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Montréal, Québec H3C 3J7
Canada
saint@math.ias.edu

Luc Vinet
Centre de Recherches Mathématiques
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Preface

John Harnad

Department of Mathematics and Statistics, Concordia University,
1455 de Maisonneuve Blvd. West, Montréal, Québec, H3G 1M8, Canada
Centre de Recherches Mathématiques, Université de Montréal, C.P. 6128, Succ.
Centre ville, Montréal, Québec H3C 3J7, Canada, harnad@crm.umontreal.ca

This volume is intended as an introduction and overview of the three domains
featured in the title, with emphasis on the remarkable links between them. It
has its origins in an intensive series of advanced courses given by the authors at
the Centre de Recherches Mathématiques in Montréal in the summer of 2005.
Since then, it has grown considerably beyond the material originally presented,
and been extended in content and scope. The original courses were interlaced
in schedule with an extended research workshop, dealing with related topics,
whose proceedings, in enhanced form, have since been published as a special
issue of Journal of Physics A [1].

The participants at the two events included a large number of graduate
students and postdoctoral fellows, as well as many of the researchers who
had made pioneering contributions to these domains, The original content of
the lecture series, given by several of the subject’s leading contributors, has
since been considerably developed and polished, to the point where it may
be viewed as both a research survey and pedagogical monograph providing a
panoramic view of this very rich and still rapidly developing domain.

In Part I, we have combined the introductory chapters by Pierre van Mo-
erbeke, covering nearly all the topics occurring in the rest of the volume,
together with the further, more detailed chapters linking random matrices
and integrable systems, concerning mainly their joint work, written by Mark
Adler.

Van Moerbeke’s part consists of nine chapters. The first of these concerns
random permutations, random words and percolation, linked with random
partitions through the Robinson–Schensted–Knuth (RSK) correspondence.
This includes an introduction to the Ulam problem (concerning the longest
increasing subsequence of a random permutation), the Plancherel measure on
partitions, the relation to non-intersecting random walkers, as well as queueing
problems and polynuclear growth. He then discusses Toeplitz determinants,
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infinite wedge product representations, and the non-positive generalized prob-
ability measure of Borodin–Okounkov–Olshanski, expressed as a matrix inte-
gral over U(n). Several examples follow, including the Poissonized Plancherel
measure, bringing in the use of Fredholm determinants of integral operators
with a variety of kernels (Bessel, Charlier and Meixner polynomial type ker-
nels), with applications to the distributions arising in the above random pro-
cesses.

There follows a discussion of limit theorems, such as the Vershik–Kerov
limiting shape of a random partition and the Tracy-Widom distribution for
the longest increasing subsequences, as well as geometrically distributed per-
colation problems. Next, it is shown that the multiple (N -fold) integrals ob-
tained upon reducing U(n) invariant Hermitian matrix models with arbitrary
exponential trace invariant series deformations are tau functions of the KP
(Kadomtsev–Petviashvili) integrable hierarchy, as well as satisfying the usual
Toda lattice equations for varying N ’s, and the Hirota bilinear relations. Next,
Virasoro algebra constraints are deduced for the multiple integrals defining
the generalized β-type integrals. There is also a review of the basic finite N
Hermitian matrix model results, including the form of the reduced integrals
over the eigenvalues, computation of the determinantal form of the correlation
functions in terms of suitable (Christoffel–Darboux) correlation kernels, and
Fredholm integral expressions for the gap probabilities. The PDEs satisfied
by these Fredholm integrals when the endpoints of the support intervals are
varied are derived, for a variety of limiting kernels.

In the subsequent chapters, by Mark Adler, further links between random
matrix theory and integrable models are developed, using vertex operator
constructions. A soliton-like tau function is constructed using a Fredholm de-
terminant and shown to satisfy Virasoro constraints. For gap probabilities,
these are used as a vehicle to deduce differential equations that they must
satisfy. There are also a number of lattice systems that are constructed us-
ing as phase space variables that are defined as N -fold matrix-like integrals.
Exponential trace series deformations of 2-matrix integrals are shown to sat-
isfy the equations of the 2-Toda hierarchy, and bilinear identities. Using the
Virasoro constraints, PDEs for the gap probabilities are also deduced.

There follows a discussion of the Dyson diffusion process and its relation
to random matrices, and chains of random matrices, as well as the bulk and
edge scaling limits (sine and Airy processes). Equations are derived for these
processes similar to those for the gap probabilities, with respect to the edges
of the windows where the nonintersecting random paths are excluded, as well
as asymptotic expansions. The GUE with external source and its relation to
conditioned non-intersecting Brownian motion, as developed by Aptekarev,
Bleher and Kuijlaars is developed, together with its relation to the Riemann–
Hilbert problem for multiple orthogonal polynomials. (See Bleher’s chapters
for further details.) Finally there is a derivation of PDEs for the Pearcey pro-
cess again through the introduction of integrable deformations of the measure.
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The second part of this monograph is mainly concerned with the spectral
theory of random matrices, but ideas and methods from the theory of inte-
grable systems plays a prominent role. The introductory chapter, by Harold
Widom, begins with a review of basic operator theory definitions and results
that are required for applications to random matrices. Then derivations are
given for spacing distributions between consecutive eigenvalues, in term of gap
probabilities. Using operatorial methods, these are expressed as Fredholm de-
terminants, in suitable scaling limits, of integral operators with integrable
kernels of sine type (for the bulk) and Airy type (leading to theTracy-Widom
distributions) for the edge. All three cases, orthogonal (β = 1), unitary (β = 2)
and symplectic (β = 4) ensembles are treated. Finally, differential equations
for distribution functions are derived, in particular, equations of Painlevé type.

In his series of chapters, Pavel Bleher gives a detailed survey of the use
of Riemann–Hilbert methods for the study of the asymptotics of spectral
distributions of random matrices. First, unitary ensembles with polynomial
potentials are treated, and their relation to orthogonal polynomials and the
associated Christoffel–Darboux kernels determining the correlation functions
at finite N , as well as the string equations determining the recurrence coeffi-
cients in the asymptotic 1/N series. The Riemann–Hilbert characterization of
the orthogonal polynomials is then introduced, and it is shown that the equi-
librium measure is supported on a finite union of intervals coinciding with the
cuts defining a hyperelliptic algebraic curve. In particular, the Wigner semi-
circle law is derived for the Gaussian case, and the case of quartic potentials is
treated in detail. There follows the treatment of scaled large N asymptotics of
orthogonal polynomials, using the Riemann–Hilbert approach and the method
of nonlinear steepest descent of Deift, Kricherbauer, Mclaughlin, Venakides
Zhou (DKMVZ). A solution of the model Riemann–Hilbert problem is given
in terms of Riemann theta functions. The Airy parametrix at the end points is
constructed to complete the study of uniform asymptotics, and an indication
of the proof of sine kernel universality in the bulk and Airy kernel universality
at the edge.

Next, the double scaling limit for the critical point of the even quartic
potential case is treated, and its relation to the Hastings–Mcleod solution of
the PII Painlevé equation derived. More generally, the asymptotics of the free
energy in the one cut case is studied (assuming a special regularity property of
the potential). Analyticity in a parameter defining the potential is examined
for the q-cut case for the density function and the free energy. The quartic
deviation in the free energy from the Gaussian case is expressed in terms of
the first two terms of the large N asymptotic expansion, and related to the
Tracy–Widom distribution with an error estimate.

Random matrix models with exponential external coupling are then an-
alyzed in terms of multiple orthogonal polynomials, with emphasis on the
case of two distinct eigenvalues in the externally coupled matrix. Correlation
functions, at finite N , are expressed in determinantal form in terms of an
analog of the Christoffel–Darboux kernel. The higher rank Riemann–Hilbert
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characterization of such multiple orthogonal polynomials is given, and the
differential equations and recursion relations for these expressed in terms of
these matrices. The relation to Brownian bridges is explained, and, finally,
the Pearcey kernel is derived in the double scaling limit using the nonlinear
steepest descent method.

Alexander Its, in his series, focuses upon the large N asymptotics of the
spectra of random matrices. The reduced N -fold integral representation of the
partition function of Hermitian matrix models is recalled, and the expression
of eigenvalue correlation functions in terms of the Christoffel–Darboux kernel
of the associated orthogonal polynomials. An introduction to the Its–Kitaev–
Fokas Riemann–Hilbert approach to orthogonal polynomials is given, and a
proof is given of its unique solvability under certain assumptions.

The asymptotic analysis, along the lines of the DKMVZ method, is then
recalled, based on the introduction of the g-function (essentially, the log-
Coulomb energy of the equilibrium distribution) to transform the exact RH
problem into one which, in leading order, has only jump discontinuities, and
hence may be solved exactly. A detailed analysis is then given for the case of
even quartic potentials. This suffices to deduce the sine kernel asymptotic form
for the correlation kernel in the bulk. The construction of the Airy parametrix
at the the end points of the cuts is then discussed and an asymptotic solution
given with uniform estimates in each region.

Bertrand Eynard reviews the relationship between convergent matrix in-
tegrals and formal matrix integrals, serving as generating functions for the
combinatorics of maps. Essentially, the formal model is obtained by treat-
ing the integrand as a perturbation series about the Gaussian measure and
interchanging the orders of integration and summation, without regard to con-
vergence. He indicates the derivation of the loop equations relating the expec-
tation values of invariant polynomials of various degrees as Dyson–Schwinger
equations. This is illustrated by various examples, including 1 and 2 matrix
models, as well as chains of matrices, the O(N) chain model and certain sta-
tistical models such as the Potts model. He ends with a number of interesting
conjectures about the solution of the loop equations. In the current literature,
this has led to a very remarkable program in which many results on random
matrices, solvable statistical models, combinatorial, topological and represen-
tation theoretical generating functions may be included as part of a general
scheme, based on the properties of Riemann surfaces, and their deformations.

The contribution of Momar Dieng and Craig Tracy deals in part with
the earliest appearance of random matrices, due to Wishart, in the theory of
mutivariate statistics, the so-called Wishart distribution. They present John-
stone’s result relating the largest component variance to the F1 Tracy–Widom
distribution, as well as Soshnikov’s generalization to lower components. The
expression of the F1, F2 and F4 distributions for the edge distributions in
GOE, GUE and GSE respectively in terms of the Hastings–McLeod solu-
tion of the PII Painlevé equation is recalled. There follow a discussion of
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the recurrence relations of Dieng which enter in the computation of the mth
largest eigenvalues in GOE and GSE.

A derivation of the Airy kernel for the edge scaling limit of GUE from
Plancherel–Rotach asymptotics of the Hermite polynomials is given, as well as
the PI equation that determines the Fredholm determinant of the Airy kernel
integral operator supported on a semi-infinite interval. The computation of
the mth largest eigenvalue distribution in the GSE and GOE is indicated,
together with an interlacing property identifying the first sequence with the
even terms of the second. Finally, numerical results are given comparing these
distributions with empirical data.

This volume is a masterly combined effort by several of the leading contrib-
utors to this remarkable domain, covering a range of topics and applications
that no individual author could hope to encompass. For the reader wishing
to have a representative view of the fascinating ongoing developments in this
domain, as well as a reliable account of the, many results that are by now clas-
sically established, it should provide an excellent reference and entry point to
the subject.
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7.3 Painlevé Representations: A Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 451
7.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

7.4.1 Determinant Matters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
7.4.2 Recursion Formula for the Eigenvalue Distributions . . . . . . . . . 455

7.5 The Distribution of the mth Largest Eigenvalue in the GUE . . . . . . . 458
7.5.1 The Distribution Function as a Fredholm Determinant . . . . . . 458
7.5.2 Edge Scaling and Differential Equations . . . . . . . . . . . . . . . . . . . 459

7.6 The Distribution of the mth Largest Eigenvalue in the GSE . . . . . . . 463
7.6.1 The Distribution Function as a Fredholm Determinant . . . . . . 463
7.6.2 Gaussian Specialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
7.6.3 Edge Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

7.7 The Distribution of the mth Largest Eigenvalue in the GOE . . . . . . . 481
7.7.1 The Distribution Function as a Fredholm Determinant . . . . . . 481
7.7.2 Gaussian Specialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
7.7.3 Edge Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490

7.8 An Interlacing Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
7.9 Numerics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

7.9.1 Partial Derivatives of q(x, λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
7.9.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
7.9.3 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509



List of Contributors

Mark Adler
Department of Mathematics
Brandeis University
Waltham, MA 02454
USA
adler@brandeis.edu

Pavel M. Bleher
Department of Mathematical
Sciences
Indiana University–Purdue
University Indianapolis
402 N. Blackford St.
Indianapolis, IN 46202-3216
USA
bleher@math.iupui.edu

Momar Dieng
Department of Mathematics
The University of Arizona
617 N. Santa Rita Ave.
Tucson, AZ 85721-0089
USA
momar@math.arizona.edu

B. Eynard
Service de Physique Théorique
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During the last 15 years or so, and since the pioneering work of E. Wigner,
F. Dyson and M.L. Mehta, random matrix theory, combinatorial and perco-
lation questions have merged into a very lively area of research, producing an
outburst of ideas, techniques and connections; in particular, this area contains
a number of strikingly beautiful gems. The purpose of these five Montréal lec-
tures is to present some of these gems in an elementary way, to develop some
of the basic tools and to show the interplay between these topics. These lec-
tures were written to be elementary, informal and reasonably self-contained
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4 Pierre van Moerbeke

and are aimed at researchers wishing to learn this vast and beautiful subject.
My purpose was to explain these topics at an early stage, rather than give the
most general formulation. Throughout, my attitude has been to give what is
strictly necessary to understand the subject. I have tried to provide the reader
with plenty of references, although I may and probably will have omitted some
of them; if so, my apologies!

As we now know, random matrix theory has reached maturity and occupies
a prominent place in mathematics, being at the crossroads of many subjects:
number theory (zeroes of the Riemann zeta functions), integrable systems,
asymptotics of orthogonal polynomials, infinite-dimensional diffusions, com-
munication technology, financial mathematics, just to name a few. Almost 200
years ago A. Quetelet tried to establish universality of the normal distribu-
tion (mostly by empirical means). Here we are, trying to prove universality of
the many beautiful statistical distributions which come up in random matrix
theory and which slowly will find their way in everyday life.

This set of five lectures were given during the first week of a random
matrix 2005-summer school at the “Centre de recherches mathématiques” in
Montréal; about half of them are devoted to combinatorial models, whereas
the remaining ones deal with related random matrix subjects. They have
grown from another set of ten lectures I gave at Leeds (2002 London Math-
ematical Society Annual Lectures), and semester courses or lecture series at
Brandeis University, at the University of California (Miller Institute, Berke-
ley), at the Universiteit Leuven (Francqui chair, KULeuven) and at the Uni-
versité de Louvain (UCLouvain).

I would like to thank many friends, colleagues and graduate students in
the audience(s), who have contributed to these lectures, through their com-
ments, remarks, questions, etc., especially Mark Adler, Ira Gessel, Alberto
Grünbaum, Luc Haine, Arno Kuijlaars, Vadim Kuznetsov, Walter Van Ass-
che, Pol Vanhaecke, and also Jonathan Delépine, Didier Vanderstichelen, Tom
Claeys, Maurice Duits, Maarten Vanlessen, Aminul Huq, Dong Wang and
many others. . . .

Last, but not least, I would like to thank John Harnad for creating such
a stimulating (and friendly) environment during the 2005-event on “random
matrices” at Montréal. Finally, I would label it a success if this set of lectures
motivated a few young people to enter this exciting subject.

1.1 Permutations, Words, Generalized Permutations and
Percolation

1.1.1 Longest Increasing Subsequences in Permutations, Words
and Generalized Permutations

(i) Permutations π := πn of 1, . . . , n are given by
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Sn � πn =
(

1 . . . n
j1 . . . jn

)
, 1 ≤ j1, . . . , jn ≤ n all distinct integers

with πn(k) = jk. Then
# Sn = n! .

An increasing subsequence of πn ∈ Sn is a sequence 1 ≤ i1 < · · · < ik ≤ n,
such that πn(i1) < · · · < πn(ik). Define

L(πn) = length of a longest (strictly) increasing subsequence of πn . (1.1)

Notice that there may be many longest (strictly) increasing subsequences!

Question (Ulam’s problem 1961). Given uniform probability on Sn, compute

Pn(L(πn) ≤ k, πn ∈ Sn) =
#{L(πn) ≤ k, πn ∈ Sn}

n!
=?

Example. For π7 =
(

1 2 3 4 5 6 7
3 1 4 2 6 7 5

)
, we have L(π7) = 4. A longest increasing

sequence is underlined; it is not necessary unique.

(ii) Words π := πqn of length n from an alphabet 1, . . . , q are given by
integers

Sqn � πqn =
(

1 . . . n
j1 . . . jn

)
, 1 ≤ j1, . . . , jn ≤ q

with πqn(k) = jk. Then
#Sqn = qn .

An increasing subsequence of πqn ∈ Sqn is given by a sequence 1 ≤ i1 < · · · <
ik ≤ n, such that πqn(i1) ≤ · · · ≤ πqn(ik). As before, define

L(πqn) = length of the longest weakly increasing subsequence of πqn . (1.2)

Question. Given uniform probability on Sqn, compute

Pqn(L(πqn) ≤ k, πqn ∈ Sqn) =
#{L(πqn) ≤ k, πqn ∈ Sqn}

qn
=?

Example. for π =
(

1 2 3 4 5
2 1 1 3 2

) ∈ S3
5, we have L(π) = 3. A longest increasing

sequence is underlined.

(iii) Generalized permutations π := πp,qn are defined by an array of
integers

GPp,qn � πp,qn =
(
i1 . . . in
j1 . . . jn

)
,

subjected to

1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ p and 1 ≤ j1, . . . , jn ≤ q

with ik = ik+1 implying jk ≤ jk+1.
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Then

# GPp,qn =
(
pq + n− 1

n

)
.

An increasing subsequence of a generalized permutation π is defined as
(
ir1
jr1

, . . . ,
irm

jrm

)
⊂ π

with r1 ≤ · · · ≤ rm and jr1 ≤ jr2 ≤ · · · ≤ jrm . Define

L(π) := length of the longest weakly increasing subsequence of π.

Example. For
(

1 1 1 2 2 2 3 3 4 4
2 3 3 1 2 2 1 2 1 3

) ∈ GP4,3
10 , we have L(π) = 5.

For more information on these matters, see Stanley [80, 81].

1.1.2 Young Diagrams and Schur Polynomials

Standard references to this subject are MacDonald [68], Sagan [78], Stanley
[80,81], Stanton and White [82]. To set the notation, we remind the reader of
a few basic facts.

• A partition λ of n (noted λ � n) or a Young diagram λ of weight n
is represented by a sequence of integers λ1 ≥ λ2 ≥ · · · ≥ λl ≥ 0, such that
n = |λ| := λ1 + · · · + λl; n = |λ| is called the weight. A dual Young diagram
λ� =

(
(λ�)1 ≥ (λ�)2 ≥ · · · ) is the diagram obtained by flipping the diagram

λ about its diagonal; set

λ�i := (λ�)i = length of ith column of λ. (1.3)

Clearly |λ| = |λ�|. For future use, introduce the following notation:

Y := {all partitions λ}
Yn := {all partitions λ � n}
Y
p := {all partitions, with λ�1 ≤ p}

Y
p
n := {all partitions λ � n, with λ�1 ≤ p} .

(1.4)

• A semi-standard Young tableau of shape λ is an array of integers aij > 0
placed in box (i, j) in the Young diagram λ, which are weakly increasing from
left to right and strictly increasing from top to bottom.

• A standard Young tableau of shape λ � n is an array of integers
1, . . . , n = |λ| placed in the Young diagram, which are strictly increasing
from left to right and from top to bottom. For λ � n, define

fλ := #{standard tableaux of shape λ filled with integers 1, . . . , |λ|} .
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• The Schur function s̃λ associated with a Young diagram λ � n is a
symmetric function in the variables x1, x2, . . . , (finite or infinite), defined as

s̃λ(x1, x2, . . . ) =
∑

semi-standard
tableaux P
of shape λ

∏
i

x
#{times i appears in P}
i . (1.5)

It equals a polynomial sλ(t1, t2, . . . ) (which will be denoted without the tilde)
in the symmetric variables ktk =

∑
i≥1 x

k
i ,

s̃λ(x1, x2, . . . ) = sλ(t1, t2, . . . ) = det
(
sλi−i+j(t)

)
1≤i,j≤m , (1.6)

for any m ≥ n. In this formula si(t) = 0 for i < 0 and si(t) for i ≥ 0 is defined
as

exp
( ∞∑

1

tiz
i

)
:=
∑
i≥0

si(t1, t2, . . . )zi.

Note for λ � n,

s̃λ(x1, x2, . . . ) = fλ x1 · · ·xn + · · · . = fλ
t
|λ|
1

|λ|! + · · ·

• Given two partitions λ ⊇ μ, (i.e., λi ≥ μi), the diagram λ\μ denotes
the diagram obtained by removing μ form λ. The skew-Schur polynomial sλ\μ
associated with a Young diagram λ\μ � n is a symmetric function in the
variables x1, x2, . . . , (finite or infinite), defined by

s̃λ\μ(x1, x2, . . . ) =
∑

semi-standard
skew-tableaux P

of shape λ\μ

∏
i

x
#{times i appears in P}
i

= det
(
sλi−μj−i+j(t)

)
1≤i,j≤n ,

Similarly, for λ\μ � n,

s̃λ\μ(x1, x2, . . . ) = fλ\μx1 · · ·xn + · · · .

• The hook length of the (i, j)th box is defined by1 hλij := λi+λ�j −i−j+1.
Also define

hλ :=
∏

(i,j)∈λ
hλij =

∏m
1 (m + λi − i)!

Δm(m+ λ1 − 1, . . . ,m+ λm −m)
, for m ≥ λ�1 . (1.7)

1 hλij := λi + λ�
j − i − j + 1 is the hook length of the (i, j)th box in the Young

diagram; i.e., the number of boxes covered by the hook formed by drawing a
horizontal line emanating from the center of the box to the right and a vertical
line emanating from the center of the box to the bottom of the diagram.
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• The number of standard Young tableaux of a given shape λ = (λ1 ≥
· · · ≥ λm) is given by2

fλ = #{standard tableaux of shape λ filled with the integers 1, . . . , |λ|}
= coefficient of x1 · · ·xn in s̃λ(x)

=
|λ|!
u|λ|

s̃λ(x)
∣∣∣∣∑

i≥1 x
k
i =δk1u

=
|λ|!
u|λ|

sλ(u, 0, 0, . . . )

=
|λ|!
hλ

= |λ|! det
(

1
(λi − i+ j)!

)
1≤i,j≤m

= |λ|!Δm(m+ λ1 − 1, . . . ,m+ λm −m)∏m
1 (m + λi − i)!

, for any m ≥ λ�1 . (1.8)

In particular, for any m ≥ λ�1 and arbitrary u ∈ R,

sλ(u, 0, 0, . . . ) = u|λ|
fλ

|λ|! = u|λ|
Δm(m + λ1 − 1, . . . ,m+ λm −m)∏m

1 (m+ λi − i)!
. (1.9)

• The number of semi-standard Young tableaux of a given shape λ � n,
filled with numbers 1 to q for q ≥ 1:

#{semi-standard tableaux of shape λ filled with numbers from 1 to q}

= s̃λ(

q︷ ︸︸ ︷
1, . . . , 1, 0, 0, . . . ) = sλ

(
q,
q

2
,
q

3
, . . .

)
=

∏
(i,j)∈λ

j − i+ q

hλi,j

=

{
Δq(q + λ1 − 1, . . . , q + λq − q)/

∏q−1
i=1 i!, when q ≥ λ�1 ,

0, when q < λ�1 ,
(1.10)

using the fact that

∏
(i,j)∈λ

(j − i+ q) =
∏q
i=1(q + λi − i)!∏q−1

1 i!
. (1.11)

• Pieri’s formula: given an integer r ≥ 0 and the Schur polynomial sμ, the
following holds

sλsr =
∑

μ\λ = horizontal strip
|μ\λ|=r

sμ. (1.12)

Note μ\λ is an horizontal r-strip, when they interlace, μ1 ≥ λ1 ≥ μ2 ≥ · · · ,
and |μ\λ| = r.

2 using the Vandermonde determinant Δm(z1, . . . , zm) =
∏

1≤i<j≤m(zi − zj)
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1.1.3 Robinson–Schensted–Knuth Correspondence for Generalized
Permutations

Define the set of p× q integer matrices (see [80, 81])

Matp,qn :=

{
W = (wij)1≤i≤p

1≤j≤q
, wij ∈ Z≥0 and

∑
i,j

wij = n

}
.

Theorem 1.1.1. There is a 1-1 correspondence between the following three
sets:

GPp,qn ⇐⇒

⎧⎪⎨
⎪⎩

two semi-standard Young tableaux
(P,Q), of same, but arbitrary
shape λ � n, filled resp. with in-
tegers (1, . . . , p) and (1, . . . , q)

⎫⎪⎬
⎪⎭ ⇐⇒ Matp,qn

π ←→ (P,Q) ←→ W (π) = (wij)1≤i≤p
1≤j≤q

where

wij = #
{

times that
(
i

j

)
∈ π

}
.

Therefore, we have3

(
pq + n− 1

n

)
= #GPp,qn =

∑
λ�n

s̃λ(1p)s̃λ(1q) = # Matp,qn . (1.13)

Also, we have equality between the length of the longest weakly increasing
subsequence of the generalized permutation π, the length of the first row of the
associated Young diagram and the weight of the optimal path:

L(π) = λ1 = L(W )

:= max
all such
paths

{∑
wij ,

over right/down paths starting
from entry (1, 1) to (p, q)

}
. (1.14)

Sketch of proof. Given a generalized permutation

π =
(
i1 . . . in
j1 . . . jn

)
,

the correspondence constructs two semi-standard Young tableaux P,Q having
the same shape λ. This construction is inductive. Namely, having obtained two
equally shaped Young diagrams Pk, Qk from(

i1 · · · ik
j1 · · · jk

)
, 1 ≤ k ≤ n

3 Use the notation s̃λ(1
p) = s̃λ(

p︷ ︸︸ ︷
1, . . . , 1, 0, 0, . . . ).
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with the numbers (j1, . . . , jk) in the boxes of Pk and the numbers (i1, . . . , ik)
in the boxes of Qk, one forms a new diagram Pk+1, by creating a new box in
the first row of P , containing the next number jk+1 , according to the following
rule:

(i) if jk+1 ≥ all numbers appearing in the first row of Pk, then one creates
a new box with jk+1 in that box to the right of the first row,

(ii) if not, place jk+1 in the box (of the first row) containing the smallest
integer > jk+1. The integer, which was in that box, then gets pushed down to
the second row of Pk according to the rule (i) or (ii), and the process starts
afresh at the second row.

The diagram Q is a bookkeeping device; namely, add a box (with the
number ik+1 in it) to Qk exactly at the place, where the new box has been
added to Pk. This produces a new diagram Qk+1 of same shape as Pk+1. The
inverse of this map is constructed by reversing the steps above.

Formula (1.13) follows from (1.10). ��
Example. For n = 10, p = 4, q = 3,

GPp,qn � π =
(

1 1 1 2 2 2 3 3 4 4
2 3 3 1 2 2 1 2 1 3

)
, with L(π) = 5

⇐⇒

(P,Q) =

⎛
⎜⎜⎜⎜⎜⎝

5︷ ︸︸ ︷
1 1 1 2 3
2 2 2
3 3

,
1 1 1 3 4
2 2 2
3 4

⎞
⎟⎟⎟⎟⎟⎠

L(π) = λ1 = 5

⇐⇒

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�������	0 ���������	1
��

2

1 �������	2
��

0

1 �������	1 ���������	0
��

1 0 �������	1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, with L(π) =
∑

(i,j)∈{path}
wij = 5 .

The RSK algorithm proceeds as follows:
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adding
(

2
1

) (
2
2

) (
2
2

) (
3
1

)

P 2 3 3 1 3 3
2

1 2 3
2 3

1 2 2
2 3 3

1 1 2
2 2 3
3

=⇒ =⇒ =⇒ =⇒

Q 1 1 1 1 1 1
2

1 1 1
2 2

1 1 1
2 2 2

1 1 1
2 2 2
3(

3
2

) (
4
1

) (
4
3

)

1 1 2 2
1 2 3
3

1 1 1 2
1 2 2
3 3

1 1 1 2 3
1 2 2
3 3

=⇒ =⇒ =⇒ =
(
P

Q

)

1 1 1 3
2 2 2
3

1 1 1 3
2 2 2
3 4

1 1 1 3 4
2 2 2
3 4

yielding the set (P,Q) of semi-standard Young tableaux above.

1.1.4 The Cauchy Identity

Theorem 1.1.2. Using the customary change of variables
∑

k≥1 x
i
k = iti,∑

l≥1 y
i
l = isi, we have

∏
i,j≥1

1
1 − xiyj

=
∑
λ

s̃λ(x)s̃λ(y) =
∑
λ

sλ(t)sλ(s) = exp
(∑
i≥1

itisi

)
.

Proof. On the one hand, to every π ∈ GP =
⋃
n,p,q GPp,qn , we associate a

monomial, as follows

π −→
∏

(i
j)∈π

xiyj (with multiplicities). (1.15)

Therefore, taking into account the multiplicity of
(
i
j

) ∈ π,

∑
π∈GP

∏
(i

j)∈π
xiyj =

∏
i,j≥1

(1 + xiyj + x2
i y

2
j + x3

i y
3
j + . . . ) =

∏
i,j≥1

1
1 − xiyj

. (1.16)

One must think of the product on the right-hand side of (1.16) in a definite
order, as follows:
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∏
i,j≥1

1
1 − xiyj

=
1

1 − x1y1

1
1 − x1y2

1
1 − x1y3

· · ·

× 1
1 − x2y1

1
1 − x2y2

1
1 − x2y3

· · · × · · · ,

and similarly for the expanded version. Expanding out all the products,∏
j≥1

(1+x1yj+x2
1y

2
j +x3

1y
3
j + · · · )

∏
j≥1

(1+x2yj+x2
2y

2
j +x3

2y
3
j + · · · ) · · · , (1.17)

leads to a sum of monomials, each of which can be interpreted as a generalized
permutation, upon respecting the prescribed order. Vice-versa each general-
ized permutation can be found among those monomials. As an example illus-
trating identity (1.16), the monomial x1y2x

2
1y

2
3x

2
3y

2
2x3y3x4y1x4y2, appearing

in the expanded version of (1.17), maps into the generalized permutation(
1 1 1 3 3 3 4 4
2 3 3 2 2 3 1 2

)
,

and vice-versa. On the other hand, to every couple of semi-standard Young
tableaux (P,Q), we associate

(P,Q) −→
∏
i

x# times i appears in Q
i

∏
j

y#times j appears in P
j .

Therefore, the Robinson–Schensted–Knuth construction, mapping the gener-
alized permutation π into two semi-standard Young tableaux (P,Q) of same
shape λ, implies∏

(i
j)∈π

xiyj =
∏
i

x# times i appears in Q
i

∏
j

y# times j appears in P
j .

Then, summing up over all π ∈ GP, using the fact that RSK is a bijection,
and using the definition of Schur polynomials, one computes
∑
π∈GP

∏
(i

j)∈π
xiyj

=
∑

all (P,Q) with
shapeP=shapeQ

∏
i

x# times i appears in Q
i

∏
j

y# times j appears in P
j

=
∑
λ

∑
all (P,Q) with

shapeP=shapeQ=λ

∏
i

x# times i appears in Q
i

∏
j

y# times j appears in P
j

=
∑
λ

( ∑
all Q with
shapeQ=λ

∏
x# times i appears in Q
i

)( ∑
all P with
shapeP=λ

∏
y#times j appears in P
j

)

=
∑
λ

s̃λ(x)s̃λ(y) ,
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using the definition (1.5) of the Schur polynomial. The proof is finished by
observing that

∑
i≥1

itisi =
∑
i≥1

i

∑
k≥1 x

i
k

i

∑
l≥1 y

i
l

i
=
∑
k,l≥1

∑
i≥1

(xkyl)i

i
= log

∏
k,l≥1

(1 − xkyl)−1 ,

ending the proof of Thm. 1.1.2. ��

1.1.5 Uniform Probability on Permutations, Plancherel Measure
and Random Walks

1.1.5.1 Plancherel Measure

In this section, one needs

Matn,nn (0, 1) :=
{
W = (wij)1≤i,j≤n

∣∣∣∣ with exactly one 1 in each row and
column and otherwise all zeros

}

See [23–25,80, 81] and references within.

Proposition 1.1.1. For permutations, we have a 1-1 correspondence between

Sn ⇐⇒

⎧⎪⎨
⎪⎩

two standard Young tableaux
(P,Q), of same shape λ and
size n, each filled with numbers
(1, . . . , n)

⎫⎪⎬
⎪⎭ ⇐⇒ Matn,nn (0, 1)

πn ←→ (P,Q) ←→ W (π) = (wij)i,j≥1 .
(1.18)

Uniform probability Pn on Sn induces a probability P̃
n

(Plancherel measure)
on Young diagrams Yn, given by (m := λ�1 )

P̃
n
(λ) =

1
n!

#{permutations leading to shape λ}

=
(fλ)2

n!
= n!sλ(1, 0, . . . )2

= n!
Δm(m+ λ1 − 1, . . . ,m+ λm −m)2

(
∏m

1 (m + λi − i)!)2
(1.19)

and so
# Sn =

∑
λ�n

(fλ)2 = n! .

Finally, the length of the longest increasing subsequence in permutation πn,
the length of the first row of the partition λ and the weight of the optimal path
L(W ) in the percolation matrix W (π) are all equal :

L(πn) = λ1 = L(W ) := max
all such

paths

{∑
wij ,

over right/down paths starting
from entry (1, 1) to (n, n)

}
.
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Hence

Pn(L(π) ≤ l) =
∑
λ∈Yn
λ1≤l

(fλ)2

n!
= n!

∑
λ∈Yn
λ1≤l

sλ(1, 0, . . . )2 .

Proof. A permutation is a generalized permutation, but with integers i1, . . . , in
and j1, . . . , jn all distinct and thus both tableaux P and Q are standard.

Consider now the uniform probability Pn on permutations in Sn; from the
RSK correspondence we have the one-to-one correspondence, given a fixed
partition λ,

{permutations leading to the shape λ}

⇐⇒
{

standard tableaux of shape λ,
filled with integers 1, . . . , n

}
×
{

standard tableaux of shape λ
filled with integers 1, . . . , n

}

and thus, using (1.8) and (1.10) and noticing that s̃λ(1q) = 0 for λ�1 > q,

P̃
n
(λ) =

1
n!

#{permutations leading to the shape λ} =
(fλ)2

n!
, λ ∈ Yn,

with ∑
λ∈Yn

P̃n(λ) = 1.

Formula (1.19) follows immediately from the explicit values (1.8) and (1.10)
for fλ. ��
Example. For permutation π5 =

(
1 2 3 4 5
5 1 4 3 2

) ∈ S5, the RSK algorithm gives

P =⇒ 5 1
5

1 4
5

1 3
4
5

1 2
3
4
5

Q =⇒ 1
1
2

1 3
2

1 3
2
4

1 3
2
4
5

.

Hence

π5 =⇒ (P,Q) =

⎛
⎜⎜⎜⎜⎝

2︷ ︸︸ ︷
1 2
3
4
5

,

1 3
2
4
5

standard standard

⎞
⎟⎟⎟⎟⎠=⇒

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�������	0
��

0 0 0 1

�������	1
��

0 0 0 0

�������	0 ���������	0 ���������	0 ���������	1 ���������	0
��

0 0 1 0 �������	0
��

0 1 0 0 �������	0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Remark. The Robinson–Schensted–Knuth correspondence has the following
properties

• π �→ (P,Q), then π−1 �→ (Q,P )
• length(longest increasing subsequence of π) = #(columns in P )
• length(longest decreasing subsequence of π) = #(rows in P )
• π2 = I, then π �→ (P, P )
• π2 = I, with k fixed points, then P has exactly k columns of odd length.

1.1.5.2 Solitaire Game

With Aldous and Diaconis [15], consider a deck of cards 1, . . . , n thoroughly
shuffled and put those cards one at a time into piles, as follows:

(1) a low card may be placed on a higher card, or can be put into a new pile
to the right of the existing pile.

(2) only the top card of the pile is seen. If the card which turns up is higher
than the card showing on the table, then start with that card a new pile
to the right of the others.

Question. What is the optimal strategy which minimizes the number of piles?

Answer. Put the next card always on the leftmost possible pile!

Example. Consider a deck of 7 cards, appearing in the order 3, 1, 4, 2, 6, 7,
5. The optimal strategy is as follows:

3
3
1

3 4
1

3 4
1 2

3 4 6
1 2

3 4 6 7
1 2

3 4 6 7
1 2 5

This optimal strategy leads to 4 piles! For a deck of 52 cards, you will find
in the average between 10–13 piles and having 9 piles or less occurs approxi-
mately 5% of the times. It turns out that, for a given permutation,

number of piles = length of longest increasing sequence.

1.1.5.3 Anticipating Large n Asymptotics

Anticipating the results in Sects. 1.4.2 and 1.9.2, given the permutations of
(1, . . . , n), given a percolation matrix of size n and given a card game of size
n, the numbers fluctuate about 2

√
n like

L(πn) = length of the longest increasing subsequence
= weight of the optimal path in the (0, 1)-percolation matrix
= number of piles in the solitaire game

� 2
√
n + n1/6F ,
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where F is a probability distribution, the Tracy–Widom distribution, with

E(F) = −1.77109 and σ(F) = 0.9018 .

In particular for n = 52 cards,

E
(
L(π52)

) � 2
√

52 + (52)1/6(−1.77109) = 11.0005 .

The Tracy–Widom distribution will be discussed extensively in Sect. 1.9.2.

1.1.5.4 A Transition Probability and Plancherel Measure

Proposition 1.1.2 ([24, 92]). Pn on Yn can be constructed from Pn−1 on
Yn−1, by means of a transition probability, as follows

Pn(μ) =
∑

λ∈Yn−1

Pn−1(λ)p(λ, μ), μ ∈ Yn

where

p(λ, μ) :=

⎧⎨
⎩
fμ

fλ
1
|μ| if λ ∈ Yn−1 and μ ∈ Yn are such that μ = λ+ �

0 otherwise

is a transition probability, i.e.,
∑
μ∈Yn

μ=λ+�

p(λ, μ) = 1 , for fixed λ.

Proof. Indeed, for fixed μ, one computes

∑
λ∈Yn−1

Pn−1(λ)p(λ, μ) =
∑

λ∈Yn−1
μ=λ+�∈Yn

(fλ)2

(n− 1)!

(
fμ

fλ
1
|μ|
)

=
fμ

n!

∑
λ∈Yn−1

μ=λ+�∈Yn

fλ =
(fμ)2

n!
= Pn(μ) .

Indeed, given a standard tableau of shape λ, filled with 1, . . . , n−1, adjoining
a box to λ such as to form a Young diagram μ and putting n in that box yield
a new standard tableau (of shape μ).

That p(λ, μ) is a transition probability follows from Pieri’s formula (1.12),
applied to r = 1, upon putting ti = δ1i:

∑
μ∈Yn

μ=λ+�

p(λ, μ) =
∑

λ∈Yn−1
λ+�∈Yn

fλ+�

|λ+ �|
1
fλ

=
∑

λ∈Yn−1
λ+�∈Yn

fλ+�

|λ+ �|!
|λ|!
fλ

= 1 . ��



1 Random and Integrable Models in Mathematics and Physics 17

Corollary 1.1.1. The following probability

Pn(μ1 ≤ x1, . . . , μk ≤ xk)

decreases, when n increases.

Proof. Indeed

Pn(μ1 ≤ x1, . . . , μk ≤ xk) =
∑
μ∈Yn

all μi ≤ xi

∑
λ∈Yn−1

Pn−1(λ)p(λ, μ)

=
∑

λ∈Yn−1,μ∈Yn

μ=λ+�
all μi ≤ xi

Pn−1(λ)p(λ, μ) ≤
∑

λ∈Yn−1
μ=λ+�

all μi ≤ xi

Pn−1(λ)

= Pn−1(λ1 ≤ x1, . . . , λk ≤ xk),

proving Cor. 1.1.1. ��

1.1.5.5 Random Walks

Consider m random walkers in Z, starting from distinct points x :=
(x1 < · · · < xm), such that, at each moment, only one walker moves either
one step to the left or one step to the right. Notice that m walkers in Z,
obeying this rule, is tantamount to a random walk in Z

m, where at each point
the only moves are

±e1, . . . ,±em,
with all possible moves equally likely. That is to say the walk has at each
point 2m possibilities and thus at time T there are (2m)T different paths.
Denote by Px the probability for such a walk, where x refers to the initial
condition. Requiring these walks not to intersect turns out to be closely related
to the problem of longest increasing subsequences in random permutations, as
is shown in the proposition below. For skew-partitions, see Sect. 1.1.2. For
references, see [11, 80, 81].

Proposition 1.1.3.

Px

(
that m walkers in Z, reach y1 < · · · < ym
in T steps, without ever intersecting

)

=
1

(2m)T

(
T

TLTR

) ∑
λ with λ ⊃ μ, ν

|λ\μ|=TL
|λ\ν|=TR

λ�
1 ≤m

fλ\μfλ\ν (1.20)

where μ, ν are fixed partitions defined by the points xi and yi,
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μk = k − 1 − xk , νk = k − 1 − yk

TL =
1
2

(
T +

m∑
1

(xi − yi)
)

= 1
2 (T − |μ| + |ν|)

TR =
1
2

(
T −

m∑
1

(xi − yi)
)

= 1
2 (T + |μ| − |ν|)

T = TL + TR ,

m∑
1

(xi − yi) = TL − TR .

In particular, close packing of the walkers at times 0 and T implies

P1,...,m

(
that m walkers in Z reach 1, . . . ,m in 2n
steps, without ever intersecting

)

=
1

(2m)2n

(
2n
n

) ∑
λ�n
λ�
1 ≤m

(fλ)2 =
(2n)!
n!

#{πn ∈ Sn : L(πn) ≤ m}
(2m)2n

(1.21)

1 2 3 4 5 6

1 2 3 4 5 6

Fig. 1.1. Six nonintersecting walkers leaving from and returning to 1, . . . , 6.
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Proof. Step 1. Associate to a given walk a sequence of TL Ls and TR Rs:

L R R R L R L L R . . .R , (1.22)

thus recording the nature of the move, left or right, at the first instant, at the
second instant, etc.
If the kth walker is to go from xk to yk, then

yk − xk = #{right moves for kth walker} − #{left moves for kth walker}

and so, if
TL := #{left moves for all m walkers}

and
TR := #{right moves for all m walkers} ,

we have, since at each instant exactly one walker moves,

TR + TL = T and TR − TL =
m∑
1

(yk − xk) ,

from which

T{L
R} =

1
2

(
T ±

m∑
1

(xk − yk)
)
.

Next, we show there is a canonical way to map a walk, corresponding to (1.22)
into one with left moves only at instants 1, . . . , TL and then right moves at
instants TL + 1, . . . , TL + TR = T , thus corresponding to a sequence

TL︷ ︸︸ ︷
L L L . . .L

TR︷ ︸︸ ︷
R R R . . .R . (1.23)

This map, originally found by Forrester [40] takes on here a slightly different
(but canonical) form. Indeed, in a typical sequence, as (1.22),

L R R R L R L L R . . .R , (1.24)

consider the first sequence R L (underlined) you encounter, in reading from
left to right. It corresponds to one of the following three configurations (in
the left column),

L � | | |
R | | | �

=⇒ R | | | �

L � | | |
L | | | �

R � | | | =⇒ R � | | |
L | | | �

L | | | �
.R | | | �

=⇒ R | � | |
L | � | |
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which then can be transformed into a new configuration LR, with same be-
ginning and end, thus yielding a new sequence; in the third case the reflection
occurs the first place it can. So, by the moves above, the original configuration
(1.22) can be transformed in a new one. In the new sequence, pick again the
first sequence RL, reading from left to right, and use again one of the moves.
So, this leads again to a new sequence, etc.

L R R R L R L L R . . .R
L R R L R R L L R . . .R
L R L R R R L L R . . .R
L L R R R R L L R . . .R
L L R R R L L L R . . .R

...
L L L L . . .L︸ ︷︷ ︸

TL

R R R R . . .R︸ ︷︷ ︸
TR

;

(1.25)

Since this procedure is invertible, it gives a one-to-one map between all the
left-right walks corresponding to a given sequence, with TL Ls and TR RRs

L R R R L R L L R . . .R ; (1.26)

and all the walks corresponding to
TL︷ ︸︸ ︷

L L L . . .L

TR︷ ︸︸ ︷
R R R . . .R . (1.27)

Thus, a walk corresponding to (1.27) will map into
(

T
TLTR

)
different walks,

corresponding to the
(

T
TLTR

)
number of permutations of TL Ls and TR Rs.

Step 2. To two standard tableaux P , Q of shape λ = (λ1 ≥ · · · ≥ λm > 0)
we associate a random walk, going with (1.27), in the following way. Consider
the situation where m walkers start at 0, 1, . . . ,m− 1.

1st walker

2nd walker

3rd walker

instants of left move︷ ︸︸ ︷
c11 c12 c13 c14 c15 c16

c21 c22 c23

c31 c32 c33

c41

• The 1st walker starts at 0 and moves to the left, only at instants

c1i = content of box (1, i) ∈ P

and thus has made, in the end, λ1 steps to the left.
...
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• The kth walker (1 ≤ k ≤ m) starts at k − 1 and moves to the left, only at
instants

cki = content of box (k, i) ∈ P

and thus has made, in the end, λ2 steps to the left.
...

• Finally, walker m = λ�1 walks according to the contents of the last row.
Since the tableau is standard, filled with the numbers 1, . . . , n the walkers
never meet and at each moment exactly one walker moves, until instant n =
|λ|, during which they have moved from position

0 < 1 < · · · < k − 1 < · · · < m− 1

to position

−λ1 + 0 < −λ2 + 1 < · · · < −λk + k − 1 < · · · < −λm +m− 1

That is to say the final position is given by unfolding the right hand boundary
of λ, the horizontal (fat) segments refer to gaps between the final positions
and vertical segments refer to contiguous final positions.
In the same fashion, one associates a similar walk to the other tableau Q,
with the walkers also moving left. These walkers will have reached the same
position as in the first case, since the final position only depends on the shape
of P or Q. Therefore, reversing the time for the second set of walks, one puts
the two walks together, thus yielding m nonintersecting walkers moving the
first half of the time to the left and then the second half of the time to the
right, as in the example below. Therefore the number of ways that m walkers
start from and return to 0, . . . ,m − 1, without ever meeting each other, by
first moving to the left and then to the right, is exactly

∑
λ�n
λ�
1 ≤m

(fλ)2.

(P,Q) =

⎛
⎜⎜⎜⎜⎝

2︷ ︸︸ ︷
1 2
3
4
5

,

1 3
2
4
5

standard standard

⎞
⎟⎟⎟⎟⎠ ⇐⇒

�
�

�
�

�

,

�
�

�
�

�

⇐⇒

�
�

�
�

�
�

�
�

�
�
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More generally, an analogous argument shows that the number of ways that
walkers leave from x1 < · · · < xm and end up at y1 < · · · < ym at time T ,
without intersection and by first moving to the left and then to the right, is
given by ∑

λ�(T+|μ|+|ν|)/2
λ�
1 ≤m

fλ\μfλ\ν (1.28)

On the other hand, there are
(

T
TLTR

)
sequences of TL Ls and TR Rs, which

combined with (1.28) yields formula (1.20).
In the close packing situation, one has μk = νk = 0 for all k, and so μ = ν = ∅

and TL = TR = T/2. With these data, (1.21) is an immediate consequence of
(1.20). ��

1.1.6 Probability Measure on Words

Remember from Sect. 1.1.1 words π := πqn of length n from an alphabet
1, . . . , q and from Sect. 1.1.2, the set Y

q
n = {all of partitions λ � n, with

λ�1 ≤ q}. Also define the set of n× q matrices,

M̃at
n,q

n (0, 1) :=
{
W = (wij)1≤i,j≤n

∣∣∣∣ with exactly one 1 in each row and oth-
erwise all zeros

}

For references, see [80, 81, 87].

Proposition 1.1.4. In particular, for words, we have the 1–1 correspondence

Sqn ⇐⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

semi-standard and standard
Young tableaux (P,Q) of same
shape and of size n, filled resp.
with integers (1, . . . , q) and
(1, . . . , n)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⇐⇒ M̃at
n,q

n (0, 1)

π ←→ (P,Q) ←→ W (π) = (wij)i,j≥1 .
(1.29)

Uniform probability Pn,q on Sqn induces a probability P̃
n,q

on Young diagrams
λ ∈ Y

(q)
n , given by

P̃
n,q

(λ) =
1
qn

#{words in Sqn leading to shape λ}

=
fλs̃λ(1q)

qn
=

n!
qn

sλ(1, 0, . . . )sλ

(
q,
q

2
,
q

3
, . . .

)

=
n!

qn
∏q−1

1 i!

Δq(q + λ1 − 1, . . . , q + λq − q)2∏q
1(q + λi − i)!

. (1.30)

Also,
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#Sqn =
∑
λ�n

fλs̃λ(1q) = qn . (1.31)

Finally, given the correspondence (1.29), the length L(π) of the longest weakly
increasing subsequence of the word π equals

L(π) = λ1 = L(W ) := max
all such
paths

{∑
wij ,

over right/down paths starting
from entry (1, 1) to (n, q)

}
,

and thus

Pn,q(L(π) ≤ l) =
∑
λ1≤l
λ∈Y

(q)
n

n!
qn

sλ(1, 0, . . . )sλ(q,
q

2
,
q

3
, . . . ) .

Proof. A word is a special instance of generalized permutation, where the
numbers i1, . . . , in are all distinct. Therefore the RSK correspondence holds
as before, except that Q becomes a standard tableau; thus, a word maps
to a pair of arbitrary Young tableaux (P,Q), with P semi-standard and Q
standard and converse. Also the correspondence with integer matrices is the
same, with the extra requirement that the matrix contains 0 and 1’s, with
each row containing exactly one 1.

Consider now the uniform probability Pn,q on words in Sqn; from the RSK
correspondence we have the one-to-one correspondence, given a fixed parti-
tion λ,

{words in Sqn leading to shape λ}

⇐⇒
{semi-standard tableaux of

shape λ, filled with integers
1, . . . , q

}
×
{

standard tableaux of shape λ
filled with integers 1, . . . , n

}

and thus, using (1.8) and (1.10) and noticing that s̃λ(1q) = 0 for λ�1 > q,

P̃
n,q

(λ) =
1
qn

#{words leading to the shape λ} =
s̃λ(1q)fλ

qn
, λ ∈ Y

q
n ,

with ∑
λ∈Y

(p)
n

P̃n,q(λ) = 1 .

Formula (1.30) follows immediately from an explicit evaluation (1.8) and
(1.10) for fλ and sλ(1q). ��
Example. For word

π =
(

1 2 3 4 5
2 1 1 3 2

)
∈ S3

5

the RSK algorithm gives
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2
1
2

1 1
2

1 1 3
2

1 1 2
2 3

1
1
2

1 3
2

1 3 4
2

1 3 4
2 5 .

Hence

π ⇐⇒

⎛
⎜⎝

3︷ ︸︸ ︷
1 1 2
2 3

, 1 3 4
2 5

semi-
standard

standard

⎞
⎟⎠ ⇐⇒

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�������	0
��

1 0

�������	1
��

0 0

�������	1 ���������	0 ���������	0
��

0 0 �������	1
��

0 1 �������	0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and L(π) = λ1 = L(W ) = 3.

1.1.7 Generalized Permutations, Percolation and Growth Models

The purpose of this section is to show that uniform probability, generalized
permutations, percolation, queuing and growth models are intimately related.
Their probabilities are ultimately given by the same formulae.

1.1.7.1 Probability on Young Diagrams Induced by Uniform
Probability on Generalized Permutations

Proposition 1.1.5 (Johansson [57]). Uniform probability Pp,qn on GPp,qn
induces a probability P̃

p,q

n on Young diagrams Y
min(p,q)
n , given by

P̃ p,qn (λ) =
1

# GPp,qn
#{generalized permutations leading to shape λ}

=
s̃λ(1p)s̃λ(1q)

# GPp,qn

=
1

# GPp,qn

q−1∏
j=0

1
j!(p− q + j)!

Δq(q + λ1 − 1, . . . , q + λq − q)2

×
q∏
i=1

(p + λi − i)!
(q + λi − i)!

, for q ≤ p,

with4

4 There is no loss of generality in assuming q ≤ p.
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# GPp,qn =
∑

λ∈Y
min(p,q)
n

s̃λ(1p)s̃λ(1q) =
(
pq + n− 1

n

)
. (1.32)

Proof. By the RSK correspondence, we have the one-to-one correspondence,

{π ∈ GPp,qn leading to the shape λ}

←→
{semi-standard tableaux of

shape λ, filled with integers
1, . . . , q

}
×
{semi-standard tableaux of

shape λ, filled with integers
1, . . . , p

}

and thus, for λ ∈ Y
min(q,p)
n , we have5

P̃
p,q

n (λ) =
1

# GPp,qn
#{π ∈ GPp,qn leading to the shape λ}

=
1

# GPp,qn
s̃λ(1q)s̃λ(1p) ;

when q < λ�1 , we have automatically s̃λ(1q) = 0, and thus∑
λ∈Y

min(q,p)
n

P̃
p,q

n (λ) = 1 .

Notice that6 for m ≥ λ�1 ,

s̃λ(1m) =
Δm(m + λ1 − 1, . . . ,m+ λm −m)∏m−1

1 i!
=

m∏
i,j=1
i<j

λi − λj + j − i

j − i
.

(1.33)
Without loss of generality, assume p ≥ q; then λi = 0 if q < i ≤ p. Setting

hj = λj + q − j for j = 1, . . . , q, we have h1 > · · · > hq = λq ≥ 0. We now
compute, using (1.10),

s̃λ(1p)s̃λ(1q)

=
q∏

i,j=1
i<j

(
λi − λj + j − i

j − i

)2 q∏
i=1

p∏
j=q+1

λi + j − i

j − i

=
q∏

i,j=1
i<j

(hi − hj)2

(j − i)2

q∏
i=1

p∏
j=q+1

hi + j − q

j − i

=
1∏q

i=1

∏p
j=q+1(j − i)

∏q
i,j=1
i<j

(j − i)2

q∏
i,j=1
i<j

(hi − hj)2
q∏
i=1

(hi + p− q)!
hi!

5 Remember the notation from Sect. 1.1.2: λ ∈ Y
min(q,p)
n means the partition λ � n

satisfies λ�
1 ≤ p, q.

6 Note
∏

1≤i<j≤q(j − i) =
∏q−1
j=0 j!.
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=
q−1∏
j=0

1
j!(p− q + j)!

q∏
i,j=1
i<j

(hi − hj)2
q∏
i=1

(hi + p− q)!
hi!

,

using

q∏
i,j=1
i<j

(j − i)
q∏
i=1

p∏
j=q+1

(j − i)

=
q−1∏
0

j!
q∏
i=1

(q + 1 − i)(q + 2 − i)(q + 3 − i) · · · (p− i)

= q!
(q + 1)!

1!
(q + 2)!

2!
· · · (p− 1)!

(p− q − 1)!
1! · · · (q − 1)! =

q−1∏
j=0

(p− q + j)! .

This ends the proof of Prop. 1.1.5. ��

1.1.7.2 Percolation Model with Geometrically Distributed Entries

Consider the ensemble

Mat(p,q) = {p× q matrices M with entries Mij = 0, 1, 2, . . .}

with independent and geometrically distributed entries, for fixed 0 < ξ < 1,

P(Mij = k) = (1 − ξ)ξk, k = 0, 1, 2, . . . .

Theorem 1.1.3 (Johansson [57]). Then

L(M) := max
all such
paths

{∑
Mij ,

over right/down paths starting
from entry (1, 1) to (p, q)

}

(1, 1) (1, q)

(p, 1) (p, q)

Fig. 1.2.
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has the following distribution, assuming q ≤ p,

P(L(M) ≤ l) =
∑

λ∈Y
min(q,p)

λ1≤l

(1 − ξ)pqξ|λ|s̃λ(1q)s̃λ(1p)

= Z−1
p,q

∑
h∈N

q

max(hi)≤l+q−1

Δq(h1, . . . , hq)2
q∏
i=1

(hi + p− q)!
hi!

ξhi

where

Zp,q = ξq(q−1)/2(1 − ξ)−pqq!
q−1∏
j=0

j!(p− q + j)! . (1.34)

Proof. Then the probability that M be a given matrix A = (aij)1≤i≤p
1≤j≤q

equals

P
(
M = (aij)1≤i≤p

1≤j≤q

)
=

∏
1≤i,j≤p
1≤j≤q

P(Mij = aij), using independence,

=
∏

1≤i≤p
1≤j≤q

(1 − ξ)ξaij

= (1 − ξ)pqξ

∑
1≤i≤p
1≤j≤q

aij

= (1 − ξ)pqξ|A| .

This probability only depends on the total weight |A| =
∑
i,j aij . Hence the

matrices7 M ∈ Matpqn have all equal probability and, in particular, due to
the fact that, according to Thm. 1.1.1, the matrices in Matpqn are in one-to-
one correspondence with generalized permutations of size n, with alphabets
1, . . . , p and 1, . . . , q, one has

P(|M | = n) =
∑

all aij with∑
aij=n

P
(
M = (aij)1≤i≤p

1≤j≤q

)
= (# GPp,qn )(1 − ξ)qpξn .

We now compute

P(L(M) ≤ l | |M | = n) =
#{M ∈ Matp,qn , L(M) ≤ l}

# Matp,qn

=
#{π ∈ GPp,qn , L(π) ≤ l}

# GPp,qn

= Pp,qn (λ1 ≤ l) =
1

# GPp,qn

∑
λ1≤l
|λ|=n

s̃λ(1q)s̃λ(1p) .

7 M ∈ Matpqn ⊂ Matpq, means that
∑
Mij = n.
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Hence,

P(L(M) ≤ l) =
∞∑
n=0

P(L(M) ≤ l with |M | = n) P(|M | = n)

=
∞∑
n=0

∑
λ1≤l
|λ|=n

1
# GPp,qn

s̃λ(1q)s̃λ(1p)(# GPp,qn )(1 − ξ)pqξn

=
∞∑
n=0

∑
λ1≤l
|λ|=n

s̃λ(1q)s̃λ(1p)(1 − ξ)pqξ|λ|

=
∑
λ∈Y

λ1≤l

s̃λ(1q)s̃λ(1p)(1 − ξ)pqξ|λ| .

Now, using the expression for s̃λ(1p)s̃λ(1q) in Prop. 1.1.5, one computes, upon
setting hi = q + λi − i, and noticing that l ≥ λ1 ≥ · · · ≥ λq ≥ 0 implies
l + q − 1 ≥ h1 > · · · > hq ≥ 0,

P(L(M) ≤ l) =
∑
λ∈Y

q

λ1≤l

(1 − ξ)pqξ|λ|s̃λ(1p)s̃λ(1q)

=
∑

l+q−1≥h1>···>hq≥0

ξ
∑ q

1 hi−q(q−1)/2

(1 − ξ)−pq
∏q−1
j=0 j!(p− q + j)!

× Δq(h1, . . . , hq)2
q∏
i=1

(hi + p− q)!
hi!

= Z−1
p,q

∑
h∈N

q

max(hi)≤l+q−1

Δq(h1, . . . , hq)2
q∏
i=1

(hi + p− q)!
hi!

ξhi ,

since the expression in the sum is symmetric in h1, . . . , hq. The normalization
Zp,q is as announced, ending the proof of Thm. 1.1.3. ��

1.1.7.3 Percolation Model with Exponentially Distributed Entries

Theorem 1.1.4 ([57]). Consider the ensemble

Matp,q = {p× q matrices M with R
+-entries}

with independent and exponentially distributed entries,

P(Mij ≤ t) = 1 − e−t , t ≥ 0 .

Then
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L(M) = max
all such
paths

{∑
Mij ,

over right/lower paths starting
from entry (1, 1) to (p, q)

}

has the following distribution, (assuming q ≤ p, without loss of generality),

P(L(M) ≤ t) =

∫
(0,t)q Δq(x1, . . . , xq)2

∏q
i=1 x

p−q
i exp(−xi) dxi∫

(0,∞)q Δq(x1, . . . , xq)2
∏q
i=1 x

p−q
i exp(−xi) dxi

=
1
Zn

∫
M∈Hq

M positive definite
Spectrum(M)≤t

(detM)p−qe−TrM dM .

Remark. It is remarkable that this percolation problem coincides with the
probability that the spectrum of an Hermitian matrix does not exceed t, where
the matrix is taken from a (positive definite) random Hermitian ensemble with
the Laguerre distribution, as appears in the second formula; this ensemble will
be discussed much later in Sect. 1.8.2.2.

Proof. For fixed 0 < ξ < 1, let Xξ have a geometric distribution

P(Xξ = k) = (1 − ξ)ξk 0 < ξ < 1, k = 0, 1, 2, . . . ;

then in distribution
(1 − ξ)Xξ → Y, for ξ → 1

where Y is an exponential distributed random variable. Indeed, setting ε :=
1 − ξ,

P
(
(1 − ξ)Xξ ≤ t

)
= P(εX1−ε ≤ t) =

∑
0≤k≤t/ε

ε(1 − ε)k

=
∑

0≤k≤t/ε
ε(1 − ε)(1/ε)kε (Riemann sum)

→
∫ t

0

ds e−s = P(Y ≤ t) .

Then, setting ξ − 1 − ε, t = lε, εhi = xi in (1.34) of Thm. 1.1.3 and letting
ε → 0, one computes
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lim
ε→0

Pε(L(M) ≤ t)

= lim
ε→0

Z−1

εq(q−1)+q(p−q)+q

×
∑

max(hiε)≤lε+(q−1)ε

Δq(h1ε, . . . , hqε)2
q∏
i=1

(p−q∏
k=1

ε(hi + k)
)

(1 − ε)(1/ε)hiεεq

=
1
Z ′

∫
[0,t]q

Δq(x1, . . . , xq)2
q∏
i=1

xp−qi exp(−xi) dxi

=
1
Zn

∫
M∈Hq

M positive definite
Spectrum(M)≤t

(detM)p−qe−TrM dM .

This last identity will be shown later in Prop. 1.7.2, ending the proof of
Thm. 1.1.4. ��

1.1.7.4 Queuing Problem

Consider servers 1, 2, . . . , q waiting on customers 1, . . . , p, with a first-in first-
out service rule; see, e.g., [21] and references within. At first, the system is
empty and then p customers are placed in the first queue. When a customer
k is done with the ith server, he moves to the queue waiting to be served by
the (i+ 1)st server; see Fig. 1.3. Let

V (k, l) = service time of customer k by server l

be all geometrically independently distributed

P(V (k, l) = t) = (1 − ξ)ξt , t = 0, 1, 2, . . . .

Theorem 1.1.5. The distribution of

servers: 1 2 3 4 ··· q

customers: 5 2 1

6 3

7 4

8

...

p

Fig. 1.3. Servers 1, 2, . . . , q waiting on customers 1, . . . , p
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D(p, q) =
{

departure time for the last customer p at the
last server q

}

is given by (assuming q ≤ p)

P(D(p, q) ≤ l) =
∑

λ∈Y
min(q,p)

λ1≤l

(1 − ξ)pqξ|λ|sλ(1q)sλ(1p)

= Z−1
q,p

∑
h∈N

q

max(hi)≤l+q−1

Δq(h1, . . . , hq)2
q∏
i=1

(hi + p− q)!
hi!

ξhi .

(1.35)

Proof. We show the problem is equivalent to the percolation problem dis-
cussed in Thm. 1.1.3. Indeed:

Step 1. Setting D(p, 0) = D(0, q) = 0 for all p, q, we have for all p, q ≥ 1,

D(p, q) = max
(
D(p− 1, q), D(p, q − 1)

)
+ V (p, q) . (1.36)

Indeed, if D(p− 1, q) ≤ D(p, q − 1), then customer p− 1 has left server q by
the time customer p reaches q, so that customer p will not have to queue up
and will be served immediately. Therefore

D(p, q) = D(p, q − 1) + V (p, q) .

Now assume
D(p− 1, q) ≥ D(p, q − 1) ;

then when customer p reaches server q, then customer p−1 is still being served
at queue q. Therefore the departure time of customer p at queue q equals

D(p, q) = D(p− 1, q) + V (p, q) .

In particular
D(p, 1) = D(p− 1, 1) + V (p, 1)

and
D(1, 2) = D(1, 1) + V (1, 2),

establishing (1.36).
Step 2. We now prove

D(p, q) = max
all such
paths

{∑
V (i, j)

∣∣∣over right/down paths from entry
(1, 1) to (p, q)

}
,

where the paths are taken in the random matrix

V =
(
V (i, j)

)
1≤i≤p
1≤j≤q

.
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By a straightforward calculation,

D(p, q)

= max
(
D(p− 1, q) + V (p, q), D(p, q − 1) + V (p, q)

)

= max

(
max

all paths
(0,0)→(p−1,q)

∑
path

V (i, j) + V (p, q), max
all paths

(0,0)→(p,q−1)

∑
path

V (i, j) + V (p, q)

)

= max
all paths

(0,0)→(p,q)

(∑
path

V (i, j)
)
,

ending the proof of Thm. 1.1.5. ��

1.1.7.5 Discrete Polynuclear Growth Models

Consider geometric i.i.d. random variables ω(x, t), with x ∈ Z, t ∈ Z+,

P(ω(x, t) = k) = (1 − ξ)ξk , k ∈ Z+ ,

except
ω(x, t) = 0 if t− x is even or |x| > t .

Define inductively a growth process, with a height curve h(x, t), with x ∈ Z,
t ∈ Z+, given by

h(x, 0) = 0 ,

h(x, t + 1) = max
(
h(x− 1, t), h(x, t), h(x+ 1, t)

)
+ ω(x, t+ 1) .

For this model, see [59, 66, 77].

Theorem 1.1.6. The height curve at even sites 2x at times 2t−1 is given by

h(2x, 2t− 1) = max
all such
paths

{∑
V (i, j), over right/down paths starting

from entry (1, 1) to (t+x, t−x)

}

where
V (i, j) := ω(i− j, i+ j − 1) .

Thus h(2x, 2t− 1) has again the same distribution as in (1.34).

Proof. It is based on the fact that, setting

G(q, p) := h(q − p, q + p− 1) ,

one computes

G(q, p) = max
(
G(q − 1, p), G(q, p− 1)

)
+ V (q, p)

= max
{∑

Vij ,
over all right/down paths starting
from entry (1, 1) to (q, p)

}
.
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So
h(2x, 2t− 1) = G(t + x, t− x) ,

establishing Thm. 1.1.6. ��
Figure 1.4 gives an example of such a growth process; the squares with

stars refer to the contribution ω(x, t+ 1). It shows that h(2x, 2t+ 1) is given
by the maximum of right/down paths starting at the upper-left corner and
going to site (t + x, t − x), where x is the running variable along the anti-
diagonal.

1.2 Probability on Partitions, Toeplitz and Fredholm
Determinants

Consider variables x = (x1, x2, . . . ) and y = (y1, y2, . . . ), and the correspond-
ing symmetric functions

t = (t1, t2, . . . ) and s = (s1, s2, . . . )

with
ktk =

∑
i≥1

xki and ksk =
∑
i≥1

yki .

Following Borodin–Okounkov–Olshanski (see [24–26]), given arbitrary x, y,
define the (not necessarily positive) probability measure on λ ∈ Y,

Px,y(λ) :=
1
Z

s̃λ(x)s̃λ(y) =
1
Z

sλ(t)sλ(s) (1.37)

with

Z =
∏

1≤i,j
(1 − xiyj)−1 = exp

( ∞∑
1

ktksk

)
.

Indeed, by Cauchy’s identity,
∑
λ∈Y

Px,y(λ) =
∑
λ

sλ(x)sλ(y)
∏

1≤i,j
(1 − xiyj)

=
∏
i,j≥1

(1 − xiyj)−1
∏
i,j≥1

(1 − xiyj) = 1 .

The main objective of this section is to compute

Px,y(λ1 ≤ n), (1.38)

which then will be specialized in the next section to specific x’s and y’s or,
what is the same, to specific t’s and s’s. This probability (1.38) has three dif-
ferent expressions, one in terms of a Toeplitz determinant, another in terms
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∗
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(0,2t)

0

1 210

Fig. 1.4.

of an integral over the unitary group and still another in terms of a Fredholm
determinant. The Toeplitz representation enables one to compute in an effec-
tive way the probability (1.38), whereas the Fredholm representation is useful,
when taking limits for large permutations. In the statement below, we need
the Fredholm determinant of a kernel K(i, j), with i, j ∈ Z and restricted to
[n,∞); it is defined as
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det
(
I −K(i, j)|[n,n+1,... ]

)

:=
∞∑
m=0

(−1)m
∑

n≤x1<···<xm
xi∈Z

det
(
K(xi, xj)

)
1≤i,j≤m . (1.39)

Now, one has the following statement [8, 23, 25, 45, 86]:

Theorem 1.2.1. Given the “probability measure” (1.37), the following prob-
ability has three different expressions :

P(λ with λ1 ≤ n)

= Z−1 det

(∮
S1

dz
2πiz

zk−l exp
(
−

∞∑
1

(tizi + siz
−i)
))

1≤k,l≤n

= Z−1

∫
U(n)

exp
(
−Tr

∑
i≥1

(tiX i + siX̄
i)
)

dX

= det
(
I −K(k, l)|[n,n+1,... ]

)
,

(1.40)

where K(k, l) is a kernel

K(k, l)

=
(

1
2πi

)2 ∮
|w|=ρ<1

∮
|z|=ρ−1>1

dz dw
zk+1w−l

exp
(
V (z) − V (w)

)
z − w

, for k, l ∈ Z

=
1

k − l

(
1

2πi

)2 ∮ ∮
|w|=ρ<1

|z|=ρ−1>1

dz dw
zk+1w−l

z(d/dz)V (z) − w(d/dw)V (w)
z − w

× exp
(
V (z) − V (w)

)
for k, l ∈ Z, with k �= l, (1.41)

with
V (z) := Vt,s(z) := −

∑
i≥1

(tiz−i − siz
i).

1.2.1 Probability on Partitions Expressed as Toeplitz
Determinants

In this subsection, the first part of Thm. 1.2.1 will be reformulated as
Prop. 1.2.1 and also demonstrated: (see, e.g., Gessel [45], Tracy–Widom [86],
Adler–van Moerbeke [8])

Proposition 1.2.1. Given the “probability measure”

P(λ) = Z−1sλ(t)sλ(s), Z = exp
(∑
i≥1

itisi

)
,
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the following holds

P(λ with λ1 ≤ n) = Z−1 det

(∮
S1

dz
2πiz

zk−l exp
(
−

∞∑
1

(tizi+siz−i)
))

1≤k,l≤n

and

P(λ with λ�1 ≤ n) = Z−1 det

(∮
S1

dz
2πiz

zk−l exp
( ∞∑

1

(tizi + siz
−i)
))

1≤k,l≤n

Proof. Consider the semi-infinite Toeplitz matrix

m∞(t, s) = (μkl)k,l≥0 ,

with μkl(t, s) =
∮
S1
zk−l exp

( ∞∑
1

(tjzj − sjz
−j)
)

dz
2πiz

.

Note that

∂μkl
∂tm

=
∮
S1
zk−l+m exp

( ∞∑
1

(tjzj − sjz
−j)
)

dz
2πiz

= μk+m,l

∂μkl
∂sm

= −
∮
S1
zk−l−m exp

(∑
(tjzj − sjz

−j)
)

dz
2πiz

= −μk,l+m ,

with initial condition μkl(0, 0) = δkl. In matrix notation, this amounts to the
system of differential equations8

∂m∞
∂ti

= Λim∞ and
∂m∞
∂si

= −m∞(Λ�)i

with initial condition m∞(0, 0) = I∞.

The solution to this initial value problem is given by
(i)

m∞(t, s) =
(
μkl(t, s)

)
k,l≥0

(1.42)

and
(ii)

m∞(t, s) = exp
( ∞∑

1

tiΛ
i

)
m∞(0, 0) exp

(
−

∞∑
1

siΛ
�i

)
, (1.43)

where

8 The operator Λ is the semi-infinite shift matrix, with zeroes everywhere, except
for 1s just above the diagonal, i.e., (Λv)n = vn+1. I∞ is the semi-infinite identity
matrix.
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exp
( ∞∑

1

tiΛ
i

)
=

∞∑
0

si(t)Λi =

⎛
⎜⎜⎜⎜⎜⎝

1 s1(t) s2(t) s3(t) . . .
0 1 s1(t) s2(t) . . .
0 0 1 s1(t) . . .
0 0 0 1
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎠

=
(
sj−i(t)

)
1≤i<∞
1≤j<∞

.

Then, by the uniqueness of solutions of odes, the two solutions coincide, and
in particular the n× n upper-left blocks of (1.42) and (1.43), namely

mn(t, s) = En(t)m∞(0, 0)E�
n (−s) , (1.44)

where

En(t) =

⎛
⎜⎜⎜⎜⎜⎝

1 s1(t) s2(t) s3(t) . . . sn−1(t) . . .
0 1 s1(t) s2(t) . . . sn−2(t) . . .
...

s1(t) . . .
0 . . . 0 1 . . .

⎞
⎟⎟⎟⎟⎟⎠

=
(
sj−i(t)

)
1≤i<n
1≤j<∞

.

Therefore the determinants coincide:

detmn(t, s) = det
(
En(t)m∞(0, 0)E�

n (−s)) . (1.45)

We shall need to expand the right-hand side of (1.45) in “Fourier series,”
which is based on the following lemma:

Lemma 1.2.1. Given the semi-infinite initial condition m∞(0, 0), the expres-
sion below admits an expansion in Schur polynomials,

det
(
En(t)m∞(0, 0)E�

n (−s)) =
∑
λ,ν

λ�
1 ,ν

�
1 ≤n

det(mλ,ν)sλ(t)sν(−s) ,
for n > 0, (1.46)

where the sum is taken over all Young diagrams λ and ν, with first columns
λ�1 and ν�1 ≤ n and where

mλ,ν := (μλi−i+n,νj−j+n)1≤i,j≤n. (1.47)

Proof. The proof of this lemma is based on the Cauchy–Binet formula, which
affirms that given two matrices A

(m.n)
, B

(n,m)
, for n large ≥ m

det(AB) = det
(∑

i

alibik

)
1≤k,l≤m

=
∑

1≤i1<···<im≤n
det(ak,il )1≤k,l≤m det(bik,l)1≤k,l≤m . (1.48)

Note that every decreasing sequence ∞ > kn > · · · > k1 ≥ 1 can be mapped
into a Young diagram λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, by setting kj = j + λn+1−j .
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Relabeling the indices i, j with 1 ≤ i, j ≤ n, by setting j′ := n− j + 1, i′ :=
n−i+1, we have 1 ≤ i′, j′ ≤ n and kj−i = λj′ −j′+i′ and ki−1 = λi′ −i′+n.
In other terms, the sequence of integers ∞ > kn > · · · > k1 ≥ 1 leads to a
partition λ1 = kn−n > λ2 = kn−1−n+1 > · · · > λn = k1−1 ≥ 0. The same
can be done for the sequence 1 ≤ l1 < · · · < ln < ∞, leading to the Young
diagram ν, using the same relabeling. Applying the Cauchy–Binet formula
twice, expression (1.45)) leads to:

det
(
En(t)m∞(0, 0)E�

n (−s))
=

∑
1≤k1<···<kn<∞

det
(
skj−i(t)

)
1≤i,j≤n det

((
m∞(0, 0)E�

n (−s))
ki,l

)
1≤i,l≤n

=
∑

1≤k1<···<kn<∞
det
(
skj−i(t)

)
1≤i,j≤n det

(
(μki−1,j−1) 1≤i≤n

1≤j<∞

(
si−j(−s)

)
1≤i<∞
1≤j≤n

)

=
∑

1≤k1<···<kn<∞
det
(
skj−i(t)

)
1≤i,j≤n

×
∑

1≤l1<···<ln<∞
det(μki−1,lj−1)1≤i,j≤n det

(
sli−j(−s)

)
1≤i,j≤n

=
∑
λ∈Y

λ�
1 ≤n

det
(
sλj′−j′+i′(t)

)
1≤i′,j′≤n

×
∑
ν∈Y

ν�
1 ≤n

det(μλi′−i′+n,νj′−j′+n)1≤i′,j′≤n det
(
sνi′−i′+j′(−s)

)
1≤i′,j′≤n

=
∑
λ,ν∈Y

λ�
1 ,ν

�
1 ≤n

det(mλ,ν)sλ(t)sν(−s) ,

which establishes Lemma 1.2.1. ��
Continuing the proof of Prop. 1.2.1, apply now Lemma 1.2.1 to m∞(0, 0)

= I∞, leading to

detmλ,ν = det(μλi−i+n,νj−j+n)1≤i,j≤n �= 0

if and only if
λi − i+ n = νi − i+ n for all 1 ≤ i ≤ n,

i.e., λ = ν, in which case
detmλ,λ = 1 .

Therefore, from (1.45), it follows

∑
λ∈Y

λ�
1 ≤n

sλ(t)sλ(−s) = det

(∫
S1

dz
2πiz

zk−l exp
( ∞∑

1

(tizi − siz
−i)
))

1≤k,l≤n
.

So, we have, changing s �→ −s,
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P(λ with λ�1 ≤ n) = Z−1
∑
λ∈Y

λ1≤n

sλ(t)sλ(s)

= Z−1 det

(∮
S1

dz
2πiz

zk−l exp
( ∞∑

1

(tizi+siz
−i)
))

1≤k,l≤n
,

and, using sλ(−t) = (−1)|λ|sλ�(t), we also have

P(λ with λ1 ≤ n) =Z−1
∑
λ∈Y

λ1≤n

sλ(t)sλ(s)

=Z−1
∑
λ∈Y

λ�
1 ≤n

sλ�(t)sλ�(s) =Z−1
∑
λ∈Y

λ�
1 ≤n

sλ(−t)sλ(−s)

=Z−1 det

(∮
S1

dz
2πiz

zk−l exp
(
−

∞∑
1

(tizi+siz
−i)
))

1≤k,l≤n
,

where

Z = exp
( ∞∑

1

itisi

)
,

ending the proof of Prop. 1.2.1. ��

1.2.2 The Calculus of Infinite Wedge Spaces

The material in this section can be found in Kac [61] and Kac–Raina [62] and
many specific results are due to Borodin–Okounkov–Olshanski (see [24–26]).
Given a vector space V =

⊕
j∈Z

Cvj with inner-product 〈vi, vj〉 = δij , the
infinite wedge space V∞ =

∧∞
V is defined as

V∞ = span{vs1 ∧ vs2 ∧ vs3 ∧ · · · : s1 > s2 > · · · , sk = −k for k � 0}
containing the “vacuum”

f∅ = v−1 ∧ v−2 ∧ · · · .
The vector space V∞ comes equipped with an inner-product 〈 , 〉, making
the basis vectors vs1 ∧ vs2 ∧ · · · orthonormal. To each k ∈ Z, we associate two
operations, a wedging with vk and a contracting operator, removing a vk,

ψk : V∞ → V∞ : f �→ ψk(f) = vk ∧ f

ψ∗
k : V∞ → V∞ :

vs1 ∧ · · · ∧ vsi ∧ · · · �→
∑
i

(−1)i+1〈vk, vsi〉vs1 ∧ · · · ∧ v̂si ∧ · · · .

Note that
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ψk(f) = 0 , if vk figures in f

ψ∗
k(vs1 ∧ · · · ) = 0, if k /∈ (s1, s2, . . . ).

Define the shift
Λr :=

∑
k∈Z

ψk+rψ
∗
k, r ∈ Z

acting on V∞ as follows

Λrvs1 ∧ vs2 ∧ · · · = vs1+r ∧ vs2 ∧ vs3 ∧ · · · + vs1 ∧ vs2+r ∧ vs3 ∧ · · ·
+ vs1 ∧ vs2 ∧ vs3+r ∧ · · · + · · · .

One checks that

[Λr, ψk] = ψk+r , [Λr, ψ∗
k] = −ψ∗

k−r (1.49)

[Λk, Λl] = lδk,−l (1.50)

and hence [∑
i≥1

tiΛ
i,
∑
j≥1

siΛ
−i
]

= −
∑
i≥1

itisi . (1.51)

Lemma 1.2.2 (Version of the Cauchy identity).

exp
(∑
i≥1

tiΛ
i

)
exp
(
−
∑
j≥1

siΛ
−j
)

= exp
(∑
i≥1

itisi

)
exp
(
−
∑
j≥1

sjΛ
−j
)

exp
(∑
i≥1

tiΛ
i

)
. (1.52)

Proof. When two operators A and B commute with their commutator [A,B],
then (see Kac [61, p. 308])

eAeB = eBeAe[A,B] .

Setting A =
∑
i≥i tiΛ

i and B = −∑j≥1 sjΛ
−j, we find

exp
(∑
i≥1

tiΛ
i

)
exp
(
−
∑
j≥1

siΛ
−j
)

= exp
(
−
∑
j≥1

sjΛ
−j
)

exp
(∑
i≥1

tiΛ
i

)
exp
(
−
[∑
i≥1

tiΛ
i,
∑
j≥1

sjΛ
−j
])

= exp
(
−
∑
j≥1

sjΛ
−j
)

exp
(∑
i≥1

tiΛ
i

)
exp
(∑
i≥1

itisi

)

= exp
(∑
i≥1

itisi

)
exp
(
−
∑

−j ≥ 1sjΛ−j
)

exp
(∑
i≥1

tiΛ
i

)
. ��
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It is useful to consider the generators of ψi and ψ∗
i :

ψ(z) =
∑
i∈Z

ziψi , ψ∗(w) =
∑
j∈Z

w−jψ∗
j . (1.53)

From (1.49), it follows that

[Λr, ψ(z)] =
∑
k

zk[Λr, ψk] =
∑
k

zkψk+r =
1
zr
ψ(z) ,

[Λr, ψ∗(w)] = − 1
wr

ψ∗(w) .

The two relations above lead to the following, by taking derivatives in ti and
si of the left hand side and setting all ti = si = 0:

exp
(
±

∞∑
1

tiΛ
i

){
ψ(z)
ψ∗(w)

}
exp
(
∓

∞∑
1

tiΛ
i

)

=

{
exp(±∑∞

1 tr/z
r)ψ(z)

exp(∓∑ tr/w
r)ψ∗(w)

exp
(
±

∞∑
1

siΛ
−i
){

ψ(z)
ψ∗(w)

}
exp
(
∓

∞∑
1

siΛ
−i
)

=

{
exp(±∑∞

1 srz
r)ψ(z)

exp(∓∑∞
1 srw

r)ψ∗(w)

(1.54)

To each partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0), associate a vector

fλ := vλ1−1 ∧ vλ2−2 ∧ · · · ∧ vλm−m ∧ v−(m+1) ∧ v−(m+2) ∧ · · · ∈ V∞ .

The following lemma holds:

Lemma 1.2.3.

exp
(∑
i≥1

tiΛ
i

)
fλ =

∑
μ∈Y

μ⊃λ

sμ\λ(t)fμ ,

exp
(∑
i≥1

tiΛ
−i
)
fλ =

∑
μ∈Y

μ⊂λ

sλ\μ(t)fμ .
(1.55)

In particular,

exp
(∑
i≥1

tiΛ
i

)
f∅ =

∑
μ∈Y

sμ(t)fμ and exp
(∑
i≥1

tiΛ
−i
)
f∅ = f∅ . (1.56)
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Proof. First notice that a matrix A ∈ GL∞ acts on V∞ as follows

A(vs1 ∧ vs2 ∧ · · · ) =
∑

s′1>s
′
2>···

det
(
As1,s2,...s′1,s

′
2,...

)
vs′1 ∧ vs′2 ∧ · · · ,

where

As1,s2,...s′1,s
′
2,...

=
{

matrix located at the intersection of the rows s′1, s
′
2, . . .

and columns s1, s2, . . . of A

}
.

Here the rows and columns of the bi-infinite matrix are labeled by

⎛
⎜⎜⎜⎜⎝

1 0 −1 −2 −3
1 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗

−1 ∗ ∗ • ∗ ∗
−2 ∗ ∗ ∗ ∗ ∗
−3 ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎠ .

Hence, for the bi-infinite matrix exp(
∑∞

1 tiΛ
i),

det

⎛
⎝
(

exp
( ∞∑

1

tiΛ
i

))s1,s2,...
s′1,s

′
2,...

⎞
⎠ = det

(
ss′i−sj

)

Setting si = λi − i and defining μi in the formula below by s′i = μi − i,
one checks

exp
( ∞∑

1

tiΛ
i

)
fλ = exp

( ∞∑
1

tiΛ
i

)
(vs1 ∧ vs2 ∧ · · · )

∗=
∑

s′1>s
′
2>···

det

⎛
⎝
(

exp
( ∞∑

1

tiΛ
i

))s1,s2,...
s′1,s

′
2,...

⎞
⎠ vs′1 ∧ vs′2 ∧ · · ·

=
∑

s′1>s
′
2>···

det
(
ss′i−sj

(t)
)
1≤i,j<∞vs′1 ∧ vs′2 ∧ · · ·

=
∑

μ1−1>μ2−2>···
det
(
s(μi−i)−(λj−j)(t)

)
1≤i,j≤∞vμ1−1 ∧ vμ2−2 ∧ · · ·

=
∑
μ∈Y

μ⊃λ

sμ\λ(t)fμ .

The second identity in (1.55) is shown in the same way. Identities (1.56) follow
immediately from (1.55), ending the proof of Lemma 1.2.3. ��

We also need:
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Lemma 1.2.4. For

Ψ∗
bk

=
∑
i≥1

bkiψ
∗
−i and Ψak

=
∑
i≥1

akiψ−i , (1.57)

the following identity holds :

〈Ψa1 · · ·ΨamΨ
∗
bm

· · ·Ψ∗
b1f∅, f∅〉 = det(〈Ψak

Ψ∗
bl
f∅, f∅〉)1≤k,l≤m . (1.58)

Proof. First one computes for the Ψ ’s as in (1.57),

Ψ∗
bm

· · ·Ψ∗
b1f∅

=
∑

i1>···>im≥1

(−1)
∑m

1 (ik+1) det(bk,il)1≤k,l≤m

v−1 ∧ · · · ∧ v̂−im ∧ · · · ∧ v̂−im−1 ∧ · · · ∧ v̂−i2 ∧ · · · ∧ v̂−i1 ∧ · · · .

Then acting with the Ψak
as in (1.57), it suffices to understand how it acts on

the wedge products appearing in the expression above, namely:

Ψa1 · · ·Ψamv−1 ∧ · · · ∧ v̂−im ∧ · · · ∧ v̂−im−1 ∧ · · · ∧ v̂−i1 ∧ · · ·
= (−1)

∑m
1 (ik+1) det(ak,il )1≤k,l≤mf∅ .

Thus, combining the two, one finds, using the Cauchy–Binet formula (1.48)
in the last equality,

Ψa1 · · ·ΨamΨ
∗
bm

· · ·Ψ∗
b1f∅ =

∑
i1>···>im≥1

det(ak,il )1≤k,l≤m det(bk,il)1≤k,l≤mf∅

= det
(∑

i

alibki

)
1≤k,l≤m

f∅ .

In particular for m = 1,

Ψal
Ψ∗
bk
f∅ =

∑
i

alibkif∅ .

Hence

〈Ψa1 · · ·ΨamΨ
∗
bm

· · ·Ψ∗
b1f∅, f∅〉 = det

(∑
i

akibli

)
1≤k,l≤m

= det(〈Ψak
Ψ∗
bl
f∅, f∅〉)1≤k,l≤m ,

ending the proof of Lemma 1.2.4. ��
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1.2.3 Probability on Partitions Expressed as Fredholm
Determinants

Remember the definition (1.39) of the Fredholm determinant of a kernel
K(i, j), with i, j ∈ Z and restricted to [n,∞). This statement has appeared
in the literature in some form (see Geronimo–Case [44]) and a more analytic
formulation has appeared in Basor–Widom [22]. The proof given here is an
“integrable” one, due to Borodin–Okounkov [23].

Proposition 1.2.2.

P(λ with λ1 ≤ n) = det
(
I −K(k, l)|[n,n+1,... ]),

where K(k, l) is a kernel

K(k, l)

=
(

1
2πi

)2 ∮
|w|=ρ<1

∮
|z|=ρ−1>1

dz dw
zk+1w−l

exp
(
V (z) − V (w)

)
z − w

=
1

k − l

(
1

2πi

)2∮ ∮
|w|=ρ<1

|z|=ρ−1>1

dz dw
zk+1w−l

z(d/dz)V (z) − w(d/dw)V (w)
z − w

× exp
(
V (z) − V (w)

)
,

for k �= l, (1.59)

with
V (z) = −

∑
i≥1

(tiz−i − siz
i).

The proof of Prop. 1.2.2 hinges on the following lemma, due to Borodin–
Okounkov ([23, 74, 75]):

Lemma 1.2.5. If X = {x1, . . . , xm} ⊂ Z and S(λ) := {λ1 − 1, λ2 − 2, λ3 −
3, . . . }

P(λ | S(λ) ⊃ X) =
1
Z

∑
λ such that
S(λ)⊃X

sλ(t)sλ(s) = det
(
K(xi, xj)

)
1≤i,j≤m .

Proof of Prop. 1.2.2. Setting Ak := {λ | k ∈ S(λ)} with S(λ) := {λ1 − 1,
λ2 − 2, λ3 − 3, . . . }, one computes (the xi below are integers)
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P(λ with λ1 ≤ n)

= P(λ with all λi ≤ n)
= P(λ with S(λ) ∩ {n, n+ 1, n+ 2, . . . } = ∅)
= 1 − P(λ with S(λ) contains some k for k ≥ n)
= 1 − P(An ∪An+1 ∪ · · · )
= 1 −

∑
n≤i

P(Ai) +
∑
n≤i<j

P(Ai ∩Aj) −
∑

n≤i<j<k
P(Ai ∩Aj ∩Ak) + · · ·

using Poincaré’s formula

=
∞∑
m=0

(−1)m
∑

n≤x1<···<xm

P
(
λ with {x1, . . . , xm} ⊂ S(λ)

)

=
∞∑
m=0

(−1)m
∑

n≤x1<···<xm

det
(
K(xi, xj)

)
1≤i,j≤m

= det
(
I −K(i, j)

∣∣∣
[n,n+1,... ]

)
,

from which Prop. 1.2.2 follows. ��
Proof of Lemma 1.2.5. Remembering the probability measure introduced in
(1.37), we have that

P(λ | S(λ) ⊃ X) =
1
Z

∑
λ such that
S(λ)⊃X

sλ(t)sλ(s) .

Next, from the wedging-contracting operation

ψxψ
∗
xfλ =

{
fλ, if x ∈ Sλ

0, if x /∈ Sλ,

and using both relations (1.55), one first computes:
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〈
exp
( ∞∑

1

siΛ
−i
) ∏
x∈X

ψxψ
∗
x exp

( ∞∑
1

tiΛ
i

)
f∅, f∅

〉

=
〈

exp
( ∞∑

1

siΛ
−i
) ∏
x∈X

ψxψ
∗
x

∑
λ

sλ(t)fλ, f∅

〉

=
∑
λ

sλ(t)
〈

exp
( ∞∑

1

siΛ
−i
) ∏
x∈X

ψxψ
∗
xfλ, f∅

〉

=
∑
λ

S(λ)⊃X

sλ(t)
〈

exp
( ∞∑

1

siΛ
−i
)
fλ, f∅

〉

=
∑
λ

S(λ)⊃X

sλ(t)
∑
μ⊂λ

〈sλ\μ(s)fμ, f∅〉

=
∑
λ

S(λ)⊃X

sλ(t)
∑
μ⊂λ

sλ\μ(s)〈fμ, f∅〉 =
∑

λ such that
S(λ)⊃X

sλ(t)sλ(s) .

Using this fact, one further computes (in the exponentials below the summa-
tion

∑
stands for

∑∞
1 )

1
Z

∑
λ such that
S(λ)⊃X

sλ(t)sλ(s)

=
1
Z

〈
exp
(∑

siΛ
−i
) ∏
x∈X

ψxψ
∗
x exp

(∑
tiΛ

i

)
f∅, f∅

〉

=
1
Z

〈
exp
(∑

siΛ
−i
)
ψxm · · ·ψx1ψ

∗
x1

· · ·ψ∗
xm

exp
(∑

tiΛ
i

)
f∅, f∅

〉

using ψxiψ
∗
xj

= −ψ∗
xj
ψxi for i �= j

=
1
Z

〈
exp
(∑

siΛ
−i
)
ψxm · · ·ψx1ψ

∗
x1

· · ·ψ∗
xm

× exp
(∑

tiΛ
i

)
exp
(
−
∑

siΛ
−i
)
f∅, exp

(
−
∑

tiΛ
−i
)
f∅

〉

using (1.56)

=
1
Z

〈
exp
(
−
∑

tiΛ
i

)
exp
(∑

siΛ
−i
)
ψxm · · ·ψx1ψ

∗
x1

· · ·ψ∗
xm

× exp
(∑

tiΛ
i

)
exp
(
−
∑

siΛ
−i
)
f∅, f∅

〉

=
〈

exp
(
−
∑

tiΛ
i

)
exp
(∑

siΛ
−i
)
ψxm · · ·ψx1ψ

∗
x1

· · ·ψ∗
xm

× exp
(
−
∑

siΛ
−i
)

exp
(∑

tiΛ
i

)
f∅, f∅

〉
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using Cauchy’s identity (1.52)
= 〈Ψxm · · ·Ψx1Ψ

∗
x1

· · ·Ψ∗
xm

f∅, f∅〉 ,
where

Ψk = exp
(
−
∑

tiΛ
i

)
exp
(∑

siΛ
−i
)
ψk exp

(
−
∑

siΛ
−i
)

exp
(∑

tiΛ
i

)

Ψ∗
k = exp

(
−
∑

tiΛ
i

)
exp
(∑

siΛ
−i
)
ψ∗
k exp

(
−
∑

siΛ
−i
)

exp
(∑

tiΛ
i

)
.

Then, using Lemma 1.2.4, the expression above equals

〈Ψxm · · ·Ψx1Ψ
∗
x1

· · ·Ψ∗
xm

f∅, f∅〉 = det(〈Ψxk
Ψ∗
xl
f∅, f∅〉)1≤k,l≤m

= det
(
K(xk, xl)

)
1≤k,l≤m ,

where

K(k, l) = 〈ΨkΨ∗
l f∅, f∅〉

=
〈

exp
(
−
∑

tiΛ
i

)
exp
(∑

siΛ
−i
)
ψkψ

∗
l

× exp
(
−
∑

siΛ
−i
)

exp
(∑

tiΛ
i

)
f∅, f∅

〉
.

Using

〈ψiψ∗
j f∅, f∅〉 =

{
1 if i = j < 0
0 otherwise

and setting
V (z) = −

∑
i≥1

(tiz−i − siz
i) , (1.60)

the generating function of the K(k, l) takes on the following simple form:
∑
k,l∈Z

zkw−lK(k, l)

=
〈

exp
(
−
∑

tiΛ
i

)
exp
(∑

siΛ
−i
)
ψ(z)ψ∗(w)

× exp
(
−
∑

siΛ
−i
)

exp
(∑

tiΛ
i

)
f∅, f∅

〉

=
〈

exp
(
−
∑

tiΛ
i

)
exp
(∑

siΛ
−i
)
ψ(z) exp

(
−
∑

siΛ
−i
)

exp
(∑

tiΛ
i

)

× exp
(
−
∑

tiΛ
i

)
exp
(∑

siΛ
−i
)
ψ∗(w)

× exp
(
−
∑

siΛ
−i
)

exp
(∑

tiΛ
i

)
f∅, f∅

〉
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= exp
(∑

siz
i

)
exp
(
−
∑

tiz
−i
)

exp
(
−
∑

siw
i

)
exp
(∑

tiw
−i
)

× 〈ψ(z)ψ∗(w)f∅, f∅〉 using (1.54)

= exp
(
V (z) − V (w)

)〈ψ(z)ψ∗(w)f∅, f∅〉
= exp

(
V (z) − V (w)

) ∑
i,j∈Z

ziw−j〈ψiψ∗
j f∅, f∅〉

= exp
(
V (z) − V (w)

)∑
i≥1

(
w

z

)i

= exp
(
V (z) − V (w)

)(w
z

)(
1 +

w

z
+ · · ·

)

= exp
(
V (z) − V (w)

)(w
z

)
1

1 − w/z
for |w| < |z|

= exp
(
V (z) − V (w)

) w

z − w
,

and so

K(k, l) =
(

1
2πi

)2 ∮
|w|=ρ<1

∮
|z|=ρ−1>1

dz dw
zk+1w−l

exp
(
V (z) − V (w)

)
z − w

,

ending the proof of Prop. 1.2.5. ��
Formula (1.41) in the remark is obtained by setting z �→ tz, w �→ tw in

(1.59),

K(k, l) =
(

1
2πi

)2 1
tk−l

∮ ∮
dz dw

zk+1w−l+1

exp
(
V (tz) − V (tw)

)
(z/w−1)

.

and taking (∂/∂t)|t=1 of both sides, using the t-independence of the left-hand
side, yielding (1.41). ��

1.2.4 Probability on Partitions Expressed as U(n) Integrals

This section deals with (1.40) in Thm. 1.2.1, stating that P(λ | λ1 ≤ n) can
be expressed as a unitary matrix integral. First we need a lemma, whose proof
can be found in [27]:

Lemma 1.2.6. If f is a symmetric function of the eigenvalues u1, . . . , un of
the elements in U(n), then

∫
U(n)

f =
1
n!

∫
(S1)n

|Δ(u)|2f(u1, . . . , un)
n∏
1

duj
2πiuj

.
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Proof. Set G := U(n) and T := {diag(u1, . . . , un), with uk = exp(iθk) ∈ S1},
and let t and g denote the Lie algebras corresponding to T and G. An element
in the quotient G/T can be identified with gT , because g′ ∈ gT implies
g−1g′ ∈ T , and thus there is a natural map

T × (G/T ) → G : (t, gT ) �→ gtg−1.

Note that the Jacobian J of this map (with respect to the invariant measures
on T , G/T and G) only depends on t ∈ t, because of invariance of the measure
under conjugation. For a function f as above∫

G

f =
1
n!

∫
T×(G/T )

f(gtg−1)J(t) dt d(gT ) =
vol(G/T )

n!

∫
T

f(t)J(t) dt .

Denote the tangent space to G/T at its base points by t⊥, the orthogonal
complement of t in g = t ⊕ t⊥. Consider infinitesimal changes t(1 + εξ) of t
with ξ ∈ t; also, an infinitesimal change of 1 ∈ G, namely 1 �→ 1 + εη, with
η ∈ t⊥. Then

gtg−1 − t = (1 + εη)t(1 + εξ)
(
1 − εη + O(ε2)

)− t

= ε(tξ + ηt− tη) + O(ε2) =: ερ+ O(ε2)

and so
t−1ρ = ξ + (t−1ηt− η) ∈ t ⊕ t⊥ = g .

Thus the Jacobian of this map is given by

J(t) = det(A(t−1) − I) ,

where A(t) denotes the adjoint action by means of the diagonal matrix t,
denoted by t = diag(u1, . . . , un), with |ui| = 1. Let Ejk be the matrix with 1
at the (j, k)th entry and 0 everywhere else. Then

(A(t−1) − I)Ejk = (u−1
j uk − 1)Ejk

and thus the matrix A(t−1) − I has n(n − 1) eigenvalues (u−1
j uk − 1), with

1 ≤ j, k ≤ n and j �= k. Therefore

det(A(t−1) − I) =
∏
j �=k

(u−1
j uk − 1) =

∏
j<k

|uj − uk|2 ,

using the fact that u−1
j = ūj . ��

Proposition 1.2.3. Given the “probability measure”

P(λ) = Z−1sλ(t)sλ(s), Z = exp
(∑
i≥1

itisi

)
,

the following holds

P(λ | λ1 ≤ n) = Z−1

∫
U(n)

exp

(
−Tr

( ∞∑
1

(tiX i + siX
i
)
))

dX .
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Proof. Using Lemma 1.2.6 and the following matrix identity,
∑
σ∈Sn

det
(
ai,σ(j) bj,σ(j)

)
1≤i,j≤n = det

(
aik
)
1≤i,k≤n det

(
bik
)
1≤i,k≤n,

one computes

n!
∫

U(n)

exp

(
−Tr

( ∞∑
1

(tiX i + siX̄
i)
))

dX

=
∫

(S1)n

|Δn(z)|2
n∏
k=1

(
exp
(
−

∞∑
1

(tizik + siz
−i
k )
)

dzk
2πizk

)

=
∫

(S1)n

Δn(z)Δn(z̄)
n∏
k=1

(
exp
(
−

∞∑
1

(tizik + siz
−i
k )
)

dzk
2πizk

)

=
∫

(S1)n

∑
σ∈Sn

det
(
zl−1
σ(m)z̄

m−1
σ(m)

)
1≤l,m≤n

n∏
k=1

(
exp
(
−

∞∑
1

(tizik + siz
−i
k )
)

dzk
2πizk

)

=
∑
σ∈Sn

det
(∮

S1
zl−1
k z̄m−1

k exp
(
−

∞∑
1

(tizik + siz
−i
k )
)

dzk
2πizk

)
1≤l,m≤n

= n! det
(∮

S1
zl−m exp

(
−

∞∑
1

(tizi + siz
−i)
)

dz
2πiz

)
1≤l,m≤n

= n! detmn(t, s)

ending the proof of Prop. 1.2.3. ��

1.3 Examples

1.3.1 Plancherel Measure and Gessel’s Theorem

The point of this section will be to restrict the probability

Px,y(λ) :=
1
Z

s̃λ(x)s̃λ(y) =
1
Z

sλ(t)sλ(s) (1.61)

considered in Sect. 1.2 ((1.37)) to the locus L1, defined for real ξ > 0 (ex-
pressed in (x, y) and (s, t) coordinates),

L1 =
{

(x, y) such that
∑
i≥1

xki =
∑
i≥1

yki = δkl
√
ξ

}

= {all sk = tk = 0, except t1 = s1 =
√
ξ} . (1.62)

The reader is referred back to Sect. 1.1.5.1 for a number of basic formulae.
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Theorem 1.3.1 ([8,23,45,86]). For the permutation group Sk, the generat-
ing function for distribution of the length of the longest increasing subsequence

P̃
k
(L(πk) ≤ n)

is given by

e−ξ
∞∑
k=0

ξk

k!
P̃
k
(L(πk) ≤ n) = e−ξ det

(∮
S1

dz
2πiz

zj−l exp
(√

ξ(z + z−1)
))

1≤j,l≤n

= e−ξ det
(
Jj−l(2

√
−ξ))

1≤j,l≤n

= e−ξ
∫
U(n)

exp
(√

ξTr(X +X−1)
)
dX

= det
(
I −K(j, l)|[n,n+1,... ]

)

where Ji(z) is the Bessel function and

K(k, l) =
√
ξ
(
Jk(2

√
ξ)Jl+1(2

√
ξ) − Jk+1(2

√
ξ)Jl(2

√
ξ)
)

k − l
(k �= l)

=
∞∑
n=1

Jk+n(2
√
ξ)Jl+n(2

√
ξ) . (1.63)

Proof. For an arbitrary partition λ ∈ Y, and using (1.9), the restriction of
Px,y to the locus L1, as in (1.62), reads as follows:

Pξ(λ) := Px,y(λ)|L1 = exp
(
−
∑
k≥1

ktksk

)
sλ(t)sλ(s)

∣∣∣∣ti=√
ξδi1

si=
√
ξδi1

= e−ξξ|λ|/2
fλ

|λ|! ξ
|λ|/2 f

λ

|λ|! = e−ξ
ξ|λ|

|λ|!
(fλ)2

|λ|!

= e−ξ
ξ|λ|

|λ|! P̃
(n)

(λ) , for n = |λ|,

where P̃
(n)

(λ) can be recognized as Plancherel measure on partitions in Yn,
as defined in Sect. 1.1.5.1,

P̃
n
(λ) =

(fλ)2

n!
, λ ∈ Yn .

It is clear that

Pξ(λ) = e−ξ
ξ|λ|

|λ|!
(

(fλ)2

|λ|!
)
, λ ∈ Y ,

is a genuine probability (≥ 0), called Poissonized Plancherel measure.
We now compute
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Pξ(λ with λ1 ≤ n) = e−ξ
∑
λ∈Y

λ1≤n

ξ|λ|

|λ|!
(fλ)2

|λ|!

= e−ξ
∞∑
k=0

ξk

k!

∑
|λ|=k
λ1≤n

(fλ)2

|λ|! = e−ξ
∞∑
k=0

ξk

k!
P̃

(k)
(L(πk) ≤ n) ,

and thus using Thm. 1.2.1,9

Pξ(λ with λ1 ≤ n)

= Z−1 det

(∮
S1

dz
2πiz

zk−l exp
(
−

∞∑
1

(tizi + siz
−i)
))

1≤k,l≤n

∣∣∣∣∣
L1

= e−ξ det
(∮

S1

dz
2πiz

zk−l exp
(−√ξ(z + z−1)

))
1≤k,l≤n

= e−ξ
∫

U(n)

exp
(√

ξTr(X +X−1)
)
dX

= e−ξ det
(
Jk−l(2

√
−ξ))

1≤k,l≤n ,

where we used the fact that for a Toeplitz matrix

det(ak−lck−l)1≤k,l≤n = det(ck−l)1≤k,l≤n , a �= 0 .

It also equals

Pξ(λ with λ1 ≤ n) = det
(
I −K(i, j)|[n,n+1,... ]

)

where K(i, j) is given by (1.41), where V (z) =
√
ξ(z − z−1). Since

z(d/dz)V (z) − w(d/dw)V (w)
z − w

=
√
ξ

(
1 − 1

wz

)
,

one checks

9 The Bessel function Jn(u) is defined by

exp
(
u(t− t−1)

)
=

∞∑
−∞

tnJn(2u)

and thus

exp
(−√ξ(z + z−1)

)
= exp

(√
−ξ((iz) − (iz)−1

))
=
∑

(iz)nJn(2
√

−ξ) .
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(k − l)K(k, l)

=
√
ξ

(2πi)2

∮ ∮
|z|=c1
|w|=c2

dz dw
(

exp
(√

ξ(z − z−1)
)

zk+1

exp
(√

ξ(w−1 − w)
)

w−l

− exp
(√

ξ(z − z−1)
)

zk+2

exp
(√

ξ(w−1 − w)
)

w−l+1

)

=
√
ξ
(
Jk(2

√
ξ)Jl+1(2

√
ξ) − Jk+1(2

√
ξ)Jl(2

√
ξ)
)

= (k − l)
∞∑
n=1

Jk+n(2
√
ξ)Jl+n(2

√
ξ) . (1.64)

The last equality follows from the recurrence relation of Bessel functions

Jk+1(2z) =
k

z
Jk(2z) − Jk−1(2z) .

Indeed, subtracting the two expressions

Jl+1(2z)Jk(2z) =
l

z
Jk(2z)Jl(2z) − Jl−1(2z)Jk(2z)

Jk+1(2z)Jl(2z) =
k

z
Jk(2z)Jl(2z) − Jk−1(2z)Jl(2z) ,

one finds

(l − k)Jk(2z)Jl(2z) = z
(
Jk(2z)Jl+1(2z) − Jk+1(2z)Jl(2z)

)
− z
(
Jk−1(2z)Jl(2z) − Jk(2z)Jl−1(2z)

)
,

implying

z
(
Jk(2z)Jl+1(2z) − Jk+1(2z)Jl(2z)

)
= (k − l)

∞∑
n=1

Jk+n(2z)Jl+n(2z) ,

thus proving (1.64). ��
Remark. Incidentally, the fact that Pξ is a probability shows that Plancherel
measure itself is a probability; indeed, for all ξ,

e−ξ
∞∑
n=0

ξn

n!
= 1 =

∑
λ∈Y

Pξ(λ) = e−ξ
∞∑
n=0

ξn

n!

∑
|λ|=n

(fλ)2

|λ|!

= e−ξ
∞∑
n=0

ξn

n!

∑
λ∈Yn

P̃
n
(λ) ;

comparing the extremities leads to
∑
λ∈Yn

P̃
n
(λ) = 1.



54 Pierre van Moerbeke

1.3.2 Probability on Random Words

Here also, restrict the probability (1.61) to the locus below, for ξ > 0 and
p ∈ Z≥1,

L2 =
{∑
i≥1

xki = δk1ξ, y1 = · · · = yp = β, all other yj = 0
}

= {tk = δk1ξ, ksk = pβk}

Recall from Sect. 1.1.5.4 the probability P̃
k,p

on partitions, induced from
uniform probability Pk,p on words. This was studied by Tracy–Widom [87] and
Borodin–Okounkov [23]; see also Johansson [58] and Adler–van Moerbeke [8].

Theorem 1.3.2. For the set of words Spn, the generating function for the dis-
tribution of the length of the longest increasing subsequence, is given by (set-
ting β = 1)

e−pξ
∞∑
k=0

(pξ)k

k!
P̃
k,p

(L(πk) ≤ n)

= e−pξ det
(∮

S′

dz
2πiz

zk−l exp(ξz−1)(1 + z)p
)

1≤k,l≤n

= e−pξ
∫

U(n)

exp(ξTrM) det(I +M)p dM

= det
(
I −K(j, k)

)
(n,n+1,... )

,

with K(j, k) a Christoffel–Darboux kernel of Charlier polynomials:

(j − k)K(j, k)

=
ξ

(2πi)2

∮ ∮
|z|=c1<1/|ξ|
|w|=c2

dz dw
(
p
(1 − ξz)−p−1 exp(−ξz−1)

zj+1

(1 − ξw)p−1 exp(ξw−1)
w−k

− (1 − ξz)−p exp(−ξz−1)
zj+2

(1 − ξw)p exp(ξw−1
)

w−k+1

)

= (p)j+1 exp(−ξ2)
(

1F1(−p, j + 1; ξ2)
j!

1F1(−p+ 1, k + 2; ξ2)
(k + 1)!

− 1F1(−q + 1, j + 2; ξ2)
(j + 1)!

1F1(−q, k + 1; ξ2)
k!

)
(1.65)

where
(a)j := a(a + 1) · · · (a + j − 1) , (a)0 = 1

and 1F1(a, c;x) is the confluent hypergeometric function:

1
2πi

∮
|z|=c1<1/|ξ|

(1 − ξz)−p exp(ξz−1)
dz

zm+1
=

(p)m
m!

exp(−ξ2)1F1(1 − p,m+ 1; ξ2)

1
2πi

∮
|w|=c2

(1 − ξw)q exp(ξw−1)wm−1 dw =
1
m!1

F1(−q,m+ 1; ξ2) .
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These functions are related to Charlier polynomials.10

Proof. This proof will be very sketchy, as more details will be given for the
percolation case in the next section. One now computes

Pξ,p(λ with λ1 ≤ n) =
∑
λ

λ1≤n

exp
(
−
∑
i≥1

itisi

)
sλ(t)sλ(s)

∣∣∣∣
L2

= e−pξβ
∑
λ

λ1≤n

sλ(ξ, 0, . . . )sλ

(
pβ,

pβ2

2
,
pβ3

3
, . . .

)

= e−pξβ
∑
λ∈Y

p

λ1≤n

(pξβ)|λ|

|λ|!
sλ(1, 0, . . . )sλ(p, p/2, p/3, . . . )

p|λ|

= e−pξβ
∞∑
k=0

(pξβ)k

k!

∑
λ∈Y

p

|λ|=k
λ1≤n

fλsλ(1p)
p|λ|

= e−pξβ
∞∑
k=0

(pξβ)k

k!
P̃
k,p

(L(πk) ≤ n) .

In applying Thm. 1.2.1, one needs to compute

exp
(
−

∞∑
1

(tizi + siz
−i)
)∣∣∣∣

L2

= e−ξz exp
(
−p

∞∑
1

1
i

(
β

z

)i)
= e−ξz

(
1 − β

z

)p

and

eV
∣∣
L2

= exp
(
−

∞∑
1

(tiz−i − siz
i)
)∣∣∣∣

L2

= exp(−ξz−1)(1 − βz)−p .

Therefore

10 Charlier polynomials P (k;α), with k ∈ Z≥0, are discrete orthonormal polynomials
defined by the orthonormality condition

∞∑
k=0

Pn(k;α)Pm(k;α)wα(k) = δnm , for wα(k) = e−α
αk

k!
,

with generating function

∞∑
n=0

αn/2
1√
n!
Pn(k;α)wn = e−αw(1 +w)k .
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Pξ,p(λ1 ≤ n) = Z−1 det

(∮
S1

dz
2πiz

zk−l exp
(
−

∞∑
1

(tizi + siz
−i)
))

1≤k,l≤n

∣∣∣∣∣
L2

= e−ξpβ det
(∮

S1

dz
2πiz

zk−le−ξz(1 − βz−1)p
)

1≤k,l≤n

= e−ξpβ det
(∮

S1

dz
2πiz

zk−l exp(ξz−1)(1 + βz)p
)

1≤k,l≤n
using the change of variable z �→ −z−1

= e−ξpβ
∫

U(n)

exp
(
ξTrM

)
det(1 + βM)p dM .

Then, one computes

z(d/dz)V (z) − w(d/dw)V (w)
z − w

=
βp

(1 − βz)(1 − βw)
− ξ

zw
.

and

exp
(
V (z) − V (w)

)
= exp(−ξz−1)(1 − βz)−p exp(ξw−1)(1 − βw)p,

leading to (1.65), upon using (1.59), combined an appropriate rescaling in-
volving β. From footnote 10, the confluent hypergeometric functions turn out
to be Charlier polynomials in this case. ��

1.3.3 Percolation

Considering now the locus

L3 := {ktk = qξk/2, ksk = pξk/2} ,
one is led to the probability appearing in the generalized permutations and
percolations (Sects. 1.1.5.4 and 1.1.5.5), namely

P(L(M) ≤ l) =
∑
λ

λ1≤l

(1 − ξ)pqξ|λ|sλ

(
q,
q

2
, . . .

)
sλ

(
p,
p

2
, . . .

)
.

We now state: (see [23, 57])

Theorem 1.3.3. Assuming q > p, we have

P(L(M) ≤ l)

=
(1 − ξ)pq

l!

∫
(S1)l

|Δl(z)|2
l∏

j=1

(1 +
√
ξzj)q(1 +

√
ξz̄j)p

dzj
2πizj

= (1 − ξ)pq
∫

U(l)

det(1 +
√
ξM)q det(1 +

√
ξM)p dM

= det
(
I −K(i, j)

)∣∣
[l,l+1,... ]
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where (C is a constant depending on p, q, ξ)

K(i, j) = C
Mp(p+ i)Mp−1(p + j) −Mp−1(p + i)Mp(p + i)

i− j
,

where
Mp(k) := Mp(k; q − p+ 1, ξ) , with k ∈ Z≥0 ,

are Meixner polynomials.11

Proof. Using the restriction to locus L3, one finds

exp
(
−

∞∑
1

(tjzj + sjz
−j)
)∣∣∣

L3

= (1 −
√
ξz)q(1 −

√
ξz−1)p

and

eV
∣∣
L3

= exp
(
−

∞∑
1

(tiz−i − siz
i)
)∣∣∣∣

L3

= (1 −
√
ξz−1)q(1 −

√
ξz)−p ,

and thus
V (z) = q log(1 −

√
ξ z−1) − p log(1 −

√
ξ z) .

Hence, in view of (1.59)

z(d/dz)V (z) − w(d/dw)V (w)
z − w

=
p
√
ξ

(1 −√
ξz)(1 −√

ξw)
− q

√
ξ

zw(1 −√
ξz−1)(1 −√

ξw−1)

and so

1
zk+1w−l

z(d/dz)V (z) − w(d/dw)V (w)
z − w

exp
(
V (z) − V (w)

)

=
√
ξ

(
p
(1 −√

ξz)−p−1(1 −√
ξz−1)q

zk+1

(1 −√
ξw)p−1(1 −√

ξw−1)−q

w−l

− q
(1 −√

ξz)−p(1 −√
ξz−1)q−1

zk+2

(1 −√
ξw)p(1 −√

ξw−1)−q−1

w−l+1

)
.

11 Meixner polynomials are discrete orthogonal polynomials defined on Z≥0 by the
orthogonality relations

∞∑
k=0

(
β + k − 1

k

)
)ξkMp(k;β, ξ)Mp′(k;β, ξ) =

ξ−p

(1 − ξ)β

(
β + p− 1

p

)−1

δpp′ ,

β > 0 ,

and with generating function

∞∑
p=0

(β)pz
p

p!
Mp(x;β, ξ) =

(
1 − z

ξ

)x
(1 − z)−x−β . (1.66)
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Expanding in Laurent series, one finds

(1 − ηz)−β(1 − ηz−1)β
′

=
( ∞∑
i=0

(−β)(−β − 1) · · · (−β − i+ 1)
i!

(−η)izi
)

×
( ∞∑
j=0

β′(β′ − 1) · · · (β′ − j + 1)
j!

(−η)j 1
zj

)

=
∑
m∈Z

zm
∑

i−j=m
i,j≥0

β(β + 1) · · · (β + i− 1)
i!

(−β′)(−β′ + 1) · · · (−β′ + j − 1)
j!

ηi+j

=
∑
m∈Z

zm
∞∑
j=0

β(β + 1) · · · (β + j +m− 1)
(j +m)!

(−β′) · · · (−β′ + j − 1)
j!

η2j+m .

The coefficient of zm for m ≥ 0 reads

∞∑
j=0

β(β + 1) · · · (β + j +m− 1)(−β′) · · · (−β′ + j − 1)
(j +m)!

η2j+m

j!

=
(β)m
m!

ηm2F1(β +m,−β′;m+ 1; η2) ,

which is Gauss’ hypergeometric function12 and thus
∮
z=0

(1 − ηz)−β(1 − ηz−1)β
′ dz
2πizk+1

=
(β)k
k!

ηk2F1(−β′, β + k; k + 1; η2) .

One does a similar computation for the other piece in the kernel, where one
computes the coefficient of z−m. Using this fact, using a standard linear trans-
formation formula13 for the hypergeometric function, and using a polynomial
property for hypergeometric functions14 and the formula for 0 < p < q

Γ (1 + p− q)
Γ (1 − q)

= (−1)p+1 (q − 1)!
(q − p− 1)!

,

one finds Meixner polynomials (assume q > p > 0, x ≥ 0 and k ≥ 0) (see
Nikiforov–Suslov–Uvarov [71] and Koekoek–Swartouw [65]):

12
2F1(a, b; c; z) :=

∑∞
0

(
(a)n(b)n/(c)n

)
zn/n!. Notice that when a = −m < 0 is an

integer, then 2F1(a, b; c; z) is a polynomial of degree m.
13 In general one has 2F1(a, b; c; z) = (1 − z)−b2F1

(
b, c− a; c; z/(z − 1)

)
.

14 When p is a positive integer (< q) and k an integer, then 2F1(−p,−q; k + 1; z)
is a polynomial of degree p in z, which satisfies 2F1(−p,−q;k + 1; z) =
Γ (k + 1)Γ (1− q + p)/

(
(k + p)!Γ (1 − q)

)
(−z)p2F1(−p,−k − p; q − p+ 1; 1/z).
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1
2πi

∮
|√ξ|<|z|=c1

(1 −√
ξz)−p−1(1 −√

ξz−1)q

zk+1
dz

=
(p + 1)k

k!
ξk/22F1(p + 1 + k,−q; k + 1; ξ)

=
(p + 1)k

k!
ξk/2(1 − ξ)q2F1

(
−p,−q; k + 1;

ξ

ξ − 1

)

=
(p + 1)kΓ (1 + p− q)

(k + p)!Γ (1 − q)
ξp+k/2

(1 − ξ)p−q 2F1

(
−p,−k − p; q − p+ 1;

ξ − 1
ξ

)

=
Γ (1 + p− q)
p!Γ (1 − q)

ξp+k/2

(1 − ξ)p−q
Mp(p + k; q − p+ 1; ξ)

=
(
q − 1
p

)
ξp+k/2

(1 − ξ)p−q
Mp(p+ k; q − p+ 1; ξ) ,

where

Mp(x;β, ξ) = 2F1

(
−p,−x;β;

ξ − 1
ξ

)
=
(

1 − ξ

ξ

)p 1
(β)p

xp + · · · , x ∈ Z≥0

=: apxp + . . . , with β = q − p+ 1

are Meixner polynomials in x, satisfying the following orthogonality proper-
ties:

∞∑
x=0

w(x)Mp(x;β, ξ)Mm(x;β, ξ) =
p!

ξp(1 − ξ)β(β)p
δpm =: hpδpm ,

with weight

w(x) :=
(β)x
x!

ξx =
(1 + q − p)x

x!
ξx .

Using these facts, one computes

(k − l)K(k, l)

=
√
ξ

(2πi)2

∫∫
|√ξ|<|z|=c1
|w|=c2<|1/√ξ|

dz dw
(
p
(1−√

ξz)−p−1(1−√
ξz−1)q

zk+1

(1−√
ξw)p−1(1−√

ξw−1)−q

w−l

− q
(1−√

ξz)−p(1−√
ξz−1)q−1

zk+2

(1−√
ξw)p(1−√

ξw−1)−q−1

w−l+1

)

=
ap−1

aphp−1

√
w(p + k)w(p + l)

× (Mp(p + k)Mp−1(p+ l) −Mp−1(p+ k)Mp(p + l)
)
,

where
Mp(p + k) := Mp(p + k; q − p+ 1, ξ) .

We also have, using Props. 1.2.1 and 1.2.3 restricted to the locus L3,
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P(L(M) ≤ l)

=
∑
λ

λ1≤l

(1 − ξ)pqξ|λ|sλ

(
q,
q

2
, . . .

)
sλ

(
p,
p

2
, . . .

)

= exp
(
−

∞∑
1

ktksk

)∑
λ

λ1≤l

sλ(t1, t2, . . . )sλ(s1, s2, . . . )
∣∣∣∣ktk=qξk/2

ksk=pξk/2

= (1 − ξ)pq det
(∮

S1
zα−α

′
exp
(
−

∞∑
1

(tjzj + sjz
−j)
)

dz
2πiz

)
1≤α,α′≤l

∣∣∣∣ktk=qξk/2

ksk=pξk/2

= (1 − ξ)pq det
(∮

S1
zα−α

′
(1 −

√
ξz)q(1 −

√
ξz−1)p

dz
2πiz

)
1≤α,α′≤l

=
(1 − ξ)pq

k!

∫
(S1)l

|Δl(z)|2
k∏
j=1

(1 +
√
ξzj)q(1 +

√
ξz̄j)p

dzj
2πizj

= (1 − ξ)pq
∫

U(l)

det(1 +
√
ξM)q det(1 +

√
ξM)p dM ,

thus ending the proof of Thm. 1.3.3. ��

1.4 Limit Theorems

1.4.1 Limit for Plancherel Measure

Stanislaw Ulam [89] raised in 1961 the question:

How do you compute the probability P(n)(L(πn) ≤ k) that the length
L := L(n) of the longest increasing sequence in a random permutation
is smaller than k. What happens for very large permutations, i.e.,
when n → ∞?

By Monte Carlo simulations, Ulam conjectured that

c := lim
n→∞

E(n)(L)√
n

(1.67)

exists (E(n) denote the expectation with respect to P(n)). A much older ar-
gument of Erdős and Szekeres [35] implied that E(n)(L) ≥ 1

2

√
n− 1 and so

c ≥ 1
2 . Numerical computation by Baer and Brock [17] suggested c = 2.

Hammersley [50] showed the existence of the limit (1.67); in 1977, Logan
and Shepp [67] proved c ≥ 2 and, at the same time, Vershik and Kerov [93]
showed c = 2. More recently other proofs have appeared by Aldous and Dia-
conis [14], Seppäläinen [79] and Johansson [56]. Meanwhile, Gessel [45] found
a generating function for the probability (with respect to n) and connected
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|
|u2

y

x

u1

(x,y )
x, F ˜(x) = u1 , ψ(u1 )

v

(F −1
λ̃ (y),y)= u2 , ψ(u2)

u

0

λ

Fig. 1.5.

this problem with Toeplitz determinants. Monte Carlo simulations by Odlyzko
and Rains [72] suggested

c0 ∼ lim
n→∞

VarL(n)

n1/3
c1 = lim

E(n)(L(n)) − 2
√
n

n1/6
,

with c0 ∼ 0.819 and c1 ∼ −1.758.
In this section, we explain some of the ideas underlying this problem. It

is convenient to write a partition λ ∈ Y in (u, v)-coordinates, as shown in
Fig. 1.5.

Remember from (1.7) the hook length hλ, defined as

hλ =
∏

(i,j)∈λ
hλij , with hλij = hook length = λi + λ�j − i− j − 1,

where λ�j is the length of the jth column. Also remember from (1.8) the
formula fλ expressed in terms of hλ. Then one has the following theorem, due
to Vershik and Kerov [92]; see also Logan and Shepp [67]. A sketchy outline
of the proof will be given here.

Consider Plancherel measure (see Sect. 1.3.1), which using (1.8), can be
written in terms of the hook length,

P̃
(n)

(λ) =
(fλ)2

n!
=

n!
(hλ)2

for |λ| = n,
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and define the function

Ω(u) :=

{
2(u arcsin(u/2) +

√
4 − u2)/π, for |u| ≤ 2

|u|, for |u| ≥ 2.
(1.68)

Theorem 1.4.1 (Vershik–Kerov [92], Logan–Shepp [67]). Upon ex-
pressing λ in (u, v)-coordinates, define the subset of partitions, for any ε > 0,

Yn(ε) :=
{
λ ∈ Y

∣∣∣∣ sup
u

∣∣∣∣ 1√
n
λ(u

√
n) −Ω(u)

∣∣∣∣ < ε

}
.

Then, for large n, Plancherel measure concentrates on a Young diagram whose
boundary has shape Ω(u); i.e.,

lim
n→∞ P̃

(n)(
Yn(ε)

)
= 1 .

Moreover, for the length λ1 of the first row, one has

lim
n→∞ P̃

(n)
(∣∣∣∣ λ1

2
√
n
− 1
∣∣∣∣ < ε

)
= 1 ,

and thus for uniform measure on permutations (remembering L(πn) = the
length of the longest increasing sequence in πn), one has

lim
n→∞ P(n)

(∣∣∣∣L(πn)
2
√
n

− 1
∣∣∣∣ < ε

)
= 1 .

