/(1−
θT)EEE[Xα

o] to EEE[Xα
T].

Of course, for EEE[X�], � < α, the smaller tasks collectively contribute more,
but for � > α the larger tasks contribute ever more. Only the finite range of
f(·) keeps these moments finite. For 1 < α < 2, the range of greatest interest,
the larger tasks are not sufficient to overly affect the mean, but they cause
havoc for the variance. As we show in later chapters, second-order performance
measures such as the waiting, and residual times are highly dependent on the
variance, and the stability of the queue length depends on the third moment,
so PT distributionss, even the truncated variety, cannot be ignored.

3.4 Equivalent Representations

One might ask if there are more general representations than those discussed
in Section 3.2, namely those of Figure 3.2.5. The answer is no!. First we
prove that by using Laplace transforms, we introduce a type of similarity
transformation which preserves all the structure of all the matrix equations,
and gives some insight into why Figure 3.2.5 is minimal. These transformations
are used in later chapters for more general applications.

3.4.1 The Canonical Minimal Representation

Consider the expression B∗(s) = Ψ
[
(I + sV)−1

]
built from the vector-matrix

pair, 〈〈〈p, B 〉〉〉 both of dimension m. Let {μj | 1 ≤ j ≤ m} be the set of
eigenvalues (not necessarily all distinct) of B. We know from Theorem 3.1.1
that if B∗(s) is the Laplace transform of some ME distribution, namely
b(x) = Ψ [exp(−xB)B], then �(μj) > 0 for all μj . Furthermore, min |μj |
must be real (and positive). We also know that when s = −μj (I+sV) has no
inverse. One would therefore expect that B∗(−μj) = ∞ for all j, but this is
not necessarily the case, although it is true that if B∗(s) =∞, then s = −μj

3 M. E. Functions 143

for some j. We discuss the reason why this can happen in the next section,
but for now observe that (I + sV)−1 must be proportional to 1/φ(s), where
φ(s) = (Det[I+sV]). Then Ψ

[
(I + sV)−1

]
must yield a ratio of polynomials,

say q2(s)/q1(s), where common factors between q1(s) and q2(s) have been re-
moved. Let the degree of q1 be m1 (the dimension of V is m). Then m1 ≤ m.
All the roots of q1 must be elements of the set {−μj}, but if m1 < m then
not all members of that set are roots of q1.

We are now ready to state and prove the theorem for the unique minimal
representations.

Theorem 3.4.1: Every vector-matrix pair, 〈〈〈p, B 〉〉〉 (or 〈〈〈p, V 〉〉〉)
with dimension m, and its generated distribution as given in Theorem
3.1.1, is equivalent to a vector-matrix pair (call it 〈〈〈pc, Bc 〉〉〉, with di-
mension mc) of the form surrounding Figure 3.2.5. That is, 〈〈〈pc, Bc 〉〉〉
generates the same moments and b(x) as 〈〈〈p, B 〉〉〉, and mc ≤ m. Fur-
thermore there are no other representations whose dimensions are
smaller than mc. This representation is unique to within a reorder-
ing of the μjs. Therefore, we call it the canonical representation of
b(x). �
Proof: First recall that 〈〈〈p, B 〉〉〉 generates a Laplace transform by
(3.2.14b) that is RLT. Next note that every ratio of polynomials can
be written as partial fractions [sums of terms whose denominators are
of the form (s− μi)mi], which can then be manipulated into the form
given in (3.2.13a). The parameters in (3.2.13a) then map directly into
Figure 3.2.5 and the minimal representation 〈〈〈pc, Bc 〉〉〉. The Laplace
transform of every well-behaved function is unique (to within a set of
measure 0), and because 〈〈〈pc, Bc 〉〉〉 and 〈〈〈p, B 〉〉〉 have the same Laplace
transform, they must represent the same b(x). QED

3.4.2 Isometric Transformations

We now present a purely linear algebraic approach that yields Theorem 3.4.1.
It is also more general because it does not rely on a specific entrance vector
p. This can be useful in analyzing compound processes and semi-Markov
processes. First consider the following definition.

Definition 3.4.1
Let 〈〈〈p1 , B1 〉〉〉 and 〈〈〈p2 , B2 〉〉〉 be two vector-matrix pairs. Then they
are equivalent if and only if they have the same moments according
to (3.2.14c), or have the same Laplace transform according to (3.2.14b),
or represent the same function according to (3.2.14a). Any one of the
three can prove the other two if the B matrices are invertible. If they
are equivalent, we write

〈〈〈p1 , B1 〉〉〉 ≡ 〈〈〈p2 , B2 〉〉〉.

They do not have to be of the same dimension to be equivalent. ���

144 3.4 Equivalent Representations

Next consider any vector matrix pair 〈〈〈p, B 〉〉〉, where B has inverse V, and
p ε′ε′ε′ = 1. We now apply a particular similarity transformation to this pair,
yielding another pair that is equivalent. We then have the following theorem.

Theorem 3.4.2: Take any nonsingular, isometric matrix S (i.e.,
Sε′ε′ε′ = ε′ε′ε′, and S−1ε′ε′ε′ = ε′ε′ε′). Apply the following isometric transfor-
mation.

p̃ := pS−1 and B̃ := SBS−1. (3.4.1)

Then 〈〈〈 p̃, B̃ 〉〉〉 ≡ 〈〈〈p, B 〉〉〉 in the following sense.

b(t) := Ψ̃
[
exp(−tB̃)B̃

]
= Ψ [exp(−tB)B] ,

Ψ̃
[
Ṽ�
]

= Ψ
[
V�
]
, ∀ � ≥ 0,

and
B∗(s) := Ψ̃

[
(I + sṼ)−1

]
= Ψ

[
(I + sV)−1

]
where Ψ̃ [X] := p̃X ε′ε′ε′ for any square matrix X. This is true for every
invertible isometric matrix, therefore there are an infinite number of
equivalent representations of every ME function. Put differently, all the
equations in Theorem 3.1.1 are invariant in form with respect to
isometric transformations. �
Proof: First note that

p̃ ε′ε′ε′ = (pS−1)ε′ε′ε′ = p(S−1 ε′ε′ε′) = pε′ε′ε′ = 1.

It is well known that SBnS−1 = (SBS−1)n for all n. For instance,

SB2S−1 = SBS−1SBS−1 = (SBS−1)
2
.

Therefore,

S exp(−tB)S−1 = S

(∞∑
n=0

(−t)n

n!
Bn

)
S−1 =

∞∑
n=0

(−t)n

n!
SBnS−1

=
∞∑

n=0

(−t)n

n!
(SBS−1)n = exp(−tSBS−1).

Thus we can write:

b(t) = Ψ [exp(−tB)B] = Ψ
[
S−1S exp(−tB)S−1SBS−1 S

]
= (pS−1) exp(−tSBS−1)SBS−1ε′ε′ε′ = p̃ exp(−tB̃)B̃ ε′ε′ε′

= Ψ̃
[
exp(−tB̃)B̃

]
.

The other relations can be proven in similar fashion. QED

3 M. E. Functions 145

This theorem is true even if one of the eigenvalues of B, call it μ, satisfies
�(μ) < 0 [i.e., b(t) is not a density function]. Then,

1. limt→∞ b(t) =∞
2. The integral definition of B∗(s) only exists for �(s) > −�(μ)

3. The moments, EEE[X�], do not exist.

The term isometric transformation was chosen for the following rea-
son. If we consider the sum of the components of a vector r to be its
(pseudo)“length,” then an isometric transformation preserves the length of
every row vector; that is, rε′ε′ε′ is invariant. However, we must be careful, be-
cause the sum can be negative and thus cannot be used as a “metric” in the
mathematical metric space sense. In any case, a transformation which does
not change that length is iso-metric (iso means “same”, and metric means
“length”).

We now show that any matrix that preserves length in this sense must
be isometric. Let r be any row vector, and S be an invertible matrix. Then
r̃ = rS−1 is the transformed vector, and[

r̃ε′ε′ε′ = rS−1ε′ε′ε′ = rε′ε′ε′ ∀ r
] ⇐⇒ [

S−1 ε′ε′ε′ = ε′ε′ε′
]
.

The proof follows from the fact that the only column vector which is or-
thogonal (uv′ = 0) to every row vector is the one with all zeros, therefore,
v′ := S−1

ε′ε′ε′ − ε′ε′ε′ = o′, because rv′ = 0 for all r. See [Lipsky-Ram85] for
details.

Example 3.4.1: A straightforward example of the invariance of isometric
transformations is permuting the labels of the phases of any 〈〈〈p, B 〉〉〉. Chang-
ing the labels requires interchanging the components of p and interchanging
the rows and columns of B. It is well known that this can be done formally
with the use of permutation matrices. These are 0 − 1 matrices with ex-
actly one ‘1’ in each row and column. In all cases, then, their row-sums are
1, so they are automatically isometric. For instance, for a two-dimensional
representation, in order to interchange phases 1 and 2, one uses the matrix:

S =
[

0 1
1 0

]
·

In this case, S−1 = S, so

p̃ = pS−1 = [p1, p2]
[

0 1
1 0

]
= [p2, p1],

and

B̃ =
[

0 1
1 0

] [
B11 B12

B21 B22

] [
0 1
1 0

]
=
[

B22 B21

B12 B11

]
·

Thus by Theorem 3.4.2, we have proven what most people would consider
obvious, namely that changing the numbering on the phases leaves all

146 3.4 Equivalent Representations

properties of the representation unchanged. �

We now discuss the issue as to why two representations can be equivalent
and yet have different dimension. The following observation was first made by
Neuts in [Neuts81].

Example 3.4.2: Let B be any matrix such that:

Bε′ε′ε′ = με′ε′ε′

(i.e., ε′ε′ε′ is a right-eigenvector of B with eigenvalue, μ). Then for every p,
〈〈〈p, B 〉〉〉 represents the (one-dimensional) exponential function. That is,

b(x) = Ψ [exp(−xB)B] = μ e−μx.

Because Bε′ε′ε′ = με′ε′ε′ it follows that B� ε′ε′ε′ = μ� ε′ε′ε′ ∀ �. Then,
Ψ
[
B�
]

= pB� ε′ε′ε′ = μ�. The proof follows directly by substituting this
into (3.2.13e). Thus, a representation with dimension m = Dim[B] is
equivalent to a representation whose dimension is 1. A specific example of
this is given in Section 3.4.3. �

The above example is a special case of the following. After reviewing Sec-
tion 1.3.3.1, consider the set of column vectors:

ε′ε′ε′, Bε′ε′ε′, B2ε′ε′ε′, · · · , Bm−1ε′ε′ε′,

where m = Dim[B]. There exists a smallest integer, n, such that Bnε′ε′ε′ can be
written as a linear combination of the vectors with a lower power of B. That
is

Bn ε′ε′ε′ = ao ε′ε′ε′ + a1Bε′ε′ε′ + · · · + an−1 Bn−1ε′ε′ε′

or
(Bn − ao I− a1B− · · · − an−1 Bn−1)ε′ε′ε′ = fn(B)ε′ε′ε′ = o′.

We know that n ≤ m, because it is well known that the characteristic poly-
nomial (a polynomial of degree m) always allows us to write Bmε′ε′ε′ in terms
of the others. In fact, fn(y) can be written as

fn(y) = (y − μ1)n1(y − μ2)n2 · · · (y − μκ)nκ , (3.4.2a)

with the same set of μ’s as φ(y), the characteristic polynomial of B (3.2.13c).
In this case,

0 ≤ nk ≤ mk and
κ∑

k=1

nk = n. (3.4.2b)

If n is strictly less than m, we can actually find a representation of lesser
dimension that is equivalent to the one given. In Example 3.4.2, n = 1. The
underlying cause of this drop in dimensionality is the fact that one or more left-
eigenvectors of B are orthogonal to ε′ε′ε′. The different possibilities for reduction
are sketched here.

3 M. E. Functions 147

1. mk = 1 and nk = 0; then uk ε′ε′ε′ = 0,

2. mk > 1 but there is only one left eigenvector; then either nk = mk or
nk = 0. In the latter case, uk ε′ε′ε′ = 0,

3. mk > 1 and there are several left eigenvectors; then nk ≤ mk. If nk = 0,
then all the eigenvectors are orthogonal to ε′ε′ε′. If nk > 0 then a linear
combination of the eigenvectors can be found such that all but one (at
most) are orthogonal to ε′ε′ε′.

In other words, every eigenvalue that appears in fn(y) has exactly one left
eigenvector that is not orthogonal to ε′ε′ε′. The number of such eigenvectors is
κ. We next show how the others can be thrown away.

Consider the Jordan canonical form (see, e.g., [Horn-Johnson85]) for
matrices, For each finite-dimensional square matrix), call it B, there always
exists a nonsingular matrix R such that

RBR−1 =

⎡
⎢⎢⎣

μ1X1 0 0 · · · 0
0 μ2X2 0 · · · 0
: : : · · · :
0 0 0 · · · μKB

XKB

⎤
⎥⎥⎦ , (3.4.3a)

where KB is the number of (independent) left eigenvectors and the μ’s are the
eigenvalues of B. The μ’s are not necessarily distinct (i.e., there may be two
or more eigenvectors with the same eigenvalue). The reader should compare
this with (3.2.11b) before going on. Each matrix Xk is of the form

Xk =

⎡
⎢⎢⎢⎢⎣

μk αk 0 · · · 0 0
0 μk αk · · · 0 0
: : : · · · : :
0 0 0 · · · μk αk

0 0 0 · · · 0 μk

⎤
⎥⎥⎥⎥⎦ , (3.4.3b)

where αk
= 0, and is otherwise not specified. The usual Jordan normal form
sets αk = ±1, but we ultimately set it to αk = −μk so that Xk = μk Lk,
where Lk is given by (3.2.3b). As an example, consider the 2-dimensional
similarity transformation equation showing that α can be given any value,
and furthermore, there are enough free constants available to do more.

RLR−1 :=
[

α/a αb/a2

0 −1/a

] [
1 −1
0 1

] [
a/α b
0 −a

]
=
[

1 α
0 1

]
= X,

where a, b, α
= 0 but are otherwise anything. This can easily be made into
an isometric transformation by making b = 1 + 1/α and a = −1, for then

R =⇒ S =
[−α 1 + α

0 1

]
, S−1 =

[−1/α 1 + 1/α
0 1

]
,

and S ε′ε′ε′ = S−1 ε′ε′ε′ = ε′ε′ε′. After picking α, there were still two free parameters
(a and b) available to make the transformation an isometric one. The reader
should check out these equations.

148 3.4 Equivalent Representations

We now discuss what to do with those left eigenvectors that sum to 0.
When such vectors occur, the rows in S corresponding to that block also sum
to 0. Let us assume then, that the blocks in (3.4.3a) are already ordered so
that all those corresponding to 0-sum eigenvectors are placed at the end. Let
us also assume that all the rows that do not sum to zero are normalized so
that they sum to 1. One other consideration must be made. If there are two
or more eigenvectors with the same eigenvalue, then there will be a block
for each. It is not hard to show that the eigenvectors can be recombined to
produce one that sums to 1 (the one that goes with the biggest block), with
all the others summing to 0. Yes, all this can be done by successive isometric
transformations. Then we end up with

B̃ = SBS−1 =

⎡
⎢⎢⎢⎢⎣

μ1L1 0 0 · · · 0 E1

0 μ2L2 0 · · · 0 E2

: : : · · · : :
0 0 0 · · · μκLκ Eκ

0 0 0 · · · 0 E

⎤
⎥⎥⎥⎥⎦ ,

where S satisfies

S ε′mε
′
mε
′
m = S

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
...
1
1
...
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
...
1
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and S−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
...
1
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ε′mε
′
mε
′
m.

The new column vector has n ones and me = m − n zeroes, where n comes
from (3.4.2b). Ek is of dimension nk ×me and E is of dimension me ×me.
κ ≤ KB is the number of left eigenvectors for which ukε

′
kε
′
kε
′
k
= 0. It is also the

minimum number of blocks for a representation that is valid for all entrance
vectors p.

Following the notation of (3.2.11a), observe that:

Ψ [B] = pBε′ε′ε′ = pS−1SBS−1 S ε′mε
′
mε
′
m = p̃ B̃ Sε′mε

′
mε
′
m

=
[
a1p̃(1) a2p̃(2) · · · aκp̃(κ)

]
⎡
⎢⎢⎢⎢⎣

μ1L1 0 0 · · · 0 E1

0 μ2L2 0 · · · 0 E2

: : : · · · : :
0 0 0 · · · μκLκ Eκ

0 0 0 · · · 0 E

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ε′1ε
′
1ε
′
1

ε′2ε
′
2ε
′
2
...

ε′κε
′
κε
′
κ

o′

⎤
⎥⎥⎥⎥⎥⎦ ·

ε′kε
′
kε
′
k is the mk-dimensional column vector of all 1’s, and o′ is the me dimensional

column vector of all 0’s. Clearly, whatever the E matrices are, they do not
contribute to Ψ [B], because the number of zeroes in the column vector exactly
matches the row dimension of the E matrices. The same is true of all powers
of B, including V and its powers. Therefore, we can throw away all last me

3 M. E. Functions 149

rows and columns and end up with a new vector-matrix pair, which we also
call 〈〈〈 p̃, B̃ 〉〉〉.

Hereafter we include the dimension reduction, if appropriate, whenever we
make an isometric transformation. B̃ is the smallest matrix that is equivalent
to B for all possible p. However, it can be reduced further, depending on the
specific p chosen. The pair 〈〈〈 p̃, B̃ 〉〉〉 is in the form given by Equations (3.2.11),
but they are not necessarily equal. It may happen that some nk are actually
larger than those found by the Laplace transform. Note that in (3.2.11) it
was required that p

(k)
mk
= 0, but here, it is possible that p

(k)
nk = 0. If so, we

throw it away, together with the corresponding row and column of B̃. When
all this trimming is done, we do end up with the same vector-matrix pair as
in Theorem 3.4.1.

Yes, it was a long way to get there, and you might have preferred to stick
with the Laplace transform view, but here we found a minimal representation
of B that is good for all entrance vectors, and we did it with only matrix ar-
guments. The only step remaining, if appropriate, is to examine the particular
p̃ = pS−1, and do the final trimming then.

3.4.2.1 Summary

We have now seen that all functions of exponential type [i.e., of the form given
in Equations (3.2.8)] have rational Laplace transforms (RLTs) and can be rep-
resented by a vector-matrix pair 〈〈〈p , B 〉〉〉 of the form (3.2.11a) and (3.2.11b).
Conversely, for every 〈〈〈p , B 〉〉〉 there exists an equivalent vector-matrix pair
〈〈〈 p̃ , B̃ 〉〉〉 of equal or lesser dimension that is of the form (3.2.11b) and repre-
sents the same function as given by Equations (3.2.14). There is no represen-
tation that has a smaller dimension. In general, one can say that if 〈〈〈p , B 〉〉〉
is a representation of b(t), so is 〈〈〈pS−1 , SBS−1 〉〉〉, where S is any nonsingular
isometric matrix of appropriate dimension. Clearly, there are an infinite num-
ber of equivalent representations of every pdf (including, interestingly enough,
the exponential distribution, which has an infinite number of equivalent rep-
resentations, but of dimension >1). Thus it would seem useless to try to give
real physical meaning to the individual components of p or B.

It is important to note that if the ais, p
(k)
i s, and μ is are real and positive,

we are dealing with a PHase distribution [Neuts81], but they do not have
to be for b(t) to be a proper pdf. Neuts has defined a PHase distribution to
be a distribution for which there exists a representation where p, P, and M
have only real, non-negative components. Such a representation said to be
of PHase type . (See the footnote at the beginning of Section 3.2.) We give
several examples where the original representation is of PHase type, but the
canonical one is not (e.g., Erlangian distributions with feedback). A detailed
classification of matrix exponential functions is given in [Lipsky-Fang86].

Now we state the representation theorem.

Theorem 3.4.3: Consider any finite vector-matrix pair 〈〈〈p , B 〉〉〉
with the following properties. p is isometric; B is invertible and has no
eigenvalues with nonpositive real part. Then:

150 3.4 Equivalent Representations

1. The three equations in Theorem 3.1.1 [or (3.2.14)] are alge-
braically correct.

2. Let S be any isometric invertible matrix. Then

〈〈〈p , B 〉〉〉 ≡ 〈〈〈pS−1 , SBS−1 〉〉〉.

3. There exists a special S such that SBS−1 is of the form (3.4.3),
with KB blocks. If the last me rows and columns are discarded,
the resulting matrix has κ ≤ KB blocks. This is the smallest B
matrix that is valid for all p.

4. For a specific p, if for each k, those rows and columns correspond-
ing to p

(k)
mk = 0 are discarded, then the reduced vector-matrix

pair 〈〈〈 p̃ , B̃ 〉〉〉 is the canonical representation with the follow-
ing properties.

(a) It is unique to within an exchange of blocks.
(b) It is equivalent to 〈〈〈p , B 〉〉〉.
(c) It has K ≤ κ ≤ KB blocks.
(d) No other representation is of smaller dimension.
(e) The characteristic equation for B̃ satisfies (3.2.13b).

The various components may not be physically realizable even if the
components of the original representation are, but diagrammatically
it looks like Figure 3.2.5. If the reduced mk is greater than 1 for any
k, then the canonical representation is defective. It follows then, that
if the canonical representation is defective (B is a defective matrix),
no diagonal representation of b(x) exists. �

Remember, even if individual components of p or B are complex, b(x) is
unchanged by an isometric transformation, so the physical consequences are
unchanged. D. R. Cox was the first one to consider complex probabilities
[Cox55] in this context, but made little use of it. In the next chapters we
derive numerous equations, all of which are invariant to this class of isometric
transformations.

3.4.2.2 Hierachy of ME Functions

In the following set of definitions, when we talk about R(x) we will, by impli-
cation, include B(x) = 1−R(x) and b(x) = (d/dx)B(x).

We wish to define and classify five sets of ME functions that are mutually
inclusive (nested subsets).

Definition 3.4.2
Let 〈〈〈p, B 〉〉〉 be any finite-dimensional vector-matrix pair with possibly
complex components, and pε′ε′ε′ = 1. Then:

R(x) = Ψ[exp(−xB)], with R(0) = 1

3 M. E. Functions 151

and RLT

B∗(s) = Ψ[B(sI + sB)−1] = Ψ[(I + sV)−1] =
q2(s)
q1(s)

,

where V = B−1, if it exists. Let {μi} be the set of roots of q1(s), and
let σ = min[�(μi)]. We define five sets of functions where each one is
a superset of the one below it.

1. ME functions [R(x) is complex].

2. Real ME functions [R(x) is real].

3. Integrable (real) ME functions [limx→∞ R(x) = 0].

4. ME distributions [b(x) ≥ 0 ∀ x ≥ 0].

5. PHase representations.

(There are some interesting subsets between (3) and (4), and after (5),
and others, no doubt.)

There are three domains in which these functions can be defined/tested:
matrix domain, function domain, and Laplace transform domain. These
sets of functions have the following properties in each of the domains:

Table 3.4.1. Properties of ME Functions in Three Domains

〈〈〈p, B 〉〉〉 R(x), b(x), F (x) B∗(x)
(1) Finite (complex)

∑
fi(x)e−μi x q2(s)/q1(s)

Φ(μ) = Det|B− μI| If μ is complex, then q1(s) and q2(s)
(2) is real; μ∗ is also a term; are real; q1(s)

Φ(μi) = 0 fμi
(s) = f∗

μ∗
i
(s) divides Φ(s)

(3) σ > 0 σ > 0 σ > 0
(4) Not known b(x) ≥ 0 Not known

Bii > 0, Bij ≤ 0
(5) pi ≥ 0, (Bε′ε′ε′)i ≥ 0 Not known Not known

V = B−1 exists

Classes (1) to (3) are not appropriate for use in queueing theory (ex-
cept, perhaps as approximations to probability functions), but they
have some interesting properties as seen below. ���

For instance, the LT matrix as defined in (3.1.10) exists irrespective of whether
the integral definition of B*(s) exists (even if V doesn’t exist). The integral
definition for the Laplace transform,

B∗(s) =
∫ ∞

o

e−sx b(x) dx

exists on the positive real line only for s > −σ.
If q1(s) and q2(s) are real (i.e., they are both polynomials with real coef-

ficients), then R(x) is real for all real x [class (2)]. That is, the μ′
is and the

polynomials, fi(x), occur in complex conjugate pairs.

152 3.4 Equivalent Representations

If σ > 0, then all the moments of b(x) exist, and satisfy [class (3)]:

EEE[X�] =
∫ ∞

o

x� b(x) dx = �!Ψ[V�].

Furthermore, if σ is an eigenvalue of B (i.e., it has no imaginary component)
then R(x) has an exponential tail. That is,

R(x)→ c xm e−σx

for x large enough. m is the multiplicity of σ.
But B(x) may not be a PDF. For this to be true, we must have [class (4)]

b(x) ≥ 0 ∀ x ≥ 0,

or equivalently, R(x) must be a monotonically nonincreasing function of x.
After 40 years of research we still don’t know how (or if) this can be shown
directly from the matrix or LT domains, but if the above inequality is true,
〈〈〈p, B 〉〉〉 represents a matrix exponential distribution. This is the class of
functions of interest to us here.

An important subclass of ME distributions in great use today, and first
defined by [Neuts75] is the class of PHase distributions. This class is defined
in the matrix domain as given in the table above [class (5)]. The inequali-
ties are equivalent to having a representation that is truly physical. That is,
B = M(I−P) with Mii > 0, 1 ≥ Pij ≥ 0, (Pε′ε′ε′)i ≤ 1, and (I−P) has an
inverse. As is shown by, for instance, Example 3.4.3 below, a given PHase
distribution may have representations that are not PHase (in fact, it will have
an infinite number of them). So we say that:

A distribution is a PHase distribution if it has at least one PHase
represention.

3.4.3 Examples of Equivalent Representations

Despite the powerful theorem we stated in the preceding section about min-
imal and unique representations, a feeling persists that somehow one can
construct a set of phases that can do better (sort of like looking for a perpet-
ual motion machine). A common example, which some people have called a
generalized Erlangian , has the historically older name of hypoexponen-
tial distribution . The simplest example is given by the following.

Example 3.4.3: Consider a server with two phases in tandem that do not
have equal completion rates. The straightforward representation of this is

p = [1 0]; M =
[

μ1 0
0 μ2

]
; P =

[
0 1
0 0

]
,

and thus,

B =
[

μ1 −μ1

0 μ2

]
·

3 M. E. Functions 153

This is a triangular matrix, therefore the eigenvalues of B are equal to μ1 and
μ2. If the μ’s are not equal, B can be diagonalized by the matrix made up of
its eigenvectors. Look at

S−1 =
1

μ2 − μ1

[
μ2 −μ1

0 μ2 − μ1

]
, S =

1
μ2

[
μ2 − μ1 μ1

0 μ2

]
·

First note that S ε′ε′ε′ = ε′ε′ε′. Then

p̃ = pS−1 =
[

μ2

μ2 − μ1

μ1

μ1 − μ2

]
, B̃ = SBS−1 =

[
μ1 0
0 μ2

]
,

and 〈〈〈p , B 〉〉〉 ≡ 〈〈〈 p̃ , B̃ 〉〉〉. So a hypoexponential distribution is just another
hyperexponential distribution, but with a difference. Suppose that μ2 > μ1.
Then (p̃)2 < 0 and (p̃)1 > 1. This is not very physical, but it gives the right
pdf, namely,

b(t) =
μ2

μ2−μ1

(
μ1e

−μ1t
)

+
μ1

μ1−μ2

(
μ2e

−μ2t
)

=
μ1μ2

μ1−μ2

(
e−μ2t − e−μ1t

)
,

and

R(t) =
μ2

μ2−μ1

(
e−μ1t

)
+

μ1

μ1−μ2

(
e−μ2t

)
=

1
μ1−μ2

(
μ1e

−μ2t − μ2e
−μ1t

)
.

You can check these out by taking the direct convolution of two nonequivalent
exponentials, and then evaluating R(t) =

∫∞
t

b(y) dy.
This equation, by the way, gives us a second difference. The value of b(0) is

0, whereas every true hyperexponential must be greater than 0 at the origin.
In any case, which representation would you want to use? Which is easier to
handle? In either case there is a problem. If μ1 and μ2 get arbitrarily close
to each other, then the formula becomes numerically unstable. But if they
are exactly equal, we have an Erlangian-2 distribution. In fact, if we take the
limit very carefully, we will get E2(t) = μ(μt)e−μt.

There is (at least) one last observation to be made here. From Definition
3.4.2, 〈〈〈p , B 〉〉〉 is clearly a PHase representation, but 〈〈〈 p̃ , B̃ 〉〉〉 is not. In any
case, R(t) is a PHase distribution. �

The problem is somewhat complicated algebraically. This is what hap-
pens in general. Take any two-dimensional representation. As long as the two
eigenvalues are different, we have two pairs of eigenvectors, and the canonical
representation looks like a hyperexponential. If we then let the two eigenvalues
approach each other, suddenly the two left (and right) eigenvectors become
equal to each other, and we are left with a degenerate eigenvalue with only
one pair of eigenvectors. This means that there is no isometric (or any other)
transformation that will diagonalize B, so we are stuck with the E2 represen-
tation (not so terrible). This demonstrates what happens when a matrix (in
this case, B) becomes defective.

An alternative possibility is for there to be two independent eigenvectors
with the same eigenvalue (e.g., a true h2 function where the two completion

154 3.4 Equivalent Representations

rates are the same). In this case we can throw away one of the phases and per-
mit our customer to go to the other phase with the sum of the probabilities,†

again yielding the exponential distribution.
Confusing enough? Well, let us try another example, a specific case of

Example 3.4.2.

Example 3.4.4: Consider once again two phases in tandem, but now the
customer can leave after finishing phase 1 with probability θ. Then the P
matrix and entrance vector are

P =
[

0 1− θ
0 0

]
and p = [p q],

where p + q = 1. This leads to a completion rate matrix of the form

B =
[

μ1 −μ1(1− θ)
0 μ2

]
·

This too can be made to look like an h2 function, but if μ2 = θμ1, then
suddenly, ε′ε′ε′ is a right eigenvector of B, with eigenvalue μ2. This means that
this subsystem is only an exponential server, even though nothing special
seems to have happened. From Example 3.4.2 this leads to Ψ [exp(−tB)] =
exp(−tμ2) for any entrance vector. Observe what has happened here. When
μ2 = θμ1, one of the two left eigenvectors becomes orthogonal to ε′ε′ε′ and thus
is discarded, together with the reduction of dimension. Here is the isometric
transformation:

S−1 =
1

μ2 − μ1

[
μ2 − μ1θ −μ1(1− θ)

0 μ2 − μ1

]
,

and

S =
1

μ2 − μ1θ

[
μ2 − μ1 μ1(1− θ)

0 μ2 − μ1θ

]
·

Again note that S ε′ε′ε′ = ε′ε′ε′, and

p̃ = pS−1 =
[
p(μ2 − μ1θ

μ2 − μ1

pμ1θ + qμ2 − μ1

μ2 − μ1

]
, B̃ = SBS−1 =

[
μ1 0
0 μ2

]
,

But when μ2 = θμ1 the equations fall apart. For this specific case,

S−1 =
[

1/a 1
0 1

]
, S =

[
a −a
0 1

]
·

Any a will yield the same B̃, but note that the first row of S sums to 0, and
no value for a can change that. Also note that

S ε′ε′ε′ =
[

0
1

]
and S−1

[
0
1

]
= ε′ε′ε′.

†This property is quite different from the apparently similar situation in control theory.
There, if a degenerate eigenvalue has two eigenvectors, that implies a feedback loop, which
can cause instability.

3 M. E. Functions 155

Throwing away the first row and first column of every matrix, and the first
component of every vector, yields the 1-dimensional representation of the
exponential distribution. �

As a last example, consider the following defective 3-dimensional repre-
sentations.

Example 3.4.5: The left half of Figure 3.4.1 is a diagram of a server
with three phases where the customer, upon entering, goes to phase 1
(p = [1 0 0]). After finishing at phase 1 he goes to phase 2 with prob-
ability p, and to phase 3 with probability q = 1 − p. After that he leaves.
Phases 1 and 2 have service rate μ1 = μ2 = 2 and phase 3 has μ3 = 1. Then

2

2

1

2

2

1

p

q

p

-q

2q

Figure 3.4.1: Two defective representations of the function given in
equation (3.4.4). The left-hand figure is a PHase representation, whereas the
right-hand one is not, but is in canonical form.

P =

⎡
⎣ 0 p q

0 0 0
0 0 0

⎤
⎦ M =

⎡
⎣ 2 0 0

0 2 0
0 0 1

⎤
⎦ and B =

⎡
⎣ 2 −2p −2q

0 2 0
0 0 1

⎤
⎦·

Given that B is triangular, its three eigenvalues are its diagonal elements,
2, 2 and 1. But it only has two sets of eigenvectors, one for eigenvalue 1 and
one for 2. Thus it is defective. The canonical form for B̃ must be:

B̃ =

⎡
⎣ 2 −2 0

0 2 0
0 0 1

⎤
⎦ .

An easy way to find the isometric transformation that yields B̃ is to solve
the set of homogeneous equations implied by

SB = B̃ S,

and selecting the undetermined constants so as to satisfy S ε′ε′ε′ = ε′ε′ε′. They turn
out to be

S =
1
p

⎡
⎣ 1 q −2q

0 p 0
0 0 p

⎤
⎦ S−1 =

⎡
⎣ p −q 2q

0 1 0
0 0 1

⎤
⎦ ,

156 3.4 Equivalent Representations

and p̃ = pS−1 = [p − q 2q]. The diagram of the canonical representation is
shown on the right diagram of Figure 3.4.1. Here we have an E2 component
and a hypoexponential part with a negative probability of going to phase 2.
The density function can be written down directly as

b(x) = (2p x− q)
(
2 e−2x

)
+ 2q e−x. (3.4.4)

Note that, as with all distributions where the customer must go through at
least two phases before exiting, b(0) = 0.

It is easy to check that rows 2 and 3 of S are left eigenvectors of B, and
columns 1 and 3 of S−1 are right eigenvectors, but the other row and column
are not. �

Perhaps we have tried to say too much in too little space. Rest assured
that there are an infinity of examples that can force us into confusing inter-
pretations of the various components. Therefore, we reiterate that it is the
matrix as a whole that describes any subsystem, or nonexponential server,
not its components.

3.4.4 On the Completeness of ME Distributions

Despite the richness of possibilities we have just seen, not every pdf has an
exact representation. On the other hand, it is well known that the set of
polynomials times exponentials forms a complete set in that (almost?) every
integrable function can be approximated arbitrarily closely by a sum of mem-
bers of that set. This approximation concept is discussed in detail elsewhere
and is becoming an increasingly important area of research, with few clear
answers at present.

By completeness we mean that for every pdf of interest there exists a se-
quence of finite-dimensional vector-matrix pairs (perhaps of ever-increasing
dimension) whose properties converge to those of that pdf. Suppose that
{〈〈〈pm , Bm 〉〉〉 | m = 1, 2, . . .} is such a sequence; then in some meaningful sense,

lim
m→∞Ψm [exp(−tBm)] = R(t) (3.4.5a)

and
lim

m→∞Ψm

[
V�

m

]
=
∫ ∞

o

t�b(t)dt, � ≥ 0, (3.4.5b)

with equivalent limits for other properties of b(t). We have discussed three
such sequences up to now; the TPT distributions of Section 3.3.6.2, the deter-
ministic distribution of (3.2.5a), and the uniform distribution (to be discussed
further in Exercise 3.5.8). All three involve an ever-increasing sequence of rep-
resentations whose properties approach ever closely those of the function they
approximate, so Equations (3.4.5) are satisfied. But what about

lim
m→∞ 〈〈〈pm , Bm 〉〉〉?

The TPT representation in (3.3.24) does indeed have a limit, but the repre-
sentation of (3.2.5a) does not. Recall that the Erlangian-m functions have a

3 M. E. Functions 157

mean of m/μ, so to maintain a mean of 1, we let μ = m. Then, in the limit
as m→∞ we also have μ→∞, so limm→∞ Bm does not exist. The uniform
distribution is even worse. The sequence of approximate representations has
the same Bms, whereas the entrance vectors are

pm =
1
m

[1 1 · · · 1 1],

so lim pm = o. These examples tell us we must be careful when we let the
dimensions of a representation become unboundedly large, and we cannot
necessarily deal directly with infinite-dimensional matrices and vectors. But
we can (in principle) deal with matrices of whatever size is needed to yield
accurate enough approximations to any desired PDF.

Before moving on, we discuss the meaning of a representation for which
B or V is singular (i.e., either matrix has no inverse). First we consider finite
representations. If B is singular, exactly one of the parallel paths of its minimal
representation (Figure 3.2.5) has a single phase with a 0 completion rate,
or equivalently, an infinite completion time (multiple phases in tandem with
infinite completion times would be redundant). This corresponds to one of two
possibilities. Either (at least) one of the phases in the original representation
is broken, or there is a possibility that a customer can be trapped in an infinite
loop. In either case, there is a greater than zero probability that a customer can
take an infinite time to complete service. In other words, the mean service time
for this distribution is infinite. This is consistent with (3.2.14c) because V does
not exist if B is singular. Next, suppose that V exists and is singular. Then
it has at least one 0 eigenvalue, and exactly one parallel path of its minimal
representation has a single phase with zero completion time. This is physically
equivalent to the possibility that a customer may bypass service altogether.
In other words, there is a probability greater than 0 that a customer will have
0 service time, or the PDF, B(t) at t = 0, is greater than 0. Because

B(t) =
∫ t

o

b(x)dx,

b(x) must be singular at x = 0. This is consistent with (3.1.8b) and the fact
that B does not exist. We get around this without much difficulty later.

Infinite matrices have a much greater variety of singularities, thus mak-
ing them more difficult to analyze mathematically (aside from the technical
problem of dealing with an infinite set of numbers). A detailed discussion of
this must wait for further research. It is sufficient for our purposes to deal
only with finite matrices, and to represent distribution functions that have
special properties (e.g., functions with nonexponential tails and have infinite
moments) by a sequence of finite representations of ever-increasing dimension,
as described above in our definition of ME functions.

3.4.5 Setting Up Matrix Representations

It is one thing to talk abstractly about a pdf that describes the behavior
of a server or process. It is another thing to say explicitly what the pdf is,

158 3.5 Renewal Processes and Residual Times

based on real-world examination. “What is the pdf?” is definitely not a trivial
question to answer nor is, “What is its matrix representation?” We discuss
the two questions briefly here. There are various ways in which the behavior
of subsystems shows up in the course of examining queueing systems. Several
of them, together with how they can be represented in LAQT, follow.

1. If a Markov chain, or transition graph description is given, p, P,
and M are included as part of the description. In effect, this gives
us Figure 3.1.1.

2. If a density function is given, and one of the following is true;

(a) b(t) only has terms that are exponentials times powers of t,
then it can be rewritten in the form of (3.2.1), from which the
appropriate parameters corresponding to Figure 3.2.1 can be
found,

(b) b(t) is not as in part (a), then an approximation must be
found that obeys (a).

3. If the Laplace transform for the pdf of the subsystem is given,
and
(a) B∗(s) is RLT, then expand it in terms of its partial fractions.

This entails finding the roots of its denominator polynomial.
Each term will be of the form [aip

(i)
j]/(1 + sμ i)j , from which

Figure 3.2.1 can be drawn, or
(b) B∗(s) is not RLT, then an approximation must be found that

is RLT.
4. Only a finite set of data is available that reflects the performance

of the subsystem. Then a suitable function must be constructed
that reflects this performance (i.e., another approximation).

It is not at all clear what a ’good’ approximation might mean in a queueing
theory context. Its goodness depends very much on what use will be made of
the function and in what context. Even if two functions seem to look alike, they
may yield radically different results in any given application. The commonly
accepted procedure of picking approximate functions that have the correct
first two (or more) moments (i.e., EEE[T] and σ2, etc.) has been shown to be
inadequate and even very misleading in solving various problems. The value
of b(t) and its derivatives at 0 may be more important at times. This is
discussed in Chapter 5. Until then, we assume in all topics we cover here that
a representation, or a series of approximate representations converging to b(t),
has already been selected.

3.5 Renewal Processes and Residual Times

Consider a sequence of positive random variables (e.g., service times),
{X1, X2, . . . Xk, . . .} where all the Xks are independent and, except perhaps
X1, are identically distributed. Its relationship with the material in this chap-
ter is straightforward. Let our subsystem S start with an infinite number of

3 M. E. Functions 159

customers waiting to enter while C1 is being served. Call them C2, C3, C4,
When C1 is finished, he leaves, and C2 immediately enters, and so on (see
Figure 3.5.1). The time Ck spends in S is Xk. It is clear that the Xks have
the same pdf. There is one possible exception, namely if C1 had entered S
at some indeterminate time before our observer started her clock. Then X1

Figure 3.5.1: Renewal process viewed as a sequence of departures
from a single subsystem SSS, able to serve one customer at a time.
There is an infinite queue of customers waiting to enter S, and at time = 0, C1

is already being served. He leaves at time Y1 (= X1), after which C2 immediately
enters. At time Y2 (= Y1 +X2) he leaves and C3 enters. This goes on indefinitely,
generating the renewal epochs, Y1, Y2, Y3, Y4, . . . , Yk

would come from the PDF [see (3.1.7c)]

PPPr(X1 < x) := B1(x) = 1− πππ [exp(−xB)]ε′ε′ε′,

where πi is the probability that C1 was at phase i when she started looking,
and x is the time elapsed thereafter. This subtle change of πππ for p in (3.1.7a)
is quite a powerful technique in analyzing a sequence of events. In general,
one can take the vector that describes what happened up to the present [πππ]
and premultiply it to the vector of probabilities of future events (recall from
Definition 3.1.1 that [exp(−xB)ε′ε′ε′]i is the probability that C1 will still be in
S at time x, given that it was in state i at time 0) to get the total probability
for any given event to occur. If observation began at the moment C1 entered
S, then πππ = p, and X1 has the same distribution as the other Xks.

An interesting event to examine is the time for the n-th customer to com-
plete service. That time is the random variable Yn, called a renewal epoch ,
and defined by the obvious relation

Yn :=
n∑

k=1

Xk = Yn−1 + Xn, n > 1, (3.5.1a)

where Y1 = X1. In our picture, the Yns are the departure times, and the Xn’s
are the interdeparture times. If one thinks of these customers as having
already departed from S and then arrive at some point downstream then the
Xns become the interarrival times and the Yn’s become the arrival times.
We remind the reader that in this book we use epoch to mean not only the
time Yn, but the entire interval from Yn−1 up to and including Yn.

A formal definition of a renewal process as given by Feller [Feller71]
follows.

160 3.5 Renewal Processes and Residual Times

Definition 3.5.1
Let X1, X2, . . . , Xn, . . . be a sequence of independent random vari-
ables having the same distribution as X (i.e., Xn = X). Furthermore,
let Yn be defined by (3.5.1a). Then the sequence of Yns constitute a
renewal process. Alternatively, the sequence of Xns can be called a
renewal process. Furthermore, if X1
= X Feller calls it a delayed re-
newal process. It has also been referred to as a generalized renewal
process.

An associated process can be defined as follows. Let Nj(Δ) be the non-
negative integer random variable denoting the number of customers
that have departed (or arrived) in the time interval ((j − 1)Δ, jΔ],
where Δ > 0. Then the sequence {Nj(Δ)}, is the counting process
associated with the renewal process {Xn}. Even though the Xn’s are
iid, the Nj ’s (except for Poisson) in general, are not independent. ���

We already know quite a bit about these variables from elementary probability
theory [Trivedi02]. The classic survey is given in [Cox62].

3.5.1 Matrix Representations for the pdf of Yn

We know that the mean time for Cn to finish is the sum of the mean service
times for all customers up to and including n. Because all customers, except
perhaps C1, share the same distribution, we have

EEE[Xj
k] := EEE[Xj], k > 1, j ≥ 0.

The variance of Xk (k > 1) is

Var(Xk) := σ2 := EEE[X2]− x̄2.

Then [where only EEE[Xj
1] and σ2

1 are different]

EEE[Yn] = EEE[X1] + (n− 1)EEE[X] and Var(Yn) = σ2
1 + (n− 1)σ2.

These properties follow from the fact that the pdf for Yn [call it bn(x)] is
the convolution of the pdfs of the Xks. For instance,

b2(x) =
∫ x

o

b1(s)b(x− s)ds,

and generally,

bk+1(x) =
∫ x

o

bk(s)b(x− s)ds, k > 1, (3.5.1b)

where b(x) comes from (3.1.7d), and b1(x) is similar, with πππ replacing p.
Similarly, the PDFs, Bk(x), satisfy

Bk+1(x) =
∫ x

o

Bk(s)b(x− s)ds. (3.5.1c)

3 M. E. Functions 161

Note that b1(x) is the pdf for both X1 and Y1, and b(x) is the pdf for every
other Xk.

Equations (3.5.1) are not in a form conducive to producing a useful matrix
representation, but let us try anyway. After all, it is often as important to know
what cannot be done as it is to know what can. For k = 2,

b2(x) =
∫ x

o

πππ B exp(−sB)ε′ε′ε′p exp[−(x− s)B]Bε′ε′ε′ ds

= πππ B
[∫ x

o

exp[−sB]Q exp[−(x− s)B]ds

]
B ε′ε′ε′,

where† Q := ε′ε′ε′p is an idempotent matrix (see Exercise 1.3.5) and does not
commute with B or V. This matrix appears over and over and has many
useful properties, some of which we summarize here as a lemma.

Lemma 3.5.1: Let Q = ε′ε′ε′p; then Q has one eigenvalue equal to
1, and m−1 eigenvalues equal to 0, where m is the dimension of Q. In
other words, Q is of rank 1. ε′ε′ε′ and p are its right and left eigenvectors
belonging to eigenvalue 1. That is, they satisfy

Q ε′ε′ε′ = ε′ε′ε′ and pQ = p.

Q is idempotent , because Q = Q2. Also, for any square matrix D,
the following are true.

QDQ = Ψ [D]Q, QD ε′ε′ε′ = Ψ [D] ε′ε′ε′, pDQ = Ψ [D]p.

The proofs are straightforward by substituting for Q. Recall that
Ψ [D] = pDε′ε′ε′ is a scalar and can be brought outside any matrix alge-
braic expression. For instance, for some arbitrary multiplication string
of matrices with at least two appearances of Q, we can write

AQBQC = A QBQ C = Ψ [B]AQC.

Therefore, every matrix string can be reduced to a scalar times a
matrix string with at most one Q in it. �

We return now to the last equation preceding Lemma 3.5.1. Because Q is
in the middle of this expression, no simplification can be made in this form.
Expanding both exponentials in power series will allow the integrals to be
performed. There are two paths that one can take. We do both in turn. First,

b2(x) = πππ B
∫ x

o

∞∑
k=0

(−B)k

k!
Q

∞∑
j=0

(−B)j

j!
sk(x− s)jdsBε′ε′ε′

= πππ B
∞∑

k=0

∞∑
j=0

(−B)kQ(−B)j

k!j!

[∫ x

o

sk(x− s)jds

]
Bε′ε′ε′.

†We point out that this Q has nothing whatever to do with the transition rate matrix
QQQ of Chapter 1.

162 3.5 Renewal Processes and Residual Times

The expression in brackets, as defined in [AbramowitzStegun64], is the
beta function, and is equal to

β(k + 1, j + 1) :=
∫ x

o

sk(x− s)jds =
k!j!

(k + j + 1)!
xk+j+1.

Therefore,

b2(x) = xπππ B

⎡
⎣ ∞∑

k=0

∞∑
j=0

(−xB)kQ(−xB)j

(k + j + 1)!

⎤
⎦Bε′ε′ε′. (3.5.2a)

As far as we know, there is no closed-form expression for this. However, see
Exercises 3.5.5 and 3.5.6 for a meaning of these terms.

Exercise 3.5.1: If S is one-dimensional (i.e., exponential), then Q =
1,πππ = 1, and B = μ. Show directly from the expression above that
b2(x) = μ2xe−μx.

Alternatively, we can write

b2(x) = πππ B
[∫ x

o

exp(−sB)Q exp(+sB)ds

]
exp(−xB)Bε′ε′ε′

= πππ B
∞∑

k=0

∞∑
j=0

(−B)kQ(B)j

k!j!

[∫ x

o

sk+jds

]
exp(−xB)Bε′ε′ε′,

and finally,

b2(x) = xπππ B

⎡
⎣ ∞∑

k=0

∞∑
j=0

(−xB)kQ(xB)j

k!j!(k + j + 1)

⎤
⎦exp(−xB)Bε′ε′ε′. (3.5.2b)

This does not seem to be much better, if at all, and we can expect b3(x) to
yield even messier expressions for either form. Our purpose in going through
this at all was to warn the reader that matrix functions are not always as easy
to manipulate as their scalar counterparts. We must look elsewhere for useful
expressions.

Exercise 3.5.2: Show that (3.5.2b) also reduces to b2(x) = μ2xe−μx

when S is one-dimensional.

Rather than trying to convert a convolution into a matrix expression, let
us instead look at Yk as a single process. Consider Figure 3.5.2 where we have
k identical subsystems in tandem, each described by the same pair 〈〈〈p , V 〉〉〉,
except for S1, which has πππ instead of p. A customer starts at the i-th phase

3 M. E. Functions 163

Figure 3.5.2: Representation of the distribution of YkYkYk, the kkk-th con-
volution of SSS with itself. All the S’s are identical, except that the starting
vector for S1 may be different.

of S1 with probability πi. After meandering for a while [P], he leaves [q′], and
immediately goes to S2, entering there and going to phase i with probability
pi. Instead of having a convolution of k m-dimensional objects, our process is
described by the (k ×m)-dimensional arrays {pk, ε′kε

′
kε
′
k, Pk, Mk, etc.}. ε′kε

′
kε
′
k is a

k×m vector of all 1’s. The process must start in one of the first m states, so

pk = [πππ, o, o, . . . , o] (3.5.3a)

(each o is an m-vector of all 0’s) and will go from i to j in S1 with probability
Pij , or go to the phase j in S2 with probability qipj = (q′p)ij . For k = 3, for
instance,

P3 =

⎡
⎣ P q′p O

O P q′p
O O P

⎤
⎦ and M3 =

⎡
⎣ M O O

O M O
O O M

⎤
⎦ . (3.5.3b)

The rate matrix for the process is (remember that Bq′p = BQ)

B3 = M3(I3 −P3) =

⎡
⎣ B −BQ O

O B −BQ
O O B

⎤
⎦

= B

⎡
⎣ I −Q O

O I −Q
O O I

⎤
⎦ (3.5.3c)

with process time matrix

V3 = B3
−1 =

⎡
⎣ I Q Q

O I Q
O O I

⎤
⎦V. (3.5.3d)

The generalization to any k should be clear. We can now write down the pdf
for this process:

bk(x) = pk [Bk exp(−xBk)] ε′kε
′
kε
′
k and EEE[Y �

k] =
1
�!

pk

[
Vk

�
]
ε′kε
′
kε
′
k. (3.5.3e)

164 3.5 Renewal Processes and Residual Times

Exercise 3.5.3: Prove by direct calculation that (3.5.3d) is the inverse
of B3. Also, give the general expression for Vk and Bk, and find the
mean and variance of bk(x) using only these formulas.

3.5.2 Renewal Function and Transient Renewal Processes

If all that renewal theory had to offer was another view of convolutions, the
topic would not have arisen at all. Its importance comes in studying the
number of events that occur in a given interval of time. Suppose that we
observe S for a time 0 to Δ. What is the probability that exactly n customers
will depart in that time? Let that probability be Pn. Then

Pn(Δ) = PPPr(Yn ≤ Δ < Yn+1). (3.5.4a)

Now, the PDF corresponding to (3.5.3e), Bn(T), is the probability that Yn is
less than Δ, but does not exclude the possibility that Ym, for m > n is also
less than Δ. Therefore,

Bn(Δ) = Pn(Δ) + Pn+1(Δ) + Pn+2(Δ) + · · ·

=
∞∑

m=n

Pm(Δ) = Pn(Δ) + Bn+1(Δ).

It then follows that
Pn(Δ) = Bn(Δ)−Bn+1(Δ). (3.5.4b)

We are already familiar with the well-known example for exponential distri-
butions, namely the Poisson distribution , for which

Pm(Δ) =
(μΔ)m

m!
e−μΔ. (3.5.4c)

We now derive this formula with the aid of (3.5.4b). The m-th convolution of
an exponential with itself is the Erlangian density function, already defined
in (3.2.1a) and satisfying (3.5.1a),

Em(x) = μ
(μx)m−1

(m− 1)!
e−μx,

whose PDF is

Bm(Δ) =
∫ Δ

o

Em(x)dx = 1−
[

m−1∑
k=0

(μΔ)k

k!

]
e−μΔ =

∞∑
k=n

(μΔ)k

k!
e−μΔ.

The desired result follows directly.
A useful function in renewal theory is the average number of departures

in the interval (0,Δ].† The initial time t = 0 is not included in the interval
†We follow standard mathematical practice, where (a, b] stands for: “all the points be-

tween a and b, not including a, but including b.” Put another way, ′(′ and ′)′ mean open
(does not include), and ′[′ and ′]′ mean closed (does include).

3 M. E. Functions 165

because we do not wish to count the departure of Co, if it existed. Define the
renewal function to be the expected number of departures in this interval.
Then

M(T) :=
∞∑

n=0

nPn(T) =
∞∑

n=0

nBn(T)−
∞∑

n=0

nBn+1(T)

=
∞∑

n=1

nBn(T)−
∞∑

n=1

(n− 1)Bn(T).

Note that two terms cancel, leaving the well-known formula

M(Δ) =
∞∑

n=1

Bn(Δ). (3.5.5)

Following [Trivedi02], from (3.5.1b),

M(Δ) = B1(Δ) +
∫ Δ

o

B1(s)b(Δ− s) ds +
∫ Δ

o

B2(s)b(Δ− s) ds + · · ·

= B1(Δ) +
∫ Δ

o

[B1(s) + B2(s) + B3(s) + · · ·]b(Δ− s) ds,

yielding an integral equation (the renewal equation) for the renewal func-
tion

M(Δ) = B1(Δ) +
∫ Δ

o

M(s)b(Δ− s)ds

= B1(Δ) +
∫ Δ

o

M(Δ− s)b(s)ds. (3.5.6)

Actually, it has been found to be easier to study the derivative of M(Δ),
because M(Δ) goes to infinity as Δ goes to infinity, but its derivative does
not. Therefore, define the renewal density

m(x) :=
dM(x)

dx
=

∞∑
n=1

bn(x) = b1(x) +
∫ x

o

m(s)b(x− s)ds. (3.5.7)

m(x) can be interpreted as the instantaneous completion (or service, or ar-
rival) rate of the renewal process. A solution of this equation is not easy to
come by, although its Laplace transform is, giving us little insight into what
is going on. It is known, however, that if b(x) is exponential, then m(Δ) = μ
is constant for all Δ, which is what one would expect for all distributions.
The expected number of completions in the interval (0,Δ] is M(Δ) = μΔ,
no matter how big or small Δ is. It is somewhat surprising that this is not
true for general servers. We find m(x) by looking at a different problem that
turns out to simultaneously solve (3.5.7).

Consider our same S with only one customer, who, after visiting S leaves,
and with probability α immediately returns to S, as shown in Figure 3.5.3.

166 3.5 Renewal Processes and Residual Times

Feller calls this a transient renewal process. This is also referred to as
a feedback loop. We use the symbol Sr for the subsystem that generates
this. For the rest of this chapter, r is used as a subscript for objects that are
properties of Sr, as distinct from the use of any other symbols, such as i, j,
k, l, and n, which are numerical subscripts. So, for instance, Sk is the k-th
subsystem in tandem in Figure 3.5.2. We can construct the pdf for Sr by the
following argument. Our customer will visit S exactly k times with probability
αk−1(1−α). Given that the pdf for visiting k times is bk(x), the pdf for Sr is

f(x;α) := (1− α)
∞∑

k=1

αk−1bk(x) := (1− α)m(x;α). (3.5.8a)

From previous discussion, it follows that m(x; α) satisfies the integral equa-

Figure 3.5.3: Representation of the pdf of f(x; α)f(x; α)f(x; α). After leaving S, a cus-
tomer can either leave Sr or, with probability α, return to S. It has a representation
given by 〈〈〈πππ, Br(α) 〉〉〉, as given in the text.

tion
m(x;α) = b1(x) + α

∫ x

o

m(s;α)b(x− s) ds, (3.5.8b)

from which we get

m(x) = m(x; 1) = lim
α→1

f(x;α)
1− α

· (3.5.8c)

By integrating (3.5.8a) and (3.5.8b) one can also get a formal expression for
M(x;α) with the following properties.

M(x;α) : =
∫ x

o

m(s;α) ds = B1(x) + α

∫ x

o

M(s;α)B(x−s)ds

=
F (x;α)
1− α

· (3.5.8d)

3 M. E. Functions 167

Parallel with (3.5.8c), the renewal function satisfies

M(x) = M(x; 1) = lim
α→1

F (x;α)
1− α

, (3.5.8e)

where F (x; α) is the PDF of Sr. Its functional form is given below.
This process can be viewed directly as an m-dimensional subnetwork. Let

(Pr)ij be the probability of going from i to j, either directly [Pij], or by
leaving [qi], and then immediately returning [α], and going to j[pj]. Then

Pr = P + αq′ p. (3.5.9a)

Mr is the same as M, so the service rate matrix for Sr is

Br(α) = Mr(I−Pr) = M(I−P− αq′ p) = B− αMq′p.

Recall that Mq′ = Bε′ε′ε′. Therefore, we have

Br(α) = B (I− αQ), (3.5.9b)

and because f(x;α) is a density function, generated by 〈〈〈πππ , Br(α) 〉〉〉, we can
write

f(x;α) = πππ exp[−xBr(α)]Br(α)ε′ε′ε′ = πππ exp[−xB(I− αQ)] B(I− αQ)ε′ε′ε′

and
F (x; α) = 1− πππ[exp(−xBr(α))]ε′ε′ε′. (3.5.9c)

But (I− αQ)ε′ε′ε′ = (1− α)ε′ε′ε′, so

f(x;α) = (1− α)πππ exp[−xB(I− αQ)]B ε′ε′ε′, (3.5.9d)

and
m(x; α) = πππ exp[−xB(I− αQ)]Bε′ε′ε′. (3.5.9e)

A similar expression can be found for its integral,

M(x; α) =
1− πππ exp[−xBr(α)]ε′ε′ε′

1− α
· (3.5.9f)

Let us digress for a moment to observe that m(x;α) is actually the generating
function of the bk(x)s. Thus m(x; 0) = b1(x), and in general the k-th derivative
of m(x;α) with respect to α evaluated at α = 0 is (k!)bk+1(x), where bk(x) is
the pdf of the k-th convolution of b(x) with itself. That is,

bk(x) =
1

(k − 1)!

[(
∂

∂α

)(k−1)

m(x;α)

]
α=0

. (3.5.9g)

This must reduce to the familiar when S is a pure exponential, where as usual,
Q,p, and ε′ε′ε′ all equal 1, and B = μ, so

m(x;α) = μe−μx(1−α) = μe−μxeμxα.

168 3.5 Renewal Processes and Residual Times

For α = 0, we get as expected, b1(x) = μe−μx. There is more to be said about
this result. As we pointed out previously in (3.5.8a), the density function
of a subsystem with feedback f(x;α), is equal to (1 − α)m(x;α). So if S
is exponential, with mean service rate μ, then f(x;α) is also exponentially
distributed, with mean service rate (1− α)μ. But this is a special case of the
following rather interesting lemma, which we state in two apparently unrelated
ways.

Lemma 3.5.2: Let b(x) be any pdf with m-dimensional represen-
tation 〈〈〈p , B 〉〉〉.
(a) Then the representation of b(x) with feedback [i.e., 〈〈〈p , Br(α) 〉〉〉 →

f(x; α)] is also m-dimensional.
(b) The average of b(x) with its convolutions of all orders, weighted

over a geometric distribution [(1− α)αk−1], has a representation
which has the same dimension as b(x) itself [(3.5.8a)]. �

What makes this interesting is the following. We know from the discussion
in Section 3.4.5 that the representation of bk(x) is of dimension m × k. Yet
an appropriately weighted average of all these functions has a representation
that is no more complicated than the one for b(x). The example of an ex-
ponential distribution shows this clearly. The exponential distribution has a
one-dimensional representation. Its k-th convolution, the Erlangian-k distri-
bution, has a smallest representation that is of dimension k. Yet the weighted
sum is again exponential (i.e., its representation is one-dimensional).

Exercise 3.5.4: Show, using (3.5.9g), that the expression above for
m(x;α) does indeed generate the Erlangian-k distributions defined in
(3.2.1).

It is not as easy to take the derivative of a matrix function as it would
seem. First of all, B and Q do not commute (see Theorem 1.3.2), therefore
we cannot write [exp(−xB)][exp(xαBQ] for exp[−xB(I− αQ)]. Second, the
function must be replaced by its Taylor series expansion, and then each term
differentiated separately. For instance (here, ′ stands for the derivative with
respect to α),

d

dα
Br

3 =
d

dα
(BrBrBr) = B′

rB
2
r + BrB′

rBr + B2
rB

′
r.

Now from (3.5.9b), Br(α = 0) = B and

d

dα
B (I− αQ) = −BQ,

so (suppressing Br’s dependence on α),(
dBr

3

dα

)
α=0

= − (BQB2 + B2QB + B3Q
)
.

3 M. E. Functions 169

This expression clearly is not the same as −3B(BQ)2, and in fact is typical
of the terms appearing in Equations (3.5.2).

Exercise 3.5.5: Show in general that

(
dBr

n

dα

)
α=0

= −B

(
n−1∑
k=0

BkQBn−k−1

)
.

Exercise 3.5.6: Use Exercise 3.5.5 to show that the expression for
b2(x) in (3.5.2a) is actually

−
(

∂

∂α
Ψ [exp(−xBr)]

)
α=0

,

which is the derivative of Fr(x; α) for p = πππ, and then evaluated at
α = 0.

Returning to (3.5.9e), we can take the limit as α goes to 1 directly and
get

m(x) = πππ exp[−xB(I−Q)]Bε′ε′ε′. (3.5.9h)

It is not so easy to find M(x) from M(x;α) in (3.5.9f) because both numerator
and denominator approach 0 as α→ 1. For exponential distributions, B⇒ μ,
Q ⇒ 1, and πππ ⇒ 1, so m(x) = μ. Clearly, for all other distributions m(x)
varies with x. However, we have the first of three versions of the renewal
theorem:

Theorem 3.5.3a: Let S represent an ME distribution generating
a renewal process; then

lim
x→∞m(x) =

1
x̄
· (3.5.10a)

�
Proof: First observe that because V = B−1, we can state that

πrπrπr :=
pV

Ψ [V]
(3.5.10b)

is the left eigenvector of B(I−Q) with eigenvalue 0, and corresponding
right eigenvector ε′ε′ε′, with length πr ε′πr ε′πr ε′ = 1. (We take another look at the
mean residual vector πrπrπr, in the next section.) Then as we showed
in Chapter 1 [Equations (1.3.3a) and (1.3.10a)], for large x,

exp[−xB(I−Q)]→ ε′ πrε′ πrε′ πr.

170 3.5 Renewal Processes and Residual Times

Recall from (3.1.4b) that Ψ [V] = x̄ and that π ε′π ε′π ε′ = 1, so we have

lim
x→∞m(x) = (π ε′π ε′π ε′)πrπrπr B ε′ε′ε′ =

pV
x̄

B ε′ε′ε′ =
pVB ε′ε′ε′

x̄
=

1
x̄
·

. QED

This tells us that only if the interval is large enough will the mean number
of customers departing approach Δ/x̄. This is true because the initial state
of the system has to be “forgotten” before the steady-state average can be
achieved. We show this more clearly in the next section.

3.5.3 Residual Times and Delayed Intervals

Numerous books have been written exclusively on renewal theory, so one
should not expect to be able to cover too much in three sections. There are,
however, two related points that we wish to discuss. First, how do we decide
what the starting vector πππ, is? Even if we have a concise answer for that, we
only have formulas describing the first interval of time (0,Δ]. What about
later intervals (Δ, 2Δ], (2Δ, 3Δ], . . . , (kΔ, (k + 1)Δ], and even more generally
(x, x + Δ], for any x > 0?

3.5.3.1 Residual Vector

Let us consider the simplest case where our time begins at the moment C1

enters S, or equivalently, just after Co (if we had defined it) leaves. Then
πππ = p, and we have a renewal process describing the number of customers
who complete service in the interval (0,Δ], which we can (at least in principle)
calculate using Equations (3.5.4) together with (3.5.9) or (3.5.3) (see the next
section for another way). But suppose that we wanted to do the equivalent
for a later interval (x, x + Δ]. What would the starting vector πππ(x) be then?
Well, if we knew that customer C1 was still in service at time x, then πππ(x)
would be proportional to r(x) = p exp(−xB), whose i-th component is the
probability that C1 is still in service and is at phase i (recall the discussion in
Section 3.1.2). The proportionality constant is Ψ [exp(−xB)], which is R1(x).
What is to be done if C1 has already finished or we have not kept track of the
number of completions until x? We consider the first alternative in the next
section and consider the second one here.

Suppose that we do not know, or do not care, how many customers have
been served in previous intervals. Can we say something about the probabil-
ity state of the presently active customer? We can answer the question in a
manner similar to that for the transient renewal process, as in Figure 3.5.3.
The only difference is that the customer always returns to S (i.e., α = 1).
We are now describing a closed system, just as was done in Chapter 1. Our
customer after leaving phase i can get to j either by going directly there [Pij],
or by leaving [qi], and immediately re-entering and going to j, [pj]. Thus we
have an isometric matrix satisfying (1.3.1b):

Pr := P + q′p. (3.5.11a)

3 M. E. Functions 171

But this is identical to (3.5.9a) with α = 1, with matching transition rate
matrix (1.3.2c), Br := B(I−Q) = Br(1), which is (3.5.9b) with α = 1. We
can now define the mean residual vector, or simply the residual vector

πrπrπr(x) := p exp(−xBr), (3.5.11b)

whose i-th component is the probability that the trapped customer is at phase
i at time x irrespective of how many times he has gone around the loop. From
its definition in (3.5.11b) it follows that

lim
x→∞πrπrπr(x) =

1
Ψ[V]

pV = πrπrπr, (3.5.12a)

where πrπrπr is the mean residual vector defined by (3.5.10b). Note that m(x) =
πrπrπr(x)Bε′ε′ε′, but more important, we can evaluate a delayed renewal process
starting at any time, x. For instance, suppose that it is desirable to find the
renewal density for some interval starting at time x. Then, replacing πππ with
πrπrπr(x) in (3.5.11b) yields

mr(Δ;x) := πrπrπr(x) exp(−ΔBr)Bε′ε′ε′

= p exp(−xBr) exp(−ΔBr)Bε′ε′ε′ = Ψ [exp[−(x + Δ)Br]B] .

Now, because πrπrπr(x) goes to πrπrπr as x goes to infinity [from (3.5.12a)], we have
what Feller calls the second form of the renewal theorem [Feller71].

Theorem 3.5.3b: Let S represent an ME distribution generating
a renewal process where measurement starts at time x after C1 began
service; then

lim
x→∞mr(Δ;x) =

1
x̄
·

In words, if measurement is delayed long enough so that the initial
state of the system is forgotten, the mean number of customers being
served in a time interval Δ is Δ/x̄. �

This discussion leads us to yet another form of the renewal theorem. If the
measuring interval begins at a time completely uncorrelated with the time
a customer begins service, the best we can say is that he is at phase i with
probability (πrπrπr)i. Then we have a third form for the renewal theorem.

Theorem 3.5.3c: Let S represent an ME distribution generating
a renewal process in which it is not known when the customer in
service (call it C1) first entered; then m(Δ) is the same for all Δ and
is equal to 1/x̄, thus M(Δ) = Δ/x̄. �

This is what we felt all along. In any experiment of this type, one must decide
ahead of time when to start counting and when to stop counting service com-
pletions, so that there will be no correlation between when the first customer
starts service and when measurement begins. To do otherwise would yield a
mean departure rate different from the long-term average.

172 3.5 Renewal Processes and Residual Times

Almost as an afterthought, we can derive the well-known expression for the
mean residual time , which is the mean time that a customer will remain
in service, given that it was not known when he began. Let Xr be the r.v. for
that remaining time. Then consistent with our notation, we use the symbol
x̄r := EEE[Xr]. † Recall that πrπrπr is the left eigenvector of Br, which in turn is the
transition rate matrix for our trapped customer of Figure 3.5.3, with α = 1.
Therefore, the component i of πrπrπr is the steady-state probability of finding
him at phase i. Lacking any knowledge of where or when the process began
originally, the best we can say at any given moment is that πrπrπr describes all
we know about where our customer is. Let us imagine that as of now, we shall
let him leave the system once he has finished his present trip through S, then

Theorem 3.5.4: Let Xr be the r.v. for the time remaining for a
customer who has been in service for an indefinite period. Then

x̄r = EEE[Xr] = πππrVε′ε′ε′ =
pVV ε′ε′ε′

Ψ [V]
=

Ψ
[
V2
]

Ψ [V]
=

EEE[X2]
2x̄

· (3.5.12b)

In fact, one gets the rather unusual relationship between the moments
of the residual distribution and the original one:

EEE[Xn
r] = n!πrπrπr Vnε′ε′ε′ =

n!
x̄

pVVnε′ε′ε′

=
n!
x̄

Ψ
[
Vn+1

]
=

EEE[Xn+1]
(n + 1)x̄

· (3.5.12c)

The proof comes directly from (3.1.9). �

Exercise 3.5.7: Evaluate x̄r for an E2 and an h2 distribution (see
Exercises 3.1.1 and 3.1.2). For the h2 distribution, let α = 0.1, and
μ2/μ1 = 10. Note that for E2, x̄r is always less than x̄, whereas for
h2, x̄r is always greater than x̄. In fact, show in general that x̄r can be
written in either of the two following ways.

x̄r = x̄
C2

v + 1
2

= x̄ + x̄
C2

v − 1
2

, (3.5.12d)

so the mean residual time is bigger (smaller) than the mean time when-
ever the squared coefficient of variation C2

v , is greater (less) than 1.

The concept of a mean residual vector is useful in succeeding chapters.
Here we derive the known result that gives the pdf of Xr, the time remaining
for a customer who has been in service for an indefinite period. We do this
simply by replacing p with πrπrπr in (3.1.7d). Then

br(x) = πrπrπr B exp(−xB)ε′ε′ε′ =
pV

Ψ [V]
B exp(−xB)ε′ε′ε′ =

Ψ [exp(−xB)]
x̄

·
†So the secret is out; the subscript r stands for residual , not renewal, or reliability, or

whatever.

3 M. E. Functions 173

But the numerator is R(t), the reliability function of (3.1.7b), so

br(t) =
R(t)

x̄
· (3.5.13)

Exercise 3.5.8: You have to catch a train to Leipzig from the Haupt-
bahnhof Station in Munich, which you know leaves every hour. There-
fore, the time between departures is exactly one hour, and its density
function is given by b(x) = δ(x− 1) from (3.2.5a). x is measured from
the time of the previous departure, but you don’t know what that time
is when you arrive at the station. You could have just missed it, so
you may have to wait a whole hour for the next train, or you could be
just on time and get on board right away. Or, it could be anywhere in
between, all with equal probability. In other words, the time remaining
is uniformly distributed with a mean of 1/2 hour. Find a representation
of the uniform distribution using the residual vector in (3.5.10b) and
the representation of the Dirac delta function of (3.2.5a) to create br(x)
as given by (3.5.13).

3.5.3.2 Renewal Processes

We now return to the question presented in the first paragraph of the preced-
ing section. For definiteness, suppose that at time 0, C1 began service, and
that at time x > 0, n customers had already been served (i.e., Yn ≤ x < Yn+1).
What can be said of the events occurring in the interval (x, x+Δ]? It turns out
that the generalizations of (3.5.3) contain all the information needed. Define
the vector r(x, n) with m× n components

r(x, n) := pn exp(−xBn), (3.5.14)

where, from Exercise 3.5.3, we know that Bn is an n× n matrix whose com-
ponents are m×m matrices. The matrices on the diagonal are all B, and all
the matrices on the super diagonal are −BQ as, for instance, (3.5.3c). r(x, n)
is actually the reliability vector function already defined in (3.1.7a) for the
process described by Figure 3.5.2. Component (km+j) is the probability that
our customer is at phase j in Sk+1 at time x, for 0 ≤ k < n and 1 ≤ j < m.
This in turn means that he has already visited S1 through Sk but is presently
in Sk+1. We have already argued that a single customer passing successively
through k identical subsystems is equivalent to a renewal epoch of k customers
going through S one at a time. Therefore, the sum of probabilities of being
somewhere in Sk+1 must be the same as the Pk(x) defined by (3.5.4a). That
is,

Pk(x, n) =
(k+1)m∑
j=km+1

[r(x, n)]j

174 3.5 Renewal Processes and Residual Times

is the probability that exactly k customers have been served in the interval
(0, x]. Strictly speaking, this is true only for k ≤ n. The complete analysis
should only apply for n = ∞ or at least for n large enough so that Pk(x) is
negligible for all k > n. How large n must be to achieve this depends strongly
on how large x is, because longer intervals of time permit more customers to
be served.

The problem of choosing n for practical computation is not as serious as it
would seem. Bn describes a system with no feedback (all the matrices below
the diagonal are 0) and consistent with its definition,

Pk(x, n1) = Pk(x, n2) = Pk(x), ∀ k ≤ n1 ≤ n2.

This must be true, because whether a customer leaves after visiting n subsys-
tems or moves on to Sn+1 should have no effect on how much time was spent
at each previous S. This must hold true for the components of r(x, n) as well.
Therefore,

[r(x, n)]i = [r(x, n + 1)]i ∀ i ≤ n×m.

There are no convergence difficulties in talking about an infinite-dimensional
B∞, therefore we delete the argument, n, in Pk(x, n) and r(x, n), and define
the set of m-dimensional vectors πππ(x, k) as

πππ(x, k) :=
1

Pk(x)
[
rkm+1(x), rkm+2(x), . . . , r(k+1)m(x)

]
, (3.5.15a)

where
πππ(x, k)ε′ε′ε′ = 1.

Put differently,

r(x,∞) = [Po(x)πππ(x, 0), P1(x)πππ(x, 1), P2(x)πππ(x, 2), . . .] (3.5.15b)

[Pk is a scalar and πππ(x, k) is an m-vector]. We are coming down the home
stretch now.

It should be clear that [πππ(x, k)]i is the conditional probability that Ck+1 is
at phase i at time x, given that Ck has finished. Therefore it can be used in the
same way that the initial vector πππ is used, except that we now start measuring
at time x. For instance, the renewal density for the interval (x, x + Δ], given
that exactly k customers were served from 0 to x, is

m(Δ;x, k) := πππ(x, k) exp(−ΔBr)B ε′ε′ε′. (3.5.15c)

Let Xn(x) be the r.v. for the service time remaining for Cn+1 given that it
was in service at time x (a conditional residual time). Then

x̄(x, n) = EEE[Xn(x)] = πππ(x, n)V ε′ε′ε′. (3.5.15d)

The number of sequences of events that can be analyzed in this way is un-
limited. For instance, one can analyze the renewal process starting at some
time x2, given that k1 customers were served in the interval before x1, and
k2 customers were served in the interval (x1, x2], and so on. Of course, the
longer the sequence of conditions, the less interesting the results, for they
must ultimately converge to the results using πrπrπr. Well, maybe.

3 M. E. Functions 175

3.5.4 Two Illustrations of Renewal Processes

In discussing renewal theory, we have introduced three views, corresponding
to Figures 3.5.1 to 3.5.3, none of which actually correspond to the standard
description in terms of arrivals. There should be no problem of changing our
view from arrivals to departures, but the formulas derived from the three
distinct viewpoints given in the previous sections are bound to be at least
somewhat confusing. In this subsection we illustrate the various formulas for
two distributions. The first assumes that S has only one internal state, and
thus represents an exponential server. This leads us to yet another derivation
of the Poisson process. In the second example S represents the Erlangian-2
distribution.

3.5.4.1 The Poisson Process

As always, for exponential distributions, B⇒ μ, and p,Q, and ε′ε′ε′ all equal 1.
Many formulas have already been reduced to their exponential results (or have
been left to the exercises). We finish the job here. First consider (3.5.9d). The
pdf f(x;α) is the density function for a subsystem with external feedback, as
shown in Figure 3.5.3. If S itself is exponential, so is Sr, for, as we showed for
m(x;α) following (3.5.9g),

f(x; α) = (1− α)μ e−(1−α)μx.

This is an exponential distribution with mean service rate μ′ = (1− α)μ. We
discussed the underlying significance of this in Lemma 3.5.2. But this tells us
something else as well, which we state as another lemma.

Lemma 3.5.5: If any diagonal element of a transition matrix is
greater than 0, it can be replaced by 0, with a commensurate change
in its service rate and the other elements of P in that row. That is,
suppose that Pii > 0. Then let α = Pii and

new Pii = 0; new Pij =
Pij

1− α
for j
= i;

new Mii = Mii(1− α).

The new P and new M will yield the same results as the original ones.
Thus one can assume (if convenient) that the diagonal elements of a
transition matrix are all 0, without loss of generality. �

The discussion on residual and delayed times has no significance when
applied to exponential servers, because πrπrπr(x) as defined in (3.5.11b) is always
1 because Br = 0. Everything is memoryless, and remains the same as it was
at the beginning, until the customer leaves.

176 3.5 Renewal Processes and Residual Times

We then go to (3.5.14), for n = ∞. Here [compare with (3.5.3c) and
(3.2.3b)]

B∞ = μ

⎡
⎢⎢⎢⎢⎣

1 −1 0 0 0 · · ·
0 1 −1 0 0 · · ·
0 0 1 −1 0 · · ·
0 0 0 1 −1 · · ·
: : : : : · · ·

⎤
⎥⎥⎥⎥⎦ .

To evaluate exp(−xB∞), one needs (B∞)k for all k. It can be proven by
induction that

(B∞k)ij = μk(−1)j−i

(
k

j − i

)
for j ≥ i, (3.5.16a)

and 0 otherwise. Therefore, without too much mathematical difficulty, we get
the expression (using y = μx)

exp(−xB∞) = e−y

⎡
⎢⎢⎢⎢⎢⎢⎣

1 y y2/2! y3/3! y4/4! · · ·
0 1 y y2/2! y3/3! · · ·
0 0 1 y y2/2! · · ·
0 0 0 1 y · · ·
: : : : 1 · · ·
: : : : : · · ·

⎤
⎥⎥⎥⎥⎥⎥⎦

.

From its definition in (3.5.3a),

p∞ = [1, 0, 0, 0, 0, · · ·],

so r(x,∞) is the top row of exp(−xB∞), or

r(x,∞) =
[
e−y, ye−y,

y2e−y

2!
,
y3e−y

3!
, · · ·

]
.

We know that m = 1 from Section 3.5.3, so we get (as no surprise to anyone)

Pk(x) =
(μx)ke−μx

k!
, (3.5.16b)

the Poisson probabilities of finding k departures in time interval x [compare
with (2.1.15) and (3.5.4c)].

3.5.4.2 Renewal Process with E2E2E2 Interdeparture Times

One of the advantages of the methods in this book is that the expressions can
easily be directly numerically evaluated automatically by computer. However,
it is not easy to get physical insight unless one carries out many parametric
studies, presenting the results graphically. As it happens, if m (the dimension-
ality of S) is small enough, we can find explicit expressions from the matrix
formulas. The smallest nontrivial case is then m = 2. We now consider one
such example.

3 M. E. Functions 177

The Erlangian distribution was discussed in Section 3.2.1 and Equation
(3.2.1a). Recall that Ek(x) corresponds to k identical exponential phases in
tandem, each with service rate μ. Then for k = 2,

B = μ

[
1 −1
0 1

]
and Q =

[
1 0
1 0

]
.

From (3.5.9b),

Br(α) = B(I− αQ) = μ

[
1 −1
−α 1

]
.

To get explicit expressions for f(x;α), m(x; α), and whatever else might be
interesting, we must first get an explicit form for exp[−xBr(α)]. It is not hard
to show that the eigenvalues for Br(α) are (1 ± √α), with eigenvectors (for
convenience let β =

√
α):

u± = [−1,±β] and v′
± =

1
2

(−1
±1/β

)
.

Because the eigenvalues are distinct, we can use (1.3.8c) to get (where y =
μxβ)

exp[−xBr(α)] = e−μ x

[
cosh y sinh y/β

β sinh y cosh y

]
. (3.5.17)

We use this to find f(x;α) from (3.5.9d). Let πππ have components π1 and π2,
whose sum is 1; then

f(x;α) = (1− α)μe−μx

(
π1

sinh y

β
+ π2 cosh y

)
.

This certainly is not a simple expression even if π2 = 0, that is, when πππ = p.
In this case

f(x; α) =
1− α

2β
μ
(
e−μ x(1−β) − e−μx(1+β)

)
.

It is not clear what the generalization for Lemma 3.5.5 is when S is not
exponential. We have already noted (Lemma 3.5.2) that a subsystem with
external feedback, as in Figure 3.5.3, has the same dimensionality as the
subsystem without feedback. The last equation shows that an Erlangian-2
with feedback is equivalent to a subsystem of two unequal phases in tandem,
with no feedback. The service rates of the two phases are the eigenvalues
of Br(α). But, of course, this should have been clear from Section 3.2.1. As
might be expected, when α = 1, f(x; 1) is identically 0, corresponding to the
fact that our looping customer is forever imprisoned in Sr.

We know from (3.5.8a) that m(x;α) = f(x;α)/(1− α), therefore

m(x;α) =
μ

2
e−μx

(
π1β(eμβx − e−μβx) + π2(eμβx + e−μβx)

)
.

Recall from (3.5.9g) that m(x;α) is the generator of the convolutions of b(x).
In this case

b(x) = b1(x) = m(x; 0) = π1 E2(x;μ) + π2 μ e−μx.

178 3.5 Renewal Processes and Residual Times

This makes sense. If our customer starts at the second phase (π2), he will
leave in exponential time. But if he starts at the first phase (π1), he must go
through both phases, taking Erlangian-2 time to leave.

Exercise 3.5.9: From (3.5.9g), find the k-th convolutions of b(x).
In particular, show that if π1 = 1, then the k-th convolution is the
Erlangian-2k, but if π2 = 1, then the k-th convolution is the Erlangian
of order 2k − 1.

From (3.5.8c) the renewal density for our example is (recall that β =
√

α)

m(x) = m(x; 1) =
μ

2
[
1 + (π2 − π1)e−2μx

]
. (3.5.18a)

Observe that as x goes to infinity m(x) approaches μ/2, which is 1/x̄, consis-
tent with the first form of the renewal theorem (Theorem 3.5.3a). Also note
that if π1 = π2, then m(x) is always 1/x̄. This is consistent with the third
form of the renewal theorem (Theorem 3.5.3c), because the mean residual
vector [from (3.5.10b)] is πrπrπr = [0.5, 0.5]. In words, given that both phases
have equal service times and we do not know where our customer started, it
will be at either one with equal probability.

The renewal function can be found from m(x) by simple integration,

M(Δ) =
∫ Δ

o

m(x)dx =
Δ
x̄

+
π2 − π1

2μ x̄

(
1− e−2μΔ

)
. (3.5.18b)

Given thatM(Δ) is the mean number of departures in interval Δ, M(Δ)/Δ
is the mean number of departures per unit time in that interval. This has a
finite limit as Δ goes to infinity, and should be compared with m(Δ), which
is the departure rate at the end of the interval. Note that

M(Δ)
Δ

=
1
x̄

+
π2 − π1

x̄

1− e−2μΔ

2μΔ
· (3.5.18c)

We see that M(Δ)/Δ approaches the same limit as m(Δ), but much more
slowly. Even when exp(−μΔ) is negligible, a term in 1/Δ persists (unless the
system started in the mean residual state). This is analogous to the average
system behavior described in Chapter 1 [see (1.3.12b) and the discussion fol-
lowing it], and in fact, the dependence on Δ is identical. We next move on to
the residual vector defined in (3.5.11b). Instead of starting with p, we start
with the more general πππ, and get with the aid of (3.5.17) for α = β = 1,

πrπrπr(x) = πππ exp(−xBr)

= e−μx[π1 cosh(μ x) + π2 sinh(μ x), π1 sinh(μ x) + π2 cosh(μ x)],

which in this case rearranges to

πrπrπr(x) = [0.5, 0.5] +
π2 − π1

2
e−2μ x[−1, 1]. (3.5.19)

3 M. E. Functions 179

This can be used, for instance, to calculate Xr(x), the time remaining for
the trapped customer to complete his present service, given that he has been
going in circles for time x. That is,

x̄r(x) := EEE[Xr(x)] = πrπrπr(x)Vε′ε′ε′ =
1

2μ
[3− (π2 − π1)e−2μx].

As x goes to infinity, we get the mean residual time x̄r, which is 3/(2μ), or
3x̄/4, irrespective of the initial state.

Exercise 3.5.10: Prove the formula above. Show that x̄r(0) = x̄ for
πππ = [1, 0].

We next evaluate the delayed renewal density, either using the material
preceding Theorem 3.5.3b or by taking (3.5.19) as the starting vector for m(x).
In either case we get

mr(Δ;x) =
μ

2

[
1 + (π2 − π1)e−2μ (x+Δ)

]
. (3.5.20a)

For any finite Δ, as x grows large, mr(Δ; x) approaches 1/x̄, as was described
in the second form of Theorem 3.5.3.

The delayed renewal function also follows easily. As above,

Mr(Δ;x) :=
∫ Δ

o

mr(s; x) ds

=
μΔ
2

+
π2 − π1

2
e−2 μ x

(
1− e−2 μ Δ

)
. (3.5.20b)

As with (3.5.18c) the behavior as x goes to infinity can be examined best by
looking at M/Δ. Then for any Δ,

M(Δ;x)
Δ

=
1
x̄

[
1 + (π2 − π1)e−2 μ x 1− e−2 μ Δ

2μΔ

]
. (3.5.20c)

Note that M(Δ; x) approaches the expected limit (1/x̄) much more rapidly
than does M(Δ) [which is really M(Δ; 0)]. Thus if one waits some time, x,
before beginning measurements, successive intervals of Δ will yield the same
average number of completions.

Exercise 3.5.11: Let 2 μ = 1 and πππ = [0 1]; then compare Equations
(3.5.18) and (3.5.20c) for Δ = 2 and increasing x.

In dealing with residual vectors, we have given the impression that all
information about the internal state of the subsystem is gradually lost as
time goes on. This is true only because observations concerning past behavior

180 3.5 Renewal Processes and Residual Times

have not been included in estimating the future. In the discussion following
(1.3.15b) it was pointed out that in a discrete Markov chain, time and the
counting of events were synonymous, whereas a continuous chain soon loses
track of the number of events. In the second part of Section 3.5.3 it was shown
that knowledge of the number of past departures can be incorporated into
estimations of future behavior. We will show presently that such information
can affect appreciably what is likely to happen.

First we must determine r(x,∞) from (3.5.14) for our present example.
To do this, in addition to the matrices already evaluated at the beginning of
this section, we need BQ, which is easily shown to be

BQ = μ

[
1 −1
0 1

] [
1 0
1 0

]
= μ

[
0 0
1 0

]
.

We must also have p∞, which is the same as (3.5.3a), where each element is
a two-vector, with πππ = [π1, π2].

We next set up B∞ and find that it is identical with the B∞ we had for
the exponential distribution, except that all rows and columns are taken two
at a time. Observe that each 2 by 2 block on the diagonal of B∞ in the first
part of Section 3.5.3.1 is precisely B, and the 2 by 2 blocks above and to the
right of the diagonal blocks are all −BQ. We are indeed fortunate, because
exp(−xB∞) is the same as that in the preceding section. Equations (3.5.15)
imply that (again y = μ x)

πππ(x, k) =
[
π1

y2k

(2k)!
+ π2

δkoy
2k−1

(2k − 1)!
, π1

y2k+1

(2k + 1)!
+ π2

y2k

(2k)!

]
e−y

Pk(x)

and

Pk(x) =
y2k−1e−y

(2k + 1)!
[(2k + 1)y + π1 y2 + π2 (2k) (2k + 1)]. (3.5.21a)

Therefore,

πππ(x, k) =
[π1 (2k + 1) y + π2 (2k)(2k + 1), π1 y2 + π2 (2k + 1) y]

(2k + 1)y + π1 y2 + π2 (2k)(2k + 1)
· (3.5.21b)

Observe that πππ(0+, 0) = [π1, π2], and for k > 0, πππ(0+, k) = [1, 0].
Ordinarily, not too much credence should be placed in physical interpre-

tations of the components of the internal states of a subsystem, because there
may be many equivalent representations of S. In this case, however, there
is some insight to be gained. When x is very small, one should expect C1

to still be in S, and in his starting state. This is exactly the case, because
Pk(0+) is essentially 0 except for k = 0. Given the highly unlikely event that
k − 1 customers have already left in 0+ time, Ck would almost surely have
not progressed much beyond just entering. This is indeed the case, because
πππ(0+, k) = p, the entrance vector.

As y increases, the second component of πππ(x, k) also increases, and when
y is approximately equal to 2k, the two components are comparable. As y

3 M. E. Functions 181

increases further, the second component becomes much larger than the first,
and approaches 1. This has a direct physical interpretation. One would expect
approximately k customers to be served in time 2k/μ, so if x is much larger
than that, Ck has surely been in service a long time and must be at the second
phase by now. Again the reader is warned that such interpretations are risky,
and is referred to the discussion in Section 3.4. The important point to note
is that depending on k and x, the internal state of S could be vastly different
from p or πrπrπr, the mean residual vector (which in this case is [0.5, 0.5]).

There is a useful statement that can be said in general. If many more
customers have actually been served than one would expect in the time in-
terval under measurement, the internal state vector of S will be close to the
entrance vector. If the number that have been served is comparable to the
expected number, the internal state will be closer to πrπrπr. Finally, if far fewer
customers have been served than might be expected, S will be described by a
completely different state vector. In any case, the initial vector (in this case,
πππ = [π1, π2]) will be washed out.

Whatever might or might not be said about the internal state of S, many
different predictions can be made. First, we can calculate the mean time to the
next departure, given the number that have already departed, from Equations
(3.5.21).

Exercise 3.5.12: Let μ = 2 per minute, and suppose that measure-
ment began at the moment a customer began service. In the interval
(0, 2], 0 ≤ k ≤ 10 customers have been served. What is the mean time
for the next customer to depart [x̄(2, k)]? Make a table for k versus x̄.
Suppose the interval is (0, 4]. What are the x̄s now?

Exercise 3.5.13: Do the same as in Exercise 3.5.12, except that now
you have no idea when the first customer you counted began service.
Compare and discuss the two pairs of results.

Another interesting number to look at is the renewal function conditioned
on k departures in the previous interval of time. Equations (3.5.18) can be
used for this purpose. But instead of using the initial vector πππ, we use πππ(x, k),
which is, after all, the initial vector starting at x.

Exercise 3.5.14: Suppose that 0 ≤ k ≤ 10 customers have finished in
the first 2 minutes, as in Exercise 3.5.12. What is the expected number
of departures in the next 2 minutes? In the next 4 minutes? Summarize
your answers in a table. Also calculate the number you would have
expected in the first 2 minutes.

182 3.5 Renewal Processes and Residual Times

The marginal probabilities of having n departures in the interval (x, x+Δ],
conditioned on having had k completions up to then can be calculated using
(3.5.21a) (where n replaces k and Δ replaces x), again using the appropriate
components from (3.5.21b) instead of the initial vector πππ. The number of nec-
essary parameters is growing steadily now; we have n×k×x×Δ possibilities.
A formal presentation of even more complex formulas becomes increasingly
difficult, because one loses track of everything that is going on. But still, let
us have one more exercise.

Exercise 3.5.15: Compare the Pn(x) as defined in (3.5.4a) for a Pois-
son process, and a renewal process where the interdeparture times are
distributed according to an Erlangian-2 distribution. Assume that mea-
surement begins when C1 enters S, and that the mean interdeparture
time in all cases is 1 minute. Calculate the E2 process for four different
conditions.

1. The interval for counting the number of arrivals is (0, 2] [Equation
(3.5.21a)].

2. The interval for counting arrivals is (2, 4], and no customer com-
pleted service previously [(3.5.21a) conditioned by (3.5.21b)].

3. The same as condition 2 except that two customers had completed
service in the interval (0, 2].

4. The same as condition 3, but for four customers.

Construct a single table of numbers that has the Poisson and all four
Erlangian cases for 0 ≤ n ≤ 10, and discuss their similarities and
differences.

We have one more extension to discuss before giving up on this chapter.
This is done by example, although it should be clear how one can generalize
to any subsystem. Although it may be difficult (and often impossible) to
know what is going on inside S, it is easy to keep track of the number of
customers departing in successive intervals. In a different approach related
to the technique of embedded Markov chains , one waits until a customer
begins service before taking measurements. In that case, the period always
begins with πππ = p. When the interval is over, one waits for the next completion
before measuring again. But then the mean number of departures is not Δ/x̄,
even for large time, because we are always starting over. In Chapter 6, S is
generalized so that several customers can be served at once. In that case, when
a customer leaves, the internal state of the residual subsystem is not known,
so one cannot start over until S is completely empty. Such behavior is called
a semi-Markov process, and is discussed fully in Chapter 8. The technique
described herein does generalize to multiple customer service without any
conceptual complications.

3 M. E. Functions 183

Example 3.5.1: Consider an example such as Exercise 3.5.14. Initially,
S is in state a[1, 0]. Suppose that in the first minute C1 and C2 have both
finished, but C3 is still in S. At that moment, C3 will be at phase 1 with
probability [πππ(1, 2)]1. Using (3.5.21b) (with π1 = 1), this probability is 0.7143.
Now suppose that C3 is still busy by the end of the second minute; then at
that moment it is at phase 1 with probability 0.2941. One gets this by using
(3.5.21b) again, but this time π1 = 0.7143, and of course, π2 = 0.2857. If one
measures the number of completions in the interval (0, 2] without noting how
many finished in the first minute, the probability that C3 will be at phase 1
is 0.5556.

Interestingly enough, if no customers finish in the first minute, and
two finish in the second minute, the sequence for phase 1 to be busy is
1.0000 → 0.3333 → 0.6757, but if one customer finishes in each of the two
minutes, the sequence is 1.0000 → 0.6000 → 0.5556. This happens to be the
same as when going to 2 without considering the number at 1, but this is
not always the case. Anyway, we see that the three different ways of having
two completions in 2 minutes, keeping track of how many completed in the
first minute, yield different results. Now, for instance, in calculating the
mean time for C3 to finish using the data above and (3.5.15d), we get three
different answers, 0.837838, 0.777778, and 0.647059 minute, respectively, for
2, then 0; 1, then 1; and 0, then 2. �

Exercise 3.5.16: Extend the discussion above to three 1-minute in-
tervals where a total of three customers finished service. What is the
mean time until C4 finishes in each case?

It is hoped that the reader can now extend this procedure to any example.
Any information that one has concerning past behavior of a system should be
usable in calculating conditional events in the future.

with Rational Laplace transform

Chapter 4
M/G/1 QUEUE

The shortest path between two truths in the real
domain passes through the complex domain.

J. Hadamard

A mathematician may say anything he pleases,
but a scientist must be at least partially sane.

Willard Gibbs

We are finally ready to look at nonexponential queues in earnest. In Chap-
ter 2 we looked at closed loops in which both subsystems were single servers
with exponential service time distributions. We showed how to transform a
closed system into an open one, and how certain types of non steady-state
behavior should be analyzed. In Chapter 3, we showed how a large class of
nonexponential servers (ME distributions) can be treated exactly, using a
matrix representation, and applied it to examining various aspects of renewal
processes, as well as the specific behavior of a single general server, including
residual times. We now combine those two chapters in studying the M/ME/1
queue, first looking at steady-state closed systems, then “opening” them, and
finally, extending the transient results of Chapter 2. In those cases where a
particular result does not depend on the specific properties of a matrix, the
result becomes applicable to M/G/1 queues as well. Much of this material
is an outgrowth of the Ph.D. thesis by John L. Carroll [Carroll79], and
the associated papers, [CarrollLipvdL82], and [TehranipourvdLLip89].
Equivalent results were also obtained by Marcel Neuts [Neuts82].

4.1 S.S. M/ME/1//N (and M/ME/1/N) Loop

We start, as always, by making some new definitions. In Chapter 2 each state
could be described uniquely by n, the number at S1, whereas in Chapter 3 the
states were described by identifying the phase in S1 where the active customer
was. Here both must be specified to describe uniquely a state of the system
shown in Figure 4.1.1. This figure is itself a combination of Figures 2.1.1 and
3.1.1, where the single server, S1 of Figure 2.1.1 is replaced by the m-phase
subsystem, S, of Figure 3.1.1.

All the objects in the following list are the same as defined in Chapter 3:
p, P, q′, ε′ε′ε′, M, B, V, Q = ε′ε′ε′p, and the linear operator, Ψ [·]. For a closed

L. Lipsky, Queueing Theory, DOI 10.1007/978-0-387-49706-8 4, 185
c© Springer Science+Business Media, LLC 2009

186 4.1 S.S. M/ME/1// N (and M/ME/1/N) Loop

system with N customers, define the following.

Definition 4.1.1
[πππ(n;N)]i := steady-state probability that there are n customers in the
queue at S1, and the one being served is at phase i. n includes the
customer being served, and πππ(n;N) is a row vector with m components.
The associated scalar probability, r(n;N) is the same as Definition
2.1.1. ���

Figure 4.1.1: Closed loop made up of two subsystems. S2 is purely
exponential, with service rate λ, whereas S1 is of the type described in Figure
3.1.1 and thus represents a matrix exponential distribution. There are n customers
at S1, with the active customer being at phase i (or in internal state i), and
the other k (= N − n) customers are at S2.

Although πππi(0;N) has no meaning (if no customers are at S1, no phase
can be busy), it is useful to define the vector

πππ(0;N) := r(0;N)p. (4.1.1)

Then for all n, 0 ≤ n ≤ N ,

r(n; N) =
m∑

i=1

πi(n;N) = πππ(n;N)ε′ε′ε′. (4.1.2)

From these definitions, we see that there are mN + 1 states describing the
closed system [or m (N +1) states if we make believe that πi(0;N) has mean-
ing], but they are grouped together as (N + 1) m-vectors. This way of group-
ing is the basis of LAQT and was first used to advantage by Victor Wallace
[Wallace69] in formalizing Quasi Birth-Death (QBD) processes. He
recognized that for many systems, the transition rate matrices QQQ, as defined
in Chapter 1, are block tridiagonal. That is, the Q of Chapter 1 can be consid-
ered as a matrix whose elements are themselves matrices. Only the diagonal,

4 M/G/1 Queue 187

superdiagonal, and subdiagonal elements are nonzero matrices. He chose the
term QBD because birth-death processes are also tridiagonal, but with scalar
components. He also speculated about an algebraic theory for Markovian net-
works [Wallace72]. All queueing systems considered here are special cases
of QBD processes, but we do not look at them in that context.

4.1.1 Balance Equations

Let us first introduce some new notation.

Definition 4.1.2
{j; n; N}{j; n; N}{j; n; N} is an integer triplet that corresponds to one possible state of
an M/ME/1//N loop. N is the total number of customers in the sys-
tem, n is the number of customers at S1, including the one in service,
and j is the phase in S1 that is busy. We can say that the system is in
state {j ;n; N}. If we are dealing with an open system (N = ∞), we
use the notation {j; n}.
Ξ := {j |1 ≤ j ≤ m, j is a phase in S1}Ξ := {j |1 ≤ j ≤ m, j is a phase in S1}Ξ := {j |1 ≤ j ≤ m, j is a phase in S1}. Only one customer can be ac-
tive at a time in S1, thus Ξ is the set of all internal states of S1. We
can say that the system is in internal state j ∈ Ξ, or that the active
customer is at phase j in S1. ���

Remember, too, we are assuming that S1 and S2 operate independently.
This means that only one thing happens at a time. The term “one thing”
means whatever we wish. Thus a customer leaving Si and being replaced im-
mediately by the next customer in the queue is “one thing.” Also, the process
whereby a customer leaves one subsystem (and is replaced by a successor),
goes to the other, and finding it empty immediately enters into service is “one
thing.” However, if two customers are active at the same time (e.g., one in
each subsystem), only one at a time can change state. In general, those pro-
cesses that take 0 time (moving from one subsystem to the other, entering Si,
moving from one phase to another) are considered to be part of the previous
process.

Recall from Theorem 1.3.3 that balance equations are valid because they
are the same as πππQQQ = 0, the steady-state Chapman-Kolmogorov equation.
As a direct generalization of Section 2.1.2. and (2.1.4a), [and as a special case
of Equation (1.3.9a)] in order for the system to be in a steady state, the
probability rate of leaving state {i; n; N} must be equal to the probability
rate of entering that state. Thus for state {·; 0; N} we have

λr(0;N) =
∑

j

πj(1;N)Mjjqj = πππ(1;N)Mq′.

In words, the probability rate of leaving the state where no one is at S1 is equal
to the probability of there being no one there [r(0;N)] times the probability
rate of a customer finishing at S2 [λ]. The middle term of the equation above
is the probability rate of entering state {·; 0; N}. This is equal to the sum of
probability rates of having the customer in S1 being served by j [πj(1;N)], who

188 4.1 S.S. M/ME/1// N (and M/ME/1/N) Loop

then finishes there [μj = Mjj], and leaves [qj]. The rightmost expression of
the equation is the matrix equivalent of the middle expression. From (3.1.1b)
and (3.1.3) it follows directly that

Mq′ = Bε′ε′ε′. (4.1.3a)

Thus if both sides of the preceding equation are multiplied on the right by p,
and we use (4.1.1), we get the vector balance equation:

λπππ(0;N) = πππ(1;N)Mq′ p = πππ(1;N)BQ, (4.1.3b)

where Q = ε′ε′ε′p is the idempotent matrix defined in Section 3.5.1 and has
nothing to do with the transition rate matrix QQQ. Except when direct reference
is made to Chapter 1, Q always has this meaning.

The balance equation for state {i; N ; N} is derived as follows. In this case
there is no one at S2, therefore there can be no arrivals to S1, but instead,
the customer who is active in S1 can complete service at i [πi(N ;N)Mii],
thereby causing the system to leave that state. The probability rate of entering
state {i; N ; N} is made up of two parts. Either the system could be in state
{i; N − 1; N}, [πi(N − 1; N)], and have the lone customer at S2 finish [λ], or
all N customers could already be at S1, but the active customer is at some
other phase j, [πj(N ;N)], finishes there [Mjj], and goes to i[Pji]. Note that
a completion at S2 changes the external state of the system (n goes from
N − 1 to N) but not the internal state (the active customer at S1 does not
move merely because a new customer has arrived at the queue, hence i in
unchanged). So this equation is

πi(N ;N)Mii = λπi(N − 1;N) +
∑

j

πj(N ;N)Mjj Pji

or in matrix form,

πππ(N ;N)M = λπππ(N − 1;N) + πππ(N ;N)MP.

Remembering that B = M(I−P), the equation above can be rearranged to

πππ(N ;N)B = λπππ(N − 1;N),

or, using B−1 = V,
πππ(N ;N) = πππ(N − 1;N)Vλ. (4.1.3c)

The balance equations for states where n is greater than 0 but less than N
combine all the features of (4.1.3b) and (4.1.3c). It is useful to describe what
happens in these cases with the help of the state transition diagram in Figure
4.1.2. As usual, the sum of the weights of the arrows going to {i; n; N} equals
the sum of those leaving. So for i ∈ Ξ, we have

πi(n;N)(Mii + λ)

=
∑

j

πj(n;N)MjjPji +
∑

j

πj(n + 1;N)Mjjqj pi + πi(n− 1;N)λ.

4 M/G/1 Queue 189

These m equations can be summarized by the vector equation

πππ(n; N)(M + λI) = πππ(n;N)MP + πππ(n + 1;N)Mq′ p + πππ(n− 1;N)λI.

This, in turn, can be rearranged, as with the previous equations, to yield the
rest of the balance equations. For 0 < n < N ,

πππ(n;N)(B + λI) = πππ(n + 1;N)BQ + πππ(n− 1;N)λI (4.1.3d)

We mention here that (4.1.3d) is valid for n = 1 by virtue of (4.1.1).

Figure 4.1.2: Steady-state transition diagram for state {i; n; N} of
an M/ME/1//N closed loop. An arrow pointing to the left represents a cus-
tomer finishing at phase i,

[{(M + λI)−1M}ii

]
, and leaving S1, [{q}i], followed

by another customer entering and going to j, [{p}j]. There is also implicitly an
arrow pointing horizontally to the left to cover the possibility that the entering
customer goes to the same phase left behind by the departing customer [pi]. A
vertical arrow corresponds to a customer finishing at phase i, [(M + λI)−1M],
and going to phase j, [{P}ij]. An arrow to the right (no diagonal arrows allowed)
corresponds to a customer finishing at S2, [(M + λI)−1λ], and immediately going
to S1, without changing the internal state.

The set of Equations (4.1.3) falls in the class of “second-order finite-
difference vector equations,” not a particularly informative name for our pur-
poses. They are similar in appearance to the balance equations for the M/M/1
queue (2.1.4a) and reduce to them when S1 is exponential. In the next section
we prove that they reduce to first-order equations and then give an explicit
expression for the general solution.

190 4.1 S.S. M/ME/1// N (and M/ME/1/N) Loop

4.1.2 Steady-State Solution

First consider (4.1.3d) for n = N − 1:

πππ(N − 1;N)(B + λI) = πππ(N ;N)BQ + λπππ(N − 2;N).

Next replace πππ(N ;N) with (4.1.3c), divide by λ, and regroup terms to get
(recalling that VB = I)

πππ(N − 1;N)
(
I +

1
λ
B−Q

)
= πππ(N − 2;N).

Now define the important pair of matrices

A := I +
1
λ
B−Q (4.1.4a)

and (assuming that it exists)

U := A−1. (4.1.4b)

It then follows that

πππ(N − 1;N) = πππ(N − 2;N)U. (4.1.5a)

Before proving by induction that this equation is true for all n < N , we
enumerate a collection of simple relations (stated in the form of the following
lemma) that prove useful throughout the rest of the book.

Lemma 4.1.1: For A and U, defined by Equations (4.1.4), the
following are matrix identities.

λAε′ε′ε′ = B ε′ε′ε′, λVA ε′ε′ε′ = ε′ε′ε′, UB ε′ε′ε′ = λε′ε′ε′,

and since Q = ε′ε′ε′p,

UBQ = λQ and λAQ = BQ.

Similarly,
λpA = pB, λpAV = p, pBU = λp.

Also,
λQA = QB and λQAV = Q.

There are several other variations. �
Proof: By using Iε′ε′ε′ = Qε′ε′ε′ = ε′ε′ε′ it follows that

Aε′ε′ε′ =
(
I +

1
λ
B−Q

)
ε′ε′ε′ = ε′ε′ε′ +

1
λ
Bε′ε′ε′ − ε′ε′ε′ =

1
λ
Bε′ε′ε′.

All else follows trivially. QED

4 M/G/1 Queue 191

Now assume that for all k from N − 2 down to n [by virtue of (4.1.5a) it
is true for k = N − 2],

πππ(k + 1;N) = πππ(k;N)U.

Insert this (with k = n) into (4.1.3d) and get

πππ(n;N)(B + λI) = πππ(n;N)UBQ + λπππ(n− 1;N).

After using Lemma 4.1.1, and rearranging somewhat, we get what is needed
for the proof by induction, namely the following first-order matrix difference
equation promised previously:

πππ(n;N) = πππ(n− 1;N)U. (4.1.5b)

Now (4.1.3d) is true for all n from 1 to N − 1, so (4.1.5b) must be true also.
In particular,

πππ(1;N) = πππ(0;N)U

(note that this equation satisfies (4.1.3b)), because UBQ = λQ, and

πππ(2;N) = πππ(1;N)U = πππ(0;N)U2.

In general, we have [using (4.1.1)]

πππ(n;N) = πππ(0;N)Un = r(0;N)pUn for 0 ≤ n < N, (4.1.6a)

and with the help of (4.1.3c),

πππ(N ;N) = λr(0;N)pUN−1V. (4.1.6b)

Every πππ is conveniently expressed in terms of πππ(0;N), which by virtue of
(4.1.1) depends on only one scalar parameter, r(0;N). This, in turn, can be
evaluated by the usual requirement that the probabilities add up to 1:

N∑
n=o

r(n;N) =
N∑

n=o

πππ(n;N)ε′ε′ε′

= r(0;N)p

(
N−1∑
n=o

Un + λUN−1V

)
ε′ε′ε′ = 1. (4.1.6c)

This equation can be simplified both visually and computationally by defining
the matrix in the large brackets to be the normalization matrix K(N), and
observing that K(N) satisfies:

K(N) := I + U + U2 + · · ·+ UN−1 + λUN−1 V

= I + U(I + U + U2 + · · ·+ UN−2 + λUN−2V). (4.1.6d)

The expression inside the parentheses is K(N − 1), so, for N > 1 we have the
recursive formula:

K(N) = I + UK(N − 1), where K(1) = I + λV. (4.1.6e)

192 4.1 S.S. M/ME/1// N (and M/ME/1/N) Loop

By virtue of the fact that for any F that has no unit eigenvalues,

N−1∑
n=o

Fn = [I− FN][I− F]−1,

(4.1.6d) can also be written as

K(N) = [I−UN][I−U]−1 + λUN−1V. (4.1.6f)

Finally recall that Ψ [·] = p [·] ε′ε′ε′, so (4.1.6c) leads to

r(0;N) =
1

Ψ [K(N)]
· (4.1.6g)

Equations (4.1.6) are very interesting in that they give us an explicit closed-
form expression for the M/ME/1 queue which retains the simple form the
solution of the M/M/1 queue has, as given in (2.1.4) and (2.1.5). In partic-
ular, compare K(N) with K(N) in (2.1.4c) and (2.1.4d). Furthermore, these
equations are ideally suited for numerical computation, as well as algebraic
manipulation. Efficient computational algorithms can be written to compute
the steady-state and other properties. It should become apparent to the reader
just how to do this, but these formulas are important enough to be summa-
rized by the folowing.

Theorem 4.1.2: For any closed loop made of one exponential
server with service rate λ, and one general server that has a matrix ex-
ponential representation 〈〈〈p , B 〉〉〉, the steady-state queue-length prob-
abilities are given by

r(n; N) = r(0; N)Ψ [Un] for 0 ≤ n < N, (4.1.7a)

r(N ; N) = λr(0;N)Ψ
[
UN−1 V

]
. (4.1.7b)

The matrix U is given by (4.1.4b), and r(0;N) is given by (4.1.6e)
or (4.1.6f), and (4.1.6g). The vector probabilities are given by (4.1.6a)
and (4.1.6b):

πππ(n;N) = r(0;N)pUn for 0 ≤ n < N, (4.1.7c)

πππ(N ;N) = λr(0;N)pUN−1 V. (4.1.7d)

These equations give us a matrix geometric solution of the
M/ME/1/ /N queue analogous to the geometric solution for the
M/M/1/ /N queue given by Equations (2.1.4). �

The term geometric refers to any series where the ratio of successive terms is
a constant factor. Thus 1 + x + x2 + x3 + · · · is the geometric series, where x
is the ratio of terms. In our theorem, U is the ratio of successive terms, and
since it is a matrix, we call this matrix geometric.

4 M/G/1 Queue 193

Example 4.1.1: Figure 4.1.3 shows the steady-state queue-length proba-
bilities of an M/E2/1/ /20 loop, for various values of ρ = λΨ[V] = λEEE[X]. At
first glance, this figure looks similar to Figure 2.1.3 for the M/M/1 queue, but
there are several significant differences. First note that r(N ;N) comes from
a different formula than r(n < N ; N) [Equations (4.1.7)], therefore we can
expect the curve to deviate in going from 19 to 20. This does indeed show
itself for ρ = 1, but it is not so clear for other values of ρ, either because
the curve is growing too big (as with ρ = 2), or the values are too small to
be seen (ρ ≤ 0.9). A second feature is that the two curves corresponding to
ρ = 2 and ρ = 0.5 are not mirror images of each other. For ρ = 0.5, N = 20 is
sufficiently large so that S2 is saturated, so r(n; 20) ≈ r(n) (i.e., the M/E2/1
queue). On the other hand, the curve corresponding to ρ = 2.0 is very close
to the E2/M/1 queue, because now S1 is saturated. As we show in detail in
Chapter 5, the two queues are distinctly different in their performance. �

What we just described might be expected, but for the third distinctive
feature observe that unlike the M/M/1 queue, r(n; 20) is not a monotonically
decreasing function of n, even when ρ < 1. Note that for ρ = 0.9 and 1, we
have r(1;N)/r(0;N) > 1. But from (4.1.7a), as long as N ≥ 2, the ratio of
those two probabilities is Ψ [U] which for the M/E2/1/ /N loop can be shown
to be (also see the end of Section 4.4.4)

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ρ = 0.5

ρ = 0.8

ρ = 0.9 ρ = 1.0

ρ = 2.0

Number of customers at S1, n

St
ea

dy
−

st
at

e
pr

ob
ab

ili
ty

,
r(

 n
;2

0)

Figure 4.1.3: Steady-state queue-length probabilities for an
M/E2/1/ /20 loop, for ρ = 0.5, 0.8, 0.9, 1.0, and 2.0. For ρ < 1, the curves
tend to decrease with n, but not universally so. Note that the curves for ρ = 0.5
and ρ = 2.0 are not mirror images of each other, nor is the curve for ρ = 1
horizontal (see Figure 2.1.3).

194 4.1 S.S. M/ME/1// N (and M/ME/1/N) Loop

Ψ [U] =
ρ

2

(
2 +

ρ

2

)
·

This expression is greater than 1 as long as ρ > 2
√

2 − 2 ≈ 0.8284. There-
fore, r(n;N) will first rise and then decrease to zero with increasing n when
0.8284 < ρ ≤ 1.

Exercise 4.1.1: Calculate the steady-state queue-length probabilities
of an M/E2/1/ /N loop for N = 20 and ρ = 0.5, and 0.9. Compare your
answers with those for an M/M/1/ /N queue by plotting both sets on
the same graph, r(n;N) versus n. By what percent do the two sets of
numbers differ? Under what conditions could r(3;N) be greater than
r(2;N)?

Exercise 4.1.2: Do the same calculations as in Exercise 4.1.1, except
here let S1 be equivalent to an H2 distribution (see Exercise 3.1.2). Let
p T1 = (1− p)T2 = 1/2, and C2

v = 10.0. Are there values of ρ for which
Ψ [U] > 1 and r(n;N) is not a monotonic function of n? Do the same
calculations for the hyper-Erlangian function of Equations (3.2.14).

The queue-length probabilities are not often used in practice to analyze the
performance of closed systems, partly because there is too much to measure.
One important performance parameter that is measured is the rate at which
customers make a full circuit of the loop. Aside from a multiplicative constant,
we called this the system throughput in Definition 2.1.2. The number of
customers who leave a single server per unit time is equal to the fraction of
time that server is busy (or the probability that the server is busy), divided by
the time it takes to service one customer. One can look at this in a different
way. Si releases customers at a constant rate (1/x̄i) as long as it is busy, but
does nothing when it is idle (i.e., when no customers are there). Any way one
looks at it [see Equations (2.1.5)], the system throughput is (remember that
λx̄1 = ρ)

Λ(N) =
1− r(0;N)

x̄1
=

Ψ [K(N)]− 1
x̄1Ψ [K(N)]

=
λ

ρ

Ψ [UK(N − 1)]
Ψ [K(N)]

· (4.1.8a)

The last form for Λ(N) is interesting for comparing with (2.1.5b), but compu-
tationally, the first two forms are probably better. According to the discussion,
and to (2.1.5d), one should be able to calculate the throughput based on the
flow through any server. Therefore (x̄2 = 1/λ),

Λ(N) =
1− r(N ;N)

x̄2
= λ

Ψ [K(N)]−Ψ
[
UN−1λV

]
Ψ [K(N)]

· (4.1.8b)

4 M/G/1 Queue 195

Although the two equations for Λ(N) must be equal, it takes some effort to
prove that they are the same algebraically, which we leave for the following
exercise.

Exercise 4.1.3: Prove by direct algebraic manipulation that

r(0;N)− ρr(N ;N) = 1− ρ,

or equivalently,

(1− ρ)Ψ [K(N)] = 1− ρΨ
[
UN−1λV

]
.

Exercise 4.1.4: Calculate Λ(N) for the closed M/E2/1/ /N loop,
where x̄ + 1/λ = 1 [i.e., λ = 1 + ρ, and x̄ = ρ/(1 + ρ)] and ρ = 0.5 for
N = 1 through 20. Repeat the calculations for ρ = 0.9, 1.0, and 2.0.
Draw the four curves on the same graph and compare with the graphs
in Exercise 2.1.3.

