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The CEO’s of Ranks and Cranks

Freeman Dyson Frank Garvan

Oliver Atkin H.P.F. Swinnerton-Dyer



I felt the joy of an explorer who suddenly discov-
ers the key to the language lying hidden in the
hieroglyphs which are beautiful in themselves.

–Rabindranath Tagore, The Religion of Man



Preface

This is the third of five volumes that the authors plan to write in their exami-
nation of all the claims made by S. Ramanujan in The Lost Notebook and Other
Unpublished Papers, which was published by Narosa in 1988. This publication
contains the “Lost Notebook,” which was discovered by the first author in
the spring of 1976 at the library of Trinity College, Cambridge. Also included
therein are other partial manuscripts, fragments, and letters that Ramanujan
wrote to G.H. Hardy from nursing homes during 1917–1919. Our third volume
contains ten chapters and focuses on some of the most important and influen-
tial material in The Lost Notebook and Other Unpublished Papers. At center
stage is the partition function p(n). In particular, three chapters are devoted
to ranks and cranks of partitions. Ramanujan’s handwritten manuscript on
the partition and tau functions is also examined.
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1

Introduction

This is the third volume devoted to Ramanujan’s lost notebook and to partial
manuscripts, fragments, and letters published with the lost notebook [283].
The centerpiece of this volume is the partition function p(n). Featured in this
book are congruences for p(n), ranks and cranks of partitions, the Ramanujan
τ -function, the Rogers–Ramanujan functions, and the unpublished portion of
Ramanujan’s paper on highly composite numbers [274].

The first three chapters are devoted to ranks and cranks of partitions. In
1944, F. Dyson [127] defined the rank of a partition to be the largest part
minus the number of parts. If N(m, t, n) denotes the number of partitions of
n with rank congruent to m modulo t, then Dyson conjectured that

N(k, 5, 5n+ 4) =
p(5n+ 4)

5
, 0 ≤ k ≤ 4, (1.0.1)

and

N(k, 7, 7n+ 5) =
p(7n+ 5)

7
, 0 ≤ k ≤ 6. (1.0.2)

Thus, if (1.0.1) and (1.0.2) were true, the partitions counted by p(5n+4) and
p(7n + 5) would fall into five and seven equinumerous classes, respectively,
thus providing combinatorial explanations and proofs for Ramanujan’s famous
congruences p(5n + 4) ≡ 0 (mod 5) and p(7n + 5) ≡ 0 (mod 7). Dyson’s
conjectures were first proved by A.O.L. Atkin and H.P.F. Swinnerton-Dyer
[28] in 1954.

Dyson observed that the corresponding analogue to (1.0.1) and (1.0.2)
does not hold for the third famous Ramanujan congruence p(11n + 6) ≡ 0
(mod 11), and so he conjectured the existence of a statistic that he called
the crank that would combinatorially explain this congruence. In his doctoral
dissertation [144], F.G. Garvan defined a crank for vector partitions, which
became the forerunner of the true crank, which was discovered by Andrews and
Garvan [17] during the afternoon of June 6, 1987, at Illinois Street Residence
Hall, a student dormitory at the University of Illinois, following a meeting on
June 1–5 to commemorate the centenary of Ramanujan’s birth.

G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook: Part III,
DOI 10.1007/978-1-4614-3810-6 1,
c© Springer Science+Business Media New York 2012
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2 1 Introduction

Although Ramanujan did not record any written text about ranks and
cranks in his lost notebook [283], he did record theorems about their generat-
ing functions. Chapter 2 is devoted to the five and seven-dissections of each of
these two generating functions. Cranks are the exclusive topic of Chapter 3,
where dissections for the generating function for cranks are studied, but now
in the context of congruences. A particular formula found in the lost notebook
and proved in Chapter 4 is employed in our proofs in Chapter 3. As we argue
in the following two paragraphs, it is likely that Ramanujan was working on
cranks up to four days before his death on April 26, 1920.

In January 1984, the second author, Berndt, was privileged to have a very
pleasant and exceptionally informative conversation with Ramanujan’s widow,
Janaki. In particular, this author asked her about the extent of papers that
her late husband possessed at his death, and remarked that the only papers
that have been passed down to us are those constituting the lost notebook of
138 pages. She claimed that Ramanujan had many more than 138 pages in his
possession at his death. She related that as her husband “did his sums,” he
would deposit his papers in a large leather trunk beneath his bed, and that the
number of pages in this trunk certainly exceeded 138. She told Berndt that
during her husband’s funeral, certain people, whom she named but whom we
do not name here, came to her home and stole most of Ramanujan’s papers
and never returned them. She later donated those papers that were not stolen
to the University of Madras. These papers certainly contain, or possibly are
identical to, the lost notebook.

It is our contention that Ramanujan kept at least two stacks of papers while
doing mathematics in his last year. In one pile, he put primarily those pages
containing the statements of his theorems, and in another stack or stacks he
put papers containing his calculations and proofs. The one stack of papers con-
taining the lost notebook was likely in a different place and missed by those
taking his other papers. (Of course, it is certainly possible that more than
one pile of papers contained statements of results that Ramanujan wanted
to save.) Undoubtedly, Ramanujan produced scores of pages containing cal-
culations, scratch work, and proofs, but the approximately twenty pages of
scratch work in the lost notebook apparently pertain more to cranks than to
any other topic. Our guess is that when Ramanujan ceased research four days
prior to his death, he was thinking about cranks. His power series expansions,
factorizations, preliminary tables, and scratch work were part of his deliber-
ations and had not yet been put in a secondary pile of papers. Thus, these
sheets were found with the papers that had been set aside for special keeping
and so unofficially became part of his lost notebook. In particular, pages 58–89
in the lost notebook likely include some pages that Ramanujan intended to
keep in his principal stack, but most of this work probably would have been
relegated to a secondary pile if Ramanujan had lived longer. Further remarks
can be found in [64].

Ramanujan’s famous manuscript on the partition and tau functions is ex-
amined in Chapter 5. This chapter is a substantially revised and extended
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version of the original publication by the second author and K. Ono [67] ap-
pearing in a volume honoring the first author on his 60th birthday. Difficult
decisions in the presentation of this manuscript were necessary. As readers
peruse the manuscript, it will become immediately clear that Ramanujan left
out many details, and that the frequency of omitted details increases as the
manuscript progresses. Often, especially in beginning sections, it is not difficult
to insert missing details. Thus, to augment readability, we have inserted such
details in square brackets, so that readers can easily separate Ramanujan’s
exposition from that of the authors. However, other claims require consider-
ably more amplification or are completely lacking in details. It was decided
that such claims should be either proved or discussed in an appendix. Thus,
further decisions needed to be made: Should all of the necessary arguments be
presented, or should readers be referred to papers where complete proofs can
be given. If details for all of Ramanujan’s claims were to be supplied, because
of the increased number of pages, this volume might necessarily be devoted
only to this manuscript.

G.H. Hardy [280] extracted a portion of Ramanujan’s manuscript and
added several details in giving proofs of his aforementioned famous congru-
ences for the partition function, namely,

p(5n+4) ≡ 0 (mod 5), p(7n+5) ≡ 0 (mod 7), p(11n+6) ≡ 0 (mod 11).
(1.0.3)

Thus, we feel that it is unnecessary to give any further commentary on these
passages here; readers can proceed to [280] or [281, 232–238] for complete
proofs. From the remarkable recent work of S. Ahlgren and M. Boylan [5], we
now know that (1.0.3) are the only congruences for p(n) in which the prime
moduli of the congruences match the moduli of the arithmetic progressions in
the arguments. We remark that we are also following the practice of Hardy,
who placed additional details in square brackets, so that readers could see
precisely what Ramanujan had recorded and what he had not.

These congruences (1.0.3) are the first cases of the infinite families of
congruences

p(5kn+ δ5,k) ≡ 0 (mod 5k), (1.0.4)

p(7kn+ δ7,k) ≡ 0 (mod 7[k/2]+1), (1.0.5)

p(11kn+ δ11,k) ≡ 0 (mod 11k),

where δp,k :≡ 1/24 (mod pk). In Ramanujan’s manuscript, he actually gives a
complete proof of (1.0.4), but many of the details are omitted. These details
were supplied by G.N. Watson [336], who unfortunately did not mention that
his proof had its genesis in Ramanujan’s unpublished manuscript. Ramanujan
also began a proof of (1.0.5), but he did not finish it. If he had done so, then
he would have seen that his original conjecture was incorrect and needed to
be corrected as given in (1.0.5). Since proofs of (1.0.4) and (1.0.5) can now
be found in several sources (which we relate in Chapter 5), there is no need
to give proofs here.
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It was surprising for us to learn that Ramanujan had also found congru-
ences for p(n) for the moduli 13, 17, 19, and 23 and had formulated a general
conjecture about congruences for any prime modulus. However, unlike (1.0.3),
these congruences do not give divisibility of p(n) in any arithmetic progres-
sions. In his doctoral dissertation, J.M. Rushforth [305] supplied all of the
missing details for Ramanujan’s congruences modulo 13, 17, 19, and 23. Since
Rushforth’s work has never been published and since his proofs are motivated
by those found by Ramanujan, we have decided to publish them here for the
first time. In fact, almost all of Rushforth’s thesis is devoted to Ramanujan’s
unpublished manuscript on p(n) and τ(n), and so we have extracted from it
further proofs of results claimed by Ramanujan in this famous manuscript.
Ramanujan’s general conjecture on congruences for prime moduli was inde-
pendently corrected, proved, and generalized in two distinct directions by
H.H. Chan and J.-P. Serre and by Ahlgren and Boylan [5]. The proof by
Chan and Serre is given here for the first time.

Many of the results in Ramanujan’s manuscript are now more efficiently
proved using the theory of modular forms. Indeed, much of this manuscript
has given impetus for further work not only on p(n) but also on the Fourier
coefficients of other modular forms. Some of this work is briefly described in
Chapter 5, but except for the proof by Chan and Serre, we have not employed
the theory of modular forms in proofs within our commentary on Ramanujan’s
manuscript.

A series of Ramanujan’s claims in the p(n)/τ(n) manuscript are wrong.
Rushforth first noted and examined these mistakes in his thesis [305]. However,
P. Moree has made a thorough examination of all these erroneous claims and
corrected them in a particularly illuminating paper [228].

Lastly, we remark that the p(n)/τ(n) manuscript is found on pages 133–
177, 238–243 of [283], with the latter portion, designated as Part II, in the
handwriting of Watson. In fact, the original version of Part II in Ramanujan’s
own handwriting can be found in the library at Trinity College. One might
therefore ask why Narosa published a facsimile of Watson’s handwritten copy
instead of Ramanujan’s own version. There are two possible explanations.
First, Watson’s copy is closely written, while Ramanujan’s more sprawling
version would have required more pages in the published edition [283]. Second,
the editors might not have been aware of Ramanujan’s original manuscript in
his own handwriting.

Having given an extensive account on our approach to the p(n)/τ(n)
manuscript in Chapter 5, we turn to other chapters.

Chapter 6 is devoted to six entries on page 189 of the lost notebook [283],
all of which are related to the content of Chapter 5, and to entries on page 182,
which are related to Ramanujan’s paper on congruences for p(n) [276] and of
course also to Chapter 5. In particular, we give proofs of two of Ramanu-
jan’s most famous identities, immediately yielding the first two congruences
in (1.0.3). On page 182, we also see that Ramanujan briefly examined congru-
ences for pr(n), where pr(n) is defined by
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(q; q)r∞ =

∞∑

n=0

pr(n)q
n, |q| < 1.

Apparently, page 182 is page 5 from a manuscript, but unfortunately all of the
remaining pages of this manuscript are likely lost forever. We have decided
also to discuss in Chapter 6 various scattered, miscellaneous entries on p(n).
Most of this mélange can be found in Ramanujan’s famous paper with Hardy
establishing their asymptotic series for p(n) [167].

In Chapter 7, we examine nine congruences that make up page 178 in the
lost notebook. These congruences are on generalized tau functions and are in
the spirit of Ramanujan’s famous congruences for τ(n) discussed in Chapter 5.

The Rogers–Ramanujan functions are the focus of Chapter 8, wherein
Ramanujan’s 40 famous identities for these functions are examined. Having
been sent some, or possibly all, of the 40 identities in a letter from Ramanujan,
L.J. Rogers [304] proved eight of them, with Watson [333] later providing
proofs for six further identities as well as giving different proofs of two of the
identities proved by Rogers. For several years after Ramanujan’s death, the list
of 40 identities was in the hands of Watson, who made a handwritten copy for
himself, and it is this copy that is published in [283]. Fortunately, he did not
discard the list in Ramanujan’s handwriting, which now resides in the library
at Trinity College, Cambridge. Approximately ten years after Watson’s death,
B.J. Birch [75] found Watson’s copy in the library at Oxford University and
published it in 1975, thus bringing it to the mathematical public for the first
time. D. Bressoud [81] and A.J.F. Biagioli [74] subsequently proved several
further identities from the list.

Our account of the 40 identities in Chapter 8 is primarily taken from a
Memoir [65] by Berndt, G. Choi, Y.-S. Choi, H. Hahn, B.P. Yeap, A.J. Yee,
H. Yesilyurt, and J. Yi. The goal of these authors was to provide proofs for
as many of these identities as possible that were in the spirit of Ramanujan’s
mathematics. In doing so, they borrowed some proofs from Rogers, Watson,
and Bressoud, while supplying many new proofs as well. After the publication
of [65] in which proofs of 35 of the 40 identities were given in the spirit of
Ramanujan, Yesilyurt [347], [348] devised ingenious and difficult proofs of
the remaining five identities, and so these papers [347], [348] are the second
primary source on which Chapter 8 is constructed.

Chapter 9 is devoted to one general theorem on certain sums of positive
integral powers of theta functions, and five examples in illustration. Many
offered original ideas about the entries in this chapter; in particular, Heng
Huat Chan and Hamza Yesilyurt deserve special thanks. Ramanujan’s pri-
mary theorem has inspired several generalizations, but it seems likely that
Ramanujan’s approach has not yet been discovered.

In 1915, the London Mathematical Society published Ramanujan’s paper
on highly composite numbers [274], [281, 78–128]. However, this is only part
of the paper that Ramanujan submitted. The London Mathematical Soci-
ety was in poor financial condition at that time, and to diminish expenses,
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they did not publish all of Ramanujan’s paper. Fortunately, the remainder
of the paper has not been lost and resides in the library at Trinity College,
Cambridge. In its original handwritten form, it was photocopied along with
Ramanujan’s lost notebook in 1988 [283]. J.-L. Nicolas and G. Robin prepared
an annotated version of the paper for the first volume of the Ramanujan Jour-
nal in 1997 [284]. In particular, they inserted text where gaps occurred, and
at the end of the paper, they provided extensive commentary on research in
the field of highly composite numbers accomplished since the publication of
Ramanujan’s original paper [274]. Chapter 10 contains this previously unpub-
lished manuscript of Ramanujan on highly composite numbers, as completed
by Nicolas and Robin, and a moderately revised and extended version of the
commentary originally written by Nicolas and Robin.

The first author is grateful to Frank Garvan, whose ideas and insights
permeate Chapter 2. The second author thanks Heng Huat Chan, Song Heng
Chan, and Wen-Chin Liaw for their collaboration on the papers [62] and [63],
from which Chapters 3 and 4 were prepared. The last section of the former
paper, which corresponds to Section 3.8 of Chapter 3, is due to Garvan, whom
we thank for the many valuable remarks and suggestions on ranks and cranks
that he made to the authors of [62] and [63]. Atul Dixit read Chapters 2 and
9 in detail and offered several corrections and suggestions.

We thank Paul Bateman, Heng Huat Chan, Frank Garvan, Michael
Hirschhorn, Pieter Moree, Robert A. Rankin, and Jean-Pierre Serre for helpful
comments on Chapter 5. We are particularly grateful to Hirschhorn for read-
ing several versions of Chapter 5 and providing insights that we would not
have otherwise observed. In particular, the argument given in square brackets
near the beginning of Section 5.21 is his. He showed us that Ramanujan’s
conjecture on the value of cλ at the beginning of Section 5.23 is correct. He
also provided the meaning of the four mysterious numbers that Ramanujan
recorded at the end of Section 5.21, but which we moved to a more proper
place at the end of Section 5.24. Lastly, he provided references that Ono and
the second author had overlooked in our earlier version [67] of the p(n)/τ(n)
manuscript.

We are grateful to the late Professor W.N. Everitt, the School of Math-
ematics, and the Library at the University of Birmingham for supplying us
with a copy of Rushforth’s dissertation and for permission to use material
from it in this volume.

Our account of Chapter 6 originates primarily from two papers by the
second author that he coauthored, the first with Ae Ja Yee and Jinhee Yi,
and the second with Chadwick Gugg and Sun Kim. We thank all of them for
their kind collaboration. One particular entry on page 331 that we discuss in
Chapter 6 was particularly puzzling, and we are grateful to L. Bruce Richmond
for helpful correspondence.

The authors thank Heng Huat Chan for informing us that the results on
page 189 of the lost notebook were briefly discussed by K.G. Ramanathan
[273, pp. 154–155], and for discussion on one of the incorrect entries on page
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189. We are also pleased to thank Scott Ahlgren for his proof of another entry
on page 189.

Chapter 7 is entirely due to Dennis Eichhorn, who completed this work as
part of a research assistantship under the second author at the University of
Illinois.

The second author is greatly indebted to his coauthors, G. Choi, Y.-S. Choi,
H. Hahn, B.P. Yeap, A.J. Yee, H. Yesilyurt, and J. Yi, of the Memoir [65],
which has been revised for Chapter 8 in this volume.

Chapter 9 has been significantly enhanced by correspondence that the
second author had with Hamza Yesilyurt, who provided material from his
forthcoming paper with A. Berkovich and Garvan [53].

It is our great pleasure to thank J.-L. Nicolas and G. Robin for their initial
preparation of Chapter 10 and in particular for their insightful comments
accompanying it. We thank K.S. Williams for providing several references for
our commentary on Chapter 10.

We are indebted to J.P. Massias for calculating largely composite numbers
and finding the meaning of the table appearing in [283, p. 280].

Heng Huat Chan, Atul Dixit, Byungchan Kim, Pieter Moree, Jaebum
Sohn, and Michael Somos read in detail large portions of the manuscript
for this volume and provided many useful comments and corrections.

David Kramer, who is likely the most careful and knowledgeable copy
editor in the mathematics publishing realm, uncovered many errors and in-
consistencies, and we thank him for his usually superb copy editing of our
book. We are also indebted to Springer’s TEXexpert, Rajiv Monsurate, for
considerable advice.

We thank the librarian and staff at Trinity College Library, Cambridge,
for providing the authors with copies of the lost notebook and several other
manuscripts by Ramanujan.

The first author thanks the National Science Foundation for support while
this book was being prepared. The second author thanks the National Security
Agency for summer support. The second author is particularly grateful to the
Sloan Foundation for a grant that relieved him of teaching duties for the 2011–
2012 academic year and enabled him to complete the writing of this volume
with his coauthor.



2

Ranks and Cranks, Part I

2.1 Introduction

This somewhat lengthy chapter concerns some of the most important formulas
from the lost notebook [283], which are contained in only a few lines. We first
introduce some standard notation that will be used throughout this chapter
(and most of this book). Secondly, we record the two formulas listed at the
top of page 20 (one of which is repeated in the middle of page 18). After
stating these formulas, we provide history demonstrating that these entries
are the genesis of some of the most important developments in the theory of
partitions during the twentieth and twenty-first centuries. Next, we offer two
further claims found in the lost notebook. Lastly, we provide proofs for all
four claims.

For each nonnegative integer n, set

(a)n := (a; q)n :=

n−1∏

k=0

(1−aqk), (a)∞ := (a; q)∞ := lim
n→∞

(a; q)n, |q| < 1.

Also, set
(a1, . . . , am; q)n := (a1; q)n · · · (am; q)n

and
(a1, . . . , am; q)∞ := (a1; q)∞ · · · (am; q)∞. (2.1.1)

Ramanujan’s general theta function f(a, b) is defined by

f(a, b) :=

∞∑

n=−∞
an(n+1)/2bn(n−1)/2, |ab| < 1. (2.1.2)

It satisfies the well-known Jacobi triple product identity [60, p. 10, Theorem
1.3.3], [12, p. 21, Theorem 2.8]

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞. (2.1.3)

G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook: Part III,
DOI 10.1007/978-1-4614-3810-6 2,
c© Springer Science+Business Media New York 2012

9

http://dx.doi.org/10.1007/978-1-4614-3810-6_2
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Also recall that [55, p. 34, Entry 18(iv)] for any integer n,

f(a, b) = an(n+1)/2bn(n−1)/2f(a(ab)n, b(ab)−n). (2.1.4)

We now state the first of the two aforementioned remarkable entries from
the lost notebook.

Entry 2.1.1 (pp. 18, 20). Let ζ5 be a primitive fifth root of unity, and let

F5(q) :=
(q; q)∞

(ζ5q; q)∞(ζ−1
5 q; q)∞

. (2.1.5)

Then

F5(q) = A(q5)− (ζ5 + ζ−1
5 )2qB(q5)

+ (ζ25 + ζ−2
5 )q2C(q5)− (ζ5 + ζ−1

5 )q3D(q5), (2.1.6)

where

A(q) :=
(q5; q5)∞G2(q)

H(q)
, (2.1.7)

B(q) := (q5; q5)∞G(q), (2.1.8)

C(q) := (q5; q5)∞H(q), (2.1.9)

D(q) :=
(q5; q5)∞H2(q)

G(q)
, (2.1.10)

with

G(q) :=
1

(q; q5)∞(q4; q5)∞
(2.1.11)

and

H(q) :=
1

(q2; q5)∞(q3; q5)∞
. (2.1.12)

We remark that by the famous Rogers–Ramanujan identities [15, Chap-
ter 10],

G(q) =

∞∑

n=0

qn
2

(q; q)n
and H(q) =

∞∑

n=0

qn(n+1)

(q; q)n
.

The identity (2.1.6) is an example of a dissection. Since this and the fol-
lowing chapter are devoted to dissections, we offer below their definition.

Definition 2.1.1. Let P (q) denote any power series in q. Then the t-dissection
of P is given by

P (q) =:

t−1∑

k=0

qkPk(q
t). (2.1.13)
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Note that (2.1.6) provides a 5-dissection for F5(q), i.e., (2.1.6) separates
F5(q) into power series according to the residue classes modulo 5 of their
powers. In analogy with (2.1.6), we see that (2.1.17) in the next entry provides
a 5-dissection for f5(q).

Of the dissections offered by Ramanujan in his lost notebook, some, such
as (2.1.6), are given as equalities in terms of roots of unity; others are given as
congruences in terms of a variable a. In Chapter 3, we establish Ramanujan’s
dissections in terms of congruences, while in this chapter we prove 5- and
7-dissections in the form of equalities for each of the rank and crank gener-
ating functions, whose representations are given, respectively, in (2.1.24) and
(2.1.27) below. The precise definitions of the rank and crank of a partition will
be given after we record the second of the two aforementioned fundamental
identities.

In order to explicate our remark about congruences in the preceding para-
graph, following Ramanujan in his lost notebook, we define the more general
function

Fa(q) :=
(q; q)∞

(aq; q)∞(q/a; q)∞
. (2.1.14)

(Note that the notation (2.1.14) conflicts with that of (2.1.5); the right-hand
side of (2.1.5) would be Fζ5(q) in the notation (2.1.14).) Set

An := an + a−n and Sn :=

n∑

k=−n

ak.

Then [62, p. 105, Theorem 5.1]

Fa(q) ≡ A(q5) + (A1 − 1)qB(q5) +A2q
2C(q5)−A1q

3D(q5) (modS2).
(2.1.15)

Thus, we have replaced the primitive root ζ5 by the general variable a. The
congruence (2.1.15) is then a generalization of (2.1.6), because if we set a = ζ5
in (2.1.15), the congruence is transformed into an identity. An advantage of
(2.1.15) over (2.1.6) is that we can put a = 1 in (2.1.15) and so immediately
deduce the Ramanujan congruence

p(5n+ 4) ≡ 0 (mod 5),

where p(n) is the number of partitions of n. Although (2.1.15) appears to
be more general than (2.1.6), in fact, it is not. It is shown in [62, pp. 118–
119] that (2.1.15) can be derived from (2.1.6). In Section 3.8 of the following
chapter we reproduce that argument, which is due to F.G. Garvan.

Entry 2.1.2 (p. 20). Let ζ5 be a primitive fifth root of unity, and let

f5(q) =

∞∑

n=0

qn
2

(ζ5q; q)n
(
ζ−1
5 q; q

)
n

. (2.1.16)
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Then

f5(q) = A(q5) +
(
ζ5 + ζ−1

5 − 2
)
φ(q5) + qB(q5) +

(
ζ5 + ζ−1

5

)
q2C(q5)

−
(
ζ5 + ζ−1

5

)
q3
{
D(q5)−

(
ζ25 + ζ−2

5 − 2
) ψ(q5)

q5

}
, (2.1.17)

where A(q), B(q), C(q), and D(q) are given in (2.1.7)–(2.1.10), and where

φ(q) :=

∞∑

n=0

φnq
n := −1 +

∞∑

n=0

q5n
2

(q; q5)n+1(q4; q5)n
(2.1.18)

and
ψ(q)

q
:= −1

q
+

∞∑

n=0

ψnq
n :=

∞∑

n=0

q5n
2−1

(q2; q5)n+1(q3; q5)n
. (2.1.19)

Corollaries of the preceding entry appear in the middle of page 184 in the lost
notebook. Since their proofs are immediate consequences of Entry 2.1.2, we
offer them here.

Entry 2.1.3 (p. 184). Write

∞∑

n=0

λnq
n =

∞∑

n=0

qn
2

(1 +
√
5+1
2 q + q2) · · · (1 +

√
5+1
2 qn + q2n)

. (2.1.20)

Then,

∞∑

n=0

λ5n+1q
n =

(q5; q5)∞
(q; q5)∞(q4; q5)∞

= (q5; q5)∞G(q), (2.1.21)

∞∑

n=0

λ5n+2q
n = −

√
5 + 1

2

(q5; q5)∞
(q2; q5)∞(q3; q5)∞

= −
√
5 + 1

2
(q5; q5)∞H(q),

(2.1.22)

λ5n−1 is identically zero. (2.1.23)

Proof. In the definition (2.1.16), set ζ5 = e4πi/5; therefore, ζ5+ζ−1
5 = −

√
5+1
2 .

Using then the notation (2.1.20), equate coefficients of q5n+1 on both sides
of (2.1.17). Divide both sides by q and lastly replace q5 by q in the resulting
identity to establish (2.1.21). Similarly, to prove (2.1.22), equate coefficients
of q5n+2 on both sides of (2.1.17). Divide both sides by q2 and replace q5 by q.
Finally, we note that the dissection (2.1.17) does not have any powers of the
form q5n−1, and so (2.1.23) is immediate. ��

Before presenting the third and fourth entries for this chapter, as remarked
above, it is appropriate to say something about these results, which lay hidden
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during one of the most interesting developments in the theory of partitions
during the twentieth century.

In 1944, F. Dyson [127] published a paper filled with fascinating conjec-
tures from the theory of partitions. Namely, Dyson began by defining the
rank of a partition to be the largest part minus the number of parts. Dyson’s
objective was to provide a purely combinatorial description of Ramanujan’s
theorem that 5 divides p(5n + 4). In particular, Dyson conjectured that the
partitions of 5n+4 classified by their rank modulo 5 did, indeed, produce five
sets of equal cardinality, namely p(5n + 4)/5. He was also led to conjecture
that the partitions of 7n + 5, classified by rank, split into seven sets each of
cardinality p(7n+5)/7. This would prove the second Ramanujan congruence,
namely, that 7 divides p(7n + 5). He also conjectured a generating function
for ranks. If N(m,n) denotes the number of partitions of n with rank m, then
Dyson’s observations make clear he knew that

∞∑

n=0

∞∑

m=−∞
N(m,n)zmqn =

∞∑

n=0

qn
2

(zq; q)n(z−1q; q)n
. (2.1.24)

Observe that if we take z = 1 in (2.1.24), then (2.1.24) reduces to the well-
known generating function for p(n),

∞∑

n=0

p(n)qn =

∞∑

n=0

qn
2

(q; q)2n
,

which is due to Euler. If we set z = −1 in (2.1.24), we obtain Ramanujan’s
mock theta function f(q).

Unfortunately, it turned out that the Ramanujan congruence

p(11n+ 6) ≡ 0 (mod 11) (2.1.25)

was not explicable in the same way that worked for p(5n+ 4) and p(7n+ 5).
So Dyson conjectured the existence of an unknown parameter of partitions,
which he whimsically called “the crank,” to explain (2.1.25).

In 1954, A.O.L. Atkin and H.P.F. Swinnerton-Dyer [28] proved all of
Dyson’s conjectures; however, the crank remained undiscovered.

The real breakthrough in this study was made by Garvan in his Ph.D. the-
sis [146] at Pennsylvania State University in 1986. Garvan’s thesis is primarily
devoted to the Entries 2.1.1 and 2.1.2 given above. Observe that Entry 2.1.2
is devoted to a special case of the generating function (2.1.24) for ranks. Not
only was Garvan able to prove these two entries, but he also deduced all of the
Atkin and Swinnerton-Dyer results for the modulus 5 from Entry 2.1.2. As
for Entry 2.1.1, Garvan defined a “vector crank,” which did provide a combi-
natorial explanation for 11 dividing p(11n+6), but did this via certain triples
of partitions, i.e., vector partitions. Subsequently, Garvan and Andrews [17]
found the actual crank. Namely, for any given partition π, let 	(π) denote
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the largest part of π, ω(π) the number of ones appearing in π, and μ(π) the
number of parts of π larger than ω(π). Then the crank, c(π), is given by

c(π) =

{
l(π), if ω(π) = 0,

μ(π)− ω(π), if ω(π) > 0.
(2.1.26)

For n > 1, let M(m,n) denote the number of partitions of n with crank m,
while for n ≤ 1 we set

M(m,n) =

⎧
⎪⎨

⎪⎩

−1, if (m,n) = (0, 1),

1, if (m,n) = (0, 0), (1, 1), (−1, 1),

0, otherwise.

The generating function for M(m,n) is given by

∞∑

m=−∞

∞∑

n=0

M(m,n)amqn =
(q; q)∞

(aq; q)∞(q/a; q)∞
. (2.1.27)

As shown by Andrews and Garvan [17], the combinatorial equivalent of
(2.1.27) is given by (2.1.26). Note that if we set a = 1 in (2.1.27), we ob-
tain Euler’s original generating function for p(n),

∞∑

n=0

p(n)qn =
1

(q; q)∞
.

Observe that Entry 2.1.1 provides an identity for a special instance of the
generating function for cranks.

Thus, although Ramanujan did not record combinatorial definitions of the
rank and crank in his lost notebook (in fact, there are hardly any words at
all in the lost notebook), he had discovered their generating functions. From
the entries on ranks and cranks in this and the following two chapters, it
is clear that Ramanujan placed considerable importance on these ideas, and
it is regrettable indeed that we do not know Ramanujan’s motivations and
thoughts on these two fundamental concepts in the theory of partitions.

We finally record the last two results to be included in this chapter. Actu-
ally in each entry below, Ramanujan gives only the left-hand side or hints at it.
However, the analogies with Entries 2.1.1 and 2.1.2 are so clear that we have
filled in what was clearly intended for the right-hand sides. For Entry 2.1.4,
Garvan has supplied the right-hand side in [146, p. 62].

Entry 2.1.4 (p. 19). Let ζ7 be a primitive seventh root of unity, and let

F7(q) :=
(q; q)∞

(ζ7q; q)∞(ζ−1
7 q; q)∞

. (2.1.28)

Then
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F7(q) = (q7; q7)∞

{
X2(q7) +

(
ζ7 + ζ−1

7 − 1
)
qX(q7)Y (q7) (2.1.29)

+
(
ζ27 + ζ−2

7

)
q2Y 2(q7) +

(
ζ37 + ζ−3

7 + 1
)
q3X(q7)Z(q7)

−
(
ζ7 + ζ−1

7

)
q4Y (q7)Z(q7)−

(
ζ27 + ζ−2

7 + 1
)
q6Z2(q7)

}
,

where

X(q) :=

∞∏

n=1
n �≡0,±3 (mod 7)

(1− qn)−1, (2.1.30)

Y (q) :=

∞∏

n=1
n �≡0,±2 (mod 7)

(1− qn)−1, (2.1.31)

Z(q) :=

∞∏

n=1
n �≡0,±1 (mod 7)

(1− qn)−1. (2.1.32)

There are series representations for X(q), Y (q), and Z(q) that yield analogues
of the Rogers-Ramanujan identities forG(q) andH(q) [12, p. 117, Exercise 10].

In order to state the last major entry of this chapter, we need considerable
notation. First, introducing the notation of Atkin and Swinnerton-Dyer [28,
p. 94], we let

Σ(z, ζ, q) =

∞∑

n=−∞

(−1)nζnq3n(n+1)/2

1− zqn
. (2.1.33)

Furthermore, to simplify future considerations, in particular to state and prove
Entry 2.1.5 below, we make the conventions

P7(a) :=
(
q7a, q49−7a; q49

)
∞ (a �= 0), (2.1.34)

P7(0) :=
(
q49; q49

)
∞ , (2.1.35)

Σ7(a, b) := Σ
(
q7a, q7b, q49

)
(a �= 0), (2.1.36)

Σ7(0, b) :=

∞∑

n=−∞
n �=0

(−1)nq147n(n+1)/2+7bn

1− q49n
. (2.1.37)

We note in passing that by (2.1.30)–(2.1.32),

P7(1) =
(q7; q7)∞Z(q7)

(q49; q49)∞
, (2.1.38)

P7(2) =
(q7; q7)∞Y (q7)

(q49; q49)∞
, (2.1.39)

P7(3) =
(q7; q7)∞X(q7)

(q49; q49)∞
. (2.1.40)

Finally, we are ready to supply the right-hand side for the analogue of
Entry 2.1.2 for the modulus 7.
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Entry 2.1.5 (p. 19). Let ζ7 be a primitive seventh root of unity, and let

f7(q) :=
∞∑

n=0

qn
2

(ζ7q; q)n(ζ
−1
7 q; q)n

. (2.1.41)

Then

f7(q) =
(
2− ζ7 − ζ−1

7

) (
1−A7(q

7) + q7Q1(q
7)
)
+A7(q

7)

+ qT1(q
7) + q2

{(
ζ7 + ζ−1

7

)
B7(q

7) + q14Q3(q
7)(ζ7 + ζ−1

7 − ζ−2
7 − ζ27

}

+ q3T2(q
7)
(
1 + ζ27 + ζ−2

7

)
− q4

(
ζ27 + ζ−2

7

)
T3(q

7)

+ q6
{
q7Q2(q

7)
(
ζ27 + ζ−2

7 − ζ37 − ζ−3
7

)
− C7(q

7)
(
1 + ζ37 + ζ−3

7

)}
,

(2.1.42)

where

A7(q) :=
(q7, q3, q4; q7)∞
(q, q2, q5, q6; q7)∞

, (2.1.43)

B7(q) :=
(q7, q2, q5; q7)∞
(q, q3, q4, q6; q7)∞

, (2.1.44)

C7(q) :=
(q7, q, q6; q7)∞

(q2, q3, q4, q5; q7)∞
, (2.1.45)

and for m = 1, 2, 3,

Qm(q7) :=
Σ7(m, 0)

P7(0)
(2.1.46)

and

Tm(q7) :=
P7(0)

P7(m)
. (2.1.47)

We remark that the functions Qm(q7) in (2.1.46) can be expressed in terms
of the generating function for ranks. By a result of Garvan [146, p. 68, Lemma
(7.9)], for |q| < |z| < 1/|q| and z �= 1,

−1 +
1

1− z

∞∑

n=0

qn
2

(zq; q)n(q/z; q)n
=

z

(q; q)∞

∞∑

n=−∞

(−1)nq3n(n+1)/2

1− zqn
.

Hence, after modest rearrangement, we find that

Σ7(m, 0) =
(q49; q49)∞

q7m

{
−1 +

∞∑

n=0

q49n
2

(q7m; q49)n+1(q49−7m; q49)n

}
.

Throughout this chapter our work will follow closely the marvelous papers
by Atkin and Swinnerton-Dyer [28] and Garvan [146].
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2.2 Proof of Entry 2.1.1

Here we shall follow the elegant proof given by Garvan [146]. Throughout this
section ζ5 is a primitive fifth root of unity. We begin with the observation
[146, p. 58, Lemma (3.9)]

1

(ζ5q; q)∞(ζ−1
5 q; q)∞

= G(q5) + q(ζ5 + ζ−1
5 )H(q5), (2.2.1)

where G(q) is defined in (2.1.11) and H(q) is defined in (2.1.12). We prove
the identity (2.2.1). Using the Jacobi triple product identity (2.1.3) twice, we
find that

1

(ζ5q; q)∞(ζ−1
5 q; q)∞

=
(q, ζ25q, ζ

−2
5 ; q)∞

(q, ζ5q, ζ
−1
5 q, ζ25q, ζ

−2
5 ; q)∞

=
(q, ζ25q, ζ

−2
5 ; q)∞

(1− ζ−2
5 )(q5; q5)∞

=
1

(1− ζ−2
5 )(q5; q5)∞

∞∑

n=−∞
(−1)nζ2n5 q(n

2+n)/2

=
1

(1− ζ−2
5 )(q5; q5)∞

2∑

ν=−2

∞∑

m=−∞
(−1)5m+νζ10m+2ν

5 q(5m+ν)(5m+ν+1)/2

=
1

(1− ζ−2
5 )(q5; q5)∞

2∑

ν=−2

(−1)νζ2ν5 qν(ν+1)/2
∞∑

m=−∞
(−1)mq(25m

2+(10ν+5)m)/2

=
1

(1− ζ−2
5 )

2∑

ν=−2

(−1)νζ2ν5 qν(ν+1)/2 f(−q15+5ν ,−q10−5ν)

(q5; q5)∞

=
1

(1− ζ−2
5 )

2∑

ν=−2

(−1)νζ2ν5 qν(ν+1)/2

(
q15+5ν , q10−5ν , q25; q25

)
∞

(q5; q5)∞
.

Now, by (2.1.11) and (2.1.12),

(
q15+5ν , q10−5ν , q25; q25

)
∞

(q5; q5)∞
=

⎧
⎪⎨

⎪⎩

G(q5), if ν = 0,−1,

H(q5), if ν = 1,−2,

0, if ν = 2.

Hence,

1

(ζ5q; q)∞(ζ−1
5 q; q)∞

=
1

(1− ζ−2
5 )

G(q5)
(
1− ζ−2

5

)

+
1

(1− ζ−2
5 )

H(q5)
(
−ζ25q + ζ−4

5 q
)

= G(q5) + q
(
ζ5 + ζ−1

5

)
H(q5),
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which is (2.2.1).
Next, we continue to follow Garvan in [146, p. 60, Lemma 3.18] and so

employ the identity

(q; q)∞ = (q25; q25)∞

(
G(q5)

H(q5)
− q − q2

H(q5)

G(q5)

)
, (2.2.2)

which is one of the famous identities for the Rogers–Ramanujan continued
fraction [15, p. 11, equation (1.1.10)]

1

1 +

q

1 +

q2

1 +

q3

1 + · · · =
H(q)

G(q)
.

We now multiply together (2.2.1) and (2.2.2) to obtain

(q; q)∞

(ζ5q; q)∞(ζ−1
5 q; q)∞

=
(
G(q5) + q(ζ5 + ζ−1

5 )H(q5)
)

× (q25; q25)∞

(
G(q5)

H(q5)
− q − q2

H(q5)

G(q5)

)

= (q25; q25)∞

{
G2(q5)

H(q5)
+ q

(
−1 + ζ5 + ζ−1

5

)
G(q5)

+ q2
(
−1− (ζ5 + ζ−1

5 )
)
H(q5) + q3

(
−(ζ5 + ζ−1

5 )
) H2(q5)

G(q5)

}

= A(q5)− q(ζ5 + ζ−1
5 )2B(q5)

+ q2
(
ζ25 + ζ−2

5

)
C(q5)−

(
ζ5 + ζ−1

5

)
q3D(q5),

and Entry 2.1.1 is proved.

2.3 Background for Entries 2.1.2 and 2.1.4

As was mentioned in Section 2.1, Atkin and Swinnerton-Dyer [28] proved the
conjectures of Dyson [127]. Garvan [146] proved that their work for the modu-
lus 5 was in fact equivalent to Entry 2.1.2. Our proof here relies completely on
Garvan’s observation. We will modify the work of Atkin and Swinnerton-Dyer
to the extent that we will eschew using their Lemma 2, which we state below.

Lemma 2.3.1. Let f(z) be a single-valued analytic function of z, except possi-
bly for a finite number of poles, in every region 0 ≤ z1 ≤ |z| ≤ z2; and suppose
that for some constants A and w with 0 < |w| < 1, and some (positive, zero,
or negative) integer n, we have

f(zw) = Aznf(z)

identically in z. Then either f(z) has exactly n more poles than zeros in

|w| ≤ |z| ≤ 1,

or f(z) vanishes identically.
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While this is a beautiful, powerful, and useful result, it is unlikely to have
been the type of result that Ramanujan would have utilized.

The principal idea is to transform (2.1.16), (2.1.18), and (2.1.19) into cer-
tain bilateral series, which are called higher-level Appell series [355]. In par-
ticular, see Lemma 2.4.1 and the functions (2.1.33) and (2.3.11), which we
define and develop in the next several pages.

The next identity does not appear in the lost notebook. However, it is ef-
fectively a generalization of Entries 12.4.4 (as restated in (12.4.15)) and 12.5.3
(as restated in (12.5.14)) in our first book [15, pp. 276, 283]. Consequently, it
is a partial fraction decomposition of precisely the sort that Ramanujan often
considered.

Lemma 2.3.2. [28, p. 94, Lemma 7] For Σ(z, ζ, q) defined by (2.1.33),

ζ3Σ(zζ, ζ3, q) +Σ(zζ−1, ζ−3, q)− ζ
(ζ2, q/ζ2; q)∞
(ζ, q/ζ; q)∞

Σ(z, 1, q)

=
(ζ, q/ζ, ζ2, q/ζ2, q, q; q)∞

(z/ζ, qζ/z, z, q/z, zζ, q/(zζ); q)∞
. (2.3.1)

This formula was first proved by G.N. Watson [335], and we shall follow
his proof. M. Jackson [185] has given a third proof from the theory of q-
hypergeometric series, and S.H. Chan [105] has established a considerable
generalization of Lemma 2.3.2.

Proof. Let us fix a positive integer N and consider the partial fraction decom-
position with respect to z of the rational function

FN (z) :=
(ζ, q/ζ, ζ2, q/ζ2, q, q; q)N

(z/ζ, qζ/z, z, q/z, zζ, q/(zζ); q)N
. (2.3.2)

This function has simple poles at z = ζqm, qm, and ζ−1qm for −(N − 1) ≤
m ≤ N . Hence, we see that

FN (z) :=

N−1∑

m=−N

Am(N)

1− zζqm
+

N−1∑

m=−N

Bm(N)

1− zqm/ζ
+

N−1∑

m=−N

Cm(N)

1− zqm
. (2.3.3)

Now for any integer m, algebraic simplification reveals that

(xq−m, q1+m/x; q)N = (−1)mq−m(m+1)/2xm(q/x; q)N+m(x; q)N−m. (2.3.4)

First, after three applications of (2.3.4), with x = ζ−2, ζ−1, 1, respectively, we
find that

Am(N) = lim
z→ζ−1q−m

(1− zζqm)FN (z) =
(−1)mq3m(m+1)/2ζ3m+3

(q/ζ2; q)N−m−1(ζ2; q)N+m+1

× (ζ, q/ζ, ζ2, q/ζ2, q, q; q)N
(q/ζ; q)N−m−1(ζ; q)N+m+1(q; q)N−m−1(q; q)N+m

, (2.3.5)
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and
lim

N→∞
Am(N) = (−1)mq3m(m+1)/2ζ3m+3. (2.3.6)

Second, applying (2.3.4) three times once again, but now with x = 1, ζ, ζ2,
respectively, we find that

Bm(N) = lim
z→ζq−m

(1− zζ−1qm)FN (z) (2.3.7)

=
(−1)mq3m(m+1)/2ζ−3m(ζ, q/ζ, ζ2, q/ζ2, q, q; q)N

(ζ; q)N−m(q/ζ; q)N+m(ζ2; q)N−m(q/ζ2; q)N+m(q; q)N−m−1(q; q)N+m
,

and
lim

N→∞
Bm(N) = (−1)mq3m(m+1)/2ζ−3m. (2.3.8)

Third, applying (2.3.4) with x = ζ−1, 1, ζ, respectively, we find that

Cm(N) = lim
z→q−m

(1− zqm)FN (z) (2.3.9)

=
−ζ(−1)mq3m(m+1)/2(ζ, q/ζ, ζ2, q/ζ2, q, q; q)N

(ζ; q)N−m(q/ζ; q)N+m(ζ; q)N+m+1(q/ζ; q)N−m−1(q; q)N−m−1(q; q)N+m
,

and

lim
N→∞

Cm(N) =
−ζ(ζ2, q/ζ2; q)∞(−1)mq3m(m+1)/2

(ζ, q/ζ; q)∞
. (2.3.10)

We can now easily deduce (2.3.1). Clearly FN (z) converges uniformly to
the right-hand side of (2.3.1) as N → ∞.

Equations (2.3.6), (2.3.8), and (2.3.10) when applied to (2.3.3) yield the
left-hand side of (2.3.1), provided we are allowed to take the limit N → ∞
inside the summation signs, and indeed this interchange of limit and summa-
tion is legitimate because the convergence is uniformly independent of m, and
the resulting series, after letting N → ∞, is convergent as long as |q| < 1 and
z is restricted away from the poles. Thus (2.3.1) is proved. ��

Following Atkin and Swinnerton-Dyer [28, p. 96], we now define

g(z, q) := z
(z2, q/z2; q)∞
(z, q/z; q)∞

Σ(z, 1, q)− z3Σ(z2, z3, q) (2.3.11)

−
∞∑

n=−∞
n �=0

(−1)nz−3nq3n(n+1)/2

1− qn
. (2.3.12)

Now the definition of g(z, q) is motivated as follows. We would like to set
ζ = z in (2.3.1); however, this would produce an undefined term at n = 0 in∑

(1, z−3, q) in (2.3.1). Note that g(z, q) is the negative of the left-hand side
of (2.3.1), with ζ = z and the one offending term at n = 0 in

∑
(1, z−3, q)

removed. Thus,
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g(z, q) = lim
ζ→z

(
1

1− z/ζ
− (ζ, q/ζ, ζ2, q/ζ2, q, q; q)∞

(z/ζ, qζ/z, z, q/z, zζ, q/(zζ); q)∞

)
. (2.3.13)

It is now a straightforward exercise to prove the next lemma, which is the
second half of Lemma 8 in [28, p. 96].

Lemma 2.3.3. We have

g(z, q) + g(q/z, q) = 1. (2.3.14)

Proof. We proceed as follows:

g(z, q) + g(q/z, q) = lim
ζ→z

(
1

1− z/ζ
− (ζ, q/ζ, ζ2, q/ζ2, q, q; q)∞

(z/ζ, qζ/z, z, q/z, zζ, q/(zζ); q)∞

)

+ lim
ζ→q/z

(
1

1− q/(zζ)
− (ζ, q/ζ, ζ2, q/ζ2, q, q; q)∞

(q/(zζ), zζ, q/z, z, qζ/z, z/ζ; q)∞

)

= lim
ζ→z

(
1

1− z/ζ
− (ζ, q/ζ, ζ2, q/ζ2, q, q; q)∞

(z/ζ, qζ/z, z, q/z, zζ, q/(zζ); q)∞

+
1

1− ζ/z
+

(ζ, q/ζ, ζ2, q/ζ2, q, q; q)∞
(z/ζ, qζ/z, z, q/z, zζ, q/(zζ); q)∞

)

= lim
ζ→z

(
1

1− z/ζ
+

1

1− ζ/z

)

= 1,

where in the antepenultimate line we replaced ζ by q/ζ in the second limit
and algebraically simplified the second infinite product into the first product
with opposite sign. This then completes the proof of (2.3.14). ��

Our next objective is to establish a second component of Lemma 8 of Atkin
and Swinnerton-Dyer [28, p. 96].

Lemma 2.3.4. We have

g(z, q) + g(z−1, q) = −2. (2.3.15)

Proof. Replacing ζ by 1/ζ in the second equality below, we find that

g(z, q) + g(z−1, q)

= lim
ζ→z

(
1

1− z/ζ
+

(ζ, q/ζ, ζ2, q/ζ2, q, q; q)∞
(z/ζ, qζ/z, z, q/z, zζ, q/(zζ); q)∞

)

+ lim
ζ→1/z

(
1

1− 1/(zζ)
− (ζ, q/ζ, ζ2, q/ζ2, q, q; q)∞

(1/(zζ), qζz, 1/z, qz, ζ/z, qz/ζ; q)∞

)

= lim
ζ→z

(
1

1− z/ζ
− (ζ, q/ζ, ζ2, q/ζ2, q, q; q)∞

(z/ζ, qζ/z, z, q/z, zζ, q/(zζ); q)∞
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+
1

1− ζ/z
− (1/ζ, ζq, 1/ζ2, ζ2q, q, q; q)∞

(ζ/z, qz/ζ, 1/z, qz, 1/(ζz), qzζ; q)∞

)

= lim
ζ→z

(
1− (ζ, q/ζ, ζ2, q/ζ2, q, q; q)∞

(z/ζ, qζ/z, z, q/z, zζ, q/(zζ); q)∞

+
z3

ζ3
(ζ, q/ζ, ζ2, q/ζ2, q, q; q)∞

(z/ζ, qζ/z, z, q/z, zζ, q/(zζ); q)∞

)

= lim
ζ→z

(
1− (1− z3/ζ3)

(1− z/ζ)

(ζ, q/ζ, ζ2, q/ζ2, q, q; q)∞
(qz/ζ, qζ/z, z, q/z, zζ, q/(zζ); q)∞

)

= 1− lim
ζ→z

(1− z3/ζ3)

(1− z/ζ)

= 1− lim
ζ→z

(
1 +

z

ζ
+

z2

ζ2

)

= 1− 3 = −2,

as desired to prove (2.3.15). ��

As an immediate consequence of (2.3.15), we deduce the next corollary.

Corollary 2.3.1. With g(z, q) defined by (2.3.11),

g(z, q)− g(zq, q) = −3.

Proof. By (2.3.15) and (2.3.14),

g(z, q)− g(zq, q) =
(
g(z, q) + g(z−1, q)

)
−
(
g(z−1, q) + g(zq, q)

)

= −2− 1 = −3, (2.3.16)

as desired to prove (2.3.15). ��

We shall now prove the other identity that occurs in Lemma 8 of [28].

Lemma 2.3.5. If g(z, q) is defined by (2.3.11), then

2g(z, q)− g(z2, q)−

(
z3,

q

z3
, q; q

)2

∞(
z,

q

z
; q
)2

∞

(
z4,

q

z4
; q
)

∞

+ 1 = 0. (2.3.17)

Proof. To prove (2.3.17), we denote the left-hand side of (2.3.17) by f(z).
Then, by Corollary 2.3.1,

f(z)− f(zq) = 2
(
g(z, q)− g(zq, q)

)

−
{(

g(z2, q)− g(z2q, q)
)
+
(
g(z2q, q)− g(z2q2, q)

)}
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−

(
z3,

q

z3
, q; q

)2

∞(
z,

q

z
; q
)2

∞

(
z4,

q

z4
; q
)

∞

+

(
z3q3,

1

z3q2
, q; q

)2

∞(
zq,

1

z
; q

)2

∞

(
z4q4,

1

z4q3
; q

)

∞
= 2(−3)− (−3− 3)

−

(
z3,

q

z3
, q; q

)2

∞(
z,

q

z
; q
)2

∞

(
z4,

q

z4
; q
)

∞

+

(
z3,

q

z3
, q; q

)2

∞(
z,

q

z
; q
)2

∞

(
z4,

q

z4
; q
)

∞
= 0. (2.3.18)

Next, we show that if ω = e2πi/3, then

g(ω, q) = −1. (2.3.19)

By (2.3.11), we see that

g(ω, q) = −
∑

(ω, 1, q)−
∑

(ω2, 1, q)−
∞∑

n=−∞
n �=0

(−1)nq3n(n+1)/2

1− qn

= − 1

1− ω
− 1

1− ω2
−

∞∑

n=−∞
n �=0

(−1)nq3n(n+1)/2

×
(

1

1− ωqn
+

1

1− ω2qn
+

1

1− qn

)

= −1− 3

∞∑

n=−∞
n �=0

(−1)nq3n(n+1)/2

1− q3n

= −1,

because the nth and (−n)th terms of the sum cancel. This proves (2.3.19).
Substituting z = ω on the left-hand side of (2.3.17), invoking (2.3.19), and

observing that g(ω2, q) = −1 as well, we see that

f(ω) = −2 + 1− 0 + 1 = 0. (2.3.20)

Observe that (2.3.18) and (2.3.20) imply that

f(ωqn) = 0 for n ≥ 0.

Therefore we need to prove that f(z) is analytic except possibly at z = 0,∞.
However, the functional equation (2.3.18), namely

f(z) = f(qz),
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means that we need to examine the possible poles only in the annulus |q| <
|z| ≤ 1. Potential poles occur at z = ±1,±i,±q1/4,±iq1/4 and are at worst
simple poles. However, when we return to the definition of g in (2.3.11) to
calculate the residue at each possible pole, we find that it is 0. Consequently,
f(z) is analytic except possibly at 0 and at ∞. However, f(z) must, in fact,
be analytic at z = 0 also, because all values of f(z) in a deleted neighborhood
of 0 are bounded by the maximum value of |f(z)| in the annulus |q| < |z| ≤ 1,
owing to the functional equation above, and if f(z) had a singularity at z = 0
(either a pole or an essential singularity), then it would have to be unbounded
in a neighborhood of z = 0.

So we have shown that f(z) is analytic for |z| < 1 and that f(z) is iden-
tically 0 on a sequence of points ωqn that converge in the interior of |z| < 1.
We conclude that

f(z) ≡ 0,

and (2.3.17) is established. ��

2.4 Proof of Entry 2.1.2

Let

S5(b) =

∞∑

n=−∞
n �=0

(−1)nqbn+n(3n+1)/2

1− q5n
. (2.4.1)

Replacing n by −n, we see that

S5(b) = −S5(4− b), (2.4.2)

from which it readily follows that

S5(2) = 0. (2.4.3)

Furthermore, either applying the Jacobi triple product identity (2.1.3) and
algebraic simplification or applying (2.1.4) with n = b/3, (b− 1)/3, and (b+
1)/3, respectively, we find that

S5(b)− S5(b+ 5) =

∞∑

n=−∞
(−1)nqbn+n(3n+1)/2 − 1 = f(−q2+b,−q1−b)− 1

=

⎧
⎪⎨

⎪⎩

(−1)bq−b(b+1)/6(q; q)∞ − 1, if b ≡ 0 (mod 3),

−1, if b ≡ 1 (mod 3),

(−1)b−1q−b(b+1)/6(q; q)∞ − 1, if b ≡ 2 (mod 3).

(2.4.4)

We now establish the relationship between S5(b) and Entry 2.1.2.
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Lemma 2.4.1. We have

(q)∞

∞∑

n=0

qn
2

(zq)n(q/z)n
= (1− z)

∞∑

n=−∞

(−1)nqn(3n+1)/2

1− zqn
. (2.4.5)

Proof. Recall that Entry 4.2.16 of [16, p. 89] is given by

(abq)∞

∞∑

n=0

anbnqn
2

(−aq)n(−bq)n

= 1 + (1 + a)(1 + b)

∞∑

n=1

(−1)n(abq)n−1(1− abq2n)anbnqn(3n+1)/2

(q)n(1 + aqn)(1 + bqn)
.

Setting a = 1/b = −z above, we find that

(q)∞

∞∑

n=0

qn
2

(zq)n(q/z)n
= 1 + (1− z)(1− 1/z)

∞∑

n=1

(−1)n(1 + qn)qn(3n+1)/2

(1− zqn)(1− qn/z)

= 1 +
∞∑

n=1

(−1)nqn(3n+1)/2{(1− z)(1− qn/z) + (1− 1/z)(1− zqn)}
(1− zqn)(1− qn/z)

= 1 + (1− z)

∞∑

n=1

(−1)nqn(3n+1)/2

1− zqn
− 1− z

z

∞∑

n=1

(−1)nqn(3n+1)/2

1− qn/z

= 1 + (1− z)

∞∑

n=1

(−1)nqn(3n+1)/2

1− zqn
+ (1− z)

∞∑

n=1

(−1)nqn(3n−1)/2

1− zq−n

= (1− z)

∞∑

n=−∞

(−1)nqn(3n+1)/2

1− zqn
,

which establishes (2.4.5). ��
Lemma 2.4.1 gives a connection with a variant of the rank-generating

function (2.1.41), namely

Rb(q) :=

∞∑

n=0

q7n
2

(qb; q7)n+1(q7−b; q7)n
, (2.4.6)

and the functions (2.1.33) and (2.1.36). By (2.4.5) and (2.4.6), with z = q7b,

Rb(q
7) =

∞∑

n=0

q49n
2

(q7b; q49)n+1(q49−7b; q49)n

=
1

(q49; q49)∞

∞∑

n=−∞

(−1)nq49n(3n+1)/2

1− q49n+7b

=
Σ7(b,−7)

P7(0)
,

by (2.1.33) and (2.1.36).
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Lemma 2.4.2. Let ζ5 be a primitive fifth root of unity. Then

(q; q)∞

∞∑

n=0

qn
2

(ζ5q; q)n(ζ
−1
5 q; q)n

= 1 +
(
S5(1)− 2S5(4)

)
+ (ζ5 + ζ−1

5 )
(
2S5(1) + S5(4)

)
. (2.4.7)

Proof. By (2.4.5), and then by (2.4.2) and (2.4.3),

(q; q)∞

∞∑

n=0

qn
2

(ζ5q; q)n(ζ
−1
5 q; q)n

= 1 +

∞∑

n=−∞
n �=0

(−1)nqn(3n+1)/2(1− ζ5)(1− qn)(1− ζ25q
n)(1− ζ35q

n)(1− ζ45q
n)

1− q5n

= 1 +

∞∑

n=−∞
n �=0

(−1)nqn(3n+1)/2

1− q5n

(
(1− q4n) + (qn − 1)ζ5 + (q2n − qn)ζ25

+ (q3n − q2n)ζ35 + (q4n − q3n)ζ45

)

= 1 + S5(0)(1− ζ5) + S5(1)(ζ5 − ζ25 ) + S5(2)(ζ
2
5 − ζ35 ) + S5(3)(ζ

3
5 − ζ45 )

+ S5(4)(ζ
4
5 − 1)

= 1 + (ζ5 + ζ−1
5 − 2)S5(4) + (ζ5 + ζ−1

5 − ζ25 − ζ−2
5 )S5(1)

= 1− 2S5(4) + (ζ5 + ζ−1
5 )

(
S5(4) + S5(1)

)
− (ζ25 + ζ−2

5 )S5(1)

= 1 +
(
S5(1)− 2S5(4)

)
+ (ζ5 + ζ−1

5 )
(
2S5(1) + S5(4)

)
.

��

Lemma 2.4.3. Recall that φ(q) and ψ(q) are defined in (2.1.18) and (2.1.19),
respectively, and that

∑
(z, ζ, q) is defined in (2.1.33). Then

φ(q) =
q

(q5; q5)∞
Σ(q, 1, q5), (2.4.8)

ψ(q)

q
=

q

(q5; q5)∞
Σ(q2, 1, q5). (2.4.9)

Proof. To prove (2.4.8), we apply (2.4.5) with q replaced by q5 and then z = q.
Then dividing both sides by 1− q and using (2.1.18), we find that

(q5; q5)∞{φ(q) + 1} =

∞∑

n=−∞

(−1)nq5n(3n+1)/2

1− q5n+1
.

Subtracting (q5; q5)∞ from both sides above and using the pentagonal number
theorem, we find that
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(q5; q5)∞φ(q) =

∞∑

n=−∞

(−1)nq5n(3n+1)/2

1− q5n+1
−

∞∑

n=−∞
(−1)nq5n(3n+1)/2

=
∞∑

n=−∞
(−1)nq5n(3n+1)/2

(
1

1− q5n+1
− 1

)

= q

∞∑

n=−∞

(−1)nq15n(n+1)/2

1− q5n+1

= qΣ(q, 1, q5),

by (2.1.33).
To obtain (2.4.9), we apply (2.4.5) with q replaced by q5 and then z = q2.

Now proceed with the same steps as in the foregoing proof, but now using
(2.1.19) instead of (2.1.18), and we deduce (2.4.9). ��

To simplify further considerations, we make the following conventions:

P5(a) := (q5a, q25−5a; q25)∞ (a �= 0), (2.4.10)

P5(0) := (q25; q25)∞, (2.4.11)

Σ5(a, b) := Σ(q5a, q5b, q25) (a �= 0), (2.4.12)

Σ5(0, b) :=

∞∑

n=−∞
n �=0

(−1)nq75n(n+1)/2+5bn

1− q25n
, (2.4.13)

g5(a) := g(q5a, q25) (2.4.14)

=
q5aP5(2a)

P5(a)
Σ5(a, 0)− q15aΣ5(2a, 3a)−Σ5(0,−3a),

by (2.3.11). We note in passing that the Rogers–Ramanujan identities (2.1.11)
and (2.1.12) can be written in the forms

P5(1) =
1

G(q5)
, (2.4.15)

P5(2) =
1

H(q5)
. (2.4.16)

Lemma 2.4.4. If S5(b) is defined by (2.4.1), then

S5(1) = −g5(2)− q8
Σ5(2, 0)

P5(0)
(q; q)∞ − q3

P 2
5 (0)

P5(2)
. (2.4.17)

Proof. We begin by dissecting the series for S5(1) modulo 5. By (2.4.1),

S5(1) =

4∑

b=0

∞∑

m=−∞
(b,m) �=(0,0)

(−1)m+bq(5m+b)(15m+3b+1)/2+5m+b

1− q25m+5b
(2.4.18)
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=

4∑

b=0

(−1)bq3b(b+1)/2
∞∑

m=−∞
(b,m) �=(0,0)

(−1)mq75m(m+1)/2+5m(3b−6)

1− q25m+5b

= Σ5(0,−6)− q3Σ5(1,−3) + q9Σ5(2, 0)− q18Σ5(3, 3) + q30Σ5(4, 6)

= q9Σ5(2, 0) +Σ5(0,−6) + q30Σ5(4, 6)− q3
(
q15Σ5(3, 3) +Σ5(1,−3)

)
.

Now, by (2.4.14),

g5(2) = g5(q
10, q25)

=
q10P5(4)

P5(2)
Σ5(2, 0)− q30Σ5(4, 6)−Σ5(0,−6),

and by Lemma 2.3.2 with q replaced by q25, ζ = q5, and z = q10, we find that

q15Σ5(3, 3) +Σ5(1,−3) = q5
P5(2)

P5(1)
Σ5(2, 0) +

P 2
5 (0)P5(1)P5(2)

P5(3)P5(2)P5(1)
.

Therefore, by (2.4.18), the last two equalities, (2.4.15), and (2.4.16),

S5(1) = −g5(2) +
q10P5(4)

P5(2)
Σ5(2, 0) + q9Σ5(2, 0)

− q3
(
q5P5(2)

P5(1)
Σ5(2, 0) +

P 2
5 (0)

P5(3)

)

= −g5(2)− q3Σ5(2, 0)

(
G(q5)

H(q5)
q5 − q6 − q7

H(q5)

G(q5)

)
− q3

P 2
5 (0)

P5(2)

= −g5(2)− q8
Σ5(2, 0)(q; q)∞

P5(0)
− q3

P 2
5 (0)

P5(2)
,

by (2.2.2). ��

Lemma 2.4.5. For S5(b) defined by (2.4.1), we have

S5(4) = −g5(1) +
q5Σ5(1, 0)(q; q)∞

P5(0)
+ q2

P 2
5 (0)

P5(1)
. (2.4.19)

Proof. By (2.4.1),

S5(4) =

4∑

b=0

∞∑

m=−∞
(b,m) �=(0,0)

(−1)m+bq(5m+b)(15m+3b+1)/2+(20m+4b)

1− q25m+5b

=
4∑

b=0

(−1)bq3b(b+3)/2
∞∑

m=−∞
(b,m) �=(0,0)

(−1)mq75m(m+1)/2+5(3b−3)m

1− q25m+5b

= Σ5(0,−3)− q6Σ5(1, 0) + q15Σ5(2, 3)− q27Σ5(3, 6) + q42Σ5(4, 9)
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= Σ5(0,−3) + q15Σ5(2, 3)− q6Σ5(1, 0)

− q−3(q30Σ5(3, 6) +Σ5(−1,−6)), (2.4.20)

where we have replaced m by m−1 in the sum for Σ5(4, 9). Now, by (2.4.14),

g5(1) =
q5P5(2)

P5(1)
Σ5(1, 0)− q15Σ5(2, 3)−Σ5(0,−3), (2.4.21)

and by Lemma 2.3.2 with q replaced by q25, ζ = q10, and z = q5,

q30Σ5(3, 6) +Σ5(−1,−6)− q10
P5(4)

P5(2)
Σ5(1, 0)−

P 2
5 (0)P5(2)P5(4)

P5(3)P5(1)P5(−1)
= 0.

(2.4.22)
Therefore, by (2.4.20), (2.4.21), (2.4.22), (2.4.15), and (2.4.16),

S5(4) = −g5(1) + q5
P5(2)

P5(1)
Σ5(1, 0)− q6Σ5(1, 0)

− q−3

(
q10P5(4)

P5(2)
Σ5(1, 0) +

P 2
5 (0)P5(4)

P5(1)P5(−1)

)

= −g5(1) + q5Σ5(1, 0)

(
G(q5)

H(q5)
− q − q2

H(q5)

G(q5)

)
+ q2

P 2
5 (0)

P5(1)

= −g5(1) + q5
Σ5(1, 0)(q; q)∞

P5(0)
+ q2

P 2
5 (0)

P5(1)
,

by (2.2.2). ��

Lemma 2.4.6. Recall that S5(b) is defined by (2.4.1). Then

1 + S5(1)− 2S5(4)

=

{
P5(0)P5(2)

P 2
5 (1)

− 2q5
Σ5(1, 0)

P5(0)
+ q

P5(0)

P5(1)
− q8

Σ5(2, 0)

P5(0)

}
(q; q)∞. (2.4.23)

Proof. By Lemmas 2.4.4 and 2.4.5,

1 + S5(1)− 2S5(4) = 1− g5(2)−
q8Σ5(2, 0)(q; q)∞

P5(0)
− q3P 2

5 (0)

P5(2)

+ 2g5(1)−
2q5Σ5(1, 0)(q; q)∞

P5(0)
− 2q2P 2

5 (0)

P5(1)

=
P 2
5 (0)P

2
5 (2)

P 3
5 (1)

− q8Σ5(2, 0)(q; q)∞
P5(0)

− q3P 2
5 (0)

P5(2)

− 2q5Σ5(1, 0)(q; q)∞
P5(0)

− 2q2P 2
5 (0)

P5(1)
,

by (2.3.17). Thus in order to establish (2.4.23), we need to show that
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P 2
5 (0)P

2
5 (2)

P 3
5 (1)

− q3P 2
5 (0)

P5(2)
− 2q2P 2

5 (0)

P5(1)
=

{
P5(0)P5(2)

P 2
5 (1)

+ q
P5(0)

P5(1)

}
(q; q)∞.

(2.4.24)
But by (2.4.15), (2.4.16), and (2.2.2), we see that

(q; q)∞ = P5(0)

(
P5(2)

P5(1)
− q − q2P5(1)

P5(2)

)
. (2.4.25)

Consequently, the right-hand side of (2.4.24) is equal to

{
P5(0)P5(2)

P 2
5 (1)

+ q
P5(0)

P5(1)

}
P5(0)

{
P5(2)

P5(1)
− q − q2P5(1)

P5(2)

}

=
P 2
5 (0)P

2
5 (2)

P 3
5 (1)

+
qP 2

5 (0)P5(2)

P 2
5 (1)

− qP 2
5 (0)P5(2)

P 2
5 (1)

− q2P 2
5 (0)

P5(1)
− q2P 2

5 (0)

P5(1)
− q3P 2

5 (0)

P5(2)

=
P 2
5 (0)P

2
5 (2)

P 3
5 (1)

− q3P 2
5 (0)

P5(2)
− 2q2P 2

5 (0)

P5(1)
.

Thus (2.4.24) has been proved, and therefore (2.4.23) has also been proved. ��

Lemma 2.4.7. With S5(b) as given in the previous lemmas,

2S5(1) + S5(4)

=

{
q5Σ5(1, 0)

P5(0)
+

q2P5(0)

P5(2)
− 2q8Σ5(2, 0)

P5(0)
− q3P5(0)P5(1)

P 2
5 (2)

}
(q; q)∞. (2.4.26)

Proof. By Lemmas 2.3.3 and 2.3.5, we find that

2g5(2) + g5(1) = 2g5(2)− g5(4) + 1 =
P 2
5 (6)P

2
5 (0)

P 2
5 (2)P5(8)

= −q5P 2
5 (1)P

2
5 (0)

P 3
5 (2)

.

(2.4.27)

Next, by Lemmas 2.4.4 and 2.4.5 and (2.4.27),

2S5(1) + S5(4) = −2g5(2)−
2q8Σ5(2, 0)(q; q)∞

P5(0)
− 2q3P 2

5 (0)

P5(2)

− g5(1) +
q5Σ5(1, 0)(q; q)∞

P5(0)
+

q2P 2
5 (0)

P5(1)

=
q5P 2

5 (0)P
2
5 (1)

P 3
5 (2)

− 2q8Σ5(2, 0)(q; q)∞
P5(0)

− 2q3P 2
5 (0)

P5(2)

+
q5Σ5(1, 0)(q; q)∞

P5(0)
+

q2P 2
5 (0)

P5(1)
.



2.4 Proof of Entry 2.1.2 31

Thus, in order to establish (2.4.26), we need to show that

q5P 2
5 (0)P

2
5 (1)

P 3
5 (2)

− 2q3P 2
5 (0)

P5(2)
+

q2P 2
5 (0)

P5(1)

=

{
q2P5(0)

P5(2)
− q3P5(0)P5(1)

P 2
5 (2)

}
(q; q)∞. (2.4.28)

Invoking (2.4.25), which is a restatement of (2.2.2), we see that the right-hand
side of (2.4.28) is equal to

{
q2P5(0)

P5(2)
− q3P5(0)P5(1)

P 2
5 (2)

}
P5(0)

{
P5(2)

P5(1)
− q − q2

P5(1)

P5(2)

}

=
q2P 2

5 (0)

P5(1)
− q3P 2

5 (0)

P5(2)
− q3P 2

5 (0)

P5(2)
+

q4P 2
5 (0)P5(1)

P 2
5 (2)

− q4P 2
5 (0)P5(1)

P 2
5 (2)

+
q5P 2

5 (0)P
2
5 (1)

P 3
5 (2)

=
q2P 2

5 (0)

P5(1)
− 2q3P 2

5 (0)

P5(2)
+

q5P 2
5 (0)P

2
5 (1)

P 3
5 (2)

.

Thus (2.4.28) and therefore (2.4.26) have been proved. ��

We are finally ready to put all this together.

Proof of Entry 2.1.2. We first note that by Lemma 2.4.3,

φ(q5) =
q5

P5(0)
Σ5(1, 0) (2.4.29)

and
ψ(q5)

q5
=

q5

P5(0)
Σ5(2, 0). (2.4.30)

Now by Lemma 2.4.2,

(q; q)∞

∞∑

n=0

qn
2

(ζ5q; q)n(ζ
−1
5 q; q)n

= 1 + S5(1)− 2S5(4) + (ζ5 + ζ−1
5 )

(
2S5(1) + S5(4)

)

= (q; q)∞

{
P5(0)P5(2)

P 2
5 (1)

− 2q5Σ5(1, 0)

P5(0)
+

qP5(0)

P5(1)
− q8Σ5(2, 0)

P5(0)

+ (ζ5 + ζ−1
5 )

(
q5Σ5(1, 0)

P5(0)
+

q2P5(0)

P5(2)
− 2q8Σ5(2, 0)

P5(0)
− q3P5(0)P5(1)

P 2
5 (2)

)}
,

by Lemmas 2.4.6 and 2.4.7. So, by (2.4.29), (2.4.30), (2.4.15), (2.4.16), and
(2.1.7)–(2.1.10),
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∞∑

n=0

qn
2

(ζ5q; q)n(ζ
−1
5 q; q)n

=
(q25; q25)∞G2(q5)

H(q5)
− 2φ(q5) + q

(
q25; q25

)
∞ G(q5)− q3

ψ(q5)

q5
+
(
ζ5 + ζ−1

5

)

×
(
φ(q5) + q2

(
q25; q25

)
∞H(q5)− 2q3

ψ(q5)

q5
− q3(q25; q25)∞H2(q5)

G(q5)

)

= A(q5) +
(
ζ5 + ζ−1

5 − 2
)
φ(q5) + qB(q5) +

(
ζ5 + ζ−1

5

)
q2C(q5)

− q3
(
ζ5 + ζ−1

5

)
D(q5) +

ψ(q5)

q5
q3
(
− 1− 2

(
ζ5 + ζ−1

5

) )

= A(q5) +
(
ζ5 + ζ−1

5 − 2
)
φ(q5) + qB(q5) +

(
ζ5 + ζ−1

5

)
q2C(q5)

− q3
(
ζ5 + ζ−1

5

)
D(q5) + q3

ψ(q5)

q5
(
ζ5 + ζ−1

5

) (
ζ25 + ζ−2

5 − 2
)
,

and this is the assertion made by Entry 2.1.2. ��

The argument above is not in the Ramanujan tradition; however, we are
unable to replace it with something more appropriate.

2.5 Proof of Entry 2.1.4

The proof here is more direct than that for Entry 2.1.1 in that we do not
require an analogue of (2.2.2). Recalling that F7(q) is defined by (2.1.28), we
find that

F7(q) =
(q; q)∞

(ζ7q; q)∞(ζ−1
7 q; q)∞

=
(q; q)2∞(ζ27q; q)∞(ζ−2

7 q; q)∞(ζ37q; q)∞(ζ−3
7 q; q)∞

(q; q)∞(ζ7q; q)∞(ζ−1
7 ; q)∞(ζ27q; q)∞(ζ−2

7 q, q)∞(ζ37q; q)∞(ζ−3
7 q; q)∞

=

∞∑

n=−∞
(−1)nζ2n7 qn(n−1)/2

∞∑

m=−∞
(−1)mζ3m7 qm(m−1)/2

(1− ζ27 ) (1− ζ37 ) (q
7; q7)∞

, (2.5.1)

by Jacobi’s triple product identity (2.1.3). Now for any primitive seventh root
of unity (as are each of ζ7, ζ

2
7 , and ζ37 ),

∞∑

n=−∞
(−1)nζn7 q

n(n−1)/2

=

3∑

ν=−3

∞∑

m=−∞
(−1)7m+νζ7m+ν

7 q(7m+ν)(7m+ν−1)/2
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=

3∑

ν=−3

(−1)νqν(ν−1)/2ζν7

∞∑

m=−∞
(−1)mq7m

(
7m+(2ν−1)

)
/2

=

3∑

ν=−3

(−1)νqν(ν−1)/2ζν7 f(−q21+7ν ,−q28−7ν). (2.5.2)

Now, by the Jacobi triple product identity (2.1.3) and the definitions (2.1.30)–
(2.1.32),

f(−q21+7ν ,−q28−7ν)

(q7; q7)∞
=

(
q7ν+21, q28−7ν , q49; q49

)
∞

(q7; q7)∞
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

X(q7), if ν = 0, 1,

Y (q7), if ν = −1, 2,

Z(q7), if ν = −2, 3,

0, if ν = −3.

(2.5.3)
Therefore, by (2.5.2) and (2.5.3),

∞∑

n=−∞
(−1)nζn7 q

n(n−1)/2

= (1− ζ7)X(q7) + q
(
−ζ−1

7 + ζ27
)
Y (q7) + q3

(
−ζ37 + ζ−2

7

)
Z(q7). (2.5.4)

We now use this evaluation for both series on the far right side of (2.5.1).
Hence,

F7(q) =
{
(1− ζ27 )X(q7) + q(−ζ−2

7 + ζ47 )Y (q7) + q3
(
−ζ67 + ζ−4

7

)
Z(q7)

}

×
{
(1− ζ37 )X(q7) + q

(
−ζ−3

7 + ζ67
)
Y (q7) + q3

(
−ζ27 + ζ7

)
Z(q7)

}

× (q7; q7)∞
(1− ζ27 )(1− ζ37 )

= (q7; q7)
{
X2(q7) +

(
ζ7 + ζ−1

7 − 1
)
qX(q7)Y (q7)

+
(
ζ27 + ζ−2

7

)
q2Y 2(q7) +

(
ζ37 + ζ−3

7 + 1
)
q3X(q7)Z(q7)

−
(
ζ7 + ζ−1

7

)
q4Y (q7)Z(q7)−

(
ζ27 + ζ−2

7 + 1
)
q6Z2(q7)

}
,

which proves Entry 2.1.4.

2.6 Proof of Entry 2.1.5

Let

S7(b) =

∞∑

n=−∞
n �=0

(−1)nqbn+n(3n+1)/2

1− q7n
. (2.6.1)

Replacing n by −n, we see that
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S7(b) = −S7(6− b), (2.6.2)

from which an immediate consequence is

S7(3) = 0. (2.6.3)

Furthermore,

S7(b)− S7(b+ 7) =

∞∑

n=−∞
(−1)nqbn+n(3n+1)/2 − 1 = f(−q2+b,−q1−b)− 1

=

⎧
⎪⎨

⎪⎩

(−1)bq−b(b+1)/6(q; q)∞ − 1, if b ≡ 0 (mod 3),

−1, if b ≡ 1 (mod 3),

(−1)b−1q−b(b+1)/6(q; q)∞ − 1, if b ≡ 2 (mod 3),

(2.6.4)

as we have previously observed in (2.4.4).
Referring to (2.4.5), we are able to prove the following.

Lemma 2.6.1. If ζ7 be a primitive seventh root of unity, then

(q; q)∞

∞∑

n=0

qn
2

(ζ7q; q)n(ζ
−1
7 q; q)n

= 1− S7(4) + 2S7(0) +
(
ζ7 + ζ−1

7

)
(S7(1)− S7(4)− S7(0))

+
(
ζ27 + ζ−2

7

)
(−S7(1)− 2S7(4)) . (2.6.5)

Proof. Invoking (2.4.5), (2.6.2), and (2.6.3), we find that

(q; q)∞

∞∑

n=0

qn
2

(ζ7q; q)n(ζ
−1
7 q; q)n

= 1 +

∞∑

n=−∞
n �=0

(−1)nqn(3n+1)/2

× (1− ζ7)(1− qn)(1− ζ27q
n)(1− ζ37q

n)(1− ζ47q
n)(1− ζ57q

n)(1− ζ67q
n)

1− q7n

= 1 +

∞∑

n=−∞
n �=0

(−1)nqn(3n+1)/2

1− q7n

(
(1− q6n) + (qn − 1)ζ7 + qn(qn − 1)ζ27

+ q2n(qn − 1)ζ37 + q3n(qn − 1)ζ47 + q4n(qn − 1)ζ57 + q5n(qn − 1)ζ67

)

= 1 + (1− ζ7)S7(0) + (ζ7 − ζ27 )S7(1) + (ζ27 − ζ37 )S7(2) + (ζ37 − ζ47 )S7(3)

+ (ζ47 − ζ57 )S7(4) + (ζ57 − ζ67 )S7(5) + (ζ67 − 1)S7(6)

= 1 + S7(0)
(
2− ζ7 − ζ−1

7

)
+
(
ζ7 + ζ−1

7 − ζ27 − ζ−2
7

)
S7(1)
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+
(
ζ37 + ζ−3

7 − ζ27 − ζ−2
7

)
S7(4)

= 1− S7(4) + 2S7(0) +
(
ζ7 + ζ−1

7

)
(S7(1)− S7(4)− S7(0))

+
(
ζ27 + ζ−2

7

)
(−S7(1)− 2S7(4)) .

��

Recalling the notation (2.1.34)–(2.1.37), we define

g7(a) := g(q7a, q49) (2.6.6)

=
q7aP7(2a)

P7(a)
Σ7(a, 0)− q21aΣ7(2a, 3a)−Σ7(0,−3a),

by (2.3.11).

Lemma 2.6.2. With S7(b) defined by (2.6.1),

S7(1) = −g7(3) + q16
Σ7(3, 0)

P7(0)
(q; q)∞ +

q9P 2
7 (0)P7(1)

P 2
7 (3)

− q3P 2
7 (0)

P7(1)
. (2.6.7)

Proof. We begin by dissecting the series for S7(1) modulo 7. To that end,

S7(1) =

6∑

b=0

∞∑

m=−∞
(b,m) �=(0,0)

(−1)m+bq(7m+b)(21m+3b+1)/2+7m+b

1− q49m+7b

=

6∑

b=0

(−1)bq3b(b+1)/2
∞∑

m=−∞
(b,m) �=(0,0)

(−1)mq147m(m+1)/2+7m(3b−9)

1− q49m+7b

= Σ7(0,−9)− q3Σ7(1,−6) + q9Σ7(2,−3)− q18Σ7(3, 0) + q30Σ7(4, 3)

− q45Σ7(5, 6) + q63Σ7(6, 9). (2.6.8)

Now, by (2.6.6),

g7(3)−
q21P7(6)

P7(3)
Σ7(3, 0) = −q63Σ7(6, 9)−Σ7(0,−9). (2.6.9)

In addition, by Lemma 2.3.2, with q replaced by q49, ζ = q14, and z = q21,

q42Σ7(5, 6) +Σ7(1,−6) = q14
P7(4)

P7(2)
Σ7(3, 0) +

P 2
7 (0)P7(2)P7(4)

P7(5)P7(3)P7(1)
. (2.6.10)

By Lemma 2.3.2 with q replaced by q49, ζ = q7, and z = q21,

q21Σ7(4, 3) +Σ7(2,−3) = q7
P7(2)

P7(1)
Σ7(3, 0) +

P 2
7 (0)P7(1)P7(2)

P7(4)P7(3)P7(2)
. (2.6.11)

We now substitute the right-hand sides of (2.6.9), (2.6.10), and (2.6.11)
for the appearances of their respective left-hand sides in (2.6.8). Hence,
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S7(1) = −g7(3) +Σ7(3, 0)

(
q21P7(6)

P7(3)
− q17

P7(4)

P7(2)
+ q16

P7(2)

P7(1)
− q18

)

− q3
P 2
7 (0)

P7(1)
+ q9

P 2
7 (0)P7(1)

P 2
7 (3)

,

by the fact that P7(a) = P7(7− a). We now invoke Ramanujan’s identity [55,
p. 303, Entry 17(v)]

(q; q)∞
P7(0)

=
P7(2)

P7(1)
− q

P7(4)

P7(2)
− q2 + q5

P7(6)

P7(3)
(2.6.12)

to conclude that

S7(1) = −g7(3) +
q16Σ7(3, 0)(q; q)∞

P7(0)
+

q9P 2
7 (0)P7(1)

P 2
7 (3)

− q3P 2
7 (0)

P7(1)
,

as desired. ��

Lemma 2.6.3. We have

S7(4) = −g7(2)−
q13Σ7(2, 0)

P7(0)
(q; q)∞ − q6P 2

7 (0)

P7(3)
+

q4P 2
7 (0)P7(3)

P 2
7 (2)

. (2.6.13)

Proof. We dissect the series for S7(4) modulo 7 to deduce that

S7(4) =

5∑

b=−1

∞∑

m=−∞
(b,m) �=(0,0)

(−1)m+bq(7m+b)(21m+3b+1)/2+28m+4b

1− q49m+7b

=

5∑

b=−1

(−1)bq3b(b+3)/2
∞∑

m=−∞
(b,m) �=(0,0)

(−1)mq147m(m+1)/2+7m(3b−6)

1− q49m+7b

= −q−3Σ7(−1,−9) +Σ7(0,−6)− q6Σ7(1,−3) + q15Σ7(2, 0)

− q27Σ7(3, 3) + q42Σ7(4, 6)− q60Σ7(5, 9). (2.6.14)

Now, by (2.6.6),

−g7(2) +
q14P7(4)

P7(2)
Σ7(2, 0) = q42Σ7(4, 6) +Σ7(0,−6). (2.6.15)

By Lemma 2.3.2, with q replaced by q49, ζ = q21, and z = q14,

q63Σ7(5, 9) +Σ7(−1,−9) =
q21P7(6)

P7(3)
Σ7(2, 0) +

P 2
7 (0)P7(3)P7(6)

P7(5)P7(2)P7(−1)
, (2.6.16)

and by Lemma 2.3.2 with q replaced by q49, ζ = q7, and z = q14,
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q21Σ7(3, 3) +Σ7(1,−3) =
q7P7(2)

P7(1)
Σ7(2, 0) +

P 2
7 (0)P7(1)P7(2)

P7(3)P7(2)P7(1)
. (2.6.17)

We now substitute the right-hand sides of (2.6.15), (2.6.16), and (2.6.17)
for the appearances of their respective left-hand sides in (2.6.14). Hence,

S7(4) = −g7(2) +
q14P7(4)

P7(2)
Σ7(2, 0)− q−3

(
q21P7(6)

P7(3)
Σ7(2, 0)

−q7P 2
7 (0)P7(3)

P 2
7 (2)

)
− q6

(
q7P7(2)

P7(1)
Σ7(2, 0) +

P 2
7 (0)

P7(3)

)
+ q15Σ7(2, 0),

since P7(−1) = −q−7P7(1). Hence,

S7(4) = −g7(2) +Σ7(2, 0)

(
q14P7(4)

P7(2)
+ q15 − q18P7(6)

P7(3)
− q13P7(2)

P7(1)

)

+
q4P 2

7 (0)P7(3)

P 2
7 (2)

− q6P 2
7 (0)

P7(3)

= −g7(2)− q13Σ7(2, 0)

(
P7(2)

P7(1)
− qP7(4)

P7(2)
− q2 +

q5P7(6)

P7(3)

)

− q6P 2
7 (0)

P7(3)
+

q4P 2
7 (0)P7(3)

P 2
7 (2)

,

and by (2.6.12),

S7(4) = −g7(2)−
q13Σ7(2, 0)(q; q)∞

P7(0)
− q6P 2

7 (0)

P7(3)
+

q4P 2
7 (0)P7(3)

P 2
7 (2)

,

as desired. ��

Lemma 2.6.4. Recalling that S7(b) is defined by (2.6.1), we have

S7(7) = −g7(1) +
q7Σ7(1, 0)

P7(0)
(q; q)∞ +

qP 2
7 (0)P7(2)

P 2
7 (1)

− q5P 2
7 (0)

P7(2)
. (2.6.18)

Proof. As before, we begin by dissecting the series for S7(7) modulo 7 to arrive
at

S7(7) =

4∑

b=−2

∞∑

m=−∞
(b,m) �=(0,0)

(−1)m+bq(7m+b)(21m+3b+1)/2+49m+7b

1− q49m+7b

=
4∑

b=−2

(−1)bq3b(b+5)/2
∞∑

m=−∞
(b,m) �=(0,0)

(−1)mq147m(m+1)/2+7m(3b−3)

1− q49m+7b

= q−9Σ7(−2,−9)− q−6Σ7(−1,−6) +Σ7(0,−3)

− q9Σ7(1, 0) + q21Σ7(2, 3)− q36Σ7(3, 6) + q54Σ7(4, 9). (2.6.19)
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Now, by (2.6.6),

−g7(1) +
q7P7(2)

P7(1)
Σ7(1, 0) = q21Σ7(2, 3) +Σ7(0,−3). (2.6.20)

By Lemma 2.3.2 with q replaced by q49, ζ = q14, and z = q7,

q42Σ7(3, 6) +Σ7(−1,−6) =
q14P7(4)

P7(2)
Σ7(1, 0) +

P 2
7 (0)P7(2)P7(4)

P7(3)P7(1)P7(−1)
, (2.6.21)

and by Lemma 2.3.2 with q replaced by q49, ζ = q21, and z = q7,

q63Σ7(4, 9) +Σ7(−2,−9) =
q21P7(6)Σ7(1, 0)

P7(3)
+

P 2
7 (0)P7(3)P7(6)

P7(4)P7(1)P7(−2)
. (2.6.22)

We now substitute the right-hand sides of (2.6.20), (2.6.21), and (2.6.22)
for the appearances of their respective left-hand sides in (2.6.19). Hence,

S7(7) = −g7(1) +
q7P7(2)

P7(1)
Σ7(1, 0)− q9Σ7(1, 0)

− q−6

(
q14P7(4)

P7(2)
Σ7(1, 0) +

P 2
7 (0)P7(2)P7(4)

P7(3)P7(1)P7(−1)

)

+ q−9

(
q21P7(6)

P7(3)
Σ7(1, 0) +

P 2
7 (0)P7(3)P7(6)

P7(4)P7(1)P7(−2)

)

= −g7(1) + q7Σ7(1, 0)

(
P7(2)

P7(1)
− qP7(4)

P7(2)
− q2 +

q5P7(6)

P7(3)

)

+
qP 2

7 (0)P7(2)

P 2
7 (1)

− q5P 2
7 (0)

P7(2)
,

by the facts that P7(a) = P7(7−a) and P7(−a) = −q−7aP7(a). We now invoke
(2.6.12) to conclude that

S7(7) = −g7(1) +
q7Σ7(1, 0)(q; q)∞

P7(0)
+

qP 2
7 (0)P7(2)

P 2
7 (1)

− q5P 2
7 (0)

P7(2)
,

as desired. ��

Lemma 2.6.5. We have

P7(1)P
3
7 (3)− P7(3)P

3
7 (2) + q7P 3

7 (1)P7(2) = 0.

Proof. This identity can be found in Ramanujan’s second notebook [282,
p. 300], where it is given as an identity involving quotients of theta func-
tions. A proof can be found in Berndt’s book [57], with the statement of
Ramanujan’s identity being given in Entry 32(ii) of Chapter 25 [57, p. 176].
(Unfortunately, there is a misprint in the definition of w in Entry 32; read
25/56 instead of 25/26.) Lemma 2.6.5 is also equivalent to a specialization
of the three-term relation for the Weierstrass sigma function [339, p. 451,
Exercise 5]. ��
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Lemma 2.6.6. With S7(b) defined by (2.6.1),

−2g7(1)+g7(2)−1+2q
P 2
7 (0)P7(2)

P 2
7 (1)

−q4
P 2
7 (0)P7(3)

P 2
7 (2)

−2q5
P 2
7 (0)

P7(2)
+q6

P 2
7 (0)

P7(3)

=

{
−P7(0)P7(3)

P7(1)P7(2)
+ q

P7(0)

P7(1)
+ q3

P7(0)

P7(2)

}
(q; q)∞. (2.6.23)

Proof. By Lemma 2.3.5 with q replaced by q49 and z = q7, we see that

−2g7(1) + g7(2)− 1 = −P 2
7 (0)P

2
7 (3)

P 2
7 (1)P7(4)

= −P 2
7 (0)P7(3)

P 2
7 (1)

.

Hence (2.6.23) is, with the use of (2.6.12), equivalent to the assertion

−P 2
7 (0)P7(3)

P 2
7 (1)

+ 2q
P 2
7 (0)P7(2)

P 2
7 (1)

− q4
P 2
7 (0)P7(3)

P 2
7 (2)

− 2q5
P 2
7 (0)

P7(2)
+ q6

P 2
7 (0)

P7(3)

=

{
−P7(0)P7(3)

P7(1)P7(2)
+ q

P7(0)

P7(1)
+ q3

P7(0)

P7(2)

}

× P7(0)

{
P7(2)

P7(1)
− q

P7(4)

P7(2)
− q2 + q5

P7(6)

P7(3)

}
,

and if we collect terms on the left-hand side according to powers of q, we see
that this last identity is equivalent (after cancellation of like terms) to

q

{
P 2
7 (0)P7(2)

P 2
7 (1)

− P 2
7 (0)P7(3)P7(4)

P7(1)P 2
7 (2)

− q7
P 2
7 (0)P7(6)

P7(3)P7(2)

}
= 0.

This last identity can be written in the form

qP 2
7 (0)

P 2
7 (1)P

2
7 (2)P7(3)

{
P 3
7 (2)P7(3)− P 3

7 (3)P7(1)− q7P 3
7 (1)P7(2)

}
= 0,

by Lemma 2.6.5. Thus (2.6.23) is proved. ��

Lemma 2.6.7. We have

2g7(2) + g7(3)− q9
P 2
7 (0)P7(1)

P 2
7 (3)

+ q3
P 2
7 (0)

P7(1)
− 2q4

P 2
7 (0)P7(3)

P 2
7 (2)

+ 2q6
P 2
7 (0)

P7(3)

=

{
q3

P7(0)

P7(2)
− q4

P7(0)

P7(3)
+ q6

P7(0)P7(1)

P7(2)P7(3)

}
(q; q)∞. (2.6.24)

Proof. By Lemma 2.3.3, with z = q21, Lemma 2.3.3, with z = q14, and the
fact that P7(8) = −q−7P7(1),

2g7(2) + g7(3) = −q7
P 2
7 (0)P7(1)

P 2
7 (2)

.
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Therefore (2.6.24) is, by (2.6.12), equivalent to the assertion

−q7
P 2
7 (0)P7(1)

P 2
7 (2)

− q9
P 2
7 (0)P7(1)

P 2
7 (3)

+ q3
P 2
7 (0)

P7(1)
− 2q4

P 2
7 (0)P7(3)

P 2
7 (2)

+ 2q6
P 2
7 (0)

P7(3)

=

{
q3

P7(0)

P7(2)
− q4

P7(0)

P7(3)
+ q6

P7(0)P7(1)

P7(2)P7(3)

}

× P7(0)

{
P7(2)

P7(1)
− q

P7(4)

P7(2)
− q2 + q5

P7(6)

P7(3)

}
.

Multiply out the right-hand side above and cancel like terms. It then remains
to show that

0 = q4
{
−P 2

7 (0)P7(3)

P 2
7 (2)

+
P 2
7 (0)P7(2)

P7(1)P7(3)
− q7

P 2
7 (0)P

2
7 (1)

P7(2)P 2
7 (3)

}

=
q4P 2

7 (0)

P 2
7 (2)P

2
7 (3)P7(1)

{
−P 3

7 (3)P7(1) + P 3
7 (2)P7(3)− q7P 3

7 (1)P7(2)
}
.

By Lemma 2.6.5, the equality above is indeed true. Thus (2.6.24) is proved.
��

Lemma 2.6.8. We have

− g7(1)− 2g7(3) + q
P 2
7 (0)P7(2)

P 2
7 (1)

+ 2q9
P 2
7 (0)P7(1)

P 2
7 (3)

− 2q3
P 2
7 (0)

P7(1)
− q5

P 2
7 (0)

P7(2)

=

{
q
P7(0)

P7(1)
+ q2

P7(0)P7(2)

P7(1)P7(3)
+ q4

P7(0)

P7(3)

}
(q; q)∞. (2.6.25)

Proof. By Lemma 2.3.3, with z = q7, Lemma 2.3.5, with z = q21, and the
facts that P7(9) = −q−14P7(2) and P7(12) = −q−35P7(2),

−g7(1)− 2g7(3) = q7
P 2
7 (0)P7(2)

P 2
7 (3)

.

Thus, by (2.6.12), (2.6.25) is equivalent to the assertion

q7
P 2
7 (0)P7(2)

P 2
7 (3)

+ q
P 2
7 (0)P7(2)

P 2
7 (1)

+ 2q9
P 2
7 (0)P7(1)

P 2
7 (3)

− 2q3
P 2
7 (0)

P7(1)
− q5

P 2
7 (0)

P7(2)

=

{
q
P7(0)

P7(1)
+ q2

P7(0)P7(2)

P7(1)P7(3)
+ q4

P7(0)

P7(3)

}

× P7(0)

{
P7(2)

P7(1)
− q

P7(4)

P7(2)
− q2 + q5

P7(6)

P7(3)

}
.

As before, we collect terms on the left-hand side according to powers of q.
This reduces the last identity to the equivalent assertion
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q2
{
q7P 2

7 (0)P7(1)

P 2
7 (3)

+
P 2
7 (0)P7(4)

P7(1)P7(2)
− P 2

7 (0)P
2
7 (2)

P 2
7 (1)P7(3)

}

=
q2P 2

7 (0)

P 2
7 (3)P

2
7 (1)P7(2)

{
q7P 3

7 (1)P7(2) + P 3
7 (3)P7(1)− P 3

7 (2)P7(3)
}

= 0,

by Lemma 2.6.5. Thus (2.6.25) is proved. ��

Lemma 2.6.9. We have

− 1 + (q; q)∞ − S7(4) + 2S7(7) =

{
2q7

Σ7(1, 0)

P7(0)
− P7(0)P7(3)

P7(1)P7(2)

+ 1 + q
P7(0)

P7(1)
+ q3

P7(0)

P7(2)
+ q13

Σ7(2, 0)

P7(0)

}
(q; q)∞. (2.6.26)

Proof. By Lemmas 2.6.3 and 2.6.4,

−1 + (q;q)∞ − S7(4) + 2S7(7)

= −1 + (q; q)∞ + g7(2) + q13
Σ7(2, 0)

P7(0)
(q; q)∞ + q6

P 2
7 (0)

P7(3)

− q4
P 2
7 (0)P7(3)

P 2
7 (2)

− 2g7(1) + 2q7
Σ7(1, 0)

P7(0)
(q; q)∞

+ 2q
P 2
7 (0)P7(2)

P 2
7 (1)

− 2q5
P 2
7 (0)

P7(2)
.

We now note that the entire left-hand side of (2.6.23) appears on the right-
hand side of the preceding expression. Hence, by (2.6.23),

− 1 + (q; q)∞ − S7(4) + 2S7(7) =

{
2q7

Σ7(1, 0)

P7(0)
+ q13

Σ7(2, 0)

P7(0)

+ 1− P7(0)P7(3)

P7(1)P7(2)
+ q

P7(0)

P7(1)
+ q3

P7(0)

P7(2)

}
(q; q)∞,

which is equivalent to (2.6.26). ��

Lemma 2.6.10. We have

−S7(1)− 2S7(4) =

{
− q16

Σ7(3, 0)

P7(0)
+ q3

P7(0)

P7(2)
− q4

P7(0)

P7(3)

+ 2q13
Σ7(2, 0)

P7(0)
+ q6

P7(0)P7(1)

P7(2)P7(3)

}
(q; q)∞. (2.6.27)

Proof. By Lemmas 2.6.2 and 2.6.3,
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− S7(1)− 2S7(4) = g7(3)− q16
Σ7(3, 0)

P7(0)
(q; q)∞ − q9

P 2
7 (0)P7(1)

P 2
7 (3)

+ q3
P 2
7 (0)

P7(1)

+ 2g7(2) + 2q13
Σ7(2, 0)

P7(0)
(q; q)∞ + 2q6

P 2
7 (0)

P7(3)
− 2q4

P 2
7 (0)P7(3)

P 2
7 (2)

.

We observe that the entire left-hand side of (2.6.24) appears in the preceding
expression’s right-hand side. Therefore, by (2.6.24),

−S7(1)− 2S7(4) =

{
− q16

Σ7(3, 0)

P7(0)
+ 2q13

Σ7(2, 0)

P7(0)
+ q3

P7(0)

P7(2)
− q4

P7(0)

P7(3)

+ q6
P7(0)P7(1)

P7(2)P7(3)

}
(q; q)∞,

which is equivalent to (2.6.27). ��

Lemma 2.6.11. We have

2S7(1) + S7(7) =

{
q7

Σ7(1, 0)

P7(0)
+ q

P7(0)

P7(1)
+ q2

P7(0)P7(2)

P7(1)P7(3)

+ 2q16
Σ7(3, 0)

P7(0)
+ q4

P7(0)

P7(3)

}
(q; q)∞. (2.6.28)

Proof. By Lemmas 2.6.2 and 2.6.4,

2S7(1) + S7(7) = −2g7(3) + 2q16
Σ7(3, 0)

P7(0)
(q; q)∞ + 2q9

P 2
7 (0)P7(1)

P 2
7 (3)

− 2q3
P 2
7 (0)

P7(1)
− g7(1) + q7

Σ7(1, 0)

P7(0)
(q; q)∞ + q

P 2
7 (0)P7(2)

P 2
7 (1)

− q5
P 2
7 (0)

P7(2)
.

As before, we see that the entire left-hand side of (2.6.25) appears on the
right-hand side of the preceding expression. So, by (2.6.25),

2S7(1) + S7(7) =

{
2q16

Σ7(3, 0)

P7(0)
+ q7

Σ7(1, 0)

P7(0)
+ q

P7(0)

P7(1)

+ q2
P7(0)P7(2)

P7(1)P7(3)
+ q4

P7(0)

P7(3)

}
(q; q)∞,

which is equivalent to (2.6.28). ��

Lemma 2.6.12. We have

1− (q; q)∞ + S7(1)− S7(4)− S7(7)

=

{
P7(0)P7(3)

P7(1)P7(2)
− 1− q7

Σ7(1, 0)

P7(0)
+ q2

P7(0)P7(2)

P7(1)P7(3)
+ q16

Σ7(3, 0)

P7(0)

+ q6
P7(0)P7(1)

P7(2)P7(3)
+ q13

Σ7(2, 0)

P7(0)

}
(q; q)∞. (2.6.29)
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Proof. If we add together the left-hand sides of (2.6.27) and (2.6.28) and
subtract the left-hand side of (2.6.26), we obtain the left-hand side of (2.6.29).
The same combination of right-hand sides produces the right-hand side of
(2.6.29). ��

Lemma 2.6.13. We have

S7(0) = S7(7) + (q; q)∞ − 1.

Proof. This is (2.6.4) with b = 0. ��

Finally we are ready to prove Entry 2.1.5.

Proof of Entry 2.1.5. By Lemma 2.6.1,

(q; q)∞

∞∑

n=0

qn
2

(ζ7q; q)n(ζ
−1
7 q; q)n

= 1− S7(4) + 2S7(0) + (ζ7 + ζ−1
7 )

(
S7(1)− S7(4)− S7(0)

)

+ (ζ27 + ζ−2
7 )

(
− S7(1)− 2S7(4)

)

=
(
− 1 + (q; q)∞ − S7(4) + 2S7(7)

)
+ (q; q)∞

+ (ζ7 + ζ−1
7 )

(
S7(1)− S7(4)− S7(7)− (q; q)∞ + 1

)

+ (ζ27 + ζ−2
7 )

(
− S7(1)− 2S7(4)

)
,

by Lemma 2.6.13.
We now apply Lemmas 2.6.9, 2.6.12, and 2.6.10 to the combinations of

S7’s contained in parentheses. This yields a large expression multiplied by
(q; q)∞. We cancel (q; q)∞ from each side, use (2.4.5), and recall the notation
(2.1.43)–(2.1.47) to obtain

∞∑

n=0

qn
2

(ζ7q; q)n(ζ
−1
7 q; q)n

= 2− ζ7 − ζ−1
7 +

P7(0)P7(3)

P7(1)P7(2)

(
ζ7 + ζ−1

7 − 1
)

+ q7
Σ7(1, 0)

P7(0)

(
2− ζ7 − ζ−1

7

)
+ q

P7(0)

P7(1)

+ q2
{(

ζ7 + ζ−1
7

)(P7(0)P7(2)

P7(1)P7(3)
+ q14

Σ7(3, 0)

P7(0)

)
−
(
ζ27 + ζ−2

7

)
q14

Σ7(3, 0)

P7(0)

}

+ q3
P7(0)

P7(2)

(
1 + ζ27 + ζ−2

7

)
− q4

P7(0)

P7(3)

(
ζ27 + ζ−2

7

)

+ q6
{
q7

Σ7(2, 0)

P7(0)

(
1 + ζ7 + ζ−1

7 + 2ζ27 + 2ζ−2
7

)

+
P7(0)P7(1)

P7(2)P7(3)

(
ζ7 + ζ−1

7 + ζ27 + ζ−2
7

)}
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=
(
2− ζ7 − ζ−1

7

) (
1−A7(q

7) + q7Q1(q
7)
)
+ qT1(q

7) +A7(q
7)

+ q2
{(

ζ7 + ζ−1
7

)
B7(q

7) + q14Q3(q
7)
(
ζ7 + ζ−1

7 − ζ27 − ζ−2
7

)}

+ q3T2(q
7)
(
1 + ζ27 + ζ−2

7

)
− q4

(
ζ27 + ζ−2

7

)
T3(q

7)

+ q6
{
q7Q2(q

7)
(
ζ27 + ζ−2

7 − ζ37 − ζ−3
7

)
− C7(q

7)
(
1 + ζ37 + ζ−3

7

)}
,

as desired. ��
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Ranks and Cranks, Part II

3.1 Introduction

In his lost notebook [283], Ramanujan recorded several entries on the gener-
ating function for cranks (2.1.27). In this chapter, we employ the notation for
cranks that Ramanujan gives at the top of page 179 in his lost notebook [283]
and which we partially gave in (2.1.14). More precisely, Ramanujan defines
the function F (q) and coefficients λn, n ≥ 0, by

F (q) := Fa(q) :=
(q; q)∞

(aq; q)∞(q/a; q)∞
=:

∞∑

n=0

λnq
n. (3.1.1)

Thus, by (2.1.27), for n > 1,

λn =
∞∑

m=−∞
M(m,n)am.

The goal of this chapter is to establish, in terms of congruences, all five
of Ramanujan’s dissections for Fa(q) offered by him in his lost notebook.
Ramanujan gave one of these, Entry 2.1.1, in the form of an identity. Two
were presented by Ramanujan in terms of congruences. The last pair were
not explicitly stated by Ramanujan; only the quotients of theta functions
appearing in the dissections are given.

On page 179, Ramanujan states the two aforementioned congruences for
F (q). These congruences, like others in this chapter, are to be regarded as
congruences in the ring of power series in the two variables a and q. The two
congruences are given by

F (
√
q) ≡ f(−q3,−q5)

(−q2; q2)∞
+

(
a− 1 +

1

a

)
√
q
f(−q,−q7)

(−q2; q2)∞
(mod a2 + a−2) (3.1.2)

and

G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook: Part III,
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F (q1/3) ≡ f(−q2,−q7)f(−q4,−q5)

(q9; q9)∞

+

(
a− 1 +

1

a

)
q1/3

f(−q,−q8)f(−q4,−q5)

(q9; q9)∞

+

(
a2 +

1

a2

)
q2/3

f(−q,−q8)f(−q2,−q7)

(q9; q9)∞
(mod a3 + a−3). (3.1.3)

Note that λ2 = a2 + a−2, which trivially implies that a4 ≡ −1 (modλ2) and
a8 ≡ 1 (modλ2). Thus, in (3.1.2), a behaves like a primitive eighth root of
unity modulo λ2. On the other hand, λ3 = a3+1+a−3, from which it follows
that a9 ≡ −a6 − a3 ≡ 1 (modλ3). So in (3.1.3), a behaves like a primitive
ninth root of unity modulo λ3.

Thus, if we let a = exp(2πi/8) and replace q by q2, (3.1.2) implies the 2-
dissection of F (q), while if we let a = exp(2πi/9) and replace q by q3, (3.1.3)
implies the 3-dissection of F (q).

As we saw in Chapter 2, Ramanujan gives the 5-dissection of F (q) on page
20 of his lost notebook [283]. It is interesting that Ramanujan does not give
the alternative form, analogous to those in (3.1.2) and (3.1.3), from which the
5-dissection would follow by setting a to be a primitive fifth root of unity.
Proofs of the 5-dissection have been given by F. Garvan [146] and A.B. Ekin
[133].

The first explicit statement and proof of the 7-dissection of F (q) was
given by Garvan [146, Theorem 5.1]. Although Ramanujan did not state the
7-dissection of F (q), he clearly knew it, because the six quotients of theta
functions that appear in the 7-dissection are found on the bottom of page 71
(written upside down) in his lost notebook. The first appearance of the 11-
dissection of F (q) in the literature also can be found in Garvan’s paper [146,
Theorem 6.7]. Further proofs have been given by M.D. Hirschhorn [173] and
Ekin [132], [133], who also gave a different proof of the 7-dissection. However,
again, it is very likely that Ramanujan knew the 11-dissection, since he offers
the quotients of theta functions that appear in the 11-dissection on page 70
of his lost notebook [283].

On page 59 in his lost notebook [283], Ramanujan records a quotient of
two power series, with the highest power of the numerator being q21 and the
highest power of the denominator being q22. Underneath, he records another
power series with the highest power being q5. Although not claimed by Ra-
manujan, the two expressions are equal. We state Ramanujan’s “claim” in the
following theorem.

Entry 3.1.1 (p. 59). If
An := an + a−n, (3.1.4)

then
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(q; q)∞
(aq; q)∞(q/a; q)∞

=

1−
∞∑

m=1,n=0

(−1)mqm(m+1)/2+mn(An+1 −An)

(q; q)∞
. (3.1.5)

In this chapter, we provide uniform proofs of the 2-, 3-, 5-, 7-, and 11-
dissections of F (q), when expressed in terms of congruences, by two different
methods. The first method, “rationalization,” is similar, but a bit shorter,
than that used to prove Entries 2.1.1 and 2.1.4 in Chapter 2. Our system-
atic procedure relies on Ramanujan’s addition formula for theta functions in
Lemma 3.2.1. In the second method, we employ an alternative version of En-
try 3.1.1 to give uniform proofs of the aforementioned dissections of F (q). An
interesting byproduct of our work is that several interesting q-series identi-
ties naturally arise in our proofs. Some of these identities appeared for the
first time in [62] (see (3.4.9)–(3.4.11)), while others (see Theorems 3.4.1, 3.5.1,
and 3.7.1) can also be proved using identities discovered by Ekin [133]. We
emphasize that the approach here to these q-series identities is much simpler
than that of Ekin. For example, Ekin’s proof of Entry 3.7.1 requires the ver-
ifications of 55 identities [133, p. 2154], while in our proof, only Winquist’s
identity and Entry 3.2.1 are needed.

In Section 3.8, we in fact show that the formulations in terms of congru-
ences are equivalent to those in terms of roots of unity. This was claimed
without proof by W.-C. Liaw [215, pp. 85–86], but the first proof was pro-
vided by Garvan in [62]; a modification of Garvan’s proof is given in Section
3.8. An advantage of the formulations in terms of congruences is that they
yield congruences like those of Atkin and Swinnerton-Dyer [28] as corollaries.

The content of this chapter is based on a paper [62] that the second author
coauthored with H.H. Chan, S.H. Chan, and Liaw.

3.2 Preliminary Results

It is easily seen that Ramanujan’s Entry 3.1.1, which we prove in Chapter
4, is equivalent to Entry 3.2.1 below, which was independently discovered by
R.J. Evans [136, Equation (3.1)], V.G. Kač and D.H. Peterson [187, Equation
(5.26)], and Kač and M. Wakimoto [188, middle of p. 438]. As remarked
in [187], the identity in fact appears in the classic text of J. Tannery and
J. Molk [331, Section 486]. The notation ρk in the theorem below will be used
throughout the chapter.

Entry 3.2.1. Let ρk = (−1)kqk(k+1)/2. Then

(q; q)2∞
(qa; q)∞(q/a; q)∞

=

∞∑

k=−∞

ρk(1− a)

1− aqk
. (3.2.1)
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Several times in the sequel we shall use an addition theorem for theta
functions found in Chapter 16 of Ramanujan’s second notebook [282], [55,
p. 48, Entry 31].

Lemma 3.2.1. Let |αβ| < 1. If Un = αn(n+1)/2βn(n−1)/2 and Vn =
αn(n−1)/2βn(n+1)/2 for each integer n and if N is any positive integer, then

f(U1, V1) =
N−1∑

k=0

Ukf

(
UN+k

Uk
,
VN−k

Uk

)
. (3.2.2)

Also useful for us is the quintuple product identity [55, p. 80, Equation
(38.2)].

Lemma 3.2.2. (Quintuple product identity.) Let f(a, b) be defined as in
(2.1.2), and let

f(−q) := f(−q,−q2) = (q; q)∞, (3.2.3)

by (2.1.3). Then

f(P 3Q,Q5/P 3)− P 2f(Q/P 3, P 3Q5) = f(−Q2)
f(−P 2,−Q2/P 2)

f(PQ,Q/P )
. (3.2.4)

Lastly, we need Winquist’s identity [342]. From [146, Equation (6.15)],
Winquist’s identity can be put in the following form.

Lemma 3.2.3. (Winquist’s identity.) In the notation (2.1.1),

(α, q/α, β, q/β, αβ, q/(αβ), α/β, βq/α, q, q; q)∞ (3.2.5)

= f(−α3,−q3/α3)
{
f(−β3q,−q2/β3)− βf(−β3q2,−q/β3)

}

− αβ−1f(−β3,−q3/β3)
{
f(−α3q,−q2/α3)− αf(−α3q2,−q/α3)

}
.