Brief outline of the proof. In a first step, the following expression will be es-
timated, using Stirling’s formula:15

− 1
n

log Pn(λ)

= − 1
n

log
n!

(hλ)2

=
2
n

log
∏

(i,j)∈λ
hλij −

1
n

logn!

=
2
n

log
∏

(i,j)∈λ
hλij − logn− 1

n
log

√
2πn+ 1 + O(1) , by Stirling

= 1 +
2
n

(
log

∏
(i,j)∈λ

hλij − n logn1/2

)
− 1
n

log
√

2πn+ O(1) , using |λ| = n,

= 1 + 2
∑

(i,j)∈λ

1
n

log
hλij√
n

+ O
(

log
√
n

n

)
(Riemann sum)

−→ 1 + 2
∫∫

{(x,y),x,y≥0,y≤F
λ̃

(x)}
dxdy log(Fλ̃(x) − y + F−1

λ̃
(y) − x) ,

15 log n! = n log n+ log
√

2πn− n+ · · · for n↗ ∞.
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assuming the partition λ̃ = λ/
√
n tends to a continuous curve y = Fλ̃(x)

in (x, y) coordinates. Then the Riemann sum above tends to the expression
above for n → ∞; note 1/n is the area of a square in the Young diagram,
after rescaling by 1/

√
n and thus turns into dxdy in the limit. Clearly, the

expression Fλ̃(x)− y+F−1

λ̃
(y)−x is the hook length of the continuous curve,

with respect to the point (x, y). In the (u, v)-coordinates, this hook length is
particularly simple:

Fλ̃(x) − y + F−1

λ̃
(y) − x =

√
2(u2 − u1), with u1 ≤ u2,

where
(
u1, ψ(u1)

)
=
(
x, Fλ̃(x)

)
and

(
u2, ψ(u2)

)
= (F−1

λ̃
(y), y) and where

v = ψ(u) denotes the curve y = Fλ̃(x) in (u, v)-coordinates.
Keeping in mind Fig. 1.5, consider two points

(
u1, ψ(u1)

)
and

(
u2, ψ(u2)

)
on the curve, with u1 < u2. The point (x, y) such that the hook (emanating
from (x, y) parallel to the (x, y)-coordinates) intersects the curve at the two
points

(
u1, ψ(u1)

)
and

(
u2, ψ(u2)

)
, is given by a point on the line emanating

from
(
u1, ψ(u1)

)
in the (1,−1)-direction; to be precise, the point

(x, y) =
(
u1, ψ(u1)

)
+ 1

2

(
u2 − ψ(u2) − u1 + ψ(u1)

)
(1,−1) .

So the surface element dxdy is transformed into the surface element
du1du2 by means of the Jacobian, dxdy = 1

2

(
1 + ψ′(u1)

)
(1 − ψ′(u2) du1 du2,

and thus, further replacing u1 �→ √
2u1 and u2 �→ √

2u2, one is led to

− 1
n

log Pn(λ)

� 1 + 2
∫∫

{(x,y),x,y≥0,y≤F (x)}
dxdy log(F (x) + F+(y) − x− y)

= 1 +
∫∫

u1<u2

du1 du2

(
1 + ψ′(u1)

)(
1 − ψ′(u2)

)
log
(√

2(u2 − u1)
)

= −1
2

∫∫
R2

log(
√

2|u2 − u1|)f ′(u1)f ′(u2) du1 du2 + 2
∫
|u|>2

f(u) arc cosh
∣∣∣∣u2
∣∣∣∣ du

=
1
2

∫∫
R2

(
f(u1) − f(u2)

u1 − u2

)2

du1 du2 + 2
∫
|u|>2

f(u) arc cosh
∣∣∣∣u2
∣∣∣∣du

upon setting ψ(u) = Ω(u)+f(u), where the function Ω(u) is defined in (1.68).
The last identity is obtained by using Plancherel’s formula of Fourier analysis,

∫
R

g1(v)g2(v) dv =
1
2π

∫
R

ĝ1(v)ĝ2(v) dv

applied to the two functions

g1(v) :=
∫

R

du1 log(
√

2|v − u1|)f ′(u1) =
∫

R

f(u1)√
2|v − u1|

du1
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and g2(v) := f ′(v).
This shows the expression −(1/n) logPn(λ) above is minimal (and = 0),

when f(u) = 0; i.e., when the curve ψ(u) = Ω(u) and otherwise the in-
tegrals above > 0. So, when the integral equals ε > 0, the expression
−(1/n) logPn(λ) � ε > 0 and thus Pn(λ) � e−εn, which tends to 0 for
n ↗ ∞. Only, when ε = 0, is there a chance that Pn(λ) = 1; this happens
only when ψ = Ω. ��

1.4.2 Limit Theorem for Longest Increasing Sequences

In Sect. 1.3.1, it was shown that a generating function for the probability of
the length L(πk) of the longest increasing sequence in a random permutation
is given in terms of a Bessel kernel:

e−ξ
∞∑
k=0

ξk

k!
Pk(L(πk) ≤ n) = det

(
I −K(j, l)

)∣∣
[n,n+1,... ]

,

where

K(k, l) =
∞∑
m=1

Jk+m(2
√
ξ)Jl+m(2

√
ξ) . (1.69)

In the statement below A(x) is the classical Airy function

A(x) =
1
π

∫ ∞

0

cos
(
u3

3
+ xu

)
du ;

this function is well known to satisfy the ordinary differential equation
A′′(x) = xA(x) and to behave asymptotically as

A(x) :=
e−2x3/2/3

2
√
πx1/4

(
1 +O(x3/2)

)
, as x → ∞ .

Theorem 1.4.2 (J. Baik, P. Deift, and K. Johansson [19]). The dis-
tribution of the length L(πn) of the longest increasing sequence in a random
permutation behaves as

lim
n→∞P(n)

(
L(πn) ≤ 2n1/2 + xn1/6

)
= det

(
I − Aχ[x,∞)

)
,

where16

A(x, y) :=
∫ ∞

0

du A(x+ u)A(y + u) =
A(x)A′(y) − A′(x)A(y)

x− y
. (1.70)

The proof of this theorem, presented here, is due to A. Borodin, A. Ok-
ounkov and G. Olshanski [24]; see also [20]. Before giving this proof, the
following estimates on Bessel functions are needed:
16 For more details on Fredholm determinants, see Sect. 1.7.4.
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Lemma 1.4.1 ([24]).

(i) The following holds for r → ∞,
∣∣r1/3J2r+xr1/3(2r) − A(x)

∣∣ = O(r−1/3) ,

uniformly in x, when x ∈ compact K ⊂ R.
(ii) For any δ > 0, there exists M > 0 such that for x, y > M and large

enough r,
∣∣∣∣
∞∑
s=1

J2r+xr1/3+s(2r)J2r+yr1/3+s(2r)
∣∣∣∣ < δr−1/3 .

Lemma 1.4.2 (de-Poissonization lemma; Johansson [56]). Given 1 ≥
F0 ≥ F1 ≥ F2 ≥ · · · ≥ 0, and

F (ξ) := e−ξ
∞∑
0

ξk

k!
Fk ,

there exists C > 0 and k0, such that

F (k + 4
√
k log k) − C

k2
≤ Fk ≤ F (k − 4

√
k log k) +

C

k2
, for all k > k0.

Sketch of proof of Thm. 1.4.2. Putting the following scaling in the Bessel ker-
nel K(k, l), as in (1.69), one obtains, setting r :=

√
ξ,

ξ1/6K(2ξ1/2 + xξ1/6, 2ξ1/2 + yξ1/6)

=
( N∑
k=1

+
∞∑

k=N+1

)
ξ−1/6

[
ξ1/6J2ξ1/2+(x+kξ−1/6)ξ1/6(2

√
ξ)
]

× [ξ1/6J2ξ1/2+(y+kξ−1/6)ξ1/6(2
√
ξ)
]

=
( N∑
k=1

+
∞∑

k=N+1

)
r−1/3

[
r1/3J2r+(x+kr−1/3)r1/3(2r)

]
× [r1/3J2r+(y+kr−1/3)r1/3(2r)

]
. (1.71)

Fix δ > 0 and pick M as in Lemma 1.4.1(ii). Define N := [(M −m+1)r1/3] =
O(r1/3), where m is picked such that x, y ≥ m (which is possible, since x and
y belong to a compact set). Then

∣∣∣∣
∞∑

k=N+1

J2r+r1/3(x+kr−1/3)(2r)J2r+r1/3(y+kr−1/3)(2r)
∣∣∣∣

=
∣∣∣∣
∞∑
s=1

J2r+r1/3(x+M−m+1)+s(2r)J2r+r1/3(y+M−m+1)+s(2r)
∣∣∣∣ < δr−1/3 ;

(1.72)
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the latter inequality holds, since

x+ (M −m+ 1) = M + (x−m) + 1 > M .

On the other hand,∣∣r1/3J2r+r1/3(x+kr−1/3)(2r) − A(x+ kr−1/3)
∣∣ = O(r−1/3)

uniformly for x ∈ compact K ⊂ R, and all k such that 1 ≤ k ≤ N =
[(M −m + 1)r1/3]. Indeed, for such k,

m ≤ x ≤ x+ kr−1/3 ≤ x+M −m+ 1 = M + (x −m) + 1

and thus, for such k, the x+kr−1/3’s belong to a compact set as well. Since the
number of terms in the sum below is N = [(M −m+ 1)r1/3], Lemma 1.4.1(i)
implies

∣∣∣∣
N∑
k=1

(
r1/3J2r+xr1/3+k(2r)r

1/3J2r+yr1/3+k(2r) − A(x+ kr−1/3)A(y + kr1/3)
)∣∣∣∣

= O(1) . (1.73)

But the Riemann sum tends to an integral

r−1/3

[(M−m+1)r1/3]∑
k=1

A(x+ kr−1/3)A(y + kr−1/3) →
∫ M−m+1

0

A(x + t)A(y + t) dt .

(1.74)
Hence, combining estimates (1.72), (1.73), (1.74) and multiplying with r1/3

leads to∣∣∣∣r1/3
∞∑
k=1

J2r+xr1/3+k(2r)J2r+yr1/3+k(2r)−
∫ M−m+1

0

A(x+t)A(y+t) dt
∣∣∣∣ ≤ δ+o(1) .

for r → ∞. Finally, letting δ → 0 and M → ∞ leads to the result. Thus the
expression (1.71) tends to the Airy kernel

A(x, y) :=
∫ ∞

0

du A(x+ u)A(y + u) .

for r =
√
ξ → ∞. Hence

lim
ξ→∞

e−ξ
∞∑
n=0

ξn

n!
P(L(πn) ≤ 2ξ1/2 + xξ1/6)

= lim
ξ→∞

det
(
I −K(l, l′)

∣∣
[k,k+1,... ]

)∣∣
k=2ξ1/2+xξ1/6

= 1 +
∞∑
k=1

(−1)k
∫
x≤z1≤···≤zk

det
(
A(zi, zj)

)
1≤i,j≤k

k∏
1

dzi

= det
(
I − Aχ[x,∞)

)
.
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Finally, one uses Johansson’s de-Poissonization Lemma 1.4.2. From Cor. 1.1.1,
Plancherel measure Pn(λ1 ≤ x1, . . . , λk ≤ xk) decreases, when n increases,
which is required by Lemma 1.4.2. It thus follows that

lim
n→∞ P(L(πn) ≤ 2n1/2 + xn1/6) = det

(
I − Aχ[x,∞)

)
,

ending the proof of Thm. 1.4.2. ��

1.4.3 Limit Theorem for the Geometrically Distributed
Percolation Model, when One Side of the Matrix Tends to ∞
Consider Johansson’s percolation model in Sect. 1.1.7.2, but with p and q
interchanged. Consider the ensemble

Mat(q,p) = {q × p matrices M with entries Mij = 0, 1, 2, . . .}

with independent and geometrically distributed entries, for fixed 0 < ξ < 1,

P(Mij = k) = (1 − ξ)ξk , k = 0, 1, 2, . . . .

L(M) := max
all such
paths

{∑
Mij ,

over right/down paths starting
from entry (1, 1) to (q, p)

}

has the following distribution, assuming q ≤ p,

P(L(M) ≤ l) = Z−1
p,q

∑
h∈N

q

max(hi)≤l+q−1

Δq(h1, . . . , hq)2
q∏
i=1

(hi + p− q)!
hi!

ξhi ,

where

Zp,q = ξq(q−1)/2(1 − ξ)−pqq!
q−1∏
j=0

j!(p− q + j)! . (1.75)

Assuming that the number of columns p of the q × p random M matrix
above gets very large, as above, the maximal right/lower path starting from
(1, 1) to (q, p) consists, roughly speaking, of many horizontal stretches and q
small downward jumps. The Mij have the geometric distribution, with mean
and standard deviation

E(Mij) =
∞∑
k=0

kP(Mij = k) = (1 − ξ)ξ
∞∑
1

kξk−1 =
ξ

1 − ξ

σ2(Mij) = E(M2
ij) −

(
E(Mij)

)2 =
∑

k2 P(Mij = k) −
(

ξ

1 − ξ

)2

=
ξ(ξ + 1)
(1 − ξ)2

−
(

ξ

1 − ξ

)2

=
ξ

(1 − ξ)2
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So, in the average,

L(M) � pE(Mij) =
pξ

1 − ξ
, for p → ∞

with

σ2

(
L(M) − pξ

1 − ξ

)
� pσ2(Mij) =

pξ

(1 − ξ)2
.

Therefore, it seems natural to consider the variables

x1 =
L(M) − pξ/(1 − ξ)√

ξp/(1 − ξ)
=

λ1 − pξ/(1 − ξ)√
ξp/(1 − ξ)

and, since λ = (λ1, . . . , λq), with q finite, all λi should be on the same footing.
So, remembering from the proof of Thm. 1.1.3 that hi in (1.75) and λi are
related by

hi = q + λi − i,

we set

xi =
λi − pξ/(1 − ξ)√

ξp/(1 − ξ)
.

(1, 1) (1, p)

(q, 1) (q, p)

Fig. 1.6.

Theorem 1.4.3 (Johansson [58]). The following limit holds :

lim
p→∞P

(
L(M) − pξ/(1 − ξ)√

ξp/(1 − ξ)
≤ y

)
=

∫
(−∞,y)q Δq(x)2

∏q
1 exp(−x2

i /2) dxi∫
Rq Δq(x)2

∏q
1 exp(−x2

i /2) dxi
,

which coincides with the probability that a q × q matrix from the Gaussian
Hermitian ensemble (GUE ) has its spectrum less than y; see Sect. 1.8.2.1.

Proof. The main tool here is Stirling’s formula.17 Taking into account hi =
q + λi − i, we substitute

17 Stirling’s formula:

n! =
√

2πn exp
(
n(log n− 1)

)(
1 +O

( 1

n

))
, for n→ ∞ .
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λi =
pξ

1 − ξ
+

√
ξp

1 − ξ
xi

in (1.75). The different pieces will now be computed for large p and fixed q,
q∏
i=1

(hi + p− q)!

=
q∏
i=1

(p + λi − i)!

=
q∏
i=1

(
1

1 − ξ
(p+ xi

√
ξp) − i

)
!

=
(

2πp
1 − ξ

)q/2 q∏
i=1

(
1 + xi

√
ξ

p
− i(1 − ξ)

p

)1/2
(

1 + O
(

1
p

))

× exp

(
q∑
i=1

(
p

1−ξ+xi

√
ξp

1−ξ−i
)(

log
p

1−ξ−1+log
(

1+xi

√
ξ

p
− i(1−ξ)

p

)))

=
(

2πp
1 − ξ

)q/2
exp

(
ξ

2(1 − ξ)

q∑
1

x2
i −

qp

1 − ξ
+ O

(
1√
p

))

× exp

((
qp

1 − ξ
+

√
ξp

1 − ξ

q∑
1

xi − q(q + 1)
2

)
log

p

1 − ξ

)(
1 + O

(
1
p

))
,

upon expanding the logarithm in powers of 1/
√
p. Similarly

q∏
i=1

hi

=
q∏
i=1

(q + λi − i)!

=
q∏
i=1

(
1

1 − ξ
(pξ + xi

√
ξp) + q − i

)
!

=
(

2πpξ
1 − ξ

)q/2 q∏
i=1

(
1 +

xi√
ξp

+
(q − i)(1 − ξ)

pξ

)1/2
(

1 + O
(

1
p

))

× exp

(
q∑
i=1

(
1

1 − ξ
(pξ + xi

√
ξp) + q − i

)(
log

pξ

1 − ξ
− 1
))

× exp

(
q∑
i=1

(
1

1−ξ (pξ + xi
√
ξp) + q−i

)
log
(

1 +
xi√
ξp

+
(q−i)(1−ξ)

pξ

))

=
(

2πpξ
1 − ξ

)q/2
exp
(

1
2(1 − ξ)

q∑
1

x2
i −

qpξ

1 − ξ

)(
1 + O

(
1√
p

))
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× exp

((
qξp

1 − ξ
+

√
ξp

1 − ξ

q∑
1

xi +
q(q − 1)

2

)
log

pξ

1 − ξ

)
.

Also

q∏
1

ξhi =
q∏
1

ξq+λi−i = exp
( q∑

1

(
1

1 − ξ
(pξ + xi

√
ξp) + q − i

)
log ξ

)

= exp

((
qξp

1 − ξ
+

√
ξp

1 − ξ

q∑
1

xi +
q(q − 1)

2

)
log ξ

)
.

Besides

q−1∏
j=0

(p− q + j)! = (2πp)q/2
q−1∏
j=0

(
1 − q − j

p

)1/2
(

1 + O
(

1
p

))

× exp

⎛
⎝q−1∑
j=0

(p− q + j)

(
log p− 1 + log

(
1 − q − j

p

))⎞
⎠

= (2πp)q/2 exp
(
−pq+qp logp− q(q+1)

2
log p

)(
1 + O

(
1
p

))

= (2π)q/2pqp−q
2/2e−qp

(
1 + O

(
1
p

))

and

Δq(h1, . . . , hq) =
∏

1≤i<j≤q
(hi − hj) =

∏
1≤i<j≤q

(
(xi − xj)

√
ξp

1 − ξ
− i+ j

)

=
( √

ξp

1 − ξ

)q(q−1)/2
( ∏

1≤i<j≤q
(xi − xj) + O

(
1√
p

))
.

Remembering the relation hi = q + λi − i, and using the estimates before in
equality ∗= below, one computes
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Z−1
p,q

∑
h∈N

q

maxhi≤l+q−1

Δq(h1, . . . , hq)2
q∏
1

(hi + p− q)!
hi!

ξhi

=
∑
h∈N

q

maxhi≤l+q−1

ξ−q(q−1)/2∏q
j=0 j!

(1−ξ)pqΔq(h1, . . . , hq)2
q∏
i=1

(p+λi−i)! ξhi

(q+λi−i)!(p−q+i−1)!

∗=
(

1
(2π)q/2

∏q
1 i!

) ∑
xi≤y

(
1 − ξ√
ξp

)q
Δ(x)2 exp

(
−1

2

q∑
1

x2
i

)(
1 + O

(
1√
p

))

−→
∫
xi≤y Δ(x)2

∏q
1 exp(−x2

i /2) dxi∫
Rq Δq(x)2

∏q
1 exp(−x2

i /2) dxi
,

using Selberg’s formula

∫
Rq

Δq(x)2
q∏
1

exp(−x2
i /2) dxi = (2π)q/2

q∏
1

i!

and noticing that in

hi = q + λi − i =
ξp

1 − ξ
+

√
ξp

1 − ξ
xi + q − i

an increment of one unit in λi implies an increment of xi by

dxi =
1 − ξ√
ξp

.

Therefore, one has (
1 − ξ√
ξp

)q
�

q∏
1

dxi .

Finally, for p large, one has

hi ≤ l + q − 1 =
ξp

1 − ξ
+

√
ξp

1 − ξ
y + q − 1 ⇐⇒ xi ≤ y .

The connection with the spectrum of Gaussian Hermitian matrices will be
discussed in Sect. 1.8.2.1. This ends the proof of Thm. 1.4.3. ��

1.4.4 Limit Theorem for the Geometrically Distributed
Percolation Model, when Both Sides of the Matrix Tend to ∞
The model considered here is the percolation model as in Sect. 1.4.3, whose
probability can, by Sect. 1.3.3, be written as a Fredholm determinant of a
Meixner kernel; see Thm. 1.3.3.
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Theorem 1.4.4 (Johansson [57]). Given

a =
(1 +

√
ξγ)2

1 − ξ
− 1 , ρ =

(
ξ

γ

)1/6 (
√
γ +

√
ξ)2/3(1 +

√
γξ)2/3

1 − ξ
,

the following holds :

lim
p,q→∞

q/p = γ ≥ 1 fixed

P
(
L(Mq,p) − ap

ρp1/3
≤ y

)
= F(y) ,

which is the Tracy–Widom distribution (see Sect. 1.9.2). In other terms, the
random variable L(Mq,p) behaves in distribution, like

L(Mq,p) ∼ ap+ ρp1/3F .

(1, 1) (1, p)→∞

(q, 1)

↓
∞

(q, p)

∞

Fig. 1.7.

Sketch of proof. Remember from Thm. 1.3.3, the probability P(L(Mq,p) ≤ z)
is given by a Fredholm determinant of a Christoffel–Darboux kernel composed
of Meixner polynomials. Proving the statement of Thm. 1.4.4 amounts to
proving the limit of this Meixner kernel with the scaling mentioned in the
theorem tends to the Airy kernel, i.e.,
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lim
p→∞ ρp1/3Kp(ap+ ρp1/3η, ap + ρp1/3η′) = A(η, η′)

:=
A(η)A′(η′) − A′(η)A(η′)

η − η′
,

where18

Kp(x, y) = − ξ

(1 − ξ)d2
p−1

√(
x+ β′ − 1

x

)
ξx
(
y + β′ − 1

y

)
ξy

× mp(x, β′, ξ)mp−1(y, β′, ξ) −mp(y, β′, ξ)mp−1(x, β′, ξ)
x− y

for the Meixner polynomials, which have the following integral representation,
a consequence of the the generating function (1.66), (slightly rescaled)

mp(x, β′, ξ) = p!ξ−x
∮
|z|=r<1

(ξ − z)x

zp(1 − z)x+β′
dz

2πiz

Thus, it will suffice to prove the following limit

lim
p→∞ p1/3

(
yp(y − 1)x+[γp]−p+1

(y − ξ)x

)∣∣∣∣
y=−

√
ξ/γ∮

|z|=r<1

(z − ξ)x

zp(z − 1)x+[γp]−p+1

dz
2πiz

∣∣∣∣
x=βp+ρp1/3η

= C A(η) , (1.76)

where

α :=
(
√
ξ +

√
γ)2

1 − ξ
, β = α− γ + 1 =

(
√
γξ + 1)2

1 − ξ
,

ρ =
(
ξ

γ

)1/6 (
√
γ +

√
ξ)2/3(1 +

√
γξ)2/3

1 − ξ

C := γ−1/3ξ−1/6(
√
ξ +

√
γ)1/3(1 +

√
ξγ)1/3 .

In view of the saddle point method, define the function Fp(z) such that

exp
(
pFp(z)

)
:=

(z − ξ)x

zp(z − 1)x+[γp]−p+1

∣∣∣∣
x=βp+ρp1/3η

.

Then one easily sees that

Fp(z) = F (z) + ρp−2/3η log
z − ξ

z − 1
+
(
γ − [γp]

p

)
log(z − 1) , (1.77)

where the p-independent function F (z) equals,

18 with dp = p!(p+ β′ − 1)!/
(
(1 − ξ)β

′
ξp(β′ − 1)!

)
and β′ = q − p+ 1 = pγ − p+ 1.
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F (z) = β log(z − ξ) − α log(z − 1) − log z . (1.78)

For the specific values above of α and β, one checks the function F (z) has a
critical point at zc := −√ξ/γ, i.e.,

F ′(zc) = F ′′(zc) = 0 , F ′′′(zc) =
2γ5/2

ξ(
√
γ +

√
ξ)(1 +

√
ξγ)

and thus

F (z) − F (zc) = 1
6 (z − zc)3F ′′′(zc) +O

(
(z − zc)4

)
. (1.79)

Setting
z = zc(1 − p−1/3sC) exp(itCp−1/3) (1.80)

in Fp(z) as in (1.77), one first computes this substitution in F (z), taking into
account (1.79),

F (z) = F (zc) +
i(−zcC)3

6p
(t + is)3F ′′′(zc) +O(p−4/3)

= F (zc) +
i

3p
(t + is)3 +O(p−4/3) , (1.81)

upon picking – in the last equality – the constant C such that

(−zcC)3F ′′′(zc) = 2 .

Also, substituting the z of (1.80) in the part of F (z) (see (1.78)) containing
η,

ρp−2/3η log
z − ξ

z − 1

=
ρη

p2/3
log

zc − ξ

zc − 1
− ρCzc(ξ − 1)

(zc − 1)(zc − ξ)
iη(t + is)

p
+O(p−4/3) . (1.82)

Thus, adding the two contributions (1.81) and (1.82), one finds

pFp
(
zc(1 − p−1/3sC) exp(itCp−1/3)

)
= pFp(zc) +

i
3
(
(t + is)3 + 3η(t+ is)

)
+O(p−1/3) . (1.83)

One then considers two contributions of the contour integral about the circle
|z| = r appearing in (1.76), a first one along the arc (π − δp, π + δp), for δp
tending to 0 with p → ∞ and a second one about the complement of (π −
δp, π+ δp). The latter tends to 0, whereas the former is the main contribution
and tends to the Airy function (keeping s fixed, and in particular = 1)

C A(η) =
C

2π

∫ ∞

∞
exp

(
i
(

(t + is)3

3
+ η(t + is)

))
dt ,
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upon noticing that dz/z = iCp−1/3 dt under the change of variable z �→ t,
given in (1.80), establishing limit (1.76) and finally the limit of the Meixner
kernel and its Fredholm determinant. Further details of this proof can be found
in Johansson [57]. The Fredholm determinant of the Airy kernel is precisely
the Tracy–Widom distribution, as will be shown in Sect. 1.9.2. ��

1.4.5 Limit Theorem for the Exponentially Distributed
Percolation Model, when Both Sides of the Matrix tend to ∞
Referring to the exponentially distributed percolation model, discussed in
Sect. 1.1.4, we now state

Theorem 1.4.5 (Johansson [57]). Given

a = (1 +
√
γ)2) , ρ =

(1 +
√
γ)4/3

γ1/6
,

the following limit holds :

lim
p,q→∞

q/p = γ ≥ 1 fixed

P
(

L(Mq,p) − (p1/2 + q1/2)
(p1/2 + q1/2)(p−1/2 + q−1/2)1/3

≤ y

)

= lim
p,q→∞

q/p = γ ≥ 1 fixed

P
(
L(Mq,p) − ap

ρp1/3
≤ y

)
= F(u) ,

which is again the Tracy–Widom distribution. Here again L(Mq,p) behaves,
after some rescaling and in distribution, like the Tracy–Widom distribution,
for large p and q such that q/p = γ ≥ 1:

L(Mq,p) ∼ ap+ ρp1/3F .

Proof. In Thm. 1.1.4, one has shown that P(L(M) ≤ t) equals the ratio
of two integrals; this ratio will be shown in Sect. 1.7 on random matrices
(see Props. 1.7.5 and 1.7.3) to equal a Fredholm determinant of a kernel
corresponding to Laguerre polynomials:

P(L(M) ≤ t) =

∫
[0,t]q Δp(x)2

∏p
i=1 x

q−p
i exp(−xi) dxi∫

[0,∞]q
Δp(x)2

∏p
i=1 x

q−p
i exp(−xi) dxi

= det(I −K(α)
p (x, y)χ[t,∞])

where

K(α)
p (x, y) =

√
hp
hp−1

(xy)α/2 exp
(− 1

2 (x + y)
)

× L(α)
p (x)L(α)

p−1(y) − L(α)
p (y)L(α)

p−1(x)
x− y

;



76 Pierre van Moerbeke

in the formula above, the L(α)
p (x) = 1/

√
hpx

n+ · · · = (−1)p(p!/(p + α)!)1/2 ×
Lαp (x) are the normalized Laguerre polynomials19:

∫ ∞

0

L(α)
n (x)L(α)

m (x)xαe−x dx = δnm .

Therefore, using the precise values of a and ρ above,

P
(
L(Mq,p) − ap

ρp1/3
≤ y

)
= det

(
I −K(ξ, η)χ[y,∞)

)

with
K(ξ, η) = bp1/3K(γ−1)p

p (ap+ ρp1/3ξ, ap+ ρp1/3η)

The result follows from an asymptotic formula for Laguerre polynomials

lim
p→∞K(γ−1)p

p (ap + ρp1/3ξ, ap+ ρp1/3η) = A(ξ, η) ,

with A(x, y) the Airy kernel, as in (1.70), namely

A(x, y) :=
A(x)A′(y) − A′(x)A(y)

x− y
.

The Fredholm determinant of the Airy kernel is the Tracy–Widom distribu-
tion. This ends the proof of Thm. 1.4.5. ��

1.5 Orthogonal Polynomials for a Time-Dependent
Weight and the KP Equation

1.5.1 Orthogonal Polynomials

The inner product with regard to the weight ρ(z) over R, assuming ρ(z) decays
fast enough at the boundary of its support20

〈f, g〉 =
∫

R

f(z)g(z)ρ(z)dz , (1.84)

leads to a moment matrix

mn = (μij)0≤i,j<n = (〈zi, zj〉)0≤i,j≤n−1 . (1.85)

Since the μij depends on i+j only, this is a Hänkel matrix, and thus symmetric.
This is tantamount to the relation
19 L

(α)
n (y) =

∑n
m=0(−1)m

(
n+α
n−m

)
xm/m! = ex/(2πi)

∫
C

e−xzzn+α/(z − 1)n+1 dz,
where C is a circle about z = 1.

20 In this section, the support of the weight ρ(z) can be the whole of R or any other
interval.
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Λm∞ = m∞Λ� ,

where Λ denotes the semi-infinite shift matrix⎛
⎜⎜⎜⎝

0 1 0 0 0 0 · · ·
0 0 1 0 0 0 · · ·
0 0 0 1 0 0 · · ·
...

⎞
⎟⎟⎟⎠ .

Define
τn := detmn .

Consider the factorization of m∞ into a lower times an upper triangular ma-
trix21

m∞ = S−1S�−1 , (1.86)

with
S = lower triangular with nonzero diagonal elements.

For any z ∈ C, define the semi-infinite column

χ(z) := (1, z, z2, . . . )� , (1.87)

and functions pn(z) and qn(z),

pn(z) :=
(
Sχ(z)

)
n
, qn(z) :=

(
S�−1χ(z−1)

)
n
. (1.88)

(1) The pn(z) are polynomials of degree n, orthonormal with regard to
ρ(z), and qn(z) is the Stieltjes transform of pn(z),

qn(z) = z

∫
R

pn(u)ρ(u)
z − u

du .

Indeed,

(〈pk, pl〉)0≤k,l<∞ =
∫

R

Sχ(z)
(
Sχ(z)

)�
ρ(z) dz = Sm∞S� = I .

Note that Sχ(z)
(
Sχ(z)

)� is a semi-infinite matrix obtained by multiplying the

semi-infinite column Sχ(z) and row
(
Sχ(z)

)�. The definition of qn, together
with the decomposition S�−1 = Sm∞, leads to

qn(z) =
(
S�−1χ(z−1)

)
n

=
∑
j≥0

(Sm∞)njz−j

=
∑
j≥0

z−j
n∑
l=0

Snlμlj =
∑
j≥0

z−j
n∑
l=0

Snl

∫
R

ul+jρ(u) du

=
∫

R

n∑
l=0

Snlu
l
∑
j≥0

(
u

z

)j
ρ(u) du = z

∫
R

pn(u)ρ(u)
z − u

du .

21 This factorization is possible as long as τn := detmn 
= 0 for all n ≥ 1.
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(2) The orthonormal polynomials pn have the following representation

pn(z) =
1√

τnτn+1
det

⎛
⎜⎜⎜⎝

mn

1
z
...

μn,0 · · · μn,n−1 zn

⎞
⎟⎟⎟⎠ . (1.89)

As a consequence, the monic orthogonal polynomials p̃n(z) are related to pn(z)
as follows :

pn(z) =
√

τn
τn+1

p̃n(z). (1.90)

Defining p′n(z) to be the polynomial on the right-hand side of (1.89), it suffices
to show that for k < n,

〈p′n, p′k〉 = 0 and 〈p′n, p′n〉 = 1 ,

thus leading to pn = p′n. Indeed,

〈p′n, zk〉 =
1√

τnτn+1
det

⎛
⎜⎜⎜⎝

mn

〈1, zk〉
〈z, zk〉

...
μn,0 · · · μn,n−1 〈zn, zk〉

⎞
⎟⎟⎟⎠

=

⎧⎪⎨
⎪⎩

0 , for k < n,

√
τn+1/τn for k = n,

and thus for k = n,

〈p′n, p′n〉 =
√

τn
τn+1

〈p′n, zn + · · · 〉 =
√

τn
τn+1

〈p′n, zn〉 = 1,

from which (1.89) follows. Formula (1.90) is a straightforward consequence.
(3) The monic orthogonal polynomials p̃n and their Stieltjes transform

have the following representation

p̃n(z) = zn
det(μij − μi,j+1/z)0≤i,j≤n−1

det(μij)0≤i,j≤n−1∫
R

p̃n(u)ρ(u)
z − u

du = z−n−1 det(μij + μi,j+1/z + μi,j+2/z
2 + · · · )0≤i,j≤n

det(μij)0≤i,j≤n−1
.

(1.91)

Proof. Setting
μj = (μ0j , . . . , μn−1,j) ∈ R

n ,

one computes
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zn det(μij − z−1μi,j+1)0≤i,j≤n−1

= det(zμi,j − μi,j+1)0≤i,j≤n−1

= det(zμ�
0 − μ�

1 , zμ
�
1 − μ�

2 , . . . , zμ
�
n−1 − μ�

n )

= det
(n−1∑

0

zμ�
j − μ�

j+1

zj
,

n−2∑
0

zμ�
j+1 − μ�

j+2

zj
, . . . , zμ�

n−1 − μ�
n

)

by column operations

= det
(
zμ�

0 − μ�
n

zn−1
, zμ�

1 − μ�
n

zn−2
, . . . , zμ�

n−1 − μ�
n

)

=
1
zn

det

⎛
⎜⎜⎜⎜⎜⎝

zμ0 − μn/zn−1 0
zμ1 − μn/zn−2 0

...
...

zμn−1 − μn 0
μn zn

⎞
⎟⎟⎟⎟⎟⎠

enlarging the matrix by one row and column

=
1
zn

det

⎛
⎜⎜⎜⎜⎜⎝

zμ0 z
zμ1 z2

...
...

zμn−1 z
n

μn zn

⎞
⎟⎟⎟⎟⎟⎠

by adding a multiple of the last row to rows 1 to n

= τnp̃n(z) .

Setting this time
μj := (μ0j , . . . , μnj) ∈ R

n+1,

one computes

det
(
μij +

μi,j+1

z
+
μi,j+2

z2
+ · · ·

)
0≤i,j≤n

= det
( ∞∑

0

μ�
j

zj
,

∞∑
0

μ�
j+1

zj
, . . . ,

∞∑
0

μ�
j+n

zj

)

= det
(
μ�

0 ,μ
�
1 , . . . ,μ

�
n−1,

∞∑
0

μ�
j+n

zj

)

= zn det
(
μ�

0 ,μ
�
1 , . . . ,μ

�
n−1,

∞∑
0

μ�
j

zj

)
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= zn det

⎛
⎜⎜⎜⎝μ�

0 μ
�
1 · · · μ�

n−1

∫
R

∑∞
j=0(u/z)

jρ(u) du∫
R

∑∞
j=0(u/z)

juρ(u) du
...∫

R

∑∞
j=0(u/z)

junρ(u) du

⎞
⎟⎟⎟⎠

= zn
∫

R

∞∑
j=0

(
u

z

)j
ρ(u) du det

⎛
⎜⎜⎜⎝μ�

0 μ
�
1 · · · μ�

n−1

1
u
...
un

⎞
⎟⎟⎟⎠

= znτn

∫
R

∞∑
j=0

(
u

z

)j
p̃n(u)ρ(u) du = zn+1τn

∫
R

p̃n(u)ρμ(u)
z − u

du . ��

Remark. Representation (1.91) for orthogonal polynomials pn can also be
deduced from Heine’s representation. However, representation (1.91) is a much
simpler formula.

(4) The vectors p and q are eigenvectors of the tridiagonal symmetric ma-
trix

L := SΛS−1. (1.92)

Conjugating the shift matrix Λ by S yields a matrix

L = SΛS−1

= SΛS−1S�−1S�

= SΛm∞S� , using (1.86),

= Sm∞Λ�S� , using Λm∞ = m∞Λ�,

= S(S−1S�−1)Λ�S� , using again (1.86),

= (SΛS−1)� = L� ,

which is symmetric and thus tridiagonal. Remembering χ(z) = (1, z, z2, . . . )�,
and the shift (Λv)n = vn+1, we have

Λχ(z) = zχ(z) and Λ�χ(z−1) = zχ(z−1) − ze1 , with e1 = (1, 0, 0, . . . )� .

Therefore, p(z) = Sχ(z) and q(z) = S�−1χ(z−1) are eigenvectors, in the sense

Lp = SΛS−1Sχ(z) = zSχ(z) = zp

L�q = S�−1Λ�S�S�−1χ(z−1)

= zS�−1χ(z−1) − zS�−1e1 = zq − zS�−1e1 .

Then, using L = L�, one is led to
(
(L− zI)p

)
n

= 0 , for n ≥ 0 and
(
(L − zI)q

)
n

= 0 , for n ≥ 1 .
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(5) The off-diagonal elements of the symmetric tridiagonal matrix L are
given by

Ln−1,n =

√
hn
hn−1

. (1.93)

Since 〈p̃n, p̃n〉 = hn, one has pn(y) = (1/
√
hn)p̃n(y). From the three step

relation Lp(y) = yp(y), it follows that
(

1√
hn−1

yn + · · ·
)

= ypn−1(y) = Ln−1,npn(y) + (terms of degree ≤ n− 1)

= Ln−1,n

(
1√
hn

yn + · · ·
)
,

leading to statement (1.93).

1.5.2 Time-Dependent Orthogonal Polynomials and the KP
Equation

Introduce now into the weight ρ(z) a dependence on parameters t=(t1, t2, . . . ),
as follows

ρt(z) := ρ(z) exp
( ∞∑

1

tiz
i

)
. (1.94)

Consider the moment matrix mn(t), as in (1.85), but now dependent on t,
and the factorization of m∞ into lower- times upper-triangular t-dependent
matrices, as in (1.86)

m∞(t) =
(
μij(t)

)
0≤i,j<∞ = S−1(t)S�−1(t) . (1.95)

The Toda lattice mentioned in the theorem below will require the following
Lie algebra splitting

gl(n) = s ⊕ b, (1.96)

into skew-symmetric matrices and (lower) Borel matrices.
Also, one needs in this section the Hirota symbol: given a polynomial

p(t1, t2, . . . ) of a finite or infinite number of variables and functions f(t1, t2, . . . )
and g(t1, t2, . . . ), also depending on a finite or infinite number of variables ti,
define the symbol

p

(
∂

∂t1
,
∂

∂t2
, . . .

)
f ◦ g := p

(
∂

∂y1
,
∂

∂y2
, . . .

)
f(t+ y)g(t− y)

∣∣∣∣
y=0

. (1.97)

The reader is reminded of the elementary Schur polynomials exp(
∑∞

1 tiz
i) :=∑

i≥0 si(t)zi and for later use, set for l = 0, 1, 2, . . . ,

sl(∂̃) := sl

(
∂

∂t1
,
1
2
∂

∂t2
, . . .

)
. (1.98)
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One also needs Taylor’s formula for a C∞-function f :

f(z + y) = exp
(
y
∂

∂z

)
f(z) , (1.99)

which is seen by expanding the exponential. The following lemma will also be
used later in the proof of the bilinear relations:

Lemma 1.5.1 ([5, 6]). If
∮
∞ denotes the integral along a small circle about

∞, the following identity holds (formal identity in terms of power series):
∫

R

f(u)g(u) du =
1

2πi

∮
∞

dz f(z)
∫

R

g(u)
z − u

du , (1.100)

for holomorphic f(z) =
∑

i≥0 aiz
i and g(z), the latter assumed to have all its

moments.

Proof. For holomorphic functions f in C,

1
2πi

∮
∞

dzf(z)
∫

R

g(u)
z − u

du = Resz=∞

(∑
i≥0

aiz
i

)(
1
z

∑
j≥0

z−j
∫

R

g(u)uj du
)

=
∑
i≥0

ai

∫
R

g(u)ui du

=
∫

R

g(u)
∑
i≥0

aiu
i du = 〈f, g〉 ,

ending the proof of Lemma 1.5.1. ��
The next theorem shows that the determinant of the time-dependent mo-

ment matrices satisfies the KP hierarchy, a nonlinear hierarchy, whereas in
the next section, it will be shown that these same determinants satisfy Vi-
rasoro equations. These two features will play an important role in random
matrix theory. Notice that this result is very robust: it can be generalized
from orthogonal polynomials to multiple orthogonal polynomials, from the
KP hierarchy to multi-component KP hierarchies; see [13].

Theorem 1.5.1 ([3,5]). The determinants of the moment matrices, also rep-
resentable as a multiple integral,22

τn(t) := detmn(t) =
1
n!

∫
En

Δ2
n(z)

n∏
k=1

ρ(zk) exp
( ∞∑
i=1

tiz
i
k

)
dzk (1.101)

satisfy

22 Δn(z) =
∏

1≤i<j≤n(zi − zj)
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(i) Eigenvectors of L: The tridiagonal matrix L(t) admits two independent
eigenvectors : (

L(t)p(t; z)
)
n

= zpn(t; z) , n ≥ 0(
L(t)q(t; z)

)
n

= zqn(t; z) , n ≥ 1 .

• pn(t; z) are nth degree polynomials in z, depending on t ∈ C
∞, orthonormal

with respect to ρt(z) (defined in (1.94)), and enjoying the following represen-
tations : (define χ(z) := (1, z, z2, . . . )�)

pn(t; z) :=
(
S(t)χ(z)

)
n

= znh−1/2
n

τn(t− [z−1])
τn(t)

, hn :=
τn+1(t)
τn(t)

(1.102)

• qn(t, z), n ≥ 0, are Stieltjes transforms of the polynomials pn(t; z) and have
the following τ-function representations :

qn(t; z) := z

∫
Rn

pn(t;u)
z − u

ρt(u) du =
(
S�−1(t)χ(z−1)

)
n

= z−nh−1/2
n

τn+1(t + [z−1])
τn(t)

. (1.103)

(ii) The standard Toda lattice, i.e., the symmetric tridiagonal matrix

L(t) := S(t)ΛS(t)−1

=

⎛
⎜⎜⎜⎝

(∂/∂t1) log(τ1/τ0) (τ0τ2/τ2
1 )1/2 0

(τ0τ2/τ2
1 )1/2 (∂/∂t1) log(τ2/τ1) (τ1τ3/τ2

2 )1/2

0 (τ1τ3/τ2
2 )1/2 (∂/∂t1) log(τ3/τ2)

. . .

⎞
⎟⎟⎟⎠

(1.104)

satisfies the commuting equations23

∂L

∂tk
=
[

1
2 (Lk)s, L

]
= −[12 (Lk)b, L

]
. (1.105)

(iii) The functions τn(t) satisfy the following bilinear identity, for n ≥
m+ 1, and all t, t′ ∈ C

∞, where one integrates along a small circle about ∞,
∮
z=∞
τn(t− [z−1])τm+1(t′ + [z−1]) exp

( ∞∑
1

(ti− t′i)z
i

)
zn−m−1 dz = 0 . (1.106)

(iv) The KP-hierarchy24 for k = 0, 1, 2, . . . and for all n = 1, 2 . . . ,
(
sk+4

(
∂

∂t1
,
1
2
∂

∂t2
,
1
3
∂

∂t3
, . . .

)
− 1

2
∂2

∂t1∂tk+3

)
τn ◦ τn = 0 ,

23 in terms of the Lie algebra splitting (1.96).
24 Remember the Hirota symbol (1.97) and the Schur polynomial notation (1.98).
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of which the first equation reads :((
∂

∂t1

)4

+ 3
(

∂

∂t2

)2

− 4
∂2

∂t1∂t3

)
log τn + 6

(
∂2

∂t21
log τn

)2

= 0 . (1.107)

Remark. In order to connect with classical integrable theory, notice that, when
τ satisfies the equation above, the function

q(t1, t2, . . . ) := 2
∂2 log τn
∂t21

satisfies the classical Kadomtsev–Petviashvili (KP) equation:

3
∂2q

∂t22
− ∂

∂t1

(
4
∂q

∂t3
− ∂3q

∂t31
− 6q

∂q

∂t1

)
= 0 . (1.108)

If q happens to be independent of t2, then q satisfies the Korteweg–de Vries
equation

4
∂q

∂t3
=

∂3q

∂t31
+ 6q

∂q

∂t1
. (1.109)

Proof. Identity (1.101) follows from the general fact that the product of two
matrices can be expressed as a symmetric sum of determinants,25 in particular
the square of a Vandermonde can be expressed as a sum of determinants:

Δ2(u1, . . . , un) =
∑
σ∈Sn

det
(
ul+k−2
σ(k)

)
1≤k,l≤n .

Indeed,

n!τn(t) = n! detmn(t)

=
∑
σ∈Sn

det
(∫

E

zl+k−2
σ(k) ρt(zσ(k)) dzσ(k)

)
1≤k,l≤n

=
∑
σ∈Sn

∫
En

det
(
zl+k−2
σ(k)

)
1≤k,l≤nρt(zσ(k)) dzσ(k)

=
∫
En

Δ2
n(z)

n∏
k=1

ρt(zk) dzk .

(i) At first, note

μij(t∓ [z−1]) =
∫

R

ui+j exp
( ∞∑

1

(
ti ∓ z−i

i

)
ui
)
ρ(u) du

=
∫

R

ui+j
(

1 − u

z

)±1

ρ(u) exp
( ∞∑

0

tiu
i

)
du

=

{
μi,j(t) − μi,j+1(t)/z
μi,j(t) + μi,j+1(t)/z + μi,j+2(t)/z2 + · · · ,

25 Indeed,
∑
σ∈Sn

det
(
ai,σ(j)bj,σ(j)

)
1≤i,j≤n = det(aik)1≤i,k≤n det(bik)1≤i,k≤n.
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which by formula (1.91) of Sect. 1.5.1 leads at once to the following repre-
sentation for the monic orthogonal polynomials p̃n(t; z) and their Stieltjes
transforms,

p̃n(t; z) = zn
τn(t− [z−1])

τn(t)

z

∫
R

p̃n(t;u)ρt(u)
z − u

du = z−n
τn+1(t + [z−1])

τn(t)
.

(1.110)

(ii) The matrix L := SΛS−1 satisfies the standard Toda lattice. One com-
putes

∂μij
∂tk

= μi+k,j implying
∂m∞
∂tk

= Λkm∞ .

Then, using the factorization (1.95) and the definition (1.92) of L = SΛS−1

of Sect. 1.5.1, one computes

0 = S

(
Λkm∞ − ∂m∞

∂tk

)
S� = SΛkS−1 − S

∂

∂tk
(S−1S�−1)S�

= Lk +
∂S

∂tk
S−1 + S�−1 ∂S

�

∂tk
.

Upon taking the ( )− and ( )0 parts of this equation (A− means the lower-
triangular part of the matrix A, including the diagonal and A0 the diagonal
part) leads to

(Lk)− +
∂S

∂tk
S−1 +

(
S�−1 ∂S

�

∂tk

)
0

= 0 and
(
∂S

∂tk
S−1

)
0

= − 1
2 (Lk)0 .

Upon observing that for any symmetric matrix the following holds,
(
a c
c b

)
b

=
(
a 0
2c b

)
= 2

(
a c
c b

)
−
−
(
a c
c b

)
0

,

it follows that the matrices L(t), S(t) and the vector p(t; z) =
(
pn(t; z)

)
n≥0

=
S(t)χ(z) satisfy the (commuting) differential equations and the eigenvalue
problem

∂S

∂tk
= − 1

2 (Lk)bS , L(t)p(t; z) = zp(t; z) , (1.111)

and thus the tridiagonal matrix L satisfies the standard Toda lattice equations

∂L

∂tk
=

∂

∂tk
SΛS−1 =

∂S

∂tk
S−1SΛS−1 − SΛS−1 ∂S

∂tk
S−1 = −[12 (Lk)b, L]

with p(t; z) satisfying

∂p

∂tk
=

∂S

∂tk
χ(z) = − 1

2 (Lk)bSχ(z) = − 1
2 (Lk)bp .
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The two leading terms of pn(t; z) look as follows, upon using (1.89) and
(1.110):

pn(t; z) =
√

τn
τn+1

p̃n(t; z) = zn
τn(t− [z−1])√

τnτn+1

=
√

τn
τn+1

zn
(

1 − z−1∂τn/∂t1
τn

+ · · ·
)
. (1.112)

Thus, zn admits the following representation in terms of the orthonormal
polynomials pi:

zn =
√
τn+1

τn

(
pn +

∂τn/∂t1√
τnτn+1

zn−1 +O(zn−2)
)

=
√
τn+1

τn
pn +

∂τn/∂t1√
τn−1τn

pn−1 +O(zn−2) . (1.113)

Then, using (1.112) in zpn and then using the representation (1.113) for zn

and zn+1, one checks that the diagonal entries bn and nondiagonal entries an
of L are given by

bn = 〈zpn, pn〉 =
√

τn
τn+1

(
〈zn+1, pn〉 − 〈zn, pn〉∂τn/∂t1

τn

)

=
∂τn+1/∂t1

τn
− ∂τn/∂t1

τn
=

∂

∂t1
log

τn+1

τn

and

an = 〈zpn, pn+1〉 =
√

τn
τn+1

〈zn+1 + · · · , pn+1〉 =
√
τnτn+2

τ2
n+1

,

establishing (1.104).
(iii) The bilinear identity: The functions τn(t) satisfy the following iden-

tity, for n ≥ m+1, t, t′ ∈ C
∞, where one integrates along a small circle about

∞,

∮
z=∞
τn(t− [z−1])τm+1(t′ + [z−1]) exp

( ∞∑
1

(ti− t′i)z
i

)
zn−m−1 dz = 0 . (1.114)

Indeed, using the τ -function representation for the monic orthogonal polyno-
mials and their Stieltjes transform (1.110), one checks:
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1
τn(t)τm(t′)

∮
z=∞
τn(t− [z−1])τm+1(t′ + [z−1]) exp

( ∞∑
1

(ti − t′i)z
i

)
zn−m−1 dz

=
∮
z=∞
zn

τn(t− [z−1])
τn(t)

z−m
τm+1(t′ + [z−1])

τm(t′)
exp
( ∞∑

1

(ti − t′i)z
i

)
dz
z

=
∮
z=∞

dz exp
( ∞∑

1

(ti − t′i)z
i

)
p̃n(t; z)

∫
R

p̃m(t′;u)
z − u

exp
( ∞∑

1

t′iu
i

)
ρ(u) du

= 2πi
∫

R

exp
( ∞∑

1

(ti − t′i)z
i

)
p̃n(t; z)p̃m(t′; z) exp

( ∞∑
1

t′iz
i

)
ρ(z) dz ,

using Lemma 1.5.1,

= 2πi
∫

R

p̃n(t; z)p̃m(t′; z) exp
( ∞∑

1

tiz
i

)
ρ(z) dz = 0 , when m ≤ n− 1,

by orthogonality, establishing (1.114).
(iv) The KP hierarchy Setting n = m+1 in (1.106), shifting t �→ t−y, t′ �→

t + y, evaluating the residue, Taylor expanding in yk (see (1.99)) and using
the notation

∂̃ =
(

∂

∂t1
,
1
2
∂

∂t2
,
1
3
∂

∂t3
, . . .

)
,

one computes the following residue about z = ∞,

0 =
1

2πi

∮
z=∞

dz exp
(
−

∞∑
1

2yizi
)
τn(t− y − [z−1])τn(t + y + [z−1])

=
1

2πi

∮
dz exp

(
−

∞∑
1

2yizi
)

exp
( ∞∑

1

z−i

i

∂

∂ui

)
exp
( ∞∑

1

yk
∂

∂uk

)

× τn(t− u)τn(t + u)
∣∣∣∣
u=0

=
1

2πi

∮
dz exp

(
−

∞∑
1

2yizi
)

exp
( ∞∑

1

z−i

i

∂

∂ti

)
exp
( ∞∑

1

yk
∂

∂tk

)

× τn(t) ◦ τn(t)

=
1

2πi

∮
dz
( ∞∑

0

zisi(−2y)
)( ∞∑

0

z−jsj(∂̃)
)

exp
( ∞∑

1

yk
∂

∂tk

)
τn ◦ τn

= exp
( ∞∑

1

yk
∂

∂tk

) ∞∑
0

si(−2y)si+1(∂̃)τn ◦ τn

=
(

1 +
∞∑
1

yj
∂

∂tj
+O(y2)

)(
∂

∂t1
+

∞∑
1

si+1(∂̃)
(−2yi +O(y2)

))
τn ◦ τn

=

(
∂

∂t1
+

∞∑
1

yk

(
∂

∂tk

∂

∂t1
− 2sk+1(∂̃)

))
τn ◦ τn +O(y2) ,
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for arbitrary yk, implying

∂

∂t1
τ ◦ τ = 0 and

(
∂2

∂tk∂t1
− 2sk+1(∂̃)

)
τn ◦ τn = 0 for k = 1, 2, . . . .

Taking into account the fact that trivially (∂/∂t1)τ ◦ τ = 0 and that the
equation above is trivial for k = 1 and k = 2, one is led to the KP hierarchy:
(
sk+4

(
∂

∂t1
,
1
2
∂

∂t2
,
1
3
∂

∂t3
, . . .

)
−1

2
∂2

∂t1∂tk+3

)
τn◦τn = 0 , for k = 0, 1, 2, . . . .

In particular, for k = 0, one computes

s4(t) :=
t41
4!

+
1
2
t2t

2
1 + t3t1 +

1
2
t22 + t4 ,

leading to the first equation in the hierarchy((
∂

∂t1

)4

+ 3
(

∂

∂t2

)2

− 4
∂2

∂t1∂t3

)
log τn + 6

(
∂2

∂t21
log τn

)2

= 0 . (1.115)

This ends the proof of Thm. 1.5.1. ��
Remark. As mentioned earlier this method is very robust and can be gen-
eralized to other integrals, besides (1.101), upon using multiple orthogonal
polynomials. Such integrals with appropriate multiple time-deformations lead
to τ -functions for multi-component KP hierachies; see Adler–van Moerbeke–
Vanhaecke [13].

1.6 Virasoro Constraints

1.6.1 Virasoro Constraints for β-Integrals

Consider weights ρ(z) dz = e−V (z) dz with rational logarithmic derivative and
E a disjoint union of intervals:

−ρ′

ρ
= V ′(z) =

g

f
=
∑∞

0 biz
i∑∞

0 aizi
and E =

r⋃
1

[c2i−1, c2i] ⊂ F ⊆ R ,

where F = [A,B] is an interval such that

lim
z→A,B

f(z)ρ(z)zk = 0 for all k ≥ 0 .

Consider an integral In(t, c;β), generalizing (1.101), where t := (t1, t2, . . . )
and c = (c1, c2, . . . , c2r); namely with a Vandermonde26 to the power 2β > 0
instead of a square, and omitting the n! appearing in (1.101),
26 Δn(z) =

∏
1≤i<j≤n(zi − zj).
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In(t, c;β) :=
∫
En

|Δn(z)|2β
n∏
k=1

(
exp
( ∞∑

1

tiz
i
k

)
ρ(zk) dzk

)

for n > 0 . (1.116)

Then the following theorem holds:

Theorem 1.6.1 (Adler–van Moerbeke [8]). The multiple integrals In(t)
:= In(t, c;β) with I0 = 1, satisfy the following Virasoro constraints27 for all
k ≥ −1:

(
−

2r∑
1

ck+1
i f(ci)

∂

∂ci
+
∑
i≥0

(
aiJ

(2)
k+i,n(t, n) − biJ

(1)
k+i+1,n(t, n)

))
In(t)

= 0 , (1.117)

where J
(2)
k,n(t, n) and J

(1)
k,n(t, n) are combined differential and multiplication

(linear) operators. For all n ∈ Z, the operators J
(2)
k,n(t, n) and J

(1)
k,n(t, n) form

a Virasoro and a Heisenberg algebra respectively, interacting as follows

[J(2)
k,n, J

(2)
l,n] = (k − l)J(2)

k+l,n + c

(
k3 − k

12

)
δk,−l

[J(2)
k,n, J

(1)
l,n] = −lJ(1)

k+l,n + c′k(k + 1)δk,−l

[J(1)
k,n, J

(1)
l,n] =

k

2β
δk,−l,

(1.118)

with “central charge”

c = 1 − 6(β1/2 − β−1/2)2 and c′ =
1
2

(
1
β
− 1
)
. (1.119)

Remark 1.6.1. The operators J
(2)
k,n = J

(2)
k,n(t, n)s are defined as follows: (the

normal ordering symbol “: :” means: always pull differentiation to the right,
ignoring commutation rules)

J
(2)
k,n = β

∑
i+j=k

:J(1)
i,nJ

(1)
j,n: + (1 − β)

(
(k + 1)J(1)

k,n − kJ
(0)
k,n

)
, (1.120)

in terms of the J
(1)
k,n = J

(1)
k,n(t, n)s. Componentwise, we have

J
(1)
k,n(t, n) = J

(1)
k + nJ

(0)
k and J

(0)
k,n = nJ

(0)
k = nδ0k

and

J
(2)
k,n(t, n) = βJ

(2)
k +

(
2nβ + (k + 1)(1 − β)

)
J

(1)
k + n(nβ + 1 − β)J (0)

k ,

27 When E equals the whole range F , then the first term, containing the partials
∂/∂ci, are absent in (1.117).
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where

J
(0)
k = δk0 , J

(1)
k =

∂

∂tk
+

1
2β

(−k)t−k ,

J
(2)
k =

∑
i+j=k

∂2

∂ti∂tj
+

1
β

∑
−i+j=k

iti
∂

∂tj
+

1
4β2

∑
−i−j=k

itijtj .
(1.121)

The integer n appears explicitly in J
(2)
k,n(t, n) to indicate the explicit n-

dependence of the nth component, besides t.

Remark 1.6.2. In the case β = 1, the Virasoro generators (1.121) take on a
particularly elegant form, namely for n ≥ 0,

J
(2)
k,n(t) =

∑
i+j=k

:J(1)
i,n(t)J(1)

j,n(t): = J
(2)
k (t) + 2nJ (1)

k (t) + n2δ0k

J
(1)
k,n(t) = J

(1)
k (t) + nδ0k ,

with28

J
(1)
k =

∂

∂tk
+

1
2
(−k)t−k ,

J
(2)
k =

∑
i+j=k

∂2

∂ti∂tj
+

∑
−i+j=k

iti
∂

∂tj
+

1
4

∑
−i−j=k

itijtj .
(1.122)

One now establishes the following lemma:

Lemma 1.6.1. Setting

dIn(x) := |Δn(x)|2β
n∏
k=1

(
exp
( ∞∑

1

tix
i
k

)
ρ(xk) dxk

)
,

the following variational formula holds:

d
dε

dIn(xi �→ xi + εf(xi)xk+1
i )

∣∣∣∣
ε=0

=
∞∑
l=0

(
alJ

(2)
k+l,n− blJ

(1)
k+l+1,n

)
dIn . (1.123)

Proof. Upon setting

E(x, t) :=
n∏
k=1

exp
( ∞∑
i=1

tix
i
k

)
ρ(xk) , (1.124)

the following two relations hold:

28 The expression J
(1)
k = 0 for k = 0.
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(
1
2

∑
i+j=k
i,j>0

∂2

∂ti∂tj
− n

2
δk,0

)
E =

( ∑
1≤a<β≤n
i,j>0
i+j=k

xiαx
j
β +

k − 1
2

∑
1≤α≤n

xkα

)
E ,

(
∂

∂tk
+ nδk,0

)
E =

( ∑
1≤α≤n

xkα

)
E , all k ≥ 0 .

(1.125)
So, the point now is to compute the ε-derivative

d
dε

(
|Δn(x)|2β

× exp

(
n∑
k=1

(
−V (xk) +

∞∑
i=1

tix
i
k

))
dx1 · · ·dxn

)

xi �→xi+εf(xi)x
k+1
i

∣∣∣∣∣
ε=0

,

(1.126)

which consists of three contributions:
Contribution 1.

1
2β|Δ(x)|2β

∂

∂ε
|Δ(x + εf(x)xk+1)|2β

∣∣∣∣
ε=0

=
∑

1≤α<γ≤n

∂

∂ε
log(|xα − xγ + ε(f(xα)xk+1

α − f(xγ)xk+1
γ )|)

∣∣∣∣
ε=0

=
∑

1≤α<γ≤n

f(xα)xk+1
α − f(xγ)xk+1

γ

xα − xγ

=
∞∑
l=0

al
∑

1≤α<γ≤n

xk+l+1
α − xk+l+1

γ

xα − xγ

=
∞∑
l=0

al

( ∑
i+j=l+k
i,j>0

1≤α<γ≤n

xiαx
j
γ + (n− 1)

∑
1≤α≤n

xl+kα − n(n− 1)
2

δl+k,0

)

= E−1
∞∑
l=0

al

(
1
2

∑
i+j=k+l
i,j>0

∂2

∂ti∂tj
− n

2
δk+l,0

+
(
n− k + l + 1

2

)(
∂

∂tk+l
+ nδk+l,0

)
− n(n− 1)

2
δk+l,0

)
E ,

using (1.125),

= E−1
∞∑
l=0

al

(
1
2

∑
i+j=k+l
i,j>0

∂2

∂ti∂tj
+
(
n− k + l + 1

2

)
∂

∂tk+l
+
n(n−1)

2
δk+l,0

)
E .

(1.127)
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Contribution 2. Using f(x) =
∑∞

0 aix
i,

∂

∂ε

n∏
1

d(xα + εf(xα)xk+1
α )

∣∣∣∣
ε=0

=
n∑
1

(f ′(xα)xk+1
α + (k + 1)f(xα)xkα)

n∏
1

dxi

=
∞∑
l=0

(l + k + 1)al
n∑
α=1

xk+lα

n∏
1

dxi

= E−1
∞∑
l=0

(l + k + 1)al

(
∂

∂tk+l
+ nδk+l,0

)
E

n∏
1

dxi . (1.128)

Contribution 3. Again using f(x) =
∑∞

0 aix
i,

∂

∂ε

n∏
α=1

exp
(
−V (xα + εf(xα)xk+1) +

∞∑
i=1

ti

n∑
α=1

(xα + εf(xα)xk+1
α )i

)∣∣∣∣
ε=0

=
(
−

n∑
α=1

V ′(xα)f(xα)xk+1
α +

∞∑
i=1

iti

n∑
α=1

f(xα)xi+kα

)
E

=

(
−

∞∑
l=0

bl

n∑
α=1

xk+l+1
α +

∑
l≥0
i≥1

aliti

n∑
α=1

xi+k+lα

)
E

=

(
−

∞∑
l=0

bl

(
∂

∂tk+l+1
+ nδk+l+1,0

)

+
∞∑
l=0

al

∞∑
i=1

iti

(
∂

∂ti+k+l
+ nδi+k+l,0

))
E . (1.129)

As mentioned, for knowing (1.123), we must add up the three contributions
1, 2 and 3, resulting in:

∂

∂ε
dIn(xi �→ xi + εf(xi)xk+1

i )
∣∣∣∣
ε=0

=
( ∞∑
l=0

al
(
βJ

(2)
k+l +

(
2nβ + (l + k + 1)(1 − β)

)
J

(1)
k+l + n

(
(n− 1)β + 1

)
δk+l,0

)

−
∞∑
l=0

bl(J
(1)
k+l+1 + nδk+l+1,0)

)
dIn(x) .

Finally, the use of (1.121) ends the proof of Lemma 1.6.1. ��
Proof of Thm. 1.6.1. The change of integration variable xi �→ xi+εf(xi)xk+1

i

in the integral (1.116) leaves the integral invariant, but it induces a change of
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limits of integration, given by the inverse of the map above; namely the cis in
E =

⋃r
1[c2i−1, c2i], get mapped as follows

ci �→ ci − εf(ci)ck+1
i +O(ε2).

Therefore, setting

Eε =
r⋃
1

[c2i−1 − εf(c2i−1)ck+1
2i−1 +O(ε2), c2i − εf(c2i)ck+1

2i +O(ε2)]

and V (x, t) = V (x) +
∑∞

i tix
i, we find, using Lemma 1.6.1 and the funda-

mental theorem of calculus,

0 =
∂

∂ε

∫
(Eε)2n

|Δ2n(x+ εf(x)xk+1)|

×
2n∏
i=1

exp
(−V (xi + εf(xi)xk+1

i , t)
)
d(xi + εf(xi)xk+1

i )

=
(
−

2r∑
i=1

ck+1
i f(ci)

∂

∂ci
+

∞∑
l=0

(alJ
(2)
k+l,2n − blJ

(1)
k+l+1,2n)

)
In(t, c, β) ,

ending the proof of Thm. 1.6.1. ��

1.6.2 Examples

These examples are taken from [1,3,9,90]; for the Laguerre ensemble, see also
[49] and for the Jacobi ensemble, see [48].

Example 1.6.1 (GUE ). Here we pick

ρ(z) = e−V (z) = exp(−z2) , V ′ = g/f = 2z ,
a0 = 1 , b0 = 0 , b1 = 2 , and all other ai, bi = 0 .

Define the differential operators

Bk :=
2r∑
1

ck+1
i

∂

∂ci
(1.130)

in terms of the end points of the set E =
⋃2r

1 [c2i−1, c2i] ⊂ R. From Thm. 1.6.1,
the integrals

In =
∫
En

Δn(z)2
n∏
k=1

exp
(
−z2

k +
∞∑
i=1

tiz
i
k

)
dzk (1.131)

satisfy the Virasoro constraints
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−BkIn = (−J
(2)
k,n + 2J

(1)
k+2,n)In , k = −1, 0, 1, . . . . (1.132)

The first three constraints have the following form, upon setting F = log In
(this will turn out to be more convenient in the applications),

−B−1F =
(

2
∂

∂t1
−
∑
i≥2

iti
∂

∂ti−1

)
F − nt1

−B0F =
(

2
∂

∂t2
−
∑
i≥1

iti
∂

∂ti

)
F − n2

−B1F =
(

2
∂

∂t3
− 2n

∂

∂t1
−
∑
i≥1

iti
∂

∂ti+1

)
F

For later use, take linear combinations such that each expression contains the
pure differentiation term ∂F/∂ti, yielding

−1
2
B−1F =: D−1F =

(
∂

∂t1
− 1

2

∑
i≥2

iti
∂

∂ti−1

)
F−nt1

2

−1
2
B0F =: D0F =

(
∂

∂t2
− 1

2

∑
i≥1

iti
∂

∂ti

)
F−n2

2
(1.133)

−1
2
(B1+nB−1)F =: D1F =

(
∂

∂t3
− 1

2

∑
i≥1

iti
∂

∂ti+1
−n

2

∑
i≥2

iti
∂

∂ti−1

)
F−n2t1

2
.

Example 1.6.2 (Laguerre ensemble). Here, the weight is

e−V = zae−z, V ′ =
g

f
=

z − a

z
,

a0 = 0 , a1 = 1 , b0 = −a , b1 = 1 , and all other ai, bi = 0 .

Here define the (slightly different) differential operators

Bk :=
2r∑
1

ck+2
i

∂

∂ci
. (1.134)

Thus from Thm. 1.6.1, the integrals

In =
∫
En

Δn(z)2
n∏
k=1

zak exp
(
−zk +

∞∑
i=1

tiz
i
k

)
dzk (1.135)

satisfy the Virasoro constraints, for k ≥ −1,

−BkIn = (−J
(2)
k+1,n − aJ

(1)
k+1,n + J

(1)
k+2,n)In . (1.136)

Written out, the first three have the form, again upon setting F = log In,
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−B−1F =
(

∂

∂t1
−
∑
i≥1

iti
∂

∂ti

)
F − n(n+ a)

−B0F =
(

∂

∂t2
− (2n+ a)

∂

∂t1
−
∑
i≥1

iti
∂

∂ti+1

)
F

−B1F =
(

∂

∂t3
− (2n+ a)

∂

∂t2
−
∑
i≥1

iti
∂

∂ti+2
− ∂2

∂t21

)
F −

(
∂F

∂t1

)2

;

Replacing the operators Bi by linear combinations

D1 = −B−1

D2 = −B0 − (2n+ a)B−1

D3 = −B1 − (2n+ a)B0 − (2n+ a)2B−1

(1.137)

yields expressions, each containing a pure derivative ∂F/∂ti

D1F =
∂F

∂t1
−
∑
i≥1

iti
∂F

∂ti
− n(n + a)

D2F =
∂F

∂t2
+
∑
i≥1

iti

(
−(2n+ a)

∂

∂ti
− ∂

∂ti+1

)
F − n(n+ a)(2n+ a)

D3F =
∂F

∂t3
−
∑
i≥1

iti

(
(2n+ a)2

∂

∂ti
+ (2n+ a)

∂

∂ti+1
+

∂

∂ti+2

)
F

−
(
∂2F

∂t21
+
(
∂F

∂t1

)2)
− n(n+ a)(2n + a)2 .

(1.138)

Notice the nonlinearity in this expression is due to the fact that one uses
F = log In rather than In.

Example 1.6.3 (Jacobi ensemble). The weight is given by

ρab(z) := e−V = (1 − z)a(1 + z)b , V ′ =
g

f
=

a− b + (a+ b)z
1 − z2

a0 = 1 , a1 = 0 , a2 = −1 , b0 = a− b , b1 = a + b , and all other ai, bi = 0 .

Here define

Bk :=
2r∑
1

ck+1
i (1 − c2i )

∂

∂ci
.

The integrals
∫
En

Δn(z)2
n∏
k=1

(1 − zk)a(1 + zk)b exp
( ∞∑
i=1

tiz
i
k

)
dzk (1.139)

satisfy the Virasoro constraints (k ≥ −1):
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−BkIn = (J(2)
k+2,n − J

(2)
k,n + b0J

(1)
k+1,n + b1J

(1)
k+2,n)In . (1.140)

Introducing the following notation

σ = 2n+ b1

the first four having the following form, upon setting F = log In,

−B−1F =
(
σ
∂

∂t1
+
∑
i≥1

iti
∂

∂ti+1
−
∑
i≥2

iti
∂

∂ti−1

)
F + n(b0 − t1)

−B0F =
(
σ
∂

∂t2
+ b0

∂

∂t1
+
∑
i≥1

iti

(
∂

∂ti+2
− ∂

∂ti

)
+

∂2

∂t21

)
F

+
(
∂F

∂t1

)2

− n

2
(σ − b1)

−B1F =
(
σ
∂

∂t3
+ b0

∂

∂t2
− (σ − b1)

∂

∂t1
+
∑
i≥1

iti

(
∂

∂ti+3
− ∂

∂ti+1

)

+ 2
∂2

∂t1∂t2

)
F + 2

∂F

∂t1

∂F

∂t2

−B2F =
(
σ
∂

∂t4
+ b0

∂

∂t3
− (σ − b1)

∂

∂t2
+
∑
i≥1

iti

(
∂

∂ti+4
− ∂

∂ti+2

)

+
∂2

∂t22
− ∂2

∂t21
+ 2

∂2

∂t1∂t3

)
F

+

((
∂F

∂t2

)2

−
(
∂F

∂t1

)2

+ 2
∂F

∂t1

∂F

∂t3

)
.

(1.141)

1.7 Random Matrices

This whole section is a very standard chapter of random matrix theory. Most
of the results can be found, e.g., in Mehta [69], Deift [31] and others.

1.7.1 Haar Measure on the Space Hn of Hermitian Matrices

Consider the most näıve measure (Haar measure)

dM :=
n∏
1

dMii

n∏
i,j=1
i<j

d ReMij d ImMij (1.142)

on the space of Hermitian matrices
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Hn := {n× n matrices such that M� = M} .
The parameters Mij in (1.142) are precisely the free ones in M . This measure
turns out to be invariant under conjugation by unitary matrices: (see Mehta
[69] and more recently Deift [31])

Proposition 1.7.1. For a fixed U ∈ SU(n), the map

Hn → Hn : M �→ M ′ = U−1MU

has the property

dM = dM ′ , i.e.,
∣∣∣∣det

(
∂M ′

∂M

)∣∣∣∣ = 1 .

Proof. Setting M ′ = U−1MU , we have

TrM2 = TrM ′2

and so ∑
i,j

MijMji =
∑
i,j

M ′
ijM

′
ji .

Working out this identity, one finds

n∑
1

M2
ii + 2

n∑
i,j=1
i<j

(
(ReMij)2 + (ImMij)2

)

=
n∑
1

M
′2
ii + 2

n∑
i,j=1
i<j

(
(ReM ′

ij)
2 + (ImM ′

ij)
2
)
. (1.143)

Setting

M := (M11, . . . ,Mnn,ReM12, . . . ,ReMn−1,n, ImM12, . . . , ImMn−i,n) ,

identity (1.143) can be written, in terms of the usual inner product 〈 , 〉 in
R
n(n+1)/2,

〈M , DM〉 = 〈M ′, DM ′〉
for the n2 × n2 diagonal matrix with n 1s and n(n− 1) 2s,

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . . O

1
2

O
. . .

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let V be the matrix transforming the vectors M into M ′
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M ′ = VM

and so, (1.143) reads

〈M ′, DM ′〉 = 〈VM , DVM 〉 = 〈M , V �DVM〉 ,

from which it follows that D = V �DV and so

0 �= detD = det(V �DV ) = (detV )2 detD ,

implying
|det V | = 1 .

But for a linear transformationM ′ = VM the Jacobian of the map is V itself
and so ∣∣∣∣det

∂M ′

∂M

∣∣∣∣ = |detV | = 1 ,

ending the proof of Prop. 1.7.1. ��
Proposition 1.7.2. The diagonalization M = UzU−1 leads to “polar” or
“spectral” coordinates M �→ (U, z), where z = diag(z1, . . . , zn), zi ∈ R. In
these new coordinates

dM = Δ2(z) dz1 · · · dzn dU ; . (1.144)

Proof. Every matrix M ∈ Hn can be diagonalized,

M = UzU−1 ,

with U = eAze−A ∈ SU(n) and29

A =
n∑

k,l=1
k≤l

(
akl(ekl − elk) + ibkl(ekl + elk)

) ∈ su(n) , with ak,l, bk,l ∈ R .

Then, using the definition of the measure dM , as in (1.142), and using the
fact that [A, z] is a Hermitian matrix, one computes

dM
∣∣
M=z

= d(eAze−A)
∣∣
A=0

= d
(
z + [A, z] + O(A2)

)∣∣
A=0

=
n∏
1

dzi
n∏

j,k=1
j<k

d Re[A, z]jk d Im[A, z]jk

∣∣∣∣
A=0

=
n∏
1

dzi
n∏

j,k=1
j<k

(zj − zk)2
n∏

j,k=1
j<k

dajk dbjk

∣∣∣∣
A=0

;

29 ekl denotes the matrix having a 1 at the entry (k, l) and 0 everywhere else.
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here one has used

[A, z] =
n∑

k,l=1
k<l

(akl[ekl − elk, z] + ibkl[ekl + elk, z])

=
n∑

k,l=1
k<l

(
akl(zl − zk)(ekl + elk) + ibkl(zl − zk)(ekl − elk)

)
,

with
Re[A, z]k,l = akl(zl − zk) , Im[A, z]kl = bkl(zl − zk) .

This establish (1.144) near M = z. By Lemma 1.7.1, dM = d(U ′−1MU ′) for
any unitary matrix U ′, implying the result (1.144) holds everywhere, estab-
lishing Prop. 1.7.2. ��
Remark. The set of Hermitian matrices is the tangent space to a symmetric
space G/K = SL(n,C)/ SU(n). The argument in Prop. 1.7.2 can be gener-
alized to many other symmetric spaces, as worked out in van Moerbeke [90,
pp. 324–329].

1.7.2 Random Hermitian Ensemble

Consider the probability distribution on the space Hn of Hermitian matrices,
in terms of Haar measure dM , given by

P(M ∈ dM) =
1
Zn

exp
(− TrV (M)

)
dM .

Let z1 ≤ z2 ≤ · · · ≤ zn be the real eigenvalues of M . Then

P(z1 ∈ dz1, . . . , zn ∈ dzn) = P(z1, . . . , zn) dz1 · · · dzn

:=
1
Zn

Δ2(z)
n∏
i=1

exp
(−V (zi)

)
dzi ,

with

Zn =
∫
z1≤···≤zn

P(z1, . . . , zn)
n∏
1

dzi .

Lemma 1.7.1.

P(M ∈ Hn, spectrumM ⊆ E) =

∫
En Δ2(z)

∏n
1 exp

(−V (zi)
)
dzi∫

Rn Δ2(z)
∏n

1 exp
(−V (zi)

)
dzi

. (1.145)

Proof. Indeed
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P (M ∈ Hn, spectrumM ⊆ E)

=
1
Zn

∫
z1<···<zn

Δ2
n(z1, . . . , zn)

n∏
i=1

χE(zi) exp
(−V (zi)

)
dzi

=
1

Znn!

∑
π∈Sn

∫
zπ(1)<···<zπ(n)

Δ2
n

(
zπ(1), . . . , zπ(n)

) n∏
i=1

χE
(
zπ(i)

)
exp
(
−V (zπ(i)

))
dzπ(i)

=
1

Znn!

∑
π∈Sn

∫
zπ(1)<···<zπ(n)

Δ2
n(z1, . . . , zn)

n∏
i=1

χE(zi) exp
(−V (zi)

)
dzi

=

∫
En Δ2

n(z)
∏n

1 exp
(−V (zi)

)
dzi∫

Rn Δ2
n(z)

∏n
1 exp

(−V (zi)
)
dzi

,

showing Lemma 1.7.1. ��
Let p0(z), p1(z), p2(z), . . . be orthonormal polynomials with regard to the

weight ρ(z) defined on R, as discussed in Sect. 1.5.1,
∫

R

pi(z)pj(z)ρ(z) dz = δij ,

and p̃n(z) be the monic orthogonal polynomials,
∫

R

p̃i(z)p̃j(z)ρ(z) dz = hiδij .

Then,

pn(z) =
1√
hn

(zn + · · · ) =
1√
hn

p̃n(z) . (1.146)

Proposition 1.7.3. Setting

Zn =
∫

Rn

Δ2
n(z)

n∏
1

ρ(zk) dzk ,

we have the identity

Z−1
n Δ2

n(z)
n∏
1

ρ(zk) =
1
n!

det
(
Kn(zk, zl)

)
1≤k<l≤n , (1.147)

where the symmetric kernel Kn is given by

Kn(y, z) =
√
ρ(y)ρ(z)

n−1∑
j=0

pj(y)pj(z) (Christoffel–Darboux )

=

√
hn
hn−1

√
ρ(y)ρ(z)

pn(y)pn−1(z) − pn−1(y)pn(z)
y − z

. (1.148)
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The kernel Kn(y, z) has the following “reproducing” property
∫

R

Kn(y, u)Kn(u, z) du = Kn(y, z) and
∫

R

Kn(z, z) dz = n .

Proof. Notice that the Vandermonde Δn(z) can also be expressed as
det
(
p̃i−1(zj)

)
1≤i,j≤n by row operations, where p̃i(z) can be chosen to be any

monic polynomial of degree i, and in particular the monic orthogonal poly-
nomial of degree i. Thus, one computes for the normalization Zn,

Zn =
∫

Rn

Δ2(z)
n∏
1

ρ(zi) dzi

=
∫

Rn

det
(
p̃i−1(zj)

)
1≤i,j≤n det

(
p̃k−1(zl)

)
1≤k,l≤n

n∏
i=1

ρ(zi) dzi

=
∑

π,π′∈Sn

(−1)π+π′
n∏
k=1

∫
R

p̃π(k)−1(zk)p̃π′(k)−1(zk)ρ(zk) dzk

=
∑
π∈Sn

n∏
k=1

∫
R

p̃2
π(k)−1(zk)ρ(zk) dzk , using the orthogonality of the p̃is,

= n!
n−1∏

0

∫
R

p̃2
k(z)ρ(z) dz = n!

n−1∏
0

hk .

Then using the expression obtained for Zn and (detA)2 = det(AA�) in the
third equality, one further computes

Z−1
n Δ2

n(z)
n∏
1

ρ(zk)

=
1

n!
∏n−1

0 hk
det
(
p̃i−1(zj)

)
1≤i,j≤n det

(
p̃k−1(zl)

)
1≤k,l≤n

n∏
k=1

ρ(zk)

=
1
n!

det
(
p̃i−1(zj)√

hi−1

√
ρ(zj)

)
1≤i,j≤n

det
(
p̃k−1(zl)√

hk−1

√
ρ(zl)

)
1≤k<l≤n

=
1
n!

det
( n∑
j=1

p̃j−1(zk)√
hj−1

p̃j−1(zl)√
hj−1

√
ρ(zk)ρ(zl)

)
1≤k,l≤n

=
1
n!

det
(
Kn(zk, zl)

)
1≤k,l≤n .

One finally needs the classical Christoffel–Darboux identity: setting pj(y) = 0
for j < 0, one checks
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(y − z)
n−1∑

0

pj(y)pj(z)

=
n−1∑
j=0

(
aj,j−1pj−1(y) + ajjpj(y) + aj,j+1pj+1(y)

)
pj(z)

−
n−1∑
j=0

pj(y)
(
aj,j−1pj−1(z) + ajjpj(z) + aj,j+1pj+1(z)

)

= an−1,n

(
pn(y)pn−1(z) − pn−1(y)pn(z)

)
,

and one uses (1.146). The reproducing property follows immediately from
the Christoffel–Darboux representation of the kernel in terms of orthogonal
polynomials. This proves Prop. 1.7.3. ��

1.7.3 Reproducing Kernels

Lemma 1.7.2. Let K(x, y) be a symmetric kernel satisfying the reproducing
property ∫

R

K(x, y)K(y, z) dy = K(x, z) .

Then∫
det
(
K(zi, zj)

)
1≤i,j≤n dzn

=
(∫

R

K(z, z) dz − n+ 1
)

det
(
K(zi, zj)

)
1≤i,j≤n−1

, (1.149)

where dy stands for any measure on R.

Proof. The proof of (1.149) is due to J. Verbaarschot [91], which proceeds in
two steps:

Step 1. Let

Mn =
(
Mn−1 m
m̄� γ

)

be a n× n Hermitian matrix, with Mn−1 a n− 1 × n− 1 Hermitian matrix.
Then m is a (n− 1) × 1 column and γ ∈ R. Then

detMn = γ detMn−1 − m̄�M̃n−1m .

Indeed given the column u ∈ C
n−1, one checks(

I 0
ū� 1

)(
Mn−1 m
m̄� γ

)(
I u
0 1

)

=
(

Mn−1 Mn−1u+m
ū�Mn−1 + m̄� ū�Mn−1u+ m̄�u+ ū�m+ γ

)

=
(
Mn−1 0

0 γ − m̄�M−1
n−1m

)
, upon setting u = −M−1

n−1m .
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The latter assumes that Mn−1 is invertible. Furthermore, using M−1
n−1 =

(detMn−1)−1M̃n−1,

detMn = (γ − m̄�M−1
n−1m) detMn−1

= (γ − m̄�M̃n−1m(detMn−1)−1) detMn−1

= γ detMn−1 − m̄�M̃n−1m ,

finishing Step 1.
Step 2. Proof of identity (1.149). Define the matrix

Mk :=
(
K(zi, zj)

)
1≤i,j≤k γ := K(zk, zk)

and

m =

⎛
⎜⎝

K(z1, zk)
...

K(zk−1, zk)

⎞
⎟⎠ ;

Mk is a symmetric matrix, since K is a symmetric kernel. One finds, upon
integration over R,∫

R

det(Mn) dzn

= det(Mn−1)
∫

R

K(z, z) dz −
∫

R

dzn
n−1∑
i,j=1

K(zn, zi)(M̃n−1)ijK(zj, zn)

= det(Mn−1)
∫

R

K(z, z)dz −
n−1∑
i,j=1

(M̃n−1)ij
∫

R

K(zn, zi)K(zj , zn) dzn

= det(Mn−1)
∫

R

K(z, z) dz −
n−1∑
i,j=1

(M̃n−1)i,j(Mn−1)j,i

= det(Mn−1)
∫

R

K(z, z) dz − det(Mn−1)
n−1∑
i,j=1

(M−1
n−1)ij(Mn−1)ji

= det(Mn−1)
(∫

R

K(z, z) dz − (n− 1)
)
,

establishing Lemma 1.7.2. ��
Lemma 1.7.3. If

(i)
∫

R
K(x, y)K(y, z) dy = K(x, z)

(ii)
∫

R
K(z, z) dz = n,

then∫
· · ·
∫

Rn−m

det
(
K(zi, zj)

)
1≤i,j≤n dzm+1 · · · dzn

= (n−m)! det
(
K(zi, zj)

)
1≤i,j≤m (1.150)
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Proof. The proof proceeds by induction on m. On the one hand, assuming
(1.150) to be true, integrate with regard to zm and use identity (1.149):

∫
· · ·
∫

Rn−m+1
det
(
K(zi, zj)

)
1≤i,j≤n dzm dzm+1 · · · dzn

= (n−m)!
∫

R

dzm det
(
K(zi, zj)

)
1≤i,j≤m

= (n−m)!
(∫

R

K(z, z) dz −m + 1
)

det
(
K(zi, zj)

)
1≤i,j≤m−1

= (n−m)!(n−m+ 1) det
(
K(zi, zj)

)
1≤i,j≤m−1

= (n−m+ 1)! det
(
K(zi, zj)

)
1≤i,j≤m−1

.

On the other hand for m + 1 = n, the statement follows at once from
Lemma 1.7.2. This ends the proof of Lemma 1.7.3.

1.7.4 Correlations and Fredholm Determinants

For this section, see M.L. Mehta [69], P. Deift [31], Tracy–Widom [84] and
others. Returning now to the probability distribution on the space Hn of
Hermitian matrices (setting ρ(z) := e−V (z))

P(M ∈ dM) =
1
Zn

exp
(−TrV (M)

)
dM ,

remember from Lemma 1.7.1 and Prop. 1.7.3,

P(M ∈ Hn, spectrumM ⊆ E) =
∫
En

Pn(z) dz1 · · · dzn

with

Pn(z) =
Δ2
n(z)

∏n
1 ρ(zi) dzi∫

Rn Δ2
n(z)

∏n
1 ρ(zi) dzi

= Z−1
n Δ2

n(z)
n∏
1

ρ(zk)

=
1
n!

det
(
Kn(zk, zl)

)
1≤k<l≤n , (1.151)

with the kernel Kn(y, z) defined in Prop. 1.7.3,

Kn(x, y) =
√
ρ(x)ρ(y)

n−1∑
j=0

pj(x)pj(y) . (1.152)

Let E be the expectation associated with the probability P above. Then one
has the following “classical” proposition for any subset E ⊂ R (for which a
precise statement and proof was given by P. Deift [31]):
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Proposition 1.7.4. The 1- and 2-point correlations have the following mean-
ing30: ∫

E

Kn(z, z) dz = E(# of eigenvalues in E)
∫
E×E

det
(
Kn(zi, zj)

)
1≤i,j≤2

dz1 dz2 = E(# of pairs of eigenvalues in E) ,

and thus
Kn(z, z) =

1
dz

E(# of eigenvalues in dz) . (1.153)

Proof. Using (1.150) for m = 1 and (1.147), one computes
∫
E

Kn(z, z) dz

=
∫

R

χE(z1)Kn(z1, z1) dz1

=
1

(n− 1)!

∫
R

dz1χE(z1)
∫

· · ·
∫

Rn−1
det
(
Kn(zi, zj)

)
1≤i,j≤n dz2 · · · dzn

= n

∫
R

dz1 χE(z1)
∫

· · ·
∫

Rn−1

1
Zn

Δ2
n(z)

n∏
1

ρ(zk) dz2 · · · dzn

=
n

Zn

∫
Rn

χE(z1)Δ2
n(z)

n∏
1

ρ(zk) dzk

=
1
Zn

∫
Rn

( n∑
i=1

χE(zi)
)

Δ2
n(z)

n∏
1

ρ(zk) dzk

=
1
Zn

∫
Rn

#{i such that zi ∈ E}Δ2
n(z)

n∏
1

ρ(zk) dzk

= E(# of eigenvalues in E) .

A similar argument holds for the second identity of Prop. 1.7.4. ��
Consider disjoint intervals E1, . . . , Em and integers 1 ≤ n1, . . . , nm ≤ n

and set nm+1 := n−∑m
1 ni. Then for the n× n Hermitian ensemble with Pn

as in (1.151), one has:

P(exactly ni eigenvalues ∈ Ei, 1 ≤ i ≤ m)

=
(

n

n1, . . . , nm, nm+1

)∫
Rn

n1∏
i=1

χE1
(xi)

n1+n2∏
i=n1+1

χE2
(xi) · · ·

n1+···+nm∏
i=n1+···+nm−1+1

χEm
(xi)

×
n∏

i=
∑m

1 nk+1

χ(
⋃

m
i=1 Ei)c(xi)Pn(x) dx1 · · · dxn . (1.154)

30 If x1, x2 ∈ E, then it counts for 2 in the second formula.
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This follows from the symmetry of Pn(x) under the permutation group; the
multinomial coefficient takes into account the number of ways the event oc-
curs.

Lemma 1.7.4. The following identity holds
∫

Rn

n∏
k=1

(
1 +

m∑
i=1

λiχEi
(xk)

)
Pn(x) dx1 · · ·dxn

= det
[
I +Kn(x, y)

m∑
i=1

λiχEi
(y)
]
.

Proof. Upon setting

K̃(x, y) := Kn(x, y)
m∑
1

λiχEi
(y) ,

and upon using the fact that K̃(x, y) has rank n in view of its special form
(1.152), the Fredholm determinant can be computed as follows:

det
(
I + K̃(x, y)

)

=
∞∑
l=0

1
l!

∫
Rl

det
[
K̃(xi, xj)

]
1≤i,j≤l dx1 · · ·dxl

=
n∑
l=0

1
l!

∫
Rl

det
[
K̃(xi, xj)

]
1≤i,j≤l dx1 · · ·dxl

=
n∑
l=0

1
l!

∫
Rl

det
[
Kn(xi, xj)

m∑
k=1

λkχEk
(xj)

]
1≤i,j≤l

dx1 · · · dxl

=
n∑
l=0

1
l!

∑
1≤s1,...,sl≤m

λs1 · · ·λsl

∫
Rl

dx1 · · · dxl
l∏

r=1

χEsr
(xr) det[Kn(xi, xj)]1≤i,j≤l

=
∫

Rn

n∑
l=0

∑
1≤s1,...,sl≤m

λs1 · · ·λsl
χEs1

(x1) · · ·χEsl
(xl)

× 1
l!(n− l)!

det[Kn(xi, xj)]1≤i,j≤n dx1 · · ·dxn ,

using Lemma 1.7.3,

=
∫

Rn

n∑
l=0

(
n

l

) ∑
1≤s1,...,sl≤m

λs1 · · ·λsl
χEs1

(x1) · · ·χEsl
(xl)Pn(x) dx1 . . .dxn

=
∫

Rn

n∑
l=0

∑
1≤s1,...,sl≤m

∑
1≤i1<···<il≤n

λs1 · · ·λsl
χEs1

(xi1 ) · · ·χEsl
(xil )

× Pn(x) dx1 · · · dxn

=
∫

Rn

n∏
k=1

(
1 +

m∑
i=1

λiχEi
(xk)

)
Pn(x) dx1 · · · dxn ,
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establishing Lemma 1.7.4. ��
Proposition 1.7.5. The Fredholm determinant is a generating function for
the probabilities :

P (exactly ni eigenvalues ∈ Ei, 1 ≤ i ≤ m)

=
m∏
1

1
ni!

(
∂

∂λi

)ni

det
[
I +

m∑
1

λiKn(x, y)χEi
(y)
]∣∣∣∣

all λi = −1

. (1.155)

In particular

P(no eigenvalues ∈ Ei, 1 ≤ i ≤ m) = det
[
I −Kn(x, y)χ⋃m

1 Ei
(y)
]
. (1.156)

Proof. The first equality below follows from Lemma 1.7.4. Concerning the
second equality, in order to carry out the differentiation

∏m
1 (1/ni!)(∂/∂λi)ni ,

one chooses (keeping in mind the usual product rule of differentiation) a first
group of n1 factors, a (distinct) second group of n2 factors,. . . , a mth group
of nm factors and finally the last group of n−n1 −· · ·−nm remaining factors
among the product

∏n
k=1

(
1 +

∑m
i=1 λiχEi

(xk)
)
. Then one differentiates the

first m groups, leaving untouched the last group, where one sets λi = −1.
This explains the second equality below. Let Cnn1,...,nm

be the set of distinct
committees of size n1, n2, . . . , nm, nm+1, with nm+1 := n − n1 − · · · − nm
formed with people 1, 2, . . . , n:
m∏
i=1

1
ni!

(
∂

∂λi

)ni

det
[
I +

m∑
1

λiKn(x, y)χEi
(y)
]∣∣∣∣

all λi = −1

=
m∏
i=1

1
ni!

(
∂

∂λi

)ni
∫

Rn

n∏
k=1

(
1 +

m∑
i=1

λiχEi
(xk)

)
Pn(x) dx1 · · ·dxn

∣∣∣∣
all λi = −1

=
∑

σ∈Cn
n1,...,nm

∫
Rn

n1∏
i=1

χE1
(xσ(i)) · · ·

n1+···+nm∏
i=n1+···+nm−1

χEm
(xσ(i))

×
n∏

i=n1+···+nm+1

(
1 −

m∑
l=1

χEl
(xσ(i))

)
Pn(x) dx1 · · · dxn

=
(

n

n1, . . . , nm, n−∑m
1 ni

)∫
Rn

n1∏
i=1

χE1
(xi) · · ·

n1+···+nm∏
i=n1+···+nm−1

χEm
(xi)

×
n∏

i=n1+···+nm+1

(
1 −

m∑
l=1

χEl
(xi)

)
Pn(x) dx1 · · ·dxn

= P(exactly ni eigenvalues ∈ Ei, 1 ≤ i ≤ m) ,

as follows from (1.154), thus establishing identity (1.155), whereas (1.156)
follows from setting n1 = · · · = nm = 0, completing the proof of Prop. 1.7.5.

��



108 Pierre van Moerbeke

1.8 The Distribution of Hermitian Matrix Ensembles

1.8.1 Classical Hermitian Matrix Ensembles

1.8.1.1 The Gaussian Hermitian Matrix Ensemble (GUE)

Let Hn be the Hermitian ensemble

Hn = {n× n matrices M satisfying M� = M} .
The real and imaginary parts of the entries Mij of the n×n Hermitian matrix
(M = M�) are all independent and Gaussian; the variables Mii, 1 ≤ i ≤ n,
ReMij and ImMij , 1 ≤ i < j ≤ n, which parametrize the full matrix have
the following distribution (set Hn � H = (uij), with real uii and off-diagonal
elements uij := vij + iwij)

P(Mii ∈ duii) =
1√
π

exp(−u2
ii) duii 1 ≤ i ≤ n

P(ReMjk ∈ dvjk) =
2√
π

exp(−2v2
jk) dvjk 1 ≤ j < k ≤ n

P(ImMjk ∈ dwjk) =
2√
π

exp(−2w2
jk) dwjk 1 ≤ j < k ≤ n .

Hence, using Haar measure (1.142),

P(M ∈ dH)

=
n∏
1

P(Mii ∈ duii)
n∏

j,k=1
j<k

P(ReMjk ∈ dvjk) P(ImMjk ∈ dwjk)

= cn

n∏
1

exp(−u2
ii)

n∏
j,k=1
j<k

exp
(−2(v2

jk + w2
jk)
) n∏

1

duii

n∏
j,k=1
j<k

dvjk dwjk

= cn exp
(
−

n∑
i,j=1

|uij |2
) n∏

1

duii
n∏

j,k=1
j<k

d Reujk d Imujk

= cn exp(−TrH2)DH = cnΔ2
n(z)

n∏
1

exp(−z2
i ) dzi , H ∈ Hn , (1.157)

using the representation of Haar measure in terms of spectral variables zi (see
Prop. 1.7.2) and where

cn =
(

2
π

)n2/2 1
2n/2

.

This constant can be computed by representing the integral of (1.157) over
the full range R

n as a determinant of a moment matrix (as in (1.101)) of
Gaussian integrals.
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1.8.1.2 Estimating Covariances of Complex Gaussian Populations
and the Laguerre Hermitian Ensemble

Consider the complex Gaussian population x = (x1, . . . , xp)�, with mean and
covariance matrix given by

μ = E(x) = (μ1, . . . , μp)� , Σ =
(
E(xi − μi)(x̄j − μ̄j)

)
1≤i,j≤p

and density (for the complex inner-product 〈 , 〉),
1

(2π)p/2(detΣ)1/2
exp(− 1

2 〈x− μ, Σ−1(x− μ)〉) .

Let λ1 ≥ λ2 ≥ · · · ≥ λp > 0 be the eigenvalues of Σ. Taking n samples of
(x1, . . . , xp)�, consider the normalized p× n sample matrix:

x =

⎛
⎜⎜⎜⎝
x11 − (1/n)

(∑n
1 x1i

)
x12 − (1/n)

(∑n
1 x1i

) · · · x1n − (1/n)
(∑n

1 x1i

)
x21 − (1/n)

(∑n
1 x2i

)
x22 − (1/n)

(∑n
1 x2i

) · · · x2n − (1/n)
(∑N

1 x2i

)
...

...
...

xp1 − (1/n)
(∑n

1 xpi
)
xp2 − (1/n)

(∑n
1 xpi

) · · · xpn − (1/n)
(∑n

1 xpi
)

⎞
⎟⎟⎟⎠

and the p× p sample covariance matrix,

S :=
1

N − 1
xx̄� , with eigenvalues z1, . . . , zp > 0 ,

which is an unbiased estimator of Σ. It is a classical result that when Σ = I,
the eigenvalues z1, . . . , zp > 0 of S have the Wishart distribution, a special case
of the Laguerre Hermitian ensemble (see Hotelling [53] and also Muirhead [70])

Pn,p(S ∈ dM) = cnpΔ2
p(z)

p∏
1

exp(−zi)zn−p−1
i dzi dU

= e−TrM (detM)n−p−1 dM .

1.8.1.3 Estimating the Canonical Correlations Between two
Gaussian Populations and the Jacobi Hermitian Ensemble

In testing the statistical independence of two complex Gaussian populations,
one needs to know the distribution of canonical correlation coefficients. I
present here the case of real Gaussian populations, not knowing whether the
complex case has been worked out, although it should proceed in the same
way. To set up the problem, consider p+ q normally distributed random vari-
ables (X1, . . . , Xp)� and (Y1, . . . , Yq)� (p ≤ q) with mean zero and covariance
matrix

cov
(
X
Y

)
:= Σ =

( p︷︸︸︷
Σ11

q︷︸︸︷
Σ12

Σ�
12 Σ22

)}p}
q
.
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The method proposed by Hotelling [53] is to find linear transformations U =
L1X and V = L2Y of X and Y having the property that the correlation
between the first components U1 and V1 of the vectors U and V is maximal
subject to the condition that Var U1 = Var V1 = 1; moreover, one requires
the second components U2 and V2 to have maximal correlation subjected to

{
(i) VarU2 = VarV2 = 1
(ii) U2 and V2 are uncorrelated with both U1 and V1 ,

etc.
Then there exist orthogonal matrices Op ∈ O(p), Oq ∈ O(q) such that

Σ
−1/2
11 Σ12Σ

−1/2
22 = O�

p POq ,

where P has the following form:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

q︷ ︸︸ ︷
ρ1

. . . O
ρk

ρk+1

O
. . .

ρp︸ ︷︷ ︸
p

O

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

p , k = rankΣ12 ,

1 ≥ ρ1 ≥ ρ2 ≥ · · · ≥ ρk > 0, ρk+1 = · · · = ρp = 0
(canonical correlation coefficients),

ρi are solutions (≥ 0) of det(Σ−1
11 Σ12Σ

−1
22 Σ

�
12 − ρ2I) = 0 .

Then the covariance matrix of the vectors

U = L1X := OpΣ
−1/2
11 X and V = L2Y := OqΣ

−1/2
22 Y

has the canonical form (detΣcan =
∏p

1(1 − ρ2
i ))

cov
(
U
V

)
= Σcan =

(
Ip P
P� Iq

)
,

with
spectrumΣcan = 1, . . . , 1︸ ︷︷ ︸

q−p

, 1 − ρ1, 1 + ρ1, . . . , 1 − ρp, 1 + ρp

and inverse

Σ−1
can =

1∏p
1(1 − ρ2

i )2

(
Ip −P

−P� Iq

)
.
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From here on, we may take Σ = Σcan. The n (n ≥ p + q) independent
samples (x11, . . . , x1p, y11, . . . , y1q)�, . . . , (xn1, . . . , xnp, yn1, . . . , ynq)�, arising
from observing (XY ) lead to a matrix ( xy ) of size (p+ q, n), having the normal
distribution [70, pp. 79 and 539]

(2π)−n(p+q)/2(detΣ)−n/2 exp
(
−1

2
Tr(x�y�)

(
Σ11 Σ12

Σ�
12 Σ22

)−1(
x
y

))

= (2π)−n(p+q)/2(detΣ)−n/2

× exp
(− 1

2 Tr(x�(Σ−1)11x+ y�(Σ−1)22y + 2y�(Σ−1)�12x)
)
.

The conditional distribution of p×n matrix x given the q×n matrix y is also
normal:

(det 2πΩ)−n/2 exp(− 1
2 TrΩ−1(x− Py)(x− Py)�) (1.158)

with
Ω = Σ11 −Σ12Σ

−1
22 Σ21 = diag(1 − ρ2

1, . . . , 1 − ρ2
p)

P = Σ12Σ
−1
22 .

Then the maximum likelihood estimates ri of the ρi satisfy the determinantal
equation

det(S−1
11 S12S

−1
22 S

�
12 − r2I) = 0 , (1.159)

corresponding to

S =
(
S11 S12

S�
12 S22

)
:=
(
xx� xy�

yx� yy�

)
,

where Sij are the associated submatrices of the sample covariance matrix S.

Remark. T he ri can also be viewed as ri = cos θi , where the θ1, . . . , θp are
the critical angles between two planes in R

n:

(i) a p-dimensional plane = span{(x11, . . . , xn1), . . . , (x1p, . . . , xnp)}
(ii) a q-dimensional plane = span{(y11, . . . , yn1)�, . . . , (y1q, . . . , ynq)}.

Since the (q, n)-matrix y has rank(y) = q, there exists a matrix Hn ∈ O(n)
such that yHn =

(
y1 O

)
; therefore acting on x with Hn leads to

yHn =
( q︷︸︸︷
y1

n−q︷︸︸︷
O
)}
q , xHn =

( q︷︸︸︷
u

n−q︷︸︸︷
v
)}
p; . (1.160)

With this in mind,
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S12S
−1
22 S

�
12 − r2S11

= xy�(yy�)−1yx� − r2xx�

= xH(yH)�(yH(yH)�)−1yH(xH)� − r2(xH)(xH)�

=
(
u v
)(y�1

O

)((
y1 O

)(y�1
O

))−1 (
y1 O

)(u�
v�

)
− r2

(
u v
)(u�

v�

)

=
(
u v
)(Iq O

O 0n−q

)(
u�

v�

)
− r2

(
u v
)(u�

v�

)

= uu� − r2(uu� + vv�) ,

and so (1.159) for the ri can be rewritten

det
(
uu� − r2(uu� + vv�)

)
= 0 . (1.161)

Then setting the forms (1.160) of x and y in the conditional distribution
(1.158) of x given y, one computes the following, setting H := Hn,

TrΩ−1(x− Py)(x− Py)�

= TrΩ−1(xH − PyH)(xH − PyH)�

= TrΩ−1
((
u v
)− P

(
y1 O

))((
u v
)− P

(
y1 O

))�
= TrΩ−1(u− Py1)(u− Py1)� + TrΩ−1vv� ;

Ω = diag(1 − ρ2
1, . . . , 1 − ρ2

p) ;

this establishes the independence of the normal distributions u and v, given
the matrix y, with

u ≡ N(Py1, Ω) , v ≡ N(O,Ω) , P = diag(ρ1, . . . , ρp) .

Hence uu� and vv� are conditionally independent and both Wishart dis-
tributed; to be precise:

• The p × p matrices vv� are Wishart distributed, given y, with n − q
degrees of freedom and covariance Ω;

• The p × p matrices uu� are noncentrally Wishart distributed, given y,
with q degrees of freedom, with covariance Ω and with noncentrality matrix

1
2Py1y

�
1 P

�Ω−1 .

• The marginal distribution of the q × q matrices yy� are Wishart dis-
tributed, with n degrees of freedom and covariance Iq, because the marginal
distribution of y is normal with covariance Iq.

To summarize, given the matrix y, the sample canonical correlation coef-
ficients r21 > · · · > r2p are the roots of

(r21 > · · · > r2p) = roots of det(xy�(yy�)−1yx� − r2xx�) = 0

= roots of det
(
uu� − r2(uu� + vv�)

)
= 0

= roots of det(uu�(uu� + vv�)−1 − r2I) = 0 .
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Then one shows that, knowing uu� and vv� are Wishart and conditiionally
independent, the conditional distribution of r21 > · · · > r2p, given the matrix y
is given by

πp
2/2cn,p,q exp(− 1

2 TrPyy�P�Ω−1)Δp(r2)
p∏
1

(r2i )
(q−p−1)/2(1−r2i )(n−q−p−1)/2

×
∑
λ∈Y

(n/2)λCλ(1
2Pyy

�P�Ω−1)
(q/2)λCλ(Ip) |λ|! Cλ(R2) ,

where31

R2 = diag(r21 , . . . , r
2
p) , cn,p,q =

Γp(n/2)
Γp(q/2)Γp

(
(n− q)/2

)
Γp(p/2)

,

and where the Cλ are proportional to Jack polynomials corresponding to the
partition λ; for details see Muirhead [70] and Adler–van Moerbeke [10]. By
taking the expectation with regard to y or, what is the same, by integrating
over the matrix yy�, which is Wishart distributed (see Sect. 1.8.1.2), one
obtains:

Theorem 1.8.1. Let X1, . . . , Xp, Y1, . . . , Yq (p ≤ q) be normally distributed
random variables with zero means and covariance matrix Σ =

(
Σ11 Σ12
Σ21 Σ22

)
. If

ρ2
1, . . . , ρ

2
p are the roots of det(Σ−1

11 Σ12Σ
−1
22 Σ

�
12−ρ2I) = 0, then the maximum

likelihood estimates r21 , . . . , r2p from a sample of size n (n ≥ p + q) are given
by the roots of

det(xy�(yy�)−1yx� − r2xx�) = 0 .

Then, assuming ρ2
1 = · · · = ρ2

p = 0, the joint density of the zi = r2i is given by
the following density:

πp
2/2cn,p,qΔp(z)

p∏
i=1

z
(q−p−1)/2
i (1 − zi)(n−q−p−1)/2 dzi . (1.162)

Remark. Taking complex Gaussian populations should introduce in the for-
mula above Δ2

p(z) instead of Δp(z) and should remove the 1
2 in the exponent.

1.8.2 The Probability for the Classical Hermitian Random
Ensembles and PDEs Generalizing Painlevé

1.8.2.1 The Gaussian Ensemble (GUE)

This section deals with the Gaussian Hermitian matrix ensemble, discussed
in previous section. Given the disjoint union of intervals
31 Using the standard notation, defined for a partition λ,

(a)λ :=
∏
i

(
a+ (1 − i)

)
λi
,with (x)n := x(x+ 1) · · · (x+ n− 1) , x0 = 1 .
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E :=
r⋃
1

[c2i−1, c2i] ⊆ R ,

define the algebra of differential operators

Bk =
2r∑
i=1

ck+1
i

∂

∂ci
. (1.163)

The PDE (1.164) appearing below was obtained by Adler–Shiota–van Moer-
beke [1, 2, 9], whereas the ODE (1.165) was first obtained by Tracy–Widom
[85]. The method used here is different from the one of Tracy–Widom, who
use the method proposed by Jimbo–Miwa–Mori–Sato [54]. John Harnad then
shows in [51] the relationship between the PDEs obtained by Tracy–Widom
and by Adler–van Moerbeke.

Theorem 1.8.2. The log of the probability

Pn := Pn(all zi ∈ E) =

∫
En Δ2

n(z)
∏n

1 exp(−z2
i ) dzi∫

Rn Δ2
n(z)

∏n
1 exp(−z2

i ) dzi

satisfies the PDE

(B4
−1+8nB2

−1+12B2
0+24B0−16B−1B1) log Pn+6(B2

−1 log Pn)2 = 0 . (1.164)

In particular

f(x) :=
d
dx

log Pn

(
max
i

zi ≤ x
)

satisfies the 3rd-order ODE

f ′′′ + 6f ′2 + 4(2n− x2)f ′ + 4xf = 0 , (1.165)

which can be transformed into the Painlevé IV equation.

Proof. In Thm. 1.5.1, it was shown that integral (here we indicate the t- and
E-dependence)

τn(t;E) =
1
n!

∫
En

Δ2
n(z)

n∏
1

exp
(
−z2

i +
∞∑
1

tkz
k
i

)
dzi (1.166)

satisfies the KP equation, regardless of E,
((

∂

∂t1

)4

+3
(

∂

∂t2

)2

−4
∂2

∂t1∂t3

)
log τn+6

((
∂

∂t1

)2

log τn

)2

= 0 , (1.167)

and in Thm. 1.6.1, τn(t;E) and τn(t; R) were shown to satisfy the same Vira-
soro constraints, and, in particular for the Gaussian case, the three equations
(1.133), with the boundary term missing in the case τn(t; R).
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Let Ti denote the pure t-differentiation appearing on the right-hand side
of (1.133), with “principal symbol” ∂/∂ti+2,

T−1 :=
∂

∂t1
− 1

2

∑
i≥2

iti
∂

∂ti−1

T0 :=
∂

∂t2
− 1

2

∑
i≥1

iti
∂

∂ti

T1 :=
∂

∂t3
− 1

2

∑
i≥1

iti
∂

∂ti+1
− n

2

∑
i≥2

iti
∂

∂ti−1
.

(1.168)

Recall the differential operatorsDi in terms of the boundary operators (1.163),
appearing in the Virasoro constraints (1.133),

D−1 = − 1
2B−1

D0 = − 1
2B0

D1 = − 1
2 (B1 + nB−1) .

(1.169)

With this notation, the Virasoro constraints (1.133) can be summarized as
(F := log τn(t;E))

D−1F = T−1F − nt1
2

, D0F = T0F − n2

2
, D1F = T1F − n2t1

2
.

Expressing the action of Ti on t1, one finds

T−1t1 = 1 − t2 T 2
−1t1 = T−1(1 − t2) = 3

2 t3

T1t1 = −nt2 T 3
−1t1 = T−1T

2
−1t1 = T−1

(
3
2 t3
)

= −3t4 ,

one computes consecutive powers of Di and their products, and one notices
that Di involves differentiation with regard to the boundary terms only, im-
plying in particular that Di and Ti commute. In view of the form of the KP
equation, containing only certain partials, and in view of the fact that the
“principal symbol” of Ti equals ∂/∂ti+2, it suffices to compute

D−1F = T−1F − nt1
2

D2
−1F = D−1T−1F = T−1D−1F = T−1

(
T−1F − nt1

2

)

= T 2
−1F − n

2
(1 − t2)

D3
−1F = D−1T

2
−1F = T 2

−1D−1F = T 2
−1

(
T−1F − nt1

2

)

= T 3
−1F − 3n

4
t3
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D4
−1F = D−1T

3
−1F = T 3

−1D−1F = T 3
−1

(
T−1F − nt1

2

)

= T 4
−1F +

3n
2
t4

(1.170)

D1F = T1F − n2t1
2

D−1D1F = D−1T1F = T1D−1F = T1

(
T−1F − n2t1

2

)

= T1T−1F +
n3

2
t2

D0F = T0F − n2

2

D2
0F = D0T0F = T0D0F = T0

(
T0F − n2

2

)
= T 2

0F .

Since one is actually interested in the integral (1.166) along the locus L :=
{all ti = 0}, and since readily from (1.168) one has Ti|L = ∂/∂ti+2, one de-
duces from the equations above (1.170)32

D2
−1F

∣∣
L = T 2

−1F
∣∣
L−

n

2
=

∂2F

∂t21

∣∣∣∣
L
−n

2

D4
−1F

∣∣∣
L

= T 4
−1F

∣∣
L=

∂

∂t1
T 3
−1F

∣∣∣∣
L
= T 3

−1

∂F

∂t1

∣∣∣∣
L
=

∂4F

∂t41

∣∣∣∣
L

D2
0F
∣∣
L = T 2

0F
∣∣
L=

∂

∂t2
T0F

∣∣∣∣
L
=
(
∂2

∂t22
− ∂

∂t2

)
F

∣∣∣∣
L

D−1D1F
∣∣∣
L

= T1T−1F
∣∣
L=

∂

∂t3
T−1F

∣∣∣∣
L
=
(

∂2

∂t3∂t1
− 3

2
∂

∂t2

)
F

∣∣∣∣
L

D0F
∣∣
L = T0F

∣∣
L−

n2

2
=

∂F

∂t2

∣∣∣∣
L
−n2

2
.

By solving the five expressions above linearly in terms of the left-hand side,
one deduces

∂2F

∂t21

∣∣∣∣
L

= D2
−1F

∣∣
L+

n

2
,

∂4F

∂t41

∣∣
L = D4

−1F
∣∣
L

∂F

∂t2

∣∣∣∣
L

= D0F
∣∣
L+

n2

2
∂2F

∂t22

∣∣∣∣
L

= D2
0F
∣∣
L+D0F

∣∣
L+

n2

2

∂2F

∂t1∂t3

∣∣∣∣
L

= D−1D1F
∣∣
L+

3
2
D0F

∣∣
L+

3n2

4
.

32 Notice one also needs D0F , because ∂F/∂t2 appears in the expressions D2
0F and

D−1D1F below.



1 Random and Integrable Models in Mathematics and Physics 117

So, substituting into the KP equation and expressing the Di in terms of the
Bi as in (1.169), one finds

0 =

((
∂

∂t1

)4

+ 3
(

∂

∂t2

)2

− 4
∂2

∂t1∂t3

)
F + 6

((
∂

∂t1

)2

F

)2∣∣∣∣∣
L

= D4
−1 + 3

(
D2

0F + D0F +
n2

2

)
− 4
(
D−1D1F +

3
2
D0F +

3n2

4

)

+ 6
(
D2

−1F +
n

2

)2∣∣∣∣
L

= D4
−1F + 6nD2

−1F + 3D2
0F − 3D0F − 4D−1D1F + 6(D2

−1F )2
∣∣
L

=
1
16

(B4
−1 + 8nB2

−1 + 12B2
0 + 24B0 − 16B−1B1)F +

3
8
(B2

−1F )2
∣∣
L ,

which establishes (1.164) for (remember notation (1.166))

F = log τn(0, E) = log Pn(all zi ∈ E) + log τn(0,R) .

Since the Bk are derivations with regard to the boundary points of the set E
and since log τn(0,R) is independent of those points, (1.164) is also valid for
log Pn; it is an equation of order 4.

When E is a semi-infinite interval (−∞, x), then one has Bk = xk+1∂/∂x
and then, of course, PDE (1.164) turns into an ODE (1.165), of an order one
less, involving f(x) := (d/Dx) log Pn(maxi zi ≤ x). For the connection with
Painlevé IV, see Sect. 1.8.3, thus ending the proof of Thm. 1.8.2. ��

1.8.2.2 The Laguerre Ensemble

Given E ⊂ R
+ and the boundary operators

Bk :=
2r∑
1

ck+2
i

∂

∂ci
, for k = −1, 0, 1, . . . ,

the following statement holds: (see [1, 2, 9] for the PDE obtained below; the
ODE was first obtained by Tracy–Widom [85])

Theorem 1.8.3. The log of the probability

Pn := Pn(all zi ∈ E) =

∫
En Δ2

n(z)
∏n

1 z
a
i exp(−zi) dzi∫

(R+)n Δ2
n(z)

∏n
1 z

a
i exp(−zi) dzi

satisfies the PDE

(B4
−1 − 2B3

−1 + (1 − a2)B2
−1 − 4B1B−1 + 3B2

0

+ 2(2n+ a)B0B−1 − 2B1 − (2n+ a)B0) log Pn

+ 6(B2
−1 log Pn)2 − 4(B2

−1 log Pn)(B−1 log Pn) = 0 . (1.171)
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In particular, f(x) := x(d/dx) logPn(maxi zi ≤ x) satisfies

x2f ′′′ +xf ′′ +6xf ′2−4ff ′−((a−x)2 −4nx
)
f ′− (2n+a−x)f = 0 , (1.172)

which can be transformed into the Painlevé V equation.

1.8.2.3 The Jacobi Ensemble

The Jacobi weight is given by (1−z)a(1+z)b. For E ⊂ [−1,+1], the boundary
differential operators Bk are now defined by

Bk =
2r∑
1

ck+1
i (1 − c2i )

∂

∂ci
.

Introduce the following parameters

r = 4(a2 + b2) , s = 2(a2 − b2) , q = 2(2n+ a+ b)2

r = a2 + b2 , s = a2 − b2 , q = (2n+ a+ b)2 .

Theorem 1.8.4 (Haine–Semengue [49] and Adler–van Moerbeke [9]).
The following probability

Pn := Pn(all zi ∈ E) =

∫
En Δn(z)2

∏n
i=1(1 − zi)a(1 + zi)b dzi∫

[−1,1]n Δn(z)2
∏n
i=1(1 − zi)a(1 + zi)b dzi

(1.173)

satisfies the PDE :

(B4
−1 + (q − 2r + 2)B2

−1 + q(3B2
0 − 2B0 + 2B2) + 4B0B2

−1

− 2(2q − 1)B1B−1 + (2B−1 log Pn − s)(B1 − B−1 + 2B0B−1)
)
log Pn

+ 2B2
−1 log Pn(2B0 log Pn + 3B2

−1 log Pn) = 0 . (1.174)

In particular, f(x) := (1 − x2)(d/dx) log Pn(maxi λi ≤ x) for 0 < x < 1
satisfies :

(x2 − 1)2f ′′′ + 2(x2 − 1)(xf ′′ − 3f ′2)

+ (8xf − q(x2 − 1) − 2sx− 2r)f ′ − f(2f − qx− s) = 0 , (1.175)

which is a version of Painlevé VI.

Proof of Thms. 1.8.3 and 1.8.4. It goes along the same lines as Thm. 1.8.2 for
GUE, namely using the Virasoro constraints (1.137) and (1.138), together with
the KP equation (1.167). This then leads to the PDEs (1.171) and (1.174). The
ODEs (1.172) and (1.175) are found by simple computation. For connections
with the Painlevé equations see Sect. 1.8.3. ��
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1.8.3 Chazy and Painlevé Equations

Each of these three equations (1.165), (1.172), (1.175) is of the Chazy form

f ′′′ +
P ′

P
f ′′ +

6
P
f ′2 − 4P ′

P 2
ff ′ +

P ′′

P 2
f2 +

4Q
P 2

f ′ − 2Q′

P 2
f +

2R
P 2

= 0 , (1.176)

with P,Q,R having the form:

Gauss P (x) = 1 4Q(x) = −4x2 + 8n R = 0

Laguerre P (x) = x 4Q(x) = −(x− a)2 + 4nx R = 0

Jacobi P (x) = 1 − x2 4Q(x) = −(q(x2 − 1) + 2sx+ 2r) R = 0 .

The differential equation (1.176) belongs to the general Chazy class

f ′′′ = F (z, f, f ′, f ′′) ,
where F is rational in f, f ′, f ′′ and locally analytic in z ,

subjected to the requirement that the general solution be free of movable
branch points; the latter is a branch point whose location depends on the
integration constants. In his classification Chazy found thirteen cases, the first
of which is given by (1.176), with arbitrary polynomials P (z), Q(z), R(z) of
degree 3, 2, 1 respectively. Cosgrove and Scoufis [28,29], show that this third-
order equation has a first integral, which is second order in f and quadratic
in f ′′,

f ′′2 +
4
P 2

(
(Pf ′2 +Qf ′ +R)f ′ − (P ′f ′2 +Q′f ′ +R′)f

+ 1
2 (P ′′f ′ +Q′′)f2 − 1

6P
′′′f3 + c

)
= 0 ; (1.177)

c is the integration constant. Equations of the general form

f ′′2 = G(x, f, f ′′)

are invariant under the map

x �→ a1z + a2

a3z + a4
and f �→ a5f + a6z + a7

a3z + a4
.

Using this map, the polynomial P (z) can be normalized to

P (z) = z(z − 1), z, or 1 .

Equation (1.177) is a master Painlevé equation, containing the 6 Painlevé
equations, replacing f(z) by some new variable g(z), e.g,

• g′′2 = −4g′3 − 2g′(zg′ − g) +A1 (Painlevé II)
• g′′2 = −4g′3 + 4(zg′ − g)2 +A1g

′ +A2 (Painlevé IV)
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• (zg′′)2 = (zg′ − g)
(−4g′2 +A1(zg′ − g) +A2

)
+A3g

′ +A4 (Painlevé V)
• (z(z − 1)g′′)2 = (zg′ − g)

(
4g′2 − 4g′(zg′ − g) + A2

)
+ A1g

′2 + A3g
′ + A4

(Painlevé VI)

Now, each of these Painlevé II, IV, V, VI equations can be transformed into
the standard Painlevé equations, which are all differential equations of the
form

f ′′ = F (z, f, f ′) , rational in f, f ′, analytic in z ,

whose general solution has no movable critical points. Painlevé showed that
this requirement leads to 50 types of equations, six of which cannot be reduced
to known equations.

1.9 Large Hermitian Matrix Ensembles

1.9.1 Equilibrium Measure for GUE and Wigner’s Semi-Circle

Remember according to (1.153), the average density of eigenvalues is given by
Kn(z, z) dz. Pastur and Marcenko [76] have proposed a method to compute
the average density of eigenvalues (equilibrium distribution), when n gets very
large. For a rigorous and very general approach, see Johansson [55], who also
studies the fluctuations of the linear statistics of the eigenvalues about the
equilibrium distribution.

Consider the case of a random Hermitian ensemble with probability defined
by

1
Zn

∫
Hn(E)

dM exp
(
− n

2v2
Tr(M −A)2

)
dM ,

for a diagonal matrix A = (a1, . . . , an). Consider then the spectral function
of A, namely dσ(λ) := 1

n

∑
i δ(λ − ai). The Pastur–Marcenko method tells

us that the Stieltjes transform of the equilibrium measure of dν(λ), when
n → ∞, namely

f(z) =
∫ ∞

−∞

dν(λ)
λ− z

, Im z �= 0 ,

satisfies the integral equation

f(z) =
∫ ∞

−∞

dσ(λ)
λ− z − v2f(z)

. (1.178)

The density of the equilibrium distribution is then given by

dν(z)
dz

=
1
π

Im f(z) .

When A = 0, the integral equation (1.178) becomes
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f(z) =
1

−z − v2f(z)

with solution f(z) = (−z±√
z2 − 4v2)/(2v2), and thus one finds the classical

semi-circle law,

dν(z)
dz

=
1
π

Im f(z) =

{√
4v2 − z2/(2πv2) for −2v ≤ z ≤ 2v

0 for |z| ≥ 2v,

concentrated on the interval [−2v, 2v].
As an exercise, consider now the case, where v = 1 and where the diagonal

matrix A has two distinct eigenvalues, namely

A = diag(α, . . . , α︸ ︷︷ ︸
pn

, β, . . . , β︸ ︷︷ ︸
(1−p)n

) .

See, e.g., Adler–van Moerbeke [12]. The integral equation (1.178) becomes

f − 1 − p

β − z − f
− p

α− z − f
= 0 , for 0 < p < 1 ,

which, upon clearing, leads to a cubic equation for g := f + z,

g3 − (z + α + β)g2 +
(
z(α+ β) + αβ + 1

)
g − αβz − (1 − p)α− pβ = 0 ,

having, as one checks, a quartic discriminant D1(z) in z. Since the roots of a
cubic polynomial involve, in particular, the square root of the discriminant,
the solution g(z) of the cubic will have a non-zero imaginary part, if and only
if D1(z) < 0. Thus one finds the following equilibrium density,

dν(z)
dz

=
1
π

Im f(z) =

{
(1/π) Im g(z) for z such that D1(z) < 0
0 for z such that D1(z) ≥ 0.

Therefore the boundary of the support of the equilibrium measure will be given
by the real roots of D1(z) = 0. Depending on the values of the parameters α,
β and p, there will be four real roots or two real roots, with a critical situation
where there are three real roots, i.e., when two of the four real ones collide.
The critical situation occurs exactly when the discriminant D2(α, β, p) (with
regard to z) of D1(z) vanishes, namely when

D2(α, β, p) = 4p(1 − p)γ(γ3 − 3γ2 + 3γ(9p2 − 9p+ 1) − 1)3
∣∣
γ=(α−β)2

= 0 .

This polynomial has a positive root γ, which can be given explicitly, the others
being imaginary, and one checks that, when one has the relationship

α− β =
q + 1√
q2 − q + 1

, upon using the parametrization p =
1

q3 + 1
,
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two of the four roots of D1(z) collide. This is to say, this is the precise point at
which the support of the equilibrium measure goes from two to one interval.
This then occurs exactly at value

z = β +
2q − 1√
q2 − q + 1

on the real line.

1.9.2 Soft Edge Scaling Limit for GUE and the Tracy–Widom
Distribution

Consider the probability measure on eigenvalues zi of the n × n Gaussian
Hermitian ensemble (GUE)

Pn(all zi ∈ Ẽ) =

∫
Ẽn Δ2

n(z)
∏n

1 exp(−z2
i ) dzi∫

Rn Δ2
n(z)

∏n
1 exp(−z2

i ) dzi
.