Exercise 4.1.5: Do the same as in Exercise 4.1.4, but now S1 is the
hyperexponential described in Exercise 4.1.2.

4.1.3 Departure and Arrival Queue-Length Probabilities

In the preceding section we derived the steady-state probabilities of what a
random observer would see over a long period of time. There are two special
sets of moments in time that deserve separate treatment. These time points
are referred to as embedding points. Embedded Markov chains are used
to consider the following questions.

1. What will a customer see upon arriving at S1?
2. What will a customer leave behind upon exiting S1?
Given that it takes no time for a customer to go from one server to another,

these questions are the same as asking the equivalent questions of S2. In the
case of the M/G/1 queue, the two questions turn out to have the same answer,
and almost the same as r(n;N), but this is not the case for other systems. We
prove the equality here and at the same time demonstrate the method that
can be used in the other cases.

First we define a set of steady-state vectors.

196 4.1 S.S. M/ME/1// N (and M/ME/1/N) Loop

Definition 4.1.3
[w(n;N)]i := probability that between events, n customers are at S1

and phase i is busy (or, the system is in internal state, i ∈ Ξ). As with
πππ(0;N),w(0;N) is defined to be proportional to p. ���

Nothing happens between events, so we can argue that this is the same as
the probability of being in state {i; n; N} just before, or just after, an event.
How then, you may ask, does this differ from [πππ(n;N)]i? If the time interval
between events was always the same (or is taken from some distribution that
is independent of the state the system was in), the two would be identical
(e.g., M = μI). However, a random observer is less likely to find the system
in a state that is relatively short-lived than one that has a long mean time,
[(λI + M)−1]. On the other hand, internal and external transitions mark the
moments of events and take no notice of the time between them, so you can
say (in fact, we do say) that πππ(n;N) is related to w(n;N) by time-weighting
(not waiting).

The w(n;N) vectors satisfy the following balance equations, which are
similar to those for the πππ(n;N) vectors, except that the elapsed times between
events are ignored. So we have the equivalent of a discrete Markov chain. For
n = 0,

w(0;N)ε′ε′ε′ =
m∑

i=1

wi(1;N)μi(λ + μi)
−1qi.

In words, if there are no customers at S1, [w(0;N)ε′ε′ε′], then at the next event
the system will certainly leave that state. On the other hand, the system can
enter that state by first being in some internal state with one customer at
S1, [wi(1;N)], have the next event occur in S1, [μi/(μi + λ)], and have that
event be a departure [qi]. The probability that the next event will occur in
S1, [μi/(μi + λ)], comes from Equation (2.1.1b). In vector form,

w(0; N) = w(1; N)(λI + M)−1Mq′p.

The procedure should be sufficiently clear so that we can write the vec-
tor equations for n > 0 directly. Note that if S1 and S2 each have at least
one customer, the probability that an event, when it occurs, will be in S2 is
λ[(λI + M)−1]ii, whereas if either is empty, the event will certainly occur in
the other. Therefore,

w(n;N) = w(n;N)(λI + M)−1MP + w(n− 1;N)(λI + M)−1λI

+w(n + 1;N)(λI + M)−1Mq′p for 0 < n < N,

and
w(N ;N) = w(N ;N)P + w(N − 1;N)(λI + M)−1λI.

We next regroup terms, recall that B = M(I−P) and that Mq′ = Bε′ε′ε′, to
get

w(0;N) = w(1;N)(λI + M)−1BQ, (4.1.9a)

w(n;N)(λI + M)−1(λI + B)

4 M/G/1 Queue 197

= λw(n− 1;N)(λI + M)−1 + w(n + 1;N)(λI + M)−1BQ, (4.1.9b)

and
w(N ;N)M−1B = λw(N − 1;N)(λI + M)−1. (4.1.9c)

These equations look similar to (4.1.3). In fact, we can guess at their solution
in the following.

Theorem 4.1.3: The steady-state vector probabilities of finding n
customers at S1 and N − n customers at S2 between events are

w(0;N) = λC(N)πππ(0;N), (4.1.10a)
w(n;N) = C(N)πππ(n;N)(λI + M), (4.1.10b)
w(N ;N) = C(N)πππ(N ;N)M. (4.1.10c)

The πππs were defined by (4.1.6), and C(N) is the normalizing constant
chosen so that the sum of the w’s is 1,

1
C(N)

= λ[1− r(N ;N)] +
N∑

n=1

πππ(n;N)Mε′ε′ε′. (4.1.10d)

�
Proof: Substitute (4.1.10) into (4.1.9) and get (4.1.3). Proof of
(4.1.10d) is left as an exercise. QED

Notice that the ws are indeed related to the πππs by the state-dependent
time it takes for an event to occur [(λI + M)−1].

Exercise 4.1.6: Prove that Equation (4.1.10d) is correct.

Having found expressions for the ws, we are now prepared to define and
then find the following vector probabilities.

Definition 4.1.4
a(n;N) := probability vector that a customer arriving at S1 will find
n customers there already. [a(n;N)]i is the probability that the ac-
tive customer is at phase i ∈ Ξ. The associated scalar probability is
a(n;N) = a(n;N)ε′ε′ε′. Note that there are n + 1 customers at S1 after
the arrival. ���

Definition 4.1.5
d(n;N) := probability vector, whose component di(n;N), is the proba-
bility that a customer departing S1 will leave n customers behind, with
the system in i ∈ Ξ (immediately after the next customer enters). The
associated scalar probability is d(n; N) = d(n; N)ε′ε′ε′. Note that there
were n + 1 customers at S1 before the departure. ���

198 4.1 S.S. M/ME/1// N (and M/ME/1/N) Loop

Of course, a(n;N) is also the probability that the customer will leave
N − n − 1 customers behind at S2, and d(n;N) is the probability that the
customer will find N −n− 1 other customers already waiting or being served
at S2. We look at our loop from this point of view in Chapter 5. It is not
hard to see that a(N ;N) = d(N ;N) = 0, because the arriving or departing
customer cannot count himself. The other probabilities can be evaluated using
the following argument.

We know the steady-state vector probabilities [w(n;N)] of the system’s
state between events. There are two types of events. Either something happens
in S1, or something happens in S2. The probability that the event will occur
in S1 is (λI + M)−1 M if n is not 0 or N , whereas it is 0 for n = 0, and 1
if n = N . If the event is in S2, it will result in an arrival to S1, and if the
event is in S1, one of two things can happen. Either the active customer will
leave [q′], with another (if available) taking his place [p], or he will just go to
another phase [P]. All together, there are six different kinds of terms, which
we now list with their probabilities. In the following set of equations we use
the notation “PPPr[X → Y]” to mean “the probability that the system will go
to state Y at the next event, AND that it is in state X at present.”

(1) PPPr[{·; 0; N} → {i; 1; N}] = [w(0; N)]i;
(2) PPPr[{i; n; N} → {i; n + 1; N}] = [w(n; N)]i [(λI + M)−1λI]ii;
(3) PPPr[{j; n; N} → {i; n; N}] = [w(n; N)]j [(λI + M)−1MP]ji;
(4) PPPr[{j; n; N} → {i; n− 1; N}] = [w(n; N)]j [(λI + M)−1Mq′p]ji;
(5) PPPr[{j; N ; N}→ {i; N ; N}] = [w(N ; N)]j [P]ji;
(6) PPPr[{j; N ; N}→{i; N − 1; N}] = [w(N ; N)]j [q′p]ji.

(4.1.11)
Of course, the sum of these terms is 1, and if rearranged would yield the
balance equations we just used to get the ws in the first place. We have
enumerated them with a different purpose in mind. First, consider only those
transactions that result in an arrival to S1: namely, (1) and (2). Their sum is
the probability of an arrival to S1 irrespective of n. The sum of the two terms
in (4.1.11), whose reciprocal we call Ga(N), is [use Equations (4.1.10)]

1
Ga(N)

:= w(0;N)ε′ε′ε′ + λ

N−1∑
n=1

w(n;N)(λI + M)−1ε′ε′ε′

= λC(N)

[
r(0;N) +

N−1∑
n=1

r(n;N)

]
.

The sum of the r’s must be 1, and the expression in brackets has all but one
of them, therefore we get the following.

1
Ga(N)

= λC(N)[1− r(N ;N)]. (4.1.12a)

By the rule of conditional probabilities [P (B |A) = P (B ∩ A)/P (A)], the
marginal arrival probabilities are Ga(N) times the appropriate terms above,

4 M/G/1 Queue 199

so after some substitutions and cancellations, the following emerges. For 0 ≤
n < N ,

a(n;N) = λGa(N)w(n;N)(λI + M)−1 =
1

1− r(N ;N)
πππ(n;N)

and

a(n;N) =
r(n;N)

1− r(N ;N)
·

A similar argument holds for d(n;N). But now we must start in state
{n + 1; N}, so that the departing customer leaves n others behind; thus

d(n;N) = Gd(N)w(n + 1;N)(λI + M)−1BQ.

As before, we get the probability of a departure from S1 irrespective of n by
adding the contributions from processes (4) and (6).

1
Gd(N)

=
N−1∑
n=1

w(n;N)(λI + M)−1Mq′pε′ε′ε′ + w(N ;N)q′pε′ε′ε′

= C(N)
N−1∑
n=1

πππ(n;N)(λI + M)(λI + M)−1Bε′ε′ε′ + C(N)πππ(N ;N)Bε′ε′ε′,

where we have used pε′ε′ε′ = 1 and Mq′ = Bε′ε′ε′. Next, recall from Lemma 4.1.1
that Bε′ε′ε′ = λAε′ε′ε′, use Theorem 4.1.2, and get

1
Gd(N)

= λC(N)r(0;N)

(
N−1∑
n=1

pUnAε′ε′ε′ + pUN−1VBε′ε′ε′
)

= λC(N)r(0;N)

(
N∑

n=1

pUn−1ε′ε′ε′
)

,

which finally yields what we might have expected,

1
Gd(N)

= λC(N)[1− r(N ;N)], (4.1.12b)

the same as we got for sum of the arrivals. The fact that Ga(N) = Gd(N)
tells us that the steady-state probability of an arrival to a subsystem is equal
to the steady-state probability of a departure from that subsystem. We would
expect no less. The process of getting the d(n;N)s and d(n;N)s is the same
as that for evaluating Gd(N), and gives the same results for d(n;N) as for
a(n;N). These are summarized by the following theorem.

Theorem 4.1.4: The steady-state vector and scalar probabilities
of finding n customers in an M/ME/1/ /N queue [πππ(n;N), r(n;N)], of
an arriving customer finding n already in the queue [a(n;N), a(n;N)],
and of a departing customer leaving n in the queue [d(n;N), d(n;N)],
are related by the following [from (4.1.7) and (4.1.12)]:

200 4.2 Open M/ME/1 Queue

For 0 ≤ n < N ,

a(n;N) =
1

1− r(N ;N)
πππ(n;N), (4.1.13a)

d(n;N) =
r(n;N)

1− r(N ;N)
p, (4.1.13b)

a(n;N) = d(n;N) =
r(n;N)

1− r(N ;N)
, (4.1.13c)

and finally,
a(N ;N) = d(N ;N) = 0. (4.1.13d)

By virtue of the completeness of ME functions, as described in Section
3.2.1, the scalar equations are true for classes of service time distribu-
tions more general than ME. Thus (4.1.13c) and (4.1.13d) are valid for
all M/G/1/ /N queues. Last, note that although a(n;N) and d(n;N)
are equal, their vector counterparts are not. We show how these results
carry over to the open queue in succeeding sections. �

You may be wondering what terms (3) and (5) from Equations (4.1.11)
contribute to the behavior of an M/ME/1 queue. After all, no customers are
exchanged between S1 and S2 during these events. Their role is to give S1 its
nonexponential character, as seen by an outside observer.

4.2 Open M/ME/1 Queue

In Section 2.1.2 we showed how an M/M/1/ /N loop becomes an open M/M/1
queue when N becomes unboundedly large. In Section 3.5 we showed that a
server with an unboundedly long queue generates a renewal process, and in
particular, if the server is exponential, its departures are Poisson distributed.
Recall from (3.1.4b) that Ψ [V] is the mean service time for S1 and λ is the
mean service rate for S2 [see (1.1.4a) and surrounding discussion], so

ρ := utilization factor = λΨ [V] = λx̄.

Therefore, if the mean service time of our general server S1 is less than
the mean service time of S2 [ρ < 1], the M/ME/1/ /N loop approaches an
M/ME/1 open queue for very large N . In reality, the number of customers
in a system is always finite, but if N is large enough, then the probability
that all (or even most) of them will be at S1 at any time is so small that
such events can be neglected in any performance considerations. In that case,
N can be replaced by infinity. The reader might ask, “What is meant by so
small?” Recall the definition of the limit of a sequence of numbers (see any
calculus book). Let {an | 0 ≤ n} be such a sequence. Then if for every ε > 0
there exists a unique number a such that for some N (possibly dependent on
ε) the following is true.

|a− an| < ε ∀ n > N,

4 M/G/1 Queue 201

then
lim

n→∞ an := a

In our case, ε is “so small,” that N might as well be ∞.

4.2.1 Steady-State M/ME/1 Queue

Before going on, we need some relationships among our matrix operators that
we organize into the following two lemmas and a corollary. The first lemma
is a variant of the Sherman-Morrison Formula [ShermanMorrison50],
which itself is a special case of the Woodbury formula. These are of use to us
in later chapters as well.

Lemma 4.2.1: Let F be any m-dimensional square matrix for
which Ψ [F]
= 1. Then (recall that Q = ε′ε′ε′p, and thus QFQ = Ψ [F]Q),
(I−QF) is nonsingular and

(I−QF)−1 = I +
1

1−Ψ [F]
QF. (4.2.1a)

Similarly,

(I− FQ)−1 = I +
1

1−Ψ [F]
FQ. (4.2.1b)

This lemma is valid for any two vectors x and y for which xy′ = 1
and the scalar xFy′
= 1, but is used in this book only for x = p and
y′ = ε′ε′ε′. �

The proof is evident by direct substitution.

Exercise 4.2.1: Prove by direct multiplication that the expressions
given in Equations (4.2.1) are the inverses of (I− FQ) and (I−QF).

The fact that [I−U] is invertible is central to the development of this
section and parts of Chapter 5. Therefore, we state and prove the following
lemma.

Lemma 4.2.2: Let ρ = λΨ[V]
= 1; then

K := [I−U]−1 (4.2.2a)

exists, and the following relations are true:

K = λ

[
I +

λ

1− ρ
VQ
]
VA = λAV

[
I +

λ

1− ρ
QV
]

(4.2.2b)

and

K = I + λV +
λ2

1− ρ
VQV. (4.2.2c)

202 4.2 Open M/ME/1 Queue

These relations are true even if ρ > 1, and even if ρ is complex. Only
if ρ = 1 does [I−U] fail to have an inverse. �
Proof: From (4.1.4a) we have A = I + (1/λ)B−Q and U = A−1.
Observe that (4.2.2b) can be proven directly by multiplying the mid-
dle or right expression by (I−U) and noting that A(I−U) =
(I−U)A = (1/λ)B−Q. However, (4.2.2c) is messier, and it is in-
formative to prove it by deduction so the reader can discover how such
formulas are found in the first place.

I−U = U(A− I) = U
1
λ

(B− λQ) =
1
λ
UB(I− λVQ).

By symmetry,

I−U = (A− I)U =
1
λ

(B− λQ)U =
1
λ

(I− λQV)BU.

We next take the inverse of both sides to get

K = (I−U)−1 = λ(I− λVQ)−1VA = λAV(I− λQV)−1.

Using the last equation together with (4.2.1) for F = λV, we get
(4.2.2b). Finally, we get (4.2.2c) by substituting A = I + (1/λ)B−Q
into (4.2.2b).

As one further comment, note that A, V, and Q do not commute with
each other, so the order in which they appear is important. QED

The equations for K are explicit in terms of known quantities, and therefore
exist as long as ρ
= 1, so [I−U] does indeed have an inverse. This also proves
that if ρ = 1, then U has an eigenvalue equal to 1.

Several expressions that prove useful in Chapter 5 are given in the follow-
ing.

Corollary 4.2.2: Multiplying the right-most term in (4.2.2b) on
the right with ε′ε′ε′ yields

λAVε′ε′ε′ = (1− ρ)Kε′ε′ε′, (4.2.3a)

and multiplying the second last term on the left with p gives

λpVA = (1− ρ)pK. (4.2.3b)

Similarly, it follows directly from (4.2.2c) that

pK = p
[
I +

λ

1− ρ
V
]

(4.2.3c)

and

Kε′ε′ε′ =
[
I +

λ

1− ρ
V
]
ε′ε′ε′. (4.2.3d)

4 M/G/1 Queue 203

The last expression we need is Ψ [K]. Using either of the last two equa-
tions, we get

Ψ [K] = 1 +
ρ

1− ρ
=

1
1− ρ

, (4.2.3e)

a rather simple expression but a nonetheless important result. �

We are now prepared to look at the M/ME/1 queue. The open queue is
described by the following probabilities for ρ < 1. From Theorem 4.1.2:

r(n) := lim
N→∞

r(n;N) =
[

lim
N→∞

r(0; N)
]
Ψ[Un], (4.2.4a)

and
πππ(n) := lim

N→∞
πππ(n;N) =

[
lim

N→∞
r(0; N)

]
pUn. (4.2.4b)

Both depend on (4.1.6g)

[r(0)]−1 = lim
N→∞

[r(n; N)]−1 = lim
N→∞

Ψ[K(N)].

For the moment, let X, if it exists, be defined by

X := lim
n→∞K(N),

Using (4.1.6e), we can write

X = lim
N→∞

K(N + 1) = lim
N→∞

[I + UK(N)] = I + U lim
N→∞

K(N)) = I + UX.

Solving for X, we get
X = (I−U)−1.

But that’s what we defined as K in (4.2.2a). Therefore, when the limit exists
(i.e., when ρ < 1), we have:

lim
N→∞

K(N) = K. (4.2.4c)

Equations (4.2.4) and Theorem 4.1.2 together lead to the following.

Theorem 4.2.3: The steady-state vector and scalar probabilities
of finding n customers in an M/ME/1 queue are

πππ(n) = (1− ρ)pUn (4.2.5a)

and
r(n) = (1− ρ)Ψ [Un] . (4.2.5b)

ρ = 1 − r(0) is the probability that S1 is busy. To efficiently compute
all the above, the recursive formula πππ(n) = πππ(n−1)U for n > 0 should
be used, starting with πππ(0) = (1− ρ)p. Then use r(n) = πππ(n)ε′ε′ε′. �

204 4.2 Open M/ME/1 Queue

It is easy to argue that r(N ;N) [from (4.1.7b)] goes to 0 as N goes to
infinity whenever ρ is less than 1 (i.e., S2 is always busy). We can then extend
Theorem 4.1.4 to the open M/G/1 queue, expressed by the following:

Theorem 4.2.4: Let a(n) and d(n) be the open M/G/1 queue
equivalents to a(n;N) and d(n;N) Then for (ρ < 1),

a(n) = lim
N→∞

a(n;N) and d(n) = lim
N→∞

d(n; N).

Therefore,
a(n) = d(n) = r(n)

and the vectors,
a(n) = πππ(n).

However, d(n) = r(n)p
= πππ(n). �

This well-known result is discussed, for instance, in [Cooper81]. Cooper
refers to the outside observer, whereas we also use the term random ob-
server. The two concepts are not the same, but the so-called PASTA prop-
erty (Poisson Arrivals See Time Averages) equates the two. A random ob-
server looks at the system randomly. That is, the times between her viewings
are exponentially distributed, so her observation times constitute a Poisson
process. The outside observer views the system continuously, in effect taking
time averages. The equality of their long-term averages was first proven by
C. Palm [Palm43] (see also [Khinchine60]). Therefore we tend to use the
terms interchangeably. [See, however, the discussion surrounding Equations
(1.1.1).] Note that a(n), d(n), and r(n) are not equal to each other for the
open G/M/1 queue. This is discussed fully in Chapter 5.

To close this section, we mention that K, as the limit of K(N), exists
whenever all the eigenvalues of U are less than 1 in magnitude. We assume
without proof that this occurs whenever ρ < 1. In any case, Equations (4.2.2)
and (4.2.3) are valid as long as U has no unit eigenvalues, and thus when
ρ
= 1. In Chapter 5 we look at this problem more closely, and in Chapter 7
we show that for more complicated queues, U always has a unit eigenvalue
(in fact, 1 may be a multiple eigenvalue).

4.2.2 System Times: Pollaczek-Khinchine Formulas

The prototypical question asked in relation to queueing theory is: “How long
can a customer expect to wait for service from a busy server?” The M/G/1
queue provides an unusually simple answer. This result is amazingly sim-
ple, considering that all attempts to find similar answers for somewhat more
complicated systems have failed in the 70 or more years since Pollaczek
[Pollaczek30] and Khinchine [Khinchine32] separately found that the
mean queue length and mean system time for the steady-state open M/G/1
queue depend only on ρ and the first and second moments of S1’s pdf. Even
the closed M/G/1/ /N loop does not share the simple result. These formulas
are derived here.

4 M/G/1 Queue 205

4.2.2.1 Mean Queue Length

The mean queue length of a general server with Poisson arrivals can be cal-
culated directly from (4.2.5):

q̄ :=
∞∑

n=1

n r(n) = (1− ρ)Ψ

[∞∑
n=1

nUn

]
. (4.2.6a)

From the properties of the geometric series, we know that
∞∑

n=1

nUn = (I−U)−1(I−U)−1U = KKU.

We also know that KU = UK = K− I, so (4.2.3c) and (4.2.3d) can be used
to reduce the mean queue-length formula to

q̄ = (1− ρ)pK(K− I)ε′ε′ε′ = (1− ρ)Ψ
[(

I +
λ

1− ρ
V
)(

λ

1− ρ
V
)]

= λΨ
[
V +

λ

1− ρ
V2

]
. (4.2.6b)

But Ψ [λV] = ρ, and Ψ
[
V2
]

= EEE[X2]/2, [from (3.1.9)], so we get the
Pollaczek-Khinchine (P-K) formula:

q̄ = ρ +
λ2

1− ρ

EEE[X2]
2
· (4.2.6c)

Another form for the P-K formula, which is perhaps more enlightening, can
be written by recalling the definition of variance [σ2 = EEE[X2] − x̄2] and the
squared coefficient of variation [C2

v = σ2 / x̄2]. Then

q̄ =
ρ

1− ρ
+

ρ2

1− ρ

C2
v − 1
2

· (4.2.6d)

Let Ts be the random variable denoting the time a customer spends in the
system. The mean time he spends in S1 or its queue is given by Little’s
formula [Equation (2.1.7)], namely,

EEE[Ts] =
q̄

λ
=

x̄

1− ρ
+

x̄ρ

1− ρ

C2
v − 1
2

· (4.2.6e)

In this form, for a given ρ and x̄, it is clear that if C2
v is greater than 1, the

mean queue length and the mean time in the subsystem will be longer than
that for an M/M/1 queue (for which C2

v = 1), whereas if C2
v is less than

1, q̄ and EEE[Ts] will be shorter. See Figures 1.1.2 and 1.1.3 for well-behaved
examples.

EEE[Ts] can be written in yet another form, one that can be interpreted
directly. From (4.2.6c) we get

EEE[Ts] = x̄ +
ρ

1− ρ

[
EEE(X2)

2x̄

]
. (4.2.6f)

206 4.2 Open M/ME/1 Queue

0 5 10 15 20 25
10

−3

10
−2

10
−1

10
0

n

r(
n) H

2

H
2

HE
2

HE
2

M

M

Figure 4.2.1: M/G/1 Queue-length probabilities (on a log scale) for
two pairs of H2, and two hyper-Erlangian functions with the same
first three moments. In all cases, x̄ = 1, C2

v = 10, and EEE(X3) = 330.0. The
pair that starts higher corresponds to ρ = 0.5, and the other pair has ρ = 0.9.
The M/M/1 queue (C2

v = 1) is included for comparison.

This can be understood in the following way. Suppose a customer arrives at
an empty queue needing a time x to be served. While he is being served, λx
more customers arrive. It will take on average (λx)x̄ amount of time before
the last of them begins service. But in that interval of time, another ρxλ (we
have made use of ρ = λx̄) will have arrived, and they will have to wait an
average of ρxλx̄ time before the last one of them is processed. Continuing in
this way and adding all the delays, we get (1+ρ+ρ2 +ρ3 + · · ·)x = x/(1−ρ).
We see that the ubiquitous term 1/(1− ρ) is due to the propagated delay due
to an initial delay. In Theorem 3.5.4 we showed that the mean residual time
x̄r is given by the expression in square brackets above.

We also show in Theorem 4.3.1 below that the mean time remaining for
the customer in service when a new customer arrives is the same x̄r. Thus
(4.2.6f) tells us that an arriving customer will take on average x̄ to be served,
plus if the server is busy when he arrives [ρ] he will have to wait, on average
x̄r/(1 − ρ) before he begins service. We give one cautionary reminder that
Equations (4.2.6) are true only for the steady-state M/G/1 open queue.

A point to be made concerning the P-K formula is the following. Although
it is true that all M/G/1 queues have the same q̄ and mean system time for a
given λ, x̄, and C2

v , that does not imply that other properties are the same.
For instance, different distributions yield different queue-length probabilities,
as we show in the next example.

4 M/G/1 Queue 207

Example 4.2.1: In Sections 3.2.1.2 and 3.2.3.1 we presented the H2 func-
tion and a 4-state hyper-Erlangian which can be made to have the same first
three moments. We have calculated r(n) from (4.2.5b) using the two func-
tions with x̄ = 1, C2

v = 10, and EEE(X3) = 330.0, and for ρ = 0.5 and 0.9.
The results of these calculations are shown in Figure 4.2.1. Later, when we
discuss buffer overflow and customer loss we show that the difference can
be important. �

Exercise 4.2.2: Evaluate the mean system times EEE[Ts] for queueing
systems with mean service time of 1, and with the following values of
C2

v , the squared coefficient of variation: 0, 0.25, 0.50, 1.0, 2.0, 5.0, and
10.0. Use enough values of ρ between 0 and 1 to draw curves for all of
them that appear visually smooth. Make sure that they all have the
same value at ρ = 0, namely, x̄, which in this case equals 1.

4.2.2.2 Queue-Length Probabilities of M/PT/1 Queues

For a given ρ, the shortest queue length and system time occur for the de-
terministic distribution, where C2

v = 0, but there is no longest mean queue
length, because one can always find a distribution whose coefficient of varia-
tion exceeds any number. In fact, there exist distributions that have infinite
variance, examples of which were given in Section 3.3. In that section we
introduced the family of Power-Tail (PT) distributions and their Truncated
(TPT) relatives. We showed that if α ≤ 2 then the PT distribution has infi-
nite variance, and it would take an infinite number of samples to exhibit that.
Therefore, systems that exhibit PT behavior can never reach their steady
state. Yet, for α > 1 the steady-state M/PT/1 solution exists. How can that
be if q̄ =∞? In Figure 4.2.2 we plot r(n) and nα r(n) versus n for several val-
ues of ρ. The graphs indicate that for all ρ < 1 nα r(n) approaches a constant
value for n large enough. (Well, it does show it for ρ < 0.8 but if the graph
were extended to larger n then all the curves would level off.) In other words,

r(n) =⇒ c(ρ)
nα
· (4.2.7)

It is well known that as long as α > 1,
∞∑

n=1

c(ρ)
nα

<∞;

that is, the series converges. We ignore the possibility of α ≤ 1 because that
would imply an infinite mean service time, in which case ρ = λx̄ = ∞, no
solution.

Now consider the mean queue length. Equation (4.2.6a) converges if and
only if

∞∑
n=1

n
c(ρ)
nα

=
∞∑

n=1

c(ρ)
nα−1

<∞

208 4.2 Open M/ME/1 Queue

0 500 1000 1500
0.001

0.01

0.1

1

2 ρ = 0.95
ρ = 0.85
ρ = 0.75
ρ = 0.65
ρ = 0.55
ρ = 0.45
ρ = 0.35
ρ = 0.25

ρ = 0.15

ρ = 0.05

Queue length, n

n
α
r(

n
)

Figure 4.2.2: M/PT/1 Queue-length probabilities, nα r(n) (on a log
scale) versus n for various values of ρ. The PT function is that given by
(3.3.18) with α = 1.4 and θ = 0.5. The calculation would require the use of infinite
matrices, therefore the actual calculation was made with the truncated version for
T = 30. For this range of n ≤ 1500 there would be no visible difference using any
other T > 30.

which is true only if α − 1 > 1, or α > 2. Conversely, if α ≤ 2 then we get
an infinite variance, and thus an infinite queue length, in agreement with the
P-K formula, (4.2.6b). for a discussion of the occurence of large queues, see
[AsmussenKluppelberg97].

To be honest, the curves in Figure 4.2.2 were actually calculated based on
a TPT30 distribution (i.e., a truncated power tail with T = 30). Any other
T > 30 would yield almost exactly the same curves for n < 1500. If we would
have extended the curves for larger n we would have seen nα r(n) begin to
drop to 0 above some N(T). We have not examined the behavior of N(T)
as a function of T except to note that it monotonically increases to ∞ with
increasing T . In any case, we see that r(n) is independent of T for n < N(T).
This shows us that one cannot distinguish between TPTs and the full PT
unless one observes long enough for very long queues to occur. This agrees
with the discussion in Section 3.3 concerning the range of the distribution.

4.2.2.3 Throughput

We have developed the mathematical properties of K sufficiently to be able
to find the limit of Λ(N) in (4.1.8a) without any effort. We also point out in
passing, that although U and K(N) do not commute, U and K do. When ρ
is less than 1, we have [from (4.1.8a), (4.2.2a) and (4.2.3e)]

lim
n→∞Λ(N) =

λ

ρ

Ψ [UK]
Ψ [K]

=
λ

ρ

Ψ [K− I]
Ψ [K]

=
λ

ρ
(1− ρ)

(
1

1− ρ
− 1
)

= λ.

4 M/G/1 Queue 209

So, as in the M/M/1/ /N queue [Equation (2.1.6c)], the throughput of the
system is limited by the capacity of the slower server S2. When ρ is greater
than 1, the problem is more difficult. We deal with it in Chapter 5.

4.2.2.4 Z-Transform

Pollaczek and Khinchine separately derived an expression for the Z-
transform , also known as the generating function , of the set of queue-
length probabilities. We first derive the vector z-transform and then reproduce
the P-K formula. First define the row vector (not to be confused with the exit
vector q′)

q(z) :=
∞∑

n=o

πππ(n)zn = (1− ρ)p
∞∑

n=o

znUn = (1− ρ)p(I− zU)−1. (4.2.8a)

This expression can be manipulated into a form that makes use of the prop-
erties of V, as given in (3.1.9) and (3.1.10). First note that

(I− zU) =
1
λ
UB[I + λ(1− z)V − λVQ].

Next, let s = λ(1− z), and define

D(s) := [I + sV]−1. (4.2.8b)

This matrix shows up often, and from (3.1.10), is related to the Laplace trans-
form by the following:

d(s) := Ψ [D(s)] = B∗[λ(1− z)]. (4.2.8c)

We manipulate the equation before (4.2.8b) to a form in which Lemma 4.2.1
can be applied, so it follows that

I− zU =
1
λ
UBD−1(I− λDVQ).

Before going on, note that λpDVQ = Ψ [λDV]p, and from (4.2.8b) that
λDV = (I−D)/(1− z). We must now take the inverse of (I− zU) to get

(I− zU)−1 = (I− λDVQ)−1λDVA.

Then as long as Ψ [λDV]
= 1, Lemma 4.2.1 applies, so (4.2.8a) yields

q(z) = (1− ρ)p
(
I +

1
1−Ψ [λDV]

λDVQ
)

λDVA

= (1− ρ)
(

1 +
Ψ [λDV]

1−Ψ [λDV]

)
λpDVA.

210 4.2 Open M/ME/1 Queue

By virtue of the fact that Ψ [λDV] = (1 − d)/(1 − z), we finally get (after
simplifying the expression in the large parentheses)

q(z) =
1− ρ

1−Ψ [λDV]
λpDVA =

(1− ρ)(1− z)
d− z

λpDVA. (4.2.8d)

This vector z-transform contains the information concerning the internal
states of S1. The sum of its components corresponds to the P-K transform
formula. Using Lemma 4.1.1, it easily follows that

Q(z) := q(z)ε′ε′ε′ =
(1− ρ)(1− z)

d(s)− z
d(s) =

(1− ρ)(1− z)B∗(s)
B∗(s)− z

(4.2.8e)

[where again, s = λ(1 − z)]. The rightmost term is the expression normally
referred to as the P-K formula. It is not easy to use because it is indeterminate
at z = 1, for then s = 0 and B∗(0) = 1. In fact, (4.2.8a) is surely the easiest
form to use for evaluation. From this equation,

Q(z) = (1− ρ)Ψ
[
(I− zU)−1

]
(4.2.8f)

(the matrix equivalent of the z-transform of the geometric distribution), and
from (4.2.2a) and (4.2.3e) it is obvious that Q(1) = 1. This must necessarily
be true, because by the definitions (4.2.8a) and (4.2.8e) Q(1) is the sum of
the queue-length probabilities, which must be 1. The usefulness of the z-
transform comes from the ability to get the mean queue length and higher
moments without evaluating an infinite sum. In our case the infinite sums are
geometric in form and are evaluable, so the potential advantage is limited.∗

However, we do that next.
It is well known that the derivative of Q(z) evaluated at z = 1 is q̄, and

the variance of the queue length is σ2
q = Q′′(1)− q̄(q̄− 1). Now from (4.2.8f),

q̄ =
(

dQ(z)
dz

)
z=1

= (1− ρ)Ψ
[
(I−U)−2U

]
= (1− ρ)Ψ [KKU] ,

the same expression that led to the derivation of (4.2.6b). It is also straight-
forward to find the expression for Q′′, which is(

d2Q(z)
dz2

)
z=1

= 2(1− ρ)Ψ
[
KK2U2

]
= 2(1− ρ)Ψ

[
K(K− I)2

]

= 2(1− ρ)Ψ
[
K3 − 2K2 + K

]
.

The last two terms in the rightmost Ψ brackets are simple enough to evaluate,
and the first one can be evaluated by doing the following:

Ψ
[
K3
]

= pKKKε′ε′ε′

∗We should point out, however, that Q(z) =
∑∞

n=o r(n)zn and r(n) ≥ 0 for all n.
Therefore it follows that Q(z) ≥ 0 for z ≥ 0. Then (4.2.8f) might be used in the future to
find those properties U must have to guarantee this.

4 M/G/1 Queue 211

= p
[
I +

λ

1− ρ
V
] [

I + λV +
λ2

1− ρ
VQV

] [
I +

λ

1− ρ
V
]
ε′ε′ε′.

It is straightforward, if a bit tedious, to multiply out all terms and regroup
them to get

Q′′(1) =
2

1− ρ
Ψ
[
(λV)2

]
+

2
1− ρ

Ψ
[
(λV)3

]
+ 2

(
Ψ
[
(λV)2

]
1− ρ

)2

.

Further manipulation yields

σ2
q = ρ(1− ρ) +

3− 2ρ

1− ρ
Ψ
[
(λV)2

]

+
2

1− ρ
Ψ
[
(λV)3

]
+

(
Ψ
[
(λV)2

]
1− ρ

)2

. (4.2.9a)

We put this into another form by making use of the fact that Ψ
[
(λV)2

]
=

ρ2 + ρ2(C2
v − 1)/2. Then

σ2
q =

ρ(1− 2ρ2 + 2ρ3)
(1− ρ)2

+
ρ2(3− 5ρ + 4ρ2)

(1− ρ)2

(
C2

v − 1
2

)

+
ρ4

(1− ρ)2

(
C2

v − 1
2

)2

+
2

1− ρ
Ψ
[
(λV)3

]
. (4.2.9b)

The next two equations give expressions for two special cases. For expo-
nential servers, C2

v = 1 and Ψ [(λV)n] = ρn, so

σ2
q =

ρ

(1− ρ)2
.

For the deterministic distribution C2
v = 0, and Ψ [(λV)n] = ρn/n!, so

σ2
q =

ρ(12− 18ρ + 10ρ2 − ρ3)
12(1− ρ)2

.

We have seen that (4.2.8f) is easy enough to use, although a bit tedious,
to get the moments of the queue length. Use of (4.2.8e) is considerably harder
and even more tedious to use. In either case, even the second moment is not
particularly informative for general analysis, so we leave it for now. However,
in the following section we surprisingly find a better use of (4.2.8f).

4.2.3 System Time Distribution

The P-K transform formulas (4.2.8) turn out to have more significance than
that implied in the preceding section. Following standard texts, we now show
that Q(z) is also the Laplace transform B∗

s (s) of the system time pdf, bs(x),
where s = λ(1 − z). Then we will go even further (thanks to Appie van
de Liefvoort, who first recognized it [Liefvoort90]) and find the matrix
generator 〈〈〈ps , Bs 〉〉〉 of the system time distribution itself.

Recall the definition of system time (or total, or response time) from the
end of Section 2.1.3, and define the steady-state distribution.

212 4.2 Open M/ME/1 Queue

Definition 4.2.1
Xs := r.v for the time a customer spends at S1 from the moment he
arrives until the moment he completes service.
Bs(x) := PPPr(Xs ≤ x). That is, Bs(x) is the PDF for system time,
bs(x) is its derivative, and Rs(x) = 1 − Bs(x) is the probability that
the customer will still be in the subsystem at time x. ���

From Theorem 4.2.4 we know that the steady-state probability of finding
n customers at S1 [r(n)], is the same as the probability that a departing cus-
tomer will leave n customers behind [d(n)]. Now, because the arrival process
to S1 is Poisson, the probability that n customers will arrive in the time in-
terval x (the time spent there by our now-departing customer), is given by
(3.5.16b). Therefore, the probability that he will leave n customers behind,
irrespective of how long he was at S1, is

d(n) = r(n) =
∫ ∞

o

(λx)n

n!
e−xλbs(x) dx.

Next, insert this into the expression for Q(z) [Equations (4.2.8a) and (4.2.8e)],
to get

Q(z) =
∞∑

n=o

znr(n) =
∞∑

n=o

∫ ∞

o

(λxz)n

n!
e−xλbs(x)dx

=
∫ ∞

o

∞∑
n=o

(λxz)n

n!
e−xλbs(x)dx =

∫ ∞

o

eλxze−xλbs(x)dx.

Finally, we identify the Laplace transform in the following theorem.

Theorem 4.2.5: The Laplace transform for the steady-state
system-time distribution in an M/G/1 queue is given by

B∗
s [λ(1− z)] = Q(z) =

∫ ∞

o

e−λ(1−z)xbs(x)dx, (4.2.10a)

and from (4.2.8f), we have for M/ME/1 queues,

B∗
s (s) = (1− ρ)Ψ

[
(I− zU)−1

]
, (4.2.10b)

where s = λ(1− z). In particular (for z = 0), B∗
s (λ) = (1− ρ). �

This is a most interesting result, but remember that this simple expression
occurred for two special reasons. First, d(n) and r(n) are equal, and second,
the Poisson arrival process and the Laplace transform are both generated by
the exponential function. We cannot expect such simple results for the G/G/1
queue. In attempting an alternative derivation using the arrival probabilities
(which also satisfy Theorem 4.2.4) we get a result that so far has not been
shown equal to (4.2.10b). We postpone this derivation until the end of the
next section, after we have discussed residual times.

4 M/G/1 Queue 213

Equation (4.2.10b) can be used to find a vector-matrix pair that generates
the moments of Bs(x), and thus, by (3.1.7c), (3.1.8b), (3.1.9) and (3.1.10),
the same pair will be a faithful representation of bs(x) itself, as well as B∗

s (s).
First recall that the Laplace transform is also known as the moment generating
function, in that its n-th derivative evaluated at s = 0 is (−1)n times the n-th
moment. That is,

EEE[Tn
s] = (−1)n

(
d(n)B∗

s (s)
dsn

)
s=o

=
∫ ∞

o

xn bs(x) dx.

Next, given that s = λ (1− z), note that

d

ds
=

dz

ds

d

dz
= − 1

λ

d

dz
,

so (clearly, z = 1 when s = 0), using (4.2.10b), and recalling that
K = (I−U)−1 [see Equations (4.2.2)], we have(

dB∗
s (s)
ds

)
s=o

= − 1
λ

(1− ρ)(−1)Ψ
[
(I− zU)−2(−U)

]
z=1

= − 1
λ

(1− ρ)Ψ
[
(I−U)−2U

]
= −(1− ρ)Ψ

[
K

KU
λ

]
.

Clearly, the n-th differentiation with respect to s introduces two minus signs
that cancel, an additional factor of n/λ, and another power of −UK inside
the Ψ brackets. Thus in general we get(

d(n)B∗
s (s)

dsn

)
s=o

= (−1)n(1− ρ)n! Ψ
[
K
(

KU
λ

)n]

= (−1)nn! [(1− ρ)pK]
(

KU
λ

)n

ε′ε′ε′.

Now define
ps := (1− ρ)pK (4.2.11a)

[which from (4.2.3b) can also be written as ps := λpVA] and

Vs :=
1
λ
KU. (4.2.11b)

Then the equations preceding (4.2.11a) lead to the familiar-looking expression

EEE[Tn
s] = n!Ψs [Vn

s] := n!ps Vn
s ε′ε′ε′. (4.2.12a)

The resemblance of this equation to (3.1.9) is not superficial. Recall that
ps ε′ε′ε′ = 1 from (4.2.3b), allowing us to say that 〈〈〈ps , Vs 〉〉〉 is a matrix repre-
sentation of, or generates, the system time distribution. By virtue of Theorem
3.1.1 we have the following.

214 4.2 Open M/ME/1 Queue

Theorem 4.2.6: Let ps and Vs and Ψs [·] be defined by (4.2.11a),
(4.2.11b), and (4.2.12a), respectively; then (where Bs = Vs

−1)

EEE[Tn
s] = n!Ψs [Vs

n] ,

bs(x) = Ψs [Bs exp(−xBs)] , (4.2.12b)

B∗
s (s) = Ψs

[
(I + sVs)−1

]
. (4.2.12c)

Thus the vector-matrix pair 〈〈〈ps , Bs 〉〉〉 generates a faithful represen-
tation of the distribution of system times in a steady-state M/ME/1
open queue. �

It should be clear from these discussions that the mean system time EEE[Xs] is
the same as EEE[Ts] of (4.2.6e).

We now find explicitly simple forms for Bs and Vs. From (4.2.11b),

Bs = Vs
−1 = λA(I−U) = λ(A− I) = B− λQ. (4.2.13a)

Also, from (4.2.2c), and noting once again that KU = K− I,

Vs =
1
λ

(K− I) = V +
λ

1− ρ
VQV. (4.2.13b)

One can also solve for K in terms of Vs to get

K = (I + λVs). (4.2.13c)

This, together with (4.2.11a) and (4.2.12c), shows again that B∗
s (λ) = 1− ρ.

Note that (4.2.3c) yields an expression for ps that has a clear physical
meaning. Using (3.5.12a), and ρ = λΨ [V], we get

ps = (1− ρ)p + λpV = (1− ρ)p + ρπππr. (4.2.13d)

(1 − ρ) is the probability that S1 will be empty when a customer arrives, ρ
is the probability that it will not be empty, and [(πrπrπr)i] from (3.5.10b) is the
probability that phase i will be busy upon the customer’s arrival, given that
at least one customer is already there. Therefore (ps)i is the probability that
phase i will be busy immediately after an arrival, irrespective of S1’s condition
before the arrival. It would be nice to find such a simple interpretation of Bs.

Example 4.2.2: We have used 〈〈〈ps , Bs 〉〉〉 from Equations (4.2.11) to gen-
erate bs(x) for the open M/E2 /1 queue (N = ∞) by directly evaluating
(4.2.12b) for many values of x, using the algorithm described in Section 3.1.4.
We set x̄ = 1, and selected various values for ρ. The results are shown in Figure
4.2.3. When ρ is very small, then bs(x) is very peaked, just as is E2(x). In fact,
the curve labeled ρ = 0.1 is extremely close to the Erlangian-2 distribution,

E2(x) = 4xe−2x,

4 M/G/1 Queue 215

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ρ = 0.1

← ρ = 0.5

← ρ = 0.8
ρ = 0.9

ρ = 0.95

System time, x

Sy
st

em
ti

m
e

pd
f,

b s
(x

)

Figure 4.2.3: System time density function bs(x)bs(x)bs(x) for the M/E2E2E2/1
queue, with ρ = 0.1, 0.5, 0.8, 0.9, and 0.95. For small ρ, bs(x) tends to look
like the service-time density function, 4x exp(−2x), whereas for ρ close to 1, it
looks very much like the interarrival time density function λ exp(−λx), except
near x = 0.

which peaks at x = 0.5. When ρ is close to 1, bs(x) looks more like the
interarrival distribution λ exp(−λx). The curve labeled ρ = 0.95 does not
seem to support this. Bear in mind, however, that in general, bs(0) = (1 −
ρ)b(0), which in this case is 0, while the exponential has a value of λ at the
origin. Note that the curve rises rapidly from 0 and then gently decays close
to the exponential curve. Another interesting feature of this figure is that all
the curves peak at approximately the same place (x = 0.5). It seems that for
small x, bs(x) retains the shape of b(x) for all ρ. �

It should be interesting to study bs(x) further, using other pdfs. The reader
must not be too quick to generalize from what is learned from the exponential
and Erlangian-2 distributions.

Exercise 4.2.3: Using the definitions given by Equations (4.2.11)
and s = λ(1 − z), manipulate (4.2.10b) directly to get (4.2.12c). Also,
show that bs(0) = (1 − ρ)b(0). Furthermore, prove by direct algebraic
manipulation that EEE[Xs] = EEE[Ts]; that is, show that (4.2.12a) for n = 1
and (4.2.6e) yield the same result. [Hint: Use (4.2.13b) and (4.2.13d)
in (4.2.12a).]

4.2.4 Buffer Overflow and Customer Loss

In Section 2.1.4 we discussed the overflow probabilities for the M/M/1 queue,
and the customer loss probabilities for the M/M/1/N queue. Before we gen-

216 4.2 Open M/ME/1 Queue

eralize to the M/G/1 and M/G/1/N queues, the reader should review that
section. We note that in telecommunications applications, a customer is called
a packet or cell.

In this section we set up the formulas for determining the overflow prob-
ability Po(N) and the customer loss probability Pf (N). As in Section 2.1.4,
Po(N) is the probability that an M/G/1 queue will be at least as long as N
when a customer arrives, causing him to be placed in a backup buffer. Pf (N)
is the probability that an M/G/1/N queue will be full when a customer ar-
rives, thereby causing that customer to be lost, or what is mathematically
equivalent, have to return to the queue at S2. First we find Po(N).

Buffer Overflow Probabilities

From Theorems 4.2.3 and 4.2.4, we know that a(n) = r(n) = (1 − ρ)Ψ [Un].
Then, following Equations (2.1.8), we have

Po(N) =
∞∑

n=N

a(n) = (1− ρ)
∞∑

n=N

Ψ [Un] = (1− ρ)Ψ

[∞∑
n=N

Un

]

= (1− ρ)Ψ

[
UN

∞∑
n=0

Un

]
= (1− ρ)Ψ

[
UN (I−U)−1

]
= (1− ρ)Ψ

[
UN K

]
.

Although it is not clear which expression is more useful, we can use (4.2.3d)
to get

Po(N) = (1− ρ)Ψ
[
UN K

]
= (1− ρ)Ψ

[
UN
]
+ λΨ

[
UNV

]
. (4.2.14a)

This compares with (2.1.8d).
Given that U is a matrix, it is not easy to see just how Po(N) varies with

N . However, from the spectral decomposition theorem [see (1.3.8b)], we know
that for N large enough

UN −→ sN v′
s us, (4.2.14b)

where s is the largest eigenvalue of U, with eigenvectors v′
s and us. If the

service time distribution is well behaved in the sense of Definition 3.3.1, then
this equation will be accurate enough for reasonable size N . To get an idea
of what size that might be, let s1 be the second largest eigenvalue. Then we
would expect that |s1/s|N � 1. When we insert (4.2.14b) into the expression
for Po(N) we get

Po(N) = (1− ρ)Ψ
[
UN K

] −→ (1− ρ)[(pv′
s)(us K ε′ε′ε′)]sN , (4.2.14c)

where the expression in square brackets is independent of N .

4 M/G/1 Queue 217

Computational Note: At times it is necessary to evaluate expres-
sions of the form UN . If N is very large this can be computationally
expensive, particularly if m = Dim(U) is also large. This has a com-
plexity of order O(N m3). If all powers of U up through N are needed,
then one must either perform the O(N m3) operations by recursively
evaluating the expression Un+1 = U Un for 1 ≤ n < N , or do a
spectral decomposition of U. The latter procedure is very convenient if
it can be done to satisfactory accuracy (not trivial), but it too can be
computationally expensive, particularly if m is large. If instead, what is
needed are expressions of the form Un ε′ε′ε′, then the recursive expression,
Un+1ε′ε′ε′ = U (Unε′ε′ε′), is only of order O(N m2).
In many cases (as in this section) UN is needed for only one, or a few,
very large values of N . In that case, the calculation can be performed
in O(lg2(N)m3) steps using the following procedure. Compute the se-
quence U, U2, U4, U8, . . . ,Un, where n = 2j is the largest integer
such that n ≤ N (each matrix is the square of the previous one). This
takes only j = �lg(N)�− 1 multiplications. One then takes the product
of a subset of these matrices to yield UN . The matrices in the subset
are those corresponding to 1’s in the base-2 representation of N . An
example should make this clear. Let N = 1000 = (1111101000)2. Then

U1000 = U512 U256 U128 U64 U32 U8,

a total of 9 + 5 = 14 multiplications. One can sometimes find better
combinations if one tries hard enough, but this should be satisfactory
for our purposes.

As with the M/M/1 queue, Po(N) approaches a geometric function and
the discussion at the end of Section 2.1.4 also applies here. That is, one can
“throw buffer storage” at the overflow problem. The analysis is not quite so
simple here because s
= ρ, although it is always less than 1 if ρ is. But if the
service time distribution has very high variance, s may be much closer to 1
than ρ is. We look at this in the following exercise.

218 4.2 Open M/ME/1 Queue

Exercise 4.2.4: The primary buffer of a network router has enough
space for 100 packets, and ρ = 0.9. Assume that the packets are arriving
in a Poisson stream. What fraction of the arriving packets will find the
buffer full and have to be placed in a backup buffer? Do the calculations
for the following service-time distributions.

• Exponential;

• Erlangian-2;

• H2(x) of (3.2.8e), with C2
v = 10 and p = 0.1;

• HE2(x) of (3.2.16f), with the same first 3 moments as H2(x);

• b+(x) of Example 3.2.4.

How much primary buffer would have to be added to each to reduce
the probability of overflow by a factor of 10? How much buffer would
have to be added to each to get the same Po as for the E2 distribution?
And last, in each case, how much would the router have to be sped up
to give the same overflow probability as for E2?

What we have said so far applies to well-behaved functions. What happens
if the service time distribution is subexponential (see Definition 3.3.1), and
in particular, power-tailed? Such distributions, if they can be represented ex-
actly, must have infinite dimensional representations. Therefore U must have
an infinite number of eigenvalues, all less than 1 in value. In this case, the
value 1 is an accumulation point in the sense that there must be an infinite
number of points arbitrarily close to it. As a trivial example, consider the set
S = {sn | sn = 1 − 1/n}. For every ε > 0, no matter how small, there are an
infinite number of points in S such that |1 − sn| < ε. It is not necessary to
understand this more deeply, except to see what it does to Equation (4.2.14b).
There is no N large enough for this to be a reasonable approximation. There-
fore, PT distributions never show the geometric behavior that allows buffer
overflow to be controlled easily.

But what about TPTs? In this case U is finite-dimensional, and there ex-
ists a largest eigenvalue, but it is so close to 1, and to many other eigenvalues
that (4.2.14b) may not apply for any N of physically reasonable size. Con-
sequently we must try elsewhere for some idea as to how M/TPT/1 queues
behave. We already did this in Section 4.2.2.2, where we saw from some numer-
ical calculations [namely (4.2.7)] that r(n) =⇒ c(ρ)/nα. Because r(n) = a(n),
we get

Po(N) =
∞∑

n=N

a(n) =⇒ c(ρ)
∞∑

n=N

1
nα

= O
(

1
Nα−1

)

which certainly is not geometric. Recall from Section 2.1.4 that if one doubles
the size of the primary buffer of an M/M/1 queue, one in effect squares the

4 M/G/1 Queue 219

probability of overflow. So, if Po(N) is small, then Po(2N) will be significantly
smaller. But here,

Po(N)
Po(2N)

=⇒ (2N)α−1

Nα−1
= 2α−1.

So, if α = 1.4 (a typical value found in telecommunications systems) then
we get only a 32% reduction in overflow probability (2.4 = 1.3195). This is
not a very effective way to improve service. Note that even if α > 2 (the
distribution has a finite variance), Po(N) is not reduced by nearly as much as
for well-behaved distributions.

The above statements carry over to TPTs if the range of the distribution
is large enough (see the discussion in Section 3.3.6.1). The reader should test
this out in the following exercise.

Exercise 4.2.5: Redo all of Exercise 4.2.4 using the TPT distributions
taken from Example 3.3.4. Let θ = 0.5, α = 1.4, and thus γ = (1/θ)1/α.
Perform the calculations for T = 10, 20, 30, and 40. You should be
able to show that the overflow probabilities do not change appreciably
with T when T is large enough, even though C2

T grows unboundedly
with increasing T . Repeat the calculations for α = 2.4. Here C2

∞ is
finite, but the buffer problem remains. In all cases calculate the range
of the distributions [xr(T) = γT /μ(T)].

.
Customer Loss Probabilities

Calculating the loss probabilities Pf (N) requires finding the steady-state ar-
rival probabilities for the M/G/1/N queue. Definition 2.1.4 for rf (n; N) and
af (n; N) is directly applicable here, and we can even extend them to the
vector probabilities, πππf (n; N) and af (n; N).

Definition 4.2.2
[πππf (n; N)]i := probability that a random observer of an M/G/1/N
queue will see n customers at S1, with the active customer being at
phase i. Clearly, rf (n; N) = πππf (n; N)ε′ε′ε′.

[af (n; N)]i := probability that a customer, arriving at an M/G/1/N
queue will find n customers already at S1, with the active customer
being at phase i. Clearly, af (n; N) = af (n; N)ε′ε′ε′.

If the arriving customer sees N customers already at S1 (i.e., the buffer
is full), then he is lost (or he returns to S2). Therefore,

Pf (N) = af (N ; N).

Recall that the subscript, ‘f ’ stands for finite buffer. ���
Fortunately for us, for Poisson arrivals, an arriving customer sees the same

thing as a random observer. In fact, by the same argument given at the be-
ginning of Section 2.1.4, the M/G/1/N and M/G/1//N queues satisfy

af (n; N) = πππf (n; N) = πππ(n; N). (4.2.15)

220 4.2 Open M/ME/1 Queue

Only a(n;N) is different by a normalization factor because a(N ; N) = o (an
arriving customer cannot see N customers at the queue because he is one of
them).

From Theorem 4.1.2, we have

Pf (N) = r(N ; N) = λr(0; N)Ψ
[
UN−1V

]
= r(0; N)Ψ

[
UN (λAV)

]
.

But λAVε′ε′ε′ = (1− ρ)Kε′ε′ε′, from (4.2.3a), so

Pf (N) = (1− ρ)r(0; N)Ψ
[
UN K

]
. (4.2.16)

Interestingly enough, this only differs from Po(N) by the factor r(0; N), which
for well-behaved distributions is approximately (1− ρ) when N is large. That
is,

Pf (N)
Po(N)

= r(0; N) −→ (1− ρ).

Everything we said about the behavior of Po(N) for large N carries over to
Pf (N), reduced by the factor r(0; N). Thus Pf (N) < Po(N) for all N and all
ρ < 1. For ρ ≥ 1 Po(N) is not defined (no steady state), but Pf (N) still is.
The following exercises show the differences.

Exercise 4.2.6: Redo all of Exercise 4.2.4, but for Pf (N). Compare
the two sets of results.

TPT service time distributions also cause problems for control of customer
loss, as can be seen by doing the following.

Exercise 4.2.7: Redo all of Exercise 4.2.5, but for Pf (N). Compare
the two sets of results.

Often a system must be designed so that no more than a fraction p� of
packets should be lost. Then the question becomes “How big must the buffer
be?” In the section surrounding (2.1.10b) we showed that for any single-server
queue ρ could be greater than 1 and still have a stable queue if p� > 0, but
only up to ρ < ρm = 1/(1− p�). In this case, ρ and p� are assumed given, and
one evaluates (4.2.16) for multiple values of N until one finds that largest N
for which Pf (N) ≤ p�. This issue is explored in the following exercise.

Exercise 4.2.8: Consider the question presented in the previous para-
graph. Suppose some application can afford a 2% loss (p� = .02). Find
the buffer size needed to satisfy this constraint for the five service
time distributions given in Exercise 4.2.4. Do this for enough values
of 0 < ρ < ρm to draw a smooth curve. Note that all the curves blow
up at ρ = ρm. Produce another graph where the Y -axis is (ρm−ρ)∗N .
Here, the curves should be finite at ρ = ρm.

4 M/G/1 Queue 221

Exercise 4.2.9: Redo Exercise 4.2.8, but now for the service time
distributions given in Exercise 4.2.5. What is the behavior of (ρm−ρ)∗N
as ρ approaches ρm? Is it still finite?

4.2.5 Distribution of Interdeparture Times

We have developed enough results to be able to look once again at departures
from S1. As in Section 2.1.6, we place our observer just outside the exit of
S1 and have her measure the time between departures. The problem is more
complicated only because S1 now represents some general server. It is useful,
then, to review Section 2.1.5 before going on.

We ask the following question. Given that a customer, call him C1, has
just left S1, how long will it be before the next one, call him C2, leaves? We
can assume that our observer has been sitting for a long time, so the system
is in its steady state. Also, she has no idea how many customers are at S1,
but if the system is closed, she knows what N is.

Definition 4.2.3
Xd(N) := r.v. denoting the time between departures from S1 of a
steady-state M/ME/1/ /N queue.
Xd := Xd(∞).
Bd(x; N) := PPPr(Xd(N) ≤ x) = PDF for the interdeparture times of
a steady-state M/ME/1/ /N loop. The process begins immediately af-
ter customer Ci−1 leaves S1, and ends as soon as customer Ci leaves.
Customer Ci may not yet have arrived at S1 when Ci−1 left. (In that
case, Ci−1 left behind an empty queue.) bd(x; N) is the derivative of
Bd(x; N), and Rd(x;N) = 1 − Bd(x;N) is the probability that the
second customer is still in the subsystem or has not yet arrived at time
x. The subscript d reminds us that this is a dddeparture process. ���

We are assuming that i is large enough so that the interdeparture times are
identically distributed. However, we postpone considering the correlation of
successive departures until Section 8.3.5. Only two things are possible. Either
S1 is busy and Ci must be served from the beginning, or S1 is idle and our
patient observer must wait for Ci to arrive before being completely served. The
probability that the latter will happen is d(0;N) [Equation (4.1.13c)], while
the vector probability for the former to happen is [1 − d(0; N)]p. Following
this description, the pdf for the process can be found by taking the convolution
of the pdf’s of S1 and S2, but instead, we will give a matrix representation of
the process that is more useful and more picturesque.

Look at Figure 4.2.4. Consider S1 and S2 together as one subsystem. S2 is
only an exponential server with service rate λ, therefore we can assume that
service begins there at the moment of the previous departure with probability
d(0;N). The dimension of this composite subsystem is m + 1, corresponding

222 4.2 Open M/ME/1 Queue

Figure 4.2.4: Pictorial representation of the departure process from
S1 in an M/G/1/ /N loop. Dependence on the number of customers is im-
plicitly given through the steady-state probabilities at departure times. Given that
customer Ci−1 has just left, Ci must first enter [p], and travel through S1 before
leaving [B], or if S1 is empty, Ci must finish being served by S2 and then go to S1

to be served. The probability that no one is at S1 at the moment of a departure
d(0; N) is given by (4.1.13c).

to the possibility that Ci can either be at one of m phases in S1 or at the
one phase in S2. This is a sum space representation [the two subspaces,
of dimension 1 and m, are concatenated to produce one (m + 1)-dimensional
space]. In Chapter 7, we are forced to use a product space representation
to describe the status of customers at two general subsystems. In this repre-
sentation, the first component refers to the one phase in S2 and the next m
components (which we replace by an m-vector) refer to the m phases in S1.
The initial vector for the composite subsystem is given by

pd(N) := [d(0;N), {1− d(0;N)}p]. (4.2.17a)

If the queue at S1 is not empty the moment after the departure, then Ci

enters according to p.
The transition matrix Pd is easy enough to write down once we recognize

that a customer goes from 0 to i with probability pi, and goes from i > 0 to j
with probability Pij , where p and P are the same objects we used previously
to represent S1. Therefore,

Pd =
[

0 p
o′ P

]
and Md =

[
λ o
o′ M

]
·

These formulas are to be interpreted in the following way. 0 is a 1× 1 matrix
filling the element (1, 1). p is a 1×m matrix filling elements (1, 2) to (1,m+1).
o′ is an m×1 matrix of 0’s, filling elements (2, 1) to (m+1, 1). Finally, P is an
m×m matrix filling the rest of Pd. We follow the discussion and procedure
described in Sections 3.1.2 and 3.1.3 to get the process-rate and process-time
matrices Bd and Vd. Let Id be the identity matrix of dimension m + 1; then

Bd = Md(Id −Pd) =
[

λ −λp
o′ B

]
. (4.2.17b)

4 M/G/1 Queue 223

One can easily prove by direct matrix multiplication that its inverse is

Vd = Bd
−1 =

[
1/λ pV
o′ V

]
. (4.2.17c)

Now that we have a matrix representation of the departure time distribution,
generated by 〈〈〈pd , Bd 〉〉〉 (or 〈〈〈pd , Vd 〉〉〉), we can find its moments, and even
the pdf itself. First, let us find the mean interdeparture time when there are
N customers in the loop. From Theorem 3.1.1, Equation (3.1.9),

EEE[Xd(N)] :=
∫ ∞

o

x bd(x;N) dx = pd(N) [Vd]ε′dε
′
dε
′
d

= [d(0;N), {1− d(0;N)}p]
[

1/λ pV
o′ V

]
ε′dε
′
dε
′
d

=
[
d(0;N)

λ
, d(0;N)pV + {1− d(0;N)}pV

]
ε′dε
′
dε
′
d =

[
d(0;N)

λ
, pV

]
ε′dε
′
dε
′
d.

Given that ρ = λx̄, the mean time reduces to the following simple expression
(compare with (2.1.19b).

EEE[Xd(N)] =
1
λ

[d(0;N) + ρ]. (4.2.18a)

d(0;N) can be calculated from (4.1.13c), at the same time that the other prop-
erties of the steady-state M/G/1/ /N queue are computed, which as usual,
we leave as an exercise. An interesting aspect of this representation is that
the departure time’s dependence on N appears only in pd(N).

Before finding the equation for the pdf, we find the mean interdeparture
time for the open system. We already know from (4.2.5b) and Theorem 4.2.4
that limN→∞ d(0;N) = 1− ρ as long as ρ < 1, so

EEE[Xd] := lim
N→∞

EEE[Xd(N)] =
1
λ

(1− ρ + ρ) =
1
λ

for ρ < 1. (4.2.18b)

Actually, (4.2.18a) is valid for all ρ. If ρ is greater than 1, then d(0;N) goes
to 0 as N grows larger, so in this case,

EEE[Xd] := lim
N→∞

EEE[Xd(N)] =
1
λ

(0 + ρ) = x̄ for ρ > 1. (4.2.18c)

Surprised? Of course not. After all, EEE[Xd] is the reciprocal of the mean de-
parture rate, and as long as ρ is less than 1, what goes in must come out,
so the arrival rate equals the departure rate (in the steady state, of course).
We already saw this for the M/M/1 queue in (2.1.20a). If ρ > 1 then the
departure rate is limited by the service rate of S1. Note that the departure
and arrival rates are equal to each other for all N , but they only equal λ for
the open queue. In any closed network, even the busiest server will be idle
some of the time, so the throughput will be less than maximum in proportion
to the time it is not busy.

224 4.2 Open M/ME/1 Queue

We can find the second moment in a similar fashion. First observe that

Vd ε′dε
′
dε
′
d =

⎡
⎣ 1

λ + x̄

Vε′ε′ε′

⎤
⎦ =

1
λ

⎡
⎣ 1 + ρ

λVε′ε′ε′

⎤
⎦ .

Then, making use of the fact that pd(N)Vd
2ε′dε

′
dε
′
d = [pd(N)Vd][Vdε′dε

′
dε
′
d], and

using the expression preceding (4.2.18a), we get

pd(N)Vd
2ε′dε

′
dε
′
d =

1
λ2

[d(0; N), λpV]
[

1 + ρ
λVε′ε′ε′

]

=
1
λ2

(
d(0;N)(1 + ρ) + λ2Ψ

[
V2
])

.

Next recall that EEE[X2] = 2Ψ
[
V2
]
. The equivalent formula must be true for

the departure process, so

EEE[Xd(N)2] =
1
λ2

(
2d(0;N)(1 + ρ) + λ2

EEE[X2]
)
.

The variance is easy to get now.

σ2
d(N) = EEE[Xd(N)2]− (EEE[Xd(N)])2

=
1
λ2

(
2d(0;N)(1 + ρ) + λ2[EEE[X2]− x̄2 + x̄2]− [d(0;N) + ρ]2

)
.

Further trivial manipulation yields the next expression, where σ2 is the vari-
ance for S1.

σ2
d(N) =

1
λ2

(
1− [1− d(0;N)]2 + λ2σ2

)
. (4.2.19a)

The open system limit is straightforward, because d(0;N) approaches 1 − ρ
as N goes to infinity. So

σ2
d := lim

N→∞
σ2

d(N) =
1
λ2

(
1− ρ2 + λ2σ2

)
. (4.2.19b)

Recall that the squared coefficient of variation for any process is defined to
be the ratio of variance and mean squared. Thus, given EEE[Xd] = 1/λ from
(4.2.18b),

C2
d := 1− ρ2 + ρ2C2

v = 1 + ρ2(C2
v − 1). (4.2.19c)

In this form we can see that for all ρ < 1, C2
d is less (greater) than 1 when-

ever C2
v is less (greater) than 1. This expression can be manipulated into the

following form,
C2

d = C2
v − (1− ρ2)(C2

v − 1), (4.2.19d)

which implies that if C2
v is greater (less) than 1, C2

d is less (greater) than C2
v .

Both sets of inequalities can be summarized by the single statement: “For all
ρ < 1, C2

d lies between C2
v and 1.” The squared coefficient of variation for the

4 M/G/1 Queue 225

departure process is some sort of average of the squared coefficients of vari-
ation for the interarrival distribution (C2

v = 1 for exponential distributions)
and the service time distribution C2

v .
We are almost ready to find the density function itself. Recall from Theo-

rem 3.1.1 that because 〈〈〈pd(N) , Bd 〉〉〉 generates bd(x; N), they are related by
(3.1.7d), or

bd(x;N) = pd(N)[Bd exp(−xBd)]ε′dε
′
dε
′
d. (4.2.20)

We can make use of this formula by either finding a similarity transformation
matrix that diagonalizes Bd, or by replacing exp(·) with its Taylor expansion
and substituting a general expression for Bd

n (assuming that we can find one).
We do the latter here. First, from (4.2.17b) let us look at the square of Bd:

Bd
2 =

[
λ2 −λ2p

(
I + 1

λB
)

o′ B2

]
.

If the reader cannot guess at a general expression for the n-th power of Bd,
then calculating and examining Bd

3 should give sufficient hint. We leave that
step out and write the expression directly. Before we do that, we are beginning
to see that the matrix expressions can become rather large and cumbersome,
so for convenience, we define the matrix X for this section only.

X :=
(
I− 1

λ
B
)−1

.

Then the n-th power of Bd is

Bd
n =

⎡
⎣ λn −λnp

∑n−1
k=o

(
1
λB
)k

o′ Bn

⎤
⎦

=

⎡
⎣ λn −λnpX

(
I− (1

λB
)n)

o′ Bn

⎤
⎦ . (4.2.21a)

The proof is by induction and is left as an exercise.

Exercise 4.2.10: Prove by induction that (4.2.21a) is true for all
n > 0. That is, multiply either of the two matrix expressions by Bd

and show that the resulting expression is of the same form, with the
index n increased by 1.

The process of summing all the terms of the form (1/n!)(−xBd)n is not
difficult, because it can be done element by element, or block by block. First,
define the (m+1)×(m+1) matrix, Rd(x) := exp(−xBd) [recall the reliability
matrix function of Equations (3.1.6)], then

[Rd(x)]ij = [exp(−xBd)]ij =
∞∑

n=o

(−x)n

n!
[(Bd)n]ij .

226 4.2 Open M/ME/1 Queue

For instance,

[Rd(x)]11 =
∞∑

n=o

(−x)n

n!
λn = e−xλ

and
[Rd(x)]j1 = 0 for 1 < j ≤ m + 1.

The elements (1, 2) to (1,m + 1) are best treated as a block; call it g. Then

g = −
∞∑

n=o

(−xλ)n

n!
pX
(
I−
(

1
λ
B
)n)

= pX
∞∑

n=o

(
(−xB)n

n!
− (−xλ)n

n!
I
)

= pX
(
exp(−xB)− e−xλI

)
.

The block of all elements for which both i and j are greater than 1 is
exp(−xB). We put these all together in the following expression.

Rd(x) =
[

e−xλ pX
(
exp(−xB)− e−xλI

)
o′ exp(−xB)

]
. (4.2.21b)

We next calculate Bd exp(−xBd) as the last step before evaluating
(4.2.20). This is not particularly hard to do, and comes out to be

BdRd(x) =
[

λe−xλ pX
(
B exp(−xB)− λe−xλI

)
o′ B exp(−xB)

]
.

We multiply on the right with ε′dε
′
dε
′
d to get the following column vector:

BdRd(x)ε′dε
′
dε
′
d =

[
λe−xλ + Ψ [XB exp(−xB)]−Ψ [X] λe−xλ

B exp(−xB)ε′ε′ε′

]
.

Notice that up to now, N does not appear at all, so this expression is good for
all N , even in the limit. We are now ready to evaluate (4.2.20) using (4.2.17a).

bd(x;N) = pd(N)[BdRd(x)]ε′dε
′
dε
′
d

= d(0; N)
(
λe−xλ + Ψ [XB exp(−xB)]−Ψ [X] λe−xλ

)
+ [1− d(0;N)]Ψ [B exp(−xB)]

= b(x) + d(0;N)
(
Ψ [I−X] λe−xλ + Ψ [(X− I)B exp(−xB)]

)
.

But from the definition of X,

I−X = I−
(
I− 1

λ
B
)−1

=
(
I− 1

λ
B
)−1(

I− 1
λ
B− I

)

=
(
I− 1

λ
B
)−1(

− 1
λ
B
)

= −
(

λV
(
I− 1

λ
B
))−1

= (I− λV)−1.

4 M/G/1 Queue 227

Therefore, recalling that d(0;N) is given by Theorem 4.1.4,

bd(x;N) = b(x) + d(0;N)

× (Ψ [(I− λV)−1
]
λe−xλ −Ψ

[
(I− λV)−1B exp(−xB)

])
. (4.2.22a)

In particular, for x = 0,

bd(0;N) = [1− d(0;N)]b(0). (4.2.22b)

This formula is as simple as it can get in terms of its dependence on the
customer population, so there is no real gain in writing down the limit as N
goes to infinity. We point out, though, that [as with the mean interdeparture
time (4.2.18)] when ρ is less than 1, d(0; N) is replaced by 1 − ρ, but that
does not simplify (4.2.22) any, except when x = 0, for then bd(0) = ρb(0). If
ρ is greater than 1, then d(0;N) goes to 0 for large N , so bd(x) = b(x), as
expected. Also, note that because b(x) and bd(x) are both density functions,
the integral from 0 to infinity of each function is 1. Therefore, the integral of
the term multiplying d(0;N) must be 0. In other words, the two terms inside
the large parentheses contribute opposing changes to b(x) that exactly cancel
out upon integration. This can be shown directly by first recognizing that∫ ∞

o

B exp(−xB)dx = I.

There is one other limit that is interesting. Under very light loads (i.e.,
when ρ is very small), λV is also very small. In this case, (I− λV) drops
out, d(0;N) can be replaced by 1, and we end up with the reasonable result
that bd(x;N) → λe−xλ. We see, then, that as ρ increases from 0 to 1, the
interdeparture distribution gradually changes from the arrival distribution to
the service distribution. “Exponential in → exponential out (EIEO)” is valid
only under light loads.

Example 4.2.3: We have used 〈〈〈pd , Bd 〉〉〉 from (4.2.17) to generate bd(x)
for the open M/E2/1 queue (N = ∞) by directly evaluating (3.1.7d) for
many values of x, using the algorithm described in Section 3.1.4. Just as
with Figure 4.2.3, we set x̄ = 1 and selected various values for ρ. The results
are shown in Figure 4.2.5. This figure looks similar to Figure 4.2.3; however,
note that their dependence on ρ is completely inverted relative to each other,
although they are extremely close for ρ = 0.5. When ρ is very close to 1,
bd(x) is very peaked, just as is E2(x). In fact the curve labeled ρ = 0.95
is virtually indistinguishable from the same Erlangian-2 distribution, given
above, which peaks at x = 0.5. When ρ is very small, bd(x) will look more like
the interarrival distribution λ exp(−λx). The curve labeled ρ = 0.1 does not
seem to support this. Bear in mind, analogous to the system-time distribution,
that in general, bd(0) = ρb(0), which in this case is 0, whereas the exponential
has a value of λ at the origin. Note that the curve rises rapidly from 0 and then
gently decays close to the exponential curve. Another interesting feature that
this figure shares with Figure 4.2.3 is that all the curves peak at approximately

228 4.2 Open M/ME/1 Queue

the same place (x = .5). Again, it seems that for small x, bd(x) retains the
shape of b(x) for all ρ. �
It would be interesting to find out if this “peaking” property is typical of
interdeparture distributions for all M/G/1 queues.

We have one question to ask before moving on. Why should EIEO be
true for an open system even if S1 is exponential, as was proven in Chapter
2, Equation (2.1.20b) (it was not true for the closed system)? After all, our
representation of the departure process has dimensions equal to the sum of
the dimensions of S1 and S2, which in the case of the M/M/1 queue should
be 2. Of course, we would expect (4.2.22) to duplicate (2.1.20b) for the open

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ρ = 0.1

← ρ = 0.5

← ρ = 0.8
← ρ = 0.9

ρ = 0.95

Interdeparture time, x

b d
(x

)

Figure 4.2.5: Interdeparture time density function, bd(x) for the
M/E2/1 queue, with ρ = 0.1, 0.5, 0.8, 0.9, and 0.95. For small ρ, except near
x = 0, bd(x) tends to look like the interarrival distribution λ exp(−λx), but for ρ
close to 1, it looks very much like the service-time density function, 4x exp(−2x).

system, which it does if S1 is 1-dimensional. In that case, B goes to μ, λV
goes to ρ, and b(x) becomes μe−xμ. Put this all together with the fact that
d(0;N) goes to 1− ρ and the negative term in the large brackets of (4.2.22b)
exactly cancels b(x), leaving bd(x) = λe−xλ. But this argument does not give
us much insight. Another view is to look at the matrix representation of bd(x).
Note that the initial vector for the open system [1− ρ, ρ] is a left eigenvector
of Bd, with eigenvalue λ. That is,

[1− ρ, ρ]
[

λ −λ
0 μ

]
= λ[1− ρ, ρ].

We discussed minimal representations in Section 3.4.1, where we showed by

4 M/G/1 Queue 229

example that the dimension of the invariant subspaces of p and ε′ε′ε′ determine
the dimension of the minimal representation. In this case, given that the
equation above is true, from Theorem 3.1.1, we have for the M/M/1 queue,

bd(x) = pdBd exp(−xBd)ε′dε
′
dε
′
d = λpdId exp(−xλId)ε′dε

′
dε
′
d = λe−xλpdε′dε

′
dε
′
d = λe−xλ.

Whenever either ε′ε′ε′ or the entrance vector is an eigenvector of the generating
matrix, B or V, the resulting pdf is exponential [Neuts81]. In Section 8.3.5.4
we prove that EIEO is, in fact, only true as the M/M/1 queue reaches its
steady state.

4.3 M/G/1 Queue Dependence On n

In Chapter 3 we discussed the idea of residual times, where what can be
predicted about the future is contained in what is known about the system
now, and is summarized by the residual vector [Equations (3.5.10) to (3.5.13)].
In particular, if nothing is known about the internal state of S1 (except that
it is busy), the mean time until a customer leaves is given by (3.5.12b), with
pdf given by (3.5.13). We can extend this to the M/ME/1/ /N loop and the
M/ME/1 queue in the following way.

4.3.1 Residual Time as Seen by a Random Observer

Suppose that a random observer comes to view S1 without knowing anything
about its past history except that n customers are there at present. The
probability that she will find n customers there is r(n;N), but we can actually
give an expression for the internal state of S1 at the moment she arrives.

Definition 4.3.1
πrπrπr(n;N) := residual probability vector of the state S1 is in when a
random observer first arrives, given that there are n customers in a
steady-state M/ME/1/ /N queue. πrπrπr(n;N)ε′ε′ε′ = 1. [πrπrπr(n;N)]i is the
probability that the customer in service in S1 will be at phase i when
the observer comes. There is no internal state if n = 0, but for conve-
nience we let πrπrπr(0;N) = p. ���

From (4.1.6a) and (4.1.6b), we have

πrπrπr(n;N) =
πππ(n;N)
r(n;N)

=
pUn

Ψ [Un]
for 0 ≤ n < N (4.3.1a)

and

πrπrπr(N ;N) =
pUN−1V

Ψ [UN−1V]
· (4.3.1b)

These vectors serve as the initial vectors for the process of the active customer
completing service. Thus

〈〈〈πrπrπr(n;N) , B 〉〉〉

230 4.3 M/G/1 Queue Dependence On n

is the generator of the distribution function of the r.v. Xr(n; N), the time
remaining for the one in service, given that the random observer has found n
customers at S1. For instance, the density function for this process is given
by the expression

br(x;n;N) := πrπrπr(n;N)B exp(−xB)ε′ε′ε′ =
Ψ [UnB exp(−xB)]

Ψ [Un]
(4.3.2a)

for 0 < n < N , and

br(x;N ;N) :=
Ψ
[
UN−1VB exp(−xB)

]
Ψ [UN−1V]

=
Ψ
[
UN−1 exp(−xB)

]
Ψ [UN−1V]

· (4.3.2b)

These formulas are not as hard to compute as they look. First, the vectors
pUn can be calculated recursively, and in any case are needed to compute the
steady-state probabilities. Second, exp(−xB)ε′ε′ε′ can be calculated recursively
by the algorithm given in Section 3.1.4.

The mean time remaining for the one in service is

EEE[Xr(n; N)] =
Ψ [UnV]
Ψ [Un]

for 0 < n < N (4.3.3a)

EEE[Xr(N ; N)] =
Ψ
[
UN−1V2

]
Ψ [UN−1V]

· (4.3.3b)

In particular, EEE[Xr(0; N)] = Ψ [V] = x̄.
The mean residual time [from (3.5.12b)] is of interest because it can differ

enormously from the mean service time. It is not hard to find examples where
the queue-length dependent residual times differ as much from EEE[Xr] and each
other as EEE[Xr] differs from x̄.

Example 4.3.1: As can be seen in Figure 4.3.1, for even the simplest
nonexponential distribution (the Erlangian-2), EEE[Xr(n;N)] can vary greatly.
The value at n = 0 corresponds to the mean service time, which we have set
equal to 1. The average value of the queue-length times, weighted over the
r(n;N)s, we show below, turns out to be equal to the mean residual time,
EEE[Xr]. Therefore, the weighted average is independent of ρ and N . The big
drop in all curves between 19 and 20 is real. Note that all of these numbers
would be equal to each other and to x̄ if this were an M/M/1 queue. �

The procedure we have applied to b̄r(x;n;N) and EEE[Xr(n;N)] can also be
applied to the Laplace transform. Thus,

B∗
r (s; n; N) := πrπrπr(n;N)[I + sV]−1ε′ε′ε′. (4.3.3c)

This function actually has an interesting physical meaning. Recall that B∗(λ)
is the probability that a customer who has just started service will finish before
the next customer comes, [see discussion after Theorem 3.1.1, and (2.1.1b)],
B∗

r (λ;n;N) must be the probability that the customer in service at S1 when
a random observer starts looking (and sees n customers there), will finish

4 M/G/1 Queue 231

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

ρ = 0.5
ρ = 0.9

ρ = 1.0
ρ = 2.0

Number of customers at S1 when observer arrives

M
ea

n
ti

m
e

re
m

ai
ni

ng
,
E

[X
r
(n

;2
0)

]

Figure 4.3.1: Mean time remaining for the customer in service, as
seen by a random observer, as a function of the number of customers at S1

when she starts observing. The service distribution is an E2 function, with a mean
service time of x̄ = 1.0. Thus we have an M/E2/1/ /20 loop. The curves for four
different values of ρ are presented. In all cases, the expected time until completion
for a customer who just began service is 1.0. If the random observer takes no
notice of the length of the queue, the mean time until completion is x̄r = 0.75. If
she does note the length of the queue, the mean time to completion is given by
EEE[Xr(n; N)].

service before the next customer arrives. Let us state this more precisely. Let
X2 be the time until the next customer arrives. Then

Cr(n; N) := PPPr[Xr(n;N) ≤ X2] = B∗
r (λ; n; N). (4.3.3d)

Exercise 4.3.1: Let S1 be an Erlangian-2 server with mean service
time equal to 1. Calculate br(0;n;N) (0 < n ≤ N), for the four systems
with ρ = 0.5, 0.9, 1.0, and 2.0. Plot all your answers on the same graph
[br(0;n;N) versus n]. Also draw as a horizontal line

br(0) =
pVBε′ε′ε′

Ψ [V]
=

1
x̄

,

which in this case is equal to 1. Note that b(0) = 0.

232 4.3 M/G/1 Queue Dependence On n

Exercise 4.3.2: Let S1 be the H2 server of Exercise 4.1.2. Do the same
as in Example 4.3.1. In this case, the mean residual time is 1090/361 =
3.019391 (over three times greater than the mean service time of S1).

4.3.2 Weighted Averages of Matrix Operators

As can be seen from (4.3.1a), (4.3.2a), and (4.3.3a), or should be obvious from
the last two exercises, the queue-length-dependent behavior does not depend
on the total number of customers in the system, as long as they are not all
at S1. We next show that the “average” residual time, given that S1 was
busy when observation began, is the mean residual time, again independent
of N . In fact, the average density function is the same as the mean residual
distribution given in (3.5.13). Quite often, a matrix operator can be associated
with some random variable. For instance, the service time X, and V. We do
this by examining the “average” of any matrix operator. First define for any
square matrix F,

F̄r(n;N) := πrπrπr(n;N)Fε′ε′ε′ =
Ψ [UnF]
Ψ [Un]

for 0 ≤ n < N

and

F̄r(N ;N) := πrπrπr(N ;N)Fε′ε′ε′ =
Ψ
[
UN−1VF

]
Ψ [UN−1V]

·

Then, for instance, from (4.3.3), EEE[Xr(n; N)] = V̄r(n;N). Next recall that
K = [I−U]−1. Then by inserting (4.2.2b) into (4.1.6f), and observing that
UN−1 = UN A, we have

K(N) = λAV +
λ2

1− ρ
AVQV − λ2

1− ρ
UNAVQV. (4.3.4a)

Then from Lemma 4.1.1, it easily follows that

p[K(N)− I] =
λ

1− ρ

(
1−Ψ

[
UN−1λV

])
pV. (4.3.4b)

(In case you were not able to answer it, the equation in Exercise 4.1.3 follows
directly from this.) Note that the expression in the round parentheses is a
scalar, and that pV is proportional to πrπrπr as defined by (3.5.10b), so (4.3.4b)
can be rewritten as

p[K(N)− I] = Ψ [K(N)− I] πrπrπr. (4.3.4c)

We can now state the following theorem.

Theorem 4.3.1: Let F be any matrix operator for properties of a
steady-state M/ME/1/ /N queue [e.g., V or exp(−xB)]. The weighted
average of F as seen by a random observer, given that S1 is busy, is

4 M/G/1 Queue 233

independent of N and is equal to πrπrπrFε′ε′ε′, where πrπrπr is given by (3.5.10b).
That is, the “expected value of” F (call it F̄r), is

F̄r :=
∑N

n=1 F̄r(n;N) r(n;N)
1− r(0;N)

=
pVFε′ε′ε′

pVε′ε′ε′
=

Ψ [VF]
Ψ [V]

= πrπrπrFε′ε′ε′. (4.3.5a)

The result is independent of N , thus it is also true for open systems
(i.e., when N →∞). �
Proof: First note that 1 − r(0;N) = Ψ [K(N)− I] /Ψ [K(N)], and
for n < N that

r(n;N)F̄r(n;N) =
Ψ [UnF]
Ψ [K(N)]

,

with a similar expression for n = N . Then

N∑
n=1

F̄r(n;N)r(n;N) =
Ψ [(K(N)− I)F]

Ψ [K(N)− I]
·

The theorem follows directly from (4.3.4c). QED

We next state as a corollary that the “average” residual time and density
are the same as the mean residual time and density discussed in Chapter 3.

Corollary 4.3.1: The mean time (appropriately averaged over the
steady-state queue-length probabilities) a randomly arriving observer
of an M/G/1 queue (either open or closed) will have to wait for the
customer who is presently in service at S1 to complete service is given
by V̄r and is equal to x̄r, the mean residual time of S1. That is, if we
let F = V in (4.3.5a), we get:

x̄r =
Ψ[VV]
Ψ[V]

=
EEE(X2)

2x̄
·

Furthermore, the time remaining is distributed according to (3.5.13).
Finally, the mean residual vector [Equation (3.5.10b)] is the same for
all N and satisfies

πrπrπr =
∑N

n=1 r(n;N)πrπrπr(n;N)
1− r(0;N)

=
1

Ψ[V]
pV. (4.3.5b)

�
Proof: Let F = V in (4.3.5a) to get the mean time, and let
F = B exp(−xB) for the distribution; then compare with (3.5.10b)
and (3.5.13). QED

This applies to the Laplace transform as well. If our observer knows nothing
about S1 except that someone is in service, then the probability, Cr, that

234 4.3 M/G/1 Queue Dependence On n

service will complete before another customer arrives (see (3.5.3d)) is given
by

Cr = πrπrπr[I + λV]−1ε′ε′ε′ =
1
x̄

Ψ
[
V(I + λV)−1

]
.

But λV(I + λV)−1 = I− (I + λV)−1, so

Cr =
1− δ

ρ
, (4.3.5c)

where δ = B∗(λ) = Ψ
[
(I + λV)−1

]
. As already discussed, δ is also the prob-

ability that S1 will finish before S2, given that they started at the same time.
We have seen that even if a random observer does not know when a cus-

tomer started service, she can get some inkling of the internal state of S1

by observing the number of customers in its queue. Let us suppose that the
random observer decides to become a customer and wishes to pass through S1

without pre-empting the customer presently in service. Then she must wait
a mean time of EEE[Xr(n;N)]. If, in addition she must wait at the end of the
queue, she will have to wait an additional time of (n − 1)x̄. She also knows
that the customer in service will finish before the next customer arrives with
probability, B∗

r (λ;n;N). If this readily available information (i.e., n, the queue
length at time of first observation) is ignored, she is left with the “residual
results” of renewal theory, Cr(0) and the P-K formula. We mention that parts
of these results, in particular, πππrB exp(−Bx)ε′ε′ε′ = br(x) [from Corollary 4.3.1
and (3.5.13)] were derived using renewal theory by S. M. Ross [Ross96]. The
results here are more general.

4.3.3 Waiting Time as Seen by an Arriving Customer

In the preceding section we viewed the M/G/1/ /N queue as an observer
who did not affect the behavior of the system. It is perhaps more interesting
to view the system from the customer’s vantage point. The two viewpoints
are different in principle, because a customer both observes those in front
and affects those behind. (See, e.g., [MelamedWhitt90] and [Wolff82] for
other thoughts on the subject.)

The items we need to examine this question were set up in Section 4.1.3.
We already know a(n;N) and a(n;N) (Theorem 4.1.4), the scalar and vector
probabilities that, upon arriving at S1, a customer will find n other customers
already there. Because a(n;N)ε′ε′ε′ = a(n;N), the i-th component of the unit
vector, [a(n;N)/a(n;N)], is the conditional probability that an arriving cus-
tomer will find S1 in state i, given that n customers are there already. But this
normalized vector is identical to (4.3.1a), so aside from the fact that an ar-
riving customer cannot find N customers ahead of him at S1, we have proven
the following.

Theorem 4.3.2: In an M/G/1 queue (both open or closed) and
n < N given, a newly arrived customer and a random observer
will find S1 in the same state. Thus (4.3.1a), (4.3.2a), and (4.3.3a)
are valid for the arriving customer as well as for the random observer. �

4 M/G/1 Queue 235

Note that this theorem is not necessarilly true for queues that are not of
M/G/1-type.

Be reminded that although a customer has the same probability of finding
n customers in S1 when he arrives as when he leaves, the internal state will
be different. The internal state seen by the arriving customer is proportional
to πππ(n;N), whereas that for the departing customer is always p (the next
customer in the queue enters S1).

Now that we know that our random observer sees the same thing as the
customers in the system, it pays to elaborate some on the equations of the
preceding section. On the one hand, the outsider cannot make any use of the
system’s facilities without changing the steady-state solution. On the other
hand, the customers cannot refuse to make use of the facilities without de-
stroying the steady state. Therefore, even though both may have “inside in-
formation” as to expected waiting times, they cannot act upon it without
changing the system’s subsequent behavior. In any case it is good to know
what one is in for.

When a customer arrives at S1 with n customers already there, he must
wait for the one in service to complete, and for n− 1 additional customers to
start and finish. The distribution of time that he must wait is identical to that
for the n-th renewal epoch Yn of a generalized renewal process, as discussed
in Section 3.5. All n customers have pdfs generated by the same matrix, B,
but the first one has a starting vector given by (4.3.1a) as opposed to p
for the other customers. Thus the mean waiting time for the new customer
conditioned on the number already in the queue (call it EEE[Xw(n)]) is [see
(4.3.3a)]

EEE[Xw(n)] = EEE[Xr(n)] + (n− 1)x̄, 0 < n < N. (4.3.6a)

The total time he will spend in the system averages to

EEE[Xs(n)] = EEE[Xw(n)] + x̄ = EEE[Xr(n)] + nx̄. (4.3.6b)

Continuing in this way, we see that the variance of his waiting time can be
written as

σ2
w(n) =

Ψ
[
Un(2V2 −VQUnV)

]
Ψ [Un]

+ (n− 1)σ2 (4.3.6c)

where σ2 = Ψ
[
(2V2 −VQV)

]
is the variance of the service time distribution.

To get the variance of his total system time (again, conditioned on n), simply
add one more σ2 to (4.3.6c). These equations are easy enough to compute,
especially if one is calculating the steady-state queue-length probabilities any-
way. The higher moments are also accessible, but more difficult.

Exercise 4.3.3: Continuing Exercise 4.2.3, calculate EEE[Xw(n)],
σ2

w(n), and the squared coefficient of variation, C2
w(n) :=

σ2
w(n)/(EEE[Xw(n)])2. Plot your answers for C2

w(n) versus n (0 < n < N).
Also plot the equivalent points for the M/M/1/ /N queue for compar-
ison [C2

w(n) = 1/n].

236 4.3 M/G/1 Queue Dependence On n

Exercise 4.3.4: Do the same as in Exercise 4.3.3, except let S1 be
the hyperexponential server of Exercise 4.1.2.

4.3.4 System Time of an Arriving Customer

We saw in Section 4.2.3 that a departing customer leaves behind the same
number of customers as a random observer finds, thus we were able to de-
rive the system time distribution. We should also be able to derive the same
expression from the arriving customer’s point of view. At present we cannot
quite make it, but we do come up with some interesting results.

First we derive the mean system time EEE[Xs], which we already know from
the P-K formula to be the same as EEE[Ts] in (4.2.6e). If a customer arrives with
no one at S1 [which he does with probability (1− ρ)], he can expect to spend
an average of x̄ = Ψ [V]) units of time before leaving. However, if there are
n customers there already [r(n)], he must first wait for the one in service to
finish (EEE[Xr(n)]), and then n more customers (including himself) must finish
[nx̄]. That is,

EEE[Ts] = (1− ρ)x̄ +
∞∑

n=1

r(n)EEE[Xr(n)] + x̄

∞∑
n=1

n r(n).

But from Corollary 4.3.1, for the open system (N = ∞), the middle term
must be equal to the probability that S1 is already busy [ρ], times the mean
residual time (i.e., ρEEE[Xr]), and the last sum is q̄ [Equation (4.2.6b)]. So

EEE[Ts] = (1− ρ)x̄ + ρEEE[Xr] + x̄q̄ = (1− ρ)x̄ + ρEEE[Xr] + ρEEE[Ts],

where we have used the fact that q̄ = λEEE[Ts] and ρ = λ x̄. Next, solving for
EEE[Ts], we get

EEE[Ts] = x̄ +
ρ

1− ρ
EEE[Xr].

Because EEE[Xr] = EEE[X2]/[2x̄] = x̄(C2
v + 1)/2, this leads to the same answer as

(4.2.6e).
It is not easy to get the distribution of the system time this way because, as

we saw in Chapter 3, it is not easy to work with the convolutions of functions.
We can, however, get an expression for the Laplace transform (LT) of bs(x).
Recall that the LT of a convolution of two pdfs is equal to the product of their
LTs, and that the LT of the sum of two functions is equal to the sum of their
LTs. First, let B∗

r (s;n) be the LT of br(x;n), then by an argument analogous
to the one used in this section to get EEE[Ts],

B∗
s (s) = (1− ρ)B∗(s) +

∞∑
n=1

r(n)πrπrπr(n)(I + sV)−1ε′ε′ε′[B∗(s)]n.

4 M/G/1 Queue 237

This can be simplified using (4.2.5a) and (4.3.1a) to

B∗
s (s) = (1− ρ)B∗(s) + (1− ρ)Ψ

[∞∑
n=1

[B∗(s)]nUn(I + sV)−1

]
.

For any F for which (I− F)−1 exists,

∞∑
n=1

Fn = F
∞∑

n=o

Fn = F(I− F)−1,

so this can be summed as

B∗
s (s) = (1− ρ)B∗(s) + (1− ρ)Ψ

[
B∗(s)U[I−B∗(s)U]−1(I + sV)−1

]
= (1− ρ)B∗(s)

(
1 + Ψ

[
U(I−B∗(s)U)−1(I + sV)−1

])
.

Now the mean system time for a customer is equal to the convolution of his
waiting time, with the time for him to receive service, so the LT of his waiting
(or queueing) time is

B∗
w(s) = (1− ρ)

(
1 + Ψ

[
U(I−B∗(s)U)−1[I + sV]−1

])
.

On the other hand, for any F,
∑∞

n=1 Fn =
∑∞

n=o Fn − I, so

B∗
s (s) = (1− ρ)Ψ

[
[I−B∗(s)U]−1(I + sV)−1

]
.

This equation looks fairly simple, but it is not nearly as easy to use as (4.2.10b)
or (4.2.12c), because s appears in the expression in an implicit way through
B∗(s). As mentioned earlier, we cannot at present show the two expressions
to be equal by purely algebraic means.

Exercise 4.3.5: Use this expression to show that B∗
s (0) = 1, and that

its derivative evaluated at s = 0 does indeed yield EEE[Ts].

4.4 Relation To Standard Solution

From this book’s point of view, Theorems 4.1.2 and 4.2.2 [Equations (4.1.7)
and (4.2.5)] are quite sufficient for studying the steady-state M/ME/1 queue.
However, it is always informative to connect to the formulas used by other
methods. We do that here, after establishing some matrix relations. Some of
these relations are important, some are interesting, and some are just true.
But queues have never been analyzed in the way presented here, so it is not
clear just which formulas will prove to be useful ultimately. Therefore, we are
including as many as we run across as we go.

238 4.4 Relation To Standard Solution

4.4.1 Exponential Moments, αk(s)αk(s)αk(s), and Their Meaning

Let us look at Equations (4.2.8b) and (4.2.8c). Recalling that D(s) = (I +
sV)−1, and d(s) = Ψ [D(s)], it follows that

d

ds
D(s) = −V(I + sV)−2 = −VD(s)2

and
d

ds
d(s) = −Ψ

[
VD(s)2

]
.

In general, (
d

ds

)k

d(s) = (−1)kk!Ψ
[
VkD(s)k+1

]
.

On the other hand, d(s) = B∗(s) =
∫∞
o

e−sxb(x)dx, and

(
d

ds

)k

d(s) =
(

d

ds

)k ∫ ∞

o

e−sxb(x)dx = (−1)k

∫ ∞

o

xke−sxb(x)dx.

Therefore,

k!Ψ
[
VkD(s)k+1

]
=
∫ ∞

o

xke−sxb(x)dx.

Define the exponential moments as given in [Kleinrock75],

αk(s) :=
∫ ∞

o

(sx)k

k!
e−sxb(x)dx. (4.4.1a)

When no confusion is likely to arise, the dependence of D on the parameter
s, is suppressed [i.e., D(s) and D are the same thing]. Then

αk(s) = Ψ
[
(sVD)kD

]
. (4.4.1b)

These functions have physical meanings. The term, (sx)k exp(−sx)/k!, in
(4.4.1a) is the Poisson probability with arrival rate s that k customers will
arrive in time interval x. [b(x) dx] can be thoght of as the probability that a
service time will take a time within dx of x. Therefore, αk(s) is the probability
that k customers will arrive after a customer begins being served and before
he is finished. It follows, then, that

∑∞
k=o αk = 1. This can be shown directly

from (4.4.1a), because

∞∑
k=o

αk(s) =
∫ ∞

o

∞∑
k=o

[
(sx)k

k!

]
e−sxb(x)dx =

∫ ∞

o

esxe−sxb(x) = 1.

We have used the fact that the sum in square brackets is the Taylor expansion
for esx. We can also easily get the mean number of arrivals.

∞∑
k=o

k αk(s) =
∫ ∞

o

∞∑
k=1

k

[
(sx)k

k!

]
e−sxb(x)dx

4 M/G/1 Queue 239

=
∫ ∞

o

sx
∞∑

k=o

[
(sx)k

k!

]
e−sxb(x)dx = s

∫ ∞

o

x b(x)dx = sx̄,

where we have used k/k! = 1/(k − 1)!.

Exercise 4.4.1: Show by direct computation, using (4.4.1b) that

∞∑
k=o

αk(s) = 1 and
∞∑

k=o

kαk(s) = sΨ[V].

This is identical to the results when using the integral definition of αk,
recognizing that Ψ[V] = EEE[X] = x̄.

Next define:
dk(s) := Ψ

[
D(s)k

]
. (4.4.1c)

From (4.2.8c), it follows that d(s) = d1(s) = αo(s), and that do(s) = 1. A
little manipulation lets us see that

sVD(s) = I−D(s),

so (using the binomial expansion) we get a relationship between the α′s and
the d′s,

αk(s) = Ψ
[
(I−D)kD

]
= Ψ

⎡
⎣ k∑

j=o

(
k
j

)
(−1)jDj+1

⎤
⎦

=
k∑

j=o

(
k
j

)
(−1)jdj+1(s). (4.4.2a)

4.4.2 Connection to Laguerre Polynomials

The d′ks can be written in terms of the α′
ks, leading to perhaps a more inter-

esting result. From D = I− sVD, we can write for dk(s),

dk+1(s) = Ψ
[
(I− sVD)kD

]
=

k∑
j=o

(
k
j

)
Ψ
[
(−sVD)jD

]

=
k∑

j=o

(
k
j

)
(−1)jαj(s). (4.4.2b)

Next substitute the original definition for αj from (4.4.1a) to get

dk+1(s) =
∫ ∞

o

⎡
⎣ k∑

j=o

(
k
j

)
(−sx)j

j!

⎤
⎦ e−sxb(x)dx. (4.4.2c)

240 4.4 Relation To Standard Solution

It is somewhat surprising to find that the expression in brackets is the La-
guerre polynomial of order j, [Lj(sx)], which satisfies the following or-
thogonality condition (see a book such as [AbramowitzStegun64] for full
information) ∫ ∞

o

Lj(x)Lk(x)e−2x dx = δjk. (4.4.3)

The Laguerre polynomials form a complete set, in that any appropriately well-
behaved function of x can be expanded by them in much the same way that
periodic functions can be expanded in a Fourier series of sines and cosines.
That is, we can say the following. Equation (4.4.2c) can be rewritten as

dk+1(s) =
∫ ∞

o

Lk(sx)e−sxb(x)dx, (4.4.4a)

which by the completeness property of orthogonal polynomials, lets us for-
mally write

b(x) = s
∞∑

k=o

dk+1(s)Lk(sx)e−sx. (4.4.4b)

This leads to the sum rule,

∫ ∞

o

b2(x)dx = s

∞∑
k=o

[dk(s)]2 . (4.4.4c)

These equations are true for any s > 0, which allows us to make the state-
ment that every theorem proved by the method of Laguerre functions is
automatically true here, too. (See, e.g., [AbateChoudhuryWhitt96] and
[Keilson-Nunn79] for examples of the use of Laguerres in queueing theory.)

The Laguerre polynomials are often used to approximate functions, but in
a context where a least squares fit is meaningful. Such fits do not guarantee
that a finite (truncated) sum of L′

ks, as in (4.4.4a) will be positive for all x,
whereas any approximation to b(x) must be greater than 0 for all x to be
physically meaningful, so if one is to try this approximation method, great
care must be taken.

Exercise 4.4.2: Prove that (4.4.4b) is identically true in the formal
sense. That is, replace dk by (4.4.1c), substitute for Lk(sx), and ma-
nipulate to get (3.1.7d). Similarly, use (4.4.3) and (4.4.4b) to prove
(4.4.4c).

There is one last set of functions of s to be defined. We use sVD(s) =
I−D(s), to write

γn(s) := Ψ [(sVD)n] = Ψ [(I−D)n] . (4.4.5a)

4 M/G/1 Queue 241

Just as with (4.4.2a), we use the binomial theorem to get a relation between
the d′s and the γ′s,

γk(s) = Ψ

⎡
⎣ k∑

j=o

(
k
j

)
(−1)jDj

⎤
⎦ =

k∑
j=o

(
k
j

)
(−1)jdj(s). (4.4.5b)

The equivalent to (4.4.2b) is

dk(s) = Ψ

⎡
⎣ k∑

j=o

(
k
j

)
(−sVD)j

⎤
⎦ =

k∑
j=o

(
k
j

)
(−1)jγj(s). (4.4.5c)

The relation between the α′s and the γ′s is found by replacing the last D in
(4.4.1b) with I− sVD to get

αk(s) = γk(s)− γk+1(s). (4.4.6a)

It is not hard to prove by induction that

γk(s) = 1−
k−1∑
j=o

αj(s) =
∞∑

j=k

αj(s). (4.4.6b)

This tells us that γk(s) is the probability that “at least k customers will arrive
during one service time.” It is left for Exercise 4.4.3 to prove that

γk+1(s) = s

∫ ∞

o

(sx)k

k!
e−sxR(x) dx, (4.4.6c)

where R(x) =
∫∞

x
b(t) dt.

Exercise 4.4.3: Prove (4.4.6c) by first substituting (4.4.1a) into
(4.4.6b), identifying the sum as the incomplete gamma function ,
Γ(k, x), which can then be replaced by its integral representation,

Γ(k, x) :=
∫ ∞

x

e−ttk−1 dt.

Finally, change the order of integration and end up with (4.4.6c). By the
way, Γ(k, x), from its definition, must be proportional to the reliability
function for the Erlangian-k distribution. That is,

Γ(k, x) = k!
∫ ∞

x

Ek(t) dt = k!Rk(x).

242 4.4 Relation To Standard Solution

Exercise 4.4.4.: Use their matrix definitions [Equations (4.4.1b),
(4.4.1c), and (4.4.5a)] to prove the following sum rules for α, d, and
γ.

∞∑
k=o

αk(s) = 1, (4.4.7a)

∞∑
k=o

dk(s) = 1 +
1
s
b(0), (4.4.7b)

and ∞∑
k=o

γk(s) = 1 + sx̄. (4.4.7c)

These equations can also be proven using their integral definitions,
(4.4.1a), (4.4.4a), and (4.4.6c) if one is careful about k = 0.

Exercise 4.4.5: Using any of the formulas just established, find ex-
plicit expressions for dk(s), αk(s), and γk(s) for: (1) an exponential
server with service rate β; (2) a server with hyperexponential-2 distri-
bution; and (3) an Erlangian-2 server. Verify explicitly that in all three
cases the sum rules of Equations (4.4.7) are valid.

4.4.3 Connection to Standard Solution

The standard solution of the steady-state M/G/1 queue is actually an algo-
rithm involving the α′

ns. To reproduce those results, we must rearrange (4.1.7)
and (4.2.5a), which means that we must do something with Ψ [Un]. First re-
call that V = B−1, and from (4.1.4) and (4.2.8b) that A = I + B/λ−Q,
U = A−1, and D(λ) = (I + λV)−1. Then

A =
1
λ
B[I + λV − λVQ] =

1
λ
B[I + λV][I− λDVQ].

With the aid of Lemma 4.2.1, we can write

U = [I− λDVQ]−1λDV =
(
I +

1
1− γ1(λ)

λDVQ
)

λDV.

Let
C := λDV = I−D, (4.4.8a)

which means [from (4.4.5a)] that γn(λ) = Ψ [Cn]. Then

U = C +
1

1− γ1
CQC (4.4.8b)

4 M/G/1 Queue 243

and (pCQ = pCε′ε′ε′p = Ψ [C]p = γ1p)

pU = pC +
γ1

1− γ1
pC =

1
1− γ1

pC. (4.4.8c)

It simply follows that Ψ [U] = γ1/(1− γ1). Next, look at

pU2 = pUU =
1

1− γ1
pC
[
C +

1
1− γ1

CQC
]

=
1

1− γ1
pC2 +

γ2

(1− γ1)2
pC,

which yields Ψ
[
U2
]

= γ2/(1− γ1)2. From this it can be seen that successive
applications of (4.4.7a) to pUn will lead to a series expansion in terms of
pCk. Therefore, let

pUn =
n∑

k=1

a
(n)
k pCk, (4.4.9a)

which leads to

Ψ [Un] =
n∑

k=1

a
(n)
k γk. (4.4.9b)

On the one hand,

pUn+1 =
n+1∑
k=1

a
(n+1)
k pCk,

and on the other hand,

pUn+1 = pUnU =
n∑

k=1

a
(n)
k pCk

[
C +

1
1− γ1

CQC
]

=
n∑

k=1

a
(n)
k pCk+1 +

n∑
k=1

a
(n)
k γk+1pC.

For these two expressions to be identically equal, we must have

a
(n+1)
k+1 = a

(n)
k for 1 ≤ k ≤ n (4.4.9c)

and

a
(n+1)
1 =

1
1− γ1

n∑
k=1

a
(n)
k γk+1. (4.4.9d)

The penultimate equation implies that a
(n)
k = a

(m)
j as long as n− k = m− j.

In particular,
a
(n)
k = a

(n−k+1)
1 . (4.4.9e)

We come up with an interesting relation by putting (4.4.9c) into (4.4.9d),

a
(n+1)
1 =

1
1−γ1

n∑
k=1

a
(n+1)
k+1 γk+1 =

1
1−γ1

(
n+1∑
k=2

a
(n+1)
k γk + a

(n+1)
1 γ1 − a

(n+1)
1 γ1

)

244 4.4 Relation To Standard Solution

=
1

1− γ1

(
n+1∑
k=1

a
(n+1)
k γk − a

(n+1)
1 γ1

)
.

Next bring the extra term on the right-hand side to the left-hand side of the
equation, clear fractions, and cancel like terms to get, for n > 1,

a
(n+1)
1 =

n+1∑
k=1

a
(n+1)
k γk = Ψ

[
Un+1

]
. (4.4.10a)

The relationship with Ψ
[
Un+1

]
comes from comparing with (4.4.9b). For

convenience, let u1 := 1/(1− γ1), and for n > 1,

un := Ψ [Un] ,

then with the aid of (4.4.9b) and (4.4.9e), (4.4.10a) can be rewritten as

un =
n∑

k=1

γkun−k+1 for n > 1, (4.4.10b)

and, as previously noted, Ψ [U] = γ1/(1− γ1) = γ1u1. The standard solution
as given in standard texts such as [Allen90] is expressed in terms of the
αn(λ)’s. Therefore, manipulate the above (n is replaced by n + 1), and get

un+1 =
n+1∑
k=1

γkun−k+2 = γ1un+1 +
n+1∑
k=2

γkun−k+2

= γ1un+1 +
n∑

k=1

γk+1un−k+1.

Next bring the loose term over to the left, recall that αo = 1 − γ1, and
substitute (4.4.6a) to get

αoun+1 =
n∑

k=1

un−k+1(γk − αk) = un −
n∑

k=1

un−k+1αk.

This is next rearranged to give

un = αoun+1 +
n∑

k=1

un−k+1αk =
n∑

k=o

un−k+1αk.

We are almost there now. Note that for an open system, r(n) = r(0)un, for
n > 1, and r(1) = r(0)γ1u1. So, upon multiplying by r(0), we get

r(n) = r(0)αnu1+
n−1∑
k=o

r(n−k+1)αk = r(0)αnu1+
n∑

k=o

r(n−k+1)αk−r(1)αn.

But r(0)αn u1 − r(1)αn = r(0)αn[1/αo − γ1/αo] = r(0)αn. Therefore,

r(n) = r(0)αn +
n∑

k=o

r(n− k + 1)αk = r(0)αn +
n+1∑
k=1

r(k)αn−k+1. (4.4.10c)

4 M/G/1 Queue 245

This, together with the fact that r(0) = 1− ρ, is the recursive formula given
in most books. Its physical interpretation is as follows, using the meaning of
(4.4.1a). The steady-state probability that n customers will be found at S1

is equal to the probability that when no customers are present, n customers
arrive before any of them finish [r(0)αn], plus the probability that there are
0 < k ≤ n + 1 customers present [r(k)] and n− k + 1 arrive before any finish
[αn−k+1].

The closed system is somewhat more difficult. We have shown that for all
0 ≤ n < N, r(n;N) is proportional to r(n), therefore we need only evalu-
ate Ψ

[
UN−1V

]
by a separate means, and renormalize. That is, given that

Equations (4.1.7) are true, r(N ;N) = λr(0;N)Ψ
[
UN−1 V

]
, and r(n;N) =

r(0;N)un for n < N . So

1
r(0;N)

= Ψ
[
UN−1V

]
+ 1 +

N−1∑
n=1

un.

Finally, note that λAV = I + λV − λQV, so

bn := Ψ
[
Un−1λV

]
= Ψ [UnλAV] = Ψ [Un(I + λV − λQV)]

= un + bn+1 − ρun,

which yields the simple recursive relation, starting with b1 = ρ,

bn+1 = (1− ρ)un − bn. (4.4.11)

This last formula is not usually included in standard texts but is valid for all
M/G/1/ /N queues.

As a final thought on this subject, note that the bN ’s not only give the
steady-state probabilities that all N customers are at S1, [r(N ;N)], they also
yield the residual waiting times for n < N in the queue. That is, from (4.3.3a),

EEE[Xr(n < N ; N)] =
bn+1

λun
· (4.4.12)

Equation (4.3.3b) must still be calculated by a different algorithm.

4.4.4 M/M/X//N Approximations to M/ME/1//N Loops

It is not our purpose here to search for approximations to the equations we
have worked so hard to derive. Rather, we wish to explore the extent of robust-
ness of Jackson networks (see, e.g., [Basketetal75], [Lipsky-Church77],
[Lazowskaetal84], [Kant92], and the entire issue of Computing Surveys, 3
[Denning78]). The loop with two load-dependent servers, which we described
in Section 2.1.5 and assigned the symbol M/M/X/ /N , can be viewed as a
Jackson network with two service centers. In fact, Equations (2.1.11) were
deliberately written in a form that reflects the product-form solution one sees
in more general networks. One of the great attributes of Jackson networks is
their ability to describe the steady-state behavior of a whole network, based

246 4.4 Relation To Standard Solution

on the properties of the individual service centers (the set of load-dependent
service rates). Most important, the properties ascribed to each service center
do not depend on the properties of other servers or the system as a whole. Of
course, we are accomplishing the same thing in this book, but we have found
it necessary to give each subsystem properties that must be expressed by a
nontrivial matrix rather than a simple set of scalars. We point out that the
M/M/X/ /N loop, unlike our M/ME/1/ /N formulation, simply does not have
the structure to distinguish residual processes, or other transient properties,
from those of the steady state. Therefore, we only compare the steady-state
behaviors here.

Suppose that we observe a system which is exactly described by an
M/G/1/ /N loop over a very long period of time. How would one measure
the load dependence of a server? A natural and self-consistent definition, or
defining measurement procedure, would be as follows (thanks to Victor Wal-
lace for the underlying idea). Let t be the total time that the system has been
under observation, and as we did in Section 1.1.1, let Ni(t) be the number of
customers who have left Si in that time. If t is indeed very large, we would
expect the ratio of N1(t) to N2(t) to be very close to 1, close enough so that
we can assume that they are equal to each other, and drop the subscript.
Then the system throughput is measured as

Λ(N) ≈ N(t)
t
· (4.4.13a)

Next, we define the following measurable quantities.

Definition 4.4.1
Ni(n; t) := number of departures from Si in the time interval, t, which
occurred while there were n customers there (counting the one who
left). Every time a customer leaves Si, the observer, noting how many
customers were there just before the departure, increments that counter
by 1. ���

Then we can say that
N∑

n=1

Ni(n; t) = N(t). (4.4.13b)

Definition 4.4.2
Ti(n; t) := total time that there were n customers at Si. Every time a
customer enters or leaves a subsystem, the observer notes how many
customers were there just before that event and adds the amount of
time since the previous arrival or departure to the appropriate counter.
Of course, an arrival to one subsystem occurs at the same time as
the departure from the other subsystem, so two counters are modified
simultaneously. ���

We then have
N∑

n=o

Ti(n; t) = t for i = 1, 2. (4.4.13c)

4 M/G/1 Queue 247

The best we can say about load-dependent service rates is to describe them
as “the rate at which customers leave a subsystem for a given queue length.”
So we use the following, consistent with the definitions we gave in Section
2.1.5 (for arbitrary load dependence).

μ(n) ≈ N1(n; t)
T1(n; t)

(4.4.14a)

and

λ(k) ≈ N2(k; t)
T2(k; t)

. (4.4.14b)

These parameters are similar to those considered by J. P. Buzen’s operational
analysis (e.g., [BuzenDenning]). We assume that t is so large that the
steady-state probabilities we have previously derived for various events are
very close to the measured relative frequencies of those events. From our rules
and definitions, T1(n; t) must be approximately equal to the probability that
there are n customers at S1, multiplied by the total time that the system was
observed. That is,

T1(n; t) ≈ r(n;N) t. (4.4.15a)

Also, after some thought, the reader should be able to accept the following
formula:

N1(n; t) ≈ d(n− 1;N)N(t). (4.4.15b)

The r’s and d’s were defined in Definitions 4.1.1 and 4.1.5, respectively. Re-
member that d(n;N) is the probability that a customer will leave n other
customers behind, but N1 and N2 are defined as including the departing cus-
tomer, hence the n− 1 in (4.4.15b). The equivalent formulas for S2 are (k is
the number at S2)

T2(k; t) ≈ r(N − k;N) t (4.4.16a)

and
N2(k; t) ≈ d2(k − 1; N)N(t).

The symbol d2(k−1;N) is borrowed from Section 5.1.2 and is the probability
that a customer when departing S2 will leave behind k−1 customers. Clearly,
that same customer will arrive at S1, finding N − k customers already there.
(Let’s see: there are k − 1 at S2, N − k at S1, and 1 traveling, giving a total
of k− 1 + N − k + 1 = N , right.) Therefore, d2(k− 1;N) = a(N − k,N), and
we can write

N2(k; t) ≈ a(N − k; N)N(t). (4.4.16b)

We are now ready to put things together. Using Equations (4.4.13a) and
(4.4.15) in (4.4.14a) yields

μ(n) =
d(n− 1; N)N(t)

r(n; N) t
=

d(n− 1; N)
r(n : N)

Λ(N).

But from (4.1.13c) and (4.1.8b), and noting that 1/x̄2 = λ, we have

μ(n) =
r(n− 1; N)

r(n; N)
Λ(N)

1− r(N ; N)
= λ

r(n− 1; N)
r(n; N)

. (4.4.17a)

248 4.4 Relation To Standard Solution

Similarly, we can work on S2.

