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Preface

History

The studies of random geometrical objects go back to the famous Buffon needle
problem. Similar to the ideas of Geometric Probabilities that can be traced back to
the first results in probability theory, the concept of a random set was mentioned
for the first time together with the mathematical foundations of Probability Theory.
A.N. Kolmogorov [321, p. 46] wrote in 1933:

Let G be a measurable region of the plane whose shape depends on chance;
in other words, let us assign to every elementary event ξ of a field of prob-
ability a definite measurable plane region G. We shall denote by J the area
of the region G and by P(x, y) the probability that the point (x, y) belongs
to the region G. Then

E(J ) =
∫∫

P(x, y)dxdy .

One can notice that this is the formulation of Robbins’ theorem and P(x, y) is the
coverage function of the random set G.

The further progress in the theory of random sets relied on the developments in
the following areas:

• studies of random elements in abstract spaces, for example groups and algebras,
see Grenander [210];

• the general theory of stochastic processes, see Dellacherie [131];
• advances in image analysis and microscopy that required a satisfactory mathe-

matical theory of distributions for binary images (or random sets), see Serra [532].

The mathematical theory of random sets can be traced back to the book by Math-
eron [381]. G. Matheron formulated the exact definition of a random closed set and
developed the relevant techniques that enriched the convex geometry and laid out the
foundations of mathematical morphology. Broadly speaking, the convex geometry
contribution concerned properties of functionals of random sets, while the morpho-
logical part concentrated on operations with the sets themselves.
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The relationship between random sets and convex geometry later on has been
thoroughly explored within the stochastic geometry literature, see, e.g. Weil and
Wieacker [607]. Within the stochastic geometry, random sets represent one type of
objects along with point processes, random tessellations, etc., see Stoyan, Kendall
and Mecke [544]. The main techniques stem from convex and integral geometry, see
Schneider [520] and Schneider and Weil[523].

The mathematical morphology part of G. Matheron’s book gave rise to numerous
applications in image processing (Dougherty [146]) and abstract studies of opera-
tions with sets, often in the framework of the lattice theory (Heijmans [228]).

Since 1975 when G. Matheron’s book [381] was published, the theory of ran-
dom sets has enjoyed substantial developments. D.G. Kendall’s seminal paper [295]
already contained the first steps into many directions such as lattices, weak con-
vergence, spectral representation, infinite divisibility. Many of these concepts have
been elaborated later on in connection to the relevant ideas in pure mathematics. This
made many of the concepts and notation used in [295] obsolete, so that we will follow
the modern terminology that fits better into the system developed by G. Matheron;
most of his notation was taken as the basis for the current text.

The modern directions in random sets theory concern

• relationships to the theories of semigroups and continuous lattices;
• properties of capacities;
• limit theorems for Minkowski sums and relevant techniques from probabilities in

Banach spaces;
• limit theorems for unions of random sets, which are related to the theory of ex-

treme values;
• stochastic optimisation ideas in relation to random sets that appear as epigraphs

of random functions;
• studies of properties of level sets and excursions of stochastic processes.

These directions constitute the main core of this book which aims to cast the random
sets theory in the conventional probabilistic framework that involves distributional
properties, limit theorems and the relevant analytical tools.

Central topics of the book

The whole story told in this book concentrates on several important concepts in the
theory of random sets.

The first concept is the capacity functional that determines the distribution of a
random closed set in a locally compact Hausdorff separable space. It is related to
positive definite functions on semigroups and lattices. Unlike probability measures,
the capacity functional is non-additive. The studies of non-additive measures are
abundant, especially, in view of applications to game theory, where the non-additive
measure determines the gain attained by a coalition of players. The capacity func-
tional can be used to characterise the weak convergence of random sets and some
properties of their distributions. In particular, this concerns unions of random closed
sets, where the regular variation property of the capacity functional is of primary
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importance. It is possible to consider random capacities that unify the concepts of a
random closed set and a random upper semicontinuous function. However, the ca-
pacity functional does not help to deal with a number of other issues, for instance to
define the expectation of a random closed set.

Here the leading role is taken over by the concept of a selection, which is a
(single-valued) random element that almost surely belongs to a random set. In this
framework it is convenient to view a random closed set as a multifunction (or set-
valued function) on a probability space and use the well-developed machinery of
set-valued analysis. It is possible to find a countable family of selections that com-
pletely fills the random closed set and is called its Castaing representation. By taking
expectations of integrable selections, one defines the selection expectation of a ran-
dom closed set. However, the families of all selections are very rich even for simple
random sets.

Fortunately, it is possible to overcome this difficulty by using the concept of the
support function. The selection expectation of a random set defined of a non-atomic
probability space is always convex and can be alternatively defined by taking the
expectation of the support function. The Minkowski sum of random sets is defined
as the set of sums of all their points or all their selections and can be equivalently
formalised using the arithmetic sum of the support functions. Therefore, limit theo-
rems for Minkowski sums of random sets can be derived from the existing results in
Banach spaces, since the family of support functions can be embedded into a Banach
space. The support function concept establishes numerous links to convex geometry
ideas. It also makes it possible to study set-valued processes, e.g. set-valued martin-
gales and set-valued shot-noise.

Important examples of random closed sets appear as epigraphs of random lower
semicontinuous functions. Viewing the epigraphs as random closed sets makes it
possible to obtain results for lower semicontinuous functions under the weakest pos-
sible conditions. In particular, this concerns the convergence of minimum values and
minimisers, which is the subject of stochastic optimisation theory.

It is possible to consider the family of closed sets as both a semigroup and a
lattice. Therefore, random closed sets are simply a special case of general lattice- or
semigroup-valued random elements. The concept of probability measure on a lattice
is indispensable in the modern theory of random sets.

It is convenient to work with random closed sets, which is the typical setting in
this book, although in some places we mention random open sets and random Borel
sets.

Plan

Since the concept of a set is central for mathematics, the book is highly interdisci-
plinary and aims to unite a number of mathematical theories and concepts: capac-
ities, convex geometry, set-valued analysis, topology, harmonic analysis on semi-
groups, continuous lattices, non-additive measures and upper/lower probabilities,
limit theorems in Banach spaces, general theory of stochastic processes, extreme
values, stochastic optimisation, point processes and random measures.
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The book starts with a definition of random closed sets. The space E which ran-
dom sets belong to, is very often assumed to be locally compact Hausdorff with a
countable base. The Euclidean space Rd is a generic example (apart from rare mo-
ments when E is a line). Often we switch to the more general case of E being a
Polish space or Banach space (if a linear structure is essential). Then the Choquet
theorem concerning the existence of random sets distributions is proved and rela-
tionships with set-valued analysis (or multifunctions) and lattices are explained. The
rest of Chapter 1 relies on the concept of the capacity functional. First it highlights
relationships between capacity functionals and properties of random sets, then de-
velops some analytic theory, convergence concepts, applications to point processes
and random capacities and finally explains various interpretations for capacities that
stem from game theory, imprecise probabilities and robust statistics.

Chapter 2 concerns expectation concepts for random closed sets. The main part
is devoted to the selection (or Aumann) expectation that is based on the idea of the
selection. Chapter 3 continues this topic by dealing with Minkowski sums of random
sets. The dual representation of the selection expectation – as a set of expectations of
all selections and as the expectation of the support function – makes it possible to re-
fer to limit theorems in Banach spaces in order to prove the corresponding results for
random closed sets. The generality of presentation varies in order to explain which
properties of the carrier space E are essential for particular results.

The scheme of unions for random sets is closely related to extremes of random
variables and further generalisations for pointwise extremes of stochastic processes.
Chapter 4 describes the main results for the union scheme and explains the back-
ground ideas that mostly stem from the studies of lattice-valued random elements.

Chapter 5 is devoted to links between random sets and stochastic processes. On
the one hand, this concerns set-valued processes that develop in time, in particular,
set-valued martingales. On the other hand, the subject matter concerns random sets
interpretations of conventional stochastic processes, where random sets appear as
graphs, level sets or epigraphs (hypographs).

The Appendices summarise the necessary mathematical background that is nor-
mally scattered between various texts. There is an extensive bibliography and a de-
tailed subject index.

Several areas that are related to random sets are only mentioned in brief. For
instance, these areas include the theory of set-indexed processes, where random sets
appear as stopping times (or stopping sets), excursions of random fields and potential
theory for Markov processes that provides further examples of capacities related to
hitting times and paths of stochastic processes.

It is planned that a companion volume to this book will concern models of ran-
dom sets (germ-grain models, random fractals, growth processes, etc), convex ge-
ometry techniques, statistical inference for stationary and compact random sets and
related modelling issues in image analysis.
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Conventions

The numbering follows a two-digit pattern, where the first digit is the section num-
ber of the current chapter. When referring to results from other chapters, we add
the chapter number using the three digit numbering scheme. When referring to the
Appendices, the first digit is a letter that designates the particular appendix. The
statements in theorems and propositions are mostly numbered by Roman numbers,
while the conditions usually follow Arabic numeration.

1.1

1.5

1.9 1.8

1.4

1.6

1.2

2.1

2.2

2.3

3.1
3.2

3.3

5.1

5.2 5.3

1.7 1.3
4.1

4.2
4.3

4.4

4.5

4.6
A rough dependence guide between the sections.

Although the main concepts in this book are used throughout the whole presenta-
tion, it is anticipated that a reader will be able to read the book from the middle. The
concepts are often restated and notation is set to be as consistent as possible taking
into account various conventions within a number of mathematical areas that build
up this book.

The problems scattered through the text are essentially open, meaning that their
solutions are currently not known to the author.

The supporting information (e.g. bibliographies) for this book is available through
Springer WEB site or from

http://www.cx.unibe.ch/∼ilya/rsbook/index.html
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1

Random Closed Sets and Capacity Functionals

1 The Choquet theorem

1.1 Set-valued random elements

As the name suggests, a random set is an object with values being sets, so that the
corresponding record space is the space of subsets of a given carrier space. At this
stage, a mere definition of a general random element like a random set presents little
difficulty as soon as a σ -algebra on the record space is specified. The principal new
feature is that random sets may have something inside (different to random variables
and random vectors) and the development of this idea is crucial in the studies of
random sets. Because the family of all sets is too large, it is usual to consider random
closed sets defined as random elements in the space of closed subsets of a certain
topological space E. The family of closed subsets of E is denoted by F , while K and
G denote respectively the family of all compact and open subsets of E. It is often
assumed that E is a locally compact Hausdorff second countable topological space
(LCHS space). The Euclidean space Rd is a generic example of such space E.

Let us fix a complete probability space (Ω,F,P) which will be used throughout
to define random elements. It is natural to call an F -valued random element a random
closed set. However, one should be more specific about measurability issues, which
acquire considerably more importance when studying random elements in complex
spaces. In other words, when defining a random element it is necessary to specify
which information is available in terms of the observable events from the σ -algebra F
in Ω . It is essential to ensure that the measurability requirement is restrictive enough
to ensure that all functionals of interest become random variables. At the same time,
the measurability condition must not be too strict in order to include as many random
elements as possible. The following definition describes a rather flexible and useful
concept of a random closed set.

Definition 1.1 (Definition of a random closed set). A map X : Ω �→ F is called a
random closed set if, for every compact set K in E ,

{ω : X ∩ K �= ∅} ∈ F . (1.1)
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Condition (1.1) simply means that observing X one can always say if X hits or
misses any given compact set K . In more abstract language, (1.1) says that the map
X : Ω �→ F is measurable as a map between the underlying probability space and
the space F equipped with the σ -algebra B(F) generated by {F ∈ F : F ∩K �= ∅}
for K running through the family K of compact subsets of E. Note that B(F) is
called the Effros σ -algebra, which is discussed in greater detail in Section 2.1 for the
case of a general Polish space E. As in Appendix B, we write

FK = {F ∈ F : F ∩ K �= ∅} .
The σ -algebra generated by FK for all K from K clearly contains

FK = {F ∈ F : F ∩ K = ∅} .
Furthermore, for every G from the family G of open sets,

FG = {F ∈ F : F ∩ G �= ∅} =
⋂

n

FKn ,

where {Kn, n ≥ 1} is a sequence of compact sets such that Kn ↑ G (here the local
compactness of E is essential). Therefore, FG ∈ B(F) for all G ∈ G. It should be
noted that the Fell topology on F (discussed in Appendix B) is generated by open
sets FG for G ∈ G and FK for K ∈ K. Therefore, the σ -algebra generated by FK

for K ∈ K coincides with the Borel σ -algebra generated by the Fell topology on F .
It is possible to reformulate Definition 1.1 as follows.

Definition 1.1′. A map X : Ω �→ F is called a random closed set if X is measurable
with respect to the Borel σ -algebra on F with respect to the Fell topology, i.e.

X−1(X ) = {ω : X (ω) ∈ X } ∈ F

for each X ∈ B(F).

Then (1.1) can be formulated as

X−1(FK ) = {ω : X (ω) ∈ FK } ∈ F . (1.2)

As in Appendix D, we often write X−(K ) instead of X−1(FK ). It is easy to see that
(1.2) implies the measurability of a number of further events, e.g. {X ∩ G �= ∅} for
every G ∈ G, {X ∩ F �= ∅} and {X ⊂ F} for every F ∈ F .

Since σ -algebra B(F) is the Borel σ -algebra with respect to a topology on F ,
this often leads to the conclusion that f (X) is a random closed set if X is a random
closed set and the map f : F �→ F is continuous or semicontinuous (and therefore
measurable).

Example 1.2 (Simple examples of random closed sets).
(i) If ξ is a random element in E (measurable with respect to the Borel σ -algebra

on E), then the singleton X = {ξ} is a random closed set.



1 The Choquet theorem 3

(ii) If ξ is a random variable, then X = (−∞, ξ ] is a random closed set on the
line E = R1. Indeed, {X ∩ K �= ∅} = {ξ ≥ inf K } is a measurable event for every
K ⊂ E. Along the same line, X = (−∞, ξ1] × · · · × (−∞, ξd ] is a random closed
subset of Rd if (ξ1, . . . , ξn) is a d-dimensional random vector.
(iii) If ξ1, ξ2, ξ3 are three random vectors in Rd , then the triangle with vertices ξ1, ξ2
and ξ3 is a random closed set. If ξ is a random vector in Rd and η is a non-negative
random variable, then random ball Bη(ξ) of radius η centred at ξ is a random closed
set. While it is possible to deduce this directly from Definition 1.1, it is easier to refer
to general results established later on in Theorem 2.25.
(iv) Let ζx , x ∈ E, be a real-valued stochastic process on E with continuous sample
paths. Then its level set X = {x : ζx = t} is a random closed set for every t ∈ R.
Indeed, {X ∩ K = ∅} = {infx∈K ζx > t} ∪ {supx∈K ζx < t} is measurable. Similarly,
{x : ζx ≤ t} and {x : ζx ≥ t} are random closed sets.

X = {ξ}
X = (−∞, ξ ]

ξ1

ξ2

ξ3

X = Bη(ξ)

X = {x : ζx ≥ t}
t

x

ζx

ξ

X

ξ
η

Figure 1.1. Simple examples of random closed sets.

Example 1.3 (Random variables associated with random closed sets).
(i) It is easy to see that the norm ‖X‖ = sup{‖x‖ : x ∈ X} for a random closed

set X in E = Rd is a random variable (with possibly infinite values). The event
{‖X‖ > t} means that X hits an open set G being the complement to the closed ball
of radius t centred at the origin.
(ii) For every x ∈ E the indicator 1X (x) (equal to 1 if x ∈ X and to zero otherwise)
is a random variable.
(iii) If µ is a locally finite Borel measure on E, then µ(X) is a random variable.
This follows directly from Fubini’s theorem since µ(X) = ∫ 1X (x)µ(dx), see Sec-
tion 4.4.
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If two random closed sets X and Y share the same distribution, then we write

X
d∼ Y . This means that P {X ∈ X } = P {Y ∈ X } for every measurable family of

closed sets X ∈ B(F).

1.2 Capacity functionals

Definition

The distribution of a random closed set X is determined by P(X ) = P {X ∈ X }
for all X ∈ B(F). The particular choice of X = FK and P {X ∈ FK } =
P {X ∩ K �= ∅} is useful since the families FK , K ∈ K, generate the Borel σ -algebra
B(F).

Definition 1.4 (Capacity functional). A functional TX : K �→ [0, 1] given by

TX (K ) = P {X ∩ K �= ∅} , K ∈ K , (1.3)

is said to be the capacity functional of X . We write T (K ) instead of TX (K ) where
no ambiguity occurs.

Example 1.5 (Capacity functionals of simple random sets).
(i) If X = {ξ} is a random singleton, then TX (K ) = P {ξ ∈ K }, so that the capacity

functional is the probability distribution of ξ .
(ii) Let X = {ξ1, ξ2} be the set formed by two independent identically distributed
random elements in E. Then TX (K ) = 1− (1− P {ξ1 ∈ K })2. For instance if ξ1 and
ξ2 are the numbers shown by two dice, then TX ({6}) is the probability that at least
one dice shows six.
(iii) Let X = (−∞, ξ ] be a random closed set in R, where ξ is a random variable.
Then TX (K ) = P {ξ > inf K } for all K ∈ K.
(iv) If X = {x ∈ E : ζx ≥ t} for a real-valued sample continuous stochastic process
ζx , x ∈ E, then TX (K ) = P

{
supx∈K ζx ≥ t

}
.

It follows immediately from the definition of T = TX that

T (∅) = 0 , (1.4)

and
0 ≤ T (K ) ≤ 1 , K ∈ K . (1.5)

Since FKn ↓ FK as Kn ↓ K , the continuity property of the probability measure P
implies that T is upper semicontinuous (see Proposition D.7), i.e.

T (Kn) ↓ T (K ) as Kn ↓ K in K . (1.6)

Properties (1.4) and (1.6) mean that T is a (topological) precapacity that can be
extended to the family of all subsets of E as described in Appendix E.

It is easy to see that the capacity functional T is monotone, i.e.

T (K1) ≤ T (K2) if K1 ⊂ K2 .
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Moreover, T satisfies a stronger monotonicity property described below. With every
functional T defined on a family of (compact) sets we can associate the following
successive differences:

�K1 T (K ) = T (K )− T (K ∪ K1) , (1.7)

�Kn · · ·�K1 T (K ) = �Kn−1 · · ·�K1 T (K )

−�Kn−1 · · ·�K1 T (K ∪ Kn) , n ≥ 2 . (1.8)

If T from (1.3) is a capacity functional of X , then

�K1 T (K ) = P {X ∩ K �= ∅} − P {X ∩ (K ∪ K1) �= ∅}
= −P {X ∩ K1 �= ∅, X ∩ K = ∅} .

K1
K

K3
X

K2

Figure 1.2. Set X from FK
K1,K2,K3

.

Applying this argument consecutively yields an important relationship between
the higher-order successive differences and the distribution of X

−�Kn · · ·�K1 T (K ) = P {X ∩ K = ∅, X ∩ Ki �= ∅, i = 1, . . . , n}
= P

{
X ∈ FK

K1,...,Kn

}
, (1.9)

where

FK
K1,...,Kn

= {F ∈ F : F ∩ K = ∅, F ∩ K1 �= ∅, . . . , F ∩ Kn �= ∅} ,
see Figure 1.2. In particular, (1.9) implies

�Kn · · ·�K1 T (K ) ≤ 0 (1.10)

for all n ≥ 1 and K , K1, . . . , Kn ∈ K.
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Example 1.6 (Higher-order differences).
(i) Let X = {ξ} be a random singleton with distribution P. Then

−�Kn · · ·�K1 T (K ) = P
{
ξ ∈ (K1 ∩ · · · ∩ Kn ∩ K c)

}
.