3.3 The 2-Dissection for F (q)

Entry 3.3.1 (p. 179). Recall that F (q) = Fa(q) is defined by (3.1.1) and
that f(a, b) is defined by (2.1.2). Then

Fa(q) ≡
f(−q6,−q10)

(−q4; q4)∞
+

(
a− 1 +

1

a

)
q
f(−q2,−q14)

(−q4; q4)∞
(modA2), (3.3.1)

where A2 is defined in (3.1.4).

Note that (3.3.1) is equivalent to (3.1.2), with
√
q in (3.1.2) replaced by q.

The first proof of Theorem 3.3.1 that we give uses the method of “ratio-
nalization” and is an extension of Garvan’s proof [146]. This method does not
work in general, but only for those n-dissections for which n is “small.” The
method used in our second proof is longer, but it is more general. Further-
more, we obtain very interesting identities, (3.3.12) and (3.3.13), along the
way.
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First Proof of Entry 3.3.1. Throughout the proof, we assume that |q| < |a| <
1/|q|. We also shall frequently use the facts that a4 ≡ −1 (modA2) and that
a8 ≡ 1 (modA2).

Write

(q; q)∞
(aq; q)∞(q/a; q)∞

= (q; q)∞

∞∏

n=1

( ∞∑

k=0

(aqn)k

)( ∞∑

k=0

(qn/a)k

)
. (3.3.2)

We now subdivide the series under the product sign into residue classes mod-
ulo 8 and then sum the series. Using repeatedly congruences modulo 8 for the
powers of a, we readily find from (3.3.2) that

(q; q)∞
(aq; q)∞(q/a; q)∞

≡ (q; q)∞

∞∏

n=1

(
1 + aqn + a2q2n + a3q3n

) (
1 + a−1qn + a−2q2n + a−3q3n

)

(1 + q4n)2

≡ (q; q)∞
(−q4; q4)∞

∞∏

n=1

(1 + aqn)(1 + a−1qn) (modA2), (3.3.3)

upon multiplying out the polynomials in the product on the previous line and
using congruences for powers of a modulo A2.

Next, using Lemma 3.2.1 with α = a, β = q/a, and N = 4, (2.1.4), and
congruences for powers of a modulo A2, we find that

(q; q)∞(−aq; q)∞(−q/a; q)∞ = (q; q)∞
(−a; q)∞
1 + a

(−q/a; q)∞ (3.3.4)

=
1

1 + a

{
f(a4q6, q10/a4) + af(q6/a4, a4q10)

+ a2qf(q2/a4, a4q14) + (q/a)f(a4q2, q14/a4)
}

≡ 1

1 + a

{
(1 + a)f(−q6,−q10) + (a2 + 1/a)qf(−q2,−q14)

}

≡ f(−q6,−q10) + (A1 − 1) qf(−q2,−q14) (modA2).

Using (3.3.4) in (3.3.3), we complete the proof of Entry 3.3.1. ��

Second Proof of Entry 3.3.1. From (3.2.1) and under the temporary condi-
tions |q| < |a| < |1/q|, we deduce that

(q; q)2∞
(qa; q)∞(q/a; q)∞

= 1 +

∞∑

k=1

ρk
1− a

1− aqk
+

∞∑

k=1

ρk
1− a−1

1− qk/a

= 1 + (1− a)
∞∑

k=1,m=0

ρkq
kmam + (1− a−1)

∞∑

k=1,m=0

ρkq
kma−m.

Hence, we deduce that
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(q; q)∞Fa(q) =
(q; q)2∞

(qa; q)∞(q/a; q)∞
= 1 +

∞∑

k=1,m=0

ρkq
km (Am −Am+1) ,

(3.3.5)
where Am is defined in (3.1.4). Observe that

Am −Am+1 ≡ Aj −Aj+1 (modA2),

whenever m ≡ j (mod 8). Therefore, if

Si,j :=
∞∑

k=1,m=0
m≡i,j (mod 8)

ρkq
km,

we conclude that

1+

∞∑

k=1,m=0

ρkq
km (Am −Am+1)

≡ 1 + (2−A1) {S0,3 − S4,7}+A1 {S1,2 − S5,6}
≡ 1 + (A1 − 1) {S1,2 − S5,6 − S0,3 + S4,7}
+ {S1,2 − S5,6 + S0,3 − S4,7} (modA2),

where we added and subtracted S1,2 − S5,6. Summing the series on m, and
then converting the sums into bilateral series, we conclude that

1 +

∞∑

k=1,m=0

ρkq
km (Am −Am+1) (3.3.6)

≡ (A1 − 1)

∞∑

k=−∞
ρk

qk − 1

1 + q4k
+

∞∑

k=−∞
ρk

qk + 1

1 + q4k
(modA2).

We are now ready to complete the proof of (3.3.1). Let ω = eπi/4. Calcu-
lating the partial fraction decomposition, we find that

∞∑

k=−∞
ρk

qk − 1

1 + q4k

= −1

4

∞∑

k=−∞
ρk

(
1 + ω3

1− ωqk
+

1 + ω

1− ω3qk
+

1 + ω7

1− ω5qk
+

1 + ω5

1− ω7qk

)
. (3.3.7)

By (3.2.1), we may rewrite (3.3.7) as

∞∑

k=−∞
ρk

qk − 1

1 + q4k
= −1

4
(q; q)2∞

{
1 + ω3

(ω; q)∞(q/ω; q)∞
+

1 + ω

(ω3; q)∞(q/ω3; q)∞

+
1 + ω7

(ω5; q)∞(q/ω5; q)∞
+

1 + ω5

(ω7; q)∞(q/ω7; q)∞

}
. (3.3.8)
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Since 1− ωjqk = 1− qk/ω8−j , we may simplify (3.3.8) and obtain

∞∑

k=−∞
ρk

qk − 1

1 + q4k
= −

√
2

4
(q; q)2∞

(
1

(ω3q; q)∞(q/ω3; q)∞
− 1

(ωq; q)∞(q/ω; q)∞

)

= −
√
2

4

(q; q)∞
(−q4; q4)∞

(
(q; q)∞(ωq; q)∞(q/ω; q)∞ − (q; q)∞(ω3q; q)∞(q/ω3; q)∞

)
.

(3.3.9)

From the second equality of (3.3.4), with a replaced by −ω and −ω3, respec-
tively, we find that

(q; q)∞(qω; q)∞(q/ω; q)∞ = f(−q6,−q10) +
(
−ω − ω7 − 1

)
qf(−q2,−q14),

(3.3.10)

(q; q)∞(qω3; q)∞(q/ω3; q)∞ = f(−q6,−q10) +
(
−ω3 − ω5 − 1

)
qf(−q2,−q14).

(3.3.11)

Employing (3.3.10) and (3.3.11) in (3.3.9) and simplifying yields

∞∑

k=−∞
ρk

qk − 1

1 + q4k
= q

(q; q)∞
(−q4; q4)∞

f(−q2,−q14). (3.3.12)

Using exactly the same method, we can show that

∞∑

k=−∞
ρk

qk + 1

1 + q4k
=

(q; q)∞
(−q4; q4)∞

f(−q6,−q10). (3.3.13)

Substituting (3.3.12) and (3.3.13) into (3.3.6), we obtain (3.3.1) by eliminating
the factor (q; q)∞ in (3.3.5). ��

3.4 The 3-Dissection for F (q)

As in the case of (3.3.1), we prove instead the congruence given below. Sur-
prisingly, the 3-dissection is considerably more difficult to prove than the 2-
and 5-dissections, for example. We give two proofs. The first uses the method
of “rationalization” and is shorter than our second proof, which depends on
Ramanujan’s key theorem, Entry 3.2.1. However, we were able to find the first
proof only because of insights gained from the second proof. When a = e2πi/9,
Entry 3.4.1 yields the 3-dissection of Fa(q), which was first proved by Garvan
[147] using the Macdonald identity for the root system A2. Garvan’s proof
can be modified to give another proof of Entry 3.4.1.

Entry 3.4.1 (p. 179). If An is given by (3.1.4), then
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Fa(q) ≡
f(−q6,−q21)f(−q12,−q15)

(q27; q27)∞
+ (A1 − 1) q

f(−q3,−q24)f(−q12,−q15)

(q27; q27)∞

+A2q
2 f(−q3,−q24)f(−q6,−q21)

(q27; q27)∞
(modA3 + 1). (3.4.1)

First Proof of Entry 3.4.1. We first record the identities that we need in our
proof.

Substituting (P,Q) = (−q3/2, q27/2), (−q15/2, q27/2), and (−q21/2, q27/2)
into the quintuple product identity (3.2.4), we find that

B − q3C =
f(−q3,−q24)(q27; q27)∞

f(−q12,−q15)
, (3.4.2)

A+ q6C = A− q15f(−q−9,−q90) =
f(−q12,−q15)(q27; q27)∞

f(−q6,−q21)
, (3.4.3)

A+ q3B = A− q21f(−q−18,−q99) =
f(−q6,−q21)(q27; q27)∞

f(−q3,−q24)
, (3.4.4)

respectively, where A = f(−q45,−q36), B = f(−q63,−q18), and C =
f(−q72,−q9).

Substituting α = −a2, β = −q/a2, and N = 9 into (3.2.2) and simplifying,
we deduce that

(q; q)∞(a2q; q)∞(q/a2; q)∞ (3.4.5)

≡ − (1 +A2) q(q
27; q27)∞ +A− (A1 − 1) q3B +A1q

6C (modA3 + 1).

After these preliminary steps, we now complete our proof of the 3-
dissection.

From the generating function (3.1.1),

Fa(q) ≡
(q; q)∞

(aq; q)∞(a8q; q)∞

≡ (q; q)∞(q3; q3)∞(a2q; q)∞(a4q; q)∞(a5q; q)∞(a7q; q)∞
(q9; q9)∞

≡ (q3; q3)∞
(q; q)∞(q9; q9)∞

×
{

−
(
1 + a2 + a7

)
q(q27; q27)∞ +A−

(
a+ a8 − 1

)
q3B +

(
a+ a8

)
q6C

}

×
{

−
(
1 + a4 + a5

)
q(q27; q27)∞ +A−

(
a2 + a7 − 1

)
q3B

+
(
a2 + a7

)
q6C

}
(modA3 + 1),
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where we have applied (3.4.5) in the last equality.
Arranging the terms in the “right” order, with knowledge from our second

proof being helpful, we find that

Fa(q) ≡
(q3; q3)∞

(q; q)∞(q9; q9)∞

{
(
−q2(q27; q27)2∞ − q(q27; q27)∞(A+ q3B)

+(A+ q3B)(A+ q6C)
)
+
[
a− 1 + a8

] (
−q2(q27; q27)2∞

+q(q27; q27)∞(A+ q6C)− q3(B − q3C)(A+ q6C)
)

+
[
a2 + a7

] (
q2(q27; q27)2∞ − q4(q27; q27)∞(B − q3C)

−q3(A+ q3B)(B − q3C)
)
}
(modA3 + 1).

Substituting (3.4.2)–(3.4.4) into the terms on the right-hand side and sim-
plifying, we find that

Fa(q) ≡
(q3; q3)∞(q27; q27)2∞
(q; q)∞(q9; q9)∞

×
{
f(−q12,−q15)− qf(−q6,−q21)− q2f(−q3,−q24)

f(−q3,−q24)

+
[
a− 1 + a8

]
q
f(−q12,−q15)− qf(−q6,−q21)− q2f(−q3,−q24)

f(−q6,−q21)

+
[
a2 + a7

]
q2

f(−q12,−q15)− qf(−q6,−q21)− q2f(−q3,−q24)

f(−q12,−q15)

}

≡ (q3; q3)∞(q27; q27)2∞
(q; q)∞(q9; q9)∞

{
(q; q)∞

f(−q3,−q24)
+
[
a− 1 + a8

]
q

(q; q)∞
f(−q6,−q21)

+
[
a2 + a7

]
q2

(q; q)∞
f(−q12,−q15)

}
(modA3 + 1), (3.4.6)

where we have applied [55, p. 349, Entry 2(v)] in the last equality, namely,

(q; q)∞ = f(−q12,−q15)− qf(−q6,−q21)− q2f(−q3,−q24). (3.4.7)

Finally, note that [55, p. 349, Entry 2(vi)]

(q3; q3)∞
(q; q)∞(q9; q9)∞

(q27; q27)2∞(q; q)∞
f(−q3,−q24)

=
f(−q6,−q21)f(−q12,−q15)

(q27; q27)∞
,

(q3; q3)∞
(q; q)∞(q9; q9)∞

(q27; q27)2∞(q; q)∞
f(−q6,−q21)

=
f(−q3,−q24)f(−q12,−q15)

(q27; q27)∞
,

(q3; q3)∞
(q; q)∞(q9; q9)∞

(q27; q27)2∞(q; q)∞
f(−q12,−q15)

=
f(−q3,−q24)f(−q6,−q21)

(q27; q27)∞
.
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Employing these identities in (3.4.6), we complete the first proof of the
3-dissection given in Entry 3.4.1. ��

Second Proof of Entry 3.4.1. First, we observe that

Am −Am+1 ≡ Aj −Aj+1 (modA3 + 1),

whenever m ≡ j (mod 9), where Am is defined in (3.1.4). Proceeding as before,
if we set

Ti,j,l :=

∞∑

k=1,m=0
m≡i,j,l (mod 9)

ρkq
km,

we find that

1 +

∞∑

k=1,m=0

ρkq
km (Am −Am+1) ≡ 1 + {T0,1,2 − T6,7,8}

+ (A1 − 1) {T1,3,8 − T0,5,7}+A2 {T2,3,7 − T1,5,6} (modA3 + 1).

Simplifying, we find that

1 +

∞∑

k=1,m=0

ρkq
km (Am −Am+1) ≡

∞∑

k=−∞
ρk

1 + qk + q2k

1 + q3k + q6k
(3.4.8)

+ (A1 − 1)
∞∑

k=−∞
ρk

qk − 1

1 + q3k + q6k
+A2

∞∑

k=−∞
ρk

q2k − qk

1 + q3k + q6k
(modA3 + 1).

The proof of (3.4.1) now follows from Entry 3.1.1 and the following iden-
tities, which are analogues of (3.3.12) and (3.3.13). ��

Theorem 3.4.1. We have

∞∑

k=−∞
ρk

qk − 1

1 + q3k + q6k
= q(q; q)∞

f(−q3,−q24)f(−q12,−q15)

(q27; q27)∞
, (3.4.9)

∞∑

k=−∞
ρk

q2k − qk

1 + q3k + q6k
= q2(q; q)∞

f(−q3,−q24)f(−q6,−q21)

(q27; q27)∞
, (3.4.10)

∞∑

k=−∞
ρk

1 + qk + q2k

1 + q3k + q6k
= (q; q)∞

f(−q6,−q21)f(−q12,−q15)

(q27; q27)∞
. (3.4.11)

We give only the proof of (3.4.9). The other two identities can be estab-
lished using the same method.

Proof of Theorem 3.4.1. Let ζ = e2πi/9. Proceeding as in the second proof of
the 2-dissection, we calculate the partial fraction decomposition
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9(1− qk)

1 + q3k + q6k
= (1− ζ6)

(
1− ζ8

1− ζqk
+

1− ζ5

1− ζ4qk
+

1− ζ2

1− ζ7qk

)

+ (1− ζ3)

(
1− ζ

1− ζ8qk
+

1− ζ4

1− ζ5qk
+

1− ζ7

1− ζ2qk

)
.

Hence, we find that

9

∞∑

k=−∞
ρk

1− qk

1 + q3k + q6k
= (1− ζ6)

[
1− ζ8

1− ζ

∞∑

k=−∞
ρk

1− ζ

1− ζqk
(3.4.12)

+
1− ζ5

1− ζ4

∞∑

k=−∞
ρk

1− ζ4

1− ζ4qk
+

1− ζ2

1− ζ7

∞∑

k=−∞
ρk

1− ζ7

1− ζ7qk

]

+ (1− ζ3)

[
1− ζ

1− ζ8

∞∑

k=−∞
ρk

1− ζ8

1− ζ8qk

+
1− ζ4

1− ζ5

∞∑

k=−∞
ρk

1− ζ5

1− ζ5qk
+

1− ζ7

1− ζ2

∞∑

k=−∞
ρk

1− ζ2

1− ζ2qk

]
.

Using (3.2.1) and the identity 1− ζ6 = −ζ6(1− ζ3), we rewrite (3.4.12) as

9

∞∑

k=−∞
ρk

1− qk

1 + q3k + q6k
= −(1− ζ3)(q; q)2∞ (3.4.13)

×
(

ζ − ζ5

(ζq; q)∞(ζ8q; q)∞
+

ζ4 − ζ2

(ζ4q; q)∞(ζ5q; q)∞
+

ζ7 − ζ8

(ζ2q; q)∞(ζ7q; q)∞

)

= −(1− ζ3)
(q; q)2∞(q3; q3)∞

(q9; q9)∞

[
(ζ − ζ5)(ζ2q; q)∞(ζ4q; q)∞(ζ5q; q)∞(ζ7q; q)∞

+ (ζ4 − ζ2)(ζq; q)∞(ζ2q; q)∞(ζ7q; q)∞(ζ8q; q)∞

+ (ζ7 − ζ8)(ζq; q)∞(ζ4q; q)∞(ζ5q; q)∞(ζ8q; q)∞

]
.

Note that when a = ζj and gcd(j, 9) = 1, we can deduce from (3.4.5) that

(q; q)∞(ζ2jq; q)∞(q/ζ2j ; q)∞ = −
(
1 +

1

ζ2j
+ ζ2j

)
q(q27; q27)∞

+A−
(
ζj +

1

ζj
− 1

)
q3B +

(
ζj +

1

ζj

)
q6C. (3.4.14)

Using (3.4.14) six times, we rewrite (3.4.13) as

9

∞∑

k=−∞
ρk

1− qk

1 + q3k + q6k
= −9q

(q3; q3)∞
(q9; q9)∞

[
− q(q27; q27)2∞ + q6(q27; q27)∞C

+ (q27; q27)∞A− q8BC − q2AB + q11C2 + q5AC
]
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= −9q
(q3; q3)∞
(q9; q9)∞

[
−q(q27; q27)2∞ + (q27; q27)∞

(
A+ q6C

)

− q2
(
A+ q6C

) (
B − q3C

)]
. (3.4.15)

Substituting (3.4.2) and (3.4.3) into (3.4.15), we deduce that

∞∑

k=−∞
ρk

1− qk

1 + q3k + q6k

= −q
(q3; q3)∞
(q9; q9)∞

(
− q(q27; q27)2∞ +

f(−q12,−q15)(q27; q27)2∞
f(−q6,−q21)

− q2
f(−q3,−q24)(q27; q27)∞

f(−q12,−q15)

f(−q12,−q15)(q27; q27)∞
f(−q6,−q21)

)

= −q
(q3; q3)∞(q27; q27)2∞
(q9; q9)∞f(−q6,−q21)

×
(
− qf(−q6,−q21) + f(−q12,−q15)− q2f(−q3,−q24)

)

= −q
(q3; q3)∞
(q9; q9)∞

(q27; q27)2∞(q; q)∞
f(−q6,−q21)

= −q
(q; q)∞f(−q3,−q24)f(−q12,−q15)

(q27; q27)∞
,

where we have applied (3.4.7) in the penultimate equality. This completes the
proof of (3.4.9). ��

3.5 The 5-Dissection for F (q)

For this and the remaining sections, it will be convenient to define

Sn := Sn(a) :=
n∑

k=−n

ak. (3.5.1)

Note that when p is an odd prime,

S(p−1)/2(a) = a(1−p)/2Φp(a),

where Φn(a) is the minimal polynomial for a primitive nth root of unity.
In this section, ζ = e2πi/5. We provide two proofs of the congruence corre-

sponding to the 5-dissection. The first proof is similar to Garvan’s proof [146]
of the 5-dissection of Fζ(q) that we gave in Chapter 2; however, our argument
is somewhat shorter. Note that if we set a = 1 in Theorem 3.5.1, we recover
Atkin and Swinnerton-Dyer’s result [28, Theorem 1].
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Entry 3.5.1 (pp. 18, 20). With f(−q) defined by (3.2.3), S2 defined by
(3.5.1), and An defined by (3.1.4),

Fa(q) ≡
f(−q10,−q15)

f2(−q5,−q20)
f2(−q25) + (A1 − 1)q

f2(−q25)

f(−q5,−q20)
(3.5.2)

+A2q
2 f2(−q25)

f(−q10,−q15)
−A1q

3 f(−q5,−q20)

f2(−q10,−q15)
f2(−q25) (modS2).

In his lost notebook [283, pp. 58, 59, 182], Ramanujan factored the coef-
ficients of Fa(q) as functions of a. In particular, he sought factors S2 in the
coefficients. Details may be found in Chapter 4.

First Proof of Entry 3.5.1. It is easy to see that

Fa(q) ≡
(q; q)2∞(a2q; q)∞(a3q; q)∞

(q5; q5)∞
(modS2). (3.5.3)

We shall use later a famous formula for the Rogers–Ramanujan continued
fraction R(q) defined by

R(q) :=
q1/5

1 +

q

1 +

q2

1 +

q3

1 + · · · , |q| < 1,

namely [55, p. 265, Entry 11(iii)],

1

R(q)
−R(q)− 1 =

f(−q1/5)

q1/5f(−q5)
. (3.5.4)

Using the well-known fact [55, p. 266, Entry 11(iii)],

R(q) = q1/5
f(−q,−q4)

f(−q2,−q3)
,

we can rewrite (3.5.4) in the form

f(−q)

qf(−q25)
=

f(−q10,−q15)

qf(−q5,−q20)
− qf(−q5,−q20)

f(−q10,−q15)
− 1. (3.5.5)

By (2.1.3) and Lemma 3.2.1 with (α, β, n) = (−a2,−q/a2, 5), we find that

(q; q)∞(a2q; q)∞(a3q; q)∞ ≡ f(−a2,−q/a2)

(1− a2)
(3.5.6)

≡ f(−q10,−q15) + qA1f(−q20,−q5) (modS2).

Substituting (3.5.6) and (3.5.5) into (3.5.3) yields (3.5.2). ��
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Second Proof of Entry 3.5.1. We apply Entry 3.2.1. Define

Ti :=

∞∑

k=1,m=0
m≡i (mod 5)

ρkq
km.

Then

(q; q)2∞
(aq; q)∞(q/a; q)∞

= 1 +

∞∑

k=1,m=0

ρkq
km (Am −Am+1)

≡ 1 + (2−A1) {T0 − T4}+ (A1 −A2) {T1 − T3}
≡ 1 + {2T0 − 2T4 + T1 − T3}
+A1 {T4 − T0 + 2T1 − 2T3} (modS2), (3.5.7)

where Am is defined in (3.1.4). Note that

∞∑

k=−∞
k �=0

ρk
q2k

1− q5k
= 0.

This enables us to simplify (3.5.7) to conclude that

(q; q)2∞
(aq; q)∞(q/a; q)∞

≡
∞∑

k=−∞
ρk

2 + 3qk

1 + qk + q2k + q3k + q4k

+A1

∞∑

k=−∞
ρk

qk − 1

1 + qk + q2k + q3k + q4k
(modS2).

The proof of the 5-dissection now follows from the following identities. ��

Theorem 3.5.1. We have

∞∑

k=−∞
ρk

2 + 3qk

1 + qk + q2k + q3k + q4k
=

(q; q)∞(q25; q25)2∞f(−q10,−q15)

f2(−q5,−q20)

− q
(q; q)∞(q25; q25)2∞

f(−q5,−q20)
− q2

(q; q)∞(q25; q25)2∞
f(−q10,−q15)

, (3.5.8)

∞∑

k=−∞
ρk

qk − 1

1 + qk + q2k + q3k + q4k
= q

(q; q)∞(q25; q25)2∞
f(−q5,−q20)

− q2
(q; q)∞(q25; q25)2∞
f(−q10,−q15)

− q3
(q; q)∞(q25; q25)2∞f(−q5,−q20)

f2(−q10,−q15)
. (3.5.9)
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Proof. We prove only (3.5.8), since the proof of (3.5.9) is similar.
We begin with the partial fraction decomposition

5(2 + 3qk)

1 + qk + q2k + q3k + q4k
=

(1− ζ4)(2 + 3ζ4)

1− ζqk
+

(1− ζ3)(2 + 3ζ3)

1− ζ2qk

+
(1− ζ2)(2 + 3ζ2)

1− ζ3qk
+

(1− ζ)(2 + 3ζ)

1− ζ4qk
.

Therefore,

G(q) := 5

∞∑

k=−∞
ρk

2 + 3qk

1 + qk + q2k + q3k + q4k

=
(1− ζ4)(2 + 3ζ4)

1− ζ

∞∑

k=−∞
ρk

1− ζ

1− ζqk
+

(1− ζ3)(2 + 3ζ3)

1− ζ2

∞∑

k=−∞
ρk

1− ζ2

1− ζ2qk

+
(1− ζ2)(2 + 3ζ2)

1− ζ3

∞∑

k=−∞
ρk

1− ζ3

1− ζ3qk
+

(1− ζ)(2 + 3ζ)

1− ζ4

∞∑

k=−∞
ρk

1− ζ4

1− ζ4qk
.

Applying Entry 3.2.1 on the right-hand side and simplifying, we find that

G(q) = −
(
2ζ4 + 3ζ3 + 2ζ + 3ζ2

) (q; q)2∞
(ζq; q)∞(ζ4q; q)∞

−
(
2ζ3 + 3ζ + 2ζ2 + 3ζ4

) (q; q)2∞
(ζ2q; q)∞(ζ3q; q)∞

=
(
2− ζ2 − ζ3

) (q; q)3∞(ζ2q; q)∞(ζ3q; q)∞
(q5; q5)∞

+
(
2− ζ − ζ4

) (q; q)3∞(ζq; q)∞(ζ4q; q)∞
(q5; q5)∞

. (3.5.10)

Applying (3.5.6) two times on the right-hand side of (3.5.10) with a = ζ and
a = ζ3, respectively, we find that

G(q) =
(q; q)2∞
(q5; q5)∞

{
5f(−q10,−q15)

+

[
(
2− ζ2 − ζ3

) ζ4 − ζ3

1− ζ2
+
(
2− ζ − ζ4

) ζ2 − ζ4

1− ζ

]
f(−q5,−q20)

}

= 5
(q; q)2∞f(−q10,−q15)

(q5; q5)∞
. (3.5.11)

From (3.5.5), we find that

(q; q)∞ = −q(q25; q25)∞ + (q25; q25)∞

{
f(−q10,−q15)

f(−q5,−q20)
− q2

f(−q5,−q20)

f(−q10,−q15)

}
.

(3.5.12)
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Substituting (3.5.12) into (3.5.11) and dividing by 5, we find that G(q)/5
equals the right-hand side of (3.5.8). ��

Theorem 3.5.1 can also be proved using identities established by Ekin [133,
bottom of p. 2149].

3.6 The 7-Dissection for F (q)

We offer two proofs of the 7-dissection of Fa(q). The first is an extension of
that of Garvan [146], while the second uses the theorem of Ramanujan, Kač
and Wakimoto [188], and Evans[136], Entry 3.2.1. Note that if we substitute
a = 1 in Entry 3.6.1, we immediately obtain [28, Theorem 2]. In this section,
ζ = e2πi/7.

Entry 3.6.1 (p. 19). With f(a, b) defined by (2.1.2), f(−q) defined by
(3.2.3), An defined by (3.1.4), and Sm defined by (3.5.1),

(q; q)∞
(qa; q)∞(q/a; q)∞

≡ 1

f(−q7)

(
A2 + (A1 − 1)qAB +A2q

2B2 + (A3 + 1)q3AC

−A1q
4BC − (A2 + 1)q6C2

)
(modS3), (3.6.1)

where A = f(−q21,−q28), B = f(−q35,−q14), and C = f(−q42,−q7).

First Proof of Entry 3.6.1. Rationalizing and using Jacobi’s triple product
identity (2.1.3), we find that

(q; q)∞
(qa; q)∞(q/a; q)∞

≡ (q; q)2∞(qa2; q)∞(qa−2; q)∞(qa3; q)∞(qa−3; q)∞
(q7; q7)∞

≡ 1

f(−q7)

f(−a2,−q/a2)

(1− a2)

f(−a3,−q/a3)

(1− a3)
(modS3). (3.6.2)

Using Lemma 3.2.1, with (α, β,N) = (−a2,−q/a2, 7) and (−a3,−q/a3, 7),
respectively, we find that

f(−a2,−q/a2)

(1− a2)
≡ A− q

(a5 − a4)

(1− a2)
B + q3

(a3 − a6)

(1− a2)
C (modS3) (3.6.3)

and

f(−a3,−q/a3)

(1− a3)
≡ A− q

(a4 − a6)

(1− a3)
B + q3

(a− a2)

(1− a3)
C (modS3). (3.6.4)

Substituting (3.6.3) and (3.6.4) into (3.6.2) and simplifying, we complete the
proof of Entry 3.6.1. ��
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Second Proof of Entry 3.6.1. Set

Ti :=

∞∑

k=1,m=0
m≡i (mod 7)

ρkq
km.

As in our proofs of the 2-, 3-, and 5-dissections, we begin by using Entry 3.2.1
and recalling the notation Am from (3.1.4) to deduce that

(q; q)2∞
(aq; q)∞(q/a; q)∞

= 1 +

∞∑

k=1,m=0

ρkq
km (Am −Am+1)

≡ 1 + (2−A1) {T0 − T6}+ (A1 −A2) {T1 − T5}
+ (A2 −A3) {T2 − T4}

≡ (2−A1)
∞∑

k=−∞
ρk

1 + qk + q2k

1 + qk + · · ·+ q6k

+ (A1 −A2)

∞∑

k=−∞
ρk

qk + q2k

1 + qk + · · ·+ q6k

+ (A2 −A3)

∞∑

k=−∞
ρk

q2k

1 + qk + · · ·+ q6k

≡
∞∑

k=−∞
ρk

2 + 2qk + 3q2k

1 + qk + · · ·+ q6k

+A1

∞∑

k=−∞
ρk

q2k − 1

1 + qk + · · ·+ q6k

+A2

∞∑

k=−∞
ρk

q2k − qk

1 + qk + · · ·+ q6k
(modS3). (3.6.5)

The proof of Entry 3.6.1 now follows from the following identities. Indeed,
if we substitute the identities of Theorem 3.6.1 into (3.6.5) and collect terms,
we complete the second proof of Entry 3.6.1. ��

Theorem 3.6.1. We have

∞∑

k=−∞
ρk

7

1 + qk + · · ·+ q6k
(3.6.6)

=
(q; q)∞
(q7; q7)∞

{
A2 − 6qAB + 2q2B2 + 3q3AC + 5q4BC − 3q6C2

}
,

∞∑

k=−∞
ρk

7qk

1 + qk + · · ·+ q6k
(3.6.7)



62 3 Ranks and Cranks, Part II

=
(q; q)∞
(q7; q7)∞

{
A2 + qAB − 5q2B2 + 3q3AC − 2q4BC + 4q6C2

}
,

∞∑

k=−∞
ρk

7q2k

1 + qk + · · ·+ q6k
(3.6.8)

=
(q; q)∞
(q7; q7)∞

{
A2 + qAB + 2q2B2 − 4q3AC − 2q4BC − 3q6C2

}
,

where A,B, and C are given in Entry 3.6.1.

Proof. We prove only (3.6.6), since the proofs of the remaining two identities
are similar. We first calculate the partial fraction decomposition

7

1 + qk + · · ·+ q6k

=
1− ζ6

1− ζqk
+

1− ζ5

1− ζ2qk
+

1− ζ4

1− ζ3qk
+

1− ζ3

1− ζ4qk
+

1− ζ2

1− ζ5qk
+

1− ζ

1− ζ6qk
.

Therefore we deduce that

∞∑

k=−∞
ρk

7

1 + qk + · · ·+ q6k
=

1− ζ6

1− ζ

∞∑

k=−∞
ρk

1− ζ

1− ζqk

+
1− ζ5

1− ζ2

∞∑

k=−∞
ρk

1− ζ2

1− ζ2qk
+

1− ζ4

1− ζ3

∞∑

k=−∞
ρk

1− ζ3

1− ζ3qk

+
1− ζ3

1− ζ4

∞∑

k=−∞
ρk

1− ζ4

1− ζ4qk
+

1− ζ2

1− ζ5

∞∑

k=−∞
ρk

1− ζ5

1− ζ5qk

+
1− ζ

1− ζ6

∞∑

k=−∞
ρk

1− ζ6

1− ζ6qk
. (3.6.9)

From the identity (3.6.9) and Entry 3.2.1, we find that

∞∑

k=−∞
ρk

7

1 + qk + · · ·+ q6k
=

{
1− ζ6

1− ζ
+

1− ζ

1− ζ6

}
(q; q)2∞

(ζq; q)∞(ζ6q; q)∞

+

{
1− ζ5

1− ζ2
+

1− ζ2

1− ζ5

}
(q; q)2∞

(ζ2q; q)∞(ζ5q; q)∞

+

{
1− ζ4

1− ζ3
+

1− ζ3

1− ζ4

}
(q; q)2∞

(ζ3q; q)∞(ζ4q; q)∞
.

Rationalizing the denominators of the infinite products on the right-hand side
and applying the elementary identity 1−ζn = −ζn(1−ζ7−n), we deduce that



3.7 The 11-Dissection for F (q) 63

∞∑

k=−∞
ρk

7

1 + qk + · · ·+ q6k
(3.6.10)

=
(q; q)3∞
(q7; q7)∞

{
(−ζ6 − ζ)(ζ2q; q)∞(ζ3q; q)∞(ζ4q; q)∞(ζ5q; q)∞

+ (−ζ5 − ζ2)(ζq; q)∞(ζ3q; q)∞(ζ4q; q)∞(ζ6q; q)∞

+ (−ζ4 − ζ3)(ζq; q)∞(ζ2q; q)∞(ζ5q; q)∞(ζ6q; q)∞

}
.

Applying Lemma 3.2.1 with α = −a, β = −q/a, and N = 7, we deduce
that

(aq; q)∞(q/a; q)∞(q; q)∞ ≡ A+
a2 − a6

1− a
qB +

a5 − a3

1− a
q3C (modS3). (3.6.11)

Applying (3.6.11) six times with a = ζ2, ζ3, ζ, ζ3, ζ, ζ2 in (3.6.10) and simpli-
fying, we complete the proof of the first identity in Theorem 3.6.1. ��

Theorem 3.6.1 can also be found in [133, Equations (4.13)–(4.15)]. Our
method of proof is different from that of Ekin.

3.7 The 11-Dissection for F (q)

In this section, ζ = e2πi/11. If we set a = 1 in Entry 3.7.1 below, we recover
[28, Theorem 3]. An elementary proof of [28, Theorem 3] has been given by
Hirschhorn [178].

Entry 3.7.1 (p. 70). With Am defined by (3.1.4) and S5 defined by (3.5.1),
we have

Fa(q) ≡
1

(q11; q11)∞(q121; q121)2∞

(
ABCD + {A1 − 1} qA2BE

+A2 q2AC2D + {A3 + 1} q3ABD2

+ {A2 +A4 + 1} q4ABCE − {A2 +A4} q5B2CE

+ {A1 +A4} q7ABDE − {A2 +A5 + 1} q19CDE2

− {A4 + 1} q9ACDE − {A3} q10BCDE
)
(modS5),

where A = f(−q55,−q66), B = f(−q77,−q44), C = f(−q88,−q33), D =
f(−q99,−q22), and E = f(−q110,−q11).

Before we begin our proofs of Entry 3.7.1, we first state some results that
will be useful in our proofs.

Specializing (3.2.5) with α = am and β = an, we find that
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(amq,a11−mq, anq, a11−nq, am+nq, a11−m−nq, am−nq, a11−m+nq, q, q; q)∞

≡ 1

(1− am)(1− an)(1− am+n)(1− am−n)

×
{
G(a3m)H(an)− am−nG(a3n)H(am)

}
(modS5), (3.7.1)

where

G(x) := f(−x,−x10q3) and H(x) := f(−x3q,−x8q2)− xf(−x3q2,−x8q).

Using Lemma 3.2.1 with N = 11 and (α, β) = (−x,−x10q3), (−x3q,−x8q2),
and (−x3q2,−x8q), taking congruences modulo S5, and using the fact that
f(−1, b) = 0 for every complex number b with |b| < 1 [55, p. 34, Entry 18(iii)],
we find that for every positive integer n,

G(an) ≡ (1− an)P (15) + (a2n − a10n)q3P (12) + (a9n − a3n)q9P (9) (3.7.2)

+ (a4n − a8n)q18P (6) + (a7n − a5n)q30P (3) (modS5)

and

H(an) ≡ (1− an)[P (16)− q22P (5)] + q(a9n − a3n)[P (14)− q11P (8)]

+ q2(a4n − a8n)[P (13)− q33P (2)] + q15(a10n − a2n)[P (7) + q11P (4)]

+ q7(a5n − a7n)[P (10) + q33P (1)] (modS5), (3.7.3)

where
P (k) := f(−q11k,−q363−11k). (3.7.4)

Furthermore, we obtain the following ten identities (3.7.5)–(3.7.14) from Win-
quist’s identity (3.2.5) by replacing (α, β, q) by (q55, q22, q121), (q55, q11, q121),
(q55, q33, q121), (q44, q22, q121), (q44, q11, q121), (q44, q33, q121), (q55, q44, q121),
(q22, q11, q121), (q33, q22, q121), and (q33, q11, q121):

P (15)[P (16)− q22P (5)]− q33P (6)[P (7) + q11P (4)] =
ABCD

(q121; q121)2∞
,

(3.7.5)

P (15)[P (14)− q11P (8)]− q44P (3)[P (7) + q11P (4)] =
A2BE

(q121; q121)2∞
,

(3.7.6)

P (15)[P (13)− q33P (2)]− q22P (9)[P (7) + q11P (4)] =
AC2D

(q121; q121)2∞
,

(3.7.7)

P (12)[P (16)− q22P (5)]− q22P (6)[P (10) + q33P (1)] =
ABD2

(q121; q121)2∞
,

(3.7.8)
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P (12)[P (14)− q11P (8)]− q33P (3)[P (10) + q33P (1)] =
ABCE

(q121; q121)2∞
,

(3.7.9)

P (12)[P (13)− q33P (2)]− q11P (9)[P (10) + q33P (1)] =
B2CE

(q121; q121)2∞
,

(3.7.10)

P (15)[P (10) + q33P (1)]− q11P (12)[P (7) + q11P (4)] =
ABDE

(q121; q121)2∞
,

(3.7.11)

P (6)[P (14)− q11P (8)]− q11P (3)[P (16)− q22P (5)] =
CDE2

(q121; q121)2∞
,

(3.7.12)

P (9)[P (16)− q22P (5)]− q11P (6)[P (13)− q33P (2)] =
ACDE

(q121; q121)2∞
,

(3.7.13)

P (9)[P (14)− q11P (8)]− q22P (3)[P (13)− q33P (2)] =
BCDE

(q121; q121)2∞
.

(3.7.14)

We now begin our first proof of the 11-dissection of the generating function
Fa(q) for cranks.

First Proof of Entry 3.7.1. Beginning, as usual, with the generating function
for Fa(q) and rationalizing, we find that

Fa(q) ≡
(q; q)∞

(aq; q)∞(a10q; q)∞
≡ (a2q, a3q, a4q, a5q, a6q, a7q, a8q, a9q, q, q; q)∞

(q11; q11)∞

≡ 1

(q11; q11)∞

(
1

(1− a2)(1− a5)(1− a7)(1− a8)

×
{
G(a6)H(a5)− a8G(a4)H(a2)

}
)

≡ 1

(q11; q11)∞

(
P (15)[P (16)− q22P (5)]− q33P (6)[P (7) + q11P (4)]

+ {A1 − 1} q
(
P (15)[P (14)− q11P (8)]− q44P (3)[P (7) + q11P (4)]

)

+A2q
2
(
P (15)[P (13)− q33P (2)]− q22P (9)[P (7) + q11P (4)]

)

+ {A3 + 1} q3
(
P (12)[P (16)− q22P (5)]− q22P (6)[P (10) + q33P (1)]

)

+ {A2 +A4 + 1} q4
(
P (12)[P (14)− q11P (8)]− q33P (3)[P (10) + q33P (1)]

)

− {A2 +A4} q5
(
P (12)[P (13)− q33P (2)]− q11P (9)[P (10) + q33P (1)]

)
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+ {A1 +A4} q7
(
P (15)[P (10) + q33P (1)]− q11P (12)[P (7) + q11P (4)]

)

− {A2 +A5 + 1} q19
(
P (6)[P (14)− q11P (8)]− q11P (3)[P (16)− q22P (5)]

)

− {A4 + 1} q9
(
P (9)[P (16)− q22P (5)]− q11P (6)[P (13)− q33P (2)]

)

−A3q
10
(
P (9)[P (14)− q11P (8)]− q22P (3)[P (13)− q33P (2)]

))
(modS5),

where in the last congruence, we applied (3.7.1) with m = 5 and n = 2, (3.7.2)
with n = 4, 6, and (3.7.3) with n = 5, 2.

Applying (3.7.5)–(3.7.14) to each of the dissection factors, respectively,
above, we complete the first proof of Entry 3.7.1. ��

Second Proof of Entry 3.7.1. As in our second proofs of the 2-, 3-, 5-, and
7-dissections, we apply Entry 3.2.1 and divide the series into residue classes
modulo 11. If we set

Ti :=

∞∑

k=1,m=0
m≡i (mod 11)

ρkq
km,

we deduce that

(q; q)2∞
(aq; q)∞(q/a; q)∞

= 1 +

∞∑

k=1,m=0

ρkq
km (Am −Am+1) (3.7.15)

≡ 1 + (2−A1) {T0 − T10}+ (A1 −A2) {T1 − T9}
+ (A2 −A3) {T2 − T8}+ (A3 −A4) {T3 − T7}
+ (A4 −A5) {T4 − T6}

≡
∞∑

k=−∞
ρk

2 + 2qk + 2q2k + 2q3k + 3q4k

1 + qk + · · ·+ q10k

+A1

∞∑

k=−∞
ρk

q4k − 1

1 + qk + · · ·+ q10k

+A2

∞∑

k=−∞
ρk

q4k − qk

1 + qk + · · ·+ q10k

+A3

∞∑

k=−∞
ρk

q4k − q2k

1 + qk + · · ·+ q10k

+A4

∞∑

k=−∞
ρk

q4k − q3k

1 + qk + · · ·+ q10k
(modS5).

The second proof of Entry 3.7.1 now follows from the following identities.
Indeed, if we substitute the identities of Theorem 3.7.1 into (3.7.15) and collect
terms, we complete the second proof of Entry 3.7.1. ��
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Theorem 3.7.1. We have

∞∑

k=−∞
ρk

11

1 + qk + · · ·+ q10k
=

(q; q)∞
(q11; q11)∞(q121; q121)2∞

(3.7.16)

×
{
ABCD − 10qA2BE + 2q2AC2D + 3q3ABD2 + 5q4ABCE

− 4q5B2CE − 7q7ABDE − 5q19CDE2 − 3q9ACDE − 2q10BCDE

}
,

∞∑

k=−∞
ρk

11qk

1 + qk + · · ·+ q10k
=

(q; q)∞
(q11; q11)∞(q121; q121)2∞

(3.7.17)

×
{
ABCD + qA2BE − 9q2AC2D + 3q3ABD2 − 6q4ABCE

+ 7q5B2CE + 4q7ABDE + 6q19CDE2 − 3q9ACDE − 2q10BCDE

}
,

∞∑

k=−∞
ρk

11q2k

1 + qk + · · ·+ q10k
=

(q; q)∞
(q11; q11)∞(q121; q121)2∞

(3.7.18)

×
{
ABCD + qA2BE + 2q2AC2D − 8q3ABD2 + 5q4ABCE

− 4q5B2CE + 4q7ABDE − 5q19CDE2 − 3q9ACDE + 9q10BCDE

}
,

∞∑

k=−∞
ρk

11q3k

1 + qk + · · ·+ q10k
=

(q; q)∞
(q11; q11)∞(q121; q121)2∞

(3.7.19)

×
{
ABCD + qA2BE + 2q2AC2D + 3q3ABD2 − 6q4ABCE

+ 7q5B2CE − 7q7ABDE − 5q19CDE2 + 8q9ACDE − 2q10BCDE

}
,

∞∑

k=−∞
ρk

11q4k

1 + qk + · · ·+ q10k
=

(q; q)∞
(q11; q11)∞(q121; q121)2∞

(3.7.20)

×
{
ABCD + qA2BE + 2q2AC2D + 3q3ABD2 + 5q4ABCE

− 4q5B2CE + 4q7ABDE + 6q19CDE2 − 3q9ACDE − 2q10BCDE

}
,

where A = f(−q55,−q66), B = f(−q77,−q44), C = f(−q88,−q33), D =
f(−q99,−q22), and E = f(−q110,−q11).

We present the proof of only (3.7.16), since the proofs of the remaining
four identities are similar.
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Proof. We calculate the partial fraction decomposition

11

1 + qk + · · ·+ q10k
=

1− ζ10

1− ζqk
+

1− ζ9

1− ζ2qk
+

1− ζ8

1− ζ3qk
+

1− ζ7

1− ζ4qk
+

1− ζ6

1− ζ5qk

+
1− ζ5

1− ζ6qk
+

1− ζ4

1− ζ7qk
+

1− ζ3

1− ζ8qk
+

1− ζ2

1− ζ9qk
+

1− ζ

1− ζ10qk
. (3.7.21)

From the identity (3.7.21) and Entry 3.2.1, we find that

I(q) =:

∞∑

k=−∞
ρk

11

1 + qk + · · ·+ q10k
(3.7.22)

=
1− ζ10

1− ζ

∞∑

k=−∞
ρk

1− ζ

1− ζqk
+

1− ζ9

1− ζ2

∞∑

k=−∞
ρk

1− ζ2

1− ζ2qk

+
1− ζ8

1− ζ3

∞∑

k=−∞
ρk

1− ζ3

1− ζ3qk
+

1− ζ7

1− ζ4

∞∑

k=−∞
ρk

1− ζ4

1− ζ4qk

+
1− ζ6

1− ζ5

∞∑

k=−∞
ρk

1− ζ5

1− ζ5qk
+

1− ζ5

1− ζ6

∞∑

k=−∞
ρk

1− ζ6

1− ζ6qk

+
1− ζ4

1− ζ7

∞∑

k=−∞
ρk

1− ζ7

1− ζ7qk
+

1− ζ3

1− ζ8

∞∑

k=−∞
ρk

1− ζ8

1− ζ8qk

+
1− ζ2

1− ζ9

∞∑

k=−∞
ρk

1− ζ9

1− ζ9qk
+

1− ζ

1− ζ10

∞∑

k=−∞
ρk

1− ζ10

1− ζ10qk

=

{
1− ζ10

1− ζ
+

1− ζ

1− ζ10

}
(q; q)2∞

(ζq; q)∞(ζ10q; q)∞

+

{
1− ζ9

1− ζ2
+

1− ζ2

1− ζ9

}
(q; q)2∞

(ζ2q; q)∞(ζ9q; q)∞

+

{
1− ζ8

1− ζ3
+

1− ζ3

1− ζ8

}
(q; q)2∞

(ζ3q; q)∞(ζ8q; q)∞

+

{
1− ζ7

1− ζ4
+

1− ζ4

1− ζ7

}
(q; q)2∞

(ζ4q; q)∞(ζ7q; q)∞

+

{
1− ζ6

1− ζ5
+

1− ζ5

1− ζ6

}
(q; q)2∞

(ζ5q; q)∞(ζ6q; q)∞
.

Applying the elementary identity 1− ζn = −ζn(1− ζ11−n) and rationalizing
the denominator, we find that

I(q) =
(q; q)3∞

(q11; q11)∞

({
−ζ − ζ10

}
(ζ2q, ζ3q, ζ4q, ζ5q, ζ6q, ζ7q, ζ8q, ζ9q; q)∞

+
{
−ζ2 − ζ9

}
(ζq, ζ3q, ζ4q, ζ5q, ζ6q, ζ7q, ζ8q, ζ10q; q)∞

+
{
−ζ3 − ζ8

}
(ζq, ζ2q, ζ4q, ζ5q, ζ6q, ζ7q, ζ9q, ζ10q; q)∞
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+
{
−ζ4 − ζ7

}
(ζq, ζ2q, ζ3q, ζ5q, ζ6q, ζ8q, ζ9q, ζ10q; q)∞

+
{
−ζ5 − ζ6

}
(ζq, ζ2q, ζ3q, ζ4q, ζ7q, ζ8q, ζ9q, ζ10q; q)∞

)
. (3.7.23)

Next, applying (3.7.1) with (a,m, n) = (ζ, 5, 2), (ζ, 4, 1), (ζ, 5, 4), (ζ, 3, 2), and
(ζ, 3, 1), respectively, on each summand of (3.7.23) and simplifying, we find
that

I(q) =
(q; q)∞

(q11; q11)∞

(
P (15)[P (16)− q22P (5)]− q33P (6)[P (7) + q11P (4)]

− 10q
{
P (15)[P (14)− q11P (8)]− q44P (3)[P (7) + q11P (4)]

}

+ 2q2
{
P (15)[P (13)− q33P (2)]− q22P (9)[P (7) + q11P (4)]

}

+ 3q3
{
P (12)[P (16)− q22P (5)]− q22P (6)[P (10) + q33P (1)]

}

+ 5q4
{
P (12)[P (14)− q11P (8)]− q33P (3)[P (10) + q33P (1)]

}

− 4q5
{
P (12)[P (13)− q33P (2)]− q11P (9)[P (10) + q33P (1)]

}

− 7q7
{
P (15)[P (10) + q33P (1)]− q11P (12)[P (7) + q11P (4)]

}

− 5q19
{
P (6)[P (14)− q11P (8)]− q11P (3)[P (16)− q22P (5)]

}

− 3q9
{
P (9)[P (16)− q22P (5)]− q11P (6)[P (13)− q33P (2)]

}

− 2q10
{
P (9)[P (14)− q11P (8)]− q22P (3)[P (13)− q33P (2)]

})
.

Finally, applying (3.7.5)–(3.7.14) to each of the dissection factors, respec-
tively, we obtain the right-hand side of (3.7.16), which completes the proof of
Theorem 3.7.1. ��

If we let a be a primitive 11th root of unity in Entry 3.7.1, then we re-
cover the identity discovered by Hirschhorn [173]. Hirschhorn’s identity is a
simplification of Garvan’s identity given in [146, Theorem 6.7]. A proof of
Hirschhorn’s identity was given by Ekin [132, pp. 286–287]. The idea illus-
trated in our first proof here is similar to that of Ekin.

Entry 3.7.1 can also be proved using identities found in Ekin’s paper [133,
p. 2153, equations (5.13)–(5.17)]. Our approach to Entry 3.7.1 is different from
that of Ekin.

3.8 Conclusion

In the beginning of this chapter, we mentioned that by substituting a by the
corresponding primitive root of unity, we obtain Garvan’s identities proved in
[146] and [147]. Garvan informed us that the identities in [146] and [147] imply
the congruences established in this paper. We briefly explain his observation
here.

Suppose that for some function Ga(q), we want to show that

Fa(q) ≡ Ga(q) (modS(p−1)/2).
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Let Ha(q) = Fa(q)−Ga(q). Then

Ha(q) =

∞∑

n=0

h(a, n)qn,

where h(a, n) ∈ Z[a, 1/a]. Let h(a, n) = a−t(n)h̃(a, n), where now, h̃(a, n) is a
polynomial in Z[a] and t(n) is the largest integer k for which 1/ak appears in
h(a, n). Garvan’s identities show that h̃(ζ, n) = 0 for all roots of the cyclotomic
polynomial Φp(a). Since h̃(a, n) ∈ Z[a], this implies that Φp(a) divides h̃(a, n).
Therefore,

h(a, n) = a−t(n)Φp(a)Q(a, n) = a−t(n)+(p−1)/2S(p−1)/2(a)Q(a, n),

where Q(a, n) ∈ Z[a]. This implies that

Ha(q) ≡ 0 (modS(p−1)/2).

Garvan’s observation allows us to deduce from [147, Equation (2.16)] and
[146, Theorem 8.16], respectively, the 5-dissection of Fa(q) (mod a−4Φ10(a))
and the congruence

∞∑

m=0

qm
2

(aq; q)m(q/a; q)m
≡ f(−q10,−q15)

f2(−q5,−q20)
f2(−q25) +

(
a+

1

a
− 2

)
φ(q5)

+ q
f2(−q25)

f(−q5,−q20)
+

(
a+

1

a

)
q2

f2(−q25)

f(−q10,−q15)

−
(
a+

1

a

)
q3

f(−q5,−q20)

f2(−q10,−q15)
f2(−q25)−

(
2a+

2

a
+ 1

)
ψ(q5)

q2
(modS2),

which is given in a slightly different form in Entry 2.1.2. A direct proof of the
congruence above in the spirit of our second method illustrated in this chapter
has not been found. As we remarked in Chapter 2, if we substitute a = 1 in
the congruence above, we recover the Atkin and Swinnerton-Dyer congruences
[28, Theorem 1]. This also provides an explanation to the “curious fact” raised
by Garvan [146, second paragraph, p. 52].
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Ranks and Cranks, Part III

4.1 Introduction

In the introduction to this book, we conjectured that Ramanujan had focused
his attention on cranks in the days before he died. Much of the material on
cranks in the lost notebook is rough, preliminary, and devoted to extensive
calculations. In this chapter, we discuss the remaining entries on cranks, many
of which are not in polished form, that we did not examine in Chapters 2 and 3.
We begin by proving Ramanujan’s forerunner of Entry 3.2.1, which was a key
result in our proofs of crank dissections in Chapter 3.

4.2 Key Formulas on Page 59

On page 59, Ramanujan offers the quotient (with one misprint corrected)

(
1 + q(a1 − 2) + q2(a2 − a1) + q3(a3 − a2) + q4(a4 − a3) + · · ·

−
(
q3(a1 − 2) + q5(a2 − a1) + q7(a3 − a2) + q9(a4 − a3) + · · ·

)

+
(
q6(a1 − 2) + q9(a2 − a1) + q12(a3 − a2) + q15(a4 − a3) + · · ·

)

−
(
q10(a1 − 2) + q14(a2 − a1) + q18(a3 − a2) + q22(a4 − a3) + · · ·

)

+
(
q15(a1 − 2) + q20(a2 − a1) + q25(a3 − a2) + · · ·

)

−
(
q21(a1 − 2) + · · ·

) )/

(1− q − q2 + q5 + q7 − q12 − q15 + q22 + · · · ). (4.2.1)

In more succinct notation, (4.2.1) can be rewritten as

1−
∞∑

m=1,n=0

(−1)mqm(m+1)/2+mn(an+1 − an)

(q; q)∞
, (4.2.2)

G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook: Part III,
DOI 10.1007/978-1-4614-3810-6 4,
c© Springer Science+Business Media New York 2012
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where
an := an + a−n, n ≥ 0. (4.2.3)

Scribbled underneath (4.2.1) are the first few terms of (4.4.1) through q5.
Thus, although not claimed by Ramanujan, (4.2.1) is, in fact, equal to Fa(q).
We state this in the next theorem.

Entry 4.2.1 (p. 59). If an is given by (4.2.3), and if |q| < min(|a|, 1/|a|),
then

(q; q)2∞
(aq; q)∞(q/a; q)∞

= 1−
∞∑

m=1,n=0

(−1)mqm(m+1)/2+mn(an+1 − an). (4.2.4)

It is easily seen that Ramanujan’s Entry 4.2.1 is equivalent to Entry 3.2.1,
which we repeat here and whose interesting history we detailed in Chapter 3.

Entry 4.2.2. Let
ρk = (−1)kqk(k+1)/2. (4.2.5)

Then
(q; q)2∞

(aq; q)∞(q/a; q)∞
=

∞∑

k=−∞

ρk(1− a)

1− aqk
. (4.2.6)

On page 59, below a list of factors and above the aforementioned quotient
of two series, Ramanujan records two further series, namely,

S1(a, q) :=
1

1 + a
+

∞∑

n=1

(
(−1)nqn(n+1)/2

1 + aqn
+

(−1)nqn(n+1)/2

a+ qn

)
(4.2.7)

and

S2(a, q) := 1 +

∞∑

m=1,n=0

(−1)m+nqm(m+1)/2+mn(an+1 + an), (4.2.8)

where here a0 := 1. No theorem is claimed by Ramanujan, but the following
theorem, to be proved in the next section, holds.

Entry 4.2.3 (p. 59). With S1(a, q) and S2(a, q) defined by (4.2.7) and
(4.2.8), respectively,

(1 + a)S1(a, q) = S2(a, q) = F−a(q).

4.3 Proofs of Entries 4.2.1 and 4.2.3

Proof of Entry 4.2.1. Our proof is different from that of Evans [136], Kač and
Peterson [187], and Kač and Wakimoto [188]. We employ the partial fraction
decomposition
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(q; q)2∞
(aq; q)∞(q/a; q)∞

= 1 +

∞∑

n=1

(−1)nqn(n−1)/2(1 + qn) (4.3.1)

×
{
1− 1− qn

1 + qn

∞∑

m=0

amqmn − 1− qn

1 + qn

∞∑

m=1

a−mqmn

}
,

found in Garvan’s paper [146, Equation (7.16)]. From (4.3.1), we find that

(q; q)2∞
(aq; q)∞(q/a; q)∞

= 1 +

∞∑

n=1

(−1)nqn(n−1)/2

(
(1 + qn)

− (1− qn)

∞∑

m=0

amqmn − (1− qn)

∞∑

m=1

a−mqmn

)

= 1 +

∞∑

n=1

(−1)nqn(n−1)/2

(
2− (1− qn)

∞∑

m=0

qmn(am + a−m)

)

= 1 +

∞∑

n=1

(−1)nqn(n−1)/2

(
2−

∞∑

m=0

qmnam +

∞∑

m=0

q(m+1)nam

)

= 1 +

∞∑

n=1

(−1)nqn(n−1)/2

(
−

∞∑

m=1

qmnam +

∞∑

m=1

qmnam−1

)

= 1 +
∞∑

m,n=1

(−1)nqn(n−1)/2+mn (am−1 − am)

= 1−
∞∑

m=0,n=1

(−1)nqn(n+1)/2+mn (am+1 − am) ,

which is (4.2.4), but with the roles of m and n reversed. ��

Proof of Entry 4.2.3. Multiply (4.2.7) throughout by (1 + a) to deduce that

(1 + a)S1(a, q) = 1 + (1 + a)

∞∑

n=1

(
(−1)nqn(n+1)/2

1 + aqn
+

(−1)nqn(n+1)/2

a+ qn

)

= 1 + (1 + a)
∞∑

n=1

(
(−1)nqn(n+1)/2

1 + aqn
+

(−1)−nqn(n−1)/2

1 + aq−n

)

= 1 + (1 + a)
∑

n �=0

(−1)nqn(n+1)/2

1 + aqn

=

∞∑

n=−∞

(−1)nqn(n+1)/2(1 + a)

1 + aqn
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=
(q; q)2∞

(−aq; q)∞(−q/a; q)∞
, (4.3.2)

by an application of (4.2.6).
Secondly,

S2(a, q) = 1 +

∞∑

m=1,n=0

(−1)mqm(m+1)/2+mn

×
(
− (−a)n+1 − (−a)−n−1 + (−a)n + (−a)−n

)

=
(q; q)2∞

(−aq; q)∞(−q/a; q)∞
, (4.3.3)

by Entry 4.2.1. Thus, (4.3.2) and (4.3.3) yield Entry 4.2.3. ��

4.4 Further Entries on Pages 58 and 59

On page 58 in his lost notebook [283], Ramanujan recorded the following
power series:

1 + q(a1 − 1) + q2a2 + q3(a3 + 1) + q4(a4 + a2 + 1)

+ q5(a5 + a3 + a1 + 1) + q6(a6 + a4 + a3 + a2 + a1 + 1)

+ q7(a3 + 1)(a4 + a2 + 1) + q8a2(a6 + a4 + a3 + a2 + a1 + 1)

+ q9a2(a3 + 1)(a4 + a2 + 1) + q10a2(a3 + 1)(a5 + a3 + a1 + 1)

+ q11a1a2(a8 + a5 + a4 + a3 + a2 + a1 + 2)

+ q12(a3 + a2 + a1 + 1)(a5 + a4 + a3 + a2 + a1 + 1)

× (a4 − 2a3 + 2a2 − a1 + 1)

+ q13(a1 − 1)(a2 − a1 + 1)

× (a10 + 2a9 + 2a8 + 2a7 + 2a6 + 4a5 + 6a4 + 8a3 + 9a2 + 9a1 + 9)

+ q14(a2 + 1)(a3 + 1)(a4 + a2 + 1)(a5 − a3 + a1 + 1)

+ q15a1a2(a5 + a4 + a3 + a2 + a1 + 1)(a7 − a6 + a4 + a1)

+ q16(a3 + 1)(a3 + a2 + a1 + 1)(a5 + a4 + a3 + a2 + a1 + 1)

× (a5 − 2a4 + 2a3 − 2a2 + 3a1 − 3)

+ q17(a2 + 1)(a3 + 1)(a5 + a4 + a3 + a2 + a1 + 1)(a7 − a6 + a3 + a1 − 1)

+ q18(a4 + a2 + 1)(a3 + a2 + a1 + 1)(a5 + a4 + a3 + a2 + a1 + 1)

× (a6 − 2a5 + a4 + a3 − a2 + 1)

+ q19a2(a1 − 1)(a4 + a2 + 1)(a3 + a2 + a1 + 1)

× (a9 − a7 + a4 + 2a3 + a2 − 1)

+ q20(a2 − a1 + 1)(a3 + 1)(a5 + a4 + a3 + a2 + a1 + 1)
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× (a10 + a6 + a4 + a3 + 2a2 + 2a1 + 3)

+ q21a1a2(a3 + 1)(a2 − a1 + 1)(a5 + a4 + a3 + a2 + a1 + 1)

× (a8 − a6 + a4 + a1 + 2)

+ · · · . (4.4.1)

Recall that an is defined in (4.2.3). Thus, Ramanujan wrote out the first 21
coefficients in the power series representation of the crank generating function
Fa(q) given in (3.1.1). (We have corrected a misprint in the coefficient of q21.)

On the following page, beginning with the coefficient of q13, Ramanujan
listed some (but not necessarily all) of the factors of the coefficients up to q26.
The factors he recorded are

13. (a1 − 1)(a2 − a1 + 1) (4.4.2)

14. (a2 + 1)(a3 + 1)(a4 + a2 + 1)

15. a1a2(a5 + a4 + a3 + a2 + a1 + 1)

16. (a3 + 1)(a3 + a2 + a1 + 1)(a5 + a4 + a3 + a2 + a1 + 1)

17. (a2 + 1)(a3 + 1)(a5 + a4 + a3 + a2 + a1 + 1)

18. (a4 + a2 + 1)(a3 + a2 + a1 + 1)(a5 + a4 + a3 + a2 + a1 + 1)

19. a2(a1 − 1)(a4 + a2 + 1)(a3 + a2 + a1 + 1)

20. (a3 + 1)(a2 − a1 + 1)(a5 + a4 + a3 + a2 + a1 + 1)

21. a1a2(a3 + 1)(a2 − a1 + 1)(a5 + a4 + a3 + a2 + a1 + 1)

22. a2(a3 + 1)(a1 − 1)

23. (a1 − 1)(a4 + a2 + 1)

24. (a3 + 1)(a4 + a2 + 1)(a3 + a2 + a1 + 1)

25. a2(a1 − 1)(a5 + a4 + a3 + a2 + a1 + 1)

26. a2(a3 + 1)(a3 + a2 + a1 + 1).

Ramanujan did not indicate why he recorded only these factors. However, it
can be noted that in each case he recorded linear factors only when the leading
index is ≤ 5. To the left of each n, 15 ≤ n ≤ 26, are the unexplained numbers
16× 16, undecipherable, 27× 27,−25, 49,−7 · 19, 9,−7,−9,−11 · 15,−11, and
−4, respectively.

4.5 Congruences for the Coefficients λn on Pages 179
and 180

On pages 179 and 180 in his lost notebook [283], Ramanujan offers ten tables
of indices of coefficients λn satisfying certain congruences. On page 61 in [283],
he offers rougher drafts of nine of the ten tables; Table 6 is missing on page
61. In contrast to the tables on pages 179 and 180, no explanations are given
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for the tables on page 61. Clearly, Ramanujan calculated factors well beyond
those recorded on pages 58 and 59 given in Section 4.4. To verify Ramanujan’s
claims, we calculated λn up to n = 500 with the use of Maple V. Ramanujan
evidently thought that each table was complete in that there are no further
values of n for which the prescribed divisibility property holds.

Table 1. λn ≡ 0 (mod a2 + a−2)

Thus, Ramanujan indicates which coefficients λn have a2 as a factor. The
47 values of n with a2 as a factor of λn are

2, 8, 9, 10, 11, 15, 19, 21, 22, 25, 26, 27, 28, 30, 31, 34, 40, 42, 45,
46, 47, 50, 55, 57, 58, 59, 62, 66, 70, 74, 75, 78, 79, 86, 94, 98,

106, 110, 122, 126, 130, 142, 154, 158, 170, 174, 206.

Replacing q by q2 in (3.1.2), we see that Table 1 contains the degree of q
for those terms with zero coefficients for both

f(−q6,−q10)

(−q4; q4)∞
and q

f(−q2,−q14)

(−q4; q4)∞
. (4.5.1)

Table 2. λn ≡ 1 (mod a2 + a−2)

To interpret this table properly, we return to the congruence given in
(3.1.2). Replacing q by q2, we see that Ramanujan has recorded all the degrees
of q of the terms (except for the constant term) with coefficients equal to 1 in
the power series expansion of

f(−q6,−q10)

(−q4; q4)∞
. (4.5.2)

The 27 values of n given by Ramanujan are

14, 16, 18, 24, 32, 48, 56, 72, 82, 88, 90, 104, 114, 138, 146,
162, 178, 186, 194, 202, 210, 218, 226, 234, 242, 250, 266.

Table 3. λn ≡ −1 (mod a2 + a−2)

This table is to be understood in the same way as the previous table, except
that now Ramanujan is recording the indices of those terms with coefficients
equal to −1 in the power series expansion of (4.5.2). Here Ramanujan missed
one value, namely, n = 214. The 27 (not 26) values of n are then given by

4, 6, 12, 20, 36, 38, 44, 52, 54, 60, 68, 76, 92, 102, 118,
134, 150, 166, 182, 190, 214, 222, 238, 254, 270, 286, 302.

Table 4. λn ≡ a− 1 +
1

a
(mod a2 + a−2)

We again return to the congruence given in (3.1.2). Note that a− 1 + 1/a
occurs as a factor of the second expression on the right side. Thus, replacing
q by q2, Ramanujan records the indices of all terms of
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q
f(−q2,−q14)

(−q4; q4)∞
(4.5.3)

with coefficients that are equal to 1. The 22 values of n that give the coefficient
1 are equal to

1, 7, 17, 23, 33, 39, 41, 49, 63, 71, 73, 81,
87, 89, 95, 105, 111, 119, 121, 127, 143, 159.

Table 5. λn ≡ −(a− 1 + a−1) (mod a2 + a−2)

The interpretation of this table is analogous to the preceding one. Now
Ramanujan determines those coefficients in the expansion of (4.5.3) that are
equal to −1. His table of 23 values of n includes

3, 5, 13, 29, 35, 37, 43, 51, 53, 61, 67, 69, 77,
83, 85, 91, 93, 99, 107, 115, 123, 139, 155.

Table 6. λn ≡ 0 (mod a+ a−1)

Ramanujan thus gives here those coefficients that have a1 as a factor.
There are only three values, namely, when n equals

11, 15, 21.

These three values can be discerned from the table on page 59 of the lost
notebook.

From the calculation

(q; q)∞
(aq; q)∞(q/a; q)∞

≡ (q; q)∞
(−q2; q2)∞

=
f(−q)f(−q2)

f(−q4)
(mod a+ a−1),

where f(−q) is defined by (3.2.3), we see that in Table 6 Ramanujan recorded
the degree of q for the terms with zero coefficients in the power series expansion
of

f(−q)f(−q2)

f(−q4)
. (4.5.4)

For the next three tables, it is clear from the calculation

(q; q)∞
(aq; q)∞(q/a; q)∞

≡ (q2; q2)∞
(−q3; q3)∞

=
f(−q2)f(−q3)

f(−q6)
(mod a− 1 + a−1)

that Ramanujan recorded the degree of q for the terms with coefficients 0, 1,
and −1, respectively, in the power series expansion of

f(−q2)f(−q3)

f(−q6)
. (4.5.5)

Table 7. λn ≡ 0 (mod a− 1 + a−1)
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The 19 values satisfying the congruence above are, according to Ramanu-
jan,

1, 6, 8, 13, 14, 17, 19, 22, 23, 25,
33, 34, 37, 44, 46, 55, 58, 61, 82.

Table 8. λn ≡ 1 (mod a− 1 + a−1)

The 26 values of n found by Ramanujan are

5, 7, 10, 11, 12, 18, 24, 29, 30, 31, 35, 41, 42, 43,
47, 49, 53, 54, 59, 67, 71, 73, 85, 91, 97, 109.

As in Table 2, Ramanujan ignored the value n = 0.

Table 9. λn ≡ −1 (mod a− 1 + a−1)

The 26 values of n found by Ramanujan are

2, 3, 4, 9, 15, 16, 20, 21, 26, 27, 28, 32, 38, 39,
40, 52, 56, 62, 64, 68, 70, 76, 94, 106, 118, 130.

Table 10. λn ≡ 0 (mod a+ 1 + a−1)

Ramanujan has but two values of n such that λn satisfies the congruence
above, and they are when n equals

14, 17.

From the calculation

(q; q)∞
(aq; q)∞(q/a; q)∞

≡ (q; q)2∞
(q3; q3)∞

=
f2(−q)

f(−q3)
(mod a+ 1 + a−1),

it is clear that Ramanujan recorded the degree of q for the terms with zero
coefficients in the power series expansion of

f2(−q)

f(−q3)
. (4.5.6)

The infinite products in (4.5.2)–(4.5.6) do not appear to have monotonic
coefficients for sufficiently large n. However, if these infinite products are dis-
sected properly, then we conjecture that the coefficients in the dissections are
indeed monotonic. Hence, for (4.5.2), (4.5.3), (4.5.4), (4.5.5), and (4.5.6), we
must study, respectively, the dissections of

f(−q6,−q10)

(−q4; q4)∞
,

f(−q2,−q14)

(−q4; q4)∞
,

f(−q)f(−q2)

f(−q4)
,

f(−q2)f(−q3)

f(−q6)
,

f2(−q)

f(−q3)
.

For each of the five products given above, we have determined certain dissec-
tions.
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We require the addition formula for theta functions given in Lemma 3.2.1
to prove the desired dissections.

Setting (α, β,N) = (−q6,−q10, 4) and (−q4,−q12, 2) in (3.2.2), we obtain,
respectively,

f(−q6,−q10) = A− q6B − q10C + q28D, (4.5.7)

f(−q4,−q12) = f(q24, q40)− q4f(q8, q56), (4.5.8)

where A := f(q120, q136), B := f(q72, q184), C := f(q56, q200), and D :=
f(q8, q248).

Setting (α, β,N) = (−q,−q2, 3) in (3.2.2), we obtain

f(−q) = f(−q12,−q15)− qf(−q6,−q21)− q2f(−q3,−q24). (4.5.9)

For (4.5.2), the 8-dissection (with, of course, the odd powers missing) is
given by

f(−q6,−q10)

(−q4; q4)∞
=

f(−q6,−q10)f(−q4,−q12)

f(−q16)

=
1

f(−q16)

{
A− q6B − q10C + q28D

}

×
{
f(q24, q40)− q4f(q8, q56)

}

=
1

f(−q16)

{
Af(q24, q40)− q32Df(q8, q56)

+ q2
[
q8Bf(q8, q56)− q8Cf(q24, q40)

]

+ q4
[
−Af(q24, q40) + q24Df(q8, q56)

]

+ q6
[
−Bf(q24, q40) + q8Cf(q8, q56)

] }
,

where we have applied (4.5.7) and (4.5.8) in the penultimate equality.
For (4.5.6), we have the 3-dissection

f2(−q)

f(−q3)
=

1

(q3; q3)∞

{
f(−q12,−q15)− qf(−q6,−q21)− q2f(−q3,−q24)

}2

=
1

(q3; q3)∞

{
f2(−q12,−q15) + 2q3f(−q6,−q21)f(−q3,−q24)

− q
[
2f(−q12,−q15)f(−q6,−q21)− q3f2(−q3,−q24)

]

+ q2
[
f2(−q6,−q21)− 2f(−q12,−q15)f(−q3,−q24)

]}
,

where we have applied (4.5.9) in the first equality. For (4.5.3), (4.5.4), and
(4.5.5), we have derived an 8-dissection, a 4-dissection, and a 6-dissection,
respectively. Furthermore, we make the following conjecture.

Conjecture 4.5.1. Each component of each of the dissections for the five prod-
ucts given above has monotonic coefficients for powers of q above 1400.
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We have checked the coefficients for each of the five products up to
n = 2000. For each product, we give below the values of n after which their
dissections appear to be monotonic and strictly monotonic, respectively.

(4.5.2) 1262 1374

(4.5.3) 719 759

(4.5.4) 149 169

(4.5.5) 550 580

(4.5.6) 95 95

Our conjectures on the dissections of (4.5.4), (4.5.5), and (4.5.6) have
motivated the following stronger conjecture.

Conjecture 4.5.2. For any positive integers α and β, each component of the
(α+ β + 1)-dissection of the product

f(−qα)f(−qβ)

f(−qα+β+1)

has monotonic coefficients for sufficiently large powers of q.

We remark that our conjectures for (4.5.4), (4.5.5), and (4.5.6) are then
the special cases of Conjecture 4.5.2 when we set (α, β) = (1, 2), (2, 3), and
(1, 1), respectively.

Setting (α, β,N) = (−q6,−q10, 2) and (−q2,−q14, 2) in (3.2.2), we obtain,
respectively,

f(−q6,−q10) = f(q28, q36)− q6f(q4, q60) (4.5.10)

and

f(−q2,−q14) = f(q20, q44)− q2f(q12, q52). (4.5.11)

After reading the conjectures for (4.5.2) and (4.5.3), Garvan made the
following stronger conjecture.

Conjecture 4.5.3. Define bn by

∞∑

n=0

bnq
n =

f(−q6,−q10)

(−q4; q4)∞
+ q

f(−q2,−q14)

(−q4; q4)∞

=
f(q28, q36)

(−q4; q4)∞
+ q

f(q20, q44)

(−q4; q4)∞
− q6

f(q4, q60)

(−q4; q4)∞

− q3
f(q12, q52)

(−q4; q4)∞
,

where we have applied (4.5.10) and (4.5.11) in the last equality. Then
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(−1)nb4n ≥ 0, for all n ≥ 0,

(−1)nb4n+1 ≥ 0, for all n ≥ 0,

(−1)nb4n+2 ≥ 0, for all n ≥ 0, n �= 3,

(−1)n+1b4n+3 ≥ 0, for all n ≥ 0.

Furthermore, each of these subsequences is eventually monotonic.

It is clear that the monotonicity of the subsequences in Conjecture 4.5.3
implies the monotonicity of the dissections of (4.5.2) and (4.5.3) as stated in
Conjecture 4.5.1.

In [19], Andrews and R. Lewis made three conjectures on inequalities be-
tween the rank counts N(m, t, n) and between the crank counts M(m, t, n).
Two of them, [19, Conjecture 2 and Conjecture 3] directly imply that Tables
10 and 6, respectively, are complete. Using the circle method, D.M. Kane [189]
proved the former conjecture. More precisely, it follows immediately from [189,
Corollary 2] that Table 10 is complete.

In his excellent, carefully prepared paper [102], O.-Y. Chan used the circle
method and a careful error analysis to prove all of the conjectures of Berndt,
H.H. Chan, S.H. Chan, and W.-C. Liaw [63], the conjecture of Garvan, and
five conjectures of Andrews and Lewis [19] on ranks and cranks. We present
his main theorem.

Theorem 4.5.1. Let
a1(n), a2(n), a3(n), a4(n)

be the coefficients of qn in the expansions of

f(−q)f(−q2)

f(−q4)
,
f(−q2)f(−q3)

f(−q6)
,
f(−q6,−q10)

(−q4, q4)∞
, q

f(−q2,−q14)

(−q4, q4)∞
, (4.5.12)

respectively. Then,

a1(n) = c1(n)
e
π
4

√
2(n−1/24)/3

2
√
2(n− 1/24)

+ E1(n),

a2(n) = c2(n)
e
π
6

√
2(n−1/24)/3

2
√
3(n− 1/24)

+ E2(n),

a3(2n) = (−1)nc3(2n)
e
π
8

√
2(2n−1/24)/3

4
√
2n− 1/24

+ E3(2n),

a4(2n+ 1) = (−1)n+1c3(2n+ 1)
e
π
8

√
2(2n+1−1/24)/3

4
√
2n+ 1− 1/24

+ E3(2n+ 1),

a3(2n+ 1) = a4(2n) = 0,

where c1(n), c2(n), and c3(n) are approximately
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c1(n) =

{
(−1)n/2(1.847759 . . . ), if n ≡ 0 (mod 2),

(−1)(n+1)/2(0.765366 . . . ), if n ≡ 1 (mod 2),

c2(n) =

⎧
⎪⎨

⎪⎩

(−1)n/3(1.9696155 . . . ), if n ≡ 0 (mod 3),

(−1)(n−1)/3(0.6840402 . . . ), if n ≡ 1 (mod 3),

(−1)(n−2)/3(−1.2855752 . . . ), if n ≡ 2 (mod 3),

c3(n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(−1)n/4(2.77407969 . . . ), if n ≡ 0 (mod 4),

(−1)(n−1)/4(2.3517512 . . . ), if n ≡ 1 (mod 4),

(−1)(n−2)/4(−0.5517987 . . . ), if n ≡ 2 (mod 4),

(−1)(n−3)/4(1.5713899 . . . ), if n ≡ 3 (mod 4),

and

|E1(n)| ≤ 150(n− 1/24)1/4 + 0.71(n− 1/24)1/4e
π
8

√
2(n−1/24)/3,

|E2(n)| ≤ 1879(n− 1/24)1/4 + 0.468(n− 1/24)1/4e
π
12

√
2(n−1/24)/3,

|E3(n)| ≤ 68793(n− 1/24)1/4 + 0.1754(n− 1/24)1/4e
π
16

√
2(n−1/24)/3.

In each case, O.-Y. Chan determined where the coefficients of the theta
quotients become strictly monotonic. Then he checked Ramanujan’s tables
up to the values of n where the coefficients become strictly monotonic. In
particular, monotonicity ensures that the coefficients are bounded away from
0, 1, and −1. He verified all of Ramanujan’s tables in PARI-GP 2.0.20(beta)
and found them to be complete. In summary, Chan showed that Conjectures
4.5.1, 4.5.2, and 4.5.3 are all correct.

4.6 Page 181: Partitions and Factorizations of Crank
Coefficients

On page 181 in his lost notebook [283], Ramanujan returns to the coefficients
λn in the generating function (3.1.1) of the crank. He factors λn, 1 ≤ n ≤ 21, as
before, but singles out nine particular factors by giving them special notation.
The criterion that Ramanujan apparently uses is that of multiple occurrence,
i.e., each of these nine factors appears more than once in the 21 factorizations,
while other factors not favorably designated appear only once. Ramanujan
uses these factorizations to compute p(n), which, of course, arises from the
special case a = 1 in (3.1.1), i.e.,

1

(q; q)∞
=

∞∑

n=0

p(n)qn, |q| < 1.

Ramanujan evidently was searching for some general principles or theorems
on the factorization of λn so that he could not only compute p(n) but say
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something about the divisibility of p(n). No theorems are stated by Ramanu-
jan. Is it possible to determine that certain factors appear in some precisely
described infinite family of values of λn? It would be interesting to speculate
on the motivations that led Ramanujan to make these factorizations.

The factors designated by Ramanujan are

ρ1 = a1 − 1,

ρ = a2 − a1 + 1,

ρ2 = a2,

ρ3 = a3 + 1,

ρ4 = a1a2,

ρ5 = a4 + a2 + 1,

ρ7 = a3 + a2 + a1 + 1,

ρ9 = (a2 + 1)(a3 + 1),

ρ11 = a5 + a4 + a3 + a2 + a1 + 1.

At first glance, there does not appear to be any reasoning behind the choice
of subscripts; note that there is no subscript for the second value. However,
observe that in each case, the subscript

n equals (as a sum of powers of a) the number of terms with positive
coefficients minus the number of terms with negative coefficients in
the representation of ρn, when all expressions are expanded out, or if
ρn = ρn(a), we see that ρn(1) = n.

The reason ρ does not have a subscript is that the value of n in this case would
be 3− 2 = 1, which has been reserved for the first factor. These factors then
lead to rapid calculations of values for p(n). For example, since λ10 = ρρ2ρ3ρ7,
then

p(10) = 1 · 2 · 3 · 7 = 42.

In the table below, we provide the content of this page:

p(1) = 1, λ1 = ρ1,

p(2) = 2, λ2 = ρ2,

p(3) = 3, λ3 = ρ3,

p(4) = 5, λ4 = ρ5,

p(5) = 7, λ5 = ρ7ρ,

p(6) = 11, λ6 = ρ1ρ11,

p(7) = 15, λ7 = ρ3ρ5,

p(8) = 22, λ8 = ρ1ρ2ρ11,

p(9) = 30, λ9 = ρ2ρ3ρ5,
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p(10) = 42, λ10 = ρρ2ρ3ρ7,

p(11) = 56, λ11 = ρ4ρ7(a5 − a4 + a2),

p(12) = 77, λ12 = ρ7ρ11(a4 − 2a3 + 2a2 − a1 + 1),

p(13) = 101, λ13 = ρρ1 (a10 + 2a9 + 2a8 + 2a7 + 3a6

+4a5 + 6a4 + 8a3 + 9a2 + 9a1 + 9) ,

p(14) = 135, λ14 = ρ5ρ9(a5 − a3 + a1 + 1),

p(15) = 176, λ15 = ρ4ρ11(a7 − a6 + a4 + a1),

p(16) = 231, λ16 = ρ3ρ7ρ11(a5 − 2a4 + 2a3 − 2a2 + 3a1 − 3),

p(17) = 297, λ17 = ρ9ρ11(a7 − a6 + a3 + a1 − 1),

p(18) = 385, λ18 = ρ5ρ7ρ11(a6 − 2a5 + a4 + a3 − a2 + 1),

p(19) = 490, λ19 = ρ1ρ2ρ5ρ7(a9 − a7 + a4 + 2a3 + a2 − 1),

p(20) = 627, λ20 = ρρ3ρ11(a10 + a6 + a4 + a3 + 2a2 + 2a1 + 3),

p(21) = 792, λ21 = ρρ3ρ4ρ11(a8 − a6 + a4 + a1 + 2).

4.7 Series on Pages 63 and 64 Related to Cranks

On pages 63 and 64 of his lost notebook [283], Ramanujan computed the
coefficients up to q100 and q33, respectively, of two particular quotients of
q-series. We are uncertain about Ramanujan’s intent in recording these two
series expansions. We observe that the coefficients are nonnegative and “al-
most” increasing. In this section, we reproduce the content of a paper by Liaw
[216], in which he identifies the series on both pages, gives a partition-theoretic
interpretation that explains the nonnegativity of the coefficients, and proves
a slightly more general version of the observation on the coefficients that are
almost increasing.

First, we recall the well-known q-binomial theorem [12, p. 17], [55, p. 14]

∞∑

n=0

(α)n
(q)n

zn =
(αz)∞
(z)∞

, (4.7.1)

where |q| < 1, |z| < 1. An application of (4.7.1) with α = z−1q, z �= 0, gives

L(z, q) :=
(q)∞

(z)∞(z−1q)∞
=

∞∑

j=0

zj

(q)j(z−1qj+1)∞
. (4.7.2)

Replacing q by qp and z by qr, respectively, in (4.7.2), where p and r are
positive integers with p ≥ 2 and r < p, we deduce that

Lp,r(q) :=
(qp; qp)∞

(qr; qp)∞(qp−r; qp)∞
=

∞∑

j=0

qrj

(qp; qp)j(qpj+p−r; qp)∞
. (4.7.3)
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Ramanujan’s series on pages 63 and 64 are L11,1(q) and L11,2(q), respec-
tively. Observe that the function L(z, q) is closely related to the generating
function for the crank (3.1.1).

In view of (4.7.3), the coefficients of Lp,r(q) are always nonnegative. But
with p ≥ 3 and r < p/2, (4.7.3) can be interpreted combinatorially. It shows
that Lp,r(q) is the generating function of partitions into r’s and parts congru-
ent to 0 or −r modulo p, and the largest part that is a multiple of p is no more
than p times the number of r’s, which in turn is not greater than the smallest
part that is congruent to −r modulo p. In [145, Theorem 7], the special cases
p = 5 and r = 1, 2 are treated. This partition-theoretic approach yields part
of Liaw’s main result, which we now state and prove.

Theorem 4.7.1. Let p and r be positive integers with p ≥ 2 and r < p. Let

Lp,r(q) =
(qp; qp)∞

(qr; qp)∞(qp−r; qp)∞
:=

∞∑

n=0

bp,r(n)q
n. (4.7.4)

Then bp,r(n) ≥ 0 for all n. Moreover, we let

Lp,r(q) + qp :=

∞∑

n=0

cp,r(n)q
n := Σ0 +Σ1 + · · ·+Σr−1, (4.7.5)

where we subdivide the series in (4.7.5) according to the residue of the exponent
modulo r, so that for 0 ≤ i ≤ r − 1,

Σi =

∞∑

n=0

cp,r(nr + i)qnr+i.

Then for each i, the coefficient sequence {cp,r(nr + i)}∞n=0 is nondecreasing.

Proof. First, we note that Lp,r(q) = Lp,p−r(q). Therefore, without loss of
generality, we assume that r ≤ p/2. By Equations (5.3) and (5.4) in Garvan’s
paper [145], we have

Lp,r(q) =
1

1− qr
(qp; qp)∞

(qp+r; qp)∞(qp−r; qp)∞

=
1

1− qr

∞∑

k=0

( ∑

k=pn+rm
0�n<∞
|m|�n

NV (m,n)

)
qk

:=
1

1− qr

∞∑

k=0

ap,r(k)q
k, (4.7.6)

where NV (m,n) is the number of vector partitions of n with crank m. It is
known [145] that NV (m,n) is nonnegative except for NV (0, 1) = −1. The
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equation p = pn+ rm has a unique solution (m,n) = (0, 1) if r < p/2, while
if r = p/2, it has two solutions (m,n) = (0, 1) and (−2, 2). It follows that
ap,r(k) is nonnegative for all k ≥ 0, except

ap,r(p) =

{
NV (0, 1) +NV (−2, 2) = 0, for r = p/2,

NV (0, 1) = −1, for r < p/2.

It will be convenient to let ap,r(k) = 0 for k < 0. Thus, by (4.7.4) and (4.7.6),
bp,r(n) =

∑∞
j=0 ap,r(n− jr) and

bp,r(n)− bp,r(n− r) = ap,r(n) ≥ 0,

except when r < p/2 and n = p. Now, since bp,r(n) and cp,r(n) differ only at
n = p, the difference

cp,r(n)− cp,r(n− r) (4.7.7)

is nonnegative, except if r < p/2 and n = p or n = p + r. The proof will be
complete if we can show that the difference is also nonnegative when r < p/2
and n = p or n = p + r. To this end, we observe that under the assumption
r < p/2,

ap,r(p+ r) =

{
NV (1, 1) +NV (−2, 2) = 2, for r = p/3;

NV (1, 1) = 1, for r �= p/3.

Therefore,

cp,r(p)− cp,r(p− r) = 1 + bp,r(p)− bp,r(p− r) = 1 + ap,r(p) = 0

and

cp,r(p+ r)− cp,r(p) = bp,r(p+ r)− 1− bp,r(p) = ap,r(p+ r)− 1 ≥ 0.

Thus, since (4.7.7) has also been proved in these two exceptional cases, the
proof is complete. ��

4.8 Ranks and Cranks: Ramanujan’s Influence Continues

From the abundance of material in the lost notebook on factors of the coeffi-
cients λn of the generating function (3.1.1) for cranks, Ramanujan clearly was
eager to find some general theorems with the likely intention of applying them
in the special case a = 1 to determine arithmetic properties of the partition
function p(n). Indeed, general theorems on the divisibility of λn by sums of
powers of a appear extremely difficult to obtain. As we saw in the first two
chapters, Ramanujan was able to derive five beautiful congruences for Fa(q),
but further arithmetic theorems that he was evidently seeking eluded him
before his early death.
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Although he was unable to complete his investigations of ranks and cranks
of partitions, Ramanujan’s work has been continued by many researchers. As
Dyson [128, p. 10] astutely observed, “That was the wonderful thing about
Ramanujan. He discovered so much, and yet he left so much more in his garden
for other people to discover.”

In recent decades, there have been many papers published on ranks and
cranks. These fall roughly into five categories, which we label as follows:

1. Congruences and related arithmetic properties
2. Asymptotics and related analysis
3. Combinatorics
4. Inequalities
5. Generalizations.

It should be stressed that these categories are more than a little arbitrary.
Historically, Dyson’s original paper [127] was devoted to the discovery of com-
binatorial explanations of Ramanujan’s congruences for the partition function.
Thus 1 and 3 automatically overlap. When the rank and crank functions dif-
fer, one is naturally led to inequalities and category 4. So our five groupings
should be viewed as a convenient, albeit somewhat arbitrary, means of out-
lining recent work.

4.8.1 Congruences and Related Work

One of the central themes in recent work has been the linking by K. Ono and
his collaborators and colleagues of ranks and cranks with the mock theta func-
tions and weak Maass forms. A good survey is given in [259]. There are related
papers by S. Ahlgren and S. Treneer [8], K. Bringmann in several collabora-
tions [84], [86], [92], M. Dewar [124], and M. Monks [225]. It is noteworthy
that K. Mahlburg’s paper [221] (introduced in [20]) on the crank won the first
“Paper of the Year” award from the Proceedings of the National Academy of
Sciences.

The work of Garvan goes back to his Ph.D. thesis [144]. Subsequently (in
collaboration with D.S. Kim and D. Stanton) [153] he discovered new cranks,
and in [145], [147], [149], [150] extended all these discoveries.

R. Lewis [209]–[214] provided early looks at rank and crank congruences
for moduli other than 5, 7, and 11. N. Santa-Gadea’s [307] work was also
influenced by Lewis.

In addition, D. Choi, S.-Y. Kang, and J. Lovejoy [110], Ekin [131], [132],
[133], S.J. Kaavya [186], and A.E. Patkowski [261] have contributed further
to the arithmetic properties of ranks and cranks.

4.8.2 Asymptotics and Related Analysis

There are really two branches of analytic work on ranks and cranks. A.O.L.
Atkin and Garvan [26] produced a partial differential equation relating the
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generating functions of ranks and cranks. This surprising work was followed
up by Bringmann and S. Zwegers in [94] and [356], and also by S.H. Chan,
A. Dixit, and Garvan [107].

Relevant asymptotics have been established by Bringmann [85] and by
Bringmann, Mahlburg, and R.C. Rhoades [91]. Earlier, in this chapter, we
featured the asymptotic analysis by O.-Y. Chan.

4.8.3 Combinatorics

As mentioned previously, the line between categories 1 and 3 is not bright.
However, there are a number of papers in which Dyson’s original combinato-
rial view is paramount. Among these is Dyson’s early study [129] of related
symmetry questions. Much of Garvan’s early work cited in Section 4.8.1 might
also be cited here. In addition, A. Berkovich and Garvan [48]–[51] extended
the work of Dyson and made further combinatorial discoveries. In [14], the
rank moments introduced in [26] were interpreted combinatorially with a va-
riety of related new congruences arising. This was followed up by Bringmann
[83] and W.J. Keith [191].

4.8.4 Inequalities

It was observed early on by Lewis that some rank/crank enumerating functions
were always larger than others. This was made explicit in [19]. The conjectures
raised there have been proved by D.M. Kane [189], and more general results
have been found by Bringmann and B. Kane [87], Bringmann and Mahlburg
[90], Ekin [132], and Berkovich and Garvan [51].

Special note should be made of Garvan’s proof that the 2kth crank moment
exceeds the 2kth rank moment [152].

4.8.5 Generalizations

Here we are considering rank/crank questions related to restricted partition
functions.

In [88], [89], [218], [220], Bringmann, Lovejoy, and R. Osburn extend rank
and crank configurations to overpartitions. In [148] and [151], Garvan studies
colored partitions. L.W. Kolitsch [200] considers generalized Frobenius parti-
tions, and E. Mortenson [232] and S.H. Chan [106] examine broken diamond
partitions.

The ranks and cranks for a variety of other restricted partition functions
are considered by Berkovich and Garvan [49], Garvan [148], B. Kim [192], and
Lovejoy and Osburn [219].



5

Ramanujan’s Unpublished Manuscript on the
Partition and Tau Functions

When Ramanujan died in 1920, he left behind an incomplete, unpublished
manuscript in two parts on the partition function p(n) and, in contemporary
terminology, Ramanujan’s tau function τ(n). The first part, beginning with
the Roman numeral I, is written on 43 pages [283, pp. 135–177], with the
last nine pages comprising material for insertion at various junctures in the
first 34 pages of the manuscript. G.H. Hardy extracted a portion of Part I,
providing proofs of Ramanujan’s congruences for p(n) modulo 5, 7, and 11, and
published it in 1921 [280], [281, pp. 232–238] under Ramanujan’s name. In a
footnote, Hardy remarks, “The manuscript contains a large number of further
results. It is very incomplete, and will require very careful editing before it can
be published in full. I have taken from it the three simplest and most striking
results . . . .” In 1952, J.M. Rushforth [306] published several further results,
mostly on τ(n), from Part I. In 1977, R.A. Rankin [289] discussed several
congruences for τ(n) found in Part I. The manuscript was not made available
to the public until 1988, when it was photocopied in its original handwritten
form and published with Ramanujan’s lost notebook [283]. The existence of
Part II [283, pp. 238–243] was first pointed out by B.J. Birch [75] in 1975, but
like Part I, it was also hidden from the public until 1988, when a handwritten
copy made by G.N. Watson was photocopied for [283]. Several theorems and
proofs in this manuscript had not previously appeared before 1988. Until the
publication of [67], none of the contents of Part II had been examined in the
literature.

The p(n)/τ(n) manuscript arises from the last three years of Ramanujan’s
life. It may have been written in nursing homes and sanitariums in 1917–
1919, when, as we know from letters that Ramanujan wrote to Hardy during
this time [68, pp. 192–193], Ramanujan was thinking deeply about partitions,
or more likely, it may have been written in India during the last year of
his life. According to Rushforth [306], the manuscript was sent to Hardy by
“Ramanujan a few months before the latter’s death in 1920.” If this is true,
then it probably was enclosed with Ramanujan’s last letter to Hardy, dated
January 12, 1920 [68, pp. 220–223]. There is no mention of the manuscript
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in the extant portion of that letter, but we emphasize that part of the letter
has been lost. Rushforth’s account seems to be correct, although Rankin [291]
thought that Rushforth’s claim “was open to doubt.” Ramanujan departed
England on March 13, 1919, the same day his paper [279] was received by the
Proceedings of the London Mathematical Society. In this paper, Ramanujan
states his congruences for p(n) modulo 5, 7, 11, 52, 72, and 112. He furthermore
offers his congruences for τ(n) modulo 5, 7, and 23. As we shall see, Ramanujan
discovered further congruences for p(n) and τ(n), and so it is likely that
he continued to think about this topic while sailing back to India on the
Nagoya from March 13 to March 27, 1919, the day the ship arrived in Bombay,
and also in at least the early days after his arrival home. Recall also that
Hardy extracted a portion of the p(n)/τ(n) manuscript for the posthumous
paper [280], and so Hardy must have had the manuscript in his possession by
sometime in 1920. In conclusion, either the manuscript was given to Hardy
when Ramanujan departed England in 1919, or it was sent to Hardy with his
last letter on January 12, 1920.

The manuscript was given by Hardy in 1928 to Watson, who had it in
his possession until he died in 1965. At the suggestion of Rankin, Part I was
sent shortly thereafter to the library of Trinity College, Cambridge, where it
still resides. Watson’s copy of Part II can be found in the library of Oxford’s
Mathematical Institute. When [67] was written, it was not realized that the
original manuscript for Part II also resides at Trinity College. For further
historical information, see Rankin’s two papers [289], [291].

Since many of the proofs in this manuscript had not been published before
their appearance in handwritten form with the lost notebook [283], since many
details were omitted by Ramanujan, since mathematicians have established
results either proved or asserted in the manuscript since it was written, and
since the manuscript contains many unproved claims, the purpose of this
chapter is to present the manuscript in its entirety, offer some additional
details, and provide extensive commentary on it. Although many of the results
in this manuscript have been proved or explained within a greater context
in the work of P. Deligne, J.-P. Serre, H.P.F. Swinnerton-Dyer, and others,
we were delighted to find a number of surprising new gems. For example,
Ramanujan’s claims (5.14.1)–(5.14.6) and many of the assertions in Sections
15 and 16 were unexpected and entirely new. Moreover, in proving the claims
in Section 14, K. Ono was led, by the “shape of Ramanujan’s claims,” to
several new general results regarding the distribution of the partition function
modulo every prime m ≥ 5 [258]. Part II, beginning with Section 20, is also
fascinating, for it contains Ramanujan’s proof, albeit lacking in many details,
of his conjectured congruences for p(n) modulo arbitrary integral powers of 5.
It had not been previously known that Ramanujan had found a proof of his
general conjecture for powers of 5, and therefore over the years, he had not
been given credit for it.

Several editorial decisions needed to be made in our presentation of the
manuscript.
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(1) The nine pages of insertions at the end of Part I were interposed at
their intended positions.

(2) None of Ramanujan’s footnotes, such as “For a direct proof of this
see,” were completed in the manuscript. We have executed their completions,
but we do not claim with certainty that they are what Ramanujan had in
mind.

(3) Due to Ramanujan’s failure to tag certain equalities, the manuscript
contains incomplete references, such as “. . . deduce from ( ) and ( ) . . . .”
We have added the tags and inserted the equation numbers. Difficulties arose
when tags needed to be inserted at places between already existing tags with
consecutive numbers. Thus, our account of the manuscript contains additional
tags; generally, equation numbers here are not identical to the corresponding
ones in Ramanujan’s manuscript. However, we have preserved Ramanujan’s
numbering of sections, and so readers should have no difficulty identifying
material read here with that in Ramanujan’s original manuscript.

(4) As with most of his mathematics, Ramanujan provided very few details
in this manuscript. In Part I, Ramanujan indicates, at more than one place,
that this is the first of two papers that he intends to write on p(n) and τ(n).
It is clear that as Ramanujan wrote the manuscript, he continued to discover
more and more theorems on the subject, and so he more and more frequently
recorded his results without details with the promise that he would provide
them in his next paper. Thus, details become more sparse as the manuscript
progresses, so that in the last third of the manuscript there are hardly any
details at all. Instead of returning in Part II to the details omitted in Part I,
Ramanujan sketched his proofs of the congruences for p(n) modulo any power
of 5 or 7. In Hardy’s extraction [280], he considerably amplified Ramanujan’s
arguments. Similarly, Rushforth [306] provided many details omitted by Ra-
manujan. In his paper providing proofs of the general congruences modulo 5n

and 7[n/2]+1, Watson [336] had to supply many details omitted by Ramanu-
jan. We have followed their leads and have supplied more details for some
of Ramanujan’s arguments. However, for those parts of the manuscript ex-
amined by Hardy, Rushforth, and Watson, we have not added details here,
since readers can find them in the aforementioned papers. We were faced with
further difficult decisions about details. If Ramanujan presents a proof, but
with modest deficiencies in details, we have placed additional details within
square brackets, so that readers can remain clear about what was written by
Ramanujan. On the other hand, many unproved claims can be found in the
manuscript. Since Ramanujan’s death, some have been discovered and proved
by others, often without realizing that Ramanujan had originally found them.
Some claims are false, and others have not been proved until recently. Because
of the desire to make minimal additions within Ramanujan’s manuscript, we
have deferred discussions of most of Ramanujan’s unproved claims to the end
of this chapter, where many references to the literature are cited.

(5) We have taken the liberty of making minor editorial changes without
comment. Such alterations include correcting misprints, adding punctuation,
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and introducing notation. In particular, Ramanujan generally wrote infinite
series in expanded form without resorting to summation signs, which we utilize
here. We have also added titles to sections.

PROPERTIES OF p(n) AND τ(n)
DEFINED BY THE FUNCTIONS

∞∑

n=0

p(n)qn = (q; q)−1
∞ ,

∞∑

n=1

τ(n)qn = q(q; q)24∞

S. RAMANUJAN

I

5.0 Congruences for τ (n)

I have shown elsewhere by very simple arguments that

p(5n− 1) ≡ 0 (mod 5),

p(7n− 2) ≡ 0 (mod 7).

In the case of τ(n) such simple arguments give the following results.

Modulus 2

It is easy to see that the coefficients of qn in the expansion of

q(q; q)24∞ and q(q8; q8)3∞

are both odd or both even. But [by Jacobi’s identity [168, p. 285, Theorem
357], [55, p. 39, Entry 24(ii)]],

q(q8; q8)3∞ =

∞∑

n=0

(−1)n(2n+ 1)q(2n+1)2 .

It follows that τ(n) is odd or even according as n is an odd square or not.
Thus we see that the number of values of n not exceeding n for which τ(n) is
odd is only [

1 +
√
n

2

]
.

Modulus 5

Further, let J be any function of q with integral coefficients but not the
same function throughout. It is easy to see that
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q(q; q)24∞ = q(q; q)4∞(q5; q5)4∞ + 5J.

But the coefficient of q5n in
q(q; q)4∞

is a multiple of 5.1 It follows that

τ(5n) ≡ 0 (mod 5).

Modulus 7

This is the simplest of all cases. Here we have

q(q; q)24∞ = q(q; q)3∞(q7; q7)3∞ + 7J.

But since

q(q; q)3∞ = q

∞∑

n=0

(−1)n(2n+ 1)qn(n+1)/2,

it is easy to see that the coefficients of q7n, q7n−1, q7n−2, and q7n−4 are all
multiples of 7. It follows that

τ(7n), τ(7n− 1), τ(7n− 2), τ(7n− 4) ≡ 0 (mod 7).

Modulus 23

We have
q(q; q)24∞ = q(q; q)∞(q23; q23)∞ + 23J.

But [by Euler’s pentagonal number theorem [168, p. 284, Theorem 353], [55,
p. 36, Entry 22(iii)]],

q(q; q)∞ =
∑

(−1)νq1+ν(3ν+1)/2,

where the summation extends over all values of ν from −∞ to ∞. Now

1 +
1

2
ν(3ν + 1) = (6ν + 1)2 − 23ν(3ν + 1)

2
.

The residues of a square number for modulus 23 cannot be

5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22.

It follows from this that
⎧
⎪⎨

⎪⎩

τ(23n− 1), τ(23n− 2), τ(23n− 3), τ(23n− 4),

τ(23n+ 5), τ(23n− 6), τ(23n+ 7), τ(23n− 8),

τ(23n− 9), τ(23n+ 10), τ(23n+ 11) ≡ 0 (mod 23).

1 Recall that p(5n+ 4) ≡ 0 (mod 5).
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5.1 The Congruence p(5n + 4) ≡ 0 (mod 5)

Modulus 5

Let

P := 1− 24

∞∑

n=1

nqn

1− qn
, (5.1.1)

Q := 1 + 240

∞∑

n=1

n3qn

1− qn
, (5.1.2)

and

R := 1− 504

∞∑

n=1

n5qn

1− qn
, (5.1.3)

so that2

Q3 −R2 = 1728q(q; q)24∞. (5.1.4)

Let σs(n) denote the [sum of the] sth powers of the divisors of n. Then it
is easy to see that

Q = 1 + 5J ; R = P + 5J. (5.1.5)

Hence,
Q3 −R2 = Q− P 2 + 5J. (5.1.6)

But3

Q− P 2 = 288

∞∑

n=1

nσ1(n)q
n; (5.1.7)

and it is obvious that

(q; q)24∞ =
(q25; q25)∞
(q; q)∞

+ 5J. (5.1.8)

It follows from (5.1.4) and (5.1.6)–(5.1.8) that

q
(q25; q25)∞
(q; q)∞

=

∞∑

n=1

nσ1(n)q
n + 5J. (5.1.9)

In other words,

(q25; q25)∞

∞∑

n=0

p(n)qn+1 =

∞∑

n=1

nσ1(n)q
n + 5J. (5.1.10)

2 For an elementary proof, see [275, Equation (44)].
3 See [275, Equation (36)].
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But the coefficient of q5n in the right-hand side is a multiple of 5. It follows
that

p(5n− 1) ≡ 0 (mod 5). (5.1.11)

It also follows from (5.1.10) that

p(n− 1)− p(n− 26)− p(n− 51) + p(n− 126)

+ p(n− 176)− p(n− 301)− · · · − nσ1(n) ≡ 0 (mod 5), (5.1.12)

where 1, 26, 51, 126, . . . are numbers of the form 1
2 (5ν + 1)(15ν + 2) and

1
2 (5ν − 1)(15ν − 2). The number of values of n not exceeding 200 for which
p(n) ≡ 0, 1, 2, 3, 4 (mod 5) is 69, 33, 34, 34, 30, respectively; and the least
value of n for which p(n) ≡ 4 (mod 5) is 30. These being so, it appears that
p(n) ≡ 0 (mod 5) for about 1

3 of the values of n, while p(n) ≡ 1, 2, 3 or 4 (mod 5)
for about 1

6 of the values of n each. It seems extremely difficult to prove any
result in this direction concerning p(n), but the problem is much easier con-
cerning τ(n).

5.2 Divisibility of τ (n) by 5

It follows from (5.1.8) and (5.1.9) that

τ(n)− nσ1(n) ≡ 0 (mod 5), λ(n)− nσ1(n) ≡ 0 (mod 5), (5.2.1)

where
∞∑

n=1

λ(n)qn = q
(q25; q25)∞
(q; q)∞

,

so that λ(n + 1) is the number of partitions of n as the sum of integers that
are not multiples of 25. But if n be written in the form

2a2 · 3a3 · 5a5 · 7a7 · · · ,

where the a’s are zeros or positive integers, then

nσ1(n) =
∏

p

pap(p1+ap − 1)

p− 1
, p = 2, 3, 5, . . . . (5.2.2)

But
pap(p1+ap − 1)

p− 1
≡ 0 (mod 5) (5.2.3)

if
ap ≥ 1, p = 5,

or
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ap ≡ 1 (mod 2), p ≡ 4 (mod 5),

or

ap ≡ 3 (mod 4), p ≡ 2 or 3 (mod 5),

or

ap ≡ 4 (mod 5), p ≡ 1 (mod 5),

and for no other values. Suppose now that

{
tn = 0, τ(n) ≡ 0 (mod 5),

tn = 1, τ(n) �≡ 0 (mod 5).
(5.2.4)

Then it follows from (5.2.3) that

∞∑

n=1

tn
ns

=
∏

1

∏
2

∏
3
, (5.2.5)

where ∏
1
=
∏

p

1

1− p−2s
,

with p being a prime of the form 5k − 1, and

∏
2
=
∏

p

1− p−3s

(1− p−s)(1− p−4s)
,

with p being a prime of the form 5k ± 2, and

∏
3
=
∏

p

1− p−4s

(1− p−s)(1− p−5s)
,

with p being a prime of the form 5k + 1.
It is easy to prove from (5.2.5) that

n∑

k=1

tk = o(n). (5.2.6)

It can be shown by transcendental methods that

n∑

k=1

tk ∼ Cn

(log n)1/4
, (5.2.7)

and
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n∑

k=1

tk = C

∫ n

1

dx

(log x)1/4
+O

(
n

(logn)r

)
, (5.2.8)

where C is a constant and r is any positive number.
The proof of (5.2.6) is quite elementary and very similar to that for showing

that π(x) = o(x),4 with π(x) being the number of primes not exceeding x.
The result (5.2.6) can be stated roughly in other words that τ(n) and λ(n)
are divisible by 5 for almost all values of n, while (5.2.7) and (5.2.8) give a lot
more information.

5.3 The Congruence p(25n + 24) ≡ 0 (mod 25)

Modulus 25

It is easily seen from (5.1.5) that

Q3 −R2 = 2(Q2 − PR)− (Q− P 2) +Q(Q− 1)2 − (R− P )2 (5.3.1)

= 2(Q2 − PR)− (Q− P 2) + 25J.

But5

Q2 − PR = 1008
∞∑

n=1

nσ5(n)q
n; (5.3.2)

and it is obvious that

(q; q)24∞ =
(q5; q5)5∞
(q; q)∞

+ 25J. (5.3.3)

Now remembering that

σ5(n)− σ1(n) ≡ 0 (mod 5), (5.3.4)

it follows from (5.1.7) and (5.3.1)–(5.3.3) that

q
(q5; q5)5∞
(q; q)∞

=
∞∑

n=1

{2nσ5(n)− nσ1(n)} qn + 25J. (5.3.5)

[By extracting those terms with exponents that are multiples of 5 and by
employing the congruence p(5n− 1) ≡ 0 (mod 5),] we easily deduce that

(q; q)5∞

∞∑

n=1

p(5n− 1)qn =

∞∑

n=1

{10nσ5(n)− 5nσ1(n)} qn + 25J,

and hence [by (5.3.4)] that

4 See Landau’s Primzahlen [204, pp. 641–669].
5 See [275, Table II].
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(q5; q5)∞

∞∑

n=1

p(5n− 1)qn = 5

∞∑

n=1

nσ1(n)q
n + 25J. (5.3.6)

Since the coefficient of q5n is a multiple of 25, it follows that

p(25n− 1) ≡ 0 (mod 25). (5.3.7)

It also follows from (5.3.6) that

p(5n− 1)− p(5n− 26)− p(5n− 51) + p(5n− 126)

+ p(5n− 176)− · · · − 5nσ1(n) ≡ 0 (mod 25),

where 1, 26, 51, 126, . . . are the same as in (5.1.12).

5.4 Congruences Modulo 5k

It is easy to see [by Fermat’s little theorem] that

nσ9(n)− 2nσ5(n) + nσ1(n) ≡ 0 (mod 25). (5.4.1)

It follows from this and (5.3.3) and (5.3.5) that

τ(n)− nσ9(n) ≡ 0 (mod 25). (5.4.2)

It appears that if k be any positive integer, it is possible to find two integers
a and b such that

τ(n)− naσb(n) ≡ 0 (mod 5k), (5.4.3)

if n is not a multiple of 5. Thus for instance

τ(n)− n41σ29(n) ≡ 0 (mod 125), (5.4.4)

if n is not a multiple of 5. I have not yet proved these results. If n is a multiple
of 5, then

τ(n)− 4830τ
(n
5

)
+ 511τ

( n

25

)
= 0

in virtue of (5.7.6), with τ(x) being considered as 0 if x is not an integer.
It also appears that the coefficient of qn in the left-hand side of (5.3.5) can

be exactly determined in terms of the real divisors of n. Thus

q
(q5; q5)5∞
(q; q)∞

=

∞∑

n=1

(n
5

) qn

(1− qn)2
, (5.4.5)

[where
(

n
p

)
denotes the Legendre symbol]. The allied function is given by

(q; q)5∞
(q5; q5)∞

= 1− 5

∞∑

n=1

(n
5

) nqn

1− qn
. (5.4.6)
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It follows from (5.4.5) that

(q; q)5∞

∞∑

n=1

p(5n− 1)qn = 5

∞∑

n=1

(n
5

) qn

(1− qn)2

and hence that6
∞∑

n=0

p(5n+ 4)qn = 5
(q5; q5)5∞
(q; q)6∞

. (5.4.7)

5.5 Congruences Modulo 7

Modulus 7

Since7

Q2 = 1 + 480
∞∑

n=1

n7qn

1− qn
, (5.5.1)

it is easy to see that

Q2 = P + 7J ; R = 1 + 7J ; (5.5.2)

and so
(Q3 −R2)2 = P 3 − 2PQ+R+ 7J. (5.5.3)

But8 ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

PQ−R = 720

∞∑

n=1

nσ3(n)q
n,

P 3 − 3PQ+ 2R = −1728

∞∑

n=1

n2σ1(n)q
n;

(5.5.4)

and it is obvious that

(q; q)48∞ =
(q49; q49)∞
(q; q)∞

+ 7J. (5.5.5)

It follows from all these that

q2
(q49; q49)∞
(q; q)∞

=

∞∑

n=1

{
n2σ1(n)− nσ3(n)

}
qn + 7J. (5.5.6)

In other words,

(q49; q49)∞

∞∑

n=0

p(n)qn+2 =

∞∑

n=1

{
n2σ1(n)− nσ3(n)

}
qn + 7J. (5.5.7)

6 For a direct proof of this result see [276].
7 See [275, Table I].
8 See [275, Tables II and III, resp.].
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It follows that
p(7n− 2) ≡ 0 (mod 7), (5.5.8)

and

p(n− 2)− p(n− 51)− p(n− 100) + p(n− 247)

+ p(n− 345)− · · ·+ nσ3(n)− n2σ1(n) ≡ 0 (mod 7), (5.5.9)

where 2, 51, 100, 247, . . . are the numbers of the form 1
2 (7ν + 1)(21ν + 4) and

1
2 (7ν − 1)(21ν − 4).

