


ATLANTIS STUDIES IN PROBABILITY AND STATISTICS

VOLUME 2

SERIES EDITOR: CHRIS P. TSOKOS



Atlantis Studies in Probability and Statistics

Series Editor:

Chris P. Tsokos,

University of South Florida Tampa,

Tampa, USA

(ISSN: 1879-6893)

Aims and scope of the series

The Series ‘Atlantis Studies in Probability and Statistics’ publishes studies of high-quality

throughout the areas of probability and statistics that have the potential to make a signifi-

cant impact on the advancement in these fields. Emphasis is given to broad interdisciplinary

areas at the following three levels:

(I) Advanced undergraduate textbooks, i.e., aimed at the 3rd and 4th years of undergrad-

uate study, in probability, statistics, biostatistics, business statistics, engineering statistics,

operations research, etc.;

(II) Graduate level books, and research monographs in the above areas, plus Bayesian, non-

parametric, survival analysis, reliability analysis, etc.;

(III) Full Conference Proceedings, as well as Selected topics from Conference Proceedings,

covering frontier areas of the field, together with invited monographs in special areas.

All proposals submitted in this series will be reviewed by the Editor-in-Chief, in consulta-

tion with Editorial Board members and other expert reviewers

For more information on this series and our other book series, please visit our website at:

www.atlantis-press.com/publications/books

PARIS – AMSTERDAM – BEIJING

c© ATLANTIS PRESS



Stochastic Differential Games
Theory and Applications

Kandethody M. Ramachandran, Chris P. Tsokos

University of South Florida,

Department of Mathematics and Statistics

4202 E. Fowler Avenue,

Tampa, FL 33620-5700, USA

PARIS – AMSTERDAM – BEIJING



Atlantis Press

8, square des Bouleaux
75019 Paris, France

For information on all Atlantis Press publications, visit our website at: www.atlantis-press.com

Copyright

This book is published under the Creative Commons Attribution-Non-commercial license, meaning
that copying, distribution, transmitting and adapting the book is permitted, provided that this is done
for non-commercial purposes and that the book is attributed.
This book, or any parts thereof, may not be reproduced for commercial purposes in any form or by
any means, electronic or mechanical, including photocopying, recording or any information storage
and retrieval system known or to be invented, without prior permission from the Publisher.

Atlantis Studies in Probability and Statistics

Volume 1: Bayesian Theory and Methods with Applications - Vladimir P. Savchuk, C.P. Tsokos

ISBNs
Print: 978-94-91216-46-6
E-Book: 978-94-91216-47-3
ISSN: 1879-6893

c© 2012 ATLANTIS PRESS



Dedications to our families:

U sha, V ikas, V ilas and V arsha Ramachandran

and

Debbie, Mathew, Jonathan, and Maria T sokos



Preface

Conflicts in the form of wars, or competition among countries and industrial institutions

are plenty in human history. The introduction of game theory in the middle of the twentieth

century shed insights and enabled researchers to analyze this subject with mathematical

rigor. From the ground-breaking work of VonNeumann and Morgenston, modern game

theory evolved enormously. In the last few decades, Dynamic game theory framework

has been deepened and generalized from the pioneering work on differential games by R.

Isaacs, L.S. Pontryagin and his school, and on stochastic games by Shapley. This book

will expose the reader to some of the fundamental methodology in non-cooperative game

theory, and highlight some numerical methods, along with some relevant applications.

Since the early development days, differential game theory has had a significant impact

in such diverse disciplines as applied mathematics, economics, systems theory, engineer-

ing, operations, research, biology, ecology, environmental sciences, among others. Modern

game theory now relies on wide ranging mathematical and computational methods, and rel-

evant applications that are rich and challenging. Game theory has been widely recognized

as an important tool in many fields. Importance of game theory to economics is illustrated

by the fact that numerous game theorists, such as John Forbes Nash, Jr., Robert J. Aumann

and Thomas C. Schelling, have won the Nobel Memorial Prize in Economics Sciences.

Simply put, game-theory has the potential to reshape the analysis of human interaction.

In Chapter 1, we will present a general introduction, survey, and background material for

stochastic differential games. A brief introduction of Linear pursuit-Evation differential

games will be given in Chapter 2 for a better understanding of the subject concepts. Chap-

ter 3 will deal with two person Zero-sum stochastic differential games and various solution

methods. We will also introduce games with multiple modes. Formal solutions for some

classes of stochastic linear pursuit-evasion games will be given in Chapter 4. In Chapter 5,

we will discuss N-person stochastic differential games. Diffusion models are in general

vii
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not very good approximations for real world problems. In order to deal with those issues,

we will introduce weak convergence methods for two person to the stochastic differential

games in Chapter 6. In Chapter 7, will cover weak convergence methods for many player

games. In Chapter 8, we will introduce some useful numerical methods for two different

payoff structure; discounted payoff and ergodic payoff as well as the case of nonzero sum

games. We will conclude the book in Chapter 9 by giving some real world applications of

stochastic differential games to finance and competitive advertising.
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Chapter 1

Introduction, Survey and Background Material

1.1 Introduction

Game theory has emerged out of the growing need for scientists and economists to have

better grasp of the real world in today’s technological revolution. Game theory deals with

tactical interactions among multiple decision makers. These interactions can range from

completely non-cooperative to completely cooperative. These decision makers are usu-

ally referred as players or agents. Each player either tries to maximize (in which case the

objective function is a utility function or benefit function) or minimize (in which case the

objective function is called a cost function or a loss function) using multiple alternatives

(actions, or equivalently decision variable). If the players were able to enter into a cooper-

ative agreement so that the selection of actions or decisions is done collectively and with

full trust, so that all players would benefit to the extent possible, and no inefficiency would

arise, then we would be in the realm of cooperative game theory. The issues of bargaining,

coalition formation, excess utility distribution, etc. are of importance in cooperative game

theory. However cooperative game theory will not be covered in this book. This book will

only deal with non-cooperative game theory, where no cooperation is allowed among the

players.

The origin of game theory and their development could be traced to the pioneering work of

John Von Neumann and Oskar Morgenston [201] published in 1944. Due to the introduc-

tion of guided interceptor missiles in 1950s, the questions of pursuit and evasion took center

stage. The mathematical formulation and study of the differential games was initiated by

Rufus Isaacs, who was then with the Mathematics department of the RAND Corporation,

in a series of RAND Corporation memoranda that appeared in 1954, [90]. This work and

his further researches were incorporated into a book [91] which inspired much further work

and interest in this area. After the Oscar film called “A Beautiful Mind” was released by

1



2 Stochastic Differential Games

Universal Pictures in the year 2001, a great majority of the people started paying attention

to the game theory and its usefulness. This film is about John Forbes Nash. Game theorists

use the concept of Nash equilibrium to analyze outcomes of strategic interaction of two or

more decision makers, Browne [33], Ho et al. [89], Sircar [177], and Yavin [211, 212],

Yeung [214, 215, 216]. Nash’s theory of non-cooperative games, [139, 140] is now recog-

nized as one of the outstanding intellectual advances of the twentieth century, [138]. The

formulation of Nash equilibrium has had a fundamental impact in economics and the social

sciences.

The relationship between differential games and optimal control theory and the publication

of Isaacs [91] at a time when interest in optimal control theory was very great served to

further stimulate interest in differential games, Berkovitz [25]. For a good coverage on the

connection between control theory and game theory, readers are referred to Krasovskii and

Subbotin [100]. Earlier works on differential games and optimal control theory appeared

almost simultaneously, independently of each other. At first, it seems natural to view a

differential game as a control process where the controls are divided among various players

who are willing to use them for objectives which possibly conflict with each other. However

a more deeper study will reveal that the development of the two fields followed different

paths. Both have the evolutionary aspect in common, but differential games have in addition

a game-theoretic aspect. As a result, the techniques developed for the optimal control

theory cannot be simply reused.

In the 1960s researchers started working on what have been called stochastic differential

games. These games are stochastic in the sense that noise is added to the players’ observa-

tions of the state of the system or to the transition equation itself. A stochastic differential

game problem was solved in Ho [87] using variational techniques where one player con-

trolled the state and attempted to minimize the error and confuse the other player who

could only make noisy measurements of the state and attempted to minimize his/her error

estimate. Later in Basar and Haurie [15], a problem of pursuit-evasion is considered where

the pursuer has perfect knowledge whereas the evader can only make noisy measurements

of the state of the game. In Bafico [5], Roxin and Tsokos [170], a definition of stochastic

differential game is given. A connection between stochastic differential games and control

theory is discussed in Nocholas [141]. In the 1970s rigorous discussion of existence and

uniqueness results for stochastic differential games using martingale problem techniques

and variational inequality techniques ensued, Elliot [47, 48, 49, 50], Bensoussan and Lions

[22], Bensoussan and Friedman [23, 24], among many others. There are many aspects of
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differential games such as pursuit evasion games, zero-sum games, cooperative and non-

cooperative games and other types of dynamic games. For some survey papers on such

diverse topics as pursuit-evasion games, viscosity solutions, discounted stochastic games,

numerical methods, and others, we refer to Bardi and Raghavan [7], which serves as a rich

source of information on these topics. In this article we will restrict ourselves to mostly

strictly non-cooperative stochastic differential games.

The early works on differential games are based on the dynamic programming method now

called as Hamiltonian-Jacobi-Isaacs (HJI). Many authors worked on making the concept

of value of a differential game precise and providing a rigorous derivation of HJI equa-

tion, which does not have a classical solution in most cases. For HJI equations smooth

solutions do not exist in general and nonsmooth solutions are highly nonunique. Some of

the works in this direction include, Berkovitz [25], Fleming [61], Elliott [47, 49], Fired-

man [67], Kalton, Krasovskii, and Subbotin [95], Roxin and Tsokos [182], Uchida [197],

Varaiya [198, 199]. In the 1980s a new notion of generalized solutions for Hamilton-Jacobi

equations, namely, viscosity solutions, Crandall and Lions [43], Fleming and Soner [63],

Lions and Souganidis [124], [125], [126], Souganidis [180], Nisio [143], provided a means

of characterizing the value function as the unique solution of HJI equation satisfying suit-

able boundary conditions. This method also provided the tools to show the convergence

of the algorithms based on Dynamic Programming to the correct solution of the differen-

tial game and to establish the rate of convergence. A rigorous analysis of the viscosity

solution of the Hamilton-Jacobi-Bellman-Isaacs equations in infinite dimensions is given

in Swiech [190]. In the 1990s a method based on an occupation measure approach is intro-

duced for stochastic differential games in a relaxed control setting in which the differential

game problem reduces to a static game problem on the set of occupation measures, the dy-

namics of the game being captured in these measures, Borkar and Ghosh [31]. The major

advantage of this method is that it enabled one to consider the dynamic game problems

in much more physically appropriate wideband noise settings and use the powerful weak

convergence methods, Ramachandran [158, 159, 163]. As a result, discrete games and

differential games could be considered in a single setting.

The information structure plays an important role in the stochastic differential games. All

the above referenced works assumes that all the players of the game have full information

of the state. This need not be the case in many applications. The interplay of information

structure in the differential games is described in Friedman [68], Ho [88], Olsder [145],

Ramachandran [160], Sun and Ho [184]. The stochastic differential game problems with
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incomplete information are not as much developed as the stochastic control problems with

partial observations.

One of the earlier works on obtaining computational method for stochastic differential

games is given in Kushner and Chamberlain [111]. Following the work on numerical

solutions for stochastic control Kushner and Dupuis [112] and many references in there,

currently there are some efforts in deriving numerical schemes for stochastic differential

games, Kushner [107, 108]. For a numerical scheme for the viscosity solution of the Isaacs’

equation, we refer to Basar and Haurie [16]. Also, as a result of weak convergence anal-

ysis Ramachandran [158], Ramachandran and Rao [163], it is easier to obtain numerical

methods for stochastic differential games similar to that of Kushner and Dupuis [112] and

to develop new computational methods.

The key step to a general formulation from control theory to game theory was the distinc-

tion between state and control variables. The nature of a strategy is then clear; make the

control variables functions of the state variables. This is an immediate generalization of

the strategies of discrete games and is general enough for a far wider range of applications

than just combat problems. In his book Differential Games: A Mathematical Theory with

Applications to Warfare and Pursuit, Control and Optimization, Isaacs gives examples in

athletics and steel production as well as several pursuit and pursuit-evasion examples.

The Mathematical Theory of Optimal Processes published in 1962 by Pontryagin, et al.

[152], deals with minimizing problems which could be called one-player differential

games. This work was extended to two players in Kelendzeridze [97]. At the same time

other research was going on in the United States. Control theory can be considered as

equivalent to one-player differential games and is thus a special case.

When the connection between differential games and optimal control theory was realized in

the early 1960s a flurry of research followed. Much of this work was by scientists working

in control theory. Thus, there was a natural tendency to view differential games as an

extension of optimal control theory. It gradually became evident that this view is not quite

satisfactory.

Simply stated, differential games are a class of two-sided optimal control problems. More

precisely, optimal control theory can be considered as a special case of differential games;

but differential games are not easily viewed as an extension of optimal control theory. It

is important to note certain differences. First, although feedback control is desirable in the

one-sided problem it becomes almost mandatory in the game. Second, in more general

games it is not at all certain that the game will terminate.
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It is argued that both optimal control and differential games should be viewed as special

cases of a much larger framework of dynamic optimization such as Generalized Control

Theory as discussed in Ho, Bryson and Baron [89].

Whether it is deterministic or stochastic, there are three basic parts to an optimization

problem:

i) the criterion (payoff) function;

ii) the controller(s) or players; and

iii) the information available to the players.

In optimal control theory there is just one controller who tries to minimize the criterion

function on the basis of one set of information. Although this model can account for some

real life situations, we can quickly think of situations in which there are more than one

measure of performance and more than one intelligent controller operating with or without

cooperation from the other controllers. It is also easy to think of situations where all the

controllers do not receive the same information. We summarize these ideas in Table 1.1.1.

The last column lists some typical references.

In the next section, we will give a brief survey of the literature on deterministic and stochas-

tic differential games respectively. In Section 1.3, we will present a brief survey of stochas-

tic differential games in the sixties and seventies. In Section 1.4 basic formulation of the

problem will be presented. We will conclude this chapter with some basic definitions.

1.2 Deterministic Differential Games: A Brief Survey

The object of this section is to give a brief survey of the literature on deterministic differ-

ential games as they were introduced and as they have been generalized by other authors,

Nicholas [141].

1.2.1 Two-person, zero-sum differential games state and control variables

As implied by the title of this subsection, a two-person, zero-sum differential game in-

volves two players with opposing aims. The first two notions, state and control variables,

are borrowed from control theory. In the theory of differential games as presented by Isaacs

[91], both players know the values of the state variables at all times (games with complete

information); and they are precisely the values on which they both make their decisions.
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Table 1.1.1 Summary of Generalized Control Theory Problems

Criterion Number of
Controllers

Information Typical
References

O
ne

Tw
o

N
2

O
ne

J

Tw
o

J 1
−

J 2

M
ul

tip
le

Pe
rf

ec
t

Im
pe

rf
ec

t

M
ul

tip
le

or
In

co
m

pl
et

e

Deterministic
Optimal Control

√ √ √

Stochastic
Optimal Control

√ √ √

Vector-valued
optimization
Problem

√ √ √ Zadeh
DaChuna &
Polak

Zero-Sum
Differential
Game

√ √ √ Ho, Bryson,
and Baron

Stochastic
zero-sum
Differential
Game

√ √ √
Behn and Ho
Rhodes &
Luenberger
Willman

Nonzero-sum
Differential
Game

√ √ √ Case Starr and
Ho

Stochastic
nonzero-sum
Differential
Game

√ √ √

The control variables, as the name implies, are those variables which the players can ma-

nipulate.

The initial development of game theory was inspired by the problems in social science and

economics. However, the main motivation of differential games was the study of military

problems such as Pursuit-Evasion games.

Pursuer and Evader The terms pursuer, P and evader, E are carry overs from the early

applications of differential game theory strictly to pursuit problems. As a convention, we

assume that P controls the variables ui and that E controls vi.
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The kinematic equations The motion of a point x = (x1, . . . ,xn) ∈ E, where E is the

playing space (usually R
n), is governed by the kinematic equations,

ẋ = f j(t,x1, . . . ,xn,u1, . . . ,up,v1, . . . ,vq)

for j = 1, . . . ,n or briefly, ẋ = (t,x,u,v) where x1, . . . ,xn are the state variables and u1, . . . ,up

and v1, . . . ,vq are the control variables. We shall use the notation · ≡ d
dt .

Terminal surface A game is terminated when x reaches the terminal surface C which

is part of the boundary of E, or after a prescribed time T has elapsed. Since much of

differential games are devoted to pursuit games, the surface C can be thought of as the set

of all points where capture can occur. For this, P and E are also used as reference points

on the two players. Clearly, we need not require that P and E coincide but just that they are

“near” each other. It is obvious that bodies with large masses such as a plane and a rocket

will collide before d(P,E) = 0, where d(P,E) denotes the distance between the reference

points P and E; so we require only that d(P,E) < � where � is some positive number. Thus,

we can usually think of the capture region as “circular”.

The Payoff The payoff is a numerical quantity which the players strive to minimize or

maximize. For a game of degree (one which has a continuum of outcomes) the payoff is of

the form

P(u,v) = H(t f )÷
∫

G(x,u,v)dt,

where the integral is over the path in E and H is a smooth function on C which is the

terminal value of the game. If H = 0, the game is said to have an integral payoff and if

G = 0, a terminal payoff. Pursuit games with time to capture as payoff have an integral

payoff with G = 1.

The Value Since P, controlling u, tries to minimize the payoff, while E, controlling v,

tries to maximize the payoff, and the value of a differential game is defined as the minimax

of the payoff,

v(x) = min
u

max
v

(payoff).

Solution. The solution of a differential game is not a very rigorous concept. A game is

considered solved when one or more of the following have been found:

i) The value function v(x);

ii) The optimal paths;

and
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iii) The optimal strategies (functions)

u◦(x) and v◦(x) defined over E.

Isaacs’ approach was basically formal and did not make extensive use of classical varia-

tional techniques. His approach closely resembled the dynamic programming approach to

optimization problems. In 1957 Berkowitz and Fleming [27] applied rigorous calculus of

variation techniques to simple differential games. In a later definitive paper Berkowitz [26]

expanded the applicable class of problems.

1.2.2 Pursuit-Evasion Differential Games

A two-person, zero-sum differential game problem may be stated crudely as follows. De-

termine a saddle point for

J = H(x(t f ), t f )+
∫ t f

t0
G(t,x,u,v)dt (1.2.1)

subject to the constraints

ẋ = f (t,x,u,v); x(t0) = x0 (1.2.2)

and

u ∈U(t), v ∈U(t) (1.2.3)

where J is the payoff, x is the state of the game, u and v are piecewise continuous functions,

called strategies, which are restricted to certain sets U and V of admissible strategies, and

a saddle point is defined as a pair of strategies (u◦,v◦) satisfying

J (u◦,v) � J (u◦,v◦) � (u,v◦) (1.2.4)

for arbitrary u ∈ U and v ∈ V . If (1.2.4) can be realized u◦ and v◦ are called optimal pure

strategies, and J (u◦,v◦) is called the Value of the game.

Many control theorists have investigated the problem of controlling a dynamic system so

as to hit a moving target. Most of these only allowed the pursuer to control his motion. Ho,

Bryson, and Baron [89], allowing both players to control their motions, derived conditions

for capture and optimality. Under the usual simplifying approximations to the equations of

motion of the missile and the target, they showed that the proportional navigation law used

in many missile guidance systems is actually an optimal pursuit strategy.

Ho et al., considered the following game. Determine a saddle point for

J =
a2

2
‖xP(t f )− xe

(
t f

)
‖2A′A+

1
2

∫ t f

t0

[
‖u(t)‖2RP(t)−‖v(t)‖2Re(t)

]
dt (1.2.5)
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subject to the constraints

ẋP = FP(t)xP +GP(t)u; xP(t0) = xP0 (1.2.6)

ẋe = Fe(t)xe +Ge(t)u; xe(t0) = xe0 (1.2.7)

and

u(t), v(t) ∈ R
m

where xp is an n-dimensional vector describing the pursuer’s state, u(t) is the m-

dimensional pursuer’s control, FP(t) and GP(t) are (n×n) and (n×m) matrices continuous

in t; xe, v(t), Fe(t) and Ge(t) are defined similarly. RP(t) and Re(t) are (m×m) positive

definite matrices and A = [IK : 0] is a (k×n), 1 � k � n, matrix. The quantity a2 was in-

troduced to allow for weighting terminal miss against energy. They considered a game of

finite duration and perfect information. That is, t f is a fixed terminal time and both players

know the dynamics of both systems, (1.2.6) and (1.2.7), and at any time t, they know the

state of each system.

A considerable and meaningful simplification is possible by reformulating the problem in

terms of the k-dimensional vector.

z(t) = A
[
ΦP(t f , t)xP(t)−Φe(t f , t)xe(t)

]
.

In terms of z(t), a completely equivalent problem is, determine a saddle point of

J =
a2

2
‖z(t f )‖2 +

1
2

∫ t f

t0

[
‖u(t)‖2RP(t)−‖v(t)‖2Re(t)

]
dt (1.2.8)

subject to the constraints

ż = GP(t f , t)u−Ge(t f , t)v; z(t0) = z0 (1.2.9)

where

GP = AΦP(t f , t)GP(t)

and

Ge = AΦe(t f , t)Ge(t).

It is this approach which we will use throughout this study. The problem is essentially

reduced from 2n dimensions to k � n dimensions.

The problem presented in (1.2.8) and (1.2.9) is classified as a linear-quadratic differential

game. That is the state equation (1.2.9) is linear in the controls and the payoff (1.2.8) is

quadratic.
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1.2.3 The Problem of Two Cars

The Problem of Two Cars is a good example of a two-person zero-sum pursuit-evasion

game which is not based on warfare strategies. It is just like the classical Homicidal Chauf-

feur game, Isaacs [91], except that the evader’s radius of curvature is also constrained.

Here we have two cars traveling on an infinite parking lot at constant but (possibly) differ-

ent speeds. Cockayne [41] found that necessary and sufficient conditions for the capture

region to be the entire state space are (1) the pursuer must be faster than the evader; and

(2) the pursuer must have greater lateral acceleration capability, as embodied in the min-

imum radius of curvature, than the evader. Meier [132] studied the problem when the

pursuer is slower than the evader. Although the capture region could be found analytically

using Isaacs’ theory, the geometric methods presented by Meier are simpler and give more

insight. The technique appears to be applicable to a general class of pursuit-evasion prob-

lems in which the dynamics of the players are independent of their positions and in which

termination depends only on their relative positions.

1.2.4 The Lanchester Combat Model

Some research which can be classified under the broad heading of differential games was

carried on at Virginia Tech a few years ago. Springall and Conolly [42] obtained some

theoretical results for the probability of victory in the Lanchester combat model described

by the deterministic differential equations

ṁ = −μmn−δn

and

ṅ = −λmn− γn

where m denotes the first player’s forces and n denotes the second player’s forces. Let us

call the two sides P and E.

The model studied by Conolly and Springall [42] is unusual in that they assume that both

sides deploy only a constant fraction of their initial strengths in the field, holding the re-

mainder in reserve to replace casualties. Due to the formulation of the model, although

the results of a combat do depend on the initial strengths, it was found that neither the

probability of P’s victory, nor the probability of E’s victory, depends on how side E parti-

tions his troops. Both probabilities are, however, dependent on how P partitions his forces.

Conditions are given in Conolly and Springall [42] on how side P can divide his forces to

maximize his probability of winning. Using data on Civil War battles it was found that the
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actual outcomes agreed favorably with the outcomes which would be predicted based on

the initial percentages of forces sent into the field.

For realistic applications to other fields, such as biology or economics, it is usually neces-

sary to study games which are not zero-sum and which involve more than two players.

1.2.5 Nonzero-sum N-person Differential Games

The theory of differential games has been extended to the situation where there are N

players (N > 2) and the players try to minimize different performance criteria.

In the general nonzero-sum, N-player differential game, the following situation arises. For

i = 1,2, . . . ,N, player i wants to choose his control ui to minimize

Ji = Ki(x(t f ), t f )+
∫ t f

t0
Li(t,x,u1, . . .uN)dt

subject to the constraint

ẋ = f (t,x,u1, . . .uN); x(t0) = x0.

There may also be some inequality constraints on the state and/or control variables as well

as restrictions on the terminal state. The terminal time t f may be fixed or variable.

Case [38] was concerned only with pure strategies and with games which he expected to

have pure strategy solutions. This dictated that all the players had perfect information

throughout the course of the game.

When we have N players the definition of a solution is no longer obvious. Many new

concepts arise which force one to sharpen his definition of optimality. In a pair of papers

Starr and Ho [185] discussed three types of solutions: Nash equilibrium, non-inferior set

of strategies, and minimax.

Nash equilibrium A Nash solution u∗i , i = 1,2, . . . ,N, is defined by

Ji (u∗1,u
∗
2, . . . ,u

∗
i , . . . ,u

∗
N) � Ji

(
u∗1, . . . ,u

∗
i−1,ui,u∗i+1, . . . ,u

∗
N
)

for all ui, i = 1,2, . . . ,N, where Ji is the criterion which the ith player is attempting to

minimize.

Noninferior solutions Let Λ denote the set of non-inferior solutions. Then, the strategy

N-tuple s∗ = {s∗1, . . . ,s
∗
N}, belongs to Λ if, and only if, for any other strategy N-tuple s =

{s1, . . . ,sN}, the following is satisfied.

Ji(s) � Ji (s∗) , i = 1, . . . ,N

The set Λ contains those solutions which are worthy of consideration for cooperation or

negotiation. It is called the Pareto-optimal set for the problem.
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Minimax Consider the other players to be irrational in that they try to maximize our

criterion instead of minimizing their own criterion. That is, each solves a zero-sum game

with respect to his own criterion with all the other players opposing it. The minimax value

of the criterion is then security level of a controller when operating against other irrational

controllers, while the Nash value is the level against rational ones.

For a linear-quadratic deterministic differential game, that is, a game with linear dynamics

and quadratic payoff, all three of these solutions can be obtained by solving sets of ordinary

matrix differential equations.

Applying their theory to a nonzero-sum version of a simple pursuit-evasion game consid-

ered by Ho, Bryson, and Baron [89], Starr and Ho [186] found negotiated solutions which

give both players better results than the usual saddle-point solution. They also outlined an

application to economic analysis involving the dividend policies of firms operating in an

imperfectly competitive market.

In a recent paper Case [38] casts the problem of profit maximization for two firms manufac-

turing the same commodity (coal in his example) as a two-person differential game. That

is, he supposes that all of the coal deposits in some small country, isolated from the rest of

the world by high mountains, are owned by two competing firms. Because the demand for

coal in this country is highly elastic, the two firms could overcharge.

The assumptions are similar to those made by Isaacs for his steel production example [91].

It takes coal to mine coal and to open new mines. Thus, each firm must decide how much

coal to allocate to the production of coal for the present market; how much to invest in new

mines; and how much to stockpile for future demands. The qualitative aspects of the Nash

equilibrium point of the game are discussed.

Case’s model is applicable to the theory of protective tariffs. The high mountain range

offers full tariff protection for a given period. Assigning values to the physical constants,

one could actually calculate the prices which would evolve and a tariff rate which should

be sufficient to guarantee the desired protection. If such calculations could be made for

realistic and complicated models, many people would want to use them.

1.2.6 Friedman’s approach to differential games

No survey of differential games would be complete without the mention of Avner Fried-

man’s works [67, 68]. We have not referenced him previously because his research publi-

cations transcend our section headings.
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Friedman [67] defines a differential game in terms of a sequence of approximating discrete

games. He assumes that the controls appear separated in the kinematic equation and in

the integral part of the payoff and gives an example to show that the game may not have

Value if the controls are not separated. His work generalizes that of Varaiya and Lin [200].

In Friedman [67] he proves, under suitable conditions, that a pursuit-evasion game with a

general payoff which is usually not a continuous functional, has Value and saddle points

and that the Value is Lipschitz continuous. These results are extended to differential games

of survival. Another paper by Friedman [67] extends the results to the case where the state

x is restricted to a given phase set X which is a subset of Euclidean n-dimensional space R
n.

Friedman also computes the Value for a class of games with fixed duration; and gives a

general method for computing saddle points for games of fixed duration as well as games

of pursuit and evasion.

Friedman’s research is not limited to two-person differential games. In addition he con-

siders linear-quadratic differential games with non-zero sum and N players. His approach

to N-person differential games is similar to his approach to two-person differential games

in that he defines the game through the concept of δ -games, i.e. discrete approximating

games of fixed duration δ . In this paper he derives bounds on the optimal strategy for a δ -

game and proves a theorem which asserts that the differential game has Value under certain

conditions on the controls.

Earlier a similar approach to differential games was investigated by Fleming [62, 63]. He

introduced the idea of a majorant and minorant game in which the information is biased to

favor one player or the other. He then gave conditions for the majorant value and minorant

value to converge to the Value of the game.

Consider the following two differential games.

ẋ1 = f1(t,x1,u1,v1); x1(t0) = x10

and

ẋ2 = f2(t,x2,u2,v2); x2(t0) = x20.

Using the definition of a differential game given by Friedman [67] and from differential

inequalities, it can be shown that if the functions f1 and f2 are close in some sense then

so are their Values. Such a comparison is of use in approximating a differential game by a

simpler one.

One source of differential games is the study of optimal control problems in which the

system to be controlled is subject to unknown random disturbances. We now go on to a

discussion of stochastic differential games.
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1.3 Stochastic Differential Games: Definition and Brief Discussion

In recent years a number of articles have appeared in the journals on what have been called

stochastic differential games. These games are stochastic in the sense that noise (zero mean,

Gaussian, white noise) is added to the players’ observations of the state of the system or to

the transition equation itself.

In 1966, Ho [87] solved a stochastic differential game using variational techniques. One

player controlled the state and attempted to minimize the terminal error and confuse the

other player who could only make noisy measurements of the state and attempted to mini-

mize the error of his estimate. Since only one player actually controlled the state, the game

was not of the pursuit-evasion type, and could be solved subsequently by first determining

the form of the first player’s controller and using this to determine the form of the second

player’s estimator. The solution indicated that a certain time the first player should change

strategies from trying to confuse the other player to trying to minimize the terminal crite-

rion. A logical extension is an investigation of a pursuit-evasion problem in which both

players have imperfect knowledge of the states involved.

1.3.1 Stochastic Linear Pursuit-Evasion Games

Behn and Ho [19] made some progress in this direction when they studied the problem

where the pursuer has perfect knowledge, but the evader can make only noisy measure-

ments of the state of the game. They showed that the evader can use the noisy measure-

ments to obtain an optimal estimate of the state and then use this estimate in the feedback

strategy for the deterministic problem.

When we restrict the problem to linear dynamics and quadratic criterion with Gaussian

noises as the sources of randomness, then specific results are available. Liu [129] consid-

ered this problem and converted it into a stochastic differential game under the assumption

that one of the players fixes his strategy in a linear form with a linear filter. The other player

must then use a linear strategy for optimality. Liu obtained optimal pairs of linear strategies

when one player has corrupted information and when both have corrupted information.

Consider the zero-sum, two-person stochastic differential game with the linear transition

equation

ẋ = Fx+GPu+Gev; x(t0) = x0
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and quadratic criterion given by,

J =
1
2

E

⎧⎪⎪⎨
⎪⎪⎩

x′(t f )S f x
(
t f

)
+

∫ t f

t0

[
x′ u′ v′

]
⎡
⎢⎢⎣

Q 0 0

0 B 0

0 0 −C

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

u

v

⎤
⎥⎥⎦dt

⎫⎪⎪⎬
⎪⎪⎭

,

where B and C are symmetric, positive definite matrices and S f = S(t f ) is a symmetric,

positive semi definite matrix which is the solution of a Riccati-like equation. Let the obser-

vations (measurements) be given by

zP = h1x+w1, (1.3.1)

and

ze = h2x+w2. (1.3.2)

It is assumed that x0 ∼ N(0,P0) and is independent of w1 and w2 which are white Gaussian

processes such that

E(w1) = 0, E(w1w′
1) = R1,

and

E(w2) = 0, E(w2w′
2) = R2.

We shall summarize the work done on this particular type of problem in Table 1.3.1.

Perfect measurements for player i, i = 1,2, is denoted by Ri = 0, Hi = I (the identity matrix)

where Ri = 0 denotes the degenerate case w1 ≡ 0 ≡ w2. Similarly, no measurements are

denoted by Ri = ∞, i = 1,2. Thus, there are nine cases to be considered. Either player’s

measurements may be perfect, noisy, or omitted.

The case where both players can make perfect measurements is referred to as the closed-

loop game and the case where neither player has any measurement as the open loop game.

Borh are treated by Bryson and Ho in Applied Optimal Control [34]. The solution to

cases 1, 3, 6, 7, 8, and 9 requires only the solution of Riccati-like equations because the

measurements involved are degenerate. Cases 6 and 8 are extensions of stochastic control

theory since one player operates open loop. The other three cases, 2, 4, and 5, give rise to

complicated equations of the two point boundary value problem type.

A further stochastization can be achieved by making the transition equation (1.2.2) itself

stochastic. Willman [207] did this by considering a random version of (1.2.9), namely:

ẋ = GPu−Gev+q
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Table 1.3.1 Summary of Research Publications on Stochastic Pursuit-Evasion Games

PURSUER

Perfect
Measurements

R1 = 0,
H1 = 1

Noisy
Measurements

0 < R1 < ∞

No Measurements

R1 = ∞

E
VA

D
E

R

Perfect
Measurements

R2 = 0,
H2 = 1

1

Ho, Bryson, and
Baron

2

Behn and Ho

Rhodes &
Luenberger

3

Bryson and Ho

Noisy
Measurements

0 < R2 < ∞

4

Behn and Ho

Rhodes &
Luenberger

5

Willman

Rhodes &
Luenberger

6

Rhodes &
Luenberger

No
Measurements

R2 = ∞

7

Bryson and Ho

8

Rhodes &
Luenberger

9

Bryson and Ho

with criterion

J =
1
2

E

{
x′(t f )S f x(t f )+

∫ t f

t0

[
u′ v′

][
B 0

0 −C

][
u

v

]
dt

}

and measurements given by (1.3.1) and (1.3.2). It was assumed that⎡
⎢⎢⎣

q

w1

w2

⎤
⎥⎥⎦

is Gaussian white noise process with mean vector and covariance matrix given by the pair⎡
⎢⎢⎣

0

0

0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

Q 0 0

0 R1 0

0 0 R2

⎤
⎥⎥⎦

which is assumed to be statistically independent of the prior. As before B and C are positive

definite time-dependent matrices and S f is positive semi-definite.

Willman [207] was able to get formal solutions for games of this type which depend on

the solutions of certain sets of implicit equations of the two point boundary value problem

type.
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Although each of the authors referenced above has tacitly admitted that the real world is

not static, or deterministic, they have made their games stochastic by adding independent,

zero mean, Gaussian white noise to the observations and/or the transition equations. That

is, they have perturbed the games. Can this normality assumption be relaxed? Roxin and

Tsokos [170] recently introduced a more general and realistic definition of a stochastic

differential game.

1.3.2 The Definition of a Stochastic Differential Game

Consider a two-person, zero-sum differential game defined by the differential equation

ẋ = f (t,x,u,v,w) (1.3.3)

where

i) t ∈ R+ is the time;

ii) x ∈ R
n is the state variable:

iii) u = u(t) ∈ EP and v = v(t) ∈ Eq are control variables;

and

iv) w = w(t,ω) ∈ Er is some stochastic process defined over the complete probability

space (Ω,A,μ) where Ω is a nonempty abstract set, A is a σ -algebra of subsets of Ω,

and μ is a probability measure on A.

The initial state of the differential game is given by

x0 = x(t0),

and the terminal condition by

Φ(t f ,x(t f )) = 0, (1.3.4)

where Φ is a given vector-valued function which defines a manifold in En+1 space. In this

game, one player, called u, controls the functions u(t) and the other, called v, controls the

function v(t). We take as admissible controls u(t) and v(t) all measurable functions whose

values belong (almost everywhere) to some given compact sets U ⊂ EP and V ⊂ Eq.

The payoff which player u must pay to player v at the end of the game is given by the

functional

J(t0,x,u,v) = H(t f ,x(t f ))+
∫ t f

t0
G(x,u,v)dt. (1.3.5)

Thus, players u and v, want to choose their actions so as to minimize and maximize the

expected value of the payoff functional J respectively.
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The definition given by Roxin and Tsokos [170] assumes that both players know the dy-

namics of the game (1.3.3), the terminal condition (1.3.4), the admissibility sets U and V ,

and the payoff (1.3.5). They must choose their controls on the basis of the observations

y(t,w) = ψ1{t,x(s),w(s,ω), 0 � s � t}

and

z(t,w) = ψ2{t,x(s),w(s,ω), 0 � s � t}

respectively. A strategy σu[σv] for player u[v] is a rule for determining the control u(t) [v(t)]

as a functional.

That is,

u(t) = σu{y(t)}

and

v(t) = σv{z(t)}.

The differential game described above is called a two-person, zero-sum, stochastic differ-

ential game. Unfortunately even for the discrete case, there is no general way to ascertain

the existence or the uniqueness of the solution of the game for a given pair of strategies.

An approach which goes back to the works of Fleming [61] is to consider the continuous

differential game as the limit of a discrete game obtained by dividing the time interval into

N short subintervals. For deterministic differential games this approach was investigated by

Varaiya and Lin [200], and Friedman [67]. It was applied to stochastic differential games

by Roxin and Tsokos [170].

The discretized game Without loss of generality we can assume that the game starts at

t0 = 0 and ends at a fixed time t f = T . For any positive integer k let N = 2k and δ = T
N .

Define the subintervals

I j = {t : ( j−1)δ � t < jδ}, j = 1,2, . . . ,N.

We can now define a discrete interpretation of the continuous stochastic differential game

(1.2.3) as follows. At each instant t j = jδ , j = 0,1, . . .N −1, players u and v choose their

controls u(t) and v(t) for the succeeding subinterval jδ � t < ( j + 1)δ . They have at

their disposal the observations y(t j) and z(t j) respectively. Since neither player knows the

control chosen by his opponent, it is well known that each should use a randomized decision

function. To avoid randomized decisions we give player v, the maximizing player, a slight

advantage. Player u must choose u(t) for t j � t < t j+1 based only on his observations y(t j)
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but player v chooses his control v(t) based on z(t j) and u(t) for t j � t < t j+1. However,

player v is not allowed to store this information, that is, he cannot use u(t)for t < t j when

choosing v(t) for t j � t < t j+1. This is called an upper δ -game. A lower δ -game is similarly

defined.

The Expected Payoff It is clear that, even when the initial conditions (t0,x0) are given

and the players have chosen strategies σu and σv, the resulting payoff function is still a

random variable. This is because the payoff also depends on the stochastic process w(t,ω).

The expected value of the payoff is therefore defined to be

J0 (t0,x0,σu,σv) = E {J (t0,x0,σu,σv)} .

This expected value is unknown to the players but player u tries to minimize it based on

his information and the most unfavorable strategies of player v. Similarly, player v tries to

maximize it on the basis of his information and the most unfavorable u-strategies.

The Value of The Game Define V1 and V2 as follows:

V1 = glb
σu

lub
σv

E {J0 (t0,x0,σu,σv) |y(t0)} (1.3.6)

and

V2 = lub
σv

glb
σu

E {J0 (t0,x0,σu,σv) |z(t0)} . (1.3.7)

Let the optimal strategies be denoted by σ∗
u and σ∗

v . For the discrete upper δ -game define

V δ (t0,x0) = Jδ0
(

t0,x0,σ∗δ
u ,σ∗δ

v

)

and for the lower δ -game

Vδ (t0,x0) = J0δ

(
t0,x0,σ∗

uδ
,σ∗

vδ

)

where σ∗ δ
u and σ∗δ

v are optimal in (1.3.6) and (1.3.7) for the upper δ -game and σ∗
uδ and

σ∗
vδ are optimal for the lower δ -game. If δ → 0

lim
δ→0

V δ (t0,x0) = lim
δ→0

Vδ (t0,x0) = V,

V is called the value of the continuous stochastic differential game.

The definition of a stochastic differential game used in this study will be slightly different

from that outlined above. Inspired by the definition of Roxin and Tsokos, we will apply an

idea similar to that recently used by Morazon [136] and Tsokos [196] in the study of the

stability of linear systems. We will adopt the idea of letting the functions which constitute

the game be random functions themselves. This interpretation is more realistic and consis-

tent with the terminology. Games in which white noise has been added to the observations

and/or the transition equation itself would better be called perturbed differential games.
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1.4 Formulation of the Problem

Let the triple (Ω,A,μ) denote a probability measure space. That is, Ω is a nonempty set,

A is a σ -algebra of subsets of Ω and μ is a complete probability measure on A. Let x(t;ω),

t ∈ R+, denote a stochastic process (or random function) whose index set is the set of

non-negative real numbers R+ = {t : t � 0}, ω ∈ Ω. That is, for each t ∈ R+, x(t;ω) is a

random variable defined on Ω,

Perhaps a picture is in order here; the reader is referred to Figure 1.4.1 and 1.4.2 for a

Graphical Explanation of x(t;ω). Of course in a deterministic game we simply have a

single trajectory. However, when we consider a solution to be a stochastic process, we

have an ensemble of trajectories. In Figure 1.4.1 each line represents a possible realization

of x(t;ω) for a given ω ∈ Ω. If we let Ω vary also, then we get an ensemble of paths for

the motion of the point x. On the other hand in Figure 1.4.2 the time t is held fixed and Ω is

varying. We see that we have a distribution of points for each fixed t ∈ R+. If we connect

the points for each ω ∈Ω we will get continuous curves as in Figure 1.4.1.

Fig. 1.4.1 t varying, ω fixed

Definition 1.4.1. A stochastic process (or random function) x(t;ω), t ∈ R+, is said to be a

second order (or regular) process or to belong to the space L2(Ω,A,μ) if for each t ∈ R+,

the second absolute moment exists. That is,

E
{
|x(;ω)|2

}
=

∫
Ω
|x(;ω)|2 dμ(ω) < ∞.
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Fig. 1.4.2 t fixed, ω varying

In other words, x(t;ω), t ∈ R+ is square-summable with respect to μ-measure.

The norm of x(t;ω) ∈ L2 (Ω,A,μ) is defined by

||x(t;ω)||L2(Ω,A,μ) =
{[

|x(t;ω)|2
]}1/2

(1.4.1)

for each t ∈ R+, L2 (Ω,A,μ) is a Hilbert space with inner product defined for each pair of

random variables x(t;ω) and y(t;ω) by

(x(t;ω), y(t;ω))L2(Ω,A,μ) =
∫
Ω

x(t;ω)y(t;ω)dμ(ω)

= E
[
x(t;ω)y(t;ω)

]
, (1.4.2)

where the bar denotes the complex conjugate in case we are talking about complex-valued

random variables. Combining equations (1.4.1) and (1.4.2), the norm in L2(Ω,A,μ) is

defined in terms of the inner product. Thus, for a second order process the covariance

function always exists and is finite.

In this study we will be dealing with stochastic differential games with transition equations

of the form
d
dt

x(t;ω) = f (x(t;ω), u,v, t) ; x(t0;ω) = x0(ω)

where x(t;ω)∈ L2(Ω,A,μ) for each t ∈R+. The control variables u and v may be random,

i.e. belong to L2(Ω,A,μ), or deterministic. Further assumptions concerning their behavior

will be given at the appropriate points in the study.

We will now list some definitions which will be necessary for the presentation of this study.
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1.5 Basic Definitions

It will be assumed that the reader is familiar with the fundamentals of measure theory and

integration, functional analysis, and topology. Therefore such definitions are linear (vector)

space, norm, semi-norm, normed linear space, and complete normed linear space or Banach

space will not be given. We refer the reader to such texts as Yosida [218]. However, some

definitions from these and related fields will be repeated here for the convenience of the

reader.

Definition 1.5.1. By a random solution of the stochastic differential equation (1.3.4) we

shall mean a function x(t;ω) which satisfies equation (1.3.4) μ-a.e.

We have already defined what we mean by x(t;ω) in L2(Ω,A,μ). For fixed t ∈ R+ we

shall denote x(t;ω) by x(ω) and call it a random variable. Recall Figure 1.4.2.

Definition 1.5.2. A random variable x(ω), ω ∈Ω, is said to be μ-essentially bounded or to

belong to the space L∞(Ω,A,μ) if it is measureable with respect to μ and there is a constant

a > 0 such that

μ {ω : |x(ω)| > a} = 0. (1.5.1)

That is, x(ω) is bounded in the usual sense except maybe on a set of probability measure

zero.

The greatest lower bound (glb) of the set of all values for which (1.5.1) holds is called the

essential supremum of |x(ω)| with respect to μ and is denoted by

μ-ess supx(ω) = glb{a : μ [ω : |x(ω)| > a] = 0}

= inf

{
sup
Ω-Ω0

|x(ω)|
}

,

where Ω0 is a set of probability measure zero, μ(Ω0) = 0.

The norm of x(ω) ∈ L∞(Ω,A,μ) is defined by

‖x(ω)‖L∞(Ω,A,μ) = μ-essω∈Ωsupx(ω).

Definition 1.5.3. Consider a mapping f : X → X . f is said to be a contraction mapping if

there exists a number a ∈ (0,1) such that d( f (x), f (y)) � ad(x,y) for any x, y ∈ X .

Definition 1.5.4. Let x(s) is a finite function defined on the closed interval [a,b]. Suppose

that for every ε > 0, there exists a δ > 0 such that∣∣∣∣∣
n

∑
k=1

{x(bk)− x(ak)}
∣∣∣∣∣ < ε,
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for all a1,b1, . . . ,an,bn such that a1 < b1 � a2 < b2 � . . . � an < bn and ∑n
k=1 (bk −ak) < δ .

Then the function x(s) is said to be absolutely continuous.

We note that if a function x(s) is absolutely continuous, then its derivative exists almost

everywhere.

We now state an important inequality known as the generalized Gronwall’s Inequality.

Definition 1.5.5. Let x(t) be a continuous non-negative function on [t0, t f ] and assume that

x(t) � M +
∫ t

t0
x(s)dσ(s), t ∈ [t0, t f ]

where M is a positive constant and σ(t) is a nondecreasing function on [t0, t f ] such that

σ(t) = σ(t +0). Then x(t) satisfies

x(t) � Meσ(t) −σ(t0).

Definition 1.5.6. Consider the stochastic system
d
dt

x(t;ω) = f (t,x,u,v), t � 0

with initial condition. The system is called stochastically asymptotically stable if the fol-

lowing two conditions are satisfied:

(i) for each ε > 0, t0 ∈ R+, there exists a δ = δ (t0,ε) > 0 such that ‖x(ω)‖L2(Ω,A,μ) � δ
implies

‖x(t, t0,x0(ω),u,v,)‖L2(Ω,A,μ) < ε, t � t0

for every admissible pair of controls u, v;

and

(ii) for each ε > 0, t0 ∈ R+, there exists numbers δ0 = δ0(t0) and T = T (t0,ε) such that

whenever

‖x0(ω)‖L2(Ω,A,μ) � δ0,

and

‖x(t, t0,x0)(ω),u,v‖ < ε, t � t0 +T

for every admissible pair of controls u,v.

Definition 1.5.7. Consider an (n× n) matrix A(ω) = (ai j(ω)), ω ∈ Ω. A(ω) is called a

random matrix if A(ω)× (t,ω) is a random n-vector with values in L2(Ω,A,μ) for every

n-vector x(t;ω) ∈ L2(Ω,A,μ), for t ∈ R+. That is, A(ω) is a matrix whose n2 elements

ai j(ω) are random variables.
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Definition 1.5.8. Let x(ω) be a random vector. The matrix norm |A(ω)| will be defined by

|A(ω)| = sup
‖x(ω)‖L2(Ω,A,μ)�1

‖A(ω)x(ω)‖L2(Ω,A,μ).

With respect to the completion of a differential game we give the following criteria.

Definition 1.5.9. A pair of strategies
(
U0,V 0

)
is called optimal, or minimax, if it satisfies

the saddle-point criterion. That is, the strategy pair
(
U0,V 0

)
is minimax if for any other

strategy pair (U,V ) is based on the available information set

J
(
U0,V

)
� J

(
U0,V 0) � J

(
U,V 0) .

Definition 1.5.10. Consider an n-person deterministic differential game. If J1(s1, . . . ,sn),

. . ., JN(s1, . . . ,sn) are the cost functions for players 1, . . . ,N, then the strategy set (s∗1, . . . ,s
∗
N)

is called a Nash equilibrium strategy set if, for i = 1,2, . . . ,N,

Ji
(
s∗1, . . . ,s

∗
i−1, si,s∗i+1, . . . ,s

∗
N
)

� Ji (s∗1, . . . ,s
∗
N)

where si is any admissible strategy for player i.

We will use these definitions in subsequent chapters.



Chapter 2

Stochastic Linear Pursuit-Evasion Game

2.1 Introduction

The 1950’s saw the introduction of guided interceptor missiles and the launching of Sput-

nik I. Questions on pursuit and evasion were suddenly in everyone’s mind. What is the best

strategy to intercept a moving target? How can friendly planes best avert midair collisions?

Thus the theory of Differential Games is permeated with the theory of military pursuit

games. Dr. Rufus Isaacs, who was then with the Mathematics Department of the RAND

Corporation realized that no one guidance scheme can be optimal against all types of eva-

sion. An intelligent evader can deliberately maneuver to confuse the pursuer’s predictions.

Thus optimal pursuit and evasion must be considered equally.

Consider a stochastic linear pursuit-evasion game described by a linear stochastic differen-

tial equation of the form

d
dt

x(t;ω) = A(ω)x(t;ω)+B(ω)u(t;ω)−C(ω)v(t;ω) (2.1.1)

for t � 0 and ω ∈Ω, where

i) Ω is the supporting set of a complete probability measure space (Ω,A,μ);

ii) x(t;ω) is the unknown random n-dimensional state variable;

iii) u(t;ω) and v(t;ω) are the random control vectors;

and

iv) A(ω), B(ω), and C(ω) are random matrices of appropriate dimensions.

The problem is to choose a control uv(t;ω), depending on the evader’s control v(t;ω) such

that

x(tu,v;ω) ∈ Mε for some tu,v ∈ R+

where Mε is the terminal set to be defined in Section 2.3.

25
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The object of this chapter is to prove the existence and uniqueness of a random solution,

that is, a second order stochastic process, which satisfies equation (2.1.1) with probability

one. In order to do this we integrate equation (2.1.1) with respect to t obtaining a vector

stochastic integral equation of the form

x(t;ω) = x0(ω)eA(ω)t

+
∫ t

0
eA(ω)(t−τ) [B(ω)u(τ;ω)−C(ω)v(τ;ω)]dτ

(2.1.2)

for t � 0 and ω ∈ Ω, with initial condition x(0;ω) = x0(ω). In the theory of stochastic

integral equations the term x0(ω)eA(ω) t is referred to as the free stochastic term or free

random vector and eA(ω)(t−τ) as the stochastic kernel.

We will approach the question of existence and uniqueness of a random solution of equation

(2.1.2) using the technique of admissibility theory introduced into the study of random

integral equations by Tsokos [184]. To do this we must first define some topological spaces

and state some results which are essential to this presentation.

2.2 Preliminaries and an Existence Theorem

We will be concerned with the space of random vectors in L2(Ω,A,μ) where

L2(Ω,A,μ) denotes the set of all μ-equivalence classes of random vectors of the

form (x1(ω), . . . ,xn(ω)) = x(ω) where for each i = 1,2, . . . ,n, xi(ω) is an element of

L∞(Ω,A,μ). It is well known that L2(Ω,A,μ) is a normed linear space over the real num-

bers with the usual definitions of component-wise addition and scalar multiplication with

norm given by

‖x(ω)‖L2(Ω,A,μ) =
{∫

Ω

[
x1(ω)2 + x2(ω)2 + · · ·+ xn(ω)2]dμ(ω)

} 1
2
.

Definition 2.2.1. Let Cc = Cc (R+,L2(Ω,A,μ)) denote the space for all continuous vector

valued functions from R+ into L2(Ω,A,μ), or second order stochastic processes on R+,

with the topology of uniform convergence on every compact interval [0,T ], T > 0. That is,

the sequence x(t;ω)k converges to x(t;ω) in Cc if and only if

lim
k→∞

{
E |x(t;ω)k − x(t;ω)|2

} 1
2 = lim

k→∞

{∫
Ω
|x(t;ω)k − x(t;ω)|2dμ(ω)

} 1
2

= 0

uniformly on every interval [0,T ], T > 0.

Definition 2.2.1 simply says that the map t → x(t;ω) = (x1(t;ω),x2(t;ω), . . . ,xn(t;ω)) is

continuous and that for each t ∈ R+ and each i = 1,2, . . . ,n, xi(t;ω) ∈ L∞(Ω,A,μ). Thus
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for fixed t ∈ R+

‖x(t;ω)‖L2(Ω,A,μ) =
{∫

Ω

[
x1(t;ω)2 + · · ·+ xn(t;ω)2]dμ(ω)

} 1
2
.

Cc (R+,L2(Ω,A,μ)) is a linear space over the nonnegative real numbers with the usual

definitions of addition and scalar multiplication for continuous functions. It should also

be noted that Cc is locally convex with topology defined by the following family of semi-

norms, Yoshida [207]{
‖x(t;ω)‖n : ‖x(t;ω)‖n = sup

0�t�n

[∫
Ω
|x(t;ω)|2dμ(ω)

] 1
2
, n = 1,2, . . .

}
.

Let T denote a linear operator from the space Cc (R+,L2(Ω,A,μ)) into itself; and let B and

D denote Banach spaces contained Cc.

Definition 2.2.2. The pair of Banach spaces (B,D) is called admissible with respect to the

operator T if and only if T B ⊆ D.

Definition 2.2.3. The operator T is called closed if

x(t;ω)k
B−→ x(t;ω)

and

(T xk)(t;ω) D−→ y(t;ω)

imply that

(T x)(t;ω) = y(t;ω).

Definition 2.2.4. The Banach space B is called stronger than the space Cc(R+,L2(Ω,A,μ))

if every sequence which converges in B with respect to its norm also converges in Cc. The

converse need not be true.

The following lemmas due to Tsokos [184] and Banach’s fixed point theorem are the basic

tools used in the following results.

Lemma 2.2.1. Let T be a continuous operator from Cc (R+,L2 (Ω,A,μ)) into itself. If B

and D are Banach spaces stronger than Cc; and if the pair (B,D) is admissible with respect

to T , then T is a continuous operator from B to D.

Theorem 2.2.1 (Banach’s Fixed Point Theorem). If T is a contraction operator from a

Banach space B into itself, then there exists a unique point x∗ ∈ B such that T (x∗) = x∗.

That is, x∗ ∈ B is the unique fixed point of the operator T .
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Since T is a continuous linear operator from B to D, it is bounded in the sense that there

exists a constant M > 0 such that

‖(T x)(t;ω)‖D � M‖x(t;ω)‖B

for x(t;ω) ∈ B. Thus we can define a norm for the operator T by

‖T‖0 = sup
[
‖(T x)(t;ω)‖D

‖x(t;ω)‖B
: x(t;ω) ∈ B, ‖x(t;ω)‖B �= 0

]
.

We are also guaranteed that

‖(T x)(t;ω)‖D � ‖T‖0‖x(t;ω)‖B.

We can now state and prove a theorem on the existence and uniqueness of a random solution

of a stochastic integral equation of which equation (2.2.1) is a special case.

2.2.1 An Existence Theorem

Consider a stochastic integral equation of the general form

x(t;ω) = h(t,x(t;ω))+
∫ t

0
k(t,x(t;ω);ω)dτ, t � 0 (2.2.1)

where

i) as usual Ω = {all ω} is the supporting set of the complete probability measure space

(Ω,A,μ) and x(t;ω) is the unknown n-dimensional vector-valued random function

defined on R+;

ii) under appropriate conditions the stochastic kernel k(τ,x(t;ω);ω) is an n-dimensional

vector-valued random function defined on R+;

and

iii) for each t ∈ R+ and each random vector x(t;ω), the stochastic free term h(t,x(t;ω)) is

an n-dimensional vector-valued random variable.

We now state an existence theorem.

Theorem 2.2.2. Assume that equation (2.2.1) satisfies the following conditions:

(i) B ⊆Cc (R+,L2(Ω,A,μ)) and D ⊆Cc (R+,L2(Ω,A,μ)) are Banach spaces stronger

than Cc (R+,L2(Ω,A,μ)) ;

(ii) the pair (B,D) is admissible with respect to the operator T given by (T x)(t;ω) =∫ t
0 x(t;ω)dτ;
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(iii) k (t,x(t;ω);ω) is a mapping from the set Dρ = {x(t;ω) ∈ D : ‖x(t;ω)‖D � ρ ,

ρ � 0} into the space B such that ‖k(t,x(t;ω);ω)− k(t,y(t;ω);ω)‖B � λ‖x(t;ω)−
y(t;ω)‖D for x(t;ω) and y(t;ω) in Dρ and λ � 0 a constant;

and

(iv) x(t;ω) → h(t,x(t;ω)) is a mapping from Dρ into D such that ‖h(t,x(t;ω) −
h(t,y(t;ω))‖D � γ‖x(t;ω)− y(t;ω)‖D for some γ � 0.

Then there exists a unique random solution of equation (2.2.1) in Dρ provided that γ +

λM < 1 where M = ‖T‖0 and ‖h(t,x(t;ω))‖D +M‖k (t,x(t;ω);ω)‖B � ρ .

The conditions on the above theorem can be weakened somewhat. We prove the following

Corollary 2.2.1. Assume that equation (2.1.1) satisfies the conditions of Theorem 2.2.3.

Then there exists a unique random solution if γ+λM � 1 where M = ‖T‖0 and

‖h,(t,x(t;ω))‖D +M‖k,(t,x(t;ω))‖B � ρ.

Proof. Note that the operator (T x)(t;ω) =
∫ t

0 x(τ;ω)dτ is continuous from B to D, hence

bounded. We shall define a contraction mapping on Dρ and then apply Banach’s fixed point

theorem. Define the operator U from Dρ into D by

(Ux)(t;ω) = h(t,x(t;ω))+
∫ t

0
k (τ,x(τ;ω);ω)dτ.

To show inclusions consider any x(t;ω) ∈ Dρ .

‖(Ux)(t;ω)‖D =
∥∥∥∥h

(
t,x(t;ω)+

∫ t

0
k (τ,x(τ;ω);ω)dτ

)∥∥∥∥
D

� ‖h(t,x(t;ω))‖D +
∥∥∥∥
∫ t

0
k (τ,x(τ;ω);ω)dτ

∥∥∥∥
D

� ‖h(t,x(t;ω))‖D +M‖k (t,x(t;ω);ω)‖B � ρ, by hypothesis.

Hence (Ux)(t;ω) ∈ Dρ or UDρ ⊆ Dρ .

Now let x(t;ω) and y(t;ω)be elements of Dρ . Since (Ux)(t;ω) and (Uy)(t;ω) are elements

of the Banach space D, [(Ux)(t;ω)− (Uy)(t;ω)] ∈ D.
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Thus,

‖(Ux)(t;ω)− (Uy)(t;ω)‖D

=
∥∥∥∥h(t,x(t;ω))+

∫ t

0
k(τ,x(τ;ω);ω)dτ−h

(
t,y(t;ω)−

∫ t

0
k(τ,y(τ;ω);ω)dτ

)∥∥∥∥
D

=
∥∥∥∥h(t,x(t;ω))−h(t,x(t;ω))+

∫ t

0
[k(τ,x(τ;ω);ω)− k(τ,y(τ;ω);ω)dτ]

∥∥∥∥
D

� ‖h(t,x(t;ω))−h(t,y(t;ω))‖D +
∥∥∥∥
∫ t

0
[k(τ,x(τ;ω);ω)− k(τ,y(τ;ω);ω)dτ]

∥∥∥∥
D

� γ‖x(t;ω)− y(t;ω)‖D +‖T‖0‖k(t,x(t;ω);ω)− k(t,y(t;ω);ω)‖B

� γ‖x(t;ω)− y(t;ω)‖D +M‖k(t,x(t;ω);ω)− k(t,y(t;ω);ω)‖B

� γ‖x(t;ω)− y(t;ω)‖D +Mλ‖x(t;ω)− y(t;ω)‖D

= (γ+Mλ )‖x(t;ω)− y(t;ω)‖D.

Thus we see that we need only to require that (γ+Mλ ) � 1 for the condition of the con-

traction mapping principle to be satisfied. Then, by Banach’s fixed point theorem, there

exists a unique point x(t;ω) ∈ Dρ such that

(Ux)(t;ω) = h(t,x(t;ω))+
∫ t

0
k (τ,x(τ;ω);ω)dτ = x(t;ω). �

2.3 Existence of a Solution for a Stochastic Linear Pursuit-Evasion Game

2.3.1 A General Stochastic Linear Pursuit-Evasion Game

Consider a stochastic linear pursuit-evasion game described by a stochastic transition

equation in (2.1.1). The problem is to choose controls v(t;ω) and uv(t;ω) such that

x(tu,v;ω) ∈ Mε for some finite time tu,v where the terminal set Mε is defined by

Mε =
{

x(t;ω);‖x(t;ω)‖L2(Ω,A,μ) � ε
}

.

As mentioned previously, we give only one transition equation. In case we have two ob-

jects, called the pursuer and evader, then we can consider x(t;ω) as the distance between

them. The evader tries to maximize this distance or maximize the time until ‖x(t;ω)‖ � ε
while the pursuer tries to minimize these conditions. Thus, by a simple transformation, a

pursuit-evasion game becomes a contest to bring a point in n-dimensional space into an ε-

ball about the origin. The pursuer, using u(t;ω), tries to minimize the time required while

the evader, using v(t;ω), tries to maximize the time. If possible, he would like it to be

infinite.
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The state space of a differential game can be thought of as divided into two regions. In one

region one player is able to force a win on the other; while in the other region the reverse

happens. Isaacs uses the term barrier to define the boundary between the two regions. The

physical interpretation is that if the initial state is outside the barrier, then the state can

never be brought to the origin. That is, escape always occurs outside the barrier. From the

control theory point of view, this represents an uncontrollable region. Inside the barrier, in

the controllable region, capture always occurs.

In the deterministic setting Pontryagin [139], Pshenichnity [142], Sakawa [160], and other

researchers have all given conditions which are sufficient for a linear differential game to

be completed. We now consider conditions for completing the most general stochastization

of a linear pursuit-evasion game.

The stochastic transition equation (2.2.1) is the most general formalization of a stochastic

linear pursuit-evasion game in the sense that all the functions involved are stochastic. It is

more general because the random function x(t;ω) appears on the right hand side. Phys-

ically this means that the object (s) being controlled have energy of their own. We may

think, for example, of an incoming guided missile Dix [46]. The missile has its own guid-

ance system; and its mission is to descend to a certain altitude over a given city before

exploding. The pursuer (enemy in this case) is also sending control signals to the mis-

sile while our own forces (the evader) are trying to jam the signals as well as the onboard

controls.

2.3.2 A Special Case of Equation (2.2.1)

Equation (2.1.1) is equivalent to a vector stochastic integral equation of the form

x(t;ω) = x0(ω)eA(ω)t +
∫ t

0
eA(ω)(t−τ) [B(ω)u(τ,ω)−C(ω)v(τ;ω)]dτ, t � 0 (2.3.1)

for which we now give conditions for the existence and uniqueness of a random solution.

Referring to equation (2.2.1) we can make the following identifications:

h(t,x(t;ω)) = x0(ω)eA(ω)t

k(t,x(τ;ω);ω) = eA(ω)(t−τ) [B(ω)u(τ;ω)−C(ω)v(τ;ω)] .

We note that conditions (ii) and (iii) under equation (2.2.1) are satisfied. In particular

ii) the stochastic kernel is an n-dimensional vector valued random function from R+ into

L2(Ω,A,μ);

and



32 Stochastic Differential Games

iii) the stochastic free term x0(ω)eA(ω)t is an n-dimensional vector-valued random variable,

i.e. for each t ∈ R+, x0(ω)eA(ω)t ∈ L2(Ω,A,μ).

Note that the Banach space Cc (R+,L2(Ω,A,μ)) satisfies the definition of stronger than

itself. Thus we can use the space Cc (R+, L2(Ω,A,μ)) in place of both B and D in Theo-

rem 2.2.3. Clearly the pair (Cc,Cc) is admissible with respect to T given by (T x)(t;ω) =∫ t
0 x(τ;ω)dτ . Condition (iii) of Theorem 2.2.3 is satisfied vacuously since x(t;ω) does not

appear explicitly in the stochastic kernel. That is,

‖k (t,x(t;ω);ω)− k (t,y(t;ω);ω)‖Cc
= 0 μ− a.e.

We proceed by proving a theorem concerning the existence and uniqueness of a random

solution for equation (2.3.1) and hence (2.1.1).

Theorem 2.3.1. Given any ρ � 0, define the set Dρ by

Dρ = {x(t;ω) ∈Cc : ‖x(t;ω)‖Cc � ρ} .

There exists a unique random solution of equation (2.3.2) provided that

(i) the initial condition x(0;ω) = x0(ω) ∈ Dρ

and

(ii)
∣∣eA(ω)t

∣∣ � 1.

Proof. The proof of this theorem will consist of showing that all the conditions of Corol-

lary 2.2.4 are satisfied.

1) The Banach space Cc (R+,L2(Ω,A,μ)) satisfies the definition of stronger than itself.