(ii) Let X = (−∞, ξ1] × (−∞, ξ2] be a random closed set in the plane R2. Then
−�{x}T ({y, z}) for x = (a, c), y = (b, c), z = (a, d) is the probability that ξ lies in
the rectangle [a, b)× [c, d), see Figure 1.3.
(iii) Let X = {x : ζx ≥ 0} for a continuous random function ζ . Then

−�Kn · · ·�K1 T (K ) = P

{
sup
x∈K

ζx < 0, sup
x∈Ki

ζx ≥ 0, i = 1, . . . , n

}
.

z
d

c

a b

yx

X

ξ

Figure 1.3. Random closed set from Example 1.6(ii).

The properties of the capacity functional T resemble those of the distribution
function. The upper semicontinuity property (1.6) is similar to the right-continuity,
and (1.10) generalises the monotonicity concept. However, in contrast to measures,
functional T is not additive, but only subadditive, i.e.

T (K1 ∪ K2) ≤ T (K1)+ T (K2) (1.11)

for all compact sets K1 and K2.

Example 1.7 (Non-additive capacity functional). If X = Br (ξ) is the ball of radius
r centred at a random point ξ in Rd , then TX (K ) = P {ξ ∈ K r }, which is not a
measure, since the r -envelopes K r

1 and K r
2 are not necessarily disjoint for disjoint

K1 and K2.

Complete alternation and monotonicity

Because of the importance of properties (1.6) and (1.10) it is natural to consider
general functionals on K that satisfy these properties without immediate reference
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to distributions of random closed sets. A real-valued functional ϕ on K which satis-
fies (1.4), (1.5), (1.6) and (1.10) is said to be a capacity functional. In other words, a
capacity functional is a functional on K which takes values in [0, 1], equals 0 on the
empty set and is upper semicontinuous and completely alternating on K. The latter
concept is addressed in the following definition.

Definition 1.8 (Completely alternating and completely ∪-monotone functionals).
Let D be a family of sets which is closed under finite unions (so that M1 ∪ M2 ∈ D
if M1, M2 ∈ D). A real-valued functional ϕ defined on D is said to be
(i) completely alternating or completely ∪-alternating (notation ϕ ∈ A(D) or ϕ ∈

A∪(D)) if

�Kn · · ·�K1ϕ(K ) ≤ 0 , n ≥ 1 , K , K1, . . . , Kn ∈ D . (1.12)

If (1.12) holds for all n ≤ m, then ϕ is said to be alternating of degree m (or
m-alternating).

(ii) completely ∪-monotone (notation ϕ ∈ M∪(D)) if

�Kn · · ·�K1ϕ(K ) ≥ 0 , n ≥ 1 , K , K1, . . . , Kn ∈ D .

As (1.10) shows, the capacity functional T is completely alternating. Defini-
tion 1.8 is usually applied to the case when D = K. It complies with Definition G.5
applied to the semigroup D with the union being the semigroup operation. Another
natural semigroup operation is the intersection of sets, which leads to other (however
closely related) concepts of alternating and monotone functionals. Similar to the def-
inition of �Kn · · ·�K1ϕ(K ), we introduce the following successive differences

∇K1ϕ(K ) = ϕ(K )− ϕ(K ∩ K1) , (1.13)

∇Kn · · · ∇K1ϕ(K ) = ∇Kn−1 · · · ∇K1ϕ(K )

−∇Kn−1 · · · ∇K1ϕ(K ∩ Kn) , n ≥ 2 . (1.14)

The following definition is a direct counterpart of Definition 1.8.

Definition 1.9 (Completely∩-alternating and completely monotone functionals).
Let D be a family of sets which is closed under finite intersections. A real-valued
functional ϕ defined on D is said to be
(i) completely ∩-alternating (notation ϕ ∈ A∩(D)) if

∇Kn · · · ∇K1ϕ(K ) ≤ 0 , n ≥ 1 , K , K1, . . . , Kn ∈ D ;
(ii) completely monotone or completely ∩-monotone (notation ϕ ∈ M(D) or ϕ ∈

M∩(D)) if

∇Kn · · · ∇K1ϕ(K ) ≥ 0 , n ≥ 1 , K , K1, . . . , Kn ∈ D .

When saying that ϕ is completely alternating we always mean that ϕ is com-
pletely ∪-alternating, while ϕ being completely monotone means that ϕ is com-
pletely ∩-monotone. For every functional ϕ on D with values in [0, 1], its dual func-
tional
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ϕ̃(K ) = 1− ϕ(K c) , K c ∈ D , (1.15)

is defined on the family D′ = {K c : K ∈ D} of complements to the sets from D.

Proposition 1.10. Let ϕ : D �→ [0, 1]. Then
(i) ϕ ∈ A∪(D) if and only if, for any fixed L ∈ D,

−�Lϕ(K ) = ϕ(K ∪ L)− ϕ(K ) ∈ M∪(D) ;
(ii) ϕ ∈ A∩(D) if and only if, for any fixed L ∈ D,

−∇Lϕ(K ) = ϕ(K ∩ L)− ϕ(K ) ∈ M∩(D) .

(iii) Let ϕ : D �→ [0, 1]. Then ϕ ∈ A∪(D) (respectively ϕ ∈ A∩(D)) if and only
functional ϕ̃(K ) ∈ M∩(D′) (respectively ϕ̃(K ) ∈ M∪(D′)) for the dual func-
tional ϕ̃ on D′ = {K c : K ∈ D}.

Proof. (i) It suffices to note that

�Kn . . .�K1(−�Lϕ(K )) = −�L�Kn . . .�K1ϕ(K )

with a similar relationship valid for the successive differences based on intersections.
Statement (ii) is proved similarly. The proof of (iii) is a matter of verification that

�Kn · · ·�K1 ϕ̃(K ) = −∇K c
n
· · · ∇K c

1
ϕ(K c) . ��

Alternation and monotonicity of capacity functionals

Every measure µ is a completely alternating functional, since

−�Kn · · ·�K1µ(K ) = µ((K1 ∪ · · · ∪ Kn) \ K ) ≥ 0 .

In particular, �K1µ(K ) = −µ(K1) if K and K1 are disjoint.
Note that ϕ is increasing if and only if

�K1ϕ(K ) = ϕ(K )− ϕ(K ∪ K1)

is non-positive. Furthermore, for n = 2,

�K2�K1ϕ(K ) = ϕ(K )− ϕ(K ∪ K1)− ϕ(K ∪ K2)+ ϕ(K ∪ K1 ∪ K2) .

Therefore, (1.12) for n = 2 is equivalent to

ϕ(K )+ ϕ(K ∪ K1 ∪ K2) ≤ ϕ(K ∪ K1)+ ϕ(K ∪ K2) . (1.16)

In particular, if K = ∅ and ϕ(∅) = 0, then

ϕ(K1 ∪ K2) ≤ ϕ(K1)+ ϕ(K2) , (1.17)
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meaning that ϕ is subadditive. Clearly, if ϕ = µ is a measure, then (1.17) turns
into an equality for disjoint K1 and K2. For an increasing ϕ, inequality (1.16) is
equivalent to

ϕ(K1 ∩ K2)+ ϕ(K1 ∪ K2) ≤ ϕ(K1)+ ϕ(K2) (1.18)

for all K1 and K2. A functional ϕ satisfying (1.18) is called concave or strongly
subadditive. Functionals satisfying the reverse inequality in (1.18) are called con-
vex or strongly superadditive. If only �K1ϕ(K ) and �K2�K1ϕ(K ) are non-positive,
then ϕ is called 2-alternating. Therefore, ϕ is 2-alternating if it is both concave and
monotone.

According to Definition E.8, a function ϕ : P �→ [−∞,+∞] on the family P
of all subsets of E is called a capacity (or K-capacity) if it satisfies the following
conditions:
(i) M ⊂ M ′ implies ϕ(M) ≤ ϕ(M ′);

(ii) Mn ↑ M implies ϕ(Mn) ↑ ϕ(M);
(iii) Kn ↓ K for compact sets Kn, K implies ϕ(Kn) ↓ ϕ(K ).

Definition 1.8 singles out those capacities which are completely alternating or
completely monotone. Since the family K forms a semigroup with union being the
semigroup operation and the neutral element being the empty set, it is possible to
use the results of Appendix G within this context. It follows from Theorem G.6 that
each completely alternating capacity is negative definite on K. Theorem G.8 states
that ϕ ∈ A∪(K) (respectively ϕ ∈ A∩(K)) if and only if e−tϕ ∈ M∪(K) (respectively
e−tϕ ∈ M∩(K)) for all t > 0. Let us formulate one particularly important corollary
of this fact.

Proposition 1.11. If ϕ is a completely alternating non-negative capacity with pos-
sibly infinite values, then T (K ) = 1 − e−ϕ(K ) is a completely alternating capacity
with values in [0, 1].

Proposition 1.11 is often used to construct a capacity functional from a com-
pletely alternating upper semicontinuous capacity that may take values greater than
1. The random closed set with the capacity functional T from Proposition 1.11 is
infinite divisible for unions, see Chapter 4.

Extension of capacity functional

As explained in Appendix E, a capacity ϕ defined on K can be naturally extended
onto the family P of all subsets of E keeping alternation or the monotonicity prop-
erties enjoyed by ϕ. In its application to capacity functionals of random closed sets,
put

T ∗(G) = sup{T (K ) : K ∈ K, K ⊂ G} , G ∈ G , (1.19)

and
T ∗(M) = inf{T ∗(G) : G ∈ G, G ⊃ M} , M ∈ P . (1.20)
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Theorem 1.12 (Consistency of extension).
(i) T ∗(K ) = T (K ) for each K ∈ K.

(ii) For each Borel set B ,

T ∗(B) = sup{T (K ) : K ∈ K, K ⊂ B} .
Proof. The first statement follows from the upper semicontinuity of T . Note that
T ∗(K ) is a limit of T ∗(Gn) for a sequence of open sets Gn ↓ K . By choosing Kn ∈
K such that K ⊂ Kn ⊂ Gn we deduce that T (Kn) ↓ T ∗(K ), while at the same time
T (Kn) ↓ T (K ) since T is upper semicontinuous. The second statement is a corollary
from the more intricate Choquet capacitability theorem, see Theorem E.9. ��

Since the extension T ∗ coincides with T on K, in the following we use the same
notation T to denote the extension, i.e. T (G) or T (B) denotes the values of the
extended T on arbitrary open set G and Borel set B . Theorem 1.12 and the continuity
property of probability measures imply T (B) = P {X ∩ B �= ∅} for all Borel B .

The Choquet theorem

Since the σ -algebra B(F) is rich, it is difficult to explicitly assign a measure to
its elements. Nonetheless, since the σ -algebra B(F) is generated by the families
FK , K ∈ K, it is quite natural to expect that a capacity functional on K determines
uniquely the distribution of a random closed set. The following fundamental theorem
singles out upper semicontinuous completely alternating capacities on K as those
which correspond to distributions of random closed sets. The uniqueness part easily
follows from the fact that σ -algebra B(F) is generated by FK for K ∈ K. It is
the existence part that is more complicated. The proof of the Choquet theorem is
presented in Section 1.3.

Theorem 1.13 (Choquet theorem). Let E be a LCHS space. A functional T : K �→
[0, 1] such that T (∅) = 0 is the capacity functional of a (necessarily unique) random
closed set in E if and only if T is upper semicontinuous and completely alternating.

The following results follow from the uniqueness part of the Choquet theorem.

Proposition 1.14. Let E be a LCHS space.
(i) The capacity functional TX of a random closed set X is a probability measure if

and only if X is a random singleton.
(ii) TX is a sub-probability measure (i.e. a measure with the total mass not exceed-

ing 1) if and only if X with probability 1 consists of at most a single point, i.e.
P {card(X) > 1} = 0.

(iii) A random closed set X is deterministic if and only if TX (K ) takes only values
0 or 1 for each K ∈ K.

Proposition 1.14(iii) (and the uniqueness part of the Choquet theorem) does not
hold in an arbitrary (e.g. not locally compact) space E. For instance, if E = R with
the discrete metric, then compact sets are necessarily finite, so that TX (K ) = 0 for
each K ∈ K if X = {ξ} is a random singleton with a non-atomic distribution.
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Maxitive capacity functionals

A functional T is said to be maxitive if

T (K1 ∪ K2) = max(T (K1), T (K2)) (1.21)

for all compact sets K1 and K2. Maxitive functionals arise naturally in the theory
of extremal processes, see Norberg [430, 431]. Every sup-measure (defined in Ap-
pendix E) is maxitive, while the converse is false since the definition of sup-measures
involves taking a supremum over an arbitrary family of sets on the right-hand side
of (1.21). If T is maxitive on K, then (1.21) also holds for the extension of T onto
the family of open sets and all subsets of E.

Example 1.15 (Maxitive capacity). Define a maxitive capacity T by

T (K ) = sup{ f (x) : x ∈ K } , (1.22)

where f : E �→ [0, 1] is an upper semicontinuous function. Then T = f ∨ is the
sup-integral of f as defined in Appendix E. This capacity functional T describes the
distribution of the random closed set X = {x ∈ E : f (x) ≥ α}, where α is a random
variable uniformly distributed on [0, 1].

The following proposition shows that Example 1.15 actually describes all maxi-
tive capacities that correspond to distributions of random closed sets. In a sense, the
upper semicontinuity assumption makes it possible to move from finite maximum
in (1.21) to a general supremum over all singletons.

Proposition 1.16 (Maxitive upper semicontinuous capacities). If T is a maxitive
upper semicontinuous functional with values in [0, 1], then T is given by (1.22) for
an upper semicontinuous function f : E �→ [0, 1].
Proof. Since T is upper semicontinuous, f (x) = T ({x}) is an upper semicontinuous
function and T (Kn) ↓ T ({x}) if Kn ↓ {x}. This implies that for each x ∈ E and any
ε > 0 there exists a neighbourhood Gε(x) of x such that T (Gε(x)) < f (x) + ε.
Every K ∈ K is covered by Gε(x), x ∈ K , so that K has a finite subcover of
Gε(x1), . . . , Gε(xn). Then (1.21) implies

T (K ) ≤ max(T (Gε(x1)), . . . , T (Gε(xn))) ≤ max( f (x1), . . . , f (xn))+ ε ,

whence (1.22) immediately holds. ��
Proposition 1.16 means that together with the upper semicontinuity assumption,

(1.21) implies that T is a sup measure. If (1.21) holds for all K1 and K2 from a family
of sets D closed under finite unions, then T is called maxitive on D.

Theorem 1.17 (Complete alternation of a maxitive capacity). Every functional ϕ
maxitive on a family D closed under finite unions is completely alternating on D.
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Proof. Consider arbitrary K , K1, K2, . . . ∈ D. Let us prove by induction that

�Kn · · ·�K1ϕ(K ) = ϕ(K )− ϕ(K ∪ K1) (1.23)

given that ϕ(K1) = min(ϕ(Ki ), i = 1, . . . , n). This fact is evident for n = 1. As-
sume that ϕ(K1) = min(ϕ(Ki ), i = 1, . . . , n+ 1). Using the induction assumption,
it is easy to see that

�Kn+1 · · ·�K1ϕ(K ) = �Kn · · ·�K1ϕ(K )−�Kn · · ·�K1ϕ(K ∪ Kn+1)

= [ϕ(K )− ϕ(K ∪ K1)] − [ϕ(K ∪ Kn+1)− ϕ(K ∪ Kn+1 ∪ K1)] .
By the maxitivity assumption and the choice of K1,

ϕ(K ∪ Kn+1)− ϕ(K ∪ Kn+1 ∪ K1)

= max(ϕ(K ), ϕ(Kn+1))−max(ϕ(K ), ϕ(Kn+1), ϕ(K1)) = 0 .

Now the monotonicity of ϕ implies that the left-hand side of (1.23) is non-positive,
i.e. ϕ is completely alternating. ��

For example, the Hausdorff dimension is a maxitive functional on sets in Rd , and
so is completely alternating. However, it is not upper semicontinuous, whence there
is no random closed set whose capacity functional is the Hausdorff dimension.

Independence and conditional distributions

Definition 1.18 (Independent random sets). Random closed sets X1, . . . , Xn are
said to be independent if

P {X1 ∈ X1, . . . , Xn ∈ Xn} = P {X1 ∈ X1} · · ·P {Xn ∈ Xn}
for all X1, . . . ,Xn ∈ B(F).

The Choquet theorem can be used to characterise independent random closed
sets in a LCHS space.

Proposition 1.19. Random closed sets X1, . . . , Xn are independent if and only if

P {X1 ∩ K1 �= ∅, . . . , Xn ∩ Kn �= ∅} =
n∏

i=1

TXi (Ki )

for all K1, . . . , Kn ∈ K.

Conditional distributions of random sets can be derived in the same way as con-
ditional distributions of random elements in an abstract measurable space. However,
this is not the case for conditional expectation, as the latter refers to a linear structure
on the space of sets, see Chapter 2.

If H is a sub-σ -algebra of F, then the conditional probabilities TX (K |H) =
P {X ∩ K �= ∅|H} are defined in the usual way. As noticed in Section 1.4, it suffices
to define the capacity functional on a countable family A of compact sets, which sim-
plifies the measurability issues. The family TX (K |H), K ∈ A, is a random capacity
functional that defines the conditional distribution X given H.
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1.3 Proofs of the Choquet theorem

Measure-theoretic proof

The proof given by Matheron [381] is based on the routine application of the
measure-theoretic arguments related to extension of measures from algebras to σ -
algebras. In fact, the idea goes back to the fundamental paper by Choquet [98] and
his theorem on characterisation of positive definite functionals on cones. Here we
discuss only sufficiency, since the necessity is evident from the explanations pro-
vided in Section 1.2.

Let us start with several auxiliary lemmas. The first two are entirely non-
topological and their proofs do not refer to any topological assumption on the carrier
space E.

Lemma 1.20. Let V be a family of subsets of E which contains ∅ and is closed
under finite unions. Let V be the family which is closed under finite intersections
and generated by FV and FV for V ∈ V . Then V is an algebra and each non-empty
Y ∈ V can be represented as

Y = FV
V1,...,Vn

(1.24)

for some n ≥ 0 and V , V1, . . . , Vn ∈ V with Vi �⊂ V ∪ Vj for i �= j (then (1.24)
is said to be a reduced representation of Y). If Y = FV ′

V ′1,...,V ′k
is another reduced

representation of Y , then V = V ′, n = k, and for each i ∈ {1, . . . , n} there exists
ji ∈ {1, . . . , n} such that V ∪ Vi = V ∪ V ′ji .

Proof. The family V is closed under finite intersections and ∅ = F∅ ∈ V. If Y ∈ V,
then the complement to Y ,

F \ Y = FV ∪ FV∪V1 ∪ FV∪V2
V1

∪ · · · ∪ FV∪Vn
V1,...,Vn−1

,

is a finite union of sets from V. Hence V is an algebra.
If Y satisfies (1.24) with Vi ⊂ V ∪ Vj for some i �= j , then the set Vj can

be eliminated without changing Y . Therefore, a reduced representation of Y exists.
Consider two reduced representations of a non-empty Y . Without loss of generality
assume that there exists a point x ∈ V ′ \ V . Since Y �= ∅, there exist k points (some
of them may be identical) x1, . . . , xk such that x j ∈ V ′j \ V ′, 1 ≤ j ≤ k and

{x1, . . . , xk} ∈ FV ′
V ′1,...,V ′k

= Y = FV
V1,...,Vn

.