λ(k) =
a(N − k; N)N(t)

r(N − k; N) t
= λ. (4.4.17b)

We have again made use of (4.1.13c). Thus we see that S2 is indeed a load-
independent server, just as we theorized, but S1 is more complicated, as we
would have expected.

Before we look at (4.4.17a) more closely, let us see what these service
rates give us for probabilities when we use them in Equations (2.1.11). For
the moment, let us call these probabilities ra(n;N) (a is for approximation).
Then

λ(N − n) ra(n;N) = μ(n + 1) ra(n + 1; N).

Put in Equations (4.4.17), to get

λ ra(n; N) = λ
r(n; N)

r(n + 1; N)
ra(n + 1;N)

or
r(n;N)
ra(n;N)

=
r(n + 1;N)
ra(n + 1;N)

for 0 ≤ n < N. (4.4.18)

The ra’s are proportional to the r’s, term by term, and both sets sum to 1.
Therefore they must be equal, term by term. Thus we have proven that for any
M/G/1/ /N loop, we can find appropriate μ’s that yield identical steady-state
probabilities for an M/M/X/ /N loop. Is this truly miraculous? NO. All we
did was find N numbers, [μ(n)], which would let us generate N + 1 other
numbers [r(n;N)], constrained to sum to 1. In other words, the product-form
solution has so many unspecified parameters that it can fit anything. The real
test of the model comes when we see if the same parameters can be used to
model a system that has been changed slightly.

Let us look again at (4.4.17a). From (4.1.7a) and (4.1.7b) we can write the
following.

μ(n) = λ
Ψ
[
Un−1

]
Ψ [Un]

for 1 ≤ n < N, (4.4.19a)

but

μ(N) =
Ψ
[
UN−1

]
Ψ [UN−1V]

. (4.4.19b)

These equations tell us that if we tested a system with, say, four customers,
and then asked how the system would behave if we added one more customer,
we could use some of the same parameters, but we would have to change μ(4),
as well as find a value for μ(5). In other words, from an M/M/C/ /N point
of view, the properties ascribed to S1 depend on the system’s population to
a certain extent.

We can ask what happens if we change the behavior of another server
somewhat. In our M/ME/1/ /N loop the only thing we can do to S2 is change
λ. Suppose that we again tested a system with four customers, and then asked
how the system would behave if λ were changed somewhat. Everything seems

4 M/G/1 Queue 249

to be constant, but the matrix U depends on λ in a nontrivial way.

Example 4.4.1: Let us look at μ(1) from (4.4.19a), for an M/E2/1/ /N
queue. In that case (see Exercise 3.1.1)

〈〈〈 p , B 〉〉〉 = 〈〈〈 [1 0], μ

[
1 −1
0 1

]
〉〉〉,

so (recall that Q = ε′ε′ε′ p)

A = I +
1
λ
B− ε′ε′ε′ p =

[
1 0
0 1

]
+

μ

λ

[
1 −1
0 1

]
−
[

1 0
1 0

]
.

We know that x̄1 = 2/μ; therefore, ρ = λx̄1 = 2λ/μ. Thus we can write

A =

⎡
⎣

2
ρ − 2

ρ

−1 1 + 2
ρ

⎤
⎦

and

U = A−1 =
ρ

2

⎡
⎣ 1 + ρ

2 1

ρ
2 1

⎤
⎦ ·

Of course, Ψ [U] = pU ε′ε′ε′, so (4.4.19a) for n = 1 becomes

x̄1 μ(1) =
4

4 + ρ
.

We see even in this simplest of all nontrivial queues, that a load-dependent
exponential approximation to a (load-independent) nonexponential server
depends heavily on parameters of other parts of the system, as represented
here by ρ. For instance, when ρ = 0, we get μ(1) = 1/x̄1, which is what
one would expect. But for ρ = 1, μ(1) = 0.8/x̄1. For yet larger values of ρ
(remember that for closed systems, ρ can take on any nonnegative value),
μ(1) will be even smaller. Similar comments can be made for μ(k), k > 1. �

Our conclusion is that Jackson networks, due to their parametric richness,
are robust enough to fit the measurements of any given network of service
centers. This can be most useful, because one is often overcome with a flood
of data in measuring the performance of complex systems, and the product-
form solution provides a framework on which the data can be hung , to test
self-consistency and provide meaning. They also warn us not to try too hard to
get more out of a system near saturation. However, one must be very cautious
in using the same data in extrapolating to other systems if the systems do
not satisfy the assumptions that went into the derivation of the product-
form solution. In short, Jackson network model explains everything, but its
predictions are no better than the assumptions that go into it.

250 4.5 Transient Behavior of M/ME/1 Queues

4.5 Transient Behavior of M/ME/1 Queues

It is in the discussion of non-steady-state properties of queues that LAQT
shows its unique value, for we see that all events correspond to some linear
matrix operation on a state vector. The approach is quite general, but for
now we limit ourselves to those topics covered in Section 2.3. Before reading
further, the reader should go back to that section, as well as Section 3.1, and
review the material contained therein, carefully.

4.5.1 First-Passage Processes for Queue Growth

To evaluate the time it takes for a queue to grow to a given length, we must
first find out how long it takes the queue to go from n to n + 1 for the
first time. The procedure we must use is in the same spirit as Section 2.3.1,
but more complex. Not only can the external state of the system (i.e., the
number of customers at S1) change by one unit at a time, up or down, as
in Chapter 2, but it can also remain constant, as in Chapter 3. Furthermore,
we must keep track of the internal state of the system as the queue grows.
Because n can never exceed the total number in the system, N plays no role
in this process (unless S2 is a load-dependent server, a subject we could cover
with equal ease). Therefore, this section is equally valid for open and closed
systems. Unfortunately, we have to be satisfied with recursive formulas for
the parameters of interest rather than the nice explicit expressions we were
able to get for the M/M/1 queue. We are not making the claim that explicit
expressions do not exist, but merely that we have not found them as yet.
Very little work has been done with these formulas up to now, so there is
every reason to hope that an adventurous, algebraically oriented researcher
will find one in the future.

4.5.1.1 Conditional Probabilities for Queue Growth

Before even looking at times for first passage, we must first find out the
probability that the system will be in state j when it reaches queue length
n + 1 for the first time after starting in {i; n}. On first thought this seems to
be a trivial question. It certainly is trivial for decreasing lengths, because a
decrease can only occur immediately after a departure, subsequent to which,
another customer enters S1, putting the system in internal state p. By this
we mean the following. “The probability that the system is in state {i; n} is
pi.” We use the two expressions synonymously.

What we just said about decreasing lengths would seem to be true for
increasing lengths as well. For then, an increase can only occur immediately
after an arrival to S1, and that does not change the internal state at all. Ah,
but many things may have happened before that final arrival sent the system
from n to n + 1. Suppose that initially the system has n customers at S1 and
the active customer is at phase i. That is, the system is in state {i; n}. Define
the conditional probability matrix.

4 M/G/1 Queue 251

Definition 4.5.1
Hu(n):= probability matrix of first passage from n to n + 1 That is,
[Hu(n)]ij is the probability that S1 will be in state j when its queue
goes from n to n + 1 for the first time, given that it started in state
{i; n}. As in Section 2.3, the subscript u stands for up. Recall that a
subscript is boldfaced, if and only if the object to which it is attached
is a vector or matrix. ���

We assert that the queue must grow to n + 1 some day, so the sum across
each row must be 1:

Hu(n)ε′ε′ε′ = ε′ε′ε′ for all n ≥ 0. (4.5.1)

Thus Hu(n) is isometric. We prove this algebraically after we have found a
recursive formula for the Hu’s. For the remainder of this section we usually
drop the subscript when there is no ambiguity. The following discussion is
similar to the material in Section 4.1.2 related to Figure 4.1.2.

Given that our system is initially in state {i; n}, the first event can
occur in only two ways: either a completion occurs in S1, with proba-
bility [(M + λI)−1M]ii, or there is a completion at S2, with probability
[(M + λI)−1λ]ii. Next look at Figure 4.5.1. If the event occurred in S2, a cus-
tomer will arrive at S1, increasing the number there by one without changing
the internal state. This corresponds to the solid arrow going diagonally up-
ward and to the right (labeled I, a → d). If the event occurred in S1, one of
two things could happen. Either the active customer goes from i to some other
phase, say k (with probability Pik), thereby leaving the system in the same
external state [n], or he could leave S1 (with probability qi) and be replaced by
a new customer who would then go to phase k (with probability pk), putting
the system in state {k; n− 1}. If the former is the case, it is like starting over
again, and given that the system now starts in state {k; n}, it will find itself
in external state n + 1 for the first time with probability [H(n)]kj of being
in internal state j. This sequence of events corresponds to the solid vertical
arrow, followed by the wavy arrow pointed diagonally upward to the right
(labeled II, a→ c→ f).

Recall from Chapter 2 that a wavy arrow represents the infinity of possible
ways to get from the tail to the head, and a solid arrow corresponds to a direct,
single process. The last case puts the system in state {k; n− 1}, from which
it must eventually get back to {l; n} for some l, and then finally to {j; n+1}.
This is represented in Figure 4.5.1 by the path labeled III (a → b → e →
g), which is the solid arrow pointing diagonally to the left, followed by two
successive wavy arrows diagonally upward to the right.

The three sequences of events are mutually exclusive, and exhaustive, but
remember to sum over all possible intermediate states k and l. They clearly
are mutually exclusive. We show that they are exhaustive by proving that the
sum of the three sets of initial probability matrices is isometric, which is the
same as showing that customer surely went somewhere. Look at the following.
The (ij)-th component of each of the three terms is the probability of taking
path I, II, or III, respectively, ending in internal state j, after starting in state

252 4.5 Transient Behavior of M/ME/1 Queues

Figure 4.5.1: Time-dependent state transition diagram for both the
open and closed M/ME/1 queues, showing what a system must do to go
from n to n + 1 for the first time. Path I is (a → d), path II is (a → c → f), and
path III is (a → b → e → g).

i.
X := (λI + M)−1λ + (λI + M)−1MP + (λI + M)−1Mq′p

= (λI + M)−1[λI + MP + Mq′p].

We wish to show that X ε′ = ε′ε′ = ε′ε′ = ε′. Recall that p ε′ε′ε′ = 1, and that q′ = (I−P) ε′ε′ε′,
so P ε′ε′ε′ + q′ p ε′ = ε′ε′ = ε′ε′ = ε′. Therefore,

X ε′ε′ε′ = (λI + M)−1[λ; ε′ε′ε′ + M(P + q′ p)ε′ε′ε′] = (λI + M)−1[λε′ε′ε′ + Mε′ε′ε′]

= (λI + M)−1[λI + M]ε′ε′ε′ = ε′ε′ε′.

Thus we have indeed proven that X is isometric, which in turn means that
we have included all possible events.

We now write the matrix equation for H(n).

H(n) = (λI + M)−1 [λI + MPH(n) + Mq′pH(n− 1)H(n)] .

The three terms on the right correspond to processes (I), (II), and (III),
respectively. Remember that matrix multiplication is the same as summing
over all intermediate states, k and l. Next we multiply both sides from the
left by (λI + M), collect all terms proportional to H(n), and get for n > 0:

[M + λI−MP−Mq′pH(n− 1)]H(n) = λI. (4.5.2a)

Note from (3.1.3) and (4.1.3a) that B = M−MP, Mq′ = B ε′ε′ε′, and from
Lemma 3.5.1 that Q = ε′ε′ε′ p. We then make these substitutions, divide both

4 M/G/1 Queue 253

sides of the equation by λ, and then solve for H(n), to get the desired recursive
formulas for n > 1,

Hu(n) = λ[λI + B−BQHu(n− 1)]−1. (4.5.2b)

From the definition of A in (4.1.4a) and Lemma 4.1.1, this can also be written
as

Hu(n) = [A + Q−AQHu(n− 1)]−1. (4.5.2c)

It is not known whether the form for Hu(n) that contains A will ultimately
be more convenient than that which contains B, so we use whichever seems
more useful.

The formula, when only one customer is at S1, is slightly different. If the
customer should leave, S1 remains idle until another customer arrives and
enters, [p]. After that, the system eventually gets to n = 2. The equation for
this is

H(1) = λ(λI + M)−1 + (λI + M)−1MPH(1) + (λI + M)−1Mq′pH(1).

[Compare this with (4.5.2a) before going on.] We easily solve for Hu(1), get-
ting

Hu(1) = λ[λI + B−BQ]−1 = [A + Q−AQ]−1. (4.5.2d)

As with all recursive relations, we must start with a nonrecursive equation,
which we easily get by noting that

Hu(0) = p.

But we can make believe that state {·; 0} has internal states [we already did
this in (4.1.1)]; then we can use

Hu(0) = Q, (4.5.2e)

and thus, because Q2 = Q, (4.5.2d) becomes a special case of (4.5.2c).
We next show that Hu(1)ε′ε′ε′ = ε′ε′ε′, and by induction, using (4.5.2c), prove

that (4.5.1) is true for all n. First note that for any matrix D, if Dε′ = ε′ε′ = ε′ε′ = ε′, then
its inverse satisfies D−1ε′ε′ε′ = ε′ε′ε′. We say, then, that if D is isometric, so is D−1.
Therefore, if [A + Q−AQ]ε′ε′ε′ = ε′ε′ε′, its inverse, H(1), satisfies H(1)ε′ε′ε′ = ε′ε′ε′.
But the if condition is obviously true, because Q ε′ε′ε′ = (ε′ε′ε′ p)ε′ε′ε′ = ε′ε′ε′ (p ε′ε′ε′) = ε′ε′ε′.
Next assume that H(k)ε′ε′ε′ = ε′ε′ε′ for all k = 1, 2, . . . , n−1, and rewrite (4.5.2c)
as

H(n) [A + Q−AQH(n− 1)] = I.

Then multiply both sides on the right with ε′ε′ε′. The left-hand side of the re-
sulting equation gives

H(n)[A ε′ + ε′ε′ + ε′ε′ + ε′ −AQH(n− 1)ε′ε′ε′] = H(n)[A ε′ + ε′ε′ + ε′ε′ + ε′ −AQ ε′ε′ε′]

= H(n)[A ε′ + ε′ε′ + ε′ε′ + ε′ −A ε′ε′ε′] = H(n)ε′ε′ε′,

and the right-hand side yields I ε′ = ε′ε′ = ε′ε′ = ε′. Therefore, we have proven our asser-
tion that H(n) is isometric for all n. In effect, we have proven the following
(perhaps obvious) theorem.

254 4.5 Transient Behavior of M/ME/1 Queues

Theorem 4.5.1: For any M/G/1/ /N queue, and for any ρ, if at
any time there are n < N customers in the queue of S1, then given
enough time, the queue will eventually have n + 1 customers in it [i.e.,
Hu(n)ε′ = ε′ε′ = ε′ε′ = ε′]. �

This might be called the “pessimist’s theorem,” because it implies that no
matter how bad things are now (long queue), if our random observer waits
long enough, she will certainly see it get worse some day (longer queue).
There are at least two weaknesses to this argument, however. First of all, the
theorem assumes that conditions will remain the same for time immemorial,
the homogeneous assumption. Second, the pessimist is assuming that the
random observer will live long enough to see things get worse. This is an
important reason for studying non-steady-state behavior. For if “some day” is
longer than say, the age of the universe, who cares? In Chapter 2 we calculated
what this time would be for an exponential queue [Equations (2.3.2)], and saw
that this could be long indeed if ρ < 1. See a related discussion in Section
3.3.6 on the St. Petersburg Paradox and PT distributions.

We now show how to calculate mean first-passage times for general
queues in the next section, after saying some final remarks about the first-
passage matrices. Equation (4.5.2d) seems simple enough, so we might be
encouraged to substitute it into (4.5.2b) or (4.5.2c) to get an explicit formula
for Hu(2), but the resulting expression does not simplify greatly. For higher
n it is even messier. It is better to think of these formulas as a recursive
definition of the (Hu)s, and to use (4.5.2b) or (4.5.2c) to numerically compute
them recursively when explicit examples are needed. Note that in general, the
(Hu)s are all different, although they do approach a limit for large n.

From these matrices one can also find the probability matrices of first
passage from n to n + l, for any n and l.

Definition 4.5.2
Hu(n→ n + l) := probability matrix of first passage from n to n + l,
l ≥ 1. That is, [Hu(n → n + l)]ij is the probability that S1 will be in
state j when its queue goes from n to n+ l for the first time, given that
it started in state i with n customers. In particular, Hu(n→ n + 1) =
Hu(n). ���

The first-passage matrix of going from n to n + 2 is simply

Hu(n→ n + 2) = Hu(n)Hu(n + 1),

and in general,

Hu(n→ n + l + 1) = Hu(n→ n + l)Hu(n + l)

= Hu(n)Hu(n + 1) · · ·Hu(n + l). (4.5.3)

Would the author be presumptuous in declaring it obvious that Hu(n→ n+l)
is isometric?

4 M/G/1 Queue 255

A particularly interesting matrix (it is actually a vector) is the probability
of first passage from 0→ n. It is given by

pu(n) := pHu(1)Hu(2) · · ·Hu(n− 1). (4.5.4)

Here too, it is clear that pu(n)ε′ε′ε′ = 1 for all n, so Theorem 4.5.1 extends
to the statement: “given enough time, every possible queue length will be
experienced at least once.” But what is “enough time?” We discuss this vector
further when we actually define it in Definition 4.5.4.

The first-passage matrices may not appear to be very interesting in their
own right, but they are needed for calculating first-passage times, as shown
in the next section.

4.5.1.2 Mean First-Passage Time for Queue Growth

This section is a direct generalization of the material in Section 2.3.1. By
arguments similar to those required to derive (4.5.2), one can derive the mean
time for the queue to grow from n to n + 1 for the first time. First define the
vector τ ′

uτ
′
uτ
′
u(n).

Definition 4.5.3
τ ′
uτ
′
uτ
′
u(n) := mean first-passage time vector from n to n+1n+1n+1. The i-th

component is the mean time it takes for the queue at S1 to have n + 1
customers for the first time, having started in state {i; n}. ���

Look once more at Figure 4.5.1. Suppose that there are n customers in
the queue at S1, and the active customer is at phase i. From that figure,
one of three things will happen next. The mean time until the next event is
given by 1/(λ + μi) = [(λI + M)−1ε′ε′ε′]i. If the event that occurs is an arrival
from S2, [path I], the process is over. If, however, the event is internal to
S1, [path II], the system will go to state {j, n} with probability given by
[(λI + M)−1MP]ij , and then will take another [τ ′

uτ
′
uτ
′
u(n)]j to accomplish the

task. Worse yet, if the event results in a departure from S1, as shown in
path III, the system, finding itself in some state {j; n − 1} with probability
[(λI + M)−1Mq′p]ij , must first get back to length n in time [τ ′

uτ
′
uτ
′
u(n− 1)]j and

then on to n+1. But this long excursion of going down and back up puts the
system into state k with probability [(λI + M)−1Mq′pHu(n− 1)]ik. (At last
we see the need for a first-passage matrix.) The three processes together lead
to the following vector equation.

τ ′
uτ
′
uτ
′
u(n) = (λI + M)−1ε′ε′ε′ + (λI + M)−1MPτ ′

u(n)

+(λI + M)−1Mq′p[τ ′
uτ
′
uτ
′
u(n− 1) + Hu(n− 1)τ ′

uτ
′
uτ
′
u(n)].

Next, premultiply both sides of the equation by (λI + M), bring all terms
proportional to τ ′

uτ
′
uτ
′
u(n) to the left-hand side, and get

[λI + M−MP−Mq′pHu(n− 1)]τ ′
uτ
′
uτ
′
u(n) = ε′ε′ε′ + Mq′pτ ′

uτ
′
uτ
′
u(n− 1).

This formula has several familiar components. Recall that M−MP = B,
Mq′p = BQ, and thus from (4.5.2b) the term in brackets is λ times the

256 4.5 Transient Behavior of M/ME/1 Queues

inverse of Hu(n). This, then, gives us the important recursive equation for
the τ ′

uτ
′
uτ
′
u(n)’s.

τ ′
uτ
′
uτ
′
u(n) =

1
λ
ε′ε′ε′ +

1
λ
Hu(n)BQτ ′

uτ
′
uτ
′
u(n− 1), with τ ′

uτ
′
uτ
′
u(0) :=

1
λ
ε′ε′ε′. (4.5.5)

To get these formulas we had to divide by λ, premultiply both sides by Hu(n),
and make use of the isometric property of Hu(n).

Before going on, let us use the following theorem to summarize what we
have done so far.

Theorem 4.5.2: For any M/ME/1/ /N queue, and for any ρ,
the first-passage matrices Hu(n), and mean first-passage time vectors
τ ′
uτ
′
uτ
′
u(n), are recursively given by (4.5.2) and (4.5.5), and can be calcu-

lated efficiently in the following way:

Hu(0) = Q, τ ′
uτ
′
uτ
′
u(0) =

1
λ
ε′ε′ε′.

For n = 1, 2, . . . ,

Hu(n) = λ[λI + B−BQHu(n− 1)]−1

and
τ ′
uτ
′
uτ
′
u(n) =

1
λ
ε′ε′ε′ +

1
λ
Hu(n)BQτ ′

uτ
′
uτ
′
u(n− 1).

These objects are the same for all N as long as n < N , and thus
the theorem is true for the open system (N → ∞) as well. The
first-passage matrices are isometric, (i.e., Hu(n)ε′ε′ε′ = ε′ε′ε′). �

Example 4.5.1: We have computed τ ′
uτ
′
uτ
′
u(n) of the M/E2/1 queue for various

values of ρ and have plotted the results in Figure 4.5.2. Note that τ ′
uτ
′
uτ
′
u(n) has

two components, so there are two curves for each ρ. The most obvious feature
is that for a given value of n, smaller ρ leads to longer times for the queue
at S1 to grow by 1. Next, for a given ρ, the mean time it takes to grow by
1 increases with n, and if ρ < 1, the increase is exponential. This is caused
by the fact that for large n, the queue can drop much farther before it finally
goes up (remember, the first-passage times include possible excursions down
to 0). For ρ > 1, the curve approaches a constant, because the queue is not
likely to drop very far before going up. The curve for ρ = 1 appears to be
linear, just as it is in the M/M/1 case.

The third feature we see is the separation of the two components of τ ′
uτ
′
uτ
′
u(n).

The mean first-passage time to grow by 1 is a weighted average of the two
components, depending on the state the system was in when the process be-
gan. If the process begins at the moment a customer enters S1, then p = [1, 0],
and the growth time follows the curve labeled [τ ′

uτ
′
uτ
′
u(n)]1. Note that the curves

for the two components actually diverge as n gets bigger. If a customer starts
at phase 2, he has a higher probability of leaving before another customer

4 M/G/1 Queue 257

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

ρ = 0.5

ρ = 0.8
ρ = 0.95

ρ = 1.0
ρ = 2.0

Number of customers at S1, n

M
ea

n
fi

rs
t−

pa
ss

ag
e−

tim
e

ve
ct

or
,

τ’
u(

n)

Figure 4.5.2: The two components of mean first-passage time vector
τ ′
uτ
′
uτ
′
u(n), as a function of the number of customers at S1, for the M/E2/1 queue.

There are five sets of curves, corresponding to ρ = 0.5, 0.8, 0.95, 1.0, and 2.0.
If the process starts when a customer first enters, he goes to phase 1, and when
finished there, goes to phase 2, after which he leaves. If a new customer arrives
before the active customer leaves, the process ends (the queue has grown by 1).
Otherwise, the process continues, with possibly many events occurring. For all ρ
and n, [τ ′τ ′τ ′]1 (dashed lines) lies below [τ ′τ ′τ ′]2 (solid lines). The curves corresponding
to ρ = 2 are not negligible. For n ≥ 20, their values are constant at 0.809 and
1.118, respectively.

arrives, thereby leaving the queue with only n − 1 customers. Therefore, it
will take longer to recover if n is larger. �

It would be most interesting to study first-passage times for other distri-
butions, because very little is known about this type of behavior.

The first-passage time vectors do not by themselves give us the times we
are looking for. We must first decide what state we are in when the process
begins. In Chapter 2 this was no problem, in as much as we only had to know
the number in the queue. Now unfortunately, we must make some statement
as to the initial internal state of S1. Once we do this (whether the system is
open or closed, irrespective of whether ρ is less than, equal to, or greater than
1), we can then calculate such things as

1. The mean first-passage time of going from n to n + 1, given that the
customer in service has just begun;

2. The mean first-passage time to n+1, as seen by a random observer who
sees n customers there initially;

3. The mean first-passage time to n + 1, given that there are n customers
in the queue, and the last customer just arrived;

258 4.5 Transient Behavior of M/ME/1 Queues

4. The mean first-passage time from n to n + 1, given that the queue was
originally empty;

5. The mean time for a queue to grow to n for the first time, given that a
customer has just arrived at an empty queue.

(Note that items 1 to 4 yield identical results for the M/M/1 queue.) For
instance, the internal state of S1 immediately after a customer departs and a
new customer enters is the entrance vector p. Therefore, the first item of the
list above can be calculated as follows.

Corollary 4.5.2a: The mean time for an M/ME/1 queue to grow
to n + 1 for the first time, given that n customers are there at the
beginning, and the customer in service at S1 has just begun, is given
by

pτ ′
uτ
′
uτ
′
u(n).

This is the same as the mean first-passage time to n+1, given that
a customer has just left behind n customers. It is also the same as the
“mean time for S1 to return to queue length n + 1 for the first time,
given that it just dropped to n.” There are, no doubt, other equivalent
statements. The state the system will be in when this occurs is given
by

pHu(n).

Thus the expression

pτ ′
uτ
′
uτ
′
u(n) + pHu(n)τ ′

uτ
′
uτ
′
u(n + 1)

is the mean first-passage time to n+2, given that service has just begun
with n ≤ N − 2 customers. �

Another interesting passage time is given by item 2 above. The condition as
stated there is insufficient to derive an expression. After all, what was the
history of the queue before the random observer arrived? We could assume
that the system has been in operation for a long time, long enough to be
near its steady state. This was discussed in Section 4.3.1 in analyzing residual
times. We follow that section here. Thus the random observer will find the
system in the composite state described by the vector [see (4.3.1a)]

1
r(n;N)

πππ(n;N) = πrπrπr(n) =
1

Ψ [Un]
pUn.

The residual vector appears again. Note that this vector does not depend on
N , except that n must be less than N . If n = N , the queue can never rise
above N anyway. We can state the time for this process by the following.

Corollary 4.5.2b: The mean time for a steady-state M/ME/1
queue to grow to n+1 for the first time, as seen by a random observer
who finds n customers there already, is given by

πrπrπr(n)τ ′
uτ
′
uτ
′
u(n) for 0 ≤ n < N

4 M/G/1 Queue 259

(yes, it is true for n = 0). After the system finally gets to n + 1, it will
be in state

πrπrπr(n)Hu(n).

The expression

πrπrπr(n)τ ′
uτ
′
uτ
′
u(n) + πrπrπr(n)Hu(n)τ ′

uτ
′
uτ
′
u(n + 1)

is the mean first-passage time from n to n + 2, as seen by a random
observer. �

In Section 4.3.2 we showed that an arriving customer will see much the
same thing as a random observer if he remembers not to count himself as a
member of the queue. Thus a newly arriving customer will find S1 in state
πrπrπr(n), given that there are already n customers there. In other words, he
becomes the (n + 1)st customer. Thus he will not see the same mean passage
times as did the random observer, because he is part of the action. In fact,
he may not even be around long enough to see the queue grow longer than
it was when he first arrived. For instance, suppose that a customer arrives at
an empty queue. Then he himself enters S1 and puts it in state πrπrπr(0) = p.
If he finishes service before the next customer arrives, he will not be around
to see the queue grow to 2, even though it will eventually happen [in mean
time pτ ′

uτ
′
uτ
′
u(1)]. We state this result as yet another corollary. The reader should

compare this with the previous one to be sure that the differences are clear.

Corollary 4.5.2c: The mean time for a steady-state M/ME/1
queue to grow to n + 1 for the first time, given that the n-th customer
has just arrived, is given by

πrπrπr(n− 1)τ ′
uτ
′
uτ
′
u(n) for 0 < n < N

(no, it is not true for n = 0). After the queue length finally reaches
n + 1, it will be in state

πrπrπr(n− 1)Hu(n).

The expression

πrπrπr(n− 1)τ ′
uτ
′
uτ
′
u(n) + πrπrπr(n− 1)Hu(n)τ ′

uτ
′
uτ
′
u(n + 1)

is the mean first-passage time for the queue to grow from n to n + 2,
given that a customer has just arrived. �

The most important variation on the theme of this section is the first-
passage time starting with an empty subsystem, or starting with the arrival
of a customer to an empty subsystem. We assume the former, but the two
differ only by the mean time until a customer arrives, which is 1/λ. This is
the process that corresponds to the queue growth discussed in Section 2.3.1
for the M/M/1 queue. To do this, we need two new types of objects.

260 4.5 Transient Behavior of M/ME/1 Queues

Definition 4.5.4
pu(n) := probability vector for first passage from 0 to n. Component
[pu(n)]i is the probability that a customer will be in state i when the
queue at S1 reaches length n for the first time, given that the queue
was initially empty. ���

This vector was actually introduced in (4.5.4), but we were not ready to use
it then.

Definition 4.5.5
tu(n) := mean first-passage time for the queue at S1 to grow from n
to n + 1, given that the queue was originally empty, and a customer
has just arrived. The process begins at the moment the queue reaches
length n. ���

This more or less corresponds to Definition 2.3.1 for τuτuτu(n), but an M/M/1
queue has no internal states (or rather, only one internal state), so it did not
make any difference when service began.

We can describe this process through the eyes of the random observer. At
some time in the past she observed that the queue at S1 was empty (no one
was being served). She then watched the queue, and when it finally reached
the length n, she turned on her timer. At that moment, the system was in
state pu(n). This is the initial vector for what follows. When the queue finally
reaches length n + 1, she turns off the timer. The mean time that her timer
shows is tu(n).

Let us suppose that there is no one at S1 initially, then in mean time,
tu(0) = 1/λ, the first customer will arrive, putting the system into internal
state pu(1) = p. Eventually, the queue will grow to 2 for the first time, in
mean time, tu(1) = pτ ′

uτ
′
uτ
′
u(1), at which time the system will be in internal state

pu(2) = pHu(1). At some time in the future the queue will get to 3 for the first
time, taking on average tu(2) = pu(2)τ ′

uτ
′
uτ
′
u(2) units of time. At that moment the

system will find itself in internal state pu(3) = pHu(1)Hu(2) = pu(2)Hu(2).
The sequence continues until the number of customers at S1 reaches N . The
total time it takes to go from 0 to n is the sum of the t′us.

Example 4.5.5: In Figure 4.5.3, we plotted the components of pu(n) as
a function of n for the M/E2/1 queue. It is not easy to understand what
is going on here, because the process is so complicated. The residual vector
(Definition 4.3.1) πrπrπr(n) is quite different from this. In the residual process, a
random observer (and for the M/G/1 queue, an arriving customer) will find
a steady-state system in vector state πrπrπr(n) as given by (4.3.1), assuming that
there were n customers there already. The vector pu(n) refers only to the
customer whose arrival brings the queue to length n for the first time, given
that the queue started at 0. Thus this special customer found n−1 customers
there already when he arrived. �

Definition 4.5.6
t(0 → n) := mean first-passage time from 0 to n . This is the

4 M/G/1 Queue 261

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

[p
u
(n)]

1

[p
u
(n)]

2

ρ = 0.5

ρ = 0.5
ρ = 0.8

ρ = 0.8
ρ = 1.0

ρ = 1.0

ρ = 2.0

ρ = 2.0

Number of customers at S1, n

C
om

po
ne

nt
s

of
 p

ro
ba

bi
lit

y
ve

ct
or

,
p u(

n)

Figure 4.5.3: Components of pu(n), the probability vector of first
passage from 0 to n, versus n, for the M/E2/1 queue. If a customer
arrives at an empty queue, he will certainly go to phase 1. Thus all curves start
with [1, 0]. The two sets of curves are mirror images of each other about the line
pu(n) = 1/2, because for any n, the sum of the two components is 1. For all ρ,
the vectors reach their asymptotic values before n = 10. Compare with the mean
residual vector πrπrπr = [0.5, 0.5].

mean time it will take the queue at S1 to grow to length n, given that
S1 was initially empty. This is the same as Definition 2.3.2. ���

This process is summarized by the final corollary of this section.

Corollary 4.5.2d: The mean time for an M/ME/1 queue (open
or closed) to grow from n to n + 1 for the first time, given that S1 was
initially empty, starting with tu(0) = 1/λ, is

tu(n) := pu(n)τ ′
uτ
′
uτ
′
u(n), n = 1, 2, (4.5.6a)

Starting with pu(1) := p, the internal state of the system at the mo-
ment of first passage to n, pu(n) is given recursively by

pu(n) = pu(n− 1)Hu(n− 1), n = 1, 2, · · · (4.5.6b)

The mean first-passage time from 0 to n is the same as (2.3.3a), namely

t(0→ n) =
n−1∑
l=o

tu(l). (4.5.7)

262 4.5 Transient Behavior of M/ME/1 Queues

Compare this with (2.3.3a). These formulas are independent of N and
are true as long as n ≤ N . �

Example 4.5.3: The overall behavior of t(0 → n) for the M/E2/1 queue
is similar to that for the M/M/1 queue, given in Figure 2.3.2. In Figure 4.5.4
we have plotted the two types on the same graph so they can be compared.
Although similar, they have distinct differences. As n gets larger, the two
curves separate from each other, and the closer ρ gets to 1, the greater the
separation, with the E2 curve lying below the M/M/1 curve. When ρ is much
greater than 1, the growth is dominated by the difference of the arrival and
service rates, but there is a difference, depending on the pdf of S1. For the
M/H2/1 queue, the differences are more pronounced, and the corresponding
curves end up above those for the M/M/1 queue. �

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

ρ = 0.5M/M/1
M/E2/1

ρ = 1.0
M/M/1

M/E2/1

ρ = 1.5

N
um

be
r

of
cu

st
om

er
s

at
S

1
,
n

Mean first−passage−time vector, t(0→ n)

Figure 4.5.4: Comparison of the mean first-passage times from 0 to
n, t(0 → n), between the M/M/1 queue and the M/E2/1 queue, for ρ =0.5, 1.0,
and 1.5. In all cases, the curve corresponding to E2 ends up lower, but the two
do cross.

Is this property dependent on C2
v? The reader should explore the behavior

of this process for other distributions, considering that so little is known about
this subject.

Note that the first-passage processes we have been discussing allow the
queue at S1 to empty any number of times before finally reaching its goal. In
the third subsection of Section 4.5.3 we study the first excursion to n during
a busy period . In that case we find the probability that the queue will reach
length n before it empties, because it is not certain to do so. We have to
develop some other expressions first.

4 M/G/1 Queue 263

4.5.2 Formal Procedure for Finding System Parameters

After reading the preceding section, the reader must have become familiar
with how to set up the expressions needed to calculate various system pa-
rameters. We now outline a formal procedure for doing this. First, based on
the given conditions, or initial assumptions, one finds the initial vector pi,
that describes the internal state of the system initially (e.g., the pu’s). Then,
depending on the process of interest, propagation matrices , Sp, are found
(e.g., the first-passage matrices). Finally, the final vector , v′

f , that contains
the kind of information desired (e.g., τ ′τ ′τ ′ for mean times and ε′ε′ε′ for probabili-
ties), is found. The desired scalar property (call it g) is then given by

g = piSpv′
f . (4.5.8a)

The initial and final vectors are commonly made of propagation matrices post-
or premultiplying other initial or final vectors, whereas propagation matrices
are usually products of other propagation matrices. In this way one can build
up an unlimited sequence of conditions and results without difficulty. Also,
the boundary between i and p, or p and f , is not necessarily unique, nor is it
important to try to find a definition that makes them unique.

The reader should peruse through the material already covered, to see if
this scheme holds true everywhere. In doing so you will notice that almost
always, an initial vector can be written as the entrance vector of S1, [p], post-
multiplied by a propagation matrix (call it Si). Also, almost always, the final
vector can be written as some other propagation matrix (call it Sf), premul-
tiplying ε′ε′ε′. This leads to

g = pSiSpSfε
′ε′ε′ = Ψ [SiSpSf] . (4.5.8b)

We now see why the Ψ [·] operator appears in so many places and why it is
such a useful object.

4.5.3 Properties of the k-Busy Period

Everything that goes up must come down; well, almost everything. Whenever
S1 is emptied of customers (n = 0), we say that “a busy period has ended.” If
observation began with some initial conditions (call them collectively {· · · }),
then we have a “{· · · }-busy period.” As described in Section 2.3.2, if a cus-
tomer has just arrived at an empty subsystem, we simply have the beginning
of a busy period . Clearly, studying busy periods requires studying queue-
length reduction.

We proceed in analogy with Section 4.5.1. However, not all objects will
work out in the same way. The Hd matrices are much simpler than the H′

us.
However, the τ ′

dτ
′
dτ
′
d vectors depend explicitly on N , as well as n; thus length

reduction processes are somewhat more complicated to express. The reason
for this, as we presently show, is that in its attempt to go up, the queue can
never drop below 0, and thus is bounded by its own length. In trying to shrink,
the queue can falter and grow to any length before finally coming down. A
ceiling of N is imposed by the system’s finite population, and the higher the

264 4.5 Transient Behavior of M/ME/1 Queues

ceiling, the longer it takes to get down to 0. Actually, first-passage processes
to go from n to n − 1 depend on N − n, so unless S2 is load dependent, the
problem is not that bad.

We have one last point before going on. In dealing with a growing queue,
we had to start at 0. Similarly, in studying the decreasing queue, the recursive
equations must start at N . But where does one start in an open system?

4.5.3.1 Conditional Probabilities for Queue Decrease

The first-passage matrices from n to n − 1 can be written down with some
thought and no algebra. A decrease in queue length can only occur after
a departure. Immediately after that a new customer (provided that n was
greater than 1 originally) enters S1, putting the system in internal state p.
Given that this is independent of the state the system was in initially, our
desired matrix must be Q. However, we go through a full algebraic derivation,
because we have do it anyway when we derive the corresponding first-passage
times. Define the following matrix for an M/ME/1/ /N loop.

Definition 4.5.7
Hd(n;N) := probability matrix of first passage from n to n− 1. Com-
ponent [Hd(n;N)]ij is the probability of finding the system in state
{j; n− 1; N}, given that the queue at S1 has reached length n− 1 for
the first time, after starting in state {i; n; N}. ���

Next look at Figure 4.5.5. This diagram is similar to Figure 4.5.1, but
here the wavy lines go from higher to lower n. It also includes the possibilities
when all customers are already at S1 [n = N]. Clearly, if all customers are
at S1, the next event must be there, and either the customer in service stays
in S1, [P], and then eventually leaves [Hd(N ;N)], or leaves directly, and is
replaced by the next customer [q′p]. Thus

Hd(N ;N) = PHd(N ;N) + q′p.

Now solve for Hd(N ;N) to get, using (3.1.1b):

Hd(N ;N) = (I−P)−1q′p = ε′ε′ε′p = Q, (4.5.9a)

as expected. For any other n > 0 (we drop the d for now), Figure 4.5.5 implies
that

H(n;N) = (λI + M)−1Mq′p + (λI + M)−1MPH(n;N)

+ λ(λI + M)−1H(n + 1;N)H(n;N).

Once more, left-multiply both sides by (λI + M), yet again recognize that
Mq′p = BQ, and that M−MP = B, to get

[λI + B− λH(n + 1;N)]H(n;N) = BQ. (4.5.9b)

Let us look at this equation for n = N − 1, and make use of (4.5.9a).

[λI + B− λQ]H(N − 1;N) = BQ,

4 M/G/1 Queue 265

Figure 4.5.5: Time-dependent state transition diagram for both the
open and closed M/ME/1 queues, showing what a system must do to go
from n to n− 1 for the first time, as long as n < N . Path I is (a → d), path II is
(a → c → f), and path III is (a → b → e → g).

but the expression in brackets is, from (4.1.4a), none other than λA from the
s.s. queue, so λAHd(N − 1;N) = BQ, or

Hd(N − 1;N) =
1
λ
UBQ.

But from Lemma 4.1.1 the right-hand side is Q, so we have

Hd(N − 1;N) = Q. (4.5.10a)

Let us look again at (4.5.9b). If Hd(n + 1;N) = Q, then by the same argu-
ments which gave us (4.5.10a), it follows that Hd(n;N) also equals Q, so by
induction, we have proven what we expected for all N ≥ 2,

Hd(n;N) = Q for 1 < n ≤ N. (4.5.10b)

Because Q is isometric, so, obviously, are the Hd’s.

4.5.3.2 Mean First-Passage Times for Queue to Drop

We start this section with the prerequisite definition.

Definition 4.5.8
τ ′
dτ
′
dτ
′
d(n;N) := mean first-passage time vector from n to n-1. [τ ′

dτ
′
dτ
′
d(n;N)]i

is the mean time for the queue at S1 to reach n− 1 for the first time,
given that the system started in state {i; n; N}. Note that these vectors
depend on N as well as n. ���

266 4.5 Transient Behavior of M/ME/1 Queues

Let us again start with n = N . Then we have exactly what we had in
Section 3.1.1. As with (3.1.2a),

τ ′
dτ
′
dτ
′
d(N ;N) = M−1ε′ε′ε′ + Pτ ′

dτ
′
dτ
′
d(N ;N).

We solve for τ ′
dτ
′
dτ
′
d(N ;N) to get the same as (3.1.2b),

τ ′
dτ
′
dτ
′
d(N ;N) = V ε′ε′ε′. (4.5.11a)

Now on to the general case. Following our familiar course, we can write

τ ′
dτ
′
dτ
′
d(n;N) = (λI + M)−1ε′ε′ε′ + (λI + M)−1MPτ ′

dτ
′
dτ
′
d(n;N)

+ λ(λI + M)−1[τ ′
dτ
′
dτ
′
d(n + 1;N) + Qτ ′

dτ
′
dτ
′
d(n;N)].

Regrouping, and so on, gives the following equality.

[λI + M−MP− λQ]τ ′
dτ
′
dτ
′
d(n;N) = ε′ε′ε′ + λτ ′

dτ
′
dτ
′
d(n + 1;N).

This leads to the recursive formula

τ ′
dτ
′
dτ
′
d(n;N) =

1
λ
Uε′ε′ε′ + Uτ ′

dτ
′
dτ
′
d(n + 1;N), (4.5.11b)

where the reader is reminded that U = A−1 is given by (4.1.4). We are fortu-
nate that all the first-passage matrices are equal to each other, for now we can
actually find an explicit formula for the τ ′

dτ
′
dτ
′
d’s. First let n = N − 1 in (4.5.11b),

and use (4.5.11a) to get

τ ′
dτ
′
dτ
′
d(N − 1; N) =

1
λ
U[I + λV]ε′ε′ε′.

Similarly, for n = N − 2,

τ ′
dτ
′
dτ
′
d(N − 2;N) =

1
λ
U[I + U + λUV]ε′ε′ε′.

In general, one can write, and check by direct substitution into (4.5.11b), that

τ ′
dτ
′
dτ
′
d(N − l;N) =

1
λ
U[I + U + U2 + · · ·+ Ul−1 + λUl−1V]ε′ε′ε′.

Compare the expression in brackets with (4.1.6d) and (4.1.6e) to get

τ ′
dτ
′
dτ
′
d(N − l;N) =

1
λ
UK(l)ε′ε′ε′ =

1
λ

[K(l + 1)− I]ε′ε′ε′, (4.5.12)

where l = N − n. Yes, we are already familiar with K(N), the normalization
matrix of the steady-state M/ME/1/ /N queue.

We could go through the gamut of initial vectors, as we did in the second
part of Section 4.5.1, but for now let us only consider pi = p (i.e., the customer
in service at S1 has just begun). Note that this is the down vector analogue
to pu(n) in (4.5.4), because all the Hd’s are equal to Q.

4 M/G/1 Queue 267

Definition 4.5.9
td(n;N) := mean first-passage time from n to n-1. This is the mean
time it will take for the queue at S1 to drop to n− 1 for the first time,
given that it started with queue length n and the active customer had
just begun service. The “given” part can also be worded as “given that
a customer has just departed, leaving n customers behind.” Implicit in
this is the assumption that the queue can never exceed N . ���

From its definition, it follows that

td(n;N) := pτ ′
dτ
′
dτ
′
d(n;N) =

1
λ

[Ψ [K(N − n + 1)]− 1]

=
1
λ

[
1

r(0;N − n + 1)
− 1
]

=
1− r(0;N − n + 1)
λ r(0;N − n + 1)

· (4.5.13)

This is a rather interesting result. It says, in words, that the mean time to
go from n to n− 1 for the first time in an M/G/1/ /N queue [td(n,N)], can
be expressed in terms of properties of the steady-state M/G/1/ /(N − n + 1)
queue with the same ρ. It is equal to 1/λ times the ratio of the steady-state
probability that S1 would be busy to the probability that it would be idle.
Furthermore, as long as N is finite, it is true for all ρ.

Of particular interest is the case where n = 1, for that corresponds to the
mean time of a busy period of an M/G/1/ /N loop. This was discussed in the
first part of Section 2.3.2 in the context of the M/M/1/ /N loop, but now we
have a more general theorem for M/G/1 queues. First,

τ ′
dτ
′
dτ
′
d(1;N) =

1
λ

[K(N)− I]ε′ε′ε′, (4.5.14a)

then we get an expression that is valid for any G/G/1† queue:

td(1;N) =
1
λ

1− r(0;N)
r(0;N)

=
1
λ

s.s. prob. that S1 is busy

s.s. prob. that S1 is idle
· (4.5.14b)

The rightmost expression does not explicitly depend upon N . It shows that
the ratio of probabilities is the expected number of customers who will be
served in a busy period. We proved this formula in (2.3.7d), but in a different
way.

The k-busy period for the M/G/1/ /N loop requires some extra explana-
tion beyond that given in Definition 2.3.4, because we must define the starting
state.

Definition 4.5.10
t(k → 0;N) =mean time for the k-busy period of an M/G/1//N loop.
This is the mean time for the queue at S1 to drain (drop to 0) given
that there were k customers there initially, and the one in service had
just begun. ���

†The expression, ’GI/G/1’ is also commonly used, where ’GI’ stands for General In-
dependent. Unless otherwise stated, we assume that the arrivals are independent (they
constitute a renewal process), so we usually use ’G’ in this book.

268 4.5 Transient Behavior of M/ME/1 Queues

This mean time is given by (2.3.8a), namely,

t(k → 0;N) =
k∑

n=1

td(n;N). (4.5.15)

There are other variations of the busy period, but they only differ in the first
term of the sum. For instance, a random observer could come upon a system
that has been in operation for an indefinite period, noting that there are k
customers at S1 when she starts her clock. Then the mean time until the
queue drops to k−1 for the first time is πrπrπr(k;N)τ ′

dτ
′
dτ
′
d(k;N), and the mean time

to drop to 0 is
πrπrπr(k;N)τ ′

dτ
′
dτ
′
d(k;N) + t(k − 1→ 0;N).

This is a very common process. It corresponds to the request one often gets
that “I’d like to see you as soon as you are free.” Remember, in this case, the
server must not only finish that work which is on hand, but also everything
that comes before it finishes.

We close out this section with an examination of the open M/G/1 queue.
To do this we must let N become unboundedly large. Now, this requires taking
the limit for N →∞,

K = lim
N→∞

K(N).

This limit only exists for ρ < 1, but when it does exist, it is given in various
forms by (4.2.2), and Ψ [K] = 1/(1−ρ), from (4.2.3e). Therefore, from (4.2.3c)
and (4.5.12),

τ ′
dτ
′
dτ
′
d(n) := lim

N→∞
τ ′
dτ
′
dτ
′
d(n;N) =

1
λ

[K− I]ε′ε′ε′ =
1

1− ρ
V ε′ε′ε′. (4.5.16a)

So the mean first-passage vector from n to n − 1 for an open queue is inde-
pendent of n. Also,

td(n) := lim
N→∞

td(n;N) =
x̄

1− ρ
. (4.5.16b)

This well-known result tells us that the mean time for a busy period is the
same for all M/G/1 queues with the same mean service time, and is equal to
the mean system time for the equivalent M/M/1 queue. We would expect this
term to be independent of n, because all finite queue lengths are equidistant
from their infinite roof. But why does it not depend on the particular pdf of
S1? We saw in Section 2.3.2 that the length of the busy period depends upon
the idle time, and thus the interarrival distribution, and the mean service
time, but not the service time distribution.

4.5.3.3 Probability That Queue Will Reach Length n

We closely parallel the discussion in the second part of Section 2.3.2, with the
added complication that we must keep track of internal states. The consequent
matrice Wu(n), is similar t Hu(n). In fact, they satisfy the same recursive
equations, but they have different initial matrices, and Wu(n) turns out not
to be isometric. Define the following for k < n < N :

4 M/G/1 Queue 269

Definition 4.5.11
Wu(n; k) := probability matrix that the queue will go from n to n + 1
without dropping to k. Wu(n; k) assumes the following initial condi-
tions. Given an M/ME/1/ /N loop, there are n < N customers at S1,
and the active customer is at phase i. The process ends when either
the queue grows to n + 1, or shrinks to k < n. If it is the former,
then [Wu(n; k)]ij is the probability that the system will be in state
{j; n + 1; N}. ���

In other words, [Wu(n; k)]ij is the probability that the system will go from
{i; n; N} to {j; n+1; N} for some (any) j without going to {· , k; N}. Com-
ponent i of vector Wu(n; k)ε′ε′ε′ is the probability of going from {i; n; N} to
any internal state of n+1 customers, without dropping to k. But this process
is not certain to happen, so it cannot have probability 1, thus Wu(n; k) is not
isometric.

This process, and in fact all first-passage processes, fall into the class of
taboo processes (or tabu processes). For such processes, the entire state
space of the system is partitioned into three (disjoint) subsets. The process
begins with the system in a single state in one of the subsets, and ends when
the system finds itself in any one of the states of the other two subsets. In our
case, subset 1 consists of all internal states corresponding to queue lengths of
k + 1, k + 2, . . ., n − 1, and n, whereas subset 2 is all the states with queue
length < k. Subset 3 consists of all the states with queue length > n. It is
“tabu’ to enter subset 3, and the process is a success if it ends in subset 2.
The initial state is {i; n; N}, which is an element of subset 1. This concept
is much broader than we need. In fact, it obscures the underlying view in
LAQT, that all internal states belonging to one queue length should always
be treated as a whole.

There is a natural scalar that goes with matrix Wu(n; k), which we now
define.

Definition 4.5.12
Wu(n; k) := probability that the queue at S1 will rise from n to n + 1
without first dropping to k, given that the active customer has just begun
service. We call this “the scalar probability associated with Wu(n; k).”
From its definition it is clear that

Wu(n; k) := pWu(n; k)ε′ε′ε′ = Ψ [Wu(n; k)] . (4.5.17)

Each of the W matrices we presently introduce has an analogous W
scalar counterpart. ���
Fortunately, Figure 4.5.1 is applicable to deriving the relationships among

the Wu(n; k)s. First look at Wu(k + 1; k). [Wu(k; k) must be 0, because
the system is already at its lower bound.] There are two successful paths
available in this case. Either an arrival occurs, putting the system in state
{i; n + 1} immediately, or there is an internal transition, after which the
queue eventually rises to n + 1 without ever having a departure. Thus

Wu(k + 1; k) = λ(λI + M)−1 + (λI + M)−1MPWu(k + 1; k).

270 4.5 Transient Behavior of M/ME/1 Queues

Multiply by (λI + M), collect terms, and get

Wu(k + 1; k) =
(
I +

1
λ
B
)−1

= λ(λI + B)−1. (4.5.18a)

We are now ready to treat the general case. Here all three types of events
can occur, because the queue at S1 can drop by 1 and still go back up. We
write, for n > k + 1 (while momentarily dropping the subscript u),

W(n; k) = λ(λI + M)−1 + (λI + M)−1MPW(n; k)

+ (λI + M)−1Mq′pW(n− 1; k)W(n; k).

The usual manipulations lead to the following recursive formulas. For fixed k,
and n > k + 1,

Wu(n; k) = λ [λI + B−BQWu(n− 1; k)]−1
. (4.5.18b)

So, for instance,

Wu(k + 2; k) = λ
[
λI + B−BQ(λI + B)−1

]−1
.

A comparison of (4.5.18b) with (4.5.2b) shows that Wu(n; k) and Hu(n) sat-
isfy the same recursive formula, yet they are not equal. In particular, Wu(n; k)
is not isometric, even though Hu(n) is. This apparent dilemma is easily re-
solved when we recognize that the two sets of matrices have different first
matrices in their recursive construction, Equations (4.5.2e) and (4.5.18a). Re-
call that we proved by induction that Hu(n) is isometric. First we showed
that Hu(0)ε′ε′ε′ = ε′ε′ε′, and second, showed that if it was true for Hu(n), then it
must be true for Hu(n + 1). We could show the second part of the proof for
Wu(n; k), but we cannot satisfy the first condition. For Wu(k + 1; k) to be
isometric, we must have Bε′ε′ε′ = o′, which in turn implies that b(x), the pdf for
S1, is identically 0 everywhere, an impossibility.

Now we are prepared to find the object described in the title of this section.
Let us define the following multistep matrix.

Definition 4.5.13
Wu(n → n + l; k) := probability matrix that the number of customers
at S1 will grow from n to n + l without dropping to k . The process
starts with the system in state {i; n}, and stops when the system is
either in some state with n + l customers, or in some state with k < n
customers. [Wu(n→ n+ l; k)]ij is the probability that the system will
be in state {j; n + l} when the process ends. Wu(n → n + l; k) :=
Ψ [Wu(n→ n + l; k)] is the associated scalar probability. ���

[Wu(n → n + l; k)ε′ε′ε′]i is the probability that the process will end with n+l
customers at S1, given that it started in internal state i, and [I−Wu(n →
n + l; k)]ε′ε′ε′i is the probability that the process will end with only k customers
in the queue.

4 M/G/1 Queue 271

By their very definitions, we know that

Wu(n→ n + 1; k) = Wu(n; k). (4.5.19a)

In analogy with the discussion surrounding (2.3.10a), we see that in order to
go up two steps without dropping to k, we must first go up one step without
dropping to k, and then go to the second step. Therefore,

Wu(n→ n+2; k) = Wu(n; k)Wu(n+1, k) = Wu(n→ n+1; k)Wu(n+1; k),

or in general,

Wu(n→ n + l + 1; k) = Wu(n→ n + l; k)Wu(n + l; k). (4.5.19b)

This recursive expression is all that is needed to calculate everything, but it
can also be written in the alternative form

Wu(n→ n + l + 1; k) = Wu(n; k)Wu(n + 1; k) · · ·Wu(n + l; k). (4.5.19c)

Keep in mind that these matrices do not commute with each other, so the
order of multiplication is important.

It is time to summarize the results of this section in a theorem.

Theorem 4.5.3: For any k and n such that 0 ≤ k < n < N , the
matrices Wu(n; k) and Wu(n→ n + l; k) are recursively given by the
following procedure. From (4.5.18a)

Wu(k + 1; k) = λ(λI + B)−1.

Next, from (4.5.18b), for l = 1, 2, . . . , N − k − 1,

Wu(k + l + 1; k) = λ[λI + B−BQWu(k + l; k)]−1.

For any n > k, [Equation (4.5.19a)], set

Wu(n→ n + 1; k) = Wu(n; k),

and for l = 1, 2, . . . , N − n− 1,

Wu(n→ n + l + 1; k) = Wu(n→ n + l; k)Wu(n + l; k)

[from (4.5.19b)]. Given any initial vector pI, the conditional scalar
probabilities of queue growth as defined in this section are given by

pIWu(n; k)ε′ε′ε′ aand pIWu(n→ n + l; k)ε′ε′ε′.

All of these equations are valid for any ρ, and for both open and closed
M/ME/1 systems (as long as n + l ≤ N). �

There are numerous variations that one can pursue, but by far the most
important and most interesting is the “probability that the queue at S1 will
grow to at least n during a (k = 1) busy period.” Here we want to see the
queue reach n without going to 0. Because the busy period is so special, we
will provide special treatment.

272 4.5 Transient Behavior of M/ME/1 Queues

Definition 4.5.14
Wu(n) := probability matrix that the queue at S1 will rise from n to
n+1 customers during a busy period . This is the same as the probability
that the queue will get to some state with n + 1 customers before
it empties, given that the system started with n customers, that is,
Wu(n) = Wu(n; 0). ���

Definition 4.5.15
Wu(1 → n) := probability matrix that the queue length at S1 will
reach at least n during a busy period . The component definitions are
the same as those given in Definitions 4.5.11 and 4.5.13, with k = 0.
Wu(1→ n) = Ψ [Wu(1→ n)] is the associated scalar probability. ���

That is, these matrices satisfy the following equations,

Wu(n) := Wu(n; 0), (4.5.20a)

Wu(1→ n) := Wu(1→ n; 0), (4.5.20b)

and Wu(1→ n) is the same as that defined in the second part of Section 2.3.2.
That is, it is the (scalar) probability that the queue at S1 will grow at least
to n during a busy period. Then, by definition, Wu(1; 1) = 1. Recall that a
busy period begins with the arrival of a customer at an empty server, thus the
system is initially put into internal state p, with queue length n = 1. Then
we can state the busy period corollary to Theorem 4.5.3.

Corollary 4.5.3: For any n such that 1 < n < N , the probability
that the queue at S1 will reach at least n during a busy period can be
calculated in the following way. Let

Wu(1) = λ(λI + B)−1; Wu(1→ 2) = Wu(1);

Wu(1→ 2) = Ψ [Wu(1→ 2)] .

Then for n = 2, 3, . . . , N − 1,

Wu(n) = λ [λI + B−BQWu(n− 1)]−1
, (4.5.21a)

Wu(1→ n + 1) = Wu(1→ n)Wu(n), (4.5.21b)

with associated scalar probabilities

Wu(1→ n + 1) = Ψ [Wu(1→ n + 1)] . (4.5.21c)

The results are independent of N as long as it is recognized that the
queue can never exceed N . Thus the open system satisfies the same
formulas; just let N →∞. �

4 M/G/1 Queue 273

Example 4.5.4: We have calculated Wu(1 → n) for the M/E2/1 queue
and have plotted the results as a function of n, for various values of ρ, in
Figure 4.5.6. We see that if ρ ≤ 1, the probability goes to 0 as n increases,
but for ρ > 1, Wu(1→ n) asymptotically approaches a value greater than 0.
This value is the probability that the busy period will never end. We have also
bothered to compare with the M/M/1 queue, as given by Equations (2.3.11)
in Figure 4.5.7. Note that for ρ < 1 the two queues have similar behavior, but
they do cross. For larger n, the M/M/1 queue has a slightly higher probability
of growing longer. We would expect this, because the mean queue length for
the steady-state M/M/1 queue is longer than that for the M/E2/1 queue.
One should not draw any conclusions about this without first studying other
distributions.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ = 0.5 ρ = 0.9

ρ = 1.0

ρ = 1.5

ρ = 2.0

Number of customers at S1, n

 W
u(1

→
 n

)

Figure 4.5.6: Probability Wu(1 → n) that the number of customers at
an M/E2/1 queue will rise to at least n during a busy period versus
n, for ρ =0.5, 0.9, 1.0, 1.5, and 2.0. Obviously, the probability that it will reach
at least length one, is 1, for all ρ. For ρ > 1 there is a finite probability that the
queue will grow forever (if you can find an infinite number of customers). The
larger ρ is, the larger that probability.

An unexpected result shows up when ρ is greater than 1. In that case,
the open M/ME/1 system can never reach a steady state. We know from
(2.3.11c) that the probability that the busy period will never end is 1− 1/ρ
for the M/M/1 queue, which for ρ = 1.5 is 0.3333, the asymptotic value of that
curve. However, for the M/E2/1 queue the asymptotic value is approximately
0.42, or over 30% higher! This seems to be counterintuitive (if one can have
intuition about these things), but after some thought we give the following
explanation.

274 4.5 Transient Behavior of M/ME/1 Queues

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ = 0.5
M/M/1

M/E2/1 ρ = 0.9M/M/1
M/E2/1

ρ = 1.5
M/M/1

M/E2/1

Number of customers at S1, n

 W
u(1

→
 n

)

Figure 4.5.7: Comparison of the probability Wu(1 → n) between the
M/M/1 and M/E2/1 queues versus n, for ρ =0.5, 0.9, and 1.5. The curves
for the E2 queue are the same as those in Figure 4.5.6. For ρ < 1 the two curves
are close for all n, but for ρ = 1.5, the two differ by over 30%. See the text and
Figure 4.5.8 for more information.

First note that in the D/D/1 queue there is never any waiting when ρ is
less than 1, but there is no chance whatever that the busy period will end
when ρ is greater than 1. In these examples, when ρ is greater than 1, the
probability that the queue will drain becomes vanishingly small as the queue
length increases, hence the rapid approach to the asymptotic value for both
distributions (once the queue reaches 10, for ρ = 1.5, there is no hope that
it will ever drain). Therefore, it is only for short queues that there is some
reasonable probability of dropping to 0. For this to happen, the customers who
are in the queue must put a smaller demand on the server than is average.
Now, the probability that a given customer will make a demand that is far
below the mean is much less for Erlangian distributed service times than it is
for exponential service times. Therefore, it is less likely to drain.

Consider the other extreme. We can construct distributions in which the
vast majority of customers ask for a negligible amount of service time, but
once in a while a customer with an enormous demand arrives. In such a case,
the probability that the queue will contain only customers with small demands
is close to 1, and therefore the queue will probably drain. �

In the next example we study the busy period behavior for various distri-
butions, but only for ρ = 1.5.

Example 4.5.5: In Figure 4.5.8 we show Wu(1→ n) for various Erlangians
up to E30(x), as well as a hyperexponential-2 distribution with C2

v = 5.039.

4 M/G/1 Queue 275

All distributions have a mean of 1. These results are consistent with our ar-
guments in this and the preceding paragraph. The H2(x) function is of the
type in which 90% of the customers have small demands. This is connected to
C2

v , but is not completely dependent on it. So we can only hazard a general
statement which says that the probability that the busy period will end tends
to increase with C2

v . Indeed, the Erlangians have C2
v = 1/n; thus all the curves

we present in this figure satisfy the rule. �
The above examples lead us to the following observation. The P-K formula

in (4.2.6d) tells us that for ρ < 1 the bigger C2
v is, the more likely it is for the

queue to grow very large (big jobs kill). The example tells us that for ρ > 1,
the bigger C2

v is, the more likely it will be for the busy period to end (small
jobs save). Remember, large C2

v implies the occurrence of jobs that are much
bigger than the mean. But to compensate for this, there must also be more
jobs that are much smaller than the mean. We warn the reader that this is
only a speculation, and the subject requires further study.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M/H2/1

M/M/1

M/E2/1
M/E10/1

M/E20/1
M/E30/1

Number of customers at S1, n

 W
u(1

→
 n

)

Figure 4.5.8: Probability that the population at S1 in an M/ME/1
queue will rise to at least n during a busy period, for the exponential,
four different Erlangians, and a hyperexponential-2 distribution. Erlangians have
a squared coefficient of variation, C2

v = 1/n, and the hyperexponential function
has a C2

v = 5.039. All have a mean service time of 1, and ρ = 1.5. These curves
satisfy the rule that the probability for the busy period to end, [1−Wu(1 → ∞)],
increases with C2

v .

Very little research has been done on these equations, thus we know of no
explicit formulas for the various W matrices except for the M/M/1 queue.
Surely with some effort, such expressions will be forthcoming. In the mean-
time, we continue deriving yet more equations, which might leave the reader

276 4.5 Transient Behavior of M/ME/1 Queues

feeling somewhat overwhelmed. If that is the case, review Section 2.3 yet
again, and return here knowing that at the end of the next section the most
important equations are summarized in an easy-to-follow algorithm in Theo-
rem 4.5.4.

4.5.3.4 Maximum Queue Length of a Busy Period

In the preceding section we examined the probability that an M/G/1 queue
would reach at least n. This did not preclude the possibility that the queue
would go even higher. Now we are interested in the probability that the queue
will reach exactly n, and no more. In Equation (2.3.16b) we surmised that
this probability should be equal to the probability of reaching at least n,
minus the probability of reaching at least n + 1. However, we go through a
more tedious process, because that will prove itself useful in studying the busy
period of S2 (i.e., the ME/M/1 queue). Again, in analogy to the third part of
Section 2.3.2, we must combine what we just found, with the probability that
the queue will decrease to 0 without exceeding n. The reader has presumably
become so good at this that we can race through quickly. First define the
following matrix, for 1 ≤ n ≤ k ≤ N .

Definition 4.5.16
Wd(n; k) := probability matrix of dropping from n to n − 1, without
exceeding k ≥ n. Note the slight difference in definition between this
down operator and its counterpart up operator described in Definition
4.5.11. In the up case, the queue was not allowed to drop as low as k,
whereas here, the queue must not exceed k. Wd(n; k) := Ψ [Wd(n; k)]
is the associated scalar probability. Strictly speaking, we should include
Wd’s dependence on N , as we did in Definition 2.3.8. But as long as
k < N , Wd(n; k) does not depend upon N . ���

As with the M/M/1/ /N queue and the first part of Section 4.5.3, for
Hd(N ;N), Wd(N ;N) = Q. In fact,

Wd(n;N) = Hd(n;N) = Q for all n ≤ N, (4.5.22a)

because the queue can never exceed length N in any case. The same cannot be
said when k < N , for here (using Figure 4.5.5 and recalling that Mq′p = BQ)

Wd(k; k) = (λI + M)−1BQ + (λI + M)−1MPWd(k; k)

or,

Wd(k; k) = (λI + B)−1BQ = (I + λV)−1Q for k < N. (4.5.22b)

Finally, using the same arguments as those required to derive (2.3.12b), we
have for 0 < n ≤ k < N ,

Wd(n− 1; k) = [λI + B− λWd(n; k)]−1BQ

= [I + λV − λVWd(n; k)]−1Q. (4.5.22c)

4 M/G/1 Queue 277

Note that all these matrices have Q as a multiplying factor. This means that
Wd(n; k) is not invertible (unless S1 is of dimension 1) and in fact is of rank
1. Q has such unique properties that it is useful to have it appear explicitly
whenever possible. We can do this by introducing an auxiliary matrix function
which, when right-multiplied by Q, will yield Wd(n; k). Also observe from
(4.5.22b) that Wd(k; k) is the same for all k < N . Therefore [from (4.5.22c)],

Wd(k − 1; k) = [λI + B− λWd(k; k)]−1BQ

is also independent of k. Then, by induction, we can show that for all k1, k2 ≥
l,

Wd(k1 − l; k1) = Wd(k2 − l; k2).

This means we can define for k < N ,

Z(0) := (I + λV)−1, (4.5.23a)

and recursively define for l = 1, 2, . . .,

Z(l) := [λI + B− λZ(l − 1)Q]−1B = [I + λV − λVZ(l − 1)Q]−1. (4.5.23b)

It can be proven by direct substitution into (4.5.22b) and (4.5.22c) that

Wd(n; k) = Z(k − n)Q, for 1 ≤ n ≤ k < N, (4.5.23c)

and for k = N , we use (4.5.22a). We make use of these equations below.
The obvious definition of the matrix that carries the queue from n to n− l

is given by the following.

Definition 4.5.17
Wd(n → n − l; k) := probability matrix of dropping from n to n - l,
without exceeding k, where N ≥ k ≥ n.
The associated scalar, the down equivalent of Definition 4.5.13, is given
by Wd(n→ n− l; k) := Ψ [Wd(n→ n− l; k)]. Also,
Wk(k → 0) =Probability matrix that the queue will go all the way from
k to 0 without exceeding k < N. ���

From their definitions, we can say that Wd(k → k − 1; k) = Wd(k; k), and
for k < N ,

Wd(k → 0) = Wd(k; k)Wd(k − 1; k) · · ·Wd(1; k), (4.5.24a)

and for k = N ,
Wd(N → 0) = Q. (4.5.24b)

We must make one clarifying remark before going on. Recall that we used the
artificial convention that when no one was at S1, we would make believe that
the system was in internal state p. If we instead use the realistic convention
that an empty queue has only one state, we have the following column vectors.

w′
d(1; k) = [I + λV − λVWd(2; k)]−1ε′ε′ε′ for 1 < k < N. (4.5.25a)

278 4.5 Transient Behavior of M/ME/1 Queues

We also have
w′

d(1;N) = w′
d(N → 0) = ε′ε′ε′. (4.5.25b)

Note that these equations are for n = 1 only, because that is the only time
the empty queue is reached.

To go from the artificial to the real convention, one merely right-multiplies
with ε′ε′ε′ (Q ε′ε′ε′ = ε′ε′ε′). For instance,

w′
d(1; k) = Wd(1; k)ε′ε′ε′,

and conversely,
Wd(1; k) = w′

d(1; k)p.

The distinction between the vector and matrix objects becomes meaningful
when the arrival process is not Poisson, for then, even when the queue is
empty, the arrival process is in some state. We show this in Chapter 5.

Equation (4.5.24a) simplifies considerably when Equations (4.5.23) are
substituted into it, for now we have (using the real convention)

w′
d(k → 0) = Z(0)QZ(1) · · ·QZ(k − 1)ε′ε′ε′ for k < N.

But recall from Lemma 3.5.1 that Q2 = Q, and for any square matrix,
D,QDQ = Ψ [D]Q. Also note that Ψ [DQ] = Ψ [QD] = Ψ [D], so

Wd(n; k) = Z(k − n) := Ψ [Wd(n; k)] = Ψ [Z(k − n)] . (4.5.26a)

All this leads to, for k < N ,

w′
d(k → 0) = [Z(1)Z(2) · · · Z(k − 1)] (I + λV)−1ε′ε′ε′, (4.5.26b)

which is a vector.
The object in brackets is a product of scalars, and thus is itself a scalar, so

the vectors [w′
d(k → 0) for 1 ≤ k < N] are all proportional to the same vector

v′ := (I + λV)−1ε′ε′ε′. This vector is interesting in its own right, because from
(3.1.10), it is the generator of the Laplace transform of S1 [i.e., pv′ = B∗(λ)].
But what is more relevant to our discussion, is that pv′ is the probability that
S1 will complete service before S2, given that they started at the same time!
In fact, for any initial condition described by pi, piv′ is the probability that
S1 will finish before S2. Sometimes one wonders if the Laplace transform is a
mathematical trick to divert us from getting a physical insight as to what is
going on. D. G. Kendall [Kendall64] apparently shared this view in stating
the desire of ”... raising the Laplacian curtain which has hitherto obscured
much of the queue-theoretic scene.”

We see that (4.5.24) to (4.5.26) actually depend on N in an obvious but
nontrivial way. We do not make the notation any more complicated than it
is at present, because these matrices are of secondary importance to the last
defined function of this chapter. It was actually defined in Section 2.3.2 for
the M/M/1 queue. The same definition for the M/ME/1/ /N queue suffices
here as well. The object of interest is a scalar, because we both start and end
with no one at S1. Define the following scalar.

4 M/G/1 Queue 279

Definition 4.5.18
Wm(k;N) :=probability that the queue at S1 will reach a maximum of
k during a busy period of an M/ME/1/ /N loop. For this process to
occur, the queue must grow from 0 to k without ever returning to 0,
[pWu(1 → k)], and then it must reduce to 0 without ever exceeding
k, [w′

d(k → 0)]. ���

Therefore, we have

Wm(k;N) = pWu(1→ k)w′
d(k → 0), (4.5.27a)

which upon using (4.5.26) yields

Wm(k;N) :=

(
k−1∏
l=1

Z(l)

)
Ψ
[
Wu(1→ k)(I + λV)−1

]
, (4.5.27b)

and by putting (4.5.24b) into (4.5.27a) for k = N ,

Wm(N ;N) := Ψ [Wu(1→ N)] = Wu(1→ N). (4.5.27c)

With some practice, one can figure out what process is going on just by looking
at the terms in the equation. For instance, in (4.5.27b), the term inside the
Ψ brackets is the probability that the queue will get to k, [Wu(1→ k)], and
then drop back to k − 1, [(I + λV)−1]. ‡ Then the queue works its way back
to 0 without ever exceeding k [Z(1), Z(2), . . . , Z(k − 1)].

We are indeed fortunate to find Z(·)s that are so simple. For more com-
plicated systems (either load-dependent, M/ME/C, or ME/ME/1), we do not
find such simple equations for these processes, although the general formal-
ism is the same. We are still left with the question of how Equation (2.3.16b)
connects up and down operators. Recall that

Wm(k;N) = Wu(1→ k)−Wu(1→ k + 1),

thus, from (4.5.21b), (4.5.27a), and (4.5.26b), we can write

Wm(k;N) = pWu(1→ k)w′
d(k → 0)

= pWu(1→ k)[I−Wu(k)]ε′ε′ε′. (4.5.28a)

A sufficient condition for this to be true is for the following equation to be
true.

[I−Wu(k)]ε′ε′ε′ = w′
d(k → 0)

= [Z(1)Z(2) · · · Z(k − 1)] (I + λV)−1ε′ε′ε′. (4.5.28b)

It would be nice if we could prove this equality algebraically, for it might give
us some further insights into up and down processes.

We now show how this all fits together in the following summary algo-
rithm/theorem.

‡Remember, this is the operator which finds the probability that S1 will finish before
S2.

280 4.5 Transient Behavior of M/ME/1 Queues

Theorem 4.5.4: For any M/ME/1/ /N loop, and for any ρ, the
busy-period queue-length probabilities of Definitions 4.5.15 and 4.5.18
can be calculated using Equations (4.5.21), (4.5.23), and (4.5.27) [or
(4.5.28a)], in the following way.

BEGIN PROCEDURE

* Set
. Z(0) = (I + λV)−1,
. Wu(0) = 0,
. wu(1→ 1) = p
. z(1) = 1,
. Wm(1) = Ψ

[
(I + λV)−1

]
,

. Wu(1→ 1) = 1.

. FOR n = 1 TO NMAX, DO

. Z(n) := [I + λV − λVZ(n− 1)Q]−1,

. Wu(n) = λ[λI + B−BQWu(n− 1)]−1,

. wu(1→ n + 1) = wu(1→ n)Wu(n),

. Z(n) = Ψ [Z(n)]

. z(n + 1) = z(n)Z(n)

. Wu(1→ n + 1) = wu(1→ n + 1)ε′ε′ε′

. Wm(n + 1) = z(n + 1)wu(1→ n + 1)(I + λV)−1ε′ε′ε′.

. END FOR
END PROCEDURE

For any M/ME/1/ /N loop, with N ≥ 2, the probability that the queue
at S1 will contain at least n customers at one time during a busy period
is given by the sequence

1, Wu(1→ 2), Wu(1→ 3), . . . , Wu(1→ N − 1), Wu(1→ N).

The probability that the largest queue length during a busy period will
be n is given by the sequence

Wm(1), Wm(2), . . . , Wm(N − 1), Wu(1→ N).

(Note: The last term in the sequence is correct.) �

In both sequences, the dependence on N is determined by how one ends the
sequence. For the open queue, the sequences never end, but when ρ ≤ 1 they
tend to 0. If ρ > 1, then Wu(1 → N) will not approach 0, but instead will
approach

lim
N→∞

Wu(1→ N) = probability that a busy period will never end.

Example 4.5.6: We have calculated the Wm’s, once again for the
M/E2/1/20 queue, and compared them with the corresponding values for
the M/M/1/20 queue for three different values of ρ. The results are presented
in Figure 4.5.9. For any given ρ, when n is small, the curve for the exponen-
tial distribution is higher than that for the E2. But because the sum over all

4 M/G/1 Queue 281

integer points must be 1, the two curves cross somewhere, and for large n, the
curve for E2 is higher. We give the same warning here as we did for the other
curves. Although the two distributions yield similar results, one should look
for other distributions that could give radically different results. �

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
ρ = 0.5

← ρ = 0.9 M/M/1
← ρ = 0.9 M/E2/1

← ρ = 1.5 M/M/1
← ρ = 1.5 M/E2/1

ρ = 1.5 M/E2/1→

ρ = 1.5 M/M/1→

ρ = 0.9

Maximum number of customers at S1, n

 W
m

(
n;

20
)

Figure 4.5.9: Probability Wm(n; 20) as a function of n, for both the
M/M/1 and M/E2/1 queues. Three sets of curves are shown, for ρ = 0.5,
0.9, and 1.5. The curves for the M/M/1 queue are the same as those in Figure
2.3.4 as long as n < 20. The value at n = 20 corresponds to the probability that
the queue will exceed 19 during a busy period for any loop where N ≥ 20, so for
ρ > 1 it is quite significant. Even for ρ = 0.9, this probability is not negligible.
The sum over all integer points must be 1.

As a final comment, note that N = 1 is a trivial case, for then the queue
will always grow to 1, and never grow further before the busy period ends.
For N = 2, we have

Wm(1) = Ψ
[
(I + λV)−1

]
and

Wm(2) = λΨ
[
(λI + B)−1

]
.

The first equation, as we have noted before, is the probability that S1 will
finish before S2, and of course, the second term is the probability that S2 will
finish before S1. Their sum must be 1, which is easily shown by the following:

(I + λV)−1 + λ(λI + B)−1 = (I + λV)−1 + λV(I + λV)−1

= I + λV−1 = I,

followed by Ψ [I] = 1.

282 4.5 Transient Behavior of M/ME/1 Queues

4.5.4 Mean Time to Failure with Backup and Repair

Our emphasis so far has been on viewing customers as individuals who go
around in circles demanding service, one at a time, from two different sub-
systems. An increasingly important application, with a completely different
emphasis than we usually see in queueing theory texts, occurs in reliability
theory, where one asks such questions as: “how long it will take before a sub-
system has fewer functional components than is acceptable?” We are ready to
set up the procedure by which such questions can be analyzed, using the ma-
terial already discussed in this chapter. We are even prepared to solve many
of the simpler problems, although the question of how one deals with multiple
components functioning simultaneously must wait until Chapter 6. It is most
important to note that the procedures we discuss now generalize directly once
we have set up the structure for parallel processing.

Consider the following. Suppose that we have several identical appearing
devices (terminals, computers, automobiles, VLSI chips, etc.). Once one of
them is turned on, it continues to run until it fails (breaks down, or some-
thing). Assume that the lifetime of one of these devices is described by the
function R1(t). As you already know, this is the reliability function for S1,
which is where the name came from. That is, R1(t) is the probability that the
device will still be functioning t units of time after it was first turned on, and
b1(t) = −R′

1(t) is the pdf of the failure time. If only one device is available, the
Mean Time To Failure (MTTF) is the expected life of the device, namely,

T1 :=
∫ ∞

o

t b1(t) dt =
∫ ∞

o

R(t) dt.

(It is easy to show, and is well known, that the two integrals are always equal.)
Let there now be several devices available, and as soon as the first one fails,

a second one is started up. The second one is referred to as a cold backup
(cold, because it does not start up until the first one fails). If the first one
is discarded, the pdf of the time until both have failed is the convolution of
b1(t) with itself, with an MTTF of 2T1. Suppose, instead, that the broken one
is immediately sent to the repair shop (with only one repairman), where the
time it takes to fix it is distributed according to the pdf b2(x). As soon as it
is repaired, it is returned to the pool of available devices, as good as new [its
reliability function R1(t) is the same as it was the first time through]. The
question to be answered is: “how long will it take to reach the unfortunate
state where all the devices are in the repair shop?” Thus we have described
the title of this section.

Let us call the process above, scheme (1). There are numerous variations
that one can play on this scheme, some of which are: (2) failure occurs when
only one (or in general, k) device(s) is (are) still functioning; (3) a backup must
always be running, whether it is being used or not, even while the primary
device is still functioning (hot backup, or parallel redundancy); and (4) the
system has been running for some unknown time before questions are asked
(residual times). Schemes (2) and (4) can be treated with material that we
already have prepared in this chapter, but scheme (3) must wait until Chapter

4 M/G/1 Queue 283

6 and the M/G/C/ /N queue.
By now it should be clear to the reader that if we let S1 represent b1(t),

and b2(x) is exponentially distributed with mean 1/λ, then we are looking at
an M/ME/1/ /N loop, where N is the total number of devices (i.e., N − 1
backups). Following scheme (1), suppose that initially all devices are func-
tional, and one of them is started. Then the initial vector is p itself. The
MTTF in this circumstance is the same as the mean time for the N -busy
period, t(N → 0;N), as given in Definition 4.5.10. The utilization param-
eter ρ is less meaningful in this context. It is still λT1, which is now the ratio
of the mean lifetime to the mean repair time of a single device. We are not
particularly interested in systems where ρ is close to 1, nor do open systems
have much relevance (an infinite number of backups? Well, maybe in inventory
problems where new parts are being manufactured continuously). Instead, we
might expect ρ to be much greater than 1, because it usually takes much less
time to repair a device than it did for it to break in the first place (retail
commercial products such as children’s toys excepted).

Let us first examine our equations for N = 1. Here repair time is of no
significance (once you start falling, if you do not have a spare parachute, it is
no use telling you that your failed parachute “can be mended in no time at
all, after you land”), so as we said before, MTTF (1) = T1.

The case where N = 2 is most enlightening. As before, the mean time for
the first one to fail is T1, but now the race is on to see if the first device can
be repaired before the second one fails. According to (4.5.15),

MTTF (2) = td(1; 2) + td(2; 2).

But from (4.5.11a),

td(2; 2) = pτ ′
dτ
′
dτ
′
d(2; 2) = pVε′ε′ε′ = T1

(of course), and from (4.5.12),

td(1; 2) = pτ ′
d(1; 2) =

1
λ

Ψ [U(I + λV)] .

We played with expressions similar to this in Section 4.4.3. Look at (4.4.8b),
where C = λVD = I−D, D = (I + λV)−1, γ1 = Ψ [C] = 1−Ψ [D], and

pU(I + λV) =
1

1− γ1
pCD−1 = λΨ [D] pV.

Therefore, td(1; 2) = T1/Ψ [D], so

MTTF (2) = T1

(
1 +

1
Ψ [D]

)
. (4.5.29a)

As expected, the MTTF is proportional to the mean uptime of one device, but
it also depends on the term 1/Ψ [D], which can be interpreted as the expected
number of times the broken device will be repaired before the good one fails,

284 4.5 Transient Behavior of M/ME/1 Queues

given that both processes began simultaneously. First, we show that Ψ [D] is
truly the probability that repair will occur before backup failure.

Given that two processes (call them S1 and S2) begin simultaneously,

X := PPPr(S1 will finish before S2) =
∫ ∞

o

b1 (t)R2(t) dt.

But in our case, S2 is exponentially distributed, so R2(t) = exp(−λt), and
from (3.1.10),

X =
∫ ∞

o

e−λtb1(t)dt = B∗(λ) = Ψ
[
(I + λV)−1

]
= Ψ [D] .

Thus we have shown that the Laplace transform and the definition of X are
the same. Which interpretation is more basic to our understanding of this
process? Well, (4.5.29a) is also the expression for the MTTF of a G/G/1//2
queue, but in that case, altough the expression for X will still hold, there will
be no Laplace transform to interpret, because in that more general case R2 is
not exponential.

Let us look at (4.5.29a) one more time before going on to N > 2. Note
that if there is no repair (λ = 0), then X = 1, and MTTF (2) = 2T1, as al-
ready predicted. On the other hand, if repair is instantaneous (and breakdown
can never occur instantaneously), then X = 0 and MTTF (2) = ∞, also as
expected. A third possibility, implied by the parenthetical statement, is the
probability that breakdown can occur instantaneously. This would happen,
for instance, if the backup part was already faulty. We have almost completely
ignored this possibility in our discussions, but it is easily handled. It corre-
sponds to R1(0) = 1 − α < 1, and to a service time matrix, V, which has a
0 eigenvalue. Such distributions are referred to as defective distributions
[Feller71] and can be handled by a pdf of the form

b1(x) = αδ(x− 0+) + (1− α)f1(x),

where α is the probability that a part is faulty to begin with, and f1 is the
pdf for parts that are not faulty. δ is the Dirac delta function, which is
described in detail in (3.2.5), and in (5.1.12a) and following. If we put this
into the equation for X, and note that at least R2(0) = 1, we get

X = α + (1− α)
∫ ∞

o

f1(x)R2(x)dx. (4.5.29b)

From this we see that even if repair is almost instantaneous (assume that
instantaneous breakdown occurs before instantaneous repair), X must be
greater than α, and

MTTF (2) ≤ T1

(
1 +

1
α

)
<∞.

This implies that the behavior of b1(x) for very small x (even if there is no
instantaneous breakdown) could be critical for estimating the mean time to
failure of a system.

4 M/G/1 Queue 285

We were able to find a convenient expression for MTTF (2), but for N > 2
it becomes more tedious. Because (4.5.12) is fairly simple, we now seek a
general expression that is not recursive. From (4.5.12) and (4.5.13) we know
that td(N − l;N) = Ψ [UK(l)] /λ. Therefore from (4.5.15),

MTTF (N) = t(N → 0;N) =
1
λ

N∑
k=1

td(k;N) =
1
λ

N∑
k=1

Ψ [UK(N − k)] .

Now let l = N − k; then

MTTF (N) =
1
λ

N−1∑
l=o

Ψ [UK(l)] . (4.5.30a)

We actually have worked with something like this already, in Section 4.3.1.
There, in (4.3.4b) we showed that (we have replaced N with l + 1)

p[K(l + 1)− I] =
1

1− ρ

(
1−Ψ

[
UlλV

])
λpV.

But K(l + 1)− I = UK(l), so if we postmultiply with ε′ε′ε′, we get

Ψ [UK(l)] =
ρ

1− ρ

(
1− λΨ

[
UlV

])
.

When this is placed in (4.5.30a), and we use the fact that [see (4.1.6f)]

N−1∑
l=o

Ul = K(I−UN),

with K = (I−U)−1 [from (4.2.2a)], we get

MTTF (N) =
1
λ

ρ

1− ρ

(
N − λΨ

[
N−1∑
l=o

UlV

])

=
NT1

1− ρ
− ρ

1− ρ
Ψ
[
K(I−UN)V

]
.

Now, from its definition, we know that KU = K− I, and by postmultiplying
(4.2.3b) with U, we know that pKU = [λ/(1−ρ)]pV, so with some awkward
manipulation, we get the following expression.

MTTF (N) =
N − ρ

1− ρ
T1 − λ

1− ρ
Ψ
[
V2
]
+

ρ

1− ρ
Ψ
[
KUNV

]
. (4.5.30b)

This expression is deceptive in that it seems to be telling us that the MTTF
depends on Ψ

[
V2
]
, when it really does not, at least not for small N . When

N is small, the last term can be manipulated so that it cancels the middle
term, as well as the dependence on 1/(1 − ρ), as can clearly be seen from
the expressions we already derived for MTTF (1) and MTTF (2). However, it

286 4.5 Transient Behavior of M/ME/1 Queues

does tell us this much for ρ < 1. For then, UN gets to be negligibly small for
large N , and thus MTTF (N) grows as NT1/(1−ρ). Anyway, either (4.5.30a)
or (4.5.30b) can be used to calculate MTTF (N) in general.

From what we have seen in this section, there are unlimited variations
one can pursue based on what has been done. We have already suggested a
few. We elaborate further here. For instance, suppose that a system has N
devices, and one has just failed, leaving behind k good ones. What is the
MTTF then? The answer is t(k → 0;N), from (4.5.15). But what if you, as
the new manager have just arrived, and do not know when the last breakdown
occurred; what is the MTTF then? You are the random observer, and the
system was in state πrπrπr(k) (see Corollary 4.5.2b) when you arrived. Thus the
MTTF is the mean time to drop from k to k − 1, and thence to 0:

MTTF = πrπrπr(k)τ ′
dτ
′
dτ
′
d(k; N) + t(k − 1→ 0; N).

Suppose, instead, that you must change your plans once you are down to your
last device; what is the MTTF then? Just subtract td(1;N) from the above.

Now take a different viewpoint. What is the probability that the system
will fail (down to your last device) before it ever gets back to full strength?
Maybe you should quit now. This probability is given in Definition 4.5.17 and
is

πrπrπr(k)Wd(k → 1;N − 1)ε′ε′ε′.

(Note the N − 1.) By definition, Wd deals with not exceeding , while we are
seeking the probability of not reaching . So we did find an additional use for
the Wd matrices.

The open system also has some application in this context. Suppose that
instead of repairing devices, you go out and buy new ones when old ones
break. There is an unlimited supply of these devices on the market, but it
takes time to do this. If you work for a public university, the longest part
of this task is getting the purchase order approved. Because of the uncertain
delay, you try to have k devices on hand. The mean time until you run out of
devices is given by the k-busy period, which for the M/G/1 system is [from
(4.5.16b)]

lim
N→∞

t(k → 0;N) =
kT1

1− ρ
.

and so on and on and on.
We have seen an inkling of the power of LAQT in being able to separate

the initial conditions from the transition period from the final result. Now
what remains is for us to extend the procedure to include other, and more
general systems, which we do in the following chapters.

Chapter 5
G/M/1 QUEUE

Thou com’st in such a questionable shape.
Hamlet, Act I, Scene IV

If we knew what we were doing, it wouldn’t be called research, would it?
Albert Einstein

In Chapter 4 we talked about a closed loop made up of two subsystems, S1

and S2, where each subsystem was equivalent to a matrix representation of
some general distribution bi(x). The notation for such a loop is G2/G1/1/ /N ,
where the N stands for the number of customers in the loop. However, we
only treated the case where G2 = M [i.e., b2(x) is an exponential function]. In
that case we found that an arriving customer would find n customers already
in S1 with the same probability as he would leave n behind. Furthermore,
we showed that except for the fact that d(N ;N) = a(N ;N) = 0, these prob-
abilities are proportional to the random observer’s probability of finding n
customers there. We also argued that the “finite waiting room,” M/G/1/N
queue (i.e., where S1 could hold no more than N customers, thereby forcing
all extra arrivals to disappear), yielded the same results as M/G/1/ /N , by
virtue of the memoryless property of S2. The behavior of the open M/G/1
system came easily (provided that the utilization parameter ρ was less than
1) by letting N become unboundedly large. In that case, given that S2 was
the slower server, the probability that it would ever be idle went to zero. Then
it became a “constant” source of customers to S1, with independent, expo-
nentially distributed interarrival times, that is, a Poisson process. Finally, we
showed that the three queue length probabilities, a(n), d(n), and r(n), are all
equal.

In this chapter we turn things upside down by letting ρ be greater than 1.
Now, S1 is the slower server, and in the limit as N goes to infinity, becomes
a non-Poisson source of customers to S2, with interarrival times distributed
according to b1(x). We find that the limit, which yields the G/M/1 open queue
(at S2), does not come so easily, that the finite waiting room G/M/1/N
does not give the same results as the closed G/M/1//N loop, nor do the
arriving or departing customers see the same thing as our random observer.
The formulas are sufficiently simple that we can hope to gain physical insight
into the behavior of steady-state queues generally.

L. Lipsky, Queueing Theory, DOI 10.1007/978-0-387-49706-8 5, 287
c© Springer Science+Business Media, LLC 2009

288 5.1 Steady-State Open ME/M/1 Queue

This subject has been covered in many monographs. For instance, Klein-
rock [Kleinrock75] gives a classic solution of the G/M/1 queue that is in the
same form as our scalar solution. Cohen [Cohen82] covers many aspects of
the subject, and Ross [Ross92] provides an alternate approach using renewal
theory. The formulas given here extend the results in [CarrollLipvdL82]
and [Neuts82].

5.1 Steady-State Open ME/M/1 Queue

We make considerable use of the equations of Chapter 4. Therefore are forced
to retain the definition of ρ as λx̄, which could also be written as x̄1/x̄2,
because 1/λ = x̄2. Clearly, as we show presently, the utilization of S2 in an
open G/M/1 queue is given by x̄2/x̄1, which is 1/ρ. One must remember to
replace ρ by 1/ρ when comparing formulas given in this chapter to those given
in the general literature. To emphasize this difference, we here use the symbol
� (\varrho in LATEX) as the utilization parameter. That is,

� :=
1
ρ

=
x̄2

x̄1
·

We have to make some other notational changes; the first, referring to { ·; ·; · },
we give now.

Definition 5.1.1
{i; k; N} describes the state of the system, where N is the total num-
ber of customers in the system, k is the number of customers at
S2 (therefore there are N − k customers at S1), and i is the phase
in S1 that is busy . We might say that i ∈ Ξ is an internal state of
the system, and that {k; N} is an external state of the system. ���

The only change in notation from Section 4.1.1 is that now k stands for the
number of customers at S2, rather than S1. This the notation used throughout
this chapter.

Rather than introduce a collection of new notations, we modify previous
symbols. For instance, the d(n;N) of Chapter 4 (the vector probability that
a customer will leave n customers behind when departing S1) is now written
as d1(n;N), and we make three new definitions.

Definition 5.1.2
d2(k;N) := steady-state vector probability that a customer will leave k
customers behind when departing S2. Given that a customer has just
left S2 in an ME/M/1/ /N loop with nothing else known (another
viewpoint of the steady state), [d2(k;N)]i is the probability that k
customers are still at S2, and the active customer at S1 is at phase
i. d2(k;N) := d2(k;N)ε′ε′ε′ is the steady-state scalar probability that a
customer will leave k customers behind when departing S2. ���

We also say that this is the probability that the system will be in state
{i; k; N} immediately after a departure from S2.

5 G/M/1 Queue 289

Definition 5.1.3
a2(k;N) :=steady-state vector probability that a customer, upon arriv-
ing at S2, will find k customers already there. [a2(k;N)]i is the proba-
bility that there are now k+1 customers at S2, and the active customer
in S1 is at phase i. a2(k;N) := a2(k;N)ε′ε′ε′ is the associated scalar prob-
ability. ���

We also say that this is the probability that the system will be in state {i; k+
1; N} immediately after an arrival to S2.

Definition 5.1.4
π2π2π2(k;N) :=steady-state vector probability that there are k customers at
S2 in an ME/M/1/ /N loop. A random observer will find a long-running
system in state {i; k; N} with probability [π2π2π2(k;N)]i. r2(k; N) :=
π2π2π2(k; N)ε′ε′ε′ is the associated scalar probability. ���

As long as we have a closed system (i.e., N is finite), an arrival to one queue
corresponds exactly to a departure from the other queue, so for n + k = N ,
we have the following theorem:

Theorem 5.1.1 The steady-state vector probabilities for the
G/M/1//N queue follow directly from Equations (4.1.6) and Theo-
rem 4.1.4, and are given by:

a2(k;N) = d1(n− 1;N) = c(N)Ψ[UN−k−1]p, (5.1.1a)

d2(k; N) = a1(n− 1;N) = c(N)pUN−k−1, (5.1.1b)

d2(N ; N) = a2(N ;N) = o, (5.1.1c)

where 0 ≤ k < N , and

1/c(N) =
[
1− r1(N ;N)] = Ψ[I + U + U2 + · · ·+ UN−1

]
= Ψ

[
(I−UN)K

]
.

Also,
π2π2π2(k;N) := π1π1π1(N−k;N), (5.1.1d)

The sum of the first argument of the left-hand side of (5.1.1a)
and (5.1.1b), [k], and the first argument on the right-hand side of
those equations, [n − 1], is N − 1. The “1” missing is our customer-
observer. The scalar probabilities r2(k;N), d2(k;N), and a2(k;N)
are, as usual, found from their vector counterparts by dotting with ε′ε′ε′. �

There may be some confusion when dealing with vector probabilities. As be-
fore, [π1π1π1(n;N)]i is the steady-state probability of there being n customers at
S1 with phase i (in S1) busy. But the corresponding probability that there
are k customers at S2, and phase i in S1 is busy, given by the ith component
of the equation still refers to the internal status of S1. After all, S2 is rep-
resented by only one state, so it has no internal status. This becomes a bit

290 5.1 Steady-State Open ME/M/1 Queue

sticky when � < 1 (or when ρ > 1) and we go to the open system (N →∞),
for then we would like to think that S1 has somehow disappeared, and the
arriving customers are of their own volition select their interarrival times from
some nonexponential distribution. Conceptually, it is more useful to view S1

as being upstream from S2, with an inexhaustible supply of customers trying
to get through its gates, one at a time, of course. In any case the events at S1

have no inflence on what happens at S2.
It would seem that this notational change is unnecessary, and indeed it

is, but only as long as we are dealing with a closed system. In Chapter 4,
with ρ < 1, we let N go to infinity, holding n constant. In this chapter, with
1/ρ = � < 1, we want to let N go to infinity, holding k constant. This subtle
difference is best handled by our change of notation. Note that under these
conditions, with n fixed, d1(n;N), a1(n;N), r1(n;N), and π1π1π1(n;N) all go to
0 as N increases to infinity, just as d1(N−n;N), and so on did when ρ was
less than 1.

5.1.1 Steady-State Probabilities of the G/M/1 Queue

We can see from (4.2.2a) and (4.2.2b) that K exists whether ρ is greater than
or less than 1 (it only lacks definition when ρ = 1, in which case neither the
M/G/1 nor the G/M/1 queue has a steady-state solution). The problem is
that when ρ > 1, the limit of K(N) [Equation (4.2.4c)] does not exist! We
must be more careful in taking the limit. Let {si} be the set of eigenvalues
of A, where {ui}, and {v′

i} are the sets of left and right eigenvectors of
A, respectively. Define s to be the eigenvalue of smallest magnitude, with
corresponding eigenvectors u and v′. That is,

|s| = m
min
i=1
|si|.

For simplicity, assume that the eigenvalues are distinct (although what follows
only needs the fact (known from other sources) that s is unique, positive,
and less than 1). Then from the spectral decomposition theorem [Equation
(1.3.8a)],

A =
m∑

i=1

siv′
iui,

so (recall that U is the inverse of A)

UN =
m∑

i=1

(
1
si

)N

v′
iui. (5.1.2a)

Then it follows that

sNUN = v′ u +
m∑

i∗=1

(
s

si

)N

v′
i ui, (5.1.2b)

where i∗ stands for all terms excluding the term that corresponds to s. The
limit is now straightforward, because |s / si| is less than 1 for all i,

lim
N→∞

sNUN = v′u. (5.1.2c)

5 G/M/1 Queue 291

We are almost ready to move ahead, but first look at [from (4.1.6d)]

sNK(N) = sN [I + U + U2 + · · ·+ UN−1 + λUN−1V].

Note that for all N greater than 0,

[I + U + U2 + · · ·+ UN−1](I−U) = I−UN ,

and because K = (I−U)−1 exists, we have

sNK(N) = sN [(I−UN)K + UN (λAV)].

At last we are ready to let N go to infinity. Note that (we are assuming
that) 0 < s < 1, thus the term sNK goes to 0, leaving us with

F := lim
N→∞

sNK(N) = v′u[−K + λAV]

= − λ2

1− ρ
v′uAVQV = − λ2

1− ρ
v′uAVε′ε′ε′pV, (5.1.3a)

where we have made use of (4.2.2c). Equation (4.2.3a) finally comes in handy,
for it allows us to replace λAVε′ε′ε′ with (1− ρ)Kε′ε′ε′ to get

F = −λv′uKε′ε′ε′pV.

Ah, but K is a function of U, so it has u as a left eigenvector, and

uK = [I−U]−1u =
(

1− 1
s

)−1

u = − s

1− s
u.

That leaves us with the simple expression (it really is simple)

F =
(

λs

1− s
(u ε′ε′ε′)

)
v′pV, (5.1.3b)

where the expression in large parentheses is a scalar. The last preliminary
step is to find Ψ [F], which is (remember that 1/ρ = � < 1)

Ψ [F] =
(

λs

1− s
(uε′ε′ε′)

)
pv′pVε′ε′ε′ =

s(uε′ε′ε′)(pv′)
(1− s)�

· (5.1.3c)

From Theorem 4.1.2 and (5.1.1d), for k > 0,

π2π2π2(k;N) =
1

Ψ [K(N)]
pUN−k =

1
Ψ [K(N)]

pUNAk.

Now multiply and divide by sN and take the limit on N , while holding k fixed,

π2π2π2(k) := lim
N→∞

(
sNpUNAk

sNΨ [K(N)]

)
=

1
Ψ [F]

pv′uAk
.

292 5.1 Steady-State Open ME/M/1 Queue

Remember now that uA = su, and use (5.1.3c)

π2π2π2(k) = (1− s)� sk−1 u
uε′ε′ε′

, k > 0. (5.1.4a)

How interesting; all the vector probabilities for k > 0 are proportional to the
same isometric vector.

This vector appears often, therefore it is given the special symbol

û :=
u
uε′ε′ε′

, (5.1.4b)

where ûε′ε′ε′ = 1. We next look at k = 0. Now we have

π2π2π2(0) =
λ(1− s)

ρs
ûAV =

1
x̄1

(1− s)ûV. (5.1.4c)

We must think about this for a moment before going on. Here we have a simple
exponential server (S2), with no customers present, yet it has some memory
of when the last customer came. That is, the vector, π2π2π2(0), has nontrivial
components and is proportional to ûV, not û. (There is an analogy to this in
quantum electrodynamics, where empty space, the “vacuum,” has nontrivial
properties, as well as in the pre-Einsteinian view of the ether .) Now we can
appreciate the view that has S1 upstream, busily generating customers for S2,
even though k = 0. We must never lose sight of the fact that it is the system as
a whole that is in one state or another, not the subsystems by themselves. This
is particularly true in the steady state, where the two subsystems have been
exchanging customers for a long time. In our treatment of transient behavior,
we see (perhaps) that the two subsystems gradually become interdependent
as they exchange more and more customers.

The scalar probabilities r2(k) can now be found from Equations (5.1.4),
because r2(k) = π2π2π2(k)ε′ε′ε′. The formulas are summarized in the following.

Theorem 5.1.2 The steady-state probabilities of (a random ob-
server) finding k customers in an open ME/M/1 queue as given by
(5.1.4a) to (5.1.4c) can be written in the form (� = 1/ρ):

π2π2π2(0) = (1− �)
ûV
ûVε′ε′ε′

(5.1.5a)

and
π2π2π2(k) = (1− s)� sk−1û for k > 0. (5.1.5b)

The associated scalar probabilities are given by the following equations:

r2(0) = 1− � (5.1.5c)

and
r2(k) = (1− s)� sk−1 for k > 0. (5.1.5d)

The parameter s (with its associated left eigenvector û) is the small-
est positive eigenvalue satisfying ûA = sû, and ûε′ε′ε′ = 1. Because of

5 G/M/1 Queue 293

(5.1.5d) it is known as the geometric parameter for the G/M/1
queue. The mean queue length q̄2 and mean system time EEE[T2] are
given below in Equations (5.1.7). �
Proof: Note from (4.2.3a) that λAVε′ε′ε′ = (1− ρ)Kε′ε′ε′, so on premulti-
plying by û and rearranging,

ûVε′ε′ε′ =
1− �

(1− s)�λ
· (5.1.5e)

The rest follows directly. QED

So the probabilities are geometrically distributed, just as in the M/M/1 queue,
but with s instead of �. Also, r2(0) does not satisfy the general expression but
is what it should be, namely 1 minus the utilization [�] of S2.

This well-known result is simple in form but is deceptively complicated in
that the dependence of s on � is not easy to get in general. Only when b1(x)
is exponentially distributed does s = �. It is known from other sources that s
satisfies the following implicit relation. We state it as a corollary to Theorem
5.1.2 and prove it by purely algebraic means.

Corollary 5.1.2 The eigenvalue s is the smallest positive root of
the following implicit equation,

Ψ
[
(I + (1− s)λV)−1

]
= B∗[λ(1− s)] = s, (5.1.6a)

where B∗(·) is the Laplace transform of b1(x), the pdf of S1 (the in-
terarrival time distribution). The associated eigenvector satisfies the
equation

û = λpV (I + λ(1− s)V)−1
. (5.1.6b)

�
Proof: First we prove (5.1.6b). From its definition,

ûA = sû = û
(
I +

1
λ
B−Q

)
= û +

1
λ
ûB− p.

We have used the fact that ûQ = ûε′ε′ε′p = p. Next separate all terms
that contain û from those that do not.

û
(

(1− s)I +
1
λ
B
)

= p.

Now multiply both sides of the equation by λV:

û [I + λ(1− s)V] = λpV. (5.1.6c)

Multiplying both sides by the inverse of the matrix expression in large
brackets yields (5.1.6b). Because ûε′ε′ε′ = 1, Equation (5.1.6a) follows

294 5.1 Steady-State Open ME/M/1 Queue

after some manipulation, by multiplying (5.1.6b) on the right with the
vector ε′ε′ε′, noting that

λV [I + λ(1− s)V]−1 =
1

1− s

(
I− [I + λ(1− s)V]−1

)
.

Then, recalling (3.1.10), the matrix definition of the Laplace transform,
the proof is completed. QED

It remains to verify that the probabilities sum to 1.

Exercise 5.1.1: Show that
∑∞

k=o r2(k) = 1.

To find s, one must either solve an eigenvalue problem, or find the small-
est positive root of (5.1.6a). In either case, numerical techniques are usually
required. Once s is known, (5.1.6b) gives us û. As with many other objects
we encounter in this book, û has more information in it than that for which
it was derived. In particular, it contains information regarding the arrival of
the next customer. We discuss this further in the next section, after deriving
the departure probabilities.

Exercise 5.1.2: The vector probabilities must also satisfy a sum rule.
If a random observer watches S1 without taking any notice of the num-
ber of customers at S2, she sees customers perpetually coming and
going, or equivalently (if she doesn’t distinguish one customer from
another), a single customer leaving and immediately returning to S2,
as described in Figure 3.5.3 with α = 1. The steady-state vector for
this process is given by Theorem 3.5.3a to be πππr. Therefore, prove by
algebraic manipulation that

∞∑
k=o

πππ2(k) = πππr =
pV

pV ε′ε′ε′
·

Use Theorem 5.1.2 and (5.1.5e).

We next find the mean queue length and system time. Because the r2(k)s
are of geometric form, it is just as easy to get the z-transform of {r2(k) | k ≥ 0}
as it is to get q̄2 directly. By definition,

Q2(z) =
∞∑

k=0

zk r2(k) = 1− � +
(1− s)�

s

∞∑
k=1

(zs)k = 1− � +
(1− s)� z

1− zs
·

We rewrite this in the form

Q2(z) = 1 +
(z − 1)�
1− zs

· (5.1.7a)

5 G/M/1 Queue 295

Obviously, Q2(1) = 1, and the derivative evaluated at z = 1 yields the mean
queue length,

q̄2 =
[
dQ2(z)

dz

]
z=1

=
�

1− s
· (5.1.7b)

As in Chapter 4 [Equation (4.2.6e)], we use Little’s formula to get the mean
system time (in this case, the arrival rate to S2 is 1/x̄1, and x̄2 is 1/λ),

EEE[T2] = x̄1q̄2 =
x̄2

1− s
=

1/λ

1− s
· (5.1.7c)

Again, this formula looks very similar to (2.1.7b) for the M/M/1 queue, except
that s appears instead of �. EEE[T2] becomes unbounded when s approaches 1.
The graph of (5.1.7c) for the D/M/1 queue was given in Figure 1.1.2, together
with various M/G/1 queues.

It should be comforting to know that s/� goes to 1 as � approaches 1 from
below. We explore the relation between � and s further in Section 5.1.3.

Exercise 5.1.3: Verify that (5.1.7a) and (5.1.7b) are indeed true.

5.1.2 Arrival and Departure Probabilities

The hard work has already been done in preparing to take the limit as N goes
to infinity of the arrival and departure probabilities. From Theorem 5.1.1 we
have the following string of equalities.

a2(k;N) = d1(N−k−1;N) =
r1(N−k−1;N)
1− r1(N ;N)

p =
r2(k+1;N)
1− r2(0;N)

p.

We already found the limits of both numerator and denominator for the last
expression, and they are each finite [Equations (5.1.5c) and (5.1.5d)], so

a2(k) := lim
N→∞

a2(k;N) =
1

1− (1− �)
[�(1− s)]skp = (1− s)skp. (5.1.8a)

The scalar probabilities obviously satisfy

a2(k) = (1− s)sk. (5.1.8b)

We point out that (5.1.8a) and (5.1.8b) are valid for all k, even k = 0, which
is not the case for r2(k) and π2π2π2(k). Also, note that (not merely at k = 0)
a2(k) does not equal r2(k), and a2(k) is not even parallel to π2π2π2(k)! Well,
it is not all that bad. After all a2(k) (k
= 0) is proportional to r2(k) [i.e.,
a2(k) = sr2(k)/�, for all k greater than 0].

The d2(k)s can be found in a manner identical to that for a2(k). From
(5.1.1b) and (4.1.13a),

d2(k;N) =
1

1− r2(0;N)
π2π2π2(k+1;N).

296 5.1 Steady-State Open ME/M/1 Queue

The limit follows directly. The different formulas are collected in the following
theorem.

Theorem 5.1.3 The steady-state probabilities of queue lengths as
seen by customers arriving to, and departing from an open ME/M/1
queue are given for all k ≥ 0 by [repeating Equation (5.1.8a)]

a2(k) = (1− s)skp, (5.1.9a)

d2(k) = (1− s)skû, (5.1.9b)

and
d2(k) = a2(k) = (1− s)sk. (5.1.9c)

Equation (5.1.9a) is so simple that we can immediately write down the
probability that an arriving customer will find k or more customers
already in the queue. That is,

Po2 := PPPr(K ≥ k) =
∞∑

�=k

a2(�) = sk. (5.1.9d)

As in previous chapters, this is also referred to as the overflow proba-
bility.

Thus we have shown for this simple system that except for the M/M/1
queue, a2(k), d2(k), and π2π2π2(k) are distinctly different. They are similar,
but nonetheless different. �

The form of (5.1.9c) is so familiar by now that one can truly say “it is
obvious that” the sum of the a2(k)s is 1, and the mean queue length seen
by both a departing and an arriving customer is s/(1 − s). Although the
difference seems minor, it is important to recognize that this quantity is not
equal to the mean queue length as seen by our random observer, q̄2 [Equation
(5.1.7b)]. As with the a2(k) and r2(k), they differ by the factor s/�. It is
(5.1.7b) that one uses in Little’s formula to get the mean system time, as we
did in (5.1.7c). We now use a2(k) to find EEE[T2] from its definition. Given that
S2 is an exponential server, there is no distinction between its mean time and
its residual time, so the care we had to take in Section 4.3.1 is not necessary
here. If there are k customers at S2 (including none) when a customer arrives,
he will have to wait an average of (k + 1)x̄2 units of time before leaving. The
mean time averaged over all queue lengths is

EEE[T2] =
∞∑

k=0

a2(k)(k+1)x̄2 = (1− s)x̄2

∞∑
k=0

(k + 1)sk

=
(1− s)x̄2

s

∞∑
k=1

ksk =
x̄2

1− s
,

the same as (5.1.7c). Our purpose here was to prepare the reader to derive
the system time distribution.

5 G/M/1 Queue 297

Exercise 5.1.4: In Exercises 2.1.7 through 2.1.9 we examined how
and when one might improve service for an M/M/1 queue when the
arrival rate gets too big. Here we look at one more simple possibility.
Recall that for System (B) when a customer arrives at the dispatching
point he is randomly sent to one or the other of the two queues (two
M/M/1 queues, each with one half the arrival rate), but in System (C)
the customers queue up at the dispatcher, and are later sent to the first
available server (an M/M/2 queue). Consider the following dispatching
procedure. When a customer arrives at the dispatching point he is
immediately sent to the queue least recently visited. That is, customer
1 goes to server 1, customer 2 goes to server 2, customer 3 goes to server
1, and so on. What each queue sees is the arrival of customers separated
by two exponential intervals. In other words, the arrival process is an
Erlangian-2 renewal process. Call this double E2/M/1 queue System
(E). Redo Exercises 2.1.7 and 2.1.9 using System (E) and compare with
Systems (A) through (D). You should find that TE falls between TB

and TC .

The time for a customer to go through an exponential server k + 1 times,
or equivalently, of k +1 customers going through one at a time, is distributed
according to the Erlangian-(k+1) distribution [Ek+1(x;λ)] whose pdf is given
in (3.2.1a), and is λ(λx)ke−λx/(k!). The weighted average over all k is, then,

b2s(x) :=
∞∑

k=0

a2(k)Ek+1(x;λ) = (1− s)λ
∞∑

k=0

sk (λx)k

k!
e−λx

= (1− s)λ

(∞∑
k=0

(λsx)k

k!

)
e−λx,

or finally,
b2s(x) = (1− s)λe−(1−s)λ x. (5.1.10)

So the system time is exponentially distributed, with mean time equal to
1/[(1− s)λ] (but we already knew EEE[T2]).

5.1.3 Properties of Geometric Parameter s

Theorem 5.1.2 showed us that the behavior of the G/M/1 queue is dominated
by the geometric parameter s. Even û can be evaluated from (5.1.6b) if we
know s. The value of s can be found from any one of the three equations: (1)
(5.1.6a); (2) (3.1.10); or (3) ûA = sû, by a root-finding or other numerical
technique. That is, for a given arrival process, with interarrival times generated
by 〈〈〈p , B 〉〉〉, and given λ, s is uniquely determined by any of these equations.
The properties of s are best understood by thinking of it as a function of λ,
or ρ, or better, �. How one should calculate numerical values for s is a matter
of taste and numerical analysis and is by and large outside the interests of

298 5.1 Steady-State Open ME/M/1 Queue

this book, but we mention some points so that the reader may avoid possible
pitfalls.

For convenience of description, in the rest of this section we make the
following symbol changes. Recall that ρ = λT , where

T := x̄1 = Ψ [V] .

We have already defined �, which can now be written as

� :=
1
ρ

=
1

λT
.

Therefore, we replace λ whenever it is to our convenience with 1/T�.

When S1S1S1 Is Exponential
Let us start slowly and see what the three formulas tell us when S1 is an expo-
nential server. In that case, B becomes μ = 1/T , V becomes T , Q becomes 1,
and A = 1 + (1/λ)μ− 1 = �. Thus the eigenvalue equation ûA = sû reduces
to � = s. This obvious result tells us that the G/M/1 queue reduces to the
M/M/1 queue when G is Poisson (that is obvious). Equation (5.1.6a) is not
quite so simple. From that equation, s = B∗[(1− s)λ] = B∗[(1− s)/(�T)], so

s =
∫ ∞

0

exp[−x(1− s)/�T]
e−x/T

T
dx =

1/T

1/T + (1− s)/(�T)
=

�

� + (1− s)
.

After we clear fractions, we get s� + s(1− s) = �, or

(1− s)� = (1− s)s.

Notice that although we get the root we are looking for, s = �, we also get
the meaningless, extraneous root s = 1, for all �. This extraneous root always
appears for any distribution, reflecting the fact that the integral of b(x) is
1. It can get in the way when � is close to 1, and can be a real drag when
one is looking for heavy traffic performance, as we show presently. The third
equation has the same difficulty, but we can get around that. First, (3.1.10)
gives us the following when S1 is exponential.

s = Ψ
[
(I + (1− s)λV)−1

]
=

1
1 + (1− s)T/(�T)

,

which, indeed, leads to the same awkward equation we had before. Now let
us play a little trick for any ME distribution, by noting that s = Ψ [sI] in
(3.1.10), then (keep λ for the moment)

0 = Ψ
[
[I + (1− s)λV]−1 − sI

]
= Ψ

[
[I + (1− s)λV]−1[I− sI− (1− s)sλV]

]
,

or
(1− s)Ψ

[
[I + (1− s)λV]−1[I− λsV]

]
= 0.

Therefore, we can throw away the term (1−s) before we begin. Finally, replace
λ, clear fractions, and after some other trickery, get the following alternative
equation,

Ψ
[
V[�T I + (1− s)V]−1

]
= 1. (5.1.11)

5 G/M/1 Queue 299

This form is about as good as we can get for the purposes we have in mind.
In particular, we can see that when � = 0, we must have s = 0, and if s = 1,
� must be 1 also. This is true for every G/M/1 queue, except for those for
which the interarrival time distributons are defective , or equivalently, have
an initial impulse, which we now discuss.

Defective Distributions
Distributions with an initial impulse are those for which R(0) < 1, or equiv-
alently, B(0) > 0. When a customer finally gets to be served, he decides with
probability p = B(0) that he does not need any service. Such distributions are
not uncommon. For instance, in reliability theory, this is the probability that
a device will be faulty even though it is brand new, an important problem to
worry about. Any distribution that has this property has a pdf of the form

b(x) = pδ(x) + (1− p)ba(x), (5.1.12a)

where ba(x) is the pdf of those devices that function properly initially [i.e.,∫
ba(x) dx = 1], and δ(x) is the Dirac delta function, which has these

properties: ∫ b

−a

δ(x) dx = 1 for every a, b > 0,

or

f(0) =
∫ ∞

−∞
f(x)δ(x) dx

for all f(x) which are continuous at x = 0, or

f(t) =
∫ ∞

−∞
f(x)δ(x− t) dx.