The number of values of n not exceeding 200 for which p(n) ≡ 0, 1, 2, 3, 4, 5,
6 (mod 7) is 50, 33, 22, 28, 23, 23, 21, respectively, and the least value of n for
which p(n) ≡ 6 (mod 7) is 73. It appears that p(n) ≡ 0 (mod 7) for about 1

4 of
the values of n, while p(n) ≡ 1, 2, 3, 4, 5, 6 (mod 7) for about 1

8 of the values of
n each.

5.6 Congruences Modulo 7, Continued

It follows from (5.5.2) that

Q3 −R2 = PQ−R+ 7J. (5.6.1)

It is easy to see from this and (5.5.4) that

τ(n)− nσ3(n) ≡ 0 (mod 7). (5.6.2)

Now if n = 2a2 · 3a3 · 5a5 · 7a7 · · · , then

nσ3(n) =
∏

p

pap
p3(1+ap) − 1

p3 − 1
, p = 2, 3, 5, 7, . . . . (5.6.3)

But

pap
p3(1+ap) − 1

p3 − 1
≡ 0 (mod 7), (5.6.4)

if
ap ≡ 6 (mod 7), p ≡ 1, 2, or 4 (mod 7),

or
ap ≡ 1 (mod 2), p ≡ 3, 5, or 6 (mod 7),

or
ap ≥ 1, p = 7.

Suppose now that

tn = 1, τ(n) �≡ 0 (mod 7),

tn = 0, τ(n) ≡ 0 (mod 7).
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Then it follows from (5.6.4) that

∞∑

n=1

tn
ns

=
∏

1

∏
2
, (5.6.5)

where ∏
1
=
∏

p

1− p−6s

(1− p−s)(1− p−7s)
,

with p being a prime of the form 7k + 1, 7k + 2, 7k + 4, and

∏
2
=
∏

p

1

1− p−2s
,

with p being a prime of the form 7k + 3, 7k + 5, 7k + 6. It is easy to prove
from (5.6.5) by quite elementary methods that

n∑

k=1

tk = o(n). (5.6.6)

It can be shown by transcendental methods that

n∑

k=1

tk ∼ Cn

(log n)1/2
; (5.6.7)

and
n∑

k=1

tk = C

∫ n

1

dx

(log x)1/2
+O

(
n

(logn)r

)
, (5.6.8)

where r is any positive number and

C =
61/2

73/4
1− 2−6

1− 2−7

1− 11−6

1− 11−7

1− 23−6

1− 23−7

1− 29−6

1− 29−7
· · ·

× 1

{(1− 3−2)(1− 5−2)(1− 13−2)(1− 17−2)(1− 19−2) · · · }1/2
,

where 2, 11, 23, . . . are primes of the form 7k + 1, 7k + 2, and 7k + 4, while
3, 5, 13, . . . are primes of the form 7k + 3, 7k + 5, and 7k + 6. Thus we see
that τ(n) is divisible by 7 for almost all values of n; and at the same time the
number of values of n for which τ(n) is divisible by 7 is far greater than that
for which τ(n) is divisible by 5.

Now if
∞∑

n=1

λ(n)qn = q2
(q49; q49)∞
(q; q)∞

,

so that λ(n+2) is the number of partitions of n as the sum of integers which
are not multiples of 49, it is clear from (5.5.6) that
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λ(n)− n2σ1(n) + nσ3(n) ≡ 0 (mod 7). (5.6.9)

But it is easy to show that n2σ1(n) and nσ3(n) are divisible by 7 for almost
all values of n. It follows that λ(n) is divisible by 7 for almost all values of n.
It can even be shown that the number of values of j not exceeding n for which
λ(j) is not divisible by j is

O

(
n

(log n)1/6

)
. (5.6.10)

The index 1
6 in (5.6.10) is easily obtained by considering n2σ1(n) and nσ3(n)

separately; but whether this is the right index or not can be known only by
considering

n2σ1(n)− nσ3(n)

taken together, which seems rather complicated to deal with.

5.7 Congruences Modulo 49

Modulus 49

We have

(Q3 −R2)2 = (3P 2Q2 − 4PQR− 2Q3 + 3R2)

− 2(P 3 − 2PQ+R) + 2P (Q2 − P )2 − (1 + 2PQ)(R− 1)2

+
{
Q(Q2 − P )−R2 + 1

}2

= (3P 2Q2 − 4PQR− 2Q3 + 3R2)− 2(P 3 − 2PQ+R) + 49J

in virtue of (5.5.2). But9

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q3 −R2 = 1728

∞∑

n=1

τ(n)qn,

3Q3 + 2R2 − 5PQR = 1584

∞∑

n=1

nσ9(n)q
n,

5Q3 + 4R2 − 18PQR+ 9P 2Q2 = 8640

∞∑

n=1

n2σ7(n)q
n;

(5.7.1)

and it is obvious that

(q; q)48∞ =
(q7; q7)7∞
(q; q)∞

+ 49J. (5.7.2)

Now remembering that

9 See [275, Equation (44), Table II, Table III, resp.].
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σ7(n)− σ1(n) ≡ 0 (mod 7), σ9(n)− σ3(n) ≡ 0 (mod 7), (5.7.3)

it follows from the above equations and (5.5.4) that

q2
(q7; q7)7∞
(q; q)∞

=

∞∑

n=1

{
2nσ9(n)− 4n2σ7(n) + 2nσ3(n)

−2n2σ1(n) + 2τ(n)
}
qn + 49J. (5.7.4)

From this [and (5.6.2)] we deduce that

(q; q)7∞

∞∑

n=0

p(7n+ 5)qn+1 =

∞∑

n=1

{28nσ3(n) + 2τ(7n)} qn + 49J. (5.7.5)

I have stated in my previous paper that10

∞∑

n=1

τ(n)

ns
=
∏

p

1

1− τ(p)p−s + p11−2s
, (5.7.6)

where p assumes all prime values. This has since been proved by Mr Mordell.11

Now by actual calculation we find that

τ(7) ≡ 14 (mod 49).

It follows from this and (5.7.6) that

τ(7n)− 14τ(n) ≡ 0 (mod 49).

It is easy to see from this and (5.7.5) [and (5.6.2)] that

(q7; q7)∞

∞∑

n=0

p(7n+ 5)qn+1 = 7

∞∑

n=1

nσ3(n)q
n + 49J. (5.7.7)

Now if
n ≡ 3, 5, 6 (mod 7),

then n must contain an odd power of a prime p of the form 7k+3, 7k+5, or
7k+6 as a divisor, since all perfect squares are of the form 7k, 7k+1, 7k+2,
or 7k + 4; and so σ3(n) is divisible by p3 + 1, which is divisible by 7. Also
it is obvious that if n is a multiple of 7 then nσ3(n) is also divisible by 7. It
follows that if

n ≡ 0, 3, 5, 6 (mod 7),

then

10 [275, eq. (101)].
11 On Mr Ramanujan’s empirical expansions of modular functions, Proc. Cambridge
Philos. Soc. 19 (1917), 117–124. A simpler proof is given in Hardy’s lectures [166].
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nσ3(n) ≡ 0 (mod 7).

It is easy to see from this and (5.7.7) that

p(49n− 2), p(49n− 9), p(49n− 16), p(49n− 30) ≡ 0 (mod 49). (5.7.8)

It also follows from (5.7.7) that

p(7n− 2)− p(7n− 51)− p(7n− 100) + p(7n− 247)

+ p(7n− 345)− · · · − 7nσ3(n) ≡ 0 (mod 49),

where 2, 51, 100, 247, . . . are the same as in (5.5.9).

5.8 Congruences Modulo 49, Continued

It appears that

q(q; q)3∞(q7; q7)3∞ + 8q2
(q7; q7)7∞
(q; q)∞

=
∞∑

n=1

(n
7

)
qn

1 + qn

(1− qn)3
(5.8.1)

[where
(
n
7

)
denotes the Legendre symbol], while the allied function is given

by

49q(q; q)3∞(q7; q7)3∞ + 8
(q; q)7∞
(q7; q7)∞

= 8− 7

∞∑

n=1

(n
7

) n2qn

1− qn
. (5.8.2)

Now remembering that

(q; q)3∞ =

∞∑

n=0

(−1)n(2n+ 1)qn(n+1)/2

and picking out the terms q7, q14, q21, . . . from both sides in (5.8.1), we obtain

−7q(q; q)3∞(q7; q7)3∞ + 8(q; q)7∞

∞∑

n=1

p(7n− 2)qn = 49
∞∑

n=1

(n
7

)
qn

1 + qn

(1− qn)3
,

with the series in the right-hand side being the same as that in (5.8.1). It
follows from this and (5.8.1) that12

12 For a direct proof of this see §. [Ramanujan evidently intended to give a proof
of (5.8.3) elsewhere in this manuscript. In his paper [276], (5.8.3) is stated without
proof. This identity is also found on page 189 in Ramanujan’s lost notebook [283],
and in Chapter 6 we provide a proof of (5.8.3) along the lines of that sketched by
Ramanujan in this manuscript. The proof, as well as other proofs of claims on page
189, is taken from a paper by Berndt, A.J. Yee, and J. Yi [70]. See the notes at the
end of this chapter for references to further proofs of (5.8.3).]
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∞∑

n=0

p(7n+ 5)qn = 7
(q7; q7)3∞
(q; q)4∞

+ 49q
(q7; q7)7∞
(q; q)8∞

. (5.8.3)

It also appears that if

∞∑

n=1

λ(n)qn = q(q; q)3∞(q7; q7)3∞,

then
∞∑

n=1

λ(n)

ns
=

1

1 + 71−s

∏
1

∏
2
, (5.8.4)

where ∏
1
=
∏

p

1

1− p2−2s
,

with p being a prime of the form 7k + 3, 7k + 5, or 7k + 6, and

∏
2
=
∏

p

1

1 + (2p− a2)p−s + p2−2s
,

with p being a prime of the form 7k + 1, 7k + 2, or 7k + 4 and a and b being
integers such that 4p = a2 +7b2. Thus λ(n) can be completely ascertained. It
follows from this and (5.8.1) and (5.8.2) that the coefficients of qn in

(q; q)7∞
(q7; q7)∞

, q2
(q7; q7)7∞
(q; q)∞

can be completely ascertained.
Now it is easy to see that

3n9 − 2n3 ≡ 0, 1, or − 1 (mod 49),

according as n ≡ 0 (mod 7), n ≡ 1, 2, 4 (mod 7), or n ≡ 3, 5, 6 (mod 7). Also
the coefficient of qn in q(1 + q)/(1− q)3 is n2. Hence the right side in (5.8.1)
can be written as

∞∑

n=1

{
3n2σ7(n)− 2n2σ1(n)

}
qn + 49J. (5.8.5)

It follows from this, (5.7.3), (5.7.4), and (5.8.1) that

τ(n)− 3λ(n) + nσ9(n) + nσ3(n) ≡ 0 (mod 49), (5.8.6)

where λ(n) is the same as in (5.8.4). From the formulae (5.8.4) and (5.8.6) all
the residues of τ(n) for modulus 49 can be completely ascertained.
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5.9 The Congruence p(11n + 6) ≡ 0 (mod 11)

Modulus 11

In this case we start with the series13

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1− 264
∞∑

n=1

n9qn

1− qn
= QR,

691 + 65520

∞∑

n=1

n11qn

1− qn
= 441Q3 + 250R2.

(5.9.1)

It follows that

QR = 1 + 11J ; Q3 − 3R2 = −2P + 11J. (5.9.2)

It is easy to see from this that

(Q3 −R2)5 = (Q3 − 3R2)5 −Q(Q3 − 3R2)3 −R(Q3 − 3R2)2 − 5QR+ 11J

= P 5 − 3P 3Q− 4P 2R− 5QR+ 11J.

But14

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P 5 − 10P 3Q+ 20P 2R− 15PQ2 + 4QR = −20736
∞∑

n=1

n4σ1(n)q
n,

P 3Q− 3P 2R+ 3PQ2 −QR = 3456

∞∑

n=1

n3σ3(n)q
n,

P 2R− 2PQ2 +QR = −1728

∞∑

n=1

n2σ5(n)q
n,

PQ2 −QR = 720

∞∑

n=1

nσ7(n)q
n;

(5.9.3)
and it is obvious that

(q; q)120∞ =
(q121; q121)∞

(q; q)∞
+ 11J. (5.9.4)

It is easy to see from all these that

q5
(q121; q121)∞

(q; q)∞

=

∞∑

n=1

{
−n4σ1(n) + 3n3σ3(n) + 3n2σ5(n)− 5nσ7(n)

}
qn + 11J. (5.9.5)

13 See [275, Table I].
14 See [275, Table III, Table II].
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It follows from this that

p(11n− 5) ≡ 0 (mod 11); (5.9.6)

and

p(n− 5)− p(n− 126)− p(n− 247) + p(n− 610) + p(n− 852)

− · · ·+ n4σ1(n)− 3n3σ3(n)− 3n2σ5(n) + 5nσ7(n) ≡ 0 (mod 11), (5.9.7)

where 5, 126, 247, 610, . . . are numbers of the form 1
2 (11ν + 2)(33ν + 5) and

1
2 (11ν−2)(33ν−5). It is only to prove the general result (5.9.7) we require all
the details in (5.9.3). But we don’t require all these details in order to prove
(5.9.6) and the proof can be very much simplified as follows: we have15

q
dP

dq
=

P 2 −Q

12
, q

dQ

dq
=

PQ−R

3
, q

dR

dq
=

PR−Q2

2
. (5.9.8)

Now using (5.9.2) and (5.9.8) we can show that16

(Q3 −R2)5 = q
dJ

dq
+ 11J.

It follows from this and (5.9.4) that

q5
(q121; q121)∞

(q; q)∞
= q

dJ

dq
+ 11J. (5.9.9)

Since the coefficient of q11n in the right-hand side is a multiple of 11, it follows
that

p(11n− 5) ≡ 0 (mod 11).

The number of values of n not exceeding 200 for which p(n) ≡ 0, 1, 2, 3, 4, 5,
6, 7, 8, 9, 10 (mod 11) is 77, 23, 24, 14, 15, 14, 5, 12, 8, 8, 0, respectively. Even
though these values seem to be very irregular, it appears from the residues of
p(n) for moduli 5 and 7 and also from the next section that p(n) ≡ 0 (mod 11)
for about 1

6 of the values of n, while p(n) ≡ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (mod 11)
for about 1

12 of the values of n each.

5.10 Congruences Modulo 11, Continued

Mr H.B.C. Darling observed the remarkable fact (before I began to write this
paper) that p(n) is divisible by 11 for 45 values of n not exceeding 100. This
can be explained by the formula (5.9.7) and the congruency of

15 See [275, Equation (30)].
16 As mentioned in the beginning, the J ’s are not the same functions.
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n4σ1(n)− 3n3σ3(n)− 3n2σ5(n) + 5nσ7(n) (5.10.1)

for modulus 11. It can be shown by quite elementary methods that (5.10.1)
is divisible by 11 for almost all values of n. [A proof of this fact is sketched in
Section 19.] It can even be shown that the number of values of n not exceeding
n for which (5.10.1) is not divisible by 11 is

O

(
n

(log n)1/10

)
(5.10.2)

by considering the divisibility of the four terms in (5.10.1) separately; but a
better result can be found only by considering all the four terms in (5.10.1)
taken together. The same remarks apply to the function λ(n) defined by

∞∑

n=1

λ(n)qn = q5
(q121; q121)∞

(q; q)∞
; (5.10.3)

so that λ(n+5) is the number of partitions of n as the sum of integers which
are not multiples of 121; that is to say, λ(n) is divisible by 11 for almost all
values of n; and the number of values of λ(n) not divisible by 11 is of the
form (5.10.2). It appears from (5.10.3) that the number of values of n for
which p(n) ≡ 0 (mod 11) cannot be so high as 45% if n exceeds 120. Thus the
number of values of p divisible by 11 is

45%, 0 < n ≤ 40,

45%, 40 < n ≤ 80,

45%, 80 < n ≤ 120,

35%, 120 < n ≤ 160,

22 1
2%, 160 < n ≤ 200.

It is also very remarkable that in the table of the first 200 values of p(n), there
is not a single value of p(n) of the form 11k− 1. This is probably due to such
a high percentage of the values of p(n) divisible by 11 in the beginning.

I have not yet investigated completely the residues of τ(n) for modulus 11.
But it appears that if

∞∑

n=1

λ(n)qn = q(q; q)2∞(q11; q11)2∞,

then
∞∑

n=1

λ(n)

ns
=

1

1− 11−s

∏

p

1

1− λ(p)p−s + p1−2s
, (5.10.4)

p assuming all prime values except 11, and that λ(p) can be determined also.
If that is so then the residues of τ(n) for modulus 11 can also be ascertained,
since it is easily seen that



5.10 Congruences Modulo 11, Continued 109

τ(n)− λ(n) ≡ 0 (mod 11). (5.10.5)

Again it is easy to show by using (5.7.6) [and the values τ(2) = −24,
τ(3) = 252, τ(5) = 4830, τ(7) = −16744, and τ(11) = 534612, which can be
found in a table in Ramanujan’s paper [275], [281, p. 153]] that

∞∑

n=1

τ(n)

ns
=

1

1 + 21−s + 21−2s

1

(1− 33−s)2
1

(1− 52−s)(1− 54−s)

× 1

(1 + 72−s)(1− 74−s)

1

1− 11−s
· · ·+ 11j, (5.10.6)

where j is a Dirichlet series of the form

∑ an
ns

,

with an being an integer.
From this we can deduce a number of results such as

τ(24λ−1n) ≡ 0 (mod 11) (5.10.7)

if n is an odd integer;
τ(311λ−1n) ≡ 0 (mod 11) (5.10.8)

if n is not a multiple of 3;

τ(55λ−1n) ≡ 0 (mod 11) (5.10.9)

if n is not a multiple of 5;

τ(710λ−1n) ≡ 0 (mod 11) (5.10.10)

if n is not a multiple of 7;

τ(11λn)− τ(n) ≡ 0 (mod 11) (5.10.11)

and so on. [The five congruences above can be established by expanding the
appropriate factors in (5.10.6) in geometric series. For example, consider

1

1 + 21−s + 21−2s
= − i

21−s + 1− i
+

i

21−s + 1 + i

= − i

1− i

∞∑

n=0

(
21−s

i− 1

)n

+
i

1 + i

∞∑

n=0

(
21−s

−i− 1

)n

= i

∞∑

n=0

2n(1−s)e−3πi(n+1)/4 − i

∞∑

n=0

2n(1−s)e3πi(n+1)/4.

Since sin{3π(n+1)/4} = 0 if and only if n ≡ −1 (mod 4), the assertion (5.10.7)
follows from (5.10.6).]
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Even though (5.10.7)–(5.10.10) are very analogous to one another, further
equations are not necessarily quite similar to these; sometimes there is more
than one equation and sometimes there are equations of the form

τ(19n) ≡ 0 (mod 11) (5.10.12)

if n is not a multiple of 19, and

τ(29n) ≡ 0 (mod 11) (5.10.13)

if n is not a multiple of 29.
It is very likely that the primes 19, 29, . . . occurring in equations like

(5.10.12) and (5.10.13) are such that the sum of their reciprocals is a di-
vergent series. If this assertion is true then τ(n) is divisible by 11 for almost
all values of n, which is easily seen from (5.10.2).

5.11 Divisibility by 2 or 3

Moduli 2 and 3

[It will be convenient to introduce Ramanujan’s theta functions ϕ(q) and ψ(q),
defined by

ϕ(q) :=

∞∑

n=−∞
qn

2

=
(−q;−q)∞
(q;−q)∞

(5.11.1)

and

ψ(q) :=

∞∑

n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

, (5.11.2)

where the product representations are easy consequences of Jacobi’s triple
product identity.]

Before we proceed to consider higher moduli, we shall see what the anal-
ogous formulae are in the cases of moduli 2 and 3. It is easy to see that [by
(5.11.2)]

(q4; q4)∞
(q; q)∞

=
(q2; q2)∞
(q; q2)∞

+ 2J = ψ(q) + 2J. (5.11.3)

It follows that

p(n)− p(n− 4)− p(n− 8) + p(n− 20) + p(n− 28)− · · · (5.11.4)

is odd or even according as n is a triangular number or not, where 4, 8, 20, . . .
are numbers of the form 2ν(3ν + 1) and 2ν(3ν − 1).

p(n) is odd for 110 values of n not exceeding 200 and even for 90 values
of n in the same range. Thus p(n) seems to be odd for more values of n than
those for which p(n) is even.

If
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∞∑

n=0

λ(n)qn =
(q4; q4)∞
(q; q)∞

,

so that λ(n) is the number of partitions of n as the sum of integers which are
not multiples of 4 then [by (5.11.3) and (5.11.2)] λ(n) is odd or even according
as n is a triangular number or not.

Again we have
(q9; q9)∞
(q; q)∞

=
(q3; q3)3∞
(q; q)∞

+ 3J. (5.11.5)

But it can be shown [59] that

q
(q9; q9)3∞
(q3; q3)∞

=

∞∑

n=1

χ0(n)
qn

1 + qn + q2n
(5.11.6)

[where χ0(n) is the principal character modulo 3]. But the right-hand side in
(5.11.6) is of the form

∞∑

n=1

χ0(n)
qn

(1− qn)2
+ 3J ;

and the coefficient of q3n+1 in the above series is σ1(3n + 1). It follows from
this and (5.11.5) and (5.11.6) that

(q9; q9)∞
(q; q)∞

=

∞∑

n=0

σ1(3n+ 1)qn + 3J. (5.11.7)

From this we easily deduce that

p(n)− p(n− 9)− p(n− 18) + p(n− 45) + p(n− 63)

− p(n− 108)− · · · − σ1(3n+ 1) ≡ 0 (mod 3), (5.11.8)

where 9, 18, 45, . . . are numbers of the form 9
2ν(3ν + 1) and 9

2ν(3ν − 1).
The number of values of n not exceeding 200 for which p(n) ≡ 0, 1, 2 (mod 3)

is 66, 68, 66 respectively. Thus it appears that p(n) ≡ 0, 1, 2 (mod 3) for about
1
3 of the number of values of n each.

It follows from (5.11.7) that if

∞∑

n=0

λ(n)qn =
(q9; q9)∞
(q; q)∞

,

so that λ(n) is the number of partitions of n as the sum of integers which are
not multiples of 9, then

λ(n)− σ1(3n+ 1) ≡ 0 (mod 3).

Again the left-hand side of (5.11.6) is of the form
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q(q; q)24∞ + 3J, (5.11.9)

while the right-hand side of (5.11.6) is of the form

∞∑

n=1

n2qn

(1− qn)2
+ 3J.

It follows that
τ(n)− nσ1(n) ≡ 0 (mod 3). (5.11.10)

Suppose now that
{
tn = 0, λ(n) ≡ 0 (mod 3),

tn = 1, λ(n) �≡ 0 (mod 3),

and that {
Tn = 0, τ(n) ≡ 0 (mod 3),

Tn = 1, τ(n) �≡ 0 (mod 3).

Then we can easily deduce from (5.11.9), (5.11.10), and (5.2.2) that

∞∑

n=0

tn
(3n+ 1)s

=

∞∑

n=0

Tn

ns
=
∏

1

∏
2
,

where ∏
1
=
∏

p

1

1− p−2s
,

where p assumes prime values of the form 3k − 1 and

∏
2
=
∏

p

1 + p−s

1− p−3s
,

where p assumes prime values of the form 3k+ 1. We easily deduce from this
that ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

k=1

tk = o(n),

n∑

k=1

Tk = o(n).

In other words, λ(n) and τ(n) are divisible by 3 for almost all values of n. We
can show by transcendental methods that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n∑

k=1

tk = C

n∫

1

dx

(log x)1/2
+O

(
n

(logn)r

)
,

n∑

k=1

Tk =
C

3

n∫

1

dx

(log x)1/2
+O

(
n

(logn)r

)
,

(5.11.11)
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where r is any positive number and

C =
21/2

31/4
1− 7−2

1− 7−3

1− 13−2

1− 13−3

1− 19−2

1− 19−3
· · · 1

{(1− 2−2)(1− 5−2)(1− 11−2) · · · }1/2
;

in both cases, 2, 5, 11, . . . are primes of the form 3k − 1, and 7, 13, 19, . . . are
primes of the form 3k + 1.

5.12 Divisibility of τ (n)

Further properties of τ(n)

It is easy to see [from (5.11.2)] that

(q; q)24∞ =
(q2; q2)8∞
(q; q2)8∞

+ 32J = ψ8(q) + 32J.

But [55, p. 139, Example (ii)]

qψ8(q) =

∞∑

n=1

n3qn

1− q2n
,

and
∞∑

n=1

n4qn =
q

1− q2
+ 16J,

and
∞∑

n=1

n8qn =
q

1− q2
+ 32J

[since

∞∑

n=1

n4qn ≡ 1 · q + 0 · q2 + 1 · q3 + 0 · q4 + · · · = q

1− q2
(mod 16),

since n4 ≡ 0, 1 (mod 16), according as n is even or odd, and

∞∑

n=1

n8qn ≡ 1 · q + 0 · q2 + 1 · q3 + 0 · q4 + · · · = q

1− q2
(mod 32),

since n8 ≡ 0, 1 (mod 32), according as n is even or odd.] It is easy to see from
all these that

τ(n)− n3σ1(n) ≡ 0 (mod 16); τ(n)− n3σ5(n) ≡ 0 (mod 32). (5.12.1)

Again we have
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(q; q)24∞ =
(q3; q3)9∞
(q; q)3∞

+ 27J.

But it can be shown that [58, p. 143, Theorem 8.7]

q
(q3; q3)9∞
(q; q)3∞

=

∞∑

n=1

n2qn

1 + qn + q2n
. (5.12.2)

Now it is easy to see that

∞∑

n=1

n3qn =
q

1 + q + q2
+ 9J

and
∞∑

n=1

n9qn =
q

1 + q + q2
+ 27J

[since

∞∑

n=1

n3qn ≡ 1 · q − 1 · q2 + 0 · q3 + 1 · q4 − 1 · q5 + 0 · q6 + · · ·

=
q − q2

1− q3
=

q

1 + q + q2
(mod 9),

since n3 ≡ 0, 1,−1 (mod 9), according as n ≡ 0, 1,−1 (mod 3), and

∞∑

n=1

n9qn ≡ 1 ·q−1 ·q2+0 ·q3+1 ·q4−1 ·q5+0 ·q6+ · · · = q

1 + q + q2
(mod 27),

since n9 ≡ 0, 1,−1 (mod 27), according as n ≡ 0, 1,−1 (mod 3).] It follows that

{
τ(n)− n2σ1(n) ≡ 0 (mod 9),

τ(n)− n2σ7(n) ≡ 0 (mod 27).
(5.12.3)

It is easy to deduce from (5.2.1), (5.4.2), (5.12.1), and (5.12.3) that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

τ(n)− nσ1(n) ≡ 0 (mod 30),

τ(n)− n2σ1(n) ≡ 0 (mod 36),

τ(n)− n3σ1(n) ≡ 0 (mod 48),

τ(n)− n5σ1(n) ≡ 0 (mod 120),

(5.12.4)

⎧
⎪⎨

⎪⎩

τ(n)− nσ3(n) ≡ 0 (mod 42),

τ(n)− n2σ3(n) ≡ 0 (mod 60),

τ(n)− n4σ3(n) ≡ 0 (mod 168),

(5.12.5)



5.12 Divisibility of τ(n) 115

⎧
⎪⎨

⎪⎩

τ(n)− n3σ5(n) ≡ 0 (mod 288),

τ(n)− n2σ7(n) ≡ 0 (mod 540),

τ(n)− nσ9(n) ≡ 0 (mod 1050).

(5.12.6)

Again it easily follows from the second equation in (5.9.1) that

τ(n)− σ11(n) ≡ 0 (mod 691). (5.12.7)

It is easy to deduce from this that τ(n) is divisible by 691 for almost all
values of n, and by transcendental methods that the number of values of n
not exceeding n for which τ(n) is not divisible by 691 is of the form

C

∫ n

1

dx

(log x)1/690
+O

(
n

(logn)r

)
, (5.12.8)

where C is a constant and r is any positive number.
It is easy to prove that

q(−q;−q)24∞ = q(q; q)24∞ + 48q2(q2; q2)24∞ + 212q4(q4; q4)24∞. (5.12.9)

[To prove (5.12.9), set, after Ramanujan,

f(−q) := (q; q)∞.

Thus, (5.12.9) can be written in the equivalent formulation

qf24(q) = qf24(−q) + 48q2f24(−q2) + 212q4f24(−q4). (5.12.10)

To prove (5.12.10), we use the catalogue of evaluations for f found in Entry
12 of Chapter 17 in Ramanujan’s second notebook [55, p. 124], in particular,

f(q) =
√
z2−1/6 {x(1− x)/q}1/24 , f(−q) =

√
z2−1/6(1− x)1/6(x/q)1/24,

(5.12.11)

f(−q2) =
√
z2−1/3 {x(1− x)/q}1/12 , f(−q4) =

√
z2−2/3(1− x)1/24(x/q)1/6,

where x = k2, with k being the modulus, and z = (2/π)K, with K being the
complete elliptic integral of the first kind. Using these evaluations in (5.12.10),
we easily verify its truth.] From this it is easy to deduce that

τ(2n) + 24τ(n) + 211τ( 12n) = 0, (5.12.12)

where n is any integer and τ(x) = 0 if x is not an integer.
[Recall that ϕ and ψ are defined in (5.11.1) and (5.11.2), respectively.]

Again it is easy to prove that

qψ8(q)ϕ16(−q) = qf24(−q).

[To prove this identity, use (5.12.11) and the evaluations [55, p. 123, Entry
11(i), p. 122, Entry 10(ii)]
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ψ(q) =
√

1
2z(x/q)

1/8 and ϕ(−q) =
√
z(1− x)1/4.

]
(5.12.13)

But [by the binomial theorem]

ϕ16(−q) = −4ϕ4(−q) + 16ϕ2(−q)− 11 + 256J.

Hence

qf24(−q)

= 4
{
1− ϕ4(−q)

}
qψ8(q)− 16

{
1− ϕ2(−q)

}
qψ8(q) + qψ8(q) + 256J

= 4
{
1− ϕ4(−q)

}
qψ4(q2)− 16

{
1− ϕ2(−q)

}
qψ4(q2) + qψ8(q) + 256J.

But

qψ8(q) =

∞∑

n=0

n3qn

1− q2n
, (5.12.14)

qψ4(q2) =

∞∑

n=0

(2n+ 1)q2n+1

1− q4n+2
, (5.12.15)

qψ4(q2)ϕ4(−q) =

∞∑

n=1

(−1)n−1 n3qn

1− q2n
, (5.12.16)

qψ4(q2)ϕ2(−q) =

∞∑

n=1

(−1)n−1 n2qn

1 + q2n
(5.12.17)

=

∞∑

n=0

(−1)n
(2n+ 1)2q2n+1

1− q4n+2
−

∞∑

n=1

(2n)2q2n

1 + q4n
+ 16J.

[The identities (5.12.14) and (5.12.15) are, respectively, Examples (ii) and
(iii) in Section 17 of Chapter 17 in Ramanujan’s second notebook [55, p. 139].

By Entry 11(iii) in Chapter 17 of Ramanujan’s second notebook [55,
p. 123],

ψ(q2) =
1

2

√
z(x/q)1/4. (5.12.18)

It follows from (5.12.13) and (5.12.18) that

qψ4(q2)ϕ4(−q) =
1

16
z4x(1− x). (5.12.19)

On the other hand, by Entries 14(ii), (ix) in Chapter 17 of the second notebook
[55, p. 130],

∞∑

n=1

(−1)n−1 n3qn

1− q2n
=

∞∑

n=1

(−1)n−1n3

(
qn

1 + qn
+

q2n

1− q2n

)

=
1

16

(
1 + 16

∞∑

n=1

(−1)n−1 n3qn

1 + qn
− 1 + 16

∞∑

n=1

(−1)n−1 n3q2n

1− q2n

)

=
1

16
z4x(1− x). (5.12.20)
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The equality (5.12.16) is now a trivial consequence of (5.12.19) and (5.12.20).
To prove (5.12.17), first observe, by (5.12.13) and (5.12.18), that

qψ4(q2)ϕ2(−q) =
1

16
z3x

√
1− x. (5.12.21)

Next,

∞∑

n=1

(−1)n−1 n2qn

1 + q2n
= −

∞∑

n=1

4n2q2n

1 + q4n
+

∞∑

n=1

(2n+ 1)2q2n+1

1 + q4n+2

= −8

∞∑

n=1

n2q2n

1 + q4n
+

∞∑

n=1

n2qn

1 + q2n

= −8

∞∑

n=1

n2q2n

1 + q4n
+

1

16
z3x, (5.12.22)

by Entry 17(ii) in Chapter 17 of Ramanujan’s second notebook [55, p. 138].
To evaluate the sum on the far right side of (5.12.22), we apply the process
of duplication [55, p. 125] to Entry 17(ii) cited above. Accordingly,

−8

∞∑

n=1

n2q2n

1 + q4n
= −1

2

(
1

2
z(1 +

√
1− x)

)3(
1−

√
1− x

1 +
√
1− x

)2

= − 1

16
z3x(1−

√
1− x), (5.12.23)

after simplification. Putting (5.12.23) into (5.12.22), we readily find that

∞∑

n=1

(−1)n−1 n2qn

1 + q2n
=

1

16
z3x

√
1− x. (5.12.24)

Combining (5.12.21) and (5.12.23), we complete the proof of the first part of
(5.12.17).

To prove the second part of (5.12.17), it clearly suffices to prove that

S :=

∞∑

n=0

(2n+ 1)2q2n+1

1 + q4n+2
≡

∞∑

n=0

(−1)n
(2n+ 1)2q2n+1

1− q4n+2
=: T (mod 16).

(5.12.25)
Now,

S =

∞∑

n=0

(2n+ 1)2q2n+1

1− q4n+2
− 2

∞∑

n=0

(2n+ 1)2q6n+3

1− q8n+4

= T + 2

∞∑

n=0

(4n+ 3)2q4n+3

1− q8n+6
− 2

∞∑

n=0

(2n+ 1)2q6n+3

1− q8n+4

≡ T + 2

∞∑

n=0

q4n+3

1− q8n+6
− 2

∞∑

n=0

q6n+3

1− q8n+4
(mod 16)
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= T + 2

∞∑

n=0

q6n+3

1− q8n+4
(mod 16)− 2

∞∑

n=0

q6n+3

1− q8n+4
(mod 16)

= T (mod 16),

where in the antepenultimate line above we expanded the summands of the
first series in geometric series and then reversed the order of summation. This
completes the proof of (5.12.25), and hence the proof of the second equality
of (5.12.17).]

It follows from all these that

q(q; q)24∞ = −3

∞∑

n=0

(2n+ 1)3q2n+1

1− q4n+2
+ 5

∞∑

n=1

(2n)3q2n

1− q4n
− 12

∞∑

n=0

(2n+ 1)q2n+1

1− q4n+2

+ 16

∞∑

n=0

(−1)n
(2n+ 1)2q2n+1

1− q4n+2
− 16

∞∑

n=1

(2n)2q2n

1 + q4n
+ 256J.

Now equating only the odd powers of q we obtain

∞∑

n=0

τ(2n+ 1)q2n+1 = −3

∞∑

n=0

(2n+ 1)3q2n+1

1− q4n+2
+ 16

∞∑

n=0

(−1)n
(2n+ 1)2q2n+1

1− q4n+2

− 12

∞∑

n=0

(2n+ 1)q2n+1

1− q4n+2
+ 256J.

But if n be of the form 4k + 1 then it is easy to see that

n11 + 3n3 − 16n2 + 12n ≡ 0 (mod 256).

Changing n to −n in this formula, we see that if n be of the form 4k− 1 then

n11 + 3n3 + 16n2 + 12n ≡ 0 (mod 256).

It follows that
∞∑

n=0

τ(2n+ 1)q2n+1 =
∞∑

n=0

(2n+ 1)11q2n+1

1− q4n+2
+ 256J.

In other words,
τ(n)− σ11(n) ≡ 0 (mod 256) (5.12.26)

for all odd values of n, while the formula (5.12.12) combined with this enables
us to find the residues of τ(n) for modulus 211 for even values of n. Thus

τ(n) + 24σ11(n) ≡ 0 (mod 2048)

for all values of n.
It follows from (5.12.7) and (5.12.26) that

τ(n)− σ11(n) ≡ 0 (mod 176896)

for all odd values of n.
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5.13 Congruences Modulo 13

Modulus 13

In this case we start with the second series in (5.9.1) and the series

1− 24

∞∑

n=1

n13qn

1− qn
= Q2R. (5.13.1)

It follows from these that

Q3 − 3R2 = −2 + 13J ; Q2R = P + 13J. (5.13.2)

Hence we have

(Q3 −R2)7 = −2(R2 − 1)7 + 13J (5.13.3)

= −5R6(3R2 − 2)4 − 2R4(3R2 − 2)3 + 6R4(3R2 − 2)2

− 6R2(3R2 − 2)2 − 6R2(3R2 − 2)− 2(R2 − 1) + 13J

= −5P 6 − 2P 4Q+ 6P 3R− 6P 2Q2 − 6PQR− (Q3 −R2) + 13J.

But17

5(P 6 − 15P 4Q+ 40P 3R− 45P 2Q2 + 24PQR)

−(9Q3 + 16R2) = −248832

∞∑

n=1

n5σ1(n)q
n,

7(P 4Q− 4P 3R+ 6P 2Q2 − 4PQR) + (3Q3 + 4R2)

= 41472

∞∑

n=1

n4σ3(n)q
n,

2(P 3R− 3P 2Q2 + 3PQR)− (Q3 +R2) = −5184

∞∑

n=1

n3σ5(n)q
n,

9(PQ−R)2 + 5(Q3 −R2) = 8640

∞∑

n=1

n3σ7(n)q
n,

5PQR− (3Q3 + 2R2) = −1584

∞∑

n=1

nσ9(n)q
n,

Q3 −R2 = 1728

∞∑

n=1

τ(n)qn; (5.13.4)

and it is obvious that

17 See [275], where not all these equalities are given, but where the same methods
can be employed to provide proofs.
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(q; q)168∞ =
(q169; q169)∞

(q; q)∞
+ 13J. (5.13.5)

It is easy to see from all these that

q7
(q169; q169)∞

(q; q)∞
= (q169; q169)∞

∞∑

n=0

p(n)qn+7 =
∞∑

n=1

{
n5σ1(n)− 4n4σ3(n)

−3n3σ5(n) + 6n2σ7(n)− 3nσ9(n) + 3τ(n)
}
qn + 13J.

(5.13.6)

It is easy to see by actual calculation that τ(13) ≡ 8 (mod 13) in virtue of
(5.7.6) and hence

τ(13n)− 8τ(n) ≡ 0 (mod 13). (5.13.7)

It follows from this and (5.13.6) that

∞∑

n=1

p(13n− 7)qn (q13; q13)∞ = 11

∞∑

n=1

τ(n)qn + 13J. (5.13.8)

It is not necessary to know all the details above in order to prove (5.13.8).
The proof can be very much simplified as follows; using (5.9.8) and (5.13.2)
we can show that

(Q3 −R2)7 = q
dJ

dq
+ 3(Q3 −R2) + 13J. (5.13.9)

It follows from this that

q7
(q169; q169)∞

(q; q)∞
= q

dJ

dq
+ 3

∞∑

n=1

τ(n)qn + 13J. (5.13.10)

From this we easily deduce (5.13.8).
Again picking out the terms q13, q26, q39, . . . in (5.13.8), we obtain [using

the congruence τ(13n) ≡ 8τ(n) (mod 13)]

∞∑

n=1

p(132n− 7)qn (q; q)∞ = 10

∞∑

n=1

τ(n)qn + 13J. (5.13.11)

It follows from (5.13.6) that if

∞∑

n=1

λ(n)qn = q7
(q169; q169)∞

(q; q)∞
,

so that λ(n+7) is the number of partitions of n as the sum of integers which
are not multiples of 169, then

λ(n)− n5σ1(n) + 4n4σ3(n) + 3n3σ5(n)

−6n2σ7(n) + 3nσ9(n)− 3τ(n) ≡ 0 (mod 13). (5.13.12)
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The results analogous to (5.10.7)–(5.10.13) in the case of modulus 13 are

τ(512λ−1n) ≡ 0 (mod 13)

if n is not a multiple of 5;

τ(7n) ≡ 0 (mod 13)

if n is not a multiple of 7;

τ(11n) ≡ 0 (mod 13)

if n is not a multiple of 11;

τ(13n)− 8τ(n) ≡ 0 (mod 13)

if n is any integer;
τ(194λ−1n) ≡ 0 (mod 13)

if n is not a multiple of 19;

τ(233λ−1n) ≡ 0 (mod 13)

if n is not a multiple of 23;

τ(296λ−1n) ≡ 0 (mod 13)

if n is not a multiple of 29; and so on.

5.14 Congruences for p(n) Modulo 13

The formulae (5.13.8) and (5.13.11) can be written as

∞∑

n=0

p(13n+ 6)qn = 11(q; q)11∞ + 13J ; (5.14.1)

and
∞∑

n=0

p(132n+ 162)qn = 23(q; q)23∞ + 13J. (5.14.2)

Since I began to write this paper I have found by a different method that if λ
be any positive odd integer then

∞∑

n=0

p

(
13λn+

11 · 13λ + 1

24

)
qn = −2(5λ−3)/2(q; q)11∞ + 13J ; (5.14.3)

and if λ be any positive even integer then
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∞∑

n=0

p

(
13λn+

23 · 13λ + 1

24

)
qn = −2(5λ−2)/2(q; q)23∞ + 13J. (5.14.4)

I shall reserve the discussion of these results to another paper.
A number of results such as the following can be deduced from (5.14.3)

and (5.14.4). [Note that

(q; q)11∞ = 1− 11q + 44q2 − 55q3 − 110q4 + 374q5 − 143q6 + · · ·

and

(q; q)23∞ = 1− 23q + 230q2 − 1265q3 + 3795q4 − 3519q5 − 16445q6 + · · · .
]

If λ be any positive odd integer then

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p

(
11 · 13λ + 1

24

)
+ 2(5λ−3)/2, p

(
35 · 13λ + 1

24

)
+ 2(5λ−1)/2,

p

(
59 · 13λ + 1

24

)
− 2(5λ+3)/2, p

(
83 · 13λ + 1

24

)
− 2(5λ+1)/2,

p

(
107 · 13λ + 1

24

)
− 2(5λ+7)/2, p

(
131 · 13λ + 1

24

)
− 2(5λ+1)/2,

p

(
155 · 13λ + 1

24

)
,

(5.14.5)
and so on are all divisible by 13; and if λ be any positive even integer then

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p

(
23 · 13λ + 1

24

)
+ 2(5λ−2)/2, p

(
47 · 13λ + 1

24

)
+ 2(5λ+6)/2,

p

(
71 · 13λ + 1

24

)
− 2(5λ+2)/2, p

(
95 · 13λ + 1

24

)
− 2(5λ+2)/2,

p

(
119 · 13λ + 1

24

)
− 2(5λ−2)/2, p

(
143 · 13λ + 1

24

)
+ 2(5λ+2)/2,

p

(
167 · 13λ + 1

24

)
,

(5.14.6)
and so on are all divisible by 13. In other words, if n is fixed and λ+ n is an
even integer then the residue of

p

(
13λ(12n− 1) + 1

24

)
(5.14.7)

for modulus 13 can be completely ascertained.
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General Theory

5.15 Congruences to Further Prime Moduli

Modulus �
where � is a prime greater than 3

We start with the two series

v�−1 + (−1)(�−1)/22(� − 1)δ�−1

∞∑

n=1

n�−2qn

1− qn
=
∑

K ′
	,mQ	Rm, (5.15.1)

where K ′
	,m is a constant integer and the summation extends over all positive

integral values of 	 and m (including zero) such that

4	+ 6m = � − 1;

and

v�+1 + (−1)(�+1)/22(� + 1)δ�+1

∞∑

n=1

n�qn

1− qn
=
∑

K	,mQ	Rm, (5.15.2)

where K	,m is a constant integer and the summation extends over all positive
integral values of 	 and m (including zero) such that

4	+ 6m = � + 1.

In both series, vs and δs are the numerator and the denominator of Bs in its
lowest terms, where

B2 =
1

6
, B4 =

1

30
, B6 =

1

42
, B8 =

1

30
, B10 =

5

66
, . . .

are the Bernoulli numbers. Now by von Staudt’s Theorem

δ�−1 ≡ 0 (mod�),

and also we have
n� − n ≡ 0 (mod�).

And so the left-hand side in (5.15.1) is of the form

c′ +�J, (5.15.3)

where c′ is a constant integer, while that in (5.15.2) is of the form

k + cP +�J, (5.15.4)

where c and k are constant integers.
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It appears that k can be taken as zero always. This involves the assertion
that

6v�+1 + (−1)(�+1)/2� + 1

2
δ�+1 ≡ 0 (mod�). (5.15.5)

I have not yet proved this result but in every particular case this can actually
be found to be true. Thus (5.15.4) can be replaced by

cP +�J. (5.15.6)

Now using (5.15.3), (5.15.6), and (5.9.8), we can show in particular cases that

(Q3 −R2)(�
2−1)/24 = q

dJ

dq
+ (Q3 −R2)

∑
k	,mQ	Rm +�J, (5.15.7)

where k	,m is a constant integer and the summation extends over all positive
integral values of 	 and m (including zero) such that

4	+ 6m = � − 13.

But it is obvious that

(q; q)�
2−1

∞ =
(q�

2

; q�
2

)∞
(q; q)∞

+�J. (5.15.8)

It follows from (5.15.7) and (5.15.8) that

q(�
2−1)/24 (q

�2

; q�
2

)∞
(q; q)∞

= q
dJ

dq
+ (Q3 −R2)

∑
k	,mQ	Rm +�J, (5.15.9)

where the remark about the summation in (5.15.7) applies here also. From
this we can always deduce in every particular case that

∞∑

n=1

p

(
n� +�

[�
24

]
− �2 − 1

24

)
qn+[�/24] (q�; q�)∞

= (Q3 −R2)1+[�/24]
∑

k	,mQ	Rm +�J, (5.15.10)

where k	,m is a constant integer and the summation extends over all positive
integral values of 	 and m (including zero) such that

4	+ 6m = � − 13 (5.15.11)

and [t] denotes as usual the greatest integer in t.
Even though all these results are very difficult to prove in general, they

can be easily proved when � ≤ 23.
[The condition (5.15.11) should be replaced by

4	+ 6m = � − 13− 12
[�
24

]
. (5.15.12)

It is understandable that Ramanujan had missed the last term in (5.15.12),
since he likely had calculated examples only for � ≤ 23.]
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5.16 Congruences for p(n) Modulo 17, 19, 23, 29, or 31

Moduli 17, 19, and 23

In these cases we can easily prove that

∞∑

n=1

p(17n− 12)qn (q17; q17)∞ = 7

∞∑

n=1

τ2(n)q
n + 17J, (5.16.1)

where

∞∑

n=1

τ2(n)q
n = Qq(q; q)24∞; (5.16.2)

∞∑

n=1

p(19n− 15)qn (q19; q19)∞ = 5

∞∑

n=1

τ3(n)q
n + 19J, (5.16.3)

where

∞∑

n=1

τ3(n)q
n = Rq(q; q)24∞;

and

∞∑

n=1

p(23n− 22)qn (q23; q23)∞ =

∞∑

n=1

τ5(n)q
n + 23J, (5.16.4)

where

∞∑

n=1

τ5(n)q
n = QRq(q; q)24∞. (5.16.5)

I have stated without proof in my previous paper18 that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑

n=1

τ2(n)

ns
=
∏

p

1

1− τ2(p)p−s + p15−2s
,

∞∑

n=1

τ3(n)

ns
=
∏

p

1

1− τ3(p)p−s + p17−2s
,

∞∑

n=1

τ4(n)

ns
=
∏

p

1

1− τ4(p)p−s + p19−2s
,

∞∑

n=1

τ5(n)

ns
=
∏

p

1

1− τ5(p)p−s + p21−2s
,

∞∑

n=1

τ7(n)

ns
=
∏

p

1

1− τ7(p)p−s + p25−2s
,

(5.16.6)

18 See [275, Equation (108)].
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where
∞∑

n=1

τ4(n)q
n = Q2q(q; q)24∞

and
∞∑

n=1

τ7(n)q
n = Q2Rq(q; q)24∞,

and p assumes all prime values. All these seem to be capable of proof as the
case of τ(n) by Mordell’s method.19

Now using (5.16.6) we can deduce from (5.16.1), (5.16.3), and (5.16.4) that

∞∑

n=1

p(n172 − 12)qn (q; q)∞ = c2

∞∑

n=1

τ2(n)q
n + 17J, (5.16.7)

∞∑

n=1

p(n192 − 15)qn (q; q)∞ = c3

∞∑

n=1

τ3(n)q
n + 19J, (5.16.8)

and
∞∑

n=1

p(n232 − 22)qn (q; q)∞ = c5

∞∑

n=1

τ5(n)q
n + 23J, (5.16.9)

where c2, c3, and c5 are constants.
I have found that there are formulae quite analogous to those for modulus

13 even in these cases. I shall reserve the discussion of these as well as those
for higher primes to another paper; but I shall consider in the II part of this
paper the analogous formulae for the smaller primes 5, 7, and 11.

The corresponding formulae for primes greater than 23 are not quite anal-
ogous. For instance in the cases of

Moduli 29 and 31
we have

∞∑

n=1

p(29n− 6)qn+1 (q29; q29)∞ = 8

∞∑

n=1

Ω2(n)q
n + 29J, (5.16.10)

where
∞∑

n=1

Ω2(n)q
n = Qq2(q; q)48∞;

and

∞∑

n=1

p(31n− 9)qn+1 (q31; q31)∞ = 10
∞∑

n=1

Ω3(n)q
n + 31J, (5.16.11)

where

19 loc. cit.
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∞∑

n=1

Ω3(n)q
n = Rq2(q; q)48∞.

The functions
∞∑

n=1

Ω2(n)

ns
,

∞∑

n=1

Ω3(n)

ns

are obviously not capable of a single product as in (5.16.6); but they are, as
a matter of fact, the differences of two such products.

5.17 Divisibility of τ (n) by 23

I have not yet investigated the residues of τ(n) for other moduli besides what
was stated before, but the case 23 seems to be (comparatively) simple. For it
appears that if

∞∑

n=1

λ(n)qn = q(q; q)∞(q23; q23)∞,

so that
τ(n)− λ(n) ≡ 0 (mod 23), (5.17.1)

then
∞∑

n=1

λ(n)

ns
=

1

1− 23−s

∏
1

∏
2

∏
3
, (5.17.2)

where ∏
1
=
∏

p

1

1− p−2s
,

with p assuming all prime values of the form20

p ≡ 5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22 (mod23) (5.17.3)

and ∏
2
=
∏

p

1

1 + p−s + p−2s
,

with p assuming all prime values of the form21

p ≡ 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18 (mod 23), (5.17.4)

except of the form 23a2 + b2, and

∏
3
=
∏

p

1

(1− p−s)2
,

20 This can be written as p11 ≡ −1 (mod 23).
21 This can be written as p11 ≡ 1 (mod 23).
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with p assuming all primes of the form 23a2+b2. Thus λ(n) can be completely
determined, and consequently the residues of τ(n) for modulus 23 can be
completely ascertained.

Suppose now that
{
tn = 0, τ(n) ≡ 0 (mod 23);

tn = 1, τ(n) �≡ 0 (mod 23).
(5.17.5)

Then it is easy to see from ( ) that

∞∑

n=1

tn
ns

=
∏

1

∏
2

∏
3
, (5.17.6)

where ∏
1
=
∏

p

1

1− p−2s
,

where p assumes all primes of the form (5.17.3),

∏
2
=
∏

p

1 + p−s

1− p−3s
,

where p assumes all primes of the form (5.17.4) except those of the form
23a2 + b2, and

∏
3
=
∏

p

1− p−22s

(1− p−s)(1− p−23s)
,

with p assuming all primes of the form 23a2 + b2.
It is easy to prove from (5.17.6) by quite elementary methods that

n∑

k=1

tk = o(n); (5.17.7)

and by transcendental methods that

n∑

k=1

tk = C

∫ n

1

dx

(log x)1/2
+O

(
n

(log n)r

)
, (5.17.8)

where r is any positive number and

C =
661/2

233/4
1− 2−2

1− 2−3

1− 3−2

1− 3−3

1− 13−2

1− 13−3

1− 29−2

1− 29−3
· · ·

× 1

{(1− 5−2)(1− 7−2)(1− 11−2)(1− 17−2) · · · }1/2

× 1− 59−22

1− 59−23

1− 101−22

1− 101−23

1− 167−22

1− 167−23
· · · ,
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with 2, 3, 13, . . . being primes of the form (5.17.4) except those of the form
23a2 + b2, and 5, 7, 11, 17, . . . being primes of the form (5.17.3), and 59, 101,
167, . . . being those of the form 23a2 + b2. Thus we see that τ(n) is almost
always divisible by 23.

We have also shown that among the values of τ(n), multiples of 3, 7, and 23
are more or less equally numerous, while the multiples of 5 are less numerous
than these and multiples of 2 are the most numerous.

Since

(1− p−s)(1− p11−s) = (1− p−2s)− (p11 + 1)(p−s − p−2s)

= (1− p−s)2 − (p11 − 1)(p−s − p−2s),

it is easy to see from (5.17.2) and (5.12.7) that if the prime divisors of n are
of the form (5.17.3) or of the form 23a2 + b2 then22

τ(n)− σ11(n) ≡ 0 (mod 15893), (5.17.9)

where 15893 = 23 · 691. If, in addition to the restrictions on the values of n
in (5.17.9), we impose the restriction that n is odd also, then it follows from
(5.12.26) that

τ(n)− σ11(n) ≡ 0 (mod 4068608),

with 4068608 = 23 · 256 · 691.

5.18 The Congruence p(121n − 5) ≡ 0 (mod 121)

Modulus 121

The case of modulus �2 seems to be much more complicated than the case of
modulus � even though the method is practically the same as may be seen
from the case of modulus 49. I shall now consider the case of modulus 121.

It is easy to show by using (5.9.2) that

(Q3 −R2)5 = P (Q3 − 3R2)(3P 3 − PQ+ 4R) + 4QR(4P 3Q− 3P 2R+ 2QR)

− 26P 5 + 23P 3Q+ 16P 2R− 22PQ2 + 9QR+ 121J. (5.18.1)

From this we can deduce that

q5
(q11; q11)11∞
(q; q)∞

=

∞∑

n=1

[
n4 {a1σ1(n) + b1σ11(n)}+ n3 {a2σ3(n) + b2σ13(n)}

+ n2 {a3σ5(n) + b3σ15(n)}+ n {a4σ7(n) + b4σ17(n)}
+ c1n

2τ2(n) + c2nτ3(n) + c3τ4(n)
]
qn + 121J, (5.18.2)

22 Some may be of one form and some may be of the other form.



130 5 Ramanujan’s Unpublished Manuscript on the Partition and Tau Functions

where the a’s, b’s, and c’s are constant integers and τ2(n), τ3(n), and τ4(n)
are the same as in (5.16.6). But it is easy to show that

⎧
⎪⎨

⎪⎩

τ2(n)− nσ3(n)

τ3(n)− nσ5(n) ≡ 0 (mod 11).

τ4(n)− nσ7(n)

(5.18.3)

It is easy to see from (5.16.6) that

τ4(11n)− τ4(11)τ4(n) ≡ 0 (mod 121), (5.18.4)

and by actual calculation we find that

τ4(11) ≡ 0 (mod 11). (5.18.5)

It is also obvious that

σ17(n)− σ7(n) ≡ 0 (mod 11). (5.18.6)

Now remembering (5.18.3)–(5.18.6) and picking out the terms q11, q22, q33, . . .
in ( ) we obtain

∞∑

n=1

p(11n− 5)qn (q11; q11)∞ = 11

∞∑

n=1

nσ7(n)q
n + 121J. (5.18.7)

It follows from this that

p(121n− 5) ≡ 0 (mod 121), (5.18.8)

and

p(11n− 5)− p(11n− 126)− p(11n− 247)

+ p(11n− 610) + · · · − 11nσ7(n) ≡ 0 (mod 121). (5.18.9)

5.19 Divisibility of τ (n) for Almost All Values of n

In concluding the first part of this paper I shall consider the numbers which
are the divisors of τ(n) for almost all values of n.

Suppose that �1, �2, �3, . . . are an infinity of primes such that

∞∑

n=1

1

�n
(5.19.1)

is a divergent series and also suppose that a2, a3, a5, a7, . . . assume some or
all of the positive integers (including zero) but that a�1 , a�2 , a�3 , . . . never
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assume the value unity. Then it is easy to show that the number of numbers
of the form

2a2 · 3a3 · 5a5 · 7a7 · · · (5.19.2)

not exceeding n is of the form
o(n). (5.19.3)

In particular, if a� never assumes the value unity for all prime values of �
of the form

� ≡ c (mod k), (5.19.4)

where c and k are any two integers which are prime to each other, then the
number of numbers of the form (5.19.2) is of the form

o(n) (5.19.5)

and more accurately is of the form

O

(
n

(logn)1/(k−1)

)
, (5.19.6)

where k is the same as in (5.19.4).
Thus for example if s be an odd positive integer, the number of values of n

not exceeding n for which σs(n) is not divisible by k, where k is any positive
integer, is of the form

o(n) (5.19.7)

and more accurately is of the form

O

(
n

(logn)1/(k−1)

)
. (5.19.8)

For if n be written in the form

2a2 · 3a3 · 5a5 · 7a7 · · ·

then we have

σs(n) =
∏

p

ps(1+ap) − 1

ps − 1
, p = 2, 3, 5, 7, 11, . . . .

Since s is odd, σs(n) is divisible by k at any rate when ap = 1 for all values
of p of the form

p ≡ −1 (mod k),

and hence the results stated follow. Thus we see that if s is odd, σs(n) is
divisible by any given integer for almost all values of n.

It follows from all these and the formulae in Sections 4, 8, 12, and 17 that

τ(n) ≡ 0 (mod 25 · 33 · 52 · 72 · 23 · 691) (5.19.9)



132 5 Ramanujan’s Unpublished Manuscript on the Partition and Tau Functions

for almost all values of n.
It appears that τ(n) is almost always divisible by any power of 2, 3, and

5. It also appears from Section 9 that there are reasons to suppose that τ(n)
is almost always divisible by 11 also. But I have no evidence at present to say
anything about the other powers of 7 and other primes one way or the other.

Among the values of τ(n), multiples of 2, 3, 5, 7, and 23 are very numer-
ous from the beginning, but multiples of 691 begin at a very late stage. For
instance, τ(n) is divisible by 23 for 132 values of n not exceeding 200, while
the first value of n for which τ(n) is divisible by 691 is 1381, and this is the
only such value of n among the first 5000 values.

II

5.20 The Congruence p(5n + 4) ≡ 0 (mod 5), Revisited

Moduli 5 and 25

In this second part we shall use J1, J2, J3 and G1, G2, G3 to denote functions
of q with integral powers of q as well as integral coefficients. These are the
same functions in the same section, unlike J . We shall also use J in the same
sense as in the first part.

We start with Euler’s identity

(q; q)∞ =

∞∑

n=−∞
(−1)nqn(3n−1)/2 (5.20.1)

and Jacobi’s identity

(q; q)3∞ =

∞∑

n=0

(−1)n(2n+ 1)qn(n+1)/2. (5.20.2)

It is easy to see from (5.20.1) that

(q1/5; q1/5)∞
(q5; q5)∞

= J1 − q1/5 + q2/5J2. (5.20.3)

Now cubing both sides, we obtain

∑∞
n=0(−1)n(2n+ 1)qn(n+1)/10

∑∞
n=0(−1)n(2n+ 1)q5n(n+1)/2

= (J3
1 − 3J2

2 q)− q1/5(3J2
1 − J3

2 q)

+ 3J1q
2/5(1 + J1J2)− q3/5(1 + 6J1J2) + 3J2q

4/5(1 + J1J2). (5.20.4)

But it is easy to see that

∑∞
n=0(−1)n(2n+ 1)qn(n+1)/10

∑∞
n=0(−1)n(2n+ 1)q5n(n+1)/2

= G1 + q1/5G2 + 5q3/5. (5.20.5)
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Hence

J1(1 + J1J2) = 0, 1 + 6J1J2 = −5, J2(1 + J1J2) = 0. (5.20.6)

These three equations give one and the same relation between J1 and J2, viz.

J1J2 = −1.

Using this we obtain

(q5; q5)∞
(q1/5; q1/5)∞

=
1

J1 − q1/5 + q2/5J2
=

(J4
1 + 3J2q) + q1/5(J3

1 + 2J2
2 q)

J5
1 − 11q + q2J5

2

+
q2/5(2J2

1 + J3
2 q) + q3/5(3J1 + J4

2 q) + 5q4/5

J5
1 − 11q + q2J5

2

(5.20.7)

by rationalizing the denominator J1 − q1/5 + q2/5J2. It follows from (5.20.7)
that

∞∑

n=0

p(5n+ 4)qn (q5; q5)∞ =
5

J5
1 − 11q + q2J5

2

. (5.20.8)

But we see from (5.20.3) that

(ωq1/5;ωq1/5)∞
(q5; q5)∞

= J1 − ωq1/5 + ω2q2/5J2, (5.20.9)

where ω5 = 1. Now writing the five values of ω in (20.21) and multiplying
them together we obtain

(q; q)6∞
(q5; q5)6∞

= J5
1 − 11q + q2J5

2 . (5.20.10)

It follows from this and (5.20.8) that

∞∑

n=0

p(5n+ 4)qn = 5
(q5; q5)5∞
(q; q)6∞

. (5.20.11)

It follows that
p(5n− 1) ≡ 0 (mod 5). (5.20.12)

Again the right-hand side in (5.20.11) is of the form

5
(q5; q5)4∞
(q; q)∞

+ 25J.

It follows from this and (5.20.12) that the coefficients of q4, q9, q14, . . . in
this are all multiples of 25 and consequently the coefficient of q5n−1 in the
left-hand side of (5.20.11) is a multiple of 25. In other words,

p(25n− 1) ≡ 0 (mod 25). (5.20.13)

It follows also from (5.20.11) that

∞∑

n=0

p(5n+ 4)qn = 5(q; q)19∞ + 125J.
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5.21 The Congruence p(25n + 24) ≡ 0 (mod 25),
Revisited

Modulus 125

Changing q to q1/5 in (5.20.11) and arguing as before, using (5.20.7) and
(5.20.10) we find that

∞∑

n=0

p(25n+ 24)qn = 52 · 63(q
5; q5)6∞
(q; q)7∞

+ 55 · 52q (q
5; q5)12∞
(q; q)13∞

+ 57 · 63q2 (q
5; q5)18∞
(q; q)19∞

+ 510 · 6q3 (q
5; q5)24∞
(q; q)25∞

+ 512q4
(q5; q5)30∞
(q; q)31∞

. (5.21.1)

Now

(q5; q5)6∞
(q; q)7∞

=

∞∑

n=0

(−1)n(2n+ 1)qn(n+1)/2(q5; q5)4∞ + 5J etc., (5.21.2)

and the coefficients of q5n−1, q5n−2, q5n−3 in
∑∞

n=0(−1)n(2n + 1)qn(n+1)/2

are easily seen to be zero or multiples of 5. It follows that the coefficients of
q5n−1, q5n−2, q5n−3 in the left-hand side of (5.21.1) are multiples of 125. In
other words,

p(125n− 1), p(125n− 26), p(125n− 51) ≡ 0 (mod 125). (5.21.3)

It is also easy to see from (5.21.1) that

∞∑

n=0

p(25n+ 24)qn = 75(q; q)23∞ + 125J. (5.21.4)

The right-hand side in (5.21.4) can be written in the form

75
(q; q)48∞

(q25; q25)∞
+ 125J. (5.21.5)

But it is easy to show that

(Q3 −R2)2 = −2

∞∑

n=1

(n3 − n)σ1(n)q
n + 5J. (5.21.6)

[To prove (5.21.6), we need Ramanujan’s formula [275, Table III], [281, p. 142],

6912

∞∑

n=1

n3σ1(n)q
n = 6P 2Q− 8PR+ 3Q2 − P 4.

Using this formula together with (5.1.7) and (5.1.5), we can readily prove that
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2

∞∑

n=1

(n3 − n)σ1(n)q
n = −1 + 2P 2 − P 4 + 5J.

On the other hand, from (5.1.5) and (5.1.6),

(Q3 −R2)2 = 1− 2P 2 + P 4 + 5J.

The last two equalities yield (5.21.6).] It follows that

∞∑

n=0

p(25n+ 24)qn+2 (q25; q25)∞ = 25

∞∑

n=1

(n3 − n)σ1(n)q
n + 125J. (5.21.7)

In other words,

p(25n− 26)− p(25n− 651)− p(25n− 1276)

+ p(25n− 3151) + · · · − 25(n3 − n)σ1(n) ≡ 0 (mod 125). (5.21.8)

p(199) is the coefficient of q7 in (5.21.2).

p(199) = 52 · 63 · 12195 + 52 · 52 · 60541 + 57 · 63 · 66862
+ 510 · 6 · 29575 + 512 · 6448 = 3646072432125.

5.22 Congruences for p(n) Modulo Higher Powers of 5

Moduli 54, 55, . . .

Changing again q to q1/5 in (5.21.1) and arguing as before using (5.20.7) and
(5.20.10) we can show that

∞∑

n=0

p(125n+ 99)qn =

25∑

r=1

ar
(q5; q5)6r−1

∞
(q; q)6r∞

, (5.22.1)

where the a’s are positive integers such that a1 = p(99) = 53 · 1353839 and
a2, a3, a4, . . . contain higher powers of 5 than a1 as factors. It is easy to see
from this that

∞∑

n=0

p(125n+ 99)qn = 4 · 53(q; q)19∞ + 54J. (5.22.2)

In this way arguing as before, we can show that if λ be any positive odd
integer, then

∞∑

n=0

p

(
19 · 5λ + 1

24
+ 5λn

)
qn =

5λ−1∑

ν=1

aν
(q5; q5)6ν−1

∞
(q; q)6ν∞

, (5.22.3)
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where the a’s are positive integers such that a2, a3, a4, . . . contain higher pow-
ers of 5 than a1 as factors; and if λ be a positive even integer then

∞∑

n=0

p

(
23 · 5λ + 1

24
+ 5λn

)
qn =

5λ−1∑

ν=1

aν
(q5; q5)6ν∞
(q; q)6ν+1

∞
, (5.22.4)

where the a’s have the same properties as before. We deduce from (5.22.3)
and (5.22.4) that if λ is a positive odd integer then

∞∑

n=0

p

(
19 · 5λ + 1

24
+ 5λn

)
qn = cλ · 5λ(q; q)19∞ + 5λ+1J, (5.22.5)

and if λ is a positive even integer then

∞∑

n=0

p

(
23 · 5λ + 1

24
+ 5λn

)
qn = cλ · 5λ(q; q)23∞ + 5λ+1J, (5.22.6)

where cλ in both cases is a constant.
We easily deduce from these that if λ is an odd integer greater than 1,

then ⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p

(
5λn− 5λ−1 − 1

24

)

p

(
5λn− 5λ+1 − 1

24

)
≡ 0 (mod 5λ)

p

(
5λn− 49 · 5λ−1 − 1

24

)
,

(5.22.7)

and if λ is a positive even integer, then

p

(
5λn− 5λ − 1

24

)
≡ 0 (mod 5λ). (5.22.8)

(λ may also be 1 in the second congruence of (5.22.7).)

5.23 Congruences for p(n) Modulo Higher Powers of 5,
Continued

We have seen that we can take c1 = 1, c2 = −2, c3 = 4 in (5.22.5) and (5.22.6).
It appears from Section 22 that cλ may probably be some simple function such
as (−2)λ. If we calculate a few more values of cλ, we can definitely know what
it is. Then we can make use of the formulae (5.22.5) and (5.22.6) to determine
completely the residues of

p

(
5λn− 5λ+1 − 1

24

)
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for odd values of λ and those of

p

(
5λn− 5λ − 1

24

)

for even values of λ for modulus 5λ+1. [To determine these residues, we need
the expansions

(q; q)19∞ = 1− 19q + 152q2 − 627q3 + 1140q4 + 988q5 − 9063q6

+ 14212q7 + 7410q8 − 44270q9 + 22781q10 + 38114q11

+ 36176q12 − 137256q13 − 154850q14 + 480605q15 + · · ·

and

(q; q)23∞ = 1− 23q + 230q2 − 1265q3 + 3795q4 − 3519q5 − 16445q6

+ 64285q7 − 64515q8 − 120175q9 + 354706q10 − 123763q11

− 407560q12 − 48530q13 + 817190q14 + 1464341q15 + · · ·

in, respectively, (5.22.5) and (5.22.6).] Thus for instance it follows immediately
from (5.22.5) and (5.22.6) that if λ is an odd integer, then

p

(
5λ − 5λ+1 − 1

24

)
− 5λcλ, p

(
2 · 5λ − 5λ+1 − 1

24

)
− 5λcλ,

p

(
3 · 5λ − 5λ+1 − 1

24

)
− 2 · 5λcλ, p

(
4 · 5λ − 5λ+1 − 1

24

)
+ 2 · 5λcλ,

p

(
5 · 5λ − 5λ+1 − 1

24

)
, p

(
6 · 5λ − 5λ+1 − 1

24

)
− 2 · 5λcλ,

p

(
7 · 5λ − 5λ+1 − 1

24

)
− 2 · 5λcλ, p

(
8 · 5λ − 5λ+1 − 1

24

)
− 2 · 5λcλ,

p

(
9 · 5λ − 5λ+1 − 1

24

)
, p

(
10 · 5λ − 5λ+1 − 1

24

)
,

p

(
11 · 5λ − 5λ+1 − 1

24

)
− 5λcλ, p

(
12 · 5λ − 5λ+1 − 1

24

)
+ 5λcλ,

p

(
13 · 5λ − 5λ+1 − 1

24

)
− 5λcλ, p

(
14 · 5λ − 5λ+1 − 1

24

)
+ 5λcλ,

p

(
15 · 5λ − 5λ+1 − 1

24

)
, p

(
16 · 5λ − 5λ+1 − 1

24

)
,

and so on are all multiples of 5λ+1; and if λ is an even integer, then

p

(
5λ − 5λ − 1

24

)
− 5λcλ, p

(
2 · 5λ − 5λ − 1

24

)
− 2 · 5λcλ,
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p

(
3 · 5λ − 5λ − 1

24

)
, p

(
4 · 5λ − 5λ − 1

24

)
,

p

(
5 · 5λ − 5λ − 1

24

)
, p

(
6 · 5λ − 5λ − 1

24

)
− 5λcλ,

p

(
7 · 5λ − 5λ − 1

24

)
, p

(
8 · 5λ − 5λ − 1

24

)
,

p

(
9 · 5λ − 5λ − 1

24

)
, p

(
10 · 5λ − 5λ − 1

24

)
,

p

(
11 · 5λ − 5λ − 1

24

)
− 5λcλ, p

(
12 · 5λ − 5λ − 1

24

)
− 2 · 5λcλ,

p

(
13 · 5λ − 5λ − 1

24

)
, p

(
14 · 5λ − 5λ − 1

24

)
,

p

(
15 · 5λ − 5λ − 1

24

)
, p

(
16 · 5λ − 5λ − 1

24

)
− 5λcλ,

and so on are all multiples of 5λ+1.

5.24 The Congruence p(7n + 5) ≡ 0 (mod 7)

Moduli 7 and 49

It is easy to see from (5.20.1) that

(q1/7; q1/7)∞
(q7; q7)∞

= J1 + q1/7J2 − q2/7 + q5/7J3. (5.24.1)

Now cubing both sides we obtain
∑∞

n=0(−1)n(2n+ 1)qn(n+1)/14

∑∞
n=0(−1)n(2n+ 1)q7n(n+1)/2

= (J3
1 + 3J2

2J3q − 6J1J3q) + q1/7(3J2
1J2 − 6J2J3q + J2

3 q
2)

+ 3q2/7(J1J
2
2 − J2

1 + J3q) + q3/7(J3
2 − 6J1J2 + 3J1J

2
3 q)

+ 3q4/7(J1 − J2
2 + J2J

2
3 q) + 3q5/7(J2 + J2

1J3 − J2
3 q) + q6/7(6J1J2J3 − 1).

But it is easy to see that
∑∞

n=0(−1)n(2n+ 1)qn(n+1)/14

∑∞
n=0(−1)n(2n+ 1)q7n(n+1)/2

= G1 + q1/7G2 + q3/7G3 − 7q6/7.

Hence ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

J1J
2
2 − J2

1 + J3q = 0,

J1 − J2
2 + J2J

2
3 q = 0,

J2 + J2
1J3 − J2

3 q = 0,

6J1J2J3 − 1 = −7.

(5.24.2)



5.25 Commentary 139

All these four equations give the two independent relations

J1J2J3 = −1,
J2
1

J3
+

J2
J2
3

= q. (5.24.3)

Now write (5.24.1) in the form

(ωq1/7;ωq1/7)∞
(q7; q7)∞

= J1 + ωq1/7J2 − ω2q2/7 + ω5q5/7J3, (5.24.4)

where ω7 = 1. Again writing the seven values of ω in (5.24.4) and multiplying
them together and using (5.24.3) we can show that

J7
1 + J7

2 q + J7
3 q

5 =
(q; q)8∞
(q7; q7)8∞

+ 14q
(q; q)4∞
(q7; q7)4∞

+ 57q2, (5.24.5)

J3
1J2 + J3

2J3q + J3
3J1q

2 = − (q; q)4∞
(q7; q7)4∞

− 8q, (5.24.6)

J2
1J

3
2 + J2

3J
3
1 q + J2

2J
3
3 q

2 = − (q; q)4∞
(q7; q7)4∞

− 5q. (5.24.7)

Again taking the reciprocals of both sides in (5.24.1) and rationalizing the
denominator, as we also did in Section 20, we can show that

∞∑

n=0

p(7n+ 5)qn = 7
(q7; q7)3∞
(q; q)4∞

+ 49q
(q7; q7)7∞
(q; q)8∞

. (5.24.8)

72 · 2546, 74 · 48934, 75 · 1418989, 77 · 2488800.

{p(47)q3 + · · · }(q49; q49)∞ = 7

∞∑

n=1

{
22n4σ0(n)− 21n2σ1(n)− τ(n)

}
qn + 73J.

5.25 Commentary

In the following commentary, the section numbers correspond to the sections
with the same numbers in Ramanujan’s manuscript. However, the designation,
Section 0, for the first batch of Ramanujan’s insertions is due to Ono and the
second author.

K.G. Ramanathan [270] also observed that τ(n) is even unless n is an odd
square. For an extensive discussion of this result, see a paper by M.R. Murty,
V.K. Murty, and T.N. Shorey [236], and for a generalization to the coefficients
of other modular forms, see another paper by the Murty brothers [235].

The congruences τ(7n − r) ≡ 0 (mod 7), r = 0, 1, 2, 4, were evidently first
proved in print by J.R. Wilton [341]. Hardy, in his book Ramanujan [166,
pp. 165–166], also gives a proof, as does Ramanathan [271].
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The congruences τ(23n − r) ≡ 0 (mod 23), where r is a quadratic residue
modulo 23, were also first established by Wilton [341]. D.H. Lehmer [205]
proved the following interesting theorem about congruences for τ(n) mod-
ulo 23.

Theorem 5.25.1. Let n be a positive integer, and let p1, p2, . . . , pt be those
prime factors of n (if any) that are not of the form u2+23v2, but are quadratic
residues of 23. Define n1 by

n =: n1

t∏

i=1

pαi
i ,

where pαi
i ‖n. Then

τ(n) ≡ σ11(n1)2
t3−t/2

t∏

i−1

sin
2π

3
(1 + αi) (mod 23).

According to Lehmer, this result is equivalent to a theorem of Wilton [341].

5.1 The Congruence p(5n + 4) ≡ 0 (mod 5)

Without the insertions, the beginning of the paper actually starts with the
definitions of the Eisenstein series P , Q, and R, which are denoted by L, M ,
and N , respectively, in Ramanujan’s notebooks [282]. Since the remainder
of this section was extracted for [280] with additional details supplied by
Hardy, we have not added more details here. However, it seems appropriate to
provide an introduction to congruences for the partition function in arithmetic
progressions, since a large portion of the manuscript focuses on this topic.

In this manuscript Ramanujan proves his well-known congruences for p(n),
namely, ⎧

⎪⎨

⎪⎩

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).

(5.1.13)

These congruences are the first cases of the infinite families

p(5kn+ δ5,k) ≡ 0 (mod 5k), (5.1.14)

p(7kn+ δ7,k) ≡ 0 (mod 7[k/2]+1), (5.1.15)

p(11kn+ δ11,k) ≡ 0 (mod 11k),

where δp,k :≡ 1/24 (mod pk). The literature on these congruences is extensive,
and there are now many proofs and approaches to them, especially for (5.1.14)
and (5.1.15), e.g., [17], [23], [97], [127], [137], [143], [146], [153], [154], [175],
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[176], [177], [181], [194], [239], [255], [267], and [336]. In particular, A. Folsom,
Z. Kent, and Ono [138] have devised a proof of all three general congruences
that does not depend on modular equations of any sort.

These congruences are indeed surprising, for they appear to be examples of
a very rare and isolated phenomenon. In fact, Ramanujan [279], [281, p. 230]
remarked that “It appears that there are no equally simple properties for
any moduli involving primes other than these three.” Over 80 years later, in
2003, S. Ahlgren and M. Boylan [5] confirmed Ramanujan’s suspicions and
proved that the congruences (5.1.13) are indeed the only ones when the prime
modulus of the arithmetic progression matches the prime modulus of the
congruence.

In view of Ramanujan’s claim, it is natural to ask about the frequency of
congruences for p(n) and the possibility of finding new ones. In this direction,
Ono has made great progress [254], [256] towards quantifying the rarity of
such congruences. Before Ono’s work, A.O.L. Atkin and J.N. O’Brien [24],
[27] had found a few congruences for p(n). For instance, Atkin proved that

p(17303n+ 237) ≡ 0 (mod 13).

It is reasonable to conclude that such congruences are quite rare, but not so
rare that one cannot find infinitely many such congruences. Indeed, Ono [258]
has found infinitely many classes of such congruences. In particular, he proved
that for any prime 	 ≥ 5, there exist infinitely many congruences of the form
p(An + B) ≡ 0 (mod 	). Ahlgren [3] extended Ono’s result by showing that
each prime 	 could be replaced by any prime power 	k. A delightful account of
their work and other recent work in the theory of partitions can be found in [7].
R. Weaver [338] has explicitly determined over 30,000 examples to illustrate
Ono’s theorem. For example,

p(11864749n+ 56062) ≡ 0 (mod 13).

5.2 Divisibility of τ (n) by 5

The congruence τ(n) ≡ nσ(n) (mod 5) was established by Wilton [340], and
is also proved in Hardy’s book [166, pp. 166–167]. This congruence was gen-
eralized by R.P. Bambah and S. Chowla [38], [113, pp. 676–681], who proved
that if n is not a multiple of 5, then

τ(n) ≡ 5n2σ7(n)− 4nσ9(n) (mod 53).

The asymptotic formula (5.2.7) can be proved using the method devised
by E. Landau in his paper [203] and book [204, Section 183] in determining
an asymptotic formula for the number of integers ≤ x that can be represented
as a sum of two squares. Alternatively, one can appeal to a general Tauberian
theorem, such as that proved by H. Delange [121]. However, as first pointed
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out by G.K. Stanley [325], the claim (5.2.8) is false. Indeed, using the ideas
of Landau [204, Sections 176–183], one can establish an asymptotic formula
of the shape

∑

n≤x

tn = C
x

(log x)1/4

(
1 +

r−1∑

n=1

cn
(log x)n

+O

(
1

(log x)r

))
, (5.2.9)

where r ≥ 2 is an integer and the numbers cn are constants, 1 ≤ n ≤ r − 1.
However, generally, these constants are not equal to those that would be
obtained by successive integrations by parts in (5.2.8). Ramanujan made a
similar error in his first letter to Hardy [281, p. xxiv], [68, p. 24] when he
claimed that the number of integers ≤ x that can be represented as a sum
of two squares is asymptotic to a constant times a similar integral. See either
Landau’s paper [203] or Hardy’s book [166, pp. 60–63] for a correct asymp-
totic formula with a proof. For a more detailed examination of Ramanujan’s
mistake and what led him to it, see the paper by P. Moree and J. Cazaran
[230]. In Sections 5.6, 5.11, and 5.17, Ramanujan records similar asymptotic
formulas, and, in contrast to the asymptotic formula in this section, calculates
the leading coefficients in each case.

Moree [228] has carefully and systematically examined all of Ramanujan’s
incorrect asymptotic formulas and has calculated the leading coefficient C in
each case; see also his paper with H.J.J. te Riele [231]. Set

D : =
∏

p≡1(mod 5)

1− p−4

1− p−5

∏

p≡±2(mod 5)

1− p−3

(1− p−2)1/2(1− p−4)3/4

×
∏

p≡4(mod 5)

1√
1− p−2

. (5.2.10)

Then Moree showed that the constant C in (5.2.9) is given by

C =
4

5Γ ( 34 )

√
π

(
2
√
5 log

(
3 +

√
5

2

))1/4
D,

where D is defined by (5.2.10). According to Ramanujan’s asymptotic formula
(5.2.8), the constant c2 is equal to 1

4 . Moree [228] numerically calculated c2
and found that c2 = 0.1501 . . . . In his paper [229], Moree considers Ramanu-
jan’s asymptotic formulas in a broader setting. In particular, he calculates the
constant term in the expansion about s = 1 of the logarithmic derivative of
many Dirichlet series with singularities (in most cases).

Stanley [325] attempted to correct Ramanujan’s work on the divisibility
of τ(n) by 5 but unfortunately made a large number of errors, which nullified
her attempts at correction. For a complete discussion of Stanley’s mistakes,
see the last portion of Moree’s interesting paper [228].
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R.A. Rankin [291] verified that the leading term, including the coefficient,
is correct in each of the asymptotic expansions cited by Ramanujan. Previ-
ously, in his dissertation, Rushforth [305] had verified the leading terms for
the cases in which τ(n) is divisible by 3 or 7.

5.4 Congruences Modulo 5k

The congruence (5.4.2) was first proved in print by Wilton [340] and later by
Bambah [33].

Rankin [289, p. 5] pointed out that Ramanujan’s conjecture (5.4.3) is false
for k ≥ 4. Observe that 443 is prime and that its powers are congruent to
±1, ±443 (mod 54). From Watson’s [337] table of values for τ(n), τ(443) ≡
−58 (mod 54). Hence, no integers a and b exist for which (5.4.3) holds with
n = 443 and k ≥ 4.

However, congruence (5.4.4) is true and is implied by each of two congru-
ences due to D.B. Lahiri [202, Equations (13.10), (13.11)], namely,

19008τ(n) ≡ −691σ13(n) + 27300σ11(n)− 691 {33(4n− 11)σ9(n)

+10(63n+ 400)σ7(n)− 21(860n− 463)σ5(n)

+60(252n2 − 226n+ 5)σ3(n) + (2520n− 431)σ(n)
}

(mod 210 · 35 · 53 · 7 · 691)

and

38016τ(n) ≡ −691σ13(n) + 54600σ11(n)− 691 {33(8n+ 19)σ9(n)

−30(179n− 200)σ7(n) + 3(2400n2 − 5880n− 12299)σ5(n)

+60(120n2 + 3039n− 1030)σ3(n)

−(151200n2 − 75600n+ 6301)σ(n)
}
(mod 211 · 36 · 53 · 7 · 691),

where in each case, n is coprime to the modulus. Moreover, (5.4.4) is equivalent
to the congruence

τ(n) ≡ 101nσ9(n) + 52 {nσ3(n) + (n− 1)σ(n)

−1
5 (nσ9(n)− n2σ7(n))

}
(mod 53),

if (n, 5) = 1, which was stated without proof by Bambah and Chowla [36],
[113, pp. 617–619].

The equality below (5.4.4) is a special instance of the relation

τ(pn+1) = τ(p)τ(pn)− p11τ(pn−1), n ≥ 1, (5.4.8)

where p is a prime, which, along with (5.7.6), was first proved by L.J. Mordell
[227] after Ramanujan had made these conjectures in his paper [275, Section
18], [281, p. 153].
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Proofs of either of the famous equalities (5.4.5) or (5.4.6) (or both) have
been given by, in chronological order, Ramanujan [276], [281, pp. 210–213],
Darling [120], Mordell [227], H. Rademacher and H.S. Zuckerman [267], [266,
pp. 186–202], Chowla [111], [113, pp. 611–612], D. Kruyswijk [201], W.N. Bai-
ley [31], [32], J.M. Dobbie [125], N.J. Fine [137], M.D. Hirschhorn [172], [177],
[176], S. Raghavan [269], H.H. Chan [97], and A. Milas [224]. These proofs
are quite varied. Some authors use q-series; some, such as Rademacher, Zuck-
erman, and Raghavan, use the theory of modular forms; Chan’s proof uses
a variant of one of Ramanujan’s trigonometric series identities in [275]. Mi-
las uses vertex operator algebras and obtains a remarkable generalization of
(5.4.6).

As indicated by Ramanujan, (5.4.6) is a companion to (5.4.5). Bailey,
Chan, Darling, Mordell, and Raghavan in the aforementioned papers have
also given proofs of (5.4.6). In contrast to (5.4.5), equality (5.4.6) can be
found in Ramanujan’s notebooks [55, p. 257, Entry 9(i)].

5.5 Congruences Modulo 7

Since this section was also extracted by Hardy for [280], we have not added
details here.

5.6 Congruences Modulo 7, Continued

The congruence (5.6.2) was established by Ramanathan [271], H. Gupta [164],
and Bambah [34].

The comments made in Section 5.2 about Ramanujan’s asymptotic formu-
las have analogues here. Although the asymptotic formula (5.6.7) is correct,
Ramanujan’s stronger claim (5.6.8) is false, since the constants obtained by
integrating by parts in (5.6.8) do not generally match those obtained in a
proper asymptotic expansion of

∑n
k=1 tk. In particular, in the notation of

(5.2.9), from (5.6.8), Ramanujan claims that c2 = 1
2 . Moree [228] numerically

calculated c2 and found it to be 0.3841 . . . .

5.7 Congruences Modulo 49

The content of this section can be found with more detail in Rushforth’s paper
[306]. (In the second equality of (5.7.1), Rushforth [306, Equation (7.3)] wrote
−2R2 for 2R2, and in (5.7.4) [306, penultimate equality on p. 407] Rushforth
wrote −2nσ3(n) for 2nσ3(n).)
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5.8 Congruences Modulo 49, Continued

Ramanujan’s proof of (5.8.1) can be found in his paper [276], [281], while
other proofs of (5.8.1) have been given by Mordell [227], Rademacher and
Zuckerman [267], Fine [137], F.G. Garvan [143], O. Kolberg [197], Raghavan
[269], and Chan [97]. Further identities akin to (5.8.1) and (5.8.2) have been
established by Rademacher [264], [266, pp. 252–279]. These authors then con-
tinue to prove (5.8.3). A systematic development of several new identities of
the type (5.8.3) has been given by Chan, H. Hahn, R.P. Lewis, and S.L. Tan
[100].

Equality (5.8.4) is true, and its truth is equivalent to the assertion that
η3(z)η3(7z) is a Hecke eigenform with complex multiplication in S3(Γ0(7), χ−7),
where Sk(Γ0(N), χ) denotes the complex vector space of cusp forms of weight k
with respect to the congruence subgroup Γ0(N) with Nebentypus character χ
[293] [195, p. 130]. (For future reference, we note that the notation Sk(Γ0(N)),
with χ absent, simply means that the character χ is trivial.) Here the char-
acter χ−7 denotes the usual Kronecker character for the field Q(

√
−7). That

this form is an eigenform follows immediately from the fact that this space is
one-dimensional [118]. To deduce (5.8.4) in a more elementary fashion, first
notice that Jacobi’s identity

q(q8; q8)3∞ = η3(8z) =

∞∑

n=0

(−1)n(2n+ 1)q(2n+1)2

implies that

η3(8z)η3(56z) =
∞∑

x,y=0

(−1)x+y(2x+ 1)(2y + 1)q(2x+1)2+7(2y+1)2 .

The proof of Ramanujan’s claim now follows after a straightforward compu-
tation.

The claims regarding the Euler product expansions Π1 and Π2 were estab-
lished by H.H. Chan, S. Cooper, and W.-C. Liaw [99], who gave two different
proofs. These authors also generalized their results by obtaining formulas
analogous to Π1 and Π2 for η3(aτ)η3(bτ) when a+ b = 8.

In regard to the congruence (5.8.6), we remark that O. Kolberg [199]
proved the beautiful congruence

τ(n) ≡ nσ9(n) (mod 49), if
(n
7

)
= −1.

5.9 The Congruence p(11n + 6) ≡ 0 (mod 11)

This proof is given in more detail in [280]. However, the proof can be sim-
plified using a further idea of Ramanujan introduced in Section 13; see our
commentary below.
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5.10 Congruences Modulo 11, Continued

Equality (5.10.4) is true, and its truth is equivalent to the assertion that
η2(z)η2(11z) is an eigenform of the Hecke operators acting on S2(Γ0(11))
[139, p. 432]. That this form is an eigenform follows immediately from the
fact that this space is one-dimensional.

Some of Ramanujan’s congruences for τ(n) are immediate consequences
of its multiplicative properties. For instance, Ramanujan [275], [281, p. 153,
Equation (103)] conjectured and Mordell [227] proved that if m and n are
relatively prime integers, then

τ(mn) = τ(m)τ(n). (5.10.14)

For example, the congruences (5.10.12) and (5.10.13) follow easily, since
τ(19) = 10661420 ≡ 0 (mod 11) and τ(29) = 128406630 ≡ 0 (mod 11). Other
congruences follow from (5.4.8) or from (5.4.8) and (5.10.14) together.

In 1969, P. Deligne [122] proved Serre’s conjecture [311] on the existence of
	-adic Galois representations ρ	 attached to modular forms on Γ0(N). Then, in
1972, Swinnerton-Dyer [326] determined the possible images of ρ̃	, the reduc-
tion (mod 	) of ρ	, and showed that “small” images imply certain congruences
for the coefficients of modular forms.

However, in general, the Galois groups that occur are mostly nonabelian
(and even nonsolvable). In these cases there cannot be a congruence of the
form

τ(p) ≡ c (mod 	),

where the primes p constitute those primes in any given arithmetic progression
containing infinitely many primes [326, Lemma 7]. In particular, for τ(p), such
congruences exist only for the primes 	 ∈ {2, 3, 5, 7, 23, 691}. Although this
implies that there are no further Ramanujan-type congruences for τ(p), it
turns out that for every positive integer M , there is a positive Frobenian set
of primes with positive density for which [314]

τ(p) ≡ 0 (modM).

This follows from the Chebotarev density theorem and the existence of Galois
representations. As a consequence, it follows that

τ(n) ≡ 0 (modM)

for almost every positive integer n.
The existence of these representations and their study has been at the

forefront of arithmetic geometry ever since Serre formulated his original con-
jectures. Every congruence for τ(n) involving divisor functions, and the con-
gruence

τ(n) ≡ 0 (mod 23)

for
(

n
23

)
= −1, follows from this theory. For more details, readers should

consult [122], [310], [311], [326], [327], [328], [329].
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5.11 Divisibility by 2 or 3

Ramanujan’s speculation that p(n) is odd more often than it is even is not
substantiated by more extensive calculations. Indeed, it is a long outstanding
conjecture that asymptotically p(n) is equally often even and odd. In Sections
5.1, 5.5, 5.9, and 5.11, based on a table of values for p(n), 1 ≤ n ≤ 200, com-
puted by P.A. MacMahon, Ramanujan offers conjectures on the distribution
of p(n) modulo 5, 7, 11, and 3, respectively. We examine these conjectures in
detail.

IfD(r,M) denotes the proportion of integers n for which p(n) ≡ r (modM)
(assuming that such densities exist), Ramanujan conjectured (in Sections 5.11,
5.11, 5.1, 5.5, and 5.9, respectively) that

D(0, 2) < D(1, 2),

D(i, 3) = 1
3 , for 0 ≤ i ≤ 2,

D(i, 5) =

{
1
3 , if i = 0,
1
6 , if 1 ≤ i ≤ 4,

D(i, 7) =

{
1
4 , if i = 0,
1
8 , if 1 ≤ i ≤ 6,

D(i, 11) =

{
1
6 , if i = 0,
1
12 , if 1 ≤ i ≤ 10.

From elementary considerations, we show that Ramanujan’s conjectures
for D(i,M),M = 5, 7, 11, are unlikely to be true. Remove the values n =
5k + 4, 7k + 5, 11k + 6, from consideration when M = 5, 7, 11, respectively.
Assuming that the remaining values of p(n) are distributed randomly among
the M residue classes in each of these three cases, we would expect that

D(i,M) =

⎧
⎨

⎩

2M − 1
M2 , if i = 0,

M − 1
M2 , if 1 ≤ i ≤ M.

In particular, we expect that D(0, 5) = 9
25 and D(i, 5) = 4

25 , 1 ≤ i ≤ 4,
in contrast to Ramanujan’s conjectures. Similar discrepancies exist for M =
7, 11.

Let δ(r,M) denote the proportion of integers n ≤ 100000 for which p(n) ≡
r (modM). Here are some values of δ(r,M) for M ∈ {2, 3, 5, 7, 11, 13}.
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r δ(r, 2) δ(r, 3) δ(r, 5) δ(r, 7) δ(r, 11) δ(r, 13)

0 0.498 0.333 0.362 0.272 0.174 0.080
1 0.502 0.332 0.158 0.121 0.083 0.078
2 ∗ 0.334 0.161 0.122 0.083 0.076
3 ∗ ∗ 0.160 0.122 0.082 0.077
4 ∗ ∗ 0.158 0.122 0.084 0.077
5 ∗ ∗ ∗ 0.120 0.083 0.076
6 ∗ ∗ ∗ 0.120 0.083 0.075
7 ∗ ∗ ∗ ∗ 0.081 0.077
8 ∗ ∗ ∗ ∗ 0.082 0.076
9 ∗ ∗ ∗ ∗ 0.081 0.078
10 ∗ ∗ ∗ ∗ 0.082 0.075
11 ∗ ∗ ∗ ∗ ∗ 0.076
12 ∗ ∗ ∗ ∗ ∗ 0.077

As this data suggests, if the densities δ(r,M) are well defined, then Ra-
manujan’s conjectures are mostly incorrect. The data suggests that he may
be correct when M = 3, but not for any other values. At present, very little
is known about the densities δ(r,M) apart from lower bounds for δ(0,M) for
those M possessing congruences of the sort discussed in the commentary for
Section 5.1. Several papers have been written obtaining lower bounds for the
number of times p(n) is odd or even. These authors include S. Ahlgren [1],
[2], J.-L. Nicolas, I.Z. Ruzsa, A. Sárközy, and Serre [251], Nicolas and Sárközy
[252], Berndt, Yee, and Zaharescu [71],[72], Nicolas [247], [248], and Ono [260].
Currently, the best results are

#{n ≤ X : p(n) ≡ 0 (mod 2)} ≥ 0.28
√
X(log logX)1/2, (5.11.12)

#{n ≤ X : p(n) ≡ 1 (mod 2)} �K

√
X(log logX)K

logX
, (5.11.13)

#{n ≤ X : p(n) �≡ 0 (modM)} �
√
X

logX
,

where K is any positive number. The first two results are due to Nicolas [248],
while the last is due to Ahlgren [2]. We remark that Serre [251] proved the
more general result

#{n ≤ X : p(an+ b) ≡ 0 (mod 2)}√
X

→ ∞,

as X → ∞, for any pair of positive integers a, b. On the other hand, Ono [258]
has shown that if M ≥ 5 is prime, then

#{n ≤ X : p(n) ≡ 0 (modM)} �M X.

The methods of Ahlgren, Ono, and Serre are based on the theory of modular
forms. However, working in the ring of formal power series in one variable
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over the field of two elements Z/2Z, Berndt, Yee, and A. Zaharescu [71], [72]
developed new elementary methods for deriving lower bounds for both the
number of even values and the number of odd values taken by a variety of
partition functions, many of which cannot be approached through the theory
of modular forms.

In a similar direction, M. Newman [240] conjectured that every positive
integer M has the property that each residue class m (modM) has infinitely
many integers n for which p(n) ≡ m (modM). Atkin [24], Kolberg [198], and
Newman [240] verified this conjecture for each M ∈ {2, 5, 7, 13}, Hirschhorn
and M.V. Subbarao [182] verified it for M = 16, and Hirschhorn [174] proved
it for M = 12, 40. Because of the validity of (5.14.3) and (5.14.4), Ramanujan
had also proved this conjecture when M = 13. Motivated by Ramanujan’s
work, Ono [258] proved Newman’s conjecture for every prime M < 1000,
with the exception of M = 3. He also found a simple criterion for verifying
Newman’s conjecture for any primeM ≥ 5. Carefully studying the filtration of
certain modular forms related to the partition function, Ahlgren and Boylan
[5] established Newman’s conjecture for every prime modulus M , except for
M = 3. Then in a sequel to [5], they [6] strengthened their former result by
proving Newman’s conjecture for every prime power 	j , j ≥ 1. Moreover, they
established a quantitative result, namely, for each prime 	 ≥ 5,

#{0 ≤ n ≤ X : p(n) ≡ r (mod 	j)} �r,	j

{√
X/ logX, if r �≡ 0 (mod 	j),

X, if r ≡ 0 (mod 	j),

(5.11.14)
with the case j = 1 being proved in [5] and the general case being established
in [6].

The equality (5.11.6) can be found in a fragment published with Ramanu-
jan’s lost notebook [283, p. 354, Equation (1.42)]. A proof may be found in
Berndt’s paper [59, Entry 21] or in Chapter 18 of [15].

The congruence (5.11.10) has been proved several times in the literature.
Most frequently, it is given in the equivalent formulation

τ(n) ≡
{
σ(n) (mod 3), if (3, n) = 1,

0 (mod 3), if 3 | n.

For proofs, see papers by D.P. Banerji [42], Bambah and Chowla [35], [113,
pp. 622–623], Gupta [163], and Bambah, Chowla, Gupta, and Lahiri [41],
[113, pp. 627–630]. Bambah and Chowla [38], [113, pp. 676–681] proved the
generalization

τ(n) ≡ (n2 + k)σ7(n) (mod 34), (3, n) = 1,

where k = 0 if n ≡ 1 (mod 3), and k = 9 if n ≡ 2 (mod 3).
The asymptotic formulas in (5.11.11) need to be corrected in the same

manner that the asymptotic formulas in Sections 5.2 and 5.6 need to be recast.
The constant c2 in (5.2.9) according to Ramanujan’s formula (5.11.11) should
be equal to 1

2 . Moree [228] determined that c2 = 0.2325 . . . .
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5.12 Divisibility of τ (n)

The sums
∑∞

n=1 n
aqn, where a is a positive integer, can be explicitly evaluated

in terms of Eulerian polynomials [54, p. 113, Entry 4].
Bambah, Chowla, and Gupta [40], [113, pp. 631–632] and Bambah, Chowla,

Gupta, and Lahiri [41], [113, pp. 627–630] proved the congruence

τ(n) ≡ σ(n) (mod 8), if n is odd,

which, in fact, is implied by the first congruence in (5.12.1).
We have been unable to find the identity (5.12.2) in the literature prior to

the work of Ramanujan. On page 257 in his second notebook [282], Ramanujan
actually offers a general formula for

S2r :=

∞∑

n=1

n2rqn

1 + qn + q2n
,

which was first proved by Berndt, S. Bhargava, and Garvan [61], [58, p. 143].
The values of S2r, 1 ≤ r ≤ 4, are explicitly given by Ramanujan. The formula
for S2 is given without proof in an equivalent form in a paper by J.M. Borwein
and P.B. Borwein [79], and this equivalent formula is proved in [80] by the
Borweins and Garvan. A particularly simple proof of (5.12.2), based on an
identity of Fine, has been given by S.H. Son [318, Lemma 2.6].

A proof of the first congruence in (5.12.3) was given by Bambah and
Chowla [37], [113, pp. 633–634]. The second congruence in (5.12.3) was estab-
lished in another paper by the same authors [38], [113, pp. 676–681].

Bambah and Chowla [37], [113, pp. 633–634] proved the second congruence
in (5.12.4).

The first proof in print of (5.12.7) was evidently given by Wilton [340].
Later proofs were found by Watson [334] and Lehmer [206].

As with corresponding results in Sections 5.2, 5.6, and 5.11, the asymptotic
formula (5.12.8) needs to be corrected. Watson [334] established that the first-
order term in (5.12.8) is correct, but as we previously pointed out, the result
(5.12.8) is not correct in general. The coefficient c2 in (5.2.9), according to
Ramanujan, should be equal to 1/690, but in fact, from Moree’s work [228],
c2 = 0.0006 . . . . As Moree [228] indicates, the constant C can be explicitly
written down, but it is very complicated. Numerically, C = −0.5717 . . . .

Bambah and Chowla [39], [113, pp. 644–651] gave the first published proof
of (5.12.26).

The congruence below (5.12.26) is false, in general. For example, it is false
for n = 1, 3, 4, 5. However, if we require that n be twice an odd number, then
the result is true. To see this, use (5.12.26) in (5.12.12) to deduce immediately
that for odd n,

τ(2n) + 24σ11(n) ≡ 0 (mod 2048). (5.12.1)

For odd n, write n =
∏r

i=1 p
αi
i , pi prime, pi �= pj for i �= j, and αi > 0 for

1 ≤ i, j ≤ r. Then, if k > 0 and n is odd,
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σk(2n) =

r∏

i=1

p
k(αi+1)
i − 1

pki − 1
· 2

2k − 1

2k − 1
= σk(n)(2

k + 1) ≡ σk(n) (mod 2k).

Hence, from (5.12.1) and our calculation above, we conclude that for n odd,

τ(2n) + 24σ11(2n) ≡ 0 (mod 2048).

5.13 Congruences Modulo 13

In Sections 5.2, 5.6, 5.10, 5.11, and 5.13, Ramanujan considers the t-regular
partition functions λ(n) whose generating function is given by

∞∑

n=0

λ(n)qn =

∞∑

n=0

bt(n)q
n :=

(qt; qt)∞
(q; q)∞

.

The dependence of λ on t is always clear from the context. For instance, in
Section 5.2, he considers the case t = 25. In this case he shows that λ(n) is
almost always a multiple of 5. A paper by B. Gordon and Ono [157] makes con-
siderable progress in describing this phenomenon for all t. Let pa1

1 pa2
2 · · · pam

m

be the prime factorization of t. By [157, Theorem 1], if pi is a prime for which
pai

i ≥
√
t, then for every positive integer k, almost every integer n has the

property that bt(n) is a multiple of pki . This theorem immediately implies all
of Ramanujan’s claims of this sort for the functions λ(n).

Equality (5.13.8) is the first of a series of remarkable equalities, the re-
mainder of which are addressed in the next section. It was first proved in
print by Zuckerman [353] and W.H. Simons [317]. The details of Ramanujan’s
proof of (5.13.8) are adequate, but since those for (5.13.9) were not supplied
by Ramanujan, we do so here. We follow the presentation of Rushforth [305].

If the form of (5.13.9) is correct, then it must be true that the right side
of (5.13.3) can be written in the form

aϑP 5 + bϑP 3Q+ cϑP 2R+ dϑPQ2 + eϑQR+ f(Q3 −R2) + 13J, (5.13.14)

for certain constants a, b, c, d, e, f , where ϑ = q d
dq

. Using the differential equa-

tions (5.9.8), we see that (5.13.14) can be written in the form

{−5aP 4 − 3bP 2Q− 2cPR− dQ2}(P 2 −Q)

+{−4bP 3 + 5dPQ− 4eR}(PQ−R)

+{−6cP 2 − 6eQ}(PR−Q2) + f(Q3 −R2) + 13J, (5.13.15)

where upon applying the differential operator ϑ in (5.13.14), we multiplied
by −12 and remembered that we are taking congruences modulo 13. If we
apply the distributive law throughout (5.13.15), collect like terms, and equate
coefficients of corresponding terms in (5.13.3), we obtain a set of congruence
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relations from which the values of a, b, c, d, e, and f can be obtained. More
precisely, we find that

a = b = e = 1, and c = d = f = 3. (5.13.16)

Hence, from (5.13.3) and (5.13.14)–(5.13.16),

−5P 6 − 2P 4Q+ 6P 3R− 6P 2Q2 − 6PQR− (Q3 −R2) + 13J

= ϑP 5 + ϑP 3Q+ 3ϑP 2R+ 3ϑPQ2 + ϑQR+ 3(Q3 −R2) + 13J

= q
dJ

dq
+ 3(Q3 −R2) + 13J,

which is what we sought to prove.
Now from (5.13.3), (5.13.9), (5.13.5), and (5.13.4), it follows that

q7(q169; q169)∞
(q; q)∞

= −q
dJ

dq
+ 3

∞∑

n=1

τ(n)qn + 13J. (5.13.17)

The coefficient of q13n, n ≥ 1, in (5.13.17) is clearly a multiple of 13, and so
extracting those terms arising from q13n in (5.13.17) and replacing q13 by q,
we deduce (5.13.8). Extracting those terms in (5.13.8) where the powers are
multiples of 13, replacing q13 by q, and using (5.13.7), we deduce that

(q; q)∞

∞∑

n=1

p(n · 132 − 7)qn = 10

∞∑

n=1

τ(n)qn + 13J. (5.13.18)

Lastly, we can clearly rewrite (5.13.8) and (5.13.18) in the respective forms

∞∑

n=0

p(13n+ 6)qn = 11(q; q)11∞ + 13J

and
∞∑

n=0

p(132n+ 162)qn = 23(q; q)23∞ + 13J,

which are (5.14.1) and (5.14.2), respectively, in the next section.
We remarked briefly in our commentary on Section 5.9 that Ramanujan’s

proof of p(11n+6) ≡ 0 (mod 11), extracted by Hardy in [280], can be somewhat
simplified using the ideas in the present section. In particular, Ramanujan and
Hardy showed that [280], [281, p. 237, Equation (5.2)]

P 5 − 3P 3Q− 4P 2R+ 6QR = q
dJ

dq
+ 11J. (5.13.19)

Using the differential equations (5.9.8), we easily find that
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P 5 − 3P 3Q− 4P 2R+ 6QR = {P 3 + 3PQ+ 5R}(P 2 −Q)− 5P 2(PQ−R)

− 3P (PR−Q2) + 11J

= {P 3 + 3PQ+ 5R}ϑP − 4P 2ϑQ+ 5PϑR+ 11J

= 3ϑP 4 − 4ϑP 2Q+ 5ϑPR+ 11J

= q
dJ

dq
+ 11J,

which provides an easier proof of (5.13.19) than the one given in [280].

5.14 Congruences for p(n) Modulo 13

The claims (5.14.1)–(5.14.6) are among the most fascinating results in the
unpublished manuscript. For example, these results indicate that

∞∑

n=0

p(13n+ 6)q24n+11 ≡ 11η11(24z) (mod 13), q = e2πiz.

Newman [239] proved some of these claims. However, Ono [258] first showed
that this phenomenon also holds with respect to other moduli. In particular,
if m ≥ 5 is prime and k is a positive integer, then

∞∑

n=0

p

(
mkn+ 1

24

)
qn

is the reduction modulo m of a holomorphic cusp form with weight
(m2−m− 1)/2. This implies that results like (5.14.1)–(5.14.6) exist for every
prime m ≥ 5, not just for m = 13. Moreover, using the theory of Hecke oper-
ators of half-integral weight, the Shimura correspondence, and the theory of
Galois representations, Ono [258] proved that for every prime m ≥ 5, there
are integers 0 ≤ b < a for which

p(an+ b) ≡ 0 (modm)

for every nonnegative integer n.

5.15 Congruences to Further Prime Moduli

In Section 5.15 Ramanujan gives a brief description of the method he employs
to obtain generating functions of the type

∑
p(�n+ b�)qn (mod�), (5.15.13)
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where � > 3 is prime. Let Bk denote the kth Bernoulli number in contem-
porary notation. Note that Ramanujan’s convention for Bernoulli numbers is
different from the contemporary one in which the Bernoulli numbers Bk are
defined by

x

ex − 1
=

∞∑

k=0

Bk

k!
xk, |x| < 2π. (5.15.14)

Ramanujan’s claims about the generating function (5.15.13) have been
proved by Ahlgren and Boylan [5]. We briefly describe their result, although
we do not give all details. As usual, set q = e2πiz, Im z > 0. Let 	 ≥ 5 denote
a prime and let j be a positive integer. Define β	,j to be the unique positive
integer such that

24β	,j ≡ 1 (mod 	j).

Ahlgren and Boylan then define a positive integer k	,j in terms of 	, j, and
β	,j , which is too complicated to relate here. Lastly, Mk denotes the space of
all holomorphic modular forms of weight k on the full modular group SL2(Z).
We now state their theorem.

Theorem 5.15.1. If 	 ≥ 5 is a prime and j is a positive integer, then there
exists a modular form F	,j(z) ∈ Mk�,j

with integral coefficients such that

∞∑

n=0

p(	jn+ β	,j)q
n ≡ (q; q)

(24β�,j−1)/	j

∞ · F	,j(z) (mod 	j). (5.15.15)

As Ramanujan claims, (5.15.3) and (5.15.4) are easy deductions from Fer-
mat’s little theorem and the von Staudt–Claussen theorem. However, the
claim that k = 0 in (5.15.4) is not entirely clear. In fact, this is another
of the claims in the manuscript that Ramanujan admits still require proof.

Proposition 5.15.1. Ramanujan’s claim that k ≡ 0 (mod�) in (5.15.4) is
true.

Proof. A simple calculation verifies Ramanujan’s assertion that the truth of
(5.15.5) implies that k ≡ 0 (mod�). In particular, it suffices to prove that

12v�+1 + (−1)(�+1)/2δ�+1 ≡ 0 (mod�). (5.15.16)

Using the well-known Voronöı congruences [184, p. 237, Proposition 15.2.3],
we find, for every integer a coprime to �, that

(a2 − 1)v�+1 ≡ a · (−1)(�−1)/2δ�+1

�−1∑

j=1

j

[
ja

�

]
(mod�),

since the sign of B2k is (−1)k+1 for every positive integer k. Therefore we find
that
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(
a2 − 1

a

)
v�+1 + (−1)(�+1)/2δ�+1

�−1∑

j=1

j

[
ja

�

]
≡ 0 (mod�). (5.15.17)

In view of (5.15.16) and (5.15.17) it suffices to prove that for each integer a
coprime to �,

�−1∑

j=1

j

[
ja

�

]
≡ a2 − 1

12a
(mod�). (5.15.18)

We now prove (5.15.18) by examining Dedekind sums. If k is a positive
integer, and h is coprime to k, then the Dedekind sum s(h, k) is defined by

s(h, k) :=

k−1∑

j=1

j

k

(
hj

k
−
[
hj

k

]
− 1

2

)
.

It is easy to verify that

12a�s(a,�) =
12a2

�
· �(� − 1)(2� − 1)

6
− 12a

�−1∑

j=1

j

[
ja

�

]
− 6a · �(� − 1)

2
.

However, by [22, p. 64, Theorem 3.8], it is known that

12a�s(a,�) ≡ a2 + 1 (mod�),

and so we find that

a2 + 1 ≡ 2a2 − 12a

�−1∑

j=1

j

[
ja

�

]
(mod�).

This is (5.15.18), and this completes the proof of Ramanujan’s claim. ��

A proof of the previous proposition has also been given by Swinnerton-
Dyer [326, Theorem 2(i)].

Let
Δ(z) = q(q; q)24∞, q = e2πiz,

and let

ϑ = q
d

dq
.

In (5.15.7), Ramanujan remarks that if p > 3 is an odd prime, then the
following theorem is true.

Theorem 5.15.2. The function

Δ(z)(p
2−1)/24 ≡ ϑ(J) + F (mod p),

where J and F are modular forms over SL2(Z) and the weight of F is p− 1.
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The first proof of this theorem arose from correspondence of H.H. Chan
with Serre and was communicated to the second author by Chan in 2000 [98].
Since the proof of Chan and Serre has never been published, we present it
here. The proof of Theorem 5.15.2 is a consequence of the following theorem
of Serre.

Theorem 5.15.3. Let f(q) be a modular form of weight k over SL2(Z), with
integral coefficients. If k ≡ 0 (mod p− 1) and k < (p− 1)2, then

f(q) ≡ ϑ(J) + F (mod p),

where J and F are modular forms on SL2(Z) and the weight of F is p− 1.

Before we give a proof of Theorem 5.15.3, we need a few definitions. Let
Mk be the space of modular forms of weight k over SL2(Z) with p-integral

coefficients. If f ∈ Mk then the reduction f̃ of f modulo p belongs to the
algebra of formal power series Fp[[q]], with Fp = Z/pZ. We denote the set

{f̃ | f ∈ Mk} by M̃k. The space Mk is stable under the action of the Hecke
operators Tl and Tp. By reduction modulo p, we see that Tl and Tp act on

M̃k. Since Tp ≡ U (mod p), where

U

( ∞∑

n=0

anq
n

)
=

∞∑

n=0

apnq
n, (5.15.19)

we conclude that U is an operator on the space M̃k, and therefore also on the
space

M̃ [α] =
⋃

k∈[α]

M̃k, [α] ∈ Z/(p− 1)Z.