Since x /∈ V , we have {x, x1, . . . , xk} ∈ FV
V1,...,Vn

. At the same time, x ∈ V ′, whence

{x, x1, . . . , xk} /∈ FV ′
V ′1,...,V ′k

. The obtained contradiction shows that V = V ′.
Choose y ∈ Vn \ V and yi ∈ Vi \ (V ∪ Vn), i = 1, . . . , n − 1. Since

{y1, . . . , yn−1} /∈ Y and {y, y1, . . . , yn−1} ∈ Y , there exists jn ∈ {1, . . . , k} such
that y ∈ V ′jn and yi /∈ V ′jn for i = 1, . . . , n − 1. For any other point y ′ ∈ Vn \ V we
similarly conclude that y ′ ∈ V ′jn , whence Vn \ V ⊂ V ′jn and
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Vn ⊂ V ∪ V ′jn .

Using identical arguments in the other direction we obtain V ′jn \ V ⊂ Vin . If in �= n,
this leads to Vn ⊂ Vin ∪ V and so contradicts the assumption that Y has a reduced
representation. Thus, in = n and Vn \V = Vjn \V . The proof is finished by repeating
these arguments for every other set Vi , i = 1, . . . , n − 1. ��

Lemma 1.21. In the notation of Lemma 1.20, let T be a completely alternating func-
tional on V such that T (∅) = 0, 0 ≤ T ≤ 1. Then there exists a unique additive map
P : V �→ [0, 1] such that P(∅) = 0 and P(FV ) = T (V ) for all V ∈ V . This map is
given by

P(Y) = −�Vn · · ·�V1 T (V ) , (1.25)

where Y = FV
V1,...,Vn

is any representation of Y ∈ V.

Proof. By the additivity property, we get

P(FV
V1,...,Vn

) = P(FV
V1,...,Vn−1

)− P(FV∪Vn
V1,...,Vn−1

) , (1.26)

which immediately shows that the only additive extension of P(FV ) = T (V ) is given
by (1.25). It is easy to show that the right-hand side of (1.25) retains its value if any
representation of Y is replaced by its reduced representation. Furthermore,

�Vn · · ·�V1 T (V ) = �Vn∪V · · ·�V1∪V T (V ) ,

which, together with Lemma 1.20, show that P(Y) is identical for any reduced rep-
resentation of Y . The function P is non-negative since T is completely alternating
and P(∅) = P(F∅) = T (∅) = 0. Furthermore, (1.26) implies

P(FV
V1,...,Vn

) ≤ P(FV
V1,...,Vn−1

) ≤ · · · ≤ P(FV ) = 1− T (V ) ≤ 1 .

It remains to show that P is additive. Let Y and Y ′ be two disjoint non-empty ele-
ments of V with the reduced representations

Y = FV
V1,...,Vn

, Y ′ = FV ′
V ′1,...,V ′k

,

such that Y ∪ Y ′ ∈ V. Since

Y ∩ Y ′ = FV∪V ′
V1,...,Vn,V ′1,...,V ′k

= ∅ ,

without loss of generality assume that Vn ⊂ V ∪ V ′. Since Y ∪ Y ′ ∈ V, this union
itself has a reduced representation

Y ∪ Y ′ = FV ′′
V ′′1 ,...,V ′′m

.

If V = E, then Y = {∅} if all subscripts in the representation of Y are empty, or
Y = ∅ otherwise, so that the additivity is trivial. Assume that there exists x /∈ V
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and xi ∈ Vi \ V , i = 1, . . . , n. Then F = {x, x1, . . . , xn} ∈ Y . Since F ∈ Y ∪ Y ′,
we have F ∩ V ′′ = ∅, i.e. x /∈ V ′′. Therefore, V ′′ ⊂ V . Similar arguments lead to
V ′′ ⊂ V ′, whence

V ′′ ⊂ (V ∩ V ′) .

Let us show that V ′′ = V . Assume that there exist points x ∈ V \V ′′ and x ′ ∈ V ′\V ′′.
Choose points x ′′i ∈ V ′′i \ V ′′ for i = 1, . . . ,m. Then {x, x ′, x ′′1 , . . . , x ′′m} ∈ Y ∪ Y ′,
so that {x, x ′} ∩ V = ∅ or {x, x ′} ∩ V ′ = ∅. Since both these statements lead to
contradictions, we conclude that V = V ′′ or V ′ = V ′′. The latter is impossible,
since then Vn ⊂ V ∪ V ′ = V leads to Y = ∅. Therefore, V = V ′′, V ⊂ V ′ and
Vn ⊂ V ′.

For each F ∈ Y∪Y ′, the condition F∩Vn �= ∅ yields F /∈ Y ′, while F∩Vn = ∅
implies F ∈ Y ′. Thus,

Y = (Y ∪ Y ′) ∩ FVn = FV
V ′′1 ,...,V ′′m,Vn

,

Y ′ = (Y ∪ Y ′) ∩ FVn = FV∪Vn
V ′′1 ,...,V ′′m

.

Then

−P(Y) = �Vn�V ′′m · · ·�V ′′1 T (V )

= �V ′′m · · ·�V ′′1 T (V )−�V ′′m · · ·�V ′′1 T (V ∪ Vn)

= −P(Y ∪ Y ′)+ P(Y ′) ,

which implies the additivity of P on V. ��
The following lemma uses the upper semicontinuity assumption on T and the

local compactness of E.

Lemma 1.22. Let T be a completely alternating upper semicontinuous functional on
K. By the same letter denote its extension defined by (1.19) and (1.20). Consider any
two open sets G and G0, any K ∈ K, a sequence {Kn, n ≥ 1} ⊂ K such that Kn ↑ G
and a sequence {Gn, n ≥ 1} ⊂ G such that Gn ↓ K and Gn ⊃ cl(Gn+1) ∈ K for
every n ≥ 1. Then

T (G0 ∪ K ∪ G) = lim
n→∞ T (G0 ∪ Gn ∪ Kn) .

Proof. Since T is monotone,

T (G0 ∪ K ∪ Kn) ≤ T (G0 ∪ Gn ∪ Kn) ≤ T (G0 ∪ Gn ∪ G) .

For each open G′ ⊃ G0∪G∪K we have G′ ⊃ Gn for sufficiently large n. By (1.20),
T (G0 ∪ Gn ∪ G) ↓ T (G0 ∪ G ∪ K ). Similarly, T (K ∪ Kn ∪ G0) converges to
T (K ∪ G ∪ G0), since T is continuous from below. ��
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Proof of the Choquet theorem. Let V be the family of sets V = G∪K where G ∈ G
and K ∈ K. It is possible to extend T to a completely alternating capacity on V . By
Lemma 1.21, formula (1.25) determines an additive map from V to [0, 1]. Note that
V generates the σ -algebra B(F). By known results on extensions of measures from
an algebra to the corresponding σ -algebra (see Neveu [424, Prop. I.6.2]) it suffices
to find a family V′ ⊂ V which consists of compact sets (in the Fell topology on F )
such that for each Y ∈ V

P(Y) = sup{P(Y ′) : Y ′ ∈ V′} . (1.27)

Let V′ consist of FG
K1,...,Kn

, where n ≥ 0, G ∈ G and K1, . . . , Kn ∈ K. Then
the elements of V′ are compact in the Fell topology and V′ ⊂ V. It remains to
prove (1.27).

Let Y = FV
V1,...,Vn

∈ V with V = G0 ∪ K0, G0 ∈ G and K0 ∈ K. There exists
a sequence {Gk, k ≥ 1} of open sets such that Gk ↓ K0 and Gk ⊃ cl(Gk+1) ∈ K
for all k ≥ 1. Hence V is a limit of a decreasing sequence of open sets G0 ∪ Gk .
Similarly, for each i ∈ {1, . . . , n}, Vi can be obtained as a limit of an increasing
sequence {Kik , k ≥ 1} of compact sets. Define

Yk = FG0∪Gk
K1k,...,Knk

.

Then Yk ∈ V′ and Yk ↑ Y as k →∞. In order to show that P(Yk) ↑ P(Y) note that

P(Y) = −T (V )+
∑

i

T (V ∪ Vi )−
∑
i1<i2

T (V ∪ Vi1 ∪ Vi2)+ · · · ,

P(Yk) = −T (G0 ∪ Gk)+
∑

i

T (G0 ∪ Gk ∪ Kik )

−
∑
i1<i2

T (G0 ∪ Gk ∪ Ki1k ∪ Ki2k)+ · · · .

Since both the sums above are finite and, by Lemma 1.22, each of the summands in
the second sum converges to the corresponding summand of the first sum, one has
P(Yk) ↑ P(Y). ��

Harmonic analysis proof

Now we outline a proof which refers to techniques from harmonic analysis on semi-
groups, see Berg, Christensen and Ressel [61]. It is based on Theorem G.10 of Ap-
pendix G which characterises positive definite functions on idempotent semigroups.
The family K of compact sets is an Abelian semigroup with respect to the union
operation. The union operation is idempotent, i.e. K ∪ K = K . The key idea of
the proof is to identify all (continuous in some sense) semicharacters on (K,∪) as
elements of F .

Let I be the set of all subsemigroups I of (K,∪), which satisfy

K , L ∈ I ⇒ K ∪ L ∈ I and K ⊂ L, L ∈ I ⇒ K ∈ I . (1.28)
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Define K̃ = {I ∈ I : K ∈ I } and equip I with the coarsest topology in which the
sets K̃ and I \ K̃ are open for all K ∈ K. Let 1I denote the map 1I (K ) = 1K∈I

from K into {0, 1}. Furthermore, Ir denotes the set of all I ∈ I such that 1I is upper
semicontinuous.

Lemma 1.23. For F ∈ F let IF = KF = {K ∈ K : K ∩ F = ∅}. Then F �→ IF is
a bijection between F and Ir and the inverse mapping is I �→ E \ ∪K∈I Int K .

Proof. It is obvious that IF ∈ I. If K ∩ F = ∅, then there exists an open neighbour-
hood of K which does not intersect F , so that the function 1IF is upper semicontin-
uous.

Let I ∈ Ir . With each K ∈ I , the family I contains a neighbourhood of K with
a compact closure, whence ⋃

K∈I

K =
⋃
K∈I

Int K .

Therefore, F = E \ ∪K∈I Int K is closed and I ⊂ IF . If L ∈ IF , then L is covered
by Int K , K ∈ I . Therefore, L is covered by a finite number of compact sets from I ,

L ⊂ Int K1 ∪ · · · ∪ Int Kn ⊂ K1 ∪ · · · ∪ Kn .

Because of (1.28), we see that L ∈ I , hence I = IF .
Finally, if F1 and F2 are different closed sets and x ∈ F1\F2, then {x} ∈ IF2 \ IF1 ,

so that IF2 �= IF1 confirming the bijectivity. ��
The following proposition strengthens the result of Lemma 1.23.

Proposition 1.24. The mapping c : I �→ F defined by

c(I ) = E \
⋃
K∈I

Int K

is continuous on I with respect to the Fell topology on F , and maps Ir bijectively
onto F .

Proof. It suffices to prove that c−1(FK ) and c−1(FG) are open in I for K ∈ K and
G ∈ G. Note that c(I ) ∩ K = ∅ is equivalent to the existence of L ∈ I such that
K ⊂ Int L. Therefore,

c−1(FK ) =
⋃

L∈K, K⊂Int L

L̃ , (1.29)

which shows that c−1(FK ) is open in I, since L̃ is open.
Similarly, c(I ) ∩ G �= ∅ is equivalent to the existence of K ∈ K \ I such that

K ⊂ G, hence
c−1(FG) =

⋃
K∈K , K⊂G

(I \ K̃ )

is open in I. ��
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Proof of the Choquet theorem. Let T be an upper semicontinuous completely alter-
nating capacity such that T (∅) = 0 and 0 ≤ T ≤ 1. It follows from the upper
semicontinuity condition that

Q(K ) = sup{Q(L) : L ∈ K, K ⊂ Int L} ,
where Q(K ) = 1− T (K ).

Note that I is isomorphic to the set of semicharacters on (K,∪), i.e. real-valued
maps K �→ R satisfying χ(∅) = 1, χ(K ∪ L) = χ(K )χ(L), see Appendix G.
Theorem G.6 implies that the functional Q = 1− T is positive definite on K, i.e.

n∑
i, j=1

ci c̄ j Q(Ki ∪ K j ) ≥ 0

for complex c1, . . . , cn , n ≥ 1, where c̄i denotes the complex conjugate to ci . By
Theorem G.10, there exists a measure ν on I such that

Q(K ) = ν({I ∈ I : K ∈ I }) = ν(K̃ ) .

Now (1.29) and the continuity property of Radon measures (supα ν(Gα) = ν(∪αGα)

for upward filtering family of open sets Gα) yield

ν(∪L∈K, K⊂Int L L̃) = sup{ν(L̃) : L ∈ K, K ⊂ Int L} = ν(c−1(FK )) .

Hence Q(K ) = µ(FK ), where µ is the image of measure ν under the continuous
mapping c : I �→ F . The uniqueness part is straightforward, since the families of
sets FK

K1,...,Kn
generate B(F). ��

Another proof given by Norberg [432] is based on powerful techniques from
the theory of lattices and is also applicable for random closed sets in non-Hausdorff
spaces, see Section 3.4.

1.4 Separating classes

The Choquet theorem establishes that a probability measure on B(F) can be deter-
mined by its values on FK for K ∈ K, i.e. the capacity functional on K. However,
the capacity functional defined on the whole family K of compact sets is still rather
difficult to define constructively, because the family K is too rich and it is generally
complicated to check the complete alternation conditions imposed on the capacity
functional. Fortunately, in some cases it is possible to reduce the family of compact
sets such that an upper semicontinuous completely alternating functional on this fam-
ily extends to a unique probability measure on B(F), i.e. defines a distribution of
a unique random closed set. In some cases it is possible to achieve this by consid-
ering random closed sets with special realisations, e.g. those which are convex with
probability one, see Section 7. Below we discuss possibilities of restricting the ca-
pacity functional in such a way that the restriction still determines the distribution of
a general random closed set. Recall that
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Bk = {B ∈ B(E) : cl B ∈ K}
denotes the family of all relatively compact Borel sets in E.

Definition 1.25 (Separating class). A class A ⊂ Bk is called separating if ∅ ∈ A
and, for all K ∈ K and G ∈ G with K ⊂ G, there exists an A ∈ A such that
K ⊂ A ⊂ G, see Figure 1.4. A family of sets A0 is said to be a pre-separating class
if the family of finite unions of sets from A0 forms a separating class.

K

A

G

Figure 1.4. Set A from a separating class.

It follows from the topological assumptions on E (locally compact Hausdorff
second countable) that, for each pair K ⊂ G from Definition 1.25, there exists an
open set G1 with a compact closure such that K ⊂ G1 ⊂ G1 ⊂ G. Definition 1.25
implies the existence of A ∈ A such that K ⊂ Int A ⊂ A ⊂ G. Since E is second
countable, this means that every separating class includes a countable separating
subclass.

Let ϕ : A �→ [0,∞] be an increasing function on a separating class A. Define its
outer extension ϕ− and the inner extension ϕ0 by

ϕ−(K ) = inf{ϕ(A) : A ∈ A, K ⊂ Int A} , K ∈ K , (1.30)

ϕ0(G) = sup{ϕ(A) : A ∈ A, cl A ⊂ G} , G ∈ G . (1.31)

If ϕ1 is the restriction of ϕ onto a separating subclass A1 ⊂ A, then ϕ−1 = ϕ− and
ϕ0 = ϕ0

1 . Note also that ϕ−− = ϕ0− = ϕ− and ϕ00 = ϕ−0 = ϕ0.

Definition 1.26 (Continuity set). A set B ∈ Bk is said to be a continuity set of ϕ if

ϕ0(Int B) = ϕ−(cl B) , (1.32)

where we allow for∞ =∞. Let Sϕ denote the family of continuity sets for ϕ.

The family Sϕ ∩ K (and Sϕ) is a separating class itself. For each pair K ⊂ G
with cl G ∈ K, consider an increasing family of compact sets Kt , 0 ≤ t < 1, such
that K0 = K and Kt ↑ G as t ↑ 1. Then there are at most a countable number of t
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such that Kt /∈ Sϕ , whence we can pick any other Ks ∈ Sϕ as a set separating K
and G.

If A ⊂ K and ϕ is upper semicontinuous on A, then ϕ− = ϕ. This is simi-
lar to the property of extensions of upper semicontinuous capacities formulated in
Theorem 1.12.

Theorem 1.27 (Capacity functional on a separating class). Let A be a separating
class, closed under finite unions. Suppose that ϕ : A �→ [0, 1] is completely alternat-
ing on A with ϕ(∅) = 0. Then there exists a unique random set X with the capacity
functional T (K ) = ϕ−(K ) for all K ∈ K. In particular, if A ⊂ K and ϕ is an upper
semicontinuous completely alternating functional on A, then there exists a unique
random closed set with the capacity functional T equal to ϕ on A.

Proof. The functional ϕ− is completely alternating if ϕ is too. Furthermore, the
functional ϕ− is upper semicontinuous, so that the Choquet theorem is applicable
to ϕ−. ��

Important separating classes are the family of Kub of all finite unions of balls of
positive radii, or the class Kup of all finite unions of parallelepipeds, see Salinetti
and Wets [512] and Lyashenko [367]. Both these classes can be replaced with their
countable subfamilies of balls with rational centres and radii and parallelepipeds with
rational vertices. The following proposition includes the particular cases mentioned
above.

Proposition 1.28. Let K0 be the family of the closures for all relatively compact
sets from a base of the topology on E. Then K0 is a separating class and, for each
capacity functional T on K0, there is a unique random closed set X such that T (K ) =
P {X ∩ K �= ∅} for all K ∈ K0.

Example 1.29. Let E = R be the real line. Consider the family K0 that consists
of finite unions of closed bounded segments. It follows from Proposition 1.28 that
the values of a capacity functional T on K0 determine uniquely the distribution of a
random closed subset of R. It is easy to see that T is upper semicontinuous on K0 if
and only if T ([a, b]) is right-continuous with respect to b and left-continuous with
respect to a.

1.5 Random compact sets

If E is locally compact, then the family K of all compact sets is a measurable subclass
of F , i.e. K ∈ B(F). Indeed,

K =
⋃
n≥1

{F ∈ F : F ⊂ Kn} ,

where {Kn, n ≥ 1} is a sequence of compact sets such that Kn ↑ E as n →∞. Note
that K ∈ B(F) also for a general metric separable space E with B(F) being the
Effros σ -algebra (see Definition 2.1), since
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K =
⋂
m≥1

⋃
n≥1

⋃
x1,...,xn∈Q

{F ∈ F : F ⊂ ∪n
i=1 B1/m(xi )} ,

where Q is a countable dense set in E (recall that Br (x) denotes the closed ball of
radius r centred at x). The above argument spells out the fact that a closed set is
compact if it possesses a finite m−1-net for all m ≥ 1.

Definition 1.30 (Random compact set). A random closed set X with almost surely
compact values (so that X ∈ K a.s.) is called a random compact set.