It can also be viewed as the derivative of the unit step function , which
satisfies

Δ(t) =
∫ t

−∞
δ(x) dx

Δ(t) =

⎧⎨
⎩

0 if t < 0
1
2 if t = 0
1 if t > 0

·

Pictorially think of δ(x) as a spike of infinite height with unit area and 0
width, or the limit of a family of very high but very narrow functions. One
such example was given in Example 3.2.1 as the limit of the set of Erlangian-k
distributions with the same mean. There are other ways to look at it.

Anyway, we can also write

B(x) = p + (1− p)Ba(x) (5.1.12b)

and
R(x) = (1− p)Ra(x). (5.1.12c)

300 5.1 Steady-State Open ME/M/1 Queue

This distribution has the following Laplace transform.

B∗(s) =
∫ ∞

0−
e−sx[pδ(x) + (1− p)ba(x)] dx = p + (1− p)B∗

a(s).

The LAQT treatment is as follows. Let ba(x) be generated by 〈〈〈pa , Va 〉〉〉;
then

V =
[

0 o
o′ Va

]
and p = [p, (1− p)pa], (5.1.13)

where pa ε′ε′ε′ = 1. Be careful; V does not have an inverse, but luckily, (5.1.11),
which we worked so hard to get, does not have B in it. The mean time T ,
for the process represented by 〈〈〈p , V 〉〉〉, is related to the mean time Ta for the
process 〈〈〈pa , Va 〉〉〉 by the following.

T = Ψ [V] = pVε′ε′ε′ = (1− p)paVaε
′ε′ε′ = (1− p)Ψa [Va] = (1− p)Ta.

If some customers take no time at all, the rest must take more time than the
overall average, so Ta > T if p > 0.

When (5.1.13) is substituted into (5.1.11), the following expression results.

(1− p)Ψa

[
Va[� T I + (1− s)Va]−1

]
= 1. (5.1.14a)

For s = 1, this equation yields

(1− p)
� T

Ψa [Va] =
(1− p)Ta

� T
=

T

�T
= 1;

that is, � = 1, as before. But if � = 0, then (5.1.14a) yields

(1− p)Ψa

[
Va[(1− s)Va]−1

]
=

1− p

1− s
= 1,

or s = p. What this means is the following. Even though arrivals are infrequent
(after all, � is 0), when a customer does arrive, there is a finite probability [p]
that he will be followed immediately by a second customer, and this second
customer will have to wait for the first one to finish. It is even possible for a
third (p2) or fourth (p3) or more customers to arrive together. This implies
that even if the arrival rate is negligible, the waiting time T2w (the time a
customer must wait from the moment he arrives at S2 until he begins to be
served) will be greater than 0. From (5.1.7c), and (2.1.7c), the mean waiting
time for a G/M/1 queue is given by

EEE[T2w] = EEE[T2]− x̄2 =
s

1− s
x̄2,

where the reader should remember that we are now looking at S2, whereas in
Chapter 2 we were looking at S1. In the limit as the arrival rate goes to 0, we
see that

lim
�→0

EEE[T2w] =
p

1− p
x̄2 > 0 as long as p < 1. (5.1.14b)

5 G/M/1 Queue 301

Notice that this is equivalent to a bulk arrival process (or batch arrival
process) which is geometrically distributed; that is, given that an arrival has
occurred, (1 − p)pj−1 is the probability that j ≥ 1 customers have arrived
together (in bulk).

As a final comment, if ba(x) is exponential, b(x) is often referred to as a
generalized exponential, or degenerate hyperexponential distribution,

and has been used as a test function for studying the performance of various
systems (see e.g., [Guptaetal07]). It is convenient to use because it only
depends on two parameters and can have arbitrarily large variance. But its
singular behavior at x = 0 can lead to spurious results. For further discussion
see ”Distributions Coming from Singular B or V” following Figure 3.2.4.

Behavior of sss As a Function of ���

In Chapter 4 we saw that the mean system time and mean queue length for
an M/G/1 queue depend on the factor 1/(1− ρ). This was simple enough to
visualize, but from (5.1.7c) for G/M/1 queues, the mean system time depends
on the factor 1/(1− s). To visualize this we must first find how s varies with
�, which we now propose to do.

What we have discovered so far can best be summarized by Figure 5.1.1,
where s is plotted as a function of �. We are examining several distributions
here, therefore we use the notation s(�;X), to indicate the dependence of s
on � for the distribution symbolized by X. For the M/M/1 queue [X = M],
s(�;M) = �, corresponding to the straight line from (0, 0) to (1, 1). If there is
an initial impulse [X = Mp], then s(0) = p. The Mp/M/1 queue with initial
impulse p corresponds to the straight line from (0, p) to (1, 1), or s(�;Mp) =
p + (1− p)�.

For general interarrival time distributions [X = G], s(�;G) also increases
monotonically until it reaches (1, 1). We know that the larger s is, the longer
will be the system time, from (5.1.7c). We also know that the system time
can be reduced by regulating arrivals, and the most regular arrival pattern
is the one where the time between arrivals is constant. In other words, the
deterministic distribution [X = D], given by

bD(x) = δ(x− T) or BD(x) = Δ(x− T),

should yield the smallest s for a given �. Said yet another way, the D/M/1
queue has the shortest mean system time among all G/M/1 queues with the
same �. Unfortunately, there is no finite-dimensional representation of BD(x);
therefore we have to resort to (3.1.10) to find the dependence of s on �. From
that equation (remembering that λT = 1/�),

s =
∫ ∞

0

e−λ(1−s)xδ(x− T) dx = e−(1−s)/�. (5.1.14c)

Notice that s = 1 is a solution to this equation for all �, but as we stated pre-
viously, this root has no physical significance except when � = 1 also. It turns
out that one can draw the graph of the relation between s and � by solving
for � (one cannot solve explicitly for s). The function � = (s−1)/ log(s) yields

302 5.1 Steady-State Open ME/M/1 Queue

the graph labeled D on Figure 5.1.1. This curve is the greatest lower bound
for all possible distributions, for every � between 0 and 1. That is, let s(�;G)
be the geometric parameter corresponding to some general PDF, BG(x). Then

s(�; G) ≥ s(�;D) for all 0 ≤ � ≤ 1.

Example 5.1.1: For comparison, we have plotted the geometric parameter
for the uniform distribution [X = U], the Erlangian-k, for k = 2, 4, 8 [Ek],
the Erlangian-2 with initial impulse p = 0.1 [E2p], and a hyperexponential-2
distribution with squared coefficient of variation [recall that C2

v = σ2/(x̄)2]
equal to 10 [H2]. Again, the uniform distribution required the use of (3.1.10),
but the others, being proper ME distributions, were best suited for (5.1.14a).

Note that, indeed, all the curves satisfy the bound theorem just stated,
and in fact, s(�;Ek) approaches s(�;D) from above for all �, as k →∞:

lim
k→∞

[s(�;Ek)− s(�;D)] = 0+, for all 0 ≤ � ≤ 1.

This equation indicates how the deterministic distribution is approximated
arbitrarily closely by a family of finite-dimensional ME distributions. We can
say that

δ(x− T) = lim
m→∞Em(x;m/T),

where Em(x;α) is defined in (3.2.1a). Therefore, in some sense, the determin-
istic distribution is an ME distribution because it is a member of the closure
set. Further discussion in this vein requires more advanced mathematics than
we ask for understanding this book, so we leave it to the experts. �

Behavior of sss Near � = 0� = 0� = 0 and � = 1� = 1� = 1
It is commonly accepted that if the coefficient of variation for a given distri-
bution is greater than 1, its geometric parameter will be greater than that
for the M/M/1 queue [i.e., s(�;G) > �], and if C2

G < 1, we would expect
s(�;G) < �. Although this is true for � sufficiently close to 1, it need not be
true for all �. The function s(�;H), with C2

H = 10, clearly satisfies this rule.
So does s(�;U), with C2

U = 1/3. However, s(�;E2p), for which C2
2p = 2/3,

clearly does not, as seen by the crossing of the two curves corresponding to
E2p and M .

We cannot in general show how s varies explicitly with �, except by direct
numerical computation. However, we can see their relation more clearly near
� = 0 and 1, by expanding s in a Taylor series about each of those points. To
do this, we need to know the derivatives of s with respect to � there. We do
not have an explicit relation between the two variables, so we must perform
the differentiation implicitly. Consider the function, taken from (5.1.14a),

g(s; �) := (1− p)Ψa

[
Va[� T I + (1− s)Va]−1

]− 1. (5.1.15a)

For a given �, the geometric parameter for the G/M/1 queue satisfies the
equation: g(s; �) = 0. In particular, we know that

g(p; 0) = 0 and g(1; 1) = 0. (5.1.15b)

5 G/M/1 Queue 303

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H2

D

Mp

M

U

E2p

E2

E4

E8

Utilization factor, �

G
eo

m
et

ri
c

pa
ra

m
et

er
,
s(

�;
G

)

Figure 5.1.1: Dependence of s, the geometric parameter of the
steady-state G/M/1 queue, on the utilization � = 1/λT = x̄2/x̄1

for various interarrival time distributions. The distributions and their
labels are (M), exponential; (Mp), exponential with initial impulse, p = 0.1;
(Ek), Erlangian-k, for k = 2, 4, 8; (E2p), Erlangian-2 with initial impulse; (D),
Deterministic; (U), uniform; and (H2), hyperexponential-2, with C2

v = 10. All
possible geometric parameters must be monotonically nondecreasing functions of
�, bounded from below by s(�; D), and bounded from above by s = 1. For all
distributions s(1; G) = 1.

Next we can write
dg

d�
=

∂g

∂s

ds

d�
+

∂g

∂�
= 0.

Therefore, we have
ds

d�
= −∂g

∂�
/

∂g

∂s
· (5.1.16)

The higher derivatives can be computed by differentiating this expression over
and over again. We spare the reader this tedium, and only quote the results.
However, we go part of the way, so as to prove that all the derivatives of s
evaluated at � = 1 depend only on the moments of the distribution function.
We also prove that all the derivatives of s evaluated at � = 0 depend only on
the value of B(x) [or R(x)] and its derivatives at x = 0+.

First, from Equations (5.1.12), we see that the kth derivatives of R(x) and
b(x) are related to the derivatives of Ra(x) and ba(x) by the following. For
k ≥ 1:

B(k)(x) :=
dkB(x)

dxk
= (1− p)B(k)

a (x) = −(1− p)R(k)
a (x), (5.1.17a)

304 5.1 Steady-State Open ME/M/1 Queue

and for x > 0
b(k)(x) = (1− p)b(k)

a (x). (5.1.17b)

Next note from its definition that Ψ [Vn] = (1−p)Ψa [Va
n], so, using (3.1.8b)

and (3.1.9), we can write for k, n ≥ 0

b(k)(0+) = −R(k+1)(0+) = (1− p)b(k)
a (0) = (−1)k (1− p)Ψa[Ba

k+1],
(5.1.17c)

and (pick any pair)

EEE[Xn] = n!Ψ [Vn] = n!(1− p)Ψa [Va
n] = (1− p)EEE[Xn

a]. (5.1.17d)

Now we show the utility of (5.1.15a) (and LAQT) for finding the derivatives
of functions. As we do so often, we define an auxiliary function that seems
to be more general than we need, and then come up with simpler expressions
than we otherwise would. Let

G(k, l; �) := (1− p)Ψa

[
Va

k[� T I + (1− s)Va]−l
]
, (5.1.18a)

for k, l ≥ 1. We have suppressed the dependence on s, because it, in turn,
also depends on �. Then from (5.1.15a),

g(s; �) = G(1, 1; �)− 1. (5.1.19)

Now we are ready to take partial derivatives.

Gs(k, l; �) : =
∂

∂s
G(k, l; �)

= l(1− p)Ψa

[
Va

k+1[� T I + (1− s)Va]−(l+1)
]
.

Thus
Gs(k, l; �) = lG(k+1, l+1; �). (5.1.20a)

Similarly, we can show that

G�(k, l; �) :=
∂

∂�
G(k, l; �) = −lTG(k, l + 1; �). (5.1.20b)

We can use these equations to differentiate over and over again. For instance,
applying (5.1.20b) twice, we get

G��(k, l; �) = l(l + 1)T 2G(k, l + 2; �),

and applying (5.1.20a) and (5.1.20b) once each, we get

G� s(k, l; �) = Gs �(k, l; �) = −l2 TG(k+1, l + 2; �).

Notice that if we start with l ≥ k, then no matter how many partial deriva-
tives we take of both kinds, we will always end up with an expression where
the second argument of G is greater than, or equal to, the first argument. As

5 G/M/1 Queue 305

long our object is to differentiate g(s; �) (where k = l = 1), this will always
be the case.

Actually, we are only interested in the G’s when � = 0 (s = p) and � = 1
(s = 1). Thus (use Va = Ba

−1)

G(k, l; 0) = (1− p)Ψa

[
Va

k[(1− p)Va]−l
]

= (1− p)−(l−1)Ψa

[
Ba

l−k
]

(5.1.21a)

(we have assumed that l ≥ k) and

G(k, l; 1) = (1− p)T−lΨa

[
Va

k
]

= T−lΨ
[
Vk
]
. (5.1.21b)

Notice that all the G functions, evaluated at � = 0, depend only on the
scalars, Ψa

[
Ba

j
]

(for j ≥ 0), which from (5.1.17c) tells us that they depend
on R(x) and its derivatives at x = 0 only. Also notice from (5.1.21b) that
the value of G at � = 1 does not explicitly depend on the initial impulse,
as represented by p and a, and in fact, depends only on the moments of the
interarrival time distribution. Although (5.1.21a) and (5.1.21b) only explicitly
apply to ME distributions, (5.1.17c) and (5.1.17d) allow us to extend the
equations to any distribution for which the appropriate objects exist:

G(k, l; 1) =
EEE[Xk]
k!T l

. (5.1.21c)

and

G(k, l; 0) =
(−1)l−k

(1− p)l
R(l−k)(0+). (5.1.21d)

Such relations could have been derived without the aid of the ME formulas,
but the mathematical difficulties would have been enormous. For instance,
l′Hospital’s rule must be applied k + 1 times just to get the kth derivative.
The reader should try it and see.

Okay, let us see what all this has done for us. Return to (5.1.16), and use
(5.1.19) and (5.1.20), to get

s′(�; G) :=
ds

d�
= −G�(1, 1; �)

Gs(1, 1; �)
=

TG(1, 2; �)
G(2, 2; �)

. (5.1.22a)

For � = 1, using (5.1.21b), we have (remember, Ψ [V] = EEE[X] = T)

s′(1; G) = T
Ψ [V]
T 2

× T 2

Ψ [V2]
=

T 2

Ψ [V2]
. (5.1.22b)

But Ψ
[
V2
]

= EEE[X2]/2, EEE[X2] = T 2 + σ2, and C2
v = σ2/T 2, so

s′(1; G) =
2

1 + C2
v

. (5.1.22c)

306 5.1 Steady-State Open ME/M/1 Queue

Given that s′(1;M) = 1, (5.1.22c) tells us that any interarrival time distribu-
tion that has a coefficient of variation less than (greater than) 1 will have a
slope greater (less) than 1, and thus its geometric parameter must be below
(above) that for the M/M/1 queue as they both approach (1, 1). The largest
slope attainable occurs for the deterministic distribution for which C2

v = 0
and s′(1;D) = 2; thus all other curves must lie above it (at least for � near
1). In a similar fashion we can show that (pick one)

s′(0; G) = TΨa [Ba] = Tba(0) =
Tb(0+)
1− p

= (1− p)Taba(0). (5.1.22d)

Although the above equations appear to depend on two factors (T and
b(0)) they actually are related and produce only one independent parameter.
In studying the behavior of G/M/1 queues one commonly varies the arrival
rate of customers, or equivalently, the interarrival time, without varying the
interarrival time distribution. In Definition 3.2.1 we discussed what it means
to have two distributions with the same shape. We apply it to the expression
TΨa [Ba]. First define the matrix,

Bao := TaBa,

with inverse Vao = (1/Ta)Va. Then, for instance, Ψa[Vao] = 1, and
〈〈〈pa, Ba 〉〉〉 ∼ 〈〈〈pa, Boa 〉〉〉, from which is follows that 〈〈〈p, B 〉〉〉 ∼ 〈〈〈p, Bo 〉〉〉. In
other words, the PDFs generated by these representations (F (x) and Fo(x))
look alike, as would be expected for some renewal process where the arrival
rate is changed. Then (5.1.22d) yields

s′(0; G) = T
1
Ta

Ψ[Bao] = (1−p)Ψ[Bao] = (1−p)bao(0) = bo(0+). (5.1.22e)

We see from this that s′(0; G) does not depend on T .
We now see how s behaves by expanding it in a Taylor series around 0 and

1. But keep in mind that these expansions are valid only if all the derivatives
of b(x) exist around x = 0+. A Taylor series expansion near � = 0 gives us

s(�; G) ≈ p + s′(0; G)� +
1
2
s′′(0; G)�2 + · · · (5.1.23a)

and for � near 1,

s(�; G) ≈ 1− s′(1; G)(1− �) +
1
2
s′′(1; G)(1− �)2 + · · · . (5.1.23b)

Equation (5.1.23a) tells us that if p > 0, then s(�;G) > s(�;M) near � = 0,
and if p = 0, (5.1.22d) tells us that s(�;G) is greater (less) than s(�;M) if
Tb(0) > 1 [Tb(0) < 1]. It follows from (5.1.14c) that

s(�;D) ≈ e1/� for small �, (5.1.23c)

therefore, all its derivatives are 0 at � = 0+. This does not actually violate
Taylor’s theorem, because s(0−;D) does not exist, so (5.1.23a) does not hold,

5 G/M/1 Queue 307

but it does tell us that s(�;D) is very flat near 0, and thus bounds all other
s functions from below (at least for � near 0). The behavior of s near � = 1
follows directly from (5.1.22c) and (5.1.23b). Easy manipulation yields

1− s

1− �
=

2
1 + C2

v

+ O[1− �]. (5.1.23d)

This tells us that as � approaches 1, larger C2
v means larger s.

Note that the conditions required for s to be smaller than � near 0, and the
requirements that s be larger than � near 1, are completely unrelated; thus
it is possible to construct distribution functions whose geometric parameters
cross the line s = �, at least once, even with p = 0. In fact, we discussed
one such function in Section 3.2.3.1, a hyper-Erlangian with 4 states. This
family of functions satisfies b(0) = 0, but can have any mean and any squared
coefficient of variation C2

v ≥ 1/2. See Example 5.5.2 for further discussion.
The behavior of s(�) for various values of C2

v is explored in the following
exercise.

Exercise 5.1.5: Calculate the geometric parameter s as a function of
�, using T = 1 and C2

v = 1, 2, 5, 10 for the two distributions given in
Chapter 3, Equations (3.2.7) and (3.2.14) (the hyperexponential and
the hyper-Erlangian). This can be done by numerically solving (5.1.6a)
for enough values of � to produce a smooth curve. Draw the two sets
of four curves on the same graph, together with the line s = �. (The
hyperexponential with C2

v = 1 should give this.) Note that for the
hyper-Erlangian, when C2

v > 1, s(�) crosses s = �, but for C2
v = 1 it

asymptotically approaches the line from below as �⇒ 1 (i.e., it has the
same slope at � = 1). This must be true because of (5.1.22c).

We have done everything we can to state and prove the following theorem,
which summarizes this section.

Theorem 5.1.4 For any steady-state G/M/1 queue, with utiliza-
tion factor, � = 1/ρ = 1/λT , and geometric parameter s(�; G), given
by Theorem 5.1.2, the following statements are true.

(a) s(�; G) depends only on B(x) [or R(x)] and its derivatives near
� = 0.

(b) s(�; G) depends only on the moments of b(x) near � = 1.

(c) s(�;G) is bounded from below by s(�;D) for 0 ≤ � ≤ 1.

We have not actually proven (c) for all �. �

This theorem has an important implication for dealing with approximations
to density functions when applied to heavy traffic queues and reliability the-
ory. Heavy traffic queues occur when ρ, or in this chapter, �, is close to 1,

308 5.1 Steady-State Open ME/M/1 Queue

and the common belief that approximation functions should fit the first few
moments is vindicated here. However, as we have already pointed out in Sec-
tion 4.5.4 and do again in Section 6.5.3, MTTF is more interested in small �,
for one expects the time to repair a device to be much less than the time it
takes for it to break. Therefore, the behavior of the pdf near x = 0 plays a
more important role than the moments! Furthermore, in real-life situations,
decisions are usually made before problems become serious (well, they should
be), so the intermediate region should be the most important. Conclusion?
Both moments and derivatives are important.

For the record, we give explicit formulas for the second derivatives without
forcing the reader to go through the tedious derivations (just looking at the
formulas is bad enough):

s′′(1 : G) =
2T 2

(Ψ [V2])3
((

Ψ
[
V2
])2 − TΨ

[
V3
])

=
4T 2

EEE[X2]
− 8

3

(
T

EEE[X2]

)3

EEE[X3] (5.1.24a)

(depends only on the moments), and

s′′(0; G) =
T 2

1− p

[
Ψa [Ba]

2 −Ψa

[
Ba

2
]]

=
T 2

1− p

[
[ba(0)]2 + (1− p)b′a(0)

]

=
T 2

(1− p)3
[
[b(0+)]2 + (1− p)b′(0+)

]
(5.1.24b)

[depends only on R(0) and its derivatives].
Finally, we note that one can automate the numerical calculation of all

the derivatives of s(�;G) at 0 and 1, with the aid of (5.1.22a), (5.1.20), and
(5.1.21), but you probably have already been exposed to more information
about the geometric parameter than you care to know.

We postpone examining system time behavior until Example 5.5.2 and
Figures 5.5.2 and 5.5.3, where we discuss the mean time for a busy period.
It is truly extraordinary that the mean system time and the mean time for a
busy period are equal for any G/M/1 queue, so what is said for one is true
for the other. This is in contrast with M/G/1 queues where the mean time
for a busy period is independent of the service time distribution, and is equal
to x̄/(1− ρ), the same as the system time for the M/M/1 queue.

5.1.4 Systems Where Interarrival Times Are Power-Tailed

In Section 3.3 we introduced PT distributions, showing that they have infi-
nite moments, and can cause havoc with statistical measurements. In Section
4.2.2.2 we showed what must be reconsidered if the service-time distribution
is PT in the M/G/1 queue. Here we see what must be done to analyze the
PT/M/1 queue. The subject is discussed in detail in [Grein-Job-Lip99]. The
figures are taken from that paper.

5 G/M/1 Queue 309

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α=1.1
1.2

1.3
1.5 1.7

2.0
2.5

3.0

4.0

Utilization factor, �

G
eo

m
et

ri
c

pa
ra

m
et

er
,
s

Figure 5.1.2: s as a function of � for PT interarrival times with
α ∈ [1.1, 1.2, 1.3, 1.5, 1.7, 2.0, 2.5, 3.0, 4.0] The PT function used is given in
Section 3.3.6.2, where θ = 0.5, and the number of terms T is large enough to be
effectively ∞. For α > 2 the slope at � = 1 is positive, and for α = 4 s is almost
a straight line, similar to the M/M/1 queue. But for α < 2, the slope of s is 0,
and the smaller α, the longer s stays close to 1 for smaller and smaller values of
�. At � = 0, s is well-behaved for all values of α (as long as α > 1).

In the previous section we showed that the behavior of the geometric
parameter s near � = 0 depends on the derivatives of R(x). PT distributions
are certainly well behaved for small x, so there should be no problems for
small �. But near � = 1, s depends on the moments of the distribution, and
for PT distributions all moments EEE[X�] are infinite for � ≥ α. In particular,
if 1 < α ≤ 2 (we must assume that α > 1, otherwise the mean interarrival
time would be infinite and we could not even define �), then C2

v = ∞ and
Equation (5.1.22c) tells us that the slope of s at � = 1 is 0. In fact, according
to Theorem 5.1.4, all the derivatives of s are 0. Therefore, a different analysis
is necessary, at least near � = 1.

In general it is not possible to find the Laplace transforms of PT distri-
butions, but the ME representation of a truncated PT discussed in Section
3.3.6.2 makes it possible to numerically solve for s in (5.1.6a) as long as � is
not too close to 1. The results of a series of computations are presented in
Figure 5.1.2 for various values of α, and θ = 0.5. The value of T , the number
of terms in the function, was chosen to be large enough so as not to affect the
answer. The most significant feature is the behavior near � = 1. As would be
expected, as long as α > 2 the slope of s there is positive. But for α < 2 the
slope is 0, also as expected for a function with infinite C2

v . As α decreases, s

310 5.1 Steady-State Open ME/M/1 Queue

stays close to 1 for smaller values of �.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

exact

asymptotic

Utilization factor, �

t
=

1
−

s

0.8 0.9 1
0

0.005

0.01

Figure 5.1.3: � − t−Diagram, both for the exact and the asymptotic
equations for a PT/M/1 queue, where t := 1 − s, α = 1.3 and θ = 0.5.
From the inset, it is clear that the asymptotic Equation (5.1.26a) is an excellent
approximation for � as small as 0.8.

The fact that “s is very close to 1” is in itself not very informative. The
question is “How close?” After all, it is t := 1− s that yields the information
needed. From Equations (5.1.7b) and (5.1.7c), it is seen that q̄2 and EEE[T2]
depend inversely on t; that is, the smaller t is, the larger they are. Furthermore,
the overflow probabilities, as given in (5.1.9d), are very dependent upon t.
Note that

lim
t→∞(1 + t)1/t = e,

so we can write

Po2 = sk = (1− t)k = [(1− t)1/t]kt ≈ e−kt. (5.1.25)

That is, unless kt >> 1 we can expect the queue to exceed length k often.
If t is very small, then very large buffers are needed. The analysis of the
behavior of t near � = 1 is too involved to present here, but is given in detail
in [Grein-Job-Lip99]. Let

β :=
1

1− α

Then they show that, near � = 1,

t(�)⇒ C � (1− �)β , for 1 < α < 2, (5.1.26a)

5 G/M/1 Queue 311

where C is a constant that depends on α. From (5.1.17c), the mean system
time approaches

EEE[T2]⇒ 1
C(1− �)β

, for 1 < α < 2. (5.1.26b)

For α ≤ 1 the mean interarrival time is infinite, so the steady-state solution
has no meaning (what is �?). For α ≥ 2 the exponent, 1/(α−1), is replaced by
1, and the system behaves in a way similar to those with well-behaved arrival
processes. But in the in-between range, (5.1.26b) tells us that EEE[T2] blows up
more rapidly than for non-PT renewal processes.

We have calculated t(�) for α = 1.3 and presented it in Figure 5.1.3, to-
gether with the approximation above. Clearly, the approximation is good for
� as small as 0.6. In fact, the inset shows that the two curves are indistin-
guishable for the range 0.8 < � ≤ 1. For larger α, the approximation breaks
down closer to 1.

5.1.5 Buffer Overflow Probabilities for the G/M/1 Queue

The buffer overflow probability was already given by (5.1.9d). As described
previously, there are times when it is imperative that no customers be lost,
but a primary buffer may be expensive, and a backup buffer can be supplied.
But putting customers into the backup buffer has its own costs. It may take
time, effort and/or inconvenience to bring a customer from the backup to the
primary. A simple example of this would be if a customer finds the buffer full,
returns to his source, and continuously tries to enter the queue until he is
successful. (Try getting an answer from a busy telephone answering service.)
In this case, the source acts as the backup buffer. Another example would
be the Ethernet, and even the Web under TCP control acts more or less in
this mode, because no packets are lost, and all packets are sent as soon as
they can be accepted. Other discussions were given in Sections 2.1.4 and 4.2.4.
The following example explores another issue, showing that in this case (as in
many others) the overflow probabilities depend on more than the mean and
variance of a distribution.

Example 5.1.2: Suppose that a server is to be designed so that no more
than 1.0% of arriving customers must use the backup buffer. Then for a given
� we must find that � which satisfies

Po2 = .01 = s�, that is � = ln(.01)/ ln(s).

For a given �, one can solve for s either by finding the smallest eigenvalue of A,
or by solving for s in (5.1.6a). We have done this for five different interarrival
time distributions (not counting the exponential), and have displayed the
results in Figures 5.1.4 and 5.1.5. One of the distributions is a TPT as given
in Equations (3.3.21) with truncation M = 32, and α = 1.4, and θ = 0.5.
This gives a squared coefficient of variation of C2

v = 5033.44 The other
distributions are the hyperexponentials described in Section 3.2.1.2, with the
same mean and variance as the TPT, and p = 1/10k. The curves agree near

312 5.1 Steady-State Open ME/M/1 Queue

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

10
4

10
5

M = 32

k = 4 k = 5

k = 6

k = 7→

M/M/1

Utilization factor, �

(1
−

�)
∗l

Figure 5.1.4: G/M/1 primary buffer size needed for overflow to be
less than 1%, as a function of �, for five interarrival time distributions with the
same C2

v ≈ 5033. Because the buffer size can become very large as � approaches
1, the function actually plotted is log[(1 − �)]. All curves are finite at � = 1,
as shown in Figure 5.1.5. [See text and Equations (5.1.22).] The curve labeled
M = 32, refers to a 32-term TPT interarrival time distribution. Four of the curves
are for H2 interarrival time distributions with p = 10−k. The M/M/1 queue is
included for comparison.

� = 0 and � = 1 but have nothing in common in between. This shows clearly
that for at least some properties there is more to a distribution than merely
mean and variance.

All the curves are equal at � = 1 because of (5.1.22c) and (5.1.23b). From
the above equation and (5.1.23b), we have

(1− �)k = (1− �) ln(.01)/ ln(s) ≈ (1− �) ln(.01)
ln[1− (1− �)s′(1)]

·

And from (5.1.22c) and the fact that ln(1− x) ≈ −x, we have

lim
�→1

(1− �)k =
ln(.01)
s′(1)

=
ln(.01)(1 + C2

v)
2

·

In Figure 5.1.5, this is lim(1− �) k = 11, 572.236.
As a final observation, the curves look jagged because k is an integer. Also,

the slopes are slightly negative between jumps because of the factor 1−�. This
material was taken from work by Fiorini and Hatem [FioriniLipHatem97],
[Hatem97]. �

5 G/M/1 Queue 313

0.99 0.992 0.994 0.996 0.998 1
10

0

10
1

10
2

10
3

10
4

10
5

M = 32

k = 4, 5, 6

k = 7

M/M/1

Utilization factor, �

(1
−

�)
×

l

Figure 5.1.5: G/M/1 primary buffer size needed as ��� approaches
1. The conditions are the same as those in Figure 5.1.4, i.e., is multiplied by
1− � to yield finite values for their product. All the curves (excluding the one for
the M/M/1 queue) are equal at �=1 because they have the same C2

v .

5.2 ME Representation of Departures

We now turn our attention to the behavior of customers leaving a service
center. We already looked at this to some extent in Sections 2.1.6 and 4.2.5,
in looking at the M/M/1 and M/G/1 queues. We do the same here for the
G/M/1 queue, but first we look at arrivals to S2 conditioned by departures
from S2. From the closed-loop point of view, arrivals to S2 are the same as
departures from S1. There was no point in examining the equivalent question
for the M/G/1 queue, because arrivals to the “G” queue (S1) were governed
according to the Poisson process, and thus no conditions could change that.

5.2.1 Arrival Time Distribution Conditioned by a Departure

We saw in Theorem 5.1.3 that all the steady-state vector departure proba-
bilities [d2(n)] are proportional to the same vector û. Thus at the moment a
customer leaves S2, S1 will be found in that same state. We conclude, then,
that the time until the next arrival to S2 is generated by the vector-matrix
pair 〈〈〈 û , B 〉〉〉. We must say a few words to distinguish this process from the
interarrival process to S2. The interarrival process refers to the distribution
of times between arrivals to S2, or the time until the next arrival, given that
a customer has just arrived. It is the same as the time between departures
from S1, which is generated by 〈〈〈p,B 〉〉〉. In this section we are interested in

314 5.2 ME Representation of Departures

the time to the next arrival, given that a customer has just departed S2 thus
the change from p to û as the initial, or startup, vector. For lack of a better
symbol, we denote all properties of this process with the subscript ω. Thus
Xω is the r.v. denoting the time until the next arrival, given that a customer
has just departed S2, and bω(x) is its density function.

Consistent with Theorems 3.1.1 and 4.2.5 we describe this latest process
by the following theorem.

Theorem 5.2.1 The arrival times for an open ME/M/1 queue,
given that a customer has just left, is generated by the vector-matrix
pair 〈〈〈 û , B 〉〉〉 (or 〈〈〈 û , V 〉〉〉), where û is given by Corollary 5.1.2, and B
is the service rate matrix for S1. It then follows that (where Ψω [X] :=
ûX ε′ε′ε′ for any X)

EEE[Xn
ω] = n!Ψω [Vn] , (5.2.1a)

bω(x) = Ψω [B exp(−xB)] , (5.2.1b)

and
B∗

ω(s) = Ψω

[
(I + sV)−1

]
. (5.2.1c)

. �

The proof follows from the definition of û and Theorem 3.1.1.
Let us now examine this distribution further by calculating its mean and

variance, and then see what we can do with its pdf. We can find EEE[Xω] by
multiplying (5.1.6c) on the right with ε′ε′ε′. This process yields

1 + (1− s)λûV ε′ε′ε′ = λpVε′ε′ε′ = 1 + (1− s)λEEE[Xω] = λEEE[X1] = 1/�.

Upon solving for EEE[Xω] we get

EEE[Xω] =
1− �

(1− s)� λ
=

1− �

1− s
EEE[X1]. (5.2.2a)

In general, EEE[Xω] is not equal to EEE[X1]. Of course, for the M/M/1 queue
s = �, so in that case, the two are equal. They are also equal in the limit
as � → 0 (i.e., in the no-load limit), if there is no initial impulse. For then s
also becomes 0. The heavy load limit is not so easy to find, because now both
s and � go to 1, and we are left with the indeterminate, 0/0. We can take
the limit by going back to (5.1.6b). Now, remember that � goes to 1, λ and
1/EEE[X1] become equal. Also, recall the definition of the mean residual vector
πrπrπr from (3.5.10b). What we get is

lim
�→1

û = p(I + 0V)−1 1
EEE[X1]

V =
1

Ψ [V]
pV = πrπrπr. (5.2.2b)

This is what a random observer sees upon visiting S1 without noting its
previous behavior. We would expect this, because a customer departing S2

sort of randomly arrives at S1. We also know that for the M/G/1 queue, a
random observer and an arriving customer see the same thing at S1. Why
then, is this not true for the G/M/1 queue as well? First we show that the

5 G/M/1 Queue 315

random observer still sees the arrival process to S2 as being initiated by πrπrπr if
she takes no note of how many customers are in the queue. What she sees is
the vector average over all queue lengths. That is,

π2rπ2rπ2r :=
∞∑

k=0

π2π2π2(k) = πrπrπr. (5.2.2c)

Exercise 5.2.1: Prove that Equation (5.2.2c) is correct.

Next, recall that as long as EEE[X1] > EEE[X2], as was the case in Chapter 4,
S2 is never idle, so its departing customers constitute a Poisson process, which
is the equivalent of making random observations. But when EEE[X2] > EEE[X1], as
is the case in this chapter, then S2 is idle some of the time, and its departing
customers see only the sum from k = 1 to infinity of the above, or more
correctly from (5.1.9b),

∞∑
k=0

d2(k) = û.

Alternatively we can argue given that S1 has an unbounded number of cus-
tomers and a1r(n) = π1rπ1rπ1r(n) (see Definition 4.3.1), (5.1.2c) implies that

lim
n→∞a1r(n) = lim

n→∞
pUn

Ψ [Un]
= û.

Returning to the calculation of EEE[Xω] near � = 1, we see from (5.2.2b)
that

lim
�→1

EEE[Xω] = lim
s→1

ûVε′ε′ε′ = πrπrπr Vε′ε′ε′ =
EEE[X2

1]
2EEE[X1]

.

Thus only when s and � approach 1, does the mean time until the next arrival
after a departure from S2 equal the mean residual time of S1. Only then do
the random observer and the departing customer see the same thing.

We now find an expression for the variance and squared coefficient of
variation for the process. First we need Ψω

[
V2
]
. We get this in the same way

we found EEE[Xω]. Multiply (5.1.6c) from the right by V ε′ε′ε′, and then solve for
the desired term.

λ2Ψω

[
V2
]

=
1

1− s

(
λ2Ψ

[
V2
]− λEEE[Xω]

)
. (5.2.3a)

We know that EEE[X2
ω] = 2Ψω

[
V2
]

and σ2
ω = EEE[X2

ω]− (EEE[Xω])2. Therefore,

λ2σ2
ω =

1
1− s

(
λ2

EEE[X2]− 2λEEE[Xω]
)− λ2(EEE[Xω])2

=
1

1− s

(
λ2σ2

1 + ρ2 − 2λEEE[Xω]− (1− s)λ2(EEE[Xω])2
)
.

316 5.2 ME Representation of Departures

Next, from (5.2.2a) λEEE[Xω] = (1 − �)/[(1 − s)�], and after some algebra, we
have

λ2σ2
ω =

λ2σ2
1

1− s
+

1− sρ2

(1− s)2
. (5.2.3b)

Recall that C2
i , the squared coefficient of variation, is the dimensionless ratio

of variance to mean squared of any distribution bi(x). Therefore,

C2
ω =

λ2σ2
ω

λ2(EEE[Xω])2
=
(

λ2σ2
1

1− s
+

�2 − s

(1− s)2

)(
1− s

1− �

)2

.

After performing a little cleanup, the following expression emerges:

C2
ω =

(1− s)C2
1 + �2 − s

(1− �)2
. (5.2.3c)

From this we can tell that if S1 is exponential, then C2
1 = 1, s = �, and

C2
ω = 1. But you knew that already. We also know from previous discussion

that for low load (s → 0), C2
ω → C2

1 . Under heavy load, the more detailed
relation between s and � which we did in Section 5.1.3 is needed before we
can get a reasonable expression. Alternatively, by (5.2.2b) we can find what
bω(x; s = 1) itself is, and calculate C2

ω from it. That is what we do at the end
of this section.

Our last task in this subsection is to find an expression for bω(x; s) itself.
There are two approaches we take, neither of which yields analytically useful
results, although both can be used computationally. First multiply (5.1.6b)
on the right with B exp(−xB)ε′ε′ε′; then we get an explicit equation:

bω(x; s) = Ψω [B exp(−xB)] = λΨ
[
[I + λ(1− s)V]−1 exp(−xB)

]
. (5.2.4a)

Our other approach is to use (5.1.6c). Again we multiply on the right with
B exp(−xB) to get the following,

bω(x; s) + (1− s)λRω(x; s) = λR1(x), (5.2.4b)

where we have made use of the definition of the reliability function given in
(3.1.7b). This can be viewed as a differential equation in Rω, because bω is its
negative derivative, namely,

d

dx
Rω(x; s) = (1− s)λRω(x; s)− λR1(x). (5.2.4c)

The inhomogeneous term R1(x) is a known function of x, and Rω(0; s) = 1.
For those who know something about solving differential equations, this for-
mula has an interesting, if disconcerting property. Note that the coefficient of
the homogeneous term is positive, namely, (1 − s)λ. Thus the homogeneous
solution [RH(x; s)] is a positive exponential, which increases unboundedly for
large x. But Rω(x; s) must go to zero for large x; therefore, the inhomoge-
neous solution [RI(x; s)] must have the value 1 at x = 0, which then makes

5 G/M/1 Queue 317

the homogeneous term drop out. Elaborating further, the general solution of
(5.2.4c) must be of the form

Rω(x; s) = ARH(x; s) + RI(x; s),

where RH is the general solution of (5.2.4c) with R1 removed, A is an arbitrary
constant, and RI is any solution of the entire equation. The constant A is fixed
by making Rω(0; s) = 1. Such a solution does not exist for arbitrary s, but
only for that unique s less than 1 which satisfies (5.1.6a).

Exercise 5.2.2: Solve the differential equation (5.2.4c) for the case
that S1 is exponential and Rω(0; s) = 1, for any s [i.e., let R1(x) =
e−xμ]. Show that only if s = μ/λ does there exist a solution for which
Rω goes to 0 as x goes to infinity.

�
The following expression can best summarize what we have discovered in

this subsection. As s increases,

b1(x) = bω(x; 0) → bω(x; s) → bω(x; 1) =
R1(x)
EEE[Xω]

·

That is, as � (and thus s) increases from 0 to 1, the distribution of arrival
times for customers to an open G/M/1 queue that has just experienced a
departure changes gradually from the interarrival process to the residual time
distribution.

Example 5.2.1: It is no problem to calculate the pdf for the ω process.
From Theorem 5.2.1 we know its generator; therefore, we have calculated
bω(x) for the Erlangian-2 distribution, and show the results in Figure 5.2.1
for various values of � < 1. We have held the interarrival times constant at
T1 = x̄1 = 1 and have varied λ, which equals 1/�. The smaller � (and therefore
s) is, the smaller bω at x = 0. This agrees with the relation we described
above, because b1(0) = 0 for all Erlangians. The curve labeled, λ = 4, is
already close to b1(x) = 4x exp(−2x). When � is close to 1, bω(x) is close
to R1(x) = (1 + 2x) exp(−2x). There is one obvious unusual feature. All the
curves seem to cross each other at the same point. We have expanded the box
surrounding the crossing, and show it in the inset. The curves do indeed cross,
and exactly at x = 0.5, with bω(0.5; s) = 2/e. This happens to be exactly
where b1(x) and R1(x) cross. That is, for all �, b1(0.5) = R1(0.5) = 2/e. Any
explanations? �

We can also calculate C2
ω(s = 1) because we already know all the moments

of R1(x)/x̄1 from (3.3.12c) and (3.3.13). First we use (5.1.22d) and (5.1.24a)
in (5.1.23a) to get a Taylor expansion of 1 − s. Then, substituting this into
(5.2.3c) we get

(
C2

ω

)
s=1

=
1
3

EEE[X3
1]

(EEE[X1])3

(
2

1 + C2
1

)2

− 1.

318 5.2 ME Representation of Departures

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 ←λ=1.05
←λ=1.30
←λ=1.50
←λ=1.75

←λ=2.0

←λ=4.0

Arrival time x, after a departure from S
2

D
en

si
ty

 f
un

ct
io

n
of

 n
ex

t a
rr

iv
al

0 0.1 0.2 0.3 0.4 0.5 0.6
0.7

0.75

0.8

0.85

0.9

0.95

1

←λ=1.05

←λ=1.30

←λ=1.50

←λ=1.75

←λ=2.0

←λ=4.0

Figure 5.2.1: Distribution of arrival times, conditioned by departures
from an E2/M/1 queue, for various values of λ, the mean service rate of the
lone exponential server in S2. The mean interarrival time for all cases is held fixed
at T1 = 1. Thus λ = 1/�. Note the multiple crossing, which is shown in detail
in the inset graph. To within the numerical accuracy of our calculations, all the
curves cross at x = 0.5.

Note the appearance of the third moment of S1 in the expression. If S1 is an
exponential server, then C2

1 = 1, and EEE[X3
1]/(EEE[X1])3 = 6, so C2

ω = 1 as well,
(of course).

5.2.2 Distribution of Interdeparture Times

We spent considerable space in the preceding section discussing a process that
does not seem to be of enormous interest to queueing practitioners. However,
several of the formulas derived there are useful here, as we explore the be-
havior of customers departing the G/M/1 queue. We have already discussed
this process twice before, in Sections 2.1.6 and 4.2.5, in conjunction with the
M/M/1 and M/G/1 queues. The method presented here is similar to that
already used in those sections; however, the results are considerably different
and thus warrant a fresh analysis.

Let us follow the argument we used in Section 4.2.5 in examining Figure
5.2.2. We use the subscripts 2d and 2d to denote the departure process from
S2. For instance, b2d(x; s) is the density function for the process. Our observer
is now sitting just downstream from S2, watching customers go by. Assuming
that C0 has just left, what can we tell her about customer C1? Well, either
he is at S2, with probability 1 − d2(0), which from (5.1.9c) equals s, or S2

is empty, and C1 is at S1, already in the process of being served there. The
vector û gives her the probability of where in S1 he is at the moment C0 left

5 G/M/1 Queue 319

S2. (Remember, she is the observer, and he is C1.) Thus the startup vector
for the interdeparture process is

Figure 5.2.2: Pictorial representation of the departure process from
S2, in a G/M/1 open queue. Dependence on the number of customers is
implicitly given through the steady-state probabilities at departure times. Given
that customer C0 has just left, C1 must enter S2, and be served before leaving [λ],
or if S2 is empty, C1 must finish being served by S1 [〈〈〈 û, B 〉〉〉], and then go to S2

to be served. The probability that no one is at S2 at the moment of a departure
d2(0) is given by (5.1.9c).

p2d := [(1− s)û, s] . (5.2.5a)

In words, the process starts with C1 either being at phase i in S1 with prob-
ability (1 − s)[û]i, or at S2 with probability s. Clearly, because ûε′ε′ε′ = 1, it
follows that p2d ε′ε′ε′ = 1 also. Note that we have changed the ordering of our
states from that in Chapter 4, by placing S1 first. Now the numbering of the
states goes from 1 to m + 1, where the state corresponding to being in S2 is
m + 1 rather than 0. Figure 5.2.2 is descriptive enough for us to write down
the completion rate and transition matrices for the process.

M2d =
[

M o′

o λ

]

and

P2d =
[

P q′

o 0

]
,

where o(o′) is a row (column) vector with the same dimension as M and P,
namely, m. Then in direct analogy with (4.2.17b), we can write down the
process rate matrix.

B2d = M2d(I2d −P2d) =
[

B −Bε′ε′ε′

o λ

]
. (5.2.5b)

The process time matrix also follows easily:

V2d = B−1
2d =

⎡
⎣ V 1

λε′ε′ε′

o 1
λ

⎤
⎦ . (5.2.5c)

We now know enough to state the following theorem concerning interdeparture
times.

320 5.2 ME Representation of Departures

Theorem 5.2.2 The distribution of times between departures from
a steady-state open G/M/1 queue is generated by the vector-matrix
pair, 〈〈〈p2d , B2d 〉〉〉, as given by Equations (5.2.5). The following equa-
tions must be true (where Ψ2d [D] := p2d D ε′ε′ε′2d),

EEE[Xn
2d] = n!Ψ2d [(V2d)n] , (5.2.6a)

b2d(x) = Ψ2d [B2d exp(−xB2d)] , (5.2.6b)

and
B∗

2d(s) = Ψ2d

[
(I + sV2d)−1

]
. (5.2.6c)

The proof follows from Theorem 3.1.1. �

Before calculating the mean interdeparture time, we use (5.2.5a) and (5.2.5c)
to find the following row vector,

p2dV2d =
[
(1− s)ûV,

1
λ

]
.

Because EEE[X2d] = p2d V2d ε′2dε′2dε′2d, the mean is

EEE[X2d] = (1− s)Ψω [V] +
1
λ

= (1− s)
ρ− 1

(1− s)λ
+

1
λ

= x̄1, (5.2.7a)

certainly not a surprising result.
En route to finding the variance, we need Ψ2d

[
(V2d)2

]
, which can be

written as (p2d V2d) (V2d ε′2dε′2dε′2d), so first calculate the column vector:

V2d ε′2dε′2dε′2d =

⎡
⎣
(
V + 1

λI
)
ε′ε′ε′

1
λ

⎤
⎦ .

We can put p2d V2d and V2d ε′2dε′2dε′2d together to get the second moment of
b2d(x; s), making use of (5.2.2a) and (5.2.3a):

EEE[X2
2d] = 2Ψ2d

[
(V2d)2

]
=

2ρ

λ2
+ EEE[X2

1]− 2
λ2

ρ− 1
1− s

.

We know from (5.2.7a) that b2d(x) and b1(x) have the same mean, so with
some algebraic steps left out,

σ2
2d = EEE[X2

2d]− (EEE[X1])2 = σ2
1 +

2(1− ρ s)
λ2(1− s)

. (5.2.7b)

We simply divide both sides of the equation by (EEE[X1])2 to find the squared
coefficient of variation.

C2
2d = C2

1 +
2(1− ρ s)
ρ2(1− s)

. (5.2.7c)

5 G/M/1 Queue 321

It is helpful for the discussion that follows to replace ρ with 1/� in (5.2.7c).
Then

C2
2d = C2

1 +
2�(�− s)

1− s
. (5.2.7d)

We know from Section 5.1.3 that we can view s as a function of �, and as
such, when � = 0 or 1, s = 0 or 1, also. Therefore, when � = 0, we get(

C2
2d

)
�=0

= C2
1 .

Its value at � = 1 is trickier and requires the functional dependence of s with
respect to � near 1. From (5.1.22c) and (5.1.23b), we are able to say that
s = 1− α(1− �) + · · · , with α = 2/(1 + C2

1). We put this into (5.2.7d), move
some things around, and come up with an expected result.(

C2
2d

)
�=1

= 1.

Now in general, we see that C2
2d is greater than (less than) C2

1 whenever � is
greater than (less than) s. We also know that for Erlangian distributions, C2

1

is less than 1, and s is less than � in the entire range 0 to 1. Furthermore, for
hyperexponential distributions, C2

1 is greater than 1 and s is greater than �.
We might thus conclude that C2

2d always lies between C2
1 and 1, just as it did

for the M/G/1 case in the discussion following (4.2.19d) in Section 4.2.5. But
our conclusion would be wrong. In fact, we can find distributions in which s
and � switch around several times between 0 and 1. All we can say is that
this is true for � sufficiently close to 1.

We continue to follow our procedure in Section 4.2.5 to get the interdepar-
ture distribution itself in terms of B,p, and û. Keep in mind, though, that
〈〈〈p2d , B2d 〉〉〉 can be used directly, in calculating the distribution. We can see
that B2d, (5.2.5b), and Bd, (4.2.17b), are quite similar, so we can immediately
guess what (B2d)n is for all n. Its proof can be shown by induction.

(B2d)n =

⎡
⎣ Bn g′(n)

o λn

⎤
⎦, (5.2.8a)

where

g′(n) := −λn−1B

[
I +

1
λ
B +

(
1
λ
B
)2

+ · · ·+
(

1
λ
B
)n−1

]
ε′ε′ε′,

satisfying the recurrence relation

g′(n + 1) = −λnB ε′ε′ε′ + Bg′(n).∗

For the moment let
X := (I− λV)−1.

∗The ′ reminds us that g′ is a column vector of dimension m.

322 5.2 ME Representation of Departures

We use the now-familiar summation formula for the finite geometric series,
and carry out some further algebra to get the following.

g′(n) = X(λnI−Bn)ε′ε′ε′. (5.2.8b)

We can almost exactly follow the steps leading up to (4.2.21b) to find the
reliability matrix for this departure process, giving us

R2d(x) := exp(−xB2d) =

⎡
⎣ exp(−xB) X[e−xλI− exp(−xB)]ε′ε′ε′

o e−xλ

⎤
⎦

=

⎡
⎣ R1(x) X[e−xλI−R1(x)]ε′ε′ε′

o e−xλ

⎤
⎦ . (5.2.8c)

To get b2d(x; s), we first must find B2d R2d(x). This turns out to be

B2d R2d(x) =

⎡
⎣ R1(x) X[e−xλI−BR1(x)]ε′ε′ε′

o e−xλ

⎤
⎦ . (5.2.9a)

Our next step is to evaluate B2d R2d(x)ε′2dε′2dε′2d. Because X, B, and R1(x) all
commute with each other, and X− I = λXV, this turns out to be the follow-
ing column vector:

B2d R2d(x)ε′2dε′2dε′2d =

⎡
⎣ λX[e−xλI−BR1(x)]ε′ε′ε′

λ e−xλ

⎤
⎦ . (5.2.9b)

Finally, given that b2d(x; s) = Ψ2d [B2d R2d(x)] = p2dB2dR2d(x)ε′ε′ε′2d, and
p2d is given by (5.2.5a), we have the density function for the steady-state
departure process:

b2d(x; s) = λe−λxûX(I− sλV)ε′ε′ε′ − (1− s)λûXR1(x)ε′ε′ε′. (5.2.9c)

Although this expression looks rather complicated, it is expressed in terms
of m-dimensional matrices, whereas the original representation is (m + 1)-
dimensional. It can be used as a practical way to get the pdf for any specific
examples, particularly if they are of small dimension. Also, note the striking
similarity with its M/G/1 counterpart, b1d(x) [called bd(x) in (4.2.22a)]. These
formulas have not been known until very recently, so not many researchers
have worked with them. Therefore, we have no way of knowing if they can be
manipulated into simpler or more interesting forms.

Whether b2d(x) can be manipulated into a convenient form or not, we know
its generator 〈〈〈p2d , B2d 〉〉〉, given by (5.2.5a) and (5.2.5b). Therefore, there is
little effort to computing the function once the interarrival time distribution
is given.

Example 5.2.2: We have calculated b2d(x; s) for an E2/M/1 queue, and

5 G/M/1 Queue 323

plotted it in Figure 5.2.3, for several values of �, all less than 1. We already
know that when � ≥ 1 the interdeparture times must look like the service
time distribution. Even when � is close to, but less than 1, they look very
much like the exponential function. Of course, when � is small, b2d looks like
E2(x), the interarrival time distribution. Notice the rapid change from one
to the other when � goes from 0.25 to 0.50. The reader might compare this
figure with its M/E2/1 counterpart in Figure 4.2.3. �

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
← � = 0.95

← � = 0.75

← � = 0.50
← � = 0.40

← � = 0.25

← � = 0.10

Interdeparture time, x

b 2
d
(x

)

Figure 5.2.3: Distribution of interdeparture times b2d(x) of an
E2/M/1 queue, for � = 0.10, 0.25, 0.40, 0.50, 0.75, and 0.95. When �
is small, the interdeparture time distribution looks like the interarrival time distri-
bution E2(x), and when � is near (or greater than) 1, it looks like the service time
distribution λ exp(−λx).

5.3 ME/M/1/N and ME/M/1//N Queues

Now is the time for you to ask again what the difference is between one and two
slashes. In Section 2.1.4 we discussed the question in detail for buffer overflow
and customer loss in M/M/1-type queues. But in Chapter 4 we brushed the
question aside, explaining that in an M/ME/1 queue, they yielded identical
results. But for ME/M/1 queues, they do not. For definiteness, let us adhere
to the conventions of this chapter. The first position (ME) refers to the service
time distribution at S1, the second (M) refers to S2, and the third position
refers to the maximum number of customers (1) at S2 who can be active at
the same time. The fourth position in this notation refers to the amount of
space available at S2, including the customers in service (finite waiting room,

324 5.3 ME/M/1/N and ME/M/1//N Queues

or buffer). If that position has J there, then when J customers are at S2,
new arrivals are turned away (discounted or killed) until someone leaves, at
which time there are then only J−1 customers there. If that position is blank,
it is assumed to be infinite. The fifth position refers to the total number of
customers in the system, k of whom are at S2 and the remaining n are at S1.
If that space is blank, or nonexistent, then we have an open system, (or N is
infinite).

Consider the following string, G1/G2/C/J/N . All systems with J ≥ N
are equivalent. After all, it does not pay to have more space than there are
customers. Similarly, all systems with C ≥ min[J, N] are the same. Somewhat
less obvious is the equivalence of all systems with N > J . We only need one
more customer than there is buffer space, for if a customer is turned away
because of a full waiting room, there is no difference between his returning
immediately to S1 or being replaced by another customer. We can say that
if the inequality string C < J < N is not satisfied, the violating integer can
be replaced by ∞ (or any integer greater than or equal to the next symbol in
the sequence).

Although the G1/G2/1/N queue is usually classified as an open system,
the equivalent (but closed) loop G1/G2/1/N/(N + 1) may be easier to visu-
alize. In this case, the last customer loops on S1 until room is made available
at S2. However, even after space becomes available, he must still complete
service at S1 before finally being admitted to S2. In the G1/G2/1/ /N (or
G1/G2/1/N/N) case, when all N customers are at S2, S1 is idle until the
customer in service finishes. Only then does S1 begin processing a customer
to generate the next arrival. That is, in the former case S1 is already pro-
cessing the next arrival to S2 when room becomes available, but in the latter
case, processing at S1 begins at the moment a completion occurs at S2. Only
when the residual distribution time for S1 is the same as the overall distribu-
tion time (i.e., when S1 is exponential) will the customer return to S2 at the
right time to make both systems identical. The algebraic analysis in the next
section makes this clear.

5.3.1 Steady-State Solution of the ME/M/1/N Queue

First let us define (the subscript f stands for “finite buffer”) the steady-state
probability vector.

Definition 5.3.1
π2fπ2fπ2f (k; N) := steady-state probability vector that there are k customers
at S2 in an ME/M/1/N system. There are at least N +1 customers in
this system. If a customer arrives at S2 and finds N other customers
already there, he immediately returns to S1. A random observer, with
probability [π2fπ2fπ2f (k;N)]i, will find the system in state {i; k;N}. As usual,
r2f (k; N) := π2fπ2fπ2f (k; N)ε′ε′ε′ is the associated scalar probability. ���

The more traditional view is that there are an infinite number of customers
waiting to be served by S1. A customer who completes service there and finds

5 G/M/1 Queue 325

S2 to be full, immediately self-destructs. The two views are mathematically
equivalent, but if nothing else, our view is more humane.

Except when k = N , the balance equations for π2fπ2fπ2f (k;N) are identical to
those for π2π2π2(k;N). Remember to replace the vector πππ(n;N) with π2fπ2fπ2f (N−k;N)
[see (5.1.1d)] when you examine the equations in Section 4.1.1. The equation
for k = N differs from (4.1.3b). Now, even though there are N customers
at S2, S1 is not idle. Therefore, the vector probability of leaving the state
{ · ;N ; N} is proportional to (λI + M); that is, something can happen in
either S1 or S2. There are three ways to enter state { · ; N ; N}. One is to
be in some state { · ; N−1; N}, [π2fπ2fπ2f (N−1; N)], and have a completion [M]
that results in a departure from S1, [Mq′], while simultaneously the next
customer enters S1, [p]. The second way is for there to be N customers at S2,
[π2fπ2fπ2f (N ; N)], with an event again occurring in S1, [M], with that customer
going to another phase in S1, [P]. The third way is similar to the second,
except that now the customer in S1 [the lonesome (N + 1)st customer] leaves
[q′], but because the buffer at S2 is full, he immediately returns to S1 and
starts up again [p]. In total, we have

π2fπ2fπ2f (N ; N)(λI + M) = π2fπ2fπ2f (N−1; N)Mq′p + π2fπ2fπ2f (N ; N)M(P + q′p).

Upon regrouping terms, and recognizing yet once again that Mq′p = BQ,
we get

π2fπ2fπ2f (N ; N)(λI + B−BQ) = π2fπ2fπ2f (N−1; N)BQ. (5.3.1a)

The equation equivalent to (4.1.3c) gives

π2fπ2fπ2f (0; N)B = π2fπ2fπ2f (1; N)λ, (5.3.1b)

which in a manner identical to Section 4.1.2 recursively leads to results equiv-
alent to (4.1.5b),

π2fπ2fπ2f (k; N)U = π2fπ2fπ2f (k−1; N), 2 ≤ k ≤ N. (5.3.1c)

But (5.3.1a) is yet to be satisfied. Equation (5.3.1c) with k = N must be
made consistent with (5.3.1a). Upon combining the two, we get

π2fπ2fπ2f (N ;N)(λI + B−BQ) = π2fπ2fπ2f (N ;N)UBQ.

But from Lemma 4.1.1, UBQ = λQ, so we bring everything to the left side
of the equation to get

π2fπ2fπ2f (N ;N)(λI + B− λQ−BQ) = [π2fπ2fπ2f (N ;N)(λI + B)](I−Q) = o

(o is the null row vector). This is an eigenvector equation which says that
the vector in brackets is a left eigenvector of (I−Q) with eigenvalue 0. Can
this be satisfied? It had better be. Note that C := I−Q is idempotent, just
like Q. That is, C2 = C. (See Lemma 3.5.1.) Therefore, all of C’s eigenvalues
are either 0 or 1. Now, Q is of rank 1, so it has only one eigenvalue with

326 5.3 ME/M/1/N and ME/M/1//N Queues

value 1. Therefore, C is of rank m− 1 and has only one zero eigenvalue. The
corresponding left and right eigenvector pair are our old companions p and
ε′ε′ε′. The vector in brackets must, then, be proportional to p. Write

π2fπ2fπ2f (N ;N)(λI + B) = cp,

where c is an undetermined constant. Recall from the definition of A [Equation
(4.1.4a)], that λI + B = λ(A + Q). Also, multiply both sides of the equation
by U to get

λπ2fπ2fπ2f (N ;N)(I + QU) = cpU,

but π2fπ2fπ2f (N ;N)QU = π2fπ2fπ2f (N ;N)ε′ε′ε′ pU = c′pU, where c′ is another constant.
We regroup, divide by λ, and get

π2fπ2fπ2f (N ;N) = g(N)pU, (5.3.1d)

where g(N) is yet another constant, which we do evaluate. This time we have
noted its dependence on N .

We can now combine (5.3.1b), (5.3.1c), and (5.3.1d) to get the explicit
matrix geometric solution to the ME/M/1/N queue:

π2fπ2fπ2f (k;N) = g(N)pUN+1−k for 1 ≤ k ≤ N,

but for k = 0,
π2fπ2fπ2f (0;N) = g(N)λpUNV.

The scalar probabilities are, by now, easy to write down. For k > 0,

r2f (k;N) := π2fπ2fπ2f (k;N)ε′ε′ε′ = g(N)Ψ
[
UN+1−k

]
and the probability that S2 is idle is given by

r2f (0;N) = g(N)λΨ
[
UNV

]
.

These formulas seem to be very familiar [look at (4.1.6a) and (4.1.6b)], and
we relate them to the ME/M/1/ /(N + 1) queue after we have found g(N).
We calculate this constant by requiring that the sum of the r2f (k;N)s be 1.
Then g(N) satisfies the relation

1
g(N)

= Ψ
[
λUNV

]
+

N∑
k=1

Ψ
[
UN+1−k

]
= Ψ

[
U + U2 + · · ·+ UN + λUNV

]
.

We need only compare this with the definition of K(N + 1) in (4.1.6d) to see
that

1
g(N)

= Ψ [UK(N)] = Ψ [K(N + 1)]− 1. (5.3.2a)

We next summarize these equations in the following theorem so that they can
all be found in one place.

5 G/M/1 Queue 327

Theorem 5.3.1 The steady-state vector probabilities of (a random
observer) finding k customers in an ME/M/1/N queue are given below.

π2fπ2fπ2f (0;N) = λg(N)pUNV (5.3.2b)

and
π2fπ2fπ2f (k;N) = g(N)pUN+1−k for 0 < k ≤ N. (5.3.2c)

The associated scalar probabilities are given by the next two formulas.

r2f (0;N) = g(N)Ψ
[
λUNV

]
(5.3.2d)

and

r2f (k;N) = g(N)Ψ
[
UN+1−k

]
for 0 < k ≤ N, (5.3.2e)

where 1/g(N) = Ψ [UK(N)] = Ψ [K(N + 1)]− 1. �

This theorem is very similar to Theorem 4.1.2 with N replaced by N +1, so we
can see by inspection, upon invoking (5.1.1c) and (5.1.1d), that the quantities
π2fπ2fπ2f (k;N) and π2π2π2(k;N + 1), together with their scalar counterparts, satisfy
the following corollary.

Corollary 5.3.1 The steady-state probabilities of (a random ob-
server) finding k customers in an ME/M/1/N queue are related to the
steady-state probabilities of finding k customers in an ME/M/1/ /(N+
1) loop by the following formulas.

π2fπ2fπ2f (k;N) = c(N)π2π2π2(k;N + 1) for 0 ≤ k ≤ N (5.3.3a)

and

r2f (k;N) = c(N)r2(k;N + 1) for 0 ≤ k ≤ N, (5.3.3b)

where

c(N) :=
Ψ [K(N + 1)]

Ψ [K(N + 1)− I]
=

1
1− r2(N + 1;N + 1)

. (5.3.3c)

The probabilities for the two queues differ only by the fact that r2(N +
1;N + 1) exists but r2f (N + 1;N) does not. Therefore, they must be
multiplied by different constants so that they each sum to 1. If � < 1,
then as N becomes unboundedly large, the two systems yield identical
results. �

Our view of the ME/M/1/N queue as a closed loop with N +1 customers,
where a lone customer at S1 circles until room is made for him at S2, would
seem to be better than we would have expected. Thinking of queues with
finite waiting rooms as open systems is certainly not nearly as helpful.

328 5.3 ME/M/1/N and ME/M/1//N Queues

5.3.2 Arrival Probabilities and Customer Loss

Before continuing this section it might be useful for the reader to review Sec-
tions 2.1.4 and 4.2.4 first. We have seen that if some loss of customers can be
tolerated it might be useful to allow that to happen in order to improve the
performance of those who are accepted. This could be tolerable, for instance,
when transmitting video streams, or voice. In such cases a small amount of
loss will hardly be noticed. It might also be useful to turn away customers if it
is (almost) sure that the customers will return later, when the load is lighter.
This can be risky, because it can be construed as poor customer service, or
customers could try again repeatedly until they are accepted, thus exacer-
bating the traffic congestion. Before making such decisions it is useful to be
able to estimate the probability of a rejection. This is given in the following
theorem.

Theorem 5.3.2 The s.s. vector probabilities that an arriving cus-
tomer will find k (0 ≤ k ≤ N) customers already in a G/M/1/N queue
are:

a2f (k; N) = C(N)pUN−kQ = C(N)Ψ[UN−k]p, (5.3.4a)

with scalar probabilities

a2f (k; N) = C(N)Ψ[UN−k], (5.3.4b)

and because
∑

k a2f (k; N) = 1, it follows that

1/C(N) = p
[
I + U + U2 + · · · UN

]
ε′ε′ε′

= Ψ
[
(I−UN+1)K

]
. (5.3.4c)

[See Lemma 4.2.2 for properties of K = (I−U)−1.] The customer
loss probability is

P2f (N) = a2f (N ; N) = C(N). (5.3.4d)

As first discussed in the paragraph surrounding (2.1.10b), these equa-
tions are valid for all � < �m, where

�m := 1/[1− P2f (N)].

We can also see this directly from (5.3.4c). Clearly, from Equations
(5.3.4) and (4.2.3e),

P2f (N) < lim
N→∞

C(N) =
1

Ψ[K]
= 1− 1

�m
,

which upon solving for � yields the above.

Observe from (5.1.1a) that:

a2f (k; N) = a2(k; N + 1).

Compare these equations with (2.1.9a), where U→ � = 1/ρ. �

5 G/M/1 Queue 329

Note that every a2f (k;N) is proportional to the entrance vector p. This must
be so because every arriving customer has just left S1, and was immediately
replaced by another customer (or if he is rejected, he immediately returns to
S1 and re-enters.

Proof: We could simply argue that the previous equation is “obvi-
ously true.” But it can be proven directly, using techniques previously
used. First, exactly as in Section 4.1.3, define [w2f (k; N)]i as the s.s.
probability that between events in an G/M/1/N system, there are k
customers at S2 and an unboundedly large number of customers (or
at least N − k + 1) at S1, the active customer there being in state i.
Except for k = N , w2f (k,N) satisfies the same balance equations as
w(n,N) in Equations (4.1.9), where n = N−k. However,

w2f (N ; N) = w2f (N ; N)
[
(λI + M)−1M

]
(P + q′p)

+ w2f (N−1; N)(λI + M)−1Mq′p.

The terms on the right constitute the three ways that the system can
enter a state with a full buffer at S2. Either the buffer is already full
and (1) the active customer in S1 moves from phase j to i [(P)ji]; (2)
The customer leaves S1 [(q′)j] and, upon finding the buffer full, returns
to S1 and re-enters [(p)i]; or (3) there is one slot left at S2 and the
active customer at S1 leaves and enters the queue at S2, while at the
same time another customer enters S1. After the usual manipulations,
it follows that

w2f (N ; N)(λI + M)−1[λI + B−BQ]

= w2f (N−1; N)[(λI + M)−1]BQ. (5.3.5a)

For convenience, let

v(k; N) := w2f (k; N)(λI + M)−1;

then the balance equations imply that for k > 1

v(k; N) = v(k−1; N)A and

λv(1; N) = v(0; N)B.

Using v(N−1;N) = v(N ;N)U and UBQ = λQ, we get after regroup-
ing

v(N ;N) [λI + B−BQ− λQ] = v(N ; N)(λI + B)(I−Q) = o.

Using arguments identical to those leading up to (5.3.1d), we get

v(N ; N) = cp(λI + B)−1. (5.3.5b)

It is not hard to show that p[λI + B]−1A = Ψ[(I + λV)−1]p. This
together with the relation (as taken from (4.1.11) and the surrounding
discussion)

a2f (k;N) = w2f (k;N)(λI + M)−1Mq′p

330 5.3 ME/M/1/N and ME/M/1//N Queues

yields Equations (5.3.4), a simple result for such a complicated deriva-
tion. QED

As a last comment, we mention that the last term of (5.3.4c) is a very
efficient expression for computing P2f (N), but only when � is not too close to
1. At � = 1, U has a unit eigenvalue, thus K does not exist there. It is then
more accurate to use the middle expression. Better yet, if the eigenvalues and
eigenvectors of U can be computed easily and accurately, one can perform
the sum over scalars. That is, let m = Dim[U] and let {νi | 1 ≤ i ≤ m} be the
eigenvalues of U, with right and left eigenvectors {v′

i} and {ui}, respectively.
By the spectral decomposition theorem (see Section 1.3.3.1), it follows that

S :=
N∑

n=o

Un =
m∑

1=1

[
N∑

n=o

νn
i v′

i ui

]
=

m∑
i=o

[
1− νN+1

i

1− νi

]
v′

i ui.

If one of the eigenvalues, say ν1, equals 1, then replace the term for i = 1 in
large brackets with N + 1. That is,

S = (N + 1)v′
1 u1 +

m∑
i=2

[
1− νN+1

i

1− νi

]
v′

i ui.

This equation is efficient and stable to roundoff errors, even for very large N .
we made use of this in preparing the graphs in the following example.

Example 5.3.1: Using (5.3.4c) and (5.3.4d), we have calculated the small-
est value of N for which a G/M/1/N queue will have a P2f ≤ .01 loss rate
for seven different interarrival time distributions, and have presented them
in Figures 5.3.1 and 5.3.2. Note that this is an integer function of �. There-
fore it increases by unit steps, hence the jagged appearance. It begins to look
smooth because the graph is in log scale, and the steps thus have step sizes of
log[1 + 1/(buffer size)] ≈ 1/(buffer size). Three of the functions chosen were
TPTs from Section 3.3.6.2, with T = 8, 16, 32 where θ = 0.5, and α = 1.4.
The curve labeled M is that for the M/M/1/N queue. The other three curves
are for the Erlangian-2 distribution, and two hyperexponential distributions
with the same C2

v = 4.75 as the TPT with T = 8. Even though they have the
same mean and variance, the three curves differ quite substantially. In fact,
the curve for the H2/M/1 system with p1 = .0001 looks a lot more like the
one for the M/M/1 system until � approaches 1, showing once again that C2

v

is not necessarily the most important parameter.
Although the buffer size needed for 1% (P2f = .01) loss grows very large

as � approaches 1 (remember that the buffer size is on a log scale), the inset
for Figure 5.3.1 shows that it is finite at � = 1 for all the distributions. In
general, the curves do blow up, but at � = 1/(1 − P2f) = �m, for then the
arrival rate of those customers who are accepted equals the service rate, finally
overwhelming S2. [See the discussions surrounding (2.1.10b) and (5.3.4).] The
blowup is clearly demonstrated in the inset of Figure 5.3.1. In Figure 5.3.2 the
buffer size is multiplied by (�m − �) for the same seven queues, and plotted
for 1 ≤ � ≤ �m = 1/.99. Here we see that the product goes to 0 at � = �m.
This tells us that the buffer size blows up as 1/(�m − �)a, where a < 1. �

5 G/M/1 Queue 331

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

10
4

T = 32

T = 16

T = 8

H2, p1 = 0.1

H2, p1 = 10−4

M
E2

Utilization factor, �

B
uf

fe
r

Si
ze

1 1.004 1.008 1/0.99 1.012
10

1

10
2

10
3

10
4

10
5

10
6

10
7

T = 32

T = 16

T = 8 H2, p1 = 0.1

H2, p1 = 10−4
M

E2

Utilization factor, �

B
uf

fe
r

Si
ze

Figure 5.3.1: Buffer size needed for customer loss to be less than
1%, as a function of �, for seven interarrival time distributions with various C2

v .
Three of the curves have TPT interarrival time distributions with T = 8, 16, 32
terms. The two curves labeled H2, p1 = · · · have the same C2

v = 4.75 as the one
for T = 8, but are very different in shape. All curves are finite at � = 1, but they
do blow up at � = 1/(1− .01), as shown by the inset figure, whose x-axis extends
beyond the blowup point.

5.4 Steady-State ME/M/C-Type Queues

We are now prepared to give more properties to S2. It still has a one-
dimensional internal representation, but we allow its service rate to vary with
its queue length k. This has the obvious application to systems in which sev-
eral (C) exponential servers are fed by a single queue. Another potentially
important application is in the study of complex networks. In this case, one
server is singled out to be S1, the nonexponential server, and the rest of the
network is approximated by S2, with suitably chosen flow rates λ(k) to rep-
resent customer flow. Thus one can combine the power of the product-form
solutions in constructing (maybe) reasonable λ’s with the correct represen-
tation of one nonexponential server. This technique has been tried but not
enough is known as yet to decide under what conditions it will give realistic
results.

In Section 2.1.5 we discussed load-dependent exponential servers. We
viewed a subsystem in either of two ways. Either there were multiple servers
available to handle more than one customer at a time, or a single server worked
faster when more customers were present. Because exponential subsystems
have only one internal state, the two views are mathematically equivalent.
For instance, if there is one customer present, let the probability rate of com-

332 5.4 Steady-State ME/M/C-Type Queues

1 1.004 1.008 1/0.99 1.012
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

T = 32

T = 16

T = 8 H2, p1 = 0.1

H2, p1 = 10−4

M

E2

Utilization factor, �

B
uff

er
Si

ze
×(

1
1
−

p
−

�
)

Figure 5.3.2: (�m − �)×(�m − �)×(�m − �)×(buffer size) needed For customer loss to be
less than 1%, for 1 ≤ � < �m1 ≤ � < �m1 ≤ � < �m. The interarrival time distributions are the same
as those in Figure 5.3.1. Although all the buffer sizes grow unboundedly as �
approaches 1/(1 − P2f), they blow up more slowly than 1/(�m − �). We can
deduce this because (buffer size)× (�m − �) → 0 at �m = �.

pletion be λ, and if two are present, let the probability rate be 2λ. There is
no way to tell if two servers are each processing a customer at the rate of λ,
or one server is working twice as fast.

Actually, there is a way to tell the difference: by marking the customers.
In the first case, if a customer is in service when a second arrives and begins
service, there is a distinct possibility that the second will finish before the
first (in fact, the probability is 0.5 for exponential servers). In the second
case, the FCFS ordering is always maintained. If the customers are marked
according to their order of arrival, an observer can tell the difference, because
the two-server option will allow customers to leave in a different order from
which they arrived. We have been and will continue to take the view that all
customers are alike, and unmarkable. To do otherwise would greatly increase
the amount of information required, even of exponential subsystems.

In many applications, the customers present share the single server on
equal terms. For instance, a customer may be given a small amount of service
and whether or not he is finished, the next customer is given an equal amount.
After all customers present have been given a share, the first one is given
another increment of service, and so on in round-robin fashion. If the time
accorded each in turn is very small compared to the mean service time then
we have processor sharing. There is a related queueing discipline known
as time slicing in which each potential customer is given an increment of
time, whether or not he uses it (e.g., a rotary switch on a multiplexed cable).

5 G/M/1 Queue 333

Only the processor sharing discipline fits easily into our scheme of things.
Conceptually we have multiple servers that are load dependent. If there is
one customer present, then he gets the whole server. If two customers are
present, then each one gets his own server, but the servers go at half speed.
Once again, if the server is exponential then there is no easy way to tell the
difference between this and the simple FCFS queue.

5.4.1 Steady-State ME/M/X/ /N Loops

If a subsystem has multiple internal states (i.e., is nonexponential), the three
views described in the preceding paragraphs are distinctly different. Modify-
ing the service (actually, completion) rates corresponds to changing M as a
function of queue length but leaving (I−P) alone. Serving two customers at
a time requires keeping track of both customers, for even when one of them
leaves, the other is still in some phase of service. The latter view (for proces-
sor sharing as well as multiple servers) is reserved for Chapter 6, because
it requires an increase in complexity of our formalism.

Given that S2 has only one phase, the two views are still equivalent. Also,
recall that solution of the M/G/1 and G/M/1 queues depends almost com-
pletely on the matrix

A = I +
1
λ
B−Q.

We see that λ and B = M(I−P) always appear together. Therefore, changing
λ (modifying S2), or modifying M by a constant factor, yields the same result.
Here we assume that M is fixed. The difference amounts to deciding whether
the load dependence is a function of the number of customers at S1, [n], or
the number of customers at S2, [k]. In a closed loop it does not make any
mathematical difference, because n + k = N , but if we look at the same
system for many values of N , there is an algorithmic difference. There is also
a difference from a modeling viewpoint. For instance, if we are interested in
the behavior at S1, and the load factor depends on n, we can think of this as an
arrival rate that varies according to the number of customers already at S1. In
the literature this is known as a queue with discouraged arrivals (although
arrivals could also be encouraged). For instance, Gupta et al, [Guptaetal07],
have modelled a multiserver system with join-the-shortest-queue scheduling
discipline as an arrival rate that decreases with queue length. On the other
hand, stories emanated from the Soviet Union of queues that were joined
by passersby because they thought that there must be “something to buy,”
the longer the queue the more likely that there was merchandise. We do not
pursue this view further here.

Let us take the view that S2 has a service rate which depends on its queue
length, and as in Chapter 2, call it λ(k). For now, we make no further as-
sumptions concerning the values of λ(k). Therefore, following the notational
comments at the end of Section 2.1.5, we look at ME/M/X//N loops. The
steady-state balance equations can be taken directly from Equations (4.1.3)
by replacing λ with λ(k), where k corresponds to the queue number in the
matching π2π2π2. The reader can check this by comparing the steady-state tran-

334 5.4 Steady-State ME/M/C-Type Queues

sition diagram in Figure 5.4.1 with Figure 4.1.2. Using the notation of this
chapter, we have

λ(N)π2π2π2(N ;N) = π2π2π2(N−1;N)BQ, (5.4.1a)

π2π2π2(0;N)M = π2π2π2(1;N)λ(1) + π2π2π2(0;N)MP, (5.4.1b)

and for 0 < k < N ,

π2π2π2(k;N)[B + λ(k)I] = π2π2π2(k−1;N)BQ + π2π2π2(k+1;N)λ(k+1). (5.4.1c)

(Remember that we still maintain the notation B = V−1 = M[I−P].)
π2π2π2(k;N) and associated r2(k;N) retain Definition 5.1.4, including the stan-
dard notational assumption that

π2π2π2(N ;N) := r2(N ;N)p. (5.4.1d)

Following the procedure we used in Chapter 4, we would like to solve fo
π2π2π2(k;N) in terms of r2(N ;N), but (5.4.1a) does not allow us to do that
directly because BQ does not have an inverse. So we must start at the other
end. Equation (5.4.1c) can be rewritten as

π2π2π2(0;N)M[I−P] = π2π2π2(1;N)λ(1),

or
π2π2π2(0;N) = π2π2π2(1;N)U(0), (5.4.2a)

where
U(0) := λ(1)V. (5.4.2b)

Next we look at (5.4.1c) for k = 1, while making use of (5.4.2a),

π2π2π2(1;N)[B + λ(1)I] = π2π2π2(0;N)BQ + π2π2π2(2;N)λ(2)
= λ(1)π2π2π2(1;N)Q + λ(2)π2π2π2(2;N),

or
π2π2π2(1;N) = π2π2π2(2;N)U(1), (5.4.2c)

where

A(1) :=
λ(1)
λ(2)

[
I +

1
λ(1)

B−Q
]

= [U(1)]−1. (5.4.2d)

In preparation for the general solution by induction, first define

A(k) :=
λ(k)

λ(k+1)

[
I +

1
λ(k)

B−Q
]

= [U(k)]−1, (5.4.3)

of which (5.4.2d) is a special case. Next observe the following lemma.

Lemma 5.4.1 For matrices A(k) and U(k), defined by (5.4.3), the
following are matrix identities for all k ≥ 0,

Bε′ε′ε′ = λ(k+1)A(k)ε′ε′ε′ and U(k)Bε′ε′ε′ = λ(k+1)ε′ε′ε′, (5.4.4a)

5 G/M/1 Queue 335

Figure 5.4.1: Steady-state transition diagram for state {i; k; N} of
an ME/M/X//N closed loop. An arrow pointing diagonally upward to the
left represents a customer finishing at phase i in S1, {[(M + λ(k)I)−1M]ii}, and
leaving to go to S2, [q′i], followed by another customer entering and going to j,
[pj], where j could equal i. A vertical arrow corresponds to a customer finishing
at phase i, in S1 [(M + λ(k)I)−1M], and going to phase j, [Pij]. An arrow to
the right (no diagonal arrows allowed) corresponds to a customer finishing at S2,
[(λ(k)I + M)−1λ(k)], and immediately going to S1, without changing the internal
state. In all cases, the argument of λ(·) matches the value of the queue length of
S2 at the tail of the arrow. Compare with Figure 4.1.2.

and

BQ = λ(k+1)A(k)Q and U(k)BQ = λ(k+1)Q, (5.4.4b)

exactly analogous to Lemma 4.1.1, for which this is a generalization.�
Proof: Given that Iε′ε′ε′ = Qε′ε′ε′ = ε′ε′ε′, all follows directly from the defini-
tion of A(k) and U(k) in (5.4.3). QED

Now assume that (it is certainly true for j = 0 and 1)

π2π2π2(j;N) = π2π2π2(j + 1;N)U(j) for j = 0, 1, . . . , k − 1, (5.4.5)

and use it in (5.4.1c) to get

π2π2π2(k;N)[B + λ(k)I] = π2π2π2(k;N)U(k−1)BQ + π2π2π2(k+1;N)λ(k+1)
= π2π2π2(k;N)λ(k)Q + π2π2π2(k+1;N)λ(k+1),

where we have used (5.4.4b). Solving for π2π2π2(k+1;N) yields (5.4.5) for j = k,
from the definition of U(k) given in (5.4.3). Thus we have proven our assertion

336 5.4 Steady-State ME/M/C-Type Queues

by induction, for all j up to j = N − 1. From Lemma 5.4.1, (5.4.1a) is also
satisfied.

We are now prepared to put all the above together in the following theo-
rem.

Theorem 5.4.2 The steady-state solution to the ME/M/X//N
loop is given by the following formulas, taken from (5.4.2b), (5.4.3),
and (5.4.5). For arbitrary λ(k) > 0, let U(0) = λ(1)V, and for k > 0,

U(k) =
λ(k+1)

λ(k)

[
I +

1
λ(k)

B−Q
]−1

.

Then

π2π2π2(N ;N) = r2(N ;N)p,
π2π2π2(N−1;N) = r2(N ;N)pU(N−1),
π2π2π2(N−2;N) = r2(N ;N)pU(N−1)U(N−2),

· · · · · ·
π2π2π2(k;N) = r2(N ;N)pU(N−1)U(N−2) · · ·U(k),

· · · · · ·
π2π2π2(0;N) = r2(N ;N)pU(N−1)U(N−2) · · ·U(k) · · ·U(0),

and
r2(k;N) = π2π2π2(k;N)ε′ε′ε′ for all k.

The equivalent recursive formula is given by (5.4.5). r2(N ;N) is eval-
uated by normalization, or let

K(N) = I + U(N−1) + U(N−1)U(N−2) + · · ·

+U(N−1)U(N−2) · · ·U(N−k)

+ U(N−1)U(N−2) · · ·U(N−k) · · ·U(0). (5.4.6a)

Then, with K(1) = I + U(0), it follows recursively that

K(N) = I + U(N−1)K(N−1) (5.4.6b)

and
[r2(N ;N)]−1 = Ψ [K(N)] . (5.4.6c)

Compare this with the load-independent case, Theorem 4.1.2, and
(4.1.6d), (4.1.6e), and (4.1.6g). �
Proof: Note that (5.4.6b) comes from (5.4.6a) by grouping all terms
that are left-multiplied by U(N−1). QED

As far as we know, there is no way to take advantage of a simplification such
as λ(k) = k λ. As long as λ(k)
= λ(k+1), we are stuck with this complexity.
The same order of complexity occurred for the M/M/X//N loop. Also, the
formulas given in Theorem 5.4.2 require families of matrices that require re-
cursive multiplication from both the left and right. This limits our ability to

5 G/M/1 Queue 337

find a recursive procedure that is efficient in both space and time, in studying
ME/M/X//N loops for a sequence of values of N .

The algorithm we are about to present is not necessarily the most efficient,
but it shows how the matrices fit together. Define the auxiliary matrices for
any n ≥ 0,

X(n, n) := I, (5.4.7a)

and for k < n

X(k, n) := U(n− 1)U(n− 2) · · ·U(k) = U(n− 1)X(k, n− 1). (5.4.7b)

This can be helpful in dealing with various objects. For instance, (5.4.6a) can
be rewritten as

K(N) =
N∑

k=0

X(k,N). (5.4.7c)

Then the vector and scalar probabilities, π2π2π2(k;N) and r2(k;N), can be com-
puted in the following way.

Corollary 5.4.2 (Algorithm) To compute the vector and scalar
queue-length probabilities of an ME/M/X//N loop for all N =
1, 2, · · · , Nmax, do the following.

. X(0, 0) = I

. K(0) = I

. FOR N = 1 TO Nmax

. X(N,N) = I

. K(N) = I + U(N−1)K(N−1)

. r2(N ;N) = 1/Ψ [K(N)]

. FOR k = 0 TO N − 1

. X(k,N) = U(N−1)X(k,N−1)

. π2π2π2(k;N) = r2(N ;N)pX(k,N)

. r2(k;N) = π2π2π2(k;N)ε′ε′ε′ = r2(N ;N)Ψ [X(k,N)]

. END FOR(k)

. END FOR(N)

The mean queue length and other performance characteristics can be
found by computing them directly. �
There are no further insights we can gain without becoming more specific

about the properties of λ(k). Letting λ(k) = kλ will not tell us much unless
we do the calculations. If we let N become infinite, we can say very little
unless

λ∞ := lim
N→∞

λ(N) <∞,

and ρ := x̄1λ∞ < 1. In that case we would revert back to the steady-state
M/ME/1 open queue of Section 4.2, with arrival rate λ∞. If the inequality
is the other way around, (i.e., if ρ > 1), we have a problem. We do not even
know how to start without more information. However, we can, and in the
next section, do solve those systems for which the load-dependent service rates
are constant above a certain queue length.

338 5.4 Steady-State ME/M/C-Type Queues

5.4.2 Steady-State ME/M/C Queue

Let us assume that N > C > 1, and

λ(k) = λ(C) for k ≥ C. (5.4.8)

What the values of λ(1), λ(2),. . ., and λ(C) actually are does not seem to
be helpful for finding simpler solutions, so we leave them unspecified. Then
by our own definition at the end of Section 2.1.5, this is an ME/M/C//N -
type loop, but we do not emphasize that here. However, in Chapter 6, when
we examine the M/ME/C//N loop, the generalization is significant, and is
examined in detail.

Given our assumption, we see that (5.4.3) becomes

A(k) =
λ(C)
λ(C)

[
I +

1
λ(C)

B−Q
]

= A(C) for all k ≥ C. (5.4.9a)

Then,
U(k) = U(C) for all k ≥ C. (5.4.9b)

This matrix plays a dominant role in this section, therefore we call it by the
more concise symbol

Uc := U(C) and Ac := Uc
−1. (5.4.9c)

Every formula we derived in Section 5.4.1 is still valid here, but now we can
say something more about the various matrices. From assumption (5.4.8),
Equations (5.4.7) become

X(k,N) = [Uc]N−k for k ≥ C (5.4.10a)

and for k < C,

X(k,N) = [Uc]N−CU(C − 1) · · ·U(k) = [Uc]N−CX(k,C). (5.4.10b)

Also, from (5.4.7c) (remember, N > C),

K(N) =
C∑

k=0

X(k,N) +
N∑

k=C+1

X(k,N)

= Uc
N−CK(C) +

N∑
k=C+1

Uc
N−k, (5.4.11a)

where K(C) is the same as it was before, namely

K(C) = I + U(C−1)+U(C−1)U(C−2)+ · · ·+U(C−1) · · ·U(0). (5.4.11b)

From our knowledge of the partial geometric series, we can rewrite (5.4.11a)
as

K(N) =
(
I−Uc

N−C
)

[I−Uc]−1 + Uc
N−CK(C). (5.4.11c)

5 G/M/1 Queue 339

These simplifications are of some help in solving for systems with finite pop-
ulations, but otherwise they are not particularly enlightening. Their real use
comes in solving for the open system, to which we devote the rest of this
section. Let λc := λ(C) and ρc := λcx̄1. Then if ρc < 1, the limit of K(N), as
N goes to infinity exists, and

lim
N→∞

Uc
N = O (for ρc < 1).

Then from either (5.4.11b) or (5.4.6b), we have

lim
N→∞

K(N) = [I−Uc]−1 (for ρc < 1),

which is identical to the results in Section 4.2 for the M/ME/1 queue, with
λc, ρc, and Uc replacing λ, ρ, and U, respectively.

An interesting case occurs when the limit does not exist, presumably when
ρc > 1, so we assume that for the rest of this section. Proceeding in a manner
similar to Section 5.1, for which we get similar but not identical results, de-
fine sc to be the smallest eigenvalue in magnitude of Ac, with corresponding
eigenvectors uc, and v′

c, satisfying ucv′
c = 1. That is,

ucAc = scuc and Acv′
c = scv′

c, (5.4.12)

and |1/sc| is the largest among all eigenvalues of Uc. Using (5.1.2c), with Uc

replacing U, Equations (5.4.10) become for very large N and ρc > 1,

lim
N→∞

sN
c X(k,N) = sk

c v′
c uc for k ≥ C (5.4.13a)

and
lim

N→∞
sN

c X(k,N) = sC
c v′

c uc X(k,C) for k < C. (5.4.13b)

Also, from (5.4.11b) (using sN
c I→ 0), in a manner very similar to that used

in deriving (5.1.3a),

lim
N→∞

sN
c K(N) = [I−Uc]−1[0− sC

c v′
c uc] + sC

c v′
c uc K(C)

= v′
c ucs

C
c

[
K(C) +

sc

1− sc

]
. (5.4.13c)

Next, take Ψ[·] of the above to get, in analogy with (5.1.3b),

lim
N→∞

Ψ
[
sN

c K(N)
]

= sC
c (pv′

c)(ucε
′ε′ε′)
[

sc

1− sc
+ ûc K(C)ε′ε′ε′

]
, (5.4.13d)

where we have made the definition analogous to (5.1.4b):

ûc :=
uc

ucε
′ε′ε′
. (5.4.14)

Then we have ûcε
′ε′ε′ = 1. Also, note that ûcK(C)ε′ε′ε′ is a scalar.

340 5.4 Steady-State ME/M/C-Type Queues

Before going on, we must make a slight addition to our notation, so that
the symbols we use explicitly reflect their dependence on C. Remember that
in Section 5.4.1 there was no C, so we used the same notation as we did in
the preceding sections. But now, if one wishes to examine systems that are
identical except for differing values of C, the symbols must show it. So, for
the rest of this chapter, we use the following.

Definition 5.4.1
π2π2π2(k; N |C) = steady-state vector probability of finding k customers at
S2, in an ME/M/C//N-type queue. The associated scalar probability
is denoted by r2(k; N |C) = π2π2π2(k; N |C)ε′ε′ε′. This change of notation
carries over to the open ME/M/C queue as follows:

π2π2π2(k |C) := lim
N→∞

π2π2π2(k; N |C)

and
r2(k |C) := lim

N→∞
r2(k; N |C).

Note the vertical bar, making r2(k; C) very different from r2(k |C).���

Now we are ready to calculate the various probabilities from Corollary
5.4.2, Equations (5.4.10), (5.4.13), and (5.4.14).

π2π2π2(k |C) = lim
N→∞

1
Ψ [K(N)]

pX(k,N) = lim
N→∞

1
Ψ [sN

c K(N)]
psN

c X(k,N)

=
sk

c (pv′
c)uc

sC
c (pv′

c)(ucε
′ε′ε′)
[

sc

1−sc
+ ûc K(C)ε′ε′ε′

]
and with a slight cleanup, we get

π2π2π2(k |C) =
(1− sc)sk−C

c

sc + (1− sc)ûcK(C)ε′ε′ε′
ûc for k ≥ C.

The scalar expression that is in the front of this equation appears often enough
to warrant its own symbol. Therefore, define

g(C) :=
1− sc

sc + (1− sc)ûcK(C)ε′ε′ε′
. (5.4.15)

Then
π2π2π2(k |C) = g(C)sk−C

c ûc for k ≥ C. (5.4.16a)

Also,
π2π2π2(k |C) = g(C) ûc X(k, C) for 0 ≤ k < C. (5.4.16b)

Note that ûc X(k,C) is a vector that is not usually proportional to ûc. The
associated scalar probabilities can then be written as

r2(k |C) = g(C)sk−C
c for k ≥ C (5.4.17a)

5 G/M/1 Queue 341

and
r2(k|C) = g(C)ûcX(k,C)ε′ε′ε′ for 0 ≤ k < C. (5.4.17b)

When C = 1, these equations reduce to those in Theorem 5.1.2. We summarize
the above with the following theorem.

Theorem 5.4.3: The steady-state probability vectors for the
ME/M/C queue are given by Equations (5.4.15) to (5.4.17), where
sc is the smallest eigenvalue in magnitude of the matrix from (5.4.9a),

Ac = I +
1
λc

B−Q,

with left eigenvector ûc normalized so that ûc ε′ε′ε′ = 1. It follows that sc

also satisfies the equation

sc = B∗[λc(1− sc)].

The matrices {A(k) | 0 ≤ k < C} and their inverses {U(k) }, are given
by (5.4.3). The matrices {X(k, C) | 0 ≤ k < C } are given by (5.4.7b),
and K(C) is defined by (5.4.11b). �

The geometric parameter sc has identical properties to the geometric param-
eter we discussed in Section 5.1.3 in relation to the ME/M/1 queue. The only
distinction is using λc in the construction of Ac.

The reader should look closely at Equations (5.4.16) and (5.4.17) to see
their similarity with Theorem 5.1.2, for C = 1. For k ≥ C, all the proba-
bility vectors are proportional to ûc, and their magnitudes are geometrically
distributed with ratio sc. However, for k < C they take on a different form,
which is easy enough to calculate in specific cases, but about which little can
be said in general.

Exercise 5.4.1: Let C = 2, and let λ2 = 2λ. Calculate the steady-
state probabilities and the mean queue length of an E2/M/2 queue, for
ρ2 = 0.1, 0.3, 0.5, 0.7, 0.9, and 0.95. Compare the queue lengths with
those for the M/M/2 queue for the same ρ2.

The accomplishments of this section correspond to what a random observer
will see when viewing a system that has been in existence for a long time. We
must go to the next section to find out what arriving and departing customers
would see.

5.4.3 Arrival and Departure Points

What we do here exactly parallels what we did in Section 4.1.3 for load-
independent loops. The generalization is direct, but we give new definitions
to correspond to our focus on S2. We deal with ME/M/X//N loops first, and
then specialize at the end to look at the ME/M/C queue.

342 5.4 Steady-State ME/M/C-Type Queues

Definition 5.4.2
w2(k;N) := steady-state vector probability of finding k customers at
S2, and N − k customers at S1, between events. [w2(k;N)]i is the
probability that the ith phase in S1 is busy (and there are k customers
at S2). w2(N ;N) is defined to be proportional to p. ���
Just as we did with the steady-state balance equations (5.4.1), we can

write the balance equations for w2(k; N) directly, by replacing λ wherever it
appears in Equations (4.1.3) by the appropriate λ(k). The reader might look
again at Figure 5.4.1 before going on. The balance equations can be written
directly from a generalization of Equations (4.1.9).

w2(N ; N) = w2(N−1;N)[λ(N−1)I + M]−1 BQ. (5.4.18a)

For 1 ≤ k ≤ N − 1,

w2(k; N)[λ(k)I + M]−1[λ(k)I + B] = w2(k−1;N)[M + λ(k−1)I]−1BQ

+ w2(k+1;N)[M + λ(k+1)I]−1λ(k+1)I (5.4.18b)
and

w2(0; N)M−1B = w2(1; N)[λ(1)I + M]−1λ(1)I. (5.4.18c)
Notice that if we use the convention that λ(0) := 0 and λ(k) := 0 for k > N ,
then (5.4.18a) and (5.4.18c) become special cases of (5.4.18b). But do not get
carried away. It is usually the special cases that give us physical insight.

We can easily write down the solutions to the balance equations for
w2(k; N) by comparing them with those for π2π2π2(k; N), Equations (5.4.1),

Theorem 5.4.4: The steady-state between-event vector probabil-
ities of finding k customers at S2 in an ME/M/X//N loop are given
by the following.

w2(0; N) = c(N)π2π2π2(0; N)M, (5.4.19a)

for 1 ≤ k ≤ N − 1,

w2(k; N) = c(N)π2π2π2(k; N)[λ(k)I + M], (5.4.19b)
w2(N ; N) = c(N)π2π2π2(N ; N)λ(N)I. (5.4.19c)

c(N) is a normalization constant to make the w2s sum to 1, which we
do not bother to calculate, and π2π2π2(k; N) given by Theorem 5.4.2. �
Proof: By direct substitution. QED

As in Chapter 4, six types of events can happen. We repeat Equations (4.1.11),
but in the context of this section. λ(k) is now load dependent, and k refers to
the number of customers at S2.

(1) PPPr
[{·; N ; N}→{i; N−1; N}] = w2(N ; N);

(2) PPPr
[{i; k; N} →{i; k−1; N}] = w2(k; N)[λ(k)I + M]−1λ(k)I;

(3) PPPr
[{j; k; N} →{i; k; N}] = w2(k; N)[λ(k)I + M]−1MP;

(4) PPPr
[{j; k; N} →{i; k+1; N}] = w2(k; N)[λ(k)I + M]−1Mq′p;

(5) PPPr
[{j; 0; N} →{i; 0; N}] = w2(0; N)P;

(6) PPPr
[{j; 0; N} →{i; 1; N}] = w2(0; N)q′p.

(5.4.20)

5 G/M/1 Queue 343

Arrivals at S2 result in an increase of its queue length, corresponding to (4)
and (6) above. Keeping Definitions 5.1.2 to 5.1.4, we have [from term (6)]

a2(0; N) = G(N)w2(0; N)q′p

and [from term (4)]

a2(k;N) = G(N)w2(k;N)[λ(k)I + M]−1BQ for 1 ≤ k ≤ N − 1.

There is no term for k = N , because a customer cannot arrive at S2 and find
that everyone (including himself) is already there. The G(N) is the normal-
izing constant to make the sum of the probabilities add up to 1. Next, using
(5.4.19), we replace w2(k; N) with π2π2π2(k; N) to get

a2(0;N) = C(N)G(N)π2π2π2(0; N)BQ

and
a2(k; N) = C(N)G(N)π2π2π2(k; N)BQ for 1 ≤ k ≤ N−1.

These equations look rather uninteresting, being no different than the equiva-
lent ones for load-independent systems. But we are dealing with steady-state
phenomena, so π2π2π2 (k;N) = π2π2π2(k+1; N)U(k) from (5.4.5). Furthermore, from
Lemma 5.4.1 B ε′ε′ε′ = λ(k+1)A(k)ε′ε′ε′, so

π2π2π2(k; N)BQ = λ(k+1)π2π2π2(k; N)A(k)Q = λ(k+1)π2π2π2(k+1; N)Q.

Thus

a2(k; N) = C(N)G(N)λ(k+1)π2π2π2(k+1; N)Q
= C(N)G(N)λ(k+1) r2(k+1; N)p.

Compare with Theorem 5.1.3. and (5.1.1a). The mysterious reason for not
counting the arriving customer has to do with steady-state equations. We
have

N−1∑
k=0

a2(k; N)ε′ε′ε′ = C(N)G(N)
N∑

k=1

λ(k) r2(k; N) = 1.

Now, the sum multiplying C(N)G(N) is the mean rate at which customers
leave S2, which we have already met in Chapter 2, (2.1.14), and labeled Λ(N).
Therefore,

1
C(N)G(N)

= Λ(N) =
N∑

k=1

λ(k) r2(k; N). (5.4.21)

Let us next look at the departure probabilities. A departure from S2 requires
that the queue count drop by 1, so we need terms (1), for d2(N−1; N), and
(2), for d2(k; N), from our list in (5.4.20). We use (5.4.19) and go directly to

d2(k; N) = C(N)G(N)λ(k+1)π2π2π2(k+1; N) for 0 ≤ k ≤ N−1.

The sum
∑N−1

k=0 d2(k;N)ε′ε′ε′ = 1 yields the same result as we got for the arrival;
thus we have the following theorem.

344 5.4 Steady-State ME/M/C-Type Queues

Theorem 5.4.5: The steady-state arrival and departure vector
probabilities for the ME/M/X//N loop are given by the following
equations. For 0 ≤ k ≤ N − 1,

a2(k; N) =
λ(k+1)
Λ(N)

r2(k+1; N)p, (5.4.22a)

d2(k; N) =
λ(k+1)
Λ(N)

π2π2π2(k+1; N). (5.4.22b)

The corresponding scalar probabilities are

a2(k; N) = d2(k; N) =
λ(k+1)
Λ(N)

r2(k+1; N). (5.4.22c)

π2π2π2(k; N) is given by Theorem 5.4.2 or Corollary 5.4.2, and Λ(N) is
given by normalization through (5.4.21). Clearly, a2 and d2 are related
by the formula a2(k; N) = d2(k; N)Q. �

These equations are as close to the M/ME/1//N results of Theorem 4.1.4 as
one could hope. All the arrival vectors (departure vectors in Chapter 4) are
proportional to p and the scalar arrival and departure probabilities are equal
to each other. Even the vector departure probabilities are the same as the load-
independent arrival probabilities, but remember that d2(k;N) = a1(n−1;N)
in general. Why, you may ask, did we bother studying the simpler case in the
first place? The author would ask in return if you would have had much
greater difficulty understanding this section had you not gone through it first
in Chapter 4.

Once again we cannot say much more about these equations without pro-
viding more information about λ(k). We can say this much though: if

lim
N→∞

λ(N) >
1
x̄1

,

then S1 is surely the bottleneck, and the system throughput approaches

lim
N→∞

Λ(N) =
1
x̄1

. (5.4.23)

We turn our attention once again to the ME/M/C queue, and assume that
(5.4.8) holds.

Definition 5.4.3
a2(k;N |C) and d2(k;N |C) are the steady-state vector arrival and
departure probabilities for the ME/M/C//N-type queue. The associ-
ated scalar probabilities are denoted by a2(k;N |C) and d2(k;N |C).
This change of notation carries over to the open ME/M/C queue. For
instance,

a2(k |C) := lim
N→∞

a2(k; N |C),

with similar expressions for d2(k |C), a2(k |C), and d2(k |C). ���

5 G/M/1 Queue 345

The limiting expressions for these entities are just a little tricky. Let us
define

�c := 1/ρc

and assume that �c < 1. First look at departures. Using (5.4.22a), (5.4.23),
and (5.4.16a), we have

d2(k |C) = lim
N→∞

λc

Λ(N)
π2π2π2(k+1;N |C)

= λc x̄1 π2π2π2(k+1 |C) =
1
�c

g(C) sk+1−C
c ûc for k ≥ C−1,

where g(C) is defined by (5.4.15). But for k < C − 1, from (5.4.16b),

d2(k |C) =
1
�c

g(C)ûc X(k+1, C), for k < C−1.

Theorem 5.4.2 tells us that a2(k;N) = d2(k;N)Q, so the arrival vectors
require no further effort. We thus summarize.

Theorem 5.4.6: The steady-state departure and arrival vector
probabilities for the ME/M/C queue are given by the following equa-
tions. For departures,

d2(k |C) =
g(C)
�c

sk+1−C
c ûc for k ≥ C−1 (5.4.24a)

d2(k |C) =
g(C)
�c

ûc X(k+1, C) for k < C−1. (5.4.24b)

For arrivals,

a2(k |C) =
g(C)
�c

sk+1−C
c p for k ≥ C−1 (5.4.24c)

a2(k |C) =
g(C)
�c

[ûcX(k+1, C)ε′ε′ε′]p for k < C−1. (5.4.24d)

The associated scalar probabilities are equal to each other, and satisfy

a2(k |C) = d2(k |C) =
1
�c

r2(k+1 |C) for all k ≥ 0, (5.4.24e)

where r2(k |C) is given by either (5.4.17a) or (5.4.17b), depending on
the value of k. �

Once again we have a family of geometric distributions. Comparing with Equa-
tions (5.4.17), we see that a2(k|C) and d2(k|C) for a given k are related to
π2π2π2(k +1|C) (and r2(k +1|C)) for k +1. Therefore, the geometric form starts
at k = C for the steady-state probabilities, but starts at k = C − 1 for the
arrivals and departures. This compares with the ME/M/1 queue, where a2(0)

346 5.5 Transient Behavior of G/M/1 Queues

and d2(0) are part of a general geometric sequence, but π2π2π2(0) is not. Re-
member that by the notation of this section, π2π2π2(k | 1) is the same as π2π2π2(k) of
Section 5.1.

It is only fair to ask why one would want to know the vector details of
these systems. A perusal of Section 4.5 gives some idea of how they could be
useful. For instance, if we wanted to know the mean time for the arrival of
the next customer, given that one has just departed from S2, leaving behind
C−1 or more customers, one would use ûc V ε′ε′ε′. If, however, there were fewer
than C − 1 customers left behind, the mean time until the next arrival would
be

ûc [K(k+1, C)V]ε′ε′ε′

ûc[K(k+1, C)]ε′ε′ε′
.

We could do the same for random observers, or just arrived customers, or
more extended combinations. We discuss a little more transient behavior for
ME/M/1 queues in the next and final section of this chapter.

5.5 Transient Behavior of G/M/1 Queues

Much of what we do in this section is a copy of what was done in Section 4.5,
but from an upside-down point of view. What was there d is 2u here, and so
on. We should be able to move much more quickly, but there are some new
difficulties as well as some new insights. First we examine how the ME/M/1
queue grows with time. Afterward we study how long it takes for a queue to
drain, or equivalently, the k-busy period. We need not recommend that you
reread Section 4.5, because you will have to do it to retrieve formulas we need
here. We note, finally, that all procedures are directly generalizable to the
ME/M/X queue.

5.5.1 First-Passage Times for Queue Growth

We have already seen several times that before we can discuss how a queue
grows by k we must examine how it grows by 1. And we must see how the state
of the system has changed after a unit growth. So we define the equivalent of
Definition 4.5.1, which is really the inverse of Definition 4.5.7.

Definition 5.5.1
H2u(k) :=probability matrix of first passage from k to k+1. [H2u(k)]ij
is the probability that S1 will be in state j when the queue at S2 goes
from k to k+1 for the first time, given that the system started in state
{i; k}. The subscript 2u stands for “S2 goes up.” ���

Note that this matrix only has one argument (k), because going up always
implies that there is a bottom, namely an empty queue at S2. We have already
derived these in finding Hd(n,N) in Equations (4.5.10). It was clear, then (in
the notation of this chapter), that

H2u(k) = Q for all k ≥ 0. (5.5.1)

5 G/M/1 Queue 347

Why do we bother defining this matrix yet again, when it is of such simple
form? We answer that in the next chapter it is not so simple, even though the
concept is the same.

First we must define the upside-down version of Definition 4.5.8.

Definition 5.5.2
τ ′
2uτ ′
2uτ ′
2u(k) := mean first-passage time vector from k to k + 1. [τ ′

2uτ ′
2uτ ′
2u(k)]i is

the mean time for the queue at S2 to reach k + 1 for the first time,
given that the system started in state {i; k}. ���

We can write down the equations for τ ′
2u(k)τ ′
2u(k)τ ′
2u(k) directly from its equivalent in

Chapter 4. Thus (4.5.11a) and (4.5.11b) convert to

τ ′
2uτ ′
2uτ ′
2u(0) = Vε′ε′ε′ (5.5.2a)

and
τ ′
2uτ ′
2uτ ′
2u(k) =

1
λ

Uε′ε′ε′ + Uτ ′
2uτ ′
2uτ ′
2u(k−1), (5.5.2b)

where U is defined by (4.1.4). The solution of these equations comes directly
from (4.5.12):

τ ′
2uτ ′
2uτ ′
2u(k) =

1
λ
UK(k)ε′ε′ε′ =

1
λ

[K(k+1)− I]ε′ε′ε′, (5.5.2c)

where K(k) is the normalization matrix for the M/ME/1/ /k queue, defined
in (4.1.6).

Now we are ready to set up the formulas for time of queue growth, or are
we? To do this, we must know the state the system is in originally. That is, we
must know the initial vector pi. If the queue (at S2) is empty, what does that
tell us about the system (i.e., what state is S1 in)? The initial vector certainly
cannot be p, because that would imply that a customer just left S1, which
in turn means that the same customer has just arrived at S2, contradicting
our assumption that S2 is empty. If � (which you recall is 1/λx̄1) is less than
1, there are two possibilities of immediate interest. We could assume that a
customer has just departed S2 in a system that has been running for a long
time. This corresponds to

pi =
d2(0)
d2(0)

= û.

Then the mean time until the first arrival to the empty queue conditioned by
a departure (also known as the mean idle time, or time between busy periods),
is

tI := piτ
′
2uτ ′
2uτ ′
2u(0) = ûVε′ε′ε′ =

1− �

1− s
x̄1 (�, s < 1). (5.5.3a)

We got the last part from (5.1.5e) and remembered that ρ = 1/�. As an aside,
this formula gives us some idea of what the difference between s and � means.
If we are looking at an M/M/1 queue, then � = s, and the mean time until
the next arrival is x̄1, as expected. For other systems, we might look at Figure

348 5.5 Transient Behavior of G/M/1 Queues

5.1.1 for insight. If s is greater (less) than �, we would expect to wait longer
(less) than x̄1 for the first customer to arrive.

The other possibility is to ask what a random observer would see. This
corresponds to

pi =
π2π2π2(0)
r2(0)

=
ûV

ûV ε′ε′ε′
.

Thus the mean time for the first customer to arrive, as seen by a random
observer, is [call it tr(0)]

tr(0) := piτ
′
2uτ ′
2uτ ′
2u(0) =

ûV2ε′ε′ε′

ûVε′ε′ε′
.

We can actually get an interesting expression for this by solving for

ûV =
1

λ(1− s)
[λpV − û] (� < 1), (5.5.3b)

and
ûV

ûV ε′ε′ε′
=

�

1− �
[λpV − û]. (5.5.3c)

We put this all together to get

tr(0) =
Ψ
[
V2
]

(1− �)x̄1
− 1

(1− s)λ
.

It is difficult to see what is going on here, because near � = 1 both terms
are unboundedly large, so their difference can be anything. Actually, their
difference is finite. We leave it as an exercise to show [using (5.1.22b), (5.1.22c),
and (5.1.23b)] that (we are 99.44% sure)

lim
�→1−

tr(0) = x̄1
1 + C2

v

2

(
1 − s′′(1)

2
· 1 + C2

v

2

)
·

Even when � = 1−, this expression is not simple, particularly when one notes,
from (5.1.24a), that s′′(1) is quite complicated. Only when we consider the
M/M/1 queue does this simplify, for then s′′(1) = 0 and C2

v = 1, so tr(0) =
x̄1. One should compare these results with the residual times as given in
(3.5.12d). There are, of course, any number of other possibilities that one could
consider in setting up pi, all of which would require more information about
the history of the system. Now, if � > 1, even though (5.5.2a) is still valid,
we have nothing to go on for preparing the initial vector. In this case there
is no such thing as the steady state, and after a “long period of time,” the
probability that no one will be at S2 is 0. Therefore, any initial condition must
be based on some transient events. We must be given some special information
(“S1 just woke up,” or something).

Once there is someone at S2 (k > 0), we can say something even if � > 1.
We can talk about the state of the system immediately after a customer ar-
rives, and in fact this is the most important situation. After all, every increase
in queue length is the result of an arrival (at S2), so after the first increase,

5 G/M/1 Queue 349

all subsequent increases begin their epochs with the initial vector p (at S1).
The other two cases we described for k = 0 are still applicable. The initial
vector for the time to rise from k to k + 1, conditioned on a departure, is

pi =
d2(k)
d2(k)

= û,

the same as for the empty queue. Similarly, the random observer, from (5.1.5b)
and (5.1.5d), will see the same initial vector as a departing customer! Only
when the queue is empty will she see something different. An arriving cus-
tomer, however, will always see something different. (Speaking from a purely
physical point of view, the arriving customer will see nothing special, because
the initial vector refers to S1, the subsystem he left behind.) Thus we see that
there are cases when departing customers, arriving customers, and random
observers all see different behavior.

We could continue piling variations upon variations, but let us merely
consider the mean time for the queue at S2 to grow to k, given that the first
customer has just arrived. Let us call this t2(1→ k). Then [using the obvious
convention that t2(1→ 1) = 0]

t2(1→ k) =
k−1∑
l=1

pτ ′
2uτ ′
2uτ ′
2u(l) =

1
λ

k−1∑
l=1

Ψ [UK(l)] .

This formula is easy enough to compute, based on what we know from Chapter
4; however, we indicate how the queue grows for large k. We know that for
� > 1, K(l) approaches a limit for large l. Specifically [from (4.2.3)]

T := lim
l→∞

pτ ′
2uτ ′
2uτ ′
2u(l) =

1
λ

Ψ [UK] =
1
λ

Ψ
[
(I−U)−1 − I

]

=
1
λ

[
1

1− 1/�
− 1
]

=
1/λ

�− 1
for � > 1.

The expression is independent of everything except � and λ, and tells us that
once the queue grows large enough, it will continue to grow linearly with time.
Each incremental increase will take the same amount of time (on average, of
course). Because T is the mean time for the queue to grow by 1, its reciprocal
can be considered to be the rate at which the queue grows. This leads to

1
T

= λ�− λ =
1
x̄1
− λ for � > 1.

We have the perfectly reasonable result that the rate of queue growth is equal
to the rate of arrivals minus the rate of departures from S2. In other words,
the queue-length growth curves for all ME/M/1 queues approach straight
lines, and have the same slope. You should compare this result with that
for the M/M/1 queue [Equation (2.3.2a)] to see that, in fact, the two are
asymptotically equal. Keep in mind, however, that this is true only for � > 1!
When � < 1, asymptotic behavior is completely different. We must be very

350 5.5 Transient Behavior of G/M/1 Queues

careful when conceptually replacing probability flow rates with physical
flow rates. This is meaningful only in very heavy traffic.

For � < 1, the normalization matrix K(l) does not approach a limit but,
rather, grows geometrically as (1/s)l. We saw this in deriving the steady-state
solution for the ME/M/1 queue. For large l, and from (5.1.3),

λpτ ′
2uτ ′
2uτ ′
2u(l) ≈ Ψ [UF]

(
1
s

)l

=
(uε′ε′ε′)(pv′)
�(1− s)

(
1
s

)l

(for � < 1).

Now, let us define
D(σ) := [I + σV]−1.

[We have actually used this useful matrix before, in (4.2.8b). It is the generator
of the Laplace transform of b(x).] Then it can be shown, when σ = λ (1− s),
that

û = λpVD(σ), (5.5.4a)

v′ = cλVD(σ)ε′ε′ε′, (5.5.4b)

and

c = (uε′ε′ε′)(pv′) =
1

Ψ [(λVD)2]
=

(1− s)2

1− 2s + Ψ [D2]
. (5.5.4c)

From Equations (4.4.1), c can also be written as

1
c

=
1

1− s

[
1− λ

∫ ∞

o

xe−σxb(x) dx

]
. (5.5.4d)

We put this all together, coming up with a form that is valid for G/M/1
queues:

pτ ′
2uτ ′
2uτ ′
2u(l) ≈ x̄1

1− λ
∫∞
0

xe−λ(1−s)xb(x)dx

(
1
s

)l

, � < 1.

Compare this equation with (2.3.2a) for the M/M/1 queue. Both formulas are
of geometric form, therefore we know from the arguments given in deriving
(2.3.4a) that the queue length grows logarithmically with time. However, the
rates of growth vary enormously, depending on what distribution function is
generating the arrival process.