In fact, U “contracts” M̃k. More precisely, we have the following theorem of
Serre [312, Theorem 6].

Theorem 5.15.4. (i) If k > p+ 1, then U maps M̃k to M̃k′ , where k′ < k.

(ii) The restriction of U on M̃p−1 is bijective.

If f ∈ Mk, then it may happen that there exists some k′ < k such that
f̃ = g̃ with g ∈ Mk′ . The smallest integer k′ ≤ k such that f̃ = g̃ is called the
filtration of f , denoted by w(f).

The following lemma of Serre [312, Lemma 2] is the key to the proof of
Theorem 5.15.3.

Lemma 5.15.1. (i) We have w(U(f)) ≤ p+ (w(f)− 1)/p.
(ii) If w(f) = p− 1, then w(U(f)) = p− 1.

We now give Serre’s proof of Theorem 5.15.3.
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Proof. Let f be the function satisfying the hypothesis of Theorem 5.15.3.
Consider U(f). Its weight is congruent to 0 modulo (p − 1) and by Lemma
5.15.1 (a), the filtration w(U(f)) is at most p + (k − 1)/p < 2(p − 1), since
k < (p−1)2. Hence w(U(f)) is equal to 0 or p−1. In both cases, by Theorem
5.15.4(ii), we may write U(f) as U(f ′) with f ′ of weight p − 1. The form
h = f − f ′ is such that U(h) = 0; hence h = ϑ(g) with g = ϑp−2(h). This
completes the proof of Theorem 5.15.3. ��

From the congruence

Δ(l2−1)/24(z) ≡ (q	
2

; q	
2

)∞

∞∑

n=0

p(n− (l2 − 1)/24)qn (mod 	)

and the operator identity (5.15.19), Ramanujan deduced that

U(Δ(l2−1)/24(z)) ≡
∞∏

n=1

(1− qln)

∞∑

n=0

p(ln− (l2 − 1)/24)qn (mod l).

Since Δ(l2−1)/24(z) is congruent to a modular form of weight l − 1 modulo l
by Theorem 5.15.2, and since U ≡ Tl (mod l), we conclude that the following
corollary holds.

Corollary 5.15.1. The congruence

(q	; q	)∞

∞∑

n=0

p

(
ln+

1− l2

24

)
qn ≡ F (z) (mod l),

where F (z) is a cusp form of weight l − 1 on SL2(Z), is valid.

Corollary 5.15.1 can be found in Ramanujan’s manuscript as (5.15.10). It
was rediscovered and proved by K.S. Chua [117] without using Theorem 5.15.2.

If we apply U to both sides of Corollary 5.15.1 using (5.15.19), we imme-
diately obtain the next corollary.

Corollary 5.15.2. The congruence

(q; q)∞

∞∑

n=0

p

(
l2n+

1− l2

24

)
qn ≡ F (z) (mod l),

where F (z) is a cusp form of weight l − 1 on SL2(Z), is valid.

In general, the following theorem is valid.
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Theorem 5.15.5. Let

δl,k =

⎧
⎪⎨

⎪⎩

1− lk

24
, if k is even,

1− lk+1

24
, if k is odd,

(5.15.20)

and

ε =

{
l, if k is odd,

1, if k is even.
(5.15.21)

Then the congruence

(qε; qε)∞

∞∑

n=0

p
(
lkn+ δl,k

)
qn ≡ F (z) (mod l),

where F (z) is a cusp form of weight l − 1 on SL2(Z), holds.

Proof. We proceed by induction. It is clear that if the conclusion in Theorem
5.15.5 is true for an odd positive integer k, then by exactly the same argument
that we used to deduce Corollary 5.15.2 from Corollary 5.15.1, we deduce that
the result is true for k + 1.

Suppose the conclusion holds for an even positive integer k, that is,

(q; q)∞

∞∑

n=0

p
(
lkn+ δl,k

)
qn ≡ F (z) (mod l), (5.15.22)

where F (z) is a form of weight l − 1. Multiplying both sides of (5.15.22) by

Δ(l2−1)/24, we find that the right-hand side is a modular form FΔ(l2−1)/24

with weight < (l− 1)2 for l > 5. Hence, by Theorem 5.15.3, we conclude that

(q	
2

; q	
2

)∞

∞∑

n=0

p
(
lkn+ δl,k

)
qn ≡ G(z) + ϑ(J) (mod l), (5.15.23)

where G(z) is a modular form of weight l − 1. Applying U from (5.15.19) to
both sides of (5.15.23) and using (5.15.19), we conclude that the statement
holds for k + 1. ��

Theorem 5.15.5 was originally conjectured by Chua [117], who proved that
if the result holds for an odd integer k, then it implies that the result is valid
for k + 1. The method above of passing from even k to k + 1 can be found in
J. Lehner’s paper [208]. We mention here that Corollary 5.15.1 was verified
by Weaver [338] for 5 ≤ l ≤ 31, but the general case was not mentioned there.

In Section 5.15, Ramanujan asserted that in particular cases, he was able
to show the following result (see (5.15.7)).

Proposition 5.15.2. We have

(Q3 −R2)(�
2−1)/24 ≡ q

dJ

dq
+ F (z) (mod�),

where F (z) is a cusp form of weight � − 1 on SL2(Z).



5.16 Congruences for p(n) Modulo 17, 19, 23, 29, or 31 159

As a corollary, he deduced (see (5.15.10)) the following observation. A
proof of this proposition has also been established by Ahlgren and Boylan [5].

Proposition 5.15.3. The congruence

(q�; q�)∞

∞∑

n=0

p

(
�n+

1−�2

24

)
qn ≡ F (z) (mod�),

where F (z) is a cusp form of weight � − 1 on SL2(Z), holds.

Since the space of cusp forms on SL2(Z) of weight � − 1 for � ≤ 11 is
trivial, Proposition 5.15.3 immediately implies the congruences

p(5n+4) ≡ 0 (mod 5), p(7n+5) ≡ 0 (mod 7), p(11n+6) ≡ 0 (mod 11).

A proof of Proposition 5.15.2 for general � has been given by Serre using
[312, Lemma 2]; see also Theorem 5.15.2. Proposition 5.15.3 was recently
rediscovered and proved by Chua [117] without using Proposition 5.15.2.

The remainder of Section 5.15 is straightforward and follows from Ra-

manujan’s collection of formulas involving the operator q d
dq

.

5.16 Congruences for p(n) Modulo 17, 19, 23, 29, or 31

In the next several pages, we provide Rushforth’s [305] sketch of what may
have been Ramanujan’s proof of the identity

(q17; q17)∞

∞∑

n=0

p(17n+ 5)qn = 7

∞∑

n=1

τ2(n)q
n + 17J, (5.16.12)

where τ2(n) is defined by

∞∑

n=1

τ2(n)q
n := Qq(q; q)24∞. (5.16.13)

Recall that (5.16.12) is the same as (5.16.1). This proof is followed by sketches
of Rushforth’s [305] proofs of the corresponding identities for the moduli 19
and 23.

Far simpler proofs can now be given with the use of Corollary 5.15.2. In
particular,

S16(SL2(Z)) = 〈QΔ〉,
S18(SL2(Z)) = 〈RΔ〉,
S22(SL2(Z)) = 〈QRΔ〉.
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Therefore, as Ramanujan has indicated in (5.16.1), (5.16.3), and (5.16.4),
respectively, for some constants c1, c2, and c3,

(q17; q17)∞

∞∑

n=1

p(17n− 12)qn ≡ c1QΔ (mod 17),

(q19; q19)∞

∞∑

n=1

p(19n− 15)qn ≡ c2RΔ (mod 19),

(q23; q23)∞

∞∑

n=1

p(23n− 22)qn ≡ c3QRΔ (mod 23).

Although the proofs that follow proceed along the lines indicated by Ra-
manujan for the moduli 11 and 13, in particular, they are extraordinarily
tedious. According to Rushforth [305], the p(n)/τ(n) manuscript was sent to
Hardy a few months before Ramanujan’s death. It seems inconceivable that
Ramanujan would have had the patience to perform such laborious algebraic
manipulations in the last year of his life. Either he had more efficient means
of deriving his formulas, or he had proved these results earlier while lying
in cold nursing homes in England. But with the ideas Ramanujan gave us,
Rushforth’s proofs seem as straightforward as one can expect.

To prove (5.16.12), it will be necessary to prove the formula

(Q3 −R2)12 = −P 8 − 4P 6Q+ 6P 5R+ 3P 4Q2 + 4P 3QR+ 6P 2Q3

− 3P 2R2 + 2PQ2R+Q4 + 3QR2 + 17J. (5.16.14)

The proof of (5.16.14) is rather tortuous. It will be convenient to introduce
Ramanujan’s basic functions [275]

Φr,s(q) :=

∞∑

m,n=1

mrnsqmn, |q| < 1, (5.16.15)

where r and s are nonnegative integers. From Ramanujan’s tables [275], [281,
p. 141, Table I, nos. 8, 9],

3617 + 16320Φ0,15(q) = 1617Q4 + 2000QR2 (5.16.16)

and
43867− 28728Φ0,17(q) = 38367Q3R+ 5500R3. (5.16.17)

Since, by Fermat’s little theorem,

Φ0,1(q) = Φ0,17(q) + 17J

and
P (q) = 1− 24Φ0,1(q), (5.16.18)

we may deduce from (5.16.3) and (5.16.4), respectively, that
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Q4 = 3QR2 − 2 + 17J (5.16.19)

and
P = 7Q3R− 6R3 + 17J. (5.16.20)

To obtain (5.16.14), a tedious amount of algebra is needed. We first expand
(Q3 − R2)12. We then use (5.16.19) to calculate several powers of Q, which
we insert in the expansion of (Q3 − R2)12. However, since (5.16.14) involves
powers of P , we then use (5.16.20) to calculate various powers of P . Lastly, we
shall find expressions for powers of 1 that are necessary in making the proper
reductions of certain powers QrRs.

First, expanding and reducing modulo 17, we find that

(Q3 −R2)12 = Q36 + 5Q33R2 − 2Q30R4 +Q27R6 + 2Q24R8 + 7Q21R10

+ 6Q18R12 + 7Q15R14 + 2Q12R16 +Q9R18

− 2Q6R20 + 5Q3R22 +R24 + 17J. (5.16.21)

Second, we use (5.16.19) to calculate Q8, . . . , Q36 in powers of (QR2)n,
1 ≤ n ≤ 9. Accordingly,

Q4 = 3QR2 − 2 + 17J,

Q8 = −8Q2R4 + 5QR2 + 4 + 17J,

Q12 = −7Q3R6 − 3Q2R4 + 2QR2 − 8 + 17J,

Q16 = −4Q4R8 + 5Q3R6 − 5Q2R4 + 6QR2 − 1 + 17J,

Q20 = 5Q5R10 + 6Q4R8 − 8Q3R6 − 6Q2R4 + 2QR2 + 2 + 17J,

Q24 = −2Q6R12 + 8Q5R10 − 2Q4R8 − 2Q3R6 +Q2R4 + 2QR2 − 4 + 17J,

Q28 = −6Q7R14 − 6Q6R12 − 5Q5R10 − 2Q4R8 + 7Q3R6 + 4Q2R4 +QR2

+ 8 + 17J,

Q32 = −Q8R16 − 6Q7R14 − 3Q6R12 + 4Q5R10 + 8Q4R8 − 2Q3R6 − 5Q2R4

+ 5QR2 + 1 + 17J,

Q36 = −3Q9R18 +Q8R16 + 3Q7R14 +Q6R12 −Q5R10 − 5Q4R8 + 6Q3R6

+ 8Q2R4 − 7QR2 − 2 + 17J.

Substituting these equalities in (5.16.21) but ignoring the last three terms in
(5.16.21), we find that

(Q3 −R2)12 = −5Q9R18 + 2Q7R14 + 5Q6R12 + 6Q5R10 − 8Q3R6

− 2QR2 − 2− 2Q6R20 + 5Q3R22 +R24 + 17J. (5.16.22)

Third, we employ (5.16.20) to calculate the powers of P up to P 8. The
first two equalities below are listed for completeness and later considerations.
Thus, we find that
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QR2 = QR2,

Q4 = Q4,

PQ2R = 7Q5R2 − 6Q2R4 + 17J,

P 2R2 = −2Q6R4 +Q3R6 + 2R8 + 17J,

P 2Q3 = −2Q9R2 +Q6R4 + 2Q3R6 + 17J,

P 3QR = 3Q10R4 + 2Q7R6 + 8Q4R8 + 5QR10 + 17J,

P 4Q2 = 4Q14R4 − 4Q11R6 − 7Q8R8 + 4Q5R10 + 4Q2R12 + 17J,

P 5R = −6Q15R6 −Q12R8 − 8Q9R10 + 2Q6R12 + 4Q3R14 − 7R16 + 17J,

P 6Q = −8Q19R6 − 5Q16R8 +Q13R10 − 6Q10R12 −Q7R14 − 5Q4R16

+ 8QR18 + 17J,

P 8 = −Q24R8 + 2Q21R10 − 6Q18R12 + 3Q15R14 − 2Q12R16 − 3Q9R18

− 6Q6R20 − 2Q3R22 −R24 + 17J.

With the use of our formulas for powers of Q, all the terms in the expressions
above that are of the form QrRs, where s ≤ 2r, may be reduced to terms in
Q9R18 and lower powers of QR2 as we did above. The remaining terms may
also be written in powers of QR2 and terms in Q6R20, Q3R22, and R24. To
do this, we calculate the following powers of 1 from (5.16.19):

1 = 8Q4 − 7QR2 + 17J,

12 = −4Q8 + 7Q5R2 − 2Q2R4 + 17J,

13 = 2Q12 −Q9R2 + 3Q6R4 − 3Q3R6 + 17J,

14 = −Q16 − 5Q13R2 − 3Q10R4 + 6Q7R6 + 4Q4R8 + 17J,

15 = −8Q20 +Q17R2 − 6Q14R4 +Q11R6 + 7Q8R8 + 6Q5R10 + 17J,

16 = 4Q24 − 4Q21R2 − 4Q18R4 −Q15R6 − 2Q12R8 −Q9R10 − 8Q6R12 + 17J.

Now each term that is not of the form QrRs, s ≤ 2r, is multiplied by the
appropriate power of 1 to introduce the required terms Q6R20 and Q3R22. For
example, Q4R16 and QR18 are multiplied by 12, and R8 is multiplied by 16.
Reducing, as before, we obtain the aggregate of the expressions P 8, P 6Q, . . .
in the required forms. Thus, we have

QR2 = QR2,

Q4 = 3QR2 − 2 + 17J,

PQ2R = −2Q2R4 + 3QR2 + 17J,

P 2R2 = −6Q9R18 − 4Q8R16 + 3Q7R14 + 2Q6R12 + 7Q5R10 −Q4R8

− 5Q3R6 + 4Q2R4 +Q6R20 + 17J,

P 2Q3 = 4Q3R6 + 5Q2R4 − 8QR2 + 17J,

P 3QR = 7Q9R18 −Q8R16 + 5Q7R14 − 8Q6R12 + 6Q5R10 + 7Q4R8
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− 6Q3R6 − 5Q2R4 − 4Q6R20 + 17J,

P 4Q2 = 6Q9R18 + 4Q8R16 − 3Q7R14 − 2Q6R12 + 4Q5R10 −Q4R8

− 8Q3R6 + 2Q2R4 −Q6R20 + 17J,

P 5R = 3Q9R18 + 8Q8R16 − 2Q7R14 − 6Q6R12 − 5Q5R10 +Q4R8

− 3Q3R6 +Q6R20 + 4Q3R22 + 17J,

P 6Q = −7Q9R18 − 6Q8R16 + 6Q7R14 − 8Q6R12 − 8Q4R8 + 8Q3R6

− 2Q6R20 +Q3R22 + 17J,

P 8 = −4Q9R18 + 7Q8R16 − 2Q7R14 − 2Q6R12 − 4Q5R10 − 2Q4R8

− 6Q6R20 − 2Q3R22 −R24 + 17J.

We now multiply this set of equations by a, b, c, d, . . . , respectively, add, and
equate coefficients on the right side with those on the right side of (5.16.22).
We therefore obtain a set of thirteen consistent simultaneous linear congruence
relations. Solving these, we obtain the solution set

a = −1, b = −4, c = 6, d = 3, e = 4,

f = 6, g = −3, h = 2, i = 1, j = 3.

Thus, from the left side of (5.16.22) and the left side of the appropriate mul-
tiples of this last set of equations, we obtain the required relation

(Q3 −R2)12 = −P 8 − 4P 6Q+ 6P 5R+ 3P 4Q2 + 4P 3QR+ 6P 2Q3

− 3P 2R2 + 2PQ2R+Q4 + 3QR2 + 17J. (5.16.23)

We now show that (5.16.23) can be written in the form

(Q3 −R2)12 = q
dJ

dq
− 5Q(Q3 −R2) + 17J. (5.16.24)

To that end, using the differential equations (5.9.8), we see that

−P 8 − 4P 6Q+ 6P 5R+ 3P 4Q2 + 4P 3QR+ 6P 2Q3

−3P 2R2 + 2PQ2R+Q4 + 3QR2 + 17J

= {−P 6 + P 4Q− 2P 2Q2 − 4PQR+ 2Q3 + 7R2}(P 2 −Q)

+ {−6P 5 + 6P 3Q− 8P 2R+ 7PQ2 − 5QR}(PQ−R)

+ {5P 2Q− PR− 8Q2}(PR−Q2)− 5(Q4 −QR2) + 17J

= {5P 6 − 5P 4Q− 7P 2Q2 + 3PQR+ 7Q3 −R2}ϑP
+ {−P 5 + P 3Q− 7P 2R+ 4PQ2 + 2QR}ϑQ
+ {−7P 2Q− 2PR+Q2}ϑR− 5(Q4 −QR2) + 17J

= 8ϑP 7 − ϑP 5Q− 8ϑP 3Q2 − 7ϑP 2QR+ 7ϑPQ3
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− ϑPR2 + ϑQ2R− 5(Q4 −QR2) + 17J

= q
dJ

dq
− 5(Q4 −QR2) + 17J.

Thus, (5.16.24) follows from (5.16.23) and the calculations above.
From (5.1.4) and the binomial theorem,

(Q3 −R2)12 = 172812q12(q; q)288∞ = −4q12(q; q)288∞ + 17J

= −4q12
(q289; q289)∞

(q; q)∞
+ 17J

and

Q4 −QR2 = Q · 1728q(q; q)24∞ = −6

∞∑

n=1

τ2(n)q
n + 17J,

where τ2(n) is defined by (5.16.13). Combining these last two calculations
with (5.16.24), we find that

−4q12
(q289; q289)∞

(q; q)∞
= q

dJ

dq
− 4

∞∑

n=1

τ2(n)q
n + 17J. (5.16.25)

We know that

τ2(17n)− τ2(17)τ2(n) ≡ 0 (mod 17), (5.16.26)

and we can find by a direct calculation that

τ2(17) ≡ 7 (mod 17). (5.16.27)

Therefore, by (5.16.26) and (5.16.27),

τ2(17n)− 7τ2(n) ≡ 0 (mod 17). (5.16.28)

Hence, choosing only those terms in q17n from (5.16.25), using (5.16.28), and
replacing q17 by q, we find that

−4(q17; q17)∞

∞∑

n=0

p(17n+ 5)qn+1 = 6

∞∑

n=1

τ2(n)q
n + 17J,

or

(q17; q17)∞

∞∑

n=0

p(17n+ 5)qn+1 = 7
∞∑

n=1

τ2(n)q
n + 17J. (5.16.29)

Equating powers of q17 in (5.16.29) and replacing q17 by q, we furthermore
find that
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(q17; q17)∞

∞∑

n=1

p(172n− 12)qn = 7

∞∑

n=1

τ2(17n)q
n + 17J

= −2

∞∑

n=1

τ2(n)q
n + 17J. (5.16.30)

The equalities (5.16.29) and (5.16.30) are (5.16.1) and (5.16.7), respectively,
where we now have determined that c2 is equal to −2.

Our next task is to provide Rushforth’s sketch of his proof of Ramanujan’s
formula

(q19; q19)∞

∞∑

n=1

p(19n− 15)qn = 5
∞∑

n=1

τ3(n)q
n + 19J, (5.16.31)

where τ3(n) is defined by

∞∑

n=1

τ3(n)q
n := Rq(q; q)24∞.

In order to accomplish this, we need to prove the formula

(Q3 −R2)15 = P 9 − 5P 7Q+ 6P 6R+ 5P 5Q2 + P 3Q3 − P 2Q2R

+ 2PQ4 − PQR2 − 9Q3R+R3 + 19J. (5.16.32)

First [275], [281, p. 141, no. 10],

174611 + 13200Φ0,19(q) = 53361Q5 + 121250Q2R2. (5.16.33)

Using (5.16.17), (5.16.18), (5.16.33), and the elementary congruence

Φ0,1(q) = Φ0,19(q) + 19J,

we find that

−4 = 6Q3R+ 9R3 + 19J, (5.16.34)

P = 9Q5 − 8Q2R2 + 19J. (5.16.35)

Expanding (Q3 −R2)15, we find that

(Q3 −R2)15 = Q45 + 4Q42R2 − 9Q39R4 +Q36R6 − 3Q33R8 −Q30R10

+ 8Q27R12 + 6Q24R14 − 6Q21R16 − 8Q18R18 +Q15R20

+ 3Q12R22 −Q9R24 + 9Q6R26 − 4Q3R28 −R30 + 19J.
(5.16.36)

We now use (5.16.35) to deduce the representations

PQR2 = 9Q6R2 − 8Q3R4 + 19J,
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PQ4 = 9Q9 − 8Q6R2 + 19J,

P 2Q2R = 5Q12R+ 8Q9R3 + 7Q6R5 + 19J,

P 3R2 = 7Q15R2 − 6Q12R4 −Q9R6 +Q6R8 + 19J,

P 3Q3 = 7Q18 − 6Q15R2 −Q12R4 +Q9R6 + 19J,

P 4QR = 6Q21R+ 4Q18R3 +Q15R5 − 2Q12R7 − 8Q9R9 + 19J,

P 5Q2 = −3Q27 + 7Q24R2 − 4Q21R4 − 7Q18R6 +Q15R8 + 7Q12R10 + 19J,

P 6R = −8Q30R− 8Q27R3 + 3Q24R5 + 7Q21R7 + 8Q18R9 − 2Q15R11

+Q12R13 + 19J,

P 7Q = 4Q36 − 8Q33R2 − 4Q30R4 +Q27R6 − 3Q24R8 − 6Q21R10

+ 6Q18R12 − 8Q15R14 + 19J,

P 9 = Q45 − 8Q42R2 +Q39R4 − 7Q36R6 + 3Q33R8 − 9Q30R10 −Q27R12

+ 4Q24R14 − 3Q21R16 +Q18R18 + 19J.

We see from (5.16.34) that

1 = 8Q3R− 7R3 + 19J.

We thus find that

1 = 8Q3R− 7R3 + 19J,

12 = 7Q6R2 + 2Q3R4 − 8R6 + 19J,

13 = −Q9R3 + 5Q6R5 − 2Q3R7 −R9 + 19J,

14 = −8Q12R4 + 9Q9R6 + 6Q6R8 + 6Q3R10 + 7R12 + 19J,

15 = −7Q15R5 − 5Q12R7 + 4Q9R9 + 6Q6R11 − 5Q3R13 + 8R15 + 19J,

16 = Q18R6 + 9Q15R8 − 9Q12R10 +Q9R12 − 6Q6R14 + 4Q3R16

+R18 + 19J,

17 = 8Q21R7 + 8Q18R9 − 2Q15R11 − 5Q12R13 + 2Q9R15 − 2Q6R17

−Q3R19 − 7R21 + 19J,

18 = 7Q24R8 + 8Q21R10 + 4Q18R12 − 7Q15R14 − 6Q12R16 + 8Q9R18

+ 6Q6R20 + 8Q3R22 − 8R24 + 19J,

19 = −Q27R9 − 4Q24R11 − 5Q21R13 − 8Q18R15 +Q15R17 − 8Q12R19

− 8Q9R21 + 3Q6R23 − 6Q3R25 −R27 + 19J.

Using this batch of identities in the previous batch, we find that

R3 · 19 = −Q27R12 − 4Q24R14 − 5Q21R16 − 8Q18R18 +Q15R20

− 8Q12R22 − 8Q9R24 + 3Q6R26 − 6Q3R28 −R30 + 19J,
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Q3R · 19 = −Q30R10 − 4Q27R12 − 5Q24R14 − 8Q21R16 +Q18R18

− 8Q15R20 − 8Q12R22 + 3Q9R24 − 6Q6R26 −Q3R28 + 19J,

PQR2 · 18 = 6Q30R10 − 3Q27R12 − 9Q24R14 + 0Q21R16 + 2Q18R18

+ 6Q15R20 + 9Q12R22 + 5Q9R24 − 3Q6R26 + 7Q3R28 + 19J,

PQ4 · 18 = 6Q33R8 − 3Q30R10 − 9Q27R12 + 0Q24R14 + 2Q21R16

+ 6Q18R18 + 9Q15R20 + 5Q12R22 − 3Q9R24 + 7Q6R26 + 19J,

P 2Q2R · 17 = 2Q33R8 + 9Q30R10 − 4Q27R12 − 4Q24R14 − 6Q21R16

+ 9Q18R18 − 7Q15R20 + 0Q12R22 − 6Q9R24 + 8Q6R26 + 19J,

P 3R2 · 16 = 7Q33R8 + 0Q30R10 − 4Q27R12 − 4Q24R14 + 8Q21R16

− 3Q18R18 + 9Q15R20 + 3Q12R22 + 3Q9R24 +Q6R26 + 19J,

P 3Q3 · 16 = 7Q36R6 + 0Q33R8 − 4Q30R10 − 4Q27R12 + 8Q24R14

− 3Q21R16 + 9Q18R18 + 3Q15R20 + 3Q12R22 +Q9R24 + 19J,

P 4QR · 15 = −4Q36R6 −Q33R8 − 3Q30R10 + 4Q27R12 + 7Q24R14

+ 9Q21R16 + 2Q18R18 + 8Q15R20 + 5Q12R22 − 7Q9R24 + 19J,

P 5Q2 · 14 = 5Q39R4 − 7Q36R6 +Q33R8 + 6Q30R10 + 2Q27R12 − 7Q24R14

−Q21R16 −Q18R18 − 8Q15R20 − 8Q12R22 + 19J,

P 6R · 13 = 8Q39R4 + 6Q36R6 − 8Q33R8 − 6Q30R10 − 9Q27R12 + 6Q24R14

+ 4Q21R16 +Q18R18 + 0Q15R20 −Q12R22 + 19J,

P 7Q · 12 = 9Q42R2 + 9Q39R4 + 0Q36R6 + 6Q33R8 − 6Q30R10 +Q27R12

− 3Q24R14 + 4Q21R16 − 7Q18R18 + 7Q15R20 + 19J,

P 9 = Q45 − 8Q42R2 +Q39R4 − 7Q36R6 + 3Q33R8 − 9Q30R10

−Q27R12 + 4Q24R14 − 3Q21R16 +Q18R18 + 19J.

If we multiply these last equations by a, b, c, . . . , respectively, add, and
equate coefficients on the right side with the coefficients on the right side
of (5.16.36), we obtain a set of sixteen simultaneous congruence relations.
Solving these, we find that we can take

a = 1, b = −5, c = 6, d = 5, e = 0, f = 1,

g = 0, h = −1, i = 2, j = −1, k = −9, 	 = 1,

whence we obtain the relation (5.16.32).
We now write

P 9 − 5P 7Q+ 6P 6R+ 5P 5Q2 + P 3Q3 − P 2Q2R

+ 2PQ4 − PQR2 − 9Q3R+R3 + 19J

= {P 7 + 9P 5Q+ 2P 4R+ 8P 3Q2 − 9P 2QR− 4PQ3 + PR2 + 7Q2R}
× (P 2 −Q)
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+ {6P 6 − 3P 4Q+ 7P 3R− 5P 2Q2 − PQR+ 2Q3 − 5R2}(PQ−R)

+ {−9P 5 + P 3Q+ 6P 2R+ 4PQ2 + 4QR}(PR−Q2)

+ 4(Q3R−R3) + 19J

= {−7P 7 − 6P 5Q+ 5P 4R+ P 3Q2 + 6P 2QR+ 9PQ3 − 7PR2 + 8Q2R}ϑP
+ {−P 6 − 9P 4Q+ 2P 3R+ 4P 2Q2 − 3PQR+ 6Q3 + 4R2}ϑQ
+ {P 5 + 2P 3Q− 7P 2R+ 8PQ2 + 8QR}ϑR+ 4(Q3R−R3) + 19J

= −8ϑP 8 − ϑP 6Q+ ϑP 5R+ 5ϑP 4Q2 + 2ϑP 3QR− 5ϑP 2Q3 + 6ϑP 2R2

+ 8ϑPQ2R− 8ϑQ4 + 4ϑQR2 + 4(Q3R−R3) + 19J

= q
dJ

dq
+ 4(Q3R−R3) + 19J. (5.16.37)

Combining (5.16.37) with (5.16.32), we finally deduce that

(Q3 −R2)15 = q
dJ

dq
+ 4(Q3R−R3) + 19J. (5.16.38)

But by (5.1.4) and the binomial theorem,

(Q3 −R2)15 = 172815q15(q; q)360∞ = −q15
(q361; q361)∞

(q; q)∞
+ 19J. (5.16.39)

Also, by (5.1.4),

Q3R−R3 = 1728Rq(q; q)24∞ = −Rq(q; q)24∞ + 19J = −
∞∑

n=1

τ3(n)q
n + 19J.

(5.16.40)
Thus, from (5.16.38)–(5.16.40) we deduce that

q15
(q361; q361)∞

(q; q)∞
= q

dJ

dq
+ 4

∞∑

n=1

τ3(n)q
n + 19J. (5.16.41)

However,
τ3(19n)− τ3(19)τ3(n) ≡ 0 (mod 19), (5.16.42)

and a direct calculation shows that

τ3(19) ≡ 6 (mod 19). (5.16.43)

Thus, extracting only those terms with powers of the form q19n, using (5.16.42)
and (5.16.43) in (5.16.41), and lastly replacing q19 by q, we conclude that

(q19; q19)∞

∞∑

n=1

p(19n− 15)qn = 5

∞∑

n=1

τ3(n)q
n + 19J. (5.16.44)
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Furthermore, equating those powers of q19 in (5.16.44), employing (5.16.42)
and (5.16.43), and replacing q19 by q, we deduce that

(q; q)∞

∞∑

n=1

p(192n−15)qn = 5

∞∑

n=1

τ3(19n)q
n+19J = −8

∞∑

n=1

τ3(19n)q
n+19J.

(5.16.45)
The identities (5.16.44) and (5.16.45) are, respectively, (5.16.3) and (5.16.8) in
Ramanujan’s manuscript, and moreover we have determined that in (5.16.8),
c3 = −8.

Our last goal is to prove (5.16.4) and (5.16.9) in Ramanujan’s manuscript.
Again, we follow Rushforth’s [305] adaptation of Ramanujan’s ideas. A some-
what different proof is given by Rushforth in his paper [306]. To do this, we
need to establish the identity

(Q3 −R2)22 = P 11 − 6P 9Q− 8P 8R+ 9P 7Q2 − 3P 6QR− 4P 5Q3

− 2P 5R2 − 3P 4Q2R+ P 3Q4 − 10P 3QR2 + 5P 2Q3R

− 7P 2R2 + PQ5 − 5PQ2R2 +Q4R+ 7QR3 + 23J. (5.16.46)

From Ramanujan’s tables [275], [281, p. 141, Table I, nos. 11, 12],

77683− 552Φ0,21(q) = 57183Q4R+ 20500QR3 (5.16.47)

and

236364091 + 131040Φ0,23(q) = 49679091Q6 + 176400000Q3R2 + 10285000R4.
(5.16.48)

Using (5.16.47), (5.16.48), (5.16.18), and the elementary congruence

Φ0,1(q) = Φ0,23(q) + 23J,

we find, respectively, that

−11 = 5Q4R+ 7QR3 + 23J, (5.16.49)

P = 9Q6 + 2Q3R2 − 10R4 + 23J. (5.16.50)

Expanding (Q3 −R2)22, we find that

(Q3 −R2)22 = Q66 +Q63R2 +Q60R4 + · · ·+Q3R42 +R44 + 23J, (5.16.51)

where each of the coefficients in (5.16.51) is 1. We now express P 11, P 9Q,
P 8R, . . . in terms of Q and R by calculating the powers of P from (5.16.50).
We find that

PQ2R2 = 9Q8R2 + 2Q5R4 − 10Q2R6 + 23J,

PQ5 = 9Q11 + 2Q8R2 − 10Q5R4 + 23J,

P 2R3 = −11Q12R3 − 10Q9R5 + 8Q6R7 + 6Q3R9 + 8R11 + 23J,
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P 2Q3R = −11Q15R− 10Q12R3 + 8Q9R5 + 6Q6R7 + 8Q3R9 + 23J,

P 3QR2 = −7Q19R2 + 3Q16R4 +Q13R6 + 9Q10R8 + 4Q7R10 + 2Q4R12

− 11QR14 + 23J,

P 3Q4 = −7Q12 + 3Q19R2 + 6Q16R4 + 9Q13R6 + 4Q10R8 + 2Q7R10

− 11Q4R12 + 23J,

P 4Q2R = 6Q26R− 10Q23R3 − 7Q20R5 + 7Q17R7 − 2Q14R9 + 5Q11R11

+ 3Q8R13 + 4Q5R15 − 5Q2R17 + 23J,

P 5R2 = 8Q30R2 − 9Q27R4 − 5Q24R6 + 11Q21R8 − 3Q18R10 − 6Q15R12

+ 11Q12R14 − 8Q9R16 + 2Q6R18 − 4Q3R20 + 4R22 + 23J,

P 5Q3 = 8Q33 − 9Q30R2 − 5Q27R4 + 11Q24R6 − 3Q21R8 − 6Q18R10

+ 11Q15R12 − 8Q12R14 + 2Q9R16 − 4Q6R18 + 4Q3R20 + 23J,

P 6QR = 3Q37R+ 4Q34R3 − 5Q31R5 − 5Q28R7 −Q25R9 − 9Q22R11

+ 2Q19R13 + 10Q16R15 + 7Q13R17 + 2Q10R19 + 8Q7R21

+ 2Q4R23 + 6QR25 + 23J,

P 7Q2 = 4Q44 − 4Q41R2 + 2Q38R4 − 3Q35R6 + 8Q32R8 − 10Q29R10

+ 10Q26R12 + 0Q23R14 − 6Q20R16 +Q17R18 + 6Q14R20

− 9Q11R22 +Q8R24 − 8Q5R26 + 9Q2R28 + 23J,

P 8R = −10Q48R− 5Q45R3 − 7Q42R5 − 6Q39R7 + 0Q36R9 + 2Q33R11

− 10Q30R13 + 5Q27R15 + 7Q24R17 − 3Q21R19 +Q18R21

− 10Q15R23 + 0Q12R25 − 3Q9R27 + 9Q6R29 + 6Q3R31 + 2R33

+ 23J,

P 9Q = 2Q55 + 4Q52R2 + 4Q49R4 + 5Q46R6 − 11Q43R8 + 9Q40R10

+ 6Q37R12 + 5Q34R14 − 11Q31R16 + 6Q28R18 + 2Q25R20

+ 11Q22R22 − 7Q19R24 + 4Q16R26 + 6Q13R28 + 10Q10R30

+ 9Q7R32 − 10Q4R34 + 3QR36 + 23J,

P 11 = Q66 + 5Q63R2 +Q60R4 − 5Q57R6 + 5Q54R8 − 8Q51R10 + 2Q48R12

+ 0Q54R14 − 7Q42R16 + 8Q39R18 + 0Q36R20 − 4Q33R22

+ 0Q30R24 − 10Q27R26 − 11Q24R28 + 0Q21R30 +Q18R32

+ 7Q15R34 − 6Q12R36 +Q9R38 − 10Q6R40 + 7Q3R42 +R44 + 23J.

We now use (5.16.49) to calculate powers of 1. To that end,

1 = 10Q4R− 9QR3 + 23J,

13 = 11Q12R3 − 9Q9R5 − 8Q6R7 + 7Q3R9 + 23J,

14 = −5Q16R4 − 5Q13R6 +Q10R8 + 4Q7R10 + 6Q4R12 + 23J,
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15 = −4Q20R5 − 5Q17R7 + 9Q14R9 + 8Q11R11 +Q8R13 − 8Q5R15 + 23J,

16 = 6Q24R6 + 9Q21R8 − 3Q18R10 −Q15R12 + 7Q12R14 + 3Q9R16

+ 3Q6R18 + 23J,

17 = −9Q28R7 − 10Q25R9 + 4Q22R11 − 6Q19R13 + 10Q16R15 − 10Q13R17

+ 3Q10R19 − 4Q7R21 + 23J,

18 = 2Q32R8 + 4Q29R10 − 8Q26R12 − 4Q23R14 − 7Q20R16 − 6Q17R18

+ 5Q14R20 + 2Q11R22 − 10Q8R24 + 23J,

19 = −3Q36R9 −Q33R11 −Q30R13 + 9Q27R15 − 11Q24R17 + 3Q21R19

− 11Q18R21 − 2Q15R23 − 3Q12R25 − 2Q9R27 + 23J,

110 = −7Q40R10 − 6Q37R12 −Q34R14 + 7Q31R16 − 7Q28R18 − 9Q25R20

+Q22R22 + 10Q19R24 + 11Q16R26 + 7Q13R28 − 5Q10R30 + 23J,

111 = −Q44R11 + 3Q41R13 − 2Q38R15 + 10Q35R17 + 5Q32R19 − 4Q29R21

−Q26R23 −Q23R25 − 3Q20R27 − 6Q17R29 + 2Q14R31 −Q11R33 + 23J.

Using these equalities in the previous set, we find that

QR3 · 111 = −Q45R14 + 3Q42R16 − 2Q39R18 + 10Q36R20 + 5Q33R22

− 4Q30R24 −Q27R26 −Q24R28 − 3Q21R30 − 6Q18R32

+ 2Q15R34 −Q12R36 + 23J,

Q4R · 111 = −Q48R12 + 3Q45R14 − 2Q42R16 + 10Q39R18 + 5Q36R20

− 4Q33R22 −Q30R24 −Q27R26 − 3Q24R28 − 6Q21R30

+ 2Q18R32 −Q15R34 + 23J,

PQ2R2 · 110 = 6Q48R12 +Q45R14 + 3Q42R16 + 6Q39R18 + 7Q36R20

− 4Q33R22 − 8Q30R24 − 2Q27R26 − 6Q24R28 + 8Q21R30

− 3Q18R32 − 11Q15R34 + 4Q12R36 + 23J,

PQ5 · 110 = 6Q51R10 +Q48R12 + 3Q45R14 + 6Q42R16 + 7Q39R18

− 4Q36R20 − 8Q33R22 − 2Q30R24 − 6Q27R26 + 8Q24R28

− 3Q21R30 − 11Q18R32 + 4Q15R34 + 23J,

P 2R3 · 19 = 10Q48R12 − 5Q45R14 − 3Q42R16 + 0Q39R18 − 7Q36R20

− 3Q33R22 + 3Q30R24 +Q27R26 + 10Q24R28 − 6Q21R30

+ 11Q18R32 − 4Q15R34 + 10Q12R36 + 7Q9R38 + 23J,

P 2Q3R · 19 = 10Q51R10 − 5Q48R12 − 3Q45R14 + 0Q42R16 − 7Q39R18

− 3Q36R20 + 3Q33R22 +Q30R24 + 10Q27R26 − 6Q24R28

+ 11Q21R30 − 4Q18R32 + 10Q15R34 + 7Q12R36 + 23J,

P 3QR2 · 18 = 9Q51R10 +Q48R12 +Q45R14 + 3Q42R16 + 4Q39R18
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+ 11Q36R20 − 4Q33R22 − 6Q30R24 + 10Q27R26 + 0Q24R28

+Q21R30 − 6Q18R32 +Q15R34 + 4Q12R36 − 5Q9R38 + 23J,

P 3Q4 · 18 = 9Q54R8 +Q51R10 +Q48R12 + 3Q45R14 + 4Q42R16

+ 11Q39R18 − 4Q36R20 − 6Q33R22 + 10Q30R24 + 0Q27R26

+Q24R28 − 6Q21R30 +Q18R32 + 4Q15R34 − 5Q12R36 + 23J,

P 4Q2R · 17 = −8Q54R8 + 7Q51R10 + 3Q48R12 + 0Q45R14 − 6Q42R16

+ 0Q39R18 − 10Q36R20 + 6Q33R22 + 8Q30R24 + 6Q27R26

− 6Q24R28 − 6Q21R30 − 9Q18R32 + 4Q15R34 − 8Q12R36

− 3Q9R38 + 23J,

P 5R2 · 16 = 2Q54R8 − 5Q51R10 + 3Q48R12 − 6Q45R14 + 0Q42R16

+ 8Q39R18 − 5Q36R20 − 8Q33R22 + 2Q30R24 − 11Q27R26

− 6Q24R28 + 5Q21R30 − 8Q18R32 − 4Q15R34 −Q12R36

+ 0Q9R38 − 11Q6R40 + 23J,

P 5Q3 · 16 = 2Q57R6 − 5Q54R8 + 3Q51R10 − 6Q48R12 + 0Q45R14

+ 8Q42R16 − 5Q39R18 − 8Q36R20 + 2Q33R22 − 11Q30R24

− 6Q27R26 + 5Q24R28 − 8Q21R30 − 4Q18R32 −Q15R34

+ 0Q12R36 − 11Q9R38 + 23J,

P 6QR · 15 = 11Q57R6 − 8Q54R8 + 4Q51R10 − 10Q48R12 − 4Q45R14

+ 5Q42R16 − 3Q39R18 + 11Q36R20 −Q33R22 − 7Q30R24

− 9Q27R26 − 3Q24R28 + 4Q21R30 − 2Q18R32 − 7Q15R34

+ 9Q12R36 − 10Q9R38 − 2Q6R40 + 23J,

P 7Q2 · 14 = 3Q60R4 + 0Q57R6 − 9Q54R8 − 6Q51R10 + 8Q48R12

− 9Q45R14 + 8Q42R16 + 0Q39R18 + 2Q36R20 + 5Q33R22

− 4Q30R24 − 8Q27R26 − 9Q24R28 + 10Q21R30 − 4Q18R32

− 11Q15R34 + 6Q12R36 + 11Q9R38 + 8Q6R40 + 23J,

P 8R · 13 = 5Q60R4 − 11Q57R6 + 2Q54R8 − 10Q51R10 + 6Q48R12

− 2Q45R14 − 9Q42R16 − 9Q39R18 + 11Q36R20 +Q33R22

− 6Q30R24 + 0Q27R26 − 8Q24R28 + 8Q21R30 + 10Q18R32

+ 9Q15R34 − 10Q12R36 − 3Q9R38 + 3Q6R40 − 9Q3R42 + 23J,

P 9Q · 12 = −7Q63R2 − 6Q60R4 + 3Q57R6 − 11Q54R8 + 3Q51R10

− 4Q48R12 − 2Q45R14 + 11Q42R16 + 4Q39R18 − 5Q36R20

+ 0Q33R22 + 7Q30R24 − 11Q27R26 − 2Q24R28 + 3Q21R30

− 9Q18R32 + 0Q15R34 + 7Q12R36 + 0Q9R38 + 7Q6R40
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− 10Q3R42 + 23J,

P 11 = Q66 + 5Q63R2 +Q60R4 − 5Q57R6 + 5Q54R8 − 8Q51R10

+ 2Q48R12 + 0Q45R14 − 7Q42R16 + 8Q39R18 + 0Q36R20

− 4Q33R22 + 0Q30R24 − 10Q27R26 − 11Q24R28 + 0Q21R30

+Q18R32 + 7Q15R34 − 6Q12R36 +Q9R38 − 10Q6R40

+ 7Q3R42 +R44 + 23J.

Multiplying this last set of equations by a, b, c, . . . , p, q (with o omitted
to avoid confusion), respectively, adding them, and equating coefficients of
Q66, Q63R2, . . . with the corresponding terms in (5.16.51), we obtain a set of
23 simultaneous linear congruence relations in a, b, c, . . . . These are consistent,
and one solution set is given by

a = 1, b = −6, c = −8, d = 9, e = −3, f = −4, g = −2, h = −3,

i = 1, j = −10, k = 5, 	 = −7, m = 1, n = −5, p = 1, q = 7,

which gives the required result, (5.16.46).
But now,

P 11 − 6P 9Q− 8P 8R+ 9P 7Q2 − 3P 6QR− 4P 5Q3 − 2P 5R2 − 3P 4Q2R

+ P 3Q4 − 10P 3QR2 + 5P 2Q3R− 7P 2R3 + PQ5 − 5PQ2R2 +Q4R

+ 7QR3 + 23J

=
{
P 9 − 11P 7Q+ 6P 6R− P 5Q2 − 2P 4QR− 3P 3Q3 + 6P 2R2 − 2P 2Q2R

+ 7PQ4 − 7PQR2 − 10Q3R+ 11R3
}
(P 2 −Q)

+
{
6P 8 − 9Q6Q+ 3P 5R− 9P 4Q2 + 10P 3QR+ 10P 2Q3 + 9P 2R2

− 5PQ2R− 6Q4 + 8QR2
}
(PQ−R)

+
{
−8P 7 − 7P 5Q− 5P 4R− 4P 3Q2 + 4P 2QR+ 9PQ3 − 9PR2 − 11Q2R

}

× (PR−Q2)− 3(Q4R−QR3) + 23J

=
{
−11P 9 + 6P 7Q+ 3P 6R+ 11P 5Q2 − P 4QR+ 10P 3Q3 + 3P 3R2

−P 2Q2R− 8PQ4 + 8PQR2 − 5Q3R− 6R3
}
ϑP

+
{
−5P 8 − 4P 6Q+ 9P 5R− 4P 4Q2 + 7P 3QR+ 7P 2Q3 + 4P 2R2

+ 8PQ2R+ 5Q4 +QR2
}
ϑQ

+
{
7P 7 + 9P 5Q− 10P 4R− 8P 3Q2 + 8P 2QR− 5PQ3 + 5PR2 +Q2R

}
ϑR

− 3(Q4R−QR3) + 23J

= −8ϑP 10 − 5ϑP 8Q+ 7ϑP 7R− 2ϑP 6Q2 + 9ϑP 5QR− 9ϑP 4Q3

− 5ϑP 4R2 − 8ϑP 3Q2R− 4ϑP 2Q4 + 4ϑP 2QR2 − 5ϑPQ3R− 6ϑPR3

+ ϑQ5 − 11ϑQ2R2 − 3(Q4R−QR3) + 23J

= q
dJ

dq
− 3(Q4R−QR3) + 23J. (5.16.52)
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On the other hand, by the binomial theorem,

(Q3 −R2)22 = 172822q22(q; q)528∞ = q22
(q529; q529)∞

(q; q)∞
+ 23J. (5.16.53)

By the definition of τ5(n) in (5.16.5),

Q4R−QR3 = QR · 1728q(q; q)24∞ = 3

∞∑

n=1

τ5(n)q
n + 23J. (5.16.54)

Combining (5.16.46) and (5.16.52)–(5.16.54), we finally conclude that

q22
(q529; q529)∞

(q; q)∞
= q

dJ

dq
− 9

∞∑

n=1

τ5(n)q
n + 23J. (5.16.55)

However, we know that

τ5(23n)− τ5(23)τ5(n) ≡ 0 (mod 23). (5.16.56)

Also, using the relation

∞∑

n=1

τ5(n)q
n = QR

∞∑

n=1

τ(n)qn,

we can determine by a direct calculation that

τ5(23) ≡ 5 (mod 23).

Therefore, from (5.16.56),

τ5(23n)− 5τ5(n) ≡ 0 (mod 23). (5.16.57)

Choosing only those terms corresponding to q23n from (5.16.55), using (5.16.56)
and (5.16.57), and replacing q23 by q, we conclude that

(q23; q23)
∞∑

n=1

p(23n− 22)qn =
∞∑

n=1

τ5(n)q
n + 23J, (5.16.58)

thus proving Ramanujan’s assertion (5.16.4). Moreover, extracting the powers
q23n from (5.16.58), employing (5.16.56) and (5.16.57), and replacing q23 by
q, we further conclude that

(q; q)

∞∑

n=1

p(232n− 22)qn = 5

∞∑

n=1

τ5(n)q
n + 23J,
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and thus we have proved (5.16.9) with c5 = 5.
The equalities (5.16.4) and (5.16.9) are proved in Rushforth’s paper [306].

As with the key results in Section 5.14, the claims (5.16.1)–(5.16.4) and
(5.16.7)–(5.16.11) follow from the work of Ono [258].

In (5.16.6), Ramanujan claims that the Dirichlet series

∞∑

n=1

τ2(n)

ns ,
∞∑

n=1

τ3(n)

ns ,

∞∑

n=1

τ4(n)

ns ,

∞∑

n=1

τ5(n)

ns ,

∞∑

n=1

τ7(n)

ns

have Euler products. This is easily verified, since all corresponding modular
forms are eigenforms of Hecke operators, for they each lie in a one-dimensional
space of cusp forms [118]. In a letter written in 1939 to H. Heilbronn, Watson
indicates that Ramanujan’s claims about these Dirichlet series have yet to be
proved. About this letter, Rankin [292], [69, p. 136] remarks,

It is rather astonishing that in March 1939 Watson should have be-
lieved that the five Euler products require proof, since after Mordell’s
work [226] one would have thought he could himself have provided
one. Moreover, he cannot have been aware of the fundamental work of
Hecke [170] on Euler products, which had appeared two years earlier,
in which these results appear as particular cases.

At the end of Section 5.16, Ramanujan claims that the two Dirichlet series

∞∑

n=1

Ω2(n)

ns and

∞∑

n=1

Ω3(n)

ns

are both differences of two series with Euler products. In terms of classical
modular forms,

∑∞
n=1 Ω2(n)q

n ∈ S28(Γ0(1)) and
∑∞

n=1 Ω3(n)q
n ∈ S30(Γ0(1)).

Both of these spaces are two-dimensional [118], and one can easily check that

S28(Γ0(1)) = CQΔ2 ⊕ CQ4Δ,

S30(Γ0(1)) = CRΔ2 ⊕ CR3Δ,

where Δ := Δ(q) = q(q; q)24∞. It is easy to show that the space S28(Γ0(1)) is
spanned by the eigenforms

f1(q) :=

∞∑

n=1

a1(n)q
n := (−5076 + 108

√
18209)QΔ2 +Q4Δ,

f2(q) :=

∞∑

n=1

a2(n)q
n := (−5076− 108

√
18209)QΔ2 +Q4Δ.
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(For calculations of this sort, see N. Koblitz’s text [195, p. 173, Proposition
51].) Since f1(q) and f2(q) are eigenforms, the two Dirichlet series

∞∑

n=1

a1(n)

ns and

∞∑

n=1

a2(n)

ns

have Euler products as in (5.16.6) with weight 28. The “difference” to which
Ramanujan alludes is the identity

QΔ2 =

∞∑

n=1

Ω2(n)q
n =

1

216
√
18209

(f1(q)− f2(q)).

Similarly, one can easily verify that the space S30(Γ0(1)) is spanned by the
eigenforms

g1(q) :=
∞∑

n=1

b1(n)q
n := (5856 + 96

√
51349)RΔ2 +R3Δ,

g2(q) :=

∞∑

n=1

b2(n)q
n := (5856− 96

√
51349)RΔ2 +R3Δ.

Since g1(q) and g2(q) are eigenforms, it easily follows that the two Dirichlet
series

∞∑

n=1

b1(n)

ns and

∞∑

n=1

b2(n)

ns

have Euler products as in (5.16.6) with weight 30. The difference to which
Ramanujan alludes is the identity

RΔ2 =

∞∑

n=1

Ω3(n)q
n =

1

192
√
51349

(g1(q)− g2(q)).

5.17 Divisibility of τ (n) by 23

The claim (5.17.2) is equivalent to the assertion that η(z)η(23z) is an eigen-
form with complex multiplication in the space S1(Γ0(23), χ−23) [195, p. 127],
[139, p. 472], [158], [293], [118], where χ−23 is the usual Kronecker character for
the quadratic field Q(

√
−23). Although the claims regarding the Euler prod-

ucts Π1, Π2, and Π3 follow easily from the theory of complex multiplication,
one can more easily obtain them from Euler’s pentagonal number theorem

(q; q)∞ =

∞∑

n=−∞
(−1)nqn(3n+1)/2.
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Here one would use an argument similar to that briefly outlined in the com-
mentary for Section 5.8. In analogy with our comments in Sections 5.2 and
5.6, the claim (5.17.8) is false, but the leading term in the asymptotic expan-
sion is indeed Cx/

√
log x. More precisely, in the notation (5.2.9), according

to Ramanujan, c2 = 1
2 , but the actual value is c2 = 0.6083 . . . [228].

5.18 The Congruence p(121n − 5) ≡ 0 (mod 121)

The proof of (5.18.1) is quite difficult, but it is given in Rushforth’s paper
[306]. Ramanujan omitted many details in his assertion (5.18.2). For the
remainder of the proof of Ramanujan’s congruence modulo 112 to be com-
pleted, it is necessary to explicitly determine the constants a4, b4, and c3 in
(5.18.2). Rushforth does not prove (5.18.2) but proceeds by a different route
to (5.18.7). The third congruence in (5.18.3) is proved in Rushforth’s paper
[306]. The equation to which Ramanujan refers before (5.18.7) is not given in
the manuscript, but would arise from (5.18.2) using (5.18.3)–(5.18.6).

5.19 Divisibility of τ (n) for Almost All Values of n

This manuscript contains many results on the divisibility of τ(n). In several
sections Ramanujan concludes that τ(n) is a multiple of a given integer M
for almost all n. In other words, for such M ,

lim
X→∞

#{1 ≤ n ≤ X : τ(n) ≡ 0 (modM)}
X

= 1.

Specifically, Ramanujan finds in (5.19.9) that τ(n) is a multiple of 25 · 33 · 52 ·
72 · 23 · 691 for almost all n. Various authors have proved versions of (5.19.9)
with varying exponents on the six primes. It was first proved by Chowla [112],
[113, pp. 639–643] that in fact, the conclusion still holds if the powers of 2, 3,
5, 7, 23, and 691 are replaced by any set of six positive integral powers.

Ramanujan obtained his results by employing the congruences for τ(n)
with modulus M ∈ {25, 33, 52, 72, 23, 691}. In each case, he found that a posi-
tive density of primes p has the property that τ(p) ≡ 0 (modM). A Tauberian
argument based on the multiplicativity of τ(n) then leads to his conclusion
[314, Section 2].

Results of this type depend upon the divisibility of divisor functions. Im-
proving on Watson’s theorem [334], Rankin [288] found an asymptotic formula
for the number of positive integers ≤ x for which σν(n) is not divisible by the
prime number k. These results were generalized by E.J. Scourfield [309].

Serre [313], [314], [315] has obtained a substantial generalization of Ra-
manujan’s claims for all modular forms of integral weight with respect to con-
gruence subgroups of the full modular group. In particular, if

∑∞
n=1 a(n)q

n
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(q := e2πiz) is the Fourier expansion of a modular form of integral weight with
integral coefficients, then for every positive integer M , a(n) ≡ 0 (modM) for
almost all n. M.R. Murty and V.K. Murty [233] have obtained an interesting
improvement on the original formulation of Serre’s result.

Serre’s theorem is based on the existence of 	-adic Galois representations
associated to modular forms (see the comments on Section 5.10). In addition
to providing an arithmetic and group-theoretic description of congruences for
Fourier coefficients a(n) of the types found by Ramanujan for τ(n), their
mere existence implies, by the Chebotarev density theorem, that a positive
proportion of primes p have the property that a(p) ≡ 0 (modM).

Bambah and Chowla [36], [113, pp. 617–619] state without proofs several
congruences for τ(n). Lahiri [202] gives an enormous number of congruences
involving τ(n). F. van der Blij’s beautiful paper [78], giving congruences and
other properties of τ(n), is particularly recommended. Except for those em-
ploying the theory of 	-adic Galois representations, almost all the authors
giving proofs of congruences for τ(n) whom we have cited use ideas similar to
those employed by Ramanujan in this manuscript.

5.20 The Congruence p(5n + 4) ≡ 0 (mod 5), Revisited

Sections 5.20–5.23 contain Ramanujan’s proof of his congruences for p(n) mod-
ulo any positive integral power of 5, with (5.22.5)–(5.22.8) being the principal
congruences. Observe that (5.22.7) and (5.22.8) include (5.1.14). As mentioned
earlier, the ideas here were expanded into a more detailed proof given in 1938
by Watson [336], who does not mention Part II of Ramanujan’s unpublished
manuscript in his paper, although according to Rushforth [306], Watson re-
ceived a copy from Hardy in 1928.

The details in Section 5.20 are reasonably ample, but beginning with Sec-
tion 5.21, the details are sparse. In particular, (5.21.1) is more difficult to
prove, and a proof may be found in a paper by Hirschhorn and D.C. Hunt
[181]. The proof given by Watson possibly follows along somewhat different
lines from those indicated by Ramanujan. Readers can likely follow the details
for the remainder of Section 5.21. We have added some details for (5.21.6),
which is not used in Watson’s work. The heart of Ramanujan’s proof lies in
(5.22.1)–(5.22.6), for which Ramanujan provides no details. Hirschhorn [180]
pointed out to the authors that the upper index 5λ−1 in (5.22.3) and (5.22.4)
is incorrect. The number of terms is (5λ+1−1)/24 if λ is odd, and (5λ+1−5)/24
if λ is even. Furthermore, the upper index 25 in (5.22.1) should be replaced
by 26. The details of Ramanujan’s argument are developed in Watson’s paper
[336].
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5.23 Congruences for p(n) Modulo Higher Powers of 5,
Continued

Ramanujan’s conjecture that cλ = (−2)λ is correct; it can be deduced from a
theorem of Hirschhorn and Hunt [181, Theorem 1.4].

5.24 The Congruence p(7n + 5) ≡ 0 (mod 7)

Clearly, Ramanujan intended to follow the same lines of attack for powers of 7
as he did for powers of 5 in Sections 20–23. If he had completed his argument,
he would have undoubtedly seen that his original conjecture modulo powers of
7 needed to be corrected. Most likely, his declining health prevented him from
working out the remaining details, which were completed by Watson [336].

To verify the equations (5.24.5)–(5.24.7), it suffices to notice that all three
equations are essentially claims about the presentation of modular functions
with respect to Γ0(7). In each case, one may multiply both sides of the claimed
identity by (q7; q7)8. After doing so, one needs to compare, up to a shifted
power of q, the Fourier expansions of two cusp forms of weight 4. One can
then easily deduce these claims from the results in [118].

Ramanujan’s proof of (5.24.8) is quite elementary, but the algebraic ma-
nipulations are a bit tedious. Ramanujan’s argument had not been given in
detail in the literature until Berndt, Yee, and Yi [70] provided such an ar-
gument. However, Garvan [143] has also given a proof close in spirit to that
of Ramanujan. The identity (5.24.8) also appears on page 189 of the lost
notebook [283] along with three further identities in the same spirit. All four
identities were proved in [70]. In the chapter following this one, proofs of these
four identities are given. A perhaps more efficient proof of (5.24.8), but using
different ideas, has been given by O. Kolberg [197].

At the end of Part II are two detached fragments. They actually appear at
the end of Section 21 in Watson’s copy of the manuscript, but it seems to us
that they are better placed at the end of the section pertaining to the moduli
7 and 49, and so we have taken the liberty of moving them to the end of the
manuscript. The four numbers in the penultimate line are the coefficients of
the first four terms of the generating function [143, p. 333], [353]

∞∑

n=0

p(49n+ 47)qn = 2546 · 72 (q
7; q7)4∞
(q; q)5∞

+ 48934 · 74q (q
7; q7)8∞
(q; q)9∞

+ 1418989 · 75q2 (q
7; q7)12∞
(q; q)13∞

+ 2488800 · 77q3 (q
7; q7)16∞
(q; q)17∞

+ 2394438 · 79q4 (q
7; q7)20∞
(q; q)21∞

+ 1437047 · 711q5 (q
7; q7)24∞
(q; q)25∞

+ 4043313 · 712q6 (q
7; q7)28∞
(q; q)29∞

+ 161744 · 715q7 (q
7; q7)32∞
(q; q)33∞
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+ 32136 · 717q8 (q
7; q7)36∞
(q; q)37∞

+ 31734 · 718q9 (q
7; q7)40∞
(q; q)41∞

+ 3120 · 720q10 (q
7; q7)44∞
(q; q)45∞

+ 204 · 722q11 (q
7; q7)48∞
(q; q)49∞

+ 8 · 724q12 (q
7; q7)52∞
(q; q)53∞

+ 725q13
(q7; q7)56∞
(q; q)57∞

,

which can be found in the papers of Garvan [143, p. 333] and Zuckerman
[353]. Ramanujan miscalculated the fourth coefficient, and we have corrected
it. There is also a copying error by Watson in the second coefficient, which is
correct in Ramanujan’s copy. These numbers are the only evidence that we
have that Ramanujan calculated a portion of the generating function given
above.



6

Theorems about the Partition Function on
Pages 189 and 182

6.1 Introduction

Let p(n) denote, as usual, the number of unrestricted partitions of the positive
integer n. This chapter contains accounts of two pages, 189 and 182 in [283],
which are devoted to p(n). Both pages, especially page 182, are related to
Ramanujan’s paper [276]. Perhaps page 182 is from a preliminary version
of [276] that was considerably shortened before it reached the publisher’s
desk. Our account of page 182 is taken from a paper that the second author
coauthored with C. Gugg and S. Kim [66], and that for page 189 is excerpted
from a paper that the second author wrote with A.J. Yee and J. Yi [70]. At
the conclusion of the chapter, we offer a few remarks on work on partitions
found on pages 207, 208, 248, 252, 326, 331, and 333.

In [276], [281, p. 213], Ramanujan offers the beautiful identities

∞∑

n=0

p(5n+ 4)qn = 5
(q5; q5)5∞
(q; q)6∞

(6.1.1)

and
∞∑

n=0

p(7n+ 5)qn = 7
(q7; q7)3∞
(q; q)4∞

+ 49q
(q7; q7)7∞
(q; q)8∞

, (6.1.2)

where, as usual,

(a; q)∞ :=

∞∏

k=0

(1− aqk), |q| < 1.

References to several proofs of (6.1.1) and (6.1.2) can be found in the latest
edition of [281, pp. 372–373] and in the commentaries on Sections 5.4 and 5.8 of
Chapter 5. Most proofs of (6.1.1) rely on (5.4.6). Ramanujan gave a brief proof
of (6.1.1) in [276]; see also Section 5.4. He did not prove (6.1.2) in [276], but he
did give a brief sketch of his proof of (6.1.2) in his unpublished manuscript on

G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook: Part III,
DOI 10.1007/978-1-4614-3810-6 6,
c© Springer Science+Business Media New York 2012
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the partition and τ -functions [283, pp. 242–243]; see Section 5.24. Note that
(6.1.1) and (6.1.2) immediately yield the congruences p(5n + 4) ≡ 0 (mod 5)
and p(7n + 5) ≡ 0 (mod 7), respectively. For a connection of (6.1.1) with the
Virasoro algebra, see a paper by A. Milas [224].

The two identities (6.1.1) and (6.1.2) are stated on page 189 of Ramanu-
jan’s lost notebook in the pagination of [283]. Also given by Ramanujan are
two further identities. Define qm(n), n ≥ 0, by

(q; q)m∞ =:

∞∑

n=0

qm(n)qn. (6.1.3)

Note that qm(n) denotes the number of m-colored partitions of n into an even
number of distinct parts minus the number of m-colored partitions of n into
an odd number of distinct parts. Then

∞∑

n=0

q5(5n)q
n =

(q; q)6∞
(q5; q5)∞

(6.1.4)

and
∞∑

n=0

q7(7n)q
n =

(q; q)8∞
(q7; q7)∞

+ 49q(q; q)4∞(q7; q7)3∞. (6.1.5)

For completeness, in Section 6.2, we begin with essentially Ramanujan’s
proof of (6.1.1). We then prove (6.1.4).

In Section 6.3, we amplify Ramanujan’s sketch in [283] and give a complete
proof of (6.1.2). A detailed proof of (6.1.2) along the lines outlined by Ra-
manujan was first given by Berndt, Yee, and Yi [70], and it is that proof that
we give here; the next three sections arise from [70]. It should be remarked
that F.G. Garvan gave a proof of Ramanujan’s general congruence (5.1.15)
also along lines with which Ramanujan would have been comfortable, but for
the particular instance (6.1.2), his proof is different from the proof that we
give. We also prove (6.1.5) in Section 6.3. Both proofs depend on some theta
function identities that Ramanujan stated without proof. Thus, in Section 6.3
we also give proofs of these required identities.

Immediately above the four principal identities (6.1.1), (6.1.2), (6.1.4), and
(6.1.5), Ramanujan asserts an identity involving the coefficients of (q; q)−24s

∞ ,
for each positive integer s, and Bernoulli numbers. Although Ramanujan’s
claim is true for s = 1, it is false in general. At the bottom of page 189 in
[283], Ramanujan offers an elegant assertion on the divisibility of a certain
difference of partition functions. Although his claim is true in some cases, it
is unfortunately false in general. In Section 6.4 we briefly discuss these two
false claims.

As we remarked earlier in this introductory section, page 182 is possibly
the only page remaining of a manuscript that might have been a forerunner
of his paper [276]. On this page, Ramanujan briefly examines congruences for
pr(n), where
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1

(q; q)r∞
=

∞∑

n=0

pr(n)q
n, |q| < 1.

These congruences are the highlights of our brief discussion of page 182.
K.G. Ramanathan [273] also briefly examined this page.

At the conclusion of this chapter, we briefly discuss some miscellaneous
entries on partitions found in [283]. In particular, we discuss all of the entries
on page 331 of [283], which are related to Hardy and Ramanujan’s paper on
the asymptotic formula for p(n) [167]. Both on pages 326 and 331, Ramanujan
discusses the asymptotic formula for the coefficients of the reciprocal of ϕ(−q),
defined in (5.11.1). Because of the historical importance of this asymptotic
formula, we conclude this chapter with a discussion of it.

Throughout this chapter, J, J1, J2, . . . represent power series with integral
coefficients and integral powers, not necessarily the same with each occurrence.
We have adhered to Ramanujan’s notation, whereas in contemporary notation
we would use congruence signs instead.

We emphasize that the theory of modular forms can be utilized to provide
proofs of most of the results in this chapter. However, we think that it is
instructive to construct proofs that Ramanujan might possibly have given.

6.2 The Identities for Modulus 5

Entry 6.2.1 (p. 189). If p(n) denotes the ordinary partition function, then

∞∑

n=0

p(5n+ 4)qn = 5
(q5; q5)5∞
(q; q)6∞

. (6.2.1)

Proof. Recall that the Rogers–Ramanujan continued fraction R(q) is defined
by

R(q) :=
1

1 +

q

1 +

q2

1 +

q3

1 + · · · , |q| < 1.

This continued fraction satisfies two beautiful and famous identities [276],
[281, p. 212], [55, p. 267, Equations (11.5), (11.6)]:

R(q5)− q − q2

R(q5)
=

(q; q)∞
(q25; q25)∞

(6.2.2)

and

R5(q5)− 11q5 − q10

R5(q5)
=

(q5; q5)6∞
(q25; q25)6∞

. (6.2.3)

(It should be remarked here that the introduction of the continued fraction
R(q) is not strictly necessary. In the representations (6.2.2) and (6.2.3) we only
need to know that a function R(q), defined by (6.2.2), can be represented as
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a power series in q with integral coefficients.) Using the generating function
for p(n), (6.2.2) and (6.2.3), and “long division,” we find that

∞∑

n=0

p(n)qn =
1

(q; q)∞
=

(q25; q25)5∞
(q5; q5)6∞

(q5; q5)6∞
(q25; q25)6∞

(q25; q25)∞
(q; q)∞

=
(q25; q25)5∞
(q5; q5)6∞

R5(q5)− 11q5 − q10/R5(q5)

R(q5)− q − q2/R(q5)

=
(q25; q25)5∞
(q5; q5)6∞

{
R4 + qR3 + 2q2R2 + 3q3R+ 5q4

−3q5R−1 + 2q6R−2 − q7R−3 + q8R−4
}
, (6.2.4)

where R := R(q5). Choosing only those terms on each side of (6.2.4) where
the powers of q are of the form 5n+ 4, we find that

∞∑

n=0
n≡4 (mod 5)

p(n)qn = 5q4
(q25; q25)5∞
(q5; q5)6∞

,

or
∞∑

n=0

p(5n+ 4)q5n = 5
(q25; q25)5∞
(q5; q5)6∞

. (6.2.5)

Replacing q5 by q in (6.2.5), we complete the proof of (6.2.1). ��

C. Gugg [160] has given an elegant new proof of (6.2.3). His results in
another paper [159] are also connected with (6.2.2) and (6.2.3) and the proof
given above.

We remark here that (6.2.5) and (6.2.4) lead to a simple proof of another
congruence for p(n).

Corollary 6.2.1. For each nonnegative integer n,

p(25n+ 24) ≡ 0 (mod 25). (6.2.6)

Proof. Using (6.2.5) and (6.2.4) with q replaced by q5, we find that

∞∑

n=0

p(5n+ 4)q5n = 5
(q25; q25)5∞
(q5; q5)5∞

1

(q5; q5)∞

= 5
(q25; q25)5∞
(q5; q5)5∞

(q125; q125)5∞
(q25; q25)6∞

{
R4(q25) + q5R3(q25) + · · ·+ 5q20 − · · ·

}
.

Apply the binomial theorem to (q5; q5)5∞ in the denominator above, replace
q5 by q, and equate those terms on each side of the resulting equation with
powers of q of the type q5n+4. We then immediately deduce (6.2.6). ��
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Entry 6.2.2 (p. 189). If q5(n), n ≥ 0, is defined by (6.1.3), then

∞∑

n=0

q5(5n)q
n =

(q; q)6∞
(q5; q5)∞

. (6.2.7)

Proof. By (6.2.2) and (6.2.3),

∞∑

n=0

q5(n)q
n = (q; q)5∞ =

(q5; q5)6∞
(q25; q25)∞

(q; q)5∞
(q25; q25)5∞

(q25; q25)6∞
(q5; q5)6∞

=
(q5; q5)6∞
(q25; q25)∞

(R(q5)− q − q2/R(q5))5

R5(q5)− 11q5 − q10/R5(q5)
. (6.2.8)

Now, the terms where the exponents of q are multiples of 5 in
(
R(q5)− q − q2

R(q5)

)5

are given by

R5(q5)− q10

R5(q5)
− q5 −

(
5

2, 1, 2

)
q5 +

(
5

1, 3, 1

)
q5

= R5(q5)− q10

R5(q5)
− q5 − 30q5 + 20q5 = R5(q5)− q10

R5(q5)
− 11q5. (6.2.9)

Thus, choosing only those terms from (6.2.8) where the powers of q are mul-
tiples of 5, we find upon using (6.2.9) that

∞∑

n=0

q5(5n)q
5n =

(q5; q5)6∞
(q25; q25)∞

R5(q5)− 11q5 − q10/R5(q5)

R5(q5)− 11q5 − q10/R5(q5)
=

(q5; q5)6∞
(q25; q25)∞

.

(6.2.10)
Replacing q5 by q, we complete the proof of (6.2.7). ��
Corollary 6.2.2. We have

q5(5n) ≡
{
(−1)j (mod 5), if n = j(3j − 1)/2, −∞ < j < ∞,

0 (mod 5), otherwise.

Proof. By Entry 6.2.2 and the binomial theorem,

∞∑

n=0

q5(5n)q
n =

(q; q)6∞
(q5; q5)∞

≡ (q; q)6∞
(q; q)5∞

= (q; q)∞ (mod 5).

The result now follows from Euler’s pentagonal number theorem [55, p. 36,
Entry 22(iii)]

(q; q)∞ =

∞∑

n=−∞
(−1)nqn(3n−1)/2, |q| < 1. (6.2.11)

��
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To illustrate Corollary 6.2.2, we find, using Mathematica, that

(q; q)6∞
(q5; q5)∞

= 1− 6q + 9q2 + 10q3 − 30q4 + q5 + 5q6 + 51q7 + 10q8 − 100q9

+ 20q10 − 55q11 + 109q12 + 110q13 − 130q14 − q15 − 110q16

+ 160q17 + 10q18 − 230q19 + 100q20 + · · · .

In fact, S.H. Chan pointed out to us that a more general corollary than
Corollary 6.2.2 holds, and the proof is even more elementary than the proof
given for Corollary 6.2.2!

Corollary 6.2.3. For any prime p,

qp(pn) ≡
{
(−1)j (mod p), if n = j(3j − 1)/2, −∞ < j < ∞,

0 (mod p), otherwise.
(6.2.12)

Proof. By the definition (6.1.3) and the binomial theorem,

∞∑

n=0

qp(n)q
n = (q; q)p∞ ≡ (qp; qp)∞ (mod p),

and so, extracting only those terms with powers of q that are multiples of p
and then replacing qp by q, we deduce that

∞∑

n=0

qp(pn)q
n ≡ (q; q)∞ (mod p),

from which the desired congruence (6.2.12) holds. ��

6.3 The Identities for Modulus 7

Our primary goal in this section is to give a completely elementary proof along
the lines outlined by Ramanujan in [283], [67, Section 24], or Section 5.24 in
this volume, of his famous theorem below, Entry 6.3.1, as well as a proof of
the new related theorem, Entry 6.3.2, or (6.1.5).

Entry 6.3.1 (p. 189). We have

∞∑

n=0

p(7n+ 5)qn = 7
(q7; q7)3∞
(q; q)4∞

+ 49q
(q7; q7)7∞
(q; q)8∞

. (6.3.1)

Proof. Using the pentagonal number theorem (6.2.11) in the numerator and
then separating the indices of summation in the numerator into residue classes
modulo 7, we readily find that
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(q1/7; q1/7)∞
(q7; q7)∞

= J1 + q1/7J2 − q2/7 + q5/7J3, (6.3.2)

where J1, J2, and J3 are power series in q with integral coefficients. Now recall
Jacobi’s identity [55, p. 39, Entry 24(ii)],

(q; q)3∞ =
∞∑

n=0

(−1)n(2n+ 1)qn(n+1)/2, |q| < 1. (6.3.3)

Cubing both sides of (6.3.2) and substituting (6.3.3) into the left side, we find
that

∑∞
n=0(−1)n(2n+ 1)qn(n+1)/14

∑∞
n=0(−1)n(2n+ 1)q7n(n+1)/2

= (J3
1 + 3J2

2J3q − 6J1J3q) + q1/7(3J2
1J2 − 6J2J3q + J2

3 q
2)

+ 3q2/7(J1J
2
2 − J2

1 + J3q)

+ q3/7(J3
2 − 6J1J2 + 3J1J

2
3 q) + 3q4/7(J1 − J2

2 + J2J
2
3 q)

+ 3q5/7(J2 + J2
1J3 − J2

3 q) + q6/7(6J1J2J3 − 1). (6.3.4)

On the other hand, by separating the indices of summation in the numer-
ator on the left side of (6.3.4) into residue classes modulo 7, we easily find
that

∑∞
n=0(−1)n(2n+ 1)qn(n+1)/14

∑∞
n=0(−1)n(2n+ 1)q7n(n+1)/2

= G1 + q1/7G2 + q3/7G3 − 7q6/7, (6.3.5)

where G1, G2, and G3 are power series in q with integral coefficients. Com-
paring coefficients in (6.3.4) and (6.3.5), we conclude that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

J1J
2
2 − J2

1 + J3q = 0,

J1 − J2
2 + J2J

2
3 q = 0,

J2 + J2
1J3 − J2

3 q = 0,

6J1J2J3 − 1 = −7.

(6.3.6)

Now write (6.3.2) in the form

(ωq1/7;ωq1/7)∞
(q7; q7)∞

= J1 + ωq1/7J2 − ω2q2/7 + ω5q5/7J3, (6.3.7)

where ω7 = 1. Multiplying (6.3.7) over all seventh roots of unity, we find that

(q; q)8∞
(q7; q7)8∞

=

6∏

i=0

(J1 + ωiq1/7J2 − ω2iq2/7 + ω5iq5/7J3). (6.3.8)
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Using the generating function for p(n), (6.3.2), and (6.3.8), we find that

∞∑

n=0

p(n)qn =
1

(q; q)∞
=

(q49; q49)7∞
(q7; q7)8∞

(q7; q7)8∞
(q49; q49)8∞

(q49; q49)∞
(q; q)∞

(6.3.9)

=
(q49; q49)7∞
(q7; q7)8∞

∏6
i=0(J1 + ωiqJ2 − ω2iq2 + ω5iq5J3)

J1 + qJ2 − q2 + q5J3

=
(q49; q49)7∞
(q7; q7)8∞

{
6∏

i=1

(J1 + ωiqJ2 − ω2iq2 + ω5iq5J3)

}
.

We need only compute the terms in
∏6

i=1(J1+ωiqJ2−ω2iq2+ω5iq5J3) where
the powers of q are of the form 7n + 5 to complete the proof. In order to do
this, we need to prove the identities

J7
1 + J7

2 q + J7
3 q

5 =
(q; q)8∞
(q7; q7)8∞

+ 14q
(q; q)4∞
(q7; q7)4∞

+ 57q2, (6.3.10)

J3
1J2 + J3

2J3q + J3
3J1q

2 = − (q; q)4∞
(q7; q7)4∞

− 8q, (6.3.11)

J2
1J

3
2 + J2

3J
3
1 q + J2

2J
3
3 q

2 = − (q; q)4∞
(q7; q7)4∞

− 5q. (6.3.12)

Since J2
2 = J1+J2J

2
3 q, J

2
1 = J1J

2
2+J3q, J

2
3 q = J2+J2

1J3, and J1J2J3 = −1
by (6.3.6), we find that

J2
1J

3
2 + J2

3J
3
1 q + J2

2J
3
3 q

2 = J3
1J2 + J2

1J
2
2J

2
3 q + J2

1J
2
2J

2
3 q + J3

3J1q
2 + J3

2J3q

+ J2
1J

2
2J

2
3 q

= J3
1J2 + J3

2J3q + J3
3J1q

2 + 3q, (6.3.13)

J1J
5
2 + J3J

5
1 + J2J

5
3 q

3 = J1J2(J1 + J2J
2
3 q)

2 + J3J1(J1J
2
2 + J3q)

2

+ J2J3(J2 + J2
1J3)

2q

= J3
1J2 + 2J2

1J
2
2J

2
3 q + J1J

3
2J

4
3 q

2 + J3J
3
1J

4
2

+ 2J2
1J

2
2J

2
3 q + J3

3J1q
2 + J3

2J3q + 2J2
1J

2
2J

2
3 q

+ J2J
3
3J

4
1 q

= J3
1J2 + J3

2J3q + J3
3J1q

2

− (J2
1J

3
2 + J2

3J
3
1 q + J2

2J
3
3 q

2) + 6q

= 3q, (6.3.14)

where (6.3.14) is obtained from (6.3.13). (Observe from (6.3.13) that in order
to prove (6.3.10)–(6.3.12) it suffices to prove only (6.3.11) or (6.3.12).) By
squaring the left side of (6.3.11) and using (6.3.6), (6.3.14), and (6.3.13), we
find that

(J3
1J2 + J3

2J3q + J3
3J1q

2)2 = J6
1J

2
2 + J6

2J
2
3 q

2 + J6
3J

2
1 q

4
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+ 2(J3
1J

4
2J3q + J1J

3
2J

4
3 q

3 + J4
1J2J

3
3 q

2)

= J7
1 + J6

1J2J
2
3 q + J7

2 q + J2
1J

6
2J3q + J7

3 q
5

+ J1J
2
2J

6
3 q

4 − 2(J2
1J

3
2 q + J2

3J
3
1 q

2 + J2
2J

3
3 q

3)

= J7
1 + J7

2 q + J7
3 q

5 − (J1J
5
2 q + J3J

5
1 q + J2J

5
3 q

4)

− 2(J2
1J

3
2 q + J2

2J
3
3 q

3 + J3
1J

2
3 q

2)

= J7
1 + J7

2 q + J7
3 q

5 − 2q(J3
1J2 + J3

2J3q + J3
3J1q

2)

− 9q2.

Thus,

(J3
1J2 + J3

2J3q + J3
3J1q

2 + q)2 = (J7
1 + J7

2 q + J7
3 q

5)− 8q2. (6.3.15)

Expanding the right side of (6.3.8) and using (6.3.6), (6.3.14), and (6.3.13),
we obtain

(q; q)8∞
(q7; q7)8∞

= J7
1 + J7

2 q + J7
3 q

5 + 7(J1J
5
2 q + J3J

5
1 q + J2J

5
3 q

4)

+ 7(J4
1J

2
2J3q + J1J

4
2J

2
3 q

2 + J2J
4
3J

2
1 q

3)

+ 7(J3
1J2q + J3

2J3q
2 + J3

3J1q
3) + 14(J2

1J
3
2 q + J2

3J
3
1 q

2 + J2
2J

3
3 q

3)

+ 7J2
1J

2
2J

2
3 q

2 + 14J1J2J3q
2 − q2

= J7
1 + J7

2 q + J7
3 q

5 + 21q2 − 7q(J3
1J2 + J3

2J3q + J3
3J1q

2)

+ 7q(J3
1J2 + J3

2J3q + J3
3J1q

2)

+ 14q(J3
1J2 + J3

2J3q + J3
3J1q

2 + 3q) + 7q2 − 14q2 − q2

= J7
1 + J7

2 q + J7
3 q

5 + 14q(J3
1J2 + J3

2J3q + J3
3J1q

2) + 55q2.
(6.3.16)

Combining (6.3.15) and (6.3.16), we find that

(q; q)8∞
(q7; q7)8∞

= (J3
1J2 + J3

2J3q + J3
3J1q

2 + q)2 + 8q2

+ 14(J3
1J2 + J3

2J3q + J3
3J1q

2)q + 55q2

= (J3
1J2 + J3

2J3q + J3
3J1q

2 + 8q)2.

By (6.3.2), we see that for q sufficiently small and positive, J2 < 0. Thus,
taking the square root of both sides above, we find that

J3
1J2 + J3

2J3q + J3
3J1q

2 = − (q; q)4∞
(q7; q7)4∞

− 8q, (6.3.17)

which proves (6.3.11). We now see that (6.3.10) follows from (6.3.16) and
(6.3.17), and (6.3.12) follows from (6.3.13) and (6.3.17).
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Returning to (6.3.9), we are now ready to compute the terms in∏6
i=1(J1 + ωiqJ2 − ω2iq2 + ω5iq5J3) when the powers of q are of the form

7n + 5. Using the computer algebra system Maple, (6.3.11), (6.3.12), and
(6.3.14), we find that the desired terms with powers of the form q7n+5 are
equal to

−(J1J
5
2 + J3J

5
1 + 3J3

1J2 + 4J2
1J

3
2 )q

5 − (3J3
2J3 + 4J2

3J
3
1 − 8)q12

−(4J2
2J

3
3 + 3J3

3J1)q
19 − J2J

5
3 q

26

= −3(J3
1J2 + J3

2J3q
7 + J3

3J1q
14)q5 − 4(J2

1J
3
2 + J2

3J
3
1 q

7 + J2
2J

3
3 q

14)q5

− (J1J
5
2 + J3J

5
1 + J2J

5
3 q

21)q5 + 8q12

= 7
(q7; q7)4∞
(q49; q49)4∞

q5 + 49q12. (6.3.18)

Choosing only those terms on each side of (6.3.9) where the powers of q are
of the form 7n+ 5 and using the calculation from (6.3.18), we find that

∞∑

n=0
n≡5 (mod 7)

p(n)qn = q5
(q49; q49)7∞
(q7; q7)8∞

(
7

(q7; q7)4∞
(q49; q49)4∞

+ 49q7
)
,

or
∞∑

n=0

p(7n+ 5)q7n = 7
(q49; q49)3∞
(q7; q7)4∞

+ 49q7
(q49; q49)7∞
(q7; q7)8∞

. (6.3.19)

Replacing q7 by q in (6.3.19), we complete the proof of (6.3.1). ��

We show next that we can derive Ramanujan’s congruence for p(n) modulo
49 from (6.3.19).

Corollary 6.3.1. For each nonnegative integer n,

p(49n+ 47) ≡ 0 (mod 49). (6.3.20)

Proof. Using Jacobi’s identity (6.3.3), write (6.3.19) in the form

∞∑

n=0

p(7n+5)q7n = 7
(q49; q49)3∞
(q7; q7)7∞

∞∑

m=0

(−1)m(2m+1)q7m(m+1)/2+49J. (6.3.21)

Consider those terms on the right side of (6.3.21) when the power of q is
congruent to 42 modulo 49. Using the binomial theorem in the denominator,
we see that these terms arise when m ≡ 3 (mod 7) and that the corresponding
coefficients are divisible by 49. On the left side, these powers arise when n ≡
6 (mod 7). The congruence (6.3.20) follows. ��

Comparing (6.3.2) with Entry 17(v) in Chapter 19 of Ramanujan’s second
notebook [282], [55, p. 303], we see that
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J1 =
f(−q2,−q5)

f(−q,−q6)
, J2 = −f(−q3,−q4)

f(−q2,−q5)
, and J3 =

f(−q,−q6)

f(−q3,−q4)
,

where

f(a, b) :=

∞∑

n=−∞
an(n+1)/2bn(n−1)/2, |ab| < 1.

In the notation of Section 18 of Chapter 19 in [282], [55, p. 306],

α = u1/7 = q−2/7J1, β = −v1/7 = q−1/7J2, and γ = w1/7 = q3/7J3.
(6.3.22)

Thus, the identity (6.3.10) is equivalent to an identity in Entry 18 in Chapter
19 of Ramanujan’s second notebook [282], [55, p. 305, Equation (18.2)]. The
proof of (6.3.10) given here is much simpler than that given in [55, pp. 306–
312].

Entry 6.3.2 (p. 189). If q7(n), n ≥ 0, is defined by (6.1.3), then

∞∑

n=0

q7(7n)q
n =

(q; q)8∞
(q7; q7)∞

+ 49q(q; q)4∞(q7; q7)3∞. (6.3.23)

Proof. By (6.3.2), with q replaced by q7,

∞∑

n=0

q7(n)q
n = (q; q)7∞ =

(q7; q7)8∞
(q49; q49)∞

(q; q)7∞
(q49; q49)7∞

(q49; q49)8∞
(q7; q7)8∞

=
(q7; q7)8∞
(q49; q49)∞

(J1 + qJ2 − q2 + q5J3)
7 (q

49; q49)8∞
(q7; q7)8∞

.

(6.3.24)

Using (6.3.6) and employing (6.3.10)–(6.3.12) with q replaced by q7, we find
that the terms where the exponents of q are multiples of 7 in

(J1 + qJ2 − q2 + q5J3)
7

are given by

∑

u,v,w≥0
7|(u+2v+5w)

(
7

u, v, w

)
(−1)vJ7−u−v−w

1 Ju
2 J

w
3 qu+2v+5w

= J7
1 + J7

2 q
7 + J7

3 q
35 − q14

+ (105J4
1J

2
2J3 − 42J1J

5
2 + 210J2

1J
3
2 − 42J5

1J3 − 140J3
1J2)q

7

+ (105J1J
4
2J

2
3 − 630J2

1J
2
2J

2
3 + 210J1J2J3 − 140J3

2J3 + 210J3
1J

2
3 )q

14

+ (−140J1J
3
3 + 105J2

1J2J
4
3 + 210J2

2J
3
3 )q

21 − 42J2J
5
3 q

28

= J7
1 + J7

2 q
7 + J7

3 q
35 − 245(J3

1J2 + J3
2J3q

7 + J3
3J1q

14)q7
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− 42(J1J
5
2 + J3J

5
1 + J2J

5
3 q

21)q7 + 210(J2
1J

3
2 + J2

3J
3
1 q

7 + J2
2J

3
3 q

14)q7

− 841q14

= J7
1 + J7

2 q
7 + J7

3 q
35 − 35(J3

1J2 + J3
2J3q

7 + J3
3J1q

14)q7

+ 630q14 − 126q14 − 841q14

=
(q7; q7)8∞
(q49; q49)8∞

+ 14q7
(q7; q7)4∞
(q49; q49)4∞

+ 57q14 − 35q7
(
− (q7; q7)4∞

(q49; q49)4∞
− 8q7

)

− 337q14

=
(q7; q7)8∞
(q49; q49)8∞

+ 49q7
(q7; q7)4∞
(q49; q49)4∞

. (6.3.25)

Thus, choosing only those terms from (6.3.24) where the powers of q are
multiples of 7, we find upon using (6.3.25) that

∞∑

n=0

q7(7n)q
7n =

(q7; q7)8∞
(q49; q49)∞

(
(q7; q7)8∞
(q49; q49)8∞

+ 49q7
(q7; q7)4∞
(q49; q49)4∞

)
(q49; q49)8∞
(q7; q7)8∞

=
(q7; q7)8∞
(q49; q49)∞

+ 49q7(q7; q7)4∞(q49; q49)3∞. (6.3.26)

Replacing q7 by q, we complete the proof of (6.3.23). ��

Corollary 6.3.2. We have

q7(7n) ≡
{
(−1)j (mod 7), if n = j(3j − 1)/2, −∞ < j < ∞,

0 (mod 7), otherwise.

Corollary 6.3.2 can be proved using the same argument as given in the
proof of Corollary 6.2.2, or alternatively observe that Corollary 6.3.2 is a
special case of Corollary 6.2.3.

To illustrate Corollary 6.3.2, we find, using Mathematica, that

(q; q)8∞
(q7; q7)∞

= 1− 8q + 20q2 − 70q4 + 64q5 + 56q6 + q7 − 133q8 − 140q9

+ 308q10 − 70q11 + 174q12 + 56q13 − 518q14 − 141q15 − 63q16

+ 868q17 − 140q18 + 238q19 + 294q20 + · · · .

Apparently, proofs of Entries 6.2.2 and 6.3.2 were first given by M. New-
man [238] using modular forms, although he credits D.H. Lehmer with first
discovering the identities. Of course, they were unaware that these identities
are in the lost notebook. A more complicated proof of Entry 6.2.2 was given
by K.G. Ramanathan [273]. Ramanujan’s ideas for establishing the congru-
ences p(5n+4) ≡ 0 (mod 5) and p(7n+5) ≡ 0 (mod 7) that we have described
above have been slightly generalized by J. Malenfant [222].
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6.4 Two Beautiful, False, but Correctable Claims of
Ramanujan

At the bottom of page 189 in his lost notebook [283], Ramanujan wrote the
following:

Entry 6.4.1 (p. 189).

“n is the least positive integer such that 24n−1 is divisible by a positive
integer k. Then

p(n+ vk)− p(n)q(v) (6.4.1)

is divisible by k for all positive integral values of v, where

(x;x)(24n−1)/k
∞ =

∞∑

λ=0

q(λ)xλ.”

Of course, q(v) depends on n (and k). Ramanujan then gives the examples

p(4), p(9), p(14), . . . ≡ 0 (mod 5),

p(5), p(12), p(19), . . . ≡ 0 (mod 7),

p(6), p(17), p(28), . . . ≡ 0 (mod 11),

p(24) + 1, p(47) + 1, p(70), p(93),

p(116)− 1, p(139), p(162)− 1, p(185), . . . ≡ 0 (mod 23).

All four sets of congruences would follow from Ramanujan’s claim, if it were
true. Although it is well known that the first three examples are indeed true,
the fourth is false. For example, p(24) + 1 = 1576 is not divisible by 23.
Ramanujan modified his assertion in his unpublished manuscript on the par-
tition and τ -functions [283, pp. 157–162], [67, Sections 15, 16], which is in
Chapter 5 of this volume. His reformulation is correct for the examples he
calculated, but, as we saw, it must be modified still further. J.-P. Serre [312]
and S. Ahlgren and M. Boylan [5] have established corrected versions; see the
Commentary of Chapter 5 for more details.

We conclude this chapter with the second false assertion on page 189. For
each positive integer s, define the coefficients un = un(s) by

1

(q; q)24s∞
=:

∞∑

n=0

unq
n =

∞∑

n=0

un(s)q
n. (6.4.2)

Ramanujan then makes the following claim.

Entry 6.4.2 (p. 189). Let Bj , 0 ≤ j < ∞, denote the jth Bernoulli number,
and let σk(n) =

∑
d|n d

k. If s is any positive integer, then

B12s+2

24s+ 4
us(s) =

s−1∑

k=0

σ12s+1(k + 1)uk(s). (6.4.3)
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For example, if s = 1, then (6.4.3) reduces to

B14

28
u1(1) = σ13(1)u0(1) = 1. (6.4.4)

From the definition (6.4.2), it is easy to see that u1(1) = 24. Since B14 = 7/6,
we see indeed that (6.4.4) is true.

However, unfortunately, (6.4.3) is false in general. We checked (6.4.3) for
s = 2, 3 and found that (6.4.3) fails to hold. Fortunately, however, (6.4.3) can
be corrected.

Recall that the Eisenstein series E2k(τ) is defined by

E2k(τ) := 1− 4k

B2k

∞∑

n=1

σ2k−1(n)q
n, q = e2πiτ , Im τ > 0. (6.4.5)

Ramanujan’s claim therefore seems to be connected with the Eisenstein series
E12s+2(τ). H.H. Chan and S.H. Chan discovered a corrected version of Entry
6.4.2, which is clearly the version that Ramanujan had in mind, i.e., (6.4.3)
was simply misrecorded by Ramanujan.

Entry 6.4.3 (p. 189; Corrected Version). For any positive integer s,

B12s+2

24s+ 4
us(s) =

s−1∑

k=0

σ12s+1(s− k)uk(s). (6.4.6)

If [qn]
∑∞

k=0 akq
k denotes an and Δ(τ) = q(q; q)24∞, where q = e2πiτ , then

(6.4.6) can be reformulated as

[qs]
E12s+2(τ)

(q; q)24s∞
= [q0]

E12s+2(τ)

Δs(τ)
= 0. (6.4.7)

We are grateful to Ahlgren for pointing out to us a theorem in R.A. Rankin’s
book [290, p. 123] from which the assertions above, as well as a generalization,
follow. The proof below is due to Ahlgren.

Theorem 6.4.1. Let f ∈ M(Γ, 2, 1) (the space of all modular forms of weight
2 and multiplier system identically equal to 1 on Γ , a subgroup of finite index
in the full modular group Γ (1)), and let F be a proper fundamental region for
Γ̂ (the set of all linear fractional transformations on Γ ). Then

∑

ζ∈F

res(f, ζ, Γ ) = 0,

where res(f, ζ, Γ ) denotes the residue of f at ζ.

Proof of (6.4.6). We apply Theorem 6.4.1 to the function
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F (τ) :=
E12s+2(τ)

Δs(τ)
,

which is a modular form on Γ (1) of weight 2 and multiplier system identically
equal to 1 (since E12s+2(τ) has weight 12s+2 and Δ(τ) has weight 12). Since
E12s+2(τ) is analytic on H = {τ : Im τ > 0} and Δ(τ) does not vanish on
H, the only pole of F (τ) is a pole of order s at ∞. The residue of F (τ) at
∞ is the constant term in the Fourier expansion of F at ∞. Hence invoking
Theorem 6.4.1, and using (6.4.2) and (6.4.5) to calculate the constant term,
we find that

−B12s+2

24s+ 4
us(s) +

s−1∑

k=0

σ12s+1(s− k)uk(s) = 0,

and so (6.4.6) is immediate. ��

In fact, Entry 6.4.3 can be generalized by replacing the Eisenstein series
E12s+2(τ) by any modular form of weight 12s+2 and multiplier system iden-
tically equal to 1 that is analytic on H.

It is doubtful that Ramanujan would have known Theorem 6.4.1. So, we
wonder how Ramanujan would have both discovered and proved Entry 6.4.3.

6.5 Page 182

The number (5) is written in the upper right-hand corner of page 182 in [283],
likely indicating that this is the fifth page of a handwritten manuscript. The
first and second lines on this page are identical to the second and third lines
of Equation (11) in [276], [281, p. 211], as Ramanujan begins to relate his
elementary proof of p(5n + 4) ≡ 0 (mod 5). The tagged equation numbers on
the page are (2.2)–(2.5), which clearly indicate that this page is in Section 2
of this manuscript. However, page 182 is not identical to any page or pages in
[276]. Ramanujan’s proof of p(5n+4) ≡ 0 (mod 5) on page 182 is considerably
briefer than it is in [276]. Moreover, central to Ramanujan’s thoughts is the
more general partition function pr(n) defined by

1

(q; q)r∞
=

∞∑

n=0

pr(n)q
n, |q| < 1.

This definition is not provided on page 182, but it is clear that it must have
been given somewhere in the missing pages 1–4 of the manuscript. Of course,
p1(n) = p(n). In a letter to Hardy written from Fitzroy House late in 1918 [68,
pp. 192–193], Ramanujan writes, “I have considered more or less exhaustively
about the congruency of p(n) and in general that of pr(n) where

∑
pr(n)x

n =
1

(x;x)r∞
,
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by four different methods.” This declaration appears to imply that he had
established several results about pr(n), which quite likely were discussed in
the manuscript for which we now unfortunately have only page 5.

After Ramanujan, the function pr(n), sometimes with the alternative no-
tation p−r(n), was studied by, among others, M. Newman [239], K.G. Ra-
manathan [272], A.O.L. Atkin [25], J.M. Gandhi [140], B. Gordon [155],
I. Kiming and J. Olsson [193], B.K. Sarmah [308], and Garvan [142]. Some,
but not all, of these authors confined themselves to congruences satisfied by a
small set of primes and powers thereof, in contrast to Ramanujan’s theorems
satisfying an infinite set of primes.

Ramanujan’s elementary methods have been utilized and generalized by
several authors. The most extensive applications of this method have been by
Andrews and R. Roy [21]; their paper contains several additional references.
Our proofs of Entry 6.5.1 and Theorem 6.5.1 are taken from a paper by the
second author with C. Gugg and S. Kim [66].

Ramanujan deduces the congruence p(5n − 1) ≡ 0 (mod 5) from the con-
gruence p−4(5n − 1) ≡ 0 (mod 5), just as he does in [276], but without using
this notation. Ramanujan then remarks that, “Precisely in the same way we
can show that

p−4

(
n� − � + 1

6

)
≡ 0 (mod�) (6.5.1)

where � is a prime of the form 6λ − 1 . . . ” He then states a more general
theorem.

Entry 6.5.1 (p. 182). Let δ denote any integer, and let n denote a nonneg-
ative integer. Suppose that � is a prime of the form 6λ− 1. Then

pδ�−4

(
n� − � + 1

6

)
≡ 0 (mod�). (6.5.2)

Proof. Consider

∞∑

n=0

pδ�−4(n)q
n+λ = (q; q)−δ�

∞ (q; q)3∞(q; q)∞qλ (6.5.3)

≡ (q�; q�)−δ
∞

∞∑

μ=0

∞∑

ν=−∞
(−1)μ+ν(2μ+ 1)q

1
2μ(μ+1)+

1
2 ν(3ν+1)+λ (mod�),

upon the use of Euler’s pentagonal number theorem (6.2.11) and Jacobi’s
identity (6.3.3). We want to examine those terms for which

1

2
μ(μ+ 1) +

1

2
ν(3ν + 1) +

� + 1

6
≡ 0 (mod�). (6.5.4)

Our goal is to prove that
� | (2μ+ 1). (6.5.5)
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Multiply (6.5.4) by 24 to obtain the equivalent congruence

12μ(μ+ 1) + 12ν(3ν + 1) + 4� + 4 ≡ 0 (mod�),

or

3(2μ+ 1)2 + (6ν + 1)2 ≡ 0 (mod�). (6.5.6)

Using the fact that, for each prime p, the Legendre symbol
(

−1
p

)
= (−1)(p−1)/2,

and the law of quadratic reciprocity, we find that

(−3

�

)
=
(�
3

)
=
(−1

3

)
= −1.

Thus, the only way that (6.5.6) can hold is for (6.5.5) to happen. But then,
from the right-hand side of (6.5.3), we can also conclude that

pδ�−4

(
n� − � + 1

6

)
≡ 0 (mod�).

Thus, the proof is complete. ��

Entry 6.5.2 (p. 182). For each positive integer n,

p6(5n− 1) ≡ 0 (mod 5),

p7(11n− 2) ≡ 0 (mod 11).

Proof. The first congruence arises from the case � = 5 and δ = 2, while the
second arises from the case � = 11 and δ = 1 in Entry 6.5.1. ��

Next, Ramanujan gives an elementary proof of the congruence p(7n−2) ≡
0 (mod 7). He begins with the same first three lines of [276, Equation (13)],
[281, p. 212], and then argues in a somewhat more abbreviated fashion than
he does in [276] to deduce the congruence

p−6(7n− 2) ≡ 0 (mod 49), (6.5.7)

from which it follows that

p(7n− 2) ≡ 0 (mod 7). (6.5.8)

It should be remarked that the stronger congruence (6.5.7) is not mentioned
by Ramanujan in [276], although it is implicit in his argument.

Unfortunately, the manuscript ends with (6.5.8). It would seem that Ra-
manujan would have next offered a theorem analogous to Entry 6.5.1, and so,
in analogy to completing Schubert’s Unfinished Symphony, we shall state and
prove such a theorem here, but of course, Ramanujan probably would have
had lots more to say to us if his manuscript had survived.
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Theorem 6.5.1. For a prime � with 4 | (� + 1), any integer δ, and any
positive integer n,

Pδ�−6

(
n� − � + 1

4

)
≡ 0 (mod�). (6.5.9)

For δ = 3 and � = 3, N.D. Baruah and K.K. Ojah [47] have shown that
(6.5.9) holds with (mod 3) replaced by (mod 32).

In the case δ = 0 above, we can strengthen (6.5.9).

Entry 6.5.3 (p. 182). Under the hypotheses of Theorem 6.5.1,

p−6

(
n� − � + 1

4

)
≡ 0 (mod�2). (6.5.10)

Observe that (6.5.7) is the special case � = 7 of (6.5.10), and so, with
slight exaggeration, we affixed “p. 182” to the entry above.

Proof of theorem 6.5.1. Consider, for λ = (� + 1)/4,

∞∑

n=0

pδ�−6(n)q
n+λ = (q; q)−δ�

∞ (q; q)6∞qλ (6.5.11)

≡ (q�; q�)−δ
∞

∞∑

μ=0

∞∑

ν=0

(−1)μ+ν(2μ+ 1)(2ν + 1)q
1
2μ(μ+1)+

1
2 ν(ν+1)+λ (mod�),

upon the use of Jacobi’s identity (6.3.3). We need to show that if

1

2
μ(μ+ 1) +

1

2
ν(ν + 1) +

� + 1

4
≡ 0 (mod�), (6.5.12)

then
�2 | (2μ+ 1)(2ν + 1). (6.5.13)

The congruence (6.5.10) will then follow from (6.5.13) and (6.5.11). Multiply
(6.5.12) by 8 to obtain

4μ(μ+ 1) + 4ν(ν + 1) + 2� + 2 ≡ 0 (mod�),

or

(2μ+ 1)2 + (2ν + 1)2 ≡ 0 (mod�).

Since (−1

�

)
= −1,

we conclude that
� | (2μ+ 1) and � | (2ν + 1),

which completes the proof of (6.5.13). ��
Observe that if δ = 0, then the congruence in (6.5.11) can be replaced by

an equality. Hence, in (6.5.9), the congruence modulo � can be replaced by a
congruence modulo �2 in view of (6.5.13). It follows that Entry 6.5.3 is thus
valid.
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6.6 Further Remarks

Page 248 in the lost notebook [283] contains scratch work and calculations
related to Ramanujan’s work in Section 6.2 of this chapter.

We find on page 252 of [283] a preliminary version of a table of values of
ωp,q from Hardy and Ramanujan’s famous paper [167], [281, p. 306]. On page
208, Ramanujan gives a table of values of An, which is again a preliminary
version of the table of values of An from the same paper [167], [281, p. 307].
It is unfortunate that pages 208 and 252 have not been placed together in
[283]. Hardy and Ramanujan’s paper [167], [281, p. 308] also contains a table
of values of p(n), 1 ≤ n ≤ 200. A short table of values of p(n), 1 ≤ n ≤ 19, can
be found on page 207 in [283]. It is also interesting to note that these three
pages belong to the original lost notebook found by the first author. This is
further evidence that Ramanujan’s mind was occupied with partitions in the
last days of his life.

On page 326 in [283], Ramanujan returns to assertions made in his first
two letters to Hardy and reiterates the following, which we quote exactly.

Entry 6.6.1 (p. 326). The coefficient of xn in (1− 2x+ 2x4 − 2x9 + · · · )−1

is nearly
1

4n

{
cosh(π

√
n)− sinh(π

√
n)

π
√
n

}
. (6.6.1)

He then writes

(1− 2x+ 2x4 − · · · )−1 = 1 + 2x+ 4x2 + 8x3 + 14x4 + 24x5 + 40x6 + 64x7

+ 100x8 + 154x9 + 232x10 + 344x11 + 504x12 + 728x13 + 1040x14 + 1472x15

+ 2062x16 + 2864x17 + 3948x18 + 5400x19 + 7336x20 + 9904x21 + 13288x22

+ 17728x23 + 23528x24 + 31066x25 + 40824x26 + 53408x27 + 69568x28

+ 90248x29 + 116624x30 + 150144x31 + 192612x32 + 246256x33 + 313808x34

+ 398640x35 + 504886x36 + · · · .

Denote the coefficients described in Entry 6.6.1 by p(n). For n ≤ 36, the
following table gives the exact value of p(n), as given in the expansion above;
the approximate value, as calculated from (6.6.1); and the error made after
rounding off the calculation. Observe that Ramanujan’s approximation gives
the correct value of p(n) up to n = 20. The error is at most 1 up until n = 36,
when the error made by (6.6.1) is equal to 2.

Page 331 of [283] is devoted to five further results in the theory of par-
titions. First, Ramanujan records three asymptotic formulas for partitions,
found also in his paper with Hardy [167], [281, p. 304], wherein they prove
their asymptotic series for p(n). Observe that Entry 6.6.2 below is another
version of Entry 6.6.1 above. Because of the historical importance of these
two entries, except for a brief note about page 333, we shall conclude this
chapter with a thorough discussion of these two entries.
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n coefficient of xn approximation from (6.6.1) Error

1 2 1.978968842 -

2 4 4.118621867 -

3 8 7.848360679 -

4 14 14.07086490 -

5 24 24.10391358 -

6 40 39.84090926 -

7 64 63.96498067 -

8 100 100.2324016 -

9 154 153.8451840 -

10 232 231.9378086 -

11 344 344.2093550 -

12 504 503.7400063 -

13 728 728.0404078 -

14 1040 1040.393928 -

15 1472 1471.565961 -

16 2062 2061.971642 -

17 2864 2864.414083 -

18 3948 3947.530498 -

19 5400 5400.114184 -

20 7336 7336.516090 +1

21 9904 9903.375762 −1

22 13288 13287.98157 -

23 17728 17728.62603 +1

24 23528 23527.39749 −1

25 31066 31065.93534 -

26 40824 40824.79469 +1

27 53408 53407.17922 −1

28 69568 69567.96717 -

29 90248 90249.12703 +1

30 116624 116622.8420 −1

31 150144 150143.8979 -

32 192612 192613.2129 +1

33 246256 246254.7187 −1

34 313808 313808.2185 -

35 398640 398641.3567 +1

36 504886 504884.3713 −2

Table 6.1. Table of Coefficients: Entry 6.6.1
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Entry 6.6.2 (p. 331). If cn, n ≥ 0, is defined by

∞∑

n=0

cnq
n =

1

ϕ(−q)
,

then

cn =
d

dn

cosh(π
√
n)− 1

2π
√
n

+
√
3 · 2 cos

(
2nπ

3
− π

6

)
d

dn

cosh( 13π
√
n)− 1

2π
√
n

+ · · · .

Entry 6.6.3 (p. 331). If cn, n ≥ 0, is defined by

∞∑

n=0

cnq
n =

1

(q; q2)∞
= (−q; q)∞,

then

√
2cn =

d

dn
J0

(
iπ
√

1
3 (n+ 1

24 )

)

+ 2 cos

(
2nπ

3
− π

9

)
d

dn
J0

(
1
3 iπ

√
1
3 (n+ 1

24 )

)
+ · · · ,

where J0(x) denotes the ordinary Bessel function of order 0.

Entry 6.6.4 (p. 331). If cn, n ≥ 0, is defined by

∞∑

n=0

cnq
n = (−q; q2)∞,

then

cn =
d

dn
J0

(
iπ
√

1
6 (n− 1

24 )

)

+ 2 cos

(
2nπ

3
− 2π

9

)
d

dn
J0

(
1
3 iπ

√
1
6 (n− 1

24 )

)
+ · · · .

Entry 6.6.5 (p. 331). If cn, n ≥ 0, is defined by

∞∑

n=0

cnq
n =

1

(aq; q)∞
,

then

cn ∼
√
1− a

(kn)1/4

2n
√
π

e2
√
kn, (6.6.2)

where

k =

∞∑

m=1

am

m2
=: Li2(a),

where Li2(a) is the familiar dilogarithm.
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Let p(n,m) denote the number of partitions of n into exactly m parts.
Then, in Entry 6.6.5,

cn(a) := cn =

∞∑

m=0

p(n,m)am.

Of course, cn(1) = p(n). Thus, if we let a → 1, the right side of the asymp-
totic formula (6.6.2) should tend to the asymptotic formula of Hardy and
Ramanujan for p(n) [167], i.e.,

p(n) ∼ 1

4n
√
3
eπ
√

2n/3, (6.6.3)

but clearly this is not the case. Since Li2(1) = π2/6, we see that the exponen-
tial functions in (6.6.2) and (6.6.3) agree, but that the functions multiplying
the exponentials do not agree. In particular, the powers of n are not the same.
So, the intent of Entry 6.6.5 is unclear to us. Was Ramanujan contemplating
finding an asymptotic formula for p(n,m) under certain restrictions on m,
say with m small but still tending to infinity with n? There exists a large
literature on asymptotic formulas for p(n,m) and similar partition functions.
Some of the more important papers are by P. Erdős and J. Lehner [134],
F.C. Auluck, S. Chowla, and H. Gupta [29], G. Szekeres [330], C.B. Hasel-
grove and H.N.V. Temperley [169], and L.B. Richmond [294].

In a postscript to a letter [291], [68, pp. 286, 287], [69, pp. 120, 121] that
Hardy wrote to G.N. Watson in April 1930 discussing Ramanujan’s miscella-
neous papers, he remarks, “I have a pupil working (inter alia) at

∑
cnx

n =
1

(1− ax)(1− ax2) · · · , cn ∼
√
1− a

(kn)1/4

2n
√
π

e2
√
kn (6.6.4)

– so don’t queer his pitch!” Thus, Hardy had copied (6.6.3) from Ramanujan’s
fragment and did not notice that the formula was clearly wrong. The “pupil”
is not identified, and we are unaware of any paper written on (6.6.4) at that
time, or later.

The last entry on page 331 is a briefer version of the transformation formula
for

∞∏

n=1

(
1− e2πxn

s
)
,

where s is an odd positive integer, which is also given on page 330 of [283]
and which is discussed in [16, pp. 234–235].

Entries 6.6.1 and 6.6.2 are extremely important results historically, for
they relate the first asymptotic formula in the theory of partitions that was
found by Ramanujan. We therefore provide a more extensive overview of this
work.

In his first letter to Hardy [281, p. xxvii], [68, p. 28], Ramanujan asserted
that, “The coefficient of xn in
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1

1− 2x+ 2x4 − 2x9 + 2x16 − · · ·

= the nearest integer to
1

4n

{
cosh(π

√
n)− sinh(π

√
n)

π
√
n

}
.”

In his second letter to Hardy [281, p. 352], [68, pp. 56–57], Ramanujan
amended his previous claim and instead asserted that “The coefficient of xn

in (1− 2x+ 2x4 − · · · )−1

= the nearest integer to
1

4n

{
cosh(π

√
n)− sinh(π

√
n)

π
√
n

}

+ F (cosπ
√
n) + f(sinπ

√
n).

I have not written here the forms of F and f as they are very irregular
and complicated, and their values are very small, in most cases a very small
proper fraction. In a few cases they assume some small finite values. Hence
the coefficient of xn is an integer very near to

1

4n

{
cosh(π

√
n)− sinh(π

√
n)

π
√
n

}
,

and not always the nearest integer to it as I hastily wrote to you in my previous
letter. Yet in many cases you will find the coefficient to be the nearest integer
though not always. At present we may be contented with the result viz. The
coefficient of xn in the above function divided by

1

4n

{
cosh(π

√
n)− sinh(π

√
n)

π
√
n

}

is very very nearly equal to unity for all values of n, from 0 to ∞ and very
rapidly approaches 1 when n becomes infinity.”