Given the disjoint union E :=
⋃r

1[x2i−1, x2i] ⊂ R, define the gradient and the
Euler operator with respect to the boundary points of the set E:

∇x =
2r∑
1

∂

∂xi
and Ex =

2r∑
1

xi
∂

∂xi
. (1.179)

Remember the definition of the Fredholm determinant of a continuous kernel
K(x, y), the continuous analogue of the discrete kernel (1.39),

det
(
I −K(x, y)χE(y)

)
= 1 +

∞∑
n=1

(−1)n

n!

∫
E

dz1 · · · dzn det
(
K(zi, zj)

)
1≤i,j≤n .

We now state: [1, 2, 85]

Theorem 1.9.1. The gradient

f(x1, . . . , x2r) := ∇x log P(Ec) ,

with
P(Ec) := lim

n→∞ Pn(all
√

2n1/6(zi −
√

2n) ∈ Ec) ,

satisfies the 3rd-order non-linear PDE :(∇3
x − 4(Ex − 1

2 )
)
f + 6(∇xf)2 = 0 . (1.180)

In particular, for E = (x,∞),

F(x) := lim
n↗∞

Pn(
√

2n1/6(zmax −
√

2n) ≤ x)

= det(I − Aχ(x,∞))

= exp
(
−
∫ ∞

x

(α− x)g2(α) dα
)
, (1.181)
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is the Tracy–Widom distribution, with33

A(x, y) :=
A(x)A′(y) − A′(x)A(y)

x− y
=
∫ ∞

0

A(u+ x)A(u+ y) du

and g(α) the Hastings–McLeod (unique) solution of
{
g′′ = αg + 2g3

g(α) ∼ exp(− 2
3α

3/2)/(2
√
πα1/4) for α ↗ ∞ (Painlevé II).

Proof. Step 1. Applying Prop. 1.7.5, it follows that

Pn(all zi ∈ Ec) = det
(
I −Kn(y, z)χE(z)

)
, (1.182)

where the kernel Kn(y, z) is given by Prop. 1.7.3,

Kn(y, z) =
(
n

2

)1/2

exp
(− 1

2 (y2+z2)
)pn(y)pn−1(z) − pn−1(y)pn(z)

y − z
. (1.183)

The pns are orthonormal polynomials with respect to exp(−z2) and thus pro-
portional to the classical Hermite polynomials:

pn(y) :=
1

2n/2
√
n!π1/4

Hn(y) =
1√
hn

yn + · · · , (1.184)

with

Hn(y) := exp(y2)
(
− d

dy

)n
exp(−y2) , hn =

√
πn!
2n

.

Step 2. The Plancherel–Rotach asymptotic formula (see Szegő [83]) says
that

exp
(
−x2

2

)
n1/12Hn(x)

2n/2+1/4
√
n!π1/4

∣∣∣∣
x=

√
2n+1+t/(

√
2n1/6)

= A(t) +O(n−2/3) ,

uniformly for t ∈ compact K ⊂ C and thus, in view of (1.184),

exp
(
−x2

2

)
pn(x)

∣∣∣∣
x=

√
2n+1+t/(

√
2n1/6)

= 21/4n−1/12
(
A(t) +O(n−2/3)

)
.

(1.185)
Since the Hermite kernel (1.183) also involves pn−1(x), one needs an estimate
like (1.185), with the same scaling but for pn replaced by pn−1. So, one needs
the following:

33 Remember the Airy function:

A(x) =
1

π

∫ ∞

0

cos

(
u3

3
+ xu

)
du , satisfying the ODE A′′(x) = xA(x) .
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x =
√

2n+ 1 +
t√

2n1/6

=

√
(2n− 1)

(
1 +

2
2n− 1

)
+

t√
2(n− 1)1/6

(
1 + 1/(n− 1)

)1/6

=
√

2n− 1

(
1 +

1
2n− 1

+O

(
1
n2

))
+

t√
2(n− 1)1/6

(
1 +O

(
1
n

))

=
√

2n− 1 +
t + 1/n1/3

√
2(n− 1)1/6

+O

(
1

n7/6

)
.

Hence, from (1.185) it follows that

exp
(
−x2

2

)
pn−1(x)

∣∣∣∣
x=

√
2n+1+t/(

√
2n1/6)

= exp
(
−x2

2

)
pn−1(x)

∣∣∣∣
x=

√
2n−1+(t+n−1/3)/(

√
2(n−1)1/6)+···

= 21/4n−1/12
(
A(t + n−1/3) +O(n−2/3)

)
. (1.186)

From the definition of the Fredholm determinant, one needs to find the limit
of Kn(y; z) dz. Therefore, in view of (1.183) and using the estimates (1.185)
and (1.186),

lim
n→∞Kn(y; z) dz

∣∣∣∣y=(2n+1)1/2+t/(
√

2n1/6)

z=(2n+1)1/2+s/(
√

2n1/6)

= − lim
n→∞

(
n

2

)1/2

exp
(− 1

2 (y2 + z2)
)

× pn(y)(pn(z)−pn−1(z))−pn(z)(pn(y)−pn−1(y))
(y−z)√2n1/6

∣∣∣∣y=(2n+1)1/2+t/(
√

2 n1/6)

z=(2n+1)1/2+s/(
√

2n1/6)

= lim
n→∞

(
n

2

)1/2

(21/4n−1/12)2n−1/3

× A(t)
(
A(s + n−1/3) − A(s)

)− A(s)
(
A(t + n−1/3) − A(t)

)
)

n−1/3(t− s)
ds

=
A(t)A′(s) − A(s)A′(t)

t− s
ds = A(t, s) ds

and thus for E :=
⋃2r

1 [x2i−1, x2i] and Ẽ :=
⋃2r

1 [c2i−1, c2i], related by

Ẽ =
√

2n+
E√

2n1/6
, (1.187)

one has shown (upon taking the limit term by term in the sum defining the
Fredholm determinant)
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lim
n→∞ Pn(all zi ∈ Ẽc) = lim

n→∞ Pn

(
all zi ∈

√
2n+

Ec

√
2n1/6

)

= lim
n→∞ Pn

(
all zi ∈ (2n+ 1)1/2 +

Ec

√
2n1/6

)

= lim
n→∞ det(I −KnχẼ)

∣∣
Ẽ=(2n+1)1/2+E/(

√
2n1/6)

= det(I − AχE).

Step 3. From Thm. 1.8.2, Pn(all zi ∈ Ẽc) satisfies, with regard to the
boundary points ci of Ẽ, the PDE (1.164); thus setting that scaling into this
PDE yields (remember ∇x and Ex are as in (1.179) and Bk =

∑
i c
k+1
i ∂/∂ci)

0 =
(B4

−1 + 8nB2
−1 + 12B2

0 + 24B0 − 16B−1B1

)
log Pn

+ 6
(B2

−1 log Pn

)2∣∣
ci=

√
2n+xi/(

√
2n1/6)

= 4n2/3
[(∇3

x − 4(Ex − 1
2 )
)∇x log P + 6(∇2

x log P)2
]

+ o(n2/3) .

Note that in this computation, the terms of order n4/3 cancel, because the
leading term in

12B2
0 − 16B−1B1 = −4

∑
i

c2i

(
∂

∂ci

)2

+ · · · = −16n4/3∇2
x + · · ·

cancels versus the leading term in 8nB2−1 = 16n4/3∇2
x + · · · ; thus only the

terms of order n2/3 remain. Since in step 2 it was shown that the limit ex-
ists, the term in brackets vanishes, showing that log P(Ec) satisfies the PDE
(1.180).

Step 4. In particular, upon picking E = (x,∞), the PDE (1.180) for

f(x) =
∂

∂x
logF(x) =

∂

∂x
log lim

n↗∞
Pn

(√
2n1/6

(
zmax −

√
2n
) ≤ x

)

becomes an ODE:
f ′′′ − 4xf ′ + 2f + 6f ′2 = 0 .

Multiplying this equation with f ′′ and integrating from −∞ to x lead to the
differential equation (the nature of the solution shows the integration constant
must vanish)

f ′′2 + 4f ′(f ′2 − xf ′ + f) = 0 . (1.188)

Then, setting {
f ′ = −g2

f = g′2 − xg2 − g4
(1.189)

and, since then f ′′ = −2gg′, an elementary computation shows that (1.189)
is an obvious solution to (1.188). For (1.189) to be valid, the derivative of the
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right hand side of the second expression in (1.189) must equal the derivative
of the right hand side of the first expression in (1.189), i.e., we must have:

0 = (f)′ − f ′ = (g′2 − xg2 − g4)′ + g2 = 2g′(g′′ − 2g3 − xg) ,

and so g′′ = 2g3 + xg. Hence

∂2

∂x2
logF(x) = f ′ = −g2 .

Integrating once yields (assuming that g2 decays fast enough at ∞, which will
be apparent later)

∂

∂x
logF(x) =

∫ ∞

x

g2(u) du ;

integrating once more and further integrating by parts yield

logF(x) = −
∫ ∞

x

dα
∫ ∞

α

g2(u) du

= −
∫ ∞

x

dα
(

d

dα
α

)∫ ∞

α

g2(u) du

= −α
∫ ∞

α

g2(u) du
∣∣∣∣
∞

x

−
∫ ∞

x

αg2(α) dα

= −
∫ ∞

x

(α − x)g2(α) dα , (1.190)

confirming (1.181). For x → ∞, one checks that, on the one hand, from the
definition of the Fredholm determinant of A, the two leading terms are given
by

F(x) = det
(
I − Aχ[x,∞)

)
= 1 −

∫ ∞

x

A(z, z) dz + · · · (1.191)

and, on the other hand, from (1.190), the two leading terms are

F(x) = 1 −
∫ ∞

x

(α− x)g2(α) dα + · · · . (1.192)

Therefore, comparing the two expressions above, (1.191) and (1.192), one has
equality up to higher order terms∫ ∞

x

(α− x)g2(α) dα =
∫ ∞

x

dz A(z, z) + · · ·

and upon taking two derivatives in x,

−g2(x) =
∂

∂x
A(x, x) + · · ·

=
∂

∂x

∫ ∞

0

A(u+ x)2 du+ · · ·

=
∂

∂x

∫ ∞

x

A(u)2 du+ · · ·
= −A(x)2 + · · · ,
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showing that asymptotically g(x) ∼ A(x) for x → ∞. It is classically known
that asymptotically

A(x) =
exp(− 2

3x
3/2)

2
√
πx1/4

(
1 +

∞∑
1

αi
(x3/2)i

+ . . .

)
, as x → ∞ .

The solution g(x) of g′′ = 2g3 + xg behaving like the Airy function at ∞ is
unique (Hastings–McLeod solution). It behaves like

g(x) = Ai(x) + O
(

exp(− 4
3x

3/2)
x1/4

)
for x → ∞

=

√−x
2

(
1 +

1
8x3

− 73
128x6

+ O(|x|−9)
)

for x → −∞ .

The Tracy–Widom distribution F of mean and standard deviation (see Tracy–
Widom [88])

E(F) = −1.77109 and σ(F) = 0.9018

has a density decaying for x → ∞ as (since the probability distribution F(x)
tends to 1 for x → ∞)

F ′(x) = F(x)
∫ ∞

x

g2(α) dα ∼
∫ ∞

x

A2(α) dα ∼ 1
8πx

exp(− 4
3x

3/2)

for x → ∞ . (1.193)

The last estimate is obtained by integration by parts:∫ ∞

x

A2(u) du =
∫ ∞

x

−1
8πu

(
1 +

∞∑
1

ci
(u3/2)i

)
d
(
exp(− 4

3u
3/2)
)

=
exp(− 4

3x
3/2)

8πx

(
1 +

∞∑
1

ci
(x3/2)i

)

− 1
8π

∫ ∞

x

exp(− 4
3u

3/2)
u2

(
1 +

∞∑
1

c′i
(u3/2)i

)
.

Then, following conjectures by Dyson [34] and Widom [94], Deift–Its–Kra-
sovsky–Zhou [32] and Baik–Buckingham–DiFranco [18] give a representation
of F(x) as an integral from −∞ to x and thus this provides an estimate for
x → −∞,

F(x) = 21/24eζ
′(−1) exp(−|x|3/12)

|x|1/8 exp
{∫ x

−∞

(
R(y) − 1

4
y2 +

1
8y

)
dy
}

= 21/24eζ
′(−1) exp(−|x|3/12)

|x|1/8
(

1 +
3

26|x|3 +O(|x|−6

)
, for x → −∞ ,

where
R(y) =

∫ ∞

y

g(s)2ds = g′(y)2 − yg(y)2 − g(y)4 . ��
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79. T. Seppäläinen: Probab. Theory Related Fields, 112, 221 (1998)
80. R.P. Stanley: Enumerative Combinatorics, vol 1 (Cambridge Univ. Press, Cam-

bridge 1997).
81. R.P. Stanley: Enumerative Combinatorics, vol 2 (Cambridge Univ. Press, Cam-

bridge 1999)
82. D. Stanton, D. White: Constructive Combinatorics, (Springer, New York 1986)
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Introduction

Random matrix theory began in the 1950s, when E. Wigner [58] proposed
that the local statistical behavior of scattering resonance levels for neutrons
off heavy nuclei could be modeled by the statistical behavior of eigenvalues
of a large random matrix, provided the ensemble had orthogonal, unitary
or symplectic invariance. The approach was developed by many others, like
Dyson [30, 31], Gaudin [34] and Mehta, as documented in Mehta’s [44] fa-
mous treatise. The field experienced a revival in the 1980s due to the work
of M. Jimbo, T. Miwa, Y. Mori, and M. Sato [36, 37], showing the Fredholm
determinant involving the sine kernel, which had appeared in random ma-
trix theory for large matrices, satisfied the fifth Painlevé transcendent; thus
linking random matrix theory to integrable mathematics. Tracy and Widom
soon applied their ideas, using more efficient function-theoretic methods, to
the largest eigenvalues of unitary, orthogonal and symplectic matrices in the
limit of large matrices, with suitable rescaling. This lead to the Tracy–Widom
distributions for the 3 cases and the modern revival of random matrix theory
(RMT) was off and running.

J. Harnad (ed.), Random Matrices, Random Processes and Integrable Systems, 131
CRM Series in Mathematical Physics, DOI 10.1007/978-1-4419-9514-8 2,
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This article will focus on integrable techniques in RMT, applying Virasoro
gauge transformations and integrable equation (like the KP) techniques for
finding Painlevé – like ODEs or PDEs for probabilities that are expressible
as Fredholm determinants coming up in random matrix theory and random
processes, both for finite and large n-limit cases. The basic idea is simple –
just deform the probability of interest by some time parameters, so that, at
least as a function of these new time parameters, it satisfies some integrable
equations. Since in RMT you are usually dealing with matrix integrals, roughly
speaking, it is usually fairly obvious which parameters to “turn on,” although
it always requires an argument to show you have produced “τ -functions” of an
integrable system. Fortunately, to show a system is integrable, you ultimately
only have to check bilinear identities and we shall present very general methods
to accomplish this. Indeed, the bilinear identities are the actual source of a
sequence of integrable PDEs for the τ -functions.

Secondly, because we are dealing with matrix integrals, we may change co-
ordinates without changing the value of the integral (gauge invariance), lead-
ing to the matrix integrals being annihilated by partial differential operators
in the artificially introduced time and the basic parameters of the problem
– so-called Virasoro identities. Indeed, because the most useful coordinate
changes are often “S1-like” and because the tangent space of Diff(S1) at the
identity is the Virasoro Lie algebra (see [41]), the family of annihilating oper-
ators tends to be a subalgebra of the Virasoro Lie algebra. Integrable systems
possess vertex algebras which infinitesimally deform them and the Virasoro
algebras, as they explicitly appear, turn out to be generated by these vertex
algebras. Thus while other gauge transformation are very useful in RMT, the
Virasoro generating ones tend to mesh well with the integrable systems. Fi-
nally, the PDEs of integrable systems, upon feeding in the Virasoro relations,
lead, upon setting the artificially introduced times to zero, to Painlevé-like
ODE or PDE for the matrix integrables and hence for the probabilities, but
in the original parameters of the problem! Sometimes we may have to intro-
duce “extra parameters,” so that the Virasoro relations close up, which we
then have to eliminate by some simple means, like compatibility of mixed
partial derivatives.

In RMT, one is particularly interested in large n (scaled) limits, i.e., cen-
tral limit type results, usually called universality results; moreover, one is
interested in getting Painlevé type relations for the probabilities in these lim-
iting relations, which amounts to getting Painlevé type ODEs or PDEs for
Fredholm determinants involving limiting kernels, analogous to the sine ker-
nel previously mentioned. These relations are analogous to the heat equation
for the Gaussian kernel in the central limit theorem (CLT), certainly a re-
vealing relation. There are two obvious ways to derive such a relation; either,
get a relation at each finite step for a particularly “computable or integrable”
sequence of distributions (like the binomial) approaching the Gaussian, via
the CLT, and then take a limit of the relation, or directly derive the heat
equation for the actual limiting distribution. In RMT, the same can be said,
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and the integrable system step and Virasoro step mentioned previously are
thus applied directly to the “integrable” finite approximations of the limiting
case, which just involve matrix integrals. After deriving an equation at the
finite n-step, we must ensure that estimates justify passage to the limit, which
ultimately involves estimates of the convergence of the kernel of a Fredholm
determinant. If instead we decide to directly work with the limiting case with-
out passing through a limit, it is more subtle to add time parameters to get
integrability and to derive Virasoro relations, as we do not have the crutch of
finite matrix integrals. Nonetheless, working with the limiting case is usually
quite insightful, and we include one such example in this article to illustrate
how the limiting cases in RMT faithfully remember their finite – n matrix
integral ancestry.

In Sect. 2.1 we discuss random matrix ensembles and limiting distributions
and how they directly link up with KP theory and its vertex operator, leading
to PDEs for the limiting distribution. This is the only case where we work only
with the limiting distribution. In Sect. 2.2 we derive recursion relations in n
for n-unitary integrals which include many combinatoric generating functions.
The methods involve bi-orthogonal polynomials on the circle and we need to
introduce the integrable “Toeplitz Lattice,” an invariant subsystem of the
semi-infinite 2-Toda lattice of Ueno–Takasaki [55]. In Sect. 2.3 we study the
coupled random matrix problem, involving bi-orthogonal polynomials for a
nonsymmetric R

2 measure, and this system involves the 2-Toda lattice, which
leads to a beautiful PDE for the joint statistics of the ensemble. In Sect. 2.4 we
study Dyson Brownian motion and 2 associated limiting processes – the Airy
and Sine processes gotten by edge and bulk scaling. Using the PDE of Sect. 2.3,
we derive PDEs for the Dyson process and then the 2 limiting processes, by
taking a limit of the Dyson case, and then we derive for the Airy process
asymptotic long time results. In Sect. 2.5 we study the Pearcey process, a
limiting process gotten from the GUE with an external source or alternately
described by the large n behavior of 2n-non-intersecting Brownian motions
starting at x = 0 at time t = 0, with n conditioned to go to +

√
n, and the other

n conditioned to go to −√
n at t = 1, and we observe how the motions diverge

at t = 1
2 at x = 0, with a microscope of resolving power n−1/4. The integrable

system involved in the finite n problem is the 3-KP system and now instead
of bi-orthogonal polynomials, multiple orthogonal polynomials (MOPS) are
involved. We connect the 3-KP system and the associated Riemann–Hilbert
(RH) problem and the MOPs.

The philosophy in writing this article, which is based on five lectures de-
livered at CRM, is to keep as much as possible the immediacy and flow of the
lecture format through minimal editing and so in particular, the five sections
can read in any order. It should be mentioned that although the first section
introduces the basic structure of RMT and the KP equation, it in fact deals
with the most sophisticated example. The next point was to pick five exam-
ples which maximized the diversity of techniques, both in applying Virasoro
relations and using integrable systems. Indeed, this article provides a fair but
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sketchy introduction to integrable systems, although in point of fact, the only
ones used in this particular article are invariant subsystems (reductions) and
lattices generated from the n-KP, for n = 1, 2, 3. The point being that a lot of
the skill is involved in picking precisely the right integrable system to deploy.
Fortunately, if some sort of orthogonal polynomials are involved, this amounts
to deforming the measure(s) intelligently. For further reading see [1–18].
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2.1 Matrix Integrals and Solitons

2.1.1 Random Matrix Ensembles

Consider the probability ensemble over n× n Hermitian matrices

P
(
M ∈ H(E)

)
=

∫
sp(M)∈E e− tr V (M) dM∫
sp(M)∈R

e− tr V (M) dM

=

∫
En Δ

2
n(z)

∏n
1 exp

(−V (zi)
)
dzi∫

Rn Δ2
n(z)

∏n
1 exp

(−V (zi)
)
dzi

, (2.1)

with Δ(z) =
∏n
i,j=1(zi−zj) = det(zi−1

j )ni,j=1 the Vandermonde and with V (x)
a “nice” function so the integral makes sense, sp(M) means the spectrum of
M and E ⊂ R,

Hn(E) = {M an Hermitian n× n matrix | sp(M) ⊂ E} ,

dM =
n∏
i=1

dMii

∏
i<j

d RealMij

∏
i<j

d Imag(Mij) ,

the induced Haar measure on n× n Hermitian matrices, viewed as



2 Integrable Systems, Random Matrices, and Random Processes 135

T
(
SL(n,C)/ SU(n)

)∣∣
I
,

and where we have used the Weyl integration formula [35] for

M = U diag(z1, . . . , zn)U−1 ,

dM = Δ2
n(z1, . . . , zn)

n∏
1

dzi dU .

In order to recast P (M) so that we may take a limit for large n and avoid
∞-fold integrals, we follow the reproducing method of Dyson [30, 31].

Let pk(z) be the monic orthogonal polynomials:
∫

R

pi(z)pj(z)e−V (z) dz = hiδij (2.2)

and remember
(detA)2 = det(AAT ) . (2.3)

Compute

∫
Rn

Δ2
n(z)

n∏
1

exp
(−V (zi)

)
dzi

=
∫

Rn

det
(
pi−1(zj)

)n
i,j=1

det
(
pk−1(zl)

)n
k,l=1

n∏
1

exp
(−V (zi)

)
dzi

=
∑

π,π′∈Sn

(−1)π+π′
n∏
1

∫
R

pπ(k)−1(zk)pπ′(k)−1(zk) exp
(−V (zk)

)
dzk

= n!
n−1∏

0

∫
R

p2
k(z)e

−V (z) dz (orthogonality)

= n!
n−1∏

0

hk , (2.4)

and so using (2.3) and (2.4), conclude

P
(
M ∈ Hn(E)

)
=

1
n!
∏n

1 hi−1

∫
En

det
( n∑

1

pj−1(zk)pj−1(zl)
)n
k,l=1

n∏
1

exp
(−V (zi)

)
dzi

=
1
n!

∫
En

det
(
Kn(zk, zl)

)n
k,l=1

n∏
1

dzi ,

with the Christoffel–Darboux kernel

Kn(y, z) :=
n∑
j=1

ϕj(y)ϕj(z) =
hn
hn−1

(
ϕn(y)ϕn−1(z) − ϕn(z)ϕn−1(y)

)
y − z

, (2.5)
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and
ϕj(x) = e−V (x)/2pj−1(x)/

√
hj−1 .

Thus by (2.2) ∫
R

ϕi(x)ϕj(x) dx = δij ,

and so we have∫
R

Kn(y, z)Kn(z, u) dz = Kn(y, u) ,
∫

R

Kn(z, z) dz = n ,

– the reproducing property, (2.6)

which yields the crucial property:∫
Rn−m

det
(
Kn(zi, zj)

)n
i,j=1

dzm+1 . . . dzn
= (n−m)! det

(
Kn(zi, zj)

)m
i,j=1

. (2.7)

Replacing En → ∏k
1 dzi Rn−k in (2.1) and integrating out zk+1, . . . , zn via

the producing property yields:

“P (one eigenvalue in each [zi, zi + dzi], i = 1, . . . , k)

=
1(
n
k

) det
(
Kn(zi, zj)

)k
i,j=1

k∏
1

dzi , ” (2.8)

heuristically speaking. Setting

E =
⋃

dzi∈E
dzi =

⋃
Ei ,

and using Poincaré’s formula

P
(⋃

Ei

)
=
∑
i

P (Ei) −
∑
i<j

P (Ei ∩ Ej) +
∑
i<j<k

P (Ei ∩ Ej ∩ Ek) + · · · ,

yields the Fredholm determinant1

P
(
M ∈ Hn(Ec)

)
= 1 +

∞∑
k=1

(−λ)k
∫
z1≤···≤zk

det
(
KE
n (zi, zj)

)k
i,j=1

k∏
1

dzi

∣∣∣∣
λ=1

= det(I − λKE
n )
∣∣
λ=1

(2.9)

with kernel
KE
n (y, z) = Kn(y, z)IE(z)

and with IE(z) the indicator function of the set E, and more generally see [48],

P (exactly k-eigenvalues ∈ E) =
(−1)k

k!

(
∂

∂λ

)k
det(I − λKE

n )
∣∣∣∣
λ=1

. (2.10)

1 Ec is the complement of E in R.
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2.1.2 Large n-limits

The Fredholm determinant formulas (2.9) and (2.10), enable one to take large
n-limits of the probabilities by taking large n-limits of the kernels Kn(y, z).
The first and most famous such law is for the Gaussian case V (x) = x2,
although it has been extended far beyond the Gaussian case [29, 38].

Wigner’s semi-circle law : The density of eigenvalues converges (see Fig. 2.1)
in the sense of measure:

Kn(z, z) dz →
⎧⎨
⎩

1
π

√
2n− z2 dz, |z| ≤ √

2n ,

0, |z| > √
2n

(2.11)

and so
Exp(#eigenvalues in E) =

∫
E

Kn(z, z) dz.

This is a sort of Law of Large Numbers. Is there more refined universal be-
havior, a sort of Central Limit Theorem? The answer is as follows:

Bulk scaling limit : The density of eigenvalues near z = 0 is
√

2n/π and so
π/

√
2n = average distance between eigenvalues. Magnifying at z = 0 with

this rescaling

lim
n→∞Kn

(
πx√
2n

,
πy√
2n

)
d
(

yπ√
2n

)
=

sinπ(x − y)
π(x − y)

dy

=: Ksin(x, y) dy , (2.12)

with

lim
n→∞P

(
exactly k eigenvalues ∈ π√

2n
[−2a, 2a]

)

=
(−1)k

k!

(
∂

∂λ

k)
det
(
I − λK

[−2a,2a]
sin

)∣∣∣∣
λ=1

. (2.13)

Fig. 2.1.
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Moreover,

det
(
I − λK

[−2a,2a]
sin

)
= exp

∫ πa

0

f(x, λ)
x

dx

with

(xf ′′)2 + 4(xf ′ − f)(f ′2 + xf ′ − f) = 0
(

′ =
d
dx

)
, (2.14)

and boundary condition:

f(x, λ) ∼= −λx
π

−
(
λ

π

)2

x2 − · · · , x ∼ 0 .

The ODE (2.14) is Painlevé V, and this is the celebrated result of Jimbo,
Miwa, Mori, and Sato [36, 37].

Edge scaling limit : The density of eigenvalues near the edge, z =
√

2n of
the Wigner semi-circle is

√
2n1/6. Magnifying at the edge with the rescaling

1/
√

2n1/6:

lim
n→∞Kn

(√
2n+

u√
2n1/6

,
√

2n+
v√

2n1/6

)
d
(√

2n+
v√

2n1/6

)

:= KAiry(u, v) dv , (2.15)

with
KAiry(u, v) =

∫ ∞

0

Ai(x+ u)Ai(x + v) dx ,

Ai(u) =
1
π

∫ ∞

0

cos
(
u3

3
+ xu

)
dv .

(2.16)

Setting λmax =
√

2n+ u/
√

2n1/6

lim
n→∞P (

√
2n1/6(λmax −

√
2n) ≤ u) = det

(
I −K

[u,∞]
Airy

)

= exp
(
−
∫ ∞

u

(α− u)g2(α) dα
)

– the Tracy–Widom distribution , (2.17)

with
g′′ = xg + 2g3 (2.18)

and boundary condition:

g(x) � exp(− 2
3x

3/2)
2
√
πx1/4

, x → ∞ . (2.19)

Equation (2.18) is Painlevé II and (2.17) is due to Tracy–Widom [49].
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Hard edge scaling limit : Consider the Laguerre ensemble of n× n Hermitian
matrices:

e−V (z) dz = zν/2e−z/2I(0,∞)(z) dz . (2.20)

Note z = 0 is called the hard edge, while z = ∞ is called the soft edge.
The density of eigenvalues for large n has a limiting shape and the density of
eigenvalues near z = 0 is 4n. Rescaling the kernel with this magnification:

lim
n→∞K(ν)

n

(
u

4n
,
v

4n

)
d
(

v

4n

)

=: Kν(u, v) dv =
1
2

∫ 1

0

sJν(s
√
u)Jν(s

√
v) ds dv

=
Jν(

√
u)
√
vJ ′

ν(
√
v) − Jν(

√
v)
√
uJ ′

ν(
√
u)

2(u− v)
dv

(2.21)

yields the Bessel kernel, while one finds:

lim
n→∞P

(
no eigenvalue ∈ 1

4n
[0, x]

)

= det
(
I −K [0,x]

ν

)
= exp

(
−
∫ x

0

f(v)
u

du
)
, (2.22)

with
(xf ′′)2 − 4(xf ′ − f)f ′2 +

(
(x − ν2)f ′ − f

)
f ′ = 0 , (2.23)

and boundary condition:

f(x) = cνx
1+ν

(
1 − 1

2(2 + ν)
x+ · · ·

)
, cν = [22ν+2Γ (1 + ν)Γ (2 + ν)]−1 .

Equation (2.23) is Painlevé V and is due to Tracy–Widom [50].

2.1.3 KP Hierarchy

We give a quick discussion of the KP hierarchy. A more detailed discussion
can be found in [28, 56]. Let L = L(x, t) be a pseudo-differential operator
and Ψ+(x, t, z) its eigenfunction (wave function). The KP hierarchy is an
isospectral deformation of L:2

∂L

∂tn
= [(Ln)+, L], L = Dx + a−1(x, t)D−1

x + · · · , n = 1, 2, . . . ,

Dx =
∂

∂x
, t = (t1, t2, . . . )

(2.24)

2 Ψ− is the eigenfunction of L adjoint := LT , (A)+ := differential operator part
of A.
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with Ψ parametrized by Sato’s τ -function and satisfying

Ψ±(x, t, z) = exp

(
±
(
xz +

∞∑
1

tiz
i

))
τ(t ∓ [z−1])

τ(t)

= exp

(
±
(
xz +

∞∑
1

tiz
i

))(
1 +O(1/z)

)
, z → ∞ (2.25)

and

zΨ+ = LΨ+ ,
∂Ψ+

∂tn
= (Ln)+Ψ+ ,

zΨ− = LTΨ− ,
∂Ψ−

∂tn
= −((LT )n

)
+
Ψ− ,

(2.26)

with

[x] :=
(
x,
x2

2
,
x3

3
, . . .

)
.

Consequently the τ -function satisfies the crucial formal residue identity.

Bilinear identity for τ-function:

∮
∞

exp
( ∞∑

1

(ti− t′i)z
i

)
τ(t− [z−1])τ(t′+[z−1]) dz = 0 , ∀t, t′ ∈ C

∞ , (2.27)

which characterizes the KP τ -function. This is equivalent (see Appendix
for proof) to the following generating function of Hirota relations (a =
(a1, a2, . . . ) arbitrary):

∞∑
j=0

sj(−2a)sj+1(∂̃t) exp
( ∞∑
l=1

al
∂

∂tl

)
τ(t) ◦ τ(t) = 0 , (2.28)

where

∂̃t =
(

∂

∂t1
,
1
2
∂

∂t2
,
1
3
∂

∂t3
, . . .

)
, ∂t =

(
∂

∂t1
,
∂

∂t2
, . . .

)
, (2.29)

and

exp
( ∞∑

1

tizi

)
:=

∞∑
j=0

sj(t)zj (sj(t) elementary Schur polynomials) (2.30)

and

p(∂nt)f(t) ◦ g(t)

:= p

(
∂

∂y
,
∂

∂y2
, . . .

)
f(t+ y)g(t− y)

∣∣
y=0

(Hirota symbol). (2.31)
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This yields the KP hierarchy(
∂4

∂t1
+ 3
(

∂

∂t2

)2

− 4
∂

∂t1

∂

∂t3

)
τ(t) ◦ τ(t) = 0 (2.32)

...

equivalent to((
∂

∂t1

)4

+3
(

∂

∂t2

)2

−4
∂2

∂t1∂t3

)
log τ + 6

(
∂2

∂t21
log τ

)2

=0

(KP equation) (2.33)...

The p-reduced KP corresponds to the reduction:

Lp = Dp
x + · · · = diff. oper. = (Lp)+

and so
∂L

∂tpn
= [(Lpn)+, L] = [Lpn, L] = 0 . (2.34)

p = 2: KdV

τ = τ(t1, t3, t5, . . . ) (ignore t2, t4, . . . ) (2.35)

Ψ±(x, t, z) = Ψ(x, t,±z) . (2.36)

2.1.4 Vertex Operators, Soliton Formulas and Fredholm
Determinants

Vertex operators in integrable systems generate the tangent space of solutions
and Darboux transformations; in other words, they yield the deformation
theory. We now present
KP-vertex operator :3

X(t, y, z) =
1

z − y
exp
( ∞∑

1

(zi − yi)ti

)
exp
( ∞∑

1

(y−i − z−i)
1
i

∂

∂ti

)
, (2.37)

and the “τ -space” near τ parametrized: τ + εX(t, y, z)τ . Moreover

τ + εX(t, y, z)τ

is a τ -function, not just infinitesimally, so it satisfies the bilinear identity.
This vertex operator was used in [28] to generate solitons, but it also plays a
role in generating Kac–Moody Lie algebras [40]. The identities that follow in
Sects. 2.1.4, 2.1.5, 2.1.6 were derived by Adler–Shiota–van Moerbeke in [16],
carefully and in great detail.
3 X(t, y, z)f(t) =

(
1/(z−y)) exp(

∑∞
1 (zi−yi)ti)f(t+[y−1]− [z−1]), z 
= y and z, y

are large complex parameters, and how we expand the operator X shall depend
on the situation.
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Link with kernels : We have the differential Fay identity (Adler–van Moer-
beke [1])

1
τ(t)

X(t, y, z)τ(t) = D−1
x

(
Ψ+(x, t, y)Ψ−(x, t, z)

)
, (2.38)

where since D−1
x is integration, the r.h.s. of (2.38) has the same structure as

the Airy and Bessel kernels of (2.16) and (2.21).
If |yi|, |zi| < |yi+1|, |zi+1|, 1 ≤ i ≤ n− 1, then we have the Fay identity:

det
(
D−1
x

(
Ψ+(x, t, yi)Ψ−(x, t, zj)

))n
i,j=1

= det
(

1
τ(t)

X(t, yi, zj)τ(t)
)n
i,j=1

=
1
τ
X(t, y1, z1) · · ·X(t, yn, zn)τ .

(2.39)

We also have the following

Vertex identities:

X(y, z)X(y, z) = 0 and so eaX(y,z) = 1 + aX(y, z) , (2.40)

and
[X(α, β), X(λ, μ)] = 0 if α �= μ, β �= λ. (2.41)

In addition we have the expansion of the vertex operator along the diagonal:

X(t, y, z) =
1

z − y

∞∑
k=0

(z − y)k

k!

∞∑
l=−∞

y−l−kW (k)
l ,

Heisenberg: W (1)
n :=

∂

∂tn
+ (−n)t−n (W (0)

n = δn0) , (2.42)

Virasoro: W (2)
n := 2

∑
i,i+n≥1

iti
∂

∂ti+n
+
∑
i+j=n

∂2

∂ti∂tj
+

∑
i+j=−n

(iti)(jtj)

− (n + 1)
(

∂

∂tn
+ (−n)t−n

)

and from the commutation relations:

[X(α, β), X(λ, μ)] =
(−nT (α, β, λ) + n(α, β, μ)

)
X(λ, μ) ,

n(λ, μ, z) := δ(λ, z) exp
(

(μ− λ)
∂

∂z

)
,

δ(λ, z) :=
1
z

∞∑
−∞

(
z

λ

)l
,

(2.43)

conclude the vertex Lax equation:

∂

∂z

(
zl+1Y (z)

)
=
[
1
2
W

(2)
l , Y (z)

]
(2.44)
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with
Y (z) = X(t, ωz, ω′z) , ω, ω′ ∈ ξp,

4 l ≥ −p and p/l , (2.45)

or a linear combination of such X(t, ωz, ω′z).

A Fredholm determinant style soliton formula: A classical KP soliton formula
[28] is as follows:

τ(t) =
1
τ0

(
n∏
1

ordered

exp
(
aiX(yi, zi)

))
τ0

∣∣∣∣∣
τ0=1

= det

(
δij +

aj
zj − yi

exp
( ∞∑
k=1

(zkj − yki )tk

))n
i,j=1

.

We now relax the condition that τ0 = 1 and setting |yi|, |zi| < |yi+1|, |zi+1|,
1 ≤ i ≤ n − 1, compute using the Fay identity (2.39) and differential Fay
(2.38):

τ̃ (t)
τ(t)

:=
1

τ(t)
exp
( n∑

1

aiX(yi, zi)
)
τ(t)

=
1

τ(t)

(
n∏
1

ordered

exp
(
aiX(yi, zi)

))
τ(t)

=
1

τ(t)

(
n∏
1

ordered

(
1 + aiX(yi, zi)

))
τ(t)

=
1

τ(t)

(
τ +

n∑
i=1

aiX(yi, zi)τ +
n∑

i,j=1
i<j

aiajX(yi, zi)X(yj, zj)τ

+ · · · +
n∏
1

ai

(
n∏
1

ordered

X(yi, zi)

)
τ

)

= 1 +
n∑
i=1

ai
X(yi, zi)τ

τ
+

n∑
i,j=1
i<j

det

⎛
⎜⎝ai

X(yi, zi)τ
τ

, aj
X(yi, zj)τ

τ

ai
X(yj, zi)τ

τ
, aj

X(yj , zj)τ
τ

⎞
⎟⎠

+ · · · + det
(
aj
X(yi, zj)τ

τ

)n
i,j=1

= det
(
δij + aj

X(yi, zj)τ
τ

)n
i,j=1

“Fredholm expansion” of determinant

= det
(
δij + ajD

−1
x

(
Ψ+(x, t, yi)Ψ−(x, t, yj)

))n
i,j=1

.

4 ξp the pth roots of unity.
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Replacing yi → ωzi, zi → ω′zi, ai = −λδz

zi = a + (i− 1)δz, δz =
b− a

n− 1
, n → ∞

yields the continuous (via the Riemann Integral).

Soliton Fredholm determinant :

τ(t, E)
τ(t)

:=
1

τ(t)
exp
(
−λ
∫
E

X(t, ωz, ω′z) dz
)
τ(t) = det(I − λkE) (2.46)

with kernel

kE(y, z) = D−1
x

(
Ψ−(t, ωy)Ψ+(t, ω′z)

)
IE(z), E = [a, b] .

More generally, for p-reduced KP, replace in (2.46)

X(t, y, z) → Y (t, y, z) :=
∑

ω,ω′∈ξp

aωbω′X(t, ωy, ω′z) , (2.47)

kE(y, z) → D−1
x

∑
ω∈ξp

aωΨ
−(x, t, ωy)

∑
ω′∈ξp

bω′Ψ+(x, t, ω′z)IE(z) (2.48)

with ∑
ω∈ξp

aωbω
ω

= 0 (so Y (t, z, z) is pole free) (2.49)

and

X(t, ωz, ω′z) → Y (t, z, z) := Y (z) , (2.50)

E →
k⋃
i=1

[a2i−1, a2i] . (2.51)

2.1.5 Virasoro Relations Satisfied by the Fredholm Determinant

It is a marvelous fact that the soliton Fredholm determinant satisfies a Vira-
soro relation as a consequence of the vertex Lax equation [16]; indeed, compute

0 =
∫ b

a

(
∂

∂z
zl+1Y (z) −

[
1
2
W

(2)
l , Y (z)

])
dz

= bl+1Y (b) − al+1Y (a) −
[
1
2
W

(2)
l ,

∫ b

a

Y (z) dz
]

=
(
bl+1 ∂

∂b
+ al+1 ∂

∂a
−
[
1
2
W

(2)
l , ·

])∫ b

a

Y (z) dz := δ(U) ,

with δ a derivation and hence
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δe−λU = 0 ,

or spelled out
(
bl+1 ∂

∂b
+ al+1 ∂

∂a
−
[
1
2
W

(2)
l , ·

])
exp
(
−λ
∫ b

a

Y (z) dz
)

= 0 . (2.52)

Let τ be a vacuum vector for p-KP:

W
(2)
l τ = clτ , l = kp , k = −1, 0, 1, . . . . (2.53)

Remembering (2.46) with Y (z) given by (2.50), and with τ(t) taken as a
vacuum vector, yields

τ(t, E)
τ(t)

=
1
τ

exp
(
−λ
∫
E

Y (z) dz
)
τ = det(I − λkE) , (2.54)

and setting l = kp, k = −1, 0, 1, . . . , compute using, (2.52), (2.53) and (2.54):

0 =
(
bl+1 ∂

∂b
+ al+1 ∂

∂a
− 1

2
W

(2)
l

)
exp
(
−λ
∫ b

a

Y (z) dz
)
τ

+ exp
(
−λ
∫ b

a

Y (z) dz
)(

1
2
W

(2)
l τ

)

=
(
bl+1 ∂

∂b
+ al+1 ∂

∂a
− 1

2
(W (2)

l − cl)
)(

exp
(
−λ
∫ b

a

Y (z) dz
)
τ

)

=
(
bl+1 ∂

∂b
+ al+1 ∂

∂a
− 1

2
(W (2)

l − cl)
)(

τ(t) det(I − λkE)
)
. (2.55)

More generally: setting

[a, b] → E1/p :=
k⋃
i=1

[a2i−1, a2i] ,

bl+1 ∂

∂b
+ al+1 ∂

∂a
→

2k∑
j=1

al+1
j

∂

∂aj
:= Bl(a) ,

deduce
(
Bkp(a) − 1

2 (W (2)
kp − ckp)

)(
τ(t) det

(
I − λkE

1/p))
= 0 .

with
W

(2)
kp τ(t) = ckpτ(t), k ≥ −1 . (2.56)

Since changing integration variables in a Fredholm determinant leaves the
determinant invariant, change variables:
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z → zp = λ, ai → api = Ai , and

E1/p → E =
k⋃
i=1

[A2i−1, A2i] ,

and

kE
1/p

(z, z′) → KE(λ, λ′) :=
kE

1/p

(λ1/p, λ′1/p)
pλ(p−1)/2pλ′(p−1)/2p

IE(λ′) , (2.57)

yielding

det(I − μKE) = det(I − μkE
1/p

)

=
1
τ

exp
(
−μ
∫
E1/p

Y (z) dz
)

=
τ(t, E)
τ(t)

, (2.58)

and so (2.56) yields the p reduced Virasoro relation:
(
Bk(A) − 1

2 (W (2)
kp − ckp)

)(
τ(t) det

(
I − μKE

))
= 0 , (2.59)

with
W

(2)
kp τ(t) = ckpτ(t), k ≥ −1 .

2.1.6 Differential Equations for the Probability in Scaling Limits

Now we shall derive differential equations for the limiting probabilities dis-
cussed in Sect. 2.1.2 using the integrable tools previously developed.

Airy edge limit : Remembering the edge limit for Hermitian eigenvalues of
(2.15) and (2.16):

lim
n→∞P (

√
2n1/16(λmax −√

2n) ∈ Ec) = det
(
I −KE

Airy

)
(2.60)

with
KAiry(u, v) =

∫ ∞

0

Ai(x+ u)Ai(x + v) dx ,

Ai(u) =
1
π

∫ ∞

0

cos
(
u3

3
+ xu

)
du .

(2.61)

Consider the KdV reduction(
p = 2,

t = (t1, 0, t3, 0, t5, . . . )
t0 = (0, 0, 2/3, 0, 0, . . . )

)
(2.62)

with initial conditions:⎧⎪⎨
⎪⎩
Ψ(x, t0, z) = 2

√
πzA(x+ (−z)2)

= exz+2z2/3
(
1 + 0(1/z)

)
,

(D2
x − x)Ψ(x, t0, z) = z2Ψ(x, t0, z) .

(2.63)
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Under the KP (KdV) flow:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x = q(x, t0) → q(x, t) =
2∂2

∂t21
ln
(
τ(t)

)
,

Ψ(x, t0) → Ψ(x, t) = exp
(
xz +

∞∑
1

tizi

)
τ(t− [z−1])

τ(t)
,

τ(t0) → τ(t) .

(2.64)

where τ(t) turns out to be the well-known Konsevich integral [16, 18], satis-
fying a vacuum condition as a consequence of Grassmannian invariance, to
wit:

Kontsevich integral :⎧⎪⎪⎨
⎪⎪⎩
τ(t) = limN→∞

∫
HN

dX exp
(−Tr(X3/3 +X2Z)

)
∫
HN

dX exp
(−Tr(X2Z)

) ,

Z diag : tn = − 1
n

TrZ−n +
2
3
δn,3 .

(2.65)

Vacuum condition:
W

(2)
2k τ = − 1

4δk0τ, k ≥ −1 . (2.66)

Grassmannian invariance condition:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

W := span
C

{(
∂

∂x

)j
Ψ(x, t0, z)

∣∣∣∣
x=0

, j = 0, 1, 2, . . .
}
,

z2W ⊂ W (KdV ) , AW ⊂ W ,

A =
1
2z

(
∂

∂z
+ 2z2

)
− 1

4z2
, A2Ψ(0, t0, z) = z2Ψ(0, t0, z) .

(2.67)

We have the initial kernel:

KE
t0(λ, λ

′) =
IE(λ′)

2λ1/4λ′1/4

∫ ∞

0

Ψ(x, t0,−
√
λ)Ψ(x, t0,

√
λ′) dx

= 2πIE(λ′)
∫ ∞

0

Ai(x+ λ)Ai(x+ λ′) dx t0→t−−−→ KE
t (λ, λ′) . (2.68)

Conditions on τ(t, E):

τ(t, E) = τ(t) det
(
I − 1

2π
KE
t

)
(by (2.58))

= τ(t0) det(I −KE
Airy) at t = t0 (by (2.68)) , (2.69)

which satisfies (2.33) and (2.35):((
∂

∂t1

)4

− 4
∂2

∂t1∂t3

)
log τ + 6

(
∂2

∂t21
log τ

)2

= 0 (KdV) , (2.70)

and by (2.59), (2.42) and (2.62) we find for τ(t, E)



148 M. Adler

Virasoro constraints :

B−1(A)τ =
(

∂

∂t1
+

1
2

∑
i≥3

iti
∂

∂ti−2
+
t21
4

)
τ ,

B0(A)τ =
(

∂

∂t3
+

1
2

∑
i≥1

iti
∂

∂ti
+

1
16

)
τ .

(2.71)

Replace t-derivatives of τ(t, E) at t0 with A derivatives in KdV:

B−1τ =
∂τ

∂t1
, B2

−1τ =
∂2

∂t21
τ, . . . , B−1B0τ =

(
∂2

∂t1∂t3
+

1
2
∂

∂t1

)
τ, . . . ,

at t = t0 , (2.72)

yielding

Theorem 2.1.1 (Adler–Shiota–van Moerbeke [16]).

R := B−1 log lim
n→∞P

(√
2n1/6(λmax −

√
2n) ∈ Ec

)

= B−1 log det(I −KE
Airy) = B−1 log

τ(t0, E)
τ(t0)

= B−1 log τ(t0, E)

satisfies (
B3

−1 − 4(B0 − 1
2 )
)
R + 6(B−1R)2 = 0 . (2.73)

Setting E = (a,∞) yields :

R′′′ − 4aR′ + 2R+ 6R′2 = 0 . (2.74)

Setting
R = g′2 − ag2 − g4, R′ = g2

yields

g′′ = 2g3 + ag (Painlevé II). (2.75)

Hard edge limit : Remembering the hard edge limit (2.21) for the Hermitian
Laguerre ensemble (2.20):

lim
n→∞P

(
no eigenvalues ∈ 1

4n
E

)
= det(I −KE

ν ) ,

Kν(u, v) =
1
2

∫ 1

0

sJν(s
√
u)Jν(s

√
v) ds

(2.76)

defined in terms of Bessel functions, consider the KdV reduction with initial
conditions:
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⎧⎪⎨
⎪⎩
Ψ(x, 0, z) = exzB

(
(1 − x)z

)
= exz

(
1 + 0(1/z)

)
,(

D2
x −

(ν2 − 1
4 )

(x − 1)2

)
Ψ(x, 0, z) = z2Ψ(x, 0, z)

(2.77)

with (see [19])

B(z) := ε
√
zHν(iz) =

ez2ν+1/2

Γ (−ν + 1
2 )

∫ ∞

1

z−ν+1/2e−uz

(u2 − 1)ν+1/2
du ,

where

ε = i
√
π

2
eiπν/2, −1

2
< ν <

1
2
.

Under the KdV flow:(
ν2 − 1

4

x2 − 1
, Ψ(x, 0, z), τ(0)

)
t−→ (

q(x, t), Ψ(x, t, z), τ(t)
)
, (2.78)

where τ(t) is both a Laplace matrix integral and a vacuum vector [16,18] due
to Grassmannian invariance:

Laplace integral :

τ(t) = lim
N→∞

S1(t)

×
∫
H+

N
dX detXν−1/2 exp(−TrZ2X)

∫
H+

N
dY S0(Y ) exp(−TrXY 2)∫

H+
N

dX exp(−TrX2Z)

with Z diag : tn = −1/n trZ−n, H+
n = Hn ∩ (matrices with non-negative

spectrum) and S1(t), S0(Y ) are symmetric functions,

Vacuum condition:

W
(2)
2k τ =

(
(2ν)2 − 1

)
τδk0, k ≥ −1 , (2.79)

Grassmannian invariance:⎧⎨
⎩
z2W ⊂ W, AW ⊂ W,

A =
1
2
z

(
∂

∂z
− 1
)
,
(
4A2 − 2A− ν2 + 1

4

)
Ψ(0, 0, z) = z2Ψ(0, 0, z) .

We have the initial kernel:

KE
(x,t)(λ, λ

′)

=
IE(λ′)

2λ1/4λ′1/4
D−1
x Y (x, t,

√
λ,

√
λ′) (see (2.48), (2.49) and (2.57))

=
IE(λ′)

2λ1/4λ′1/4
D−1
x

(∑
±

a±Ψ−(x, t,±
√
λ)
∑
±

b±Ψ+(x, t,±
√
λ′)

)
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:=
IE(λ′)

2λ1/4λ′1/4

∫ x

1

(
ieiπν/2

√
2π

Ψ(x, t,−
√
λ) +

e−iπν/2

√
2π

Ψ(x, t,
√
λ)
)

×
(
−e−iπν/2

√
2π

Ψ(x, t,
√
λ′) − ieiπν/2

√
2π

Ψ(x, t,−
√
λ′)
)

dx

= IE(λ′)
1
2

∫ 1

0

sJν(s
√
λ)Jν(s

√
λ′) ds at (x, t0) = (1 + i,−e1), (2.80)

and under the t-flow

KE
(1+i,−e1)(λ, λ

′) t0→t−−−→ KE
(x,t)(λ, λ

′) .

Conditions on τ(t, E):

τ(t, E) = τ(t) det(I −KE
(x,t)) = τ(t0)(I −KE

ν ) at (x, t0) = (1 + i, e1)

(by (2.58) and (2.80)) , (2.81)

satisfies (2.33) and (2.35):
((

∂

∂t1

)4

− 4
∂2

∂t1∂t3

)
log τ + 6

(
∂2

∂t21
log τ

)2

= 0 (KdV) , (2.82)

and by (2.59), (2.42), (2.62) and (2.81), the

Virasoro constraints :

B0(A)τ =
1
2

(∑
i≥1

iti
∂

∂ti
+
√−1

∂

∂t1
+ 2
(

1
4
− ν2

))
τ ,

B1(A)τ =
1
2

(∑
i≥1

iti
∂

∂ti+2
+

1
2
∂2

∂t21
+
√−1

∂

∂t3

)
τ .

Replace t-derivatives of τ(t, E) at (1 + i,−e1) with A derivatives in KdV:

B0(A)τ =
i
2
∂τ

∂t1
+
(

1
4
− ν2

)
τ , B1(A) =

1
4
∂2τ

∂t21
+

i
2
∂τ

∂t3
, . . . at (1 + i,−e1)

yielding

Theorem 2.1.2 (Adler–Shiota–van Moerbeke [16]).

R := log lim
n→∞P

(
no eigenvalues ∈ E

4n

)

= log det(I −KE
ν ) = log

τ(i, 0, 0, . . . ;E)
τ(i, 0, 0, . . . ;R)

satisfies
(
B4

0 − 2B3
0 + (1 − ν2)B2

0 +B1(B0 − 1
2 )
)
R− 4(B0R)(B2

0R) + 6(B2
0R)2 = 0 .
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Setting:

E = (0, x), f = −x∂R
∂x

yields

f ′′′ +
f ′′

x
− 6f ′2

x
+

4ff ′

x2
+

(x − ν2)f ′

x2
− f

2x2
= 0 (Painlevé V).

2.2 Recursion Relations for Unitary Integrals

2.2.1 Results Concerning Unitary Integrals

Many generating functions in a parameter t for combinatorial problems are
expressible in the form of unitary integrals In(t) over U(n) (see [20,22,47,51]).
Our methods can be used to either get a differential equation for In(t) in t [2]
or a recursion relation in n [3] and in the present case we concentrate on the
latter. Borodin first got such results [26] using Riemann–Hilbert techniques.
Consider the following basic objects (Δn(z) is the Vandermonde determinant,
i =

√−1):

Unitary integral :

I(ε)
n =

∫
U(n)

det
(
M ερ(M)

)
dM

=
1
n!

∫
(S1)n

|Δn(z)|2
n∏
k=1

(
zεkρ(zk)

dzk
2πizk

)

= det
(∫

S1
zε+i

′−j′ρ(z)
dz

2πiz

)n
i′,j′=1

, (2.83)

with weight ρ(z):

ρ(z) = exp
(
P1(z) + P2(z−1)

)
zγ(1 − d1z)γ

′
1(1 − d2z)γ

′
2

× (1 − d−1
1 z−1)γ

′′
1 (1 − d−1

2 z−1)γ
′′
2 , (2.84)

P1(z) :=
N1∑
1

uiz
i

i
, P2(z) :=

N2∑
1

u−izi

i
, (2.85)

and we introduce the

Basic recursion variables:

xn := (−1)n
I+
n

I
(0)
n

, yn := (−1)n
I−n
I
(0)
n

, (2.86)

vn := 1 − xnyn =
I
(0)
n−1I

(0)
n+1

I
(0)2
n

, (2.87)
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and so

I(0)
n = (I(0)

1 )n
n−1∏

1

(1 − xiyi)n−i , (2.88)

thus
(x, y) recursively yields {I(0)

n } .
We also introduce the fundamental semi-infinite matrices:

Toeplitz matrices:

L1(x, y) :=

⎛
⎜⎜⎜⎝
−x1y0 1 − x1y1 0 0 · · ·
−x2y0 −x2y1 1 − x2y2 0 · · ·
−x3y0 −x3y1 −x3y2 1 − x3y3

...
...

...
... · · ·

⎞
⎟⎟⎟⎠ , (2.89)

L2 := LT1 (y, x) ,

in terms of which we write the following:

Recursion matrices :5

L(n)
1 := (aI + bL1 + cL2

1)P
′
1(L1) + c(n+ γ′1 + γ′2 + γ)L1 ,

L(n)
2 := (cI + bL2 + aL2

2)P
′
2(L2) + a(n+ γ

′′
1 + γ

′′
2 − γ)L2 .

(2.90)

There exists the following basic involution ∼ :

Basic involution:

∼ : z → z−1, ρ(z) → ρ(z−1) ,

I(0)
n ↔ I(0)

n , I+
n ↔ I−n ,

xn ↔ yn, a ↔ c, b ↔ b, γ → −γ ,
L1 ↔ LT2 , L(n)

1 ↔ L(n)T
2 .

(2.91)

Self-dual case:

ρ(z) = ρ(z−1) , xn = yn =⇒ L1 = LT2 , L(n)
1 = L(n)T

2 . (2.92)

Let us define the “total discrete derivative”:6

∂nf(n) = f(n + 1) − f(n) . (2.93)

We now state the main theorems of Adler–van Moerbeke [3]:

5 I in (2.90) is the semi-infinite identity matrix and P ′
i (z) = dPi(z)/dz.

6 The total derivative means you must take account, in writing f(n), of all the
places n appears either implicitly or explicitly, so f(n) = g(n, n, n, . . . ) in reality.
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Rational relations for (x, y):

Theorem 2.2.1. The (xk, yk)k≥1 satisfy 2 finite step relations:
Case 1. In the generic situation, to wit :

d1, d2, d1 − d2, |γ′1| + |γ′′1 |, |γ′2| + |γ′′2 | �= 0 in ρ(z) , (2.94)

we find for n ≥ 1 that

(+)

⎧⎨
⎩
∂n(L(n)

1 − L(n)
2 )n,n + (cL1 − aL2)n,n = 0

∂n(vnL(n)
1 − L(n)

2 )n+1,n + (cL2
1 + bL1)n+1,n+1 = (same)n=0 ,

with
(a, b, c) =

1√
d1d2

(1,−d1,−d2, d1d2) , (2.95)

and the dual equations (+̃), also hold.
Case 2. Upon rescaling,

ρ(z) = zγ(1 + z)γ
′
1 exp

(
P1(z) + P2(z−1)

)
, (2.96)

and then (+), (+̃) are satisfied with (a, b, c) = (1, 1, 0) or (0, 1, 1).
Case 3. Upon rescaling,

ρ(z) = zγ exp
(
P1(z) + P2(z−1)

)
, (2.97)

and then (+), (+̃) are satisfied for a, b, c arbitrary and in addition finer
relations hold :

Γn(x, y) = 0 , Γ̃n(x, y) = 0 ,

Γn(x, y) :=
vn
yn

(
− (L1P

′
1(L1)

)
n+1,n+1

− (L2P
′
2(L2)

)
n,n

+
(
P ′

1(L1)
)
n+1,n

+ P ′
2(L2)n ,n+1

)
+ nxn .

(2.98)

If |N1 − N2| ≤ 1, where Ni = degreePi, the rational relations of Theo-
rem 2.2.1 become, upon setting zn := (xn, yn):
Rational recursion relations :

Theorem 2.2.2. For N1 = N2 ± 1 or N1 = N2, the rational relations of
Theorem 2.2.1 become recursion relations as follows:

Case 1. Yields inductive rational N1 +N2 + 4 step relations :

zn = Fn(zn−1, zn−2, . . . , zn−N1−N2−3) .

Case 2. Yields inductive rational N1 +N2 + 3 step relations :

zn = Fn(zn−1, zn−2, . . . , zn−N1−N2−2) ,

with either
N1 = N2 or N2 + 1: (a, b, c) = (1, 1, 0) ,

or
N1 = N2 or N2 − 1: (a, b, c) = (0, 1, 1) .
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Case 3. Yields inductive rational N1 +N2 − 1 step relations :

zn = Fn(zn−1, zn−2, . . . , zn−N1−N2),

upon using Γn and Γ̃n and in the case of the self dual weight :

ρ(z) = exp
( N1∑

1

ui(zi + z−i)
i

)
.

One finds recursion relations :

xn = Fn(xn−1, xn−2, . . . , xn−2N ) .

2.2.2 Examples from Combinatorics

In this section, we give some well-known examples from combinatorics in the
notation of the previous section. In the case of a permutation πk, of k-numbers,
L(πk) shall denote the length of the largest increasing subsequence of πk. If
πk is only a word of size k from an alphabet of α numbers, L(w)(πk) shall
denote the length of the largest weakly increasing subsequence in the word
πk. We will also consider odd permutations π on (−k, . . . ,−1, 1, . . . , k) or
(−k, . . . ,−1, 0, 1, . . . , k), which means π(−j) = −π(j), for all j.

Example 1. ρ(z) = exp
(
t(z + z−1)

)
(self-dual case)

I(0)
n (t) :=

∞∑
k=0

t2k

k!
P (πk ∈ Sk | L(πk) ≤ n) =

∫
U(n)

exp
(
tTr(M +M−1)

)
dM ,

the latter equality due to I. Gessel, with

xn(t) = (−1)n
∫
U(n) det(M) exp

(
tTr(M +M−1)

)
dM∫

U(n) exp
(
tTr(M +M−1)

)
dM

, (as in (2.86))

and

I(0)
n (t) =

(
I
(0)
1 (t)

)n n−1∏
i=1

(1 − x2
i )
n−i .

One finds a

3-step recursion relation for xi:

0 = nxn − (1 − x2
n)

xn
(t(L1)n+1,n+1 + t(L1)nn) (as in (2.98))

= nxn + t(1 − x2
n)(xn+1 + xn−1) (Borodin [26])

which possesses an
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Invariant: Φ(xn+1, xn) = Φ(xn, xn−1) ,

Φ(y, z) = (1 − y2)(1 − z2) − n

t
yz (McMillan [43]) .

The initial conditions in the recursion relation are as follows:

x0 = 1, x1 = −1
2

d
dt

log I0(2t), I
(0)
1 = I0(2t) ,

with I0 the hyperbolic Bessel function of the first kind (see [19]).

Example 2. ρ(z) = exp
(
t(z + z−1) + s(z2 + z−2)

)
(self-dual case)

Set

Sodd
2k = {π2k ∈ S2k acts on (−k, . . . ,−1, 1, . . . , k) oddly} ,

Sodd
2k+1 = {π2k+1 ∈ S2k+1 acts on (−k, . . . ,−1, 0, 1, . . . , k) oddly}

and then one finds:
∞∑
k=0

(
√

2s)2k

k!
P (π2k ∈ Sodd

2k | L(π2k) ≤ n) =
∫

U(n)

exp
(
sTr(M2 +M−2)

)
dM ,

∞∑
k=0

(
√

2s)2k

k!
P (π2k+1 ∈ Sodd

2k+1 | L(π2k+1) ≤ n)

=
1
4

(
∂

∂t

)2(∫
U(n)

exp
(
Tr
(
t(M +M−1) + s(M2 +M−2)

))
dM

+ same (t,−s)
)∣∣∣∣

t=0

,

as observed by M. Rains [47] and Tracy–Widom [51]. Moreover,

xn(t, x) = (−1)n
∫
U(n) det(M) exp

(
Tr
(
t(M +M−1) + s(M2 +M−2)

))
dM

∫
U(n)

exp
(
Tr
(
t(M +M−1) + s(M2 +M−2)

))
dM

,

and

I(0)
n (t) =

(
I
(0)
1 (t)

)n n−1∏
i=1

(1 − x2
i )
n−i .

One finds a
5-step recursion relation for xi:

nxn+tvn(xn−1 +xn+1)+2svn(xn+2vn+1 +xn−2vn−1−xn(xn+1 +xn−1)2) = 0

(vn = 1 − x2
n)

which possesses the

Invariant: Φ(xn−1, xn, xn+1, xn+2) = same|n→n+1 ,

Φ(x, y, z, u) := nyz − (1 − y2)(1 − z2)
(
t+ 2s

(
x(u− y) − z(u+ y)

))
,

analogous to the McMillan invariant of the previous example.
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Example 3. ρ(z) = (1 + z) exp(sz−1) (Case 2 of Theorem 2.2.1)
Set

Sk,α = {words πk of length k from alphabet of size α} ,

with

I(0)
n (s) =

∞∑
k=0

(αs)k

k!
P (πk ∈ Sk,α | L(w)(πk) ≤ n)

=
∫
U(n)

det(I +M)α exp(s trM−1) dM ,

the latter identity observed by Tracy–Widom [52]. Then setting in Case 2

P1(z) = 0 , P2(z) = sz , N1 = 0 , N2 = 1 , (a, b, c) = (0, 1, 1) ,

L(n)
1 = (n+ α)L1 , L(n)

2 = s(I + L2) ,

one finds the

Recursion relations:

∂n
(
(n+ α)L1 − sL2

)
nn

+ (L1)nn
∂n
(
(n− 1) + α

)
vn−1L1 − sL2

)
n,n−1

+ (L2
1 + L1)n,n = (same)|n=1

(vn = 1 − xnyn) ,

with

xn
+
, yn
−

=
(−1)n

∫
U(n)(detM)± det(I +M)α exp(sTrM−1) dM∫
U(n) det(I +M)α exp(s trM−1) dM

and

I(0)
n (s) =

(
I
(0)
1 (s)

)n n−1∏
i=1

(1 − xiyi)n−i ,

leading to the

3 and 4 step relations for (xi, yi):

− (n + α + 1)xn+1yn + sxnyn+1 + (n+ α− 1)xnyn−1 − sxn−1yn = 0 ,

− vn
(
(n+ α + 1)xn+1yn−1 + s

)
+ vn−1

(
(n + α− 2)xnyn−2 + s

)
+ xnyn−1(xnyn−1 − 1) = −v1

(
(2 + α)x2 + s

)
+ x1(x1 − 1)

(x0 = y0 = 1) .
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2.2.3 Bi-orthogonal Polynomials on the Circle and the Toeplitz
Lattice

It turns out that the appropriate integrable system for our problem is the
Toeplitz lattice, an invariant subsystem of the 2-Toda lattice. Indeed xn and
yn of Sect. 2.2.1 turn out to be dual Hamiltonian variables for the integrable
system; moreover xn and yn are nothing but the constant term of the nth
bi-orthogonal polynomials on the circle, generated by a natural time defor-
mation of our measure ρ(z) of (2.84). These things are discussed by Adler–van
Moerbeke in [2,3] in detail. Consider the bi-orthogonal polynomials and inner
product generated by the following measure on S1:

ρ(z, t, s)
dz

2πiz
= exp

( ∞∑
1

(tkzk − skz
−k)
)

dz
2πiz

, (2.99)

with
Inner product :

〈f(z), g(z)〉 :=
∮
S1

dz
2πiz

f(z)g(z−1) exp
( ∞∑

1

(tizi − siz−i)
)
. (2.100)

Bi-orthogonal polynomials:

〈p(1)
n , p(2)

m 〉 := δn,mhn, hn =
τn+1(t, s)
τn(t, s)

, n,m = 0, 1, . . . . (2.101)

The polynomials are parametrized by
2-Toda τ functions :

τn(t, s) = det(〈zk, zl〉)n−1
k,l=0 (Toeplitz determinant)

=
1
n!

∫
(S1)n

|Δn(z)|2
n∏
k=1

exp
( ∞∑
j=1

(tjz
j
k − sjz

−j
k )
)

dzk
2πizk

=
∫

U(n)

exp
(

Tr
∞∑
1

(tiM i − siM
−i)
)

dM, n ≥ 1, τ0 ≡ 1 , (2.102)

as follows:

(p(1)
n , p(2)

n )(u; t, s)

=
un

τn(t, s)
(
τn(t− [u−1], s), τn(t, s + [u−1])

)

=
(∫

U(n)
det(uI −M) exp

(
Tr
(∑∞

1 tiM
i − siM

−i)
)
dM∫

U(n)
exp
(
Tr(
∑

tiMi − siM−i)
)
dM

,

∫
U(n) det(uI −M−1) exp

(
Tr(
∑∞

1 tiM
i − siM

−i)
)
dM∫

U(n) exp
(
Tr(
∑

tiMi − siM−i)
)
dM

)
,

[x] = (x, x2/2, x3/3, . . . ) . (2.103)
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The constant term of our polynomials yield the

Dynamical variables:

xn(t, x) = p(1)
n (0; t, s), yn(t, s) = p(2)

n (0; t, s) , (2.104)

vn = 1 − xnyn =
τn+1τn−1

τ2
n

; (2.105)

giving rise to an invariant subsystem of the

Toda equations :

L1(x, y) :=

⎛
⎜⎜⎜⎝
−x1y0 1 − x1y1 0 0 . . .
−x2y0 −x2y1 1 − x2y2 0 . . .
−x3y0 −x3y1 −x3y2 1 − x3y3

...
...

...
...

. . .

⎞
⎟⎟⎟⎠ , (2.106)

L2(x, y) := LT1 (y, x) , hn = τn+1/τn , h = diag(h0, h1 , . . . ) , (2.107)

L̃1 = hL1h
−1 , L̃2 = L2 , (2.108)

(T)

⎧⎪⎪⎨
⎪⎪⎩

∂L̃i
∂tn

= [(L̃n1 )+, L̃i]7

∂L̃i
∂sn

= [(L̃n2 )−, L̃i]
, i = 1, 2, n = 1, 2, . . .

(2.109)

with {
(A)+ = upper tri(A) + diag(A) ,
(A)− = lower tri(A) .

We find, (T) ⇔ Toeplitz lattice:7

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂xn
∂ti

= vn
∂H

(1)
i

∂yn
,

∂yn
∂ti

= −vn ∂H
(1)
i

∂xn
∂xn
∂si

= vn
∂H

(2)
i

∂yn
,

∂yn
∂si

= −vn ∂H
(2)
i

∂xn

, i = 1, 2, . . . , (2.110)

H
(j)
i := − trLij

i
, ω =

∞∑
k=1

dxk ∧ dyk
vk

, vn = 1 − xnyn , (2.111)

with {
xn(0, 0) = yn(0, 0) = 0, n ≥ 1 ,
x0(t, s) = y0(t, s) = 1, ∀t, s , (see [2, 3]). (2.112)

7 Equations (T) are the 2-Toda equations of Ueno–Takasaki [55], but equations (T)
with precisely the initial conditions (2.106) and (2.107) are an invariant subsystem
of the 2-Toda equations which are equivalent to the Toeplitz lattice, (2.110),
(2.111). The latter equations are Hamiltonian, with ω the symplectic form.
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Example

∂xn
∂t1

= (1 − xnyn)xn+1 ,
∂yn
∂t1

= −(1 − xnyn)yn−1 ,

∂xn
∂s1

= (1 − xnyn)xn−1 ,
∂yn
∂s1

= −(1 − xnyn)yn+1 ,

(2.113)

yielding the

Ladik–Ablowitz lattice:
∂

∂t
=

∂

∂t1
− ∂

∂s1
. (2.114)

2.2.4 Virasoro Constraints and Difference Relations

In this section, using a 2-Toda vertex operator, which generates a subspace of
the tangent space of the sequence of 2-Toda τ -functions {τn(t, s)}, we derive
Virasoro relations in our special case. Indeed, deriving a Lax-equation for the
vertex operator leads to a fixed point theorem for our particular sequence
of matrix integral τ -functions, fixed under an integrated version of the ver-
tex operator, integrated over the unit circle. The Virasoro relations coupled
with the Toeplitz lattice identities then lead to difference relations after some
manipulation.

We present the following operators:

Toda vertex operator :

X(u, v)
(
fn(t, s)

)
n≥0

:=

(
exp
( ∞∑

1

(tiui − siv
−i)
)

(uv)n−1fn−1(t− [u−1], s + [v−1])

)

n≥0

.

(2.115)

Integrated version:

Y γ :=
∫
S1

du
2πiu

uγX(u, u−1) . (2.116)

Virasoro operator :

V
γ
k = (Vγk,n)n≥0 := J

(2)
k (t) − J

(2)
−k(−s) − (k − γ)

(
θJ

(1)
k (t) + (1 − θ)J(1)

−k(−s)
)

(vector differential operator in t, s, acting diagonally
as defined explicitly in (2.123), (2.124), and (2.125)) . (2.117)
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Main facts :

Lax-equation: u−γu
d
du

uk+γX(u, u−1)) = [Vγk , X(u, u−1)] , (2.118)

Commutativity: [Vγk , Y
γ ] = 0 , (2.119)

Fixed Point: Y γI = I, I :=
(
n!τ (γ)

n (t, s)
)
n≥0

, (2.120)

where

τ (γ)
n (t, s) =

1
n!

∫
(S1)n

|Δn(z)|2
n∏
k=1

(
zγk exp

( ∞∑
j=1

(tjz
j
k − sjz

−j
k )
)

dzk
2πizk

)
,

(τ0 = 1) (2.121)

and {τ (γ)
n (t, s)} satisfy an sl(2,Z) algebra of Virasoro constraints :

V
γ
k,nτ

(γ)
n (t, s) = 0 for k =

⎧⎪⎨
⎪⎩
−1, θ = 0 ,
0, θ arbitrary ,
1, θ = 1,

(n ≥ 0) . (2.122)

Proof of main facts. The proof of the Lax-equation is a lengthy calculation
(see [3]). Integrating the Lax-equation with regard to∫

S1

du uγ

2πiu
immediately leads to the commutativity statement. To see the fixed point
statement, compute (setting u = zn)
In(t, s) = n!τ (γ)

n (t, s)

=
∫
S1

uγ du
2πiu

exp
( ∞∑

1

(tjuj − sju
−j)
)
un−1u−n+1

×
(∫

(S1)n−1
Δn−1(z)Δn−1(z)

n−1∏
k=1

(
1 − zk

u

)(
1 − u

zk

)

× exp
( ∞∑

1

(tjz
j
k − sjz

−j
k )
)
zγkdzk
2πizk

)

=
∫
S1

uγ du
2πiu

exp
( ∞∑

1

(tjuj − sju
−j)
)

(uu−1)n−1

× exp

(
−

∞∑
1

(
u−j

j

∂

∂tj
− uj

j

∂

∂sj

))

×
(∫

(S1)n−1
Δn−1(z)Δn−1(z)

n−1∏
k=1

exp
( ∞∑

1

(tjz
j
k − sjz

−j
k )
)
zγk dzk
2πizk

)

= (Y γI)n ,
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yielding the fixed point statement. Finally, to see the sl(2,Z) Virasoro state-
ment, observe that from the other main facts, we have

0 = ([Vγk , (Y
γ)n]I)n

= (Vγk(Y
γ)nI − (Y γ)nV

γ
kI)n

= (VγkI − (Y γ)nV
γ
kI)n

= V
γ
k,nIn −

∫
S1
uγ

du
2πiu

exp
( ∞∑

1

(tjuj − sju
−j)
)

× exp

(
−

∞∑
1

(
u−j

j

∂

∂tj
− uj

j

∂

∂sj

))

· · ·
∫
S1
uγ

du
2πiu

( ∞∑
1

(tjuj − sju
−j)
)

× exp

(
−

∞∑
1

(
u−j

j

∂

∂tj
− uj

j

∂

∂sj

))
V γ
k I0 ,

upon using the backward shift (see (2.115)) present in Y γ . Note I0 = 1, and
so it follows from the explicit Virasoro formulas given below, that V γ

k,01 = 0
precisely if k = −1, 0, 1 and θ is as specified in (2.122), yielding the Virasoro
constraints (2.122). We now make explicit the Virasoro relations.

Explicit Virasoro formulas:
⎧⎨
⎩

J
(1)
k = (J (1)

k + nδ0k)n≥0 ,

J
(2)
k = 1

2 (J (2)
k + (2n+ k + 1)J (1)

k + n(n+ 1)δ0k)n≥0 .
(2.123)

⎧⎪⎪⎨
⎪⎪⎩

J
(1)
k =

∂

∂tk
+ (−k)t−k

J
(2)
k = 2

∑
iti

∂

∂ti+k

, if k = 0,±1 . (2.124)

Virasoro relations :⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

V
γ
−1,nτ

(γ)
n =

(
1
2
J

(2)
−1 (t) − 1

2
J

(2)
1 (s) + n

(
t1 +

∂

∂s1

)
− γ ∂

∂s1

)
τ

(γ)
n = 0 ,

V
γ
0,nτ

(γ)
n =

(
1
2
J

(2)
0 (t) − 1

2
J

(2)
0 (s) + nγ

)
τ

(γ)
n = 0 ,

V
γ
1,nτ

(γ)
n =

(
−1

2
J

(2)
−1 (s) +

1
2
J

(2)
1 (t) + n

(
s1 +

∂

∂t1

)
+ γ

∂

∂t1

)
τ

(γ)
n = 0 .

(2.125)

We now derive the first difference relation (the second is similar) in Case 2 of
Theorem 2.2.1. Setting for arbitrary a, b, c, t, and s,
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αi(t) := a(i + 1)ti+1 + biti + c(i− 1)ti−1 + c(n + γ)δi1 ,
βi(s) := a(i− 1)si−1 + bisi + c(i+ 1)si+1 − a(n− γ)δi1 ,

(2.126)

L(n)
1 :=

∑
i≥1

αi(t)Li1 and L(n)
2 := −

∑
i≥1

βi(t)Li2 , (2.127)

and remembering

(xn, yn) = (−1)n
(
τ+
n

τ0
n

,
τ−n
τ0
n

)
, vn = 1 − xnyn ,

compute, using the Virasoro relations and the Toeplitz flow:

0 =
xnyn
vn

{
1
τ+
n

(aV
+
−1,n + bV+

0,n + cV+
1,n)τ

+
n +

1
τ−n

(aV
−
−1,n + bV−

0,n + cV−
1,n)τ

−
n

− 2
τn

(aV−1,n + bV0,n + cV1,n)τn

}

=
xnyn
vn

⎛
⎝∑
i≥1

(
ai(t)

∂

∂ti
− βi(s)

∂

∂si

)
log xnyn

+
(
c
∂

∂t1
− a

∂

∂s1

)
log

xn
yn

)

=
xnyn
vn

⎛
⎝∑
i≥1

(
ai

∂

∂ti
− βi

∂

∂si

)
(log xn + log yn)

+
(
c
∂

∂t1
− a

∂

∂s1

)
(log xn − log yn)

)

= (L(n)
1 − L(n)

2 + aL2 − cL1)nn

− (L(n)
1 − L(n)

2 − aL2 + cL1)n+1,n+1 ,

= −∂n(L(n)
1 − L(n)

2 )n,n + (aL2 − cL1)nn . (2.128)

We then find our result by specializing the above identity to the precise locus
L in t, s space corresponding to the measure ρ(z) of Case 2 of Theorem 2.2.1:

L :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

iti = it
(0)
i :=

{
ui − (γ′1d

i
1 + γ′2d

i
2), for 1 ≤ i ≤ N1

−(γ′1d
i
1 + γ′2d

i
2), for N1 + 1 ≤ i < ∞

isi = is
(0)
i :=

{
−u−i + (γ′′1 d

−i
1 + γ′′2 d

−i
2 ), for 1 ≤ i ≤ N2

(γ′′1 d
−i
1 + γ′′2 d

−i
2 ), for N2 + 1 ≤ i < ∞

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.129)
with

(a, b, c) =
1√
d1d2

(1,−d1 − d2, d1d2) , (2.130)

and so in (2.129) all αi(t) = 0 for all i ≥ N1+2 and all βi(t) = 0 for i ≥ N2+2.
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2.2.5 Singularity Confinement of Recursion Relations

Since for the combinatorial examples the unitary integral I(0)
n (t) satisfies

Painlevé differential equations in t, it is natural to expect they satisfy a dis-
crete version of the Painlevé property regarding the development of poles.
For instance, algebraically integrable systems (a.c.i.) ż = f(z), z ∈ C

n, admit
Laurent solutions depending on the maximal number, n−1, of free parameters
(see [14]). An analogous property for rational recursion relations

zn = F (zn−1, . . . , zn−δ), zn ∈ C
k ,

would be that there exists solutions of the recursion relation {zi(λ)} which
are “formal Laurent” solutions in λ developing a pole which disappears after a
finite number of steps, and such that these “formal Laurent” solutions depend
on the maximal number of free parameters δ × k (counting λ) and moreover
the coefficients of the expansions depend rationally on these free parameters.
We shall give results for Case 2 of Theorem 2.2.1 and 2.2.2, where N1 = N2 =
N . The results in this section, Theorem 2.2.3–2.2.6, are due to Adler–van
Moerbeke–Vanhaecke and can be found with proofs in [13].

Self-dual case:
ρ(z) = e

∑N
1 ui(z

i+z−i)/i . (2.131)

Theorem 2.2.3 (Singularity confinement: self-dual case). For any n ∈
Z,8 the difference equations Γk(x) = 0, (k ∈ Z) admit two formal Laurent
solution x =

(
xk(λ)

)
k∈Z

in a parameter λ, having a (simple) pole at k = n
only and λ = 0. These solutions depend on 2N non-zero free parameters

α = (an−2N , . . . , an−2) and λ .

Explicitly, these series with coefficients rational in α are given by (ε = ±1):

xk(λ) =
∞∑
i=0

x
(i)
k (α)λi , k < n− 2N ,

xk(λ) = αk , n− 2N ≤ k ≤ n− 2 ,
xn−1(λ) = ε+ λ ,

xn(λ) =
1
λ

∞∑
i=0

x(i)
n (α)λi ,

xn+1(λ) = −ε+
∞∑
i=1

x
(i)
n+1(α)λi ,

xk(λ) =
∞∑
i=0

x
(i)
k (α)λi , n+ 1 < k .

8 We consider the obvious bi-infinite extension of Li(x, y) (2.89) which through

(2.98) defines a bi-infinite extension of Γk(x, y), Γ̃k(x, y).
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General case:

ρ(z) = exp
( N∑

1

(uizi + u−iz−i)
i

)
.

Theorem 2.2.4 (Singularity confinement: general case). For any n ∈
Z, the difference equations Γk(x, y) = Γ̃k(x, y) = 0, (k ∈ Z) admit a formal
Laurent solution x =

(
xk(λ)

)
k∈Z

and y =
(
yk(λ)

)
k∈Z

in a parameter λ, having
a (simple) pole at k = n and λ = 0, and no other singularities. These solutions
depend on 4N non-zero free parameters

αn−2N , . . . , αn−2, αn−1, βn−2N , . . . , βn−2 and λ .

Setting zn := (xn, yn) and γi := (αi, βi), and γ := (γn−2N , . . . , γn−2, αn−1),
the explicit series with coefficients rational in γ read as follows :

zk(λ) =
∞∑
i=0

z
(i)
k (γ)λi , k < n− 2N ,

zk(λ) = γk , n− 2N ≤ k ≤ n− 2 ,
xn−1(λ) = αn−1 ,

yn−1(λ) =
1

αn−1
+ λ ,

zn(λ) =
1
λ

∞∑
i=0

z(i)
n (γ)λi ,

zk(λ, γ) =
∞∑
i=0

z
(i)
k (γ)λi , n < k .

Singularity confinement is consequence of :

(1) Painlevé property of a.c.i. Toeplitz lattice.
(2) Rational difference relations as a whole define an invariant manifold of

the Toeplitz lattice.
(3) Formal Laurent solutions of Toeplitz lattice with maximal parameters

restrict to the above invariant manifold, restricting the parameters.
(4) Reparametrizing the “restricted” Laurent solutions by t → λ and “re-

stricted parameters” → γ yields the confinement result.

We discuss (1) and (2). Indeed, consider the Toeplitz lattice with the
Hamiltonian H = H

(1)
1 −H

(2)
1 , yielding the flow of (2.114):

General case:

∂xk
∂t

= (1 − xkyk)(xk+1 − xk−1) ,

∂yk
∂t

= (1 − xkyk)(yk+1 − xk−1) ,
k ∈ Z .
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Self-dual case:

∂xk
∂t

= (1 − x2
k)(xk+1 − xk−1) , k ∈ Z .

Then we have

Maximal formal Laurent solutions:

Theorem 2.2.5. For arbitrary but fixed n, the first Toeplitz lattice vector field
(2.114) admits the following formal Laurent solutions,

xn(t) =
1

(an−1 − an+1)t
(
an−1an+1(1 + at) +O(t2)

)
,

yn(t) =
1

(an−1 − an+1)t

(
−1 +

(
a+

an+1a+ − an−1a−
an+1 − an−1

)
t+O(t2)

)
,

xn±1(t) = an±1 + an±1a±t +O(t2) ,

yn±1(t) =
1

an±1
− a±t
an∓1

+O(t2)

whereas for all remaining k such that |k − n| ≥ 2,

xk(t) = ak + (1 − akbk)(ak+1 − ak−1)t +O(t2) ,

yk(t) = bk + (1 − akbk)(bk+1 − bk−1)t+O(t2) ,

where a, a±, an±1 and all ai, bi, with i ∈ Z\{n− 1, n, n+1} and with bn±1 =
1/an±1, are arbitrary free parameters, and with (an−1 − an+1)an−1an+1 �= 0.
In the self-dual case it admits the following two formal Laurent solutions,
parametrized by ε = ±1,

xn(t) = − ε

2t
(
1 + (a+ − a−)t +O(t2)

)
,

xn±1(t) = ε
(∓1 + 4a±t +O(t2)

)
,

xk(t) = ε
(
ak + (1 − a2

k)(ak+1 − ak−1)t +O(t2)
)
, |k − n| ≥ 2 ,

where a+, a− and all ai, with i ∈ Z\{n − 1, n, n + 1} are arbitrary free pa-
rameter and an−1 = −an+1 = 1.

Together with time t these parameters are in bijection with the phase space
variables; we can put for the general Toeplitz lattice for example zk ↔ (ak, bk)
for |k − n| ≥ 1 and xn±1 ↔ an±1 and yn±1, xn, yn ↔ a±, a, t. Consider the
locus L̂ defined by the difference relations (2.98) of Case 3 of Theorem 2.2.1,
namely:

General case:

L̂ = {(x, y) | Γn(x, y, u) = 0 , Γ̃n(x, y, u) = 0 , ∀n} .
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Self-dual case:
L̂ = {x | Γn(x, y, u) = 0, ∀n} ,

where we now explicitly exhibit the dependence of Γn, Γ̃n on the coefficients
of the measure, namely u. The point of the following theorem is that L̂ is
an invariant manifold for the flow generated by H = H

(1)
1 −H

(2)
1 , upon our

imposing the following u dependence on t (vn = 1 − xnyn).

Theorem 2.2.6. Upon setting ∂u±i/∂t = δ1i, the recursion relations satisfy
the following differential equations

Γ̇k = vk(Γk+1 − Γk−1) + (xk+1 − xk−1)(xkΓ̃k − ykΓk) ,
˙̃
Γ k = vk(Γ̃k+1 − Γ̃k−1) − (yk+1 − yk−1)(xkΓ̃k − ykΓk) ,

which specialize in the self-dual case to

Γ̇k = vk(Γk+1 − Γk−1) .

Sketch of proof : The proof is based on the crucial identities:

Γn = V0xn + nxn and Γ̃n = −V0yn + nyn ,

where

V0 :=
∑
i≥1

(
ui

∂

∂ti
+ u−i

∂

∂si

)
,

and

∂xn

∂

{
t1
s1

} = vnxn±1 ,
∂yn

∂

{
t1
s1

} = −vny∓1 ,
∂uk

∂

{
t1
s1

} = ±δk,±1 ,

which implies

∂Γn

∂

{
t1
s1

} = vnΓn±1 + xn±1(xnΓ̃n − ynΓn) ,

∂Γ̃n

∂

{
t1
s1

} = −vnΓ̃n∓1 + yn∓1(xnΓ̃n − ynΓn) ,

which, upon using ∂/∂t = ∂/∂t1 − ∂/∂s1, yields the theorem.
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2.3 Coupled Random Matrices and the 2-Toda Lattice

2.3.1 Main Results for Coupled Random Matrices

The study of coupled random matrices will lead us to the 2-Toda lattice and
bi-orthogonal polynomials, which are essentially 2 of the 4 wave functions
for the 2-Toda lattice. This problem will lead to many techniques which will
come up again, as well as a PDE for the basic probability in coupled random
matrices.

Let M1,M2 ∈ Hn, Hermitian n× n matrices and consider the probability
ensemble of

Coupled random matrices:

P
(
(M1,M2) ⊂ S

)

=

∫
S

dM1 dM2 exp
(− 1

2 Tr(M2
1 +M2

2 − 2cM1M2)
)

∫
Hn×Hn

dM1 dM2 exp
(− 1

2 Tr(M2
1 +M2

2 − 2cM1M2)
) (2.132)

with

dM1 = Δ2
n(x)

n∏
1

dxi dU1, = dM2 = Δ2
n(y)

n∏
1

dyi dU2 .

Given E = E1 × E2 =
⋃r

1[a2i−1, a2i] ×
⋃s

1[b2i−1, b2i], define the boundary
operators:

A1 =
1

1 − c2

(
2r∑
1

∂

∂aj
+ c

2s∑
1

∂

∂bj

)
, A2 =

2r∑
1

aj
∂

∂aj
− c

∂

∂c
,

B1 = A1

∣∣
a↔b

, B2 = A2

∣∣
a↔b

,

(2.133)

which form a Lie algebra:

[A1,B1] = 0 , [A1,A2] =
1 + c2

1 − c2
A1 , [A2,B1] = − 2c

1 − c2
A1 ,

[A2,B2] = 0 , [B1,B2] =
1 + c2

1 − c2
B1 , [B2,A1] = − 2c

1 − c2
B1 ,

(2.134)

We can now state the main theorem of Sect. 2.3:

Theorem 2.3.1 (Adler–van Moerbeke [4]). The statistics

Fn :=
1
n

logPn(E)

:=
1
n

logP (all (M1-eigenvalues) ∈ E1, all (M2-eigenvalues) ∈ E2)

(2.135)

satisfies the third order nonlinear PDE:
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A1

( B2A1Fn
B1A1Fn + c/(1 − c2)

)
= B1

( A2B1Fn
A1B1Fn + c/(1 − c2)

)
= 0 . (2.136)

In particular for E = (−∞, a]× (−∞, b], setting: x := −a+ cb, y := −ac+ b,
A1 → −∂/∂x, B1 → ∂/∂y, (2.136) becomes

∂

∂x

(
(c2 − 1)2∂2Fn/∂x∂c+ 2cx− (1 + c2)y

(c2 − 1)∂2Fn/∂x∂y + c

)

=
∂

∂y

(
(c2 − 1)2∂2Fn/∂y∂c+ 2cy − (1 + c2)x

(c2 − 1)∂2Fn/∂y∂x+ c

)
. (2.137)

2.3.2 Link with the 2-Toda Hierarchy

In this section we deform the coupled random matrix problem in a natural
way to introduce the 2-Toda hierarchy into the problem. We first need the
celebrated Harish-Chandra–Itzkson–Zuber formula [23]:

HCIZ: x = diag(x1, . . . , xn), y = diag(y1, . . . , yn)

∫
U(n)

dU exp(cTr xUyU−1) =
(

2π
c

)n(n−1)/2 det
(
exp(cxiyj)

)n
i,j=1

n!Δn(x)Δn(y)
. (2.138)

Compute, using HCIZ:
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∫∫
Hn(E1)×Hn(E2)

dM1 dM2 exp(cTrM1M2) exp

(
Tr
( ∞∑

1

(tiM i
1 − siM

i
2)
))

(t, s deformation)

=
∫
En

1 E
n
2

{
Δ2
n(x)Δ2

n(y)
n∏
k=1

exp
( ∞∑

1

(tixik − siy
i
k)
)

dxk dyk

}

×
∫∫

U(n)×U(n)

exp(cTrU1 × U−1
1 U2yU

−1
2 ) dU1 dU2

=
∫
En

1 E
n
2

{
Δ2
n(x)Δ2

n(y)
n∏
k=1

exp
( ∞∑

1

(tixik − siy
i
k)
)

dxk dyk

}

×
∫
U(n)

dU1

∫
U(n)

exp(cTr×U−1
1 U2yU

−1
2 U1) dU2

=
∫
En

1

∫
En

2

{
Δ2
n(x)Δ2

n(y)
n∏
k=1

exp
( ∞∑

1

(tixik − siy
i
k)
)

dxk dyk

}

×
∫
U(n)

dU1

∫
U(n)

exp(cTr×UyU−1)dU
(
U = U−1

1 U2

dU = dU2

)

= cn

∫
En

1

∫
En

2

Δn(x)Δn(y) det
(
exp(cxiyj)

)n
i,j=1

×
n∏
1

exp
( ∞∑

1

(tixik − siy
i
k)
)

dxk dyk

:= cn

∫
En

1

∫
En

2

Δn(x)Δn(y)
(∑
σ∈Sn

(−1)σ
n∏
1

exp(cxiyσ(i))
) n∏

1

dμ(xk) dψ(yk)

(setting: yσ(i) → yi, En2 → En2 )

= n!cn
∫
En

1

∫
En

2

Δn(x)Δn(y)
n∏
1

exp(cxiyi)
n∏
1

dμ(xk) dψ(yk)

= n!cn
∫
En

Δn(x)Δn(y)
n∏
k=1

exp
( ∞∑

1

(tixik − siy
i
k) + cxkyk

)
dxk dyk ,

E = E1 × E2 ,

where we have used in the above that Haar measure is translation invariant.
We now make a further c-deformation of this matrix integral.

Define τ-function:

τn(t, s, C,E)

:=
1
n!

∫
En

Δn(x)Δn(y)
n∏
k=1

exp
( ∞∑

1

(tixik − siy
i
k) +

∑
i,j≥1

cijx
i
ky
j
k

)
dxk dyk ,

(τ0 = 1) which is not a matrix integral ! (2.139)

Thus
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τn(t, s, C,E)
τn(t, s, C,R)

is t, s, C deformation of Pn(E) .

It is quite crucial to recast the τ -function using the de Bruijn trick:

Moment matrix form of τ-function:

τn(t, s, C,E)

=
1
n!

∫
En

Δn(x)Δn(y)
n∏
k=1

exp
( ∞∑

1

(tixik − siy
i
k) +

∑
i,j≥1

cijx
i
ky
i
k

)
dxk dyk

=
1
n!

∫
En

det
(
fi(xj)

)n
i,j=1

det
(
gi(yj)

)n
i,j=1

n∏
1

dψ(xk, yk)

(fi(x) = gi(x) = xi−1)

=
1
n!

∑
σ,μ∈Sn

(−1)σ+μ

∫
En

n∏
1

fσ(i)(xi)gi(yμ(i))dψ(xμ(i), yμ(i))

=
1
n!

∑
σ,μ∈Sn

(−1)σ+μ

∫
En

n∏
1

fσ◦μ(i)(xμ(i))gi(yμ(i))dψ(xμ(i) , yμ(i))

=
1
n!

∑
μ∈Sn

∑
σ′∈Sn

(−1)σ
′
n∏
1

∫
E

fσ′(i)(x)gi(y)dψ(x, y)

=
1
n!

∑
μ∈Sn

det
(∫

E

fi(x)gj(y)dψ(x, y)
)n
i,j=1

= det(μij)n−1
i,j=0 , (2.140)

with

μij(t, s, C,E) =
∫
E

xiyj exp
( ∞∑
k=1

(tkxk − sky
k
k) +

∑
α,β≥1

cαβx
αyβ
)

dxdy

:= 〈xi, yj〉 . (2.141)

Thus we have shown:

τn(t, s, C,E) = detmn , mn = (μij)n−1
i,j=0 . (2.142)

This immediately leads to the

2-Toda differential equations – Moment form:

∂μij
∂tk

= μi+k,j ,
∂μij
∂sk

= −μi,j+k , (2.143)

which we reformulate in terms of the moment matrix m∞

∂m∞
∂tk

= Λkm∞ ,
∂m∞
∂sk

= −m∞(ΛT )k , (2.144)
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or equivalently

m∞(t, s) = exp
( ∞∑

1

tkΛ
k

)
m∞(0, 0) exp

(
−

∞∑
1

sk(ΛT )k
)
, (2.145)

with the semi-infinite shift matrix

Λ :=

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .
0 0 0 0 . . .
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎠

. (2.146)

Thus

τn(t, s, C,E) = detmn(t, s) = det
(
En(t)m∞(0, 0)ETn (−s)) , (2.147)

with
En(t) = (I + s1(t)Λ+ s2(t)Λ2 + · · · )n×∞

and

exp
( ∞∑

1

tiz
i

)
:=

∞∑
0

si(t)zi , (2.148)

with si(t) the elementary Schur polynomials.

2.3.3 L–U Decomposition of the Moment Matrix, Bi-orthogonal
Polynomials and 2-Toda Wave Operators

The L–U decomposition of m∞ is equivalent to bi-orthogonal polynomials;
indeed, consider the L–U decomposition of m∞, as follows (see [9]):

m∞ = LhU := S−1(m∞)
(
h(m∞)

(
S−1(mT

∞)
)T ) := S−1

1 S2 (2.149)

where we define the string orthogonal polynomials

(
p(1)
n (y)

)
n≥0

:= S(m∞)

⎛
⎜⎜⎜⎝

1
y
y2

...

⎞
⎟⎟⎟⎠ :=

⎛
⎜⎜⎜⎜⎜⎝

det

⎛
⎜⎜⎜⎝

mn

1
y
...

μn0 . . . μn,n−1 yn

⎞
⎟⎟⎟⎠

detmn

⎞
⎟⎟⎟⎟⎟⎠
n≥0

(2.150)
and

(
p(2)
n (y)

)
n≥0

:= S(mT
∞)

⎛
⎜⎜⎜⎝

1
y
y2

...

⎞
⎟⎟⎟⎠ . (2.151)
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Setting
〈 , 〉 : 〈xi, yj〉 := μij(t, s, C) , (2.152)

conclude (as a tautology) the defining relations of the monic bi-orthogonal
polynomials, namely

〈p(1)
i , p

(2)
j 〉 = hiδij ⇐⇒ S(m∞)m∞

(
S(mT

∞)
)T = h(m∞) , (2.153)

with the first identity a consequence of (2.150) and (2.151), which also implies

h(m∞) := diag
(
h0, h1, . . . , hi =

detmi+1

detmi
, . . .

)
, (2.154)

and by (2.149)

S1 = S(m∞) , S2 = h(m∞)
(
S−1(mT

∞)
)T

. (2.155)

We now define the 2-Toda operators:

L1 = S1ΛS
−1
1 , L2 = S2Λ

TS−1
2 . (2.156)

Since m∞ = S−1
1 S2, with

S1 ∈ I + g− , S2 ∈ g+ ,

then
Ṡ1S

−1
1 ∈ g− , Ṡ2S

−1
2 ∈ g+ ,

with g− strictly lower triangular matrices and g+ upper triangular matrices,
including the diagonal, and g−+g+ = g := all semi-infinite matrices. Compute

S1ṁ∞S−1
2 = S1(S−1

1 S2)˙S−1
2 = −Ṡ1S

−1
1 + Ṡ2S

−1
2 ∈ g− + g+ , (2.157)

where we have used (S−1
1 )˙ = −S−1

1 Ṡ1S
−1
1 . On the other hand, one computes,

using (2.144), for ∂/∂tn or ∂/∂sn separately, that:

S1
∂m∞
∂tn

S−1
2 = S1Λ

nm∞S−1
2 = S1Λ

nS−1
1 S2S

−1
2 = S1Λ

nS−1
1

= Ln1 := (Ln1 )− + (Ln1 )+ ∈ g− + g+ , (2.158)

and

S1
∂m∞
∂sn

S−1
2 = −S1m∞(ΛT )nS−1

2 = −S1S
−1
1 S2(ΛT )nS−1

2

= −S2(ΛT )nS−1
2

= −Ln2 := −(Ln2 )− − (Ln2 )+ ∈ g− + g+ , (2.159)

and so (2.157), (2.158), and (2.159) yield the differential equations

∂S1

∂tn
S−1

1 = −(Ln1 )− ,
∂S2

∂tn
S−1

2 = (Ln1 )+ ,

∂S1

∂sn
S−1

1 = (Ln2 )− ,
∂S2

∂sn
S−1

2 = −(Ln2 )− .

(2.160)

Setting χ(x) = (1, z, z2, . . . )T we now connect the bi-orthogonal polynomials
with the 2-Toda wave functions:
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2-Toda wave functions :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ1(z) := exp
( ∞∑

1

tkz
k

)
p(1)(z) = exp

( ∞∑
1

tkz
k

)
S1χ(z) ,

Ψ∗
2 (z) := exp

(
−

∞∑
1

skz
−k
)
h−1p(2)(z−1)

= exp
(
−

∞∑
1

skz
−k
)

(S−1
2 )Tχ(z−1) .

Eigenfunction identities:

L1Ψ1(z) = zΨ1(z), LT2 Ψ
∗
2 (z) = z−1Ψ∗

2 (z) .

Formulas (2.160) and (2.156) yield,
t− s flows for Li and Ψ :⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂Li
∂tn

= [(Ln1 )+, Li] ,
∂Li
∂sn

= [(Ln2 )−, Li] , i = 1, 2, n = 1, 2, . . .

∂Ψ1

∂tn
= (Ln1 )+Ψ1 ,

∂Ψ1

∂sn
= (Ln2 )−Ψ1 ,

∂Ψ∗
2

∂tn
= −(Ln1 )T+Ψ

∗
1 ,

∂Ψ∗
2

∂sn
= −(Ln2 )T−Ψ

∗
2 .

Wave operators :

W1 := S1 exp
( ∞∑

1

tkΛ
k

)
, W2 := S2 exp

( ∞∑
1

sk(ΛT )k
)
, (2.161)

satisfy

W1(t, s)W1(t′, s′)−1 = W2(t, s)W2(t′, s′)−1 , ∀t, s, t′, s′ . (2.162)

All the data in 2-Toda is parametrized by τ -functions, to wit:
L1, L2, Ψ1, Ψ∗

2 parametrized by τ-functions :⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ψ1(z, t, s) =
(
τn(t− [z−1], s)

τn(t, s)
exp
( ∞∑

1

tiz
i

)
zn
)
n≥0

Ψ∗
2 (z, t, s) =

(
τn(t, s + [z])
τn+1(t, s)

exp
(
−

∞∑
1

siz
−i
)
z−n

)
n≥0

,

[x] = (x, x2/2, . . . ) ,

(2.163)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Lk1 =
∞∑
l=0

diag

(
sl(∂̃t)τn+k−l+1 ◦ τn

τn+k−l+1τn

)

n≥0

Λk−l ,

(h(LT2 )kh−1) =
∞∑
l=0

diag

(
sl(∂̃t)τn+k−l+1 ◦ τn

τn+k−l+1τn

) ∣∣∣∣∣
∂̃t→−∂̃s

,

(2.164)
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with

sl(t) the elementary Schur polynomials, ∂̃t =
(

∂

∂t1
,
1
2
∂

∂t2
,
1
3
∂

∂t3
, . . .

)
,

and the

Hirota symbol :

p

(
∂

∂t

)
f ◦ g := p

(
∂

∂y

)
f(t+ y)g(t− y)

∣∣
y=0

. (2.165)

2.3.4 Bilinear Identities and τ -function PDEs

Just like in KP theory (see Sect. 2.1.3), where the bilinear identity generates
the KP hierarchy of PDEs for the τ -function, the same situation holds for
the 2-Toda Lattice. In general 2-Toda theory (see [17]) the bilinear identity
is a consequence of (2.163) and (2.162), but in the special case of 2-Toda
being generated from bi-orthogonal polynomials, we can and will, at the end
of this section, sketch a quick direct alternate proof of Adler–van Moerbeke–
Vanhaecke [15] based on the bi-orthogonal polynomials, which has been vastly
generalized. Since all we ever need of integrability in any problem is the PDE
hierarchy, it is clearly of great practical use to have in general a quick proof of
just the bilinear identities, but without all the usual integrable baggage. We
now give the

2-Toda bilinear identities :

∮
z=∞

τn(t− [z−1], s)τm+1(t′ + [z−1], s′) exp
( ∞∑

1

(ti − t′i)z
i

)
zn−m−1 dz

=
∮
z=0

τn+1(t, s− [z−1])τm(t′, s′ + [z−1]) exp
( ∞∑

1

(si − s′i)z
i

)
zm−n−1 dz ,

∀s, t, s′, t′,m, n . (2.166)

The identities are a consequence of (2.162) and (2.163) and they yield, as in
Sect. 2.1.3 (see Appendix) a generating function involving elementary Schur
polynomials sj(·) and arbitrary parameters a, b, in the following9

Hirota form:

9 Hopefully there will be no confusion in this section between the elementary Schur
polynomials, sj(·), which are functions, and the time variables sj , which are pa-
rameters, but the situation is not ideal.
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0 = −
∞∑
j=0

sm−n+j(−2a)sj(∂̃t) exp

( ∞∑
1

(
ak

∂

∂tk
+ bk

∂

∂sk

))
τm+1 ◦ τn

+
∞∑
j=0

s−m+n+j(−2b)sj(∂̃s) exp

( ∞∑
1

(
ak

∂

∂tk
+ bk

∂

∂sk

))
τm ◦ τn+1

(2.167)

= aj+1

(
2sj(∂̃t)τn+2 ◦ τn +

∂2

∂s1∂tj+1
τn+1 ◦ τn+1

)
+ 0(a2

j+1) , (2.168)

upon setting m = n+ 1, and all bk, ak = 0, except aj+1. Note:

s0(t) = 1 , s1(t) = t1 , s1(∂̃t)f ◦ g = g
∂f

∂t1
− f

∂g

∂t1
,

and sk(t) = tk + poly. (t1, . . . , tk−1). This immediately yields the

2-Toda τ-function identities :

− ∂2

∂s1∂tk
log τn+1 =

sk−1(∂̃t)τn+2 ◦ τn
τ2
n+1

(2.169)

=

⎧⎪⎨
⎪⎩

τn+2τn
τ2
n+1

, k = 1 ,

τn+2τn
τ2
n+1

∂
∂t1

log
τn+2

τn
, k = 2 ,

(2.170)

from which we deduce, by forming the ratio of the k = 1, 2 identities, and
using (2.164):

Fundamental identities :

(L2
1)n−1,n =

∂

∂t1
log

τn+1

τn−1
=

∂2/∂s1∂t2 log τn
∂2/∂s1∂t1 log τn

, (2.171)

(and by duality t ↔ −s, L1 ↔ hLT2 h
−1)

(hLT2 h
−1)2n−1,n = − ∂

∂s1
log

τn+1

τn−1
=

∂2/∂t1∂s2 log τn
∂2/∂t1∂s1 log τn

. (2.172)

As promised we now give, following Adler–van Moerbeke–Vanhaecke [15]:

Sketch of alternate proof of bilinear identities : The proof is based on the fol-
lowing identities concerning the bi-orthogonal polynomials and their Cauchy
transforms with regard to the measure dρ defining the moments of (2.141)
and (2.152) μij :

dρ(x, y, t, s, c) = exp
( ∞∑

1

(tixi − siy
i) +

∑
α,β≥1

cαβx
αyβ
)

dxdy .
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Namely, the bi-orthogonal polynomials of (2.150) and (2.151) and their formal
Cauchy transforms with regard to dρ can be expressed in terms of τ -functions
as follows:10⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(1)
n (z, t, s) = zn

τn(t− [z−1], s)
τn(t, s)

, (suppressing c and E in p(i)
n and τn) ,

p(2)
m (z, t, s) = zm

τm(t, s + [z−1])
τm(t, s)

,

〈
p(1)
n (x),

1
z − y

〉
= z−n−1 τn+1(t, s− [z−1])

τn(t, s)
,

〈
1

z − x
, p(2)
m (y)

〉
= z−m−1 τm+1(t + [z−1], s)

τm(t, s)
.

(2.173)

These formulas are not hard to prove, they depend on substituting

exp
(
±
∑
i≥1

(x/z)i

i

)
=
(

1 − x

z

)∓1

=
∑
i≥0

(
x

z

)i
or 1 − x

z
(2.174)

into formula (2.142), which express τn(t, s, C,E) in terms of the moments
μij(t, s, c, E) of (2.141). Then one must expand the rows or columns of the
ensuing determinants using (2.174) and make the identification of (2.173),
using (2.150) and (2.151), an amusing exercise. If one then substitutes (2.173)
into the bilinear identity (2.166) divided by τn(t, s)τm(t, s), thus eliminating
τ -functions, and if we make use of the following self-evident formal residue
identities: ∮

z=∞
f(z)

〈
h(x)
z − x

, g(y)
〉

dz
2πi

= 〈f(x)h(x), g(y)〉 ,
∮
z=∞

f(z)
〈
g(x),

h(y)
z − y

〉
dz
2πi

= 〈g(x), f(y)h(y)〉 ,
(2.175)

with

f(z) =
∞∑
i=0

aiz
i , (2.176)

the bilinear identity becomes a tautology.

2.3.5 Virasoro Constraints for the τ -functions

In this section we derive the Virasoro constraints for our τ -functions τ(t, s, C,E)
using their integral form:

V
(1)
k τ(t, s, C,E) = 0 , V

(2)
k τ(t, s, C,E) = 0 , k ≥ −1 . (2.177)

10 1/(z − x) := (1/z)
∑∞
i=0(x/z)

i, etc., 1/(z − y), and thus z is viewed as large.
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Explicitly:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r∑
1

ak+1
i

∂

∂ai
τEn =

(
J
(2)
k,n(t) +

∑
i,j≥1

icij
∂

∂ci+k,j

)
τEn := Vkτ

E
n

s∑
1

bk+1
i

∂

∂bi
τEn =

(
J
(2)
k,n(−s) +

∑
i,j≥1

jcij
∂

∂ci,j+k

)
τEn := Ṽkτ

E
n ,

k ≥ −1 , n ≥ 0 , (2.178)

with

E =
r⋃
1

[a2i−1, a2i] ×
s⋃
1

[b2i−1, b2i] , (2.179)

τEn = τn(t, s, C,E)

=
1
n!

∫
En

(
Δn(x)

n∏
k=1

exp
( ∞∑

1

tix
i
k

)
dxk

)

×
(
Δn(y)

n∏
k=1

exp
(
−

∞∑
1

siy
i
k

)
dyk

) n∏
k=1

exp
(∑
i,j≥1

cijx
i
ky
j
k

)
,

(2.180)

and

J
(1)
k (t) :=

(
J
(1)
k,n(t)

)
n≥0

:= (J (1)
k (t) + nJ

(0)
k )n≥0 ,

J
(2)
k (t) :=

(
J
(2)
k,n(t)

)
n≥0

:= 1
2

(
J

(2)
k (t) + (2n+ k + 1)J (1)

k (t) + n(n+ 1)J (0)
k

)
n≥0

,

J
(1)
k (t) :=

∂

∂tk
+ (−k)t−k, J

(0)
k = δ0k ,

J
(2)
k (t) :=

∑
i+j=k

∂2

∂ti∂tj
+ 2

∑
i≥1

iti
∂

∂ti+k
+

∑
i+j=−k

(iti)(jtj) .

(2.181)

Main fact : J
(2)
k forms a Virasoro algebra of charge c = −2,

[
J
(2)
k , J

(2)
l

]
= (k − l)J(2)

k+l + (−2)
(k3 − k)

12
δk,−l . (2.182)

To prove (2.178) we need the following lemma:

Lemma 2.3.1 (Adler–van Moerbeke [5]). Given

ρ = e−V with −ρ′

ρ
= V ′ =

g

f
=
∑∞

0 βiz
i∑∞

0 αizi
,
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the integrand

dIn(x) := Δn(x)
n∏
k=1

(
exp
( ∞∑

1

tix
i

)
ρ(xk)dxk

)
, (2.183)

satisfies the following variational formula:

d
dε

dIn(xi �→ xi + εf(xi)xm+1
i )

∣∣
ε=0

=
∞∑
l=0

(αlJ
(2)
m+l,n − βlJ

(1)
m+l+1,n) dIn .

(2.184)
The contribution coming from

∏n
1 dxj is given by

∞∑
l=0

al(l +m + 1)J(1)
m+l,ndIn . (2.185)

Proof of (2.178). First make the change of coordinates xi → xi + εxk+1
i , 1 ≤

i ≤ n, in the integral (2.180), which remains unchanged, and then differentiate
the results by ε, at ε = 0, which of course yields 0, i.e.,

d
dε
τEn
∣∣
xi→xi+εx

k+1
i

∣∣∣∣
ε=0

= 0 . (2.186)

Now, by (2.180), there are precisely 3 contributions to the l .h.s. of (2.186),
namely one of the form (2.184), with ρ(x) = 1, yielding J

(2)
k,n(t)τ

E
n , one coming

from

d
dε

(
n∏
l=1

exp
(∑
i,j≥1

cijx
i
ly
j
l

))∣∣∣∣∣
xs→xs+εxk+1

s

∣∣∣∣∣
ε=0

=
∑
i,j≥1

icij

n∑
l=1

xi+kl yjl

n∏
l=1

exp
(∑
i,j≥1

cijx
i
ly
j
l

)

=
∑
i,j≥1

icij
∂

∂ci+k,j

n∏
l=1

exp
(∑
i,j≥1

cijx
i
ly
j
l

)
,

yielding
∑

i,j≥1 icij∂/∂ci+k,jτ
E
n .11 Finally, we have a third contribution, since

the limits of integration the integral (2.180) must change:

a + i → ai − εak+1
i + 0(ε2) , 1 ≤ i ≤ 2r .

Upon differentiating τEn with respect to the ε in these new limits of integra-
tion, we have by the chain rule, the contribution −∑2r

1 ak+1
i ∂/∂aiτ

E
n . Thus

altogether we have:

11 It must be noted that: ∂/∂c0,n = −∂/∂sn, ∂/∂cn,0 = ∂/∂tn.
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0 =
d
dε
τEn
∣∣
xi→xi+εx

k+1
i

∣∣∣∣
ε=0

= −
2r∑
1

ak+1
i

∂

∂ai
τEn + J

(2)
k,n(t)τ

E
n +

∑
i,j≥1

icij
∂

∂ci+k,n
τEn ,

yielding the first expression (2.178). The second expression follows from the
first by duality, t ↔ −s, a ↔ b, cij ↔ cji.

2.3.6 Consequences of the Virasoro Relations

Observe from (2.132), (2.139) that
(
e2 = (0, 1, 0, 0, . . . )

)

Pn(E) =
τEn (t− e2/2, s+ e2/2, C)
τR
n (t− e2/2, s+ e2/2, C)

∣∣∣∣
L
, (2.187)

L := {t = s = 0, all cij = 0, but c11 = c} , (2.188)

and so computing (2.178) for τEn (t − 1
2e2, s + 1

2e2, C) requires us to shift the
t, s in J

(2)
k,n(t), J

(2)
k,n(−s) accordingly, and we find from (2.181) shifted, the

following:
Akτn = Vkτn, Bkτn = Wkτn, k = 1, 2 (2.189)

with
τn = τEn

(
t− 1

2e2, s+ 1
2e2, C

)
,

and

A1 =
1

1 − c2

( 2r∑
1

∂

∂aj
+ c

2s∑
1

∂

∂bj

)
, B1 =

1
1 − c2

( 2s∑
1

∂

∂bj
+ c

2r∑
1

∂

∂aj

)
,

A2 =
2r∑
1

aj
∂

∂aj
, B2 =

2s∑
1

bj
∂

∂bj
,

(2.190)
with
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V1 :=
1

1 − c2
(V−1 + cṼ−1) = V̂1 + v1

:= − ∂

∂t1
− n(t1 − cs1)

c2 − 1

− 1
c2 − 1

(∑
i≥2

i

(
ti

∂

∂ti−1
+csi

∂

∂si−1

)
+
∑
i,j≥1,
i,j �=(1,1)

cij

(
i

∂

∂ci−1,j
+jc

∂

∂ci,j−1

))
,

W1 :=
1

1 − c2
(cV−1 + Ṽ−1) = Ŵ1 + w1

:=
∂

∂s1
− n(ct1 − s1)

c2 − 1

− 1
c2 − 1

(∑
i≥2

i

(
cti

∂

∂ti−1
+si

∂

∂si−1

)
+
∑
i,j≥1,
i,j �=(1,1)

cij

(
ci

∂

∂ci−1,j
+j

∂

∂ci,j−1

))
,

V2 := V0 − c
∂

∂c
:= V̂2 + v2

:= − ∂

∂t2
+
∑
i≥1

iti
∂

∂ti
+
n(n+ 1)

2
+
∑
i,j≥1,

(i,j) �=(1,1)

icij
∂

∂cij
,

W2 := Ṽ0 − c
∂

∂c
:= Ŵ2 + w2

:=
∂

∂s2
+
∑
i≥1

isi
∂

∂si
+
n(n+ 1)

2
+
∑
i,j≥1,

(i,j) �=(1,1)

jcij
∂

∂cij
.

Note V̂1, Ŵ1, V̂2, Ŵ2 are first order operators such that (and this is the point):

V̂1|L = − ∂

∂t1
, Ŵ1|L =

∂

∂s1
, V̂2|L = − ∂

∂t2
, Ŵ2|L =

∂

∂s2
, (2.191)

and

v1 =
n(t1 − cs1)

1 − c2
, w1 =

n(ct1 − s1)
1 − c2

, v2 = w2 =
n(n+ 1)

2
. (2.192)

Because of (2.191) we call this a principal symbol analysis. Hence

Ak log τn = V̂k log τn + vk , Bk log τn = Ŵk log τn + wk , k = 1, 2 ,
(2.193)

and so on the locus L using (2.191)–(2.193) we find:

∂

∂t1
log τn|L = −A1 log τn|L ,

∂

∂s1
log τn|L = B1 log τn|L ,

∂

∂t2
log τn|L = −A2 log τn|L ,

∂

∂s2
log τn|L = B2 log τn|L

+
n(n+ 1)

2
− n(n + 1)

2
.

(2.194)
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Extending this analysis to second derivatives, compute:

B1A1 log τn|L = B1(V̂1 log τn + v1)|L = B1V̂1 log τn|L + B1(v1)|L
(x)
= V̂1B1 log τn|L + B1(v1)|L
(x

x)= − ∂

∂t1
(Ŵ1 log τn + w1)|L + B1(v1)|L

= − ∂

∂t1

(
∂

∂s1
+ · · ·

)
log τn|L − ∂

∂t1
w1|L + B1(v1)|L (2.195)

where we have used in (x) that
[B1, V̂1

]∣∣
L = 0 and in

(
x
x

)
that V̂1

∣∣
L = −∂/∂t1.

So we must compute

− ∂

∂t1
Ŵ1|L = − ∂2

∂t1∂s1
, − ∂

∂t1
w1|L =

nc

c2 − 1
, B1(v1)|L = 0 , (2.196)

and so conclude that
(
τn = τEn (t− 1

2e2, s+ 1
2e2, C)

)
∂2

∂t1∂s1
log τn|L = −B1A1 log τn +

nc

c2 − 1
. (2.197)

The crucial points in this calculation were:

[B1, V̂1]|L = 0 , V̂1|L = − ∂

∂t1
, Ŵ1 =

∂

∂s1
+ · · · , (2.198)

and indeed this is a model calculation, which shall be repeated over and over
again. And so in the same fashion, conclude:

∂2

∂t1∂s2
log τn|L = −B2A1 log τn ,

∂2

∂s1∂t2
log τn|L = −A2B1 log τn ,

(2.199)
where we have used ∂/∂t1(n(n + 1)/2) = ∂/∂s1 (n(n+ 1)/2) = 0.

2.3.7 Final Equations

We have derived in Sect. 2.3.6, the following
Relations on Locus L:
∂

∂t1
log τEn = −A1 log τEn ,

∂

∂t2
log τEn = −A2 log τEn +

n(n+ 1)
2

,

∂

∂s1
log τEn = B1 log τEn ,

∂

∂s2
log τEn = B2 log τEn − n(n + 1)

2
,

∂2

∂t1∂s2
log τEn = −B2A1 log τEn ,

∂2

∂s1∂t2
log τEn = −A2B1 log τEn ,

∂2

∂t1∂s1
log τEn = −B1A1 log τEn +

nc

c2 − 1
.

(2.200)

Remember from Sect. 2.3.4:
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2-Toda relations

∂

∂t1
log

τEn+1

τEn−1

=
∂2/∂s1∂t2 log τEn
∂2/∂t1∂s1 log τEn

,

− ∂

∂s1
log

τEn+1

τEn−1

=
∂2/∂t1∂s2 log τEn
∂2/∂t1∂s1 log τEn

,

(2.201)

Substitute the relations on L into the 2-Toda relations, which yields:

Pure boundary relations on the locus L

−A1 log
τEn+1

τEn−1

=
A2B1 log τEn

A1B1 log τEn + nc/(1 − c2)
,

−B1 log
τEn+1

τEn−1

=
B2A1 log τEn

B1A1 log τEn + nc/(1 − c2)
.

(2.202)

Since A1B1 = B1A, conclude that

A1

( B2A1 log τEn
B1A1 log τEn +nc/(1−c2)

)
= B1

( A2B1 log τEn
A1B1 log τEn + nc/(1 − c2)

)
.

(2.203)
Notice that since τR

n is independent of ai and bi, we find that

A1 log τEn = A1 log τEn −A1 log τR

n

= A1 log
τEn
τR
n

= A1 logPn(E) , (2.204)

and so (2.203) is true with log τEn → logPn(E), yielding the final equation for
Fn(E) = 1/n logPn(E), and proving Theorem 2.3.1.

2.4 Dyson Brownian Motion and the Airy Process

2.4.1 Processes

The joint distribution for the Dyson process at 2-times deforms naturally to
the 2-Toda integrable system, as it is described by a coupled Hermitian matrix
integral, analyzed in the previous section. Taking limits of the Dyson process
leads to the Airy and Sine processes. We describe the processes in this section
in an elementary and intuitive fashion. A good reference for this discussion
would be [33] and Dyson’s celebrated papers [30, 31] on Dyson diffusion.

A random walk corresponds to a particle moving either left or right at
time n with probability p. If the particle is totally drunk, one may take p = 1

2 .
In that case, if Xn is its location after n steps,

E(Xn) = 0, E(X2
n) = n , (2.205)
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and in any case, this discrete process has no memory:

P
(
Xn+1 = j | (Xn = i) ∩ (arbitrary past event)

)
= P (X1 = j | X0 = i) ,

i.e. it is Markovian. In the continuous version of this process (say with p = 1
2 ),

[t/δ] steps are taken in time t and each step is of magnitude
√
δ, consistent with

the scaling of (2.205). By the central limit theorem (CLT) for the binomial
distribution, or in other words by Stirlings formula, it follows immediately
that

lim
δ→0

P (Xt ∈ (X,X + dX) | X0 = X) =
exp(−(X −X)2/2t)√

2πt
dX

=: P (t,X,X) dX . (2.206)

Note that P (t,X,X) satisfies the (heat) diffusion equation

∂P

∂t
=

1
2
∂2P

∂X2
. (2.207)

The limiting motion where the particle moves ±√
δ with equal probability 1

2
in time δ, is in the limit, as δ → 0, Brownian motion. The process is scale
invariant and so infinitesimally its fluctuations in t are no larger than

√
Δ(t)

and hence while the paths are continuous, they are nowhere differentiable
(for almost all initial conditions.) We may also consider Brownian motion
in n directions, all independent, and indeed, it was first observed in n = 2
directions, under the microscope by Robert Brown, an English botanist, in
1828. In general, by independence,

P (t,X,X) =
n∏
1

P (t,X i, Xi)

=
1

(2πt/β)n/2
exp
(
−

n∑
1

(Xi −Xi)2

2t/β

)
, (2.208)

hence
∂P

∂t
=

1
2β

n∑
1

∂2

∂X2
i

P , (2.209)

where we have changed the variance and hence the diffusion constant from
1 → β.

In addition (going back to n = 1), besides changing the rate of diffusion,
we may also subject the diffusing particle located at X , to a harmonic force
−ρX , pointing toward the origin. Thus you have a drunken particle executing
Brownian motion under the influence of a steady wind pushing him towards
the origin – the Ornstein–Uhlenbeck (see [33]) process – where now the prob-
ability density P (t,X,X) is given by the diffusion equation:
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∂P

∂t
=
(

1
2β

∂2

∂X2
− ∂

∂X
(−ρX)

)
P. (2.210)

This can immediately be transformed to the case ρ = 0, yielding (c = e−ρt)

P (t,X,X) =
1√

2π((1 − c2)/2ρβ)1/2
exp
(−(X − cX)2

(1 − c2)/ρβ

)
, (2.211)

which as ρ → 0, (1 − c2)/2ρ → t, transforms to the old case. This process
becomes stationary, i.e. the probabilities at a fixed time do not change in t,
if and only if the initial distribution of X is given by the limiting t → ∞
distribution of (2.211):

exp(−ρβX2
)√

π/ρβ
dX , (2.212)

and this is the only “normal Markovian process” with this property.
Finally, consider a Hermitian matrix B = (Bij) with n2 real quantities Bij

undergoing n2 independent Ornstein–Uhlenbeck processes with ρ = 1, but
{
β = 1 for Bii (on diagonal) ,
β = 2 for Bij (off diagonal) ,

and so the respective probability distribution Pii, Pij satisfy by (2.210):
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂Pii
∂t

=
(

1
2

∂2

∂B2
ii

− ∂

∂Bii
(−Bii)

)
Pii ,

∂Pij
∂t

=
(

1
2 × 2

∂2

∂B2
ij

− ∂

∂Bij
(−Bij)

)
Pij ,

(2.213)

with solution, by (2.211) (c = e−t), given by:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pii(t, Bii, Bii) =
1√

2π
√

(1 − c2)/2
exp
(−(Bii − cBii)2

1 − c2

)
,

Pij(t, Bij , Bij) =
1√

2π
√

(1 − c2)/4
exp
(−(Bij − cBij)2

(1 − c2)/2

)
.

(2.214)

By the independence of the processes the joint probability distribution is given
by:

P (t, B,B) =
n∏
i=1

Pii
∏

1≤i,j≤n,
i�=j

Pij =
Z−1

(1 − c2)n2/2
exp
(
−Tr(B − cB)2

1 − c2

)
,

(2.215)
with Z = (2π)n

2/22(−n2+n/2), which by (2.213) and (2.215) evolves by the
Ornstein–Uhlenbeck process:
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∂P

∂t
=

n∑
i,j=1

(
1
4
(1 + δij)

∂2

∂B2
ij

+
∂

∂Bij
Bij

)
P

=
n∑

i,j=1

(
1
4
(1 + δij)

∂

∂Bij
Φ(B)

∂

∂Bij

1
Φ(B)

)
P (B) ,

(2.216)

with Φ(B) = exp(− trB2). Note that the most general solution (2.215) to
(2.216) is invariant under the unitary transformation

(B,B) → (UBU−1, UBU−1) , (2.217)

which forces the actual process (2.216) to possess this unitary invariance and
in fact (2.216) induces a random motion purely on the spectrum of B. This
motion, discovered by Dyson in [30,31], is called Dyson diffusion, and indeed
the Ornstein–Uhlenbeck process

B(t) =
(
Bij(t)

)
given by (2.216) with solution (2.215), induces Dyson Brownian motion:(
λ1(t), . . . , λn(t)

) ∈ R
n on the eigenvalues of B(t).