2) The pair (Cc,Cc) is admissible with respect to the operator T given by

(T x)(t;ω) =
∫ t

0
x(τ;ω)dτ.

3) The stochastic kernel is a mapping from the set D into the space Cc such that

‖k (t,x(t;ω);ω)− k (t,y(t;ω);ω)‖Cc
= 0 μ-a.e. for x(t;ω) and y(t;ω) in Dρ . We just

take λ = 0.

4) The stochastic free term is such that∥∥∥x0(ω)eA(ω)t − y0(ω)eA(ω)t
∥∥∥

Cc
� γ ‖x0(ω)− y0(ω)‖Cc

for some γ � 0.

We just take γ =
∣∣eA(ω)t

∣∣. The conclusion then reduces to: There exists a unique random

solution of equation (2.3.1) in Dρ provided that γ � 1. We have assumed that
∣∣eA(ω)t

∣∣ � 1;

hence, the theorem is proven. �

In the next section of this study we shall consider the existence and uniqueness of a random

solution of a stochastic linear pursuit-evasion game with deterministic controls.
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2.4 The Solution of a Stochastic Linear Pursuit-Evasion Game With
Nonrandom Controls

In this section we shall be concerned with stochastic pursuit-evasion games described by

stochastic linear differential equations of the form
d
dt

x(t;ω) = A(ω)x(t;ω)+Bu(t)−Cv(t), t � 0 (2.4.1)

where

i) ω ∈Ω, where Ω is the supporting set of a complete measure space (Ω,A,μ);

ii) x(t;ω) is the unknown (n×1) random state variable;

iii) u(t) ∈ Er is the control vector of the pursuer, v(t;ω) ∈ Es is the control vector of the

evader; and

iv) A(ω) is a (n×n) random matrix and B and C are respectively (n× r) and (n× s).

It is immediately obvious that equation (2.4.1) is a special case of equation (2.1.1). This

equation is still general in the sense that x(t;ω) appears on the right hand side; but here

we consider deterministic control vectors. Physically this means that the controllers are

attempting to control a randomly varying object with non-random controls. Thinking of

an incoming missile, the path which it is following cannot be fitted to a deterministic tra-

jectory. On the other hand if we are thinking of x(t;ω) as some function of the distance

between a pursuer and an evader, then x(t;ω) could be random because either or both of

the players are following random paths or because the players cannot measure the distance

accurately.

Mathematically this means that the state is being affected by some stochastic process

w(t;ω), but since the players cannot observe Ω, they seek optimal deterministic controls.

The purpose of this chapter is threefold. We will find the smallest max-min completion

time for the game (2.4.1) as well as optimal controls for the pursuer and evader. Finally we

will give sufficient conditions for completion of the game in a finite time.

2.4.1 Preliminaries

The above random differential system (2.4.1) can easily be reduced to the stochastic vector

integral equation

x(t;ω) =Φ(t;ω)x0(ω)+
∫ t

0
Φ(t − τ;ω)[Bu(τ)−Cv(τ)]dτ.

with initial conditions

x(0;ω) = x0(ω)
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where the matrix Φ(t;ω) is given by Φ(t;ω) = eA(ω)(t).

The problem is to choose controls v(t) and uv(t) such that x(tu,v;ω) ∈ Mε for some finite

time tu,v, where Mε was defined in Section 2.2 as an ε-ball about the origin.

We shall consider the random solution x(t;ω) and the stochastic free term Φ(t;ω) as

functions of the real argument t with values in the space L2(Ω,A,μ). The function

[Bu(t)−Cv(t)] is also a function of the real argument t whose values are in L2(Ω,A,μ).

The stochastic kernel Φ(t − τ;ω) is an essentially bounded function with respect to

μ for every t and τ , 0 � τ � t < ∞, with values in L∞(Ω,A,μ). Thus the product

Φ(t − τ;ω) [Bu(τ)−Cv(τ)] will always be in the space L2(Ω,A,μ). We shall assume

that the mapping

(t,τ) →Φ(t − τ;ω)

from the set

Δ= {(t,τ) : 0 � τ � t < ∞}

into L∞(Ω,A,μ) is continuous. That is,

μ -ess sup
ω

|Φ(tn − τn;ω)−Φ(t − τ;ω)| → 0

as n → ∞ whenever (tn,τn) → (t,τ) as n → ∞.

We shall define as admissible controls all measureable functions whose values belong (al-

most everywhere) to some given compact sets U ⊂ Er and V ⊂ Es. u(t) ∈U , v(t) ∈V for

t � 0. Further, we shall assume that U is convex.

The terminal set, Mε , is just an ε-ball about the zero element of L2(Ω,A,μ). As mentioned

previously, the problem is to choose admissible controls v(t) and uv(t) such that

Φ(tu,v;ω)x0(ω)+
∫ tu,v

0
Φ(tu,v − τ) [Buv(τ)−Cv(τ)]dτ ∈ Mε (2.4.2)

for some tu,v ∈ R+.

Definition 2.4.1. The game (2.4.1) is said to be completed from an initial point x(0;ω) =

x0(ω), if, no matter what control v(t) the evader chooses, the pursuer can choose a control

uv(t) such that x(t;ω) ∈ Mε for some finite time t.

We shall define the functions HU (η) and HV (ξ ) by

HU (η) = sup
u∈U

ηu;

HV (ξ ) = sup
v∈V

ξv
(2.4.3)
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where η and ξ are arbitrary (r× 1) and (s× 1) vectors. Then there exist vectors uη ∈ U

and vξ ∈V such that

HU (η) = sup
u∈U

ηu = ηuη ; and

HV (ξ ) = sup
v∈V

ξv = ξvξ .

(2.4.4)

It can be shown that the function HU (η) [HV (ξ )] defined by (2.4.3) is continuous with

respect to η [ξ ]. Furthermore, if uη
[
Vξ

]
is uniquely determined in some neighborhood of

η [ξ ], then uη
[
Vξ

]
is continuous in that neighborhood.

For convenience we shall define the (n× r) and (n× s) matrices K(t;ω) and L(t;ω) by

K(t;ω) =Φ(t;ω)B;

L(t;ω) =Φ(t;ω)C.

Equation (2.4.2) can now be rewritten as

Φ(tu,v;ω)x0(ω)+
∫ tu,v

0
K(τ;ω)uv (tu,v − τ)dτ−

∫ tu,v

0
L(τ;ω)v(tu,v − τ)dτ ∈ Mε (2.4.5)

Theorem 2.4.1. Given any admissible control v(t), a necessary and sufficient condition

for the existence of an admissible control uv(t) such that (2.3.5) holds for some finite time

tu,v � 0 is the existence of a t ∈ R+ such that

−ε � λΦ(t;ω)x0(ω)+
∫ t

0
HU (λK(τ;ω))dτ−

∫ t

0
HV (λL(τ;ω))dτ (2.4.6)

for all (1×n) vectors λ (ω) = λ such that ‖λ‖L2(Ω,A,μ) = 1.

Proof. Let λ be an arbitrary (1× n) vector such that ‖λ‖L2(Ω,A,μ) = 1. Multiplying the

left hand side of line (2.3.5) by −λ on the left and applying Schwarz’s inequality gives

−λΦ(tu,v;ω)x0(ω)−
∫ tu,v

0
λK(τ;ω)uv (tu,v − τ)dτ+

∫ tu,v

0
λL(τ;ω)v(tu,v − τ)dτ � ε.

Since the above inequality must hold for all v(t) ∈ V , it must hold for supv∈V λL(t;ω)v =

HV (λL(t;ω)) � λL(t;ω)v(tu,v − t).

By definition, HU (λK(t;ω)) � λK(t;ω)uv (tu,v − t). Hence

λΦ(tu,v;ω)x0(ω)+
∫ tu,v

0
HU (λK(τ;ω))dτ−

∫ tu,v

0
HV (λL(τ;ω))dτ � −ε.

Putting t = tu,v yields condition (2.4.6).

Now suppose that there is an admissible control v(t) such that no admissible control uv(t)

exists such that (2.4.5) holds for some finite time t. This means that the compact, convex

set defined by {∫ t

0
k(τ;ω)u(t − τ)dτ : u(−τ) ∈U

}
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does not intersect the compact sphere

−Φ(t;ω)x0(ω)+
∫ t

0
L(τ;ω)v(t − τ)dτ+Mε .

Therefore, there is a vector λ ∈ L2(Ω,A,μ), ‖λ‖L2(Ω,A,μ) = 1, such that

−λΦ(t;ω)x0(ω)+
∫ t

0
λL(τ;ω)v(t − τ)dτ+λa >

∫ t

0
K(τ;ω)u(t − τ)dτ (2.4.7)

for all u(t) ∈U , 0 � τ � t <∞, and for all a ∈ Mε . Since inequality (2.4.7) must hold for a

u(t) ∈U such that

λK(τ;ω)u(t − τ) = HU (λK(τ;ω)) = sup
u∈U

λK(τ;ω)u

and for a vector α = −ελ ′ ∈ Mε , and since∫ t

0
HV (λL(τ;ω))dτ �

∫ t

0
λL(τ;ω)v(t − τ)dτ,

λ
(
−ε λ ′) > λΦ(t;ω)x0(ω)+

∫ t

0
HU (λK(τ;ω))dτ−

∫ t

0
HV (λL(τ;ω))dτ

contradicting inequality (2.4.6) �

Corollary 2.4.1. Given any admissible control v(t), a necessary and sufficient condition

for the existence of an admissible control uv(t) such that (2.4.5) holds for some finite time

tu,v � 0 is that there exists a t ∈ R+ such that

inf
λ∈Q

[
λΦ(t;ω)x0(ω)+

∫ t

0
HU (λK(τ;ω))dτ−

∫ t

0
HV (λL(τ;ω))dτ

]
� −ε

where Q is a set of (1×n) vectors λ ∈ L2(Ω,A,μ) such that ‖λ‖L2(Ω,A,μ) = 1.

We shall denote by u(t,λ ) and v(t,λ ) the vectors u ∈ U and v ∈ V which maximize

λK(t;ω)u and λL(t;ω)v. That is,

HU (λK(t;ω)) = sup
u∈U

λK(t;ω)u = λK(t;ω)u(t,λ )

and

HV (λL(t;ω)) = sup
v∈V

λL(t;ω)v = λL(t;ω)v(t,λ ).

Assume that for each λ ∈ Q, the controls u(τ,λ ) and v(τ,λ ) are uniquely determined for

all τ ∈ [0,T ] except on a set of measure zero. Then, see the remark following equation

(2.4.4), the controls u(τ,λ ) and v(τ,λ ) are piecewise continuous on [0,T ].

The scalar function F (t,λ ;ω,x0(ω)) will be defined by

F(t,λ ;ω,x0(ω))

= λΦ(t;ω)x0(ω)+
∫ t

0
HU (λK(τ;ω))dτ−

∫ t

0
HV (λL(τ;ω))dτ (2.4.8)

= λΦ(t;ω)x0(ω)+λ
∫ t

0
K(τ;ω)u(τ,λ )(λ )dτ−λ

∫ t

0
L(τ;ω)v(τ,λ )dτ.
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Lemma 2.4.1. The gradient vector with respect to λ of the function F (t,λ ;ω,x0(ω)) is

given by

gradλF (t,λ ;ω,x0(ω)) = x(t,λ ;ω,x0(ω))

where

x(t,λ ;ω,x0(ω)) =Φ(t;ω)x0(ω)+
∫ t

0
K(τ;ω)u(τ,λ )dτ−

∫ t

0
L(τ;ω)v(τ,λ )dτ. (2.4.9)

Moreover gradλF(t,λ ;ω,x0(ω)) is continuous in t and λ .

Proof. Let γ be an arbitrary (1×n) vector. Then, from the definition of u(t,λ ),

HU ((λ + γ)K(t;ω))−HU(λK(t;ω)) � (λ + γ)K(t;ω)u(t,λ )−λK(t;ω)u(t,λ )

= γK(t;ω)u(t,λ ),

and

HU ((λ + γ)K(t;ω))−HU(λK(t;ω)) � (λ + γ)K(t;ω)u(t,λ + γ)−λK(t;ω)u(t,λ + γ)

= γK(t;ω)u(t,λ + γ).

Integrating with respect to t we get

γ
∫ t

0
K(τ;ω)u(τ,λ )dτ �

∫ t

0
HU ((λ + γ)K(τ;ω))dτ−

∫ t

0
HU (λK(t;ω))dτ

�
∫ t

0
K(τ;ω)u(τ,λ + γ). (2.4.10)

Let t1, t2, . . . , tN (0 < t1 < t2 < · · · < tN < t) be the points where u(t,λ ) is not continuous

and define the following subintervals of [0, t]:

I0(ε) = [0,ε)

Ii(ε) = (ti − ε, ti + ε), i = 1,2, . . . ,N

IN+1(ε) = (t − ε, t]

I(ε) = [0, t]−
N+1⋃
i=0

Ii(ε).

By the continuity of u, for sufficiently small ε > 0 there exists a δ = δ (ε) > 0 such that if

‖γ‖ < δ (ε) and t ∈ I(ε), then ‖u(t,λ + γ)−u(t,λ )‖ < ε.
Since U is compact (closed and bounded), there is a k > 0 such that ‖u(t,λ+γ)−u(t,λ )‖<

k if t ∈
N+1⋃
i=0

Ii(ε).

Therefore, ∫ t

0
‖u(t,λ + γ)−u(t,λ )‖dτ < ε t +2ε(N +1)k. (2.4.11)
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Inequalities (2.4.10) and (2.4.11) imply that

gradλ
∫ t

0
λK(τ;ω)u(τ,λ )dτ =

∫ t

0
K(τ;ω)u(τ,λ )dτ.

similarly,

gradλ
∫ t

0
λL(τ;ω)v(τ,λ )dτ =

∫ t

0
L(τ;ω)v(τ,λ )dτ.

Hence (2.4.9) is proven. The continuity of gradλF(t,λ ;ω,x0(ω)) is evident from the

course of the proof. �

Since F(t,λ ;ω,x0(ω)) is continuous in λ and the set

Q =
{
λ = (λ1,λ2, . . . ,λn) ∈ L2(Ω,A,μ) : ‖λ‖L2(Ω,A,μ) = 1

}
is compact. Thus, there is a λ ∈ Q which attains the infimum of F(t,λ ;ω,x0(ω)). Let us

denote it by λt . That is

inf
λ∈Q

F(t,λ ;ω,x0(ω)) = F(t,λt ;ω,x0(ω)).

For convenience, when the initial condition is x0(ω), we will write Fω(t,λ ) and xω(t,λ )

instead of F (t,λ ;ω,x0(ω))and x(t,λ ;ω,x0(ω)) respectively.

Lemma 2.4.2. We have

inf
λ∈Q

Fω(t,λ ) = Fω(t,λt) = −‖xω(t,λt)‖L2(Ω,A,μ) (2.4.12)

where xω(t,λt) is given by equation (2.4.9).

Proof. Since minFω(t,λ ) is sought for ‖λ‖2
L2(Ω,A,μ)−1 = 0 and t is fixed, define

Fω (t,λ ,θ) = Fω(t,λ )+θ
(
‖λ‖2

L2(Ω,A,μ)−1
)

where θ is a Lagrange multiplier. Put
∂
∂λi

Fω = xi(t,λ )+2θλi = 0, i = 1,2, . . . ,n

where xi(t,λ ) and λi denote the ith components of xω(t,λ ) and λ respectively. Solving we

get

λi =
xi

2θ
.

‖λ‖2
L2(Ω,A,μ) =

∫
Ω

n

∑
i=1

( xi

2θ

)2
dμ(ω) = 1.

∫
Ω

n

∑
i=1

x2
1 dμ(ω) = 4θ 2.

‖xω(t,λ )‖L2(Ω,A,μ) = 2θ .

Hence,

λt =
−x′ω(t,λ )

‖xω(t,λ )‖L2(Ω,A,μ)
. (2.4.13)

Substituting line (2.4.13) into line (2.4.8) gives the desired result (2.4.12). �
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Lemma 2.4.3. Let us assume that for any time t > 0 and for λ1, λ2 ∈ Q,

‖xω (t,λ1)‖L2(Ω,A,μ) = ‖xω (t,λ2)‖L2(Ω,A,μ)

implies that λ1 = λ2 . Then,
d
dt

Fω (t,λt) = λtA(ω)Φ(t;ω)x0(ω)+HU (λtK(t;ω))−HV (λtL(t;ω)) .

Proof. Let δ be an arbitrary real number. Since the matrix Φ(t;ω) = eA(ω)t , we see that

Φ(t +δ ;ω) =Φ(t;ω)+
∫ t+δ

t
A(ω)Φ(τ;ω)dτ.

Then,

Fω (t +δ ,λ ) = Fω(t,λ )

+
∫ t+δ

t
[λA(ω)Φ(τ;ω)x0(ω)+HU (λK(τ;ω))−HV (λL(τ;ω))]dτ.

(2.4.14)

Now, by the definition of λt ,

Fω (t,λt+δ ) � Fω (t,λt) = inf
λ∈Q

Fω(t,λ ).

Thus, from (2.4.14), we get

Fω (t +δ ,λt+δ )−Fω (t,λt) �
∫ t+δ

t
λt+δA(ω)Φ(τ;ω)x0(ω)dτ

+
∫ t+δ

t
[HU (λt+δK(τ;ω))−HV (λt+δL(τ;ω))]dτ.

(2.4.15)

On the other hand, Fω (t +δ ,λt+δ ) � Fω(t +δ ,λt) implies that

Fω (t +δ ,λt+δ )−Fω (t,λt) � Fω (t +δ ,λt)−Fω (t,λt) . (2.4.16)

Since F is continuous in t, inequalities (2.4.15) and (2.4.16) show the continuity of F in t

and λt . That is,

Fω (t +δ ,λt+δ ) → Fω (t,λt) as δ → 0. (2.4.17)

From equation (2.4.12) it is clear that the assumption of Lemma 2.4.5 implies the unique-

ness of the λ ∈ Q which attains the infimum of Fω(t,λ ). It then follows from the continuity

of FΩ, line (2.4.17), that

λt+δ → λt as δ → 0. (2.4.18)

If δ > 0, we get from inequalities (2.4.15) and (2.4.16)

1
δ

∫ t+δ

t
[λτ+δA(ω)Φ(τ;ω)x0(ω)+HU (λτ+δK(τ;ω))−HV (λτ+δL(τ;ω))]dτ

� 1
δ

[Fω (t +δ ,λt+δ )−Fω (t,λt)] (2.4.19)

� 1
δ

[Fω (t +δ ,λt)−Fω (t,λt)] .
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In view of (2.4.18) and the continuity of HU (λK(t;ω)) and HV (λL(t;ω)) in λ and t, it

follows from inequality (2.4.19) that
d
dt

Fω (t,λt) = λtA(ω)Φ(t;ω)x0(ω)+HU (λtK(t;ω))−HV (λtL(t;ω)) .

If δ < 0, the same result holds. Thus the lemma is proven. �

We are now in a position to give conditions under which the game (2.3.1) will have a finite

maximum completion time.

2.4.2 Completion of the Game

Suppose that ‖x0(ω)‖L2(Ω,A,μ) > ε and there is a time t ∈ R+ such that

inf
λ∈Q

Fω(t,λ ) = Fω (t,λt) = −ε. (2.4.20)

Theorem 2.4.2. No matter what admissible control v(t), t ∈ R+, the evader chooses, the

game can be completed in a time not greater than t0, where t0 is the smallest nonnegative

time satisfying (2.4.20). Furthermore, no matter what admissible control u(t), t ∈ R+,

the pursuer chooses, the evader can choose a control v(t) such that the game cannot be

completed in a time less than t0.

Proof. Given an arbitrary control v(t) ∈V , t ∈ R+, we shall define the function

FV (t,λ ;ω,x0(ω)) = λΦ(t;ω)x0(ω)

+λ
∫ t

0
K(τ;ω)u(τ;λ )dτ−λ

∫ t

0
L(τ;ω)V (t − τ)dτ.

(2.4.21)

From the definition of v(t;λ ) and equation (2.4.8) it is clear that

FV (t,λ ;ω,x0(ω)) � F (t,λ ;ω,x0(ω))

for all λ ∈ Q. Hence,

inf
λ∈Q

Fv(t0,λ ;ω,x0(ω)) � inf
λ∈Q

Fω(t0,λ ;ω,x0(ω)) = −ε. (2.4.22)

Let us also define the function

xv (t,λt ;ω,x0(ω)) =Φ(t;ω)x0(ω)

+λ
∫ t

0
K(τ;ω)u(τ;λτ)dτ−λ

∫ t

0
L(τ;ω)v(t − τ)dτ.

(2.4.23)

where λt ∈ Q attains the infimum of Fv (t,λ ;ω,x0(ω)) when t and x0(ω) are fixed. Then,

by Lemma 2.4.4,

inf
λ∈Q

FV (t,λ ;ω,x0(ω)) = FV (t,λt ;ω,x0(ω)) = −‖xv (t,λt ;ω,x0(ω))‖L2(Ω,A,μ) . (2.4.24)
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Since xv (t,λt ;ω,x0(ω)) is continuous in time t, and equations (2.4.22) and (2.4.24) imply

that

−
∥∥xv

(
t0,λt0 ;ω,x0(ω)

)∥∥
L2(Ω,A,μ) � −ε,

there exists a time t∗, 0 � t∗ � t0, such that

−‖xv (t∗,λt∗ ;ω,x0(ω))‖L2(Ω,A,μ) � −ε.

That is, the game can be completed in a time t∗ which is not greater than t0.

As in (2.4.21) we shall define another function Fu (t,λ ;ω,x0(ω)) by

Fu (t,λ ;ω,x0(ω)) = λΦ(t;ω)x0(ω)+λ
∫ t

0
K(τ;ω)u(t − τ)dτ−λ

∫ t

0
L(τ;ω)u(τ,λ )dτ.

Now from the definition of u(t,λ ) and equation (2.4.8) we see that

Fu (t,λ ;ω,x0(ω)) � F (t,λ ;ω,x0(ω))

for all λ ∈ Q. Therefore,

inf
λ∈Q

Fu (t0,λ ;ω,x0(ω)) � inf
λ∈Q

F (t0,λ ;ω,x0(ω)) = −ε. (2.4.25)

Following equation (2.4.23), let us define the function xu(t,λt ;ω,x0(ω)) by

xu (t,λt ;ω,x0(ω)) =Φ(t;ω)x0(ω)+
∫ t

0
K(τ;ω)u(t − τ)dτ−

∫ t

0
L(τ;ω)v(τ,λτ)dτ

where λt ∈ Q attains the infimum of Fu (t,λ ;ω,x0(ω)). Then again by Lemma 2.4.4,

inf
λ∈Q

Fu (t,λ ;ω,x0(ω))−Fu (t,λt ;ω,x0(ω)) = −‖xu (t,λt ;ω,x0(ω))‖L2(Ω,A,μ) . (2.4.26)

Thus, by (2.4.25) and (2.4.26),

−
∥∥xu

(
t0,λt0 ;ω,x0(ω)

)∥∥
L2(Ω,A,μ) � −ε.

That is, the game cannot be completed in time less than t0. Thus t0 is the maximin comple-

tion time. �

The controls, u(t) = u
(
t0 − t,λt0

)
and v(t) = v

(
t0 − t,λt0

)
for t ∈ [0, t0], are optimal in the

sense that the pursuer wants to complete the game as soon as possible and the evader wants

to escape as long as possible. The time t0 is the smallest maximin completion time of the

game. When will a finite time t exist such that (3.3.1) holds?

Theorem 2.4.3. If (i) the homogeneous stochastic differential equation
d
dt

x(t;ω) = A(ω)x(t;ω) (2.4.27)

is stochastically asymptotically stable; and (ii) BU ⊃ CV where BU = {Bu : u ∈ U} and

V = {Cv;v ∈ V} are subsets of En, then the game can be completed no matter what the

initial condition x0(ω) ∈ L2(Ω,A,μ) may be.



42 Stochastic Differential Games

Proof. Since CV ⊂ BU , whatever control v(t) ∈ V , t ∈ R+, the evader may choose, the

pursuer can choose a control, such that

Bu(t) = Cv(t) for all t � 0.

Since (2.4.27) is assumed to be stochastically asymptotically stable, there is a finite time t

such that

‖x(t;ω)‖L2(Ω,A,μ) � ε.

Since Φ(t;ω) = eA(ω)t , A(ω)Φ(t;ω) = Φ(t;ω)A(ω). That is, we can change the order of

multiplication. Thus, the conclusion of Lemma 2.3.5 can be written as
d
dt

Fω(t,λt) = λtΦ(t;ω)A(ω)x0(ω)+ max
û∈BU

λtΦ(t;ω)û(t)− min
v̂∈CV

λtΦ(t;ω)v̂(t) (2.4.28)

�

Theorem 2.4.4. Assume that for any t > 0 and for any λ1, λ2 ∈ Q,

‖xω(t,λ1)‖L2(Ω,A,μ) = ‖xω(t,λ2)‖L2(Ω,A,μ)

implies that λ1 = λ2. If there exists a δ > 0 such that

−A(ω)x0(ω)+CV +Mδ ⊂ BU ; (2.4.29)

and

‖λtΦ(t;ω)‖L2(Ω,A,μ) � δ for all t ∈ R+,

where Mδ =
{

x(t;ω) : ‖x(t;ω)‖L2(Ω,A,μ) � δ
}

, then the game starting from x0(ω) can be

completed.

Proof. Let γ ∈ L2(Ω,A,μ) be an arbitrary (1×n) vector such that ‖γ‖L2(Ω,A,μ) � δ > 0.

Then

max
x(t;ω)∈Mδ

γx(t;ω) = γxγ(t;ω) � δ 2.

From relation (2.4.29), for arbitrary x(t;ω) ∈ Mδ and v̂(t) ∈CV there is a û(t) ∈ BU such

that

−A(ω)x0(ω)+ v̂(t)+ x(t;ω) = û(t).

Hence, for all v̂(t) ∈ CV and for all γ such that ‖γ‖L2(Ω,A,μ) � δ , there is a û(t) ∈ BU

such that

γ (û(y)− v̂(t)+A(ω)x0(ω)) � δ 2 > 0.
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The above inequality still holds for a v̂γ such that

γ v̂γ(t) = max
v̂(t)εCV

γ v̂(t).

Also

γ û(t) � γ ûγ = max
û(t)∈BU

γ û(t).

Hence, for all γ such that ‖γ‖L2(Ω,A,μ) � δ > 0,

max
û(t)εBU

γ û(t)− max
v̂(t)∈CV

γ v̂(t)+ γA(ω)x0(w) � δ 2.

Under the assumption of Theorem 2.4.8, Lemma 2.4.5 implies (2.4.28). Setting γ =

λtΦ(t;ω), we get

d
dt

Fω(t,λt) � δ 2 > 0 for all t > 0.

Since Fω(0,λ0) = −‖x0(ω)‖L2(Ω,A,μ) < −ε < 0, it is clear that the game which starts from

x0(ω) can be completed if x0(ω) satisfies relation (2.4.29). �

In Theorem 2.4.6 we gave a condition such that the stochastic linear pursuit-evasion game

(2.4.1) will have a maximin completion time. Then, in Theorems 2.4.7 and 2.4.8 we gave

sufficient conditions for completion of the game no matter what the starting state is. We

now give an interactive procedure for determining the minimum completion time and the

optimal controls.

2.4.3 The Optimal Controls

Assuming that the game (2.4.1) with initial condition x(0,ω) = x0(ω) can be completed,

we can find the minimum completion time t0 and the vector λt0 satisfying condition (2.4.20)

as follows. Choose ε > 0.
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1. Set λ1 =
−x′0(ω)

‖x0(ω)‖L2(Ω,A,μ)(Ω,A,μ)
and them compute Fω(t,λ1) for t � 0 up to the

time t1 such that F(t1,λ1) = −ε . Clearly t1 � t0.

2. Let Fω(ti,λi) = −ε , i = 1,2, . . . , and find minλ∈Q Fω(ti,λ ) using the gradient

method of Lemma 2.3.3. Call it Fω(ti,λi+1). That is,

min
λ∈Q

Fω(ti,λ ) = Fω(ti,λi+1) � −ε.

3. Compute Fω(t,λi+1) for t � ti up to the time ti+1 such that Fω(ti+1,λi+1) = −ε .

It is clear that

Fω(t,λi+1) � Fω(t,λt) for all t ∈ [0, ti +1].

4. Repeat steps 2 and3 above for i = 2,3, . . . .

Since ti � ti+1 � t0 for all i, limi→∞ ti exists. Let us denote it by t∗0 � t0. We have Fω(ti,λi) =

−ε for all i = 1,2, . . . and limi→∞ ti = t∗0 � t0. Since Fω(t,λt) is continuous in t, we get

Fω
(

t∗0 ,λt∗0

)
= −ε.

But t0 is the smallest nonnegative time satisfying line (2.4.20). Thus, t∗0 = t0. Also, λi+1 =

λti → λt0 from the left. If λt is not continuous at t0, let λ−
t0 denote the limit from below.

That is, limδ+0λt0−δ = λ−
t0 . Thus the optimal controls are u(t) = u

(
t0 − t,λ−

t0

)
, v(t) =

v
(
t0 − t,λ−

t0

)
for all t ∈ [0, t0].

With the iterative procedure described above one can program the game for an electronic

computer. It is first necessary to check if the game can indeed be completed. For this it is

an easy matter to program the Corollary 2.4.2. That is, we must first check to see if there

exists a finite time t ∈ R+ such that

inf
λ∈Q

[
λΦ(t;ω)x0(ω)+

∫ +

0
HU (λK(τ;ω))dτ−

∫ t

0
HV (λL(τ;ω))dτ

]
� −ε

where Q is the set of all (1×n) vectors λ such that ‖λ‖L2(Ω,A,μ) = 1.

In this section we have considered stochastic linear differential games of the form
d
dt

x(t;ω) = A(ω)x(t;ω)+BU(t)−Cv(t), t � 0

which is a special case of equation (2.1.1)? Here we have taken constant matrices B and C

and control sets U(t) and V (t) which are compact subsets of Euclidean spaces. The method

of investigation was to first reduce the problem to the existence of a random solution to the

stochastic vector integral equation

x(t;ω) =Φ(t;ω)x0(ω)+
∫ t

0
Φ(t − τ;ω)[Bu(τ)−Cv(τ)]dτ
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where Φ(t;ω) = eA(ω)t .

We then proved several theorems on completion of the game. Theorem 2.4.1 and the Corol-

lary 2.4.2 give necessary and sufficient conditions for the existence of a control for the

pursuer so that he can force completion of the game in a finite time. No matter what con-

trols that two players choose, Theorems 2.4.6 gives a condition sufficient to guarantee the

completion of the game and also gives the minimum completion time. Theorem 2.4.7 gives

conditions on the control sets, which are independent of the initial condition, which guar-

antee completion of the game; while Theorem 2.4.8 gives conditions on the control sets

and the initial condition which force completion of the game.

Finally we presented an iterative procedure which can be used to find the minimum comple-

tion time mentioned in Theorem 2.4.6 and to find the optimal controls to force completion

in this time.



Chapter 3

Two Person Zero-Sum Differential
Games-General Case

3.1 Introduction

The object of this Chapter is to present the concept of strategies and solutions as well as

existence and uniqueness results for the two person zero-sum stochastic differential games.

First, we will discuss some definitions and a brief survey of earlier works. Then, we will

present the earlier work on stochastic differential games using martingale methods. Almost

all of the material on this subsection comes from Elliott [47]. In the next subsection, we will

briefly mention the recent results obtained on two person zero-sum stochastic differential

games using the concept of viscosity solutions, Souganidis [181]. There are various other

methods used in studying stochastic differential games. In Bensoussan and Lions [22],

two player stochastic differential games with stopping is analyzed using the method of two

sided variational inequalities. Also refer to Bensoussan and Friedman [23, 24] for more

results in this direction. Also, a zero-sum Markov games with stopping and impulsive

strategies is discussed in Stetner [187].

3.2 Two Person Zero-sum Games: Martingale methods

The evolution of the system is described by a stochastic differential equations

dx(t) = b(t,x,u1,u2)dt +σ(t,x)dB(t) (3.2.1)

with

x(0) = x0 ∈ R
n, t ∈ [0,1],

where B is an n-dimensional Brownian motion; ui ∈ Ui, i = 1,2 are control functions.

There are two controllers, or players, I and II. The game is zero sum, if player I is choosing

his control to maximize the payoff and player II is choosing his control to minimize the

47
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payoff. Let ℑt = σ{x(s) : s � t} be the σ -algebra generated on C , the space of continuous

functions from [0,1]→R
n, up to time t. Assume that b : [0,1]×C ×U1×U2 →R

n and σ ,

a nonsingular n× n matrix, satisfy the usual measurability and growth conditions. Given

an n-dimensional Brownian motion B(t) on a probability space (Ω,P), these conditions on

σ ensures the stochastic equation

x(t) = x0 +
∫ t

0
σ(s,x)dB(t),

has unique solution with sample path in C . Let ℑt = σ{B(s) : s � t}.

Assume that the spaces U1 and U2 are compact metric spaces and suppose that b is con-

tinuous in variables u1 ∈ U1 and u2 ∈ U2. The admissible feedback controls A t
1s for the

player I, over [s, t] ⊂ 0,1], are measurable functions u1 : [s, t]×C → U1 such that for each

τ , s � τ � t, u1(τ, ·) is Ft-measurable and for each x ∈ C , and u1(·,x) is Lebesgue mea-

surable. The admissible feedback controls A t
2s for the player II, over [s, t] ⊂ [0,1], are

measurable functions u2 : [s, t]×C → U2 with similar properties. Let Ai = A 1
i0, i = 1,2.

For ui ∈ A t
is, i = 1,2, write

bu1,u2(τ,x) = b(τ,x,u1(τ,x),u2(τ,x)) .

Then conditions on b ensure that

E
[
expξ t

s
(
bu1,u2

)
| Fs

]
= 1 a.s. P,

where

ξ t
s
(

f u1,u2
)

=
∫ t

s
{σ−1(τ,x)bu1,u2(τ,x)}′dB(τ)−1/2

∫ t

s

∣∣σ−1(τ,x)bu1,u2(τ,x)
∣∣2

dτ.

For each ui ∈ Ai a probability measure Pu1,u2 is defined through

dPu1,u2

dP
= expξ 1

0
(
bu1,u2

)
.

Then by the Girsanov’s Theorem, we have the following result.

Theorem 3.2.1. Under the measure Pu1,u2 the process wu1,u2(t) is a Brownian motion on

Ω, where

dwu1,u2(t) = σ−1(t,x)(dx(t)−bu1,u2(t,x)dt) .

Corresponding to controls ui ∈ Ai, i = 1,2 the expected total cost is

J(u1,u2) = Eu1,u2

[
g(x(1))+

∫ 1

0
hu1,u2(t,x)dt

]
(3.2.2)

where h and g are real valued and bounded, g(x(1)) is F1 measurable and h satisfies the

same conditions as the components of b. Also Eu1,u2 denotes the expectation with respect



Two Person Zero-Sum Differential Games-General Case 49

to Pu1,u2 . For a zero sum differential game, player I wishes to choose u1 so that J(u1,u2) is

maximized and player II wishes to choose u2 so that J(u1,u2) is minimized.

Now the principle of optimality will be derived. Suppose that player II uses the control

u2(t,x) ∈ A2 through out the game. Then if player I uses the control u1(t,x) ∈ A1, the cost

incurred from time t onwards, given Ft is independent of the controls used up to time t and

is given by

ψu1,u2
t = Eu1u2

[
g(x(1))+

∫ 1

t
hu1,u2(s,x)ds|Ft

]
.

Because L1(ω) is a complete lattice, the spremium

W u2
t =

∨
u1∈A1

ψu1,u2
t , (3.2.3)

exists, and represents the best that player I can attain from t onwards, given that player II

is using control u2. Let u1(u2) represent the response of player I to the control u2 used by

player II. Then we have

Theorem 3.2.2.

(a) u∗1(u2) is the optimal reply to u2 iff

W u2
t +

∫ t

0
hu∗1,u2(s)ds,

is a martingale on
(
Ω,ℑt ,Pu∗1(u2),u2

)
.

(b) In general, for u1 ∈ A1,

W u2
t +

∫ t

0
hu1,u2(s)ds

is a super martingale on (Ω,ℑt ,Pu1,u2).

From martingale representation results, one can see that u∗1 is optimal reply for player I iff

there is a predictable process gu2
t , such that,

∫ 1

0
|gu2

s |2 ds < ∞ a.s.,

and

W u2
t +

∫ t

0
hu∗1,u2(s)ds = W u2

0 +
∫ t

0
gu2

s dwu∗1(u2),u2
s .

For any other u1 ∈ A1 the supermartingale W u2
t +

∫ t
0 hu1,u2(s)ds has a unique Doob-Meyer

decomposition as

W u2
0 +Mu1,u2

t +Au1,u2
t , (3.2.4)
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where Mu1,u2
t is a martingale on (Ω,ℑt ,Pu1,u2) and Au1,u2

t is a predictable decreasing pro-

cess. From the representation (3.2.4),

W u2
t +

∫ t

0
hu∗1,u2(s)ds = W u2

0 +
∫ t

0
gu2σ−1 (dxs −bu1,u2

s ds)

−
∫ t

0

[(
gu2σ−1bu∗1(u2),u2

s +hu∗1(u2),u2
s

)
−

(
gu2σ−1bu1,u2

s +hu∗1(u2),u2
s

)]
ds.

Again from Theorem 3.2.1, dwu1,u2
s = σ−1

(
dxs −bu1,u2

s ds
)

is a Brownian motion on

(Ω,ℑt ,Pu1,u2) and hence the stochastic integral is a predictable process, so by uniqueness

of the Doob-Meyer decomposition

Mu1,u2
t =

∫ t

0
gu2 dwu1,u2 ,

Au1,u2
t =

∫ t

0

[
(gu2σ−1bu∗1(u2),u2

s +hu∗1(u2),u2
s )−

(
gu2σ−1bu1,u2

s +hu∗1(u2),u2
s

)]
ds.

Since Au1,u2
t is decreasing one can obtain the following principle of optimality.

Theorem 3.2.3. If u∗1(u2) is the best reply for player I then, almost surely,

gu2σ−1bu∗1(u2),u2
s +hu∗1(u2),u2

s � gu2σ−1bu1,u2
s +hu∗1(u2),u2

s . (3.2.5)

That is, if the optimal reply for player I exists, it is obtained by maximizing the Hamiltonian

gu2σ−1bu1,u2
s +hu1,u2

s . (3.2.6)

We will establish existence of optimal control u∗1(u2) ∈ A1 for player I in reply to any

control u2 ∈ A2 used by player II. Now we will make the payoff (3.2.1) into a completely

terminal payoff by introducing a new state variable xn+1 and a new Brownian motion Bn+1

on a probability space (Ω′,P′). Suppose xn+1 satisfies the equation

dxn+1 = h(t,x,u1,u2)dt +dBn+1,

xn+1(0) = 0.

The (n + 1)-dimensional process (x,xn+1) is defined on the product space (Ω+,P+) =

(Ω×Ω′,P×P′). If we write

x+ = (x,xn+1) , b+ = (b,h) , σ+ =

[
σ 0

0 1

]
, and wn+1 = Bn+1,

then w+ = (w,wn+1) is an (n+1)-dimensional Brownian motion on Ω+.

Define a new probability measure P+
u1,u2

on Ω+ by putting

dP+
u1,u2

dP
= expξ 1

0
(

f +
u1,u2

)
.
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Let E+
u1,u2

denote the expectation with respect to P+
u1,u2

. Since wn+1 is a Brownian motion

and h and g are independent of xn+1, the expected payoff corresponding to the controls u1

and u2 is given by,

E+
u1,u2

[g(x(1))+ xn+1(1)] = Eu1,u2

[
g(x(1))+

∫ 1

0
h(s,x,u1,u2)ds

]
.

Define

W+
u2

(t) =
∨

u1∈U1

E+
u1,u2

[g(x(1))+ xn+1(1)|ℑ+
t ],

the suprimum being in L1 (Ω+). Let C+ denote the R
n+1 valued continuous function on

[0,1] and ℑ+
t the σ−field on C+ generated up to time t. LetΦ+ = {φ : [0,1]×C+ →R

n+1}
which satisfy

(i) for each t ∈ [0,1], φ (t, ·) is ℑ+
t measurable,

(ii) for each x ∈C+, φ (·,x) is Lebesgue measurable,

and

(iii) |(σ+)−1(t,x)φ(t,x)| � M(1+‖x‖t) where ‖x‖t = sup0�s�t |x(s)|.

Write D = {expξ 1
0 (φ) : φ ∈ Φ+}. Because φ has linear growth E+ expξ 1

0 (φ) = 1 for all

φ ∈Φ+, where E+ denotes the expectation with respect to P+. Since D is weakly compact,

we have the following result.

Theorem 3.2.4. There is a function H ∈ Φ+, such that (W+
u2

(t),ℑ+
t ,P∗) is a martingale.

Here P∗ is defined on Ω+ by
dP∗

dP+ = expξ 1
0 (H). (3.2.7)

If there is an optimal reply u∗1(u2) for player I, take H = f +
u∗1(u2),u2

.

This result states that, even if there is not an optimal control, there is always a ’drift term’

H ∈Φ+ whose corresponding measure gives the maximum value function, that is,

W+
u2

(t) =
∨

u1∈U1

E+
u1,u2

[
g(x(1))+ xn+1(1) | ℑ+

t
]

= E∗[g(x(1))+ xn+1(1) | ℑ+
t
]

where E∗ denotes expectation with respect to P∗.

Under P∗, using Girsanov’s theorem, we are considering an n + 1-dimensional Brownian

motion w∗ on (Ω+,P∗) defined by(
dw∗

dw∗
n+1

)
=

(
σ−1 0

0 1

)(
dx− Ĥdt

dxn+1 −Hn+1dt

)
.
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where Ĥ denotes the first n coordinates of H.

Since h(t,x,u1(t,x),u2(t,x)) is independent of xn+1, for any controls, the weak limit Hn+1

is independent of xn+1. So for any control u1 ∈U1:

E+
u1,u2

[g(x(1))+
∫ 1

0
h(s,x,u1,u2)ds+wn+1(1)−wn+1(t)|ℑ+

t ]+ xn+1(t)

= Eu1,u2 [g(x(1))+
∫ 1

t
h(s,x,u1,u2)ds+wn+1(1)−wn+1(t)|ℑt ]+ xn+1(t).

Taking suprimum to obtain W+
u2

, we see

W+
u2

(t) = W u2
t +

∫ t

0
Hn+1(s)ds+w∗

n+1(t).

Therefore,

W u2
t +

∫ t

0
Hn+1(s)ds+w∗

n+1(t) = E∗[g(x(1))+ xn+1(1)|ℑ+
t ].

Taking the expectation with respect to ℑt ⊂ ℑ+
t we have

W u2
t +

∫ t

0
Hn+1(s)ds = E∗[g(x(1))+ xn+1(1)|ℑt ].

Hence, W u2
t +

∫ t
0 Hn+1(s)ds is a martingale on (Ω,ℑt ,P∗), and thus it can be represented

as a stochastic integral, that is, Bu2 +
∫ t

0 g∗dw∗, with respect to n−dimensional Brownian

motion w∗ defined on (Ω,ℑt ,P∗) by

dw∗ = σ−1dx−σ−1Hdt.

Here, Bu2 = W u2
0 and g∗ is a predictable process. Under any other control u1 ∈ U1, as in

Theorem 3.2.2, W u2
t +

∫ t
0 hu1,u2

s ds is a supermartingale and hence

W u2
t +

∫ t

0
hu1,u2

s ds

= Bu2 +
∫ t

0
g∗dwu1,u2

s +
∫ t

0

(
g∗σ−1bu1,u2

s +hu1,u2
s

)
−

(
g∗σ−1Ĥs +Hn+1(s)

)
ds.

(3.2.8)

Since wu1,u2
s is a Brownian motion on (Ω,Pu1,u2) defined by

dwu1,u2
s = σ−1 (dxs −bu1,u2

s ds) ,

the first integral on the right hand side of (3.2.8) is a stochastic integral and the second a

decreasing process. Hence we have almost surely

g∗σ−1Ĥ +Hn+1 � g∗σ−1bu1,u2 +hu1,u2 . (3.2.9)
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If there is a process u∗1(u2) such that, almost surely,

g∗σ−1Ĥ +Hn+1 = g∗σ−1 f u∗1,u2 +hu∗1,u2

then

W u2
t +

∫ t

0
hu∗1,u2

s ds = Bu2 +
∫ t

0
g∗dw+

u∗1(u2),u2

and then, it is a martingale. Therefore, u∗1(u2) would be an optimal reply to u2.

For the above process g∗, since b and h are continuous in the control variables u1 and u2

and the control spaces are compact, there is a measurable feedback control u∗1(u2) such that

almost surely

g∗.σ−1bu∗1(u2),u2 +hu∗1(u2),u2 � g∗.σ−1bu1,u2 +hu1,u2 . (3.2.10)

We will now show that such a control u∗1(u2) is an optimal reply for Player I.

Let

Γs(u1,u2) = g∗.σ−1bu1,u2
s +hu1,u2

s

and

Γ̂s = g∗.σ−1Ĥs +Hm+1(s),

and let u∗1(u2) is selected as in (3.2.10) so that Γs (u∗1,u2) � Γs(u1,u2). Then

W u2
t +

∫ t

0
hu1,u2

s ds = Bu2 +
∫ t

0
g∗dw+

u1,u2
+

∫ t

0

(
Γs(u1,u2)− Γ̂s

)
ds.

Taking the expectations with respect to μ+
u1,u2

at t = 1 we have

E+
u1,u2

[
g(x(1))+

∫ 1

0
hu1,u2

s ds
]

= Bu2 +E+
u1,u2

[∫ 1

0

(
Γs(u1,u2)− Γ̂s

)
ds

]

� Bu2 +E+
u1,u2

[∫ 1

0

(
Γs (u∗1(u2),u2)− Γ̂s

)
ds

]
.

(3.2.11)

The left hand side of the inequality (3.2.11) is just ψu1,u2
0 , so for any n ∈ Z

+ there is a

control u1n ∈U1, such that,

−E+
u1n,u2

[∫ 1

0

(
Γs (u∗1(u2),u2)− Γ̂s

)
ds

]
< 1/n.

Also, let

−X =
∫ 1

0

(
Γs (u∗1(u2),u2)− Γ̂s

)
ds.

Then the inequality (3.2.10) implies X is positive almost surely, and E+φnX → 0, where

φn = expξ 1
0

(
f +
u1n,u2

)
. Let XN = min(N,X) for N ∈ Z

+, so 0 � XN � X and E+φNXN → 0.

By weak compactness of D there is a φ ∈ D such that the φn converge to φ weakly, so

lim
n→∞

E+φnXN = E+φXN = 0.
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Since φ > 0 a.s., we have XN = 0 a.s.. Therefore X = 0 a.s., and hence

Γs (u∗1(u2),u2) = Γ̂s a.s..

Therefore, we conclude that an optimal reply u∗1(u2) exists for player I in reply to any

control u2 ∈U2 used by player II.

We will now establish the existence, and obtain a characterization, of the optimal feedback

control that player II should use if he chooses his control first. Assume that the player I

will always play his best reply u∗1(u2) ∈ U1 in response to any control u2 ∈ U2. Now the

problem is how player II, who is trying to minimize the payoff (3.2.1), should choose a

u∗2 ∈U2 such that

inf
u2∈U2

sup
u1∈U1

J(u1,u2) = inf
u2∈U2

J (u∗1(u2),u2) .

For any u2 ∈U2 and t ∈ 0,1], if player I plays u∗1(u2), the expected terminal payoff is

ψu2(t) = Eu∗1(u2),u2

[
g(x(1)+

∫ 1

0
hu∗1(u2),u2ds|ℑt

]
.

Since L1(ω) is a complete lattice the infimum (denoted by ∧),

V +
t =

∧
u2∈U2

ψu2(t) (3.2.12)

exists in L1(ω). V +
t in (3.2.12) is called the upper value function of the differential game,

and

V +
0 = inf

u2∈U2
sup

u1∈U1

J(u1,u2)

is the upper value of the game. One can obtain the following result, Elliott [47].

Theorem 3.2.5.

(a) u∗2 ∈U2 is optimal for player II if and only if

V +
t +

∫ t

0
hu∗1(u∗2),u∗2ds

is a martingale on
(
Ω,At ,Pu∗1(u∗2),u∗2

)
.

(b) In general, for u2 ∈U2,

V +
t +

∫ t

0
hu∗1(u2),u2ds

is a submartingale on
(
Ω,At ,Pu∗1(u2),u2

)
.
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From the above martingale representation, u∗2 ∈ U2 is optimal for player II playing first if

and only if there is a predictable process g∗t such that
∫ 1

0
|g∗s |2 ds < ∞ a.s.

and

V +
t +

∫ t

0
hu∗1(u∗2),u∗2ds = B∗ +

∫ t

0
g∗dw∗

s .

Here the w∗ is the Brownian motion given by

dw∗ = σ−1
(

dx−bu∗1(u∗2),u∗2ds
)

,

on
(
Ω,Pu∗1(u∗2),u∗2

)
. For a general u2 ∈ U2 the submartingale V +

t +
∫ t

0 hu∗1(u2),u2ds has

a unique Doob-Mayer decomposition B∗ + Mu2
t + Au2

t , where Mu2
t is a martingale on(

Ω,Pu∗1(u2),u2

)
and Au2

t is a predictable increasing process. Also, if u∗2 ∈ U2 is optimal

for player II playing first, then almost surely

g∗.σ−1b
u∗1(u∗2),u∗2
s +h

u∗1(u∗2),u∗2
s � g∗.σ−1bu∗1(u2),u2

s +hu∗1(u2),u2
s .

Conversely, without a priori assuming there is an optimal control u∗2 ∈ U2, one can obtain

an integral representation for V +
t , and show that the measurable strategy, obtained by min-

imizing a Hamiltonian g∗.σ−1bu∗1(u2),u2
s +hu∗1(u2),u2

s , exists and is optimal. This leads to the

following result.

Theorem 3.2.6. There is a predictable process g∗ and u∗2 ∈U2 is optimal if and only if u∗2
minimizes the Hamiltonian

Γs (u∗1(u2),u2) = g∗.σ−1bu∗1(u2),u2
s +hu∗1(u2),u2

s , a.s. in (s,ω).

3.2.1 The Isaacs condition

We have seen that,

V +
0 = inf

u2∈U2
sup

u1∈U1

J(u1,u2)

represents the best outcome that players I and II can ensure if player II chooses his feedback

control first. Now, we will define the lower value of the game,

V−
0 = sup

u1∈U1

inf
u2∈U2

J(u1,u2).

For t ∈ 0,1], x ∈C, u1 ∈U1, u2 ∈U2 and p ∈ R
n we can write

L(t,x, p;u1,u2) = p ·σ−1(t,x)b(t,x,u1,u2)+h(t,x,u1,u2).
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The game is said to satisfy the Isaacs condition if, for all such t, x, p,

min
u2∈U2

max
u1∈U1

L(t,x, p;u1,u2) = max
u1∈U1

min
u2∈U2

L(t,x, p;u1,u2). (3.2.13)

We say the game satisfies a saddle-point condition if the upper and lower values of an

‘infinitesimal’ game are equal, then V +
0 = V−

0 . The result that follows states that the game

has a value under Isaacs condition.

Theorem 3.2.7. If the game satisfies the Isaacs condition then V +
0 = V−

0 .

Proof. Note that for ui ∈Ui, i = 1,2

Γs(u1,u2) = L(s,x,g∗;u1(t,x),u2(t,x)) ,

where g∗ is the predictable process introduced earlier. Also, for any u2 ∈ U2, we proved

that there exists a strategy u∗1(u2) ∈U1, such that,

Γs (u∗1(u2),u2) = max
u1∈U1

Γs (u∗1(u2),u2) ,

and then that there is a u∗2 ∈U2, such that,

Γs (u∗1 (u∗2) ,u∗2) = min
u2∈U2

Γs (u∗1(u2),u2) a.s.

= min
u2∈U2

max
u1∈U1

Γs (u1,u2) a.s..

We also had a representation of the form

V +
t +

∫ t

0
hu∗1(u∗2),u∗2ds = B∗ +

∫ t

0
g∗dw∗

s a.s.

Because f and u1 are continuous in u1 and u2 and U1 and U2 are compact, for any u1 ∈U1

there exists a strategy u∗2 (u1) ∈U2 such that

Γs (u1,u∗2 (u1)) = min
u2∈U2

Γs(u1,u2) a.s..

Similarly, there is a u∗1 ∈U1, such that,

Γs (u∗1,u
∗
2 (u∗1)) = max

u1∈U1
Γs (u1,u∗2 (u1)) a.s.

= max
u1∈U1

min
u2∈U2

Γs(u1,u2) a.s..

Since the Isaacs condition (3.2.13) holds, we have

Γs (u∗1,u
∗
2 (u∗1)) = Γs (u∗1 (u∗2) ,u∗2) a.s..

Now, for any u2 ∈U2, we have

Γs (u∗1,u
∗
2 (u∗1)) � Γs (u∗1,u2) a.s..
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and for any u1 ∈U1, we have

Γs (u1,u∗2) � Γs (u∗1 (u∗2) ,u
∗
2) a.s..

Hence,

Γs (u1,u∗2) � Γs (u∗1,u
∗
2) � Γs (u∗1,u2) a.s..

Therefore,

V +
t +

∫ t

0
hu∗1,u∗2ds = B∗ +

∫ t

0
g∗dwu∗1,u∗2

s a.s.,

where

dwu∗1,u∗2
s = σ−1

(
dxs −bu∗1,u∗2

s ds
)

is a Brownian motion under Pu∗1,u∗2
. For any other u1 ∈U1, we can write

V +
t +

∫ t

0
hu1,u∗2ds = B∗ +

∫ t

0
g∗dwu1,u∗2

s +
∫ t

0
(Γs (u1,u∗2)−Γs (u∗1,u

∗
2))ds.

Taking the expectations at t = 1 with respect to Pu1,u∗2
, results in,

Eu1,u∗2

[
g(x(1))+

∫ 1

0
hu1,u∗2

s ds
]

= J (u1,u∗2) � J∗ = J (u∗1,u
∗
2) .

Similarly, one can show that

J (u∗1,u
∗
2) � J (u∗1,u2) .

Therefore, if Isaacs condition is satisfied

sup
u1∈U1

inf
u2∈U2

J(u1,u2) = inf
u2∈U2

sup
u1∈U1

J(u1,u2) = J∗,

hence the upper and lower value of the differential game are equal. Furthermore, we can

also show that if the upper and lower values are equal then

max
u1∈U1

min
u2∈U2

L(t,x,g∗;u1,u2) = min
u2∈U2

max
u1∈U1

L(t,x,g∗;u1,u2) a.s.. �

In this section, using the martingale methods we have proved the existence of a value for

the game under the Isaacs condition as well as characterized the optimal strategies.
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3.3 Two Person Zero-sum Games and Viscosity Solutions

The viscosity solution concept was introduced in the early 1980s by Michael Crandall

and Pierre-Louis Lions, [43] as a generalization of the classical concept of a ’solution’ to

a partial differential equation (PDE). It has been found that the viscosity solution is the

natural solution concept to use in differential games (the Isaacs equation) and in stochastic

differential games.In this subsection, we present briefly some key elements of the viscosity

solutions method for the theory of two person zero-sum stochastic differential games. For

more details we refer to Fleming and Souganidis [64, 65]. For s ∈ (t,T ], consider the

dynamics

dxs = b(xs,s,u1s,u2s)ds+σ (xs,s,u1s,u2s)dws (3.3.1)

with initial condition

xt = x (x ∈ R
n),

where w is a standard m-dimensional Brownian motion. The payoff is given by

Jx,t(u1,u2) = Ex,t

{∫ T

t
h(xs,s,u1s,u2s)ds+g(xT )

}
. (3.3.2)

Here u1 and u2 are stochastic processes taking values in the given compact sets U1 ⊂ R
k

and U2 ⊂ R
l .

Assume that b : R
n×(0,T ]×U1×U2 →R

n is uniformly continuous and satisfies, for some

constant C1 and all t, t̂ ∈ (0,T ], x, x̂ ∈ R
n, ui ∈Ui, i = 1,2,{

|b(x, t,u1,u2)| � C1,∣∣b(x, t,u1,u2)−b(x̂, t̂,u1,u2)
∣∣ � C1

(
|x− x̂|+ |t − t̂|

)
.

Also, let h : R
n × (0,T ]×U1 ×U2 → R is uniformly continuous and satisfies, for some

constant C2, {
|h(x, t,u1,u2)| � C2,∣∣h(x, t,u1,u2)−h(x̂, t̂,u1,u2)

∣∣ � C2
(
|x− x̂|+ |t − t̂|

)
,

and g : R
n → R

n satisfies {
|g(x)| � C3,

|g(x)−g(x̂)| � C3 (|x− x̂|) .
Also the n×m matrix σ is bounded uniformly continuous and Lipschitz continuous with

respect to x.

On a probability space (Ω,ℑ,P), set

Ui(t) ≡ {ui : [t,T ] →Ui measurable}, i = 1,2.
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These are the sets of all controls for players I and II. We consider the controls that agree

a.e. are the same.

Define any mapping

α : U2(t) →U1(t)

to be a strategy for I (beginning at time t) provided for each s ∈ [t,T ] and u2, û2 ∈U2(t)

if u2 = û2 a.e. in [t,s], then α[u2] = α[û2] a.s. in [t,s].

Similarly, a mapping

β : U1(t) →U2(t)

is a strategy for player II provided for each s ∈ [t,T ] and u1, û1 ∈U1(t)

if u1 = û1 a.e. in [t,s], then β [u1] = β [û1] a.e. in [t,s].

Denote by Γi(t), i = 1,2, the set of all strategies for players I and II respectively, beginning

at time t. At this point we note that there is some serious measurability problems that need

to be addressed in the characterization of strategies for stochastic games. For a detailed

account on the concept of measurability in the stochastic case and how to overcome this

difficulty, we refer to Fleming [64]. Define the lower and upper values V and U by

V (x, t) = inf
β∈Γ2(t)

sup
u1∈U1(t)

Jx,t(u1,βu1])

and

U(t,x) = sup
α∈Γ1(t)

inf
u2∈U2(t)

Jx,t(α(u2),u2).

The U and V satisfy the dynamic programming principle which for simplicity is stated with

h ≡ 0. The proof of this result rests on the results about uniqueness of viscosity solutions

to fully nonlinear second-order pde as well as some appropriate discretization of the game

in time but not in space and we refer the reader to Fleming [64].

Theorem 3.3.1. Let t,τ ∈ [0,T ] be such that t � τ . for every x ∈ R
n

V (x, t) = inf
β∈Γ2(t)

sup
u1∈U1(t)

Ex,t{V (xτ ,τ)},

and

U(x, t) = sup
α∈Γ1(t)

inf
u2∈U2(t)

Ex,t{U(xτ ,τ)}.
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With this result, one can study the connections between U and V and the associated

Bellman-Isaacs equations which are of the form{
yt +H(D2y,Dy,x, t) = 0 in R

n ×0,T ],

y = g on R
n ×{T},

(3.3.3)

with

H(A, p,x, t) = H−(A, p,x, t)

= max
u1∈U1

min
u2∈U2

[
1
2

tr(a(x, t,u1,u2)A+b(x, t,u1u2).p+h(x, t,u1,u2)
]

(3.3.4)

and

H(A, p,x, t) = H+(A, p,x, t)

= min
u2∈U2

max
u1∈U1

[
1
2

tr(a(x, t,u1,u2)A+b(x, t,u1u2).p+h(x, t,u1,u2)
]

(3.3.5)

where a = σσT .

We will now give a result for the viscosity solution for (3.3.3) and a comparison principle.

Theorem 3.3.2. A continuous function y : R
n × [0,T ] → R is a viscosity solution (resp.

supersolution) of (3.2.3) if

y � g on R
n ×{T},

(respectively for, y � g on R
n ×{T}), and

φt(x, t)+H
(
D2φ(x, t),Dφ(x, t),x, t

)
� 0,

(resp. φt(x, t)+H(D2φ(x, t),Dφ(x, t),x, t) � 0), for every smooth function φ and any local

maximum (respectively, minimum) (x, t) of y−φ .

Following result is obtained in Ishii [92].

Theorem 3.3.3. Assume that the functions b, g, h, and σ are bounded and Lipschitz con-

tinuous. If z and z̃ (resp. y and ỹ) are viscosity subsolution and supersolution of (3.2.3)

with H given by (3.2.4) (resp. of (3.2.3) with H given by (3.2.5)) with terminal data g and

g̃ and if g � g̃ on R
n ×{T}, then z � z̃ (resp., y � ỹ) on R

n × [0,T ].

Following is the main result for the zero-sum stochastic differential game problem with

two players which is stated with out proof. The proof is given in Fleming and Souganidis

[64] which is tedious and involve several approximation procedures.

Theorem 3.3.4. (i) The lower value V is the unique viscosity solution of (3.3.3) with H as

in (3.3.4).

(ii) The upper value U is the unique viscosity solution of (3.3.3) with H as in (3.3.5).
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For the dynamics of (3.3.3) with initial time t = 0, and for a discounted payoff

J(u1,u2) = E
{∫ ∞

0
e−λ sh(x(s),u1(s),u2(s))ds

}
,

the existence of value function is obtained by Swiech [190] using a different approach. The

so called sub-and super optimality inequalities of dynamic programming are used in the

proofs. In this approach to the existence of value functions, one start with solutions of the

upper and lower Bellman-Isaacs equations which exist by the general theory and then prove

that they must satisfy certain optimality inequalities which in turn yield that solutions are

equal to the value functions. For further analysis of the subject problem see Swiech [190].

3.4 Stochastic differential games with multiple modes

In Ghosh and Marcus [76], two person stochastic differential games with multiple modes

are studied. The state of the system at time t is given by a pair (x(t),θ(t)) ∈ R
n × S,

where S = {1,2, . . . ,N}. The discrete component θ(t) describes the various modes of the

system. The continuous component x(t) is governed by a “controlled diffusion process”

with a drift vector which depends on the discrete component θ(t). Thus x(t) switches from

one diffusion path to another at random times as the mode, θ(t), changes. The discrete

component θ(t) is a “controlled Markov chain” with transition rate matrix depending on the

continuous component. The evolution of the process (x(t),θ(t)) is given by the following

equations

dx(t) = b(x(t),θ(t),u1(t),u2(t))dt +σ(x(t),θ(t))dw(t), (3.4.1)

and

P(θ(t +δ t) = j | θ(t) = i,x(s),θ(s),s � t) = λi j(x(t))δ t +◦(δ t), i �= j, (3.4.2)

for t � 0, x(0) = x ∈ R
n, θ(0) = i ∈ S, where b, σ , λ are suitable functions. In a zero sum

game player I is trying to maximize and player II is trying to minimize the expected payoff,

that is,

Jx,i(u1,u2) = Ex,i

[∫ ∞

0
e−αt r(x(t),θ(t),u1(t),u2(t))dt

]
, (3.4.3)

over their respective admissible strategies, where α > 0 is the discount factor and r : R
n ×

S×U1 ×U2 → R is the payoff function and is defined by

r(x, i,u1,u2) =
∫

V2

∫
V1

r(x, i,v1,v2)u1 (dv1)u2 (dv2) .
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Here Vl , l = 1,2 are compact metric spaces and Ul = P (Vl) the space of probability mea-

sures on Vl endowed with the topology of weak convergence and r : R
n ×S×V1 ×V2 → R.

Also let

b : R
n ×S×V1 ×V2 → R

n

σ : R
n ×S → R

n×n

and

λi j : R
n → R, 1 � i, j � N, λi j � 0, i �= j,

N

∑
j=1
λi j = 0.

The following assumption is made.

(A3.4.1):

(i) For each i ∈ S, b(·, i, ·, ·), r(·, i, ·, ·) is bounded, continuous and Lipschitz in its first

argument uniformly with respect to the rest.

(ii) For each i ∈ S, σ(·, i) is bounded and Lipschitz with the least eigen value of σσ ′(·, i)
uniformly bounded away from zero.

(iii) For i, j ∈ S, λi j(·) is bounded and Lipschitz continuous.

Define

bk(x, i,u1,u2) =
∫

V1

∫
V2

bk(x, i,v1,v2)u1(dv1)u2(dv2), k = 1, . . . ,n

and

b(x, i,u1,u2) = [b1(x, i,u1,u2), . . . ,bn(x, i,u1,u2)]′.

If ul(·) = vl(x(·),θ(·)) for a measurable vl : R
n × S → Ul , then ul(·) is called a Markov

strategy for the lth player. Let Ml denote the set of Markov strategies for player l. A

strategy ul(·) is called pure if ul is a Dirac measure, i.e., ul(·) = δvl (·), where vl(·) is a Vl

valued nonanticipative process. For p � 1 define

W 2,p
loc (Rn ×S) =

{
f : R

n ×S → R : for each i ∈ S, f (·, i) ∈W 2,p
loc (Rn)

}
.

W 2,p
loc

(
R

n × S
)
is endowed with the product topology of

(
W 2,p

loc (Rn)
)N . For f ∈ W 2,p

loc (Rn ×
S), we can write

Lv1,v2 f (x, i) = Lv1,v2
i f (x, i)+

N

∑
j=1
λi j f (x, j),

where

Lv1,v2
i f (x, i) =

n

∑
j=1

b j(x, i,v1,v2)
∂ f (x, i)
∂x j

+
1
2

n

∑
j,k=1

a jk(x, i)
∂ 2 f (x, i)
∂x j∂xk

.
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Here, a jk(x, i) = ∑n
l=1σ jl(x, i)σkl(x, i).