In their paper [167], [281, p. 304], after having obtained an asymptotic
series for the partition function p(n), Hardy and Ramanujan state that the
aforementioned coefficient of xn in the preceding paragraph, namely p(n), is
equal to

p(n) =
1

4π

d

dn

(
eπ

√
n

√
n

)
+

√
3

2π
cos

(
2

3
nπ − 1

6
π

)
d

dn

⎛

⎝e
1
3π

√
n

√
n

⎞

⎠+ · · · . (6.6.5)

In 1939, H.S. Zuckerman [354] proved the exact formula

p(n) =
1

2π

∞∑

k=1
2�k

√
k

∑

0≤h<k
(h,k)=1

ω2(h, k)

ω(2h, k)
e−2πinh/k d

dn

(
sinh(π

√
n/k)√

n

)
,

where
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ω(h, k) := exp

(
πi

k−1∑

r=1

r

k

(
hr

k
−
[
hr

k

]
− 1

2

))
.

An excellent account of the formula for p(n), both mathematically and his-
torically, as well as of similar formulas for other partition functions, has been
given by A.V. Sills [316].

In their brief description of (6.6.5), Hardy and Ramanujan [281, p. 304]
remark that p(n) “has no very simple arithmetical interpretation.” In fact,
p(n) does have a simple arithmetical interpretation, but it was brought to
fruition and studied only in recent years. See [316] for several references. From
the product formula for ϕ(−q) [55, p. 34, eq. (22.7)],

∞∑

n=0

p(n)qn =
1

ϕ(−q)
=

(−q; q)∞
(q; q)∞

,

where

ϕ(q) =

∞∑

n=−∞
qn

2

, (6.6.6)

we see that the overpartition function p(n) denotes the number of ways a
positive integer n can be represented by a sum of positive integers in nonin-
creasing order, in which the first appearance of an integer may be overlined.
For example, we see that p(3) = 8, because 3 has the eight representations

3, 3, 2 + 1, 2 + 1, 2 + 1, 2 + 1, 1 + 1 + 1, 1 + 1 + 1.

Alternatively, p(n) denotes the number of partitions of n into (unrestricted)
parts of one color, and distinct parts of another.

On page 333 of [283], Ramanujan states Euler’s famous identity

(−q; q)∞ =
1

(q; q2)∞

and the elementary theta function identity

ϕ2(q) + ϕ2(−q) = 2ϕ2(q2),

where ϕ(q) is defined in (6.6.6) [55, p. 40, Entry 25(vi)].
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Congruences for Generalized Tau Functions on
Page 178

7.1 Introduction

On page 178 in his lost notebook [283], Ramanujan states nine congruences
involving τ2(n), τ3(n), and τ4(n), which are respectively defined by

∞∑

n=1

τ2(n)q
n = Q(q)Δ(τ), (7.1.1)

∞∑

n=1

τ3(n)q
n = R(q)Δ(τ), (7.1.2)

and

∞∑

n=1

τ4(n)q
n = Q2(q)Δ(τ). (7.1.3)

Here, as usual, q = e2πiτ , Q(q) and R(q) are Ramanujan’s Eisenstein series,
which are defined in (5.1.2) and (5.1.3), respectively, and which in contempo-
rary notation are denoted by E4(τ) and E6(τ), respectively, and Δ(τ) is the
discriminant function defined by

Δ(τ) := q(q; q)24∞.

Recall that Q(q), R(q), and Δ(τ) satisfy the fundamental identity

1728Δ(τ) = Q3(q)−R2(q), (7.1.4)

which we shall utilize several times in the sequel. All of the congruences are
given in terms of divisor sums

σk(n) =
∑

d|n
dk.
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The goal of the present chapter is to examine each of these nine congruences
for generalized tau functions. The content of this chapter is chiefly based on
work of D. Eichhorn [130]. Some of the nine congruences were also established
by J.M. Rushforth [305], [306]. J.R. Wilton [340] established a disguised form
of (7.1.5).

We now list the nine congruences asserted by Ramanujan.

Entry 7.1.1 (p. 178).

τ2(n)− σ15(n) ≡ 0 (mod 3617). (7.1.5)

Entry 7.1.2 (p. 178).

τ2(n)− nσ13(n) ≡ 0 (mod 16170). (7.1.6)

Entry 7.1.3 (p. 178).

τ2(n)− 2nσ9(n) + n2σ3(n) ≡ 0 (mod 600). (7.1.7)

Entry 7.1.4 (p. 178).

τ3(n)− σ17(n) ≡ 0 (mod 43867). (7.1.8)

Entry 7.1.5 (p. 178).

τ3(n)− nσ15(n) ≡ 0 (mod 6006). (7.1.9)

Entry 7.1.6 (p. 178).

τ3(n)− n2σ1(n) ≡ 0 (mod 540). (7.1.10)

Entry 7.1.7 (p. 178).

τ3(n)− 6n2σ9(n) + 5nσ3(n) ≡ 0 (mod 150). (7.1.11)

Entry 7.1.8 (p. 178).

τ3(n) + nσ9(n) + nσ3(n)− 3τ(n) ≡ 0 (mod 588). (7.1.12)

Entry 7.1.9 (p. 178).

τ4(n)− σ19(n) ≡ 0 (mod 174611). (7.1.13)

In fact, the congruences (7.1.10) and (7.1.11) are incorrect. For example, if
we let n = 4, we find that τ3(4) = 147712 ≡ 292 (mod 540) and 42σ1(4) = 112,
vitiating (7.1.10). We prove the following two corrected versions.

Theorem 7.1.1.
τ3(n)− n2σ1(n) ≡ 0 (mod 180). (7.1.14)

Theorem 7.1.2.

τ3(n)− 6n2σ9(n) + 5nσ3(n) ≡ 0 (mod 30). (7.1.15)
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7.2 Proofs

As stated above, proofs of the results found on page 178 of Ramanujan’s lost
notebook have been independently proved by Rushforth [305] and Eichhorn
[130]. The proofs below utilize the work of these two mathematicians.

Define τ5(n) and τ7(n) by

∞∑

n=1

τ5(n)q
n = Q(q)R(q)Δ(τ)

and
∞∑

n=1

τ7(n)q
n = Q2(q)R(q)Δ(τ),

respectively. H.P.F. Swinnerton-Dyer [329] observed that the proofs of (7.1.5),
(7.1.8), (7.1.13),

τ5(n)− σ21(n) ≡ 0 (mod 77683), (7.2.1)

and
τ7(n)− σ25(n) ≡ 0 (mod 657931) (7.2.2)

follow along the same lines as the proof of

τ(n)− σ11(n) ≡ 0 (mod 691), (7.2.3)

which is (5.12.7).
In fact, (7.2.1) and (7.2.2) also follow immediately from identities in [275,

Table I], [281, p. 141]. Since all five proofs are short, we shall give all of them,
even though they are similar. We emphasize that the congruences we have
listed above are by no means exhaustive. For example, using the congruences
given by Ramanujan in his extensive tables of [275], one can establish many
further congruences of the sort proved in this chapter.

For the remainder of the chapter, we delete the arguments q and τ from
the functions appearing in our proofs.

Proof of (7.1.5), (7.1.8), (7.1.13), (7.2.1), and (7.2.2). We begin with an
identity from Ramanujan’s paper [275, Table I, no. 8],

3617 + 16320

∞∑

n=1

σ15(n)q
n = 1617Q4 + 2000QR2

= 3617Q4 + 2000QR2 − 2000Q4

= 3617Q4 − 3456000QΔ,

where we have used (7.1.4). Now (7.1.5) follows, since 16320 ≡ −3456000
(mod 3617).

Using the identity no. 9 from the same table and (7.1.4), we find that
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43867− 28728

∞∑

n=1

σ17(n)q
n = 38367Q3R+ 5500R3

= 43867Q3R+ 5500R3 − 5500Q3R

= 43867Q3R− 9504000RΔ,

and (7.1.8) follows, since −28728 ≡ −9504000 (mod 43867).
Employing identity no. 10 from [275, Table I] and (7.1.4) once again, we

find that

174611 + 13200
∞∑

n=1

σ19(n)q
n = 53361Q5 + 121250Q2R2

= 174611Q5 + 121250Q2R2 − 121250Q5

= 174611Q5 − 209520000Q2Δ,

and (7.1.13) follows, since 13200 ≡ −209520000 (mod 174611).
Next we turn to identity no. 11 from [275, Table I] and with the use of

(7.1.4) deduce that

77683− 552

∞∑

n=1

σ21(n)q
n = 57183Q4R+ 20500QR3

= 77683Q4R+ 20500QR3 − 20500Q4R

= 77683Q4R− 35424000QRΔ.

Since −552 ≡ −35424000 (mod 77683), we complete the proof of (7.2.1).
Lastly, using identity no. 13 from [275, Table I] as well as (7.1.4), we find

that

657931− 24
∞∑

n=1

σ25(n)q
n = 392931Q5R+ 265000Q2R3

= 657931Q5R+ 265000Q2R3 − 265000Q5R

= 657931Q5R− 457920000Q2RΔ.

Since −24 ≡ −457920000 (mod 657931), (7.2.2) follows. ��

Proof of (7.1.6). Our proof uses identities in [275, Table II], (7.1.4), and con-
gruences from Chapter 5.

Using formula no. 7 from [275, Table II] and (7.1.4), we find that

144

∞∑

n=1

nσ13(n)q
n = Q(3Q3 + 4R2 − 7PQR)

= Q(7Q3 + 4R2 − 4Q3 − 7PQR)

= Q(7Q3 − 6912Δ− 7PQR)

= −6912QΔ+ 7Q2(Q2 − PR). (7.2.4)
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From (5.5.2), we recall that

Q2 ≡ P (mod 7) and R ≡ 1 (mod 7).

Thus, reducing (7.2.4) modulo 49, we find that

3QΔ− 3

∞∑

n=1

nσ13(n)q
n ≡ 7Q2(Q2 − PR)

≡ 7P (P − PR)

= 7P 2 − 7P 2R

≡ 0 (mod 49). (7.2.5)

We return to the same identity from [275, Table II] and write

144

∞∑

n=1

nσ13(n)q
n = Q(3Q3 + 4R2 − 7PQR)

= Q(Q3 −R2 + 2Q3 + 5R2 − 7PQR)

= 1728QΔ+Q(2Q3 + 5R2 − 7PQR). (7.2.6)

Recalling (5.9.2), we record the congruences

QR ≡ 1 (mod 11) and Q3 − 3R2 ≡ −2P (mod 11).

Thus, reducing (7.2.6) modulo 11, we deduce that

∞∑

n=1

nσ13(n)q
n −QΔ ≡ Q(2Q3 + 5R2 − 7PQR)

= Q(2Q3 − 6R2 + 11R2 − 7PQR)

≡ Q(2(−2P )− 7P )

≡ 0 (mod 11). (7.2.7)

Since Q ≡ 1 (mod 30), it follows trivially that QΔ ≡ Δ (mod 30). Thus, from
(5.12.1), (5.12.4), and (5.2.1), we can conclude, respectively, that

QΔ ≡
∞∑

n=1

nσ1(n)q
n ≡

∞∑

n=1

nσ13(n)q
n (mod 2), (7.2.8)

QΔ ≡
∞∑

n=1

nσ1(n)q
n ≡

∞∑

n=1

nσ13(n)q
n (mod 3), (7.2.9)

and

QΔ ≡
∞∑

n=1

nσ1(n)q
n ≡

∞∑

n=1

nσ13(n)q
n (mod 5). (7.2.10)

Hence, combining together (7.2.5) and (7.2.7)–(7.2.10), we deduce (7.1.6) to
complete the proof. ��
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Proof of (7.1.7). Our proof will depend on entries from [275, Tables II, III],
(7.2.3), and congruences from Chapter 5.

Since Q ≡ 1 (mod 24), it follows that QΔ ≡ Δ (mod 24). Thus, by (5.12.1),
we find that

QΔ ≡
∞∑

n=1

n3σ1(n)q
n ≡

∞∑

n=1

(
2nσ9(n)− n2σ3(n)

)
qn (mod 8), (7.2.11)

where to justify the last congruence, we need to show that

n3σ1(n) ≡ 2nσ9(n)− n2σ3(n) (mod 8). (7.2.12)

If n is even, the left side of (7.2.12) is a multiple of 8, and so we need to
show that

2nσ9(n) ≡ n2σ3(n) (mod 8). (7.2.13)

Considering the cases n ≡ 0 (mod 4) and n ≡ 2 (mod 4) separately, we see that
(7.2.13) holds, since σ9(n) ≡ σ3(n) (mod 2).

If n is odd, we must show that

nσ1(n) ≡ 2nσ9(n)− σ3(n) (mod 8), (7.2.14)

since n2 ≡ 1 (mod 8). Since nk ≡ nk−2 (mod 8) for k ≥ 3, it follows that
σ1(n) ≡ σ9(n) ≡ σ3(n) (mod 8). Thus, to show (7.2.14), we need to show that
nσ1(n) ≡ 2nσ1(n)− σ1(n) (mod 8), i.e.,

σ1(n) ≡ nσ1(n) (mod 8). (7.2.15)

For n ≡ 1 (mod 8), (7.2.15) is trivial. When n ≡ 5 (mod 8), n cannot be
a square, and so σ1(n) is even. Thus, (7.2.15) holds. For n ≡ 3 (mod 4),
there must be at least one prime p ≡ 3 (mod 4) such that p2k+1‖n. Thus,
(p + 1) | σ1(n), i.e., σ1(n) ≡ 0 (mod 4), and hence (7.2.15) holds. Thus, the
justification of (7.2.12) is complete.

Next, from (5.12.3),

QΔ ≡
∞∑

n=1

n2σ1(n)q
n ≡

∞∑

n=1

(
2nσ9(n)− n2σ3(n)

)
qn (mod 3), (7.2.16)

provided we can show that

n2σ1(n) ≡ 2nσ9(n)− n2σ3(n) (mod 3). (7.2.17)

If n ≡ 0 (mod 3), (7.2.17) is trivial. For n �≡ 0 (mod 3), we must show that

σ1(n) ≡ 2nσ9(n)− σ3(n) (mod 3), (7.2.18)

since n2 ≡ 1 (mod 3). Since for k ≥ 3, nk ≡ nk−2 (mod 3), it follows that
σ1(n) ≡ σ9(n) ≡ σ3(n) (mod 3). Thus, we need to prove that σ1(n) ≡
2nσ1(n)− σ1(n) (mod 3), which simplifies to
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σ1(n) ≡ nσ1(n) (mod 3). (7.2.19)

For n ≡ 1 (mod 3), (7.2.19) is trivial. For n ≡ 2 (mod 3), there exists at least
one prime p ≡ 2 (mod 3) such that p2k+1‖n. Thus, (p+1) | σ1(n), i.e., σ1(n) ≡
0 (mod 3), and (7.2.19) holds. In summary, (7.2.17) indeed is valid.

We now turn to identities from [275, Table II, no. 5; Table III, no. 2],
namely,

1584

∞∑

n=1

nσ9(n)q
n = 3Q3 + 2R2 − 5PQR (7.2.20)

and

1728

∞∑

n=1

n2σ3(n)q
n = P 2Q− 2PR+Q2, (7.2.21)

respectively. Multiply (7.2.20) by 2 and multiply (7.2.21) by 3 and then re-
duce each of the new equations modulo 25. Taking the difference of the two
congruences, we find that

9

∞∑

n=1

(
2nσ9(n)− n2σ3(n)

)
qn ≡ 6Q3 +4R2 − 10PQR− 3P 2Q+6PR− 3Q2

≡ 3Q(2Q2 − 2PR−Q+ P 2) + (R− PQ)(4R+ 6P ) (mod 25). (7.2.22)

From (5.3.1) we know that

Q3 −R2 ≡ 2Q2 − 2PR−Q+ P 2 (mod 25). (7.2.23)

Using (7.2.23) in (7.2.22), noting that Q ≡ 1 (mod 5) and P ≡ R (mod 5), and
using (7.1.4), we conclude that

9

∞∑

n=1

(
2nσ9(n)− n2σ3(n)

)
qn ≡ 3Q(Q3 −R2)

≡ 3Q · 1728Δ
≡ 9QΔ (mod 25). (7.2.24)

Hence, from (7.2.11), (7.2.16), and (7.2.24), we deduce (7.1.7). ��

Proof of (7.1.9). Observing that R ≡ 1 (mod 42), we see that it trivially fol-
lows that RΔ ≡ Δ (mod 42). Thus, by (5.12.1), we find that

RΔ ≡
∞∑

n=1

n3σ1(n)q
n ≡

∞∑

n=1

nσ15(n)q
n (mod 2). (7.2.25)

Next, from (5.12.3),

RΔ ≡
∞∑

n=1

n2σ1(n)q
n ≡

∞∑

n=1

nσ15(n)q
n (mod 3), (7.2.26)
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provided we can show that

n2σ1(n) ≡ nσ15(n) (mod 3). (7.2.27)

For n ≡ 0 (mod 3), (7.2.27) is trivial. For n �≡ 0 (mod 3), we must show that

σ1(n) ≡ nσ15(n) (mod 3), (7.2.28)

since n2 ≡ 1 (mod 3). Since nk ≡ nk−2 (mod 3), for k ≥ 3, it follows that
σ1(n) ≡ σ15(n) (mod 3). Thus, to prove (7.2.28), we just need to show that
σ1(n) ≡ nσ1(n) (mod 3), but this is precisely (7.2.19). Therefore, (7.2.28) and
hence also (7.2.27) have been demonstrated.

Next, from (5.6.2), we deduce that

RΔ ≡
∞∑

n=1

nσ3(n)q
n ≡

∞∑

n=1

nσ15(n)q
n (mod 7). (7.2.29)

We now turn to an identity from [275, Table I, no. 8],

3617 + 16320

∞∑

n=1

σ15(n)q
n = 1617Q4 + 2000QR2. (7.2.30)

Applying the operator q d
dq to (7.2.30) and employing Ramanujan’s differential

equations (5.9.8),

q
dQ

dq
=

PQ−R

3
and q

dR

dq
=

PR−Q2

2
,

we find that

16320

∞∑

n=1

nσ15(n)q
n = 2156PQ4−4156Q3R+

8000

3
PQR2−2000

3
R3. (7.2.31)

By (5.9.2), we know that

QR ≡ 1 (mod 11) and Q3 − 3R2 ≡ −2P (mod 11).

Thus, reducing (7.2.31) modulo 11, we deduce that

7

∞∑

n=1

nσ15(n)q
n ≡ 2Q3R+ PQR2 + 8R3

≡ 7R(Q3 −R2)− 5Q3R+ PQR2 + 15R3

≡ 7RΔ− 5R(Q3 − 3R2) + PR

≡ 7RΔ+ 10PR+ PR

≡ 7RΔ (mod 11). (7.2.32)
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From (5.13.2), we recall that

Q2R ≡ P (mod 13) and Q3 − 3R2 ≡ −2 (mod 13).

Thus, reducing (7.2.31) modulo 13, we find that

5

∞∑

n=1

nσ15(n)q
n ≡ −2PQ4 + 4Q3R+ 6PQR2 + 5R3

= −5R(Q3 −R2)− 2PQ4 + 9Q3R+ 6PQR2

≡ −5R(Q3 −R2) + 9PQ− 2PQ(Q3 − 3R2)

≡ 5RΔ+ 9PQ+ 4PQ

≡ 5RΔ (mod 13). (7.2.33)

Hence, collecting together (7.2.25), (7.2.26), (7.2.29), (7.2.32), and (7.2.33),
we deduce (7.1.9) to complete the proof. ��

Proof of Theorem 7.1.1. Since R ≡ 1 (mod 36), it readily follows that RΔ ≡
Δ (mod 36). Thus, by (5.12.1), we find that

RΔ ≡
∞∑

n=1

n3σ1(n)q
n ≡

∞∑

n=1

n2σ1(n)q
n (mod 4). (7.2.34)

By (5.12.3), we realize that

RΔ ≡
∞∑

n=1

n2σ1(n)q
n (mod 9). (7.2.35)

We again return to Ramanujan’s tables [275, Table III, no. 1] to record that

1728

∞∑

n=1

n2σ1(n)q
n = 3PQ− 2R− P 3. (7.2.36)

So, using the facts Q ≡ 1 (mod 5) and P ≡ R (mod 5), we reduce (7.2.36)
modulo 5 to find that

3
∞∑

n=1

n2σ1(n)q
n ≡ 3PQ− 2R− P 3

≡ R(3Q− 2−R2)

≡ R(Q3 −R2)

≡ 3RΔ (mod 5). (7.2.37)

Hence, taking (7.2.34), (7.2.35), and (7.2.37) together, we deduce (7.1.14) to
complete the proof. ��
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Proof of Theorem 7.1.2. Since R ≡ 1 (mod 6), it follows that RΔ ≡ Δ
(mod 6). Thus, by (5.12.1), we have

RΔ ≡
∞∑

n=1

n3σ1(n)q
n ≡

∞∑

n=1

(
6n2σ9(n)− 5nσ3(n)

)
qn (mod 2). (7.2.38)

By (5.12.3), we find that

RΔ ≡
∞∑

n=1

n2σ1(n)q
n ≡

∞∑

n=1

(
6n2σ9(n)− 5nσ3(n)

)
qn (mod 3). (7.2.39)

We take an identity from [275, Table III, no. 5], namely,

1728

∞∑

n=1

n2σ9(n)q
n = 6PQ3 − 5P 2QR+ 4PR2 − 5Q2R. (7.2.40)

Using the congruence P ≡ R (mod 5) and using (7.1.4), we reduce (7.2.40)
modulo 5 to find that

3

∞∑

n=1

n2σ9(n)q
n ≡ PQ3 + 4PR2

≡ RQ3 −R3

= R(Q3 −R2)

≡ 3RΔ (mod 5). (7.2.41)

Hence, (7.2.38), (7.2.39), and (7.2.41) together imply (7.1.15) to complete the
proof. ��

Proof of (7.1.12). Since R ≡ 1 (mod 12), we see that RΔ ≡ Δ (mod 12). Thus,
from (5.12.1),

RΔ ≡
∞∑

n=1

n3σ1(n)q
n ≡

∞∑

n=1

nσ9(n) ≡
∞∑

n=1

nσ3(n) (mod 4). (7.2.42)

By (5.12.1) and the fact that 3 | σ(3n+ 2), we deduce that

RΔ ≡
∞∑

n=1

n2σ1(n)q
n ≡

∞∑

n=1

∞∑

n=1

nσ9(n) ≡
∞∑

n=1

nσ3(n) (mod 3). (7.2.43)

We utilize two further identities from [275, Table II, nos. 5, 2, resp.], namely,

1584

∞∑

n=1

nσ9(n)q
n = 3Q3 + 2R2 − 5PQR (7.2.44)

and
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720

∞∑

n=1

nσ3(n)q
n = PQ−R. (7.2.45)

Now multiply (7.2.44) by 10 and multiply (7.2.45) by 22 and then add the
resulting two equalities together. Using the facts Q2 ≡ P (mod 7) and R ≡
1 (mod 7) and reducing the foregoing sum modulo 49, we find that

13

∞∑

n=1

(nσ9(n) + nσ3(n)) q
n ≡ 30Q3 + 20R2 − PQR+ 22PQ− 22R

= 3(Q3 −R2)−R(Q3 −R2) + 27Q3 + 23R2

+RQ3 −R3 − PQR+ 22PQ− 22R

≡ 13(3Δ−RΔ) + 7Q(4Q2 + 3P ) + 21R(R− 1)

+Q(R− 1)(Q2 − P )−R(R2 − 2R+ 1)

≡ 13(3Δ−RΔ) (mod 49). (7.2.46)

Hence, taking (7.2.42), (7.2.43), and (7.2.46) together, we deduce (7.1.12) to
finish the proof. ��



8

Ramanujan’s Forty Identities for the
Rogers–Ramanujan Functions

8.1 Introduction

The Rogers–Ramanujan functions in the title of this chapter are defined for
|q| < 1 by

G(q) :=

∞∑

n=0

qn
2

(q; q)n
and H(q) :=

∞∑

n=0

qn(n+1)

(q; q)n
, (8.1.1)

where here and in the sequel we use the customary notation (a; q)0 := 1,

(a; q)n :=

n−1∏

k=0

(1− aqk), n ≥ 1,

(a; q)∞ := lim
n→∞

(a; q)n, |q| < 1.

These functions satisfy the famous Rogers–Ramanujan identities [303], [277],
[281, pp. 214–215]

G(q) =
1

(q; q5)∞(q4; q5)∞
and H(q) =

1

(q2; q5)∞(q3; q5)∞
. (8.1.2)

At the end of his brief communication [278], [281, p. 231] announcing his proofs
of the Rogers–Ramanujan identities (8.1.2), Ramanujan remarks, “I have now
found an algebraic relation between G(q) and H(q), viz.:

H(q) {G(q)}11 − q2G(q) {H(q)}11 = 1 + 11q {G(q)H(q)}6 . (8.1.3)

Another noteworthy formula is

H(q)G(q11)− q2G(q)H(q11) = 1. (8.1.4)

Each of these formulae is the simplest of a large class.” Ramanujan did not
indicate how he had proved these two identities, which, as we shall see below,

G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook: Part III,
DOI 10.1007/978-1-4614-3810-6 8,
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are two from a list of forty identities involving G(q) and H(q) that Ramanujan
had compiled.

In his paper [304] establishing ten of the identities, L.J. Rogers remarks,
“these [identities] were communicated privately to me in February 1919 . . . ”
Rogers did not indicate whether further identities were included in Ramanu-
jan’s communication to him. We remark that Ramanujan returned to India on
March 13, 1919, and that the short paper [278] was recorded in the minutes of
the London Mathematical Society on March 13, 1919. Thus, both the paper
to the London Mathematical Society and the letter to Rogers were evidently
sent only days prior to Ramanujan’s departure.

In 1933, G.N. Watson [333] proved eight of the identities, but with two of
them from the group that Rogers had proved. Watson confides, “Among the
formulae contained in the manuscripts left by Ramanujan is a set of about
forty which involve functions of the types G(q) and H(q); the beauty of these
formulae seems to me to be comparable with that of the Rogers–Ramanujan
identities. So far as I know, nobody else has discovered any formulae which
approach them even remotely; if my belief is well-founded, the undivided credit
for the discovery of these formulae is due to Ramanujan.” This last statement
appears to be so obvious, especially since the manuscript was evidently in
Watson’s possession, that one wonders why he wrote it.

Ramanujan’s forty identities for G(q) and H(q) (which do not include
(8.1.2)) were first brought before the mathematical public in their entirety by
B.J. Birch [75], who in 1975 found Watson’s handwritten copy of Ramanujan’s
list of forty identities in the Oxford University Library. Ramanujan’s original
manuscript was in Watson’s possession for many years and now resides in the
library at Trinity College, Cambridge. Watson’s handwritten list was later
published along with Ramanujan’s lost notebook [283, pp. 236–237] in 1988.
Certain pairs of the identities are linked, and so it is natural to place them,
in fact, in 35 (not 40) separate entries.

D. Bressoud [81], in his Ph.D. thesis, proved fifteen from the list of forty.
His published paper [82] contains proofs of some, but not all, of the general
identities from [81], which he developed in order to prove Ramanujan’s identi-
ties. All the proofs of Rogers, Watson, and Bressoud employ classical means,
although it would seem that in many cases the proofs are not like those found
by Ramanujan.

After the work of Rogers, Watson, and Bressoud, nine remained to be
proved. A.J.F. Biagioli [74] used modular forms to prove eight of them. To
those familiar with the theory of modular forms, this theory can be invoked
to prove all of the forty identities. About such proofs, Birch [75] opines, “A
dull proof would have little value – in fact, all the functions involved in the
identities are essentially theta functions, so modular forms of known level with
poles of bounded order at known places, so the identities may presumably be
verified by just checking that the first hundred or so powers of x are correct.”
It should be remarked that Biagioli’s [74] proofs are more elegant than one
might discern from Birch’s remarks, for Biagioli used Fricke involutions and
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other properties of modular forms to drastically reduce the number of terms
that needed to be checked in the scheme envisioned by Birch. In fact, in most
cases, Biagioli required only a few terms.

In this chapter, we offer proofs of all forty identities. Some of the proofs
that we present were found by either Rogers, Watson, or Bressoud. However,
most of the proofs presented in this chapter are from a Memoir written by
Berndt, G. Choi, Y.-S. Choi, H. Hahn, B.P. Yeap, A.J. Yee, H. Yesilyurt,
and J. Yi [65], in which 35 of the identities were proved. In [347], Yesilyurt
developed a significant generalization of the ideas of Rogers and Bressoud,
and consequently proved two further identities. Finally, in a remarkable tour
de force, Yesilyurt [348] employed his primary theorems from [347] to effect
proofs of the remaining three identities, including the one that had never
been proved by any means. These last three identities are arguably the most
difficult identities of the forty, and Yesilyurt’s achievement in proving them is
nothing short of stupendous.

Frequently, we provide two or three proofs of an identity. Our goal has been
to find proofs for all forty identities that Ramanujan might have given himself.
Indeed, in several of our proofs, we utilize modular equations found by Ra-
manujan and recorded in his notebooks [282]. Although all the proofs offered
here are in the spirit of Ramanujan’s mathematics, it is to be admitted that
for some proofs, knowing the identity beforehand was a distinct advantage to
us in finding a proof. In [65], for each of the five identities that at that time
did not have proofs that Ramanujan could have given, we provided heuristic
arguments showing that both sides of each of the five identities have the same
asymptotic expansions as q → 1−. It is possible that Ramanujan discovered
some of his identities for G(q) and H(q) by examining asymptotic expansions.
Ramanujan was an expert on asymptotic expansions, and in his last letter to
G.H. Hardy, written on January 12, 1920, Ramanujan discussed the asymp-
totic expansions of his new mock theta functions and compared them to the
asymptotic expansion of G(q), with which he opened his letter [68, p. 220]. In
the last section of this chapter, Section 8.6, we discuss further identities in-
volving the Rogers–Ramanujan functions that have been discovered by other
authors.

In concluding our introduction, we think that modular equations were cen-
tral in many of Ramanujan’s proofs. Although some of our proofs may be those
found by Ramanujan, it is clear that all of us, including the aforementioned
authors and the present authors, have not unveiled some of Ramanujan’s prin-
cipal ideas, which remain hidden by an impenetrable fog.

8.2 Definitions and Preliminary Results

We first recall Ramanujan’s definitions for a general theta function and some
of its important special cases. Set
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f(a, b) :=

∞∑

n=−∞
an(n+1)/2bn(n−1)/2, |ab| < 1. (8.2.1)

Basic properties satisfied by f(a, b) include [55, p. 34, Entry 18]

f(a, b) = f(b, a), (8.2.2)

f(1, a) = 2f(a, a3), (8.2.3)

f(−1, a) = 0, (8.2.4)

and if n is an integer,

f(a, b) = an(n+1)/2bn(n−1)/2f(a(ab)n, b(ab)−n). (8.2.5)

The basic property (8.2.2) will be used many times in the sequel without
comment. The function f(a, b) satisfies the well-known Jacobi triple product
identity [55, p. 35, Entry 19]

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞. (8.2.6)

The three most important special cases of (8.2.1) are

ϕ(q) := f(q, q) =

∞∑

n=−∞
qn

2

= (−q; q2)2∞(q2; q2)∞, (8.2.7)

ψ(q) := f(q, q3) =
∞∑

n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

, (8.2.8)

and

f(−q) := f(−q,−q2) =

∞∑

n=−∞
(−1)nqn(3n−1)/2 = (q; q)∞ =: q−1/24η(τ),

(8.2.9)
where q = exp(2πiτ), Im τ > 0, and η denotes the Dedekind eta function.
The product representations in (8.2.7)–(8.2.9) are special cases of (8.2.6).
Also, after Ramanujan, define

χ(q) := (−q; q2)∞. (8.2.10)

Using (8.2.6) and (8.2.9), we can rewrite the Rogers–Ramanujan identities
(8.1.2) in the forms

G(q) =
f(−q2,−q3)

f(−q)
and H(q) =

f(−q,−q4)

f(−q)
. (8.2.11)

We shall use (8.2.11) many times in the remainder of the chapter. A useful
consequence of (8.2.11) in conjunction with the Jacobi triple product identity
(8.2.6) is
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G(q)H(q) =
f(−q5)

f(−q)
. (8.2.12)

Basic properties of the functions (8.2.7)–(8.2.10) include [55, pp. 39–40,
Entries 24, 25(iii)]

f(q)

f(−q)
=

ψ(q)

ψ(−q)
=

χ(q)

χ(−q)
=

√
ϕ(q)

ϕ(−q)
, (8.2.13)

χ(q) =
f(q)

f(−q2)
= 3

√
ϕ(q)

ψ(−q)
=

ϕ(q)

f(q)
=

f(−q2)

ψ(−q)
, (8.2.14)

f3(−q2) = ϕ(−q)ψ2(q), χ(q)χ(−q) = χ(−q2), (8.2.15)

ϕ(q)ϕ(−q) = ϕ2(−q2). (8.2.16)

It is easy to deduce from (8.2.14) or (8.2.6) that

ψ(−q) = χ(−q)f(−q4) =
f(−q)

χ(−q2)
, χ(q)f(−q) = ϕ(−q2). (8.2.17)

We shall use the famous quintuple product identity, which, in Ramanujan’s
notation (8.2.1), takes the form [55, p. 80, Entry 28(iv)]

f(−a2,−a−2q)

f(−a,−a−1q)
=

1

f(−q)

{
f(−a3q,−a−3q2) + af(−a−3q,−a3q2)

}
, (8.2.18)

where a is any complex number.
The function f(a, b) also satisfies a useful addition formula. For each pos-

itive integer n, let

Un := an(n+1)/2bn(n−1)/2 and Vn := an(n−1)/2bn(n+1)/2.

Then [55, p. 48, Entry 31]

f(U1, V1) =

n−1∑

r=0

Urf

(
Un+r

Ur
,
Vn−r

Ur

)
. (8.2.19)

The Rogers–Ramanujan functions are intimately associated with the
Rogers–Ramanujan continued fraction, defined by

R(q) :=
q1/5

1 +

q

1 +

q2

1 +

q3

1 + · · · , |q| < 1, (8.2.20)

which first appeared in a paper by Rogers [303] in 1894. Using the Rogers–
Ramanujan identities (8.1.2), Rogers proved that

R(q) = q1/5
H(q)

G(q)
= q1/5

(q; q5)∞(q4; q5)∞
(q2; q5)∞(q3; q5)∞

. (8.2.21)

This was independently discovered by Ramanujan and can be found in his
notebooks [282], [55, p. 79, Chapter 16, Entry 38(iii)].
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8.3 The Forty Identities

In our discussion of the forty identities, we attempt to relate the sources for
most proofs. However, since many of our proofs are taken from the Memoir
[65], we usually do not specifically mention that a certain proof is from [65].

Entry 8.3.1.

G11(q)H(q)− q2G(q)H11(q) = 1 + 11qG6(q)H6(q). (8.3.1)

Entry 8.3.1 is one of two identities stated by Ramanujan without proof in
[278], [281, p. 231]. As related in the introduction, Ramanujan [278] claims
that, “Each of these formulae is the simplest of a large class.” Ramanujan’s
remark is interesting, because Entry 8.3.1 is the only identity among the forty
in which powers of G(q) and H(q) appear. It would seem from Ramanujan’s
remark that he had further identities involving powers of G(q) or H(q), but
no further identities of this sort are known in Ramanujan’s work. The first
published proof of (8.3.1) is by H.B.C. Darling [120] in 1921. A second proof
by Rogers [304] appeared in the same year. One year later, L.J. Mordell [227]
found another proof.

By (8.2.21), the identity (8.3.1) is equivalent to a famous identity for the
Rogers–Ramanujan continued fraction (8.2.20), namely,

1

R5(q)
− 11−R5(q) =

f6(−q)

qf6(−q5)
. (8.3.2)

This equality was found by Watson in Ramanujan’s notebooks [282] and
proved by him [332] in order to establish claims about the Rogers–Ramanujan
continued fraction communicated by Ramanujan in his first two letters to
Hardy [332]. A different proof of (8.3.2) can be found in Berndt’s book
[55, pp. 265–267]. The identity (8.3.2) can also be found in an unpublished
manuscript of Ramanujan, which first appeared in handwritten form with his
lost notebook [283, pp. 135–177, 238–243], and which is examined in Chapter
5 of this book. In particular, see (5.20.10).

Entry 8.3.2.

G(q)G(q4) + qH(q)H(q4) = χ2(q) =
ϕ(q)

f(−q2)
. (8.3.3)

Entry 8.3.2 was first proved in print by Rogers [304]; Watson [333] also
found a proof. More recent proofs have been given by C. Gugg [160] and
S.H. Son [321]. In fact, Andrews [13, p. 27] has shown that (8.3.3) follows
from a very general identity in three variables found in Ramanujan’s lost
notebook; see our book [16, p. 150].

Entry 8.3.3.

G(q)G(q4)− qH(q)H(q4) =
ϕ(q5)

f(−q2)
. (8.3.4)
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Watson [333] gave a proof of (8.3.4), and Gugg [160] and Son [321] later
gave further proofs.

Entry 8.3.4.
G(q11)H(q)− q2G(q)H(q11) = 1. (8.3.5)

Entry 8.3.4 is the second identity offered by Ramanujan without proof
in [278], [281, p. 231]. The first published proof was given by Rogers [304].
Watson [333] also gave a proof. R. Blecksmith, J. Brillhart, and I. Gerst [76]
have shown that (8.3.5) follows from a very general theta function identity
established by them.

Proofs of the next seven entries were first given by Rogers [304]. W. Chu
[114, Example 25] has found a new proof of (8.3.6). N.D. Baruah, J. Bora, and
N. Saikia [46] and Baruah and Bora [43], [45] have also found proofs of Entry
8.3.6. Z. Cao [96] has developed a very general method for writing certain
products of theta functions as a sum of products of theta functions, and using
his ideas, he has given proofs of Entries 8.3.6 and 8.3.9–8.3.12.

Entry 8.3.5.
G(q16)H(q)− q3G(q)H(q16) = χ(q2). (8.3.6)

Entry 8.3.6.

G(q)G(q9) + q2H(q)H(q9) =
f2(−q3)

f(−q)f(−q9)
. (8.3.7)

Entry 8.3.7.

G(q2)G(q3) + qH(q2)H(q3) =
χ(−q3)

χ(−q)
. (8.3.8)

Entry 8.3.8.

G(q6)H(q)− qG(q)H(q6) =
χ(−q)

χ(−q3)
. (8.3.9)

Entry 8.3.9.

G(q7)H(q2)− qG(q2)H(q7) =
χ(−q)

χ(−q7)
. (8.3.10)

Entry 8.3.10.

G(q)G(q14) + q3H(q)H(q14) =
χ(−q7)

χ(−q)
. (8.3.11)

Entry 8.3.11.

G(q8)H(q3)− qG(q3)H(q8) =
χ(−q)χ(−q4)

χ(−q3)χ(−q12)
. (8.3.12)
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Generalizing slightly the approach of Rogers [304], L.-C. Zhang [351]
proved four general theorems from which Entries 8.3.4, 8.3.5, 8.3.6, 8.3.9,
8.3.10, 8.3.11, and 8.3.12 follow as special cases. Unfortunately, he was not
able to find any new examples to illustrate any of his general theorems. At
the end of this section, we briefly discuss his general theorems.

Entry 8.3.12.

G(q)G(q24) + q5H(q)H(q24) =
χ(−q3)χ(−q12)

χ(−q)χ(−q4)
. (8.3.13)

Entry 8.3.13.

G(q9)H(q4)− qG(q4)H(q9) =
χ(−q)χ(−q6)

χ(−q3)χ(−q18)
. (8.3.14)

Entry 8.3.14.

G(q36)H(q)− q7G(q)H(q36) =
χ(−q6)χ(−q9)

χ(−q2)χ(−q3)
. (8.3.15)

Entries 8.3.12–8.3.14 were first proved by Bressoud in his doctoral disser-
tation [81].

Entry 8.3.15.

G(q3)G(q7) + q2H(q3)H(q7) = G(q21)H(q)− q4G(q)H(q21) (8.3.16)

=
1

2
√
q
χ(q1/2)χ(−q3/2)χ(q7/2)χ(−q21/2)

− 1

2
√
q
χ(−q1/2)χ(q3/2)χ(−q7/2)χ(q21/2).

(8.3.17)

The only previously known proofs of (8.3.16) and (8.3.17) are by Biagioli
[74], who used the theory of modular forms.

Entry 8.3.16.

G(q2)G(q13) + q3H(q2)H(q13) = G(q26)H(q)− q5G(q)H(q26) (8.3.18)

=

√
χ(−q13)

χ(−q)
− q

χ(−q)

χ(−q13)
. (8.3.19)

Up to the appearance of [65], the only known proof of (8.3.18) was by Bres-
soud [81], while Biagioli, using the theory of modular forms, had established
the only known proof of (8.3.19). Biagioli’s [74] formulation of (8.3.19) con-
tains two misprints; the formula is also misnumbered as #17 instead of #18.

Proofs of the next four identities, (8.3.20)–(8.3.23), have been given by
Bressoud [81].



8.3 The Forty Identities 225

Entry 8.3.17.

G(q)G(q19) + q4H(q)H(q19) =
1

4
√
q
χ2(q1/2)χ2(q19/2)

− 1

4
√
q
χ2(−q1/2)χ2(−q19/2)− q2

χ2(−q)χ2(−q19)
. (8.3.20)

Entry 8.3.18.

G(q31)H(q)− q6G(q)H(q31) =
1

2q
χ(q)χ(q31)− 1

2q
χ(−q)χ(−q31)

+
q3

χ(−q2)χ(−q62)
. (8.3.21)

Entry 8.3.19.

{
G(q)G(q39) + q8H(q)H(q39)

}
f(−q)f(−q39)

=
{
G(q13)H(q3)− q2G(q3)H(q13)

}
f(−q3)f(−q13) (8.3.22)

=
1

2q

(
ϕ(−q3)ϕ(−q13)− ϕ(−q)ϕ(−q39)

)
. (8.3.23)

Entry 8.3.20.

G(q)H(−q) +G(−q)H(q) =
2

χ2(−q2)
=

2ψ(q2)

f(−q2)
. (8.3.24)

Entry 8.3.21.

G(q)H(−q)−G(−q)H(q) =
2qψ(q10)

f(−q2)
. (8.3.25)

Watson [333] constructed proofs of both (8.3.24) and (8.3.25). For more
recent proofs of these identities, see papers by W. Chu [114, Example 22],
Gugg [159], Son [321], and M.D. Hirschhorn [179].

Entry 8.3.22.

G(−q)G(−q4) + qH(−q)H(−q4) = χ(q2). (8.3.26)

Entry 8.3.23.

G(−q2)G(−q3) + qH(−q2)H(−q3) =
χ(q)χ(q6)

χ(q2)χ(q3)
. (8.3.27)

Entry 8.3.24.

G(−q6)H(−q)− qH(−q6)G(−q) =
χ(q2)χ(q3)

χ(q)χ(q6)
. (8.3.28)
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Bressoud [81] established the three previous entries.

Entry 8.3.25.

G(−q)G(q9)− q2H(−q)H(q9) =
χ(−q)χ(q9)

χ(−q6)
. (8.3.29)

Equality (8.3.29) is a corrected version of that given by Watson [283] and
was first proved by Bressoud [81].

Entry 8.3.26.

G(q11)H(−q) + q2G(−q)H(q11)

=
χ(q2)χ(q22)

χ(−q2)χ(−q22)
− 2q3

χ(−q2)χ(−q4)χ(−q22)χ(−q44)
. (8.3.30)

Watson [333] established (8.3.30). The minus sign in front of the second
expression on the right side of (8.3.30) is missing in Watson’s list [283].

Our formulations of Entries 8.3.27 and 8.3.28 are slightly different from
those of Ramanujan, who had reversed the hypotheses in each entry. In other
words, he intended that the formulas for U and V be the conclusions in each
case, with the pairs of equations (8.3.33), (8.3.34) and (8.3.36), (8.3.37) being
the conditions under which the formulas for U and V should hold. Watson
proved Entry 8.3.27 under the same interpretation as we have given.

Entry 8.3.27. Define

U := U(q) := G(q)G(q44) + q9H(q)H(q44) (8.3.31)

and
V := V (q) := G(q4)G(q11) + q3H(q4)H(q11). (8.3.32)

Then
U2 + qV 2 = χ3(q)χ3(q11) (8.3.33)

and

UV + q = χ2(q)χ2(q11). (8.3.34)

Entry 8.3.28. Define

U := G(q17)H(q2)−q3G(q2)H(q17) and V := G(q)G(q34)+q7H(q)H(q34).
(8.3.35)

Then

U

V
=

χ(−q)

χ(−q17)
(8.3.36)

and

U4V 4 − qU2V 2 =
χ3(−q17)

χ3(−q)

(
1 + q2

χ3(−q)

χ3(−q17)

)2

. (8.3.37)
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Bressoud proved (8.3.36) in his thesis [81]. Biagioli [74] intended to prove
(8.3.37), but his proof was omitted. The first proof of (8.3.37) by any means
was given by Yesilyurt [348].

Entry 8.3.29.
{
G(q2)G(q23) + q5H(q2)H(q23)

}{
G(q46)H(q)− q9G(q)H(q46)

}

= χ(−q)χ(−q23) + q +
2q2

χ(−q)χ(−q23)
. (8.3.38)

Entry 8.3.30.

G(q19)H(q4)− q3G(q4)H(q19)

G(q76)H(−q) + q15G(−q)H(q76)
=

χ(−q2)

χ(−q38)
. (8.3.39)

Entry 8.3.31.

G(q2)G(q33) + q7H(q2)H(q33)

G(q66)H(q)− q13H(q66)G(q)
=

χ(−q3)

χ(−q11)
. (8.3.40)

Entry 8.3.32.

G(q3)G(q22) + q5H(q3)H(q22)

G(q11)H(q6)− qG(q6)H(q11)
=

χ(−q33)

χ(−q)
. (8.3.41)

Using the theory of modular forms, Biagioli [74] constructed proofs of
Entries 8.3.29–8.3.32. A difficult but beautiful proof of Entry 8.3.29 is given
by Yesilyurt in [348], while proofs of the latter three entries were effected
earlier by Yesilyurt in [347]. The equivalence of Entries 8.3.31 and 8.3.32 was
earlier established in the Memoir [65].

Entry 8.3.33.

G(q)G(q54) + q11H(q)H(q54)

G(q27)H(q2)− q5G(q2)H(q27)
=

χ(−q3)χ(−q27)

χ(−q)χ(−q9)
. (8.3.42)

Entry 8.3.34.
{
G(q)G(−q19)− q4H(q)H(−q19)

}{
G(−q)G(q19)− q4H(−q)H(q19)

}

= G(q2)G(q38) + q8H(q2)H(q38). (8.3.43)

Proofs of (8.3.42) and (8.3.43) have been found by Bressoud [81], who
corrected a misprint in Watson’s [283] formulation of (8.3.43).

Entry 8.3.35.
{
G(q)G(q94) + q19H(q)H(q94)

}{
G(q47)H(q2)− q9G(q2)H(q47)

}

= χ(−q)χ(−q47) + 2q2 +
2q4

χ(−q)χ(−q47)

+ q

√

4χ(−q)χ(−q47) + 9q2 +
8q4

χ(−q)χ(−q47)
. (8.3.44)
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The only previously known proof [74] of Entry 8.3.35 employs the theory
of modular forms. Yesilyurt’s [348] beautiful proof is given here.

Observe that in most of the forty identities, G(q) and H(q) occur in the
combinations

G(qr)G(qs) + q(r+s)/5H(qr)H(qs), when r + s ≡ 0 (mod 5), (8.3.45)

G(qr)H(qs)− q(r−s)/5H(qr)G(qs), when r − s ≡ 0 (mod 5), (8.3.46)

or when one or both of qr and qs are replaced by −qr and −qs, respectively,
in either (8.3.45) or (8.3.46) above.

We pointed out after Entry 8.3.11 that Zhang [351] has established four
general identities for the expressions in (8.3.45) and (8.3.46). For illustration,
we record two of them and refer readers to his paper for the remaining two.

Theorem 8.3.1. Let (s, t) be a pair of positive integers such that 5 | (s + t)
and such that there exists another pair of positive integers (α, β) such that

st = αβ,
s+ t

5
=

α+ β

3
:= λ, and

s± α

λ
is an integer.

Then

G(qs)G(qt) + q(s+t)/5H(qs)H(qt) =
f(−qα)f(−qβ)

f(−qs)f(−qt)
. (8.3.47)

Theorem 8.3.2. Let (s, t) be a pair of positive integers such that 5 | (s − t)
and such that there exists another pair of positive integers (α, β) such that

st = αβ,
9s+ t

5
=

α+ β

3
:= λ, and

3s± α

λ
is an integer.

Then

G(qt)H(qs)− q(t−s)/5H(qt)G(qs) =
f(−qα)f(−qβ)

f(−qs)f(−qt)
. (8.3.48)

Note that Entries 8.3.6 and 8.3.10 are instances of (8.3.47), while Entries
8.3.4 and 8.3.9 arise from (8.3.48).

Ramanujan’s identities are remarkable for several reasons. The Rogers–
Ramanujan functions are associated with modular equations of degree 5 and
q-products with base q5. However, the “5” is missing on all of the right sides of
the identities, except for Entries 8.3.3 and 8.3.21. One would expect to see in
such identities theta functions with arguments q5n, for certain positive integers
n, but such functions do not generally appear! At the end of Section 4.3 in
[65], we provided some heuristic thoughts about this phenomenon.

Next, observe that the right sides in almost all of the identities are ex-
pressed entirely in terms of the modular function χ with no other theta func-
tion appearing. We have no explanation for this phenomenon. It seems likely
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that the function χ played a more important role in Ramanujan’s thinking
than we are able to discern.

As we shall see in the proofs throughout this chapter, some of the identi-
ties are amenable to general techniques established either by Watson, Rogers,
Bressoud, or the authors of [65]. However, for those identities that are more
difficult to prove (and there are many), these ideas do not appear to be useful.
Yesilyurt’s [347], [348] generalization of Rogers’s method is the most general
and powerful tool that we have, and it could be that Ramanujan used argu-
ments of this sort. However, Ramanujan appeared to have had at least one
key idea that all researchers to date have missed. Moreover, each of the forty
identities, in principle, can be associated with modular equations of a certain
degree. It happens that for each such degree, Ramanujan recorded at least one
modular equation of that degree in his notebooks [282], [55]. We are certain
that modular equations were at the heart of Ramanujan’s methods.

Before embarking on the proofs, we summarize here those proofs that we
have borrowed from others. The proofs of Entries 8.3.18 and 8.3.28 that we
give are due to Bressoud [81]. Our proof of Entry 8.3.34 is a modification of
his proof [81]. Our proof of Entry 8.3.19 begins at the same point as that of
Bressoud but diverges thereafter. We give two proofs of Entry 8.3.12, one of
which is due to Bressoud [81]. Watson’s proofs of Entries 8.3.3, 8.3.21, 8.3.26,
and 8.3.27 are provided. Rogers’s proofs of Entries 8.3.9–8.3.11 are given.
The proofs of Entries 8.3.28 (second part), 8.3.29–8.3.36, and 8.3.35 are due
to Yesilyurt [347], [348]. Lastly, we emphasize that many of the proofs that
follow appeared in the Memoir [65] for the first time.

8.4 The Principal Ideas Behind the Proofs

In this section, we describe the main ideas behind the proofs given by Watson
[333], Rogers [304], Bressoud [81], the authors of [65], and Yesilyurt [347],
[348].

We first discuss an idea of Watson [333]. In these proofs, one expresses the
left sides of the identities in terms of theta functions using (8.2.11). In some
cases, after clearing fractions, the right side can be expressed as a product of
two theta functions, say with summation indices m and n. One then tries to
find a change of indices of the form

αm+ βn = 5M + a and γm+ δn = 5N + b,

so that the product on the right side decomposes into the requisite sum of two
products of theta functions on the left side. We emphasize that this method
works only when the right side is a product of two theta functions, and even
then, only in some cases does this kind of change of variables produce the
desired equality. This method was probably not that used by Ramanujan,
because it would seem that the identity to be proved must be explicitly known
in advance.
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We next present a modest generalization of Rogers’s method [304]. We let
p and m denote odd positive integers with p > 1, and let α, β, and λ be real
numbers such that

αm2 + β = λp. (8.4.1)

The special case that α, β, and λ are integers is given by Rogers [304]. Con-
sider, for any real number v, the product

qpαm
2v2

f(−qpα+2pαmv,−qpα−2pαmv)qpβv
2

f(−qpβ+2pβv,−qpβ−2pβv)

=
∞∑

r=−∞
(−1)rqpα(r+mv)2

∞∑

s=−∞
(−1)sqpβ(s+v)2 =

∞∑

r=−∞

∞∑

s=−∞
(−1)r+sqI ,

(8.4.2)

where
I = pα(r +mv)2 + pβ(s+ v)2.

For fixed s, write r = ms+ t. Then, by (8.4.1),

I = pα {(s+ v)m+ t}2 + pβ(s+ v)2

= λp2(s+ v)2 + 2pαmt(s+ v) + pαt2

= λ

{
p(s+ v) +

αmt

λ

}2

− α2m2t2

λ
+ pαt2

= λ

{
p(s+ v) +

αmt

λ

}2

+
αβ

λ
t2. (8.4.3)

Note also that since m is odd,

(−1)r+s = (−1)t. (8.4.4)

Now let

Sp :=

{
1

2p
,
3

2p
, . . . ,

2p− 1

2p

}
. (8.4.5)

Thus, using (8.4.2)–(8.4.5), we find that

∑

v∈Sp

qpαm
2v2

f(−qpα+2pαmv,−qpα−2pαmv)qpβv
2

f(−qpβ+2pβv,−qpβ−2pβv)

=
∑

v∈Sp

∞∑

r=−∞
(−1)rqpα(r+mv)2

∞∑

s=−∞
(−1)sqpβ(s+v)2 =

p∑

k=1

∞∑

s=−∞

∞∑

t=−∞
(−1)tqI ,

(8.4.6)

where

I = I(r, s, t) := λ

{
p

(
s+

2k − 1

2p

)
+

αmt

λ

}2

+
αβ

λ
t2
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= λ

{
ps+ k − 1 +

1

2
+

αmt

λ

}2

+
αβ

λ
t2

= λ

{
u+

1

2
+

αmt

λ

}2

+
αβ

λ
t2, (8.4.7)

upon letting u := ps+ k − 1. Hence, (8.4.6) can now be expressed as

∑

v∈Sp

qpαm
2v2

f(−qpα+2pαmv,−qpα−2pαmv)qpβv
2

f(−qpβ+2pβv,−qpβ−2pβv)

=

∞∑

u=−∞

∞∑

t=−∞
(−1)tqI , (8.4.8)

with I as given in (8.4.7).
The strategy of Rogers is to find two sets of parameters {α1, β1,m1, p1, λ1}

and {α2, β2,m2, p2, λ2} both giving rise to the same function on the right-hand
side of (8.4.8). This would establish an identity between two sums of products
of two theta functions each of the form (8.4.2). For instance, if we choose the
two sets of parameters such that

α1β1 = α2β2, λ1 = λ2, and
α1m1

λ1
± α2m2

λ2
is an integer,

(8.4.9)
then both sets of parameters would satisfy the formula for I in (8.4.7), thus
giving rise to the same function on the right-hand side of (8.4.8).

We next show that the contributions of the terms with indices k and
p− k + 1 are identical. Applying (8.2.5) with n = −m, we find that

qαm
2(2k−1)2/(4p)f(−qpα+αm(2k−1),−qpα−αm(2k−1))

= qαm
2(2k−1)2/(4p)+m2pα−m2α(2k−1)

× f(−qpα+αm(2k−1)−2pαm,−qpα−αm(2k−1)+2pαm)

= qαm
2(2p−2k+1)2/(4p)f(−qpα+αm(2p−2k+1),−qpα−αm(2p−2k+1)), (8.4.10)

where we have used the fact that p is odd. The same argument holds for the
other theta function in (8.4.2). This establishes our claim.

Next, we show that the contribution of the term with k = (p+ 1)/2, i.e.,
v = 1/2, equals 0. Thus, we examine

∞∑

r=−∞
(−1)rqpα(r+m/2)2 = qpαm

2/4f(−qpα(1−m),−qpα(1+m)). (8.4.11)

To the theta function in (8.4.11), we apply (8.2.5) with n = (m− 1)/2. Thus,
for some constant c,

f(−qpα(1−m),−qpα(1+m)) = qcf(−1,−q2pα) = 0, (8.4.12)
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by (8.2.4). The same argument shows that the other theta function appearing
in (8.4.6) also vanishes when v = 1/2.

Using (8.4.10) and (8.4.12) in (8.4.6), we deduce that when p is odd,

(p−1)/2∑

k=1

F (α, β,m, p, λ, k)

:=

(p−1)/2∑

k=1

∞∑

r=−∞
(−1)rqpα(r+m(2k−1)/(2p))2

∞∑

s=−∞
(−1)sqpβ(s+(2k−1)/(2p))2

=

(p−1)/2∑

k=1

qαm
2(2k−1)2/(4p)f(−qpα+αm(2k−1),−qpα−αm(2k−1))

× qβ(2k−1)2/(4p)f(−qpβ+β(2k−1),−qpβ−β(2k−1))

=
1

2

∞∑

u=−∞

∞∑

t=−∞
(−1)tqI , (8.4.13)

where I is given in (8.4.7).
If p is even and if α is even, then the same argument shows that the terms

with indices k and p− k + 1 are identical. Hence, for p even,

p/2∑

k=1

F (α, β,m, p, λ, k)

=

p/2∑

k=1

∞∑

r=−∞
(−1)rqpα(r+m(2k−1)/(2p))2

∞∑

s=−∞
(−1)sqpβ(s+(2k−1)/(2p))2

=

p/2∑

k=1

qαm
2(2k−1)2/(4p)f(−qpα+αm(2k−1),−qpα−αm(2k−1))

× qβ(2k−1)2/(4p)f(−qpβ+β(2k−1),−qpβ−β(2k−1))

=
1

2

∞∑

u=−∞

∞∑

t=−∞
(−1)tqI , (8.4.14)

where I is given in (8.4.7).
For later applications, we record some special cases of (8.4.13) and (8.4.14).

If p = 5 and m = 1,

2∑

k=1

F (α, β, 1, 5, λ, k) = q(α+β)/20f(−q4α,−q6α)f(−q4β ,−q6β)

+ q9(α+β)/20f(−q2α,−q8α)f(−q2β ,−q8β). (8.4.15)

If p = 5 and m = 3,



8.4 The Principal Ideas Behind the Proofs 233

2∑

k=1

F (α, β, 3, 5, λ, k) = q(9α+β)/20f(−q2α,−q8α)f(−q4β ,−q6β)

− q(α+9β)/20f(−q4α,−q6α)f(−q2β ,−q8β), (8.4.16)

where we applied (8.2.5) with n = 1. If p = 3 and m = 1,

1∑

k=1

F (α, β, 1, 3, λ, k) = q(α+β)/12f(−q2α)f(−q2β). (8.4.17)

If p = 2 and m = 1, by (8.2.8),

1∑

k=1

F (α, β, 1, 2, λ, k) = q(α+β)/8f(−qα,−q3α)f(−qβ ,−q3β)

= q(α+β)/8ψ(−qα)ψ(−qβ). (8.4.18)

Rogers’s ideas were extended by Bressoud [81], but we have not employed
Bressoud’s more general theorems in this chapter. We have used Rogers’s
method, however, in proving further identities in Ramanujan’s list.

A third approach is a method of elimination. Here one sets T (q), say,
equal to the left side of the identity to be proved. By changes of variable,
if necessary, one records two further (previously proved) identities involving
G(q) andH(q), each involving a pair of the same Rogers–Ramanujan functions
appearing in the identity to be proved. Thus, we have three equations involving
the same three Rogers–Ramanujan functions, which we proceed to eliminate
from the three equations. There remains then an identity involving T (q) and
(usually) theta functions to be proved. It must be emphasized that this method
can be applied only if one can find two identities related to the one to be
proved. In particular, the method cannot be utilized in those cases in which
Ramanujan offered only one or two identities of a given degree. The theta
function identity to be verified is usually difficult, and generally one should
convert it to a modular equation. Hopefully, the modular equation is a known
one, in particular, one of the couple hundred that Ramanujan found, but of
course, it may not be. For completeness, we next define a modular equation.

We give the definition of a modular equation, as understood by Ramanu-
jan. Let K, K ′, L, and L′ denote complete elliptic integrals of the first kind
associated with the moduli k, k′ :=

√
1− k2, 	, and 	′ :=

√
1− 	2, respectively,

where 0 < k, 	 < 1. Suppose that

n
K ′

K
=

L′

L
(8.4.19)

for some positive rational integer n. A relation between k and 	 induced
by (8.4.19) is called a modular equation of degree n. Following Ramanujan,
set

α = k2 and β = 	2.
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We often say that β has degree n over α. If

q = exp(−πK ′/K), (8.4.20)

one of the most fundamental relations in the theory of elliptic functions is
given by the formula [55, pp. 101–102]

ϕ2(q) = 2F1(
1
2 ,

1
2 ; 1; k

2) =
2

π

∫ π/2

0

dθ√
1− k2 sin2 θ

=:
2

π
K(k). (8.4.21)

The first equality in (8.4.21) and elementary theta function identities make
it possible to write each modular equation as a theta function identity. (The
second equality in (8.4.21) arises from expanding the integrand in a binomial
series and integrating termwise.) Lastly, the multiplierm of degree n is defined
by

m =
ϕ2(q)

ϕ2(qn)
. (8.4.22)

Ramanujan derived an extensive “catalogue” of formulas [55, pp. 122–124]
giving the “evaluations” of f(−q), ϕ(q), ψ(q), and χ(q) at various powers of
the arguments in terms of

z := z1 := 2F1(
1
2 ,

1
2 ; 1;α), α, and q.

If q is replaced by qn, then the evaluations are given in terms of

zn := 2F1(
1
2 ,

1
2 ; 1;β), β, and qn,

where β has degree n over α.
In this chapter, we utilize a new, fourth, approach in which G(q) and H(q)

are expressed as linear combinations of G andH with arguments qn for certain
positive integers n. Watson [333] discovered the first pair of formulas of this
sort, but used them to prove only one of the forty identities. We develop
further formulas of this kind and employ them in proving over a dozen of the
forty identities.

We provide here statements and proofs of the lemmas from [73] that we
use in the sequel to establish several of Ramanujan’s forty identities. Some of
our proofs below actually use some of Ramanujan’s forty identities. Indeed,
some of our arguments are circular. However, in all such instances, we exhibit
at least one further proof of each particular entry, which is independent of the
other entries. Moreover, our arguments then show that certain pairs of entries
are equivalent; for example, Entries 8.3.7 and 8.3.12 are equivalent.

We begin with Watson’s lemma [333], Lemma 8.4.1. Watson’s proof of
(8.4.23) [333, p. 60] is based on Entries 8.3.2 and 8.3.3. Here, we provide a
direct proof.

Lemma 8.4.1. With f(−q) defined by (8.2.9),
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G(q) =
f(−q8)

f(−q2)

(
G(q16) + qH(−q4)

)
, (8.4.23)

H(q) =
f(−q8)

f(−q2)

(
q3H(q16) +G(−q4)

)
. (8.4.24)

Proof. Employing (8.2.18) with q replaced by q10 and a replaced by q, we find
that

f(−q2,−q8)f(−q10)

f(−q,−q9)
= f(−q13,−q17) + qf(−q7,−q23). (8.4.25)

The left-hand side of (8.4.25), by (8.2.6) and (8.2.11), is easily seen to be
equal to f(−q2)G(q), and so we conclude that

f(−q2)G(q) = f(−q13,−q17) + qf(−q7,−q23). (8.4.26)

Similarly, replacing q by q10, q5, q5, and a by q7,−q,−q2, respectively, in
(8.2.18) and using (8.2.6) and (8.2.11), we find that

f(−q2)H(q) = f(−q11,−q19) + q3f(−q,−q29), (8.4.27)

f(−q)G(q2) = f(q7, q8)− qf(q2, q13), (8.4.28)

and

f(−q)H(q2) = f(q4, q11)− qf(q, q14). (8.4.29)

Using (8.2.19) twice with n = 2, and with Ur = (−1)rq15r
2−2r, Vr =

(−1)rq15r
2+2r and Ur = (−1)rq15r

2−8r, Vr = (−1)rq15r
2+8r, respectively, we

separate each term on the right side of (8.4.26) into its even and odd parts
and so find that

f(−q2)G(q) = f(q56, q64)− q13f(q4, q116) + q
(
f(q44, q76)− q7f(q16, q104)

)

= f(q56, q64)− q8f(q16, q104) + q
(
f(q44, q76)− q12f(q4, q116)

)

= f(−q8)G(q16) + qf(−q8)H(−q4),

where in the last step we used (8.4.28) and (8.4.27) with q replaced by q8 and
−q4, respectively. This proves (8.4.23). The related identity (8.4.24) is proved
in a similar way, and so we omit the details. ��

Lemma 8.4.2. With χ defined by (8.2.10),

χ(−q)χ(q3)G(q) =
χ(q6)

χ(−q4)
G(−q6)− q5

χ(q2)

χ(−q12)
H(q24), (8.4.30)

χ(−q)χ(q3)H(q) = −q
χ(q6)

χ(−q4)
H(−q6) +

χ(q2)

χ(−q12)
G(q24). (8.4.31)
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Proof. By two applications of Entry 8.3.7, the second with q replaced by −q,
and by Entry 8.3.20 with q replaced by q3,

χ(−q3)

χ(−q)
G(−q3)− χ(q3)

χ(q)
G(q3) (8.4.32)

=
(
G(q2)G(q3) + qH(q2)H(q3)

)
G(−q3) (8.4.33)

−
(
G(q2)G(−q3)− qH(q2)H(−q3)

)
G(q3)

= qH(q2)
{
H(q3)G(−q3) +H(−q3)G(q3)

}
= 2q

H(q2)

χ2(−q6)
,

which, by (8.2.15), simplifies to

χ(q)χ(−q3)G(−q3)− χ(−q)χ(q3)G(q3) = 2q
χ(−q2)

χ2(−q6)
H(q2). (8.4.34)

Employing (8.4.23) with q replaced by −q3 and q3, respectively, in (8.4.34),
we find that

L(q) := χ(q)χ(−q3)
{
G(q48)− q3H(−q12)

}
(8.4.35)

− χ(−q)χ(q3)
{
G(q48) + q3H(−q12)

}
(8.4.36)

= 2q
f(−q6)χ(−q2)

f(−q24)χ2(−q6)
H(q2) = 2qχ(−q2)χ(q6)H(q2),

by (8.2.14) and (8.2.15). Collecting terms on the left side of (8.4.35) and using
(8.5.7.10) below, we find that

L(q) =
{
χ(q)χ(−q3)− χ(−q)χ(q3)

}
G(q48)

− q3
{
χ(q)χ(−q3) + χ(−q)χ(q3)

}
H(−q12)

= 2q
χ(q4)

χ(−q24)
G(q48)− 2q3

χ(q12)

χ(−q8)
H(−q12). (8.4.37)

Hence, by (8.4.35) and (8.4.37),

2q
χ(q4)

χ(−q24)
G(q48)− 2q3

χ(q12)

χ(−q8)
H(−q12) = 2qχ(−q2)χ(q6)H(q2).

Dividing both sides by 2q and then replacing q2 by q, we deduce (8.4.31). The
companion equality (8.4.30) is proved in a similar way, and so we omit the
details. ��
Lemma 8.4.3. We have

χ(q)χ(−q3)G(q9)− χ(−q)χ(q3)G(−q9) = 2q
G(q4)

χ(−q18)
(8.4.38)

and

χ(q)χ(−q3)H(q9) + χ(−q)χ(q3)H(−q9) = 2
H(q4)

χ(−q18)
. (8.4.39)
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Proof. The proofs of (8.4.38) and (8.4.39) are very similar to the proofs of
(8.4.30) and (8.4.31), except that Entry 8.3.13 is used instead of Entry 8.3.20.
We prove only (8.4.39), since the proof of (8.4.38) follows along the same lines.

By two applications of Entry 8.3.13 and one application of Entry 8.3.20
with q replaced by q9,

χ(q)χ(−q6)

χ(q3)χ(−q18)
H(q9) +

χ(−q)χ(−q6)

χ(−q3)χ(−q18)
H(−q9)

=
{
G(−q9)H(q4) + qG(q4)H(−q9)

}
H(q9)

+
{
G(q9)H(q4)− qG(q4)H(q9)

}
H(−q9)

= H(q4)
{
G(−q9)H(q9) +G(q9)H(−q9)

}
= 2

H(q4)

χ2(−q18)
.

Using (8.2.15) above, we complete the proof of (8.4.39). ��

Lemma 8.4.4. If

a(q) =
χ2(q)χ(−q2)

χ(−q6)
and b(q) =

χ(−q)χ(−q2)

χ(−q3)χ(−q6)
, (8.4.40)

then

G(q) = a(q)G(q6)− qb(q)H(q4), (8.4.41)

H(q) = qa(q)H(q6) + b(q)G(q4). (8.4.42)

First Proof of Lemma 8.4.4. The equality (8.4.41) can be rewritten in the
form

χ(−q6)

χ(−q2)
G(q) = χ2(q)G(q6)− q

χ(−q)

χ(−q3)
H(q4). (8.4.43)

When the identities for
χ(−q6)

χ(−q2)
,

χ(−q)

χ(−q3)
, and χ2(q) are substituted from

(8.3.8), (8.3.9), and (8.3.3), respectively, it is easy to see that (8.4.43) is triv-
ially satisfied. The proof of (8.4.42) follows along the same lines. ��

Second Proof of Lemma 8.4.4. Define

B(q) := G(q) + qH(q4) and qA(q) := −H(q) +G(q4). (8.4.44)

Let us also define

s(q) :=
χ(−q3)

χ(−q)
. (8.4.45)

From the definition (8.4.44) and (8.3.3), we see that

−q2A(q)H(q4) +B(q)G(q4) = G(q)G(q4) + qH(q)H(q4) = χ2(q). (8.4.46)

Similarly, by (8.4.44), (8.3.9), (8.3.8), and (8.4.45), we find that
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qA(q)G(q6) + qB(q)H(q6)

= −H(q)G(q6) + qG(q)H(q6) +
{
G(q4)G(q6) + q2H(q4)H(q6)

}

= − 1

s(q)
+ s(q2). (8.4.47)

Using (8.3.8) and (8.4.45), we solve for B(q) and qA(q) in (8.4.46) and (8.4.47)
and find that

B(q) =
χ2(q)

s(q2)
G(q6)− q

1

s(q)s(q2)
H(q4) + qH(q4),

qA(q) = − 1

s(q)s(q2)
G(q4)− q

χ2(q)

s(q2)
H(q6) +G(q4),

which, by (8.4.44), immediately yield (8.4.41) and (8.4.42). ��
Our fifth approach uses a formula of Blecksmith, Brillhart, and Gerst

[77] to provide a representation for a product of two theta functions as a
sum of m products of pairs of theta functions, under certain conditions. This
formula generalizes formulas of H. Schröter [55, pp. 65–72], which have been
enormously useful in establishing many of Ramanujan’s modular equations
[55].

Define, for ε ∈ {0, 1} and |ab| < 1,

fε(a, b) =

∞∑

n=−∞
(−1)εn(ab)n

2/2(a/b)n/2, (8.4.48)

or equivalently,

fk(a, b) =

{
f(a, b), if k ≡ 0 (mod 2),
f(−a,−b), if k ≡ 1 (mod 2).

(8.4.49)

Theorem 8.4.1. Let a, b, c, and d denote positive numbers with |ab|, |cd| < 1.
Suppose that there exist positive integers α, β, and m such that

(ab)β = (cd)α(m−αβ). (8.4.50)

Let ε1, ε2 ∈ {0, 1}, and define δ1, δ2 ∈ {0, 1} by

δ1 ≡ ε1 − αε2 (mod 2) and δ2 ≡ βε1 + pε2 (mod 2), (8.4.51)

respectively, where p = m − αβ. Then, if R denotes any complete residue
system modulo m,

fε1(a, b)fε2(c, d) =
∑

r∈R

(−1)ε2rcr(r+1)/2dr(r−1)/2 (8.4.52)

× fδ1

(
a(cd)α(α+1−2r)/2

cα
,
b(cd)α(α+1+2r)/2

dα

)

× fδ2

(
(b/a)β/2(cd)p(m+1−2r)/2

cp
,
(a/b)β/2(cd)p(m+1+2r)/2

dp

)
.



8.4 The Principal Ideas Behind the Proofs 239

Proof. Setting s = k − αn, we find that

fε1(a, b)fε2(c, d) =

∞∑

n,s=−∞
(−1)ε1n+ε2s(ab)n

2/2(a/b)n/2(cd)s
2/2(c/d)s/2

=

∞∑

n,k=−∞
(−1)ε1n+ε2(k−αn)(ab)n

2/2(a/b)n/2(cd)(k−αn)2/2(c/d)(k−αn)/2.

Expand into residue classes modulo m and set k = tm + r, −∞ < t < ∞,
r ∈ R, to deduce that

fε1(a, b)fε2(c, d) =
∑

r∈R

∞∑

n,t=−∞
(−1)ε1n+ε2(tm+r−αn)

× (ab)n
2/2(a/b)n/2(cd)(tm+r−αn)2/2(c/d)(tm+r−αn)/2.

Next, setting n = 	+ βt, −∞ < 	 < ∞, we find that

fε1(a, b)fε2(c, d) =
∑

r∈R

∞∑

	,t=−∞
(−1)ε1(	+βt)+ε2(tm+r−α(	+βt))

× (ab)(	+βt)2/2(a/b)(	+βt)/2(cd)(tm+r−α(	+βt))2/2(c/d)(tm+r−α(	+βt))/2.

Recalling that p = m− αβ and noting that tm+ r− α(	+ βt) = tp+ r− α	,
we find that

fε1(a, b)fε2(c, d) =
∑

r∈R

∞∑

	,t=−∞
(−1)ε1(	+βt)(−1)ε2(tp+r−α	)

× (ab)(	+βt)2/2(a/b)(	+βt)/2(cd)(tp+r−α	)2/2(c/d)(tp+r−α	)/2.

Now, by (8.4.50) and the definition p = m− αβ, we find that

(ab)β(	t+βt2/2)(cd)t
2p2/2−tpα	 = (cd)αp(	t+βt2/2)(cd)t

2p2/2−tpα	

= (cd)t
2p(αβ+p)/2

= (cd)t
2pm/2.

Hence, recalling the definitions of δ1 and δ2 from (8.4.51) and the definition
of fε(a, b) from (8.4.48), we find that

fε1(a, b)fε2(c, d) =
∑

r∈R

∞∑

	,t=−∞
(−1)δ1	(−1)δ2t(−1)ε2r(cd)r

2/2(c/d)r/2

×
(
ab(cd)α

2
)	2/2

(
a

b

( c
d

)−α

(cd)−2rα

)	/2
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× ((cd)mp)
t2/2

((a
b

)β ( c
d

)p

(cd)2pr
)t/2

=
∑

r∈R

(−1)ε2rcr(r+1)/2dr(r−1)/2fδ1

(
a(cd)α(α+1−2r)/2

cα
,
b(cd)α(α+1+2r)/2

dα

)

× fδ2

(
(b/a)β/2(cd)p(m+1−2r)/2

cp
,
(a/b)β/2(cd)p(m+1+2r)/2

dp

)
,

after some elementary algebra and elementary manipulation. ��

Lastly, we offer the results of Yesilyurt [347] that are needed to prove
five of the identities. As in the work of Rogers [304], the principal idea is to
construct two equal sums of theta functions arising from two different sets
of parameters. Choosing the parameters adroitly then leads to a proof of the
identity in question.

Let m, δ, and ε be integers, and let α, β, p, and λ be positive integers such
that

αm2 + β = pλ. (8.4.53)

Let l and t be real, and let x and y be nonzero complex numbers. Recall that
the general theta function fk is defined by (8.4.49). With these parameters,
we set

R(ε, δ, l, t, α, β,m, p, λ, x, y)

:=

p−1∑

k=0
n=2k+t

(−1)εkykq{λn
2+pαl2+2αnml}/4fδ(xq

(1+l)pα+αnm, x−1q(1−l)pα−αnm)

× fεp+mδ(x
−mypqpβ+βn, xmy−pqpβ−βn). (8.4.54)

We first state two theorems providing theta function expansions (8.4.54)
with the parameters under certain conditions. We follow these two theorems
with two further theorems giving conditions for two sums of theta functions
being equal [347, Lemmas 4.1, 4.2; Theorems 4.3, 4.4]. We emphasize that the
parameters have different meanings in different theorems.

Theorem 8.4.2. Let l, t, and z be integers with z = ±1. Define

δ1 := εp+mδ

and assume that
ε(p+ t) + δ(l +m) ≡ 1 (mod 2).

Then,

R1(z, ε, δ, l, t, α, β,m, p) := R(ε, δ, l − 1
3zm, t+ 1

3zp, α, β,m, p, λ, 1, 1)

= (−1)(z+1)(1+δ1)/2q
1
4{pαl2+pβ/9}f(−q2pβ/3){S1 + (−1)εt/2S2}, (8.4.55)
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where

S1 =

p−1∑

n=1
n≡t (mod 2)

(−1)ε(n−t)/2q
1
4

{
λn2+2αmnl−2nβ/3

}
f(−q2βn/3,−q2pβ/3−2βn/3)

fδ1(q
βn/3, q2pβ/3−βn/3)

× fδ(q
(1+l)pα+αmn, q(1−l)pα−αmn) (8.4.56)

and

S2 =

{
fδ(q

(1+l)pα, q(1−l)pα), if t ≡ δ1 + 1 ≡ 0 (mod 2),
0, otherwise.

(8.4.57)

Theorem 8.4.3. Let l and t be integers. Define

δ1 := εp+mδ

and assume that
εt+ δ(l + 1) ≡ 1 (mod 2). (8.4.58)

Define

R2(ε, δ, l, t, α, β,m, p) := R(ε, δ, l − 1
3 , t, α, β,m, p, λ, 1, 1).

If gcd(m, p) = 1, then,

R2(ε, δ, l, t, α, β,m, p) = qpα/36f(−q2pα/3){S3 + S4}, (8.4.59)

where

S3 =

p−1∑

n=1
n≡t (mod 2)

(−1)ε(n−t)/2q
1
4

{
λn2+2αmn(l−1/3)+pαl(l−2/3)

}

× f(−q2α(nm+lp)/3,−q2pα/3−2α(nm+lp)/3)

fδ(qα(nm+lp)/3, q2pα/3−α(nm+lp)/3)
fδ1(q

pβ+βn, qpβ−βn) (8.4.60)

and

S4 =

⎧
⎨

⎩

(−1)(l+tε)/2τδ1(q
pβ), if t ≡ 0 (mod 2),

2(−1)(m+l+ε(p−t))/2qpβ/4ψ(q2pβ), if p ≡ t ≡ δ ≡ 1 +m+ l ≡ 1 (mod 2),
0, otherwise.

(8.4.61)

Theorem 8.4.4. Let α, β, m, p, and λ be as before with

αm2 + β = pλ,

and let ε, δ, l, and t be integers with
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(1 + l)δ + tε ≡ 1 (mod 2).

Assume further that 3 | αm and gcd(3, λ) = 1. Recall that R1 and R2 are de-
fined by (8.4.55) and (8.4.59), respectively. Let α1, β1, m1, and p1 be another
set of parameters such that

α1m
2
1 + β1 = p1λ, αβ = α1β1,

and set a := (αm− α1m1)/λ. Then

R2(ε, δ, l, t, α, β,m, p) = R1(z, δ, ε, l1, t1, 1, αβ, αm, λ), (8.4.62)

where l1 := t+αmz/3, t1 := l−1/3−zλ/3, and z = ±1 with z ≡ −λ (mod 3).
Moreover, if 3 | α1m1, then

R2(ε, δ, l, t, α, β,m, p) = R2(ε, δ + aε, l, t2, α1, β1,m1, p1), (8.4.63)

where t2 = t+ a(l − 1/3). If 3 | β1 and gcd(3, α1m1) = 1, then

R2(ε, δ, l, t, α, β,m, p) = R1(y, ε, δ + aε, l3, t3, α1, β1,m1, p1), (8.4.64)

where y = ±1 with y ≡ m1 (mod 3), l3 = l − 1/3 + ym1/3, and t3 =
t+ a(l − 1/3)− yp1/3.

Theorem 8.4.5. Let α, β, m, p, and λ be as before with

αm2 + β = pλ,

and let ε, δ, l, and t be integers with

ε(p+ t) + δ(l +m) ≡ 1 (mod 2).

Assume that y = ±1 with y ≡ m (mod 3). Assume further that 3 | β and
gcd(3,mλ) = 1. Recall that R1 and R2 are defined by (8.4.59) and (8.4.55),
respectively. Let α1, β1, m1, and p1 be another set of parameters as in the
previous theorem. Set a := (αm− α1m1)/λ. Then

R1(z, ε, δ, l, t, α, β,m, p) = R1(y, δ, ε, l1, t11, αβ, αm, λ), (8.4.65)

where l1 = t + (zp + αmy)/3, t1 = l − (zm + yλ)/3, and z = ±1 with
z ≡ −λ (mod 3). Moreover, if 3 | β1 and gcd(3, α1m1) = 1, then

R1(y, ε, δ, l, t, α, β,m, p) = R1(y1, ε, δ + aε, l2, t2, α1, β1,m1, p1),

where l2 = l− (ym−y1m1)/3, t2 = t+al+(yp−y1p1−aym)/3, and y1 = ±1
with y1 ≡ m1 (mod 3). If 3 | α1m1, then

R1(y, ε, δ, l, t, α, β,m, p) = R2(ε, δ + aε, l3, t3, α1, β1,m1, p1),

where l3 = l + (1− ym)/3 and t3 = t+ al + y(p− am)/3.
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8.5 Proofs of the 40 Entries

8.5.1 Proof of Entry 8.3.1

We begin by proving the following identity from Chapter 19 of Ramanujan’s
second notebook [282], [55, p. 80, Entry 38(iv); p. 262, Entry 10(iii)]. Our
proof is taken from [55, pp. 81–82].

Lemma 8.5.1. We have

f2(−q2,−q3)− q2/5f2(−q,−q4) = f(−q)
{
f(−q1/5) + q1/5f(−q5)

}
.

(8.5.1.1)

Proof. Apply (8.2.19) with a = −q, b = −q2, and n = 5. Then

Un = (−1)nqn(3n−1)/2 and Vn = (−1)nqn(3n+1)/2.

Thus, by (8.2.9) and (8.2.19),

f(−q) = f(−q,−q2) = f(−q35,−q40)− qf(−q50,−q25) + q5f(−q65,−q10)

− q12f(−q80,−q−5) + q22f(−q95,−q−20)

= −qf(−q25) +
{
f(−q35,−q40) + q5f(−q10,−q65)

}

− q2
{
f(−q20,−q55) + q10f(−q−5,−q80)

}
, (8.5.1.2)

where we applied (8.2.5). We now invoke the quintuple product identity
(8.2.18) twice, with q replaced by q25 and a = q5, q10, respectively. We there-
fore find that (8.5.1.2) can be written as

f(−q) + qf(−q25) = f(−q25)

{
f(−q15,−q10)

f(−q20,−q5)
− q2

f(−q5,−q20)

f(−q15,−q10)

}
.

(8.5.1.3)
By (8.2.6),

f(−q,−q4)f(−q2,−q3) = f(−q)f(−q5). (8.5.1.4)

Multiplying both sides of (8.5.1.3) by f(−q), but with q replaced by q1/5, and
using (8.5.1.4), we deduce that

f(−q)
{
f(−q1/5) + q1/5f(−q5)

}

= f(−q)f(−q5)

{
f(−q2,−q3)

f(−q,−q4)
− q2/5

f(−q,−q4)

f(−q2,−q3)

}

= f2(−q2,−q3)− q2/5f2(−q,−q4),

which completes the proof. ��
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Proof of Entry 8.3.1. Replace q1/5 by q1/5ζ in (8.5.1.1), where ζ is a fifth root
of unity, and multiply all five identities together. We then find that

f5(−q)
∏

ζ

f(−q1/5ζ)

=
∏

ζ

{
f2(−q2,−q3)− q2/5ζ2f2(−q,−q4)− q1/5ζf(−q)f(−q5)

}
. (8.5.1.5)

Multiplying out the products on each side of (8.5.1.5), we find that

f11(−q)

f(−q5)
= f10(−q2,−q3)− q2f10(−q,−q4)− qf5(−q)f5(−q5)

− 5qf2(−q2,−q3)f2(−q,−q4)f3(−q)f3(−q5)

− 5qf4(−q2,−q3)f4(−q,−q4)f(−q)f(−q5). (8.5.1.6)

By (8.5.1.4), (8.5.1.6) simplifies to

f11(−q)

f(−q5)
= f10(−q2,−q3)− q2f10(−q,−q4)− qf5(−q)f5(−q5)

− 5qf5(−q)f5(−q5)− 5qf5(−q)f5(−q5)

= f10(−q2,−q3)− q2f10(−q,−q4)− 11qf5(−q)f5(−q5). (8.5.1.7)

Multiplying both sides of (8.5.1.7) by f(−q5)/f11(−q), using (8.5.1.4), and
lastly employing (8.2.11), we conclude that

1 =
f11(−q2,−q3)f(−q,−q4)

f12(−q)
− q2

f11(−q,−q4)f(−q2,−q3)

f12(−q)

− 11q
f6(−q,−q4)f6(−q2,−q3)

f12(−q)

= G11(q)H(q)− q2H11(q)G(q)− 11qG6(q)H6(q),

which completes the proof of Entry 8.3.1. ��

8.5.2 Proofs of Entry 8.3.2

Proof. Using (8.4.23) and (8.4.24) in (8.3.6), we find that

χ(q2) = G(q16)H(q)− q3H(q16)G(q)

=
f(−q8)

f(−q2)

{
G(q16)

(
q3H(q16) +G(−q4)

)

−q3H(q16)
(
G(q16) + qH(−q4)

)}

=
f(−q8)

f(−q2)

{
G(−q4)G(q16)− q4H(−q4)H(q16)

}
.
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Therefore, by (8.2.14) and (8.2.15), we deduce that

G(−q4)G(q16)− q4H(−q4)H(q16) =
f(−q2)

f(−q8)
χ(q2)

=
χ(−q2)f(−q4)χ(q2)

f(−q4)/χ(−q4)
= χ2(−q4),

which is Entry 8.3.2 with q replaced by −q4. ��

In his lost notebook [283, p. 27], Ramanujan offers the beautiful identity
[16, p. 153, Entry 7.2.2]

∞∑

n=0

anbnqn
2

(q4; q4)n

∞∑

n=0

a−2nq4n
2

(bq4; q4)n
+

∞∑

n=0

anbnq(n+1)2

(q4; q4)n

∞∑

n=0

a−2n−1q4n
2+4n

(bq4; q4)n

=
f(aq, q/a)

(bq4; q4)∞
− (1− b)

∞∑

n=0

an+1q(n+1)2
n∑

j=0

bj

(q4; q4)j
. (8.5.2.1)

If we set a = b = 1 in (8.5.2.1) and multiply both sides by (−q2; q2)∞, we see
that (8.5.2.1) reduces to

(−q2; q2)∞

∞∑

n=0

qn
2

(q4; q4)n
G(q4) + (−q2; q2)∞

∞∑

n=0

q(n+1)2

(q4; q4)n
H(q4) =

ϕ(q)

f(−q2)
.

(8.5.2.2)
However, Rogers [303] proved that

(−q2; q2)∞

∞∑

n=0

qn
2

(q4; q4)n
= G(q)

and

(−q2; q2)∞

∞∑

n=0

qn
2+2n

(q4; q4)n
= H(q),

and so (8.5.2.2) reduces to (8.3.3).

8.5.3 Proof of Entry 8.3.3

Entry 8.3.3 follows from combining Entry 8.3.2 with the following lemma.

Lemma 8.5.2. We have

ϕ2(q)− ϕ2(q5) = 4qf2(−q10)
χ(q)

χ(q5)
. (8.5.3.1)
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Proof. By Entry 10(iv) in Chapter 19 of Ramanujan’s second notebook [282],
[55, p. 262] and the Jacobi triple product identity (8.2.6),

ϕ2(q)− ϕ2(q5) = 4qf(q, q9)f(q3, q7)

= 4q(−q; q10)∞(−q9; q10)∞(−q3; q10)∞(−q7; q10)∞(q10; q10)2∞

= 4qf2(−q10)
(−q; q2)∞
(−q5; q10)∞

= 4qf2(−q10)
χ(q)

χ(q5)
,

and the proof is complete. ��

The identity (8.5.3.1) is an analogue of

ϕ2(q)− 5ϕ2(q5) = −4f2(−q2)
χ(q5)

χ(q)
,

which is found in Ramanujan’s lost notebook [283] and was first proved by
S.-Y. Kang [190, Theorem 2.2(i)].

Proof of Entry 8.3.3. The proof that follows is due to Watson [333]. From
Entry 8.3.2, (8.2.11), and (8.5.1.4), we find that

{
G(q)G(q4)− qH(q)H(q4)

}2
=
{
G(q)G(q4) + qH(q)H(q4)

}2

− 4qG(q)H(q)G(q4)H(q4)

=
ϕ2(q)

f2(−q2)
− 4q

f(−q5)f(−q20)

f(−q)f(−q4)
. (8.5.3.2)

A straightforward calculation shows that

χ(q) =
f2(−q2)

f(−q)f(−q4)
. (8.5.3.3)

Using (8.5.3.3) twice, we find that (8.5.3.2) can be written in the form

{
G(q)G(q4)− qH(q)H(q4)

}2
=

ϕ2(q)− 4qf2(−q10)
χ(q)

χ(q5)

f2(−q2)
=

ϕ2(q5)

f2(−q2)
,

where we applied Lemma 8.5.2. Taking the square root of both sides above,
we complete the proof. ��

8.5.4 Proof of Entry 8.3.4

By employing (8.2.11), we easily find that the proposed identity is equivalent
to the identity
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f(−q,−q4)f(−q22,−q33)− q2f(−q2,−q3)f(−q11,−q44) = f(−q)f(−q11).
(8.5.4.1)

To prove (8.5.4.1), we apply the ideas of Rogers, in particular, (8.4.13) with
the two sets of parameters α1 = 1, β1 = 11, m1 = 3, p1 = 5, λ1 = 4 and
α2 = 1, β2 = 11, m2 = 1, p2 = 3, λ2 = 4. The requisite conditions (8.4.9) are
readily seen to be satisfied. Using (8.4.16) and (8.4.17), we derive the identity

f(−q2,−q8)f(−q44,−q66)− q4f(−q4,−q6)f(−q22,−q88) = f(−q2)f(−q22),

which is the same as (8.5.4.1), but with q replaced by q2.

8.5.5 Proof of Entry 8.3.5

The proof of Entry 8.3.5 is very similar to that for Entry 8.3.22 below. In fact,
we reduce the desired equality to the same new modular equation (8.5.21.11)
of degree 5. Remarkably, Ramanujan derived 27 modular equations of degree
5, although several are “reciprocals” of others [55, pp. 280–282, Entry 13]. In
Ramanujan’s terminology, let β have degree 5 over α.

Lemma 8.5.3. If β has degree 5 over α, then

(1− β)1/4 − (1− α)1/4 = 22/3(αβ)1/6{(1− α)(1− β)}1/24. (8.5.5.1)

Proof. Let

m =
ϕ2(q)

ϕ2(q5)

denote the multiplier of degree 5. As in [55, p. 284, Equation (13.3)], define

ρ :=
√
m3 − 2m2 + 5m. (8.5.5.2)

We need the following parameterizations for certain algebraic functions of α
and β, namely [55, pp. 285–286, Equations (13.8), (13.10), (13.11)],

{16αβ(1− α)(1− β)}1/6 =
(m− 1)(5−m)

4m
, (8.5.5.3)

{
(1− α)3(1− β)

}1/8
=

ρ− 3m+ 5

4m
, (8.5.5.4)

and

{
(1− α)(1− β)3

}1/8
=

ρ−m2 + 3m

4m
, (8.5.5.5)

where ρ is defined by (8.5.5.2). Using (8.5.5.3)–(8.5.5.5), we find that

(1− β)1/4 − (1− α)1/4

22/3(αβ)1/6{(1− α)(1− β)}1/24
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=

{
(1− α)(1− β)3

}1/8 −
{
(1− α)3(1− β)

}1/8

22/3 {αβ(1− α)(1− β)}1/6

=
(ρ−m2 + 3m)− (ρ− 3m+ 5)

(m− 1)(5−m)

=
m2 − 6m+ 5

(m− 1)(m− 5)
= 1,

which completes the proof. ��

We begin the proof of Entry 8.3.5 with the system of equations

G(q16)H(q)− q3G(q)H(q16) =: T (q),

G(q16)G(q4) + q4H(q4)H(q16) =
ϕ(q4)

f(−q8)
,

G(q16)G(q4)− q4H(q4)H(q16) =
ϕ(q20)

f(−q8)
.

From the first equation above, we see that our task is to prove that T (q) =
χ(q2). The second and third equations are simply (8.3.3) and (8.3.4), respec-
tively, but with q replaced by q4. Regarding this system in the variablesG(q16),
q3H(q16), and −1, we see that

∣∣∣∣∣∣∣∣∣∣

H(q) −G(q) T (q)

G(q4) qH(q4)
ϕ(q4)

f(−q8)

G(q4) −qH(q4)
ϕ(q20)

f(−q8)

∣∣∣∣∣∣∣∣∣∣

= 0. (8.5.5.6)

Expanding the determinant in (8.5.5.6) along the last column, we find that

−2qG(q4)H(q4)T (q)− ϕ(q4)

f(−q8)

{
G(q)G(q4)− qH(q)H(q4)

}

+
ϕ(q20)

f(−q8)

{
G(q)G(q4) + qH(q)H(q4)

}
= 0. (8.5.5.7)

Using (8.2.12), (8.3.3), (8.3.4), and

f(−q4)

f(−q8)
= χ(−q4) = χ(−q2)χ(q2), (8.5.5.8)

which arises from (8.2.15), we can write (8.5.5.7) in the form

−2q
f(−q20)

f(−q4)
T (q)− ϕ(q4)

f(−q8)

ϕ(q5)

f(−q2)
+

ϕ(q20)

f(−q8)

ϕ(q)

f(−q2)
= 0. (8.5.5.9)

Rearranging (8.5.5.9) while using (8.5.5.8), we find that
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2qT (q) =
χ(−q2)χ(q2)

f(−q2)f(−q20)

{
ϕ(q)ϕ(q20)− ϕ(q5)ϕ(q4)

}
. (8.5.5.10)

Recall the representations [55, pp. 122–124, Entries 10(i), (v), (ii), 11(v),
12(iii), (iv), (vii)]

ϕ(q) =
√
z1, ϕ(q4) = 1

2

√
z1

{
1 + (1− α)1/4

}
, (8.5.5.11)

ϕ(−q) =
√
z1(1− α)1/4, ψ(q8) =

1

4q

√
z1

{
1− (1− α)1/4

}
, (8.5.5.12)

f(−q2) =
√
z12

−1/3

(
α(1− α)

q

)1/12

, f(−q4) =
√
z12

−2/3

(
(1− α)α4

q4

)1/24

,

(8.5.5.13)
and

χ(−q2) = 21/3
(
(1− α)q2

α2

)1/24

, (8.5.5.14)

where
zn := ϕ(qn).

Recall from the theory of modular equations that if n is the degree of the
modular equation, then (8.5.5.13) also holds with z1, q, and α replaced by zn,
qn, and β, respectively, where β has degree n over α. Hence, from (8.5.5.13)
and (8.5.5.14), we find that after simplification,

χ(−q2)

f(−q2)f(−q20)
=

24/3q
√
z1z5(αβ)1/6 {(1− α)(1− β)}1/24

. (8.5.5.15)

Employing (8.5.5.15) and (8.5.5.11) in (8.5.5.10), we deduce that

2qT (q) =
χ(q2)24/3q

√
z1z5(αβ)1/6 {(1− α)(1− β)}1/24

×√
z1z5

{
1
2

{
1 + (1− β)1/4

}
− 1

2

{
1 + (1− α)1/4

}}

=
χ(q2)21/3q

{
(1− β)1/4 − (1− α)1/4

}

(αβ)1/6 {(1− α)(1− β)}1/24

= 2qχ(q2), (8.5.5.16)

by Lemma 8.5.3. Equation (8.5.5.16) is trivially equivalent to (8.3.6), and so
the proof is complete.

8.5.6 Proofs of Entry 8.3.6

First Proof of Entry 8.3.6. Using (8.2.11), we find that in order to prove En-
try 8.3.6, it suffices to prove that
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f(−q2,−q3)f(−q18,−q27) + q2f(−q,−q4)f(−q9,−q36) = f2(−q3). (8.5.6.1)

We apply (8.4.13) with α1 = 1, β1 = 9,m1 = 1, p1 = 5, λ1 = 2 and with
α2 = 3, β2 = 3,m2 = 1, p2 = 3, λ2 = 2. We easily check that these two sets of
parameters satisfy the conditions (8.4.9). From (8.4.13) and (8.4.15), we then
deduce the identity

f(−q4,−q6)f(−q36,−q54) + q4f(−q2,−q8)f(−q18,−q72) = f2(−q6),

which is precisely (8.5.6.1), but with q replaced by q2. This then completes
the proof of Entry 8.3.6. ��

Second Proof of Entry 8.3.6. We rewrite (8.5.6.1) in the form

∞∑

m=−∞
m≡0 (mod 3)

∞∑

n=−∞
(−1)m+nq(5m

2−3m+5n2−n)/2

+ q2
∞∑

m=−∞
m≡0 (mod 3)

∞∑

n=−∞
(−1)m+nq(5m

2−9m+5n2−3n)/2

=

∞∑

m,n=−∞
m≡0,n≡0 (mod 3)

(−1)m+nq(m
2−m+n2−n)/2 =: F (q). (8.5.6.2)

Now, for (a, b) ∈ {0,±1,±2}, set

2m+ n = 5M + a and −m+ 2n = 5N + b.

Hence,

m = 2M −N + (2a− b)/5 and n = M + 2N + (a+ 2b)/5,

where the parameters a and b are given in the first two lines of the table
below. The corresponding values of m and n are given in the table’s last two
lines.

a 0 1 −1 2 −2

b 0 2 −2 −1 1

m 2M −N 2M −N 2M −N 2M −N + 1 2M −N − 1

n M + 2N M + 2N + 1 M + 2N − 1 M + 2N M + 2N

Recalling that m,n ≡ 0 (mod 3), for the five cases in the table above, we
find that, respectively,
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M ≡ N ≡ 0 (mod 3), M ≡ 1, N ≡ −1 (mod 3), M ≡ −1, N ≡ 1 (mod 3),

M ≡ N ≡ −1 (mod 3), M ≡ N ≡ 1 (mod 3).

Calculating the corresponding values of m2 + n2 −m− n, we find that

F (q) =

∞∑

M,N=−∞
M≡0,N≡0 (mod 3)

(−1)M+Nq(5M
2−3M+5N2−N)/2

+

∞∑

M,N=−∞
M≡1,N≡−1 (mod 3)

(−1)M+N+1q(5M
2−M+5N2+3N)/2

+

∞∑

M,N=−∞
M≡−1,N≡1 (mod 3)

(−1)M+N+1q(5M
2−5M+5N2−5N+2)/2

+

∞∑

M,N=−∞
M≡−1,N≡−1 (mod 3)

(−1)M+N+1q(5M
2+M+5N2−3N)/2

+

∞∑

M,N=−∞
M≡1,N≡1 (mod 3)

(−1)M+N−1q(5M
2−7M+5N2+N+2)/2

=: S1 + S2 + S3 + S4 + S5. (8.5.6.3)

First, setting M = 3m− 1, we find that

∞∑

M=−∞
M≡−1 (mod 3)

(−1)Mq5(M
2−M)/2 = −

∞∑

m=−∞
(−1)mq45m(m−1)/2

= −f(−1,−q45) = 0,

by (8.2.4). Hence,
S3 = 0. (8.5.6.4)

Replacing M by M +1, and then changing the signs of M and N , we readily
find that

S5 =

∞∑

M,N=−∞
M≡0,N≡−1 (mod 3)

(−1)M+Nq(5M
2+5N2−3M−N)/2.

Changing the signs of M and N and then replacing M by M − 1, we deduce
that

S2 = q2
∞∑

M,N=−∞
M≡0,N≡1 (mod 3)

(−1)M+Nq(5M
2+5N2−9M−3N)/2.
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Replacing M by M − 1, we easily see that

S4 = q2
∞∑

M,N=−∞
M≡0,N≡−1 (mod 3)

(−1)M+Nq(5M
2+5N2−9M−3N)/2.

Hence,

S1 + S5 =

∞∑

M,N=−∞
M≡0,N≡0,−1 (mod 3)

(−1)M+Nq(5M
2+5N2−3M−N)/2 (8.5.6.5)

and

S2 + S4 = q2
∞∑

M,N=−∞
M≡0,N≡±1 (mod 3)

(−1)M+Nq(5M
2+5N2−9M−3N)/2. (8.5.6.6)

Substituting (8.5.6.4)–(8.5.6.6) in (8.5.6.3) and comparing this with
(8.5.6.2), we see that in order prove (8.5.6.2), we need to show that

∞∑

m,n=−∞
m≡0,n≡1 (mod 3)

(−1)m+nq(5m
2+5n2−3m−n)/2

+ q2
∞∑

m,n=−∞
m,n≡0 (mod 3)

(−1)m+nq(5m
2+5n2−9m−3n)/2 = 0. (8.5.6.7)

If we set m = 3k, n = 3l + 1 and m = −3l, n = 3k in the first and second
sums of (8.5.6.7), respectively, we easily deduce (8.5.6.7), and so the proof is
complete. ��

Entry 8.3.6 is a natural companion to Entry 8.3.13; in Section 8.5.13, a
third proof of Entry 8.3.6 will be given concomitantly with a proof of Entry
8.3.13.

8.5.7 Proofs of Entry 8.3.7

First Proof of Entry 8.3.7. Using (8.2.11), we can write (8.3.8) in the alter-
native form

f(−q4,−q6)f(−q6,−q9)+qf(−q2,−q8)f(−q3,−q12) = f(−q2)f(−q3)
χ(−q3)

χ(−q)
.

(8.5.7.1)
Using

χ(−q3) =
ϕ(−q3)

f(−q3)
and χ(−q) =

f(−q2)

ψ(q)
(8.5.7.2)
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from (8.2.14), we rewrite (8.5.7.1) as

f(−q4,−q6)f(−q6,−q9) + qf(−q2,−q8)f(−q3,−q12) = ψ(q)ϕ(−q3).
(8.5.7.3)

For a and b in the set {0,±1,±2}, let
m+ 3n = 5M + a and m− 2n = 5N + b,

from which it follows that

n = M −N + (a− b)/5 and m = 2M + 3N + (2a+ 3b)/5.

It follows easily that a = b, and so m = 2M +3N + a and n = M −N , where
−2 ≤ a ≤ 2. Thus, there is a one-to-one correspondence between the set of all
pairs of integers (m,n), −∞ < m,n < ∞, and triples of integers (M,N, a),
−∞ < M,N < ∞, −2 ≤ a ≤ 2. From the definitions (8.2.8) and (8.2.7) of
ψ(q) and ϕ(−q3), the indicated changes of indices of summation, and (8.2.4),
we deduce that

2ψ(q)ϕ(−q3) =

∞∑

m,n=−∞
(−1)nqm(m+1)/2+3n2

=

2∑

a=−2

qa(a+1)/2
∞∑

M=−∞
(−1)Mq5M

2+(1+2a)M

×
∞∑

N=−∞
(−1)Nq15N

2/2+3N/2+3aN

=

2∑

a=−2

qa(a+1)/2f(−q4−2a,−q6+2a)f(−q6−3a,−q9+3a)

= 2f(−q4,−q6)f(−q6,−q9) + 2qf(−q2,−q8)f(−q3,−q12)

+ q3f(−1,−q10)f(−1,−q15)

= 2f(−q4,−q6)f(−q6,−q9) + 2qf(−q2,−q8)f(−q3,−q12),

which is (8.5.7.3). So we complete our proof. ��
Second Proof of Entry 8.3.7. Using (8.4.23) and (8.4.24) in (8.3.13), we arrive
at

χ(−q3)χ(−q12)

χ(−q)χ(−q4)
= G(q)G(q24) + q5H(q)H(q24)

=
f(−q8)

f(−q2)

{
G(q24)

(
G(q16) + qH(−q4)

)

+q5H(q24)
(
q3H(q16) +G(−q4)

)}

=
f(−q8)

f(−q2)

{
G(q16)G(q24) + q8H(q16)H(q24)

+ q
(
H(−q4)G(q24) + q4G(−q4)H(q24)

)}
. (8.5.7.4)
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By several applications of (8.2.14), we deduce from (8.5.7.4) that

G(q16)G(q24) + q8H(q16)H(q24) + q
(
H(−q4)G(q24) + q4G(−q4)H(q24)

)

=
χ(−q3)χ(−q12)f(−q2)

χ(−q)χ(−q4)f(−q8)
= χ(q)χ(−q3)χ(−q12). (8.5.7.5)

Therefore, it suffices to find the even and the odd parts of χ(q)χ(−q3). By
(8.2.6), (8.2.8), and (8.2.17),

f(−q,−q5) = (q; q6)∞(q5; q6)∞(q6; q6)∞

=
(q; q2)∞
(q3; q6)∞

(q6; q6)∞

= χ(−q)ψ(q3) = χ(−q)χ(q3)f(−q12). (8.5.7.6)

Employing (8.2.19) with n = 2, a = q, and b = q5, we also find that

f(q, q5) = f(q8, q16) + qf(q4, q20). (8.5.7.7)

It is also easily verified that (see [55, p. 350, Equation (2.3)])

f(q, q2) =
ϕ(−q3)

χ(−q)
. (8.5.7.8)

Therefore, by (8.5.7.6), (8.5.7.7), and (8.5.7.8), we find that

χ(q)χ(−q3) =
f(q, q5)

f(−q12)
=

f(q8, q16)

f(−q12)
+ q

f(q4, q20)

f(−q12)

=
ϕ(−q24)

χ(−q8)f(−q12)
+ q

χ(q4)χ(−q12)f(−q48)

f(−q12)
. (8.5.7.9)

Next, by several applications of (8.2.14), we deduce from (8.5.7.9) that

χ(q)χ(−q3) =
χ(q12)

χ(−q8)
+ q

χ(q4)

χ(−q24)
. (8.5.7.10)

Therefore, by (8.5.7.5), (8.5.7.10), and (8.2.16),

G(q16)G(q24) + q8H(q16)H(q24) + q
(
H(−q4)G(q24) + q4G(−q4)H(q24)

)

=
χ(q12)χ(−q12)

χ(−q8)
+ q

χ(q4)χ(−q12)

χ(−q24)
=

χ(−q24)

χ(−q8)
+ q

χ(q4)

χ(q12)
. (8.5.7.11)

Equating the even parts on both sides of (8.5.7.11), we obtain Entry 8.3.7
with q replaced by q8. Similarly, equating the odd parts gives Entry 8.3.8
with q replaced by −q4. ��
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8.5.8 Proof of Entry 8.3.8

We have just given a proof of Entry 8.3.8 along with one of our proofs of
Entry 8.3.7. We provide a second proof here.

If we use (8.2.11), we can put Entry 8.3.8 in the form

f(−q12,−q18)f(−q,−q4)−qf(−q2,−q3)f(−q6,−q24) =
χ(−q)

χ(−q3)
f(−q)f(−q6).

(8.5.8.1)
Using (8.2.7)–(8.2.10), we can rewrite (8.5.8.1) as

f(−q12,−q18)f(−q,−q4)− qf(−q2,−q3)f(−q6,−q24) = ψ(q3)ϕ(−q).
(8.5.8.2)

In the representation

2ψ(q3)ϕ(−q) = f(1, q3)f(−q,−q) =

∞∑

m,n=−∞
(−1)nq(3m

2+3m+2n2)/2,

(8.5.8.3)
we make the change of indices

3m− 2n = 5M + a and m+ n = 5N + b, (8.5.8.4)

where a and b have values selected from the integers 0, ±1, ±2. Since

m = M +2N +(a+2b)/5 and n = −M +3N +(3b− a)/5, (8.5.8.5)

we see that values of a and b are associated as in the following table:

a 0 ±1 ±2
b 0 ±2 ∓1

Thus, there is a one-to-one correspondence between all pairs of integers (m,n)
and all sets of integers (M,N, a) as given above. We therefore deduce from
(8.5.8.3), (8.2.4), and (8.2.5) that

2ψ(q3)ϕ(−q) =

∞∑

m,n=−∞
(−1)nq(3m

2+3m+2n2)/2

= −qf(−q2,−q3)f(−q6,−q24)− qf(−q2,−q3)f(−q6,−q24)

+ f(−q,−q4)f(−q12,−q18)− q4f(−1,−q5)f(−1,−q30)

− qf(−q6,−q−1)f(−q12,−q18)

= −2qf(−q2,−q3)f(−q6,−q24) + f(−q,−q4)f(−q12,−q18)

+ f(−q,−q4)f(−q12,−q18)

= 2f(−q,−q4)f(−q12,−q18)− 2qf(−q2,−q3)f(−q6,−q24).

By (8.5.8.2), we see that the proof is complete.
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8.5.9 Proof of Entry 8.3.9

Using (8.2.11) and (8.2.14), we find that Entry 8.3.9 is equivalent to the
identity

f(−q14,−q21)f(−q2,−q8)− qf(−q4,−q6)f(−q7,−q28)

= f(−q2)f(−q7)
χ(−q)

χ(−q7)
= f(−q)f(−q14). (8.5.9.1)

We invoke (8.4.13) with the two sets of parameters α1 = 2, β1 = 7, m1 = 3,
p1 = 5, λ1 = 5 and α2 = 1, β2 = 14, m2 = 1, p2 = 3, λ2 = 5. The conditions
in (8.4.9) are easily seen to be met. Using (8.4.14) and (8.4.15), we find that

f(−q28,−q42)f(−q4,−q16)− q2f(−q8,−q12)f(−q14,−q56) = f(−q2)f(−q28).

Replacing q2 by q in the last equality, we deduce (8.5.9.1) to complete the
proof.

8.5.10 Proof of Entry 8.3.10

Using (8.2.11) and (8.2.14), we find that Entry 8.3.10 is equivalent to the
identity

f(−q2,−q3)f(−q28,−q42) + q3f(−q,−q4)f(−q14,−q56)

= f(−q)f(−q14)
χ(−q7)

χ(−q)
= f(−q2)f(−q7). (8.5.10.1)

We now apply (8.4.13) with α1 = 1, β1 = 14, m1 = 1, p1 = 5, λ1 = 3 and
α2 = 2, β2 = 7, m2 = 1, p2 = 3, λ2 = 3. We easily find that these sets of
parameters satisfy the conditions in (8.4.9). Employing (8.4.13) and (8.4.15),
we find that

f(−q4,−q6)f(−q56,−q84) + q6f(−q2,−q8)f(−q28,−q112) = f(−q4)f(−q14),

which is (8.5.10.1), but with q replaced by q2, and so the proof is complete.

8.5.11 Proofs of Entry 8.3.11

First Proof of Entry 8.3.11. Employing (8.2.11), we see that Entry 8.3.11 is
equivalent to the identity

f(−q16,−q24)f(−q3,−q12)− qf(−q6,−q9)f(−q8,−q32)

= f(−q3)f(−q8)
χ(−q)χ(−q4)

χ(−q3)χ(−q12)
. (8.5.11.1)
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We apply (8.4.13) with the two sets of parameters α1 = 3, β1 = 8, m1 = 3,
p1 = 5, λ1 = 7 and α2 = 2, β2 = 12, m2 = 1, p2 = 2, λ2 = 7. The conditions
(8.4.9) are easily seen to be satisfied. Using (8.4.14) and (8.4.16), we find that

f(−q32,−q48)f(−q6,−q24)−q2f(−q12,−q18)f(−q16,−q64) = ψ(−q2)ψ(−q12).
(8.5.11.2)

After replacing q2 by q in (8.5.11.2) and comparing the result with (8.5.11.1),
we find that it suffices to show that

ψ(−q)ψ(−q6)

f(−q3)f(−q8)
=

χ(−q)χ(−q4)

χ(−q3)χ(−q12)
. (8.5.11.3)

Using the product representations for ψ(−qa) and f(−qa) in (8.2.8) and
(8.2.9), respectively, we find that

ψ(−q)ψ(−q6)

f(−q3)f(−q8)
=

(q2; q2)∞(q12, q12)∞
(−q; q2)∞(−q6, q12)∞(q3; q3)∞(q8; q8)∞

=
(q2; q2)∞(q; q2)∞(q12, q12)∞(q6; q12)∞
(q2; q4)∞(q12, q24)∞(q3; q3)∞(q8; q8)∞

=
χ(−q)χ(−q4)

χ(−q12)

(q6; q6)∞
(q3; q3)∞

=
χ(−q)χ(−q4)

χ(−q3)χ(−q12)
.