Alternatively, it is possible to construct a random compact set directly as a K-
valued random element. The myopic topology on K (or the Hausdorff metric if E
is a metric space) on K generates the Borel σ -algebra B(K) on K that can be used
to define a random compact set as a measurable K-valued map X : Ω �→ K, see
Appendix C. By Theorem C.5(iii), the σ -algebra B(K) is generated by {K ∈ K :
K ∩ G �= ∅} for G ∈ G. If E is locally compact, then every open set can be approx-
imated by compact sets, whence B(K) = B(F) ∩ K, i.e. the Borel σ -algebra on
K coincides with the trace of B(F) on K. Therefore, these two natural approaches
to define a random compact set produce the same object if E is locally compact. In
a general topological space E, Definition 1.30 is consistently used to define random
compact sets. If K does not belong to B(F), the condition X ∈ K a.s. is understood
as

sup{P {X ∈ Y} : Y ∈ B(F), Y ⊂ K} = 1 .

The following result is a sort of “tightness” theorem for distributions of random
compact sets.

Theorem 1.31 (Tightness for random compact sets). Let X be a random compact
set in a Polish space E. For all ε > 0 there exists K ∈ K such that P {X ⊂ K } ≥ 1−ε.

Proof. Let Q = {xk, k ≥ 1} be a countable dense set in E. Note that

lim
n→∞P

{
X ⊂

n⋃
k=1

B1/m(xk)

}
= 1 .

Choose n = nm such that

P

{
X ⊂

n⋃
k=1

B1/m(xk)

}
≥ 1− ε

2m
.

Define a compact set K as

K =
⋂
m≥1

[ nm⋃
k=1

B1/m(xk)

]
.

Then
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P {X �⊂ K } = P

⎧⎨⎩X ∩
⋃
m≥1

[ nm⋃
k=1

B1/m(xk)

]c

�= ∅
⎫⎬⎭

≤
∑
m≥1

P

{
X �⊂

[
nm⋃

k=1

B1/m(xk)

]}
≤ ε

∑
m≥1

2−m = ε . ��

1.6 Further functionals related to random sets

Avoidance, containment and inclusion functionals

The capacity functional TX (K ) is defined as the probability that X hits a compact set
K and therefore is often called the hitting functional of X . Along the same line, it is
possible to define further functionals associated with a random closed set X .

Definition 1.32. For a random closed set X ,

QX (K ) = P {X ∩ K = ∅} , K ∈ K ,

is said to be the avoidance functional,

CX (F) = P {X ⊂ F} , F ∈ F ,

is the containment functional, and

IX (K ) = P {K ⊂ X} , K ∈ K ,

is the inclusion functional.

All these functionals can be extended onto the family of open sets and all sets in
the same way at it has been done for the capacity functional by means of (1.19) and
(1.20). Let us list several obvious relationships between the introduced functionals

QX (K ) = 1− TX (K ) ,

CX (F) = QX (Fc) = 1− TX (Fc) ,

IX (K ) = QXc(K ) = 1− TXc(K ) .

The inclusion functional is related to the capacity functional of the complement Xc,
the latter being an open random set, see Section 4.6. The avoidance functional is
completely ∪-monotone on K, see Definition 1.8. The containment functional is
completely∩-monotone (also called completely monotone) on F , see Definition 1.9.
The containment functional defined on open sets is the dual functional to the capacity
functional, see (1.15).

Assume that E is a LCHS space. A simple reformulation of the Choquet theorem
shows that the avoidance functional QX (K ), K ∈ K, determines uniquely the distri-
bution of X . The same is true for the containment functional CX (F), F ∈ F , defined
on the family of closed sets. The containment functional CX (K ) restricted to K ∈ K
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may be degenerated for a non-compact X and so does not determine the distribution
of X . However, if X is a random compact set, then

CX (F) = lim
n→∞CX (F ∩ Kn) ,

where {Kn, n ≥ 1} is an increasing sequence of compact sets such that Kn ↑ E. It is
worthwhile to mention the following simple fact.

Proposition 1.33 (Containment functional of a random compact set). The distri-
bution of a random compact set X is uniquely determined by its containment func-
tional CX (K ), K ∈ K.

It is often useful to consider the inclusion functional IX (L) defined on sets L
from the family I of finite subsets of E. The continuity of probability measures from
the above immediately yields

IX (K ) = inf{IX (L) : L ∈ I, L ⊂ K } (1.33)

first for countable K and then for each K ∈ K referring to the separability of E.
As (1.33) shows, the inclusion functional IX (L), L ∈ I, can be uniquely extended
onto the whole class K. However, the inclusion functional, in general, does not deter-
mine uniquely the distribution of X . For example, if X = {ξ} is a random singleton
with ξ having an absolutely continuous distribution, then IX (K ) vanishes on each
non-empty K , see also Section 4.2.

Coverage function and covariance

It is easy to specify relationships between the capacity functional and the inclusion
functional on finite sets. First, if K = {x} is a singleton, then

pX (x) = TX ({x}) = IX ({x}) (1.34)

is called the coverage function of X . The following proposition follows from the
upper semicontinuity of the capacity functional.

Proposition 1.34. The coverage function pX (x), x ∈ E, is upper semicontinuous.

For two-point sets, the corresponding inclusion functional

ΣX (x1, x2) = IX ({x1, x2}) = P {{x1, x2} ⊂ X} (1.35)

is called the covariance function of X . It is easy to see that the covariance function is
positive definite. The covariance can be expressed using the capacity functional on
two-point sets and the coverage function as

ΣX (x1, x2) = pX (x1)+ pX (x2)− TX ({x1, x2}) .
The n-point coverage probabilities can be calculated from the capacity functional
using the inclusion-exclusion formula as
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IX ({x1, . . . , xn}) = P {{x1, . . . , xn} ⊂ X} = −�{xn} · · ·�{x1}TX (∅) .
Therefore, the inclusion functional IX (L), L ∈ I, and the capacity functional TX (L),
L ∈ I, restricted to the family I of finite sets can be expressed from each other by
solving systems of linear equations.

By integrating the covariance function of X one obtains

K (z) =
∫

ΣX (x, x + z)dx =
∫

P {{x, x + z} ⊂ X} dx

= E mes(X ∩ (X − z)) ,

called the geometric covariogram of X .

Covariances of stationary random sets

If X is stationary (see Definition 4.1), then the covariance function is continuous and
depends on the difference between the arguments, i.e. ΣX (x1, x2) = Σ(x1 − x2). If
X is a stationary isotropic random set, then ΣX (x1, x2) depends only on r = ‖x1 −
x2‖. Then, in many applications, it is useful to approximate Σ(r) by the exponential
covariance function given by

Σ(r) = p(1− p)e−ar + p2 ,

where p is the common value for pX (x).
The function γ (x) = Σ(0)−Σ(x) is called the variogram. Then

γ (x − y) = 1

2
[P {x ∈ X, y /∈ X} + P {x /∈ X, y ∈ X}] .

Open problem 1.35. Characterise those functions that may appear as covariances
(or variograms) of stationary random closed sets. It is well known that the properties
γ (0) = 0, γ (−h) = γ (h) and

n∑
i, j=1

ci c jγ (xi − x j ) ≤ 0

for any n ≥ 1, x1, . . . , xn , and real numbers c1, . . . , cn that sum to 0 (the condi-
tional negative definiteness of γ ) single out those functions that appear as variograms
of random fields. Further conditions are required to ensure the existence of the in-
dicator random field (or random closed set) with variogram γ . G. Matheron (see
Lantuéjoul [344, p. 27]) conjectured that such γ should satisfy

n∑
i, j=1

ci c jγ (xi − x j ) ≤ 0

for any n ≥ 1, x1, . . . , xn , and c1, . . . , cn ∈ {−1, 0, 1} that sum to 1.
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The covariance function Σ(·) can be used to develop a spectral theory of sta-
tionary random closed sets. For a Borel set A in Rd , define its random measure
µ(A) = mesd(A ∩ X) (see Section 8.3). If

Cov(A) =
∫
A

Σ(x)dx ,

then ∫
Rd

mesd (A ∩ (B + h))Cov(dh)

is the covariance between µ(A) and µ(B). It is shown in Koch, Ohser and Schla-
ditz [320] that there exists a finite measure ν on Rd , called the Bartlett spectrum,
such that ∫

Rd

ψ̂(x)Σ(x)dx =
∫
Rd

ψ(u)ν(du) ,

where ψ̂ is the Fourier transform of a function ψ which decays sufficiently fast.

Möbius inversion

If E is a finite space, then the distribution of a random closed set is naturally deter-
mined by a finite set of probabilities PX (F) = P {X = F} for all F ⊂ E. These
probabilities can be found from the containment functional by the Möbius inversion
formula

PX (F) =
∑
K⊂F

(−1)card(F\K )CX (K ) , F ⊂ E , (1.36)

where card(·) is the cardinality of the corresponding set (note that all closed sets in a
finite space are also compact). In the other direction,

CX (F) =
∑
K⊂F

PX (K ) .

2 Measurability and selections

2.1 Multifunctions in metric spaces

Effros measurability

Let (Ω,F,P) be a probability space. A map X : Ω �→ F from Ω into the space F of
closed subsets of E is called a (closed-valued) multifunction or set-valued function.
As before, F is the family of closed subsets of E, but now the space E is assumed
to be a Polish (complete separable metric) space. We aim to define random closed
sets in E as measurable multifunctions, so that it is vital to introduce the appropriate
measurability concept.
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Definition 2.1 (Effros measurability). A map X : Ω �→ F is called Effros measur-
able if

X−(G) = {ω : X (ω) ∩ G �= ∅} ∈ F

for each G ∈ G, i.e. for each open set G. The Effros σ -algebra on F is generated by
the families FG for all G ∈ G.

Sometimes, an Effros measurable multifunction is called weakly measurable as
opposed to a strongly measurable X which satisfies X−(F) = {ω : X (ω) ∩ F �=
∅} ∈ F for every closed set F .

It is possible to view a multifunction X as composed of single-valued measurable
functions which “fit inside” X . Such functions are called selections of X . Note that an
E-valued random element ξ is a measurable map ξ : Ω �→ E where the measurability
is understood with respect to the conventional Borel σ -algebra B on E.

Ω

ω

X (ω)

ξ(ω)

Figure 2.1. A multifunction X and its selection ξ .

Definition 2.2 (Measurable selection). A random element ξ with values in E is
called a (measurable) selection of X if ξ(ω) ∈ X (ω) for almost all ω ∈ Ω . The
family of all selections of X is denoted by S(X).

Fundamental measurability theorem

If E is locally compact, then an Effros measurable multifunction is exactly a random
closed set as defined in Section 1.1. Indeed, each open set in a locally compact space
can be approximated from below by a sequence of compact sets, so that X−(G) ∈ F
for all open G if and only if X−(K ) ∈ F for all K ∈ K. In a general Polish space
other measurability definitions are possible. The following theorem of C. Himmel-
berg establishes the equivalence of several possible concepts. Its proof can be found
in Himmelberg [257] and Castaing and Valadier [91].

Theorem 2.3 (Fundamental measurability theorem for multifunctions). Let E be
a separable metric space. Consider the following statements.
(1) X−(B) ∈ F for every B ∈ B(E).
(2) X−(F) ∈ F for every F ∈ F .
(3) X−(G) ∈ F for every G ∈ G, i.e. X is Effros measurable.
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(4) The distance function ρ(y, X) = inf{ρ(y, x) : x ∈ X} is a random variable for
each y ∈ E.

(5) There exists a sequence {ξn} of measurable selections of X such that

X = cl{ξn, n ≥ 1} .
(6) The graph of X

Graph(X) = {(ω, x) ∈ Ω × E : x ∈ X (ω)}
belongs to F⊗B(E) (the product σ -algebra of F and B(E)).

Then the following results hold.
(i) (1)⇒ (2)⇒(3) ⇔ (4)⇒ (6).

(ii) If E is a Polish space (i.e. E is also complete) then (3)⇔ (5).
(iii) If E is a Polish space and the probability space (Ω,F,P) is complete, then

(1)–(6) are equivalent.

A measurable map X : Ω �→ F is called a random closed set in E. Since we
always assume that E is Polish and the probability space is complete, Theorem 2.3
implies that all listed measurability definitions (1)–(6) are equivalent, so that X may
be called measurable if it satisfies any one of them. Unless E is locally compact, it
does not suffice to assume that X−(K ) = {ω : X ∩ K �= ∅} ∈ F for every compact
set K .

Definition 2.4 (σ -algebra generated by X). The minimal σ -algebra FX generated
by a random closed set X is generated by the events X−(G) = {ω ∈ Ω : X (ω) ∩
G �= ∅} for G ∈ G.

Clearly, FX is the minimal σ -algebra on Ω which ensures that X is Effros mea-
surable. Because of Theorem 2.3, it is possible to generate FX using any of the con-
ditions (1)–(4) or (6) of Theorem 2.3. If E is locally compact, FX is generated by
X−(K ), K ∈ K.

Measurability of special multifunctions

If X is a random convex weakly compact subset of a Banach space (so that almost all
realisations of X are weakly compact convex sets in E), then it is possible to provide
a simpler criterion for the measurability of X .

Proposition 2.5 (Measurability of convex-valued multifunction). If the dual space
E∗ is separable, then a weakly compact convex-valued multifunction is measurable
if and only if X is scalarly measurable, i.e. the support function of X

h(X, u) = sup{〈x, u〉 : x ∈ X}
is a random variable for each continuous linear functional u ∈ E∗, where 〈x, u〉
denotes the value of u at x .
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Proof. Necessity immediately follows from property (5) of Theorem 2.3, since
h(X, u) = sup{〈ξn, u〉 : n ≥ 1}.
Sufficiency. Let B∗1 be the unit ball in the dual space E∗. Then, for each z ∈ E,

ρ(z, X) = inf
x∈X

sup
u∈B∗1

〈z − x, u〉 .

Since x �→ 〈z − x, u〉 is a concave function and both X and B∗1 are convex, it is
possible to swap inf and sup. Therefore,

ρ(z, X) = sup
u∈B∗1

[
〈z, u〉 − sup

x∈X
〈x, u〉

]
= sup

un∈B∗1
[〈z, un〉 − h(X, un)]

is measurable, where {un, n ≥ 1} is dense in B∗1 . ��
The following result provides an especially simple criterion of the measurability

for regular closed multifunctions. Recall that a set F is regular closed if F coincides
with the closure of its interior, i.e. F = cl(Int F).

Theorem 2.6 (Measurability of regular closed multifunction). A multifunction X
with almost surely regular closed values in a Polish space E is a random closed set
(i.e. X is Effros measurable) if and only if {ω : x ∈ X (ω)} ∈ F for every x ∈ E.

Proof. Necessity is evident from Theorem 2.3. For sufficiency, fix a countable dense
set Q = {xn, n ≥ 1} in E. For each xn , An = {ω : xn ∈ X (ω)} ∈ F. Then
∪n≥1 An = {ω : X (ω) �= ∅} is measurable, so that without loss of generality we
may assume that X (ω) is not empty for all ω.

Define an E-valued random element ξ by putting ξ(ω) = x1 if ω ∈ A1, ξ(ω) =
x2 if ω ∈ A2 \ A1, ξ(ω) = x3 if ω ∈ A3 \ (A1 ∪ A2), etc. Then ξ is a measurable
selection of X . Define a countable family of measurable selections as

ξn(ω) =
{

xn , ω ∈ An ,

ξ(ω) , otherwise ,
n ≥ 1 .

Note that cl(X ∩ Q) = X , since X is regular closed. Then X = cl{ξn, n ≥ 1},
whence X is measurable by Theorem 2.3. ��

Borel interpretation of Effros σ -algebra

In order to study the convergence of random closed sets, it is essential to know when
the Effros σ -algebra coincides with the Borel σ -algebra B(F) generated by an ap-
propriate topology on F , i.e.

σ {FG, G ∈ G} = B(F) . (2.1)
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This question has been already addressed in Section 1.1, where it was explained that
the Effros σ -algebra is generated by the Fell topology on F if E is a locally compact
space. The following theorem summarises several important results of this kind for
a Polish space E. Recall that the Wijsman topology is a topology of pointwise con-
vergence of distance functions of closed sets, see Appendix B for a survey of various
topologies on F .

Theorem 2.7 (Effros σ -algebra and topologies on F ).
(i) If E is a separable metric space, then the Wijsman topology generates the Borel

σ -algebra that fulfils (2.1).
(ii) If E is locally compact, then (2.1) holds if F is equipped with the Fell topology.
(iii) The Effros σ -algebra induced on the family of compact sets K coincides with

the Borel σ -algebra generated by the Hausdorff metric.

Proof.
(i) First, prove that F is separable with respect to the Wijsman topology. Let Q be

the family of all finite subsets of a countable dense set Q in E. For each F ∈ F it
is possible to find a countable set F ′ = {x1, x2, . . . } ⊂ F such that F = cl F ′. Let
Fn be a set from Q such that ρH(Fn, F ′n) < n−1, where F ′n = {x1 . . . , xn}. Then Fn

converges to F in Wijsman topology, since

ρ(x, F ′n)− n−1 ≤ ρ(x, Fn) ≤ ρ(x, F ′n)+ n−1

for each x ∈ E , so that it suffices to notice that ρ(x, F ′n)→ ρ(x, F) as n →∞.
SinceF is separable, the Borel σ -algebra corresponding to the Wijsman topology

is generated by
{F ∈ F : |ρ(x, F)− ρ(x, F0)| < r} (2.2)

for x ∈ Q, F0 ∈ F and positive rational r . It is easily seen that every set given by
(2.2) belongs to the Effros σ -algebra. For the reverse inclusion, referring to the sepa-
rability of E, it suffices to show that, for each open ball Bo

r (x0) = {x : ρ(x, x0) < ε},
the set {F : F∩Bo

r (x) �= ∅} belongs to the Borel–Wijsman σ -algebra. This is indeed
the case, since

{F : F ∩ Bo
r (x) �= ∅} = {F : |ρ(x0, F)− ρ(x0, {x0})| < r} .

(ii) follows from (i), since the Fell topology generates the same Borel σ -algebra as
the Wijsman topology if E is locally compact, see Theorem B.13(ii).
(iii) is an immediate corollary from Theorem C.5(iii). ��

If E is a Banach space such that the dual space E∗ is separable, then the slice
topology (see Beer [56] and Hess [243]) generates the Borel σ -algebra which co-
incides with the Effros σ -algebra on F . If E is a reflexive Banach space, then the
Mosco and slice topologies coincide, so that the Mosco topology can be used in-
stead, see Beer [56, Cor. 5.4.14].
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Approximability of random closed sets

It is possible to work out further measurability properties relying on approximations
of random closed sets by random sets with at most a finite number of values.

Definition 2.8 (Simple random sets). A random closed set X is called simple, if
it assumes at most a finite number of values, so that there exists a finite measurable
partition A1, . . . , An of Ω and sets F1, . . . , Fn ∈ F such that X (ω) = Fi for all
ω ∈ Ai , 1 ≤ i ≤ n.

It is known (see Appendix B) that the space F is separable in the Fell topology
if E is LCHS. The separability of F ensures that in this case each random closed set
is an almost sure limit (in the Fell topology) of simple random sets. For a general
separable metric space E, this is not always the case.

Definition 2.9 (Approximable random sets). A random closed set X is called ap-
proximable (with respect to some topology or metric on F ) if X is an almost sure
limit of a sequence of simple random closed sets (in the chosen topology or metric).