Define

Lu1,u2 f (x, i) =
∫

V1

∫
V2

Lv1,v2 f (x, i)u1(dv1)u2(dv2).

The Isaacs equation for this problem is given by

inf
u2∈U2

sup
u1∈U1

[Lu1,u2φ(x, i)+ r(x, i,u1,u2)] = sup
u1∈U1

inf
u2∈U2

[Lu1,u2φ(x, i)+ r(x, i,u1,u2)]

= αφ(x, i). (3.4.4)

This is a quasilinear system of uniformly elliptic equations with weak coupling in the sense

that the coupling occurs only in the zeroth order term. Now we will state the following

results from Gosh and Marcus [76].

Theorem 3.4.1. Under (A3.4.1) the equation (3.4.4) has a unique solution in C2(Rn×S)∩
Cb(Rn ×S).

The result that follows characterizes the optimal Markov strategies for both players.

Theorem 3.4.2. Assume (A3.4.1). Let u∗1 ∈ M1 be such that

inf
u2∈U2

[
n

∑
j=1

b j(x, i,u∗1(x, i),u2)
∂V (x, i)
∂x j

+
N

∑
j=1
λi j(x)V (x, j)+ r(x, i,u∗1(x, i),u2)

]

= sup
u1∈U1

inf
u2∈U2

[
n

∑
j=1

b j(x, i,u1,u2)
∂V (x, i)
∂x j

+
N

∑
j=1
λi j(x)V (x, j)+ r(x, i,u1,u2)

]

for each i and a.e. in x. Then u∗1 is optimal for player I. Similarly, let u∗2 ∈ M2 be such that

sup
u1∈U1

[
n

∑
j=1

b j(x, i,u1,u∗2(x, i))
∂V (x, i)
∂x j

+
N

∑
j=1
λi j(x)V (x, j)+ r(x, i,u1,u∗2(x, i))

]

= inf
u2∈U2

sup
u1∈U1

[
n

∑
j=1

b j(x, i,u1,u2)
∂V (x, i)
∂x j

+
N

∑
j=1
λi j(x)V (x, j)+ r(x, i,u1,u2)

]

for each i and a.e. x. Then u∗2 is optimal for player II.

This kind of game typically occurs in a pursuit-evasion problems where an interceptor tries

to destroy a specific target. Due to swift movements of the evader and the corresponding

response by the interceptor the trajectories keep switching rapidly.

In Kushner and Chamberlain [111], the problem of the numerical solution of the nonlin-

ear partial differential equation associated with the subject game is considered. In general,

due to the nonlinearities and to the nonellipticity or nonparabolicity of these equations, the
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available theory is not much helpful in choosing finite difference approximations, guar-

anteeing the convergence of the iterative procedures, or providing an interpretation of the

approximation. For a specific problem, a finite difference scheme is given in Kushner and

Chamberlain [111], so that the convergence of the iterative process is guaranteed. With

the development of weak convergence theory for game problems, Ramachandran [158],

and the numerical methods described in Kushner and Dupuis [112], it is possible to de-

velop computational methods for stochastic differential games. This will be the topic of

Chapter 8.



Chapter 4

Formal Solutions for Some Classes of Stochastic
Linear Pursuit-Evasion Games

4.1 Introduction

As mentioned in Chapter 1, considerable attention has been given recently to pursuit-

evasion games with linear dynamics and quadratic payoff. Consider the transition equation

ẋ = GPu−Gev; with initial condition

x(0) = x0.
(4.1.1)

where

i) x(t) ∈ R
n, is the state of the game;

ii) u(t) ∈ R
P is the pursuer’s control chosen at time t;

iii) v(t) ∈ R
q is the evader’s control chosen at time t;

and

iv) Gp and Ge are (n× p) and (n×q) time varying matrices.

The payoff of this game is given by

J =
1
2

{
x′(t)S(t)x(t)+

∫ T

0

[
u′(t)B(t)u(t)− v′(t)C(t)v(t)

]
dt

}
(4.1.2)

where

v) T = t f is some prescribed terminal time. The initial time t0 is taken to be zero without

loss of generality.

vi) B and C are symmetric, positive definite, time-varying matrices;

and

vii) S(t) = S f is a symmetric and positive and semi-definite matrix which will be defined

later.

Ho, Bryson, and Baron [89] have solved this game for the case where both players have

perfect knowledge of the state of the game, x(t). When a solution exists and it is given by

U∗ : u = −B−1G′
P sx;
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and

V ∗ : v = −C−1G′
e sx

where S is the solution to the matrix Riccati equation, given by

Ṡ = S
[
GPB−1G′

P −GeC−1G′
e
]

S; S(t) = S f .

If the solution is bounded on the interval [0,T ] then the strategies U∗ and V ∗ are minimax.

4.2 Preliminaries

Consider a stochastic differential pursuit-evasion game of the form
d
dt

x(t;ω) = Gp (ω)u(t;ω) = Ge (ω)v(t;ω) (4.2.1)

where

i) ω ∈ Ω, where Ω is the supporting set of a complete probability measure space

(Ω,A,μ);

ii) x(t;ω) ∈Cc (R+,L2 (Ω,A,μ)) is the is the n-dimensional state vector;

iii) u(t;ω) ∈ L2 (Ω,A,μ) is the p-dimensional pursuer’s control vector chosen at time

t ∈ R+ for each ω ∈Ω;

iv) v(t;ω) ∈ L2(Ω,A,μ) is the q-dimensional evader’s control vector chosen at time t ∈
R+ for each ω ∈Ω;

and

v) GP(ω) and G3(ω) are (n× p) and (n×q) dimensional random matrices. The payoff

to be minimaximized is the expected value of equation (4.1.2). That is,

J =
1
2

E
{

x′(t,ω)S f (ω)x(T ;ω)

+
∫ T

0

[
u′(t;ω)B(t)u(t;ω)− v′(t;ω)C(t)v(t;ω)

]
dt

} (4.2.2)

where

vi) T is some prescribed termination time;

and

vii) B and C are symmetric and positive definite matrices.

It is seen that equation (4.2.1) is another special case of equation (2.1.1). In this Chapter

we deal with stochastic differential games where the state variable does not appear on the

right-hand side of the transition equation. Physically this means that the state exerts no

control itself.
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Integrating equation (4.2.1) with respect to t we obtain

x(t;ω) =
∫ t

0
[GP(ω)u(τ;ω)−Ge(ω)v(τ;ω)]dt, t � 0. (4.2.3)

Theorem 2.2.3 reveals that the game has a unique random solution if

‖GP(ω)u(t;ω)−Ge(ω)v(t;ω)‖L2(Ω,A,μ) � P
M

,

where M is the norm of the operator T defined by

(T x)(t;ω) =
∫ t

0
x(τ;ω)dτ.

Since the stochastic free term in (4.2.3) is identically zero, we take γ ≡ 0; and since the

stochastic kernel does not explicitly involve x(t;ω), we can take λ ≡ 0.

We will now attempt a formal derivation of this random solution.

4.3 Formal solution for a Stochastic Linear Pursuit-Evasion game with perfect
information

In this section we will assume that both players make perfect measurement of the state of

the game. We will consider a multistage differential game formed by discretizing equation

(4.2.1). By dividing the stochastic differential game into N short games, we can then apply

the work of Ho, Bryson, and Baron [89] to approximate the optimal controls for each of

these games. This iterative procedure generates a formal random solution to the stochastic

game (4.2.1).

We shall divide the time interval [0,T ] into N small subintervals, each of length δ . By

requiring the players to use constant controls during each subinterval, the transition and

criterion equations can be expressed in multistage form, that is,

x[(i+1)Δ;ω] = x(iΔ;ω)+Δ [GP(ω)u(iΔ;ω)−Ge(ω)v(iΔ;ω)] for i = 0,1,2, . . . ,N −1

and

J =
1
2

E

{
x′(NΔ;ω)S f (ω)x(NΔ;ω)

+
N−1

∑
i=0

[
u′(iΔ;ω)B(iΔ)u(iΔ;ω)− v′(iΔ;ω)C(iΔ)v(iΔ;ω)

]}
.

(4.3.1)

The time interval δ is assumed short enough so that ω ∈ Ω does not change significantly

during a subinterval, and the players are allowed to make perfect measurements of the state

only at times i, i = 0,1,2, . . . ,N −1. Their controls must be based on these measurements.
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Under the above assumptions, we have a series of deterministic games of the form

x(t;ωi) = GP(ωi)u(t;ωi)−Ge(ωi)v(t;ωi),

for t ∈ iδ and ωi ∈ Ω. At each instant, i, i = 0,1,2, . . . ,N −1, ωi ∈ Ω is chosen by nature

and assumed fixed. The players observe the state of the game and choose their optimal

controls for the next subinterval. As previously mention, Ho, Bryson, and Baron ([89] hbb)

have determined the optimal controls for each of these short deterministic games. When a

solution exists, it is given by

u(t;ωi) = −B−1(t)G′
P(ωi)S(t;ωi)x(t;ωi);

v(t;ωi) = −C−1(t)G′
e(ωi)S(t;ωi)x(t;ωi),

(4.3.2)

for t ∈ [iΔ,(i+1)Δ], i = 0,1,2, . . . ,N −1, ωi ∈Ω and S a solution of

Ṡ = S
[
GPB−1G′

P −GeC−1G′
e
]

S

and

S(iΔ;ωi) = S f (ωi) i = 1,2,3, . . . ,N.

At the end of each subinterval the process is repeated until the terminal time T = Nδ is

reached.

Since the controls given by (4.3.2) are optimal, that is minimaximized the expected payoff,

over the subintervals iΔ, the stochastic controls

u(t;ω) = u(t;ωi)

and

v(t;ω) = v(t;ωi)

for t ∈ iδ and ωi ∈ Ω, i = 0,1,2,3, . . . ,N − 1, will be optimal for the game (4.2.1) in

the sense that as Δ→ 0 the expected payoff (4.3.1) will approach the minimax of equa-

tion (4.2.2).

Differential games and multistage games with perfect information have been the subject of

many publications. Now, what if one or both players cannot make exact measurements? A

logical extension is an investigation of a pursuit-evasion problem in which the players have

imperfect knowledge of the states involved.
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4.4 On Stochastic Pursuit-Evasion games with imperfect information

Differential games with noisy state observations have also been investigated by some au-

thors, among them Behn and Ho [19] and Rhodes and Luenberger [167], under somewhat

restricted situations. Yoshikawa [217] has solved a simple one-dimensional, two-stage

game of the form

xi+1 = axi +ui + vi +ξi for i = 0 and 1

with payoff

J = x2
2 +

1

∑
i=0

(bi u2
i + ci v2

i )

and with the noisy state observations

y = x1 +η

and

z = x1 +ξ ,

where ξ0, ξ1, η , and ξ are mutually independent zero mean noises; but has been unable

to solve more general multistate games. The difficulty is that there appears to be infinite

number of terms in the optimal strategies of each of the two players. That is, they are based

on estimates of estimates of estimates . . . , Behn and Ho [19] have termed this the closure

problem in stochastic pursuit-evasion games and found conditions which are sufficient for

closure.

Consider the optimization of the payoff

J = E
{

a2

2
‖y(t f )‖2 +

1
2

∫ t f

t0

[
‖u(t)‖2RP −‖v(t)‖2Re

]
dt

}
, (4.4.1)

subject to the differential constraint

y(t) = GP(t f , t)u(t)−Ge(t f , t)v(t)

y(t0) = y0

(4.4.2)

where the pursuer can make perfect measurements; but the evader’s measurements are

given by

z(t) = H(t)y(t)+w(t),

where w is a Gaussian white (0,Q(t)) process. Assume that the controls are bounded

and continuous so that the differential equation (4.4.2) is meaningful and Integrable. The

optimal strategy pair is assumed given by

U∗ : u(t) = CP(t)y(t)+DP(y)ỹ(t) (4.4.3)
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and

V ∗ : v(t) = Ce(t)ŷ(t) (4.4.4)

where ŷ(t) is the evader’s optimal estimate of y(t) based on the measurements z(τ), to �
τ � t. and ỹ(t) is the error of the evader’s estimate, ỹ(t) = y(t)− ŷ(t). The values of

the feedback gain matrices Ce, CP, and Dp are then determined by standard optimization

techniques.

Behn and Ho [19] showed that Cp and Ce are the same feed-back gain matrices employed

by the players in the deterministic problem. The evader merely uses the feedback strategy

employed in the deterministic game to operate on his optimal estimate ŷ(t) of the state y(t).

From the pursuer’s point of view, the optimal strategy is the deterministic feedback control

plus a term to take advantage of the inaccuracy of the evader’s measurements.

Using (4.4.3) and (4.4.4) to find the controls u(t) and v(t) and eliminating ŷ(t), the criterion

function (4.4.1) becomes

J = E
{

a2

2
‖y(t)‖2 +

1
2

∫ t f

t0
‖y(t)‖2C′

P RP CP

+ y′(t)C′
P RP DPỹ(t)+ ỹ(t)D′

P RPCP y(t)

+‖ỹ(t)‖2D′
P RP DP −‖y(t)− ỹ(t)‖C′

e Re Ce
]

dt
}

,

subject to

ẏ(t) = [GPCP −GeCe]y(t)+ [GPDP +GeCe] ỹ(t)

and

y(t0) = y0.

Behn and Ho [19] found that if the following two conditions are satisfied,

i) the dimension of y(t) equals the dimension of v(t);

and

ii) G−1
e (t) exists for all t < t f

then the investigation is still continuing on the existence of a random solution to equation

(4.2.1) when one or both of the players have imperfect measurements.

4.5 Summary

The subject of this Chapter was the existence of a random solution of the stochastic linear-

quadratic pursuit-evasion game of the form
d
dt

x(t;ω) = GP(ω)u(t;ω)−Ge(ω)v(t;ω),
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where the state has no effect on the right hand side of the equation.

Applying a theorem from the last Chapter, we found a sufficient condition for the game to

have a unique random solution. By discretizing the game we were able to derive a formal

random solution under the assumption that both players make perfect observations. We

then presented the problem of the existence of a solution if one of the players cannot make

perfect observations of the state of the game and pointed out the difficulties encountered.



Chapter 5

N-Person Noncooperative Differential Games

5.1 Introduction

In the previous four chapters we have presented the foundations for two-person zero sum

differential games. In those cases, there were a single performance criterion which one

player tries to minimize and the other tries to maximize. In applications, there are many

situations in which more than two players and each player try to maximize (or minimize)

his/her individual performance criterion, and the sum of all players’ criteria is not neces-

sarily zero nor is it a constant. Such cases are called N-person non-zero sum differential

games. A non-zero-sum game is the game in which each player chooses a strategy as

his/her best response to other players’ strategies. An equilibrium, in this case, is a set of

strategies such that when applied no player will profit from unilaterally changing his/her

own strategy. In this Chapter, we will present some fundamental aspects of this case. First,

we will present a pursuit-evasion case to get exposed to the idea of a non-zero sum game,

and then extended to a general case.

5.2 A stochastic Pursuit-Evasion Game

5.2.1 Two Person Non-Zero Sum Game

In this section we shall consider a stochastic two person differential game of the general

form given by

d
dt

x(t;ω) = f (t,x(t;ω), u(t),v(t)), (5.2.1)

where

(i) ω ∈Ω for Ω the supporting set of a complete probability measure space (Ω,A,μ);

(ii) x(t;ω) ∈ L2(Ω,A,μ) is the n-dimensional random state vector for each t � 0;

73



74 Stochastic Differential Games

(iii) u(t) ∈ EP is the p-dimensional control vector of the first player (pursuer);

(iv) v(t) ∈ Eq is the q-dimensional control vector of the second player (evader);

and

(v) the initial conditions x(0;ω) are given by the known n-dimensional random vector

with

x0(ω) = (x01(ω), . . . ,x0n(ω)) ∈ L2(Ω,A,μ).

We will assume as admissible control functions u = u(t) and v = v(t) which are measurable

functions of t alone. That is, the controls are deterministic. Assuming an initial fixed time

at t = 0, we will allow the terminal time t f (ω) to vary randomly as a function of ω ∈ Ω
where Ω is some compact set. The assumption of a compact Ω is not restrictive in any way.

We will consider an integral payoff for each player. That is,

J1 =
∫
Ω

Gi[t f (ω),x(t f (ω);ω)]dμ(ω),

where Gi are real valued continuous functions for i = 1,2.

The constraint set and boundary conditions will also be allowed to vary with ω ∈ Ω.

That is, we shall define the constraint set AΩ as a compact subset of the tx-space

R+ ×Cc (R+,L2(Ω,A,μ)) and let the terminal set BΩ be a closed subset of the tx-space

R+×Cc(R+,L2(Ω,A,μ)). The unions of these sets for all ω ∈Ω will be denoted by A and

B. That is, the compact set A =
⋃
ω∈ΩAΩ and B =

⋃
ω∈ΩBΩ.

Now, for each t ∈ [0,T ], where T > 0 is some fixed time, we shall define the set:

Tf =
{

t f (ω) : 0 � t f (ω) � T, ω ∈Ω
}

,

of all terminal times as a family τ of equicontinuous functions this is closed in the uniform

topology.

The control setsU(t) and V (t) will be taken as subsets of the Euclidean spaces E p and Eq,

respectively. We shall define the sets

Mω = {(t,x,u,v) : (t,x) ∈ Aω , u ∈U, v ∈V}

and

M =
⋃
ω∈Ω

Mω = {(t,x,u,v) : (t,x) ∈ A, u ∈U, v ∈V} ,

as compact subsets of the space R+ ×Cc ×E p ×Eq. The function f = ( f1, f2 . . . , fn) is

continuous from M into L2(Ω,A,μ). We shall assume further that f is separable. That is,

there are functions g and h, such that,

f (t,x(t;ω), u(t),v(t)) = g(t,x(t;ω), u(t))+h(t,x(t;ω), v(t)).
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Furthermore, we shall assume that g and h are Lipschitzian in x uniformly in t over u and

v. That is, there exist finite constants λ1 and λ2, such that,

‖g(t,x,u)−g(t,y,u)‖L2(Ω,A,μ) � λ1‖x− y‖L2(Ω,A,μ)

and

‖h(t,x,v)−h(t,y,v)‖L2(Ω,A,μ) � λ2‖x− y‖L2(Ω,A,μ).

Under the above assumptions, we have

‖ f (t,x,u,v)− f (t,y,u,v)‖L2(Ω,A,μ) � λ‖x− y‖L2(Ω,A,μ),

for all (t,x,u,v), (t,y,u,v) ∈ M where λ = λ1 + λ2. This guarantees that for each fixed

t ∈ [0,T ], the state vector x(t;ω) is Cc(R+,L2(Ω,A,μ)).

5.2.2 Preliminaries

Consider the class ψ of all triples (x(t;ω), u(t),v(t)) for t, t f (ω) ∈ [0,T ] and ω ∈Ω which

satisfy the following conditions.

(A5.2.1):

i) for each fixed ω ∈Ω, x(t;ω) is absolutely continuous [0,T ];

ii) u(t) ∈U(t) ⊂ E p is a measurable function for t ∈ [0,T ];

iii) v(t) ∈V (t) ⊂ Eq is a measurable function for t ∈ [0,T ];

iv) for each ω ∈Ω and t ε[0,T ], (t,x(t;ω)) ∈ AΩ;

v) x(0,ω) = x0(ω);

vi) t f (ω) ∈ τ;

vii) for each ω ∈Ω, (t f (ω),x(t f (ω);ω)) ∈ BΩ; and

viii) the ordinary differential equation

d
dt

x(t;ω) = f (t,x(t;ω),u(t),v(t))

is satisfied μ-a.e. in [0,T ].

Definition 5.2.1. Any triple (x(t;ω),u(t),v(t)) for t, t f (ω)∈ [0,T ] which satisfies assump-

tion (A5.2.1) is called an admissible triple. The random vector x(t;ω) is called a random

solution and u(t) and v(t) are called admissible controls.

Let ki, i = 1,2, be continuous functional defined on the set of continuous functionals

W =
{
(w1(ω),w2(ω)) : (t f (ω),w2(ω)) ∈ Bω

}
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and assume that ki is bounded from below on a subset W ′ of W , where

W ′ =
{
(w1(ω),w2(ω)) : (t f (ω),w2(ω)) ∈ Bω ∩Aω

}
.

Then the functionals

J1[x,u] = K1[η(x)(ω)]

= K1[t f (ω), x(t f (ω);ω)]

and

J2[x,v] = K2[η(x)(ω)]

= K2[t f (ω), x(t f (ω);ω)]

are called cost functionals. Player one exerts control on the state variable x(t;ω) through

his control variable u(t), so as to minimize J1[x,u] while player two uses his control, v(t)

to minimize J2[x,v]. We are thus led to the following definition of optimal controls.

Definition 5.2.2. If there exists a triple (x∗(t,w),u∗(t),v∗(t)), such that,

J1[x∗(t,w),u∗(t)] � J1[x(t,w),u(t)]

and

J2[x∗(t,w),v∗(t)] � J2[x(t,w),v(t)],

for all triples (x(t;ω),u(t),v(t)) ∈ ψ , then the triple (x∗(t,w),u∗(t),v∗(t)) is called an op-

timal triple. The controls u∗(t) and v∗(t) are called optimal controls; and x∗(t,w) is called

an optimal random solution.

It should be noted that, although the optimal triple (x∗(t;ω),u∗(t),v∗(t)) need not be unique

in ψ , the value of the cost functionals are the same for all optimal triples. For ideas of the

proof of the next result, we refer the reader to Nicholas [141].

Lemma 5.2.1. Given a stochastic differential game as described above where x(t;ω) is

uniformly continuous for (t;ω) ∈ [0,T ]×Ω and given any sequence of admissible triples

{x(t;ω)ku(t)k,v(t)k}, then {x(t;ω)k, k = 1,2, . . .} forms an equicontinuous and equi-

bounded family of functions on [0,T ]×Ω.
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5.2.3 Main Results

It will be necessary to impose some further requirements on the state equation (5.2.1) and

on the control sets U(t) ⊂ E p and V (t) ⊂ Eq. Let us assume the following.

(A5.2.2):

(a) f is completely separable. That is, the random state vector and the controllers all act

independently. f (t,x,u,v) = f (t,x)+g(t,u)+h(t,v) for (t,x,u,v) ∈ M;

(b) U(t) and V (t) are compact sets for t ∈ [0,T ];

(c) u(t) and v(t) are upper semicontinuous functions of t ∈ [0,T ]; and

(d) The sets g(t,U(t)) and h(t,V (t)) are convex subsets of the space L2(Ω,A,μ) where we

define

g(t,U(t)) = {y ∈ L2(Ω,A,μ) : y = g(t,u), u ∈U(t)}

and

h(t,V (t)) = {z ∈ L2(Ω,A,μ) : z = h(t,v), v ∈V (t)}.

Then, f (t,x,U(t),V (t)) is a convex subset of L2(Ω,A,μ) for each (t,x) ∈ A.

(A5.2.3):

i) The constraint sets AΩ and A =
⋃
ω∈Ω

AΩ is compact subsets of the tx-space R+ ×

Cc(R+,L2(Ω,A,μ)).

ii) The control sets U(t) and V (t) are compact subsets of E p and Eq for every t ∈ [0,T ] .

iii) The control functions u(t) and v(t) is upper semicontinuous functions of t ∈ [0,T ].

iv) MΩ and M =
⋃
ω∈Ω

MΩ are compact subsets of the space R+ ×Cc(R+,L2(Ω,A,μ))×
E p ×Eq.

v) The function f (t,x,u,v = f (t,x) + g(t,u) + h(t,v)) is continuous from M into

L2(Ω,A,μ).

vi) g(t,U(t)) and h(t,V (t)) are convex subsets of L2(Ω,A,μ) for every (t,x) ∈ A.

vii) {x(t;ω)k} with {t f k(ω) : ω ∈Ω} ∈ τ is a sequence of random solutions satisfying as-

sumptions (A5.2.1) and converging uniformly to a function x∗(t;ω) which is absolutely

continuous in [0,T ] for each ω ∈Ω.

viii) t f k(ω) converges uniformly to t f (ω).

Now, we have following result.

Theorem 5.2.1. Under the above assumptions (A5.2.3), there exist measurable controls

u∗(t) and v∗(t) such that the triple (x∗(t;ω),u∗(t),v∗(t)) with stochastic terminal time
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t f (ω) satisfies conditions (A5.2.1). That is, x∗(t;ω) is a random solution with stochas-

tic terminal time t f (ω) ∈ τ; and J1[xk,u∗] and J2[xk,u∗] converge uniformly to J1[x∗,u∗]

and J2[x∗,u∗] respectively.

Proof. We will only sketch the proof here, see Nicholas [141]. We have,

x(t f k(ω);ω)k
u−→ x∗(t f (ω);ω)

and

η
[
x(t f (ω);ω)k

]
(ω) u−→ η

[
x∗(t f (ω);ω)

]
(ω).

Thus,

J1[xk,u∗]
u−→ J1[x∗,u∗]

and

J2[xk,v∗]
u−→ J2[x∗,v∗]. �

Proof. We had to prove that there exist a measurable control functions u∗(t) ∈U(t) and

v∗(t) ∈V (t), such that,

d
dt

x∗(t;ω) = f (t,x∗(t;ω),u∗(t),v∗(t)), (5.2.2)

μ-a.e. in [0,T ].

By assumption (vii), x(t;ω)k → x∗(t;ω) where x∗(t;ω) is absolutely continuous in [0,T ].

If, for each ω ∈ Ω we consider the stochastic differential game with constraint set

AΩ, control sets U(t) and V (t), and transition equation (5.2.1), then each of the triples

(x(t;ω)k,u(t)k,v(t)k), k = 1,2, . . ., belongs to the class of admissible triples ψ . Thus, by

Cesari’s closure Theorem, for each ω ∈ Ω, there exist measurable controls u∗(t) ∈ U(t)

and v∗(t) ∈V (t), such that,

d
dt

x∗(t;ω) = f (t,x∗(t;ω), u∗(t), v∗(t)),

is μ-a.e. in [0,T ]. In particular, (x∗(t;ω),u∗(t),v∗(t)) ∈ ψ . The proof consists of showing

that for any given ω0 ∈Ω,
(
u∗ω0

(t),v∗ω0
(t)

)
generates all the random solutions. That is, for

any ω ∈Ω, and ω0 ∈Ω fixed, we have

d
dt

x∗(t;ω) = f
(
t,x∗(t;ω),u∗ω0

(t),v∗ω0
(t)

)
,

μ-a.e. in [0,T ]. Letting u∗(t) = u∗ω0
(t) and v∗(t) = v∗ω0

(t), this completes the proof. �
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We can also state an existence theorem for pursuit-evasion games with state variable in

Cc(R+,L2(Ω,A,μ)), the space of continuous functions.

Theorem 5.2.2. Consider the stochastic differential game satisfying conditions (i)–(iv) of

(A5.2.1). If the class ψ of admissible triples is non-empty there exists an admissible triple

(x∗(t;ω),u∗(t),v∗(t)), such that

J1 [x∗(t,w),u∗(t)] � J1 [x(t,w),u(t)]

and

J2 [x∗(t,w),v∗(t)] � J2 [x(t,w),v(t)] ,

for all admissible triples (x(t;ω), u(t),v(t)) ∈ ψ.

Proof. We shall give a sketch of the proof. Given any admissible triple

(x(t;ω),u(t),v(t)) ∈ ψ , by the assumption, η [x(t;ω)](ω) ∈ W ′. Since, K1[η [x(t;ω)](ω)]

and K2[η [x(t;ω)](ω)] are assumed bounded from below on W ′, we have,

j1 = inf
ψ

J1[x(t;ω),u(t)] > −∞

and

j2 = inf
ψ

J2[x(t;ω),v(t)] > −∞.

Since there exists at least one admissible triple by the assumptions of the theorem,

j1 and j2 are finite. Thus, there exists a minimizing sequence of admissible triples

{x(t;ω)k,u(t)k,v(t)k} with t f k(ω) ∈ τ, such that,

J1[x(t;ω)k,u(t)k] → j1

and

J2[x(t;ω)k,v(t)k] → j2,

as k → ∞.

Now, we apply Lemmas 5.2.1 and 5.2.2 to conclude that there are measurable controls

u∗(t) ∈U(t) and v∗(t) ∈ V (t), such that, the triple (x∗(t;ω),u∗(t),v∗(t)) satisfies assump-

tions (i)–(vi) and (viii) of (A5.2.1) and, such that,

η [x∗(t;ω)](ω) = (t f (ω),x∗(t f (ω);ω)) ∈ Bω .

That is, assumption (vii) of (A5.2.1) is also satisfied.
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Thus,

(x∗(t;ω),u∗(t),v∗(t)) ∈ ψ.

Finally, since K1 and K2 were assumed continuous on W , we have

J1[x∗(t;ω),u∗(t)] = lim
k→∞

J1 [x(t;ω)k,u(t)k] = j1

and

J2[x∗(t;ω),v∗(t)] = lim
k→∞

J2 [x(t;ω)k,v(t)k] = j2,

hence, the theorem is proven. �

We will now see that the above theorems can be extended further to N-person differential

games where, N > 2.

5.2.4 N-Person Stochastic Differential Games

In this presentation we shall consider N-person stochastic differential games given by

d
dt

x(t;ω) = f (t,x(t;ω),u1(t), . . . ,uN(t)), (5.2.3)

where

i) ω ∈Ω; and Ω is the supporting set of a complete probability measure space (Ω,A,μ);

ii) x(t;ω) ∈ L2(Ω,A,μ) is an n-dimensional random state vector for each t � 0;

iii) ui(t) ∈ EPi is the pi-dimensional control vector for player i, i = 1,2, . . . ,N;

and with initial conditions given by the known n-dimensional random vector x(0;ω) =

x0(ω).

As before we will take as admissible controls ui, i = 1,2, . . . ,N, functions which are mea-

surable functions of t alone; and the control sets Ui(t) will be taken as subsets of the Eu-

clidean spaces EPi .

The constraint set AΩ will be assumed to be a compact subset of the space R+ ×
Cc(R+,L2(Ω,A,μ)) and the terminal set BΩ is assumed to be a closed subset of the same

space.

We shall let the terminal time t f (ω) vary with ω ∈ Ω where Ω is compact; and we shall

define the set

Tf =
{

t f (ω) : 0 � t f (ω) � T, T > 0, ω ∈Ω
}

,
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of all termination times as a family τ of equicontinuous functions this is closed in the

uniform topology. And, we shall consider integral cost functions given by

Ji =
∫
Ω

Gi[t f (ω);ω]dμ(ω),

where Gi are real valued continuous functions for i = 1,2, . . . ,N.

Finally, we shall define the sets

Mω = {(t,x,u1, . . . ,uN) : (t,x) ∈ Aω , ui ∈Ui}

and

M =
⋃
ω∈Ω

Mω = {(t,x,u1, . . . ,uN) : (t,x) ∈ Aω , ui ∈Ui} ,

as compact subsets of the space R+ ×Cc ×E∑Pi . We shall assume that the functions f

which are continuous from M into L2(Ω,A,μ) are separable and Lipschitzian.

As before, we shall consider a class ψ of all (N +1)-tuples, (x(t;ω), u1(t), . . . ,uN(t)), for

t, t f (ω) ∈ [0,T ] and ω ∈Ω which satisfy the following conditions.

(A5.2.4):

i) for each fixed ω ∈Ω,x(t;ω) is absolutely continuous in [0,T ];

ii) ui(t), i = 1,2, . . . ,N, are measurable functions for t ∈ [0,T ];

iii) for each ω ∈Ω and t ∈ [0,T ], (t,x(t;ω)) ∈ AΩ;

iv) ui(t) ∈Ui(t) ⊂ EPi for t ∈ [0,T ];

v) x(0;ω) = x0(ω);

vi) t f (ω) ∈ τ;

vii) for each ω ∈Ω, (t f (ω), x(t f (ω);ω)) ∈ BΩ;

and

viii) the ordinary differential equation
d
dt

x(t;ω) = f (t,x(t;ω),u1(t), . . . ,uN(t))

is satisfied μ-a.e. in [0,T ].

Definition 5.2.3. We shall define an admissible (N + 1)-tuple as any (N + 1)-tuple

(x(t;ω),u1(t), . . . ,uN(t)) which satisfies conditions (A5.2.4). Also, x(t;ω) will be called a

random solution; and u1(t), . . . ,uN(t) will be called admissible controls.

Let, Ki, i = 1,2, . . . ,N, be continuous functionals defined on the set W of continuous func-

tions given by,

W =
{
(w1(ω),w2(ω)) : (t f (ω),w2(ω)) ∈ Bω for each ω ∈Ω

}
;
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and assume that Ki is bounded from below on W ′ where

W ′ =
{
(w1(ω),w2(ω)) : (t f (ω),w2(ω)) ∈ Bω ∩Aω

}
⊂W.

Then, the functionals

Ji[x,ui] = Ki[η(x)(ω)]

= Ki[t f (ω), x(t f (ω);ω)]

are called cost functionals, i = 1,2, . . . ,N. We want to find the absolute minimum of

Ji[x(t;ω), u(t)] in the class ψ for each i.

Definition 5.2.4. Given an admissible (N +1)-tuple (x∗(t;ω),u∗(t), . . . ,u∗N(t)). If

Ji[x∗(t;ω),u∗i (t)] � Ji[x(t;ω),ui(t)]

for all i = 1,2, . . . ,N and all (x(t;ω), u1(t), . . . ,uN(t))∈ψ , then (x∗(t;ω), u∗1(t), . . . ,u
∗
N(t))

is called an optimal [N + 1]-tuple. Similarly, u∗i (t) are called optimal controls and x(t;ω)

is called an optimal random solution.

Although the optimal [N +1]-tuple need not be unique inψ , the value of the cost functional,

Ji[x∗,u∗i ] is the same for all optimal pairs.

Instead of stating a formal lemma, we shall simply state that given a stochastic N-person

differential game as described above where x(t;ω) is uniformly continuous for (t,ω) ∈
[0,T ]×Ω that {x(t;ω)k, k = 1,2, . . .} forms an equicontinuous and equibounded family of

functions on [0,T ]×Ω.

Let us make the following assumptions.

(A5.2.5):

a) Let f is completely separable function. That is,

f (t,x,u1, . . . ,uN) = g(t,x)+
N

∑
i−1

hi(t,ui) for (t,x,u1, . . . ,uN) ∈ M.

b) The control sets Ui(t) ⊂ EPi are compact for t ∈ [0,T ].

c) The control functions ui(t) are upper semicontinuous functions of t in [0,T ].

d) The following subsets of L2(Ω,A,μ), given by

hi(t,ui(t)) =
{

y ∈ L2(Ω,A,μ) : y = hi(t,ui), ui ∈Ui(t)
}

are convex for each t ∈ [0,T ].

Then f (t,x,U1(t), . . . ,UN(t)) is a convex subset of L2(Ω,A,μ) for each (t,x) ∈ A.
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We shall now state without proof a closure theorem and existence theorem for stochastic N-

person differential games with state variables x(t;ω) ∈Cc(R+,L2(Ω,A,μ)) and stochastic

termination times t f (ω) ∈ τ .

Let us make the following assumptions.

(A5.2.6):

(i) The constraint sets AΩ and A =
⋃
ω∈Ω

Aω are compact subsets of the tx-space, given by

R+ ×Cc (R+,L2(Ω,A,μ)) .

(ii) The control sets ui(t) are compact subsets of EPi for every i = 1,2, . . . ,N and

t ∈ [0,T ].

(iii) The control functions ui(t) are upper semi continuous functions of t ∈ [0,T ] for each

i = 1,2, . . . ,N.

(iv) MΩ and M =
⋃
ω∈Ω

MΩ are compact subsets of the space

R+ ×Cc(R+,L2(Ω,A,μ))×E∑ pi .

(v) The function f (t,x,u1, . . . ,uN) is a completely separable function on M into

L2(Ω,A,μ).

(vi) The sets hi(t,Ui(t)) are convex subsets of L2(Ω,A,μ) for every (t,x) ∈ A and i =

1,2, . . . ,N.

(vii) {x(t;ω)k} with {t f k(ω)} ∈ τ is a sequence of random solutions satisfying assump-

tions (i)–(vi) and (vi) of (A5.2.4) and converging uniformly to a function x∗(t;ω)

which is absolutely continuous in [0,T ] for each ω ∈Ω.

and,

(viii) t f k(ω) converges uniformly to t f (ω).

Theorem 5.2.3. Under the assumptions (A5.2.6), there exist measurable controls

u∗1(t), . . . ,u
∗
N(t) such that the [N + 1]-tuple (x∗(t;ω),u∗1(t), . . . ,u

∗
N(t)) with stochastic ter-

minal time t f (ω) satisfies condition (i) to (vi) and (viii) of (A5.2.4). That is, x∗(t;ω) is an

admissible random solution with random terminal time t f (ω) ∈ τ and Ji [xk,u∗i ] converges

uniformly to Ji[x∗,u∗i ] for each i = 1,2, . . . ,N.

Theorem 5.2.4. Consider the stochastic N-person differential game described above and

satisfying conditions (i) to (iv) of (A5.2.4). If the class of admissible [N + 1]-tuples ψ is

nonempty there exists an admissible (x∗(t;ω),u∗1(t), . . . ,u
∗
N(t)) such that

Ji [x∗(t;ω),u∗i (t)] � Ji [x(t;ω),ui(t)]

for all admissible [N +1]-tuples and all i, i = 1,2, . . . ,N.
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The reader has noted that in the description of the class ψ we required the existence of a

finite time T such that t f (ω) ∈ [0,T ] for all ω ∈ Ω and such that the random solution of

the state equation (7.2.1) exists over the entire interval [0,T ]. Physically this implies that if

we ignore our boundary conditions we can extend the solutions beyond the stopping time

t f (ω) if t f (ω) < T . The assumption (F) we require t f (ω) ∈ τ , a family of equicontinuous

functions which is closed in the uniform topology. An example would be t f (ω) = T1 (con-

stant) for all ω ∈Ω. Thus N-person stochastic differential games of prescribed duration are

a special case of the games studied here.

5.3 General solution

Now we will deal with the stochastic differential game problem where N players are si-

multaneously controlling the evolution of a system. The approach that we are going to use

in this section is based on occupation measures as described in Borkar and Ghosh [31].

In this framework the game problem is viewed as a multi decision optimization problem

on the set of canonically induced probability measures on the trajectory space by the joint

state and action processes. Each of the payoff criteria, such as discounted on the infinite

horizon, limiting average, payoff up to an exit time, etc., are associated with the concept

of an occupation measure so that the total payoff becomes the integral of some function

with respect to this measure. Then the differential game problem reduces to a static game

problem on the set of occupation measures, the dynamics of the game being captured in

these measures. This set is shown to be compact and convex. A fixed point theorem for

point-to-set mapping is used to show the existence of equilibrium in the sense of Nash.

Let Vi, i = 1,2, . . . ,N be compact metric spaces and Ui = P(Vi) be the space of probability

measures on Vi with Prohorov topology. Let V = V1 ×V2 × ·· ·×VN and U = U1 ×U2 ×
·· ·×UN . Let

m(·, ·) = [m1(·, ·), . . . ,md(·, ·)]T : R
d ×V → R

and

σ = [[σi j(·)]], 1 � i, j � d : R
d → R

d×d ,

be bounded continuous maps such that m is Lipschitz in its first argument uniformly with

respect to the rest and σ is Lipschitz with the least eigenvalue of σσT (·) be uniformly

bounded away from zero. Define, for x ∈ R
d , u = (u1, . . . ,uN) ∈U, we have

m(·, ·) = [m1(·, ·), . . . ,md(·, ·)]T : R
d ×U → R

d ,
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by

mi(x,u) =
∫

VN

· · ·
∫

V1

mi(x,y1, . . . ,yN)u1(dy1) · · ·uN(dyN)

.=
∫

V
mi(x,y)u(dy)

where y ∈V . Let x(·) be an R
d-valued process given by the following controlled stochastic

differential equation of Ito type given by,

dx(t) = m(x(t),u(t))dt +σ (x(t))dw(t), t � 0, (5.3.1)

with

x(0) = x0,

where, (i) x0 is a prescribed random variable, (ii) w(·) = [w1(·), . . . ,wd(·)]T is a standard

Wiener process independent of x0, (iii) u(·) = (u1(·), . . . ,uN(·)), where ui(·) is a Ui-valued

process satisfying : for t1 � t2 � t3, w(t1)−w(t2) is independent of u(t), t � t3. Such a

process ui(·) will be called an admissible strategy for the ith player. If ui(·) = vi(x(·)) for a

measurable vi : R
d →Ui, then, ui(·) is called a Markov strategy for the ith player. A strategy

ui(·) is called pure if ui is a Dirac measure, i.e., ui(·) = δyi(·), where yi(·) is a Vi-valued

process. If for each i = 1, . . . ,N, ui(·) = vi(x(·)) for some measurable vi : R
d → Ui, then,

(5.3.1) admits a unique strong solution which is a Feller process, Veretennikov [202]. Let

Ai, Mi, i = 1,2, . . . ,N, denote the set of arbitrary admissible, respectively Markov strategies

for the ith player. An N-tuple of Markov strategies v = (v1, . . . ,vN) ∈ M is called stable

if the corresponding process is positive recurrent and thus, has a unique invariant measure

η(v). For any f ∈W 2,p
loc (Rd), p � 2, x ∈ R

d , u ∈V, let

(L f )(x,u) =
1
2

d

∑
i, j,k=1

σik(x)σ jk(x)
∂ 2 f (x)
∂xi∂x j

+
d

∑
i=1

mi(x,u)
∂ f (x)
∂xi

and for any v ∈U , we have,

(Lv f )(x) =
∫

VN

· · ·
∫

V1

(L f )(x,y)v1(x)(dy1) · · ·vN(x)(dyN).

For an N-tuple y = (y1, . . . ,yN), denote yk̂ = (y1, . . . ,yk−1,yk+1, . . . ,yN) and (yk̂, ỹk) =

(y1, . . . ,yk−1, ỹk,yk+1, . . . ,yN).

For each k = 1, . . . ,N, let rk : R
d ×V → R be bounded continuous functions. When the

state is x and actions v ∈ V are chosen by the players then the player k receives a payoff

rk(x,v). For x ∈ R
d , u ∈U , let rk : R

d ×U → R be defined by

rk(x,u) =
∫

VN

· · ·
∫

V1

rk(x,y1, . . . ,yn)u1(dy1) · · ·uN(dyN).

Each player wants to maximize his accumulated income. We will now consider two evalu-

ation criteria: discounted payoff on the infinite horizon, and ergodic payoff.
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5.3.1 Discounted Payoff on the Infinite Horizon

Let λ > 0 be the discount factor and let u ∈ A = A1 ×·· ·×AN . Let x(·) be the solution of

(5.3.1) corresponding to u. The discounted payoff to player k for initial condition x ∈ R
d is

defined by

Rk
λ [u](x) = Eu

[∫ ∞

0
e−λ t rk(x(t),u(t))dt

∣∣ x(0) = x
]
.

For an initial law π ∈ P(Rd) the payoff is given by

Rk
λ [u](π) =

∫
Rd

Rk
λ [u](x)π(dx). (5.3.2)

An N-tuple of strategies u∗ = (u∗1, . . . ,u
∗
N) ∈ A1 ×·· ·×AN is said to be a discounted equi-

librium (in the sense of Nash) for initial law π if for any k = 1, . . . ,N, we have,

Rk
λ [u∗](π) � Rk

λ

[
u∗k̂,uk

]
(π), (5.3.3)

for any uk ∈ Ak. The existence of a discounted equilibrium will be shown later.

5.3.2 Ergodic Payoff

Let u ∈ A and let x(·) be the corresponding process with initial law π . The ergodic payoff

to player k is given by

Ck[u](π) = liminf
T→∞

1
T

Eu

[∫ T

0
rk(x(t),u(t))dt

]
. (5.3.4)

The concept of equilibrium for the ergodic criterion is defined similarly. Under a Lyapunov

stability condition (assumption (A5.3.1) introduced later) for all v ∈ M will be stable. For

such a v, (5.3.4) equals to

ρk[v] =
∫

Rd
rk(x,v(x))η [v](dx), (5.3.5)

where η [v] ∈ P(Rd) is the invariant measure of the process x(·) governed by v. It will be

shown that there exists a v∗ ∈ M, such that, for any k = 1, . . . ,N, we have,

ρk[v∗] � ρk

[
v∗k̂,vk

]
,

for any vk ∈ Mk. Thus, v∗ will be an ergodic equilibrium. Now we will explain the concept

of occupation measures.
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5.3.3 Occupation Measures

Let

Mk = {v : R
d →Uk | v measurable}, k = 1,2, . . . ,N.

For n � 1, let Λn be the cube of side 2n in R
d with sides parallel to the axes and center at

zero. Let Bn denote the closed unit ball of L∞(Λn) with the topology obtained by relativiz-

ing to it the weak topology of L2(Λn). Then Bn is compact and metrizable, for example by

the metric,

dn( f ,g) =
∞

∑
m=1

2−m
∣∣∣∣
∫
Λn

f emdx−
∫
Λn

gemdx
∣∣∣∣

where {em} is an orthonormal basis of L2(Λn). Let { fi} be a countable dense subset of the

unit ball of C(Vk). Then, { fi} separates points of Uk. For each v ∈ Mk, define gvi : R
d → R

by

gvi(x) =
∫

Vk

fidv(x), i � 1,

and gvin(·) denotes the restriction of gvi(·) to Λn, for each n. Define a pseudometric dk(·, ·)
on Mk by

dk(v,u) =
∞

∑
i,n=1

2−(n+1) dn(gvin,guin)
[1+dn(gvin,guin)]

.

Replacing Mk by its quotient with respect to a.e. equivalence, dk(·, ·) becomes a metric.

The following result is given in detail in Borkar [30].

Theorem 5.3.1. Mk is compact under the metric topology of dk(·, ·). Let f ∈ L2(Rd), g ∈
Cb(Rd ×Vk) and vn → v in Mk. Then∫

Rd
f (x)

∫
Vk

g(x, ·)dvndx →
∫

Rd
f (x)

∫
Vk

g(x, ·)dvdx.

Conversely, if the above holds for all such f , g then vn → v in Mk.

Endow M with the product topology of Mk. Let v ∈ M and x(·) be the process governed by

v with a fixed initial law. Let L(v) denote the law of x(·).

Theorem 5.3.2. The map v → L(v) : M → P(C[0,∞);Rd) is componentwise continuous,

i.e., for each k = 1,2, . . . ,N, if vn
k → v∞k in Mk, and vi ∈ Mi, i �= k, then L(vk̂,vn

k)→ L(vk̂,v∞k )

in P(C[0,∞);Rd).
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Now, we will introduce occupation measures for both discounted and ergodic payoff cri-

terion. First consider the discounted case. Let u ∈ A and x(·) be the corresponding

process. The discounted occupation measure for initial condition x ∈ R
d denoted by

νλx[u] ∈ P(Rd ×V ) is defined by, ∫
Rd×V

f dνλx[u] =

λ−1Eu

[∫ ∞

0

∫
VN

· · ·
∫

V1

e−λ t f (x(t),y1, . . . ,yN)u1(t)(dy1) · · ·uN(t)(dyN)dt
∣∣∣ x0 = x

]

for f ∈Cb(Rd ×V ) and for an initial law π ∈ P(Rd), νλπ [u] is defined by∫
f dνλπ [u] =

∫
Rd
π(dx)

∫
Rd×V

f dνλx[u].

In terms of νλπ [u], (5.2.2) becomes,

Rk
λ [u](π) = λ

∫
rdνλx[u].

Let

νλπ [A] = {νλπ [u]|u ∈ A},

νλπ [M1,A2, . . . ,AN ], νλπ [M1, . . . ,MN ] are defined analogously. Then, from Borkar and

Ghosh [31] we have the following result.

Theorem 5.3.3. For any k = 1,2, . . . ,N,

νλπ [M1, . . . ,Mk−1,Ak,Mk+1, . . . ,MN ] = νλπ [M1, . . . ,MN ].

Let v ∈ M. By Krylov’s inequality it can be shown that νλπ [v] is absolutely continuous with

respect to the Lebesgue measure on R
d and hence has a density φλπ [v]. For f ∈W 2,p

loc (Rd)

define

Lλv f (x) = (Lv f )(x)−λ f (x).

Then, φλπ [v] is the unique solution in L1(Rd) and for every f ∈C∞
0 (Rd), we have∫

Lλv f (x)φ(x)dx = −
∫

f (x)π(dx)

and ∫
φ(x)dx = 1, φ � 0.

Now from Borkar and Ghosh [31] we have following results.

Lemma 5.3.1. Let νλπ [M1, . . . ,MN ] be componentwise convex, i.e., for any fixed k and

prescribed vi ∈ Mi, i �= k, we have

νλπ
[
vk̂,Mk

]
=

{
νλπ

[
vk̂,vk

]
: vk ∈ Mk

}
,

is convex.
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Also, we have the following result.

Lemma 5.3.2. Let νλπ [M1, . . . ,MN ] be componentwise compact, i.e., for any fixed k and

prescribed vi ∈ Mi, i �= k, we have

νλπ
[
vk̂,Mk

]
=

{
νλπ

[
vk̂,vk

]
: vk ∈ Mk

}
,

is compact.

For the ergodic payoff criterion we will impose the following Lyapunov type stability con-

dition.

(A5.3.1): There exists a twice continuously differentiable function w : R
d →R+, such that,

(i) lim‖x‖→∞w(x) = ∞ uniformly in ‖x‖.

(ii) There exist a > 0, ε0 > 0 such that for ‖x‖ > a,

Lw(x,u) < −ε0 for all u ∈V

and

‖∇w‖2 � (λ )−1,

where λ is the ellipticity constant of σσT .

(iii) w(x) and ‖∇w‖ have polynomial growth.

For v ∈ M, let x(·) be the corresponding process. Also, for ‖x‖ > a, let

τa = inf{t � 0 | ‖x(t)‖ = a}.

The following result is a consequence of Assumption (A5.2.1).

Lemma 5.3.3.

(i) All v ∈ M are stable.

(ii) Ev[τa | x(0) = x] � w(x)/ε0, for any v.

(iii)
∫

w(x)η [v](dx) < ∞ for any v.

(iv) Under any v and x ∈ R
d , with

lim
t→∞

1
t

Ev[w(x(t))] = 0.

and

(v) The set I = {η [v] | v ∈ M} is componentwise compact in P(Rd).
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For v ∈ M, the ergodic occupation measure, denoted by νE [v] ∈ P(Rd ×V ) is defined as

νE [v](dx,dy1, . . . ,dyN) = η [v]
N

∏
i=1

vi(x)(dyi).

Let

νE [M] = {νE [v]|v ∈ M}.

For v ∈ M, let x(·) be the process governed by v. Then,

η [v](dx) =
(∫

p(t,y,x)η [v](dy)
)

dx,

where p(·, ·, ·) is the transition density of x(·) under v. Thus, η [v] itself has a density

which we denote by ϕ[v](·). Then ϕ[v] is the unique solution of the following. For every

f ∈C∞
0 (Rd) ∫

Lv f (x)φ(x)dx = 0
∫
φ(x)dx = 1, φ � 0.

As for the discounted case, we now have the following results.

Lemma 5.3.4. νE [M] is componentwise convex and compact.

For any fixed k ∈ {1,2, . . . ,N}, let vi ∈ Mi, i �= k and uk ∈ Ak. Let x(·) be the process

governed by
(

vk̂,uk

)
. Define P(Rd ×V )-valued empirical process νt as follows: For

B ⊂ R
d , Ai ⊂Ui, i = 1, . . . ,N, Borel, and

νt(B×A1 ×·· ·×AN) =
1
t

∫ t

0
I{x(s) ∈ B}

N

∏
i=1
i �=k

vi(x(s))(Ai)uk(s)(Ak)ds.

Lemma 5.3.5. The process {νt} is a.s., tight and outside a set of zero probability, each

limit point ν of {νt} as t → ∞ belongs to νE [M].

5.3.4 Existence of an Equilibrium

We will proceed by making the following assumption.

(A5.3.2): m and r are of the form

m(x,u1, . . . ,uN) =
N

∑
i=1

mi(x,ui)

and

r(x,u1, . . . ,uN) =
N

∑
i=1

ri(x,ui)
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where mi : R
d ×Vi → R

d and ri : R
d ×Vi → R and they satisfy the same conditions as m

and r.

Let v ∈ M. Fix a k ∈ {1,2, . . . ,N} and π ∈ P(Rd). Then by Lemma 5.2.3, we have

sup
uk∈Ak

Rk
λ
[
vk̂,uk

]
(π) = sup

vk∈Mk

Rk
λ
[
vk̂,vk

]
(π).

Since Mk is compact and rk is continuous, the suprimum on the right hand side above can

be replaced by the maximum. Then, there exists a v∗k ∈ Mk, such that,

sup
uk∈Ak

Rk
λ
[
vk̂,uk](π) = max

vk∈Mk
Rk
λ
[
vk̂,vk

]
(π) = Rk

λ
[
vk̂,v∗k

]
(π). (5.3.6)

This optimal discounted response strategy for player k, v∗k can be chosen to be independent

of π . Define R̃k
λ [v] : R

d → R by

R̃k
λ [v](x) = max

vk∈Mk
Rk
λ
[
vk̂,vk

]
(x).

Then, we can obtain the following result.

Lemma 5.3.6. R̃k
λ [v](·) is the unique solution in W 2,p

loc (Rd)∩Cb(Rd), 2 � p < ∞, of

λφ(x) = sup
vk

[
L

vk̂,vk
φ(x)+ r

(
x,vk̂(x),vk

)]

in R
d. A strategy v∗k ∈ Mk is discounted optimal response for player k given v if and only if[

d

∑
i=1

mi

(
x,vk̂(x),v∗k(x)

) ∂ R̃k
λ [v](x)
∂xi

+ r
(

x,vk̂(x),v∗k(x)
)]

= sup
vk

[
d

∑
i=1

mi

(
x,vk̂(x),vk(x)

) ∂ R̃k
λ [v](x)
∂xi

+ r
(

x,vk̂(x),vk(x)
)]

a.e..

Details of the next result can be found in Borkar and Ghosh [31] gives the existence of

discounted equilibrium in the set of Markov strategies.

Theorem 5.3.4. There exists a discounted equilibrium v∗ = (v∗1, . . . ,v
∗
N) ∈ M.

Proof. Let v ∈ M and vk ∈Uk. Set

Fk

(
x,vk̂,vk

)
=

d

∑
i=1

mi

(
x,vk̂(x),vk

) ∂ R̃k
λ [v](x)
∂xi

+ r
(

x,vk̂(x),vk

)

Let

Gk[v] =

{
v∗k ∈ Mk | Fk

(
x,vk̂(x),v∗k(x)

)
= sup

vk∈Uk

Fk

(
x,vk̂,vk

)
a.e.

}
.

Then, Gk[v] is non-empty, convex, closed and hence compact. Set

G[v] =
N

∏
k=1

Gk[v].
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Then, G[v] is non-empty convex and compact subset of M. Thus, v → G[v] defines a point-

to-set map from M to 2M . This map is upper semicontinuous. Hence, by Fan’s fixed

point theorem [58], there exists a v∗ ∈ M, such that, v∗ ∈ G[v∗]. This v∗ is a discounted

equilibrium. �

Next we will discuss the existence results for the ergodic payoff. Let v ∈ M and fix a

k ∈ {1,2, . . . ,N}. Let v∗k ∈ Mk be, such that,

ρ∗
k [v] .= ρk

[
vk̂,v∗k

]
= max

vk∈Mk
ρvk̂,v∗k ],

where ρk[v] is defined in (5.3.5). If all but player k uses strategies vk̂ then, by Lemma 5.3.8,

player k can not obtain a higher payoff than ρ∗
k [v] by going beyond Mk a.s. This v∗k is said

to be an ergodic optimal response for player k given v. Consider the following

ρ = sup
vk̂,vk

[
Lφ(x)+ r

(
x,vk̂(x),vk

)]
(5.3.7)

where ρ is a scalar and φ : R
d → R. Then we have the following result.

Lemma 5.3.7. The equation (5.3.7) has a uniqu e solution (φk[v],ρ∗
k [v]) in the class of

functions W 2,p
loc (Rd)∩O(w(·)), 2 � p <∞, satisfying φ [v] = 0. A v∗k ∈ Mk is ergodic optimal

response for player k given v, if and only if,[
d

∑
i=1

mi

(
x,vk̂(x),v∗k(x)

) ∂φk[v](x)
∂xi

+ r
(

x,vk̂(x),v∗k(x)
)]

= sup
vk

[
d

∑
i=1

mi

(
x,vk̂(x),vk(x)

) ∂φk[v](x)
∂xi

+ r
(

x,vk̂(x),vk(x)
)]

a.e..

(5.3.8)

The following result is due to Borkar and Ghosh [31] that gives the existence of an ergodic

equilibrium.

Theorem 5.3.5. There exists an ergodic equilibrium v∗ ∈ M.

Proof. Let v ∈ M and vk ∈Uk. Set

Jk

(
x,vk̂,vk

)
=

[
d

∑
i=1

mi

(
x,vk̂(x),vk(x)

) ∂φk[v](x)
∂xi

+ r
(

x,vk̂(x),vk(x)
)]

.

Let

Hk(v) =

{
ṽk ∈ Mk | Jk

(
x,vk̂, ṽk(x)

)
= sup

vk∈Uk

Jk

(
x,vk̂,vk

)
a.e.

}
.

Set H[v] =
N
∏

k=1
Hk(v). Then H(v) is a non-empty, convex, compact subset of M. As in

the discounted case, an application of Fan’s fixed point theorem yields a v∗ ∈ M such that

v∗ ∈ H[v∗]. This v∗ is an ergodic equilibrium. �
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In this section we have used a non-anticipative relaxed control framework to show the

existence of an equilibrium for N-person stochastc differential game. Using this approach,

one could also show the existence of value and optimal strategies for two person strictly

competitive differential game that we have discussed in Section 2. Other payoff criteria

could also be considered. Using the approach described here, one could obtain similar

results for feedback randomized strategies.



Chapter 6

Weak Convergence in Two Player Stochastic
Differential Games

6.1 Introduction

Much of stochastic game theory is concerned with diffusion models, as we have seen in

Chapters 3 through 5. It is well known that such models are often only idealizations of

the actual physical processes, which might be driven by a wide bandwidth process or be a

discrete parameter system with correlated driving noises. Optimal strategies derived for the

diffusion models would not be of much interest if they were not “nearly optimal” for the

physical system which the diffusion approximates. Using the models of this Chapter, for

many typical problem formulations, we can show that the optimal strategies derived for the

“limit” system are also good strategies for the system which is driven by wide bandwidth

noise processes. Such results not only gives robustness statement on the game problem, but

also substantially simplifies the computational aspects, as we will see in Chapter 8. The

results in this chapter will show that we need only to compute the value of the limiting

system and proceed to obtain corresponding strategies and adapt these strategies in the nth

(actual) system instead of computing the saddle points or optimal strategies at each step

and show the convergence.

In Section 6.2, we will briefly explain weak convergence preliminaries. For details on the

weak convergence, we refer the reader to the excellent book by Kushner, [103]. Weak

convergence methods for some popular payoff structures will be discussed in Section 6.3.

Other extentions such as the multi mode case will be described in Section 6.4 and the

partially observed case will be discribed in Section 6.5. Some deterministic approximations

will be discussed in Section 6.6.

95
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6.2 Weak Convergence Preliminaries

Let Dd [0,∞) denote the space of R
d valued functions which are right continuous and have

left-hand limits endowed with the Skorohod topology. Following Kurtz [116], Kushner

[103], we define the notion of “p-lim” and an operator Âε as follows. Let {ℑεt } denote the

minimal σ -algebra over which {xε(s),ξ ε(s), s � t} is measurable, and let Eε
t denote the

expectation conditioned on ℑεt . Let M̃ denote the set of real valued functions of (ω, t) that

are nonzero only on a bounded t-interval. Let

Mε =
{

f ∈ M̃; sup
t

E| f (t)| < ∞ and f (t) is ℑεt measurable
}

.

Let f (·), f Δ(·) ∈ Mε
, for each Δ> 0. Then f = p-limΔ f Δ, if and only if,

sup
t,Δ

E
∣∣∣ f Δ(t)

∣∣∣ < ∞,

and limΔ→0 E| f (t)− f Δ(t)| = 0, for each t. f (·) is said to be in the domain of Âε , i.e.,

f (·) ∈ D
(
Âε

)
, and Âε f = g if

p- lim
Δ→0

(
Eε

t f (t +Δ)− f (t)
Δ

−g(t)
)

= 0.

If f (·) ∈ D
(
Âε

)
, then

f (t)−
∫ t

0
Âε f (u)du is a martingale,

and

Eε
t f (t + s)− f (t) =

∫ t+s

t
Eε

t Âε f (u)du, w.p.1.

The Âε operator plays the role of an infinitesimal operator for a non-Markov process. In

our case, it becomes a differential operator by the martingale property and the definition

of p-limit. We will use the terms like “tight”, Skorohod imbedding, etc. with out explana-

tion, the reader can obtain these from Kushner [103]. The following result will be used to

conclude that various terms will go to zero in probability.

Note: If there is a strategy vector u involved, we can define Â u in the following manner.

Let

b(x,u) =
N

∑
i=1

bi(x(t))ui(t).

Define the operator Â u as follows,

Â u f (x) = fx(x)[a(x)+b(x,u)].
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Lemma 6.2.1. Let ξ (·) be a φ -mixing process with mixing rate φ(·), and let h(·) be a

function of ξ which is bounded and measurable on ℑ∞t . Then, there exist Ki, i = 1,2,3,

such that,

|E(h(t + s)/ℑt
0)−Eh(t + s)| � K1φ(s).

If t < u < v, and Eh(s) = 0 for all s, then,

|E(h(u)h(v)/ℑt
τ)−Eh(u)h(v)| �

{
K2φ(v−u), u < τ < v

K3φ(u− t), t < τ < u,

where ℑt
τ = σ{ξ (s);τ � s � t}.

In order to obtain the weak convergence result, the following condition need to be verified:

lim
n→∞

limsup
ε→0

P
(

sup
t�T

|xε(t)| � n
)

= 0

for each T < ∞. Direct verification of this is very tenuous. Instead, one can utilize the

method of K-truncation. This is as follows. For each K > 0, let

SK = {x : |x| � K} be the K-ball.

Let xε ,K(0) = xε(0), xε ,K(t) = xε(t), up until the first exit from Sk, and

lim
n→∞

limsup
ε→0

P
(

sup
t�T

|xε ,K(t)| � n
)

= 0 for each T < ∞.

Thus, xε ,K(t) is said to be the K-truncation of xε(·). Let

qK(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, for x ∈ SK

0, for x ∈ R
d −SK+1

Smooth otherwise.

Define aK(x,α) = a(x,α)qK(x) and gK(x,ξ ) = g(x,ξ )qK(x). Let xε ,K(·) denote the process

corresponding to the use of truncated coefficients. Then xε ,K(·) is bounded uniformly in t

and ε > 0.

To prove the main weak convergence results, we will use the following results from Kush-

ner [103].

Lemma 6.2.2. Let {yε(·)} be tight on Dd [0,∞). Suppose that for each f (·) ∈C3
0 , and each

T < ∞, there exist f ε(·) ∈ D
(
Âε

)
, such that,

p- lim( f ε(·)− f (yε(·))) = 0 (6.2.1)

and

p- lim
ε

(
Âε f ε(·)− Â f (yε(·))

)
= 0. (6.2.2)

Then yε(·) → y(·), the solution of the martingale problem for the operator Â.
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Lemma 6.2.3. Let the K-truncations {yε ,K} be tight for each K, and that the martingale

problem for the diffusion operator A have a unique solution y(·) for each initial condition.

Suppose that yK(·) is a K− truncation of y(·) and it solves the martingale problem for

operator AK. For each K and f (·) ∈ D, let there be f ε(·) ∈ D(Aε) such that (6.1.1) and

(6.1.2) hold with yε ,K(·) and AK replacing yε and A, respectively. Then yε(·) → y(·).

Now we will outline a general method one can follow to show that a sequence of solutions

to a wide band width noise driven ordinary differential equation (ODE) converge weakly

to a diffusion, and identify the limit diffusion (Kushner [103], Ramachandran [158]). Let

zε(·) be defined by

dzε = a(zε)dt +
1
ε

b(zε)ξ (t/ε2)dt (6.2.3)

where ξ (·) is a second order stationary right continuous process with left hand lim-

its and integrable correlation function R(·), and the functions a(·) and b(·) are con-

tinuous, b(·) is continuously differentiable and (6.2.3) has a unique solution. Define

R0 =
∫ ∞
−∞Eξ (u)ξ ′(0)du and assume that

E
∣∣∣∣
∫ t

s
du

[
E

(
ξ (u)ξ ′(s)/ξ (ι) , ι � 0

)
−R(u− s)

]∣∣∣∣ → 0 as t, s → ∞.

Define the infinitesimal generator A and function K =
(
K1, . . .

)
by

A f (z) = f ′z(z)a(z)+
∫ ∞

0
E

[
f ′z(z)b(z)ξ (t)

]′
z b(z)ξ (0)dt

≡∑
i

fzi(z)Ki(z)+
1
2

trace
{

fziz j(z)
}{

b(z)R0b(z)
}
,

(6.2.4)

where K = (K1, . . .) are the coefficients of the first derivatives ( fz1 , . . .) in (6.1.4). The

operator A is the generator of

dz = K(z)dt +b(z)R1/2
0 dw, (6.2.5)

where w(·) is the standard Wiener process. In order to obtain that zε(·) → z(·) of (6.2.5),

by martingale problem solution, it is enough to show that

p- lim
ε

(
Âε f ε(·)−A f (zε(·))

)
= 0. (6.2.6)

Then by Lemma 6.2.2, z(·) satisfies (6.2.5).