Thus, the proof of (8.5.11.3) is complete, and so that of Entry 8.3.11 is also
complete. ��

Second Proof of Entry 8.3.11. Using (8.4.23) and (8.4.24) in (8.3.9), we find
that

χ(−q)

χ(−q3)
= G(q6)H(q)− qG(q)H(q6)

=
f(−q8)

f(−q2)

{
G(q6)

(
q3H(q16) +G(−q4)

)
− qH(q6)

(
G(q16) + qH(−q4)

)}

=
f(−q8)

f(−q2)

{
G(−q4)G(q6)− q2H(−q4)H(q6)

− q
(
H(q6)G(q16)− q2G(q6)H(q16)

)}
. (8.5.11.4)

By (8.2.15) and (8.2.17), and by (8.5.7.10) with q replaced by −q, we deduce
from (8.5.11.4) that

G(−q4)G(q6)− q2H(−q4)H(q6)− q
(
H(q6)G(q16)− q2G(q6)H(q16)

)

=
χ(−q)f(−q2)

χ(−q3)f(−q8)
=

f(−q2)

f(−q8)χ(−q6)
χ(−q)χ(q3) (8.5.11.5)
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=
f(−q2)

f(−q8)χ(−q6)

{
χ(q12)

χ(−q8)
− q

χ(q4)

χ(−q24)

}

=
χ(−q2)χ(q12)

χ(q4)χ(−q6)
− q

χ(−q2)χ(−q8)

χ(−q6)χ(−q24)
.

Equating the even and odd parts on the extremal sides of the equations
(8.5.11.5), we obtain Entries 8.3.23 and 8.3.11 with q replaced by −q2 and
q2, respectively. ��

8.5.12 Proofs of Entry 8.3.12

The first proof that we give is due to Bressoud [81].

First Proof of Entry 8.3.12. Using (8.2.11), we readily find that Entry 8.3.12
is equivalent to the identity

f(−q2,−q3)f(−q48,−q72) + q5f(−q,−q4)f(−q24,−q96)

= f(−q)f(−q24)
χ(−q3)χ(−q12)

χ(−q)χ(−q4)
. (8.5.12.1)

We apply (8.4.13) with the two sets of parameters α1 = 1, β1 = 24, m1 = 1,
p1 = 5, λ1 = 5 and α2 = 4, β2 = 6, m2 = 1, p2 = 2, λ2 = 5. We find that
the conditions in (8.4.9) are satisfied. Hence, using (8.4.15) and (8.4.18), we
deduce the identity

f(−q4,−q6)f(−q96,−q144)+q10f(−q2,−q8)f(−q48,−q192) = ψ(−q4)ψ(−q6).
(8.5.12.2)

Replacing q2 by q in (8.5.12.2) and comparing it with (8.5.12.1), we find that
it suffices to prove that

ψ(−q2)ψ(−q3)

f(−q)f(−q24)
=

χ(−q3)χ(−q12)

χ(−q)χ(−q4)
. (8.5.12.3)

Using the product representations of ψ(−qa) and f(−qa) from (8.2.8) and
(8.2.9), respectively, we find that

ψ(−q2)ψ(−q3)

f(−q)f(−q24)
=

(q4; q4)∞(q6; q6)∞
(−q2; q4)∞(−q3; q6)∞(q; q)∞(q24; q24)∞

=
(q4; q4)∞(q6; q6)∞(q2; q4)∞(q3; q6)∞
(q4; q8)∞(q6; q12)∞(q; q)∞(q24; q24)∞

=
(q2; q2)∞(q6; q6)∞χ(−q3)

χ(−q4)(q; q)∞(q6; q12)∞(q24; q24)∞

=
(q6; q6)∞χ(−q3)

χ(−q)χ(−q4)(q6; q12)∞(q24; q24)∞
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=
χ(−q3)χ(−q12)

χ(−q)χ(−q4)
,

which establishes (8.5.12.3), and so the proof is complete. ��

Second Proof of Entry 8.3.12. Using (8.4.23) and (8.4.24) in (8.3.8) with q
replaced by q3, we arrive at

χ(−q3)

χ(−q)
= G(q2)G(q3) + qH(q2)H(q3)

=
f(−q24)

f(−q6)

{
G(q2)

(
G(q48) + q3H(−q12)

)
+ qH(q2)

(
q9H(q48) +G(−q12)

)}

=
f(−q24)

f(−q6)

{
G(q2)G(q48) + q10H(q2)H(q48)

+ q
(
H(q2)G(−q12) + q2G(q2)H(−q12)

)}
. (8.5.12.4)

That is,

G(q2)G(q48) + q10H(q2)H(q48) + q
(
H(q2)G(−q12) + q2G(q2)H(−q12)

)

=
f(−q6)χ(−q3)

f(−q24)χ(−q)
. (8.5.12.5)

Therefore, by (8.5.7.10), (8.2.15), and (8.2.14),

f(−q6)χ(−q3)

f(−q24)χ(−q)
=

f(−q6)χ(q)χ(−q3)

f(−q24)χ(−q2)
=

χ(−q6)χ(−q24)

χ(−q2)χ(−q8)
+ q

χ(q4)χ(−q6)

χ(−q2)χ(q12)
.

(8.5.12.6)
Returning to (8.5.12.5), we use (8.5.12.6) to equate the odd parts on both
sides of the equation, and upon replacing q2 by −q, we find that

H(−q)G(−q6)− qG(−q)H(−q6) =
χ(q2)χ(q3)

χ(q)χ(q6)
,

which is Entry 8.3.24. Similarly, equating the even parts in (8.5.12.5), employ-
ing (8.5.12.6), and replacing q2 by q, we deduce that

G(q)G(q24) + q5H(q)H(q24) =
χ(−q3)χ(−q12)

χ(−q)χ(−q4)
,

which is Entry 8.3.12. ��

8.5.13 Proofs of Entries 8.3.13 and 8.3.14

Throughout this section, we use several times without comment the elemen-
tary identity (8.2.5). To prove Entries 8.3.13 and 8.3.14, we also need the
following lemma.
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Lemma 8.5.4. For | q |< 1, x �= 0, and y �= 0,

f(−x,−x−1q)f(−y,−y−1q) (8.5.13.1)

= f(xy, (xy)−1q2)f(x−1yq, xy−1q)− xf(xyq, (xy)−1q)f(x−1y, xy−1q2).

In this form, Lemma 8.5.4 is given as Theorem 1.1 in [171, p. 649]. However,
it is easily seen that Lemma 8.5.4 can be obtained by adding Entries 29(i)
and (ii) in Chapter 16 of Ramanujan’s second notebook [55, p. 45]. (The theta
functions f(−xn,−x−ny), where n is an integer, are connected with Somos
sequences.)

Lemma 8.5.5. We have

f2(−q27,−q45) + q9f2(−q9,−q63) = f(−q3, q6)ψ(−q9)χ(q3). (8.5.13.2)

Proof. Replacing q, x, and y by q36, −q9, and q18, respectively, in Lemma
8.5.4, we find that

f2(−q27,−q45) + q9f2(−q9,−q63) = f(q9, q27)f(−q18,−q18)

= ψ(q9)ϕ(−q18). (8.5.13.3)

Using (8.2.13)–(8.2.15), or using (8.2.7)–(8.2.9), we can easily conclude that

ϕ(−q2)ψ(q) = ϕ(q)ψ(−q). (8.5.13.4)

Therefore, by (8.5.7.8) with q replaced by −q3, and by (8.5.13.4) with q re-
placed by q9, we find that

f(−q3, q6)ψ(−q9)χ(q3) = ψ(−q9)ϕ(q9) = ψ(q9)ϕ(−q18). (8.5.13.5)

Thus, we have proved Lemma 8.5.5. ��

Lemma 8.5.6. We have

f(−q21,−q51)f(−q27,−q45) + q6f(−q3,−q69)f(−q27,−q45)

+ q3f(−q33,−q39)f(−q9,−q63)− q6f(−q15,−q57)f(−q9,−q63)

= ψ2(−q9)χ(q3). (8.5.13.6)

Proof. Replacing q, x, and y by q36, q6, and −q15, respectively, in Lemma
8.5.4, we find that

f(−q21,−q51)f(−q27,−q45)− q6f(−q15,−q57)f(−q9,−q63)

= f(−q6,−q30)f(q15, q21), (8.5.13.7)

and replacing q, x, and y by q36, −q3, and q6, respectively, in Lemma 8.5.4,
we find that
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f(−q9,−q63)f(−q33,−q39) + q3f(−q27,−q45)f(−q3,−q69)

= f(q3, q33)f(−q6,−q30). (8.5.13.8)

By (8.2.19) with a = q3, b = q6, and n = 2, we deduce that

f(q3, q6) = f(q15, q21) + q3f(q3, q33). (8.5.13.9)

Thus, by (8.5.13.7)–(8.5.13.9), we find that

f(−q21,−q51)f(−q27,−q45) + q6f(−q3,−q69)f(−q27,−q45)

+ q3f(−q33,−q39)f(−q9,−q63)− q6f(−q15,−q57)f(−q9,−q63)

= f(q3, q6)f(−q6,−q30). (8.5.13.10)

One can easily verify that

ψ2(−q) = ψ(q2)ϕ(−q). (8.5.13.11)

By (8.5.7.8), (8.5.7.6), and (8.5.13.11) with q replaced by q3, q6, and q9, re-
spectively, and by (8.2.15), we conclude that

f(q3, q6)f(−q6,−q30) =
ϕ(−q9)

χ(−q3)
χ(−q6)ψ(q18)

= ϕ(−q9)ψ(q18)χ(q3) = ψ2(−q9)χ(q3). (8.5.13.12)

Thus, we have proved Lemma 8.5.6. ��

Theorem 8.5.1. For | q |< 1,

f(−q,−q7)f(−q27,−q45)− q4f(−q3,−q5)f(−q9,−q63)

= (q4; q4)∞(q9; q9)∞
χ(−q)χ(−q6)

χ(−q3)χ(−q18)
. (8.5.13.13)

Proof. Replacing n, a, and b by 3, −q, and −q7, respectively, in (8.2.19), we
find that

f(−q,−q7) = f(−q27,−q45)− qf(−q21,−q51)− q7f(−q3,−q69); (8.5.13.14)

replacing n, a, and b by 3, −q3, and −q5, respectively, in (8.2.19), we find that

f(−q3,−q5) = f(−q33,−q39)− q3f(−q15,−q57)− q5f(−q9,−q63);
(8.5.13.15)

and replacing n, a, and b by 3, −q, and −q3, respectively, in (8.2.19), we find
that (see also [55, p. 49, Corollary])

ψ(−q) = f(−q,−q3) = f(−q15,−q21)− qf(−q9,−q27)− q3f(−q3,−q33)

= f(−q3, q6)− qψ(−q9), (8.5.13.16)
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where in the last step, we used (8.5.13.9) with q replaced by −q. Then, by
(8.5.13.14) and (8.5.13.15), the left-hand side of (8.5.13.13) equals

f2(−q27,−q45)− qf(−q21,−q51)f(−q27,−q45)

− q7f(−q3,−q69)f(−q27,−q45)− q4f(−q33,−q39)f(−q9,−q63)

+ q7f(−q15,−q57)f(−q9,−q63) + q9f2(−q9,−q63). (8.5.13.17)

Therefore, by (8.5.13.17), Lemma 8.5.5, Lemma 8.5.6, (8.5.13.16), (8.2.16),
and (8.2.17), the left-hand side of (8.5.13.13) equals

f(−q3, q6)ψ(−q9)χ(q3)− qψ2(−q9)χ(q3)

= ψ(−q9)χ(q3)
{
f(−q3, q6)− qψ(−q9)

}

= ψ(−q)ψ(−q9)χ(q3) = f(−q4)χ(−q)
f(−q9)

χ(−q18)

χ(−q6)

χ(−q3)
. (8.5.13.18)

We have thus completed the proof of Theorem 8.5.1. ��

Theorem 8.5.2. For | q |< 1,

f(−q4,−q16)f(−q18,−q27)− qf(−q8,−q12)f(−q9,−q36)

= f(−q,−q4)f(−q72,−q108)− q7f(−q2,−q3)f(−q36,−q144)

= f(−q,−q7)f(−q27,−q45)− q4f(−q3,−q5)f(−q9,−q63). (8.5.13.19)

Proof. We apply the ideas of Rogers with the three sets of parameters α1 = 4,
β1 = 9, m1 = 3, p1 = 5, λ1 = 9; α2 = 1, β2 = 36, m2 = 3, p2 = 5, λ2 = 9; and
α3 = 2, β3 = 18, m3 = 3, p3 = 4, λ3 = 9. The requisite conditions (8.4.9) are
satisfied. Therefore, we find that

q9/4f(−q8,−q32)f(−q36,−q54)− q17/4f(−q16,−q24)f(−q18,−q72)

= q9/4f(−q2,−q8)f(−q144,−q216)− q65/4f(−q4,−q6)f(−q72,−q288)

= q9/4f(−q2,−q14)f(−q54,−q90)− q41/4f(−q6,−q10)f(−q18,−q126).
(8.5.13.20)

Dividing each term of (8.5.13.20) by q9/4, and replacing q2 by q, we are able
to derive (8.5.13.19) from (8.5.13.20). ��

We are now going to prove Entries 8.3.13 and 8.3.14.

Proof of Entry 8.3.13. By Theorems 8.5.1 and 8.5.2, we find that

f(−q4,−q16)f(−q18,−q27)− qf(−q8,−q12)f(−q9,−q36)

= (q4; q4)∞(q9; q9)∞
χ(−q)χ(−q6)

χ(−q3)χ(−q18)
. (8.5.13.21)

Dividing both sides of (8.5.13.21) by (q4; q4)∞(q9; q9)∞ and using the defini-
tions of G(q) and H(q), we derive Entry 8.3.13. ��
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Proof of Entry 8.3.14. By Theorems 8.5.1 and 8.5.2, we find that

f(−q,−q4)f(−q72,−q108)− q7f(−q2,−q3)f(−q36,−q144)

= (q4; q4)∞(q9; q9)∞
χ(−q)χ(−q6)

χ(−q3)χ(−q18)
. (8.5.13.22)

Dividing both sides of (8.5.13.22) by (q; q)∞(q36; q36)∞ and using the defini-
tions of G(q) and H(q), we find that the left-hand side of (8.5.13.22) equals
G(q36)H(q)− q7G(q)H(q36), and the right-hand side of (8.5.13.22) equals

(q4; q4)∞(q9; q9)∞
(q; q)∞(q36; q36)∞

· χ(−q)χ(−q6)

χ(−q3)χ(−q18)
=

χ(−q6)χ(−q9)

χ(−q2)χ(−q3)
,

which completes the proof of Entry 8.3.14. ��

We offer now a second, completely different proof of Entry 8.3.13.

Second Proof of Entry 8.3.13. By (8.2.11), (8.2.8), (8.2.6), and some elemen-
tary product manipulations, Entry 8.3.13 is easily seen to be equivalent to

f(−q4,−q16)f(−q18,−q27)− qf(−q8,−q12)f(−q9,−q36) = ψ(−q)f(q3, q15).
(8.5.13.23)

We prove (8.5.13.23).
Employing Theorem 8.4.1 with the set of parameters a = q3, b = q15,

c = q, d = q2, α = 3, β = 1, m = 5, ε1 = 0, and ε2 = 1, we find that

f(q3, q15)f(−q,−q2) = f(−q18,−q27)f(q8, q22)− qf(−q9,−q36)f(q14, q16)

+ q3f(−q9,−q36)f(q4, q26)− q2f(−q18,−q27)f(q2, q28).

Upon the rearrangement of terms and the use of (8.4.28) and (8.4.29) with q
replaced by q2, we deduce that

f(q3, q15)f(−q) = f(−q18,−q27){f(q8, q22)− q2f(q2, q28)} (8.5.13.24)

− qf(−q9,−q36){f(q14, q16)− q2f(q4, q26)}
= f(−q18,−q27)H(q4)f(−q2)− qf(−q9,−q36)G(q4)f(−q2)

=
f(−q2)

f(−q4)

{
f(−q4,−q16)f(−q18,−q27)− qf(−q8,−q12)f(−q9,−q36)

}
.

But by (8.2.17),

f(−q)f(−q4)

f(−q2)
= ψ(−q).

Using the last equality in (8.5.13.24), we complete the proof of (8.5.13.23) and
also that of Entry 8.3.14. ��
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In Section 8.5.6, we promised that in the current section we would give a
proof that simultaneously yields Entries 8.3.6 and 8.3.13. We show that Entry
8.3.11 implies both Entries 8.3.6 and 8.3.13.

Another Proof of Entries 8.3.6 and 8.3.13. In Entry 8.3.11, we employ
(8.4.31) and (8.4.30) with q replaced by q3 to find that

{
−q3

χ(q18)

χ(−q12)
H(−q18) +

χ(q6)

χ(−q36)
G(q72)

}
G(q8)

− q

{
χ(q18)

χ(−q12)
G(−q18)− q15

χ(q6)

χ(−q36)
H(q72)

}
H(q8)

= χ(q9)χ(−q3)
χ(−q)χ(−q4)

χ(−q3)χ(−q12)
. (8.5.13.25)

Upon collecting terms, we deduce from (8.5.13.25) that

χ(q6)

χ(−q36)

{
G(q8)G(q72) + q16H(q8)H(q72)

}
(8.5.13.26)

− q
χ(q18)

χ(−q12)

{
G(−q18)H(q8) + q2H(−q18)G(q8)

}
=

χ(−q4)

χ(−q12)
χ(−q)χ(q9).

To equate even and odd parts on both sides of (8.5.13.26), we need the 2-
dissection of χ(−q)χ(q9), which we obtain from Theorem 8.4.1. To that end,
we employ Theorem 8.4.1 with the set of parameters a = 1, b = q9, c = q,
d = q2, ε1 = 0, ε2 = 1, α = β = 1, and m = 4 to find that

f(1, q9)f(−q,−q2) = f(−q2,−q10)f(−q12,−q24)+f(−q,−q11)f(−q15,−q21)

− qf(−q4,−q8)f(−q6,−q30)− q2f(−q5,−q7)f(−q3,−q33). (8.5.13.27)

We employ Theorem 8.4.1 again with the same set of parameters, except this
time we take ε1 = 1 and ε2 = 0 to find that

f(−1,−q9)f(q, q2) = f(−q2,−q10)f(−q12,−q24)−f(−q,−q11)f(−q15,−q21)

− qf(−q4,−q8)f(−q6,−q30) + q2f(−q5,−q7)f(−q3,−q33). (8.5.13.28)

By (8.2.4), the product on the left side of (8.5.13.28) equals 0. Recalling
the definitions (8.2.8) and (8.2.9), and employing (8.2.3), (8.5.13.27), and
(8.5.13.28), we conclude that

ψ(q9)f(−q) =
1

2
f(1, q9)f(−q,−q2)

=
1

2

{
f(1, q9)f(−q,−q2) + f(−1,−q9)f(q, q2)

}

= f(−q2,−q10)f(−q12,−q24)− qf(−q4,−q8)f(−q6,−q30)

= f(−q2,−q10)f(−q12)− qf(−q4)f(−q6,−q30). (8.5.13.29)
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Next, we use (8.2.14), (8.2.17), and (8.5.7.6) twice with q replaced by q2 and
q6, respectively, to find from (8.5.13.29) that

χ(q9)f(−q36)χ(−q)f(−q2)

= f(−q12)χ(−q2)χ(q6)f(−q24)− qf(−q4)χ(−q6)χ(q18)f(−q72),

which after several uses of (8.2.14) simplifies to

χ(−q)χ(q9) =
f(−q12)ψ(q6)

f(−q4)f(−q36)
− q

χ(−q6)

χ(−q2)χ(−q18)
. (8.5.13.30)

Returning to (8.5.13.26), we substitute the value of χ(−q)χ(q9) from (8.5.13.30)
and equate the odd parts on both sides of the resulting equation. Hence, using
(8.2.15), we conclude that

G(−q18)H(q8) + q2H(−q18)G(q8) =
χ(−q12)

χ(q18)

χ(−q4)

χ(−q12)

χ(−q6)

χ(−q2)χ(−q18)

=
χ(q2)χ(−q6)

χ(−q36)
,

which is Entry 8.3.13 with q replaced by −q2. Similarly, equating the even
parts in (8.5.13.26) with the use of (8.5.13.30), using (8.2.14) and (8.2.17),
and replacing q8 by q, we deduce Entry 8.3.6. ��

8.5.14 Proof of Entry 8.3.15

Let

M(q) := G(q3)G(q7) + q2H(q3)H(q7) (8.5.14.1)

and

N(q) := G(q21)H(q)− q4G(q)H(q21). (8.5.14.2)

Consider the system of equations

N(q2) = H(q2)G(q42)− q8G(q2)H(q42),

χ(−q7)

χ(−q21)
=: R(q) = H(q7)G(q42)− q7G(q7)H(q42), (8.5.14.3)

χ(−q21)

χ(−q3)
=: S(q) = G(q3)G(q42) + q9H(q3)H(q42), (8.5.14.4)

arising from (8.5.14.2), Entry 8.3.8 with q replaced by q7, and Entry 8.3.10
with q replaced by q3, respectively. It follows that
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∣∣∣∣∣∣

H(q2) −q8G(q2) N(q2)
H(q7) −q7G(q7) R(q)
G(q3) q9H(q3) S(q)

∣∣∣∣∣∣
= 0,

or, using (8.5.14.1), Entry 8.3.7, Entry 8.3.9, (8.5.14.3), and (8.5.14.4), we find
that

0 = N(q2)
(
q9H(q3)H(q7) + q7G(q3)G(q7)

)

−R(q)
(
q9H(q2)H(q3) + q8G(q2)G(q3)

)

+ S(q)
(
−q7G(q7)H(q2) + q8G(q2)H(q7)

)

= q7N(q2)M(q)− q8
χ(−q7)

χ(−q21)

χ(−q3)

χ(−q)
− q7

χ(−q21)

χ(−q3)

χ(−q)

χ(−q7)
.

Solving the equation above for N(q2)M(q), we find that if

T (q) :=
χ(−q3)χ(−q7)

χ(−q)χ(−q21)
, (8.5.14.5)

then

N(q2)M(q) = qT (q) +
1

T (q)
. (8.5.14.6)

Next, we derive a similar formula for M(q2)N(q). Using (8.5.14.1), Entry
8.3.10, and Entry 8.3.7 with q replaced by q7, we find that

M(q2) = G(q6)G(q14) + q4H(q6)H(q14),

χ(−q7)

χ(−q)
=: R1(q) = G(q)G(q14) + q3H(q)H(q14), (8.5.14.7)

χ(−q21)

χ(−q7)
=: S1(q) = G(q21)G(q14) + q7H(q21)H(q14), (8.5.14.8)

which implies that ∣∣∣∣∣∣

G(q6) q4H(q6) M(q2)
G(q) q3H(q) R1(q)
G(q21) q7H(q21) S1(q)

∣∣∣∣∣∣
= 0.

Hence, by (8.5.14.2), Entry 8.3.9 with q replaced by q3, Entry 8.3.8, (8.5.14.7),
and (8.5.14.8),

0 = M(q2)
(
q7G(q)H(q21)− q3H(q)G(q21)

)

−R1(q)
(
q7G(q6)H(q21)− q4H(q6)G(q21)

)

+ S1(q)
(
q3G(q6)H(q)− q4H(q6)G(q)

)

= −q3M(q2)N(q) + q4
χ(−q7)

χ(−q)

χ(−q3)

χ(−q21)
+ q3

χ(−q21)

χ(−q7)

χ(−q)

χ(−q3)
.

Hence, solving the equation above for M(q2)N(q), we find that
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M(q2)N(q) = qT (q) +
1

T (q)
, (8.5.14.9)

where T (q) is defined by (8.5.14.5). Comparing (8.5.14.6) with (8.5.14.9), we
find that

N(q2)M(q) = M(q2)N(q). (8.5.14.10)

Equation (8.5.14.10) easily implies that M(q) = N(q), which is what we
wanted to prove, i.e., (8.3.16). To see this, let

M(q) :=

∞∑

n=0

anq
n and N(q) :=

∞∑

n=0

bnq
n.

From the definitions (8.5.14.1) and (8.5.14.2), we see that a0 = b0. Then by
an easy inductive argument, we find that an = bn, for every positive integer
n. Hence, M(q) = N(q), as we wanted to demonstrate.

As an immediate consequence of our main identity, M(q) = N(q), and
(8.5.14.9), we derive the following curious corollary.

Corollary 8.5.1. If T (q) is defined by (8.5.14.5), then

M(q)M(q2) = N(q)N(q2) = qT (q) +
1

T (q)
.

Next, we prove the second part of Entry 8.3.15, i.e., (8.3.17). Let J(q)
denote the right-hand side of (8.3.17), so that

J(q2) =
1

2q

{
χ(q)χ(−q3)χ(q7)χ(−q21)− χ(−q)χ(q3)χ(−q7)χ(q21)

}
.

(8.5.14.11)
Recall that M(q) and N(q) are defined by (8.5.14.1) and (8.5.14.2), respec-
tively. Using the previously established fact M(q) = N(q), we see that it
suffices to show that M(q2)N(q2) = J2(q2).

Using (8.4.41) and (8.4.42) in (8.3.10) with q replaced by q7, we obtain

{
a(q7)G(q42)− q7b(q7)H(q28)

}
H(q2)

− qG(q2)
{
q7a(q7)H(q42) + b(q7)G(q28)

}
=

χ(−q)

χ(−q7)
.

Upon rearrangement and the use of (8.5.14.2) and (8.3.11) with q replaced by
q2, we find that

a(q7)N(q2)− qb(q7)
χ(−q14)

χ(−q2)
=

χ(−q)

χ(−q7)
,

from which, by (8.4.40), we conclude that
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N(q2) =
1

χ2(q7)

{
χ(−q)χ(−q42)

χ(−q7)χ(−q14)
+ q

χ(−q7)χ(−q14)

χ(−q2)χ(−q21)

}
. (8.5.14.12)

Similarly, employing Lemma 8.4.4 in (8.3.11), we find that

{
a(q)G(q6)− qb(q)H(q4)

}
G(q14)

+ q3
{
qa(q)H(q6) + b(q)G(q4)

}
H(q14) =

χ(−q7)

χ(−q)
.

Upon rearrangement and the use of (8.5.14.1) and (8.3.10) with q replaced by
q2, we obtain

a(q)M(q2)− qb(q)
χ(−q2)

χ(−q14)
=

χ(−q7)

χ(−q)
,

from which we similarly find that

M(q2) =
1

χ2(q)

{
χ(−q6)χ(−q7)

χ(−q)χ(−q2)
+ q

χ(−q)χ(−q2)

χ(−q3)χ(−q14)

}
. (8.5.14.13)

Next, recall that [55, p. 124, Entries 12 (v), (vi), (vii)]

χ(q) = 21/6
(

q

α(1− α)

)1/24

and χ(−q) = 21/6
(
(1− α)2q

α

)1/24

.

(8.5.14.14)
Let α, β, γ, and δ be of degrees 1, 3, 7, and 21, respectively. In (8.5.14.13),
we use the representations (8.5.14.14) and (8.5.5.14) and conclude, after some
algebra, that

M(q2) =
2−1/3q1/3

{αβ2γ(1− α)(1− β)2(1− γ)}1/24

× {α1/4(1− β)1/8(1− γ)1/8 + β1/8γ1/8(1− α)1/4}. (8.5.14.15)

Similarly, from (8.5.14.12), we find that

N(q2) =
2−1/3q1/3

{αγδ2(1− α)(1− γ)(1− δ)2}1/24

× {γ1/4(1− α)1/8(1− δ)1/8 + α1/8δ1/8(1− γ)1/4}. (8.5.14.16)

Lastly, from (8.5.14.11), we conclude that

J(q2) =
2−1/3q1/3

{αβγδ(1− α)(1− β)(1− γ)(1− δ)}1/24

× {(1− β)(1− δ)}1/8 − {(1− α)(1− γ)}1/8}. (8.5.14.17)

Therefore, the equationM(q2)N(q2) = J2(q2) is equivalent to the modular
equation
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{
{(1− β)(1− δ)}1/8 − {(1− α)(1− γ)}1/8

}2

(8.5.14.18)

=
{
α1/4(1− β)1/8(1− γ)1/8 + β1/8γ1/8(1− α)1/4

}

×
{
γ1/4(1− α)1/8(1− δ)1/8 + α1/8δ1/8(1− γ)1/4

}

=
{
α2γ2(1− α)(1− β)(1− γ)(1− δ)

}1/8
+
{
α3δ(1− β)(1− γ)3

}1/8

+
{
γ3β(1− δ)(1− α)3

}1/8
+
{
αβγδ(1− α)2(1− γ)2

}1/8
.

To prove (8.5.14.18), we invoke two modular equations, of degrees 3 and 7,
respectively. Namely, if β has degree 3 over α, then [55, p. 230, Entry 5 (i)]

{α3(1− β)}1/8 − {β(1− α)3}1/8 = {β(1− β)}1/8, (8.5.14.19)

and if γ has degree 7 over α, then [55, p. 314, Entry 19 (i)]

{(1− α)(1− γ)}1/8 + {αγ}1/8 = 1. (8.5.14.20)

Let

u := (αγ)1/8, v := (βδ)1/8, x := {β(1− α)3}1/8,
y := {α3(1− β)}1/8, x̄ := {δ(1− γ)3}1/8, and ȳ := {γ3(1− δ)}1/8.

Since γ has degree 7 over α and δ has degree 7 over β, by (8.5.14.20),

{(1− α)(1− γ)}1/8 = 1− u and {(1− β)(1− δ)}1/8 = 1− v.

Since β has degree 3 over α and δ has degree 3 over γ, by (8.5.14.19),

y − x = {β(1− β)}1/8 and ȳ − x̄ = {δ(1− δ)}1/8 .

Using the trivial identity

yx̄+ ȳx = xx̄+ yȳ − (x− y)(x̄− ȳ),

we conclude that

yx̄+ ȳx = v(1− u)3 + u3(1− v)− v(1− v).

Returning to the equation (8.5.14.18), we see that the right-hand side of
(8.5.14.18) is

u2(1− u)(1− v) + yx̄+ ȳx+ uv(1− u)2

= u2(1− u)(1− v) + v(1− u)3 + u3(1− v)− v(1− v) + uv(1− u)2,

which, after some algebra, simplifies to

(u− v)2 = {(1− v)− (1− u)}2 ,

which is exactly the far left side of (8.5.14.18). Hence, the proof of (8.3.17) is
complete.
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8.5.15 Proof of Entry 8.3.16

We prove that both sides of (8.3.18) are independently equal to the right-
hand side of (8.3.19). For brevity of exposition, we make the following defini-
tion. Assuming that S is a subset of the rational numbers and

∑
n∈S anq

n

is a generic q-series, we define an operator L acting on
∑

n∈S anq
n by

L
(∑

n∈S anq
n
)

=
∑

n∈S′ anq
n, where S′ ⊆ S is the set of all integers

in S.
We apply Lemma 8.5.1 with q replaced by q2 and q13 to respectively deduce

that

f(−q2)f(−q2/5) = f2(−q4,−q6)− q4/5f2(−q2,−q8)

− q2/5f(−q2)f(−q10), (8.5.15.1)

f(−q13)f(−q13/5) = f2(−q26,−q39)− q26/5f2(−q13,−q52)

− q13/5f(−q13)f(−q65). (8.5.15.2)

Multiplying together (8.5.15.1) and (8.5.15.2), we obtain

f(−q2)f(−q13)f(−q2/5)f(−q13/5) = f2(−q4,−q6)f2(−q26,−q39) (8.5.15.3)

+ q6f2(−q2,−q8)f2(−q13,−q52) + q3f(−q2)f(−q10)f(−q13)f(−q65)

− q26/5f2(−q4,−q6)f2(−q13,−q52)− q13/5f2(−q4,−q6)f(−q13)f(−q65)

− q4/5f2(−q2,−q8)f2(−q26,−q39) + q17/5f2(−q2,−q8)f(−q13)f(−q65)

− q2/5f2(−q26,−q39)f(−q2)f(−q10) + q28/5f2(−q13,−q52)f(−q2)f(−q10).

We consider terms with integral powers of q on both sides of (8.5.15.3) and
observe that

L
(
f(−q2)f(−q13)f(−q2/5)f(−q13/5)

)

= f2(−q4,−q6)f2(−q26,−q39) + q6f2(−q2,−q8)f2(−q13,−q52)

+ q3f(−q2)f(−q10)f(−q13)f(−q65). (8.5.15.4)

We now derive an alternative expression for the left-hand side of (8.5.15.4)
above. To this end, we first employ (8.2.19) with a = −q, b = −q2, and n = 5
to deduce that

f(−q) = f(−q35,−q40)− qf(−q50,−q25) + q5f(−q65,−q10)

− q12f(−q80,−q−5) + q22f(−q95,−q−20)

= f(−q35,−q40)− qf(−q50,−q25) + q5f(−q65,−q10)

+ q7f(−q70,−q5)− q2f(−q20,−q55), (8.5.15.5)

after two applications of (8.2.5). We then apply (8.5.15.5) above to obtain
representations for f(−q2/5) and f(−q13/5) by replacing q by q2/5 and q by
q13/5, respectively. This gives us
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f(−q2/5) = f(−q14,−q16)− q2/5f(−q20,−q10) + q2f(−q26,−q4)

+ q14/5f(−q28,−q2)− q4/5f(−q8,−q22) (8.5.15.6)

and

f(−q13/5) = f(−q91,−q104)− q13/5f(−q130,−q65) + q13f(−q169,−q26)

+ q91/5f(−q182,−q13)− q26/5f(−q52,−q143). (8.5.15.7)

Thus, multiplying (8.5.15.6) and (8.5.15.7), we see that

L
(
f(−q2/5)f(−q13/5)

)
= f(−q14,−q16)f(−q91,−q104) (8.5.15.8)

+ q3f(−q10,−q20)f(−q65,−q130) + q15f(−q4,−q26)f(−q26,−q169)

+ q21f(−q2,−q28)f(−q13,−q182) + q6f(−q8,−q22)f(−q52,−q143)

+ q13f(−q14,−q16)f(−q26,−q169) + q2f(−q4,−q26)f(−q91,−q104)

− q8f(−q2,−q28)f(−q52,−q143)− q19f(−q8,−q22)f(−q13,−q182).

Since f(−q2)f(−q13) contains only integral powers of q, it follows that

L
(
f(−q2)f(−q13)f(−q2/5)f(−q13/5)

)
(8.5.15.9)

= f(−q2)f(−q13)L
(
f(−q2/5)f(−q13/5)

)

= f(−q2)f(−q13)
{
f(−q14,−q16)f(−q91,−q104)

+ q3f(−q10,−q20)f(−q65,−q130) + q15f(−q4,−q26)f(−q26,−q169)

+ q21f(−q2,−q28)f(−q13,−q182) + q6f(−q8,−q22)f(−q52,−q143)

+ q13f(−q14,−q16)f(−q26,−q169) + q2f(−q4,−q26)f(−q91,−q104)

− q8f(−q2,−q28)f(−q52,−q143)− q19f(−q8,−q22)f(−q13,−q182)
}
.

Equating the right-hand sides of (8.5.15.4) and (8.5.15.9), we deduce that

f2(−q4,−q6)f2(−q26,−q39) + q6f2(−q2,−q8)f2(−q13,−q52) (8.5.15.10)

+ q3f(−q2)f(−q10)f(−q13)f(−q65)

= f(−q2)f(−q13)
{
f(−q14,−q16)f(−q91,−q104)

+ q3f(−q10,−q20)f(−q65,−q130) + q15f(−q4,−q26)f(−q26,−q169)

+ q21f(−q2,−q28)f(−q13,−q182) + q6f(−q8,−q22)f(−q52,−q143)

+ q13f(−q14,−q16)f(−q26,−q169) + q2f(−q4,−q26)f(−q91,−q104)

− q8f(−q2,−q28)f(−q52,−q143)− q19f(−q8,−q22)f(−q13,−q182)
}
.

We seek to simplify the right-hand side of (8.5.15.10). Applying (8.4.13)
with α = 1, β = 13

2 , m = 1, and p = 15, we see that
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q−1/8
7∑

k=1

F (1, 13
2 , 1, 15, 1

2 , k) = f(−q14,−q16)f(−q91,−q104) (8.5.15.11)

+ qf(−q12,−q18)f(−q78,−q117) + q3f(−q10,−q20)f(−q65,−q130)

+ q6f(−q8,−q22)f(−q52,−q143) + q10f(−q6,−q24)f(−q39,−q156)

+ q15f(−q4,−q26)f(−q26,−q169) + q21f(−q2,−q28)f(−q13,−q182).

We now observe that five out of the seven terms appearing on the right-hand
side of (8.5.15.11) also appear on the right-hand side of (8.5.15.10). This
enables us to rewrite (8.5.15.10) as

f2(−q4,−q6)f2(−q26,−q39) + q6f2(−q2,−q8)f2(−q13,−q52) (8.5.15.12)

+ q3f(−q2)f(−q10)f(−q13)f(−q65)

= f(−q2)f(−q13)
{
q−1/8

7∑

k=1

F (1, 13
2 , 1, 15, 12 , k)

− qf(−q12,−q18)f(−q78,−q117)− q10f(−q6 − q24)f(−q39,−q156)

+ q13f(−q14,−q16)f(−q26,−q169) + q2f(−q4,−q26)f(−q91,−q104)

− q8f(−q2,−q28)f(−q52,−q143)− q19f(−q8,−q22)f(−q13,−q182)
}
.

We next apply (8.4.13) again with α = 1, β = 13
2 , m = 11, and p = 15.

This yields

q−1/8
7∑

k=1

F (1, 13
2 , 11, 15, 17

2 , k) = q2f(−q26,−q4)f(−q104,−q91) (8.5.15.13)

+ q19f(−q48,−q−18)f(−q117,−q78) + q53f(−q70,−q−40)f(−q130,−q65)

+ q104f(−q92,−q−62)f(−q143,−q52) + q172f(−q114,−q−84)f(−q156,−q39)

+ q257f(−q136,−q−106)f(−q169,−q26)

+ q359f(−q158,−q−128)f(−q182,−q13).

After several applications of (8.2.5), we rewrite (8.5.15.13) as

q−1/8
7∑

k=1

F (1, 13
2 , 11, 15, 17

2 , k) = q2f(−q4,−q26)f(−q91,−q104) (8.5.15.14)

− qf(−q12,−q18)f(−q78,−q117) + q3f(−q10,−q20)f(−q65,−q130)

− q8f(−q2,−q28)f(−q52,−q143)− q10f(−q6,−q24)f(−q39,−q156)

+ q13f(−q14,−q16)f(−q26,−q169)− q19f(−q8,−q22)f(−q13,−q182).

We now note from (8.2.9) that q3f(−q10,−q20)f(−q65,−q130)
= q3f(−q10)f(−q65), and upon comparing the right-hand side of (8.5.15.14)
with that of (8.5.15.12), we rewrite (8.5.15.12) as
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f2(−q4,−q6)f2(−q26,−q39) + q6f2(−q2,−q8)f2(−q13,−q52)

+ q3f(−q2)f(−q10)f(−q13)f(−q65)

= f(−q2)f(−q13)
{
q−1/8

7∑

k=1

F (1, 13
2 , 1, 15, 1

2 , k)

+ q−1/8
7∑

k=1

F (1, 13
2 , 11, 15, 172 , k)− q3f(−q10)f(−q65)

}
, (8.5.15.15)

or equivalently upon applying the Jacobi triple product identity (8.2.6) to
f(−q4,−q6), f(−q26,−q39), f(−q2,−q8), and f(−q13,−q52), we deduce that

(f(−q4,−q6)f(−q26,−q39) + q3f(−q2,−q8)f(−q13,−q52))2

= f(−q2)f(−q13)
{
q−1/8

7∑

k=1

F (1, 13
2 , 1, 15, 1

2 , k)

+ q−1/8
7∑

k=1

F (1, 13
2 , 11, 15, 17

2 , k)
}
. (8.5.15.16)

We now turn our attention to the two sums appearing on the right-hand
side of (8.5.15.16). From (8.4.13), we see that

q−1/8
7∑

k=1

F (1, 13
2 , 1, 15, 12 , k) =

q−1/8

2

∞∑

u=−∞

∞∑

t=−∞
(−1)tq

1
2

{
u+

1
2+2t

}2
+13t2

=
q−1/8

2

∞∑

u=−∞

∞∑

t=−∞
(−1)tq

1
2

{
u+

1
2

}2
+13t2

=
q−1/8

2

∞∑

u=−∞
q
1
2

{
u+

1
2

}2 ∞∑

t=−∞
(−1)tq13t

2

= ψ(q)ϕ(−q13) =
(q2; q2)∞
(q; q2)∞

(q13; q26)2∞(q26; q26)∞

=
(q2; q2)2∞(q13; q13)2∞
(q; q)∞(q26; q26)∞

=
f2(−q2)f2(−q13)

f(−q)f(−q26)
, (8.5.15.17)

where we have utilized (8.2.7)–(8.2.9). Similarly, from (8.4.13), we find that

q−1/8
7∑

k=1

F (1, 13
2 , 11, 15, 17

2 , k)

=
q−1/8

2

∞∑

u=−∞

∞∑

t=−∞
(−1)tq

17
2

{
u+

1
2+

22
17 t

}2
+

13
17 t

2
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=
q−1/8

2

∞∑

u=−∞

∞∑

t=−∞
(−1)tq

17
2

{
u+

1
2+

5
17 t

}2
+

13
17 t

2

=
1

2

∞∑

u=−∞

∞∑

t=−∞
(−1)tq2+

3
2 t

2+
5
2 t+5tu+

17
2 u(u+1)

= −q

2

∞∑

u=−∞

∞∑

t=−∞
(−1)tq

3
2 t

2− 1
2 t+5tu+

17
2 u2+

7
2u, (8.5.15.18)

where in the last equality we replaced t by t− 1.
We now claim that

1

2

∞∑

u=−∞

∞∑

t=−∞
(−1)tq

3
2 t

2− 1
2 t+5tu+

17
2 u2+

7
2u = f(−q)f(−q26). (8.5.15.19)

To this end, we dissect the series according as u ≡ 0, 1,−1 (mod 3), respec-
tively. We consider each of the three sums separately. If we replace u by 3u
and t by −t− 5u, we find that

∞∑

u=−∞
u≡0 (mod 3)

∞∑

t=−∞
(−1)tq

3
2 t

2− 1
2 t+5tu+

17
2 u2+

7
2u

=

∞∑

u=−∞

∞∑

t=−∞
(−1)t+uq

3
2 t

2+
1
2 t+39u2+13u

=

∞∑

u=−∞
(−1)uq39u

2+13u
∞∑

t=−∞
(−1)tq

3
2 t

2+
1
2 t = f(−q26)f(−q), (8.5.15.20)

by (8.2.9). Next, if we replace u by 3u + 1 and t by −t − 5u in the series in
(8.5.15.19), we find that

∞∑

u=−∞
u≡1 (mod 3)

∞∑

t=−∞
(−1)tq

3
2 t

2− 1
2 t+5tu+

17
2 u2+

7
2u

=

∞∑

u=−∞

∞∑

t=−∞
(−1)t+uq12+

3
2 t

2− 9
2 t+39u2+39u

=

∞∑

u=−∞
(−1)uq39u

2+39u
∞∑

t=−∞
(−1)tq12+

3
2 t

2− 9
2 t = 0, (8.5.15.21)

by (8.2.4). Finally, if we replace u by 3u− 1 and t by −t− 5u+2 in the series
in (8.5.15.19), we see that

∞∑

u=−∞
u≡−1 (mod 3)

∞∑

t=−∞
(−1)tq

3
2 t

2− 1
2 t+5tu+

17
2 u2+

7
2u
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=

∞∑

u=−∞

∞∑

t=−∞
(−1)t+uq

3
2 t

2− 1
2 t+39u2−13u

=
∞∑

u=−∞
(−1)uq39u

2−13u
∞∑

t=−∞
(−1)tq

3
2 t

2− 1
2 t = f(−q26)f(−q), (8.5.15.22)

by (8.2.9). Thus, in (8.5.15.20)–(8.5.15.22), we have shown that

1

2

∞∑

u=−∞

∞∑

t=−∞
(−1)tq

3
2 t

2− 1
2 t+5tu+

17
2 u2+

7
2u

=
1

2
(f(−q)f(−q26) + f(−q)f(−q26)) = f(−q)f(−q26), (8.5.15.23)

as claimed in (8.5.15.19). Thus, from (8.5.15.18) and (8.5.15.23), we deduce
that

q−1/8
7∑

k=1

F (1, 13
2 , 11, 15, 172 , k) = −qf(−q)f(−q26). (8.5.15.24)

Finally, we insert (8.5.15.17) and (8.5.15.24) into (8.5.15.16) to arrive at

(f(−q4,−q6)f(−q26,−q39) + q3f(−q2,−q8)f(−q13,−q52))2

= f(−q2)f(−q13)

{
f2(−q2)f2(−q13)

f(−q)f(−q26)
− qf(−q)f(−q26)

}
. (8.5.15.25)

Dividing both sides of (8.5.15.25) by f2(−q2)f2(−q13) and taking square
roots, we obtain

f(−q4,−q6)f(−q26,−q39)

f(−q2)f(−q13)
+ q3

f(−q2,−q8)f(−q13,−q52)

f(−q2)f(−q13)

=

√
f(−q2)f(−q13)

f(−q)f(−q26)
− q

f(−q)f(−q26)

f(−q2)f(−q13)

=

√
χ(−q13)

χ(−q)
− q

χ(−q)

χ(−q13)
, (8.5.15.26)

by (8.2.14). Using (8.2.11), we see that we have shown that the left side in
(8.3.18) is equal to (8.3.19).

We now turn to the right-hand side of (8.3.18) and show that it equals the
expression in (8.3.19). Our argument is brief, since the proof is similar to the
previous proof above. We apply Lemma 8.5.1, and then apply it a second time
with q replaced by q26. Then multiply the two resulting equalities together to
obtain
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f(−q)f(−q26)f(−q1/5)f(−q26/5) = f2(−q2,−q3)f2(−q52,−q78) (8.5.15.27)

− q2/5f2(−q,−q4)f2(−q52,−q78)− q1/5f(−q)f(−q5)f2(−q52,−q78)

− q52/5f2(−q2,−q3)f2(−q26,−q104) + q54/5f2(−q,−q4)f2(−q26,−q104)

+ q53/5f(−q)f(−q5)f2(−q26,−q104)− q26/5f2(−q2,−q3)f(−q26)f(−q130)

+ q28/5f2(−q,−q4)f(−q26)f(−q130) + q27/5f(−q)f(−q5)f(−q26)f(−q130).

Recalling the definition of L at the beginning of this section, we have

L
(
q−2/5f(−q)f(−q26)f(−q1/5)f(−q26/5)

)
= −f2(−q,−q4)f2(−q52,−q78)

− q10f2(−q2,−q3)f2(−q26,−q104) + q5f(−q)f(−q5)f(−q26)f(−q130).
(8.5.15.28)

We then apply (8.5.15.5) to obtain representations for f(−q1/5) and f(−q26/5)
by replacing q by q1/5 and q by q26/5, respectively. This gives us

f(−q1/5) = f(−q7,−q8)− q1/5f(−q10,−q5) + qf(−q13,−q2)

+ q7/5f(−q14,−q)− q2/5f(−q4,−q11) (8.5.15.29)

and

f(−q26/5) = f(−q182,−q208)− q26/5f(−q260,−q130) + q26f(−q338,−q52)

+ q182/5f(−q364,−q26)− q52/5f(−q104,−q286). (8.5.15.30)

Thus, since f(−q)f(−q26) contains only terms with integral powers, we find,
upon using (8.5.15.29) and (8.5.15.30), that

L
(
q−2/5f(−q)f(−q26)f(−q1/5)f(−q26/5)

)
(8.5.15.31)

= f(−q)f(−q26)L
(
q−2/5f(−q1/5)f(−q26/5)

)

= f(−q)f(−q26)
{
− f(−q4,−q11)f(−q182,−q208)

+ q37f(−q2,−q13)f(−q26,−q364) + q36f(−q7,−q8)f(−q26,−q364)

+ q5f(−q5,−q10)f(−q130,−q260)− q10f(−q7,−q8)f(−q104,−q286)

− q11f(−q2,−q13)f(−q104,−q286) + qf(−q,−q14)f(−q182,−q208)

+ q27f(−q,−q14)f(−q52,−q338)− q26f(−q4,−q11)f(−q52,−q338)
}
.

Now from (8.4.13) and several applications of (8.2.5), we see that

q−5/8
7∑

k=1

F ( 12 , 13, 7, 15,
5
2 , k) = f(−q4,−q11)f(−q182,−q208) (8.5.15.32)

− q2f(−q3,−q12)f(−q156,−q234)− q5f(−q5,−q10)f(−q130,−q260)

+ q11f(−q2,−q13)f(−q104,−q286) + q17f(−q6,−q9)f(−q78,−q312)
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− q27f(−q,−q14)f(−q52,−q338)− q36f(−q7,−q8)f(−q26,−q364)

and

q−5/8
7∑

k=1

F ( 12 , 13, 13, 15,
13
2 , k) = qf(−q,−q14)f(−q182,−q208) (8.5.15.33)

− q2f(−q3,−q12)f(−q156,−q234) + q5f(−q5,−q10)f(−q130,−q260)

− q10f(−q7,−q8)f(−q104,−q286) + q17f(−q6,−q9)f(−q78,−q312)

− q26f(−q4,−q11)f(−q52,−q338) + q37f(−q2,−q13)f(−q26,−q364).

Comparing the right-hand sides of (8.5.15.31), (8.5.15.32), and (8.5.15.33), we
see that

L
(
q−2/5f(−q)f(−q26)f(−q1/5)f(−q26/5)

)

= f(−q)f(−q26)
{
− q−5/8

7∑

k=1

F ( 12 , 13, 7, 15,
5
2 , k)

+ q−5/8
7∑

k=1

F ( 12 , 13, 13, 15,
13
2 , k)− q5f(−q5)f(−q130)

}
. (8.5.15.34)

Now, combining the right-hand sides of (8.5.15.28) and (8.5.15.34), apply-
ing the Jacobi triple product identity (8.2.6) to f(−q,−q4), f(−q52,−q78),
f(−q2,−q3), and f(−q26,−q104), and simplifying, we deduce that

(
f(−q,−q4)f(−q52,−q78)− q5f(−q2,−q3)f(−q26,−q104)

)2

= −f(−q)f(−q26)

{
−q−5/8

7∑

k=1

F ( 12 , 13, 7, 15,
5
2 , k)

+q−5/8
7∑

k=1

F ( 12 , 13, 13, 15,
13
2 , k)

}
. (8.5.15.35)

We now concentrate on the two sums arising on the right-hand side of
(8.5.15.35) above. From (8.4.13), we have

q−5/8
7∑

k=1

F ( 12 , 13, 13, 15,
13
2 , k) =

q−5/8

2

∞∑

u=−∞

∞∑

t=−∞
(−1)tq

13
2

{
u+

1
2+t

}2
+t2

=
q−5/8

2

∞∑

u=−∞

∞∑

t=−∞
(−1)tq

13
2

{
u+

1
2

}2
+t2

=
q

2

∞∑

u=−∞
q
13
2 u(u+1)

∞∑

t=−∞
(−1)tqt

2

= qψ(q13)ϕ(−q) = q
(q26; q26)∞
(q13; q26)∞

(q; q2)2∞(q2; q2)∞

= q
(q26; q26)2∞(q; q)2∞
(q13; q13)∞(q2; q2)∞

= q
f2(−q26)f2(−q)

f(−q13)f(−q2)
, (8.5.15.36)
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where we have used (8.2.7)–(8.2.9). Similarly, from (8.4.13), we find that

q−5/8
7∑

k=1

F ( 12 , 13, 7, 15,
5
2 , k) =

q−5/8

2

∞∑

u=−∞

∞∑

t=−∞
(−1)tq

5
2

{
u+

1
2+

7
5 t

}2
+

13
5 t2

=
q−5/8

2

∞∑

u=−∞

∞∑

t=−∞
(−1)tq

5
2

{
u+

1
2+

2
5 t

}2
+

13
5 t2

=
1

2

∞∑

u=−∞

∞∑

t=−∞
(−1)tq3t

2+t+2tu+
5
2u(u+1). (8.5.15.37)

As in the previous proof, we dissect the series above according as u ≡
0, 1,−1 (mod 3). Assuming that u ≡ 0 (mod 3), we replace u by 3u and t
by −t− u to find that

∞∑

u=−∞
u≡0 (mod 3)

∞∑

t=−∞
(−1)tq3t

2+t+2tu+
5
2u(u+1) (8.5.15.38)

=

∞∑

u=−∞

∞∑

t=−∞
(−1)t+uq3t

2−t+
39
2 u2+

13
2 u

=

∞∑

u=−∞
(−1)uq

13
2 u(3u+1)

∞∑

t=−∞
(−1)tqt(3t−1) = f(−q13)f(−q2),

by (8.2.9). Next, if we replace u by 3u + 1 and t by t − u in the series in
(8.5.15.19), we find that

∞∑

u=−∞
u≡1 (mod 3)

∞∑

t=−∞
(−1)tq3t

2+t+2tu+
5
2u(u+1)

=
∞∑

u=−∞

∞∑

t=−∞
(−1)t+uq3t

2+3t+
39
2 u2+

39
2 u+5

=

∞∑

u=−∞
(−1)uq

39
2 u2+

39
2 u+5

∞∑

t=−∞
(−1)tq3t

2+3t = 0, (8.5.15.39)

by (8.2.4). Finally, if we replace u by 3u− 1 and t by t− u, we obtain

∞∑

u=−∞
u≡−1 (mod 3)

∞∑

t=−∞
(−1)tq3t

2+t+2tu+
5
2u(u+1)

=
∞∑

u=−∞

∞∑

t=−∞
(−1)t+uq3t

2−t+
39
2 u2− 13

2 u

= f(−q13)f(−q2), (8.5.15.40)
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by (8.2.9). Thus, from (8.5.15.37)–(8.5.15.40), we have shown that

q−5/8
7∑

k=1

F ( 12 , 13, 7, 15,
5
2 , k) =

1

2

(
f(−q13)f(−q2) + f(−q13)f(−q2)

)

= f(−q13)f(−q2). (8.5.15.41)

Finally, we insert (8.5.15.36) and (8.5.15.41) into (8.5.15.35) and conclude
that

(
f(−q,−q4)f(−q52,−q78)− q5f(−q2,−q3)f(−q26,−q104)

)2

= −f(−q)f(−q26)

{
−f(−q13)f(−q2) + q

f2(−q26)f2(−q)

f(−q13)f(−q2)

}
. (8.5.15.42)

Dividing both sides of (8.5.15.42) by f2(−q)f2(−q26) and taking square roots,
we arrive at

f(−q,−q4)f(−q52,−q78)− q5f(−q2,−q3)f(−q26,−q104)

f(−q)f(−q26)

=

√
f(−q2)f(−q13)

f(−q)f(−q26)
− q

f(−q)f(−q26)

f(−q2)f(−q13)

=

√
χ(−q13)

χ(−q)
− q

χ(−q)

χ(−q13)
, (8.5.15.43)

which completes the proof of the second part of Entry 8.3.16.

8.5.16 Proof of Entry 8.3.17

Using the product representations of χ(q) and f(−q) given in (8.2.9) and
(8.2.10), respectively, together with (8.2.7) and (8.2.8), we find that

ϕ(q) = f(q, q) = (−q; q2)2∞(q2; q2)∞ = χ2(q)f(−q2) (8.5.16.1)

and

ψ(q) = f(q, q3) =
(q2; q2)∞
(q; q2)∞

=
(q; q)∞
(q; q2)∞

1

(q; q2)∞
=

f(−q)

χ2(−q)
. (8.5.16.2)

By (8.2.11), (8.5.16.2), and (8.5.16.1) with q replaced by q1/2 and −q1/2,
respectively, we find that Entry 8.3.17 is equivalent to the identity

f(−q2,−q3)f(−q38,−q57) + q4f(−q,−q4)f(−q19,−q76)

= f(−q)f(−q19)

{
χ2(q1/2)χ2(q19/2)

4
√
q

− χ2(−q1/2)χ2(−q19/2)

4
√
q

− q2

χ2(−q)χ2(−q19)

}

=
1

4
√
q

(
ϕ(q1/2)ϕ(q19/2)− ϕ(−q1/2)ϕ(−q19/2)

)
− q2ψ(q)ψ(q19). (8.5.16.3)
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We now apply Theorem 8.4.1 with the parameters ε1 = ε2 = 0, a = b = q,
c = d = q19, α = 1, β = 19, and m = 20. Accordingly, we deduce that

ϕ(q)ϕ(q19) = f(q20, q20)f(q380, q380) + q19f(q−18, q58)f(q342, q418)

+ q76f(q−56, q96)f(q304, q456) + q171f(q−94, q134)f(q266, q494)

+ q304f(q−132, q172)f(q228, q532) + q475f(q−170, q210)f(q190, q570)

+ q684f(q−208, q248)f(q152, q608) + q931f(q−246, q286)f(q114, q646)

+ q1216f(q−284, q324)f(q76, q684) + q1539f(q−322, q362)f(q38, q722)

+ q1900f(q−360, q400)f(1, q760) + q2299f(q−398, q438)f(q−38, q798)

+ q2736f(q−436, q476)f(q−76, q836) + q3211f(q−474, q514)f(q−114, q874)

+ q3724f(q−512, q552)f(q−152, q912) + q4275f(q−550, q590)f(q−190, q950)

+ q4864f(q−588, q628)f(q−228, q988) + q5491f(q−626, q666)f(q−266, q1026)

+ q6156f(q−664, q704)f(q−304, q1064) + q6859f(q−702, q742)f(q−342, q1102)

= f(q20, q20)f(q380, q380) + 2 qf(q18, q22)f(q342, q418)

+ 2 q4f(q16, q24)f(q304, q456) + 2 q9f(q14, q26)f(q266, q494)

+ 2 q16f(q12, q28)f(q228, q532) + 2 q25f(q10, q30)f(q190, q570)

+ 2 q36f(q8, q32)f(q152, q608) + 2 q49f(q6, q34)f(q114, q646)

+ 2 q64f(q4, q36)f(q76, q684) + 2 q81f(q2, q38)f(q38, q722)

+ q100f(1, q40)f(1, q760), (8.5.16.4)

after several applications of (8.2.5). Upon replacing q by −q in (8.5.16.4), we
conclude that

1

4q

(
ϕ(q)ϕ(q19)− ϕ(−q)ϕ(−q19)

)

= f(q18, q22)f(q342, q418) + q8f(q14, q26)f(q266, q494)

+ q24f(q10, q30)f(q190, q570) + q48f(q6, q34)f(q114, q646)

+ q80f(q2, q38)f(q38, q722). (8.5.16.5)

Next, we employ (8.4.14) with the two sets of parameters α1 = 1, β1 = 19,
m1 = 1, p1 = 2, λ1 = 10 and α2 = 1, β2 = 19, m2 = 9, p2 = 10, λ2 = 10.
We find that the conditions in (8.4.9) are satisfied. Hence, using (8.4.18) and
(8.4.14), we find that

q5/2ψ(−q)ψ(−q19) = q5/2f(−q19,−q)f(−q209,−q171)

+ q45/2f(−q37,−q−17)f(−q247,−q133) + q125/2f(−q55,−q−35)f(−q285,−q95)

+ q245/2f(−q73,−q−53)f(−q323,−q57) + q405/2f(−q91,−q−71)f(−q361,−q19).

After several applications of (8.2.5), we obtain the identity
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ψ(−q)ψ(−q19) = f(−q,−q19)f(−q171,−q209) (8.5.16.6)

− q3f(−q3,−q17)f(−q133,−q247) + q10f(−q5,−q15)f(−q95,−q285)

− q21f(−q7,−q13)f(−q57,−q323) + q36f(−q9,−q11)f(−q19,−q361).

By (8.2.19), with a = −q2, b = q3, and n = 2, and with a = q, b = −q4, and
n = 2, respectively,

f(−q2, q3) = f(−q9,−q11)− q2f(−q19,−q), (8.5.16.7)

f(q,−q4) = f(−q7,−q13) + qf(−q17,−q3). (8.5.16.8)

Using (8.5.16.5) with q replaced by q1/2 and (8.5.16.6) with q replaced by −q,
we conclude that

1

4
√
q

(
ϕ(q1/2)ϕ(q19/2)− ϕ(−q1/2)ϕ(−q19/2)

)
− q2ψ(q)ψ(q19)

= f(q9, q11)f(q171, q209) + q4f(q7, q13)f(q133, q247)

+ q24f(q3, q17)f(q57, q323) + q40f(q, q19)f(q19, q361)

− q2f(q, q19)f(q171, q209)− q5f(q3, q17)f(q133, q247)

− q23f(q7, q13)f(q57, q323)− q38f(q9, q11)f(q19, q361)

=
(
f(q9, q11)− q2f(q, q19)

) (
f(q171, q209)− q38f(q19, q361)

)

+ q4
(
f(q7, q13)− qf(q3, q17)

) (
f(q133, q247)− q19f(q57, q323)

)

= f(−q2,−q3)f(−q38,−q57) + q4f(−q,−q4)f(−q19,−q76),

where in the last step we used (8.5.16.7) and (8.5.16.8) with q replaced by −q
and −q19, respectively. This completes the proof of Entry 8.3.17.

8.5.17 Proof of Entry 8.3.18

The following proof of Entry 8.3.18 is due to Bressoud [81].
By (8.2.11), (8.2.7), (8.2.8), and (8.2.14), it is easy to see that (8.3.21) is

equivalent to the identity

f(−q,−q4)f(−q62,−q93)− q6f(−q2,−q3)f(−q31,−q124)

=
1

2q
ϕ(−q2)ϕ(−q62)− 1

2q
ϕ(−q)ϕ(−q31) + q3ψ(−q)ψ(−q31). (8.5.17.1)

By (8.4.16) and (8.4.13), with the set of parameters α = 1
2 , β = 31

2 , m = 3,
p = 5, and λ = 4, we find that

qf(−q,−q4)f(−q62,−q93)− q7f(−q2,−q3)f(−q31,−q124)

=

2∑

k=1

F ( 12 ,
31
2 , 3, 5, 4, k) =

1

2

∞∑

u, t=−∞
(−1)tqI =:

1

2
R, (8.5.17.2)
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where, by (8.4.7), I is given by

I = 4

{
u+

1

2
+

3t

8

}2

+
31

16
t2 = (2u+ 1)2 +

3

2
(2u+ 1)t+

5

2
t2. (8.5.17.3)

Therefore, by (8.5.17.1)–(8.5.17.3), it suffices to prove that

R =

∞∑

u, t=−∞
(−1)tq(2u+1)2+

3
2 (2u+1)t+

5
2 t

2

= ϕ(−q2)ϕ(−q62)− ϕ(−q)ϕ(−q31) + 2q4ψ(−q)ψ(−q31). (8.5.17.4)

We establish (8.5.17.4) by a series of changes of the indices of summation. To
that end

R =

∞∑

u, t=−∞
(−1)tq(2u+1)2+

3
2 (2u+1)t+

5
2 t

2

=

1∑

j=0

∞∑

u, r=−∞
(−1)2r+jq(2u+1)2+

3
2 (2u+1)(2r+j)+

5
2 (2r+j)2

=
∞∑

u, r=−∞
q4u

2+10r2+6ru+4u+3r+1 −
∞∑

u, r=−∞
q4u

2+10r2+6ru+7u+13r+5

=

∞∑

s, r=−∞
q4(s−r)2+10r2+6r(s−r)+4(s−r)+3r+1

−
∞∑

s, r=−∞
q4(s−r−1)2+10r2+6r(s−r−1)+7(s−r−1)+13r+5

=

∞∑

s, r=−∞
q(2s+1)2−(2s+1)r+8r2 −

∞∑

s, r=−∞
q4s

2−s(2r+1)+2(2r+1)2

=

∞∑

s, r=−∞
s odd

qs
2−sr+8r2 −

∞∑

s, r=−∞
r odd

q4s
2−sr+2r2 . (8.5.17.5)

But trivially,

∞∑

s, r=−∞
r even

q4s
2−sr+2r2 −

∞∑

s, r=−∞
s even

qs
2−sr+8r2 = 0. (8.5.17.6)

Therefore, returning to (8.5.17.5), we find that

R =

∞∑

s, r=−∞
s odd

qs
2−sr+8r2 −

∞∑

s, r=−∞
r odd

q4s
2−sr+2r2 (8.5.17.7)
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+

∞∑

s, r=−∞
r even

q4s
2−sr+2r2 −

∞∑

s, r=−∞
s even

qs
2−sr+8r2

=

∞∑

s, r=−∞
(−1)rq4s

2−sr+2r2 −
∞∑

s, r=−∞
(−1)sqs

2−sr+8r2 =: R1 −R2.

Next, we evaluate R1 and R2 separately. First,

R1 =
∞∑

s, r=−∞
(−1)rq4s

2−sr+2r2 =
3∑

j=0

∞∑

t, r=−∞
(−1)rq4(4t+j)2−(4t+j)r+2r2

=
3∑

j=0

∞∑

t, r=−∞
(−1)rq64t

2+32tj+4j2−4rt−jr+2r2

=
3∑

j=0

∞∑

t, r=−∞
(−1)rq62(t+

j
4 )

2+2(t−r+
j
4 )

2

=
3∑

j=0

∞∑

t, s=−∞
(−1)t−sq62(t+

j
4 )

2+2(s+
j
4 )

2

=
3∑

j=0

{ ∞∑

t=−∞
(−1)tq62(t+

j
4 )

2
∞∑

s=−∞
(−1)sq2(s+

j
4 )

2

}
. (8.5.17.8)

Observe that

∞∑

s=−∞
(−1)sq(s+

1
4 )

2

=

∞∑

s=−∞
(−1)sq(s+1− 3

4 )
2

=

∞∑

s=−∞
(−1)s−1q(s−

3
4 )

2

= −
∞∑

s=−∞
(−1)−sq(−s− 3

4 )
2

= −
∞∑

s=−∞
(−1)sq(s+

3
4 )

2

.

(8.5.17.9)

Thus, in (8.5.17.8), the contributions from the terms when j = 1 and j = 3
are the same. By (8.2.4), the contribution from the term j = 2 is 0. Therefore,
by (8.2.1), (8.2.7), and (8.2.8), we conclude that

R1 =

∞∑

t=−∞
(−1)tq62t

2
∞∑

s=−∞
(−1)sq2s

2

+ 2q4
∞∑

t=−∞
(−1)tq62t

2+31t
∞∑

s=−∞
(−1)sq2s

2+s

= ϕ(−q2)ϕ(−q62) + 2q4f(−q,−q3)f(−q31,−q93)

= ϕ(−q2)ϕ(−q62) + 2q4ψ(−q)ψ(−q31). (8.5.17.10)

Similarly,
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R2 =

∞∑

s, r=−∞
(−1)sqs

2−sr+8r2 =

1∑

j=0

∞∑

s, t=−∞
(−1)sqs

2−s(2t+j)+8(2t+j)2

=

1∑

j=0

∞∑

s, t=−∞
(−1)sqs

2−sj−2st+32t2+32tj+8j2

=

1∑

j=0

∞∑

s, t=−∞
(−1)sq31(t+

j
2 )

2+(t−s+
j
2 )

2

=

1∑

j=0

∞∑

t, r=−∞
(−1)t−rq31(t+

j
2 )

2+(r+
j
2 )

2

=

1∑

j=0

{ ∞∑

t=−∞
(−1)tq31(t+

j
2 )

2
∞∑

r=−∞
(−1)rq(r+

j
2 )

2

}

=

∞∑

t=−∞
(−1)tq31t

2
∞∑

r=−∞
(−1)rqr

2

= ϕ(−q)ϕ(−q31), (8.5.17.11)

where we used (8.2.4) again. By (8.5.17.7), (8.5.17.10), and (8.5.17.11), we
conclude that

R = ϕ(−q2)ϕ(−q62) + 2q4ψ(−q)ψ(−q31)− ϕ(−q)ϕ(−q31),

which is (8.5.17.4). Hence, the proof of Entry 8.3.18 is complete.

8.5.18 Proof of Entry 8.3.19

In the proof below, we actually provide two variations. Like Bressoud [81], we
begin with an application of Rogers’s ideas, but then the proofs diverge.

Proof. By (8.2.11), the first part of Entry 8.3.19 can be put in the form

f(−q2,−q3)f(−q78,−q117) + q8f(−q,−q4)f(−q39,−q156)

= f(−q26,−q39)f(−q3,−q12)− q2f(−q6,−q9)f(−q13,−q52). (8.5.18.1)

We apply Rogers’s method first with α1 = 1
2 , β1 = 39

2 , p1 = 5, m1 = 1, and
λ1 = 4, and secondly with α2 = 3

2 , β2 = 13
2 , p2 = 5, m2 = 3, and λ2 = 4. Then

both sets of parameters satisfy (8.4.9). By (8.4.15) and (8.4.16), respectively,
we find that

2∑

k=1

F
(
1
2 ,

39
2 , 1, 5, 4, k

)
= qf(−q2,−q3)f(−q78,−q117)

+ q9f(−q,−q4)f(−q39,−q156) (8.5.18.2)

and
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2∑

k=1

F
(
3
2 ,

13
2 , 3, 5, 4, k

)
= qf(−q3,−q12)f(−q26,−q39)

− q3f(−q6,−q9)f(−q13,−q52). (8.5.18.3)

Combining (8.5.18.2) and (8.5.18.3), we deduce (8.5.18.1) to complete the
proof.

Next, we prove (8.3.23). Let us define, by (8.2.11),

g(q) := f(−q)G(q) = f(−q2,−q3) and h(q) := f(−q)H(q) = f(−q,−q4).
(8.5.18.4)

Therefore, by (8.5.18.1), we can define N(q) by

N(q) := g(q)g(q39) + q8h(q)h(q39) = g(q13)h(q3)− q2g(q3)h(q13). (8.5.18.5)

Let us also define

M(q) := g(q2)g(q13) + q3h(q2)h(q13), (8.5.18.6)

L(q) := g(q26)h(q)− q5g(q)h(q26). (8.5.18.7)

Lemma 8.5.7. We have

g(q) =
1

ϕ(−q9)

{
−q2ϕ(−q)h(q9) + ϕ(−q3)χ(−q3)g(q6)

}
,

h(q) =
1

ϕ(−q9)

{
ϕ(−q)g(q9) + qϕ(−q3)χ(−q3)h(q6)

}
. (8.5.18.8)

Proof. To prove (8.5.18.8) we employ (8.2.19) with a = −q2, b = −q3, and
n = 3 to find that

f(−q2,−q3) = f(−q21,−q24)− q2f(−q36,−q9) + q9f(−q51,−q−6)

= f(−q21,−q24)− q2f(−q9,−q36)− q3f(−q6,−q39), (8.5.18.9)

where in the last step (8.2.5) is used. Similarly, with the choice of parameters
a = −q, b = −q4, and n = 3, one obtains

f(−q,−q4) = f(−q18,−q27)− qf(−q12,−q33)− q4f(−q3,−q42). (8.5.18.10)

Therefore, in the notation of (8.5.18.4), we obtain

g(q) = A(q3)− q2h(q9) and h(q) = g(q9)− qB(q3), (8.5.18.11)

where

A(q) = f(−q7,−q8)− qf(−q2,−q13)

and
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B(q) = f(−q4,−q11) + qf(−q,−q14).

Next, we use Entries 8.3.6–8.3.8. By (8.2.14), we can rewrite them in their
equivalent forms

g(q)g(q9) + q2h(q)h(q9) = f2(−q3), (8.5.18.12)

g(q2)g(q3) + qh(q2)h(q3) = ψ(q)ϕ(−q3), (8.5.18.13)

h(q)g(q6)− qg(q)h(q6) = ψ(q3)ϕ(−q). (8.5.18.14)

Starting from (8.5.18.12), we have, by (8.5.18.11),

f2(−q3) = g(q)g(q9) + q2h(q)h(q9)

=
(
A(q3)− q2h(q9)

)
g(q9) + q2

(
g(q9)− qB(q3)

)
h(q9)

= A(q3)g(q9)− q3B(q3)h(q9). (8.5.18.15)

Similarly, starting from (8.5.18.14) and using (8.5.18.11) and (8.5.18.13) with
q replaced by q3, we deduce that

ψ(q3)ϕ(−q) = h(q)g(q6)− qg(q)h(q6)

= g(q6)g(q9) + q3h(q6)h(q9)− q
(
A(q3)h(q6) +B(q3)g(q6)

)

= ψ(q3)ϕ(−q9)− q
(
A(q3)h(q6) +B(q3)g(q6)

)
. (8.5.18.16)

Solving for A(q) from the last two equations, we find that

(
g(q6)g(q9) + q3h(q6)h(q9)

)
A(q3)

= f2(−q3)g(q6) + q2ψ(q3)
(
ϕ(−q9)− ϕ(−q)

)
h(q9).

Using (8.5.18.13) again with q replaced by q3, we conclude that

ϕ(−q9)A(q3) =
f2(−q3)

ψ(q3)
g(q6) + q2

(
ϕ(−q9)− ϕ(−q)

)
h(q9). (8.5.18.17)

Substituting this value of A(q) in (8.5.18.11) yields the first identity of
(8.5.18.8) after observing that

f2(−q3)

ψ(q3)
= ϕ(−q3)χ(−q3).

Similarly, one solves for B(q) and obtains the analogous identity for h(q). ��

Using (8.5.18.8) in the first equation of (8.5.18.5), we find that

N(q) =
1

ϕ(−q9)

{
−q2ϕ(−q)h(q9) + ϕ(−q3)χ(−q3)g(q6)

}
g(q39)

+
q8

ϕ(−q9)

{
ϕ(−q)g(q9) + qϕ(−q3)χ(−q3)h(q6)

}
h(q39)
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= −q2
ϕ(−q)

ϕ(−q9)

{
g(q39)h(q9)− q6g(q9)h(q39)

}

+
ϕ(−q3)χ(−q3)

ϕ(−q9)

{
g(q6)g(q39) + q9h(q6)h(q39)

}

= −q2
ϕ(−q)

ϕ(−q9)
N(q3) +

ϕ(−q3)χ(−q3)

ϕ(−q9)
M(q3). (8.5.18.18)

Employing (8.5.18.8) again, this time with q replaced by q13 in the second
equation of (8.5.18.5), we find that

N(q) =
1

ϕ(−q117)

{
−q26ϕ(−q13)h(q117) + ϕ(−q39)χ(−q39)g(q78)

}
h(q3)

− q2

ϕ(−q117)

{
ϕ(−q13)g(q117) + q13ϕ(−q39)χ(−q39)h(q78)

}
g(q3)

= −q2
ϕ(−q13)

ϕ(−q117)

{
g(q3)g(q117) + q24h(q3)h(q117)

}

+
ϕ(−q39)χ(−q39)

ϕ(−q117)

{
h(q3)g(q78)− q15g(q3)h(q78)

}

= −q2
ϕ(−q13)

ϕ(−q117)
N(q3) +

ϕ(−q39)χ(−q39)

ϕ(−q117)
L(q3). (8.5.18.19)

From (8.3.18), (8.2.11), and (8.2.14), we deduce that

L(q)

M(q)
=

f(−q)f(−q26)

f(−q2)f(−q13)
=

χ(−q)

χ(−q13)
. (8.5.18.20)

Thus, by (8.5.18.18)–(8.5.18.20), we conclude that

q2
{

ϕ(−q13)

ϕ(−q117)
− ϕ(−q)

ϕ(−q9)

}
N(q3)

=

{
ϕ(−q39)χ(−q3)

ϕ(−q117)
− ϕ(−q3)χ(−q3)

ϕ(−q9)

}
M(q3). (8.5.18.21)

By (8.5.30.23), with q replaced by q13 and q, respectively, we find that

ϕ(−q9)ϕ(−q13)− ϕ(−q)ϕ(−q117)

= ϕ(−q9)
{
ϕ(−q117)− 2q13f(−q39,−q195)

}

−
{
ϕ(−q9)− 2qf(−q3,−q15)

}
ϕ(−q117)

= 2q
{
f(−q3,−q15)ϕ(−q117)− q12ϕ(−q9)f(−q39,−q195)

}
. (8.5.18.22)

Using (8.5.18.22) in (8.5.18.21) and replacing q3 by q, we arrive at

2q
{
f(−q,−q5)ϕ(−q39)− q4ϕ(−q3)f(−q13,−q65)

}
N(q)

= χ(−q)
{
ϕ(−q3)ϕ(−q13)− ϕ(−q)ϕ(−q39)

}
M(q). (8.5.18.23)
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Comparing (8.5.18.23) with (8.3.23), we see that it suffices to prove that

M(q) =
1

χ(−q)

{
f(−q,−q5)ϕ(−q39)− q4ϕ(−q3)f(−q13,−q65)

}

= ψ(q3)ϕ(−q39)− q4f(q, q2)f(−q13,−q65), (8.5.18.24)

where in the last step we used (8.5.7.6) and (8.5.7.8). To verify (8.5.18.24),
we employ Theorem 8.4.1 with the parameters a = b = q39, c = 1, d = q3,
ε1 = 1, ε2 = 0, α = 2, β = 1, and m = 15, to find that

f(1, q3)ϕ(−q39) = 2 f(−q42,−q48)f(−q273,−q312) (8.5.18.25)

+ 2 q3f(−q36,−q54)f(−q234,−q351) + 2 q9f(−q30,−q60)f(−q195,−q390)

+ 2 q18f(−q24,−q66)f(−q156,−q429) + 2 q30f(−q18,−q72)f(−q117,−q468)

+ 2 q45f(−q12,−q78)f(−q78,−q507) + 2 q63f(−q6,−q84)f(−q39,−q546).

Employing Theorem 8.4.1 again, this time with the parameters a = q13, b =
q65, c = q, d = q2, ε1 = 1, ε2 = 0, α = 13, β = 1, and m = 15, we find that

f(−q13,−q65)f(q, q2) = f(−q273,−q312)f(−q18,−q72) (8.5.18.26)

+ qf(−q234,−q351)f(−q24,−q66) + q5f(−q195,−q390)f(−q30,−q60)

+ q12f(−q156,−q429)f(−q36,−q54) + q22f(−q117,−q468)f(−q42,−q48)

+ q35f(−q78,−q507)f(−q42,−q48) + q51f(−q39,−q546)f(−q36,−q54)

− q53f(−q39,−q546)f(−q24,−q66)− q39f(−q78,−q507)f(−q18,−q72)

− q28f(−q117,−q468)f(−q12,−q78)− q20f(−q156,−q429)f(−q6,−q84)

+ q7f(−q234,−q351)f(−q6,−q84) + q2f(−q273,−q312)f(−q12,−q78).

Now by (8.2.3), (8.5.18.25), and (8.5.18.26), we conclude that

ψ(q3)ϕ(−q39)− q4f(q, q2)f(−q13,−q65) (8.5.18.27)

=
{
f(−q42,−q48)− q4f(−q18,−q72)− q6f(−q12,−q78)

}

×
{
f(−q273,−q312)− q26f(−q117,−q468)− q39f(−q78,−q507)

}

+ q3
{
f(−q36,−q54)− q2f(−q24,−q66)− q8f(−q6,−q84)

}

×
{
f(−q234,−q351)− q13f(−q156,−q429)− q52f(−q39,−q546)

}
.

But from (8.2.19) with n = 3, we know that

g(q) = f(−q2,−q3) = f(−q21,−q24)− q2f(−q9,−q36)− q3f(−q6,−q39),
(8.5.18.28)

h(q) = f(−q,−q4) = f(−q18,−q27)− qf(−q12,−q33)− q4f(−q3,−q42),
(8.5.18.29)

where we used (8.2.5). Replacing q by q2 and q13 in each of (8.5.18.28)
and (8.5.18.29), we see that (8.5.18.24) holds, since the right-hand side of
(8.5.18.27) is exactly
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g(q2)g(q13) + q3h(q2)h(q13) = M(q).

Hence, the proof of Entry 8.3.19 is complete. ��
Next, we sketch a different proof for Entry 8.3.19, which, by (8.5.18.20),

is equivalent to showing that

L(q)

M(q)
=

χ(−q)

χ(−q13)
. (8.5.18.30)

Therefore, by (8.5.18.24), one needs to prove that

L(q) =
χ(−q)

χ(−q13)

{
ψ(q3)ϕ(−q39)− q4f(q, q2)f(−q13,−q65)

}

= f(−q,−q5)f(q13, q26)− q4ϕ(−q3)ψ(q39), (8.5.18.31)

where in the last step we used (8.5.7.6) and (8.5.7.8). The equality (8.5.18.31)
is proved in the same way that we proved (8.5.18.24), and so we omit the
details.

8.5.19 Proof of Entry 8.3.20

Proof. Using (8.4.23) and (8.4.24) in (8.3.3), we arrive at

χ2(q) = G(q)G(q4) + qH(q)H(q4)

=
f(−q8)

f(−q2)

{
G(q4)

(
G(q16) + qH(−q4)

)
+ qH(q4)

(
q3H(q16) +G(−q4)

)}

=
f(−q8)

f(−q2)

{
G(q4)G(q16) + q4H(q4)H(q16)

+q
(
H(−q4)G(q4) +H(q4)G(−q4)

)}
. (8.5.19.1)

Separating the even- and odd-indexed terms, we easily show that

ϕ(q) = ϕ(q4) + 2qψ(q8). (8.5.19.2)

Using (8.2.10), (8.2.7), and (8.5.19.2), we conclude from (8.5.19.1) that

G(q4)G(q16) + q4H(q4)H(q16) + q
(
H(−q4)G(q4) +H(q4)G(−q4)

)

=
χ2(q)f(−q2)

f(−q8)
=

ϕ(q)

f(−q8)
=

ϕ(q4) + 2qψ(q8)

f(−q8)
. (8.5.19.3)

Equating odd parts on both sides of (8.5.19.3), we deduce that

H(−q4)G(q4) +H(q4)G(−q4) = 2
ψ(q8)

f(−q8)
, (8.5.19.4)

which is Entry 8.3.20 with q replaced by q4. ��
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8.5.20 Proof of Entry 8.3.21

We shall see that Watson’s proof [333] of Entry 8.3.21 follows by combining
Entries 8.3.1 and 8.3.2 with some elementary identities for theta functions.

From Entries 8.3.2 and 8.3.3, we easily deduce that

G(q) =
ϕ(q) + ϕ(q5)

2G(q4)f(−q2)
and qH(q) =

ϕ(q)− ϕ(q5)

2H(q4)f(−q2)
. (8.5.20.1)

Applying each of the equalities in (8.5.20.1) twice, but with q replaced by −q
in two instances, using (8.2.16), using Lemma 8.5.2, and invoking (8.2.12), we
find that

qG(q)H(−q)− qG(−q)H(q) =
ϕ(q5)ϕ(−q5)− ϕ(q)ϕ(−q)

2G(q4)H(q4)f2(−q2)

=
ϕ2(−q10)− ϕ2(−q2)

2G(q4)H(q4)f2(−q2)

=
2q2χ(−q2)f2(−q20)

G(q4)H(q4)χ(−q10)f2(−q2)

=
2q2f(−q20)

χ(−q10)f(−q2)
· f(−q4)χ(−q2)

f(−q2)

=
2q2ψ(q10)

f(−q2)
, (8.5.20.2)

where we applied the elementary identities

ψ(q)χ(−q) = f(−q2) =
f(−q)

χ(−q)
, (8.5.20.3)

with q replaced by q10 and q2, respectively. The identities in (8.5.20.3) both fol-
low from (8.2.14). The truth of Entry 8.3.21 is readily apparent from (8.5.20.2).

8.5.21 Proof of Entry 8.3.22

First Proof of Entry 8.3.22. Using (8.4.23) and (8.4.24) in Entry 8.3.5, we
find that

χ(q2) = G(q16)H(q)− q3G(q)H(q16)

=

{
f(−q2)

f(−q8)
G(q)− qH(−q4)

}
H(q)−

{
f(−q2)

f(−q8)
H(q)−G(−q4)

}
G(q)

= G(q)G(−q4)− qH(q)H(−q4),

which is Entry 8.3.22 with q replaced by −q. ��
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Second Proof of Entry 8.3.22. Consider the system of three equations

G(−q)G(−q4) + qH(−q)H(−q4) =: T (q), (8.5.21.1)

H(q4)G(−q4) +G(q4)H(−q4) =
2ψ(q8)

f(−q8)
, (8.5.21.2)

−H(q4)G(−q4) +G(q4)H(−q4) =
2q4ψ(q40)

f(−q8)
. (8.5.21.3)

Note that (8.5.21.1) merely gives the definition of T (q), and that our goal is
to show that T (q) = χ(q2). The equality (8.5.21.2) is (8.3.24) with q replaced
by q4, and (8.5.21.3) is (8.3.25) with q replaced by q4. We regard (8.5.21.1)–
(8.5.21.3) as a system of three equations in the “variables” G(−q4), H(−q4),
and −1. Thus, we have

∣∣∣∣∣∣∣∣∣∣

G(−q) qH(−q) T (q)

H(q4) G(q4)
2ψ(q8)

f(−q8)

−H(q4) G(q4)
2q4ψ(q40)

f(−q8)

∣∣∣∣∣∣∣∣∣∣

= 0. (8.5.21.4)

Expanding (8.5.21.4) by the last column, we find that

2T (q)G(q4)H(q4)− 2ψ(q8)

f(−q8)

{
G(−q)G(q4) + qH(−q)H(q4)

}
(8.5.21.5)

+
2q4ψ(q40)

f(−q8)

{
G(−q)G(q4)− qH(−q)H(q4)

}
= 0.

Using (8.2.12), (8.3.4) with q replaced by −q, and (8.3.3) with q replaced by
−q, we rewrite (8.5.21.5) in the form

T (q)f(−q20)

f(−q4)
− ψ(q8)ϕ(−q5)

f(−q8)f(−q2)
+

q4ψ(q40)ϕ(−q)

f(−q8)f(−q2)
= 0, (8.5.21.6)

or, upon rearrangement,

T (q) =
f(−q4)

f(−q2)f(−q8)f(−q20)

{
ϕ(−q5)ψ(q8)− q4ϕ(−q)ψ(q40)

}
. (8.5.21.7)

By (8.2.15), (8.5.21.7) can be rewritten as

T (q) =
χ(−q2)χ(q2)

f(−q2)f(−q20)

{
ϕ(−q5)ψ(q8)− q4ϕ(−q)ψ(q40)

}
. (8.5.21.8)

From (8.5.5.12), we find, after simplification, that
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ϕ(−q5)ψ(q8)− q4ϕ(−q)ψ(q40)

=
√
z5(1− β)1/4

1

4q

√
z1

{
1− (1− α)1/4

}

− q4
√
z1(1− α)1/4

1

4q5
√
z5

{
1− (1− β)1/4

}

=

√
z1z5
4q

{
(1− β)1/4 − (1− α)1/4

}
. (8.5.21.9)

Putting (8.5.5.15) and (8.5.21.9) in (8.5.21.8), we arrive at

T (q) =
χ(q2)

{
(1− β)1/4 − (1− α)1/4

}

22/3(αβ)1/6 {(1− α)(1− β)}1/24
. (8.5.21.10)

In comparing (8.5.21.10) with (8.3.26), we see that it remains to show that

(1− β)1/4 − (1− α)1/4

22/3(αβ)1/6{(1− α)(1− β)}1/24 = 1. (8.5.21.11)

But (8.5.21.11) is equivalent to (8.5.5.1), and so the proof is complete. ��

8.5.22 Proof of Entry 8.3.23

We first remark that we have already given one proof of Entry 8.3.23 along
with one of our proofs of Entry 8.3.11. We provide a second proof here.

Using (8.2.11) and (8.2.14), we see that Entry 8.3.23 is equivalent to the
identity

f(−q4, q6)f(−q6, q9) + qf(q2,−q8)f(q3,−q12)

=
χ(q)χ(q6)

χ(q2)χ(q3)
f(q2)f(q3) = f(−q4)f(−q6)χ(q)χ(q6). (8.5.22.1)

Using the product representations of χ(q) and f(−q) given in (8.2.9) and
(8.2.10), respectively, together with (8.2.6), we find that

f(−q4)χ(q) = (q4; q4)∞(−q; q2)∞ = (q4; q4)∞(−q; q4)∞(−q3; q4)∞

= f(q, q3) = ψ(q)

and

f(−q6)χ(q6) = (q6; q6)∞(−q6; q12)∞ = (q6; q12)∞(q12; q12)∞(−q6; q12)∞

= (q12; q24)∞(q12; q12)∞

= (q12; q24)∞(q12; q24)∞(q24; q24)∞

= f(−q12,−q12) = ϕ(−q12),
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by (8.2.7). It thus suffices to prove that

f(−q4, q6)f(−q6, q9) + qf(q2,−q8)f(q3,−q12) = ϕ(−q12)ψ(q). (8.5.22.2)

We now apply Theorem 8.4.1 with the parameters ε1 = 1, ε2 = 0, a = b =
q12 c = q, d = q3 , α = 2, β = 1, and m = 5. We consequently find that

ϕ(−q12)ψ(q) = f(−q22,−q18)f(−q33,−q27) + qf(−q14,−q26)f(−q21,−q39)

+ q6f(−q6,−q34)f(−q9,−q51) + q15f(−q−2,−q42)f(−q−3,−q63)

+ q28f(−q−10,−q50)f(−q−15,−q75)

= f(−q18,−q22)f(−q33,−q27) + qf(−q14,−q26)f(−q21,−q39)

+ q6f(−q6,−q34)f(−q9,−q51) + q10f(−q2,−q38)f(−q3,−q57)

+ q3f(−q10,−q30)f(−q15,−q45), (8.5.22.3)

where we applied (8.2.5) four times in the last equality. Replacing q by q2 and
q3 in each of (8.5.16.7) and (8.5.16.8), respectively, we find that

f(−q4, q6) = f(−q18,−q22)− q4f(−q38,−q2),

f(−q6, q9) = f(−q27,−q33)− q6f(−q57,−q3),

f(q2,−q8) = f(−q14,−q26) + q2f(−q34,−q6),

f(q3,−q12) = f(−q21,−q39) + q3f(−q51,−q9).

Return to (8.5.22.3) and substitute each of the equalities above to deduce that

ϕ(−q12)ψ(q)−
{
f(−q4, q6)f(−q6, q9) + qf(q2,−q8)f(q3,−q12)

}

= q3f(−q10,−q30)f(−q15,−q45) + q4f(−q2,−q38)f(−q27,−q33)

− q3f(−q6,−q34)f(−q21,−q39)− q4f(−q14,−q26)f(−q9,−q51)

+ q6f(−q18,−q22)f(−q3,−q57). (8.5.22.4)

We now use Theorem 8.4.1 again, but now with the parameters ε1 = 1,
ε2 = 0, a = 1, b = q24, c = q, d = q3, α = 2, β = 1, and m = 5. Hence, we
find that

q3f(−1,−q24)ψ(q) = q3f(−q10,−q30)f(−q15,−q45)

+ q4f(−q2,−q38)f(−q27,−q33) + q9f(−q−6,−q46)f(−q39,−q21)

+ q18f(−q−14,−q54)f(−q51,−q9) + q31f(−q−22,−q62)f(−q63,−q−3)

= q3f(−q10,−q30)f(−q15,−q45) + q4f(−q2,−q38)f(−q27,−q33)

− q3f(−q6,−q34)f(−q21,−q39)− q4f(−q14,−q26)f(−q9,−q51)

+ q6f(−q18,−q22)f(−q3,−q57), (8.5.22.5)

after four applications of (8.2.5). The product on the far left side of (8.5.22.5)
equals 0, by (8.2.4). Hence, since the right-hand sides of (8.5.22.5) and
(8.5.22.4) are equal, we complete the proof of (8.5.22.2), and hence also of
Entry 8.3.23.
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8.5.23 Proof of Entry 8.3.24

We first remark that we have already given one proof of Entry 8.3.24 along
with one of our proofs of Entry 8.3.12. We provide a second proof here.

This proof of Entry 8.3.24 is very similar to that given above for Entry
8.3.23. Using (8.2.11) and (8.2.14), we see that Entry 8.3.24 is equivalent to
the identity

f(−q12, q18)f(q,−q4)− qf(q6,−q24)f(−q2, q3)

=
χ(q2)χ(q3)

χ(q)χ(q6)
f(q)f(q6) = f(−q2)f(−q12)χ(q2)χ(q3). (8.5.23.1)

Using the product representations of χ(q) and f(−q) from (8.2.10) and (8.2.9),
respectively, together with (8.2.6), we obtain

f(−q2)f(−q12)χ(q2)χ(q3) = (q2; q2)∞(q12; q12)∞(−q2; q4)∞(−q3; q6)∞

=
(q4; q8)∞
(q2; q4)∞

(−q3; q12)∞(−q9; q12)∞(q12; q12)∞(q2; q4)∞(q4; q4)∞

= f(q3, q9)(q4; q8)∞(q4; q4)∞

= f(q3, q9)f(−q4,−q4) = ψ(q3)ϕ(−q4).

It therefore remains to prove that

f(−q12, q18)f(q,−q4)− qf(q6,−q24)f(−q2, q3) = ϕ(−q4)ψ(q3). (8.5.23.2)

We now apply Theorem 8.4.1 with the parameters ε1 = 1, ε2 = 0, a = b =
q4, c = q3, d = q9, α = 1, β = 3, and m = 5. Accordingly, we find that

ϕ(−q4)ψ(q3) = f(−q13,−q7)f(−q66,−q54) + q3f(−q,−q19)f(−q42,−q78)

+ q18f(−q−11,−q31)f(−q18,−q102) + q45f(−q−23,−q43)f(−q−6,−q126)

+ q84f(−q−35,−q55)f(−q−30,−q150)

= f(−q7,−q13)f(−q54,−q66) + q3f(−q,−q19)f(−q42,−q78)

− q7f(−q9,−q11)f(−q18,−q102)− q13f(−q3,−q17)f(−q6,−q114)

− q4f(−q5,−q15)f(−q30,−q90), (8.5.23.3)

where we applied (8.2.5) five times in the last equality. Recording again
(8.5.16.7) and (8.5.16.8) as well as their analogues with q replaced by q6,
we find that

f(−q2, q3) = f(−q9,−q11)− q2f(−q19,−q),

f(−q12, q18) = f(−q54,−q66)− q12f(−q114,−q6),

f(q,−q4) = f(−q7,−q13) + qf(−q17,−q3),

f(q6,−q24) = f(−q42,−q78) + q6f(−q102,−q18).
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Using these identities in (8.5.23.3), we find, after some elementary algebra,
that

ϕ(−q4)ψ(q3)−
{
f(−q12, q18)f(q,−q4)− qf(q6,−q24)f(−q2, q3)

}

= qf(−q9,−q11)f(−q42,−q78)− qf(−q3,−q17)f(−q54,−q66)

− q4f(−q5,−q15)f(−q30,−q90) + q12f(−q7,−q13)f(−q6,−q114)

− q9f(−q,−q19)f(−q18,−q102). (8.5.23.4)

Next, we apply Theorem 8.4.1 again, but now with the parameters ε1 = 1,
ε2 = 0, a = 1, b = q8, c = q3, d = q9, α = 1, β = 3, and m = 5. Accordingly,
we find that

qf(−1,−q8)ψ(q3) = qf(−q9,−q11)f(−q78,−q42)

+ q4f(−q−3,−q23)f(−q54,−q66) + q19f(−q−15,−q35)f(−q30,−q90)

+ q46f(−q−27,−q47)f(−q6,−q114) + q85f(−q−39,−q59)f(−q138,−q−18)

= qf(−q9,−q11)f(−q42,−q78)− qf(−q3,−q17)f(−q54,−q66)

− q4f(−q5,−q15)f(−q30,−q90) + q12f(−q7,−q13)f(−q6,−q114)

− q9f(−q,−q19)f(−q18,−q102), (8.5.23.5)

after five applications of (8.2.5). The right sides of (8.5.23.4) and (8.5.23.5) are
identical. Thus, the left sides of (8.5.23.4) and (8.5.23.5) are identical. Since
the left side of (8.5.23.5) equals 0 by (8.2.4), we see that (8.5.23.2) follows
immediately. This completes the proof of Entry 8.3.24.

8.5.24 Proofs of Entry 8.3.25

First Proof of Entry 8.3.25. Using (8.4.23) and (8.4.24) in (8.3.14) with q re-
placed by q9, we arrive at

χ(−q)χ(−q6)

χ(−q3)χ(−q18)
= G(q9)H(q4)− qH(q9)G(q4) (8.5.24.1)

=
f(−q72)

f(−q18)

{
H(q4)

(
G(q144) + q9H(−q36)

)

−qG(q4)
(
q27H(q144) +G(−q36)

)}

=
f(−q72)

f(−q18)

{
H(q4)G(q144)− q28G(q4)H(q144)

−q
(
G(q4)G(−q36)− q8H(q4)H(−q36)

)}
.

Using (8.2.14), (8.2.15), and (8.5.7.10) with q replaced by −q, we deduce from
(8.5.24.1) that
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H(q4)G(q144)− q28G(q4)H(q144)− q
(
G(q4)G(−q36)− q8H(q4)H(−q36)

)

=
f(−q18)χ(−q)χ(−q6)

χ(−q3)χ(−q18)f(−q72)
= χ(−q)χ(q3)χ(−q36)

= χ(−q36)

{
χ(q12)

χ(−q8)
− q

χ(q4)

χ(−q24)

}
. (8.5.24.2)

Equating the even and odd parts on both sides of (8.5.24.2), we readily obtain
Entries 8.3.14 and 8.3.25 with q replaced by q4 and −q4, respectively. ��

Second Proof of Entry 8.3.25. Employing Theorem 8.4.1 with the set of pa-
rameters a = q6, b = q12, c = q, d = q2, α = 2, β = 1, m = 5, ε1 = 0, and
ε2 = 1, we find that

f(q6, q12)f(−q) = f(q13, q17)f(−q18,−q27)− qf(q7, q23)f(−q18,−q27)

+ q5f(q, q29)f(−q9,−q36)− q2f(q11, q19)f(−q9,−q36),

where we used (8.2.4) and (8.2.5) twice. Upon the rearrangement of terms and
use of (8.4.26) and (8.4.27), with q replaced by −q, and (8.2.11), we deduce
that

f(q6, q12)f(−q) = f(−q18,−q27){f(q13, q17)− qf(q7, q23)} (8.5.24.3)

− q2f(−q9,−q36){f(q11, q19)− q3f(q, q29)}
= f(−q18,−q27)G(−q)f(−q2)− q2f(−q9,−q36)H(−q)f(−q2)

= f(−q2)f(−q9)
{
G(q9)G(−q)− q2H(q9)H(−q)

}
.

By (8.5.7.8) with q replaced by q6, (8.2.14), and (8.2.17) in the form χ(q)f(−q)
= ϕ(−q2), but with q replaced by q9, we find that

f(−q)f(q6, q12)

f(−q2)f(−q9)
= χ(−q)

ϕ(−q18)

χ(−q6)f(−q9)
=

χ(−q)χ(q9)

χ(−q6)
. (8.5.24.4)

Hence, by (8.5.24.3) and (8.5.24.4), the proof of Entry 8.3.25 is complete. ��

Third Proof of Entry 8.3.25. To prove Entry 8.3.25, we need the identity [55,
p. 349, Entry 2(i)]

ϕ(q)ϕ(q9)− ϕ2(q3) = 2qϕ(−q2)ψ(q9)χ(q3). (8.5.24.5)

Recall the definitions

g(q) = f(−q)G(q) = f(−q2,−q3) and h(q) = f(−q)H(q) = f(−q,−q4).

Using (8.2.11), (8.2.7), (8.2.6), and some elementary product manipulations,
we see that Entry 8.3.25 is equivalent to the identity
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g(−q)g(q9)− q2h(−q)h(q9) = ϕ(−q2)f(q6, q12). (8.5.24.6)

Replacing q by −q in (8.5.24.6) gives

g(q)g(−q9)− q2h(q)h(−q9) = ϕ(−q2)f(q6, q12). (8.5.24.7)

We prove (8.5.24.7).
Using (8.2.11), (8.2.8), (8.2.6), and some elementary product manipula-

tions, we can express Entry 8.3.13 as

g(q9)h(q4)− qg(q4)h(q9) = ψ(−q)f(q3, q15). (8.5.24.8)

It is also easily verified, using the product expansions from (8.2.8) and (8.2.9),
that Entry 8.3.20 is equivalent to the identity

g(q)h(−q) + g(−q)h(q) = 2ψ(q)ψ(−q). (8.5.24.9)

Consider the system of three equations

g(q)g(−q9)− q2h(q)h(−q9) =: T (q), (8.5.24.10)

g(q)g(q9) + q2h(q)h(q9) = f2(−q3), (8.5.24.11)

g(q)g(q4) + qh(q)h(q4) = ψ(q)ϕ(−q2). (8.5.24.12)

Equation (8.5.24.11) above is equation (8.5.6.1), while equation (8.5.24.12) is
a variation of equation (8.3.2). We wish to show that T (q) = ϕ(−q2)f(q6, q12).
Regarding this system in the variables g(q), qh(q), and −1, we find that

∣∣∣∣∣∣

g(−q9) −qh(−q9) T (q)
g(q9) qh(q9) f2(−q3)
g(q4) h(q4) ϕ(−q2)ψ(q)

∣∣∣∣∣∣
= 0. (8.5.24.13)

Expanding the determinant in (8.5.24.13) along the last column, we find that

T (q)
{
g(q9)h(q4)− qg(q4)h(q9)

}
− f2(−q3)

{
g(−q9)h(q4) + qg(q4)h(−q9)

}

+ ϕ(−q2)ψ(q)
{
qg(−q9)h(q9) + qg(q9)h(−q9)

}
= 0. (8.5.24.14)

Using (8.5.24.8), (8.5.24.8), with q replaced by −q, and (8.5.24.9), with q
replaced by q9, in (8.5.24.14), we find that

T (q)ψ(−q)f(q3, q15) = f2(−q3)ψ(q)f(−q3,−q15)−2qϕ(−q2)ψ(q)ψ(−q9)ψ(q9).

It suffices then to prove that

ϕ(−q2)f(q6, q12)ψ(−q)f(q3, q15)

= f2(−q3)ψ(q)f(−q3,−q15)− 2qϕ(−q2)ψ(q)ψ(−q9)ψ(q9). (8.5.24.15)

By (8.2.6), (8.2.7), and (8.2.8), we find that
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f(q2, q4)f(−q,−q5)f(−q2)

= (−q2; q6)∞(−q4; q6)∞(q6; q6)∞(q; q6)∞(q5; q6)∞(q6; q6)∞(q2; q2)∞

=
(−q2; q2)∞
(−q6; q6)∞

(q6; q6)∞
(q; q2)∞
(q3; q6)∞

(q6; q6)∞(q2; q2)∞

=
(q6; q6)∞
(−q6; q6)∞

(q; q)∞(−q2; q2)∞
(q6; q6)∞
(q3; q6)∞

= ϕ(−q6)ψ(−q)ψ(q3). (8.5.24.16)

Multiply both sides of (8.5.24.15) by f(−q6) and use (8.5.24.16) with q re-
placed by −q3 to deduce that

ϕ(−q2)ψ(−q)ϕ(−q18)ψ(q3)ψ(−q9) (8.5.24.17)

= f2(−q3)ψ(q)f(−q3,−q15)f(−q6)− 2qϕ(−q2)ψ(q)ψ(−q9)ψ(q9)f(−q6).

From (8.5.7.6) and (8.2.14), we find that

f(−q,−q5)f(−q2) = f(−q)ψ(q3). (8.5.24.18)

Using (8.5.24.18), with q replaced by q3, in (8.5.24.17), we find that

ϕ(−q2)ψ(−q)ϕ(−q18)ψ(q3)ψ(−q9)

= f3(−q3)ψ(q)ψ(q9)− 2qϕ(−q2)ψ(q)ψ(−q9)ψ(q9)f(−q6). (8.5.24.19)

Using (8.2.13)–(8.2.15), or using (8.2.7)–(8.2.9), we can easily verify that

f3(−q) = ψ(q)ϕ2(−q). (8.5.24.20)

Using (8.5.13.4) twice, with q replaced by −q and −q9, respectively, and
(8.5.24.20), with q replaced by q3, we deduce from (8.5.24.19) that

ϕ(−q)ψ(q)ϕ(−q9)ψ(q9)ψ(q3)

= ψ(q3)ϕ2(−q3)ψ(q)ψ(q9)− 2qϕ(−q2)ψ(q)ψ(−q9)ψ(q9)f(−q6). (8.5.24.21)

Divide both sides of (8.5.24.21) by ψ(q)ψ(q3)ψ(q9) to conclude that

ϕ(−q)ϕ(−q9) = ϕ2(−q3)− 2q

ψ(q3)
ϕ(−q2)ψ(−q9)f(−q6)

= ϕ2(−q3)− 2qϕ(−q2)ψ(−q9)χ(−q3), (8.5.24.22)

where in the last step we used the extremal equality in (8.2.14) with q replaced
by −q3. If we replace q by −q, then (8.5.24.22) reduces to (8.5.24.5). Hence,
the proof of Entry 8.3.25 is complete. ��
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8.5.25 Proofs of Entries 8.3.26 and 8.3.27

The proofs in this section are due to Watson [333].
Recall that by (8.5.19.2),

ϕ(q) = ϕ(q4) + 2qψ(q8). (8.5.25.1)

Returning to (8.5.20.1), we use (8.5.25.1) twice. Then we apply Entries 8.3.2,
8.3.3, and 8.3.20, with q replaced by q4, and Entry 8.3.21, with q replaced by
q2. In these resulting equalities, we solve for ϕ(q4), ϕ(q20), ψ(q8), and ψ(q40),
respectively, and substitute them in the second equality below. Accordingly,
we find that

G(q) =
ϕ(q) + ϕ(q5)

2G(q4)f(−q2)

=
ϕ(q4) + ϕ(q20)

2G(q4)f(−q2)
+

qψ(q8) + q5ψ(q40)

G(q4)f(−q2)

=
f(−q8)

f(−q2)

(
G(q16) + qH(−q4)

)
. (8.5.25.2)

Performing exactly the same steps on the second equality of (8.5.20.1), we
find that

qH(q) =
ϕ(q)− ϕ(q5)

2H(q4)f(−q2)

=
ϕ(q4)− ϕ(q20)

2H(q4)f(−q2)
+

qψ(q8)− q5ψ(q40)

H(q4)f(−q2)

=
f(−q8)

f(−q2)

(
q4H(q16) + qG(−q4)

)
. (8.5.25.3)

For brevity, set

T (q) := G(q11)H(−q) + q2G(−q)H(q11). (8.5.25.4)

Next, in the definition (8.5.25.4), we substitute for each of the functions G and
H their respective representations from (8.5.25.2) and (8.5.25.3). We therefore
deduce that

f(−q2)

f(−q8)
· f(−q22)

f(−q88)
T (q) =

{
G(q176) + q11H(−q44)

}{
G(−q4)− q3H(q16)

}

+ q2
{
G(q16)− qH(−q4)

}{
G(−q44) + q33H(q176)

}

=
{
G(−q4)G(q176)− q36H(−q4)H(q176)

}

+ q2
{
G(q16)G(−q44)− q12H(q16)H(−q44)

}

− q3
{
G(q176)H(q16)− q32G(q16)H(q176)

}

− q3
{
G(−q44)H(−q4)− q8G(−q4)H(−q44)

}
.

(8.5.25.5)
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Recalling the definitions of U and V in (8.3.31) and (8.3.32), respectively,
recalling the definition (8.5.25.4), and using Entry 8.3.4, we find that (8.5.25.5)
can be written in the form

χ(−q2)χ(−q4)χ(−q22)χ(−q44)T (q) = U(−q4) + q2V (−q4)− 2q3. (8.5.25.6)

Now replace q by −q in (8.5.25.6) and subtract the two equalities to deduce
that

χ(−q2)χ(−q4)χ(−q22)χ(−q44) {T (−q)− T (q)} = 4q3. (8.5.25.7)

We can obtain a second equation connecting T (q) and T (−q) in the fol-
lowing manner. We record (8.3.5), (8.5.25.4), and (8.3.24), with q replaced by
q11. Accordingly,

G(q11)H(q)− q2G(q)H(q11) = 1,

G(q11)H(−q) + q2G(−q)H(q11) = T (q),

G(q11)H(−q11) +G(−q11)H(q11) =
2

χ2(−q22)
.

Regarding G(q11), H(q11), and 1 as the “variables,” we conclude from this
triple of equations that

∣∣∣∣∣∣∣

H(q) −q2G(q) 1
H(−q) q2G(−q) T (q)

H(−q11) G(−q11)
2

χ2(−q22)

∣∣∣∣∣∣∣
= 0. (8.5.25.8)

Expanding this determinant (8.5.25.8) by the last column, using Entry 8.3.4,
recalling the definition (8.5.25.4), and using Entry 8.3.20, we find that

1− T (q)T (−q) +
4q2

χ2(−q2)χ2(−q22)
= 0. (8.5.25.9)

We now use the theory of modular equations. Let β have degree 11 over
α. The standard modular equation of degree 11, first found by Schröter and
rediscovered by Ramanujan [55, p. 363, Entry 7(i)], is given by

(αβ)1/4+{(1− α)(1− β)}1/4+24/3 {αβ(1− α)(1− β)}1/12 = 1. (8.5.25.10)

We also need the representations [55, p. 124, Entries 12(v), (vii)]

χ(q) = 21/6
(

q

α(1− α)

)1/24

and χ(−q2) = 21/3
(
(1− α)q2

α2

)1/24

.

(8.5.25.11)
Lastly, we set −q2 = Q. Thus, using (8.5.25.7), (8.5.25.9), and (8.5.25.11), the
modular equation (8.5.25.10), and lastly (8.5.25.11), we deduce that
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χ2(−q2)χ2(−q4)χ2(−q22)χ2(−q44) {T (q) + T (−q)}2

= 4χ2(Q)χ2(−Q2)χ2(Q11)χ2(−Q22)− 16Qχ2(−Q2)χ2(−Q22)− 16Q3

= 4χ2(Q)χ2(−Q2)χ2(Q11)χ2(−Q22)

×
(
1− 16

Q

χ2(Q)χ2(Q11)
− 16

Q3

χ2(Q)χ2(−Q2)χ2(Q11)χ2(−Q22)

)

= 4χ2(Q)χ2(−Q2)χ2(Q11)χ2(−Q22)

×
(
1− 24/3 {αβ(1− α)(1− β)}1/12 − (αβ)1/4

)

= 4χ2(Q)χ2(−Q2)χ2(Q11)χ2(−Q22) {(1− α)(1− β)}1/4

= 4χ2(Q)χ2(−Q2)χ2(Q11)χ2(−Q22)
χ2(−Q2)χ2(−Q22)

χ4(Q)χ4(Q11)
. (8.5.25.12)

Changing back to the original variable q, we take the square root of both sides
of (8.5.25.12) to deduce that

T (q) + T (−q) = 2
χ(−q4)χ(−q44)

χ2(−q2)χ2(−q22)
= 2

χ(q2)χ(q22)

χ(−q2)χ(−q22)
, (8.5.25.13)

by (8.2.15). Now combine (8.5.25.13) with (8.5.25.7) to derive the desired
formula (8.3.30).

It remains to prove (8.3.33) and (8.3.34). Return to (8.5.25.6) and insert
the just proved formula for T (q) in Entry 8.3.26. We thus find that

U(−q4) + q2V (−q4) = χ(q2)χ(−q4)χ(q22)χ(−q44). (8.5.25.14)

Changing the sign of q2 in (8.5.25.14), we find that

U(−q4)− q2V (−q4) = χ(−q2)χ(−q4)χ(−q22)χ(−q44). (8.5.25.15)

Multiplying (8.5.25.14) and (8.5.25.15) together, we arrive at

U2(−q4)− q4V 2(−q4) = χ(q2)χ(−q2)χ(q22)χ(−q22)χ2(−q4)χ2(−q44)

= χ3(−q4)χ3(−q44), (8.5.25.16)

by (8.2.15). If we replace −q4 by q in (8.5.25.16), we obtain (8.3.33).
Finally, we prove (8.3.34). We record the definition (8.3.31) of U(q), (8.3.5),

with q replaced by q4, and (8.3.3), with q replaced by q11, in the array

G(q)G(q44) + q9H(q)H(q44) = U(q),

H(q4)G(q44)− q8G(q4)H(q44) = 1,

G(q11)G(q44) + q11H(q11)H(q44) = χ2(q11).

Regard this system of equations as three equations in the unknowns G(q44),
q8H(q44), and −1. It follows that
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∣∣∣∣∣∣

G(q) qH(q) U(q)
H(q4) −G(q4) 1
G(q11) q3H(q11) χ2(q11)

∣∣∣∣∣∣
= 0. (8.5.25.17)

Expanding the determinant (8.5.25.17) by the last column, and then using
the definition (8.3.32) of V , (8.3.5), and (8.3.3), we find that

U(q)V (q) + q − χ2(q11)χ2(q) = 0,

which is precisely (8.3.34).

8.5.26 Proof of Entry 8.3.28

Our argument below for the first portion of Entry 8.3.28 is the same as that
of Bressoud [81].

To prove (8.3.36), we use (8.2.11) to rewrite the identity as

f(−q34,−q51)f(−q2,−q8)− q3f(−q4,−q6)f(−q17,−q68)

f(−q2,−q3)f(−q68,−q102) + q7f(−q,−q4)f(−q34,−q136)

=
χ(−q)f(−q2)f(−q17)

χ(−q17)f(−q)f(−q34)
. (8.5.26.1)

From (8.2.9) and (8.2.10), it is easy to see that

χ(−q)f(−q2)f(−q17) = (q; q2)∞(q2; q2)∞(q17; q17)∞

= (q; q)∞(q17; q34)∞(q34; q34)∞

= f(−q)χ(−q17)f(−q34).