If the convergence in Definition 2.9 is understood with respect to a metric, then
the equivalent concept is the total measurability of X , meaning the existence of a
sequence of simple random sets that converges to X in probability, see Section 6.2.

Note that approximations of X by simple random sets are always understood with
respect to the topology such that the corresponding Borel σ -algebra satisfies (2.1).
To be more specific, it is sensible to call X Hausdorff approximable, Wijsman ap-
proximable, Mosco approximable, etc. depending on the chosen topology.

Proposition 2.10 (Approximability of random sets). Assume that (2.1) holds for
an appropriate topology on F . Then the approximability property of a random closed
set X is equivalent to one of the following conditions.
(i) There exists a subset Ω ′ ⊂ Ω of a full measure such that {X (ω) : ω ∈ Ω ′} is

a separable subset of F with respect to the chosen topology.
(ii) The distribution PX induced by P on F is a Radon probability measure on

B(F), i.e. for each Y ∈ B(F),

PX (Y) = sup{PX (X ) : X is compact in F , X ⊂ Y} ,
where the compactness is understood with respect to the topology satisfy-
ing (2.1).

Proof.
(i) follows from a general result on random elements in topological spaces, see

Vakhaniya, Tarieladze and Chobanyan [568, Prop. 1.1.9].
(ii) If X is approximable, then there exists a sequence {ωk, k ≥ 1} such that
{X (ωk), k ≥ 1} is dense in {X (ω) : ω ∈ Ω \ Ω0} with P(Ω0) = 0. Ulam’s
theorem [568, Th. 2.3.1] together with (i) complete the proof. ��
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The following result implies that a measurable random closed (respectively com-
pact) set can be equivalently defined as a Wijsman (respectively Hausdorff) approx-
imable multifunction.

Theorem 2.11 (Wijsman and Hausdorff approximability). In a Polish space E,
(i) every random closed set is Wijsman approximable;

(ii) every random compact set is Hausdorff approximable.

Proof.
(i) It is shown in the proof of Theorem 2.7(iii) that the space F with the Wijsman

topology is separable if E is Polish. Then (i) follows from Proposition 2.10(i).
(ii) It suffices to show that K is separable with respect to the Hausdorff metric ρH.
Let Q be a countable dense set in E. Then the (countable) family Q of all finite
sequences of elements of Q is dense in K. For this, fix any K ∈ K and ε > 0. Then
the balls of radius ε centred at the points of Q cover K . Therefore, K has a finite
cover, which means that ρ(K , Q) < ε for some Q ∈ Q. ��

It should be noted that a bounded random closed set X in a Polish space is not
always Hausdorff approximable, even if the realisations of X are almost surely con-
vex.

Example 2.12 (Non-approximable random closed sets). Consider the probability
space Ω = [0, 1] with the Lebesgue σ -algebra and the Lebesgue measure P.
(i) Let E be the Banach space of real-valued continuous functions on [0, 1] with

the uniform norm. Define a multifunction with closed convex values as X (ω) = {x ∈
E : ‖x‖ ≤ 1 , x(ω) = 0} for ω ∈ Ω . Then

ρ(x, X (ω)) = max(sup
t �=ω

max(|x(t)| − 1, 0), x(ω))

is a random variable for every x ∈ E, so that X is a random closed set by Theo-
rem 2.3. However, X cannot be obtained as an almost sure limit in the Hausdorff
metric of simple random closed sets, since ρH(X (ω), X (ω′)) = 1 for ω �= ω′, con-
trary to Proposition 2.10(i).
(ii) Let E = �2 be the space of square-summable sequences. For each ω ∈ Ω =
[0, 1] take its binary expansion ω =∑∞

n=1 ωn2−n with ωn equal 0 or 1. Let

X (ω) = {x ∈ �2 : ‖x‖ ≤ 1 , xn = 0 for ωn = 0, n ≥ 1} .
Then X is not Hausdorff approximable, since ρH(X (ω), X (ω′)) = 1 for ω �= ω′.

2.2 Selections of random closed sets

Fundamental selection theorem

Recall that S(X) denotes the family of all (measurable) selections of X . The funda-
mental measurability theorem for multifunctions (Theorem 2.3) implies the follow-
ing existence theorem for selections.
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Theorem 2.13 (Fundamental selection theorem). If X is an Effros measurable
closed-valued almost surely non-empty multifunction in a Polish space E, then
S(X) �= ∅.

The fundamental selection theorem can be proved directly by constructing a se-
quence of random elements ξn with values in a countable dense subset of E such that
ρ(ξn, X) < 2−n and ρ(ξn, ξn−1) < 2−n+1 for all n ≥ 1 on a set of full measure. The
completeness of E is crucial to ensure that the sequence of ξn possesses an almost
sure limit, which becomes the required selection of X . The full proof can be found
in Kuratowski and Ryll-Nardzewski [339], Castaing and Valadier [91, Th. III.6] or
Aubin and Frankowska [30, Th. 8.1.3].

It should be noted that Theorem 2.3(ii) implies not only the mere existence of
selections, but a stronger fact that the selections “fill” X , so that X equals the closure
of a countable set of its selections.

Definition 2.14 (Castaing representation). A countable family of selections ξn ∈
S(X), n ≥ 1, is said to be the Castaing representation of X if X = cl{ξn, n ≥ 1}.

Characterisation of distributions of random sets by their selections

The family of selections S(X) depends not only on X , but also on the underlying
probability space. For instance, a two-point deterministic set X = {0, 1} has only
two trivial (deterministic) selections if F = {∅,Ω} is the trivial σ -algebra, while
if F is richer, then random variables with possible values 0 and 1 appear as selec-
tions. Even if the probability space is fixed and non-atomic, then the situation is not
straightforward. The following example describes two identically distributed random
closed sets X and Y defined on the same probability space such that S(X) �= S(Y ).

Example 2.15 (Identically distributed random sets with different selections). Let
Ω = [0, 1] with the σ -algebra F of Lebesgue measurable subsets and the Lebesgue
measure P. Define two random closed (even compact) subsets of E = R as X (ω) =
{−ω,ω} and Y (ω) = {−s(ω), s(ω)}where s(ω) = 2ω if ω < 1/2 and s(ω) = 2ω−1
if ω ≥ 1/2. It is easy to see that X and Y are identically distributed. However, the
selection of Y

η(ω) = s(ω)1[0,1/2)(ω)− s(ω)1[1/2,1](ω)

has a distribution which is not shared by any selection of X .

The situation described in Example 2.15 can be explained if one observes that the
selection η belongs to the weak closure of S(X), i.e. η is the weak limit of a sequence
{ξn, n ≥ 1} ⊂ S(X). Taking the weak closure of the family of random elements
is identical to taking the weak closure of the corresponding family of distributions
{Pξ : ξ ∈ S(X)}. It is well known (see Billingsley [70]) that the weak convergence
of random elements (or their distributions) can be metrised by the Prokhorov metric
given by

p(P1,P2) = inf{ε > 0 : P1(B) ≤ P2(Bε−)+ ε for all B ∈ B(E)} (2.3)
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for probability measures P1 and P2, where Bε− is the open ε-envelope of B . Further
we write p(ξ, η) instead of p(Pξ ,Pη).

Theorem 2.16 (Selections of identically distributed random sets). Consider two
non-atomic probability spaces (Ω,F,P) and (Ω ′,F′,P′) and two random closed
sets X and Y in a Polish space E defined respectively on Ω and Ω ′. If X and Y are
identically distributed, then the weak closures of S(X) and S(Y ) coincide.

Proof. Let ξ ∈ S(X) and let ε > 0. We have to find η ∈ S(Y ) such that p(ξ, η) < ε.
It follows from Proposition 2.10(ii) (applied to singletons) that there exists a compact
set K such that P{ξ ∈ B0} < ε, where B0 = E \ K is the complement to K . Let
B1, . . . , Bm be a partition of K into disjoint Borel sets of diameter less than ε. Define
ci = P{ξ ∈ Bi } and Ai = Y−(Bi) = {ω ∈ Ω ′ : Y (ω)∩Bi �= ∅} for i = 0, 1, . . . ,m.

Since X and Y are identically distributed,

P{X ∩ BI �= ∅} = P′{Y ∩ BI �= ∅} = P′(∪i∈I Ai )

for every I ⊂ {0, 1, . . . ,m}, where BI = ∪i∈I Bi . Since the Bi ’s are disjoint,

P{X ∩ BI �= ∅} ≥ P{ξ ∈ BI } =
∑
i∈I

P{ξ ∈ Bi } =
∑
i∈I

ci .

Then
P′(∪i∈I Ai ) = P{X ∩ BI �= ∅} ≥

∑
i∈I

ci

for each I ⊂ {0, 1, . . . ,m} and

P′(∪m
i=0 Ai ) = 1 =

m∑
i=0

ci .

By a combinatorial result (Halmos and Vaughan [218], Hart and Kohlberg [223])
which holds for non-atomic probability spaces, there exists a partition A′0, A′1, . . . , A′m
of Ω ′ such that A′i ⊂ Ai and P′(A′i ) = ci for i = 0, 1, . . . ,m. Define η(ω) for
ω ∈ A′i to be a selection of Y ∩ cl(Bi ). Then η ∈ S(Y ) and p(ξ, η) < ε. ��

For a σ -algebra H ⊂ F, let SH(X) be the family of selections of X that are
H-measurable. The following result states that the weak closed convex hulls of the
family of F-measurable selections of X and FX -measurable selections of X coincide,
where FX is the σ -algebra generated by X , see Definition 2.4. If the probability space
is atomless, then taking convex hulls is no longer necessary.

Theorem 2.17 (F- and FX -measurable selections). If X is a random closed set in
a Polish space E, then the closed convex hulls in the weak topology of S(X) and
SFX (X) coincide.
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Proof. Although the statement follows from Theorem 2.16, we present here an inde-
pendent proof. Without loss of generality, assume that X is almost surely non-empty.
Since FX ⊂ F, it suffices to show that an arbitrary selection ξ ∈ S(X) belongs to the
closed convex hull of SFX (X). Let f : E �→ R be a bounded continuous function.
Since bounded continuous functions are dual to probability measures on E we need
to show that for every ε > 0 there is η ∈ SFX (X) such that E f (ξ) ≤ E f (η)+ ε.

Note that Y = cl f (X) is a random compact set in R1 that is also FX -measurable.
Set α = sup Y . Then [α−ε, α]∩Y is an almost surely non-empty and FX -measurable
random closed set, see Theorem 2.25(iv). By the fundamental selection theorem, it
admits a FX -measurable selection ζ . Furthermore, a random closed set Z = X ∩
f −1({ζ }) is non-empty and so also admits a FX -measurable selection η that satisfies
f (η) = ζ . Finally

E f (ξ) ≤ Eα ≤ Eζ + ε ≤ E f (η)+ ε . ��

Proposition 2.18. Two random closed sets X and Y in a Polish space E are identi-
cally distributed if and only if SFX (X) = SFY (Y ).

Proof. Sufficiency. If X and Y are not identically distributed, then P {X ∩ G �= ∅} �=
P {Y ∩ G �= ∅} for some G ∈ G, see Theorem 2.28. Without loss of generality as-
sume that P {X ∩ G �= ∅} > P {Y ∩ G �= ∅}. Using the Castaing representation of X
whose members are FX -measurable (such a representation exists by Theorem 2.3),
one can construct a selection ξ ∈ SFX (X) such that ξ ∈ G whenever X ∩ G �= ∅.
Then for any η ∈ SFY (Y ) we have

P {η ∈ G} ≤ P {Y ∩ G �= ∅} < P {X ∩ G �= ∅} = P {ξ ∈ G} ,
which shows that no such η shares the distribution with ξ .
Necessity. Consider ξ ∈ SFX (X). Then there exists a measurable map ϕ : F �→ E
such that ξ = ϕ(X). Therefore, η = ϕ(Y ) is FY -measurable and has the same
distribution as ξ . Furthermore, ρ(ϕ(X), X) has the same distribution as ρ(ϕ(Y ),Y ).
Thus, η is a selection of Y , since ρ(ϕ(X), X) vanishes almost surely. ��

Selectionability of distributions

Because the families of selections for identically distributed random sets may be
different, it is natural to associate selections with the distribution of X rather than its
representation as a multifunction on a particular probability space.

Definition 2.19 (Selectionable distributions). A probability distribution µ on E is
selectionable with respect to a distribution ν on F if there is a random closed set X
with the distribution ν and a selection ξ ∈ S(X) with distribution µ. The family of
all probability measures on E which are selectionable with respect to a probability
measure ν on F is denoted by S(ν).

The following result obtained by Artstein [19] is a corollary from necessary and
sufficient conditions for proper matching. If E is locally compact, it is possible to
deduce it from the ordered coupling theorem proved in Section 4.8.
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Theorem 2.20 (Selectionability). A probability distribution µ on a Polish space E
is selectionable with respect to the distribution ν on F if and only if

µ(K ) ≤ ν({F : F ∩ K �= ∅}) (2.4)

for all K ∈ K.

Families of selections

The following results are formulated for random compact sets in Polish spaces. It
should be noted that their variants for random closed (non-compact) sets in locally
compact spaces are possible to obtain using one-point compactification (see Ap-
pendix A) and allowing for a positive mass to be assigned to the compactifying point.

Proposition 2.21 (Selections of random compact sets). For each probability mea-
sure ν on K, the family S(ν) is a convex compact set with respect to the weak con-
vergence of measures and their arithmetic addition.

Proof. If µ1, µ2 ∈ S(ν), then (2.4) immediately implies that cµ1+(1−c)µ2 ∈ S(ν)

for every c ∈ [0, 1]. Furthermore, (2.4) can be written for all open F , so that S(ν) is
closed in the weak topology by Billingsley [70, p. 24, (iv)]. By Proposition 2.10(ii)
and Theorem 2.7(iii), there exists a compact set K′ ⊂ K such that ν(K′) ≥ 1− ε for
any fixed ε > 0. The union of all sets from K′ is a compact subset K ′ of E. By (2.4),
µ(K ′) ≥ 1− ε, so that S(ν) is tight and weakly compact by the Prokhorov theorem,
see Billingsley [70, p. 62]. ��

Similar to the definition of the Hausdorff metric on the space of compact sets, it is
possible to define a distance between compact families of probability measures. Let
M be the metric space of all probability measures on E with the Prokhorov metric p.
For two compact sets A1, A2 ⊂ M, define

pH(A1, A2) = max

(
sup
µ∈A1

inf
ν∈A2

p(µ, ν) , sup
ν∈A2

inf
µ∈A1

p(µ, ν)

)
.

The following result is proved by Artstein [16] similar to Theorem 2.16.

Theorem 2.22 (Continuity for families of selections). The function ν �→ S(ν) is
pH-continuous, i.e. if νn → ν weakly on K, then pH(S(νn),S(ν))→ 0 as n →∞.

Theorem 2.22, in particular, immediately implies Theorem 2.16 for random com-
pact sets, noticing that the Hausdorff metric does not distinguish between the sets and
their closures. Moreover, if νn weakly converges to ν on K, then the weak closure of
S(νn) converges to the weak closure of S(ν).
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Steiner point and selection operators

If X is an almost surely non-empty random convex compact set in Rd (see Defini-
tion 4.32), then its particularly important selection is given by the Steiner point s(X)

defined in Appendix F. As shown in Dentcheva [136], the Steiner point possesses
a number of useful smoothness properties as a function of X . For instance, the in-
equality ‖s(K ) − s(L)‖ ≤ dρH(K , L) for each K , L ∈ K implies that the Steiner
point is a Lipschitz function on K with respect to the Hausdorff metric. It is shown
by Aubin and Frankowska [30, Th. 9.4.1] that the Steiner point can be equivalently
defined as

s(X) = 1

κd

∫
B1

m(H (X, u))du , (2.5)

where B1 is the unit ball in Rd , H (X, u) = {x ∈ X : h(X, u) = 〈x, u〉} is the
u-face of X (or the subdifferential ∂h(X, u) of the support function as defined in
Appendix F) and m(H (X, u)) is the point in H (X, u) with the smallest norm. It
follows from Theorem 2.27 (see also (2.6)) that m(H (X, u)) is a random element in
E. Formula (2.5) can be amended to define a generalised Steiner point as

sµ(X) =
∫
B1

m(H (X, u))µ(du) ,

where µ is a probability measure on B1. A convexity argument implies that sµ(X)

is a selection of X . As shown by Dentcheva [136, Lemma 5.4], sµ(X) are dense in
X for all probability measures µ absolutely continuous with respect to the Lebesgue
measure.

The (generalised) Steiner points are particular examples of maps from coK′ into
E which are continuous with respect to the Hausdorff metric. Recall that K′ (re-
spectively F ′) denote the families of non-void compact (respectively closed) sets,
while coK′ and coF ′ are formed by convex sets from the corresponding families.
Rephrasing the concept of a selection, an Effros measurable map f : F ′ �→ E is called
a selection operator if f(F) ∈ F for every non-empty closed set F .

Proposition 2.23 (Castaing representation using selection operators). There ex-
ists a sequence of selection operators {fn, n ≥ 1} such that F = cl{fn(F), n ≥ 1}
for every F ∈ F ′.

Proof. Consider the multifunction defined on F by I (F) = F for all closed F .
This is a measurable map with respect to the Effros σ -algebra. Now the Castaing
representation of I provides the required family of selection operators. ��

A selection operator f is continuous if it is continuous in the Wijsman topology.
The existence of a continuous selection operator on coF ′ for a separable Banach
space E is shown in Gao and Zhang [187].
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Open problem 2.24. Find an explicit construction of the Castaing representation
for non-convex random closed sets that may be similar to the representation using
weighted Steiner points in the convex case.

It is possible to define a tangent cone to a random closed set as the limit of
(X − ξ)/t as t ↓ 0, where ξ is a selection of X . The limit is considered in the Fell
topology if E = Rd and in the Mosco sense if E is a Banach space.

2.3 Measurability of set-theoretic operations

Set-theoretic operations

Because we always assume that E is Polish and the probability space is complete,
Theorem 2.3 provides a number of equivalent definitions of measurable multifunc-
tions which help to prove the measurability of operations with random closed sets.
The Minkowski (elementwise) addition that appears in part (v) of the following theo-
rem is defined in Appendix A and the limits for sequences of sets in (viii) are defined
in Appendix B.

Theorem 2.25 (Measurability of set-theoretic operations). If X is a random closed
set in a Polish space E, then the following multifunctions are random closed sets:
(i) co (X), the closed convex hull of X ;

(ii) αX if α is a random variable;
(iii) cl(Xc), the closed complement to X , cl(Int(X)), the closure of the interior of

X , and ∂X , the boundary of X .
If X and Y are two random closed sets, then
(iv) X ∪ Y and X ∩ Y are random closed sets;
(v) cl(X + Y ) is a random closed set (if E is a Banach space);

(vi) if both X and Y are bounded, then ρH(X,Y ) is a random variable.
If {Xn, n ≥ 1} is a sequence of random closed sets, then
(vii) cl(∪n≥1 Xn) and ∩n≥1 Xn are random closed sets;
(viii) lim sup Xn and lim inf Xn are random closed sets.