Example 5.5.1: We have combined the data from Figure 4.5.4, for the
M/M/1 and M/E2/1 queues with that for t2(1 → n) for the E2/M/1 queue,
and plotted them in Figure 5.5.1. Even without the extra curves, the two
figures are different. First of all, the x- and y-axes are interchanged. Second,
the Chapter 4 curves give the mean time to grow from 0 to n, but here all
curves give the time to go from 1 to n. Looking at this figure, when ρ (or �)
is much greater than 1, all three queues give virtually the same growth curve.
This agrees with our previous argument that 1/T , the asymptotic growth
rate, depends only on the difference between the arrival and the service rates.
However, when ρ (or �) is less than 1, the time for growth is exponential (or

5 G/M/1 Queue 351

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

� = 0.5
� = 0.9

� = 1.0

� = 1.5

Queue length, n

M
ea

n
ti

m
e

fo
r

qu
eu

e
to

gr
ow

,
t(

1
→

n
)

Figure 5.5.1: Mean time for queue growth t2(1 → n)t2(1 → n)t2(1 → n) for the E2E2E2/M/1
queue, and the equivalent function [t(1 → n)] for the M/M/1 and M/E2/1
queues, as a function of queue length n. Four values of ρ were used, (0.5, 0.9,
1.0, and 1.5) in calculating the M/ME/1 queues, and the same values for � were
used for the ME/M/1 queue. In all cases E2/M/1 lies above M/E2/1, which lies
above M/M/1.

the growth rate is logarithmic), and all three queues differ from one another. It
is somewhat surprising that near saturation, the M/E2/1 and E2/M/1 queues
are much closer to each other than they are to the M/M/1 queue. �

We leave it as an exercise to see how queues with other distributions
behave.

Exercise 5.5.1: Calculate t2(1 → n) for the H2/M/1 and M/H2/1
queues for the same parameters as those in Example 5.5.1. H2 is the
same hyperexponential distribution as used in previous exercises.

5.5.2 The k-Busy Period

We are now ready to study the draining of an ME/M/1 queue, the final topic of
this chapter. As in the preceding section, we can take definitions and formulas
directly from their equivalents in Section 4.5 and redress them in the notation
of this chapter.

Definition 5.5.3
H2d(k;N) :=probability matrix of first passage from k to k - 1 in an

352 5.5 Transient Behavior of G/M/1 Queues

ME/M/1//N loop. [H2d(k;N)]ij is the probability that S1 will be in
state j when the queue at S2 goes from k to k−1 for the first time, given
that the system started in state {i; k; N}. The subscript 2d stands for
“S2 goes down.” ���

This is almost identical to Definition 4.5.7, but is equal to (4.5.2) in value.
We can say directly that

H2d(N ;N) = Q (5.5.5a)

and

H2d(k;N) = λ[λI + B−BQH2d(k+1;N)]−1 for k < N. (5.5.5b)

Clearly, H2d(k;N) is isometric and invertible.
For the open system we need

H2d := lim
N→∞

H2d(k;N) = λ[λI + B−BQH2d]−1. (5.5.6a)

Premultiply both sides with the matrix in square brackets, and get

[λI + B−BQH2d]H2d = λI

which can also be expressed as a matrix quadratic equation,

BQ[H2d]2 − (λI + B)H2d + λI = 0. (5.5.6b)

Thus H2d is independent of k. It would be nice if we had an explicit form
for this, but in general, only iterative methods are available to find H2d or
its inverse. For instance, one can start with H2d = Q, and by brute force,
substitute iteratively into (5.5.6a) until convergence is reached. There are
other methods available that can find the solution much more efficiently. In-
terestingly enough, for all �, greater than, as well as less than 1, a physical
solution to this equation always exists, because the arguments that created
it are physical, and thus each iterate must exist. [Remember, each iterate
was really H2d(k−1;∞], coming down the recursive ladder, and each one is
isometric.)

Definition 5.5.4
τ ′
2dτ ′
2dτ ′
2d(k;N) := mean first-passage time vector from k to k−1. [τ ′

2dτ ′
2dτ ′
2d(k;N)]i

is the mean time for the queue at S2 to reach k − 1 for the first time,
given that the system started in state {i; k; N}. ���

Using (4.5.5) directly, we can write τ ′
2dτ ′
2dτ ′
2d(N ;N) := 1/(λ)ε′ε′ε′, and for 1 ≤ k < N ,

τ ′
2dτ ′
2dτ ′
2d(k;N) =

1
λ
ε′ε′ε′ +

1
λ
H2d(k;N)BQτ ′

2dτ ′
2dτ ′
2d(k+1;N). (5.5.7a)

We find the mean first-passage vector for the open queue by letting N go to
infinity, so

τ ′
2dτ ′
2dτ ′
2d := lim

N→∞
τ ′
2dτ ′
2dτ ′
2d(k;N) =

1
λ
ε′ε′ε′ +

1
λ
H2dBQτ ′

2dτ ′
2dτ ′
2d.

5 G/M/1 Queue 353

This vector is also independent of k, but unlike its first-passage matrix, we
can solve for it directly, to get,

τ ′
2dτ ′
2dτ ′
2d := [λI−H2d BQ]−1 ε′ε′ε′. (5.5.7b)

This can be rewritten in another form with the use of Lemma 4.2.1:

τ ′
2dτ ′
2dτ ′
2d :=

1
λ

[
I +

1
λ−Ψ [H2d B]

H2d BQ
]
ε′ε′ε′, (5.5.7c)

so if we can find H2d, then we get τ ′
2dτ ′
2dτ ′
2d.

Mean Time for a Busy Period
The mean time for the queue to drop by one, given that a customer has just
arrived is, using (5.5.7c),

t2d := pτ ′
2dτ ′
2dτ ′
2d =

1
λ

[
1 +

Ψ [H2d B]
λ−Ψ [H2d B]

]

=
1

λ−Ψ [H2d B]
for � < 1. (5.5.7d)

This is also the mean time for the busy period, but it is valid only when � < 1.
Otherwise the busy period may never end. Even though H2d is meaningful for
all �, when � ≥ 1, the term Ψ [H2d B] ≥ λ, so (5.5.7d) is infinite or negative.

Note that (2.3.7d) gives an alternate expression for the mean busy period.
In order for the two to be equal, we must have

Ψ [H2d B] = λ s. (5.5.8a)

This leads to the most interesting result that the mean busy period and
the mean system time for a G/M/1 queue are equal! Compare (5.5.7d) with
(5.1.7c) to get

EEE[T2] = t2d =
1/λ

1− s
· (5.5.8b)

Equation (5.5.8a) can also be used to simplify (5.5.7c).

Exercise 5.5.2: Prove that (5.5.8) is true by using (2.3.7d), and not-
ing that tI is given by (5.5.3a). That is, take

lim
m,N→∞

Rb(m) =
td

td + tI
.

For single server queues, this limit is the fraction of time the server is
busy, which for G/M/1 queues is �. Also, td is the mean service time,
namely, 1/λ.

354 5.5 Transient Behavior of G/M/1 Queues

To take a closer look at the differences between M/G/1 and G/M/1 queues,
we have calculated the mean time for the busy periods for several different
distributions and plotted them in Figures 5.5.2 and 5.5.3.

Example 5.5.2: Recall that all M/G/1 queues have the same mean time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

20

H2/M/1

HE2/M/1

M/M/1

E2/M/1

(E10, E20, E30)/M/1

Utilization factor, �

M
ea

n
ti

m
e

of
bu

sy
pe

ri
od

,
pτ

′ 2
d

Figure 5.5.2: Mean time of a busy period for various ME/M/1
queues, as a function of ���. These curves also represent the mean system
times, because the two are equal. All M/G/1 queues have the same mean busy
period (but different mean system times), so all are equal to the curve labeled
M/M/1. As � → 1, the busy periods rank themselves according to C2

v . The hy-
perexponential and the hyper-Erlangian functions have C2

v = 5.0388, and the
Erlangians have C2

v = 1/n, for n = 2, 10, 20, and 30. The D/M/1 queue bounds
all these curves from below, and is virtually indistinguishable from the E30/M/1.

for their busy periods, so they are all represented by the same curve, labeled
M/M/1 in Figures 5.5.2 and 5.5.3. Yet the figures show that different ME/M/1
queues vary all over the place. There is some order for the examples chosen
here. From (5.1.23d), as � approaches 1, bigger C2

v for the interarrival time
distribution, goes with larger mean system time. This not true for all �. In
fact, the hyper-Erlangian function discussed in Section 3.2.3.1 [E2(x)] yields
a mean system time that is below that for the M/M/1 queue when � is small,
and crosses it as � increases and first crosses and then joins the H2/M/1 curve
with the same C2

v as � approaches 1.
The figures certainly show that the arrival pattern is critically important

when studying busy periods, and system times. Recall from Theorem 5.1.4
that the behavior of s near � = 0 depends on b(�)(0), the interarrival
time distribution and its derivatives at x = 0, and not on its moments.
In particular, if b(0) = 0 (this includes all Erlangian and hyper-Erlangian

5 G/M/1 Queue 355

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

H2/M/1

HE2/M/1
M/M/1

E2/M/1

(E10, E20, E30)/M/1

Utilization factor, �

pτ
′ 2
d
×

(1
−

�)

Figure 5.5.3: Mean time of a busy period multiplied by (1 − �)(1 − �)(1 − �), for
the same ME/M/1 queues as given in Figure 5.5.2. Note that only the
M/M/1 queue yields a straight (and horizontal) line. All the Ek/M/1 queues have
negative slope at � = 0. This is also true of all interarrival time distributions that
have b(0) = 0, including those with C2

v > 1, as shown by the curve for the HE2(x)
distribution. Note that only the M/M/1 queue yields a horizontal straight line, and
all curves (for interarrival time distributions with C2

v < ∞) are finite at � = 1.

functions) then the mean time for a busy period (and the mean sys-
tem time) has 0 slope at � = 0 (as in Figure 5.5.2). When multiplied by
(1−�) (as in figure 5.5.3) the resulting curves have negative slopes at � = 0. �

As our last subject in this chapter, we discuss the k-busy period. If we
knew the state the system was in at the beginning, the first-passage time for
the queue at S2 to drop by 1 is simply piτ

′
2dτ ′
2dτ ′
2d. At that moment, the system is

in state piH2d, so the mean first-passage time to drop by one more is simply
piH2dτ ′

2dτ ′
2dτ ′
2d, and the time to drop by two is the sum of the two terms. In general,

then, the time it takes for an ME/M/1 queue to drop by k is given by the
expression

k−1∑
l=0

pi(H2d)l τ ′
2dτ ′
2dτ ′
2d.

As with the M/G/1 queue, if there were k customers in the queue in the first
place, this is the time for the k-busy period, conditioned by pi. If the queue
was longer than k at the start, this would still be the time for the queue to
decrease by k for the first time.

It is hoped that the reader is sufficiently skilled by now to be able to set
up the equations for the probabilities of queue growth, the Wx, where x is
one of 2u, 2m, or 2d. Therefore, we leave those items as exercises.

Chapter 6
M/G/C-TYPE SYSTEMS

Having two bathrooms ruined the capacity to cooperate.
Margaret Mead

The title of this chapter implies that there is more here than M/G/C queues.
The straightforward extension of Chapter 4 allows one to have C identical
servers serving up to C customers independently and simultaneously. But
when we set up those equations we find that they apply to a more general
class of systems where the active customers can actually interfere with each
other while being served. This can be used as a basis for studying clusters
of workstations that must share resources such as a communications channel
or central disc. We call such a system a generalized M/G/C//N queue,
where N is the total number of customers in the system. Interestingly enough,
when N = C then the steady-state soution is the same as for the single
class Jackson network [Jackson63], but when N > C the well-known
product form solutions are no longer valid, and one must resort to the matrix
techniques described here.

6.1 Introduction

In previous chapters when dealing with nonexponential distributions, we al-
ways assumed that only one customer was active at a time at S1. We did
look at multiple servers, but only if Si was exponential, introducing the idea
of a load-dependent server (Sections 2.1.5 and 5.4). In doing this, it was not
necessary to distinguish between:

1. A subsystem containing a single server that works twice as fast on one
customer when a second one is present;

2. A subsystem that has two active servers, one for each customer.

In fact, the only way the two cases can be distinguished is by marking the
customers so as to tell if they left in the same order in which they arrived.
This has become of interest in recent years, and is called the resequencing
problem . LAQT has been used successfully in analyzing the departure pro-
cess of an M/M/C queue where customers must leave in the same order in
which they arrived [Ding91]. Because we have made our customers indistin-
guishable, we have not bothered to consider this at all, nor can we consider
it here without expanding our state space.

L. Lipsky, Queueing Theory, DOI 10.1007/978-0-387-49706-8 6, 357
c© Springer Science+Business Media, LLC 2009

358 6.1 Introduction

We cannot get away so easily when dealing with nonexponential servers.
Case 1 has had few realistic applications, but it can be used in studying
queues with, for instance, discouraged arrivals or restricted processor
sharing∗. It is modeled by multiplying the completion rate matrix M by a
constant factor when a second customer arrives, leaving the dimension and
internal state description of S1 otherwise unchanged. This turns out to be
formally identical to the description of ME/M/C//N loops in Section 4.4,
except that the load-dependence factor depends on the number of customers
at S1 instead of the number at S2. We discuss this further when we look at
processor sharing.

The second case is much more complicated. When a second customer ar-
rives, as always, he begins service by going to phase i with probability pi, but
the first customer is already in service and is at some other phase. Further-
more, when one of the customers leaves, the other customer is still in service,
in some phase determined by the system’s past. Put differently, a departing
customer does not leave behind the empty state. We must therefore set up
a formalism that keeps track of where both customers are. This is normally
done by building a direct product space, the most common convention being
the Kronecker product. However, if the service times for the two customers
are identically distributed and they are not marked, one can use a Reduced-
Product (RP) space. The direct product spaces have dimension mC for C
iid customers, but the RP space has dimension

DRP (m, C) =
(

C + m− 1
C

)
·

This amounts to a reduction of dimensions by a factor that approaches C!.
We have to introduce new symbols and concepts here, hence it is best to

start with the simplest extension possible. Therefore, in the following section
we set up the formalism, and find the steady-state solution of a system where
S1 has exactly two identical ME servers (i.e., the M/ME/2//N loop). In doing
this, we have selected a three-phase ME server as an example. In Section 6.3
we extend this to C servers, for by then it will be easier for the reader to
follow the notation.

After that, we show that the formulas are actually applicable to a more
general class of systems, which we call “generalized M/G/C//N systems.”
With little more than a change of notation and a slight generalization of
some parameters, we show that we are suddenly dealing with a network of
queues. When N ≤ C, our generalized network is equivalent to the single-
class Jackson network, and we spend some time discussing the connection.
We then extend the model further to allow S2 to be a load-dependent server,
as we did in Section 5.4. This is potentially an important extension, because
it is the correct treatment of timesharing systems with population-size
constraints (i.e., when N > C).

When doing all this, we find that the equations are still algebraically ma-
nipulable but too complex to reduce to simple formulas. Thus we describe in

∗This has been done recently by Feng Zhang [Zhang07] in examining computer systems
where a restricted number of jobs can share the CPU

6 M/G/C-Type Systems 359

detail algorithms that allow the user to get computational results for particu-
lar systems. Our formalism reduces the dimensions of all relevant matrices to
their bare minima. (At present, at least, it is impossible to do it with smaller
matrices.) Even so, problems can quickly become intractable if C and/or m
become too large, so we discuss the computational complexity of the algo-
rithms.

In Section 6.4 we study the open M/G/C system in the usual way by letting
N become unboundedly large. The reverse game, which considers systems
where S1, even at full capacity, is slower than S2 (i.e., the generalization of
ρ > 1), leads to a semi-Markov arrival process to S2. This is treated in
Section 6.5.2, but a full discussion of semi-Markov processes is postponed until
Chapter 8. In the rest of Section 6.5 we look at some transient phenomena,
including those related to the busy periods. Some of these are potentially
important in studying the reliability of systems and rush-hour traffic.

Because of time and space limitations, we have foregone the pleasure of
fully developing the formulas for departure and arrival times, even though it
should prove quite interesting, with several new insights. Its treatment can be
found in a series of papers by Ahmed Mohamed and his thesis [Mohamed04].

We mention that much of this chapter is an outgrowth of material in
Aby Tehranipour’s PhD thesis [Tehranipour83] and related publications.
Recent applications and extensions have been carried out by Ahmed Mohamed
[Mohamed04] and Feng Zhang [Zhang07].

6.2 Steady-State M/ME/2//N Loop

Consider the queueing system in Figure 6.2.1. It is identical to Figure 4.1.1
except that now S1 contains two identical ME servers. Previously, each sub-
system contained one ME server, so there was no real distinction between
S1 and a server. Thus the statement, “The subsystem is in state i,” meant
the same as the statement, “The active customer is at phase i.” Now that
S1 contains two servers, and each server is made up of m phases, we must
describe where both customers are if there are two or more customers at S1.
Definition 6.2.2 makes this clear.

6.2.1 Definitions

The process is as follows. No more than two customers can be active in sub-
system S1 at any one time, one being in each of the servers. When a customer
completes service at either server, he leaves S1 and joins the queue at S2 (still
exponential), while at the same time another customer (if one is available)
takes his place at the momentarily idle server. Any other customer who was
active in S1 at the time the first one finished continues unperturbed. Each of
the servers is described by the same objects introduced in Chapter 3: p, q′,
ε′ε′ε′, P, M, B, and V. As before, N is the number of customers in the system,
and n is the number of customers at S1, including the ones who are being
served. Then we have the following definition.

360 6.2 Steady-State M/ME/2//N Loop

Figure 6.2.1: A two subsystem loop where S2 is an exponential
server, but S1 is made up of two identical nonexponential ME
servers, each made up of m phases, and represented by the vector-matrix pair,
〈〈〈p , B 〉〉〉.

Definition 6.2.1
Ξ1 = {i | i = 1, 2, . . . , m} is the set of internal states of S1 when
n = 1. D(1) = m is the dimension, or number of elements, of Ξ1. The
external state of the system is still {1; N}. Thus we would say that
“The system is in internal state i ∈ Ξ1, and external state, {1; N}.” Al-
ternatively, we could simply say that “The system is in state {i; 1; N},”
with it being understood that i ∈ Ξ1. ���

Definition 6.2.1 is the same as in previous chapters, but with two or more
customers at S1 we must have an extended definition. It would seem that
because each of two customers can be in any one of m places, we need m2

states to describe this. This is actually more than is necessary if we do not
care to distinguish one customer from the other or one server from the other.
Thus the statement, “Customer 1 is at phase i1 in server 1, and customer 2 is
at phase i2 in server 2,” is more than we want to know. All we need to know
is that phase i1 in one of the servers and i2 in the other server are busy. This
leads to the specification of an internal state by the unordered pair {i1, i2}.
Then {i1, i2} and {i2, i1} are the same state. Therefore, think of {·, ·} as a set
containing two integers. For the sake of definiteness, we assume that i1 ≤ i2.
Then we have

Definition 6.2.2
Ξ2 = {i = {i1, i2} | i1 ≤ i2 = 1, 2, . . . , m} is the set of internal states
of S1 when n ≥ 2. D(2) = m(m + 1)/2 is the number of elements of
Ξ2. The external state of the system is still {n ; N}. Thus we would
say that “The system is in internal state i ∈ Ξ2, and external state,
{n ; N}.” Alternatively, we could simply say that “The system is in

6 M/G/C-Type Systems 361

state {i; n; N},” with the understanding that i ∈ Ξ2 if n ≥ 2 (i.e.,
i = {i1, i2}). ���

There is an alternative state space definition that is equivalent to this.
Instead of listing the phases that are active, we can enumerate the number of
customers at each phase. This requires an m-vector of nonnegative integers
whose sum is 2. Although this convention seems more verbose, it proves to be
more useful when we consider systems in which C > 2 or when we go to the
generalized system. For now, we use the definition as given.

Next we define the probability vectors, and their associated scalars, needed
for the work of this chapter. We use the obvious notation ε′kε

′
kε
′
k for the D(k)-

dimension column vector of all 1’s. We also use Ik for the identity matrix of
dimension D(k).

Definition 6.2.3
[π1π1π1(1;N)]i := probability that only one customer is at S1 (with N − 1
at S2), and the system is in internal state i ∈ Ξ1 (i.e., the customer
is at phase i in either server in S1). π1π1π1(1;N) is a vector with D(1)
components.
r(1;N) = π1π1π1(1;N)ε′1ε

′
1ε
′
1 is the associated scalar probability. ���

Definition 6.2.4
[π2π2π2(n;N)]i := probability that there are n ≥ 2 customers at S1 (with
N−n at S2), and the system is in internal state i = {i1, i2} ∈ Ξ2 (i.e.,
the two active customers are at phases i1 and i2 one in each of the two
servers in S1). π2π2π2(n;N) is a D(2)-vector, and r(n;N) = π2π2π2(n;N)ε′2ε

′
2ε
′
2 is

the associated scalar probability. ���

Note that the subscript k on πππk(n; N) stands for the number of customers
active in S1. Thus our convention differs from the one we used in Chapter 5.
Strictly speaking, the subscripts are unnecessary because they correlate with
the first integer in the argument (k = n for n ≤ 2, and k = 2 for n ≥ 2);
however, they denote objects of different dimensions, therefore we include
them both for emphasis. According to this convention, in this chapter we use
the subscript k to denote any object that applies only to space Ξk or, if it is
an object connecting two spaces (nonsquare matrices), k will correspond to
the higher-numbered space.

Although we wish to avoid sounding too abstract, we must say something
about the connection between our state space Ξk, and the vector spaces
on which our matrices operate. We have defined Ξk to be a set with D(k)
elements. We could think of each element as being a unit vector in a D(k)-
dimensional vector space. Consider the set of row vectors with D(k) compo-
nents. Then each state i ∈ Ξk corresponds to one such vector with a 1 in one
position, and a 0 in all the other positions. These states form a complete basis
for the D(k) dimensional vector space, because every vector in that space can
be written as a linear combination of the basis states, or basis vectors.
This is such a natural correspondence that we can usually get away without

362 6.2 Steady-State M/ME/2//N Loop

having to make a distinction between the set and the vector space its mem-
bers generate. Remember, though, that i stands for several things itself when
k > 1.

Consistent with the above, we proceed to rename several of our previously
known operators. First, the completion-rate matrix for states in Ξ1, M1 := M,
is a diagonal matrix whose (ii)th element [M1]ii, is the probability rate of
leaving state i ∈ Ξ1 by way of a completion inside S1. The transition matrix
for Ξ1 is P1 := P, and V1 = B1

−1 := V. We proved in Section 3.5.4, in the
discussion surrounding Lemma 3.5.2, that an exponential server with feedback
is equivalent to an exponential server without feedback, but with service rate
reduced to (1 − θ)μ, where θ is the feedback probability. This implies that
we can assume without loss of generality that [P1]ii = 0.† We do that here,
because it simplifies our examples. However, in Section 6.3.2 we allow Pii to
be nonzero. There is no need to relabel Q, p, and q′, but we must define a new
set of operators that operate on vectors in Ξ2. First we define the completion
rate matrix.

Definition 6.2.5
M2 is a diagonal matrix whose (ii)th element is the probability rate of
leaving the state i ∈ Ξ2 by way of a completion in S1. By our definition
of this system, [M2]ii = μi1 + μi2 . ���

The following is another Ξ2-space object, the transition matrix.

Definition 6.2.6
[P2]ij := probability of going to state j ∈ Ξ2 upon a completion in S1,
given that the system is in internal state i ∈ Ξ2. P2 is a (nonisometric)
transition matrix for states in Ξ2, (i.e., P2 ε′2ε

′
2ε
′
2
= ε′2ε

′
2ε
′
2). ���

Assume that [P1]ii = 0, and recall that only one customer can change his
phase at a time. Then the elements of P1 are related to P2 in the following
way.

[P2]ij = 0 unless {i1, i2} ∩ {j1, j2}
contains exactly one element.‡ Let the common element be called h. Call the
other member of the i-pair, γ, and the other member of the j-pair, ν. Then,
if there is exactly one element in common,

[P2]ij = [P1]γν
μγ

[M2]ii
, i1
= i2,

and
[P2]ij = [P1]γν , i1 = i2.

The reason for this is as follows. If i1
= i2, because only one active customer
can move at a time, the probability that it is the customer at phase γ is

†Suppose that P is a transition matrix with Pii �= 0 for some i. Then construct the new
matrix P̄, with P̄ii = 0, P̄ij = Pij/(1 − Pii), and P̄kj = Pkj for j, k �= i. Also, replace μi

with (1 − Pii)μi in M. All other components remain the same. See Lemma 3.5.5.
‡Note: If we had not assumed that [P1]ii := 0, we would have had to consider the

additional possibility that i = j.

6 M/G/C-Type Systems 363

μγ/(μγ + μν), and the probability that he will go to ν, given that he is the
one who will move is [P1]γν . If i1 = i2, it makes no difference which one
moves.

As an example, let m = 3; then

Ξ1 = {1, 2, 3},
and

Ξ2 = {{1, 1}, {1, 2}, {1, 3}, {2, 2}, {2, 3}, {3, 3}} .

The transition matrix is given by the following, where the ordering is the same
as that given in the list above.

P2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 P12 P13 0 0 0

μ2 P21
μ1+μ2

0 μ2 P23
μ1+μ2

μ1 P12
μ1+μ2

μ1 P13
μ1+μ2

0

μ3 P31
μ1+μ3

μ3 P32
μ1+μ3

0 0 μ1 P12
μ1+μ3

μ1 P13
μ1+μ3

0 P21 0 0 P23 0

0 μ3 P31
μ1+μ3

μ2 P21
μ2+μ3

μ3 P32
μ2+μ3

0 μ2 P23
μ2+μ3

0 0 P31 0 P32 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

The Ξ2-space equivalent of p is R2, which we now define.

Definition 6.2.7
[R2]ij := probability that a customer, upon entering S1 will put it in
internal state j ∈ Ξ2, given that it was in internal state i ∈ Ξ1. This is
a D(1)×D(2)-dimensional matrix. ���

A matrix element of R2 is 0 unless either j1 or j2 = i. As before, let ν be
the member of the pair {j1, j2} that is not i; then

[R2]ij = pν if j1 or j2 = i,

and
[R2]ij = 0 otherwise.

The system must end up in some state after a customer enters S1, therefore
we have

R2 ε′2ε
′
2ε
′
2 = ε′1ε

′
1ε
′
1. (6.2.1)

For our example with m = 3,

R2 =

⎡
⎣ p1 p2 p3 0 0 0

0 p1 0 p2 p3 0
0 0 p1 0 p2 p3

⎤
⎦ ·

This clearly satisfies (6.2.1).
We define the last matrix of this set Q2 the Ξ2 equivalent of q′.

364 6.2 Steady-State M/ME/2//N Loop

Definition 6.2.8
[Q2]ij := probability that upon a completion in S1 from internal state
i ∈ Ξ2, a customer leaves, putting the system in internal state j ∈ Ξ1.
This is a D(2) ×D(1)-dimensional matrix. This matrix has no direct
relation to either Q = ε′1ε

′
1ε
′
1 p, defined in Chapter 3, or QQQ defined by

(1.3.2c), but is the 2-space equivalent of q′. ���

Unless j = i1 or i2, [Q2]ij = 0. For those matrix elements that are not 0,
define ν to be the member of the pair that does not equal j, then

[Q2]ij =
μνqν

[M2]ii
for i1
= i2

and
[Q2]ij = qν for i1 = i2.

Note that [Q2 R2]ij is the probability that upon a completion from internal
state i ∈ Ξ2, one customer leaves and another enters, putting the system in
internal state j ∈ Ξ2. This process can only happen if there are initially n > 2
customers at S1, in which case the system is left in external state {n− 1;N}.
Thus we have the equivalent to (3.1.1a), or rather (3.5.11a),

(P2 + Q2 R2)ε′2ε
′
2ε
′
2 = ε′2ε

′
2ε
′
2. (6.2.2)

So (P2 + Q2 R2) is isometric. Given that R2 ε′2ε
′
2ε
′
2 = ε′1ε

′
1ε
′
1 from (6.2.1), we have a

relation that compares with q′ = (I−P) ε′ε′ε′ from (3.1.1b), namely,

Q2 ε′1ε
′
1ε
′
1 = (I2 −P2)ε′2ε

′
2ε
′
2. (6.2.3)

We are just beginning to see the problems we will be having. Whereas (3.1.1b)
permitted us to express q′ uniquely in terms of P, (6.2.3) only yields a partial
relation between Q2 and P2.

For our specific example we have

Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1 0 0

μ2q2
μ1+μ2

μ1q1
μ1+μ3

0

μ3q3
μ1+μ3

0 μ1q1
μ1+μ3

q2

0 μ3q3
μ2+μ3

μ2q2
μ2+μ3

0 0 q3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

Exercise 6.2.1: Verify that the example matrices, P2, Q2, and R2

for m = 3 do indeed satisfy (6.2.1) to (6.2.3).

6 M/G/C-Type Systems 365

6.2.2 Balance Equations

At last we can write the balance equations. The terms on the left-hand side
of each equation represent the rate of leaving a given state, and the right-
hand side is the rate of entering that state. First let n = 0; then there is only
one internal state (empty), so we play the same notational game as before,
namely,

π1π1π1(0;N) := r(0;N)p,

where r(0;N) is the steady-state probability that there is no one at S1. The
balance equation is identical to (4.1.3a), because there is no way to make use
of the second server in S1. We rewrite it in the notation of this chapter.

λπ1π1π1(0;N) = π1π1π1(1;N)B1 Q. (6.2.4a)

Its interpretation should be clear.
The vector equation corresponding to entering and leaving external state

{1; N} provides us with something new.

π1π1π1(1;N)(M1 + λI1)

= λπ1π1π1(0;N) + π1π1π1(1;N)M1P1 + π2π2π2(2;N)M2 Q2. (6.2.4b)

The interpretation is as follows. The system can leave state {i; 1; N} by be-
ing in that state [π1π1π1(1;N)], and either have the active customer at S2 finish
[λI1], or have the lone customer in S1 finish at phase i, [M1]. The system
can enter state {i; 1; N} by any of three ways. One path starts with no one
initially at S1, [r(0;N)], a completion occurs at S2, [λ], and that customer
immediately goes to S1 and enters, [p]. Another path starts with one customer
already at S1, [π1π1π1(1;N)], a completion occurs in S1, [M1], and that customer
moves to another phase, [P1]. The third path starts with two customers in
S1, [π2π2π2(2;N)], one of those two customers has a completion [M2], and leaves
[Q2]; thus S1 remains with one customer, because there is no-one in its queue
to replace the customer who just left.

The balance equation for n = 2 requires the matrix R2 for the first time.

π2π2π2(2;N)(M2 + λI2)

= π2π2π2(3;N)M2 Q2 R2 + π2π2π2(2;N)M2P2 + λπ1(1;N)R2. (6.2.4c)

Two of the terms might require some clarification. When there are at least
three customers at S1, and a departure occurs [M2 Q2], a new customer is
available in the queue to enter [R2], and put the system back into an internal
state of Ξ2. Similarly, if originally there is only one customer at S1 and a
customer arrives [λπ1π1π1(1;N)], he immediately enters, taking the system from
some state i ∈ Ξ1 to some state j ∈ Ξ2, [R2].

The general vector balance equation for 2 < n < N follows.

π2(n;N)(M2 + λI2)

= π2(n + 1;N)M2 Q2 R2 + π2(n;N)M2P2 + λπ2(n− 1;N). (6.2.4d)

366 6.2 Steady-State M/ME/2//N Loop

The only difference between this equation and the one for n = 2 is the missing
matrix R2 in the last term. For n > 2, when a customer arrives at S1, there
already are two customers active, so his arrival does not change the internal
state of the system.

The final balance equation for external state {N ; N} is

π2π2π2(N ;N)M2 = π2π2π2(N ;N)M2P2 + λπ2π2π2(N − 1;N). (6.2.4e)

We next define a new matrix and its inverse

B2 = V2
−1 := M2(I2 −P2), (6.2.5)

and combine like terms in the balance equations to get

π1π1π1(1;N)(B1 + λI1) = π2π2π2(2;N)M2 Q2 + λπ1π1π1(0;N), (6.2.6a)

π2π2π2(2;N)(B2 + λI2) = π2π2π2(3;N)M2 Q2 R2 + λπ1π1π1(1;N)R2, (6.2.6b)

π2π2π2(n;N)(B2 + λI2) = π2π2π2(n + 1;N)M2 Q2 R2 + λπ2π2π2(n− 1;N), (6.2.6c)

and
π2π2π2(N ;N)B2 = λπ2π2π2(N − 1;N). (6.2.6d)

Equation (6.2.5) looks quite familiar, and it should. The matrix B2 does
indeed generate the distribution of the time until one customer leaves S1, given
that it started with two customers in some vector state of Ξ2. We postpone
looking into this until we discuss transient behavior.

6.2.3 Solution of Probability Vectors

The balance equations are quite similar to those for the ME/M/C//N system
of Section 5.4, and the solution is also similar. The additional complication
we have here is that we are dealing with several different sizes of matrices. As
always, we would like to express everything in terms of r(0;N)p, because that
depends on only one number. Unfortunately, we cannot start with Equation
(6.2.4a) because B1 Q does not have an inverse. We have already faced this
problem in solving for the M/ME/1//N queue in (4.1.2), so we copy that
method, and start at the top, at (6.2.6d). Note that if we had attempted to
solve the open system directly, we would have no “top” at which to start.
Anyway, (6.2.6d) can be rewritten as

π2π2π2(N ;N) = λπ2π2π2(N − 1;N)V2. (6.2.7a)

Next we use (6.2.6c) for n = N − 1, and substitute for π2π2π2(N ;N) to get

π2π2π2(N − 1;N)(B2 + λI2) = λ[π2π2π2(N − 1;N)V2]M2 Q2 R2 + λπ2π2π2(N − 2;N),

or, collecting terms and solving for π2π2π2(N − 1;N),

π2π2π2(N − 1;N) = π2π2π2(N − 2;N)
[
I2 +

1
λ
B2 −V2 M2 Q2 R2

]−1

. (6.2.7b)

6 M/G/C-Type Systems 367

This equation is of the form

π2π2π2(N − 1;N) = π2π2π2(N − 2;N)U2(1),

where

U2(1) :=
[
I2 +

1
λ
B2 −V2 M2 Q2 R2

]−1

.

This matrix, and the family of U2 matrices we are about to introduce are the
direct generalizations of the U of (4.1.4) and the U(k) matrices of Section
5.4.

Now suppose that all the π2π2π2 vectors can be written in the form

π2π2π2(N−j;N) = π2π2π2(N−j−1;N)U2(j), (6.2.8)

and that U2(j), j = 1, 2, . . . , n are already known. Then put this into (6.2.6c)
to get

π2π2π2(N−n−1;N) (λI2 + B2)
= π2π2π2(N−n;N)M2 Q2 R2 + λπ2π2π2(N−n−2;N)
= π2π2π2(N−n−1;N)U2(n)M2 Q2 R2 + λπ2π2π2(N−n−2;N),

leading to

π2π2π2(N−n−1;N) [B2 + λI2 −U2(n)M2 Q2 R2] = λπ2π2π2(N−n−2;N).

This implies, starting with U2(0) := λV2, that all the U2 matrices are recur-
sively defined and can be computed by the following equation.

U2(n) =
[
I2 +

1
λ
B2 − 1

λ
U2(n− 1)M2 Q2 R2

]−1

(6.2.9)

for n = 1, 2, Note that the U2(n) does not depend on N , and therefore
the same set can be used for all N . This point is explored further when we
discuss algorithms for evaluating everything. In the meantime, we still have
not satisfied (6.2.6a) and (6.2.6b). But with (6.2.8), (6.2.6b) becomes§

π2π2π2(2;N)
[
I2 +

1
λ
B2 − 1

λ
U2(N − 3)M2 Q2 R2

]
= π1π1π1(1;N)R2

or
π2π2π2(2;N) = π1π1π1(1;N)R2 U2(N − 2). (6.2.10a)

Similarly, (6.2.6a) becomes

π1π1π1(1;N)
[
I1 +

1
λ
B1 − 1

λ
R2 U2(N − 2)M2 Q2

]
= π1π1π1(0;N). (6.2.10b)

We must show that (6.2.10b) is consistent with (6.2.4a), because they both
connect states {i; 1; N} with {·; 0; N} . To do this we must first prove the
following, which is analogous to Lemma 4.1.1.

§Note that Q2(n)X1 R2(n) is a D(2)×D(2) matrix, where X1 is any matrix of dimen-
sion D(1)×D(1). Also, R2(n)X2 Q2(n) is a D(1)×D(1) matrix, where X2 is any matrix
of dimension D(2) × D(2).

368 6.2 Steady-State M/ME/2//N Loop

Lemma 6.2.1: Let B2 be defined by (6.2.5), then multiplying
(6.2.3) by M2 yields

M2 Q2ε
′
1ε
′
1ε
′
1 = B2 ε′2ε

′
2ε
′
2, (6.2.11a)

and given that R2 ε′2ε
′
2ε
′
2 = ε′1ε

′
1ε
′
1, we also have

M2 Q2 R2 ε′2ε
′
2ε
′
2 = B2 ε′2ε

′
2ε
′
2. (6.2.11b)

Furthermore, let U2(0) = λV2, and let U2(n) satisfy (6.2.9) for n ≥ 1.
Then

U2(n)B2 ε′2ε
′
2ε
′
2 = λε′2ε

′
2ε
′
2 for all n ≥ 0. (6.2.11c)

In other words, [(1/λ)U2(n)B2] is isometric. �
Proof: We actually prove that its inverse is isometric. First, observe
[U2(0) was defined to be λV2] that

U2(0)B2 ε′2ε
′
2ε
′
2 = λV2 B2ε

′
2ε
′
2ε
′
2 = λI2 ε′2ε

′
2ε
′
2 = λε′2ε

′
2ε
′
2.

Now assume that (6.2.11c) is true for all k = 0, 1, . . . , n, and let

A2(k) := [U2(k)]−1;

then[
1
λ
U2(n + 1)B2

]−1

= λV2 A2(n + 1)

= λV2

[
I2 +

1
λ
B2 − 1

λ
U2(n)M2 Q2 R2

]
= λV2 + I2 −V2 U2(n)M2 Q2 R2.

Next postmultiply both sides of the equation by ε′2ε
′
2ε
′
2 and get

λV2 A2(n + 1)ε′2ε
′
2ε
′
2 = λV2 ε′2ε

′
2ε
′
2 + ε′2ε

′
2ε
′
2 −V2 U2

[
M2 Q2 R2 ε′2ε

′
2ε
′
2

]
= λV2 ε′2ε

′
2ε
′
2 + ε′2ε

′
2ε
′
2 −V2

[
U2(n)B2 ε′2ε

′
2ε
′
2

]
.

But the expression in the second set of brackets is equal to λε′2ε
′
2ε
′
2 by

assumption; thus by induction we have

λV2 A2(n)ε′2ε
′
2ε
′
2 = ε′2ε

′
2ε
′
2 for all n.

Premultiplying both sides of this equation by U2(n)B2 yields our
lemma. QED

We now return to (6.2.10b). When we postmultiply both sides by ε′1ε
′
1ε
′
1, the

right-hand side becomes r(0;N), and the left-hand side becomes

1
λ
π1π1π1(1;N)B1 ε′1ε

′
1ε
′
1 + r(1;N)− π1π1π1(1;N)R2

[
1
λ
U2(N−2)M2 Q2 ε′1ε

′
1ε
′
1

]

=
1
λ
π1π1π1(1;N)B1 ε′1ε

′
1ε
′
1 + r(1;N)− π1π1π1(1;N)R2 ε′2ε

′
2ε
′
2 =

1
λ
π1π1π1(1;N)B1 ε′1ε

′
1ε
′
1.

6 M/G/C-Type Systems 369

The two parts together reproduce (6.2.4a), so we have proven our case.
We next define the matrix implied by (6.2.10b),

Ū1(N) :=
[

1
λ
B1 + I1 −R2U2(N−2)M2Q2

]−1

.

This is a Ξ1-space matrix, and it satisfies the equation

Ū1(N)B1ε
′
1ε
′
1ε
′
1 = λε′1ε

′
1ε
′
1.

We now list the solution vectors, which should help the reader make sense of
what we have derived so far in this chapter:

π1π1π1(0;N) = r(0;N)p,

π1π1π1(1;N) = r(0;N)p Ū1(N),

π2π2π2(2;N) = r(0;N)pŪ1(N)R2U2(N−2),

.

π2π2π2(n;N) = r(0;N)pŪ1(N)R2U2(N−2) · · ·U2(N−n),

.

π2π2π2(N ;N) = r(0;N)pŪ1(N)R2U2(N−2)U2(N−3) · · ·U2(0).

We still have to evaluate r(0;N), but that is easy enough to do making the
sum of all probabilities add up to 1. That is,

N∑
n=0

r(n;N) = r(0;N) + π1π1π1(1;N)ε′1ε
′
1ε
′
1 +

N∑
n=2

π2π2π2(n;N)ε′2ε
′
2ε
′
2 = 1.

We can actually write this in a compact and recursive way, just as we did
previously with the matrix K(N) in (5.4.6b). Recall that R2 ε′2ε

′
2ε
′
2 = ε′1ε

′
1ε
′
1, and

define the vector
x2(N) := pŪ1(N)R2;

then
r(1;N) = r(0;N)x2(N)ε′2ε

′
2ε
′
2.

Next define the Ξ2-space matrix,

K2(N) := I2 + U2(N−2) + U2(N−2)U2(N−3)
+ · · ·+ U2(N−2)U2(N−3) · · ·U2(N−n)
+ · · ·+ U2(N−2)U2(N−3) · · ·U2(0). (6.2.12a)

When we factor the terms right-multiplying U2(N−2), we get

K2(N) = I2 + U2(N−2)K2(N−1), (6.2.12b)

and therefore the sum over all states reduces to

r(0;N)
[
1 + x2(N)K2(N)ε′2ε

′
2ε
′
2

]
= 1

370 6.2 Steady-State M/ME/2//N Loop

or
1

r(0;N)
=
[
1 + x2(N)K2(N)ε′2ε

′
2ε
′
2

]
. (6.2.12c)

We discuss an efficient algorithm after we have dealt with the general case,
but our accomplishments so far deserve a summary theorem-algorithm.

Theorem 6.2.2: Consider an M/ME/2//N loop with matrices,
Mk, Pk, Bk, Vk, Q2, and R2, as defined in this section. Given N > 2,

BEGIN PROCEDURE
. U2(0;N) = λV2.
∗ Then
. FOR n = 1 TO N − 2:
. U2(n) = λ [λI2 + B2 −U2(n− 1)M2 Q2 R2]−1;
. END FOR.
∗ Next evaluate
. Ū1(N) = λ [λI1 + B1 −R2 U2(N − 2)M2 Q2]−1;
. x1(0) = p;
. x1(1;N) = x1(0)Ū1(N);
. x(1;N) = x1(1;N)ε′1ε

′
1ε
′
1;

. x2(2;N) = x1(1;N)R2U2(N − 2);

. x(2;N) = x2(2;N)ε′2ε
′
2ε
′
2;

. sum = 1 + x(1;N) + x(2;N).

. FOR n = 3 TO N :

. x2(n;N) = x2(n− 1)U2(N − n);

. x(n;N) = x2(n;N)ε′2ε
′
2ε
′
2;

. sum = sum + x(n;N);

. END FOR.
∗ The steady-state probability vectors and their associated scalars are
given by the following.
. r(0;N) = 1/sum
. π1π1π1(1;N) = r(0;N)x1(1;N),
. r(1;N) = r(0;N)x(1;N).
. FOR n = 2 TO N :
. π2π2π2(n;N) = r(0;N)x2(n;N);
. r(n;N) = r(0;N)x(n;N);
. END FOR.
∗ The mean throughput is given by
. Λ(N) = λ[1− r(N ;N)].
END PROCEDURE

All other performance parameters can be calculated from these. �

It does not pay to go deeply into the significance of this theorem, because
derive the solutions for the general system in the next section. We point
out though, that as an algorithm, the most computationally intense portion
involves finding U2(n) in Equation (6.2.9), because that requires taking the
inverse of D(2) × D(2) matrices for (N-1) values of n. In studying closed
systems, researchers are usually not interested in just one value of N . Rather,

6 M/G/C-Type Systems 371

they must look at a whole range of values up to, say, Nmax. In that case, the
matrices required to solve for a system with Nmax customers can be used to
solve for systems with fewer customers. Put differently, if one wishes to solve
for a system with N + 1 customers, after solving for the same system with N
customers, only one more inverse need be taken [to find U2(N + 1)].

6.3 Steady-State M/G/C//N-Type Systems

In the preceding section we described the steady-state solution for systems
with C = 2. The extension to systems in which there are more than two servers
in S1 is straightforward but requires some generalizations of definitions.

6.3.1 Steady-State M/ME/C//N Loop

Let us start with a definition of our state spaces. An alternative, but equiva-
lent, definition is given in Section 6.3.2.

Definition 6.3.1

Ξk := {i = {i1, i2, . . . , ik}|1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ m}∗ for 1 ≤
k ≤ C. Ξk is the set of all internal states of S1 when there are k
active customers there. Each k-tuple represents a state in which k ≤ C
customers are active in a subsystem, S1, which has C identical servers
in it. One customer is at phase i1, another is at phase i2, and so on, each
in a different server. They never get in each other’s way, because there
are at least as many servers as there are customers. If there are more
than C customers at S1, the excess numbers must queue up outside.���

The number of states in Ξk is

D(k) =
(

m + k − 1
k

)
. (6.3.1)

We now make the following generalizations of previous definitions, where N >
C. First,

ε′kε
′
kε
′
k := the D(k)− dimensional column vector of all 1′s.

Definition 6.3.2
[Mk] is a diagonal matrix whose (ii)th component is the probability rate
of leaving state i ∈ Ξk, for 1 ≤ k ≤ C. Thus if i = {i1, i2, . . . , ik},
then [Mk]ii = μi1 + μi2 + · · ·+ μik

. This is the k-space completion rate
matrix . ���

Definition 6.3.3
πkπkπk(n;N) := probability vector of dimension D(k) that there are n cus-
tomers at S1, and N−n customers at S2. The ith component is the

∗Note that the ils need not be distinct.

372 6.3 Steady-State M/G/C//N-Type Systems

probability that the active customers in S1 are collectively in state
i ∈ Ξk. We adhere to the notation k = n if n ≤ C, and k = C other-
wise. r(n;N) = πkπkπk(n;N)ε′kε

′
kε
′
k is the associated scalar probability. ���

Note that the relationship between k and n implies that πkπkπk(n;N) depends
on C as well. So we probably should use the notation πkπkπk(n;N |C). However,
in any application it is assumed that C (the maximum number of customers
that can be active at any time), will not change. Therefore, πkπkπk’s dependence
is left implicit. But the reader must keep in mind that πkπkπk(n;N) for one value
of C is different from the comparable component when applied to a system
with a different C.

Definition 6.3.4
[Rk]ij := probability that a customer, who upon entering S1 and finding
it in internal state i ∈ Ξk−1, will go to the server and phase that puts
the system in state j ∈ Ξk. Rk is a D(k−1)×D(k)-dimensional matrix
with the property that Rk ε′kε

′
kε
′
k = ε′k−1ε′k−1ε′k−1. We could let p = R1 if we so

choose. ���

For descriptive purposes we think of the index i as representing the set
{i1, i2, . . . , il, . . . , ik} (which by Definition 6.3.1 it really is), with the same
for j. Then we can say that the matrix element [Rk]ij is 0 unless

i ∩ j = i, where i ∈ Ξk−1 and j ∈ Ξk.

Remember, by their definition, the set j has one more member than the set i,
so there must be exactly one distinct member of j (possibly appearing more
than once in the set) which is not in i in order for [Rk]ij to have a nonzero
value. Then, as a direct generalization of the discussion following Definition
6.2.7, call that one element ν, and

[Rk]ij = pν if i ∩ j = i. (6.3.2a)

Definition 6.3.5
[Qk]ij := probability that a customer, upon leaving S1 when the system
was in state i ∈ Ξk, leaves the system in state j ∈ Ξk−1 after he exits.
This matrix is of dimension D(k) × D(k − 1). If we chose, we could
have let q′ = Q1. ���

Here [Qk]ij := 0, unless i ∩ j = j. We now have a little generaliza-
tion problem. Let ν be the left-over element. It is possible that in the set,
i = {i1, i2, · · · , ik}, il = ν appears more than once; then any one of those
customers could complete service and leave. So let αν be the number of times
ν appears in the set i; then for i ∈ Ξk and j ∈ Ξk−1,

[Qk]ij :=
ανμνqν

[Mk]ii
for i ∩ j = j. (6.3.2b)

Go back to Definition 6.2.8, and verify that this formula actually matches
both conditions there, for k = 2.

Our last definition of this set is the transition matrix of space Ξk.

6 M/G/C-Type Systems 373

Definition 6.3.6
[Pk]ij := probability that a customer, who upon completing at some
phase in S1, will go to another phase in the same server in S1, thereby
taking the system from state i ∈ Ξk to j ∈ Ξk. Pk is a nonisometric
transition matrix of dimension D(k)×D(k). ���

Exactly as in the case for k = 2, [Pk]ij := 0, unless i ∩ j is a set with k − 1
elements. Let γ be the member of i that is not in i ∩ j, and let ν be the
member of j that is not in i ∩ j. Also, let αγ be the number of times γ
appears in the set i; then

[Pk]ij := [P1]γν

αγμγ

[Mk]ii
· (6.3.2c)

As with Qk, this matches the discussion following Definition 6.2.6.
If the construction of these matrices seems difficult, rest assured that it

can be automated for computer use. We look at the specification problem
from a different point of view in Section 6.3.2.

As a direct generalization of (6.2.2) and (6.2.3) we can write

[Pk + QkRk] ε′kε
′
kε
′
k = ε′kε

′
kε
′
k, (6.3.3a)

and given that Rk ε′kε
′
kε
′
k = ε′k−1ε′k−1ε′k−1,

Qk ε′k−1ε′k−1ε′k−1 = [Ik −Pk] ε′kε
′
kε
′
k. (6.3.3b)

We have the natural Ξk-space generalizations of (6.2.5)

Bk = Vk
−1 := Mk[Ik −Pk], (6.3.4a)

which together with (6.3.3b) yields

Mk Qk ε′k−1ε′k−1ε′k−1 = Mk Qk Rk ε′kε
′
kε
′
k = Bk ε′kε

′
kε
′
k. (6.3.4b)

There should be little difficulty in writing down the balance equations directly
as generalizations of (6.2.4a) and (6.2.6). They are, for N > C customers:

λπ1π1π1(0; N) = π1π1π1(1;N)B1 Q; (6.3.5a)

π1π1π1(1;N)(B1 + λI1) = π2π2π2(2;N)M2 Q2 + λπ1π1π1(0;N), (6.3.5b)

for 2 ≤ k < C,
πkπkπk(k;N)(Bk + λIk)

= πk+1πk+1πk+1(k + 1;N)Mk+1 Qk+1 + λπk−1πk−1πk−1(k − 1;N)Rk, (6.3.5c)

πcπcπc(C;N)(Bc + λIc) = πcπcπc(C + 1;N)Mc Qc Rc + λπc−1πc−1πc−1(C − 1;N)Rc;
(6.3.5d)

and for C < n < N ,

πcπcπc(n;N)(Bc + λIc) = πcπcπc(n + 1;N)Mc Qc Rc + λπcπcπc(n− 1;N) (6.3.5e)

374 6.3 Steady-State M/G/C//N-Type Systems

with
πcπcπc(N ;N)Bc = λπcπcπc(N − 1;N). (6.3.5f)

Again following the usual procedure, let

Uc(0) := λVc, (6.3.6a)

and assume that the following is true for n < l ≤ N [it is certainly true for
l = N by (6.3.5f) and (6.3.6a)]:

πcπcπc(l;N) = πcπcπc(l − 1;N)Uc(N − l). (6.3.6b)

Be careful. The first index on πcπcπc(· ;N) increases with n, but the index on
Uc(·) decreases. Then combining (6.3.5e) and (6.3.6b) gives

πcπcπc(n;N)[Bc + λIc −Uc(N−n−1)Mc Qc Rc] = λπcπcπc(n−1;N),

which implies that [compare with Equations (6.3.6b) and (6.2.8)]

Uc(n) = λ[Bc + λIc −Uc(n−1)Mc Qc Rc]−1 for n ≥ 1. (6.3.6c)

Next, for n = C, we have

πcπcπc(C;N)[Bc + λIc −Uc(N−C−1)Mc Qc Rc] = λπc−1πc−1πc−1(C−1;N)Rc,

or
πcπcπc(C;N) = πc−1πc−1πc−1(C−1;N)Rc Uc(N−C).

Note that the Uc(n) matrices do not depend on N , in the following sense.
Suppose that we were interested in a system with C = 3 and N = 6. Then to
come down the ladder from n = 6, [N], to n = 2, [C − 1], we would have to
calculate the matrices U3(0), U3(1), U3(2), and U3(3). If we then decided
that we wanted to study N = 7, we would only have to calculate the additional
matrix, U3(4), because the others are the same. [However, if we wish to study
C = 4, then everything changes. The matrices U4(k) are different.] Now we
must consider a class of matrices that depend on N as well as n, in order to
deal with the situation for n < C − 1. This is a generalization of Ū1(N) in
Theorem 6.2.2. For instance, for k = C − 1,

πc−1πc−1πc−1(C−1;N)[Bc−1 + λIc−1 −Rc Uc(N−C)Mc Qc] = λπc−2πc−2πc−2(C−2;N)Rc−1.

The matrices we are about to define may not be the best selection for efficiency,
but they provide a certain elegance that some day may prove to be useful. We
define

Uc(N |C) := Uc(N−C), (6.3.7a)

and
Uc−1(N |C) := λ[Bc−1 + λIc−1 −Rc Uc(N |C)Mc Qc]−1,

which implies that

πc−1πc−1πc−1(C−1;N) = πc−2πc−2πc−2(C−2;N)Rc−1Uc−1(N |C).

6 M/G/C-Type Systems 375

In general, we define the D(k)×D(k)-dimensional matrices,

Uk(N |C) := λ[Bk + λIk −Rk+1 Uk+1(N |C)Mk+1 Qk+1]−1. (6.3.7b)

Then we can write

πkπkπk(k;N) = πk−1πk−1πk−1(k − 1;N)RkUk(N |C) for 1 ≤ k < C. (6.3.8)

Clearly, the matrices Uk(N |C) are very different from the matrices, Uc(n).
Take note of the subtle notational differences. This actually parallels much of
Section 5.4.2.

Before collecting the foregoing formulas in a theorem, we wish to state
and prove the following lemma concerning the matrices Uk(N |C) and Uc(n),
which is directly related to Lemma 5.4.1.

Lemma 6.3.1: Let Uc(n) be defined by (6.3.6a) and (6.3.6c). Then

Uc(n)Bc ε′cε
′
cε
′
c = λε′cε

′
cε
′
c for n ≥ C. (6.3.9a)

Furthermore, let Uk(N |C) be defined by Equations (6.3.7). Then

Uk(N |C)Bk ε′kε
′
kε
′
k = λε′kε

′
kε
′
k for 1 ≤ k ≤ C. (6.3.9b)

�
Proof: First note, by postmultiplying (6.3.6a) with Bc ε′cε

′
cε
′
c, that

Uc(0)Bc ε′cε
′
cε
′
c = λε′cε

′
cε
′
c.

Next, define
Ac(n) := [Uc(n)]−1

and assume that (6.3.9a) is true for 0 ≤ n < l; then from (6.3.6c),

λAc(l)ε′cε
′
cε
′
c = [Bc + λIc −Uc(l − 1)Mc Qc Rc]ε′cε

′
cε
′
c.

But from (6.3.4b) [for k = C], and by assumption,

Uc(l − 1)Mc Qc Rc ε′cε
′
cε
′
c = ε′cε

′
cε
′
c.

Thus we have
λAc(l)ε′cε

′
cε
′
c = Bc ε′cε

′
cε
′
c,

from which (6.3.9a) follows, for n = l. Therefore, by induction, it is
true for all n. Next observe that from (6.3.7a) and (6.3.9a), (6.3.9b)
must be true for k = C. Now, for all relevant k, define

Ak(N |C) := [Uk(N |C)]−1,

assume that (6.3.9b) is true for k = C, C− 1, . . . , l +1, and note from
(6.3.4b) and Definition 6.3.4 that

Rk+1 Uk+1(N |C)Mk+1 Qk+1ε
′
kε
′
kε
′
k

= Rk+1Uk+1(N |C)Bk+1 ε′k+1ε′k+1ε′k+1 = λRk+1 ε′k+1ε′k+1ε′k+1 = λε′k+1ε′k+1ε′k+1

is true for all k = C,C− 1, . . . , l. Then (6.3.9b) must be true for k = l,
and thus by induction, for all k. QED

376 6.3 Steady-State M/G/C//N-Type Systems

Compare with Lemma 4.1.1. Also, we see that two new sets of isometric
matrices have been created, because [λVk Ak(N |C)]ε′kε

′
kε
′
k = ε′kε

′
kε
′
k, and so on. We

could have defined the U(N |C) matrices to include the Rk, but the new
objects would not be square matrices. By defining them the way we did, the
matrices Rk and Qk, for 1 ≤ k ≤ C, remain as the only matrices that connect
objects of different spaces.

At last we can write the solution vectors in terms of the single scalar,
r(0;N). We state them in the form of a theoremi. (Compare with the
ME/M/C queue in Theorem 5.4.2).

Theorem 6.3.2: The steady-state probability vectors of closed
M/ME/C//N loops (C > 1) are given below. First define the auxiliary
vectors, starting with xo(N |C) := p and x1(N |C) := pU1(N |C),
using (6.3.7b), For 2 ≤ k ≤ C,

xk(N |C) :=pU1(N |C)R2 U2(N |C) · · · Rk Uk(N |C)
=xk−1(N |C)RkUk(N |C). (6.3.10a)

Then starting with xc(C;N) := xc(N |C), and using (6.3.6c), define
for C < n ≤ N ,

xc(n;N) :=xc(N |C)Uc(N−C−1)Uc(N−C−2) · · ·Uc(N−n)
=xc(n−1;N)Uc(N−n). (6.3.10b)

The steady-state probability vectors are given by

πkπkπk(k;N) = r(0;N)xk(N |C), for 0 ≤ k ≤ C, (6.3.11a)

and

πcπcπc(n;N) = r(0;N)xc(n;N) for C ≤ n ≤ N. (6.3.11b)

The associated steady-state scalar probabilities are given by

r(n;N) = πkπkπk(n;N)ε′kε
′
kε
′
k for 0 ≤ n ≤ N, (6.3.11c)

where k = n for n < C, and k = C otherwise. r(0;N) comes from the
normalization requirement, therefore,

1
r(0;N)

=
C−1∑
k=0

xk(N |C)ε′kε
′
kε
′
k +

N∑
n=C

xc(n;N)ε′cε
′
cε
′
c. (6.3.11d)

Given that xc(C;N) := xc(N |C), this expression could have been
placed in either sum term. The mean queue length (and from Little’s
formula, the mean system time) can be calculated directly from its
definition, q̄ =

∑n=N
n=1 n r(n;N). �

6 M/G/C-Type Systems 377

We realize that the contents of this theorem are very difficult to grasp,
but we do want the reader to use them computationally at some time in the
future. Therefore, let us pause for a moment to look at the equations for some
specific values of C and N . Suppose that we let N = 6 and C = 3; then the
solution vectors are given by the following set.

π1π1π1(0; 6) = r(0; 6)p
π1π1π1(1; 6) = r(0; 6)pU1(6 | 3)
π2π2π2(2; 6) = r(0; 6)pU1(6 | 3)R2U2(6 | 3)
π3π3π3(3; 6) = r(0; 6)pU1(6 | 3)R2U2(6 | 3)R3U3(3)
π3π3π3(4; 6) = r(0; 6)pU1(6 | 3)R2U2(6 | 3)R3U3(3)U3(2)
π3π3π3(5; 6) = r(0; 6)pU1(6 | 3)R2U2(6 | 3)R3U3(3)U3(2)U3(1)
π3π3π3(6; 6) = r(0; 6)pU1(6 | 3)R2U2(6 | 3)R3U3(3)U3(2)U3(1)U3(0).

We start with U3(0) = λV3, and then calculate U3(1), U3(2), and U3(3)
recursively by (6.3.6c). Next, given that U3(6 | 3) = U3(3), we calculate
U2(6 | 3) and U1(6 | 3) recursively from (6.3.7b). We can calculate r(0; 6) by
the procedure mentioned in Theorem 6.3.2, or we can set up a K matrix, as
we did in previous sections. For instance, look at

K3(6) := I3 + U3(3) + U3(3)U3(2) + U3(3)U3(2)U3(1)

+U3(3)U3(2)U3(1)U3(0) = I3 + U3(3)[K3(5)],

where the definition of K3(5) should be clear. Next calculate the scalar

sum = 1 + pU1(6 | 3)ε′1ε
′
1ε
′
1

and the vector (which is actually x2(6 | 3)R3),

x3 = pU1(6 | 3)U2(6 | 3)R3,

then
1

r(0; 6)
= sum + x3 K3(6)ε′3ε

′
3ε
′
3.

We hope that this has helped. If not, perhaps the reader should give this one
more try.

Suppose it is desirable that the probabilities for the same system with
N = 7 be calculated; then the new set of equations needed is

π1π1π1(0; 7) = r(0; 7)p
π1π1π1(1; 7) = r(0; 7)pU1(7 | 3)
π2π2π2(2; 7) = r(0; 7)pU1(7 | 3)R2U2(7 | 3)
π3π3π3(3; 7) = r(0; 7)pU1(7 | 3)R2U2(7 | 3)R3U3(4)
π3π3π3(4; 7) = r(0; 7)pU1(7 | 3)R2U2(7 | 3)R3U3(4)U3(3)
π3π3π3(5; 7) = r(0; 7)pU1(7 | 3)R2U2(7 | 3)R3U3(4)U3(3)U3(2)
π3π3π3(6; 7) = r(0; 7)pU1(7 | 3)R2U2(7 | 3)R3U3(4)U3(3)U3(2)U3(1)
π3π3π3(7; 7) = r(0; 7)pU1(7 | 3)R2U2(7 | 3)R3U3(4)U3(3)U3(2)U3(1)U3(0).

Comparing this to the previous set, we see that only U3(4) must be calculated
from (6.3.6c), but using this matrix, the matrices U1(7 | 3) and U2(7 | 3) must

378 6.3 Steady-State M/G/C//N-Type Systems

be calculated recursively by (6.3.6c), starting from U3(7 | 3) = U3(4). We
must also calculate

sum = 1 + pU1(7 | 3)ε′1ε
′
1ε
′
1,

x3 = pU1(7 | 3)U2(7 | 3)R3,

and
K3(7) = I3 + U3(4)K3(6),

to get
1

r(0; 7)
= sum + x3 K3(7)ε′3ε

′
3ε
′
3.

Note that π2π2π2(2;N) can be thought of as either the last of the set of vectors
which do not use the R3(n−C) matrices, or by multiplying it by R3 I3 (re-
member that R3 ε′3ε

′
3ε
′
3 = ε′2ε

′
2ε
′
2), the first among those that do. In defining K3(N),

we have put it in the latter class. That is where the I3 came from.
It might prove useful for future reference to write down the first few πkπkπk

vectors for arbitrary C. Let Nc := N−C and recall that Uc(N |C) = Uc(Nc).
Then (with one equation number assigned to the whole collection)

π1π1π1(0;N) = r(0;N)p
π1π1π1(1;N) = r(0;N)pU1(N |C)
π2π2π2(2;N) = r(0;N)pU1(N |C)R2U2(N |C)

· · · · · · ·
πcπcπc(C;N) = r(0;N)pU1(N |C)R2U2(N |C) · · ·RcUc(Nc)

πcπcπc(C + 1;N) = πcπcπc(C;N)Uc(Nc − 1)
πcπcπc(C + 2;N) = πcπcπc(C;N)Uc(Nc − 1)Uc(Nc − 2)
πcπcπc(C + 3;N) = πcπcπc(C;N)Uc(Nc − 1)Uc(Nc − 2)Uc(Nc − 3)

· · · · · · ·
πcπcπc(C + n;N) = πcπcπc(C;N)Uc(Nc − 1) · · ·Uc(Nc − n).

(6.3.12)
In general, to calculate the characteristics of any system for one more value
of N requires an inversion of one matrix of each of the dimensions D(1) ×
D(1), D(2)×D(2), . . ., and D(C)×D(C). But D(C) is usually much larger
than D(k) (k < C), so only Uc(N − C) is computationally significant. For
most matrix inversion routines the number of instructional steps required is
proportional to the cube of the dimensions of the matrix, which in our case
is of order [D(C)]3. Now, matrix multiplication is also of the order [D(C)]3,
and it would seem that we need N −C of them (plus other multiplications of
lower order). But (6.3.10b) tells us that we can perform our calculations by
multiplying matrices on vectors, which is only of order [D(C)]2. In summary,
the total computational effort for evaluating an M/ME/C//N network for all
customer populations from N = C + 1 to some maximum N = Nmx is

O
(
(Nmx − C)[D(C)]3

)
+ O

(
[Nmx]2[D(C)]2

)
.

The normalization matrix can be calculated recursively by

Kc(C − 1) := Ic, (6.3.13a)

6 M/G/C-Type Systems 379

and for N = C, C + 1, . . . , Nmx,

Kc(N) = Ic + Uc(N − C)Kc(N − 1). (6.3.13b)

With this matrix, (6.3.11d) can be rewritten in two forms, depending on
whether the term corresponding to n = C − 1 is included in the first term or
the second.

1
r(0;N)

=
C−1∑
k=0

xk(N |C)ε′kε
′
kε
′
k + xc(C;N)Kc(N − 1)ε′cε

′
cε
′
c, (6.3.13c)

or

1
r(0;N)

=
C−2∑
k=0

xk(N |C)ε′kε
′
kε
′
k + xc−1(N |C)Rc Kc(N)ε′cε

′
cε
′
c. (6.3.13d)

It is yet to be seen which one is ultimately better for algorithmic development.
However, only (6.3.13c) reduces directly to the M/ME/1//N loop for C = 1.

Clearly [Equation (6.3.1)],

D(C) =
(

m + C − 1
C

)
=

(m + C − 1)!
C!(m− 1)!

is the critical number that determines whether the calculation of a given
system is feasible. The inversion of matrices with dimension 300 is a small
effort for today’s medium-sized computers, even for supermicros, particularly
those with array processors or parallel multiprocessors. However, a 10,000-
dimensional matrix, although manageable, would be somewhat of a challenge,
partly because such a matrix would require 400 megabytes of storage in main
memory (remember, Nc matrices are needed, and paging, or swapping, them
in and out could make the calculation extremely slow).

Simple manipulation of the binomial coefficients shows that if either m
or C is small, the other can be quite large without exceeding these bounds.
A subsystem containing four identical servers (C = 4) can be solved with
relative ease if each server has no more than eight phases (m = 8), even with
as many as 100 customers (Nmx = 100), for then D = 330. However, a system
with m = 10 and C = 5 (D = 2002) would require over 200 times as much
computer time. Increasing m by only one to 11 would increase D another 50%
to 3003, and over another factor of 3 in computation time. The significance of
this is that a small increase in C or m causes a great increase in the time (and
space) required to do a calculation. Every year new computers come on the
market that are bigger, faster, and cheaper than the previous year’s, yet each
can boast only a small increase in the soluble problem space. The skeptical
reader should try some larger values for C and m, to see how easy it would
be to saturate all the computers in existence. The numerical (as opposed to
analytical) study of much larger systems must wait until a way is found to
decompose the various matrices into smaller parts.

380 6.3 Steady-State M/G/C//N-Type Systems

6.3.2 Alternate Representation of M/ME/C//N Systems

We mentioned in the preceding section that an alternative definition of our
state spaces was available, and in fact more useful in the long run. The one
we gave, however, was more concise and simpler to start with. Observe that if
we have k ≤ C customers in S1, where the C servers are identical, and the k
customers are indistinguishable, we only have to know how many customers
are at each phase. Consider the following set.

Definition 6.3.7
For 1 ≤ k ≤ C,

Ξk := {i = 〈α1, α2, . . . , αm〉 | 0 ≤ αl ≤ k, and
m∑

l=1

αl = k}.

Ξk is the set of all internal states of S1 when there are k active cus-
tomers there. Each ordered m-tuple represents a state in which k ≤ C
customers are active in a subsystem S1, which has C identical servers
in it. There are α1 customers at phase 1, α2 customers at phase 2, and
so on, each in a different server. They never get in each other’s way,
because there are at least as many servers as there are customers. If
there are more than C customers at S1, the excess numbers must queue
up outside. ���

Our claim is that this definition is equivalent to Definition 6.3.1, in that
there is a one-to-one mapping of the states in the two sets onto each other.
We show this most easily by the following example. Suppose that m = 5 and
that k = 4; then a typical state using Definition 6.3.1 would be

{2, 2, 4, 5} (i1 = i2 = 2, i3 = 4, and i4 = 5).

This means that one of the customers is at phase 2 of one of the servers,
another customer is also at phase 2, but in another server, a third customer
is at phase 4 in yet another server, and the fourth customer is at phase 5.
Therefore, there are no customers at phase 1 (α1 = 0) in any of the servers,
there are two customers at phase 2 in two of the servers (α2 = 2), one at
phase 4 (α4 = 1), and one at phase 5 (α5 = 1). That is, the following two
ordered sequences give us the same information and are therefore equivalent:

{2, 2, 4, 5} ≡ 〈0, 2, 0, 1, 1〉.
Definitions 6.3.2 to 6.3.6 are all the same, but the various matrix elements
can be computed differently. For instance, Definition 6.3.2 can be changed to
read: Let i = 〈α1, α2, . . . , αm〉 ∈ Ξk; then

[Mk]ii = α1μ1 + α2μ2 + · · ·+ αmμm =
m∑

ν=1

ανμν .

Note that each of the objects, i = 〈α1, α2, . . . , αm〉 can be thought of as
a vector with m components [not to be confused with our row or column

6 M/G/C-Type Systems 381

vectors of dimension D(k)]. Thus subtraction of any two vectors, even from
different spaces, is well defined, because they all have the same number of
components. But to keep our notation clear, we write the following instead of
(i− j). Suppose that we have i ∈ Ξk1 with components αl, and j ∈ Ξk2 with
components βl; then we write

[〈i〉 − 〈j〉]l := νl := αl − βl,

where the following sums are true,

m∑
l=1

νl =
m∑

l=1

αl −
m∑

l=1

βl = k1 − k2.

We do not want to get too elaborate with our notation, but we need some
definiteness to calculate the other matrix elements.

Look at Definition 6.3.4. [Rk]ij is zero unless all but one of the components
of [〈j〉 − 〈i〉] is zero, in which case the nonzero element would have the value
1. Let ν be the component that is not 0; then [Rk]ij is given by (6.3.2a), the
same as before.

Next look at Definition 6.3.5. [Qk]ij is zero unless all but one of the com-
ponents of [〈i〉 − 〈j〉] is zero, in which case the nonzero element would have
the value 1. Let ν be the component that is not 0; then [Qk]ij is given by
(6.3.2b), where αν is component ν of 〈i〉. This is exactly the same as before.

Finally, look at Definition 6.3.6. As with the others, [Pk]ij := 0, unless
[〈i〉 − 〈j〉] has exactly two nonzero elements, one with the value 1 and the
other with the value −1. This is nothing more than stating that only one
customer can move at a time, and he can only go to one new phase. Let γ be
the member of [〈i〉− 〈j〉] which is 1 (that is, the phase the customer left), and
let ν be the member of [〈i〉 − 〈j〉] which is −1 (that is the phase to which he
went). Also, let αγ be the γth component of 〈i〉, then just as we did for the
two previous matrices, [Pk]ij is given by (6.3.2c). Once again this is identical
to what we had before, including the meaning of αν . We can also include the
possibility that [P]ii
= 0. Let the discussion above be true for 〈i〉
= 〈j〉. Then
for [〈i〉 = 〈j〉], we have

[Pk]ii =
1

[Mk]ii

m∑
γ=1

[P1]γγαγ μγ .

Note that if all the diagonal elements of P1 are zero, so are all the diagonal
elements of Pk.

6.3.3 Generalized M/ME/C//N System

What, you may ask, have we gained by the notational change in the previous
section? Well, first of all, it is easier to program. Second, we see that in all
expressions for the components of matrix elements, αν and μν always appear
together as a product. Now let us define load-dependent completion rates for
each of the phases in a server.

382 6.3 Steady-State M/G/C//N-Type Systems

Definition 6.3.8
μν(l) = probability rate that one of the customers at phase ν will com-
plete, given that there are l customers at that phase. Note that there is
no distinction between having k identical servers, and only one server
whose phases are load dependent. ���

How interesting. We can either think of S1 as a subsystem with C identical
servers, each with m phases, or as one server with m phases, where each phase
has a completion rate that depends on the number of customers in S1 who
are at that phase.

Now comes the generalization. Why must μν(l) be equal to l · μν , where
ν is one of the m phases? If we want to study an M/ME/C//N loop, it
must, but if we let μν(l) be anything greater than 0, the equations we have
derived remain unchanged! Given this new freedom, what have we got? This is
described by the following. The word loop has such a limited connotation that
we are changing to the word system, which sounds much broader in scope.
Also, the distinction between server and phase has become confused, so we
now use the word server or stage, and drop phase, in order to conform to the
terminology associated with Jackson networks. The reader is thus entitled to
think of the internal components of S1 as real things.

Definition 6.3.9
Generalized M/ME/C//N system := a two-subsystem loop in which S2

is an exponential server (perhaps load dependent), and S1 is a network
of load-dependent exponential servers satisfying the following rules. No
more than C customers can be active inside S1 at a time. If there are
more than C customers at S1 the excess numbers queue up outside. If
there are fewer than C customers present, an arriving customer enters
immediately. When a customer leaves, a new one, if available, enters.
A customer upon entering S1 goes directly to server ν with probability
[p]ν . The probability rate of leaving a server is μν(l), where l is the
number of customers at server ν. If a completion occurs at ν, then with
probability [P1]νγ a customer goes to server γ, and with probability
[q]ν leaves S1. ���

We summarize this with a theorem.

Theorem 6.3.3: The steady-state vectors for a generalized
M/ME/C//N system, with N > C, are given by Theorem 6.3.2 with
the matrices Mk, Pk, Rk, and Qk modified as follows. For 1 ≤ k ≤ C,
let

〈i〉 = 〈α1, α2, . . . , αν , . . . , αm〉 ∈ Ξk,

where αν ≥ 0 and
∑m

ν=1 αν = k. Mk is a diagonal matrix with com-
ponents

[Mk]ii =
m∑

ν=1

μν(αν). (6.3.14a)

[Pk]ij , for i, j ∈ Ξk, is zero unless i = j or [〈i〉 − 〈j〉] has one 1 (at
position γ) and one −1 (at position ν), the rest being 0. If this is

6 M/G/C-Type Systems 383

satisfied, then

[Pk]ij = [P1]γν
μγ(αγ)
[Mk]ii

for i
= j (6.3.14b)

and

[Pk]ii =
1

[Mk]ii

m∑
γ=1

[P1]γγ μγ(αγ). (6.3.14c)

[Rk]ij , for i ∈ Ξk−1, j ∈ Ξk, is zero unless [〈j〉 − 〈i〉] has one 1 (at
position ν) and the rest are 0. If this is satisfied, then

[Rk]ij = pν . (6.3.14d)

[Qk]ij , for i ∈ Ξk, j ∈ Ξk−1, is zero unless [〈i〉 − 〈j〉] has one 1 (at
position ν) and the rest are all 0. If this is satisfied, then

[Qk]ij :=
μν(αν)qν

[Mk]ii
. (6.3.14e)

If μν(l) = l · μν for all 0 ≤ l ≤ C and all 1 ≤ ν ≤ m, this reduces to
an M/ME/C//N loop. �

Observe that if one or more of the servers is load independent [i.e., if μν(l) =
μν for all l], queueing delays can actually occur inside S1. The description just
given, except for the queueing up outside S1, is identical to that for Jackson
networks. We discuss that in the next section.

With the system described in this way, we can see how processor shar-
ing queues fit in. Recall from the beginning of Section 5.4 that, using this
discipline, some or all the customers at S1 get equal access to a single server.
Suppose there are k customers sharing the server, then each one must be
tracked according to his progress in S1. However, each customer can only
get (1/k)th the resources. Now if no more than C customers are permitted
to share at a time, then we have an M/G/C//N system with the following
specifications. The matrices, Mk, Pk, Rk, and Qk, k = 1, 2, . . . , C, are given
by Theorem 6.3.3, where μν(l) = l μν , (i.e., the system is not a generalized
one). Equations (6.3.6c) and (6.3.7b) are modified by replacing Mk and Bk,
with (1/k)Mk and (1/k)Bk, respectively. If S1 is made up of, say, C1 iden-
tical general servers, where 1 ≤ C1 < C, then (6.3.6c) and (6.3.7b) are only
modified for k > C1, in which case, use (C1/k) instead of (1/k).

For Uc(n), (6.3.6c) tells us that these substitutions are equivalent to re-
placing λ with λC/C1. The same cannot be said for Uk(N |C), because Bk

and Mk+1 appear together in (6.3.7b). All this leaves us with a little unsolved
mystery. We know that the steady-state solution of an unconstrained network
where the general servers use processor sharing is the same as a network with
exponential servers. Therefore, if C ≥ N , our steady-state formulas should
collapse to the M/M/C1//N loop. It would be nice if we could explicitly show
that our matrices have this property.

384 6.3 Steady-State M/G/C//N-Type Systems

We end this subject with the following summary statement. The unre-
stricted processor sharing queue [C ≥ N] is simpler than the M/G/1 queue,
but restricted processor sharing [C < N], is harder, at least for steady
state conditions.

6.3.4 Relation to Jackson Networks

It cannot be emphasized too strongly that the generalized M/ME/C//N sys-
tem can be applied to arbitrarily large networks, limited by their computa-
tional difficulty, containing the Jackson networks as a proper subset. In case
you are not quite sure what Jackson networks are, you may consider the fol-
lowing theorem as their definition.

Theorem 6.3.4: The steady-state solution of a single-class Jackson
network with m+1 load-dependent servers and C customers is the same
as that for a generalized M/ME/C//C system (N = C), where ME
has an m-dimensional representation. The (m+1)st server is at S2. Let
yν be the νth component of y := p(I1−P1)−1 = pV1M1, normalized
so that y ε′ε′ε′ = 1. Then, the steady-state solution vectors for both are
given by

[πk(k;C)]i = g(C)X1(α1) · · ·Xm(αm)
(

1
λ

)C−k

, (6.3.15a)

where 〈i〉 = 〈α1, α2, . . . , αν , . . . , αm〉 ∈ Ξk, Xν(0) := 1, and

Xν(l) :=
yl

ν

μν(1)μν(2) · · ·μν(l)
= Xν(l − 1)

yν

μν(l)
· (6.3.15b)

g(C) is a normalization constant, fixed to make the probabilities sum
to 1. As written here, S2 is load independent. That limitation is not
necessary. �

If ν is a load-independent server, then Xν(l) = (yν/μν)l = [(pV1)ν]l, but if
μν(l) = l μν , (6.3.15b) becomes

Xν(l) =
1
l!

(
yν

μν

)l

=
1
l!

[(p1V1)ν] l ·

This corresponds to a delay stage (discussed below). We used objects similar
to Xν(l) in discussing load-dependent servers in Section 2.1.5; however, the
notation used there was somewhat different.

The product-form solution for Jackson networks (as given above) is
already well known and simpler to set up than our matrix formulation. You
can see now why we never bothered to look at algorithms for calculating the
solutions in the earlier discussions. However, the product solution is notnotnot valid
for systems for which N > C, that is, when there are constraints on the
number of customers who can be simultaneously active in S1. In that case,
our procedure cannot be avoided. There is a standard approximation that is

6 M/G/C-Type Systems 385

used in modeling networks, but it is not known how accurate it is in general.
We give an example of this in the next section. For details about applying
Jackson networks to computer performance see, e.g., [Lazowskaetal84] or
[Kant92].

As a last comment in this section, observe that it is the constraint on
population activity that causes our problems to grow to “matrix” proportions.
That, in turn, subtly depends on the dimensionality function D(k). Further
discussion in this direction is outside the scope of this book, except to note
that population constraints are special cases of blocking (e.g., activity at one
node may prevent activity at another node), which also lies outside this book.
See, for example, [Perros94]

6.3.5 Time-Sharing Systems with Population Constraints

The last generalization we can make to our loop without greatly increasing the
mathematical complexity of our model was already alluded to in the preceding
section. We can make S2 into a load-dependent server. This slight change
turns out to give a potentially powerful tool for studying the behavior of
time-sharing systems, as well as other systems with population constraints.
Furthermore, the computational complexity is not changed. First we look at
the changes that we must make to the formulas, and then we look at an
application.

We only need to look at those formulas containing λ, which is now λ(l), for
l = 1, 2, Therefore, the matrices Mk, Pk, Rk, and Qk are unchanged. Only
the matrices Uk(N |C) and Uc(n) must be modified. What we have to do is
combine what we did in Section 5.4.1 with what we have here. The reader may
go through the complete derivation alone; we only make some observations.
Start with the balance equations (6.3.5) and replace each λ with λ(Ni−n),
where n is the first argument in πc(n; N), and so on. Remember, n is the
number of customers at S1, but λ(·) depends on the number of customers at
S2. This leads to the following modified solutions [compare with (6.3.6a) and
(6.3.6c)].

Uc(0) = λ(1)Vc, (6.3.16a)

and for l ≥ 1

Uc(l) = λ(l+1)[Bc + λ(l)Ic −Uc(l−1)Mc Qc Rc]−1. (6.3.16b)

Also, (6.3.7a) remains unchanged, and (6.3.7b) changes to

Uk(N |C) :=

λ(N−k+1)[Bk + λ(N−k)Ik −Rk+1Uk+1(N |C)Mk+1Qk+1]−1. (6.3.16c)

For N ≤ C, Theorem 6.3.4 is changed by replacing the λ term in (6.3.15a)
with 1/[λ(1)λ(2) · · ·λ(C−k)], the λ equivalent of (6.3.15b). That is it. Nothing
else changes. A close look at (6.3.6b) shows that Uc(l) really depends on the
number of customers at S2 (remember, we started at the top), just as λ(l)
does, so that is all that we have to change. Tehranipour [Tehranipour83],

386 6.3 Steady-State M/G/C//N-Type Systems

[TehranipourvdLLip89] was the first one to recognize this. Let us see what
that allows us to do. Consider a system with N customers. When a customer
is at S2, he spends some time thinking about what to do, and after a mean
time of Z (exponentially distributed) joins the queue at S1. After a mean
time of R(N) he leaves S1 and returns to S2, starting the process over again.
Z is known as the think time , and R(N) is called the response time for
the process. The probability rate for him to leave S2, given that he is there
thinking, is 1/Z. If there are � (independently) thinking customers at S2, the
probability rate for any one of them to leave is simply �Z. In other words, S2

is a load-dependent server with service rate

λ(�) =
�

Z
·

That is why a server with this kind of behavior is often called a think stage . It
also shows up as the description of failures in the machine minding model .
Here, any number of machines are running simultaneously and independently
of each other, and the rate at which they break down is proportional to the
number running. It is also referred to as a delay stage, because customers
can pause somewhere (not counting their waiting in a queue) independently
of each other.

The view we take here is that of computer users who sit at their terminals
and think (no comments, please), or type, and every once in a while hit
the “return” key, which sends their prepared transactions to an external
computer network, which they share. It is assumed that they do nothing while
they wait for the computer system’s response. Drinking coffee or talking to
a friend does not count as doing anything, nor does any activity, however
productive, that is not related to system usage. This is then a time-sharing
stage (TS) in a time-sharing computer system . Let L(N) be the r.v.
denoting the number of customers who are at S2 at any time, in a network
with N customers. From Little’s formula (1.1.2) we see that EEE[L(N)] is related
to the mean rate at which transactions are processed [call it the throughput ,
with the symbol Λ(N)] by

EEE[L(N)] = Λ(N)Z,

given that Z is the mean time each customer spends at S2 between transaction
submittals. On the other hand, the mean number of transactions that are
being processed (or waiting to be processed) at any time must be equal to
N −EEE[L(N)], and is related to the same throughput by the following version
of Little’s formula,

N −EEE[L(N)] = Λ(N)R(N),
given that R(N) is the mean time a transaction spends at S1. If we add the
two equations above together and solve for R(N), we get the fundamental
formula for TS systems which we state as a theorem.

Theorem 6.3.5: Consider a time-sharing system as described
above. Then the mean response time is given by:

R(N) =
N

Λ(N)
− Z. (6.3.17)

6 M/G/C-Type Systems 387

This equation is as general as Little’s formula and tells us some gen-
eral things about TS systems. (Be careful, though. There are numer-
ous counterexamples that show up just when you least expect.) For
instance, when N becomes very large (i.e., when too many users try
to access the same computer system simultaneously), S1 saturates, so
the throughput reaches a limiting value,

Λ := lim
N→∞

Λ(N).

Then we see, for large N ,

R(N) ≈ 1
Λ

N − Z.

If Λ(N)−Λ = O(1/N) for large N , then this equation must be modified.
See [LipTehrvdLLieu82] for details and examples. �

In other words, R(N) approaches a straight line whose slope is 1/Λ and whose
y-intercept is −Z. At the other extreme, R(1) is the amount of time it should
take, on average, for a single transaction to be processed if there is no in-
terference from other tasks. Without too much difficulty, a reasonably good
performance modeler should be able to find a satisfactory value for R(1), Λ,
and Z. Then all one has to do to get a decent understanding of the perfor-
mance of the particular time-sharing system is to draw a smooth curve that
starts at the point [1, R(1)] and asymptotically approaches the line x/Λ− Z.
Figure 6.3.1 shows several possible ways to do this. Clearly, if we really know
what those three parameters are, we know the ballpark we are playing in, but
do we know the game we are playing? As you can see, the different curves
can differ by a factor of 10 or more in the intermediate region. Clearly, under-
utilized systems (N = 1) almost always perform well (users don’t have to
compete for resources), and overloaded systems are usually quite unsatisfac-
tory, what planners want to know is: “How many users can a system support
in a satisfactory manner?” So the name of the game is finding the right middle.

As long as there are no constraints on the number of transactions that
can be processed simultaneously (i.e., when N ≤ C), Jackson networks can
be used quite effectively for performance modeling. However, it is well known
that most systems will actually reduce their throughput if too many trans-
actions are present, in a phenomenon known as thrashing . Briefly, if the
amount of main memory (or cache memory) is insufficient to hold all active
transactions simultaneously, then as each task is given its slice of time to use
the central processor (CPU), it must first reclaim its memory space. The more
jobs active, the more time is spent reclaiming main memory. To counter this,
well-run computer systems will restrict the number of tasks, or transactions
(our customers) who can be active simultaneously. That is, they impose a
population size constraint , our parameter C.

Common techniques for dealing with constraints of this kind, called de-
composition , [Courtois77] or aggregation , or simply the natural ap-
proximation , [Lipsky80] effectively “short-circuit” S1 so that k customers

388 6.3 Steady-State M/G/C//N-Type Systems

0 5 10 15 20 25

 R(1)

Number of customers, N

M
ea

n
re

sp
on

se
 ti

m
e,

 R
(N

)

 N*

 slope=1/Λ

Figure 6.3.1: Response time curves for a family of time-sharing sys-
tems with the same value for minimal load R(1), think-time Z, and
asymptotic throughput Λ. All are bounded from below by the horizontal line,
y = R(1), and the asymptote y = x/Λ − Z. The intersection of those two lines
occurs at N∗ = Λ[Z + R(1)]. N∗ is often taken as the number of customers that
the TS system can support, but the response times for the different systems can
vary enormously at that point.

return as soon as they leave. The rate at which they go around the loop is
Λ(k), k =1, 2, . . . , C. Then S1 is replaced by a load-dependent server with
service rates as follows.

μ(n) = Λ(n) for n ≤ C

and
μ(n) = Λ(C) for n ≥ C.

We have seen a simple version of this in Section 4.4.4. The technique is so
compelling that many practitioners think it is exact, which it is for those
systems where Jackson networks are exact. But it is not exact for systems with
population constraints! (This is why the author became involved in LAQT in
the first place.)

Example 6.3.1: We have calculated response times for an M/H2/C//N
loop, using the exact solution as given by Theorem 6.3.2 or Theorem 6.3.3,
and its natural approximation. The calculations of R(N) and Ra(N) (a for
approximation) versus N , for C = 1, 2, and 3, are given in Figure 6.3.2. As

6 M/G/C-Type Systems 389

0 20 40 60 80 100
0

5

10

15

20

25

C = 1

R(N |1)

Ra(N |1)

C = 2

R(N |2)

Ra(N |2)

C = 3
R(N |3)

Ra(N |3)

Number of customers, N

M
ea

n
re

sp
on

se
ti

m
e,

R
(N
|C

)
an

d
R

a
(N
|C

)

Figure 6.3.2: Response-time curves for a time-sharing system, where
the computer subsystem (S1) is taken to be C identical servers with
hyperexponential distributions. The mean service time for each is R(1) =
0.6 seconds, with squared coefficient of variation of C2

v = 9.0. The think time is
Z = 10.0 seconds. Three different values for C (1, 2, and 3) were used. The curves
marked R(N |C) are the exact calculations, and the curves marked Ra(N |C) come
from the natural, decomposition, aggregation (whatever) approximation. For all
C and for all N , the approximation lies below the correct value.

one would expect, the asymptotic slope decreases with increasing C, because
Λ(C) increases with C. Note that the natural approximation always gives
the right asymptotic slope and correct value for R(1) (i.e., it is in the right
ballpark), but it can be off by more than a factor of 2 where results are most
important, in the intermediate region (it is playing the wrong game). In this
case it always yields an overly optimistic result [i.e., Ra(N) < R(N)]. We do
not really know if this would hold true for all systems. �

Although the decomposition method is used regularly, it is not known
in general how good (or bad) an approximation it is, partly because sys-
tem parameters change so rapidly due to technological improvements that
most researchers have not had the time to carry out the exact calculations as
described here. This is a pity, because LAQT can be used to explore the be-
havior of even more complicated queueing systems by, for instance, doing an
aggregate approximation to S2, while leaving S1 as is. In this way one could
study the interaction of two arbitrarily complicated subnetworks. Of course,
we would not know how accurate that approximation is, but at the moment,
we know almost nothing about such systems. Exact solution of such networks
exist and fall under the more general name of Quasi Birth-Death (QBD)

390 6.4 Open Generalized M/G/C Queue

processes. However, a full-blown calculation of that magnitude would require
using matrices of the size D1(C1)×D2(C2). One can see from our discussion
on computational complexity at the end of Section 6.3.1 that it could easily
become intractable.

6.4 Open Generalized M/G/C Queue

The matrices Mk, Pk, Qk, Rk, Bk, and Vk, for k = 1, 2, . . . , C, which we
tediously described and showed how to build from M1, P1, and p (and the
load-dependence factors) in the preceding section, are the only building blocks
we need for the rest of this chapter. If that already seems like too much, rest
assured that we could not do it with less. We need that much information just
to describe such complicated systems.

The procedure for “opening” our loop is the same as always. If the maximal
service rate of S1 is greater than λ, then as N becomes larger, the probability
that S2 will be idle goes to 0. “But what is the maximal rate?” you ask.
The answer must wait until the next section. For now we assume that the
appropriate conditions are satisfied, in which case S2 behaves as a Poisson
source of customers to S1. It would be expected that the limit as N goes to
infinity of Uc(N) exists, and from (6.3.6c), satisfies the equation

Uc := lim
N→∞

Uc(N) = λ [λIc + Bc −UcMcQcRc]
−1

. (6.4.1)

We ran across a formula like this in Equations (5.5.6). There is no known
explicit expression for Uc except when C = 1. In that case we are dealing
with the M/ME/1 queue, and we know that U1 is U of Equations (4.1.4).
One way to find the numerical value for a matrix that satisfies the equation is
to iterate on Uc. That is, keep calculating Uc(C), Uc(C +1), Uc(C +2), and
so on, until no changes are perceived. There are faster methods available if
one is not interested in the sequence of finite systems [Wallace69]. Anyway,
suppose that Uc is known.Then

Uc(∞|C) := lim
N→∞

Uc(N |C) = Uc

and calculate U1(∞|C), U2(∞|C), . . ., and Uc−1(∞|C) using (6.3.7b).
That is,

Uk(∞|C) := lim
N→∞

Uk(N |C)

= λ [λIk + Bk −Rk+1Uk+1(∞|C)Mk+1Qk+1]−1
. (6.4.2)

All the U matrices satisfy Lemma 6.3.1. Also, (6.3.10) of Theorem 6.3.2 re-
mains valid with ∞ replacing N . Fortunately, (6.3.11) simplifies to

xc(C + n) := lim
N→∞

xc(n,N) = xc(C)Uc
n, (6.4.3a)

where
xc(C) := xc(∞|C). (6.4.3b)

6 M/G/C-Type Systems 391

Then the steady-state solution vectors are given by the following.

πkπkπk(k) = r(0)xk(∞|C) for 0 ≤ k ≤ C (6.4.4a)

and
πcπcπc(n) = r(0)xc(n) = r(0)xc(C)Uc

n−c for C ≤ n. (6.4.4b)

The associated scalar probabilities are, of course,

r(n) = πkπkπk(n)ε′kε
′
kε
′
k, (6.4.4c)

where k = n for n ≤ C and k = C otherwise. r(0) comes from the normaliza-
tion

1
r(0)

=
C−1∑
k=0

xk(∞|C)ε′kε
′
kε
′
k +

∞∑
n=C

xc(n)ε′cε
′
cε
′
c.

We finally get a break. The vectors xc(n) are related by matrix geometric
formulas, so we can write a closed-form expression for the infinite sum. That
is,

1
r(0)

=
C−1∑
k=0

xk(∞|C)ε′kε
′
kε
′
k + xc(C)[Ic −Uc]−1ε′cε

′
cε
′
c. (6.4.5)

The wonderful geometric property, which occurs so often in queueing systems
is, almost assuredly, the major reason why researchers have studied open
systems more than closed systems. They are easier.

6.5 Transient Generalized M/ME/C Queue

Our final topic for this chapter is, as usual, transient behavior. It is surprising,
considering how complex generalized M/ME/C systems are, that what we
did in previous chapters extends so easily here. It is also nice to know that
everything we can do on this subject depends only on the matrices we have
already created, not on their details. However, we do not go into it in such
depth, leaving the untouched topics as exercises.

6.5.1 Queue Reduction at S1S1S1 with No New Arrivals

First we must verify the physical meanings of our basic matrices. We were
beginning to see in Chapter 5 that it was not always simple to decide what
state a system is in initially. We have worse problems here, although sometimes
we can come up with interesting answers. For instance, we know that if a
system has been running a long time unobserved, we may presume that it is
in its steady state. Suppose at some moment there are n customers at S1,
with k customers active. So, k = C if n ≥ C, and k = n if n ≤ C. We can
assume that the system is, at that moment, in state,

pic =
1

r(n;N)
πcπcπc(n;N) for n ≥ C, (6.5.1a)

392 6.5 Transient Generalized M/ME/C Queue

and
pik =

1
r(k;N)

πkπkπk(k;N) for n = k ≤ C. (6.5.1b)

The subscript ik stands for: k-space vector for the initial composite state.
The πππ vectors come from Theorem 6.3.2 for the closed system and (6.4.4) for
the open system. Obviously, pik ε′kε

′
kε
′
k = 1. See Section 4.5.2 for a discussion of

what is meant by this vector.
Next define the family of D(k)-dimensional row vectors,

pk := pR2R3 · · ·Rk for 2 ≤ k ≤ C.¶ (6.5.2a)

Because Rk ε′kε
′
kε
′
k = ε′k−1ε′k−1ε′k−1, we see that pk ε′kε

′
kε
′
k = 1 for all k. Suppose now that the

system was initially idle and suddenly n customers showed up en masse. Or
suppose that the customers were already there, but S1 was inoperative and
then suddenly started up. The initial vector in this case is given by

pik = pk for n = k ≤ C, (6.5.2b)
pik = pc for n ≥ C, (6.5.2c)

In the latter case there would be n − C customers still waiting outside S1.
Physically, we see that the first customer enters and puts S1 in composite
state p ∈ Ξ1. Then the second customer enters and takes the subsystem from
that state to pR2, and so on. How simple.

Next, let us suppose that the subsystem is initially in state i ∈ Ξk. How
long will it take before someone leaves? Assume that the entryway to the
queue at S1 is shut off so that no new customers can enter. Let us give the
symbol a formal definition.

Definition 6.5.1
[τ ′

kτ
′
kτ
′
k]i :=mean time until a customer leaves S1, given that the subsystem

was in state i ∈ Ξk (k ≤ C) and no new customers enter . τ ′
kτ
′
kτ
′
k is a

D(k)-dimensional column vector. This describes a collective process,
in that any one of the k customers could leave, and we do not know,
or care, which. ���

The n = 1 equivalent was discussed in Section 3.1.1, where we showed in
(3.1.2b) that it was equal to V ε′ε′ε′. We give an extension of that derivation
here. The vector equation is as follows. If there are k customers in S1, then

τ ′
kτ
′
kτ
′
k = M−1

k ε′kε
′
kε
′
k + Pk τ ′

kτ
′
kτ
′
k.

In words, the mean time until someone leaves [τ ′
kτ
′
kτ
′
k] is equal to the sum of two

terms; the time until something happens [1/(Mk)ii = (M−1
k ε′kε

′
kε
′
k)i], and if the

event did not result in a departure, the system goes to another state [Pk] and
a customer leaves from there. Notice the words we used: “the system goes
to another state.” We could have said, instead, that “one of the k customers
moves from one phase to another, thereby changing the state of S1.”

¶We could have, if we liked, let R1 := p1 := p.

6 M/G/C-Type Systems 393

We solve for τ ′
kτ
′
kτ
′
k, and using (6.3.4a), with the understanding that if n ≥ C,

we are dealing with C-space objects (i.e., replace all subscripts k with C), we
get

τ ′
kτ
′
kτ
′
k = Vk ε′kε

′
kε
′
k. (6.5.3)

Surprised? Of course not. In fact, we can even show that Bk is the generating
matrix for the distribution of the time until someone leaves.

We do have a problem, though. Whereas for a single customer we had a
natural candidate for the initial state, namely p, which led to the description
of a pdf, now we have many candidates. For instance, if S1 just opened up
and C customers flowed in, we are dealing with (6.5.2) for pic, so the mean
time until the first one leaves will be

pR2 · · · Rc Vc ε′cε
′
cε
′
c = pc Vc ε′cε

′
cε
′
c.

Furthermore, the density function (pdf) of the time for that epoch is given by

pc[Bc exp(−xBc)]ε′cε
′
cε
′
c.

Other combinations are equally welcome. This does seem like the appropriate
definition of interdeparture times, but when will the second customer leave?
We have two possibilities, depending on whether the departed customer is
replaced. We have not even begun to look at what happens if a customer enters
S1 before the first customer leaves. Let us postpone consideration of this last
possibility, which falls into the category of first-passage times, and answer the
intermediate question. “What state will the system be in immediately after
the first customer leaves?” We define it as follows.

Definition 6.5.2
[Yk]ij :=probability that S1 will be in internal state j ∈ Ξk−1 imme-
diately after a departure, given that the system was initially in state
i ∈ Ξk, and no other customers have entered . Yk is a D(k)×D(k−1)-
dimensional matrix, and is isometric, in that Yk ε′k−1ε′k−1ε′k−1 = ε′kε

′
kε
′
k. By defi-

nition we are assuming that S1 has exactly k active customers, thus
1 ≤ k ≤ C. Y1 = ε′ε′ε′, because when k = 1 a departing customer leaves
the empty state behind. ���

An equation for Yk can be written down directly from the following argu-
ment. When an event occurs in S1, either someone leaves [Qk], or the internal
state of the subsystem changes [Pk], and somebody eventually leaves [Yk].
Mathematically,

Yk = Qk + PkYk,

and solving for Yk, we get [using (6.3.4a)]

Yk = [Ik −Pk]−1Qk = [Ik −Pk]−1[Mk]−1MkQk = VkMkQk. (6.5.4a)

[Compare with ε′ε′ε′ = (I−P)−1q′, Equation (3.1.1b), for k = 1.] Both the first
and third versions of Yk may prove useful, and either (6.3.3b) or (6.3.4b) can
be used to prove that Yk is isometric.

394 6.5 Transient Generalized M/ME/C Queue

Now we are ready to consider how long it will take for a second customer
to leave S1 after the first one left. Suppose first that no new customer enters;
then that time is, for k ≤ C,

pik Yk (Vk−1 ε′k−1ε′k−1ε′k−1) = pik Yk τ ′
k−1τ ′
k−1τ ′
k−1,

where the initial vector depends on the initial conditions. When the observer
first looks at the system, it has k customers present, and is in the composite
state, pik. After the first customer leaves, the system is in state pik Yk, with
k−1 customers. The second customer takes time τ ′

k−1τ ′
k−1τ ′
k−1 to leave next. The time

between the second and third departures is

pik Yk Yk−1 Vk−2 ε′k−2ε′k−2ε′k−2 = pik Yk Yk−1 τ ′
k−2τ ′
k−2τ ′
k−2,

and so on.
Successive multiplications of the Yk matrices occur often, so we provide

them with their own symbol and definition.

Definition 6.5.3
[Yk(�)]ij := probability that S1 will be in internal state j ∈ Ξ� immedi-
ately after k− � departures, given that the system was initially in state
i ∈ Ξk, and no other customers have entered. Yk(�) is a D(k)×D(�)-
dimensional matrix and is isometric, in that Yk(�)ε′�ε

′
�ε
′
� = ε′kε

′
kε
′
k. By defini-

tion we are assuming that S1 starts with exactly k active customers;
thus 0 ≤ � < k ≤ C. Also, Yk(k−1) := Yk. Keep alert to the fact that
Yk(·) with an argument is different from Yk without an argument. ���

These matrices are easy enough to construct because they satisfy the obvious
recurrence relation, starting with:

Yk(k) := Ik,

Yk(�− 1) = Yk(�)Y���, (6.5.4b)

or explicitly,
Yk(�− 1) = Yk Yk−1 · · ·Y���+1Y���. (6.5.4c)

The argument (�−1) helps a little, for it tells us that the operator, Yk(�−1),
takes the system from k customers to �− 1 customers.

ME/C Subsystems and Order Statistics

If S1 is an ME/C (not generalized) subsystem and pic is given by (6.5.2c), we
are dealing with the order statistics of C iid random variables. We state
this as a theorem after the following formal definition. (See e.g., [Trivedi02]
for a standard discussion of this.)

Definition 6.5.4
Let X1, X2, . . . , Xc be C identically distributed, mutually indepen-
dent random variables, whose distribution functions are each generated
by 〈〈〈p , B 〉〉〉.

6 M/G/C-Type Systems 395

Let X(0)(C) := 0 ≤ X(1)(C) ≤ X(2)(C) ≤ · · · ≤ X(c)(C) be the size
place reordering of the (Xk)s. Then the random variable X(k)(C) is
called the “kth-order statistic.” In terms of our ME/C (not generalized)
subsystem, X(1) is the time the first customer leaves S1, leaving behind
C − 1 customers, X(2)(C) is the time the second one leaves, and so on.
These are neither independent nor identically distributed, and they
even depend on C.

The r.v. of direct interest to us is the interdeparture time Zk(C);
then

Zk(C) := X(k)(C)−X(k−1)(C), for 1 ≤ k ≤ C.

These r.v.s denote the time from one departure to the next. ���
By constructing the matrices Mk, Pk, Qk, Rk, Bk, and Vk, for k =

1, 2, . . . , C according to Equations (6.3.2) [i.e., μγ(l) = l μγ(1) for all l and
all 1 ≤ γ ≤ m] we have made the (Xk)s mutually independent and identi-
cally distributed. Also, by selecting pic to be equal to pc = pR2 R3 · · · Rc

we have started service for all C customers at the same time. We now state
the theorem on order statistics.

Theorem 6.5.1: Let {Zk(C) | 1 ≤ k ≤ C}, be given according to
Definition 6.5.4. Let S1 be constructed as an ME/C subsystem. Then

EEE[Z1(C)] = pc Vc ε′cε
′
cε
′
c, EEE[Z2(C)] = pc Yc Vc−1 ε′c−1ε′c−1ε′c−1,

and in general (we drop the dependence on C for now)

EEE[Zk] = pc Yc Yc−1 · · · Yc−k Vc−k+1 ε′c−k+1ε′c−k+1ε′c−k+1

= pc Yc(c−k−1)Vc−k+1 ε′c−k+1ε′c−k+1ε′c−k+1. (6.5.5a)

Admittedly, the subscripts can be confusing. The problem is that the
first departure occurs when all C customers are still present. With
successive departures, fewer customers remain. Thus, the subscript on
Zk(C) plus the subscript on Vc−k+1 always add to C+1 [k+C−k+1 =
C + 1].

We can actually say how these variables are distributed.

PPPr(Z1 ≥ x) = pc exp(−xBc)ε′cε
′
cε
′
c,

PPPr(Z2 ≥ x) = pcYc exp(−xBc−1)ε′c−1ε′c−1ε′c−1,

and in general,

PPPr(Zc−k+1 ≥ x) = pc Yc(k) exp(−xBk)ε′kε
′
kε
′
k. (6.5.5b)

Note that the r.v.s [Zk] cover the period immediately after one depar-
ture up to and including the next departure, which we call an epoch.
X(k)(C) satisfies the following.

X(k)(C) =
k∑

�=1

Z�(C) = Zk(C) + X(k−1)(C),

396 6.5 Transient Generalized M/ME/C Queue

so its pdf can be found from the convolution of the pdfs of the Z�(C)s
(not so easy). �

This may be getting a bit obscure and abstract, so let us interject the
simplest of examples. Suppose that ME is exponential (i.e., m = 1), and there
are exactly C customers at S1. Then D(k) = 1 for all k, Mk = Bk ⇒ k μ,
and just about everything else becomes 1. Then

EEE[Z1] =
1

C μ

and in general, we get the well-known formula for the order statistics for
exponential distributions, namely

EEE[Zk] =
1

(C − k + 1)μ
.

Remember, this is the mean time between departures. The mean time for
departures themselves are the partial sums of the interdeparture times. Recall
that EEE[X(0)(C)] := 0; then

EEE[X(k)(C)] = EEE[X(k−1)(C)] +
1

(C − k + 1)μ
=

1
μ

c∑
�=c−k+1

1
�
.

In particular, the time for the last customer to leave is

EEE[X(c)(C)] =
1
μ

H(C) :=
1
μ

c∑
�=1

1
�
,

where H(C) is known as the harmonic series. Remember, these last for-
mulas are valid only for the M/M/C queue.

Draining of Generalized ME/C Subsystems

We return to our generalized subsystem, and suppose that n > C. Then when
a customer leaves, another immediately takes his place, putting the system in
the state

YcRc = VcMcQcRc.

The element [Yc Rc]ij can be interpreted in the following way. “Given that
the system is in state i ∈ Ξc, with more customers in the queue, a customer
finally leaves [Yc], and immediately thereafter another customer enters [Rc],
putting the system in state j ∈ Ξc.” This object is a singular, isometric, square
matrix of dimension D(C) ×D(C). We first ran across the C = 1 version of
this in Chapter 3, namely, Y1R1 = ε′ε′ε′p = Q (as always, not to be confused
with Q1 = q′, or Q).

The formulas for the interdeparture times from a generalized G/C are very
similar to those for order statistics, but we must distinguish between n > C
and n < C, where n is the number of customers remaining. We start with the
following.

6 M/G/C-Type Systems 397

Definition 6.5.5
Let Z�(N |C) be the r.v. denoting the time between the departures of
customers � − 1 and �. Initially there are N customers at the system,
and no more than C customers can be active at one time. The number
of customers remaining immediately after departure � (and no new
arrivals) is n = N − �. ���

Initially the system is in some composite state pic with N > C customers.
Then the mean time for the first departure is, using (6.5.3),

EEE[Z1(N |C)] = picVcε
′
cε
′
cε
′
c = picτ

′
cτ
′
cτ
′
c.

The second customer leaves the following amount of time later,

EEE[Z2(N |C)] = picYcRcτ
′
cτ
′
cτ
′
c.

In general, as long as � < N − C (there are customers still waiting to enter
S1),

EEE[Z�(N |C)] = pic[YcRc]
�−1

τ ′
cτ
′
cτ
′
c. (6.5.6a)

When finally � = N − C there are C customers remaining. Then (let j =
N − C + k + 1)

EEE[Zj(N |C)] = pic[YcRc]
N−CYc(c− k)τ ′

c−kτ ′
c−kτ ′
c−k 0 ≤ k < C, (6.5.6b)

starting with k = 0 (C customers remain),

EEE[ZN−C+1(N |C)] = pic[YcRc]
N−C

τ ′
cτ
′
cτ
′
c,

and ending with k = C − 1,

EEE[ZN (N |C)] = pic[YcRc]
N−CYc(1)τ ′

1τ
′
1τ
′
1.

We see that every interdeparture time depends on the inner product of a
“final vector” [τ ′

kτ
′
kτ
′
k] and an “initial vector” [everything else]. The final vectors

depend only on the number of active customers, but the initial vectors (and
thus, the interdeparture times themselves) depend on N, C, the number of
customers still remaining, and the state the system was in when the whole
process began [pic]. The mean times are all different, but if N >> C, then
[YcRc]� → ε′cε

′
cε
′
cπcπcπc [see (6.5.9b) below, and the discussion around it], and the

successive interdeparture times approach a constant [πcτ
′
cπcτ
′
cπcτ
′
c], until there are

fewer than C customers remaining. But even so the interdeparture times are
correlated. This is discussed fully in Chapter 8.

Let us summarize this with a theorem about the time for a queue to drain.

Theorem 6.5.2: Consider a generalized subsystem S1 in which a
maximum of C customers can be active simultaneously. Suppose that
there are N customers at S1, with no new arrivals possible, and at the
moment the process begins, the subsystem is in state pik. The process

398 6.5 Transient Generalized M/ME/C Queue

ends when all customers are gone. Let TN be the r.v. denoting the time
for the queue to drain. Then from Equations (6.5.6)

EEE[TN] =
N∑

�=1

EEE[Z�(N |C)]. (6.5.7a)

If N = k ≤ C this reduces to

EEE[Tk] = pik τ ′
kτ
′
kτ
′
k + pikYk τ ′

k−1τ ′
k−1τ ′
k−1 + pik Yk(k−2)τ ′

k−2τ ′
k−2τ ′
k−2

+ · · ·+ pikYk(1)τ ′
1τ
′
1τ
′
1. (6.5.7b)

In general, for N = l + C, l > 0,

EEE[TN] = pic

⎡
⎣ l∑

j=0

(YcRc)j

⎤
⎦τ ′

cτ
′
cτ
′
c (6.5.7c)

+pic(Yc Rc)lYc

[
Yc τ ′

c−1τ ′
c−1τ ′
c−1 + Yc(C−2)τ ′

c−2τ ′
c−2τ ′
c−2 + · · ·+ Yc(1)τ ′

1τ
′
1τ
′
1

]
.

The separate terms are the mean times for each successive customer
to leave after the previous one has left. τkτkτk is given by (6.5.3) and Yk

is given by Equations (6.5.4). �

It is left to the reader to devise a simple recursive algorithm for evaluating
Equations (6.5.7). Perhaps we should think of Theorem 6.5.1 as a corollary to
Theorem 6.5.2. Some examples where time to drain can be important are
the following. This idea was recently used by Mohamed [Mohamed04].

1. A multiprogramming computer system has been in operation all day,
and everyone except the operator has gone home. The operator cannot go
home until all jobs are done, including those in the waiting queue. C is the
maximum degree of multiprogramming, and n is the number of jobs in the
system. Then pik is given by (6.5.1), and Tn is the mean time until the
operator can go home.

2. A multiprogramming computer system has been in operation for a long
time, and the operating systems people must bring it down for some reason
or other. They can shut off the queue of waiting jobs but must let those in
progress continue until they finish. C is the maximum degree of multipro-
gramming, pik is given by (6.5.1), and n is the number of jobs in the system
when the queue is turned off. If n = k ≤ C, then Tk is the mean time until
they can bring down the system. If n > C, then Tc is the mean time, but use
(6.5.1a) with n (not C) for pic.

3. We have n ≥ C identical devices, of which we would like C to be
running simultaneously (hot backup), but we can survive even if all but one
are broken. pic is given by pc (6.5.2a), and EEE[Tn] is the mean time until all
are broken (MTTF, without repair). There are initially n−C devices in cold
backup and C − 1 in hot backup. We can generalize; failure can be defined
as occurring when the number still at S1 drops below a certain value.

6 M/G/C-Type Systems 399

4. You are driving cross-country and are in a hurry. Your car has five
brand-new tires. You will have time to change, but not to fix, a flat if it
occurs. Equation (6.5.2a) for C = 4 (unless you are driving a trailer truck) is
the initial state, and failure occurs when you are down to three tires (hold the
steering wheel steady when this occurs). T is the sum of the first two terms
in (6.5.7b).

5. Same as Example 4, but now you are driving a rented car, so the four
mounted tires have already been used to an uncertain amount, but the spare
is new. What is pik now?

Presumably the reader can think up a few more examples.

6.5.2 Markov Renewal (Semi-Markov Departure) Processes

In the second paragraph of Section 6.4 we stated that the maximal service
rate of S1 must be greater than λ for the steady-state M/ME/C queue to
exist, without actually determining the maximal rate. We do that now. We
also describe the departure process from S1 (which is, of course, the same as
the arrival process at S2), when its queue is unboundedly large. This is the
direct generalization of the renewal processes described in Section 3.5, and is
known as a Markov Renewal Process (MRP). It is also known as a semi-
Markov point process (SMP). We go into this subject in a more general way,
and in more detail in Chapter 8. We are not particularly interested in where
names come from, but we give them so that the reader can have a reference
point for reading the general literature. Based on our (and everyone else’s)
definition, this really is not a renewal process, and we hope that by the end
of this section, you will see why.

In the preceding section we showed how to calculate the mean time for a
customer to leave S1, given some initial state. We also showed how to calculate
the time for the second, third, and all other customers to leave. All these times
are different even if the queue is long enough to guarantee that there will
always be more than C customers at S1. Fortunately, this sequence approaches
a limit. That is, let (Zn) be the r.v. for the time interval between the departure
of customer n and customer (n−1) for any initial state vector, pic. Note that
the system has up to C customers actively being served, not just the one who
ultimately leaves next. Therefore this period should not be identified with the
nth customer to arrive. Among other things, the ordering of customers in not
preserved. In any case, we call this the nth epoch. Then

EEE[Zn] = pic(Yc Rc)n−1Vc ε′cε
′
cε
′
c, (6.5.8a)

for all n, if the queue is unboundedly large. Let us assume that the following
limit exists.

EEE[Z] := lim
n→∞EEE[Zn]. (6.5.8b)

For the limit to exist, the matrix YcRc = VcMcQcRc must satisfy certain
properties, some of which we already know to be true. We know, for instance,
that this matrix is isometric but not invertible. Thus it has one eigenvalue
equal to 1 and multiple occurrences of 0 as an eigenvalue. We know the latter

400 6.5 Transient Generalized M/ME/C Queue

because the matrix QcRc is of dimension D(C), but Qc and Rc are not square
matrices, so QcRc is at most of rank D(C − 1).

We assume that all the other eigenvalues are less than 1 in magnitude.
Recall from the definition of isometric that ε′cε

′
cε
′
c is a right eigenvector. Let’s

take a look. From (6.3.4b)

Yc Rc ε′cε
′
cε
′
c = Vc Mc Qc Rc ε′cε

′
cε
′
c = Vc Bc ε′cε

′
cε
′
c = ε′cε

′
cε
′
c.

This, as we have seen several times, is an eigenvector equation, with eigenvalue
1. Next, let πcπcπc be the left eigenvector of Yc Rc with eigenvalue 1, normalized
so that πc ε′cπc ε′cπc ε′c = 1. That is,

πcπcπc Yc Rc = πcπcπc.
† (6.5.9a)

Now from the spectral decomposition theorem (1.3.8b), we can write

(YcRc)n = ε′cπcε′cπcε′cπc +
D(C)∑
i=2

λn
i v′

i ui,

where {λi, ui, v′
i} is the set of eigenvalues and left and right eigenvectors of

YcRc, excluding 1, πcπcπc, and ε′cε
′
cε
′
c. Assuming that |λi| < 1 for i ≥ 2, we can take

the limit directly, to get

lim
n→∞(YcRc)n = ε′cπcε′cπcε′cπc. (6.5.9b)

Then we have
EEE[Z] = pic ε′ε′ε′c πcε′ε′ε′c πcε′ε′ε′c πc Vc ε′ε′ε′cε′ε′ε′cε′ε′ε′c = πcπcπc Vc ε′ε′ε′cε′ε′ε′cε′ε′ε′c, (6.5.10a)

given that pic ε′cε
′
cε
′
c = 1. Note that EEE[Z] is independent of the state the system

was in initially, as all good Markov processes should be. This limit is the
correct maximal, mean interdeparture time from S1, so 1/EEE[Z] is the maximal
service rate of S1. Therefore, if we define ρc as

ρc := λEEE[Z] = λ
[
πcπcπc Vc ε′cε

′
cε
′
c

]
, (6.5.10b)

then we can say that the steady-state M/ME/C queue exists as long as ρc < 1,
thus finally completing our thoughts for Section 6.4.