Thus, the right-hand side of (8.5.26.1) equals 1, and so (8.3.36) is equivalent
to

f(−q34,−q51)f(−q2,−q8)− q3f(−q4,−q6)f(−q17,−q68)

= f(−q2,−q3)f(−q68,−q102) + q7f(−q,−q4)f(−q34,−q136). (8.5.26.2)

We now apply (8.4.16) with α = 1 and β = 17
2 to obtain

2∑

k=1

F (1, 17
2 , 3, 5, 7

2 , k) (8.5.26.3)

= q7/8(f(−q34,−q51)f(−q2,−q8)− q3f(−q4,−q6)f(−q17,−q68)).

Similarly, letting α = 1
2 and β = 17 in (8.4.15), we deduce that

2∑

k=1

F ( 12 , 17, 1, 5,
7
2 , k) (8.5.26.4)

= q7/8(f(−q2,−q3)f(−q68,−q102) + q7f(−q,−q4)f(−q34,−q136)).
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The two sets of parameters {1, 172 , 3, 5, 7
2} and { 1

2 , 17, 1, 5,
7
2} give rise to the

same series on the right-hand side of (8.4.8), since the parameters satisfy the
conditions in (8.4.9). Hence, the right-hand sides of (8.5.26.3) and (8.5.26.4)
are equal. This completes the proof of (8.5.26.2) and so also of the first part
of Entry 8.3.28.

The proof of the second portion of Entry 8.3.28 is due to Yesilyurt [348].
Let

S(q) := U(q)V (q) and T (q) := χ2(−q)χ2(−Q), Q := q17. (8.5.26.5)

The proof of (8.3.37) will follow from a series of identities given below. The
last identity, (8.5.26.13), is clearly equivalent to (8.3.37). We have

χ(−Q)U(q) =
χ(Q)

χ(−q2)
− q2

χ(q)

χ(−Q2)
, (8.5.26.6)

2qV (q2) = χ2(−Q2)

(
χ(q)

χ(Q)
− χ(−q)

χ(−Q)

)
, (8.5.26.7)

χ(−Q2)U(q)U(−q) =
χ(Q2)

χ(−q4)
+ q4

χ(q2)

χ(−Q4)
, (8.5.26.8)

2U(−q2)V (q4) = χ2(−Q2)

(
χ(q)

χ(Q)
+

χ(−q)

χ(−Q)

)
, (8.5.26.9)

S(q)S(−q)− S(q2) =
4q4

T (q2)
, (8.5.26.10)

S(−q)S(q2)− qS(q) = T (q), (8.5.26.11)

S3(q)− 5qS(q) = T (q) +
4q3

T (q)
, (8.5.26.12)

S4(q)− qS2(q) =
χ3(−q17)

χ3(−q)

(
1 + q2

χ3(−q)

χ3(−q17)

)2

. (8.5.26.13)

We commence by proving (8.5.26.6). By (8.4.65) with the set of parameters
z = 1, ε = 1, δ = 1, l = t = 0, α = 17, β = 3, m = 1, and p = 4 (λ = 5), we
find that

R1(1, 1, 1, 0, 0, 17, 3, 1, 4) = R1(1, 1, 1, 7,−2, 1, 51, 17, 5). (8.5.26.14)

By Lemma 8.4.2, we also find that

R1(1, 1, 1, 0, 0, 17, 3, 1, 4) = q1/3f(−q8)

(
ϕ(−Q4)− q4

τ(−q4)ψ(−Q2)

ψ(−q2)

)
.

(8.5.26.15)
By several applications of (8.2.6) together with (8.2.11), we find that

f(−q2,−q3)

f(q, q4)
=

f(−q)

f(−q5)
G(q2) and

f(−q,−q4)

f(q2, q3)
=

f(−q)

f(−q5)
H(q2).

(8.5.26.16)
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Employing Lemma 8.4.2 again, (8.2.5) with n = 7 and n = 10, (8.5.26.16)
with q replaced by Q2, and (8.2.11), we see that

R1(1, 1, 1, 7,−2, 1, 51, 17, 5)

= q1/3f(−Q10)

(
f(−q4,−q6)f(−Q4,−Q6)

f(Q2, Q8)
+ q14

f(−q2,−q8)f(−Q2,−Q8)

f(Q4, Q6)

)

= q1/3f(−Q2)f(−q2)
(
G(q2)G(Q4) + q14H(q2)H(Q4)

)

= q1/3f(−q2)f(−Q2)V (q2). (8.5.26.17)

Therefore, by (8.5.26.14)–(8.5.26.17), after replacing q2 by q, and by (8.2.7)–
(8.2.9), we arrive at

V (q) =
f(−q4)

f(−q)f(−Q)

(
ϕ(−Q2)− q2

τ(−q2)ψ(−Q)

ψ(−q)

)

=
1

χ(−q)

(
χ(Q)

χ(−q2)
− q2

χ(q)

χ(−Q2)

)
, (8.5.26.18)

which, by (8.3.36), is equivalent to (8.5.26.6).
Next, we prove (8.5.26.7). Keeping in mind the notation of Entry 8.3.28,

recall that

G(Q2)H(q4)− q6H(Q2)G(q4) = U(q2),

G(Q2)G(q) + q7H(Q2)H(q) = V (q),

G(Q2)G(−q)− q7H(Q2)H(−q) = V (−q).

Regarding G(Q2), q6H(Q2), and 1 as the “variables,” we conclude from this
triple of equations that

∣∣∣∣∣∣

H(q4) −G(q4) U(q2)
G(q) qH(q) V (q)
G(−q) −qH(−q) V (−q)

∣∣∣∣∣∣
= 0. (8.5.26.19)

Expanding this determinant (8.5.26.19) by the last column and using Entries
8.3.20 and 8.3.2, we deduce that

−2q
U(q2)

χ2(−q2)
− V (q)χ2(−q) + V (−q)χ2(q) = 0. (8.5.26.20)

We should remark that by (8.3.36), the identity (8.5.26.20) is equivalent to

χ(q)χ(Q)U(−q)− χ(−q)χ(−Q)U(q) = 2q
U(q2)

χ2(−q2)
. (8.5.26.21)

Therefore, by (8.5.26.20) and two applications of (8.5.26.18) with q replaced
by −q in the first application, we find that
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2q
U(q2)

χ2(−q2)
= χ2(q)

(
1

χ(q)

(
χ(−Q)

χ(−q2)
− q2

χ(−q)

χ(−Q2)

))

− χ2(−q)

(
1

χ(−q)

(
χ(Q)

χ(−q2)
− q2

χ(q)

χ(−Q2)

))

=
χ(−Q)

χ(−q)
− χ(Q)

χ(q)

=
χ(−Q2)

χ(−q2)

(
χ(q)

χ(Q)
− χ(−q)

χ(−Q)

)
,

which, by (8.3.36), is equivalent to (8.5.26.7). We remark that a proof of
(8.5.26.7) similar to the proof of (8.5.26.6) can be given.

Next, we prove (8.5.26.8). By (8.4.65) with the set of parameters z = 1,
ε = 0, δ = 1, l = t = 0, α = 17, β = 3, m = 1, and p = 4 (λ = 5), we find that

R1(1, 0, 1, 0, 0, 17, 3, 1, 4) = R1(1, 1, 0, 7,−2, 1, 51, 17, 5). (8.5.26.22)

By Lemma 8.4.2, we find that, since λ = 5,

R1(1, 0, 1, 0, 0, 17, 3, 1, 4) = q1/3f(−q8)

(
ϕ(−Q4) + q4

τ(−q4)ψ(−Q2)

ψ(−q2)

)
.

(8.5.26.23)
Using (8.1.2), (8.2.6), and some elementary product manipulations, we can

show that

G(q)G(−q) =
f(q4, q6)

f(−q2)
and H(q)H(−q) =

f(q2, q8)

f(−q2)
. (8.5.26.24)

By Lemma 8.4.2, (8.2.5) with n = 7 and n = 10, (8.2.11), (8.5.31.1), and
Entry 8.3.21, we also find that since λ = 68,

R1(1, 1, 0, 7,−2, 1, 51, 17, 5)

= q1/3f(−Q10)

(
f(q4, q6)f(−Q4,−Q6)

f(−Q2,−Q8)

−q14
f(q2, q8)f(−Q2,−Q8)

f(−Q4,−Q6)
− 2q8ψ(q10)

)

= q1/3
f(−Q10)

f(−Q2,−Q8)f(−Q4,−Q6)

(
f(q4, q6)f(−Q4,−Q6)2

−q14f(q2, q8)f(−Q2,−Q8)2 − 2q8f(−Q2,−Q8)f(−Q4,−Q6)ψ(q10)
)

= q1/3
f(−Q10)f2(−Q2)f(−q2)

f(−Q2,−Q8)f(−Q4,−Q6)

(
G(q)G(−q)G2(Q2)

− q14H(q)H(−q)H2(Q2)− 2q8G(Q2)H(Q2)
ψ(q10)

f(−q2)

)

= q1/3f(−q2)f(−Q2)((G(q)G(−q)G2(Q2)− q14H(q)H(−q)H2(Q2)
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− q7G(Q2)H(Q2) (G(q)H(−q)−G(−q)H(q)))

= q1/3f(−q2)f(−Q2)
(
G(q)G(Q2) + q7H(q)H(Q2)

)

×
(
G(−q)G(Q2)− q7H(−q)H(Q2)

)

= q1/3f(−q2)f(−Q2)V (q)V (−q). (8.5.26.25)

Therefore, by (8.5.26.22)–(8.5.26.25), we conclude that

V (q)V (−q) =
f(−q8)

f(−q2)f(−Q2)

(
ϕ(−Q4) + q4

τ(−q4)ψ(−Q2)

ψ(−q2)

)
. (8.5.26.26)

Now (8.5.26.8) follows by considerations similar to those in (8.5.26.18). In
particular, one uses the product representations in (8.2.7) and (8.2.8).

Next, we prove (8.5.26.9). First, a special case of (8.2.19) is given by

ϕ(q) = ϕ(q4) + 2qψ(q8). (8.5.26.27)

From (8.2.7)–(8.2.9) and (8.5.26.27), we see that

χ2(q) =
τ(q)

f(−q2)
=

τ(q4) + 2qψ(q8)

f(−q2)

=
χ2(q4)

χ(−q2)χ(−q4)
+ 2q

1

χ2(−q8)χ(−q2)χ(−q4)
, (8.5.26.28)

and, with the replacement of q by −q,

χ2(−q) =
χ2(q4)

χ(−q2)χ(−q4)
− 2q

1

χ2(−q8)χ(−q2)χ(−q4)
. (8.5.26.29)

Therefore, adding (8.5.26.28) and (8.5.26.29), and next subtracting (8.5.26.29)
from (8.5.26.28), we find that, respectively,

2χ2(q4) = χ(−q2)χ(−q4) (χ(q) + χ(−q)) , (8.5.26.30)

4q

χ2(−q8)
= χ(−q2)χ(−q4) (χ(q)− χ(−q)) . (8.5.26.31)

By (8.5.26.6) with q replaced by q4, (8.5.26.8) with q replaced by q2, two
applications of both (8.5.26.30) and (8.5.26.31) with q replaced by Q in one
of the applications of each, and (8.5.26.7), we find that

χ2(−Q4)U(−q2)U(q2)U(q4)

=
χ2(Q4)

χ2(−q8)
− q16

χ2(q4)

χ2(−Q8)

=
χ(−q2)χ(−q4)χ(−Q2)χ(−Q4)

8q

((
χ2(Q) + χ2(−Q)

) (
χ2(q)− χ2(−q)

)

−
(
χ2(Q)− χ2(−Q)

) (
χ2(q) + χ2(−q)

))



8.5 Proofs of the 40 Entries 307

=
χ(−q2)χ(−q4)χ(−Q2)χ(−Q4)

4q

(
χ2(q)χ2(−Q)− χ2(−q)χ2(Q)

)

=
χ(−q2)χ(−q4)χ3(−Q2)χ(−Q4)

4q

(
χ(q)

χ(Q)
− χ(−q)

χ(−Q)

)(
χ(q)

χ(Q)
+

χ(−q)

χ(−Q)

)

=
χ(−q2)χ(−q4)χ(−Q2)χ(−Q4)

2
V (q2)

(
χ(q)

χ(Q)
+

χ(−q)

χ(−Q)

)
. (8.5.26.32)

By two applications of (8.3.36), we observe that

χ2(−Q4)U(−q2)U(q2)U(q4) = χ2(−Q4)U(−q2)V (q2)
χ(−q2)

χ(−Q2)
V (q4)

χ(−q4)

χ(−Q4)
.

(8.5.26.33)
Finally, we use (8.5.26.33) on the leftmost side of (8.5.26.32) to complete the
proof of (8.5.26.9).

Next, we prove (8.5.26.10). By (8.5.26.8) and (8.5.26.6) with q replaced by
q2, we find that

χ2(−Q2)U2(q)U2(−q)− χ2(−Q2)U2(q2) = 4q4
1

χ(−q2)χ(−Q2)
. (8.5.26.34)

From (8.5.26.34) and (8.3.36), we deduce that

χ2(−Q2)S(q)S(−q)
χ(−q)

χ(−Q)

χ(q)

χ(Q)
− χ2(−Q2)S(q2)

χ(−q2)

χ(−Q2)

= 4q4
1

χ(−q2)χ(−Q2)
,

from which (8.5.26.10) readily follows.
Next, we prove (8.5.26.11). Adding (8.5.26.7) and (8.5.26.9), we find that

χ2(−Q2)
χ(q)

χ(Q)
= U(−q2)V (q4) + qV (q2). (8.5.26.35)

In (8.5.26.35), we replace q by −q and multiply the resulting identity by
(8.5.26.35) to arrive at

χ4(−Q2)
χ(q)

χ(Q)

χ(−q)

χ(−Q)
= U2(−q2)V 2(q4)− q2V 2(q2). (8.5.26.36)

Lastly, replacing q2 by q in (8.5.26.36) and employing (8.3.36) several times,
we deduce (8.5.26.11).

Now we prove (8.5.26.12). In (8.5.26.11), we replace q by −q and multiply
the resulting identity by (8.5.26.11) to find that

S(q)S(−q)
(
S2(q2)− q2

)
−qS(q2)

(
S2(q)− S2(−q)) = T (q)T (−q) = T (q2).

(8.5.26.37)
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Taking (8.5.26.10) and (8.5.26.11), with q replaced by q2, and multiplying
them together, we find that

S(q)S(−q)S(−q2)S(q4) =

(
S(q2) +

4q4

T (q2)

)(
q2S(q2) + T (q2)

)

= q2S2(q2) + S(q2)

(
T (q2) +

4q6

T (q2)

)
+ 4q4.

(8.5.26.38)

Remembering the definitions of U and V in (8.3.35) and starting with the
relations

G(q2)G(Q4) + q14H(q2)H(Q4) = V (q2),

−q3G(q2)H(Q) +H(q2)G(Q) = U(q),

q3G(q2)H(−Q) +H(q2)G(−Q) = U(−q),

we argue as in (8.5.26.19)–(8.5.26.21). Thus, considering the triple of equations
above as equations in G(q2), H(q2), and 1, we find that

0 =

∣∣∣∣∣∣

G(Q4) q14H(Q4) V (q2)
−q3H(Q) G(Q) U(q)
q3H(−Q) G(−Q) U(−q)

∣∣∣∣∣∣

= −q3V (q2) {H(Q)G(−Q) +H(−Q)G(Q)}
− U(q)

{
G(Q4)G(−Q)−QH(Q4)H(−Q)

}

+ U(−q)
{
G(Q)G(Q4) +QH(Q)H(Q4)

}

= −q3V (q2)
2

χ2(−Q2)
− U(q)χ2(−Q) + U(−q)χ2(Q),

where we used Entry 8.3.20 with q replaced by −Q and Entry 8.3.2 with q
replaced by −Q and Q, respectively. Using (8.3.36), we deduce that

χ(q)χ(Q)V (−q)− χ(−q)χ(−Q)V (q) = 2q3
V (q2)

χ2(−Q2)
. (8.5.26.39)

Next, we multiply (8.5.26.21) and (8.5.26.39) together to find that

T (−q)S(−q) + T (q)S(q)− χ(−q2)χ(−Q2) (U(q)V (−q) + U(−q)V (q))

= 4q4
S(q2)

T (q2)
. (8.5.26.40)

By (8.3.36) and (8.5.26.9), we observe that

U(q)V (−q) + U(−q)V (q) = V (q)V (−q)

(
U(q)

V (q)
+

U(−q)

V (−q)

)

= 2V (q)V (−q)
U(−q2)V (q4)

χ2(−Q2)
. (8.5.26.41)
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In (8.5.26.40), we use (8.5.26.41) and the values of T (q) and T (−q) given in
(8.5.26.11) to find that

2S(q)S(−q)S(q2)− q
(
S2(q)− S2(−q)

)

− 2
χ(−q2)

χ(−Q2)
V (q)V (−q)U(−q2)V (q4) = 4q4

S(q2)

T (q2)
. (8.5.26.42)

Observe from (8.3.36) and (8.5.26.5) that

χ(−q2)

χ(−Q2)
V (q)V (−q)U(−q2)V (q4) =

√
S(q)S(−q)S(−q2)S(q4). (8.5.26.43)

Therefore (8.5.26.42) can be written in the form

2S(q)S(−q)S(q2)− q
(
S2(q)− S2(−q)

)

− 2
√

S(q)S(−q)S(−q2)S(q4) = 4q4
S(q2)

T (q2)
. (8.5.26.44)

Next, we multiply both sides of (8.5.26.44) by S(q2) and substitute the
value of S(q2)

(
S2(q)− S2(−q)

)
from (8.5.26.37) to deduce that

S(q)S(−q)S2(q2) + T (q2) + q2S(q)S(−q)

− 2S(q2)
√
S(q)S(−q)S(−q2)S(q4) = 4q4

S2(q2)

T (q2)
. (8.5.26.45)

Now in (8.5.26.45), we substitute the value of S(q)S(−q) from (8.5.26.10) to
find that

S3(q2) + T (q2) +
4q6

T (q2)
+ q2S(q2) = 2S(q2)

√
S(q)S(−q)S(−q2)S(q4).

(8.5.26.46)
Next, we return to (8.5.26.38) and use (8.5.26.46) to deduce that

S4(q2)− 2S2(q2)
√
S(q)S(−q)S(−q2)S(q4) + S(q)S(−q)S(−q2)S(q4) = 4q4.

(8.5.26.47)
From (8.5.26.47), we conclude that

√
S(q)S(−q)S(−q2)S(q4) = S2(q2)− 2q2. (8.5.26.48)

Using (8.5.26.48) in (8.5.26.38), we finally conclude that

S3(q2)− 5q2S(q2) = T (q2) +
4q6

T (q2)
, (8.5.26.49)

which is (8.5.26.12) with q replaced by q2.
Lastly, we prove (8.5.26.13). By two applications of (8.5.26.6), with q re-

placed by −q in the second, and by (8.5.26.9), we find that
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χ(−Q2)U(q)U(−q) =

(
χ(Q)

χ(−q2)
− q2

χ(q)

χ(−Q2)

)(
χ(−Q)

χ(−q2)
− q2

χ(−q)

χ(−Q2)

)

=
χ(−Q2)

χ2(−q2)
− q2

(
1

χ(q)χ(−Q)
+

1

χ(−q)χ(Q)

)
+ q4

χ(−q2)

χ2(−Q2)

=
χ(−Q2)

χ2(−q2)

(
1 + q4

χ3(−q2)

χ3(−Q2)

)
− q2

1

χ(−q2)

(
χ(q)

χ(Q)
+

χ(−q)

χ(−Q)

)

=
χ(−Q2)

χ2(−q2)

(
1 + q4

χ3(−q2)

χ3(−Q2)

)
− 2q2

1

χ(−q2)χ2(−Q2)
U(−q2)V (q4).

(8.5.26.50)

Squaring (8.5.26.50), we deduce that

χ2(−Q2)

χ4(−q2)

(
1 + q4

χ3(−q2)

χ3(−Q2)

)2

=

(
χ(−Q2)U(q)U(−q) + 2q2

1

χ(−q2)χ2(−Q2)
U(−q2)V (q4)

)2

= χ2(−Q2)U2(q)U2(−q) + 4q2
1

χ(−q2)χ(−Q2)
U(−q)U(q)U(−q2)V (q4)

+ 4q4
1

χ2(−q2)χ4(−Q2)
U2(−q2)V 2(q4). (8.5.26.51)

Multiply both sides of (8.5.26.51) by χ(−q2)χ(−Q2), make several applica-
tions of (8.3.36), and employ (8.5.26.43) to arrive at

χ3(−Q2)

χ3(−q2)

(
1 + q4

χ3(−q2)

χ3(−Q2)

)2

(8.5.26.52)

= S(q)S(−q)T (q2) + 4q2
√
S(q)S(−q)S(−q2)S(q4) + 4q4

S(−q2)S(q4)

T (q2)
.

Next, we employ (8.5.26.10), (8.5.26.48), (8.5.26.11), and (8.5.26.12), where
in the last two applications q is replaced by q2, to find that

χ3(−Q2)

χ3(−q2)

(
1 + q4

χ3(−q2)

χ3(−Q2)

)2

=

(
S(q2) + 4q4

1

T (q2)

)
T (q2) + 4q2(S2(q2)− 2q2) + 4q4

(
q2S(q2) + T (q2)

T (q2)

)

= S(q2)

(
T (q2) + 4q6

1

T (q2)

)
+ 4q2S2(q2)

= S(q2)
(
S3(q2)− 5q2S(q2)

)
+ 4q2S2(q2)

= S4(q2)− q2S2(q2),

which is (8.5.26.13) with q replaced by q2.
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8.5.27 Proof of Entry 8.3.29

Let Q := q23 and set

A(q) := G(q2)G(Q)+q5H(q2)H(Q) and B(q) := H(q)G(Q2)−q9G(q)H(Q2).
(8.5.27.1)

Using (8.4.63) and noting that λ = 7, we find that

R2(1, 0, 0, 1, 3, 23, 2, 5) = R2(1,−9, 0, 4, 69, 1, 1, 10). (8.5.27.2)

We employ Lemma 8.4.3 and argue similarly as in (8.5.26.17). Noting that
λ = 7 and using (8.2.5) with n = 1, (8.2.11), and (8.5.26.16), we find that

R2(1, 0, 0, 1, 3, 23, 2, 5)

= q7/6f(−q10)

(
f(−q4,−q6)f(−Q4,−Q6)

f(q2, q8)
+ q10

f(−q2,−q8)f(−Q2,−Q8)

f(q4, q6)

)

= q7/6f(−q2)f(−Q2)A(q2). (8.5.27.3)

Next, we employ Lemma 8.4.3 to find that

R2(1,−9, 0, 4, 69, 1, 1, 10)

= q7/6f(−Q20)

{
−q2

f(−Q4,−Q16)f(−q8,−q12)

f(−Q2,−Q18)

+
f(−Q8,−Q12)f(−q6,−q14)

f(−Q4,−Q16)
− q12

f(−Q8,−Q12)f(−q4,−q16)

f(−Q6,−Q14)

+q38
f(−Q4,−Q16)f(−q2,−q18)

f(−Q8,−Q12)
+ q18ϕ(−q10)

}
. (8.5.27.4)

Using (8.1.2), (8.2.6), and some elementary product manipulations, we can
show that

f(−q2,−q8)

f(−q,−q9)
=

f(−q2)

f(−q10)
G(q),

f(−q4,−q6)

f(−q3,−q7)
=

f(−q2)

f(−q10)
H(q). (8.5.27.5)

By (8.5.27.5) with q replaced by Q2 and by (8.1.2), we deduce that

−q2
f(−Q4,−Q16)f(−q8,−q12)

f(−Q2,−Q18)
− q12

f(−Q8,−Q12)f(−q4,−q16)

f(−Q6,−Q14)

= −q2
f(−q4)f(−Q4)

f(−Q20)

(
G(q4)G(Q2) + q10H(q4)H(Q2)

)

= −q2
f(−q4)f(−Q4)

f(−Q20)
A(q2). (8.5.27.6)

With the use of (8.2.6), it is easy to verify that
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f(−q3,−q7) = f(−q2)H(−q)G(q4) and f(−q,−q9) = f(−q2)G(−q)H(q4).
(8.5.27.7)

Furthermore, from (8.2.11), we easily see that

f(−q,−q4)

f(−q2,−q3)
=

f(−q)

f(−q5)
H2(q) and

f(−q2,−q3)

f(−q,−q4)
=

f(−q)

f(−q5)
G2(q).

(8.5.27.8)
Using (8.5.27.7) with q replaced by q2 and (8.5.27.8) with q replaced by Q4,
we find that

f(−Q8,−Q12)f(−q6,−q14)

f(−Q4,−Q16)
+ q38

f(−Q4,−Q16)f(−q2,−q18)

f(−Q8,−Q12)
+ q18ϕ(−q10)

=
f(−q4)f(−Q4)

f(−Q20)

(
G2(Q4)H(−q2)G(q8) + q38H2(Q4)G(−q2)H(q8)

+ q18
ϕ(−q10)

f(−q4)

f(−Q20)

f(−Q4)

)
. (8.5.27.9)

Next, by Entry 8.3.3 with q replaced by −q2 and by (8.2.12) with q replaced
by Q4, we deduce that

ϕ(−q10)

f(−q4)

f(−Q20)

f(−Q4)
=
(
G(−q2)G(q8) + q2H(−q2)H(q8)

)
G(Q4)H(Q4).

(8.5.27.10)
Utilizing (8.5.27.10) in (8.5.27.9) and recalling the notation (8.5.27.1), we
arrive at

f(−Q8,−Q12)f(−q6,−q14)

f(−Q4,−Q16)
+ q38

f(−Q4,−Q16)f(−q2,−q18)

f(−Q8,−Q12)
+ q18ϕ(−q10)

=
f(−q4)f(−Q4)

f(−Q20)

(
G2(Q4)H(−q2)G(q8) + q38H2(Q4)G(−q2)H(q8)

+q18
(
G(−q2)G(q8) + q2H(−q2)H(q8)

)
G(Q4)H(Q4)

)

=
f(−q4)f(−Q4)

f(−Q20)

(
G(q8)G(Q4) + q20H(q8)H(Q4)

)

×
(
H(−q2)G(Q4) + q18G(−q2)H(Q4)

)

=
f(−q4)f(−Q4)

f(−Q20)
A(q4)B(−q2). (8.5.27.11)

From (8.5.27.4), (8.5.27.6), and (8.5.27.11), we conclude that

R2(1,−9, 0, 4, 69, 1, 1, 10) = q7/6f(−q4)f(−Q4)
(
−q2A(q2) +A(q4)B(−q2)

)
.

(8.5.27.12)

Therefore, by (8.5.27.2), (8.5.27.3), and (8.5.27.12), we deduce that

f(−q2)f(−Q2)A(q2) = f(−q4)f(−Q4)
(
−q2A(q2) +A(q4)B(−q2)

)
.

(8.5.27.13)
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Lastly, replacing q2 by q, we conclude that

(χ(−q)χ(−Q) + q)A(q) = B(−q)A(q2). (8.5.27.14)

Next, we prove the companion formula

(χ(−q)χ(−Q) + q)B(q) = A(−q)B(q2). (8.5.27.15)

By (8.4.63), we find that with λ = 7,

R2(1, 1, 1, 1, 3, 23, 2, 5) = R2(1,−8, 1,−5, 69, 1, 1, 10) (8.5.27.16)

and

R2(1, 1, 0, 0, 3, 23, 2, 5) = R2(1,−8, 0, 3, 69, 1, 1, 10). (8.5.27.17)

With applications of Lemma 8.4.3 and (8.2.5), we find that since again λ = 7,

R2(1,−8, 1,−5, 69, 1, 1, 10)

= q5/12f(−Q20)

{
q11

f(−Q2,−Q18)f(q, q19)

f(Q,Q19)
− q

f(−Q6,−Q14)f(q3, q17)

f(Q3, Q17)

+ q5
ϕ(−Q10)ψ(q5)

ψ(Q5)
− q23

f(−Q6,−Q14)f(q7, q13)

f(Q7, Q13)

+q55
f(−Q2,−Q18)f(q9, q11)

f(Q9, Q11)

}
. (8.5.27.18)

Employing Lemma 8.4.3, again with the observation that λ = 7, we also find
that

R2(1,−8, 0, 3, 69, 1, 1, 10)

= q5/12f(−Q20)

{
−q9

f(−Q2,−Q18)f(q9, q11)

f(Q,Q19)
+

f(−Q6,−Q14)f(q7, q13)

f(Q3, Q17)

− q5
ϕ(−Q10)ψ(q5)

ψ(Q5)
+ q24

f(−Q6,−Q14)f(q3, q17)

f(Q7, Q13)

−q57
f(−Q2,−Q18)f(q, q19)

f(Q9, Q11)

}
. (8.5.27.19)

Employing (8.2.19) twice with a = −q2, b = −q3, n = 2, and a = −q, b = −q4,
and n = 2, we easily find that

f(−q2,−q3) = f(q9, q11)−q2f(q, q19) and f(−q,−q4) = f(q7, q13)−qf(q3, q17).
(8.5.27.20)

Next, we add (8.5.27.18) and (8.5.27.19), collect terms, and use (8.5.27.20) to
find that
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R2(1,−8, 1,−5, 69, 1, 1, 10) +R2(1,−8, 0, 3, 69, 1, 1, 10)

= q5/12f(−Q20)

{
−q9

f(−Q2,−Q18)f(−q2,−q3)

f(Q,Q19)
+

f(−Q6,−Q14)f(−q,−q4)

f(Q3, Q17)

−q23
f(−Q6,−Q14)f(−q,−q4)

f(Q7, Q13)
+ q55

f(−Q2,−Q18)f(−q2,−q3)

f(Q9, Q11)

}
.

(8.5.27.21)

Using (8.5.27.20) again, this time with q replaced by Q, we find from
(8.5.27.21) that

R2(1,−8, 1,−5, 69, 1, 1, 10) +R2(1,−8, 0, 3, 69, 1, 1, 10)

= q5/12f(−Q20)

{
−q9

f(−Q2,−Q18)f(−q2,−q3)f(−Q2,−Q3)

f(Q,Q19)f(Q9, Q11)

+
f(−Q6,−Q14)f(−q,−q4)f(−Q,−Q4)

f(Q3, Q17)f(Q7, Q13)

}
. (8.5.27.22)

With several applications of (8.2.6), we can verify that

f(−q2,−q18)f(−q2,−q3)

f(q, q19)f(q9, q11)
=

f(−q)H(q2)

f(−q20)
, (8.5.27.23)

f(−q6,−q14)f(−q,−q4)

f(q3, q17)f(q7, q13)
=

f(−q)G(q2)

f(−q20)
. (8.5.27.24)

Returning to (8.5.27.22) and using (8.2.11) along with (8.5.27.23) and
(8.5.27.24) with q replaced by Q, we conclude that

R2(1,−8, 1,−5, 69, 1, 1, 10) +R2(1,−8, 0, 3, 69, 1, 1, 10)

= q5/12f(−q)f(−Q)
(
H(q)G(Q2)− q9G(q)H(Q2)

)

= q5/12f(−q)f(−Q)B(q). (8.5.27.25)

By Lemma 8.4.3 with the observation that again λ = 7, (8.2.5), and
(8.5.27.5), we find that

R2(1, 1, 1, 1, 3, 23, 2, 5) = −q17/12f(−q10)

×
(
f(−q4,−q6)f(−Q4,−Q6)

f(−q3,−q7)
− q9

f(−q2,−q8)f(−Q2,−Q8)

f(−q,−q9)

)

= −q17/12f(−q2)f(−Q2)
(
H(q)G(Q2)− q9G(q)H(Q2)

)

= −q17/12f(−q2)f(−Q2)B(q), (8.5.27.26)

where we once again recall the notation (8.5.27.1).
We employ Lemma 8.4.3 again and see again that λ = 7, and ar-

gue similarly as in (8.5.27.9)–(8.5.27.11). Using (8.2.5), (8.5.27.7), (8.5.27.8),
(8.5.27.10), (8.2.12), Entry 8.3.3, and (8.5.27.1), we deduce that
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R2(1, 1, 0, 0, 3, 23, 2, 5) = q5/12f(−q10)

×
(
−q5

f(−q2,−q8)f(−Q3,−Q7)

f(−q4,−q6)
− q18

f(−q4,−q6)f(−Q,−Q9)

f(−q2,−q8)
+ ϕ(−Q5)

)

= q5/12f(−q2)f(−Q2)
(
H(q2)G(Q4)− q18G(q2)H(Q4)

)

×
(
G(q2)G(−Q)− q5H(q2)H(−Q)

)

= q5/12f(−q2)f(−Q2)B(q2)A(−q). (8.5.27.27)

Therefore, by (8.5.27.16), (8.5.27.17), (8.5.27.25), (8.5.27.26), and (8.5.27.27),
we finally deduce that

−qf(−q2)f(−Q2)B(q) + f(−q2)f(−Q2)B(q2)A(−q) = f(−q)f(−Q)B(q),
(8.5.27.28)

which is clearly equivalent to (8.5.27.15).
In (8.5.27.15) replace q by −q and multiply the resulting identity by

(8.5.27.14) to conclude that

A(q2)B(q2) = (χ(q)χ(Q) + q) (χ(−q)χ(−Q)− q) . (8.5.27.29)

Therefore, by (8.5.27.29) and by (8.3.38), it remains to prove that

χ(−q2)χ(−Q2) + q2 +
2q4

χ(−q2)χ(−Q2)
= (χ(q)χ(Q)− q) (χ(−q)χ(−Q) + q) .

(8.5.27.30)
However, (8.5.27.30) is equivalent to a modular equation of degree 23, first
discovered by Schröter, and rediscovered by Ramanujan [282], namely,

(αβ)1/8 + {(1− α)(1− β)}1/8 + 22/3{αβ(1− α)(1− β)}1/24 = 1, (8.5.27.31)

where β is of degree 23 over α. A proof of (8.5.27.31) can be found in [55,
p. 411, Chapter 20, Entry 15(i)]. Since the identity (8.5.27.30) cannot be found
in either [282] or [55], we briefly indicate how we can establish the equivalence
of (8.5.27.30) and (8.5.27.31). If q = exp

(
−K(

√
1− α)/K(

√
α)
)
, where K

denotes the complete elliptic integral of the first kind, then [55, p. 124, Entries
12(v)–(vii)]

χ(q) = 21/6{α(1− α)/q}−1/24,

χ(−q) = 21/6(1− α)1/12(α/q)−1/24,

χ(−q2) = 21/3(1− α)1/24(α/q)−1/12.

If q is replaced by q23 in any of the equalities above, then α is to be replaced
by β on the corresponding right-hand side. If all six of these identities are
substituted in (8.5.27.30), then after a lengthy, but straightforward, dose of
elementary algebra, we obtain (8.5.27.31). These steps are of course reversible,
and so this establishes the equivalence of (8.5.27.30) and (8.5.27.31).
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8.5.28 Proof of Entry 8.3.30

We begin by recording several pairs of easily verified identities. Note that for
future convenience, we have recorded the identity in (8.5.28.3) in two different
ways. By (8.2.6),

f(−q2,−q8)

f(−q,−q9)
=

f(−q2,−q3)

χ(−q)f(−q10)
,

f(−q4,−q6)

f(−q3,−q7)
=

f(−q,−q4)

χ(−q)f(−q10)
,

(8.5.28.1)

f(−q2,−q3)

f(q, q4)
=

χ(−q)f(−q4,−q6)

f(−q5)
,

f(−q,−q4)

f(q2, q3)
=

χ(−q)f(−q2,−q8)

f(−q5)
,

(8.5.28.2)

f(−q2,−q6)

f(q, q7)
=

χ(−q)

f(−q8)
f(q3, q5),

f(−q2,−q6)

f(q3, q5)
=

χ(−q)

f(−q8)
f(q, q7).

(8.5.28.3)

By (8.4.64), with the sets of parameters ε = 1, δ = 0, l = 0, t = 1, α = 6,
β = 76, m = 3, p = 5, so that λ = 26, and α1 = 4, β1 = 114, m1 = −2, p1 = 5
(with corresponding values of z = 1, ε = δ = 1, l = t = −1), we find that

R2(1, 0, 0, 1, 6, 76, 3, 5) = R1(1, 1, 1,−1,−1, 4, 114,−2, 5). (8.5.28.4)

Let Q = q38. By Lemma 8.4.2, (8.5.28.1) with q replaced by Q, and (8.2.11),
we find that

R1(1, 1, 1,−1,−1, 4, 114,−2, 5) = q13/3f(−Q10)

×
(
f(−Q2,−Q8)f(−q8,−q32)

f(−Q,−Q9)
− q6

f(−Q4,−Q6)f(−q16,−q24)

f(−Q3,−Q7)

)

= q13/3f(−q8)f(−Q2)
(
G(Q)H(q8)− q6H(Q)G(q8)

)
. (8.5.28.5)

By Lemma 8.4.3, (8.5.28.1), with q replaced by −q2, and (8.2.11), and by
noting that λ = 26, we similarly find that

R2(1, 0, 0, 1, 6, 76, 3, 5) = q13/3f(−q20)

×
(
f(−q8,−q12)f(−Q8,−Q12)

f(q6, q14)
+ q30

f(−q4,−q16)f(−Q4,−Q16)

f(q2, q18)

)

= f(−q4)f(−Q4)
(
H(−q2)G(Q4) + q30G(−q2)H(Q4)

)
. (8.5.28.6)

By (8.5.28.4)–(8.5.28.6), we conclude that

G(Q)H(q8)− q6H(Q)G(q8)

H(−q2)G(Q4) + q30G(−q2)H(Q4)
=

f(−q4)f(−Q4)

f(−q8)f(−Q2)
=

χ(−q4)

χ(−Q2)
,

which is (8.3.39) with q replaced by q2.
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8.5.29 Proofs of Entries 8.3.31 and 8.3.32

We give two approaches. We first provide the proofs of these two identities
from Yesilyurt’s paper [347]. Secondly, we provide a more elementary argu-
ment from [65], but this approach only shows that Entries 8.3.31 are 8.3.32
are equivalent, i.e., that it suffices to prove just one of the identities.

We simultaneously prove Entries 8.3.31 and 8.3.32. By (8.4.65) with the
set of parameters z = 1, ε = 1, δ = 0, l = t = 1, α = 11, β = 9, m = 1, and
p = 4 (λ = 5), we find that

R1(1, 1, 0, 1, 1, 11, 9, 1, 4) = R1(1, 0, 1, 6,−1, 1, 99, 11, 5). (8.5.29.1)

Throughout the remainder of this section, set Q = q33. By Lemma 8.4.2,
by the use of (8.2.5) with n = 4, 6, by (8.5.27.5) with q replaced by q33, and
by (8.2.11), we find that since λ = 44,

R1(1, 0, 1, 6,−1, 1, 99, 11, 5) = q9/4f
(
−Q10

)

×
(
f
(
−Q2,−Q8

)
f
(
−q4,−q6

)

f (−Q,−Q9)
+ q7

f
(
−Q4,−Q6

)
f
(
−q2,−q8

)

f (−Q3,−Q7)

)

= q9/4
1

χ(−Q)

(
g(q2)g(Q) + q7g(q2)h(Q)

)
. (8.5.29.2)

From (8.2.19), we easily find that

ψ(q) = f(q6, q10) + qf(q2, q14). (8.5.29.3)

By Lemma 8.4.2, by (8.2.5) with n = 1, and by (8.5.28.3) with q replaced by
q3, we similarly find that

R1(1, 1, 0, 1, 1, 11, 9, 1, 4)

= q9/4f(−q24)

(
f
(
−q6,−q18

)
f
(
q33, q55

)

f (q9, q15)
− q4

f
(
−q6,−q18

)
f
(
q11, q77

)

f (q3, q21)

)

= q9/4χ(−q3)
{
f(q3, q21)f(q33, q55)− q4f(q9, q15)f(q11, q77)

}
. (8.5.29.4)

Using (8.5.29.3), we easily find that

ψ(q3)ψ(−q11)− ψ(−q3)ψ(q11)

= 2q3
{
f(q6, q42)f(q66, q110)− q8f(q18, q30)f(q22, q154)

}
. (8.5.29.5)

Now in (8.5.29.2) and (8.5.29.4), we replace q by q2 and use (8.5.29.1) and
(8.5.29.5) to conclude that

2q3
(
g(q4)g(Q2) + q14h(q4)h(Q2)

)

= χ(−q6)χ(−q66)
{
ψ(q3)ψ(−q11)− ψ(−q3)ψ(q11)

}
. (8.5.29.6)
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In what follows, J(q) denotes an arbitrary power series, usually not the
same with each appearance. By (8.2.19) with n = 3 in each instance,

g(q) = f(−q2,−q3) = f(−q21,−q24)− q2f(−q9,−q36)− q3f(−q6,−q39)

= J(q3)− q2h(q9), (8.5.29.7)

h(q) = f(−q,−q4) = f(−q18,−q27)− qf(−q12,−q33)− q4f(−q3,−q42)

= g(q9)− qJ(q3), (8.5.29.8)

ψ(q) = f(q15, q21) + q3f(q3, q33) + qψ(q9) = J(q3) + qψ(q9). (8.5.29.9)

By (8.5.29.9),

ψ(q3)ψ(−q11)− ψ(−q3)ψ(q11)

=
{
J(q3)− q11ψ(−q99)

}
ψ(q3)−

{
J(q3) + q11ψ(q99)

}
ψ(−q3)

= J(q3)− q11
{
ψ(q3)ψ(−q99) + ψ(−q3)ψ(q99)

}
. (8.5.29.10)

Similarly, by (8.5.29.7) and (8.5.29.8) with q replaced by q4, we find that

g(q4)g(q66) + q14h(q4)h(q66) = J(q3)− q8
{
h(q36)g(q66)− q6g(q36)h(q66)

}
.

(8.5.29.11)
From these last two equalities and (8.5.29.6), we conclude that

2
{
h(q12)g(q22)− q2g(q12)h(q22)

}

= χ(−q2)χ(−q22)
(
ψ(q)ψ(−q33) + ψ(−q)ψ(q33)

)
. (8.5.29.12)

Next, by (8.4.65) with the set of parameters z = −1, ε = 0, δ = 1, l = 0,
t = 1, α = 11, β = 9, m = 1, and p = 5 (λ = 4), we find that

R1(−1, 0, 1, 0, 1, 11, 9, 1, 5) = R1(1, 1, 0, 3,−1, 1, 99, 11, 4). (8.5.29.13)

By Lemma 8.4.2, by (8.2.5) with n = 3 and n = 6, and by (8.5.28.3) with q
replaced by Q, we find that, upon noting that λ = 54,

R1(1, 1, 0, 3,−1, 1, 99, 11, 4)

= q3/4f
(
−Q8

)
(
f
(
−Q2,−Q6

)
f
(
q3, q5

)

f (Q,Q7)
− q17

f
(
−Q2,−Q6

)
f
(
q, q7

)

f (Q3, Q5)

)

= q3/4χ(−Q)
{
f(q3, q5)f(Q3, Q5)− q17f(q, q7)f(Q,Q7)

}
. (8.5.29.14)

By Lemma 8.4.2, and by (8.5.27.5) with q replaced by q3, we similarly find
that with λ = 4,

R1(−1, 0, 1, 0, 1, 11, 9, 1, 5)

= q3/4f
(
−q30

)
(
f
(
−q6,−q24

)
f
(
−q44,−q66

)

f (−q3,−q27)
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+q5
f
(
−q12,−q18

)
f
(
−q22,−q88

)

f (−q9,−q21)

)

= q3/4
f(−q3)f(−q22)

χ(−q3)

{
g(q3)g(q22) + q5h(q3)h(q22)

}
. (8.5.29.15)

We now argue as before. In (8.5.29.3), we replace q by −q, q33, and −q33,
and multiplying them in pairs, we find that

ψ(q) = 2
{
f(q6, q10)f(q198, q330)− q34f(q2, q14)f(q66, q462)

}
. (8.5.29.16)

Next, we replace q by q2 in both (8.5.29.14) and (8.5.29.15). Using these
identities in (8.5.29.13) and then employing (8.5.29.16), we conclude that

2
{
g(q6)g(q44) + q10h(q6)h(q44)

}

= χ(−q6)χ(−q66)
(
ψ(q)ψ(−q33) + ψ(−q)ψ(q33)

)
. (8.5.29.17)

We again appeal to the dissections (8.5.29.7)–(8.5.29.9). Using (8.5.29.7)–
(8.5.29.9) with q replaced by q44, we find that

2
{
g(q6)g(q44) + q10h(q6)h(q44)

}
= 2q10

{
h(q6)g(q396)− q78g(q6)h(q396)

}

(8.5.29.18)
and

ψ(q)ψ(−q33) + ψ(−q)ψ(q33) = q
{
ψ(q9)ψ(−q33)− ψ(−q9)ψ(q33)

}
.

(8.5.29.19)
Replacing q3 by q in (8.5.29.17), (8.5.29.18), and (8.5.29.19), we conclude that

2q3
(
h(q2)g(q132)− q26g(q2)h(q132)

)

= χ(−q2)χ(−q22)
(
ψ(q3)ψ(−q11)− ψ(−q3)ψ(q11)

)
. (8.5.29.20)

Comparing (8.5.29.5) and (8.5.29.20), and using (8.2.11), we see that Entry
8.3.31 has been proved. Similarly, the identities (8.5.29.17) and (8.5.29.12)
imply Entry 8.3.32.

We now give a more elementary argument showing that Entries 8.3.31 and
8.3.32 are equivalent. For brevity, define

M(q) := G(q2)G(q33) + q7H(q2)H(q33), (8.5.29.21)

N(q) := G(q66)H(q)− q13H(q66)G(q), (8.5.29.22)

R(q) := G(q66)H(q11)− q11H(q66)G(q11)

T (q) := G(q3)G(q22) + q5H(q3)H(q22), (8.5.29.23)

U(q) := G(q11)H(q6)− qH(q11)G(q6). (8.5.29.24)

Using (8.5.29.22), Entry 8.3.4 with q replaced by q6, and Entry 8.3.8 with q
replaced by q11, we consider the system of three equations
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N(q) = G(q66)H(q)− q13H(q66)G(q),

1 = G(q66)H(q6)− q12H(q66)G(q6),

χ(−q11)

χ(−q33)
= R(q) = G(q66)H(q11)− q11H(q66)G(q11). (8.5.29.25)

It follows that ∣∣∣∣∣∣

H(q) −q13G(q) N(q)
H(q6) −q12G(q6) 1
H(q11) −q11G(q11) R(q)

∣∣∣∣∣∣
= 0.

Expanding this determinant along the last column and using (8.5.29.24), En-
try 8.3.4, (8.5.29.25), and Entry 8.3.8, we deduce that

0 = N(q)
(
−q11H(q6)G(q11) + q12G(q6)H(q11)

)
+ q11H(q)G(q11)

− q13G(q)H(q11) +R(q)
(
−q12G(q6)H(q) + q13G(q)H(q6)

)

= −N(q)q11U(q) + q11 − q12
χ(−q11)

χ(−q33)

χ(−q)

χ(−q3)
. (8.5.29.26)

Hence, if we define

W (q) :=
χ(−q)χ(−q11)

χ(−q3)χ(−q33)
, (8.5.29.27)

then, from (8.5.29.26), we deduce that

N(q)U(q) = 1− qW (q). (8.5.29.28)

Next, using (8.5.29.21), Entry 8.3.4 with q replaced by q3, and Entry 8.3.7
with q replaced by q11, we consider the system of equations

M(q) = G(q2)G(q33) + q7H(q2)H(q33),

1 = H(q3)G(q33)− q6G(q3)H(q33),

χ(−q33)

χ(−q11)
=: S(q) = G(q22)G(q33) + q11H(q22)H(q33). (8.5.29.29)

It follows that ∣∣∣∣∣∣

G(q2) q7H(q2) M(q)
H(q3) −q6G(q3) 1
G(q22) q11H(q22) S(q)

∣∣∣∣∣∣
= 0.

Expanding the determinant above along the last column and employing
(8.5.29.23), Entry 8.3.4 with q replaced by q2, (8.5.29.29), and Entry 8.3.7,
we find that

0 = M(q)
(
q11H(q3)H(q22) + q6G(q3)G(q22)

)
− q11G(q2)H(q22)

+ q7H(q2)G(q22) + S(q)
(
−q6G(q2)G(q3)− q7H(q2)H(q3)

)

= M(q)q6T (q) + q7 − q6
χ(−q33)

χ(−q11)

χ(−q3)

χ(−q)
. (8.5.29.30)
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Hence, using the definition of W (q) in (8.5.29.27), we deduce from (8.5.29.30)
that

M(q)T (q) = −q +
1

W (q)
. (8.5.29.31)

Hence, dividing (8.5.29.31) by (8.5.29.28), we conclude that

M(q)T (q)

N(q)U(q)
=

1

W (q)
. (8.5.29.32)

Examining Entries 8.3.31 and 8.3.32, we see that it suffices to prove just one
of them, for then the other one will follow immediately from (8.5.29.32).

8.5.30 Proof of Entry 8.3.33

We provide two proofs.

First Proof of Entry 8.3.33. Let us define K(q) and L(q) by

K(q) := G(q)G(q54) + q11H(q)H(q54), (8.5.30.1)

L(q) := H(q2)G(q27)− q5G(q2)H(q27), (8.5.30.2)

so that Entry 8.3.33 reads

K(q)

L(q)
=

χ(−q3)χ(−q27)

χ(−q)χ(−q9)
. (8.5.30.3)

Starting from (8.3.15) and arguing as in (8.4.32), we find that

χ(−q6)χ(−q9)

χ(−q2)χ(−q3)
G(−q) +

χ(−q6)χ(q9)

χ(−q2)χ(q3)
G(q) = 2

G(q36)

χ2(−q2)
. (8.5.30.4)

By (8.2.15), we see that (8.5.30.4) simplifies to

χ(q3)χ(−q9)G(−q) + χ(−q3)χ(q9)G(q) = 2
G(q36)

χ(−q2)
. (8.5.30.5)

Similarly, we find that

χ(−q3)χ(q9)H(q)− χ(q3)χ(−q9)H(−q) = 2q7
H(q36)

χ(−q2)
. (8.5.30.6)

In (8.5.30.1), we replace q by q2 and employ (8.5.30.5) and (8.5.30.6) with q
replaced by q3 to find that

2
K(q2)

χ(−q6)
=

2

χ(−q6)

{
G(q2)G(q108) + q22H(q2)H(q108)

}

= G(q2)
{
χ(q9)χ(−q27)G(−q3) + χ(−q9)χ(q27)G(q3)

}

+ qH(q2)
{
χ(−q9)χ(q27)H(q3)− χ(q9)χ(−q27)H(−q3)

}

= χ(q9)χ(−q27)
{
G(q2)G(−q3)− qH(q2)H(−q3)

}

+ χ(−q9)χ(q27)
{
G(q2)G(q3) + qH(q2)H(q3)

}
. (8.5.30.7)
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Using (8.3.8) twice, once with q replaced by −q, we see that (8.5.30.7) can be
put in the form

2
K(q2)

χ(−q6)
= χ(q9)χ(−q27)

χ(q3)

χ(q)
+ χ(−q9)χ(q27)

χ(−q3)

χ(−q)
.

Using (8.2.15), we conclude that

2K(q2) =
χ(−q6)

χ(−q2)

{
χ(−q)χ(q3)χ(q9)χ(−q27) + χ(q)χ(−q3)χ(−q9)χ(q27)

}
.

(8.5.30.8)
To obtain the desired expression for L(q2), we use Lemma 8.4.3. Then, in

(8.5.30.2), replacing q by q2, employing (8.4.38) and (8.4.39), and arguing as
in (8.5.30.7), we find that

2
L(q2)

χ(−q18)
= χ(q)χ(−q3)

{
G(q54)H(q9)− q9H(q54)G(q9)

}

+ χ(−q)χ(q3)
{
G(q54)H(−q9) + q9H(q54)G(−q9)

}
. (8.5.30.9)

Using (8.3.9), with q replaced by q9 and −q9, respectively, we find from
(8.5.30.9) that

2
L(q2)

χ(−q18)
= χ(q)χ(−q3)

χ(−q9)

χ(−q27)
+ χ(−q)χ(q3)

χ(q9)

χ(q27)
,

which, by (8.2.15), implies that

2L(q2) =
χ(−q18)

χ(−q54)

{
χ(q)χ(−q3)χ(−q9)χ(q27) + χ(−q)χ(q3)χ(q9)χ(−q27)

}
.

(8.5.30.10)
Dividing (8.5.30.8) by (8.5.30.10), we obtain (8.5.30.3) with q replaced by q2.
Hence, the proof of Entry 8.3.33 is complete. ��

Second Proof of Entry 8.3.33. Recall once more the definitions

g(q) = f(−q)G(q) = f(−q2,−q3) and h(q) = f(−q)H(q) = f(−q,−q4).

Our proof of Entry 8.3.33 uses Entries 8.3.6, 8.3.7, and 8.3.8, which we write
in their equivalent forms (see (8.5.6.1), (8.5.7.3), and (8.5.8.2))

g(q)g(q9) + q2h(q)h(q9) = f2(−q3), (8.5.30.11)

g(q2)g(q3) + qh(q2)h(q3) = ψ(q)ϕ(−q3), (8.5.30.12)

g(q6)h(q)− qg(q)h(q6) = ψ(q3)ϕ(−q). (8.5.30.13)

Let us define M(q) and N(q) by

M(q) := h(q2)g(q27)− q5g(q2)h(q27), (8.5.30.14)

N(q) := g(q)g(q54) + q11h(q)h(q54). (8.5.30.15)
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By (8.2.11) and (8.2.14), Entry 8.3.33 is equivalent to the identity

N(q)

M(q)
=

f(−q)f(−q54)χ(−q3)χ(−q27)

f(−q2)f(−q27)χ(−q)χ(−q9)
=

χ(−q3)

χ(−q9)
. (8.5.30.16)

By (8.5.30.15), (8.5.30.11), and (8.5.30.13) with q replaced by q6 and q9,
respectively, in the latter two cases, we deduce the following system of three
equations:

g(q)g(q54) + q11h(q)h(q54) = N(q),

g(q6)g(q54) + q12h(q6)h(q54) = f2(−q18),

h(q9)g(q54)− q9g(q9)h(q54) = ψ(q27)ϕ(−q9).

Regarding this system in the variables G(q54), q9h(q54), and −1, we find that

∣∣∣∣∣∣

g(q) q2h(q) N(q)
g(q6) q3h(q6) f2(−q18)
h(q9) −g(q9) ψ(q27)ϕ(−q9)

∣∣∣∣∣∣
= 0. (8.5.30.17)

Expanding the determinant in (8.5.30.17) along the last column, we find that

−N(q)
{
g(q6)g(q9) + q3h(q6)h(q9)

}

+ f2(−q18)
{
g(q)g(q9) + q2h(q)h(q9)

}

− q2ϕ(−q9)ψ(q27)
{
h(q)g(q6)− qg(q)h(q6)

}
= 0. (8.5.30.18)

Using (8.5.30.12) with q replaced by q3, (8.5.30.11), and (8.5.30.13) in
(8.5.30.18), we find that

−N(q)ψ(q3)ϕ(−q9) + f2(−q18)f2(−q3)− q2ψ(q27)ϕ(−q9)ψ(q3)ϕ(−q) = 0.

Solving for N(q), we deduce that

N(q) =
f2(−q18)f2(−q3)

ψ(q3)ϕ(−q9)
− q2ψ(q27)ϕ(−q). (8.5.30.19)

Next, we determine M(q). By (8.5.30.14), (8.5.30.12), and (8.5.30.11) with
q replaced by q9 and q3, respectively, in the latter two equalities, we find that

h(q2)g(q27)− q5g(q2)h(q27) = M(q),

g(q18)g(q27) + q9h(q18)h(q27) = ψ(q9)ϕ(−q27),

g(q3)g(q27) + q6h(q3)h(q27) = f2(−q9).

Regarding this system in the variables g(q27), q5h(q27), and −1 and arguing
as we did above, we find that

qM(q)ψ(q9)ϕ(−q3)− ψ(q9)ϕ(−q27)ψ(q)ϕ(−q3) + f2(−q9)f2(−q6) = 0.
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Solving for qM(q), we arrive at

qM(q) = ψ(q)ϕ(−q27)− f2(−q9)f2(−q6)

ψ(q9)ϕ(−q3)
. (8.5.30.20)

Recall that by (8.5.7.6) and (8.5.7.8),

f(−q,−q5) = χ(−q)ψ(q3) (8.5.30.21)

and

f(q, q2) =
ϕ(−q3)

χ(−q)
. (8.5.30.22)

By (8.2.19) with n = 3 (see also [55, p. 49, Corollary]), we find that

ϕ(−q) = ϕ(−q9)− 2qf(−q3,−q15), (8.5.30.23)

ψ(q) = f(q3, q6) + qψ(q9). (8.5.30.24)

Using (8.5.30.21) and (8.5.30.22) in (8.5.30.23) and (8.5.30.24) with q replaced
by q3, we obtain, respectively,

ϕ(−q) = ϕ(−q9)− 2qχ(−q3)ψ(q9), (8.5.30.25)

ψ(q) =
ϕ(−q9)

χ(−q3)
+ qψ(q9). (8.5.30.26)

We deduce from (8.5.30.25) and (8.5.30.26) that

χ(−q3)ψ(q9) =
1

2q

{
ϕ(−q9)− ϕ(−q)

}
, (8.5.30.27)

ψ(q)χ(−q3) =
1

2

{
3ϕ(−q9)− ϕ(−q)

}
. (8.5.30.28)

By (8.2.14), we easily find that

f2(−q2)χ(−q)

ϕ(−q)
= ψ(q), (8.5.30.29)

f2(−q)

ψ(q)
= ϕ(−q)χ(−q). (8.5.30.30)

By (8.5.30.19), (8.5.30.29), and (8.5.30.30) with q replaced by q9 and q3,
respectively, in the latter two equations, we find that

χ(−q9)N(q) = χ(−q3)ϕ(−q3)ψ(q9)− q2ψ(q27)χ(−q9)ϕ(−q). (8.5.30.31)

Using (8.5.30.27) twice in (8.5.30.31) with q replaced by q3 in the second
instance, we find that
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χ(−q9)N(q) =
1

2q
ϕ(−q3)

{
ϕ(−q9)− ϕ(−q)

}

− q2
1

2q3
{
ϕ(−q27)− ϕ(−q3)

}
ϕ(−q)

=
1

2q

{
ϕ(−q3)ϕ(−q9)− ϕ(−q)ϕ(−q27)

}
. (8.5.30.32)

Similarly, by (8.5.30.20), (8.5.30.29), and (8.5.30.30) with q replaced by q3

and q9, respectively, we find that

qχ(−q3)M(q) = χ(−q3)ϕ(−q27)ψ(q)− ψ(q3)χ(−q9)ϕ(−q9). (8.5.30.33)

Using (8.5.30.28) twice with q replaced by q3 in the latter case, we find that

qχ(−q3)M(q) =
1

2
ϕ(−q27)

{
3ϕ(−q9)− ϕ(−q)

}

− 1

2

{
3ϕ(−q27)− ϕ(−q3)

}
ϕ(−q9)

=
1

2

{
ϕ(−q3)ϕ(−q9)− ϕ(−q)ϕ(−q27)

}
. (8.5.30.34)

Dividing (8.5.30.34) by (8.5.30.32), we see that (8.5.30.16) is verified. Hence,
the second proof of Entry 8.3.33 is complete. ��

8.5.31 Proof of Entry 8.3.34

Our proof is a moderate modification of the proof given by Bressoud [81].
Using (8.1.2), (8.2.6), and some elementary product manipulations, we can

show that

G(q)G(−q) =
f(q4, q6)

f(−q2)
and H(q)H(−q) =

f(q2, q8)

f(−q2)
. (8.5.31.1)

Adding Entries 8.3.20 and 8.3.21, we find that

G(q)H(−q) =
1

f(−q2)

{
ψ(q2) + qψ(q10)

}
. (8.5.31.2)

Next, we recall Entry 8.3.34:

{
G(q)G(−q19)− q4H(q)H(−q19)

}{
G(−q)G(q19)− q4H(−q)H(q19)

}

= G(q2)G(q38) + q8H(q2)H(q38). (8.5.31.3)

Expanding the product on the left side of (8.5.31.3) and then using (8.5.31.1)
and (8.5.31.2), we find that

{
G(q)G(−q19)− q4H(q)H(−q19)

}{
G(−q)G(q19)− q4H(−q)H(q19)

}
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= G(q)G(−q)G(q19)G(−q19) + q8H(q)H(−q)H(q19)H(−q19)

− q4G(−q)H(q)G(q19)H(−q19)− q4G(q)H(−q)G(−q19)H(q19)

=
1

f(−q2)f(−q38)
f(q4, q6)f(q76, q114)

+ q8
1

f(−q2)f(−q38)
f(q2, q8)f(q38, q152)

− q4
1

f(−q2)f(−q38)

{
ψ(q2)− qψ(q10)

}{
ψ(q38) + q19ψ(q190)

}

− q4
1

f(−q2)f(−q38)

{
ψ(q2) + qψ(q10)

}{
ψ(q38)− q19ψ(q190)

}

=
1

f(−q2)f(−q38)

{
f(q4, q6)f(q76, q114) + q8f(q2, q8)f(q38, q152)

−2q4ψ(q2)ψ(q38) + 2q24ψ(q10)ψ(q190)
}
. (8.5.31.4)

Hence, from (8.5.31.3) and (8.5.31.4), we see that it suffices to prove that

G(q2)G(q38) + q8H(q2)H(q38)

=
1

f(−q2)f(−q38)

{
f(q4, q6)f(q76, q114) + q8f(q2, q8)f(q38, q152)

− 2q4ψ(q2)ψ(q38) + 2q24ψ(q10)ψ(q190)
}
. (8.5.31.5)

Multiplying both sides of (8.5.31.5) by f(−q2)f(−q38) and using (8.2.11), we
can rewrite (8.5.31.5) in its equivalent form

f(−q4,−q6)f(−q76,−q114) + q8f(−q2,−q8)f(−q38,−q152)

= f(q4, q6)f(q76, q114) + q8f(q2, q8)f(q38, q152)

− 2q4ψ(q2)ψ(q38) + 2q24ψ(q10)ψ(q190). (8.5.31.6)

By (8.5.16.3), with q replaced by q2, the left-hand side of (8.5.31.6) is

1

4q

(
ϕ(q)ϕ(q19)− ϕ(−q)ϕ(−q19)

)
− q4ψ(q2)ψ(q38). (8.5.31.7)

Therefore, it remains to show that

1

4q

(
ϕ(q)ϕ(q19)− ϕ(−q)ϕ(−q19)

)
+ q4ψ(q2)ψ(q38) (8.5.31.8)

= f(q4, q6)f(q76, q114) + q8f(q2, q8)f(q38, q152) + 2q24ψ(q10)ψ(q190).

By (8.5.16.5) and (8.5.16.6) with q replaced by −q2, we deduce that

1

4q

(
ϕ(q)ϕ(q19)− ϕ(−q)ϕ(−q19)

)
+ q4ψ(q2)ψ(q38)

= f(q342, q418)f(q18, q22) + q8f(q266, q494)f(q14, q26)
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+ 2 q24f(q190, q570)f(q10, q30) + q48f(q114, q646)f(q6, q34)

+ q80f(q38, q722)f(q2, q38) + q4f(q2, q38)f(q342, q418)

+ q10f(q6, q34)f(q266, q494) + q46f(q14, q26)f(q114, q646)

+ q76f(q18, q22)f(q38, q722)

=
(
f(q18, q22) + q4f(q2, q38)

) (
f(q342, q418) + q76f(q38, q722)

)

+ q8
(
f(q14, q26) + q2f(q6, q34)

) (
f(q266, q494) + q38f(q114, q646)

)

+ 2q24ψ(q10)ψ(q190). (8.5.31.9)

But by (8.2.19) with n = 2, first with a = q and b = q4, and second with
a = q2 and b = q3, we have

f(q, q4) = f(q7, q13) + qf(q3, q17) and f(q2, q3) = f(q9, q11) + q2f(q, q19).
(8.5.31.10)

Using both parts of (8.5.31.10) in (8.5.31.9), each with q replaced by q2 and
q38, we see that (8.5.31.8) holds. Hence, the proof of Entry 8.3.34 is complete.

8.5.32 Proof of Entry 8.3.35

As indicated earlier, this proof is due to Yesilyurt [348]. Let Q := q47, and set

A(q) := H(q2)G(Q)−q9G(q2)H(Q) and B(q) := G(q)G(Q2)+q19H(q)H(Q2).
(8.5.32.1)

From (8.4.62), we find that

R2(1, 0, 1, 1, 3, 47, 1, 5) = R1(−1, 0, 1, 0, 4, 1, 141, 3, 10). (8.5.32.2)

Employing Lemma 8.4.3, noting that λ = 10, applying (8.2.5), and arguing
similarly as in (8.5.26.17), we find that

R2(1, 0, 1, 1, 3, 47, 1, 5) = q19/6f(−q10)

×
(
−f(−q2,−q8)f(−Q4,−Q6)

f(q4, q6)
+ q18

f(−q4,−q6)f(−Q2,−Q8)

f(q2, q8)

)

= −q19/6f(−q2)f(−Q2)A(q2). (8.5.32.3)

Next, we employ Lemma 8.4.2, note that λ = 15, and utilize (8.2.5) once again
to find that

R1(−1, 0, 1, 0, 4, 1, 141, 3, 10) = q19/6f(−Q20)

×
{
q4

f(−Q4,−Q16)f(−q4,−q16)

f(−Q2,−Q18)
− q22

f(−Q8,−Q12)f(−q8,−q12)

f(−Q6,−Q14)

− f(−Q8,−Q12)f(−q2,−q18)

f(−Q4,−Q16)
− q74

f(−Q4,−Q16)f(−q6,−q14)

f(−Q8,−Q12)
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+ q36ϕ(−q10)

}
. (8.5.32.4)

By (8.5.27.5) with q replaced by Q2 and (8.2.11), we see that

q4
f(−Q4,−Q16)f(−q4,−q16)

f(−Q2,−Q18)
− q22

f(−Q8,−Q12)f(−q8,−q12)

f(−Q6,−Q14)

= q4
f(−q4)f(−Q4)

f(−Q20)

(
G(Q2)H(q4)− q18H(Q2)G(q4)

)

= q4
f(−q4)f(−Q4)

f(−Q20)
A(q2). (8.5.32.5)

By (8.2.6), it is easy to verify that

f(−q3,−q7) = f(−q2)H(−q)G(q4) and f(−q,−q9) = f(−q2)G(−q)H(q4).
(8.5.32.6)

Also from (8.2.11), we find that

f(−q,−q4)

f(−q2,−q3)
=

f(−q)

f(−q5)
H2(q) and

f(−q2,−q3)

f(−q,−q4)
=

f(−q)

f(−q5)
G2(q).

(8.5.32.7)
Using (8.5.32.6) with q replaced by q2 and (8.5.32.7) with q replaced by Q4,
we find that

− f(−Q8,−Q12)f(−q2,−q18)

f(−Q4,−Q16)
− q74

f(−Q4,−Q16)f(−q6,−q14)

f(−Q8,−Q12)

+ q36ϕ(−q10)

= −f(−q4)f(−Q4)

f(−Q20)

(
G2(Q4)G(−q2)H(q8) + q74H2(Q4)H(−q2)G(q8)

− q36
ϕ(−q10)

f(−q4)

f(−Q20)

f(−Q4)

)
. (8.5.32.8)

Next, by Entry 8.3.3 with q replaced by −q2 and (8.2.12) with q replaced by
Q4, we deduce that

ϕ(−q10)

f(−q4)

f(−Q20)

f(−Q4)
=
(
G(−q2)G(q8) + q2H(−q2)H(q8)

)
G(Q4)H(Q4).

(8.5.32.9)
Using (8.5.32.9) in (8.5.32.8), we arrive at

− f(−Q8,−Q12)f(−q2,−q18)

f(−Q4,−Q16)
− q74

f(−Q4,−Q16)f(−q6,−q14)

f(−Q8,−Q12)

+ q36ϕ(−q10)

= −f(−q4)f(−Q4)

f(−Q20)

(
H(q8)G(Q4)− q36G(q8)H(Q4)

)
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×
(
G(−q2)G(Q4)− q38H(−q2)H(Q4)

)

= −f(−q4)f(−Q4)

f(−Q20)
A(q4)B(−q2). (8.5.32.10)

By (8.5.32.4), (8.5.32.5), and (8.5.32.10), we conclude that

R1(−1, 0, 1, 0, 4, 1, 141, 3, 10)

= q19/6f(−q4)f(−Q4)
(
q4A(q2)−A(q4)B(−q2)

)
. (8.5.32.11)

Therefore, by (8.5.32.2), (8.5.32.3), and (8.5.32.11), we arrive at

−f(−q2)f(−Q2)A(q2) = f(−q4)f(−Q4)
(
q4A(q2)−A(q4)B(−q2)

)
.

(8.5.32.12)
Lastly, replacing q2 by q, we conclude that

(
χ(−q)χ(−Q) + q2

)
A(q) = B(−q)A(q2). (8.5.32.13)

Next, we prove the companion formula
(
χ(−q)χ(−Q) + q2

)
B(q) = A(−q)B(q2). (8.5.32.14)

Using (8.4.62) and noting that λ = 10, we find that

R2(0, 1, 0, 1, 3, 47, 1, 5) = R1(−1, 1, 0, 0, 3, 1, 141, 3, 10) (8.5.32.15)

and

R2(0, 1, 0, 0, 3, 47, 1, 5) = R1(−1, 1, 0,−1, 3, 1, 141, 3, 10). (8.5.32.16)

Invoking Lemma 8.4.2, noting that λ = 15, and employing (8.2.5), we find
that

R1(−1, 1, 0, 0, 3, 1, 141, 3, 10)

= q5/12f(−Q20)

{
−q19

f(−Q2,−Q18)f(q7, q13)

f(Q,Q19)
+ q2

f(−Q6,−Q14)f(q, q19)

f(Q3, Q17)

− q10
ϕ(−Q10)ψ(q5)

ψ(Q5)
+ q47

f(−Q6,−Q14)f(q9, q11)

f(Q7, Q13)

−q114
f(−Q2,−Q18)f(q3, q17)

f(Q9, Q11)

}
. (8.5.32.17)

Employing Lemma 8.4.2, noting that λ = 15, and utilizing (8.2.5) once again,
we also deduce that

R1(−1, 1, 0,−1, 3, 1, 141, 3, 10)

= q5/12f(−Q20)

{
−q20

f(−Q2,−Q18)f(q3, q17)

f(Q,Q19)
+

f(−Q6,−Q14)f(q9, q11)

f(Q3, Q17)

− q10
ϕ(−Q10)ψ(q5)

ψ(Q5)
+ q49

f(−Q6,−Q14)f(q, q19)

f(Q7, Q13)

−q113
f(−Q2,−Q18)f(q7, q13)

f(Q9, Q11)

}
. (8.5.32.18)
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Employing (8.2.19) twice with a = −q2, b = −q3, n = 2 and a = −q, b = −q4,
n = 2, we easily find that

f(−q2,−q3) = f(q9, q11)−q2f(q, q19) and f(−q,−q4) = f(q7, q13)−qf(q3, q17).
(8.5.32.19)

Now using (8.5.32.19) and subtracting (8.5.32.17) from (8.5.32.18), we find
that

R1(−1, 1, 0,−1, 3, 1, 141, 3, 10)−R1(−1, 1, 0, 0, 3, 1, 141, 3, 10) (8.5.32.20)

= q5/12f(−Q20)

{
q19

f(−Q2,−Q18)f(−q,−q4)

f(Q,Q19)
+

f(−Q6,−Q14)f(−q2,−q3)

f(Q3, Q17)

− q47
f(−Q6,−Q14)f(−q2,−q3)

f(Q7, Q13)
− q113

f(−Q2,−Q18)f(−q,−q4)

f(Q9, Q11)

}
.

Using (8.5.32.19) again, this time with q replaced by Q, we find from
(8.5.32.20) that

R1(−1, 1, 0,−1, 3, 1, 141, 3, 10)−R1(−1, 1, 0, 0, 3, 1, 141, 3, 10)

= q5/12f(−Q20)

{
q19

f(−Q2,−Q18)f(−q,−q4)f(−Q2,−Q3)

f(Q,Q19)f(Q9, Q11)

+
f(−Q6,−Q14)f(−q2,−q3)f(−Q,−Q4)

f(Q3, Q17)f(Q7, Q13)

}
. (8.5.32.21)

With several applications of (8.2.6), we can verify that

f(−Q2,−Q18)f(−Q2,−Q3)

f(Q,Q19)f(Q9, Q11)
=

f(−Q)H(Q2)

f(−Q20)
, (8.5.32.22)

f(−Q6,−Q14)f(−Q,−Q4)

f(Q3, Q17)f(Q7, Q13)
=

f(−Q)G(Q2)

f(−Q20)
. (8.5.32.23)

Using (8.2.11), (8.5.32.22), and (8.5.32.23) in (8.5.32.21), we conclude that

R1(−1, 1, 0,−1, 3, 1, 141, 3, 10)−R1(−1, 1, 0, 0, 3, 1, 141, 3, 10)

= q5/12f(−q)f(−Q)
(
G(q)G(Q2) + q19H(q)H(Q2)

)

= q5/12f(−q)f(−Q)B(q). (8.5.32.24)

Employing Lemma 8.4.3, noting that λ = 10, using (8.5.27.5), and using
(8.2.11), we find that

R2(0, 1, 0, 1, 3, 47, 1, 5) = q5/12f(−q10)

×
(
q2

f(−q2,−q8)f(−Q4,−Q6)

f(−q,−q9)
+ q21

f(−q4,−q6)f(−Q2,−Q8)

f(−q3,−q7)

)

= q5/12f(−q2)f(−Q2)
(
q2G(q)G(Q2) + q21H(q)H(Q2)

)

= q29/12f(−q2)f(−Q2)B(q). (8.5.32.25)
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We employ Lemma 8.4.3 again. Note that again λ = 10. Argue as we did in
(8.5.32.8)–(8.5.32.10). Thus, using (8.2.11), (8.5.32.7), (8.5.32.6), and Entry
8.3.3 with q replaced by −Q, we find that

R2(0, 1, 0, 0, 3, 47, 1, 5) = q5/12f(−q10)

×
(
q9

f(−q4,−q6)f(−Q3,−Q7)

f(−q2,−q8)
+ q38

f(−q2,−q8)f(−Q,−Q9)

f(−q4,−q6)
+ ϕ(−Q5)

)

= q5/12f(−q2)f(−Q2)
(
G(q2)G(Q4) + q38H(q2)H(Q4)

)

×
(
H(q2)G(−Q) + q9G(q2)H(−Q)

)

= q5/12f(−q2)f(−Q2)B(q2)A(−q). (8.5.32.26)

Therefore, by (8.5.32.15), (8.5.32.16), (8.5.32.24), (8.5.32.25), and (8.5.32.26),
we arrive at

−q2f(−q2)f(−Q2)B(q) + f(−q2)f(−Q2)B(q2)A(−q) = f(−q)f(−Q)B(q),
(8.5.32.27)

which is clearly equivalent to (8.5.32.14).
Now in (8.5.32.14), we replace q by −q and multiply the resulting identity

by (8.5.32.13) to conclude that

A(q2)B(q2) =
(
q2 + χ(q)χ(Q)

) (
q2 + χ(−q)χ(−Q)

)
. (8.5.32.28)

By (8.3.44) and (8.5.32.28), it remains to prove that
(
q + χ(q1/2)χ(Q1/2)

)(
q + χ(−q1/2)χ(−Q1/2)

)

= χ(−q)χ(−Q) + 2q2 +
2q4

χ(−q)χ(−Q)

+ q

√

4χ(−q)χ(−Q) + 9q2 +
8q4

χ(−q)χ(−Q)
. (8.5.32.29)

To prove (8.5.32.29), we employ Ramanujan’s modular equation of degree
47 [55, pp. 446–447], namely,

1

2

{
ϕ(q1/2)ϕ(Q1/2) + ϕ(−q1/2)ϕ(−Q1/2)

}

− 1

2
{ϕ(q)ϕ(Q) + ϕ(−q)ϕ(−Q)} − 2q12ψ(q2)ψ(Q2)

= q2f(q)f(Q) + q2f(−q)f(−Q) + 2q8f(−q4)f(−Q4). (8.5.32.30)

We also make use of the well-known identity [55, p. 40, Entry 25 (v), (vi)]

ϕ2(q) = ϕ2(q2) + 4qψ2(q4). (8.5.32.31)

Employing (8.5.32.31) twice, with q replaced by Q in the second instance, and
using the elementary identity ϕ(q)ϕ(−q) = ϕ2(−q2) [55, p. 40, Entry 25 (iii)],
we find that
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{ϕ(q)ϕ(Q) + ϕ(−q)ϕ(−Q)}2

= ϕ2(q)ϕ2(Q) + ϕ2(−q)ϕ2(−Q) + 2ϕ2(−q2)ϕ2(−Q)

=
(
ϕ2(q2) + 4qψ2(q4)

) (
ϕ2(Q2) + 4Qψ2(Q4)

)

+
(
ϕ2(q2)− 4qψ2(q4)

) (
ϕ2(Q2)− 4Qψ2(Q4)

)
+ 2ϕ2(−q2)ϕ2(−Q2)

= 2
(
ϕ2(q2)ϕ2(Q2) + 16q48ψ2(q4)ψ2(Q4) + ϕ2(−q2)ϕ2(−Q2)

)
.

Replacing q by q1/2 above and employing the product representations for
ϕ(±q) and ψ(q) in (8.2.7) and (8.2.8), respectively, we find that

{
ϕ(q1/2)ϕ(Q1/2) + ϕ(−q1/2)ϕ(−Q1/2)

}2

= 2
(
ϕ2(q)ϕ2(Q) + 16q24ψ2(q2)ψ2(Q2) + ϕ2(−q)ϕ2(−Q)

)

= 2f2(−q2)f2(−Q2)

(
χ4(q)χ4(Q) + χ4(−q)χ4(−Q)

+ 16q24
1

χ4(−q2)χ4(−Q2)

)
. (8.5.32.32)

For simplicity, set

L := χ(q)χ(Q) + χ(−q)χ(−Q) and T := χ(−q2)χ(−Q2).

After using the aforementioned definitions and employing elementary algebra
in (8.5.32.32), we find that

{
ϕ(q1/2)ϕ(Q1/2) + ϕ(−q1/2)ϕ(−Q1/2)

}2

= 2f2(−q2)f2(−Q2)

(
L4 − 4TL2 + 2T 2 +

16q24

T 4

)
. (8.5.32.33)

Similarly,

ϕ(q)ϕ(Q) + ϕ(−q)ϕ(−Q)

= f(−q2)f(−Q2)
(
χ2(q)χ2(Q) + χ2(−q)χ2(−Q)

)

= f(−q2)f(−Q2)
((

χ(q)χ(Q) + χ2(q)χ2(Q)
)2 − 2χ(−q2)χ(−Q4)

)

= f(−q2)f(−Q2)
(
L2 − 2T

)
. (8.5.32.34)

Next, in (8.5.32.30), we divide each term by f(−q2)f(−Q2) and use (8.5.32.33)
and (8.5.32.34) to conclude that

√
2

2

√
L4 − 4TL2 + 2T 2 +

16q24

T 4
− 1

2

(
L2 − 2T

)
− 2q12

T 2
= q2L+

2q8

T
.

(8.5.32.35)
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We solve for the expression with the square root in (8.5.32.35) and then square
both sides to obtain

(
−TL− 2 q6 + 2 q2T

) (
TL+ 2 q6

)

×
(
4T 3 − T 2L2 + 2 q2T 2L+ 8T 2q4 + 4TLq6 + 4 q8T − 4 q12

)
= 0.

It is easy to see that the first two factors do not vanish identically. Therefore,
we conclude that

4T 3 − T 2L2 + 2 q2T 2L+ 8T 2q4 + 4TLq6 + 4 q8T − 4 q12 = 0. (8.5.32.36)

Divide both sides of (8.5.32.36) by −T 2 and then complete the square to find
that (

L− q2 − 2q6

T

)2

= 4T + 9q4 +
8q8

T
. (8.5.32.37)

Lastly, using (8.5.32.37), we deduce that

2q4+
2q8

T
+ T + q2

√
4T + 9q4 +

8q8

T

= 2q4 +
2q8

T
+ T + q2

(
L− q2 − 2q6

T

)

= q4 + T + q2L

= q4 + χ(−q2)χ(−Q2) + q2 (χ(q)χ(Q) + χ(−q)χ(−Q))

=
(
χ(q)χ(Q) + q2

) (
χ(−q)χ(−Q) + q2

)
,

which is (8.5.32.29) with q replaced by q2. Hence, the proof of Entry 8.3.35 is
complete.

8.6 Other Identities for G(q) and H(q) and Final
Remarks

Berndt and Yesilyurt [73] took Watson’s idea, found several other results like
Lemmas 8.4.2 and 8.4.3, and used them to derive many new identities for the
Rogers–Ramanujan functions. An example of one of their theorems is herewith
provided.

Theorem 8.6.1.

G(q)G(−q14)− q3H(q)H(−q14)

G(q7)H(−q2) + qH(q7)G(−q2)
=

G(q56)H(q)− q11H(q56)G(q)

G(q7)G(q8) + q3H(q7)H(q8)

=
χ(−q14)

χ(−q2)
=

G(q)G(q14) + q3H(q)H(q14)

G(−q7)H(q2) + qH(−q7)G(q2)
.
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S.-S. Huang [183] expressed

{G(q4)G(q21) + q5H(q4)H(q21)}{G(q)G(q84) + q17H(q)H(q84)}

in terms of two quotients, each with 14 functions of the form f(−qn).
Another source of identities for the Rogers–Ramanujan functions is the

unpublished doctoral dissertation of S. Robins [302]. His 13 new identities
are associated with modular equations of degrees not exceeding 7 and were
proved using the theory of modular forms. Several of these have now been
proved without the theory of modular forms by Gugg [161].

Another group of identities is due to M. Koike [196], who discovered them
using Thompson series and a computer, but he did not prove them. However,
a few years later, K. Bringmann and H. Swisher [93] used modular forms to
provide proofs.

One might ask whether comparable identities hold for functions similar
to the Rogers–Ramanujan functions. Indeed, Huang [183] has derived sev-
eral identities of this type for the Göllnitz–Gordon functions. N.D. Baruah,
J. Bora, and N. Saikia [46], S.-L. Chen and Huang [109], Gugg [161], E.X.W. Xia
[344], Xia and X.M. Yao [343], Q. Yan [346], and B. Yuttanan [349] have
found further identities for these functions. H. Hahn [165] has derived a large
number of identities for septic analogues of the Rogers–Ramanujan functions.
Baruah and Bora [45] have derived several identities for nonic analogues of
the Rogers–Ramanujan functions.

Recall that in his paper [278], Ramanujan wrote that (8.1.3) “is the sim-
plest of a large class.” However, he gave no further identities of the type
(8.1.3), that is, identities involving powers of either G(q) or H(q). In his doc-
toral thesis [302], Robins discovered two further identities involving powers of
the Rogers–Ramanujan functions, namely,

G2(q)H(q2)−H2(q)G(q2) = 2qH(q)H2(q2)
f2(−q10)

f2(−q5)
(8.6.1)

and

G2(q)H(q2) +H2(q)G(q2) = 2G(q)G2(q2)
f2(−q10)

f2(−q5)
. (8.6.2)

They were rediscovered by B. Gordon and R.J. McIntosh [156]. Proofs have
also been given by Chu [114, Example 21]. In his thesis [161] and paper [160],
Gugg established not only (8.6.1) and (8.6.2) but other new identities for G(q)
and H(q) as well.

Robins [302] also used the theory of modular forms to prove

G3(q)H(q3)−G(q3)H3(q) = 3q
f3(−q15)

f(−q)f(−q3)f(−q5)
. (8.6.3)

The identity was also proved by Gugg [162], who furthermore established the
companion identity
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G3(q3)G(q) + q2H3(q3)H(q) =
f3(−q5)

f(−q)f(−q3)f(−q15)
. (8.6.4)

Combining (8.6.3) and (8.6.4), Gugg then established the identity

G3(q)H(q3)−G(q3)H3(q)

G3(q3)G(q) + q2H3(q3)H(q)
= 3q

f4(−q15)

f4(−q5)
,

which is in the spirit of several of Ramanujan’s identities.
Gugg [159, Theorem 3.1] has also established identities for the sum of

products of three different Rogers–Ramanujan functions, namely,

G2(q)G(q2)H(q4)−H2(q)H(q2)G(q4) = 2q
ψ(q2)ψ(−q5)

f(−q2)ψ(−q)

and

G2(q)G(q2)H(q4) +H2(q)H(q2)G(q4) = 2
ψ(q10)ψ(−q5)

f(−q2)ψ(−q2)
.

Gugg remarks that these identities are, in fact, equivalent to Entries 8.3.20
and 8.3.21.

Further identities for G(q) and H(q) can be found in Gugg’s paper [160].



9

Circular Summation

9.1 Introduction

On page 54 in his lost notebook [283], Ramanujan makes the following claim.

Entry 9.1.1 (p. 54). For each positive integer n and |ab| < 1,

∑

−n/2<r≤n/2

⎛

⎜⎜⎝
∞∑

k=−∞
k≡r (modn)

ak(k+1)/(2n)bk(k−1)/(2n)

⎞

⎟⎟⎠

n

= f(a, b)Fn(ab), (9.1.1)

where
Fn(q) := 1 + 2nq(n−1)/2 + · · · , n ≥ 3. (9.1.2)

At this writing, there are four different proofs of Entry 9.1.1. The first
proof was by S.S. Rangachari [286], who employed Mumford’s theory of theta
functions and root lattices. T. Murayama [234] and K.S. Chua [116], indepen-
dently, improved the work of Rangachari by removing a condition of primality
from Rangachari’s work. Next, S.H. Son [320] devised a proof of (9.1.1) that
is more in tune with Ramanujan’s work. Son used functional equations in
the spirit of q-series, and we give part of his proof in this chapter, namely,
his proof of the determination of Fn(q) in (9.1.2). H.H. Chan, Z.-G. Liu, and
S.T. Ng [101] used the classical theory of elliptic functions to provide a proof
of (9.1.1). Fourthly, P. Xu [345] devised an elementary proof of (9.1.1) that
perhaps reflects Ramanujan’s thinking more than previous proofs, and so we
present her proof.

In examining Entry 9.1.1, we see that the interest, and the difficulty, arises
from the fact that the function multiplying f(a, b) on the right-hand side of
(9.1.1) is a function of ab only. The proof of Xu brings out this fact in a
more elementary manner than previous proofs. The focus in (9.1.2) is on the
coefficient of q(n−1)/2, for which two approaches have been given, the first
being that of Rangachari [286] and Son [320], and the second being that of

G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook: Part III,
DOI 10.1007/978-1-4614-3810-6 9,
c© Springer Science+Business Media New York 2012

337
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Chan, Liu, and Ng [101]. In this chapter, we present both approaches. Formula
(9.1.2) could be extended to include the cases n = 1, 2, but the coefficients
of q(n−1)/2, i.e., of q0 and q1/2, respectively, would need to be altered. When
n = 1, the identity (9.1.1) merely reduces to the tautology f(a, b) = f(a, b).
When n = 2, the identity (9.1.1) holds if the coefficient 2 in (9.1.2) is deleted.

On page 54, Ramanujan provides five examples to illustrate Entry 9.1.1,
namely, for n = 2, 3, 4, 5, 7. (Of course, when n = 2, the identity of Entry 9.1.1
needs modification as mentioned above.) In the latter portions of this chapter,
we prove each of these examples in detail. We also briefly discuss examples
found by other authors to illustrate Entry 9.1.1.

The appellation circular was initiated by Son [320], evidently to illustrate
the fact that the summation index r in Entry 9.1.1 could be replaced by any
set of n consecutive integers.

So that readers may even better appreciate Entry 9.1.1, we are going to
illustrate Son’s observation and put the entry in a form harking back to one
of Ramanujan’s standard theta function identities from his earlier notebooks
[282]. Set k = r + jn and note that the left side of (9.1.1) is independent of
the complete residue system modulo n that we use. Thus, if Gn = Gn(a, b)
denotes the left-hand side of (9.1.1), then

Gn(a, b) =

n−1∑

r=0

⎛

⎝
∞∑

j=−∞
a(r+jn)(r+jn+1)/(2n)b(r+jn)(r+jn−1)/(2n)

⎞

⎠
n

(9.1.3)

=

n−1∑

r=0

⎛

⎝ar(r+1)/(2n)br(r−1)/(2n)
∞∑

j=−∞
anj

2/2+j/2+rjbnj
2/2−j/2+rj

⎞

⎠
n

=

n−1∑

r=0

(
ar(r+1)/(2n)br(r−1)/(2n)

×f(an/2+r+1/2bn/2+r−1/2, an/2−r−1/2bn/2−r+1/2)
)n

=

n−1∑

r=0

ar(r+1)/2br(r−1)/2fn(an/2+r+1/2bn/2+r−1/2, an/2−r−1/2bn/2−r+1/2).

If we set

Uj := Uj(n) := aj(j+1)/(2n)bj(j−1)/(2n), j ≥ 0, (9.1.4)

and

Vj := Vj(n) := aj(j−1)/(2n)bj(j+1)/(2n), j ≥ 0, (9.1.5)

then we can rewrite (9.1.3) in the form

Gn(a, b) =

n−1∑

r=0

Ur(1)f
n

(
Un+r

Ur
,
Vn−r

Ur

)
=

n−1∑

r=0

(
Urf

(
Un+r

Ur
,
Vn−r

Ur

))n

.

(9.1.6)
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The proposed identity (9.1.6) should be compared with a fundamental
representation for a single theta function as a sum of theta functions that can
be found as Entry 31 in Chapter 16 of Ramanujan’s second notebook [283],
[55, p. 48] in the form

f(a, b) =

n−1∑

r=0

Urf

(
Un+r

Ur
,
Vn−r

Ur

)
, (9.1.7)

where |ab| < 1, n is any positive integer, and now

Uj := aj(j+1)/2bj(j−1)/2, j ≥ 0, (9.1.8)

and

Vj := aj(j−1)/2bj(j+1)/2, j ≥ 0. (9.1.9)

(See also (3.2.2) and (8.2.19).) Note that the definitions of Uj and Vj in (9.1.8)
and (9.1.9) differ from those in (9.1.4) and (9.1.5) and are, respectively, Uj(1)
and Vj(1) in (9.1.4) and (9.1.5). We have made this slight alteration in nota-
tion to emphasize the similarity of the forms in (9.1.6) and (9.1.7).

9.2 Proof of Entry 9.1.1

We begin by giving Xu’s proof of (9.1.1) [345].

Proof. Set a = qx and b = q/x. Using the representation on the far right side
of (9.1.3), we put Gn(a, b) =: Gn(q) in the form

Gn(q) =

n−1∑

r=0

qr
2

xr

{ ∞∑

m=−∞
qnm

2−2rmx−m

}n

. (9.2.1)

Expanding Gn in a Laurent series in x, we write

n−1∑

r=0

qr
2

xr

{ ∞∑

m=−∞
qnm

2−2rmx−m

}n

=

∞∑

m=−∞
Fn,m(q)qm

2

xm. (9.2.2)

Our objective is to show that Fn,m(q) is independent of m, i.e., we can write
Fn,m(q) = Fn(ab) = Fn(q

2), and so reduce (9.2.2) to the form

n−1∑

r=0

qr
2

xr

{ ∞∑

m=−∞
qnm

2−2rmx−m

}n

= Fn(q)

∞∑

m=−∞
qm

2

xm = Fn(ab)f(a, b).

(9.2.3)
Equating coefficients of xm on both sides of (9.2.2) and setting Fn,m =
Fn,m(q), we find that
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Fn,m =

n−1∑

r=0

∞∑

m1,...,mn=−∞
m1+···+mn=r−m

qn(m
2
1+···+m2

n)−2r(m1+···+mn)+r2−m2

=

n−1∑

r=0

∞∑

m1,...,mn=−∞
m1+···+mn=r−m

qn(m
2
1+···+m2

n)−(r−m)2

=

n−1∑

r=0

∞∑

m1,...,mn=−∞
m1+···+mn=r−m

qn(m
2
1+···+m2

n)−(m1+···+mn)
2

. (9.2.4)

Suppose now that we replace mj by mj − 1, for each j, 1 ≤ j ≤ n, in (9.2.4).
Then, after simplifying the exponents above, we find that

Fn,m =

n−1∑

r=0

∞∑

m1,...,mn=−∞
m1+···+mn=r−m+n

qn(m
2
1+···+m2

n)−(m1+···+mn)
2

. (9.2.5)

Hence, we see that in the inner sum above, the summation condition on m1+
· · ·+mn can be taken over any n consecutive integers. Therefore, the multiple
series on the right-hand side of (9.2.5) is independent of m. Thus, by (9.2.2)
and (9.2.5), we have indeed demonstrated that (9.2.3) holds to complete the
proof.

We now demonstrate the truth of (9.1.2). First, we use an argument due
to Son [320]. Set x = 1 in (9.2.1) and (9.2.3), so that

Gn(q) =

n−1∑

r=0

qr
2

fn(qn+2r, qn−2r) :=

n−1∑

r=0

Sr, (9.2.6)

where
Sr := Sr(q) := qr

2

fn(qn+2r, qn−2r) = S−r(q). (9.2.7)

Recall the fundamental property [55, p. 34, Entry 18(iv)]

f(a, b) = ak(k+1)/2bk(k−1)/2f(a(ab)k, b(ab)−k), (9.2.8)

where k is any integer. Applying (9.2.8) with k = −1, we find that

f(qn+(2n−2r), qn−(2n−2r)) = q2r−nf(qn+2r, qn−2r),

and so

Sn−r = q(n−r)2fn(qn+(2n−2r), qn−(2n−2r)) = qr
2

fn(qn+2r, qn−2r) = Sr.
(9.2.9)

Hence, from (9.2.6), (9.2.9), and (9.2.7), we deduce that

Gn(q) =
∑

−n/2<r≤n/2

Sr = S0 + 2
∑

0<r<n/2

Sr +
1 + (−1)n

2
Sn/2, (9.2.10)
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where the last term is present only when n is even. By definition,

f(qn+2r, qn−2r) = 1 + qn−2r + qn+2r + · · · .

Thus, for 0 ≤ r < n/2, by the multinomial theorem,

Sr = qr
2

(1 + nqn−2r + nqn+2r + · · · )

= qr
2

+ nqn−1+(r−1)2 + nqn+2r+r2 + · · · . (9.2.11)

Excluding the squares {qr
2

}r<√
n, we see that the term with the lowest

power of q in Gn(q) arises from S1 and is equal to nqn−1. Thus, expanding
Gn(q) and f(q, q) = ϕ(q), where ϕ(q) is defined in (5.11.1), using (9.2.3),
(9.2.10), and (9.2.11), and setting r0 = �

√
n�, we arrive at

Gn(q) = 1 + 2q + · · ·+ 2qr
2
0 + 2nqn−1 + 4nqn + · · ·+ 2q(r0+1)2 + · · ·

= (1 + 2q + · · ·+ 2qr
2
0 + · · · )Fn(q

2).

By long division, we find that

Fn(q
2) = 1 + 2nqn−1 + · · · ,

as desired, and this completes the proof.
We now give a second proof of (9.1.2) that is due to Chan, Liu, and Ng

[101]. Earlier, we showed that the inner sum in (9.2.5) is independent of m.
Thus, we can write

Fn(q) =

n−1∑

r=0

∞∑

m1,m2,...,mn=−∞
m1+m2+···+mn=r

qn(m
2
1+m2

2+···+m2
n)−r2 . (9.2.12)

We use (9.2.12) to prove (9.1.2).
By the Cauchy–Schwarz inequality,

n(m2
1 +m2

2 + · · ·+m2
n) ≥ (m1 +m2 + · · ·+mn)

2 = r2.

Thus, Fn(q) is a Taylor series in q. To prove (9.1.2), we need to study the
number of the solutions of the Diophantine equations

{
n(m2

1 +m2
2 + · · ·+m2

n)− r2 = t,
m1 +m2 + · · ·+mn = r.

(9.2.13)

Let N(t) denote the number of solutions of the equations above. Then,

Fn(q) = N(0) +N(1)q + · · ·+N(n− 1)qn−1 + · · · .

It is obvious that for any integer m, m2 ≥ m. Thus,
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m2
1 +m2

2 + · · ·+m2
n ≥ m1 +m2 + · · ·+mn.

Combining this with (9.2.13), we find that

t ≥ r(n− r), for 0 ≤ r ≤ n− 1. (9.2.14)

When t = 0, this inequality holds only when r = 0. Then (9.2.13) becomes

{
m2

1 +m2
2 + · · ·+m2

n = 0,
m1 +m2 + · · ·+mn = 0.

The only solution of this equation is m1 = m2 = · · · = mn = 0, and thus
N(0) = 1.

When 1 ≤ r ≤ n− 1, we find from (9.2.14) that

t ≥ r(n− r) ≥ n− 1. (9.2.15)

Hence, N(t) = 0 for 1 ≤ t ≤ n− 2. The equality in (9.2.15) holds if and only
if r = 1 or r = n− 1.

When r = 1, (9.2.13) becomes

{
m2

1 +m2
2 + · · ·+m2

n = 1,
m1 +m2 + · · ·+mn = 1.

(9.2.16)

The solutions of (9.2.16) are (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1), and the
number of solutions is clearly n.

When r = n− 1, (9.2.13) becomes

{
m2

1 +m2
2 + · · ·+m2

n = n− 1,
m1 +m2 + · · ·+mn = n− 1.

(9.2.17)

The solutions of the set (9.2.17) are (0, 1, . . . , 1), (1, 0, . . . , 1), . . . , (1, 1, . . . , 0),
since

m1(m1 − 1) + · · ·+mn(mn − 1) = 0,

and since the trivial inequality m2
i ≥ mi implies that mi(mi − 1) = 0. It

follows that mi = 0 or 1. Therefore, the number of solutions in this case is n.
Combining this number with the number of solutions for r = 1, we conclude
that N(n− 1) = 2n. This completes the proof of (9.1.2). ��

9.3 Reformulations and Work of H.H. Chan, Z.-G. Liu,
S.T. Ng, A. Berkovich, F.G. Garvan, and H. Yesilyurt

Although the proof of Ramanujan’s key theorem, Entry 9.1.1, is relatively
short, it is generally not easy to calculate specific examples, i.e., to explicitly
determine Fn(ab). Either heavy machinery, or clever arguments, or both are
needed. We find it more instructive to attempt to construct proofs in a manner
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that Ramanujan might have discovered rather than to invoke the theory of
modular forms. To that end, we are going to use an approach of Chan, Liu, and
Ng [101] and transform Entry 9.1.1. Then we will employ ideas of Berkovich,
Garvan, and Yesilyurt [53] first to reformulate the theorem of Chan, Liu, and
Ng and second to devise a “constant term” method to determine individual
examples.

Because we are going to apply the transformation τ �→ −1/τ to Ramanu-
jan’s identity, it will be convenient to convert Ramanujan’s theorem into one
involving the classical theta function

θ3(z|τ) :=
∞∑

m=−∞
qm

2

e2miz, q = eπiτ , Im τ > 0, z ∈ C.

We now easily check that Entry 9.1.1 can be recast in the equivalent form
given below.

Theorem 9.3.1. For each positive integer n,

n−1∑

k=0

qk
2

e2kizθn3 (z + kπτ | nτ) = θ3(z | τ)Fn(τ), (9.3.1)

where for n ≥ 3,
Fn(τ) = 1 + 2nqn−1 + · · · . (9.3.2)

Next, we transform Theorem 9.3.1 into an equivalent theorem that will
be more convenient for us. We emphasize that Theorem 9.3.2 is equivalent to
Entry 9.1.1.

Theorem 9.3.2. For each positive integer n,

n−1∑

k=0

θn3

(
z +

kπ

n

∣∣∣∣τ
)

= Gn(τ)θ3(nz | nτ), (9.3.3)

where

Gn(τ) :=
√
n(−iτ)(1−n)/2Fn

(
− 1

nτ

)
. (9.3.4)

Proof. Replacing τ by −1/(nτ) and then z by z/τ in (9.3.1), we find that

n−1∑

k=0

e−
πik2

nτ +
2ikz
τ θn3

(
z

τ
− kπ

nτ

∣∣∣∣−
1

τ

)
= Fn

(
− 1

nτ

)
θ3

(
z

τ

∣∣∣∣−
1

nτ

)
. (9.3.5)

Using the transformation formula for θ3 [339, p. 475] on both sides of (9.3.5)
and simplifying, we deduce that

n−1∑

k=0

θn3

(
z − kπ

n

∣∣∣∣τ
)

=
√
n(−iτ)(1−n)/2Fn

(
− 1

nτ

)
θ3(nz | nτ). (9.3.6)

Replacing z by −z and realizing that θ3(z | τ) is an even function of z, we
complete the proof of (9.3.3). ��
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Now set x = e2iz and ωn = e2πi/n. Then, written out in summation
notation, (9.3.3) assumes the shape

Gn(τ)

∞∑

m=−∞
qnm

2

xnm =

n−1∑

k=0

{ ∞∑

m=−∞
qm

2

ωkm
n xm

}n

(9.3.7)

=
n−1∑

k=0

∞∑

m1,m2,...,mn=−∞
qm

2
1+m2

2+···+m2
nωk(m1+m2+···+mn)

n xm1+m2+···+mn .

If we equate constant terms on both sides of (9.3.7), we find that

Gn(τ) = n

∞∑

m1,m2,...,mn=−∞
m1+m2+···+mn=0

qm
2
1+m2

2+···+m2
n =: nZn(q). (9.3.8)

We transform (9.3.7) into Ramanujan’s notation for theta functions. With
x = 1 and ωn as given above, (9.3.7) can be rewritten in the form

n−1∑

k=0

fn(qωk
n, qω

−k
n ) = Gn(τ)ϕ(q

n) = nZn(q)ϕ(q
n). (9.3.9)

We now offer the approach of Berkovich, Garvan, and Yesilyurt [53] to
individual examples. Set

Rn(x, q) := fn(qx, qx−1), n ≥ 1, (9.3.10)

and
Rn(q) := [x0]Rn(x, q), (9.3.11)

where [xn]f(x) is the coefficient of xn in the Laurent expansion of f(x) about
x = 0. Applying (9.2.8) with a = qx, b = qx−1, and k = 1, we see that

Rn(q
2x, q) = (qx)−nRn(x, q). (9.3.12)

It is also obvious from the definition (9.3.10) that

Rn(x, q) = Rn(x
−1, q). (9.3.13)

Now set

Rn(x, q) =

∞∑

j=−∞
Aj(q)x

j . (9.3.14)

Clearly, from (9.3.13),
Aj(q) = A−j(q). (9.3.15)

Using (9.3.12), (9.3.13), and induction on k, we can show that

Ank+j(q) = qnk
2+2kjAj(q), 0 ≤ j ≤ n− 1. (9.3.16)
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Hence, using (9.3.16), we find that

Rn(x, q) =

n−1∑

j=0

Aj(q)

∞∑

k=−∞
qnk

2+2kjxnk+j

=

n−1∑

j=0

xjAj(q)f(q
n+2jxn, qn−2jx−n). (9.3.17)

For a fixed integer 	, 0 ≤ 	 ≤ n− 1, multiply both sides of (9.3.17) by x−	.
Then replace x by ωr

n and sum on r, 0 ≤ r ≤ n − 1. Inverting the order of
summation, we arrive at

n−1∑

r=0

ω−r	
n Rn(ω

r
n, q) =

n−1∑

j=0

Aj(q)f(q
n+2j , qn−2j)

n−1∑

r=0

ωr(j−	)
n

= nA	(q)f(q
n+2	, qn−2	). (9.3.18)

In particular, taking 	 = 0 and noting from (9.3.11) and (9.3.14) that Rn(q) =
[x0]Rn(x, q) = A0(q), we conclude that

n−1∑

r=0

Rn(ω
r
n, q) = nRn(q)ϕ(q

n). (9.3.19)

If we compare (9.3.19) with (9.3.9) and note the definitions of Rn(x, q), Zn(q),
and Rn(q) in (9.3.10), (9.3.8), and (9.3.11), respectively, we see that (9.3.19)
and (9.3.9) are identical.

9.4 Special Cases

We now discuss the five identities arising from the cases n = 2, 3, 4, 5, 7 in
Entry 9.1.1. We write Entries 9.4.1, 9.4.2, 9.4.3, and 9.4.4 in two forms, the
original form of Ramanujan and the equivalent formulation under the trans-
formation τ �→ −1/τ . In other words, in view of (9.3.19), we present Rn(q),
when n = 2, 3, 4, 5. In our proofs below, we either give a proof of Ramanujan’s
formulation or offer a proof in the transformed reformulation.

Entry 9.4.1 (p. 54). We have

f2(a3/2b1/2, a1/2b3/2) + af2(a5/2b3/2, a−1/2b1/2) = f(a, b)ϕ(
√
ab) (9.4.1)

and
R2(q) = ϕ(q2). (9.4.2)
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Observe that (9.4.1) does not fit the pattern of (9.1.1), because the coef-
ficient of

√
ab in (9.4.1) equals 2, whereas if (9.1.1) were valid for n = 2, then

the coefficient of
√
ab should be 4. In passing, we note the identity [55, p. 46,

Entry 30(v)]

f2(
√
a,
√
b) + f2(−

√
a,−

√
b) = 2f(a, b)ϕ(

√
ab),

which is more elementary than (9.4.1).

First Proof of Entry 9.4.1. This proof is due to Son [320]. First, in the addi-
tion formula (9.1.7), let n = 2 and replace a and b by

√
a and

√
b, respectively.

Hence,

f(a1/2, b1/2) = f(a3/2b1/2, a1/2b3/2) + a1/2f(a5/2b3/2, a−1/2b1/2). (9.4.3)

Next, replace
√
a and

√
b by ±i

√
a and ±i

√
b in (9.4.3) to arrive at

f(±ia1/2,±ib1/2) = f(a3/2b1/2, a1/2b3/2)± ia1/2f(a5/2b3/2, a−1/2b1/2).

Multiplying the two identities above together, we deduce that

f(ia1/2, ib1/2)f(−ia1/2,−ib1/2)

= f2(a3/2b1/2, a1/2b3/2) + af2(a5/2b3/2, a−1/2b1/2). (9.4.4)

Comparing (9.4.4) with (9.4.1), we see that it remains to show that

f(ia1/2, ib1/2)f(−ia1/2,−ib1/2) = f(a, b)ϕ(
√
ab). (9.4.5)

To that end, by the Jacobi triple product identity (8.2.6) and Euler’s
pentagonal number theorem (8.2.9),

f(ia1/2, ib1/2)f(−ia1/2,−ib1/2)

= (−ia1/2;−(ab)1/2)∞(−ib1/2;−(ab)1/2)∞(−(ab)1/2;−(ab)1/2)∞

× (ia1/2;−(ab)1/2)∞(ib1/2;−(ab)1/2)∞(−(ab)1/2;−(ab)1/2)∞

= (−a; ab)∞(−b; ab)∞f2(
√
ab)

=
f(a, b)

f(−ab)
f2(

√
ab)

= f(a, b)ϕ(
√
ab),

where in the last step we used the identity [55, p. 39, Entry 2(iii)]

ϕ(q) =
f2(q)

f(−q2)
.

��
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Second Proof of Entry 9.4.1. From [55, p. 40, Entries 30(v), (vi)],

f2(a, b) + f2(−a,−b) = 2f(a2, b2)ϕ(ab),

f2(a, b)− f2(−a,−b) = 4af

(
b

a
,
a

b
a2b2

)
ψ(a2b2).

Add the two identities above to obtain

f2(a,b) = f(a2, b2)ϕ(ab) + 2af

(
b

a
,
a

b
a2b2

)
ψ(a2b2). (9.4.6)

Putting a = q/x and b = qx in (9.4.6), we find that

R2(x, q) = f2(qx, q/x) = f(q2x2, q2/x2)ϕ(q2)+2
q

x
f(x2, q4/x2)ψ(q4). (9.4.7)

It is now immediate that (9.4.2) follows from (9.4.7). ��

Third Proof of Entry 9.4.1. As suggested by M. Somos, in Lemma 8.5.4, set
x = −a, y = −

√
ab, and q = ab. We then immediately obtain (9.4.1). ��

Entry 9.4.2 (p. 54). We have

f3(a2b, ab2) + af3(b, a3b2) + bf3(a, a2b3) = f(a, b)F3(ab), (9.4.8)

where

F3(q) =

(
f9(−q)

f3(−q3)
+ 27q

f9(−q3)

f3(−q)

)1/3

=
ψ3(q)

ψ(q3)
+ 3q

ψ3(q3)

ψ(q)
. (9.4.9)

Also,
R3(q) = a(q2) = ϕ(q2)ϕ(q6) + 4q2ψ(q4)ψ(q12), (9.4.10)

where a(q) is the cubic theta function of J.M. and P.B. Borwein [79] and of
Ramanujan, which is defined by

a(q) :=

∞∑

m,n=−∞
qm

2+mn+n2

.

A different representation for F3(q) can be found in Ramanujan’s earlier
notebooks [282, p. 321]. If

(
n
3

)
denotes the Legendre symbol, then [57, p. 142,

Entry 3]

f3(a2b, ab2)+af3(b, a3b2)+bf3(a, a2b3) = f(a, b)

(
1 + 6

∞∑

n=1

(n
3

) anbn

1− anbn

)
.

(9.4.11)
A proof of (9.4.11) can be found in Berndt’s paper [56]. Thus, combining the
identities (9.4.9) with (9.4.11), we deduce the following corollary, which, in
fact, is part of the content of Entry 3(i) in Chapter 21 in Ramanujan’s second
notebook [282], [55, p. 460].
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Corollary 9.4.1. If
(
n
3

)
denotes the Legendre symbol, then

(
f9(−q)

f3(−q3)
+ 27q

f9(−q3)

f3(−q)

)1/3

=
ψ3(q)

ψ(q3)
+ 3q

ψ3(q3)

ψ(q)
= 1 + 6

∞∑

n=1

(n
3

) qn

1− qn
.

The representation (9.4.10) is given in [282, p. 328], [58, p. 93, Equation
(2.7)]. Several other representations for R3(q) can be derived. For example
[58, pp. 110–111],

R3(q) = a(q2) =
ϕ3(−q6)

ϕ(−q2)
+ 4q2

ψ3(q6)

ψ(q2)
=

ψ3(q2)

ψ(q6)
+ 3q2

ψ3(q6)

ψ(q2)
.

Proof. From (9.4.7),

R3(q) = [x0]R3(x, q) (9.4.12)

= [x0]
(
f(qx, q/x)(f(q2x2, q2/x2)ϕ(q2) + 2

q

x
f(x2, q4/x2)ψ(q4))

)
.

We now determine the prescribed coefficient above. First, we observe that

[x0](f(qx, q/x)f(q2x2, q2/x2)) = [x0]

∞∑

m,n=−∞
qn

2+2m2

xn+2m (9.4.13)

=

∞∑

m,n=−∞
n+2m=0

qn
2+2m2

=

∞∑

m=−∞
q6m

2

= ϕ(q6).

A similar argument yields

[x1](f(qx, q/x)f(x2, q4/x2)) = 2qψ(q12). (9.4.14)

Putting (9.4.13) and (9.4.14) in (9.4.12), we deduce that

R3(q) = ϕ(q2)ϕ(q6) + 4q2ψ(q4)ψ(q12),

which, by (9.4.10), is what we wanted to prove. ��

Entry 9.4.3 (p. 54). We have

F4(q) = ϕ3(q2) + (2
√
q)3ψ3(q4) (9.4.15)

and

R4(q) =
1

2

(
ϕ3(q) + ϕ3(−q)

)
. (9.4.16)

Proof. We use two elementary identities found in Chapter 16 of Ramanujan’s
second notebook [282]. From Entry 30(iv) with a = qx and b = q/x [55, p. 46],

f(qx, q/x)f(−xq,−q/x) = f(−q2x2,−q2/x2)ϕ(−q2), (9.4.17)
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and from Entry 29(i) with a = b = q, c = qx, and d = q/x [55, p. 45],

2f2(q2x, q2/x) = ϕ(q)f(qx, q/x) + ϕ(−q)f(−qx,−q/x). (9.4.18)

Setting x = 1 in (9.4.17) yields

ϕ2(−q2) = ϕ(q)ϕ(−q). (9.4.19)

Putting x = 1 in (9.4.7), we find that

ϕ2(q) = ϕ2(q2) + 4qψ2(q4), (9.4.20)

while putting x = 1 in (9.4.18), we find that

ϕ2(q) + ϕ2(−q) = 2ϕ2(q2). (9.4.21)

Square both sides of (9.4.18), with a and b as prescribed above, and employ
(9.4.17), (9.4.19), (9.4.7), (9.4.20), and (9.4.21) to deduce that

4f4(q2x, q2/x)

= ϕ2(q)f2(qx, q/x) + ϕ2(−q)f2(−qx,−q/x) + 2ϕ3(−q2)f(−q2x2,−q2/x2)

= ϕ2(q)
(
ϕ(q2)f(q2x2, q2/x2) + 2

q

x
ψ(q4)f(x2, q4/x2)

)

+ ϕ2(−q)
(
ϕ(q2)f(q2x2, q2/x2)− 2

q

x
ψ(q4)f(x2, q4/x2)

)

+ 2ϕ3(−q2)f(−q2x2,−q2/x2)

= ϕ(q2)
(
ϕ2(q) + ϕ2(−q)

)
f(q2x2, q2/x2) + 2

q

x
ψ(q4)

(
ϕ2(q)− ϕ2(−q)

)

× f(x2, q4/x2) + 2ϕ3(−q2)f(−q2x2,−q2/x2)

= 2ϕ3(q2)f(q2x2, q2/x2) + 16
q2

x
ψ3(q4)f(x2, q4/x2)

+ 2ϕ3(−q2)f(−q2x2,−q2/x2).