Proof.
(i) Without loss of generality assume that X �= ∅ a.s. Consider the Castaing rep-

resentation {ξn, n ≥ 1} of X . Then the countable family of convex combinations of
{ξn, n ≥ 1} with rational coefficients is dense in co (X), so that co (X) admits its
Castaing representation and, therefore, is measurable.
(ii) follows immediately from the fact that {αξn, n ≥ 1} is the Castaing representa-
tion of αX .
(iii) For every G ∈ G, {cl(Xc) ∩ G = ∅} = {G ⊂ X}, so it suffices to show that the
latter event is measurable. Let {Fn, n ≥ 1} be an increasing sequence of closed sets
such that Fn ↑ G. Then {G ⊂ X} = ∩n≥1{Fn ⊂ X}, so that it suffices to show that
{F ⊂ X} is measurable for every F ∈ F . Since there exists a countable set of points
{xk, k ≥ 1} which are dense in F , {F ⊂ X} = ∩k≥1{xk ∈ X} ∈ F.
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Furthermore, cl(Int X) is measurable, since cl(Int X) = cl(Y c) for Y = cl(Xc).
The boundary of X can be represented as ∂X = X∩cl(Xc), so that the measurability
of ∂X would follow from (iv).
(iv) is a particular case of (vii) to be proved later on.
(v,vi) If {ξn, n ≥ 1} and {ηm , m ≥ 1} are the Castaing representations of X and Y
respectively, then {ξn + ηm, n,m ≥ 1} is the Castaing representation of cl(X + Y ),
whence cl(X + Y ) is measurable. Furthermore,

ρH(X,Y ) = ρH({ξn, n ≥ 1}, {ηm,m ≥ 1})
is measurable.
(vii) If G ∈ G, then

{cl(∪n≥1 Xn) ∩ G �= ∅} =
⋃
n≥1

{Xn ∩ G �= ∅} ∈ F ,

which confirms the measurability of cl(∪n≥1 Xn). To show the measurability of
countable intersections observe that

Graph(∩n≥1 Xn) =
⋂
n≥1

Graph(Xn) ,

so that ∩n≥1 Xn is measurable by Theorem 2.3.
(viii) Note that Xε

n = {x : ρ(x, Xn) ≤ ε} is a random closed set, since its graph

Graph(Xε
n) = {(ω, x) : ρ(x, Xn) ≤ ε}

is measurable, since ρ(·, ·) is a (F⊗B(E),B(R))-measurable function. Now (viii)
follows from (vii) taking into account that

lim inf
n→∞ Xn =

⋂
k≥1

cl(
⋃
m≥1

⋂
n≥m

X1/k
n ) ,

lim sup
n→∞

Xn =
⋂
m≥1

cl(
⋃
n≥m

Xn) . ��

Inverse function and infimum

It is possible to formulate several results on inverse functions in the language of
random closed sets.

Theorem 2.26 (Random inverse functions). Let X and Y be random closed sets in
Polish spaces E and E′ respectively. Let ζx = ζx(ω), x ∈ E, be an almost surely
continuous E′-valued stochastic process. Then Z = {x ∈ X : ζx ∈ Y } is a random
closed set.

If ζX ∩ Y �= ∅ a.s. (where ζX = {ζx : x ∈ X} is the image of X under ζ ),
then there exists an E-valued random element ξ such that ζξ ∈ Y a.s. In particular, if
Y = {η} is a singleton and η ∈ ζX a.s., then there exists an E-valued random element
ξ such that η = ζξ a.s.



2 Measurability and selections 39

Proof. Note that ϕ(ω, x) = (ω, ζx (ω)) is measurable with respect to the product
σ -algebra F ⊗ B(E), whence {(ω, x) : ϕ(ω, x) ∈ B} ∈ F ⊗ B(E) for every
B ∈ B(E′). The proof is finished by observing that

Graph(Z) = Graph(X) ∩ ϕ−1(Graph(Y ))

is a measurable subset of Ω × E. ��
The following result concerns the measurability of infimum taken over a random

closed set, see Figure 2.2. It can be easily proved using the Castaing representation
for its first statement and referring to Theorem 2.26 for the second one.

α

ζx

x
X

Y = argminx∈X ζ

Figure 2.2. The minimum α and argmin inside X of a random function ζ .

Theorem 2.27 (Measurability of infimum). Let X be an almost surely non-empty
random closed set in Polish space E and let ζx be an almost surely continuous
stochastic process with values in R. Then
(i) the infimum of ζx over x ∈ X ,

α = inf
x∈X

ζx ,

is a random variable;
(ii) the set of minimum points,

Y = {x ∈ X : ζx = α} = argminx∈X ζ ,

is a random closed set.

In particular, this implies that the support function

h(X, u) = sup{〈x, u〉 : x ∈ X} , u ∈ E∗ ,

is a random variable if E is a Banach space. Furthermore, the α-envelope of X

Xα = {x : ρ(x, X) ≤ α}
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is a random closed set if α is a non-negative random variable. If ξ is an E-valued
random element, then ρ(ξ, X) = inf{ρ(ξ, x) : x ∈ X} is a random variable; the
metric projection of ξ onto X

projX (ξ) = {x ∈ X : ρ(x, ξ) = ρ(ξ, X)} (2.6)

is a random closed set.

2.4 Random closed sets in Polish spaces

The distribution of a random closed set in a Polish space E is determined by a proba-
bility measure on the Effros σ -algebra. The following theorem provides a uniqueness
result.

Theorem 2.28 (Equality in distribution). Let X and Y be two random closed sets
in a Polish space E. Then the following statements are equivalent.
(i) X and Y are identically distributed.

(ii) For each open set G, P {X ∩ G �= ∅} = P {Y ∩ G �= ∅}.
(iii) For each finite set x1, . . . , xn ∈ E the random vectors (ρ(x1, X), . . . , ρ(xn, X))

and (ρ(x1,Y ), . . . , ρ(xn,Y )) are identically distributed.

Proof. (i) and (ii) are equivalent, since the Effros σ -algebra is generated by the
events that appear in (ii). Furthermore, (i) and (iii) are equivalent, since, by The-
orem 2.7(i) the Effros σ -algebra coincides with the Borel σ -algebra generated by
the Wijsman topology. Therefore, ρ(x, X), x ∈ E, is a continuous stochastic pro-
cess whose finite-dimensional distributions are uniquely identified by (iii). Note that
ρ(x, X), x ∈ E, is called the distance function of X , see Definition 2.2.5. ��

The capacity functional of a random closed set X on the family of open sets

TX (G) = P {X ∩ G �= ∅} , G ∈ G ,

or its counterpart TX (F), F ∈ F , on the family of closed sets uniquely identify
the distribution of X . It is easily seen that T is a completely alternating capacity
on G or F . Its semicontinuity property causes potential difficulties. For example,
T (Fn) ↓ T (F) does not necessarily follow from Fn ↓ F . Note however, that the
capacity functional on the family of compact sets no longer determines uniquely the
distribution of X if E is not locally compact.

The Choquet theorem (for a locally compact space E) implies that for every com-
pletely alternating upper semicontinuous capacity T with values in [0, 1] there is a
unique random closed set X having T as its capacity functional. Unfortunately, the
corresponding existence result for random closed sets in general Polish spaces is not
known. It should be noted that it is not possible to deduce it immediately from the
theory outlined later on in Section 3, since the corresponding lattice fails to have a
second countable Scott topology.
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Nguyen and Nguyen [428] showed that the Choquet theorem does not hold on
any non-compact Polish space under the assumptions that T is completely alternating
on G and satisfies

T (Gn) ↑ T (G) if Gn ↑ G in the Hausdorff metric . (2.7)

If E is the unit ball in a Hilbert space, then the Kuratowski measure of non-
compactness T (G) = nc(G), see Appendix A, is a functional which is completely
alternating, satisfies (2.7) but at the same time violates the σ -subadditivity property,
so that there exists an open set G such that

T (G) �
∞∑

n=1

T (Gn) (2.8)

for a decomposition G = ∪n Gn into the union of open sets. This means that no
random closed set can have T as its capacity functional.

Another counterexample can be provided as follows. Let T (G) = 0 if G is
bounded and 1 otherwise. Then T is maxitive, hence is completely alternating. It
also satisfies (2.7). However, (2.8) does not hold for Gn = ∪n

k=1{G′k} with G′k being
a bounded neighbourhood of xk from a countable set {xn, n ≥ 1} in E leading to
violation of (2.8). Therefore, (2.7) is too weak even for a locally compact space E .

Using the inclusion functional of X defined on finite sets, it is easy to come up
with a consistent family of finite-dimensional distributions for the indicator random
function 1X (x). However extra conditions are needed to ensure that this becomes an
indicator function of a closed set. The inclusion functional also ceases to be infor-
mative if the coverage function pX (x) = P {x ∈ X} vanishes.

Open problem 2.29. Generalise the Choquet theorem for random closed sets in
general Polish spaces.

2.5 Non-closed random sets

A measurable subset Y of Ω × E equipped with the product σ -algebra F⊗B(E) is
called a random set. Every such Y can be equivalently defined as a multifunction

X (ω) = {x ∈ E : (ω, x) ∈ Y } ,
so that X is also called a random set. Then X : Ω �→ B is a set-valued function
with values being Borel subsets of E and Y = Graph(X) becomes the graph of
X . Sometimes, X is called a graph-measurable random set to stress the fact that the
graph of X is a measurable set in the product space. However, X no longer has closed
values whence the fundamental measurability theorem is not applicable to confirm
the equivalence of various measurability definitions.

A set-valued function X : Ω �→ B is called Borel measurable if {ω : X (ω) ∩
B �= ∅} ∈ F for all B ∈ B. Because the probability space is assumed to be com-
plete, every graph-measurable random set X is also Borel measurable. The inverse
implication is in general wrong.
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The family B(Rd ) with the metric given by the Lebesgue measure of the sym-
metric difference is a Polish space, so that a random Borel set in Rd can be defined
as a random element with respect to the corresponding Borel σ -algebra, see Straka
and Štěpán [548].

Alternatively, it is possible to define a general random set X as a random indica-
tor function ζ(x) = 1X (x), so that X is a random set if ζ(x) is a stochastic process
on E. Then the distribution of ζ can be determined by its finite-dimensional distri-
butions. However, a number of interesting random closed sets lead to non-separable
random functions whose finite-dimensional distributions are degenerated, see Sec-
tion 4.2. A particularly important example of random open sets will be considered in
Section 4.6.

3 Lattice-theoretic framework

3.1 Basic constructions

Because of the partial order on the family of closed sets, it is quite natural to treat the
family of sets as a lattice. Below we will provide a brief summary of basic concepts
from the theory of continuous lattices.

Let L be a partially ordered set (poset). A non-empty set D ⊂ L is called directed
if x, y ∈ D implies that x ≤ z and y ≤ z for some z ∈ D. Assume that each directed
set D has supremum ∨D (then L is called up-complete). A poset L is called a semi-
lattice if each non-empty finite set has an infimum and is called a lattice if each
non-empty finite set has both infimum and supremum. Furthermore, L is a complete
lattice if every subset of L has a supremum and an infimum.

We say that x is way below y and write x � y if y ≤ ∨D for every directed set
D implies x ≤ z for some z ∈ D. Further we always assume that L is continuous,
i.e. for each x ∈ L, the set {y ∈ L : y � x} is directed with supremum x . A set
U ⊂ L is called Scott open if U is an upper set, that is

↑x = {y ∈ L : x ≤ y} ⊂ U for all x ∈ U ,

and if x ∈ U implies the existence of some y ∈ U with y � x . The collection of all
Scott open sets is a topology on L which is denoted by Scott(L). A base of the Scott
topology on L consists of {y ∈ L : x � y}.

A set F ⊂ L is a filter if it is a non-empty upper set such that for each pair
x, y ∈ F there exists z ∈ F satisfying z ≤ x and z ≤ y. Denote by L = OFilt(L)

the collection of all Scott open filters on L. Note that L is a continuous poset itself,
so that it is possible to define the topology Scott(L) and the family OFilt(L). The
mapping

x �→ Lx = {F ∈ L : x ∈ F} , x ∈ L , (3.1)

is an isomorphism between L and L, which is called the Lawson duality. Let σ(L)

be the minimal σ -algebra on L generated by the family L. A subset Q ⊂ L is called
separating if x � y implies that x ≤ q ≤ y for some q ∈ Q.
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Example 3.1 (Real line). Let L = [0,∞) be the real half-line with the conventional
order. It is a lattice and it becomes a complete lattice if the infinity is included, i.e.
L = [0,∞]. Furthermore, x � y if and only if x < y. Scott open sets are (x,∞)

for x ≥ 0. These sets form the family OFilt(L), which is also a lattice. The Lawson
duality maps x to the family of sets (y,∞) with y < x , alternatively x �→ [0, y).

Proposition 3.2 (see Norberg [432]). Let L be a continuous poset. The following
four conditions are equivalent:
(i) Scott(L) is second countable;

(ii) L contains a countable separating set;
(iii) L contains a countable separating set;
(iv) Scott(L) is second countable.

Further, L is assumed to have a second countable Scott topology implying that L
contains a countable separating subset Q.

3.2 Existence of measures on partially ordered sets

Consider a non-negative mapping λ defined on a collection Fc of filters in a poset L.
Assume that Fc is closed under non-empty countable intersections and

λ(K ) = lim
n→∞ λ(Kn) if Kn ↓ K ∈ Fc, Kn ∈ Fc, n ≥ 1 . (3.2)

Assume that
∇Kn · · · ∇K1λ(K ) ≥ 0 (3.3)

for all n ≥ 1 and K , K1, . . . , Kn ∈ Fc, see (1.13) and (1.14) for the definition
of the successive differences ∇. According to Definition 1.9, (3.3) means that λ is
completely monotone (more exactly, completely ∩-monotone) on Fc.

Fix a collection Fo of filters on L, which is closed under finite non-empty inter-
sections and is dual to Fc in the following sense.

Assumptions 3.3.
(i) Each K ∈ Fc is the limit of a decreasing sequence of sets from Fo and each

G ∈ Fo is the limit of an increasing sequence of sets from Fc.
(ii) If K ⊂ G and Kn ↑ G, where K , K1, K2, . . . ∈ Fc and G ∈ Fo, then K ⊂ Kn

for some n.
(iii) If Kn ↓ K ⊂ ∪n≥1Gn with K , K1, K2, . . . ∈ Fc and G1, G2, . . . ∈ Fo, then

Km ⊂ ∪n≤m Gn for some m.
(iv) For each G ∈ Fo there exists K ∈ Fc such that G ⊂ K .

Although generic elements of Fc and Fo are denoted by K and G respectively,
the letters K and G do not stand in this context for generic compact and open sets.

Theorem 3.4 (Measures on posets). If λ satisfies (3.2) and (3.3) and Assump-
tions 3.3 hold, then λ extends to a measure on the minimal σ -algebra over Fc. This
extension is unique if L = ∪n≥1 Kn for some K1, K2, . . . ∈ Fc.
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Example 3.5 (Measure on R). Let L = R and let Fc (respectively Fo) be the family
of sets (−∞, x] (respectively (−∞, x)) for x ∈ R. Then λ(K ), K ∈ Fc is a function
of the right end-point x of K . The condition on λ means that λ is a right-continuous
non-decreasing function, which generates a measure on R.

Example 3.6 (Measure on F ). Let L be the family F of closed sets in a LCHS
space E. Furthermore, let Fc consist of FG for G ∈ G and let Fo = {FK , K ∈ K}.
Note that FG1 ∩FG2 = FG1∪G2 and FGn ↓ FG if and only if Gn ↑ G. If λ(FG ) =
Q(G), then

∇FG1 λ(FG) = Q(G)− Q(G ∪ G1) = �K1 Q(K ) ,

∇FGn · · · ∇FG1 λ(FG) = �Gn · · ·�G1 Q(G) ,

and (3.3) means that T = 1−Q is a completely alternating functional on G. The cho-
sen families Fc and Fo satisfy Assumptions 3.3 and F = ∪n≥1FGn for a sequence
of open sets {Gn, n ≥ 1}, so that Theorem 3.4 is applicable in the current framework
and yields a variant of the Choquet theorem for capacity functionals defined on open
subsets of E.

The proof of Theorem 3.4 is based on a series of intermediate results, which are
similar to the measure-theoretic proof of the Choquet theorem in Section 1.3. Below
we will only outline the lemmas and propositions that constitute the proof, referring
to Norberg [432] for the full details.

Introduce the family

V = {K ∩ G : K ∈ Fc , G ∈ Fo}
which is similar to the family V in Lemma 1.20. Following the same line, define

V = {V \ (V1 ∪ · · · ∪ Vn) : V , V1, . . . , Vn ∈ V , n ≥ 0} .
In the context of Example 3.6, the family V consists of elements of the type
FK∪G

K1∪G1,...,Kn∪Gn
, where K , K1, . . . , Kn ∈ K and G, G1, . . . , Gn ∈ G’

Lemma 3.7. The family V is a semiring (i.e. it is closed under finite intersections
and the set-difference of any two elements is a union of a finite number of disjoint
elements from V); it is also an algebra if L ∈ V .

Any representation Y = V \ (V1 ∪ · · · ∪ Vn) of a non-empty member Y ∈ V is
said to be reduced if n = 0 or if Vi ⊂ V for all i = 1, . . . , n and Vi = Vj whenever
Vi ⊂ Vj . The following proposition generalises Lemma 1.20.

Proposition 3.8. Every non-empty Y ∈ V has a reduced representation. If V \ (V1 ∪
· · ·∪Vn) and V ′ \(V ′1∪· · ·∪V ′m) are two reduced representations of Y , then V = V ′,
m = n and Vi = V ′i , 1 ≤ i ≤ n.

Extend λ onto V by approximating each element of V from below using elements
of Fc

λ(V ) = sup{λ(K ) : K ∈ Fc , K ⊂ V } , V ∈ V .
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Lemma 3.9. Whenever V , V1, V2 ∈ V , we have λ(V ∩ V1) ≤ λ(V1) and

λ(V ∩ V1)+ λ(V ∩ V2) ≤ λ(V )+ λ(V ∩ V1 ∩ V2) .

Lemma 3.10. Let Vi , V ′i ∈ V for 1 ≤ i ≤ n. If V ′i ⊂ Vi for all i , then

λ(∩n
i=1Vi )− λ(∩n

i=1V ′i ) ≤
n∑

i=1

(λ(Vi )− λ(V ′i )) .

This leads to the following statements which are similar to Lemma 1.22.

Proposition 3.11.
(i) Let V , V1, V2, . . . ∈ V . If Vn ↓ V , then

λ(V ) = lim
n→∞ λ(Vn) .

(ii) If V ∈ V and Kn ↑ G for G ∈ Fo, K1, K2, . . . ∈ Fc, then

λ(V ∩ G) = lim
n→∞ λ(V ∩ Kn) .

(iii) Let V ∈ V . If Kn ↑ G and Gn ↓ K with K , K1, K2, . . . ∈ Fc and
G, G1, G2, . . . ∈ Fo, then

λ(V ∩ K ∩ G) = lim
n→∞ λ(V ∩ Kn ∩ Gn) .

Define the higher order differences for the function λ defined on V in exactly the
same way as was done in (1.13) and (1.14) on the family Fc. Since ∇Vn · · · ∇V1λ(V )

does not depend on the order of the subscripts Vn, . . . , V1, it is convenient to write
∇Vλ(F) instead of ∇Vn · · ·�V1λ(F) with V = {V1, . . . , Vn}. For convenience, put
∇∅λ(F) = λ(F).

Lemma 3.12. If V \ (V1∪· · ·∪Vn) and V ′ \ (V ′1∪· · ·∪V ′m ) are two (not necessarily
reduced) representations of Y ∈ V, then

∇Vn · · · ∇V1λ(V ) = ∇V ′n · · · ∇V ′1λ(V
′) .