The transition probability P (t, λ̄, λ) satisfies the following diffusion equa-
tion:

∂P

∂t
=

n∑
1

(
1
2
∂2

∂λ2
i

− ∂

∂λi

∂ log
√
Φ(λ)

∂λi

)
P

=
1
2

n∑
i=1

∂

∂λi
Φ(λ)

∂

∂λi

1
Φ(λ)

P

(2.218)

with

Φ(λ) = Δ2
n(λ)

n∏
1

e−λ
2
i ,

which is a Brownian motion, where instead of the particle at λi feeling only
the harmonic restoring force −λi, as in the Ornstein–Uhlenbeck process, it
feels the full force

Fi(λ) :=
∂ log

√
Φ(λ)

∂λi
=
∑
j �=i

1
λi − λj

− λi , (2.219)

which acts to keep the particles apart. In short, the Vandermonde in Φ(λ)
creates n-repelling Brownian motions, while the exponential term keeps them
from flying out to infinity. The equation (2.218) was shown by Dyson in [30,31]
by observing that Brownian motion with a force term F = (Fi) is, in general,
completely characterized infinitesimally by the dynamics:

E(δλi) = Fi(λ)δt, E
(
(δλi)2

)
= δt , (2.220)

and so in particular (2.216) yields
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E(δBij) = −Bijδt, E
(
(δBij)2

)
= 1

2 (1 + δij)δt . (2.221)

Then by the unitary invariance (2.217) of the process (2.216), one may set
at time t : B(t) = diag

(
λ1(t), . . . , λn(t)

)
, and then using the perturbation

formula:

δλi|t = δBii +
∑
j �=i

(δBji)2 + (δBij)2

(λi − λj)
+ · · · ,

compute E(δλi) and E
(
(δλi)2

)
by employing (2.221), immediately yielding

(2.220) with Fi(λ) given by (2.219). Thus by the characterization of (2.218)
by (2.220), we have verified Dysons result (2.218).

Remember an Ornstein–Uhlenbeck process has a stationary measure pre-
cisely if we take for the initial measure the equilibrium measure at t → ∞.
So consider our Ornstein–Uhlenbeck transition density (2.215) with t → ∞
stationary distribution:

Z−1 exp(− trB2) dB ,

and with this invariant measure as initial condition, one finds for the joint
distribution (c = exp(−(t2 − t1)))

P (B(t1) ∈ dB1, B(t2) ∈ dB2)

= Z−1 dB1 dB2

(1 − c2)n2/2
exp
( −1

1 − c2
Tr(B2

1 − 2cB1B2 +B2
2)
)
, (2.222)

and similarly (ci = exp(−(ti+1 − ti))) compute

P (B(t1) ∈ dB1, . . . , B(tk) ∈ dBk)

= Z−1
k exp(− trB2

1)
k∏
i=2

exp
( −1

1 − c2i−1

Tr(Bi − ci−1Bi−1)2
)

dB1, . . . ,dBk

= Z−1
k

k∏
i=1

exp

(
−
(

1
1 − c2i−1

+
c2i

1 − c2i

)) n∑
j=1

λ2
j,i

) n∏
j=1

dλj,i

k−1∏
i=1

det

(
exp
(

2ci
1 − c2i

λl,i+1λm,i

))n
l,m=1

Δn(λ1)Δn(λk),

(
λi = (λ1,i, λ2,i, . . . , λn,i)

)
, (2.223)

using the HCIZ formula (2.138).
The distribution of the eigenvalues for GUE is expressible as a Fredholm

determinant (2.9) involving the famous Hermite kernel (2.5) and Eynard and
Mehta [32] showed that you have for the Dyson process an analogous extended
Hermite kernel, specifically the matrix kernel [39]:
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KH,n
titj :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞∑
k=1

exp
(−k(ti − tj)

)
ϕn−k(x)ϕn−k(y), ti ≥ tj ,

−
0∑

k=−∞
exp
(
k(tj − ti)

)
ϕn−k(x)ϕn−k(y), ti < tj ,

(2.224)

with ∫
R

ϕi(x)ϕj(x) dx = δij , ϕi(x) = pi(x) exp
(−x2

2

)
,

where

ϕk(x) =

⎧⎪⎨
⎪⎩

exp
(−x2

2

)
pk(x), for k ≥ 0, with pk(x) =

Hk(x)
2k/2

√
k!π1/4

,

0, for k < 0 ;

so pk(x) are the normalized Hermite polynomials. Then we have

Prob(all B(ti) eigenvalues /∈ Ei, 1 ≤ i ≤ m) = det
(
I −KH,E

)
:

KH,E
ij (x, y) = IEi(x)KH,n

titj (x, y)IEj (y) ,
(2.225)

the above being a Fredholm determinant with a matrix kernel.

Remark. In general such a Fredholm determinant is given by:

det(I − z(Ktitj )
m
i,j=1)

∣∣
z=1

= 1 +
∞∑
N=1

(−z)N

×
∑

0≤ri≤N,∑m
1 ri=N

∫
R

r1∏
1

dα(1)
i · · ·

rm∏
1

dα(m)
i det

((
Ktktl(α

(k)
i , α

(l)
j )
)
1≤i≤rk,
1≤j≤rl

)m
k,l=1

∣∣∣∣
z=1

,

where the N -fold integral above is taken over the range

R =

⎧⎪⎪⎨
⎪⎪⎩

−∞ < α
(1)
1 ≤ · · · ≤ α

(1)
r1 < ∞

...
−∞ < α

(m)
1 ≤ · · · ≤ α

(m)
rm < ∞

⎫⎪⎪⎬
⎪⎪⎭

,

with integrand equal to the determinant of an N×N matrix, with blocks given
by the rk × rl matrices

(
Ktktl(α

(k)
i , α

(l)
j )
)
1≤i≤rk,
1≤j≤rl

. In particular, for m = 2, we

have
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1 +
∞∑
N=1

(−z)N
∑

0≤r,s≤N,
r+s=N

∫
{−∞<α1≤···≤αr<∞
−∞<β1≤···≤βs<∞

}
r∏
1

dαi
s∏
1

dβi

× det

⎛
⎝
(
K̂t1t1(αi, αj)

)
1≤i,j≤r

(
K̂t1t2(αi, βj)

)
1≤i≤r,
1≤j≤s(

K̂t2t1(βi, αj)
)
1≤i≤s,
1≤j≤r

(
K̂t2t2(βi, βj)

)
1≤i,j≤s

⎞
⎠
∣∣∣∣∣
z=1

. (2.226)

These processes have scaling limits corresponding to the bulk and edge
scaling limits in the GUE.

The Airy process is defined by rescaling in the extended Hermite kernel:

x =
√

2n+
u√

2n1/6
, y =

√
2n+

v√
2n1/6

, t =
τ

n1/3
, (2.227)

and the Sine process by rescaling in the extended Hermite kernel:

x =
uπ√
2n

, y =
vπ√
2n

, t = π2 τ

2n
. (2.228)

This amounts to following, in slow time, the eigenvalues at the edge and in
the bulk, but with a microscope specified by the above rescalings. Then the
extended kernels have well-defined limits as n → ∞:

KA
titj (x, y) =

⎧⎪⎪⎨
⎪⎪⎩

∫ ∞

0

exp
(−z(ti − tj)

)
Ai(x+ z)Ai(y + z) dz , ti ≥ tj ,

−
∫ 0

−∞

(
z(tj − ti)

)
Ai(x+ z)Ai(y + z) dz , ti < tj ,

(2.229)

KS
titj =

⎧⎪⎪⎨
⎪⎪⎩

1
π

∫ π

0

exp
(
z2

2
(ti − tj)

)
cos z(x− y) dz , ti ≥ tj ,

− 1
π

∫ ∞

π

exp
(
−z2

2
(tj − ti)

)
cos z(x− y) dz , ti < tj ,

(2.230)

with Ai the Airy function. Letting A(t) and S(t) denote the Airy and Sine
processes, we define them below by

Prob(A(ti) /∈ Ei, 1 ≤ i ≤ k) = det
(
I −KA,E

)
,

Prob(S(ti) /∈ Ei, 1 ≤ i ≤ k) = det
(
I −KS,E

)
,

(2.231)

where the determinants are matrix Fredholm determinants defined by the
matrix kernels (2.229) and (2.230) in the same fashion as (2.225). The Airy
process was first defined by Prähofer and Spohn in [46] and the Sine process
was first defined by Tracy and Widom in [53].
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2.4.2 PDEs and Asymptotics for the Processes

It turns out that the 2-time joint probabilities for all three processes, Dyson,
Airy and Sine satisfy PDEs, which moreover lead to long time t = t2 − t1
asymptotics in, for example, the Airy case. In this section we state the results
of Adler and van Moerbeke [6], sketching the proofs in the next section. The
first result concerns the Dyson process:

Theorem 2.4.1 (Dyson process). Given t1<t2 and t= t2−t1, the logarithm
of the joint distribution for the Dyson Brownian motion

(
λ1(t), . . . , λn(t)

)
,

Gn(t; a1, . . . a2r; b1, . . . , b2s) := logP (all λi(t1) ∈ E1, all λi(t2) ∈ E2) ,

satisfies a third-order nonlinear PDE in the boundary points of E1 and E2

and t, which takes on the simple form, setting c = e−t,

A1
B2A1Gn

B1A1Gn + 2nc
= B1

A2B1Gn
A1B1Gn + 2nc

. (2.232)

The sets E1 and E2 are the disjoint union of intervals

E1 :=
r⋃
i=1

[a2i−1, a2i] and E2 :=
s⋃
i=1

[b2i−1, b2i] ⊆ R ,

which specify the linear operators

A1 =
2r∑
1

∂

∂aj
+ c

2s∑
1

∂

∂bj
,

B1 = c

2r∑
1

∂

∂aj
+

2s∑
1

∂

∂bj
,

A2 =
2r∑
1

aj
∂

∂aj
+ c2

2s∑
1

bj
∂

∂bj
+ (1 − c2)

∂

∂t
− c2 ,

B2 = c2
2r∑
1

aj
∂

∂aj
+

2s∑
1

bj
∂

∂bj
+ (1 − c2)

∂

∂t
− c2 .

The duality ai ↔ bj reflects itself in the duality Ai ↔ Bi.
The next result concerns the Airy process:

Theorem 2.4.2 (Airy process). Given t1 < t2 and t = t2 − t1, the joint
distribution for the Airy process A(t),

G(t;u1, . . . u2r; v1, . . . , v2s) := logP (A(t1) ∈ E1, A(t2) ∈ E2) ,

satisfies a third-order nonlinear PDE in the ui, vi and t, in terms of the
Wronskian {f(y), g(y)}y := f ′(y)g(y) − f(y)g′(y),
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(
(Lu + Lv)(LuEv − LvEu) + t2(Lu − Lv)LuLv

)
G

= 1
2{(L2

u − L2
v)G, (Lu + Lv)2G}Lu+Lv . (2.233)

The sets E1 and E2 are the disjoint union of intervals

E1 :=
r⋃
i=1

[u2i−1, u2i] and E2 :=
s⋃
i=1

[v2i−1, v2i] ⊆ R ,

which specify the set of linear operators

Lu :=
2r∑
1

∂

∂ui
, Lv :=

2s∑
1

∂

∂vi
,

Eu :=
2r∑
1

ui
∂

∂ui
+ t

∂

∂t
, Ev :=

2s∑
1

vi
∂

∂vi
+ t

∂

∂t
.

The duality vi ↔ vj reflects itself in the duality Lu ↔ Lv, Eu ↔ Ev.

Corollary 2.4.1. In the case of semi-infinite intervals E1 and E2, the PDE
for the Airy joint probability

H(t;x, y) := logP
(
A(t1) ≤ y + x

2
, A(t2) ≤ y − x

2

)
,

takes on the following simple form in x, y and t2, with t = t2 − t1, also in
terms of the Wronskian,

2t
∂3H

∂t∂x∂y
=
(
t2

∂

∂x
− x

∂

∂y

)(
∂2H

∂x2
− ∂2H

∂y2

)
+ 8
{
∂2H

∂x∂y
,
∂2H

∂y2

}
y

. (2.234)

Remark. Note for the solution H(t;x, y),

lim
t↘0

H(t;x, y) = logF2

(
min

(
y + x

2
,
y − x

2

))
.

The following theorem concerns the Sine process and uses the same sets
and operators as Theorem 2.4.2:

Theorem 2.4.3 (Sine process). For t1 < t2, and compact E1 and E2 ⊂ R,
the log of the joint probability for the Sine processes Si(t),

G(t;u1, . . . u2r; v1, . . . , v2s) := logP (all Si(t1) ∈ Ec
1, all Si(t2) ∈ Ec

2) ,

satisfies

Lu
(2EvLu + (Ev − Eu − 1)Lv)G

(Lu + Lv)2G+ π2

= Lv
(2EuLv + (Eu − Ev − 1)Lu)G

(Lu + Lv)2G+ π2
. (2.235)
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Corollary 2.4.2. In the case of a single interval, the logarithm of the joint
probability for the Sine process,

H(t;x, y) = logP (S(t1) /∈ [x1 + x2, x1 − x2], S(t2) /∈ [y1 + y2, y1 − y2])

satisfies

∂

∂x1

(2Ey∂/∂x1 + (Ey − Ex − 1)∂/∂y1)H
(∂/∂x1 + ∂/∂y1)2H + π2

=
∂

∂y1

(2Ex∂/∂y1 + (Ex − Ey − 1)∂/∂x1)H
(∂/∂x1 + ∂/∂y1)2H + π2

. (2.236)

Asymptotic consequences : Prähofer and Spohn showed that the Airy process
is a stationary process with continuous sample paths; thus the probability
P (A(t) ≤ u) is independent of t, and is given by the Tracy–Widom distribution

P (A(t) ≤ u) = F2(u) := exp
(
−
∫ ∞

u

(α− u)q2(α) dα
)
, (2.237)

with q(α) the solution of the Painlevé II equation,

q′′ = αq + 2q3 with q(α) �

⎧⎪⎨
⎪⎩

− exp(− 2
3α

3/2)
2
√
πα1/4

, for α ↗ ∞ ,

√
−α/2 , for a ↘ −∞ .

(2.238)
The PDEs obtained above provide a very handy tool to compute large

time asymptotics for these different processes, with the disadvantage that
one usually needs, for justification, a nontrivial assumption concerning the
interchange of sums and limits, which can be avoided upon directly using the
Fredholm determinant formula for the joint probabilities (see Widom [57])
the latter method, however, tends to be quite tedious and quickly gets out of
hand. We now state the following asymptotic result:

Theorem 2.4.4 (Large time asymptotics for the Airy process). For
large t = t2 − t1, the joint probability admits the asymptotic series

P (A(t1) ≤ u,A(t2) ≤ v)

= F2(u)F2(v) +
F ′

2(u)F ′
2(v)

t2
+
Φ(u, v) + Φ(v, u)

t4
+O

(
1
t6

)
, (2.239)

with the function q = q(α) given by (2.238) and

Φ(u, v) := F2(u)F2(v)

+
(

1
4

(∫ ∞

u

q2 dα
)2(∫ ∞

v

q2 dα
)2

+ q2(u)
(

1
4
q2(v) − 1

2

(∫ ∞

v

q2 dα
)2)

+
∫ ∞

v

dα (2(v − α)q2 + q′2 − q4)
∫ ∞

u

q2 dα
)
. (2.240)
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Moreover, the covariance for large t = t2 − t1 behaves as

E
(
A(t2)A(t1)

)− E
(
A(t2)

)
E
(
A(t1)

)
=

1
t2

+
c

t4
+ · · · , (2.241)

where
c := 2

∫∫
R2
Φ(u, v) du dv .

Conjecture. The Airy process satisfies the nonexplosion condition for fixed x:

lim
z→∞P (A(t) ≥ x+ z | A(0) ≤ −z) = 0 . (2.242)

2.4.3 Proof of the Results

In this section we sketch the proofs of the results of the prior section, but all
of these proofs are ultimately based on a fundamental theorem that we have
proven in Sect. 2.3, which we now restate.

Let M1,M2 ∈ Hn, Hermitian n× n matrices and consider the ensemble:

P
(
(M1,M2) ⊂ S

)
=

∫
S dM1 dM2 exp

(− 1
2 Tr(M2

1 +M2
2 − 2cM1M2)

)
∫
Hn×Hn

dM1 dM2 exp
(− 1

2 Tr(M2
1 +M2

2 − 2cM1M2)
) ,

(2.243)
with

dM1 = Δ2
n(x)

n∏
1

dxi dU1 , dM2 = Δ2
n(y)

n∏
1

dyi dU2 .

Given

E = E1 × E2 =
r⋃
1

[a2i−1, a2i] ×
s⋃
1

[b2i−1, b2i] ,

define the boundary operators:

Ã1 = − 1
c2 − 1

( r∑
1

∂

∂aj
+ c

s∑
1

∂

∂bj

)
, Ã2 =

r∑
1

aj
∂

∂aj
− ∂

∂c
,

B̃1 = Ã1

∣∣
a↔b

, B̃2 = Ã2

∣∣
a↔b

.

Note Ã1B̃1 = B̃1Ã1.
The following theorem was proven in Sect. 2.3:

Theorem 2.4.5. The statistics

Fn(c; a1, . . . , a2r; b1, . . . , b2s) := logPn(E)
:= logP (all (M1-eigenvalues) ∈ E1, all (M2-eigenvalues) ∈ E2) ,

satisfies the third order nonlinear PDE:

Ã1

( B̃2Ã1Fn

B̃1Ã1Fn + nc/(1 − c2)

)
= B̃1

( Ã2B̃1Fn

Ã1B̃1Fn + nc/(1 − c2)

)
. (2.244)
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Proof of Theorem 2.4.1. Changing limits of integration in the integral Fn
defined by the measure (2.243) to agree with the integral Gn defined by the
measure (2.222), we find the function Gn of Theorem 2.4.1 is related to the
function Fn of Theorem 2.4.5 by a trivial rescaling:

Gn(t; a1, . . . , a2r; b1, . . . , b2s)

= Fn

(
c;

a1√
(1 − c2)/2

, . . . ,
a2r√

(1 − c2)/2
;

b1√
(1 − c2)/2

, . . . ,
b2s√

(1 − c2)/2

)

(2.245)

and applying the chain rule to (2.244) using (2.245) leads to Theorem 2.4.1
immediately, upon clearing denominators.

In order to prove the theorems concerning the Airy and Sine processes, we
need a rigorous statement concerning the asymptotics of our Dyson, Airy and
Sine kernels. To that end, letting

S1 :=
{
t �→ t

n1/3
, s �→ s

n1/3
, x �→ √

2n+ 1 +
u√

2n1/6

y �→ √
2n+ 1 +

v√
2n1/6

}

S2 :=
{
t �→ π2t

2n
, s �→ π2s

2n
, x �→ πu√

2n
, y �→ πv√

2n

}
,

(2.246)

we have:

Proposition 2.4.1. Under the substitutions S1 and S2, the extended Hermite
kernel tends with derivative,respectively, to the extended Airy and Sine kernel,
when n → ∞, uniformly for u, v ∈ compact subsets ⊂ R:

lim
n→∞KH,n

t,s (x, y) dy
∣∣
S1

= KA
t,s(u, v) dv ,

lim
n→∞KH,n

t,s (x, y) dy
∣∣
S2

= exp
(
−π2

2
(t− s)

)
KS
t,s(u, v) dv .

(2.247)

Remark. The proof involves careful estimating and Riemann–Hilbert tech-
niques and is found in [6].

Proof of Theorem 2.4.2. Rescale in Theorem 2.4.1

ai =
√

2n+
ui√
2n1/6

, bi =
√

2n+
vi√

2n1/6
, t =

τ

n1/3
(2.248)

and then from Proposition 2.4.1 it follows that, with derivatives that,

Gn

(
τ

n1/3
, a; b

)
= G(τ, u, v) +O

(
1
k

)
, k = n1/6 . (2.249)
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We now do large n asymptotics on the operators Ai, Bi, setting L = Lu+Lv,
E = Eu + Ev, with Lu, Lv, Eu, Ev defined in Theorem 2.4.2; we find:

A1 =
√

2k

(
L−

(
τ

k2
− τ2

2k4
+

τ3

6k6

)
Lv +O

(
1
k8

))
,

B1 =
√

2k

(
L−

(
τ

k2
− τ2

2k4
+

τ3

6k6

)
Lu +O

(
1
k8

))
,

A2 = 2k4

(
L− 2τ

k2
Lv +

1
2k4

(E − 1 + 4τ2Lv)

− τ

k6

(
Ev − 1 +

4
3
τ2Lv

)
+O

(
1
k8

))
,

B2 = 2k4

(
L− 2τ

k2
Lu +

1
2k4

(E − 1 + 4τ2Lu)

− τ

k6

(
Eu − 1 +

4
3
τ2Lu

)
+O

(
1
k8

))
,

(2.250)

and consequently

1
2
√

2k5
B2A1

= L2 − τ

k2
(L+ Lu)L+

1
2k4

(
L(E − 2) + τ2

(
4Lu(L+ Lv) + LLv)

)

− τ

k6

(
L(Eu−2)+

1
2
Lv(E+2)+

τ2

6
(8LLu+18LuLv+LLv)

)
+O

(
1
k8

)

(2.251)

1
2k2

B1A1 = L2− τ

k2
L2+

τ2

k4

(
1
2
L2+LuLv

)
− τ3

k6

(
1
6
L2+LuLv

)
+O

(
1
k8

)
.

Feeding these estimates and (2.249) into the relation (2.232) of Theorem 2.4.1,
multiplied by (B1A1Gn+2nc)2, which by the quotient rule becomes an identity
involving Wronskians, we then find ({f, g}X = gXf − fXg)
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0 =
{

1
2
√

2k5
B2A1Gn,

1
2k2

(
B1A1Gn + 2k6 exp

(−τ
k2

))}
A1/(

√
2k)

−
{

1
2
√

2k5
A2B1Gn,

1
2k2

(
A1B1Gn + 2k6 exp

(−τ
k2

))}
B1/(

√
2k)

=
2τ
k2

[(
(Lu + Lv)(LuEv − LvEu) + τ2(Lu − Lv)LuLv

)
Gn

− 1
2
{(L2

u − L2
v)Hn, (Lu + Lv)2Gn}Lu+Lv

]
+O

(
1
k3

)

=
2τ
k2

[(
(Lu + Lv)(LuEv − LvEu) + τ2(Lu − Lv)LuLv

)
G

− 1
2
{(L2

u − L2
v)G, (Lu + Lv)2G}Lu+Lv

]
+O

(
1
k3

)
.

In this calculation, we used the linearity of the Wronskian {X,Y }Z in its
three arguments and the following commutation relations:

[Lu, Eu] = Lu , [Lu, Ev] = [Lu, Lv] = [Lu, τ ] = 0 , [Eu, τ ] = τ ,

including their dual relations by u ↔ v; also we have {L2G, 1}Lu−Lv =
{L(Lu − Lv)G, 1}L. It is also useful to note that the two Wronskians in the
first expression are dual to each other by u ↔ v. The point of the com-
putation is to preserve the Wronskian structure up to the end. This proves
Theorem 2.4.2, upon replacing τ → t.

Proof of Corollary 2.4.1. Equation (2.233) for the probability

G(τ ;u, v) := logP (A(τ1) ≤ u,A(τ2) ≤ v) , τ = τ2 − τ1 ,

takes on the explicit form

τ
∂

∂τ

(
∂2

∂u2
− ∂2

∂v2

)
G =

∂3G

∂u2∂v

(
2
∂2G

∂v2
+

∂2G

∂u∂v
− ∂2G

∂u2
+ u− v − τ2

)

− ∂3G

∂v2∂u

(
2
∂2G

∂u2
+

∂2G

∂u∂v
− ∂2G

∂v2
− u+ v − τ2

)

+
(
∂3G

∂u3

∂

∂v
− ∂3G

∂v3

∂

∂u

)(
∂

∂u
+

∂

∂v

)
G . (2.252)

This equation enjoys an obvious u ↔ v duality. Finally the change of variables
in the statement of Corollary 2.4.1 leads to (2.234).

The proof of Theorem 2.4.3 is done in the same spirit as that of Theo-
rem 2.4.2 and Corollary 2.4.2 follows immediately by substitution in Theo-
rem 2.4.3. Next, we need some preliminaries to prove Theorem 2.4.4. The first
being:
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Proposition 2.4.2. The following ratio of probabilities admits the asymptotic
expansion for large t > 0 in terms of functions fi(u, v), symmetric in u and v

P (A(0) ≤ u,A(t) ≤ v)
P (A(0) ≤ u)P (A(t) ≤ v)

= 1 +
∑
i≥1

fi(u, v)
ti

, (2.253)

from which it follows that

lim
t→∞P (A(0) ≤ u,A(t) ≤ v) = P (A(0) ≤ u)P (A(t) ≤ v) = F2(u)F2(v) ,

this means that the Airy process decouples at ∞.

The proof necessitates using the extended Airy kernel. Note, since the
probabilities in (2.253) are symmetric in u and v, the coefficients fi are sym-
metric as well. The last equality in the formula above follows from stationarity
and (2.237).

Conjecture. The coefficients fi(u, v) have the property

lim
u→∞ fi(u, v) = 0 for fixed v ∈ R , (2.254)

and
lim
z→∞ fi(−z, z + x) = 0 for fixed x ∈ R . (2.255)

The justification for this plausible conjecture will now follow. First, con-
sidering the following conditional probability:

P (A(t) ≤ v | A(0) ≤ u) =
P (A(0) ≤ u,A(t) ≤ v)

P (A(0) ≤ u)

= F2(v)
(

1 +
∑
i≥1

fi(u, v)
ti

)
,

and letting v → ∞, we have automatically

1 = lim
v→∞P (A(t) ≤ v | A(0) ≤ u) = lim

v→∞

[
F2(v)

(
1 +

∑
i≥1

fi(u, v)
ti

)]

= 1 + lim
v→∞

∑
i≥1

fi(u, v)
ti

,

which would imply, assuming the interchange of the limit and the summation
is valid,

lim
v→∞ fi(u, v) = 0 , (2.256)

and, by symmetry
lim
u→∞ fi(u, v) = 0 .
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To deal with (2.255) we assume the following nonexplosion condition for
any fixed t > 0, x ∈ R, namely, that the conditional probability satisfies

lim
z→∞P (A(t) ≥ x+ z | A(0) ≤ −z) = 0 .

Hence, the conditional probability satisfies, upon setting

v = z + x , u = −z ,
and using limz→∞ F2(z + x) = 1, the following:

1 = lim
z→∞P (A(t) ≤ z + x | A(0) ≤ −z) = 1 + lim

z→∞

∑
i≥1

fi(−z, z + x)
ti

,

which, assuming the validity of the same interchange, implies that

lim
z→∞ fi(−z, z + x) = 0 for all i ≥ 1 .

Proof of Theorem 2.4.4. Putting the log of the expansion (2.253)

G(t;u, v) = logP (A(0) ≤ u,A(t) < v)

= logF2(u) + logF2(v) +
∑
i≥1

hi(u, v)
ti

= logF2(u) + logF2(v) +
f1(u, v)

t
+
f2(u, v) − f2

1 (u, v)/2
t2

+ · · · ,
(2.257)

into (2.252) leads to:
(i) a leading term of order t, given by

Lh1 = 0 , (2.258)

where

L :=
(
∂

∂u
− ∂

∂v

)
∂2

∂u∂v
. (2.259)

The most general solution to (2.258) is given by

h1(u, v) = r1(u) + r3(v) + r2(u+ v) ,

with arbitrary functions r1, r2, r3. Hence,

P (A(0) ≤ u,A(t) ≤ v) = F2(u)F2(v)
(

1 +
h1(u, v)

t
+ · · ·

)

with h1(u, v) = f1(u, v) as in (2.253). Applying (2.254)

r1(u) + r3(∞) + r2(∞) = 0 for all u ∈ R ,
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implying
r1(u) = constant = r1(∞) ,

and similarly
r3(u) = constant = r3(∞) .

Therefore, without loss of generality, we may absorb the constants r1(∞)
and r3(∞) in the definition of r2(u + v). Hence, from (2.257),

f1(u, v) = h1(u, v) = r2(u+ v)

and using (2.255),

0 = lim
z→∞ f1(−z, z + x) = r2(x) ,

implying that the h1(u, v)-term in the series (2.257) vanishes.
(ii) One computes that the term h2(u, v) in the expansion (2.257) of

G(t;u, v) sastisfies

Lh2 =
∂3g

∂u3

∂2g

∂v2
− ∂3g

∂v3

∂2g

∂u2
with g(u) := logF2(u) . (2.260)

This is the term of order t0, by putting the series (2.257) in (2.252). The most
general solution to (2.260) is

h2(u, v) = g′(u)g′(v) + r1(u) + r3(v) + r2(u + v) .

Then

P (A(0) ≤ u,A(t) ≤ v) = eG(t;u,v)

= F2(u)F2(v) exp
(∑
i≥2

hi(u, v)
ti

)

= F2(u)F2(v)
(

1 +
h2(u, v)

t2
+ · · ·

)
. (2.261)

In view of the explicit formula for the distribution F2 (2.237) and the behavior
of q(α) for α ↗ ∞, we have that

lim
u→∞ g′(u) = lim

u→∞
(
logF2(u)

)′

= lim
u→∞

∫ ∞

u

q2(α) dα = 0 .

Hence

0 = lim
u→∞ f2(u, v) = lim

u→∞ h2(u, v) = r1(∞) + r3(v) + r2(∞) ,

showing r3 and similarly r1 are constants. Therefore, by absorbing r1(∞) and
r3(∞) into r2(u+ v), we have
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f2(u, v) = h2(u, v) = g′(u)g′(v) + r2(u+ v) .

Again, by the behavior of q(x) at +∞ and −∞, we have for large z > 0,

g′(−z)g′(z + x) =
∫ ∞

−z
q2(α) dα

∫ ∞

z+x

q2(α) dα ≤ cz3/2e−2z/3 .

Hence
0 = lim

z→∞ f2(−z, z + x) = r2(x)

and so
f2(u, v) = h2(u, v) = g′(u)g′(v) ,

yielding the 1/t2 term in the series (2.257), and so it goes.
Finally, to prove (2.241), we compute from (2.239), after integration by

parts and taking into account the boundary terms using (2.238):

E
(
A(0)A(t)

)

=
∫∫

R2
uv

∂2

∂u∂v
P (A(0) ≤ u,A(t) ≤ v) du dv

=
∫ ∞

−∞
uF ′

2(u) du
∫ ∞

−∞
vF ′

2(v) dv +
1
t2

∫ ∞

−∞
F ′

2(u) du
∫ ∞

−∞
F ′

2(v) dv

+
1
t4

∫∫
R2

(
Φ(u, v) + Φ(v, u)

)
du dv +O

(
1
t6

)

=
(
E
(
A(0)

))2

+
1
t2

+
c

t4
+O

(
1
t6

)
,

where

c :=
∫∫

R2

(
Φ(u, v) + Φ(v, u)

)
du dv = 2

∫∫
R2
Φ(u, v) du dv ,

thus ending the proof of Theorem 2.4.4.

2.5 The Pearcey Distribution

2.5.1 GUE with an External Source and Brownian Motion

In this section we discuss the equivalence of GUE with an external source, in-
troduced by Brézin–Hikami [27] and a conditional Brownian motion, following
Aptkarev, Bleher and Kuijlaars [21].
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Non-intersecting Brownian paths: Consider n-non-intersecting Brownian
paths with predetermined endpoints at t = 0, 1, as specified in Figure 2.2.

By the Karlin–McGregor formula [42], the above situation has probability
density

pn(t, x1, . . . , xn)

=
1
Zn

det
(
p(αi, xj , t)

)n
i,j=1

det
(
p(xi, aj , 1 − t)

)n
i,j=1

=
1
Z ′
n

n∏
1

exp
( −x2

i

t(1 − t)

)
det
(

exp
(2aixj

t

))n
i,j=1

det
(

exp
(2aixj

1 − t

))n
i,j=1

,

(2.262)

with12

p(x, y, t) =
exp(−(x − y)2/t)√

πt
. (2.263)

For example,13 let all the particles start out at x = 0, at t = 0, with n1

particles ending up at a, n2 ending up at −a at t = 1, with n = n1 + n2.
Here

pn1,n2(t, x1, . . . , xn) =
1

Zn1,n2,a
Δn1+n2(x) det

⎛
⎝
(
ψ+
i+

(xj)
)
1≤i+≤n1,
1≤j≤n1+n2(

ψ−
i−(xj)

)
1≤i−≤n2,
1≤j≤n1+n2

⎞
⎠ ,

with

ψ±
i (x) = xi−1 exp

( −x2

t(1 − t)
± 2ax

1 − t

)
.

an

a3

a2

a1

0 t 1
t-time

x-space

z1

zn (t)

(t)

an

a3

a2
a1

Fig. 2.2.

12 Here Zn = Zn(a, α).
13 Obviously, implicit in this example is a well-defined limit as the endpoints come

together.
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So setting E =
⋃

1≤i≤r[b2i−1, b2i], we find

P an1,n2
(t, b)

:= Proban1,n2
(all xi(t) ⊂ E)

:= Prob

(
all xi(t) ⊂ E

∣∣∣∣∣
n1 left-most paths end up at a, n2 right-
most paths end up at −a, and all start at
0, with all paths non-intersecting.

)

=

∫
En

∏n
1 dxiΔn(x) det

⎛
⎝
(
ψ+
i+

(xj)
)
1≤i+≤n1,
1≤j≤n1+n2(

ψ−
i−(xj)

)
1≤i−≤n2,
1≤j≤n1+n2

⎞
⎠

∫
Rn

∏n
1 dxiΔn(x) det

⎛
⎝
(
ψ+
i+

(xj)
)
1≤i+≤n1,
1≤j≤n1+n2(

ψ−
i−(xj)

)
1≤i−≤n2,
1≤j≤n1+n2

⎞
⎠

.

(2.264)

Random matrix with external source: Consider the ensemble, introduced by
Brézin–Hikami [27], on n× n Hermitian matrices Hn

P
(
M ∈ (M,M + dM)

)
=

1
Zn

exp
(
tr(−V (M) +AM)

)
dM , (2.265)

with
A = diag(a1, . . . , an) .

By HCIZ (see (2.138)), we find

0

x1

n1

n2

x2

xn−1

xn

paths a

−apaths

n = n1 + n2

Fig. 2.3.
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P
(
spec(M) ⊂ E)

)

=
1
Zn

∫
En

Δ2
n(z)

n∏
1

exp
(−V (zi)

)
dzi
∫
U(n)

exp
(
trAUΛU−1

)
dU

=
1
Z ′
n

∫
En

Δ2
n(z)

n∏
1

exp
(−V (zi)

)
dzi

det[exp(aizj)]ni,j=1

Δn(z)Δn(a)

=
1
Z ′′
n

∫
En

Δn(z)
n∏
1

exp
(−V (zi)

)
dzi det[exp(aizj)]ni,j=1 . (2.266)

For example: consider the limiting case

A = diag (−a,−a, . . . ,−a,︸ ︷︷ ︸
n2

a, a, . . . , a)︸ ︷︷ ︸
n1

, E =
r⋃
i=1

[b2i−1, b2i] , (2.267)

P (spec(M) ⊂ E) := Pn1,n2(a, b)

=

∫
En

∏n
1 dxiΔn(z) det

⎛
⎝
(
ρ+
i+

(xj)
)
1≤i+≤n1,
1≤j≤n1+n2(

ρ−i−(xj)
)
1≤i−≤n2,
1≤j≤n1+n2

⎞
⎠

∫
Rn

∏n
1 dxiΔn(z) det

⎛
⎝
(
ρ+
i+

(xj)
)
1≤i+≤n1,
1≤j≤n1+n2(

ρ−i−(xj)
)
1≤i−≤n2,
1≤j≤n1+n2

⎞
⎠

. (2.268)

where
ρ±i (z) = zi−1 exp(−V (z) ± az), n = n1 + n2 . (2.269)

Then we have by Aptkarev, Bleher, Kuijlaars [21]:

Non-intersecting Brownian motion ⇔ GUE with external source

P an1,n2
(t, b) = Pn1,n2

(√
2t

1 − t
a,

√
2

t(1 − t)
b

)∣∣∣∣
V (z)=z2/2

, (2.270)

so the two problems: non-intersecting Brownian motion and GUE with an
external source, are equivalent!

2.5.2 MOPS and a Riemann–Hilbert Problem

In this section, we introduce multiple orthogonal polynomials (MOPS), fol-
lowing Bleher and Kuijlaars [24]. This lead them to a determinal m-point cor-
relation function for the GUE with external source, in terms of a “Christoffel–
Darboux” kernel for the MOPS, as in the pure GUE case. In addition, they
formulated a Riemann–Hilbert (RH) problem for the MOPS, analogous to
that for classical orthogonal polynomials, thus enabling them to understand
universal behavior for the MOPS and hence universal behavior for the GUE
with external source (see [21, 25]).
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Let us first order the spectrum of A of (2.267) in some definite fashion,
for example

Ordered spectrum of (A) = (−a, a, a,−a, . . . ,−a) := (α1, α2, . . . , αn) .

For each k = 0, 1, . . . , n, let k = k1 + k2, k1, k2 defined as follows:

k1 := # times a appears in α1, . . . , αk ,

k2 := # times −a appears in α1, . . . , αk .
(2.271)

We now define the 2 kinds of MOPS.
MOP II: Define a unique monic kth degree polynomial pk = pk1,k2 :

pk(x) = pk1,k2(x) :
∫

R

pk1,k2(x)ρ±i± (x) dx = 0

ρ±i (x) = xi−1 exp(−V (x) ± ax) , 1 ≤ i+ ≤ k1 , 1 ≤ i− ≤ k2 , (2.272)

MOP I: Define unique polynomials q+
k1−1,k2

(x), q−k1,k2−1(x) of respective
degrees k1 − 1, k2 − 1:

qk−1(x) := qk1,k2(x) = q+
k1−1,k2

(x)ρ+
1 (x) + q−k1,k2−1(x)ρ−1 (x) :∫

R

xjqk−1(x) dx = δj,k−1 , 0 ≤ j ≤ k − 1 , (2.273)

which immediately yields:
Bi-orthonal polynomials :∫

R

pj(x)qk(x) dx = δj,k j, k = 0, 1, . . . , n− 1 . (2.274)

This leads to a Christoffel–Darboux kernel, as in (2.5):

K(a)
n1,n2

(x, y) := Kn(x, y) := exp
(
−1

2
V (x)+

1
2
V (y)

) n−1∑
0

pk(x)qk(y) , (2.275)

which is independent of the ad hoc ordering of the spectrum of A and which,
due to bi-orthonality, has the usual reproducing properties:∫ ∞

−∞
Kn(x, x) dx = n ,

∫ ∞

−∞
Kn(x, y)Kn(y, z) dy = Kn(x, z) . (2.276)

The joint probability density can be written in terms of Kn,
1
Zn

exp
(
Tr(−V (Λ) +AΛ)

)
Δn(λ) =

1
n!

det[Kn(λi, λj)]ni,j=1 , (2.277)

with Λ = diag(λ1, . . . , λn), yielding the m-point correlation function:

Rm(λ1, . . . , λm) = det[Kn(λi, λj)]mi,j=1 , (2.278)

and we find the usual Fredholm determinant formula:

P (spec(M) ⊂ Ec) = det
(
I −Kn(x, y)IE(y)

)
. (2.279)

Finally, we have a Riemann–Hilbert (RH) problem for the MOPS.
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Riemann–Hilbert problem for MOPS: MOP II:

Y (z) :=

⎡
⎣ pn1,n2(z) C+pn1,n2 C−pn1,n2

c1pn1−1,n2(z) c1C+pn1−1,n2 c1C−pn1−1,n2

c2pn1,n2−1(z) c2C+pn1,n2−1 c2C−pn1,n2−1

⎤
⎦ (2.280)

with C± Cauchy transforms:

C±f(z) :=
1

2πi

∫
R

f(s)ρ±1 (s) ds
s− z

, ρ±1 (z) = exp(−V (z) ± az) . (2.281)

Then Y (z) satisfies the RH problem:

1. Y (z) analytic on C \ R.
2. Jump condition for x ∈ R:

Y+(x) = Y−(x)

⎛
⎝1 ρ+

1 (x) ρ−1 (x)
0 1 0
0 0 1

⎞
⎠ .

3. Behavior as z → ∞

Y (z) =
(
I +O

(1
z

))⎛⎝z
n1+n2

z−n1

z−n2

⎞
⎠ . (2.282)

MOP I: A dual RH problem for q±k1,k2 and (Y −1)T .
Finally we have a Christoffel–Darboux type formula (see (2.5)) for the

kernel K(a)
n,n(x, y) of (2.275) expressed in terms of the RH matrix (2.280):

K(a)
n,n(x, y) =

exp
(− 1

4 (x2 + y2)
)

2πi(x− y)
(0, eay, e−ay)Y −1(y)Y (x)

⎛
⎝1

0
0

⎞
⎠ . (2.283)

Thus to understand the large n asymptotics of the GUE with external source,
from (2.277), (2.278), and (2.279), it suffices to understand the asymptotics
of K(a)

n,n(x, y) given by (2.275). Thus by (2.283) it suffices to understand the
asymptotics of the solution Y (z) to the RH problem of (2.282), which is the
subject of [21] and [25].

2.5.3 Results Concerning Universal Behavior

In this section we will first discuss universal behavior for the equivalent ran-
dom matrix and Brownian motion models, leading to the Pearcey process.
We will then give a PDE of Adler–van Moerbeke [7] governing this behavior,
and finally a PDE for the n-time correlation function of this process, deriving
the first PDE in the following sections. The following pictures illustrate the
situation.
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3 Regimes

0 1

x1

x2n

xn+1

xn

I

x − space

II

n paths

n paths

t − time

III

n−

n

1
2

Fig. 2.4.

Universal behavior :

I. Brownian motion: 2n paths, a =
√
n

At t = 1
2 the Brownian paths start to separate into 2 distinct groups.

II. Random matrices : n1 = n2 = n, V (z) = z2/2, a := â
√

2n.

Density of eigenvalues: ρ(x) := limn→∞(K â
√

2n
n,n (

√
2nx,

√
2nx))/2n

I. â < 1

II. â = 1

III. â > 1

Fig. 2.5.

The 3 corresponding regimes, I, II and III, for the random matrix density
of states ρ(x) and thus the corresponding situation for the Brownian motion,
are explained by the following theorem:
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Theorem 2.5.1 (Aptkarev, Bleher, Kuijlaars [21]). For the GUE with
external source, the limiting mean density of states for â > 0 is :

ρ(x) := lim
n→∞

K â
√

2n
n,n (

√
2nx,

√
2nx)

2n
=

1
π
| Im ξ(x)| , (2.284)

with

ξ(x) : ξ3 − xξ2 − (â2 − 1)ξ + xâ2 = 0 (Pastur’s equation [45]) ,

yielding the density of eigenvalues pictures.

It is natural to look for universal behavior near â = 1 by looking with a
microscope about x = 0. Equivalently, thinking in terms of the 2n-Brownian
motions, one sets a =

√
n and about t = 1

2 one looks with a microscope near
x = 0 to see the 2n-Brownian motions slowly separating into two distinct
groups. Rescale as follows:

t =
1
2

+
τ√
n
, x =

u

n1/4
, a =

√
n . (2.285)

Remembering the equivalence between Brownian motion and the GUE with
external source, namely (2.270), the Fredholm determinant formula (2.279),
for the GUE with external source, yields:

Proban1,n2
(all xi(t) ⊂ Ec) = det(I − K̃E

n ) ,

K̃E
n (x, y)=

√
2

t(1−t)K
√

2ta/(1−t)
n1,n2

(√
2

t(1 − t)
x,

√
2

t(1 − t)
y

)
IE(y) .

(2.286)
Universal behavior for n → ∞ amounts to understanding K̃E

n (x, y) for n → ∞,
under the rescaling (2.285) and indeed we have the results:

Universal Pearcey limiting behavior :

Theorem 2.5.2 (Tracy–Widom [54]). Upon rescaling the Brownian ker-
nel, we find the following limiting behavior, with derivates:

lim
n→∞n−1/4

√
2

t(1 − t)
K

√
2ta/(1−t)

n,n

(√
2

t(1 − t)
x,

√
2

t(1 − t)
y

)∣∣∣∣
a=

√
n,

t=
1
2+τ/

√
n,

(x,y)=(u,v)/n1/4

= KP
τ (u, v) ,

with the Pearcy kernel Kτ (u, v) of Brézin–Hikami [27] defined as follows :

Kτ (x, y) :=
p(x)q′′(y) − p′(x)q′(y) + p′′(x)q(y) − τp(x)q(y)

x− y

=
∫ ∞

0

p(x+ z)q(y + z) dz , (2.287)
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where (note ω = eiπ/4)

p(x) :=
1
2π

∫ ∞

−∞
exp
(
−u4

4
− τ

u2

2
− iux

)
du ,

q(y) :=
1
2π

∫
X

exp
(
u4

4
− τ

u2

2
+ uy

)
du

= Im
[
ω

π

∫ ∞

0

du exp
(
−u4

4
− iτ

u2

2

)
(eωuy − e−ωuy)

]
(2.288)

satisfy the differential equations (adjoint to each other)

p′′′ − τp′ − xp = 0 and q′′′ − τq′ + yq = 0 .

The contour X is given by the ingoing rays from ±∞ exp(iπ/4) to 0 and the
outgoing rays from 0 to ±∞ exp(−iπ/4).

Theorem 2.5.2 allows us to define the Pearcey process P(τ) as the motion
of an infinite number of non-intersecting Brownian paths, near t = 1

2 , upon
taking a limit in (2.286), using the precise scaling of (2.285), to wit:

lim
n→∞Prob

√
n

n,n

(
all n1/4xi

(
1
2

+
τ√
n

)
/∈ E

)
= det(I −KP

τ IE)

=: Prob(P(τ) /∈ E) , (2.289)

which defines for us the Pearcey process. Note the pathwise interpretation
of P(τ) certainly needs to be resolved. The Pearcey distribution with the
parameter τ can also be interpreted as the transitional probability for the
Pearcey process. We now give a PDE for the distribution, which shall be
derived in the following section:

Theorem 2.5.3 (Adler–van Moerbeke [7]).
For compact E =

⋃r
i=1[u2i−1, u2i],

F (τ ;u1, . . . , u2r) := log Prob(P(τ) /∈ E) (2.290)

satisfies the following 4th order, 3rd degree PDE in τ and the ui:

B−1

( 1
2∂

3F/∂τ3 + (B0−2)B2−1F + {B−1∂F/∂τ,B
2−1F}B−1/16

B2
−1∂F/∂τ

)
= 0 ,

(2.291)
where

B−1 =
2r∑
1

=
∂

∂ui
, B0 =

2r∑
1

= ui
∂

∂ui
. (2.292)

It is natural to ask about the joint Pearcey distribution involving k-times,
namely:
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lim
n→∞Prob

√
n

n,n

(
all n1/4xi

(
1
2

+
τj√
n

)
/∈ Ej , 1 ≤ j ≤ k

)

= Prob(P(τj) /∈ Ej , 1 ≤ i ≤ k)

= det
(
I − (IEiK

P
τiτj

IEj )
k
i,j=1

)
, (2.293)

where the above is a Fredholm determinant involving a matrix kernel, and the
extended Pearcey kernel of Tracy–Widom [54] KP

τiτj
, is given by

KP
τiτj

(x, y)

= − 1
4π2

∫
X

∫ i∞

−i∞
exp
(
−s4

4
+ τj

s2

2
− ys+

t4

4
− τi

t2

2
+ xt

)
ds dt
s− t

, (2.294)

with X the same contour of (2.288). We note KP
ττ(x, y) = KP

τ (x, y) of (2.287),
the Brézin–Hikami Pearcey kernel. We then have the analogous theorem to
Theorem 2.5.3 (which we will not prove here) namely:

Theorem 2.5.4 (Adler–van Moerbeke [12]).
For compact Ej =

⋃rj

i=1[u
(j)
2i−1u

(j)
2i ], 1 ≤ j ≤ k,

F (τ1, τ2, . . . , τk;u(1), u(2), . . . , u(k))
:= log Prob(P (τj) /∈ Ej , 1 ≤ j ≤ k) (2.295)

satisfies the following 4th order, 3rd degree PDE in τi and u(j): D−1X = 0,
with

X :=
4(E2

−1−D̃−1D−1)E−1F+(2E0+D0−2)D2
−1F+ 1

8{D−1E−1F,D2
−1F}D−1

D2−1E−1F
(2.296)

where

Dj :=
k∑
i=1

Bj(u(i)) , D̃−1 :=
k∑
i=1

τiB−1(u(i)) ,

Bj(u(i)) :=
2ri∑
l=1

(u(i)
l )j+1 ∂

∂u
(i)
l

, Ej :=
k∑
i=1

τ j+1
i

∂

∂τi
.

2.5.4 3-KP Deformation of the Random Matrix Problem

In this section we shall deform the measures (2.269) in the random matrix
problem, for V (z) = z2/2, so as to introduce 3-KP τ -functions into the picture,
and using the bilinear identities, we will derive some useful 3-KP PDE for
these τ -functions. The probability distribution for the GUE with external
source was given by (2.268), to wit:
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P (spec(M) ⊂ E) := Pn1,n2(E)

=
1
Zn

∫
En

n∏
1

dziΔn(z)det

⎛
⎝
(
ρ+
i+

(zj)
)
1≤i+≤n1,
1≤j≤n1+n2(

ρ−i−(zj)
)
1≤i−≤n2,
1≤j≤n1+n2

⎞
⎠
(2.297)

where ρ±i (z) = zi−1 exp(−z2/2 ± az). Let us deform ρ±i (z) as follows:

ρ±i (z) → ρ̂±i (z) := zi−1 exp
(
−z2

2
±az±βz2

)
exp
( ∞∑
k=1

(tk−s±k )zk
)
, (2.298)

yielding a deformation of the probability:

Pn1,n2(E) → τn1,n2(t, s
+, s−, E)

τn1,n2(t, s+, s−,R)
. (2.299)

Where, by the same argument used to derive (2.140),

τn1,n2(t, s
+, s−, E) := detmn1,n2(t, s

+, s−, E) , (2.300)

with

mn1,n2(t, s
+, s−, E) :=

⎧⎨
⎩

[μ+
ij ]1≤i+≤n1,

0≤j≤n1+n2−1

[μ−
ij ]1≤i−≤n2,

0≤j≤n1+n2−1

⎫⎬
⎭ , (2.301)

and
μ±
ij(t, s

+, s−) :=
∫
E

ρ̂±i+j(z) dz .

We also need the identity (n = n1 + n2)

τn1,n2(t, s
+, s−, E)

:= detmn1,n2(t, s
+, s−, E)

=
1

n1!n2!

∫
En

Δn(x, y)
n1∏
j=1

exp
( ∞∑

1

tix
i
j

) n2∏
j=1

exp
( ∞∑

1

tiy
i
j

)

×
(
Δn1(x)

n1∏
j=1

exp
(
−x2

j

2
+ axj + βx2

j

)
exp
(
−

∞∑
1

s+i x
i
j

)
dxj

)

×
(
Δn2(y)

n2∏
j=1

exp
(
−y2

j

2
− ayj − βy2

j

)
exp
(
−

∞∑
1

s−i y
i
j

)
dyj

)
. (2.302)

That the above is a 3-KP deformation is the content of the following theorem.

Theorem 2.5.5 (Adler–van Moerbeke–Vanhaecke [15]). Given the func-
tions τn1,n2 as in (2.300), the wave matrices
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Ψ+
n1,n2

(λ; t, s+, s−) :=
1

τn1,n2(t,s+,s−)

×

⎛
⎜⎜⎝

ψ
(1)+

n1,n2 (−1)n2ψ
(2)+

n1+1,n2
ψ

(3)+

n1,n2+1

(−1)n2ψ
(1)+

n1−1,n2
ψ

(2)+

n1,n2 (−1)n2ψ
(3)+

n1−1,n2+1

ψ
(1)
n1,n2−1 (−1)n2+1ψ

(2)+

n1+1,n2−1 ψ
(3)+
n1,n2

⎞
⎟⎟⎠ ,

Ψ−
n1,n2

(λ; t, s+, s−) :=
1

τn1,n2(t,s+,s−)

×

⎛
⎜⎜⎝

ψ
(1)−
n1,n2 (−1)n2+1ψ

(2)−

n1−1,n2
−ψ(3)−

n1,n2−1

(−1)n2+1ψ
(1)−
n1+1,n2

ψ
(2)−
n1,n2 (−1)n2ψ

(3)−
n1+1,n2−1

−ψ(1)−
n1,n2+1 (−1)n2+1ψ

(2)−
n1−1,n2+1 ψ

(3)−
n1,n2

⎞
⎟⎟⎠ ,

(2.303)
with wave functions

ψ(1)±
n1,n2

(λ; t, s+, s−) := λ±(n1+n2) exp
(
±

∞∑
1

tiλ
i

)
τn1,n2(t∓ [λ−1], s+, s−) ,

ψ(2)±
n1,n2

(λ; t, s+, s−) := λ∓n1 exp
(
±

∞∑
1

s+i λ
i

)
τn1,n2(t, s

+ ∓ [λ−1], s−) ,

ψ(3)
n1,n2

(λ; t, s+, s−) := λ∓n2 exp
(
±

∞∑
1

s−i λ
i

)
τn1,n2(t, s

+, s− ∓ [λ−1]) ,

(2.304)
satisfy the bilinear identity,

∮
∞
Ψ+
k1,k2

Ψ−T
l1,l2

dλ = 0 , ∀k1k2, l1, l2, ∀t, s±, t, s± , (2.305)

of which the (1, 1) component spelled out is :

∮
∞
τk1,k2(t− [λ−1], s+, s−)τl1,l2(t + [λ−1], s+, s−)

× λk1+k2−l1−l2 exp
( ∞∑

1

(ti − ti)λ
i

)
dλ

− (−1)k2+l2

∮
∞
τk1+1,k2(t, s

+ − [λ−1], s−)τl1−1,l2(t, s
+ + [λ−1], s−)

× λl1−k1−2 exp
( ∞∑

1

(s+i − s+i )λi
)

dλ

−
∮
∞
τk1,k2+1(t, s+, s− − [λ−1])τl1,l2−1(t, s+, s− + [λ−1])

× λl2−k2−2 exp
( ∞∑

1

(s−i − s−i )λi
)

dλ = 0 . (2.306)
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Sketch of Proof : The proof is via the MOPS of Sect. 2.5.2. We use the formal
Cauchy transform, thinking of z as large:

C±f(z) :=
∫

R

f(s)ρ̂±1 (s)
z − s

ds :=
∑
i≥1

1
zi

∫
ρ̂±1 (s)si−1 ds , (2.307)

which should be compared with the Cauchy transform of (2.281), which we
used in the Riemann Hilbert problem involving MOPS, and let C0 denote the
Cauchy transform with 1 instead of ρ̂±1 . We now make the following identifi-
cation between the MOPS of (2.272), (2.273) defined with ρ±i → ρ̂±i (and so
dependent on t, s+, s−) and their Cauchy transforms and shifted τ -functions,
namely:

pk1,k2(λ) = λk1+k2
τk1,k2(t− [λ−1], s+, s−)

τk1,k2(t, s+, s−)
,

C+pk1,k2(λ) = λ−k1−1 τk1+1,k2(t, s+ − [λ−1], s−)(−1)k2

τk1,k2(t, s+, s−)
,

C−pk1,k2(λ) = λ−k2−1 τk1,k2+1(t, s+, s− − [λ−1])
τk1,k2(t, s+, s−)

, (2.308)

C0qk1,k2(λ) = λ−k1−k2
τk1,k2(t+ [λ−1], s+, s−)

τk1,k2(t, s+, s−)
,

q+
k1−1,k2

(λ) = λk1−1 τk1−1,k2(t, s+ + [λ−1], s−)(−1)k2+1

τk1,k2(t, s+, s−)
,

q−k1,k2−1(λ) = −λk2−1 τk1,k2−1(t, s+, s− + [λ−1])
τk1,k2(t, s+, s−)

,

where pk1,k2(λ) was the MOP of the second kind and qk1,k2(λ) = q+
k1−1,k2

(λ)ρ̂+
1

+ q−k1,k2−1(λ)ρ̂−1 was the MOP of the first kind. This in effect identifies all
the elements in the RH matrix Y (λ) given in (2.280) and (Y −1)T , the latter
which also satisfies a dual RH problem in terms of ratios of τ -functions; indeed,
Ψ+
k1,k2

(λ) without the exponenials is precisely Y (λ), etc. for Ψ−
k1,k2

. Then using
a self-evident formal residue identity, to wit:

1
2πi

∮
∞

(
f(z)×

∫
R

g(s)
s− z

dμ(s)
)

dz =
∫

R

f(s)g(s) dμ(s) , (2.309)

with f(z) =
∑∞

0 aiz
i, and designating f(t, s+, s−)′ := f(t, s+, s−), we imme-

diately conclude that
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∮
∞

exp
( ∞∑

1

(ti − ti)λ
i

)
pk1,k2

(
C0ql1,l2(λ)

)′ dλ

=
∫

R

exp
( ∞∑

1

(ti − ti)λ
i

)
pk1,k2(λ, t, s

+, s−)ql1,l2(λ, t, s
+, s−) dλ

=
∫

R

exp
( ∞∑

1

(ti − ti)λ
i

)
pk1,k2(λ, t, s

+, s−)

× (q+
l1−1,l2

(λ, t, s+, s−)ρ̂+
1 + q−l1,l2−1(λ, t, s

+, s−)ρ̂−1 ) dλ

=
∮
∞

(
C+pk1,k2(λ)

)(
q+
l1−1,l2

(λ)
)′ exp

(∑
(s+i − s+i )λi

)
dλ

+
∮
∞

(
C−pk1,k2(λ)

)(
q−l1,l2−1(λ)

)′ exp
(∑

(s−i − s−i )λi
)

dλ . (2.310)

By (2.308), this is nothing but the bilinear identity (2.306). In fact, all the
other entries of (2.305) are just (2.306) with its subscripts shifted. To say
a quick word about (2.308), all that really goes into it is solving explicitly
the linear systems defining pk1,k2 , q

+
k1−1,k2

and q−k1,k2−1, namely (2.272) and
(2.273), and making use of the identity exp(±∑∞

1 xi/i) = (1 − x)∓1 for x
small in the formula (2.300) for τk1,k2(t, s+, s−).

An immediate consequence of Theorem 2.5.5 is the following:

Corollary 2.5.1. Given the above τ-functions τk1,k2(t, s+, s−), they satisfy
the following bilinear identities14

∞∑
j=0

sl1+l2−k1−k2+j−1(−2a)sj(∂̃t) exp

( ∞∑
1

(
ak

∂

∂tk
+ bk

∂

∂s+k
+ ck

∂

∂s−k

))

× τl1,l2 ◦ τk1,k2

−
∞∑
j=0

sk1−l1+1+j(−2b)sj(∂̃s+) exp

( ∞∑
1

(
ak

∂

∂tk
+ bk

∂

∂s+k
+ ck

∂

∂s−k

))

× τl1−1,l2 ◦ τk1+1,k2(−1)k2+l2

−
∞∑
j=0

sk2−l2+1+j(−2c)sj(∂̃s−) exp

( ∞∑
1

(
ak

∂

∂tk
+ bk

∂

∂s+k
+ ck

∂

∂s−k

))

× τl1,l2−1 ◦ τk1,k2+1 = 0 , (2.311)

with a, b, c ∈ C
∞ arbitrary.

Upon specializing, these identities imply PDEs expressed in terms of Hi-
rota’s symbol for j = 1, 2 . . . :

14 With exp(
∑∞

1 tiz
i) =:

∑∞
0 si(t)z

i defining the elementary Schur polynomials.
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sj(∂̃t)τk1+1,k2 ◦ τk1−1,k2 = −τ2
k1,k2

∂2

∂s+1 ∂tj+1

log τk1,k2 , (2.312)

sj(∂̃s+)τk1−1,k2 ◦ τk1+1,k2 = −τ2
k1,k2

∂2

∂t1∂s
+
j+1

log τk1,k2 , (2.313)

yielding

∂2 log τk1,k2
∂t1∂s

+
1

= −τk1+1,k2τk1−1,k2

τ2
k1,k2

, (2.314)

∂

∂t1
log

τk1+1,k2

τk1−1,k2

=
∂2/∂t2∂s

+
1 log τk1,k2

∂2/∂t1∂s
+
1 log τk1,k2

, (2.315)

− ∂

∂s+1
log

τk1+1,k2

τk1−1,k2

=
∂2/∂t1∂s

+
2 log τk1,k2

∂2/∂t1∂s
+
1 log τk1,k2

, (2.316)

Proof. Applying Lemma A.1 to the bilinear identity (2.306) immediately
yields (2.311). Then Taylor expanding in a, b, c and setting in equation (2.311)
all ai, bi, ci = 0, except aj+1, and also setting l1 = k1 + 2, l2 = k2, equation
(2.311) becomes

aj+1

(
−2sj(∂̃t)τk1+2,k2 ◦ τk1,k2 −

∂2

∂s+1 ∂tj+1

τk1+1,k2 ◦ τk1+1,k2

)
+O(a2

j+1) = 0,

and the coefficient of aj+1 must vanish identically, yielding equation (2.312)
upon setting k1 → k1 − 1. Setting in equation (2.311) all ai, bi, ci = 0, except
bj+1, and l1 = k1, l2 = k2, the vanishing of the coefficient of bj+1 in equation
(2.311) yields equation (2.313). Specializing equation (2.312) to j = 0 and 1
respectively yields (since s1(t) = t1 implies s1(∂̃t) = ∂/∂t1; also s0 = 1):

∂2 log τk1,k2
∂t1∂s

+
1

= −τk1+1,k2τk1−1,k2

τ2
k1,k2

and

∂2

∂s+1 ∂t2
log τk1,k2 = − 1

τ2
k1,k2

[(
∂

∂t1
τk1+1,k2

)
τk1−1,k2−τk1+1,k2

(
∂

∂t1
τk1−1,k2

)]
.

Upon dividing the second equation by the first, we find (2.315) and similarly
(2.316) follows from (2.313).

2.5.5 Virasoro Constraints for the Integrable Deformations

Given the Heisenberg and Virasoro operators, for m ≥ −1, k ≥ 0:
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J
(1)
m,k =

∂

∂tm
+ (−m)t−m + kδ0,m ,

J
(2)
m,k(t) =

1
2

( ∑
i+j=m

∂2

∂ti∂tj
+ 2

∑
i≥1

iti
∂

∂ti+m
+

∑
i+j=−m

itijtj

)

+
(
k +

m + 1
2

)(
∂

∂tm
+ (−m)t−m

)
+
k(k + 1)

2
δm,0 ,

(2.317)
we now state (explicitly exhibiting the dependence of τk1,k2 on β):

Theorem 2.5.6. The integral τk1,k2(t, s
+, s−;β;E), given by (2.302) satisfies

Bmτk1,k2 = V
k1,k2
m τk1,k2 for m ≥ −1 , (2.318)

where Bm and Vm are differential operators :

Bm =
2r∑
1

bm+1
i

∂

∂bi
, for E =

2r⋃
1

[b2i−1, b2i] ⊂ R (2.319)

and

V
k1,k2
m :=

{
J
(2)
m,k1+k2

(t) − (m + 1)J(1)
m,k1+k2

(t)

+ J
(2)
m,k1

(−s+) + aJ
(1)
m+1,k1

(−s+) − (1 − 2β)J(1)
m+2,k1

(−s+)

+ J
(2)
m,k2

(−s−) − aJ
(1)
m+1,k2

(−s) − (1 + 2β)J(1)
m+2,k2

(−s−)
}
. (2.320)

Lemma 2.5.1. Setting

dIn = Δn(x, y)
k1∏
j=1

exp
( ∞∑

1

tix
i
j

) k2∏
j=1

exp
( ∞∑

1

tiy
i
j

)

×
(
Δk1(x)

k1∏
j=1

exp
(
−x2

j

2
+ axj + βx2

j

)
exp
(
−

∞∑
1

s+i x
i
j

)
dxj

)

×
(
Δk2(y)

k2∏
j=1

exp
(
−y2

j

2
− ayj − βy2

j

)
exp
(
−

∞∑
1

s−i y
i
j

)
dyj

)
, (2.321)

the following variational formula holds for m ≥ −1:

d
dε

dIn

(
xi �→ xi + εxm+1

i

yi �→ yi + εym+1
i

) ∣∣∣∣
ε=0

= V
k1,k2
m (dIn) . (2.322)

Proof. The variational formula (2.322) is an immediate consequence of apply-
ing the variational formula (2.184) separately to the three factors of dIn, and
in addition applying formula (2.185) to the first factor, to account for the fact
that

∏k1
j=1 dxj

∏k2
j=1 dyj is missing from the first factor.
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Proof of Theorem 2.5.6: Formula (2.318) follows immediately from formula
(2.322) by taking into account the variation of ∂E under the change of coor-
dinates.

From (2.317) and (2.320) and from the identity when acting on on τk1,k2 ,

∂

∂tn
= − ∂

∂s+n
− ∂

∂s−n
, (2.323)

compute that

V
k1,k2
m =

1
2

∑
i+j=m

(
∂2

∂ti∂tj
+

∂2

∂s+i ∂s
+
j

+
∂2

∂s−i ∂s
−
j

)

+
∑
i≥1

(
iti

∂

∂ti+m
+ is+i

∂

∂s+i+m
+ is−i

∂

∂s−i+m

)

+ (k1 + k2)
(

∂

∂tm
+ (−m)t−m

)
− k1

(
∂

∂s+m
+ (−m)s+−m

)

− k2

(
∂

∂s−m
+ (−m)s−−m

)
+ (k2

1 + k1k2 + k2
2)δm,0

+ a(k1 − k2)δm+1,0 +
m(m+ 1)

2
(−t−m + s+−m + s−−m) − ∂

∂tm+2

+ a

(
− ∂

∂s+m+1

+
∂

∂s−m+1

+ (m + 1)(s+−m−1 − s−−m−1)
)

+ 2β
(

∂

∂s−m+2

− ∂

∂s+m+2

)
, m ≥ −1 . (2.324)

The following identities, valid when acting on τk1,k2(t, s+, s−;β,E), will
also be used:

∂

∂s+1
= −1

2

(
∂

∂t1
+

∂

∂a

)
,

∂

∂s+2
= −1

2

(
∂

∂t2
+

∂

∂β

)
,

∂

∂s−1
= −1

2

(
∂

∂t1
− ∂

∂a

)
,

∂

∂s−2
= −1

2

(
∂

∂t2
− ∂

∂β

)
.

(2.325)

Corollary 2.5.2. The τ-function τ = τk1,k2(t, s+, s−;β,E) satisfies the fol-
lowing differential identities, with Bm =

∑2r
1 bm+1

i ∂/∂bi.

−B−1τ = V1τ + v1τ

=:
(

∂

∂t1
− 2β

∂

∂a

)
τ

−
∑
i≥2

(
iti

∂

∂ti−1
+ is+i

∂

∂s+i−1

+ is−i
∂

∂s−i−1

)
τ

+ (a(k2 − k1) + k1s
+
1 + k2s

−
1 − (k1 + k2)t1)τ ,
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1
2

(
B−1 − ∂

∂a

)
τ = W1τ + w1τ

=:
(

∂

∂s+1
+ β

∂

∂a

)
τ

+
1
2

∑
i≥2

(
iti

∂

∂ti−1
+ is+i

∂

∂s+i−1

+ is−i
∂

∂s−i−1

)
τ

+
(
a

2
(k1 − k2) +

1
2
(k1 + k2)t1 − k1s

+
1 − k2s

−
1

)
τ

−
(
B0 − a

∂

∂a

)
τ = V2τ + v2τ (2.326)

=:
∂τ

∂t2
− 2β

∂τ

∂β

−
∑
i≥1

(
iti

∂

∂ti
+ is+i

∂

∂s+i
+ is−i

∂

∂s−i

)
τ

− (k2
1 + k2

2 + k1k2)τ

1
2

(
B0 − a

∂

∂a
− ∂

∂β

)
τ = W2τ + w2τ

=:
∂τ

∂s+2
+ β

∂τ

∂β

+
1
2

∑
i≥1

(
iti

∂

∂ti
+ is+i

∂

∂s+i
+ is−i

∂

∂s−i

)
τ

+
1
2
(k2

1 + k2
2 + k1k2)τ

where V1, W1, V2, W2 are first order operators and v1, w1, v2, w2 are func-
tions, acting as multiplicative operators.

Corollary 2.5.3. On the locus L := {t = s+ = s− = 0, β = 0}, the function
f = log τk1,k2(t, s+, s−;β,E) satisfies the following differential identities:

∂f

∂t1
= −B−1f + a(k1 − k2) ,

∂f

∂s+1
=

1
2

(
B−1 − ∂

∂a

)
f +

a

2
(k2 − k1) ,

∂f

∂t2
=
(
−B0 + a

∂

∂a

)
f + k2

1 + k1k2 + k2
2 ,

∂f

∂s+2
=

1
2

(
B0 − a

∂

∂a
− ∂

∂β

)
f − 1

2
(k2

1 + k2
2 + k1k2) , (2.327)

2
∂2f

∂t1∂s
+
1

= B−1

(
∂

∂a
− B−1

)
f − 2k1 ,



2 Integrable Systems, Random Matrices, and Random Processes 217

2
∂2f

∂t1∂s
+
2

=
(
a
∂

∂a
+

∂

∂β
− B0 + 1

)
B−1f − 2

∂f

∂a
− 2a(k1 − k2) , (2.328)

2
∂2f

∂t2∂s
+
1

=
∂

∂a

(
B0 − a

∂

∂a
+ aB−1

)
f − B−1(B0 − 1)f − 2a(k1 − k2) .

Proof. Upon dividing equations (2.326) by τ and restricting to the locus L,
equations (2.327) follow immediately.

Remembering f = log τ and setting

A1 := −B−1 , B1 :=
1
2

(
B−1 − ∂

∂a

)
,

A2 := −
(
B0 − a

∂

∂a

)
, B2 :=

1
2

(
B0 − a

∂

∂a
− ∂

∂β

)
,

(2.329)

we may recast (2.326) as (compare with (2.193))

Akf = Vkf + vk, Bkf = Wkf + wk, k = 1, 2 , (2.330)

where (compare with (2.191)) we note that

Vk|L =
∂

∂tk
, Wk|L =

∂

∂s+k
, k = 1, 2 . (2.331)

To prove (2.328) we will copy the argument of Sect. 2.3.6 (see (2.195)). Indeed,
compute

B1A1f |L = B1(V1f + v1) = B1V1f |L + B1(v1)|L
(∗)
= V1B1f |L + B1(v1)|L
(∗∗)=

∂

∂t1
(W1f + w1)|L + B1(v1)|L

=
∂

∂t1

(
∂

∂s+1
+ · · ·

)
f |L +

∂w1

∂t1

∣∣∣∣
L

+ B1(v1)|L , (2.332)

where we used in (∗) that [B1,V1]∣∣
L

= 0 and in
(∗
∗
)

that V1|L = ∂/∂t1, and so

from (2.332) we must compute

∂

∂t1
W1

∣∣∣∣
L

=
∂2

∂t1∂s
+
1

,
∂w1

∂t1

∣∣∣∣
L

=
1
2
(k1 + k2) ,

B1(v1)|L =
1
2
(k1 − k2) .

(2.333)

Now from (2.332) and (2.333), we find

B1A1f |L =
∂2f

∂t1∂s
+
1

∣∣∣∣
L

+
1
2
(k1 + k2) +

1
2
(k1 − k2) =

∂2f

∂t2∂s
+
1

+ k1 ,
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and so

∂2f

∂t1∂s
+
1

∣∣∣∣
L

= B1A1f |L − k1 = −B−1
1
2

(
B1 − ∂

∂a

)
f |L − k1 ,

which is just the first equation in (2.328). The crucial point in the calculation
being (2.331) and [B1,V1]|L = 0. The other two formulas in (2.328) are done
in precisely the same fashion, using the crucial facts (2.331) and [B2,V1]|L =
[A2,W1]|L = 0 and the analogs of (2.333).

2.5.6 A PDE for the Gaussian Ensemble with External Source and
the Pearcey PDE

From now on set: k1 = k2 := k and restrict to the locus L. From (2.315) and
(2.316) we have the

3-KP relations :

∂

∂t1
g =

∂2f

∂t2∂s
+
1

/
∂2f

∂t1∂s
+
1

, − ∂

∂s+1
g =

∂2f

∂t1∂s
+
2

/
∂2f

∂t1∂s
+
1

, (2.334)

with
f := log τk,k , g := log(τk+1,k/τk−1,k) ,

while from (2.327), we find

Virasoro relations on L:

∂g

∂t1
= −B−1g + 2a ,

∂g

∂s+
=

1
2

(
B−1 − ∂

∂a

)
g − a . (2.335)

Eliminating ∂g/∂t1, ∂g/∂s+1 from (2.334) using (2.335) and then further elim-
inating A1g := −B−g and B1g := 1

2 (B−1 − ∂/∂a)g using A1B1g = B1A1g
yields

B−1

(
∂2/∂t2∂s

+
1 −2 ∂2/∂t1∂s

+
2 )f

∂2f/∂t1∂s
+
1

)

=
∂

∂a

(
(∂2/∂t2∂s

+
1 −2a ∂2/∂t1∂s

+
1 )f

∂2f/∂t1∂s
+
1

)
, (2.336)

while from (2.328) we find the

Virasoro relations on L:

2
∂2

∂t1∂s
+
1

f = B−1

(
∂

∂a
− B−1

)
f − 2k =: F+ ,

2
(

∂2

∂t2∂s
+
1

− 2
∂2

∂t1∂s
+
2

)
f = H+

1 − 2B−1
∂f

∂B ,

2
(

∂2

∂t2∂s
+
1

− 2a
∂2

∂t1∂s
+
2

)
f = H+

2 ,

(2.337)
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where the precise formulas for H+
i will be given later. Substituting (2.337)

into (2.336) and clearing the denominator yields15

{
B−1

∂f

∂β
, F+

}
B−1

=
{
H+

1 ,
1
2
F+

}
B−1

−
{
H+

2 ,
1
2
F+

}
∂/∂a

, (2.338)

and by the involution: a → −a, β → −β, which by (2.302), clearly fixes
f = log τk,k on t = s+ = s− = 0, we find (H−

i = H+
i|a→−a)

−
{
B−1

∂f

∂β
, F−

}
B−1

=
{
H−

1 ,
1
2
F−
}

B−1

−
{
H−

2 ,
1
2
F−
}

−∂/∂a
. (2.339)

These 2 relations (2.338) and (2.339) yield a linear system for:

B−1
∂f

∂β
, B2

−1

∂f

∂β
.

Solving the system yields:

B−1
∂f

∂β
= R1 , B2

−1

∂f

∂β
= R2 ,

and so
B−1R1(f) = R2(f) , f = log τk,k(0, 0, 0, E)

∣∣
β=0

.

Since

P (spec(M) ⊂ E) =
τk,k(0, 0, 0, E)
τk,k(0, 0, 0,R

∣∣∣∣
β=0

,

with

τk,k(0, 0, 0,R)
∣∣
β=0

=
(k−1∏

0

j!
)2

2k
2
(−2π)k exp(ka2)ak

2
,

we find the following theorem:

Theorem 2.5.7 (Adler–van Moerbeke [7]).

For E =
⋃r

1[b2i−1, b2i], A = diag(
k︷ ︸︸ ︷

−a, . . . ,−a,
k︷ ︸︸ ︷

a, . . . , a),

P (a; b1, . . . , b2r) =

∫
H2k(E)

exp
(
Tr(− 1

2M
2 +AM)

)
dM∫

H2k(R)
exp
(
Tr(− 1

2M
2 +AM)

)
dM

(2.340)

satisfies a nonlinear 4th order PDE in a, b1, . . . br:

(F+B−1G
− + F−B−1G

+)(F+B−1F
− − F−B−1F

+)

− (F+G− + F−G+)(F+B2
−1F

− − F−B2
−1F

+) = 0 , (2.341)

15 {f, g}X := gXf − fXg.
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0 1t

k paths go to a

2k Brownian paths

k paths go to -a 

x1(t)

x2k(t)

a

-a

Fig. 2.6.

where

B−1 =
2r∑
1

∂

∂bi
, B0 =

2r∑
1

bi
∂

∂bi
,

F+ :=−2k+B−1

(
∂

∂a
−B−1

)
logP ,

G+ :={H+
1 , F

+}B−1−{H+
2 , F

+}∂/∂a ,

H+
1 :=

∂

∂a

(
B0−a ∂

∂a
−aB−1+4

∂

∂a

)
logP+B0B−1 logP+4ak+4

k2

a
,

H+
2 :=

∂

∂a

(
B0−a ∂

∂a
−aB−1

)
logP+(2aB2

−1−B0B−1+2B−1) logP ,

(2.342)

F− = F+|a→−a and G− = G+|a→−a.16

We now show how Theorem 2.5.7 implies Theorem 2.5.3. Indeed, remember
our picture of 2k Brownian paths diverging at t = 1

2 .
Also, remembering the equivalence (2.270) between GUE with external

source and the above Brownian motion, and (2.286), we find

P ak,k(t; b1, . . . , b2r) := Probak,k(all xi(t) ⊂ E)

= P

(√
2t

1 − t
a;

√
2

t(1 − t)
(b1, . . . , br)

)

= det(I − K̃Ec

2k ) ,

(2.343)

where the function P (∗; ∗) is that of (2.340).

16 Note P (a; b1, . . . b2r) = P (−a; b1, . . . , br).
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Letting the number of particles 2k → ∞ and looking about the location
x = 0 at time t = 1

2 with a microscope, and slowing down time as follows:

k =
1
z4

, ±a = ± 1
z2

, bi = uiz , t = 1
2 + τz2 , z → 0 , (2.344)

which is just the Pearcey scaling (2.285), we find by Theorem 2.5.2 and (2.343),
that

Prob1/z2

(1/z4,1/z4)

(
all xi

(
1
2 + τz2

) ∈
r⋃
1

[zu2i−1, zu2i]
)

= P

(√
2

1 − t
a;

√
2

t(1 − t)
(b1, . . . , b2r)

)∣∣∣∣a=1/z2,bi=uiz

t=1/2+τz2

= det(I −KP
τ IẼc) +O(z)

=: Q(τ ;u1, . . . , u2r) +O(z) ,

(2.345)

where KP
τ is the Pearcey kernel (2.287) and Ẽ =

⋃r
1[u2i−1, u2i]. Taking ac-

count of

P ak,k(t; b1, . . . , b2r) = P

(√
2t

1 − t
a;

√
2

t(1 − t)
(b1, . . . , br

)

=: P (A,B1, . . . , B2r) ,
(2.346)

where the function P (∗, ∗) is that of (2.340), and the scaling (2.344) of the
Pearcey process, we subject the equation (2.341) to both the change of co-
ordinates involved in the equation (2.346) and the Pearcey scaling (2.344)
simultaneously:

0 = {(F+B−1G
− + F−B−1G

+)(F+B−1F
− − F−B−1F

+)

−(F+G−+F−G+)(F+B2
−1F

−−F−B2
−1F

+)}∣∣
A=(

√
2/z2)

√
(1/2+τz2)/(1/2−τz2),

Bi=uiz
√

2/
√

(1/4−τ2z4)

=
1
z17

(
PDE in τ and u for logP ak,k(t; b1, . . . , b2r)|scaling

)
+O

(
1
z15

)

=
1
z17

(
same PDE for logQ(τ, u1, . . . , u2r)

)
+O

(
1
z16

)
;

the first step is accomplished by the chain rule and the latter step by (2.345),
yielding Theorem 2.5.3 for F = logQ.

A Hirota Symbol Residue Identity

Lemma A.1. We have the following formal residue identity
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1
2πi

∮
∞
f(t′ − [z−1], s′, u′)g(t′′ + [z−1], s′′, u′′) exp

( ∞∑
1

(t′i − t′′i )z
i

)
zr dz

=
∑
j≥0

sj−1−r(−2a)sj(∂̃t) exp

( ∞∑
1

(
al

∂

∂tl
+ bl

∂

∂sl
+ cl

∂

∂ul

))
g ◦ f , (2.347)

where

t′ = t− a , s′ = s− b , u′ = u− c ,

t′′ = t+ a , s′′ = s+ b , u′′ = u+ c ,
(2.348)

∂̃t =
(

∂

∂t1
,
1
2
∂

∂t2
,
1
3

∂

∂t3
, . . .

)
, exp

( ∞∑
1

tiz
i

)
=

∞∑
0

si(t)zi , (2.349)

and the Hirota symbol

p(∂t, ∂s, ∂u)g ◦ f
:= p(∂t′ , ∂s′ , ∂u′)g(t+ t′, s+ s′, u+ u′)f(t− t′, s− s′, u− u′)

∣∣
t′=0
s′=0
u′=0

. (2.350)

Proof. By definition,

1
2πi

∮
∞

i=∞∑
i=−∞

aiz
i dz = a−1 , (2.351)

and so by Taylor’s Theorem, following [28] compute:

∮
∞
f(t′ − [z−1], s′, u′)g(t′′ + [z−1], s′′, u′′) exp

( ∞∑
1

(t′i − t′′i )z
i

)
zr

dz
2πi

=
∮
∞
f(t− a− [z−1], s− b, u− c)g(t + a+ [z−1], s+ b, u+ c)

× exp
(
−2

∞∑
1

aiz
i

)
zr

dz
2πi

=
∮
∞

exp
( ∞∑

1

1
izi

∂

∂ai

)
f(t− a, s− b, u− c)g(t + a, s+ b, u+ c)

× exp
(
−2

∞∑
1

aiz
i

)
zr

dz
2πi

=
∮
∞

∞∑
1

z−jsj(∂̃a)f(t− a, s− b, u− c)g(t+ a, s+ b, u+ c)

×
∞∑
l=0

zl+rsl(−2a)
dz
2πi

(picking out the residue term)
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=
∞∑
j=0

sj−1−r(−2a)sj(∂̃a)f(t− a, s− b, u− c)g(t + a, s+ b, u+ c)

=
∞∑
j=0

sj−1−r(−2a)sj(∂̃a) exp

( ∞∑
1

(
al

∂

∂t′l
+ bl

∂

∂s′l
+ cl

∂

∂u′l

))

× f(t− t′, s− s′, u− u′)g(t + t′, s+ s′, u+ u′)
at t′ = s′ = u′ = 0

=
∞∑
j=0

sj−1−r(−2a)sj(∂̃t′) exp

( ∞∑
1

(
al

∂

∂t′l
+ bl

∂

∂s′l
+ cl

∂

∂u′l

))

× g(t + t′, s+ s′, u+ u′)f(t− t′, s− s′, u− u′)
at t′ = s′ = u′ = 0

=
∞∑
j=0

sj−1−r(−2a)sj(∂̃t) exp

( ∞∑
1

(
al

∂

∂tl
+ bl

∂

∂sl
+ cl

∂

∂ul

))
g(t) ◦ f(t) ,

completing the proof.

Proof of (2.28): To deduce (2.28) from (2.27), observe that since t, t′ are ar-
bitrary in (2.27), when we make the change of coordinates (2.348), a becomes
arbitrary and we then apply Lemma A.1, with s and u absent, r = 0 and
f = g = τ , to deduce (2.28).

Proof of (2.166): To deduce (2.167) from (2.166), apply Lemma A.1 to the
l.h.s. of (2.166), setting f = τn, g = τm+1, r = n −m − 1, where no u, u′ is
present, and when we make the change of coordinates (2.348), since t, t′, s,
s′ are arbitrary, so is a and b, while in the r.h.s. of (2.166), we first need to
make the change of coordinates z → z−1, so zn−m−1 dz → zm−n−1 dz (taking
account of the switch in orientation) and then we apply Lemma A.1, with
f = τn+1, g = τm, r = m− n− 1, and so deduce (2.167) from (2.166).
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3.1 Hilbert–Schmidt and Trace Class Operators. Trace
and Determinant. Fredholm Determinants of Integral
Operators

In this section we present some of the basic operator theory required before
the applications to random matrix theory can be made.

We shall see first how to extend the trace and determinant, defined on
finite-dimensional spaces, to appropriate classes of operators on a Hilbert
space H. We begin by introducing two classes of compact operators on H, the
Hilbert–Schmidt operators and the trace class operators.

The Hilbert–Schmidt norm is defined by ‖A‖2 =
√∑ ‖Aei‖2 where {ei} is

an orthonormal (ON) basis for H. This definition is independent of the basis
used and ‖A∗‖2 = ‖A‖2; both of these statements follow from the fact that if
{fj} is another ON basis then

∑
i

‖Aei‖2 =
∑
i,j

|(Aei, fj)|2 =
∑
i,j

|(ei, A∗fj)|2 =
∑
j

‖A∗fj‖2 .

J. Harnad (ed.), Random Matrices, Random Processes and Integrable Systems, 229
CRM Series in Mathematical Physics, DOI 10.1007/978-1-4419-9514-8 3,
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The Hilbert–Schmidt operators are those with finite Hilbert–Schmidt norm,
and the set of Hilbert–Schmidt operators is denoted by S2. That the Hilbert–
Schmidt norm is a norm in the usual sense, in particular that it satisfies the
triangle inequality, follows readily from the fact that it is the l2 norm of the
sequence ‖Aei‖.

The trace norm is defined by ‖A‖1= sup{∑ |(Aei, fi)| : {ei}, {fi} are ON}.
Here the identity ‖A∗‖1 = ‖A‖1 is obvious. The trace class operators are those
with finite trace norm and the set of trace class operators is denoted by S1.
(That the trace norm is a norm is immediate.)

An important inequality is

‖BC‖1 ≤ ‖B‖2‖C‖2 . (3.1)

To see this, let {ei} and {fi} be ON sets. Then
∑

|(BCei, fi)| =
∑

|(Cei, B∗fi)| ≤
∑

‖(Cei‖‖B∗fi)‖

≤
{∑

‖(Cei‖2
}1/2{∑

‖(B∗fi‖2
}1/2

≤ ‖C‖2‖B‖2 .

Taking the sup over all {ei} and {fi} gives (3.1). (The reason for inequality
at the end rather than equality is that in the definition of Hilbert–Schmidt
norms {ei} and {fi} have to be ON bases whereas in the definition of trace
norm they are merely ON sets.)

The polar decomposition of an operator A is the representation A = UP ,
where P =

√
A∗A (the positive operator square root constructed via the

spectral theorem) and U is an isometry from P (H) to A(H). If A is compact
so is P and the singular numbers s1 ≥ s2 ≥ · · · of A are defined to be the
eigenvalues of P . Observe that

s1 = ‖P‖ = ‖A‖ .
Taking ei to be an ON basis of eigenvectors of P we see that

‖A‖2
2 =

∑
i

(UPei, UPei) =
∑

s2i (Uei, Uei) =
∑

s2i ,

where we have used the fact that U is an isometry on the image of P .
The trace norm is also expressible in terms of the singular numbers. First,

we have ‖A‖1 ≤ ‖U√
P‖2‖

√
P‖2 by (3.1). This product equals

∑
si since

the singular numbers of both U
√
P and

√
P are the

√
si. To get the opposite

inequality take the ei as before and fi = Uei. Then
∑

(Aei, fi) =
∑

(UPei, Uei) =
∑

si(Uei, Uei) =
∑

si .

Thus ‖A‖1 ≥∑ si, and so ‖A‖1 =
∑

si.
So for p = 1, 2 we have Sp = {A : {sn(A)} ∈ lp}. This is the definition of

Sp in general and ‖A‖p equals the lp norm of the sequence {si(A)}. That this
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is actually a norm in general, that it satisfies the triangle inequality, is true
but nontrivial. We shall only use the spaces S1 and S2, where we know this
to be true.

With the ei as before, let En be the projection on the space spanned by
e1, . . . , en. Then A−AEn = UP (I−En), and the eigenvalues of P (I−En) are
zero and sn+1, sn+2, . . . . Thus these are the singular numbers of A−AEn and
it follows that AEn converges as n → ∞ to A in Sp if A ∈ Sp. In particular
the set of finite-rank operators, which we denote by R, is dense in Sp.

This also follows from the following useful characterization of sn (some-
times used as its definition): If Rn is the set of operators of rank at most n
then

sn(A) = dist(A,Rn−1) .

(Here the distance refers to the operator norm.) To see this note first that
since AEn−1 has rank at most n − 1 the distance on the right is at most
‖A − AEn−1‖ = ‖P (I − En−1)‖ = sn(A). To obtain the opposite inequality,
assume that B is an operator with rank at most n− 1. It is easy to see that
there is a unit vector of the form x =

∑n
i=1 aiei such that Bx = 0. Then

‖A−B‖ ≥ ‖Ax‖ =
∥∥∥∥U

n∑
i=1

aisiei

∥∥∥∥ =
{ n∑
i=1

|ai|2s2i
}1/2

≥ sn .

Thus the distance in question is at least sn(A).
From the above characterization of si(A) we immediately get the inequal-

ities
sn(AB) ≤ sn(A)‖B‖ , sn(A+B) ≤ sn(A) + ‖B‖ . (3.2)

In particular the first one gives

‖AB‖p ≤ ‖A‖p‖B‖ .

Taking adjoints gives the inequality ‖AB‖p ≤ ‖A‖ ‖B‖p.
We are now ready to extend the definition of trace to the trace class

operators (whence its name, of course) on H.
Suppose at first that our Hilbert space is finite-dimensional, so the trace

is defined and has the usual properties. If M is a subspace of H such that
M ⊃ A(H) and A(M⊥) = 0 then trA = tr(A|M). This follows from the fact
that trA =

∑
(Aei, ei) where {ei} is an ON basis of M augmented by and

ON basis of M⊥.
Going back to our generally infinite-dimensional Hilbert space H, we

first define the trace on R, the finite-rank operators. Let M be any finite-
dimensional subspace such that M ⊃ A(H) and A(M⊥) = 0. (This is the
same as M ⊃ A(H) + A∗(H), so there are plenty of such subspaces.) It fol-
lows from the remark of the last paragraph that tr(A|M) is independent of
the particular M chosen, since for any two such M there is one containing
them both. We define trA to be tr(A|M) for any such M.
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The trace, as defined on R, is additive (if M1 is chosen for A1 and M2

is chosen for A2 then M1 + M2 may be chosen for A1, A2 and A1 + A2

simultaneously) and preserves multiplication by scalars. Moreover, if {ei} is
an ON basis for M we have

| trA| =
∣∣∣∣
∑

(Aei, ei)
∣∣∣∣ ≤ ‖A‖1 ,

by the definition of trace norm. In short, the trace is a continuous linear
functional on the dense subspace R of S1. This allows us to extend the trace
to a continuous linear functional on all of S1, which was our goal.

If {ei} is any ON basis for H then the expected formula

trA =
∑

(Aei, ei) (3.3)

holds. The reason is that if Mn is the space spanned by e1, . . . , en and En is
the projection onto this space then EnAEn → A in trace norm and so

trA = lim
n→∞ trEnAEn = lim

n→∞ tr(EnAEn|Mn) = lim
n→∞

n∑
i=1

(Aei, ei) .

Moving on to the determinant we can similarly define det(I + A) =
det
(
(I +A)|M

)
for any A ∈ R. If H is finite dimensional we have | detA| =

detP =
∏
si(A), and so, using the second inequality of (3.2),

| det(I +A)| =
∏

si(I +A) ≤
∏(

1 + si(A)
)

≤ exp
(∑

si(A)
)

= exp(‖A‖1) . (3.4)

This inequality holds for all A ∈ R. Since the determinant is not linear this
will not be enough to extend its definition. To extend det(I+A) to all A ∈ S1

we use the inequality

| det(I +B) − det(I +A)| ≤ ‖B −A‖1 exp(‖A‖1 + ‖B −A‖1 + 1) .

This follows from the fact that the difference may be written
∫ 1

0

d
dt

det(I+(1−t)A+tB) dt =
∫ 1

0

dt
1

2πi

∫
|u−t|=R

det(I + (1 − u)A+ uB)
(u− t)2

du

where R = 1/‖B−A‖1. One then uses (3.4) to bound the determinant in the
integrand and the inequality follows. And from the inequality it follows that
the function A → det(I +A) is locally uniformly continuous on R with trace
norm. This is enough to extend it continuously to all of S1, which was our
second goal.

The finite-dimensional identity
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det(I +A)(I +B) = det(I +A) det(I +B) (3.5)

gives immediately the same identity for A,B ∈ R and then by continuity it
follows for all A,B ∈ S1. This shows in particular that if I + A is invertible
then det(I +A) �= 0.1

Our definitions of trace and determinant make no mention of eigenvalues.
The connection is given by the following important and highly nontrivial.

Theorem of Lidskĭı. Let λi be the nonzero eigenvalues of A ∈ S1 repeated
according to algebraic multiplicity.2 Then

∑ |λi| ≤ ‖A‖1 and

trA =
∑

λi , det(I +A) =
∏

(1 + λi) .

We only outline the proof. The first statement follows from the finite-
dimensional inequality

∑ |λi| ≤ ‖A‖1 (which follows from the Jordan form
plus the definition of trace norm) by a limit argument.

Write D(z) = det(I + zA). This is an entire function of z whose only
possible zeros are at the −λ−1

i . In fact, the multiplicity of the zero of D(z) at
−λ−1

i is precisely the algebraic multiplicity of λi. In the finite-dimensional case
this follows from the Jordan form again. In general using a Riesz projection
one can write

I + zA = (I + zF )(I + zB)

where F is finite rank with λi an eigenvalue with the same multiplicity as for
A, and B does not have λi as an eigenvalue.3 It follows from this and (3.5)
that D(z) has a zero of exactly this multiplicity at −λ−1

i .
Thus

D(z) = eg(z)
∏

(1 + zλi)

for some entire function g satisfying g(0) = 0. One shows (using approximation
by finite-rank operators) that there is an estimate

D(z) = O(eε|z|)

for all ε > 0 and from this and the first statement of the theorem one can
deduce that g(z) = o(|z|) as z → ∞. This implies that g is a constant, which
must be 0, and this gives

D(z) =
∏

(1 + zλi) . (3.6)

1 The converse is also true. If det(I +A) 
= 0 then −1 is not an eigenvalue of A, by
Lidskǐi’s theorem stated next, and since A is compact this implies that I + A is
invertible.

2 The algebraic multiplicity of λ is the dimension of its generalized eigenspace, the
set of vectors x such that (A− λI)nx = 0 for some n.

3 The Riesz projection is E = (2πi)−1
∫
C
(tI −A)−1 dt where C is a little countour

enclosing λi. The operators F = AE and B = A(I−E) have the stated properties.
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Setting z = 1 gives the determinant identity.
Finally, the finite-dimensional result

D′(z) = D(z) tr(A(I + zA)−1) , (3.7)

which holds whenever I + zA is invertible, carries over by approximation to
all A ∈ S1. In particular trA = D′(0)/D(0) and by (3.6) this equals

∑
λi.

One consequence of Lidskĭı’s theorem is that

trAB = trBA , det(I +AB) = det(I +BA)

for any operators A and B such that both products are trace class. This is
a consequence of the easy fact that the two products have the same nonzero
eigenvalues with the same algebraic multiplicities. (The weaker fact that these
relations hold when both operators are Hilbert–Schmidt, or one is trace class
and the other bounded, follows by approximation from the finite-dimensional
result.)

All this has been abstract. Now we specialize to operators on Hilbert spaces
L2(μ) where μ is an arbitrary measure. There first question we ask is, what
are the Hilbert–Schmidt opetarors on L2(μ)? The answer is that they are
precisely the integral operators K with kernel K(x, y) belonging to L2(μ×μ).

To show that all such integral operators are Hilbert–Schmidt, let {ei} be an
ON basis for L2(μ). Then the doubly-indexed family of functions {ei(x)ej(y)∗}
is an ON basis for L2(μ× μ).4 The inner product of K(x, y) with this vector
equals ∫∫

ei(x)∗K(x, y)ej(y) dμ(y) dμ(x) = (Kej, ei) .

Hence
‖K(x, y)‖2

L2 =
∑
i,j

|(Kej , ei)|2 =
∑
i

‖Kej‖2 = ‖K‖2
2 . (3.8)

Thus K is Hilbert–Schmidt and its Hilbert–Schmidt norm is the L2 norm of
the kernel.

Conversely, suppose K is a Hilbert–Schmidt operator. Then
∞∑

i,j=1

|(Kej , ei)|2 =
∞∑
j=1

‖Kej‖2 < ∞.

It follows that the series
∞∑

i,j=1

(Kej, ei)ei(x)ej(y)∗

converges in L2(μ × μ) to some function K(x, y). If we denote by K ′ the
integral operator with kernel K(x, y) then (K ′ej , ei) = (Kej, ei) for all i, j, so
K = K ′.
4 We use the asterisc here to denote complex conjugate.
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To determine when an operator, even an integral operator, is trace class
is not so simple. We already have a sufficient condition, which is immediate
from (3.1): If K = K1K2 where K1 and K2 are Hilbert–Schmidt then K is
trace class. In this case we also have the formula

trK =
∫∫

K1(x, y)K2(y, x) dμ(y) dμ(x) . (3.9)

To see this assume first that the two kernels are basis functions, so

K1(x, y) = ei(x)ej(y)∗ , K2(x, y) = ek(x)el(y)∗ .

Orthonormality of the ei gives

K(x, y) = ei(x)el(y)∗δjk ,

and using (3.3) with the same basis functions gives trK = δilδjk. This is equal
to the right side of (3.9).

Using the fact that both sides of (3.9) are bilinear in K1 and K2 we deduce
that the identity holds when they are finite linear combinations of the basis
functions ei(x)ej(y)∗. To extend this to general Hilbert–Schmidt Ki we use
the density of these finite-rank kernels in L2(μ × μ), the fact (which follows
from (3.1)) that multiplication is continuous from S2 ×S2 to S1, and that the
left side of (3.9) is continuous on S1 and the right side continuous on S2 ×S2.

Observe that (3.9) may be stated in this case as

trK =
∫

K(x, x) dμ(x) . (3.10)

But one should be warned that this cannot be true for all trace class integral
operators. For changing a kernel K(x, y) on the diagonal x = y does not
change the integral operator but it certainly can change the right side above.

A useful consequence of what we have shown is that for a kernel acting on
L2(−∞,∞) with Lebesgue measure we have

‖K‖1 ≤ ‖K(x, y)‖2 + |J |‖Kx(x, y)‖2

if K vanishes for x outside a finite interval J , and similarly with x and y
interchanged. To see this we observe that for any x0, x ∈ J

K(x, y) = χJ(x)K(x0, y) +
∫
J

ϕ(x, z)Kx(z, y) dz

where

ϕ(x, z) =

⎧⎪⎨
⎪⎩

1 if x0 < z < x,
−1 if x < z < x0,

0 otherwise.
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The integral represents a product of two operators, the first with Hilbert–
Schmidt norm at most |J | and the second with Hilbert–Schmidt norm
‖Kx(x, y)‖2. The first term is a rank one operator of norm (and so trace norm)
|J |1/2‖K(x0, . . . )‖2, and for some x0 the second factor is at most |J |−1/2 ×
‖K(x, y)‖2. This gives the stated inequality. An easy computation, using (3.9)
to compute the trace of the product, shows that that the formula (3.10) holds
here also.

This extends to higher dimensions. In particular an operator with smooth
kernel on a bounded domain is trace class, and (3.10) holds.

The classical Fredholm determinant formula for D(z),

det(I + zK) =
∞∑
n=0

zn

n!

∫
· · ·
∫

det
(
K(xi, xj)

)
dμ(x1) · · ·dμ(xn) , (3.11)

holds for any trace class operator K for which trK =
∫
K(x, x) dμ(x). To

see this we successively differentiate (3.7) and then set z = 0 to see that the
expansion about z = 0 takes the form

det(I + zK) =
∞∑
n=0

znPn(trK, trK2, . . . , trKn)

with Pn a polynomial independent of K. If we expand the determinants in
Fredholm’s formula (3.11) we see that the right side is of the same form

∞∑
n=0

znQn(trK, trK2, . . . , trKn)

with polynomials Qn. The reason is that each permutation in the expansion of
the determinant is a product of disjoint cycles. A cycle of length j contributes
an integral

∫
· · ·
∫

K(x1, x2) · · ·K(xj , x1) dμ(x1) · · · dμ(xj) .

When j > 1 this is equal to trKj by (3.10), and when j = 1 this is equal to
trK by assumption.

The coefficients of zn in the two sums depend only on the eigenvalues λi
of K. Therefore to establish equality in general it suffices to show that for any
numbers λi satisfying

∑ |λi| < ∞ there is a trace class kernel K with these
as eigenvalues such that the two sides agree. When μ is counting measure and
K the diagonal matrix with diagonal entries λi then

det(I + zK) =
∞∏
i=1

(1 + zλi) ,

while the right side of (3.11) equals
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∞∑
n=0

zn
∑

i1<···<in
λi1 · · ·λin .

These are the same.
Finally we derive the identity, generalizing (3.7),

d
dz

log det
(
I +A(z)

)
= tr

(
A′(z)(I +A(z)−1)

)
(3.12)

for any differentiable family of trace class operators, valid whenever I +A(z)
is invertible. For h sufficiently small

det(I +A(z + h))
det(I +A(z))

= det
[(
I +A(z + h)

)(
I +A(z)

)−1]

= det
[
I +

(
A(z + h) −A(z)

)(
I +A(z)

)−1]
.

From the differentiability of A(z) we can write

A(z + h) −A(z) = hA′(z) + o1(h) ,

where o1(h) denotes a family of operators with trace norm o(1) as h → 0.
Therefore the last operator in brackets is

I + hA′(z)
(
I + A(z)

)−1 + o1(h) .

The operator I + hA′(z)
(
I +A(z)

)−1 is invertible for small h with uniformly
bounded norm, so the above may be factored as

[
I + hA′(z)

(
I +A(z)

)−1][I + o1(h)] .

The second factor above has determinant 1 + o(h), by the contuity of the
determinant in S1. By (3.7), with z replaced by h and evaluated at h = 0,
the first factor has determinant 1 + h tr

(
A′(z)

(
I + A(z)

)−1) + o(h). So the
determinant of the product has the same form and we have shown that

det
(
I +A(z + h)

)
det
(
I +A(z)

) = 1 + h tr
(
A′(z)

(
I +A(z)

)−1)+ o(h) .

This gives (3.12).
Except for the proof of Lidskĭı’s theorem this section is self-contained.The

proof of Lidskǐi’s theorem we outlined follows [7, 4.7.14]. More thorough treat-
ments of the Sp classes and trace and determinant may be found in [2,4], and
a completely different development of the determinant is in [8].
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3.2 Correlation Functions and Kernels of Integral
Operators. Spacing Distributions as Operator
Determinants. The Sine and Airy Kernels

We consider ensembles of N × N Hermitian matrices such that probability
density of eigenvalues is of form

P (x1, . . . , xN ) = cN
∏
i<j

|xi − xj |β
∏
i

w(xi) ,

where w is a weight function which is rapidly decreasing at ±∞. If F is a
symmetric function then

E
(
F (λ1, · · · , λN )

)
=
∫

· · ·
∫

P (x1, . . . , xN )F (x1, . . . , xN )dx1 · · ·dxN ,

where, as usual, E stands for expected value.
The cases of greatest interest are β = 2, 1 and 4 corresponding respectively

to the unitary, orthogonal and symplectic ensembles.
We define E(n, J) to be the probability that the set J contains exactly n

eigenvalues. The probability density that there are eigenvalues at r and s and
none in between equals

− ∂2

∂r∂s
E
(
0, (r, s)

)
.

(Thus E(0, J) is sometimes referred to as the spacing probability.)
The probability density that there are eigenvalues near x1, . . . , xn is the

n-point correlation function given by

Rn(x1, . . . , xn) =
N !

(N − n)!

∫
· · ·
∫

P (x1, . . . , xN ) dxn+1 · · · dxN . (3.13)

For β = 2 we will find a kernel K(x, y) in terms of which these are ex-
pressible.

We start with the fact that

E
(∏(

1 + f(λi)
))

= cN

∫
· · ·
∫ ∏

i<j

(xi − xj)2
∏
i

[
w(xi)

(
1 + f(xi)

)]
dx ,

with cN the normalizing constant such that the right side equals 1 when f = 0.
(In the special case f(x) = −χJ(x) we obtain E(0, J).)

The first product in the integrand is the square of a Vandermonde deter-
minant. There is a general identity

∫
· · ·
∫

detϕi(xj) detψi(xj)dν(x1) · · ·dν(xN )

= N ! det
(∫

ϕi(x)ψj(x) dν(x)
)
.
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Taking ϕi(x) = ψi(x) = xi, dν(x) = w(x) dx, we get

E
(∏(

1+f(λi)
))

= c′N det
(∫

xi+j
(
1+f(x)

)
w(x) dx

)
(i, j = 0, . . . , N−1) .

Replacing xi by any pi(x), a polyomial of degree i, amounts to performing
row and column operations. It follows that if we set

ϕi(x) = pi(x)
√
w(x) .

Then the above becomes

E
(∏(

1 + f(λi)
))

= c′′N det
(∫

ϕi(x)ϕj(x) dx +
∫

ϕi(x)ϕj(x)f(x) dx
)

with a different constant c′′N .
If we’re clever we take the pi to be the polynomials ON with respect to w,

so the ϕi are ON with respect to Lebesque measure and the first summand
in the determinant is δij . Then taking f = 0 gives c′′N = 1. This is the usual
way of doing things. But let’s not be clever, take the pi arbitrary and set

M = (mij) =
(∫

ϕi(x)ϕj(x) dx
)
, M−1 = (μij) , ψi =

∑
j

μijϕj .

Then by factoring out M on the left we get

E
(∏(

1 + f(λi)
))

= c′′′N det
(
δij +

∫
ψi(x)ϕj(x)f(x) dx

)
,

where c′′′N = (detM)c′′N . Now taking f = 0 gives c′′′N = 1.
Here is where operator determinants come in. There will be two Hilbert

spaces. One is L2(R) and the other is RN , which consists of functions on the
set {1, · · · , N}. Let us define A : L2(R) → RN and B : RN → L2(R) by the
kernels

A(i, x) = ψi(x)f(x) , B(x, j) = ϕj(x) .

Then AB : RN → RN has kernel

AB(i, j) =
∫

ψi(x)ϕj(x)f(x) dx ,

and BA : L2(R) → L2(R) has kernel

BA(x, y) =
N−1∑
i=0

ϕi(x)ψi(y)f(y) ,

The identity det(I +AB) = det(I +BA) from Part I, which holds even if the
operators go from one space to a different one,5 gives
5 Since our operators are of finite rank there is no need at this stage to use the full

definition of determinants on infinite-dimensional spaces.
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E
(∏(

1 + f(λi)
))

= det(I +BA) .

Thus, if we set

K(x, y) =
N−1∑
i=0

ϕi(x)ψi(y) =
N−1∑
i,j=0

ϕi(x)μijϕj(y) , (3.14)

then we have obtained

E
(∏(

1 + f(λi)
))

= det(I +Kf) . (3.15)

Here K is the integral operator with kernel K(x, y) and f denotes multipli-
cation by the function f .

There is an abstract characterization of the operator K. If we define

H = {p√w : p is a polynomial of degree less than N} ,

then K is the orthogonal projection operator from L2(R) to H. To see this
observe that the ϕi span H. If a function g is orthogonal to all the ϕi then
clearly Kg = 0. Thus K(H⊥) = {0}. If g is one of the ϕi, say g = ϕk, then

Kg =
∑
i,j

ϕiμij(ϕj , ϕk) =
∑
i,j

ϕiμijmjk =
∑
i

ϕiδik = ϕk = g .

Thus K acts as the identity operator on H. Hence K is the orthogonal pro-
jection from L2(R) to H as claimed.

Taking f = −χJ in (3.15) gives

E(0, J) = det(I −KχJ) .

More generally, E(n, J) is the coefficient of (λ + 1)n in the expansion of

∫
· · ·
∫

P (x)
∏
i

[(λ+ 1)χJ(xi) + χJc(xi)] dx

=
∫
· · ·
∫

P (x)
∏
i

[1 + λχJ (xi)] dx = det(I + λKχJ) .

Thus
E(n, J) =

1
n!

∂n

∂λn
det(I + λKχJ)|λ=−1 .

Yet more generally, a similar expression for E(n1, . . . , nm; J1, . . . , Jm), the
probability that Ji contains exactly ni eigenvalues (i = 1, . . . ,m), can be
found.

The n-point correlation function Rn(y1, . . . , yn) given by (3.13) equals the
coefficient of z1 · · · zn in the expansion of
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∫∫
P (x)

N∏
i=1

[
1 +

n∑
r=1

zrδ(xi − yr)

]
dx .

To evaluate this integral by using the AB, BA trick as above we replace dx
by the discrete measure

∑n
r=1 δ(x− yr) and define f by f(yr) = zr. We then

find that the integral equals

det(δrs +K(yr, ys)zs)r,s=1,...,n .

Taking the coefficient of z1 · · · zn gives

Rn(y1, . . . , yn) = det
(
K(yr, ys)

)
r,s=1,...,n

.

For β equal to 1 and 4 the scalar kernel K is replaced by a matrix kernels.
We indicate how this comes about when β = 4. We take the case when N is
even and replace N by 2N . Then we use the fact that

∏
i<j

(xi − xj)4 = det(xijix
i−1
j ) i = 0, . . . 2N, j = 1, . . . , N

and the general identity
∫
· · ·
∫

det
(
ϕi(xj)ψi(xj)

)
dν(x1) · · ·dν(xN )

= (2N)! Pf
(∫ (

ϕi(x)ψj(x) − ψi(x)ϕj(x)
)
dν(x)

)
.

Here Pf denotes the Pfaffinan of the antisymmetric matrix on the right. Its
square equals the determinant of the matrix. It follows that

(
E
(∏(

1 + f(λi)
)))2

= cN det
(∫

(j − i)xi+j−1
(
1 + f(x)

)
w(x) dx

)
i,j=0,...,2N−1

,

for some normalizing constant cN .
As before we replace the sequence {xi} by any sequence {pi(x)} of poly-

nomials of exact degree i, and set ϕi = piw
1/2. Except for another constant

factor depending only on N , the above equals

det
(∫ (

ϕi(x)ϕ′
j(x) − ϕ′

i(x)ϕj(x)
)(

1 + f(x)
)
dx
)
,

the extra terms arising from the differentiation of w(x)1/2 having cancelled.
We write this as

M +
(∫ (

ϕi(x)ϕ′
j(x) − ϕ′

i(x)ϕj(x)
)
f(x) dx

)
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where M is the matrix of integrals
∫ (
ψi(x)ψ′

j(x) − ψ′
i(x)ψi(x)

)
dx.

Next we factor out M on the left. Its determinant is another constant
depending only on N . If as before we set

M−1 = (μij) , ψi(x) =
∑
j

μijϕj(x) ,

then the resulting matrix is

I +
(∫ (

ψi(x)ϕ′
j(x) − ψ′

i(x)ϕj(x)
)
f(x) dx

)
,

Now ψi(x)ϕ′
j(x) − ψ′

i(x)ϕj(x), the multiplier of f(x) in the integrand, is
not a single product but a sum of products. To use the AB, BA trick we want
it to be a single product. In fact we can write it as one, as a matrix product

(
ψi(x) − ψ′

i(x)
) (ϕ′

j(x)
ϕj(x)

)
.

Thus if we set

A(i, x) = f(x)
(
ψi(x) − ψ′

i(x)
)
, B(x, i) =

(
ϕ′
i(x)

ϕi(x)

)
,

then the above matrix is I+AB. In this case BA is the integral operator with
matrix kernel K(x, y)f(y) where

K(x, y) =
(∑

ϕ′
i(x)ψi(y) −

∑
ϕ′
i(x)ψ′

i(y)∑
ϕi(x)ψi(y) −

∑
ϕi(x)ψ′

i(y)

)
.

The sums here are over i = 0, . . . , 2N−1. In terms of these matrix kernels there
are then formulas for spacing probabilities (in terms of operator determinants)
and correlation functions (in terms of block matrices).

This is the matrix kernel for β = 4. For β = 1 another identity yields
another 2 × 2 matrix kernel.

We mentioned that it is usual in the case β = 2 to take the pi to be
the polynomials orthonormal with respect to the weight function w, so the
formula (3.14) for the kernel simplifies to

N−1∑
i=0

ϕi(x)ϕi(y) .

Analogously, when β equals 4 and 1, it has been usual to take the pi to be
so-called skew-orthogonal polynomials, and the formulas for the enteies in the
matrix kernels take a simpler form. But (we won’t go into detail) there are
advantages to not doing this and using the abstract characterizations of the
kernels instead.
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The usefulness of the operator determinant representation becomes appar-
ent when we let N → ∞, since rather than having determinants of order N
we have operators whose kernels KN (x, y) have N as a parameter. If these
kernels converge in trace norm then the determinants for KN converge to
the corresponding determinant for the limit kernel. For the Gaussian unitary
ensemble w(x) = e−x

2
and

1√
2N

KN

(
z +

x√
2N

, z +
y√
2N

)
→ 1

π

sin(x− y)
x− y

= Ksine(x, y)

in trace norm on any bounded set (bulk scaling near z) and

1
21/2N1/6

KN

(√
2N +

x

21/2N1/6
,
√

2N +
y

21/2N1/6

)

→ Ai(x)Ai′(y) − Ai′(x)A(y)
x− y

= KAiry(x, y)

in trace norm on any set which is bounded below, where Ai is the Airy func-
tion (edge scaling). Thus scaling limits of spacing distributions are equal to
operator determinants for the sine kernel Ksine and the Airy kernel KAiry. In
particular we obtain the limiting distribution for the largest eigenvalue,

lim
N→∞

Pr
(
λmax ≤

√
2N +

s

21/2N1/6

)
= det(I −KAiryχ(s∞)) .

Universality theorems say that the same limiting kernels Ksine and KAiry

arise from bulk and edge scaling for large classes of random matrix ensembles.
The classical reference for random matrices is [5], which now has a succes-

sor [6]. This section followed the treatment in [10]. Bulk scaling of GUE can
be found in [5, 6] and edge-scaling in [1, 3].

3.3 Differential Equations for Distribution Functions
Arising in Random Matrix Theory. Representations in
Terms of Painlevé Functions

Probably the most important distribution functions arising in random matrix
theory which are representable as operator determinants are

F2(s) = det(I −KAiryχ(s,∞)) , (3.16)

and the analogous limiting distribution functions for the Gaussian orthogonal
and symplectic ensembles, for which the kernels are matrix-valued. Their spe-
cial importance lies in the fact that they arise also outside of random matrix
theory in many other probabilistic models, in number theory, and elsewhere.

We shall show here that we have the formula
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F2(s) = e−
∫∞

s
(t−s)q(t)2 dt , (3.17)

where q satisfies the Painlevé II equation

q′′(s) = sq(s) + 2q(s)3 .

This, together with the asymptotics q(s) ∼ Ai(s) as s → +∞, determines
q uniquely. There is a whole class of kernels for which the analogous deter-
minants are expressible in terms of solutions of differential equations (more
precisely, systems of equations). Fortunately this most important one has the
easiest derivation and we present it in detail. The actual proof is quite short
but will require some preparation.

We think of our operators as acting on L2(J) where J is some fixed interval
(s0,∞). We will want to differentiate the determinant on the right in (3.16)
using formula (3.12). The formula in this case would read

d
ds

log det
(
I −K(s)

)
= − tr

[(
I −K(s)

)−1
K ′(s)

]
, (3.18)

where K(s) = KAiryχ(s,∞). But the operators K(s) are not differentiable
functions of s. Indeed, K ′(s) does not make sense as an operator on L2.

So before we do anything else we have to arrange for (3.18) to make sense
and to be correct. What we do is introduce the Sobolev space

H1 = {f : f, f ′ ∈ L2}
with Hilbert space norm ‖f‖H1 = (‖f‖2

2 + ‖f ′‖2
2)

1/2 and let our operators
act on this space instead of L2. That the operator determinants are the same
for the two underlying spaces follows from the fact that K(s)(L2) ⊂ H1,
which implies that the algebraic multiplicity of any nonzero eigenvalue of
K(s) is the same whether it acts on L2 or H1. Instead of the Airy kernel we
shall consider at first, more generally, any kernel K(x, y) which satisfies the
following conditions:

If we define the function Ky by Ky(x) = K(x, y) then

1. Ky ∈ H1 for each y ∈ J , and y → Ky is a continuous function from J to
H1;

2.
∫
J
‖Ky‖H1 dy < ∞.

(Condition 1 holds if ‖Ky‖H1 and ‖(∂K/∂y)y‖H1 are locally bounded func-
tions of y. These are easily seen to hold for the Airy kernel.) We shall show
under these conditions that K(s) = Kχ(s,∞) is a differentiable family of trace
class operators on H1.

What is nice about H1 is that the point evaluations f → f(y) comprise
a bounded and continuous family of continuous linear functionals on H1.
Continuity is immediate from

|f(y2) − f(y1)| ≤
∫ y2

y1

|f ′(y)| dy ≤ √
y2 − y1‖f‖H1 .
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If I is any interval of length 1 then

min
y∈I

| f(y) ≤
{∫

I

|f(y)|2 dy
}1/2

≤ ‖f‖H1 ,

and from this and the last inequality we deduce that

|f(y)| ≤ 2‖f‖H1

for all y. (Take y2 = y we find an appropriate y1 in an interval of length 1
containing y.) Thus the family of linear functionals is bounded.

It follows from the above-stated facts and Condition 1 that if E(y) : H1

→ H1 is defined by
E(y)f = f(y)Ky , (3.19)

then y → E(y) is a family of operators which is continuous in the operator
norm and satisfies ‖E(y)‖ ≤ 2‖Ky‖H1 . Each E(y) is of rank one, so this is
actually a continuous family of trace class operators on H1, and the trace
norm is the same as the operator norm. By Condition 2 we have

∫
J

‖E(y)‖1 dy ≤ 2
∫
J

‖Ky‖H1 dy < ∞ .

The identity

(K(s)f)(x) =
∫ ∞

s

K(x, y)f(y) dy =
∫ ∞

s

(E(y)f)(x) dy

shows that K(s) =
∫∞
s E(y) dy. Hence K(s) is trace class and s → K(s) is a

differentiable function of s with derivative −E(s).6

Thus (3.18) holds whenever I −K(s) is invertible and gives

d
ds

log det
(
I −K(s)

)
= tr

[(
I −K(s)

)−1
E(s)

]
.

For a more concrete expression for the right side above we denote by R(x, y)
the kernel of the operator R =

(
I −K(s)

)−1
K. (This is a modified resolvent

of K(s); the actual resolvent is
(
I−K(s)

)−1
K(s).) The operator on the right

has rank one and takes a function f to R(x, s)f(s). Thus its only nonzero
eigenvalue is R(s, s), corresponding to the eigenfunction R(x, s), and so this
is its trace. This establishes the formula

6 We use here the fact that the integral of trace class operators is trace class if their
trace norms belong to L1. This follows from the easily established fact that for
any operator A

‖A‖1 = sup{| trAB| : B ∈ R, ‖B‖ ≤ 1} .
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d
ds

log det
(
I −K(s)

)
= R(s, s) , (3.20)

which was our goal.
In order to apply this with K = KAiry we observe that F2(s) is a nonneg-

ative monotonic function, being the limit of distribution functions, and so it
is nonzero. This is equivalent to the invertibility of I −K(s) in this case and
so we may apply (3.20) to obtain the formula

d
ds

logF2(s) = R(s, s) , (3.21)

where R(x, y) is the modified resolvent kernel for KAiryχ(s,∞). For simplicity
of notation we shall now write this operator as Kχ.

What will in the end enable us to establish (3.17) is that K satisfies two
commutator relations which will yield corresponding relations for the resolvent
kernel. The commutators will be with the operators M , multiplication by the
independent variable x, and D = d/dx. But our Sobolev space H1 is not
closed under M or D, so we shall change our space to one which is closed
under the actions of these operations. Before we do this we observe that if we
set

ρ = I +Rχ

then
(I −Kχ)−1 = ρ , (3.22)

in other words,

(I +Rχ)(I −Kχ) = (I −Kχ)(I +Rχ) = I .

After subtracting I from all terms this becomes identities involving the two
kernels K(x, y)χ(y) and R(x, y)χ(y). From this it follows that (3.22) holds no
matter what space the operators with these kernels act on, as long as it is
closed under the these operations.

One space we might take that serves our purpose is

S = {f ∈ C∞ : each f (n)(x) is rapidly decreasing at +∞} .

This is clearly closed under M and D, and is closed under Kχ and Rχ because
of the rapid decrease of the Airy function at +∞.

The two commutator relations are

[M,Kχ] = Ai⊗Ai′ χ− Ai′ ⊗Aiχ , (3.23)
[D,Kχ] = −Ai⊗Aiχ−Kδ . (3.24)

Here u⊗ v denotes the operator with kernel u(x)v(y) and δ denotes multipli-
cation by δ(y−s). (Of course δ does not act on S, but Kδ does. This operator
is the same as E(s) given by (3.19) but the δ notation is more transparent).
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The first relation is immediate from the formula for the Airy kernel. For the
second we use integration by parts and the fact that for the Airy kernel

(∂x + ∂y)K(x, y) = −Ai(x)Ai(y) . (3.25)

This follows using the differential equation Ai′′(x) = xAi(x) satisfied by the
Airy function.

In fact we shall not use (3.23), but instead

[D2 −M,Kχ] = KDδ +KδD . (3.26)

To obtain this we apply the general identity [D2,Kχ] = D[D,Kχ]
+ [D,Kχ]D. From (3.24) we obtain, first,

D[D,Kχ] = −Ai′ ⊗Aiχ +DKδ ,

and then using (3.25),

D[D,Kχ] = −Ai′ ⊗Aiχ +KDδ − Ai⊗Ai δ .

From (3.24) again we obtain

[D,Kχ]D = Ai⊗(Ai′ χ+ Ai δ) +KδD .

Adding these two and using (3.23) we obtain (3.26).
We first derive two identities that are consequences of the commutators

(3.24) and (3.26). We define

r = R(s, s) , rx = Rx(s, s) , ry = Ry(s, s) ,

(where Rx = ∂R/∂x and Ry = ∂R/∂y), and

Q = ρAi , q = Q(s) .

(Recall that ρ = (I − Kχ)−1.) With this definition of q we shall derive the
identity (3.17) and show that q satisfies the Painlevé equation. (The asymp-
totic behavior at +∞ is almost immediate.)

The identities arising from the commutators are

rx + ry = −q2 + r2 , Q′′(s) − sq = rQ′(s) − ryq . (3.27)

To establish these we need commutators, not with Kχ, but with R = ρK.
The commutator [D, ρ] is obtained by multiplying (3.24) on the left and right
by ρ. This gives

[D, ρ] = −(ρAi⊗Aiχ)ρ +Rδρ ,

and from this we obtain

[D,R] = [D, ρK] = ρ[D,K] + [D, ρ]K = −(ρAi⊗Ai)(I + χR) +RδR .
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Notice that I + χR = (I − χK)−1, and K is symmetric. Using these facts,
and the general relation (u ⊗ v)T = u ⊗ (T tv), we see that the first term on
the right equals −ρAi⊗ρAi = −Q ⊗ Q. Since R is symmetric the last term
equals Rs ⊗Rs, in previous notation. We have shown that

[D,R] = −Q⊗Q+Rs ⊗Rs .

The left side has kernel Rx(x, y)+Ry(x, y), so setting x = y = s in the kernels
gives the first identity of (3.27).

The second commutator (3.26) gives similarly

[D2 −M,ρ] = R(Dδ + δD)ρ .

Applying this to Ai and using (D2 −M)Ai = 0 give

Q′′(x) − xQ(x) = −Ry(x, y)q +R(x, s)Q′(s) .

Setting x = s gives the second identity of (3.27).
Since d logF2/ds = r (this is (3.21)), to establish (3.17) we compute dr/ds.

Now R(x, y) depends also on s, since Kχ does, and the chain rule gives

dr
ds

=
dR
ds

(s, s) +Rx(s, s) +Ry(s, s) , (3.28)

so we must evaluate the first factor. In fact

dR
ds

= (I −Kχ)−1 dKχ

ds
(I −Kχ)−1K .

The factor d(Kχ)/ds is what we cumputed earlier to be −E(s), which in the
present notation is −Kδ. This gives

dR
ds

= −RδR = −Rs ⊗Rs .

Setting x = y = s in the kernels we obtain

dR
ds

(s, s) = −r2 .

Combining this with (3.28) and the first identity of (3.27) gives

dr
ds

=
dR
ds

(s, s) +Rx(s, s) + Ry(s, s) , r′ = −q2 . (3.29)

(Here ′ = d/ds.) Thus d2 logF2/ds2 = −q2, and (3.17) follows since both F2

and q decrease rapidly at +∞.
Next we derive the equation for q.
As with the computation of r′ = dr/ds, the chain rule gives

q′(s) = Q′(s) − (RδρAi)(s) = Q′(s) − rq , (3.30)
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and then (from dQ′/ds = −RxδρAi)

q′′(s) = Q′′(s) − rxq − (rq)′ . (3.31)

Combining (3.30) and (3.31) with the second identity of (3.27) gives

q′′ = sq + (r2 − r′ − rx − ry)q .

By (3.29) and the first identity of (3.27) this equals sq + 2q3. This completes
the proof.

Systems of differential equations for distribution functions arising in ran-
dom matrix theory are derived in [9]. The proof presented here for F2 is a
distillation of a different derivation from [11].
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Summary. This is a review of the Riemann–Hilbert approach to the large N
asymptotics in random matrix models and its applications. We discuss the following
topics: random matrix models and orthogonal polynomials, the Riemann–Hilbert
approach to the large N asymptotics of orthogonal polynomials and its applications
to the problem of universality in random matrix models, the double scaling limits,
the large N asymptotics of the partition function, and random matrix models with
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Introduction

This article is a review of the Riemann–Hilbert approach to random ma-
trix models. It is based on a series of 5 lectures given by the author at the
miniprogram on “Random Matrices and their Applications” at the Centre de
recherches mathématiques, Université de Montréal, in June 2005. The review
contains 5 lectures:

Lecture 1. Random matrix models and orthogonal polynomials.
Lecture 2. Large N asymptotics of orthogonal polynomials. The Riemann–

Hilbert approach.
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Lecture 3. Double scaling limit in a random matrix model.
Lecture 4. Large N asymptotics of the partition function of random matrix

models.
Lecture 5. Random matrix models with external source.

The author would like to thank John Harnad for his invitation to give the
series of lectures at the miniprogram. The lectures are based on the joint
works of the author with several coauthors: Alexander Its, Arno Kuijlaars,
Alexander Aptekarev, and Bertrand Eynard. The author is grateful to his
coauthors for an enjoyable collaboration.

4.1 Random Matrix Models and Orthogonal Polynomials

The first lecture gives an introduction to random matrix models and their
relations to orthogonal polynomials.