But we have not finished our thoughts for this section. If ρc > 1, then S1

becomes an MRP source for S2. We deal fully with that possibility in Chapter
8, but we do have some items to mention before closing here.

First we would like to give some meaning to the vector πcπcπc. To do that,
look at the isometric matrix [compare with (3.5.11a)]

PcPcPc := Pc + QcRc. (6.5.11a)

This matrix moderates the following process. There are C customers in S1.
The internal transitions are governed by Pc, but when a transition occurs
that results in a customer leaving [Qc], that customer immediately returns,

†Be careful not to confuse πcπcπc with the vector πcπcπc(n) in (6.4.4b).

6 M/G/C-Type Systems 401

putting the system in a new state of Ξc, [Rc]. Therefore, PcPcPc is the transition
matrix describing a short-circuited S1. The left eigenvector yc, defined by

yc PcPcPc = yc (6.5.11b)

and yc ε′cε
′
cε
′
c = 1, is interpreted in the following way. [yc]i is the probability that

the short-circuited system will be found in state i ∈ Ξc between events. Next
rewrite (6.5.11a) and (6.5.11b) in the form

ycQcRc = yc[Ic −Pc], (6.5.11c)

and compare with the following [from (6.5.9a) using the first part of (6.5.4a)].

πc = πcπc = πcπc = πc[Ic −Pc]−1QcRc. (6.5.11d)

These two equations imply that πcπcπc must be proportional to yc[Ic −Pc]; that
is,

πcπcπc ∼ yc[Ic −Pc].

Normalize so that yc ε′cε
′
cε
′
c = 1, and let g := 1/πcπcπc[Ic −Pc]−1ε′cε

′
cε
′
c; then

yc = g πcπcπc[Ic −Pc]−1.

Next consider the vector whose ith component is xi := yi [Mc]ii. Recall that
1/[Mc]ii is the mean time the system spends in state i every time it finds itself
there. Therefore, as a direct generalization of the mean residual vector
defined in (3.5.10b),

xc ∼ yc[Mc]−1 (6.5.12a)

must be proportional to the steady-state probability vector of short-circuited
S1. On the other hand, we have (substituting for yc)

xc ∼ πc[Ic −Pc]−1[Mc]−1 = πcVc, (6.5.12b)

where from (6.5.10a), xc ε′ε′ε′cε′ε′ε′cε′ε′ε′c = EEE[Z]. Compare this with (3.5.10b) and
(6.5.10a). The ith components of the three vectors yc, πcπcπc, and xc/EEE[Z] are,
respectively, the steady-state probability of finding S1 in state i ∈ Ξc between
events, the steady-state probability that a leaving−re-entering customer will
put S1 in state i, and the steady-state probability that a random observer will
find S1 in state i.† And then there is pc of (6.5.2a). Can anything be clearer?

We have seen that the vector-matrix pair 〈〈〈pic(Yc Rc)n−1 , Bc 〉〉〉 generates
the interdeparture-time distribution for the nth customer to leave S1 when
there are more than n + C customers in the queue initially. We have also
seen that when n is large enough, all the interdeparture distributions are the
same and are generated by the pair 〈〈〈πcπcπc , Bc 〉〉〉. Can we not say, then, that this
process approaches a renewal process asymptotically? The answer to this is
no, but the explanation is very subtle. The manifest property that is missing
is independence. In renewal processes, interdeparture times for two successive

†Note that xc is the same as that given by the product-form solution for Jackson net-
works.

402 6.5 Transient Generalized M/ME/C Queue

customers are independent of each other. That is not true here. The physical
explanation is as follows. In a renewal process, when a customer leaves S1, he
leaves behind the empty state, no matter how long he was in service himself.
That is, the initial state for the next customer is always p. Therefore, the next
customer always starts the same way. For our semi-Markov process, the state
the subsystem is in immediately after the nth departure is likely to be quite
different if the nth interdeparture time were short than if the interdeparture
time were long. For instance, suppose that the process has been going on for
a long time. Then the nth epoch begins in state πcπcπc. This is the initial vector
averaged over all possible times for all previous departures. If the epoch ends
after a short time, the customers remaining have not moved very much, but
if the epoch lasts a long time, the other customers may have changed their
states quite a bit. So the beginning of epoch number (n + 1) depends on the
time of the nth departure.

The mathematical explanation is as follows. Suppose that n is very large;
then the distribution for Zn is generated by 〈〈〈πcπcπc , Bc 〉〉〉. Therefore,

πcπcπc exp(−tBc)

is the vector whose ith component is the probability that the nth customer
to leave is still in service at time t after the (n − 1)st customer left, and the
system is in state i. The reliability function is

PPPr(Zn > t) := RZn
(t) = πcπcπc exp(−tBc)ε′cε

′
cε
′
c,

with density function

bZn
(t) = πcπcπc exp(−tBc)Bc ε′cε

′
cε
′
c.

At time t let there be an event in S1, [Mc], resulting in a departure [Qc],
followed immediately by a new entry [Rc]. Then the next departure epoch
will have a starting vector of:

πcπcπc(t) :=
1

bZn
(t)

πcπcπc exp(−tBc)Mc Qc Rc,

This certainly depends upon t (unless Mc Qc Rc is of rank 1, which it is only
for C = 1).

Observe from (6.5.9a), that∫ ∞

o

πcπcπc(t) bZn
(t) dt = πcπcπc

[∫ ∞

o

exp(−tBc) dt

]
Mc Qc Rc

= πcπcπc Vc Mc Qc Rc = πcπcπc Yc Rc = πcπcπc.

That is, only if the random observer takes no note of time for the nth epoch,
will the (n + 1)st epoch also start in state πcπcπc.

The above material is generalized and discussed fully in Chapter 8. But
this chapter contains other interesting areas for further study by the reader.
We have a few questions of our own.

6 M/G/C-Type Systems 403

1. What is the relation between the product-form solution of steady-state
Jackson networks and the matrices we had to create for the M/ME/C//C
loop? It would seem that the only properties necessary for the two to give
the same results is that the dimension of the Ξk’s be equal to the binomial
coefficients as given in (6.3.6b).

2. There is no formal difference between a subsystem with C identical
servers and the generalized subsystem. But the former has some special prop-
erties, and it would seem that those matrices should be capable of being
broken down into smaller parts, so that the difference between the two can
be seen explicitly.

3. Do there exist smaller-dimensional matrices that represent these pro-
cesses equally well? We should be able to study the class of similarity trans-
formations that leave the various equations invariant or the various results
unchanged.

6.5.3 A Little Bit of Up and Down, with Arrivals

The work we did in Chapters 4 and 5 on first-passage matrices and times, as
well as the various W matrices and other properties of the busy period, can
be generalized to the networks we are treating in this chapter. We must be
more careful though, because the operators, both in size and content, change
from one queue length to the next. We give a sampling of how this can be done
in just two areas, first-passage times up and first-passage times down. These
two topics have increasingly important applicability to real-world problems.
“Up” is easier, so we do that first.

6.5.3.1 First-Passage Processes for Queue Growth

What we are about to do is taken directly from Section 4.5.1 with the added
problem that dimensions and operators change as we go up the ladder. We
also have the problem of setting up new notation. As in previous chapters, we
use the symbol H for our isometric first-passage matrices. We also need an
auxiliary matrix for definition purposes. So, for our first definition,

Definition 6.5.6
Xk := probability matrix of first passage from k to k + 1 where k < C.
That is, [Xk]ij is the probability that S1 will be in state j ∈ Ξk+1

when its queue goes from k to k + 1 for the first time, given that it
started in state i ∈ Ξk. This is a D(k)×D(k + 1)-dimensional matrix
and is isometric, because Xkε

′ε′ε′k+1 := ε′kε
′
kε
′
k. Xk will soon be replaced by

Hk so we are not bothering to use u for up Note that this matrix is
only defined for k < C. ���

To be consistent with previous notation, X should have been subscripted as
k + 1, because that matches the higher dimension of this rectangular matrix.
However, we soon after define the related matrix H, which is the one we
actually use in our final formulas.

404 6.5 Transient Generalized M/ME/C Queue

Look at the time-dependent state diagram in Figure 6.5.1. There are five
different types of equations we must look at for queue growth, namely 0 <
1 < k < C < n. N is relevant only for queue decrease. Let us start with
no-one at S1. Then all that can happen is for a customer to arrive, putting
S1 into state p. Therefore,

Xo = p.

Next consider one customer in S1. Three things can happen.
1. A second customer arrives directly, with probability λ[M1 + λI1]−1,

and enters, thereby changing the state of the subsystem [R2].
2. A transition occurs in S1, [M1(M1 + λI1)−1], resulting in a customer

changing phase [P1], and then eventually the queue gets to length 2, [X1].
3. A transition occurs in S1, [M1(M1 + λI1)−1], resulting in a customer

leaving [Q1 = q′], and then the queue eventually grows from 0 to 1 to 2,
[Xo X1].

The equation for this is [where M1(M1 + λI1)−1 = (M1 + λI1)−1 M1]

X1 = λ[M1 + λI1]−1R2 + M1[M1 + λI1]−1P1X1

+M1[M1 + λI1]−1Q1 Xo X1.

Premultiply both sides by [M1 + λI1], collect all terms multiplying X1, and
get

[M1 + λI1 −M1 P1 −M1 Q1 R1]X1 = λR2.

We have deliberately used Q1 and R1 for q′ and p, respectively. Now solve
for X1, using B1 = M1(I1 −P1),

X1 = λ[λI1 + B1 −M1Q1R1]−1R2. (6.5.13a)

Let us make some simplifying definitions. Let Hu0 := 1 [a one-dimensional
matrix, given that D(0) = 1], and let

Hu1 := λ[λI1 + B1 −M1Q1Hu0R1]−1; (6.5.13b)

then X1 = Hu1R2. What is nice is that Hu1 is an isometric, invertible, square
matrix. We prove the isometric property by multiplying (6.5.13b) from the
right with the expression in brackets [notice that we could not do this in
(6.5.13a), because R2 is in the way] and then right-multiply by ε′1ε

′
1ε
′
1 to get

Hu1[λI1 + B1 −M1Q1R1]ε′1ε
′
1ε
′
1 = λε′1ε

′
1ε
′
1.

We know from (6.3.4b) that M1 Q1 R1 ε′1ε
′
1ε
′
1 = B1 ε′1ε

′
1ε
′
1, so we are indeed left with

Hu1 ε′1ε
′
1ε
′
1 = ε′1ε

′
1ε
′
1.

Only then does it follow that

X2 ε′2ε
′
2ε
′
2 = ε′1ε

′
1ε
′
1.

6 M/G/C-Type Systems 405

Figure 6.5.1: Time-dependent state transition diagram for up pro-
cesses for M/ME/C//N queues, where C < N . This is also applicable to open
systems where N → ∞. There are five different sets of transition types, one each
for n = 0, n = 1, n = k < C, n = C, N > n > C. n = N is only relevant for
down processes.

We can do the very same thing for 1 < k < C, so

Xk = λ[Mk + λIk]−1Rk+1 + Mk[Mk + λIk]−1 Xk

+Mk[Mk + λIk]−1 QkXk−1Xk.

Doing the usual maneuverings, we come up with

Xk = λ[λIk + Bk −MkQkXk−1]−1Rk+1.

Next we let
Xk = HukRk+1; (6.5.14)

then we have

Huk = λ[λIk + Bk −MkQkHuk−1Rk]−1
. (6.5.15a)

We prove that Huk is isometric, by induction. We know that Hu1 ε′1ε
′
1ε
′
1 = ε′1ε

′
1ε
′
1,

and assume that it is true for 1 ≤ l < k; then

Huk[λIk + Bk −MkQkHuk−1Rk]ε′kε
′
kε
′
k = Huk ε′kε

′
kε
′
k = λε′kε

′
kε
′
k.

It follows from this that Xk is isometric. Note that Huk does not depend on C
as long as k is less than C. We can interpret [Huk]ij as given in the following.

406 6.5 Transient Generalized M/ME/C Queue

Definition 6.5.7
[Huk]ij := probability that S1 will be in state j ∈ Ξk just before a
customer arrives and enters [Rk+1] to raise the queue length from k
to k + 1 for the first time, given that S1 started in state i ∈ Ξk. Huk

and Xk are related by (6.5.14). ���
Now we must look at the system when there are C or more customers at

S1. To do that we must first define a set of matrices for n ≥ C.

Definition 6.5.8
Huc(n) := probability matrix of first passage from n to n + 1 where
n ≥ C. Thus [Huc(n)]ij is the probability that S1 will be in state
j ∈ Ξc just after a customer arrives to raise the queue length from
n to n + 1 for the first time, given that the process started with the
system in state i ∈ Ξc. ���

We do not need the auxiliary X matrices, because the first-passage matrices
of Definition 6.5.8 are already square and isometric. Put another way, from
what we know of their meanings, they must be equal. After all, if the queue
length at S1 is greater than or equal to C, the system will be in the same
internal state immediately before and immediately after an arrival.

Let us start with n = C. The first-passage matrix satisfies

Huc(C) = λ[Mc + λIc]−1 + Mc[Mc + λIc]
−1Pc Huc(C)

+ Mc[Mc + λIc]
−1Qc Hu(c−1) Rc Huc(C).

When we solve explicitly for Huc(C) we get

Huc(C) = λ[λ Ic + Bc −MkQcHu(c−1)Rc]
−1

.

This is in exactly the same form as (6.5.15a), so we can say that

Huc(C) = Huc,

but things are a little different from now on. The defining equation when
n > C is the following.

mathbfHuc(n) = λ[Mc + λIc]
−1 + Mc[Mc + λIc]

−1PcHuc(n)

+ Mc[Mc + λIc]
−1QcRcHuc(n− 1)Huc(n).

Notice the subtle change. In the last term, Rc is now to the left of Huc(n−1)
and Huc(n) instead of between them. The reason is simple. When there are
more than C customers at the subsystem, a departing customer can immedi-
ately be replaced [Rc], and eventually a customer comes to raise the queue
to n + 1 for the first time [Huc(n)]. If there are C or fewer customers at S1,
then eventually the subsystem has k − 1 customers when a new one arrives,
[Hu(k−1)], and imediately enters [Rk]. This, by the way, shows us the signif-
icance of having matrices that do not commute (Hu(c−1)Rc
= RcHu(c−1)).
This slight difference yields a somewhat different recursive equation:

Huc(n) = λ[λIc + Bc −Mc Qc Rc Huc(n− 1)]−1. (6.5.15b)

6 M/G/C-Type Systems 407

We leave it as an exercise to prove that these matrices are isometric.
Recall that pk from Equations (6.5.2) is the state probability vector for

S1 if k customers entered the empty subsystem simultaneously. If the cus-
tomers arrived randomly, the state S1 would be in when there are finally k
customers there for the first time is defined by (compare with Definition 4.5.4)
the following.

Definition 6.5.9
puk(n) := probability vector of first passage from 0 to n. [puk(n)]i
is the probability that S1 will be in state i ∈ Ξk when there are n
customers there for the first time. Two conventions go with this. First,
k = n when n ≤ C, and k = C when n ≥ C. Second, when k = n ≤ C,
we drop the argument:

puk := puk(k) for k ≤ C.

The process starts with the arrival of the first customer and ends when
the queue (including the customers in service) reaches n. The queue
could have gone back to 0 any number of times before the process ends.
���

It is plain to see that

puk := pHu1R2Hu2R3 · · ·Huk−1Rk for n = k ≤ C (6.5.16a)

and for n > C

puc(n) : = pHu1R2Hu2R3 · · ·Huc−1RcHucHuc(C+1) · · ·Huc(n−1)
= puc Huc Huc(C+1) · · ·Huc(n−1). (6.5.16b)

We can read these formulas physically. A first customer arrives [p]. There
is one customer at S1 when a second one arrives [Hu1], and enters [R2].
Eventually, there are two customers at S1 when a third one arrives [Hu2], and
enters [R3], and so on. Once there are C or more customers in the subsystem
[Hc(n)], the arriving customer does not enter (no R). The pu vectors satisfy
a natural recursive equation.

pu(k+1) = pukHukRk+1 for k < C, (6.5.16c)
puc(n + 1) = puc(n)Huc(n) for n ≥ C. (6.5.16d)

Without belaboring the point, note the difference between pc and puc(n). In
the former, even if more than C customers arrive simultaneously, only C of
them will enter, so the vector is the same for all n ≥ C. In the latter case,
when that special customer who will raise the queue to n+1 for the first time,
arrives, even though he does not enter S1, the system is in a special state.
That special state puc(n) is different for all n.

After the following definition, we are finally ready to set up equations for
the first-passage times, after which we summarize everything in a theorem.

408 6.5 Transient Generalized M/ME/C Queue

Definition 6.5.10
[τ ′

ukτ ′
ukτ ′
uk(n)] := mean first-passage time vector for an M/ME/C//N loop

to go from n to n + 1. Component i is the mean time until the queue
at S1 (as usual, including the ones in service) reaches n + 1 customers
for the first time, given that the process started in state {i ; n}. The
conventions are the same as in Definition 6.5.9, namely, k = n for
n ≤ C and k = C when n ≥ C. Also,

τ ′
ukτ ′
ukτ ′
uk := τ ′

ukτ ′
ukτ ′
uk(k) for k ≤ C.

This is a D(k)-dimensional column vector. ���

Clearly, when no one is at S1, the mean time until someone arrives is 1/λ, so

τ ′
uoτ ′
uoτ ′
uo

† =
1
λ
· (6.5.17a)

The mean time to go from 1 to 2 for the first time is governed by the equation

τ ′
u1τ ′
u1τ ′
u1 = [λI1 + M1]−1ε′1ε

′
1ε
′
1 + [λI1 + M1]−1M1 P1 τ ′

u1τ ′
u1τ ′
u1

+ [λI1 + M1]−1M1q′[τ ′
oτ
′
oτ
′
o + pτ ′

u1τ ′
u1τ ′
u1].

Solve for τ ′
u1τ ′
u1τ ′
u1 to get

[M1 + λI1 −M1 P1 −M1 q′ p]τ ′
u1τ ′
u1τ ′
u1 = ε′1ε

′
1ε
′
1 + M1 q′ τ ′

oτ
′
oτ
′
o

or
[λI1 + B1 −M1 Q1 R1]τ ′

u1τ ′
u1τ ′
u1 = ε′1ε

′
1ε
′
1 +

1
λ
M1 q′.

Identifying the object in brackets with (6.5.13b), we get

λτ ′
u1τ ′
u1τ ′
u1 = Hu1

[
ε′1ε
′
1ε
′
1 +

1
λ
M1q′

]
= Hu1

[
ε′1ε
′
1ε
′
1 +

1
λ
B1 ε′1ε

′
1ε
′
1

]

= Hu1

[
I1 +

1
λ
B1

]
ε′1ε
′
1ε
′
1. (6.5.17b)

Compare this with (4.5.5) for n = 1. Next, for k up to C,

τ ′
ukτ ′
ukτ ′
uk = [Mk + λIk]−1ε′kε′kε′k + [Mk + λIk]−1MkPk τ ′

ukτ ′
ukτ ′
uk

+ [Mk + λIk]−1MkQk[τ ′
uk−1τ ′
uk−1τ ′
uk−1 + Huk−1Rkτ

′
ukτ ′
ukτ ′
uk],

which when solved in the usual fashion, noting (6.5.15a), yields

λτ ′
ukτ ′
ukτ ′
uk = Huk[ε′kε′kε′k + Mk Qk τ ′

uk−1τ ′
uk−1τ ′
uk−1] for 1 < k ≤ C. (6.5.17c)

We merely give the final result for queue lengths above C.

λτ ′
ucτ ′
ucτ ′
uc(n) = Huc(n)[ε′cε

′
cε
′
c + Mc Qc Rc τ ′

ucτ ′
ucτ ′
uc(n− 1)] for n > C. (6.5.17d)

Well, we finally got to the end, so we can now present our summary theorem.
†We have used boldface even though this is a one-dimensional object.

6 M/G/C-Type Systems 409

Theorem 6.5.3: Given a generalized M/ME/C-type queue, the
mean first-passage time vectors for the queue at S1 to grow by 1, and
associated matrices, can be constructed in the following way.

(a) Probability matrices of first passage from n to n+1, Huk,Huc(n),
as defined by Definitions 6.5.5 through 6.5.7 and Equation (6.5.14), are
given by the following.

Hu0 = 1 Q1 = q, R1 = p

[from (6.5.15a)]

Huk = λ[λIk + Bk −MkQkHuk−1Rk]−1
, k = 1, 2, . . . , C,

and from (6.5.15b), with Huc(C) = Huc,

Huc(n) = λ[λIc + Bc −Mc Qc Rc Huc(n− 1)]−1, n > C.

Every Hu is isometric.

(b) The first-passage time vectors, as defined by Definition 6.5.10, are
given by the following [(6.5.17a) and (6.5.17b)].

τ ′
u0τ ′
u0τ ′
u0 =

1
λ

and τ ′
u1τ ′
u1τ ′
u1 =

1
λ
Hu1

[
I1 +

1
λ
B1

]
ε′1ε
′
1ε
′
1

[from (6.5.17c)],

τ ′
ukτ ′
ukτ ′
uk(n) =

1
λ
Huk[ε′kε′kε′k + MkQk τ ′

uk−1τ ′
uk−1τ ′
uk−1], 1 < k ≤ C,

and [from (6.5.17d)], with τ ′
ucτ ′
ucτ ′
uc(C) = τ ′

ucτ ′
ucτ ′
uc,

τ ′
ucτ ′
ucτ ′
uc(n) =

1
λ
Hc(n)[ε′cε

′
cε
′
c + Mc Qc Rc τ ′

ucτ ′
ucτ ′
uc(n− 1)], n > C.

(c) The probability vectors of first passage from 0 to n, as defined in
Definition 6.5.9, are given by the following.

pu1 = p

[from (6.5.16)]

pu(k+1) = pukHukRk+1 k = 1, 2, . . . , C − 1,

puc(n+1) = puc(n)Huc(n) n = C, C + 1,

These equations are equally applicable to closed M/ME/C//N loops,
as long as n does not exceed N . �

Remember that these processes include the possibility that the queue could
drop to zero one or more times before rising to the given length.

410 6.5 Transient Generalized M/ME/C Queue

Many things can be calculated from these objects. We enumerate several
types below.

1. Given that S1 is initially empty:
(a) Mean time for the queue to rise by 1:

tu(k) = puk τ ′
ukτ ′
ukτ ′
uk, for 1 ≤ k ≤ C, (6.5.18a)

tu(n) = puc(n)τ ′
ucτ ′
ucτ ′
uc(n), n = C + 1, (6.5.18b)

(b) Mean time for the queue to rise from 0 to n

t(0→ n) =
1
λ

+
n−1∑
j=1

tu(j). (6.5.18c)

2. Given that there are n customers at S1 who initially start up simultaneously
[see discussion surrounding Equations (6.5.2)]:

(a) For k initially less than C, (1 ≤ k < C) mean time for the queue to
rise by 1:

tu(k) = pk τ ′
ukτ ′
ukτ ′
uk, (6.5.19a)

tu(k+1) = pk Huk Rk+1 τ ′
u(k+1)τ ′
u(k+1)τ ′
u(k+1), (6.5.19b)

tu(k+2) = pk Huk Rk+1 Hu(k+1) Rk+2 τ ′
u(k+2)τ ′
u(k+2)τ ′
u(k+2), (6.5.19c)

and so on, as long as k + l ≤ C. After that, continue on without Rk, and use
Hc(n) instead of Huk.

(b) For initial n ≥ C, mean time for the queue to rise by 1:

tu(n) = pc τ ′
ucτ ′
ucτ ′
uc(n), (6.5.20a)

tu(n + 1) = pc Huc(n)τ ′
ucτ ′
ucτ ′
uc(n + 1), (6.5.20b)

tu(n + 2) = pcHuc(n)Huc(n + 1)τ ′
ucτ ′
ucτ ′
uc(n + 2), (6.5.20c)

and so on, taking care not to exceed N if this is a closed loop.
(c) Mean time for the queue to rise from n to n + l + 1;

t(n→ n + l + 1) =
n+l∑
j=n

tu(j). (6.5.20d)

3. Given that the system has been running for a long time (it is in its steady
state), but it is observed that there are n (or k) customers in the queue, the
mean time for the queue to grow thereafter is the same as type 2 above, except
use as initial vectors Equations (6.5.1) instead of the pk vectors of Equations
(6.5.2).

Variation 1, of course, can give us some idea of how long it takes for the
M/ME/C queue to reach its steady-state queue length, which is a reasonable
estimate of how long it might take for such a system to reach its steady state.

Variation 2 is a model of a system that starts up in the morning with n
jobs left over from the night before. Comparison with variation 1 could give
an idea of what the impact is for allowing carryover.

6 M/G/C-Type Systems 411

Variation 3 can give an idea of how bad things might get for the rest of
the day. For instance, the afternoon arrival rate may be different from that
which was used to calculate Equations (6.5.1). Presumably, other variations
and interpretations can be thought up.

6.5.3.2 First Passages for Queue Decrease

What we do here is very similar to that which we did in the preceding section,
with one extra complication (there always is one more). In going up there is
always the natural floor, namely, the queue can never be less than 0. Here,
unfortunately, the top can be anywhere, so we must carry N along in all our
notation. Of course, when we go to the open system, N disappears, but in
reliability theory, one seldom has an infinite number of backups, so the closed
loop is important in its own right. Therefore, in what follows, we are looking
at the M/ME/C//N loop.

Let us start, as usual, with the definition of a first-passage matrix.

Definition 6.5.11
Hdc(n;N) := probability matrix of first passage from n to n−1, where
N ≥ n > C. [Hdc(n;N)]ij is the probability that S1 will be in state
j ∈ Ξc when its queue drops to n − 1 for the first time, given that it
started in state i ∈ Ξc with n customers in the queue (including the C
customers in service). This is a square isometric matrix of dimension
D(C), but it has no inverse. ���

For queue lengths less than, or equal to C we need slightly different ma-
trices, which we define now.

Definition 6.5.12
Hdk(N |C) := probability matrix of first passage from k to k−1, where
C ≥ k > 0. [Hdk(N |C)]ij is the probability that S1 will be in state
j ∈ Ξk−1 when its queue drops to k− 1 for the first time, given that it
started in state i ∈ Ξk with k customers in the queue (all k customers
are in service). This is an isometrix, D(k)×D(k−1)-dimensional matrix
(proven below). ���

In a moment we introduce a set of matrices that are invertible, although
their interpretation is more difficult to grasp than these, but prove to be more
convenient for our purposes. First let us set up the equation for the Hdc

matrices. When all customers are at S1 (refer to Figure 6.5.2), there can be
no arrivals, so

Hdc(N ;N) = QcRc + PcHdc(N ;N),

which yields
Hdc(N ;N) = VcMcQcRc. (6.5.21a)

We already proved that this matrix is isometric in Section 6.5.2. Next, let
us look at any other n greater than C. Figure 6.5.2 shows that now three

412 6.5 Transient Generalized M/ME/C Queue

different types of events can occur, leading to ∗

Hdc(n;N) = (λIc + Mc)−1McQcRc + (λIc + Mc)−1McPcHdc(n;N)

+λ(λIc + Mc)−1Hdc(n + 1;N)Hdc(n;N),

which yields

Hdc(n;N) = [λIc + Bc − λHdc(n + 1;N)]−1 Mc Qc Rc. (6.5.21b)

Figure 6.5.2: Time-dependent state transition diagram for down pro-
cesses. This is applicable to the closed M/ME/C//N queue, where C < N .
There are five different sets of transition types, one each for 0 < n = k <
C, n = C, N − 1 > n > C, n = N − 1, and n = N . n = 0 is only relevant for
up processes.

We can see why the (Hdc) matrices are not invertible from the presence
of the term, QcRc. Let us now define the set of auxiliary matrices suggested
by this equation:

Xc(n;N) := [λIc + Bc − λHdc(n + 1;N)]−1
. (6.5.22a)

Then clearly,
Hdc(n;N) = Xc(n;N)McQcRc. (6.5.22b)

∗Notice the subtle difference between Hdc and its up counterpart in (6.5.15b).

6 M/G/C-Type Systems 413

We add to that the initial definition,

Xc(N ;N) := Vc, (6.5.22c)

and substitute (6.5.22b) back into (6.5.22a) to get for C < n < N ,

Xc(n;N) = [λIc + Bc − λXc(n + 1;N)McQcRc]
−1

. (6.5.22d)

Then (6.5.22c) and (6.5.22d) completely define the (Xc) matrices and
(6.5.22b) gives all the (Hdc)s from N down to C + 1.

When there are exactly C customers at S1, everything is as before, except
that when the queue finally drops, there is no new customer waiting to enter,
so there is no need for Rc. Thus the first-passage equation comes to

Hdc(N |C) = [λIc + Bc − λHdc(C + 1;N)]−1 McQc. (6.5.23a)

This equation is almost identical in form to (6.5.21b), but as already men-
tioned, it is missing Rc. But if we let (6.5.22a) be valid for n = C (up to now
we only made it true down to C + 1), then we have

Hdc(N |C) = Xc(C;N)McQc. (6.5.23b)

With fewer than C customers at S1, a new arrival immediately enters, but
a departure leaves one less customer in service. This leads to the last set of
equations:

Hdk(N |C) = [λIc + Bc − λRk+1Hdk+1(N |C)]−1 McQc. (6.5.23c)

We define our last set of X matrices, starting with

Xc(N |C) := Xc(C;N), (6.5.24a)

and for all other k, 1 ≤ k < C,

Xk(N |C) := [λIc + Bc − λRk+1Xk+1(N |C)Mk+1Qk+1]−1
. (6.5.24b)

This lets us write

Hdk(N |C) := Xk(N |C)McQc 1 ≤ k ≤ C, (6.5.24c)

where we have incorporated (6.5.23b).
STOP! Surely we have seen this all before. Of course, they all look alike,

but exactly alike? In this case they are just like the equations governing the
steady-state matrices. Compare the following sets of equations: (6.5.22c) with
(6.3.6a), (6.5.22d) with (6.3.6c), (6.5.24a) with (6.3.7a), and (6.5.24b) with
(6.3.7b).

Clearly, λXc(n;N) satisfies exactly the same recursive equation as Uc(N−
n), and just as important, with the same initial condition [(6.5.22c) versus
(6.3.6a)]. Therefore, we have discovered that

Xc(n;N) =
1
λ
Uc(N − n) for C ≤ n ≤ N (6.5.25a)

414 6.5 Transient Generalized M/ME/C Queue

and
Xk(N |C) =

1
λ
Uk(N |C) for 1 ≤ k ≤ C. (6.5.25b)

We now have everything we want to know about the Hd matrices.

Lemma 6.5.4: The matrices described in Definitions 6.5.10 and
6.5.11 are isometric and are related to the steady-state matrices by the
following equations.

Hdc(n;N) =
1
λ
Uc(N − n)McQcRc for C < n ≤ N (6.5.26a)

and

Hdk(N |C) =
1
λ
Uk(N |C)MkQk for 1 ≤ k ≤ C. (6.5.26b)

The U matrices are given by Equations (6.3.6) and (6.3.7). �
Proof: The isometric property follows directly from (6.3.4b). QED

We saw something like this in Section 4.5.3, but Hd(n;N) [the C = 1
equivalent to Hdc(n;N)] turned out to be the matrix Q, so the relation equiv-
alent to (6.5.26a) is trivial.

Note from (6.3.9) that it is [(1/λ)Uc(N −n)Bc] that is isometric, and not
Uc(N−n) itself. Indeed, it is this product that has the physical interpretation,
for we can rewrite (6.5.26a) as

Hdc(n;N) =
1
λ
Uc(N − n)BcVcMcQcRc =

[
1
λ
Uc(N − n)Bc

]
YcRc,

where Yc comes from Definition 6.5.2 and (6.5.4a). From their definitions we
see that the [YcRc] portion carries a process to a departure and subsequent
entry without any intervening arrivals. Therefore, the (ij)th component of
the portion in brackets must be the probability that S1 is in state j ∈ Ξc,
with n customers, immediately after the last arrival but before the departure
that finally lowers the queue to n− 1 for the first time (given that the system
was originally in state i ∈ Ξc with n customers). This is a rather complicated
interpretation, but it need not be understood for the development of our
formulas. Perhaps we should have given a special symbol to the isometric
product and used it in our exposition, and maybe we will in the future. From
now on we stop using the X matrices and express the first-passage times in
terms of the already familiar H matrices. First we give the down equivalent
of τ ′

ukτ ′
ukτ ′
uk(n) in Definition 6.5.10.

Definition 6.5.13
[τ ′

dkτ ′
dkτ ′
dk(n; N |C)] := mean first-passage time vector for a generalized

M/ME/C//N loop to go from n to n − 1. The ith component is the
mean time until the queue at S1 (as usual, including the ones in ser-
vice) reaches n− 1 customers for the first time, given that the process

6 M/G/C-Type Systems 415

started in state {i; n}. The conventions are the same as in Definition
6.5.10; namely, k = n for n ≤ C and k = C when n ≥ C. Also,

τ ′
dkτ ′
dkτ ′
dk(N |C) := τ ′

dkτ ′
dkτ ′
dk(k;N |C) for k ≤ C, and

τ ′
dcτ ′
dcτ ′
dc(n;N) := τ ′

ucτ ′
ucτ ′
uc(n;N |C) for C < n ≤ N.

These are D(k)-dimensional column vectors, and they depend on N .���

When all customers are at S1, there are no arrivals, so the mean time to
drop is simply

τ ′
dcτ ′
dcτ ′
dc(N ;N) = Vc ε′cε

′
cε
′
c. (6.5.27a)

Otherwise, we must go down, across, and up, giving

τ ′
dcτ ′
dcτ ′
dc(n;N) = (λIc + Mc)−1 ε′cε

′
cε
′
c + (λIc + Mc)−1 McPc τ ′

dcτ ′
dcτ ′
dc(n; N)

+λ (λIc + Mc)−1 [τ ′
dcτ ′
dcτ ′
dc(n + 1;N) + Hdc(n + 1; N)τ ′

dcτ ′
dcτ ′
dc(n;N)],

which rearranges to yield

[λIc + Mc −McPc − λHdc(n + 1;N)]τ ′
dcτ ′
dcτ ′
dc(n;N) = ε′cε

′
cε
′
c + λτ ′

dcτ ′
dcτ ′
dc(n + 1;N).

Use (6.5.26a) for Hdc(n+1;N) and compare with (6.3.6c) to get for C ≤ n <
N ,

λτ ′
dcτ ′
dcτ ′
dc(n;N) = Uc(N − n)ε′cε

′
cε
′
c + λUc(N − n)τ ′

dcτ ′
dcτ ′
dc(n + 1;N). (6.5.27b)

This equation (as noted) is valid for n = C. There is another expression that
is more useful, which we include in the theorem below.

For k < C we have a somewhat different set of equations.

τ ′
dkτ ′
dkτ ′
dk(N |C) = (λIk + Mk)−1ε′kε

′
kε
′
k + (λIk + Mk)−1Mk Pk τ ′

dkτ ′
dkτ ′
dk(N |C)

+λ(λIk + Mk)−1Rk+1[τ ′
d(k+1)τ ′
d(k+1)τ ′
d(k+1)(N |C) + Hd(k+1)(N |C)τ ′

dkτ ′
dkτ ′
dk(N |C)].

Just as we did above, regroup terms, use (6.5.26b), compare with (6.3.7b),
and get for 1 ≤ k < C,

λτ ′
dkτ ′
dkτ ′
dk(N |C) = Uk(N |C)ε′kε

′
kε
′
k + λUk(N |C)Rk+1 τ ′

d(k+1)τ ′
d(k+1)τ ′
d(k+1)(N |C). (6.5.27c)

The summary theorem now follows.

Theorem 6.5.5: Given a generalized M/ME/C//N loop, the first-
passage matrices and vectors for decreasing length, as given in Defini-
tions 6.5.10 to 6.5.12, satisfy the following formulas.

(a) The first-passage matrices are given by [Equations (6.5.26)]

Hdc(n;N) =
1
λ
Uc(N − n)McQcRc for C ≤ n ≤ N,

Hdk(N |C) =
1
λ
Uk(N |C)MkQk for 1 ≤ k ≤ C.

416 6.5 Transient Generalized M/ME/C Queue

(b) The first-passage vectors are given by [Equations (6.5.27)]

τ ′
dcτ ′
dcτ ′
dc(N ;N) = Vc ε′cε

′
cε
′
c;

for C ≤ n < N ,

τ ′
dcτ ′
dcτ ′
dc(n;N) =

1
λ
Uc(N − n)ε′cε

′
cε
′
c + Uc(N − n)τ ′

dcτ ′
dcτ ′
dc(n + 1;N);

and for 1 ≤ k < C,

τ ′
dkτ ′
dkτ ′
dk(N |C) =

1
λ
Uk(N |C)ε′kε

′
kε
′
k + Uk(N |C)Rk+1 τ ′

dk+1τ ′
dk+1τ ′
dk+1(N |C).

(c) The formula (6.5.27b) can be written in another form. Let l be the
number of customers at S2. Then for 0 < l ≤ N − C,

λτ ′
dcτ ′
dcτ ′
dc(N − l;N) = Uc(l)Kc(C + l − 1)ε′cε

′
cε
′
c

= [Kc(C + l)− Ic]ε′cε
′
cε
′
c (6.5.28a)

or, replacing l with n (where l = N − n)

λτ ′
dcτ ′
dcτ ′
dc(n;N) = Uc(N − n)Kc(N − n + C − 1)ε′cε

′
cε
′
c

= [Kc(N − n + C)− Ic]ε′cε
′
cε
′
c for C ≤ n < N. (6.5.28b)

Kc(n) is the steady-state normalization matrix defined by (6.3.13). The
middle form of both versions is also valid for l = 0 (or n = C). The
right-hand side of (6.5.28a) does not contain N explicitly. Therefore,
τ ′
dcτ ′
dcτ ′
dc(N − l;N) depends only on l, the number of customers at S2. �
Proof: Substitute (6.5.28b) directly into (6.5.27b), and use (6.3.13).
QED

Equations (6.5.28) reduce to (4.5.14a) for C = 1, the result for the gen-
eralized M/ME/1//N loop, except that things change once the queue length
drops below C. After all, Kc(n) is only defined for n ≥ C − 1 . This theorem
is quite interesting, because it lets us find out about transient behavior using
no more information than is needed for the steady-state solution.

What can we do with these? Well, first of all, by definition

pτ ′
d1τ ′
d1τ ′
d1(N |C) = mean busy-period time of a generalized M/ME/C//N system.

For anything else, we require more information. Let us suppose for definiteness
that there are N > C customers at S1, and that the system is in some internal
state represented by pic, the same initial vectors we discussed in Equations
(6.5.1), (6.5.2), and (6.5.16). Then the mean time for the queue to drop by 1
is given by

td(n; 1;N) := picτ
′
dcτ ′
dcτ ′
dc(n;N).

The time it takes to drop by one more is

td(n; 2;N) := picHdc(n;N)τ ′
dcτ ′
dcτ ′
dc(n− 1; N).

6 M/G/C-Type Systems 417

In general, the state the system will be in after the queue has dropped by
l ≥ 1 customers is

pdc(n; l;N) = picHdc(n;N)Hdc(n− 1;N) · · ·Hdc(n− l + 1;N), (6.5.29a)

and if we let, by definition,

pdc(n; 0;N) := pic, (6.5.29b)

then

pdc(n; l + 1;N) := pdc(n; l;N)Hdc(n− l;N) for l > 0. (6.5.29c)

This is (more or less) the down equivalent of Definition 6.5.9, except that we
can start with any length and in any initial state. We do not have an official
name for it, so we do not give it an official definition designation. In any case,
the mean time to drop from l to l − 1, given the constraints above, is

td(n; l + 1;N) = pdc(n; l;N)τ ′
dcτ ′
dcτ ′
dc(n− l;N). (6.5.30)

In all of the above, if the queue should drop below C, use (6.5.26b) instead of
(6.5.26a). That is, if n− l < C, then replace dc with dk.

Remember, these objects are the times to drop by one more customer. The
total time it takes to drop from n to n− l is the sum,

td(n→ n− l;N) :=
l−1∑
j=0

td(n; j;N). (6.5.31)

Now, this object has a name, several names, in fact. If, for instance, we have
l = n, we have the n-busy period , starting with initial condition pic. Poten-
tially, the most important interpretation of this is the MTTF, with backup
and repair. It is important enough to give it a definition.

6.5.3.3 MTTF with Backup and Repair

An important subject for study in reliability theory concerns the time until
a failure occurs. We have already found a relevant formula concerning this
subject, so we discuss it here.

Definition 6.5.14
MTTF for a C-parallel, (N−C)-backup system, with exponential repair
times is an M/ME/C//N loop with the initial state given by (6.5.2) for
k = N . The system starts with N brand new identical devices. Their
individual failure times are generated by 〈〈〈p , B 〉〉〉. C devices are started
simultaneously and the rest are kept in cold backup. When one device
breaks, it is immediately replaced by one of the backups and is sent
to a single “repairman” who takes exponential time (with mean 1/λ)
to pick up, repair, and return a device that is as good as new. Failure
occurs when the number of devices that are functional (including the
number that are running) drops to a prespecified number, say, φ ≥ 0.
The mean time for this process is given by td(N → φ;N). ���

418 6.5 Transient Generalized M/ME/C Queue

Consider some of the variations we can perform.
1. The system has been running for a long time, and presently there are

n functional devices (and N − n devices in repair). The initial vector is given
by (6.5.1) for k = n, and MTTF is given by td(n→ φ;N).

2. We are starting with new devices, but only n are available at the mo-
ment, with N − n still awaiting single delivery at rate λ. If a device fails, an
order is made for a new one. The initial vector is given by (6.5.2) for k = n,
and MTTF is td(n→ φ;N).

3. The system was originally as given in Definition 6.5.13, but two devices
have already failed and one has been repaired. The initial vector is given by
(assuming that N ≥ C)

pic = pcHdc(N ;N)Hdc(N − 1;N)Huc(N − 2),

and MTTF is given by td(N − 1→ φ;N). Notice the up first-passage matrix.
The last example can be very useful for dynamically updating the

MTTF. Every time a device fails, postmultiply the initial vector by the appro-
priate Hdk to create an updated initial vector for the MTTF starting now.
Similarly, every time a device is returned from repair, postmultiply by the
appropriate Huk. The MTTFs change accordingly. By virtue of the fact that
the H matrices do not commute, we see that the sequence “two failures fol-
lowed by one repair” gives different results from “one failure followed by one
repair and then another failure.” Dynamic updating can help us even if we
do not know the initial state. Pick any initial vector; then update it regularly.
Eventually, your poor guess will be forgotten, and the updated vector will
converge to the correct updated initial vector.

We could go on indefinitely enumerating systems that can be described
this way, but we do only one more analysis before giving up on this chapter.
Consider what happens when N → ∞. Ah yes, of course, the open system.
We have actually done this already, because the Hdk matrices are known in
terms of the Uk matrices. Remember, though, that the limit exists only if ρc

given by (6.5.10b) is less than 1. From (6.4.1),

Hdc := lim
N→∞

Hdc(n;N) :=
1
λ
UcMcQcRc for n ≥ C (6.5.32a)

and

Hdk(∞|C) := lim
N→∞

Hdk(N |C) =
1
λ
Uk(∞|C)McQc. (6.5.32b)

So we do not have to cascade the Hd matrices down from infinity to find out
what they are. In fact, they are all the same for n ≥ C. All we have to do is
solve for Uc in (6.4.1). Similarly, we can find the first-passage times,

τ ′
dcτ ′
dcτ ′
dc := lim

N→∞
τ ′
dcτ ′
dcτ ′
dc(n;N) =

1
λ

[Kc(∞)− Ic]ε′cε
′
cε
′
c.

But from its recursive definition, (6.3.13b), Kc(∞) can be shown to be

Kc := Kc(∞) = [Ic −Uc]−1 (6.5.33)

6 M/G/C-Type Systems 419

[compare with (4.2.2a)]. Therefore,

τ ′
dcτ ′
dcτ ′
dc :=

1
λ
Uc[Ic −Uc]−1ε′cε

′
cε
′
c. (6.5.34)

How interesting (we think lots of things are interesting). These vectors are
independent of n, just like the M/ME/1 queue in (4.5.16a). Some thought
would lead us to believe that this is reasonable. Does this mean that the time
for the queue to drop by n is simply n multiplied by the time it takes to
drop by 1, just as it is for the M/G/1 queue, based on (4.5.16b)? The answer
is NO, because the departing customer leaves the system in a different state
from that which it was in at the previous departure. Because of (6.5.32a),
(6.5.29a) still holds true, and becomes

pdc(n; l) := lim
N→∞

pdc(n; l; N) = picHl
dc. (6.5.35a)

Also,

td(n; l + 1) := lim
N→∞

td(n; l + 1;N) = pdc(n− l)τ ′
dcτ ′
dcτ ′
dc = picHl

dcτ
′
dcτ ′
dcτ ′
dc. (6.5.35b)

Each step takes a different amount of time from the previous one, but they
are independent of n as long as the queue length at S1 (including those in
service) is greater than C. That is,

pdc(n1; l) = pdc(n2; l) ∀ n1, n2, such that ni − l > C.

There are many useful applications of this set of equations. Here are some
that come to mind. Let q̄ be the mean number of customers at S1 in a steady-
state system.

1. A computer system has been in operation for a long time, when suddenly
nb jobs arrive in a bunch, while the Poisson arrivals continue at the same rate.
How long will it take before the system settles back down to its steady state?
Use (6.5.1) as the initial vector, with k = q̄, but use n for n− l+1 in (6.5.35b).
We call this the rush-hour traffic approximation.

2. A computer system has been running for a long time, with an arrival
rate of λ1. After 5 P.M., the arrival rate drops to λ2. How long will it take
to reach its new steady state? When can a part of the subsystem be taken
offline (reduce C)?

3. The system has been down for a while, and when it starts up there are
n > q̄ jobs in the queue. How long will it take for the system to settle down?

6.6 Conclusions

We have seen that there are innumerable problems that can be explored using
M/ME/C queues. They are more general than single-class Jackson networks.
In fact, the formulas as derived here apply to more general systems than the
ones we called “generalized M/ME/C//N systems.” The equations depend on
the defined properties of the input matrices (i.e., Mk, Qk, Rk, and Pk) and

420 6.6 Conclusions

not how they were constructed. Although we did describe how to construct
them, we did not make use of those properties. In other words, almost any
QBD process may be analyzed in this way. We have seen that our formalism
covers a larger class of problems than we had intended. Therefore we won-
der whether the matrices can be given more detailed properties that can be
incorporated to yield more specific results.

Most of the material laid out here remains unexplored, even though it is
now computationally manageable. It is hoped that this chapter, in particular,
will help stimulate such activity.

The two groups who this author feels would be most interested in this
material are researchers in computer performance and systems reliability. Yet
their interests tend to be at opposite ends of the ρ scale. That is, performance
modelers usually assume that the system can handle the load (ρc < 1). Oth-
erwise, throw away the system. Therefore, they are interested in steady-state
solutions (probably overly so), and even open systems, particularly because
systems with millions of customers now exist (e.g., packets on the internet).
On the other hand, reliability researchers usually assume that it takes less
time to fix an object than it took to break it (ρc > 1). Therefore, except
for questions of inventory , open systems are uninteresting. Furthermore, the
steady state tells us nothing about MTTF. Yet the underlying formalism is
identical for both groups. So it is important that the queueing theory prac-
titioners in each camp understand clearly the difference of their goals when
they communicate with each other.

Chapter 7
G/G/1/ /N LOOP

Those who cannot remember the past are condemned to repeat it.
George Santayana

We are finally facing up to giving structure to S2. In many ways, this is the
hardest queueing system for which analytic results are known. The mathe-
matics required at present to describe such systems is too complicated for one
to get reasonable insight from the formulas themselves. Furthermore, we must
now specify two nonexponential functions, finding that the system behavior
depends not merely on ρ, the ratio of their mean service times, and their
second moments, or variances, but to a great extent on the parameter C(x),
which is the probability that the customer in service at S1 will finish before
the customer at S2. This parameter, in turn, depends on x, the difference
between the times when the two customers started service.

As long as S2 was exponentially distributed, C(x) (for x ≥ 0) reduced
to the Laplace transform of b1(t), and everything came out to be reasonably
manageable, as described in previous chapters. For the G/G/1//N queue,
things get messy (messier?). In matrix representations, this shows up in the
difficulty one has in describing two different servers that are simultaneously
active. This involves taking the direct product of two independent vector
spaces. Presently, we discuss one such way to do this, the Kronecker product,
and then go on to find the steady-state solution of the ME/ME/1/ /N loop.
We do not continue on to the open queue, because we have not found how to
get an explicit solution for that case. We do, however, discuss how this might
be done eventually. In the final section we discuss some transient behavior,
by looking at the mean time to failure for a system with small N .

This material is taken in large part from the PhD thesis by Appie van de
Liefvoort [Liefvoort82], most of which was also published in [Lief-Lip86].
But first we look at C(x ≥ 0), without relying on any direct-product repre-
sentation.

7.1 Basis-Free Expression for PPPr[X1 < X2]

Let us consider two subsystems, Si, i = 1, 2, each represented by 〈〈〈pi , Bi 〉〉〉
with dimension mi. Let Xi be the random variables for the service times of
the two servers. Now suppose that S2 started service x units of time before

L. Lipsky, Queueing Theory, DOI 10.1007/978-0-387-49706-8 7, 421
c© Springer Science+Business Media, LLC 2009

422 7.1 Basis-Free Expression for PPPr[X1 < X2]

S1, but has not finished when S1 begins. Then C(x) is defined to be the
probability that S1 will finish before S2. That is,

C(x) = PPPr[X1 < X2 + x] (7.1.1a)

From elementary probability theory we can write, for x ≥ 0,

C(x) =

∫∞
o

R2(x + t) b1(t) dt

R2(x)
. (7.1.1b)

We now naively try to find an operator expression for C(x), without first
explicitly defining what the product of two operators from different spaces
looks like, component by component. We do know, however, that because B1

operates only on vectors describing S1, and B2 operates only on vectors de-
scribing S2, they cannot have any affect on each other. After all, S1 and S2 are
completely independent of each other (i.e., what happens in one subsystem
cannot directly affect what happens in the other). We thus assert the inde-
pendence principle , which states: “all operations on S1 vectors commute
with all operations on S2 vectors.” In particular, this means that

B1B2 = B2B1, p1p2 = p2p1, ε′1ε
′
2 = ε′2ε

′
1ε′1ε

′
2 = ε′2ε

′
1ε′1ε

′
2 = ε′2ε

′
1,

and so on. We refer to the vector space made up of all linear combinations of
the vectors that describe the internal state of Si as space i , or i-space.

Before going on, we mention that the behavior of customers in S1 and
that of customers in S2 eventually becomes correlated to each other as the
two subsystems exchange customers, despite the independence principle. We
show later that the exchange of customers requires that operators from the
different spaces be added together, and through these, the commutativity
property is lost. For instance, let Xi and Yi be operators on vectors in space
i. Then, of course, X1X2 = X2X1, X1Y2 = Y2X1, and so on. But suppose
that Yi does not commute with Xi. Then the operator

Z := Y1 + X1 + Y2 + X2

does not commute with any of them.
Let us replace Ri(·) and bi(·) in (7.1.1b) with their matrix equivalents,

and then see what happens.

p2 [exp(−xB2)] ε′2ε
′
2ε
′
2 C(x)

=
∫ ∞

o

p2 [exp{−(x + t)B2}] ε′2p1ε′2p1ε′2p1 [B1 exp(−tB1)] ε1ε1ε1 dt.

Next recognize that exp[−(x + t)B2] = exp(−xB2) exp(−tB2), and apply the
commutativity rule as many times as necessary to get

p2 [exp(−xB2)] ε′2ε
′
2ε
′
2C(x)

= p1p2B1 exp(−xB2)
∫ ∞

o

[exp(−tB2) exp(−tB1)dt] ε1ε1ε1ε′2ε
′
2ε
′
2.

7 G/G/1/ /N Loop 423

Given that B1 and B2 commute, we have

exp[−t(B1 + B2)] = exp(−tB1) exp(−tB2),

so
p2 [exp(−xB2)] ε′2ε

′
2ε
′
2C(x)

= p1p2B1 exp(−xB2)
[∫ ∞

o

exp[−t(B1 + B2)]dt

]
ε′1ε
′
1ε
′
1ε

′
2ε
′
2ε
′
2

= p1 p2

[
exp(−xB2)B1(B1 + B2)−1

]
ε′1 ε′2ε′1 ε′2ε′1 ε′2.

We have made use of the fact that for any invertible matrix,∫ ∞

o

exp(−tX) dt = X−1.

Last, define the following vectors (without asking until the next section
what their components look like, or even their dimensions),

p := p1 p2 and ε′ε′ε′ := ε′1ε
′
1ε
′
1 ε′2ε

′
2ε
′
2;

then the original definition of Ψ is the same as it was before; namely

Ψ [X] = p [X] ε′ε′ε′ = p1p2 [X] ε′1ε
′
2ε′1ε
′
2ε′1ε
′
2, (7.1.2a)

where X can be anything like B1, B2, B1B2, B1 + B2, or any combination
of such things. For instance,

Ψ [B1] = p1p2 [B1]ε′1 ε′2ε′1 ε′2ε′1 ε′2 = p1 [B1] ε′1ε
′
1ε
′
1 p2 ε′2ε

′
2ε
′
2 = p1 [B1]ε′1ε

′
1ε
′
1 (7.1.2b)

(just as before),

Ψ [B1B2] = p1 [B1]ε′1ε
′
1ε
′
1 p2 [B2] ε′2ε

′
2ε
′
2 = Ψ [B1] Ψ [B2] , (7.1.2c)

and
Ψ [B1 + B2] = Ψ [B1] + Ψ [B2] . (7.1.2d)

Then we can write (remembering that Vi is still Bi
−1)

C(x) =
Ψ
[
exp(−xB2)(I + V1B2)−1

]
Ψ [exp(−xB2)]

. (7.1.3a)

In particular, the probability that the customer in S1 will finish before the
one in S2, given that they started at the same time, is

C(0) =
∫ ∞

o

R2(t) b1(t) dt = Ψ
[
B1(B1 + B2)−1

]

= Ψ
[
(I + V1B2)−1

]
. (7.1.3b)

Note that when S2 is exponential (i.e., one-dimensional), B2 = λ and C(0) =
Ψ
[
(I + λV1)−1

]
, which from (3.1.10) and Theorem 3.1.1 is indeed the Laplace

424 7.2 Direct Products of Vector Spaces

transform, [B∗
1(λ)] of b1(x), as stated in the second paragraph of this chapter.

Some authors have used the symbolic notation for C(0) in general,

C(0) = B∗
1(B2),

although it is not clear what it means, except in terms of (7.1.3b). The reader
should be wary of this notation, because different authors assign different
meanings to the same expression.

Now, you are dying to ask, “What can (B1 + B2) [or (I + V1B2)] mean?
How can one add two matrices from two different spaces together? After all,
they may not even have the same dimensions. Why, that is like adding apples
and oranges!” (and indeed it is). We can still delay giving the full answer if we
avoid having to use (B1 + B2) directly. For instance, we can formally expand
the expression for C(0) in a Maclaurin series, as follows.

C(0) = Ψ

[
I +

∞∑
k=1

(−1)k V1
k B2

k

]
= 1 +

∞∑
k=1

(−1)k Ψ
[
V1

k
]

Ψ
[
B2

k
]
.

[Remember that if two operators, A and B, commute, then (AB)k = Ak Bk.]
We know what Ψ

[
V1

k
]

and Ψ
[
B2

k
]

are from (3.1.8b) and (3.1.9). Therefore,
if the series converges, we can write

C(0) =
∞∑

k=o

EEE[Xk
1]

k!
R

(k)
2 (0). (7.1.3c)

We could get this expression directly from the integral form for C(0) in
(7.1.3b), but still, it does show that the matrix forms in that equation have
real meaning. The power of our formalism is utilized only when we can use
(B1 + B2)−1 directly. So, without further delay, we finally show how this is
done.

7.2 Direct Products of Vector Spaces

Equations involving matrices that operate on vectors in different spaces are
not uncommon, although they are usually restricted to combinations of square
matrices of order m with matrices of order 1, the scalars. In this case, no
problems arise, given that there is a natural embedding of the scalars into
the matrices of order m: The scalars are isomorphic to the diagonal matrices
whose nonzero elements are all equal. Because of this embedding, one does not
hesitate to write a = a · I, even though this equality does not make any sense
technically. In this chapter we are dealing with two sets of matrices of order
greater than 1. Before equations containing these objects can be evaluated, the
matrices must be replaced by their images under an embedding into a direct-
product space, much as the scalar a is replaced by a · I before the expression
A + a · I can be evaluated.

7 G/G/1/ /N Loop 425

7.2.1 Kronecker Products

The Kronecker product is one way to represent the direct product space
from combining two disjoint operator spaces. (For a standard exposition of
the subject see e.g., [Graham81].) In particular, if K1 is an m1 × n1 matrix
operating on objects in space 1, and K2 is an m2 × n2 matrix of space 2,
the Kronecker product of K1 and K2, denoted by K1 ⊗ K2, is the matrix
of size (m1m2)× (n1n2) that is obtained by multiplying each element of K1

[designated as (K1)ij] by the full matrix, K2. Observe that K1 ⊗K2 can be
regarded as an m1×n1 matrix whose elements are themselves matrices of size
m2 × n2. For instance, let K1 be 2× 3; then

K := K1 ⊗K2 =
[

(K1)11K2 (K1)12K2 (K1)13K2

(K1)21K2 (K1)22K2 (K1)23K2

]
. (7.2.1)

Note that the Kronecker product is neither commutative nor symmetric.
That is, K1

⊗
K2
= K2

⊗
K1, although the two representations are equiva-

lent. What we are doing, in essence, is creating a supermatrix K, with elements
Kkl, where k and l are themselves ordered pairs. That is,

k = (k1, k2) ∈ {(k1, k2)| k1 ∈ Ξ, k2 ∈ Ξ2},

where Ξi is the set of internal states of Si. In order to write down K in a
rectangular array, it is necessary to give a linear ordering to the pairs (k1, k2).
Equation (7.2.1) implies one such ordering; K̄ := K2 ⊗ K1 would give a
different ordering. K and K̄ are the same size and have the same elements, but
they are arranged differently. With this definition, the following multiplication
rule is valid. Let Ki and Li be any two arrays in space i for which Ki Li is
defined; then

KL = [K1 ⊗K2] · [L1 ⊗ L2] = K1L1 ⊗K2L2. (7.2.2)

Note that KL = LK if and only if K1 L1 = L1 K1 and K2 L2 = L2 K2.
To keep our ordering of elements consistent, we adhere to the following

conventions. What we must do is embed the row vectors, column vectors, and
square matrices of each space (e.g., pi,Bi, and ε′ε′ε′) into the product space. As
implied by the nonequality of K and K̄, this cannot be done in a symmetric
manner. We use the single symbol, ·̂ (called a caret or hat), to designate this
mapping. Thus

Â1 := A1 ⊗ I2

Â2 := I1 ⊗A2,

where Ii is the identity matrix of dimensions mi ×mi, and Ai is any matrix
of that dimension. Both Â1 and Â2 are of dimension (m1m2)× (m1m2). The
subscripts 1 or 2 on all matrices and vectors denote the space they come from,
even after the embedding. Matrices without any subscript are assumed to be
in the product space already. The special matrix

I := I1 ⊗ I2

426 7.2 Direct Products of Vector Spaces

is the identity matrix of the product space. From (7.2.2) we have the nice
property that

Â1 · Â2 = A1 ⊗A2 = Â2 · Â1.

This is just the property we needed to satisfy our independence principle.
The embedded matrices commute, even though the Kronecker product of the
two matrices does not. We also can see that the hat and inverse operators
commute. Let R1 := A−1

1 ; then

R̂1 = R1 ⊗ I2 = A1
−1 ⊗ I2 = (A1 ⊗ I2)−1 = (Â1)−1.

Our next project is to embed the various vectors into the product space. Let
ai be any row vector in space i, and b′

i be any column vector. Then

â1 := a1 ⊗ I2, b̂′
1 := b′

1 ⊗ I2, (7.2.3a)

and
â2 := I1 ⊗ a2, b̂′

2 := I1 ⊗ b′
2. (7.2.3b)

This seems simple enough, but these objects are not vectors in the product
space. They are, in fact, rectangular matrices of the following dimensions (read
“dimensions of ·” for “Dim [·]”):

Dim[â1] = (m2)× (m1m2),

Dim[b̂′
1] = (m1m2)× (m2),

Dim[â2] = (m1)× (m1m2),

and
Dim[b̂′

2] = (m1m2)× (m1).

We know that the simple dot product a2 b′
2 is a scalar; call it c. But

â2 b̂′
2 = [I1 ⊗ a2] · [I1 ⊗ b′

2] = I1 I1 ⊗ a2 b′
2 = cI1 ⊗ 1 = cI1. (7.2.3c)

What, then, are the appropriate vectors for the product space? Just as we
found that the Kronecker product of two square matrices is a square matrix,
we can see that the Kronecker product of two row vectors is a row vector with
(m1m2) components (i.e., a1 ⊗ a2 is a row vector), and similarly for column
vectors. In particular, we define the two special vectors

p := p1 ⊗ p2 (7.2.4a)

and
ε′ε′ε′ := ε′1ε

′
1ε
′
1 ⊗ ε′2ε

′
2ε
′
2. (7.2.4b)

Yes, ε′ε′ε′ is an (m1m2)-dimensional column vector of all 1’s. Also,

p · ε′ε′ε′ = [p1 ⊗ p2] · [ε′1ε′1ε′1 ⊗ ε′2ε
′
2ε
′
2] = p1 ε′1ε

′
1ε
′
1 ⊗ p2 ε′2ε

′
2ε
′
2 = 1⊗ 1 = 1. (7.2.4c)

Well, strictly speaking, 1 ⊗ 1 is not exactly the same as “1,” but they have
the same effect on everything. After all, what is a 1 by 1 matrix whose only
element is 1?

7 G/G/1/ /N Loop 427

The embedded vectors âi and b̂′
i are needed, but we must be careful how

they are used. For instance,
p̂1 · p̂2
= p.

In fact, it is not defined, because the object I2 p2 has no meaning. What we
must use, instead, is

p = p1 p̂2 = p2 p̂1.

In general, we have the following lemma.

Lemma 7.2.1: Let ai, b′
i, and Ai be objects from space i (i = 1, 2).

Then the following are all vectors in the product space.

Row vectors:†

a1 â2 = a2 â1 = a1 ⊗ a2
= a2 ⊗ a1;

a2 â1 Â2 = a1 â2 Â2 = a2 A2 â1;

a1 A1 â2 = a1 â2 Â1 = a2 â1 Â1.

Column vectors:†

b̂′
1 b′

2 = b̂′
2 b′

1 = b′
1 ⊗ b′

2
= b′
2 ⊗ b′

1;

b̂′
1 A2 b′

2 = Â2 b̂′
1 b′

2 = Â2 b̂′
2 b′

1;

Â1 b̂′
2 b′

1 = b̂′
2 A1 b′

1 = Â1 b̂′
1 b′

2.

Mixed vectors:
â1 · b̂′

1 = [a1 · b′
1] I2

â2 · b̂′
2 = [a2 · b′

2] I1,

where [ai · bi] is a scalar. The first and third sets of these equations
come close to satisfying our commutativity property, so with some
care we can assume that our independence principle applies. �

7.2.2 Ψ Projections onto Subspaces

We next deal with projections, or deflations. Here we project or deflate
a square matrix in the product space to one in space i. We already deflated
matrices to scalars by use of the Ψ [·] operators. We generalize that here.
First define (or rather define again)

Ψ [X] := pX ε′ε′ε′

where X is any square matrix in the product space and p and ε′ε′ε′ are given by
(7.2.4). This is clearly a scalar, with the same properties that we wanted it to

†For embedded row vectors, the hatted object must be on the right, whereas for embed-
ded column vectors, the hatted object must be on the left.

428 7.2 Direct Products of Vector Spaces

have in (7.1.2a). The two new projections are those that deflate X to space i.
Define the following operations on any X.

Ψ2 [X] := p̂1 [X] ε̂′1̂ε
′
1̂ε
′
1, (7.2.5a)

Ψ1 [X] := p̂2 [X] ε̂′2̂ε
′
2̂ε
′
2. (7.2.5b)

Note the apparent mismatch between the subscripts on Ψi and on the vectors.
This is correct, for Ψ2 [X] is a matrix in space 2. In a sense, the vectors p1

and ε′1ε
′
1ε
′
1 have deflated the dependence of X on space 1 to a scalar. This is

quite clear if X is itself an embedding of an operator in space 2. Suppose that
X = X̂2 = I1 ⊗X2. Then

Ψ2 [X] = p̂1 [I1 ⊗X2] ε̂′1̂ε
′
1̂ε
′
1 = (p1 ⊗ I2) · [I1 ⊗X2] · (ε′1ε′1ε′1 ⊗ I2)

=
[
p1I1 ε′1ε

′
1ε
′
1

]⊗ (I2X2I2) = 1⊗X2 = X2.

Thus we see that the projections Ψi [X] are inverses of the embeddings X̂i,
in an operator sense, and in fact satisfy the idempotent properties,

Ψ̂i

[
Ψ̂i [X]

]
= Ψ̂i [X] , (7.2.5c)

which can be proven after some effort by direct substitution. The most im-
portant single property of projection operators is that they are idempotent.
That is, successive operations yield the same result, which indeed is shown
by (7.2.5c). We look further at Ψ1 [X], with the intention of reducing it to a
scalar. Then

p1Ψ1 [X] ε′1 = p1ε′1 = p1ε′1 = p1p̂2 [X] ε̂′2̂ε
′
2̂ε
′
2ε

′
1ε
′
1ε
′
1 = p [X] ε′ε′ε′ = Ψ [X] . (7.2.6a)

Similarly,
p2Ψ2 [X] ε′2ε

′
2ε
′
2 = Ψ [X] . (7.2.6b)

Thus the order in which one deflates X is immaterial. Now, we could have
written Ψ2 [Ψ1 [X]] = Ψ1 [Ψ2 [X]], but the outer Ψ2 (or Ψ1) implies that this
is an object in 2-space (or 1-space), when in fact it is a scalar. Therefore, we
use the notation

Ψ [Ψ1 [X]] = Ψ [Ψ2 [X]] = Ψ [X] , (7.2.6c)

because it unambiguously says that whatever is inside the brackets is reduced
to a scalar.

Before going on to the ME/ME/1/ /N queue, we conclude this section
with three important lemmas.

Lemma 7.2.2: [Eigenvalues and eigenvectors of (A1 ⊗ B2)
and (Â1 + B̂2)]. Let

α1, α2, . . . , αm1

be the eigenvalues of A1, with corresponding left eigenvectors

a1, a2, . . . , am1 .

7 G/G/1/ /N Loop 429

Furthermore, let
β1, β2, . . . , βm2

be the eigenvalues of B2, with corresponding left eigenvectors

b1, b2, . . . , bm2 .

Then the eigenvalues of A1⊗B2 (= Â1B̂2) are the (m1 ·m2) products,

αk βl

(i.e., any eigenvalue of A1 times any eigenvalue of B2 is an eigenvalue
of their Kronecker product). The corresponding left eigenvector is

ak ⊗ bl.

Similarly, the eigenvalues of Â1 + B̂2 are the (m1 ·m2) sums,

αk + βl,

with the same eigenvector, ak⊗bl. The right eigenvectors are similarly
constructed from the right eigenvectors of Â1 and B̂2. �

We do not make any use of this lemma in this book, but it may be significant
in future research, perhaps in conjunction with the next lemma.

Lemma 7.2.3: Remember that Qi = ε′i piε′i piε′i pi. Thus

Q̂1 = [ε′1p1ε′1p1ε′1p1]⊗ I2 = [ε′1ε
′
1ε
′
1 ⊗ I2] · [p1 ⊗ I2] = ε̂′1 p̂1ε̂′1 p̂1ε̂′1 p̂1

and
Q̂2 = I1 ⊗ [ε′2p2ε′2p2ε′2p2] = ε̂′2 p̂2ε̂′2 p̂2ε̂′2 p̂2.

The product space Q is idempotent [i.e., Q2 = Q] and of rank 1,‡ and
satisfies the following:

Q := ε′ pε′ pε′ p = [ε′1ε
′
1ε
′
1 ⊗ ε′2ε

′
2ε
′
2] · [p1 ⊗ p2] = ε′1ε

′
1ε
′
1 p1 ⊗ ε′2ε

′
2ε
′
2 p2 = Q1 ⊗Q2 = Q̂1 Q̂2.

Both Q̂1 and Q̂2 are also idempotent but they are not of rank 1. In-
stead, Q̂1 is of rank m2, and Q̂2 is of rank m1. Furthermore, there
exist m2 (left and right) eigenvectors of Q̂1 with eigenvalue 1, and
m2(m1 − 1) (left and right) eigenvectors with eigenvalue 0. Further-
more, the matrix (I− Q̂1) is also idempotent, with rank m2(m1 − 1),
satisfying the null or orthogonality equation,

(I− Q̂1)Q̂1 = O,

‡Recall that the rank of a finite dimensional matrix is equal to the number of its nonzero
eigenvalues. Q has one eigenvalue equal to 1, and all the rest are equal to 0; thus it is of
rank 1.

430 7.3 Steady-State ME/ME/1/ /N Loop

with an identical result for Q̂2. In fact, every idempotent matrix sat-
isfies the null equation. It follows directly that the following are true:

Q̂1 ε̂′1̂ε
′
1̂ε
′
1 = ε̂′1̂ε

′
1̂ε
′
1, Q̂1 ε′ε′ε′ = ε′ε′ε′, p̂1 Q̂1 = p̂1, p Q̂1 = p.

Recall that ε̂′1̂ε
′
1̂ε
′
1 is not a vector, but the first of the equations above

tells us that each of its m2 columns is a right eigenvector of Q̂1 with
eigenvalue 1. Given that Q̂1 is of rank m2, there are no other unit
eigenvectors. The equivalent can be said of the m2 rows of p̂1. The
duals of all these statements are valid for Q̂2. �

Also, from (7.2.3c) we know that p̂1 ε̂′1̂ε
′
1̂ε
′
1 = I2 and p̂2 ε̂′2̂ε

′
2̂ε
′
2 = I1.

Lemma 7.2.4: Let F and G be any matrices in the product space,
and let Ψ2 [I−GF] be nonsingular. Then the matrix I− FQ̂1G is
nonsingular, and its inverse is

(I− FQ̂1G)−1 = I + F
(
Ψ̂2 [I−GF]

)−1

Q̂1G. (7.2.7)

Interchanging the indices 1 and 2 gives the dual result. We have used
the notation

Ψ̂2 [X] := I1 ⊗Ψ2 [X] .

The proof, although tedious, is by direct multiplication. �

Note that this lemma is a direct generalization of Lemma 4.2.1, and Equations
(4.2.2).

Before going on, the reader should be sure that the material of this section
is fairly familiar. However, a specific example of embedded matrices is deferred
until we have the explicit solution for the ME/ME/1/ /N loop. Perhaps the
best strategy would be to read everything, up through the example, as best
one can, and then go back to the beginning of this section.

7.3 Steady-State ME/ME/1/ /N Loop

We have set up a rather elaborate mathematical apparatus and present a con-
siderable number of formulas before this chapter is completed. If the reader
feels that the concrete results we give appear small in comparison, be encour-
aged. We are presenting more formulas than necessary in the hope that they
will help some reader to discover further significant results. We touch on this
at the end of the chapter.

7.3.1 Balance Equations

Let us consider the usual two-server loop as given in Figure 7.3.1. Each sub-
system Si, i = 1, 2, can only have one active customer at a time, and the

7 G/G/1/ /N Loop 431

queueing discipline is FCFS. Both S1 and S2 are nonexponential and rep-
resented by 〈〈〈pi , Bi 〉〉〉, with dimension mi > 1, and with associated objects,
Mi, Vi, ε′iε

′
iε
′
i, Qi, Pi, and q′

i = (Ii − Pi)ε′iε
′
iε
′
i. As before, the diagonal elements

of M1 are denoted by μk (k = 1 to m1), and as a generalization of previous
chapters, the diagonal elements of M2 are denoted by λk (k = 1 to m2). N
is the number of customers in the system, and n is the number at S1 (with
N − n customers at S2). If neither subsystem is empty, we must know where
both of the active customers are to specify the system completely. Let Ξi be
the set of phases associated with Si, where |Ξi| = mi. We extend the notation
further.

Figure 7.3.1: Closed loop of two matrix exponential servers. There are
n customers at S1, and the one being served is at phase k1 ∈ Ξ. N −n customers
are at S2, with the active one being at phase k2 ∈ Ξ2. Thus the system is in state
{k; n; N}, where k = (k1, k2) ∈ Ξ.

Definition 7.3.1
{k; n; N} corresponds to one possible state of an ME/ME/1/ /N loop,
for 0 < n < N . N is the total number of customers in the system, n
is the number of customers at S1, including the one in service, and k
stands for the ordered pair (k1, k2),where ki ∈ Ξi. We say that the
system is in the state {k; n; N}. Ξ := Ξ1⊗Ξ2 := {(k1, k2)|ki ∈ Ξi, i =
1, 2}. Given that only one customer can be active at a time in Si, Ξ
is the set of all internal states of the system as a whole. As long as
neither queue is empty, we can say that the system is in internal state
k ∈ Ξ, or that the active customers are at phases k1 and k2 in their
respective subsystems. ���
Clearly, |Ξ| = (m1 ·m2), but this full space is relevant only if n
= 0 and

n
= N . In those two cases, the state space collapses to Ξ2 or Ξ1, respectively.
With this understanding, we define the steady-state probability vectors.

Definition 7.3.2
[ΠΠΠ(n; N)]k := steady-state probability that there are n (0 < n < N)

432 7.3 Steady-State ME/ME/1/ /N Loop

customers at S1 and N − n customers at S2, where k = (k1, k2) ∈ Ξ
(i.e., the active customer at Si is at phase ki). [ΠΠΠ(n; N)] is an (m1 ·
m2)-dimensional row vector whose components are ordered according
to the Kronecker product convention implied in (7.2.1), which also
corresponds to the lexicographical ordering

ΠΠΠ(n; N) = [Π(1,1),Π(1,2), . . . ,Π(1,m2),Π(2,1), . . . ,Π(m1,m2)].

[We have suppressed the components’ dependence on (n; N).] The as-
sociated scalar probability is denoted by

r(n;N) = ΠΠΠ(n; N)ε′ε′ε′. (7.3.1)

The steady-state probability vector for n = 0 is a vector in 2-space,
because no one is at S1, and is denoted by π2π2π2(0;N). Similarly, the
probability vector for n = N is denoted by π1π1π1(N ;N). For convenience
[in analogy with what we did in (4.1.1)], we define

ΠΠΠ(0; N) := p1 ⊗ π2π2π2(0;N) (7.3.2a)

and
ΠΠΠ(N ; N) := π1π1π1(N ;N)⊗ p2. (7.3.2b)

With these definitions, (7.3.1) is valid for all n. ���

We are now ready to set up the balance equations. The process is a straight-
forward extension of Section 4.1.1. The complications arise in rewriting the
equations as matrix equations of objects in the product space. Recall that
the balance equations are derived from the fact that the sum of probability
rates of arrows entering a given state is equal to the sum of those leaving. The
arrows are shown in Figure 7.3.2 for an arbitrary state {(k, s); n; N}, where
(k, s) ∈ Ξ (i.e., k ∈ Ξ1 and s ∈ Ξ2) and 0 < n < N . The probability rate of
an arrow is, in turn, equal to the steady-state probability that the system is
in the state designated by its tail, times the probability rate of leaving that
state, times the probability that an arrow will occur, given that the system is
in the state of the tail. For instance, the probability rate of the arrow going
from {(k, s); n; N} to {(k, t); n + 1; N} is

[
[ΠΠΠ(n; N)](k,s)

]× [μk + λs]×
[

λs

λs + μk
(q′

2)s(p2)t

]

= [ΠΠΠ(n; N)](k,s)λs(q′
2)s(p2)t.

This particular arrow corresponds to the following process. The customer at
phase s in S2 finishes there and leaves [(q′

2)s], going to S1 and raising its
queue length to n + 1. Simultaneously, the next customer in the queue enters
S2, and goes to phase t, [(p2)t]. There is one arrow for each phase in S2, so
we must sum over t.

When doing the same for the other seven types of arrows, we get the
balance equations for 0 < n < N . Given that the sum of the probabilities of

7 G/G/1/ /N Loop 433

Figure 7.3.2: Steady-state transition diagram for state {(k, s); n; N}
of an ME/ME/1/ /N closed loop. Arrows coming from or going to (k, s)
from above correspond to events that occurred in S1, and arrows below (k, s)
correspond to events that occurred in S2. Vertical lines are internal transitions.
There are no horizontal arrows, because exactly one internal state must change
[transitions such as (P1)kk and (q′

1)k(p1)k are to be visualized as changes]. The
expression next to each arrow is the probability that the corresponding event will
occur, given that the system is in the state designated by the node at the arrow’s
tail. Thus the sum of all arrows leaving node {(k, s); n; N} equals 1. (This includes
the sum over all l ∈ Ξ1 for up arrows, and the sum over all t ∈ Ξ2 for down arrows.)

the four arrows leaving the state sum to 1, the left-hand side of this equation
is simple.

[ΠΠΠ(n; N)](k,s) (λs + μk)

=
∑
l∈Ξ1

[ΠΠΠ(n + 1; N)](l,s) μl(q′
1)l(p1)k +

∑
l∈Ξ1

[ΠΠΠ(n; N)](l,s) μl(P1)lk

+
∑
t∈Ξ2

[ΠΠΠ(n; N)](k,t) λt(P2)ts +
∑
t∈Ξ2

[ΠΠΠ(n− 1; N)](k,t) λt(q′
2)s(p2)t.

Let us clean this up. By our definitions, (M1)kk = μk and (M2)ss = λs.
Therefore, we have μl (P1)lk = [M1 P1]lk and μl (q′

1)l(p1)k = [M1q′
1p1]lk,

with comparable expressions for objects with subscript 2. Next, from (4.1.3a),
we know that

Miq′
i = Bi ε

′
iε
′
iε
′
i and Miq′

i = BiQi.

434 7.3 Steady-State ME/ME/1/ /N Loop

Last, the reader should verify that

μk + λs =
[
M̂1 + M̂2

]
(k,s)(k,s)

.

The last problem is to convert the summations in one space to a sum over
indices in the product space. We can do this here because each term is made
up of some ΠΠΠ times an object that is in only one of the subspaces. For instance,
for any matrix X we can do the following.

∑
l∈Ξ1

Π(l,s)(X1)lk =
∑
l∈Ξ1

∑
t∈Ξ2

Π(l,t)(X1)lk(I2)ts =
∑
l∈Ξ

Πl(X̂1)lk = [ΠΠΠX̂1]k,

where

l := (l, t) ∈ Ξ and k := (k, s) ∈ Ξ.

After some practice, the reader can become comfortable with this. Given that
the balance equations are valid for all k ∈ Ξ, we can put all the pieces together
and write the following vector balance equation.

ΠΠΠ(n; N)
[
M̂1 + M̂2

]

= ΠΠΠ(n+1; N)B̂1Q̂1 +ΠΠΠ(n; N)M̂1P̂1 +ΠΠΠ(n; N)M̂2P̂2 +ΠΠΠ(n− 1; N)B̂2Q̂2.

Now we take all the terms with ΠΠΠ(n; N) to the left side, and recognize that
M̂i − M̂iP̂i = B̂i, and get, finally,

ΠΠΠ(n; N)
[
B̂1 + B̂2

]
= ΠΠΠ(n + 1; N)B̂1Q̂1 + ΠΠΠ(n− 1; N)B̂2Q̂2. (7.3.3a)

With similar but simpler procedures, we can find the balance equations for
n = 0 and n = N . We summarize these equations with the next theorem.

Theorem 7.3.1: The steady-state balance equations for an
ME/ME/1/ /N loop are given by (7.3.3a) for n = 1, 2, . . . , N − 1,
and

ΠΠΠ(0; N)B̂2 = ΠΠΠ(1; N)B̂1Q̂1 (7.3.3b)

and

ΠΠΠ(N ; N)B̂1 = ΠΠΠ(N − 1; N)B̂2Q̂2. (7.3.3c)

Because S1 and S2 now play symmetric roles, these equations are
invariant to the interchanges n⇔ N − n, together with (·)1 ⇔ (·)2. �

Observe the similarity between these equations and the balance equations of
Equations (4.1.3) for the M/ME/1/ /N queue.

7 G/G/1/ /N Loop 435

7.3.2 Steady-State Solution

Setting up the balance equations, even in such an elegant form as given in
Theorem 7.3.1, in no way guarantees that an explicit solution can be found.
As we saw in Chapter 6, often one must be satisfied with a recursive algebraic
solution. In attempting to solve finite difference equations, of which this is an
example, one is almost always denied even a recursive solution, and as with the
solution of differential equations, one must settle for a brute force numerical
solution. We know this much in general: that if by luck, ingenuity, or stroke
of genius one could find a formula that satisfied all the balance equations, it
would be the unique nontrivial solution. Appie van de Liefvoort did just that.
We now present the solution and outline the proof that it is correct.

The formula has not been used very much, and no one knows just which of
the several forms that it can take will ultimately prove to be the most useful.
Thus we present several expressions for the same variables. We start with the
usual set of definitions. We begin with an operator we used in Section 7.1. Let

D :=
[
B̂1 + B̂2

]−1

. (7.3.4)

Recall that this operator is the generator of first-finishing probabilities, and
in simpler days (when one of the B matrices was exponential) was the gen-
erator of the Laplace transform. We next introduce two matrices that look
suspiciously like the A matrix of (4.1.4a) but are not.

S+ := B̂1 + B̂2 − B̂2Q̂1 = D−1
[
I−DB̂2Q̂1

]
, (7.3.5a)

S− := B̂1 + B̂2 − B̂1Q̂2 = D−1
[
I−DB̂1Q̂2

]
=
[
I− B̂1Q̂2D

]
D−1. (7.3.5b)

Note that these matrices cannot be decomposed into a product of matrices
from the two separate spaces. Also, they do not commute with each other if
both S1 and S2 are nontrivial (i.e., have dimension greater than 1). If S2 is
one-dimensional, B̂2 ⇒ λI, Q̂2 ⇒ I, and S− reduces to λI, whereas while
S+ ⇒ λA.

We next collect several formulas that S± satisfy in relation to ε′1ε
′
1ε
′
1 and ε′2ε

′
2ε
′
2.

Lemma 7.3.2: The following relations hold:

S+ ε̂′1̂ε
′
1̂ε
′
1 = B̂1 ε̂′1̂ε

′
1̂ε
′
1 and S− ε̂′2̂ε

′
2̂ε
′
2 = B̂2 ε̂′2̂ε

′
2̂ε
′
2, (7.3.6a)

or equivalently [see (7.2.4b) and Lemma 7.2.3],

S+Q̂1 = B̂1Q̂1 and S−Q̂2 = B̂2Q̂2. (7.3.6b)

We can also see that

S+ε′ε′ε′ = B̂1ε
′ε′ε′ and S−ε′ε′ε′ = B̂2ε

′ε′ε′, (7.3.6c)

436 7.3 Steady-State ME/ME/1/ /N Loop

or equivalently,

S+Q = B̂1Q and S−Q = B̂2Q. (7.3.6d)

The proofs follow directly just by carrying out the algebra. �

Keep in mind that whereas Equations (7.3.6c) are vector equations, Equations
(7.3.6a) are not, because ε′ε′ε′ is a vector in the product space, but ε̂′1̂ε

′
1̂ε
′
1 and ε̂′2̂ε

′
2̂ε
′
2 are

rectangular matrices of dimensions (m1 ·m2) × (m2) and (m1 ·m2) × (m1),
respectively.

Given that Q̂1 commutes with B̂2, and so on, there is an equivalent set
of equations for p̂i, and so on, namely as follows.

Lemma 7.3.3: The following relations hold:

p̂1S+ = p̂1B̂1 and p̂2S− = p̂2B̂2, (7.3.7a)

or equivalently [see (7.2.4a) and Lemma 7.2.3],

Q̂1S+ = Q̂1B̂1 and Q̂2S− = Q̂2B̂2. (7.3.7b)

We can also see that

pS+ = pB̂1 and pS− = pB̂2, (7.3.7c)

or equivalently,

QS+ = QB̂1 and QS− = QB̂2. (7.3.7d)

The proofs are identical to those in Lemma 7.3.2. As in the previous
lemma, Equations (7.3.7c) are vector equations, but Equations (7.3.7a)
are not. �

We need the inverses of S±, which if they exist, we call T±. Therefore, by
Lemma 7.2.4 and (7.3.5a),

T+ : = (S+)−1 :=
(
I−DB̂2Q̂1

)−1

D

=
(
I + DB̂2Q̂1Ψ̂−1

2

[
DB̂1

])
D, (7.3.8a)

where we have used Ψ̂−1
1 [·] ∗ for

(
Ψ̂1 [·]

)−1

. Similarly, we have

T− : = (S−)−1 :=
(
I−DB̂1Q̂2

)−1

D

=
(
I + DB̂1Q̂2Ψ̂−1

1

[
DB̂2

])
D. (7.3.8b)

∗This is as good a place as any to caution the reader that, in general, Ψi

[
F−1

]
does not

equal Ψ−1
i [F].

7 G/G/1/ /N Loop 437

These equations are rather complicated, but it seems clear that T+ and T−

exist as long as Ψ2

[
DB̂1

]
and Ψ1

[
DB̂2

]
are nonsingular. We assume this

to be true. To assume otherwise would end our exploration instantly. We
now introduce the pivotal matrix of this chapter, the one that is the true
generalization of the U in Equations (4.1.4), and the one that provides the
geometric solution to the ME/ME/1/ /N loop. We use the same symbol for
it.

U := T+S− =
[
I−DB̂2Q̂1

]−1 [
I−DB̂1Q̂2

]
. (7.3.9a)

Using (7.3.8a) and (7.3.5b), U can also be expressed as

U =
(
I + DB̂2Q̂1Ψ̂−1

2

[
DB̂1

]) [
I−DB̂1Q̂2

]
. (7.3.9b)

From Equations (7.3.5) and the discussion following them, we see that U
reduces precisely to (4.1.4b) when S2 is one-dimensional, and

U−1 = T−S+ =
[
I−DB̂1Q̂2

]−1 [
I−DB̂2Q̂1

]
(7.3.9c)

reduces to A in (4.1.4a). Actually, another matrix, defined by

R := S−T+ =
[
I− B̂1Q̂2D

] [
I− B̂2Q̂1D

]−1

, (7.3.9d)

could equally be the pivotal matrix.
We need one final set of equations before presenting the major goal of this

chapter, which as usual we precede with a definition:

E := (I− Q̂1)(I− Q̂2) = (I− Q̂2)(I− Q̂1). (7.3.10a)

E is idempotent, with rank (m1−1)·(m2−1). As with all idempotent matrices,
(I−E) is also idempotent, with rank m1 + m2 − 1. Clearly, [m1 + m2 − 1] +
[(m1 − 1) · (m2 − 1)] = m1 ·m2.

Lemma 7.3.4: For any matrix X in the product space,

(I−XQ̂i)(I− Q̂i) = (I− Q̂i). (7.3.10b)

Therefore, given that Q̂1 and Q̂2 commute,

S+ E = (B̂1 + B̂2)E = S− E

and (7.3.10c)

ES+ = E(B̂1 + B̂2) = ES−,

so the following identities hold,

UE = E or (I−U)E = O, (7.3.10d)

ER = E or E(I−R) = O, (7.3.10e)

438 7.3 Steady-State ME/ME/1/ /N Loop

T±(B̂1 + B̂2)E = E = E(B̂1 + B̂2)T±. (7.3.10f)

Also,
S− Q̂1 + S+ Q̂2 = [B̂1 + B̂2][I−E] (7.3.10g)

and
Q̂1S− + Q̂2S+ = [I−E][B̂1 + B̂2]. (7.3.10h)

The proofs are by direct substitution for U, R, S±, and T±. �

Equations (7.3.10) are used to prove our theorem, and they contain informa-
tion that may be of critical importance for future research. Equations (7.3.10d)
and (7.3.10e) look like eigenvalue equations, and in fact, imply that there are
as many eigenvectors of U (and R) with eigenvalue 1 as the rank of E. There-
fore, (I−U) has at most m1 + m2 − 1 nonzero eigenvalues. In the previous
chapters, m2 = 1, so (I−U) had m1 nonzero eigenvalues, which was all of
them, and so was invertible. But now that m2 > 1, this is no longer true.
The same statement can be made for R. This inhibits our ability to find an
explicit solution to the open ME/ME/1 queue.

The main theorem is now stated and proved.

Theorem 7.3.5: Given a closed ME/ME/1/ /N loop, with N > 1,
the steady-state vector and scalar probabilities are described by

ΠΠΠ(n; N) = ΠΠΠ(0; N)B̂2U
n
T−, n = 1, 2, . . . , N − 1 , (7.3.11a)

and
ΠΠΠ(N ; N) = ΠΠΠ(0; N)B̂2U

N−1
V̂1. (7.3.11b)

Equation (7.3.11a) can also be written in the form

ΠΠΠ(n; N) = ΠΠΠ(0; N)B̂2T− R
n−1

. (7.3.11c)

This form would seem to be preferred, because the geometric factor
appears at the right of the expression, allowing one to use

ΠΠΠ(n; N) = ΠΠΠ(n− 1; N)R, n = 1, 2, . . . , N − 1

(which we actually do in the algorithm below). It remains to be seen
which is more significant in the long run. �
Proof: First we show that Equations (7.3.11) are symmetric in S1

and S2. We do this by expressing everything in terms of ΠΠΠ(N ; N) and
interchanging 1 and 2. The interchange, in turn, causes + and − to
interchange; thus U goes to U−1, which we call A. From (7.3.11b) we
get

ΠΠΠ(0; N) = ΠΠΠ(N ; N)B̂1A
N−1

V̂2.

Similarly, from (7.3.11a) and the above, we get

ΠΠΠ(n; N) = ΠΠΠ(N ; N)B̂1A
N−1

V̂2B̂2U
n
T−

7 G/G/1/ /N Loop 439

= ΠΠΠ(N ; N)B̂1A
N−1

Un T− = ΠΠΠ(N ; N)B̂1A
N−n

UT−

or by expressing the first argument in terms of the number of customers
at S2, namely, k = N − n, and observing that UT− = T+, we obtain

ΠΠΠ(N − k; N) = ΠΠΠ(N − 0; N)B̂1A
k
T+.

Clearly, these equations look just like the original ones after one makes
the required interchanges. This means, then, that if we satisfy (7.3.3b),
by duality we automatically satisfy (7.3.3c).

To satisfy (7.3.3b), take (7.3.11a) for n = 1, recall again that UT− =
T+, and manipulate to get

ΠΠΠ(1; N)S+ = ΠΠΠ(0; N)B̂2.

Now multiply both sides by Q̂1; use (7.3.2), (7.3.6b), and Lemma 7.2.1
to get

ΠΠΠ(1; N)B̂1Q̂1 = [p1 ⊗ (π2π2π2(0;N)B2)] · [Q1 ⊗ I2] = ΠΠΠ(0; N)B̂2.

In the last step we used (7.2.2) and the fact that p1Q1 = p1. This is
indeed the same as (7.3.3b).

Last, we substitute (7.3.6b) and (7.3.11c) into the right-hand side of
(7.3.3a) and get

ΠΠΠ(n; N)[S− T+ S+ Q̂1 + S+ T− S− Q̂2] = ΠΠΠ(n; N)[S− Q̂1 + S+ Q̂2]

= ΠΠΠ(n; N)[B̂1 + B̂2]−ΠΠΠ(n; N)[B̂1 + B̂2]E,

where we used (7.3.10d). But from (7.3.10b) and (7.3.10c), we see that
the last term vanishes. That is,

ΠΠΠ(n; N)[B̂1 + B̂2]E = ΠΠΠ(0; N)B̂2U
n
T−[B̂1 + B̂2]E

= ΠΠΠ(0; N)B̂2UnE = p1 ⊗ [π2π2π2(0;N)B2]E = [π2π2π2(0;N)B2][p̂1E] = o,

because [p̂1 E] = o. The term that remains is equal to the left-hand
side of (7.3.3a). QED

This was surely a tedious proof, but we are not yet finished. Note that the
solution is given in terms of π2π2π2(0;N) [or π1π1π1(N ;N)]. This is an m2 (or m1)
component object, and we can only fix one constant with the normalization
requirement that the sum of all probabilities be 1. Naturally, when m2 was
1 there was no problem, but now there is. Equation (7.3.11b) is a matrix
equation with (m1 ·m2) components, but only (m1+m2) unknowns. Therefore,
these unknowns must be related in some way. We rewrite the equation using
(7.3.2).

π1π1π1(N ;N)B1 ⊗ p2 = p1 ⊗ π2π2π2(0;N)B2UN−1.

440 7.3 Steady-State ME/ME/1/ /N Loop

Next rewrite this equation using Lemma 7.2.1 (and momentarily drop the
dependence of πππi on n and N),

p2π̂1B̂1π̂1B̂1π̂1B̂1 = π2π2π2 B2 p̂1UN−1.

Next postmultiply both sides with ε̂′1̂ε
′
1̂ε
′
1 to get

p2 ·
(
π̂1π̂1π̂1 B̂1ε̂

′
1̂ε
′
1̂ε
′
1

)
= π2π2π2 B2Ψ̂2

[
UN−1

]
. (7.3.12a)

The expression in parentheses is the inner product of two 1-space hatted
vectors and is therefore equal to a scalar times I2 (see Lemma 7.2.1). Define
that scalar to be

β(N) := π1π1π1 B1 ε′1ε
′
1ε
′
1.

Observe that the right-hand expression of (7.3.12a), just like the other side,
depends only on 2-space objects; therefore, we can remove the hats, and the
equation becomes

β(N)p2 = π2π2π2 B2Ψ2

[
UN−1

]
.

Solving for π2π2π2, we get

π2π2π2(0;N) = β(N)p2Ψ−1
2

[
UN−1

]
V2. (7.3.12b)

By similar manipulations, it can be shown that π2π2π2 also satisfies the following
eigenvector equation.

π2π2π2 = π2π2π2 B2Ψ2

[
UN−1Q̂2AN−1

]
V2. (7.3.12c)

Either of these last two equations can be used to find π2π2π2.
It is not understood what the significance is to having two defining equa-

tions for π2π2π2. Clearly, both must yield the same vector, to within a constant
[which we can take to be β(N)]. This constant can be determined by normal-
ization as follows:

1 =
N∑

n=o

r(n;N) =
N∑

n=o

ΠΠΠ(n; N)ε′ε′ε′

= ΠΠΠ(0; N)ε′ε′ε′+ΠΠΠ(0; N)B̂2[U+U2+ · · ·+UN−1]T−ε′ε′ε′+ΠΠΠ(0; N)B̂2U
N−1

V̂1ε
′ε′ε′.

These expressions are so cumbersome to work with that one can get discour-
aged from going on. But only with continued use will we be able to find
simpler formulas. For now, we follow what we did for the M/G/1//N queue
in (4.1.6d), and define

K(N) := I + [U + U2 + · · ·+ U
N−1

]T−B̂2 + UN−1V̂1B̂2.

Then

1 = ΠΠΠ(0; N)B̂2 K(N)V̂2ε
′ε′ε′ = π2π2π2(0;N)B2p̂1 K(N)ε̂′1̂ε

′
1̂ε
′
1 V2 ε′2ε

′
2ε
′
2,

7 G/G/1/ /N Loop 441

and using (7.3.12b), we obtain

1 = β(N)p2Ψ−1
2

[
UN−1

]
V2 B2Ψ2 [K(N)]V2 ε′2ε

′
2ε
′
2

= β(N)Ψ
[
Ψ−1

2

[
UN−1

]
Ψ2 [K(N)]V2

]
. (7.3.13)

We summarize this maze of formulas with the following theorem.

Theorem 7.3.6: Explicit expressions for the steady-state vector
probabilities for a closed ME/ME/1/ /N loop, with N > 1 and 0 <
n < N , are

K(N) = I+[U + U2 + · · ·+ U
N−1

]T− B̂2 +UN−1 V̂1 B̂2. (7.3.14a)

β(N)−1 = Ψ
[
Ψ−1

2

[
UN−1

]
Ψ2 [K(N)]V2

]
, (7.3.14b)

π2π2π2(0;N) = β(N)p2Ψ−1
2

[
UN−1

]
V2, (7.3.14c)

ΠΠΠ(n; N) = β(N)p2Ψ−1
2

[
UN−1

]
p̂1Un−1T+, (7.3.14d)

ΠΠΠ(N ; N) = β(N)p2Ψ−1
2

[
UN−1

]
p̂1UN−1V̂1. (7.3.14e)

The associated scalar probabilities are given by

r(0;N) = π2π2π2(0;N) · ε′2ε′2ε′2 = β(N)Ψ
[
Ψ−1

2

[
UN−1

]
V2

]
, (7.3.14f)

r(n;N) = ΠΠΠ(n; N) · ε′ε′ε′
= β(N)Ψ

[
Ψ−1

2

[
UN−1

] ·Ψ2

[
Un−1T+

]]
, (7.3.14g)

r(N ;N) = ΠΠΠ(N ; N) · ε′ε′ε′

= β(N)Ψ
[
Ψ−1

2

[
UN−1

] ·Ψ2

[
UN−1V̂1

]]
. (7.3.14h)

Surely we will find something better someday. �

7.3.3 Outline of an Efficient Algorithm

The formulas we have derived for the ME/ME/1/ /N queue appear rather in-
timidating, but they actually can be calculated systematically and efficiently.
We aid the reader in recognizing the relative ease with which this can be done
by giving an algorithm for the calculation of the steady-state scalar probabil-
ities, the mean queue length, and the throughput, parametrically on N , the
number of customers in the system. We make no claims that this is the most
efficient possible, but it could be worse.

We state without proof that (ΠΠΠ(n; N)B̂1 ε′ε′ε′) is the equilibrium flow from
external state n to n + 1. Therefore [see (1.1.1), (2.1.5a), and (4.1.8)],

Λ(N) =
N∑

n=1

ΠΠΠ(n; N)B̂1 ε′ε′ε′. (7.3.15)

442 7.3 Steady-State ME/ME/1/ /N Loop

In general, computational costs can be greatly reduced by working with
matrix-vector products rather than matrix-matrix products. Therefore, we
introduce the vector k′(N) of dimension (m1 ·m2):

k′(N) := K(N)V̂2 ε′ε′ε′,

which has the following properties.

k′(1) = (V̂1 + V̂2) · ε′ε′ε′ = [V1 ε′1ε
′
1ε
′
1]⊗ ε′2ε

′
2ε
′
2 + ε′1ε

′
1ε
′
1 ⊗ [V2 ε′2ε

′
2ε
′
2],

k′(N) = T2ε
′ε′ε′ + U · k′(N − 1) for N > 1,

and
p̂1 · k′(N) = Ψ2 [K(N)] ·V2 · ε′ε′ε′,

where T2 = Ψ [V2] is the mean service time of S2 and p̂1 · k′(N) is a column
vector in 2-space. Next, the block vectors of dimension (m1 · m2) × m2,
defined by

u′(N) := UN ε̂′1̂ε
′
1̂ε
′
1

satisfy the recursive relations, starting with u′(0) = ε̂′1̂ε
′
1̂ε
′
1,

u′(N) := U · u′(N − 1) for N > 0.

Finally, to avoid needless repetitions (and perhaps to clarify), the symbols ŷ1,
X, x′, and z2 are used to keep intermediate results for p̂1T+, S−V̂1, B̂1 ε′ε′ε′,
and p2Ψ−1

2

[
UN
]
, respectively. It is important in understanding the equations,

as well as in coding the algorithms, to keep track of the dimensions of each
of these objects. Therefore, we have given them symbols that match their
dimensions. But be warned that the subscripts on these temporary variables
in no way imply that they commute with objects from the other space. Their
dimensions are

Dim[ŷ1] = Dim[p̂1T+] = Dim[p̂1] = m2 × (m1 ·m2),

Dim[X] = Dim[S−V̂1] = Dim[S−] = (m1 ·m2)× (m1 ·m2),

Dim[B̂1 ε′ε′ε′] = Dim[x′] = Dim[ε′ε′ε′] = (m1 ·m2)× 1,

Dim
[
p2Ψ−1

2 [Un]
]

= Dim[z2] = Dim[p2] = 1×m2.

Algorithm for Calculating Properties of ME/ME/1/ /N Loops
∗ Initialization
∗ Assume that p1,P1,M1, p2,P2, and M2 are given, then:
BEGIN PROCEDURE
. FOR i = 1 TO 2, DO
. Bi ←Mi(Ii −Pi)
. Vi ← inverse[Bi]
. Ti ← pi Vi ε

′
iε
′
iε
′
i

. END FOR

. S− ← B̂1 + B̂2 − B̂1Q̂2

7 G/G/1/ /N Loop 443

. S+ ← B̂1 + B̂2 − B̂2Q̂1

. T+ ← inverse[S+]

. U← T+ S−

. R← S− T+

. k′(1)← [V1 ε′1ε
′
1ε
′
1]⊗ ε′2ε

′
2ε
′
2 + ε′1ε

′
1ε
′
1 ⊗ [V2 ε′2ε

′
2ε
′
2]

. u′(0)← ε̂′1̂ε
′
1̂ε
′
1

. ŷ1 ← p̂1 T+

. X← V̂1 B̂2 + I− Q̂2

(
= S− V̂1 = V̂1 S−

)
. x′ ← B̂1ε

′ε′ε′

∗For a parametric study, where the number of customers N varies from 2
. ∗ to a certain limit Nm the normalization constant and the initial vector
. ∗ need to be calculated. Also, the vector ΠΠΠ(1; N) can be calculated, and
. ∗ initial values for mean queue length and throughput must be set.

FOR N = 2 TO Nm, DO
. k′(N)← T2ε

′ε′ε′ + Uk′(N − 1)
. u′(N − 1)← Uu′(N − 2)
. z2 ← p2 · inverse[û1 u′(N − 1)]
. [β(N)]−1 ← z2p̂1 k′(N)
. π2π2π2(0;N)← β(N)z2V2

. r(0;N)← π2π2π2(0;N)ε′2ε
′
2ε
′
2

. ΠΠΠ(1; N)← β(N)z2 · ŷ1

. r(1;N)← ΠΠΠ(1; N)ε′ε′ε′

. q̄ ← r(1;N)

. Λ← ΠΠΠ(1; N) · x′

∗ Each steady-state probability vector can now be calculated iteratively .
. FOR i = 2 TO N − 1, DO
. ΠΠΠ(i; N)← ΠΠΠ(i− 1; N) ·R
. r(i;N)← ΠΠΠ(i; N) · ε′ε′ε′
. q̄ ← q̄ + i · r(i;N)
. Λ← Λ + ΠΠΠ(i; N) · x′

. END FOR

. ∗ The last terms need to be calculated separately .
. ΠΠΠ(N ; N)← ΠΠΠ(N − 1; N) ·X
. r(N ;N)← ΠΠΠ(N ; N) · ε′ε′ε′
. q̄ ← q̄ + N · r(N ;N)
. Λ← Λ + ΠΠΠ(N ; N) · x′

END FOR
END PROCEDURE

It is worth discussing the computational complexity of this algorithm. Let
T (Nm) be the number of multiplications and divisions for this procedure.
Then

T (Nm) = 3mα
1 ·mα

2 + m2
1 ·m2

2 + mα
1 + mα

2 + 2m2
1 + m2

2 + m1 ·m2

+(Nm− 1) · (m2
1 ·mα

2 · 2m2
1 ·m2

2 + 2m1 ·m2
2 + mα

2 + m2
2 + 4m1 ·m2 + 2m2 + 1)

444 7.3 Steady-State ME/ME/1/ /N Loop

+
1
2
(Nm − 1) · (Nm − 2) · (m2

1 ·m2
2 + m1 ·m2 + 1)

= O
(

3mα
1 ·mα

2 + Nm ·m2
1 ·mα

2 +
1
2
N2

m ·m2
1 ·m2

2

)
,

where mα is the complexity for multiplying two m × m matrices. For the
special case where α = 3, the order of complexity reduces to

T (Nm) = O
(

3m3
1 ·m3

2 + Nm ·m2
1 ·m3

2 +
1
2
N2

m ·m2
1 ·m2

2

)
.

In most cases, the complexity is likely to be dominated by the N2
m term.

Suppose one is interested in q̄ and Λ but not in r(n;N). Then q̄ and Λ can be
calculated in a way analogous to the way β is calculated [using k′(N)], thereby
eliminating the inner loop on i, and consequently, reducing the complexity
by an order of Nm. In such a case, it would take no more to compute the
performance for all N from 1 to Nm than it would to calculate the performance
for Nm alone.

7.3.4 An Example

We now present an example of the simplest nontrivial loop, just to see what
the specific matrices look like. Let both S1 and S2 be Erlangian-2 servers,
with parameters μ and λ, respectively. Then ρ = λ/μ and

pi = [1 0], M1 = μI1, M2 = λI2,

q′
i =
[

0
1

]
, Pi =

[
0 1
0 0

]
, Qi =

[
1 0
1 0

]
,

B1 = μ

[
1 −1
0 1

]
, B2 = λ

[
1 −1
0 1

]
,

V1 =
1
μ

[
1 1
0 1

]
, V2 =

1
λ

[
1 1
0 1

]
·

The embedded matrices [from (7.2.1)] are given by

p̂1 =
[

1 0 0 0
0 1 0 0

]
, p̂2 =

[
1 0 0 0
0 0 1 0

]
,

p = p1 ⊗ p2 = p1p̂2 = p2p̂1 = [1 0 0 0],

Q̂1 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦, Q̂2 =

⎡
⎢⎢⎣

1 0 0 0
1 0 0 0
0 0 1 0
0 0 1 0

⎤
⎥⎥⎦,

Q =ε′pε′pε′p =

⎡
⎢⎢⎣

1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

⎤
⎥⎥⎦,

7 G/G/1/ /N Loop 445

where Q = Q̂1Q̂2 = Q1 ⊗Q2, and

E = (I− Q̂1)(I− Q̂2) =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
1 −1 −1 1

⎤
⎥⎥⎦.

Note that both Q̂1 and Q̂2 are of rank 2, [mi], because they each have two
linearly independent rows when considered as vectors. On the other hand, Q
is of rank 1, as it should be, because all four of its rows are the same. E is also
of rank 1 [(m1− 1) · (m2− 1) = 1], because all of its columns are proportional
to each other.

B̂1 = μ

⎡
⎢⎢⎣

1 0 −1 0
0 1 0 −1
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦, B̂2 = λ

⎡
⎢⎢⎣

1 −1 0 0
0 1 0 0
0 0 1 −1
0 0 0 1

⎤
⎥⎥⎦,

V̂1 =
1
μ

⎡
⎢⎢⎣

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦, V̂2 =

1
λ

⎡
⎢⎢⎣

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦.

Some composite matrices in the product space follow.

D−1 = B̂1 + B̂2 = μ

⎡
⎢⎢⎣

1 + ρ −ρ −1 0
0 1 + ρ 0 −1
0 0 1 + ρ −ρ
0 0 0 1 + ρ

⎤
⎥⎥⎦ ,

μD =
1

(1 + ρ)3

⎡
⎢⎢⎣

(1 + ρ)2 ρ(1 + ρ) (1 + ρ) 2ρ
0 (1 + ρ)2 0 (1 + ρ)
0 0 (1 + ρ)2 ρ(1 + ρ)
0 0 0 (1 + ρ)2

⎤
⎥⎥⎦ .

Recall that in Section 7.1 we used this operator to find the expression for
C(0), the probability that S1 would finish before S2, given that they started
at the same time. In our example, this turns out to be [using (7.1.3b)]

C(0) = Ψ
[
B̂1D

]
=

1 + 3ρ
(1 + ρ)3

· (7.3.16)

446 7.3 Steady-State ME/ME/1/ /N Loop

Exercise 7.3.1: You are to compare C(0) for three different cases as a
function of ρ. The cases are (a) exponential-exponential, from Equation
(2.1.1b) (call it C11); (b) exponential-Erlangian-2 [C12, see (3.1.10) and
recall the interpretion of B∗(s)]; and (c) Equation (7.3.16) (call it C22).
First verify that

Ψ2

[
B̂1 D

]
=

1
(1 + ρ)3

[
1 + ρ 2ρ

0 1 + ρ

]
·

Then verify that C22 is correct [use (7.2.6)], and find similar expressions
for the other two. Prove that the following inequalities hold.

C12 < C11 < C22 for ρ < 1,

C12 < C22 < C11 for 1 < ρ <
1 +
√

17
2

,

C22 < C12 < C11 for
1 +
√

17
2

< ρ.

Remember that ρ = x̄1/x̄2, which for C12 is not λ/μ.

Continuing with matrices in the product space,

S+ = μ

⎡
⎢⎢⎣

1 0 −1 0
0 1 0 −1
−ρ ρ 1 + ρ −ρ
0 −ρ 0 1 + ρ

⎤
⎥⎥⎦, S− = μ

⎡
⎢⎢⎣

ρ −ρ 0 0
−1 1 + ρ 1 −1
0 0 ρ −ρ
0 0 −1 1 + ρ

⎤
⎥⎥⎦.

The determinants of S± are μ4 and λ4, respectively, so these matrices are
nonsingular. Their inverses are

T+ =
1
μ

⎡
⎢⎢⎣

1 + ρ −ρ 1 0
0 1 + ρ 0 1
ρ −ρ 1 0
0 ρ 0 1

⎤
⎥⎥⎦, T− =

1
μ ρ2

⎡
⎢⎢⎣

1 + ρ ρ −1 0
1 ρ −1 0
0 0 1 + ρ ρ
0 0 1 ρ

⎤
⎥⎥⎦.

The most important matrix, U, is not so simple looking:

U = T+S− =

⎡
⎢⎢⎣

ρ(2 + ρ) −2ρ(1 + ρ) 0 0
−(1 + ρ) (1 + ρ)2 ρ 0
ρ(1 + ρ) −ρ(1 + 2ρ) 0 0
−ρ ρ(1 + ρ) ρ− 1 1

⎤
⎥⎥⎦,

from which we can get

Ψ2 [U] =
[

ρ(2 + ρ) −2ρ(1 + ρ)
−1 (1 + ρ)2

]
.

From either of these equations one can calculate Ψ [U] = Ψ [Ψ2 [U]] = −ρ2.
The characteristic equation for U is

φ(α) = |U− αI| = (α− 1)
(
α− ρ2

) (
α2 − [1 + 4ρ + ρ2]α + ρ2

)
.

7 G/G/1/ /N Loop 447

Therefore, the eigenvalues of U are

α1 = 1, α2 = ρ2, α3 =
(ρ2 + 4ρ + 1) + Z(1 + ρ)

2

and

α4 =
(ρ2 + 4ρ + 1)− Z(1 + ρ)

2
,

where Z2 = ρ2+6ρ+1. Sadly, we see that one of the eigenvalues is 1. Therefore,
I−U has no inverse. We knew this would happen from Lemma 7.3.2 and the
discussion following it. We said that there are at most m1 + m2 − 1 roots,
which do not equal 1. In our case, m1 = m2 = 2, so there are at most three. In
fact, there are exactly three if ρ
= 1. The other difficulty we have is that α3 is
greater than 1 for all ρ. Therefore, some matrix elements of Un must become
unboundedly large as n increases. For what it is worth, the four eigenvalues
satisfy the following inequality.

α4 < α2 < α1 = 1 < α3 for ρ < 1

and

α4 < α1 = 1 < α2 < α3 for ρ > 1.

The matrix R, having a unit eigenvalue, can do no better. It presumably also
has an eigenvalue greater than 1. We leave it as an exercise for the reader to
analyze R in the way that we just analyzed U.

Where do we go from here? Despite all these formulas, we cannot go to the
open system. In Section 4.2.1 we successfully took the limit of K(N) as N went
to infinity because (I−U)−1 existed. It does not here. In Section 5.1.1 we were
able to take the limit because we were able to isolate a unique eigenvalue and
its associated left and right eigenvectors. So far we have not been successful
in finding an appropriate generalization of this. We know this much: Victor
Wallace proved that all open QBD processes of a certain type (of which the
ME/ME/1 queue is a special case) must have a matrix geometric solution
[Wallace69]. It is just that neither U nor R appears to be that matrix. But
an isometric transformation of U or R in the product space may well yield the
correct matrix. We do not go into detail here, but it should be possible to find
a transformation that yields a matrix for which the eigenvectors belonging
to the eigenvalue 1 drop out of the solution. The solution, whatever it turns
out to be, almost surely will reflect the characteristics of both the M/ME/1
and ME/M/1 queues, given that the ME/ME/1 queue is the generalization of
both. (See, however, [Latouche-Ram99] for an iterative solution.) We have
presented far more formulas than are necessary, in the hope that they will
help some reader to discover how this can be done.

We close out the chapter with a short look at mean first-passage times for
the queue at S1 to drop. Extensions to other transient properties are left to
the reader’s ingenuity.

448 7.4 A Modicum of Transient Behavior

7.4 A Modicum of Transient Behavior

We do not go into too much detail of transient behavior for two nonexponential
servers, not so much because it is so hard, but because it looks so much like
what we already did in Section 4.5. All objects are in the product space, so
should be wearing hats. To make things simple for us, we revert to the naive
approach of Section 7.1. We only cover the first-passage processes to drop
by 1, and thereby reproduce (4.5.29a) for this more general case. The reader
should review Section 4.5 before continuing.

First recall Definition 4.5.7. The matrix [Hd(n;N)]kl is identical in mean-
ing, except that now

l, k ∈ Ξ = Ξ1 ⊗ Ξ2.

As in Chapter 4, after a single event occurs, the queue at S1 can grow by
one, decrease by one, or stay the same. The difference now is that there are
two ways that it can stay the same, either by a transition in S1, [P1], or a
transition in S2, [P2]. Thus Hd satisfies the following.

Hd(n;N) = [M1 + M2]−1[M1 P1 + M2 P2]Hd(n;N)

+ [M1 + M2]−1M1 q′
1 p1

+ [M1 + M2]−1 M2 q′
2 p2 Hd(n + 1;N)Hd(n;N).

The quantity

[(M1 + M2)−1 M1]kk =
μk1

μk1 + λk2

is the probability that the next event, when it occurs, will be in S1, given
that the system is in state k = (k1, k2) ∈ Ξ. Therefore, the first term [P1]
corresponds to an internal transition in S1, with the eventual drop [Hd(n;N)]
to n− 1.

Similarly, the second term [P2 Hd(n;N)] is an internal transition in S2.
The third term corresponds to a transition in S1 that results in a departure
[q′

1], followed immediately by the entry of the next customer [p1] at S1. In
this process, nothing more need happen because S1 now has n− 1 customers.
The last term corresponds to a departure from S2, [q′

2], immediately followed
by the entry of the next customer [p2] and then the eventual drop from n+1
to n, [Hd(n + 1;N)], followed eventually by a drop to n− 1, [Hd(n;N)].

Recall the following, which we have seen so many times: Bi = Mi (I−Pi)
and Mi q′

i = Bi Qi, for i = 1, 2.† Then multiply both sides of the equation by
[M1 + M2], regroup terms, and for 0 < n < N , come up with

Hd(n;N) = [B1 + B2 −B2 Q2 Hd(n + 1;N)]−1B1 Q1. (7.4.1a)

We must still get an equation for Hd(N ;N), because there is no way to go
up. There is one other difficulty with this state. Because there is no customer

†Keep in mind that I is the identity matrix of the product space and that M1, B2, and
so on, are already embedded (hatted) onto that space.

7 G/G/1/ /N Loop 449

at S2, [Hd(N ;N)]il generates a transition from i ∈ Ξ1 to l ∈ Ξ, (i.e., it is not
a square matrix). Thus

Hd(N ;N) = P1 Hd(N ;N) + q′
1 p1 p2

(the customer who leaves S1 immediately enters S2, [p2], because there was
no one there before his arrival), or

Hd(N ;N) = [I−P1]−1q′
1 p1 p2 = Q1 p2, (7.4.1b)

which folows from [I−P1]−1q1 = ε′1ε
′
1ε
′
1. Alternatively (as we have been doing

all along), we can make believe that when S2 is empty, it is in state p2, but
cannot do anything. Then we must wipe out that state [ε′2ε

′
2ε
′
2] before reentering

it [p2]. This leads to the simpler formula,

Hd(N ;N) = Q1 Q2 = Q. (7.4.1c)

In either case, (7.4.1a) leads to

Hd(N − 1;N) = [B1 + B2 −B2 Q]−1B1 Q1.