Lemma 3.12 shows that the value of ∇Vλ(V ) only depends on the member Y =
V \ (V1 ∪ · · · ∪ Vn), but not on its representation. Therefore, we can extend λ to the
semiring V by putting

λ(V \ ∪V) = ∇Vλ(F) , V ∈ V , V ⊂ V finite . (3.4)

Proposition 3.13. The mapping λ from (3.4) is additive and non-negative on V.

The additivity is proved similarly to Lemma 1.21, while the non-negativity can
be obtained by approximating elements of V with elements of Fc. The last steps of
the proof aim to show that λ can be extended to a measure on the σ -algebra generated
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by V . First, extend λ onto the ring Ṽ generated by V (so that Ṽ is closed under finite
intersections and set-differences). It suffices to show that λ is countably subadditive,
i.e.

λ(Rn) ↓ 0 if Rn ↓ ∅ , R1, R2, . . . ∈ Ṽ . (3.5)

Define
Y = {K \ ∪G : K ∈ Fc , G ⊂ Fo finite} .

Then whenever ∩n≥1Yn = ∅ for some Y1,Y2, . . . ∈ Y , we have ∩n≤mYn = ∅ for
some finite m.

Proposition 3.14. For each R ∈ Ṽ we have

λ(R) = sup{λ(∪n
i=1Yi ) : n ≥ 1 , Yi ∈ Y , Yi ⊂ R , 1 ≤ i ≤ n} .

Finally, it is possible to show that (3.5) holds, whence λ extends to a measure on
the σ -algebra generated by V. This σ -algebra coincides with the σ -algebra generated
by Fc. If L = ∪n Kn with K1, K2, . . . ∈ Fc and µ is another function satisfying
µ(K ) = λ(K ) for all K ∈ Fc, then µ(R) = λ(R) for all R ∈ Ṽ, whence µ = λ.

3.3 Locally finite measures on posets

A measure λ on L is said to be locally finite if it is locally finite with respect to the
Scott topology, which is equivalent to the condition

λ(↑x) <∞ , x ∈ L .

The following result follows from Theorem 3.4 for Fc = {↑ x : x ∈ L} and
Fo = {F ∈ L : F � L}.

Theorem 3.15 (Locally finite measure on L). Let L be a continuous lattice and
assume Scott(L) to be second countable. Then Λ(x) = λ(↑ x), x ∈ L, defines a
bijection between the family of locally finite measures λ on L and the family of
mappings Λ : L �→ R+ satisfying

Λ(x) = lim
n→∞Λ(xn) , xn ↑ x , x, x1, x2, . . . ∈ L , (3.6)

and
∇xn · · · ∇x1Λ(x) ≥ 0 , n ≥ 1 , x, x1, x2, . . . , xn ∈ L , (3.7)

where

∇x1Λ(x) = Λ(x)−Λ(x ∨ x1) ,

∇xn · · · ∇x1Λ(x) = ∇xn−1 · · · ∇x1Λ(x)−∇xn−1 · · · ∇x1Λ(x ∨ xn) , n ≥ 2 .

Note that (↑ x1) ∩ (↑ x2) =↑ (x1 ∨ x2), so the above definition of the suc-
cessive differences complies with (1.13) and (1.14). Condition (3.7) means that Λ

is a completely monotone function on the semigroup (L,∨) (see Appendix G), i.e.
Λ ∈ M(L).
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Example 3.16 (Distributions of random variables). The real line is a lattice which
is not continuous, since it is not up-complete. But (−∞,∞] is a continuous lattice
and also [−∞,∞) under the reverse order. With this reverse order, ↑ x = [−∞, x].
Thus, as a special case of Theorem 3.15, one obtains the well known correspon-
dence between locally finite measures on the extended real line and increasing right-
continuous functions.

Whenever F ∈ L, there are x1, x2, . . . ∈ L such that (↑ xn) ↑ F as n →∞. By
the continuity of measures we obtain

λ(F) = sup
x∈F

λ(↑x) , F ∈ L ,

and the dual relationship

λ(↑x) = inf
F�x

λ(F) , x ∈ L .

The following theorem establishes the existence of locally finite measures on L.
Note that Lx is defined in (3.1).

Theorem 3.17 (Locally finite measure on L). Let L be a continuous semi-lattice
with a top I and a second countable Scott topology. The formula λ(Lx ) = Λ(x),
x ∈ L, defines a bijection between the family of locally finite measures λ on L and
the family of mappings Λ : L �→ [0,∞] which are finite on Lo = {x ∈ L : x � I}
and satisfy (3.6) and (3.7), where the latter holds for all x, x1, . . . , xn ∈ Lo.

Because of the Lawson duality between L and L, we arrive at the following
conclusion.

Corollary 3.18 (Measures on L and functionals on L). Let L be a continuous semi-
lattice with a top I and a second countable Scott topology. The formula

Q(F) = λ(F) , F ∈ L ,

defines a bijection between the family of locally finite measures λ on L and the
family of mappings Q : L �→ [0,∞] which are finite on Lo = {F ∈ L : F � L}
and satisfy

Q(F) = lim
n→∞ Q(Fn) , Fn ↑ F , F, F1, F2, . . . ∈ L , (3.8)

and completely monotone on Lo, i.e.

∇Fn · · · ∇F1 Q(F) ≥ 0 , n ≥ 1 , F, F1, . . . , Fn ∈ Lo . (3.9)

3.4 Existence of random sets distributions

It turns out that the abstract results of the previous section can be used to prove the
Choquet theorem and to extend it for random closed sets in non-Hausdorff spaces.
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First, assume that E is a LCHS (and so metrisable) space. Consider the lattice of
all closed subsets of E with the reversed inclusion order, so that F1 ≤ F2 means
F1 ⊃ F2. Note that ↑M = {F ∈ F : F ⊂ M} and F1 � F2 means Int F1 ⊃ F2.

It is important to show that the elements of OFilt(F) are exactly the families

FK = {F ∈ F : F ∩ K = ∅} , K ∈ K .

It is easy to see that FK ∈ OFilt(F). In the other direction, U ∈ OFilt(F) implies
that U = ∪n≥1(↑ Fn) where Fn ∈ F and such that Fn+1 � Fn for all n ≥ 1, see
Norberg [432]. Therefore,

U =
⋃
n≥1

{F ∈ F : F ⊂ Fn} =
⋃
n≥1

{F ∈ F : F ⊂ Int Fn}

= {F ∈ F : F ∩ M = ∅}
= FM ,

where M is a closed set being the complement to ∪n≥1(Int Fn). Let us show that M
is a compact set. Define

F =
∞⋂

i=1

Dn ,

where

Dn =
n⋂

i=1

(E \ (M ∩ Ki )
εn ) , (3.10)

Ki , i ≥ 1, is a monotone sequence of compact sets such that ∪Ki = E, εn ↓ 0 is a
sequence of positive numbers and (M ∩Ki )

εn is the εn-envelope of M ∩Ki . Assume
that M is unbounded. Since FM is open in Scott topology, for each F ∈ FM there
exists F ′ ∈ FM such that F ′ � F . The latter means that F ⊃ ∩D for directed
D implies that F ′ ⊃ D for some D ∈ D. However, the latter is not possible for
D = {Dn, n ≥ 1} defined in (3.10), since

F ′ ⊃
n⋂

i=1

(E \ (M ∩ Ki )
εn )

implies F ′ ∩ M �= ∅. Therefore, the family L = OFilt(F) can be identified with K
and the Choquet theorem follows from Corollary 3.18.

The lattice framework makes it possible to relax the topological conditions im-
posed on E and prove the Choquet theorem for non-Hausdorff topological spaces.
Let E be a space endowed with a second countable topology G which is also a con-
tinuous lattice. As before, F is the collection of all closed sets, but K now denotes
the family of all compact and saturated sets. A set K is called saturated if it is equal
to the intersection of all open sets G ⊃ K . Note that we do not assume any of the
separation properties for E. If E is a T1 space (so that all singletons are closed), then
each subset of E is saturated.
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A non-empty F ∈ F is said to be irreducible if F ⊂ F1 ∪ F2 for two closed
sets F1 and F2 implies that F ⊂ F1 or F ⊂ F2. Assume that E is sober, which
means every irreducible set is the topological closure of a singleton corresponding to
a unique element of E. All Hausdorff spaces are sober. The relevance of this concept
to the lattice framework is explained by the fact that any continuous poset endowed
with its Scott topology is sober.

Consider a lattice L being the family F of all closed sets in E with the reverse
inclusion, so that the empty set is the top of L. Then L is continuous and has a second
countable Scott topology. The family K is a continuous semi-lattice under the same
order. If K ∈ K, then FK belongs to the family OFilt(L) of open filters of L = F .
The mapping K �→ FK , K ∈ K, is an isomorphism between K and OFilt(F), which
shows that Scott(K) is second countable.

Corollary 3.18 applied to L = F establishes a correspondence Q(K ) = λ(FK )

between a function Q that satisfies (3.8) and (3.9) and a locally finite measure λ

on F . The corresponding measure λ is a probability measure if Q(∅) = 1. In view
of Example 3.6, the above conditions are equivalent to the fact that T = 1 − Q
is a capacity functional. Therefore, Corollary 3.18 yields an extension of the Cho-
quet theorem for random closed sets in a second countable sober space E having a
continuous topology (that also implies that E is locally compact).

4 Capacity functionals and properties of random closed sets

4.1 Invariance and stationarity

Stationary and isotropic random sets

If g is any function (or transformation) acting on E, then the distribution of X is

said to be invariant with respect to g (or g-invariant) if X
d∼ g(X), i.e. X and its

image under g are identically distributed. If X is g-invariant for each g from a group
of transformations G acting on X , then x is called G-invariant. Particularly impor-
tant cases appear if E = Rd is the Euclidean space and G is either the group of
translations on Rd or the group of all rotations or the group of all rigid motions.

Definition 4.1 (Stationary and isotropic random sets).
(i) A random closed set X in Rd is called stationary if

X
d∼ (X + a) (4.1)

for all a ∈ Rd , i.e. the distribution of X is invariant under all non-random
translations. If (4.1) holds for all a from a linear subspace H ⊂ Rd , then X is
called H-stationary.

(ii) A random closed set X in Rd is called isotropic if X
d∼ (gX) for each deter-

ministic rotation g.
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Proposition 4.2 (Stationarity implies unboundedness). A stationary almost surely
non-empty random closed set X in Rd is unbounded with probability 1 and co (X) =
Rd almost surely for the closed convex hull co (X) of X .

Proof. Since X is almost surely non-empty, its support function h(X, u) does not

take the value −∞. The stationarity of X implies h(X, u)
d∼ (h(X, u) + 〈a, u〉) for

all a ∈ Rd . Putting a = u shows that h(X, u) is infinite with probability one for
all u �= 0. Applying this argument for a countable dense set of u on the unit sphere
yields that co (X) = Rd a.s., whence X is also almost surely unbounded. ��

Proposition 4.2 implies that a stationary convex set is either empty almost surely
or is almost surely equal to the whole space.

The following proposition follows immediately from the Choquet theorem.

Proposition 4.3 (Invariance properties of the capacity functional).
(i) A random closed set X is stationary if and only if its capacity functional is

translation invariant, i.e. TX (K + a) = TX (K ) for all K ∈ K and a ∈ Rd .
(ii) A random closed set X is isotropic if and only if its capacity functional is rota-

tion invariant, i.e. TX (gK ) = TX (K ) for all K ∈ K and all rotations g.

Stationary random sets on the line

Consider a random closed set X on the real line E = R. Then X is stationary if
and only if TX (K ) = TX (K + a) for all a ∈ R and K ∈ K. It is possible to relax
this condition by imposing it for some subfamilies of compact sets K . For instance,
X is said to be first-order stationary if TX ([x, y]) = TX ([x + a, y + a]) for all
x, y, a ∈ R; X is second-order stationary if TX (K ) = TX (K + a) for all a ∈ R and
K being unions of two segments, etc.

Proposition 4.4. Let T be a completely alternating functional on the family K0 of
finite unions of segments in R. If T is first-order stationary and a(x) = T ([0, x]) is
right continuous at x = 0, then T is upper semicontinuous on K0.

Proof. It was noticed in Example 1.29 that it suffices to show that T ([x, y]) is right-
continuous with respect to y and left-continuous with respect to x . Because of the
first-order stationarity, T ([x, y]) = T ([0, y − x]), so that it suffices to show that
the function a(x) = T ([0, x]) is right-continuous for all x ≥ 0. The 2-alternation
property (1.16) of T applied for K = {0}, K1 = [0, u] and K2 = [−x, 0] implies

a(u)− a(0) ≥ a(x + u)− a(x) , u, x ≥ 0 ,

whence a is right-continuous for all x ≥ 0. ��
The concept of first- and second-order stationary sets in R can be extended to

the higher-dimensional case and any family of sets M ⊂ K, so that X is called nth-
order stationary on M if TX ((K1 ∪ · · · ∪ Kn) + a) = TX (K1 ∪ · · · ∪ Kn) for all
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K1, . . . , Kn ∈ M and a ∈ Rd . Often M is chosen to be a pre-separating class, for
example, the family of all balls in Rd .

An important case appears if M is a family of singletons. Then X is first (re-
spectively second) order stationary if its indicator function is the first (respectively
second) order stationary random field. If ζx is a strictly stationary continuous ran-
dom field on Rd , then the corresponding level set X = {x : ζx = t} is a stationary
random closed set in Rd for every t ∈ R.

A random closed set X is said to be quasi-stationary if P {X ∈ Y} = 0 for any
Y ∈ B(F) implies P {(X + a) ∈ Y} = 0 for each a ∈ Rd . This property can be
equivalently reformulated by using higher-order differences (1.8) and choosing Y =
FK

K1,...,Kn
.

Self-similarity

A random closed set X in Rd is said to be self-similar if X coincides in distribution
with cX for every c > 0. This is the case if and only if the capacity functional
satisfies T (cK ) = T (K ) for every K ∈ K and c > 0.

Example 4.5 (Self-similar sets).
(i) Let C be a deterministic cone in Rd . If X is a random (not necessarily isotropic)

rotation of C, then X is self-similar. This is also the case if all realisations of X are
cones.
(ii) Let X = {t ≥ 0 : wt = 0} be the set of zeroes for the Wiener process wt . Then
X is self-similar, although it is not a cone itself. Section 5.2.1.
(iii) The measure Λ on B(Rd ) with density λ(x) = ‖x‖−d satisfies Λ(cK ) =
Λ(K ) for every c > 0 and K ∈ K. The capacity functional T (K ) = 1 − e−Λ(K )

defines a self-similar random closed set which is the Poisson random set in Rd , see
Definition 8.8.

If X is self-similar and a.s. non-empty, then 0 belongs to X almost surely. There-
fore, a non-trivial self-similar set cannot be stationary.

Proposition 4.6 (Logarithm of self-similar set). If X is a self-similar random closed
set in (0,∞), then its logarithm Y = {log(x) : x ∈ X} is a stationary random closed
set in R.

Proof. For every K ∈ K(R) and a ∈ R, the set (K + a) hits Y if and only if eaeK

hits X , where eK = {et : t ∈ K }. By the self-similarity of X ,

P
{

eaeK ∩ X �= ∅
}
= P

{
eK ∩ X �= ∅

}
= P {K ∩ Y �= ∅} . ��

4.2 Separable random sets and inclusion functionals

Finite-dimensional distributions of the indicator process

Consider a random function ζx , x ∈ E, with the only possible values being 0 or 1.
Then ζx is an indicator 1Z (x) of a (not necessarily closed) set Z ⊂ E. By Kol-
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mogorov’s extension theorem, the distribution of ζx is determined by the finite-
dimensional distributions

P
{
ζx = 1, x ∈ K , ζy = 0, y ∈ L

} = P {K ⊂ Z , L ∩ Z = ∅}
for K and L from the family I of finite subsets of E (note that the empty set is
considered to be an element of I). The above probabilities can be expressed in terms
of the hitting functional of Z

TZ (K ) = P {Z ∩ K �= ∅} , K ∈ I ,

since

P {L ∩ Z = ∅} = 1− TZ (L) ,

P {x ∈ Z , L ∩ Z = ∅} = TZ (L ∪ {x})− TZ (L) ,

P {(K ∪ {x}) ⊂ Z , L ∩ Z = ∅} = P {K ⊂ Z , L ∩ Z = ∅}
− P {K ⊂ Z , (L ∪ {x}) ∩ Z = ∅} .

The family of finite-dimensional distributions of the indicator function is consistent
if and only if TZ (K ) is a completely alternating capacity on I. Therefore, every com-
pletely alternating capacity T on the family I with values in [0, 1] defines uniquely
the distribution of a random indicator function on an arbitrary space E. However, this
indicator function may correspond to a non-closed random set.

Proposition 4.7 (Extension of capacity on finite sets). Let E be a LCHS space. A
completely alternating functional T : I �→ [0, 1] satisfying T (∅) = 0 is the capacity
functional of a random closed set if and only if T is upper semicontinuous on I,
where the latter is equipped with the topology induced by the myopic topology on
the family K of compact sets.

Proof. We have to prove sufficiency only. Extend T onto the family G of open sets
and then onto the family of compact sets by

T ∗(G) = sup{T (L) : L ⊂ G, L ∈ I} , G ∈ G , (4.2)

T ∗(K ) = inf{T ∗(G) : K ⊂ G, G ∈ G} , K ∈ K . (4.3)

Then T ∗(K ) becomes a completely alternating upper semicontinuous functional on
K, so that the Choquet theorem implies the existence of a random closed set with the
capacity functional T ∗. It remains to show that T ∗ coincides with T on I.

Let Gn ↓ L and T ∗(Gn) ↓ T ∗(L) as n →∞. Then there is a sequence {Ln, n ≥
1} ⊂ I such that T (Ln) ↓ T ∗(L) and Ln ↓ L as n →∞. Since Ln converges to L in
the myopic topology on I, the upper semicontinuity of T implies lim sup T (Ln) ≤
T (L). Hence T ∗(L) ≤ T (L). The proof finishes by combining this fact with the
obvious inequality T ∗(L) ≥ T (L). ��
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Separability

It is essential to note that Proposition 4.7 establishes the existence but not the unique-
ness of a random closed set with the capacity functional defined on finite sets. Dif-
ferent random closed sets may share the same capacity functional restricted onto I.

The simplest example is provided by a random singleton X = {ξ} with ξ having
an absolutely continuous distribution in Rd . Then X hits every finite set with prob-
ability zero, so that the capacity functional restricted on I is indistinguishable with
the capacity functional of the almost surely empty set. If A is a closed set in Rd with
a zero Lebesgue measure, then X = A + ξ is also indistinguishable from the empty
set if the capacity functional is restricted on the family I. This implies that for any
other random closed set Y

P {Y ∩ L �= ∅} = P {(Y ∪ X) ∩ L �= ∅} , L ∈ I ,

meaning that Y and Y ∪ X have identical capacity functionals restricted on I.

Definition 4.8 (Separability and separant). A random closed set X is said to be
separable if there exists a countable dense set Q ⊂ E such that X almost surely
coincides with cl(X ∩Q). Every such Q is called a separant of X .