6.3 Some Popular Payoff Structures

In this section, we will discuss weak convergence methods for both average cost per unit

time problem as well as the discounted payoff problem.



Weak Convergence in Two Player Stochastic Differential Games 99

6.3.1 Ergodic Payoff

The average cost per unit time problem over an infinite time horizon for two person zero-

sum stochastic differential games with diffusion model have been dealt with in the liter-

ature. For the diffusion models where payoff with expectations (not pathwise), existence

of equilibrium has been proven in (Elliott and Davis [51]) and in the case of discounted

and average cost cases the existence of equilibria in Markov strategies was established in

Borkar and Ghosh [31]. We treat such a problem for wideband noise driven systems, which

are ‘close’ to diffusion. The average is in the pathwise but not necessarily in the expected

value sense (Ramachandran [158]). The ‘pathwise’ convergence result is of particular im-

portance in applications, since we often have a single realization, then expectation is not

appropriate in the cost function. In a typical application, we have a particular process with

a wideband noise driving forces. Our interest is in knowing how well are the good policies

for the ‘limit’ problem do for the actual ‘physical’, problem as well as various qualitative

properties of the ‘physical’ process. Physical problem is better modeled by a wideband

width noise driven process than the white noise process. However, owing to the wideband

noise and appearance of the two parameters ε and T , convergence results of the ‘almost

sure’ type are often rather meaningless from a practical point of view as well as nearly im-

possible to obtain. It is important that the convergence result obtained should not depend on

the way in which ε → 0 and T →∞. Where this is not the case, it would be possible that as

ε → 0, a larger and larger T is needed to closely approximate the limit value. In that case,

the white noise limit (6.3.1) would not be useful for predictive or control purposes when the

true model is given by (6.3.7). It will be shown that the optimal equilibrium policies of the

limit diffusion when applied to the wide bandwidth processes, will be δ -equilibrium as the

parameters ε → 0 and T → ∞, irrespective of the order in which the limit takes place. It is

also shown that the δ -optimal pathwise discounted payoffs converge to the δ -equilibrium

as both the discounted factor λ → 0 and bandwidth goes to ∞. Apart from the fact that

this gives a robustness statement for the diffusion model, one of the major advantage is by

using the method of this work, it is enough to compute the optimal strategies for the limit

diffusion and then use this strategies to the physical system in order to obtain near optimal

strategies. The entire problem will be set in relaxed control framework. In the proofs, we

will use the weak convergence theory.
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6.3.2 Problem Description

Let the diffusion model be given in a non-anticipative relaxed control frame work. Let

Ui, i = 1,2 be compact metric spaces (we can take Ui as compact subsets of R
d), and

Mi = P(Ui), the space of probability measures on Ui with Prohorov topology.

For m = (m1,m2) ∈ M = M1 ×M2 and U = U1 ×U2, x(·) ∈ R
d be an R

d-valued process

given by the following controlled stochastic differential equation

dx(t) =
∫

U1
a1(x(t),α1)m1t(dα)+

∫
U2

a2(x(t),α2)m2t(dα)dt +g(x(t))dt +σ(x(t))dw(t)

x(0) = x0
(6.3.1)

where x0 is a prescribed random variable. The pathwise average payoff per unit time for

player 1 is given by

J[m](x) = liminf
T→∞

1
T

∫ T

0

∫
r(x(s),α)ms(dα)ds (6.3.2)

and for the initial law π in P(Rd), it is given by

J[m](π) =
∫

Rd
J[m](x)π(dX). (6.3.3)

Let w(·) in (6.3.1) be a Wiener process with respect to a filtration {ℑt} and let Ωi, i = 1,2

be a compact set in some Euclidean space. A measure valued random variable mi(·) is an

admissible strategy for the ith player if
∫ ∫ t

0 fi(s,αi)mi(dsdαi) is progressively measurable

for each bounded continuous fi(·) and mi([0, t]×Ωi) = t, for t � 0. If mi(·) is admissible

then there is a derivative mit(·) (defined for almost all t) that is non-anticipative with respect

to w(·) and
∫ t

0

∫
fi(s,αi)mi(dsdαi) =

∫ t

0
ds

∫
fi(s,αi)mis(dαi),

for all t with probability one (w.p.1). The results derived in this work are for the so called

Markov strategies, which is a measure on the Borel sets of Ωi for each x, and mi(c) is

Borel measurable for each Borel measurable set C. We will denote by Ai the set of admis-

sible strategies and Mai the set of Markov strategies for the player i. One can introduce

appropriate metric topology under which Mai is compact, Borkar and Ghosh [31].

In relaxed control settings, one chooses at time t, a probability measure mt on the control

set M rather than an element u(t) in U . We call the measure mt the relaxed control at

time t. Any ordinary control can be represented as a relaxed control via the definition of

the derivative mt(dα) = δu(t)(α)dα . Hence, if mt is an atomic measure concentrated at a

single point m(t) ∈ M for each t, then the relaxed control will be called ordinary control.

We will denote the ordinary control by um(t) ∈ M.
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An admissible strategy m∗
1 ∈ A1 is said to be an ergodic optimal for initial law π if

J[m∗
1, m̃2](π) � inf

m2∈A2
sup

m1∈A1

J[m1,m2](π) = V +(π), (6.3.4)

for any m̃2 ∈ A2. A strategy m∗
1 ∈ Ma1 is called discounted optimal for player I, if it is

ergodic optimal for all initial laws. Similarly, m∗
2 ∈ A2 is discounted optimal for player II

for an initial law π if

J(m̃1,m∗
2)(π) � sup

m1∈A1

inf
m2∈A2

J[m1,m2](π)

= V−(π),
(6.3.5)

for any m̃1 ∈ A1. m∗
2 ∈ Ma2 is ergodic optimal for player II if (6.3.5) holds for all initial

laws. If for any initial law π , V +(π) = V−(π), then the game is said to have an ergodic

equilibrium and we will denote it by V (π). The policies m1δ and m2δ are said to be δ -

ergodic equilibrium if

sup
m1∈A1

J (m1,m2δ )−δ � V � inf
m2∈A2

J (m1δ ,m2)+δ . (6.3.6)

The wide band noise system considered in this work is of the following type:

dxε =
[∫

a1(xε ,α1)mε
1t(dα1)+

∫
a2(xε ,α2)mε

2t(dα2)dt +G(xε ,ξ ε(t))
+ 1

ε g(xε ,ξ ε)dt
]
,

(6.3.7)

and pathwise average payoff per unit time for player k is given by

Jε [mε ] = liminf
T→∞

1
T

∫ T

0

∫
r(xε(s),α)mε

s (dα)ds. (6.3.8)

Player I aims to maximize his accumulated income, while player II will minimize the same.

An admissible relaxed strategy mε
k(·) for the kth player with system (6.3.7) is a measure

valued random variable satisfying
∫ ∫ t

0 f (s,α)mε(dsdα) is progressively measurable with

respect to {ℑεt }, where ℑεt is the minimal σ -algebra generated by {ξ ε(s),xε(s), s � t}.

Also mε([0, t]×U) = t for all t � 0. Also, there is a derivative mε
t , where mε

t (b) are ℑεt
measurable for Borel B. The concept of δ -ergodic equilibrium for xε(·) is similarly defined

as in (6.3.6).

Under the Lyapunov type stability condition (assumption A in Borkar and Ghosh [31]), the

following result is proved.

Theorem 6.3.1. For the stochastic differential game with ergodic payoff criterion has a

value and both players have optimal strategies m∗ = (m∗
1,m

∗
2) ∈ Ma1 ×Ma2.
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6.3.3 Chattering Lemma

In the relaxed control setting, each player chooses at time t a probability measure mi(t) on

the control set Mi rather than an element ui(t) ∈ Ui, i = 1,2. Since relaxed controls are

devices with primarily a mathematical use, it is desirable to have a chattering type result

for the game problem. In order for the relaxed control problem to be true extension of the

original problem, the equilibrium among the relaxed control strategies must be the same

as the equilibrium taken among the ordinary strategies when it exists. For this purpose,

we extend the chattering results obtained for control problems as in Fleming [60], to two

person zero-sum stochastic differential games. We note that Ui ⊆ Mi, because, if mi(t) is

an atomic measure, concentrated at a single point u(t) for each t, then we get an ordinary

control policy as a special case of a relaxed control policy. Let (m∗
1,m

∗
2) be the equilibrium

policy pair in the relaxed controls and (u∗1,u
∗
2) be the equilibrium policy pair (if it exists) in

the ordinary controls.

Theorem 6.3.2. Under the conditions of Theorem 6.3.1,

J(m∗
1,m

∗
2) = J(u∗1,u

∗
2).

Proof.

(a) suppose J(m∗
1,m

∗
2) � J(u∗1,u

∗
2).

From Fleming [60], there exists a uε ∈U, such that,

|J(m∗
1,u

∗
2)− J(u1ε ,u∗2)| < ε. (6.3.9)

From the definition of J(u∗1,u
∗
2) and J(m∗

1,m
∗
2), we have,

J(u∗1,u
∗
2) � J(u1ε ,u∗2) (6.3.10)

and

J(m∗
1,u

∗
2) � J(m∗

1,m
∗
2). (6.3.11)

Adding (6.3.10) and (6.3.11), we have,

J(u∗1,u
∗
2)+ J(m∗

1,u
∗
2) � J(u1ε ,u∗2)+ J(m∗

1,m
∗
2),

which implies,

J(m∗
1,u

∗
2)− J(u1ε ,u∗2) � J(m∗

1,m
∗
2)− J(u∗1,u

∗
2) � 0 (by assumption),

which implies,

ε > |J(m∗
1,u

∗
2)− J(u1ε ,u∗2)| � |J(m∗

1,m
∗
2)− J(u∗1,u

∗
2)| ,

and thus, we have J(m∗
1,m

∗
2) = J(u∗1,u

∗
2), as ε is arbitrary.
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(b) Suppose J(m∗
1,m

∗
2) � J(u∗1,u

∗
2).

Let u2ε ∈U2, such that

|J(u∗1,m
∗
2)− J(u∗1,u2ε)| < ε

as before

J(u∗1,u
∗
2) � J(u∗1,u2ε)

and

J(u∗1,m
∗
2) � J(m∗

1,m
∗
2)

implies

0 � J(u∗1,u
∗
2)− J(m∗

1,m
∗
2) � J(u∗1,u2ε)− J(u∗1,m

∗
2) < ε,

and thus,

J(m∗
1,m

∗
2) = J(u∗1,u

∗
2).

Hence the proof. �

6.3.4 Main Result

Now, we will prove the weak convergence of the wideband system (6.3.7) to the diffu-

sion system (6.3.1) and the δ -optimality of the equilibrium strategies of (6.3.1) applied to

(6.3.7). We will use the following assumptions, which are very general. For a detailed de-

scription on these types of assumptions, we refer the reader to Kushner [103] and Kushner

and Dupuis [112].

(A6.3.1): ai(·, ·), i = 1,2, G(·, ·), g(·,), gx(·, ·) are continuous and are bounded by O(1 +

|x|). Also, Gx(·,ξ ) is continuous in x for each ξ and is bounded. ξ (·) is bounded, right

continuous, and EG(x,ξ (t)) → 0, Eg(x,ξ (t)) → 0 as t → ∞, for each x. Also, r(·, ·) is

bounded and continuous.

(A6.3.2): gxx(·,ξ ) is continuous for each ξ , and is bounded.

(A6.3.3): Let W (x,ξ ) denote either εG(x,ξ ),Gx(x,ξ ),g(x,ξ ) or gx(x,ξ ). Then for com-

pact Q, we have

ε sup
x∈Q

∣∣∣∣
∫ ∞

t/ε2
Eε

t W (x,ξ (s))ds
∣∣∣∣ ε−→0

in the mean square sense, uniformly in t.
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(A6.3.4): Let gi denote the ith component of g. There are continuous gi(·),b(·) = {bi j(·)}
such that ∫ ∞

t
Egi,x(x,ξ (s))g(x,ξ (t))ds −→ gi(x),

and ∫ ∞

t
Egi(x,ξ (s))g j (x,ξ (t))ds −→ 1

2
bi j(x),

as t → ∞, and the convergence is uniform in any bounded x-set.

Note: Let b(x) = {bi j(x)}. For i �= j, it is not necessary that bi j = b ji. In that case define

b̃(x) = 1
2 [b(x)+b′(x)], as the symmetric covariance matrix, then use b for the new b̃. Hence,

for notational simplicity, we will not distinguish between b(x) and b̃(x).

(A6.3.5): For each compact set Q and all i, j, we assume

(a) supx∈Q ε2
∣∣∣∫ ∞t/ε2 dτ

∫ ∞
τ ds

[
Et/ε2g′i,x(x,ξ (s))g(x,ξ (t))−Eg′i,x(x,x(s))g(x,x(t))

]∣∣∣ → 0;

and

(b) supx∈Q ε2
∣∣∣∫ ∞t/ε2 dτ

∫ ∞
τ ds

[
Et/ε2gi(x,ξ (s))g j(x,ξ (t))−Egi(x,x(s))g j(x,x(t))

]∣∣∣ → 0;

in the mean square sense as ε → 0, uniformly in t.

Define a(x,α) = a1 (x,α1)+a2 (x,α2)+g(x) and the operator Am as

Am f (x) =
∫

Aα f (x)mx(dα),

where

Aα f (x) = f ′x(x)a(x,α)+
1
2∑i, j

bi j(x) fxix j(x).

For a fixed control α , Aα will be the operator of the process that is the weak limit of {xε(·)}.
(A6.3.6): The martingale problem for operator Am has a unique solution for each re-

laxed admissible Markov strategy mx(·), and each initial condition. The process is a

Feller process. The solution of (6.3.7) is unique in the weak sense for each ε > 0. Also

b(x) = σ(x)σ ′(x) for some continuous finite dimensional matrix σ(·).
For an admissible relaxed policy for (6.3.7) and (6.3.1), respectively, define the occupation

measure valued random variables Pm,ε
T (·) and Pm

T (·) by, respectively,

Pm,ε
T (B×C) =

1
T

∫ T

0
I{xε (t)∈B}mε

t (c)dt,

and

Pm
T (B×C) =

1
T

∫ T

0
I{x(t)∈B}mt(c)dt
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where B and C are Borel subsets in R
d and [0, t]×U , respectively.

Let {mε(·)} be a given sequence of admissible relaxed controls.

(A6.3.7): For a fixed δ > 0,

{xε(t), small ε > 0, t ∈ dense set in [0,∞), mε used}

are tight.

Note: The assumption (A6.3.7) implies that the set of measure valued random variables

{Pmε ,ε
T (·), small ε > 0, T < ∞},

are tight.

(A6.3.8): For the ergodic equilibrium pair of Markov strategies m∗ = (m∗
1,m

∗
2) with initial

law π for (6.3.1) and (6.3.2), the martingale problem has a unique solution. The solution is

a Feller process and there is a unique invariant measure μ(m∗).

Note: Existence of such an invariant measure is assured if the process is positive recurrent.

Also, under the conditions of Theorem 6.3.1, the assumption (A6.3.8) will follow.

The following result gives the main convergence and δ -optimality result for the ergodic

payoff criterion.

Theorem 6.3.3. Assume (A6.3.1) to (A6.3.8). Let (m∗ε
1 ,m∗ε

2 ) be the policy pair (m∗
1,m

∗
2)

adaptively applied to (6.3.7) and (6.3.8). Then {xε(·),m∗ε
1 ,m∗ε

2 } → (x(·),m∗
1,m

∗
2) (in the

Skorohod topology) and there is a Wiener process w(·) such that (x(·),m∗
1,m

∗
2) is nonantic-

ipative with respect to w(·), and (6.3.1) holds. Also,

Jε (m∗ε
1 ,m∗ε

2 ) P−→J(m∗
1,m

∗
2) = V (π). (6.3.12)

In addition, let (m̂ε
1(·),mε

2(·)) be a δ -optimal strategy pair for player I and (mε
1(·), m̂ε

2(·))
be δ -optimal pair for player II for xε(·) of (6.3.7). Then

lim
ε ,T

P{|Jε (m∗ε
1 ,m∗ε

2 )− Jε (m̂ε
1(·),mε

2(·))| < δ} = 1 (6.3.13)

and

lim
ε ,T

P{|Jε (m∗ε
1 ,m∗ε

2 )− Jε (mε
1(·), m̂ε

2(·))| < δ} = 1 (6.3.14)

Proof. The correct procedure of the proof is to work with the truncated processes xε ,K(·)
and to use the piecing together the idea of Lemma 6.2.1 to get convergence of the original

xε(·) sequence, unless xε(·) is bounded on each [0,T ], uniformly in ε . For notational sim-

plicity, we ignore this technicality. Simply suppose that xε(·) is bounded in the following

analysis. Otherwise, one can work with K-truncation. Let D̂ be a measure determining
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set of bounded real-valued continuous functions on R
d having continuous second partial

derivatives and compact support. Let mε
t (·) be the relaxed Markov policies of (A6.3.7).

Whenever convenient, we write xε(t) = x. For the test function f (·) ∈ D̂, define the per-

turbed test functions (the change of variable s/ε2 → s will be used through out the proofs)

given by

f ε0 (x, t) =
∫ ∞

t
Eε

t f ′x(x)G(x,ξ ε(s))ds = ε2
∫ ∞

t/ε2
Eε

t f ′x(x)G(x,ξ (s))ds,

f ε1 (x, t) =
1
ε

∫ ∞

t
Eε

t f ′x(x)g(x,ξ ε(s))ds = ε
∫ ∞

t/ε2
Eε

t f ′x(x)g(x,ξ (s))ds,

and

f ε2 (x, t) =
1
ε2

∫ ∞

t
ds

∫ ∞

s
dτ

{
Eε

t [ f ′x(x)g(x,ξ ε(τ))]′xg(x,ξ ε(s))

−E[ f ′x(x)g(x,ξ ε(τ))]′xg(x,ξ ε(s))
}

= ε2
∫ ∞

t/ε2
ds

∫ ∞

s
dτ

{
Eε

t [ f ′x(x)g(x,ξ (τ))]′xg(x,ξ (s))

−E[ f ′x(x)g(x,ξ (τ))]′xg(x,ξ (s))
}

.

From (A6.3.1), (A6.3.2), (A6.3.3), and (A6.3.5), f εi (·) ∈ D(Aε) for i = 0,1,2. Define the

perturbed test function

f ε(t) = f (xε(t))+
2

∑
i=0

f εi (xε(t), t).

The reason for defining f εi is to facilitate the averaging of the “noise” terms involving ξ ε

terms. By the definition of the operator Aε and its domain D(Aε), we will obtain that

f (xε(·)) and the f εi (xε(·), ·) are all in D(Aε), and

Amε ,ε f (xε(t)) = f ′x(x
ε(t))

[
2

∑
i=1

∫
ai(xε(t),α)mε

it(dα)

+G(xε(t),ξ ε(t))+
1
ε

g(xε(t),ξ ε(t))

]
.

(6.3.15)

From (6.3.15) we can obtain,

Amε ,ε f0(xε(t)) = − f ′x(x
ε(t))G(xε(t),ξ ε(t))+

∫ ∞

t
ds[Eε

t f ′x(x
ε(t))G(xε(t),ξ ε(s))]′x

.

xε(t)

= − f ′x(x
ε(t))G(xε(t),ξ ε(t))+ ε2

∫ ∞

t/ε2
ds[Eε

t f ′x(x
ε(t))G(xε(t),ξ (s))]′x

.

xε(t). (6.3.16)
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Note that the first term in (6.3.16) will cancel with fx′G term of (6.3.15). The p- lim of the

last term in (6.3.16) is zero. Thus, we have,

Amε ,ε f1(xε(t)) = −1
ε

f ′x(x
ε(t))g(xε(t),ξ ε(t))+

1
ε

∫ ∞

t
ds[Eε

t f ′x(x
ε(t))g(xε(t),ξ ε(s))]′x

.

xε(t)

= −1
ε

f ′x(x
ε(t))g(xε(t),ξ ε(t))+ ε

∫ ∞

t/ε2
ds[Eε

t f ′x(x
ε(t))g(xε(t),ξ (s))]′x

.

xε(t). (6.3.17)

The first term on the right of (6.3.17) will cancel with the f ′xg
ε term in (6.3.15). The only

component of the second term on the right of (6.3.17) whose p- lim
ε

is not zero is

1
ε2

∫ ∞

t
ds

{
Eε

t [ f ′x(x
ε(t))g(xε(t),ξ ε(s))]′xg(xε(t),ξ ε(t))

}
.

This term will cancel with the first term of (6.3.18). Thus,

Amε ,ε f2(xε(t)) = − 1
ε2

∫ ∞

t
ds

{
Eε

t [ f ′x(x
ε(t))g(xε(t),ξ ε(s))]′xg(xε(t),ξ ε(t))

−E[ f ′x(x
ε(t))g(x,ξ ε(s))]′xg(x,ξ ε(t)) |x=xε (t)

}
+[ f ε2 (x, t)]′x

ε
x |x=xε (t)

= −
∫ ∞

t/ε2
ds{Eε

t [ f ′x(x
ε(t))g(xε(t),ξ (s))]′xg(xε(t),ξ ε(t))

−E[ f ′x(x
ε(t))g(x,ξ (s))]′xg(x,ξ ε(t)) |x=xε (t)}+[ f ε2 (x, t)]′x

ε
x |x=xε (t). (6.3.18)

The p- lim
ε

of the last term of the right side of (6.3.18) is zero.

Evaluating Amε ,ε f ε(t) = Amε ,ε[ f (xε(t))+∑2
i=0 f εi (xε(t), t)

]
and by deleting terms that can-

cel we have

Amε ,ε f ε(t) = f ′x(x
ε(t))

2

∑
i=1

∫
ai(xε(t),α)mε

it(dα)

+
∫ ∞

t/ε2
E[ f ′x(x

ε(t))g(x,ξ (s))]′g(x,ξ (t/ε2))ds.

(6.3.19)

As a result, we get

p- lim( f ε(t)− f (xε(·))) = 0 (6.3.20)

p- lim
ε

∣∣∣Amε ,ε f (xε(t))−Amε ,ε
f ε(t)

∣∣∣ = 0. (6.3.21)

Hence, by Lemma 6.2.2,

Mε
f (t) = f ε(t)− f ε(0)−

∫ t

0
Amε

f ε(s)ds

is a zero mean martingale.

Let [t] denote the greatest integer part of t. W can write

Mε
f (t)

t
=

1
t

[(
Mε

f (t)−Mε
f ([t])

)
+Mε

f (0)
]
+

1
t

[t]−1

∑
k=0

[
Mε

f (k +1)−Mε
f (k)

]
.
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Using the fact that f (·) is bounded and (6.3.21), and martingale property of Mε
f (·), we get

E
[Mε

f (t)
t

]2 → 0 as t → ∞ and ε → 0, which in turn implies that
Mε

f (t)
t

P→0 as t → ∞ and

ε → 0 in any way at all. From (6.3.21), and the fact that
Mε

f (t)
t , f ε (t)

t , and f ε (0)
t all go to

zero in probability implies that as t → ∞ and ε → 0, we have
1
t

∫ t

0
Amε

f (xε(s))ds P→0. (6.3.22)

By the definition of Pmε ,ε
T (·), (6.3.22) can be written as∫
Aα f (x)Pmε ,ε

T (dxdα) P→0 as T → ∞ and ε → 0. (6.3.23)

For the policy m∗(·), choose a weakly convergent subsequence of set of random vari-

ables {Pm∗,ε
T (·),ε,T}, indexed by εn, Tn, with limit μ̂(·). Let this limit P̂(·) be defined

on some probability space (Ω̃, P̃, ℑ̃) with generic variable ω̃ . Factor P̂(·) as P̂(dxdα) =

m∗
x(dα)μ(dX). We can suppose that mx(c) are x-measurable for each Borel set C and ω̃ .

Now (6.3.23) implies that for all f (·) ∈ D̂, we can write,∫ ∫
Aα f (x)m∗

x(dα)μ̂(dX) = 0 for P̃-almost all ω̃ . (6.3.24)

Since f (·) is measure determining, (6.3.24) implies that almost all realizations of μ̂ are

invariant measures for (6.3.1) under the relaxed policies m∗. By uniqueness of the invariant

measure, we can take μ(m∗, ·) = μ̂(·) does not depend on the chosen subsequence εn, Tn.

By the definition of Pm∗,ε
T (·), we have

1
t

∫ t

0

∫
r (xε(s),α)m∗ε(dα)ds =

∫ t

0

∫
rk (xε(s),α)Pm∗,ε

T (dαdx)

P−→
∫ t

0

∫
r(x,α)m∗

x(dα)μ̂(dX) = J(m∗).

Hence, we have (6.3.12). Let m̃δ1ε = (m̂ε
1(·),mε

2(·)) and m̃δ1ε = (mε
1(·), m̂ε

2(·)) are the δ -

optimal strategies for players I and II, respectively. Now (6.3.13) and (6.3.14) follows using

the fact that (6.3.12) holds for all the limits of the tight sets {Pmδi ,ε
T (·);ε,T}, i = 1,2, the

assumed uniqueness in (A6.3.8), and the definition of δ -optimality. �

It is important to note that, as a result of Theorem 6.3.3, if one needs a δ -optimal policy

for the physical system, it is enough to compute for the diffusion model and use it to the

physical system. There is no need to compute optimal policies for each ε .

6.3.5 Discrete Games

For the stochastic or the discrete parameter games, the system is given by

Xε
n+1 = Xε

n + εG(Xε
n )+ ε

N

∑
i=1

∫
ai (Xε

n ,αi)min(dαi)+
√
εg(Xε

n ,ξ εn ) (6.3.25)
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where {ξ εn } satisfies the discrete parameter version of (A6.3.2) and min(·), i = 1, . . . ,N be

the relaxed control strategies depending only on {Xi,ξi−1, i � n}. It should be noted that,

in the discrete case, strategies would not be relaxed, one need to interpret this in asymptotic

sense, i.e., the limiting strategies will be relaxed. Let Eε
n denote the conditional expectation

with respect to {Xi,ξi−1, i � n}. Define xε(·) by xε(t) = Xε
n on [nε,nε+ ε) and mi(·) by

mi(Bi × [0, t]) = ε
[t/ε ]−1

∑
n=0

min(Bi)+ ε(t − εt/ε)m[t/ε ](Bi), i = 1, . . . ,N.

(A6.3.9):

(i) For V equal either a(·, ·), g or gx, and for Q compact, E supx
∣∣∑L

n+L1
Eε

nV (x,ξ εi )
∣∣→ 0,

as L, n and L1 → ∞, with L > n+L1 and L− (n+L1) → ∞.

(ii) There are continuous functions c(i,x) and c0(i,x) such that for each x

1
L

�+L

∑
n=�

Eε
� g(x,ξ εn+i)g

′(x,ξ εn ) P−→c(i,x)

and
1
L

�+L

∑
n=�

Eε
� g′x(x,ξ εn+i)g(x,ξ εn ) P−→c0(i,x)

as � and L → ∞.

(iii) For each T < ∞ and compact Q,

ε sup
x∈Q

∣∣∣∣∣
T/ε

∑
j=n

T/ε

∑
k= j+1

[Eε
n g′i,x(x,ξk)g(x,ξ j)−Eg′i,x(x,ξk)g(x,ξ j)]

∣∣∣∣∣ → 0, i � n,

and

ε sup
x∈Q

∣∣∣∣∣
T/ε

∑
j=n

T/ε

∑
k= j+1

[Eε
n g′(x,ξk)g(x,ξ j)−Eg′(x,ξk)g(x,ξ j)]

∣∣∣∣∣ → 0,

in the mean as ε → 0 uniformly in n � T/ε . Also, the limits hold when the bracketed

terms are replaced by their (x-gradient/
√
ε).

Define,

ã(x) =
∞

∑
1

c0(i,x)

and

c̃(x) = c(0,x)+2
∞

∑
1

c(i,x) =
∞

∑
−∞

c(i,x).

With some minor modifications in the proof of Theorem 6.2.3, we can obtain the following

result (Refer to Kushner [103] and Ramachandran [161], for convergence proofs in similar

situation).

Theorem 6.3.4. Assume (A6.3.1) to (A6.3.3), (A6.3.6) to (A6.3.9). Then the conclusions

of Theorem 6.23.3 hold for model (6.3.25).
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6.3.6 Discounted Payoff

In this subsection, we will consider discounted payoff, rather than average payoff. As much

as possible, we will use the same notation as in Section 6.3.1. The only changes will be

highlighted.

Consider a system of the following type in relxed control setting.

dxε =
∫

a1(xε ,α1)mε
1t(dα1)+

∫
a2(xε ,α2)mε

2t(dα2)dt +
1
ε

g(xε ,ξ ε)dt

with xε(0) = x0. (6.3.26)

The total discounted payoff to player 1 is given by

Jε [mε ](x) = Ex

∫ ∞

0

∫
e−λ t r(xε(s),α)mε

s (dα)ds (6.3.27)

and for the initial law π in P(Rn), it is given by

Jε [mε ](π) =
∫

Rn
Jε [mε ](x)π(dX). (6.3.28)

The diffusion model is given by

dx(t) =
∫

U1

a1(x(t),α1)m1t(dα)+
∫

U2

a2(x(t),α2)m2t(dα)dt +g(x(t))dt +σ(x(t))dw(t)

x(0) = x0,

(6.3.29)

with a total payoff to player 1 being

J[m](x) = Ex

∫ ∞

0

∫
e−λ t r(x(s),α)m(dα)ds, (6.3.30)

and J[m](π) defined as in (6.3.28). Discounted optimal strategy is defined same as in (6.3.4)

and (6.3.5). Also δ -discounted equilibrium is defined as in (6.3.6), except that the J is as

in (6.3.10). The discounted occupation measure for initial condition x ∈ R
n denoted by

νλx(m) ∈ P(Rn ×U1 ×U2) is defined by∫
Rn×U

f dνλx[m] = λ−1Ex

[∫ ∞

0

∫
e−λ t f (x(t),α)mt(dα)dt

]

and for initial law π ∈ P(Rn), νλπ [m] is defined as∫
f dνλπ [m] =

∫
Rn
π(dX)

∫
Rn×U

f dνλx[m].

Then J[m](π) can be rewritten as

J[m](π) = λ
∫

r(x,α)dνλx[m].

Let νλπ [A1,A2] =
{
νλπ(m) | m ∈ A1 ×A2

}
. νλπ [Mai ,Ai] and νλπ [Ma1 ,Ma2 ] are defined

analogously. Now we will state following two results from Borkar and Ghosh [31], and

Ramachandran [158].

Theorem 6.3.5. (i) νλπ [A1,Ma2 ] = νλπ [Ma1 ,Ma2 ] = νλπ [Ma1 ,A2].

(ii) νλπ [Ma1 ,Ma2 ] is component wise convex and compact.
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Theorem 6.3.6. The stochastic differential game with system (6.3.29) admits a value and

both players have optimal Markov strategies.

Now we will state the main weak convergence result. The proof is similar to the proof of

Theorem 6.2.3, Ramachandran [158].

Theorem 6.3.7. Assume (A6.3.1), (A6.3.4) and that ξ ε(t) = ξ (t/ε) with ξ (·) being a sta-

tionary process which is strongly mixing, right continuous and bounded with mixing rate

function φ(·) satisfying
∫ ∞

0 φ 1/2(s)ds < ∞. Let mε(·) → m(·). There is a w(·) such that

m(·) is admissible strategy with respect to w(·) and (xε(·),mε(·)) → (x(·),m(·)), where

(x(·),m(·)) satisfies equation (6.3.29).

Let (m1,m2) be a value for the system (6.2.29), existence of which is guaranteed from

Theorem 6.3.26. Also in Borkar and Ghosh [31], the value function is characterized as the

unique solution of the Isaacs equation in W 2,p
loc (Rn)∩Cb(Rn) for p � 2.

(A6.3.10): Let (6.3.29) have a unique weak sense solution for the strategy (m1,m2) and

let the solution strategy be unique. Assume (m1,m2)is admissible for xε(·) of (6.3.26) for

small ε .

Theorem 6.3.8. Assume (A6.3.10) in addition to the assumptions of Theorem 6.3.7. Then,

letting xε(·) denote the solution of (6.3.26) driven by the policy (m1,m2), we have

{xε(·),m1(·),m2(·)} → (x(·),m1(·),m2(·)) and there is a Wiener process w(·) such that

(x(·),m1(·),m2(·)) is nonanticipative with respect to w(·), and (6.3.29) holds. Also,

Jε(m1,m2)(π) −→ J(m1,m2)(π) = V (π). (6.3.31)

In addition, let m̂ε
1 and m̂ε

2 be a δ -optimal strategy pair for player 1 and 2 respectively with

xε of (6.3.26). Then

lim
ε

∣∣∣∣∣
[

sup
mε

1∈A1

Jε(mε
1, m̂

ε
2)− Jε(m1,m2)

]∣∣∣∣∣ � δ (6.3.32)

and

lim
ε

∣∣∣∣∣
[

inf
mε

2∈A2
Jε(m̂ε

1,m
ε
2)− Jε(m1,m2)

]∣∣∣∣∣ � δ . (6.3.33)

Proof. From Theorem 6.3.7 and by the uniqueness of (xε(·),m1(·),m2(·)) converges

weakly to (x(·),m1(·),m2(·)). The limit satisfies equation (6.3.29) for some Wiener pro-

cess w(·).
Fix N, and let SN be the N-ball in R

n. Let

τε ,N = inf{t : xε(t) /∈ SN} and τN = inf{t : x(t) /∈ SN}.
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By (A6.3.4), is nondegenerate. This with the properties of the Wiener process w(·), τN(·)
is continuous w.p.1. with respect to the measure induced by x(·). By weak convergence of

the state processes, we have τε ,N → τN as ε → 0. Let

JN(m)(x) = Ex

∫ τN

0

∫
e−λ t r(x,α)mt(dα)dt

and let the occupation measure νN
λπ(m)be the νλπ(m) corresponding to JN(m)(x). As N →

∞, we have τN →∞, w.p.1, since x ∈ R
n. Hence all the steps below can be worked with the

truncated version and then, take the limit as N →∞. For simplicity of notation, we will not

carry the N-subscript.

By Theorem 6.3.5, we have

lim
ε

Jε(m)(π) = lim
ε
λ

∫
r(xε ,α)dνλπ [m]

= λ
∫

r(x,α)dνλπ [m] = J(m1,m2)(π) = V (π).

To show (6.3.32) and (6.3.33), we repeat the procedure with admissible strategies

(mε
1(·),mε

2(·)) for which supε Jε(mε
1,m

ε
2) < ∞. The limit (x(·),m1(·),m2(·)) might depend

on the chosen subsequence. For any convergent subsequence {εn}, we get

lim
ε=εn→0

Jε(mε
1,m

ε
2)(π) = J(m1,m2)(π).

By the weak convergence and the definition of δ -optimality, (6.3.32) and (6.3.33) follows.�

Corollary 6.3.1. Assume the conditions of Theorem 6.3.8 and the value V ε (m̃ε) exists for

(6.3.26). Let mδ be a δ -optimal policy for (6.3.29). Then∣∣∣V ε(m̃ε)− Jε(mδ )
∣∣∣ � 2δ .

6.3.7 Payoff up to First Exit Time

Another popular payoff structure is payoff up to the first exit time. Let G ⊂ R
n be bounded

open set with C2 boundary. Let r ∈C(G×U1 ×U2). Let (mε
1,m

ε
2) be admissible and xε(·)

be the corresponding solution of (6.3.26) with initial law π supported in G. Let

τε(m) = inf{t � 0 : xε(t) /∈ G}.

The payoff up to τε to player 1 is

Jε(m) = E
∫ τε (m)

0

∫
r(xε(s),α)mε

s (dα)ds. (6.3.34)

Let x(·) be the solution of (6.3.29) corresponding to m = (m1,m2) and

τ(m) = inf{t � 0 : x(t) /∈ G},
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and

J(m) = E
∫ τ(m)

0

∫
r(x(s),α)ms(dα)ds. (6.3.35)

The concept of optimal strategies and value are defined as in subsection 6.2.1. The “occu-

pation measure up to τ(m)” denoted by ντπ [m] ∈ P
(
G×U1 ×U2

)
is defined by

∫
f dντπ [m] = (Emτ)−1Em

[∫ τ(m)

0

∫
f (x(s),α)ms(dα)ds

]
.

We need to make the following additional assumptions.

(A6.3.11): ξ ε(·) is bounded and Markov process.

(A6.3.12): There are δ > 0 and β > 0 such that for initial condition π supported in G

and admissible strategy m, infπ,m Pπ{x(m, t) /∈ Nδ (G), some t � T} � β , where Nδ (G) is a

δ -neighborhood of G.

(A6.3.13): a(x) = {ai j(x)} for x ∈ G is uniformly positive definite.

Theorem 6.3.9. Assume (A6.3.11)–(A6.3.13). Then

sup
ε

Eπτε (mε) < ∞. (6.3.36)

In addition, if (xε(·),mε(·)) → (x(·),m(·)), then, τε , the exit time also converge.

Proof. To prove (6.3.36), it is enough to show that there is a β1 > 0 such that for any

admissible policy sequence mε(·), and for initial condition π ,

lim
ε

Pπ
{

xε(mε , t) /∈ G, some t � 2T
}

� β1. (6.3.37)

It then follows that there is ε0 > 0, such that,

sup
ε<ε0

Eπτε(m) < ∞.

Suppose (6.3.37) is not true. Then there are ε → 0 and initial condition π (supported in G),

such that,

lim
ε

Pπ
{

xε (mε , t) /∈ G, t � 2T
}

= 0. (6.3.38)

There is a subsequence also indexed by ε , and an admissible strategy m(·) such that

{xε (mε , ·) ,mε(·)}→ (x(m, ·) ,m(·)). Then (6.3.38) contradicts (A6.3.13), Hence, (6.3.37).

The last part of the result follows from (A6.3.13) and the weak convergence. �

Theorem 6.3.10. Under the conditions of Theorem 6.3.8 and (A6.3.11)–(A6.3.13), the

conclusions for Theorem 6.3.7 and Theorem 6.3.8 hold for model (6.3.26) with pay-

off (6.3.34).
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The results of this section can be directly applied to two person zero-sum differential games

with pathwise discounted payoff structure, analogous to the results in Ramachandran [158].

Also, other payoff structures, such as finite horizon payoff, and payoff up to exit time can

be handled by some minor modifications. If the coefficients in (6.3.7) are state dependent

or even discontinuous, still we can obtain the results of this paper by adapting the methods

of Ramachandran [161].

6.4 Two Person Zero-sum Stochastic Differential Game with Multiple Modes,
Weak Convergence

In this Section, we are concerned with “near optimal” strategies for two person zero-sum

stochastic differential game with multiple modes and driven by a wideband width noise

process. Consider a system of following type in the relaxed control setting given by

dxε =
2

∑
l=1

∫
bl (xε ,θε ,αl)mε

lt(dαl)dt +
1
ε

g(xε ,θε ,ξ ε)dt, and

P(θε (t +δ t) = j|θε(t) = i,θε(s),xε(s),s � t)

= λεi j(x
ε(t),ξ ε(t))δ t +o(δ t) , i �= j

xε(0) = x0

(6.4.1)

where ξ ε(·) is a wide bandwidth noise process, θε(·)∈ S = {1,2, . . . ,N} describes the var-

ious modes of the system, and x0 a prescribed random variable with x ∈ R
d , d-dimensional

Euclidean-space.

We will use the following standard notation,∫
r(x, i,α)mt(dα) ≡

∫ ∫
r(x, i,α1,α2)m1t(dα1)d(α2).

The β -discounted payoff to player I for initial condition (x, i) is given by

Jε (mε)(x, i) = Ex,i

[∫ ∞

0

∫
e−β t r(xε(t), i,α)mε

t (dα)dt
]
, (6.4.2)

where α = (α1,α2) and m = (m1,m2). When ever we need to emphasize on the strategy

mε , we will use xε (mε , ·) to denote the solution to (6.4.1).

In multi modal case, the state of the system at time is given by a pair (x(t),θ(t)), where

θ(t) ∈ S = {1,2, . . . ,N}. The discrete component θ(t) describes the various modes of the

system. In pursuit-evasion games, when interceptor tries to destroy a specific target, this

type of games occur naturally. Due to fast manueuvering by the evader and the correspond-

ing response by the pursuier, the tragectories keep switching rapidly. In these cases models

of the type (6.4.1) are more appropriate.
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Suppose that the system (6.4.1) is “close” to a game problem modelled by the system

(6.4.3), in the sense that if mε(·) is a sequence of “nice” strategies for (6.4.1), then there is

a strategy m(·), and corresponding diffusion x(m, ·) defined by (6.4.3), such that as ε → 0,

xε(mε , ·) converges weakly to x(m, ·) (xε → x). We can write,

dx(t) =

[
2

∑
l=1

∫
bl(x(t),θ(t),αl(t))mlt(dαl)+ b̃(x(t),θ(t))

]
dt +σ(x(t),θ(t))dw(t), and

P(θ(t +δ t) = j | θ(t) = i, θ(s), x(s), s � t) = λi j(x(t))δ t +o(δ t), i �= j with

x(0) = x ∈ R
d , θ(0) = i ∈ S. (6.4.3)

Here w(·) = [w1(·), . . . ,wd(·)]′ is a standard Wiener process. Also,

λi j : R
d → R, 1 � i, j � N, λi j(·) � 0, i �= j,

N

∑
j=1
λi j(·) = 0.

The total discounted payoff to player I is given by

J(m)(x, i) = Ex,i

[∫ ∞

0

∫
e−β t r(x(t), i,α)mt(dα)dt

]
. (6.4.4)

Let m(·) = (m1(·),m2(·)) denote the optimal strategy for the limit diffusion (6.4.3), and

let mδ (·) be a δ -optimal strategy for (6.4.3). For the diffusion models the existence of

equilibria in Markov strategies was established in Ghosh, Araposthatis, and Marcus [75]

and we have discussed it in Section 3.5. Assume that mδ (·) are admissible for xε(·) of

(6.4.1) and let V ε (mε) denote the value (when ever it exists, otherwise take upper and

lower values) for (6.4.1). Under appropriate conditions, it will be shown that∣∣∣V ε(mε)− Jε
(
mδ )∣∣∣ � δ , (6.4.5)

for small ε > 0. The entire problem will be set in relaxed control framework.

6.4.1 Problem Description

For completeness, first we will summarize the results corresponding to the diffusion model

from Chapter 3. In order to have smooth transition of notations, we will also change few of

the notations from Chapter 3. Let Ul , l = 1,2 be compact metric spaces (we can take Ui as

compact subsets of R
d), and Ml = P(Ul), the space of probability measures on Ui with the

topology of weak convergence. Let M = M1 ×M2 and U = U1 ×U2. Let S = {1,2, . . . ,N}.

Let w(·) in (6.4.1) be a Wiener process with respect to a filtration {ℑt} and let Ωl , l = 1,2

be a compact set in some Euclidean space. A measure valued random variable ml(·) is an

admissible strategy for the lth player if
∫ t

0
∫

fl(s,αl)ml(dsdαl) is progressively measurable

for each bounded continuous fl(·) and ml([0, t]×Ωl) = t, for t � 0. If ml(·) is admissible
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then there is a derivative mlt(·) (defined for almost all t) that is non-anticipative with respect

to w(·) and
∫ t

0

∫
fl(s,αl)ml(dsdαl) =

∫ t

0
ds

∫
fl(s,αl)mls(dαl),

for all t with probability one (w.p.1.). If ml(·) = ul(x(·),θ(·)), for a measurable ul :

R
d × S → Ml , then ml(·) (or by an abuse of notation the map ul itself) is called Markov

strategy. The results derived in this subsection are for Markov strategies. A strategy ml(·)
is called pure if ml(·) is a Dirac measure, i.e., ml(·) = δul (·), where ul(·) is a Ul-valued

nonanticipative process. We will denote by Al the set of admissible strategies and Mal the

set of Markov strategies for the player l. One can introduce appropriate metric topology

under which Mal is compact, see Borkar and Ghosh [31]. We will denote A = A1 ×A2,

and Ma = Ma1 ×Ma2. If for each l = 1,2,, ml(·) is a Markov strategy then (6.4.3) admits a

unique strong solution which is a strong Feller process under the assumption (A3.4.1), see

Ghosh, Araposthatis, and Marcus [75].

In relaxed control settings, one chooses at time t a probability measure mt on the control

set M rather than an element u(t) in U . We call the measure mt the relaxed control at

time t. Any ordinary control can be represented as a relaxed control via the definition of

the derivative mt(dα) = δu(t)(α)dα . Hence, if mt is an atomic measure concentrated at a

single point m(t) ∈ M for each t, then the relaxed control will be called ordinary control.

We will denote the ordinary control by um(t) ∈ M.

An admissible strategy m∗
1 ∈ A1 is said to be an discounted optimal for player I if for

(x, i) ∈ R
d ×S,

J[m∗
1, m̃2](x, i) � inf

m2∈A2
sup

m1∈A1

J[m1,m2](x, i)
.= V +(x, i)

for any m̃2 ∈ A2. The function V + : R
d ×S → R is called upper value function of the game.

A strategy m∗
1 ∈ Ma1 is called discounted optimal for player I, if it is discounted optimal for

all initial laws. Similarly, m∗
2 ∈ A2 is discounted optimal for player II if

J (m̃1,m∗
2)(x, i) � sup

m1∈A1

inf
m2∈A2

J[m1,m2](x, i)
.= V−(x, i)

for any m̃1 ∈ A1.The function V− : R
d ×S → R is called lower value function of the game.

If V +(x, i) = V−(x, i), then the game is said to admit a value for the discounted criterion

and we will denote it by V (x, i), which is called the value function. The policies m1δ and

m2δ are said to be δ -optimal strategies for player I and II respectively if

sup
m1∈A1

J (m1,m2δ )(x, i)−δ � V (x, i) � inf
m2∈A2

J (m1δ ,m2)(x, i)+δ . (6.4.6)
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For m ∈ A and (x(·),θ(·)) the corresponding process, now we introduce the concept of β−
discounted occupation measure for initial condition (x, i) ∈ R

d × S denoted by νx,i(m) ∈
?(Rd ×S×U1 ×U2) is defined by

N

∑
i=1

∫
Rd×U

f dνx,i[m] = βEx,i

[∫ ∞

0

∫
U

e−β t f (x(t),θ(t),α)mt(dα)dt
]

for f ∈Cb
(
R

d ×S×U
)
. For notational convenience, we will suppress the dependence on

the initial conditions and denote νx,i[m] by ν [m] when ever there is no confusion. In terms

ofν [m], (6.4.4) becomes

J[m](x, i) = β−1
N

∑
j=1

∫
Rd×U

r (x, j,α)dνx,i[m].

Let

νx,i[A1,A2] = {νx,i(m)/m ∈ A1 ×A2}.

νx,i[Ma1,A2], νx,i[A1,Ma2],νx,i[Ma1,Ma2], etc. are defined analogously. Following result is

from Ghosh, Araposthatis, and Marcus [75] which basically states that for the two person

zero-sum differential game no player can improve his/her payoff by going beyond Markov

strategies

Lemma 6.4.1. For any fixed initial condition

νx,i[A1,Ma2] = νx,i[Ma1,Ma2] = νx,i[Ma1,A2].

For p � 1, define

W 2,p
loc (Rd ×S) =

{
f : R

d ×S → R : for each i ∈ S, f (·, i) ∈W 2,p
loc (Rd)

}
.

Let b(x, i,α) = b1(x, i,α1)+ b2 (x, i,α2)+ b̃(x). For f ∈W 2,p
loc

(
R

d ×S
)

and α ∈U , define

the operator

A α
i f (x, i) = f ′x(x)b(x, i,α)+

1
2∑l, j

al, j(x, i) fxlx j(x, i)

where al j(x, i) = ∑d
k=1σlk(x, i)σ jk(x, i), and

A α f (x, i) = A α
i f (x, i)+

N

∑
j=1
λi j f (x, j).

For m ∈ M, define

A m f (x, i) =
∫

U
A α f (x, i)mt(dα).

We will now state following results from Ghosh, Araposthatis, and Marcus [75].
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Theorem 6.4.1. Under (A3.4.1) the Isaacs equation

inf
m1∈M1

sup
m2∈M2

[A mφ(x, i)+ r (x, i,m)] = sup
m2∈M2

inf
m1∈M1

[A mφ(x, i)+ r (x, i,m)]

= βφ(x, i) (6.4.7)

has a unique solution in C2(Rd ×S)∩Cb(Rd ×S).

Consider the special case in which one player controls the game exclusively for each state

i ∈ S. That is, we assume the following

(A6.4.1): Let S1 = {i1, . . . , im} ⊂ S, S2 = { j1, . . . , jn} ⊂ S be such that S1 ∩ S2 = φ and

S1 ∪S2 = S. Also assume that

b(x, i,m1,m2) = b1(x, i,m1)

and

r(x, i,m1,m2) = r1(x, i,m1)

for i ∈ S1. Similarly for i ∈ S2

b(x, i,m1,m2) = b2(x, i,m2)

and

r(x, i,m1,m2) = r2(x, i,m2)

where bk and rk, k = 1,2, satisfy same conditions as b and r.

Now we have following result from Ghosh, Araposthatis, and Marcus [75].

Theorem 6.4.2. Under (A3.4.1), (A6.4.1), each player has Markov optimal pure strategies.

Deriving similar results for (6.4.1) is very difficult and characterizing the optimal strategies

is almost impossible. Our aim is to use the optimal strategies of the system (6.4.3) to system

(6.4.1) and obtain weak convergence results. For completeness sake, we introduce some

essential results from weak convergence theory and for more details we refer to Kushner

[103].

Let Dd [0,∞) denote the space of R
d valued functions which are right continuous and have

left-hand limits endowed with the Skorohod topology. Following Kushner [103], we define

the notion of ’p- lim’ and an operator Âε as follows. Let {ℑεt } denote the minimal σ -algebra

over which {xε(s),θε(s),ξ ε(s), s � t} is measurable, and let Eε
t denote the expectation

conditioned on ℑεt . Let M̃ denote the set of real valued functions of (ω, t) that are nonzero

only on a bounded t-interval. Let

Mε =
{

f ∈ M̃; sup
t

E| f (t)| < ∞, and f (t) is ℑεt measurable
}

.
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Define operator Âε and it’s domain D
(
Âε

)
as in Section 6.2. For proof the main weak

convergence result, Theorem 6.4.4, we will use Lemma (6.2.1) through Lemma(6.2.3), see

Kuhner [103].

An admissible relaxed strategy mε
l (·) for the lth player with system (6.4.1) is a measure

valued random variable satisfying
∫ ∫ t

0 f (s,α)mε (dsdα) is progressively measurable with

respect to {ℑεt }, where ℑεt is the minimal σ -algebra generated by {ξ ε(s),xε(s),θε(s), s �
t}. Also, mε ([0, t]×U) = t for all t � 0. Also, there is a derivative mε

t , where mε
t (b) are ℑεt

measurable for Borel B. The concept of δ -optimality for the wideband noise driven system

(xε(·),θε(·)) is similarly defined as in (6.4.6). We will use following assumptions in our

analysis.

(A6.4.2): ξ ε(t) = ξ
(
t/ε2

)
, where ξ (·) is a stationary process which is strongly mix-

ing, right continuous and bounded with mixing rate function φ(·) satisfying
∫ ∞

0 λε(·, ·)
is bounded and Lipschitz continuous (uniformly in ε, x, ξ ).

(A6.4.3): For each i ∈ S, g(·, i, ·), gx(·, i, ·) are continuous (in x,ξ ) and satisfy the uniform

Lipshitz condition. For each x and i, Eg(x, i,ξ ) = 0.

(A6.4.4): There are continuous functions a(·) and b̃(·, ·) such that for each (x, i) and

T1, T2 → ∞ and T2 −T1 → ∞, such that,∫ T2

T1

Egx(x, i,ξ (t))g(x, i,ξ (T1))dt → b̃(x, i)

and ∫ T2

T1

Eg(x, i,ξ (t))g′(x, i,ξ (T1))dt → 1
2

a(x, i).

The convergence is uniform in x. Also assume that there is a Lipshitz continuous square

root for a(x,θ), that is, a(x,θ) = σ(x,θ)σ ′(x,θ).

6.4.2 Weak Convergence and near optimality

Now, we will first prove the weak convergence of the wide bandwidth noise system to

appropriate controlled diffusion. Then we will obtain convergence of payoffs and strategies

as well as a result on near optimality.

Theorem 6.4.3. Assume conditions (A3.2.1), (A6.4.2) to (A6.4.4). Let m̂ε(·) →
m̂(·). There is a w(·) such that m̂(·) is admissible strategy with respect to w(·) and

(xε(·),θε(·), m̂ε(·)) → (x(·),θ(·), m̂(·)) where

dx(t) =

[
2

∑
l=1

∫
bl(x(t),θ(t),αl(t))mlt(dαl)+ b̃(x(t),θ(t))

]
dt

+σ(x(t),θ(t))dw(t).

(6.4.8)
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Proof. Since U × [0, t1] is compact for each t1 < ∞, {m̂ε(·)} is tight in M1(∞)×M2(∞).

First we will prove the tightness of {xε ,K(·)}. Whenever there is no confusion, for nota-

tional convenience, we will use xε in place of xε ,K and Âε for Âε ,m̂K . For f (·) ∈ C3
0 , we

have

Âε f (x, i) = f ′x(x, i)

[
2

∑
l=1

∫
bl (x, i,αl)mε

lt(dαl)+
1
ε

g(x, i,ξ ε)

]
+

N

∑
j=1
λεi j (x,ξ ε) f (x, j) .

Let there be a continuous function λ̃i j(·, ·) such that λεi j(x,ξ )→ λ̃i j(x,ξ ) uniformly on each

compact (x,ξ )-set. Now, for each x define λi j(x) by λi j(x) =
∫
λ̃i j(x,ξ )Px(dξ ), where

we assume that there is a unique invariant probability measure Px(·) corresponding to the

transition function P(ξ , l, · | x), and for each compact set Q the set of invariant measures

{Px(·),x ∈ Q} is tight. We refer to Kushner [103] for a comment on such an assumption.

For arbitrary T < ∞ and for t � T , define

f ε1 (t) = f ε1
(
xε ,K(t), i, t

)

where

f ε1 (x, i, t) =
1
ε

∫ T

t
f ′x(x, i)E

ε
t gK(x, i,ξ ε(s))ds

= ε
∫ T/ε2

t/ε2
f ′x(x, i)E

ε
t gK(x, i,ξ (s))ds.

From, (A3.2.1) and (A6.4.2), limε E| f ε1 (t)| = 0. We have

Âε f ε1 (t) = −1
ε

f ′x
(
xε ,K(t), i,ξ ε(s)

)

+
1
ε

∫ T

t
ds

[
f ′x

(
xε ,K(t), i

)
Eε

t gK
(
xε ,K(t), i,ξ ε(s)

)]′
x .
ε
x(t)+o(1)

where p-limε o(1) = 0 uniformly in t.

Define f ε(t) = f
(
xε ,K(t), i

)
+ f ε1 (t). Writing x for xε ,K(t) and a scale change s/ε2 → s, we

have

Âε f ε(t) = f ′x(x, i)
[∫

b1K(x, i,α1)m̂ε
1t(dα1)+

∫
b2K(x, i,α2)m̂ε

1t(dα2)
]

+
N

∑
j=1
λεi j(x,ξ ε) f (x, j)+

∫ T/ε2

t/ε2
dsEε

t [gK(x, i,ξ (s))]′xgK(x, i,ξ ε(t))

+ε
∫ T/ε2

t/ε2
dsEε

t [gK(x, i,ξ (s))]′x

.

[∫
b1K(x, i,α1)m̂ε

1t(dα1)+
∫

b2K(x, i,α2)m̂ε
1t(dα2)

]

+ε
N

∑
j=1
λεi j(x,ξ ε)[ fx(x, j)gK(x, j,ξ (s))]′x.

(6.4.9)
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under (A3.2.1), (A3.2.2), and (A6.4.3), the third term in (6.4.12) is 0(1) and the next two

terms go to zero in p-limit as ε → 0. Then for each T < ∞, {Âε f ε(t),ε > 0, t � T} is

uniformly integrable and for k > 0, and

lim
ε

P
{

sup
t�T

| f ε(t)− f (xε(t))| � k
}

= 0.

Now, by Lemma 6.2.3, {xε ,K(·)} is tight in Dd [0,∞). Index by ε , a weakly convergent

subsequence of {xε ,K ,θε , m̂ε}, i.e.,

{xε ,K ,θε , m̂ε} =⇒{xK(·),θ(·), m̂(·)}.

There is progressively measurable m̂t(·) such that m̂t(u) = 1 and∫ ∫
t

0 f (s,α)m̂s(dα)ds =
∫ ∫

t
0 f (s,α)m̂(ds×dα)

for each continuous f (·). By Lemma 6.2.2, the proof will be complete if we verify (6.2.1)

and (6.2.2). Now, treat (x, i) as parameters, we will average out the noise term only by

using the perturbed test function methods as introduced in Kushner [103]. Define

f ε2 (t) =
∫ T

t

∫ T/ε2

v/ε2

[
Eε

t f ′x(x, i)gKx(x, i,ξ (s))gK(x, i,ξ ε(v))

−E f ′x(x, i)gKx(x, i,ξ (s))gK(x, i,ξ ε(v))
]

dsdv

and

f ε3 (t) =
∫ T

t

∫ T/ε2

v/ε2

[
Eε

t f ′xx(x, i)g
′
K(x, i,ξ (s))gK(x, i,ξ ε(v))

−E f ′xx(x, i)g
′
K(x, i,ξ (s))gK(x, i,ξ ε(v))

]
dsdv

with a scale change v → v/ε2, that is,

f ε2 (t) = ε2
∫ T/ε2

t/ε2

∫ T/ε2

v

[
Eε

t f ′x(x, i)gKx(x, i,ξ (s))gK(x, i,ξ (v))

−E f ′x(x, i)gKx(x, i,ξ (s))gK(x, i,ξ (v))
]

dsdv.

and

f ε3 (t) = ε2
∫ T/ε2

t/ε2

∫ T/ε2

v

[
Eε

t f ′xx(x, i)g
′
K(x, i,ξ (s))gK(x, i,ξ (v))

−E f ′xx(x, i)g
′
K(x, i,ξ (s))gK(x, i,ξ (v))

]
dsdv.

From

lim
ε

E sup
t�T

| f εi (t)| = 0 for i = 2,3.

Define

f̃ ε(t) = f (x)+
3

∑
i=1

f εi (t). (6.4.10)
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Then, we have

p- lim
ε

(
f̃ ε(t)− f (x)

)
= 0 (6.4.11)

Âε f ε2 (t) = o(1)+
∫ T/ε2

t/ε2
[E f ′x(x, i)gKx(x, i,ξ (s))gK(x, i,ξ ε(t))

−Eε
t f ′x(x, i)gKx(x, i,ξ (s))gK(x, i,ξ ε(t))]ds+ ε2

∫ T/ε2

t/ε2
dv

∫ T/ε2

v
ds (6.4.12)

×Eε
t f ′x(x, i)g

′
K(x, i,ξ (s))gK(x, i,ξ (v))

−E f ′x(x, i)g
′
K(x, i,ξ (s))gK(x, i,ξ (v))]x.

ε ,K
x

and

Âε f ε3 (t) = o(1)+
∫ T/ε2

t/ε2
[E f ′xx(x, i)g

′
K(x, i,ξ (s))gK(x, i,ξ ε(t))

−Eε
t f ′xx(x, i)g

′
K(x, i,ξ (s))gK(x, i,ξ ε(t))]ds+ ε2

∫ T/ε2

t/ε2
dv

∫ T/ε2

v
ds

×Eε
t f ′xx(x, i)g

′
K(x, i,ξ (s))′gK(x, i,ξ (v))

−E f ′xx(x, i)g
′
K(x, i,ξ (s))′gK(x, i,ξ (v))].

ε ,K
x .

(6.4.13)

From (A6.4.2) and (A6.4.3), the p-limit of the last three terms on the right-hand side of

(6.4.12) and (6.4.13) are all zero.

From (6.4.9), (6.4.10), (6.4.12) and (6.4.13), we can write

Âε f̃ ε(t) = Âε f ε(t)+ Âε f ε2 (t)+ Âε f ε3 (t) = o(1)

+ f ′x(x, i)
[∫

b1K(x, i,α1)m̂ε
1t(dα1)+

∫
b2K (x, i,α2) m̂ε

1t(dα2)
]

+
N

∑
j=1
λεi j(x,ξ ε) f (x, j)+

∫ T/ε2

t/ε2
E

(
f ′x(x, i)gKx(x, i,ξ (s))gK(x, i,ξ ε(t))

)
ds

+
∫ T/ε2

t/ε2
E

(
fxx(x, i)gK(x, i,ξ (s)′)gK(x, i,ξ ε(t))

)
ds,

(6.4.14)

where p-limε o(1) = 0 uniformly in t.

Equation (6.4.14) together with (A6.4.2) to (A6.4.4) yield (6.2.3). Applying Lemma 6.2.2,

we have xε ,K(·) → xK(·).
Let h(·) be bounded continuous (except possibly on a countable set tl and take t and t + s

outside this set) and let f (·) ∈ C2
0 . Let q1 and q2 be arbitrary integers and k j(·) arbi-

trary bounded and continuous functions. Taking limit as ε → 0 and using the Skorokhod

imbedding so that the weak convergence becomes w.p.1. in the topology of the space
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Dd [0,∞)×S×M1(∞)×M2(∞), we obtain

Eh
(
xK(tl),θ(tl),(k j, m̂)tl , l � q1, j � q2

)
.
(

f
(
xK(t + s), i′

)
− f

(
xK(t), i

)

−
∫ t+s

t
Âm̂

K f
(
xK(s), i

)
ds

)
= 0.

(6.4.15)

Since q1, q2, h(·), k j(·), tl , t, s are arbitrary, (6.4.18) implies that xK(·) solves the martin-

gale problem with operator Âm̂
K . It then follows that there is a standard Wiener process wK(·)

and xK(·) is nonanticipative with respect to wK(·) and satisfies (6.3.8) with b(·, ·, ·), σ(·, ·)
and w(·) replaced by bK(·, ·, ·), σK(·, ·) and wK(·), respectively. Moreover, m̂i(Ai × [0, t])

and m̂i,t(Ai), i = 1,2 are progressively measurable with respect to wK(·). Hence m̂(·) is

admissible (admissible Markov) strategies for the problem with coefficients bK and σK .

Define τK = min{t � 0 : |x(t)| � K}. Let w(·) be any Wiener process such that m̂i(·),
i = 1,2 are admissible with respect to w(·).For any given initial condition and with

(w(·), m̂1(·), m̂2(·)), (6.3.8) has unique solution whose distribution does not depend on

the particular w(·). In addition, P{τK � T} → 0 as K → ∞ for each T < ∞. Therefore,

{xε(·),θε(·), m̂ε(·)} is tight and converges weakly to a solution of (6.3.8). �

In the previous section, we have given the results concerning the existence of optimal strat-

egy pair (m1,m2) and a value for the system (6.4.8) under additional condition (A6.4.1).

Also, the value function is characterized as the unique solution of the Isaacs equation in

C2(Rd ×S)∩Cb(Rd ×S). For the weak convergence methods, assumption (A6.4.1) is not

crucial. Since it is possible that existence of optimal strategies for the system (6.4.8) could

be proved, we will make following assumption.

(A6.4.5): Let (6.4.8) have a unique weak sense solution for strategy pair (m1,m2) and let

this strategy be unique. Assume (m1,m2) is admissible for xε(·) of (6.4.1) for small ε .

Now, we will give a result on convergence of payoffs as well as the near optimality of the

optimal controls of (6.4.8) to the system (6.4.1).

Theorem 6.4.4. Assume conditions (A3.4.1), (A6.4.2) to (A6.4.5). Then, letting

xε(·) denote the solution of (6.4.1) controlled by the policy pair (m1,m2), we have

{xε(·),θ e(·),m1,m2} → (x(·),θ(·),m1,m2) and there is a Wiener process w(·) such that

(x(·),θ(·),m1,m2) is nonanticipative with respect to w(·), and (6.4.8) holds. Also,

Jε(m1,m2)(x, i) → J(m1,m2)(x, i) = V (x, i). (6.4.16)

In addition, let (m̂ε
1, m̂

ε
2) be a δ -optimal strategy pair for player I and II respectively with

xε(·) of (6.4.1). Then

lim
ε

∣∣∣∣∣
[

sup
mε

1∈A1

Jε(mε
1, m̂

ε
2)(x, i)− Jε(m1,m2)(x, i)

]∣∣∣∣∣ � δ (6.4.17)
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and

lim
ε

∣∣∣∣∣
[

sup
mε

2∈A2

Jε(m̂ε
1,m

ε
2)(x, i)− Jε(m1,m2)(x, i)

]∣∣∣∣∣ � δ (6.4.18)

Proof. From Theorem 6.4.4 and by the uniqueness, we have

(xε(·),θε(·),m1,m2) → (x(·),θ(·),m1,m2).

The limit satisfies equation (6.4.8) for some Wiener process w(·).
Fix K, and let Sk be the K-ball in R

d . Let

τε ,K = inf{t : xε(t) /∈ SK}, and τK = inf{t : x(t) /∈ SK}.