4.1.1 Unitary Ensembles of Random Matrices

4.1.1.1 Unitary Ensemble with Polynomial Interaction

Let M = (Mjk)Nj,k=1 be a random Hermitian matrix, Mkj = Mjk, with respect
to the probability distribution

dμN (M) =
1
ZN

e−N TrV (M) dM , (4.1)

where

V (M) =
p∑
i=1

tjM
j , p = 2p0 , tp > 0 , (4.2)

is a polynomial,

dM =
N∏
j=1

dMjj

N∏
j �=k

d ReMjkd ImMjk , (4.3)

the Lebesgue measure, and

ZN =
∫
HN

e−N Tr V (M) dM , (4.4)

the partition function. The distribution μN (dM) is invariant with respect to
any unitary conjugation,

M → U−1MU , U ∈ U(N) , (4.5)

hence the name of the ensemble.
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4.1.1.2 Gaussian Unitary Ensemble

For V (M) = M2, the measure μN is the probability distribution of the Gaus-
sian unitary ensemble (GUE). In this case,

TrV (M) = TrM2 =
N∑

j,k=1

MkjMjk =
N∑
j=1

M2
jj + 2

∑
j>k

|Mjk|2 , (4.6)

hence

μGUE
N (dM) =

1
ZGUE
N

N∏
j=1

exp
(−NM2

jj

)∏
j>k

exp
(−2N |Mjk|2

)
dM , (4.7)

so that the matrix elements in GUE are independent Gaussian random vari-
ables. The partition function of GUE is evaluated as

ZGUE
N =

∫
HN

N∏
j=1

exp
(−NM2

jj

)∏
j>k

exp
(−2N |Mjk|2

)
dM

=
(
π

N

)N/2(
π

2N

)N(N−1)/2

=
(
π

N

)N2/2(1
2

)N(N−1)/2

. (4.8)

If V (M) is not quadratic then the matrix elements Mjk are dependent.

4.1.1.3 Topological Large N Expansion

Consider the free energy of the unitary ensemble of random matrices,

F 0
N = −N−2 lnZN = −N−2 ln

∫
HN

e−N TrV (M) dM , (4.9)

and the normalized free energy,

FN = −N−2 ln
ZN
ZGUE
N

= −N−2 ln

∫
HN

exp
(−N TrV (M)

)
dM∫

HN
exp(−N TrM2) dM

. (4.10)

The normalized free energy can be expessed as

FN = −N−2 ln
〈
exp
(−N TrV1(M)

)〉
(4.11)

where V1(M) = V (M) −M2 and

〈f(M)〉 =

∫
HN

f(M) exp
(−N Tr(M2)

)
dM∫

HN
exp
(−N Tr(M2)

)
dM

, (4.12)

the mathematical expectation of f(M) with respect to GUE. Suppose that
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V (M) = M2 + t3M
3 + · · · + tpM

p . (4.13)

Then (4.10) reduces to

FN = −N−2 ln
〈
exp
(−N Tr(t3M3 + · · · + tpM

p)
)〉

. (4.14)

FN can be expanded into the asymptotic series in negative powers of N2,

FN ∼ F +
∞∑
g=1

F (2g)

N2g
, (4.15)

which is called the topological large N expansion. The Feynman diagrams
representing F (2g) are realized on a two-dimensional Riemann closed manifold
of genus g, and, therefore, FN serves as a generating function for enumeration
of graphs on Riemannian manifolds, see, e.g., the works [14, 33, 57, 65, 66, 77].
This in turn leads to a fascinating relation between the matrix integrals and
the quantum gravity, see, e.g., the works [56, 101], and others.

4.1.1.4 Ensemble of Eigenvalues

The Weyl integral formula implies, see, e.g., [85], that the distribution of
eigenvalues of M with respect to the ensemble μN is given as

dμN (λ) =
1

Z̃N

∏
j>k

(λj − λk)2
N∏
j=1

exp
(−NV (λj)

)
dλ , (4.16)

where

Z̃N =
∫ ∏

j>k

(λj − λk)2
N∏
j=1

exp
(−NV (λj)

)
dλ , dλ = dλ1 · · · dλN . (4.17)

Respectively, for GUE,

dμGUE
N (λ) =

1

Z̃GUE
N

∏
j>k

(λj − λk)2
N∏
j=1

exp(−Nλ2
j) dλ , (4.18)

where

Z̃GUE
N =

∫ ∏
j>k

(λj − λk)2
N∏
j=1

exp(−Nλ2
j) dλ . (4.19)

The constant Z̃GUE
N is a Selberg integral, and its exact value is

Z̃GUE
N =

(2π)N/2

(2N)N2/2

N∏
n=1

n! (4.20)
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see, e.g., [85]. The partition functions ZN and Z̃N are related as follows:

Z̃N
ZN

=
Z̃GUE
N

ZGUE
N

=
1

πN(N−1)/2

N∏
n=1

n! (4.21)

One of the main problems is to evaluate the large N asymptotics of the par-
tition function Z̃N and of the correlations between eigenvalues.

The m-point correlation function is given as

RmN (x1, . . . , xm) =
N !

(N −m)!

∫
RN−m

pN(x1, . . . , xN ) dxm+1 · · · dxN ,

(4.22)
where

pN (x1, . . . , xN ) = Z̃−1
N

∏
j>k

(xj − xk)2
N∏
j=1

exp
(−NV (xj)

)
. (4.23)

The Dyson determinantal formula for correlation functions, see, e.g., [85], is

RmN (x1, . . . , xm) = det
(
KN (xk, xl)

)m
k,l=1

, (4.24)

where

KN (x, y) =
N−1∑
n=0

ψn(x)ψn(y) (4.25)

and
ψn(x) =

1

h
1/2
n

Pn(x)e−NV (x)/2, (4.26)

where Pn(x) = xn + an−1x
n−1 + · · · are monic orthogonal polynomials,

∫ ∞

−∞
Pn(x)Pm(x)e−NV (x) dx = hnδnm . (4.27)

Observe that the functions ψn(x), n = 0, 1, 2, . . . , form an orthonormal ba-
sis in L2(R1), and KN is the kernel of the projection operator onto the N -
dimensional space generated by the first N functions ψn, n = 0, . . . , N−1. The
kernel KN can be expressed in terms of ψN−1, ψN only, due to the Christoffel–
Darboux formula. Consider first recurrence and differential equations for the
functions ψn.

4.1.1.5 Recurrence Equations and Discrete String Equations for
Orthogonal Polynomials

The orthogonal polynomials satisfy the three-term recurrence relation, see,
e.g., [95],
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xPn(x) = Pn+1(x) + βnPn(x) + γ2
nPn−1(x) ,

γn =
(

hn
hn−1

)1/2

> 0 , n ≥ 1 ; γ0 = 0 .
(4.28)

For the functions ψn it reads as

xψn(x) = γn+1ψn+1(x) + βnψn(x) + γnψn−1(x) . (4.29)

This allows the following calculation:

(x− y)
N−1∑
n=0

ψn(x)ψn(y)

=
N−1∑
n=0

[(
γn+1ψn+1(x) + βnψn(x) + γnψn−1(x)

)
ψn(y)

− ψn(x)
(
γn+1ψn+1(y) + βnψn(y) + γnψn−1(y)

)]
= γN [ψN (x)ψN−1(y) − ψN−1(x)ψN (y)] (4.30)

(telescopic sum), hence

KN(x, y) =
N−1∑
n=0

ψn(x)ψn(y) = γN
ψN (x)ψN−1(y) − ψN−1(x)ψN (y)

x− y
. (4.31)

which is the Christoffel–Darboux formula. For the density function we obtain
that

pN (x) =
QN(x, x)

N
=

γN
N

[ψ′
N (x)ψN−1(x) − ψ′

N−1(x)ψN (x)] . (4.32)

Consider a matrix Q of the operator of multiplication by x, f(x) → xf(x),
in the basis {ψn(x)}. Then by (4.29), Q is the symmetric tridiagonal Jacobi
matrix,

Q =

⎛
⎜⎜⎜⎜⎜⎝

β0 γ1 0 0 · · ·
γ1 β1 γ2 0 · · ·
0 γ2 β2 γ3 · · ·
0 0 γ3 β3 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

. (4.33)

Let P = (Pnm)n,m=0,1,2,... be a matrix of the operator f(z) → f ′(z) in the
basis ψn(z), n = 0, 1, 2, . . . , so that

Pnm =
∫ ∞

−∞
ψn(x)ψ′

m(x) dx . (4.34)

Then Pmn = −Pnm and
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ψ′
n(z) = −NV ′(z)

2
ψn(z) +

P ′
n(z)√
hn

e−NV (z)/2

= −NV ′(z)
2

ψn(z) +
n

γn
ψn−1(z) + · · · , (4.35)

hence [
P +

NV ′(Q)
2

]
nn

= 0 ,
[
P +

NV ′(Q)
2

]
n,n+1

= 0 ,

[
P +

NV ′(Q)
2

]
n,n−1

=
n

γn
.

(4.36)

Since Pnn = 0, we obtain that

[V ′(Q)]nn = 0 . (4.37)

In addition,[
−P +

NV ′(Q)
2

]
n,n−1

= 0 ,
[
P +

NV ′(Q)
2

]
n,n−1

=
n

γn
, (4.38)

hence
γn[V ′(Q)]n,n−1 =

n

N
. (4.39)

Thus, we have the discrete string equations for the recurrence coefficients,{
γn[V ′(Q)]n,n−1 =

n

N
,

[V ′(Q)]nn = 0 .
(4.40)

The string equations can be brought to a variational form.

Proposition 4.1.1. Define the infinite Hamiltonian,

H(γ, β) = N TrV (Q) −
∞∑
n=1

n ln γ2
n ,

γ = (γ0, γ1, . . . ) , β = (β0, β1, . . . ) . (4.41)

Then equations (4.40) can be written as

∂H

∂γn
= 0 ,

∂H

∂βn
= 0 ; n ≥ 1 , (4.42)

which are the Euler–Lagrange equations for the Hamiltonian H.

Proof. We have that

∂H

∂γn
= N Tr

(
V ′(Q)

∂Q

∂γn

)
− 2n
γn

= 2N [V ′(Q)]n,n−1 − 2n
γn

, (4.43)

and
∂H

∂βn
= N Tr

(
V ′(Q)

∂Q

∂βn

)
= N [V ′(Q)]nn , (4.44)

hence (4.40) are equivalent to (4.42). ��
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Example. The even quartic model,

V (M) =
t

2
M2 +

g

4
M4 . (4.45)

In this case, since V is even, βn = 0, and we have one string equation,

γ2
n(t + gγ2

n−1 + gγ2
n + gγ2

n+1) =
n

N
, (4.46)

with the initial conditions: γ0 = 0 and

γ1 =

∫∞
−∞ z2e−NV (z) dz∫∞
−∞ e−NV (z) dz

. (4.47)

The Hamiltonian is

H(γ) =
∞∑
n=1

[
N

2
γ2
n(2t + gγ2

n−1 + gγ2
n + gγ2

n+1) − n lnγ2
n

]
. (4.48)

The minimization of the functional H is a useful procedure for a numerical
solution of the string equations, see [18,36]. The problem with the initial value
problem for the string equations, with the initial values γ0 = 0 and (4.47), is
that it is very unstable, while the minimization of H with γ0 = 0 and some
boundary conditions at n = N , say γN = 0, works very well. In fact, the
boundary condition at n = N creates a narrow boundary layer near n = N ,
and it does not affect significally the main part of the graph of γ2

n. Figure 4.1

Fig. 4.1. A computer solution, y = γ2
n, of the string equation for the quartic model:

g = 1, t = −1, N = 400
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presents a computer solution, y = γ2
n, of the string equation for the quartic

model: g = 1, t = −1, N = 400. For this solution, as shown in [17, 18], there
is a critical value, λc = 1

4 , so that for any ε > 0, as N → ∞,

γ2
n = R

(
n

N

)
+O(N−1) , if

n

N
≥ λc + ε , (4.49)

and

γ2
n =

⎧⎪⎪⎨
⎪⎪⎩
R

(
n

N

)
+O(N−1) , n = 2k + 1 ,

L

(
n

N

)
+O(N−1) , n = 2k ,

if
n

N
≤ λc − ε . (4.50)

The functions R for λ ≥ λc and R,L for λ ≤ λc can be found from string
equation (4.46):

R(λ) =
1 +

√
1 + 12λ
6

, λ > λc , (4.51)

and

R(λ), L(λ) =
1 ±√

1 − 4λ
2

, λ < λc . (4.52)

We will discuss below how to justify asymptotics (4.49), (4.50), and their
extension for a general V .

4.1.1.6 Differential Equations for the ψ-Functions

Define

Ψn(z) =
(

ψn(z)
ψn−1(z)

)
. (4.53)

Then
Ψ ′
n(z) = NAn(z)Ψn(z) , (4.54)

where

An(z) =
(−V ′(z)/2 − γnun(z) γnvn(z)

−γnvn−1(z) V ′(z)/2 + γnun(z)

)
(4.55)

and
un(z) = [W (Q, z)]n,n−1 , vn(z) = [W (Q, z)]nn , (4.56)

where
W (Q, z) =

V ′(Q) − V ′(z)
Q− z

. (4.57)

Observe that TrAn(z) = 0.

Example. Even quartic model, V (M) = (t/2)M2 + (g/4)M4. Matrix An(z):

An(z) =
(− 1

2 (tz + gz3) − gγ2
nz γn(gz2 + θn)

−γn(gz2 + θn−1) 1
2 (tz + gz3) + gγ2

nz

)
(4.58)

where
θn = t+ gγ2

n + gγ2
n+1 . (4.59)
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4.1.1.7 Lax Pair for the Discrete String Equations

Three-term recurrence relation (4.28) can be written as

Ψn+1(z) = Un(z)Ψn(z) , (4.60)

where

Un(z) =
(
γ−1
n+1(z − βn) −γ−1

n+1γn
1 0

)
. (4.61)

Differential equation (4.54) and recurrence equation (4.60) form the Lax pair
for discrete string equations (4.40). This means that the compatibility condi-
tion of (4.54) and (4.60),

U ′
n = N(An+1Un − UnAn) , (4.62)

when written for the matrix elements, implies (4.40).

4.1.2 The Riemann–Hilbert Problem for Orthogonal Polynomials

4.1.2.1 Adjoint Functions

Introduce the adjoint functions to Pn(z) as

Qn(z) =
1

2πi

∫ ∞

−∞

Pn(u)w(u) du
u− z

, z ∈ C \ R , (4.63)

where
w(z) = e−NV (z) (4.64)

is the weight for the orthogonal polynomials Pn. Define

Qn±(x) = lim
z→x± Im z>0

Qn(z) , −∞ < x < ∞ . (4.65)

Then the well-known formula for the jump of the Cauchy type integral gives
that

Qn+(x) −Qn−(x) = w(x)Pn(x) . (4.66)

The asymptotics of Qn(z) as z → ∞, z ∈ C, is given as

Qn(z) =
1

2πi

∫ ∞

−∞

w(u)Pn(u) du
u− z

∼= − 1
2πi

∫ ∞

−∞
w(u)Pn(u)

∞∑
j=0

uj

zj+1
du = − hn

2πizn+1
+

∞∑
j=n+2

αj
zj

,

(4.67)

(due to the orthogonality, the first n terms cancel out). The sign ∼= in (4.67)
means an asymptotic expansion, so that for any k ≥ n + 2, there exists a
constant Ck > 0 such that for all z ∈ C,
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Qn(z) −
(
− hn

2πizn+1
+

k∑
j=n+2

αj
zj

)
≤ Ck

(1 + |z|)k+1
. (4.68)

There can be some doubts about the uniformity of this asymptotics near
the real axis, but we assume that the weight w(z) is analytic in a strip {z :
| Im z| ≤ a}, a > 0, hence the contour of integration in (4.67) can be shifted,
and (4.68) holds uniformly in the complex plane.

4.1.2.2 The Riemann–Hilbert Problem

Introduce now the matrix-valued function,

Yn(z) =
(

Pn(z) Qn(z)
CPn−1(z) CQn−1(z)

)
, (4.69)

where the constant,

C = − 2πi
hn−1

, (4.70)

is chosen in such a way that

CQn−1(z) ∼= 1
zn

+ · · · , (4.71)

see (4.67). The function Yn solves the following Riemann–Hilbert problem
(RHP):

(1) Yn(z) is analytic on C
+ ≡ {Im z ≥ 0} and C

− ≡ {Im z ≤ 0} (two-valued
on R = C

+ ∩ C
−).

(2) For any real x,

Yn+(x) = Yn−(x)jY (x), jY (x) =
(

1 w(x)
0 1

)
. (4.72)

(3) As z → ∞,

Yn(z) ∼=
(
I +

∞∑
k=1

Yk
zk

)(
zn 0
0 z−n

)
(4.73)

where Yk, k = 1, 2, . . . , are some constant 2 × 2 matrices.

Observe that (4.72) follows from (4.66), while (4.73) from (4.71). The RHP
(1)–(3) has some nice properties.

First of all, (4.69) is the only solution of the RHP. Let us sketch a proof
of the uniqueness. It follows from (4.72), that

detYn+(x) = detYn−(x) , (4.74)

hence detYn(z) has no jump at the real axis, and hence Yn(z) is an entire
function. At infinity, by (4.73),
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detYn(z) ∼= 1 + · · · (4.75)

hence
detYn(z) ≡ 1 , (4.76)

by the Liouville theorem. In particular, Yn(z) is invertible for any z. Suppose
that Ỹn is another solution of the RHP. Then Xn = ỸnY

−1
n satisfies

Xn+(x) = Ỹn+(x)Yn+(x)−1

= Ỹn−(x)jY (x)jY (x)−1Y −1
n− (x) = Xn−(x) , (4.77)

hence Xn is an entire matrix-valued function. At infinity, by (4.73),

Xn(z) ∼= I + · · · (4.78)

hence Xn(z) ≡ I, by the Liouville theorem. This implies that Ỹn = Yn, the
uniqueness.

The recurrence coefficients for the orthogonal polynomials can be found
as

γ2
n = [Y1]21[Y1]12 , (4.79)

and

βn−1 =
[Y2]21
[Y1]21

− [Y1]11 . (4.80)

Indeed, from (4.69), (4.73),

Yn(z)
(
z−n 0
0 zn

)
=
(

z−nPn(z) znQn(z)
Cz−nPn−1(z) znCQn−1(z)

)
∼= I +

∞∑
k=1

Yk
zk

, (4.81)

hence by (4.67), (4.70), and (4.28),

[Y1]21[Y1]12 =
(
− 2πi
hn−1

)(
− hn

2πi

)
=

hn
hn−1

= γ2
n , (4.82)

which proves (4.79). Also,

[Y2]21
[Y1]21

− [Y1]11 = pn−1,n−2 − pn,n−1 , (4.83)

where

Pn(z) =
n∑
j=0

pnjz
j . (4.84)

From (4.28) we obtain that

pn−1,n−2 − pn,n−1 = βn−1 , (4.85)

hence (4.80) follows. The normalizing constant hn can be found as
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hn = −2πi[Y1]12 , hn−1 = − 2πi
[Y1]21

. (4.86)

The reproducing kernel KN(x, y) of the eigenvalue correlation functions,
see (4.24), is expressed in terms of YN+(x) as follows:

KN(x, y) = exp
(
−NV (x)

2

)
exp
(
−NV (y)

2

)

× 1
2πi(x − y)

(
0 1
)
Y −1
N+(y)YN+(x)

(
1
0

)
. (4.87)

Indeed, by (4.31),

KN(x, y) = γN
ψN (x)ψN−1(y) − ψN−1(x)ψN (y)

x− y

= exp
(
−NV (x)

2

)
exp
(
−NV (y)

2

)

× γN√
hNhN−1

PN (x)PN−1(y) − PN−1(x)PN (y)
x− y

. (4.88)

From (4.69), (4.70), and (4.76), we obtain that

(
0 1
)
Y −1
N+(y)YN+(x)

(
1
0

)
=

2πi
hN−1

[PN (x)PN−1(y)−PN−1(x)PN (y)] . (4.89)

Also,
γN√

hNhN−1

=
1

hN−1
, (4.90)

hence (4.87) follows.

4.1.3 Distribution of Eigenvalues and Equilibrium Measure

4.1.3.1 Heuristics

We begin with some heuristic considerations to explain why we expect that
the limiting distribution of eigenvalues solves a variational problem. Let us
rewrite (4.17) as

dμN (λ) = Z̃−1
N e−HN (λ) dλ , (4.91)

where

HN (λ) = −
∑
j �=k

ln |λj − λk| +N

N∑
j=1

V (λj) . (4.92)

Given λ, introduce the probability measure on R
1,
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dνλ(x) = N−1
N∑
j=1

δ(x − λj) dx . (4.93)

Then (4.92) can be rewritten as

HN (λ) = N2

[
−
∫∫

x �=y
ln |x− y| dνλ(x) dνλ(y) +

∫
V (x) dνλ(x)

]
. (4.94)

Let ν be an arbitrary probability measure on R
1. Set

IV (ν) = −
∫∫

x �=y
ln |x− y| dν(x) dν(y) +

∫
V (x) dν(x) . (4.95)

Then (4.91) reads

dμN (λ) = Z̃−1
N exp

(−N2IV (νλ)
)
dλ . (4.96)

Because of the factor N2 in the exponent, we expect that for large N the
measure μN is concentrated near the minimum of the functional IV , i.e., near
the equilibrium measure νV .

4.1.3.2 Equilibrium Measure

Consider the minimization problem

EV = inf
ν∈M1(R)

IV (ν) , (4.97)

where

M1(R) =
{
ν : ν ≥ 0,

∫
R

dν = 1
}
, (4.98)

the set of probability measures on the line.

Proposition 4.1.2 (See [51]). The infinum of IV (ν) is attained uniquely at
a measure ν = νV , which is called an equilibrium measure. The measure νV
is absolutely continuous, and it is supported by a finite union of intervals,
J =

⋃q
j=1[aj , bj]. On the support, its density has the form

pV (x) ≡ dνV
dx

(x) =
1

2πi
h(x)R1/2

+ (x) , R(x) =
q∏
j=1

(x− aj)(x− bj) . (4.99)

Here R1/2(x) is the branch with cuts on J , which is positive for large positive
x, and R

1/2
+ (x) is the value of R1/2(x) on the upper part of the cut. The

function h(x) is a polynomial, which is the polynomial part of the function
V ′(x)/R1/2(x) at infinity, i.e.,

V ′(x)
R1/2(x)

= h(x) +O(x−1) . (4.100)

In particular, deg h = degV − 1 − q.
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There is a useful formula for the equilibrium density [51]:

dνV (x)
dx

=
1
π

√
q(x) , (4.101)

where

q(x) = −
(
V ′(x)

2

)2

+
∫

V ′(x) − V ′(y)
x− y

dνV (y) . (4.102)

This, in fact, is an equation on q, since the right-hand side contains an integra-
tion with respect to νV . Nevertheless, if V is a polynomial of degree p = 2p0,
then (4.102) determines uniquely more then a half of the coefficients of the
polynomial q,

q(x) = −
(
V ′(x)

2

)2

−O(xp−2). (4.103)

Example. If V (x) is convex then νV is regular (see Sect. 4.1.3.3), and the
support of νV consists of a single interval, see, e.g., [82]. For the Gaussian
ensemble, V (x) = x2, hence, by (4.103), q(x) = a2 − x2. Since∫ a

−a

1
π

√
a2 − x2 dx = 1 ,

we find that a =
√

2, hence

pV (x) =
1
π

√
2 − x2 , |x| ≤ √

2 , (4.104)

the Wigner semicircle law.

4.1.3.3 The Euler–Lagrange Variational Conditions

A nice and important property of minimization problem (4.97) is that the min-
imizer is uniquely determined by the Euler-Lagrange variational conditions:
for some real constant l,

2
∫

R

log |x− y| dν(y) − V (x) = l , for x ∈ J , (4.105)

2
∫

R

log |x− y| dν(y) − V (x) ≤ l , for x ∈ R \ J , (4.106)

see [51].

Definition (See [52]). The equilibrium measure,

dνV (x) =
1

2πi
h(x)R1/2

+ (x) dx (4.107)

is called regular (otherwise singular) if

(1) h(x) �= 0 on the (closed) set J .
(2) Inequality (4.106) is strict,

2
∫

log |x− y| dνV (y) − V (x) < l , for x ∈ R \ J . (4.108)
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4.1.3.4 Construction of the Equilibrium Measure: Equations on
the End-Points

The strategy to construct the equilibrium measure is the following: first we
find the end-points of the support, and then we use (4.100) to find h(x) and
hence the density. The number q of cuts is not, in general, known, and we try
different q’s. Consider the resolvent,

ω(z) =
∫
J

dνV (x)
z − x

, z ∈ C \ J . (4.109)

The Euler–Lagrange variational condition implies that

ω(z) =
V ′(z)

2
− h(z)R1/2(z)

2
. (4.110)

Observe that as z → ∞,

ω(z) =
1
z

+
m1

z2
+ · · · , mk =

∫
J

xkρ(x) dx . (4.111)

The equation
V ′(z)

2
− h(z)R1/2(z)

2
=

1
z

+O(z−2) . (4.112)

gives q + 1 equation on a1, b1, . . . , aq, bq, if we substitute formula (4.100) for
h. Remaining q − 1 equation are

∫ aj+1

bj

h(x)R1/2(x) dx = 0 , j = 1, . . . , q − 1 , (4.113)

which follow from (4.110) and (4.105).

Example. Even quartic model, V (M) = (t/2)M2+ 1
4M

4. For t ≥ tc = −2, the
support of the equilibrium distribution consists of one interval [−a, a] where

a =
(−2t+ 2(t2 + 12)1/2

3

)1/2

(4.114)

and
pV (x) =

1
π

(
c + 1

2x
2
)√

a2 − x2 (4.115)

where

c =
t +
(
(t2/4) + 3

)1/2
3

. (4.116)

In particular, for t = −2,

pV (x) =
1
2π

x2
√

4 − x2 . (4.117)
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Fig. 4.2. The density function, pV (x), for the even quartic potential, V (M) =
(t/2)M2 + 1

4
M4, for t = −1,−2,−3

For t < −2, the support consists of two intervals, [−a,−b] and [b, a], where

a =
√

2 − t, b =
√−2 − t , (4.118)

and
pV (x) =

1
2π

|x|
√

(a2 − x2)(x2 − b2) . (4.119)

Figure 4.2 shows the density function for the even quartic potential, for t =
−1,−2,−3.

4.2 Large N Asymptotics of Orthogonal Polynomials.
The Riemann–Hilbert Approach

In this lecture we present the Riemann–Hilbert approach to the large N
asymptotics of orthogonal polynomials. The central point of this approach
is a construction of an asymptotic solution to the RHP, as N → ∞. We call
such a solution, a parametrix. In the original paper of Bleher and Its [17]
the RH approach was developed for an even quartic polynomial V (M) via a
semiclassical solution of the differential equation for orthogonal polynomials.
Then, in a series of papers, Deift, Kriecherbauer, McLaughlin, Venakides, and
Zhou [51–53] developed the RH approach for a general real analytic V , with
some conditions on the growth at infinity. The DKMVZ-approach is based on
the Deift–Zhou steepest descent method, see [54]. In this lecture we present
the main steps of the DKMVZ-approach. For the sake of simplicity, we will
assume that V is regular. In this approach a sequence of transformations of
the RHP is constructed, which reduces the RHP to a simple RHP which can
be solved by a series of perturbation theory. This sequence of transforma-
tions gives the parametrix of the RHP in different regions on complex plane.
The motivation for the first transformation comes from the Heine formula for
orthogonal polynomials.

4.2.1 Heine’s Formula for Orthogonal Polynomials

The Heine formula, see, e.g., [95], gives the Nth orthogonal polynomial as the
matrix integral,
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PN (z) = 〈det(z −M)〉 ≡ Z−1
N

∫
HN

det(z −M) exp
(−N TrV (M)

)
dM .

(4.120)
In the ensemble of eigenvalues,

PN (z) =
〈 N∏
j=1

(z − λj)
〉

≡ Z̃−1
N

∫ N∏
j=1

(z − λj)
∏
j>k

(λj − λk)2
N∏
j=1

exp
(−NV (λj)

)
dλ . (4.121)

Since νλ is close to the equilibrium measure ν for typical λ, we expect that

N−1 log
〈 N∏
j=1

(z − λj)
〉

≈
∫
J

log(z − x) dνV (x) ,

hence by the Heine formula,

N−1 logPN (z) ≈
∫
J

log(z − x) dνV (x) . (4.122)

This gives a heuristic semiclassical approximation for the orthogonal polyno-
mial,

PN (z) ≈ exp
[
N

∫
J

log(z − x) dνV (x)
]
, (4.123)

and it motivates the introduction of the “g-function.”

4.2.1.1 g-Function

Define the g-function as

g(z) =
∫
J

log(z − x) dνV (x) , z ∈ C \ (−∞, bq] , (4.124)

where we take the principal branch for logarithm.

Properties of g(z)

(1) g(z) is analytic in C \ (−∞, bq].
(2) As z → ∞

g(z) = log z −
∞∑
j=1

gj
zj

, gj =
∫
J

xj

j
dνV (x) . (4.125)

(3) By (4.109), (4.110),

g′(z) = ω(z) =
V ′(z)

2
− h(z)R1/2(z)

2
. (4.126)
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(4) By (4.105),
g+(x) + g−(x) = V (x) + l , x ∈ J . (4.127)

(5) By (4.108),
g+(x) + g−(x) < V (x) + l , x ∈ R \ J . (4.128)

(6) Equation (4.124) implies that the function

G(x) ≡ g+(x) − g−(x) (4.129)

is pure imaginary for all real x, and G(x) is constant in each component
of R \ J ,

G(x) = iΩj for bj < x < aj+1, 1 ≤ j ≤ q − 1 , (4.130)

where

Ωj = 2π
q∑

k=j+1

∫ bk

ak

pV (x) dx , 1 ≤ j ≤ q − 1 . (4.131)

(7) Also,

G(x) = iΩj − 2πi
∫ x

bj

pV (s) ds for aj < x < bj , 1 ≤ j ≤ q , (4.132)

where we set Ωq = 0.

Observe that from (4.132) and (4.99) we obtain that G(x) is analytic on
(aj , bj), and

dG(x+ iy)
dy

∣∣∣∣
y=0

= 2πpV (x) > 0 , x ∈ (aj , bj) , 1 ≤ j ≤ q . (4.133)

From (4.127) we have also that

G(x) = 2g+(x) − V (x) − l = −[2g−(x) − V (x) − l] , x ∈ J . (4.134)

4.2.2 First Transformation of the RH Problem

Our goal is to construct an asymptotic solution to RHP (4.72), (4.73) for
YN (z), as N → ∞. In our construction we will assume that the equilibrium
measure νV is regular. By (4.123) we expect that

PN (z) ≈ eNg(z) , (4.135)

therefore, we make the following substitution in the RHP:

YN (z) = exp
(
Nl

2
σ3

)
TN (z) exp

(
N

[
g(z) − l

2

]
σ3

)
, σ + 3 =

(
1 0

0 − 1

)
.

(4.136)
Then TN(z) solves the following RH problem:
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(1) TN(z) is analytic in C \ R.
(2) TN+(x) = TN−(x)jT (x) for x ∈ R, where

jT (x) =
(

exp(−N [g+(x)−g−(x)]) exp(N [g+(x)+g−(x)−V (x)−l])
0 exp(N [g+(x)−g−(x)])

)
.

(4.137)

(3) TN(z) = I +O(z−1), as z → ∞.

The above properties of g(z) ensure the following properties of the jump ma-
trix jT :

(1) jT (x) is exponentially close to the identity matrix on (−∞, a1)∪ (bq,∞).
Namely,

jT (x) =
(

1 O(e−Nc(x))
0 1

)
, x ∈ (−∞, a1) ∪ (bq,∞) , (4.138)

where c(x) > 0 is a continuous function such that

lim
x→±∞

c(x)
ln |x| = ∞ , lim

x→a1
c(x) = lim

x→bq

c(x) = 0 . (4.139)

(2) For 1 ≤ j ≤ q − 1,

jT (x) =
(

exp(−iNΩj) O(e−Nc(x))
0 exp(iNΩj)

)
, x ∈ (bj , aj+1) , (4.140)

where c(x) > 0 is a continuous function such that

lim
x→bj

c(x) = lim
x→aj+1

c(x) = 0 . (4.141)

(3) On J ,

jT (x) =
(

e−NG(x) 1
0 eNG(x)

)
. (4.142)

The latter matrix can be factorized as follows:(
e−NG(x) 1

0 eNG(x)

)
=
(

1 0
eNG(x) 1

)(
0 1
−1 0

)(
1 0

e−NG(x) 1

)

≡ j−(x)jM j+(x) , (4.143)

This leads to the second transformation of the RHP.
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4.2.3 Second Transformation of the RHP: Opening of Lenses

The function e−NG(x) is analytic on each open interval (aj , bj). Observe that
|e−NG(x)| = 1 for real x ∈ (aj , bj), and e−NG(z) is exponentially decaying for
Im z > 0. More precisely, by (4.133), there exists y0 > 0 such that e−NG(z)

satisfies the estimate,

|e−NG(z)| ≤ e−Nc(z) ,

z ∈ R+
j = {z = x+ iy : aj < x < bj , 0 < y < y0} , (4.144)

where c(z) > 0 is a continuous function in R+
j . Observe that c(z) → 0 as

Im z → 0. In addition, |eNG(z)| = |e−NG(z̄)|, hence

|eNG(z)| ≤ e−Nc(z),

z ∈ R−
j = {z = x+ iy : aj < x < bj, 0 < −y < y0} , (4.145)

where c(z) = c(z̄) > 0. Consider a C∞ curve γ+
j from aj to bj such that

γ+
j = {x+ iy : y = fj(x)} , (4.146)

where fj(x) is a C∞ function on [aj , bj] such that

fj(aj) = fj(bj) = 0 ; f ′
j(aj) = −f ′(bj) =

√
3 ;

0 < fj(x) < y0 , aj < x < bj .
(4.147)

Consider the conjugate curve,

γ−j = γ+
j = {x− iy : y = fj(x)} , (4.148)

see Fig. 4.3. The region bounded by the interval [aj , bj ] and γ+
j (γ−j ) is called

the upper (lower) lens, L±
j , respectively. Define for j = 1, . . . , q,

SN(z) =

⎧⎪⎨
⎪⎩
TN(z)j−1

+ (z) , if z is in the upper lens, z ∈ L+
j ,

TN(z)j−(z) , if z is in the lower lens, z ∈ L−
j ,

TN(z) otherwise ,
(4.149)

aj aj+1bj bj+1

upper lens upper lens

lower lens lower lens

γj
+

γj
−

γj+1

γj+1

+

−

Fig. 4.3. The lenses
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where

j±(z) =
(

1 0
e∓NG(z) 1

)
. (4.150)

Then SN (z) solves the following RH problem:

(1) SN(z) is analytic in C \ (R ∪ Γ ), Γ = γ+
1 ∪ γ−1 ∪ · · · ∪ γ+

q ∪ γ−q .
(2)

SN+(z) = SN−(z)jS(z) , z ∈ R ∪ γ , (4.151)

where the jump matrix jS(z) has the following properties:
(a) jS(z) =

(
0 1−1 0

)
for z ∈ J .

(b) jS(z) = jT (z) =
(

exp(−iNΩj) O(exp(−c(x)N))
0 exp(iNΩj)

)
for z ∈ (bj , aj+1), j =

1, . . . , q−1, and jS(z) = jT (z) =
(

1 O(exp(−c(x)N))
0 1

)
for z ∈ (−∞, a1)∪

(bq,∞).

(c) jS(z) = j±(z) =
(

1 0
O(e−c(z)N ) 1

)
for z ∈ γ±j , j = 1, . . . , q, where

c(z) > 0 is a continuous function such that c(z) → 0 as z → aj , bj.
(3) SN(z) = I +O(z−1), as z → ∞.

We expect, and this will be justified later, that as N → ∞, SN (z) converges
to a solution of the model RHP, in which we drop the O(e−cN )-terms in the
jump matrix jS(z). Let us consider the model RHP.

4.2.4 Model RHP

We are looking for M(z) that solves the following model RHP:

(1) M(z) is analytic in C \ [a1, bq],
(2)

M+(z) = M−(z)jM (z) , z ∈ [a1, bq] , (4.152)

where the jump matrix jM (z) is given by the following formulas:
(a) jM (z) =

(
0 1−1 0

)
for z ∈ J

(b) jM (z) =
(

exp(−iNΩj) 0
0 exp(iNΩj)

)
for z ∈ [bj , aj+1], j = 1, . . . , q − 1.

(3) M(z) = I +O(z−1), as z → ∞.

We will construct a solution to the model RHP by following the work [52].

4.2.4.1 Solution of the Model RHP. One-Cut Case

Assume that J consist of a single interval [a, b]. Then the model RH problem
reduces to the following:

(1) M(z) is analytic in C \ [a, b],
(2) M+(z) = M−(z)

(
0 1−1 0

)
for z ∈ [a, b].

(3) M(z) = I +O(z−1), as z → ∞.
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This RHP can be reduced to a pair of scalar RH problems. We have that
(

0 1
−1 0

)
=

1
2

(
1 1
i −i

)(
i 0
0 −i

)(
1 −i
1 i

)
(4.153)

Let

M̃(z) =
1
2

(
1 −i
1 i

)
M(z)

(
1 1
i −i

)
. (4.154)

Then M̃(z) solves the following RHP:

(1) M̃(z) is analytic in C \ [a, b],

(2) M̃+(z) = M̃−(z)
(

i 0
0 −i

)
for z ∈ [a, b].

(3) M̃(z) = I +O(z−1), as z → ∞.

This is a pair of scalar RH problems, which can be solved by the Cauchy
integral:

M̃(z) =

⎛
⎜⎜⎝

exp
(

1
2πi

∫ b

a

log i
s− z

ds
)

0

0 exp
(

1
2πi

∫ b

a

log(−i)
s− z

ds
)
⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

exp
(

1
4

log
(
z − b

z − a

))
0

0 exp
(
−1

4
log
(
z − b

z − a

))
⎞
⎟⎟⎠

=
(
γ−1 0
0 γ

)
, (4.155)

where

γ(z) =
(
z − a

z − b

)1/4

(4.156)

with cut on [a, b] and the branch such that γ(∞) = 1. Thus,

M(z) =
1
2

(
1 1
i −i

)(
γ−1 0
0 γ

)(
1 1
i −i

)−1

=

⎛
⎜⎝
γ(z) + γ−1(z)

2
γ(z)− γ−1(z)

−2i
γ(z) − γ−1(z)

2i
γ(z) + γ−1(z)

2

⎞
⎟⎠ ,

detM(z) = 1 .

(4.157)

At infinity we have

γ(z) = 1 +
b− a

4z
+O(z−2) , (4.158)
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hence

M(z) = I +
1
z

⎛
⎜⎝ 0

b− a

−4i
b− a

4i
0

⎞
⎟⎠+O(z−2) . (4.159)

4.2.4.2 Solution of the Model RHP. Multicut Case

This will be done in three steps.

Step 1. Consider the auxiliary RHP,

(1) Q(z) is analytic in C \ J , J =
⋃q
j=1[aj , bj ],

(2) Q+(z) = Q−(z)
(

0 1−1 0

)
for z ∈ J .

(3) Q(z) = I +O(z−1), as z → ∞.

Then, similar to the one-cut case, this RHP is reduced to two scalar RHPs,
and the solution is

Q(z) =

⎛
⎜⎝
γ(z) + γ−1(z)

2
γ(z) − γ−1(z)

−2i
γ(z) − γ−1(z)

2i
γ(z) + γ−1(z)

2

⎞
⎟⎠ , (4.160)

where

γ(z) =
q∏
j=1

(
z − aj
z − bj

)1/4

, γ(∞) = 1 , (4.161)

with cuts on J . At infinity we have

γ(z) = 1 +
q∑
j=1

bj − aj
4z

+O(z−2) , (4.162)

hence

Q(z) = I +
1
z

⎛
⎜⎜⎜⎜⎝

0
q∑
j=1

bj − aj
−4i

q∑
j=1

bj − aj
4i

0

⎞
⎟⎟⎟⎟⎠+O(z−2) . (4.163)

In what follows, we will modify this solution to satisfy part (b) in jump matrix
in (4.152). This requires some Riemannian geometry and the Riemann theta
function.

Step 2. Let X be the two-sheeted Riemannian surface of the genus

g = q − 1 , (4.164)
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a1 a2 aqb1 b2 bq
. . .

. . .

X

Fig. 4.4. The Riemannian surface associated to
√
R(z)

associated to
√
R(z), where

R(z) =
q∏
j=1

(z − aj)(z − bj) , (4.165)

with cuts on the intervals (aj , bj), j = 1, . . . , q, see Fig. 4.4. We fix the first
sheet of X by the condition that on this sheet,

√
R(x) > 0 , x > bq . (4.166)

We would like to introduce 2g cycles on X , forming a homology basis. To
that end, consider, for j = 1, . . . , g, a cycle Aj on X , which goes around the
interval (bj , aj+1) in the negative direction, such that the part of Aj in the
upper half-plane, A+

j ≡ Aj ∪ {z : Im z ≥ 0}, lies on the first sheet of X ,
and the one in the lower half-plane, A−

j ≡ Aj ∪ {z : Im z ≤ 0}, lies on the
second sheet, j = 1, . . . , g. In addition, consider a cycle Bj on X , which goes
around the interval (a1, bj) on the first sheet in the negative direction, see
Fig. 4.5. Then the cycles (A1, . . . , Ag, B1, . . . , Bg) form a canonical homology
basis for X .

Consider the linear space Ω of holomorphic one-forms on X ,

a1 a2b1 b2 a3 a4b3

B3

B2

B1
A1

A2 A3

b4

. . .

Fig. 4.5. The basis of cycles on X
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Ω =
{
ω =

q−2∑
j=0

cjz
j dz√
R(z)

}
. (4.167)

The dimension of Ω is equal to g. Consider the basis in Ω,

ω = (ω1, . . . , ωg) ,

with normalization ∫
Aj

ωk = δjk , j, k = 1, . . . , g . (4.168)

Such a basis exists and it is unique, see [67]. Observe that the numbers

mjk =
∫
Aj

zk dz√
R(z)

= 2
∫ aj+1

bj

xk dx√
R(x)

, 1 ≤ j ≤ g , 1 ≤ k ≤ g − 1 , (4.169)

are real. This implies that the basis ω is real, i.e., the one-forms,

ωj =
g−1∑
k=0

cjkz
k dz√

R(z)
, (4.170)

have real coefficients cjk.
Define the associated Riemann matrix of B-periods,

τ = (τjk) , τjk =
∫
Bj

ωk , j, k = 1, . . . , g . (4.171)

Since
√
R(x) is pure imaginary on (aj , bj), the numbers τjk are pure imagi-

nary. It is known, see, e.g., [67], that the matrix τ is symmetric and (−iτ) is
positive definite.

The Riemann theta function with the matrix τ is defined as

θ(s) =
∑
m∈Zg

exp
(
2πi(m, s) + πi(m, τm)

)
,

s ∈ C
g ; (m, s) =

g∑
j=1

mjsj . (4.172)

The quadratic form i(m, τm) is negative definite, hence the series is absolutely
convergent and θ(s) is analytic in C

g. The theta function is an even function,

θ(−s) = θ(s) , (4.173)

and it has the following periodicity properties:

θ(s + ej) = θ(s) ; θ(s + τj) = exp(−2πisj − πiτjj)θ(s) , (4.174)

where ej = (0, . . . , 0, 1, 0, . . . , 0) is the jth basis vector in C
g, and τj = τej .

This implies that the function
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f(s) =
θ(s + d+ c)
θ(s + d)

, (4.175)

where c, d ∈ C
g are arbitrary constant vectors, has the periodicity properties,

f(s+ ej) = f(s) ; f(s+ τj) = exp(−2πicj)f(s) . (4.176)

Consider now the theta function associated with the Riemann surface X .
It is defined as follows. Introduce the vector function,

u(z) =
∫ z

bq

ω , z ∈ C \ (a1, bq) , (4.177)

where ω is the basis of holomorphic one-forms, determined by (4.168). The
contour of integration in (4.177) lies in C \ (a1, bq), on the first sheet of X .
We will consider u(z) as a function with values in C

g/Zg,

u : C \ (a1, bq) → C
g/Zg . (4.178)

On [a1, bq] the function u(z) is two-valued. From (4.171) we have that

u+(x) − u−(x) = τj , x ∈ [bj, aj+1] ; 1 ≤ j ≤ q − 1 . (4.179)

Since
√
R(x)− = −√R(x)

+
on [aj , bj ], we have that the function u+(x) +

u−(x) is constant on [aj , bj]. It follows from (4.168) that, mod Z
q,

u+(bj) + u−(bj) = u+(aj+1) + u−(aj+1) , 1 ≤ j ≤ q − 1 . (4.180)

Since u+(bq) = u−(bq) = 0, we obtain that

u+(x) + u−(x) = 0 , x ∈ J =
q⋃
j=1

[aj , bj ] . (4.181)

Define

f1(z) =
θ(u(z) + d+ c)
θ(u(z) + d)

, f2(z) =
θ(−u(z) + d+ c)
θ(−u(z) + d)

,

z ∈ C \ (a1, bq) , (4.182)

where c, d ∈ C
g are arbitrary constant vectors. Then from (4.179) and (4.176)

we obtain that for 1 ≤ j ≤ q − 1,

f1(x+ i0) = exp(−2πicj)f1(x− i0) , f2(x+ i0) = exp(2πicj)f2(x− i0) ,
x ∈ (bj , aj+1) , (4.183)

and from (4.181) that

f1(x+ i0) = f2(x − i0) , f2(x+ i0) = f1(x− i0) , x ∈ J . (4.184)
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Let us take
c =

nΩ

2π
, Ω = (Ω1, . . . , Ωg) , (4.185)

and define the matrix-valued function,

F (z) =

⎛
⎜⎜⎝
θ(u(z) + d1 + c)
θ(u(z) + d1)

θ(−u(z) + d1 + c)
θ(−u(z) + d1)

θ(u(z) + d2 + c)
θ(u(z) + d2)

theta(−u(z) + d2 + c)
θ(−u(z) + d2)

⎞
⎟⎟⎠ (4.186)

where d1, d2 ∈ C
g are arbitrary constant vectors. Then from (4.184), we obtain

that

F+(x) = F−(x)
(

exp(−iNΩj) 0
0 exp(iNΩj)

)
,

x ∈ (bj , aj+1) ; j = 1, . . . , q − 1 ,

F+(x) = F−(x)
(

0 1
1 0

)
, x ∈ J .

(4.187)

Step 3. Let us combine formulas (4.160) and (4.186), and let us set

M(z) = F (∞)−1

×

⎛
⎜⎜⎝
γ(z) + γ−1(z)

2
θ(u(z) + d1 + c)
θ(u(z) + d1)

γ(z) − γ−1(z)
−2i

θ(−u(z) + d1 + c)
θ(−u(z) + d1)

γ(z) − γ−1(z)
2i

θ(u(z) + d2 + c)
θ(u(z) + d2)

γ(z) + γ−1(z)
2

θ(−u(z) + d2 + c)
θ(−u(z) + d2)

⎞
⎟⎟⎠ ,

(4.188)

where

F (∞) =

⎛
⎜⎜⎝
θ(u(∞) + d1 + c)
θ(u(∞) + d1)

0

0
θ(−u(∞) + d2 + c)
θ(−u(∞) + d2)

⎞
⎟⎟⎠ (4.189)

Then M(z) has the following jumps:

M+(x) = M−(x)
(

exp(−iNΩj) 0
0 exp(iNΩj)

)
,

x ∈ (bj , aj+1) ; j = 1, . . . , q − 1 ,

M+(x) = M−(x)
(

0 1
−1 0

)
, x ∈ J ,

(4.190)

which fits perfectly to the model RHP, and M(∞) = I. It remains to find d1,
d2 such that M(z) is analytic at the zeros of θ(±u(z)+ d1,2). These zeros can
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be cancelled by the zeros of the functions γ(z) ± γ−1(z). Let us consider the
latter zeros.

The zeros of γ(z)±γ−1(z) are the ones of γ2(z)±1, and hence of γ4(z)−1.
By (4.161), the equation γ4(z) − 1 = 0 reads

p(z) ≡
q∏
j=1

z − aj
z − bj

= 1 . (4.191)

It is easy to see that

p(bj + 0) = ∞ , p(aj+1) = 0 , 1 ≤ j ≤ q − 1 , (4.192)

hence equation (4.191) has a solution xj on each interval (bj , aj+1),

p(xj) = 1 , bj < xj < aj+1 ; 1 ≤ j ≤ q − 1 . (4.193)

Since (4.191) has (q− 1) finite solutions, the numbers {xj : 1 ≤ j ≤ q− 1} are
all the solutions of (4.191). The function γ(z), defined by (4.161), with cuts
on J , is positive on R \ J , hence

γ(xj) = 1 . (4.194)

Thus, we have (q− 1) zeros of γ(z)− γ−1(z) and no zeros of γ(z)+ γ−1(z) on
the sheet of γ(z) under consideration.

Let us consider the zeros of the function θ(u(z)−d). The vector of Riemann
constants is given by the formula

K = −
q−1∑
j=1

u(bj) . (4.195)

Define

d = −K +
q−1∑
j=1

u(zj) . (4.196)

Then
θ(u(xj) − d) = 0 , 1 ≤ j ≤ q − 1 , (4.197)

see [52], and {xj : 1 ≤ j ≤ q− 1} are all the zeros of the function θ(u(z)− d).
In addition, the function θ(u(z) + d) has no zeros at all on the upper sheet of
X . In fact, all the zeros of θ(u(z) + d) lie on the lower sheet, above the same
points {xj : 1 ≤ j ≤ q − 1}. Therefore, we set in (4.188),

d1 = d , d2 = −d , (4.198)

so that
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M(z) = F (∞)−1

×

⎛
⎜⎜⎝
γ(z) + γ−1(z)

2
θ(u(z) + d+ c)
θ(u(z) + d)

γ(z) − γ−1(z)
−2i

θ(−u(z) + d+ c)
θ(−u(z) + d)

γ(z) − γ−1(z)
2i

θ(u(z) − d+ c)
θ(u(z) − d)

γ(z) + γ−1(z)
2

θ(−u(z) − d+ c)
θ(−u(z) − d)

⎞
⎟⎟⎠ ,

(4.199)

where

F (∞) =

⎛
⎜⎜⎝
θ(u(∞) + d+ c)
θ(u(∞) + d)

0

0
θ(−u(∞) − d+ c)
θ(−u(∞) − d)

⎞
⎟⎟⎠ . (4.200)

This gives the required solution of the model RHP. As z → ∞,

M(z) = I +
M1

z
+O(z−2) , (4.201)

where

M1

=

⎛
⎜⎜⎜⎜⎝

(∇θ(u+d+c)

θ(u+d+c)
− ∇θ(u+d)

θ(u(∞)+d)
, u′(∞)

)
θ(−u+d+c)θ(u+d)

θ(u+d+c)θ(−u+d)

q∑
j=1

(bj−aj)
−4i

θ(u−d+c)θ(−u− d)

θ(−u−d+c)θ(u−d)
q∑
j=1

(bj−aj)
4i

(∇θ(u(∞)+d−c)
θ(u(∞)+d−c) −∇θ(u+d)

θ(u+d)
, u′(∞)

)

⎞
⎟⎟⎟⎟⎠ ,

u = u(∞) . (4.202)

4.2.5 Construction of a Parametrix at Edge Points

We consider small disks D(aj , r), D(bj , r), 1 ≤ j ≤ q, of radius r > 0, centered
at the edge points,

D(a, r) ≡ {z : |z − a| ≤ r} ,
and we look for a local parametrix UN(z), defined on the union of these disks,
such that

• UN (z) is analytic on D \ (R ∪ Γ ), where

D =
q⋃
j=1

(
D(aj , r) ∪D(bj , r)

)
. (4.203)

•
UN+(z) = UN−(z)jS(z), z ∈ (R ∪ Γ ) ∩D , (4.204)
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• as N → ∞,

UN(z) =

(
I +O

(
1
N

))
M(z) uniformly for z ∈ ∂D . (4.205)

We consider here the edge point bj , 1 ≤ j ≤ q, in detail. From (4.127))
and (4.132), we obtain that

2g+(x) = V (x) + l + iΩj − 2πi
∫ x

bj

pV (s) ds , aj < x < bj , (4.206)

hence

[2g+(x) − V (x)] − [2g+(bj) − V (bj)] = −2πi
∫ x

bj

pV (s) ds . (4.207)

By using formula (4.99), we obtain that

[2g+(bj) − V (bj)] − [2g+(x) − V (x)] =
∫ x

bj

h(s)R1/2
+ (s) ds ,

R(z) =
q∏
j=1

(x− aj)(x − bj) . (4.208)

Since both g(z) and R1/2(z) are analytic in the upper half-plane, we can
extend this equation to the upper half-plane,

[2g+(bj) − V (bj)] − [2g(z) − V (z)] =
∫ z

bj

h(s)R1/2(s) ds , (4.209)

where the contour of integration lies in the upper half-plane. Observe that
∫ z

bj

h(s)R1/2(s) ds = c(z − bj)3/2 +O
(
(z − bj)5/2

)
(4.210)

as z → bj , where c > 0. Then it follows that

β(z) =
{

3
4 [2g+(bj) − V (bj)] − [2g(z)− V (z)]

}2/3 (4.211)

is analytic at bj, real-valued on the real axis near bj and β′(bj) > 0. So β is
a conformal map from D(bj , r) to a convex neighborhood of the origin, if r is
sufficiently small (which we assume to be the case). We take Γ near bj such
that

β
(
Γ ∩D(bj , r)

) ⊂ {z | arg(z) = ±2π/3} .
Then Γ and R divide the disk D(bj , r) into four regions numbered I, II,
III, and IV, such that 0 < arg β(z) < 2π/3, 2π/3 < arg β(z) < π,
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III

III IV

Γ

bj

γj
+

γj
−

Fig. 4.6. Partition of a neighborhood of the edge point

−π < arg β(z) < −2π/3, and −2π/3 < arg β(z) < 0 for z in regions I, II,
III, and IV, respectively, see Fig. 4.6.

Recall that the jumps jS near bq are given as

jS =
(

0 1
−1 0

)
on [bj − r, bj)

jS =
(

1 0
e−NG(z) 1

)
on γ+

j

jS =
(

1 0
eNG(z) 1

)
on γ−j

jS =
(

exp(−N [g+(z) − g−(z)]) exp(N(g+(z) + g−(z) − V (z) − l))
0 exp(N [g+(z) − g−(z)])

)

on (bj , bj + r] .

(4.212)

We look for UN (z) in the form,

UN (z) = QN (z) exp
(
−N

[
g(z)− V (z)

2
− l

2

]
σ3

)
. (4.213)

Then the jump condition on UN(z), (4.204), is transformed to the jump con-
dition on QN (Z),

QN+(z) = QN−(z)jQ(z) , (4.214)

where

jQ(z) = exp
(
−N

[
g−(z) − V (z)

2
− l

2

]
σ3

)
jS(z)

× exp
(
N

[
g+(z) − V (z)

2
− l

2

]
σ3

)
. (4.215)

From (4.212), (4.127) and (4.134) we obtain that
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jQ =
(

0 1
−1 0

)
on [bj − r, bj)] ,

jQ =
(

1 0
1 1

)
on γ+

j ,

jQ =
(

1 0
1 1

)
on γ−j ,

jQ =
(

1 1
0 1

)
on (bj , bj + r] .

(4.216)

We construct QN (z) with the help of the Airy function. The Airy function
Ai(z) solves the equation y′′ = zy and for any ε > 0, in the sector π + ε ≤
arg z ≤ π − ε, it has the asymptotics as z → ∞,

Ai(z) =
1

2
√
πz1/4

exp(− 2
3z

3/2)
(
1 +O(z−3/2)

)
. (4.217)

The functions Ai(ωz), Ai(ω2z), where ω = e2πi/3, also solve the equation
y′′ = zy, and we have the linear relation,

Ai(z) + ωAi(ωz) + ω2 Ai(ω2z) = 0 . (4.218)

We write

y0(z) = Ai(z) , y1(z) = ωAi(ωz) , y2(z) = ω2 Ai(ω2z) , (4.219)

and we use these functions to define

Φ(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
y0(z) −y2(z)
y′0(z) −y′2(z)

)
, for 0 < arg z < 2π/3 ,

(−y1(z) −y2(z)
−y′1(z) −y′2(z)

)
, for 2π/3 < arg z < π ,

(−y2(z) y1(z)
−y′2(z) y′1(z)

)
, for −π < arg z < −2π/3 ,

(
y0(z) y1(z)
y′0(z) y

′
1(z)

)
, for −2π/3 < arg z < 0 .

(4.220)

Observe that (4.218) reads

y0(z) + y1(z) + y2(z) = 1 , (4.221)

and it implies that on the discontinuity rays,

Φ+(z) = Φ−(z)jQ(z) , arg z = 0,±2π
3
, π . (4.222)

Now we set
QN (z) = EN (z)Φ

(
N2/3β(z)

)
, (4.223)
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so that

UN (z) = EN (z)Φ
(
N2/3β(z)

)
exp
(
−N

[
g(z) − V (z)

2
− l

2

]
σ3

)
, (4.224)

where EN is an analytic prefactor that takes care of the matching condition
(4.205). Since Φ(z) has the jumps jQ, we obtain that UN(z) has the jumps
jS , so that it satisfies jump condition (4.204). The analytic prefactor EN is
explicitly given by the formula,

EN (z) = M(z)ΘN (z)LN(z)−1 , (4.225)

where M(z) is the solution of the model RHP,

ΘN (z) = exp
(
±NΩj

2
σ3

)
, ± Im z ≥ 0 . (4.226)

and

LN(z) =
1

2
√
π

(
N−1/6β−1/4(z) 0

0 N1/6β1/4(z)

)(
1 i
−1 i

)
(4.227)

where for β1/4(z) we take a branch which is positive for z ∈ (bj, bj + r], with
a cut on [bj − r, bj). To prove the analyticity of EN (z), observe that

[M(x)ΘN (x)]+ = [M(x)ΘN (x)]−j1(x) , bj − r ≤ x ≤ bj + r , (4.228)

where

j1(x) = exp
(
NΩj

2
σ3

)
jM (x) exp

(
NΩj

2
σ3

)
. (4.229)

From (4.152) we obtain that

j1(x) =
(

0 1
−1 0

)
, bj − r ≤ x < bj ,

j1(x) = I , bj < x ≤ bj + r .

(4.230)

From (4.227),

LN+(x) = LN−(x)j2(x) , bj − r ≤ x ≤ bj + r , (4.231)

where j2(x) = I for bj < x ≤ bj + r, and

j2(x) =
(

1 i
−1 i

)−1(−i 0
0 i

)(
1 i
−1 i

)
=
(

0 1
−1 0

)
, bj − r ≤ x < bj , (4.232)

so that j2(x) = j1(x), bj − r ≤ x ≤ bj + r. Therefore, EN (z) has no jump
on bj − r ≤ x ≤ bj + r. Since the entries of both M and L have at most
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fourth-root singularities at bj, the function EN (z) has a removable singularity
at z = bj , hence it is analytic in D(bj , r).

Let us prove matching condition (4.205). Consider first z in domain I on
Fig. 4.6. From (4.217) we obtain that for 0 ≤ arg z ≤ 2π/3,

y0(z) =
1

2
√
πz1/4

exp(− 2
3z

3/2)
(
1 +O(z−3/2)

)
,

−y2(z) =
i

2
√
πz1/4

exp(2
3z

3/2)
(
1 +O(z−3/2)

)
,

(4.233)

hence for z in domain I,

Φ
(
N2/3β(z)

)
=

1
2
√
π
N−σ3/6β(z)−σ3/4

(
1 i
−1 i

)(
I +O(N−1)

)

× exp(− 2
3Nβ(z)3/2σ3) . (4.234)

From (4.211),

2
3β(z)3/2 = 1

2{[2g+(bj) − V (bj)] − [2g(z)− V (z)]} , (4.235)

and from (4.206),
2g+(bj) − V (bj) = l + iΩj , (4.236)

hence
2
3
β(z)3/2 = −g(z) +

V (z)
2

+
l

2
+
iΩj
2

. (4.237)

Therefore, from (4.224) and (4.234) we obtain that

UN (z) = EN (z)
1

2
√
π
N−σ3/6β(z)−σ3/4

(
1 i
−1 i

)

× (I +O(N−1)
)
exp(−iNΩj/2) (4.238)

Then, from (4.225) and (4.227),

UN (z) = M(z) exp
(

iNΩj
2

)
LN(z)−1 1

2
√
π
N−σ3/6β(z)−σ3/4

(
1 i
−1 i

)

× (I +O(N−1)
)
exp
(
− iNΩj

2

)

= M(z) exp
(

iNΩj
2

)(
I +O(N−1)

)
exp
(
− iNΩj

2

)

= M(z)
(
I +O(N−1)

)
,

(4.239)

which proves (4.205) for z in region I. Similar calculations can be done for
regions II, III, and IV.
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4.2.6 Third and Final Transformation of the RHP

In the third and final transformation we put

RN (z) = SN (z)M(z)−1 for z outside the disks D(aj , r), D(bj , r) ,
1 ≤ j ≤ q , (4.240)

RN (z) = SN (z)UN(z)−1 for z inside the disks .

Then RN (z) is analytic on C \ΓR, where ΓR consists of the circles ∂D(aj, r),
∂D(bj , r), 1 ≤ j ≤ q, the parts of Γ outside of the disks D(aj , r), D(bj, r),
1 ≤ j ≤ q, and the real intervals (−∞, a1 − r), (b1 + r, a2 − r), . . . , (bq−1, aq),
(bq + r,∞), see Fig. 4.7. There are the jump relations,

. . .

γ1

γ1

γq
+

γq

ΓR

+

− −

Fig. 4.7. The contour ΓR for RN (z)

RN+(z) = RN−(z)jR(z) , (4.241)

where

jR(z) = M(z)UN(z)−1 on the circles ,
oriented counterclockwise ,

jR(z) = M(z)jS(z)M(z)−1 on the remaining parts of ΓR .

(4.242)

We have that

jR(z) = I +O(N−1) uniformly on the circles ,

jR(z) = I +O(e−c(z)N ) for some c(z) > 0 ,
on the remaining parts of ΓR .

(4.243)

In addition, as x → ∞, we have estimate (4.139) on c(x). As z → ∞, we have

RN (z) ∼= I +
∞∑
j=1

Rj
zj

. (4.244)

Thus, RN (z) solves the following RHP:

(1) RN (z) is analytic in C \ ΓR. and it is two-valued on ΓR.
(2) On ΓR, RN (z) satisfies jump condition (4.241), where the jump matrix

jR(z) satisfies estimates (4.243).
(3) As z → ∞, RN (z) has asymptotic expansion (4.244).

This RHP can be solved by a perturbation theory series.
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4.2.7 Solution of the RHP for RN(z)

Set
j0R(z) = jR(z) − I. (4.245)

Then by (4.243),

j0R(z) = O(N−1) uniformly on the circles ,

j0R(z) = O(e−c(z)N ) for some c(z) > 0 ,
on the remaining parts of ΓR ,

(4.246)

where c(x) satisfies (4.139) as x → ∞. We can apply the following general
result.

Proposition 4.2.1. Assume that v(z), z ∈ ΓR, solves the equation

v(z) = I − 1
2πi

∫
ΓR

v(u)j0R(u)
z− − u

du , z ∈ ΓR , (4.247)

where z− means the value of the integral on the minus side of ΓR. Then

R(z) = I − 1
2πi

∫
ΓR

v(u)j0R(u)
z − u

du , z ∈ C \ ΓR , (4.248)

solves the following RH problem:

(i) R(z) is analytic on C \ ΓR.
(ii) R+(z) = R−(z)jR(z), z ∈ ΓR.
(iii) R(z) = I +O(z−1), z → ∞.

Proof. From (4.247), (4.248),

R−(z) = v(z) , z ∈ ΓR . (4.249)

By the jump property of the Cauchy transform,

R+(z) −R−(z) = v(z)j0R(z) = R−(z)j0R(z) , (4.250)

hence R+(z) = R−(z)jR(z). From (4.248), R(z) = I + O(z−1). Proposi-
tion 4.2.1 is proved. ��

Equation (4.247) can be solved by perturbation theory, so that

v(z) = I +
∞∑
k=1

vk(z) , (4.251)

where for k ≥ 1,

vk(z) = − 1
2πi

∫
ΓR

vk−1(u)j0R(u)
z− − u

du , z ∈ ΓR , (4.252)
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and v0(z) = I. Series (4.251) is estimated from above by a convergent geo-
metric series, so it is absolutely convergent. From (4.246) we obtain that there
exists C > 0 such that

|vk(z)| ≤ Ck

Nk(1 + |z|) . (4.253)

Observe that

v1(z) = − 1
2πi

∫
ΓR

j0R(u)
z− − u

du , z ∈ ΓR . (4.254)

We apply this solution to find RN (z). The function RN (z) is given then as

RN (z) = I +
∞∑
k=1

RNk(z) , (4.255)

where

RNk(z) = − 1
2πi

∫
ΓR

vk−1(u)j0R(u)
z − u

du . (4.256)

In particular,

RN1(z) = − 1
2πi

∫
ΓR

j0R(u)
z − u

du . (4.257)

From (4.253) we obtain that there exists C0 > 0 such that

|RNk(z)| ≤ C0C
k

Nk(1 + |z|) . (4.258)

Hence from (4.255) we obtain that there exists C1 > 0 such that for k ≥ 0,

RN (z) = I +
k∑
j=1

RNj(z) + εNk(z) , |εNk(z)| ≤ C1C
k

Nk+1(1 + |z|) . (4.259)

In particular,

RN (z) = I +O

(
1

N(|z| + 1)

)
as N → ∞ , (4.260)

uniformly for z ∈ C \ ΓR.

4.2.8 Asymptotics of the Recurrent Coefficients

Let us summarize the large N asymptotics of orthogonal polynomials. From
(4.240) and (4.260) we obtain that
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SN (z) =

(
I +O

(
1

N(|z| + 1)

))
M(z) , z ∈ C \D ,

SN (z) =

(
I +O

(
1

N(|z| + 1)

))
UN (z) , z ∈ D;

D =
q⋃
j=1

[D(aj , r) ∪D(bj , r)].

(4.261)

From (4.149) we have that

TN(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

SN (z)
(

1 0
e−NG(z) 1

)
, z ∈ L+ =

q⋃
j=1

L+
j ,

SN (z)
(

1 0
−eNG(z) 1

)
, z ∈ L− =

q⋃
j=1

L−
j ,

SN (z) , z ∈ C \ (L+ ∪ L−) .

(4.262)

Finally, from (4.136) we obtain that

YN (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
(
Nl

2
σ3

)(
I +O

(
1

N(|z| + 1)

))
M(z)

(
1 0

±e∓NG(z) 1

)

× exp
(
N

[
g(z) − l

2

]
σ3

)
, z ∈ L± \D ,

exp
(
Nl

2
σ3

)(
I +O

(
1

N(|z| + 1)

))
UN(z)

× exp
(
N

[
g(z) − l

2

]
σ3

)
, z ∈ D ,

exp
(
Nl

2
σ3

)(
I +O

(
1

N(|z| + 1)

))
M(z)

× exp
(
N

[
g(z) − l

2

]
σ3

)
, z ∈ C \ (D ∪ L+ ∪ L−) .

(4.263)

This gives the large N asymptotics of the orthogonal polynomials and their
adjoint functions on the complex plane. Formulas (4.79) and (4.80) give then
the large N asymptotics of the recurrent coefficients. Let us consider γ2

N .
From (4.136) we obtain that for large z,
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I +
Y1

z
+
Y2

z2
+ · · ·

= YN (z)z−Nσ3

= exp
(
Nl

2
σ3

)
T (z) exp

(
N

[
g(z) − l

2
− log z

)
]σ3

)

= exp
(
Nl

2
σ3

)(
I +

T1

z
+
T2

z2
+ · · ·

)
exp
(
N

[
g(z)− l

2
− log z

]
σ3

)
,

(4.264)

hence
[Y1]12 = eNl[T1]12, [Y1]21 = e−Nl[T1]21 (4.265)

and
γ2
N = [Y1]12[Y1]21 = [T1]12[T1]21 . (4.266)

From (4.261), (4.262) we obtain further that

γ2
N = [M1]12[M1]21 +O(N−1) , (4.267)

and from (4.202),

[M1]12 =
θ(−u(∞) + d+ c)θ(u(∞) + d)
θ(u(∞) + d+ c)θ(−u(∞) + d)

q∑
j=1

(bj − aj)
−4i

,

[M1]21 =
θ(u(∞) − d+ c)θ(−u(∞) − d)
θ(−u(∞) − d+ c)θ(u(∞) − d)

q∑
j=1

(bj − aj)
4i

,

(4.268)

hence

γ2
N =

[
1
4

q∑
j=1

(bj − aj)
]2

× θ2(u(∞) + d)θ(u(∞) + (NΩ/2π) − d)θ(−u(∞) + (NΩ/2π) + d)
θ2(u(∞) − d)θ(−u(∞) + (NΩ/2π) − d)θ(u(∞) + (NΩ/2π) + d)

+O(N−1) , (4.269)

where d is defined in (4.196). Consider now βN−1.
From (4.264) we obtain that

[Y1]11 = [T1]11 +Ng1 , [Y2]21 = e−Nl([T2]21 + [T1]21Ng1) , (4.270)

hence

βN−1 =
[Y2]21
[Y1]21

− [Y1]11 =
[T2]21
[T1]21

− [T1]11 , (4.271)

and by (4.261), (4.262),
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βN−1 =
[M2]21
[M1]21

− [M1]11 +O(N−1) . (4.272)

From (4.199) we find that

[M2]21
[M1]21

=

∑q
j=1(b

2
j − a2

j)
2
∑q
j=1(bj − aj)

+
θ(u(∞) − d)

θ(u(∞) − d+ c)

(
∇u

θ(u − d+ c)
θ(u− d)

∣∣∣∣
u=u(∞)

, u′(∞)
)

=

∑q
j=1(b

2
j − a2

j)
2
∑q
j=1(bj − aj)

+
(∇θ(u(∞) − d+ c)

θ(u(∞) − d+ c)
− ∇θ(u(∞) − d)

θ(u(∞) − d)
, u′(∞)

)
,

[M1]11 =
θ(u(∞) + d)

θ(u(∞) + d+ c)

(
∇u

θ(u+ d+ c)
θ(u + d)

∣∣∣∣
u=u(∞)

, u′(∞)
)

=
(∇θ(u(∞) + d+ c)

θ(u(∞) + d+ c)
− ∇θ(u(∞) + d)

θ(u(∞) + d)
, u′(∞)

)
.

(4.273)
Hence,

βN−1 =

∑q
j=1(b

2
j − a2

j)
2
∑q
j=1(bj − aj)

+
(∇θ(u(∞) + (NΩ/2π) − d)

θ(u(∞) + (NΩ/2π) − d)
− ∇θ(u(∞) + (NΩ/2π) + d)

θ(u(∞) + (NΩ/2π) + d)

+
∇θ(u(∞) + d)
θ(u(∞) + d)

− ∇θ(u(∞) − d)
θ(u(∞) − d)

, u′(∞)
)

+O(N−1) . (4.274)

This formula can be also written in the shorter form,

βN−1 =

∑q
j=1(b

2
j − a2

j)
2
∑q
j=1(bj − aj)

+
d
dz

[
log

θ(u(z) + (NΩ/2π) − d)θ(u(z) + d)
θ(u(z) + (NΩ/2π) + d)θ(u(z) − d)

]∣∣∣∣
z=∞

+O(N−1) . (4.275)

In the one-cut case, q = 1, a1 = a, b1 = b, formulas (4.269), (4.274) simplify
to

γN =
b− a

4
+O(N−1) , βN−1 =

a + b

2
+O(N−1) . (4.276)

Formula (4.269) is obtained in [52]. Formula (4.274) slightly differs from the
formula for βN−1 in [52]: the first term, including ajs, bjs, is missing in [52].

4.2.9 Universality in the Random Matrix Model

By applying asymptotics (4.263) to reproducing kernel (4.87), we obtain the
asymptotics of the eigenvalue correlation functions. First we consider the
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eigenvalue correlation functions in the bulk of the spectrum. Let us fix a
point x0 ∈ IntJ =

⋃q
j=1(aj , bj). Then the density pV (x0) > 0. We have the

following universal scaling limit of the reproducing kernel at x0:

Theorem 4.2.1. As N → ∞,

lim
N→∞

1
NpV (x0)

KN

(
x0 +

u

NpV (x0)
, x0 +

v

NpV (x0)

)
=

sin[π(u − v)]
π(u − v)

.

(4.277)

Proof. Assume that for some 1 ≤ j ≤ q and for some ε > 0, we have
{x0, x, y} ∈ (aj + ε, bj − ε). By (4.87) and (4.136),

KN(x, y) =
e−NV (x)/2e−NV (y)/2

2πi(x− y)
(
0 1
)
Y −1
N+(y)YN+(x)

(
1
0

)

=
e−NV (x)/2e−NV (y)/2

2πi(x− y)
(
0 exp(N [g+(y) − l′/2])

)
T−1
N+(y)

× TN+(x)
(

exp(N [g+(x) − l/2])
0

)
. (4.278)

Now, from (4.149) we obtain that

KN(x, y)

=
e−NV (x)/2e−NV (y)/2

2πi(x− y)
(
0 exp(N [g+(y) − l/2])

)
j+(y)S−1

N+(y)

× SN+(x)j−1
+ (x)

(
exp(N [g+(x) − l/2])

0

)

=
e−NV (x)/2e−NV (y)/2

2πi(x− y)
× (exp(N [−G(y) + g+(y) − l/2]) exp(N [g+(y) − l/2])

)

× S−1
N+(y)SN+(x)

(
exp(N [g+(x) − l/2])

− exp(N [G(x) + g+(x) − l/2])

)
.

(4.279)

By (4.134),

−V (x)
2

+ g+(x) − l

2
=

G(x)
2

, (4.280)

hence

KN(x, y) =
1

2πi(x− y)
(
eNG(y)/2 e−NG(y)/2

)
S−1
N+(y)

× SN+(x)
(

e−NG(x)/2

−eNG(x)/2

)
. (4.281)

By (4.240),
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SN+(x) = RN (x)M+(x) . (4.282)

Observe that M+(x) and RN (x) are analytic on (aj + ε, bj − ε) and RN (x)
satisfies estimate (4.260). This implies that as x− y → 0,

S−1
N+(y)SN+(x) = I +O(x − y) , (4.283)

uniformly in N . Since the function G(x) is pure imaginary for real x, we obtain
from (4.281) and (4.283) that

KN(x, y) =
1

2πi(x− y)
[e−N(G(x)−G(y))/2 − eN(G(x)−G(y))/2] +O(1) . (4.284)

By (4.132),

− N [G(x) −G(y)]
2

= πiN
∫ x

y

pV (s) ds = πiNpV (ξ)(x − y) ,

ξ ∈ [x, y] , (4.285)

hence
KN(x, y) =

sin[πNpV (ξ)(x − y)]
π(x− y)

+O(1) . (4.286)

Let
x = x0 +

u

NpV (x0)
, y = x0 +

v

NpV (x0)
, (4.287)

where u and v are bounded. Then
1

NpV (x0)
KN(x, y) =

sin[π(u − v)]
π(u − v)

+O(N−1) , (4.288)

which implies (4.277). ��
Consider now the scaling limit at an edge point. Since the density pV is

zero at the edge point, we have to expect a different scaling of the eigenvalues.
We have the following universal scaling limit of the reproducing kernel at the
edge point:

Theorem 4.2.2. If x0 = bj for some 1 ≤ j ≤ q, then for some c > 0, as
N → ∞,

lim
N→∞

1
(Nc)2/3

KN

(
x0 +

u

(Nc)2/3
, x0 +

v

(Nc)2/3

)

=
Ai(u)Ai′(v) − Ai′(u)Ai(v)

u− v
. (4.289)

Similarly, if x0 = aj for some 1 ≤ j ≤ q, then for some c > 0, as N → ∞,

lim
N→∞

1
(Nc)2/3

KN

(
x0 − u

(Nc)2/3
, x0 − v

(Nc)2/3

)

=
Ai(u)Ai′(v) − Ai′(u)Ai(v)

u− v
. (4.290)
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The proof is similar to the proof of Thm. 4.2.1, and we leave it to the
reader.

4.3 Double Scaling Limit in a Random Matrix Model

4.3.1 Ansatz of the Double Scaling Limit

This lecture is based on the paper [18]. We consider the double-well quartic
matrix model,

μN (M) = Z−1
N exp

(−N TrV (M)
)
dM (4.291)

(unitary ensemble), with

V (M) =
tM2

2
+
M4

4
, t < 0 . (4.292)

The critical point is tc = −2, and the equilibrium measure is one-cut for
t > −2 and two-cut for t < −2, see Fig. 4.2.

The corresponding monic orthogonal polynomials Pn(z) = zn+ · · · satisfy
the orthogonality condition,

∫ ∞

−∞
Pn(z)Pm(z)e−NV (z) dz = hnδnm . (4.293)

and the recurrence relation,

zPn(z) = Pn+1(z) +RnPn−1(z) . (4.294)

The string equation has the form,

Rn(t +Rn−1 +Rn +Rn+1) =
n

N
. (4.295)

For any fixed ε > 0, the recurrent coefficients Rn have the scaling asymptotics
as N → ∞:

Rn = a

(
n

N

)
+ (−1)nb

(
n

N

)
+O(N−1) , ε ≤ n

N
≤ λc − ε , (4.296)

and

Rn = a

(
n

N

)
+O(N−1) , ε−1 ≥ n

N
≥ λc + ε , (4.297)

where

λc =
t2

4
. (4.298)

The scaling functions are:

a(λ) = − t

2
, b(λ) =

√
t2 − 4λ

2
, λ < λc; , (4.299)
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and

a(λ) =
−t+

√
t2 + 3gλ
6

, λ > λc . (4.300)

Our goal is to obtain the large N asymptotics of the recurrent coefficients Rn,
when n/N is near the critical value λc. At this point we will assume that t is
an arbitrary (bounded) negative number. In the end we will be interested in
the case when t close to (−2). Let us give first some heuristic arguments for
the critical asymptotics of Rn.

We consider N → ∞ with the following scaling behavior of n/N :

n

N
= λc + c0N

−2/3y, c0 =
(
t2

2

)1/3

, (4.301)

where y ∈ (−∞,∞) is a parameter. This limit is called the double scaling
limit. We make the following Ansatz of the double scaling limit of the recurrent
coefficient:

Rn = − t

2
+N−1/3(−1)nc1u(y) + N−2/3c2v(y) +O(N−1) , (4.302)

where

c1 =
(

2|t|
)1/3

, c2 =
1
2

(
1

2|t|
)1/3

. (4.303)

The choice of the constants c0, c1, c2 secures that when we substitute this
Ansatz into the left-hand side of string equation (4.295), we obtain that

Rn(t +Rn−1 +Rn +Rn+1)

=
n

N
+N−2/3c0(v − 2u2 − y) +N−1(−1)n(u′′ − uv) + · · · . (4.304)

By equating the coefficients atN−2/3 andN−1 to 0, we arrive at the equations,

v = y + 2u2 (4.305)

and
u′′ = yu+ 2u3 , (4.306)

the Painlevé II equation. The gluing of double scaling asymptotics (4.302)
with (4.296) and (4.297) suggests the boundary conditions:

u ∼ C
√−y , y → −∞; u → 0 , y → ∞ . (4.307)

This selects uniquely the critical, Hastings–McLeod solution to the Painlevé II
equation. Thus, in Ansatz (4.302) u(y) is the Hastings–McLeod solution to
Painlevé II and v(y) is given by (4.305). The central question is how to
prove Ansatz((4.302). This will be done with the help of the Riemann–Hilbert
approach.
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We consider the functions ψn(z), n = 0, 1, . . . , defined in (4.26), and their
adjoint functions,

ϕn(z) = eNV (z)/2 1
2π

∫ ∞

−∞

e−NV (u)/2ψn(u) du
u− z

. (4.308)

We define the Psi-matrix as

Ψn(z) =
(

ψn(z) ϕn(z)
ψn−1(z) ϕn−1(z)

)
. (4.309)

The Psi-matrix solves the Lax pair equations:

Ψ ′
n(z) = NAn(z)Ψn(z) , (4.310)

Ψn+1(z) = Un(z)Ψn(z) . (4.311)

In the case under consideration, the matrix An is given by formula (4.58),
with g = 1:

An(z) =

(
−(tz/2 + z3/2 + zRn) R

1/2
n (z2 + θn)

−R1/2
n (z2 + θn−1) tz/2 + z3/2 + zRn

)
,

θn = t +Rn +Rn+1 . (4.312)

Observe that (4.310) is a system of two differential equations of the first order.
It can be reduced to the Schrödinger equation,

−η′′ +N2Uη = 0 , η ≡ ψn√
a11

, (4.313)

where aij are the matrix elements of An(z), and

U = − detAn +N−1

[
(a11)′ − a11

(a12)′

a12

]

−N−2

[
(a12)′′

2a12
− 3((a12)′)2

4(a12)2

]
, (4.314)

see [17, 18].
The function Ψn(z) solves the following RHP:

(1) Ψn(z) is analytic on {Im z ≥ 0} and on {Im z ≤ 0} (two-valued on {Im z =
0}).

(2) Ψn+(x) = Ψn−(x)
(

1 −i
0 1

)
, x ∈ R.

(3) As z → ∞,

Ψn(z) ∼
( ∞∑
k=0

Γk
zk

)
exp
(
−
(
NV (z)

2
− n ln z + λn

)
σ3

)
, z → ∞ ,

(4.315)
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where Γk, k = 0, 1, 2, . . . , are some constant 2 × 2 matrices, with

Γ0 =
(

1 0
0 R−1/2

n

)
, Γ1 =

(
0 1

R
1/2
n 0

)
, (4.316)

λn = (lnhn)/2, and σ3 =
(

1 0
0 −1

)
is the Pauli matrix.

Observe that the RHP implies that detΨn(z) is an entire function such that
detΨn(∞) = R

−1/2
n , hence

detΨn(z) = R−1/2
n , z ∈ C . (4.317)

We will construct a parametrix, an approximate solution to the RHP. To that
end we use (4.310). We substitute Ansatz (4.302) into the matrix elements
of An and we solve (4.310) in the semiclassical approximation, as N → ∞.
First we determine the turning points, the zeros of detAn(z). From (4.312)
we obtain that

detAn(z) = an(z) ≡ − tz4

2
− z6

4
+
(
n

N
− λc

)
z2 +Rnθnθn+1, (4.318)

Ansatz (4.301), (4.302) implies that

n

N
− λc = c0N

−2/3y , θn = 2c2N−2/3v(y) +O(N−1) . (4.319)

hence

detAn(z) = − tz4

2
− z6

4
+ c0N

−2/3yz2 − 2t[c2v(y)]2N−4/3 +O(N−5/3) .

(4.320)
We see from this formula that there are 4 zeros of detAn, approaching the
origin as N → ∞, and 2 zeros, approaching the points ±z0, z0 =

√−2t.
Accordingly, we partition the complex plane into 4 domains:

(1) a neighborhood of the origin, the critical domain ΩCP,
(2) 2 neighborhoods of the simple turning points, the turning point domains

ΩTP
1,2 ,

(3) the rest of the complex plane, the WKB domain ΩWKB.

We furthermore partition ΩWKB into three domains: ΩWKB
1,2 and ΩWKB

∞ , see
Fig. 4.8.

4.3.2 Construction of the Parametrix in ΩWKB

In ΩWKB
∞ we define the parametrix by the formula,

ΨWKB(z) = C0T (z) exp(−(Nξ(z) + C1)σ3) , (4.321)
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where C0 �= 0, C1 are some constants (parameters of the solution). To intro-
duce T (z) and ξ(z), we need some notations. We set

R0
n = − t

2
+N−1/3(−1)nc1u(y) +N−2/3c2v(y) , (4.322)

as an approximation to Rn, and

A0
n(z) =

(−(tz/2 + z3/2 + zR0
n) (R0

n)1/2(z2 + θ0
n)

−(R0
n)

1/2(z2 + θ0
n−1) tz/2 + z3/2 + zR0

n

)
, θ0

n = t+R0
n+R

0
n+1 ,

(4.323)

as an approximation to An(z). We set

a0
n(z) = − tz4

2
− z6

4
+
(
n

N
− λc

)
z2 +N−4/3(−t)1/32−5/3[v(y)2 − 4w(y)2]

−N−5/3(−1)n(−2t)−1/3w(y)] , w(y) = u′(y) , (4.324)

as an approximation to detAn(z). Finally, we set

U0 = −a0
n(z) +N−1

[
(a0

11)
′ − a0

11

(a0
12)′

a0
12

]
, (4.325)

as an approximation to the potential U in (4.314). With these notations,

ξ(z) =
∫ z

zN

μ(u) du , μ(z) =
√
U0(z) , (4.326)

where zN is the zero of U0(z) which approaches z0 as N → ∞. Also,

T (z) =
(
a0
12(z)
μ(z)

)1/2

⎛
⎜⎜⎝

1 0

−a0
11(z)
a0
12(z)

μ(z)
a0
12(z)

⎞
⎟⎟⎠ , detT (z) = 1 . (4.327)

Ω2
WKBΩ1

WKB

Ωοο

Ω2ΩCPΩ1
TP TP

WKB

Fig. 4.8. The partition of the complex plane
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From (4.321) we obtain the following asymptotics as z → ∞:

ΨWKB(z) =
√

2C0

(
I + z−1(R0

n)
1/2

(
0 1
1 0

)
+O(z−2)

)

× exp
(
−
(
NV (z)

2
− n ln z + λ0

n + C1

)
σ3

)
, z → ∞ , (4.328)

where

λ0
n = lim

z→∞

[
Nξ(z) −

(
NV (z)

2
− n ln z

)]
. (4.329)

The existence of the latter limit follows from (4.326).
In the domains ΩWKB

1,2 we define

ΨWKB(z) = ΨWKB
a (z)S± , ± Im z ≥ 0 , (4.330)

where ΨWKB
a (z) is the analytic continuation of ΨWKB(z) from ΩWKB

∞ to
ΩWKB

1,2 , from the upper half-plane, and

S+ =
(

1 0
i 1

)
= S−

(
1 −i
0 1

)
, S− =

(
1 i
i 0

)
. (4.331)

Observe that ΨWKB(z) has jumps:

ΨWKB
+ (z) =

(
I +O(e−cN )

)
ΨWKB
− (z) , z ∈ ∂ΩWKB

∞ ∩ (∂ΩWKB
1 ∪ ∂ΩWKB

2 ) ,
(4.332)

and

ΨWKB
+ (z) = ΨWKB

− (z)
(

1 −i
0 1

)
, z ∈ R ∩ (ΩWKB

1 ∪ΩWKB
2 ) . (4.333)

4.3.3 Construction of the Parametrix near the Turning Points

In ΩTP
2 we define the parametrix with the help of the Airy matrix-valued

functions,

Y1,2(z) =
(
y0(z) y1,2(z)
y′0(z) y′1,2(z)

)
, (4.334)

where
y0(z) = Ai(z) , y1(z) = e−πi/6 Ai(e−2πI/3z) ,

y2(z) = eπi/6 Ai(e2πi/3z) .
(4.335)

Let us remind that Ai(z) is a solution to the Airy equation y′′ = zy, which
has the following asymptotics as z → ∞:

Ai(z) =
1

2
√
πz1/4

exp
(
−2z3/2

3
+O(|z|−3/2)

)
,

− π + ε ≤ arg z ≤ π − ε . (4.336)
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The functions yj(z) satisfy the relation

y1(z) − y2(z) = −iy0(z) . (4.337)

We define the parametrix in ΩTP
2 by the formula,

ΨTP(z) = W (z)Nσ3/6Y1,2

(
N2/3w(z)

)
, ± Im z ≥ 0 , (4.338)

where
w(z) =

[
3
2ξ(z)

]2/3
, (4.339)

with ξ(z) defined in (4.326) above. Observe that w(z) is analytic in ΩTP
2 . The

matrix-valued function W (z) is also analytic in ΩTP
2 , and it is found from the

following condition of the matching ΨTP(z) to ΨWKB(z) on ∂ΩTP
2 :

ΨTP(z) =
(
I +O(N−1)

)
ΨWKB(z) , z ∈ ∂ΩTP

2 , (4.340)

see [17, 18]. A similar construction of the parametrix is used in the do-
main ΩTP

1 .

4.3.4 Construction of the Parametrix near the Critical Point

4.3.4.1 Model Solution

The crucial question is, what should be an Ansatz for the parametrix in the
critical domain ΩCP? To answer this question, let us construct a normal form
of system of differential equations (4.310) at the origin. If we substitute Ansatz
(4.302) into the matrix elements of An(z), change

Ψ(z) = Φ(CN1/3z) , C =
(2t)1/6

2
, (4.341)

and keep the leading terms, as N → ∞, then we obtain the model equation
(normal form),

Φ′(s) = A(s)Φ(s) , (4.342)

where

A(s) =
(

(−1)n4u(y)s 4s2 + (−1)n2w(y) + v(y)
−4s2 + (−1)n2w(y) − v(y)) −(−1)n4u(y)s

)
, (4.343)

and w(y) = u′(y). In fact, this is one of the equations of the Lax pair for
the Hastings–Mcleod solution to Painlevé II. Equation (4.342) possesses three
special solutions, Φj , j = 0, 1, 2, which are characterized by their asymptotics
as |s| → ∞:
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Φ0(s) =
(
Φ1(s)
Φ2(s)

)
∼

⎛
⎜⎜⎝

cos
(

4
3
s3 + ys− πn

2

)

− sin
(

4
3
s3 + ys− πn

2

)
⎞
⎟⎟⎠ ,

| arg s| ≤ π

3
− ε ,

Φ1(s) = Φ2(s) ∼
(

(−i)n+1

(−i)n

)
exp
(
i(4

3 s
3 + ys)

)
,

− π

3
+ ε < arg s <

4π
3

− ε .

(4.344)

The functions Φ1,2(s) are real for real s and

Φ1(−s) = (−1)nΦ1(s) , Φ2(−s) = −(−1)nΦ2(s) . (4.345)

We define the 2 × 2 matrix-valued function on C,

Φ(s) =
(
Φ0(s),Φ1,2(s)

)
, ± Im s ≥ 0 , (4.346)

which is two-valued on R, and

Φ+(s) = Φ−(s)
(

1 −i
0 1

)
, s ∈ R . (4.347)

The Ansatz for the parametrix in the critical domain is

ΨCP
n (z) = C̃0V (z)Φ

(
N1/3ζ(z)

)
, (4.348)

where C̃0 is a constant, a parameter of the solution, ζ(z) is an analytic scalar
function such that ζ′(z) �= 0 and V (z) is an analytic matrix-valued function.
We now describe a procedure of choosing ζ(z) and V (z). The essence of the
RH approach is that we don’t need to justify this procedure. We need only
that ζ(z) and V (z) are analytic in ΩCP, and that on ∂ΩCP, Ansatz (4.348)
fits to the WKB Ansatz.

4.3.4.2 Construction of ζ(z). Step 1

To find ζ(z) and V (z), let us substitute Ansatz (4.348) into equation (4.54).
This gives

V (z)
[
ζ′(z)N−2/3A

(
N1/3ζ(z)

)]
V −1(z) = An(z)−N−1V ′(z)V −1(z) . (4.349)

Let us drop the term of the order of N−1 on the right:

V (z)
[
ζ′(z)N−2/3A

(
N1/3ζ(z)

)]
V −1(z) = An(z) , (4.350)

and take the determinant of the both sides. This gives an equation on ζ only,
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[ζ′(z)]2f(ζ(z)) = an(z) , (4.351)

where

f(ζ) = N−2/3 detA(N1/3ζ)

= 16ζ4 + 8N−2/3yζ2 +N−4/3[v2(y) − 4w2(y)] (4.352)

and

an(z) = detAn(z) = − tz4

2
− z6

4
+
(
n

N
− λc

)
z2 +Rnθnθn+1 , (4.353)

where
θn = t +Rn +Rn+1 . (4.354)

Equation (4.302) implies that

θn = 2c2N−2/3v(y) +O(N−1) . (4.355)

At this stage we drop all terms of the order of N−1, and, therefore, we can
simplify f and an to

f(ζ) = 16ζ4 + 8N−2/3yζ2 (4.356)

and

an(z) = − tz4

2
− z6

4
+
(
n

N
− λc

)
z2 . (4.357)

Equation (4.351) is separable and we are looking for an analytic solution. To
construct an analytic solution, let us make the change of variables,

z = CN−1/3s , ζ = N−1/3σ . (4.358)

Then equation (4.351) becomes

[σ′(s)]2f0

(
σ(s)

)
= a0(s) , (4.359)

where

f0(σ) = 16σ4 + 8yσ2 ,

a0(s) = 16s4 + 8c−1
0 N2/3

(
n

N
− λc

)
s2 −N−2/3cs6 .

(4.360)

When we substitute (4.303) for y, we obtain that

a0(s) = 16s4 + 8ys2 −N−2/3cs6 . (4.361)

When y = 0, (4.359) is easy to solve: by taking the square root of the both
sides, we obtain that

σ2σ′ = s2
(

1 − 1
16
N−2/3cs2

)1/2

, (4.362)
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hence

σ(s) =
[∫ s

0

t2
(

1 − 1
16
N−2/3ct2

)1/2

dt
]1/3

(4.363)

is an analytic solution to (4.359) in the disk |s| ≤ εN1/3, for some ε > 0. This
gives an analytic solution ζ(z) = N−1/3σ(C−1N1/3z) to (4.353) in the disk
|z| ≤ Cε.

When y �= 0, the situation is more complicated, and in fact, (4.359) has
no analytic solution in the disk |s| ≤ εN1/3. Consider, for instance, y > 0. By
taking the square root of the both sides of (4.359), we obtain that

σ

(
σ2 +

y

2

)1/2

σ′ = s

(
s2 +

y

2
− 1

16
N−2/3cs4

)1/2

, (4.364)

The left-hand side has simple zeros at ±σ0 = ±i
√
y/2, and the right-hand

side has simple zeros at ±s0, where s0 = σ0 + O(N−2/3). The necessary and
sufficient condition for the existence of an analytic solution to (4.359) in the
disk |s| ≤ εN1/3 is the equality of the periods,

P1 ≡
∫ σ0

−σ0

σ

(
σ2 +

y

2

)1/2

dσ

= P2 ≡
∫ s0

−s0
s

(
s2 +

y

2
− 1

16
N−2/3cs4

)1/2

ds , (4.365)

and, in fact, P1 �= P2. To make the periods equal, we slightly change (4.303)
as follows:

y = c−1
0 N2/3

(
n

N
− λc

)
+ α , (4.366)

where α is a parameter. Then

P2 = P2(α) ≡
∫ s0(α)

−s0(α)

s

(
s2 +

y − α

2
− 1

16
N−2/3cs4

)1/2

ds . (4.367)

It is easy to check that P ′
2(0) �= 0, and therefore, there exists an α = O(N−2/3)

such that P1 = P2. This gives an analytic solution σ(s), and hence an analytic
ζ(z).

4.3.4.3 Construction of V (z)

Next, we find a matrix-valued function V (z) from (4.350). Both V (z) and
V −1(z) should be analytic at the origin. We have the following lemma.

Lemma 4.3.1. Let B = (bij) and D = (dij) be two 2 × 2 matrices such that

TrB = TrD = 0 , detB = detD . (4.368)



304 P.M. Bleher

Then the equation V B = DV has the following two explicit solutions :

V1 =
(

d12 0
b11 − d11 b12

)
, V2 =

(
b21 d11 − b11
0 d21

)
. (4.369)

We would like to apply Lemma 4.3.1 to

B = ζ′(z)N−2/3A
(
N1/3ζ(z)

)
, D = An(z) . (4.370)

The problem is that we need an analytic matrix valued function V (z) which
is invertible in a fixed neighborhood of the origin, but neither V1 nor V2 are
invertible there. Nevertheless, we can find a linear combination of V1 and V2

(plus some negligibly small terms) which is analytic and invertible. Namely,
we take

V (z) =
1√

detW (z)
W (z) (4.371)

where

W (z) =
(
d12(z) − b21(z) − α11 b11(z) − d11(z) − α12z
b11(z) − d11(z) − α21z b12(z) − d21(z) − α22

)
, (4.372)

and the numbers αij = O(N−1) are chosen in such a way that the matrix
elements of W vanish at the same points ±z0, z0 = O(N−1/3), on the complex
plane. Then V (z) is analytic in a disk |z| < ε, ε > 0.

4.3.4.4 Construction of ζ(z). Step 2

The accuracy of ζ(z), which is obtained from (4.351), is not sufficient for the
required fit on |z| = ε, of Ansatz (4.348) to the WKB Ansatz. Therefore, we
correct ζ(z) slightly by taking into account the term −N−1V ′(z)V −1(z) in
(4.349). We have to solve the equation,

[ζ′(z)]2N−4/3 detA
(
N1/3ζ(z)

)
= det[An(z) −N−1V ′(z)V −1(z)] . (4.373)

By change of variables (4.358), it reduces to

[σ′(s)]2f1

(
σ(s)

)
= a1(s) , (4.374)

where

f1(σ) = 16σ4 + 8yσ2 + [v2(y) − 4w2(y)] ;

a1(s) = 16s4 + 8(y − α)s2 + [v2(y) − 4w2(y)] + rN (s) ,

rN (s) = O(N−2/3) .

(4.375)

The function f1(σ) has 4 zeros, ±σj j = 1, 2. The function a1(s) is a small
perturbation of f1(s), and it has 4 zeros, ±sj, such that |sj − σj | → 0 as
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N → ∞. Equation (4.374) has an analytic solution in the disk of radius
εN2/3 if and only if the periods are equal,

P1j ≡
∫ σ0

−σj

√
f1(σ) dσ = P2j ≡

∫ sj

−sj

√
a1(s) ds , j = 1, 2 . (4.376)

To secure the equality of periods we include a1(s) into the 2-parameter family
of functions,

a1(s) = 16s4 + 8(y − α)s2 + [v2(y) − 4w2(y)] + rN (s) + β , (4.377)

where −∞ < α, β < ∞ are the parameters. A direct calculation gives that

det

⎛
⎜⎝
∂P21

∂α

∂P21

∂β
∂P22

∂α

∂P22

∂β

⎞
⎟⎠ �= 0 , (4.378)

see [18], hence, by the implicit function theorem, there exist α, β = O(N−2/3),
which solve equations of periods (4.376). This gives an analytic function ζ(z),
and hence, by (4.348), an analytic ΨCP(z).

The function ΨCP(z) matches the WKB-parametrix ΨWKB(z) on the
boundary of ΩCP. Namely, we have the following lemma.

Lemma 4.3.2 (See [18]). If we take C̃0 = C0 and C1 = − 1
4 lnR0

n then

ΨCP(z) = (I +O(N−1))ΨWKB(z) , z ∈ ∂ΩCP . (4.379)

We omit the proof of the lemma, because it is rather straightforward,
although technical. We refer the reader to the paper [18] for the details.

4.3.4.5 Proof of the Double Scaling Asymptotics

Let us summarize the construction of the parametrix in different domains. We
define the parametrix Ψ0

n as

Ψ0
n(z) =

⎧⎪⎨
⎪⎩
ΨWKB(z) , z ∈ ΩWKB = ΩWKB

∞ ∪ΩWKB
1 ∪ΩWKB

2 ,

ΨTP(z) , z ∈ ΩTP
1 ∪ΩTP

2 ,

ΨCP(z) , z ∈ ΩCP ,

(4.380)

where ΨWKB(z) is given by (4.321), (4.330), ΨTP(z) by (4.338), and ΨCP by
(4.348). Consider the quotient,

X(z) = Ψn(z)[Ψ0
n(z)]−1 . (4.381)

X(z) has jumps on the contour Γ , depicted on Fig. 4.9, such that
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X+(z) = X−(z)[I +O(N−1(1 + |z|)−2)] , z ∈ Γ . (4.382)

From (4.315) and (4.328) we obtain that

X(z) = X0 +
X1

z
+O(z−2) , z → ∞ , (4.383)

where
X0 =

1√
2
C−1

0 Γ0 exp
(
(C1 + λ0

n − λn)σ3

)
(4.384)

and

X1 =
1√
2
C−1

0

[
Γ1 exp

(
(C1+λ0

n−λn)σ3

)−Γ0 exp
(
(C1+λ0

n−λn)σ3

)
(R0

n)
1/2σ1

]
,

σ1 =
(

0 1
1 0

)
. (4.385)

The RHP shares a remarkable property of well-posedness, see, e.g., [9, 42, 84,
102]. Namely, (4.382), (4.383) imply that

X−1
0 X(z) = I +O(N−1(1 + |z|)−1) , z ∈ C . (4.386)

This in turn implies that

X−1
0 X1 = O(N−1) , (4.387)

or, equivalently,

exp(−(C1 + λ0
n − λn)σ3)Γ−1

0 Γ1 exp
(
(C1 + λ0

n − λn)σ3

)− (R0
n)1/2σ1

= O(N−1) . (4.388)

By (4.316),

exp(−(C1 + λ0
n − λn)σ3)Γ−1

0 Γ1 exp
(
(C1 + λ0

n − λn)σ3

)

=
(

0 exp
(−2(C1 + λ0

n − λn)
)

Rn exp
(
2(C1 + λ0

n − λn)
)

0

)
, (4.389)

hence (4.388) reduces to the system of equations,

Γ

Fig. 4.9. The contour Γ
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{
exp
(−2(C1 + λ0

n − λn)
)

= (R0
n)

1/2 +O(N−1) ,

Rn exp
(
2(C1 + λ0

n − λn)
)

= (R0
n)

1/2 +O(N−1) .
(4.390)

By multiplying these equations, we obtain that

Rn = R0
n +O(N−1) . (4.391)

This proves Ansatz (4.302). Since C1 = − 1
4 lnR0

n, we obtain from (4.391) that

exp
(
2(λn − λ0

n)
)

= 1 +O(N−1) , (4.392)

or equivalently,

hn = exp
(

2N
∫ ∞

zN

μ(u) du
)(

1 +O(N−1)
)
, (4.393)

where ∫ ∞

zN

μ(u) du ≡ lim
z→∞

[∫ z

zN

μ(u) du−
(
V (z)

2
− n ln z

N

)]
. (4.394)

Thus, we have the following theorem.

Theorem 4.3.1 (See [18]). The recurrent coefficient Rn under the scaling
(4.301) has asymptotics (4.302). The normalizing coefficient hn has asymp-
totics (4.393).

Equations (4.381) and (4.386) imply that

Ψn(z) = X0

[
I +O

(
N−1(1 + |z|)−1

)]
Ψ0
n(z) , z ∈ C . (4.395)

The number C0 is a free parameter. Let us take C0 = 1. From (4.384) and
(4.391) we obtain that

X0 =
(R0

n)1/4√
2

(
1 +O(N−1)

)
, (4.396)

hence

Ψn(z) =
(R0

n)
1/4

√
2

Ψ0
n(z)[I +O(N−1)] , z ∈ C . (4.397)

This gives the large N asymptotics of Ψn(z) under scaling (4.301), as well as
the asymptotics of the correlation functions. In particular, the asymptotics
near the origin is described as follows.

Theorem 4.3.2 (See [18]). Let Φ0(z; y) =
(
Φ1(z; y)
Φ2(z; y)

)
be the solution for

n = 0 to system (4.342), with the asymptotics at infinity as in (4.344). Then
the following double scaling limit holds :
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lim
N→∞

1
(cN1/3)m−1

KNm

(
u1

cN1/3
, . . . ,

um
cN1/3

; tc + c0yN
−2/3

)

= det
(
Qc(ui, uj; y)

)
i,j=1,...,m

, (4.398)

where c = ζ′(0) > 0, and

Qc(u, v; y) =
Φ1(u; y)Φ2(v; y) − Φ1(v; y)Φ2(u; y)

π(u− v)
. (4.399)

Let us mention here some further developments of Thms. 4.3.1, 4.3.2.
They are extended to a general interaction V (M) in the paper [40] of Claeys
and Kuijlaars. The double scaling limit of the random matrix ensemble of
the form Z−1

N | detM |2αe−N Tr V (M) dM , where α > − 1
2 , is considered in the

papers [41] of Claeys, Kuijlaars, and Vahlessen, and [75] of Its, Kuijlaars, and
Östensson. In this case the double scaling limit is described in terms of a
critical solution to the general Painlevé II equation q′′ = sq + 2q3 − α. The
papers, [40,41,75] use the RH approach and the Deift–Zhou steepest descent
method, discussed in Sect. 4.2 above. The double scaling limit of higher-order
and Painlevé II hierachies is studied in the papers [15, 92], and others. There
are many physical papers on the double scaling limit related to the Painlevé I
equation, see e.g., [34,56,59,70,71,101], and others. A rigorous RH approach
to the Painlevé I double scaling limit is initiated in the paper [68] of Fokas,
Its, and Kitaev. It is continued in the recent paper of Duits and Kuijlaars [61],
who develop the RH approach and the Deift–Zhou steepest descent method
to orthogonal polynomials on contours in complex plane with the exponential
quartic weight, exp

(−N(z2/2+ tz4/4)
)
, where t < 0. Their results cover both

the one-cut case −1/12 < t < 0 and the Painlevé I double scaling limit at
t = −1/12.

4.4 Large N Asymptotics of the Partition Function of
Random Matrix Models

4.4.1 Partition Function

The central object of our analysis is the partition function of a random matrix
model,

ZN =
∫ ∞

−∞
· · ·
∫ ∞

−∞

∏
1≤j<k≤N

(zj − zk)2 exp
(
−N

N∑
j=1

V (zj)
)

dz1 · · ·dzN

= N !
N−1∏
n=0

hn , (4.400)

where V (z) is a polynomial,
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V (z) =
2d∑
j=1

vjz
j , v2d > 0 , (4.401)

and hn are the normalization constants of the orthogonal polynomials on the
line with respect to the weight e−NV (z),

∫ ∞

−∞
Pn(z)Pm(z)e−NV (z) dz = hnδnm , (4.402)

where Pn(z) = zn+ · · · . We will be interested in the asymptotic expansion of
the free energy,

FN = − 1
N2

lnZN , (4.403)

as N → ∞.
Our approach will be based on the deformation τt of V (z) to z2,

τt : V (z) → V (z; t) = (1 − t−1)z2 + V (t−1/2z) , (4.404)

1 ≤ t < ∞, so that

τ1V (z) = V (z) , τ∞V (z) = z2 . (4.405)

Observe that
τtτs = τts . (4.406)

We start with the following proposition, which describe the deformation equa-
tions for hn and the recurrent coefficients of orthogonal polynomials under the
change of the coefficients of V (z).

Proposition 4.4.1. We have that

1
N

∂ lnhn
∂vk

= −[Qk]nn ,

1
N

∂γn
∂vk

=
γn
2

([Qk]n−1,n−1 − [Qk]nn) ,

1
N

∂βn
∂vk

= γn[Qk]n,n−1 − γn+1[Qk]n+1,n ,

(4.407)

where Q is the Jacobi matrix defined in (4.33).

The proof of Prop. 4.4.1 is given in [19]. It uses some results of the works
of Eynard and Bertola, Eynard, Harnad [10]. For even V , it was proved earlier
by Fokas, Its, Kitaev [68].

We will be especially interested in the derivatives with respect to v2. For
k = 2, Prop. 4.4.1 gives that
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1
N

∂ lnhn
∂v2

= −γ2
n − β2

n − γ2
n+1 ,

1
N

∂γn
∂v2

=
γn
2

(γ2
n−1 + β2

n−1 − γ2
n+1 − β2

n) ,

1
N

∂βn
∂v2

= γ2
nβn−1 + γ2

nβn − γ2
n+1βn − γ2

n+1βn+1 .

(4.408)

Next we describe the v2-deformation of ZN .

Proposition 4.4.2 (See [19]). We have the following relation:

1
N2

∂2 lnZN
∂v2

2

= γ2
N(γ2

N−1 + γ2
N+1 + β2

N + 2βNβN−1 + β2
N−1) . (4.409)

Observe that the equation is local in N . For V (z) = v2z
2+v4z

4, Prop. 4.4.2
was obtained earlier by Its, Fokas, Kitaev [74]. Proposition 4.4.2 can be applied
to deformation (4.404). Let γn(τ), βn(τ) be the recurrence coefficients for
orthogonal polynomials with respect to the weight e−NV (z;τ), and let

ZGauss
N =

∫ ∞

−∞
· · ·
∫ ∞

−∞

∏
1≤j<k≤N

(zj − zk)2 exp
(
−N

N∑
j=1

z2
j

)
dz1 · · · dzN

(4.410)
be the partition function for the Gaussian ensemble. It can be evaluated ex-
plicitly, and the corresponding free energy has the form,

FGauss
N = − 1

N2
ln
(

(2π)N/2

(2N)N2/2

N∏
n=1

n!
)
. (4.411)

By integrating twice formula (4.409), we obtain the following result:

Proposition 4.4.3.

FN (t) = FGauss
N +

∫ ∞

t

t− τ

τ2
{γ2
N (τ)[γ2

N−1(τ) + γ2
N+1(τ) + β2

N (τ)

+ 2βN (τ)βN−1(τ) + β2
N−1(τ)] − 1

2} dτ . (4.412)

4.4.2 Analyticity of the Free Energy for Regular V

The basic question of statistical physics is the existence of the free energy in
the thermodynamic limit and the analyticity of the limiting free energy with
respect to various parameters. The values of the parameters at which the free
energy is not analytic are the critical points. When applied to the “gas” of
eigenvalues, this question refers to the existence of the limit,

F = lim
N→∞

FN , (4.413)
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and to the analyticity of F with respect to the coefficients vj of the polynomial
V . The existence of limit (4.413) is proven under general conditions on V , not
only polynomials, see the work of Johansson [78] and references therein. In
fact, F is the energy EV of minimization problem (4.97), (4.98), so that

F = IV (νV ) , (4.414)

where νV is the equilibrium measure. The following theorem establishes the
analyticity of F for regular V . We call V regular, if the corresponding equi-
librium measure νV is regular, as defined in (4.107), (4.108). We call V , q-cut
regular, it the measure νV is regular and its support consists of q intervals.

Theorem 4.4.1 (See [19]). Suppose that V (z) is a q-cut regular polynomial
of degree 2d. Then for any p ≤ 2d, there exists t1 > 0 such that for any
t ∈ [−t1, t1],
(1) the polynomial V (z) + tzp is q-cut regular.
(2) The end-points of the support intervals, [ai(t), bi(t)], i = 1, . . . , q, of the

equilibrium measure for [V (z) + tzp] are analytic in t.
(3) The free energy F (t) is analytic in t.

Proof. Consider for j = 0, . . . , q, the quantities

Tj(a, b; t) =
1

2πi

∮
Γ

V ′(z; t)zj√
R(z)

dz , R(z) =
q∏
i=1

(z − ai)(z − bi) , (4.415)

where Γ is a contour around [a1, bq]. Consider also for k = 1, . . . , q − 1, the
quantities

Nk(a, b; t) =
1

2πi

∮
Γk

h(z; t)
√
R(z) dz , (4.416)

where Γk is a contour around [bk, ak+1]. Then, as shown by Kuijlaars and
McLaughlin in [82], the Jacobian of the map {[ai, bi] : i = 1, . . . , q} →
{Tj, Nk} is nonzero at the solution, {[ai(t), bi(t)] : i = 1, . . . , q}, to the equa-
tions {Tj = 2δjq, Nk = 0}. By the implicit function theorem, this implies the
analyticity of [ai(t), bi(t)] in t. ��

4.4.3 Topological Expansion

In the paper [65], Ercolani and McLaughlin proves topological expansion
(4.15) for polynomial V of form (4.13), with small values of the parameters tj .
Their proof is based on a construction of the asymptotic large N expansion of
the parametrix for the RHP. Another proof of topological expansion (4.15) is
given in the paper [19]. Here we outline the main steps of the proof of [19]. We
start with a preliminary result, which follows easily from the results of [52].
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Proposition 4.4.4. Suppose V (x) is one-cut regular. Then there exists ε > 0
such that for all n in the interval

1 − ε ≤ n

N
≤ 1 + ε ,

the recurrence coefficients admit the uniform asymptotic representation,

γn = γ

(
n

N

)
+O(N−1) , βn = β

(
n

N

)
+O(N−1) . (4.417)

The functions γ(s), β(s) are expressed as

γ(s) =
b(s) − a(s)

4
, β(s) =

a(s) + b(s)
2

, (4.418)

where [a(s), b(s)] is the support of the equilibrium measure for the polynomial
s−1V (x).

The next theorem gives an asymptotic expansion for the recurrence coef-
ficients.

Theorem 4.4.2. Suppose that V (x) is a one-cut regular polynomial. Then
there exists ε > 0 such that for all n in the interval

1 − ε ≤ n

N
≤ 1 + ε ,

the recurrence coefficients admit the following uniform asymptotic expansion
as N → ∞:

γn ∼ γ

(
n

N

)
+

∞∑
k=1

N−2kf2k

(
n

N

)
,

βn ∼ β

(
n+ 1

2

N

)
+

∞∑
k=1

N−2kg2k

(
n + 1

2

N

)
,

(4.419)

where f2k(s), g2k(s), k ≥ 1, are analytic functions on [1 − ε, 1 + ε].

Sketch of the proof of the theorem. The Riemann–Hilbert approach gives an
asymptotic expansion in powers of N−1. We want to show that the odd coeffi-
cients vanish. To prove this, we use induction in the number of the coefficient
and the invariance of the string equations,

γn[V ′(Q)]n,n−1 =
n

N
, [V ′(Q)]nn = 0 , (4.420)

with respect to the change of variables

{γj → γ2n−j , βj → β2n−j−1 : j = 0, 1, 2, . . .} . (4.421)

This gives the cancellation of the odd coefficients, which proves the theorem.
��
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The main condition, under which the topological expansion is proved in
[19], is the following:

Hypothesis R. For all t ≥ 1 the polynomial τtV (z) is one-cut regular.

Theorem 4.4.3 (See [19]). If a polynomial V (z) satisfies Hypothesis R, then
its free energy admits the asymptotic expansion,

FN − FGauss
N ∼ F +N−2F (2) +N−4F (4) + · · · . (4.422)

The leading term of the asymptotic expansion is:

F =
∫ ∞

1

1 − τ

τ2
[2γ4(τ) + 4γ2(τ)β2(τ) − 1

2 ] dτ , (4.423)

where

γ(τ) =
b(τ) − a(τ)

4
, β(τ) =

a(τ) + b(τ)
2

, (4.424)

and [a(τ), b(τ)] is the support of the equilibrium measure for the polynomial
V (z; τ).

To prove this theorem, we substitute asymptotic expansions (4.419) into
formula (4.412) and check that the odd powers of N−1 cancel out. See [19].

4.4.4 One-Sided Analyticity at a Critical Point

According to the definition, see (4.107)–(4.108), the equilibrium measure is
singular in the following three cases:

(1) h(c) = 0 where c ∈ (aj , bj), for some 1 ≤ j ≤ q,
(2) h(aj) = 0 or h(bj) = 0, for some 1 ≤ j ≤ q,
(3) for some c �∈ J ,

2
∫

log |c− y| dνV (y) − V (c) = l . (4.425)

More complicated cases appear as a combination of these three basic ones.
The cases (1) and (3) are generic for a one-parameter family of polynomials.
The case (1) means a split of the support interval (aj , bj) into two intervals. A
typical illustration of this case is given in Fig. 4.2. Case (3) means a birth of
a new support interval at the point c. Case (2) is generic for a two-parameter
family of polynomials.

Introduce the following hypothesis.

Hypothesis Sq. V (z; t), t ∈ [0, t0], t0 > 0, is a one-parameter family of real
polynomials such that

(i) V (z; t) is q-cut regular for 0 < t ≤ t0,
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(ii) V (z; 0) is q-cut singular and h(ai) �= 0, h(bi) �= 0, i = 1, . . . , q, where⋃q
i=1[ai, bi] is the support of the equilibrium measure for V (z; 0).

We have the following result, see [19].

Theorem 4.4.4. Suppose V (z; t) satisfies Hypothesis Sq. Then the end-points
ai(t), bi(t) of the equilibrium measure for V (z; t), the density function, and the
free energy are analytic, as functions of t, at t = 0.

The proof of this theorem is an extension of the proof of Thm. 4.4.1, and
it is also based on the work of Kuijlaars and McLaughlin [82]. Theorem shows
that the free energy can be analytically continued through the critical point,
t = 0, if conditions (i) and (ii) are fulfilled. If h(aj) = 0 or h(bj) = 0, then
the free energy is expected to have an algebraic singularity at t = 0, but
this problem has not been studied yet in details. As concerns the split of the
support interval, this case was studied for a nonsymmetric quartic polynomial
in the paper of Bleher and Eynard [15]. To describe the result of [15], consider
the singular quartic polynomial,

V ′
c (x) =

1
Tc

(x3 − 4c1x2 + 2c2x+ 8c1) , Tc = 1 + 4c21 ; Vc(0) = 0 , (4.426)

where we denote
ck = cos kπε . (4.427)

It corresponds to the critical density

ρc(x) =
1

2πTc
(x − 2c1)2

√
4 − x2 . (4.428)

Observe that 0 < ε < 1 is a parameter of the problem which determines the
location of the critical point,

−2 < 2c1 = 2 cosπε < 2 . (4.429)

We include Vc into the one-parameter family of quartic polynomials, {V (x;T ) :
T > 0}, where

V ′(x;T ) =
1
T

(x3 − 4c1x2 + 2c2x+ 8c1) ; V (0;T ) = 0 . (4.430)

Let F (T ) be the free energy corresponding to V (x;T ).

Theorem 4.4.5. The function F (T ) can be analytically continued through
T = Tc both from T ≥ Tc and from T ≤ Tc. At T = Tc, F (T ) is continuous,
as well as its first two derivatives, but the third derivative jumps.

This corresponds to the third-order phase transition. Earlier the third-
order phase transition was observed in a circular ensemble of random matrices
by Gross and Witten [72].
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4.4.5 Double Scaling Limit of the Free Energy

Consider an even quartic critical potential,

V (z) = 1
4z

4 − z2 , (4.431)

and its deformation,

τtV (z) ≡ V (z; t) =
1

4t2
z4 +

(
1 − 2

t

)
z2 . (4.432)

Introduce the scaling,
t = 1 +N−2/32−2/3x . (4.433)

The Tracy–Widom distribution function defined by the formula

FTW(x) = exp
[∫ ∞

x

(x− y)u2(y) dy
]
, (4.434)

where u(y) is the Hastings–McLeod solution to the Painlevé II, see (4.306),
(4.307).

Theorem 4.4.6 (See [19]). For every ε > 0,

FN (t) − FGauss
N

= F reg
N (t) −N−2 logFTW

(
(t− 1)22/3N2/3

)
+O(N−7/3+ε) , (4.435)

as N → ∞ and |(t− 1)N2/3| < C, where

F reg
N (t) ≡ F (t) +N−2F (2)(t) (4.436)

is the sum of the first two terms of the topological expansion.

4.5 Random Matrix Model with External Source

4.5.1 Random Matrix Model with External Source and Multiple
Orthogonal Polynomials

We consider the Hermitian random matrix ensemble with an external source,

dμn(M) =
1
Zn

exp
(−nTr(V (M) −AM)

)
dM , (4.437)

where
Zn =

∫
exp
(−nTr(V (M) −AM)

)
dM , (4.438)

and A is a fixed Hermitian matrix. Without loss of generality we may assume
that A is diagonal,
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A = diag(a1, . . . , an) , a1 < · · · < an . (4.439)

Define the monic polynomial

Pn(z) =
∫

det(z −M) dμn(M) . (4.440)

Proposition 4.5.1. (a) There is a constant Z̃n such that

Pn(z) =
1

Z̃n

∫ n∏
j=1

(z − λj)
n∏
j=1

exp
(−(V (λj) − ajλj)

)
Δ(λ) dλ , (4.441)

where
Δ(λ) =

∏
i>j

(λi − λj) (4.442)

and dλ = dλ1 dλ2 · · ·dλn.
(b) Let

mjk =
∫ ∞

−∞
xk exp

(−(V (x) − ajx)
)
dx . (4.443)

Then we have the determinantal formula

Pn(z) =
1

Z̃n

∣∣∣∣∣∣∣∣∣

m10 m11 · · · m1n

...
...

. . .
...

mn0 mn1 · · · mnn

1 z · · · zn

∣∣∣∣∣∣∣∣∣
. (4.444)

(c) For j = 1, . . . , n,
∫ ∞

−∞
Pn(x) exp

(−(V (x) − ajx)
)
dx = 0 , (4.445)

and these equations each uniquely determine the monic polynomial Pn.

Proposition 4.5.1 can be extended to the case of multiple ajs as follows.

Proposition 4.5.2. Suppose A has distinct eigenvalues ai, i = 1, . . . , p, with
respective multiplicities ni, so that n1 + · · ·+ np = n. Let n(i) = n1 + · · ·+ ni
and n(0) = 0. Define

wj(x) = xdj−1 exp
(−(V (x) − aix)

)
, j = 1, . . . , n, (4.446)

where i = ij is such that n(i−1) < j ≤ n(i) and dj = j − n(i−1). Then the
following hold.

(a) There is a constant Z̃n > 0 such that

Pn(z) =
1

Z̃n

∫ n∏
j=1

(z − λj)
n∏
j=1

wj(λj)Δ(λ) dλ . (4.447)
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(b) Let

mjk =
∫ ∞

−∞
xkwj(x) dx . (4.448)

Then we have the determinantal formula

Pn(z) =
1

Z̃n

∣∣∣∣∣∣∣∣∣

m10 m11 · · · m1n

...
...

. . .
...

mn0 mn1 · · · mnn

1 z · · · zn

∣∣∣∣∣∣∣∣∣
. (4.449)

(c) For i = 1, . . . , p,
∫ ∞

−∞
Pn(x)xj exp

(−(V (x) − aix)
)
dx = 0 , j = 0, . . . , ni − 1 , (4.450)

and these equations uniquely determine the monic polynomial Pn.

The relations (4.450) can be viewed as multiple orthogonality conditions
for the polynomial Pn. There are p weights exp

(−(V (x)− ajx)
)
, j = 1, . . . , p,

and for each weight there are a number of orthogonality conditions, so that
the total number of them is n. This point of view is especially useful in the
case when A has only a small number of distinct eigenvalues.

4.5.1.1 Determinantal Formula for Eigenvalue Correlation
Functions

P. Zinn-Justin proved in [103,104] a determinantal formula for the eigenvalue
correlation functions of the random matrix model with external source. We
relate the determinantal kernel to the multiple orthogonal polynomials.

Let Σn be the collection of functions

Σn := {xj exp(aix) | i = 1, . . . , p, j = 0, . . . , ni − 1}. (4.451)

We start with a lemma.

Lemma 4.5.1. There exists a unique function Qn−1 in the linear span of Σn
such that ∫ ∞

−∞
xjQn−1(x)e−V (x) dx = 0 , (4.452)

j = 0, . . . , n− 2, and
∫ ∞

−∞
xn−1Qn−1(x)e−V (x) dx = 1 . (4.453)
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Consider P0, . . . , Pn, a sequence of multiple orthogonal polynomials such
that degPk = k, with an increasing sequence of the multiplicity vectors, so
that ki ≤ li, i = 1, . . . , p, when k ≤ l. Consider the biorthogonal system of
functions, {Qk(x) : k = 0, . . . , n− 1},

∫ ∞

−∞
Pj(x)Qk(x)e−V (x) dx = δjk , (4.454)

for j, k = 0, . . . , n− 1. Define the kernel

Kn(x, y) = exp
(
−1

2
(
V (x) + V (y)

)) n−1∑
k=0

Pk(x)Qk(y) . (4.455)

Theorem 4.5.1. The m-point correlation function of eigenvalues has the de-
terminantal form

Rm(λ1, . . . , λm) = det(Kn(λj , λk))1≤j,k≤m . (4.456)

4.5.1.2 Christoffel–Darboux Formula

We will assume that there are only two distinct eigenvalues, a1 = a and
a2 = −a, with multiplicities n1 and n2, respectively. We redenote Pn by
Pn1,n2 . Set

h(j)
n1,n2

=
∫ ∞

−∞
Pn1,n2(x)xnjwj(x) dx , (4.457)

j = 1, 2, which are non-zero numbers.

Theorem 4.5.2. With the notation introduced above,

(x− y) exp
(

1
2
(
V (x) + V (y)

))
Kn(x, y)

= Pn1,n2(x)Qn1,n2(y) −
h

(1)
n1,n2

h
(1)
n1−1,n2

Pn1−1,n2(x)Qn1+1,n2(y)

− h
(2)
n1,n2

h
(2)
n1,n2−1

Pn1,n2−1(x)Qn1,n2+1(y) . (4.458)

4.5.1.3 Riemann–Hilbert Problem

The Rieman–Hilbert problem is to find Y : C \ R → C
3×3 such that

• Y is analytic on C \ R,
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• for x ∈ R, we have

Y+(x) = Y−(x)

⎛
⎝1 w1(x) w2(x)

0 1 0
0 0 1

⎞
⎠ (4.459)

where Y+(x) (Y−(x)) denotes the limit of Y (z) as z → x from the upper
(lower) half-plane,

• as z → ∞, we have

Y (z) =

(
I +O

(
1
z

))⎛⎝z
n 0 0
0 z−n1 0
0 0 z−n2

⎞
⎠ (4.460)

where I denotes the 3 × 3 identity matrix.