Upon dividing both sides by 2 and replacing q2 by q, we conclude that

2R4(x, q) = ϕ3(q)f(qx2, q/x2)

+ 8
q

x
ψ3(q2)f(x2, q2/x2) + ϕ3(−q)f(−qx2,−q/x2), (9.4.22)

from which (9.4.16) readily follows. ��

Entry 9.4.4 (p. 54). We have

F5(q) =
f5(−q)

f(−q5)
+ 5q

f5(−q5)

f(−q)
(9.4.23)

and

R5(q) =
f5(−q2)

f(−q10)
+ 25q2

f5(−q10)

f(−q2)
. (9.4.24)



350 9 Circular Summation

Proof. From (9.4.22), we see that

2R5(q) = 2[x0] (f(qx, q/x)R4(q))

= ϕ3(q)[x0]
(
f(qx, q/x)f(qx2, q/x2)

)

+ ϕ3(−q)[x0]
(
f(qx, q/x)f(−qx2,−q/x2)

)

+ 8qψ3(q2)[x1]
(
f(xq, q/x)f(x2, q2/x2)

)
. (9.4.25)

Now,

[x0]
(
f(qx, q/x)f(qx2, q/x2)

)
= [x0]

∞∑

m,n=−∞
qm

2+n2

x2m+n

=

∞∑

m,n=−∞
2m+n=0

qm
2+n2

=

∞∑

m=−∞
q5m

2

= ϕ(q5).

(9.4.26)

Similar arguments show that

[x0]
(
f(qx, q/x)f(−qx2,−q/x2)

)
= ϕ(−q5) (9.4.27)

and
[x1]

(
f(xq, q/x)f(x2, q2/x2)

)
= 2qψ(q10). (9.4.28)

Collecting (9.4.26)–(9.4.28) and putting our findings in (9.4.25), we conclude
that

R5(q) =
1

2

(
ϕ3(q)ϕ(q5) + ϕ3(−q)ϕ(−q5)

)
+ 8q2ψ3(q2)ψ(q10). (9.4.29)

To show that (9.4.29) and (9.4.24) are equivalent, we use an argument of
Berkovich, Garvan, and Yesilyurt [53]. To do this, we need some results from
a paper by Berkovich and Yesilyurt [52]. Write the factorization of a positive
integer n > 1 in the form

n = 5d
r∏

i=1

pvii

s∏

j=1

q
wj

j , (9.4.30)

where pi, 1 ≤ i ≤ r, and qj , 1 ≤ j ≤ s, are primes with pi ≡ ±1 (mod 5) and
qj ≡ ±2 (mod 5). Then [52, pp. 403–404, Equations (7.22), (7.24)]

α(n) := [qn]
f5(−q)

f(−q5)
= −5

r∏

i=1

1− pvi+1
i

1− pi

s∏

j=1

1− (−qj)
wj+1

1 + qj
(9.4.31)

and

β(n) := [qn]
qf5(−q5)

f(−q)
= 5d

r∏

i=1

1− pvi+1
i

1− pi

s∏

j=1

(−1)wj
1− (−qj)

wj+1

1 + qj
. (9.4.32)
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We now write the factorization of n in the slightly different form

n = 2g5d
r∏

i=1

pvii

s∏

j=1

q
wj

j ,

with pi ≡ ±1 (mod 5), qj ≡ ±2 (mod 5), and qj odd. Also, let t be the num-
ber of odd prime divisors of n, counting multiplicities, that are congruent to
±2 (mod 5). With this reformulation, we can clearly write (9.4.31) and (9.4.32)
in their equivalent forms

α(n) = −5
1− (−2)g+1

3
u(n) (9.4.33)

and

β(n) = 5d(−1)t+g 1− (−2)g+1

3
u(n), (9.4.34)

where

u(n) =

r∏

i=1

1− pvi+1
i

1− pi

s∏

j=1

1− (−qj)
wj+1

1 + qj
. (9.4.35)

It was shown in [52, Theorem 7.1] that

[qn](ϕ3(q)ϕ(q5)) = b(n) := (−1)n−1(1 + 5d+1(−1)g+t)
(5 + (−2)g+1)

3
u(n),

(9.4.36)

[qn](4qψ3(q)ψ(q5)) = c(n) := (−2)g(−1 + 5d+1(−1)g+t)u(n). (9.4.37)

To demonstrate the equivalence of (9.4.29) and (9.4.24), we see, by (9.4.36),
(9.4.37), (9.4.33), and (9.4.34), that it suffices to prove the identity

b(2n) + 2c(n) = α(n) + 25β(n). (9.4.38)

Observe that by (9.4.36), (9.4.37), and (9.4.35),

b(2n) + 2c(n)

= (−1)2n−1(1 + 5d+1(−1)g+t+1)
(5 + (−2)g+2)

3
u(n)

+ 2(−2)g(−1 + 5d+1(−1)g+t)u(n)

= −(1 + 5d+1(−1)g+t+1)
(5 + (−2)g+2)

3
u(n)

+ (−2)g+1(1 + 5d+1(−1)g+t+1)u(n)

= (1 + 5d+1(−1)g+t+1)u(n)

(
(−2)g+1 − (5 + (−2)g+2)

3

)

= (1 + 5d+1(−1)g+t+1)

(
5(−2)g+1 − 5

3

)
u(n)
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= (5d+2(−1)t+g − 5)

(
1− (−2)g+1

3

)
u(n)

= α(n) + 25β(n),

by (9.4.33), and (9.4.34). Hence, (9.4.38) has been demonstrated, and so the
proof of Entry 9.4.4 is complete. ��

Entry 9.4.5 (p. 54). We have

F7(q) =
f7(−q)

f(−q7)
+ 7qf3(−q)f3(−q7) + 7q2

f7(−q7)

f(−q)
. (9.4.39)

To prove Ramanujan’s formula for F7(q) given in Entry 9.4.5, we use Son’s
argument [320], which employs modular equations of degree 7. Thus, we first
review some basic facts about modular equations; for the definition of a mod-
ular equation of degree n, see the second author’s book [55, p. 4]. Set, for each
positive integer n,

zn = ϕ2(qn), (9.4.40)

where ϕ(q) is defined by (5.11.1). Recall that the multiplier m is defined by

m =
z1
zn

=
ϕ2(q)

ϕ2(qn)
. (9.4.41)

We require three modular equations of degree 7 from Chapter 19 of Ramanu-
jan’s second notebook [282], [55, p. 314, Entries 19(i), (ii)]. If β has degree 7
over α, then

(αβ)1/8 + {(1− α)(1− β)}1/8 = 1, (9.4.42)

m =

1− 4

(
β7(1− β)7

α(1− α)

)1/24

{(1− α)(1− β)}1/8 − (αβ)1/8
, (9.4.43)

and

7

m
=

1− 4

(
α7(1− α)7

β(1− β)

)1/24

(αβ)1/8 − {(1− α)(1− β)}1/8 . (9.4.44)

Set
t := (αβ)1/8, (9.4.45)

where β has degree 7 over α. Following Son [320], we introduce the notation

p1 := 4

(
β7(1− β)7

α(1− α)

)1/24

, (9.4.46)

p2 := 4

(
α7(1− α)7

β(1− β)

)1/24

, (9.4.47)

p3 := p1 − 1. (9.4.48)
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Lastly, we need the following results from the lost notebook, first proved
by Son [319], [15, p. 180], [16, pp. 180, 194].

Theorem 9.4.1. Let p1 be given by (9.4.46), and let

u := 2q1/7
f(q5, q9)

ϕ(q7)
, v := 2q4/7

f(q3, q11)

ϕ(q7)
, w := 2q9/7

f(q, q13)

ϕ(q7)
.

Then
ϕ8(q)

ϕ8(q7)
− (2 + 5p1)

ϕ4(q)

ϕ4(q7)
+ (1− p1)

3 = 0 (9.4.49)

and

u7 + v7 + w7 =
ϕ8(q)

ϕ8(q7)
− 7(p1 − 2)

ϕ4(q)

ϕ4(q7)
+ 7p21 − 49p1 − 15. (9.4.50)

After this preliminary preparation, we are now ready to present Son’s proof
of Entry 9.4.5 [320]. We first reformulate Ramanujan’s Entry 9.1.1 for n = 7.

Theorem 9.4.2. Let

P := f(a4b3, a3b4), Q := a1/7f(a5b4, a2b3),

R := b1/7f(a4b5, a3b2), S := a3/7b1/7f(a6b5, ab2),

T := a1/7b3/7f(a5b6, a2b), U := a6/7b3/7f(a7b6, b),

V := a3/7b6/7f(a, a6b7).

Then, for |ab| < 1,

P 7 +Q7 +R7 + S7 + T 7 + U7 + V 7

= f(a, b)

{
f7(−ab)

f(−a7b7)
+ 7abf3(−ab)f3(−a7b7) + 7a2b2

f7(−a7b7)

f(−ab)

}
.

To prove Theorem 9.4.2, we see from Entry 9.1.1 that if we set a = b = q,
then it suffices to prove the following theorem.

Theorem 9.4.3. For |q| < 1,

ϕ7(q7) + 2qf7(q5, q9) + 2q4f7(q3, q11) + 2q9f7(q, q13)

= ϕ(q)

{
f7(−q2)

f(−q14)
+ 7q2f3(−q2)f3(−q14) + 7q4

f7(−q14)

f(−q2)

}
.

Lemma 9.4.1. For p3 defined by (9.4.48),

m4 − 7(p3 − 1)m2 − 49p3 = (m2 − 7p3)
2 + 7

(
m− p23

m

)2

. (9.4.51)
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Proof. Let the left side of (9.4.51) be given by

L1 := m4 − 14p3m
2 + 7p3m

2 + 7m2 − 49p3.

By (9.4.49) and (9.4.46),

m2 = 7 + 5p3 +
p33
m2

= 7p3 +
p33
m2

− 2p3 + 7.

Thus,

L1 = m4 − 14p3m
2 + 7p3

(
7p3 +

p33
m2

− 2p3 + 7

)
+ 7m2 − 49p3

=
(
m4 − 14p3m

2 + (7p3)
2
)
+ 7

(
p43
m2

− 2p23 +m2

)

= (m2 − 7p3)
2 + 7

(
p23
m

−m

)2

,

which completes the proof. ��

In the next sequence of lemmas, we require the following representations
from Ramanujan’s notebooks [282], [55, p. 124, Entry 12(iii)].

Proposition 9.4.1. We have

f(−q2) =
√
z12

−1/3(α(1− α)/q)1/12, (9.4.52)

f(−q14) =
√
z72

−1/3(β(1− β)/q7)1/12. (9.4.53)

Lemma 9.4.2. If p3 is defined by (9.4.48), then

(m2 − 7p3)
2 = 64

z
1/2
1

z
7/2
7

f7(−q2)

f(−q14)
.

Proof. Recall that t and p1 are defined by (9.4.45) and (9.4.46), respectively.
Then, by (9.4.43), (9.4.42), and (9.4.48),

1− 2t =
1− p1
m

= −p3
m

, (9.4.54)

and by (9.4.47), (9.4.44), (9.4.42), and (9.4.54),

p2 = 1 +
7

m
(1− 2t) = 1− 7

m

p3
m

= 1− 7p3
m2

. (9.4.55)

Thus,

(m2 − 7p3)
2 = m4

(
1− 7p3

m2

)2

= m4p22. (9.4.56)
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On the other hand, by (9.4.52), (9.4.53), and (9.4.47),

64
z
1/2
1

z
7/2
7

f7(−q2)

f(−q14)
= 64

z
1/2
1

z
7/2
7

z
7/2
1 2−7/3

(
α(1− α)/q

)7/12

z
1/2
7 2−1/3

(
β(1− β)/q7

)1/12

=
z41
z47

· 42
(
α7(1− α)7

β(1− β)

)1/12

= m4p22. (9.4.57)

Combining (9.4.56) and (9.4.57), we complete the proof. ��

Lemma 9.4.3. We have

(
m− p23

m

)2

= 64
z
1/2
1

z
7/2
7

q2f3(−q2)f3(−q14).

Proof. For t = (αβ)1/8, we rewrite (9.4.42) in the form

t(1− t) = {αβ(1− α)(1− β)}1/8 . (9.4.58)

By (9.4.54),

2t = 1 +
p3
m

and 2(1− t) = 1− p3
m

.

Thus,

(
m− p23

m

)2

= m2

(
1− p23

m2

)2

= m2
(
1 +

p3
m

)2 (
1− p3

m

)2

= m2(2t)2
(
2(1− t)

)2

= 16m2
(
t(1− t)

)2
. (9.4.59)

On the other hand, by Proposition 9.4.1,

64
z
1/2
1

z
7/2
7

q2f3(−q2)f3(−q14)

= 64
z
1/2
1

z
7/2
7

q2z
3/2
1 2−1

(
α(1− α)/q

)1/4
z
3/2
7 2−1

(
β(1− β)/q7

)1/4

= 16
z21
z27

(
αβ(1− α)(1− β)

)1/4

= 16m2
(
t(1− t)

)2
, (9.4.60)

by (9.4.58). Therefore, taking (9.4.59) and (9.4.60) together, we complete the
proof of Lemma 9.4.3. ��
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Lemma 9.4.4. We have

p21 = 64
z
1/2
1

z
7/2
7

q4
f7(−q14)

f(−q2)
. (9.4.61)

Proof. By (9.4.52), (9.4.53), and (9.4.46),

64
z
1/2
1

z
7/2
7

q4
f7(−q14)

f(−q2)
= 64

z
1/2
1

z
7/2
7

q4
z
7/2
7 2−7/3

(
β(1− β)/q7

)7/12

z
1/2
1 2−1/3

(
α(1− α)/q

)1/12

= 42
(
β7(1− β)7

α(1− α)

)1/12

= p21,

which completes the proof. ��

Proof of Theorem 9.4.3. Recall that u, v, and w are defined in Theorem 9.4.1.
Then, by (9.4.50),

L2 := ϕ7(q7) + 2qf7(q5, q9) + 2q4f7(q3, q11) + 2q9f7(q, q13)

= ϕ7(q7)

(
1 + 2

(u
2

)7

+ 2
(v
2

)7

+ 2
(w
2

)7
)

=
ϕ7(q7)

26
(64 + u7 + v7 + w7)

=
ϕ7(q7)

64

(
m4 − 7(p1 − 2)m2 + 7p21 − 49(p1 − 1)

)
. (9.4.62)

Using the definitions (9.4.48), (9.4.40), and (9.4.41), we deduce that

L2 =
z
7/2
7

64

(
m4 − 7(p3 − 1)m2 + 7p21 − 49p3

)

=
z
7/2
7

64

(
(m2 − 7p3)

2 + 7

(
m− p23

m

)2

+ 7p21

)
,

by Lemma 9.4.1. By Lemmas 9.4.2–9.4.4 and (9.4.40), we find that

L2 =
√
z1

{
f7(−q2)

f(−q14)
+ 7q2f3(−q2)f3(−q14) + 7q4

f7(−q14)

f(−q2)

}
. (9.4.63)

If we combine (9.4.62) with (9.4.63), we complete the proof of Theo-
rem 9.4.3. ��

The foregoing identities for Fn(q), n = 2, 3, 4, 5, 7, were established by
Rangachari [286] and Son [320]. Several authors have determined the identi-
fication of Fn(q) in further special cases. S. Ahlgren [4] considered the cases
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n = 6, 8, 9, and 10. K. Ono [257] established F11(q), while Chua [115] derived
the corresponding result for F13(q). A summary of all known identifications
of Fn(q) can be found in Son’s paper [322].

One may ask whether other results like Theorem 9.1.1 are known. Indeed,
H.H. Chan, Liu, and Ng [101], S.H. Chan and Liu [108], X.-F. Zeng [350],
T. Dai and X. Ma [119], and J.-M. Zhu [352] have established further theorems
of this sort.
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Highly Composite Numbers

In 1915, the London Mathematical Society published in its Proceedings a
paper by Ramanujan entitled Highly Composite Numbers [274]. A number
N is said to be highly composite if for every integer M < N , it happens
that d(M) < d(N), where d(n) is the number of divisors of n. In the notes
of Ramanujan’s Collected Papers [281, p. 339], the editors relate, “The pa-
per, long as it is, is not complete. The London Mathematical Society was in
some financial difficulty at the time and Ramanujan suppressed part of what
he had written in order to save expenses.” This suppressed part had been
known to G.H. Hardy, who mentioned it in a letter to G.N. Watson in 1930
[283, p. 391], [68, p. 286]. Most of the unpublished portion was published in
1988 with Ramanujan’s lost notebook [283, pp. 280–312]. In his analysis of
[283], R.A. Rankin devoted a paragraph to the description of this unpublished
manuscript [292, p. 361], [69, p. 138]. The manuscript was discussed by J.-
L. Nicolas in [245, pp. 238–239] and [246]. Shortly thereafter, G. Robin [301]
gave detailed proofs of some of the results therein pertaining to complex anal-
ysis and the Riemann zeta function, since Ramanujan gave almost no details.
Ramanujan’s unpublished manuscript was first set into print by Nicolas and
Robin [284] in the first volume of the Ramanujan Journal and was accompa-
nied by illuminating comments by them. This chapter contains Ramanujan’s
original unpublished manuscript with a few minor corrections incorporated,
some missing passages added by Nicolas and Robin, a mild revision of Nico-
las and Robin’s original commentary, and some additional comments by the
present authors.

In the unpublished portion of his paper, Ramanujan extends the notion of
highly composite numbers to other arithmetic functions, mainly to Q2k(N),
1 ≤ k ≤ 4, where Q2k(N) denotes the number of representations of N as
the sum of 2k squares, and to σ−s(N), where σ−s(N) denotes the sum of the
(−s)th powers of the divisors of N . Moreover, the maximal orders of these
functions are given.

In reproducing Ramanujan’s unpublished manuscript on highly composite
numbers, since it was in its final form intended for publication, we have ad-

G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook: Part III,
DOI 10.1007/978-1-4614-3810-6 10,
c© Springer Science+Business Media New York 2012

359

http://dx.doi.org/10.1007/978-1-4614-3810-6_10
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hered to Ramanujan’s manuscript as closely as possible. In particular, we have
written sums and products as Ramanujan wrote them, instead of employing
more compact notations. For convenience, we have kept the numbering both
of paragraphs (which start with number 52 and end with number 75) and
formulas (ranging from (10.52.268) to (10.75.408)), so that references to pre-
ceding paragraphs or formulas can easily be located in [274]. There is just a
small overlap; the last paragraph of [274] is numbered 52 and contains formu-
las (10.52.268) and (10.52.269). This last paragraph was probably added by
Ramanujan to the first part after he had decided to suppress the second part.
However, this overlap of two paragraphs numbered 52 should not cause any
confusion.

There are two gaps in the manuscript of Ramanujan in [283]. The first one
is at the beginning, where the definition of Q2(n) is missing. Perhaps this def-
inition was sent to the London Mathematical Society in 1915 with the original
manuscript, but later deleted because it was irrelevant to the published part.
The function Q2(n) is analogously defined in Section 10.55. The second gap
is more difficult to explain: Section 10.57 is complete and appears on pages
289 and 290 of [283]. But the lower half of page 290 is empty, and page 291
starts with the end of Section 10.58. Nicolas and Robin completed Section
10.58 by giving the definition of σs(N) and a proof of formula (10.58.301).
All these completions are placed within square brackets in the text below so
that readers will be clear about what portions are due to Ramanujan and
what portions are not. It should be noted that in [283], pages 295–299 are
not in Ramanujan’s handwriting, and, as observed by Rankin [292, p. 361],
were probably copied by Watson, but this does not create any gap in the text.
Pages 282 and 283 of [283] do not belong to the manuscript on highly compos-
ite numbers, and one may wonder why these two pages, each containing one or
two fragmentary sentences, which are apparently disconnected with anything
else in the lost notebook, were chosen for publication. Clearly the text of page
284 follows from that on page 281. On the other hand, pages 309–312 also do
not belong to the manuscript on highly composite numbers, but, up to the
last formula on page 312, belong to the subject of highly composite numbers.
With the notation of [274, Section 9], Ramanujan proves on pages 309–310
that

log pr
log(1 + 1/r)

=
log p1
log 2

+O(r),

while on pages 311–312 he attempts to extend this formula by replacing p1
by ps. More precise results can now be found in [241]. Since pages 309–312
do not belong to the paper Highly Composite Numbers, they are not included
in the paper below. For completeness, we reproduce these pages without fur-
ther comment at the conclusion of our comments following the manuscript on
highly composite numbers.

In the paper below, Ramanujan studies the maximal order of some clas-
sical multiplicative functions, which resemble the number, or the sum, of the
divisors of an integer.
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In Sections 10.52–10.54, Q2(N), the number of representations of N as
a sum of two squares, is studied, and its maximal order is given under the
Riemann Hypothesis, and also without assuming the Riemann Hypothesis. In
Sections 10.55–10.56, a similar analysis is provided for Q2(N), the number of
representations of N by the form m2+mn+n2. In Section 10.57, the number
of ways of writing N as a product of (1 + r) factors is briefly investigated.
Between Section 10.58 and Section 10.71, Ramanujan introduces generalized
superior highly composite numbers in providing a deep study of the maximal
order of σ−s(N) under the Riemann Hypothesis. In Sections 10.72–10.74,
Q4(N), Q6(N), and Q8(N), the numbers of representations of N as a sum of
4, 6, and 8 squares, respectively, are studied, as well as their maximal orders.
In the concluding Section 10.75, the number of representations of N by some
other quadratic forms is considered, but their maximal orders are not studied.

The table of largely composite numbers at the end of the article appears
on page 280 in [283]. A number N is largely composite if for every integer
M ≤ N , we have d(M) ≤ d(N).

Several results obtained by Ramanujan in 1915, but remaining in this un-
published manuscript, have been rediscovered and published by other math-
ematicians. The references for these works are given in the notes at the end
of our reproduction of this paper. However, there remain in the paper of
Ramanujan some results that have never been published, for instance, the
maximal order of Q2(N) (see Section 10.54) and of σ−s(N) (cf. Section 10.71)
whenever s �= 1. (The case s = 1 has been studied by Robin [298].)

A few misprints or mistakes were found in Ramanujan’s manuscript. These
mistakes have been corrected in the text and are mentioned in the notes.

Hardy did not think highly of highly composite numbers. In the preface to
Ramanujan’s Collected Papers [281, p. XXXIV], he writes, “The long mem-
oir [274] represents work, perhaps, in a backwater of mathematics,” but a few
lines later, he does recognize that “it shews very clearly Ramanujan’s extraor-
dinary mastery over the algebra of inequalities.” At the conference marking
the centenary of Ramanujan’s birth held at the University of Illinois on June
1–5, 1987, Freeman Dyson remarked that when he was a research student of
Hardy, he wanted to do research on highly composite numbers, but Hardy
dissuaded him, because he thought the subject was not sufficiently interesting
or important. However, after Ramanujan, several authors have written about
them, as can be seen in the survey paper [245] by Nicolas.

THE REMAINING TEXT OF RAMANUJAN’S PAPER

HIGHLY COMPOSITE NUMBERS

10.52

[LetQ2(N) denote the number of ways in whichN can be expressed asm2+n2.
Let us agree to consider m2 + n2 as being represented in two ways if m and
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n are unequal and in one way if they are equal or one of] them is zero. Then
it can be shown that

(
1 + 2q + 2q4 + 2q9 + 2q16 + · · ·

)2

= 1 + 4

(
q

1− q
− q3

1− q3
+

q5

1− q−5 − q7

1− q7
+ · · ·

)

= 1 + 4{Q2(1)q +Q2(2)q
2 +Q2(3)q

3 + · · · }. (10.52.268)

From this it easily follows that

ζ(s)ζ1(s) =
Q2(1)

1s
+

Q2(2)

2s
+

Q2(3)

3s
+ · · · , (10.52.269)

where
ζ1(s) = 1−s − 3−s + 5−s − 7−s + · · · .

Since

q

1− q
+

q2

1− q2
+

q3

1− q3
+ · · · = d(1)q + d(2)q2 + d(3)q3 + · · ·

it follows from (10.52.268) that

Q2(N) ≤ d(N) (10.52.270)

for all values of N . Let

N = 2a2 · 3a3 · 5a5 · · · pap ,

where aλ ≥ 0. Then we see that, if any one of a3, a7, a11, . . . be odd, where
3, 7, 11, . . . are the primes of the form 4n− 1, then

Q2(N) = 0. (10.52.271)

But, if a3, a7, a11, . . . be even or zero, then

Q2(N) = (1 + a5)(1 + a13)(1 + a17) · · · (10.52.272)

where 5, 13, 17, . . . are the primes of the form 4n+1. It is clear that (10.52.270)
is a consequence of (10.52.271) and (10.52.272).

10.53

From (10.52.272) it is easy to see that, in order that Q2(N) should be of
maximum order, N must be of the form

5a5 · 13a13 · 17a17 · · · pap ,
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where p is a prime of the form 4n+ 1, and

a5 ≥ a13 ≥ a17 ≥ · · · ≥ ap.

Let π1(x) denote the number of primes of the form 4n+1 which do not exceed
x, and let

ϑ1(x) = log 5 + log 13 + log 17 + · · ·+ log p,

where p is the largest prime of the form 4n+ 1, not greater than x. Then by
arguments similar to those of Section 33 we can show that

Q2(N) ≤ N1/x 2π1(2
x)

e(1/x)θ1(2
x)

( 32 )
π1((3/2)

x)

e(1/x)θ1((3/2)
x)

( 43 )
π1((4/3)

x)

e(1/x)θ1((4/3)
x)

· · · (10.53.273)

for all values of N and x. From this we can show by arguments similar to
those of Section 38 that, in order that Q2(N) should be of maximum order,
N must be of the form

eϑ1(2
x)+ϑ1((3/2)

x)+ϑ1((4/3)
x)+···

and Q2(N) of the form

2π1(2
x)
(
3
2

)π1((3/2)
x) ( 4

3

)π1((4/3)
x) · · · .

Then, without assuming the prime number theorem, we can show that the
maximum order of Q2(N) is

2logN{1/(log logN)+O(1)/(log logN)2}. (10.53.274)

Assuming the prime number theorem we can show that the maximum order
of Q2(N) is

2
(1/2)Li(2 logN)+O

{
logNe−a

√
log N

}

(10.53.275)

where a is a positive constant.

10.54

We shall now assume the Riemann Hypothesis and its analogue for the func-
tion ζ1(s). Let ρ1 be a complex root of ζ1(s). Then it can be shown that

∑ 1

ρ1
=

γ − 3 log π

2
+ log 2 + 4 logΓ ( 34 );

so that

∑ 1

ρ
+
∑ 1

ρ1
= 1 + γ − 2 log π + 4 logΓ ( 34 ). (10.54.276)
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It can also be shown that
{
2ϑ1(x) = x− 2

√
x−

∑
xρ/ρ−

∑
xρ1/ρ1 +O

(
x1/3

)

2π1(x) = Li(x)− Li(
√
x)−

∑
Li(xρ)−

∑
Li(xρ1) +O

(
x1/3

) (10.54.277)

so that {
2ϑ1(x) = x+O

(√
x(log x)2

)

2π1(x) = Li(x) +O (
√
x log x) .

(10.54.278)

Now

2π1(x) = Li(x)− 1

log x

(
2
√
x+

∑ xρ

ρ
+
∑ xρ1

ρ1

)

− 1

(log x)2

(
4
√
x+

∑ xρ

ρ2
+
∑ xρ1

ρ21

)
+

O(
√
x)

(log x)3
.

But by Taylor’s Theorem we have

Li{2ϑ1(x)} = Li(x)− 1

log x

(
2
√
x+

∑ xρ

ρ
+
∑ xρ1

ρ1

)
+O

(
(log x)2

)
.

Hence

2π1(x) = Li{2ϑ1(x)} − 2R1(x) +O

{ √
x

(log x)3

}
(10.54.279)

where

R1(x) =
1

(log x)2

(
2
√
x+

1

2

∑ xρ

ρ2
+

1

2

∑ xρ1

ρ21

)
.

It can easily be shown that

√
x

(
2 +

∑ 1

ρ
+
∑ 1

ρ1

)
≥ R1(x)(log x)

2 ≥
√
x

(
2−

∑ 1

ρ
−
∑ 1

ρ1

)

and so from (10.54.276) we see that

{3 + γ − 2 log π + 4 logΓ (34 )}
√
x ≥ R1(x)(log x)

2 (10.54.280)

≥ {1− γ + 2 log π − 4 logΓ ( 34 )}
√
x.

It can easily be verified that

{
3 + γ − 2 log π + 4 logΓ ( 34 ) = 2.101,

1− γ + 2 log π − 4 logΓ ( 34 ) = 1.899,
(10.54.281)

approximately. Proceeding as in Section 43 we can show that the maximum
order of Q2(N) is

2(1/2)Li(2 logN)+Φ(N) (10.54.282)
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where

Φ(N) =
log 3

2

2 log 2
Li
{

3
2 (logN)log(3/2)/ log 2

}
− 3(logN)log(3/2)/ log 2

4 log(2 logN)

−R1(2 logN) +O

{ √
(logN)

(log logN)3

}
.

10.55

Let Q2(N) denote the number of ways in which N can be expressed as m2 +
mn+ n2. Let us agree to consider m2 +mn+ n2 as two ways if m and n are
unequal, and as one way if they are equal or one of them is zero. Then it can
be shown that

1
2

(
1 + 2q1/4 + 2q4/4 + 2q9/4 + · · ·

)(
1 + 2q3/4 + 2q13/4 + 2q27/4 + · · ·

)

+ 1
2

(
1− 2q1/4 + 2q4/4 − 2q9/4 + · · ·

)(
1− 2q3/4 + 2q13/4 − 2q27/4 + · · ·

)

= 1 + 6

(
q

1− q
− q2

1− q2
+

q4

1− q4
− q5

1− q5
+ · · ·

)

= 1 + 6
{
Q2(1)q +Q2(2)q

2 +Q2(3)q
3 + · · ·

}
(10.55.283)

where 1, 2, 4, 5, . . . are the natural numbers without the multiples of 3. From
this it follows that

ζ(s)ζ2(s) = 1−sQ2(1) + 2−sQ2(2) + 3−sQ2(3) + · · · (10.55.284)

where
ζ2(s) = 1−s − 2−s + 4−s − 5−s + · · · .

It also follows that
Q2(N) ≤ d(N) (10.55.285)

for all values of N . Let

N = 2a2 · 3a3 · 5a5 · · · pap ,

where aλ ≥ 0. Then, if any one of a2, a5, a11, . . . be odd, where 2, 5, 11, . . . are
the primes of the form 3n− 1, then

Q2(N) = 0. (10.55.286)

But, if a2, a5, a11 be even or zero, then

Q2(N) = (1 + a7)(1 + a13)(1 + a19)(1 + a31) · · · (10.55.287)

where 7, 13, 19, . . . are the primes of the form 6n+1. Let π2(x) be the number
of primes of the form 6n+ 1 which do not exceed x, and let
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ϑ2(x) = log 7 + log 13 + log 19 + · · ·+ log p,

where p is the largest prime of the form 6n+ 1 not greater than x. Then we
can show that, in order that Q2(N) should be of maximum order, N must be
of the form

eϑ2(2
x)+ϑ2((3/2)

x)+ϑ2((4/3)
x)+···

and Q2(N) of the form

2π2(3
x)( 32 )

π2((3/2)
x)( 43 )

π2((4/3)
x) · · · .

Without assuming the prime number theorem we can show that the maximum
order of Q2(N) is

2logN{1/(log logN)+O(1)/(log logN)2}. (10.55.288)

Assuming the prime number theorem we can show that the maximum order
of Q2(N) is

2
(1/2)Li(2 logN)+O

{
logNe−a

√
log N

}

. (10.55.289)

10.56

We shall now assume the Riemann hypothesis and its analogue for the function
ζ2(s). Then we can show that

2π2(x) = Li
{
2ϑ2(x)} − 2R2(x) +O{

√
x/(log x)3

}
(10.56.290)

where

R2(x) =
1

(log x)2

{
2
√
x+

1

2

∑ xρ

ρ2
+

1

2

∑ xρ2

ρ22

}

where ρ2 is a complex root of ζ2(s). It can also be shown that

∑ 1

ρ
+
∑ 1

ρ2
= 1 + γ + 1

2 log 3 + 3 log
Γ ( 23 )

Γ ( 13 )
(10.56.291)

and so

{
3 + γ + 1

2 log 3 + 3 log
Γ ( 23 )

Γ ( 13 )

}√
x

≥ R2(x)(log x)
2

≥
{
1− γ − 1

2 log 3− 3 log
Γ ( 23 )

Γ ( 13 )

}√
x. (10.56.292)

It can easily be verified that
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3 + γ + 1
2 log 3 + 3 log

Γ ( 23 )

Γ ( 13 )
= 2.080,

1− γ − 1
2 log 3− 3 log

Γ ( 23 )

Γ ( 13 )
= 1.920,

(10.56.293)

approximately. Then we can show that the maximum order of Q2(N) is

2(1/2)Li(2 logN)+Φ(N) (10.56.294)

where

Φ(N) =
log 3

2

2 log 2
Li
{

3
2 (logN)log(3/2)/ log 2

}
− 3(logN)log(3/2)/ log 2

4 log(2 logN)

−R2(2 logN) +O

{ √
(logN)

(log logN)3

}
.

10.57

Let dr(N) denote the coefficient of N−s in the expansion of {ζ(s)}1+r as a
Dirichlet series. Then since

{ζ(s)}−1 =
(
1− 2−s

) (
1− 3−s

) (
1− 5−s

)
· · ·

(
1− p−s

)
· · · ,

it is easy to see that, if

N = pa1
1 · pa2

2 · pa3
3 · · · pan

n ,

where p1, p2, p3 . . . are any primes, then

dr(N) =

ν=n∏

ν=1

λ=aν∏

λ=1

(
1 +

r

λ

)
(10.57.295)

provided that r > −1. It is evident that

d−1(N) = 0, d0(N) = 1, d1(N) = d(N);

and that, if −1 ≤ r ≤ 0, then

dr(N) ≤ 1 + r (10.57.296)

for all values of N . It is also evident that, if N is a prime then

dr(N) = 1 + r

for all values of r. It is easy to see from (10.57.295) that, if r > 0, then dr(N)
is not bounded when N becomes infinite. Now, if r is positive, it can easily
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be shown that, in order that dr(N) should be of maximum order, N must be
of the form

eϑ(x1)+ϑ(x2)+ϑ(x3)+···,

and consequently dr(N) of the form

(1 + r)π(x1)
(
1 +

r

2

)π(x2) (
1 +

r

3

)π(x3)

· · ·

and proceeding as in Section 46 we can show that N must be of the form

eϑ((1+r)x)+ϑ((1+r/2)x)+ϑ((1+r/3)x)+··· (10.57.297)

and dr(N) of the form

(1 + r)π((1+r)x)
(
1 +

r

2

)π((1+r/2)x) (
1 +

r

3

)π((1+r/3)x)

· · · . (10.57.298)

From (10.57.297) and (10.57.298) we can easily find the maximum order of
dr(N) as in Section 43. It may be interesting to note that numbers of the form
(10.57.297) which may also be written in the form

eϑ{x
(1/r) log(1+r)}+ϑ{x(1/r) log(1+r/2)}+ϑ{x(1/r) log(1+r/3)}+···

approach the form

eϑ(x)+ϑ(
√
x)+ϑ(x1/3)+···

as r → 0. That is to say, they approach the form of the least common multiple
of the natural numbers as r → 0.

10.58

[Let s be a nonnegative real number, and let σ−s(N) denote the sum of the
inverses of the sth powers of the divisors of N . If N is defined by

N = pa1
1 · pa2

2 · pa3
3 · · · pan

n ,

where p1, p2, p3, . . . are any primes, then

σ−s(N) =
(
1 + p−s

1 + p−2s
1 + p−3s

1 + · · ·+ p−a1s
1

)

×
(
1 + p−s

2 + p−2s
2 + p−3s

2 + · · ·+ p−a2s
2

)

× · · ·
×
(
1 + p−s

n + p−2s
n + p−3s

n + · · ·+ p−ans
n

)
.

For s = 0, σ0(N) = d(N), the number of divisors of N . For s > 0,
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σ−s(N) =

(
1− p

−(a1+1)s
1

1− p−s
1

)(
1− p

−(a2+1)s
2

1− p−s
2

)
· · ·

(
1− p−(an+1)s

n

1− p−s
n

)
.

(10.58.299)
Now, from the concavity of the function log(1− e−t), we see that

1

n

{
log

(
1− e−t1

)
+ log

(
1− e−t2

)
+ · · ·+ log

(
1− e−tn

)}

≤ log

{
1− exp

(
− t1 + t2 + · · ·+ tn

n

)}
. (10.58.300)

Choosing t1 = (a1 + 1)s log p1, t2 = (a2 + 1)s log p2, . . . , tn = (an + 1)s log pn
in (10.58.300), we find that (10.58.299) gives]

σ−s(N) <

{
1− (p1p2p3 · · · pnN)−s/n

}n

(
1− p−s

1

) (
1− p−s

2

)
· · ·

(
1− p−s

n

) . (10.58.301)

By arguments similar to those of Section 2 we can show that it is possible to
choose the indices a1, a2, a3, . . . , an so that

σ−s(N) (10.58.302)

=

{
1− (p1p2p3 · · · pnN)−s/n

}n

(
1− p−s

1

) (
1− p−s

2

)
· · ·

(
1− p−s

n

)
{
1−O

{
N−s/n(logN)−2/(n−1)

}}
.

There are of course results corresponding to (14) and (15) also.

10.59

A number N may be said to be a generalized highly composite number if
σ−s(N) > σ−s(N

′) for all values of N ′ less than N . We can easily show that,
in order that N should be a generalized highly composite number, N must be
of the form

2a2 · 3a3 · 5a5 · · · pap (10.59.303)

where
a2 ≥ a3 ≥ a5 ≥ · · · ≥ ap = 1,

the exceptional numbers being 36, for the values of s which satisfy the in-
equality 2s + 4s + 8s > 3s + 9s, and 4 in all cases.

A number N may be said to be a generalized superior highly composite
number if there is a positive number ε such that

σ−s(N)

Nε ≥ σ−s(N
′)

(N ′)ε
(10.59.304)

for all values of N ′ less than N , and
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σ−s(N)

Nε >
σ−s(N

′)

(N ′)ε
(10.59.305)

for all values ofN ′ greater thanN . It is easily seen that all generalized superior
highly composite numbers are generalized highly composite numbers. We shall
use the expression

2a2 · 3a3 · 5a5 · · · pap1
1

and the expression

2 · 3 · 5 · 7 · · · p1
× 2 · 3 · 5 · · · p2
× 2 · 3 · 5 · · · p3
× · · ·

· · ·
· · ·

as the standard forms of a generalized superior highly composite number.

10.60

Let

N ′ =
N

λ

where λ ≤ p1. Then from (10.59.304) it follows that

1− λ−s(1+aλ) ≥ (1− λ−saλ)λε,

or

λε ≤ 1− λ−s(1+aλ)

1− λ−saλ
. (10.60.306)

Again let N ′ = Nλ. Then from (10.59.305) we see that

1− λ−s(1+aλ) >
{
1− λ−s(2+aλ)

}
λ−ε

or

λε >
1− λ−s(2+aλ)

1− λ−s(1+aλ)
. (10.60.307)

Now let us suppose that λ = p1 in (10.60.306) and λ = P1 in (10.60.307).
Then we see that

log
(
1 + p−s

1

)

log p1
≥ ε >

log
(
1 + P−s

1

)

logP1
. (10.60.308)

From this it follows that, if
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0 < ε ≤
log

(
1 + 2−s

)

log 2
,

then there is a unique value of p1 corresponding to each value of ε. It follows
from (10.60.306) that

aλ ≤
log

(
λε − λ−s

λε − 1

)

s log λ
, (10.60.309)

and from (10.60.307) that

1 + aλ >

log

(
λε − λ−s

λε − 1

)

s log λ
. (10.60.310)

From (10.60.309) and (10.60.310) it is clear that

aλ =

⎡

⎢⎢⎣
log

(
λε − λ−s

λε − 1

)

s log λ

⎤

⎥⎥⎦ . (10.60.311)

Hence N is of the form

2[log((2
ε−2−s)/(2ε−1))/(s log 2)] 3[log((3

ε−3−s)/(3ε−1))/(s log 3)] · · · p1 (10.60.312)

where p1 is the prime defined by the inequalities (10.60.308).

10.61

Let us consider the nature of pr. Putting λ = pr in (10.60.306), and remem-
bering that apr ≥ r, we obtain

pεr ≤ 1− p
−s(1+apr )
r

1− p
−sapr
r

≤ 1− p−s(r+1)
r

1− p−sr
r

. (10.61.313)

Again, putting λ = Pr in (10.60.307), and remembering that aPr ≤ r − 1, we
obtain

P ε
r >

1− P
−s(2+aPr )
r

1− P
−s(1+aPr )
r

≥ 1− P−s(r+1)
r

1− P−sr
r

. (10.61.314)

It follows from (10.61.313) and (10.61.314) that, if xr be the value of x satis-
fying the equation

xε =
1− x−s(r+1)

1− x−sr (10.61.315)

then pr is the largest prime not greater than xr. Hence N is of the form
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eϑ(x1)+ϑ(x2)+ϑ(x3)+··· (10.61.316)

where xr is defined in (10.61.315); and σ−s(N) is of the form

Π1(x1)Π2(x2)Π3(x3) · · ·Πa2(xa2) (10.61.317)

where

Πr(x) =
1− 2−s(r+1)

1− 2−sr

1− 3−s(r+1)

1− 3−sr · · · 1− p−s(r+1)

1− p−sr

and p is the largest prime not greater than x. It follows from (10.59.304) and
(10.59.305) that

σ−s(N) ≤ Nε Π1(x1)

eεϑ(x1)

Π2(x2)

eεϑ(x2)

Π3(x3)

eεϑ(x3)
· · · (10.61.318)

for all values of N , where x1, x2, x3, . . . are functions of ε defined by the
equation

xε
r =

1− x−s(r+1)
r

1− x−sr
r

, (10.61.319)

and σ−s(N) is equal to the right hand side of (10.61.318) when

N = eϑ(x1)+ϑ(x2)+ϑ(x3)+···.

10.62

In (16) let us suppose that

Φ(x) = log
1− x−s(r+1)

1− x−sr .

Then we see that

logΠr(xr) = π(xr) log
1− x−s(r+1)

r

1− x−sr
r

−
∫

π(xr)d

(
log

1− x−s(r+1)
r

1− x−sr
r

)

= π(xr) log(x
ε
r)−

∫
π(xr)d(log x

ε
r)

= επ(xr) log xr −
∫

π(xr) log xrdε−
∫

επ(xr)

xr
dxr

in virtue of (10.61.319). Hence

logΠr(xr)− εϑ(xr)

= ε{π(xr) log xr − ϑ(xr)} −
∫

π(xr) log xrdε−
∫

επ(xr)

xr
dxr
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= ε

∫
π(xr)

xr
dxr −

∫
π(xr) log xrdε−

∫
επ(xr)

xr
dxr

=

∫
dε

∫
π(xr)

xr
dxr −

∫
π(xr) log xrdε

=

∫ {∫
π(xr)

xr
dxr − π(xr) log xr

}
dε

= −
∫

ϑ(xr)dε. (10.62.320)

It follows from (10.61.318) and (10.62.320) that

σ−s(N) ≤ Nεe−
∫
{ϑ(x1)+ϑ(x2)+ϑ(x3)+··· }dε (10.62.321)

for all values of N . By arguments similar to those of Section 38 we can show
that the right hand side of (10.62.321) is a minimum when ε is a function of
N defined by the equation

N = eϑ(x1)+ϑ(x2)+ϑ(x3)+···. (10.62.322)

Now let Σ−s(N) be a function of N defined by the equation

Σ−s(N) = Π1(x1)Π2(x2)Π3(x3) · · · (10.62.323)

where ε is a function of N defined by the equation (10.62.322). Then it follows
from (10.61.318) that the order of

σ−s(N) ≤ Σ−s(N)

for all values of N and σ−s(N) = Σ−s(N) for all generalized superior highly
composite values of N . In other words σ−s(N) is of maximum order when N
is of the form of a generalized superior highly composite number.

10.63

We shall now consider some important series which are not only useful in
finding the maximum order of σ−s(N) but also interesting in themselves.
Proceeding as in (16) we can easily show that, if Φ′(x) be continuous, then

Φ(2) log 2 + Φ(3) log 3 + Φ(5) log 5 + · · ·+ Φ(p) log p

= Φ(x)θ(x)−
∫ x

2

Φ′(t)θ(t)dt (10.63.324)

where p is the largest prime not exceeding x. Since
∫

Φ(x)dx = xΦ(x)−
∫

xΦ′(x)dx,
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we have

Φ(x)ϑ(x)−
∫

Φ′(x)ϑ(x)dx

=

∫
Φ(x)dx− {x− ϑ(x)}Φ(x) +

∫
Φ′(x){x− ϑ(x)}dx. (10.63.325)

Remembering that x− ϑ(x) = O
{√

x(log x)2
}
, we have by Taylor’s theorem

∫ θ(x)

Φ(t)dt =

∫
Φ(x)dx− {x− ϑ(x)}Φ(x)

+1
2{x− ϑ(x)}2Φ′ {x+O

(√
x(log x)2

)}
.(10.63.326)

It follows from (10.63.324)–(10.63.326) that

Φ(2) log 2 + Φ(3) log 3 + Φ(5) log 5 + · · ·+ Φ(p) log p

= C +

∫ θ(x)

Φ(t)dt+

∫
Φ′(x){x− ϑ(x)}dx

− 1
2{x− ϑ(x)}2Φ′ {x+O

(√
x(log x)2

)}
(10.63.327)

where C is a constant and p is the largest prime not exceeding x.

10.64

Now let us assume that Φ(x) = 1/(xs−1) where s > 0. Then from (10.63.327)
we see that, if p is the largest prime not greater than x, then

log 2

2s − 1
+

log 3

3s − 1
+

log 5

5s − 1
+ · · ·+ log p

ps − 1
(10.64.328)

= C +

∫ θ(x) dx

xs − 1
− s

∫
x− ϑ(x)

x1−s (xs − 1)
2 dx+O

{
x−s(log x)4

}
.

But it is known that

x− θ(x) = x1/2 + x1/3 +
∑ xρ

ρ
−
∑ xρ/2

ρ
+O

(
x1/5

)
(10.64.329)

where ρ is a complex root of ζ(s). By arguments similar to those of Section
42 we can show that

∑ xρ/2−s

ρ(ρ/2− s)
=

∫
x−1−s

∑ xρ/2

ρ
dx.

Hence
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∫
∑ xρ/2

ρ

x1−s (xs − 1)
2 dx =

∫
O

{
x−1−s

∑ xρ/2

ρ

}
dx

= O

{
∑ xρ/2−s

ρ(ρ/2− s)

}

= O
(
x1/2−s

)
.

Similarly

∫
∑ xρ

ρ

x1−s(xs − 1)2
dx =

∑ xρ−s

ρ(ρ− s)
+O

(∑ xρ−2s

ρ(ρ− 2s)

)

=
∑ xρ−s

ρ(ρ− s)
+O

(
x1/2−2s

)
.

Hence (10.64.328) may be replaced by

log 2

2s − 1
+

log 3

3s − 1
+

log 5

5s − 1
+ · · ·+ log p

ps − 1

= C +

∫ θ(x) dt

ts − 1
− s

∫
x1/2 + x1/3

x1−s (xs − 1)
2 dx

− s
∑ xρ−s

ρ(ρ− s)
+O

(
x1/2−2s + x1/4−s

)
. (10.64.330)

It can easily be shown that

C = −ζ ′(s)

ζ(s)
(10.64.331)

when the error term is o(1).

10.65

Let

Ss(x) = −s
∑ xρ−s

ρ(ρ− s)
.

Then

|Ss(x)| ≤ s
∑∣∣∣∣

xρ−s

ρ(ρ− s)

∣∣∣∣

= s x1/2−s
∑ 1√

{ρ(1− ρ)(ρ− s)(1− ρ− s)}
. (10.65.332)
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If m and n are any two positive numbers, then it is evident that 1/
√
mn lies

between 1/m and 1/n.
Hence ∑ 1√

{ρ(1− ρ)(ρ− s)(1− ρ− s)}
lies between χ(1) and χ(s) where

χ(s) =
∑ 1

(ρ− s)(1− ρ− s)

=
∑ 1

ρ(1− ρ) + s2 − s

=
1

1− 2s

(∑ 1

ρ− s
+
∑ 1

1− ρ− s

)

=
∑

1

s− ρ

s− 1
2

. (10.65.333)

We can show as in Section 41 that

∑ 1

s− ρ
=

2s− 1

s2 − s
− 1

2
log π +

1

2

Γ ′
(s
2

)

Γ
(s
2

) +
ζ ′(s)

ζ(s)
. (10.65.334)

Hence

χ(s) =
2

s2 − s
+

1

2s− 1

⎧
⎨

⎩
Γ ′

(s
2

)

Γ
(s
2

) + 2
ζ ′(s)

ζ(s)
− log π

⎫
⎬

⎭ (10.65.335)

so that
χ(0) = χ(1) = 2 + γ − log 4π. (10.65.336)

By elementary algebra, it can easily be shown that if mr and nr be not
negative and Gr be the geometric mean between mr and nr then

G1 +G2 +G3 + · · · <
√

{m1 +m2 +m3 + · · · }{n1 + n2 + · · · } (10.65.337)

unless m1

n1
= m2

n2
= m3

n3
= · · · .

From this it follows that
∑ 1√

{ρ(1− ρ)(ρ− s)(1− ρ− s)}
<
√

{χ(1)χ(s)}. (10.65.338)

The following method leads to still closer approximation. It is easy to see that
if m and n are positive, then 1/

√
mn is the geometric mean between

1

3m
+

8

3(m+ 3n)
and

1

3n
+

8

3(3m+ n)
(10.65.339)
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and so 1√
mn

lies between both. Hence

∑ 1√
{ρ(1− ρ)(ρ− s)(1− ρ− s)}

(10.65.340)

lies between
1

3

∑ 1

ρ(1− ρ)
+

2

3

∑ 1

ρ(1− ρ) + 3
4 (s

2 − s)

and
1

3

∑ 1

(ρ− s)(1− ρ− s)
+

2

3

∑ 1

ρ(1− ρ) + 1
4 (s

2 − s)

and is also less than the geometric mean1 between these two in virtue of
(10.65.337).

∑ 1

ρ(1− ρ) + 1
4 (s

2 − s)
= χ

{
1 +

√
(1− s+ s2)

2

}

and
∑ 1

ρ(1− ρ) + 3
4 (s

2 − s)
= χ

{
1 +

√
(1− 3s+ 3s2)

2

}
.

Hence ∑ 1√
{ρ(1− ρ)(ρ− s)(1− ρ− s)}

(10.65.341)

lies between

1

1√
{ρ(1− ρ)(ρ− s)(1− ρ− s)}

=
1

ρ(1− ρ)
− 1

2

s2 − s

ρ(1− ρ)
+

3

8

{
s2 − s

ρ(1− ρ)

}2

− 10

32

{
s2 − s

ρ(1− ρ)

}3

+ · · · ;

1

3

1

ρ(1− ρ)
+

2

3

1

ρ(1− ρ) + 3
4
(s2 − s)

=
1

ρ(1− ρ)
− 1

2

s2 − s

ρ(1− ρ)
+

3

8

{
s2 − s

ρ(1− ρ)

}2

− 9

32

{
s2 − s

ρ(1− ρ)

}3

+ · · · ;

1

3

1

ρ(1− ρ) + s2 − s
+

2

3

1

ρ(1− ρ) + 1
4
(s2 − s)

=
1

ρ(1− ρ)
− 1

2

s2 − s

ρ(1− ρ)
+

3

8

{
s2 − s

ρ(1− ρ)

}2

− 11

32

{
s2 − s

ρ(1− ρ)

}3

+ · · · .

Since the first value of ρ(1 − ρ) is about 200 we see that the geometric mean is a
much closer approximation than either.
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1
3χ(1) +

2
3χ

{
1 +

√
(1− 3s+ 3s2)

2

}

and

1
3χ(s) +

2
3χ

{
1 +

√
(1− s+ s2)

2

}

and is also less than the geometric mean between these two.

10.66

In this and the following few sections it is always understood that p is the
largest prime not greater than x. It can easily be shown that

∫ ρ(x) dt

ts − 1
− s

∫
x1/2 + x1/3

x1−s (xs − 1)
2 dx

=
{θ(x)}1−s

1− s
+

{θ(x)}1−2s

1− 2s
+

x1−3s

1− 3s
+

x1−4s

1− 4s
+ · · ·+ x1−ns

1− ns

− 2sx1/2−s

1− 2s
− 3sx1/3−s

1− 3s
− 4sx1/2−2s

1− 4s
+O

(
x1/2−2s

)
(10.66.342)

where n =
[
2 + 1

2s

]
.

It follows from (10.64.330) and (10.66.342) that if s > 0, then

log 2

2s − 1
+

log 3

3s − 1
+

log 5

5s − 1
+ · · ·+ log p

ps − 1
(10.66.343)

= −ζ ′(s)

ζ(s)
+

{ϑ(x)}1−s

1− s
+

{ϑ(x)}1−2s

1− 2s
+

x1−3s

1− 3s
+

x1−4s

1− 4s
+ · · ·+ x1−ns

1− ns

− 2sx1/2−s

1− 2s
− 3sx1/3−s

1− 3s
− 4sx1/2−2s

1− 4s
+ Ss(x) +O

(
x1/2−2s + x1/4−s

)

where n =
[
2 + 1

2s

]
.

When s = 1, 1
2 ,

1
3 or 1

4 we must take the limit of the right hand side when
s approaches 1, 1

2 ,
1
3 or 1

4 . We shall consider the following cases:

Case I. 0 < s < 1
4

log 2

2s − 1
+

log 3

3s − 1
+

log 5

5s − 1
+ · · ·+ log p

ps − 1

=
{ϑ(x)}1−s

1− s
+

{ϑ(x)}1−2s

1− 2s
+

x1−3s

1− 3s
+

x1−4s

1− 4s
+ · · ·+ x1−ns

1− ns

− 2sx1/2−s

1− 2s
− 3sx1/3−s

1− 3s
+ Ss(x) +O

(
x1/2−2s + x1/4−s

)
(10.66.344)
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where n =
[
2 + 1

2s

]
.

Case II. s = 1
4

log 2

21/4−1
+

log 3

31/4−1
+

log 5

51/4−1
+ · · ·+ log p

p1/4−1

=
4

3
{ϑ(x)}3/4 + 2

√
{ϑ(x)}+ 3x1/4 − 3x1/12

+
1

2
log x+ S1/4(x) +O(1). (10.66.345)

Case III. s > 1
4

log 2

2s − 1
+

log 3

3s − 1
+

log 5

5s − 1
+ · · ·+ log p

ps − 1

= −ζ ′(s)

ζ(s)
+

{ϑ(x)}1−s

1− s
+

x1−2s − 2s x1/2−s

1− 2s
+

x1−3s − 3s x1/3−s

1− 3s

+ Ss(x) +O
(
x1/4−s

)
. (10.66.346)

10.67

Making s → 1 in (10.66.346), and remembering that

lim
s→1

{
v1−s

1− s
− ζ ′(s)

ζ(s)

}
= log v − γ

where γ is the Eulerian constant, we have

log 2

2− 1
+

log 3

3− 1
+

log 5

5− 1
+ · · ·+ log p

p− 1
(10.67.347)

= log ϑ(x)− γ + 2x−1/2 +
3

2
x−2/3 + S1(x) +O

(
x−3/4

)
.

From (10.65.332) we know that
√
x | S1(x) |≤ 2 + γ − log(4π) = .046 . . . (10.67.348)

approximately, for all positive values of x.
When s > 1, (10.66.346) reduces to

log 2

2s − 1
+

log 3

3s − 1
+

log 5

5s − 1
+ · · ·+ log p

ps − 1

= −ζ ′(s)

ζ(s)
+

{ϑ(x)}1−s

1− s
+

2s x1/2−s

2s− 1
+

3s x1/3−s

3s− 1

+ Ss(x) +O
(
x1/4−s

)
. (10.67.349)
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Writing O
(
x1/2−s

)
for Ss(x) in (10.66.343), we see that, if s > 0, then

log 2

2s − 1
+

log 3

3s − 1
+

log 5

5s − 1
+ · · ·+ log p

ps − 1

= −ζ ′(s)

ζ(s)
+

{ϑ(x)}1−s

1− s
+

x1−2s

1− 2s
+

x1−3s

1− 3s
+ · · ·+ x1−ns

1− ns

− 2s x1/2−s

1− 2s
+O

(
x1/2−s

)
(10.67.350)

when n =
[
1 + 1

2s

]
.

Now the following three cases arise:

Case I. 0 < s < 1
2

log 2

2s − 1
+

log 3

3s − 1
+

log 5

5s − 1
+ · · ·+ log p

ps − 1

=
{ϑ(x)}1−s

1− s
+

x1−2s

1− 2s
+

x1−3s

1− 3s
+ · · ·+ x1−ns

1− ns
+O

(
x1/2−s

)
(10.67.351)

where n =
[
1 + 1

2s

]
.

Case II. s = 1
2

log 2√
2− 1

+
log 3√
3− 1

+
log 5√
5− 1

+ · · ·+ log p√
p− 1

= 2
√
{ϑ(x)}+ 1

2
log x+O(1). (10.67.352)

Case III. s > 1
2

log 2

2s − 1
+

log 3

3s − 1
+

log 5

5s − 1
+ · · ·+ log p

ps − 1

= −ζ ′(s)

ζ(s)
+

{ϑ(x)}1−s

1− s
+O

(
x1/2−s

)
. (10.67.353)

10.68

We shall now consider the product

(
1− 2−s

) (
1− 3−s

) (
1− 5−s

)
· · ·

(
1− p−s

)
.

It can easily be shown that

∫
xa+bs

a+ bs
ds =

1

b
Li
(
xa+bs

)
(10.68.354)
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where Li(x) is the principal value of
∫ x

0
dt

log t ; and that

∫
Ss(x)ds = −Ss(x)

log x
+O

{
x1/2−s

(log x)2

}
. (10.68.355)

Now remembering (10.68.354) and (10.68.355) and integrating (10.66.343)
with respect to s, we see that if s > 0, then

log
{(

1− 2−s
) (

1− 3−s
) (

1− 5−s
)
· · ·

(
1− p−s

)}
(10.68.356)

= − log |ζ(s)| − Li{ϑ(x)}1−s − 1

2
Li
(
x1−2s

)
− 1

3
Li
(
x1−3s

)
− · · ·

− 1

n
Li
(
x1−ns

)
+

1

2
Li
(
x1/2−s

)
− x1/2−s + Ss(x)

log x
+O

{
x1/2−s

(log x)2

}

where n =
[
1 + 1

2s

]
.

Now the following three cases arise.

Case I. 0 < s < 1
2

log
{(

1− 2−s
) (

1− 3−s
) (

1− 5−s
)
· · · (1− ps)

}
(10.68.357)

= −Li{ϑ(x)}1−s − 1

2
Li
(
x1−2s

)
− 1

3
Li
(
x1−3s

)
− · · ·

− 1

n
Li
(
x1−ns

)
+

2sx1/2−s

(1− 2s) log x
− Ss(x)

log x
+O

{
x1/2−s(log x)2

}

where n =
[
1 + 1

2s

]
. Making s → 1

2 in (10.68.356) and remembering that

lim
h→0

{Li(1 + h)− log |h|} = γ (10.68.358)

where γ is the Eulerian constant, we have

Case II. s = 1
2

1(
1− 1√

2

)(
1− 1√

3

)(
1− 1√

5

)
· · ·

(
1− 1√

p

) (10.68.359)

= −
√
2ζ

(
1

2

)
exp

{
Li
√
θ(x) +

1 + S1/2(x)

log x
+O

(
1

(log x)2

)}
.

It may be observed that

−(
√
2− 1)ζ

(
1

2

)
=

1√
1
− 1√

2
+

1√
3
− 1√

4
+ · · · . (10.68.360)

Case III. s > 1
2
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1(
1− 2−s

) (
1− 3−s

) (
1− 5−s

)
· · ·

(
1− p−s

) (10.68.361)

= |ζ(s)| exp
[
Li{θ(x)}1−s +

2s x1/2−s

(2s− 1) log x
+

Ss(x)

log x
+O

{
x1/2−s

(log x)2

}]
.

Remembering (10.68.358) and making s → 1 in (10.68.361) we obtain

1(
1− 1

2

)(
1− 1

3

)(
1− 1

5

)
· · ·

(
1− 1

p

)

= eγ
{
log ϑ(x) +

2√
x
+ S1(x) +O

(
1√

x log x

)}
. (10.68.362)

It follows from this and (10.67.347) that

e−γ

(
1− 1

2

)(
1− 1

3

)(
1− 1

5

)
· · ·

(
1− 1

p

)

= γ +
log 2

2− 1
+

log 3

3− 1
+ · · ·+ log p

p− 1
+O

(
1√

p log p

)
. (10.68.363)

10.69

We shall consider the order of xr. Putting r = 1 in (10.61.319) we have

ε =
log

(
1 + x−s

1

)

log x1
;

and so

xlog(1+x−s
1 )/ log x1

r =
1− x−s(r+1)

r

1− x−sr
r

. (10.69.364)

Let
xr = x

tr/r
1 .

Then we have
(
1 + x−s

1

)tr/r
=

1− x
−str(1+1/r)
1

1− x−str
1

.

From this we can easily deduce that

tr = 1 +
log r

s log x1
+O

{
1

(log x1)
2

}
.
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Hence

xr = x
1/r
1

{
r1/(rs) +O

(
1

log x1

)}
(10.69.365)

and so

xr ∼
(
r1/sx1

)1/r

. (10.69.366)

Putting λ = 2 in (10.60.311) we see that the greatest possible value of r is

a2 =
log(1/ε)

s log 2
+O(1) =

log x1

log 2
+

log log x1

s log 2
+O(1). (10.69.367)

Again

logN = ϑ(x1) + ϑ(x2) + ϑ(x3) + · · · = ϑ(x1) + x2 +O
(
x
1/3
1

)
(10.69.368)

in virtue of (10.69.366). It follows from Section 10.68 and the definition of
Πr(x), that, if sr and s(r + 1) are not equal to 1, then

Πr(x) =

∣∣∣∣
ζ(sr)

ζ{s(r + 1)}

∣∣∣∣ exp
(
O
(
x1−sr

))
;

and consequently

Πr(xr) =

∣∣∣∣
ζ(sr)

ζ{s(r + 1)}

∣∣∣∣ exp
(
O
(
x
1/r−s
1

))
(10.69.369)

in virtue of (10.69.366). But if sr or s(r + 1) is unity, it can easily be shown
that

Πr−1(xr−1)Πr(xr)Πr+1(xr+1) =

∣∣∣∣
ζ{s(r − 1)}
ζ{s(r + 2)}

∣∣∣∣ exp
(
O
(
x
1/(r−1)−s
1

))
.

(10.69.370)

10.70

We shall now consider the order of Σ−s(N) i.e. the maximum order of σ−s(N).
It follows from (10.61.317) that if 3s �= 1, then

Σ−s(N) = Π1(x1)Π2(x2)|ζ(3s)| exp
(
O
(
x
1/3−s
1

))
(10.70.371)

in virtue of (10.69.367), (10.69.369) and (10.69.370). But if 3s = 1, we can
easily show, by using (10.68.362), that

Σ−s(N) = Π1(x1)Π2(x2) exp (O (log log x1)) . (10.70.372)

It follows from Section 10.68 that



384 10 Highly Composite Numbers

logΠ1(x1) = log

∣∣∣∣
ζ(s)

ζ(2s)

∣∣∣∣+ Li{θ(x1)}1−s − 1

2
Li{ϑ(x1)}1−2s (10.70.373)

+
1

3
Li{ϑ(x1)}1−3s − · · · − (−1)n

n
Li{ϑ(x1)}1−ns

−1

2
Li
(
x
1/2−s
1

)
+

x
1/2−s
1 + Ss(x1)

log x1
+O

{
x
1/2−s
1

(log x1)
2

}

where n =
[
1 + 1

2s

]
; and also that, if 3s �= 1, then,

logΠ2(x2) = log

∣∣∣∣
ζ(2s)

ζ(3s)

∣∣∣∣+ Li
(
x1−2s
2

)
+O

{
x
1/2−s
1

(log x1)
2

}
; (10.70.374)

and when 3s = 1

logΠ2(x2) = Li
(
x1−2s
2

)
+O

{
x
1/2−s
1

(log x1)
2

}
. (10.70.375)

It follows from (10.70.371)–(10.70.375) that

logΣ−s(N) = log |ζ(s)|+ Li{ϑ(x1)}1−s − 1

2
Li{ϑ(x1)}1−2s

+
1

3
Li{ϑ(x1)}1−3s − · · · − (−1)n

n
Li{ϑ(x1)}1−ns

−1

2
Li
(
x
1/2−s
1

)
+ Li

(
x1−2s
2

)

+
x
1/2−s
1 + Ss(x1)

log x1
+O

{
x
1/2−s
1

(log x1)
2

}
(10.70.376)

where n =
[
1 + 1

2s

]
. But from (10.69.368) it is clear that, if m > 0 then

Li{ϑ(x1)}1−ms

= Li
{
logN − x2 +O

(
x
1/3
1

)}1−ms

= Li
{
(logN)1−ms − (1−ms)x2(logN)−ms +O

(
x
1/3−ms
1

)}

= Li(logN)1−ms − x2(logN)−ms

log logN
+O

(
x
1/3−ms
1

)
.

By arguments similar to those of Section 42 we can show that

Ss(x1) = Ss

{
logN +O

(√
x1(log x1)

2
)}

= Ss(logN) +O
{
x−s
1 (log x1)

4
}
.

Hence

logΣ−s(N) = log |ζ(s)|+ Li(logN)1−s − 1

2
Li(logN)1−2s (10.70.377)
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+
1

3
Li(logN)1−3s − · · · − (−1)n

n
Li(logN)1−ns

−1

2
Li(logN)1/2−s +

(logN)1/2−s + Ss(logN)

log logN

+Li
(
x1−2s
2

)
− x2(logN)−s

log logN
+O

{
(logN)1/2−s

(log logN)2

}

where n =
[
1 + 1

2s

]
and

x2 = 21/(2s)
√
x1 +O

( √
x1

log x1

)

= 21/(2s)
√
(logN) +O

{√
(logN)

log logN

}
(10.70.378)

in virtue of (10.69.365).

10.71

Let us consider the order of Σ−s(N) in the following three cases.

Case I. 0 < s < 1
2

Here we have

Li(logN)1/2−s =
(logN)1/2−s

( 12 − s) log logN
+O

{
(logN)1/2−s

(log logN)2

}
.

Li
(
x1−2s
2

)
=

x1−2s
2

(1− 2s) log x2
+O

{
x1−2s
2

(log x2)
2

}

=
21/(2s)(logN)1/2−s

(1− 2s) log logN
+O

{
(logN)1/2−s

(log logN)2

}
.

x2(logN)−s

log logN
=

21/(2s)(logN)1/2−s

log logN
+O

{
(logN)1/2−s

(log logN)2

}
.

It follows from these and (10.70.377) that

logΣ−s(N) = Li(logN)1−s − 1

2
Li(logN)1−2s

+
1

3
Li(logN)1−3s − · · · − (−1)n

n
Li(logN)1−ns

+
2s
(
21/(2s) − 1

)
(logN)1/2−s

(1− 2s) log logN

+
Ss(logN)

log logN
+O

{
(logN)1/2−s

(log logN)2

}
(10.71.379)
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where n =
[
1 + 1

2s

]
. Remembering (10.68.358) and (10.70.378) and making

s → 1
2 in (10.70.377) we have

Case II. s = 1
2

Σ−1/2(N) = −
√
2

2
ζ

(
1

2

)
exp

{
Li
√
(logN)

+
2 log 2− 1 + S1/2(logN)

log logN
+

O(1)

(log logN)2

}
. (10.71.380)

Case III. s > 1
2

Σ−s(N) = |ζ(s)| exp

⎧
⎨

⎩Li(logN)1−s −
2s
(
21/(2s) − 1

)

2s− 1

(logN)1/2−s

log logN

⎫
⎬

⎭

+
Ss(logN)

log logN
+O

{
(logN)1/2−s

(log logN)2

}
. (10.71.381)

Now making s → 1 in this we have

Σ−1(N) = eγ

{
log logN − 2(

√
2− 1)√

(logN)
+ S1(logN) +

O(1)√
(logN) log logN

}
.

(10.71.382)
Hence

Lim{Σ−1(N)− eγ log logN}
√

(logN) ≥ −eγ(2
√
2 + γ − log 4π) = −1.558

approximately and

Lim{Σ−1(N)− eγ log logN}
√
(logN) ≤ −eγ(2

√
2− 4− γ+ log 4π) = −1.393

approximately.
The maximum order of σs(N) is easily obtained by multiplying the values

of Σ−s(N) by Ns. It may be interesting to see that xr → x
1/r
1 as s → ∞, and

ultimately N assumes the form

eϑ(x1)+ϑ(x
1/2
1 )+ϑ(x

1/3
1 )+···

that is to say the form of a generalized superior highly composite number
approaches that of the least common multiple of the natural numbers when s
becomes infinitely large.

The maximum order of σ−s(N) without assuming the prime number the-
orem is obtained by changing logN to logNeO(1) in all the preceding results.
In particular

Σ−1(N) = eγ{log logN +O(1)}. (10.71.383)
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10.72

Let

(
1 + 2q + 2q4 + 2q9 + · · ·

)4
= 1 + 8

{
Q4(1)q +Q4(2)q

2 +Q4(3)q
3 + · · ·

}
.

Then, by means of elliptic functions, we can show that

Q4(1)q +Q4(2)q
2 +Q4(3)q

3 + · · ·

=
q

1− q
+

2q2

1 + q2
+

3q3

1− q3
+

4q4

1 + q4
+ · · ·

=
q

1− q
+

2q2

1− q2
+

3q3

1− q3
+

4q4

1− q4
+ · · ·

−
(

4q4

1− q4
+

8q8

1− q8
+

12q12

1− q12
+ · · ·

)
. (10.72.384)

But

q

1− q
+

2q2

1− q2
+

3q3

1− q3
+ · · · = σ1(1)q + σ1(2)q

2 + σ1(3)q
3 + · · · .

It follows that
Q4(N) ≤ σ1(N) (10.72.385)

for all values of N . It also follows from (10.72.384) that

(
1− 41−s

)
ζ(s)ζ(s−1) = 1−sQ4(1)+2−sQ4(2)+3−sQ4(3)+· · · . (10.72.386)

Let
N = 2a2 · 3a3 · 5a5 · · · pap

where aλ ≥ 0. Then, the coefficient of qN in

q

1− q
+

2q2

1− q2
+

3q3

1− q3
+ · · ·

is

N
1− 2−a2−1

1− 2−1

1− 3−a3−1

1− 3−1

1− 5−a5−1

1− 5−1 · · · 1− p−ap−1

1− p−1 ;

and that in
4q4

1− q4
+

8q8

1− q8
+

12q12

1− q12
+ · · ·

is 0 when N is not a multiple of 4 and

N
1− 2−a2−1

1− 2−1

1− 3−a3−1

1− 3−1

1− 5−a5−1

1− 5−1 · · · 1− p−ap−1

1− p−1
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when N is a multiple of 4. From this and (10.72.384) it follows that, if N is
not a multiple of 4, then

Q4(N) = N
1− 2−a2−1

1− 2−1

1− 3−a3−1

1− 3−1

1− 5−a5−1

1− 5−1 · · · 1− p−ap−1

1− p−1 ; (10.72.387)

and if N is a multiple of 4, then

Q4(N) = 3N
1− 2−a2−1

1− 2−1

1− 3a3−1

1− 3−1

1− 5−a5−1

1− 5−1 . . .
1− p−ap−1

1− p−1 . (10.72.388)

It is easy to see from (10.72.387) and (10.72.388) that, in order that Q4(N)
should be of maximum order, a2 must be 1. From (10.71.382) we see that the
maximum order of Q4(N) is

3

4
eγ

{
log logN − 2(

√
2− 1)√

(logN)
+ S1(logN) +O

(
1√

(logN) log logN

)}

=
3

4
eγ

{
log logN +O

(
1√

(logN)

)}
. (10.72.389)

It may be observed that, if N is not a multiple of 4, then

Q4(N) = σ1(N);

and if N is a multiple of 4, then

Q4(N) =
3σ1(N)

2a2+1 − 1
.

10.73

Let
(
1 + 2q + 2q4 + 2q9 + · · ·

)6
= 1 + 12

{
Q6(1)q +Q6(2)q

2 +Q6(3)q
3 + · · ·

}
.

Then, by means of elliptic functions, we can show that

Q6(1)q +Q6(2)q
2 +Q6(3)q

3 + · · ·

=
4

3

(
12q

1 + q2
+

22q2

1 + q4
+

32q3

1 + q6
+ · · ·

)

− 1

3

(
12q

1− q
− 32q3

1− q3
+

52q5

1− q5
− · · ·

)
. (10.73.390)

But
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5

3

{
σ2(1)q + σ2(2)q

2 + σ2(3)q
3 + · · ·

}

=
4

3

{
12q

1− q
+

22q2

1− q2
+

32q3

1− q3
+ · · ·

}

+
1

3

{
12q

1− q
+

22q2

1− q2
+

32q3

1− q3
+ · · ·

}
.

It follows that

Q6(N) ≤ 5σ2(N)− 2

3
(10.73.391)

for all values of N . It also follows from (10.73.390) that

4

3
ζ(s− 2)ζ1(s)−

1

3
ζ(s)ζ1(s− 2)

= 1−sQ6(1) + 2−sQ6(2) + 3−sQ6(3) + · · · . (10.73.392)

Let
N = 2a2 · 3a3 · 5a5 · · · pap ,

where aλ ≥ 0. Then from (10.73.390) we can show, as in the previous section,
that if 2−a2N be of the form 4n+ 1, then

Q6(N) = N2 1−
(
22
)−a2−1

1− 2−2

1−
(
−32

)−a3−1

1 + 3−2

×
1−

(
52
)−a5−1

1− 5−2 · · ·
1−

{
(−1)(p−1)/2p2

}−ap−1

1− (−1)(p−1)/2p−2
; (10.73.393)

and if 2−a2N be of the form 4n− 1, then

Q6(N) = N2 1 +
(
22
)−a2−1

1− 2−2

1−
(
−32

)−a3−1

1 + 3−2

×
1−

(
52
)−a5−1

1− 5−2 · · ·
1−

{
(−1)(p−1)/2p2

}−ap−1

1− (−1)(p−1)/2p−2
. (10.73.394)

It follows from (10.73.393) and (10.73.394) that, in order that Q6(N) should
be of maximum order, 2−a2N must be of the form 4n−1 and a2, a3, a7, a11, . . .
must be 0; 3, 7, 11, . . . being primes of the form 4n − 1. But all these cannot
be satisfied at the same time since 2−a2N cannot be of the form 4n− 1, when
a3, a7, a11, . . . are all zeros. So let us retain a single prime of the form 4n− 1
in the end, that is to say, the largest prime of the form 4n− 1 not exceeding
p. Thus we see that, in order that Q6(N) should be of maximum order, N
must be of the form

5a5 · 13a13 · 17a17 · · · pap · p′
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where p is a prime of the form 4n+ 1 and p′ is the prime of the form 4n− 1
next above or below p; and consequently

Q6(N) =
5

3
N2 1− 5−2(a5+1)

1− 5−2

1− 13−2(a13+1)

1− 13−2 · · · 1− p−2(ap+1)

1− p−2

{
1− (p′)−2

}
.

From this we can show that the maximum order of Q6(N) is

5N2e
1/2 Li(1/(2 logN))+O

{
(log logN)/(logN

√
(logN))

}

3

(
1− 1

52

)(
1− 1

132

)(
1− 1

172

)(
1− 1

292

)
· · ·

=

5N2

{
1 +

1

2
Li

(
1

2 logN

)
+O

(
log logN

logN
√
(logN)

)}

3

(
1− 1

52

)(
1− 1

132

)(
1− 1

172

)(
1− 1

292

)
· · ·

(10.73.395)

where 5, 13, 17, . . . are the primes of the form 4n+ 1.

10.74

Let

(
1 + 2q + 2q4 + 2q9 + · · ·

)8
= 1 + 16

{
Q8(1)q +Q8(2)q

2 +Q8(3)q
3 + · · ·

}
.

Then, by means of elliptic functions, we can show that

Q8(1)q +Q8(2)q
2 +Q8(3)q

3 + · · ·

=
13q

1 + q
+

23q2

1− q2
+

33q3

1 + q3
+

43q4

1− q4
+ · · · . (10.74.396)

But

σ3(1)q + σ3(2)q
2 + σ3(3)q

3 + · · ·

=
13q

1− q
+

23q2

1− q2
+

33q3

1− q3
+ · · · .

It follows that
Q8(N) ≤ σ3(N) (10.74.397)

for all values of N . It can also be shown from (10.74.396) that

(
1− 21−s + 42−s

)
ζ(s)ζ(s− 3) = Q8(1)1

−s +Q8(2)2
−s +Q8(3)3

−s + · · · .
(10.74.398)

Let
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N = 2a2 · 3a3 · 5a5 · · · pap ,

where aλ ≥ 0. Then from (10.74.396) we can easily show that, if N is odd,
then

Q8(N) = N3 1− 2−3(a2+1)

1− 2−3

1− 3−3(a3+1)

1− 3−3 · · · 1− p−3(ap+1)

1− p−3 ; (10.74.399)

and if N is even then

Q8(N) = N3 1− 15 · 2−3(a2+1)

1− 2−3

1− 3−3(a3+1)

1− 3−3 · · · 1− p−3(ap+1)

1− p−3 . (10.74.400)

Hence the maximum order of Q8(N) is

ζ(3)N3eLi(logN)−2+O(((logN)−5/2)(log logN))

= ζ(3)N3

{
1 + Li(logN)−2 +O

(
(logN)−5/2

log logN

)}

or more precisely

ζ(3)N3

⎧
⎨

⎩1 + Li(logN)−2 −
6
(
21/6 − 1

)
(logN)−5/2

5 log logN

+
S3(logN)

log logN
+O

(
(logN)−5/2

(log logN)2

)}
. (10.74.401)

10.75

There are, of course, results corresponding to those of Sections 10.72–10.74
for the various powers of Q where

Q = 1 + 6

(
q

1− q
− q2

1− q2
+

q4

1− q4
− q5

1− q5
+ · · ·

)
.

Thus for example

(Q)2 = 1 + 12

(
q

1− q
+

2q2

1− q2
+

4q4

1− q4
+

5q5

1− q5
+ · · ·

)
, (10.75.402)

(Q)3 = 1− 9

(
12q

1− q
− 22q2

1− q2
+

42q4

1− q4
− 52q5

1− q5
+ · · ·

)

+ 27

(
12q

1 + q + q2
+

22q2

1 + q2 + q4
+

32q3

1 + q3 + q6
+ · · ·

)
, (10.75.403)

(Q)4 = 1 + 24

(
13q

1− q
+

23q2

1− q2
+

32q3

1− q3
+ · · ·

)
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+ 8

(
33q3

1− q3
+

63q6

1− q6
+

93q9

1− q9
+ · · ·

)
. (10.75.404)

The number of ways in which a number can be expressed in the formsm2+2n2,
k2 + l2 + 2m2 + 2n2, m2 + 3n2, and k2 + l2 + 3m2 + 3n2 can be found from
the following formulae.
(
1 + 2q + 2q4 + 2q9 + · · ·

) (
1 + 2q2 + 2q8 + 2q18 + · · ·

)

= 1 + 2

(
q

1− q
+

q3

1− q3
− q5

1− q5
− q7

1− q7
+ · · ·

)
, (10.75.405)

(
1 + 2q + 2q4 + 2q9 + · · ·

)2 (
1 + 2q2 + 2q8 + 2q18 + · · ·

)2

= 1 + 4

(
q

1− q2
+

2q2

1− q4
+

3q3

1− q6
+

4q4

1− q8
+ · · ·

)
, (10.75.406)

(
1 + 2q + 2q4 + 2q9 + · · ·

) (
1 + 2q3 + 2q12 + 2q27 + · · ·

)

= 1 + 2

(
q

1− q
− q2

1 + q2
+

q4

1 + q4
− q5

1− q5
+

q7

1− q7
− · · ·

)
, (10.75.407)

(
1 + 2q + 2q4 + 2q9 + · · ·

)2 (
1 + 2q3 + 2q12 + 2q27 + · · ·

)2

= 1 + 4

(
q

1 + q
+

2q2

1− q2
+

4q4

1− q4
+

5q5

1 + q5
+

7q7

1 + q7
+ · · ·

)
(10.75.408)

where 1, 2, 4, 5 . . . are the natural numbers without the multiples of 3.

NOTES

10.52

The definition ofQ2(N) given in square brackets is missing in [283]. It has been
formulated in the same terms as the definition ofQ2(N) given in Section 10.55.
For N �= 0, 4Q2(N) is the number of pairs (x, y) ∈ Z2 such that x2+ y2 = N .
The content of this section is well known.

Formula (10.52.269) links Dirichlet’s series with Lambert’s series [168,
p. 258].

10.53

Effective upper bounds for Q2(N) can be found in [296, p. 50]; for instance

logQ2(N) ≤ (log 2)(logN)

log logN

(
1 +

1− log 2

log logN
+

2.40104

(log logN)2

)
.

The maximal order of Q2(N) is studied in [242], but not so deeply as here.
See also [245, pp. 218–219].
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10.54

For a proof of (10.54.276), see [301, p. 22]. In (10.54.276), we remind the
reader that ρ is a zero of the Riemann zeta function. Formula (10.54.279) has
been rediscovered and extended to all arithmetic progressions [299].

10.56

For a proof of (10.56.291), see [301, p. 22]. In the definition of R2(x), between
formulas (10.56.290) and (10.56.291), and in the definition of Φ(N), after
formula (10.56.294), three misprints in [283] have been corrected, namely

∑
xρ

ρ2

and
∑

xρ2

ρ2
2

have been written instead of
∑

xρ

ρ and
∑

xρ2

ρ2
, respectively, and

R2(2 logN) instead of R2(logN).

10.57

Effective upper bounds for d2(N) can be found in [297, p. 51]; for instance

log d2(N) ≤ (log 3)(logN)

log logN

(
1 +

1

log logN
+

5.5546

(log logN)2

)
.

For a more general study of dk(n), when k and n tend to infinity, see [126]
and [253].

In the final (short) section of Ramanujan’s published paper [274], [281,
p. 128] on highly composite numbers, he proves that

m2(x) := max
n≤x

log d(d(n)) ≥ (
√
2 log 4 + o(1))

√
log x

log log x
.

As this volume was nearing completion, Y. Buttkewitz, C. Elsholtz, K. Ford,
and J.-C. Schlage-Puchta [95] proved an asymptotic formula for m2(x),
namely,

m2(x) =

√
log x

log log x

(
c+O

(
log log log x

log log x

))
,

where

c =

⎛

⎝8

∞∑

j=1

log2
(
1 +

1

j

)⎞

⎠
1/2

= 2.7959802335 . . . .
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10.58

The words in square brackets do not occur in [283], where the definition of
σ−s(N) and the proof of (10.58.301) are missing. It is not clear why Ramanu-
jan considered σ−s(N) only with s ≥ 0. Of course, he knew that

σs(N) = Nsσ−s(N)

(see, for instance, Section 10.71, after formula (10.71.382)), but for s > 0, the
generalized highly composite numbers for σs(N) are quite different, and for
instance, property (10.59.303) does not hold for them.

10.59

It would be better to call these numbers s-generalized highly composite num-
bers, because their definition depends on s. For s = 1, these numbers have
been called superabundant by L. Alaoglu and P. Erdős [9], [135], and the
generalized superior highly composite numbers have been called colossally
abundant. The real solution of 2s+4s+8s = 3s+9s is approximately 1.6741.

10.60

For s = 1, the results of this and the following section are in [9] and [135].

10.62

The references given here, formula (16), and Section 38 are from [274]. For a
geometrical interpretation of Σ−s(N), see [245, p. 230]. Consider the piece-
wise linear function u �→ f(u) such that for all generalized superior highly
composite numbers N , f(logN) = log σ−s(N). Then for all N ,

Σ−s(N) = exp (f(logN)) .

Indefinite integrals mean, in fact, definite integrals. For instance, in formula
(10.62.320),

∫
επ(xr)

xr
dxr should be read as

∫ xr

2

επ(t)

t
dt.

10.64

Formula (10.64.329) is proved in [301, p. 29] from a classical explicit formula
in prime number theory.
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10.65

There is a misprint in the last term of formula (10.65.340) in [283], but it may
be only a mistake of copying, since the next formula is correct. This section
belongs to that part of the manuscript that is not in Ramanujan’s handwriting
in [283].

The approximations given for 1/
√
mn arise from the Padé approximant of√

t in the neighborhood of t = 1, namely,

√
t = 1 +

t− 1

2 + t−1
2

=
3t+ 1

t+ 3
=

1
1
3 + 8

3(3t+1)

.

10.68

There are two formulas (10.68.362) in [283, p. 299]. Formula (10.68.362) can
be found in [244]. As observed by Birch [75, p. 74], there is some similarity
between the calculations of Sections 10.63–10.68, and those appearing in [283,
pp. 228–232].

10.71

There is an incorrect sign in formula (10.71.379) of [283], and also in formulas
(10.71.381) and (10.71.382). The two inequalities following formula (10.71.382)
are also incorrect. In formula (10.71.380), the right coefficient in the right-hand

side is −
√
2
2 ζ(1/2) instead of −

√
2ζ(1/2) in [283]. It follows from (10.71.382)

that under the Riemann hypothesis, and for n0 large enough,

n > n0 ⇒ σ(n)/n ≤ eγ log logn.

It has been shown in [298] that the relation above with n0 = 5040 is equivalent
to the Riemann hypothesis.

10.72

Formula (10.72.384) is due to Jacobi, but Ramanujan also discovered it; see
Entry 8(ii) in Chapter 17 of his second notebook [282], [55, p. 114] and formula
(3.12) in his lost notebook [283, p. 356], [15, Entry 18.2.1]. See also Hardy
and Wright’s text [168, p. 311] and Hardy’s book [166, pp. 132–160]. In [323],
B.K Spearman and K.S. Williams give a purely arithmetic proof. Further
proofs and references can be found in Berndt’s book [60, pp. 59–63, 79]. In
formula (10.72.389) of [283], the sign of the second term in the curly brackets
is wrong.
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10.73

Formula (10.73.390) is proved in [265, p. 198, Equation (90.3)]. Two par-
ticularly simple proofs have been given by S.H. Chan [103] and A. Alaca,
S. Alaca, and Williams [11]. Chan’s proof is reproduced in [60, pp. 63–67].
Further proofs can be found in the paper [223] by E. McAfee and Williams
and M. Nathanson’s book [237, p. 436]. It is true that if

N = 5a5 · 13a13 · 17a17 · · · papp′,

with p′ ∼ p, then Q6(N) will have the maximal order (10.73.395). But if
we define a superior champion for Q6, that is to say an N that maximizes

Q(N)N−2−ε for an ε > 0, it will be of the form above, with p′ ∼ p
√

log p
2 .

In (10.73.395), the error term was written O
(

1
(logN)3/2 log logN

)
in [283]; see

[301].

10.74

Formula (10.74.396) is proved in [265, p. 198, Equation (90.4)]. This famous
formula of Jacobi was also given by Ramanujan in a fragment published with
the lost notebook [283, p. 353, Formula (1.14); p. 356, Formula (3.14)]. See
also Entry 18.2.3 of [15], where references to further proofs can be found.
A simple arithmetic proof has been given by Spearman and Williams [324].
Further proofs and references can be found in Berndt’s book [60, pp. 67–71,
80]. In formula (10.74.401), the sign of the third term in the curly brackets is
wrong in [283]. In [283], the right-hand side of (10.74.398) is written as the
left-hand side of (10.74.396).

10.75

The formulas (10.75.402), (10.75.403), and (10.75.404) are given in a fragment
on Lambert series published with the lost notebook [283, p. 355]. See Entries
18.2.9–18.2.11 in Chapter 18 of [15, pp. 402–403] for these formulas, a proof
of (10.75.403), and references to proofs of (10.75.402) and (10.75.404).

One can find (10.75.405) as Entry 8(iii) of Chapter 17 in Ramanujan’s
second notebook [282], [55, p. 114]. The formulas (10.75.407) and (10.75.408)
can also be found in the aforementioned fragment [283, p. 354]. See Entries
18.2.24 and 18.2.25 in [15, p. 407], where references to proofs of the former
formula can be found and where a proof of the latter formula can be read.

The formula (10.75.406) is incorrect as it stands. The correct formula is
given by
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ϕ2(q)ϕ2(q2) = 1 + 4

∞∑

n=1

nqn

1− q2n
− 8

∞∑

n=1

n(−1)nq4n

1− q4n
. (10.75.409)

A different, but equivalent, Lambert series representation for ϕ2(q)ϕ2(q2) can
be found in Ramanujan’s second notebook [282, p. 266], [58, p. 373, Entry
31]. Equating coefficients of qn on both sides of (10.75.409), we find that the
number R2(n) of integral solutions of the equation n = x2 + y2 + 2z2 + 2t2,
n ≥ 1, is given by

R2(n) = 4σ(n)− 4σ(n/2) + 8σ(n/4)− 32σ(n/8),

where it is understood that if n/2j is not an integer, then σ(n/2j) = 0. This
result was first proved by J. Liouville [217], with later proofs provided by
T. Pepin [262], [263], P. Bachmann [30, p. 414], J.I. Deutsch [123], S.H. Chan
[104, p. 68, Corollary 3.6.4], and Alaca, Alaca, M.F. Lemire, and Williams
[10].

TWO FRAGMENTS ON PAGES 309–312

The fragment on pages 309–310

N is highly composite

N = eϑ(p1)+ϑ(p2)+ϑ(p3)+···.

d(N) = 2π(p1)

(
3

2

)π(p2)(4

3

)π(p3)

· · ·

and
N ′ = Neϑ(q1)+ϑ(qr)−ϑ(p1)−ϑ(pr).

Then

d(N ′) ≥ d(N) · 2π(q1)−π(p1)

(
1 +

1

r

)π(qr)−π(pr)

.

First let us suppose that q1 > p1, qr < pr and

π(q1) = π(p1) + n,

π(qr) = π(pr)−
[

n log 2

log(1 + 1/r)

]
.

Then we have d(N ′) ≥ d(N) and so N ′ ≥ N . That is to say

ϑ(q1) + ϑ(qr) ≥ ϑ(p1) + ϑ(pr).

But if α > β, it is easy to see that

{π(α)− π(β)} logα ≥ ϑ(α)− ϑ(β) ≥ {π(α)− π(β)} log β.

Hence,
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{π(q1)− π(p1)} log q1 ≥ {π(pr)− π(qr)} log qr,

or

n log q1 ≥
[

n log 2

log(1 + 1/r)

]
log qr.

But it is easy to show that, if π(α) = π(β) + x and x = o
(

β
logN

)
, then

logα = log β + o(1).

Hence,
log q1 = log p1 + o(1), log qr = log pr + o(1),

and so

n {log p1 + o(1)} ≥
[

n log 2

log(1 + 1/r)

]
{log pr + o(1)} ,

or

log p1 + o(1) ≥
{

log 2

log(1 + 1/r)
+O

(
1

n

)}
{log pr + o(1)} .

In other words,

log p1
log 2

− log pr
log(1 + 1/r)

≥ O

(
r +

log pr
n

)
.

Now we can choose n so that log pr = O(nr). Hence,

log p1
log 2

− log pr
log(1 + 1/r)

> O(r).

Again supposing that q1 < p1, qr > pr, and

π(q1) = π(p1)− n− 1,

π(qr) = π(pr) +

[
n log 2

log(1 + 1/r)

]

and proceeding as before we can show that

log p1
log 2

− log pr
log(1 + 1/r)

< O(r).

It follows that
log pr

log(1 + 1/r)
=

log p1
log 2

+O(r). (1)

The second fragment is almost identical to approximately the first half of
the first fragment.
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The fragment on pages 311–312

If
N = eϑ(α)+ϑ(β)+ϑ(γ)+···,

then

d(N) ≥ 2π(α)
(
3

2

)π(β)(
4

3

)π(γ)

· · · .

If α ≥ β ≥ γ ≥ · · · , then only

N = eϑ(α)+ϑ(β)+ϑ(γ)+···

and

d(N) = 2π(α)
(
3

2

)π(β)(
4

3

)π(γ)

· · · .

Let
N ′ = Neϑ(qr)+ϑ(qs)−ϑ(pr)−ϑ(ps).

Then

d(N ′) ≥ d(N)

(
1 +

1

r

)π(qr)−π(pr)(
1 +

1

s

)π(qs)−π(ps)

.

Let us suppose that
qr > pr, qs < ps

and ⎧
⎨

⎩

π(qr) = π(pr) + n,

π(qs) = π(ps)−
[
n log(1 + 1/r)

log(1 + 1/s)

]
.

(1)

We have then
d(N ′) ≥ d(N)

and so
N ′ ≥ N.

That is to say
ϑ(qr) + ϑ(qs) ≥ ϑ(pr) + ϑ(ps).

But if α > β, then

{π(α)− π(β)} logα ≥ ϑ(α)− ϑ(β) ≥ {π(α)− π(β)} log β.

Hence,
{π(qr)− π(pr)} log qr ≥ {π(ps)− π(qs)} log qs,

or

n log qr ≥
[
n log(1 + 1/r)

log(1 + 1/s)

]
log qs.

Now we have to express qr and qs in terms of pr and ps respectively.
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TABLE OF LARGELY COMPOSITE NUMBERS

The table appearing on page 280 in [283] is a table of largely composite
numbers. An integer N is said to be largely composite if whenever M ≤ N ,
then d(M) ≤ d(N). There are a few errors in the table. The entry 150840 is
not a largely composite number; in particular,

150840 = 23 · 32 · 5 · 419 and d(150840) = 48,

while the four numbers 4200, 151200, 415800, 491400 are largely composite and
do not appear in the table of Ramanujan. Largely composite numbers are stud-
ied in [243]. The table below is a corrected version of Ramanujan’s table [283,
p. 280]. The numbers marked with one asterisk are superior highly composite
numbers.
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n d n d n d
1 1 7560 64 23.33.5.7 942480 240 24.32.5.7.11.17

∗2 2 2 9240 64 23.3.5.7.11 982800 240 24.33.52.7.13
3 2 3 10080 72 25.32.5.7 997920 240 25.34.5.7.11
4 3 22 12600 72 23.32.52.7 1053360 240 24.32.5.7.11.19

∗6 4 2.3 13860 72 22.32.5.7.11 1081080 256 23.33.5.7.11.13
8 4 23 15120 80 24.33.5.7 1330560 256 27.33.5.7.11

10 4 2.5 18480 80 24.3.5.7.11 1413720 256 23.33.5.7.11.17
∗12 6 22.3 20160 84 26.32.5.7 ∗1441440 288 25.32.5.7.11.13
18 6 2.32 25200 90 24.32.52.7 1663200 288 25.33.52.7.11
20 6 22.5 27720 96 23.32.5.7.11 1801800 288 23.32.52.7.11.13
24 8 23.3 30240 96 25.33.5.7 1884960 288 25.32.5.7.11.17
30 8 2.3.5 32760 96 23.32.5.7.13 1965600 288 25.33.52.7.13
36 9 22.32 36960 96 25.3.5.7.11 2106720 288 25.32.5.7.11.19
48 10 24.3 37800 96 23.33.52.7 2162160 320 24.33.5.7.11.13

∗60 12 22.3.5 40320 96 27.32.5.7 2827440 320 24.33.5.7.11.17
72 12 23.32 41580 96 22.33.5.7.11 2882880 336 26.32.5.7.11.13
84 12 22.3.7 42840 96 23.32.5.7.17 3326400 336 26.33.52.7.11
90 12 2.32.5 43680 96 25.3.5.7.13 3603600 360 24.32.52.7.11.13
96 12 25.3 45360 100 24.34.5.7 ∗4324320 384 25.33.5.7.11.13

108 12 22.33 50400 108 25.32.52.7 5405400 384 23.33.52.7.11.13
∗120 16 23.3.5 ∗55440 120 24.32.5.7.11 5654880 384 25.33.5.7.11.17
168 16 23.3.7 65520 120 24.32.5.7.13 5765760 384 27.32.5.7.11.13
180 18 22.32.5 75600 120 24.33.52.7 6126120 384 23.32.5.7.11.13.17
240 20 24.3.5 83160 128 23.33.5.7.11 6320160 384 25.33.5.7.11.19
336 20 24.3.7 98280 128 23.33.5.7.13 6486480 400 24.34.5.7.11.13

∗360 24 23.32.5 110880 144 25.32.5.7.11 7207200 432 25.32.52.7.11.13
420 24 22.3.5.7 131040 144 25.32.5.7.13 8648640 448 26.33.5.7.11.13
480 24 25.3.5 138600 144 23.32.52.7.11 10810800 480 24.33.52.7.11.13
504 24 23.32.7 151200 144 25.33.52.7 12252240 480 24.32.5.7.11.13.17
540 24 22.33.5 163800 144 23.32.52.7.13 12972960 480 25.34.5.7.11.13
600 24 23.3.52 166320 160 24.33.5.7.11 13693680 480 24.32.5.7.11.13.19
630 24 2.32.5.7 196560 160 24.33.5.7.13 14137200 480 24.33.52.7.11.17
660 24 22.3.5.11 221760 168 26.32.5.7.11 14414400 504 26.32.52.7.11.13
672 24 25.3.7 262080 168 26.32.5.7.13 17297280 512 27.33.5.7.11.13
720 30 24.32.5 277200 180 24.32.52.7.11 18378360 512 23.33.5.7.11.13.17
840 32 23.3.5.7 327600 180 24.32.52.7.13 20540520 512 23.33.5.7.11.13.19

1080 32 23.33.5 332640 192 25.33.5.7.11 ∗21621600 576 25.33.52.7.11.13
1260 36 22.32.5.7 360360 192 23.32.5.7.11.13 24504480 576 25.32.5.7.11.13.17
1440 36 25.32.5 393120 192 25.33.5.7.13 27387360 576 25.32.5.7.11.13.19
1680 40 24.3.5.7 415800 192 23.33.52.7.11 28274400 576 25.33.52.7.11.17
2160 40 24.33.5 443520 192 27.32.5.7.11 28828800 576 27.32.52.7.11.13

∗2520 48 23.32.5.7 471240 192 23.32.5.7.11.17 30270240 576 25.33.5.72.11.13
3360 48 25.3.5.7 480480 192 25.3.5.7.11.13 30630600 576 23.32.52.7.11.13.17
3780 48 22.33.5.7 491400 192 23.33.52.7.13 31600800 576 25.33.52.7.11.19
3960 48 23.32.5.11 498960 200 24.34.5.7.11 32432400 600 24.34.52.7.11.13
4200 48 23.3.52.7 554400 216 25.32.52.7.11 36756720 640 24.33.5.7.11.13.17
4320 48 25.33.5 655200 216 25.32.52.7.13 41081040 640 24.33.5.7.11.13.19
4620 48 22.3.5.7.11 665280 224 26.33.5.7.11 43243200 672 26.33.52.7.11.13
4680 48 23.32.5.13 ∗720720 240 24.32.5.7.11.13 49008960 672 26.32.5.7.11.13.17

∗5040 60 24.32.5.7 831600 240 24.33.52.7.11 54774720 672 26.32.5.7.11.13.19
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n d n d

56548800 672 26.33.52.7.11.17 232792560 960 24.32.5.7.11.13.17.19
60540480 672 26.33.5.72.11.13 245044800 1008 26.32.52.7.11.13.17
61261200 720 24.32.52.7.11.13.17 273873600 1008 26.32.52.7.11.13.19
64864800 720 25.34.52.7.11.13 294053760 1024 27.33.5.7.11.13.17
68468400 720 24.32.52.7.11.13.19 328648320 1024 27.33.5.7.11.13.19
73513440 768 25.33.5.7.11.13.17 349188840 1024 23.33.5.7.11.13.17.19
82162080 768 25.33.5.7.11.13.19 ∗367567200 1152 25.33.52.7.11.13.17
86486400 768 27.33.52.7.11.13 410810400 1152 25.33.52.7.11.13.19
91891800 768 23.33.52.7.11.13.17 465585120 1152 25.32.5.7.11.13.17.19
98017920 768 27.32.5.7.11.13.17 490089600 1152 27.32.52.7.11.13.17
99459360 768 25.33.5.7.11.13.23 497296800 1152 25.33.52.7.11.13.23

102702600 768 23.33.52.7.11.13.19 514594080 1152 25.33.5.72.11.13.17
107442720 768 25.33.5.7.11.17.19 537213600 1152 25.33.52.7.11.17.19
108108000 768 25.33.53.7.11.13 547747200 1152 27.32.52.7.11.13.19
109549440 768 27.32.5.7.11.13.19 551350800 1200 24.34.52.7.11.13.17
110270160 800 24.34.5.7.11.13.17 616215600 1200 24.34.52.7.11.13.19
122522400 864 25.32.52.7.11.13.17 698377680 1280 24.33.5.7.11.13.17.19
136936800 864 25.32.52.7.11.13.19 735134400 1344 26.33.52.7.11.13.17
147026880 896 26.33.5.7.11.13.17 821620800 1344 26.33.52.7.11.13.19
164324160 896 26.33.5.7.11.13.19 931170240 1344 26.32.5.7.11.13.17.19
183783600 960 24.33.52.7.11.13.17 994593600 1344 26.33.52.7.11.13.23
205405200 960 24.33.52.7.11.13.19 1029188160 1344 26.33.5.72.11.13.17
220540320 960 25.34.5.7.11.13.17 1074427200 1344 26.33.52.7.11.17.19



Scratch Work

Introduction

In the introduction, partially on the basis of several pages of scratch work, we
tendered the conjecture that Ramanujan had devoted his last hours to cranks
before his suffering became too intense to work on mathematics in the last
four days of his brief life. In this short appendix we briefly examine some of the
pages of scratch work. Most of the scratch work that we can identify pertains
to calculations involving theta functions, cranks, or the partition function.
We emphasize that these pages contain no exciting discoveries. The scratch
work gives us glimpses of some of Ramanujan’s thoughts, but perhaps more
importantly, the scratch work demonstrates the importance of calculations for
Ramanujan.

We discuss pages in the order in which they appear in [283].

Page 61

As discussed in Chapter 4, the first five tables are preliminary versions of the
tables given on page 179. These tables are followed by seven lists of num-
bers, three belonging to residue classes 1 modulo 3, three belonging to residue
classes −1 modulo 3, and the last belonging to multiples of 3. However, gen-
erally, neither the numbers nor the values of p(n) for these n belong to the
requisite residue classes. The seven classes contain a total of 71 numbers, with
the largest being 130.

Below the tables is the quotient of (apparently) infinite products

(q; q)2∞
(q3; q3)∞

.

The scratch work at the bottom of the page contains several theta functions
depicted by the first several terms of their infinite series representations, in
particular,

G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook: Part III,
DOI 10.1007/978-1-4614-3810-6,
c© Springer Science+Business Media New York 2012
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1− q − q2 + q5 + q7 − q12 − q15 − · · · = f(−q),

1− q2 − q7 + q13 + q23 − q33 − q48 + · · · = f(−q2,−q7),

1− q4 − q5 + q17 + q19 − q39 − q42 + · · · = f(−q4,−q5).

We also see

1 + q2 + q4 + q6 − q7 + q8 − q9 + q10 + · · · = 1− q7

1− q2
.

Page 65=73, 66

Inexplicably, the publisher photocopied page 65 twice. Calculations on these
pages appear to be related to cranks.

Page 72

Some of the calculations appear to be related to cranks.

Pages 74–77

These pages may be related to the generating functions in Chapters 2 and 3.
In the upper left-hand corner of page 76, we find the expressions

1− q2 − q3 + · · ·
(1− q)2(1− q4)2

,
(1− q5)(1− q10)

(1− q)(1− q4)
,

(1− q5)(1− q10)

(1− q2)(1− q5)
,

1− q − q4 + · · ·
(1− q2)2(1− q3)2

.

Page 78

Printed upside down, we find

(1− q7 − q8 + q29 + q31 − · · · )(1− q5 − q10 + q25 + q35 − · · · )
= f(−q7,−q8)f(−q5,−q10).

Immediately following, we find

1− q − q4 + q7 + q13 − q18 − q27 + q34 + q46 − · · · = f(−q,−q4).

We remark that we have inserted − · · · in each instance above.
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Page 79

If the series
1− q + q2 + q6 + q8 − q9 + q10 − q11 + 2q12

were extended to infinity, it would equal

(q; q10)∞(q9; q10)∞(q10; q10)∞
(q2; q5)∞(q3; q5)∞

=
f(−q5)f(−q,−q9)

f(−q2,−q3)
.

In the middle of the page, we see

1 + q + q2 + q3 + 2q4 + q6 + q7 + 2q8 + q9,

which, if the summands were extended to infinity, would be equal to

(q5; q5)2∞
(q; q5)∞(q4; q5)∞

=
f3(−q5)

f(−q,−q4)
.

Page 80

This page appears to be related to calculations related to cranks. Reading
sideways, we again see many functions identical to or similar to others that
we have seen before, including

f(−q2,−q3)

(q; q5)2∞(q4; q5)2∞
,

(q5; q5)∞
(q; q5)∞(q4; q5)∞

,
(q5; q5)∞

(q2; q5)∞(q3; q5)∞
.

Page 81

This page may be related to Chapters 2 and 3.

Page 82

At the top of the page we see

1 + q − q2 − q5 + q7 + q12 − q15 − q22 + q26 + q35 − q40 − . . .

=

0∑

n=−∞
(−1)nqn(3n−1)/2 −

∞∑

n=1

(−1)nqn(3n−1)/2,

which is a false theta function.
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Pages 83–85

These pages are likely related to calculations involving cranks.

Pages 86–89

These pages contain a table of the residue classes of p(n) for n from 1 to
nearly 200. The first column is n, the second is p(n) (mod 2), the third is
p(n) (mod 3), the fourth is p(n) (mod 5), the fifth is p(n) (mod 7), and the
sixth is p(n) (mod 11). For the first 17 values of n, the residue of p(n) modulo
13, 17, 19, and 23 are also given. On the right side of page 87, Ramanujan
also tabulates the number of values in each residue class modulo 2, 3, 5, and
7 for the first and second 50 values of n. On page 86, Ramanujan appears to
have calculated residues modulo various n for some arithmetic function that
we cannot identify.

Page 213

This page contains a small amount of scratch work on Eisenstein series, but
no theorem is offered.
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For each page of Ramanujan’s lost notebook on which we have discussed or
proved entries in this book, we provide below a list of those chapters or entries
in which these pages are discussed.

Page 18

Entries 2.1.1, 3.5.1

Page 19

Entries 2.1.4, 2.1.5, 3.6.1

Page 20

Entries 2.1.1, 2.1.2, 3.5.1

Page 54

Entries 9.1.1, 9.4.1, 9.4.2, 9.4.3, 9.4.4, 9.4.5

Page 58

Section 4.4

Page 59

Entries 3.1.1, 4.2.1, 4.2.3, Section 4.4

Page 61

Section 4.5, Scratch Work
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DOI 10.1007/978-1-4614-3810-6,
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Page 63

Section 4.7

Page 64

Section 4.7

Page 65

Scratch Work

Page 66

Scratch Work

Page 70

Entry 3.7.1

Page 72–89

Scratch Work

Pages 135–177

Chapter 5

Page 178

Chapter 7

Page 179

Entries 3.3.1, 3.4.1, Section 4.5

Page 180

Section 4.5

Page 181

Section 4.6

Page 182

Entries 6.5.1, 6.5.2, 6.5.3

Page 184

Entry 2.1.3
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Page 189

Entry 6.2.1, Entry 6.2.2, Entry 6.3.1, Entry 6.3.2,
Entry 6.4.1, Entry 6.4.2, Entry 6.4.3

Page 207

Section 6.6

Page 208

Section 6.6

Page 213

Scratch Work

Pages 236–237

Chapter 8

Pages 238–243

Chapter 5

Page 248

Section 6.6

Page 252

Section 6.6

Pages 280–312

Chapter 10

Page 326

Entry 6.6.1, Section 6.6

Page 331

Entries 6.6.2–6.6.5

Page 333

Section 6.6
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Chapter 2

A.O.L. Atkin and H.P.F. Swinnerton-Dyer, [28]
F.G. Garvan, [144], [146]

Chapter 3

B.C. Berndt, H.H. Chan, S.H. Chan, and W.-C. Liaw, [62]

Chapter 4

B.C. Berndt, H.H. Chan, S.H. Chan, and W.-C. Liaw, [63], [64]
W.-C. Liaw, [216]

Chapter 5

B.C. Berndt and K. Ono, [67]

Chapter 6

B.C. Berndt, A.J. Yee, and J. Yi, [70]
B.C. Berndt, C. Gugg, and S. Kim, [66]

Chapter 7

J.M. Rushforth, [305], [306]

Chapter 8

B.C. Berndt, G. Choi, Y.-S. Choi, H. Hahn, B. P. Yeap, A. J. Yee, H. Yesilyurt,
and J. Yi, [65]
B.C. Berndt and H. Yesilyurt, [73]
H. Yesilyurt, [347], [348]

G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook: Part III,
DOI 10.1007/978-1-4614-3810-6,
c© Springer Science+Business Media New York 2012

411

http://dx.doi.org/10.1007/978-1-4614-3810-6


412 Provenance

Chapter 9

A. Berkovich, F.G. Garvan, and H. Yesilyurt, [53]
H.H. Chan, Z.-G. Liu, and S.T. Ng, [101]
S.H. Son, [320]
P. Xu, [345]

Chapter 10

J.-L. Nicolas and G. Robin, [250]
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Math. I. H. E. S. 54 (1981), 123–201.

316. A.V. Sills, A Rademacher type formula for partitions and overpartitions, Inter-
nat. J. Math. Math. Sci. 2010 (2010), Article ID 630458, 21 pages.

317. W.H. Simons, Congruences involving the partition function p(n), Bull. Amer.
Math. Soc. 50 (1944), 883–892.

318. S.H. Son, Some integrals of theta functions, in Number Theory, Fifth Confer-
ence of the Canadian Number Theory Association, R. Gupta and K.S. Williams,
eds., American Mathematical Society, Providence, RI, 1999, pp. 329–339.

319. S.H. Son, Septic theta function identities in Ramanujan’s lost notebook, Acta
Arith. 98 (2001), 361–374.

320. S.H. Son, Circular summations of theta functions in Ramanujan’s lost notebook,
Ramanujan J. 8 (2004), 235–272.

321. S.H. Son, Basic functional equations of the Rogers–Ramanujan functions,
Rocky Mt. J. Math. 37 (2007), 653–662.

322. S.H. Son, Ramanujan’s symmetric theta functions in his lost notebook, in Spe-
cial Functions and Orthogonal Polynomials, D. Dominici and R.S. Maier, eds.,
Contemp. Math. 471, American Mathematical Society, Providence, RI, 2008,
pp. 187–202.

323. B.K. Spearman and K.S. Williams, The simplest arithmetic proof of Jacobi’s
four squares theorem, Far East J. Math. Sci. 2 (2000), 433–439.

324. B.K. Spearman and K.S. Williams, An arithmetic proof of Jacobi’s eight
squares theorem, Far East J. Math. Sci. 3 (2001), 1001–1005.

325. G.K. Stanley, Two assertions made by Ramanujan, J. London Math. Soc. 3
(1928), 232–237.

326. H.P.F. Swinnerton-Dyer, On �-adic representations and congruences for coef-
ficients of modular forms, in Modular Functions of One Variable III, Lecture
Notes in Math. No. 350, Springer-Verlag, Berlin, 1973, pp. 1–55.

327. H.P.F. Swinnerton-Dyer, Correction to: “On �-adic representations and con-
gruences for coefficients of modular forms”, in Modular Functions of One Vari-
able IV, Lecture Notes in Math. No. 476, Springer-Verlag, Berlin, 1975, p. 149.

328. H.P.F. Swinnerton-Dyer, On �-adic representations and congruences for coeffi-
cients of modular forms (II), in Modular Functions of One Variable V, Lecture
Notes in Math. No. 601, Springer-Verlag, Berlin, 1977, pp. 63–90.



428 References

329. H.P.F. Swinnerton-Dyer, Congruence properties of τ(n), in Ramanujan Revis-
ited, G.E. Andrews, R.A. Askey, B.C. Berndt, K.G. Ramanathan, and R.A.
Rankin, eds., Academic Press, Boston, 1988, pp. 289–311.

330. G. Szekeres, An asymptotic formula in the theory of partitions, Quart. J. Math.
Oxford (2) 2 (1951), 85–108.
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