By (A6.4.4), a(·) is nondegenarate. This with the properties of Wiener process w(·), τK(·)
is continuous w.p.1. with respect to the measure induced by x(·). Now, since

{xε(·),θε(·),m1,m2}→ (x(·),θ(·),m1,m2)

and by the continuity of τK(·), τε ,K ⇒ τK as ε → 0. Let

JK(m)(x, i) = Ex,i

∫ τK

0

∫
e−λ t r(x, i,α)mt(dα)dt

and let the occupation measure νK
x,i[m] be νx,i[m] corresponding to JK(m)(x, i). Now as

K → ∞, we have τK → ∞, w.p.1., since x ∈ R
d . Hence, all steps below can first be worked

with the truncated version and then, as in the proof of Theorem 6.4.3, take the limit K →∞.

For simplicity of notation, we will not carry the K− subscript.

By Lemma 6.4.1, we have

lim
ε

Jε(m)(x, i) = lim
ε
λ

∫
r(xε , i,α)dνx,i[m]

= λ
∫

r(x, i,α)dνx,i[m]

= J(m1,m2)(x, i) = V (x, i).

To show (6.4.17) and (6.4.18), repeat the procedure with admissible strategies

(mε
1(·),mε

2(·)) for which supε Jε (mε
1,m

ε
2)(x, i) < ∞. The limit (x(·),θ(·),m1(·),m2(·))

might depend on the chosen subsequence. For any convergent subsequence {εn}, we get

lim
ε=εn→0

Jε(mε
1,m

ε
2)(x, i) = J(m1,m2)(x, i).

Now by the weak convergence and the definition of δ -optimality, (6.4.18) and (6.4.19)

follows. �
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From the previous result, we can now conclude that, whenever there is a value for the

wideband noise driven system, the absolute difference between that value and the payoff

using the δ -optimal strategies of the limit diffusion is negligible.

Corollary 6.4.1. Assume conditions of Theorem 6.4.5 and that the value V ε (m̃ε) exists for

(6.4.1). Let mδ be a δ -optimal policy for (6.4.8). Then∣∣∣V ε (m̃ε)(x, i)− Jε
(

mδ
)

(x, i)
∣∣∣ � 2δ . (6.4.19)

Remark 6.4.1. If a value exists for the system (6.4.1) for each ε with the strategies

(m̃ε
1, m̃

ε
2), then by the weak convergence and the uniqueness of the limit, we can write

Jε (m̃ε
1, m̃

ε
2)(x, i) →V (x, i).

In this subsection, we have showed that for a wideband noise driven system, using optimal

policies of the limit diffusion will result in near optimal policies for the physical system

if the parameter ε is small. This is a robustness statement on the diffusion model. Also,

with the results of this paper, it is possible to develop numerical results as in Kushner and

Dupuis [112]. It is also possible to derive this type of results for other payoff criterion such

as ergodic payoffs, or payoffs to first exit time.

6.5 Partially Observed Stochastic Differential Games

In practical differential games difficulties are often encountered in obtaining information

about the state of the system due to time lag, high cost of obtaining data, or simply asymme-

try in availability of information due to the nature of the problems in a competitive environ-

ment. Stochastic differential games with imperfect state informations are inherently very

difficult to analyze. In the literature, there are various information structures considered

such as both players will have the same information as in the from broadcasting channel,

Ho [88], Sun and Ho [184], or the two players will have available only noise-corrupted

output measurements, Rhodes and Luenberger [166, 167]. There are various other possi-

bilities, such as one player will have full information where as the other player will have

only partial information or only a deterministic information. A fixed duration stochastic

two-person nonzero-sum differential game in which one player has access to closed-loop

nonanticipatory state information while the other player makes no observation is consid-

ered in Basar [10]. A comprehensive study on partially observed stochastic differential

games is still far from being solved. In this subsection, we will present a linear system with

quadratic cost functional and imperfect state information. Solution to the diffusion model
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is given and a weak convergence method is described. We will also deal with a form of

nonlinearity.

The system under consideration is of the following type, where both players have the same

information such as from a broadcasting channel.

dx = [A(t)x+B(t)u−C(t)v]dt +Ddw1(t) (6.5.1)

with observation data

y = Hxdt +Fdw2(t) (6.5.2)

and payoff

J(u,v) = E
{

x′(t)Sx(t)+
∫ T

0

[
u′Ru− v′Qv

]
dt

}
. (6.5.3)

Here, we are concerned with a partially observed two person zero-sum stochastic differen-

tial games driven by wide band noise. The actual physical system will be more naturally

modeled by
.

xε = Axε +Bu−Cv+Dξ ε1 (6.5.4)

with observations
.

yε = Hxε +ξ ε2 (6.5.5)

where ξ εi , i = 1,2 are wide band noise processes. Let the payoff be given in linear quadratic

form

Jε (uε ,vε) = E
{

xε
′
(t)Sxε(t)+

∫ T

0

[
uε

′
Ruε − vε

′
Qvε

]
dt

}
(6.5.6)

for some T < ∞.

Typically, one decides upon a suitable model (6.5.4), (6.5.5), (6.5.6), obtains a good or

optimal policy pair, and uses this policy to the actual physical system. In this case, it is not

clear the value of the determined policy for the physical system, as well as the value of the

output of the filter for making estimates of functional of the physical process xε(·) which is

approximated by x(·). The filter output will rarely be nearly optimal for use in making such

estimates, and the policies based on the filter outputs will rarely be “nearly” optimal. In the

case of game problem, very little attention has been devoted to such problems. Under quite

broad conditions, we will obtain a very reasonable class of alternative filters and policies

for the physical system with respect to which it is nearly optimal.

We begin with a discussion of game problem for the ideal white noise linear model (6.5.4),

(6.5.5), (6.5.6) and use the Kalman-Bucy filter for this model to obtain an optimal strategy

pair for the game problem. Then we will describe the wide bandwidth analogue and give

results on filtering and near optimal policies. Also we will include the study on the asymp-

totic in time and bandwidth problem. Some extensions to partly nonlinear observations will

also be given.
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6.5.1 The Diffusion Model

Consider the linear quadratic Gaussian (LQG) games, that is,

dx = [A(t)x+B(t)u−C(t)v]dt +Ddw1(t) (6.5.7)

where A, B, C, D are n×n, n×m, n×s, and n×r matrices whose elements are continuous

in [0,T ]. Also, x ∈ R
n is the state vector with initial state x0, which is normally distributed

with mean x0 and variance M0, N(x0,M0). Players I and II are endowed with measurements,

dy = dy1 = dy2 = Hxdt +Fdw2(t), (6.5.8)

where F is of full rank with p×q,q > p matrix. The objective functional is defined with

J(u,v) = E{x′(t)Sx(t)+
∫ T

0
[u′Ru− v′Qv]dt} (6.5.9)

where S � 0, R(t) > 0, Q(t) > 0 are n× n, m×m, and n× s symmetric matrices whose

elements are continuous on [0,T ]. Let R0 = FF ′ be positive definite (denoted by R0 > 0).

Note that the −v′Qv term is due to the fact that v is minimizing.

The policies u and v take values in compact sets U and V , and sets Ξ1 and Ξ2 denote the

set of U and V -valued measurable (t,ω) functions on [0,T ]×C[0,T ] (C[0,T ] is the space

of real valued continuous functions on [0,T ] with the topology of uniform convergence)

which are continuous w.p.1., relative to the Wiener measure. Let Ξ1t and Ξ2t denote the

sub class which depends only on the function values up to time t. Let Ξ = Ξ1 ×Ξ2 and

Ξt = Ξ1t ×Ξ2t . We view functions in Ξ as the data dependent policies with values u(y(·), t)
and v(y(·), t) at time t and data y(·). Let Ξ denote the sub class of functions (u,v) ∈ Ξ such

that (u(·, t),v(·, t)) ∈ Ξt for all t and with the use of policies (u(y, ·) ,v(y, ·)), (6.5.7) has a

unique solution in the sense of distributions. These pairs (u(y, ·) ,v(y, ·)) are the admissible

strategies. We say that an admissible pair (u∗(t),v∗(t)) is a saddle point for the game iff

J (u(t),v∗(t)) � J (u∗(t),v∗(t)) � J (u∗(t),v(t)) , (6.5.10)

where u(t) and v(t) are any admissible control laws. We call (u∗(t),v∗(t)) the optimal

strategic pair. Admissible strategies û and v̂ are called δ -optimal for players I and II,

respectively, if

sup
u

J (u, v̂)−δ � J (u∗,v∗) � inf
v

J (û,v)+δ . (6.5.11)

Let Gt = σ{y(s), s � t} and x̂(τ) = E{x(τ)/Gτ ;u(τ) ,v(τ)}. For (6.5.7), (6.5.8), the

classical Kalman-Bucy filter equations are given by

dx̂ = (Ax̂+Bu−Cv)dt +L(t)(dy−Hx̂dt) (6.5.12)
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and

L(t) = P(t)H ′(t)R−1
0 (t),

with x̂0 = x0 and P(t) = E{(x(t)− x̂(t))(x(t)− x̂(t))′} is the error covariance matrix and is

the unique solution to the matrix Riccati equation:
.

P = FP+PF ′ −PN(y)P+DD′ (6.5.13)

P0 = M0, N(y) = H ′R−1
0 H, and the Riccati equation is of the form

.
Σ= −ΣA−A′Σ+[ΣBR−1B′ −CQ−1C′]Σ (6.5.14)

with the boundary condition

Σ(t) = S′(t)S(t).

The following result can be obtained from Ho [88] and Sun and Ho [184].

Theorem 6.5.1. The optimal strategy pair for the problem (6.5.7), (6.5.8), (6.5.9) exists.

The optimal pair at time t is

u∗(t) = −R−1(t)B′(t)Σ(t)x̂(t)

and

v∗(t) = −Q−1(t)C′(t)Σ(t)x̂(t). (6.5.15)

Furthermore,

J (u∗,v∗) =
∫ T

0
TrΣ(s)[DD′ +

(
B(s)R−1B′(s)−C(s)Q−1C′(s)

)
Σ(s)P(s)]ds

+TrΣ0M0,

(6.5.16)

where P satisfies (6.5.13).

6.5.2 Finite TimeFiltering and Game, Wide Band Noise Case

Now consider the wide bandwidth analogue of the previous filtering and game problem.

Let the system be defined by
.

xε = Axε +Bu−Cv+Dξ ε (6.5.17)

with observations
.

yε(·), where
.

yε = Hxε +ξ ε2 , (6.5.18)
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where
∫ t

0 ξ εi (s)ds = W ε
i (t), i = 1,2, W ε

1 (·) and W ε
2 (·) are mutually independent. Let

W ε
i (·) → Wi(·), standard Wiener processes. Let the corresponding objective functional

be given by

Jε(u,v) = E{xε
′
(t)Sxε(t)+

∫ T

0
[u′Ru− v′Qv]dt. (6.5.19)

In practice, with physical wide band observation noise and state process are not driven by

the ideal white noise, one uses (6.5.12), (6.5.13) and the natural adjustment of (6.5.12), that

is
.

xε = (Ax̂ε +Bu−Cv)+L(t)[
.

yε−Hx̂ε ]. (6.5.20)

First of all we want to know in what way the triple (6.5.20), (6.5.13), (6.5.14) makes sense.

In general, it is not an optimal filter for the physical observation. Instead of asking whether

it is nearly optimal, we will ask, with respect to what class of alternative estimators is it

nearly optimal when estimating specific functional of xε(·)? Another problem is that if one

obtains a policy (optimal or not) based on the white noise driven limit model, the policy

will be a function of the outputs of the filters. The value of applying this to the actual

wide band width noise system is not clear. If one use the model (6.5.7), (6.5.8), (6.5.12)

to get a optimal (or nearly optimal) policy pair for the value (6.5.9), and apply this to the

physical system, the question then is with respect to what class of comparison policies is

such a policy nearly optimal? In both the cases, weak convergence theory can provide some

answers. In subsequent results, in order to avoid lengthy calculations, we will not give the

weak convergence proofs. Reader can obtain the necessary steps from Kushner [103] and

Ramachandran [158].

Even when W ε
2 (·) → W2(·), a non degenerate Wiener process, yε(·) might contain a great

deal more information about xε(·) than y(·) does about x(·). We give the following example

from Kushner and Runggaldier [115] for an extreme case when B ≡ 0 and C ≡ 0. We will

represent the corresponding process zε(·).

Example 6.5.1. Let tεi , i > 0 be a strictly increasing sequence of real numbers for each

ε , such that tεi
i−→∞ and supi |tεi+1 − tεi |

ε−→0. Define Δεi = tε2i+1 − tε2i, and for any t > 0,

let ∑tεi �t Δεi
ε−→0. Define a new observation noise ξ εy (·) by resetting ξ εy (t) = 0 for t ∈

(tε2i, t
ε
2i+1), all i. The integral of the ξ εy (·) still converges weakly to the Wiener process

W2(·). But Hzε(·) is exactly known for small ε .

The following result Kushner and Runggaldier [115], shows that we never gain information

on going to the limit.
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Lemma 6.5.1. Let (Zn,Yn) → (Z,Y ). Then

lim
n

E[Zn −E(Zn | Yn)]2 � E[Z −E(Z | Y )]2

We shall now consider a class of estimators that play an integral part in the subject area.

By earlier assumptions,we have (Zε(·),W ε
2 (·)) → (Z(·),W2(·)) as ε → 0. By the weak

convergence and independence of zε(·) and ξ ε2 (·), w1(·) is independent of w2(·). The weak

limit of yε(·) is y(·), and thus, the solution of (6.5.8).

Let ℵ denote the class of measurable functions on C[0,∞) which are continuous w.p.1

relative to Wiener measure. Hence, they are continuous w.r.t. the measure of y(·). Let ℵt

denote the sub class which depends only on the function values up to time t. For arbitrary

f (·) ∈ℵ or in ℵt , f (yε(·)) will denote an alternative estimator of a functional of zε(·). We

consider ℵ and ℵt as a class of data processors.

We now obtain a robustness result. Let (mε
t ,q) be the integral of a function q(z) with respect

to the Gaussian probability distribution with mean ẑε(t) and the covariance p(t). We will

assume the following,

(A6.5.1): {(mε
t ,q)2,q2(zε(t)),F2(yε(·))} is uniformly integrable.

The following theorem states that, for a small ε , the Ersatz conditional distribution (see

Kushner and Runggaldier [115]) is “nearly optimal” with respect to a specific class of

alternative estimators.

Theorem 6.5.2. Assume (A6.5.1) and that wε
2(·)→w2(·), a standard Wiener process. Then

(ẑε(·),zε(·),wε
2(·)) ⇒ (ẑ(·),z(·),w2(·)) .

Also,

lim
ε

E[q(zε(t))−F (yε(·))]2 � lim
ε

E[q(zε(t))− (mε
t ,q)]2 (6.5.21)

Proof. The weak convergence is clear from the assumptions. Since F(·) is w.p.1. con-

tinuous, we also have

(q(zε(t)) ,F (yε(·)) ,(mε
t ,q)) =⇒ (q(z(t)),F(y(·)),(mt ,q)) .

Hence,

(mt ,q) =
∫

q(z)dN(ẑ(t),P(t),dz)

and N (ẑ,P, ·) is the normal distribution with mean ẑ and covariance matrix P. Thus, we

have

lim
ε

E[q(zε(t))−F(yε(·))]2 = E[q(z(t))−F(y(·))]2



Weak Convergence in Two Player Stochastic Differential Games 131

and

lim
ε

E [q(zε(t))− (mε
t ,q)]2 = E[q(z(t))−E[q(z(t)) | y(s), s � t]]2.

Since the conditional expectation is the optimal estimator, (6.5.21) follows. �

Now we will give the ‘near optimality’ result for the policies. Let M∞ (respectively Mε ) de-

note the class of U (respectively V ) valued continuous functions u(·, ·) (respectively v(·, ·)),
such that, with the use of policy value (u(x̂(t), t),v(x̂(t), t)) at time t, (6.5.7), (6.5.12), has

a unique (weak sense) solution. In Theorem 6.5.1, we have shown that there are optimal

strategy pairs (u∗,v∗) and a value J∗ for the system (6.5.7), (6.5.12) with payoff (6.5.9).

Hence, we can assume the following.

(A6.5.2): Let the strategy pair (u∗(·, ·),v∗(·, ·)) be in M and let this strategy be unique.

Assume (u∗,v∗) is admissible for xε(·), x̂ε(·) of (6.5.18), (6.5.20) for small ε .

Thus, we can proceed with the following important convergence result.

Theorem 6.5.3. Assume (A6.5.1), (A6.5.2). Let xε(·) and x̂ε(·) denote the process and its

estimate with (u∗(·, ·),v∗(·, ·)) used. Then

{xε(·), x̂ε(·),u∗,v∗} → (x(·), x̂(·),u∗,v∗)

and the limit satisfies (6.5.7), (6.5.12). Also,

Jε(u∗,v∗) −→ J(u∗,v∗) = J∗. (6.5.22)

In addition, let û(·, ·) and v̂(·, ·) be a δ -optimal strategy pair for players I and II, respec-

tively, with (x(·), x̂(·)) of (6.5.7), (6.5.12). Then

lim
ε

∣∣∣∣∣ sup
u∈M1

J (u(yε , ·), v̂(x̂ε , ·))− Jε(u∗,v∗)

∣∣∣∣∣ � δ (6.5.23)

and

lim
ε

∣∣∣∣ inf
v∈M2

J (û(x̂ε , ·),v(yε , ·))− Jε(u∗,v∗)
∣∣∣∣ � δ . (6.5.24)

Proof. Weak convergence is strait forward. By the assumed uniqueness, the limit

(x(·), x̂(·),u∗,v∗) satisfies (6.5.7), (6.5.12). Also, by this weak convergence and the fact

that T < ∞, by the bounded convergence,

lim
ε

Jε (u∗,v∗) = J (u∗,v∗) .

To show (6.5.23) and (6.5.24), repeat the procedure with admissible strategies

(u(yε , ·) ,v(yε , ·)). The limit (x(·),u(y, ·) ,v(y, ·)) might depend on the chosen subsequence.

For any convergent subsequence {εn}, we obtain

lim
ε=εn→o

Jε (u(yε , ·) ,v(yε , ·)) = J(u,v).

Now by the definition of δ -optimality (6.5.15), (6.5.23) and (6.5.24) follows. �
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6.5.3 Large time Problem

When the filtering system with wide band noise operates over a very long time interval,

there are two limits involved, since both t → ∞ and ε → 0. It is then important that the

results do not depend on how t → ∞ and ε → 0. We will make the following assumptions.

(A6.5.3): A is stable, [A,H] is observable and [A,D] is controllable.

(A6.5.4): ξi(·), i = 1,2 are right continuous second order stationary processes with inte-

grable covariance function S(·). Letξ εi (t) = 1
ε ξi

(
t/ε2

)
. Also, if tε → ∞ as ε → 0, then

W ε
2 (tε + .)−W ε

2 (tε) →W2(·).
(A6.5.5): If zε (tε) ⇒ z(0) (a random variable) as ε → 0, then zε (tε + .) → z(·) with initial

condition z(0). Also supε ,t E |zε(t)|2 < ∞.

(A6.5.6): For each ε > 0, there is a random process ζ ε(·) such that {ζ ε(t), t < ∞} is tight

and for each strategy pair (u(·),v(·)) ∈ M.We can write

{xε(·), x̂ε(·),zε(·), ẑε(·),ζ ε(·),ξ ε1 (·),ξ ε2 (·)}

is a right continuous homogeneous Markov-Feller process with left hand limits.

We have the following result for filtering from Kushner and Runggaldier [115].

Theorem 6.5.4. Assume (A6.5.3)–(A6.5.5) and let q(·) be a bounded continuous function.

Let F(·) ∈ℵt . Define yε(s) = 0, for s � 0, and yε(−∞, t, ·) to be the “reversed” function

with values yε(−∞, t : τ) = yε(t − τ) for 0 � τ < ∞. Then, if tε → ∞ as ε → 0, we have

{zε(tε + ·), ẑε(tε + ·),W ε
2 (tε + ·)−W ε

2 (tε)} −→ (z(·), ẑ(·),W2(·)), (6.5.25)

where z(·) and ẑ(·) are stationary. Also

lim
ε ,t

E[q(zε(t))−F (yε(−∞, t; ·))]2 � lim
ε ,t

E[q(zε(t))− (mε
t ,q)]2. (6.5.26)

The limit of (mε
t ,q) is the expectation with respect to the stationary (ẑ(·),P(0)) system.

Now we will use an ergodic payoff functional of the form

ρε(u,v) = limsup
T→∞

1
T

E
[∫ T

0
k(xε(t),zε(t),u(t),v(t))dt

]
(6.5.27)

and

ρ(u,v) = limsup
T→∞

1
T

E
[∫ T

0
k(x(t),z(t),u(t),v(t))dt

]
(6.5.28)

where k(·, ·, ·) is a bounded continuous function.

Ergodic optimal strategies for players I and II are defined similar to the finite horizon case.

We will assume the following.
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(A6.5.7): There is an optimal strategy pair (u∗,v∗)∈ M for (6.5.1), (6.5.2), and (6.5.2) with

(6.5.1), (6.5.2) has a unique invariant measure μ(u,v)(·).
The assumptions are not very restrictive. For detailed discussion on these type of assump-

tions, we refer the reader to Kushner [103], and Kushner and Dupuis [112].

Theorem 6.5.5. Assume (A6.5.3)–(A6.5.7). Then the conclusions of Theorem 6.5.3 hold

for the model (6.5.4), (6.5.5) with payoff (6.5.27).

Proof. For a fixed (u,v) ∈ M, we define

PεT (·) =
1
T

Ex

∫ T

0
P{Xε(t) ∈ ./Xε(0)}dt,

where Xε(·) is the process corresponding to (u(x̂ε(·), ẑε(·)) ,v(x̂ε(·), ẑε(·))). By (A6.5.6),

{PεT (·), T � 0} is tight. Also,

ρε (u(x̂ε(·), ẑε(·)) ,v(x̂ε(·), ẑε(·))) = limsup
T

∫
r (x,z,u(x̂, ẑ) ,v(x̂, ẑ))PεT (dX),

where X = (x,z, x̂, ẑ). Let T ε
n → ∞ be a sequence such that it attains the limit limsupT ,

and for which PεT εn (·) converges weakly to a measure Pε(·). Again by (A6.5.6), Pε(·) is an

invariant measure for Xε(·). Also, by construction of Pε(·),

ρε (u(x̂ε(·), ẑε(·)) ,v(x̂ε(·), ẑε(·))) = limsup
T

∫
r (x,z,u(x̂, ẑ) ,v(x̂, ẑ))Pε(dX).

Now by a weak convergence argument and (A6.5.7), we have

ρε (u(x̂ε(·), ẑε(·)) ,v(x̂ε(·), ẑε(·))) → ρ (x̂, ẑ) =
∫

r (x,z,u(x̂, ẑ) ,v(x̂, ẑ))μ(u,v) (dxdzdx̂dẑ) .

The rest of the proof is similar (with minor modifications) to that of Theorem 6.5.3 and

hence we omit. �

6.5.4 Partly Nonlinear Observations

The ideas of previous subsections are useful in the case of nonlinear observations. However,

we need the limit system to be linear. Consider the observations with a normalizing term

(1/ε).
.

yε = h(Hxε +ξ ε2 (t))/ε (6.5.29)

with

yε(0) = 0,

and

h(x) = sign(x).
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We assume

(A6.5.8): ξ ε2 (t) = 1
ε ξ2(t/ε2), where ξ2(·) is a component of a stationary Gauss-Markov

process whose correlation function goes to zero as t → ∞.

Let υ2
0 = E (ξ ε2 (t))2. Then the average of (6.5.30) over the noise ξ ε2 is(

2
πυ2

0

) 1
2

Hxε(t)+δε

where δε → 0 as ε → 0, uniformly for xε(t) in any bounded set. The limit observation

system is given by

dy =
(

2
πυ2

0

) 1
2

Hxdt +2Γ
1
2
0 dw2. (6.5.30)

For (6.5.7), (6.5.30), the Kalman-Bucy filter equations are

dx̂ = (Ax̂+Bu−Cv)dt +L(t)

(
dy−

(
2
πυ2

0

) 1
2

Hx̂dt

)
(6.5.31)

and

L(t) = P(t)H ′
(

2
πυ2

0

) 1
2 1

4Γ0
,

where P(t) satisfies the Riccati equations
·

P = FP+PF ′ −PH ′HP
(

1
Γ0

)(
2
πυ2

0

)
, (6.5.32)

and (6.5.13), where

Γ0 =
1
π

∫ ∞

0
sin−1κ(t)dt,

with κ(t) being the correlation function of ξ2(·). Define
.

x̂ε = (Ax̂ε +Bu−Cv)+L(t)

[
.

yε−
(

2
πυ2

0

) 1
2

Hx̂ε
]

. (6.5.33)

Now we will give the main result of this subsection.

Theorem 6.5.6. Assume (A6.5.1), (A6.5.2), and (A6.5.8). Then the conclusions of Theo-

rem 6.5.3 and Theorem 6.5.4 continues to hold.

Remark 6.5.1. All the analysis can be carried out for a “soft” limiter of the form h(x) =

sign(x) for |x| > c > 0, h(x) = x/c for |x| < c.

In the present situation, we obtained filtering and near optimality results for linear stochas-

tic differential games with wide band noise perturbations. It is clear from Example 6.5.1

that the limits of {uε(yε , ·),v(yε , ·)} would not necessarily be dependent only on the limit

data y-even when yε(·)→ y(·). The case of partly nonlinear observations is also considered.

Using the methods of this subsection, we can extend the results to the conditional Gaussian

problem, in which, the coefficients of xε and ξ ε2 in the observation equation (6.5.2) can

depend on the estimate x̂ε and on Pε(·).
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6.6 Deterministic Approximations in Two-Person Differential Games

As we have seen in previous sections, considerable effort has been put into developing ap-

proximation techniques for such problems. One such approach use in the stochastic control

literature is, in lieu of the original model, a model where the underlying processes are re-

placed by simpler ones (Fleming [60], Kushner [103], Kushner and Ramachandran [113],

Kushner and Runggaldier [114], Lipster, Runggaldier, and Taksar [127]). In stochastic

game problems such an effort was made in Ramachandran [161] using diffusion approxi-

mation techniques.In the present section, fluid approximation techniques (i.e., the simpler

model is deterministic) to a two person zero sum differential game model will be developed.

Consider a two person game problem described by a family of stochastic equations

parametrized by a small parameter ε (ε ↓ 0), with dynamics

dXε(t) = [a(Xε(t),ξ ε(t))+b1(xε(t))uε1(t)+b2(Xε(t))uε2(t)]dt +dMε(t) (6.6.1)

and initial condition Xε(0). Here, Xε = (Xε(t)) is the controlled state process, ξ = (ξ ε(t))
is the contamination process affecting the drift of Xε , and M = (Mε(t)) is the process

representing the noise in the system. Also uε1 = (uε1(t)) and uε2 = (uε2(t)) are controls for

players I and II, respectively. Given a finite horizon, T > 0, with each policy pair uε =

(uε1,u
ε
2), we associate the payoff to player I by

Jε(uε1,u
ε
2) = E

{∫ T

0
[k(Xε(t))+ p(uε1(t))+q(uε2(t))]dt + r(Xε(t))

}
, (6.6.2)

where k(x), p(u1), q(u2), and r(x) are nonnegative functions on the real line referred to

as holding cost, control costs, and terminal cost functions, respectively. Our objective is to

find value function V ε , that is

V ε = V ε(uε∗1 ,uε∗2 ) = inf
uε2∈A2

sup
uε1∈A1

Jε(uε1,u
ε
2) = sup

uε1∈A1

inf
uε2∈A2

Jε(uε1,u
ε
2), (6.6.3)

and the corresponding policy pair (uε∗1 ,uε∗2 ). The sets A1, and A2 will be defined in the next

section. The process ξ ε(·) is said to be exogenous or state independent if for each t and set

B in σ(ξ ε(s), s > t), such that,

P{B | ξ ε(s), s � t} = P{B | ξ ε(s),Xε(s), s � t}.

In order for a desired convergence to occur, the ‘rate of fluctuations’ of ξ ε(·) must increase

as ε → 0. We consider the case in which the ‘intensity’ of the random noise disturbance M

becomes very small with ε , while the ‘contaminating’ process ξ fluctuates with increasing

speed. In this work, we assume that the controlled state process X is completely observed.
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It is very hard to obtain optimal strategies and value satisfying (6.6.1) and (6.6.3). To this

end, we will now introduce a deterministic model, which we will show to be the limiting

model corresponding to (6.6.1) to (6.6.3) under appropriate ergodic conditions introduced

in the next section.

Consider a two person zero-sum differential game problem where the dynamics of the

limiting deterministic system is given by the following ordinary differential equation:

dx(t) = [a(x(t))+b1(x(t))u1(t)+b2(x(t))u2(t)]dt, (6.6.4)

with

x(0) = x0,

where x(t) is deterministic controlled process, u1(t), u2(t) are deterministic controls for

players I and II, respectively. Define the payoff to player I by

j(u1,u2) =
∫ T

0
k(x(t))+ p(u1(t))+q(u2(t))]dt + r(x(t)) (6.6.5)

and

v = inf
u2

sup
u1

j(u1,u2) = sup
u1

inf
u2

j(u1,u2). (6.6.6)

Here, player I maximizes j(·, ·) and player II minimizes j(·, ·). The linearity of controls

is assumed, since nonlinear problems could rarely be solved analytically. With the use of

the so called relaxed controls, we could allow nonlinear forms. However, for simplicity of

presentation, in this work we will restrict to linear forms.

These type of results have two major benefits. From the theoretical point of view, one

obtains a stability result for the optimal strategy pair of a deterministic system in the sense

that this policy pair is asymptotically optimal for a large class of complicated problems

of stochastic games. From a practical point of view, when a direct approach would be

impossible, these results allow one to compute an asymptotically optimal strategy pair for

a variety of stochastic game problems under quite general conditions.

6.6.1 Preliminaries

Let Fε = {ℑεt }t�0 denote the minimal σ -algebra over which {Xε(s),ξ ε(s),Mε(s), s � t},

is measurable. For each ε let (Ω,ℑ,Fε ,P) be a fixed stochastic basis, and where (Ω,ℑ,P)

is a complete probability space. Let Eε
t denote the expectation conditioned on ℑεt . Let U1,

U2 be compact metric spaces with metric di(·). The control process uεi (t) with values in Ui

is said to be admissible strategy for the ith player if it is ℑεt adapted and
∫ T

0 |uεi (s)|ds < ∞,
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a.s. Let Ai, i = 1,2 denote the set of admissible strategies. Let A = A1 ×A2. An admissible

strategy uε∗1 ∈ A1 is said to be optimal for player I if

Jε(uε∗1 , ũε2) � inf
uε2∈A2

sup
uε1∈A1

Jε(uε1,u
ε
2) = V ε+, (6.6.7)

for any ũε2 ∈ A2. Similarly, an admissible strategy uε∗2 ∈ A2 is said to be optimal for player

II if

Jε(ũε1,u
ε∗
2 ) � sup

uε1∈A1

inf
uε2∈A2

Jε(uε1,u
ε
2) = V ε−, (6.6.8)

for any ũε1 ∈ A1. If V ε+ = V ε− for each initial value, then the game is said to admit a value

and we will denote the value by V ε . Also, u1δ and u2δ are said to be δ -optimal strategies

for player I and II, respectively, if

(6.6.9)

Similarly, we can define all of the above concepts for the deterministic model. Define the

control space in the deterministic game by Ãi =
{

ui : ui is measurable and
∫ T

0 |ui(t)|dt <∞
}

and Ã = Ã1 × Ã2. Note that Ã ⊂ A.

We will use following assumptions.

(A6.6.1): ξ ε(t) = ξ (t/ε), where ξ (·) is a stationary process which is strong mixing, right

continuous and bounded with mixing rate function φ(·) satisfying
∫ ∞

0 φ(s)ds < ∞.

(A6.6.2): b1(·), b2(·)b are bounded and Lipshitz continuous a(·, ·) and its gradient ax(·, ·)
are continuous in (x,ξ ) and satisfy uniform Lipschitz condition with same constant.

(A6.6.3): There is a continuously differentiable function a(·) such that for each t < T and

x, we have ∫ T

t
[Eε

t a(x,ξ ε(s))−a(x)]ds → 0

in probability as ε → 0.

(A6.6.4): The cost functions k(·) and r(·) are continuous nonnegative satisfying

k(x), r(x) � c0 (1+ |x|γ) , c0, γ > 0.

Also,

p(u1(t))+q(u2(t)) � c2
(
|u1|1+γ2 + |u2|1+γ2

)
, c2,γ2 > 0,

and

p(u1) and q(u2) are nonnegative convex.

(A6.6.5): The process Mε = (Mε(t))t �0 is a square integrable martingale with paths in the

Skorokhod space, D [0,∞) , whose predictable quadratic variations 〈Mε〉(t) satisfies
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(i) 〈Mε〉(t) = ε
∫ t

0 mε(s)ds, with bounded density mε(s). That is, there exists a constat

c1 such that,

(ii) mε(t) � c1; t � T, P-a.s..

The jumps ΔMε(s) .= Mε(s)− lim
v↑s

Mε(s) are bounded, i.e., there exists a constant

K > 0, such that,

(iii) |ΔMε(t)| � K; t � T, ε ∈ (0,1].

(A6.6.6): p- lim
ε→0

Xε(0) = x0, x0 ∈ R.

Note that by the assumption (A6.6.2) equation (6.6.1) has a unique solution. Also, in

(A6.6.1) if we replace stationarity with the ergodicity assumptions as in Liptser, Rung-

galdier, and Taksar [127], all the results of this paper continues to hold. In (A6.6.2),

smoothness of a(·, ·) is assumed only to make the proof simpler. The case of non

smooth dynamics can be carried out as in Kushner [103] by only assuming smoothness

of Eε
t a(x,ξ ε(s)). As a result of (A6.6.5), we have p- lim

ε→0
|Mε

t | = 0. We can use (A6.6.4) to

avoid singular controls, as given in Lions and Souganidis [126].

6.6.2 Fluid Approximation

We will now give the main convergence result for the controlled state process and show that

the limit satisfy (6.6.10). The proof will utilize the martingale methods and the so called

perturbed test function method.

Theorem 6.6.1. Suppose that (A6.5.1)–(A6.5.6) hold. Let Xε
0 ⇒ x0 and uε(·) =

(uε1(·),uε2(·)) → u(·) ≡ (u1(·),u2(·)), where (u1(·),u2(·)) is an admissible strategy pair for

(6.6.4). Then (Xε(·),uε(·)) → (x(·),u(·)), where u(·) is measurable (admissible) process

and

dx(t) = [a(x(t))+b1(x(t))u1(t)+b2(x(t))u2(t))] dt (6.6.10)

Also

Jεn
(
uεn

1 ,uεn
2

)
→ j(u1,u2). (6.6.11)

Proof. Define a process Xε ,0(·) by

Xε ,0(t) = Xε ,0 (0)+
∫ t

0

[
a
(
Xε ,0(s),ξ ε(s)

)
+b1

(
Xε ,0(s)

)
uε1(s)+b2

(
Xε ,0(s)

)
uε2(s)

]
ds

(6.6.12)

Let Y ε(s) = sups�t
∣∣Xε(s)−Xε ,0(s)

∣∣. Then by (A6.6.2), we have,

Y ε(t) � K
∫ t

0
Y ε(s)d

[
s+

∫ s

0
|uε1 (w)|dw+

∫ s

0
|uε2 (w)|dw

]
+ sup

s�t
|Mε(s)| , t � T,
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where K is the Lipschitz constant. Using the Gronwall-Bellman inequality we obtain

Y ε(t) � K sup
s�t

|Mε(s)|exp
{

K
[

T +
∫ T

0
|uε1 (w)|dw+

∫ T

0
|uε2 (w)|dw

]}
.

By (A6.6.5) (see Liptser, Runggaldier, and Taksar [127]), supx�t |Mε(s)| → 0, ε → 0 in

probability and by (A6.6.2) and (A6.6.4)

lim
δ→0

limsup
ε→0

P

(
sup

t,s�T :|t−s|�δ

∫ t

s
[|u1 (w)|+ |u2 (w)|]dw > η

)
= 0.

Consequently Y ε(t) → 0, ε → 0, in probability and the theorem remains true if its state-

ments are proved only for (Xε ,0(·),uε(·)). We will prove the weak convergence for

the process (Xε ,0(·),uε(·)). For notational convenience we will use (Xε(·),uε(·)) for

(Xε ,0(·),uε(·)).
Define the perturbation f ε1 (t) = f ε1 (Xε(t), t), where

f ε1 (x, t) =
∫ T

t
fx(x) [Eε

t a(x,ξ ε(s))−a(x)] ds. (6.6.13)

It is important to note that (6.6.13) averages only the noise, not the state Xε(·). The state

x = Xε(t) is considered as parameter in (6.6.13). Now,

f ε1 (x, t) =
∫ T

t
fx (x) [Eε

t a(x,ξ ε(s))−a(x)]ds

= ε
∫ T /ε

t/ε
fx(x) [Eε

t a(x,ξ ε(s))−a(x)] ds.

In view of Lemma 6.2.2, (A6.6.1) and (A6.6.2), for some L > 0,

sup
t�T

| f ε1 (t)| = ε sup
t�T

∣∣∣∣
∫ T /ε

t/ε
fx [Eε

t a(x,ξ ε(s))−a(x)]− [Ea(x,ξ ε(s))−a(x)] ds
∣∣∣∣

� Lε sup
t�T

(∫ T /ε

t/ε
φ

(
s− t

ε

)
ds

)

= O(ε) .

Hence,

lim
ε

sup
t<T

E | f ε1 (t)| = 0. (6.6.14)

Write ã(x,ξ ) = fx (x)(a(x,ξ )−a(x)). We have

Âε f ε1 (t) = −ã(Xε(t), ξ ε(t))+
∫ T

t
(Eε

t ã(Xε(t), ξ ε(s)))xẊε(t)ds+o(1)



140 Stochastic Differential Games

where p- limε o(1) = 0 uniformly in t. Define the perturbed test function f ε(t) =

f (Xε(t))+ f ε1 (t). For simplicity we write x for Xε(t). Then, we have

Âε f ε1 (t) = fx(x) [a(x,ξ ε(t))+b1(x)uε1(t)+b2(x)uε2(t)]− fx(x)(a(x,ξ )−a(x))

+
∫ T

t
(Eε

t ã(x,ξ ε(s)))x [a(x,ξ ε(t))+b1(x)uε1(t)+b2(x)uε2(t)] ds+o(1)

= fx(x) [a(x)+b1(x)uε1(t)+b2(x)uε2(t)]

+ ε
∫ T /ε

t/ε
(Eε

t ã(x,ξ (s)))x [a(x,ξ ε(t))+b1(x)uε1(t)+b2(x)uε2(t)] ds+o(1).

(6.6.15)

Under (A6.6.2), the second term in (6.6.15) is o(1) where o(1) terms goes to zero in p-limit

as ε → 0. Then (6.6.14) and (6.6.15) imply that

p- lim
ε

[ f ε(·)− f (Xε(·))] = 0

and

p- lim
ε

[
Âε f ε(·)− Âu f (Xε(·))

]
= 0 for t � T.

Hence (6.6.10) is proved.

By the above methods, we can write
∫ T

0
[k(Xε(t))+ p(uε1(t))+q(uε2(t))] dt =⇒

∫ T

0
[k(x(t))+ p(u1(t))+q(u2(t))] dt

(6.6.16)

and

r(Xε(t)) → r(x(t)).

By (A6.6.2), each moment of Xε(t) is bounded uniformly in ε and t � T . By (A6.6.2) and

(A6.6.4), the left hand terms in (6.6.16) are uniformly (in ε) integrable and the convergence

in (6.6.11) follows. �

Remark 6.6.1. The condition in the theorem stating that uε(·) = (uε1(·),uε2(·)) → u(·) =

(u1(·),u2(·)) is a reasonable one. This follows, if p(u1(t)) + q(u2(t)) � c2(|u1|1+γ +

|u2|1+γ), c2, γ > 0, and p(u1) and q(u2) are nonnegative convex, then mimicking the proof

of Theorem 5.1 of Liptser, Runggaldier, and Taksar [127], we can obtain the weak conver-

gence of Theorem 6.6.1. The analytic method used in [127], under their conditions, could

also be adapted to prove Theorem 6.6.1.
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6.6.3 δ -Optimality

In this section, we will prove near optimality and asymptotic optimality of the optimal

strategy pair for the limit deterministic system.

Theorem 6.6.2. Assume (A6.6.1)–(A6.6.6). Let (u∗1,u
∗
2) be the unique optimal strategy

pair for (6.6.4)–(6.6.5). Then {Xε(·),u∗1,u∗2}→ (x(·)u∗1,u∗2) and the limit satisfies (6.6.10).

Also

Jε(u∗1,u
∗
2) → j(u∗1,u

∗
2) = v. (6.6.17)

In addition, let ûε1 and ûε2 be a δ -optimal strategy pair for player I and II respectively, with

Xε(·) of (6.6.1). Then,

liminf
ε

∣∣∣∣∣ sup
uε1∈U1

Jε(uε1, û
ε
2)− Jε(u∗1,u

∗
2)

∣∣∣∣∣ � δ (6.6.18)

and

liminf
ε

∣∣∣∣∣ sup
uε2∈U2

Jε (ûε1,u
ε
2)− Jε(u∗1,u

∗
2)

∣∣∣∣∣ � δ . (6.6.19)

Proof. By Theorem 6.6.1, the weak convergence is straight forward. By the assumed

uniqueness, the limit satisfies (6.6.10). Also, by this weak convergence and the fact that

T < ∞, by the bounded convergence,

lim
ε

Jε(u∗1,u
∗
2) = j(u∗1,u

∗
2).

Now to show (6.6.18) and (6.6.19), repeat the procedure with admissible strategies uε1 and

uε2. The limit (u1,u2) might depend on the chosen subsequence. For any convergent subse-

quence, we obtain, limε=εn→0 Jε(uε1,u
ε
2) = j(u1,u2). Now by the definition of δ -optimality

(6.6.18) and (6.6.19) follows. �

Note: If (u∗1(t),u
∗
2(t)) is the optimal strategy pair for (6.6.18) and (6.6.19), then

{Xε(t),u∗1(t),u
∗
2(t)}0�t�T is the process associated with the policy pair (uε1(t),u

ε
2(t)) ≡

(u∗1(t),u
∗
2(t)). Since (u∗1(t),u

∗
2(t)) is deterministic, corresponding (uε1(t),u

ε
2(t)) is admissi-

ble control for the systems (6.6.1)–(6.6.3).

If for each ε , there is a value for the stochastic game, then the following result shows that

they converge to the value of the deterministic game. To prove this we will now introduce a

new game through which we will connect the values of stochastic and deterministic games.

Define a continuous map φ , such that,

φ : A → Ã such that if u = (u1,u2) ∈ Ã, then φ(u) = u
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Note that example of one such map is φ(u) = Eu for u∈A. Clearly, if u∈ Ã, φ(u) = Eu = u.

Define the map L1 : Ã → Ã by letting L1u2(u2 ∈ Ã2) to be:

j(L1u2,u2) = sup
u1∈Ã1

j(u1,u2), u2 ∈ Ã2.

Similarly, define L2 : Ã → Ã by

inf
u2∈Ã2

j(u1,u2) ≡ j(u1,L2u1)

We will now make following simplifying assumption.

(A6.6.7): Let Li, i = 1,2 be continuous, that is, for any sequence {uk
i } of admissible con-

trols in Ãi, such that, uk
i → ui ∈ Ãi, Li(uk

i ) → Li(ui), in L2(0,T ) norm.

Remark 6.6.2. The continuity of Li may be justified by the fact that the controls ui are state

dependent feedback controls.

Following result states that if the value exists for the stochastic game for each ε , then

asymptotically (as ε → 0) they coincide with the value of the limit deterministic model.

Theorem 6.6.3. Assume (A6.6.1)–(A6.6.7) and that for each ε , the value exists for the

stochastic game (6.6.1) to (6.6.3). Also the value for the deterministic game (6.6.4) to

(6.6.6) exists. Then limε→0 V ε = v.

Proof. For the proof, we introduce the following game which is played as follows. Player

II chooses his control first, say uε2, which is known to player I. Then player I chooses the

control L1(φ(uε2)). Define ũε2 by

Jε (L1φ (ũε2) , ũε2) = inf
ũε2∈A2

Jε (L1φ (ũε2) , ũε2) .

By relative compactness, ũε2 → u+
2 ∈ Ã2. By continuity and by the definition of φ and L1,

we have L1 (φ (ũε2)) → L1
(
φ

(
u+

2

))
= L1

(
u+

2

)
.

Then

lim
ε→0

V ε ≡ lim
ε→0

[
inf

uε2∈A2
sup

uε1∈A1

Jε (uε1 (uε2) ,u
ε
2)

]

� lim
ε→0

Jε (L1 (φ (ũε2) , ũε2))

= j
(
L1u+

2 ,u+
2
)

� v+,

since v+ = infu2∈A2 supu1∈A1
j(L1u2,u2) = infu2∈A2 j(L1u2,u2).
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Similarly, when player I chooses first, proceeding as before with ũε1 → u−1 ∈ Ã1 we get,

lim
ε→0

V ε− ≡ lim
ε→0

[
sup

uε1∈A1

inf
uε2∈A2

Jε (uε1, uε2 (uε1))

]

� lim
ε→0

[
sup
uε1

Jε (uε1,L2 (φ (uε1) )

]

≡ lim
ε→0

Jε (ũε1,L2 (φ (ũε1 )) � v−.

Since all the games have values

V ε
+ = V ε

− = V ε and v+ = v− = v

Hence,

lim
ε→0

V ε = v. �

The following result is obtained direct from Theorem 6.6.2 and Theorem 6.6.3.

Theorem 6.6.4. Assume (A6.6.1)–(A6.6.7). Let (u∗1(t), u∗2(t)), 0 � t � T be an optimal

deterministic strategy for (6.6.4), (6.6.5), then (u∗1(t),u
∗
2(t)) is asymptotically optimal for

(6.6.1), (6.6.3) in the sense that

lim
ε→0

|Jε(u∗1,u∗2)−V ε | = 0. (6.6.20)

6.6.4 L2-Convergence

In this section we consider a simpler physical system of the form given below by (6.6.21)

and we will show that in place of the weak convergence of Xε to x, under few additional

conditions, we can in fact obtain an L2-convergence. Rewrite the systems (6.6.12) and

(6.6.4), respectively, in the integral form:

Xε(t) = Xε(0)+
∫ t

0
[a(Xε(s),ξ ε(s))+b1(Xε(s))uε1(s)+b2(Xε(s))uε2(s)] ds (6.6.21)

and

x(t) = x0 +
∫ t

0
[a(x(s))+b1(x(s))u1(s)+b2(x(s))u2(s)] ds. (6.6.22)

Note that using Theorem 6.6.3, it is enough to consider the system (6.6.12) instead of the

system (6.6.1). The conditions on a, b1, b2 are the same.

Define ‖Xε(t)‖ = sup0�t�T
{

E(Xε(t))2
} 1

2 .

(A6.6.8): Assume

(i) ‖Xε(0)− x0‖→ 0 as ε → 0.
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(ii) ‖uεi −ui‖→ 0 as ε → 0 (i = 1,2).

(iii) E (a(xξ ε)−a(x))2 � φ(ε,x) → 0 as ε → 0.

Now, we can state the following result.

Theorem 6.6.5. Assume (A6.6.1), (A6.6.2), (A6.6.5), and (A6.6.8). Then

‖Xε(t)− x(t)‖→ 0 as ε → 0, (6.6.23)

where Xε(·) is the solution of (6.6.21) and x(·) is the solution of (6.6.22).

Proof.

E |Xε − x|2 � N
{

E(Xε(0)− x0)2 +
∫ t

0
E |a(Xε ,ξ ε)−a(x)|2 ds

+
∫ t

0
E |b1(Xε)uε1 −b1(x)u1|2 ds+

∫ t

0
E |b2(Xε)uε2 −b2(x)u2|2 ds

}

� N
{

E(Xε(0)− x0)2 +
∫ t

0
E|a(Xε ,ξ ε)−a(x,ξ ε)|2ds+

∫ t

0
E|a(x,ξ ε)−a(x)|2ds

+
∫ t

0
E|b1(Xε)−b1(x)|2|u1|2ds+

∫ t

0
E|b1(Xε)|2|uε1 −u1|2ds

+
∫ t

0
E|b2(Xε)−b2(x)|2|u2|2ds+

∫ t

0
E|b2(Xε)|2|uε2 −u2|2ds

}
.

Note that bi’s are bounded and Lipschtzian, and so is a. Hence,

E|Xε − x0|2 � NK
{

E |Xε(0)− x0|2 +
∫ t

0
E |Xε − x|2 ds

+
∫ T

0
E (a(x,ξ ε))−a (x))2 ds+

∫ t

0
E |Xε − x|2 ds

+
∫ t

0
E (uε1 −u1)

2 ds+
∫ t

0
E (uε2 −u2)

2 ds.

(6.6.24)

Using the assumptions (A6.6.8) in equation (6.6.24) we get (for some K)

E |Xε − x|2 � KE
[
|Xε(0)− x0|2 +

∫ T

0
φ(ε,x)ds+

∫ T

0
E (uε1 −u1)

2 ds

+
∫ T

0
E(uε2 −u2)2 ds+

∫ t

0
E(X(s)ε − x(s))2 ds

]

Using the Grownwall-Bellman inequality, we have,

E |Xε(t)− x(t)|2 � KE
[
|Xε(0)− x0|2 +

∫ T

0
φ(ε,x)ds

+
∫ T

0
E (uε1 −u1)

2 ds+
∫ T

0
E (uε2 −u2)

2 ds
]

eKT .

(6.6.25)

Equation (6.6.25) implies that,

sup
0�t�T

E |Xε(t)− x(t)|2 → 0 as ε → 0.

Hence, ‖Xε − x‖→ 0 �
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Once we have L2-convergence, we can obtain pathwise convergence using the following

arguments. Suppose there is no pathwise convergence of Xε(t,ω) for ωεA, with P(a) =

λ > 0. Then there is a sequence {εn}→ 0, such that for each εn, there is a tn ∈ (0,T ], such

that,

|Xεn(tn,ω)− x(tn,ω)| > δ > 0, ω ∈ A.

Hence,

0 < ε2δ <
∫

A

∣∣Xεn−x∣∣2d p � E |Xεn − x|2 � sup
0�t�T

E |Xεn − x|2 .

Since sup0�t�T E|Xεn − x|2 → 0 as εn → 0, this leads to a contradiction. The convergence

of the payoffs and near optimality for this setup follows as in the earlier sections.

The type of asymptotic results derived in this chapter has two main benefits. From the

theoretical point of view, one obtains a stability result for the optimal strategy pair of a dif-

fusion or deterministic system in the sense that this policy pair is asymptotically optimal for

a large class of complicated problems of stochastic games. From a practical point of view,

when a direct approach would be impossible, these results allow one to compute an asymp-

totically optimal strategy pair for a variety of problems under quite general conditions. In

Kushner and Depuis [112], such approximation techniques are utilized in developing nu-

merical methods for stochastic control problems. For a class of pursuit-evation games, a

nice computational approach is given in Raivio and Ehtamo [157].



Chapter 7

Weak Convergence in Many Player Games

7.1 Introduction

In this chapter, we will discuss the weak convergence methods for n-person games. The

entire problem will be set in a relaxed control framework. The advantage is that the problem

becomes linear in control variables. The main advantage of occupation measure setting

is that the differential game problem reduces to a static game on the set of occupation

measures, the dynamics of the game being captured in these measures. In the proofs, we

will use the weak convergence theory. We will only explain the case of averege payoffs.

Discounted and other payoffs structure can be dealt in a similar fasion.

7.2 Some Popular Payoffs

In this section, we will look at weak convergence with few of the popular payoof stuctures,

such as, average payoff, pathwise discounted payoffs, and discrete games.

7.2.1 Avergage Payoffs

7.2.1.1 Problem Description

Let the diffusion model be given in a non-anticipative relaxed control frame work. Let Ui,

i = 1, . . . ,N be compact metric spaces (we can take Ui as compact subsets of R
d), and Mi =

P(Ui), the space of probability measures on Ui with Prohorov topology. Use the notation

mk̂ = (m1, . . . ,mk−1,mk+1, . . . ,mN) and
(
mk̂,mk̃

)
= (m1, . . . ,mk−1, m̃k,mk+1, . . . ,mN).

147
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For m = (m1, . . . ,mN) ∈ M = M1 ×·· ·×MN and U = U1 ×·· ·×UN , x(·) ∈ R
d be an R

d-

valued process given by the following controlled stochastic differential equation

dx(t) =
∫

U
a(x(t),α)mt(dα)dt +g(x(t))dt +σ(x(t))dw(t),

with x(0) = x0,

(7.2.1)

where we use the notation a(·, ·) = (a1(·, ·), . . . ,aN(·, ·))′ : R
d ×U → R, α = (α1, . . . ,αN),

σ = [[σi j]], 1 � i, j � d: R
d → R

d×d , and∫
U

ai(x,α)mt(dα) .=
∫

UN

· · ·
∫

U1

ai (x,α1, . . . ,αN)m1t (dα1) . . .mNt (dαN) .

The pathwise average payoff per unit time for player k is given by

Jk[m] = liminf
T→∞

1
T

∫ T

0

∫
rk (x(s),α)ms(dα)ds. (7.2.2)

Let w(·) in (7.2.1) be a Wiener process with respect to a filtration {ℑt} and let Ωi, i =

1,2, . . . ,N be a compact set in some Euclidean space. A measure valued random variable

mi(·) is an admissible strategy for the ith player if
∫ ∫ t

0 fi(s,αi)mi(dsdαi) is progressively

measurable for each bounded continuous fi(·) and mi([0, t]×Ωi) = t, for t � 0. If mi(·) is

admissible then there is a derivative mit(·) (defined for almost all t) that is non-anticipative

with respect to w(·) and
∫ t

0

∫
fi(s,αi)mi(dsdαi) =

∫ t

0
ds

∫
fi(s,αi)mis(dαi)

for all t with probability one (w.p.1.). The results derived in this work are for so called

Markov strategies, which is a measure on the Borel sets of Ωi for each x, and mi(c) is Borel

measurable for each Borel measurable set C. We will denote by Ai the set of admissible

strategies and Mai the set of Markov strategies for the player i. One can introduce appro-

priate metric topology under which Mai is compact, reader can refer to Borkar and Ghosh

[31].

An N-tuple of strategies m∗ = (m∗
1, . . . ,m

∗
N)∈A1×·· ·×AN is said to be ergodic equilibrium

(in the sense of Nash) for initial law π if for k = 1, . . . ,N, we have

Jk[m∗] (π) � Jk[m∗k̂,mk] (π) ,

for any mk ∈ Ak. Fix a k ∈ {1, . . . ,N}. Let m∗
k ∈ Mak be, such that,

J∗k [m] .= Jk[mk̂,m∗
k ] = max

mk∈Mk
J[mk̂,mk].

If all but player k use strategies mk̂ then player k can not get a higher payoff than J∗k [m] by

going beyond Mak a.s.. We say that m∗
k is ergodic optimal response for player k given m.
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An N-tuple of strategies mδ =
(
mδ

1 , . . . ,mδ
N
)

is a δ -ergodic equilibrium for initial law π if

for any k = 1, . . . ,N, we have,

Jk[m∗](π) � sup
mk∈Ak

Jk[mk̂,mk]−δ .

The wide band noise system considered in this work is of the following type:

dxε =
∫

a(xε ,α)mε
t (dα)dt +G(xε ,ξ ε(t))+

1
ε

g(xε ,ξ ε)dt, (7.2.3)

and pathwise average payoff per unit time for player k is given by

Jk[mε ] = liminf
T→∞

1
T

∫ T

0

∫
rk (xε(s),α)mε

s (dα)ds. (7.2.4)

An admissible relaxed strategy mε
k(·) for the kth player with system (7.2.3) is a measure

valued random variable satisfying
∫ ∫ t

0 f (s,α)mε (dsdα) is progressively measurable with

respect to {ℑεt }, where ℑεt is the minimal σ− algebra generated by {ξ ε(s),xε(s),s � t}.

Also mε ([0, t]×U) = t for all t � 0. Also, there is a derivative mε
t , where mε

t (b) are ℑεt
measurable for Borel B. We will use following assumptions, which are very general. For

a detailed description on these types of assumptions, we refer the reader to Kushner [103]

and Kushner and Dupuis [112].

We introduce the following assumptions.

(A7.2.1): Let ai(·, ·), G(·, ·), g(·,), gx(·, ·) are continuous and are bounded by O(1 + |x|).
Gx(·,ξ ) is continuous in x for each ξ and is bounded. Also, ξ (·) is bounded, right contin-

uous, and EG(x,ξ (t)) → 0, Eg(x,ξ (t)) → 0 as t → ∞, for each x.

(A7.2.2): Let gxx(·,ξ ) be a continuous function for each ξ , and is bounded.

(A7.2.3): Let W (x,ξ ) denote either εG(x,ξ ), Gx(x,ξ ), g(x,ξ ) or gx(x,ξ ). Then for com-

pact Q, we have,

ε sup
x∈Q

∣∣∣∣
∫ ∞

t/ε2
Eε

t W (x,ξ (s))ds
∣∣∣∣ ε−→0,

in the mean square sense, uniformly in t.

(A7.2.4): Let gi denote the ith component of g. There are continuous gi(·),b(·) = {bi j(·)}
such that, ∫ ∞

t
Egi,x(x,ξ (s))g(x,ξ (t))ds −→ gi(x),

and ∫ ∞

t
Egi(x,ξ (s))g j (x,ξ (t))ds −→ 1

2
bi j(x),

as t → ∞, and the convergence is uniform in any bounded x-set.
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Note: Let b(x) = {bi j(x)}. For i �= j, it is not necessary that bi j = b ji. In that case define

b̃(x) = 1
2 [b(x)+b′(x)] as the symmetric covariance matrix, then use b for the new b̃. Hence,

for notational simplicity, we will not distinguish between b(x) and b̃(x).

(A7.2.5): For each compact set Q and all i, j,

(a) sup
x∈Q

ε2
∣∣∣∣
∫ ∞

t/ε2
dτ

∫ ∞

τ
ds

[
Et/ε2g′i,x(x,ξ (s))g(x,ξ (t))−Eg′i,x(x,x(s))g(x,x(t))

]∣∣∣∣ → 0;

and

(b) sup
x∈Q

ε2
∣∣∣∣
∫ ∞

t/ε2
dτ

∫ ∞

τ
ds

[
Et/ε2gi(x,ξ (s))g j(x,ξ (t))−Egi(x,x(s))g j(x,x(t))

]∣∣∣∣ → 0;

in the mean square sense as ε → 0, uniformly in t.

Now, define a(x,α) = a(x,α)+g(x) and the operator Am as

Am f (x) =
∫

Aα f (x)mx(dα),

where

Aα f (x) = f ′x(x)a(x,α)+
1
2∑i, j

bi j(x) fxix j(x).

For a fixed control α , Aα will be the operator of the process that is the weak limit of {xε(·)}.
(A7.2.6): The martingale problem for operator Am has a unique solution for each re-

laxed admissible Markov strategy mx(·), and each initial condition. The process is a

Feller process. The solution of (7.2.1) is unique in the weak sense for each ε > 0. Also

b(x) = σ(x)σ ′(x) for some continuous finite dimensional matrix σ(·).
For an admissible relaxed policy for (7.2.3) and (7.2.1), respectively, define the occupation

measure valued random variables Pm,ε
T (·) and Pm

T (·) by, respectively,

Pm,ε
T (B×C) =

1
T

∫ T

0
I{xε (t)∈B}mε

t (c)dt,

and

Pm
T (B×C) =

1
T

∫ T

0
I{x(t)∈B}mt(c)dt.

Let {mε(·)} be a given sequence of admissible relaxed controls.

(A7.2.7): For a fixed δ > 0,

{xε(t), small ε > 0, t ∈ dense set in [0,∞), mε used}

are tight.

Note: The assumption (A7.2.7) implies that the set of measure valued random variables

{Pmε ,ε
T (·), small ε > 0, T < ∞}
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are tight.

(A7.2.8): For δ > 0, there is an N-tuple of Markov strategies mδ =
(
mδ

1 , . . . ,mδ
N
)

which is a

δ -ergodic equilibrium for initial law π for (7.2.1) and (7.2.2), and for which the martingale

problem has a unique solution for each initial condition. The solution is a Feller process

and there is a unique invariant measure η(mδ ).

Note: Existence of such an invariant measure is assured if the process is positive recurrent.

Also, a Lyapunov type stability condition as in Borkar and Ghosh [31] will assure the

assumption (A7.2.8).

(A7.2.9): Let rk(·, ·) be bounded and continuous function. Also,

r(x,m1, . . . ,mN) =
N

∑
k=1

rk(x,mk) and a(x,m1, . . . ,mN) =
N

∑
k=1

ak(x,mk).

Borkar and Ghosh, [31], under the Lyapunov type stability condition and (A7.2.9), follow-

ing result is proved.

Theorem 7.2.1. There exists an ergodic equilibrium m∗ = (m∗
1, . . . ,m

∗
N)∈Ma1×·· ·×MaN .

7.2.1.2 Convergence Result

The following result gives the main convergence and δ - optimality result for the ergodic

payoff criterion.

Theorem 7.2.2. Assume (A7.2.1)–(A7.2.9). Let (7.2.3) have a unique solution for each

admissible relaxed policy and each ε . Then for mδ of (A7.2.8), following holds:

lim
ε ,T

P
{

Jk(mε) � Jk(mδ )−δ
}

= 1, (7.2.5)

for any sequence of admissible relaxed policies mε(·).

Proof. The correct procedure of proof is to work with the truncated processes xε ,K(·)
and to use the piecing together idea of Lemma 6.2.3 to get convergence of the original

xε(·) sequence, unless xε(·) is bounded on each [0,T ], uniformly in ε . For notational sim-

plicity, we ignore this technicality. Simply suppose that xε(·) is bounded in the following

analysis. Otherwise, one can work with K-truncation. Let D̂ be a measure determining

set of bounded real-valued continuous functions on R
d having continuous second partial

derivatives and compact support. Let mε
t (·) be the relaxed Markov policies of (A7.2.8).

Whenever convenient, we write xε(t) = x. For the test function f (·) ∈ D̂, define the per-

turbed test functions (the change of variable s/ε2 → s will be used through out the proofs).
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Thus,

f ε0 (x, t) =
∫ ∞

t
Eε

t f ′x(x)G(x,ξ ε(s))ds

= ε2
∫ ∞

t/ε2
Eε

t f ′x(x)G(x,ξ (s))ds,

f ε1 (x, t) =
1
ε

∫ ∞

t
Eε

t f ′x(x)g(x,ξ ε(s))ds

= ε
∫ ∞

t/ε2
Eε

t f ′x(x)g(x,ξ (s))ds,

and

f ε2 (x, t) =
1
ε2

∫ ∞

t
ds

∫ ∞

s
dτ

{
Eε

t [ f ′x(x)g(x,ξ ε(τ))]′xg(x,ξ ε(s))

−E
[

f ′x(x)g(x,ξ ε(τ))
]′

xg(x,ξ ε(s))
}

= ε2
∫ ∞

t/ε2
ds

∫ ∞

s
dτ

{
Eε

t [ f ′x(x)g(x,ξ (τ))]′xg(x,ξ (s))

−E
[

f ′x(x)g(x,ξ (τ))
]′

xg(x,ξ (s))
}
.

From assumptions (A7.2.1), (A7.2.2), (A7.2.3), and (A7.2.5), f εi (·)∈ D(Aε), for i = 0,1,2.

Define the perturbed test function by

f ε(t) = f (xε(t))+
2

∑
i=0

f εi (xε(t), t).

The reason for defining f εi in such a form is to facilitate the averaging of the “noise” terms

involving ξ ε terms. By the definition of the operator Aε and its domain D(Aε), we will

obtain that f (xε(·)) and the f εi (xε(·), ·) are all in D(Aε), and

Amε ,ε f (xε(t)) = f ′x(x
ε(t))

[ N

∑
i=1

∫
ai(xε(t),α)mε

t (dα)+G(xε(t),ξ ε(t))

+
1
ε

g(xε(t),ξ ε(t))
]
.

(7.2.6)

From this expression we can obtain,

Amε ,ε f0(xε(t)) = − f ′x(x
ε(t))G(xε(t),ξ ε(t))+

∫ ∞

t
ds[Eε

t f ′x(x
ε(t))G(xε(t),ξ ε(s))]′xxε(t)

= − f ′x(x
ε(t))G(xε(t),ξ ε(t))+ ε2

∫ ∞

t/ε2
ds[Eε

t f ′x(x
ε(t))G(xε(t),ξ (s))]′x

.

xε(t). (7.2.7)

Note that the first term in (7.2.7) will cancel with fx′G term of (7.2.6). The p-lim of the last

term in (7.2.7) is zero.