Proposition 4.5.3. There exists a unique solution to the RH problem,

Y =

⎛
⎝ Pn1,n2 C(Pn1,n2w1) C(Pn1,n2w2)
c1Pn1−1,n2 c1 C(Pn1−1,n2w1) c1 C(Pn1−1,n2w2)
c2Pn1,n2−1 c2 C(Pn1,n2−1w1) c2 C(Pn1,n2−1w2)

⎞
⎠ (4.461)

with constants

c1 = −2πi
(
h

(1)
n1−1,n2

)−1
, c2 = −2πi

(
h

(2)
n1,n2−1

)−1
, (4.462)

and where C f denotes the Cauchy transform of f , i.e.,

C f(z) =
1

2πi

∫
R

f(s)
s− z

ds . (4.463)

The Christoffel–Darboux formula, (4.458), can be expressed in terms of
the solution of RH problem:

Kn(x, y) = exp
(
−1

2
(
V (x) + V (y)

))

× exp(a1y)[Y −1(y)Y (x)]21 + exp(a2y)[Y −1(y)Y (x)]31
2πi(x− y)

. (4.464)

4.5.1.4 Recurrence and Differential Equations

The recurrence and differential equations are nicely formulated in terms of
the function

Ψ(z) =

⎛
⎝1 0 0

0 c−1
1 0

0 0 c−1
2

⎞
⎠Y (z)

⎛
⎝w(z) 0 0

0 e−Naz 0
0 0 eNaz

⎞
⎠ , (4.465)

where
w(z) = e−NV (z) . (4.466)

The function Ψ solves the following RH problem:
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• Ψ is analytic on C \ R,
• for x ∈ R,

Ψ+(x) = Ψ−(x)

⎛
⎝1 1 1

0 1 0
0 0 1

⎞
⎠ , (4.467)

• as z → ∞,

Ψ(z) ∼
(
I+

Ψ
(1)
n1,n2

z
+ · · ·

)⎛
⎝z

nw 0 0
0 c−1

1 z−n1e−Naz 0
0 0 c−1

2 z−n2eNaz

⎞
⎠ . (4.468)

The recurrence equation for Ψ has the form:

Ψn1+1,n2(z) = Un1,n2(z)Ψn1,n2(z) , (4.469)

where

Un1,n2(z) =

⎛
⎝z − bn1,n2 −cn1,n2 −dn1,n2

1 0 0
1 0 en1,n2

⎞
⎠ (4.470)

and

cn1,n2 =
h

(1)
n1,n2

h
(1)
n1−1,n2

�= 0 , dn1,n2 =
h

(2)
n1,n2

h
(2)
n1,n2−1

�= 0 ,

en1,n2 =
h

(2)
n1+1,n2−1

h
(2)
n1,n2−1

�= 0 .

(4.471)

Respectively, the recurrence equations for the multiple orthogonal polynomials
are

Pn1+1,n2(z) = (z − bn1,n2)Pn1,n2(z) − cn1,n2Pn1−1,n2(z)
− dn1,n2Pn1,n2−1(z) , (4.472)

and
Pn1+1,n2−1(z) = Pn1,n2(z) + en1,n2Pn1,n2−1(z) . (4.473)

The differential equation for Ψ is

Ψ ′
n1,n2

(z) = NAn1,n2(z)Ψn1,n2(z) , (4.474)

where

An1,n2(z) = −
⎡
⎣
(
I +

Ψ
(1)
n1,n2

z
+ · · ·

)⎛
⎝V

′(z) 0 0
0 0 0
0 0 0

⎞
⎠
(
I +

Ψ
(1)
n1,n2

z
+ · · ·

)−1
⎤
⎦

pol

+

⎛
⎝0 0 0

0 −a 0
0 0 a

⎞
⎠ , (4.475)
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where [f(z)]pol means the polynomial part of f(z) at infinity.
For the Gaussian model, V (x) = x2/2, the recurrence equation reduces to

Ψn1+1,n2 =

⎛
⎝z − a −n1/n −n2/n

1 0 0
1 0 −2a

⎞
⎠Ψn1,n2 , (4.476)

where n = n1 + n2, and the differential equation reads

Ψ ′
n1,n2

= n

⎛
⎝−z n1/n n2/n

− 1 −a 0
− 1 0 a

⎞
⎠Ψn1,n2 . (4.477)

In what follows, we will restrict ourselves to the case when n is even and

n1 = n2 =
n

2
, (4.478)

so that
A = diag(−a, . . . ,−a︸ ︷︷ ︸

n/2

, a, . . . , a︸ ︷︷ ︸
n/2

). (4.479)

4.5.2 Gaussian Matrix Model with External Source and
Non-Intersecting Brownian Bridges

Consider n independent Brownian motions (Brownian bridges) xj(t), j = 1,
. . . , n, on the line, starting at the origin at time t = 0, half ending at x = 1 and
half at x = −1 at time t = 1, and conditioned not to intersect for t ∈ (0, 1).
Then at any time t ∈ (0, 1) the positions of n non-intersecting Brownian
bridges are distributed as the scaled eigenvalues,

λj =
xj√

t(1 − t)
,

of a Gaussian random matrix with the external source

a(t) =
√

t

1 − t
.

Figure 4.10 gives an illustration of the non-intersecting Brownian bridges.
See also the paper [99] of Tracy and Widom on non-intersecting Brownian
excursions.

In the Gaussian model the value a = 1 is critical, and we will discuss its
large n asymptotics in the three cases:

(1) a > 1, two cuts,
(2) a < 1, one cut,
(3) a = 1, double scaling limit.

In the picture of the non-intersecting Brownian bridges this transforms to a
critical time t = 1

2 , and there are two cuts for t > 1
2 , one cut for t < 1

2 , and
the double scaling limit appears in a scaled neighborhood of t = 1

2 .
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Fig. 4.10. Non-intersecting Brownian paths that start at one point and end at two
points. At any intermediate time the positions of the paths are distributed as the
eigenvalues of a Gaussian random matrix ensemble with external source. As their
number increases the paths fill out a region whose boundary has a cusp

4.5.3 Gaussian Model with External Source. Main Results

First we describe the limiting mean density of eigenvalues. The limiting mean
density follows from earlier work of Pastur [89]. It is based on an analysis of
the equation (Pastur equation)

ξ3 − zξ2 + (1 − a2)ξ + a2z = 0 , (4.480)

which yields an algebraic function ξ(z) defined on a three-sheeted Riemann
surface. The restrictions of ξ(z) to the three sheets are denoted by ξj(z),
j = 1, 2, 3. There are four real branch points if a > 1 which determine two
real intervals. The two intervals come together for a = 1, and for 0 < a < 1,
there are two real branch points, and two purely imaginary branch points.
Figure 4.11 depicts the structure of the Riemann surface ξ(z) for a > 1,
a = 1, and a < 1.

In all cases we have that the limiting mean eigenvalue density ρ(x) =
ρ(x; a) is given by

ρ(x; a) =
1
π

Im ξ1+(x) , x ∈ R , (4.481)
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where ξ1+(x) denotes the limiting value of ξ1(z) as z → x with Im z > 0. For
a = 1 the limiting mean eigenvalue density vanishes at x = 0 and ρ(x; a) ∼
|x|1/3 as x → 0.

We note that this behavior at the closing (or opening) of a gap is markedly
different from the behavior that occurs in the usual unitary random matrix
ensembles Z−1

n e−nTr V (M) dM where a closing of the gap in the spectrum
typically leads to a limiting mean eigenvalue density ρ that satisfies ρ(x) ∼
(x − x∗)2 as x → x∗ if the gap closes at x = x∗. In that case the local
eigenvalue correlations can be described in terms of ψ-functions associated
with the Painlevé II equation, see above and [18, 40]. The phase transition
for the model under consideration is different, and it cannot be realized in a
unitary random matrix ensemble.

Theorem 4.5.3. The limiting mean density of eigenvalues

ρ(x) = lim
n→∞

1
n
Kn(x, x) (4.482)

exists for every a > 0. It satisfies

ρ(x) =
1
π
| Im ξ(x)| , (4.483)

where ξ = ξ(x) is a solution of the cubic equation,

ξ3 − xξ2 − (a2 − 1)ξ + xa2 = 0 . (4.484)

The support of ρ consists of those x ∈ R for which (4.484) has a non-real
solution.

(a) For 0 < a < 1, the support of ρ consists of one interval [−z1, z1], and ρ is
real analytic and positive on (−z1, z1), and it vanishes like a square root
at the edge points ±z1, i.e., there exists a constant ρ1 > 0 such that

ρ(x) =
ρ1

π
|x∓ z1|1/2

(
1 + o(1)

)
as x → ±z1, x ∈ (−z1, z1) . (4.485)

ξ1

ξ2

ξ3

ξ1

ξ2

ξ3

ξ1

ξ2

ξ3

Fig. 4.11. The structure of the Riemann surface for (4.480) for the values a > 1
(left), a = 1 (middle) and a < 1 (right). In all cases the eigenvalues of M accumulate
on the interval(s) of the first sheet with a density given by (4.481)



324 P.M. Bleher

(b) For a = 1, the support of ρ consists of one interval [−z1, z1], and ρ is real
analytic and positive on (−z1, 0)∪ (0, z1), it vanishes like a square root at
the edge points ±z1, and it vanishes like a third root at 0, i.e., there exists
a constant c > 0 such that

ρ(x) = c|x|1/3(1 + o(1)
)
, as x → 0 . (4.486)

(c) For a > 1, the support of ρ consists of two disjoint intervals [−z1,−z2] ∪
[z2, z1] with 0 < z2 < z1, ρ is real analytic and positive on (−z1,−z2) ∪
(z2, z1), and it vanishes like a square root at the edge points ±z1, ±z2.
To describe the universality of local eigenvalue correlations in the large n

limit, we use a rescaled version of the kernel Kn:

K̂n(x, y) = exp
(
n
(
h(x) − h(y)

))
Kn(x, y) (4.487)

for some function h. The rescaling is allowed because it does not affect the
correlation functions Rm, which are expressed as determinants of the kernel.
The function h has the following form on (−z1,−z2) ∪ (z2, z1):

h(x) = −1
4
x2 + Re

∫ x

z1

ξ1+(s) ds , (4.488)

where ξ1 is a solution of the Pastur equation. The local eigenvalue correlations
in the bulk of the spectrum in the large n limit are described by the sine kernel.
The bulk of the spectrum is the open interval (−z1, z1) for a < 1, and the
union of the two open intervals, (−z1,−z2) and (z2, z1), for a ≥ 1 (z2 = 0 for
a = 1).

We have the following result:

Theorem 4.5.4. For every x0 in the bulk of the spectrum we have that

lim
n→∞

1
nρ(x0)

K̂n

(
x0 +

u

nρ(x0)
, x0 +

v

nρ(x0)

)
=

sinπ(u − v)
π(u− v)

.

At the edge of the spectrum the local eigenvalue correlations are described
in the large n limit by the Airy kernel:

Theorem 4.5.5. For every u, v ∈ R we have

lim
n→∞

1
(ρ1n)2/3

K̂n

(
z1 +

u

(ρ1n)2/3
, z1 +

v

(ρ1n)2/3

)

=
Ai(u)Ai′(v) − Ai′(u)Ai(v)

u− v
.

A similar limit holds near the edge point −z1 and also near the edge points
±z2 if a > 1.



4 Lectures on Random Matrix Models 325

Σ

Re z

Im z

Fig. 4.12. The contour Σ that appears in the definition of q(y)

As is usual in a critical case, there is a family of limiting kernels that arise
when a changes with n and a → 1 as n → ∞ in a critical way. These kernels
are constructed out of Pearcey integrals and therefore they are called Pearcey
kernels. The Pearcey kernels were first described by Brézin and Hikami [30,31].
A detailed proof of the following result was recently given by Tracy and Widom
[98].

Theorem 4.5.6. We have for every fixed b ∈ R,

lim
n→∞

1
n3/4

Kn

(
x

n3/4
,

y

n3/4
; 1 +

b

2
√
n

)
= Kcusp(x, y; b) (4.489)

where Kcusp is the Pearcey kernel

Kcusp(x, y; b) =
p(x)q′′(y) − p′(x)q′(y) + p′′(x)q(y) − bp(x)q(y)

x− y
(4.490)

with

p(x) =
1
2π

∫ ∞

−∞
exp
(
−1

4
s4 − b

2
s2 + isx

)
ds ,

q(y) =
1
2π

∫
Σ

exp
(

1
4
t4 +

b

2
t2 + ity

)
dt .

(4.491)

The contour Σ consists of the four rays arg y = ±π/4,±3π/4, with the orien-
tation shown in Fig. 4.12.

The functions (4.491) are called Pearcey integrals [91]. They are solutions
of the third-order differential equations p′′′(x) = xp(x) + bp′(x) and q′′′(y) =
−yq(y) + bq′(y), respectively.

Theorem 4.5.6 implies that local eigenvalue statistics of eigenvalues near
0 are expressed in terms of the Pearcey kernel. For example we have the
following corollary of Thm. 4.5.6.
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Corollary 4.5.1. The probability that a matrix of the ensemble (4.437),
(4.479), with a=1+bn−1/2/2 has no eigenvalues in the interval [cn−3/4, dn−3/4]
converges, as n → ∞, to the Fredholm determinant of the integral operator
with kernel Kcusp(x, y; b) acting on L2(c, d).

Similar expressions hold for the probability to have one, two, three,. . . ,
eigenvalues in an O(n−3/4) neighborhood of x = 0.

Tracy and Widom [98] and Adler and van Moerbeke [3] gave differential
equations for the gap probabilities associated with the Pearcey kernel and
with the more general Pearcey process which arises from considering the non-
intersecting Brownian motion model at several times near the critical time.
See also [88] where the Pearcey process appears in a combinatorial model on
random partitions.

Brézin and Hikami and also Tracy and Widom used a double integral
representation for the kernel in order to establish Thm. 4.5.6. We will describe
the approach of [23], based on the Deift–Zhou steepest descent method for the
Riemann–Hilbert problem for multiple Hermite polynomials. This method
is less direct than the steepest descent method for integrals. However, an
approach based on the Riemann–Hilbert problem may be applicable to more
general situations, where an integral representation is not available. This is
the case, for example, for the general (non-Gaussian) unitary random matrix
ensemble with external source, (4.437), with a general potential V .

The proof of the theorems above is based on the construction of a
parametrix of the RHP, and we will describe this construction for the cases
a > 1, a < 1, and a = 1.

4.5.4 Construction of a Parametrix in the Case a > 1

Consider the Riemann surface given by (4.480)) for a > 1, see the left surface
on Fig. 4.11. There are three roots to this equation, which behave at infinity
as

ξ1(z) = z − 1
z

+O

(
1
z3

)
, ξ2,3(z) = ±a+

1
2z

+O

(
1
z2

)
. (4.492)

We need the integrals of the ξ-functions,

λk(z) =
∫ z

ξk(s) ds , k = 1, 2, 3 , (4.493)

which we take so that λ1 and λ2 are analytic on C\(−∞, z1] and λ3 is analytic
on C \ (−∞,−z2]. Then, as z → ∞,

λ1(z) =
z2

2
− ln z + l1 +O

(
1
z2

)
,

λ2,3(z) = ±az +
1
2

ln z + l2,3 +O

(
1
z

)
,

(4.494)
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where l1, l2, l3 are some constants, which we choose as follows. We choose l1
and l2 such that

λ1(z1) = λ2(z1) = 0 , (4.495)

and then l3 such that

λ3(−z2) = λ1+(−z2) = λ1−(−z2) − πi . (4.496)

First Transformation of the RH Problem

Using the functions λj and the constants lj , j = 1, 2, 3, we define

T (z) = diag
(
exp(−nl1), exp(−nl2), exp(−nl3)

)
Y (z)

× diag
(
exp
(
n(λ1(z) − 1

2z
2)
)
, exp

(
n(λ2(z) − az)

)
, exp

(
n(λ3(z) + az)

))
.

(4.497)

Then T+(x) = T−(x)jT (x), x ∈ R, where for x ∈ [z2, z1],

jT =

⎛
⎝exp(n(λ1 − λ2)+) 1 exp

(
n(λ3 − λ1−)

)
0 exp(n(λ1 − λ2)−) 0
0 0 1

⎞
⎠ (4.498)

and for x ∈ [−z1,−z2],

jT =

⎛
⎝exp(n(λ1 − λ3)+) exp

(
n(λ2+ − λ1−)

)
1

0 1 0
0 0 exp(n(λ1 − λ3)−)

⎞
⎠ . (4.499)

−z1 −z2 z2 z1

Fig. 4.13. The lenses for a > 1
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Second Transformation of the RH Problem: Opening of Lenses

The lens structure is shown on Fig. 4.13. Set in the right lens,

S(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (z)

⎛
⎝ 1 0 0
− exp(n(λ1(z) − λ2(z))) 1 − exp(n(λ3(z) − λ2(z)))

0 0 1

⎞
⎠

in the upper lens region ,

T (z)

⎛
⎝ 1 0 0

exp(n(λ1(z) − λ2(z))) 1 − exp(n(λ3(z) − λ2(z)))
0 0 1

⎞
⎠

in the lower lens region ,
(4.500)

and, respectively, in the left lens,

S(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (z)

⎛
⎝ 1 0 0

0 1 0
− exp(n(λ1(z) − λ3(z))) − exp(n(λ2(z) − λ3(z))) 1

⎞
⎠

in the upper lens region ,

T (z)

⎛
⎝ 1 0 0

0 1 0
exp(n(λ1(z) − λ3(z))) − exp(n(λ2(z) − λ3(z))) 1

⎞
⎠

in the lower lens region .
(4.501)

Then

S+(x) = S−(x)jS(x) ; jS(x) =

⎛
⎝ 0 1 0
−1 0 0
0 0 1

⎞
⎠ , x ∈ [z2, z1] , (4.502)

and

S+(x) = S−(x)jS(x) ; jS(x) =

⎛
⎝ 0 0 1

0 1 0
−1 0 0

⎞
⎠ , x ∈ [−z1,−z2] . (4.503)

In addition, S has jumps on the boundary of the lenses, which are exponen-
tially small away of the points ±z1,2. The RH problem for S is approximated
by the model RH problem.

Model RH Problem

• M is analytic on C \ ([−z1,−z2] ∪ [z2, z1]),
•

M+(x) = M−(x)jS(x) , x ∈ (−z1,−z2) ∪ (z2, z1) , (4.504)
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• as z → ∞,

M(z) = I +O

(
1
z

)
, (4.505)

where the jump matrix is

jS(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ 0 1 0
−1 0 0
0 0 1

⎞
⎠ , x ∈ (z2, z1)

⎛
⎝ 0 0 1

0 1 0
−1 0 0

⎞
⎠ , x ∈ (−z1,−z2) .

(4.506)

Solution to the model RH problem has the form:

M(z) = A(z)B(z)C(z) , (4.507)

where

A(z) = diag
(

1,− i√
2
,− i√

2

)
,

B(z) =

⎛
⎝ξ

2
1(z) − a2 ξ2

2(z) − a2 ξ2
3(z) − a2

ξ1(z) + a ξ2(z) + a ξ3(z) + a
ξ1(z) − a ξ2(z) − a ξ3(z) − a

⎞
⎠ (4.508)

and

C(z) = diag
(

1√
Q(ξ1(z))

,
1√

Q(ξ2(z))
,

1√
Q(ξ3(z))

)
(4.509)

where
Q(z) = z4 − (1 + 2a2)z2 + (a2 − 1)a2 . (4.510)

Parametrix at Edge Points

We consider small disks D(±zj , r) with radius r > 0 and centered at the edge
points, and look for a local parametrix P defined on the union of the four
disks such that

• P is analytic on D(±zj , r) \ (R ∪ Γ ),
•

P+(z) = P−(z)jS(z) , z ∈ (R ∪ Γ ) ∩D(±zj, r) , (4.511)

• as n → ∞,

P (z) =

(
I +O

(
1
n

))
M(z) uniformly for z ∈ ∂D(±zj, r) . (4.512)
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We consider here the edge point z1 in detail. We note that as z → z1,

λ1(z) = q(z − z1) +
2ρ1

3
(z − z1)3/2 +O(z − z1)2

λ2(z) = q(z − z1) − 2ρ1

3
(z − z1)3/2 +O(z − z1)2

(4.513)

so that

λ1(z) − λ2(z) =
4ρ1

3
(z − z1)3/2 +O(z − z1)5/2 (4.514)

as z → z1. Then it follows that

β(z) =
[
3
4

(
λ1(z) − λ2(z)

)]2/3
(4.515)

is analytic at z1, real-valued on the real axis near z1 and β′(z1) = ρ
2/3
1 > 0. So

β is a conformal map from D(z1, r) to a convex neighborhood of the origin,
if r is sufficiently small (which we assume to be the case). We take Γ near z1
such that

β(Γ ∩D(z1, r)) ⊂ {z | arg(z) = ±2π/3} .
Then Γ and R divide the disk D(z1, r) into four regions numbered I, II,
III, and IV, such that 0 < arg β(z) < 2π/3, 2π/3 < arg β(z) < π, −π <
argβ(z) < −2π/3, and −2π/3 < argβ(z) < 0 for z in regions I, II, III, and
IV, respectively, see Fig. 4.14.

III

III IV

Γ

z1

Fig. 4.14. Partition of a neighborhood of the edge point

Recall that the jumps jS near z1 are given as
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jS =

⎛
⎝ 0 1 0
−1 0 0
0 0 1

⎞
⎠ on [z1 − r, z1)

jS =

⎛
⎝ 1 0 0

exp(n(λ1 − λ2)) 1 exp(n(λ3 − λ2))
0 0 1

⎞
⎠

on the upper boundary of the lens in D(z1, r)

jS =

⎛
⎝ 1 0 0

exp(n(λ1 − λ2)) 1 − exp(n(λ3 − λ2))
0 0 1

⎞
⎠

on the lower boundary of the lens in D(z1, r)

jS =

⎛
⎝1 exp(n(λ2 − λ1)) exp(n(λ3 − λ1))

0 1 0
0 0 1

⎞
⎠

on (z1, z1 + r] .

(4.516)

We write

P̃ =

⎧⎪⎪⎨
⎪⎪⎩
P

⎛
⎝1 0 0

0 1 − exp(n(λ3 − λ2))
0 0 1

⎞
⎠ in regions I and IV

P in regions II and III.

(4.517)

Then the jumps for P̃ are P̃+ = P̃−jP̃ where

jP̃ =

⎛
⎝ 0 1 0
−1 0 0
0 0 1

⎞
⎠ on [z1 − r, z1)

jP̃ =

⎛
⎝ 1 0 0
en(λ1−λ2) 1 0

0 0 1

⎞
⎠

on the upper side of the lens in D(z1, r)

jP̃ =

⎛
⎝ 1 0 0
en(λ1−λ2) 1 0

0 0 1

⎞
⎠

on the lower side of the lens in D(z1, r)

jP̃ =

⎛
⎝1 en(λ2−λ1) 0

0 1 0
0 0 1

⎞
⎠

on (z1, z1 + r] .

(4.518)

We also need the matching condition
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P̃ (z) =

(
I +O

(
1
n

))
M(z) uniformly for z ∈ ∂D(z1, r) . (4.519)

The RH problem for P̃ is essentially a 2× 2 problem, since the jumps (4.518)
are non-trivial only in the upper 2 × 2 block. A solution can be constructed
in a standard way out of Airy functions. The Airy function Ai(z) solves the
equation y′′ = zy and for any ε > 0, in the sector π + ε ≤ arg z ≤ π − ε, it
has the asymptotics as z → ∞,

Ai(z) =
1

2
√
πz1/4

exp(− 2
3z

3/2)
(
1 +O(z−3/2)

)
. (4.520)

The functions Ai(ωz), Ai(ω2z), where ω = e
2πi
3 , also solve the equation y′′ =

zy, and we have the linear relation,

Ai(z) + ωAi(ωz) + ω2 Ai(ω2z) = 0 . (4.521)

Write

y0(z) = Ai(z) , y1(z) = ωAi(ωz) , y2(z) = ω2 Ai(ω2z) , (4.522)

and we use these functions to define

Φ(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝y0(z) −y2(z) 0
y′0(z) −y′2(z) 0

0 0 1

⎞
⎠ , for 0 < arg z < 2π/3 ,

⎛
⎝−y1(z) −y2(z) 0
−y′1(z) −y′2(z) 0

0 0 1

⎞
⎠ , for 2π/3 < arg z < π ,

⎛
⎝−y2(z) y1(z) 0
−y′2(z) y′1(z) 0

0 0 1

⎞
⎠ , for −π < arg z < −2π/3 ,

⎛
⎝y0(z) y1(z) 0
y′0(z) y′1(z) 0

0 0 1

⎞
⎠ , for −2π/3 < arg z < 0 .

(4.523)

Then

P̃ (z) = En(z)Φ
(
n2/3β(z)

)
× diag

(
exp
(

1
2n
(
λ1(z) − λ2(z)

))
, exp

(
− 1

2n
(
λ1(z) − λ2(z)

))
, 1
)

(4.524)

where En is an analytic prefactor that takes care of the matching condition
(4.519). Explicitly, En is given by

En =
√
πM

⎛
⎝ 1 −1 0
−i −i 0
0 0 1

⎞
⎠
⎛
⎝n

1/6β1/4 0 0
0 n−1/6β−1/4 0
0 0 1

⎞
⎠ . (4.525)

A similar construction works for a parametrix P around the other edge points.
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ΓR

Fig. 4.15. The contour ΓR for R

Third Transformation

In the third and final transformation we put

R(z) = S(z)M(z)−1 for z outside the disks D(±zj, r) , j = 1, 2

R(z) = S(z)P (z)−1 for z inside the disks .
(4.526)

Then R is analytic on C \ ΓR, where ΓR consists of the four circles
∂D(±zj, r), j = 1, 2, the parts of Γ outside the four disks, and the real
intervals (−∞,−z1− r), (−z2 + r, z2 − r), (z1 + r,∞), see Fig. 4.15. There are
jump relations

R+ = R−jR (4.527)

where

jR = MP−1 on the circles, oriented counterclockwise

jR = MjSM
−1 on the remaining parts of ΓR .

(4.528)

We have that jR = I+O(1/n) uniformly on the circles, and jR = I+O(e−cn)
for some c > 0 as n → ∞, uniformly on the remaining parts of ΓR. So we can
conclude

jR(z) = I +O

(
1
n

)
as n → ∞, uniformly on ΓR . (4.529)

As z → ∞, we have
R(z) = I +O(1/z) . (4.530)

From (4.527), (4.529), (4.530) and the fact that we can deform the contours
in any desired direction, it follows that

R(z) = I +O

(
1

n(|z| + 1)

)
as n → ∞ . (4.531)

uniformly for z ∈ C \ ΓR, see [47, 52, 53, 81].

4.5.5 Construction of a Parametrix in the Case a < 1

4.5.5.1 λ-functions

Consider the Riemann surface given by (4.480) for a < 1, see the right surface
on Fig. 4.11. There are three roots to this equation, which behave at infinity
as in (4.492). We need the integrals of the ξ-functions, which we define as
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λ1(z) =
∫ z

z1

ξ1(s) ds , λ2(z) =
∫ z

z1

ξ2(s) ds ,

λ3(z) =
∫ z

−z1+
ξ3(s) ds + λ1−(−z1) ,

(4.532)

The path of integration for λ3 lies in C\((−∞, 0]∪ [−iz2, iz2]), and it starts at
the point −z1 on the upper side of the cut. All three λ-functions are defined
on their respective sheets of the Riemann surface with an additional cut along
the negative real axis. Thus λ1, λ2, λ3 are defined and analytic on C\(−∞, z1],
C \ ((−∞, z1] ∪ [−iz2, iz2]), and C \ ((−∞, 0] ∪ [−iz2, iz2]), respectively. Their
behavior at infinity is

λ1(z) = 1
2z

2 − log z + �1 +O(1/z)

λ2(z) = az + 1
2 log z + �2 +O(1/z)

λ3(z) = −az + 1
2 log z + �3 +O(1/z)

(4.533)

for certain constants �j , j = 1, 2, 3. The λj ’s satisfy the following jump rela-
tions

λ1∓ = λ2± on (0, z1) ,
λ1− = λ3+ on (−z1, 0) ,
λ1+ = λ3− − πi on (−z1, 0) ,
λ2∓ = λ3± on (0, iz2) ,
λ2∓ = λ3± − πi on (−iz2, 0) ,
λ1+ = λ1− − 2πi on (−∞,−z1) ,
λ2+ = λ2− + πi on (−∞, 0) ,
λ3+ = λ3− + πi on (−∞,−z1) ,

(4.534)

where the segment (−iz2, iz2) is oriented upwards.

4.5.5.2 First Transformation Y �→ U

We define for z ∈ C \ (R ∪ [−iz2, iz2]),

U(z) = diag
(
exp(−n�1), exp(−n�2), exp(−n�3)

)
Y (z)

× diag
(
exp
(
n(λ1(z) − 1

2z
2)
)
, exp

(
n(λ2(z) − az)

)
, exp

(
n(λ3(z) + az)

))
.

(4.535)

This coincides with the first transformation for a > 1. Then U solves the
following RH problem.

• U : C \ (R ∪ [−iz2, iz2]) → C
3×3 is analytic.

• U satisfies the jumps
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U+ = U−

⎛
⎝exp(n(λ1+ − λ1−)) exp(n(λ2+ − λ1−)) exp(n(λ3+ − λ1−))

0 exp(n(λ2+ − λ2−)) 0
0 0 exp(n(λ3+ − λ3−))

⎞
⎠

on R , (4.536)

and

U+ = U−

⎛
⎝1 0 0

0 exp(n(λ2+ − λ2−)) 0
0 0 exp(n(λ3+ − λ3−))

⎞
⎠

on [−iz2, iz2] . (4.537)

• U(z) = I +O(1/z) as z → ∞.

4.5.5.3 Second Transformation U �→ T : Global Opening of a Lens
on [−iz2, iz2]

The second transformation is the opening of a lens on the interval [−iz2, iz2].
We consider a contour Σ, which goes first from −iz2 to iz2 around the point
z1, and then from iz2 to −iz2 around the point −z1, see Fig. 4.16, and such
that for z ∈ Σ,

±(Reλ2(z) − Reλ3(z)
)
> 0 , ±Re z > 0 . (4.538)

Observe that inside the curvilinear quadrilateral marked by a solid line on
Fig. 4.16, ±(Reλ2(z)−Reλ3(z)

)
< 0, hence the contour Σ has to stay outside

of this quadrilateral. We set T = U outside Σ, and inside Σ we set

T = U

⎛
⎝1 0 0

0 1 0
0 − exp(n(λ2 − λ3)) 1

⎞
⎠ for Re z < 0 inside Σ ,

T = U

⎛
⎝1 0 0

0 1 − exp(n(λ3 − λ2))
0 0 1

⎞
⎠ for Re z > 0 inside Σ .

(4.539)

4.5.5.4 Third Transformation T �→ S: Opening of a Lens on
[−z1, z1]
We open a lens on [−z1, z1], inside of Σ, see Fig. 4.17, and we define S = T
outside of the lens and

S = T

⎛
⎝ 1 0 0

0 1 0
− exp(n(λ1 − λ3)) 0 1

⎞
⎠

in upper part of the lens in left half-plane ,
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Fig. 4.16. Contour Σ which is such that Reλ2 < Reλ3 on the part of Σ in the left
half-plane and Reλ2 > Reλ3 on the part of Σ in the right half-plane
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Fig. 4.17. Opening of a lens around [−z1, z1]

S = T

⎛
⎝ 1 0 0

0 1 0
exp(n(λ1 − λ3)) 0 1

⎞
⎠

in lower part of the lens in left half-plane ,
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S = T

⎛
⎝ 1 0 0
− exp(n(λ1 − λ2)) 1 0

0 0 1

⎞
⎠

in upper part of the lens in right half-plane ,

S = T

⎛
⎝ 1 0 0

exp(n(λ1 − λ2)) 1 0
0 0 1

⎞
⎠

in lower part of the lens in right half-plane . (4.540)

Then S satisfies the following RH problem:

• S is analytic outside the real line, the vertical segment [−iz2, iz2], the curve
Σ, and the upper and lower lips of the lens around [−z1, z1].

• S satisfies the following jumps on the real line

S+ = S−

⎛
⎝1 exp(n(λ2+ − λ1−)) exp(n(λ3+ − λ1−))

0 1 0
0 0 1

⎞
⎠

on (−∞,−x∗] (4.541)

S+ = S−

⎛
⎝1 0 exp(n(λ3+ − λ1−))

0 1 0
0 0 1

⎞
⎠ on (−x∗,−z1] (4.542)

S+ = S−

⎛
⎝ 0 0 1

0 1 0
−1 0 0

⎞
⎠ on (−z1, 0) (4.543)

S+ = S−

⎛
⎝ 0 1 0
−1 0 0
0 0 1

⎞
⎠ on (0, z1) (4.544)

S+ = S−

⎛
⎝1 exp(n(λ2 − λ1)) 0

0 1 0
0 0 1

⎞
⎠ on [z1, x∗) (4.545)

S+ = S−

⎛
⎝1 exp(n(λ2 − λ1)) exp(n(λ3 − λ1))

0 1 0
0 0 1

⎞
⎠ on [x∗,∞) . (4.546)

S has the following jumps on the segment [−iz2, iz2],

S+ = S−

⎛
⎝1 0 0

0 0 1
0 −1 exp(n(λ3+ − λ3−))

⎞
⎠ on (−iz2,−iy∗) (4.547)

S+ = S−

⎛
⎝ 1 0 0

0 0 1
exp(n(λ1 − λ3−)) −1 exp(n(λ3+ − λ3−))

⎞
⎠
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on (−iy∗, 0) (4.548)

S+ = S−

⎛
⎝ 1 0 0

0 0 1
− exp(n(λ1 − λ3−)) −1 exp(n(λ3+ − λ3−))

⎞
⎠

on (0, iy∗) (4.549)

S+ = S−

⎛
⎝1 0 0

0 0 1
0 −1 exp(n(λ3+ − λ3−))

⎞
⎠ on (iy∗, iz2) . (4.550)

The jumps on Σ are

S+ = S−

⎛
⎝1 0 0

0 1 0
0 exp(n(λ2 − λ3)) 1

⎞
⎠ on {z ∈ Σ | Re z < 0} (4.551)

S+ = S−

⎛
⎝1 0 0

0 1 exp(n(λ3 − λ2))
0 0 1

⎞
⎠ on {z ∈ Σ | Re z > 0} . (4.552)

Finally, on the upper and lower lips of the lens, we find jumps

S+ = S−

⎛
⎝ 1 0 0

0 1 0
exp(n(λ1 − λ3)) 0 1

⎞
⎠

on the lips of the lens in the left half-plane (4.553)

S+ = S−

⎛
⎝ 1 0 0

exp(n(λ1 − λ2)) 1 0
0 0 1

⎞
⎠

on the lips of the lens in the right half-plane . (4.554)

• S(z) = I +O(1/z) as z → ∞.

As n → ∞, the jump matrices have limits. Most of the limits are the identity
matrix, except for the jumps on (−z1, z1), see (4.543) and (4.544), and on
(−iz2, iz2), see (4.547)–(4.550). The limiting model RH problem can be solved
explicitly. The solution is similar to the case a > 1, and it is given by formulas
(4.507)–(4.510), with cuts of the function

√
P (z) on the intervals [−z1, z1]

and [−iz2, iz2].

4.5.5.5 Local Parametrix at the Branch Points for a < 1

Near the branch points the model solutionM will not be a good approximation
to S. We need a local analysis near each of the branch points. In a small circle
around each of the branch points, the parametrix P should have the same
jumps as S, and on the boundary of the circle P should match with M in the
sense that
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P (z) = M(z)
(
I +O(1/n)

)
(4.555)

uniformly for z on the boundary of the circle.
The construction of P near the real branch points ±z1 makes use of Airy

functions and it is the same as the one given above for the case a > 1. The
parametrix near the imaginary branch points ±iz2 is also constructed with
Airy functions. We give the construction near iz2. There are three contours,
parts of Σ, meeting at iz2: left, right and vertical, see Fig. 4.17. We want an
analytic P in a neigborhood of iz2 with jumps

P+ = P−

⎛
⎝1 0 0

0 1 0
0 exp(n(λ2 − λ3)) 1

⎞
⎠ on left contour

P+ = P−

⎛
⎝1 0 0

0 1 exp(n(λ3 − λ2))
0 0 1

⎞
⎠ on right contour

P+ = P−

⎛
⎝1 0 0

0 0 1
0 −1 exp(n(λ3+ − λ3−))

⎞
⎠ on vertical part .

(4.556)

In addition we need the matching condition (4.555). Except for the matching
condition (4.555), the problem is a 2 × 2 problem. We define

f(z) =
[
3
4 (λ2 − λ3)(z)

]2/3 (4.557)

such that
arg f(z) = π/3 , for z = iy , y > z2 .

Then s = f(z) is a conformal map, which maps [0, iz2] into the ray arg s =
−2π/3, and which maps the parts of Σ near iz2 in the right and left half-planes
into the rays arg s = 0 and arg s = 2π/3, respectively. The local parametrix
has the form,

P (z) = E(z)Φ
(
n2/3f(z)

)
⎛
⎝1 0 0

0 exp
(

1
2n(λ2 − λ3)

)
0

0 0 exp
(− 1

2n(λ2 − λ3)
)
⎞
⎠

(4.558)
where E is analytic. The model matrix-valued function Φ is defined as

Φ =

⎛
⎝1 0 0

0 y0 −y2

0 y′0 −y′2

⎞
⎠ for 0 < arg s < 2π/3 ,

Φ =

⎛
⎝1 0 0

0 y0 y1

0 y′0 y
′
1

⎞
⎠ for −2π/3 < arg s < 0 ,

Φ =

⎛
⎝1 0 0

0 −y1 −y2

0 −y′1 −y′2

⎞
⎠ for 2π/3 < arg s < 4π/3 ,

(4.559)
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where y0(s) = Ai(s), y1(s) = ωAi(ωs), y2(s) = ω2 Ai(ω2s) with ω = 2π/3
and Ai the standard Airy function. In order to achieve the matching (4.555)
we define the prefactor E as

E = ML−1 (4.560)

with

L =
1

2
√
π

⎛
⎝1 0 0

0 n−1/6f−1/4 0
0 0 n1/6f1/4

⎞
⎠
⎛
⎝1 0 0

0 1 i
0 −1 i

⎞
⎠ (4.561)

where f1/4 has a branch cut along the vertical segment [0, iz2] and it is real
and positive where f is real and positive. The matching condition (4.555) now
follows from the asymptotics of the Airy function and its derivative.

A similar construction gives the parametrix in the neighborhood of −iz2.

4.5.5.6 Fourth Transformation S �→ R

Having constructed N and P , we define the final transformation by

R(z) = S(z)M(z)−1 away from the branch points ,

R(z) = S(z)P (z)−1 near the branch points .
(4.562)

Since jumps of S and N coincide on the interval (−z1, z1) and the jumps of
S and P coincide inside the disks around the branch points, we obtain that
R is analytic outside a system of contours as shown in Fig. 4.18.

On the circles around the branch points there is a jump

R+ = R−
(
I +O(1/n)

)
, (4.563)

which follows from the matching condition (4.555). On the remaining contours,
the jump is

R+ = R−
(
I +O(e−cn)

)
(4.564)

for some c > 0. Since we also have the asymptotic condition R(z) = I+O(1/z)
as z → ∞, we may conclude as that

R(z) = I +O

(
1

n(|z| + 1)

)
as n → ∞ , (4.565)

uniformly for z ∈ C.

4.5.6 Double Scaling Limit at a = 1

This section is based on the paper [23].
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Fig. 4.18. R has jumps on this system of contours

4.5.6.1 Modified Pastur Equation

The analysis in for the cases a > 1 and 0 < a < 1 was based on the Pastur
equation (4.480), and it would be natural to use (4.480) also in the case a = 1.
Indeed, that is what we tried to do, and we found that it works for a ≡ 1, but
in the double scaling regime a = 1 + b/(2

√
n) with b �= 0, it led to problems

that we were unable to resolve in a satisfactory way. A crucial feature of our
present approach is a modification of (4.480) when a is close to 1, but different
from 1. At x = 0 we wish to have a double branch point for all values of a so
that the structure of the Riemann surface is as in the middle figure of Fig. 4.11
for all a.

For c > 0, we consider the Riemann surface for the equation

z =
w3

w2 − c2
(4.566)

where w is a new auxiliary variable. The Riemann surface has branch points
at z∗ = 3

√
3/2c, −z∗ and a double branch point at 0. There are three inverse

functions wk, k = 1, 2, 3, that behave as z → ∞ as
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w1(z) = z − c2

z
+O

(
1
z3

)

w2(z) = c +
c2

2z
+O

(
1
z2

)

w3(z) = −c+
c2

2z
+O

(
1
z2

)
(4.567)

and which are defined and analytic on C\ [−z∗, z∗], C\ [0, z∗] and C\ [−z∗, 0],
respectively.

Then we define the modified ξ-functions

ξk = wk +
p

wk
, for k = 1, 2, 3 , (4.568)

which we also consider on their respective Riemann sheets. In what follows
we take

c =
a +

√
a2 + 8
4

and p = c2 − 1 . (4.569)

Note that a = 1 corresponds to c = 1 and p = 0. In that case the functions
coincide with the solutions of (4.480) that we used in our earlier works. From
(4.566), 4.568), and (4.569) we obtain the modified Pastur equation

ξ3 − zξ2 + (1 − a2)ξ + a2z +
(c2 − 1)3

c2z
= 0 , (4.570)

where c is given by (4.569). This equation has three solutions, with the fol-
lowing behavior at infinity:

ξ1(z) = z − 1
z

+O

(
1
z3

)
,

ξ2,3(z) = ±a+
1
2z

+O

(
1
z2

)
,

(4.571)

and the cuts as in the middle figure of Fig. 4.11. At zero the functions ξk have
the asymptotics,

ξk(z) =

⎧⎨
⎩

− ω2kz1/3f2(z) − ωkz−1/3g2(z) +
z

3
for Im z > 0 ,

− ωkz1/3f2(z) − ω2kz−1/3g2(z) +
z

3
for Im z < 0 ,

(4.572)

where the functions f2(z), g2(z) are analytic at the origin and real for real z,
with

f2(0) = c2/3 +
1
3
c−4/3(c2 − 1) , g2(0) = c−2/3(c2 − 1) . (4.573)

We define then the functions λk as
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0

Fig. 4.19. Lens structure for the double scaling limit

λk(z) =
∫ z

0+

ξk(s) ds (4.574)

where the path of integration starts at 0 on the upper side of the cut and is
fully contained (except for the initial point) in C \ (−∞, z∗], and we define
the first transformation of the RHP by the same formula (4.497) as for the
case a > 1. For what follows, observe that the λ-functions have the following
asymptotics at the origin:

λk(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 3
4
ω2kz4/3f3(z) − 1

2
ωkz2/3g3(z) +

z2

6
for Im z > 0 ,

λk−(0) − 3
4
ωkz4/3f3(z) − 1

2
ω2kz2/3g3(z) +

z2

6
for Im z < 0 ,

(4.575)

where the function f3 and g3 are analytic at the origin and

f3(0) = f2(0) = c2/3 + 1
3c

−4/3(c2 − 1) ,

g3(0) = 3g2(0) = 3c−2/3(c2 − 1) ,
(4.576)

The second transformation, the opening of lenses is given by formulas
(4.500), (4.501). The lens structure is shown on Fig. 4.19. The model solution
is defined as

M(z) =

⎛
⎝M1(w1(z)) M1(w2(z)) M1(w3(z))
M2(w1(z)) M2(w2(z)) M2(w3(z))
M3(w1(z)) M3(w2(z)) M3(w3(z))

⎞
⎠ (4.577)

where M1, M2, M3 are the three scalar valued functions

M1(w) =
w2 − c2

w
√
w2 − 3c2

, M2(w) =
−i√

2
w + c

w
√
w2 − 3c2

,

M3(w) =
−i√

2
w − c

w
√
w2 − 3c2

; .
(4.578)

The construction of a parametrix P at the edge points ±z∗ can be done with
Airy functions in the same way as for a > 1.

4.5.6.2 Parametrix at the Origin

The main issue is the construction of a parametrix at the origin, and this
is where the Pearcey integrals come in. The Pearcey differential equation
p′′′(ζ) = ζp(ζ) + bp′(ζ) admits solutions of the form
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pj(ζ) =
∫
Γj

exp
(
−1

4
s4 − b

2
s2 + isζ

)
ds (4.579)

for j = 0, 1, 2, 3, 4, 5, where

Γ0 = (−∞,∞) , Γ1 = (i∞, 0] ∪ [0,∞) ,
Γ2 = (i∞, 0] ∪ [0,−∞) , Γ3 = (−i∞, 0] ∪ [0,−∞) ,
Γ4 = (−i∞, 0] ∪ [0,∞) , Γ5 = (−i∞, i∞)

(4.580)

or any other contours that are homotopic to them as for example given in
Fig. 4.20. The formulas (4.580) also determine the orientation of the contours
Γj .

Γ0

Γ5

Γ1Γ2

Γ3 Γ4

Fig. 4.20. The contours Γj , j = 0, 1, . . . , 5, equivalent to those in (4.580), that are
used in the definition of the Pearcey integrals pj

Define Φ = Φ(ζ; b) in six sectors by

Φ =

⎛
⎝−p2 p1 p5

−p′2 p′1 p′5
−p′′2 p′′1 p′′5

⎞
⎠ for 0 < arg ζ < π/4 (4.581)

Φ =

⎛
⎝p0 p1 p4

p′0 p′1 p′4
p′′0 p′′1 p′′4

⎞
⎠ for π/4 < arg ζ < 3π/4 (4.582)

Φ =

⎛
⎝−p3 −p5 p4

−p′3 −p′5 p′4
−p′′3 −p′′5 p′′4

⎞
⎠for 3π/4 < arg ζ < π (4.583)

Φ =

⎛
⎝p4 −p5 p3

p′4 −p′5 p′3
p′′4 −p′′5 p′′3

⎞
⎠ for −π < arg ζ < −3π/4 (4.584)

Φ =

⎛
⎝p0 p2 p3

p′0 p′2 p′3
p′′0 p′′2 p′′3

⎞
⎠ for −3π/4 < arg ζ < −π/4 (4.585)
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Φ =

⎛
⎝p1 p2 p5

p′1 p′2 p′5
p′′1 p′′2 p′′5

⎞
⎠ for −π/4 < arg ζ < 0 . (4.586)

We define the local parametrix Q in the form

Q(z) = E(z)Φ
(
n3/4ζ(z);n1/2b(z)

)
exp
(
nΛ(z)

)
exp(−nz2/6) ,

Λ = diag(λ1, λ2, λ3) , (4.587)

where E is an analytic prefactor, and

ζ(z) = ζ(z; a) = z[f3(z; a)]3/4 (4.588)

and

b(z) = b(z; a) =
g3(z; a)

f3(z; a)1/2
. (4.589)

The functions f3, g3 appear in (4.575), in the asymptotics of the λ-functions.
In (4.588) and (4.589) the branch of the fractional powers is chosen which is
real and positive for real values of z near 0. The prefactor E(z) is defined as

E(z) = −
√

3
2π

exp(−nb(z)2/8)M(z)K(ζ(z))−1

⎛
⎝n

1/4 0 0
0 1 0
0 0 n−1/4

⎞
⎠ , (4.590)

where

K(ζ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ζ

−1/3 0 0
0 1 0
0 0 ζ1/3

⎞
⎠
⎛
⎝−ω ω2 1

−1 1 1
−ω2 ω 1

⎞
⎠ for Im ζ > 0 ,

⎛
⎝ζ

−1/3 0 0
0 1 0
0 0 ζ1/3

⎞
⎠
⎛
⎝ω

2 ω 1
1 1 1
ω ω2 1

⎞
⎠ for Im ζ < 0 .

(4.591)

4.5.6.3 Final Transformation

We fix b ∈ R and let a = 1 + b/(2
√
n) and we define

Fig. 4.21. The contour ΣR. The matrix-valued function R is analytic on C \ ΣR.
The disk around 0 has radius n−1/4 and is shrinking as n → ∞. The disks are
oriented counterclockwise and the remaining parts of ΣR are oriented from left to
right
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R(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S(z)M(z)−1 , for z ∈ C \ ΣS outside the disks
D(0, n−1/4) and D(±3

√
3/2, r) ,

S(z)P (z)−1 , for z ∈ D(±3
√

3/2, r) \ΣS ,

S(z)Q(z)−1 , for z ∈ D(0, n−1/4) \ΣS .

(4.592)

Then R(z) is analytic inside the disks and also across the real interval between
the disks. Thus, R(z) is analytic outside the contour ΣR shown in Fig. 4.21.
On the contour ΣR the function R(z) has jumps, so that R+(z) = R−(z)jR(z),
where

jR(z) = I +O(n−1) uniformly for
∣∣∣∣z ∓ 3

√
3

2

∣∣∣∣ = r , (4.593)

jR(z) = I +O(n−1/6) uniformly for |z| = n−1/4 , (4.594)

and there exists c > 0 so that

jR(z) = I +O

(
e−cn

2/3

1 + |z|2
)

uniformly for z on the remaining parts of ΣR . (4.595)

Also, as z → ∞, we have R(z) = I +O(1/z). This implies that

R(z) = I +O

(
n−1/6

1 + |z|
)

(4.596)

uniformly for z ∈ C \ΣR.

4.5.7 Concluding Remarks

The Riemann–Hilbert approach is a new powerful method for random matrix
models and orthogonal polynomials. In this paper we reviewed the approach
and some of its applications. Let us mention some recent developments. The
RH approach to orthogonal polynomials with complex exponential weights is
considered in the recent work of Bertola and Mo [13]. The RHP for discrete or-
thogonal polynomials and its applications is developed in the monograph [8] of
Baik, Kriecherbauer, McLaughlin and Miller. Applications of random matrix
models to the exact solution of the six-vertex model with domain wall bound-
ary conditions are considered in the works of Zinn-Justin [105] and Colomo
and Pronko [43]. The RH approach to the six-vertex model with domain wall
boundary conditions is developed in the work of Bleher and Fokin [16]. The
RHP for a two matrix model is considered in the works of Bertola, Eynard,
Harnad [11] and Kuijlaars and McLaughlin [83]. The universality results for
the scaling limit of correlation functions for orthogonal and symplectic ensem-
bles of random matrices are obtained in the works of Stojanovic [94], Deift
and Gioev [48,49], Costin, Deift and Gioev [44], Deift, Gioev, Kriecherbauer,
and Vanlessen [50].
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5.1 The RH Representation of the Orthogonal
Polynomials and Matrix Models

5.1.1 Introduction

5.1.1.1 Hermitian Matrix Model

The Hermitian matrix model is defined as the ensemble HN of random Her-
mitian N ×N matrices M = (Mij)Ni,j=1 with the probability distribution

μN (dM) = Ẑ−1
N exp

(−N TrV (M)
)
dM . (5.1)

Here the (Haar) measure dM is the Lebesgue measure on HN ≡ R
N2

, i.e.,

dM =
∏
j

dMjj

∏
j<k

dMR
jkdM

I
jk , Mjk = MR

jk + iM I
jk .

The exponent V (M) is a polynomial of even degree with a positive leading
coefficient,
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V (z) =
2m∑
j=1

tjz
j , t2m > 0 ,

and the normalization constant ẐN , which is also called partition function, is
given by the equation,

ẐN =
∫
HN

exp
(−N TrV (M)

)
dM ,

so that, ∫
HN

μN (dM) = 1 .

The model is also called a unitary ensemble. The use of the word “unitary”
refers to the invariance properties of the ensemble under unitary conjugation.
The special case when V (M) = M2 is called the Gaussian Unitary Ensemble
(GUE). (we refer to the book [40] as a basic reference for random matrices;
see also the more recent survey [45] and monograph [12]).

5.1.1.2 Eigenvalue Statistics

Let
z0(M) < · · · < zN (M)

be the ordered eigenvalues of M . It is a basic fact (see e.g. [45] or [12]) that the
measure (5.1) induces a probability measure on the eigenvalues of M , which
is given by the expression

1
ZN

∏
1≤j<k≤N

(zj − zk)2 exp
(
−N

N∑
j=1

V (zj)
)

dz0 . . .dzN , (5.2)

where the reduced partition function ZN is represented by the multiple inte-
gral

ZN =
∫ ∞

−∞
· · ·
∫ ∞

−∞

∏
1≤j<k≤N

(zj − zk)2 exp
(
−N

N∑
j=1

V (zj)
)

dz0 . . .dzN .

(5.3)
The principal object of interest in the random matrix theory is the m-point
correlation function KNm(z0 · · · zm) which is defined by the relation

KNm(z0 · · · zm) dz0 . . .dzm
= the joint probability to find the kth eigenvalue in the

interval [zk, zk + dzk], k = 1, . . . ,m.

The principal issue is the universality properties of the random matrix en-
sembles. More specifically, this means the analysis of the m-point correlation
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function KNm(z0 · · · zm) and other related distribution functions of the the-
ory, as the size N of the matrices approaches infinity and the proof that the
limiting distribution functions are independent on the choice of the measure
(i.e., the polynomial V (M)). In view of (5.2), (5.3), this analysis suggests the
asymptotic evaluation of the multiple integrals of the form

∫ ∞

−∞
· · ·
∫ ∞

−∞

∏
1≤j<k≤N

(zj − zk)2 exp
(
−N

N∑
j=1

V (zj)
) N∏
j=1

fj(zj) dz0 . . . dzN ,

(5.4)
where fj(z) are given functions, as the number of integrations goes to infinity.

The fundamental difficulties occure when one moves beyond the GUE case.
Indeed, in the latter case the integrals (5.4), for the relevant to the theory
choices of fj(z), can be evaluated (reduced to single integrals) via the classi-
cal Selberg’s formula. It is not known if there is any direct analog of Selberg’s
formula for arbitrary polynomial V (z). This makes the analysis of (5.4), and
most importantly its asymptotic evaluation as N → ∞, an extremely chal-
lenging enterprise. Until very recently, only the leading terms of the large N
asymptotics of ZN had been known for generic V (z) (see [43] for more details).
This result in fact is highly nontrivial, and it has been of great importance
for the development of the Riemann–Hilbert method which is the subject of
these lectures.

During the last ten years, a considerable progress has been achieved in
random matrix theory which has allowed solutions to a number of the long-
standing problems related to the universality in the “beyond GUE” cases (see,
e.g., [2, 4, 19, 41]). To a large extend, these developments are due to the deep
and profound connections of the random matrices to the theory of integrable
systems whose different aspects were first discovered in the early 90s in the
physical papers [7,21,31], and in the mathematical papers [45,46]. In turn, this
discovery was based on the remarkable works of Mehta, Gauden and Dyson
of 60s–70s that linked the random matrix theory to orthogonal polynomials.

5.1.1.3 Connection to Orthogonal Polynomials

Let {Pn(z)}∞n=0 be a system of monic orthogonal polynomials on the line, with
the exponential weight ω(z) = e−NV (z) generated by the same polynomial
function V (z) as in the measure μN of the Hermitian matrix model (5.1). In
other words, let the collection of polynomials {Pn(z)}∞n=0 be defined by the
relations,

∫ ∞

−∞
Pn(z)Pm(z)e−NV (z) dz = hnδnm , Pn = zn + · · · . (5.5)

Put also ,

ψn(z) =
1√
hn

Pn(z)e−NV (z)/2.



354 A.R. Its

The remarkable formula found by Dyson expresses the m-point correlation
function KNm(z0, . . . , zm) in terms of the Christoffel–Darboux kernel corre-
sponding to Pn(λ) as follows (see [22]; see also [12, 40, 45]).

KNm(z0 · · · zm) = det(KN (zi, zj))mi,j=1 , (5.6)

KN (z, z′) =

√
hN+1

hN

ψN+1(z)ψN(z′) − ψN (z)ψN+1(z′)
z − z′

. (5.7)

Simultaneously, the partition function ZN can be evaluated as the product of
the norms hn,

ZN = N !
N−1∏
n=0

hn . (5.8)

Equations (5.6)–(5.8) translate the basic asymptotic questions of the ran-
dom matrix theory to the asymptotic analysis of the orthogonal polynomials
Pn(λ) as n,N → ∞ and n/N = O(1). This does not though help immedi-
ately, since the asymptotic problem indicated constitutes one of the principal
analytic challenges of the orthogonal polynomial theory itself. In fact, until
very recently, one could only approach the problem by using either the clas-
sical Heine–Borel formula or the second order linear ODE, which both can
be written for any exponential weight ω(λ) (see [10, 29]). The Heine–Borel
formula gives for the polynomials Pn(λ) an n-fold integral representation of
the same type (5.4) or, equivalently, a representation in terms of n×n Hankel
determinants (see, e.g., [12]). Therefore, for the non-Gaussian V (z), i.e., for
non-Hermite polynomials, we again face the “beyond GUE” problem, i.e., the
impossibility to use the Selberg integral approach for the large n, N asymp-
totic analysis. Similarly, in the non-Hermite cases, one also loses the possibility
to use directly the second order linear ODE mentioned above. Indeed, it is
only in the Gaussian case that the coefficients of this ODE are known a pri-
ori for all n. In general case, they are expressed in terms of the recurrence
coefficients of the three term recurrence relation satisfied by Pn which in turn
are determined by a nonlinear difference equation – the so-called discrete
string equation or Freud’s equation (see, e.g., [4]). Hence one has to solve two
problems simultaneously: to find semiclassical asymptotics for the recurrence
coefficients and for the orthogonal polynomials. A way to overcome these dif-
ficulties is to use the Riemann–Hilbert method, which can be also thought of
as a certain “non-commutative” analog of Selberg’s integral.

5.1.1.4 The Riemann–Hilbert Method. A General introduction

The Riemann–Hilbert method reduces a particular problem at hand to the
Riemann–Hilbert problem of analytic factorization of a given matrix-valued
function G(z) defined on an oriented contour Γ in the complex z-plane. More
precisely, the Riemann–Hilbert problem determined by the pair (Γ,G) consits
in finding an matrix-valued function Y (z) with the following properties (we
use notation H(Ω) for the set of analytic in Ω functions).



5 Large N Asymptotics in Random Matrices 355

• Y (z) ∈ H(C \ Γ ),
• Y+(z) = Y−(z)G(z), z ∈ Γ , Y± = limY (z′), z′ → z ∈ ±side of Γ ,
• Y (z) → I as z → ∞.

The Riemann–Hilbert problem can be properly viewed as a “nonabelian” ana-
log of contour integral representation which it reduces to in the abelian case,
i.e., when [G(z1), G(z2)] = 0, ∀z1, z2 ∈ Γ (we will say more on this matter
and on the history of the method later on; see also [34]).

The main benefit of reducing originally nonlinear problems to the ana-
lytic factorization of given matrix functions arises in asymptotic analysis. In
typical applications, the jump matrices G(z) are characterized by oscillatory
dependence on external large parameters, say space x and time t (in the case
of the orthogonal polynomials, these are integers n, N and the coefficients tj
of the potential V (z)). The asymptotic evaluation of the solution Y (z, x, t) of
the Riemann–Hilbert problem as x, t → ∞ turns out to be in some (not all!)
ways quite similar to the asymptotic evaluation of oscillatory contour integrals
via the classical method of steepest descent. Indeed, after about 20 years of
significant efforts by several authors starting from the 1973 works of Shabat,
Manakov, and Ablowitz and Newell (see [17] for a detailed historical review),
the development of the relevant scheme of asymptotic analysis of integrable
systems finally culminated in the nonlinear steepest descent method for oscil-
latory Riemann–Hilbert problems, which was introduced in 1992 by Deift and
Zhou in [13]. In complete analogy to the classical method, it examines the
analytic structure of G(z) in order to deform the contour Γ to contours where
the oscillatory factors involved become exponentially small as x, t → ∞, and
hence the original Riemann–Hilbert problem reduces to a collection of local
Riemann–Hilbert problems associated with the relevant saddle points. The
noncommutativity of the matrix setting requires, however, developing of sev-
eral totally new and rather sophisticated technical ideas, which, in particular,
enable an explicit solution of the local Riemann–Hilbert problems. (for more
details see the following lectures and the original papers of Deift and Zhou,
and also the review article [17].) Remarkably, as, in particular, we will see later
in this lectures, the final result of the analysis is as efficient as the asymptotic
evaluation of the oscillatory integrals.

In the next sections we will present the Riemann–Hilbert setting for the
orthogonal polynomials, which was first suggested and used in the series of
papers [28, 29, 35, 36] in connection with the matrix model of 2D quantum
gravity.

5.1.2 The RH Representation of the Orthogonal Polynomials

Let {Pn(z)} be the collection of orthogonal polynomials (5.5). Put
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Y (z) =

(
Pn(z) 1/(2πi)

∫∞
−∞ Pn(z′)e−NV (z′)/(z′ − z )dz′

(−2πi/hn−1)Pn−1(z) −1/hn−1

∫∞
−∞ Pn−1(z′)e−N(z′)/(z′ − z) dz′

)

z /∈ R . (5.9)

Theorem 5.1.1 ([29]). The matrix valued function Y (z) solves the following
Riemann–Hilbert problem.

(1) Y (z) ∈ H(C \ R) and Y (z)|C± ∈ C(C̄±).
(2) Y+(z) = Y−(z)

(
1 e−NV (z)

0 1

)
, z ∈ R.

(3) Y (z)
(
z−n 0
0 zn

) ≡ Y (z)znσ3 �→ I, z → ∞.

Here, σ3 denotes the Pauli matrix,

σ3 =
(

1 0
0 −1

)
,

C+ and C− stand for the upper and lower half-planes, respectively, C+ and
C− denote the respective closures, and Y±(z) are the boundary values of Y (z)
on the real line,

Y±(z) = lim
z′→z

± Im z′>0

Y (z′).

The asymptotic condition (3) means the uniform estimate

|Y (z) · znσ3 − I| ≤ C

|z| , |z| > 1 , (5.10)

for some positive constant C.

Proof. The first part of statement (1) is a direct corollary of the standard
properties of Cauchy type integrals. The continuity of the function Y (z) up
to the real line, from above and from below, follows from the possibilty to
bend, up and down, the contour of integrations (i.e., the real line) in the
Cauchy integrals in the right hand side of equation (5.9)). Indeed, assuming
that Im z′ > 0, we can rewrite the integral representation for Y12(z′) in the
form,

Y12(z′) =
1

2πi

∫ ∞

−∞

Pn(z′′)e−NV (z′′)

z′′ − z′
dz′′

=
1

2πi

∫
Γ+

Pn(z′′)e−NV (z′′)

z′′ − z′
dz′′ ,

where the contour Γ+ is depicted in Fig. 5.1. Hence, the limit value Y12+(z) ≡
limz′→z,Im z′>0 Y (z′), z ∈ R exists and, moreover, is given by the equation,

Y12+(z) =
1

2πi

∫
Γ+

Pn(z′)e−NV (z′)

z′ − z
dz′ . (5.11)
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Γ+

. z

.
z

Γ−
.
z

.
z C = Γ + − Γ−

Fig. 5.1. The contours Γ± and C

Similarly,

Y12−(z) =
1

2πi

∫
Γ−

Pn(z′)e−NV (z′)

z′ − z
dz′ , (5.12)

with the contour Γ− depicted in Fig. 5.1 as well.
In addition, from (5.11) and (5.12) it follows that

Y12+(z) − Y12−(z) =
1

2πi

∫
C

Pn(z′)e−NV (z′)

z′ − z
dz′,

where C ≡ Γ+ − Γ− is a circle centered at z (see again Fig. 5.1) and hence,
by residue theorem,

Y12+(z) − Y12−(z) = Pn(z)e−NV (z) (5.13)

Similarly,

Y22+(z) − Y22−(z) = − 2πi
hn−1

Pn−1(z)e−NV (z) (5.14)

It is also obvious that

Y11+(z) = Y11−(z), Y21+(z) = Y21−(z). (5.15)

The matrix jump equation (2) of the theorem is equivalent to the scalar equa-
tions (5.13)–(5.15) and, therefore, the only statement left is the asymptotic
relation (3). We also note that so far we have not used the orthogonality
condition (5.5). To prove (3) we need first the following simple general fact.

Lemma 5.1.1. Let Pn(z) = zn + · · · , be an arbitrary monic polynomial of
degree n. Then the following asymptotic relation takes place.

∫ ∞

−∞

Pn(z′)e−NV (z′)

z′ − z
dz′ ∼=

∞∑
k=1

ck
zk
, z → ∞, (5.16)

where the coefficients ck are given by the equations,
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ck = −
∫ ∞

−∞
Pn(z) · zk−1e−NV (z) dz. (5.17)

The asymptotics (5.16) means that for any q ∈ N there is a positive constant
Cq such that,

∣∣∣∣
∫ ∞

−∞

Pn(z′)e−NV (z′)

z′ − z
dz′ −

q∑
k=1

ck
zk

∣∣∣∣ ≤ Cq
|z|q+1

∀ |z| ≥ 1 . (5.18)

Proof of the lemma. Let Ωψ0 denote the domain,

z : ψ0 ≤ | arg z| ≡ |ψ| ≤ π − ψ0 , 0 < ψ0 <
π

2
,

depicted in Fig. 5.2.
Then, assuming that z ∈ Ωψ0 , we have that

∫ ∞

−∞

Pn(z′)
z′ − z

e−NV (z′) dz′

= −
q∑

k=1

ck
zk

− 1
zq+1

∫ ∞

−∞

Pn(z′)(z′)qe−NV (z′)

1 − z′/z
dz′ .

Observe also that

|z′| < 1
2
|z| =⇒

∣∣∣∣1 − z′

z

∣∣∣∣ ≥ 1 −
∣∣∣∣z

′

z

∣∣∣∣ ≥ 1
2
,

while

|z′| > 1
2
|z| =⇒

∣∣∣∣1 − z′

z

∣∣∣∣ =
√(

1 −
∣∣∣∣z

′

z

∣∣∣∣ cosψ
)2

+
∣∣∣∣z

′

z

∣∣∣∣
2

sin2 ψ

≥ 1
2 | sinψ0|.

Therefore, there exists the constant Cq,ψ0 such that

Ψ0

Fig. 5.2. The domain Ωψ0
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∣∣∣∣
∫ ∞

−∞

Pn(z′)(z′)qe−NV (z′)

1 − z′/z
dz′
∣∣∣∣ ≤ Cq,ψ0 .

This leads to the estimate (5.18) for all |z| > 1 and z ∈ Ωψ0 . By rotating
slightly the contour R we exclude dependence on ψ0 and extend the estimate
to all |z| > 1. ��

From Lemma 5.1.1 and orthogonality of Pn(z) it follows that

Y12(z) = O(z−n−1)

Y22(z) = z−n +O(z−n−1) .

Therefore,

Y (z) =
(
zn +O(zn−1) O(z−n−1)
O(zn−1) z−n + O(z−n−1)

)

=⇒ Y (z) · z−nσ3 =
(

1 +O(1/z) O(1/z)
O(1/z) 1 +O(1/z)

)
= I +O

(
1
z

)
.

This proves (3). ��
Theorem 5.1.2. Y (z) is defined by conditions (1)–(3) uniquely.

Proof. First we notice that (1)–(3) implies that

detY (z) ≡ 1.

Indeed, the scalar function d(z) ≡ detY (z) satisfies the following conditions,

(1d) d(z) ∈ H(C \ R) and d(z)|C± ∈ C(C±).
(2d) d+(z) = d−(z) det

(
1 e−NV (z)

0 1

)
= d−(z), z ∈ R.

(3d) d(z) �→ 1, z → ∞.

In virtue of Liouville’s theorem, conditions (1d)–(3d) imply that d(z) ≡ 1.
Assume now that Ỹ (z) is another solution of the Riemann–Hilbert problem
(1)–(3) and consider the matrix ratio.

X(z) := Ỹ (z)Y −1(z) .

The matrix function X(z) is holomorphioc in C \ R and its restrictions to
C± are continuous up to the real axis. Since both functions, Ỹ (z) and Y (z)
has the same jump matrix across tha real axis, their ratio X(z) has no jump
across the real axis, i.e., on the real axis,

X+(z) = X−(z).

Taking into account that

X(z) �→ I, z → ∞,

and using again Liouville’s theorem, we conclude that X(z) ≡ I. This proves
the theorem. ��
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Remark. Thm. 5.1.1 and Lemma 5.1.1 imply, in particular, that normalization
condition (3) can be in fact extended to the whole asymptotic series,

Y (z)z−nσ3 ∼= I +
∞∑
k=1

mk

zk
, z → ∞. (5.19)

Thm.s 5.1.1 and 5.1.2 yields the following Riemann–Hilbert representa-
tion of the orthogonal polynomials Pn(z) and their norms hn in terms of the
solution Y (z) ≡ Y (z;n) of the Riemann–Hilbert problem (1)–(3).

Pn(z) = Y11(z) , hn = −2πi(m1)12 , h−1
n−1 =

i
2π

(m1)21 , (5.20)

where the matrix m1 ≡ m1(n) is the first matrix coefficient of the asymptotic
series (5.19).

Equations (5.20) reduce the problem of the asymptotic analysis of the
orthogonal polynomials Pn(z) as n, N → ∞ to the problem of the asymptotic
analysis of the solution Y (z) of the Riemann–Hilbert problem (1)–(3) as n,
N → ∞. Before we proceed with this analysis, we need to review some basic
facts of the general Riemann–Hilbert theory.

5.1.3 Elements of the RH Theory

Let us present in more detail the general setting of a Riemann–Hilbert (fac-
torization) problem.

The RH Data

Let Γ be an oriented contour on the complex z-plane. The contour Γ might
have points of self-intersection, and it might have more than one connected
component. Fig. 5.3 depicts typical contours appearing in applications.

The orientation defines the + and the − sides of Γ in the usual way.
Suppose in addition that we are given a map G from Γ into the set of p × p
invertible matrices,

G : Γ → GL(p,C).

The Riemann–Hilbert problem determined by the pair (Γ,G) consists in find-
ing an p× p matrix function Y (z) with the following properties

(a) Y (z) ∈ H(C \ Γ )
(b) Y+(z) = Y−(z)G(z), z ∈ Γ
(c) Y (z) �→ I, z → ∞.

We note that the orthogonal polynomial Riemann–Hilbert problem (1)–(3)
can be easily reformulated as a problem of the type (a)–(c) by introducing
the function,
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Fig. 5.3. Typical contours Γ

G1

znσ3

znσ3

1 w
0

1 wz2n

0
1 wz2n

w=e−NV(t)

1

1 0 1

Fig. 5.4. The normalized form of the orthogonal polynomial RH problem

Ỹ (z) =

{
Y (z) for |z| < 1 ,
Y (z)z−nσ3 for |z| > 1 .

Indeed, in terms of Ỹ (z) the problem (1)–(3) becomes the RH problem of the
type (a)–(c) posed on the contour Γ which is the union of the real axes and
the unit circle, and with the jump matrices indicated in Fig. 5.4.



362 A.R. Its

Precise Sense of (a)–(b)

Let us make the following assumptions about the contours Γ and the jump
matrix G(z).

1. The contour Γ is a finite union of smooth curves in CP 1 with the finite
number of self-intersections and such that CP 1 \ Γ has a finite number of
connected components.

2. The jump contour Γ can be represented as a finite union of smooth
components in such a way that the restriction of the jump matrix G(z) on
any smooth component admits an analytic continuation in a neighborhood of
the component.

3. G(z) → I along any infinite branch of Γ ; moreover, the limit is taken
exponentially fast.

4. detG(z) ≡ 1.
5. Let A be a point of self-intersection, or a node point, of the contour

Γ . Let Γk, k = 1, . . . , q denote the smooth components of Γ intersecting at
A. We assume that Γk are numbered counterclockwise. Let Gk(z) denote the
restriction of the jump matrix G(z) on the component Γk. By property 2, each
Gk(z) is analytic in a neghborhood of the point A; we denote this neighbor-
hood ΩA. Then, the following cyclic, or trivial monodromy condition, holds
at every node point A:

G±1
1 (z)G±1

2 (z) · · ·G±1
q (z) = I, ∀z ∈ ΩA, (5.21)

where in G±1
k the sign “+” is chosen if Γk is oriented outwards from A, and

the sign “−” is chosen if Γk is oriented inwards toward A. We shall say that
this property constitutes the smoothness of the jump matrix G(z) (cf. [3]).
These assumptions allow the following specification of the setting of the RH
problem

(a) Y
∣∣
Ωk

∈ H(Ωk) ∩C(Ω̄k), C \ Γ =
⋃
Ωk.

(b) Y+(z) = Y−(z)G(z) ∀z ∈ Γ as continuous functions.
(c) |I − Y (z)| ≤ C/|z| |z| ≥ 1.

This is, of course, not the most general way to set a Riemann–Hilbert
problem. Nevertheless, it well covers the needs of the random matrix theory. A
more general setting requires an advanced Lp-theory of the Cauchy operators
and the Riemann–Hilbert problems themselves and can be found in [3, 8, 15,
16, 39, 49].

We are going now to collect some of the basic facts concerning the Cauchy
operators and the general Riemann–Hilbert theory. The proofs as well as more
details can be found in the references [3, 8, 15, 16, 39, 49].

Plemelj–Sokhotskii Formulae

The most fundamental ingredient of the Riemann–Hilbert theory is the
Plemelj–Sokhotskii formulae for the boundary values of the Cauchy type in-
tegrals, which we will formulate as the following theorem.
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Theorem 5.1.3. Let Γ be an oriented smooth closed contour, and g(z) be
a Hölder class (matrix-valued) function defined on Γ . Consider the Cauchy
type integral,

y(z) =
1

2πi

∫
Γ

g(z′)
z′ − z

dz′ .

Denote Ω± the connected components of the set C \ Γ . Then the following
statements are true.

• y(z) ∈ H(C \ Γ ), y(z)|Ω± ∈ C(Ω̄±), and y(z) → 0 as z → ∞
• The boundary values, y±(z), of the function y(z) satisfy the equations,

y±(z) = ±1
2
g(z) +

1
2πi

v. p.
∫
Γ

g(z′)
z′ − z

dz′ , z ∈ Γ , (5.22)

where

v. p.
∫
Γ

g(z′)
z′ − z

dz′ ≡ lim
ε→0

∫
Γε

g(z′)
z′ − z

dz′, Γε = Γ \ (Γ ∩ {|z′ − z| < ε}),

is the principal value of the Cauchy integral
∫
Γ g(z

′)/(z′ − z) dz′, z ∈ Γ .
• (corollary of (5.22))

y+(z) − y−(z) = g(z), z ∈ Γ. (5.23)

The proof of these classical facts can be found, e.g., in the monograph [30].
We also note that in our proof of Thm. 5.1.1 above, we have practically proven
this lemma in the case when g(z) is analytic in the neighborhood of Γ .

Thm. 5.1.3 admits, after proper modifications of its statements, the natu-
ral, although nontrivial generalizations to the cases of the piece-wise smooth
contours, the contours with the end points and to the functions g(z) belong-
ing to the Lp spaces (see references above). We will discuss in more detail
these generalizations when we need them. We shall call the pair “contour–
function” and admissible pair, if, with proper modifications, the statements
of Thm. 5.1.3 hold.

Corollary 5.1.1. Given an admissible pair (Γ, g(z)) the additive Riemann–
Hilbert problem,

• y(z) ∈ H(C \ Γ )
• y+(z) = y−(z) + g(z), z ∈ Γ
• y(z) → 0, z → ∞.

admits an explicit solution in terms of the Cauchy integral,

y(z) =
1

2πi

∫
Γ

g(z′)
z′ − z

dz′ . (5.24)
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Abelian Case. Integral Representations

Assume that the matrices G(z1) and G(z2) commute for all pairs z1, z2 ∈ Γ ,

[G(z1), G(z2)] = 0 , ∀z1, z2 ∈ Γ .

For instance, this is true for the triangular matrices,

G(z) =
(

1 g(z)
0 1

)
, (5.25)

and, of course, in the scalar case, when p = 1. Looking for the solution of
the corresponding RH problem from the same commutative subgroup, we can
apply logarithm and transform the original, multiplicative jump relation into
the additive one,

lnY+(z) = lnY−(z) + lnG(z) .

Hence, we arrive at the following integral representation of the solution of the
RH problem (a)–(c).

Y (z) = exp
{

1
2πi

∫
Γ

lnG(z′)
z′ − z

dz′
}
. (5.26)

In the triangular case (5.25) this formula simplifies to the expression,

Y (z) =
(

1 1/(2πi)
∫
Γ
g(z′)/(z′ − z) dz′

0 1

)
.

It should be noted that there is still a nontrivial technical matter of how
to threat equation (5.26) in more general situation. Even in scalar case, there
is a subtle question of a possibility for the problem to have a non-zero index,
that is, if ∂Γ = 0 and Δ lnG|Γ �= 0. All the same, formula (5.26), after a
suitable modification in the case of nonzero index (see, e.g., [30]), yields a
contour-integral representation for the solution of the RH problem (a)–(c) in
the Abelian case.

Non-Abelian Case. Integral Equations

In the general case, the solution Y (z) of the Riemann–Hilbert problem deter-
mined by the pair

(
Γ,G(z)

)
can be always expressed in terms of its boundary

values on the contour Γ with the help of the following Cauchy-type integrals.

Y (z) = I +
1

2πi

∫
Γ

Y−(z′)(G(z′) − I)
z′ − z

dz′ (5.27)

= I +
1

2πi

∫
Γ

Y+(z′)(I −G−1(z′))
z′ − z

dz′ , z /∈ Γ . (5.28)

Note. These integrals have no singularities at the node points since the cyclic
condition (5.21).
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The proof of (5.27), (5.28) is achieved by observing that each of these
equations is equivalent to the relation,

Y (z) = I +
1

2πi

∫
Γ

Y+(z′) − Y−(z′)
z′ − z

dz′ , z /∈ Γ , (5.29)

which in turn can be shown to be true by application of the Cauchy formula
and the normalization condition Y (z) → I as z → ∞. We will demonstrate
this procedure in the two particular examples of the contour Γ . Any other
admissible contours can be treated in a similar way.

Case 1. Let Γ be a closed simple contour as indicated in Fig. 5.5. Observe
that

Γ = ∂Ω+ = −∂Ω− ,

where Ω± are connected components of C \ Γ – see Fig. 5.5. Assume, for
instance, that z ∈ Ω+. Then by Cauchy theorem,

1
2πi

∫
Γ

Y+(z′)
z′ − z

dz′ =
1

2πi

∫
∂Ω+

Y+(z′)
z′ − z

dz′

= res |z′=z Y (z′)
z′ − z

= Y (z) ,

and

1
2πi

∫
Γ

Y−(z′)
z′ − z

dz′ = − 1
2πi

∫
∂Ω−

Y−(z′)
z′ − z

dz′

= − res |z′=∞
Y (z′)
z′ − z

= I ,

where in the last equation we have taken into account the normalization con-
dition Y (z) → I, z → ∞ which in the closed contour case becomes just the
relation Y (∞) = I. Substitution of these two equations into (5.29) makes the
latter an identity.

If z ∈ Ω− we would have instead

1
2πi

∫
Γ

Y+(z′)
z′ − z

dz′ =
1

2πi

∫
∂Ω+

Y+(z′)
z′ − z

dz′ = 0

Ω+ Ω−

Γ
z
.

Fig. 5.5. The contour and the domains of Case 1
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and

1
2πi

∫
Γ

Y−(z′)
z′ − z

dz′ = − 1
2πi

∫
∂Ω−

Y−(z′)
z′ − z

dz′

= − res |z′=z Y (z′)
z′ − z

− res |z′=∞
Y (z′)
z′ − z

= −Y (z) + I ,

and (5.29) again follows.

Case 2. Let Γ be an unbounded piece-wise smooth contour as indicated in
Fig. 5.6. Denote the right-hand side of (5.27) as Ỹ (z). Our aim is to show
that Y (z) = Ỹ (z). To this end we first observe that

Ỹ (z) = I +
1

2πi

∫
Γ

Y−(z′)(G(z) − I)
z′ − z

dz′ ≡ I +
1

2πi

∫
Γ

Y+(z′) − Y−(z′)
z′ − z

dz

= lim
R→∞

ỸR(z) ,

where

ỸR(z) = I +
1

2πi

∫
ΓR

Y+(z′) − Y−(z′)
z′ − z

dz,

and ΓR is the R–cut-off of the contour Γ depicted in Fig. 5.7. Introducing the
big circle CR = CR1 + CR2 (see Fig. 5.7 again), the formula for ỸR(z) can be
rewritten as the relation,

..

Γ2

Γ4Γ1

Γ5

Γ3

Fig. 5.6. The contour and the domains of Case 2
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Γ1
R Γ4

Γ5

Γ2

Γ3
R

R−R

C1
R

C2
R

Ω+

Ω−

Ω−

Ω+

Fig. 5.7. The contour ΓR

ỸR(z) = I +
{

1
2πi

∫
ΓR

1

Y+(z′)
z′ − z

dz′ +
1

2πi

∫
Γ2

Y+(z′)
z′ − z

dz′

+
1

2πi

∫
ΓR

3

Y+(z′)
z′ − z

dz′ +
1

2πi

∫
CR

1

Y (z′)
z′ − z

dz′
}

+
{
− 1

2πi

∫
Γ2

Y−(z′)
z′ − z

dz′ +
1

2πi

∫
Γ4

Y+(z′)
z′ − z

dz′
}

+
{
− 1

2πi

∫
Γ4

Y−(z′)
z′ − z

dz′ +
1

2πi

∫
Γ5

Yt(z′)
z′ − z

dz′
}

+
{
− 1

2πi

∫
ΓR

1

Y−(z′)
z′ − z

dz′ − 1
2πi

∫
Γ5

Y−(z′)
z′ − z

dz′

− 1
2πi

∫
ΓR

3

Y−(z′)
z′ − z

dz′ +
1

2πi

∫
CR

2

Y (z′)
z′ − z

dz′
}

− 1
2πi

∫
CR

Y (z′)
z′ − z

,

which in turn is transformed to the equation
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ỸR(z) = I +
1

2πi

∫
∂Ω+

Y+(z′)
z′ − z

dz′ +
1

2πi

∫
∂Ω−

Y+(z′)
z′ − z

dz′ − 1
2πi

∫
CR

Y (z′)
z′ − z

.

In this last equation, the domains Ω± are indicated in Fig. 5.7 and Y+(z)
means the boundary value of Y (z) taking from the inside of the respective
domain. The normalization condition, Y (z) → I, as z → ∞, implies that the
integral over the circle CR tends to I. At the same time, every z, which is not
on Γ , belongs either to Ω+ or to Ω− for all sufficiently large R. Therefore, in
virtue of the Cauchy theorem the sum of the first two integrals equals Y (z)
and hence ỸR(z) = Y (z) for all sufficiently large R. This in turn implies that

Ỹ (z) = lim
R→∞

ỸR(z) = Y (z),

as needed.

The arguments which has been just used can be in fact applied to a general
admissible contour Γ . Indeed, any contour Γ , after perhaps re-orrientation of
some of its parts and addition some new parts accompanied with the trivial
jump matrices, can be made to so-call full contour. The latter means that
C \ Γ = Ω+ ∪ Ω− where Ω± are disjoint, possibly multiply-connected open
sets such that Γ = ∂Ω+ = −∂Ω−. Therefore, (5.29) can be always re-written
as

Y (z) = I +
1

2πi

∫
∂Ω+

Y+(z′)
z′ − z

dz′ +
1

2πi

∫
∂Ω−

Y+(z′)
z′ − z

dz′ , (5.30)

where Y+(z) means the boundary value of Y (z) from the inside of the respec-
tive domain. Introducing the R–cut-off of the contour Γ and the big circle
CR, we see that the right-hand side of (5.30) is equal to

I + lim
R→∞

{
1

2πi

∫
∂ΩR

+

Y+(z′)
z′ − z

dz′ +
1

2πi

∫
∂ΩR

−

Y+(z′)
z′ − z

dz′ − 1
2πi

∫
CR

Y (z′)
z′ − z

}
,

which is in virtue of the Cauchy theorem and the normalization condition at
z = ∞ coincide with Y (z).

Corollary. The solution of the RH problem admits the representation:

Y (z) = I +
1

2πi

∫
Γ

ρ(z′)(G(z′) − I)
z′ − z

dz′ z /∈ Γ (5.31)

where ρ(z) ≡ Y−(z) satisfies the integral equation

ρ(z) = I +
1

2πi

∫
Γ

ρ(z′)(G(z′) − I)
z′ − z−

dz′

≡ I + (C−[ρ(G− I)])(z), z ∈ Γ, (5.32)

(C±f)(z) = lim
z̃→z±

∫
Γ

f(z′)
z′ − z̃

dz′

2πi
,

and z̃ → z± denotes the non-tangential limit from the ± side of Γ , respectively.
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5.1.3.1 L2-boundedness of C± and a small-norm theorem

Theorem 5.1.4. Let f ∈ Lp(Γ, |dz|), 1 ≤ p < ∞. Then the following state-
ments are true.

• (C±f)(z), as defined in (5.32), exists for z ∈ Γ a.e.
• Assume, in addition, that 1 < p < ∞. Then

‖C±f‖|Lp(Γ ) ≤ cp‖f‖|Lp(Γ ) (5.33)

for some constant cp. In other words, the Cauchy operators C+ and C− are
bounded in the space Lp(Γ ) for all 1 < p < ∞ and, in particular, they are
bounded in L2(Γ ).

• As operators in Lp(Γ ), 1 < p < ∞, the Cauchy operators C± satisfy the
relation (the Plemelj–Sokhotskii formulae for Lp),

C± = ± 1
21− 1

2H, (5.34)

and (hence)
C+ − C− = 1. (5.35)

Here, 1 denotes the identical operator in Lp and H is the Hilbert transform,

(Hf)(z) = v. p.
∫
Γ

f(z′)
z − z′

dz′

πi
.

This theorem summarizes the basic functional analytic properties of the
Cauchy operators C± which we will need. We refer the reader to the mono-
graphs [8,39] for the proofs of the theorem’s statements. The most important
for us is the L2 -boundedness of the Cauchy operators. The next theorem is
a direct corollary of this crucial property, and it plays a central technical role
in the asymptotic aspects of the Riemann–Hilbert method.

Theorem 5.1.5. Assume that the jump matrix G(z) depends on an extra pa-
rameter t, and that the matrix G(z) is close to the unit matrix, as t → ∞.
More precisely, we assume that

‖G− I‖L2(Γ )∩L∞(Γ ) <
C

tε
, t ≥ t0 , ε > 0 . (5.36)

Then, for sufficiently large t, the Riemann–Hilbert problem determined by the
pair (Γ,G) is uniquely solvable, and its solution Y (z) ≡ Y (z, t) satisfies the
following uniform estimate.

‖Y (z, t) − I‖ < C

(1 + |z|1/2)tε , z ∈ K , t ≥ t1 ≥ t0 , (5.37)

where K is a closed subset of CP 1 \ Γ satisfying,
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dist{z;Γ}
1 + |z| ≥ c(K) , ∀z ∈ K .

If, in addition,

‖G− I‖L1(Γ ) <
C

tε
, (5.38)

then |z|1/2 in the right-hand side of (5.37) can be replaced by |z|:

‖Y (z, t) − I‖ < C

(1 + |z|)tε , z ∈ K , t ≥ t1 ≥ t0 , (5.39)

Proof. We shall use the integral equation (5.32). which can be rewritten as
the following equation in L2(Γ ):

ρ0(z, t) = F (z, t) + K[ρ0](z, t) , z ∈ Γ , (5.40)

where

ρ0(z, t) := ρ(z, t) − I ,

F (z, t) =
1

2πi

∫
Γ

G(z′, t) − I

z′ − z−
dz′ ≡ C−(G− I)(z, t) ,

K[ρ0](z, t) =
1

2πi

∫
Γ

ρ0(z′, t)(G(z′, t) − I)
z′ − z−

dz′ ≡ C−(ρ0(G− I))(z, t) .

Due to estimate (5.36) on G− I and the boundedness of the Cauchy operator
C− in the space L2(Γ ), it follows that F and K satisfy the estimates

‖F‖L2 ≤ ‖C−‖L2 · ‖G− I‖L2 <
C

tε
,

‖K‖L2 ≤ ‖C−‖L2 · ‖G− I‖L∞ <
C

tε
,

This proves that the integral operator K is a contraction, thus the solution
ρ0 of (5.40) exists, and, moreover, it satisfies

‖ρ0‖L2 ≤ 2‖F‖L2 ≤ C

tε
, t ≥ t1 ≥ t0 .

This in turn implies the solvability of the Riemann–Hilbert problem. In addi-
tion, using the integral representation (5.31) we find

‖Y (z, t) − I‖ ≤
∥∥∥∥
∫
Γ

I −G(z′, t)
z′ − z

dz′
∥∥∥∥+

∥∥∥∥
∫
Γ

ρ0(z′, t)
(
I −G(z′, t)

)
z′ − z

dz′
∥∥∥∥

≤ ‖I −G‖L2

√∫
Γ

dz′

|z′ − z|2 +
1

dist{z, Γ}‖I −G‖L2‖ρ0‖L2

≤ C

(1 + |z|1/2)tε , t ≥ t1 ≥ t0 ,
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for z belonging to a subset K. This proves the estimate (5.37). If in addition
we have (5.38), then the above estimation of ‖Y (z, t)− I‖ can be modified as

‖Y (z, t) − I‖ ≤ 1
dist{z, Γ}

(‖I −G‖L1 + ‖I −G‖L2‖ρ0‖L2

)
,

and the improved estimate (5.39) follows. The theorem is proven.

It should be noticed that in all our applications, whenever we arrive at a
jump matrix which is close to identity it will always be accompanied with the
both, L2∩L∞ and L1 - norm inequalities (5.36) and (5.38)). That is, we shall
always have estimate (5.39) for the Riemann–Hibert problems whose jump
matrices are close to identity.

Two Final Remarks

Remark 5.1.1. The following formal arguments show that the Riemann–
Hilbert representation of the orthogonal polynomials (as well as similar rep-
resentations in the general theory of integrable systems) can be treated as a
non-Abelian analog of the integral representations. Indeed, given any contour
integral, ∫

Γ

w(z) dz ,

it can be expressed as the following limit.
∫
Γ

w(z) dz = −2πi lim
z→∞ zY12(z) ,

where Y (z) is the solution of the following 2 × 2 Abelian Riemann–Hilbert
problem,

• Y (z) ∈ H(C \ Γ );
• Y+(z) = Y−(z)

(
1 w(z)
0 1

)
;

• Y (z) �→ I, z → ∞.

Remark 5.1.2. Let us introduce the function

Ψ(z) = Y (z) exp
(
−NV (z)σ3

2

)
.

Then in terms of this function, the orthogonal polynomial Riemann–Hilbert
problem (1)–(3) can be re-written as follows,

(1′) Ψ(z) ∈ H(C \ R)
(2′) Ψ+(z) = Ψ−(z) ( 1 1

0 1 ), z ∈ R.
(3′) Ψ(z) =

(
I +O(1/z)

)
exp(−NV (z)σ3/2 + n ln zσ3), z → ∞.
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The principal feature of this RH problem is that its jump matrix is constant
with respect to all the parameters involved. By standard arguments of the
Soliton theory, based on the Liouville theorem, this implies that the function
Ψ(z) ≡ Ψ(z, n, tj) satisfies the following system of linear differential-difference
equations. ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ψ(z, n+ 1) = U(z)Ψ(z, n)
∂Ψ

∂z
= A(z)Ψ(z)

∂Ψ

∂tj
= Vj(z)Ψ(z)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

“Lax-pair”

Here, U(z), A(z), and Vk(z) are polynomial on z (for their exact expressions
in terms of the corresponding hn see [10,29]). The first two equations consti-
tute the Lax pair for the relevant Freud equation, i.e., the nonlinear differ-
ence equation on the recursive coefficients, Rn = hn/hn−1. The compatability
conditions of the third equations with the different j generate the KP-type
hierarchy of the integrable PDEs; the compatability condition of the second
and the third equations produces the Schlesinger-type systems and generate
the Virasoro-type constraints; the compatability condition of the first and the
third equations is related to the Toda-type hierarchy and vertex operators.
For more on this very important algebraic ramifications of the random matrix
theory see [1, 47, 48] and the lectures of M. Adler and P. van Moerbeke.

The linear system above allows to treat the RH problem (1)–(3) as an in-
verse monodromy problem for the second, i.e., z-equation, and use the isomon-
odromy method [37] from Soliton Theory for the asymptotic analysis of the
orthogonal polynomials. This was first done in [28, 35]. At that time though
there were some lack of mathematical rigor in our analysis. These gaps were
filled later on with the advance of the NSDM of Deift and Zhou for oscillatory
RH problems.

There are two closely related though rather different in a number of key
points ways of the asymptotic analysis of the problem (1)–(3). The first one
has been developed in [4, 5], and it represents an advance version of the
original isomonodromy approach of [28, 35]. It uses an a priori information
about the behavior of the parameters hn obtained from the formal analy-
sis of the Lax pair; indeed, this approach goes back to the 1970s pioneering
works of Zakharov and Manakov on the asymptotic analysis of integrable sys-
tems (see survey [17]). The second method has been suggested by P. Deift,
T. Kriecherbauer, K. T-R McLaughlin, S. Venakides, and X. Zhou in [19],
and it constitutes an extension of the original Deift-Zhou approach to the RH
problems of the types (1)–(3). The very important advantage of the DKMVZ-
scheme is that it does not use any a priori info.

In these lectures, we will present the second, i.e., the DKMVZ approach,
considering a quartic potential V (z) = t1z

2 + t2z
4 as a case study. This will

allow us to keep all the calculations on the very elementary level. General case
and many more on the matter will be presented in the lectures of Pavel Bleher
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and Ken McLaughlin. Few remarks about the first approach, i.e., about the
method of [4, 5], will be made at the end of Section 5.4.3.

5.2 The Asymptotic Analysis of the RH Problem. The
DKMVZ Method

5.2.1 A Naive Approach

But for the normalization condition (3), the RH problem (1)–(3) looks almost
as an Abelian problem, so that one might be tempted to make the “obvious”
transformation,

Y (z) �→ Φ(z) := Y (z)z−nσ3 (5.41)

and try to make use of the integral representation (5.26). Indeed, with the
help of change (5.41), the conditions (1)–(3) transforms to the conditions ,

(1′′) Φ(z) ∈ H(C \ R)
(2′′) Φ+(z) = Φ−(z)

(
1 z2ne−NV (z)

0 1

)
, z ∈ R.

(3′′) Φ(z) �→ I, z → ∞.

which look quite “Abelian.” But the price is an extra singularity – the pole of
order n which, as the transformation (5.41) suggests, the function Φ(z) must
have at z = 0. In other words, the properties (1′′)–(3′′) has to be supplemented
by the forth property,

(4′′) Φ(z)znσ3 = O(1), z → 0,

which means we have gained nothing compare to the original setting (1)–(3)
of the RH problem.

5.2.2 The g-Function

Rewrite our “naive” formula (5.41) as

Y (z) = Φ(z)eng(z)σ3 g(z) = ln z , (5.42)

and notice that in order to regularize the normalization condition at z = ∞
we do not actually need g(z) ≡ ln z. In fact, what is necessary is to have the
following properties of the function g(z).

(a) g(z) = ln z +O(1/z), z → ∞.
(b) g(z) ∈ H(C \ R).
(c) |g(z)| < CR, |z| < R, ∀R > 0.

Of course, there are infinitely many ways to achieve (a), (b), (c). Indeed,
any function of the form

g(z) =
∫

ln(z − s)ρ(s) ds,
∫

ρ(s) ds = 1 (5.43)
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would do. Let us then try to figure out what else we would like to gain from
the transformation (5.42). To this end let us write down the RH problem in
terms of Φ(z).

Φ+(z) = Φ−(z)
(

en(g−−g+) en(g−+g+− 1
λV )

0 en(g+−g−)

)
λ =

n

N
. (5.44)

Suppose now that the real line R can be divided into the two subsets,

R = J ∪ Jc J = [a, b] ,

in such a way that the boundary values g± of the g-function exhibit the
following behavior.

(d) For z ∈ Jc,
g+ − g− ≡ 2πim1,2

for some integers m1,2 (m1 and m2 correspond to (b,∞) and (−∞, a),
respectively), and

Re
(
g+ + g− − 1

λ
V

)
< 0 .

(e) For z ∈ J ,

g+ + g− − 1
λ
V ≡ 0 ,

and

Re(g+ − g−) ≡ 0 ,
d
dy

Re(g+ − g−)(z + iy)|y=0 > 0 , y ∈ R .

(f) The function
h ≡ g+ − g−

admits the analytic continuation in the lens-shaped region, Ω = Ω1 ∪Ω2,
around the interval J as indicated in Fig. 5.8.

Note that, in virtue of the first identity in (e), condition (f) is satisfied
automatically for any polynomial V (z). In fact, it is valid for any real analytic
V (z).

Ω1

Ω2

C2

C1

ba

Fig. 5.8. The lens-shaped region Ω and the contour Γ
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Postponing the discussion of the existence of such a function g(z), let us
see what these conditions give us.

Denote GΦ ≡ GΦ(z) the Φ-jump matrix. Then, in view of (5.44), property
(d) implies that

GΦ =
(

1 en(g++g−−1/λV )

0 1

)
∼ I (5.45)

as n → ∞ and z ∈ Jc, while from the first condition in (e), we conclude that

GΦ =
(

e−nh(z) 1
0 enh(z)

)

as z ∈ J . We also observe that
(

e−nh(z) 1
0 enh(z)

)
=
(

1 0
enh 1

)(
0 1
−1 0

)(
1 0

e−nh 1

)
. (5.46)

Recall also that the function h(z) admits the analytical continuation in the
region Ω around the interval (a, b); moreover, in view of the second condition
in (e), it satisfies there the inequalities,

Reh(z)

{
> 0 , if Im z > 0
< 0 , if Im z < 0 .

(5.47)

Asymptotic relation (5.45), identity (5.46) and inequalities (5.47) suggest the
final transformation of the original RH problem – the so-called opening of the
lenses. This is a key procedure of the DKMVZ scheme and it is described as
follows.

Let Ω = Ω1 ∪ Ω2 be the lens-shaped region around the interval J in-
troduced above and depicted in Fig. 5.8. Define the function Φ̂(z) by the
equations,

• for z outside the domain Ω,

Φ̂(z) = Φ(z) ;

• for z within the domain Ω1 (the upper lens),

Φ̂(z) = Φ(z)
(

1 0
−e−nh(z) 1

)
;

• for z within the domain Ω2 (the lower lens),

Φ̂(z) = Φ(z)
(

1 0
enh(z) 1

)
.
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With the passing,
Y (z) → Φ(z) → Φ̂(z),

the original RH problem (1)–(3) transforms to the RH problem posed on the
contour Γ consisting of the real axes and the curves C1 and C2 which form
the boundary of the domain Ω,

∂Ω = C1 − C2

(see Fig. 5.8). For the function Φ̂(z) we have,

(1′′′) Φ̂(z) ∈ H(C \ Γ )
(2′′′) Φ̂+(z) = Φ̂−(z)GΦ̂(z), z ∈ Γ .
(3′′′) Φ̂(z) �→ I, z → ∞.

The jump matrix GΦ̂(z), by virtue of the definition of Φ̂(z) is given by the
relations,

• for z real and outside of the interval [a, b],

GΦ̂(z) =
(

1 en(g++g−−1/λV )

0 1

)
;

• for z on the curve C1,

GΦ̂(z) =
(

1 0
e−nh 1

)
;

• for z on the curve C2,

GΦ̂(z) =
(

1 0
enh 1

)
;

• for z on the interval [a, b],

GΦ̂(z) =
(

0 1
−1 0

)
.

For z ∈ R \ [a, b], the matrix GΦ̂(z) coincide with the jump matrix GΦ(z) and
hence, in virtue of the property (d) of the g-function, the asymptotic relation
(cf. (5.45)),

GΦ̂(z) ∼ I , n → ∞,

holds. Simultaneously, the inequalities (5.47) implies that

GΦ̂(z) ∼ I , n → ∞ ,

for all z ∈ C1 ∪ C2, z �= a, b. Therefore, one could expect that the Φ̂-RH
problem (1′′′)—(3′′′) reduces asymptotically to the following RH problem with
the constant jump matrix:

Φ̂(z) ∼ Φ∞(z), n → ∞, (5.48)
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(1∞) Φ∞(z) ∈ H(C \ [a, b]).
(2∞) Φ∞

+ (z) = Φ∞
− (z)

(
0 1−1 0

)
, z ∈ (a, b).

(3∞) Φ∞(∞) = I.

The important fact is that the RH problem 1∞−3∞ is an Abelian one and
hence can be solved explicitly. Indeed, diagonalizing the jump matrix from 2∞

we arrive at the relation

(
0 1
−1 0

)
=
(

1 1
i −i

)(
i 0
0 −i

)(
1 1
i −i

)−1

.

This equation suggests the substitution,

Φ∞(z) =
(

1 1
i −i

)
X∞(z)

(
1 1
i −i

)−1

, (5.49)

which, in turn, transforms the problem 1∞ − 3∞ to the RH problem with the
diagonal jump matrix,

(1∞′) X∞(z) ∈ H(C \ [a, b]);
(2∞′) X∞

+ = X∞−
(
i 0
0 −i

)
, z ∈ (a, b);

(3∞′) X∞(z)(∞) = I.

The solution of this problem is easy:

X∞(z) =
(
β(z) 0

0 β−1(z)

)
, β(z) =

(
z − b

z − a

)1/4

.

Here, the function β(z) is defined on the z-plane cut along the interval [a, b],
and its branch is fixed by the condition,

β(∞) = 1.

For the original function Φ∞(z) this yields the representation,

Φ∞(z) =
( (

β(z) + β−1(z)
)
/2

(
β(z) − β−1(z))

/
(2i)

−(β(z) − β−1(z)
)
/(2i)

(
β(z) + β−1(z)

)
/2

)
(5.50)

Remark. Equation (5.50) can be obtained directly from the general formula
(5.26) for the solutions of Abelian RH problems.

Now, we have to address the following two issues.

I. Existence and construction of g-function.
II. Justification of the asymptotic statement (5.48).
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5.2.3 Construction of the g-Function

First let us provide ourselves with a little bit of flexibility. Observe that the
normalization condition at z = ∞ allows to generalize (5.42) as follows:

Y (z) = e(nl/2)σ3Φ(z)en(g(z)−l/2)σ3 , l = constant . (5.51)

This implies the following modification of the Φ-jump matrix (cf. (5.44)).

GΦ =
(

e−nh en(g++g−−(1/λ)V−l)

0 enh

)
, h ≡ g+ − g−.

Hence, the conditions (d), (e) on the g-function can be relaxed. Namely, the
properties of the difference g+ − g− stay the same, while for the sum g+ + g−
we now only need that

Re
(
g+ + g− − 1

λ
V − l

)
< 0 on Jc

g+ + g− − 1
λ
V − l = 0 on J

for some constant l .

Let us try to find such g(z). To this end, it is easier to work with g′(z), so
that for g′(z) we have:

g′(z) ∈ H(C \ [a, b])

g′+ + g′− =
1
λ
V ′ z ∈ (a, b) (5.52)

g′(z) =
1
z

+ · · · , z → ∞ (5.53)

(Note: a, b are also unknown!).
Put

ϕ(z) =
g′(z)√

(z − a)(z − b)
,

where
√

(z − a)(z − b) is defined on the z-plane cut along the interval [a, b]
and fixed by the relation,√

(z − a)(z − b) ∼ z , z → ∞ .

Then, (5.52) transforms into the additive RH problem,

ϕ+ − ϕ− =
1
λ

V ′(z)√
(z − a)(z − b)+

,

which, by virtue of the Plemelj–Sokhotskii formulae, yields the equation,

ϕ(z) =
1

2πiλ

∫ b

a

V ′(s)√
(s− a)(s− b)+

ds
s− z
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and hence

g′(z) =

√
(z − a)(z − b)

2πiλ

∫ b

a

V ′(s)√
(s− a)(s− b)+

ds
s− z

. (5.54)

Taking into account the asymptotic condition (5.53), we also obtain the system
on a, b: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∫ b

a

V ′(s)√
(s− a)(s− b)+

ds = 0

i
2πλ

∫ b

a

sV ′(s)√
(s− a)(s− b)+

ds = 1.

(5.55)

Equations (5.54) and (5.55) produces the needed g-function, provided the
inequality part of the conditions (d)–(e) satisfies, i.e., provided

Re
(
g+ + g− − 1

λ
V − l

)
< 0 on Jc

d
dy

Re(g+ − g−)(z + iy)|y=0 > 0 :, y ∈ R on J .

(5.56)

In what follows, we will show how the conditions (5.55), (5.56) can be realized
for quartic potential,

V (z) =
t

2
z2 +

κ

4
z4 , κ > 0 . (5.57)

The evenness of V (z) suggests the a priori choice

b = −a ≡ z0 > 0 .

Then, the first equation in (5.55) is valid automatically. Instead of the direct
analysis of the second relation in (5.55), let us transform expression (5.54) to
an equivalent one, which can be obtain by the actual evaluation of the integral
in (5.54). Indeed, we have

∫ z0

−z0

V ′(s)√
(s2 − z2

0)+

ds
s− z

=
1
2

∫
C0

V ′(s)√
s2 − z2

0

ds
s− z

= πi ress=z
V ′(s)√

s2 − z2
0(s− z)

+ πi ress=∞
V ′(s)√

s2 − z2
0(s− z)

= πi
V ′(z)√
z2 − z2

0

− πi
(
κz2 +

κ

2
z2
0 + t

)
.

Here, C0 is the clos]ed contour around the interval [−z0, z0] such that the both
points z and ∞ lie to the left of C0. Hence,
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g′(z) =
1
2λ

V ′(z) − 1
2λ

(
t+ κz2 +

κ

2
z2
0

)√
z2 − z2

0 (5.58)

Finally, z0 is determined from the condition,

g′(z) �→ 1
z

+ · · · , z → ∞ ,

which implies the equations,

3κ
16λ

z4
0 +

t

4λ
z2
0 = 1

z4
0 +

4t
3κ

z2
0 − 16λ

3κ
= 0.

Solving these equations, we obtain

z2
0 = − 2t

3κ
+

√
4t2

gκ2
+

16λ
3κ

=
−2t+ 2

√
t2 + 12xλ

3κ
.

Our (almost) final result (for V (z) = (t/2)z2 + (κ/4)z4) then is:

g(z) = − 1
λ

∫ z

z0

(b0 + b2s
2)
√
s2 − z2

0 ds +
1
2λ

V (z) +
l

2
, (5.59)

where

z0 =
(−2t+

√
4t2 + 48κλ
3κ

)1/2

,

b2 =
κ

2
, b0 =

2t+
√
t2 + 12κλ
6

,

and the constant l is determined from the condition

g(z) = ln z +O

(
1
z

)
, z → ∞ .

Remark 5.2.1. A similar evaluation of the integral in (5.54) for an arbitrary
polynomial potential V (z) yields the following representation for the “one
interval” g-function in the general case,

g′(z) =
1
2λ

V ′(z) +Q(z)
√

(z − a)(z − b),

where Q(z) is a polynomial.
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The last thing we have to perform is to check the inequality conditions
(5.56) and the inclusion 1/(2πi)(g+ − g−) ∈ Z on Jc. We first notice that

g++g−− 1
λ
V−l =

⎧⎪⎪⎨
⎪⎪⎩

− 2
λ

∫ z

z0

(b0 + b2s
2)
√
s2 − z2

0 ds z ∈ (z0,+∞)

− 2
λ

∫ z

−z0
(b0 + b2s

2)
√
s2 − z2

0 ds z ∈ (−∞,−z0)

⎫⎪⎪⎬
⎪⎪⎭

< 0

for all x > 0 , t ∈ R ,

and also
g+ − g− = 0 on (z0,∞)

while

g+ − g− = −
∫
C0

dg(z) = − resz=∞ dg(z) = 2πi on (−∞,−z0) .

Hence, the first inequality in (5.56) and the inclusion n/(2πi)(g+ − g−) ∈ Z

on Jc, are satisfied. Assume now that z ∈ (−z0, z0). We have that

h(z) = g+(z) − g−(z) = −2i
λ

∫ z

z0

(b0 + b2s
2)
√
z2
0 − s2 ds ,

and
d
dy

Reh(z + iy)
∣∣∣∣
y=0

=
2
λ

(b0 + b2z
2)
√
z2
0 − z2 > 0 ,

for all z ∈ (−z0, z0), provided that

b0 > 0 , that is, 2t+
√
t2 + 12κλ > 0 . (5.60)

Condition (5.60) is always satisfies in the case t > 0. For negative t, one needs,

λ >
t2

4κ
, (5.61)

in order to secure (5.60). Inequality (5.61) constitutes the one-cut condition
for the quartic potential, t < 0.

Conclusion. If

V (z) =
tz2

2
+
κ

4
z4

κ > 0 and t > 0 , or t < 0 , λ >
t2

4κ

(5.62)

then a one-cut g function exists and is given by (5.59).
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Remark 5.2.2. If t < 0 and λ < t2/(4κ), then the determining g-function
condition, i.e., condition (e), can be realized if the set J is taken to be the
union of two intervals,

J = (−z2,−z1) ∪ (z1, z2) , 0 < z0 < z2

(the symmetric choice of J reflects again the evenness of V (z)). Indeed, assum-
ing this form of J , the basic g-function relation, i.e., the scalar RH problem,

g+ + g− − 1
λ
V − l = 0 on J ,

would yield the following replacement of the (5.58).

g′(z) =
1
2λ

V ′(z) − κ

2λ
z
√

(z2 − z2
1)(z2 − z2

2) (5.63)

The asymptotic condition, g′(z) ∼ 1/z, z → ∞, allows, as before, to determine
the end points of the set J . In fact, we have that

z1,2 =
(−t∓ 2

√
λκ

κ

)1/2

.

With the suitable choice of the constant of integration l/2, the g-function is
now given by the formula,

g(z) = − κ

2λ

∫ z

z2

s
√

(s2 − z2
1)(s2 − z2

2) ds +
1
2λ

V (z) +
l

2
.

One can check that this function satisfies all the conditions (a)–(f) (the (d)
and (e) are “l’-modified) except the first relation in (d) is replaced now by the
equations,

g+ − g− ≡ 0 , on (z2,+∞) ,
g+ − g− ≡ πi , on (−z1, z1) ,
g+ − g− ≡ 2πi , on (−∞,−z2) .

This leads to the necessity to introduce in the model Φ∞-RH problem an extra
jump across the interval (−z1, z1) where the jump matrix equals (−1)nI. The
model RH problem is still Abelian, and it admits an elementary solution ( see
also [4] where this model problem is implicitly discussed).

Remark 5.2.3. For arbitrary real analytic V (z), the set J is always a finite
union of disjoint intervals (see [18]; see also the lectures of Pavel Bleher in
this volume). Similar to the two-cut case outlined in previous remark, the
first relation of condition (d) is replaced by the identities,

g+ − g− ≡ iαk, on kth connected component of Jc .

There are no general constraints on the values of the real constants αk, so
that generically the model Φ∞-RH problem is not Abelian. Nevertheless, it
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still can be solved explicitly in terms of the Riemann theta-functions with the
help of the algebraic geometric methods of Soliton theory (see [19]; see also
the lectures of Ken McLaughlin and Pavel Bleher in this volume)

Remark 5.2.4. The g-function is closely related to the another fundamental
object of the random matrix theory. Indeed, the corresponding measure (see
(5.43)), dμeq(s) ≡ ρ(s) ds, is the so-called equilibrium measure, which mini-
mizes the functional,

IV (μ) = −
∫∫

R2
ln |s− u| dμ(s) dμ(u) +

∫
R1
V (s) dμ(s),

defined on the Borel probability measures (
∫

R1 dμ(s) = 1) on the real lines.
Simultaneously, dμeq(s) is the limiting eigenvalue density and the limiting
density of the zeros of the associated orthogonal polynomials. We refer the
reader to [18, 43] for more details (see also the lectures of Ken McLaughlin
and Pavel Bleher in this volume).

5.3 The Parametrix at the End Points. The Conclusion
of the Asymptotic Analysis

The existence of the g-function alone does not prove the asymptotic relation
(5.48). Indeed, the asymptotic conditions,

GΦ̂(z)|C1∪C2 ∼ I, GΦ̂(z)|R\[−z0,z0] ∼ I,

which we used to justify (5.48) are not valid at the end points ±z0. Therefore,
the jump matrix GΦ̂(z) is not L∞-close to GΦ∞(z) and the general Theo-
rem 5.1.5 of Lecture 5.1 is not applicable. The parametrix solutions near the
end points are needed.

5.3.1 The Model Problem Near z = z0

Let B be a small neighborhood of the point z0. Observe that

g+ + g− − 1
λ
V − l = − 2

λ

∫ z

z0

(b0 + b2s
2)
√
s2 − z2

0 ds

= −c0(z − z0)
3
2 + · · · , (5.64)

as z ∈ B, z > z0. Simultaneously,

h = − 2
λ

∫ z

z0

(b0 + b2s
2)
√
s2 − z2

0 ds = −c0(z − z0)
3
2 + · · · , (5.65)

as z ∈ C1 ∩ B and
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h =
2
λ

∫ z

z0

(b0 + b2s
2)
√
s2 − z2

0 ds = c0(z − z0)
3
2 + · · · , (5.66)

as z ∈ C2 ∩ B. Here,

c0 =
4
3λ

(b0 + b2z
2
0)
√

2z0 =
2
3λ

√
2z0t2 + 24z0κ,

and the function (z − z0)3/2 is defined on the z-plane cut along (−∞, z0] and
fixed by the condition,

(z − z0)3/2 > 0, z0 > 0.

Equations (5.64)–(5.66) suggest the introduction of the following local vari-
able,

w(z) =
(

3n
4

)2/3( 2
λ

∫ z

z0

(b0 + b2s
2)
√
s2 − z2

0 ds
)2/3

≡
(

3n
4

)2/3(
−2g(z) +

1
λ
V (z) + l

)2/3

. (5.67)

Since w(z) ∼ n2/3c1(z−z0) with c1 > 0, it follows that equation (5.67) indeed
define in the neighborhood B a holomorphic change of variable:

B �→ Dn(0) ≡ {w : |w| < n2/3c1ρ} , 0 < ρ <
z0
2
. (5.68)

The action of the map z → w on the part of the contour Γ of the Φ̂ - RH
problem (1′′′)–(3′′′), which is inside of the neighborhood B, is indicated in
Fig. 5.9.

Observe that the jump matrix GΦ̂ inside the neighborhood B can be writ-
ten down in the form,

GΦ̂(z) = exp(− 2
3w

3/2(z)σ3)S exp(2
3w

3/2(z)σ3) ,

where the piecewise constant matrix S is given by the equations,

w=w(z)

2π
3

Ω1
Ω2

Ω3
Ω3

c1 ρn
2
3

0z0

1
2

3
4

Fig. 5.9. The map z → w
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S =
(

1 1
0 1

)
≡ S1 , z ∈ [z0,+∞) ∩ B ,

S =
(

1 0
1 1

)
≡ S2 , z ∈ C1 ∩ B ,

S =
(

0 1
−1 0

)
≡ S3 , z ∈ (−∞,−z0] ∩ B ,

S =
(

1 0
1 1

)
≡ S4 , z ∈ C2 ∩ B .

Therefore, the map, z → w, transforms the B - part of the Φ̂-RH problem
(1′′′)–(3′′′) into the following model RH problem in the w-plane.

(10) Y 0(w) ∈ H(C \ Γw)
(20) Y 0

+(w) = Y 0
−(w) exp(− 2

3w
3/2σ3)S exp(2

3w
3/2σ3), w ∈ Γw

(30) Y 0(w) = w−σ3/4
(

1/2 i/2
−1/2 i/2

) (
I +O(1/w)

)
, w → ∞.

Here, the contour Γw is the union of the four rays,

Γw =
⋃
k=1

Γk,

which are depicted in Fig. 5.10. The branch of the function w1/2 is define on
the w-plane cut along (−∞, 0] and fixed by the condition w1/2 > 0 as w > 0.

The normalization condition (30), whose appearance has not been ex-
plained yet, comes from the fact that we want the “interior” function Y 0(w(z))

2π
3

Γ1

Γ2

Γ3

Γ4

Ω1

Ω2

Ω3

Ω4

S1

S2

S3

S4

Fig. 5.10. The model RH problem at the end point z0
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to match asymptotically, as n → ∞, the “exterior” function Φ∞(z) at the
boundary of B. In other words, to specify the behavior of Y 0(w) as w → ∞,
we must look at the behavior of Φ∞(z) at z = z0. To this end, we notice that
the function Φ∞(z) admits the following factorization (cf. (5.49)):

Φ∞(z) =
(

1 −1
−i −i

)(
β−1(z) 0

0 β(z)

)(
1/2 i/2
−1/2 i/2

)

=
(

1 −1
−i −i

)(
(β/w1/4)−1 0

0 β/w1/4

)
w−σ3/4

(
1/2 i/2
−1/2 i/2

)
. (5.69)

Since,

β(z)
w1/4(z)

= (2z0n2/3c1)−1/4 + · · · ≡
∞∑
k=0

bk(z − z0)k , b0 > 0 , |z − z0| < z0 ,

the matrix function,

E(z) =
(

1 −1
−i −i

)(
(β/w1/4)−1 0

0 β/w1/4

)
≡
(

β−1 −β
−iβ−1 −iβ

)
wσ3/4(z) , (5.70)

is holomorphic at z = z0. Therefore we have that

Φ∞(z) = E(z)w−σ3/4

(
1/2 i/2
−1/2 i/2

)
, (5.71)

where the left matrix multiplier, E(z), is holomorphic and invertible in the
neighborhood of z0. Equation (5.71) explains the choice of the normalization
condition at w = ∞ we made in the model problem (10)–(30). The holo-
morphic factor E(z) has no relevance to the setting of the Riemann–Hilbert
problem in the w-plane; it will be restored latter on, when we start actually
assembling the parametrix for Φ̂(z) in B (see (5.75) below).

5.3.2 Solution of the Model Problem

Put
Ψ0(w) := Y 0(w) exp(− 2

3w
3/2σ3) .

The jump condition (20) and the asymptotic condition (30) in terms of the
function Ψ0(w) become

(a) Ψ0
+(w) = Ψ0−(w)S, w ∈ Γw,

and

(b) Ψ0(w) = w−σ3/4
(

1/2 i/2
−1/2 i/2

) (
I +O(1/w)

)
exp(− 2

3w
3/2σ3), w → ∞,
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respectively. Moreover, if M0 denote the operator of analytic continuation
around the point w = 0, we see that

M0[Ψ0] = Ψ0S−1
1 S4S3S2 = Ψ0

(
1 −1
0 1

)(
1 0
1 1

)(
0 1
−1 0

)(
1 0
1 1

)

= Ψ0I = Ψ0 . (5.72)

Let Ωk, k = 1, 2, 3, 4 be the connected components of C \ Γw (see Fig. 5.10).
Then, monodromy relation (5.72) means that

(c) Ψ0|Ωk
admits the analytic continuation to the whole C as an entire func-

tion.

It is also worth noticing, that

(d) detΨ0(w) ≡ 2i �= 0.

We are now ready to proceed with one of the most fundamental though
quite simple methodological ingredients of the classical monodromy theory of
linear systems as well as of the modern theory of integrable systems. That
is, we are going to consider the “logarithmic derivative” of the matrix valued
function Ψ0(w),

A(w) :=
dΨ0

dw
(Ψ0)−1 .

Since along each ray Γk the Ψ -jump matrix, S ≡ Sk, is constant, the
matrix valued function A(w) has no jumps across Γ . Indeed, for z ∈ Γk, we
have that,

A+ =
dΨ0

+

dw
(Ψ0

+)−1 =
d(Ψ0−Sk)

dw
(Ψ0

−Sk)
−1

=
dΨ0

−
dw

SkS
−1
k (Ψ0

−)−1 =
dΨ0

−
dw

(Ψ0
−)−1 = A− .

Together with (d), this means that A(w) ∈ H(C \ {0}). From property (c),
it follows that w = 0 is a removable singularity and hence we conclude that
A(w) is an entire function. Simultaneously, from the asymptotic relation (b)
we have:
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A(w) =
dΨ0

dw
(Ψ0)−1

= w−σ3/4

(
1/2 i/2
−1/2 i/2

)(
I +O

(
1
w

))
(−w1/2σ3)

×
(
I +O

(
1
w

))(
1 −1
−i −i

)
wσ3/4 +O

(
1
w

)

= −w1/2w−σ3/4

[(
1/2 i/2
−1/2 i/2

)(
1 −1
i i

)
+O

(
1
w

)]
wσ3/4 +O

(
1
w

)

= −w1/2w−σ3/4

((
0 −1
−1 0

)
+O

(
1
w

))
wσ3/4 +O

(
1
w

)

= w1/2

[(
0 1/

√
w√

w 0

)
+
(

0 0
d/

√
w 0

)
+O

(
1
w

)]
+O

( 1
w

)

=
(

0 1
w + d 0

)
+O

(
1√
w

)
, w → ∞ .

The last equation, together with already established fact of the entirety of
A(w), implies that

A(w) =
(

0 1
w + d 0

)
, ∀w .

In other words, we arrive at the following important statement: The (unique)
solution of the Riemann–Hilbert problem (a)–(b) satisfies (if exists) the fol-
lowing differential equation:

dΨ0

dw
=
(

0 1
w + d 0

)
Ψ0. (5.73)

Here, d is some constant. In fact, in a few lines, we will show that d must be
zero.

Equation (5.73) is a matrix form of the classical Airy equation and hence
is solvable in terms of contour integrals. Indeed, denoting

y(w) =
(
Ψ0(w)

)
1j
, j = 1 or 2 ,

we derive from (5.73) that

y′′ = (w + d)y ,
(
Ψ0(w)

)
2j

= y′(w) .

The first relation is the Airy equation with the shifted argument. Its gen-
eral solution has the exponential behavior as w → ∞ whose characteristic
exponents are

± 2
3 (w + d)3/2 = ±(2

3w
3/2 + dw1/2) +O(w−1/2) .
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Therefore, to reproduce the characteristic exponents of the asymptotic condi-
tion (b) we must assume that in (5.73)

d = 0 .

The above heuristic arguments together with the known asymptotic behav-
ior of the Airy functions in the whole neighborhood of the infinity motivate
the following explicit construction for the solution of the model RH problem
(10) - (30).

Y 0(w) := Ψ0(w) exp(2
3w

3/2σ3) , Ψ0(w) = ΨAi(w)C , (5.74)

where ΨAi(w) and C are given by the explicit formulae,

ΨAi(w) =
(
y0(w) iy1(w)
y′0(w) iy′1(w)

)

y0(w) = Ai(w) :=
1

2πi

∫ i∞

−i∞
exp(1

3z
3 − wz) dz

y1(w) = e−πi/6 Ai(e−2πi/3w) ,

and

C =
√
π

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I w ∈ Ω1(
1 0−1 1

)
w ∈ Ω2(

0 −1
1 1

)
w ∈ Ω3(

1 −1
0 1

)
w ∈ Ω4 .

The indicated choice of the matrix C in the domains Ωk is due to the
known asymptotic behavior of the Airy functions in the neighborhood of the
infinity. In fact, the matrix C is made out of the relevant Stokes multipliers
of the Airy functions in such a way which guarantees that the matrix product
ΨAi(w)C satisfies the asymptotic condition (b) at w = ∞. Therefore, in order
to prove that (5.74) indeed defines the solution of the RH problem (10)–(30),
we only need to check the jump relations (a).

The validity of (a) on the rays Γ1 and Γ2 is obvious. On the ray Γ3 we
have,

Ψ0
+ = Ψ0|Ω2 = ΨAi

(
1 0
−1 1

)
= Ψ0|Ω3

(
1 1
−1 0

)(
1 0
−1 1

)

= Ψ0
−

(
1 1
−1 0

)(
1 0
−1 1

)
= Ψ0

−

(
0 1
−1 0

)
≡ Ψ0

−S3 .

Similarly, on the ray Γ4,

Ψ0
+ = Ψ0|Ω3 = ΨAi

(
0 −1
1 1

)
= Ψ0|Ω4

(
1 1
0 1

)(
0 −1
1 1

)

= Ψ0
−

(
1 1
0 1

)(
0 −1
1 1

)
= Ψ0

−

(
1 0
1 1

)
≡ Ψ0

−S4 .
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This completes the proof of the representation (5.74) for the solution of the
model Riemann–Hilbert problem (10)–(30).

Remark. From the known error-terms for Airy integral we conclude that (b)
could be improved as:

Ψ0(w) = w−σ3/4

(
1/2 i/2
−1/2 i/2

)(
I +O

(
1

w3/2

))
exp(− 2

3w
3/2σ3) w → ∞ .

5.3.3 The Final Formula for the Parametrix

Recalling the holomorphic left multiplier E(z) in (5.71) we define in the neigh-
borhood,

B = w−1
(
Dn(0)

)
,

the parametrix for the solution of our basic Φ̂-RH problem (1′′′)–(3′′′) by the
equation,

Φ0(z) = E(z)Y 0(w(z)) ≡ E(z)ΨAi(w(z))C exp(2
3w

3/2(z)σ3

)
. (5.75)

In this formulas, it is assumed that (cf. Fig. 5.9)

C1 ∩ B = w−1
(
Γ1 ∩Dn(0)

)
, C2 ∩ B = w−1

(
Γ4 ∩Dn(0)

)
.

The neighborhood B is splited into four regions (see again Fig. 5.9)

Bk = w−1
(
Ωk ∩Dn(0)

)
, k = 1, . . . , 4

and the matrix C in (5.75) satisfies the relations,

C =
√
π

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I z ∈ B1(
1 0−1 1

)
z ∈ B2(

0 −1
1 1

)
z ∈ B3(

1 −1
0 1

)
z ∈ B4

The following are two principal properties of the parametrix Φ0(z).

1. Inside B, the jumps of Φ0(z) are exactly the same as of Φ̂(z).
2. On the boundary of B, ∂B we have:

Φ0(z) = Φ∞(z)

(
I +O

(
1
n

))
=

(
I +O

(
1
n

))
Φ∞(z) z ∈ ∂B , n → ∞ .

The second statement follows from formula (5.71) for Φ∞(z), asymptotic
estimate (30) for the model function Y 0(w) (with the improved by O(w−3/2)
error term) and the fact that for z ∈ ∂B we have that
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1
w(z)

= O

(
1

n2/3

)
, n → ∞ .

Finally we notice that, due to the evennes of the potential V (z), both the
solution of the basic Φ̂-RH problem and the model function Φ∞(z) satisfy the
symmetry relation,

Φ̂(z) = σ3Φ̂(−z)σ3 , Φ∞(z) = σ3Φ
∞(−z)σ3 . (5.76)

Therefore, we can avoid a separate analysis of the end point −z0 and produce
a relevant parametrix for the solution Φ̂(z) at this point by the expression,

σ3Φ
0(−z)σ3 .

In the case of general potential V (z), when there is no symmetry relation
which would conviniently connect different end points of the support J of the
equilibrium measure, one has to construct the relevant parametrix to each of
the end points separately, following the patern we have developed above for
the point z0.

5.3.4 The Conclusion of the Asymptotic Analysis

Denote
−B := {z : −z ∈ B} ,

and define the function,

Φ̂as(z) =

⎧⎪⎨
⎪⎩
Φ∞(z) z ∈ C \ (B ∪ (−B)

)
Φ0(z) z ∈ B
σ3Φ

0(−z)σ3 z ∈ −B .