Next we define [τ ′
dτ
′
dτ
′
d(n;N)]k in the way we did in Definition 4.5.8 where now

k ∈ Ξ. This means that the time for the queue at S1 to drop by 1 depends on
the internal state of S2 as well as S1. First, let all the customers be at S1,

τ ′
dτ
′
dτ
′
d(N ;N) = M−1

1 ε′1ε
′
1ε
′
1 + P1τ

′
dτ
′
dτ
′
d(N ;N),

leading to
τ ′
dτ
′
dτ
′
d(N ;N) = V1 ε′ε′ε′, (7.4.2a)

which is identical to (4.5.11a), as it should be, given that S2 plays no role in
the process. For n < N ,

τ ′
dτ
′
dτ
′
d(n;N) = (M1 + M2)−1ε′ε′ε′

+ (M1 + M2)−1(M1P1 + M2P2)τ ′
dτ
′
dτ
′
d(n;N)

+ (M1 + M2)−1M2 q′
2 p2[τ ′

dτ
′
dτ
′
d(n + 1;N)

+ Hd(n + 1;N)τ ′
dτ
′
dτ
′
d(n;N)],

which regroups, and rearranges to

τ ′
dτ
′
dτ
′
d(n;N)

= [B1+B2−B2 Q2 Hd(n+1, N)]−1[ε′ε′ε′+B2 Q2 τ ′
dτ
′
dτ
′
d(n+1;N)] (7.4.2b)

[compare with (4.5.11b)]. Equations (7.4.1) and (7.4.2) are sufficient for find-
ing all times recursively, by following the discussion in Section 4.5.3.

Let us look in particular at the special case N = 2. We have discussed
its significance in Section 4.5.4, but now we generalize to two nonexponential
servers. First,

td(2; 2) = pτ ′
dτ
′
dτ
′
d(2; 2) = T1 = Ψ [V1]

450 7.4 A Modicum of Transient Behavior

and
τ ′
dτ
′
dτ
′
d(1; 2) = [B1 + B2 −B2Q]−1[ε′ε′ε′ + B2 Q2 V1 ε′ε′ε′].

Given that V1 commutes with Q2, Q2 ε′ε′ε′ = ε′ε′ε′, the expression in the second
set of brackets becomes

[I + B2V1]ε′ε′ε′ = [B1 + B2]V1 ε′ε′ε′ = D−1 V1 ε′ε′ε′,

where we have used (7.3.4) as the definition for D. Lemma 4.2.1 can be applied
to the expression in the first set of brackets (not Lemma 7.2.4) because Q itself
appears rather than Qi. We get

[B1 + B2 −B2Q]−1 = [D−1(I−DB2Q)]−1

= [I−DB2Q]−1D =
(
I +

1
1−Ψ [DB2]

DB2Q
)

D.

Therefore,

τ ′
dτ
′
dτ
′
d(1; 2) =

(
I +

1
1−Ψ [DB2]

DB2 Q
)

DD−1 V1 ε′ε′ε′

= V1 ε′ε′ε′ +
T1

1−Ψ [DB2]
DB2 ε′ε′ε′.

Finally,

td(1; 2) = pτ ′
dτ
′
dτ
′
d(1; 2) = T1 +

T1Ψ [DB2]
1−Ψ [DB2]

=
T1

Ψ [DB1]

because 1−Ψ [DB2] = Ψ
[
I− (B1 + B2)−1B2

]
= Ψ [DB1]. Then, following

Section 4.5.4,

MTTF (2) = td(2; 2) + td(1; 2) = T1

(
1 +

1
Ψ [DB1]

)
. (7.4.3)

This equation is identical to (4.5.29a) when one takes into account the slight
difference of notation. In Chapter 4 we used D = (I + λV)−1, and because
λ ⇒ B2 in this chapter, we have D (Chapter 4) ⇒ B1D (Chapter 7). We
have already shown that Ψ [DB1] = C(0) [(7.1.3b)] is the probability that the
customer in S1 will finish before the customer in S2, given that they started
at the same time. In the context of MTTF, this is the probability that the
second device will break before the first is fixed, and is true for any pair of
distributions. See Section 4.5.4 for a more thorough discussion.

We hope that the reader will be able to solve for other transient properties
using the material expounded upon in previous chapters. We have seen by this
example that certain transient events can be computed more easily than can
the steady-state solution for the same system, particularly if N is small. This
should become a useful and practical tool.

7 G/G/1/ /N Loop 451

Exercise 7.4.1: Take the results you got from Exercise 7.3.1 (C11,
C12, and C22), and use (7.4.3) to calculate MTTF as a function of ρ
for all three systems. Assume that T1 = 1 and let ρ take on the values,
0+, 0.1, 0.5, 0.8, 1.0, 1.25, 2.0, 10.0, 100, and 1000.

Chapter 8
SEMI-MARKOV PROCESS

Prediction is difficult, particularly about the future.
Niels Bohr

(also attributed to Mark Twain,
but falsely attributed to Yogi Berra).

We can chart our future clearly and wisely only when
we know the path which has led to the present.

Adlai Stevenson.

In many (if not most) real-world applications, the arrival of customers to a ser-
vice center is not well described by renewal processses. Quite often, the times
between successive arrivals are correlated, whereas renewal processes have
independent interarrival times. A natural generalization is the class of semi-
Markov processes (SMP), which when specifically applied to the arrival
of customers are called Markov Renewal Processes (MRP) or Markov
Arrival Processes (MAP). Of course arrivals to one station correspond to
departures from some other station. So, to avoid confusion, we use the terms
SMP or MRP here.

In this chapter we set up a general procedure for creating a sequence of
random variables {Xi} which may be thought of as the interarrival times of
successive customers for some arrival process. The {Xi} has PDFs {Fi(xi)}
which are generated by a sequence of representations with the same BBB but
different entrance vectors, namely {〈〈〈 ℘℘℘i , BBB 〉〉〉}. Interval i we call the iiithepoch.
Recall that for a renewal process the Xi r.v.s are iid. In this chapter they are
not independent, but they are asymptotically identically distributed. That is,
for i large enough, {Fi(xi)} approaches a limit. Hence, some researchers retain
the word, renewal in describing MRRRPs.

The set of formulas for the joint interdeparture distributions and corre-
lation lag-k number are then set up, thereby showing that, indeed, the Xi

and Xj are in most cases, correlated. We then show how they can be used
to solve for various performance properties of SMP/M/1 queues. One of the
first papers to try to formalize this was by Ramaswami [Ramaswami80]. The
particular formulation presented here stems from the PhD thesis by Pierre
Fiorini [Fiorini98] and other works [FioriniLipvdLHsin95].

L. Lipsky, Queueing Theory, DOI 10.1007/978-0-387-49706-8 8, 453
c© Springer Science+Business Media, LLC 2009

454 8.1 Introduction

8.1 Introduction

Because the formulas presented here are abstract, it may be unclear how
they are to be applied to specific systems. Therefore, after presenting the
general formalism, we supply explicit formulas for a wide variety of processes,
each having a different state-space structure from the others. The following
processes are considered.

(1) Departures from a general server that has an infinite queue (renewal
process);

(2) Markov regulated departure processes (direct-sum space);

(3) Markov Modulated Poisson processes (MMPP);

(4) ON-OFF Models, or the N-BURST Process;

(5) Merging of two renewal streams (direct-product space);

(6) Departures from overloaded generalized X/G/C queues (reduced-
product space);

(7) Departures from open G/G/1 queues (infinite direct-product space)
with reduction to G/M/1 and M/G/1 queues.

The method can be applied to closed (finite number of customers) systems as
easily as, or more easily than, to open ones.

Finally, we show (yet again) that departures from an open M/M/1 queue
approach Poisson as the system approaches its steady state. The formulas
make it very clear that this is a special property that does not carry over to
other arrival or service distributions or to closed systems.

8.1.1 Matrix Representations of Subsystems

The equations of the previous chapters can be extended to any Markov-like
subsystem with a countable state space. Let ℘℘℘o be the probability vector of the
state of the subsystem at the time x = 0 with ℘℘℘o ε′ε′ε′ = 1 (ε′ε′ε′ is the subsystem
vector equivalent to ε′ε′ε′), and BBB is the infinitesimal generator matrix of the
process. Then, as in (3.1.7d), ℘℘℘o exp(−xBBB)ε′ε′ε′ has the interpretation of the
probability that the process has not ended by time x. Furthermore, the ith
component of the vector ℘℘℘o exp(−xBBB) has the following meaning.

Given that the subsystem was in vector state ℘℘℘o at time x = 0,
[℘℘℘o exp(−xBBB)]i is the probability that the process has not yet completed
by time x, and the subsystem is in state i.

Usually, BBB can be constructed from the underlying Markov chain using the
relation

BBB =MMM(III −PPP), (8.1.1)

whereMMM is a diagonal matrix whose (ii)th component is the probability rate
of leaving state i, and PPP is a substochastic matrix whose ijth component is

8 Semi-Markov Process 455

the probability that the subsystem will transfer to state j after leaving state
i. At least one of the row sums of PPP (i.e., PPPε′ε′ε′) is strictly less than 1. Thus,
there exist state sequences that result in a departure from the subsystem
(often visualized as passage to an absorbing state). The requirement that
[III −PPP] be invertible is equivalent to there being an exit path from every state.

As we show in the next section, the following theorem about functions
of matrices lets us easily calculate many integrals that are otherwise very
difficult.

Theorem 8.1.1: Let BBB be an invertible finite matrix with VVV = BBB−1

and eigenvalues β1, β2, . . . , βm. Furthermore, let �(βi) > 0 for all i.
Then ∫ ∞

o

xn exp(−xBBB)BBB dx = n!VVVn. (8.1.2a)

(Compare with Theorem 3.1.1.) It is also true that:∫ ∞

o

e−sx exp(−xBBB)BBB dx =
∫ ∞

o

exp[−x(sIII +BBB)]BBB dx

= [sIII +BBB]−1BBB = [III + sVVV]−1. (8.1.2b)

(Again compare with Theorem 3.1.1.) �

We remind the reader that although the integration is over a scalar [x], both
sides of these equations are square matrices. With appropriate constraints,
this theorem is valid even if BBB is infinite-dimensional.

8.2 Markov Renewal Processes

In this section we consider the end of a process to coincide with the departure
of a customer from a subsystem. As in previous chapters we refer to the periods
between departures as epochs. The formulas given in the previous section,
with generator 〈〈〈℘℘℘o , BBB 〉〉〉, yield the distribution of the departure time of the
first customer. We need the following material to describe the departure of
the second, and succeeding, customers.

8.2.1 Interdeparture Time Distributions

Let { Xn|n ≥ 1} be a set of random variables where Xn denotes the time
for the nth epoch, or interdeparture time of the nth customer. Consider the
following matrix.

Definition 8.2.1
[LLL]: Given that the subsystem is in state i [LLL]ijΔ is the probability
that a departure will occur within the small time interval, Δ, and the
subsystem will be in state j immediately afterwards. In other words,
[LLL]ij is the subsystem instantaneous departure rate from state i that
leaves behind state j. ���

456 8.2 Markov Renewal Processes

From this definition, it follows that
∑

j LLLij = [LLLε′ε′ε′]i is the subsystem instan-
taneous departure rate from state i. But that is what [BBBε′ε′ε′]i is. Therefore

LLLε′ε′ε′ = BBBε′ε′ε′. (8.2.1)

Although LLL and BBB are related by this relation, they describe different parts
of the process of interest. BBB generates what happens during the epoch, andLLL
tells what happens immediately after the departure. (8.2.1) states that they
agree about the rate of departure.

Given that VVV := BBB−1, we have

VVV LLLε′ε′ε′ = ε′ε′ε′.

Because of its importance, we define

YYY := VVV LLL, with the property YYYε′ε′ε′ = ε′ε′ε′ (8.2.2)

(i.e., YYY is isometric;ε′ε′ε′ is a right eigenvector of YYY with eigenvalue 1).
We can now observe that the jth component of the vector, [℘℘℘o exp(−xBBB)LLL]

is the instantaneous probability rate for service to end at time x, and for the
subsystem to be in state j immediately after the departure. The sum over all
post-departure states must yield the pdf for the process, and indeed it does.
After all, from (8.2.1),

fX1(x) := ℘℘℘o [exp(−xBBB)LLL]ε′ε′ε′ = ℘℘℘o [exp(−xBBB)BBB]ε′ε′ε′ (8.2.3)

(compare with Theorem 3.1.1.) Note that although fX1(x) is a scalar function
of x, the objects in square brackets are square matrices.

The initial state for the second customer, given that X1 = x, is

℘℘℘1(x) =
1

fX1(x)
℘℘℘o exp(−xBBB)LLL. (8.2.4)

The initial state for the second customer, averaged over all first-process times
is given by

℘℘℘1 =
∫ ∞

o

fX1(x)℘℘℘1(x) dx =
∫ ∞

o

℘℘℘o exp(−xBBB)LLL dx

= ℘℘℘o

[∫ ∞

o

exp(−xBBB) dx

]
LLL = ℘℘℘oVVVLLL = ℘℘℘oYYY, (8.2.5)

where (8.1.2a) for n = 0 was used. One can immediately generalize that the
probability state of the system immediately after the nth departure (and the
starting vector for the (n + 1)st epoch) is

℘℘℘n = ℘℘℘n−1YYY = ℘℘℘oYYYn. (8.2.6)

Observe that the state the subsystem is in immediately after customer number
(n-1) departs is the beginning state of the subsystem for generating the nth

8 Semi-Markov Process 457

departure. We can then say that the (unconditional) distribution function for
Xn is generated by 〈〈〈℘℘℘n−1 , BBB 〉〉〉.

The steady-state start-up vector must satisfy the equation

℘℘℘ := lim
n→∞℘℘℘n = lim

n→∞℘℘℘oYYYn = (lim
n→∞℘℘℘n−1)YYY = ℘℘℘YYY; (8.2.7)

that is, ℘℘℘ must be a left eigenvector of YYY with eigenvalue 1. That such a vector
exists is guaranteed by the fact that YYY is isometric (YYYε′ε′ε′ = ε′ε′ε′). More precisely,
this limit exists if 1 is the largest eigenvalue in magnitude of YYY. In this case,
YYYn → ε′ε′ε′℘℘℘. Then, as n approaches infinity, the Xn’s approach the common
distribution generated by 〈〈〈 ℘℘℘ , BBB 〉〉〉. But they are almost always correlated, as
shown in the next subsection.

Although LLL and BBB describe the same departure rate, their difference is also
a useful matrix. Define the generator of the underlying Markov process
as

QQQ := BBB −LLL. (8.2.8a)

Clearly,QQQε′ε′ε′ = 0 from (8.2.1), so there must exist a vector πππ such that πππQQQ = o′

and πππε′ε′ε′ = 1. In fact it can be shown by direct substitution that

πππ =
℘℘℘VVV

℘℘℘VVVε′ε′ε′ · (8.2.8b)

If we multiply πππ by either LLL or BBB, we can get ℘℘℘ in terms of πππ, that is,

(℘℘℘VVVε′ε′ε′)πππLLL = ℘℘℘VVVLLL = ℘℘℘YYY = ℘℘℘

and given that ℘℘℘ε′ε′ε′ = 1, we have

(℘℘℘VVVε′ε′ε′)(πππLLLε′ε′ε′) = 1. (8.2.8c)

This provides us with an interesting relation. (℘℘℘VVVε′ε′ε′) is the mean interdepar-
ture time, and thus its reciprocal (πππLLLε′ε′ε′), must be the long-term departure
rate. This makes sense, because (πππ)i is the fraction of time the generating
system is in state i, and (LLLε′ε′ε′)i is the rate of departure when the system is in
state i. Their dot product averages over all states. For emphasis, we restate
this now:

EEE[X] = ℘℘℘VVV ε′ε′ε′ = mean interdeparture time,

κ := πππLLLε′ε′ε′ = long − term departure rate.
(8.2.8d)

In (8.2.8b) we expressed πππ in terms of ℘℘℘. We now reverse the relation and
express ℘℘℘ in terms of πππ. The equations above and the fact that πππBBB = πππLLL
lead to

℘℘℘ = (℘℘℘VVVε′ε′ε′)πππLLL =
πππLLL

πππLLLε′ε′ε′ =
πππBBB

πππBBBε′ε′ε′ · (8.2.8e)

The three matrices, QQQ, LLL, and BBB, play equally important roles in SM
processes, and given any two, the third follows directly. Depending on the

458 8.2 Markov Renewal Processes

application it may be easier to constructQQQ than one of the other two. We note
that BBB always has an inverse (namely, VVV), QQQ never has an inverse (QQQε′ε′ε′ = o′

implies that QQQ has a 0 eigenvalue), and LLL may or may not have an inverse
(but we wouldn’t know what to do with it anyway).

As mentioned earlier, BBB controls the subsystem during an epoch and LLL
connects each epoch to the next. We show in some of the applications below
that QQQ controls the subsystem irrespective of departures. This is a direct gen-
eralization of the discussion surrounding Figure 3.5.3, leading to πππr the mean
residual vector. QQQ can also be thought of as the rate matrix, or generator
of a continuous Markov chain as given in the discussion surrounding (1.3.2c)
in Chapter 1. So if ℘℘℘ describes the state of the subsystem at the beginning
of an arbitrary epoch, then πππ describes the state of the system as seen by a
random observer who has no idea when the epoch began. This is discussed
further in Section 8.3.1.

Before going on, we describe how our approach differs from that of other
researchers. The matrix distribution function Qij(x), as defined in many books
(e.g.,[Cooper81]), in our case denotes the probability that “a departure will
occur by time x and the system will find itself in state j, given that the
system was in state i at time x = 0.” We, on the other hand, use the matrix
density function, exp(−xBBB)LLL, which when integrated from 0→ x yields [I−
exp(−xBBB)]YYY , the equivalent to Qij(x), except that, like [Neuts81], the matrix
elements themselves can be matrices. Also, our YYY corresponds to their Pij :=
limx→∞ Qij(x). For the applications given here, because of Theorem 8.1.1,
the actual values of the components of exp(−xBBB) are not usually needed to
get useful results.

8.2.2 Correlation of Departures

Based on the material of the previous section, we can write down the joint
probability distributions for the interdeparture times. The joint density func-
tion for the departure of the first n + k customers is given by

fX1 X2···Xn...Xn+k
(x1, x2, . . . , xn, · · · , xn+k)

= ℘℘℘o[[[exp(−x1BBB)LLL · · · exp(−xnBBB)LLL · · · exp(−xn+kBBB)LLL]]]ε′ε′ε′. (8.2.9)

The joint distribution has the appearance of being separable, but the separate
epochs are connected by LLL. Only if LLL is of rank 1 (i.e., only if LLL = BBBε′ε′ε′℘℘℘),
are the interdeparure times independent of each other. For instance, let us
examine the relation between two variables, say Xn and Xn+k. To do this, we
integrate over all the other variables, and for convenience replace xn with x
and xn+k with t. Then the joint density function for Xn and Xn+k is

fnk(x, t) := ℘℘℘o [[[YYYn−1 exp(−xBBB)LLLYYYk−1 exp(−tBBB)LLL]]]ε′ε′ε′. (8.2.10a)

We can prove the following from this.

Theorem 8.2.1: Let Xn and Xn+k (n, k > 0) be random variables
denoting the nth and (n + k)th interdeparture times. Then Xn and

8 Semi-Markov Process 459

Xn+k are independent variables if and only if LLL is of rank 1, or
equivalently, YYY = ε′ε′ε′℘℘℘. By independent we mean:

fnk(x, t) = fn(x) fn+k(t).

Furthermore, except perhaps, for n = 1, they are identically dis-
tributed, and {Xn} is a renewal process. �

Proof: By definition, LLL = BBBYYY and if LLL is of rank 1, then YYY must also
be of rank 1. Therefore, YYY = ε′ε′ε′℘℘℘. Assume this is so, then YYYn = ε′ε′ε′℘℘℘
and from (8.2.10a),

fnk(x, t) = ℘℘℘o [[[ε′ε′ε′℘℘℘ exp(−xBBB)BBBε′ε′ε′℘℘℘ exp(−tBBB)LLL]]]ε′ε′ε′

= [[[℘℘℘ exp(−xBBB)BBBε′ε′ε′]]] [[[℘℘℘ exp(−tBBB)BBBε′ε′ε′]]] = f(x) f(t),

where we have used the properties: LLLε′ε′ε′ = BBBε′ε′ε′ and ℘℘℘o ε′ε′ε′ = 1.

The converse is more complicated, but note that (8.2.10a) can be writ-
ten as

fnk(x, t) = an(x) · b′
k(t),

where the an and b′
k are vector functions of x and t, respectively,

namely:
an(x) = ℘℘℘o [[[YYYn−1 exp(−xBBB)LLL]]]

and
b′

k(t) = [[[YYYk−1 exp(−tBBB)LLL]]]ε′ε′ε′.
fnk is a function of the form: a1(x)b1(t) + a2(x)b2(t) + · · · . The only
way this can be separated into a single function of x times a single
function of t is if the ai(x)s are proportional to each other. Similarly
for the bi(t)s. This means that an(x) equals a scalar function of x times
a constant vector, which in turn forces LLL to be of the form b′ · a, that
is, a matrix of rank 1. It must follow that LLL = BBBε′ε′ε′℘℘℘. QED

We now move on to get expressions for covariance and autocorrelation
coefficients. From its definition, again using (8.1.2a), we can evaluate the
mean time for the nth epoch:

EEE[Xn] =
∫ ∞

o

∫ ∞

o

x fnk(x, t) dx dt = ℘℘℘o [YYYn−1VVV2LLLYYYk−1VVVLLL]ε′ε′ε′

= ℘℘℘o [YYYn−1VVV YYYk+1]ε′ε′ε′ = ℘℘℘o [YYYn−1VVV]ε′ε′ε′ = ℘℘℘n−1[VVV]ε′ε′ε′, (8.2.10b)

because VVVLLL = YYY and YYYε′ε′ε′ = ε′ε′ε′. Similarly,

EEE[Xn+k] = ℘℘℘o [YYYn−1VVV LLLYYYk−1VVV2LLL]ε′ε′ε′

= ℘℘℘o [YYYn+k−1VVV]ε′ε′ε′ = ℘℘℘n+k−1[VVV]ε′ε′ε′. (8.2.10c)

460 8.2 Markov Renewal Processes

We see that the mean time for successive epochs is not constant. But, for n
very large [because of (8.2.7)],

lim
n→∞EEE[Xn] = lim

n→∞EEE[Xn+k] = ℘℘℘ [VVV]ε′ε′ε′. (8.2.10d)

The covariance of two random variables is given by

Cov(X, Y) := EEE[[[(X −EEE[X]) (Y −EEE[Y])]]] = EEE[X Y]−EEE[X]EEE[Y]. (8.2.11a)

The normalized correlation coefficient is defined by:

�(X, Y) :=
Cov(X, Y)√

σ2
X σ2

Y

(8.2.11b)

satisfies the inequality, −1 ≤ �(X, Y) ≤ 1.
If X and Y are two members of a sequence, as is the case here, then

Cov(Xn, Xn+k) is called the autocovariance n lag-k of the interdeparture
times, and � is called the autocorrelation coefficient n lag-k. The first
term on the right of (8.2.11a) evaluates to

EEE[Xn Xn+k] =
∫ ∞

o

∫ ∞

o

x t fnk(x, t) dx dt = ℘℘℘o [YYYn−1VVV YYYk VVV]ε′ε′ε′, (8.2.11c)

giving

Cov(Xn, Xn+k) = ℘℘℘n−1VVV YYYk VVV ε′ε′ε′ − (℘℘℘n−1VVVε′ε′ε′)(℘℘℘n+k−1VVVε′ε′ε′). (8.2.11d)

It is virtually impossible to measure these parameters. Instead, one must
average over n, which is the same as using ℘℘℘ as the initial vector (℘℘℘o →
℘℘℘), making the covariance independent of n (but not of k). That is, when
the subsystem is already in its steady state (or averaged over very large n),
(8.2.11c) can be written as

EEE(X, X+k) := lim
n→∞EEE(Xn, Xn+k) = ℘℘℘

[
VVV[YYYk]VVV

]
ε′ε′ε′

= [℘℘℘VVV]YYYk [VVVε′ε′ε′], (8.2.12a)

leading to the autocovariance lag-k:

Cov(X, X+k) = [℘℘℘VVV]YYYk [VVVε′ε′ε′]− (℘℘℘VVVε′ε′ε′)(℘℘℘VVVε′ε′ε′). (8.2.12b)

Thus (8.2.11b) becomes the autocorrelation coefficient lag-k :

r̂(k) := lim
n→∞ �(Xn, Xn+k) =

℘℘℘
[
VVV[YYYk − ε′ε′ε′℘℘℘]VVV

]
ε′ε′ε′

2℘℘℘VVV2ε′ε′ε′ − (℘℘℘VVVε′ε′ε′)2 · (8.2.12c)

In this form, the following theorem is clearly valid.

8 Semi-Markov Process 461

Theorem 8.2.2: If 1 is larger in magnitude than all other eigen-
values of YYY, then

lim
k→∞

YYYk = ε′ε′ε′℘℘℘

and
lim

k→∞
Cov(X, X+k) = lim

k→∞
r̂(k) = 0.

On the other hand, if YYY has at least one other eigenvalue of magni-
tude 1 (e.g., the subsystem is periodic), then the above limits are not
valid. (See Example 8.3.1 below for such a case.) But even if all other
eigenvalues are less than 1 in magnitude, it is possible for the autocor-
relation lag-k numbers to be significant for arbitrarily large k. This
will not happen for a finite state-space, but with one caveat. The rate at
which r̂(k) goes to 0 depends on the difference between 1 and the next
largest eigenvalue. Therefore, for some systems, k may have to be very
large indeed before the covariance can be considered to be negligible.
If the state-space is infinite, and 1 is an accumulation point for the set
of eigenvalues (there are an infinite number of eigenvalues arbitrarily
close to 1), then one must worry about this point. An important in-
stance of this occurs in telecommunications traffic, where long-range
dependence or self-similar traffic is regularly observed. We present
an example of this below, where PT functions are involved. �
Equations (8.2.12b) and (8.2.12c) can be computed as given, if k is small

enough. But as k increases it can become numerically unstable. However,
it can be evaluated by replacing YYY with its spectral decomposition over its
eigenvalues and eigenvectors. Let ui and v′

i be the left and right eigenvectors
of YYY with eigenvalue λi such that ui v′

i = 1 (remember that ℘℘℘ and ε′ε′ε′ are the
left and right eigenvectors with eigenvalue 1). Then

YYY = ε′ε′ε′℘℘℘ +
∑
i∗

λi v′
i ui,

where the ∗ denotes a sum over all terms excluding eigenvalue 1. Given that
ui v′

j = δij , it follows that

YYYk = ε′ε′ε′℘℘℘ +
∑
i∗

λk
i v′

i ui.

Although this is stable, it requires knowing all the eigenvectors and eigenval-
ues. However, it can also be written in a form where only ℘℘℘ has to be known.
Let

ȲYY := YYY − ε′ε′ε′℘℘℘,

where ȲYY has no unit eigenvalues and ȲYY ε′ε′ε′ = o′. Then

YYYk − ε′ε′ε′℘℘℘ = ȲYYk := (YYY − ε′ε′ε′℘℘℘)k

and (8.2.12a) can be written as

Cov(X, X+k) = ℘℘℘
[
VVV ȲYYk VVV

]
ε′ε′ε′. (8.2.13a)

462 8.3 Some Examples

Either of these two formulas can be used to evaluate Cov(X, X+k).
An interesting parameter sometimes evaluated in studying correlations is

their sum over all k. This cannot be done directly, because
∑

kYYYk diverges.
But when either of the two formulas above is put into (8.2.12a), one gets

∞∑
k=1

Cov(X, X+k) =
∑
i∗

λi

1− λi
[℘℘℘VVV v′

i] [uiVVVε′ε′ε′]

= ℘℘℘VVV ȲYY[III − ȲYY]−1VVV ε′ε′ε′. (8.2.13b)

We should mention that the sum over k converges only if |λi| < 1, for all i∗.

8.2.3 Laplace Transforms

The formulas from the previous section allow us to find an expression for the
Laplace transform of the convolution of two (correlated) variables. Let T =
Xn + Xn+k, then, using (8.2.10a) the pdf, fT (t), is given by the convolution
formula

fT (t) =
∫ t

o

fnk(x, t− x) dx.

Even for renewal processes this is not very easy to do [see Equations (3.5.2)].
However, The Laplace transform can be evaluated in a fashion identical to
that used to get (8.2.11c), giving:

F ∗
T (s) :=

∫ ∞

o

e−st fT (t) dt

= ℘℘℘o

[
YYYn−1 [III + sVVV]−1YYYk [III + sVVV]−1

]
ε′ε′ε′. (8.2.14)

Because of the term YYYk, it is clear that the Laplace transform of the distri-
bution of the sum of two random variables is not usually the product of their
transforms if they are correlated. Only when k becomes large enough does
YYYk ≈ ε′ε′ε′℘℘℘, yielding:

lim
k→∞

F ∗
T (s) = ℘℘℘n

[
[III + sVVV]−1

]
ε′ε′ε′ ℘℘℘

[
[III + sVVV]−1

]
ε′ε′ε′ = F ∗

Xn
(s)F ∗

X(s).

8.3 Some Examples

To clarify how the equations discussed in the previous sections can be applied
to specific systems, we now present several examples of Markov renewal pro-
cesses, each with a different matrix structure. We start with the simplest case,
a renewal process.

8 Semi-Markov Process 463

8.3.1 Departures from Overloaded Server: Renewal Process

As in Chapter 3, consider a server S that can be represented by the ME pair
〈〈〈 p , B 〉〉〉. Furthermore, imagine that there is an infinite queue of customers
waiting to use S. Then the state-space of the departure process is the same
as the set of phases making up the matrix representation. (This is equiva-
lent to Neuts’ infinitesimal generator of PH-renewal processes and forms the
substratum of his N-process [Ramaswami80]). It follows that

BBB = B. (8.3.1a)

The LLL matrix can be derived as follows. [Bε′ε′ε′]i is the probability rate of leaving
S from phase i, and [p]j is the probability that the next customer will start
in phase j. Therefore from its definition, we have

LLL = Bε′ε′ε′ p = BQ, (8.3.1b)

where Q = ε′ε′ε′ p, with properties given by Lemma 3.5.1. Next,

YYY = VBQ = Q. (8.3.1c)

Clearly, this YYY has the appropriate property that YYYε′ε′ε′ = ε′ε′ε′, and p is the
steady-state start-up vector ℘℘℘, satisfying (8.2.7).

From (8.2.8a) we can find QQQ for this example, namely

QQQ = BBB −LLL = B−BQ,

with left eigenvector

πππ =
1

Ψ[V]
pV.

This is the residual vector, πππr, as given in (3.5.12a), and B−BQ is the
matrix Br as given in the discussion following (3.5.11a). The reader is referred
to Section 3.5.3.1 for a full discussion of their meaning.

Following Theorem 8.2.1, we insert the values for VVV, BBB, and LLL from Equa-
tions (8.3.1) into (8.2.10a) and get (for n > 1)

fnk(x, t) = p[exp(−xB)B]Q [exp(−tB)B] ε′ε′ε′

=
[
p[exp(−xB)B]ε′ε′ε′

] [
p[exp(−tB)B] ε′ε′ε′

]
.

Using (3.1.7d), we get
fnk(x, t) = f(x) f(t). (8.3.2a)

This equation is true for all n > 1 and all k > 0, and is the condition that
two random variables be independent variables. For n = 1, the initial p is
replaced by some initial vector ℘℘℘o. Then (8.3.2a) becomes

f1k(x, t) = fX1(x) f(t). (8.3.2b)

As in Theorem 8.2.1, we see that all {Xi} are mutually independent and
(except perhaps for X1), are taken from the same distribution. Therefore,

464 8.3 Some Examples

as discussed in Section 3.5, this is a renewal process if ℘℘℘o = p. Otherwise
it is called a delayed renewal process, as defined by Feller [Feller71].
It has also been called a generalized renewal process. Needless to say,
all autocovariances are equal to 0. Apparently, it is not generally realized
(although well known in some circles) that the counting process (Definition
3.5.1) associated with any renewal process (with the Poisson process being
the lone exception) does have a non-vanishing covariance. See Section 3.5.4.2
for an example that displays this correlation.

8.3.2 Markov Modulated (or Regulated) Processes

All the processes in the next few sections involve a token that in the course of
its actions modulates, or regulates the customer departures. First we describe
how the token behaves. Then we discuss several ways that the token can
control traffic.

8.3.2.1 The Underlying Generator, QQQ
Consider a closed system with M servers, {Si ||| 1 ≤ i ≤ M}, each with ser-
vice time Ti with distribution represented by 〈〈〈 pi , Bi 〉〉〉 of dimension mi. The
representations are assumed to be mutually inequivalent. The token wanders
from server to server, spending a time Ti at Si and then with probability Pij

goes to Sj . The mean time the token spends at Si is t̄i := EEE[Ti] = pi Vi ε
′
iε
′
iε
′
i.

PPP is an M -dimensional Markov matrix with components [PPP]ij = Pij . That is,
Pe′ = e′Pe′ = e′Pe′ = e′, where e′e′e′ is an M -dimensional column vector, all of whose compo-
nents are 1. As with all Markov matrices there is a vector ppp satisfying

pPpPpP = ppp, and p e′p e′p e′ = 1.

Only one server can be active at a time, therefore the set of states needed
to describe this system is the union of the sets of states needed to describe
each Si. The vector space describing the process is the direct sum of the
individual spaces. So if Si is of dimension mi, the full space is of dimension

Mm :=
M∑
i=1

mi.

We are dealing here with three levels of matrices. Each server Si is described
by a set of matrices (e.g., Bi), the traffic between subsystems is governed by
matrices (e.g., PPP ij), and the overall system has a matrix description (e.g., PPP).
We hope to avoid confusion by standardizing our notation with the following
definition.

Definition 8.3.1
Consider an overall system S, which itself is made up of subsystems,
Si. Then matrices and vectors that refer to S as a whole are said to
operate in CCComposite-space, or simply CCC-space, and are denoted by
symbols of the form:

℘℘℘, πππ, BBB, III, LLL, PPP, QQQ, VVV, YYY, ε′ε′ε′ (bold−faced CALLIGRAPHICbold−faced CALLIGRAPHICbold−faced CALLIGRAPHIC).

8 Semi-Markov Process 465

Such matrices formally have dimension M , with components [WWW]ij,
where 1 ≤ i, j ≤M . However, each [WWW]ij is itself a matrix of dimension
mi ×mj . Therefore,WWW is really of dimension Mm ×Mm.

Matrices and vectors describing the individual subsystems Si are de-
noted by symbols of the form:

pi, Bi, Ii, Li, Pi, Qi, Vi, Yi, ε′iε
′
iε
′
i (bold−faced Roman).

These matrices have dimension mi, with components [Wi]kl, where
1 ≤ i ≤M , and 1 ≤ k, l ≤ mi.

Matrices and vectors that refer to transitions between the {Si} are
called interserver operators, and operate in III-space. They are de-
noted by symbols of the form:

aaa, ppp, BBB, III, PPP , VVV , QQQ, e′e′e′ (bold−faced Italicbold−faced Italicbold−faced Italic).

These matrices are of dimension M , with components [WWW]ij = Wij ,
where 1 ≤ i, j ≤M . In particular the transition matrix Pij , referred to
at the beginning of this section, is an element of PPP ; that is, Pij = [PPP]ij .

If mi = 1, for all i, then S reduces to an exponential network, and
CCC-space collapses to III-space (Mm = M). ���

We find it useful in this section (as well as in Section 9.3) to use the
following notation. Each Si has its characteristic matrices, and often they
appear as diagonal elements in the full space. We use the subscript “o” to
denote such matrices. For instance:

BBBo :=

⎡
⎢⎢⎣

B1 O · · · O
O B2 · · · O
· · · · · · · · · · · ·
O O · · · BM

⎤
⎥⎥⎦ , (8.3.3a)

with inverse

VVVo = BBB−1
o =

⎡
⎢⎢⎣

V1 O · · · O
O V2 · · · O
· · · · · · · · · · · ·
O O · · · VM

⎤
⎥⎥⎦ · (8.3.3b)

We also use the following notation

MMMo = Diag[M1, M2, . . . , MM]

to denote matrices of diagonal form. The different objects satisfy the rules of
Definition 8.3.1, namely, the (ij)th element ofBBBo is itself a matrix of dimension
mi ×mj , where mi is the dimension of the representation of Si.

Given that the token wanders forever from server to server, it is governed
by the same matrix described in Section 1.3.1, specifically, Equation (1.3.2c),
except that there the every Si was exponential. The token’s position in time
is governed by the rate matrix QQQ, satisfying QQQ = MMM(III − PPP). We should

466 8.3 Some Examples

be able to construct it in a straightforward manner. Clearly, MMM = MMMo =
Diag[M1, M2 . . . , MM]. The identity matrix III is also of this form with
identity matrices Ii of dimension mi on the diagonal. The transition matrix
can be seen to be

PPP = PPPo +

⎡
⎢⎢⎣

q′
1P11p1 q′

1P12p2 · · · q′
1P1MpM

q′
2P21p1 q′

2P22p2 · · · q′
2P2MpM

· · · · · · · · · · · ·
q′

MPM1p1 q′
MPM2p2 · · · q′

MPMMpM

⎤
⎥⎥⎦ · (8.3.3c)

Consider a typical term (PPP)ij = Piδij + q′
iPijpj. Say the token completes

service in phase k of server Si. He then either:
(1) Stays in Si [δij] and goes to phase l, [(Pi)kl], or
(2) Leaves Si [(q′

i)k], goes to Sj [Pij], enters, and goes to phase l,
[(pj)l].

By thinking of ε′ε′ε′ as the transpose of ε = [ε1, ε2, . . . , εM]ε = [ε1, ε2, . . . , εM]ε = [ε1, ε2, . . . , εM], it is easy to show
that PPPε′ε′ε′ = ε′ε′ε′ when P e′ = e′P e′ = e′P e′ = e′ even though Pi ε

′
iε
′
iε
′
i
= ε′iε

′
iε
′
i.

Our next task is to find QQQ =MMM(III − PPP). The above equations, together
with the properties Bi = Mi(Ii −Pi) and Mi q′

i = Bi ε
′
iε
′
iε
′
i yield

QQQ=MMM−MMMPPPo−

⎡
⎢⎢⎣

M1 q′
1P11p1 M1 q′

1P12p2 · · · M1 q′
1P1MpM

M2 q′
2P21p1 M2 q′

2P22p2 · · · M2 q′
2P2MpM

· · · · · · · · · · · ·
MM q′

MPM1p1 MM q′
MPM2p2 · · · MM q′

MPMMpM

⎤
⎥⎥⎦

= BBBo −

⎡
⎢⎢⎣

B1 ε′1ε
′
1ε
′
1P11p1 B1 ε′1ε

′
1ε
′
1P12p2 · · · B1 ε′1ε

′
1ε
′
1P1MpM

B2 ε′2ε
′
2ε
′
2P21p1 B2 ε′2ε

′
2ε
′
2P22p2 · · · B2 ε′2ε

′
2ε
′
2P2MpM

· · · · · · · · · · · ·
BM ε′Mε

′
Mε
′
MPM1p1 BM ε′mε

′
mε
′
mPM2p2 · · · BM ε′Mε

′
Mε
′
MPMMpM

⎤
⎥⎥⎦ ,

or
QQQ = BBBo −BBBo〈〈〈PPP 〉〉〉 = BBBo

[
III − 〈〈〈PPP 〉〉〉

]
, (8.3.3d)

where we have introduced a new embedding operation.

Definition 8.3.2
Let WWW be any M ×M matrix with components [WWW]ij = Wij . This can
be embedded into the full Mn ×Mn space of S in the following way.

〈〈〈WWW 〉〉〉 :=

⎡
⎢⎢⎣

W11 ε′1ε
′
1ε
′
1 p1 W12 ε′1ε

′
1ε
′
1 p2 · · · W1M ε′1ε

′
1ε
′
1 pM

W21 ε′2ε
′
2ε
′
2 p1 W22 ε′2ε

′
2ε
′
2 p2 · · · W2M ε′2ε

′
2ε
′
2 pM

· · · · · · · · · · · ·
WM1 ε′Mε

′
Mε
′
M p1 WM2 ε′Mε

′
Mε
′
M p2 · · · WMM ε′Mε

′
Mε
′
M pM

⎤
⎥⎥⎦· (8.3.4a)

Let aaa be any M -dimensional row vector with components [aaa]i = ai;
then the CCC-space, Mn row vector is:

〈〈〈 aaa ||| := [[[a1p1, a2p2, . . . aMpM]]]. (8.3.4b)

8 Semi-Markov Process 467

Let b′b′b′ be any M -dimensional column vector with components [b′b′b′]i = bi;
then the CCC-space Mn column vector is:

|||b′b′b′ 〉〉〉 := [[[b1ε
′
1ε
′
1ε
′
1, b2ε

′
2ε
′
2ε
′
2, . . . bMε′Mε

′
Mε
′
M]]]. (8.3.4c)

These operators can be very useful when dealing with networks of non-
exponential servers. For instance,

ε′ε′ε′ = [[[ε′1ε
′
1ε
′
1, ε′2ε

′
2ε
′
2, . . . , ε′Mε

′
Mε
′
M]]] = |||e′e′e′ 〉〉〉,

and suppose

℘℘℘ = 〈〈〈 ppp ||| := [[[p1 p1, p2 p2, . . . , pM pM]]].

LetWWW be any matrix in CCC-space, then

℘℘℘WWWε′ε′ε′ = 〈〈〈ppp |||WWW |||e′e′e′ 〉〉〉 = pW e′pW e′pW e′.

This algebra is discussed in full in Section 9.3. ���

We now examine several ways in which the token can regulate customer traffic.

8.3.2.2 Markov Regulated Departure Process (MRDP)

We define a Markov Regulated Departure Process (MRDP) as one in
which a customer departs every time the token leaves a server. It follows that
the time for the ith epoch is determined by where the token is after customer
i−1 leaves. We have already assumed that Pij is a Markov matrix, but if all
its rows are equal (Pij = Pkj = pj for all i, j, k; i.e., PPP = e′pe′pe′p) then the process
reduces to the renewal process of Section 8.3.1.

An alternate but equivalent picture is of an infinite queue feeding into a
network with M servers {Si | 1 ≤ i ≤M }, each with service time Ti from the
distribution represented by 〈〈〈 pi , Bi 〉〉〉 of dimension mi. The customers enter,
one at a time. When a customer departs from Si he leaves the network and
the next customer goes to Sj with probability Pij .

For MRDPs BBB is easy to express, because the time between customer
departures is the same as the time the token spends at Si. Therefore,

BBB = BBBo and VVV = VVVo. (8.3.5a)

Now that we have shown from (8.3.3d) that QQQ = BBBo −BBBo〈〈〈PPP 〉〉〉, LLL and YYY
follow directly:

LLL = BBB −QQQ = BBBo〈〈〈PPP 〉〉〉 (8.3.5b)

and
YYY = VVVLLL = VVVoBBBo〈〈〈PPP 〉〉〉 = 〈〈〈PPP 〉〉〉. (8.3.5c)

Because
∑M

j=1 Pij = 1 for all i (P e′P e′P e′ = e′e′e′), it follows that YYYε′ε′ε′ = ε′ε′ε′. It is not
hard to show that

YYYk = 〈〈〈PPP k 〉〉〉,

468 8.3 Some Examples

which can be useful in calculating autocorrelation lag-k, or EEE[Xk]. Note also
that if M = 1 (only one server) then 〈〈〈PPP 〉〉〉 reduces to Q = ε′ε′ε′ p.

The steady-state vector satisfying ℘℘℘YYY = ℘℘℘ is (see Definition 8.3.2):

℘℘℘ = 〈〈〈 ppp ||| := [p1p1, p2p2, . . . pM pM], (8.3.6a)

where pi is the ith component of the left eigenvector of PPP with eigenvalue 1
(i.e., pPpPpP = ppp). (Note that pi is a component of the M -vector, ppp corresponding
to the steady-state probability that the token will be found at Si, and pi is
the mi-vector whose kth component [pi]k is the probability that the token,
upon entering Si, will go to phase k.)

In anticipation of its usefulness later, we introduce the M -dimensional,
I-space matrix,

VoVoVo := Diag [t̄1, t̄2, . . . , t̄M],

where t̄j = pj Vj ε
′
jε
′
jε
′
j is the mean service time of Sj . It comes from

℘℘℘VVVo ε′ε′ε′ = 〈〈〈ppp |||VVVo |||e′e′e′ 〉〉〉 = p Vo e′p Vo e′p Vo e′.

We can now get πππ directly from (8.2.8b); that is,

πππ =
℘℘℘VVV

℘℘℘VVV ε′ε′ε′
=

1
℘℘℘VVVo ε′ε′ε′

[p1p1 V1, p2p2 V2, . . . pMpMVM]

=:
1

p Voe
′p Voe
′p Voe
′〈〈〈 ppp |||VVVo. (8.3.6b)

Given that πππε′ε′ε′ = 1, it follows that EEE[X] = p Vo e′p Vo e′p Vo e′ =
∑

pit̄i.
Let the initial vector be written in the form

℘℘℘o = [a1 w1, a2 w2, . . . , aM wM], with ℘℘℘o ε′ε′ε′ = 1, (8.3.7)

where aaa is an M -vector such that a e′a e′a e′ =
∑M

i=1 ai = 1 and wi ε
′
iε
′
iε
′
i = 1. That is,

the first customer is initially found at Si with probability ai, and in vector
state wi.

We defer actual derivation of these formulas to Section 9.3, but it follows
from (8.2.10b) that

EEE[Xn] = aPaPaPn−1Vo e′Vo e′Vo e′ =
M∑
i,j

ai(PPPn−1)ij t̄j for n > 1, (8.3.8a)

but

EEE[X1] =
M∑
i,j

ai [wi Vi ε
′
iε
′
iε
′
i]. (8.3.8b)

If n is very large, or the system started in its steady state (aj → pj and
wj → pj), then the mean interdeparture time becomes

EEE[X] = lim
n→∞EEE[Xn] = lim

n→∞℘℘℘oYYYnVVVε′ε′ε′ = ℘℘℘VVVε′ε′ε′ = p Vo e′p Vo e′p Vo e′ =
M∑
i=1

pi t̄i. (8.3.8c)

8 Semi-Markov Process 469

Recall that EEE[T �
i] = �!piV�

iε
′
iε
′
iε
′
i = Ψi[Vi

�]. Then

EEE[X2] = 2℘℘℘VVV2ε′ε′ε′ = 2
∑

piΨi[Vi
2] = 2p V (2)

o e′p V (2)
o e′p V (2)
o e′ =

∑
piEEE
[
T 2

i

]
,

where
V (2)

oV (2)
oV (2)
o := Diag[[[Ψ1[V1

2], Ψ2[V2
2], · · · , ΨM [VM

2]]]]

=
1
2
Diag[[[EEE[T 2

1], EEE[T 2
2], · · · , EEE[T 2

M]]]].

Note that V
(�)
oV
(�)
oV
(�)
o
= VoVoVo

� unless all Si are exponential.
The specific form for (8.2.12a) in this case is

Cov(X, X+k) = p Vop Vop Vo [PPP k − e′ p]Vo e′e′ p]Vo e′e′ p]Vo e′ =
∑
i,j

pi t̄i [PPP k − e′ pe′ pe′ p]ij t̄j (8.3.9a)

with interdeparture density

f(t) =
M∑
i=1

pi fi(t). (8.3.9b)

Some of the properties of these equations can best be seen by examining a
particular subsystem. The steady-state interdeparture density for a subsystem
with two servers (M = 2) follows.

Example 8.3.1: First, from pP = ppP = ppP = p, it is seen that p1 = P21/(P12+
P21) and p2 = 1− p1 = P12/(P12 + P21), so (8.3.9b) becomes

f(t) =
P21 f1(t) + P12 f2(t)

P12 + P21
,

and from (8.3.8c), the mean interdeparture time is

EEE[X] =
P21 t̄1 + P12 t̄2

P12 + P21
.

Using EEE[X�] = p1EEE[T �
1] + p2EEE[T �

2] and σ2 = EEE[X2]− (EEE[X])2, it follows
that

σ2 = p1σ
2
1 + p2σ

2
2 + p1p2(t̄1 − t̄2)2.

From (8.3.9a), the steady-state covariance lag-k [(1−P12−P21) is the
other eigenvalue of P] becomes

Cov(X, X+k) = P12 P21(1− P12 − P21)k

(
t̄1 − t̄2

P12 + P21

)2

,

and from (8.2.13b),

∞∑
k=1

Cov(X, X+k) =
P12 P21 (1− P12 − P21)

P12 + P21

(
t̄1 − t̄2

P12 + P21

)2

·

470 8.3 Some Examples

It is clear that if the t̄is are equal, then all covariances are 0. All
covariances are also 0, if P12 = P22. For then P12 + P21 = 1 and
PPP = e′pe′pe′p. That is, what happens in each epoch is independent of what
happened in the previous epoch.

On the other hand, if P12 = P21 = 1 (PPP is cyclic), then

Cov(X, X+k) = (−1)k

(
t̄1 − t̄2

2

)2

.

In this case, the limit as k →∞ does not exist, and the sum over k
does not converge! [See Theorem 8.2.2.]

For a last word we look at the autocorrelations, r̂(k) =
Cov(X, X+k)/σ2. They depend on S1 and S2 only through their vari-
ances. The bigger σ2

1 and σ2
2 are, the smaller is r̂(k). In the other di-

rection, if the two distributions are deterministic, their variances equal
0 and

r̂(k) = (1− P12 − P21)k.

The dependence on the distributions is completely gone; and all that
remains is a “coin-flipping” game. The Bernoulli process corresponds
to P12 = P21 with r̂(k) = 0. The probability of flipping a 1 is P11 = P21.
If P12 does not equal P21, the game is biased in that the probability of
a 1 depends on the result of the previous flip. �

What is most interesting about these processes is that their mean epoch
times (EEE[Xn]) and correlations depend only on the means (t̄i) of the different
distributions, and not the distributions or even the higher moments. Thus,
even two exponential servers regulated this way will produce a non-renewal
process.

8.3.2.3 Markov Modulated Poisson Process (MMPP)

The most widely used SMPs are MMPPs. In particular, they have been used
to model voice traffic, and recently, all telecommunications traffic (see, for
instance, [Meier-Fischer92] and [Park-Will00]). In the previous section
we defined the MRDP, where a “token” wanders from one server to another,
spends a time Tj at Sj with distribution generated by 〈〈〈pj, Bj 〉〉〉, at which
time one customer departs the system, and the token moves to another server
according to the matrix PPP (8.3.5c). In this section the token still wanders
from Si to Sj , but now customers depart continuously at a Poisson rate of λj

while the token is at Sj . That is, the time between departures is exponentially
distributed, with mean 1/λj , and on average, λjEEE[Tj] customers leave while
the token is at j. Thus the token modulates the rate at which customers depart
by moving from one station to another.

Most applications of MMPPs assume that each Tj is exponentially dis-
tributed. But here we assume that they are as described in Section 8.3.2.1
and have nonexponential distributions. Therefore, the token’s behavior is gov-
erned by the QQQ of (8.3.3d). When viewed as an M -dimensional system, the

8 Semi-Markov Process 471

time the token spends at Si is indeed nonexponential. But if one looks at
QQQ as an Mm-dimensional system, where each phase is thought of as a server,
then the structure is again that of exponential servers. From a modeling point
of view (that’s what is important) we have a generalization of MMPPs. But
from a purely mathematical view, this is still an MMPP (and a restricted one
at that).

From its description, LLL is easy to write down, being:

LLL = LLLo :=

⎡
⎢⎢⎣

λ1I1 O · · · O
O λ2I2 · · · O
· · · · · · · · · · · ·
O O · · · λMIM

⎤
⎥⎥⎦· (8.3.10a)

Note that adding a term of the form λb III toLLL, doesn’t change its structure and
doesn’t change QQQ either. But this can then be interpreted either as increasing
the rate at each server, or as an MMPP with a background (or merged with
a) Poisson process of rate λb. We also have occasion to use the M -dimensional
matrix LoLoLo := Diag[λ1, λ2, . . . , λM].

We have another notational point to make. The matrices, BBB, VVV, LLL, andQQQ
have the same physical meaning from application to application, but they
may have completely different structures. On the other hand, the matrices
with subscript “o” (e.g., LLLo) are always block diagonal matrices, and may
have no physical meaning in any particular application. For a summary of
useful matrices, see Table 8.3.1 below.

In discussing overloaded servers in Section 8.3.1, we easily set up BBB and
LLL, and thereby were able to get QQQ. In Section 8.3.2.2, for MRDPs we first set
up BBB and QQQ, from which LLL followed. Here we have set up QQQ and LLL for the
MMPP and now have

BBB = LLL+QQQ = LLLo +BBBo −BBBo〈〈〈PPP 〉〉〉, (8.3.10b)

where QQQ is from (8.3.3d) and BBBo is from (8.3.3a).
The inverse of BBB can be found using a technique similar to that used

in Lemma 4.2.1. We present the result here, and those who wish to know
more about the algebra of CCC embeddings are referred to Section 9.3. First
manipulate (8.3.10b), recalling that both VVVo and LLLo are block diagonal and
commute with each other, but not with 〈〈〈 PPP 〉〉〉. That is, LLLoVVVo = VVVoLLLo but
LLLo〈〈〈 PPP 〉〉〉
= 〈〈〈 PPP 〉〉〉LLLo. We get

VVV = BBB−1 =
[
III −DDDo〈〈〈 PPP 〉〉〉

]−1

VVVoDDDo, (8.3.10c)

where
DDDo := [[[III +LLLoVVVo]]]−1 = Diag[[[D1, D2, . . . , DM]]]

with Di = [Ii + λiVi]−1. Furthermore,

DDDo := Diag[d1, d2, . . . , dM], where di = pi Di ε
′
iε
′
iε
′
i.

472 8.3 Some Examples

We next make use of the special properties of 〈〈〈 PPP 〉〉〉 to take the inverse of an
Mm ×Mm matrix by embedding the inverse of an M ×M matrix:[

III −DDDo〈〈〈 PPP 〉〉〉
]−1

= III +DDDo〈〈〈 (I − PDoI − PDoI − PDo)−1PPP 〉〉〉
and put this into (8.3.10c) to get

VVV =
[
III +DDDo〈〈〈 (I − PDoI − PDoI − PDo)−1PPP 〉〉〉

]
VVVoDDDo. (8.3.10d)

As was shown in Theorem 3.1.1, di = B∗(λi), the Laplace transform of the
distribution generated by 〈〈〈pi, Bi 〉〉〉 and can be interpreted as the probability
that the token will leave Si before any customers depart. We take a closer
look at this in the next section.

The matrix YYY comes easily:

YYY = VVVLLL =
[
III +DDDo〈〈〈 (I − PDoI − PDoI − PDo)−1PPP 〉〉〉

]
VVVoDDDoLLLo. (8.3.10e)

It is useful at times to use the identity DDDoVVVoLLLo = III −DDDo, while noting that
the three matrices commute with each other.

There are three advantages of using this notation. First, the internal struc-
ture of the matrices is more explicit (once one gets used to the notation).
Second, the inverses of matrices are found by inverting matrices of smaller
dimension. Third, one can go further by analytic manipulation rather than
having to resort to numerical computation. The manipulations can occur with-
out having to resort to a particular distribution representation; that is, the
expressions are valid for all distributions.

We next find the steady-state mean interdeparture time. First we find ℘℘℘
and πππ. We have actually done most of the work already. TheQQQ of this section
is the same as that in the previous section, therefore so is πππ, as given in
(8.3.6b). First multiply πππ by LLL [remembering that for MMPP, LLL = LLLo from
(8.3.10a)]

πππLLL =
1∑
pit̄i

[[[p1p1 V1, p2p2 V2, . . . , pMpMVM]]]LLLo

=
1∑
pit̄i

[[[p1p1 V1λ1, p2p2 V2λ2, . . . , pMpMVMλM]]] =
1

p Vo e′p Vo e′p Vo e′
〈〈〈 ppp |||VVVoLLLo.

Thus,

πππLLLε′ε′ε′ =
∑M

i=1 pit̄iλi∑M
i=1 pit̄i

=
p VoLoe

′p VoLoe
′p VoLoe
′

p Voe
′p Voe
′p Voe
′ · (8.3.11a)

The steady-state vector comes directly from (8.2.8e) and satisfies ℘℘℘ε′ε′ε′ = 1.

℘℘℘ =
πππLLL

πππLLLε′ε′ε′ =
1

p VoLoe
′p VoLoe
′p VoLoe
′〈〈〈 ppp |||VVVoLLLo. (8.3.11b)

We can now find EEE[X] = ℘℘℘VVVε′ε′ε′. But wait; from (8.2.8c) and (8.3.11a) we
already know what it is, namely:

EEE[X] = ℘℘℘VVVε′ε′ε′ =
1

πππLLLoε′ε′ε′
=

p Voe
′p Voe
′p Voe
′

p VoLoe
′p VoLoe
′p VoLoe
′ · (8.3.11c)

8 Semi-Markov Process 473

This has a straightforward physical interpretation. The numerator is the av-
erage time spent by the token per visit to some Si, averaged over all servers.
The term t̄iλi = (VoLoVoLoVoLo)ii is the average number of departures while the token
is at Si. Thus the denominator is the average number of departures per token
visit, averaged over all visits.

Keep in mind that (8.3.11c) is only valid for steady-state epochs. If the
system is in some vector state, say ℘℘℘o, or ℘℘℘n = ℘℘℘oYYY (the nth customer has
just departed), then one must compute

EEE[Xn+1] = ℘℘℘nVVV ε′ε′ε′

using (8.3.10c). This takes some skill and practice to do analytically (see
Section 9.3). However, all the moments, and even autocorrelation coefficients
are easy to compute.

In the rest of this subsection we look at applying MMPP’s to problems in
telecommunications. We show how to use physical arguments to make math-
ematical changes to the model.

8.3.2.4 Augmented MMPP’s (AMMPP)

There is one problem with this model, particularly for the ON-OFF pro-
cesses we will be discussing later. As was mentioned in the discussion fol-
lowing (8.3.10c), di is the probability that the token will leave Si without
any packets departing (customers are now called packets, or cells). That is,
sometimes a token’s visit to Si will result in no sent packets. If the mean
number of packets per visit is large, then di will be small and nothing need
be done. But if that is not the case, then some modifications must be made.
After all, by definition each ON interval must have at least one packet. After
all, it represents actual transmission, not merely permission to transmit.

Thus we introduce the Augmented MMPP (AMMPP). The token wan-
ders through the system as usual. While it is at Si, customers depart at rate
λi. But when the token leaves Si, another customer leaves. Thus, QQQ is the
same as in the two previous sections, but LLL is the sum of the MRDP and
MMPP LLLs. (note that the resulting AMMPP is not an MMPP. That is [from
(8.3.3d)]:

QQQ = BBBo −BBBo〈〈〈P〉〉〉 (8.3.12a)

and [adding (8.3.5b) to (8.3.10a)]

LLL = LLLo +BBBo〈〈〈P〉〉〉. (8.3.12b)

Then

BBB =QQQ+LLL = BBBo −BBBo〈〈〈P〉〉〉+BBBo〈〈〈P〉〉〉+LLLo = BBBo +LLLo (8.3.12c)

and
VVV = [BBBo +LLLo]−1 = VVVo[III +LLLoVVVo]−1 = VVVoDDDo. (8.3.12d)

474 8.3 Some Examples

The various matrices for all three schemes are presented in Table 8.3.1 for
comparison and reference.

Table 8.3.1. Comparison of Processes

MRDP MMPP AMMPP
QQQ BBBo −BBBo〈〈〈P〉〉〉 BBBo −BBBo〈〈〈P〉〉〉 BBBo −BBBo〈〈〈P〉〉〉
LLL BBBo〈〈〈P〉〉〉 LLLo LLLo +BBBo〈〈〈P〉〉〉
BBB BBBo LLLo +BBBo −BBBo〈〈〈P〉〉〉 BBBo +LLLo

VVV VVVo XXX oVVVoDDDo VVVoDDDo

YYY 〈〈〈P〉〉〉 XXX oVVVoDDDoLLLo III −DDDo +DDDo〈〈〈P〉〉〉
πππ κo〈〈〈 ppp |||VVVo κo〈〈〈 ppp |||VVVo κo〈〈〈 ppp |||VVVo

℘℘℘ 〈〈〈 ppp ||| κ1 〈〈〈 ppp |||VVVoLLLo κ2 〈〈〈ppp ||| (III +VVVoLLLo)

℘℘℘VVV 〈〈〈 ppp |||VVVo κ1〈〈〈 ppp |||VVVo κ2〈〈〈 ppp |||VVVo

EEE[X] p Voe
′p Voe
′p Voe
′ κ1/κo κ2/κo

Notes:
1. All three have the same QQQ, and therefore the same πππ;
2. Given ℘℘℘ = cπππBBB [from (8.2.8e)], the vectors, ℘℘℘VVV, must be proportional to
πππ and to each other;
3. The number of departures per visit for the augmented process is one more
than that for the MMPP, and of course, the number of departures per visit
for the MRDP is 1 (see the denominators of EEE[X]);
4. XXX o := [III −DDDo〈〈〈PPP 〉〉〉]−1 = III +DDDo〈〈〈PPP (I −DoPI −DoPI −DoP)−1 〉〉〉;
5. κo := (p Voe

′p Voe
′p Voe
′)−1;

6. κ1 := (p VoLoe
′p VoLoe
′p VoLoe
′)−1;

7. κ2 := (p VoLoe
′p VoLoe
′p VoLoe
′+1)−1

8.3.2.5 ON-OFF Models (Bursty Traffic)

Researchers in telecommunications have long been aware that information
traffic (e.g., voice communication or transmission of data packets) is very
non-uniform. (see, e.g., Leland et al. [Lelandetal94].) That is, the amount
of traffic from time interval to time interval fluctuates enormously. This kind
of behavior is called bursty. It is explained, at least for voice, as follows.
While someone is speaking, data flows at a peak rate, but when that person
stops speaking, no data are transmitted until someone speaks again. This can
satisfactorily be modeled by a 2-state MMPP model, where, say, λ1 = λp is
the peak rate at which information flows when someone is talking (S1 rep-
resents the ON time), and λ2 = 0 when there is silence (S2 represents the

8 Semi-Markov Process 475

OFF time). This has been called a one-burst process. If the times between
packets during an ON time are exponentially distributed (the usual assump-
tion) the system is also called an Interrupted Poisson Process (IPP) (see,
e.g., [Lee-Lief-Wallace00]). When one analyzes the superposition of sev-
eral voice streams, it is difficult to tell where the ON and OFF periods are,
but the burstiness remains. Still, satisfactory MMPP models were constructed
where several servers, corresponding to 1, 2, . . . , n simultaneous voice streams
were included. In this case, λn = nλ1. Reasonable PPP matrices were constructed
to reflect the probability that a new voice stream will join in, or a present one
will stop. We might call these ON-OFF MMPP’s (OOMMPP).

As data transmission became more common the MMPP models were found
to be less and less useful. Further examination of data streams showed that
there was long-range autocorrelation [CrovellaBestavros96]. That is,
r̂(k) [see (8.2.12c)] remains measurable for very large k. This could not be
modeled by the then-existing models. But further measurements of data re-
vealed that the size of transmitted files is power-tailed for many orders of mag-
nitude; see Hatem [Hatem97], Lipsky [LipGargRobbert92], and Crovella
[CrovellaBestavros96]. See Section 3.3 for a full discussion, including the
TPTs. When files are to be transmitted they are first broken up into packets.
The packets are then sent in a smooth (Poisson?) manner, for a period of time
which is PT. That is, the ON times must be power-tail distributed. The model
presented in Section 8.3.2.3 is adequate, even reproducing the long-range au-
tocorrelation, if a good representation of PT distributions is used. Strictly
speaking, PT functions require infinite representations, but in Section 3.3.6.2
we present a truncated variety that has been shown to be more than adequate
(see Schwefel [Schwefel00]).

Perhaps the best way to become familiar with all the above matrices is by
an example. Let us consider a simple ON-OFF model. It shows that previously
unknown properties can be discovered without actually having to specify the
PDFs of the Sis. In fact, we come up with some interesting results.

Example 8.3.2: Consider a system with two servers S1 and S2,
with distributions represented by 〈〈〈p1, B1 〉〉〉 and 〈〈〈p2, B2 〉〉〉, respectively.
While the token is at S1 a data source sends a burst of packets at a
peak rate of λp for a time T1. When the burst is over, the token goes
to S2 for a time T2, during which time no packets are sent (λ2 = 0).
The token then returns to S1, repeating the process indefinitely. The
matrices describing the system are:

PPP =
[

0 1
1 0

]
, 〈〈〈PPP 〉〉〉 =

[
01 ε′1ε

′
1ε
′
1 p2

ε′2ε
′
2ε
′
2 p1 02

]
,

ppp =
[
1
2
,

1
2

]
, ε′ε′ε′ =

[
ε′1ε
′
1ε
′
1

ε′2ε
′
2ε
′
2

]
= |||e′e′e′ 〉〉〉,

and (using DDDo = [III +LLLoVVVo]−1 with D1 = [I + λpV1]−1)

LLLo =
[

λpI1 0
0 0

]
, BBBo =

[
B1 0
0 B2

]
,

476 8.3 Some Examples

VVVo =
[

V1 0
0 V2

]
, DDDo =

[
D1 0
0 I2

]
.

The matrices governing the 2-server MMPP ON-OFF process follow.

LLL = LLLo, QQQ =
[

B1 −B1ε
′
1ε
′
1ε
′
1p2

−B2ε
′
2ε
′
2ε
′
2p1 B2

]
,

BBB =
[

B1 + λpI1 −B1ε
′
1ε
′
1ε
′
1p2

−B2ε
′
2ε
′
2ε
′
2p1 B2

]
,

(using d := p1D1ε
′
1ε
′
1ε
′
1)

VVV =

⎡
⎣ V1D1 + 1

1−dD1ε
′
1ε
′
1ε
′
1p1V1D1

1
1−dD1ε

′
1ε
′
1ε
′
1p2V2

1
1−dε′2ε

′
2ε
′
2p1V1D1 V2 + d

1−dε′2ε
′
2ε
′
2p2V2

⎤
⎦ ,

℘℘℘ =
1
t̄1

[p1V1, o], YYY = λp

⎡
⎣ V1D1 + 1

1−dD1ε
′
1ε
′
1ε
′
1p1V1D1 0

1
1−dε′2ε

′
2ε
′
2p1V1D1 0

⎤
⎦ .

πππ =
1

p Vo e′p Vo e′p Vo e′
〈〈〈ppp |||VVVo =

1
t̄1 + t̄2

[p1V1, p2V2],

℘℘℘VVV =
1

p Voe
′p Voe
′p Voe
′〈〈〈p |||VVVop |||VVVop |||VVVo =

1
λpt̄1

[p1V1, p2V2].

We now find the mean and variance of the interdeparture times. The
mean is simple enough to evaluate. It is

EEE[X] = ℘℘℘VVVε′ε′ε′ =
t̄1 + t̄2

n̄p
, (8.3.13a)

where n̄p := λpt̄1 is the mean number of packets per cycle and the nu-
merator is the total time for one cycle. Considered as a flow of packets,
the mean flow rate κ [see 8.2.8d] is [the same as 1/(℘℘℘VVVε′ε′ε′)]:

κ := πππLLLε′ε′ε′ =
[

t̄1
t̄1 + t̄2

]
λp.

In many applications it is possible to change λp, by for instance, in-
creasing the transmission speed of data. At that moment, the amount
of data to be sent is fixed, therefore t̄1 decreases in such a way that
n̄p remains constant. Therefore, at least for ON-OFF models, it is ap-
propriate to replace λpt̄1 by n̄p. The typical picture is of data being
prepared for transmission and then sent to the transmitter. In this sce-
nario, even if the data are transmitted more rapidly, the next batch of
data won’t be ready for transmission until one full cycle later. In other
words t̄1 + t̄2, like n̄p, is constant. In such cases the burst parame-
ter, b, can be a useful variable for describing the performance of the
application.

b :=
t̄2

t̄1 + t̄2
= 1− κ

λp
. (8.3.13b)

8 Semi-Markov Process 477

When b = 0, λp = κ, and the OFF time is 0; that is, there is no
burstiness and the traffic is pure Poisson. As λp increases unboundedly,
b → 1, and in the limit, all the packets are sent at the same time,
that is, in bulk. When packets arrive at a server in this manner, it is
called a bulk arrival process, or batch arrival process. (See, e.g.,
[Gross-Harris98].)

Perhaps the easiest way to find the variance is to first evaluate VVVε′ε′ε′.
We do that now, finding

VVVε′ε′ε′ =

⎡
⎢⎣

1
λp

ε′1ε
′
1ε
′
1 + t̄2

1−dD1ε
′
1ε
′
1ε
′
1

1
λp

ε′2ε
′
2ε
′
2 + t̄2d

1−dε′2ε
′
2ε
′
2 + V2ε

′
2ε
′
2ε
′
2

⎤
⎥⎦ ·

We know that EEE[X2] = 2℘℘℘VVV2ε′ε′ε′, so

σ2
X = 2(℘℘℘VVV)(VVVε′ε′ε′)− [EEE[X]]2

=
1

λpt̄1
σ2

2 +
1

(λpt̄1)2

[
t̄21 + 2t̄1t̄2 + (λpt̄1 − 1)t̄22 +

2λpd

1− d
t̄1t̄

2
2

]

=
1
n̄p

σ2
2 +
(

1
n̄p

)2 [
(t̄1 + t̄2)2 +

2n̄pt̄
2
2

1− d
− (n̄p + 2)t̄22

]
. (8.3.13c)

This somewhat unwieldy expression can be brought into simpler form
by looking at the squared coefficient of variation:

C2
X :=

σ2
X

EEE[X]2
= 1 + b2

[
n̄pC

2
2 +

2n̄p

1− d
− (n̄p + 2)

]
. (8.3.13d)

If b = 0 (t̄2 = 0), then C2
X = 1 corresponding to a Poisson process.

The dependence of C2
X on the OFF time distribution is explicit in C2

2 ,
but the dependence on the ON time is implicitly contained in the be-
havior of d. In fact, all properties of this ON-OFF model depend on the
ON time distribution through powers of D1 = (I1 + λpV1)−1. This,
in turn, seems to depend on the peak rate λp as well. But in our model
the two are intimately connected, not merely through n̄p = λpt̄1. After
all, during an ON time a certain number of packets are transmitted,
and that should be independent of how fast they are sent. That is, the
distribution of T1 depends on the distribution of the number of packets
in a burst.

In Definition 3.2.1 we introduced the equivalence relation that groups
together functions that have the same shape. Let V̂1 generate a func-
tion with the same shape as V1, but with mean p1V̂1ε

′
1ε
′
1ε
′
1 = 1. Then T1

has a distribution generated by 〈〈〈p1, t̄1V̂1 〉〉〉, with mean EEE[T1] = t̄1. We
see, then, that

D1 = (I1 + λpt̄1V̂1)−1 = (I1 + n̄pV̂1)−1.

478 8.3 Some Examples

n̄p is assumed to be the same irrespective of the peak rate; consequently
we see that D1 is also independent of λp.

We now go one step further. In Section 4.4.1 we found a relationship
between the exponential moments αk(s) and the matrices, Dk. From
(4.4.1a) we have

αk(s) =
∫ ∞

o

(sx)k

k!
e−sx b(x) dx = Ψ[(I−D)kD] = Ψ[(sVD)kD].

If we identify s with λp and D(s) with D1(λp), we can interpret αk

to be the probability that exactly k packets are sent during an ON
period. Given that D1 is independent of λp, so is αk. This can also
be seen directly from the integral term. From Definition 3.2.1 we have
b(x) = b̂(x/t̄1)/t̄1. We put this into the equation above, let x = t̄1u,
recognize that λpt̄1 = n̄p, and get:

αk(n̄p) =
∫ ∞

o

(n̄pu)k

k!
e−n̄pu b(u) du.

Thus, the number of packets per ON time does not depend on λp or
t̄1 independently.

As a specific example, if T1 is exponentially distributed, we get

de = Ψ[(I + λpV1)−1] =
1

1 + n̄p

and C2
X simplifies to C2

Xe
= 1 + n̄p b2(C2

2 + 1).

If all ON times are the same (T1 = t̄1; i.e., the deterministic distribu-
tion), then dd = e−n̄p and

C2
Xd

= 1 + b2

[
n̄pC

2
2 +

2n̄p

1− e−n̄p
− (n̄p + 2)

]
·

For fixed b, n̄p, and C2
2 this expression provides a lower bound on

C2
X , but there is no upper bound. Recall that d is the probability that

an ON time will end without any packets. Also, distributions where
the vast majority of ON times are very small are possible, leading to
a value for d that can be very close to 1, making 1/(1− d) arbitrarily
large in (8.3.13d). �
The formula for the autocovariance leads to two interesting results, which

we state as theorems. The following is really a corollary to Theorem 8.2.1.

Theorem 8.3.1: For any pure MMPP ON-OFF arrival process,
if the ON-time distribution is exponentially distributed, then the pro-
cess is a renewal process (the interarrival times are iid). This is true
irrespective of the OFF-time distribution. The interarrival times are
represented by 〈〈〈℘℘℘, BBB〉〉〉, where

BBB =
[

μ1 + λp −μ1p2

−B2ε
′
2ε
′
2ε
′
2 B2

]

8 Semi-Markov Process 479

and ℘℘℘ = [1, 0, . . . , 0]. �

Proof: The formulas of Example 8.3.2 apply here with the following
substitutions: I1 → 1, B1 → μ1 := 1/t̄1, V1 → t̄1, p1 → 1 D1 →
1/(1 + n̄p), and ε′1ε

′
1ε
′
1 → 1. Then

LLL =⇒ λp

[
1 o
o′ 0

]
= λp

[
1
o′

]
℘℘℘;

that is, [LLL]11 = 1 and all other elements are 0. Also,

YYY =⇒
[

1 o
ε′2ε
′
2ε
′
2 0

]
= ε′ε′ε′℘℘℘.

This makes LLL and YYY rank-1 matrices. Therefore by Theorem 8.2.1
the process is a renewal process. Each departure epoch (time between
departures) can be described in the following way. The customer starts
in S1. Because it is exponential no p1 vector is necessary. Then, after
mean time t̄1 he either departs [with probability n̄p/(1 + n̄p)] or goes
to S2. After a mean time of t̄2 = p2V2ε

′
2ε
′
2ε
′
2, he returns to S1. The cycle

continues until he finally departs. Each new customer begins at the
exponential server, so the interdeparture times are iid. QED

The second interesting result concerns autocovariance and autocorrelation,
and is given in the following.

Theorem 8.3.2: The Cov(X, X+k)s are independent of the OFF-
time distribution. Also, r̂(k) varies inversely with σ2

OFF but no other
moments. �

Proof: The autocovariance lag-k is given by (8.2.12b), but first we
look at (8.2.12a). From the previous example we see that YYY is of the
form

YYY =
[

A 0
B 0

]
·

Direct multiplication shows that

YYYk =
[

Ak 0
BAk−1 0

]
=
[

A 0
B 0

] [
Ak−1 0

0 0

]

and ℘℘℘VVVYYY is of the form [[[a1, o]]]. Thus, from (8.2.12a), EEE[X, X+k] is of
the form

[℘℘℘VVVYYY]YYYk−1 [VVVε′ε′ε′] = [[[a1, o]]]
[

Ak−1 0
0 0

] [
c′1
d′

2

]
= a1 Ak−1c′1,

where

a1 =
1

λpt̄1

[
p1V1 +

t̄2
1−d

p1(I1−D1)
]

,

A = λp

[
V1D1 +

1
1−d

D1ε
′
1ε
′
1ε
′
1p1V1D1

]
,

480 8.3 Some Examples

and

c′1 =
[

1
λp

ε′1ε
′
1ε
′
1 +

t̄2
1−d

D1ε
′
1ε
′
1ε
′
1

]
.

The calculations can be done entirely in S1 space. Next, from (8.2.12b)
and (8.3.13a),

Cov(X,X+k) = a1 Ak−1c′1 −
[
t̄1 + t̄2
λpt̄1

]2
. (8.3.14a)

By looking at A, a1, c′1, and EEE[X] it is clear that Cov(X,X+k) does
not depend on the OFF-time distribution, except for t̄2. In other words,
it is the same for every OFF-time distribution with the same mean.
However, it depends very heavily on the ON-time distribution through
the operators V1 and D1, and is different for each value of k because
they will appear in ever-increasing powers with increasing k.

The autocorrelation coefficient lag-k is found from (8.2.12c) and
(8.3.13c) by evaluating:

r̂(k) =
Cov(X,X+k)

σ2
X

. (8.3.14b)

r̂(k) behaves in a manner similar to Cov(X,X+k) in that systems with
different OFF-time distributions will show proportional behavior for
all k. Interestingly, if the OFF-time is PT, with σ2

2 =∞, then σ2
X =∞

and r̂(k) = 0 even though the autocovariance is finite and measurable.
Even if the PT is truncated, σ2

2 may be extremely large, and r̂(k) may
be too small to measure. QED

But if there is some background Poisson traffic, then all bets are off. Customers
depart during the OFF-times, and all those components that were identically
0 are now finite. Several researchers have observed behavior such as that de-
scribed here [AntoniosSchwefelLip07]. Perhaps this analysis will explain
those results. We go into this further after the following example.

Example 8.3.3: Here we find an explicit algebraic expression for
r̂(1). From (8.3.14a),

Cov(X,X+1)

=
1
n̄p

[
p1V1 +

t̄2
1−d

p1(I1−D1)
][

1
λp

ε′1ε
′
1ε
′
1 +

t̄2
1−d

D1ε
′
1ε
′
1ε
′
1

]
−
[
t̄1 + t̄2

n̄p

]2
.

From Example 8.3.2, d = αo(n̄p) and the covariance can be written as

Cov(X,X+1) =
[

t̄2
n̄p

]2 [
n̄pα1(n̄p)

[1− αo(n̄p)]2
− 1
]
·

Combining this with (8.3.13c), we get

r̂(1) =
b2
[

n̄pα1
(1−αo)2

− 1
]

1 + b2
[
n̄p C2

2 + 2n̄p

1−αo
− (n̄p + 2)

] ·

8 Semi-Markov Process 481

Well, it could have turned out messier. It does display the properties we
established previously. For instance, if b → 0 then r̂(1) = 0, as should
be the case for all r̂(k), because in that limit the process becomes a
Poisson process. Furthermore, it depends on S2 only through C2

2 and
decreases with increasing variance. In addition, it only depends on the
probabilities of having 0 or 1 packet in the ON period.

Last, for exponential ON times,

αk(n̄p) =
[

n̄p

n̄p + 1

]k 1
n̄p + 1

·

As would be expected, geometric distribution of packets per burst
yields exponential ON times, and it is independent of λp and t̄1. It
also follows that r̂(1) = 0, consistent with Theorem 8.3.1. �

MRP’s with Background Poisson Traffic Added

We now return to the question of what happens when there is background
Poisson traffic. Here, for any MRP, whatever phase the token is in, the back-
ground source produces at the rate λb. The QQQ matrix doesn’t change, and LLL
is modified to:

LLLb = LLL+ λbIII
and BBB is modified to

BBBb =QQQ+LLLb = BBB + λbIII.
We look at the special case of merging renewal processes in Section 8.3.3. If
one of them is Poisson, then that is equivalent to what we have here. But right
now we are interested in what happens to an ON-OFF process. If the term
λbIII is added to LLL in Example 8.3.2, then the result is a process that looks
exactly like any 2-server MMPP. This leads us to the following theorem.

Theorem 8.3.3: Every MMPP is equivalent to some ON-OFF
MMPP with background Poisson traffic. �

Proof: Consider any MMPP with QQQ, LLL, and BBB given. Because the
process is MMPP,

LLL = Diag[λ1I1, λ2I2, · · · , λMIM].

Define λb as the smallest λs. That is

λb := Min{λi|1 ≤ i ≤M}.
We now construct an ON-OFF process (using subscript “oo”) as fol-
lows. Let

LLLoo = LLL − λbIII, QQQoo =QQQ, and BBBoo = BBB − λbIII.
Then {LLLoo, BBBoo, QQQoo} is an ON-OFF process. After all, while the to-
ken is visiting the server corresponding to λb no packets are leaving;
that is, it’s OFF. We can now reverse the process by adding λbIII to the
ON-OFF process and end up with the original MMPP. QED

482 8.3 Some Examples

One might ask if this is true in general. The answer is “No.” It is true for
MMPP’s because of the particular structure of LLL, but each process must be
examined individually. We show this in what follows.

Modified Augmented ON-OFF MMPP Model (MAOOMMPP)

We next examine the augmented MMPP that is also an ON-OFF process
(MAOOMMPP). This process forces the ON server to yield at least one packet
per token visit. But it cannot be a special case of the AMMPP model presented
in Section 8.3.2.4. There, every token visit to every server produced at least
one packet. This must not be allowed to happen at the OFF server. The way
we augmented the MMPP model was to add BBBo〈〈〈PPP 〉〉〉 to LLL. A particular term
in that matrix is Biε

′
iε
′
iε
′
iPijpj, or Mi q′

iPijpj. Its interpretation is as follows.
Start with the token finishing in phase k of server Si [(Mi)kk], leaving Si

[(qi)k], going to Sj [(PPP)ij], and finally going to phase � in Sj [(pj)�]. Because
this is a term in the LLL matrix, it causes a customer to depart. If Si is the
OFF server, then this shouldn’t happen. Therefore we modify the augmented
model by setting that corresponding row (now call it �) to 0. That is, the
matrix block BBB���j =OOO. This can be done formally by defining IIIoo as

IIIoo := Diag[I1, . . . , I�−1, 0, I�+1, · · · , IM].

Then the Modified Augmented ON-OFF MMPP (MAOOMMPP) model is:

QQQ = BBBo −BBBo〈〈〈PPP 〉〉〉;
LLL = LLLo +BBBoIIIoo〈〈〈PPP 〉〉〉;
BBB = BBBo +LLLo −BBBo(IIIo −IIIoo)〈〈〈PPP 〉〉〉.

(8.3.15)

Compare with the comparable entries in Table 8.3.1. We now explore the
two-server system in the following example.

Example 8.3.4: Consider a system as in Example 8.3.2, but now
the ON time must have at least one packet, and the OFF time must
have none. Assume that when the token leaves the ON server he emits
a packet, giving the MAOOMMPP. Let M = 2, then (8.3.15) becomes

LLL =
[

λpI1 B1ε
′
1ε
′
1ε
′
1p2

0 0

]
, BBB =

[
B1 + λpI1 0
−B2ε

′
2ε
′
2ε
′
2p1 B2

]
,

QQQ =
[

B1 −B1ε
′
1ε
′
1ε
′
1p2

−B2ε
′
2ε
′
2ε
′
2p1 B2

]
·

It is straightforward to set up VVV and YYY.

VVV =
[

V1 D1 0
ε′2ε
′
2ε
′
2p1V1D1 V2

]
and YYY =

[
I1 −D1 D1ε

′
1ε
′
1ε
′
1p2

ε′2ε
′
2ε
′
2p1(I1 −D1) dε′2ε

′
2ε
′
2p2

]
·

QQQ is the same as before. Therefore we already know what πππ is, and get
℘℘℘ from that.

πππ =
1

t̄1 + t̄2
[p1V1, p2V2] and ℘℘℘ =

1
1 + λpt̄1

[λpp1V1, p2].

8 Semi-Markov Process 483

The flow rate is

κ = πππLLLε′ε′ε′ =
1

℘℘℘VVVε′ε′ε′ =
1 + λpt̄1
t̄1 + t̄2

.

The denominator is the mean cycle time, so the mean number of pack-
ets per burst is one more than in the pure ON-OFF MMPP model, as
we would have hoped.

Before going on, we examine YYY. Although it is more complex than the
YYY for the pure MMPP ON-OFF process in Example 8.3.2, it has the
same rank. The other YYY has m2 columns of all zeroes. Also its YYY11

block matrix has an inverse. Therefore it must be of rank m1. This
YYY = VVVLLL, as it must. LLL has m2 rows of 0, and so must be of rank m1.
Therefore, YYY must also have rank m1.

If in particular, the ON time is exponentially distributed then m1 = 1
and YYY is of rank 1, just as in Theorem 8.3.1. Therefore, here too, if the
ON -time distribution is exponential, the process is a renewal process.
Direct substitution shows that LLL and YYY reduce to

LLL =
[

λp (1/t̄1)p2

o′ 0

]

and

YYY =
[

1− d dp2

(1− d)ε′2ε
′
2ε
′
2 dε′2ε

′
2ε
′
2

]
=
[

1
ε′2ε
′
2ε
′
2

]
[1−d, dp2] = ε′ε′ε′℘℘℘,

whereas BBB and VVV reduce to

BBB =
[

1/t̄1 d o
−B2ε

′
2ε
′
2ε
′
2 B2

]
and VVV =

[
t̄1d o

t̄1 dε′2ε
′
2ε
′
2 V2

]
,

where d = 1/(1+λpt̄1). As already stated, this is a renewal process with
interdeparture times generated by 〈〈〈℘℘℘, BBB〉〉〉. The reader should show
directly that

EEE[X] = ℘℘℘VVVε′ε′ε′ = d(t̄1 + t̄2) and

σ2
X = d σ2

2 + d2 t̄21 + d(1− d)t̄22.

We return now to nonexponential ON times, The formulas get quite
messy as we attempt to find σ2

X and other properties. We find that

℘℘℘VVV =
1

1 + λpt̄1
[[[p1V1, p2V2]]]

and

VVVε′ε′ε′ =
[

V1D1ε
′
1ε
′
1ε
′
1

Ψ[V1D1]ε′2ε
′
2ε
′
2 + V2ε

′
2ε
′
2ε
′
2

]
·

It is easy enough to evaluate ℘℘℘VVVVVVε′ε′ε′ numerically for any specific values
of the various parameters, but the analytic expression is somewhat long

484 8.3 Some Examples

and not too informative. However, it can be seen that it, and therefore
σ2

X , depends on the OFF time explicitly through p2V2
2ε

′
2ε
′
2ε
′
2 and t̄2 only,

similar to (8.3.13c). For autocorrelation YYY is not as simple as that
in Example 8.3.2, but it does not contain any information about the
OFF-time. It pays for us to look at

℘℘℘VVVYYY =
1

1 + λpt̄1
[[[p1[(V1 + t̄2I1(I1 −D1)], (Ψ[V1D1] + d t̄2)p2]]].

This also has no dependence on the OFF -time distribution except for
its mean. VVVε′ε′ε′ does contain V2, but YYYVVVε′ε′ε′ does not, as displayed below.

YYYVVVε′ε′ε′ =

⎡
⎣ [(I1 −D1)V1D1 + Ψ[V1D1] + t̄2D1]ε′1ε

′
1ε
′
1

[Ψ[(I1 −D1)V1D1] + dΨ[V1D1] + t̄2d] ε′2ε
′
2ε
′
2

⎤
⎦ ·

the autocorrelation lag-k depends on (℘℘℘VVVYYY)YYYk−2(YYYVVVε′ε′ε′), and given
that none of the bracketed terms depends on V2, it therefore follows
that the MAOOMMPP does not depend on the OFF-time distribution,
similar to the unmodified process in Theorem 8.3.2.

We have seen that although the OOMMPP and MAOOMMPP processes
have similar behavior, they are not equivalent. After all, they do have differ-
ent mean interdeparture times. Furthermore, the OOMMPP is an MMPP, but
the MAOOMMPP is not. In the next subsection we quickly look at another
variation.

Alternative Modified Augmented ON-OFF Model

This process abbreviates to AMAOOMMPP. (YES, we have been carried
away with acronyms, but they do carry some meaning.) We finally present
our last variation of Markov modulated processes. Our purpose (besides gen-
erating long strings) is to show how physical ideas can be implemented into
mathematical models, and also to see that systems that are differently de-
scribed can still produce physically identical results even though they appear
to be different mathematically. In Section 3.4 we showed, through isometric
transformations, that a single ME distribution can have an infinite number
of distinct representations. The same could be true for more general systems.

In the MAOOMMPP model each ON-time ends with a packet transmis-
sion. An outside observer cannot tell for sure when that ON-time began,
because the motion of the token is not observable, but the final packet could
tell her when it ended if marking of packets were allowed. In this section we
look at a different scenario, namely, each ON-time begins with a packet trans-
mission. We do this by allowing the token to send a packet whenever it leaves
the OFF server. Then that packet can be considered to be the first of the next
ON period for whichever server the token moves to next.

Let S� be the OFF server. In the previous section by setting the matrix
block BBB���j to 0, we were able to have the token not emit a packet as he left
S�. Now, instead, we want the token not to emit a packet as he enters S�.

8 Semi-Markov Process 485

Then BBBj��� = 0 for all j. This can be done in the following way. In analogy with
Equations (8.3.15) we have

QQQ = BBBo −BBBo〈〈〈PPP 〉〉〉
LLL = LLLo +BBBo〈〈〈PPP 〉〉〉IIIoo

BBB = BBBo +LLLo −BBBo〈〈〈PPP 〉〉〉(IIIo −IIIoo).

(8.3.16)

We now consider the two-server system where the token emits a packet upon
entering the ON server (or leaving the OFF server).

Example 8.3.5: Consider a system as in Example 8.3.4, but now
a packet is emitted as the token enters the ON state. Then

LLL =
[

λpI1 0
B2ε

′
2ε
′
2ε
′
2p1 0

]
, QQQ =

[
B1 −B1ε

′
1ε
′
1ε
′
1p2

−B2ε
′
2ε
′
2ε
′
2p1 B2

]
,

BBB =
[

B1 + λpI1 −B1ε
′
1ε
′
1ε
′
1p2

0 B2

]
·

It is straightforward to set up VVV and YYY:

VVV =
[

V1 D1 D1ε
′
1ε
′
1ε
′
1p2V2

0 V2

]
and YYY =

[
I1 −D1 + D1ε

′
1ε
′
1ε
′
1p1 0

ε′2ε
′
2ε
′
2p1 0

]
·

Once again QQQ is the same as before, so we get

πππ =
1

t̄1 + t̄2
[[[p1V1, p2V2]]] and ℘℘℘ =

1
1 + λpt̄1

[[[p1(I1 + λpV1), o]]].

The flow rate is the same as that for the MAOOMMPP, namely

κ = πππLLLε′ε′ε′ =
1

℘℘℘VVVε′ε′ε′ =
1 + λpt̄1
t̄1 + t̄2

·

We can also show that the two processes have the same variance.

So, what have we here? Observe that YYY and LLL have zeroes in their
second columns. It is that property we used to prove Theorems 8.3.1
and 8.3.2 for the pure ON-OFF process. Therefore, those theorems
must apply here as well. �

We summarize this section with a theorem and a conjecture which is very
likely true.

Theorem 8.3.4: Markov modulated ON-OFF processes, with and
without the modifications discussed above, share the following proper-
ties.

1. The autocovariance lag-k is independent of the OFF-time distribu-
tion;

486 8.3 Some Examples

2. The variance for the interdeparture times σ2
X depends on the OFF-

time distribution only through its variance σ2
0FF . Therefore, the r̂(k)s

are proportional for all OFF-time distributions with the same mean;
3. If the ON-time is exponentially distributed, then the process is a
renewal process.

Conjecture: Although the MAOOMMPP and AMOOAMMPP pro-
cesses have different representations (Examples 8.3.4 and 8.3.5), they
are equivalent.
Evidence: They have the same mean and variance; They both satisfy
1. to 3. above, their BBB matrices have the same set of eigenvalues, and
therefore there exists an isometric transformation that connects them,
their YYYs have the same rank (m1), they have the same r̂(1), previous
calculations ([Schwefel00]) of specific models have yielded results
that are the same to within calculation error. �

8.3.3 Merging Renewal Processes

It would seem at first thought that the merging of two independent renewal
streams would produce a composite stream with zero covariance. Except for
Poisson processes, this is not the case. In fact, this is more complicated to
describe than the processes of the previous sections. In what follows, we re-
strict ourselves to two processes, although a generalization to more streams
is straightforward.

Visualize an infinite queue feeding into two general servers S1 and S2

represented, respectively, by 〈〈〈 pj , Bj 〉〉〉, j = 1, 2. Then two customers are
being served simultaneously and independently. Thus the state space needed
must be a direct product of the spaces needed to describe each. We use the
standard Kronecker product representation here (see Chapter 7 and, e.g.,
[Graham81]). The following are square matrices of dimension m1 m2.

B̂1 := B1 ⊗ I2

B̂2 := I1 ⊗B2.
(8.3.17)

Then the generator matrix for the interdeparture times is

BBB = B̂1 + B̂2, and (8.3.18a)

VVV = [[[B̂1 + B̂2]]]−1 = V̂1V̂2[[[V̂1 + V̂2]]]−1. (8.3.18b)

From its definition, the LLL matrix is (where Qj = ε′jε
′
jε
′
j pj)

LLL = B̂1 Q̂1 + B̂2 Q̂2 (8.3.18c)

which certainly satisfies (8.2.1). Then from (8.2.2),

YYY = [B̂1 +B̂2]−1 [B̂1 Q̂1 +B̂2 Q̂2] = [V̂1 +V̂2]−1 [V̂2 Q̂1 +V̂1 Q̂2], (8.3.19a)

8 Semi-Markov Process 487

and by (8.2.8a)

QQQ = BBB −LLL = B̂1(I− Q̂1) + B̂2(I− Q̂2). (8.3.19b)

By direct substitution, it can be shown that

℘℘℘ =
1

x̄1 + x̄2
(p1 ⊗ p2)(V̂1 + V̂2) (8.3.20a)

and satisfies ℘℘℘YYY = ℘℘℘. Also, from (8.2.8b)

πππ = c℘℘℘VVV =
1

x̄1 x̄2
(p1 ⊗ p2)(V̂1 V̂2), (8.3.20b)

EEE[X] = ℘℘℘[B̂1 + B̂2]−1ε′ε′ε′ = ℘℘℘[V̂1 + V̂2]−1 V̂1 V̂2 ε′ε′ε′

=
x̄1 x̄2

x̄1 + x̄2
=

1
(1/x̄1+1/x̄2)

· (8.3.20c)

Clearly, the mean arrival rate (1/x̄) is equal to the sum of the arrival rates
[(1/x̄1+1/x̄2)] of the two streams. This is only true for the steady state, or
when many customers have already departed.

These equations are perfectly amenable to numerical computation, but we
can get analytical results if S1 or S2 is an exponential server (or equivalently,
if one of the processes is Poisson). Let m2 = 1. Then B2 is a scalar, say λ,
and we can drop the subscript for S1. The product space is now the same as
the state-space for S1. The above equations become

BBB = B + λI, (8.3.21a)

LLL = BQ + λI, QQQ = B−BQ, (8.3.21b)

and
YYY = [λI + B]−1 [λI + BQ] = [I + λV]−1 [λV + Q]. (8.3.21c)

Then (8.3.20a) becomes

℘℘℘ =
1

1 + λx̄
p(I + λV), (8.3.21d)

satisfying ℘℘℘YYY = ℘℘℘ and ℘℘℘ε′ε′ε′ = 1. Also, from (8.3.20c), it follows that

EEE[X] =
x̄

1 + λx̄
. (8.3.22a)

This process can be considered to be an AMMPP with one server where
an additonal customer departs when the token leaves the server and then
returns. (See Section 8.3.2.4 and let M = 1. See also Theorem 8.3.3.) Define
D := [I + λV]−1. Then the autocovariance lag-1 turns out to be

λ2 Cov(X, X+1)

488 8.3 Some Examples

=
1

1 + λx̄

[
(Ψ[λVD])2 + Ψ[λ3 V3 D2]

]− [λx̄

1 + λx̄

]2
· (8.3.22b)

Recall that λVD = I−D, so from (4.4.1c)

αk(λ) := Ψ[(λVD)k D] =
∫ ∞

o

(λx)k

k!
e−λx f(x) dx. (8.3.22c)

The integral clearly shows that αk(λ) is the probability that there will be k
departures from S2 between departures from S1. For future reference, it is not
hard to see (in at least two different ways) that

∑∞
k=o αk(λ) = 1.

Finally it can be shown that

λ2 Cov(X, X+1) =
α2

o + α1

1 + λx̄
− 1

[1 + λx̄]2
· (8.3.22d)

If f(x) is exponential (two Poisson processes), then αo = 1/(1 + λx̄), α1 =
λx̄/(1 + λx̄)2, and the covariance is 0. Of course in this case, (8.3.21c) clearly
shows that YYY reduces to 1, and all correlations are 0. Thus we reprove the
well-known theorem that the merging of Poisson processes is a Poisson process
with mean arrival rate equal to the sum of the arrival rates of the individual
processes.

Similar expressions can be derived for lag-2 or more, but with increasing
difficulty. Note, however, that the last equation does not depend on any ME
representation, so it is true for all distributions.

8.3.4 Departures from Overloaded Multiprocessor Systems

In Chapter 6 we discussed “generalized X/G/C-type systems”. Such systems
can be C identical servers, or even an arbitrary Jackson networklike collec-
tion of load-dependent exponential servers, for which only C customers can be
active at once. The other customers must queue up. The matrices needed here
are already defined in that chapter. The correspondence is as follows, where all
matrices with subscript c are the reduced-product space operators explicitly
defined in Chapter 6.

BBB = Bc

LLL = Mc Qc Rc

YYY = Vc Mc Qc Rc

℘℘℘o = pR2 R3 · · · Rc

℘℘℘ = πcπcπc.

(8.3.23)

Imagine a large number of customers waiting to be served with C of them
entering service simultaneously at the start. Then ℘℘℘o is the initial vector, and
many properties, including the mean time to drain the queue, as well as the
interdeparture distributions and correlations can be calculated according to
the formulas in this chapter.

8 Semi-Markov Process 489

8.3.5 Departures from ME/ME/1 Queues

Consider two servers S1 and S2 represented by vector-matrix pairs, 〈〈〈 pi , Bi 〉〉〉,
with dimension mi. Further suppose that there is an infinite queue of cus-
tomers waiting to be served one at a time by S2. As was shown in Section
8.3.1, departures from S2 constitute a renewal process. After being served, a
customer moves “downstream” to S1. The behavior of the queue at S1 con-
stitutes a G/G/1 queue. Assuming that EEE[T2] > EEE[T1], S1 will sometimes be
empty, so the departure process from S1 (almost always) is not a renewal
process. It is this process that we analyze here. The subsystem includes ev-
erything upstream from the departure point of S1. We must now deal with
an infinite state-space, because not only must the states of the customers in
service be tracked, but also the length of the queue at S1.

8.3.5.1 If S2 Is Exponential (M/ME/1 Queues)

Let S2 be an exponential server with service rate λ. Then it generates a Poisson
arrival process to S1, now represented without subscripts by an m-dimensional
vector-matrix pair, 〈〈〈 p , B 〉〉〉. The full-system matrices in this section (e.g.,
LLL, YYY, VVV, BBB, and ℘℘℘) have elements that are of different size, because an empty
queue is represented by a single state. Thus the {1, 1} element of the BBB matrix
below is a scalar, whereas the other elements in row 1 are m-dimensional row
vectors. Similarly, the other elements in the first column are column m-vectors.
All other elements are m × m matrices. Analogous conditions hold for row-
and column-vectors (e.g., ℘℘℘ and ε′ε′ε′).

BBB =

⎡
⎢⎢⎢⎢⎣

λ −λp o o · · ·
o′ B + λI −λI O · · ·
o′ O B + λI −λI · · ·
o′ O O B + λI · · ·
· · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎦ (8.3.24a)

and thus

BBBε′ε′ε′ =

⎡
⎢⎢⎢⎢⎣

0
Bε′ε′ε′

Bε′ε′ε′

Bε′ε′ε′

· · ·

⎤
⎥⎥⎥⎥⎦ ·

As in the previous subsections, let D = [I+λV]−1, then it can be shown that
BBB−1 is

VVV =
1
λ

⎡
⎢⎢⎢⎢⎣

1 pλVD p(λVD)2 p(λVD)3 · · ·
o′ λVD (λVD)2 (λVD)3 · · ·
o′ O λVD (λVD)2 · · ·
o′ O O λVD · · ·
· · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎦ · (8.3.24b)

490 8.3 Some Examples

It is not hard to see that the departure matrix is

LLL =

⎡
⎢⎢⎢⎢⎣

0 o o o · · ·
Bε′ε′ε′ O O O · · ·
o′ BQ O O · · ·
o′ O BQ O · · ·
· · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎦ and LLLε′ε′ε′ =

⎡
⎢⎢⎢⎢⎣

0
Bε′ε′ε′

Bε′ε′ε′

Bε′ε′ε′

· · ·

⎤
⎥⎥⎥⎥⎦ = BBBε′ε′ε′. (8.3.25a)

The matrix YYY can now be written down:

YYY = VVVLLL =⎡
⎢⎢⎢⎢⎣

Ψ[D] Ψ[λVD2]p Ψ[(λVD)2 D]p Ψ[(λVD)3 D]p · · ·
Dε′ε′ε′ (λVD)DQ (λVD)2DQ (λVD)3DQ · · ·
o′ DQ (λVD)DQ (λVD2)DQ · · ·
o′ O DQ (λVD)DQ · · ·
· · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎦· (8.3.25b)

Using λVD = I−D, one can show that YYYε′ε′ε′ = ε′ε′ε′ by recognizing that the
matrix geometric series sum over n of (λVD)n converges to

I + λVD + (λVD)2 + · · · = [I− λVD]−1

= [I− (I−D)]−1 = D−1 = I + λV.

The vector VVVε′ε′ε′ can also be evaluated from the above. We use the utilization
parameter ρ = λx̄ and get

λVVVε′ε′ε′ =

⎡
⎢⎢⎢⎢⎣

1
o′

o′

o′

· · ·

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

ρ
λVε′ε′ε′

λVε′ε′ε′

λVε′ε′ε′

· · ·

⎤
⎥⎥⎥⎥⎦ · (8.3.26)

From Theorems 4.2.3 and 4.2.4, the steady-state departure vectors for the
M/ME/1 queue are given by

d(n) = (1− ρ)Ψ[Un]p,

where from Equations (4.1.4)

U−1 := A := I +
1
λ
B−Q. (8.3.27)

Given that
∑∞

n=o d(n) = p, it must be true that
∑∞

n=o Ψ[Un] = Ψ[(I −
U)−1] = (1 − ρ)−1, which it is [see (4.2.3)]. We also mention that Ψ[U] =
(1− αo)/αo.

The steady-state vector over all states is given by

℘℘℘ = (1− ρ)
[
1, Ψ[U]p, Ψ[U2]p, Ψ[U3]p, . . .

]
. (8.3.28)

8 Semi-Markov Process 491

where ℘℘℘ε′ε′ε′ = 1. With some algebraic manipulation it can be shown that
℘℘℘YYY = ℘℘℘.

Note, it is the departure vectors of the M/G/1 queue, d(n) (see theorem
4.2.4), not the steady-state vectors π(n), that make up ℘℘℘, the left eigenvector
of YYY. Also note that if the elements of YYY are reduced to scalars by pre- and
postmultiplying them by appropriately dimensioned p (or 1) and ε′ε′ε′ (or 1),
the following matrix results [see (8.3.22c)].

ȲYY :=

⎡
⎢⎢⎢⎢⎣

αo α1 α2 α3 α4 · · ·
αo α1 α2 α3 α4 · · ·
0 αo α1 α2 α3 · · ·
0 0 αo α1 α2 · · ·
· · · · · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎦ · (8.3.29)

Finding the left-eigenvector of this matrix is the standard way one finds the
scalar steady-state probabilities, as given in [Kleinrock75] (see also Section
4.4.3). But its derivation depends on the knowledge that a random observer
sees the same probabilities as a departing customer for the M/G/1 queue.
This, in turn, is only true because the arrival process to S1 is Poisson.

Returning to evaluation of the various covariances, we need expressions
for YYYVVVε′ε′ε′ and VVVYYYVVVε′ε′ε′. It does not take too much effort to get them. They are:

λYYYVVVε′ε′ε′ =

⎡
⎢⎢⎢⎢⎣

αo

Dε′ε′ε′

o′

o′

· · ·

⎤
⎥⎥⎥⎥⎦+ ρε′ε′ε′ (8.3.30a)

and

λVVVYYYVVVε′ε′ε′ =

⎡
⎢⎢⎢⎢⎣

αo + α1

(λVD)Dε′ε′ε′

o′

o′

· · ·

⎤
⎥⎥⎥⎥⎦+ ρ

⎡
⎢⎢⎢⎢⎣

1
o′

o′

o′

· · ·

⎤
⎥⎥⎥⎥⎦+ ρ

⎡
⎢⎢⎢⎢⎣

ρ
λVε′ε′ε′

λVε′ε′ε′

λVε′ε′ε′

· · ·

⎤
⎥⎥⎥⎥⎦ · (8.3.30b)

Three different initial conditions are presented here for ℘℘℘o. They are:
1. The process starts with an empty queue (designated by subscript “a”),
2. The process starts with the arrival of a customer to an empty queue

(subscript “b”),
3. The process starts in its steady state (8.3.28) (no subscript).
The first two are:

℘℘℘a = [1, o, o, o, . . .] (8.3.31a)

and

℘℘℘b = [0, p, o, o, . . .]. (8.3.31b)

492 8.3 Some Examples

The formulas for the various mean values and covariances are shown in Table
8.3.2, together with the equivalent covariances for the M/M/1 queue.

Table 8.3.2. Comparison of Means and Covariances

℘℘℘xXε′ε′ε′ System a System b Steady − State

λ℘℘℘xVVV ε′ε′ε′ 1 + ρ ρ 1

λ℘℘℘xYYYVVV ε′ε′ε′ αo + ρ αo + ρ 1

λ2 ℘℘℘xVVVYYYVVV ε′ε′ε′ αo+α1+ρ+ρ2 α1+ρ2 (1−ρ)
αo

[
α2

o+α1

]
+ ρ

λ2 Covx(X1, X2) α1−ραo α1−ραo
1−ρ
αo

[αo(αo−1) + α1]

λ2 Covx(exp) −
[

ρ
1+ρ

]2
−
[

ρ
1+ρ

]2
0

Note that the covariances for systems a and b are identical. Some of
these results are already known, and can be found in, for example,
[DisneyKiessler87] and [Saito90].

8.3.5.2 If S1 Is Exponential (ME/M/1 Queues)

The open G/M/1 queue is actually somewhat easier to set up than the M/G/1
queue, because all the blocks in the various matrices are the same size. The
complications come in when one must select the initial vector. Let S1 be an
exponential server with service rate λ, and S2 (again dropping subscripts) is
represented by the vector matrix pair 〈〈〈 p , B 〉〉〉.

First we establish the BBB matrix. Here,

BBB =

⎡
⎢⎢⎢⎢⎣

B −BQ O O · · ·
O B + λI −BQ O · · ·
O O B + λI −BQ · · ·
O O O B + λI · · ·
· · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎦ (8.3.32a)

and thus

BBBε′ε′ε′ = λ

⎡
⎢⎢⎢⎢⎣

o′

ε′ε′ε′

ε′ε′ε′

ε′ε′ε′

· · ·

⎤
⎥⎥⎥⎥⎦ · (8.3.32b)

It can be shown that BBB−1 is

VVV =

⎡
⎢⎢⎢⎢⎣

V QVD dQVD d2QVD d3QVD · · ·
O VD DQVD dDQVD d2DQVD · · ·
O O VD DQVD dDQVD · · ·
O O O VD DQVD · · ·
· · · · · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎦ (8.3.32c)

8 Semi-Markov Process 493

and

VVVε′ε′ε′ =
1
λ
ε′ε′ε′ +

⎡
⎢⎢⎢⎢⎣

Vε′ε′ε′

o′

o′

o′

· · ·

⎤
⎥⎥⎥⎥⎦ , (8.3.32d)

where D := [I + λV]−1 and d := αo = Ψ[D] [see (8.3.22c)]. We also have
occasion once again to use λVD = I−D. It is not hard to see that the
departure matrix is

LLL =

⎡
⎢⎢⎢⎢⎣

O O O O · · ·
λI O O O · · ·
O λI O O · · ·
O O λI O · · ·
· · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎦ and LLLε′ε′ε′ = λ

⎡
⎢⎢⎢⎢⎣

o′

ε′ε′ε′

ε′ε′ε′

ε′ε′ε′

· · ·

⎤
⎥⎥⎥⎥⎦ = BBBε′ε′ε′. (8.3.33a)

We see, then, that (8.2.1) is satisfied. We can calculate YYY and, with some
effort, we can also show that it is isometric,

YYY = VVVLLL = λ

⎡
⎢⎢⎢⎢⎣

QVD dQVD d2QVD d3QVD · · ·
VD DQVD dDQVD d2DQVD · · ·
O VD DQVD dDQVD · · ·
O O VD DQVD · · ·
· · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎦ (8.3.33b)

and YYYε′ε′ε′ = ε′ε′ε′. To fully define the process, the initial vector ℘℘℘o must be
specified. We present three interesting options here. First, we can imagine
the process beginning immediately after an arrival to an empty queue (the
beginning of a busy period). Then

℘℘℘a := [o, p, o, o, . . .]. (8.3.34)

Each element is itself a vector of dimension m.
A second interesting case occurs at the end of a busy period, that is, when

a customer leaves an empty queue behind. Consider the matrix A, defined
in (8.3.27), and let s be its smallest eigenvalue between 0 and 1, with left
eigenvector û (i.e., ûA = s û). From Corollary 5.1.2 we know that the arrival
process (at S1) is in vector state

û := λpV[I + λ(1− s)V]−1 (8.3.35)

at that moment, so
℘℘℘b := [û, o, o, o, . . .]. (8.3.36)

Pictorially, S2 is in state i with probability [û]i at the moment a customer
leaves an empty queue behind at S1. The requirement that ûε′ε′ε′ = 1 is equiva-
lent to requiring that s satisfy the equation

494 8.3 Some Examples

s = F ∗(λ(1− s)).

The geometric parameter for the steady-state G/M/1 queue s is the smallest
root between 0 and 1 that satisfies the above.

The most important example is the steady-state vector. Again from The-
orem 5.1.3 we know that the steady-state vector probability of having k cus-
tomers at S1 at the time of a departure is

d(k) = (1− s)sk û.

Therefore, the infinite steady-state vector over all queue lengths is

℘℘℘ = (1− s)[û, sû, s2û, s3û, . . .]. (8.3.37)

One can show by direct calculation that this ℘℘℘ satisfies (8.2.7) (℘℘℘YYY = ℘℘℘), as
it must. Of course, all three vectors have “length” 1; that is,

℘℘℘a ε′ε′ε′ = ℘℘℘b ε′ε′ε′ = ℘℘℘ε′ε′ε′ = 1.

In order to calculate the covariance for each of the three cases, we need:

℘℘℘x [VVV]ε′ε′ε′, ℘℘℘x [YYYVVV]ε′ε′ε′, and ℘℘℘x [VVVYYYVVV]ε′ε′ε′,

where x = a, b, and blank. This is easiest done by first setting up [VVVε′ε′ε′],
[YYYVVVε′ε′ε′], and [VVVYYYVVVε′ε′ε′]. We already know [VVVε′ε′ε′] from (8.3.32d). The second term
is

YYYVVVε′ε′ε′ = YYY [VVVε′ε′ε′] =
1
λ
YYYε′ε′ε′ +YYY

⎡
⎢⎢⎢⎢⎣

Vε′ε′ε′

o′

o′

o′

· · ·

⎤
⎥⎥⎥⎥⎦ =

1
λ
ε′ε′ε′ +λ

⎡
⎢⎢⎢⎢⎣

Ψ[V2 D]ε′ε′ε′

V2 Dε′ε′ε′

o′

o′

· · ·

⎤
⎥⎥⎥⎥⎦ · (8.3.38a)

The third term can be evaluated in a similar fashion

VVVYYYVVVε′ε′ε′ = VVV [YYYVVVε′ε′ε′] =
1
λ
VVVε′ε′ε′ + λVVV

⎡
⎢⎢⎢⎢⎣

Ψ[V2 D]ε′ε′ε′

V2 Dε′ε′ε′

o′

o′

· · ·

⎤
⎥⎥⎥⎥⎦

=
1
λ2

ε′ε′ε′ + 1
λ

⎡
⎢⎢⎢⎢⎣

Vε′ε′ε′

o′

o′

o′

· · ·

⎤
⎥⎥⎥⎥⎦+ λ

⎡
⎢⎢⎢⎢⎣

Ψ[V2 D]Vε′ε′ε′ + Ψ[V3 D2]ε′ε′ε′

V3 D2 ε′ε′ε′

o′

o′

· · ·

⎤
⎥⎥⎥⎥⎦ · (8.3.38b)

8 Semi-Markov Process 495

Next, define the random variables Xan, Xbn, and Xn, where n = 1, 2
Then combining (8.3.34), (8.3.36), and (8.3.37) with (8.3.32d), we get for the
departure time of the first customer:

λEEE[Xa1] = 1
λEEE[Xb1] = 1 + λ (ûVε′ε′ε′)
λEEE[X1] = 1 + λ (1− s)(ûVε′ε′ε′).

(8.3.39a)

Next, combining (8.3.34) and (8.3.36) with (8.3.38a), and recalling that ℘℘℘YYY =
℘℘℘ [from (8.2.7)], the mean interdeparture time for the second customer is

λEEE[Xa2] = 1 + λ2 Ψ[V2 D]
λEEE[Xb2] = λEEE[Xa2]
λEEE[X2] = λEEE[X1].

(8.3.39b)

Finally, the same three equations are combined with (8.3.38b) to get the
double expectations

λ2
EEE[Xa1 Xa2] = 1 + λ3 Ψ[V3 D2]

λ2
EEE[Xb1 Xb2] = λ2

EEE[Xa1 Xa2] + λ2 (ûVε′ε′ε′)EEE[Xa2] (8.3.39c)

λ2
EEE[X1 X2] = s + (1−s)λ2

EEE[Xb1 Xb2] + λ3 s(1−s) (ûV3 D2 ε′ε′ε′).

(See also Section 4.4.1). The matrix terms Ψ[V2 D], Ψ[V3 D2], (ûVε′ε′ε′) and
(ûV3 D2 ε′ε′ε′) can be written as nonmatrix expressions by algebraic manipula-
tion of λVD = I−D,

λ Ψ[V2 D] = λ Ψ[V(I−D)] = λx̄−Ψ[I−D] = λx̄ + αo − 1.

Similarly,

λ3 Ψ[V3 D2] = λx̄ + 2αo + α1 − 2.

The û terms are more difficult, but straightforward when using û[I + λ(1 −
s)V] = λpV, from (8.3.35). Algebraic manipulation yields

s ûD = λpVD− (1− s)û
λ (1− s)ûV = λpV − û

λ sûVD = û− λpVD.

From these, on multiplying from the right with any powers of V and D, and
then with ε′ε′ε′, all terms of the form [ûVk Dj ε′ε′ε′] can be expressed. In particular,

λ (1− s) [ûVε′ε′ε′] = λ x̄− 1

and

λ3 s2(1− s) [ûV3 D2 ε′ε′ε′] = λ x̄ s2 − 1 + (1− αo)(1− s)(1 + 2s)− s(1− s)α1.

After all of the above are put into (8.2.11a) with n = k = 1, we get for the
covariance lag-1

496 8.3 Some Examples

λ2 Cov(Xa1, Xa2) = αo + α1 − 1
λ2 Cov(Xb1, Xb2) = λ2 Cov(Xa1, Xa2)
sλ2 Cov(X1, X2) = αo (λsx̄− 1).

(8.3.39d)

The steady-state covariance formula is particularly interesting. Only if λsx̄ =
1 is the covariance equal to 0. For G/M/1 queues, the utilization factor, ρ is
equal to 1/(λx̄). The only interarrival process for which s = ρ for all ρ is the
Poisson process, but it is possible for the covariance lag-1 to vanish for some
values of ρ.

8.3.5.3 Both S1 and S2 Are Nonexponential

It is possible to generalize from the two previous sections what BBB, VVV, LLL, and
YYY are for the G/G/1 queue. Furthermore, given that YYY is subtriangular, the
steady-state departure vector ℘℘℘ can be computed recursively. The notation
is the same as that for Section 8.3.3, where subscript 2 refers to the arrival
process, and subscript 1 refers to the service process. The relevant matrices
are again ordered according to the number of customers at S1, and the entries
themselves are matrices. The 00 element is an m2 ×m2 matrix, the other 0n
elements are m2 ×m1 m2 matrices, the other n0 matrices are m1 m2 ×m2-
dimensional, and all other elements are m1 m2×m1 m2 matrices. Generalizing
from (8.3.24a) and (8.3.32a), we write

BBB =

⎡
⎢⎢⎢⎢⎣

B2 −p̂1 B̂2Q̂2 O O · · ·
O B̂1 + B̂2 −B̂2Q̂2 O · · ·
O O B̂1 + B̂2 −B̂2Q̂2 · · ·
O O O B̂1 + B̂2 · · ·
· · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎦· (8.3.40a)

It can be verified by direct multiplication that (now let D := [B̂1 + B̂2]−1)

VVV =

⎡
⎢⎢⎢⎢⎣

V2 p̂1Q̂2D p̂1Q̂2DX p̂1Q̂2DX2 p̂1Q̂2DX3 · · ·
o′ D DX DX2 DX3 · · ·
o′ O D DX DX2 · · ·
o′ O O D DX · · ·
· · · · · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎦,

(8.3.40b)
where for ease of notation we have set X := B̂2Q̂2D.