Also, we can write,

Amε ,ε f1(xε(t)) = −1
ε

f ′x(x
ε(t))g(xε(t),ξ ε(t))+

1
ε

∫ ∞

t
ds[Eε

t f ′x(x
ε(t))g(xε(t),ξ ε(s))]′x

ε
x(t)

= −1
ε

f ′x(x
ε(t))g(xε(t),ξ ε(t))+ ε

∫ ∞

t/ε2
ds[Eε

t f ′x(x
ε(t))g(xε(t),ξ (s))]′x

ε
x(t) (7.2.8)
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The first term on the right of (7.2.8) will cancel with the f ′xg
ε term in (7.2.6). The only

component of the second term on the right of (7.2.6) whose p-lim is not zero is
1
ε2

∫ ∞

t
ds

{
Eε

t [ f ′x(x
ε(t))g(xε(t),ξ ε(s))]′xg(xε(t),ξ ε(t))

}
.

This term will cancel with the first term of equation (7.2.8).

We can also, write,

Amε ,ε f2(xε(t)) = − 1
ε2

∫ ∞

t
ds

{
Eε

t [ f ′x(x
ε(t))g(xε(t),ξ ε(s))]′xg(xε(t),ξ ε(t))

−E[ f ′x(x
ε(t))g(x,ξ ε(s))]′xg(x,ξ ε(t))|x=xε (t)

}
+[ f ε2 (x, t)]′x

.

xε |x=xε (t)

= −
∫ ∞

t/ε2
ds

{
Eε

t [ f ′x(x
ε(t))g(xε(t),ξ (s))]′xg(xε(t),ξ ε(t))

−E[ f ′x(x
ε(t))g(x,ξ (s))]′xg(x,ξ ε(t))|x=xε (t)

}
+[ f ε2 (x, t)]′x

.

xε |x=xε (t). (7.2.9)

The p-lim of the last term of the right side of equation (7.2.9) is zero.

Evaluating

Amε ,ε f ε(t) = Amε ,ε

[
f (xε(t))+

2

∑
i=0

f εi (xε(t), t)

]

and by deleting terms that cancel yields

Amε ,ε f ε(t) = f ′x(x
ε(t))

N

∑
i=1

∫
ai(xε(t),α)mε

t (dα)

+
∫ ∞

t/ε2
E[ f ′x(x

ε(t))g(x,ξ (s))]′g(x,ξ (t/ε2))ds.
(7.2.10)

As a result of the above, we have,

p- lim( f ε(t)− f (xε(·))) = 0 (7.2.11)

and

p- lim
ε

∣∣∣Amε ,ε f (xε(t))−Amε ,ε
f ε(t)

∣∣∣ = 0. (7.2.12)

Hence, by Lemma 6.2.2, we have,

Mε
f (t) = f ε(t)− f ε(0)−

∫ t

0
Amε

f ε(s)ds,

is a zero mean martingale.

Let [t] denote the greatest integer part of t. We proceed to write

Mε
f (t)

t
=

1
t

[(
Mε

f (t)−Mε
f ([t])

)
+Mε

f (0)
]
+

1
t

[t]−1

∑
k=0

[
Mε

f (k +1)−Mε
f (k)

]
.

Using equation (7.2.12) and the fact that f (·) is bounded, and the martingale property of

Mε
f (·), we get E

[Mε
f (t)
t

]2 → 0 as t →∞ and ε → 0, which in turn implies that
Mε

f (t)
t

P−→0 as
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t → ∞ and ε → 0 in any way at all. From equation (7.2.12), and the fact that
Mε

f (t)
t , f ε (t)

t ,

and f ε (0)
t all go to zero in probability implies that as t → ∞ and ε → 0, we have,

1
t

∫ t

0
Amε

f (xε(s))ds P−→0. (7.2.13)

By the definition of Pmδ ,ε
T (·), equation (7.2.13) can be written as∫
Aα f (x)Pmε ,ε

T (dxdα) P−→0 as T → ∞, and ε → 0. (7.2.14)

For the policy mδ (·), choose a weakly convergent subsequence of a set of random vari-

ables {Pmδ ,ε
T (·),ε,T}, indexed by εn, Tn, with limit μ̂(·). Let this limit P̂(·) be defined

on some probability space
(
Ω̃, P̃, ℑ̃

)
with generic variable ω̃ . Factor P̂(·) as P̂(dxdα) =

mδ
x (dα)μ(dx). We can suppose that mx(c) are x−measurable for each Borel set C and ω̃ .

Now equation (7.2.14) implies that for all f (·) ∈ D̂, we have,∫ ∫
Aα f (x)mδ

x (dα)μ̂(dx) = 0 for P̃-almost all ω̃. (7.2.15)

Since f (·) is measure determining, (7.2.15) implies that almost all realizations of μ̂ are

invariant measures for (7.2.1) under the relaxed policies mδ . By uniqueness of the invariant

measure, we can take μ
(
mδ , ·

)
= μ̂(·) does not depend on the chosen subsequence εn, Tn.

By the definition of Pmδ ,ε
T (·),

1
t

∫ t

0

∫
rk(xε(s),α)mδ (dα)ds =

∫ t

0

∫
rk(xε(s),α)Pmδ ,ε

T (dαdx)

P−→
∫ t

0

∫
rk(x,α)mδ

x (dα)μ̂(dx) = Jk(mδ ).

Since mδ (·) is a δ -equilibrium policy, by the definition of δ−equilibrium, for almost

all ω̃ we have Jk (mε) � Jk(mδ )− δ . Since this is true for all the limits of the tight set

{Pmδ ,ε
T (·);ε,T}, (7.2.5) follows. �

It is important to note that, as a result of Theorem 7.2.2, if one needs a δ -optimal policy

for the physical system, it is enough to compute for the diffusion model and use it to the

physical system. There is no need to compute optimal policies for each ε .

7.2.2 Pathwise Discounted Payoffs

Define the pathwise discounted payoffs for the player k by

Rλ ,ε
k (mε) = λ

∫ ∞

0
e−λ s

∫
rk (xε(s),α)ms(dα)ds. (7.2.16)

Now we will state the pathwise result for discounted payoff and suggest the necessary steps

needed in the proof.
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Theorem 7.2.3. Let mε be a sequence of δ -optimal discounted payoffs and mδ be δ -

equilibrium policies for (7.2.1). Under the conditions of Theorem 7.2.2, following limits

hold:

Rλ ,ε
k (mδ ) P−→Jk(mδ ) as λ → 0,ε → 0, (7.2.17)

lim
ε ,T

P{Rλ ,ε
k (mε) � Jk(mδ )+δ} = 1. (7.2.18)

Proof. The proof is essentially the same as that of Theorem 7.2.2. We will only explain

the differences that are needed to follow. Define the discounted occupation measures by

Pmε ,ε
λ (B×C) = λ

∫ ∞

0
e−λ t I{xε (t)∈B}mt(c)dt

and

Pm
λ (B×C) = λ

∫ ∞

0
e−λ t I{x(t)∈B}mt(c)dt.

Then equation (7.2.16) can be written as

Rλ ,ε
k (mε) =

∫
rk (x(s),α)Pmε ,ε

λ (dxdα).

By the tightness condition (A7.2.7), the {Pmε ,ε
λ (·)} and {Pmδ ,ε(·)} are tight. Define,

f ελ (t) = λeλ t f ε(t).

This will be used in the place of f ε(·) defined in Theorem 7.2.2. Then, we have

Amε ,ε f ελ (t) = −λ 2eλ t f ε(t)+λeλ tAmε ,ε f ε(t).

Define the martingale by

f ελ (t)− f ελ (0)−
∫ t

0
Amε ,ε f ελ (s)ds

= λeλ t f ε(t)−λ f ε(0)−
∫ t

0
[−λ 2eλ s f ε(s)+λeλ sAmε ,ε f ε(s)]ds.

As in Theorem 7.2.2, we conclude that

lim
(λ ,ε)→0

∫ ∫
Aα f (x)Pmε ,ε

λ (dxdα) = 0.

Thus,

lim
(λ ,ε)→0

∫ ∫
Aα f (x)Pmε ,ε

λ (dxdα) = 0.

Now choose weakly convergent subsequences of the {Pmε ,ε
λ (·)} or {Pmδ ,ε

λ (·)} and continue

as in the proof of Theorem 7.2.2 to obtain (7.2.17) and (7.2.18). �
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7.2.3 Discrete Parameter Games

The discrete parameter system is given by

Xε
n+1 = Xε

n + εG(Xε
n )+ ε

N

∑
i=1

∫
ai(Xε

n ,αi)min(dαi)+
√
εg(Xε

n ,ξ εn ) (7.2.19)

where {ξ εn } satisfies the discrete parameter version of (A7.2.2) and min(·), i = 1, . . . ,N, the

relaxed control strategies depending only on {Xi,ξi−1, i � n}. It should be noted that, in the

discrete case, strategies would not be relaxed, one need to interpret this in the asymptotic

sense, i.e., the limiting strategies will be relaxed. Let Eε
n denote the conditional expectation

with respect to {Xi,ξi−1, i � n}. Define, xε(·) by xε(t) = Xε
n on [nε,nε+ ε) and mi(·) by

mi(Bi × [0, t]) = ε
[t/ε ]−1

∑
n=0

min(Bi)+ ε(t − εt/ε])m[t/ε ](Bi), i = 1, . . . ,N.

(A7.2.10):

(i) For V equal to either a(·, ·), g or gx, and for Q compact,

E sup
x

∣∣∣∣∣
L

∑
n+L1

Eε
nV (x,ξ εi )

∣∣∣∣∣ → 0,

as L, n and L1 → ∞, with L > n+L1 and L− (n+L1) → ∞.

(ii) There are continuous functions c(i,x) and c0(i,x), such that, for each x

1
L

�+L

∑
n=�

Eε
� g(x,ξ εn+i)g

′(x,ξ εn ) P−→c(i,x)

and

1
L

�+L

∑
n=�

Eε
� g′x(x,ξ εn+i)g(x,ξ εn ) P−→c0(i,x)

as � and L → ∞.

(iii) For each T < ∞ and compact Q,

ε sup
x∈Q

∣∣∣∣∣
T/ε

∑
j=n

T/ε

∑
k= j+1

[Eε
n g′i,x(x,ξk)g(x,ξ j)−Eg′i,x(x,ξk)g(x,ξ j)]

∣∣∣∣∣ → 0, i � n,

and

ε sup
x∈Q

∣∣∣∣∣
T/ε

∑
j=n

T/ε

∑
k= j+1

[Eε
n g′(x,ξk)g(x,ξ j)−Eg′(x,ξk)g(x,ξ j)]

∣∣∣∣∣ → 0,

in the mean as ε→ 0 uniformly in n � T/ε . Also, the limits hold when the bracketed terms

are replaced by their x−gradient/
√
ε .
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Define,

ã(x) =
∞

∑
1

c0(i,x)

and

c̃(x) = c(0,x)+2
∞

∑
1

c(i,x) =
∞

∑
−∞

c(i,x).

With some minor modifications in the proof of Theorem 6.4.2, we can obtain the following

result. The reader can find complete analysis in Kushner [103] and Ramachandran [161].

Theorem 7.2.4. Assume (A7.2.1) to (A7.2.3), (A7.2.6) to (A7.2.9) and (7.2.10). Then the

conclusions of Theorem 7.2.2 hold for model (7.2.19).

The results of this section can be directly applied to two person zero-sum differential games

with pathwise payoff structure, analogous to the results in Ramachandran [158]. If the

coefficients in (7.2.19) are state dependent or even discontinuous, still we can obtain the

convergence results by adapting the methods of Ramachandran [161]. Also, other cost

structures, such as finite horizon payoff, and payoff up to exit time can be handled by some

minor modifications.

7.3 Deterministic Approximations in N-Person Differential Games

In this section, we will extend the results of Section 6.6 to many player case. Consider

an N-person noncooperative dynamic game problem where the evolution of the system is

given by the following deterministic ordinary differential equation:

dx(t) =

[
a(x(t))+

N

∑
i=1

bi(x(t))ui(t)

]
dt (7.3.1)

with

x(0) = x0,

where x(t) is deterministic controlled process, ui(t), i = 1,2, . . . ,N are deterministic con-

trols for each of the N-players. Let Ui, i = 1, . . . ,N, be compact metric spaces (we can

take Ui as compact subsets of R
d). Let U = U1 × ·· · ×UN . Also, u ∈ U is called an

N-dimentional strategy vector. We denote ui(t) ∈ Ui as the ith component of u and u−i

denotes the N −1 dimentional vector obtained by removing the ith component of vector u,

i = 1,2, . . . ,N. We define payoff to player k by

Jk(u1, . . . ,uN) =
∫ T

0

[
k(x(t))+

N

∑
i=1

Pi(ui(t))

]
dt + r(x(t)) (7.3.2)



158 Stochastic Differential Games

where T < ∞ is the fixed terminal time for the game. An N-tuple of strategies u∗ =

(u∗1, . . . ,u
∗
N) ∈U is said to be in equilibrium (in the sense of Nash) if for each k = 1, . . . ,N,

we have

Jk[u∗] � Jk[u∗−k,uk],

for any uk ∈ Uk. Fix a k ∈ {1, . . . ,N}. An N-tuple of strategies uδ = (uδ1 , . . . ,uδN) is a

δ -equilibrium if for any k = 1, . . . ,N, results in,

Jk
[
uδ

]
� sup

uk∈Uk

Jk
[
uδ−k,uk

]
−δ .

This concept of δ -equilibrium is important in the theory of approximation.

Since most of the physical systems are stochastic in nature, the deterministic models are

only approximations to the real systems. Now consider a more realistic physical model for

an N-person game problem described by a family of stochastic equations parametrized by

a small parameter ε(ε ↓ 0), with dynamics

dXε(t) =

[
a(Xε(t),ξ ε(t))+

N

∑
i=1

bi (Xε(t))uεi (t)

]
dt +dMε(t), (7.3.3)

and initial condition Xε(0). Here, Xε = (Xε(t)) is the controlled state process, ξ = (ξ (t))

is the contamination process affecting the drift of Xε , and M = (Mε(t)) is the process

representing the noise in the system. Also uεi = (uεi (t)), i = 1, . . . ,N, are controls for each of

the players. Given a finite horizon T > 0, with each strategy vector uε = (uε1, uε2, . . . ,u
ε
N),

we associate the payoff to player k by

Jεk (uε1, uε2, . . . ,u
ε
N) = E

{∫ T

0

[
k (Xε(t))+

N

∑
i=1

pi (uεi (t))

]
dt + r (Xε(t))

}
, (7.3.4)

where k(x), pi (ui), i = 1, . . . ,N and r(x) are nonnegative functions on the real line referred

to as holding cost, control costs, and terminal cost functions, respectively. The Nash equi-

librium and δ -equilibrium are defined analogously. Our objective is to find an N-tuple of

strategies uδ = uδ1 , . . . ,uδN that is, a δ -equilibrium if for each k = 1, . . . ,N, and the corre-

sponding value function V ε
k , that is,

V ε
k = max

uεi ∈A1
Jεk

(
uεk ,u

ε∗
−k

)
(7.3.5)

The sets A1, A2, . . . ,AN will be defined in the next section. The process ξ ε(·) is said to be

exogenous or state independent if for each t and set B in σ(ξ ε(s), s > t), we have,

P{B | ξ ε(s), s � t} = P{B | ξ ε(s), Xε(s), s � t} .

In order for desired convergence to occur, the “rate of fluctuations” of ξ ε(·) must increase

as ε→ 0. We consider the case in which the “intensity” of the random noise disturbance M
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becomes very small with ε , while the “contaminating” process ξ fluctuates with increasing

speed. In this study, we assume that the controlled state process X is completely observed.

It is very hard to obtain optimal strategies and values satisfying (7.3.3) and (7.3.5). It is well

known that only few stochastic game or stochastic control problems can be solved in closed

form. For practical purposes one may just as well be interested in finding a near optimal or

an asymptotically optimal strategy vector. Considerable effort has been put into developing

approximation techniques for such problems. One such approach use in the stochastic

control literature is, in lieu of the original model, a model where the underlying processes

are replaced by simpler ones, for example, see (Fleming [60], Kushner [103], Kushner and

ramachandran [113], Kushner and Runggaldier [114], and Liptser, Runggaldier and Taksar

[127]). In stochastic game problems such an effort was made in Ramachandran [161],

using diffusion approximation techniques.

In the present section, deterministic approximation techniques (i.e., the simpler model is

deterministic) to a N-person non-zero sum differential game model will be developed. To

this end, we will now introduce a deterministic model, which we will show to be the limit-

ing model corresponding to (7.3.3) to (7.3.5) under introduced appropriate conditions.

With the use of the so called relaxed controls, we could allow nonlinear forms. However for

simplicity of presentation, in this study we will restrict to the linearity in controls. These

type of results have two major benefits. From the theoretical point of view, one obtains

a stability result for the optimal strategy pair of a deterministic system in the sense that

this strategy vector is asymptotically optimal for a large class of complicated problems

of stochastic games. From a practical point of view, when a direct approach would be

impossible, these results allow one to compute an asymptotically optimal strategy pair for

a variety of stochastic game problems under quite general conditions.

7.3.1 Main Convergence Results

We will now present the main convergence result. The so called perturbed test function

method will be utilized for the proof.

We will use following general assumptions similar to that in Section 6.6.

(A7.3.1): Let, ξ ε(t) = ξ (t/ε), where ξ ε(·) is a stationary process which is strong mixing,

right continuous and bounded with mixing rate function φ(·) satisfying
∫ ∞

0 φ(s)ds < ∞.

(A7.3.2): Let bi(·), i = 1,2, . . . ,N, be bounded and Lipshitz continuous. a(·, ·) and its

gradient ax (·, ·) are continuous in (x,ξ ) and satisfy uniform Lipschitz condition with the

same constant.
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(A7.3.3): There is a continuously differentiable function a(·), such that, for each t < T and

x, we have, ∫ T

t
[Eε

t a(x,ξ ε(s))−a(x)]ds → 0

in probability as ε → 0.

(A7.3.4): The cost functions k(·) and r(·) are continuous nonnegative satisfying

k(x), r(x) � c0 (1+ |x|γ) , c0, γ > 0.

Also, ∑N
i=1 pi (ui(t)) � c2

(
∑N

i=1 |ui|1+γ2
)
, c2,γ2 > 0, and pi (ui) are nonnegative convex.

(A7.3.5): The process Mε = (Mε(t))t�0 is a square integrable martingale with paths in the

Skorokhod space D [0,∞) whose predictable quadratic variations 〈Mε〉(t) satisfies

(i) 〈Mε〉(t) = ε
∫ t

0 mε(s)ds with bounded density mε(s). That is, there exists a constat c1

such that

(ii) mε(t) � c1; t � T , P-a.s.

The jumps ΔMε(s) .= Mε(s)− lim
v↑s

Mε(s) are bounded, i.e., there exists a constant

K > 0 such that

(iii) |ΔMε(t)| � K; t � T , ε ∈ (0,1].

(A7.3.6): The p- lim
ε→0

Xε(0) = x0, xε ∈ R.

Note: These assumptions are general enough, but need not be most general. For instance,

assumption (A7.3.2) could be relaxed to say that the equation (7.3.1) has a unique solution.

Theorem 7.3.1. Suppose that (A7.3.1)–(A7.3.6) hold. Let Xε
0 ⇒ x0 and uε(·) ≡

(uε1(·),uε2(·), . . . ,uεN)→ u(·)≡ (u1(·),u2(·), . . . ,uN(·)), where u(·) is an admissible strategy

vector for (7.3.1). Then (Xε(·),uε(·)) → (x(·),u(·)) where u(·) is measurable (admissible)

process and satisfies

dx(t) =

[
a(x(t))+

N

∑
i=1

bi(x(t))ui(t)

]
dt. (7.3.6)

Also,

Jεn
k

(
uεn

1 ,uεn
2 , . . . ,uεn

N

)
−→ Jk(u1,u2, . . . ,uN). (7.3.7)

Proof. Define a process Xε ,0(·) by

Xε ,0(t) = Xε ,0 (0)+
∫ t

0

[
a
(
Xε ,0(s),ξ ε(s)

)
+

N

∑
i=1

bi
(
Xε ,0(s)

)
uεi (s)

]
ds
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Let Y ε(s) = sups�t
∣∣Xε(s)−Xε ,0(s)

∣∣. Then by assumption (A7.3.5),

Y ε(t) � K
∫ t

0
Y ε(s)d

[
s+

N

∑
i=1

∫ s

0
|uεi (w)|dw

]
+ sup

s�T
|Mε(s)| , t � T,

where K is the Lipschitz constant. By the Gronwall-Bellman inequality we obtain

Y ε(t) � K sup
s�T

|Mε(s)|exp

{
K

[
T +

N

∑
i=1

∫ T

0
|uεi (w)|dw

]}
.

By assumption (A7.3.5) (see Liptser, Runggaldier, and Taksar [127]), sups�T |Mε(s)| → 0,

ε → 0, in probability and by (A7.3.2) and (A7.3.4), we have,

lim
δ→0

limsup
ε→0

P

(
sup

t,s�T :|T−s|�δ

N

∑
i=1

∫ t

s
[|ui(w)|]dw > η

)
= 0.

Consequently Y ε(t) → 0, ε → 0, in probability and the theorem remains true if its

statements are proved only for
(
Xε ,0 (·) ,uε(·)

)
. The weak convergence for the process(

Xε ,0 (·) ,uε(·)
)
can be proved similar to the proof of Theorem 6.6.1 using perturbed test

function method,for details refer to Ramachandran and Rao [164]. �

The following result states the near optimality and asymptotic optimality of the optimal

strategy vector for the limit deterministic system.

Theorem 7.3.2. Assume (A7.3.1)–(A7.3.6). Let (u∗1,u
∗
2, . . . ,u

∗
N) be the unique optimal

strategy vector for (7.3.1) and (7.3.2). Then {Xε(·),u∗1,u∗2, . . . ,u∗N} → (x(·),u∗1,u∗2, . . . ,u∗N)

and the limit satisfies (7.3.2). Also

Jεk (u∗1,u
∗
2, . . . ,u

∗
N) → Jk(u∗1,u

∗
2, . . . ,u

∗
N), k = 1,2, . . . ,N (7.3.8)

In addition, let ûεk , k = 1,2, . . . ,N be a δ -optimal strategy vector for each player k with

Xε(·) of (6.6.28). Then

liminf
ε

∣∣∣∣∣ sup
uεi ∈Ui

Jεk (uε1, û
ε
2, . . . , û

ε
N)− Jεk (u∗1,u

∗
2, . . . ,u

∗
N)

∣∣∣∣∣ � δ , k = 1,2, . . . ,N (7.3.9)

Proof. By Theorem 7.3.1, the weak convergence is straight forward. By the assumed

uniqueness, the limit satisfies (7.3.6). Also, by this weak convergence and the fact that

T < ∞, by the bounded convergence, we have

lim
ε

Jεk (u∗1,u
∗
2, . . . ,u

∗
N) = Jk(u∗1,u

∗
2, . . . ,u

∗
N).

Now to show (7.3.9), we repeat the procedure with admissible strategies uεi , i = 1,2, . . . ,N.

The limit (u1,u2, . . . ,uN) might depend on the chosen subsequence. For any convergent

subsequence, we obtain,

lim
ε=εn→0

Jεk
(

uε1,u
ε
2, . . . ,u

δ
N

)
= Jk(u1,u2, . . . ,uN).

Now by the definition of δ -optimality (7.3.9) follows. �
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Note: If (u∗1(t),u
∗
2(t), . . . ,u

∗
N) is the optimal strategies for equation (7.3.6), then

{Xε(t),u∗1(t),u
∗
2(t), . . . ,u

∗
N}0�t�T

is the process associated with policies

(uε1(t),u
ε
2(t), . . . ,u

ε
N(t)) ≡ (u∗1(t),u

∗
2(t), . . . ,u

∗
N(t)) .

Since, (u∗1(t),u
∗
2(t), . . . ,u

∗
N(t)) is deterministic, the corresponding (uε1(t),u

ε
2(t), . . . ,u

ε
N(t))

is the admissible control for the systems (7.3.3)–(7.3.5).

If for each ε , there is a value for the stochastic game, then the following result shows that

they converge to the value of the deterministic game. To prove this we will now introduce a

new game through which we will connect the values of stochastic and deterministic games.

Define a continuous map φ such that

φ : A → Ã such that if u = (u1,u2, . . . ,uN) ∈ Ã, then φ(u) = u.

Note that an example of one such map is φ (u) = Eu, for U ∈ A. Clearly, if u ∈ Ã,φ (u) =

Eu = u. Define the map Lk : Ã → Ã by letting Lku−k

(
u−k ∈ Ã−k

)
to be:

Jk (Lku−k,u−k) = sup
uk∈Ak

Jk (Lku−k,u−k) ,u−k ∈ Ã−k.

We will now make following simplifying assumption.

(A7.3.7): Lk, k = 1,2, . . . ,N are continuous, that is for any sequence
{

u−k,i
}

of admissible

controls in Ã−k, such that, u−k,i → u−k ∈ Ã−k,Lk
(
u−k,i

)
→ Li (u−k), in the L2 (0,T ) norm.

Remark 7.3.1. The continuity of Lk may be justified by the fact that the controls uk are

state dependent feedback controls.

Following result states that if the value exists for the stochastic game for each ε , then

asymptotically (as ε → 0) they coincide with the value of the limit deterministic model.

Theorem 7.3.3. Assume (A7.3.1)–(A7.3.7) and that for each ε , value exists for the stochas-

tic game (7.3.3) to (7.3.5). Also the value for the deterministic game (7.3.1) to (7.3.2) exists.

Then limε→0 V ε
k = vk.

Proof. For the proof, we introduce the following game which is played as follows. All

players except k choose their controls first, say uε ,k, which is known to player k. Then

player k chooses the control Lk
(
φ

(
uε−k

))
. Define ũε−k to be optimal strategies for all play-

ers except player k with corresponding payoff for player k being Jε
(
L1φ

(
ũε−k

)
, ũε−k

)
By

relative compactness,

ũε−k −→ ũ∗−k ∈ Ã−k.



Weak Convergence in Many Player Games 163

By continuity and by the definition of φ and Lk Lk, we have

L1
(
φ

(
ũε−k

))
→ L1

(
φ

(
ũ∗−k

))
= L1

(
u∗−k

)
.

Now, using (6.6.33), we have,

lim
ε→0

V ε
k = vk. �

The following result is directly from Theorem 7.3.2 and Theorem 7.3.3.

Theorem 7.3.4. Assume (A7.3.19)–(A7.3.7). Let (u∗1(t),u
∗
2(t), . . . ,u

∗
N), 0 � t � T be an op-

timal deterministic strategy vector for (7.3.1), (7.3.2), then (u∗1(t),u
∗
2(t), . . . ,u

∗
N) is asymp-

totically optimal for (7.3.3), (7.3.5) in the sense that

lim
ε→0

|Jεk (u∗1,u
∗
2, . . . ,u

∗
N)−V ε

k | = 0 (7.3.10)

We can obtain L2-convergence results and conclusions similar to that of Section 6.6, also

refer Ramachandran and Rao [164].



Chapter 8

Some Numerical Methods

8.1 Introduction

In this chapter, we will explain some numerical methods to deal with two person stochas-

tic differential games that are developed by Kushner ([107, 108] and [109]). Almost all

of the materials of this chapter are extracted from these three excellent works of Kushner.

The Markov chain approximation method is a powerful and more popularly used class of

methods introduced in early 1990s by Kushner for the numerical solution of almost all of

the standard forms of stochastic strategy problems [106, 109], Kushner and Ramachandran

[113], and Kushner and Chamberlain [110]. The idea of the Markov chain approxima-

tion method is to first approximate the controlled diffusion dynamics by a suitable Markov

chain on a finite state space with a discretization parameter h > 0, then approximate the

payoff functions. One solves the game problem for the simpler chain model, and then

proves that the value functions associated with equilibrium or δ -equilibrium strategies for

the chain converge to the value functions associated with equilibrium or δ -equilibrium

strategies for the diffusion model, as δ → 0. This is method is intuitive and it uses ap-

proximations which are “physically” close to the original problem. Extensions to approxi-

mations for two-person differential games with discounted, finite time, stopping time, and

pursuit-evasion games were given in Kushner [108] for reflected diffusion models where

the strategies for the two players are separated in the dynamics and payoff rate functions.

An extension to two-player stochastic dynamic games with the same systems model, but

where the payoff function is ergodic is given in Kushner [107].

For numerical purposes, we will confine the system to a bounded region. If the system state

is not a priori confined to a bounded set, then we will bound the state space artificially by

adding a reflecting boundary and then experimenting with the bounds. Thus, we assume

that the systems model is confined to a state space G that is a convex polyhedron, and it is

165
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confined by a reflection on the boundary. In this chapter, we are not concerned with actual

development of the algorithms for numerically solving the game for the chain model, only

showing convergence of the solutions to the desired values as the discretization parameter

goes to zero. The essential conditions for convergence of the numerical approximations are

weak-sense existence and uniqueness of the solution to the strategized equations, almost

everywhere continuity of the dynamical and payoff rate terms, and a local consistency

condition.

8.2 Discounted Payoff Case

Let w(·) be a standard vector-valued Wiener process with respect to the filtration {ℑt , t <

∞}, which might depend on the strategies. The admissible strategies for the two players

are defined by ui(·), i = 1,2, that are Ui-valued, measurable and ℑt -adapted processes.

It should be noted that mere admissibility of ui(·), i = 1,2, does not imply that they are

acceptable strategies for the game, since the two players will have different information

available depending on who “goes first”. Nonetheless, for any strategies with the correct

information dependencies, there will be a filtration with respect to which w(·) is a stan-

dard vector-valued Wiener process, and to which the strategies are adapted. The concept of

admissibility will be used in getting approximations and bounds, independent of the strate-

gies. For simplicity of numerical method development, the state process is restricted to the

polyhedral region G in this chapter. It should be noted that the set G might not be part of

the original problem statement. For solving the game problem numerically, it is usually

a necessity. If the bounding set G is imposed for purely numerical purpose, then it must

be large enough so that the basic features of the solution in the important region of the

state space are not significantly affected. For this purpose, we now reformulate the system

discussed in Chapter 3 to following reflected diffusion setup.

The dynamic model for the game process is the reflected stochastic differential equation

given by

x(t) = x(0)+
2

∑
i=1

∫ t

0
bi (x(s),ui(s))ds+

∫ t

0
σ (x(s))dw(s)+ z(t) (8.2.1)

where ui(·) is the strategy (payoff) for player i, i = 1,2. The process z(·) is due to the

boundary reflections, and ensures that x(t) ∈ G. It has the representation

z(t) =∑
i

diyi(t) (8.2.2)
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where y(0) = 0, the yi(·) are continuous, nondecreasing and can increase only at t where

x(t) is on the ith face of the boundary ∂G of the set G ⊂ R
n.

For some filtration {ℑt , t < ∞} and standard vector valued ℑt Wiener process w(·), let

each ri(·), i = 1,2, be a probability measure on the Borel sets of Ui × [0,∞) such that

ri(Ui × [0, t]) = t and ri (A× [0, t]) is ℑt-measurable for each Borel set A ⊂ Ui. Then, as

before, ri(·) is an admissible relaxed strategy for player i. For Borel sets A ⊂ Ui, we will

denote ri (A× [0, t]) = ri (A, t). For almost all (ω, t) and each Borel A ⊂ Ui, one can define

the derivative by

ri,t(a) = lim
δ→0

ri (t,A)− ri (t −δ ,A)
δ

.

Without loss of generality, we can suppose that the limit exists for all (ω, t). Then for all

(ω, t), ri,t(·) is a probability measure on the Borel sets of Ui and for any bounded Borel set

B in Ui × [0,∞),

ri(b) =
∫ ∞

0

∫
Ui

I{(αi,t)∈B}ri,t(dαi)dt.

An ordinary strategy ui(·) can be represented in terms of the relaxed strategy ri(·), defined

by ri,t(a) = IA (ui(t)), where IA (ui) is unity if ui ∈ A and is zero otherwise. The weak

topology will be used on the space of admissible relaxed strategies. Define the relaxed

strategy r(·) = (r1(·)× r2(·)), with derivative rt(·) = r1,t(·)× r2,t(·). In this setup, the

r(·) is a measure on the Borel sets of (U1 ×U2)× [0,∞), with marginal’s ri(·), i = 1,2.

Whenever there is no confusion, we will just write r(·) = (r1(·),r2(·)). The pair (w(·),r(·))
is an admissible pair if each of the ri(·) is admissible with respect to w(·).
In relaxed control terminology, we can rewrite (8.2.1) as

x(t) = x(0)+
2

∑
i=1

∫ t

0

∫
Ui

bi (x(s),αi)ri,s (dαi)ds+
∫ t

0
σ (x(s))dw(s)+ z(t). (8.2.3)

For x(0) = x and β > 0, the payoff function is

J(x,r1,r2) = E
∫ ∞

0
e−β t

[
2

∑
i=1

∫
Ui

ki(x(s),αi)ri,t(dαi)dt + c′dy(t)

]
. (8.2.4)

Define α = (α1,α2), u = (u1,u2),

b(x,α) = b1(x,α1)+b2(x,α2)

and

k(x,α) = k1(x,α1)+ k2(x,α2).

Thus, for simplicity, we assume that both b(·) and k(·) are separable in control variables

for every x.
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Suppose that (w(·),r(·)) is admissible with respect to some filtration {ℑt , t < ∞} on a

probability space. If there is a probability space on which with a filtration {ℑ̃t , t < ∞}
and a ℑ̃t -adapted triple (x̃(·), w̃(·), r̃(·)) where (w̃(·), r̃(·)) is admissible and has the same

probability law as (w(·),r(·)), and the triple satisfies (8.2.3), then it is said that there is a

weak-sense solution to (8.2.3) for (w(·),r(·)). Suppose that we are given two probability

spaces (indexed by i = 1,2) with filtration {ℑt , t <∞} and on which are defined processes(
xi(·),wi(·),ri(·)

)
, where wi(·) is a standard vector valued ℑi

t -Wiener process,
(
wi(·),ri(·)

)
is an admissible pair, and

(
xi(·),wi(·),ri(·)

)
solves (8.2.3). If equality of the probability

laws of
(
wi(·),ri(·)

)
, i = 1,2, implies equality of the probability laws of

(
xi(·),wi(·),ri(·)

)
,

i = 1,2, then we say that there is a unique weak sense solution to (8.2.3) for the admissible

pair
(
wi(·),ri(·)

)
. For a relationship between values corresponding to ordinary and relaxed

controls see Theorem 6.2.2, the chattering lemma.

Following are general assumptions, introduced by Kushner [108].

(A8.2.1): Let G ⊂R
n be a bounded convex polyhedron with an interior and a finite number

of faces. Let di be the direction of reflection to the interior on the ith face, assumed constant

for each i. On any edge or corner, the reflection direction can be any nonnegative linear

combination of the directions on the adjacent faces. Let d(x) denote the set of reflection

directions at x∈ ∂G. For an arbitrary corner or edge of ∂G, let di and ni denote the direction

of reflection and the interior normal, respectively, on the ith adjacent face. Then there are

constants ai > 0 (depending on the edge or corner) such that

ai
〈
ni,di

〉
> ∑

j: j �=i
a j

∣∣〈ni,d j
〉∣∣ for all i. (8.2.5)

Note: The condition (8.2.5) implies that the set of reflection directions on any set of in-

tersecting boundary faces are linearly independent. This implies that the representation

(8.2.2) is unique.

(A8.2.2): There is a neighborhood N (∂G) and an extension of d(·) to N (∂G) such that: For

each ε > 0, there is μ > 0 which goes to zero as ε→ 0 and such that if x∈N (∂G)−∂G and

distance (x,∂G) � μ , then d(x) is in the convex hull of {d (v) ;v ∈ ∂G, distance(x,v) � ε}.

(A8.2.3): Assume that Ui, i = 1,2, are compact subsets of some Euclidean space, and for

(8.2.4), ci � 0.

(A8.2.4): The functions ki(·) and bi(·) are real-valued (resp. R
n valued) and continuous

on G×Ui. Let σ(·) be a Lipschitz continuous matrix-valued function on G, with n rows

and with the number of columns being the dimension of the Wiener process in (8.2.3). The

bi (·,αi) are Lipschitz continuous, uniformly in αi.
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If we are interested in only weak-sense solutions, condition (A8.2.5) and either (A8.2.6) or

(A8.2.7) will replace (A8.2.4).

(A8.2.5): The functions σ(·), b(·), k(·) are bounded and measurable. Equation (8.2.4) has a

unique weak-sense solution for each admissible pair (w(·),r(·)) and each initial condition.

(A8.2.6): The functions σ(·), b(·), and k(·) are continuous.

In assumption (A8.2.7), let (w(·),r(·)) be an arbitrary admissible pair and x(·) the corre-

sponding solution.

(A8.2.7): There is a Borel set Dd ⊂ G, such that for x /∈ Dd , σ(·), b(·), and k(·) are contin-

uous, and for each ε > 0, there is tε > 0 which goes to zero as ε → 0 and such that for any

real T

lim
ε→0

sup
x(0)

sup
admis.r(·)

sup
tε�t�T

P{x(t) ∈ Nε(Dd)} = 0,

where Nε (Dd) is an ε-neighborhood of Dd .

Let w(·) be a standard vector-valued ℑt-Wiener process. Let Ui denote the set of strategies

(ordinary not relaxed) ui(·) for player i that are admissible with respect to w(·). For compu-

tational purposes, we will Discretize and define a class of strategies as follows. For Δ> 0,

let Ui (Δ)⊂Ui denote the subset of admissible strategies ui(·) which are constant on the in-

tervals [kΔ,kΔ+Δ), k = 0,1, . . . and where ui(kΔ) is ℑkΔ-measurable. Thus, δ is the length

of time step. Let B be a Borel subset of U1. Let L1(Δ) denote the set of such piecewise

constant strategies for player 1 that are represented by functions Q1k (B; ·) , k = 0,1, . . . of

the conditional probability type given by

Q1k(B;w(s),u(s),s < kΔ) = P
{

u1(kΔ) ∈ B | w(s),u2(s), s < kΔ; u1(lΔ), l < k
}
, (8.2.6)

where Q1k (B; ·) is a measurable function for each Borel set B.

If a rule for player 1 is given by the form (8.2.6), it will be written as u1 (u2) to emphasize

its dependence is suppressed in the notation. Similarly define L2(Δ) and the associated rules

u2 (u1) for player 2. For relaxed strategies, ri(·) ∈ Ui means that ri(·) is admissible, and

ri(·) ∈Ui(Δ) means that ri(·) is admissible, the derivative ri,t(·) is constant on the interval

[kΔ,kΔ+Δ), and ri,t(·) is ℑkΔ−measurable. Thus, the difference between Li(Δ) and Ui(Δ)

is that in the latter case, the strategy is determined by a conditional probability law such

as (8.2.6). But, (A8.2.5) implies that it is the probability law of (w(·),u1(·),u2(·)) (or,

of (w(·),r1(·),r2(·)) that determines the law of the solution and hence that of the payoff.

Thus, we can always suppose that if the strategy for player 1 is determined by the a form

such as (8.2.6), then (in relaxed strategy terminology) the law for (w(·),r2(·)) is determined

recursively by a conditional probability law, that is,

P
{
{w(s),r2(s),kΔ� s � kΔ+Δ} ∈ · | w(s),r2(s),u1(s),s < kΔ

}
.
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Now, we are in a position to introduce the upper and lower values corresponding to these

just introduced policies. For initial condition x(0) = x, define the upper and lower values

for the game as

V +(x) = lim
Δ→0

inf
u1∈L1(Δ)

sup
u2∈U2

J (x,u1 (u2) ,u2) , (8.2.7)

and

V +(x) = lim
Δ→0

sup
u2∈L2(Δ)

inf
u1∈U1

J (x,u1,u2 (u1)) . (8.2.8)

The equation (8.2.7) can be interpreted as follows. For fixed Δ> 0, consider the right side

of (8.2.7). For each k, at time kδ , player I uses a rule of the form (8.2.6) to decide on the

constant action that it will take on [kΔ,kΔ+Δ). That is, player I “goes first”. Player 2

can decide on his/her action at t ∈ [kΔ,kΔ+Δ) at the actual time that it is to be applied.

Player 2 selects a strategy simply to be admissible. The operation yields admissible strategy

u(·) = (u1(·),u2(·)). With this strategy pair and under the assumption (A8.2.4) there is a

unique solution to (8.2.3). The distribution of the set, (solution, Wiener process, strategy),

does not depend on the probability space. Thus, the supu2∈U2
is well defined for each

rule for player 1. Because player 1 can make decision more often, as Δ→ 0, the inf sup is

monotonically decreasing. The similar observation holds for (8.2.8). If the upper and lower

values are equal, the game has a value, V (x) and we say that there exists a saddle point for

the game.

8.2.1 The Markov Chain Approximation Method

Now we will introduce a discrete time, discrete state controlled Markov chain to approxi-

mate the continuous time process given by (8.2.3). First, we will explain a computational

procedure for control problem with single player. The Markov chain is designed for nu-

merical purpose. Idea of the Markov chain approximation method is to find a controlled

Markov chain ξ h
n and an adaptation of the payoff function, such that the associated game

problem is conveniently solvable, and the solution converges to the original game problem

as the approximating parameter, h → 0. Here, h will indicate the order of the spacing in the

discretization of the state space for the Markov chain. The Markov chain approximation

is natural for stochastic control problems, as discussed in Kushner and Dupuis [112]. It

allows us to use physical intuition in the design of the algorithm. For a quick introduction

to this topic, we refer the paper by Kushner, [106]. The approximating process is a Markov

chain indexed by h, and the constraint on the chain is local consistency, where the “local”
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properties of the chain are close to those of the diffusion that it tries to approximate, for

small h.

The Markov chain approximation method consists of two steps.

(i) Determine a finite-state controlled Markov chain (controlled by the strategies of two

players) that has a continuous time interpolation that is an “approximation” of the

process x(·).
(ii) Solve the optimization problem for the chain and a payoff function that approximates

the one used for x(·).

Under a “local consistency” condition, the optimal payoff function V h(x) for the strategy

led approximating chain converges to the optimal payoff function for the original prob-

lem. The optimal strategy for the original problem is also approximated. This method is a

robust and effective way for solving optimal strategy problems governed by reflected jump-

diffusions under very general conditions. An advantage of the approach is that the approx-

imations “stay close” to the physical model and can be adjusted to exploit local features

of the problem. Thus, this method involves, first defining an appropriate Markov chain,

including obtaining suitable transition probabilities, so that the resulting chain satisfies the

local consistency conditions. The optimization step will involve, iteratively solving cor-

responding Hamilton-Jacobi-Bellman equations (or the dynamic programming equations),

such as using Gauss-Seidel numerical procedures. It is well known that, each of these steps

presents its own challenges. These challenges will not be the topic of discussion in this

Chapter, we refer to Puterman, [155].

To construct the Markov chain approximation, start by defining Sh, a discretization of R
n.

This can be done in many ways. For example, Sh might be a regular grid with the distance

between points in any coordinate direction being h, or the distance between points in coor-

dinate direction i might be vih, for some constants vi. We are only interested the points in

G and their immediate neighbors.

Now, define the approximating Markov chain ξ h
n and its state space, which will be a subset

of Sh. For convenience in coding for the reflecting boundary problem, the state space for

the chain is usually divided into two parts:

(a) The first part is Gh = G∩ Sh, on which the chain approximates the diffusion part of

(8.2.3), and

(b) If the chain tries to leave Gh, then it is returned immediately, consistently with the local

reflection direction.
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Thus, define ∂G+
h to be the set of points not in Gh to which the chain might move in

one step from some point in Gh. The use of ∂G+
h simplifies the analysis and allows us

to get a reflection process zh(·) that is analogous to z(·) of (8.2.3). The set ∂G+
h is an

approximation to the reflecting boundary. Thus, due to reflection terms in the dynamics of

the controlled process, it is convenient to consider a slightly “enlarged” state space, namely

Gh ∪ ∂G+
h , the points on this set is the only one of interest for the numerical work. This

“approximating” reflection process is needed to get the correct form for the limits of the

approximating process and for the components of the payoff function that are due to the

boundary reflection.

Next, we will define local consistency for the controlled diffusion of (8.2.3) at x ∈ Gh. Let

uh
12 = (uh

1,n,u
h
2,n) denote the actual strategies used at step n for approximating the chain ξ h

n .

Let Eh,α
x,n (respectively, covarh,α

x,n ) denote the expectation (respectively, the covariance) given

all of the data up to step n, when ξ h
n = x, uh

n =α . Then the chain satisfies the following local

consistency conditions. There is a function Δth(x,α) > 0 (called an interpolation interval

that goes to zero as h → 0), such that,

Eh,α
x,n

[
ξ h

n+1 − x
]
= b(x,α)Δth(x,α)+o

(
Δth(x,α)

)
,

covarh,α
x,n

[
ξ h

n+1 − x
]
= Eh,α

x,n

[{(
ξ h

n+1 − x
)
−Eh,α

x,n
(
ξ h

n+1 − x
)}

×
{(
ξ h

n+1 − x
)
−Eh,α

x,n
(
ξ h

n+1 − x
)}′

]

= a(x)Δth(x,α)+◦
(
Δth (x,α)

)
, where a(x) = σ(x)σ ′(x),

lim
h→0

sup
x,α

Δth(x,α) = 0,

and ∥∥∥ξ h
n+1 −ξ h

n

∥∥∥ � K1h, (8.2.9)

for some real K1.

With the straight forward methods as discussed by Kushner and Ramachandran [113],

Δth(·) is obtained automatically as a byproduct of getting the transition probabilities and

it will be used as an interpolation interval. Thus, in G the conditional mean first two mo-

ments of Δξ h
n = ξ h

n+1−ξ h
n are very close to those of the “differences” of the solution x(·) of

(8.2.3). The interpolation interval Δth(x,α) can always be selected so that it does not de-

pend on the strategy α or on the state x. The expression (8.2.9) is the essential relationship

that we will seek to satisfy in the construction of the approximating chains.



Some Numerical Methods 173

Remark 8.2.1. Note that the chain constructed in (8.2.9) has the “local properties” of the

diffusion process (8.2.3) in the sense that

Ex (x(δ )− x) = b(x,α)+◦(δ ) ,

Ex[x(δ )− x][x(δ )− x]′ = σ(x)σ ′(x)+◦(δ ) .

This is what “local consistency” (of the chain with the diffusion) means. The consis-

tency condition (8.2.9) need not hold at all points. For instance, consider a case where

the assumption (A8.2.7) holds: Let k(·), σ(·) be continuous, and let b(·) have the form

b(x,α) = b0(x)+ b(x,α), where b(·) is continuous, but b0(·) is discontinuous at Dd ⊂ G.

If the assumption (A8.2.7) holds for Dd , then local consistency there is not needed. The

assumption (A8.2.7) would hold if the “noise” σ(x)dw “drives” the process away from the

set Dd , no matter what the strategy, we refer the reader to Kushner and Dupuis [112].

From points in ∂G+
h , the transitions of the chain are such that they move to Gh, with the

conditional mean direction being a reflection direction at x. More precisely,

lim
h→0

sup
x∈∂G+

h

distance(x,Gh) = 0 (8.2.10)

and there are θ1 > 0 and θ2(h) → 0 as h → 0, such that, for all x ∈ ∂G+
h ,

Eh,α
x,n [ξ h

n+1 − x] ∈ {aγ : γ ∈ d(x),θ2(h) � a � θ1h}, (8.2.11)

and

Δth(x,α) = 0 for x ∈ ∂G+
h .

The last line of (8.2.11) says that the reflection from states on ∂G+
h is instantaneous. Kush-

ner and Dupuis [112] have given a general discussion of the straightforward methods of

obtaining useful approximations in G as well as on the reflecting boundary. These methods

continue to hold for the game problem.

The discretization of the payoff can be done in the following way. Define Δth
n = Δth(ξ h

n ,uh
n)

and th
n = ∑n−1

t=0 Δth
t . One choice of discounted payoff function for approximating chain and

initial condition x = x(0) is

Jh(x,uh) = E
∞

∑
n=0

e−β th
n
[
k(ξ h

n ,uh
n)Δth

n I{ξ h
n ∈Gh} + c′[ξ h

n+1 −ξ h
n ]I{ξ h

n ∈G+
h }

]
. (8.2.12)

Let ph(x,y | u) denote the transition probability of the chain for u = (u1,u2), u1 ∈ U1,

u2 ∈ U2. The strategies for the game can be analogously defined as to what was done in

(8.2.6). If player i goes first, his/her strategy is defined by a conditional probability law of

the type given by

P
{

uh
i,n ∈ · | ξ h

t , l � n; uh
t , l < n

}
.
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Let Uh
i (1) be the class of such rules. If player i goes last, then its strategy is defined by a

conditional probability law of the type

P
{

uh
i,n ∈ · | ξ h

t , l � n; uh
t , l < n; uh

j,n, j �= i
}
.

Denote the class of such strategies as Uh
i (2). Let {δ w̃h

n, n < ∞} be mutually independent

random variables and such that δ w̃h
n is independent of the “past” {ξ h

l , l � n, uh
l , l < n}.

For further flexibility, the conditioning data can be augmented by {δ w̃h
l , l � n} as long as

the Markov property

P
{
ξ h

n+1 = · | ξ h
l ,uh

l , l � n
}

= ph(ξ h
n ,ξ h

n+1 | uh
n
)

holds. The same notation is used for admissible relaxed strategies. As in Chapter 6, define

the upper values for the discretized system, respectively,

V +,h(x) = inf
u1∈Uh

1 (1)
sup

u2∈Uh
2 (2)

Jh (x,u1,u2) (8.2.13)

and

V−,h(x) = sup
u2∈Uh

2 (1)
inf

u1∈Uh
1 (2)

Jh (x,u1,u2) . (8.2.14)

When interpreting the payoff function and interpolations, keep in mind that Δth(x,α) = 0

for x ∈ ∂G+
h . Owing to the local consistency, theoretically we can compute payoff Jh(x,uh)

for any admissible strategy uh using equation (8.2.12). Then, V +,h(x) and V−,h(x) can be

found using equations (8.2.13) and (8.2.14). However, that is not very practical. Instead

we can solve for V +,h(x) and V−,h(x) using the dynamic programming equations given in

equations (8.2.15) and (8.2.16) using iteration methods For x ∈ Gh, the dynamic program-

ming equation for the upper values is (for α = (α1,α2)) given by

V +,h(x) = min
α1∈U1

{
max
u2∈U2

Eα
x

[
e−βδ th(x,α)V +,h(ξ h

1 )+ k(x,α)Δth(x,α)
]}

(8.2.15)

and for x ∈ ∂G+
h it becomes

V +,h(x) = Ex

[
V +,h(ξ h

1 )+ c′(ξ h
1 − x)

]
. (8.2.16)

Here Eα
x denotes the expectation given initial state x (the reflection direction is not led

by any strategy). The equations are analogous for lower value. Owing to the contraction

implied by the discounting, there is unique solution to equations (8.2.15) and (8.2.16). It is

possible that the transition probabilities could be constructed so that Δth(·) does not depend

on α and we have the separated form given by,

ph (x,y | α) = p1 (x,y | α)+ p2 (x,y | α) .
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Such a form is useful for establishing the existence of value for the chain, even though it is

not necessary for the convergence of the numerical method, as explained by Kushner and

Chamberlain [110, 111]. The equation (8.2.15) can be rewritten to reflect the transition

probability as

V +,h(x) = min
α1∈U1

{
max
u2∈U2

∑
y

[
e−βδ th(x,α)ph(x,y | α)V +,h(y)+ k(x,α)Δth(x,α)

]}
.

Similar representation can be written for equation (8.2.16).

Define the positive and negative part of a real number by: l+ = max[l,0], l− = max[−l,0].

In one dimension case, one of the possible ways to obtain the transition probabilities is the

following,

ph (x,x+h | α) =
σ2(x)/2+hb+(x,α)
σ2(x)+h |b(x,α)| ,

ph (x,x−h | α) =
σ2(x)/2+hb−(x,α)
σ2(x)+h |b(x,α)| ,

and

Δth(x,α) =
h2

σ2(x)+h |b(x,α)| .

For y �= x± h, set ph (x,y | α) = 0. For the derivation of these transition probabilities and

the higher dimensional versions, including such a system is locally consistent, we refer to

Kushner and Dupuis [112].

We can rewrite (8.2.15) in the iterative form as follows. For any initial value {V +,h
0 (x), x ∈

Gh}, the sequence

V +,h
n+1(x) = min

α1∈U1

{
max
u2∈U2

Eα
x

[
e−βΔth(x,α)V +,h

n (ξ h
1 )+ k(x,α)Δth(x,α)

]}

and for x ∈ ∂G+
h , we can write

V +,h
n+1(x) = Ex

[
V +,h

n (ξ h
1 )+ c′(ξ h

1 − x)
]

converges to V +,h(x), the unique solution of equation (8.2.15) as n → ∞. Analogously, for

any initial value {V−,h
0 (x), x ∈ Gh}, the sequence

V−,h
n+1(x) = max

u2∈U2

{
min
α1∈U1

Eα
x

[
e−βδ th(x,α)V−,h

n (ξ h
1 )+ k(x,α)Δth(x,α)

]}

and for x ∈ ∂G+
h , we have,

V−,h
n+1(x) = Ex

[
V−,h

n (ξ h
1 )+ c′(ξ h

1 − x)
]
,

converges to V−,h(x), the unique solution of equation (8.2.16) as n → ∞. The computation

of the discount factor e−βδ th(x,α) can be expensive. To simplify, we could use its first
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approximation [1−βδ th(x,α)]. There are many methods available for computing the V±,h

such as Gauss-Seidel method, we refer to Puterman [155], among others.

If we are interested in obtaining optimal policies, it is possible to use the so called policy

iterations such as, for x ∈ Gh setting uh
i,0(x) = 0, i = 1,2 and finding uh

n+1(x) through

uh
n+1(x) = argh

u1∈U1

argmax
u2∈U2

{
∑
y

[
e−βΔth(x,α)ph(x,y | α)V +,h

n (y)+ k(x,α)Δth(x,α)
]}

.

The convergence of the numerical scheme explained above will be given in Theorem 8.2.10.

Due to this convergence, it is easy to give a stopping rule for the numerical scheme. For

the rest of this section, we will deal with the convergence issues.

8.2.2 Continuous Time Interpolations

The chain ξ h
n is defined in the discrete time, but x(·) is defined in the continuous time. It is

important to observe that we only need the Markov chain for the numerical computations.

However, for the proofs of convergence, the chain must be interpolated into a continuous

time process which approximates x(·). This can be done similar to the discrete dynamics

cases considered in Chapter 6. For completeness sake, we will now explain the necessary

interpolations in the rest of this section.

The interpolation intervals are suggested by the Δth(·) in equation (8.2.9). There are two

useful (and asymptotically equivalent) interpolations. The first interpolation ξ h(·), is de-

fined by (th
n is defined above the equation (8.2.12), that is,

ξ h(t) = x(0)+ ∑
th
i+1�t

[
ξ h

t+1 −ξ h
t
]
.

Given the current state x and strategy pair α , the next interpolation interval for ξ h(·) is just

Δth(x,α). Thus, ξ h(·) is a semi-Markov process.

For simplification of proof, define an alternative and Markovian interpolation, ψh(·). Let

{Δτh
n , n < ∞} be conditionally mutually independent and “exponential” random variables

such that

Ph,α
x,n {Δτh

n � t} = e−t/Δth(x,α).

Note that Δτh
n = 0 if ξ h

n is on the reflecting boundary ∂G+
h . Define τh

0 = 0, and for n > 0, set

τh
n =∑n−1

i=0 Δτ
h
i . The τh

n will be jump times of ψh(·). Now, define ψh(·) and the interpolated
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reflected processes by

ψh(t) = x(0)+ ∑
τh

i+1�t

[
ξ h

i+1 −ξ h
i
]
,

Zh(t) = ∑
τh

i+1�t

[
ξ h

i+1 −ξ h
i
]
I{ξ h

i ∈∂G+
h },

and

zh(t) = ∑
τh

i+1�t

Eh
i
[
ξ h

i+1 −ξ h
i
]
I{ξ h

i ∈∂G+
h }.

Thus, ψh(t) ∈ Gh.

Define z̃h(·) by Zh(t) = zh(t)+ z̃h(t). The first part is composed of the “conditional mean”

Eh
i [ξ h

i+1 − ξ h
i ]I{ξ h

i ∈∂G+
h }, and the second part is composed of the perturbations about these

conditional means. The process zh(·) is a reflection term of the classical type. Both com-

ponents can change only at t where ψh(t) can leave Gh. Let Zh(t)− Zh (t−) �= 0, with

ψh (t−) = x ∈ Gh. Then by equation (8.2.11), zh(t)− zh(t−) points in a direction of

d(Nh(x)), where Nh(x) is a neighborhood with radius that goes to zero as h → 0. The

process z̃h(·) is the “error” due to the centering of the increments of the reflection term

about their conditional means and has bounded (uniformly in x, h) by second moments and

it converges to zero, as will be seen in Theorem 8.2.1. By assumptions (A8.2.1), (A8.2.2),

and the local consistency condition (8.2.11), we can write (modulo an asymptotically neg-

ligible term)

zh(t) =∑
i

diyh
i (t),

where yh
i (0) = 0, and yh

i (·) is nondecreasing and can increase only when ψh(t) is arbitrarily

close (as h → 0) to the ith face of ∂G.

Define the continuous time interpolations uh
i (·) of the strategies analogously. Let rh

i (·)
denote the relaxed strategy representation of uh

i (·). The process ψh(·) is a continuous time

Markov chain. When the state is x and strategy pair is α , the jump rate out of x ∈ Gh is

[1/Δth(x,α)]. So the conditional mean interpolation interval is Δth(x,α); that is,

Eh,α
x,n

[
τh

n+1 − τh
n
]
= Δth(x,α).

The payoff criterion (8.2.12) in a relaxed strategy terminology can be written as (modlulo

an asymptotically negligible error), x(0) = x, and rh
i (·) is the relaxed strategy representation

of uh
i (·), that is,

Jh(x,rh) = E
∫ ∞

0
e−β t

[
2

∑
i=1

∫
Ui

ki(ψh(s),αi)rh
i,t(dαi)dt + c′dyh(t)

]
. (8.2.17)
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In the numerical computations, the strategies are ordinary and not relaxed, but it will be

convenient to use the relaxed strategy terminology when taking limits. From the proof of

Theorem 8.2.10, there is ρh → 0 as h → 0, such that

V +,h(x) � V−,h(x)+ρh. (8.2.18)

This implies that either the upper or lower numerical game gives an approximation to the

original game.

The process ψh(·) has a representation which makes it appear close to (8.2.4), and which

is useful in convergence proofs. Let ξ h
0 = x. If a(·) is not uniformly positive defi-

nite, then augment the probability space by adding a standard vector-valued Wiener pro-

cess w̃(·) where for each n, δ w̃h
n+1 = w̃

(
τh

n + .
)
− w̃(τh

n ) is independent of the “past”

{ξ h(s),uh(s), w̃(s), s � τh
n}. Then, we can write

ψh(t) = x+
∫ t

0
b
(
ψh(s),uh(s)

)
ds+

∫ t

0
σ

(
ψh(s)

)
dwh(s)+Zh(s)+ εh(s), (8.2.19)

where ψh(t) ∈ G. The process εh(·) is due to the o(·) term in (8.2.9) and is asymp-

totically unimportant in that, for any T , limh supx,xh sups�T E|εh(s)|2 = 0. The process

wh(·) is a martingale with respect to the filtration induced by
(
ψh(·),uh(·),wh(·)

)
, and con-

verges weakly to a standard (vector-valued) Wiener process. The wh(t) is obtained from

{ξ h(s), w̃(s), s � t}. All of the processes in equation (8.2.19) are constant on the intervals

[τh
n ,τh

n+1).

Let
∣∣zh

∣∣(t) denote the variation process zh(·) on the time interval [0,T ]. We have the fol-

lowing result from Kushner and Dupuis [112].

Theorem 8.2.1. Assume (A8.2.1), (A8.2.2), the local consistency conditions, and let b(·)
and σ(·) be bounded and measurable. Then for any T <∞, there are K2 <∞ and δh, where

δh → 0 as h → 0, and which do not depend on the strategies or initial conditions, such that,

E
∣∣zh∣∣(T ) � K2, (8.2.20)

and

E sup
s�T

∣∣z̃h(s)
∣∣2 = δhE

∣∣zh∣∣(T ). (8.2.21)

8.2.3 Bounds and Approximations

Assume (A8.2.1) and (A8.2.2) and let the components of the R
r-valued function ψ(·)

be right continuous and have left hand limits. Consider the equation x(t) = ψ(t) + z(t),

x(t) ∈ G. Then we say that x(·) solves the Skorohod problem if the following holds: The
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components of z(·) are right continuous with z(0) = 0, and z(·) is constant on the time in-

tervals where x(t) is in the interior of G. The variation |z|(t) of z(·) on each [0, t] is finite.

There is measurable γ(·) with values γ(t) ∈ d(x(t)), the set of reflection directions atx(t),

such that z(t) =
∫ t

0 γ(s)d|z|(s). Thus, z(·) can only change when x(t) is on the boundary of

G, and then its “increment” is in a reflection direction at x(t).

Theorem 8.2.2. Assume (A8.2.1) and (A8.2.2). Let ψ(·) ∈ D(Rr; [0,∞)), and consider the

Skorohod problem x(t) = ψ(t)+ z(t), x(t) ∈ G. Then, there is a unique solution (x(·),z(·))
in D(R2r; [0,∞)). There is K < ∞ depending only on the {di} such that

|x(t)|+ |z(t)| � K sup
s�t

|ψ(s)|, (8.2.22)

and for any ψ i(·) ∈ D(R2r; [0,∞)), i = 1,2, and corresponding solutions (xi(·),zi(·)), and

|x1(t)− x2(t)|+ |z1(t)− z2(t)| � K sup
s�t

|ψ1(s)−ψ2(s)| . (8.2.23)

Consider (8.2.4) where b(·) and σ(·) are bounded and measurable, and use the representa-

tion (8.2.3) for the reflection process z(·). Then for any T <∞ there is a constant K1 which

does not depend on the initial condition or strategies and such that

sup
x∈G

E|y(x)|2 � K1. (8.2.24)

Suppose that the assumption (A8.2.4) holds. Then the bound (8.2.22) and Lipschitz con-

dition (8.2.23) ensures unique strong sense solution to the stochastic differential equation

(8.2.2) for any admissible strategies.

8.2.4 Approximations under the condition (A8.2.4)

For each admissible relaxed strategy r(·), let rε(·) be admissible relaxed strategies with

respect to the same filtration and that satisfy

lim
ε→0

sup
ri∈Ui

E sup
t�T

∣∣∣∣
∫ t

0

∫
Ui

φi(αi)[ri,s(dαi)− rεi,s(dαi)]ds
∣∣∣∣ = 0, i = 1,2, (8.2.25)

for each bounded and continuous real-valued nonrandom function φi(·) and each T < ∞.

For the future use, note that if equation (8.2.25) holds then it also holds for functions φi(·) of

(t,αi) that are continuous except when t takes some value in the finite set {ti}. Let x(·), and

xε(·) denote the solutions to equation (8.2.4) corresponding to r(·) and rε(·), respectively,

with the same Wiener process is used. In particular,

xε(t) = x(0)+
∫ t

0

∫
U1×U2

b(xε(s),α)rεs (dα)ds+
∫ t

0
σ (xε(s))dw(s)+ zε(t). (8.2.26)
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Define

ρε(t) =
∫ t

0

∫
U1×U2

b(x(s),α)[rs(dα)− rεs (dα)]ds.

The process x(·), xε(·) and ρε(·) depend on r(·), but this dependence is suppressed in

the notation. The next result shows that the set {x(·)} over all admissible strategies is

equi-continuous in probability in the sense that (8.2.27) holds, and that the payoffs corre-

sponding to r(·) and rε(·) are arbitrarily close for small ε , uniformly in r(·).

Theorem 8.2.3. Assume (A8.2.1) and (A8.2.2) and let b(·),σ(·) be bounded and measur-

able. Then for each real λ > 0,

lim
Δ→0

sup
x(0)

sup
t

sup
r1∈U1

sup
r2∈U2

P

{
sup
s�Δ

|x(t + s)− x(t)| � λ

}
= 0. (8.2.27)

Additionally assume (A8.2.3), (A8.2.4), also let (r(·),rε(·)) satisfy (8.2.25) for each

bounded and continuous φi(·), i = 1,2, and T < ∞. Define Δε(t) = sups�t |x(s)− xε(t)|2.

Then for each t, we have

lim
ε→0

sup
x(0)

sup
r1∈U1

sup
r2∈U2

E
∣∣∣∣sup

s�t
ρε(s)

∣∣∣∣
2

= 0, (8.2.28)

lim
ε→0

sup
x(0)

sup
r1∈U1

sup
r2∈U2

[
EΔε(t)+E sup

s�t
|z(s)− zε(s)|2

]
= 0, (8.2.29)

and

lim
ε→0

sup
x(0)

sup
r1∈U1

sup
r2∈U2

|J(x,r)− J(x,rε)| = 0. (8.2.30)

Proof. Define ψ(·) by

ψ(t) =
∫ t

0

∫
U1×U2

b(x(s),α)rs(dα)ds+
∫ t

0
σ(x(s))dw(s).

Then, we can write

x(t +δ )− x(t) = [ψ(t +δ )−ψ(t)]+ [z(t +δ )− z(t)].

By Theorem 8.2.2 there is a K < ∞, such that,

sup
s�δ

|x(t + s)− x(t)|+ sup
s�δ

|z(t + s)− z(t)| � K sup
s�δ

|ψ(t + s)−ψ(t)|.