(5.77)

We claim that the exact solution of the Φ̂-RH problem (1′′′)–(3′′′) satisfies the
following uniform estimate,

Φ̂(z) =

(
I +O

(
1

(1 + |z|)n
))

Φ̂as(z) , n → ∞ , z ∈ C . (5.78)

In order to prove (5.78) we consider the matrix ratio

X(z) := Φ̂(z)
(
Φ̂as(z)

)−1

. (5.79)

This function solves the Riemann–Hilbert problem posed on the contour ΓX
depicted in Fig. 5.11. The important feature of this problem is the absence
of any jumps inside the domains B and −B and across the part of the real
line between the boundary curves Cr ≡ ∂B and Cl ≡ ∂(−B). Indeed, the
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cancelling out of the jumps of Φ̂(z) and Φ̂as(z) inside B, −B and across the
indicated part of the real line follows directly from the basic jump properties of
the model functions Φ∞(z) and Φ0(z), and from the symmetry relation (5.76).

The X-jump matrix, GX(z), satisfies the following uniform estimates as
n → ∞.

GX(z) ≡ Φ∞(z)
(

1 exp
(
n(g+ + g− − (1/λ)V − l)

)
0 1

)(
Φ0(z)

)−1

= I +O
(
exp(−cnz2)

)
, c > 0 , z ∈ Γl ∪ Γr ,

GX(z) ≡ Φ∞(z)
(

1 0
e∓nh 1

)(
Φ∞(z)

)−1

= I +O(e−cn) , c > 0 , z ∈ Cu,d ,

GX(z) ≡ Φ0(z)
(
Φ∞(z)

)−1 = I +O

(
1
n

)
, z ∈ Cr ,

GX(z) ≡ σ3GX(−z)σ3 = I +O

(
1
n

)
, z ∈ Cl .

The above estimates show that, in our final RH transformations, we have
achieved the needed closeness of the jump-matrix to the identity matrix. In-
deed, we have

‖I −GX‖L2∩L∞ ≤ C

n
. (5.80)

We can now apply the general Theorem 5.1.5 and deduce the inequality,

‖X(z)− I‖ < C

(1 + |z|)n , z ∈ K , n > n0 , (5.81)

where K is a closed subset of CP 1 \ ΓX satisfying,

dist{z;Γ}
1 + |z| ≥ c(K) , ∀z ∈ K .

Observe, that the choice of the contour ΓX is not rigid; one can always slightly
deform the contour ΓX and slightly rotate its infinite parts. Therefore, the

Γl Γr
Cl

Cr

Cu

Cd

Fig. 5.11. The final, X-RH problem
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domain of validity of the estimate (5.81) can be made the whole z-plane. This
completes the proof of the asymptotic equation (5.78).

Remark. It can be checked directly, using the above expressions of the jump
matrix GX(z) in terms of the functions Φ∞(z) and Φ0(z), that the smoothness
condition (5.21) is satisfied at each node point of the contour ΓX . This also
can be deduced from the a priori continuity of the function X(z), defined by
(5.79), in the closure of every connected component of the set C \ ΓX .

The asymptotic formula (5.78) provides us with the uniform asymptotics,
as n,N → ∞, for all complex z, of the orthogonal polynomials Pn(z) cor-
responding to the quartic weight e−NV (z), V (z) = tz2/2 + κz4/4 under the
one-cut condition (5.62) on the parameters κ and t. For instance, the oscilla-
tory part of the asymptotics reads as follows.

Pn(x) exp
(
−NV (x)

2
− nl

2

)
= Re

(
β+(x) + β−1

+ (x)
2

e−iNψ(x)

)
+O

(
1
n

)
,

|x| < z0 , (5.82)

where

β+(x) = eiπ/4

(
z0 − x

z0 + x

)1/4

, ψ(x) =
∫ x

z0

(b0 + b2u
2)
√
z2
0 − u2 du ,

and the parameters (functions of λ!) l, z0, b0, and b2 are defined in (5.59).
Also, for the norm hn and the recurrence coefficient Rn = hn/hn−1 we obtain,
with the help of (5.20), the asymptotic representations,

hn = πz0enl
(

1 +O

(
1
n

))
, (5.83)

and

Rn =
z2
0

4
+O

(
1
n

)
. (5.84)

In conclusion, we notice that estimate (5.80) allows us to iterate the sin-
gular integral equation corresponding to the X-RH problem and, in principal,
obtain the complete asymptotic series for all the above objects. It should be
mentioned that although the Riemann–Hilbert iterating procedure rigorously
establishes the existence of the complete asymptotic series mentioned, its use
for obtaining compact formulae for the coefficients of these expansions is very
involved. The better way to get the higher corrections to the estimates (5.82)–
(5.84) is to use the relevant Freud difference equation for Rn (see the end of
the first lecture) in conjunction with the already found leading term of the
asymptotics and the already established existence of the whole series (see,
e.g., [6]). There exists also a very beautiful formal procedure [24], based on
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the so called “loop equation” (see, for example, survey [23]) which allows to
obtain compact expressions for the terms of any order in the expensions of
hn and Rn and, in fact, in the expansions of the partition function ZN . This
procedure has been recently made rigorous (again, with the help of the RH
approach) in the work [25].

5.4 The Critical Case. The Double Scaling Limit and the
Second Painlevé Equation

In this lecture, we shall discuss the asymptotic solution of the Φ̂-RH problem
when t < 0 and the ratio λ ≡ n/N is close to or coincide with its critical
value,

λc =
t2

4κ
.

More precisely, we shall assume that

n

N
≡ λ = λc + cxN−2/3 . (5.85)

Here, x is a scaling variable which is assumed to be bounded and c is a
normalization constant which we choose to be,

c =
(
t2

2κ

)1/3

.

This choice of c will be motivated later on. The principal feature of the double
scaling limit (5.85) is the value 2

3 of its critical exponent. From the asymptotic
analysis which will follow, we will see that this is precisely the exponent which
guarantees the existence of the nontrivial scaling limit in the random matrix
model under consideration.

The condition (5.85) implies that now we have (cf. (5.60))

d
dy

Reh|z=0 ∼ 0 ,

which yields the replacement of the previous two-lenses jump contour Γ by the
four-lenses contour Γc depicted in Fig. 5.12 and hence the need to construct
a parametrix to the solution Φ̂ in the neighborhood of the point z = 0.

5.4.1 The Parametrix at z = 0

To find out what the relevant model RH problem in the neighborhood of z = 0
should be, we shall analyse the function h(z) near the point z = 0. First, we
notice that under condition (5.85) the end point z0 and the coefficient b0,
defined in (5.59), satisfy the estimates,
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z2
0 = z2

c −
2c
t
xN−2/3 +O(N−4/3) , zc =

√
2|t|
κ

, (5.86)

and
b0 = −κc

2t
xN−2/3 +O(N−4/3) . (5.87)

The function h(z), which is participating in the Φ̂ jump matrix as indicated
in Fig. 5.12, is given by the formula,

h(z) = − 2
λ

∫ z

z0

(b0 + b2u
2)
√
u2 − z2

0 du

= iπ − 2
λ

∫ z

0

(b0 + b2u
2)
√
u2 − z2

0 du , (5.88)

where

π ≡ −ih(0) = − 2
λ

∫ 0

z0

(b0 + b2u
2)
√
z2
0 − u2 du = π ,

and, unlike the previous formulas for g(z) and h(z), the function
√
z2 − z2

0 is
now defined in the domain C\ (−∞, z0)∪ (z0,+∞) and fixed by the condition
−i
√
z2 − z2

0 |z=0 > 0. From (5.88) and with the help of (5.86) and (5.87) we
arrive at the following estimate for h(z).

h(z) = iπ − 2i
λ

(
D0(z) + xN−2/3D1(z)

)
+O(N−4/3) , (5.89)

where

D0(z) =
κ

2

∫ z

0

u2
√
z2
c − u2 du , D1(z) = c

∫ z

0

du√
z2
c − u2

.

Observe that near z = 0,

D0(z) =
κzc
6
z3 − κ

20zc
z5 + · · · , (5.90)

1 enα

0 1

1 enα

0 1

0 1

−1 0

0 1

−1 0

1 0

e−nh 1

1 0

enh 1

C1l

C2l

C1r

C2r

−z0 z0

α ≡ g+ + g− − 1
λV − l

2

Fig. 5.12. The contour Γc and the Φ̂-RH problem in the critical case
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and

D1(z) = C−1z − 1
6Cz2

c

z3 + · · · , C =
25/6

(|t|κ)1/6
. (5.91)

Hence, with some constants a1, a2, we have that

D0(z) + xN−2/3D1(z) = a1z
3 + a2xN

−2/3z + · · · .

This representation suggests to introduce, in the neighborhood of the point
z = 0, the local variable ζ = ζ(z), in such a way that the following relation
satisfies,

4
3
ζ3(z) + xN−2/3ζ(z) = D0(z) + xN−2/3D1(z) +O(N−4/3) . (5.92)

By solving this equation perturbatively, we find that, within the indicated
error,

ζ(z) = ζ0(z) + xN−2/3ζ1(z) , (5.93)

where
ζ0(z) = [34D0(z)]1/3 ,

and

ζ1(z) =
D1(z) − ζ0(z)

4ζ2(z)
.

The important point is that both these functions are holomorphic and in-
vertible in a neighborhood of z = 0. Indeed, from (5.90) we obtain at once
that

ζ0(z) = C−1z − 1
10Cz2

c

z3 + · · · ,

where C is exactly the same constant as in (5.91). This, in particular, means
that ζ1(z) is indeed holomorphic at z = 0, and in fact,

ζ1(z) = − C

60z2
c

z + · · · .

The above estimates show that, for sufficiently large N , the function ζ(z) is
conformal in some (fixed) neighborhood B0 of the point z = 0. This, in turn,
allows us to introduce the following local variable in B0,

ξ(z) = N1/3ζ(z) . (5.94)

Equation (5.94) defines in the neighborhood B0 a local change of variable (cf.
(5.67))

B0 → Dn(0) ≡ {ξ : |ξ| < N1/3ρ} , 0 < ρ <
zc
2C

.

The action of the map z → ξ on the part of the contour Γc which is inside
the neighborhood B0 is depicted in Fig. 5.13.
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By virtue of its definition, the function ξ(z) satisfies the asymptotic rela-
tion (cf. (5.89)),

−n(h− iπ) =
8i
3
ξ3 + 2ixξ +O(N−1/3) . (5.95)

Therefore, the jump matrix GΦ̂ inside the neighborhood B0 can be uniformly
estimated as

GΦ̂(z) = G0
Φ̂
(z) +O(N−1/3) , (5.96)

where the matrix function G0
Φ̂
(z) is defined by the equations,

G0
Φ̂
(z) =

⎧⎪⎪⎨
⎪⎪⎩

(
1 0

exp(−inπ+(8i/3)ξ3(z)+2ixξ(z)) 1

)
z ∈ Γc ∩ B0 , Im z > 0(

1 0
exp(inπ−(8i/3)ξ3(z)−2ixξ(z)) 1

)
z ∈ Γc ∩ B0 , Im z < 0(

0 1−1 0

)
z ∈ Γc ∩ B0 , Im z = 0

Therefore, the map z → ξ transforms the B0-part of the critical Φ̂-RH problem
into the following model RH problem in the ξ-plane.

(1c) Y c(ξ) ∈ H(C \ Γ 0
c )

(2c) Y c
+(ξ) = Y c

−(ξ)G0(ξ),

G0(ξ) =

⎧⎪⎪⎨
⎪⎪⎩

(
1 0

exp(−inπ+(8i/3)ξ3+2ixξ) 1

)
ξ ∈ Γ 0

c2 ∪ Γ 0
c3(

1 0
exp(inπ−(8i/3)ξ3−2ixξ) 1

)
ξ ∈ Γ 0

c5 ∪ Γ 0
c6(

0 1−1 0

)
ξ ∈ Γ 0

c1 ∪ Γ 0
c4

(3c) Y c(ξ) = Λ
(
I +O(1/ξ)

)
, ξ → ∞,

Λ =

⎧⎪⎨
⎪⎩
I Im ξ > 0

(
0 −1
1 0

)
Im ξ < 0 .

Here, the contour Γ 0
c is the union of the six rays,

w = w(z)

π
6

n
1
3

0 0

Fig. 5.13. The map z → w near z = 0 in the critical case
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Γ 0
c =

6⋃
k=1

Γ 0
ck ,

which are depicted in Fig. 5.14.
The normalization condition (3c) comes, as in the case of the end-point

parametrix, from the fact that we want the “interior” function Y c(w(z)) to
match asymptotically, as n → ∞, the “exterior” function Φ∞(z) at the bound-
ary of B0. In other words, to specify the behavior of Y c(w) as w → ∞, we
must look at the behavior of Φ∞(z) at z = 0. To this end, we notice that the
factorization (5.69) of the function Φ∞(z), which have already been used in
the setting of the end point RH problem, can be rewritten as

Φ∞(z) =
(

1 −1
−i −i

)(
β−1

0 (z) 0
0 β0(z)

)(
1/2 i/2
−1/2 i/2

){
I Im z > 0(

0 −1
1 0

)
Im z < 0

≡ E0(z)

{
I Im z > 0(

0 −1
1 0

)
Im z < 0 .

(5.97)

Here, the function β0(z) defines by the same formula as the function β(z)
before, but on the z-plane cut along (−∞,−z0) ∪ (z0,+∞), so that the both
functions – β0(z) and E0(z) are holomorphic (and E0(z) invertible) at z = 0.
Formula (5.97) explains the normalization condition (3c).

Although there are no explicit contour integral representations for the so-
lution Y c(ξ) ≡ Y c(ξ, x) of the model RH problem (1c)–(3c), the solution exists
for all real x and is analytic in x. This important fact follows from the mod-
ern theory of Painlevé equations where the RH problem (1c)–(3c) appears in
connection with the second Painlevé equation. We will discuss this issue in
some detail in Section 5.4.3.

Similar to the analysis done at the end points, we shall now define the
parametrix for the solution of the Φ̂-RH problem at the point z = 0 by the
equation (cf. (5.75)),

Γoc1

Γoc2Γoc3

Γoc4

Γoc5 Γoc6

Fig. 5.14. The contour Γ 0
c
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Φc(z) = E0(z)Y c
(
ξ(z)

)
, z ∈ B0 . (5.98)

We also notice that at the end points ±z0 we can use the old parametrics,
i.e., Φ0(z), at the point z0, and σ3Φ

0(−z)σ3, at the point −z0. The function
Φ0(z) is defined in (5.75).

5.4.2 The Conclusion of the Asymptotic Analysis in the Critical
Case

Instead of the solution Φ̂(z) directly, it is more convenient to approximate its
Ψ -form, i.e., the function

Ψ̂(z) = Φ̂(z) exp(ng0(z)σ3) , (5.99)

where

g0(z) = − 1
λ

∫ z

z0

(b0 + b2u
2)
√
u2 − z2

0 du = g(z) − 1
2λ

V (z) − l

2
. (5.100)

It is important to emphasize that, unlike (5.88) defining the function h(z), in
(5.100) the function

√
z2 − z2

0 is defined on the z-plane cut along the interval
[−z0, z0]. In particular, this means that

g0(z) = 1
2h(z) , Im z > 0 ,

while,
g0(z) = − 1

2h(z) , Im z < 0.

Also, we note that,

g0(z) = − 1
2λ

V (z) − l

2
+ ln z +O

(
1
z

)
, z → ∞ .

In terms of the function Ψ̂(z), the basic RH problem is formulated as follows.

(1′′′′) Ψ̂(z) ∈ H(C \ Γc)
(2′′′′) Ψ̂+(z) = Ψ̂−(z)GΨ̂ (z), z ∈ Γc.
(3′′′′) Ψ̂(z) =

(
I +O(1/z)

)
exp(−NV (z)σ3 + n ln zσ3 − (l/2)σ3), z → ∞.

The piecewise jump matrix GΨ̂ (z) is given by the relations,

• for z real and outside of the interval [−z0, z0],

GΨ̂ (z) =
(

1 1
0 1

)
;

• for z on the curves C1r, C1l, C2r , and C2l

GΦ̂(z) =
(

1 0
1 1

)
;
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• for z on the interval [−z0, z0],

GΦ̂(z) =
(

0 1
−1 0

)
.

It is also worth noticing that, in terms of the function g0(z), the estimate
(5.95) reads,

ng0(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

inπ/2 − (4i/3)ξ3(z) − ixξ(z) +O(N−1/3) ,
z ∈ B0 , Im z > 0

−inπ/2 + (4i/3)ξ3(z) + ixξ(z) +O(N−1/3) ,
z ∈ B0 , Im z < 0 .

(5.101)

Put

Ψ∞(z) := Φ∞(z) exp(ng0(z)σ3) ,

Ψ c(z) := Φc(z)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
(
(inπ/2 − (4i/3)ξ3(z) − ixξ(z)

)
σ3

)
,

z ∈ B0 , Im z > 0
exp
(−(inπ/2 − (4i/3)ξ3(z) − ixξ(z)

)
σ3

)
,

z ∈ B0 , Im z < 0 ,

Ψ0(z) := Φ0(z) exp
(− 2

3w
3/2(z)

)
,

and define the function (cf. (5.77)),

Ψ̂as(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ψ∞(z) z ∈ C \ (B0 ∪ B ∪ (−B)
)

Ψ c(z) z ∈ B0

Ψ0(z) z ∈ B
(−1)nσ3Ψ

0(−z)σ3 z ∈ −B .

(5.102)

Our aim is to prove that the exact solution Ψ̂(z) of the RH problem (1′′′′)–
(3′′′′) satisfies the estimate (cf. (5.78)),

Ψ̂(z) =

(
I +O

(
1

(1 + |z|)N1/3

))
Ψ̂as(z) ,

N → ∞ ,
n

N
= λc + cxN−2/3 , z ∈ C . (5.103)

Similar to the previous, one-cut case, in order to prove (5.103) we consider
the matrix ratio (cf. (5.79)),

Xc(z) := Ψ̂(z)
(
Ψ̂as(z)

)−1
. (5.104)

This function solves the Riemann–Hilbert problem posed on the contour ΓXc

depicted in Fig. 5.15. Similar to the one-cut X-RH problem, the important
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feature of this problem is the absence of any jumps inside the domains B0,
B and −B and across the part of the real line between the boundary curves
Cr ≡ ∂B, C0 ≡ ∂B0, and Cl ≡ ∂(−B). As before, the cancelling out of the
jumps of Ψ̂(z) and Ψ̂as(z) inside B, B0, and −B and across the indicated
part of the real line follows directly from the basic jump properties of the
model functions Ψ∞(z) and Ψ0(z). The only difference, comparing to the one-
cut considerations, is that one has to take into account that in terms of Ψ -
functions, the symmetry relation (5.76) should be replaced by the relation,

Ψ̂(z) = (−1)nσ3Ψ̂(−z)σ3.

This modification is a consequence of the symmetry equation,

g0(−z) = g0(z) − πi,

which in turn can be easily checked directly.
On the “one-cut” parts of the contour ΓXc ,the Xc-jump matrix, GXc(z),

satisfies the previous “one-cut” uniform estimates as N → ∞. That is:

GXc(z) ≡ Φ∞(z)
(

1 exp
(
n(g+ + g− − (1/λ)V − l)

)
0 1

)(
Φ0(z)

)−1

= I +O
(
e−cNz

2)
, c > 0 , z ∈ Γl ∪ Γr ,

GXc(z) ≡ Φ∞(z)
(

1 0
e∓nh 1

)
(Φ∞(z))−1 = I +O

(
e−cN

)
,

c > 0, z ∈ Cul ∪ Cur (e−nh) , z ∈ Cdl ∪ Cdr (enh),

and

GXc(z) ≡ Φ0(z)
(
Φ∞(z)

)−1 = I +O

(
1
N

)
, z ∈ Cr ∪ Cl .

In order to estimate the jump accross the curve C0 = ∂B0 we notice that, as
follows from (5.101) (and the asymptotic normalization condition (3c) for the
model function Y c(ξ)),

Ψ c(z) =

(
I +O

(
1

N1/3

))
Ψ∞(z) , N → ∞ , (5.105)

ΓrΓl
Cl Cr

C0

Cul Cur

Cdl Cdr

Fig. 5.15. The final, Xc-RH problem
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uniformly on C0 (in fact, in some neighborhood of C0). Therefore, for the
jump matrix GXc on the curve C0 we have,

GXc(z) =
(
Xc

−(z)
)−1

Xc
+(z) = Ψ̂as

− (z)
(
Ψ̂as

+ (z)
)−1

= Ψ c(z)
(
Ψ∞(z)

)−1 =

(
I +O

(
1

N1/3

))
. (5.106)

From the above estimates we arrive at the key inequality (cf. (5.80)),

‖I −GXc‖L2∩L∞ ≤ C

N1/3
. (5.107)

By exactly the same arguments as in the one-cut case (see the proof of (5.78)
in Section 5.3.4), we derive from (5.107) the estimate,

Xc(z) = I +O

(
1

(1 + |z|)N1/3

)
, N → ∞ , z ∈ C , (5.108)

and (5.103) follows.
The improvement of the error term in (5.103) can be achieved, in principle,

by iterating the relevant singular integral equations. In Section 5.4.4 we will
show how, with the help of iterations, one can calculate explicitly the order
O(N−1/3) correction in (5.103). However (see also the end of Section 5.3.4),
to achieve the O(N−1) accuracy in the estimation of Ψ̂(z), the corresponding
multiple integral representation becomes extremely cumbersome. Indeed, in
paper [5], where the first rigorous evaluation of the double scaling limit (5.85)
has been performed, an alternative approach to the asymptotic solution of
the Φ̂-RH problem is used. This approach is based on a rather nontrivial
modification of both the model solution Ψ∞(z) and the model solution Ψ c(z).
These modifications are based on the prior heuristic study of the Freud equa-
tion associated to the quartic potential V (z) for the recurrsion coefficients Rn
followed by the formal WKB-type analysis of the associated Lax pair. This
analysis uses also the Lax pair associated to the model RH problem (1c)-(3c)
and produces an improved pair of model functions Ψ∞(z) and Ψ c(z) for which
the asymptotic relation (5.105) holds with the accuracy O(N−1). We refer the
reader to [5] and to the lectures of Pavel Bleher in this volume for more details
about this construction.

Remark. The asymptotic solution of the Riemann–Hilbert problem corre-
sponding to a generic real analytic critical potential V (z) (the corresponding
equilibrium measure vanishes quadratically at an interior point of the support)
has been performed in [9]. The analysis of [9] is similar to the one presented
above except for the parametrix at the critical point, where the authors of
[9] suggest a rather non-trivial modification of the local variable so that the
relation, similar to (5.101), is satisfied exactly.
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5.4.3 Analysis of the RH Problem (1c)–(3c). The Second Painlevé
Equation

PutF

Ỹ c(ξ) =

⎧⎪⎨
⎪⎩
Y c(ξ) Im z > 0

Y c(ξ)
(

0 1−1 0

)
Im z < 0 .

(5.109)

This simple transformation eliminates the jump accross the real line and,
simultaneously, simplifies the asymptotic condition at ξ = ∞. Indeed, in terms
of Ỹ c(ξ) the RH Problem (1c)–(3c) transforms to the problem,

(1c̃) Ỹ c(ξ) ∈ H(C \ Γ p)
(2c̃) Ỹ c

+(ξ) = Ỹ c
−(ξ)G̃0(ξ),

G̃0(ξ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 0

exp(−inπ + (8i/3)ξ3 + 2ixξ) 1

)
, ξ ∈ Γ p1 ∪ Γ p2(

1 − exp(inπ − (8i/3)ξ3 − 2ixξ)
0 1

)
, ξ ∈ Γ p3 ∪ Γ p4

(3c̃) Ỹ c(ξ) =
(
I +O(1/ξ)

)
, ξ → ∞,

Here, the contour Γ p is the union of the four rays,

Γ p =
4⋃

k=1

Γ pk ≡ Γ 0
c \ Γ 0

c1 ∪ Γ 0
c4 ,

which are depicted in Fig. 5.16. Let us also make one more trivial gauge
transformation,

Ỹ c(ξ) → Y p(ξ) = e−
inπ
2 σ3 Ỹ c(ξ)e

inπ
2 σ3 , (5.110)

which brings the model RH problem (1c)- (3c) to the following universal form,

(1p) Y p(ξ) ∈ H(C \ Γ p)
(2p) Y p

+(ξ) = Y p
−(ξ) exp(−(4i/3)ξ3σ3−ixξσ3)S exp(4i/3)ξ3σ3+ixξσ3), ξ ∈ Γ p

S =

{
( 1 0

1 1 ) ≡ S1 = S2; , ξ ∈ Γ p1 ∪ Γ p2(
1 −1
0 1

) ≡ S3 = S4 , ξ ∈ Γ p3 ∪ Γ p4
(5.111)

(3p) Y p(ξ) =
(
I +O(1/ξ)

)
, ξ → ∞,

The problem (1p)–(3p) is depicted in Fig. 5.16, and it plays in the analysis
of the parametrix at the internal (double) zero of the equilibrium measure (the
point z = 0 ) precisely the same role as the universal Airy RH-problem1 (10)–
(30) plays in the analysis of the parametrix at the end point of the support of
1 Note that, although we are using the same letter, the matrices Sk in (2p) are not

the matrices Sk in (20).
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Γp1Γp2

Γp3 Γp4

S1 = S2 =
1 0

1 1

S3 = S4 =
1 −1

0 1

Fig. 5.16. The contour Γ p and the Painlevé II RH problem

the equilibrium measure (the point z = z0). However, the important difference
is that we do not posses any explicit representation, in terms of contour inte-
grals of elementary functions, for the solution Y p(ξ) of the problem (1p)–(3p).
Therefore, the proof of the existence of the function Y p(ξ) ≡ Y p(ξ, x) and its
smooth dependence on the real parameter x is much more difficult than in
the case of the Airy-solvable problem (10)–(30). Indeed, the existence of the
solution Y p(ξ) and its smooth dependence on the real x is a nontrivial fact of
the modern theory of Painlevé equations, whose appearance in context of the
problem (1p) –(3p) we are going to explain now.

Put

Ψp(ξ, x) := Y p(ξ, x) exp
(
−4i

3
ξ3σ3 − ixξσ3

)
.

The jump condition (2p) and the asymptotic condition (3p) in terms of the
function Ψp(ξ) become

(a) Ψp+(ξ) = Ψp−(ξ)S, ξ ∈ Γ p

and

(b) Ψp(ξ) = (I +mp
1/ξ + · · · ) exp(−(4i/3)ξ3σ3 − ixξσ3), ξ → ∞,

respectively. Moreover, similar to the Airy case, we have the cyclic relation,

S−1
4 S3S2S

−1
1 = I .

Therefore, we can now proceed with considering the following, this time two
logarithmic derivatives,

A(ξ) =
∂Ψp

∂ξ
(Ψp)−1 ,

and
U(ξ) =

∂Ψp

∂x
(Ψp)−1 .
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Repeating the same arguments as we used when deriving (5.73), which are
based on manipulations with the asymptotic expansion (b) and the exploita-
tion of the Liouville theorem, we establish that both the matrices A(ξ) and
U(ξ) are in fact polynomials in ξ. Indeed we find that,

A(ξ) = −4iξ2σ3 + 4ξuσ1 − 2uxσ2 − (ix+ 2iu2)σ3 , (5.112)

and
U(ξ) = −iξσ3 + uσ1 , (5.113)

where,

σ1 =
(

0 1
1 0

)
, σ1 =

(
0 −i
1 0

)
, ux ≡ du

dx
,

and the function u(x) is defined by the coefficient m1 ≡ m1(x) of the series
(b) according to the equation,

u(x) = 2i
(
mp

1(x)
)
12
. (5.114)

In other words, the matrix valued function Ψp(ξ, x) satisfies the following
system of linear differential equations (cf. (5.73)),

⎧⎪⎨
⎪⎩
∂Ψp

∂ξ
= A(ξ)Ψp

∂Ψp

∂x
= U(ξ)Ψp,

(5.115)

with the coefficient matrices A(ξ) and U(ξ) defined by the relations (5.112)
and (5.113), respectively.

Consider the compatibility condition of system (5.115):

Ψpxξ = Ψpξx ⇐⇒ Ax − Uξ = [U,A] . (5.116)

The matrix equation (5.116) is satisfied identically with respect to ξ. By a
simple straightforward calculations, one can check that the matrix relation
(5.116) is equivalent to a single scalar differential equation for the function
u(x),

uxx = 2u3 + xu . (5.117)

The latter equation is a particular case of the second Painlevé equation (see,
e.g., [33]).

In the terminology of integrable systems, the linear equations (5.115) form
a Lax pair for the nonlinear ODE (5.117)) – the Flaschka–Newell Lax pair [26],
and the matrix relation (5.116) is its zero curvature or Lax representation. The
restrictions of the function Ψp(ξ) to the connected components of the domain
C\Γ p constitute the canonical solutions of the first, i.e., ξ-equation of the Lax
pair (5.115), and the matrices Sk from (5.111) are its Stokes matrices. The
Stokes matrices of the ξ-equation form a complete set of the first integrals
of the Painlevé equation (5.117). The particular choice of Stokes matrices
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indicated in (5.111) corresponds, as we will show shortly, to a selection of the
so-called Hastings–McLeod solution of the Painlevé II equation (5.117).

Unlike the Airy case of the problem (10)–(30), (5.115) do not provide us
directly with the solution of the problem (1p)–(3p). However, they can be used
to prove the existence of the solution and its smooth dependence on the real
x. The proof is as follows.

Hastings and McLeod have shown in [32] that there exists a unique solution
of (5.117) smooth for all real x, which satisfies the asymptotic condition,

u(x) ∼ 1
2
√
π
x−1/4 exp(− 2

3x
3/2) , x → +∞ . (5.118)

They also showed that on the other end of the real line the solution u(x) has
a power like behavior,

u(x) ∼
√
−x

2
, x → −∞ . (5.119)

Simultaneously, one can (quite easily) solve asymptotically as x → +∞
the singular integral equation (5.27) corresponding to the problem (1p)–(3p)
(see [26]; see also [37, 38, 44]), or one can (again quite easily) solve asymp-
totically the problem itself directly – with the help of the nonlinear steepest
descent method (see [14]; see also [27]). Evaluating then, using (5.114), the
asymptotics of the corresponding function u(x), one discovers that it is exactly
the asymptotics (5.118). Hence, the choice (5.111) of the Stokes data for the ξ-
equation indeed corresponds to the Hastings–Mcleaod Painlevé transcendents.
The independence of the Stokes matrices of x and the global existence of the
solution u(x) imply that the canonical solutions of the ξ-equation provide the
solution of the Riemann–Hilbert problem (1p)–(3p) for all real x.

Independent of [32] a proof of the solvability of the problem (1p)–(3p), as
well as the meromorphic extension of its solution on the whole x-plane together
with the detail description of the asymptotic behavior of the function u(x)
everywhere on the x-plane, can be obtained (though not very easily, this time)
via the advanced Riemann–Hilbert theory of Painlevé equations developed
during the last 20 years. We refer the reader to the recent monograph [27] for
more on this issue and for the history of the subject.

5.4.4 The Painlevé Asymptotics of the Recurrence Coefficients

It follows from (5.20) that the recurrence coefficients Rn are given by the
formula

Rn = (m1)12(m1)21 , (5.120)

where m1 is the matrix coefficient of the z−1 term of the series (5.19). Hence
we need the asymptotics of the coefficient m1.

For large z,



5 Large N Asymptotics in Random Matrices 407

Ψ̂as(z) = Ψ∞(z) ,

which together with (5.104) implies that, for large z,

Ψ̂(z) = Xc(z)Ψ∞(z) ,

or
Φ̂(z) = Xc(z)Φ∞(z) .

Recalling definition (5.51) of the function Φ(z), we rewrite the last relation as
an equation for the original function Y (z),

Y (z) = enl/2Xc(z)Φ∞(z)en(g(z)−l/2) . (5.121)

Define g1, m∞
1 , and mXc

1 as the coefficients of the asymptotic series as z → ∞,

g(z) = ln z +
g1

z
+ · · · ,

Φ∞(z) = I +
m∞

1

z
+ · · · ,

and

Xc(z) = I +
mXc

1

z
+ · · · ,

respectively. We have that,

m1 = ng1 + exp
(
nl

2
σ3

)
(m∞

1 +mXc

1 ) exp
(
− nl

2
σ3

)
. (5.122)

The coefficients g1 and m∞
1 are elementary objects and can be easily found

from the explicit formulae for g(z) and Φ∞(z). Let us discuss the evaluation
of the matrix mXc

1 .
From the singular integral equation (5.27) corresponding to the Xc-RH

problem, i.e., from the equation,

Xc(z) = I +
1

2πi

∫
ΓXc

Xc−(z′)(GXc(z′) − I)
z′ − z

dz′ , (5.123)

we derive that

mXc

1 = − 1
2πi

∫
ΓXc

Xc
−(z′)(GXc(z′) − I) dz′ . (5.124)

Taking into account (5.108) and the fact that everywhere on ΓXc but C0

the difference GXc(z′) − I is of order O(N−1), we obtain from (5.124) the
asymptotic formula,

mXc

1 = − 1
2πi

∫
C0

(GXc(z′) − I) dz′ +O

(
1

N2/3

)
. (5.125)
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To proceed we need the details about the jump matrixGXc(z) on the curve C0.
From (5.106) it follows that, for z ∈ C0,

GXc(z)

= Ψ c(z)
(
Ψ∞(z)

)−1

= E0(z)Y c
(
ξ(z)

)
exp
[
sign(Im z)

(
inπ
2

− 4i
3
ξ3(z)−ixξ(z)

)
σ3 − ng0(z)σ3

]

× Λ−1E−1
0 (z)

= E0(z)Ỹ c
(
ξ(z)

)
Λ exp

[
sign(Im z)

(
inπ
2

− 4i
3
ξ3(z)−ixξ(z)

)
σ3 − ng0(z)σ3

]

× Λ−1E−1
0 (z)

= E0(z)Ỹ c(ξ(z)) exp
(

inπ
2

− 4i
3
ξ3(z) − ixξ(z) − ng̃0(z)σ3

)
E−1

0 (z) .

(5.126)

Here, the function g̃0(z) is given by the same integral (5.100)) as the function
g0(z), but the root

√
z2 − z2

0 is defined on the plane cut along (−∞,−z0) ∪
(z0,+∞), so that

g̃0(z) = sign(Im z)g0(z) .

We also note that the function g̃0(z), as well as the functions ξ(z) and E0(z),
is holomorphic in B0.

By a straightforward though slightly tiresome calculation we can refine the
estimate (5.101) as follows,

ng̃0(z) =
inπ
2

−4i
3
ξ3(z)−ixξ(z)+ia(z)x2N−1/3+O(N−1) , z ∈ B0 , (5.127)

where

a(z) =
D1(z) − ζ0(z)

3D0(z)
D1(z) −D2(z) ,

and D0(z), D1(z), and ζ0(z) are the elementary functions which have been de-
fined in (5.89) and (5.93), respectively, when we introduced the local variable
ζ(z), and D2(z) is the integral,

D2(z) = −c2

2t

∫ z

0

du
(z2

0 − u2)3/2
.

Actually, these exact formulas for a(z) are not really of importance for our
current calculations. What will matters is that a(z) is holomorphic at z = 0
(cf. the holomorphicity at z = 0 of the function ζ1(z) from (5.93)).

Using (5.127) and the asymptotic expansion (3c̃) of the function Ỹ c(ξ), we
derive from (5.126) the following estimate, uniform for z ∈ C0
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GXc(z) = I +
1

ξ(z)
E0(z)m̃

p
1E

−1
0 (z) − ix2a(z)E0(z)σ3E

−1
0 (z)N−1/3

+O(N−2/3) , N → ∞ , z ∈ C0 , (5.128)

where the matrix m̃p
1 is the coefficient of the asymptotic series,

Ỹ c(ξ) = I +
m̃p

1

ξ
+ · · · , ξ → ∞ .

Note that the matrix function m̃p
1 ≡ m̃p

1(x) is related to the similar function
mp

1(x) from (5.114) by the equation (see (5.110)),

m̃p
1 = exp

(
inπ
2
σ3

)
mp

1 exp
(
− inπ

2
σ3

)
. (5.129)

We also recall that ξ(z) = N1/3ζ(z) and hence

1
ξ(z)

= O(N−1/3) , N → ∞ , z ∈ C0 .

With the help of (5.128), we can now easily estimate the integral in the right-
hand side of (5.125). Taking into account that the function a(z) is analytic in
B0 and hence the integral of a(z)E0(z)σ3E

−1
0 (z) vanishes, we obtain

mXc

1 = res |z=0

(
1

ξ(z)
E0(z)m̃

p
1E

−1
0 (z)

)
+O(N−2/3)

= CN−1/3E0(0)m̃p
1E

−1
0 (0) +O(N−2/3) , (5.130)

where C is the constant defined by (5.91).
We are almost ready to produce the final estimate for the matrix mXc

1 .
One more step is needed, this time algebraic.

Put
Ỹ p(ξ) = σ1Y

p(−ξ)σ1 .

Since,
S1,2 = σ1S

−1
3,4σ1 ,

we immediately conclude that Ỹ p(ξ) solves the same Riemann–Hilbert prob-
lem, i.e., (1p)–(3p). Therefore, by the uniqueness theorem, the functions Ỹ p(ξ)
and Y p(ξ) coincide. Hence, we arrive at the symmetry relation,

Y p(ξ) = σ1Y
p(−ξ)σ1 ,

which in turn implies that

mp
1 = −σ1m

p
1σ1 . (5.131)

From (5.131), we come to the following structure of the matrix coefficient mp
1:
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(mp
1)11 = −(mp

1)22 , (mp
1)12 = −(mp

1)21 .

Introducing notation, v := (mp
1)11, and recalling the relation (5.114) between

the Hastings–McLeod Painlevé function u(x) and the 12 entry of the matrix
mp

1, we obtain finally that the matrix mp
1 can be written as

mp
1 =

(
v −(i/2)u

(i/2)u −v
)

, (5.132)

and hence (cf. (5.129))

m̃p
1 =

(
v (−1)n+1(i/2)u

(−1)n(i/2)u −v
)

. (5.133)

As a matter of fact, the function v(x) can be also expressed in terms of u(x)
and its derivatives, but we won’t need this expression.

From the definition (5.97) of the matrix factor E0(z), we have that,

E0(0) =
1√
2

(
1 1
−1 1

)
.

The substitution of this equation and (5.133) into (5.130) concludes the
asymptotic evaluation of the matrix mXc

1 . Indeed, we obtain that

mXc

1 = CN−1/3

(
0 −v − (i/2)(−1)nu

−v + (i/2)(−1)nu 0

)
+O(N−2/3) .

(5.134)
The last object we need in order to be able to evaluate Rn, is the matrix

coefficient m∞
1 . We derive it easily from (5.50):

m∞
1 =

(
0 (i/2)z0

−(i/2)z0 0

)
=
(

0 (i/2)zc
−(i/2)zc 0

)
+O(N−2/3) , (5.135)

where zc, we recall, is given in (5.86). Using (5.135) and (5.134) in (5.122) (note
that we we do not need g1, although it also can be evaluated by elementary
means), we arrive at the estimates,

(m1)12 = enl
(

i
2
zc +

i
2
CN−1/3(−1)n+1u− CN−1/3v +O(N−2/3)

)
,

and

(m1)21 = e−nl
(
− i

2
zc − i

2
CN−1/3(−1)n+1u− CN−1/3v +O(N−2/3)

)
,

which in turn provide as with the asymptotic formula for Rn,
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Rn = (m1)12(m1)21 = −
(

i
2
zc +

i
2
CN−1/3(−1)n+1u

)2

+O(N−2/3)

=
z2
c

4
+
zc
2
CN−1/3(−1)n+1u+O(N−2/3)

=
|t|
2κ

+N−1/3C1(−1)n+1u(x) +O(N−2/3); , C1 =
(

2|t|
κ2

)1/3

.

(5.136)

Remark 5.4.1. As has already been indicated above (see the end of Sec-
tion 5.3.4), from the Riemann–Hilbert analysis one can rigorously establish
the existence of the full asymptotic expansions for the coefficients Rn. A direct
substitution of this series in the difference Freud equation would allow then
to evaluate, in principal, the corrections to (5.136) of any order. For instance,
one obtains (see also [5]) that,

Rn =
|t|
2κ

+N−1/3C1(−1)n+1u(x) +N−2/3C2

(
x+ 2u2(x)

)
+O(N−1) ,

C2 =
1
2

(
1

2|t|κ
)1/3

. (5.137)

It also should be said that asymptotics (5.137) were first suggested (via the
formal analysis of the Freud equation) in physical papers by Douglas, Seiberg,
and Shenker [20], Crnković and Moor [11], and Periwal and Shevitz [42].

Remark 5.4.2. Using estimate (5.128) in the integral equation (5.123), we can
improve our main asymptotic formula (5.103). Indeed we have that

Ψ̂(z) =

(
I + r(z) +O

(
1

(1 + |z|)N2/3

))
Ψ̂as(z) , (5.138)

where
r(z) =

1
z
CN−1/3E0(0)m̃p

1E
−1
0 (0) , (5.139)

if z /∈ B0, and

r(z) = I +
1
z
CN−1/3E0(0)m̃p

1E
−1
0 (0) − 1

ξ(z)
E0(z)m̃

p
1E

−1
0 (z)

+ ix2N−1/3a(z)E0(z)σ3E
−1
0 (z) , (5.140)

if z ∈ B0.
As it has already been mentioned in the end of Section 5.4.2, a further

improvement of the estimate (5.103), if one wants compact formulas, needs an
essential modification of the construction of the parametrix at z = 0 (see [5]).
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7. É. Brézin, V.A. Kazakov: Phys. Lett. B 236, 144 (1990).
8. K.F. Clancey, I. Gohberg, Factorization of Matrix Functions and Singular Inte-

gral Operators (Birkhäuser, Basel 1981)
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Summary. This article is a short review on the relationship between convergent
matrix integrals, formal matrix integrals, and combinatorics of maps.
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6.1 Introduction

This article is a short review on the relationship between convergent ma-
trix integrals, formal matrix integrals, and combinatorics of maps. We briefly
summarize results developed over the last 30 years, as well as more recent
discoveries.

We recall that formal matrix integrals are identical to combinatorial gen-
erating functions for maps, and that formal matrix integrals are in general
very different from convergent matrix integrals. Both may coincide perturba-
tively (i.e., up to terms smaller than any negative power of N), only for some
potentials which correspond to negative weights for the maps, and therefore
not very interesting from the combinatorics point of view.

We also recall that both convergent and formal matrix integrals are solu-
tions of the same set of loop equations, and that loop equations do not have
a unique solution in general.

Finally, we give a list of the classical matrix models which have played
an important role in physics in the past decades. Some of them are now well
understood, some are still difficult challenges.

J. Harnad (ed.), Random Matrices, Random Processes and Integrable Systems, 415
CRM Series in Mathematical Physics, DOI 10.1007/978-1-4419-9514-8 6,
c© Springer Science+Business Media, LLC 2011
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Matrix integrals were first introduced by physicists [55], mostly in two
ways:

• in nuclear physics, solid state physics, quantum chaos, convergent matrix
integrals are studied for the eigenvalues statistical properties [6, 33, 48, 52].
Statistical properties of the spectrum of large random matrices show some
amazing universal behaviors, and it is believed that they correspond to
some kind of “central limit theorem” for nonindependent random variables.
This domain is very active and rich, and many important recent progresses
have been achieved by the mathematicians community. Universality was
proved in many cases, in particular using the Riemann–Hilbert approach
of Bleher–Its [5] and Deift Venakides Zhou Mac Laughlin [19], and also by
large deviation methods [34, 35].

• in Quantum Chromodynamics, quantum gravity, string theory, conformal
field theory, formal matrix integrals are studied for their combinatorial prop-
erty of being generating functions of maps [20]. This fact was first discovered
by t’Hooft in 1974 [49], then further developed mostly by BIPZ [12] as well
as Ambjorn, David, Kazakov [18, 20, 32, 36, 40]. For a long time, physicist’s
papers have been ambiguous about the relationship between formal and
convergent matrix integrals, and many people have been confused by those
ill-defined matrix integrals. However, if one uses the word “formal matrix
integral”, many physicist’s results of the 80’s till now are perfectly rigorous,
especially those using loop equations. Only results regarding convergency
properties were non rigorous, but as far as combinatorics is concerned, con-
vergency is not an issue.

The ambiguity in physicist’s ill-defined matrix integrals started to become
obvious when E. Kanzieper and V. Freilikher [42], and later Brezin and Deo
in 1998 [11] tried to compare the topological expansion of a formal matrix
integral derived from loop equations, and the asymptotics of the convergent
integral found with the help of orthogonal polynomials. The two results did
not match. The orthogonal polynomial’s method showed clearly that the con-
vergent matrix integrals had no large N power series expansion (it contained
some (−1)N ). The origin of this puzzle has now been understood [9], and
it comes from the fact that formal matrix integrals and convergent matrix
integrals are different objects in general.

This short review is only about combinatoric properties of formal matrix
integrals. Matrix models is a very vast topic, and many important applications,
methods and points of view are not discussed here. In particular, critical limits
(which include asymptotics of combinatoric properties of maps), the link with
integrable systems, with conformal field theory, with algebraic geometry, with
orthogonal polynomials, group theory, number theory, probabilities and many
other aspects, are far beyond the scope of such a short review.
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6.2 Formal Matrix Integrals

In this section we introduce the notion of formal matrix integrals of the form:

Zformal(t) =
∫

formal

dM1 dM2 · · ·dMp

exp

(
−N

t

( p∑
i,j=1

Cij
2

TrMiMj −NV (M1, . . . ,Mp)
))

. (6.1)

The idea is to formally expand the exponential exp
(
(N2/t)V

)
in powers of

t−1, and compute the Gaussian integral for each term. The result is a formal
series in powers of t. So, let us define it precisely.

Definition 6.2.1. Q is an invariant noncommutative monomial of M1, . . . ,
Mp, if Q = 1 or if Q is of the form:

Q =
R∏
r=1

1
N

Tr(Wr) , (6.2)

where each Wr is an arbitrary word written with the alphabet M1, . . . ,Mp.
Q is the equivalence class of Q under permutations of the Wrs, and cyclic
permutations of the letters of each Wr.

The degree of Q is the sum of lengths of all Wrs.
Invariant noncommutative polynomials of M1, . . . ,Mp are complex finite

linear combinations of monomials:

V =
∑
Q

tQQ , tQ ∈ C . (6.3)

The degree of a polynomial is the maximum degree of its monomials.
They are called invariant, because they are left unchanged if one conjugates

all matrices Mi → UMiU
−1 with the same invertible matrix U .

Invariant polynomials form an algebra over C.
Let V (M1, . . . ,Mp) be an arbitrary invariant polynomial of degree d in

M1, . . . ,Mp, which contains only monomials of degree at least 3.

Proposition 6.2.1. Let C be a p×p symmetric positive definite matrix, then
the following Gaussian integral

Ak(t)

=

∫
HN×···×HN

dM1 dM2 · · · dMp (N2kt−k/k!)V k exp(−(N/2t)Tr
∑p
i,j=1 CijMiMj)

∫
HN×···×HN

dM1 dM2 · · · dMp exp(−(N/2t)Tr
∑p

i,j=1 CijMiMj) ,

(6.4)
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where dMi is the usual Lebesgue (U(N) invariant) measure on the space of
Hermitian matrices HN , is absolutely convergent and has the following prop-
erties :

• Ak(t) is a polynomial in t, of the form:

Ak(t) =
∑

k/2≤j≤kd/2−k
Ak,jt

j . (6.5)

• Ak(t) is a Laurent polynomial in N .
• A0(t) = 1.

Proof. A0 = 1 is trivial. Let d = deg V . Since V is made of monomials of
degree at least 3 and at most d, then V k is a sum of invariant monomials whose
degree l is between 3k and dk. According to Wick’s theorem, the Gaussian
integral of a monomial of degree l is zero if l is odd, and it is proportional to
tl/2 if l is even. Since 3k ≤ l ≤ dk we have:

0 ≤ k/2 ≤ l/2 − k ≤ dk/2 − k . (6.6)

Thus Ak(t) is a finite linear combination of positive integer powers of t, i.e.,
it is a polynomial in t, of the form of (6.5).

The matrix size N ’s dependence comes in several ways. First there is the
factor N2k. The matrix size also appears in the matrix products (each matrix
product is a sum over an index which runs from 1 to N), in the traces (it
means the first and last index of a matrix product have to be identified, thus
there is a Kroenecker’s δij of two indices). And after Gaussian integration
over all matrix elements, the Wick’s theorem pairings result in N−l/2 times
some product of Kroenecker’s δ of pairs of indices (times some elements of
the matrix C−1 which are independent of N). The matrix indices thus appear
only in sums and δ′s, and the result of the sum over indices is an integer power
of N . Thus, each Ak(t) is a finite sum (sum for each monomial of V k, and
the Gaussian integral of each monomial is a finite sum of Wick’s pairings) of
positive or negative powers of N , i.e., a Laurent polynomial in N . ��
Definition 6.2.2. The formal matrix integral Zformal(t) is defined as the for-
mal power series:

Zformal(t) =
∑
j

Zjt
j , Zj =

2j∑
k=0

Ak,j (6.7)

and each Zi is a Laurent polynomial in N . Notice that Z0 = 1.

By abuse of notation, Zformal(t) is often written:

Zformal(t)

=

∫
formal

dM1 dM2 · · ·dMp exp(−(N/t)
(∑p

i,j=1 Cij/2TrMiMj)−NV (M1, . . . ,Mp)
)

∫
HN × · · · ×HN

dM1 dM2 · · ·dMp exp(−(N/2t) Tr
∑p
i,j=1 CijMiMj)

(6.8)
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but it does not mean that it has anything to do with the corresponding conver-
gent (if it converges) integral. In fact, the integral can be absolutely convergent
only if deg(V ) is even and if the tQ corresponding to the highest-degree terms
of V have a negative real part. But as we shall see below, the relevant case
for combinatorics, corresponds to all tQs positive, and in that case, the formal
integral is never a convergent one.

Definition 6.2.3. The formal free energy Fformal(t) is defined as the formal
log of Zformal.

Fformal(t) = ln
(
Zformal(t)

)
=
∑
j

Fjt
j (6.9)

We have F0 = 0. Each Fj is a Laurent polynomial in N .

6.2.1 Combinatorics of Maps

Recall that an invariant monomial is a product of terms, each term being the
trace of a word in an alphabet of p letters. Thus, an invariant monomial is
given by:

• the number R of traces, (R− 1 is called the crossing number of Q),
• R words written in an alphabet of p letters.

The R words can be permuted together, and in each word the letters can
be cyclically permuted. We label the invariant monomials by the equivalence
classes of those permutations.

Another graphical way of coding invariant monomials is the following:

Definition 6.2.4. To each invariant monomial Q we associate biunivoquely
a Q-gon (generalized polygon) as follows:

• to each word we associate an oriented polygon (in the usual sense), with
as many edges as the length of the word, and whose edges carry a “color”
between 1 and p, given by the corresponding letter in the word.

• the R words are glued together by their centers on their upper face (in
accordance with the orientation), so that they make a surface with R − 1
crossings.

• R − 1 which is the number of traces minus one (i.e., one trace corresponds
to a crossing number zero), is called the crossing number of the Q-gon.

• The degree deg(Q) of the Q-gon is the total number of edges (sum of lengths
of all words).

• to Q-gon we associate a symmetry factor sQ = # Aut(Q) which is the
number of symmetries which leave Q unchanged.

An example is given in Fig. 6.1.
Notice that we allow a Q-gon to be made of polygons with possibly one or

two sides. We will most often call the Q-gons polygons. The usual polygons
are Q-gons with no crossing, i.e., R = 1.
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1
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1
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2
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1

Fig. 6.1. The invariant monomial Q = N−3 Tr(M2
1M2)Tr(M3

3 ) Tr(M2
2M4M

2
1 ) of

degree 11, is represented by 2 triangles and one pentagon glued together by their
center. The dashed lines mean that the 3 centers should actually be seen as only
one point. Its symmetry factor is sQ = 3 because we can perform 3 rotations on the
triangle of color (3,3,3).

Definition 6.2.5. Let p ≥ 1 and d ≥ 3 be given integers. Let Qd,p be the set
of all invariant monomials Q (or polygons) of degree 3 ≤ deg(Q) ≤ d.

Qd,p is clearly a finite set.

Definition 6.2.6. Let Sl,d,p be the set of oriented discrete surfaces such that
# edges − #Q-gons + # crossings = l, and obtained by gluing together poly-
gons (belonging to Qd,p) by their sides (following the orientation). The edges
of the polygons carry colors among p possible colors (thus each edge of the
surface, is at the border of two polygons, and has two colors, one on each
side).

Let S l,d,p be the subset of Sl,d,p which contains only connected surfaces.
Such surfaces are also called “maps.”

Proposition 6.2.2. Sl,d,p is a finite set.

Proof. Indeed, since all polygons of Qd,p have at least 3 sides, we have
# edges ≥ 3

2 # polygons, and thus # edges ≤ 2l and # polygons ≤ 4l/3, and
thus the number of discrete surfaces in Sl, is finite. We can give a very large
bound on #Sl,d,p. We have:

#Sl,d,p ≤ (4dl/3)p(2dl/3)!(4dl/3)! ≤ (4dl/3)p(2dl)! . (6.10)

��
Theorem 6.2.1 (t’Hooft 1974 and followers). If the potential V is an
invariant polynomial given by

V =
∑

Q∈Qd,p

tQ
sQ

Q (6.11)

then:
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Zl =
∑

S∈Sl,d,p

1
# Aut(S)

Nχ(S)
∏
Q

t
nQ(S)
Q

∏
i,j

(
(C−1)i,j

)Ei,j(S)/2 (6.12)

Fl =
∑

S∈Sl,d,p

1
# Aut(S)

Nχ(S)
∏
Q

t
nQ(S)
Q

∏
i,j

(
(C−1)i,j

)Ei,j(S)/2
(6.13)

where Zl and Fl were defined in Def. 6.2.2, Def. 6.2.3, and where:

• nQ(S) is the number of Q-gons in S,
• Eij(S) is the number of edges of S which glue two polygons whose sides have

colors i and j,
• χ(S) is the Euler characteristic of S.
• Aut(S) is the group of automorphisms of S, i.e., the group of symmetries

which leave S unchanged. # Aut(S) is called the symmetry factor.

In other words, Zl is the formal generating function which enumerates dis-
crete surfaces of Sl,d,p, according to their Euler characteristics, their number of
polygons, number of edges according to their color, number of crossings. . .Fl
is the formal generating function for the same surfaces with the additional
condition that they are connected.

An example is given in Fig. 6.2.

Proof. It is a mere application of Feynman’s graphical representation of
Wick’s theorem1.

Fig. 6.2. If

V =
t4
4

1

N
TrM4

1 +
t̃4
4

1

N
TrM4

2 +
t4,4

32N2
(TrM4

1 )2,

the above surface contributes to the term N0t34t̃4t4,4(C
−1)41,1(C

−1)41,2. Indeed M1 is
represented in blue, M2 in red, so that TrM4

1 corresponds to blue squares, TrM4
2

corresponds to red squares, and (TrM4
1 )2 corresponds to pairs of blue squares glued

at their center. Its Euler characteristic is χ = 0 (it is a torus), and this surface has
no automorphism (other than identity), i.e., #Aut = 1. It corresponds to l = 7.

1 Although Feynman’s graphs are sometimes regarded as nonrigorous, let us em-
phasize that it is only when Feynman’s graphs and Wick’s theorem are used for
functional integrals that they are nonrigorous. Here we have finite dimensional
Gaussian integrals, and Wick’s theorem and Feynman’s graphs are perfectly rig-
orous.
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The only nontrivial part is the power ofN , becauseN enters not only in the
weights but also in the variables of integrations. It was the great discovery of
t’Hooft to recognize that the power of N is precisely the Euler characteristics.
Let us explain it again.

First, V k is decomposed into a combination of monomials:

V =
∑
Q

tQ
sQ

Q , V k =
∑
G

Tk,GG (6.14)

where G is a product of Qs, and

Tk,G =
∑

Q1∪Q2∪···∪Qk=G

tQ1tQ2 · · · tQk

1∏
i sQi

.

G is thus a collection of polygons, some of them glued by their centers. So far
the polygons of G are not yet glued by their sides to form a surface. Remember
that each Q carries a factor N−R if Q is made of R traces.

Then, for each G, the Gaussian integral is computed by Wick’s theorem
and gives a sum of Wick’s pairings, i.e., it is the sum over all possible ways of
pairing two Ms, i.e., it is the sum over all possible ways of gluing together all
polygons by their sides, i.e. corresponds to the sum over all surfaces S. The
pairing 〈Mi abMj cd〉 of the (a, b) matrix element of Mi and the (c, d) matrix
element of Mj gives a factor:

〈Mi abMj cd〉 =
t

N
(C−1)ijδadδbc . (6.15)

The double line notation for pairings (see [20]) allows to see clearly that
the sum over all indices is N#vertices(S). The total power of N is thus:

2k −
∑
Q

RQ + # vertices − # edges − # polygons (6.16)

Now, notice that

# polygons =
∑
Q

RQ = k +
∑
Q

(RQ − 1) = k + # crossings (6.17)

Thus the total power of N is:

# vertices − # edges + # polygons − 2 #crossings = χ (6.18)

which is the Euler characteristic of S.
We leave to the reader to see in the literature how to find the symmetry

factor. ��
Corollary 6.2.1. N−2Fl is a polynomial in N−2:

Fl =
l+1∑
g=0

N2−2gFl,g . (6.19)
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Proof. Indeed the Euler characteristic of connected graphs is of the form χ =
2−2g where g is a positive integer and is the genus (number of handles). The
fact that it is a polynomial comes from the fact that Fl is a finite sum.

It is easy to find some bound on g. We have:

2g − 2 = −#vertices + # edges − # polygons + 2 # crossings
= −#vertices + 2l − # edges + # polygons (6.20)

and using # edges ≥ 3
2 # polygons, we have:

2g − 2 ≤ −# vertices + 2l− 1
2 # polygons ≤ 2l . (6.21)

��

6.2.2 Topological Expansion

Definition 6.2.7. We define the genus g free energy as the formal series in t:

F (g)(t) = −
∞∑
l=0

tl+2−2gFl,g (6.22)

F (g) is the generating function for connected oriented discrete surfaces of
genus g.

Remark. The minus sign in front of F (g) is there for historical reasons, because
in thermodynamics the free energy is − lnZ.

There is no reason a priori to believe that F (g)(t) might have a finite radius
of convergence in t. However, for many classical matrix models, it is proved
that ∀g, F (g) has a finite radius of convergence because it can be expressed
in terms of algebraic functions.

There is also no reason a priori to believe that the F (g)s should be the limits
of convergent matrix integrals. There are many works which prove that the
number of terms in F (g) grows with g like (βg)! for some β. If t and all tQs are
positive (this is the interesting case for combinatorics and statistical physics
because we want all surfaces to be counted with a positive weight), then
F (g) is positive and grows like (βg)!, and therefore the sum of the topological
series cannot be convergent (even under Borel resummation). For negative t,
it is only an asymptotic series, and at least in some cases, it can be made
convergent using Borel transforms.

6.3 Loop Equations

Loop equations is the name given to Schwinger–Dyson equations in the context
of random matrices [53]. The reason for that name is explained below. Let us
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recall that Schwinger–Dyson equations are in fact nothing but integration by
parts, or the fact that the integral of a total derivative vanishes.

In particular, in the context of convergent matrix integrals we have:

0 =
∑
i<j

∫
Hp

N

dM1 dM2 · · ·dMp

(
∂

∂ ReMk i,j
− i

∂

∂ ImMk i,j

)

×
((

G(M1, . . . ,Mp) +G(M1, . . . ,Mp)†
)
ij

× exp

(
−N

t

( p∑
i,j=1

Cij
2

Tr(MiMj) −NV (M1, . . . ,Mp)
)))

+
∑
i

∫
Hp

N

dM1 dM2 · · · dMp
∂

∂Mk i,i

×
(

(G(M1, . . . ,Mp) +G(M1, . . . ,Mp)†)ii

× exp

(
−N

t

( p∑
i,j=1

Cij
2

Tr(MiMj) −NV (M1, . . . ,Mp)
)))

(6.23)

where G is any noncommutative polynomial, and k is an integer between 1
and p.

Therefore, Schwinger–Dyson equations for matrix integrals give relation-
ships between expectation values of invariant polynomials. Namely:

N

t

〈
Tr

((∑
j

CkjMj −NDk(V )
)
G

)〉
= 〈Kk(G)〉 (6.24)

where Dk is the non commutative derivative with respect to Mk, and Kk(G)
is some invariant polynomial which can be computed by the following rules:

• Leibnitz rule

Kk

(
A(M1, . . . ,Mk, . . . ,Mp)B(M1, . . . ,Mk, . . . ,Mp)

)
=
(
Kk

(
A(M1, . . . ,Mk, . . . ,Mp)B(M1, . . . ,mk, . . . ,Mp)

))
mk→Mk

+
(
Kk

(
A(M1, . . . ,mk, . . . ,Mp)B(M1, . . . ,Mk, . . . ,Mp)

))
mk→Mk

; (6.25)

• split rule

Kk

(
A(M1, . . . ,mk, . . . ,Mp)M l

kB(M1, . . . ,mk, . . . ,Mp)
)

=
l−1∑
j=0

Tr(A(M1, . . . ,mk, . . . ,Mp)M
j
k)

× Tr
(
M l−j−1
k B(M1, . . . ,mk, . . . ,Mp)

)
; (6.26)
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• merge rule

Kk

(
A(M1, . . . ,mk, . . . ,Mp)Tr

(
M l
kB(M1, . . . ,mk, . . . ,Mp)

))

=
l−1∑
j=0

Tr(A(M1, . . . ,mk, . . . ,Mp)M
j
kB(M1, . . . ,mk, . . . ,Mp)M

l−j−1
k ) ;

(6.27)

• no Mk rule
Kk(A(M1, . . . ,mk, . . . ,Mp)) = 0 . (6.28)

Since each rule allows to strictly decrease the partial degree in Mk, this
set of rules allows to compute Kk(G) for any G.

For any G and any k we get one loop equation of the form (6.24).

Definition 6.3.1. The formal expectation value of some invariant polynomial
P (M1, . . . ,Mk) is the formal power series in t defined by:

Ak,P (t)

=

∫
HN × · · · ×HN

dM1 dM2 · · · dMp (N2k t−k/k!)PV k exp
(−(N/2t)Tr(

∑p
i,j=1 CijMiMj)

)
∫
HN × · · · ×HN

dM1 dM2 · · ·dMp exp
(−(N/2t)Tr(

∑p
i,j=1 CijMiMj)

) .

(6.29)

Ak,P (t) is a polynomial in t, of the form:

Ak,P (t) =
∑

deg(P )/2+k/2≤j≤deg(P )/2+kd/2−k
Ak,P,jt

j (6.30)

and we define the following quantity

AP,j(t) =
2j−degP∑
k=0

Ak,P,j (6.31)

and the formal series

AP (t) =
∞∑

j=deg P/2

AP,j t
j (6.32)

Again, each Ak,P , Ak,P,j , AP,j is a Laurent polynomial in N .
The formal expectation value of P is defined as:

〈P (M1, . . . ,Mk)〉formal =
AP (t)

Zformal(t)
(6.33)

where the division by Zformal is to be taken in the sense of formal series, and
it can be performed since Zformal(t) =

∑∞
j=0 Zjt

j with Z0 = 1.
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The formal expectation value is often written by abuse of notations

〈P 〉formal

=

∫
formal

dM1 · · ·dMpP exp(−(N/t)(
∑p
i,j=1(Cij/2) Tr(MiMj)−NV (M1, . . . ,Mp)))∫

formal
dM1 · · ·dMp exp(−(N/t)(

∑p
i,j=1(Cij/2) Tr(MiMj)−NV (M1, . . . ,Mp)))

.

(6.34)

Theorem 6.3.1. The formal expectation values of the formal matrix integral
satisfy the same loop equations as the convergent matrix integral ones, i.e.,
they satisfy (6.24) for any k and G.

Proof. It is clear that Gaussian integrals, and thus formal integrals satisfy
(6.23). The remainder of the derivation of loop equations for convergent in-
tegrals is purely algebraic, and thus it holds for both convergent and formal
integrals. ��

On a combinatoric point of view, loop equations are the generalisation of
Tutte’s equations for counting planar maps [50, 51]. This is where the name
“loop equations” comes from: indeed, similarly to Thm. 6.2.1, formal expec-
tation values of traces are generating functions for open discrete surfaces with
as many boundaries as the number of traces (and again the power of N is
the Euler characteristic of the surface). The boundaries are “loops,” and the
combinatorical interpretation of Schwinger–Dyson equations is a recursion on
the size of the boundaries, i.e. how to build discrete surfaces by gluing loops
à la Tutte [50, 51].

Notice that in general, the loop equations don’t have a unique solution. One
can find a unique solution only with additional constraints not contained in
the loop equations themselves. Thus, the fact that both convergent and formal
matrix models obey the same loop equations does not mean they have to
coincide. Many explicit examples where both do not coincide have been found
in the literature. It is easy to see on a very simple example that Schwinger–
Dyson equations can’t have a unique solution: consider the Airy function∫
γ exp(t3/3 − tx) dt where γ is any path in the complex plane, going from ∞

to ∞ such that the integral is convergent. There are only two homologicaly
independent choices of γ (one going from +∞ to e2iπ/3∞ and one from +∞
to e−2iπ/3∞). Schwinger–Dyson equations are: 〈ntn−1 + tn+2 − xtn〉 = 0 for
all n. It is clear that loop equations are independent of the path γ, while their
solution clearly depends on γ.

Theorem 6.3.2. The formal matrix integral is the solution of loop equations
with the following additional requirements:

• the expectation value of every monomial invariant is a formal power series
in N−2.

• the t → 0 limit of the expectation value of any monomial invariant of
degree ≥ 1 vanishes :

lim
t→0

〈Q〉 = 0 if Q �= 1. (6.35)
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Proof. The fact that all expectation values have a formal N−2 expansion
follows from the construction. The fact that limt→0〈Q〉 = 0 if Q �= 1, follows
from the fact that we are making a formal Taylor expansion at small t, near
the minimum of the quadratic part, i.e., near Mi = 0, i = 1, . . . , p. ��

However, even those requirements don’t necessarily provide a unique solu-
tion to loop equations. Notice that there exist formal solutions of loop equa-
tions which satisfy the first point (there is a formal N−2 expansion), but not
the second point (limt→0〈Q〉 = 0). Those solutions are related to so-called
“multicut” solutions, they also have a known combinatoric interpretation,
but we don’t consider them in this short review (see for instance [9, 26] for
examples).

There is a conjecture about the relationship between different solutions of
loop equations:

Conjecture 6.3.1. The convergent matrix integral (we assume V to be such
that the integral is convergent, i.e. the highest tQs have negative real part)

Zconv

=
∫
Hp

N

dM1 dM2 · · ·dMp exp

(
−N

t

( p∑
i,j=1

Cij
2

Tr(MiMj)−NV (M1, . . . ,Mp)
))

(6.36)

is a finite linear combination of convergent formal solutions of loop equations
(i.e., a formal solution of loop equations lnZ = −∑∞

g=GN
2−2gF (g), such that

the N−2 series is convergent.), i.e.,

Zconv =
∑
i

ciZi , lnZi = −
∞∑
g=0

N2−2g F
(g)
i . (6.37)

Hint. It amounts to exchanging the large N and small t limits. First, notice
that convergent matrix integrals are usualy defined on Hp

N , but can be defined
on any “integration path” in the complexified of Hp

N , which is MN (C)p, as
long as the integral is convergent. The homology space of such contours is
of finite dimension (because there are a finite number of variables p × N2,
and a finite number of possible sectors at ∞ because the integration measure
is the exponential of a polynomial). Thus, the set of “generalized convergent
matrix integrals” defined on arbitrary paths, is a finite-dimensional vector
space which we note: Gen. The hermitian matrix integral defined on Hp

N is
only one point in that vector space.

Second, notice that every such generalized convergent matrix integral sat-
isfies the same set of loop equations, and that loop equations of type (6.23)
are clearly linear in Z. Thus, the set of solutions of loop equations is a vec-
tor space which contains the vector space of generalized convergent matrix
integrals.
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Third, notice that formal integrals are solutions of loop equations, and
therefore, formal integrals which are also convergent, belong to the vector
space of generalized convergent matrix integrals.

Fourth, one can try to compute any generalized convergent matrix integral
by small t saddle point approximation (at finite N). In that purpose, we need
to identify the small t saddle points, i.e., a set of matrices (M1, . . . ,Mp) ∈
MN(C)p such that ∀i, j, k one has:

∂

∂Mki,j

(∑
l,m

Tr(1
2Cl,mMlMm) − V (M1, . . . ,Mp)

)
Mn=Mn

= 0 (6.38)

and such that

Im
(∑
l,m

Tr(1
2Cl,mMlMm) − V (M1, . . . ,Mp)

)

= Im
(∑
l,m

Tr(1
2Cl,mMlMm) − V (M1, . . . ,Mp)

)
(6.39)

and

Re
(∑
l,m

Tr(1
2Cl,mMlMm) − V (M1, . . . ,Mp)

)

≥ Re
(∑
l,m

Tr(1
2Cl,mMlMm) − V (M1, . . . ,Mp)

)
. (6.40)

If such a saddle point exist, then it is possible to replace exp
(
(N2/t)V

)
by its

Taylor series expansion in the integral and exchange the summation and the
integration (because both the series and the integral are absolutely convergent,
this is nothing but WKB expansion). This proves that saddle points are formal
integrals and at the same time they are generalized convergent integrals, thus
they are formal convergent integrals.

The conjecture thus amounts to claim that saddle points exist, and that
there exist as many saddle points as the dimension of Gen, and that they are
independent, so that the saddle points form a basis of Gen.

Notice that a linear combination of convergent formal solutions has no
N−2 expansion in general, and thus the set of convergent formal integrals is
not a vector space.

This conjecture is proved for the 1-matrix model with real potential [19,22],
and for complex potentials it can be derived from Bertola–Man Yue [3] (in-
deed, the asymptotics of the partition function follow from those of the or-
thogonal polynomials). It is the physical intuition that it should hold for more
general cases. It somehow corresponds to the small t saddle point method.
Each saddle point has a WKB expansion, i.e., is a convergent formal solution,
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and the whole function is a sum over all saddle points. The coefficients of
the linear combination reflect the homology class of the path (here Hp

N ) on
which Z is defined. This path has to be decomposed as a linear combination
of steepest descent paths. The coefficients of that linear combination make
the cis of (6.37) (this is the generalisation of the idea introduced in [9]).

6.4 Examples

6.4.1 1-Matrix Model

Zformal =

∫
dM exp

(−(N/t)Tr
(V(M)

)
)∫

dM exp(−(N/t)Tr((C/2)M2))
(6.41)

where V(M) = (C/2)M2 − V (M) is a polynomial in M , such that V (M)
contains only terms with degree ≥ 3.

For any α and γ, let us parametrise the potential V as:
{
x(z) = α + γ(z + 1/z) ,
V ′(x(z)) =

∑d
j=0 vj(z

j + z−j) .
(6.42)

We determine α and γ by the following conditions:

v0 = 0 , v1 =
t

γ
, (6.43)

i.e., α and β are solutions of an algebraic equation and exist for almost any
t, and they are algebraic functions of t. In general, they have a finite radius
of convergence in t. We chose the branches of α(t) and γ(t) which vanish at
t = 0:

α(t = 0) = 0 , γ(t = 0) = 0 . (6.44)

Then we define:

y(z) =
1
2

d∑
j=1

vj(zj − z−j) . (6.45)

The curve
(
x(z), y(z)

)
, z ∈ C, is called the spectral curve. It is a genus

zero hyperelliptical curve y2 = Polynomial(x). It has only two branch points
solutions of x′(z) = 0 which correspond to z = ±1, i.e., x = α ± 2γ. y as a
function of x has a cut along the segment [α − 2γ, α + 2γ]. Notice that we
have:

Res
z→∞ y dx = t = −Res

z→0
y dx (6.46)

Res
z→∞V ′(x)y dx = 0 , Res

z→∞xV ′(x)y dx = t2 (6.47)

Then one has [2]:
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F (0)

=
1
2

(
Res
z→∞V(x)y dx− t Res

z→∞V(x)
dz
z

− 3
2
t2 − t2 ln

(
γ2C

t

))

=
1
2

(
−
∑
j≥1

γ2

j
(vj+1−vj−1)2− 2γt

j
(−1)j(v2j−1−v2j+1) − 3

2
t2−t2 ln

(
Cγ2

t

))

(6.48)

and: [13, 27]

F (1) = − 1
24

ln
(
γ2y′(1)y′(−1)

t2

)
. (6.49)

Expressions are known for all F (g)s and we refer the reader to [14, 25].
Those expressions are detailed in the next section about the 2-matrix model,
and one has to keep in mind that the 1-matrix model is a special case of the
2-matrix model with V1(x) = V(x) + x2/2 and V2(y) = y2/2.

As a fore-taste, let us just show an expression for F (2):

− 2F (2)

= Res
z1→±1

Res
z2→±1

Res
z3→±1

Φ(z1)E(z1, z2)E(1/z1, z3)
1

(z2 − 1/z2)2
1

(z3 − 1/z3)2

+ 2 Res
z1→±1

Res
z2→±1

Res
z3→±1

Φ(z1)E(z1, z2)E(z2, z3)
1

(1/z1 − 1/z2)2
1

(z3 − 1/z3)2

+ 2 Res
z1→±1

Res
z2→±1

Res
z3→±1

Φ(z1)E(z1, z2)E(z2, z3)
1

(1/z1 − 1/z3)2
1

(1/z2 − z3)2
(6.50)

where the residue is first evaluated for z3 then z2 then z1, and where:

E(z, z′) =
1
4γ

1
z′(z − z′)(z − 1/z′)y(z′)

(6.51)

Φ(z) = − 1
4γ

1
zy(z)(z − 1/z)

∫ z

1/z

y dx . (6.52)

6.4.1.1 Example Triangulated Maps

Consider the particular case V (x) = (t3/3)x3.
Let T = tt23/C

3, and a be a solution of:

a− a3 = 4T (6.53)

and consider the branch of a(T ) which goes to 1 when T = 0. If we param-
etarize:

T =
tt23
C3

=
sin(3φ)
6
√

3
(6.54)
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we have:
a =

cos(π/6 − φ)
cos(π/6)

. (6.55)

We have:

α =
C

2t3
(1 − a) , γ2 =

t

aC
(6.56)

v0 = 0 , v1 =
t

γ
, v2 = −t3γ2 (6.57)

which gives:

F (0) =
5
12
t2 −

(
t

4C
+

C

6t

)
1
a
− t2

2
ln a , (6.58)

F (1) = − 1
24

ln
(

1 − 2a
√

1 − a2

a2

)
. (6.59)

The radius of convergence of F (g) is |T | < 1/(6
√

3) for all g.

6.4.1.2 Example Square Maps

Consider the particular case V (x) = (t4/4)x4, and write T = tt4/C
2. Define:

b =
√

1 − 12T (6.60)

We find

α = 0 , γ2 =
2t

C(1 + b)
(6.61)

v1 =
t

γ
, v2 = 0 , v3 = −t4γ3 (6.62)

We find:

F (0) =
t2

2

(
− (1 − b)2

12(1 + b)2
+

2(1 − b)
3(1 + b)

+ ln
(

1 + b

2

))
, (6.63)

F (1) = − 1
12

ln
(

2b
1 + b

)
. (6.64)

The radius of convergence of F (g) is |T | < 1/12 for all g.

6.4.2 2-Matrix Model

The 2-matrix model was introduced by Kazakov [37], as the Ising model on a
random map.
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Zformal =

∫
dM1 dM2 exp

(−(N/t)Tr(V1(M1) + V2(M2) − C12M1M2)
)

∫
dM1 dM2 exp

(−(N/t)Tr((C11/2)M2
1 + (C22/2)M2

2 −M1M2)
)

(6.65)
where V1(M1) = (C11/2)M2

1−V1(M1) is a polynomial inM1, such that V1(M1)
contains only terms with degree ≥ 3, and where V2(M2) = (C22/2)M2

2 −
V2(M2) is a polynomial in M2, such that V2(M2) contains only terms with
degree ≥ 3, and we assume C12 = 1:

C =
(
C11 −1
−1 C22

)
(6.66)

Indeed, it generates surfaces made of polygons of two possible colors (call them
polygons carrying a spin + or −) glued by their sides (no crossing here). The
weight of each surface depends on the number of neighbouring polygons with
same spin or different spin, which is precisely the Ising model. If C11 = C22

and V1 = V2, this is an Ising model without magnetic field, otherwise it is an
Ising model with magnetic field.

Let us describe the solution.
Consider the following rational curve

{
x(z) = γz +

∑degV ′
2

k=0 αkz
−k

y(z) = γz−1 +
∑deg V ′

1
k=0 βkz

k
(6.67)

where all coefficients γ, αk, βk are determined by:

y(z) − V ′
1

(
x(z)

) ∼
z→∞ − t

γz
+O(z−2) (6.68)

x(z) − V ′
2

(
y(z)

) ∼
z→0

− tz

γ
+O(z2) (6.69)

The coefficients γ, αk, βk are algebraic functions of t, and we must choose the
branch such that γ → 0 at t = 0.

The curve
(
x(z), y(z)

)
, z ∈ C, is called the spectral curve. It is a genus

zero algebraic curve. There are degV2 branch points solutions of x′(z) = 0.
Notice that we have:

Res
z→∞ y dx = t = −Res

z→0
y dx . (6.70)

Then one has [2]:

F (0) =
1
2

(
Res
z→∞V1(x)y dx+ Res

z→0

(
xy − V2(y)

)
y dx− t Res

z→∞V1(x)
dz
z

− tRes
z→0

(
xy − V2(y)

)dz
z

− 3
2
t2 − t2 ln

(
γ2 detC

t

))
(6.71)
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and [27]:

F (1) = − 1
24

ln
(

(t̃deg(V2))2

t2

deg V2∏
i=1

γy′(ai)
)

(6.72)

where ai are the solutions of x′(ai) = 0, and t̃deg(V2) is the leading coefficient
of V2.

The other F (g)s are found as follows [15]:
Let ai, i = 1, . . . ,deg V2 be the branch points, i.e., the solutions of x′(ai) =

0. If z is close to a branch-point ai, we denote z̄ the other point such that

z → ai , x(z̄) = x(z) and z̄ → ai . (6.73)

Notice that z̄ depends on the branch-point, i.e., z̄ is not globally defined. We
also define:

Φ(z) =
∫ z

z0

y dx (6.74)

Φ(z) depends on the base-point z0 and on the path between z and z0, but the
calculations below don’t depend on that.

We define recursively:

W
(0)
1 (p) = 0 (6.75)

W
(0)
2 (p, q) =

1
(p− q)2

(6.76)

W
(g)
k+1(p, p1, . . . , pk)

= −1
2

∑
i

Res
z→ai

(z − z̄) dz
(p− z)(p− z̄)(y(z) − y(z̄)x′(z̄)

×
(
W

(g−1)
k+2 (z, z̄, p1, . . . , pk) +

g∑
h=0

∑
I⊂{1,2,...,k}

W
(h)
1+|I|(z, pI)W

(g−h)
1+k−|I|(z̄, pK/{I})

)
.

(6.77)

This system is a triangular system, and all W (g)
k are well-defined in a finite

number of steps ≤ g(g + 1)/2 + k.
Then we have [15]:

F (g) =
1

2 − 2g

∑
i

Res
z→ai

Φ(z)W (g)
1 (z) dz , g > 2 . (6.78)

The 1-matrix case is a special case of this when the curve is hyperelliptical
(in that case z̄ is globally defined), it corresponds to degV2 = 2.
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6.4.3 Chain of Matrices

Zformal =

∫
dM1 · · · dMp exp

(−(N/t)Tr(
∑p

i=1 Vi(Mi) −
∑p−1
i=1 MiMi+1)

)
∫

dM1 . . . dMp exp
(−(N/t)Tr(

∑p
i=1(Cii/2)M2

i −∑p−1
i=1 MiMi+1)

)
(6.79)

where Vi(Mi) = (Cii/2)M2
i −Vi(Mi) is a polynomial in Mi, such that Vi(Mi)

contains only terms with degree ≥ 3. The matrix C is:

C =

⎛
⎜⎜⎜⎝
C11 −1
−1 C22 −1

. . .
−1 Cpp −1

⎞
⎟⎟⎟⎠ (6.80)

Consider the following rational curve

xi(z) =
ri∑

k=−si

αi,kz
k ∀i = 0, . . . , p+ 1 (6.81)

where all coefficients γ, αk, βk are determined by:

xi+1 + xi−1 = V ′(xi) ∀i = 1, . . . , p

x0(z) ∼
z→∞

t

γz
+ O(z−2)

xp+1(z) ∼
z→0

tz

γ
+O(z2) .

(6.82)

The coefficients γ, αi,k are algebraic functions of t, and we must choose the
branch such that γ → 0 at t = 0.

The curve
(
x1(z), x2(z)

)
, z ∈ C, is called the spectral curve. It is a genus

zero algebraic curve.
Notice that we have ∀i = 1, . . . , p− 1:

Res
z→∞xi+1dxi = t = −Res

z→0
xi+1dxi (6.83)

Then one has [24]:

F (0) =
1
2

(
p∑
i=1

Res
z→∞

(Vi(xi) − 1
2xiV ′

i(xi)
)
xi+1 dxi

− t

p∑
i=1

Res
z→∞

(Vi(xi) − 1
2xiV ′

i(xi)
)dz
z

− t2 ln
(
γ2 detC

t

))
. (6.84)

F (1) and the other F (g)s have never been computed, but it is strongly believed
that they should be given by the same formula as in the 2-matrix case.
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6.4.4 Closed Chain of Matrices

Zformal

=

∫
dM1 · · ·dMp exp

(−(N/t)Tr(
∑p
i=1 Vi(Mi) −∑p−1

i=1 MiMi+1 −MpM1)
)

∫
dM1 · · ·dMp exp

(−(N/t)Tr(
∑p
i=1(Cii/2)M

2
i −∑p−1

i=1 MiMi+1 −MpM1)
) .

(6.85)

It is the case where the matrix C of quadratic interactions has the form:

C =

⎛
⎜⎜⎜⎝
C11 −1 −1
−1 C22 −1

. . .
−1 −1 Cpp −1

⎞
⎟⎟⎟⎠ (6.86)

This model is yet unsolved, apart from very few cases (p = 2, p = 3 (Potts
model), p = 4 with cubic potentials), and there are also results in the large p
limit. This model is still a challenge.

6.4.5 O(n) Model

Zformal

=

∫
dM dM1 · · ·dMn exp

(−(N
t

)
Tr
((
CM
2

)
M2+

(
C
2

) n∑
i=1

M2
i −V (M)−∑n

i=1MM2
i

))
∫

dM dM1 · · ·dMn exp
(−(N

t

)
Tr
((
CM
2

)
M2+

(
C
2

) n∑
i=1

M2
i

))
(6.87)

where V contains at least cubic terms.
We write:

V(x) = −V
(
−
(
x+

C

2

))
+
CM
2

(
x+

C

2

)2

. (6.88)

This model can easily be analytically continued for noninteger ns. Indeed,
combinatoricaly, it is the generating function of a loop gas living on the maps.
n is the “fugacity” of loops, i.e., the n dependence of the weight of each
configuration is n# loops, and the C dependence is C−length of loops. One often
writes:

n = 2 cos(νπ) (6.89)

The O(n) model was introduced by I. Kostov in [43] then in [21, 44], and it
plays a very important role in many areas of physics, and lately, it has started
to play a special role in string theory, as an effective model for the check of
ADS-CFT correspondence.
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The leading order 1-cut solution of this model is well known [28–30].
For any two distinct complex numbers a and b, define:

m = 1 − a2

b2
, τ =

iK ′(m)
K(m)

(6.90)

where K(m) = K ′(1 −m) are the complete elliptical integrals ([1]).
We also consider the following elliptical function (defined on the torus

(1, τ)):

x(u) = ib
cn(2K(m)u,m)
sn(2K(m)u,m)

(6.91)

where sn and cn are the elliptical sine and cosine functions.
Then we define the following function on the universal covering (i.e., on

the complex plane):

Gν(u) = H

(
eiνπ/2 θ1(u+ ν/2)

θ1(u)
+ e−iνπ/2 θ1(u− ν/2)

θ1(u)

)
(6.92)

where H is a normalization constant such that:

lim
u→0

Gν(u)/x(u) = 1 (6.93)

It satisfies:

Gν(u + τ) +Gν(u− τ) − nGν(u) = 0 ,
G(u+ 1) = G(u) , G(u) = G(−τ − u) .

(6.94)

We have:

Gν(u)2 +Gν(−u)2 − nGν(u)Gν(−u)

= (2 + n)(x2(u) − e2ν) , eν = x

(
ν

2

)
(6.95)

G1−ν(u)2 +G1−ν(−u)2 + nG1−ν(u)G1−ν(−u)

= (2 − n)(x2(u) − e21−ν) (6.96)

G1−ν(u)Gν(u) −G1−ν(−u)Gν(−u) +
n

2
G1−ν(−u)Gν(u)

− n

2
G1−ν(u)Gν(−u) = x(u)b

2 sin(νπ)
sn(νK) sn((1 − ν)K)

. (6.97)

Then we define:

A(x2) = Pol
(

(2 + n)(x2 − e2ν)(V ′.G1−ν)+ − xbc(V ′.Gν)−
(x2 − b2)2

)
(6.98)

B(x2) = Pol
(

(2 − n)(x2 − e21−ν)(1/x)(V ′.Gν)− − bc(V ′.G1−ν)+
(x2 − b2)2

)
(6.99)
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where Pol means the polynomial part in x at large x (i.e., at u → 0), and the
subscript + and − mean the even and odd part, and where

c =
2 sin(νπ)

sn(νK) sn((1 − ν)K)
(6.100)

A and B are polynomials of x2.
Then, a and b are completely determined by the 2 conditions:

Res
u→0

(
A
(
x2(u)

)
G1−ν(u)+

x(u)
+B

(
x2(u)

)
Gν(u)−

)
dx(u) = 0 (6.101)

Res
u→0

(
A
(
x2(u)

)
G1−ν(u)− + x(u)B

(
x2(u)

)
Gν(u)+

)
dx(u) = t . (6.102)

Once we have determined a, b, m, A, B, we define the resolvent:

ω(u) = A(x(u)2)G1−ν(u) + x(u)B(x(u)2)Gν(u) (6.103)

which is the first term of the formal large N expansion of:

1
N

〈
Tr

1
x(u) −M

〉
= ω(u) +O(1/N2) (6.104)

and which satisfies:

ω(u+ τ) + ω(u− τ) + nω(u) = V ′(x(u)) , (6.105)
ω(u+ 1) = ω(u) , ω(u) = ω(−τ − u) . (6.106)

The free energy is then found by:

∂F (0)

∂t2
=
(

1 − n

2

)
ln
(
a2g(m)

)
(6.107)

where
g′

g
=

1
m(1 −m) sn2(νK(m),m)

. (6.108)

All this is described in [23]. The special cases of n integer, and in general
when ν is rational, can be computed with more details.

6.4.6 Potts Model

Zformal

=

∫
dM1 · · ·dMQ exp(−(N/t)Tr(

∑Q
i=1

1
2M

2
i + V (Mi) + (C/2)

∑Q
i,jMiMj))∫

dM dM1 · · ·dMn exp(−(N/t)Tr(
∑Q

i=1
1
2M

2
i + (C/2)

∑Q
i,jMiMj))

(6.109)
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or equivalently:

Zformal

=

∫
dM dM1 · · · dMQ exp(−(N/t)Tr(

Q∑
i=1

1
2
M2
i +V (Mi) + (C/2)M2−C

Q∑
i=1

MMi))

∫
dM dM1 · · · dMQ exp(−(N/t)Tr(

Q∑
i=1

1
2
M2
i +(C/2)M2−C

Q∑
i=1

MMi))

(6.110)

The Random lattice Potts model was first introduced by V. Kazakov in
[38,39]. The loop equations have been written and solved to leading order, in
particular in [10, 17, 57].

6.4.7 3-Color Model

Zformal

=

∫
dM1 dM2 dM3 exp(−(N/t) Tr( 1

2
(M2

1 +M2
2 +M2

3 )−g(M1M2M3 +M1M3M2)))∫
dM1 dM2 dM3 exp(−(N/t) Tr( 1

2
(M2

1 +M2
2 +M2

3 )))

(6.111)

The loop equations have been written and solved to leading order, in particular
in [31, 45].

6.4.8 6-Vertex Model

Zformal

=
∫

dM dM † exp(−(N/t)Tr(MM † −M2M2† + cosβ(MM †)2))∫
dM dM † exp(−(N/t)Tr(MM †))

(6.112)

where M is a complex matrix. The loop equations have been written and
solved to leading order, in particular in [46, 56].

6.4.9 ADE Models

Given a Dynkin diagram of A, D or E Lie algebra, and let A be its adjacency
matrix (Aij = Aji = # links between i and j). We define:

Zformal =
∫ ∏

i

dMi

∏
i<j

dBij

exp

(
−N

T
Tr
(∑

i

1
2
M2
i − g

3
M3
i +

1
2

∑
i,j

BijB
t
ij +

K

2

∑
i,j

AijBijB
t
ijMi

))

(6.113)

where Bji = Bt
ij are complex matrices, and Mi are Hermitian matrices.

The loop equations have been written and solved to leading order, in par-
ticular in [44, 47].
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6.4.10 ABAB Models

Zformal

=
∫ n1∏

i=1

dAi
n2∏
j=1

dBj exp

(
−N

T
Tr
(∑

i

A2
i

2
+
∑
i

B2
i

2
+g
∑
i,j

AiBjAiBj

))
.

(6.114)

This model is yet unsolved, apart from few very special cases [41]. However,
its solution would be of great interest in the understanding of Temperley–Lieb
algebra.

6.5 Discussion

6.5.1 Summary of Some Known Results

We list here some properties which are rather well understood.
• The fact that formal matrix integrals are generating functions for count-

ing discrete surfaces (also called maps) is well understood, as was explained
in this review.

• The fact that formal matrix integrals i.e. generating functions of maps
satisfy Schwinger–Dyson equations is well understood.

• The fact that formal matrix integrals and convergent integrals don’t
coincide in general is well understood. In the examples of the 1-matrix model,
2-matrix Ising model or chain of matrices, it is understood that they may
coincide only in the “1-cut case”, i.e. if the classical spectral curve has genus
zero.

• The fact that the formal 1-matrix, 2-matrix or chain of matrices integrals
are τ functions of some integrable hierarchies is well understood too.

• For the formal 1-matrix model and 2-matrix Ising model, all F (g)s have
been computed explicitly. The result is written in terms of residues of rational
functions.

• For the chain of matrices, F (0) is known explicitly [24], and it is strongly
believed that all F (g)s are given by the same expression as for the 2-matrix
model.

• Multi-cut formal matrix models are well studied too, and they can be
rewritten in terms of multi-matrix models. For the 1 and 2 matrix models,
the expressions of the F (g)s are known explicitly (in terms of residues of
meromorphic forms on higher genus spectral curves).
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6.5.2 Some Open Problems

• The large N asymptotics of convergent matrix integrals, are not directly
relevant for combinatorics, but are a very important question for other ap-
plications, in particular bi-orthogonal polynomials, universal statistical prop-
erties of eigenvalues of large random matrices, and many other applications.
This question is highly nontrivial, and so far, it has been solved only for the
1-matrix model [5,19,22], and a few other cases (e.g., the 6-vertex model [8]).
The method mostly used to prove the asymptotic formulae is the Riemann-
Hilbert method [5, 19], which consists in finding a Riemann–Hilbert problem
for the actual matrix integral and for its conjectured asymptotics, and com-
pare both. There is a hope that probabilists’ methods like large deviations
could be at leats as efficient.

• For the 2-matrix model and chain of matrices, the topological expansion
of formal “mixed” expectation values (e.v. of invariant monomials whose words
contain at least 2 different letters) has not yet been computed. This problem is
a challenge in itself, and has applications to the understanding of “boundary
conformal field theory”. In terms of combinatorics, it corresponds to find
generating functions for open surfaces with boundaries of prescribed colors.

• Many matrix models have not yet been solved, even to planar order.
For instance the closed chain of matrices where Cij = δi,j+1 + δi,j−1 + Ciδii
and Cp1 = C1p = 1. For the Potts model, 6-vertex model, 3-color model, O(n)
model, ADE models, only the planar resolvent is known. For the AnBmAnBm,
almost nothing is known, although this model describes the combinatorics of
Temperly–Lieb algebra.

• Limits of critical points are still to be understood and classified. Only
a small number of critical points have been studied so far. They have been
related to KdV or KP hierarchies. Critical points, i.e., radius of convergence
of the t-formal power series, are in relationship with asymptotics numbers of
large maps (through Borel’s transform), and thus critical points allow to count
maps made of a very large number of polygons, i.e., they can be interpreted
as counting continuous surfaces (this was the idea of 2D quantum gravity in
the 80s and early 90s). This is yet to be better understood [7, 16].

• Extensions to other types of matrices (non-Hermitian) have been very
little studied compared to the hermitian case, and much is still to be under-
stood. For instance real symmetric matrices or quaternion-self-dual matrices
have been studied from the begining [48], and they count nonorientable maps.
Complex matrices, and normal complex matrices have played an increasing
role in physics, because of their relationship with Laplacian growth problems
[54], or some limits of string theory [4]. Complex matrices count maps with
arrows on the edges (see the 6-vertex model [56]). Other types of matrix en-
sembles have been introduced in relationship with symmetric spaces [58], and
it is not clear what they count.

• And there are so many applications of random matrices to physics, math-
ematics, biology, economics, to be investigated. . .
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Thesis, Université Paris 6, Paris (1995)
24. B. Eynard, J. High Energy Phys. 2003, 018 (2003)
25. B. Eynard: J. High Energy Phys. 2005, 034 (2005)
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Summary. This is an expository account of the edge eigenvalue distributions in
random matrix theory and their application in multivariate statistics. The emphasis
is on the Painlevé representations of these distribution functions.
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7.1 Multivariate Statistics

7.1.1 Wishart Distribution

The basic problem in statistics is testing the agreement between actual obser-
vations and an underlying probability model. Pearson in 1900 [27] introduced
the famous χ2 test where the sampling distribution approaches, as the sample
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size increases, to the χ2 distribution. Recall that if Xj are independent and
identically distributed standard normal random variables, N(0, 1), then the
distribution of

χ2
n := X2

1 + · · · +X2
n (7.1)

has density

fn(x) =

{
1

2n/2Γ(n/2)
xn/2−1e−x/2 for x > 0,

0 for x ≤ 0,
(7.2)

where Γ(x) is the gamma function.
In classical multivariate statistics3 it is commonly assumed that the un-

derlying distribution is the multivariate normal distribution. If X is a p× 1-
variate normal with E(X) = μ and p × p covariance matrix Σ = cov(X) :=
E
(
(X −μ)⊗ (X −μ)

)
,4 denoted Np(μ,Σ), then if Σ > 0 the density function

of X is

fX(x) = (2π)−p/2(detΣ)−1/2 exp
[− 1

2

(
x− μ,Σ−1(x− μ)

)]
, x ∈ R

p ,

where (·, ·) is the standard inner product on R
p.

It is convenient to introduce a matrix notation: If X is a n×p matrix (the
data matrix ) whose rows Xj are independent Np(μ,Σ) random variables,

X =

⎛
⎜⎜⎜⎝
←− X1 −→
←− X2 −→

...
←− Xn −→

⎞
⎟⎟⎟⎠ ,

then we say X is Np(1⊗μ, In⊗Σ) where 1 = (1, 1, . . . , 1) and In is the n×n
identity matrix. We now introduce the multivariate generalization of (7.1).

Definition 7.1.1. If A = XtX , where the n × p matrix X is Np(0, In ⊗ Σ),
then A is said to have Wishart distribution with n degrees of freedom and
covariance matrix Σ. We write A is Wp(n,Σ).

To state the generalization of (7.2) we first introduce the multivariate
Gamma function. If S+

m is the space of p × p positive definite, symmetric
matrices, then

Γp(a) :=
∫
S+

p

e− tr(A)(detA)a−(p+1)/2 dA

where Re(a) > (m − 1)/2 and dA is the product Lebesgue measure of the
1
2p(p + 1) distinct elements of A. By introducing the matrix factorization

3 There are many excellent textbooks on multivariate statistics, we mention An-
derson [1], Muirhead [26], and for a shorter introduction, Bilodeau and Brenner
[4].

4 If u and v are vectors we denote by u ⊗ v the matrix with (i, j) matrix element
uivj .
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A = T tT where T is upper-triangular with positive diagonal elements, one can
evaluate this integral in terms of ordinary gamma functions, see [26, p. 62].
Note that Γ1(a) is the usual gamma function Γ(a). The basic fact about the
Wishart distributions is

Theorem 7.1.1 (Wishart [38]). If A is Wp(n,Σ) with n ≥ p, then the
density function of A is

1
2pn/2Γp(n/2)(detΣ)n/2

exp
(− 1

2 tr(Σ−1A)
)
(detA)(n−p−1)/2 . (7.3)

For p = 1 and Σ = 1 (7.3) reduces to (7.2). The case p = 2 was obtained
by Fisher in 1915 and for general p by Wishart in 1928 using geometrical
arguments. Most modern proofs follow James [20]. The importance of the
Wishart distribution lies in the fact that the sample covariance matrix, S, is
Wp(n, 1/nΣ) where

S :=
1
n

N∑
j=1

(Xi −X) ⊗ (Xj −X) , N = n+ 1 ,

and Xj, j = 1, . . . , N , are independent Np(μ,Σ) random vectors, and X =
(1/N)

∑
j Xj .

Principle component analysis,5 a multivariate data reduction technique,
requires the eigenvalues of the sample covariance matrix; in particular, the
largest eigenvalue (the largest principle component variance) is most impor-
tant. The next major result gives the joint density for the eigenvalues of a
Wishart matrix.

Theorem 7.1.2 (James [21]). If A is Wp(n,Σ) with n ≥ p the joint density
function of the eigenvalues l1, . . . , lp of A is

πp
2/22−pn/2(detΣ)−n/2

Γp(p/2)Γp(n/2)

p∏
j=1

l
(n−p−1)/2
j

∏
j<k

(lj − lk)

×
∫

O(p)

exp
(− 1

2 tr(Σ−1HLHt)
)
dH (7.4)

where O(p) is the orthogonal group of p× p matrices, dH is normalized Haar
measure and L is the diagonal matrix diag(l1, . . . , lp). (We take l1 > l2 >
· · · > lp.)

Remark 7.1.1. The difficult part of this density function is the integral over
the orthogonal group O(p). There is no known closed formula for this integral

5 See, for example, [26, Chap. 9], and [22] for a discussion of some current issues in
principle component analysis.



446 M. Dieng and C.A. Tracy

though James and Constantine (see [26, Chap. 7] for references) developed
the theory of zonal polynomials which allow one to write infinite series ex-
pansions for this integral. However, these expansions converge slowly; and
zonal polynomials themselves, lack explicit formulas such as are available for
Schur polynomials. For complex Wishart matrices, the group integral is over
the unitary group U(p); and this integral can be evaluated using the Harish-
Chandra–Itzykson–Zuber integral [39].

There is one important case where the integral can be (trivially) evaluated.

Corollary 7.1.1. If Σ = Ip, then the joint density (7.4) simplifies to

πp
2/22−pn/2(detΣ)−n/2

Γp(p/2)Γp(n/2)

p∏
j=1

l
(n−p−1)/2
j exp

(
−1

2

∑
j

lj

)∏
j<k

(lj − lk) . (7.5)

7.1.2 An Example with Σ �= cIp

This section uses the theory of zonal polynomials as can be found in Muir-
head [26, Chap. 7] or Macdonald [23]. This section is not used in the remainder
of the chapter. Let λ = (λ1, . . . , λp) be a partition into not more than p parts.
We let Cλ(Y ) denote the zonal polynomial of Y corresponding to λ. It is a
symmetric, homogeneous polynomial of degree |λ| in the eigenvalues y1, . . . , yp
of Y . The normalization we adopt is defined by

(trY )k = (y1 + · · · + yp)k =
∑
λ�k
l(λ)≤p

Cλ(Y ) .

The fundamental integral formula for zonal polynomials is6

Theorem 7.1.3. Let X,Y ∈ S+
p , then

∫
O(p)

Cλ(XHYHt) dH =
Cλ(X)Cλ(Y )

Cλ(Ip)
(7.6)

where dH is normalized Haar measure.

By expanding the exponential and using (7.6) it follows that
∫

O(p)

exp
(
z tr(XHYHt)

)
dH =

∑
k≥0

zk

k!

∑
λ�k
l(λ)≤p

Cλ(X)Cλ(Y )
Cλ(Ip)

. (7.7)

We examine (7.7) for the special case (|ρ| < 1)

6 See, for example, [26, Thm. 7.2.5].
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Σ = (1 − ρ)Ip + ρ1⊗ 1 =

⎛
⎜⎜⎜⎝

1 ρ ρ · · · ρ
ρ 1 ρ · · · ρ
...

...
ρ ρ ρ · · · 1

⎞
⎟⎟⎟⎠ .

We have
Σ−1 = (1 − ρ)−1Ip − ρ

(1 − ρ)(1 + (p− 1)ρ)
1⊗ 1

and
detΣ = (1 − ρ)p−1(1 + (p− 1)ρ) .

For this choice of Σ, let Y = α1 ⊗ 1 where α = ρ/
(
(2(1 − ρ)(1 + (p− 1)ρ)

)
,

then
∫

O(p)

exp
(− 1

2 tr(Σ−1HLHt)
)
dH

= exp
(
− 1

2(1 − ρ)

∑
j

λj

)∫
O(p)

exp
(
tr(Y HLHt)

)
dH

= exp
(
− 1

2(1 − ρ)

∑
j

λj

)∑
k≥0

C(k)(α1 ⊗ 1)C(k)(Λ)
k!C(k)(Ip)

where we used the fact that the only partition λ � k for which Cλ(Y ) is
nonzero is λ = (k). And for this partition, C(k)(Y ) = αkpk. Define the sym-
metric functions gn7 by

∏
j≥1

(1 − xjy)−1/2 =
∑
n≥0

gn(x)yn ,

then it is known that [23]

C(k)(L) =
22k(k!)2

(2k)!
gk(L) .

Using the known value of C(k)(Ip) we find

∫
O(p)

exp
(− 1

2 tr(Σ−1HLHt)
)
dH = exp

(
− 1

2(1 − ρ)

∑
j

λj

)∑
k≥0

(αp)k

(1
2p)k

gk(L)

where (a)k = a(a+ 1) · · · (a+ k − 1) is the Pochammer symbol.

7 In the theory of zonal polynomials, the gn are the analogue of the complete
symmetric functions hn.
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7.2 Edge Distribution Functions

7.2.1 Summary of Fredholm Determinant Representations

In this section we define three Fredholm determinants from which the edge
eigenvalue distributions, for the three symmetry classes orthogonal, unitary
and symplectic, will ensue. This section follows [31, 33, 36]; see also, [15, 16].

In the unitary case (β = 2), define the trace class operator K2 on L2(s,∞)
with Airy kernel

KAi(x, y) :=
Ai(x)Ai′(y) − Ai′(x)Ai(y)

x− y
=
∫ ∞

0

Ai(x+ z)Ai(y + z) dz (7.8)

and associated Fredholm determinant, 0 ≤ λ ≤ 1,

D2(s, λ) = det(I − λK2) . (7.9)

Then we introduce the distribution functions

F2(s) = F2(s, 1) = D2(s, 1) , (7.10)

and for m ≥ 2, the distribution functions F2(s,m) are defined recursively
below by (7.25).

In the symplectic case (β = 4), we define the trace class operator K4 on
L2(s,∞) ⊕ L2(s,∞) with matrix kernel

K4(x, y) :=
1
2

(
S4(x, y) SD4(x, y)
IS4(x, y) S4(y, x)

)
(7.11)

where

S4(x, y) = KAi(x, y) − 1
2

Ai(x, y)
∫ ∞

y

Ai(z) dz ,

SD4(x, y) = −∂yKAi(x, y) − 1
2

Ai(x)Ai(y) ,

IS4(x, y) = −
∫ ∞

x

KAi(z, y) dz +
1
2

∫ ∞

x

Ai(z) dz
∫ ∞

y

Ai(z) dz ,

and the associated Fredholm determinant, 0 ≤ λ ≤ 1,

D4(s, λ) = det(I − λK4) . (7.12)

Then we introduce the distribution functions (note the square root)

F4(s) = F4(s, 1) =
√
D4(s, 1) , (7.13)

and for m ≥ 2, the distribution functions F4(s,m) are defined recursively
below by (7.27).
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In the orthogonal case (β = 1), we introduce the matrix kernel

K1(x, y) :=
(

S1(x, y) SD1(x, y)
IS1(x, y) − ε(x, y) S1(y, x)

)
(7.14)

where

S1(x, y) = KAi(x, y) − 1
2

Ai(x)
(

1 −
∫ ∞

y

Ai(z) dz
)
,

SD1(x, y) = −∂yKAi(x, y) − 1
2 Ai(x)Ai(y) ,

IS1(x, y) = −
∫ ∞

x

KAi(z, y) dz +
1
2

(∫ x

y

Ai(z) dz +
∫ ∞

x

Ai(z) dz
∫ ∞

y

Ai(z) dz
)
,

ε(x− y) = 1
2 sgn(x − y) .

The operator K1 on L2(s,∞)⊕ L2(s,∞) with this matrix kernel is not trace
class due to the presence of ε. As discussed in [36], one must use the weighted
space L2(ρ)⊕L2(ρ−1), ρ−1 ∈ L1. Now the determinant is the 2-determinant,

D1(s, λ) = det2(I − λK1χJ) (7.15)

where χJ is the characteristic function of the interval (s,∞). We introduce
the distribution functions (again note the square root)

F1(s) = F1(s, 1) =
√
D1(s, 1) , (7.16)

and for m ≥ 2, the distribution functions F1(s,m) are defined recursively
below by (7.27). This is the first indication that the determinant D1(s, λ)
might be more subtle than either D2(s, λ) or D4(s, λ).

7.2.2 Universality Theorems

Suppose A is Wp(n, Ip) with eigenvalues l1 > · · · > lp. We define scaling
constants

μnp =
(√

n− 1 +
√
p
)2

, σnp =
(√

n− 1 +
√
p
)( 1√

n− 1
+

1√
p

)1/3

.

The following theorem establishes, under the null hypothesis Σ = Ip, that the
largest principal component variance, l1, converges in law to F1.

Theorem 7.2.1 (Johnstone, [22]). If n, p → ∞ such that n/p → γ, 0 <
γ < ∞, then

l1 − μnp
σnp

D−→ F1(s, 1) .

Johnstone’s theorem generalizes to the mth largest eigenvalue.
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Theorem 7.2.2 (Soshnikov [29]). If n, p→ ∞ such that n/p → γ, 0 < γ <
∞, then

lm − μnp
σnp

D−→ F1(s,m), m = 1, 2, . . . .

Soshnikov proved his result under the additional assumption n − p =
O(p1/3). We remark that a straightforward generalization of Johnstone’s
proof [22] together with results of Dieng [10] show this restriction can be
removed. Subsequently, El Karoui [14] extended Thm. 7.2.2 to 0 < γ ≤ ∞.
The extension to γ = ∞ is important for modern statistics where p � n arises
in applications.

Going further, Soshnikov lifted the Gaussian assumption, again establish-
ing a F1 universality theorem. In order to state the generalization precisely,
let us redefine the n× p matrices X = {xi,j} such that A = XtX to satisfy

1. E(xij) = 0, E(x2
ij) = 1.

2. The random variables xij have symmetric laws of distribution.
3. All even moments of xij are finite, and they decay at least as fast as a

Gaussian at infinity: E(x2m
ij ) ≤ (constm)m.

4. n− p = O(p1/3).

With these assumptions,

Theorem 7.2.3 (Soshnikov [29]).

lm − μnp
σnp

D−→ F1(s,m), m = 1, 2, . . . .

It is an important open problem to remove the restriction n− p = O(p1/3).

For real symmetric matrices, Deift and Gioev [8], building on the work
of Widom [37], proved F1 universality when the Gaussian weight function
exp(−x2) is replaced by exp

(−V (x)
)

where V is an even degree polynomial
with positive leading coefficient.

Table 7.3 in Sect. 7.9 displays a comparison of the percentiles of the F1

distribution with percentiles of empirical Wishart distributions. Here lj de-
notes the jth largest eigenvalue in the Wishart Ensemble. The percentiles
in the lj columns were obtained by finding the ordinates corresponding to
the F1-percentiles listed in the first column, and computing the proportion of
eigenvalues lying to the left of that ordinate in the empirical distributions for
the lj . The bold entries correspond to the levels of confidence commonly used
in statistical applications. The reader should compare Table 7.3 to similar
ones in [14, 22].
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7.3 Painlevé Representations: A Summary

The Gaussian β-ensembles are probability spaces on N -tuples of random vari-
ables {l1, . . . , lN}, with joint density functions Pβ given by8

Pβ(l1, . . . , lN ) = P
(N)
β (l) = C

(N)
β exp

[
−

N∑
j=1

l2j

]∏
j<k

|lj − lk|β . (7.17)

The C(N)
β are normalization constants, given by

C
(N)
β = π−N/22−N−βN(N−1)/4

N∏
j=1

Γ(1 + γ)Γ(1 + β/2)
Γ(1 + β/2j)

. (7.18)

By setting β = 1, 2, 4 we recover the (finite N) Gaussian Orthogonal Ensem-
ble (GOEN ), Gaussian Unitary Ensemble (GUEN ), and Gaussian Symplectic
Ensemble (GSEN ), respectively. For the remainder of the chapter we restrict
to these three cases, and refer the reader to [12] for recent results on the
general β case. Originally the lj are eigenvalues of randomly chosen matrices
from corresponding matrix ensembles, so we will henceforth refer to them as
eigenvalues. With the eigenvalues ordered so that lj ≥ lj+1, define

l̂(N)
m =

lm −√
2N

2−1/2N−1/6
, (7.19)

to be the rescaled mth eigenvalue measured from edge of spectrum. For the
largest eigenvalue in the β-ensembles (proved only in the β = 1, 2, 4 cases) we
have

l̂
(N)
1

D−→ l̂1 , (7.20)

whose law is given by the Tracy–Widom distributions.98

8 In many places in the random matrix theory literature, the parameter β (times
1
2
) appears in front of the summation inside the exponential factor (7.17), in

addition to being the power of the Vandermonde determinant. That convention
originated in [24], and was justified by the alternative physical and very useful
interpretation of (7.17) as a one-dimensional Coulomb gas model. In that language

the potential W = 1
2

∑
i l

2
i −∑i<j ln |li − lj | and P

(N)
β (l) = C exp(−W/kT ) =

C exp(−βW ), so that β = (kT )−1 plays the role of inverse temperature. However,
by an appropriate choice of specialization in Selberg’s integral, it is possible to
remove the β in the exponential weight, at the cost of redefining the normalization
constant C

(N)
β . We choose the latter convention in this work since we will not need

the Coulomb gas analogy. Moreover, with computer simulations and statistical
applications in mind, this will in our opinion make later choices of standard
deviations, renormalizations, and scalings more transparent. It also allows us to
dispose of the

√
2 that is often present in F4.
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Theorem 7.3.1 (Tracy, Widom [31,33]).

F2(s) = P2(l̂1 ≤ s) = exp
[
−
∫ ∞

s

(x− s)q2(x) dx
]
, (7.21)

F1(s) = P1(l̂1 ≤ s) =
(
F2(s)

)1/2
exp
[
−1

2

∫ ∞

s

q(x) dx
]
, (7.22)

F4(s) = P4(l̂1 ≤ s) =
(
F2(s)

)1/2 cosh
[
−1

2

∫ ∞

s

q(x) dx
]
. (7.23)

The function q is the unique (see [6,19]) solution to the Painlevé II equation

q′′ = xq + 2q3 , (7.24)

such that q(x) ∼ Ai(x) as x → ∞, where Ai(x) is the solution to the Airy
equation which decays like 1

2π
−1/2x−1/4 exp(− 2

3x
3/2) at +∞. The density

functions fβ corresponding to the Fβ are graphed in Fig. 7.1.10
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Fig. 7.1. Tracy–Widom density functions.

Let F2(s,m) denote the distribution for themth largest eigenvalue in GUE.
Tracy and Widom showed [31] that if we define F2(s, 0) ≡ 0, then

F2(s,m+ 1) − F2(s,m) =
(−1)m

m!
dm

dλm
D2(s, λ)

∣∣
λ=1

, m ≥ 0 , (7.25)

where (7.9) has the Painlevé representation

D2(s, λ) = exp
[
−
∫ ∞

s

(x − s)q2(x, λ) dx
]
, (7.26)

and q(x, λ) is the solution to (7.24) such that q(x, λ) ∼ √
λAi(x) as x → ∞.

The same combinatorial argument used to obtain the recurrence (7.25) in the
β = 2 case also works for the β = 1, 4 cases, leading to
10 Actually, for β = 4, the density of F4(

√
2s) is graphed to agree with Mehta’s

original normalization [24] as well as with [33].
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Fβ(s,m + 1) − Fβ(s,m) =
(−1)m

m!
dm

dλm
D

1/2
β (s, λ)

∣∣
λ=1

,

m ≥ 0 , β = 1, 4 , (7.27)

where Fβ(s, 0) ≡ 0. Given the similarity in the arguments up to this point and
comparing (7.26) to (7.21), it is natural to conjecture that Dβ(s, λ), β = 1, 4,
can be obtained simply by replacing q(x) by q(x, λ) in (7.22) and (7.23).

That this is not the case for β = 1 was shown by Dieng [10, 11]. A hint
that β = 1 is different comes from the following interlacing theorem.

Theorem 7.3.2 (Baik, Rains [3]). In the appropriate scaling limit, the dis-
tribution of the largest eigenvalue in GSE corresponds to that of the second
largest in GOE. More generally, the joint distribution of every second eigen-
value in the GOE coincides with the joint distribution of all the eigenvalues
in the GSE, with an appropriate number of eigenvalues.

This interlacing property between GOE and GSE had long been in the
literature, and had in fact been noticed by Mehta and Dyson [25]. In this con-
text, Forrester and Rains [17] classified all weight functions for which alternate
eigenvalues taken from an orthogonal ensemble form a corresponding symplec-
tic ensemble, and similarly those for which alternate eigenvalues taken from a
union of two orthogonal ensembles form an unitary ensemble. The following
theorem gives explicit formulas for D1(s, λ) and D4(s, λ); and hence, from
(7.27), a recursive procedure to determine F1(·,m) and F4(·,m) for m ≥ 2.

Theorem 7.3.3 (Dieng [10,11]). In the edge scaling limit, the distributions
for the mth largest eigenvalues in the GOE and GSE satisfy the recurrence
(7.27) with118

D1(s, λ) = D2(s, λ̃)
λ− 1 − coshμ(s, λ̃) +

√
λ̃ sinhμ(s, λ̃)

λ− 2
, (7.28)

D4(s, λ) = D2(s, λ) cosh2

(
μ(s, λ)

2

)
, (7.29)

where
μ(s, λ) :=

∫ ∞

s

q(x, λ) dx, λ̃ := 2λ− λ2 , (7.30)

and q(x, λ) is the solution to (7.24) such that q(x, λ) ∼ √
λAi(x) as x → ∞.

Note the appearance of λ̃ in the arguments on the right-hand side of (7.28). In
Fig. 7.2 we compare the densities f1(s,m), m = 1, . . . , 4, with finite N GOE
simulations. This last theorem also provides a new proof of the Baik–Rains
interlacing theorem.

Corollary 7.3.1 (Dieng [10,11]).

F4(s,m) = F1(s, 2m) , m ≥ 1 . (7.31)
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Fig. 7.2. 104 realizations of 103 × 103 GOE matrices; the solid curves are, from
right to left, the theoretical limiting densities for the first through fourth largest
eigenvalue.

The proofs of these theorems occupy the bulk of the remaining part of
the chapter. In the last section, we present an efficient numerical scheme to
compute Fβ(s,m) and the associated density functions fβ(s,m). We imple-
mented this scheme using MATLAB R©,12 and compared the results to simu-
lated Wishart distributions.

7.4 Preliminaries

7.4.1 Determinant Matters

We gather in this short section more or less classical results for further refer-
ence.

Theorem 7.4.1.
∏

0≤j<k≤N
(xj − xk)4 = det(xjkjx

j−1
k )j=0,...,2N−1

k=1,...,N
.

Theorem 7.4.2. If A, B are Hilbert–Schmidt operators on a general13 Hilbert
space H, then

det(I +AB) = det(I +BA) .

12 MATLABR© is a registered trademark of The MathWorks, Inc., 3 Apple Hill Drive,
Natick, MA 01760-2098; Phone: 508-647-7000; Fax: 508-647-7001. Copies of the
code are available by contacting the first author.

13 See [18] for proof.
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Theorem 7.4.3 (de Bruijn [7]).
∫
· · ·
∫

det
(
ϕj(xk)

)
1≤j,k≤N det

(
ψj(xk)

)
1≤j,k≤N dμ(x1) · · · dμ(xN )

= N ! det
(∫

ϕj(x)ψk(x) dμ(x)
)

1≤j,k≤N
, (7.32)

∫
· · ·
∫

x1≤···≤xN

det
(
ϕj(xk)

)N
j,k=1

dμ(x1) · · · dμ(xN )

= Pf
(∫∫

sgn(x − y)ϕj(x)ϕk(x) dμ(x) dμ(y)
)N
j,k=1

, (7.33)

∫
· · ·
∫

det
(
ϕj(xk)ψj(xk)

)
1≤j≤2N
1≤k≤N

dμ(x1) · · ·dμ(xN )

= (2N)! Pf
(∫

ϕj(x)ψk(x) − ϕk(x)ψj(x) dμ(x)
)2N

j,k=1

, (7.34)

where Pf denotes the Pfaffian. The last two integral identities were discovered
by de Bruijn [7] in an attempt to generalize the first one. The first and last
are valid in general measure spaces. In the second identity, the space needs to
be ordered. In the last identity, the left-hand side determinant is a 2N × 2N
determinant whose columns are alternating columns of the ϕj and ψj (i.e., the
first four columns are {ϕj(x1)}, {ψj(x1)}, {ϕj(x2)}, {ψj(x2)}, respectively for
j = 1, . . . , 2N), hence the notation, and asymmetry in indexing.

A large portion of the foundational theory of random matrices, in the case
of invariant measures, can be developed from Thms. 7.4.2 and 7.4.3 as was
demonstrated in [34, 37].

7.4.2 Recursion Formula for the Eigenvalue Distributions

With the joint density function defined as in (7.17), let J denote the interval
(t,∞), and χ = χJ(x) its characteristic function.14 We denote by χ̃ = 1 − χ
the characteristic function of the complement of J , and define χ̃λ = 1 − λχ.
Furthermore, let Eβ,N(t,m) equal the probability that exactly the m largest
eigenvalues of a matrix chosen at random from a (finite N) β-ensemble lie in
J . We also define

Gβ,N(t, λ) =
∫
· · ·
∫

xi∈R

χ̃λ(x1) · · · χ̃λ(xN )Pβ(x1, . . . , xN ) dx1 · · · dxN . (7.35)

For λ = 1 this is just Eβ,N (t, 0), the probability that no eigenvalues lie in
(t,∞), or equivalently the probability that the largest eigenvalue is less than
14 Much of what is said here is still valid if J is taken to be a finite union of

open intervals in R (see [32]). However, since we will only be interested in edge
eigenvalues we restrict ourselves to (t,∞) from here on.
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t. In fact we will see in the following propositions that Gβ,N(t, λ) is in some
sense a generating function for Eβ,N(t,m).

Proposition 7.4.1.

Gβ,N (t, λ) =
N∑
k=0

(−λ)k
(
N

k

)∫
· · ·
∫

xi∈J
Pβ(x1, . . . , xN ) dx1 · · · dxN . (7.36)

Proof. Using the definition of the χ̃λ(x1) and multiplying out the integrand
of (7.35) gives

Gβ,N (t, λ)

=
N∑
k=0

(−λ)k
∫
· · ·
∫

xi∈R

ek
(
χ(x1), . . . , χ(xN )

)
Pβ(x1, . . . , xN ) dx1 · · · dxN ,

where, in the notation of [30], ek = m1k is the kth elementary symmetric
function. Indeed each term in the summation arises from picking k of the
λχ-terms, each of which comes with a negative sign, and N − k of the 1’s.
This explains the coefficient (−λ)k. Moreover, it follows that ek contains

(
N
k

)
terms. Now the integrand is symmetric under permutations of the xi. Also
if xi �∈ J , all corresponding terms in the symmetric function are 0, and they
are 1 otherwise. Therefore we can restrict the integration to xi ∈ J , remove
the characteristic functions (hence the symmetric function), and introduce the
binomial coefficient to account for the identical terms up to permutation. ��
Proposition 7.4.2.

Eβ,N (t,m) =
(−1)m

m!
dm

dλm
Gβ,N (t, λ)

∣∣∣∣
λ=1

, m ≥ 0 . (7.37)

Proof. This is proved by induction. As noted above, Eβ,N(t, 0) = Gβ,N(t, 1)
so it holds for the degenerate case m = 0. When m = 1 we have

− d
dλ

Gβ,N(t, λ)
∣∣∣∣
λ=1

= − d
dλ

∫
· · ·
∫

χ̃λ(x1) · · · χ̃λ(xn)P (N)
β (x) dx1 · · · dxn

∣∣∣∣
λ=1

= −
N∑
j=1

−
∫
· · ·
∫
χ̃(x1) · · · χ̃(xj−1)χ(xj)

× χ̃(xj+1) · · · χ̃(xN )P (N)
β (x) dx1 · · · dxN .

The integrand is symmetric under permutations so we can make all terms
look the same. There are N =

(
N
1

)
of them so we get
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− d
dλ

Gβ,N(t, λ)
∣∣∣∣
λ=1

=
(
N

1

)∫
· · ·
∫

χ(x1)χ̃(x2) · · · χ̃(xN )P (N)
β (x) dx1 · · · dxN

∣∣∣∣
λ=1

=
(
N

1

)∫
· · ·
∫

χ(x1)χ(x2) · · ·χ(xN )P (N)
β (x) dx1 · · · dxN = Eβ,N(t, 1) .

When m = 2 then

1
2

(
− d

dλ

)2

Gβ,N(t, λ)
∣∣∣∣
λ=1

=
N

2

N∑
j=2

∫
· · ·
∫
χ(x1)χ̃(x2) · · · χ̃(xj−1)χ(xj)

× χ̃(xj+1) · · · χ̃(xN )P (N)
β (x) dx1 · · ·dxN

∣∣∣∣
λ=1

=
N(N − 1)

2

∫
· · ·
∫

χ(x1)χ(x2)χ̃(x3) · · · χ̃(xN )P (N)
β (x) dx1 · · · dxN

∣∣∣∣
λ=1

=
(
N

2

)∫
· · ·
∫

χ(x1)χ(x2)χ̃(x3) · · · χ̃(xN )P (N)
β (x) dx1 · · · dxN

∣∣∣∣
λ=1

=
(
N

2

)∫
· · ·
∫

χ(x1)χ(x2)χ(x3) · · ·χ(xN )P (N)
β (x) dx1 · · · dxN

= Eβ,N (t, 2) ,

where we used the previous case to get the first equality, and again the invari-
ance of the integrand under symmetry to get the second equality. By induction
then,

1
m!

(
− d

dλ

)m
Gβ,N (t, λ)

∣∣∣∣
λ=1

=
N(N − 1) · · · (N −m + 2)

m!

N∑
j=m

∫
· · ·
∫

χ(x1)χ̃(x2) · · · χ̃(xj−1)χ(xj)

× χ̃(xj+1) · · · χ̃(xN )P (N)
β (x) dx1 · · · dxN

=
N(N − 1) · · · (N −m + 1)

m!

∫
· · ·
∫
χ(x1) · · ·χ(xm)χ̃(xm+1) · · · χ̃(xN )

× P
(N)
β (x) dx1 · · · dxN

=
(
N

m

)∫
· · ·
∫

χ(x1) · · ·χ(xm)χ̃(xm+1) · · · χ̃(xN )P (N)
β (x) dx1 · · · dxN

= Eβ,N (t,m) . ��
If we define Fβ,N(t,m) to be the distribution of the mth largest eigen-

value in the (finite N) β-ensemble, then the following probabilistic result is
immediate from our definition of Eβ,N (t,m).
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Corollary 7.4.1.

Fβ,N(t,m + 1) − Fβ,N (t,m) = Eβ,N(t,m) . (7.38)

7.5 The Distribution of the mth Largest Eigenvalue in
the GUE

7.5.1 The Distribution Function as a Fredholm Determinant

We follow [34] for the derivations that follow. The GUE case corresponds to
the specialization β = 2 in (7.17) so that

G2,N (t, λ)

= C
(N)
2

∫
· · ·
∫

xi∈R

∏
j<k

(xj − xk)2
N∏
j

w(xj)
N∏
j

(
1 + f(xj)

)
dx1 · · · dxN (7.39)

where w(x) = exp(−x2), f(x) = −λχJ (x), and C
(N)
2 depends only on N .

In the steps that follow, additional constants depending solely on N (such
as N !) which appear will be lumped into C

(N)
2 . A probability argument will

show that the resulting constant at the end of all calculations simply equals
1. Expressing the Vandermonde as a determinant

∏
1≤j<k≤N

(xj − xk) = det(xjk)j=0,...,N
k=1,...,N

(7.40)

and using (7.32) with ϕj(x) = ψj(x) = xj and dμ(x) = w(x)
(
1 + f(x)

)
yields

G2,N (t, λ) = C
(N)
2 det

(∫
R

xj+kw(x)
(
1 + f(x)

)
dx)
)N−1

j,k=0

. (7.41)

Let {ϕj(x)} be the sequence obtained by orthonormalizing the sequence
{xjw1/2(x)}. It follows that

G2,N (t, λ) = C
(N)
2 det

(∫
R

ϕj(x)ϕk(x)
(
1 + f(x)

)
dx)
),N−1

j,k=0

(7.42)

= C
(N)
2 det

(
δj,k +

∫
R

ϕj(x)ϕk(x)f(x) dx)
)N−1

j,k=0

. (7.43)

The last expression is of the form det(I+AB) for A : L2(R) → C
N with kernel

A(j, x) = ϕj(x)f(x) whereas B : C
N → L2(R) with kernel B(x, j) = ϕj(x).