In a similar fashion the departure matrix LLL can be generalized from
(8.3.25a) and (8.3.33a) to give

LLL =

⎡
⎢⎢⎢⎢⎣

O O O O O · · ·
B̂1ε̂

′
1ε
′
1ε
′
1 O O O O · · ·

O B̂1Q̂1 O O O · · ·
O O B̂1Q̂1 O O · · ·
· · · · · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎦ · (8.3.40c)

8 Semi-Markov Process 497

Finally, we have

YYY = VVVLLL

=

⎡
⎢⎢⎢⎢⎢⎣

p̂1B̂1Q̂2Dε̂′1ε
′
1ε
′
1 p̂1B̂1Q̂2DXQ̂1 p̂1B̂1Q̂2DX2Q̂1 · · ·

B̂1Dε̂′1ε
′
1ε
′
1 B̂1DXQ̂1 B̂1DX2Q̂1 · · ·

O B̂1DQ̂1 B̂1DXQ̂1 · · ·
O O B̂1DQ̂1 · · ·
· · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎥⎦ (8.3.40d)

and YYYε′ε′ε′ = ε′ε′ε′. We have made use of the fact that all subscripted matrices
commute with matrices with different subscripts (i.e., B̂1Q̂2 = Q̂2B̂1 but
B̂1Q̂1
= Q̂1B̂1). Also, B̂1 and B̂2 commute with D, but Q̂1 and Q̂2 do not.

Note that YYY in (8.3.40d) is a stochastic matrix (if its elements are all
nonnegative) which satisfies the canonical form described as “M/G/1-type”
by M. Neuts [Neuts81]. Thus there exist standard numerical procedures for
solving the equation ℘℘℘YYY = ℘℘℘. The nth component of ℘℘℘ is itself a vector, the
sum of whose elements is the probability d(n) that a departing customer will
leave n other customers behind at S1. Each component must be of the form
d(n)p1 × v2(n), where v2(n) is the vector state of S2 at the moment of the
departure.

8.3.5.4 M/M/1//N Queues

It has long been well known that the departure process from a steady-state
open M/M/1 queue is itself a Poisson process. We give here a simple demon-
stration of why this is so. The expressions also show that this is an exceptional
property, and that in general, except for the steady-state M/M/1 queue (see
[DisneyKiessler87] for minor exceptions), there is correlation. This includes
departures from servers in closed systems and also finite buffered queues (i.e.,
departures from queued servers are not generally renewal processes).

Let λ be the arrival rate of the Poisson process to an exponential server
whose rate is μ = 1/x̄. The formulas of the previous sections simplify when the
following substitutions are made. Q→ 1, V→ 1/μ, B→ μ, and D→ 1/(1 +
λ/μ). If the formulas from the M/G/1 section are used, then the utilization
factor is ρ = λ/μ. But if the formulas from the G/M/1 section are used, the
roles of λ and μ must be interchanged; then ρ = μ/λ. In either case, the
subsystem VVV and YYY matrices become:

VVV =
x̄

1 + ρ

⎡
⎢⎢⎢⎢⎢⎢⎣

1/α 1 α α2 α3 · · ·
0 1 α α2 α3 · · ·
0 0 1 α α2 · · ·
0 0 0 1 α · · ·
0 0 0 0 1 · · ·
· · · · · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎦

(8.3.41a)

and

498 8.4 MRP/M/1 Queues

YYY =
1

1 + ρ

⎡
⎢⎢⎢⎢⎢⎢⎣

1 α α2 α3 α4 · · ·
1 α α2 α3 α4 · · ·
0 1 α α2 α3 · · ·
0 0 1 α α2 · · ·
0 0 0 1 α · · ·
· · · · · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎦

, (8.3.41b)

where α := ρ/(1 + ρ). Equations (8.3.25b), (8.3.29) and (8.3.33b) all reduce
to this one for the M/M/1 queue. The steady-state probabilities are p(n) =
(1− ρ)ρn, so

℘℘℘ = (1− ρ)[1, ρ, ρ2, ρ3, ρ4, . . .]. (8.3.42a)

The extraordinary property is that ℘℘℘ is a left eigenvector of both VVV and YYY.
That is,

℘℘℘YYY = ℘℘℘, (8.3.42b)

as it should. But it is also true that

℘℘℘VVV =
1
λ
℘℘℘. (8.3.42c)

Clearly, then, ℘℘℘VVV ε′ε′ε′ = 1/λ. Equation (8.2.11c), with ℘℘℘ replacing ℘℘℘o, simplifies
to

EEE[Xn Xn+k] = ℘℘℘ [VVV Y k VVV]ε′ε′ε′ =
1
λ
℘℘℘ [YYYk VVV]ε′ε′ε′ =

1
λ
℘℘℘ [VVV]ε′ε′ε′ =

1
λ2

(8.3.43)

for all n and all k. This, together with (8.2.10d) and (8.2.11a) shows that the
autocovariance is 0 for all n and all k. Be reminded, though, that this assumes
the subsystem to be in its steady state initially. If the initial vector is not ℘℘℘,
then all bets are off. For the finite customer (M/M/1//N) and finite buffer
(M/M/1/N) queues, the last column of VVV does not fit the pattern for the
other elements, so (8.3.42c) is not satisfied. Thus only the steady-state, open
M/M/1 queue yields a Poisson departure process.

8.4 MRP/M/1 Queues

All the examples given can be used as arrival processes to a queueing system.
We discuss how to do this here, where the queue feeds to an exponential server.
The general method is also applicable to M/G/1 (Chapter 4), G/M/1 queues
(Chapter 5), and with some extension, generalized M/G/C and G/G/1 queues
(Chapters 6 and 7). Whereas previously we were able to find explicit solutions,
now we must find the correct solution by iteration. The method depends on
a very powerful theorem by Wallace [Wallace69] on QBD processes of
which all of these are special cases. Recall that Birth-Death Processes are
those for which the population grows and contracts by single steps (arrivals

8 Semi-Markov Process 499

and departures). For QBD processes the steps are multistate sets, exactly as
we have been dealing with here.

Let πππ(n) be the steady-state vector probability that the system is in vector
state {i, n} and r(n) = πππ(n)ε′ε′ε′ is the associated scalar probability. The theo-
rem states that if the matrices that govern the transitions are independent of
the population n, then

πππ(n) = cuuuRRRn and r(n) = πππ(n)ε′ε′ε′,

whereRRR is a matrix satisfying some matrix quadratic equation, uuu is a spe-
cial vector with uuuε′ε′ε′ = 1, and c is determined by the normalization condition,∑∞

n=o r(n) = 1.
We next consider queueing systems where the arrivals to an exponential

server are generated by some MRP satisfying the rules defined in this chapter.
By “system” we mean the combination of the arrival process, the exponential
server, and the customers in the queue.

8.4.1 Balance Equations

Let n be the number of customers at an exponential server (called Sν) with
service rate ν. The arrival process is described by the matrices BBB, QQQ, and LLL,
as defined previously. The ith component of the ss vector, πππi(n), refers to the
state the MRP is in when there are n customers at Sν . This is a straightfoward
generalization of the description we gave in Chapter 5 from the G/M/1 queue.
The system can leave state {i ;n } by either a change at the MRP [πππi(n)(MMM)ii]
or a customer completion at Sν [πππi(n)ν]. The system can enter this state by
one of three ways:

1. A change of state from some j to i in the arrival process
[πππj(n)(MMM)jj(PPP)ji],

2. A customer completion at Sν when there are n+1 customers there
[πππi(n+1)ν],

3. The MRP has a departure when there are n− 1 customers at Sν

[πππj(n−1)(LLL)ji].

By summing over all intermediate subscripts we get the vector balance equa-
tions:

πππ(n)(MMM+ μIII) = πππ(n)MMMPPP +πππ(n+1)ν +πππ(n−1)LLL.

Making use of the relation, BBB =MMM−MMMPPP we get for n ≥ 1,

πππ(n+1)ν −πππ(n)(BBB + νIII) +πππ(n−1)LLL = 0. (8.4.1a)

[Compare with (4.1.3d).] For n = 0 there is no possibility for a customer to
complete service, so instead we have

πππ(1)ν = πππ(0)BBB. (8.4.1b)

We now substitute πππ(n) = πππRRRn into (8.4.1a), but πππ and RRR are yet to be
determined. For n > 1,

πππ(1)
[
νRRRn+1 −RRRn(BBB + νIII) +RRRn−1LLL] = 0.

500 8.4 MRP/M/1 Queues

Because this must be true for all n > 1 and πππ(1) cannot be 0, the expression
in square brackets must be 0. Therefore

RRRn−1
[
νRRR2 −RRR (BBB + νIII) +LLL] = 0.

Again, if RRR has an inverse (something that is not always true, as we show
below) then the expression in square brackets must be 0. Thus

νRRR2 −RRR (BBB + νIII) +LLL = 0. (8.4.2a)

This equation doesn’t hold for n = 1, so we must go back to (8.4.1a), using
πππ(2) = πππ(1)RRR, YYY = VVVLLL, and (8.4.1b) to get

πππ(1) [νRRR−BBB − νIII + νYYY] = 0. (8.4.2b)

Ah, if only we could argue that the expression in square brackets is zero,
we would have an explicit expression for RRR. But it is, instead, an eigenvector
equation for πππ(1) (once we know whatRRR is). A necessary and sufficient condi-
tion thatRRR = III+BBB/ν−YYY satisfy (8.4.2a) is that YYY2 = YYY. From (8.2.12c) this
condition leads to Cov(X,X+k) = constant, independent of k. Furthermore,
all the eigenvalues of YYY must be either 0 or 1, the number of unit eigenvalues
being equal to the rank of YYY. The only processes of interest to us that have
these properties are the renewal processes, where the covariance equals 0 for
all k and YYY = ε′ε′ε′℘℘℘ has one unit eigenvalue. In fact this is exactly what we used
in Chapters 4 and 5. But that does not work here, for we are now interested
in the more general MRPs. We discuss this in Section 8.4.3.

Equation (8.4.2a) is the defining equation for RRR, but it is not that easy
to solve. First we search for some other properties. We multiply this equation
from the right by ε′ε′ε′ and note that LLLε′ε′ε′ = BBBε′ε′ε′ to get:

ν(RRR−III)RRRε′ε′ε′ = (RRR−III)BBBε′ε′ε′.

But (RRR−III) must have an inverse unless at least one of the eigenvalues of RRR
equals 1. This happens when the arrival rate (κ = πππLLLε′ε′ε′) equals ν, in which
case the system is unstable and there is no steady-state solution. Otherwise,
a unit eigenvalue implies decomposability, a property which we assume has
been removed a priori. So, assuming that (III −RRR)−1 exists, we get

νRRRε′ε′ε′ = BBBε′ε′ε′. (8.4.3)

This relation also satisfies (8.4.2b).
The πππ vectors must still satisfy the normalization property

∑
r(n) = 1.

But more than that, we can assume that if the MRP is observed without
reference to queue length it must be found in state i with the same probability
as the residual vector. That is,

∞∑
n=o

πππ(n) = πππ,

8 Semi-Markov Process 501

where πππ (no argument) is defined by (8.2.8b), namely, πππQQQ = o, and πππε′ε′ε′ =
1. Thus [note that πππ(0) may not be of the same form as the other vector
probabilities]

πππ =
∞∑

n=1

πππ(1)RRRn−1 +πππ(0) = πππ(1)
[
(III −RRR)−1 + νVVV]

or
πππ(1)[III + νVVV(III −RRR)] = πππ(III −RRR). (8.4.4)

But equations (8.4.2a), (8.4.2b), (8.4.3), and (8.4.4) together are not suffi-
cient to uniquely determine the vector-matrix pair 〈〈〈uuu, RRR〉〉〉. In fact, there may
be multiple distinct solutions, all of which produce the same queue-length
probabilities πππ(n).

At this point, following [Meier-Fischer92], we assume that

cuuu = πππ(III −RRR).

From this we have

πππ(n) = πππ(III −RRR)RRRn and r(n) = πππ(III −RRR)RRRnε′ε′ε′. (8.4.5)

This equation clearly satisfies
∑

πππ(n) = πππ, which then implies that
∑

r(n) =
1. But, we still don’t know how to solve for RRR.

A standard procedure for finding RRR follows.

Algorithm 8.4.1: First rewrite (8.4.2a) as

RRR = νRRR2DDD +LLLDDD,

where DDD := (νIII +BBB)−1. Consider this to be a formula for fixed point
iteration. That is, let RRRo = 0 and

RRR�+1 = ν(RRR�)2DDD +LLLDDD, for � ≥ 0.

Iterate on � until (RRR�+1 − RRR�) is “sufficiently small” by some pre-
established criterion.

This procedure is guaranteed to converge if the MRP was constructed from
PH representations, but may not converge otherwise. Nonconvergence does
not mean there is no solution, just that another method, or a different RRRo,
must be chosen. Furthermore, this is not the unique solution to (8.4.2a). Given
that this is a quadratic equation, one might expect to find two independent
solutions. But this is a matrix quadratic equation, for which the number of
independent solutions is given by(

2M
M

)
, where M = Dim(RRR).

We can say that the algorithm produces an RRR whose eigenvalues are all less
than 1 in magnitude, otherwise the algorithm would not converge. For more

502 8.4 MRP/M/1 Queues

information, see [Latouche-Ram99] or [Neuts89]. We give an example of
this ambiguity when we look at the G/M/1 queue from the point-of-view of
this chapter.

Before showing how to calculate various performance measures we prove
the following.

Theorem 8.4.1: The matrix RRR, as found by the iterative method
described above, must be of the form

RRR = LLLXXX , (8.4.6)

and has at most the same rank as LLL. Therefore if LLL has no inverse,
then RRR has no inverse. But there may be another solution of (8.4.2a)
that is invertible. �

Proof: Observe that RRR1 = LLLDDD. Next assume that RRRk = LLLXXX k for
k ≤ � where XXX � follows from the recursive formula. Then

RRR�+1 = νLLLXXX �LLLXXX �DDD +LLLDDD = LLL[νXXX �LLLXXX �DDD +DDD] = LLLXXX �+1.

Therefore, RRR� = LLLXXX � for all �. Furthermore, the limit (if it exists) is

RRR = lim
�→∞

LLLXXX � = LLLXXX ,

where
XXX := lim

�→∞
XXX �.

Therefore, Rank(RRR) ≤ Rank(LLL).

The method described here may not apply to some more general systems, but
it does apply to all MRP/M/1 queues.

8.4.2 Some Performance Measures

As in previous chapters, given πππ(n) one can compute the mean queue length,
the mean system time, and probability of overflow. We do that now.

Let N be the r.v. denoting the number of customers queued at Sν ; then

q̄ := EEE[N] =
∞∑

n=1

n r(n) = πππ(III−RRR)

[∞∑
n=1

nRRRn

]
ε′ε′ε′ = πππRRR[III−RRR]−1ε′ε′ε′. (8.4.7a)

The mean system time is given by Little’s formula (1.1.2). This is also called
Mean Cell Delay (MCD) or Mean Packet Delay (MPD) when studying
telecommunications traffic. We need κ, the arrival rate of cells to Sν , to use
Little’s formula. This is given by (8.2.8d).

MCD =
EEE[N]

κ
= (℘℘℘VVVε′ε′ε′)πππRRR[III −RRR]−1ε′ε′ε′. (8.4.7b)

Recall from Section 4.2.4 what is meant by buffer overflow probability
(BOP), namely PPPr(N ≥ Bs), where Bs is the size of the primary buffer. The

8 Semi-Markov Process 503

probability that an arriving customer will see n customers at Sν is needed to
find this. [πππ(n)]i is the steady-state probability that there are n cells already
at Sν and the MRP is in state i. Multiplying by LLLε′ε′ε′ gives the probability
rate that a new cell will arrive under these conditions. Upon dividing by the
overall arrival rate, we get the arrival probability.

a(n) = (℘℘℘VVVε′ε′ε′)πππ[[[(III −RRR)RRRnLLL]]]ε′ε′ε′. (8.4.8a)

Then the BOP is

PPPr(N ≥ Bs) =
∞∑

n=Bs

a(n) = (℘℘℘VVVε′ε′ε′)πππ (III −RRR)

[∞∑
n=Bs

RRRn

]
LLLε′ε′ε′

= (℘℘℘VVVε′ε′ε′)πππ[[[RRRBsLLL]]]ε′ε′ε′. (8.4.8b)

For further information of the utility of these formulas see, for instance,
[Schwefel00], [Schwefel-Lip01], and [Park-Will00].

8.4.3 The G/M/1 Queue as an Example

Recall that in Chapters 4 and 5 we solved the M/G/1 and G/M/1 queues
by finding the special matrices (replacing λ with ν) A = I + B/ν −Q and
U = A−1 in (4.1.4a), yielding r(n) = (1−ρ)pUnε′ε′ε′ for the M/G/1 queue. The
G/M/1 queue was more difficult, and the limit in going from the G/M/1//N
to the open G/M/1 queue for N →∞ has to be taken very carefully. But we
found the solution in Theorem 5.1.3 to be

πππ(0) = (1− �)
û̂ûuV

û̂ûuVε′ε′ε′
and

πππ(k) = (1− s)� sk−1û̂ûu,

where � = 1/(νΨ[V]) is the utilization parameter of Chapter 5, and

û̂ûu = νp [ν(1− s)I + B]−1

with normalization, û̂ûuε′ε′ε′ = 1. s is the smallest positive root of the equation

s = B∗[ν(1− s)] = pB(B + ν(1− s)I)−1ε′ε′ε′.

Of more relevance to us here, we also showed that û̂ûuA = s û̂ûu, that is, s is the
smallest positive eigenvalue of A, with left eigenvector û̂ûu. Because of this, the
solution could be written in matrix geometric form as

πππ(k) = (1− s)� û̂ûuAk−1.

Interestingly enough, A has eigenvalues that are greater than 1 in magni-
tude, so Ak grows unboundedly large with k. But û̂ûu is orthogonal to all the
corresponding eigenvectors, so û̂ûuAk = û̂ûu sk → 0. Its relevance here is that A
satisfies (8.4.2a) with LLL = BQ, yet it does not satisfy Theorem 8.4.1. That is,

νA2 −A(B + νI) + BQ = 0.

504 8.4 MRP/M/1 Queues

(Recall that here, Q = ε′ε′ε′p.) But although BQ is of rank 1, Rank(A) =
Dim(A) > 1 if the renewal process is not Poisson.

We now use Algorithm 8.4.1 (well, not quite) to find a solution of (8.4.2a).
We know from Theorem 8.4.1 that R must be of rank 1, because BQ is of rank
1. Therefore, R must be of the form sv′u where uv′ = 1. Its one non-zero
eigenvalue is s. Given that we know its form so precisely, we can substitute
it into (8.4.2a) and find what s, u, and v′ are. Note that(sv′u)2 = s2v′u,
therefore R2 = sR. (In fact, for any n > 0, Rn = sn−1R.) Then

νR2−R(B + νI)+BQ = νsR−R(B + νI)+BQ = BQ−R(B+ν(1−s)I) = 0.

Rearranging the terms and multiplying from the right by (B + ν(1 − s)I)−1

yields
R = Bε′ε′ε′[p(B + ν(1− s)I)].

But if s is right, the expression in square brackets is precisely what was defined
above as û̂ûu/ν. In order to have R = sv′û̂ûu it must follow that û̂ûuBε′ε′ε′ = sν. But
this reduces to the expression s = pB(B + ν(1 − s)I)−1ε′ε′ε′, the equation that
defined s. Therefore sνv′ = Bε′ε′ε′, and because Bε′ε′ε′ = LLLε′ε′ε′,

R =
1
ν
Bε′ε′ε′û̂ûu =

1
ν
LLLε′ε′ε′û̂ûu = Aε′ε′ε′û̂ûu,

thereby explicitly satisfying Theorem 8.4.1. The rightmost expression for R
explicitly yields the idempotent property for R. That is,

R2 = (Aε′ε′ε′û̂ûu)(Aε′ε′ε′û̂ûu) = Aε′ε′ε′(û̂ûuAε′ε′ε′)û̂ûu = sAε′ε′ε′û̂ûu = sR,

and thus,
Rn = sn−1R.

Using what we have found so far we can say that, for n > 0,

πππ(n) = πππ(I−R)Rn = sn−1πππ(R−R2) = sn−1(1− s)πππR.

Next we look at πππR,

πππR =
(

1
pVε′ε′ε′

pV
)(

1
ν
Bε′ε′ε′û̂ûu

)
= � û̂ûu.

This yields
πππ(n) = (1− s)sn−1� û̂ûu for n ≥ 1,

exactly the same as Chapter 5. With some contortions (identical with those
we did in Chapter 5) we can reproduce the expression for πππ(0) given above.

In conclusion, we have found two completely distinct solutions for the sim-
plest nontrivial MRP/M/1 queue, and have shown that they produce identical
results. For more complicated systems it may be impossible to show that two
different solutions yield the same results except by direct computation, but
then we can only be sure to within numerical accuracy, and even then only
for the particular parameters chosen.

Chapter 9
L A Q T

A theory should be as simple as possible, but no simpler
Albert Einstein

In the previous chapters we saw that matrix relations continually occur, inde-
pendently of probabilistic interpretations. Surely this is not an accident. We
now attempt to create a linear algebraic formulation that is not merely an
algorithmic or computational aid but could lead to a complete formal proce-
dure for dealing with nonexponential queues. The idea is to avoid resorting to
any particular basis set, a common technique in linear algebra. We have not
been entirely successful, but some interesting results, particularly in Section
9.3, are presented. The rest is open to discussion and review.

We first show that most, if not all, the equations in this book are invariant
to the isometric transformations we introduced in Section 3.4.2. This invari-
ance property implies that a basis-free formulation is possible. In some sense
this chapter serves as a review of the book, but now all the properties of the
servers and queues are in terms of linear operators that modify the state vec-
tor of the system when things happen. This change in viewpoint may appear
self-evident to some readers, and if so, fine, but it is important to mention,
nonetheless. We do not claim that we are doing this in the best or most effi-
cient way to set up the algebraic structure. Surely some readers can do better.
We merely wish to show that it can be done. Therefore, questions that may
arise should not be considered to be weaknesses of the theory but issues to be
cleared up or clarified, which may actually lead to new insights.

One problem we have is that density functions have the constraint that
f(x) ≥ 0 for all pdfs. Thus the difference of pdfs does not always lead to a
function that is greater than or equal to 0 for all x. Therefore the set of all
pdfs is not truly a vector space even though the set of all integrable functions
is. In various areas of applied mathematics, functions are expanded in terms
of orthogonal functions which serve as the basis vectors. See Section 4.4.2
for the example of Laguerre polynomials and the discussion therein. Usually
the accepted metric is defined in L2 space, that is, the “length” of a vector
(function) is [∫ ∞

o

|f(x)|2dx

]1/2

L. Lipsky, Queueing Theory, DOI 10.1007/978-0-387-49706-8 9, 505
c© Springer Science+Business Media, LLC 2009

506 9.1 Isometric Transformations

and orthogonal basis functions, {φj(x)} satisfy the property:

∫ ∞

o

φj(x)φ′
i(x)dx = δij .

For this orthogonality condition to occur, all but one of the φis must be
negative for some values of x. Therefore they cannot be interpreted as pdfs.

In quantum mechanics the ψ functions are interpreted as probability am-
plitudes (i.e., |ψ(x)|2 is a probability density), and ψ(x) can even be complex.
How fortunate for physics that nature works this way for subatomic particles.
But we are stuck with classical probability and as a substitute must use phases
as basis functions, and isometric transformations as a substitute for preserving
lengths. So don’t try too hard to give physical meaning to individual phases.

9.1 Isometric Transformations

In Section 3.4.2 (Theorem 3.4.1), we showed that if 〈〈〈p , B 〉〉〉 is a faithful rep-
resentation of a given distribution function, so is 〈〈〈 pS−1 , SBS−1 〉〉〉, where S
is any isometric invertible matrix. That is, B(t), R(t), b(t), and B∗(s) remain
unchanged by such transformations. These isometric transformations go be-
yond the description of a single server. We now extend this idea to any row
vector u, column vector v′, and square matrix X, and define the following
mapping.

Definition 9.1.1
Let S be any nonsingular isometric matrix, then the following map-
ping (or similarity transformation) is called an isometric transforma-
tion:

ũ := uS−1, ṽ′ = Sv′,

and
X̃ := SXS−1,

for every row vector, column vector, and matrix of interest. Because S
is isometric, ε′ε′ε′ does not change under any transformation. Note that

ũṽ′ = uS−1Sv′ = uv′ and Ψ̃
[
X̃
]

:= p̃X̃ε′ε′ε′ = Ψ [X] .

These equations show us that inner products and Ψ [·] operations re-
main unchanged (are invariant) under isometric transformations. In
general, we say that an “equation is invariant” if it is identical in form
for the transformed objects as it is for the original objects. ���

We showed in Section 4.1.2 that the steady-state solutions of M/G/1
queues (both open and closed) depend on the matrix A and its inverse U,
defined by

A := U−1 := I +
1
λ
B−Q, (9.1.1)

9 L A Q T 507

where λ is the service rate of S2 (or the Poisson arrival rate to S1), and
Q := ε′ε′ε′ p. Given that Sε′ε′ε′ = ε′ε′ε′, it follows from their definitions that

Q̃ = SQS−1 = S ε′ε′ε′ pS−1 = ε′ε′ε′ p̃

and
Ã = SAS−1 = I +

1
λ
B̃− Q̃.

Thus the equations defining Q and A are invariant to isometric transforma-
tions. From Theorem 4.1.2, the steady-state vector and scalar probabilities
for the open queue are

πππ(n) = (1− ρ)pUn (9.1.2a)

and
r(n) = πππ(n)ε′ε′ε′ = (1− ρ)Ψ [Un] . (9.1.2b)

Any isometric transformation S will produce the following.

π̃̃π̃π(n) := πππ(n)S−1 = (1− ρ)pS−1SUn S−1 = (1− ρ)p̃ Ũ
n

and (note that SU2S−1 = SUS−1SUS−1 = Ũ−2, etc. for all n)

r̃(n) := π̃̃π̃π(n)ε′ε′ε′ = (1− ρ)Ψ̃
[
Ũn
]

= (1− ρ)Ψ [Un] = r(n).

Clearly, the vector and scalar probabilities, πππ(n) and r(n), are also invariant
to isometric transformations. In particular, we see that for scalars [e.g., r(n)],
“invariance” means “no change.”

We mentioned in Section 4.4 that the standard algorithm for evaluating
the steady-state probabilities for the M/G/1 queue requires the exponential
moments defined by

αn(s) :=
∫ ∞

0

(sx)n

n!
e−sxb(x)dx.

We then showed that [Equations (4.4.1)]

αn(s) = Ψ [(sVD)nD] ,

where D := (I + sV)−1. Clearly, these expressions are invariant to isometric
transformations, so the results one gets with one representation will be identi-
cal to the results one gets with any similar representation. For instance [using
(SXS−1)−1 = (S−1)−1X−1S−1 = SX−1S−1],

D̃ := SDS−1 = S[I + sV]−1S−1 = [S(I + sV)S−1]−1

= [I + sSVS−1]−1 = [I + sṼ]−1.

We mention that the various formulas describing the M/ME/1 queue are very
similar to those for the M/M/1 queue and would generalize trivially were it
not for the fact that Q and B do not commute! On the other hand, things
would have been a lot worse if Q did not have rank one, which is the case for
M/G/C//N systems.

508 9.2 Linear Algebraic Formulation

9.2 Linear Algebraic Formulation

We now attempt to formulate queueing processes without resorting to individ-
ual components or phases. First we look at a single isolated (general) server
S. To do this we change the meaning of our notation somewhat. In general,
one can start with a set of independent basis vectors (the equivalent of our
phases) and then generate the entire vector space by taking all possible linear
combinations of the basis vectors. Alternatively, we can start with an abstract
vector space, and then, if we need one, select a basis set. We did the former
in previous chapters. We do the latter here. We assume, as we did throughout
this book, that all systems of interest are stationary in that all the primitive
operators are independent of time [Feller71].

9.2.1 Description of a Single Server

Let r be a vector in some discrete (in our case, finite-dimensional) vector space
Ξ that contains all we know about S. Previously, we considered Ξ to be the
set of phases of S and then constructed the vectors from them. Now, we let
Ξ be the set of all vectors. In doing this we are actually tightening up our
mathematics. Keep in mind, though, that not every vector in Ξ has physical
meaning.

Let the “length” of any vector in Ξ be its “dot product” with a special
unique vector from the adjoint space Ξ′, denoted by ε′ε′ε′.∗

Then, for one thing,

R := rε′ε′ε′ = probability that S is busy.

R is a measurable quantity, but the components of r need not be. From an
outside observer’s point of view, S can only be in one of two external states:
either it is busy or it is not. What goes on inside is hidden from view until S
stops, in which case r becomes the null vector, o. (Of course, if an observer
really can look inside, S must truly be a phase distribution.)

From the basic Markov property, only one thing can happen at a time,
and it can only depend on the state the system is in when it happens. Also, a
transition that does not change the length of r is not directly observable. Let
P be a linear operator on Ξ which moderates internal transitions, while q′

moderates completion of service. That is, given that something has occurred,
rq′ is the probability that service ended, rP is the new state S is in if service
has not ended, and rP ε′ε′ε′ is the probability that service did not end. Nothing
else can occur, so we must have

rq′ + rPε′ε′ε′ = rε′ε′ε′.

∗Technically, objects in Ξ′ are linear functionals that map vectors in Ξ into the complex
numbers. It is well known that this is also a vector space (see, e.g., [Halmos55]) and is
isomorphic to (i.e., has the same dimension as) Ξ. When one is working with an explicit
basis, one thinks of row and column vectors, and the scalar mapping is the dot product.

9 L A Q T 509

This equation must be true for all r ∈ Ξ which have physical meaning, so it
follows that q′ + Pε′ε′ε′ = ε′ε′ε′. Put differently, this equation can be rewritten as

r[q′ + Pε′ε′ε′ − ε′ε′ε′] = 0.

Then if it is true for m linearly independent r vextors, the term in brackets
must be identically equal to o′. (m is the dimension of vector space Ξ.) Thus
q′ and P are related by the relation

q′ = (I−P)ε′ε′ε′. (9.2.1)

The time scale for the behavior of S comes in through the operator T, where
rTε′ε′ε′ is the mean time to the next event. Also, let τ ′τ ′τ ′ ∈ Ξ′ be a linear functional
such that rτ ′τ ′τ ′ is the mean time until service terminates, given that S is initially
busy, and described by state vector r, where rε′ε′ε′ = 1. Then we can write

rτ ′τ ′τ ′ = rTε′ε′ε′ + rPτ ′τ ′τ ′.

In words, the time for service to complete is made up of two parts. First there
is the time until the next event [rTε′ε′ε′], and if that event was not a termination
[rPε′ε′ε′], then S changes its internal state [rP], and completes service from there
[τ ′τ ′τ ′]. Given that this equation is valid for all r ∈ Ξ, we can once again discard
r and solve for τ ′τ ′τ ′ to get

τ ′τ ′τ ′ = (I−P)−1Tε′ε′ε′ = Vε′ε′ε′, (9.2.2)

where V := (I−P)−1T.
Next, let M be a linear operator on our vector space that moderates the

occurrence of events. Then rMε′ε′ε′ is the instantaneous rate for something to
happen. A physical interpretation of what this means is as follows. Suppose
that there exists a basis set for Ξ in which M is diagonal. (It might be quite
interesting to explore systems in which this were not possible, although it
is not clear what that would mean.) Each basis vector ui is referred to as
a phase or pure state , and μi, the eigenvalue of M that goes with ui, is
the formal “probability rate” at which the system leaves state i. The time to
leave state i is “exponentially distributed” with exponent μi. Note that the
μ′s need not be real, so this interpretation may not have physical meaning. As
we show presently, this does not lead to any contradictions, as long as physical
(i.e., observable) quantities do not depend on the individual components of
the vectors in Ξ.

Based on our assumptions about S, only two types of things can happen.
We have just seen that either the system changes its internal state according
to the linear operator P, or it stops (i.e., the customer leaves), according to
the adjoint vector q′. That is, rMq′ is the probability rate that S will have
an event that results in a departure. We now examine how the internal status
of S evolves in time. Let r(t) contain that information and have initial value
p := r(0) such that pε′ε′ε′ = 1. In other words, we assume that whenever S first
starts service (at t = 0) it will always be represented by the initial vector
or entrance vector p. Then we have

R(t) = r(t)ε′ε′ε′ = probability that S is still busy at time t,

510 9.2 Linear Algebraic Formulation

and R(0) = 1. Now, in some small time interval δ,

r(t)δM + O(δ2) = probability that something will happen.

Then either nothing happens in the interval [r(t)(I− δM)], or the event results
in an internal transition [r(t)δMP], or there is a departure (no term needed).
Thus we have

r(t + δ) = r(t)(I− δM) + r(t)δMP + O(δ2). (9.2.3a)

In the usual way, bring r(t) to the left-hand side of the equation, divide both
sides by δ, and take the limit as δ goes to 0, to get, with the aid of the
definition, B := M(I−P),

dr(t)
dt

= −r(t)M(I−P) = −r(t)B. (9.2.3b)

Even on an abstract vector space, the solution of this differential equation
is simple as long as we understand that exp(−tB) stands for its Maclaurin’s
series expansion. Given that p = r(0), we get

r(t) = p exp(−tB), (9.2.3c)

and by postmultiplying with ε′ε′ε′, we have

R(t) = r(t)ε′ε′ε′ = Ψ [exp(−tB)] . (9.2.3d)

Given that b(t) = −R′(t), Equation (3.1.7d) directly follows. In fact, all of the
equations in Theorem 3.1.1 follow from this if we recognize that B = V−1,
which in turn is true if and only if T = M−1. Their derivation is almost
identical to that which we gave in Chapter 3, except that here we never
impose any physical meanings or constraints on the individual components of
the matrices.

Equation (9.2.3d) is the primary one that places constraints on p and B.
R(t) is an observable function, therefore it must satisfy the following,

t2 > t1 ≥ 0 =⇒ R(t1) ≥ R(t2) ≥ 0. (9.2.4)

If Ξ is finite-dimensional, this constraint is no more or less than requiring
that 1−R(t) be a matrix exponential probability distribution function. In
a base-free description, one might ask what the dimensionality of Ξ might be.
This has a straightforward answer when one notes that ε′ε′ε′ is a unique invariant
vector. Therefore, we define the dimension of Ξ′ to be the smallest integer for
which the family of vectors

ε′ε′ε′, B ε′ε′ε′, B2 ε′ε′ε′, B3 ε′ε′ε′, . . . , Bn ε′ε′ε′, . . . (9.2.5a)

is linearly independent. This is a base-free property, even though one usually
uses some basis set representation to find that integer. Ξ and Ξ′ must have

9 L A Q T 511

the same dimension (call it m), and because of (9.2.5a), there must exist m
linearly independent vectors, {rj!|1 ≤ j ≤ m}, in Ξ for which

rj ε
′ε′ε′ = 1, for j = 1, 2, . . . , m. (9.2.5b)

These (or any independent linear combination of them) can be used as the
basis set for Ξ. If we so desired, we could pick an appropriate linear combina-
tion that makes M a diagonal matrix, as discussed in the paragraph following
(9.2.2). Note that all bases which satisfy (9.2.5b) must be related to each other
by some isometric transformation. Let {rj} and {r̃j} be two bases for Ξ.
Then there exists a matrix (or linear transformation) S such that

rj S = r̃j for j = 1, 2, . . . , m, (9.2.5c)

and Sε′ε′ε′ = ε′ε′ε′.
Having said this, we see that all of the above depend on four independent

objects, p, M, P, and ε′ε′ε′. There might be a smaller set by combining M and
P in B. We use M in describing the interaction of two servers, but even in
that more complicated system M can be absorbed into B, so it remains to be
seen if M is a fundamental object. In any case, we say that S is represented
by 〈〈〈p , B 〉〉〉 if the pdf for S satisfies Theorem 3.1.1).

9.2.2 Residual Vector and Related Properties

From now on we use the terminology of queueing theory to describe the be-
havior of servers. Thus S is busy if there is a customer there, and becomes
idle when the customer finishes service and leaves. Suppose that instead of
leaving forever, the customer immediately returns and starts up again. This
parallels what we did in Section 3.5.3. The equation governing this process
is directly related to (9.2.3a), except that we must add the term previously
ignored, namely that the customer upon leaving [q′] immediately reenters [p].
Thus

r(t + δ) = r(t)(I− δM) + r(t)δ MP + r(t)δ Mq′p + O(δ2).

Note that Mq′p = M(I−P)ε′ε′ε′ p = BQ. In the usual way, we get the follow-
ing differential equation, which is a special case of the Chapman−Kolmogorov
equations, (1.3.2b),

dr(t)
dt

= −r(t)[B(I−Q)]. (9.2.6)

Given that (I−Q)ε′ε′ε′ = o′, we know that a steady-state solution vector πrπrπr :=
limt→∞ r(t) exists and satisfies the eigenvector equation:

πrπrπr B(I−Q) = o.

In Section 3.5 this vector was shown to be [Equation (3.5.10b)],

πrπrπr =
pV

pV ε′ε′ε′
=

1
x̄
pV (9.2.7a)

512 9.3 Networks of Nonexponential Servers

(with πππr ε′ε′ε′ = 1). We can say that 〈〈〈πrπrπr , B 〉〉〉 generates the residual process,
including, for instance, the mean residual time

EEE(Xr) = πππr V ε′ε′ε′ =
pV2 ε′ε′ε′

x̄
=

EEE(X2)
2x̄

· (9.2.7b)

Xr is the r.v. denoting the time for service to complete if it is not known when
service began.

9.3 Networks of Nonexponential Servers

In Section 8.3.2 we described a token, wandering forever in a closed network
of nonexponential servers, emitting packets to the outside world in various
prescribed manners. Here we revert to the terminology of Chapter 3 where a
customer enters a subsystem and after going from server to server, eventually
leaves. As discussed in Definition 8.3.1 we are dealing with three different
levels of matrices. The difference is that here the customer eventually leaves.
In examining this system, we prove that the mean time spent in the subsystem
is independent of the service time distributions of the different servers. We also
derive a simple expression for the variance of the time spent in the subsystem.
This approach was presented in [KonwarLipSleiman06].

9.3.1 Description of System

Consider a network S with M nonexponential servers as shown in Figure
9.3.1. Recall from Definition 8.3.1 that:

Bold-faced ItalicBold-faced ItalicBold-faced Italic characters such as P, p, and e′e′e′ characterize the cus-
tomer’s travel to, and between servers. These operators are M -dimensional,

Bold-faced Roman characters such as pi, Pi, Bi, Vi, and ε′iε
′
iε
′
i describe

the customer’s passage into and within server Si. These operators are mi-
dimensional;

Bold−facedBold−facedBold−faced CALIGRAPHICCALIGRAPHICCALIGRAPHIC characters such as ℘℘℘, πππ, BBB, PPP, and ε′ε′ε′
represent the sum-space composite system. These are Mm-dimensional, where
Mm =

∑M
i=1 mi. We think ofWWW as an M ×M matrix whose elements are also

matrices. Element (WWW)ij is an mi ×mj matrix.
The interserver operators are as follows.

ppp = System entrance vector ,

whose ith component, pi = (ppp)i, is the probability that a customer upon
entering S goes directly to Si. Because the customer must go somewhere,
p e′p e′p e′ = 1, where e′e′e′ is a column M -vector whose components are all equal to 1.

The interserver transition matrix is PPP , where

(PPP)ij = Pij

is the probability that the customer, upon leaving Si goes directly to Sj . Given
that the customer must eventually leave S, it must be the case that (I − PI − PI − P)

9 L A Q T 513

Figure 9.3.1: A network, S, of M nonexponential servers. Each server
is represented by the vector-matrix pair 〈〈〈pj , Bj 〉〉〉. A customer, upon entering S
goes to Si with probability pi. PPP is the transition matrix whose (ij)th component
is the probability that the customer, upon leaving Si, will go to Sj .

has an inverse, and therefore,

q′q′q′ := (I − PI − PI − P)−1e′e′e′

is the system exit vector whose ith component qi = (q′q′q′)i is the probability
that upon leaving Si the customer leaves S.

The intraserver operators are as follows. The service time density, fi(x)
for Ti, the time the customer spends in Si for each visit, is represented by the
vector-matrix pair, 〈〈〈pj , Bj 〉〉〉. From Chapter 3,

fi(x) = Ψi[exp(−xBi)Bi] := pi[exp(−xBi)Bi]ε′iε
′
iε
′
i, and Vi = Bi

−1

with EEE[T �
i] = �! Ψi[Vi

�] = �!pi[Vi
�]ε′iε

′
iε
′
i.

The composite-space system is constructed exactly as in Section 8.3.2.1.
There is a difference in the result. Whereas in Chapter 8 we described a
network where a token wandered forever according to QQQ, here the customer
eventually leaves, according to BBB. That is, here PPP is substochastic. Many
researchers remove the difference between QQQ and BBB by adding an absorbing
state to BBB, but then one must discard it to find the transient properties of the
customer’s time spent in the rest of the system. Here, as in the rest of this
book, we ignore absorbing states and thereby make a distinction between QQQ
and BBB.

First we recall some definitions. Let Wi be some operator concerning the
behavior of the customer while in Si. Then,

WWWo := Diag[[[W1, W2, · · · , WM]]]. (9.3.1)

514 9.3 Networks of Nonexponential Servers

Typical examples we use are: PPPo, MMMo, BBBo, and VVVo.
Row (probability) vectors are broken down as follows. Let aaa =

[a1, a2, . . . , aM] be an M -vector, where ai can be interpreted as the proba-
bility that the customer is at Si. Further, let ui be the conditional probability
vector, where [ui]k is the probability that the customer is at phase k of Si,
given that he is in Si. Therefore, ui ε

′
iε
′
iε
′
i = 1. The sum-space Mm-vector is

[[[a1u1, a2u2, · · · , aMuM]]].

If the ui’s are the entrance vectors (ui = pi) we use the notation from (8.3.4b):

〈〈〈aaa ||| := [[[a1p1, a2p2, · · · , aMpM]]]. (9.3.2a)

Similarly for column vectors: let b′b′b′ be an M -column vector and v′
i be

an mi-column vector. Then the composite vector is the transpose of
[[[b1v1, b2v2, . . . , bMvM]]]. In particular, if v′

i = ε′iε
′
iε
′
i, we use the notation of

(8.3.4c):

||| b′b′b′ 〉〉〉 :=

⎡
⎢⎢⎢⎣

b1ε
′
1ε
′
1ε
′
1

b2ε
′
2ε
′
2ε
′
2

...
bMε′Mε

′
Mε
′
M

⎤
⎥⎥⎥⎦ · (9.3.2b)

It then follows that

〈〈〈aaa ||| ||| b′b′b′ 〉〉〉 = a b′a b′a b′ =
M∑
i=1

ai bi. (9.3.2c)

Two important vectors of this type are

℘℘℘ = 〈〈〈ppp ||| and ε′ε′ε′ = |||e′e′e′ 〉〉〉 (9.3.2d)

from which it follows that

℘℘℘ε′ε′ε′ = 〈〈〈ppp ||| |||e′e′e′ 〉〉〉 = p e′p e′p e′ = 1. (9.3.2e)

We have shown how M -vectors are embedded into the full space. The ex-
tension to M ×M matrices is given by Definition 8.3.2. Thus let WWW be any
M ×M matrix. Then the Mm ×Mm matrix into which it is embedded is

〈〈〈WWW 〉〉〉 :=

⎡
⎢⎢⎣

W11 ε′1ε
′
1ε
′
1 p1 W12 ε′1ε

′
1ε
′
1 p2 · · · W1M ε′1ε

′
1ε
′
1 pM

W21 ε′2ε
′
2ε
′
2 p1 W22 ε′2ε

′
2ε
′
2 p2 · · · W2M ε′2ε

′
2ε
′
2 pM

· · · · · · · · · · · ·
WM1 ε′Mε

′
Mε
′
M p1 WM2 ε′Mε

′
Mε
′
M p2 · · · WMM ε′Mε

′
Mε
′
M pM

⎤
⎥⎥⎦ · (9.3.3)

These structured matrices have many useful properties to simplify calcula-
tions. For instance:

〈〈〈 aaa ||| 〈〈〈WWW 〉〉〉 = 〈〈〈aWaWaW ||| and 〈〈〈 WWW 〉〉〉 |||b′b′b′ 〉〉〉 = |||W b′W b′W b′ 〉〉〉. (9.3.4a)

We just saw how a matrix times a vector reduces to a simpler vector. Here is
the obvious reduction to a scalar:

〈〈〈 aaa ||| 〈〈〈WWW 〉〉〉 |||b′b′b′ 〉〉〉 = aW b′aW b′aW b′. (9.3.4b)

9 L A Q T 515

The product of two embedded matrices is

〈〈〈W1W1W1 〉〉〉〈〈〈W2W2W2 〉〉〉 = 〈〈〈W1 W2W1 W2W1 W2 〉〉〉, (9.3.4c)

and their sum is
〈〈〈W1W1W1 〉〉〉+ 〈〈〈W2W2W2 〉〉〉 = 〈〈〈W1 + W2W1 + W2W1 + W2 〉〉〉. (9.3.4d)

Furthermore, their commutivity is preserved. That is, each of the following
three equations implies the others.

〈〈〈W1W1W1 〉〉〉〈〈〈W2W2W2 〉〉〉 = 〈〈〈W2W2W2 〉〉〉〈〈〈W1W1W1 〉〉〉
〈〈〈W1 W2W1 W2W1 W2 〉〉〉 = 〈〈〈W2 W1W2 W1W2 W1 〉〉〉

W1 W2W1 W2W1 W2 = W2 W1W2 W1W2 W1.

(9.3.4e)

Let W1 = W2 = WW1 = W2 = WW1 = W2 = W ; then it follows that

〈〈〈WWW 〉〉〉� = 〈〈〈WWW � 〉〉〉. (9.3.4f)

The proof for all these relations is by direct computation. We multiply two
matrices here. The reader can try out the other equations by working with
matrices of dimension M = 2. Let us embed two matrices, W1W1W1 and W2W2W2. Then
(we are multiplying by block matrices), noting that pkε

′
kε
′
kε
′
k = 1,

[
〈〈〈W1W1W1 〉〉〉〈〈〈W2W2W2 〉〉〉

]
ij

=
M∑

k=1

[
〈〈〈W1W1W1 〉〉〉

]
ik

[
〈〈〈W2W2W2 〉〉〉

]
kj

=
M∑

k=1

ε′iε
′
iε
′
i [W1W1W1]ikpk ε′kε

′
kε
′
k [W2W2W2]kjpj

= ε′iε
′
iε
′
i

[
M∑

k=1

[W1W1W1]ik [W2W2W2]kj

]
pj = ε′iε

′
iε
′
i[W1 W2W1 W2W1 W2]ijpj =

[
〈〈〈W1 W2W1 W2W1 W2 〉〉〉

]
ij

.

This formulation extends to sum-space matrices that are not the result of
embeddings. Let XXX be any Mm × Mm matrix. It can be written in block
matrix form:

XXX =

⎡
⎢⎢⎣

X11 X12 · · · X1M

X21 X22 · · · X2M

· · · · · · · · · · · ·
XM1 XM2 · · · XMM

⎤
⎥⎥⎦ , (9.3.5a)

where Xij is itself a matrix of dimension mi ×mj . Next define the matrix XXX
where

[XXX]ij := Xij := pi Xij ε
′
jε
′
jε
′
j =

mi∑
k=1

mj∑
n=1

[pi]k[Xij]kn. (9.3.5b)

(Note that XXX , Xij, and XXX are distinct matrices.) It follows by direct substi-
tution that

〈〈〈aaa |||XXX |||b′b′b′ 〉〉〉 = aX b′aX b′aX b′. (9.3.5c)

Also,
〈〈〈W1W1W1 〉〉〉XXX 〈〈〈W2W2W2 〉〉〉 = 〈〈〈W1 X W2W1 X W2W1 X W2 〉〉〉. (9.3.5d)

516 9.3 Networks of Nonexponential Servers

We have in effect “reduced” XXX to the M ×M matrix, XXX. But this reduction
and subsequent embedding process is not reversible. That is, in general,

XXX
= 〈〈〈XXX 〉〉〉.
In any case, we see that the product of three matrices of dimension Mm can
be computed by first multiplying three matrices of dimension M , and then
embedding.

We now use this notation to find the generator and first two moments of
S.

9.3.2 Service Time Distribution

Consider the system in Figure 9.3.1. The (substochastic) transition matrix PPP
is given by (8.3.3c)

PPP = PPPo +

⎡
⎢⎢⎣

q′
1P11p1 q′

1P12p2 · · · q′
1P1MpM

q′
2P21p1 q′

2P22p2 · · · q′
2P2MpM

· · · · · · · · · · · ·
q′

MPM1p1 q′
MPM2p2 · · · q′

MPMMpM

⎤
⎥⎥⎦ · (9.3.6)

Then, following (8.3.3d) (where BBB replaces QQQ),

BBB =MMMo[III −PPP] = BBBo

[
III − 〈〈〈PPP 〉〉〉

]
. (9.3.7a)

For the case where S is made up of a single server (M = 1), 〈〈〈PPP 〉〉〉 reduces
to αε′ε′ε′p as described in (3.5.9a), and BBB → Br(α). If all Si are exponential
servers, then BBBo →M, 〈〈〈PPP 〉〉〉 → P, and we have a typical ME subsystem.

Let X be the r.v. denoting the time the customer spends in S; then 〈〈〈℘℘℘, BBB〉〉〉
is the generator of the distribution FX(x). VVV can be found by first getting the
inverse of

[
III − 〈〈〈PPP 〉〉〉

]
. This is similar in form to the expression in Lemma 4.2.1

and can be found by expanding it in a power series and using the embedded
matrix properties:[

III − 〈〈〈PPP 〉〉〉
]−1

= III + 〈〈〈PPP 〉〉〉+ 〈〈〈PPP 〉〉〉2 + · · ·+ 〈〈〈PPP 〉〉〉� + · · ·

= III + 〈〈〈PPP 〉〉〉+ 〈〈〈PPP 2 〉〉〉+ · · ·+ 〈〈〈PPP � 〉〉〉+ · · ·
= III + 〈〈〈PPP [I + P + PI + P + PI + P + P 2 + · · ·+ PPP � + · · ·]〉〉〉 = III + 〈〈〈PPP [I − PI − PI − P]−1 〉〉〉.

One needn’t accept that the leftmost and rightmost expressions are equal. One
need only multiply by III−〈〈〈PPP 〉〉〉 to verify. The constraint is that [I − PI − PI − P]−1 exist,
which was assumed in the first place. Therefore,

VVV = BBB−1 =
[
III + 〈〈〈PPP [I − PI − PI − P]−1 〉〉〉

]
VVVo. (9.3.7b)

In preparation for finding EEE[X], we must look at some properties of VVVo =
BBB−1

o = Diag[V1, V2, . . .]. By direct substitution,

℘℘℘VVV�
oε

′ε′ε′ = 〈〈〈ppp |||VVV�
o |||e′e′e′ 〉〉〉 = p Tp TpT (�)e′e′e′,

9 L A Q T 517

where we have defined the diagonal M -matrix

[TTT (�)]ii := pi V�
i ε′iε

′
iε
′
i = Ψi[Vi

�] =
1
� !

EEE[T �
i]. (9.3.8)

From this definition, TTT = Diag[EEE[T1], EEE[T2], . . .] = Diag[t̄1, t̄2, . . .]. Therefore,
TTT � = Diag[t̄�1, t̄�2, . . .]. Unfortunately, their definitions imply that TTT (�)
= TTT �.
The equality occurs only when all Si are exponential, or equivalently, if mi = 1
for all i.

Next look at

℘℘℘VVV = 〈〈〈ppp |||VVV = 〈〈〈ppp [[[III + PPP (I − PI − PI − P)−1]]] |||VVVo = 〈〈〈ppp (I − PI − PI − P)−1 |||VVVo.

Then,

EEE[X] = 〈〈〈ppp |||VVV |||e′e′e′ 〉〉〉 = 〈〈〈ppp(I − PI − PI − P)−1 |||VVVo |||e′e′e′ 〉〉〉 = ppp
[
(I − PI − PI − P)−1

]
TTTe′e′e′. (9.3.9a)

If all Si were exponential, this is exactly the expression we would get. Clearly
EEE[X] does not depend on the details of the servers’ distributions. Therefore
the mean time spent in S depends only on ppp, PPP , and (TTT)ii = t̄i = pi Vi ε

′
iε
′
iε
′
i,

where t̄i is the mean time spent at Si for each visit. In hopes of making the
formulas more transparent, we define

VeVeVe := (I − PI − PI − P)−1 TTT (9.3.9b)

using the subscript eee to denote that this is the matrix when all Si are
eeexponential. Then

EEE[X] = p Ve e′p Ve e′p Ve e′. (9.3.9c)

This is valid irrespective of the distributions of the Sis.
Before evaluating ℘℘℘VVV2 ε′ε′ε′ we observe that:

VVVε′ε′ε′ =
[
III + 〈〈〈PPP [I − PI − PI − P]−1 〉〉〉

]
VVVo |||e′e′e′ 〉〉〉

= VVVo |||e′e′e′ 〉〉〉+ |||PPP (I − PI − PI − P)−1T e′T e′T e′ 〉〉〉 = VVVo |||e′e′e′ 〉〉〉+ |||P Ve e′P Ve e′P Ve e′ 〉〉〉.
Then

℘℘℘VVV2 ε′ε′ε′ =
[
〈〈〈ppp |||VVV

] [
VVV |||e′e′e′ 〉〉〉

]
=
[
〈〈〈ppp (I − PI − PI − P)−1 |||VVVo

] [
VVVo |||e′e′e′ 〉〉〉+ |||P Ve e′P Ve e′P Ve e′ 〉〉〉

]
= ppp(I − PI − PI − P)−1T (2) e′T (2) e′T (2) e′ + p Ve P Ve e′p Ve P Ve e′p Ve P Ve e′.

It is not hard to show that if all the Si are exponential, then T
(2)
eT
(2)
eT
(2)
e = TTT 2 and

℘℘℘VVV2 ε′ε′ε′ → p V 2
e e′p V 2
e e′p V 2
e e′. It is useful to write the expressions relative to what they

would be if all servers were exponential. Using T
(2)
e = TT
(2)
e = TT
(2)
e = T 2, the above expression

can be written as

℘℘℘VVV2 ε′ε′ε′ = ℘℘℘VVV2
e ε′ε′ε′ + ppp(I − PI − PI − P)−1[[[T (2) − T 2]]] e′T (2) − T 2]]] e′T (2) − T 2]]] e′.

We now look at
[T (2) − TT (2) − TT (2) − T 2]ii = Ψi[Vi

2]− t̄2i .

518 9.3 Networks of Nonexponential Servers

Recall that for any distribution σ2 = EEE[X2]− t̄2, EEE[X2] = 2Ψ[V2], and C2 =
σ2/t̄2. These give us

[T (2) − TT (2) − TT (2) − T 2]ii =
1
2

t̄2i
[
C2

i − 1
]
,

where C2
i is the squared coefficient of variation for Si. Define the diagonal

matrix ΓΓΓ as
[ΓΓΓ]ii := C2

i − 1. (9.3.10)

Then
[T (2) − TT (2) − TT (2) − T 2] =

1
2

TTT 2 ΓΓΓ

and
℘℘℘VVV2 ε′ε′ε′ = ℘℘℘VVV2

e ε′ε′ε′ + 1
2
p Ve T Γ e′p Ve T Γ e′p Ve T Γ e′.

We put all this together and get (finally)

σ2 = σ2
e + p Ve T Γ e′p Ve T Γ e′p Ve T Γ e′. (9.3.11)

We summarize some of this in the following theorem.

Theorem 9.3.1: Let S be a system of nonexponential servers where
(I − PI − PI − P) is invertible. Then the time X spent in S by a single customer
has distribution generated by 〈〈〈℘℘℘, BBB〉〉〉, where BBB is given by (9.3.7a),

BBB = BBBo

[
III − 〈〈〈PPP 〉〉〉

]
,

with inverse given by (9.3.7b),

VVV = BBB−1 =
[
III + 〈〈〈PPP [I − PI − PI − P]−1 〉〉〉

]
VVVo,

and
℘℘℘ = 〈〈〈ppp ||| .

The mean and variance are given by (9.3.9a) and (9.3.11), respectively:

EEE[X] = ppp
[
(I − PI − PI − P)−1

]
TTTe′e′e′ = p Ve e′p Ve e′p Ve e′,

and
σ2 = σ2

e + p Ve T Γ e′p Ve T Γ e′p Ve T Γ e′,

where VeVeVe = (I − PI − PI − P)−1TTT and (ΓΓΓ)ii = C2
i − 1. Furthermore, in general,

EEE[X�] = �!℘℘℘VVV� ε′ε′ε′, depends only on the first � moments of each of the
Si through {T (k)T (k)T (k) ||| k ≤ � }. For instance, after some effort it can be
shown that

〈〈〈ppp |||VVV3 |||e′e′e′ 〉〉〉 = ppp(I − PI − PI − P)−1T (3) e′T (3) e′T (3) e′ + p Ve PpVe PpVe P (I − PI − PI − P)−1T (2) e′T (2) e′T (2) e′

+ppp (I − PI − PI − P)−1T (2) P Ve e′T (2) P Ve e′T (2) P Ve e′r + p Ve PVe P Ve e′p Ve PVe P Ve e′p Ve PVe P Ve e′.

If all servers are exponential, T
(�)
eT
(�)
eT
(�)
e → TTT �, and 〈〈〈ppp |||VVV� |||e′e′e′ 〉〉〉 → p Vep Vep Ve

�e′e′e′.
Could anything be simpler? �

9 L A Q T 519

One might ask if setting up all this mathematical apparatus is worth the
effort of this theorem, as well as those in Section 8.3.2. It is hoped that
in the future this can be used to explore the behavior of a system where
more than one customer can be active at a time. If all the servers have
one-dimensional representations, Ξ is one-dimensional and we have a Jack-
son network, [Jackson63], [Gordon-Newell67], and we have nothing new
to contribute. If at least one of the servers needs a higher-dimensional repre-
sentation, we are into LAQT. If, in particular, exactly one subspace, say S1,
is multidimensional, then the problem may be tractable. But If two or more
spaces are multidimensional, one can no longer avoid the problems inherent
in product space arithmetic.

9.4 Systems With Two Servers

We have no intention at this time of trying to continue our discussion of many-
server systems. Thus let us let m = 2 hereafter. Our purpose is to show that
many of the known results of queueing theory that have matrix formulations
(beyond those we discussed in Section 9.1) are invariant to isometric trans-
formations and can be written in a base-free way. We enumerate some results
concerning the G/M/1 and M/G/1 queues and then look momentarily at the
G/G/1 queue. Finally, we look at some transient behavior in M/G/1 systems,
noting that the procedure is completely generalizable.

In a closed loop, S1 and S2 play exactly equivalent roles. But as we have
mentioned numerous times before, if the number of customers in the system
is so large that one or the other has no likelihood of ever being idle, that
subsystem is equivalent to a source of customers to the other. Clearly, for
subsystems where only one customer can be served at a time, the one with the
smaller maximal throughput will be that subsystem, or server. By convention,
we have assumed that S2 has the longer mean service time for M/G/1 and
G2/G1/1 queues. But for G/M/1 queues S1 has the longer service time. Let
Gi describe the pdf type of server Si. Then we are looking at G2/G1/1//N
loops, and their open extensions [i.e., G2/G1/1//(N → ∞) is equivalent to
G2/G1/1].

9.4.1 G/M/1 Queue

We have already shown that the steady-state M/G/1 queue is invariant. The
same matrix which governs that system [the matrix A of (9.1.1)] also has
relevance to the open G/M/1 queue, except that now, as in Chapter 5, ρ =
1/� = λx̄ > 1. For instance, let s and û satisfy the eigenvector equation:

ûA = sû, (9.4.1a)

where s is the smallest positive eigenvalue of A, and û ε′ε′ε′ = 1. We know that
s < 1 iff varrho < 1 (� is the utilization factor now). In Theorem 5.1.2, we
showed the following,

r(n) = (1− s)�sn−1, n > 0 (9.4.1b)

520 9.4 Systems With Two Servers

and
r(0) = 1− �. (9.4.1c)

Note that the eigenvalues are an invariant property of any matrix. That is, if
X and X̃ are related by an isometric transformation, they have the same
set of eigenvalues. Also, recall from (5.1.6b) that

û = λpV[I + λ(1− s)V]−1. (9.4.1d)

It follows from Corollary 5.1.2 that Ψ
[
(I + λ(1− s)V)−1

]
= B∗[λ(1−s)] = s.

So we even get the famous relation between the Laplace transform and s
without ever knowing what a Riemann−Stieltjes integral is, and from a base-
free matrix algebraic formulation.

Next recall two other distributions related to the G/M/1 queue. The first
is the interdeparture time distribution we gave in Section 5.2.2, which is gen-
erated by 〈〈〈p2d , B2d 〉〉〉 where

p2d := [sû, 1− s] and B2d :=
[

B B ε′ε′ε′

o λ

]}
(m + 1). (9.4.2)

The second distribution describes the arrival time conditioned by departures,
which is generated by 〈〈〈 û , B 〉〉〉. This is rather interesting, for it tells us that
the generator of the arrival process is in composite state û at the moment a
customer leaves the G/M/1 queue, thus giving us a meaning of the eigenvector
of B belonging to the smallest eigenvalue, s.

System Time for the M/ME/1 Queue

The last process we mention here is the system time for the M/G/1 queue. It
is generated by the vector-matrix pair (Section 4.2.3) 〈〈〈ps , Bs 〉〉〉, where

Bs := B− λQ (9.4.3a)

and
ps := (1− ρ)p(I−U)−1. (9.4.3b)

It is clear that all three distributions

〈〈〈 û, B 〉〉〉, 〈〈〈pd, Bd 〉〉〉, and 〈〈〈ps, Bs 〉〉〉,

are invariant to isometric transformations.

9.4.2 Two Nonexponential Servers

As we have already seen, if the representation of a nonexponential server is
m-dimensional, the space required to describe its interaction with exponential
servers is also m-dimensional (i.e., there is no increase in dimensionality).†

†This, by the way, indicates that the concept of an absorbing state interferes with a
self-consistent matrix formulation of queueing theory, because then one requires an (m +
1)−dimensional description.

9 L A Q T 521

However, if two servers are nonexponential, one needs a space of m1 ·m2

dimensions. There is no way out of this increase in complexity; it simply
reflects the amount of information needed to describe the dynamics of such
complex systems. (There is an interesting exception, which we mention in the
concluding remarks.)

We first recall the steady-state solution for the closed G/G/1//N loop from
Chapter 7. The operators Bi and Qi are defined in the same way for server i
as was done in the previous sections. Remember that operators with different
subscripts (belonging to different subspaces) automatically commute. When
we need a matrix representation of sums of their products, we embed them
in the product space, which formally means putting a ·̂ (“hat”) on them.
Repeating Equations (7.3.5), we have

S+ := B̂1 + B̂2 − B̂2 Q̂1, (9.4.4a)

S− := B̂2 + B̂1 − B̂1 Q̂2, (9.4.4b)

T± := (S±)−1, (9.4.4c)

and
U := T+S−. (9.4.4d)

It would seem that S+ and S− are the generalizations of A in (9.1.1) for
the M/G/1 queue, but it is not quite that simple. Instead, U is the direct
generalization of the “U” for the M/G/1 queue, with no real analogue for A,
for now both servers play symmetric roles in the theory, and U−1 = T−S+.
The steady-state solution given by Theorem 7.3.5 is:

ΠΠΠ(n,N) = ΠΠΠ(0, N) B̂2 U
n
T− for 1 ≤ n ≤ N − 1, (9.4.5a)

ΠΠΠ(N,N) = ΠΠΠ(0, N)B̂2 U
N−1

V̂1, (9.4.5b)

and
r(n,N) = ΠΠΠ(n,N)ε′ε′ε′. (9.4.5c)

All of these equations are invariant to isometric transformations in the two
subspaces, because a transformation in one subspace automatically commutes
with matrices in the other space. An interesting research problem would be
to study isometric transformations over the product space, an idea that was
actually discussed in Chapter 6. There it was shown that if two or more servers
are identical and customers are not “marked”, then the product space can be
reduced to a reduced-product space.

Recall that Qi and Bi do not commute with each other if Ξi has dimension
greater than 1 (nonexponential). This is what made the M/G/1 queue harder
than the M/M/1 queue. But now we have the added problem that S+ and
S− do not commute with each other if both Ξ1 and Ξ2 are multidimensional,
which is what makes the G/G/1 queue harder than the M/G/1 and G/M/1
queues.

522 9.4 Systems With Two Servers

9.4.3 Review of Transient Behavior

In the previous chapters, we assumed that there existed a basis set of pure
vectors, and that the system could be in one of those pure states initially. By
doing so, we appeared to be saying that such states (which we called phases)
have physical meaning individually. The formulation we are presenting in this
chapter treats all vectors on an equal footing. Note that in deriving (9.2.1) and
(9.2.2), we talked about operations (linear transformations) on an arbitrary
state vector r, and then, given that our intermediate equations were true for
all state vectors, we threw r away. From a rigorous mathematical point of
view we said that if an equation of the form rX = o is true for m linearly
independent vectors, where m is the dimension of the vector space, then it
must be true for all r ∈ Ξ, and furthermore, X = O. This means that we can
pick any m linearly independent vectors from Ξ, and treat them as though
they are pure states, even though they may have no independent physical
meaning. For instance, we could pick the set discussed in (9.2.5).

The argument goes something like this. Let r1, r2, . . . , rm be a basis for
Ξ. Then any physical vector r can be written as a linear combination of these
basis vectors,

r =
m∑

j=1

rj rj.

Every linear operator X transforms every vector in Ξ to some other vector in
Ξ. In particular, rj X ∈ Ξ, and thus it can be written as a linear combination
of members of the set {rj}. That is,

rj X =
m∑

k=1

Xjk rk,

and thus

rX =
m∑

j=1

rjrj X =
m∑

j,k=1

rjXjkrk.

In words, if the set of scalars, {r1, r2, . . . , rm}, describes r in terms of the
basis set { ri }, then the set {∑ rj Xj1,

∑
rjXj2, . . . ,

∑
rjXjm } describes

rX in the same basis, and Xjk is a matrix representation of transformation
operator X in the basis rj. Note that similarity transformations (which include
our isometric transformations) are those that change the basis set.

We can see that dealing with components of vectors and matrices is equiv-
alent to dealing with abstract vectors and transformations. We can do it either
way, without implying that the components themselves have any meaning. It
is somewhat easier to speak in terms of components. Thus we have been using
the notation “{i, n}” to mean that “S1 is in state ri with queue length n.”

In Section 4.5 we considered the process of a queue rising in length. For
n ≤ N , we defined the matrix

Hu(n) := probability matrix of first passage from n to n + 1. (9.4.6a)

9 L A Q T 523

That is, we said that [Hu(n)]ij is the probability that S1 will be in state
(phase) j (or rj) when its queue goes from n to n + 1 for the first time, given
that it started in state i (or ri) with n customers. Now we would say that if
S1 was initially described by state vector r, with n customers, then when its
queue goes from n to n + 1 for the first time, it will be described by state
vector rHu(n). After a while the two viewpoints seem to be synonymous;
one no longer notices the difference (are you there yet, dear reader?). By its
definition from either viewpoint, the following must be true. After all, the
queue must eventually reach every length.

Hu(n)ε′ε′ε′ = ε′ε′ε′ for 1 ≤ n < N. (9.4.6b)

Hu(n) is isometric.
In Section 4.5.1 we derived the recursive equations that Hu(n) must sat-

isfy; namely
Hu(n) = λ[λI + B−BQHu(n− 1)]−1. (9.4.7a)

From the definition of A, this can also be written as

Hu(n) = [A + Q−AQHu(n− 1)]−1. (9.4.7b)

As with all recursive relations, we must start somewhere, which we did by
noting that

Hu(0) = p, (9.4.8a)

and thus

Hu(1) = λ[λI + B−BQ]−1 = [A + Q−AQ]−1. (9.4.8b)

It is easy to show that Hu(1)ε′ε′ε′ = ε′ε′ε′, and by induction, using (9.4.7b), prove
that (9.4.6b) is true for all n. Note that in general, Hu(n) changes with n,
although the sequence approaches a limit for large n.

From these matrices we found the probability matrices of first passage
from n to n + j, for any n and j. For instance, the probability matrix (it is
actually a vector) of first passage from 0→ n is

pu(n) := pHu(1)Hu(2) · · · Hu(n− 1). (9.4.9)

These objects may not appear to be very interesting in their own right, but
they are needed for calculating first-passage times, as is shown in the next
paragraph.

By arguments similar to the preceding, we derived the mean time for the
queue to grow from n to n + 1 for the first time. First we defined the vector
τ ′
uτ
′
uτ
′
u(n), whose ith component is [τ ′

uτ
′
uτ
′
u(n)]i := mean first-passage time from n to

n + 1, having started in state {i, n}. It then followed that

τ ′
uτ
′
uτ
′
u(n) =

1
λ
ε′ε′ε′ + Hu(n)BQτ ′

uτ
′
uτ
′
u(n− 1), with τ ′

uτ
′
uτ
′
u(0) :=

1
λ
ε′ε′ε′. (9.4.10)

The sets of Equations (9.4.7) and (9.4.10) are all that is needed to compute
all the vector times. Whether the system is open or closed, irrespective of

524 9.5 Concluding Remarks

whether ρ is less than, equal to, or greater than 1, one can then calculate such
things as:

1. The mean first-passage time of going from n to n + 1, given that the
customer in service has just begun [pτ ′

uτ
′
uτ
′
u(n)].

2. The mean first-passage time from n to n + 1, given that the queue was
originally empty; see (9.4.9) [tu(n) := pu(n)τ ′

uτ
′
uτ
′
u(n)].

3. The mean first-passage time, given that a customer has just arrived
and found n customers already there (see Theorem 4.5.2 and its corollaries)
[πππ(n)τ ′

uτ
′
uτ
′
u(n)/r(n)].

One can even calculate in an efficient way the mean time for a queue to
grow to n for the first time given that a customer has just arrived at an empty
queue; namely,

t(1→ n) :=
n−1∑
k=1

tu(k). (9.4.11)

Note that this is not the same as the first excursion to n during a busy period
(although that too is calculable), because this process allows the queue to
empty any number of times before finally reaching its goal.

In like manner one can derive analogous expressions for M/G/C, G/G/1,
and even more general systems. The most significant point in this discussion is
that all the formulas are expressible in a base-free formulation invariant to iso-
metric transformations. Thus explicit appeal to a “component” interpretation
is unnecessary.

9.5 Concluding Remarks

We hope we have shown that an approach which is linear algebraic from be-
ginning to end has great potential for covering material that hitherto has
been ignored because of the difficulties involved. The ubiquitousness of such
an approach appears to depend on the invariance of formulas to isometric
transformations. If this is so, one must be prepared to deal with represen-
tations that are distinctly not phase distributions. Only then can one study
the purely algebraic properties of various systems using a paradigm that is
different from what we have been locked into for 50 years or more. Two such
research problems are described below.

1. Consider a G/G/1//N queue. In preparing such a system at say
t = 0, one must initialize both S1 and S2. This would require specifying
m1 +m2 quantities. That is, we have a sum-space description. But as the sys-
tem evolves in time, the components from each subspace become correlated
with those in the other, thus forcing a complete product-space description
(m1 ·m2 components). However, as van de Liefvoort has shown [Lief-Lip86],
[Liefvoort90], the key matrix for the steady-state solution, U from (9.4.4d),
has m1 ·m2 −m1 −m2 + 1 eigenvectors with eigenvalue 1, all of which can
be thrown away when calculating the s.s queuelength probabiities [r(n,N)],
if one can find an appropriate isometric transformation in the product space
(such a transformation exists, finding a general form for it is the problem).

9 L A Q T 525

This means that there exists (at least) one sum-space representation of steady-
state G/G/1 queues, one that mixes the components of the two subspaces.

2. In describing M/G/C//N-type systems (N > C), one must work in
spaces that have

D :=
(

m + C − 1
C

)
components. The steady-state solutions can then be written in terms of ma-
trices that have this dimension. However, when N ≤ C, the solution is known
to be the product-form solution of Jackson networks! What is the relationship
between the two? And as in question 1, does there exist a representation of
dimension less than D that can be used?

Symbols

�− End of definition. D1.1.2 †

�− End of Theorem, Lemma, or Corollary. T1.3.2 ¶

�− End of Example. E2.1.1‖

A := B− A is defined by B. S1.1.1 ‡

A = I + λ−1B−Q. (4.1.4a)∗

a(n; N)− S.s. Arrival prob. vector at S1. D4.1.4
a(n; N) = a(n; N)ε′ε′ε′− Scalar prob. associated with a(n; N). D4.1.4
a2(k; N)− S.s. Arrival prob. vector at S2. D5.1.3
a2(k; N) = a2(k; N)ε′ε′ε′− Scalar prob. associated with a2(k; N). D5.1.3
a2(k; N |C)− S.s. Arrival prob. vector at S2 (ME/M/C//N). D5.4.3
B := M(I−P)− Service rate matrix. (3.1.3)
BBB− Generator of interdeparture times for Markov renewal process. S8.2.1
B(t) = PPPr(T ≤ t)− Probability Distribution Function (PDF). (1.2.2)
B∗(s)− Laplace transform of b(t). (3.1.10)
Bd(t; N)− PDF for interdeparture times (M/ME/1//N). D4.2.3
Bs(t)− PDF for system time (M/ME/1). D4.2.1
b(t) = (d/dt)[B(t)]−Probability density function (pdf). (1.2.2)
C − Number of servers at S1. S5.4, C6§

C2
v = σ2/EEE[X]2− Squared coefficient of variation. (1.2.4c)

d(n; N)− S.s. Vector as seen by departing cust. in M/G/1//N queue. D4.1.5
d(n; N) = d(n; N)ε′ε′ε′− Scalar prob. associated with d(n; N). D4.1.5
d2(k; N)− S.s. Prob. vector as seen by customer departing S2. D5.1.2
d2(k; N) = d2(k; N)ε′ε′ε′− Scalar prob. associated with d2(k; N). D5.1.2
d2(k; N |C)− S.s. Vector for departure from S2 (G/M/C//N). D5.4.3
EEE[g(X)] =

∫∞
o

g(x) fX(x) dx− mean value of g(x). D1.2.3
Hd(n; N)− Prob. mx. of f.p. from n to n− 1. D4.5.7
H2d(k; N)− Prob. mx. of f.p. at S2 from k to k − 1. D5.5.3
Hdc(n; N)− Prob. mx. of f.p. from n to n− 1, where N ≥ n > C. D6.5.10
Hdk(N |C)− Prob. mx. of f.p. from k to k − 1, where C ≥ x > 0. D6.5.11
Hu(n)− Prob. mx. of f.p. from n to n + 1. D4.5.1
H2u(k)− Prob. mx. of f.p. at S2 from k to k + 1. D5.5.1
Hu(n→ n + �)− Prob. mx. of f.p. from n to n + �. D4.5.2
Huc(n)− Prob. mx. of f.p. from n to n + 1, where n ≥ C. D6.5.7
Huk− Related to Xk by Xk = Huk Rk+1, k < C. D6.5.6

†Definition number
¶Theorem number
‖Example number
‡Section number
∗Equation number
§Chapter number

527

528 Symbols

{ j; n; N }− A state of an M/ME/1//N loop (also ME/M/1//N). D4.1.2
K(N) = I + UK(N − 1), where K(1) = I + λV. (4.1.6d)
K = (I−U)−1. (4.2.2)
LLL− Instantaneous departure rate matrix for semi-markov processes. D8.2.1
M− Completion rate matrix. D1.3.6
Mk− Completion rate matrix for k active servers (M/ME/C). D6.3.2
Ni(t)− Number of departures from Si in interval, t. D4.4.1
P− (Substochastic) transition matrix. (3.1.1a)
PPP − Transition matrix between subsystems (PPPε′ε′ε′ = ε′ε′ε′). D1.3.4, S8.3.2
Pk− Transition mx. for k ≤ C active cust. (M/ME/C). D6.3.6
Pi(N)− S.s. prob. that Si is busy in a system with N cust. D2.1.2
p− Entrance vector. S3.1
℘℘℘ = ℘℘℘YYY − Left eigenvector of YYY. (8.2.7)
PPPr[X]− Probability that expression “X” is true. D1.1.2
pu(n)− Prob. vector for f.p. from 0 to n (M/ME/1). D4.5.4
puk(n)− Prob. vector for f.p. from 0 to n, with k active (M/ME/C). D6.5.8
〈〈〈p , B 〉〉〉− Matrix representation of subsystem, S. T3.1.1
QQQ− Transition rate matrix (Chapter 1 only). (1.3.2c)
Q = ε′ε′ε′p. L3.5.1‖

QQQ = BBB −LLL− Generator of underlying semi-Markov process (8.2.8a)
Qk− Matrix generalization of q′ with k active cust. (M/ME/C). D6.3.5
q′ = (I−P)ε′ε′ε′− Exit vector. (3.1.1a)
q̄− Mean queue length. (1.1.1c)
R(t) = exp(−tB)− Reliability matrix function. D3.1.1
R(N)−Mean response time in a TS system. T6.3.5
R(t) = Ψ[R(t)] = 1−B(t)− Reliability function. S1.2.1, (3.1.7d)
Rk− Matrix generalization of p for k active cust. (M/ME/C). D6.3.4
r(n) := limN→∞ r(n; N)− S.s. prob. for an open M/G/1 system. (4.2.4a)
r(n, N) = πππ(n, N)ε′ε′ε′− S.s. prob. for n cust. at S1(M/G/1//N). D4.1.1
rk(n, N) = πππk(n, N)ε′kε

′
kε
′
k− If n ≥ C, k=C, else k=n (M/G/C//N). D6.3.3

r2(k, N) = π2π2π2(k, N)ε′ε′ε′ = r(N − k, N). D5.1.4
r(t) = pR(t)− Reliability vector function. D3.1.2
r̂(k)− Autocorrelation Coefficient, lag − k. (8.2.12c)
s− Geom. parameter for G/M/1 queue; smallest eigenvalue of A. T5.1.2
Si− Subsystem labelled i. S2.1
td(n; N)− Mean f-p time to drop by 1. D4.5.9
td(k → 0; N)− Mean time for k-busy period. D4.5.10
tu(n)− Mean f-p time for queue to grow from n to n + 1. D4.5.5
tu(0→ n)− Mean f-p time for queue to grow from 0 to n. D4.5.6
U = A−1. (4.1.4b)
û̂ûu− Unit eigenvector of A going with eigenvalue s (û̂ûuε′ε′ε′ = 1). (5.1.4b)
V = B−1− Service-time matrix. (3.1.3)
VVV = BBB−1− Service-time matrix in semi-Markov processes. T8.1.1
Wd(n, k)− Prob. mx. for queue to drop by 1 w.o. exceeding k ≥ n. D4.5.16
Wd(n, k; N)− Prob. for queue to drop 1 w.o. exceeding k≥n. D2.3.9

‖Lemma number

Symbols 529

Wd(n→n−�; k)− Prob. mx. queue will drop by � w.o. exceeding k. D4.5.17
Wd(k → 0; N)− Prob. for queue to drop to 0 w.o. exceeding k. D4.5.17
Wm(k; N)− Prob. that queue will reach a max. of k during a b-p. D4.5.17
Wu(n) = Wu(n; 0)− Prob. mx. for queue to grow by 1 during a b-p. D4.5.14
Wu(n; k)− Prob. mx. for queue to grow by 1 w.o. dropping to k. D4.5.11
Wu(n; k) = Ψ[Wu(n; k)]. D4.5.12
Wu(n→ n+�; k)− Prob. mx. for growth by � w.o. dropping to k. D4.5.13
Wu(n)− Prob. that queue will grow by 1 during a b-p. D2.3.7
Wu(1→ k)− Prob. mx. for queue to grow to k during a b-p. D4.5.13
Wu(1→ k) = − Prob. that queue will grow to k during a b-p. D2.3.8
Wu(1→ k) = Ψ[Wu(1→ k)]. D4.5.13
w(n; N)− S.s. prob. vector between events (M/G/1 queue). D4.1.3
w2(k; N)− S.s. prob. vector between events, where k is the no. at S2. D5.4.2
Xk− Prob. mx. of f.p. from k to k + 1 active cust., where k < C. D6.5.5
Yk− Prob. mx. for going from k to k − 1 active cust., w.o. arrivals. D6.5.2
Yk(�)− Prob. mx. for going from k to k− � active cust., w.o. arrivals. D6.5.3
YYY = VVVLLL− satisfies YYYε′ε′ε′ = ε′ε′ε′. (8.2.2)
Δ(t)− Unit step function. (5.1.12b)
δij − Kronecker delta. D1.3.2
δ(x)− Dirac delta function. (3.2.4), (5.1.12a)
κ = πππLLLε′ε′ε′− Steady-state departure rate in semi-Markov processes. (8.2.8d)
Λ(N)− System throughput. D2.1.2
μν(�)− Load-dependent service rate. D6.3.8
ΠΠΠ(n; N)− S.s. vector for n at S1, and N−n at S2 (ME/ME/1//N). D7.3.2
πππ(n; N)− S.s. prob. vector of finding n cust. at S1 (M/ME/1//N). D4.1.1
π2π2π2(k; N)− S.s. prob. vector of finding k cust. at S2 (ME/M/1//N). D5.1.4
π2π2π2(k; N |C)− S.s. prob. vector for a generalized ME/M/C//N queue. D5.4.1
π2fπ2fπ2f(k; N)− S.s. prob. vector for an ME/M/1/N queue. D5.3.1
πi(t)− Prob. that system will be in state i ∈ Ξ at time t (Chapter 1). D1.3.2
πrπrπr(n; N)− Residual prob. vector (M/ME/1//N). D4.3.1
Ψ[X] := pX ε′ε′ε′ (for any square mx. X). (3.1.5)
ρ− Utilization factor = λx̄. (1.1.3), S4.2
�− Utilization factor for G/M/1 queues (� = x̄2/x̄1 = 1 / ρ) S5.1
�(X, Y)− Correlation coefficient. (8.2.11b)
σ2− Variance. (1.2.4a)
Ξ− Set of states of system. D1.3.1, D4.1.2, D7.3.1
Ξk − Set of states of subsystem, Sk. D6.3.1
τ ′
dτ
′
dτ
′
d(n; N)− Mean f-p time vector for queue to drop by 1. D4.5.8

τ ′
2dτ ′
2dτ ′
2d(k; N)− Mean f-p time vector for queue at S2 to drop by 1. D5.5.4

τd(n; N)− Mean f-p time for queue to drop by 1 (M/M/1//N). D2.3.4
τ ′
dkτ ′
dkτ ′
dk(n; N |C)− f-p vector for queue to drop by 1 (M/ME/C//N). D6.5.12

τ ′
uτ
′
uτ
′
u(n)− Mean f-p time vector for queue to grow by 1. D4.5.3

τu(n)− Mean f-p time for queue to grow by 1 (M/M/1). D2.3.2
τ ′
2uτ ′
2uτ ′
2u(k)− Mean f-p time vector for queue at S2 to grow by 1. D5.5.2

τ ′
ukτ ′
ukτ ′
uk(n)− Mean f-p vector for queue to increase by 1 (M/ME/C). D6.5.9

τ ′
kτ
′
kτ
′
k− Departure-time vector with k active cust., w.o. arrivals (ME/C). D6.5.1

Abbreviations

AMAOOMMPP − Alternative Modified Augmented ON-OFF MMPP.
AMMPP − Augmented MMPP
BOP − Buffer Overflow Probability.
b-p − Busy period.
C-K − Chapman-Kolmogorov Equation.
EIEO − Exponential In Exponential Out.
FCFS − First-Come-First-Served.
f.p. − First passage.
LAQT − Linear Algebraic Queueing Theory.
LT − Laplace Transform
MAOOMMPP − Modified, Augmented, ON-OFF MMPP.
MAP − Markov Arrival Process.
MCD − Mean Cell delay.
ME − Matrix Exponential function.
MMPP − Markov Modulated Poisson Process
MPD − Mean Packet delay.
MRDP − Markov Regulated Departure Process.
MRP − Markov Renewal Process.
MTTF − Mean Time To Failure.
mx. − Matrix.
ODE − Ordinary Differential Equation.
OOMMPP − ON-OFF MMPP.
PDF − Probability Distribution Function.
pdf − probability density function.
PH − Phase distribution.
P-K − Pollaczek-Khinchine Formula
PT − Power-Tailed distribution.
QBD − Quasi-Birth-Death Process.
QED − Quod Erat Demonstrandum, (which was to be proven)
RLT − Rational Laplace Transform.
RP − Reduced-Product space.
RT − Relaxation Time.
r.v. − random Variable.
SMP − Semi-Markov Process.
s.s. − steady-state.
TPT − Truncated Power-tailed distribution.
TS − Time-Sharing.
w.o. − without.

531

Bibliography

[AbateChoudhuryWhitt96] Abate, J., Choudhury, G.L. and Whitt, W.
(1996). On the Laguerre method for numerically inverting Laplace trans-
forms. INFORMS J. Computing 8, 413–427.

[AbramowitzStegun64] Abramowitz, M. and Stegun, I.A. (1964). Hand-
book of Mathematical Functions. U.S. Government Printing Office, Wash-
ington D. C.

[Allen90] Allen, A.O. (1990). Probability, Statistics, and Queueing Theory,
with Computer Science Applications, 2nd ed. Academic Press, New York.

[AntoniosSchwefelLip07] Antonios, I., Schwefel, H-P, and Lipsky, L.
(2007). On the correlation and its relationship to performance for
ON/OFF network traffic. Tech. Report, Center for Telecommunications,
Aalborg University, Denmark.

[Asmussen03] Asmussen, S. (2003). Applied Probability and Queues, 2nd.
ed. Springer-Verlag, New York.

[AsmussenKluppelberg97] Asmussen, S. and C Kluppelberg (1997). Sta-
tionary M/G/1 excursions in the presence of heavy tails, J. Appl. Prob.
34, 208–212.

[Bak96] Bak, Per (1996). How Nature Works - The Science of Self-Organized
Criticality. Springer-Verlag, New York.

[Basketetal75] Baskett, F., Chandy, K.M., Muntz, R.R., and Palacios,
F.G. (1975). Open, closed, and mixed networks of queues with differ-
ent classes of customers. Journal of the ACM, 22, 2, 248–260.

[Beutler83] Beutler, F.J. (1983). Mean sojourn times in Markov queueing
networks: Little’s formula revisited IEEE Transactions on Information
Theory 29, 2, March.

[Burke56] Burke, P.J. (1956). The output of a queueing system. Operations
Research, 4, 699–704.

[Buzen73] Buzen, J.P. (1973). Computational algorithms for closed queue-
ing networks with exponential servers. Communications of the ACM,
September.

[BuzenDenning] Buzen, J.P. and Denning, P.J. (1978). The operational
analysis of queueing network models. Computing Surveys, 10, 3, 225–
261.

533

534 Bibliography

[Carroll79] Carroll, J.L. (1979). A Study of Closed Queueing Networks with
Population Size Constraints. PhD Dissertation, University of Nebraska,
Lincoln.

[CarrollLipvdL82] Carroll, J.L., Lipsky, L., and van de Liefvoort, A.
(1982). Solutions of M/G/1/N-type loops with extension to M/G/1 and
GI/M/1 queues. Operations Research 30, 490–514.

[Chak-Alfa97] Chakravarthy, S.R. and Alfa, A.S., eds. (1997). Matrix-
Analytic Methods in Stochastic Models Marcel Dekker, New York.

[Cohen82] Cohen, J.W. (1982). The Single Server Queue, 2nd ed. North
Holland, New York.

[Conte-Deboer80] Conte, S.D. and de Boer, C. (1980). Elementary Nu-
merical Analysis, 3rd ed. McGraw-Hill, New York.

[Cooper81] Cooper, R.B. (1981). Introduction to Queueing Theory. 2nd ed.
Elsevier North Holland, New York.

[Courtois77] Courtois, P.J. (1977). Decomposability; Queueing and Com-
puter System Applications. Academic Press, New York.

[Cox55] Cox, D.R. (1955). Use of complex probabilities in the theory of
stochastic processes. Proceedings of the Cambridge Philosophical Society
51, 313–319.

[Cox62] Cox, D.R. (1962). Renewal Theory. Menthuen, London.

[CrovellaBestavros96] Crovella, M. and Bestavros, A. (1996). Self-
similarity in World-Wide-Web traffic: Evidence and possible causes. Per-
formance Evaluation Review 24, 160–169.

[Denning78] Denning, P.J., Ed. (1978). Special issue on performance mod-
elling.Computing Surveys 10, 3.

[Ding91] Ding, Y. (1991). On Performance Control of Real-Time Systems.
PhD Dissertation, University of Connecticut, Storrs.

[DisneyKiessler87] Disney, R.L., and Kiessler, P.C. (1987). Traffic Pro-
cesses in Queueing Networks: A Markov Renewal Approach. Johns Hop-
kins University Press, Batimore.

[DuMouchel71] DuMouchel, W.H. (1971). Stable Distributions in Statisti-
cal Inference. PhD Thesis. University of Michigan, Ann Arbor.

[Embr-Klup-Mik07] Embrechts, P., Klüppelberg, C. and Mikosch, T.
(2007–8th printing). Modelling Extremal Events for Insurance Claims.
Springer, Berlin.

[Erlang17] Erlang, A.K. (1917). Solution of some problems in the theory of
probabilities of significance in automatic telephone exchanges. The Post
Office Electrical Engineer’s Journal 10 189–197.

Bibliography 535

[FangLipsky82] Fang, Z. and Lipsky, L. (1982). A note on the persistance
of the time-dependent solution of an M/M/1/M queue. Tech. report,
Department of Computer Science, University of Nebraska, Lincoln.

[Feller71] Feller, W. (1971). An Introduction to Probability Theory and Its
Applications, Vol. II., 2nd Ed. John Wiley, New York.

[FioriniLipvdLHsin95] Fiorini, P. M., Lipsky, L., van de Liefvoort, A. and
Hsin, W-J (1995). Auto-correlation lag-k for customers departing from
semi-Markov processes. Tech. report, Technical University-München,
January.

[FioriniLipHatem97] Fiorini, P. M., Lipsky, L. and Hatem, J.E! (1997).
Comparison of buffer usage utilizing multiple servers in networks with
power-tail distributions. INFORMS97, Boston, MA, 30 June-2 July.

[Fiorini98] Fiorini, P.M. (1998). Modeling Telecommunication Systems with
Self-Similar Data Traffic. PhD thesis, Department of Computer Science,
University of Connecticut, May.

[LipGargRobbert92] Lipsky, L., Garg, S and Robbert, M. (1992). The
effect of power-tail distributions on response times of time-sharing com-
puter systems. SIGAPP92 Symposium on Applied Computing Kansas
City, MO, March. Also in Applied Computing: Technological Challenges
of the 1990’s, Vol.II. 719-723. Berghel, H, et al.,Eds., ACM, New York.

[Glynn-Whitt93] Glynn, P.W., and Whitt, W. (1989). Estensions of the
queueing relations L = λW and H = λG. Operations Research 37,
634–644.

[Gordon-Newell67] Gordon, W.J. and Newell, G.F. (1967). Closed queue-
ing systems with exponential servers. Operations Research 15 254–265.

[Graham81] Graham, A. (1981). Kronecker Products and Matrix Calculus.
Ellis Horwood, Chichester, England.

[Grein-Job-Lip99] Greiner, M., Jobmann, M. and Lipsky, L. (1999). The
importance of power-tail distributions for telecommunication traffic mod-
els. Operations Research 47, No.2, 313–326, March.

[Gross-Harris98] Gross, D. and Harris, C.M. (1998). Fundamentals of
Queueing Theory, 3rd ed. Wiley-Interscience, New York.

[Guptaetal07] Gupta, V., Harshol-Balter, M., Sigman, K. and Whitt, W.
(2007). Analysis of join-the-shortest-queue routing for web server farms.
Performance Evaluation 64 1062-1081.

[Halmos55] Halmos, P.R. (1955). Finite Dimensional Vector Spaces Prince-
ton University Press, Princeton, NJ.

536 Bibliography

[Hatem97] Hatem, J.E! (1997). Comparison Of Buffer Usage Utilizing Single
And Multiple Servers In Network Systems With Power-tail Distributions.
PhD Thesis, Department of Computer Science, University of Connecti-
cut, December.

[Heyman-Sobel82] Heyman, D.P. and Sobel, M.J. (1982). Stochastic Models
in Operations Research, Vol. 1, McGraw-Hill, New York.

[Horn-Johnson85] Horn, R.A. and Johnson, C.R. (1985). Matrix Analysis.
Cambridge University Press, Cambridge UK.

[Jackson63] Jackson, J.R. (1963). Jobshop-like queueing systems. Manage-
ment Science 10, 131–142.

[Jensen67] Jensen, N.E. (1967). An introduction to Bernoullian utility the-
ory, I: utility functions, Swedish Journal of Economics 69, p.163–83.

[Kant92] Kant, K. (1992). Introduction to Computer System Performance
Evaluation. McGraw-Hill, New York.

[Keilson-Nunn79] Keilson, J. and Nunn, W. (1979). Laguerre transforma-
tion as a tool for the numerical solution of integral equations of convolu-
tion type. Applied Mathematics and Computation 5, 313–359.

[Kendall52] Kendall, D.G. (1952). Les processus stochastiques de croissance
en biologie. Annales de l’Institut Henri Poincaré, 13, 43–108.

[Kendall53] Kendall, D.G. (1953). Stochastic processes occurring in the
theory of queues and their analysis by the method of imbedded Markov
chains. Ann. Math. Statist. 24, 338–354.

[Kendall64] Kendall, D.G. (1964). Some recent work and further problems
in the theory of queues. Theory of Probability and Its Applications 9,
1–15.

[Khinchine32] Khinchine, A.Y. (1932). Mathematical theory of stationary
queues. Mat. Sbornik 39, 73–84.

[Khinchine60] Khinchine, A.Y. (1960). Mathematical Methods in the Theory
of Queueing Griffin, London.

[Kingman72] Kingman, J. F.C. (1972). Regenerative Phenomena. John Wi-
ley, New York.

[Kleinrock75] Kleinrock, L. (1975). Queueing Systems, Volume I: Theory.
John Wiley, New York.

[Klinger97] Klinger, W. (1997). On the Convergence of Sums of Power-
Tail Samples to their α-Stable Distributions. MS Thesis, Department of
Computer Science, University of Connecticut, August.

Bibliography 537

[Klingeretal97] Klinger, W., Greiner, M., Crovella, M., Lipsky, L., Job-
mann, M., Fiorini, P. and Schwefel, H-P. (1997). How to model
telecommunications (and other) systems where power-Tail behavior is
observed: (Background Review and Research Proposal). Technical Re-
port, CSE/BRC, University of Connecticut, May, 1997.

[KonwarLipSleiman06] Konwar, K. M., Lipsky, L. and Sleiman, M. (2006).
Moments of memory access time for systems with hierarchical memo-
ries. 21st International Conference on Computers and their Applications
(CATA-2006), Seattle WA, March.

[LatoucheTaylor00] Latouche, G. and Taylor, P., eds. (2000). Advances in
Algorithmic Methods for Stochastic Models. Notable Publications, New
Jersey, 2000.

[Latouche-Ram99] Latouche, G. and Ramaswami, V. (1999). Introduc-
tion to Matrix Analytic Methods in Stochastic Modeling. SIAM/ASA,
Philadelphia Pa.

[Lazowskaetal84] Lazowska, E.D., Zahorjan, J., Graham, G.S., and Sevcik,
K.C. (1984). Quantitative System Performance - Computer System Anal-
ysis Using Queueing Network Models. Prentice Hall, Englewood Cliffs,
NJ.

[Lee-Lief-Wallace00] Lee, Y. D., van de Liefvoort, A. and Wallace, V.L.
(2000). Modelling correlated traffic with a generalized ipp Performance
Evaluation 40, 99–114.

[Leland-Ott86] Leland, W. E. and T. Ott (1986). UNIX processor behav-
ior and load balancing among loosely coupled computers. In Teletraffic
Analysis and Computer Performance Evaluation, O.J. Boxma, J.W. Co-
hen, and H.C. Tijms, Eds, 191–208, Elsevier, NY.

[Lelandetal94] Leland, W.E., Taqqu, M., Willinger, W., and Wilson, D.V.
(1994). On the self-similar nature of ethernet traffic (extended version).
Proc. of IEEE/ACM Trans. on Networking, 2, 1–15, February.

[Liefvoort82] van de Liefvoort, A. (1982). An Algebraic Approach to the
Steady-state Solution of G/G/1//N-Type Loops, PhD Thesis, University
of Nebraska, Lincoln.

[Lief-Lip86] van de Liefvoort, A., and Lipsky, L. (1986). A matrix-algebraic
solution to two Km servers in a loop, Journal of the ACM 33, 1, 207–223.

[Liefvoort87] van de Liefvoort, A. (1987). A sum-space characterization
of G/G/1/N-type queues. Technical Report TR-87-5, Computer Science
Department, University of Kansas, Lawrence.

[Liefvoort90] van de Liefvoort, A. (1990). The waiting-time distribution
and its moments of the Ph/Ph/1 queue. Operations Research Letters, 9,
261–269.

538 Bibliography

[Lipsky-Church77] Lipsky, L. and Church, J.D. (1977). Applications of a
queueing network model for a computer system. Computing Surveys, 9,
205–221, September.

[Lipsky80] Lipsky, L. (1980). A study of time-sharing systems considered as
queueing networks of exponential servers. Computer Journal 23, 290–
297.

[LipTehrvdLLieu82] Lipsky, L., Tehranipour, A., van de Liefvoort, A. and
Lieu, H. (1982). On the asymptotic behavior of time-sharing systems.
Communications of the ACM 25, 707–714, October.

[Lipsky-Ram85] Lipsky, L. and Ramaswami, V. (1985). A unique minimal
representation of Coxian service centers. Technical report, Department
of Computer Science, University of Nebraska, Lincoln.

[Lipsky86] Lipsky, L. (1986). A heuristic fit of an unusual set of data BEL-
COR Research Report, January.

[Lipsky-Fang86] Lipsky, L. and Fang, Z. (1986). Classification of functions
with rational Laplace transforms Summer Simulation Conference, Las
Vegas, NV, July.

[Little61] Little, J.D.C. (1961). A proof of the queueing formula L = λW .
Operations Research 9, 383–387.

[Lowrie-Lip93] Lowry, W. and Lipsky, L. (1993). A model for the proba-
bility distribution of medical expenses Conference of Actuaries in Public
Practice.

[Markov07] Markov, A.A. (1907). Extension of the limit theorems of prob-
abiltiy theory to a sum of variables connected in a chain. The Notes
of the Imperial Academy of Science of St. Petersburg XXII, 9, Physio-
Mathematical College.

[Meier-Fischer92] Meier-Hellstern, K. and Fischer, W. (1992). MMPP
cookbook. Performance Evaluation 18, 149–171.

[MelamedWhitt90] Melamed, B. and Whitt, W. (1990). On arrivals that
see time averages. Operations Research, 38, 156–172.

[Mohamed04] Mohamed, A.M.A-R. (2004). Performance Based Cluster Ar-
chitecture: Analytic Modelling and Analysis. PhD Thesis, Department of
Computer Science, University of Connecticut.

[Molloy89] Molloy, M.K. (1989). Fundamentals of Performance Modeling.
Macmillan, New York.

[Morse58] Morse, P.M. (1958). Queues, Inventories and Maintenance. John
Wiley, New York.

Bibliography 539

[Neuts75] Neuts, M.F. (1975). Probability distributions of phase type. Liber
Amicorum Prof. Emeritus H. Florin, Department of Mathematics, Uni-
versity of Louvain, Belgium, 173–206.

[Neuts77] Neuts, M.F. (1977). The mythology of the steady state. In Joint
National ORSA-TIMS Meeting, Atlanta.

[Neuts81] Neuts, M.F. (1981). Matrix-Geometric Solutions in Stochastic
Models - An Algorithmic Approach. Johns Hopkins University Press,
Baltimore.

[Neuts82] Neuts, M.F. (1982). Explicit steady-state solutions to some ele-
mentary queueing models. Operations Research 30 480–489.

[Neuts89] Neuts, M.F. (1989). Structured Stochastic Matrices of M/G/1
Type and Their Applications. Marcel Dekker, New York.

[O’Cinneide91] O’Cinneide, C.A. (1991). Personal communication. See also
Asmussen, S. and O’Cinneide, C.A. (1999). Matrix exponential distribu-
tions, Encyclopedia of Statistical Sciences, Update Volume, 3, 435–440,
Wiley.

[Palm43] Palm, C. (1943). Intensitätsschwankungen im fernsprechverkehr.
Ericsson Technics 44(3), 189.

[Park-Will00] Park, K. and Willinger, W., Eds. (2000). Self-Similar Net-
work Traffic and Performance Evaluation. Wiley-Interscience, New York.

[Perros94] Perros, H. (1994). Queueing Networks with Blocking: Exact and
Approximate Solutions. Oxford University Press.

[Phillips02] Phillips, K. (2002). Wealth and Democracy. Broadway Books,
New York.

[Pollaczek30] Pollaczek, F. (1930). Über eine Aufgabe der Wahrschein-
lichkeitstheorie, I und II. Mathematische Zeitschrift 32, 64–100, 729–750.

[Ramaswami80] Ramaswami, V. (1980). The N/G/1 queue and its detailed
analysis. Adv. in Appl. Prob., 12, 222–261.

[Ross92] Ross, S. M. (1992). Applied Probabiity Models with Optimization
Applications. Dover, New York.

[Ross96] Ross, S. M. (1996). Stochastic Processes, 2nd Ed. Wiley, New York.

[Saito90] Saito, Hiroshi (1990). The departure process of an N/G/1 queue.
Performance Evaluation 11, 241–251.

[Sam-Taqqu94] Samorodnitsky, G. and Taqqu, M.S. (1994). Stable Non-
Gaussian Random Processes. Chapman and Hall, New York.

540 Bibliography

[Schwefel00] Schwefel, H-P. (2000). Performance Analysis of Intermediate
Systems Serving Aggregated ON/OFF Traffic with Long-Range Depen-
dent Properties. PhD Thesis, School of Informatics, Technical University,
Munich, Germany, September.

[Schwefel-Lip01] Schwefel, H-P, and Lipsky, L. (2001). Impact of aggre-
gated, self-similar ON/OFF traffic on delay in stationary queueing mod-
els (extended version). Performance Evaluaton 43, 203–221.

[Stewart95] Stewart, W. J., Ed. (1995). Computations with Markov Chains.
Klewer Academic Publishers, Boston.

[Stidham74] Stidham, S.,Jr. (1974). A last word on L = λW . Operations
Research 22, 417–421.

[Takacs62] Takacs, L. (1962). Introduction to the Theory of Queues. Oxford
University Press, New York.

[Tehranipour83] Tehranipour, A. (1983). Explicit Solutions of Generalized
M/G/C//N Systems Including an Analysis of Their Transient Behavior.
Ph.D. Thesis, University of Nebraska, Lincoln, December.

[TehranipourvdLLip89] Tehranipour, A., van de Liefvoort, A., and Lipsky,
L. (1989). Residual lifetimes as a function of queue length for M/G/1//N
loops. Joint ACM-IEEE Workshop on Applied Computing ‘89, Stillwater,
OK.

[Trivedi82] Trivedi, K.S. (1982). Probability and Statistics with Reliability,
Queueing, and Computer Science Applications. Prentice Hall, Englewood
Cliffs, New Jersey.

[Trivedi02] Trivedi, K.S. (2002). Probability and Statistics with Reliabil-
ity, Queueing, and Computer Science Applications, 2nd Ed. Wiley-
Interscience, New York.

[Wallace69] Wallace, V.L. (1969). The Solution of Quasi-Birth and Death
Processes Arising from Multiple Access Computer Systems. PhD Disser-
tation, University of Michigan, Ann Arbor.

[Wallace72] Wallace, V.L. (1972). Toward an algebraic theory of Markovian
networks. Proceedings of the Symposium on Computer Communications
Networks and Teletraffic, 397–408.

[ShermanMorrison50] Sherman, J., and Morrison, W.J. (1950) Adjust-
ment of an inverse marix corresponding to a change in one element of a
given matrix. Annals of Mathematical Statistics, 21, 1, 124–127.

[Wolff82] Wolff, R.W. (1982). Poisson arrivals see time averages. Opera-
tions Research, 30, 223–231.

Bibliography 541

[Zhang07] Zhang, F. (2007). Modelling Restricted Processor Sharing in a
Computer System with Non-Exponential Service Times. PhD Thesis,
Department of Computer Science, University of Connecticut, December.

[Zolotarev86] Zolotarev, V.M. (1986). One-Dimensional Stable Distribu-
tions, V. 65. Translations of Mathematical Monographs, AMS.

Index

A
absorbing state, 79, 455
accumulation point, 218
adjoint space, 508
aggregation, 387
alpha (α)-stable distribution, 124
alternative MAOOMMPP, 484
arrival probability (M/ME/1), 195
arrival rate, 2
arrival time, 159
arriving customer, 45
augmented MMPP, 473
autocorrelation coefficient, 460
autocorrelation lag-k, 461
autocovariance, 460
autocovariance lag-k, 460
average value, 6

B
background Poisson traffic, 481
backup buffer, 44, 216
balance equations, 38, 333, 365
balance equations (M/ME/1), 187
basis set, 26
basis states, 361
basis vector, 26, 361, 505
basis-free formulation, 421
batch arrival process, 301, 477
Bernoulli process, 470
beta function, 162
birth-death process, 36
block vector, 442
blocking, 385
bottleneck, 43
buffer overflow, 44, 207, 311, 502
bulk arrival process, 301, 477
burst of packets, 475
burst parameter, 476

bursty traffic, 474–486
busy period, 66, 262, 263, 353, 355,

417

C
canonical representation, 88, 143,

150
cell, 45, 47, 216, 473
cell loss probability, 45, 47, 219
central limit theorem, 121–123
chain, 12, 19
Chapman-Kolmogorov equation,

18–32, 187
characteristic equation, 25
characteristic value, 25
closed system, 13, 33
closure, 77
coefficient of variation (Cv), 16
cold backup, 282, 398, 417
complementary distribution func-

tion [F̄ (t)], 15
completeness of ME distributions,

156–157
completion rate matrix, 21, 78
composite space, 464, 513
composite state, 11, 19
conditional mean exceedance, 118
continuous Markov chain, 19
convolution, 57, 89
correlation coefficient, 460
correlation of departures, 458–462
counting process, 160, 464
Coxian server, 88
customer loss, 45, 207, 216, 328

D
decomposition, 387
defective distribution, 72, 99, 284
defective function, 299
defective matrix, 25, 94, 99, 103

543

544 Index

defective probability measure, 99
defective representation, 150
deflation of a matrix, 427
degeneracy, 25
degenerate hyperexponential, 98,

301
delay stage, 53, 386
delay time, 53
delayed interval, 170
delayed renewal process, 160, 464
density function, 15
departure probability (M/ME/1),

195
departure process (M/M/1), 56–58
departure time, 159
deterministic distribution, 93
Dirac δ function, 93, 99, 284, 299
direct product, 486
direct product space, 358, 425
direct sum, 102
direct sum space, 464
discouraged arrivals, 53, 333, 358
discrete Markov chain, 12, 19
distribution function, 14
dot product, 26
down operator, 279
draining a queue, 398
dynamic updating, 418

E
eigenvalue, 25
embedded Markov chain, 182, 195
embedded matrix, 466
embedding point, 195
ensemble, 29
entrance vector, 79, 509
epoch, 61, 159, 395, 455
equilibrium vector, 27
equivalence of representations, 143
equivalent representations, 104
Erlangian distribution, 81, 88–94
exit vector, 78
expectation value, 6, 15
expected value, 6, 15
exponential distribution, 14–17
exponential moments, 238, 478,

507

exponential tail, 111, 114, 119
external state, 11, 188, 288

F
faithful representation, 104
feedback loop, 166
feedforward network, 92
final vector, 263
finite buffer, 34, 45, 219
finite waiting room, 34
first passage, 250
first-passage matrix, 254
first-passage time, 62, 254, 260
first-passage time (ME/M/1), 346–

351
first-passage time vector, 255
fixed point iteration, 501
fundamental formula for TS sys-

tems, 386

G
gamma density function, 90
gamma distribution, 90
gamma function, 90
general distribution, 8
generalized Erlangian, 152
generalized exponential, 98, 301
generalized M/G/C//N queue, 54,

357
generalized renewal process, 160,

464
generalized width, 124
generating function, 209
generator of a process, 84
geometric distribution, 17–18
geometric parameter, 293

H
harmonic series, 396
heavy-tailed distribution, 110–142
holding rate matrix, 21
homogeneous, 254
Horner’s rule, 86
hot backup, 398
hyper-Erlangian distribution, 105–

107

Index 545

hyperexponential distribution, 81,
94–99

hypoexponential distribution, 152

I
idempotent, 29, 161
ill-behaved function, 113
incomplete gamma function, 241
independence principle, 422
independent variables, 459, 463
infinite variance, 123–128
infinitesimal rate matrix, 21
initial impulse, 98, 299
initial state of the system, 19
initial vector, 85, 263, 509
inner product, 26
interarrival time, 159
interdeparture time, 56, 159, 395
interdeparture time distribution,

455–458
interdeparture time distribution

(M/ME/1), 221
internal state, 11, 186, 250, 288
interrupted Poisson process, 475
interserver operator, 465, 512
intraserver operator, 513
invariance of equations, 144, 506
irreducible, 28
isometric matrix, 20, 144, 170, 506
isometric transformation, 144, 155,

484, 506–507, 511, 520

J
Jackson network, 9, 357, 358, 384,

488
Jackson network approximation to

M/ME/1 loop, 245

K
k-busy period, 68
k-busy period (M/M/1), 66–69
k-busy period (M/ME/1), 267
Kendall distribution, 88
Kendall notation, 5
Kronecker delta, 19
Kronecker product, 358, 424–427,

486

L
Lévy distribution, 115
Lévy-Pareto distribution, 115
ladder point, 62
Laguerre polynomial, 240
Laplace transform, 84, 212
Laplace transform (correlated vari-

ables), 462
LAQT, 78, 300, 505–512
left eigenvector, 25
length (of a vector), 145
light-tailed, 119
linear functional, 508
linear operator, 81
Little’s formula, 1, 3–4, 43, 205,

295
load dependence, 246
load-dependence factor, 50
load-dependent server, 50–56
long-range autocorrelation, 475
long-range dependence, 461
long-tailed distribution, 113

M
M/M/1 queue, 33–44
M/ME/1 queue, 200–207
M/ME/1//N loop, 185–200
M/ME/2//N queue, 359
M/ME/C//N queue, 371–384
M/PT/1 queues, 207–208
machine minding model, 34, 386
machine repairman model, 34
Markov arrival process, 453
Markov chain, 12
Markov matrix, 20
Markov modulated Poisson pro-

cess, 470–473
Markov process, 19
Markov property, 10–12
Markov regulated departure pro-

cess, 467
Markov renewal process, 399, 453
matrix exponential distribution,

87–110, 152, 510
matrix geometric solution, 192
matrix quadratic equation, 499,

501

546 Index

matrix representation, 88
maximum cell loss, 49
ME/M/1 queue, 288–297
ME/M/1/N queue, 324–327
ME/M/C queue, 337
ME/M/X//N loops, 333
ME/ME/1//N loop, 430
mean cell delay, 502
mean CPU time, 133
mean first-passage time, 62, 67,

258, 265, 352
mean lifetime, 15
mean number of customers, 5
mean packet delay, 502
mean residual time, 172
mean residual vector, 169, 401
mean time to failure (MTTF), 282
medium-tailed, 119
memoryless, 17
merging renewal processes, 486
modified augmented OOMMPP,

482
moments of a distribution, 15
MRP/M/1 queues, 498–504
multiple root, 25
multiple server, 50, 333

N
natural approximation, 387
network of nonexponential servers,

512–519
non-phase distribution, 107–110
normal distribution, 123
normalization matrix, 191
normalized relaxation time, 59
normally distributed, 122

O
OFF time, 475
ON time, 474
ON-OFF MMPP, 475
ON-OFF process, 473, 476, 478
one-burst process, 475
open system, 33
operational analysis, 247
order statistics, 394
orthogonal functions, 506

orthogonality condition, 25
outer product, 26
outside observer, 13, 81
overflow probability, 46, 216

P
packet, 45, 47, 216, 473
packet loss probability, 45, 47, 219
Pareto distribution, 115
partition, 70
PASTA, 204
peak rate, 474
periodic, 30
permutation matrix, 145
phase, 77, 509
PHase distribution, 87, 149, 152
PHase representation, 152
physical flow rate, 350
Poisson distribution, 164
Poisson process, 175–176
Pollaczek-Khinchine formula, 204–

206, 210
population-size constraints, 358,

384, 387
power-tailed distribution, 114–117
primary buffer, 44
probability amplitude, 506
probability density function, 15
probability distribution function,

14, 83
probability flow rate, 350
probability vector, 19
process rate matrix, 80, 85
process time matrix, 80
processor sharing, 332, 333, 383
product space representation, 222
product-form solution, 9, 357, 384
projection, 427
propagation matrices, 263
proper value, 25
proper vector, 25
PT/M/1 queues, 308–311
pure state, 11, 19, 509

Index 547

Q
quasi birth-death process, 36, 186,

389, 447, 498
queue length, 4, 43
queueing time, 43

R
random observer, 13
random times, 3
random variable, 15
random walk, 65
range of a distribution, 130, 138
rate matrix, 21, 85, 458
rational Laplace transform, 77, 95
reduced-product space, 358, 488,

521
reducible, 24
regenerative process, 62
regularly varying, 115
relaxation time, 28
relaxation time (M/M/1//N), 58–

61
reliability function, 14, 82
reliability matrix function, 81, 82
reliability theory, 417
reliability vector function, 82
renewal density, 165
renewal epoch, 159
renewal equation, 165
renewal function, 165
renewal process, 65, 160
renewal theorem, 169
representation of a process, 84
representation theorem, 143
resequencing problem, 357
residual times, 170, 229–232, 348
residual vector, 171, 229, 463
resolvent matrix, 84
response time, 43, 386
restricted processor sharing, 358,

384
right eigenvector, 25
round-robin, 332
rush-hour traffic, 419

S
same shape, 104, 306
same type, 104
scalar product, 26
self-similar, 116, 127, 461
semi-Markov process, 359, 453
semigroup property, 17, 23, 85
service center, 1
service rate, 16
service rate matrix, 80
service time matrix, 80
Sherman-Morrison formula, 201
similar distributions, 104
similarity transformation, 144
simple root, 25
sink state, 79
slowly varying function, 115
sojourn time, 62
spectral decomposition theorem,

26
St. Petersberg paradox, 133
stable distribution, 115, 121, 124
stage, 77
standard deviation, 16
state of a system, 10, 360
state probability vector, 19
state space, 361
state transition rate diagram, 38
state vector, 11
stationary operator, 508
stationary process, 20
steady state, 130
steady-state balance equation, 28
steady-state vector, 27, 28
stochastic matrix, 20
subexponential, 113
substochastic matrix, 20, 78, 454
subsystem, 1, 13
sum space representation, 222
sums of Erlangians, 99–104
superexponential, 114
system, 13
system entrance vector, 512
system exit vector, 513
system throughput, 40, 194
system time, 43
system time distribution, 211

548 Index

T
taboo (tabu) process, 70, 269
tail of a function, 111
think stage, 53, 386
think time, 53, 386
thrashing, 387
throughput, 209, 386
time slicing, 332
time to drain, 398
time-sharing computer system, 386
time-sharing stage, 53, 386
time-sharing system, 34, 386
token, 464
total time, 43
tranpsose of a vector, 13
transaction, 386
transient region, 28, 58, 130
transient renewal process, 166
transient state, 24
transition diagram, 38
transition matrix, 20
transition rate matrix, 21
transpose of a vector, 20
truncated power-tailed distribu-

tion (TPT), 129–142

U
unboundedness, 129
uniform distribution, 93
unit step function, 299
unit vector, 361
up and down operators, 276, 279,

403
utilization factor, 5, 200
utilization parameter, 5, 283, 288

V
variance, 16
vector balance equation, 28
vector space, 505

W
waiting room, 44
waiting time, 43
Weibull distribution, 113
weighted averages of matrix oper-

ators, 232
well-behaved function, 113, 120

Z
Z-transform, 209