Now using standard estimates for stochastic differential equations to evaluate the fourth

moments of the right side of the last inequality yields, for some K1 < ∞,

lim
ε→0

sup
x(0)

sup
r1∈U1

sup
r2∈U2

E sup
s�δ

|x(t + s)− x(t)|4 � K1δ 2, (8.2.31)
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which implies Kolmogorov’s criterion for equi-continuity in probability, which is equation

(8.2.27). Thus, we can write

x(t)− xε(t) =
∫ t

0

∫
U1×U2

[b(x(s),α)−b(xε(s),α)]rs(dα)ds+ρε(t)

+
∫ t

0
[σ(x(s))−σ(xε(s))]dw(s)+ z(t)− zε(t).

Then the Lipschitz condition, (8.2.23), together with standard estimates for stochastic dif-

ferential equations, imply that there is a constant K not depending on (r(·),rε(·)) or the

initial condition x(0) and such that

EΔε(t) � K
[

E sup
s�t

|ρε(s)|2 +(t +1)
∫ t

0
EΔε(s)ds+E sup

s�t
|z(s)− zε(s)|2

]
,

and

E sup
s�t

|z(s)− zε(s)|2 � K
[

E sup
s�t

|ρε(s)|2 +(t +1)
∫ t

0
EΔε(s)ds

]
. (8.2.32)

Suppose that in the definition of ρε(·), the function b(x(t),α) was replaced by a bounded

nonrandom function φ (t,α) which is continuous except when t takes values in some finite

set {ti}. Then (8.2.28) and (8.2.29) would hold by equation (8.2.25) and use of Gronwall’s

inequality on the first line of (7.2.32), after the second line is substituted in to eliminate

z(·)−zε(·). The equi-continuity in probability (8.2.27) and the boundedness and continuity

of b(·) imply that b(x(t),α) can be approximated arbitrarily well by replacing x(t) by xkμ)

for t ∈ [kμ ,kμ+μ), k = 0,1, . . ., where μ can be chosen independently of r(·). Following

this approximation and using equation (8.2.25) implies equations (8.2.28) and (8.2.29).

Now consider equation (8.2.30). By equations (8.2.28), (8.2.29), and the discounting, the

parts of J(x,rε) that involve k(·) converges to corresponding parts of J(x,r). As noted

below equation (8.2.3), the linear independence of the reflection directions on any set of

intersecting boundary faces which is implied (8.2.1) implies that z(·) uniquely determines

y(·) with probability one. Thus, yε(·) converges to y(·) with probability one. This conver-

gence, the uniform integrability of the set
{
|yε(t + 1)− yε(t)|; t < ∞, for all r(·),ε > 0

}
(which is implied by equation (8.2.24) and the compactness of G), and the discounting, im-

ply that the component of J(x,rε) involving yε(·) converges to the component of J(x(0),r)

involving y(·). �

The next result uses only weak-sense solutions and does not require the Lipschitz condition

(A8.2.4). For the proof, we refer the reader to Kushner [108].

Theorem 8.2.4. Assume (A8.2.1)–(A8.2.3), (A8.2.5) and (A8.2.6). Let r(·) and rε(·), ε >

0, be admissible with respect to some Wiener process wr(·) and satisfy (8.2.25). For each
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ε > 0, there is a probability space with an admissible pair (w̃r,ε(·), r̃ε(·)) which has the

same probability law as (wr(·),rε(·)) and on which is defined a solution (x̃r,ε(·), ỹr,ε(·))
to (8.2.4). Let xr(·) denote the solution to (8.2.4), corresponding to (wr(·),r(·)), and let

zr(·) = ∑i diyr
i (·) denote the associated reflection process. Let F(·) be a bounded and

continuous real-valued function on the path space of canonical set (x(·),y(·),r(·)). Then

the approximation of the solutions by using rε(·) is uniform in that

lim
ε→0

sup
x(0)

sup
r1∈U1

sup
r2∈U2

|EF (x̃r,ε(·), ỹr,ε(·), r̃ε(·))−EF (x̃r(·), ỹr(·), r̃(·))| = 0. (8.2.33)

Now, let F(·) be only continuous with probability one with respect to the measure

of any solution set (x(·),y(·),r(·)). Then, if (xn(·),yn(·),rn(·)) converges weakly to

F (x(·),y(·),r(·)). Also (8.2.33) continues to hold.

8.2.5 Finite-Valued and Piecewise Constant Approximations rε(·) in (8.2.25)

Now we will discuss some approximations of subsequent interest. They are piecewise

constant and finite valued ordinary strategies. Consider the following discretization of the

Ui. Given μ > 0, partition Ui into a finite number of disjoint subsets Cl
i , l � pi, each with

diameter no greater than μ/2. Choose a point α l
i ∈ Cl

i . Henceforth, let pi be some given

function of μ .

Now, given admissible strategies (r1(·),r2(·)), define the approximating admissible relaxed

strategy rμi (·) on the strategy value space {α l
i , l � pi} by its derivative as rμi,t(α l

i ) = ri,t(Cl
i ).

Denote the set of such strategies over all {Cl
i ,α l

i , l � pi} by Ui(μ). Let Ui (μ ,δ ) denote

the subset of Ui(μ) that are ordinary strategies and constant on the intervals [lδ , lδ + δ ),

l = 0,1, . . .. Thus, we state without proof the following useful result.

Theorem 8.2.5. Assume (A8.2.1)–(A8.2.3), (A8.2.5), (A8.2.6), and the above approxima-

tion of ri(·) by rμi (·) ∈ Ui(μ), i = 1,2. Then (8.2.25) and (8.2.30) hold for μ replacing ε ,

no matter what the {Cl
i , α l

i }. The same result holds if we approximate only one of the ri(·).

8.2.6 Finite-Valued, Piecewise-Constant and “Delayed” Approximations

Let rμi (·) ∈Ui(μ), where the strategy-space values are {α l
i , l � pi}. Let Δ> 0. Define the

“backward” differences

Δl
i,k = rμi

(
α l

i ,kΔ
)
− rμi

(
α l

i ,kΔ−Δ
)
, l � pi, k = 1,2, . . . .
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Define the piecewise constant ordinary strategies by uμ,Δ
i (·) ∈ Ui(μ ,Δ) on the interval

[kΔ,kΔ+Δ) by

uμ,Δ
i (t) = α t

i for t ∈
[

kΔ+
l−1

∑
υ=1

Δυi,k, kΔ+
l

∑
υ=1

Δυi,k

]
. (8.2.34)

Note that on the interval [kΔ,kΔ+Δ), uμ,Δ(·) takes the value α l
i on a time interval of length

Δl
i,k. Note also that the uμ,Δ

i (·) are “delayed” in that the values of ri(·) on [kΔ−Δ,kΔ)

determine the values of uμ,Δ(·) on [kΔ,kΔ+Δ). Thus, uμ,Δ
i (·) is ℑkΔ-measurable. This

delay will play an important role in the next two sections. Let rμ,Δ
i (·) denote the relaxed

strategy representation of uμ,Δ
i (·).

The intervals Δl
i,k in (8.2.34) are just real numbers. For later use, it is important to have

them to be some multiple of any δ > 0, where Δ/δ is an integer. Consider the following

method of performing this process. Divide [kΔ,kΔ+Δ) into Δ/δ subintervals of length δ
each. To each value α l

i first assign [Δl
i,k/δ ] (the integer part) subintervals of length δ . Then

assign the remaining unassigned subintervals to the values α l
i at random with probabilities

proportional to the residual (unassigned) lengths Δl
i,k − [Δl

i,k/δ ]δ , i � pi. Call the resulting

strategy uμ,δ ,Δ
i (·), with relaxed strategy representation rμ,δ ,Δ

i (·). Let Ui(μ ,δ ,Δ) denote the

set of such strategies. If uμ,δ ,Δ
i (·) is obtained from ri(·) in this way, then we will henceforth

write it as uμ,δ ,Δ
i (· | ri) to emphasize that fact. Similarly, if uμ,Δ

i (·) is obtained from ri(·),
then it will be written as uμ,Δ

i (· | ri). Let rμ,Δ
i,t (· | ri) denote the time derivative of rμ,Δ

i (· | ri).

As stated in the next theorem, for fixed μ and δ , uμ,δ ,Δ
i (· | ri) gives a good approximation

uμ,Δ
i (· | ri) uniformly in ri(·) and {α l

i } in that (8.2.36) holds in the sense that for each μ > 0,

Δ> 0, and bounded and continuous φi(·), such that,

lim
δ→0

sup
ri∈Ui

E sup
t�T

∣∣∣∣
∫ t

0

∫
Ui

φi (αi) [rμ,Δ
i,s (dαi | ri)− rμ,δ ,Δ

i,s (dαi | ri)ds
∣∣∣∣ = 0, i = 1,2. (8.2.35)

This leads to the following interesting result.

Theorem 8.2.6. Assume (A8.2.1)–(A8.2.3), (A8.2.5) and (A8.2.6). For ri(·) ∈ Ui, let

rμ,Δ
i (· | ri) ∈ Ui (μ ,Δ) and rμ,δ ,Δ

i (· | ri) ∈ Ui(μ ,δ ,Δ). Then (8.2.25) holds for rμ,Δ
i (· | ri)

and (μ ,Δ) replacing rεi (·) and ε , respectively. Also, (8.2.35) holds and

lim
Δ→0

lim
δ→0

sup
x

sup
r1∈U1

sup
r2∈U2

∣∣∣J (x,r1,r2)− J
(

x,r1,u
μ,δ ,Δ
2 (· | r2)

)∣∣∣ = 0. (8.2.36)

For each ε > 0, there are με > 0 and δε > 0, such that, for μ � με and δ � δε and ri(·)∈Ui,

i = 1,2, there are uμ,δ
i ∈Ui (μ ,δ ) , such that, (8.4.4) holds for uμ,δ

i (·) and (μ ,δ ) replacing

rεi (·) and ε , respectively, and

sup
x

sup
r1∈U1

sup
r2∈U2

∣∣∣J(x,r1,r2)− J(x,r1,u
μ,δ
2 )

∣∣∣ � ε. (8.2.37)

The expressions (8.2.36) and (8.2.37) hold with indices 1 and 2 interchanged.
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Under the assumption (A8.2.7) in lieu of assumption (A8.2.6), we have the following result.

Theorem 8.2.7. If (A8.2.7) replaces (A8.2.6) in Theorem 8.2.3–8.2.5, their conclusions

continue to hold.

For the proof, we refer to Kushner [108]. Theorem 8.2.5–8.2.7 imply that the values defined

by equations (8.2.7) and (8.2.8) would not change if relaxed strategies were used.

Next result states the existence of the value for the Game.

Theorem 8.2.8. Assume (A8.2.1)–(A8.2.3), (A8.2.5), and either (A8.2.6) or (A8.2.7).

Then the game has a value in that (8.2.9) holds.

8.2.7 Near Optimal Policies

We will construct particular ε-optimal minimizing and maximizing policies which will be

needed in the proof of convergence of the numerical method. The constructed policies are

for mathematical purposes only and presently do not have any computational value. Let

rh(·) denote the continuous time interpolation of the relaxed strategy representation of the

optimal strategy approximating chain ξ h
n . Then the optimal payoff V h(x) equals Jh(x,rh),

and the corresponding set {ψh(·),zh(·),wh(·),rh(·)} is tight. The limit (x(·),z(·),w(·),r(·))
of any weakly convergent subsequence satisfies the (one player form of) (8.2.4). Hence,

it cannot be better than an optimal solution for (8.2.4). This implies that liminfh V h(x) �
V (x), is the minimal value of the payoff for (8.2.4).

To complete the convergence proof, we need to show that limsuph V h(x) � V (x). To do

this, given an arbitrary ε > 0, a special ε-optimal strategy for (8.2.4) was constructed, that

could be adapted for use of the chain. Let rε(·) denote the relaxed strategy form of this

special ε-optimal strategy for (8.2.4), with Wiener process wε(·) and associated solution

and reflection process (xε(·),zε(·)). Let rε ,h(·) denote the relaxed strategy form of the

adaption of this special strategy for use on the chain ξ h
n , interpolated to continuous time, and

let {ψε ,h(·),zε ,h(·),wε ,h(·)} denote the continuous time interpolation of the corresponding

solution, reflection process and “pre-Wiener” process in the representation (8.2.19). Since

rε ,h(·) is no better than the optimal strategy for the chain, V h(x) � Jh
(
x,rε ,h

)
. By the

method of construction of rε ,h(·), the set {ψε ,h(·),zε ,h(·),wε ,h(·),rε ,h(·)} converged weakly

to the set {ψε(·),zε(·),wε(·),rε(·)}, with ε-optimal payoff J(x,rε). Since ε is arbitrary, we

have limsuph V h(x) � V (x), which completes the proof. �
Such an ε-optimal strategy for (8.2.4) (whether minimizing or maximizing) for the

player that goes first plays the same role for the problem discussed here.
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Theorem 8.2.9. Assume (A8.2.1)–(A8.2.3), (A8.2.5) and either (A8.2.6) or (A8.2.7). Then

for each ε > 0 there is an optimal minimizing strategy law with the following properties.

For positive Δ,δ , and ρ , let δ/ρ and Δ/δ be integers. The strategy is constant on the

intervals [kΔ,kΔ+Δ), k = 0,1, . . ., finite-valued, the value at kδ is ℑkΔ-measurable, and

for small λ > 0 it is defined by the conditional probability law (which defines the function

qi,k(·)), thus,

P
{

u1(kΔ) = γ | u1(lΔ), l < k; w(s), r2(s), s < kΔ
}

= P
{

u1(kΔ) = γ | u1(lΔ), l < k;w(lλ ), lλ < kΔ,uμ,ρ,δ
2 (lρ | r2), lρ < kΔ

}

= q1,k

(
γ;w(lλ ), lλ < kΔ;u1(lΔ), l < k; uμ,ρ,δ

2 (lρ | r2), lρ < kΔ
)

.

(8.2.38)

The function q1k(·) is continuous in the w-arguments for each value of the others. Since the

rule (8.2.38) depends on r2(·) only via uμ,ρ,δ
2 (· | r2) we write the rule as uε1

(
uμ,ρ,δ

2 (· | r2)
)
.

In particular, for small λ , μ , δ , and large δ/ρ and Δ/δ , it satisfies the inequality

sup
r2∈U2

J
(

x,uε1
(

uμ,ρ,δ
2 (· | r2)

)
,r2

)
� V (x)+ ε. (8.2.39)

Also, if rn
2(·) converges to r2(·), then

limsup
n

J
(

x,uε1
(

uμ,ρ,δ
2 (· | rn

2)
)

,rn
2

)
� V (x)+ ε. (8.2.40)

For each r2(·) and l = 0,1, . . ., let ũμ,ρ,δ
2 (lρ | r2) be a strategy that differs from uμ,ρ,δ

2 (lρ |
r2) by at most μ in absolute value. Then (8.2.39) and (8.2.40) hold for the perturbation

ũμ,ρ,δ
2 (· | r2) replacing uμ,ρ,δ

2 (· | r2).

Similarly, there is an ε-optimal strategy rule of the same type for the maximizing player:

In particular, and with the analogous terminology,

inf
r1∈U1

J
(

x,r1,uε2
(

uμ,ρ,δ
1 (· | r1)

))
� V (x)− ε, (8.2.41)

and (8.2.41) continues to hold with the perturbation ũμ,ρ,δ
1 (· | r1) replacing uμ,ρ,δ

1 (· | r1).

For the proof of this Theorem we refer the reader to Kushner, [108].

8.2.8 Convergence of the Numerical Solutions

The next result establishes the convergence of the numerical procedure. It supposes local

consistency everywhere. In numerical examples, the sequence of optimal feedback strate-

gies for the chain does converge as well. This would be the case if the optimal feedback

strategies uh
i (·) for the chain converges to the feedback strategies ui(·), where the conver-

gence is uniform and the limits are continuous outside of an arbitrary small neighborhood
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of a set Dd satisfying (A8.2.7), and the process (8.2.4) under ui(·) is unique in the weak

sense. Then,

J (x,u1,u2) = V (x).

Now, we have the following main convergence result for the values resulting from Markov

chain approximation, the proof of which can be found in Kushner, [108].

Theorem 8.2.10. Assume the local consistency condition (8.2.9)–(8.2.11), (A8.2.1)–

(A8.2.3), (A8.2.5) and either (A8.2.6) or (A8.2.7). Then V±,h(x) →V (x) as h → 0.

8.2.9 Stopping Time Problems and Pursuit-Evasion Games

Suppose that player i, i = 1,2, now has a choice of an ℑt -stopping time τi as well as of the

strategies. Define τ = h{τ1,τ2}. For a continuous function g(·), replace (8.2.5) by

J(x,r,τ) = E
τ∫

0

e−β t

⎡
⎣∫

Ui

2

∑
i=1

ki(x(t),αi)ri,t(dαi)dt + c′dy(t)

⎤
⎦ +Ee−βτg(x(τ)) . (8.2.42)

Thus, in this model, the stopping payoff g(x(τ)) does not depend on who selects the stop-

ping time.

The strategy spaces such as Ui, Ui(Δ), Li(Δ), and Ui(μ ,δ ,Δ), etc., need to be extended so

that they include the stopping times. Let Ui be the set of pairs (ui(·),τ) where ui(·) ∈ Ui

and τ is an ℑt− stopping time. Let Ui(Δ) denote the subset where ui(·) ∈ Ui(Δ) and τ
takes values kΔ, k = 0,1, . . ., where the set {w : τ = kΔ} is ℑkΔ-measurable. Similarly,

Ui(μ ,δ ,Δ) denotes the subset of Ui(Δ) where ui(·) ∈Ui(μ ,δ ,Δ). Let L1(Δ) denote the set

of strategies in U1(Δ) for player 1 which can be represented in the form of

P{τ1 > kΔ |w(s),u2(s) (s),s < t : u1 (lΔ) , l < k,τ1 � kΔ} and

P{u1 (kΔ) ∈ . |w(s),u2(s) ,s < t : u1 (lΔ) , l < k,τ1 � kΔ}
(8.2.43)

Define L2(Δ) analogously for player 2.

The definitions of the upper and lower values in (7.2.6) are replaced by, respectively,

V +(x) = lim
Δ→0

inf
u1,τ1∈L1(Δ)

sup
(u2,τ2)∈U2

J (x,u1,u2,τ) and

V−(x) = lim
Δ→0

sup
(u2,τ2)∈U2

inf
u1,τ1∈U1

J (x,u1,u2,τ)
(8.2.44)

The first line of equation (8.2.44) is to be understood as follows. Suppose that the game

has not stopped by time kδ . Then at kδ , player 1 goes first, and decides whether to stop or

not, based on the data to time kΔ−. If it stops the game is over. If not, it selects the strategy
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value u1 (kΔ) (which it will use until (kΔ+Δ)− or until player 2 stops, whichever comes

first based on data to time kΔ−. If the game is not stopped at kδ by player 1, then player 2

has the opportunity to stop at any time on [kΔ,kΔ+Δ), with the decision to stop any time

being based on all data to that time. Until it stops (if it does), it chooses admissible strategy

values u2(·). The procedure is then repeated at time kΔ+ δ , and so forth. With these

changes and minor modifications, the previous theorem continues to hold. In particular,

Theorem 8.2.10 holds.

Consider the approximating Markov chain. Let player 1 go first, and let I1 denote the

indicator of the event that player 1 stops at the current step. Then the Bellman equation for

the (for example) upper value is

V +,h(x) = h
{

g1(x)I1,(1− I1)max
[

max
α2

(
Eα

x e−βΔth(x,α)V +,h(ξ h
1 )

+k(x,α)Δth(x,α)
)
,g2(x)

]}
. (8.2.45)

8.3 Ergodic Payoff case

The Markov chain approximation method that we discussed in Section 8.2 can be used for

the ergodic payoff strategy problem. Both discounted and ergodic cases share the founda-

tion in the theory of weak convergence. However, the approximations to the ergodic payoff

strategy problem differ from the method developed in Section 8.2. We will only present the

most needed modifications. For full detail, we refer to Kushner [107]. Most of the method

of analysis used is parallel to the methods are given by Kushner [105]. Construction of the

controlled Markov chain is similar to that discussed in Section 8.2.

Consider the system (8.2.1) (or (8.2.3)) and (8.2.2) now with ergodic payoff structure in

relaxed control setting,

JT [m](x) =
1
T

Em
x

∫ T

0
km(x(s))ds+

1
T

Em
x c′y(t)

where k(x,α) = k1(x,α1)+ k2(x,α2), and km(x) =
∫

U k(x,α)m(x,dα). Payoff function of

interest in this section is given by

J(m) = lim
T

JT [m](x). (8.3.1)

If player i uses relaxed strategy ri(·), then we use the notation kri(x, t) to denote the∫
Ui

ki(x,αi)ri,t(dαi). If player 1 selects his/her strategy first and uses a relaxed feedback

strategy and player 2 selects strategy last and uses a relaxed control, then we define

JT (x,m1,r2) =
1
T

Em1,r2
x

∫ T

0
[k1,m1(x(s))+ k2,r2(x(s),s)]ds+

1
T

Em1,r2
x c′y(t),
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and

J(x,m1,r2) = liminf
T

JT (x,m1,r2).

If player 2 selects his/her control first and uses a relaxed feedback strategy and player 1

uses a relaxed control strategy, define

J(x,r1,m2) = limsup
T

JT (x,r1,m2).

It should be noted that in (8.3.1), we dropped the dependence on the initial position x

because of Theorem 2.5 of Kushner [107], this will not depend on the initial condition.

Now, we will show the existence of optimal policies for the upper and lower values. Define

the upper and lower values for the game as

J+ = inf
fb m1

sup
rel r2

J(m1,r2) (8.3.2)

and

J− = sup
fb m2

inf
rel r1

J(r1,m2) (8.3.3)

where f b denotes relaxed feedback and rel denotes relaxed control strategies. We have

following result that is due to Kushner, [107].

Theorem 8.3.1. Assume (A8.2.1), (A8.2.7). For a sequence {mn(·)} of relaxed feedback

strategies, let mn(x, ·) → m(x, ·) for almost all x ∈ G. Then, J(mn) → J(m).

For a fixed strategy m1(·), maximize over m2(·), and let {mn
2(·)} be a maximizing sequence.

Consider measures over the Borel sets of G×U which are defined by

mn(x,dα)dx = m1(x,dα1)mn
2(x,dα2)dx (8.3.3)

and take a weakly convergent subsequence. The limit can be factored into the form

m1(x,dα1)m2(x,dα2)dx, (8.3.4)

where m2(·) is a relaxed feedback policy for player 2. Since m2(·) depends on m1(·), we

write it as m2(·) = m2(·;m1). Then, given m1(·), the relaxed feedback strategy m2(·;m1) is

maximizing for player 2 in that

sup
m2

J(m1,m2) = J(m1,m2(m1)).

The analogous result holds in the other direction, where player 2 chooses first.
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Suppose that with m1(·) fixed, player 2 is allowed to use relaxed controls and not simply

relaxed feedback strategies. The following result says that the maximization over this larger

class will not yield a better result for player 2. The analog of the result for player 2 choosing

first also holds.

Theorem 8.3.2. Assume the conditions of Theorem 8.3.1. Fix m1(·) and let m2(·,m1) be an

optimal relaxed feedback strategy and r2(·) an arbitrary relaxed control for player 2. Then

for each x ∈ G,

J(x,m1,r2) � J(m1,m2(m1)).

Theorem 8.3.3. Assume the conditions of Theorem 8.3.1. Let player 1 go first. Then it has

an optimal strategy, denoted by m+(·). The analogous result holds if player 2 chooses first,

and its optimal control is denoted by m(·).

Markov chain approximation is done exactly same as in Section 8.2, including the The-

orem 8.2.1 continues to hold. The discretized sets and local consistency conditions are

similar to that we discussed in Section 8.2. We can Discretize the ergodic payoff function

and upper and lower values as follows. Relaxed feedback controls, when applied to the

Markov chain, are equivalent to randomized controls. Let uh(·) =
(
uh

1(·),uh
2(·)

)
be feed-

back strategies for the approximating chain. Then the payoff is given by

Jh
T (x,uh) = Jh

T (x,uh
1,u

h
2) =

1
T

Eh,uh

x

∫ T

0
kuh(ψh(s))ds+Eh,uh

x
c′yh(t)

T
and

Jh(uh) = lim
T

Jh
T (x,uh). (8.3.5)

Let mh(·) be a randomized strategy. Then the payoff function can be written as

Jh
T (x,mh) = Jh

T (x,mh
1,m

h
2) =

1
T

Eh,mh

x

∫ T

0
kmh(ψh(s))ds+Eh,mh

x
c′yh(t)

T
and

Jh(mh) = lim
T

Jh
T (x,mh). (8.3.6)

With the relaxed feedback control representation of an ordinary feedback strategy, (8.3.5) is

a special case of (8.3.6). Also, we can always take the strategies in (8.3.6) to be randomized

feedback.

Suppose that player 1 chooses its control first and uses the relaxed feedback (or randomized

feedback) strategy mh
1(·). Then player 2 has a maximization problem for a finite state

Markov chain. The approximating chain is ergodic for any feedback strategy, whether
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randomized or not. Then, since the transition probabilities and cost rates are continuous

in the control of the second player, the optimal control of the second player exists and is a

pure feedback strategy (not randomized), Puterman [155]. The cost does not depend on the

initial condition. The analogous situation holds if player 2 chooses its strategy first.

Let mh
i (·) denote either a randomized feedback, relaxed feedback, or the relaxed feedback

representation of an ordinary feedback control. Define the upper and lower values, resp.by

J+,h = inf
mh

1

sup
mh

2

Jh(mh
1,m

h
2),

and

J−,h = sup
mh

2

inf
mh

1

Jh(mh
1,m

h
2).

It should be noted that under our hypotheses, the upper and lower values might be different,

although Theorem 8.3.4 says that they converge to the same value asymptotically. If the

dynamics are separated in the sense that Ph(x,y |α) can be written as a function of (x,y,α1)

plus a function of (x,y,α2), then J+,h = J−,h. Proof of the next result is available in [102],

we will give it for the completeness sake.

Theorem 8.3.4. Under the assumptions of Theorem 8.3.1 and suppose that

J+ = J− = J. (8.3.7)

Then

J− � liminf
h

J−,h � limsup
h

J+,h � J+
. (8.3.8)

Hence,

lim
h

J+,h = lim
h

J−,h = J (8.3.9)

and both the upper and lower values for the numerical approximation converge to the value

for the original game.

Proof. Let player 1 choose its control first and let ε > 0. Let m+
ε ,1(·) be an ε-smoothing

of the optimal control m+
1 (·) for player 1, when it chooses first. This implies that, given

δ > 0, there is ε > 0 such that m+
ε ,1(·) is δ -optimal for player 1 for the original problem.

Now, let player 1 use m+
ε ,1(·) on the approximating chain, either as a randomized feedback

or a relaxed feedback strategy. Given that player 1 chooses first and uses m+
ε ,1(·), we

have a simple strategy problem for player 2. As noted above, the optimal strategy for
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player 2 exists and is pure feedback, and we denote it by uh
2(·), with relaxed feedback

control representation mh
2(·).

By the definition of the upper value, we have,

J+,h � sup
uh

2

Jh(m+
ε ,1,u

h
2) = sup

mh
2

Jh(m+
ε ,1,m

h
2) = Jh(m+

ε ,1,u
h
2), (8.3.10)

where uh
2(·) denotes an arbitrary ordinary feedback strategy, and mh

2(·) an arbitrary random-

ized feedback strategy. The maximum value Jh(m+
1,ε ,u

h
2) of the game problem for player 2

with player 1’s strategy fixed at m+
1,ε(·) does not depend on the initial condition. Hence,

without loss of generality, the corresponding continuous time interpolation, ψh(·) can be

considered to be stationary. Then, using the continuity in (x,α2) of
∫

U1
b(x,α)m+

1,ε(x,dα1

and of
∫

U1
k(x,α)m+

1,ε (x,dα1), yields that there is a relaxed strategy r2(·) for the original

problem such that

limsup
h

J+,h � limsup
h

Jh(m+
1,ε ,u

h
2) = J(m+

1,ε ,r2) � J+ +δ . (8.3.11)

The last inequality of (8.3.11) follows from Theorem 8.3.2 and the δ -optimality of m+
1,ε(·)

in the class of relaxed feedback strategies for player 1 if he/she chooses first.

Now, let player 2 choose first, Then there is an analogous result with analogous notation:

In particular, given δ > 0, there is an ε > 0 and an ε-smoothing m−
2,ε(·) of the optimal

strategy, and a relaxed strategy r1(·) for the original game problem such that

liminf
h

J−,h � liminf
h

Jh(uh
1,m

−
2,ε

)
= J

(
r2,m−

2,ε
)

� J−−δ . (8.3.11)

Hence, since δ is arbitrary, (8.3.8) holds. This, with (8.3.7), yields the theorem. �

Now we will show the existence of the value, (8.3.7). Without loss of generality, we can as-

sume that if the mh
i (·), i = 1,2, are relaxed feedback strategies for each h and the mh

i (x, ·) are

defined for almost all x, then there is always a subsequence and relaxed feedback strategies

mi(·), i = 1,2, for which Jh(mh
1,m

h
2) → J(m1,m2).

To get the approximating process, time will be discretized but not space. Let Δ> 0 denote

the time discretization interval. We need to construct process whose n-step transition func-

tions PΔ (x,nΔ, . | α) have densities that are mutually absolutely continuous with respect to

Lebesgue measure, uniformly in (Δ,strategy, t0 � nΔ� t1) for any 0 < t0 < t1 < ∞.

Consider the following procedure. Start with the process (8.2.1), but with the strategies

held constant on the intervals [lΔ, lΔ+Δ), l = 0,1, . . .. The discrete approximation will be

the samples at times lΔ, l = 0,1, . . .. The policies are chosen at t = 0, with one of the players

selected to choose first, just as for the original game. Let uΔi , i = 1,2, denote the strategies,
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if in pure feedback (not relaxed or randomized) form. In relaxed control notation write

the strategies as mΔ
i (·), i = 1,2. These strategies are used henceforth, whenever control

is applied. The chosen strategies are applied at random as follows. At each time, only

one of the players will use his/her strategy. At each time lΔ, l = 0,1, . . ., flip a fair coin.

With probability 1/2, player 1 will use his/her strategy during the interval [lΔ, lΔ+Δ) and

player 2 not. Otherwise, player 2 will use his/her strategy, and player 1 not. The values of

the strategies during the interval will depend on the state at its start. The optimal strategies

will be feedback. Define xΔ(t) = x(lΔ) on [lΔ, lΔ+ Δ). For pure (not randomized or

relaxed) feedback strategies uΔi (·), i = 1,2, the system is given by

dx = bΔ
(
x,uΔ

(
xΔ

))
dt +σ(x)dw+dz, (8.3.12)

where the value of bΔ(·) is determined by the coin tossing randomization proce-

dure at the times lΔ, l = 0,1, . . ., In particular, at t ∈ [lΔ, lΔ+ Δ), bΔ
(
x,mΔ (

xΔ
))

is

2bi
(
x(t),uΔi

(
xΔ(t)

))
, for either i = 1 or i = 2 according to the random choice made at

lδ . If the strategy is relaxed feedback, then write the model as

dx = bΔ
(
x,mΔ(xΔ

))
dt +σ(x)dw+dz, (8.3.13)

where at t ∈ [lΔ, lΔ+ Δ), 2bi
(
x(t),mΔ

i
(
xΔ(t)

))
is 2

∫
Ui

bi (x(t),αi)mΔ
i (x(lΔ) ,dαi)2, for

either i = 1 or i = 2 according to the random choice made at lδ . Following the Girsanov

transformation, the Wiener process w(·) should be indexed by the strategies uΔ(·) or mΔ(·),
but we omit it for notational simplicity.

Let EΔ,i,αi
x(lΔ) denote the expectation of functionals on [lΔ, lΔ+Δ) when player i acts on that

interval and uses actionαi. Let PΔi (x, . |αi ) denote the measure of x(Δ), given that the initial

condition is x, player i acts and uses strategy action αi. The conditional mean increment

in the total cost function on the time interval [lΔ, lΔ+Δ) is, for uΔi (x(lΔ)) = αi, i = 1,2,

given by

CΔ(x(lΔ),α) =
1
2 ∑i=1,2

EΔ,i,αi
x(lΔ)

[∫ lΔ

lΔ
2ki(x(s),αi))ds+ c′(y(lΔ+Δ)− y(lΔ))

]
. (8.3.14)

Note that CΔ(x,α) is the sum of two terms, one depending on (x,α1) and the other on

(x,α2). The weak sense uniqueness of the solution to (8.3.1) for any strategy and initial

condition implies the following result.

Theorem 8.3.5. Assume conditions of Theorem 8.3.1. Then for each Δ> 0, CΔ(·) is contin-

uous and the measures PΔi (·) are weakly continuous in that for any bounded and continuous

real-valued function f (·),
∫

f (y)PΔi (x,dy | α) and CΔ(x,α) are continuous in (x,α).
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The reason for choosing the acting strategies at random at each time lΔ, l = 0,1, . . ., is

that the randomization “separates” the cost rates and dynamics in the strategies for the two

players. By separation, we mean that both the payoff function and transition function are

the sum of two terms, one depending on (x,α1) and the other on (x,α2). This separation

is important since it gives the “Isaacs condition” which is needed to assure the existence of

a value for the game for the discrete time process, as seen in Theorem 8.3.6. Proceeding

formally at this point, let μΔmΔ(·) denote the invariant measure under the strategy mΔ(·).
Define the stationary strategy increment

λΔ
(
mΔ) =

∫
G
μΔmΔ(dx)

[∫
U

C(x,α)mΔ(x,dα)
]
.

Note that, due to the scaling, λΔ
(
mΔ) is an average over an interval of length δ : hence

λΔ
(
mΔ) = ΔJΔ

(
mΔ). Suppose for the moment that there is an optimal strategy mΔ

i (·),
i = 1,2, for each Δ> 0 and define λΔ = λΔ

(
mΔ). The “separation” is easily seen from the

formal Isaacs equation for the value of the discrete time problem, namely,

λΔ+gΔ(x) =

inf
α1

sup
α2

[
1
2

∫
gΔ (x+ y)PΔ1 (x,dy |α1 )+

1
2

∫
gΔ (x+ y)PΔ2 (x,dy |α2 )+CΔ(x,α)

]
.

(8.3.15)

where gΔ(·) is the relative value or potential function.

Theorem 8.3.6. Under the conditions of Theorem 8.3.1, equation (8.3.7) holds.

Proof. We will work with the approximating process x(lΔ), l = 0,1, . . . just described,

where x(·) is defined by (8.3.12) with the piecewise constant control, and verify the condi-

tions imposed in the formal discussion at the beginning of the section. Results from Kush-

ner [105] will be exploited whenever possible. The result (8.3.13) holds (with δ replacing

h) for the same reasons that it holds for the numerical approximating process described ear-

lier. For any sequence of relaxed strategies mΔ
i (·), i = 1,2, there is a subsequence (indexed

by Δ) and mΔ
i (·), i = 1,2, such that,

mΔ
1 (x,dα1)mΔ

2 (x,dα2)dx → m1 (x,dα1)m2 (x,dα2)dx.

One needs to show the analog of (8.3.13), namely (along the same subsequence, indexed

by Δ)

JΔ(mΔ) → J(m). (8.3.16)

The process {x(lΔ)} based on (8.3.12) inherits the crucial properties of (8.3.1), as de-

veloped by Kushner [105]. In particular, for each positive δ and n the n-step transition
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probability PΔ
(
x,nΔ, · | mΔ) is mutually absolutely continuous with respect to Lebesgue

measure, uniformly in the strategy and in x ∈ G, nΔ ∈ [t0, t1], for any 0 < t0 < t1 <∞, and it

is a strong Feller process. The invariant measures are mutually absolutely continuous with

respect to Lebesgue measure, again uniformly in the strategy. Then the proof of (8.3.16) is

very similar to the corresponding proof for (8.3.1) given in Kushner [105] and the details

are omitted. There are strategies mΔ,+
1 (·) which are optimal if player 1 chooses its control

first (i.e., for the upper value), and mΔ,−
2 (·) which are optimal if player 2 chooses its strategy

first (i.e., for the lower value).

We will concentrate on showing that

J+,Δ = J−,Δ
. (8.3.17)

By the (uniform in the strategies) mutual absolute continuity of the one step transition

probabilities for each Δ > 0, the process satisfies a Doeblin condition, uniformly in the

strategy. Hence, it is uniformly ergodic, uniformly in the strategy, Meyn and Tweedie

[134]. In particular it follows that there are constants Kδ and ρδ , with ρΔ < 1, such that,

sup
x,mΔ

∣∣∣∣EΔ,mΔ
x

∫
U

C
(
x(nΔ),α

)
mΔ(x(nΔ),dα

)
−λΔ

(
mΔ)∣∣∣∣ � KΔ

[
ρΔ

]
,

where λΔ
(
mΔ) is defined above by (8.3.15).

Define the relative value function by

gΔ
(
x,mΔ) =

∞

∑
l=0

[
EΔ,mΔ

x C
(
x(lΔ),mΔ(x(nΔ))

)
−λΔ

(
mΔ)] .

The summands converge to zero exponentially, uniformly in
(
x,mΔ(·)

)
. Also, by the strong

Feller property the summands (for l > 0) are continuous. Define gΔ,+(x) = gΔ
(
x,mΔ,+)

and

gΔ,−(x) = gΔ
(
x,mΔ,−)

. Then, a direct evaluation yields

λΔ,+
+gΔ,+(x) = EΔ,mΔ,+

x

[
gΔ,+(x(Δ))+CΔ(x,mΔ,+(x)

)]
. (8.3.18)

Next we will show that under mΔ,+
1 (·) (and for almost all x), that

λΔ,+
+gΔ,+(x) = sup

α2

[
EΔ,mΔ,+,α2

x gΔ,+(x(Δ))+CΔ(x,mΔ,+
1 (x),α2

)]
. (8.3.19)

By (8.3.18), (8.3.19) holds for almost all x with the equality replaced by the inequality �.

The function in brackets in (8.3.19) is continuous in α2, uniformly in x ∈ G. Suppose that

(8.3.19) does not hold on a set A ⊂ G of Lebesgue measure l(a) > 0. Let mΔ
2 (·) denote the

(relaxed feedback strategy representation of the) maximizing strategy in (8.3.19). Then

λΔ,+
+gΔ,+(x) �

[
E
Δ,mΔ,+

1 ,mΔ
2

x gΔ,+(x(Δ))+CΔ(x,mΔ,+
1 (x),mΔ

2 (x)
)]

, (8.3.20)
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with strict inequality for x ∈ A. Now, integrate both sides of (8.3.20) with respect to the

invariant measure μΔ
{mΔ,+

1 ,mΔ
2 }

(·) corresponding to the strategy
(
mΔ

1 (·),mΔ
2 (·)

)
and note that

∫
gΔ,+(x)μΔ{mΔ,+

1 ,mΔ
2 }

(dx) =
∫ [

E
Δ,mΔ,+

1 ,mΔ
2

x gΔ,+(x(Δ))
]
μΔ{mΔ,+

1 ,mΔ
2 }

(dx). (8.3.21)

Also, by definition, we have,

λΔ
(

mΔ,+
1 ,mΔ

2

)
=

∫
CΔ(x,mΔ,+

1 (x),mΔ
2 (x)

)
μΔ{mΔ,+

1 ,mΔ
2 }

(dx).

Then, canceling the terms in (8.3.21) from the integrated inequality and using the fact that

the invariant measure is mutually absolutely continuous with respect to Lebesgue measure

we have, λΔ,+
< λΔ

(
mΔ,+

1 ,mΔ
2

)
, which contradicts the optimality of mΔ,+

2 (·) for player 2,

if player 1 selects his/her strategy first. Thus, (8.3.19) holds.

Next, given that (8.3.19) holds, let us show that for almost all x, we have,

λΔ,+
+gΔ,+(x) = inf

α1
sup
α2

EΔ,mΔ,+,α1,α2
x

[
gΔ,+(x(Δ))+CΔ(x,α1,α2)

]
. (8.3.22)

By (8.3.19), this last equation holds if mΔ,+
1 (·) replaces α1 and the inf is dropped. Suppose

that (8.3.22) is false. Then there are A ⊂ G with l(a) > 0 and ε > 0 such that for x ∈ A the

equality is replaced by the inequality � plus ε , with the inequality � holding for almost all

other x ∈ G. More particularly, let m̂Δ,+
1 (·) denote the minimizing strategy for player 1 in

(8.3.22). Then we have, for almost all x and any mΔ
2 (·),

λΔ,+
+gΔ,+(x) � EΔ,mΔ,+,m̂Δ

1 ,mΔ
2

x

[
gΔ,+(x(Δ))+CΔ(x, m̂Δ

1 (x),mΔ
2 (x)

)]
+ εI{x∈A}. (8.3.23)

Now, repeating the procedure used to prove (8.3.19), integrate both sides of (8.3.23) with

respect to the invariant measure associated with
(
m̂Δ

1 (·),mΔ
2 (·)

)
, use the fact that the in-

variant measure is mutually absolutely continuous with respect to Lebesgue measure, uni-

formly in the strategies, and cancel the terms which are analogous to those in (8.3.21), to

show that

λΔ,+
> sup

mΔ
2

λΔ
(
m̂Δ

1 ,mΔ
2
)
.

This implies that mΔ,+
1 (·) is not optimal for player 1 if it selects his/her strategy first, a

contradiction. Thus, (8.3.22) holds. The analogous procedure can be carried out for the

lower value where player 2 selects his/her strategy first.

Now, the fact that the dynamics and payoff rate are separated in the strategy implies that

infα1 supα2
= supα2

infα1 in (8.3.22). Thus, (8.3.22) holds with the order of the sup and inf

inverted. By working with the equation (8.3.22) with the sup and inf inverted and following

an argument similar to that used to prove (8.3.22), we can show that λΔ,+
= λΔ,−

and that

mΔ
i (·) is optimal for player i. �
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8.4 Non-zero-Sum Case

In the previous two sections, we have introduced a numerical method for zero-sum stochas-

tic differential games under different payoff structures. In this section, we will extend the

Markov chain approximation method to numerically solve a class of non-zero-sum stochas-

tic differential games the strategies for the two players are separated in the dynamics and

cost function. As before, we will show that equilibrium values for the approximating chain

converge to equilibrium values for the original process and that any equilibrium value for

the original process can be approximated by a δ -equilibrium for the chain for arbitrarily

small δ > 0. The numerical method solves a stochastic game for a finite-state Markov

chain. This section is based on the publication of Kushner [109]. Here, the state space G

and the boundary absorption are selected to simplify the development of the non-zero-sum

case. We can replace the boundary absorption by boundary reflection, if the reflection di-

rections satisfy the conditions in Section 8.2. For simplicity of notations, we will describe

two person games. The method can be easily adapted to n � 2-person games. For the non-

zero-sum game, as opposed to the zero-sum case, the players are not strictly competitive

and have their own value functions, accordingly some modifications are necessary from the

previous two sections.

In the two-person zero-sum game of last two sections, the advantage is that the policies

are determined by a minimax operation and that there is a single payoff function, so that

one player’s gain is another’s loss. The non-zero-sum game does not have this property,

where each player has his/her own value function, and one seeks Nash equilibria and not

min max=max min (that is, saddle point) solutions. Unlike the single player problem, we

must work with strategies and not simply controls, at least for one of the players at a time.

Furthermore, it is not too common that there is a unique equilibria, and we are forced to

look at the structure of the chain much more closely and (for the purposes of the proof,

not for the numerics) try to approximate it so that it has a “diffusion” form with a driving

process that does not depend heavily on the strategy, with minimal change in the values.

This requires that we work with strong-sense, rather than with the weak-sense solutions

that were described in Kushner and Dupuis, [112].
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8.4.1 The Model

Consider systems of the form, where x(t) ∈ R
v, Euclidean v-space, given by

x(t) = x(0)+
∫ t

0

2

∑
i=1

bi (x(s),ui(s))ds+
∫ t

0
σ (x(s))dw(s), (8.4.1)

where Player i, i = 1,2, has controls ui(·), and w(·) is a standard vector-valued Wiener

process. The control stops at the first time τ that the boundary of a set G is hit (τ = ∞, if

the boundary is never reached). Let β > 0 and let Eu
x denote the expectation given the use

of strategy u(·) = (u1(·),u2(·)) and initial condition x(0) = x. Then the payoff function for

Player i is given by

Ji (u) = Eu
x

∫ τ

0
e−β t ki (x(s),ui(s))ds+Eu

x e−β tgi (x(τ)) (8.4.2)

Let b(·) = b1(·)+ b2(·), and k(·) = k1(·)+ k2(·). The following condition is assumed to

hold. Similar to (A8.2.4), we assume the following.

(A8.4.1): The functions bi(·) and σ(·) are bounded and continuous and Lipschitz continu-

ous in x, uniformly in u. The controls ui(·) for Player i take values in Ui, a compact set in

some Euclidean space, and the functions ki(·) and gi(·) are bounded and continuous.

A strategy ui(·) is said to be in Ui, the set of admissible strategies for Player i, if it is

measurable, non-anticipative with respect to w(·), and it is Ui-valued. For a topological

space S, let D[S;0,∞) denote the S-valued functions on [0,∞) that are right-continuous and

have left-hand limits, endowed with the Skorokhod topology, see Ethier and Kurtz [55]

for more discussion. If S = R
n, then we can write D[S;0,∞) = Dn[0,∞), to reflect the

dimensionality.

For φ(·) in Dn[0,∞), define the function τ̂(φ) with values in the compactified infinite inter-

val R
+ = [0,∞] by τ̂(φ) = ∞, if φ(t) ∈ G0, the interior of G, for all t < ∞, and otherwise

use

τ̂(φ) = inf
{

t : φ(t) /∈ G0}

We refer to Kushner [109] for a discussion on the need of the following assumption and

when it will be satisfied.

(A8.4.2): For a continuous real-valued function Φ(·) on R
n, define G = {x : Φ(x) � 0},

and suppose that it is the closure of its interior. {x : Φ(x) < 0}. For each initial condition

and control, the function τ̂(·) is continuous (as a map from Dn[0,∞) to the compactified

interval [0,∞]) with probability one relative to the measure induced by the solution to the

system (8.4.1).
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8.4.2 Randomized Stopping

Many times, the original game problem might be defined in an unbounded space. The space

is truncated only for numerical reasons. Thus, the boundaries in game problems need not

be fixed. The “randomized stopping” alternative discussed next exploits these ideas and

assures (A8.4.2). Under randomized stopping, the probability of stopping at time t (if the

process has not yet been stopped) goes to unity as x(t) at the same time approaches the

boundary, ∂G. This can be formalized as follows.

Let Nε (∂G) be the ε-neighborhood of the boundary and G0 is the interior of G. For ε > 0,

let λ (·) > 0 be a continuous function on the set Nε (∂G)∩G0. Let λ (x)→∞ as x approaches

to ∂G. Then, stop x(·) at time t with stopping rate λ (x(t)) and stopping cost (or payoff)

gi (x(t)) for Player i. Such a randomized stopping is equivalent to adding an additional (and

state dependent) discount factor which is active near the boundary.

Recall the relaxed control concept from Section 8.2. Define the “product” relaxed con-

trol r(·), by product of its derivatives, r′ (·, t) = r′1 (·, t)× r′2 (·, t). Thus, r(·) is a product

measure, with marginal’s ri(·), i = 1,2. We will usually write r(·) = (r1(·),r2(·)) without

ambiguity. The pair (w(·),r(·)) is called an admissible pair if each of the ri(·) is admissible

with respect to w(·). In relaxed control terminology, (8.4.1) and (8.4.2) can be written as

x(t) = x(0)+
2

∑
i=1

∫ t

0

∫
Ui

bi (x(s),αi)r′i (dαi,s)ds+
∫ t

0
σ (x(s))dw(s)

= x(0)+
∫ t

0

∫
Ui

b(x(s),αi)r′ (dαi,s)ds+
∫ t

0
σ (x(s))dw(s).

(8.4.3)

and

Ji (x,r) = Er
x

∫ t

0
e−β t

∫
Ui

ki (x(s),αi)r′i (dαi,s)ds+Er
xe−β tgi (x(τ)) . (8.4.4)

Now consider the discrete time form given by

xΔ(nΔ+Δ) = xΔ ()+
∫ nΔ+Δ

nΔ

∫
U

b(xΔ(nΔ),α)r′ (dα,s)ds

+σ
(

xΔ(nΔ)
)

[w(nΔ+Δ)−w(Δ)] .
(8.4.5)

We can define the continuous time interpolation xΔ(·) either by constants xΔ(t) = xΔ(nΔ)

for t ∈ [nΔ,nΔ+Δ) , or by

xΔ(t) = xΔ(nΔ)+
∫ t

nΔ

∫
U

b
(
xΔ(nΔ),α

)
r′(dα,s)ds+

∫ t

nΔ
σ

(
xΔ(nΔ)

)
dw(t), (8.4.6)

where it is assumed that r(t, ·) is adapted to FnΔ−, for t ∈ [nΔ,nΔ+Δ).

The associated payoff function JΔi (x,r) is (8.4.4) with xΔ(·) replacing x(·). Let rΔ(·),r(·)
be admissible relaxed controls with respect to w(·) with rΔ(·) → r(·) w.p.1. (in the weak
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topology) and rΔ(·) adapted as above. Then, as Δ→ 0, the sequence of solutions
{

xΔ(·)
}

of (8.4.6) also converges w.p.1, uniformly on any bounded time interval and the limit

(x(·),r(·),w(·)) solves (8.4.3). By the assumption (A8.4.2), the first hitting times of the

boundary also converge w.p.1 to that of the limit. The payoffs converge as well. The

analogous result holds if the randomized stopping alternative is used.

For the discrete time system (8.4.5) or (8.4.6), the relaxed control can be approximated by

a randomized ordinary control, as follows. Let r(·) be a relaxed control that is admissible

with respect to w(·). Let ũδi,n be a random variable with the distribution

rΔi,n(·) = EnΔ
[
ri(·, | nΔ,nΔ+nΔ)

]
/Δ,

where EnΔ denotes the conditional expectation given FnΔ−. Set ũΔn =
(
ũΔ1,n, ũ

Δ
2,n

)
, and define

its continuous-time interpolation (with intervals Δ)ũΔ(·), and define x̃Δ(0) = xΔ(0) = x(0) =

x and

x̃Δ(nΔ+Δ) = x̃Δ(nΔ)+Δb
(
x̃Δ(nΔ), ũΔn

)
+σ

(
x̃Δ(nΔ)

)[
w(nΔ+Δ)−w(nΔ)

]
. (8.4.7)

Let x̃Δ(t) denote the continuous time interpolation. Define rΔn (·) = rΔ1,n(·)rΔ2,n(·), and let

rΔ(·) be the relaxed control with derivative rΔn (·) on [nΔ,nΔ+Δ). In Theorem 8.4.1, rΔ(·)
is used for xΔ(·) in (8.4.6). This leads to following result that implies that in the continuous

limit, randomized controls turn into relaxed controls.

Theorem 8.4.1. Assume condition (A8.4.1) and use rΔn (·) in (8.4.5) and (8.4.6). Then for

any T < ∞,

lim
Δ→0

sup
x(0)∈G

sup
r∈U

E sup
t�T

∣∣xΔ(t)− x(t)
∣∣2 = 0, (8.4.8)

and

lim
Δ→0

sup
x(0)∈G

sup
r∈U

E sup
t�T

∣∣xΔ(t)− x̃Δ(t)
∣∣2 = 0. (8.4.9)

Under the additional condition (A8.4.2) the payoff for (8.4.5) and (8.4.7) converge (uni-

formly in x(0), r(·)) to those for (8.4.3) as well.

8.4.3 Comment on proof

Let δxΔn = xΔ(nΔ)− x̃Δ(nΔ). Then, we can write

δxΔn+1 = δxΔn +Δ
∫

U

[
b
(
xΔ(nΔ),α

)
−b

(
x̃Δ(nΔ),α

)]
rΔn (dα)

+
[
σ

(
xΔ(nΔ)

)
−σ

(
x̃Δ(nΔ)

)][
w(nΔ+Δ)−w(nΔ)

]
+NΔ

n ,



200 Stochastic Differential Games

where

NΔ
n = Δ

[∫
U

b
(
x̃Δ(nΔ),α

)
rΔn (dα)−b

(
x̃Δ(nΔ), ũΔn

)]

is an FnΔ-martingale difference by the definition of ũδn via the conditional distribution

given by FnΔ. Also, EnΔ
∣∣NΔ

n
∣∣2 = O(Δ2). The proof of the uniform (in the control and

initial condition) convergence to zero of the absolute difference
∣∣xΔ(·)− x̃Δ(·)

∣∣ and of the

differences between the integrals

E
∫ t

0
e−β t k

(
x̃Δ(s), ũΔ(s)

)
ds,

and

E
∫ t

0

∫
U

e−β t k
(
xΔ(s),α

)
rΔ

′
(dα,s)ds,

can then be completed by using the Lipschitz condition and this martingale and conditional

variance property. This implies (8.4.9). An analogous argument can be used to get (8.4.8)

for each r(·) and x(0). The facts that condition (A8.4.2) holds for (8.4.3) and that (8.4.8)

hold simply that the stopping times for xΔ(·), x̃Δ(·) converge to those for (8.4.3) as well as

for each x(0) and r(·).
The uniformity in (8.4.9) and in the convergence of the costs can be proven by an argument

by contradiction that goes roughly as follows. Suppose, for example, that the uniformity in

(8.4.9) does not hold. Then, for intervals and relaxed controls rm(·), m = 1,2, . . ., define

rm,Δm
n (·) as rΔn (·) was, but based on rm(·), and let rm,Δm

n (·) denote the interpolation of the

associated relaxed control. Let Δm → 0. Let xm(·) solve (8.4.3) and xm,Δm(·) solve (8.4.6),

both under rm(·). Let x̃m,Δm(·) solve (8.4.7) under rm,Δm(·). Suppose that, for some T < ∞,

limsup
m→∞

E sup
t�T

∣∣xm,Δm(t)− x̃m,Δm(t)
∣∣2

> 0.

Take an arbitrary weakly-convergent subsequence of xm(·), xm,Δm(·), x̃m,Δm(·), rm(·),
rm,Δm(·), ŵ(·), also indexed by m and with (weak-sense) limit denoted by x(·), x̂(·), x̃(·),
r(·), r̂(·), ŵ(·). Then it is easy to show that x(·) = x̂(·) = x̃(·) and r(·) = r̂(·), and that ŵ(·)
is a standard Wiener process, and that x(·), x̂(·), x̃(·), r(·), r̂(·) are non-anticipative with

respect to ŵ(·), and that the limit set satisfies (8.4.3). Assume, without loss of generality,

that Skorokhod representation is used as described in Ethier and Kurtz, [55], so that we can

suppose that the original and the limiting processes are all defined on the same probability

space and that convergence is with probability l in the Skorokhod topology. Then, it results

in

lim
m→∞

E sup
t�T

∣∣x̃m,Δm(t)− x̂(t)
∣∣2 = 0,
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and

lim
m→∞

E sup
t�T

∣∣xm,Δm(t)− x̂(t)
∣∣2 = 0,

a contradiction to the assertion that the uniformity in x(0) and r(·) in (8.4.9) does not hold.

�

8.4.4 Approximating the Controls

For each admissible relaxed control r(·) and ε > 0, let rεi (·) be admissible relaxed controls

with respect to the same filtration and Wiener process w(·), with derivatives rε
′

i (·), and in

that it satisfies

lim
ε→∞

sup
ri∈Ui

E sup
t�T

∣∣∣∣
∫ t

0

∫
Ui

φi(αi)
[
r′i (dαi,s)− rε

′
i (dαi,s)ds

]∣∣∣∣ = 0, i = 1,2, (8.4.10)

for each bounded and continuous real-valued nonrandom function φi(·) and each T < ∞.

Let x(·) and xε(·) denote the solutions to (8.4.3) corresponding to r(·) and rε(·), respec-

tively, with the same w(·) used, but perhaps different initial conditions. In particular, define

xε(·) by

xε(t) = xε(0)+
∫ t

0

∫
U

b(xε (s) ,α)rε
′
(dα,s)ds+

∫ t

0
σ (xε (s))dw(s). (8.4.11)

Similar to Section 8.2 (Theorem 8.2.6), it is shown by Kushner [109] that the solution x(·)
is continuous in the controls in the sense that

lim
ε→0

sup
x(0),xε (0):

|xε (0)−x(0)|→0

sup
r∈U

E sup
s�t

∣∣δxε(s)
∣∣2 = 0

holds, and that the payoffs corresponding to r(·) and rε(·) are arbitrarily close for small ε ,

uniformly in r(·).
Now, similar to Section 8.2, some approximations of subsequent interest will be described.

It will be seen that we can confine attention to control processes that are just piecewise

constant and finite-valued ordinary admissible controls. Consider the following discretiza-

tion of the set Ui. Let Ui ∈ R
ci , Euclidean ci-space. Given μ > 0, partition R

ci into disjoint

(hyper)cubes
{

Rμ,l
i

}
with diameters μ . The boundaries can be assigned to the subsets in

any way. Define Uμ,l
i = Ui ∩Rμ,l

i , for the finite number (pμi ) of non-empty intersections.

Choose a point αμ,l
i ∈Uμ,l

i . Now, given admissible
(
r1(·),r2(·)

)
, define the approximating

admissible relaxed control rμi (·) on the control value space Uμ
i =

{
αμ,l

i , l � pμi
}

by its

derivative as rμ
′

i

(
αμ,l

i , t
)

= r′i
(
Uμ,l

i , t
)
. Denote the set of such controls by Ui(μ). It can

be shown that the payoffs corresponding to r(·) and rμ(·) are arbitrarily close for small μ ,

uniformly in r(·).



202 Stochastic Differential Games

Let rμi (·) ∈ Ui (μ), where the control value space for Player i is Uμ
i . Let Δ> 0. Define

Δμ,l
i,k = rμi

(
αμ,l

i ,kΔ
)
− rμi

(
αμ,l

i ,kΔ−Δ
)
, l � pμi , k = 1, . . . .

Now, consider the piecewise constant ordinary controls uμ,Δ
i (·) ∈ Ui(μ) on the interval[

kΔ,kΔ+Δ
)

by

uμ,Δ
i (t) = αμ,l

i for t ∈
[

kΔ+
l−1

∑
v=1

Δμ,v
i,k , kΔ+

l

∑
v=1

Δμ,v
i,k

)
. (8.4.12)

Note that on the interval
[
kΔ,kΔ+Δ

)
,uμ,Δ

i (·) takes the value αμ,l
i on a time interval of

length Δμ,l
i,k . Also, observe that the uμ,Δ

i (·) are “delayed,” in that the values of ri(·) on
[
kΔ−

Δ,kΔ
)

determine the values of uμ,Δ
i (·) on

[
kΔ,kΔ+Δ

)
. Thus, uμ,Δ

i (t), t ∈ [kΔ,kΔ+Δ), is

FkΔ-measurable. Let rμ,Δ
i denote the relaxed control representation of uμ,Δ

i (·), with time

derivative rμ,Δ′
i (·). Let Ui(μ ,δ ) denote the subset of Ui(μ) that are ordinary controls and

constant on the intervals [lδ , lδ +δ ), l = 0,1, . . ..

The intervals Δμ,l
i,k in (8.4.12) are real numbers. For later use, it is important to have them

be some multiple of some small δ > 0, where Δ/δ is an integer. We shall discuss one

method of with this approach. Divide [kΔ,kΔ+Δ) into Δ/δ subintervals of length δ each.

Working in order l = 1,2, . . . , for each value αμ,l
i , we first assign (the integer part)

[
Δμ,l

i,k

/
δ
]

successive subintervals of length δ . The total fraction of time that is unassigned on any

bounded time interval will go to zero as δ → 0, and how the control values are assigned to

them will have little effect. However, for specificity consider the following method. The

unassigned length for value αμ,l
i is

Lμ,δ ,l
i,k = Δμ,l

i,k −
[
Δμ,l

i,k

/
δ
]
δ , i � pμi .

Define the sum Sμ,δ
i,k = ∑l Lμ,δ ,l

i,k , which must be an integral multiple of δ . Then assign

each unassigned δ -interval at random with value αμ,l
i,k chosen with probability Lμ,δ ,l

i,k

/
Sμ,δ

i,k .

By Theorem 8.4.1, this assignment and randomization approximates the original relaxed

control.

Let Ui(μ ,δ ,Δ) denote the set of such controls. If uμ,δ ,Δ
i (·) is obtained from ri(·) in this

way, then it is a function of ri(·), but this functional dependence will be omitted in that

notation. Let rμ,Δ,δ ′
i (·) denote the time derivative of rμ,Δ,δ

i (·).
The next theorem states that, for fixed μ and small δ , uμ,δ ,Δ

i (·) well approximates the

effects of uμ,δ
i (·) and ri(·), uniformly in ri(·) and

{
αμ,l

i

}
. In particular, (8.4.10) holds in

the sense that, for each μ > 0, δ > 0, and bounded and continuous φi(·), for i = 1,2, we

have,

lim
δ→0

sup
ri∈Ui

E sup
t�T

∣∣∣∣
∫ t

0

∫
Ui

φi (αi)
[
rμ,δ ,Δ′

i (dαi,s)− rμ,δ ,Δ′
i (dαi,s)

]
ds

∣∣∣∣ = 0. (8.4.13)
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Theorem 8.4.2. Assume (A8.4.1)–(A8.4.2). Let ri(·) ∈ Ui, i = 1,2. Given (μ ,δ ,Δ) > 0,

approximate as above the theorem to get rμ,δ ,Δ
i (·) ∈ Ui(μ ,δ ,Δ). Then (8.4.10) holds for

rμ,δ ,Δ
i (·) and (μ ,δ ,Δ) replacing rεi (·) and ε , respectively. Also, (8.4.13) holds. In Particu-

lar, given ε > 0, there are με > 0, δε > 0, δε > 0 and κε > 0, can be defined so that

sup
x

sup
r1

sup
r2

∣∣∣Ji(x,r1,r2)− Ji
(
x,r1,u

μ,δ ,Δ
2

)∣∣∣ � ε. (8.4.14)

The expression (8.4.14) holds with the indices 1 and 2 interchanged or if both controls are

approximated.

Consider the discrete-time system (8.4.5) with either the interpolation that is piecewise

constant or (7.4.6). Then for με > 0, δε > 0, δε > 0 and κε > 0 can be defined so that

sup
x

sup
r1

sup
r2

∣∣∣Ji(x,r1,r2)− JΔi
(
x,r1,u

μ,δ ,Δ
2

)∣∣∣ � ε. (8.4.15)

The expression (8.4.15) holds with the indices 1 and 2 interchanged or if both controls are

approximated and/or further delayed by Δ.

8.4.5 Equilibria and Approximations

A strategy c1(·) for Player 1 is a mapping from U2 to U1 with the following property.

If admissible controls r2(·) and r̃2(·) satisfy, r2(·) = r̃2(·) for s � t, then c1(r2)s, s � t,

and with an analogous definition for Player 2 strategies. Let Ci denote the set of such

strategies or mappings for Player i, i = 1,2. An Elliott-Kalton strategy is a generalization

of a feedback control, [52]. The current control action that it yields for any player is a

function only of the past control actions, and does not otherwise depend on the form of the

strategy of the other player.

A pair ci(·) ∈ Ci, i = 1,2, is said to be an ε-equilibrium strategy pair if for all admissible

controls ri(·), i = 1,2,

J1 (x,c1,c2) � J1 (x,r1,c2)− ε, and

J2 (x,c1,c2) � J2 (x,c1,r2)− ε.
(8.4.16)

The notation J1(x,c1,c2) implies that each Player i, i = 1,2 uses its strategy ci (·). When

writing J1(x,c1,c2), it is assumed that the associated process is well defined. This will

be the case here, since Theorem 8.4.2 implies that it is sufficient to restrict attention to

strategies whose control functions are piecewise constant, finite-valued and can depend

only on slightly delayed values of the other players control realizations. If (8.4.16) holds

with ε = 0, then we have an equilibrium strategy pair. The strategies can be either ordinary
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or relaxed. The notation J2 (x,c1,r2) implies that Player 1 uses its strategy c1(·) and Player

2 uses the relaxed control strategy r2(·).
The above definition of strategy does not properly allow for randomized controls, where

the realized responses given by the strategy of a player to a fixed control process of the

other player might differ, depending on the random choices that it makes. So we also allow

randomized strategies.

(A8.4.3): For each small ε > 0 there is an ε-equilibrium Elliott-Kalton strategy

(cε1(·),cε2(·)) under which the solution to (8.4.1) or (8.4.3) is well defined.

The following approximation result will be a key item in the development. For a proof, we

refer to Kushner [109].

Theorem 8.4.3. Assume condition (A8.4.1) and (A8.4.2). Given ε1 > 0, there are posi-

tive numbers μ , δ , Δ, where Δ/δ is an integer, such that the values for any strategy pair

(c1(·),c2(·)) with ci(·) ∈ Ci and under which the solution to (8.4.3) is well defined, can

be approximated within ε1 by strategy pairs cμ,δ ,Δ
i (·), i = 1,2, of the following form. The

realizations of cμ,δ ,Δ
i (·) (which depend on the other player’s strategy or control) are or-

dinary controls in Ui(μ ,δ ,Δ), and we denote them by uμ,δ ,Δ
i (·). For integers n, k, and

kδ ∈ [nΔ,nΔ+Δ) and αi taking values in Uμ
i , we have,

P
{

uμ,δ ,Δ
i (kδ ) = αi|w(s), s � kδ ; uμ,δ ,Δ

j (lδ ), j = 1,2, l < k
}

= P
{

uμ,δ ,Δ
i (kδ ) = αi|w(lδ ), l � n; uμ,δ ,Δ

j (lδ ), j = 1,2, lδ < nΔ
}

= pi,k

(
αi; w(lδ ), l � n; uμ,δ ,Δ

j (lδ ), j = 1,2, lδ < nΔ
)

,

(8.4.17)

which defines the functions pi,k(·). For each positive value of μ , δ , Δ, the functions pi,k(·)
can be taken to be continuous in the w-arguments, for each value of the other arguments.