Note that AB : C
N → C

N has kernel

AB(j, k) =
∫

R

ϕj(x)ϕk(x)f(x) dx (7.44)
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whereas BA : L2(R) → L2(R) has kernel

BA(x, y) =
N−1∑
k=0

ϕk(x)ϕk(y) := K2,N(x, y) . (7.45)

From Thm. 7.4.2 it follows that

G2,N (t, λ) = C
(N)
2 det(I +K2,Nf) , (7.46)

where K2,N has kernel K2,N(x, y) and K2,Nf acts on a function by first mul-
tiplying it by f and acting on the product with K2,N . From (7.39) we see that
setting f = 0 in the last identity yields C(N)

2 = 1. Thus the above simplifies
to

G2,N (t, λ) = det(I +K2,Nf) . (7.47)

7.5.2 Edge Scaling and Differential Equations

We specialize w(x) = exp(−x2), f(x) = −λχJ(x), so that the {ϕj(x)} are in
fact the Hermite polynomials times the square root of the weight. Using the
Plancherel–Rotach asymptotics of Hermite polynomials, it follows that in the
edge scaling limit,

lim
N→∞

1
21/2N1/6

KN,2

(√
2N +

x

21/2N1/6
,
√

2N +
y

21/2N1/6

)

× χJ

(√
2N +

y

21/2N1/6

)
(7.48)

is KAi(x, y) as defined in (7.8). As operators, the convergence is in trace class
norm to K2. (A proof of this last fact can be found in [36].) For notational
convenience, we denote the corresponding operator K2 by K in the rest of
this subsection. It is convenient to view K as the integral operator on R with
kernel

K(x, y) =
ϕ(x)ψ(y) − ψ(x)ϕ(y)

x− y
χJ(y) , (7.49)

where ϕ(x) =
√
λAi(x), ψ(x) =

√
λAi′(x) and J is (s,∞) with

t =
√

2N +
s√

2N1/6
. (7.50)

Note that althoughK(x, y), ϕ and ψ are functions of λ as well, this dependence
will not affect our calculations in what follows. Thus we omit it to avoid
cumbersome notation. The Airy equation implies that ϕ and ψ satisfy the
relations

d
dx

ϕ = ψ ,
d
dx

ψ = xϕ . (7.51)
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We define D2,N(s, λ) to be the Fredholm determinant det(I −KN,2). Thus in
the edge scaling limit

lim
N→∞

D2,N(s, λ) = D2(s, λ) .

We define the operator
R = (I −K)−1K , (7.52)

whose kernel we denote R(x, y). Incidentally, we shall use the notation .= in
reference to an operator to mean “has kernel.” For example R .= R(x, y). We
also let M stand for the operator whose action is multiplication by x. It is
well known that

d
ds

log det(I −K) = −R(s, s) . (7.53)

For functions f and g, we write f ⊗ g to denote the operator specified by

f ⊗ g
.= f(x)g(y) , (7.54)

and define

Q(x, s) = Q(x) =
(
(I −K)−1ϕ

)
(x) , (7.55)

P (x, s) = P (x) =
(
(I −K)−1ψ

)
(x) . (7.56)

Then straightforward computation yields the following facts

[M,K] = ϕ⊗ ψ − ψ ⊗ ϕ,

[M, (I −K)−1] = (I −K)−1[M,K](I −K)−1 = Q⊗ P − P ⊗Q .
(7.57)

On the other hand if (I −K)−1 .= ρ(x, y), then

ρ(x, y) = δ(x− y) +R(x, y) , (7.58)

and it follows that

[M, (I −K)−1] .= (x− y)ρ(x, y) = (x− y)R(x, y) . (7.59)

Equating the two representation for the kernel of [M, (I −K)−1] yields

R(x, y) =
Q(x)P (y) − P (x)Q(y)

x− y
. (7.60)

Taking the limit y → x and defining q(s) = Q(s, s), p(s) = P (s, s), we obtain

R(s, s) = Q′(s, s)p(s) − P ′(s, s)q(s) . (7.61)

Let us now derive expressions for Q′(x) and P ′(x). If we let the operator D
stand for differentiation with respect to x,
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Q′(x, s) = D(I −K)−1ϕ

= (I −K)−1Dϕ+ [D, (I −K)−1]ϕ

= (I −K)−1ψ + [D, (I −K)−1]ϕ

= P (x) + [D, (I −K)−1]ϕ . (7.62)

We need the commutator

[D, (I −K)−1] = (I −K)−1[D,K](I −K)−1 . (7.63)

Integration by parts shows

[D,K] .=
(
∂K

∂x
+
∂K

∂y

)
+K(x, s)δ(y − s) . (7.64)

The δ function comes from differentiating the characteristic function χ. More-
over, (

∂K

∂x
+
∂K

∂y

)
= ϕ(x)ϕ(y) . (7.65)

Thus
[D, (I −K)−1] .= −Q(x)Q(y) +R(x, s)ρ(s, y) . (7.66)

(Recall (I −K)−1 .= ρ(x, y).) We now use this in (7.62) to obtain

Q′(x, s) = P (x) −Q(x)(Q,ϕ) +R(x, s)q(s)
= P (x) −Q(x)u(s) +R(x, s)q(s) ,

where the inner product (Q,ϕ) is denoted by u(s). Evaluating at x = s gives

Q′(s, s) = p(s) − q(s)u(s) +R(s, s)q(s) . (7.67)

We now apply the same procedure to compute P ′.

P ′(x, s) = D(I −K)−1ψ

= (I −K)−1Dψ + [D, (I −K)−1]ψ

= M(I −K)−1ϕ+ [(I −K)−1,M ]ϕ+ [D, (I −K)−1]ψ
= xQ(x) + (P ⊗Q−Q⊗ P )ϕ+ (−Q⊗Q)ψ +R(x, s)p(s)
= xQ(x) + P (x)(Q,ϕ) −Q(x)(P, ϕ) −Q(x)(Q,ψ) +R(x, s)p(s)
= xQ(x) − 2Q(x)v(s) + P (x)u(s) +R(x, s)p(s) .

Here v = (P, ϕ) = (ψ,Q). Setting x = s we obtain

P ′(s, s) = sq(s) + 2q(s)v(s) + p(s)u(s) +R(s, s)p(s) . (7.68)

Using this and the expression for Q′(s, s) in (7.61) gives

R(s, s) = p2 − sq2 + 2q2v − 2pqu . (7.69)
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Using the chain rule, we have

dq
ds

=
(
∂

∂x
+

∂

∂s

)
Q(x, s)

∣∣∣∣
x=s

. (7.70)

The first term is known. The partial with respect to s is

∂Q(x, s)
∂s

= (I −K)−1 ∂K

∂s
(I −K)−1ϕ = −R(x, s)q(s) ,

where we used the fact that

∂K

∂s

.= −K(x, s)δ(y − s) . (7.71)

Adding the two partial derivatives and evaluating at x = s gives

dq
ds

= p− qu . (7.72)

A similar calculation gives

dp
ds

= sq − 2qv + pu . (7.73)

We derive first-order differential equations for u and v by differentiating the
inner products. Recall that

u(s) =
∫ ∞

s

ϕ(x)Q(x, s) dx .

Thus

du
ds

= −ϕ(s)q(s) +
∫ ∞

s

ϕ(x)
∂Q(x, s)

∂s
dx

= −
(
ϕ(s) +

∫ ∞

s

R(s, x)ϕ(x) dx
)
q(s) = −(I −K)−1ϕ(s)q(s) = −q2 .

Similarly,
dv
ds

= −pq . (7.74)

From the first-order differential equations for q, u and v it follows immediately
that the derivative of u2−2v−q2 is zero. Examining the behavior near s = ∞
to check that the constant of integration is zero then gives

u2 − 2v = q2. (7.75)

We now differentiate (7.72) with respect to s, use the first order differential
equations for p and u, and then the first integral to deduce that q satisfies
the Painlevé II equation (7.24). Checking the asymptotics of the Fredholm
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determinant det(I−K) for large s shows we want the solution with boundary
condition

q(s, λ) ∼
√
λAi(s) as s → ∞. (7.76)

That a solution q exists and is unique follows from the representation of the
Fredholm determinant in terms of it. Independent proofs of this, as well as
the asymptotics as s → −∞ were given by [6, 9, 19]. Since [D, (I −K)−1] .=
(∂/∂x+ ∂/∂y)R(x, y), (7.66) says(

∂

∂x
+

∂

∂y

)
R(x, y) = −Q(x)Q(y) +R(x, s)ρ(s, y) . (7.77)

In computing ∂Q(x, s)/∂s we showed that

∂

∂s
(I −K)−1 .=

∂

∂s
R(x, y) = −R(x, s)ρ(s, y) . (7.78)

Adding these two expressions,(
∂

∂x
+

∂

∂y
+

∂

∂s

)
R(x, y) = −Q(x)Q(y) , (7.79)

and then evaluating at x = y = s gives

d
ds
R(s, s) = −q2 . (7.80)

Integration (and recalling (7.53)) gives,

d
ds

log det(I −K) = −
∫ ∞

s

q2(x, λ) dx ; (7.81)

and hence,

log det(I −K) = −
∫ ∞

s

(∫ ∞

y

q2(x, λ) dx
)

dy

= −
∫ ∞

s

(x− s)q2(x, λ) dx . (7.82)

To summarize, we have shown that D2(s, λ) has the Painlevé representation
(7.26) where q satisfies the Painlevé II equation (7.24) subject to the boundary
condition (7.76).

7.6 The Distribution of the mth Largest Eigenvalue
in the GSE

7.6.1 The Distribution Function as a Fredholm Determinant

The GSE corresponds case corresponds to the specialization β = 4 in (7.17)
so that
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G4,N (t, λ)
= C

(N)
4

∫
· · ·
∫

xi∈R

∏
j<k

(xj − xk)4
N∏
j

w(xj)
N∏
j

(
1 + f(xj)

)
dx1 · · · dxN (7.83)

where w(x) = exp(−x2), f(x) = −λχJ(x), and C
(N)
4 depends only on N . As

in the GUE case, we will absorb into C
(N)
4 any constants depending only on

N that appear in the derivation. A simple argument at the end will show
that the final constant is 1. These calculations follow [34]. By Thm. 7.4.1,
G4,N (t, λ) is given by the integral

C
(N)
4

∫
· · ·
∫

xi∈R

det(xjk, jx
j−1
k )j=0,...,2N−1

k=1,...,N

N∏
i=1

w(xi)
N∏
i=1

(
1 + f(xi)

)
dx1 · · ·dxN

which, if we define ϕj(x) = xj−1w(x)
(
1 + f(x)

)
and ψj(x) = (j − 1)xj−2 and

use the linearity of the determinant, becomes

G4,N (t, λ) = C
(N)
4

∫
· · ·
∫

xi∈R

det
(
ϕj(xk), ψ(xk)

)
1≤j≤2N
1≤k≤N

dx1 · · ·dxN .

Now using (7.34), we obtain

G4,N (t, λ) = C
(N)
4 Pf

(∫
ϕj(x)ψkx− ϕk(x)ψj(x) dx

)2N

j,k=1

= C
(N)
4 Pf

(∫
(k − j)xj+k−3w(x)

(
1 + f(x)

)
dx
)2N

j,k=1

= C
(N)
4 Pf

(∫
(k − j)xj+k−1w(x)

(
1 + f(x)

)
dx
)2N−1

j,k=0

,

where we let k → k+ 1 and j → j + 1 in the last line. Remembering that the
square of a Pfaffian is a determinant, we obtain

G2
4,N (t, λ) = C

(N)
4 det

(∫
(k − j)xj+k−1w(x)

(
1 + f(x)

)
dx
)2N−1

j,k=0

.

Row operations on the matrix do not change the determinant, so we can
replace {xj} by an arbitrary sequence {pj(x)} of polynomials of degree j
obtained by adding rows to each other. Note that the general (j, k) element
in the matrix can be written as[(

d
dx

xk
)
xj −

(
d
dx

xj
)
xk
]
w(x)

(
1 + f(x)

)
.

Thus when we add rows to each other the polynomials we obtain will have the
same general form (the derivatives factor). Therefore we can assume without
loss of generality that G2

4,N (t, λ) equals
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C
(N)
4 det

(∫
[pj(x)p′k(x) − p′j(x)pk(x)]w(x)

(
1 + f(x)

)
dx
)2N−1

j,k=0

,

where the sequence {pj(x)} of polynomials of degree j is arbitrary. Let ψj =
pjw

1/2 so that pj = ψjw
−1/2. Substituting this into the above formula and

simplifying, we obtain

G2
4,N (t, λ)

= C
(N)
4 det

[∫ ((
ψj(x)ψ′

k(x) − ψk(x)ψ′
j(x)

)(
1 + f(x)

))
dx
]2N−1

j,k=0

= C
(N)
4 det[M + L] = C

(N)
4 det[M ] det[I +M−1L] ,

where M , L are matrices given by

M =
(∫ (

ψj(x)ψ′
k(x) − ψk(x)ψ′

j(x)
)
dx
)2N−1

j,k=0

,

L =
(∫ (

ψj(x)ψ′
k(x) − ψk(x)ψ′

j(x)
)
f(x) dx

)2N−1

j,k=0

.

Note that det[M ] is a constant which depends only on N so we can absorb it
into C

(N)
4 . Also if we denote

M−1 = {μjk}2N−1
j,k=0 , ηj =

2N−1∑
k=0

μjkψk(x) ,

it follows that

M−1 ·N =
{∫ (

ηj(x)ψ′
k(x) − η′j(x)ψk(x)

)
f(x) dx

}2N−1

j,k=0

.

Let A : L2(R) × L2(R) → C
2N be the operator defined by the 2N × 2 matrix

A(x) =

⎛
⎜⎝
η0(x) −η′0(x)
η1(x) −η′1(x)

...
...

⎞
⎟⎠ .

Thus if

g =
(
g0(x)
g1(x)

)
∈ L2(R) × L2(R) ,

we have

Ag = A(x)g =

⎛
⎜⎝
∫
(η0g0 − η′0g1) dx∫
(η1g0 − η′1g1) dx

...

⎞
⎟⎠ ∈ C

2N .
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Similarly we define B : C
2n → L2(R) × L2(R) given by the 2 × 2n matrix

B(x) = f ·
(
ψ′

0(x) ψ′
1(x) · · ·

ψ0(x) ψ1(x) · · ·
)

.

Explicitly if

α =

⎛
⎜⎝
α0

α1

...

⎞
⎟⎠ ∈ C

2N ,

then

Bα = B(x) · α =

(
f
∑2N−1

i=0 αiψ
′
i

f
∑2N−1

i=0 αiψi

)
∈ L2 × L2 .

Observe that M−1 · L = AB : C
2n → C

2n. Indeed

ABα =

⎛
⎜⎜⎝
∑2N−1
i=0

[∫
(η0ψ

′
i − η′0ψi)f dx

]
αi∑2N−1

i=0

[ ∫
(η1ψ

′
i − η′1ψi)f dx

]
αi

...

⎞
⎟⎟⎠

=
{∫

(ηjψ′
k − η′jψk)f dx

}
·

⎛
⎜⎝
α0

α1

...

⎞
⎟⎠ = (M−1 · L)α .

Therefore, by (7.4.2)

G2
4,N (t, λ) = C

(N)
4 det(I +M−1 ·L) = C

(N)
4 det(I +AB) = C

(N)
4 det(I +BA)

where BA : L2(R) → L2(R). From our definition of A and B it follows that

BAg =

(
f
∑2n−1
i=0 ψ′

i

(∫
(ηig0 − η′ig1) dx

)
f
∑2N−1
i=0 ψ′

i

(∫
(ηig0 − η′ig1) dx

)
)

= f

(∫ ∑2N−1
i=0 ψ′

i(x)ηi(y)g0(y) dy − ∫ ∑2N−1
i=0 ψ′

i(x)η′i(y)g1(y) dy∫ ∑2N−1
i=0 ψi(x)ηi(y)g0(y) dy − ∫ ∑2N−1

i=0 ψi(x)η′i(y)g1(y) dy

)

= fK4,Ng ,

where K4,N is the integral operator with matrix kernel

K4,N(x, y) =

(∑2N−1
i=0 ψ′

i(x)ηi(y) −
∑2N−1
i=0 ψ′

i(x)η′i(y)∑2N−1
i=0 ψi(x)ηi(y) −

∑2N−1
i=0 ψi(x)η′i(y)

)
.

Recall that ηj(x) =
∑2N−1

k=0 μjkψk(x) so that

K4,N(x, y) =

(∑2N−1
j,k=0 ψ

′
j(x)μjkψk(y) −

∑2N−1
j,k=0 ψ

′
j(x)μjkψ′

k(y)∑2N−1
j,k=0 ψj(x)μjkψk(y) −

∑2N−1
j,k=0 ψj(x)μjkψ′

k(y)

)
.
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Define ε to be the following integral operator

ε
.= ε(x− y) =

{
1
2 if x > y,
− 1

2 if x < y.
(7.84)

As before, let D denote the operator that acts by differentiation with respect
to x. The fundamental theorem of calculus implies that Dε = εD = I. We
also define

SN (x, y) =
2N−1∑
j,k=0

ψ′
j(x)μjkψk(y) .

Since M is antisymmetric,

SN(y, x) =
2N−1∑
j,k=0

ψ′
j(y)μjkψk(x)

= −
2N−1∑
j,k=0

ψ′
j(y)μkjψk(x) = −

2N−1∑
j,k=0

ψj(y)μkjψ′
k(x) ,

after re-indexing. Note that

εSN(x, y) =
2N−1∑
j,k=0

εDψj(x)μjkψk(y) =
2N−1∑
j,k=0

ψj(x)μjkψk(y) ,

and

− d
dy

SN (x, y) =
2N−1∑
j,k=0

ψ′
j(x)μjkψ′

k(y) .

Thus we can now write succinctly

KN(x, y) =

(
SN (x, y) −dSN (x, y)/dy
εSN (x, y) SN (y, x)

)
. (7.85)

To summarize, we have shown that G2
4,N (t, λ) = C

(N)
4 det(I−K4,Nf). Setting

f ≡ 0 on both sides (where the original definition of G4,N (t, λ) as an integral
is used on the left) shows that C(N)

4 = 1. Thus

G4,N (t, λ) =
√
D4,N(t, λ) , (7.86)

where we define
D4,N(t, λ) = det(I +K4,Nf) , (7.87)

and K4,N is the integral operator with matrix kernel (7.85).
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7.6.2 Gaussian Specialization

We would like to specialize the above results to the case of a Gaussian weight
function

w(x) = exp(x2) (7.88)

and indicator function

f(x) = −λχJ , J = (t,∞) .

We want the matrix

M =
{∫ (

ψj(x)ψ′
k(x) − ψk(x)ψ′

j(x)
)
dx
}2N−1

j,k=0

to be the direct sum of N copies of

Z =
(

0 1
−1 0

)
,

so that the formulas are the simplest possible, since then μjk can only be 0 or
±1. In that case M would be skew-symmetric so that M−1 = −M . In terms
of the integrals defining the entries of M this means that we would like to
have ∫ (

ψ2j(x)
d
dx

ψ2k+1(x) − ψ2k+1(x)
d
dx

ψ2j(x)
)

dx = δj,k ,

∫ (
ψ2j+1(x)

d
dx

ψ2k(x) − ψ2k(x)
d
dx

ψ2j+1(x)
)

dx = −δj,k

and otherwise ∫ (
ψj(x)

d
dx

ψk(x) − ψj(x)
d
dx

ψk(x)
)

dx = 0 .

It is easier to treat this last case if we replace it with three nonexclusive
conditions ∫ (

ψ2j(x)
d
dx

ψ2k(x) − ψ2k(x)
d
dx

ψ2j(x)
)

dx = 0 ,
∫ (

ψ2j+1(x)
d
dx

ψ2k+1(x) − ψ2k+1(x)
d
dx

ψ2j+1(x)
)

dx = 0 ,

(so when the parity is the same for j, k, which takes care of diagonal entries,
among others) and

∫ (
ψj(x)

d
dx

ψk(x) − ψj(x)
d
dx

ψk(x)
)

dx = 0 ,
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whenever |j − k| > 1, which targets entries outside of the tridiagonal. Define

ϕk(x) =
1
ck
Hk(x) exp(−x2/2) for ck =

√
2kk!

√
π (7.89)

where the Hk are the usual Hermite polynomials defined by the orthogonality
condition ∫

R

Hj(x)Hk(x) exp(−x2) dx = c2jδj,k .

Then it follows that ∫
R

ϕj(x)ϕk(x) dx = δj,k .

Now let
ψ2j+1(x) =

1√
2
ϕ2j+1(x)ψ2j(x) = − 1√

2
εϕ2j+1(x) .

This definition satisfies our earlier requirement that ψj = pjw
1/2 with w de-

fined in (7.88). In particular we have in this case

p2j+1(x) =
1

cj
√

2
H2j+1(x) .

Let ε as in (7.84), and D denote the operator that acts by differentiation with
respect to x as before, so that Dε = εD = I. It follows that
∫

R

[
ψ2j(x)

d
dx

ψ2k+1(x) − ψ2k+1(x)
d
dx

ψ2j(x)
]

dx

=
1
2

∫
R

[
−εϕ2j+1(x)

d
dx

ϕ2k+1(x) + ϕ2k+1(x)
d
dx

εϕ2j+1(x)
]

dx

=
1
2

∫
R

[
−εϕ2j+1(x)

d
dx

ϕ2k+1(x) + ϕ2k+1(x)ϕ2j+1(x)
]

dx .

We integrate the first term by parts and use the fact that

d
dx

εϕj(x) = ϕj(x)

and also that ϕj vanishes at the boundary (i.e., ϕj(±∞) = 0) to obtain
∫

R

[
ψ2j(x)

d
dx

ψ2k+1(x) − ψ2k+1(x)
d
dx

ψ2j(x)
]

dx

=
1
2

∫
R

[
−εϕ2j+1(x)

d
dx

ϕ2k+1(x) + ϕ2k+1(x)ϕ2j+1(x)
]

dx

=
1
2

∫
R

[ϕ2j+1(x)ϕ2k+1(x) + ϕ2k+1(x)ϕ2j+1(x)] dx

=
1
2

∫
R

[ϕ2j+1(x)ϕ2k+1(x) + ϕ2k+1(x)ϕ2j+1(x)] dx

=
1
2
(δj,k + δj,k) = δj,k ,
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as desired. Similarly

∫
R

[
ψ2j+1(x)

d
dx

ψ2k(x) − ψ2k(x)
d
dx

ψ2j+1(x)
]

dx

=
1
2

∫
R

[
−ϕ2j+1(x)

d
dx

εϕ2k+1(x) + εϕ2k+1(x)
d
dx

ϕ2j+1(x)
]

dx = −δj,k .

Moreover,

p2j+1(x) =
1

cj
√

2
H2j+1(x)

is certainly an odd function, being the multiple of and odd Hermite polyno-
mial. On the other hand, one easily checks that ε maps odd functions to even
functions on L2(R). Therefore

p2j(x) = − 1
cj
√

2
εH2j+1(x)

is an even function, and it follows that

∫
R

[
ψ2k(x)

d
dx

ψ2j(x) − ψ2j(x)
d
dx

ψ2k(x)
]

dx

=
∫

R

[
p2j(x)

d
dx

p2k(x) − p2k(x)
d
dx

p2j(x)
]
w(x) dx = 0 ,

since both terms in the integrand are odd functions, and the weight function
is even. Similarly,

∫
R

[
ψ2k+1(x)

d
dx

ψ2j+1(x) − ψ2j+1(x)
d
dx

ψ2k+1(x)
]

dx

=
∫

R

[
p2j+1(x)

d
dx

p2k+1(x) − p2k+1(x)
d
dx

p2j+1(x)
]
w(x) dx = 0 .

Finally it is easy to see that if |j − k| > 1 then
∫

R

[
ψj(x)

d
dx

ψk(x) − ψj(x)
d
dx

ψk(x)
]

dx = 0 .

Indeed both differentiation and the action of ε can only “shift” the indices
by 1. Thus by orthogonality of the ϕj , this integral will always be 0. Hence
by choosing

ψ2j+1(x) =
1√
2
ϕ2j+1(x), ψ2j(x) = − 1√

2
εϕ2j+1(x) ,

we force the matrix
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M =
{∫

R

(
ψj(x)ψ′

k(x) − ψk(x)ψ′
j(x)

)
dx
}2n−1

j,k=0

to be the direct sum of N copies of

Z =
(

0 1
−1 0

)
.

Hence M−1 = −M where M−1 = {μj,k}j,k=0,2N−1. Moreover, with our above
choice, μj,k = 0 if j, k have the same parity or |j − k| > 1, and μ2k,2j+1 =
δjk = −μ2j+1,2k for j, k = 0, . . . , N − 1. Therefore

SN(x, y) = −
2N−1∑
j,k=0

ψ′
j(x)μjkψk(y)

= −
N−1∑
j=0

ψ′
2j(x)ψ2j+1(y) +

N−1∑
j=0

ψ′
2j+1(x)ψ2j(y)

=
1
2

[N−1∑
j=0

ϕ2j+1(x)ϕ2j+1(y) −
N−1∑
j=0

ϕ′
2j+1(x)εϕ2j+1(y)

]
.

Recall that the Hj satisfy the differentiation formulas (see for example [2,
p. 280])

H ′
j(x) = 2xHj(x) −Hj−1(x)j = 1, 2, . . . . (7.90)

H ′
j(x) = 2jHj−1(x) j = 1, 2, . . . . (7.91)

Combining (7.89) and (7.90) yields

ϕ′
j(x) = xϕj(x) − cj+1

cj
ϕj+1(x) . (7.92)

Similarly, from (7.89) and (7.91) we have

ϕ′
j(x) = −xϕj(x) + 2j

cj−1

cj
ϕj−1(x) . (7.93)

Combining (7.92) and (7.93), we obtain

ϕ′
j(x) =

√
j

2
ϕj−1(x) −

√
j + 1

2
ϕj+1(x) . (7.94)

Let ϕ =
(
ϕ1 ϕ2 · · ·)t and ϕ′ =

(
ϕ′

1 ϕ
′
2 · · ·)t. Then we can rewrite (7.94) as

ϕ′ = Aϕ

where A = {aj,k} is the infinite antisymmetric tridiagonal matrix with
aj,j−1 =

√
j/2. Hence,
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ϕ′
j(x) =

∑
k≥0

ajkϕk(x) .

Moreover, using the fact that Dε = εD = I we also have

ϕj(x) = εϕ′
j(x) = ε

(∑
k≥0

ajkϕk(x)
)

=
∑
k≥0

ajkεϕk(x) .

Combining the above results, we have

N−1∑
j=0

ϕ′
2j+1(x)εϕ2j+1(y) =

N−1∑
j=0

∑
k≥0

a2j+1,kϕk(x)εϕ2j+1(x)

= −
N−1∑
j=0

∑
k≥0

ak,2j+1ϕk(x)εϕ2j+1(x) .

Note that ak,2j+1 = 0 unless |k − (2j + 1)| = 1, that is unless k is even. Thus
we can rewrite the sum as

N−1∑
j=0

ϕ′
2j+1(x)εϕ2j+1(y)

= −
∑
k,j≥0
k even
k≤2N

ak,jϕk(x)εϕj(y) − a2N,2N+1ϕ2N (x)εϕ2N+1(y)

= −
∑
k≥0
k even
k≤2N

ϕk(x)
∑
j≥0

ak,jεϕj(y) + a2N,2N+1ϕ2N (x)εϕ2N+1(y)

where the last term takes care of the fact that we are counting an extra term
in the sum that was not present before. The sum over j on the right is just
ϕk(y), and a2N,2N+1 = −√(2N + 1)/2. Therefore

N−1∑
j=0

ϕ′
2j+1(x)εϕ2j+1(y) =

∑
k≥0
k even
k≤2N

ϕk(x)ϕk(y) −
√

2N + 1
2

ϕ2N (x)εϕ2N+1(y)

=
N∑
j=0

ϕ2j(x)ϕ2j(y) −
√

2N + 1
2

ϕ2N (x)εϕ2N+1(y) .

It follows that

SN (x, y) =
1
2

[ 2N∑
j=0

ϕj(x)ϕj(y) −
√

2N + 1
2

ϕ2N (x)εϕ2N+1(y)
]
.

We redefine
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SN (x, y) =
2N∑
n=0

ϕn(x)ϕn(y) = SN (y, x) (7.95)

so that the top left entry of KN (x, y) is

SN (x, y) +

√
2N + 1

2
ϕ2N (x)εϕ2N+1(y) .

If SN is the operator with kernel SN(x, y) then integration by parts gives

SNDf =
∫

R

S(x, y)
d
dy

f(y) dy =
∫

R

(
− d

dy
SN (x, y)

)
f(y) dy ,

so that −dSN(x, y)/dy is in fact the kernel of SND. Therefore (7.86) now
holds with K4,N being the integral operator with matrix kernel K4,N(x, y)
whose (i, j)-entry K

(i,j)
4,N (x, y) is given by

K
(1,1)
4,N (x, y) =

1
2

[
SN (x, y) +

√
2N + 1

2
ϕ2N (x)εϕ2N+1(y)

]
,

K
(1,2)
4,N (x, y) =

1
2

[
SDN(x, y) − d

dy

(√
2N + 1

2
ϕ2N (x)εϕ2N+1(y)

)]
,

K
(2,1)
4,N (x, y) =

ε

2

[
SN (x, y) +

√
2N + 1

2
ϕ2N (x)εϕ2N+1(y)

]
,

K
(2,2)
4,N (x, y) =

1
2

[
SN (x, y) +

√
2N + 1

2
εϕ2N+1(x)ϕ2N (y)

]
.

We let 2N + 1 → N so that N is assumed to be odd from now on (this will
not matter in the end since we will take N → ∞). Therefore the K(i,j)

4,N (x, y)
are given by

K
(1,1)
4,N (x, y) =

1
2

[
SN (x, y) +

√
N

2
ϕN−1(x)εϕN (y)

]
,

K
(1,2)
4,N (x, y) =

1
2

[
SDN (x, y) −

√
N

2
ϕN−1(x)ϕN (y)

]
,

K
(2,1)
4,N (x, y) =

ε

2

[
SN (x, y) +

√
N

2
ϕN−1(x)εϕN (y)

]
,

K
(2,2)
4,N (x, y) =

1
2

[
SN (x, y) +

√
N

2
εϕN (x)ϕN−1(y)

]
,

where

SN(x, y) =
N−1∑
n=0

ϕn(x)ϕn(y) .
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Define

ϕ(x) =
(
N

2

)1/4

ϕN (x), ψ(x) =
(
N

2

)1/4

ϕN−1(x) ,

so that

K
(1,1)
4,N (x, y) = 1

2χ(x)[SN (x, y) + ψ(x)εϕ(y)]χ(y) ,

K
(1,2)
4,N (x, y) = 1

2χ(x)[SDN (x, y) − ψ(x)ϕ(y)]χ(y),

K
(2,1)
4,N (x, y) = 1

2χ(x)[εSN (x, y) + εψ(x)εϕ(y)]χ(y) ,

K
(2,2)
4,N (x, y) = 1

2χ(x)[SN (x, y) + εϕ(x)ψ(y)]χ(y) .

Notice that

1
2χ(S + ψ ⊗ εϕ)χ .= K

(1,1)
4,N (x, y) ,

1
2χ(SD − ψ ⊗ ϕ)χ .= K

(1,2)
4,N (x, y) ,

1
2χ(εS + εψ ⊗ εϕ)χ .= K

(2,1)
4,N (x, y) ,

1
2χ(S + εϕ⊗ εψ)χ .= K

(2,2)
4,N (x, y) .

Therefore

K4,N =
1
2
χ

(
S + ψ ⊗ εϕ SD − ψ ⊗ ϕ
εS + εψ ⊗ εϕ S + εϕ⊗ ψ

)
χ . (7.96)

Note that this is identical to the corresponding operator for β = 4 obtained
by Tracy and Widom in [33], the only difference being that ϕ, ψ, and hence
also S, are redefined to depend on λ. This will affect boundary conditions for
the differential equations we will obtain later.

7.6.3 Edge Scaling

7.6.3.1 Reduction of the Determinant

We want to compute the Fredholm determinant (7.86) with K4,N given by
(7.96) and f = χ(t,∞). This is the determinant of an operator on L2(J)×L2(J).
Our first task will be to rewrite the determinant as that of an operator on
L2(J). This part follows exactly the proof in [33]. To begin, note that

[S,D] = ϕ⊗ ψ + ψ ⊗ ϕ (7.97)

so that, using the fact that Dε = εD = I,

[ε, S] = εS − Sε = εSDε− εDSε = ε[S,D]ε = εϕ⊗ ψε+ εψ ⊗ ϕε

= εϕ⊗ εtψ + εψ ⊗ εtϕ = −εϕ⊗ εψ − εψ ⊗ εϕ , (7.98)

where the last equality follows from the fact that εt = −ε. We thus have
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D(εS + εψ ⊗ εϕ) = S + ψ ⊗ εϕ , D(εSD − εψ ⊗ ϕ) = SD − ψ ⊗ ϕ .

The expressions on the right side are the top matrix entries in (7.96). Thus
the first row of K4,N is, as a vector,

D(εS + εψ ⊗ εϕ, εSD− εψ ⊗ ϕ) .

Now (7.98) implies that

εS + εψ ⊗ εϕ = Sε− εϕ⊗ εψ .

Similarly (7.97) gives

ε[S,D] = εϕ⊗ ψ + εψ ⊗ ϕ ,

so that
εSD − εψ ⊗ ϕ = εDS + εϕ⊗ ψ = S + εϕ⊗ ψ .

Using these expressions we can rewrite the first row of K4,N as

D(Sε− εϕ⊗ εψ, S + εϕ⊗ ψ) .

Now use (7.98) to show the second row of K4,N is

(Sε− εϕ⊗ εψ, S + εϕ⊗ ψ) .

Therefore,

K4,N = χ

(
D(Sε− εϕ⊗ εψ) D(S + εϕ⊗ ψ)
Sε− εϕ⊗ εψ S + εϕ⊗ ψ

)
χ

=
(
χD 0
0 χ

)(
(Sε− εϕ⊗ εψ)χ (S + εϕ⊗ ψ)χ
Sε− εϕ⊗ εψ)χ (S + εϕ⊗ ψ)χ

)
.

Since K4,N is of the form AB, we can use (7.4.2) and deduce that D4,N (s, λ)
is unchanged if instead we take K4,N to be

K4,N =
(

(Sε− εϕ⊗ εψ)χ (S + εϕ⊗ ψ)χ
(Sε− εϕ⊗ εψ)χ (S + εϕ⊗ ψ)χ

)(
χD 0
0 χ

)

=
(

(Sε− εϕ⊗ εψ)χD (S + εϕ⊗ ψ)χ
(Sε− εϕ⊗ εψ)χD (S + εϕ⊗ ψ)χ

)
.

Therefore

D4,N (s, λ) = det
(
I − 1

2 (Sε− εϕ⊗ εψ)λχD − 1
2 (S + εϕ⊗ ψ)λχ

− 1
2 (Sε− εϕ⊗ εψ)λχD I − 1

2 (S + εϕ⊗ ψ)λχ

)
.

(7.99)
Now we perform row and column operations on the matrix to simplify it, which
do not change the Fredholm determinant. Justification of these operations is
given in [33]. We start by subtracting row 1 from row 2 to get



476 M. Dieng and C.A. Tracy

(
I − 1

2 (Sε− εϕ⊗ εψ)λχD − 1
2 (S + εϕ⊗ ψ)λχ

−I I

)
.

Next, adding column 2 to column 1 yields
(
I − 1

2 (Sε− εϕ⊗ εψ)λχD − 1
2 (S + εϕ⊗ ψ)λχ − 1

2 (S + εϕ⊗ ψ)λχ
0 I

)
.

Thus the determinant we want equals the determinant of

I − 1
2 (Sε− εϕ⊗ εψ)λχD − 1

2 (S + εϕ⊗ ψ)λχ . (7.100)

So we have reduced the problem from the computation of the Fredholm de-
terminant of an operator on L2(J) × L2(J), to that of an operator on L2(J).

7.6.3.2 Differential Equations

Next we want to write the operator in (7.100) in the form

(I −K2,N)
(
I −

L∑
i=1

αi ⊗ βi

)
, (7.101)

where the αi and βi are functions in L2(J). In other words, we want to rewrite
the determinant for the GSE case as a finite dimensional perturbation of the
corresponding GUE determinant. The Fredholm determinant of the product
is then the product of the determinants. The limiting form for the GUE part
is already known, and we can just focus on finding a limiting form for the
determinant of the finite dimensional piece. It is here that the proof must
be modified from that in [33]. A little rearrangement of (7.100) yields (recall
εt = −ε)

I − λ

2
Sχ− λ

2
SεχD − λ

2
εϕ⊗ χψ − λ

2
εϕ⊗ ψεχD .

Writing ε[χ,D] + χ for εχD and simplifying gives

I − λSχ− λεϕ⊗ ψχ− λ

2
Sε[χ,D] − λ

2
εϕ⊗ ψε[χ,D] .

Let
√
λϕ → ϕ, and

√
λψ → ψ so that λS → S and (7.100) goes to

I − Sχ− εϕ⊗ ψχ− 1
2Sε[χ,D] − 1

2εϕ⊗ ψε[χ,D] .

Now we define R := (I − Sχ)−1Sχ = (I − Sχ)−1 − I (the resolvent operator
of Sχ), whose kernel we denote by R(x, y), and Qε := (I − Sχ)−1εϕ. Then
(7.100) factors into

A = (I − Sχ)B .

where B is
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I −Qε ⊗ χψ − 1
2 (I +R)Sε[χ,D] − 1

2 (Qε ⊗ ψ)ε[χ,D] .

Hence
D4,N (t, λ) = D2,N(t, λ) det(B) .

In order to find det(B) we use the identity

ε[χ,D] =
2m∑
k=1

(−1)kεk ⊗ δk , (7.102)

where εk and δk are the functions ε(x − ak) and δ(x − ak) respectively,
and the ak are the endpoints of the (disjoint) intervals considered, J =
∪mk=1(a2k−1, a2k). In our case m = 1 and a1 = t, a2 = ∞. We also make
use of the fact that

a⊗ b× c⊗ d = (b, c) × a⊗ d (7.103)

where (·, ·) is the usual L2-inner product. Therefore

(Qε ⊗ ψ)ε[χ,D] =
2∑
k=1

(−1)kQε ⊗ ψ × εk ⊗ δk =
2∑
k=1

(−1)k(ψ, εk)Qε ⊗ δk .

It follows that
D4,N (t, λ)
D2,N (t, λ)

(7.104)

is the determinant of

I −Qε ⊗ χψ − 1
2

2∑
k=1

(−1)k[(S +RS)εk + (ψ, εk)Qε] ⊗ δk . (7.105)

We now specialize to the case of one interval J = (t,∞), so m = 1, a1 = t
and a2 = ∞. We write εt = ε1, and ε∞ = ε2, and similarly for δk. Writing
out the terms in the summation and using the fact that

ε∞ = − 1
2 , (7.106)

yields

I −Qε ⊗ χψ + 1
2 [(S +RS)εt + (ψ, εt)Qε] ⊗ δt

+ 1
4 [(S +RS)1 + (ψ, 1)Qε] ⊗ δ∞ . (7.107)

Now we can use the formula

det
(
I −

L∑
i=1

αi ⊗ βi

)
= det

(
δjk − (αj , βk)

)L
j,k=1

. (7.108)

In order to simplify the notation in preparation for the computation of the
various inner products, define
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Q(x, λ, t) := (I − Sχ)−1ϕ , P (x, λ, t) := (I − Sχ)−1ψ ,

Qε(x, λ, t) := (I − Sχ)−1εϕ , Pε(x, λ, t) := (I − Sχ)−1εψ ,
(7.109)

qN := Q(t, λ, t) , pN := P (t, λ, t) ,
qε := Qε(t, λ, t) , pε := Pε(t, λ, t) ,
uε := (Q,χεϕ) = (Qε, χϕ) , vε := (Q,χεψ) = (Pε, χψ) ,
ṽε := (P, χεϕ) = (Qε, χϕ) , wε := (P, χεψ) = (Pε, χψ) ,

(7.110)

P4 :=
∫

R

εt(x)P (x, t) dx , Q4 :=
∫

R

εt(x)Q(x, t) dx ,

R4 :=
∫

R

εt(x)R(x, t) dx ,
(7.111)

where we remind the reader that εt stands for the function ε(x− t). Note that
all quantities in (7.110) and (7.111) are functions of t and λ alone. Further-
more, let

cϕ = εϕ(∞) =
1
2

∫ ∞

−∞
ϕ(x) dx , cψ = εψ(∞) =

1
2

∫ ∞

−∞
ψ(x) dx . (7.112)

Recall from the previous section that when β = 4 we take N to be odd. It
follows that ϕ and ψ are odd and even functions respectively. Thus when
β = 4, cϕ = 0 while computation using known integrals for the Hermite
polynomials gives

cψ = (πN)1/42−3/4−N/2 (N !)1/2

(N/2)!

√
λ . (7.113)

Hence computation yields

lim
N→∞

cψ =

√
λ

2
. (7.114)

At t = ∞,

uε(∞) = 0 , qε(∞) = cϕ , (7.115)
P4(∞) = −cψ , Q4(∞) = −cϕ , R4(∞) = 0 . (7.116)

In (7.108), L = 3 and if we denote a4 = (ψ, εt), then we have explicitly

α1 = Qε , α2 = − 1
2 [(S +RS)εt + a4Qε] , α3 = − 1

4 [(S +RS)1 + (ψ, 1)Qε] ,
β1 = χψ , β2 = δt , β3 = δ∞ .

However notice that
(
(S+RS)εt, δ∞

)
= (εt, δ∞) = 0 ,

(
(S+RS)1, δ∞

)
= (1, R∞) = 0 , (7.117)
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and (Qε, δ∞) = cϕ = 0. Therefore the terms involving β3 = δ∞ are all 0 and
we can discard them reducing our computation to that of a 2×2 determinant
instead with

α1 = Qε , α2 = − 1
2 [(S +RS)εt + a4Qε] , β1 = χψ , β2 = δt . (7.118)

Hence

(α1, β1) = ṽε, (α1, β2) = qε , (7.119)

(α2, β1) = − 1
2 (P4 − a4 + a4ṽε) , (7.120)

(α2, β2) = − 1
2 (R4 + a4qε) . (7.121)

We want the limit of the determinant

det
(
δjk − (αj , βk)

)
1≤j,k≤2

, (7.122)

as N → ∞. In order to get our hands on the limits of the individual terms
involved in the determinant, we will find differential equations for them first
as in [33]. Adding a4/2 times row 1 to row 2 shows that a4 falls out of the
determinant, so we will not need to find differential equations for it. Thus our
determinant is now

det
(

1 − ṽε −qε
1
2P4 1 + 1

2R4

)
. (7.123)

Proceeding as in [33] we find the following differential equations

d
dt
uε = −qNqε , d

dt
qε = qN − qN ṽε − pNuε , (7.124)

d
dt

Q4 = −qN (R4 + 1) ,
d
dt

P4 = −pN (R4 + 1) , (7.125)

d
dt

R4 = −pNQ4 − qNP4 . (7.126)

Now we change variable from t to s where t = τ(s) =
√

2N + s/(
√

2N1/6)
and take the limit N → ∞, denoting the limits of qε, P4, Q4, R4, and the
common limit of uε and ṽε respectively by q̄, P4, Q4, R4 and ū. Also P4 and Q4

differ by a constant, namely Q4 = P4 +
√

2/2. These limits hold uniformly for
bounded s so we can interchange limN→∞ and d/ds. Also limN→∞N−1/6qN =
limN→∞N−1/6pN = q, where q is as in (7.26). We obtain the systems

d
ds
ū = − 1√

2
qq̄ ,

d
ds
q̄ =

1√
2
q(1 − 2ū) , (7.127)

d
ds

P4 = − 1√
2
q(R4 + 1) ,

d
ds

R4 = − 1√
2
q

(
2P4 +

√
λ

2

)
, (7.128)

The change of variables s → μ =
∫∞
s

q(x, λ) dx transforms these systems into
constant coefficient ordinary differential equations
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d
dμ

ū =
1√
2
q̄ ,

d
dμ

q̄ = − 1√
2
(1 − 2ū) , (7.129)

d
dμ

P4 =
1√
2
(R4 + 1) ,

d
dμ

R4 =
1√
2

(
2P4 +

√
λ

2

)
. (7.130)

Since lims→∞ μ = 0, corresponding to the boundary values at t = ∞ which
we found earlier for P4,R4, we now have initial values at μ = 0. Therefore

ū(μ = 0) = q̄(μ = 0) = 0 , (7.131)

P4(μ = 0) = −
√
λ

2
, R4(μ = 0) = 0 . (7.132)

We use this to solve the systems and get

q̄ =
1

2
√

2
(e−μ − eμ) , (7.133)

ū = 1
2 (1 − 1

2eμ − 1
2e−μ) , (7.134)

P4 =
1

2
√

2

(
2 −√

λ

2
eμ − 2 +

√
λ

2
e−μ −

√
λ

)
, (7.135)

R4 =
2 −√

λ

4
eμ +

2 +
√
λ

4
e−μ − 1 . (7.136)

Substituting these expressions into the determinant gives (7.29), namely

D4(s, λ) = D2(s, λ) cosh2

(
μ(s, λ)

2

)
, (7.137)

where Dβ = limN→∞Dβ,N . Note that even though there are λ-terms in
(7.135) and (7.136), these do not appear in the final result (7.137), mak-
ing it similar to the GUE case where the main conceptual difference between
the m = 1 (largest eigenvalue) case and the general m is the dependence of
the function q on λ. The right hand side of the above formula clearly reduces
to the β = 4 Tracy–Widom distribution when we set λ = 1. Note that where
we have D4(s, λ) above, Tracy and Widom (and hence many RMT references)
write D4(s/

√
2, λ) instead. Tracy and Widom applied the change of variable

s → s/
√

2 in their derivation in [33] so as to agree with Mehta’s form of the
β = 4 joint eigenvalue density, which has −2x2 in the exponential in the
weight function, instead of −x2 in our case. To switch back to the other con-
vention, one just needs to substitute in the argument s/

√
2 for s everywhere

in our results. At this point this is just a cosmetic discrepancy, and it does
not change anything in our derivations since all the differentiations are done
with respect to λ anyway. It does change conventions for rescaling data while
doing numerical work though.
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7.7 The Distribution of the mth Largest Eigenvalue in
the GOE

7.7.1 The Distribution Function as a Fredholm Determinant

The GOE corresponds case corresponds to the specialization β = 1 in (7.17)
so that

G1,N (t, λ)
= C

(N)
1

∫
· · ·
∫

xi∈R

∏
j<k

|xj − xk|
N∏
j

w(xj)
N∏
j

(
1 + f(xj)

)
dx1 · · ·dxN (7.138)

where w(x) = exp(−x2), f(x) = −λχJ(x), and C
(N)
1 depends only on N . As

in the GSE case, we will lump into C
(N)
1 any constants depending only on N

that appear in the derivation. A simple argument at the end will show that
the final constant is 1. These calculations more or less faithfully follow and
expand on [34]. We want to use (7.33), which requires an ordered space. Note
that the above integrand is symmetric under permutations, so the integral
is n! times the same integral over ordered pairs x1 ≤ · · · ≤ xN . So we can
rewrite (7.138) as

(N !)
∫
· · ·
∫

x1≤···≤xN∈R

∏
j<k

(xk − xj)
N∏
i=1

w(xk)
N∏
i=1

(
1 + f(xk)

)
dx1 · · ·dxN ,

where we can remove the absolute values since the ordering insures that
(xj − xi) ≥ 0 for i < j. Recall that the Vandermonde determinant is

ΔN (x) = det(xj−1
k )Nj,k=1 = (−1)N(N−1)/2

∏
j<k

(xj − xk) .

Therefore what we have inside the integrand above is, up to sign

det
(
xj−1
k w(xk)

(
1 + f(xk)

))N
j,k=1

.

Note that the sign depends only on N . Now we can use (7.33) with

ϕj(x) = xj−1w(x)
(
1 + f(x)

)
.

In using (7.33) we square both sides so that the right-hand side is now a
determinant instead of a Pfaffian. Therefore G2

1,N (t, λ) equals

C
(N)
1 det

(∫∫
sgn(x− y)xj−1yk−1

(
1 + f(x)

)
w(x)w(y) dxdy

)N
j,k=1

.

Shifting indices, we can write it as
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C
(N)
1 det

(∫∫
sgn(x− y)xjyk

(
1 + f(x)

)
w(x)w(y) dxdy

)N−1

j,k=1

(7.139)

where C(N)
1 is a constant depending only onN , and is such that the right side is

1 if f ≡ 0. Indeed this would correspond to the probability that λGOE(N)
p < ∞,

or equivalently to the case where the excluded set J is empty. We can replace
xj and yk by any arbitrary polynomials pj(x) and pk(x), of degree j and k
respectively, which are obtained by row operations on the matrix. Indeed such
operations would not change the determinant. We also replace sgn(x − y) by
ε(x − y) = 1

2 sgn(x − y) which just produces a factor of 2 that we absorb in
C

(N)
1 . Thus G2

1,N (t, λ) now equals

C
(N)
1 det

(∫∫
ε(x− y)pj(x)pk(y)

(
1 + f(x)

)
× (1 + f(y)

)
w(x)w(y) dxdy

)N−1

j,k=0

. (7.140)

Let ψj(x) = pj(x)w(x) so the above integral becomes

C
(N)
1 det

(∫∫
ε(x− y)ψj(x)ψk(y)

× (1 + f(x) + f(y) + f(x)f(y)
)
dxdy

)N−1

j,k=0

. (7.141)

Partially multiplying out the term we obtain

C
(N)
1 det

(∫∫
ε(x− y)ψj(x)ψk(y) dxdy

+
∫∫

ε(x− y)ψj(x)ψk(y)

× (f(x) + f(y) + f(x)f(y)
)
dxdy

)N−1

j,k=0

. (7.142)

Define

M =
(∫∫

ε(x− y)ψj(x)ψk(y) dxdy
)N−1

j,k=0

, (7.143)

so that G2
1,N (t, λ) is now

C
(N)
1 det

(
M +

∫∫
ε(x− y)ψj(x)ψk(y)

× (f(x) + f(y) + f(x)f(y)
)
dxdy

)N−1

j,k=0

.

Let ε be the operator defined in (7.84). We can use operator notation to
simplify the expression for G2

1,N (t, λ) a great deal by rewriting the double
integrals as single integrals. Indeed
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∫∫
ε(x− y)ψj(x)ψk(y)f(x) dxdy =

∫
f(x)ψj(x)

∫
ε(x− y)ψk(y) dy dx

=
∫

fψjεψk dx .

Similarly,
∫∫

ε(x− y)ψj(x)ψk(y)f(y) dxdy = −
∫∫

ε(y − x)ψj(x)ψk(y)f(y) dxdy

= −
∫

f(y)ψk(y)
∫

ε(y − x)ψj(x) dxdy

= −
∫

f(x)ψk(x)
∫

ε(x− y)ψj(y) dy dx

= −
∫

fψkεψj dx .

Finally,

∫∫
ε(x− y)ψj(x)ψk(y)f(x)f(y) dxdy

= −
∫∫

ε(y − x)ψj(x)ψk(y)f(x)f(y) dxdy

= −
∫

f(y)ψk(y)
∫

ε(y − x)f(x)ψj(x) dxdy

= −
∫

f(x)ψk(x)
∫

ε(x− y)f(y)ψj(y) dy dx

= −
∫

fψkε(fψj) dx . (7.144)

It follows that

G2
1,N (t, λ)

= C
(N)
1 det

(
M +

∫
[fψjεψk − fψkεψj − fψkε(fψj)] dx

)N−1

j,k=0

. (7.145)

If we let M−1 = (μjk)N−1
j,k=0, and factor det(M) out, then G2

1,N (t, λ) equals

C
(N)
1 det(M)

× det
(
I +M−1

(∫
[fψjεψk − fψkεψj − fψkε(fψj)] dx

)N−1

j,k=0

)N−1

j,k=0

(7.146)

where the dot denotes matrix multiplication of M−1 and the matrix with the
integral as its (j, k)-entry. define ηj =

∑
j μjkψk and use it to simplify the
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result of carrying out the matrix multiplication. From (7.143) it follows that
det(M) depends only on N we lump it into C

(N)
1 . Thus G2

1,N (t, λ) equals

C
(N)
1 det

(
I +

(∫
[fηjεψk − fψkεηj − fψkε(fηj)] dx

)N−1

j,k=0

)N−1

j,k=0

. (7.147)

Recall our remark at the very beginning of the section that if f ≡ 0 then the
integral we started with evaluates to 1 so that

C
(N)
1 det(I) = C

(N)
1 , (7.148)

which implies that C(N)
1 = 1. Now G2

1,N (t, λ) is of the form det(I+AB) where
A : L2(J) × L2(J) → C

N is a N × 2 matrix
⎛
⎜⎜⎜⎝
A1

A2

...
AN

⎞
⎟⎟⎟⎠ ,

whose jth row is given by

Aj = Aj(x) =
(−fεηj − fε(fηj) fηj

)
.

Therefore, if

g =
(
g1

g2

)
∈ L2(J) × L2(J) ,

then Ag is a column vector whose jth row is (Aj , g)L2×L2

(Ag)j =
∫

[−fεηj − fε(fηj)]g1 dx+
∫

fηjg2 dx .

Similarly, B : C
N → L2(J) × L2(J) is a 2 ×N matrix

B =
(
B1 B2 · · · BN

)
,

whose jth column is given by

Bj = Bj(x) =
(
ψj
εψj

)
.

Thus if

h =

⎛
⎜⎝
h1

...
hN

⎞
⎟⎠ ∈ C

N ,

then Bh is the column vector of L2(J) × L2(J) given by
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Bh =
(∑

j hiψj∑
j hiεψj

)
.

Clearly AB : C
N → C

N and BA : L2(J)×L2(J) → L2(J)×L2(J) with kernel
( −∑j ψj ⊗ fεηj −

∑
j ψj ⊗ fε(fηj)

∑
j ψj ⊗ fηj

−∑j εψj ⊗ fεηj −
∑

j εψj ⊗ fε(fηj)
∑
j εψj ⊗ fηj

)
.

Hence I +BA has kernel(
I −∑j ψj ⊗ fεηj −

∑
j ψj ⊗ fε(fηj)

∑
j ψj ⊗ fηj

−∑j εψj ⊗ fεηj −
∑

j εψj ⊗ fε(fηj) I +
∑

j εψj ⊗ fηj

)
,

which can be written as(
I −∑j ψj ⊗ fεηj

∑
j ψj ⊗ fηj

−∑j εψj ⊗ fεηj − εf I +
∑
j εψj ⊗ fηj

)(
I 0
εf I

)
.

Since we are taking the determinant of this operator expression, and the de-
terminant of the second term is just 1, we can drop it. Therefore

G2
1,N (t, λ) = det

(
I −∑j ψj ⊗ fεηj

∑
j ψj ⊗ fηj

−∑j εψj ⊗ fεηj − εf I +
∑

j εψj ⊗ fηj

)

= det(I +K1,Nf) ,

where

K1,N =
( −∑j ψj ⊗ εηj

∑
j ψj ⊗ ηj

−∑j εψj ⊗ εηj − ε
∑

j εψj ⊗ ηj

)

=
( −∑j,k ψj ⊗ μjkεψk

∑
j,k ψj ⊗ μjkψk

−∑j,k εψj ⊗ μjkεψk − ε
∑

j,k εψj ⊗ μjkψk

)

and K1,N has matrix kernel

K1,N(x, y) =
( −∑j,k ψj(x)μjkεψk(y)

∑
j,k ψj(x)μjkψk(y)

−∑j,k εψj(x)μjkεψk(y) − ε(x− y)
∑

j,k εψj(x)μjkψk(y)

)
.

We define

SN (x, y) = −
N−1∑
j,k=0

ψj(x)μjkεψk(y) .

Since M is antisymmetric,

SN (y, x) = −
N−1∑
j,k=0

ψj(y)μjkεψk(x)

=
N−1∑
j,k=0

ψj(y)μkjεψk(x) =
N−1∑
j,k=0

εψj(x)μjkψk(y) .
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Note that

εSN (x, y) =
N−1∑
j,k=0

εψj(x)μjkεψk(y) ,

whereas

− d
dy

SN (x, y) =
N−1∑
j,k=0

ψj(x)μjkψk(y) .

So we can now write succinctly

K1,N (x, y) =
(

SN(x, y) −dSN (x, y)/dy
εSN (x, y) − ε SN (y, x)

)
. (7.149)

So we have shown that

G1,N (t, λ) =
√
D1,N(t, λ) (7.150)

where
D1,N (t, λ) = det(I +K1,Nf)

where K1,N is the integral operator with matrix kernel K1,N(x, y) given in
(7.149).

7.7.2 Gaussian Specialization

We specialize the results above to the case of a Gaussian weight function

w(x) = exp(−x2/2) (7.151)

and indicator function

f(x) = −λχJ , J = (t,∞) .

Note that this does not agree with the weight function in (7.17). However it
is a necessary choice if we want the technical convenience of working with
exactly the same orthogonal polynomials (the Hermite functions) as in the
β = 2, 4 cases. In turn the Painlevé function in the limiting distribution will
be unchanged. The discrepancy is resolved by the choice of standard deviation.
Namely here the standard deviation on the diagonal matrix elements is taken
to be 1, corresponding to the weight function (7.151). In the β = 2, 4 cases
the standard deviation on the diagonal matrix elements is 1/

√
2, giving the

weight function (7.88). Now we again want the matrix

M =
(∫∫

ε(x− y)ψj(x)ψk(y) dxdy
)N−1

j,k=0

=
(∫

ψj(x)εψk(x) dx
)N−1

j,k=0

to be the direct sum of N/2 copies of



7 Application of Random Matrix Theory to Multivariate Statistics 487

Z =
(

0 1
−1 0

)

so that the formulas are the simplest possible, since then μjk can only be 0 or
±1. In that case M would be skew-symmetric so that M−1 = −M . In terms
of the integrals defining the entries of M this means that we would like to
have∫

ψ2m(x)εψ2n+1(x) dx = δm,n ,

∫
ψ2m+1(x)εψ2n(x) dx = −δm,n ,

and otherwise ∫
ψj(x)

d
dx

ψk(x) dx = 0 .

It is easier to treat this last case if we replace it with three nonexclusive
conditions∫

ψ2m(x)εψ2n(x) dx = 0 ,
∫

ψ2m+1(x)εψ2n+1(x) dx = 0

(so when the parity is the same for j, k, which takes care of diagonal entries,
among others), and ∫

ψj(x)εψk(x) dx = 0 .

whenever |j − k| > 1, which targets entries outside of the tridiagonal. Define

ϕn(x) =
1
cn
Hn(x) exp(−x2/2) for cn =

√
2nn!

√
π

where the Hn are the usual Hermite polynomials defined by the orthogonality
condition ∫

Hj(x)Hk(x)e−x
2
dx = c2jδj,k .

It follows that ∫
ϕj(x)ϕk(x) dx = δj,k .

Now let
ψ2n+1(x) =

d
dx

ϕ2n(x) , ψ2n(x) = ϕ2n(x) . (7.152)

This definition satisfies our earlier requirement that ψj = pjw for

w(x) = exp(−x2/2) .

In this case for example

p2n(x) =
1
cn
H2n(x) .
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With ε defined as in (7.84), and recalling that, if D denote the operator that
acts by differentiation with respect to x, then Dε = εD = I, it follows that

∫
ψ2m(x)εψ2n+1(x) dx =

∫
ϕ2m(x)ε

d
dx

ϕ2n+1(x) dx

=
∫

ϕ2m(x)ϕ2n+1(x) dx

=
∫

ϕ2m(x)ϕ2n+1(x) d(x) = δm,n,

as desired. Similarly, integration by parts gives
∫

ψ2m+1(x)εψ2n(x) dx =
∫

d
dx

ϕ2m(x)εϕ2n(x) dx

= −
∫

ϕ2m(x)ϕ2n(x) dx

= −
∫

ϕ2m(x)ϕ2n+1(x) d(x) = −δm,n .

Also ψ2n is even since H2n and ϕ2n are. Similarly, ψ2n+1 is odd. It follows
that εψ2n, and εψ2n+1, are respectively odd and even functions. From these
observations, we obtain

∫
ψ2n(x)εψ2m(x) dx = 0 ,

since the integrand is a product of an odd and an even function. Similarly
∫

ψ2n+1(x)εψ2m+1(x) dx = 0 .

Finally it is easy to see that if |j − k| > 1, then
∫

ψj(x)εψk(x) dx = 0 .

Indeed both differentiation and the action of ε can only “shift” the indices by
1. Thus by orthogonality of the ϕj , this integral will always be 0. Thus by our
choice in (7.152), we force the matrix

M =
(∫

ψj(x)εψk(x) dx
)N−1

j,k=0

to be the direct sum of N/2 copies of

Z =
(

0 1
−1 0

)
.
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This means M−1 = −M where M−1 = {μj,k}. Moreover, μj,k = 0 if j, k
have the same parity or |j − k| > 1, and μ2j,2k+1 = δjk = −μ2k+1,2j for
j, k = 0, . . . , N/2 − 1. Therefore

SN (x, y) = −
N−1∑
j,k=0

ψj(x)μjkεψk(y)

= −
N/2−1∑
j=0

ψ2j(x)εψ2j+1(y) +
N/2−1∑
j=0

ψ2j+1(x)εψ2j(y)

=
[N/2−1∑

j=0

ϕ2j

(
x

σ

)
ϕ2j

(
y

σ

)
−
N/2−1∑
j=0

d
dx

ϕ2j

(
x

σ

)
εϕ2j

(
y

σ

)]
.

Manipulations similar to those in the β = 4 case (see (7.90) through (7.95))
yield

SN (x, y) =
[N−1∑
j=0

ϕj(x)ϕj(y) −
√
N

2
ϕN−1(x)(εϕN )(y)

]
.

We redefine

SN (x, y) =
N−1∑
j=0

ϕj(x)ϕj(y) = SN(y, x) ,

so that the top left entry of K1,N(x, y) is

SN (x, y) +

√
N

2
ϕN−1(x)(εϕN )(y) .

If SN is the operator with kernel SN(x, y) then integration by parts gives

SNDf =
∫

S(x, y)
d
dy

f(y) dy =
∫ (

− d
dy

SN (x, y)
)
f(y) dy ,

so that −d/dySN(x, y) is in fact the kernel of SND. Therefore (7.150) now
holds with K1,N being the integral operator with matrix kernel K1,N(x, y)
whose (i, j)-entry K

(i,j)
1,N (x, y) is given by

K
(1,1)
1,N (x, y) =

[
SN (x, y) +

√
N

2
ϕN−1(x)(εϕN )(y)

]
,

K
(1,2)
1,N (x, y) =

[
SDN(x, y) − d

dy
(√N

2
ϕN−1(x)

(
εϕN )(y)

)]
,

K
(2,1)
1,N (x, y) = ε

[
SN (x, y) +

√
N

2
ϕN−1(x)

(
εϕN

)
(y) − 1

]
,

K
(2,2)
1,N (x, y) =

[
SN (x, y) +

√
N

2
(εϕN )(x)ϕN−1(y)

]
.
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Define

ϕ(x) =
(
N

2

)1/4

ϕN (x) , ψ(x) =
(
N

2

)1/4

ϕN−1(x) ,

so that

K
(1,1)
1,N (x, y) = χ(x)[SN (x, y) + ψ(x)εϕ(y)]χ(y) ,

K
(1,2)
1,N (x, y) = χ(x)[SDN (x, y) − ψ(x)ϕ(y)]χ(y) ,

K
(2,1)
1,N (x, y) = χ(x)[εSN (x, y) + εψ(x)εϕ(y) − ε(x− y)]χ(y) ,

K
(2,2)
1,N (x, y) = χ(x)[SN (x, y) + εϕ(x)ψ(y)]χ(y) .

Note that

χ(S + ψ ⊗ εϕ)χ .= K
(1,1)
1,N (x, y) ,

χ(SD − ψ ⊗ ϕ)χ .= K
(1,2)
1,N (x, y) ,

χ(εS + εψ ⊗ εϕ− ε)χ .= K
(2,1)
1,N (x, y) ,

χ(S + εϕ⊗ εψ)χ .= K
(2,2)
1,N (x, y) .

Hence

K1,N = χ

(
S + ψ ⊗ εϕ SD − ψ ⊗ ϕ

εS + εψ ⊗ εϕ− ε S + εϕ⊗ εψ

)
χ .

Note that this is identical to the corresponding operator for β = 1 obtained
by Tracy and Widom in [33], the only difference being that ϕ, ψ, and hence
also S, are redefined to depend on λ.

7.7.3 Edge Scaling

7.7.3.1 Reduction of the Determinant

The above determinant is that of an operator on L2(J)⊕L2(J). Our first task
will be to rewrite these determinants as those of operators on L2(J). This part
follows exactly the proof in [33]. To begin, note that

[S,D] = ϕ⊗ ψ + ψ ⊗ ϕ (7.153)

so that (using the fact that Dε = εD = I )

[ε, S] = εS − Sε = εSDε− εDSε

= ε[S,D]ε = εϕ⊗ ψε+ εψ ⊗ ϕε

= εϕ⊗ εtψ + εψ ⊗ εtϕ = −εϕ⊗ εψ − εψ ⊗ εϕ , (7.154)

where the last equality follows from the fact that εt = −ε. We thus have
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D(εS + εψ ⊗ εϕ) = S + ψ ⊗ εϕ ,

D(εSD − εψ ⊗ ϕ) = SD − ψ ⊗ ϕ .

The expressions on the right side are the top entries of K1,N . Thus the first
row of K1,N is, as a vector,

D(εS + εψ ⊗ εϕ, εSD− εψ ⊗ ϕ) .

Now (7.154) implies that

εS + εψ ⊗ εϕ = Sε− εϕ⊗ εψ .

Similarly (7.153) gives

ε[S,D] = εϕ⊗ ψ + εψ ⊗ ϕ ,

so that
εSD − εψ ⊗ ϕ = εDS + εϕ⊗ ψ = S + εϕ⊗ ψ .

Using these expressions we can rewrite the first row of K1,N as

D(Sε− εϕ⊗ εψ, S + εϕ⊗ ψ) .

Applying ε to this expression shows the second row of K1,N is given by

(εS − ε+ εψ ⊗ εϕ, S + εϕ⊗ ψ) .

Now use (7.154) to show the second row of K1,N is

(Sε− ε+ εϕ⊗ εψ, S + εϕ⊗ ψ) .

Therefore,

K1,N = χ

(
D(Sε− εϕ⊗ εψ) D(S + εϕ⊗ ψ)
Sε− ε + εϕ⊗ εψ S + εϕ⊗ ψ

)
χ

=
(
χD 0
0 χ

)(
(Sε− εϕ⊗ εψ)χ (S + εϕ⊗ ψ)χ

(Sε− ε+ εϕ⊗ εψ)χ (S + εϕ⊗ ψ)χ

)
.

Since K1,N is of the form AB, we can use the fact that det(I−AB) = det(I−
BA) and deduce that D1,N (s, λ) is unchanged if instead we take K1,N to be

K1,N =
(

(Sε− εϕ⊗ εψ)χ (S + εϕ⊗ ψ)χ
(Sε− ε+ εϕ⊗ εψ)χ (S + εϕ⊗ ψ)χ

)(
χD 0
0 χ

)

=
(

(Sε− εϕ⊗ εψ)χD (S + εϕ⊗ ψ)χ
(Sε− ε+ εϕ⊗ εψ)χD (S + εϕ⊗ ψ)χ

)
.

Therefore

D1,N (s, λ) = det
(
I − (Sε− εϕ⊗ εψ)λχD −(S + εϕ⊗ ψ)λχ
−(Sε− ε+ εϕ⊗ εψ)λχD I − (S + εϕ⊗ ψ)λχ

)
.
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Now we perform row and column operations on the matrix to simplify it, which
do not change the Fredholm determinant. Justification of these operations is
given in [33]. We start by subtracting row 1 from row 2 to get

(
I − (Sε− εϕ⊗ εψ)λχD −(S + εϕ⊗ ψ)λχ

−I + ελχD I

)
.

Next, adding column 2 to column 1 yields(
I − (Sε− εϕ⊗ εψ)λχD − (S + εϕ⊗ ψ)λχ −(S + εϕ⊗ ψ)λχ

ελχD I

)
.

Then right-multiply column 2 by −ελχD and add it to column 1, and multiply
row 2 by S + εϕ⊗ ψ and add it to row 1 to arrive at

det
(
I − (Sε− εϕ⊗ εψ)λχD + (S + εϕ⊗ ψ)λχ(ελχD − I) 0

0 I

)
.

Thus the determinant we want equals the determinant of

I − (Sε− εϕ⊗ εψ)λχD + (S + εϕ⊗ ψ)λχ(ελχD − I) . (7.155)

So we have reduced the problem from the computation of the Fredholm de-
terminant of an operator on L2(J) × L2(J), to that of an operator on L2(J).

7.7.3.2 Differential Equations

Next we want to write the operator in (7.155) in the form

(I −K2,N)
(
I −

L∑
i=1

αi ⊗ βi

)
, (7.156)

where the αi and βi are functions in L2(J). In other words, we want to rewrite
the determinant for the GOE case as a finite dimensional perturbation of the
corresponding GUE determinant. The Fredholm determinant of the product
is then the product of the determinants. The limiting form for the GUE part
is already known, and we can just focus on finding a limiting form for the
determinant of the finite dimensional piece. It is here that the proof must be
modified from that in [33]. A little simplification of (7.155) yields

I − λSχ− λS(1 − λχ)εχD − λ(εϕ⊗ χψ) − λ(εϕ⊗ ψ)(1 − λχ)εχD .

Writing ε[χ,D] + χ for εχD and simplifying (1 − λχ)χ to (1 − λ)χ gives

I − λSχ− λ(1 − λ)Sχ− λ(εϕ ⊗ χψ) − λ(1 − λ)(εϕ ⊗ χψ)
− λS(1 − λχ)ε[χ,D] − λ(εϕ⊗ ψ)(1 − λχ)ε[χ,D]

= I − (2λ− λ2)Sχ− (2λ− λ2)(εϕ⊗ χψ) − λS(1 − λχ)ε[χ,D]
− λ(εϕ⊗ ψ)(1 − λχ)ε[χ,D] .
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Define λ̃ = 2λ − λ2 and let
√
λ̃ϕ → ϕ, and

√
λ̃ψ → ψ so that λ̃S → S and

(7.155) goes to

I − Sχ− (εϕ⊗ χψ) − λ

λ̃
S(1 − λχ)ε[χ,D] − λ

λ̃
(εϕ⊗ ψ)(1 − λχ)ε[χ,D] .

Now we define R := (I − Sχ)−1Sχ = (I − Sχ)−1 − I (the resolvent operator
of Sχ), whose kernel we denote by R(x, y), and Qε := (I − Sχ)−1εϕ. Then
(7.155) factors into

A = (I − Sχ)B .

where B is

I − (Qε ⊗ χψ) − λ

λ̃
(I +R)S(1 − λχ)ε[χ,D] − λ

λ̃
(Qε ⊗ ψ)(1 − λχ)ε[χ,D] ,

λ �= 1 .

Hence
D1,N(s, λ) = D2,N(s, λ̃) det(B) .

Note that because of the change of variable λ̃S → S, we are in effect factoring
I − (2λ− λ2)S, rather that I − λS as we did in the β = 4 case. The fact that
we factored I − (2λ − λ2)Sχ as opposed to I − λSχ is crucial here for it is
what makes B finite rank. If we had factored I − λSχ instead, B would have
been

B = I − λ

2∑
k=1

(−1)k(S +RS)(I − λχ)εk ⊗ δk − λ(I +R)εϕ⊗ χψ

− λ

2∑
k=1

(−1)k(ψ, (I − λχ)εk
)(

(I +R)εϕ) ⊗ δk

− λ(1 − λ)(S +RS)χ− λ(1 − λ)
(
(I +R)εϕ

)⊗ χψ .

The first term on the last line is not finite rank, and the methods we have
used previously in the β = 4 case would not work here. It is also interesting
to note that these complications disappear when we are dealing with the case
of the largest eigenvalue; then is no differentiation with respect to λ, and we
just set λ = 1 in all these formulae. All the new troublesome terms vanish! In
order to find det(B) we use the identity

ε[χ,D] =
2m∑
k=1

(−1)kεk ⊗ δk , (7.157)

where εk and δk are the functions ε(x − ak) and δ(x − ak) respectively,
and the ak are the endpoints of the (disjoint) intervals considered, J =
∪mk=1(a2k−1, a2k). We also make use of the fact that
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a⊗ b× c⊗ d = (b, c) × a⊗ d (7.158)

where (·, ·) is the usual L2-inner product. Therefore

(Qε ⊗ ψ)(1 − λχ)ε[χ,D] =
2m∑
k=1

(−1)kQε ⊗ ψ × (1 − λχ)εk ⊗ δk

=
2m∑
k=1

(−1)k(ψ, (1 − λχ)εk)Qε ⊗ δk .

It follows that
D1,N (s, λ)
D2,N (s, λ̃)

equals the determinant of

I −Qε ⊗ χψ − λ

λ̃

2m∑
k=1

(−1)k[(S +RS)(1 − λχ)εk + (ψ, (1 − λχ)εk), Qε] ⊗ δk .

(7.159)
We now specialize to the case of one interval J = (t,∞), so m = 1, a1 = t
and a2 = ∞. We write εt = ε1, and ε∞ = ε2, and similarly for δk. Writing
the terms in the summation and using the facts that

ε∞ = − 1
2 , (7.160)

and
(1 − λχ)εt = − 1

2 (1 − λχ) + (1 − λχ)χ , (7.161)

then yields

I −Qε ⊗ χψ − λ

2λ̃
[(S +RS)(1 − λχ) +

(
ψ, (1 − λχ)

)
Qε] ⊗ (δt − δ∞)

+
λ

λ̃
[(S +RS)(1 − λχ)χ + (ψ, (1 − λχ)χ)Qε] ⊗ δt

which, to simplify notation, we write as

I −Qε ⊗ χψ − λ

2λ̃
[(S +RS)(1 − λχ) + a1,λQε] ⊗ (δt − δ∞)

+
λ

λ̃
[(S +RS)(1 − λχ)χ + ã1,λQε] ⊗ δt ,

where
a1,λ =

(
ψ, (1 − λχ)

)
, ã1,λ = (ψ, (1 − λχ)χ) . (7.162)

Now we can use the formula:

det
(
I −

L∑
i=1

αi ⊗ βi

)
= det

(
δjk − (αj , βk)

)L
j,k=1

. (7.163)
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In this case, L = 3, and

α1 = Qε, α2 =
λ

λ̃
[(S +RS)(1 − λχ) + a1,λQε ,

α3 = −λ

λ̃
[(S +RS)(1 − λχ)χ + ã1,λQε] ,

β1 = χψ , β2 = δt − δ∞ , β3 = δt .

(7.164)

In order to simplify the notation, define

Q(x, λ, t) := (I − Sχ)−1ϕ , P (x, λ, t) := (I − Sχ)−1ψ ,

Qε(x, λ, t) := (I − Sχ)−1εϕ , Pε(x, λ, t) := (I − Sχ)−1εψ ,
(7.165)

qN := Q(t, λ, t) , pN := P (t, λ, t) ,
qε := Qε(t, λ, t) , pε := Pε(t, λ, t) ,
uε := (Q,χεϕ) = (Qε, χϕ) , vε := (Q,χεψ) = (Pε, χψ) ,
ṽε := (P, χεϕ) = (Qε, χϕ) , wε := (P, χεψ) = (Pε, χψ) ,

(7.166)

P1,λ :=
∫

(1 − λχ)P dx , P̃1,λ :=
∫

(1 − λχ)χP dx ,

Q1,λ :=
∫

(1 − λχ)Q dx , Q̃1,λ :=
∫

(1 − λχ)χQ dx ,

R1,λ :=
∫

(1 − λχ)R(x, t) dx , R̃1,λ :=
∫

(1 − λχ)χR(x, t) dx .

(7.167)

Note that all quantities in (7.166) and (7.165) are functions of t alone. Fur-
thermore, let

cϕ = εϕ(∞) =
1
2

∫ ∞

−∞
ϕ(x) dx , cψ = εψ(∞) =

1
2

∫ ∞

−∞
ψ(x) dx . (7.168)

Recall from the previous section that when β = 1 we take N to be even. It
follows that ϕ and ψ are even and odd functions respectively. Thus cψ = 0
for β = 1, and computation gives

cϕ = (πN)1/42−3/4−N/2 (N !)1/2

(N/2)!

√
λ . (7.169)

Hence computation yields

lim
N→∞

cϕ =

√
λ

2
, (7.170)

and at t = ∞ we have

uε(∞) = 0 , qε(∞) = cϕ ,

P1,λ(∞) = 2cψ , Q1,λ(∞) = 2cϕ , R1,λ(∞) = 0 ,

P̃1,λ(∞) = Q̃1,λ(∞) = R̃1,λ(∞) = 0 .
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Hence

(α1, β1) = ṽε , (α1, β2) = qε − cϕ , (α1, β3) = qε , (7.171)

(α2, β1) =
λ

2λ̃
[P1,λ − a1,λ(1 − ṽε)] , (7.172)

(α2, β2) =
λ

2λ̃
[R1,λ + a1,λ(qε − cϕ)] , (7.173)

(α2, β3) =
λ

2λ̃
[R1,λ + a1,λqε] , (7.174)

(α3, β1) = −λ

λ̃
[P̃1,λ − ã1,λ(1 − ṽε)] , (7.175)

(α3, β2) = −λ

λ̃
[R̃1,λ + ã1,λ(qε − cϕ)] , (7.176)

(α3, β3) = −λ

λ̃
[R̃1,λ + ã1,λqε] . (7.177)

As an illustration, let us do the computation that led to (7.173) in detail. As
in [33], we use the facts that St = S, and (S+SRt)χ = R which can be easily
seen by writing R =

∑∞
k=1(Sχ)k. Furthermore we write R(x, ak) to mean

lim
y→ak
y∈J

R(x, y) .

In general, since all evaluations are done by taking the limits from within J ,
we can use the identity χδk = δk inside the inner products. Thus

(α2, β2) =
λ

λ̃

[(
(S +RS)(1 − λχ), δt − δ∞

)
+ a1,λ(Qε, δt − δ∞)

]

=
λ

λ̃

[(
(1 − λχ), (S +RtS)(δt − δ∞)

)
+ a1,λ

(
Qε(t) −Qε(∞)

)]

=
λ

λ̃

[(
(1 − λχ), (S +RtS)χ(δt − δ∞)

)
+ a1,λ(qε − cϕ)

]

=
λ

λ̃

[(
(1 − λχ), R(x, t) −R(x,∞)

)
+ a1,λ(qε − cϕ)

]

=
λ

λ̃
[R1,λ(t) −R1,λ(∞) + a1,λ(qε − cϕ)]

=
λ

λ̃
[R1,λ(t) + a1,λ(qε − cϕ)] .

We want the limit of the determinant

det
(
δjk − (αj , βk)

)3
j,k=1

, (7.178)

as N → ∞. In order to get our hands on the limits of the individual terms
involved in the determinant, we will find differential equations for them first
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as in [33]. Row operation on the matrix show that a1,λ and ã1,λ fall out of
the determinant; to see this add λa1,λ/(2λ̃) times row 1 to row 2 and λã1,λ/λ̃
times row 1 to row 3. So we will not need to find differential equations for
them. Our determinant is

det

⎛
⎝ 1 − ṽε −(qε − cϕ) −qε
−λP1,λ/(2λ̃) 1 − λR1,λ/(2λ̃) −λR1,λ3(2λ̃)
λP̃1,λ/λ̃ λR̃1,λ/λ̃ 1 + λR̃1,λ/λ̃

⎞
⎠ . (7.179)

Proceeding as in [33] we find the following differential equations

d
dt
uε = qNqε ,

d
dt
qε = qN − qN ṽε − pNuε , (7.180)

d
dt

Q1,λ = qN (λ−R1,λ) ,
d
dt

P1,λ = pN (λ−R1,λ) , (7.181)

d
dt

R1,λ = −pNQ1,λ − qNP1,λ ,
d
dt

R̃1,λ = −pN Q̃1,λ − qN P̃1,λ , (7.182)

d
dt

Q̃1,λ = qN (λ− 1 − R̃1,λ) ,
d
dt

P̃1,λ = pN (λ− 1 − R̃1,λ) . (7.183)

Let us derive the first equation in (7.181) for example. From [31, (2.17)], we
have

∂Q

∂t
= −R(x, t)qN .

Therefore

∂Q1,λ

∂t
=

d
dt

[∫ t

−∞
Q(x, t) dx− (1 − λ)

∫ t

∞
Q(x, t) dx

]

= qN +
∫ t

−∞

∂Q

∂t
dx− (1 − λ)

[
qN +

∫ t

∞

∂Q

∂t
dx
]

= qN − qN

∫ t

−∞
R(x, t) dx − (1 − λ)qN + (1 − λ)qN

∫ t

∞
R(x, t) dx

= λqN − qN

∫ ∞

−∞
(1 − λ)R(x, t) dx = λqN − qNR1,λ = qN (λ−R1,λ) .

Now we change variable from t to s where t = τ(s) = 2σ
√
N + (σs)/(N1/6).

Then we take the limit N → ∞, denoting the limits of qε, P1,λ, Q1,λ,R1,λ,
P̃1,λ, Q̃1,λ, R̃1,λ and the common limit of uε and ṽε respectively by q̄, P1,λ,
Q1,λ, R1,λ, P1,λ, Q1,λ, R1,λ and ū. We eliminate Q1,λ and Q1,λ by using the
facts that Q1,λ = P1,λ + λ

√
2 and Q1,λ = P1,λ. These limits hold uniformly

for bounded s so we can interchange lim and d/ds. Also limN→∞N−1/6qN =
limN→∞N−1/6pN = q, where q is as in (7.26). We obtain the systems
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d
ds
ū = − 1√

2
qq̄ ,

d
ds
q̄ =

1√
2
q(1 − 2ū) , (7.184)

d
ds

P1,λ = − 1√
2
q(R1,λ − λ) ,

d
ds

R1,λ = − 1√
2
q(2P1,λ +

√
2λ̃) , (7.185)

d
ds

P1,λ =
1√
2
q(1 − λ−R1,λ) ,

d
ds

R1,λ = −q
√

2P1,λ . (7.186)

The change of variables s → μ =
∫∞
s q(x, λ) dx transforms these systems into

constant coefficient ordinary differential equations

d
dμ

ū =
1√
2
q̄ ,

d
dμ

q̄ = − 1√
2
(1 − 2ū) , (7.187)

d
dμ

P1,λ =
1√
2
(R1,λ − λ ),

d
dμ

R1,λ =
1√
2
(2P1,λ +

√
2λ̃) , (7.188)

d
dμ

P1,λ = − 1√
2
(1 − λ−R1,λ) ,

d
dμ

R1,λ =
√

2P1,λ . (7.189)

Since lims→∞ μ = 0, corresponding to the boundary values at t = ∞ which we
found earlier for P1,λ, R1,λ, P̃1,λ, R̃1,λ, we now have initial values at μ = 0.
Therefore

P1,λ(0) = R1,λ(0) = P1,λ(0) = R1,λ(0) = 0 . (7.190)

We use this to solve the systems and get

q̄ =

√
λ̃− 1
2
√

2
eμ +

√
λ̃+ 1
2
√

2
e−μ , (7.191)

ū =

√
λ̃− 1
4

eμ −
√
λ̃+ 1
4

e−μ +
1
2
, (7.192)

P1,λ =

√
λ̃− λ

2
√

2
eμ +

√
λ̃+ λ

2
√

2
e−μ −

√
λ̃

2
, (7.193)

R1,λ =

√
λ̃− λ

2
eμ −

√
λ̃+ λ

2
e−μ + λ , (7.194)

P1,λ =
1 − λ

2
√

2
(eμ − e−μ) , R1,λ =

1 − λ

2
(eμ + e−μ − 2) . (7.195)

Substituting these expressions into the determinant gives (7.28), namely

D1(s, λ) = D2(s, λ̃)
λ− 1 − coshμ(s, λ̃) +

√
λ̃ sinhμ(s, λ̃)

λ− 2
, (7.196)

whereDβ = limN→∞Dβ,N . As mentioned in Sect. 7.2.1, the functional form of
the β = 1 limiting determinant is very different from what one would expect,
unlike in the β = 4 case. Also noteworthy is the dependence on λ̃ = 2λ − λ2

instead of just λ. However one should also note that when λ is set equal to
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1, then λ̃ = λ = 1. Hence in the largest eigenvalue case, where there is no
prior differentiation with respect to λ, and λ is just set to 1, a great deal of
simplification occurs. The above formula then nicely reduces to the β = 1
Tracy–Widom distribution.

7.8 An Interlacing Property

The following series of lemmas establish Cor. 7.3.1:

Lemma 7.8.1. Define

aj =
dj

dλj

√
λ

2 − λ

∣∣∣∣
λ=1

. (7.197)

Then aj satisfies the following recursion

aj =

⎧⎪⎨
⎪⎩

1 if j = 0,
(j − 1)aj−1 for j ≥ 1, j even,
jaj−1 for j ≥ 1, j odd.

(7.198)

Proof. Consider the expansion of the generating function f(λ) =
√
λ/2 − λ

around λ = 1
f(λ) =

∑
j≥0

aj
j!

(λ− 1)j =
∑
j≥0

bj(λ− 1)j .

Since aj = j!bj , the statement of the lemma reduces to proving the following
recurrence for the bj

bj =

⎧⎪⎪⎨
⎪⎪⎩

1 if j = 0,
j − 1
j

bj−1 for j ≥ 1, j even,

bj−1 for j ≥ 1, j odd.

(7.199)

Let

f even(λ) =
1
2

(√
λ

2 − λ
+

√
2 − λ

λ

)
, fodd(λ) =

1
2

(√
λ

2 − λ
−
√

2 − λ

λ

)
.

These are the even and odd parts of f relative to the reflection λ−1 → −(λ−1)
or λ → 2 − λ. Recurrence (7.199) is equivalent to

d
dλ

f even(λ) = (λ− 1)
d
dλ

fodd(λ) ,

which is easily shown to be true. ��



500 M. Dieng and C.A. Tracy

Lemma 7.8.2. Define

f(s, λ) = 1 −
√

λ

2 − λ
tanh

μ(s, λ̃)
2

, (7.200)

for λ̃ = 2λ− λ2. Then

∂2n

∂λ2n
f(s, λ)

∣∣∣∣
λ=1

− 1
2n+ 1

∂2n+1

∂λ2n+1
f(s, λ)

∣∣∣∣
λ=1

=

{
1 if n = 0,
0 if n ≥ 1.

(7.201)

Proof. The case n = 0 is readily checked. The main ingredient for the general
case is Faá di Bruno’s formula

dn

dtn
g(h(t)) =

∑ n!
k1! · · · kn!

(
dkg
dhk

(h(t))
)(

1
1!

dh
ddt

)k1
· · ·
(

1
n!

dnh
dtn

)kn

,

(7.202)
where k =

∑n
i=1 ki and the above sum is over all partitions of n, that is all

values of k1, . . . , kn such that
∑n
i=1 iki = n. We apply Faá di Bruno’s formula

to derivatives of the function tanh
(
μ(s, λ̃)

)
/2, which we treat as some function

g
(
λ̃(λ)

)
. Notice that for j ≥ 1, (dj λ̃)/(dλj)

∣∣
λ=1

is nonzero only when j = 2,
in which case it equals −2. Hence, in (7.202), the only term that survives is
the one corresponding to the partition all of whose parts equal 2. Thus we
have

∂2n−k

∂λ2n−k tanh
μ(s, λ̃)

2

∣∣∣∣
λ=1

=

⎧⎪⎨
⎪⎩

0 if k = 2j + 1, j ≥ 0,
(−1)n−j(2n− k)!

(n− j)!
∂n−j

∂λ̃n−j
tanh

μ(s, λ̃)
2

∣∣∣∣
λ̃=1

for k = 2j, j ≥ 0

∂2n−k+1

∂λ2n+1−k tanh
μ(s, λ̃)

2

∣∣∣∣
λ=1

=

⎧⎪⎨
⎪⎩

0 if k = 2j, j ≥ 0,
(−1)n−j(2n+ 1 − k)!

(n− j)!
∂n−j

∂λ̃n−j
tanh

μ(s, λ̃)
2

∣∣∣∣
λ̃=1

for k = 2j + 1, j ≥ 0.

Therefore, recalling the definition of aj in (7.197) and setting k = 2j, we
obtain

∂2n

∂λ2n
f(s, λ)

∣∣∣∣
λ=1

=
2n∑
k=0

(
2n
k

)
∂k

∂λk

√
λ

2 − λ

∂2n−k

∂λ2n−k tanh
μ(s, λ̃)

2

∣∣∣∣
λ=1

=
n∑
j=0

(2n)!(−1)n−j

(2j)!(n− j)!
a2j

∂n−j

∂λ̃n−j
tanh

μ(s, λ̃)
2

∣∣∣∣
λ̃=1

.
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Similarly, using k = 2j + 1 instead yields

∂2n+1

∂λ2n+1
f(s, λ)

∣∣∣∣
λ=1

=
2n+1∑
k=0

(
2n+ 1
k

)
∂k

∂λk

√
λ

2 − λ

∂2n+1−k

∂λ2n+1−k tanh
μ(s, λ̃)

2

∣∣∣∣
λ=1

= (2n+ 1)
n∑
j=0

(2n)!(−1)n−j

(2j)!(n−j)!
a2j+1

2j+1
∂n−j

∂λ̃n−j
tanh

μ(s, λ̃)
2

∣∣∣∣
λ̃=1

= (2n+ 1)
∂2n

∂λ2n
f(s, λ)

∣∣∣∣
λ=1

,

since a2j+1/(2j + 1) = a2j . Rearranging this last equality leads to (7.201).

Lemma 7.8.3. Let D1(s, λ) and D4(s, λ̃) be as in (7.28) and (7.29). Then

D1(s, λ) = D4(s, λ̃)
(

1 −
√

λ

2 − λ
tanh

μ(s, λ̃)
2

)2

. (7.203)

Proof. Using the facts that −1− coshx = −2 cosh2 x/2, 1 = cosh2 x− sinh2 x
and sinhx = 2 sinhx/2 coshx/2 we get

D1(s, λ)

=
−1 − coshμ(s, λ̃)

λ− 2
D2(s, λ̃) +D2(s, λ̃)

λ+
√
λ̃ sinhμ(s, λ̃)
λ− 2

=
−2
λ− 2

D4(s, λ̃)

+D2(s, λ̃)
λ
(
cosh2(μ(s, λ̃)/2) − sinh2(μ(s, λ̃)/2)

)
+
√
λ̃ sinhμ(s, λ̃)

λ− 2

= D4(s, λ̃) +
D4(s, λ̃)

cosh2(μ(s, λ)/2)
λ sinh2(μ(s, λ̃))/2 −

√
λ̃ sinhμ(s, λ̃)

2 − λ

= D4(s, λ̃)
(

1 +
λ sinh2(μ(s, λ̃)/2) − 2

√
λ̃ sinh(μ(s, λ)/2) cosh(μ(s, λ)/2)

(2 − λ) cosh2(μ(s, λ)/2)

)

= D4(s, λ̃)
(

1 − 2

√
λ

2 − λ
tanh

μ(s, λ̃)
2

+
λ

2 − λ
tanh2 μ(s, λ̃)

2

)

= D4(s, λ̃)
(

1 −
√

λ

2 − λ
tanh

μ(s, λ̃)
2

)2

. ��

For notational convenience, define d1(s, λ) = D
1/2
1 (s, λ), and d4(s, λ) =

D
1/2
4 (s, λ). Then

Lemma 7.8.4. For n ≥ 0,[
− 1

(2n+ 1)!
∂2n+1

∂λ2n+1
+

1
(2n)!

∂2n

∂λ2n

]
d1(s, λ)

∣∣∣∣
λ=1

=
(−1)n

n!
∂n

∂λn
d4(s, λ)

∣∣∣∣
λ=1

.
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Proof. Let

f(s, λ) = 1 −
√

λ

2 − λ
tanh

μ(s, λ̃)
2

by the previous lemma, we need to show that[
− 1

(2n+ 1)!
∂2n+1

∂λ2n+1
+

1
(2n)!

∂2n

∂λ2n

]
d4(s, λ̃)f(s, λ)

∣∣∣∣
λ=1

(7.204)

equals
(−1)n

n!
∂n

∂λ̃n
d4(s, λ̃)

∣∣∣∣
λ=1

.

Now formula (7.202) applied to d4(s, λ̃) gives

∂k

∂λk
d4(s, λ̃)

∣∣∣∣
λ=1

=

⎧⎨
⎩

0 if k = 2j + 1, j ≥ 0,
(−1)jk!

j!
∂j

∂λ̃j
d4(s, λ̃) if k = 2j, j ≥ 0.

Therefore

− 1
(2n+ 1)!

∂2n+1

∂λ2n+1
d4(s, λ̃)f(s, λ)

∣∣∣∣
λ=1

= − 1
(2n+ 1)!

2n+1∑
k=0

(
2n+ 1
k

)
∂k

∂λk
d4

∂2n+1−k

∂λ2n+1−k f
∣∣∣∣
λ=1

= −
n∑
j=0

(−1)j

(2n− 2j + 1)!j!
∂j

∂λ̃j
d4

∂2n−2j+1

∂λ2n−2j+1
f

∣∣∣∣
λ=1

.

Similarly,

1
(2n)!

∂2n

∂λ2n
d4(s, λ̃)f(s, λ)

∣∣∣∣
λ=1

=
1

(2n)!

2n∑
k=0

(
2n
k

)
∂k

∂λk
d4

∂2n−k

∂λ2n−k f
∣∣∣∣
λ=1

=
n∑
j=0

(−1)j

(2n− 2j)!j!
∂j

∂λ̃j
d4

∂2n−2j

∂λ2n−2j
f

∣∣∣∣
λ=1

.

Therefore the expression in (7.204) equals
n∑
j=0

(−1)j

(2n− 2j)!j!
∂j

∂λ̃j
d4(s, λ̃)

[
∂2n−2j

∂λ2n−2j
f − 1

2n− 2j + 1
∂2n−2j+1

∂λ2n−2j+1
f

]∣∣∣∣
λ=1

.

Now Lemma 7.8.2 shows that the square bracket inside the summation is
zero unless j = n, in which case it is 1. The result follows. ��

In an inductive proof of Corollary 7.3.1, the base case F4(s, 2) = F1(s, 1)
is easily checked by direct calculation. Lemma 7.8.4 establishes the induc-
tive step in the proof since, with the assumption F4(s, n) = F1(s, 2n), it is
equivalent to the statement

F4(s, n + 1) = F1(s, 2n+ 2) .
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7.9 Numerics

7.9.1 Partial Derivatives of q(x, λ)

Let

qn(x) =
∂n

∂λn
q(x, λ)

∣∣∣∣
λ=1

, (7.205)

so that q0 equals q from (7.24). In order to compute Fβ(s,m) it is crucial to
know qn with 0 ≤ n ≤ m accurately. Asymptotic expansions for qn at −∞
are given in [31]. In particular, we know that, as t → +∞, q0(−t/2) is given
by

1
2

√
t

(
1 − 1

t3
− 73

2t6
− 10657

2t9
− 13912277

8t12
+ O

( 1
t15

))
,

whereas q1(−t/2) can be expanded as

exp (1
3 t

3/2)

2
√

2πt1/4

(
1 +

17
24t3/2

+
1513

2732t3
+

850193
21034t9/2

− 407117521
21535t6

+ O
( 1
t15/2

))
.

These expansions are used in the algorithms below.

7.9.2 Algorithms

Quantities needed to compute Fβ(s,m), m = 1, 2, are not only q0 and q1 but
also integrals involving q0, such as

I0 =
∫ ∞

s

(x− s)q2
0(x) dx , J0 =

∫ ∞

s

q0(x) dx . (7.206)

Instead of computing these integrals afterward, it is better to include them
as variables in a system together with q0, as suggested in [28]. Therefore
all quantities needed are computed in one step, greatly reducing errors, and
taking full advantage of the powerful numerical tools in MATLAB R©. Since

I ′0 = −
∫ ∞

s

q2
0(x) dx, I ′′0 = q2

0 , J ′
0 = −q0, (7.207)

the system closes, and can be concisely written

d
ds

⎛
⎜⎜⎜⎜⎝

q0
q′0
I0
I ′0
J0

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

q′0
sq0 + 2q3

0

I ′0
q2
0

−q0

⎞
⎟⎟⎟⎟⎠ . (7.208)

We first use the MATLAB R© built-in Runge–Kutta–based ODE solver ode45
to obtain a first approximation to the solution of (7.208) between x = 6, and



504 M. Dieng and C.A. Tracy

x = −8, with an initial values obtained using the Airy function on the right
hand side. Note that it is not possible to extend the range to the left due
to the high instability of the solution a little after −8. (This is where the
transition region between the three different regimes in the so-called “connec-
tion problem” lies. We circumvent this limitation by patching up our solution
with the asymptotic expansion to the left of x = −8.) The approximation
obtained is then used as a trial solution in the MATLAB R© boundary value
problem solver bvp4c, resulting in an accurate solution vector between x = 6
and x = −10. Similarly, if we define

I1 =
∫ ∞

s

(x − s)q0(x)q1(x) dx , J1 =
∫ ∞

s

q0(x)q1(x) dx , (7.209)

then we have the first-order system

d
ds

⎛
⎜⎜⎜⎜⎝

q1
q′1
I1
I ′1
J1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

q′1
sq1 + 6q2

0q1
I ′1
q0q1
−q0q1

⎞
⎟⎟⎟⎟⎠ , (7.210)

which can be implemented using bvp4c together with a “seed” solution ob-
tained in the same way as for q0.

The MATLAB R© code is freely available, and may be obtained by contact-
ing the first author.

7.9.3 Tables

Table 7.1. Mean, standard deviation, skewness and kurtosis data for first two edge-
scaled eigenvalues in the β = 2 Gaussian ensemble. Compare to Table 1 in [35].

Eigenvalue Statistic

μ σ γ1 γ2

λ1 −1.771087 0.901773 0.224084 0.093448
λ2 −3.675440 0.735214 0.125000 0.021650
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Table 7.2. Mean, standard deviation, skewness and kurtosis data for first four edge-
scaled eigenvalues in the β = 1 Gaussian ensemble. Corollary 7.3.1 implies that rows
2 and 4 give corresponding data for the two largest eigenvalues in the β = 4 Gaussian
ensemble. Compare to Table 1 in [35], keeping in mind that the discrepancy in the
β = 4 data is caused by the different normalization in the definition of F4(s, 1).

Eigenvalue Statistic

μ σ γ1 γ2

λ1 −1.206548 1.267941 0.293115 0.163186
λ2 −3.262424 1.017574 0.165531 0.049262
λ3 −4.821636 0.906849 0.117557 0.019506
λ4 −6.162036 0.838537 0.092305 0.007802

Table 7.3. Percentile comparison of F1 vs. empirical distributions for 100×100 and
100 × 400 Wishart matrices with identity covariance.

F1-Percentile 100 × 100 100 × 400

λ1 λ2 λ3 λ1 λ2 λ3

0.01 0.008 0.005 0.004 0.008 0.006 0.004
0.05 0.042 0.033 0.025 0.042 0.037 0.032
0.10 0.090 0.073 0.059 0.088 0.081 0.066
0.30 0.294 0.268 0.235 0.283 0.267 0.254
0.50 0.497 0.477 0.440 0.485 0.471 0.455
0.70 0.699 0.690 0.659 0.685 0.679 0.669
0.90 0.902 0.891 0.901 0.898 0.894 0.884
0.95 0.951 0.948 0.950 0.947 0.950 0.941
0.99 0.992 0.991 0.991 0.989 0.991 0.989
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invariant noncommutative monomial

and polynomials, 417
invariant polynomial, 420–421
Laurent polynomial, 418
loop equations

convergent matrix integral,
427–428

formal expectation value, 425–426
Gaussian integrals, 426
Leibnitz rule, 424
linear combination, 429
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Formal matrix integrals (cont.)
merge rule, 425
“multicut” solutions, 427
no Mk rule, 425
random matrices, 423
Schwinger–Dyson equations,

423–424
split rule, 424
Taylor series expansion, 428

maps, 420
matrix element, 422
1-matrix model
F (2) expression, 430
potential V, 429
spectral curve, 429
square maps, 431
triangulated maps, 430–431

2-matrix model, 431–433
multi-cut formal matrix models, 439
N−2Fl polynomial, 422–423
in nuclear physics, solid state

physics, quantum chaos, 416
O(n) model, 435–437
oriented discrete surfaces, 420
Potts model, 437–438
Q-gon, 419
in quantum chromodynamics,

quantum gravity, string theory,
conformal field theory, 416

Riemann–Hilbert problem, 440
Temperly–Lieb algebra, 440
topological expansion, 423
6-vertex model, 438
Wick’s theorem, 421, 422

Forrester, F.J., 453
Forrester, P.J., 19
Fredholm determinants, XIV, XV, 187

correlations
1- and 2-point correlations, 105
computation, 106
differentiation, 107
multinomial coefficient, 106
probability distribution, 104

edge distribution functions, 448–449
GOE

arbitrary polynomials, 482
column vector, 484
matrix kernel, 485, 486
matrix multiplication, 483–484

ordered space, 481
Vandermonde determinant, 481

GSE
integral operator, 466–467
matrix kernel, 466, 467
2N × 2 matrix, 465
2 × 2n matrix, 466
Pfaffian square, 464

GUE, 458–459, 463
KP-vertex operator, 141
link with kernels, 142
Meixner kernel, 71, 72
partition probability

integrable, Borodin–Okounkov, 44
kernel, 47–48
wedging-contracting operation,

45–47
soliton Fredholm determinant, 144
style soliton formula, 143–144
vertex identities, 142–143
Virasoro relations, 144–146

Freilikher, V., 416
Freud equation, 354, 372, 411

G
Gauden, 353
Gaudin, M., 131
Gaussian Hermitian ensemble, 68

classical Hermitian matrix ensembles,
108

Painlevé generation
differential operators, 114–116
disjoint union of intervals, 113,

114
KP equation, 114
PDE and ODE, 114, 117
t-differentiation, 115

Gaussian matrix model, 321–322
Gaussian model
b ∈ R, 325
bulk of spectrum, 324
Deift–Zhou steepest descent method,

326
Fredholm determinant, 326
limiting mean eigenvalue density,

322–324
non-intersecting Brownian bridges,

321–322
Pastur equation, 322
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Pearcey kernel, 326
recurrence equation, 321
v ∈ R, 324–325

Gaussian orthogonal ensemble (GOE)
edge scaling

determinant reduction, 490–492
differential equations (see

Differential equations)
Fredholm determinant

arbitrary polynomials, 482
column vector, 484
matrix kernel, 485, 486
matrix multiplication, 483–484
ordered space, 481
Vandermonde determinant, 481

Gaussian specialization
Gaussian weight function, 486
Hermite polynomials, 487
matrix kernel, 489–490
odd and even functions, 488
orthogonality, 487, 488
Painlevé function, 486
skew-symmetry, 487

Painlevé representations, 453, 454
Gaussian symplectic ensemble (GSE)

edge scaling and differential
equations

δ function, 461
first-order differential equations,

462
Hermite polynomials, 459
kernel, 460
Painlevé representation, 463
Plancherel–Rotach asymptotics,

459
s→−∞, 463

Fredholm determinant, 458–459, 463
Gaussian unitary ensemble (GUE), 253

edge scaling
determinant reduction, 474–476
differential equations (see

Differential equations)
Fredholm determinant

integral operator, 466–467
matrix kernel, 466, 467
2N × 2 matrix, 465
2 × 2n matrix, 466
Pfaffian square, 464

Gaussian specialization, 472

Gaussian weight function, 468
Hermite polynomials, 469, 470
infinite antisymmetric tridiagonal

matrix, 471
integrand, 470
matrix kernel, 473–474

skew-symmetry, 468
Geometrically distributed percolation

model
Airy function, 74
Fp(z) function, 73, 74

Fredholm determinant, Meixner
kernel, 71, 72

Johansson’s percolation model, 67

Johansson theorem, 68–71
mean and standard deviation, 67
random variable, 72

Tracy–Widom distribution, 72
variables, 68

Geronimo, J.S., 44
Gessel, I.M., 4, 35, 60, 154
g-function, DKMVZ method

Abelian, 382
constant jump matrix, 376
diagonal jump matrix, 377

equilibrium measure, 383
Φ∞(z) function, 377

Φ-jump matrix, 375, 378
inequalities, 376, 381
lens-shaped region Ω and contour Γ ,

374
one-cut condition, 381
“one interval” g-function, 380

Plemelj–Sokhotskii formulae,
378–379

properties, 373–374
quartic potential, 379, 380
Riemann theta-functions, 383

Gioev, D., 346, 450
Gross, D., 314
Grünbaum, A., 4

H
Haine, L., 4, 118

Hammersley, J.M., 60
Hankel determinants, 354
Harish-Chandra-Itzykson-Zuber

formula, 168–169
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Harish-Chandra-Itzykson-Zuber
integral, 446

Harnad, J., XIII, 4, 114, 252, 309, 346
Hastings–Mcleaod Painlevé transcen-

dents, 406
Hastings–McLeod solution, 295, 300,

406
Hastings, S.P., 406
Heine–Borel formula, 354
Heine’s formula
g-function, 268–269
heuristic semiclassical approxima-

tion, 268
matrix integral, 267–268

Heisenberg, W., 142
Hermite polynomials

GOE, 487
GSE, 469, 470, 478
GUE, 459

Hermitian matrices
Chazy and Painlevé equations,

119–120
classical Hermitian matrix ensembles

canonical correlation coefficients,
109–113

complex Gaussian population, 109
GUE, 108
Laguerre Hermitian ensemble, 109

diagonalization, 98
formal matrix integrals, 418
Haar measure, 96
inner product, 97
model, XIV
n2 × n2 diagonal matrix, 97
Painlevé generation

GUE, 113–117
Jacobi ensemble, 118
Laguerre ensemble, 117–118

tangent space, 99
vectors, 97, 98

Hermitian random matrix, 315
Hikami, S., 199, 201, 206, 325, 326
Hilbert–Schmidt and trace class

operators
classical Fredholm determinant

formula, 236
continuous linear function, 232
definition, 229, 230
determinant, 232, 237

disjoint cycles, 236
finite-dimensional identity, 232, 233
finite-rank operators, 231
inequality, 236
kernel, 234, 235
Lebesgue measure, 235
Lidskĭı theorem, 233–234
operator with rank, 231, 236
polar decomposition, 230
singular numbers, 230
triangle inequality, 231

Hirota symbol residue identity, 221–223
Hotelling, H., 109, 110
Huq, A., 4

I
Infinite wedge spaces

bi-infinite matrix, 42
Cauchy–Binet formula, 43
Cauchy identity, 40–41
definition, 39
shift, 40
wedge products, 43
wedging and contracting operator,

39
Integral operators

correlation functions and kernels
Gaussian unitary ensemble, 243
matrix, 241, 242
n-point correlation function, 238,

240
orthogonal function, 240
probability density of eigenvalues,

238
sine and Airy kernel, 243
skew-orthogonal polynomials, 242
two Hilbert spaces, 239

Hilbert–Schmidt and trace class
operators

classical Fredholm determinant
formula, 236

continuous linear function, 232
definition, 229, 230
determinant, 232, 237
disjoint cycles, 236
finite-dimensional identity, 232,

233
finite-rank operators, 231
inequality, 236
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kernel, 234, 235
Lebesgue measure, 235
Lidskii theorem, 233–234
operator with rank, 231, 236
polar decomposition, 230
singular numbers, 230
triangle inequality, 231

Painlevé functions
chain rule, 248
commutator relations, 246–248
differential equation, 247, 249
distribution functions, 243
Ky(x) = K(x, y) condition,

244–245
Painlevé II equation, 243
Sobolev space, 244, 246

Its, A.R., XVI, 127, 134, 252, 308–310,
416

Itzykson, C., 416

J
Jacobi matrix, 309
James, A.T., 445, 446
Jimbo, M., 114, 131, 138
Johansson, K., 24, 54, 60, 64, 65, 68, 72,

75, 120, 134, 311
Johnstone, I.M., XVI, 449, 450

K
Kac, V.G., 39, 141
Kanzieper, E., 416
Karlin, S., 200
Kazakov, V.A., 416, 431, 438
Kerov, S.V., 60–62
Kitaev, A.V., 308–310
Koekoek, R., 58
Korteweg-de Vries equation, 84
Kostov, I.K., 435
Krasovsky, I., 127
Kriecherbauer, T., 267, 346, 372
Kroenecker, 418
Kuijlaars, A.B.J., XIV, 4, 199, 202, 206,

252, 308, 311, 314, 346
Kuznetsov, V., 4

L
Laguerre polynomials, 76
Large N asymptotics, random matrices

critical case

asymptotic analysis, 399–402
double scaling limit, 394, 402
Painlevé asymptotics, recurrence

coefficients (see Painlevé
asymptotics)

parametrix at z = 0 (see
Parametrix)

second Painlevé equation (see
Second Painlevé equation)

DKMVZ method
g-function (see g-function,

DKMVZ method)
Naive approach, 373

eigenvalue statistics, 352–353
elements of RH theory

Abelian case, 364
Cauchy integral, 363
Cauchy theorem, 365, 368
contour integral, 371
cyclic/trivial monodromy

condition, 362
Γ contours, 360, 361
ΓR contours, 366, 367
jump matrix, 362, 372
Lax pair, 372
L2-boundedness of C± and

small-norm theorem, 369–371
non-Abelian case, 364–365
non-tangential limit, 368
normalization condition, 368
piece-wise smooth contours, 363
Plemelj–Sokhotskii formulae, 362
p× p invertible matrices, 360
Soliton theory, 372
unbounded piece-wise smooth

contour, 366
Hermitian matrix model, 351–352
orthogonal polynomials

arbitrary monic polynomial, 357
Cauchy integrals, 356
collection of polynomials, 353
domain ΩΨ0, 358
Γ± and C contours, 357
Heine–Borel formula, 354
Liouville’s theorem, 359
matrix valued function, 356
partition function, 354
Pn(z) orthogonality, 359
positive constant Cq, 358
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Large N asymptotics, random matrices
(cont.)

residue theorem, 357
RH representation, 360

parametrix at end points
Airy equation, 388
Airy functions, 389–390
asymptotic analysis, 391–394
asymptotic relation, 387–388
differential equation, 388
final formula, 390–391
jump and asymptotic condition,

386
“logarithmic derivative,” matrix

valued function, 387
model problem near z = z0,

383–386
monodromy theory, 387

Riemann–Hilbert method, 354–355
Lax pair equations, 296
Lebesgue measure, 351
Letendre, L., 134
Limit theorems, XIV

exponentially distributed percolation
model, 75–76

geometrically distributed percolation
model (see Geometrically
distributed percolation model)

longest increasing sequences, 64–67
Plancherel measure, 60–64

Liouville theorem, 262, 405
Logan, B.F., 60, 61
Longest increasing sequences

Bessel kernel, 64
probability of length, 64
random permutation, 64–67

M
MacDonald, I.G., 6, 446
Manakov, S.V., 355, 372
Marcenko, V.A., 120
Markovian process, 183, 184
Matrix integrals and solitons

differential equations, limiting
probability

Airy edge limit, 146–147
A derivatives in KdV, 148, 150
Grassmannian invariance

condition, 147, 149

hard edge limit, 148–149
Kontsevich integral, 147
Laplace integral, 149
τ (t,E), condition, 147, 150
vacuum condition, 147, 149
Virasoro constraints, 148, 150

KP hierarchy
bilinear identity, τ -function,

140–141
isospectral deformation of L,

139
ψ parametrization, 140

large n-limits
bulk scaling limit, 137–138
edge scaling limit, 138
Gaussian case, 137
hard edge scaling limit, 139
Wigner’s semi-circle law, 137

random matrix ensembles
crucial property, 135–136
Fredholm determinant, 136
Haar measure, n×n Hermitian

matrices, 134–135
probability, 134

vertex operators, soliton formulas
and Fredholm determinants

Fredholm determinant style
soliton formula, 143–144

KP-vertex operator, 141
link with kernels, 142
vertex identities, 142–143

Virasoro relations, Fredholm
determinant, 144–146

McGregor, J., 200
McLaughlin, K.D.T.-R., 134, 267, 311,

314, 346, 372, 373, 383, 416
McLeod, J.B., 406
McMillan, E.M., 155
Mehta Hermite kernel, 186
Mehta, M.L., 3, 96, 97, 104, 131, 186,

353, 452, 453, 480
Miller, P.D., 346
Miwa, T., 114, 131, 138
Modified Pastur equation, 341–343
Mo, M.Y., 346, 428
Moody, R., 141
Moor, G., 411
Mori, Y., 114, 131, 138
m-point correlation function, 352
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Muirhead, R.J., 109, 113, 444

Multiple Hermite polynomials, 326

Multivariate Gamma function, 444

Multivariate statistics

algorithms, 503–504

determinant, 454–455

edge distribution functions

Fredholm determinant representa-
tions, 448–449

universality theorems, 449–450

F1 vs. empirical distributions,
505

interlacing property, 499–502

mean, standard deviation, skewness
and kurtosis data, 504, 505

mth largest eigenvalue distribution

GOE (see Gaussian orthogonal
ensemble)

GSE (see Gaussian unitary
ensemble)

GUE (see Gaussian symplectic
ensemble)

Painlevé representations

Airy equation, 452

edge scaling limit, 453

Gaussian β-ensembles, 451

GOE matrices, 453, 454

interlacing property, 453

MATLAB R©, 454

Tracy–Widom distributions, 451

partial derivatives of q(x, λ), 503

recursion formula, eigenvalue
distributions

β-ensemble, 455, 457

binomial coefficient, 456

integrand, 456, 457

joint density function, 455

symmetric function, 456

Σ 
= cIp, 446–447

Wishart distribution

covariance matrix, 444, 445

χ2 test, 443

joint density function, 445

multivariate Gamma function,
444

principle component analysis, 445

Schur polynomials, 446

zonal polynomials, 446

N
Naive approach, 373
Newell, A.C., 355
Nikiforov, A.F., 58
Normalized free energy, 254

O
Odlyzko, A., 61
Okounkov, A., 33, 39, 44, 64
Olshanski, G., 33, 39, 64
Ornstein–Uhlenbeck process, 185, 186
Orthogonal polynomials

equilibrium measure
end-points, 266–267
equilibrium density, 265
minimization problem, 264
Wigner semicircle law, 265

Euler–Lagrange variational condi-
tions, 265

heuristics, 263–264
large N asymptotics, random

matrices
arbitrary monic polynomial, 357
Cauchy integrals, 356
collection of polynomials, 353
domain ΩΨ0, 358
Γ± and C contours, 357
Heine–Borel formula, 354
Liouville’s theorem, 359
matrix valued function, 356
partition function, 354
Pn(z) orthogonality, 359
positive constant Cq, 358
residue theorem, 357
RH representation, 360

m∞ factorization, 77
moment matrix, 76
monic, 78–80
n degree polynomial and Stieltjes

transform, 77
off-diagonal elements, 81
orthonormal polynomials, 78
RHP

adjoint functions, 260–261
eigenvalue correlation functions,

263
with external source, 318–319
first transformation, 269–270
Heine’s formula, 267–269
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Orthogonal polynomials (cont.)
Liouville theorem, 262
matrix-valued function, 261, 262
multicut case, 274–280
normalizing constant, 262–263
one-cut case, 272–274
parametrix construction, edge

points, 280–285
recurrence coefficients, 262
recurrent coefficients, asymp-

totics, 288–291
RN (z), 287–288
second transformation, 271–272
third and final transformation,

286
universality, 291–294

semi-infinite column, 77
semi-infinite shift matrix, 77
tridiagonal symmetric matrix, 80
unitary ensembles

Christoffel–Darboux formula, 256
differential equations, ψ-functions,

259
discrete string equations, 257
eigenvalues, 254–255
GUE, 253
infinite Hamiltonian, 257–259
Lax pair, discrete string equations,

260
polynomial interaction, 252
symmetric tridiagonal Jacobi

matrix, 256
three-term recurrence relation,

255–256
topological large N expansion,

253–254
Östensson, J., 308

P
Painlevé asymptotics

asymptotic series, 407, 409
Hastings–McLeod Painlevé function,

410
holomorphicity, 408
jump matrix, 408
matrix coefficient, 407
Rn, 410–411
uniqueness theorem, 409
z → ∞, 407

Painlevé functions
chain rule, 248
commutator relations,

246–248
differential equation, 247, 249
distribution functions, 243
Ky(x) = K(x, y) condition,

244–245
Painlevé II equation, 243
Sobolev space, 244, 246

Painlevé generation
GUE

differential operators, 114–116
disjoint union of intervals, 113,

114
KP equation, 114
PDE and ODE, 114, 117
t-differentiation, 115

Jacobi ensemble, 118
Laguerre ensemble, 117–118

Painlevé II equation, 295, 300
Painlevé, P., 132, 148, 151, 191
Painlevé type relations, 132
Parametrix

at end points
Airy equation, 388
Airy functions, 389–390
asymptotic analysis, 391–394
asymptotic relation, 387–388
differential equation, 388
final formula, 390–391
jump and asymptotic condition,

386
“logarithmic derivative,” matrix

valued function, 387
model problem near z = z0,

383–386
monodromy theory, 387

at z = 0
contour Γ c, 395
Φˆ-RH problem, 398–399
h(z) function analysis, 394–395
holomorphic and invertible

functions, 396
“interior” and “exterior” function,

398
matrix function, 397
normalization condition, 398
z → w, 397
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Parametrix construction
a > 1

at edge points, 329–332
first transformation, RHP, 327
integrals of ξ-functions, 326–327
model RHP, 328–329
Riemann surface, 326
second transformation, RHP, 328
third and final transformation,

333
a < 1

at branch points, 338–340
first transformation Y �→ U,

334–335
fourth transformation S �→ R, 340
λ−functions, 333–334
second transformation U �→ T,

335, 336
third transformation T �→ S,

335–338
near critical point

double scaling asymptotics,
305–308

model solution, 300–301
V (z) construction, 303–304
ζ(z) construction, 301–305

near turning points, 299–300
at origin, 343–345
in ΩWKB, 297–299

Parisi, G., 416
Partition probability

Cauchy’s identity, 33
Fredholm determinant, 44–48
infinite wedge spaces (see Infinite

wedge spaces)
Toeplitz determinants, 35–39
U(n) integrals, 48–50

Pastur equation, 322
Pastur, L.A., 120
Pauli matrix, 297
Pearcey distribution

Gaussian ensemble, 218–221
GUE, external source and Brownian

motion
non-intersecting Brownian paths,

200–201
random matrix, 201–202

3-KP deformation
bilinear identity, 210, 212–213

Cauchy transform, 211
identity, 209
probability, 209
probability distribution, 208, 209
self-evident formal residue

identity, 211
wave functions, 210
wave matrices, 209–210

MOPS and Riemann–Hilbert
problem, 202–204

universal behavior
Brownian kernel, 206–207
Brownian motion, 205
density of eigenvalues, 205
extended Pearcey kernel, 208
mean density of states, 206
PDE, 204
random matrices, 205

Virasoro constraints, integrable
deformations, 213–218

Pearcey kernels, 325–326
Pearson, K., 443
Percolation and growth models

discrete polynuclear growth models,
32–34

exponentially distributed entries,
28–30

geometrically distributed entries,
26–28

probability, 24, 25
queuing problem, 30–32

Periwal, V., 411
Permutations

Cauchy identity, 11–13
percolation and growth models

discrete polynuclear growth
models, 32–34

exponentially distributed entries,
28–30

geometrically distributed entries,
26–28

probability, 24, 25
queuing problem, 30–32

probability measure on words, 22–24
Robinson–Schensted–Knuth corre-

spondence, 9–11
subsequences, 4–6
uniform probability

anticipation, n asymptotics, 15–16
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Permutations (cont.)
Plancherel measure, 13–15
random walks, 17–22
solitaire game, 15
transition probability, 16–17

Young diagrams and Schur
polynomials

hook length, 7
number of semi-standard Young

tableaux, 8
number of standard Young

tableaux, 8
Schur function, 7
semi-standard Young tableau, 6
skew-Schur polynomial, 7
standard Young tableau, 6
weight, 6

Pieri’s formula, 8
Plancherel, M., XIII, XIV
Plancherel measure

and Gessel’s theorem
generating function, 51
poissonized Plancherel measure,

51, 52
probability restriction, 50, 51
recurrence relation, Bessel

functions, 53
limit theorems

function, 62
hook length, 61
Monte Carlo simulation, 60, 61
numerical computation, 60
Vershik–Kerov and Logan–Shepp

theorem, 62–64
Plancherel–Rotach asymptotics, 459
Plemelj–Sokhotskii formulae, 378–379
Poincaré, J.H., 136
Prähofer, M.M., 188, 191
Principle component analysis, 445
Pronko, A.G., 346
Psi-matrix, 296

Q
Queuing problem

departure time, 31
first-in first-out service rule, 30
random matrix, 31
servers, 30, 31
straightforward calculation, 32

R
Raina, A., 39
Rains, E.M., 61, 155, 453
Random and integrable models

correlations and Fredholm determi-
nants

1- and 2-point correlations, 105
computation, 106
differentiation, 107
multinomial coefficient, 106
probability distribution, 104

Hermitian matrices, 96–99
Chazy and Painlevé equations,

119–120
classical Hermitian matrix

ensembles, 108–113
Painlevé generation, 113–118

kernel reproduction
determinant, 102, 103
m induction, 104
n× n Hermitian matrix, 102
symmetric matrix, 103

large Hermitian matrix ensembles
GUE and Wigner’s semi-circle,

120–122
soft edge scaling limit (see Soft

edge scaling limit)
limit theorems

exponentially distributed
percolation model, 75–76

geometrically distributed percola-
tion model (see Geometrically
distributed percolation model)

longest increasing sequences,
64–67

Plancherel measure, 60–64
partition probability

Cauchy’s identity, 33
Fredholm determinant, 44–48
infinite wedge spaces (see Infinite

wedge spaces)
Toeplitz determinants, 35–39
U(n) integrals, 48–50

percolation
Gauss’ hypergeometric function,

58
Laurent series expansion, 58
Meixner polynomials, 57,

59–60
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permutations

Cauchy identity, 11–13

models (see Percolation and
growth models)

probability measure on words,
22–24

Robinson–Schensted–Knuth
correspondence, 9–11

subsequences, 4–6

uniform probability (see Uniform
probability)

Young diagrams and Schur
polynomials, 6–8

Plancherel measure and Gessel’s
theorem

generating function, 51

poissonized Plancherel measure,
51, 52

probability restriction, 50, 51

recurrence relation, Bessel
functions, 53

probability, random words, 54–56

random Hermitian ensemble

Christoffel–Darboux identity, 101

orthonormal polynomials, 100

probability distribution, 99

symmetric kernel, 100, 101

Zn normalization, 101

statistical distributions, 4

time-dependent weight and KP
equation, 81–88

Hirota symbol, 81

holomorphic functions, 82

Lie algebra splitting, 81

m∞ factorization, 81

moment matrix determinants,
82–88

orthogonal polynomials (see
Orthogonal polynomials)

Taylor’s formula, 82

Virasoro equations, 82

weight, parameters, 81

Virasoro constraints

differential operators, 93

β-integrals, 88–93

Jacobi ensemble, 95–96

Laguerre ensemble, 94–95

linear combinations, 94

Random matrix models. See also
Random and integrable models

double scaling limit
complex plane partition, 297
double-well quartic matrix model,

294
final transformation, 345–346
free energy, 315
modified Pastur equation,

341–343
monic orthogonal polynomials,

294
Painlevé II equation, 295
parametrix construction (see

Parametrix construction)
Pauli matrix, 297
Psi-matrix, 296
recurrent coefficient, 295
scaling functions, 294–295
Schrödinger equation, 296
semiclassical approximation, 297

with external source
Christoffel–Darboux formula,

317
eigenvalue correlation functions,

317–318
Gaussian model (see Gaussian

model)
Hermitian random matrix, 315
monic polynomial, 316
parametrix construction (see

Parametrix construction)
recurrence and differential

equations, 319–321
RHP, 318–319

free energy analyticity, regular V,
310–311

one-sided analyticity, critical point,
313–314

orthogonal polynomials (see
Orthogonal polynomials)

partition function, 308–310
topological expansion, 311–313

Random matrix theory (RMT), 131,
352

Random walks
analogous argument, 22
canonical way, 19
configurations, 19, 20
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Random walks (cont.)
Dyson Brownian motion and Airy

process, 182
horizontal and vertical segments, 21
2m possibilities, 17
one-to-one map, 20
probability, 17
six nonintersecting walkers, 18

Recursion relations, unitary integrals
basic involution, 152
basic recursion variables, 151–152
bi-orthogonal polynomials

dynamical variables, 158
inner product, 157
Ladik–Ablowitz lattice, 159
Toda equations, 158–159
2-Toda τ functions, 157–158
Toeplitz lattice, 157

combinatorics, 154–156
rational relations, (x, y), 153–154
recursion matrices, 152
self-dual case, 152
singularity confinement

analogous property, 163
differential equations, 166
formal Laurent solutions, 163,

165–166
general case, 164
self-dual case, 163, 165

Toeplitz matrices, 152
Virasoro constraints and difference

relations
explicit Virasoro formulas, 161
integrated version, 159
main facts, 160–161
Toda vertex operator, 159
Toeplitz flow, 162
Virasoro operator, 159
Virasoro relations, 161–162

weight r(z), 151
Riemann–Hilbert method, XV,

354–355
Riemann–Hilbert problem (RHP)

adjoint functions, 260–261
asymptotics, recurrent coefficients,

288–291
eigenvalue correlation functions,

263
with external source, 318–319

first transformation, 269–270

formal matrix integrals, 440
Heine’s formula

g-function, 268–269

heuristic semiclassical approxima-
tion, 268

matrix integral, 267–268

Liouville theorem, 262

matrix-valued function, 261, 262

multicut case

arbitrary constant vectors, 277,
278

auxiliary RHP, 274

basis of cycles, 275

combining formulas, 278–280

holomorphic one-forms, 277

linear space, 275–276

matrix-valued function, 278

normalization, 276
periodicity properties, 276–277

Riemann theta function, 276

two-sheeted Riemannian surface,
274–275

normalizing constant, 262–263

one-cut case, 272–274

parametrix construction, edge points

Airy function, 283

analyticity of EN(z), 284–285

analytic prefactor, 284

convex neighborhood, 281–282

discontinuity rays, 283

jump condition, 282–283

local parametrix, 280–281
singularity, 285

upper half-plane, 281

recurrence coefficients, 262

RN(z), 287–288

second transformation, 271–272

third and final transformation, 286

universality

N → ∞, 293–294
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