Suppose that the control process realizations for Player i are Ui(μ ,δ ,Δ), but those of the

other player are general relaxed controls. Then we interpret (8.4.17), as applied to that

control, as being based on its discretized approximation as derived above Theorem 8.4.2.

8.4.6 A Convenient Representation of the Values in (8.4.17)

It will be useful for the convergence proofs if the random selections implied by the condi-

tional probabilities in (8.4.17) were systematized as follows. Let {θk} be random variables

that are mutually independent and uniformly distributed on [0,1]. The {θk, k � l} will be

independent of all system data before time lδ . For each i, n, k, divide [0,1] into (random)

subintervals whose lengths are proportional to the conditional probability of the αμ,l
i as
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given by equation (8.4.17), and select uμ,δ ,Δ
i [kδ ] = αμ,l

i if the random selection of θk on

[0,1] falls into that subinterval. The same random variables {θk} are used for both players,

and for all conditional probability rules of the form given by (8.4.17). This representation

is used for theoretical purposes only.

8.4.7 The Markov Chain Approximation Method

As we had mentioned earlier in Sections 8.2 and 8.3, the method of Markov chain approx-

imation is the main tool in numerical methods for the game problem and it consists of two

steps. Let h > 0 be an approximation parameter.

(i) The first step is the determination of a finite-state controlled Markov chain ξ h
n that

has a continuous-time interpolation that is an “approximation” of the process x(·), the

solution of (8.4.1).

(ii) The second step solves the optimization problem for the chain and a payoff function

that approximates the one used for x(·).

Such approximations should “stay close” to the physical model and should be able to adjust

to exploit local features. Under a natural “local consistency” condition, it will be shown

that the optimal payoff function for the chain converges to the minimal cost function for

the original problem. The book by Kushner and Dupuis [112] contains a comprehensive

discussion of Markov chain approximation methods including many automatic and simple

methods for getting the transition probabilities and other properties of the chain.

The simplest state space for the chain for model (8.4.1) and (8.4.2) is based on the regular

h-grid Sh in R
v. Define Gh = Sh ∩G and G0

h = Sh ∩G0, where G0 is the interior of G.

On G0
h the chain “approximates” the diffusion part of (8.4.1) or (8.4.3). Let ∂Gh denote

the points in
(
Sh − G0

h

)
that can be reached by the Markov chain in one step from G0

h

under an admissible strategy. These are the boundary points, and the process stops upon

first reaching ∂Gh. It is only the points in G0
h ∪ ∂Gh that are of interest for the numerical

development.

Next, we define the basic condition of local consistency. Let uh
n =

(
uh

1,n,u
h
2,n

)
denote the

strategies that are used at step n. Let ξ h
n be the corresponding controlled Markov chain.

Define, Δξ h
n = ξ h

n+1 − ξ h
n and let Eh,α

x,n denote the expectation given the data up to step n

(when ξ h
n has just been computed) with ξ h

n = x and control value α = uh
n to be used on the

next step. The following steps are for us to relate the chain to the system (8.4.1). For the

game problem, α = (a1,α2) with αi ∈Ui. Define a(x) = σ(x)σ ′(x). Suppose that there is a
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function Δth(·), such that, this defines the functions bh(·) and ah(·). Such a function Δth(·)
can be obtained automatically when the transition probabilities are calculated, as given by

Kushner and Dupuis [112].

Eh,α
x,n δξ h

n ≡ bh(x,α)Δth(x,α) = b(x,α)Δth(x,α)+σ
(
Δth(x,α)

)
,

covh,α
x,n

[
Δξ h

n −Eh,α
x,n Δξ h

n
]
≡ ah(x,α)Δth(x,α) = a(x)Δth(x,α)+o

(
Δth(x,α)

)
, (8.4.18)

and lim
h→0

sup
x∈G
α∈U

δ th(x,α) = 0.

It can be seen that the chain has the “local properties” (conditional mean change and condi-

tional covariance) of the diffusion process of the expression (8.4.1). We can always select

the transition probabilities such that the intervals Δth(x,α) do not depend on the control

variable, although the general theory discussed in Kushner and Dupuis [112] does not re-

quire it. Such a simplification is often done in applications only to simplify the coding. Let

ph(x,y | α) denote the probability that the next state is y given that the current state is x and

strategy pair α = (a1,α2) is used.

Thus, under the given condition that the controls are separated in b(·), in that,

b(x,α) = b1 (x,α1)+b2 (x,α2) ,

and if desired one can construct the chain so that the controls are “separated” in that the

one-step transition probability is of the form

ph(x,y | α) = ph
1(x,y | α1)+ ph

2(x,y | α2). (8.4.19)

Similar to the expression (8.2.12), we could discretize the payoff function, Ji(u) of (8.4.2).

The payoff functions are the analogs of (8.4.2) or (8.4.4). The cost rate for Player i, i = 1,2

is ki(x,αi)Δth(x,α). The stopping costs are gi(·), and τh denotes the first time that the

set G0
h is exited. Let Jh

i (x,uh
1,u

h
2) denote the expected cost for Player i, i = 1,2 under the

control sequences uh
i =

{
uh

i,n, n � 0
}

, i = 1,2. The numerical problem is to solve the

game problem for the approximating chain. For this, we can obtain dynamic programming

equation as discussed in Section 5.3, and then iteratively solve, such as using Gauss-Seidel

procedure, as explained in Section 8.2.

The rest of this section will deal with the convergence aspect. For the convergence proof, it

is useful to have the chains for each h defined on the same probability space, no matter what

the strategies. This is done as follows. Let {Xn} be a sequence of mutually independent

random variables, uniformly distributed on the interval [0,1] and such that {Xl , l � n} is

independent of
{
ξ h

l , uh
l , l � n

}
. For each value of x = ξ h

n , α = uh
n, arrange the finite
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number of possible next states y in some order, and divide the interval [0,1] into successive

subintervals whose lengths are ph(x,y | α). Then, for x = ξ h
n , α = uh

n, select the next state

according to where the (uniformly distributed) random choice for {Xn} falls. The same

random variables {Xn} will be used in all cases, for all controls and all values of h.

The simplest case for illustrative purposes is the one-dimensional case and where h is small

enough so that h|b(α,x)|�σ2(x). Then we can use the transition probabilities and interval,

for x ∈ G0
h, to obtain

ph(x,x±h | α) =
σ2(x)±hb(x,α)

2σ2(x)
,

δ th(x,α) =
h2

σ2(x)
, and

Δth
n =

h2

σ2
(
ξ h

n
) .

(8.4.20)

For y �= x±h, set ph(x,y | α) = 0.

Let F h
n denote the minimal σ -algebra that measures the control and state data to step n,

and let Eh
n denote the expectation conditioned on. An admissible strategy for Player i at

step n is a Ui-valued random variable that is F h
n -measurable. Let U h

i denote the set of the

admissible control processes for Player i, i = 1,2.

A relaxed strategy for the chain can be defined as follows. Let rh
i,n(·) be a probability

distribution on the Borel sets of Ui such that rh
i,n(A) is F h

n -measurable for each Borel set

A ∈ Ui. Then the rh
i,n(·) are said to be relaxed strategies for Player i, i = 1,2 at step n. As

for the model (8.4.3), an ordinary control at step n can be represented by the relaxed control

at step n defined by rh
i,n(a) = I{uh

i,n∈A} for each Borel set A ⊂Ui. Define rh
n(·) by,

rh
n(A1 ×A2) = rh

1,n(A1)rh
2,n(A2),

where the Ai are Borel sets in Ui. The associated transition probability is∫
U

ph(x,y | α)rh
n(dα).

If rh
i,n(a) can be written as a measurable function of ξ h

n for each Borel set A, then the control

is said to be relaxed feedback. Under any feedback (or relaxed feedback or randomized

feedback) control, the process ξ h
n is a Markov chain. More general controls, under which

there is more “past” dependence and the chain is not Markovian, will be used as well. Let

Ch
i denote the set of control strategies for ξ h

n .

For the proofs of convergence, we use a continuous-time interpolation ξ h(·) of
{
ξ h

n
}

that

will approximate x(·). This will be a continuous-time process that is constructed as follows.
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Define,

Δth
n = Δth(ξ h

n ,uh
n
)
,

and

th
n =

n−1

∑
i=0

δ th
i .

Also, let ξ h(t) = ξ h
n on

[
th
n , th

n+1
)

and the continuous-time interpolations uh
i (·) of the control

actions for Player i, i = 1,2 by

uh
i (t) = uh

i,n, th
n � t < th

n+1,

and let its relaxed control representation be denoted by rh
i (·). Let rh(·) = (rh

1(·),rh
2(·)), with

time derivative rh′(·). We shall use Uh
i for the set of continuous time interpolations of the

control for Player i, i = 1,2 as well.

For simplicity of convergence results, we will use an alternative interpolation. For each h,

let vh
n, n = 0,1, . . ., be mutually independent and exponentially distributed random variables

with unit mean, and that are independent of {ξ h
n ,uh

n, n � 0}. Define,

Δτh
n = vh

nδ th
n ,

and

τh
n =

n−1

∑
i=0

δτh
i .

Also, let ψh(t) = ξ h
n and uh

ψ(t) = uh
n on

[
τh

n ,τh
n+1

)
. Now, we proceed to decompose ψh(·)

in terms of the continuous-time compensator and a martingale. Since the intervals between

jumps are Δh
nvh

n, where vh
n is exponentially distributed and independent of F h

n , the jump

rate of ψh(·) when in state x and under control value α is 1/Δth(x,α). Given a jump, the

distribution of the next state is given by the ph(x,y | α), and the conditional mean change

is bh(x,α)Δth(x,α). Thus, we can write

ψh(t) = x(0)+
∫ t

0
bh(ψh(s),uh

ψ(s)
)
ds+Mh(t), (8.4.21)

where the martingale Mh(t) has quadratic variation process
∫ t

0
αh(ψh(s),uh

ψ(s)
)
ds.

Under any feedback (or randomized feedback) control, the process ψh(·) is a continuous-

time Markov chain.
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It can be shown that there is a martingale ŵh(·), with respect to the filtration generated by

the state and control processes, possibly augmented by an “independent” Wiener process,

such that,

Mh(t) =
∫ t

0
σh(ψh(s),uh

ψ(s)
)
dŵh(s) =

∫ t

0
σh(ψh(s),uh

ψ(s)
)
dŵh(s)+ εh(t), (8.4.22)

where σh(·)
[
σh(·)

]′ = αh(·), recall the definition of αh(·) in (8.4.18), that ŵh(·) has

quadratic variation It, where I represents the identity matrix, and converges weakly to a

standard Wiener process. The martingale εh(·) is due to the difference between σ(x) and

σh(x), also, recall the o(Δth) terms in (8.4.18) and the fact that

lim
h→0

sup
uh

E sup
s�t

∣∣εh(s)
∣∣2 = 0 (8.4.23)

for each t. Thus, the rh
ψ(·) is the relaxed control representation of uh

ψ(·), given by

ψh(t) = x(0)+
∫ t

0

∫
U

bh(ψh(s),α
)
rh′
ψ (dα,s)ds+

∫ t

0
σh(ψh(s)

)
dŵh(s)+ εh(t). (8.4.24)

The processes ξ h(·) and ψh(·) are asymptotically equivalent, as it will be seen in the fol-

lowing theorem, so that any asymptotic results for one are also asymptotic

results for the other. We will use ξ h(·). Under local consistency, both the time scales with

intervals Δth
n and Δτh

n are asymptotically equivalent.

By equation (8.4.18), we can write,

ξ h
n+1 = ξ h

n +bh(ξ h
n ,uh

n
)
Δth

n +β h
n ,

where β h
n is a martingale difference with

Eh
n
[
β h

n
][
β h

n
]′ = αh(ξ h

n ,uh
n
)
Δth

n .

There are martingale differences δwh
n with conditional (given Fh

n ) covariance Δth
n I, such

that, β h
n = σh

(
ξ h

n ,uh
n
)
δwh

n. Let wh(·) denote the continuous time interpolation of ∑n−1
i=0 δwh

n

with intervals Δth
n . Then, with similar notation, we can write,

ξ h(t) = x(0)+
∫ t

0
bh(ξ h(s),uh(s))ds+

∫ t

0
σh(ξ h(s))dwh(s)+ εh(t), and

∫ t

0
σh(ξ h(s),uh(s))dwh(s) =

∫ t

0
σh(ξ h(s))dwh(s)+ εh(t),

(8.4.25)

where εh(·) satisfies equation (8.4.23) and is due to the O(Δth) approximation of αh(x,α)

by σ(x)σ(x)′.
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8.4.8 On the Construction of δwh(·)

Full details for the general method of constructing wh(·), are given in Kushner and Dupuis

[112], we shall briefly discuss the process. Suppose that σ(·) = σ is a constant. Also,

we shall assume that the components of x can be partitioned as x = (x1,x2), and σ can be

partitioned as

σ =

[
σ1 0

0 0

]
,

where the dimension of x1 is d1, and σ1 is a square and invertible matrix of dimension d1.

Partition the ah(·) in the second line of equation (8.4.18) as

ah(x,α) =

[
ah

1(x,α) ah
1,2(x,α)

ah
2,1(x,α) ah

2(x,α)

]
.

Thus, as h→ 0, ah
1(·)→σ1[σ ]′, and all other components go to zero, all uniformly in (x,α).

Write the analogous partition by wh(·) =
(
wh

1(·),wh
2(·)

)
. For any Wiener process w2(·) that

is independent of the other random variables, we can let wh
2(·) = w2(·). The only important

component of wh(·) is wh
1(·) and we can write

δwh
1,n ≡ wh

1
(
th
n+1

)
−wh

1
(
th
n
)

=
[
ah

1
(
ξ h

n ,uh
n
)]−1/2

[
ξ h

1,n+1 −ξ h
1,n −

∫ th
n+1

th
n

∫
U

bh
1
(
ξ h

n ,α
)
rh′(s,dα)ds

]

= [σ1]−1

[
ξ h

1,n+1 −ξ h
1,n −

∫ th
n+1

th
n

∫
U

bh
1
(
ξ h

n ,α
)
rh′(s,dα)ds

]
+δε1,h

n ,

(8.4.26)

where δε1,h
n is due to the approximation of ah

1(·) by σ1[σ1]′ and its continuous time interpo-

lation satisfies expression (8.4.23). If an ordinary control is used, then the double integral

is simply b1
(
ξ h

n ,uh
n
)
Δth

n .

8.4.9 First Approximations to the Chain

Consider the representation (8.4.25), and for μ , δ , Δ, as used in Theorem 8.4.2 and the

rh(·) = (rh
1(·),rh

2(·)) in (8.4.25), define the approximation uμ,δ ,Δ,h
i (·), i = 1,2, analogously

to what was done above Theorem 8.4.2. For the process wh(·) that appears in expression

(8.4.25) under the original control rh(·), define the process

ξ μ,δ ,Δ,h(t) = x(0)+
∫ t

0
b
(
ξ μ,δ ,Δ,h(s),uμ,δ ,Δ,h(s)

)
ds+

∫ t

0
σ

(
ξ μ,δ ,Δ,h(s)

)
dwh(s). (8.4.27)
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Let rμ,δ ,Δ,h
i (·) denote the relaxed control representation of uμ,δ ,Δ,h

i (·). The process defined

by (8.4.27) is not a Markov chain even if the controls are feedback, since the wh(·) is ob-

tained from the process (8.4.25) under rh(·) and not under the rμ,δ ,Δ,h
i (·), i = 1,2. Let

W μ,δ ,Δ,h
i

(
x,rμ,δ ,Δ,h

i ,rμ,δ ,Δ,h
2

)
denotes the cost for the process (8.4.27). Also, define the dis-

crete time system by

ξ̃ μ,δ ,Δ,h(nΔ+Δ) = ξ̃ μ,δ ,Δ,h(nΔ)+
∫ nΔ+Δ

nΔ
b
(
ξ̃ μ,δ ,Δ,h(nΔ),uμ,δ ,Δ,h(s)

)
ds

+σ
(
ξ̃ μ,δ ,Δ,h(nΔ)

)[
wh(nΔ+Δ)−wh(nΔ)

]
,

(8.4.28)

with initial condition x(0) and piecewise-constant continuous-time interpolation denoted

by ξ̃ μ,δ ,Δ,h(·). Let W̃ μ,δ ,Δ,h
i

(
x,rμ,δ ,Δ,h

1 ,rμ,δ ,Δ,h
2

)
denote the associated cost. Thus, we have

the following analog of Theorem 8.4.2.

Theorem 8.4.4. Assume condition (A8.4.1). Given (μ ,δ ,Δ) > 0, approximate rh
i (·) as

noted above to get rμ,δ ,Δ,h
i (·). Given ε > 0 and t <∞, there are με > 0, δε > 0, Δε > 0 and

κε > 0, such that, for μ � με , δ � δε , δ � Δε and δ/Δ� κε ,

limsup
h→0

sup
x,rh

1 ,rh
2

E sup
s�t

∣∣ξ μ,δ ,Δ,h(s)−ξ h(s)
∣∣ � ε, (8.4.29)

and if (A8.4.2) holds in addition, then

lim sup
h→0

sup
x,rh

1 ,rh
2

∣∣∣Jμ,δ ,Δ,h
i

(
x,rμ,δ ,Δ,h

1 ,rμ,δ ,Δ,h
2

)
− Jh

i
(
x,rh

1,r
h
2
)∣∣∣ � ε. (8.4.30)

The expressions (8.4.29) and (8.4.30) hold if only one of the controls is approximated, and

also if ξ μ,δ ,Δ,h(·) and W μ,δ ,Δ,h
i (·) are replaced by ξ̃ μ,δ ,Δ,h(·)J̃μ,δ ,Δ,h

i (·), respectively.

Again, we refer to the complete works of Kushner [109] for the proof.

8.4.10 Representations of the Chain With Control-Independent Driving Noise

Consider the case where the driving noise wh(·) depends on the path and control. We will

need to factor wh(·) as wh(·) = wh(·)+ ζ h(·) where wh(·) does not depend on the control

and ζ h(·) is “asymptotically negligible.” We will work with the model, where

σ =

[
σ1 0

0 0

]
,

the dimension of x1 is d1, and σ1 is a square and invertible matrix of dimension d1. Let

bi(·) denote the ith component of b(·).

Case 1. This case arises when one uses the so-called central-difference approximation to

get the transition probabilities. Suppose that d1 = v, so that σ is invertible. For a = σσ ′,
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suppose that ai,i −∑ j: j �=i |ai, j| � 0. Let ei denote the unit vector in the ith coordinate di-

rection. A “central-difference” version of the canonical form of the transition probabilities

and interpolation interval is given by

ph(x,x± eih | α) =
qi,i ±hbi(x,α)/2

Q
, δ th(x,α) = Δth =

h2

Q
,

ph(x,x+ eih+ eih | α) = ph (x,x− eih− e jh | α) =
a+

i, j

2Q
,

ph(x,x+ eih− e jh | α) = ph (x,x− eih+ e jh | α) =
a−i, j

2Q
, and

Q =∑
i

ai,i − ∑
i, j:i �= j

|ai,i|
2

, qii =
ai,i

2
− ∑

j: j �=i

|ai, j|
2

.

(8.4.31)

Now, let us consider that qi,i −h|bi(x,α)| � 0. A strait forward computation using (8.4.31)

shows that bh(x,α) = b(x,α) and ah(x,α) = σσ ′ +O(Δth). Also, by equation (8.4.31) we

can write Δth
n = Δth. In one dimension, (8.4.31) reduces to (8.3.20), where q1,1 = σ2/2.

Case 2. This case arises when one uses a central-difference approximation for the non-

degenerate part and a one-sided or “upwind” approximation for the degenerate part Suppose

that s can be partitioned as in expression (8.4.19).

For example,

σ =

[
σ1 0

0 0

]

where the dimension of x1 is d1, and σ1 is a square and invertible matrix of dimension d1.

The problem concerns the effect of the degenerate part.

The following canonical model for such cases is motivated by the general model of Kushner

and Dupuis [112]. Define b = supx,α ∑v
i=d1+1 |bi(x,α)|. For this case, redefine

Δth = Δth(x,α) = h2/[
Q+hb

]
.

Proceed to use the form of (8.4.31) for i � d1, with Q replaced by Qh = Q + hb. For

i = d1 +1, . . . ,v, use

ph(x,x± eih | α) =
hbi(x,α)

Qh ,

and

ph(x,x | α) =
hb−h∑v

i=d1+1 |bi(x,α)|
Qh .

We still have ah(x,α) = σσ ′ + O(Δth) and bh(x,α) = b(x,α). Let Eh
n denote the expec-

tation given all the data up to step n. The proof of the next result can be found in Kush-

ner, [109].
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Theorem 8.4.5. Use either of the models Case 1 or Case 2 described above. Then we

can write, δwh
n = δwh

n + δζ h
n where the components are martingale differences. The δwh

n

are
{
δwh

n, l � n
}

independent of
{
ξ h

1 ,uh
1, l � n

}
, and the components have values O(h).

Also, for either case Eh
nδwh

n
[
δwh

n
]′ = Δth, and Eh

nδζ h
n
[
δζ h

n
]′ = O

(
hΔth

)
, Eh

nδζ h
n
[
δwh

n
]′ =

O
(
hΔth

)
.

In the next result, σ(·) is just the constant σ . Theorem 8.4.5 implies that ξ h(·) can be

written in the form of

ξ h(t) = x(0)+
∫ t

0

∫
U

b
(
ξ h(s),α

)
rh′ (dα,s)ds+

∫ t

0
σdwh(s)+ εh

2 (t), (8.4.32)

where εh
2 (·) equals εh

1 (·) plus a stochastic integral with respect to ζ h(·),and satisfies

(8.4.23). The quadratic variation process of wh(·) is It, where I is the identity matrix.

Now, we have the following result.

Theorem 8.4.6. Assume (A8.4.1) and the models of Theorem 8.4.5. Define

ξ
h
(t) = x(0)+

∫ t

0

∫
U

b
(
ξ

h
(s),α

)
rh′(dα,s)ds+

∫ t

0
σdwh(s). (8.4.33)

then, for each t > 0,

lim
h→0

sup
x(0),rh

E sup
s�t

∣∣∣ξ h(s)−ξ h
(s)

∣∣∣2
= 0. (8.4.34)

If (A8.4.2) is assumed as well, then the costs for the two processes are arbitrarily close,

uniformly in the control and initial condition.

Also, given (μ ,δ ,Δ) > 0, let uμ,δ ,Δ,h
i (·) be the delayed and discretized approximation of

rh
i (·) that would be defined by the procedure above Theorem 8.4.2, with relaxed control

representation of the pair (i = 1,2) of approximations being rμ,δ ,Δ,h(·). Define the system

ξ
μ,δ ,Δ,h

(t) = x(0)+
∫ t

0

∫
U

b
(
ξ
μ,δ ,Δ,h

(s),α
)

rμ,δ ,Δ,h′ (dα,s)ds. (8.4.35)

Then, for t > 0 and γ > 0 there are positive numbers μγ , δγ , Δγ , hγ ,κγ such that for μ � μγ ,
δ � δγ , Δ� Δγ , h � hγ , δ

/
Δ�κγ , we have,

sup
rh,x(0)

E sup
s�t

∣∣∣ξ μ,δ ,Δ,h
(s)−ξ h

(s)
∣∣∣2

� γ. (8.4.36)

If (A8.4.2) is assumed as well, then for small (μ ,δ ,Δ,h) the costs are arbitrarily close,

uniformly in the control and initial condition.

The next result states that an approximate equilibrium for the diffusion model (8.4.1) or

(8.4.3) is an approximate equilibrium for the chain and vice versa. This can be proved

using the techniques we discussed in Chapter 6. For complete details, see Kushner [109].

Theorem 8.4.7. Assume (A8.4.1), (A8.4.2), and (A8.4.3). An ε-equilibrium value for

(8.4.1) or (8.4.3) is an ε1-equilibrium value for the approximating Markov chain, where

ε1 → 0 as ε → 0.
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8.4.11 The Converse Result

If the ε-equilibrium value for the chain is unique for arbitrarily small ε , then the converse

result is true; namely, that ε-equilibrium values for the chain are ε1-equilibrium values for

(8.4.3), where ε1 → 0 as ε → 0, and we are done, since Theorem 8.4.7, implies that the

ε-equilibrium values for the diffusion are also unique for small ε , and that the numerical

solutions will converge to the desired value. If the ε-equilibrium value for the chain is not

unique for arbitrarily small ε , then we will show that this “converse” assertion is true for the

models used in Theorem 8.4.5. When σ(·) is constant, we have next result, due to Kushner

[109]. To show the converse result when σ(·) depends on x, needs further research.

Theorem 8.4.8. Assume (A8.4.1) and (A8.4.2) and the models used in Theorem 8.4.5,

where σ(·) is constant. Then for any ε > 0 there is ε1 → 0 which goes to zero as ε → 0

such that an ε-equilibrium value for the chain ξ h
n for small h is an ε1-equilibrium value for

(8.4.3).

In this Chapter, we have summarized some of the numerical methods for stochastic dif-

ferential games that are based on Markov chain approximation method. These results are

originally derived by Kushner, [107, 108, 109], and we refer the reader to these works for

more details. It is important to observe that the basic Markov chain methods are similar

for most types of the game problems and the basic philosophy of these approximations for

both control and game problems are same. Majority of discussion in this Chapter as well

as different works in numerical methods for control and game problems in literature deal

with convergence aspect. Efficient coding of the methods developed here needs further at-

tention. Some basics of coding in the case of control of heavy traffic queues (that also can

be adapted to other forms of control problem) is discussed in Kushner and Ramachandran,

[113]. For a general development of numerical methods based on Markov chain approxi-

mation, we refer to an excellent book by Kushner and Dupuis, [112].



Chapter 9

Applications to Finance

9.1 Introduction

Stochastic differential game models are increasingly used in various fields ranging from

environmental planning, market development, natural resources extraction, competition

policy, negotiation techniques, capital accumulation, investment and inventory manage-

ment, to name a few. Military applications of differential games such as aircraft combat

and missile control are well known. There are tremendous amount of work in the field of

mathematical finance and economics, Basak et al. [8], Basu et al. [18], Ramachandran

et al. [162], [168], Samuelson [173], Shell [176], Sorger [179], Wan [206], Yeung [214],

among others. In this chapter, we will discuss a couple of such applications.

In Yavin [208], stochastic differential game techniques are applied to compare the perfor-

mance of a medium-range air-to-air missile for different values of the second ignition time

in a two-pulse rocket motor. The measure of performance is the probability that it will

reach a lock-on-point with a favorable range of guidance and flight parameters, during a

fixed time interval. A similar problem is considered in Yavin and de Villiers [212].

In mathematical finance, it is common to model investment opportunities through game the-

ory. For example, if two investors (players) who have available two different, but possibly

correlated, investment opportunities, could be modeled as stochastic dynamic investment

games in continuous time, Browne [33]. There is a single payoff function which depends

on both investors’ wealth processes. One player chooses a dynamic portfolio strategy in or-

der to maximize his/her expected payoff while his/her opponent is simultaneously choosing

a dynamic portfolio strategy so as to minimize the same quality. This leads to a stochas-

tic differential game with controlled drift and variance. Consider games with payoffs that

depend on the achievement of relative performance goals and/or shortfalls. Browne [33]

provide conditions under which a game with a general payoff function has an achievable

215
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value, and gave an explicit representation for the value and resulting equilibrium portfolio

strategies in that case. It is shown that non perfect correlation is required to rule out trivial

solutions. This result allows a new interpretation of the market price of risk in a Black-

Scholes world. Games with discounting strategies are also discussed as are games of fixed

duration related to utility maximization. In Basar [12], a stochastic model of monetary pol-

icy and inflation in continuous-time has been studied. We refer the reader to Smith [178]

for a review of: (i) the development of the general equilibrium option pricing model by

Black and Scholes, and the subsequent modifications of this model by Merton [133] and

others; (ii) the empirical verification of these models; and (iii) applications of these models

to value other contingent claim assets such as the debt and equity of a levered firm and dual

purpose mutual funds.

Economists are interested in bargaining not only because many transactions are negotiated

but also because, conceptually, bargaining is precisely the opposite of the “perfect com-

petition” among infinitely many traders, in terms of which economists often think about

the markets. With the advances in game theory, attempts were made to develop theories

of bargaining which would predict particular outcomes in the contract curve. John Nash

initiated work on this direction. Nash’s approach of analyzing bargaining with comple-

mentary models –abstract models which focus on outcomes, in the spirit of “cooperative”

game theory, and more detailed strategic models, in the spirit of “non-cooperative” game

theory –has influenced much of the game theoretic applications in economics. We refer

to Gaidov [73], and Roth [168, 169] for more details as well as details on some new ap-

proaches based on experimental economics. For a study on stochastic differential games in

economic modeling, refer to Haurie [86]. We will now describe the idea of Nash equilib-

rium applied to the study of institutional investor speculation. The material described in the

next subsection mainly comes from Yeung [214]. Later, we will also discuss a competitive

advertising under stochastic perturbations.

9.2 Stochastic Equity Investment Model with Institutional Investror
Speculation

In recent times, we have witnessed mounting concern and interest in the growing power

of institutional investors (fund houses of various kinds) in financial markets. The shares

of corporations have been increasingly concentrated in the hands of institutional investors

and these investors have become the major holders of corporate stock. Since the asset

prices are mainly influenced by trading, a large volume of speculative buying and selling
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by institutional investors often produce a profound effect on market volatility. The asset

prices might fluctuate for reasons having to do more with speculative activities than with

information about true fundamental values which leads to study investment behavior in a

strategically interactive framework. Since the financial assets are traded continuously, it is

reasonable to assume that the price dynamics are continuous time stochastic process.

Let R(s) be the gross revenue/earning of a firm at time s ∈ [0,∞) and let m be the corre-

sponding outlay generating this return. The net return/earnings of the stock of the firm at

time s are then R(s)−m. The value of the firm at any time t with the discount rate r can be

expressed as

V (t) =
∫ ∞

t
[R(s)−m]exp[−r(s− t)]ds. (9.2.1)

The value V (t), normalized with respect to the total number of shares issued, reflects actu-

ally the price of the firm’s stock and is denoted by P(t). The future gross revenues are not

known with certainty and vary over time according to the following dynamics:

dR(s) = k
[
R−R(s)

]
ds+R(s)�dw(s), (9.2.2)

where w(s) is a Wiener process. The term � is a scalar factor governing the magnitude of

the stochastic element. Gross revenue tends to perturb around a central tendency R, and k

is the positive parameter gauging the rate adjustment of gross revenues toward their central

tendency. Hence, the net return of the firm is centered around R−m. Also, R(s) remains

positive if its initial value is positive. To simplify the derivation of a closed form solution,

the proportion of m to R is assumed to be equal to k/(r + k).

An issue concerning institutional investors is that they are capable of initiating large block

transactions. Since asset prices are influenced largely by trading, a large volume of spec-

ulative buying and selling by institutional investors often produces a significant effect on

market volatility. The following model reflects the sensitivity of market price to insti-

tutional investor’s actions. Let there be n institutional investors in the market. In Yeung

[214], it is assumed that n is less than three and the price dynamics is given by the following

expression,

dP(s) =

⎧⎨
⎩−a

[
n

∑
j=1

u j

]1/3

− (k/r)[rP(s)−
(
R−m

)
]

⎫⎬
⎭ds+P(s)dw(s), (9.2.3)

where u j is the quantity of stock sold by institutional investor j. Negative u j represents

quantity of stock purchased. The parameter a is used to gauge the sensitivity of the market

price to the large trader’s action. The dynamics given by (9.2.3) show that institutional

buying would create an upward pressure on equity, price and that institutional selling would
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exert a downward pressure. Denoting the quantity of the stock held by institutional investor

i at time s by xi(s) and the discount rate by r, the ith investor seeks to maximize the payoff

given by

Ji(ui,P,R,x, t) = E0

[∫ ∞

0

{
P(s)ui(s)+ [R(s)−m]xi(s)

}
exp(−rs)ds

]
, (9.2.4)

subject to the stock dynamics

dxi(s) = −ui(s)ds, (9.2.5)

earning variation (9.2.2) and price dynamics as expressed in (9.2.3). The term P(s)ui(s)

represents the revenue/outlay from selling/buying of stocks at time s, and the dividend yield

is [R(s)−m]xi(s). Equation (9.2.5) shows that the quantity of stock held by institutional

investor i varies according to their buying and selling the stock.

Now we consider the equilibrium outcome in the equity market defined by (9.2.2), (9.2.3),

(9.2.4) and (9.2.5). For the solution concept, we will adopt a feedback Nash equilibrium

(FNE) notion. The institutional investors use feedback buying and selling strategies, which

at each point of time s depend on the observed values of stock price, the firm dividend, and

the quantity of stock held by each institutional investor. Let x = (x1, . . . ,xn) be the vector

of stock holdings of institutional investors.

Definition 9.2.1. A feedback buying and selling strategy of institutional investor i is de-

cisions rule ui(s) = Φ(P,R,x,s), such that, Φi is uniformly Lipschitz continuous in P, R,

and x at every instant s in the game horizon. The set of feasible feedback strategies for

institutional investor i is denoted by Ai.

These feedback strategies satisfy the property that investors actions are based on observed

market information at each time instant. The maximized payoff of the ith institutional

investor is denoted by

V i(P,R,x, t) = max
ui∈Ai

Ji(ui,P,R,x, t). (9.2.6)

By the principle of optimality, V i(P,R,x, t) must satisfy the following Hamilton-Jacobi-

Bellman (HJB) equations, that is,

V i
t =max

ui∈Ai

{
V i

xi
ui − [Pui +(R−m)xi exp(−rt)

+V i
P

(
−a

( n

∑
j=1

u j

)3

− (k/r)
[
rP−

(
R−m

)])

+V i
R
[
k
(
R−R

)]
+(1/2)V i

PP�
2
R

2 +V i
PR�

2PR
]}

,

(9.2.7)
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i = 1, . . . ,n. Equations (9.2.7) characterize the maximized payoffs and give conditions from

which the optimal feedback strategies of the institutional investors are derived. From this,

the following set of first order equations are obtained, given by

Pexp(−rt) = V i
xi

+V i
P3a

( n

∑
j=1

u j

)2

, i = 1, . . . ,n. (9.2.8)

The left hand side term of (9.2.8) is the price (in present value) of a unit of the firm’s

stock. The term V i
xi

measures the change in maximized payoff due to marginal change in

the quantity of stock held by the institutional investor i. The term V i
P is the change in the

investor i maximizing the payoff brought about by a marginal change in price and can be

interpreted as the marginal value of maintaining price at P. The marginal effect on the stock

price brought about by buying and selling is represented by the term 3a
(
∑n

1 u j
)2. The right

hand side of equation (9.2.8) reflects the marginal cost (gain) of selling (buying) and the

left hand side shows the marginal cost (gain) of selling (buying). In an optimal situation,

institutional investors would buy or sell up to the point where the marginal gain equals the

marginal cost of trading the stock. Since the marginal effect of one institutional investor

buying and selling on the stock price is related to the actions of other institutional investors,

the optimal strategies are interrelated. The best (optimal) response/reaction functions of the

institutional investor i to the actions of the competitors at time t can be expressed as

ui =
{[

Pexp(−rt)−V i
xi

]
/3aV i

P
}1/2 −

n

∑
j �=i
j=1

u j. (9.2.9)

The derivation of institutional investor i’s optimal strategy at any time is a decision making

process which takes into consideration three types of factors: (i) current observed market

information (P(t),R(t),x(t),r), (ii) optimal strategies chosen by competing institutional

investors, and (iii) marginal value of holding the stock and marginal value of maintaining

price at P. The first type of factor is available at each instant of time. The second factor is

derived from the premise that investors are rational and they choose their actions with full

consideration of their competitor rational behavior. The third type of factor is the result of

inter temporal optimization.

Substituting ui, i = 1, . . . ,n, that are obtained in equation (9.2.9) into the Hamilton-Jacobi-

Bellman (HJB) equations (9.2.7), one gets a set of parabolic partial differential equations.

Now, the task is to find a set of twice differentiable functions V i : R
3 × [0,∞) → R that

are governed by this set of partial differential equations. The smooth functions yield the

optimal payoffs of the institutional investors and proceed to solve the game. The optimal

payoffs are obtained in Yeung [203] as

V i(P,R,x, t) =
{

A[P−R/(r + k)]4/3 +[R/(r + k)]xi
}

exp(−rt), i = 1, . . . ,n, (9.2.10)
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where A is a constant given by,

A =
{[

a−1/2((1/2n)− (1/6))
]
÷

[
r +(3/4)k− (2/9)�2]}2/3

.

The value function V i(P,R,x, t) yields the equilibrium payoff of institutional investor i.

Following Samuelson [161], it is assumed that �
2 � k. This assumption guarantees that A is

positive. From (9.2.10), one can derive two marginal valuation measures. The institutional

investor i’s marginal value of maintaining the price at P can be derived as

V i
P = (4A/3)[P−R/(r + k)]1/3 exp(−rt). (9.2.11)

The investor’s marginal value of holding the stock can be obtained by

V i
xi

= [R/(r + k)]exp(−rt). (9.2.12)

The marginal value of stock holding is always positive. It is increasing in the current

earnings and reflects the fact that higher yields raise the value of holding the stock. At the

same time, it is negatively related to the discount rate and exhibits the property that the gain

from investing in the stock decline as the discount rate raises. Also from equation (9.2.11),

the investor marginal value of maintaining the price at P is positive (negative) when P is

greater (less) than R/(r + k).

Now we can derive a feedback Nash equilibrium of the equity market with speculating

investors. Substituting V i
P in (9.2.11) and V i

xi
in equation (9.2.12) into the optimal strategies

given in equation (9.2.9), the feedback Nash equilibrium buying and selling strategies of

institutional investor i is obtained by

Φi(P,R,x, t) = (1/n)(1/4Aa)1/2[P−R/(r + k)]1/3, i = 1, . . . ,n. (9.2.13)

The set of feedback buying and selling strategies in equation (9.2.13) constitutes a feedback

Nash equilibrium of the equity market as characterized by (9.2.2), (9.2.3), (9.2.4), and

(9.2.5). These buying and selling strategies are decision rules contingent upon the current

values of the price and earnings.

To examine the impact of the institutional investor speculation on stock price volatility,

substitute the feedback strategies in (9.2.13) into (9.2.3) to obtain the equilibrium price

dynamics, that is,

dP(s) =
{
− a(1/4aA)3/2[P(s)−R(s)/(r + k)]

− (k/r)[rP(s)− rR/(r + k)]
}

+P(s)�dw(s).
(9.2.14)

These along with equation (9.2.2) characterize the joint behavior of the stock price and

earnings of the firm. In Samuelson [173], for the equity market with numerous ordinary

investors, the change in stock price of the firm is modeled by

dP(s) = −(k/r)[rP(s)−
(
R−m

)
]ds+P(s)�dw(s). (9.2.15)
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A comparison between (9.2.14) and (9.2.3) shows additional movements, symbolized as

the first term in the right-hand side of (9.2.14), in the price dynamics caused by institu-

tional investors. In Yeung [214], an analysis is given to show that the prices tend to rise

in spite of the fact that they have been valued above their intrinsic value and prices tend to

drop although P(s) is below its intrinsic value in the presence of institutional speculation.

Hence, one could conclude that the market is more volatile in the presence of institutional

speculation. The following results are proved by Yeung [214]: (i) The greater the discrep-

ancy between P and R/(r +k), the higher the profit of an institutional investor, and (ii) The

greater the degree of uncertainty in the market, the higher the speculative profits. This im-

plies that institutional investors are more attracted to markets with high uncertainty, like

emerging markets.

9.3 Competitive Advertising under Uncertainty

Analysis of advertising policies has always been occupying a front-and-center place in

market research, Chintagunta et al. [39], Erickson [54], Prasad and Sethi [153], and Sorger

[179], among others. In this section, we will present an application of stochastic differ-

ential games to an optimal advertising spending in a duopolistic market where each firm’s

market share depends on its own and its competitor’s advertising decisions, under random

disturbances. All of the material of this section is covered in Prasad and Sethi [153]. A

differential game model of advertising is used in which the dynamic behavior is based on

the classic Vidale-Wolfe advertising model, [204], and the Lanchester model of combat, as

well as being perturbed by a Brownian motion. The combination of the large amounts of

money spent on advertising and potential inefficiencies in the advertising budgeting process

motivates the interest in better understanding of optimal advertising budgeting.

We examine a duopoly market in a mature product category where the two firms compete

for market share using advertising as the dominant marketing tool. The firms are strate-

gic in their behavior. That is, they take actions that maximize their objective while also

considering the actions of the competitor. Additionally, they interact dynamically for the

foreseeable future. This is in part due to the carry-over effect of advertising. This means

that advertising today’s spending will continue to influence sales several days or months

down the line. Each firm’s advertising acts to increase its market share while the competi-

tor’s advertising acts to reduce other firm’s market share. It should be observed that due

to the inherent randomness in the marketplace and in the choice behavior of customers,
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marketing and competitive activities alone do not govern market shares in a determinis-

tic manner. The market for cola drinks, dominated by Coke, Pepsi and their Cola Wars,

provides us with an example of a market with such features, Erickson [54].

For a competitive market with stochastic disturbances and other features as described

above, the objective then is to find optimal advertising expenditures over time for the two

firms. Due to the carry-over effect of advertising, the optimal advertising spending over

time need to be determined using dynamic optimization methods. For this purpose, we

formulate a stochastic differential game model. It will be shown that there is a unique

equilibrium where the optimal advertising for both firms follows a simple rule.

9.3.1 The Model

Consider a duopoly market in a mature product category where total sales are distributed

between the two firms, denoted as firm 1 and firm 2, which compete for the market share

through advertising spending. Denote the market shares of firms 1 and 2 at time t as x(t)

and y(t), respectively.

We shall use the following notation where the subscript i ∈ {1,2} is to reference the two

firms. Let, x(t) ∈ [0,1] is the market share for firm 1 with x(0) = x0, and y(t) = 1− x(t) is

the market share for firm 2 with y(0) = 1− x0. Also, ui(x(t),y(t)), t � 0 is the advertising

rate by firm i at time t, and ρt > 0 is the advertising effectiveness parameter for firm i. Let

δ > 0 be the market share decay or chum parameter, rt > 0 is the discount rate for firm i,

C(ui(t)) is the cost of advertising, parameterized as ciui(t)2, ci > 0, σ(x(t),y(t))dw(t) is

the disturbance function with standard white noise, Vi is the value function for firm i, αi, βi

are the components of the value function, and Ri = ρ2
i /4c, Wi = ri +2δ , Ai = βiρ2

i
2ci

+δ are

some useful intermediate terms.

The model dynamics are given by the system of equations,{
dx =

[
ρ1u1(x,y)

√
1− x−ρ2u2(x,y)

√
x−δ (x− y)

]
dt +σ(x,y)dw, x(0) = x0,

dy =
[
ρ2u2(x,y)

√
1− y−ρ1u1(x,y)

√
y−δ (y− x)

]
dt −σ(x,y)dw, y(0) = y0.

(9.3.1)

The market share is nondecreasing with its own advertising, and non-increasing with the

competitor’s advertising expenditure. Consistent with the literature on the subject matter,

non-competitive decay is proportional to market share. As we previously discussed, this

churn (or decay) is caused by influences other than competitive advertising, such as a lack

of perceived differentiation between brands, so that market shares tend to converge in the

absence of advertising. Note that in a duopoly situation, the decay of market share for one
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firm is a gain in market share for the other. The market shares are subject to a white noise,

σ(x,y)dw.

Since dx + dy = 0 and since x(0)+ y(0) = 1, this implies that x(t)+ y(t) = 1 for all t �
0. Thus, y(t) = 1− x(t). Consequently, we need only use the market share of firm 1 to

completely describe the market dynamics. Thus, ui(x,y), i = 1,2 and σ(x,y) can be written

as ui(x,1− x) and σ(x,1− x). With abuse of notation, we will use ui(x) and σ(x) in place

of ui(x,1− x) and σ(x,1− x), respectively. Thus,

dx = [ρ1u1(x)
√

1− x−ρ2u2(x)
√

x−δ (2x−1)]dt +σ(x)dw, x(0) = x0, (9.3.2)

with 0 � x0 � 1.

An important consideration when choosing a formulation is that the market share should

remain bounded within [0,1], which can be problematic given the stochastic disturbances.

In our model it is easy to see that x ∈ [0,1] almost surely (i.e., with probability 1) for

t > 0, as long as ui(x) and σ(x) are continuous functions which satisfy Lipschitz conditions

on every closed subinterval of (0,1) and further that ui(x) � 0, x ∈ [0,1] and σ(x) > 0,

x ∈ (0,1) and σ(0) = σ(1) = 0. With these assumptions, we have a strictly positive drift at

x = 0 and a strictly negative drift at x = 1, that is,

ρ1u1(0)
√

1−0+δ > 0, and −ρ2u2(1)−δ < 0. (9.3.3)

Then from Gihman and Skorohod (1973) (Theorem 2, pp. 149, 157–158), x = 0 and x = 1

are natural boundaries for the solutions of equation (9.3.2) with x0 ∈ [0,1], i.e., x ∈ (0,1)

almost surely for t > 0.

Let mi denote the industry sales volume multiplied by the per unit profit margin for firm i.

The objective functions for the two firms are given by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

V1(x0) = max
u1�0

E
∫ ∞

0
e−r1t[m1x(t)− c1u1(t)2]dt, and

V2(x0) = max
u2�0

E
∫ ∞

0
e−r2t[m2(1− x(t))− c2u2(t)2]dt, such that,

dx =
[
ρ1u1(x)

√
1− x−ρ2u2(x)

√
x−δ (2x−1)

]
dt +σ(x)dw,

x(0) = x0 ∈ [0,1].

(9.3.4)

Thus, each firm seeks to maximize its expected, discounted profit stream subject to the

market share dynamics.

Now, we want to find the closed-loop Nash equilibrium strategies, for which, we form the

Hamilton-Jacobi-Bellman (HJB) equation for each firm. That is,

r1V1 =max
u1

{
m1x− c1u2

1

+V ′
1
(
ρ1u1

√
1− x−ρ2u∗2

√
x−δ (2x−1)

)
+
σ(x)2V

′′
1

2

}
(9.3.5)
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and

r2V2 =max
u2

{
m2(1− x)− c2u2

2

+V ′
2
(
ρ1u∗1

√
1− x−ρ2u2

√
x−δ (2x−1)

)
+
σ(x)2V

′′
2

2

}
, (9.3.6)

where V ′
i = dVi

dx , V
′′
i = d2Vi

dx2 and u∗1 and u∗2 denote the competitor’s advertising policies in

equations (9.3.5) and (9.3.6), respectively. We obtain the optimal feedback advertising

decisions

u∗1(x) = max
(

0,
V ′

1(x)ρ1
√

1− x
2c1

)
and u∗2(x) = max

(
0,−V ′

2(x)ρ2
√

x
2c2

)
. (9.3.7)

Since 0 � x � 1 and since it is reasonable to expect V ′
1 � 0 and V ′

2 � 0, we can reduce the

advertising decisions (9.3.7) to

u∗1(x) =
V ′

1(x)ρ1
√

1− x
2c1

and u∗2(x) = −V ′
2(x)ρ2

√
x

2c2
, (9.3.8)

which hold as we shall see later. Substituting (9.3.8) in equations (9.3.5) and (9.3.6), we

obtain the Hamilton-Jacobi equations as

r1V1 = m1x+
V

′2
1 ρ2

1 (1− x)
4c1

+
V ′

1V ′
2ρ2

2 x
2c2

−V ′
1δ (2x−1)+

σ(x)2V
′′
1

2
(9.3.9)

and

r2V2 = m2(1− x)+
V

′2
2 ρ2

2 x
4c2

+
V ′

1V ′
2ρ2

2 (1− x)
2c1

−V ′
2δ (2x−1)+

σ(x)2V
′′
2

2
. (9.3.10)

Now consider the following particular forms for the value functions V1 = α1 + β1x and

V2 = α2 +β2(1−x). These value functions are used in equations (9.3.9) and (9.3.10) to de-

termine the unknown coefficients α1, β1, α2, β2. Equating powers of x in equation (9.3.9)

and powers of (1− x) in equation (9.3.10), we obtain the following system of equations

that can be solved for the unknown coefficients.

r1α1 =
β 2

1 ρ2
1

4c1
+β1δ , (9.3.11)

r1β1 = m1 −
β 2

1 ρ2
1

4c1
− β1β2ρ2

2
2c2

−2β1δ , (9.3.12)

r2α2 =
β 2

2 ρ2
2

4c2
+β2δ , (9.3.13)



Applications to Finance 225

and

r2β2 = m2 −
β 2

2 ρ2
2

4c2
− β1β2ρ2

1
2c1

−2β2δ . (9.3.14)

A unique solution to these equations, together with the requirements that β1 > 0 and β2 > 0,

will be shown to exist. Since for firms having different parameter values, the solutions are

more complicated. First we will consider the case of two symmetric firms. The case of

asymmetric firms will be dealt after that.

9.3.2 Symmetric Firms

For the symmetric case take, α = α1 = α2, β = β1 = β2, m = m1 = m2, c = c1 = c2,

ρ = ρ1 = ρ2 and r = r1 = r2. Then, the four equations in (9.3.11)–(9.3.14) reduce to the

following two,

rα =
β 2ρ2

4c
+βδ , and

rβ = m− 3β 2ρ2

4c
−2βδ .

(9.3.15)

There are two solutions for β . One is negative, which makes no sense. Thus, the remaining

positive solution is the only correct one. This in turn gives the corresponding α . The

solution is

α =
(r−δ )

(
W −

√
W 2 +12Rm

)
+6Rm

18Rr
, and

β =

√
W 2 +12Rm−W

6R
,

(9.3.16)

where R = (ρ2/4c), W = r + 2δ . We can now see that with the solution for the value

function, the strategies specified in equation (9.3.7) reduce to that in (9.3.8). This validates

the choice of (9.3.8) in deriving the value function. Note that when the margin m = 0, the

firm makes zero profit, i.e., the value functions V1 = α + βx and V2 = α + β (1− x) are

identically zero. In turn, this implies that the coefficients α, β ,a, and b are each zero when

m = 0.

We will summarize the analytical results of comparative statistics with symmetric firms in

the Table 9.3.1, Prasad and Sethi [153].

When there is a marginal increase in the value of advertising (r increases) or a reduction

in its cost (c decreases), then, the amount of advertising increases. However, contrary to

what one would expect to see in a monopoly model of advertising, the value function de-

creases. This occurs because in this type of market all advertising occurs from competitive
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Table 9.3.1 Comparative Statistics with Symmetric Firms

Variables Parameters

R =
(
ρ2/4c

)
, W = r +2δ c ρ m δ r

α =
(r−δ )

(
W −

√
W 2 +12Rm

)
+6Rm

18Rr
+ − + + −

β =

√
W 2 +12Rm−W

6R
+ − + − −

u∗1 =

(√
W 2 +12Rm−W

)
ρ
√

1− x
12Rc

− + + − −

Value function, V1 = α+βx + − + ? −

+ = increase, − =decrease, ? =ambiguous.

motivations, since the optimal advertising expenditure would be zero if a single firm were

to own both identical products. Advertising does not increase the size of the marketing pie

but only affects its allocation. Thus, the increase in advertising causes a decrease in the

value function.

However, the same logic does not apply when m increases, or r decreases. In these cases, it

is true that the wasteful advertising is increased, but it is also true that the size of the pie has

increased. Although intuitively it is difficult to predict that the latter effect should dominate

the former, it turns out to be the case that an increase in m or decrease in r improves the

value function.

The churn parameter δ reduces competitive intensity. Hence, it might be expected that an

increase in δ should increase the profitability by reducing advertising. In fact, only the

constant α part of the value functions increases and it is unclear what happens to the value

functions overall. We can derive the exact conditions under which there is an increase or a

decrease in the value function of a firm due to an increase in δ . We find that if the market

share of a firm is less than half, the effect on the firm’s value function is always positive.

However, if the market shares of a firm is greater than half, its value function can decrease

because of an increase in δ if

x >

√
(r +2δ )2 +12Rm− (r +2δ )

6r
+

1
2

is satisfied. The reason is that when a firm has a market share advantage over its rival, δ
helps the rival unequally by tending to equalize market shares.
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9.3.3 Asymmetric Firms

We now return to the general case of asymmetric firms. For asymmetric firms, we re-

express equations (9.3.11)–(9.3.14) in terms of a single variable β1 which is determined by

the solution to the quadratic equation (9.3.17), that is,

3R2
1β 4

1 +2R1 (W1 +W2)β 3
1 +

(
4R2m2 −2R1m1 −W 2

1 +2W1W2
)
β 2

1

+2m1 (W1 −W2)β1 −m2
1 = 0,

(9.3.17)

α1 =
β1

r1
(β1R1 +δ ) , (9.3.18)

β2 =
m1 −β 2

1 R1 −β1W1

2β1R2
, (9.3.19)

and

α2 =
β2

r2
(β2R2 +δ ) , (9.3.20)

where R1 = ρ2
1

4c1
, R2 = ρ2

2
4c2

, W1 = r1 +2δ , W2 = r2 +2δ .

Once we obtain the correct value of β1 out of the possible four solutions, the other coeffi-

cients can be obtained by solving for α1 and β2 and then, in turn, obtain α2.

We now collect the main results of the analysis into Proposition 9.3.1 which is due to Prasad

and Sethi [153], where a complete proof is given.

Proposition 9.3.1. For the advertising game described in (9.3.14):

(a) There exists a unique closed-loop Nash equilibrium solution to the differential game.

(b) Optimal advertising is

u∗1(x) =
β1ρ1

√
1− x

2c1
, u∗2(x) =

β2ρ2
√

1− y
2c2

,

where in the symmetric firm case, from equation (9.3.16),

β1 = β2 =

√
W 2 +12Rm−W

6R
,

and in the asymmetric firm case, β1 is given by the real positive solution out of the four

possible roots, and β2 is given by and (9.3.19).

We see that the optimal advertising policy is to spend in proportion to the competitor’s

market share. The firm that is in a disadvantageous position fights harder than its opponent

and it should succeed in wresting market share from the opponent. Spending is decreasing

in own market share, thus, the advertising-to-sales ratio is higher for the lower share firm.
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Table 9.3.2 Comparative Statistics with Asymmetric Firms

Variables Parameters

ci, c j ρi, ρ j mi, m j δ ri, r j

αi ?, + ?, − +, − ? −, +

βi ?, + ?, − +, − − −, +

u∗i −, + +, − +, − − −, +

Vi(x) ?, + ?, − +, − ? −, +

Legend: + = increase, − =decrease, ? =ambiguous

Many firms do advertising budgeting based on the affordable method, the percentage-of-

sales method, and the competitive-parity method. These methods would suggest that the

firm with lower market share should spend less on advertising. This is in contradiction

to the optimal advertising policy derived here, Prasad and Sethi [153]. In fact, the meth-

ods derived in this section have been shown true using empirical methods in Chintagunta

and Vilcassim [39]. Table 9.3.2 below is also due to Prasad and Sethi [153], which gives

comparative statistics with asymmetric firms.

A comparison of the comparative statics in Table 9.3.1 and Table 9.3.2 shows the following

main features. First, due to the additional complexity of the asymmetric case, there are

a few more ambiguous effects. However, secondly, it appears that the change in its own

parameters have the same effect in the asymmetric case as a change in these parameters

had for the symmetric case. This is to be expected since the first order effects likely dom-

inate the second order effects, thus, yielding the same results as in the symmetric case. It

becomes clear that a beneficial increase in its own parameters (ρi,ci,mi,ri) have a negative

effect on the competitor’s profits. Finally, the results for the amount of advertising u∗i are

completely unambiguous and follow the same intuition as in the symmetric case. Note that

the optimal advertising policy does not depend on the noisiness of the selling environment.

This is a consequence of the linear form of the value function.
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Next, we will examine the market share paths analytically. Inserting the values of the

strategies into the equations of motion (9.3.1), one obtains the following set of equations,

dx =
(
β1ρ2

1
2c1

+δ − x
(
β1ρ2

1
2c1

+
β2ρ2

2
2c2

+2δ
))

dt +σ(x)dw, x(0) = x0, and

dy =
(
β2ρ2

2
2c2

+δ − y
(
β1ρ2

1
2c1

+
β2ρ2

2
2c2

+2δ
))

dt −σ(1− y)dw, y(0) = 1− x0.

(9.3.21)

These equations can be rewritten as stochastic integral equations, that is,

x(t) = x0 +
∫ t

0

(
β1ρ2

1
2c1

+δ − x(s)
(
β1ρ2

1
2c1

+
β2ρ2

2
2c2

+2δ
))

ds+
∫ t

0
σ(x)dw, and

y(t) = (1− x0)+
∫ t

0

(
β2ρ2

2
2c2

+δ − y(s)
(
β1ρ2

1
2c1

+
β2ρ2

2
2c2

+2δ
))

ds−
∫ t

0
σ(1− y)dw.

(9.3.22)

The mean evolution path turns out to be independent of the nature of the stochastic distur-

bance. That is,

E[x(t)] = x0 +
∫ t

0

(
β1ρ2

1
2c1

+δ −E[x(s)]
(
β1ρ2

1
2c1

+
β2ρ2

2
2c2

+2δ
))

ds, and

E[y(t)] = (1− x0)+
∫ t

0

(
β2ρ2

2
2c2

+δ −E[y(s)]
(
β1ρ2

1
2c1

+
β2ρ2

2
2c2

+2δ
))

ds.
(9.3.23)

These equations can be expressed as ordinary differential equations in E[x(t)] and [E[y(t)]

with the solutions given by

E[x(t)] = e
−

(
β1ρ

2
1

2c1
+
β2ρ

2
2

2c2
+2δ

)
t
x0 +

⎛
⎝1− e

−
(
β1ρ

2
1

2c1
+
β2ρ

2
2

2c2
+2δ

)
t

⎞
⎠

β1ρ2
1

2c1
+δ

β1ρ2
1

2c1
+ β2ρ2

2
2c2

+2δ
, and

E[y(t)] = e
−

(
β1ρ

2
1

2c1
+
β2ρ

2
2

2c2
+2δ

)
t
(1− x0)+

⎛
⎝1− e

−
(
β1ρ

2
1

2c1
+
β2ρ

2
2

2c2
+2δ

)
t

⎞
⎠

β2ρ2
2

2c2
+δ

β1ρ2
1

2c1
+ β2ρ2

2
2c2

+2δ
.

(9.3.24)

The long run equilibrium market shares (x,y) are obtained by taking the limit as t →∞ and

are given by

x =

β1ρ2
1

2c1
+δ

β1ρ2
1

2c1
+
β2ρ2

2
2c2

+2δ
and y =

β2ρ2
2

2c2
+δ

β1ρ2
1

2c1
+
β2ρ2

2
2c2

+2δ
. (9.3.25)

Thus, the expected market shares converge to the form resembling the attraction models

commonly used in marketing. However, while an attraction model would rate the attrac-

tiveness of each firm based on its lower cost, higher productivity of advertising, and higher

advertising, it would exclude exogenous market phenomena such as churn.
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To further characterize the evolution path, calculate the variance of the market shares at

each point in time. A specification of the disturbance function is required for this charac-

terization. We will use σ(x)dw = σ
√

x(1− x)dw, where σ is a positive constant, and it

can be seen that market shares will remain in (0,1).

An application of Itô’s formula to equation (9.3.21) provides the following result.

d
(
x(t)2) =

[
2x

(
β1ρ2

1
2c1

+δ − x
(
β1ρ2

1
2c1

+
β2ρ2

2
2c2

+2δ
))

+σ2x(1− x)
]

dt

+2xσ
√

x(1− x)dw. (9.3.26)

Rewriting this as a stochastic integral, taking the expected value, and rewriting it as a

differential equation, we obtain

dE[x(t)2]
dt

=
(
β1ρ2

1
2c1

+2δ +σ2
)

E[x(t)]−
(
β1ρ2

1
2c1

+
β2ρ2

2
2c2

+4δ +σ2
)

E[x(t)2].

(9.3.26)

Inserting the solution for E[x(t)] from (9.3.24), we obtain a first order linear differential

equation in the second moment E[x(t)2], that is,

dE[x2]
dt

+
(
β1ρ2

1
2c1

+
β2ρ2

2
2c2

+4δ +σ2
)

E[x2]

=

(
β1ρ2

1
2c1

+2δ +σ2
)(

β1ρ2
1

2c1
+δ

)
β1ρ2

1
2c1

+ β2ρ2
2

2c2
+2δ

+ e
−

(
β1ρ

2
1

2c1
+
β2ρ

2
2

2c2
+2δ

)
t

×

⎛
⎜⎝

(
β1ρ2

1
2c1

+2δ +σ2
)

x0 −

(
β1ρ2

1
2c1

+δ
)(

β1ρ2
1

2c1
+2δ +σ2

)
β1ρ2

1
2c1

+ β2ρ2
2

2c2
+2δ

⎞
⎟⎠ . (9.3.27)

The solution of (9.3.27) is given by

E[x(t)2] = x0e
−2

(
β1ρ

2
1

2c1
+
β2ρ

2
2

2c2
+2δ+ σ2

2

)
t

+

(
β1ρ2

1
2c1

+δ
)(

β1ρ2
1

2c1
+δ + σ2

2

)
(
β1ρ2

1
2c1

+ β2ρ2
2

2c2
+2δ + σ2

2

)(
β1ρ2

1
2c1

+ β2ρ2
2

2c2
+2δ

)
⎛
⎝1− e

−2
(
β1ρ

2
1

2c1
+
β2ρ

2
2

2c2
+2δ+ σ2

2

)
t

⎞
⎠

+
e
−

(
β1ρ

2
1

2c1
+
β2ρ

2
2

2c2
+2δ

)
t
− e

−2
(
β1ρ

2
1

2c1
+
β2ρ

2
2

2c2
+2δ+ σ2

2

)
t

β1ρ2
1

2c1
+ β2ρ2

2
2c2

+2δ +σ2

×

⎛
⎜⎝

(
β1ρ2

1
2c1

+2δ +σ2
)

x0 −

(
β1ρ2

1
2c1

+δ
)(

β1ρ2
1

2c1
+2δ +σ2

)
β1ρ2

1
2c1

+ β2ρ2
2

2c2
+2δ

⎞
⎟⎠ . (9.3.28)
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We can calculate the convergence of the second moment, as the influence of the initial

condition disappears. That is,

lim
t→∞

E[x(t)2] =

(
β1ρ2

1
2c1

+δ
)(

β1ρ2
1

2c1
+δ +

σ2

2

)
(
β1ρ2

1
2c1

+
β2ρ2

2
2c2

+2δ +
σ2

2

)(
β1ρ2

1
2c1

+
β2ρ2

2
2c2

+2δ
) . (9.3.29)

Written in this form, it becomes clear that when σ = 0 the expression is just x2 so that the

variance is appropriately zero in the absence of the stochastic effect. More generally, when

σ = 0, E[x(t)2] = (E[x(t)])2 holds for all t. For σ > 0 the standard deviation of the solution

x(t) is √
E[x(t)2]− (E[x(t)])2.

Similar results can be obtained for the second firm, as discussed in Prasad and Sethi [153].

We present the results for the mean and variance of the long-run market share in the fol-

lowing proposition.

Proposition 9.3.2. For the advertising game described by equation (9.3.4), we have

(a) The mean market shares in the long run are given by (9.3.25),

x =

β1ρ2
1

2c1
+δ

β1ρ2
1

2c1
+
β2ρ2

2
2c2

+2δ
and y =

β2ρ2
2

2c2
+δ

β1ρ2
1

2c1
+
β2ρ2

2
2c2

+2δ
.

(b) The variance of the market shares in the long run are obtained from (9.3.25) and

(9.3.29) as E[x(t)2]− (E[x(t)])2 and for both firms are given by(
β1ρ2

1
2c1

+δ
)(

β2ρ2
2

2c2
+δ

)
σ2

2(
β1ρ2

1
2c1

+
β2ρ2

2
2c2

+2δ +
σ2

2

)(
β1ρ2

1
2c1

+
β2ρ2

2
2c2

+2δ
)2 .

In Prasad and Sethi [153], a particular case is analyzed and also it is shown that the densities

of the stationary distributions of the market shares are given by a Beta probability density.

We will not discuss these results here.

Due to the results of this section, it is particularly important to note that the morphing of

the Vidale-Wolfe sales decay term into decay caused by competitive advertising and non-

competitive ‘churn’ that acts to equalize market shares in the absence of advertising. We

have presented closed-loop Nash equilibria for symmetric as well as asymmetric competi-

tors. For all cases, explicit solutions and comparative statics were presented. The analysis
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suggests another counter-intuitive result that brands with smaller market share should spend

more aggressively on advertising than larger brands, Prasad and Sethi [153]. This finding is

contrary to the conventional practice of some firms to maintain share-of-voice proportional

to market share (which implies smaller brands should spend less aggressively). Thus, the

result of this section suggests that managers should re-consider the validity of their deci-

sion rules in ever changing dynamic markets. However, one must be careful to limit the

conclusions of optimality to only those markets for which the model applies. For instance,

advertisement expenditure or advertising policies that are optimal in a monopoly setting

would not be optimal in a competitive setting.
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