Definition 4.8 relies on the fact that cl(X ∩Q) is a random closed set. Indeed, for
every open G,

{cl(X ∩Q) ∩ G = ∅} = {(X ∩Q) ∩ G = ∅} = {X ∩ B = ∅} ∈ F ,

where B = Q∩G, so that the conclusion follows from the fundamental measurabil-
ity theorem. Clearly, X = {ξ} and X = A+ξ are not separable if ξ has an absolutely
continuous distribution and the Lebesgue measure of A vanishes. The following the-
orem establishes the existence of a separable random closed set determined by a
completely alternating functional on I.

Theorem 4.9 (Distribution of a separable random set). Assume that E is a LCHS
space. Let T be a completely alternating functional on I with values in [0, 1] such
that T (∅) = 0 and let T ∗ be the extension of T defined by (4.2) and (4.3).
(i) There exists a random closed set X such that TX (K ) = T ∗(K ) for all K ∈ K

and TX is the smallest capacity functional such that T (L) ≤ TX (L) for all
L ∈ I.

(ii) The random closed set X is separable. If Q is its separant, then X = cl(Z ∩Q)

a.s. for the random (not necessarily closed) set Z determined by the values of
T on I.

(iii) A random closed set X such that TX (L) = T (L) for all L ∈ I exists if and only
if

T ∗({x}) = T ({x}) , x ∈ E . (4.4)

In this case cl(X ∩Q) is the unique separable random closed set whose capacity
functional coincides with T on I.
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Proof.
(i) The existence directly follows from the Choquet theorem. If T ∗∗ is a capacity

functional such that T ∗∗(L) ≥ T (L) for all L ∈ I, then

T ∗∗(G) ≥ sup{T ∗∗(L) : L ⊂ G, L ∈ I}
≥ sup{T (L) : L ⊂ G, L ∈ I} = T ∗(G) .

Thus, T ∗∗(K ) ≥ T ∗(K ) for all K ∈ K.
(ii) Let G0 be a countable base of the topology on E. For every G ∈ G0 define QG

to be the union of sets {Ln, n ≥ 1} ⊂ I chosen so that Ln ⊂ G and T (Ln) ↑ T ∗(G)

as n →∞. Let Q0 be the union of sets QG for G ∈ G0. Then

T ∗(G) = P {Z ∩Q0 ∩ G �= ∅} , G ∈ G0 , (4.5)

noticing that {Z ∩ Q0 ∩ G �= ∅} is a measurable event since Q0 is countable. By
approximating any G ∈ G with unions of elements of G0 it may be shown that (4.5)
holds for all G ∈ G. Since

P {Z ∩Q0 ∩ G �= ∅} = P {cl(Z ∩Q0) ∩ G �= ∅} , G ∈ G ,

the random closed set cl(Z ∩Q0) has the capacity functional T ∗(G) on the family of
open sets. Therefore, X coincides in distribution with cl(Z ∩ Q0). The set Q0 may
be taken as a separant of X , since cl(Z ∩Q0) ∩Q0 ⊃ Z ∩Q0.

If Q is another separant for X , then Q ∪Q0 is also a separant for X , whence

T ∗(G) = P {Z ∩Q ∩ G �= ∅}
= P {Z ∩Q0 ∩ G �= ∅}
= P {Z ∩ (Q0 ∪Q) ∩ G �= ∅} , G ∈ G .

By pairwise inclusions of the events involved in the above chain of equalities, we
deduce that cl(Z ∩Q) = cl(Z ∩Q0) = X a.s.
(iii) Since Q ∪ L is a separant for Z ,

{x ∈ Z} ⊂ {x ∈ cl(Z ∩ (Q ∪ {x}))} = {x ∈ cl(Z ∩Q)} ,
where the equality is understood as equivalence up to a set of probability zero.
By (4.4), P {x ∈ cl(Z ∩Q)} = P {x ∈ Z}. Therefore, events {x ∈ Z} and {x ∈
cl(Z ∩ Q)} coincide up to a set of probability zero, whence T ∗(L) = T (L) for all
L ∈ I. The uniqueness follows from (i). ��

The separability concept of random closed sets is similar to the concept of
the separability for stochastic processes, see Doob [142] and Gihman and Skoro-
hod [193]. The random closed set X is separable if and only if its indicator function
is a separable stochastic process. This means that separable random sets can be ex-
plored through their indicator functions. Furthermore, the separability assumption
allows us to treat non-closed random sets using methods typical in the theory of
stochastic processes. Quite differently from the theory of stochastic processes where
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the separability is a usual assumption, many interesting random closed sets are not
separable. For instance, such a simple random set like a random singleton X = {ξ}
is not separable and corresponds to a non-separable indicator function if ξ has an
absolutely continuous distribution.

Since distributions of separable random closed sets are uniquely identified by the
values of their capacity functionals on the family of finite sets, Theorem 4.9(iii) can
be reformulated using inclusion functionals.

Proposition 4.10 (Inclusion functional for separable random sets). A distribution
of a separable random closed set X is uniquely determined by its inclusion functional
IX (L) = P {L ⊂ X} for L ∈ I.

P-continuity

The following definition formulates a continuity assumption related to the capacity
functional restricted onto I. Recall that Proposition 1.34 establishes the upper semi-
continuity of the coverage function pX (x) = TX ({x}), x ∈ E.

Definition 4.11 (P-continuity). A random closed set X is called P-continuous at
x0 ∈ E if pX (x) = P {x ∈ X} is continuous at x0 as a function of x . Furthermore, X
is called P-continuous if it is P-continuous at every x0 ∈ E.

Proposition 4.12 (P-continuity and separability).
(i) A random closed set X is P-continuous at x0 if and only if

lim
x→x0

P {x0 ∈ X, x /∈ X} = 0 , (4.6)

or, equivalently,
lim

x→x0
P {x0 /∈ X, x ∈ X} = 0 .

(ii) If a separable random closed set X is P-continuous, then every countable dense
set Q ⊂ E is a separant for X .

(iii) If X is P-continuous, then for every two countable dense sets Q and Q′ we have
cl(X ∩Q) = cl(X ∩Q′) a.s.

Proof.
(i) Clearly,

P {x0 ∈ X, x /∈ X} = TX ({x0, x})− TX ({x}) .
Since T is upper semicontinuous, lim supx→x0

T ({x0, x}) ≤ T ({x0}), whence the
P-continuity at x0 is equivalent to (4.6).
(ii) Note that (4.6) means that the indicator function of X is a stochastically contin-
uous random function, see Gihman and Skorohod [193]. It is well known that every
separable stochastically continuous random function has any countable dense set as
its separant.
(iii) By Doob’s theorem, the indicator function of X is stochastically equivalent to
a separable random function. This separable function is the indicator of the random
closed set cl(X ∩Q), where the choice of Q is immaterial because of (ii). ��
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A.s.-continuous random sets

Definition 4.13 (a.s.-continuity). A random closed set X is called a.s.-continuous
if P {x ∈ ∂X} = 0 for every x ∈ E.

Note that ∂X (the boundary of X) is a random closed set by Theorem 2.25(iii). If
reformulated for the indicator function of X , Definition 4.13 means that the indicator
function has a discontinuity at any given point with probability zero. The property of
X being a.s.-continuous can be verified using a restriction of the capacity functional
onto the family of finite sets.

Proposition 4.14 (a.s.-continuity and separability).
(i) A random closed set X is a.s.-continuous if and only if X is P-continuous and

cl(X ∩Q) is a.s.-continuous for some countable dense set Q ⊂ E.
(ii) If X is an a.s.-continuous random closed set, then cl(Int(X)) = cl(X ∩ Q) a.s.

for every countable dense set Q and cl(Int(X)) is the random closed set that
appears in Theorem 4.9(i) with the distribution derived from TX (L) for L ∈ I.
If, in addition, X is separable, then X = cl(Int X) almost surely, i.e. X is regular
closed.

Proof.
(i) If X is a.s.-continuous, then X is P-continuous since

{x ∈ ∂X} ⊃
⋂
n≥1

⋃
m≥n

{x ∈ X, ym /∈ X}

for all sequences yn → x , whence (4.6) holds. If Y = cl(X ∩Q), then

∂Y ⊂ ∂X ⊂ (∂Y ) ∪ (Y c ∩ X) ,

whence Y is a.s.-continuous.
If X is P-continuous, then the capacity functionals of X and Y coincide on I.

Therefore, P
{
x ∈ (∂Y ) ∪ (Y c ∩ X)

} = 0 for all x ∈ E, whence P {x ∈ ∂X} =
P {x ∈ ∂Y } = 0.
(ii) If X is a.s.-continuous, then (X ∩Q) ⊂ Int X a.s. for every countable dense set
Q. Therefore, cl(X ∩ Q) ⊂ cl(Int(X)) a.s. The evident reverse inclusion completes
the proof. ��

4.3 Regenerative events

p-function

For random closed sets on the line, the calculation of the inclusion functional on
the family of finite sets can be considerably simplified by imposing a regenerative
property.
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Definition 4.15 (Regenerative event). A separable random closed set X on the pos-
itive half line such that X contains the origin almost surely, i.e. 0 ∈ X a.s., is said to
be a regenerative event (or regenerative phenomenon) if

IX ({t1, . . . , tn}) = IX ({t1})IX ({t2 − t1}) · · · IX ({tn − tn−1})
for all n ≥ 2 and 0 < t1 < · · · < tn , where IX is the inclusion functional of X .

Proposition 4.10 implies that the distribution of a regenerative event is deter-
mined by its coverage function

p(t) = P {t ∈ X} , t ≥ 0 , (4.7)

which is called the p-function of X . All possible p-functions can be characterised by
their monotonicity property that is similar to the monotonicity properties of capacity
functionals. By the usual inclusion-exclusion formula using p one obtains the avoid-
ance functional Q({t1, . . . , tn}) for all t1, . . . , tn ≥ 0. This observation easily leads
to the following result.

Proposition 4.16. A real valued function p(t), t > 0, is a p-function of a regenera-
tive event if and only if the avoidance functional Q({t1, . . . , tn}) corresponding to p
is non-negative and Q({t1, . . . , tn}) ≥ Q({t1, . . . , tn, tn+1}) for all t1 < · · · < tn <

tn+1.

Note that p(0) = 1 by the imposed assumption that X contains the origin al-
most surely. A p-function and the corresponding regenerative event are said to be
standard if p(t) → 1 as t ↓ 0. The inequalities for Q from Proposition 4.16 can
be restated for the p-function, which leads to the following results proved in King-
man [308].

Theorem 4.17 (Properties of p-function). Every standard p-function is positive,
uniformly continuous on R+ and of bounded variation in every finite interval. The
limit

q = lim
t↓0

t−1(1− p(t)) (4.8)

exists in [0,∞] and q = 0 if and only if p identically equals to 1.

Theorem 4.18 (Laplace transform of p-function). For every standard p-function
p, there exists a unique positive measure µ on (0,∞] with∫

(0,∞]
(1− e−t )µ(dt) <∞ , (4.9)

such that the Laplace transform r(θ) = ∫∞0 e−θ t p(t)dt satisfies

1

r(θ)
= θ +

∫
(0,∞]

(1− e−θ t )µ(dt) (4.10)

for all θ with a positive real part. Equation (4.10) establishes a one-to-one correspon-
dence between standard p-functions and positive measures µ satisfying (4.9).
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Lévy measure and subordinator

The measure µ that appears in (4.10) is called the Lévy measure of the corresponding
regenerative event. If q from (4.8) is finite, the regenerative event is called stable as
opposed to an instantaneous X which has q = ∞. For a stable X , µ((0, x]) =
q F(x), where F is the cumulative distribution function of a strictly positive random
variable. Then X is the so-called alternating renewal process, i.e. X is the union of
exponentially distributed segments with mean length 1/q separated by segments of
random length with distribution F (all lengths are mutually independent).

If p is a standard p-function, then limt→∞ p(t) = (1 + a)−1, where a =∫
(0,∞] xµ(dx). If µ({∞}) > 0, then X is bounded almost surely and is called tran-

sient. If a = ∞, then X is called null, while a <∞ identifies a positive X .

Example 4.19 (Alternating renewal process).
(i) If µ is the measure of mass λ concentrated at {1}, then X is the union of ex-

ponentially distributed segments with mean λ−1 separated by unit gaps. Then (4.10)
implies r(θ) = (λ+ θ − λe−θ )−1.
(ii) If µ has the density λe−λt , then X is the union of exponentially distributed
segments with mean 1 separated by exponentially distributed gaps with mean 1/λ.
Then r(θ) = (λ+ θ)θ−1(θ + λ+ 1)−1.

Each standard regenerative event X can be represented as the image {ζ(x) : x ≥
0} of an increasing process with independent increments ζ (called subordinator)
starting from zero and whose cumulant is

Ee−θζ(x) = exp

⎧⎪⎨⎪⎩−x

⎛⎜⎝θ +
∫

(0,∞]
(1− e−θ t )µ(dt)

⎞⎟⎠
⎫⎪⎬⎪⎭ .

As will be shown in Section 5.2.3, this relationship to subordinators holds for the
even more general case of strong Markov (or regenerative) random sets. This general
case includes also non-separable sets whose distributions are not necessarily deter-
mined by their p-functions.

For standard regenerative events the avoidance functional on intervals can be
expressed using the p-function and the Lévy measure µ that appears in (4.10).

Proposition 4.20 (Avoidance functional of a regenerative event). For every stan-
dard regenerative event with p-function p and Lévy measure µ,

QX ((t, s)) = P {X ∩ [t, s) = ∅}

=
t∫

0

p(v)µ([s − v,∞])dv , 0 < t < s <∞ , (4.11)

and
µ([s,∞]) = lim

ε↓0
ε−1 QX ((ε, s)) , s > 0 . (4.12)
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Proof. The p-function p is the density of the potential measure U of the subordinator
ζ(x), i.e.

U(A) = E

∞∫
0

1A(ζ(x))dx .

If T (t) = inf{x ≥ 0 : ζ(x) > t} is the first passage time strictly above t , then

QX ((t, s)) = P {ζ(T (t)−) ≤ t, ζ(T (t)) ≥ s} .
It follows from Bertoin [65, Prop. 2, p. 76] that the latter probability is given by

t∫
0

∞∫
s

U(dv)µ(dz − y) =
t∫

0

p(v)µ([s − v,∞])dv .

Finally, (4.12) can be easily derived by passing to the limit in (4.11). ��
Related results will be discussed in greater generality in Section 5.2.3.

4.4 Robbins’ theorem

In many cases the capacity functional of X can be used to evaluate the expectation
of µ(X), where µ is a measure on E. The key point is to observe that

µ(X) =
∫
E

1X (x)µ(dx) ,

see also Example 1.3(iii). If µ is locally finite, then Fubini’s theorem yields the fol-
lowing result.

Theorem 4.21 (Robbins’ theorem). Let X be a random closed set in a Polish space
E. If µ is a locally finite measure on Borel sets, then µ(X) is a random variable and

Eµ(X) =
∫
E

P {x ∈ X} µ(dx) (4.13)

in the sense that if one side is finite then so is the other and they are equal.

Proof. It suffices to show that 1F (x) : E × F �→ {0, 1} is jointly measurable with
respect to B(E)⊗B(F), namely,

{(x, F) : 1F (x) = 0} = {(x, F) : x /∈ F}
=
⋃

G∈G0

{(x, F) : x ∈ G, F ∩ G = ∅}

=
⋃

G∈G0

(G ×FG) ∈ B(E) ⊗B(F) ,

where G0 is a countable base of topology on E. ��
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Apart from calculating the expected value of µ(X), Theorem 4.21 can sometimes
be used in the other direction to deduce that pX (x) vanishes if Eµ(X) = 0 for a
sufficiently rich family of measures µ. An easy generalisation of (4.13) for higher-
order moments is

E(µ(X)k) =
∫
· · ·
∫

P {{x1, . . . , xk} ⊂ X} dx1 · · · dxk , (4.14)

i.e. the higher-order moments of µ(X) can be obtained as multiple integrals of the
inclusion functional IX ({x1, . . . , xk}) of X . An extension of Robbins’ theorem for
random capacities is discussed in Section 8.5.

Robbins’ theorem does not hold for measures which are not locally finite; indeed
neither does Fubini’s theorem, see e.g. Mattila [382, p. 14]. For example, if µ is the
counting measure and X = {ξ} is a random singleton with ξ having an absolutely
continuous distribution, the left-hand side of (4.13) equals 1, while P {x ∈ X} = 0
for all x , whence the right-hand side vanishes. Similar examples can be easily con-
structed for X being a point process or any other random set with a vanishing cover-
age function and non-vanishingµ(X). For instance, X may be a random collection of
curves with µ(X) being the total curve length. Therefore, Robbins’ theorem does not
apply to many interesting geometric measures, in particular, the Hausdorff measures.
Even the measurability of µ(X) may fail as the following example shows.

Example 4.22 (Non-measurable µ(X)). Let g : Rd �→ [1,∞) be a non-measurable
function. Define a measure on Rd by

µ(K ) =
{∑

x∈K g(x) if K is finite ,

∞ otherwise .

Then it is not true that µ(X) is a random variable for every random closed set X . For
example, if X = {ξ} is a random singleton, then µ(X) = g(ξ) is not necessarily a
random variable.

4.5 Hausdorff dimension

Bounds on Hausdorff dimension using intersection probabilities

By Robbins’ theorem, a random closed set X in Rd has a positive Lebesgue measure
if and only if its coverage function p(x) = P {x ∈ X} is positive on a set of a positive
measure. Then the Hausdorff dimension of X is d . If X is a random singleton (and
so has the Hausdorff dimension zero), then T (K ) is positive if K has a non-empty
interior that includes a part of the support of X . In general, the Hausdorff dimen-
sion of X may be assessed by considering the capacity functional on some specially
designed sets.

For n ≥ 1, split the unit cube [0, 1]d in Rd into 2nd dyadic half-open cubes
with side length 2−n . Let Zn(p) be the union of such cubes where each cube has the
probability p ∈ (0, 1) of being included independently of other cubes at any other
stage n. Define
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Z(p) =
⋂
n≥0

Zn(p) .

The following result shows that the Hausdorff dimension of set K can be explored
by considering the intersection of K with Z(p).

Proposition 4.23 (Intersections with Z(p)). Let α > 0 and let K be a closed subset
of [0, 1]d .
(i) If K intersects Z = Z(2−α) with positive probability, then dimH(K ) ≥ α.

(ii) If X is a random subset of [0, 1]d and X intersects the independent random
set Z = Z(2−α) with positive probability, then dimH(X) ≥ α with positive
probability.

Proof.
(i) Let b = P {K ∩ Z �= ∅} > 0. Then, for any collection of sets Ai formed as

unions of dyadic cubes such that K ⊂ ∪Ai , we have

b ≤
∑

j

P
{

A j ∩ Z �= ∅} ≤∑
j

P
{

A j ∩ Zn j (2−α) �= ∅} ≤∑
j

diam(A j )
α ,

where n j is defined so that A j is composed of the cubes of side length 2−n j . The
Carathéodory construction defined in Example E.1 applied for the family M of
dyadic cubes yields the so-called net measure N α(K ). It is known (see Mattila [382,
Sec. 5.2]) that

Hα(K ) ≤ N α(K ) ≤ 4αdα/2Hα(K ) .

If dimH K = β < α, then there exists a collection of dyadic cubes covering K
such that

∑
j diam(A j )

β < b, contrary to the assumption. Therefore, dimH K ≥ α.
(ii) By taking conditional expectation and using (i) for a deterministic set K one
obtains that

0 < P {X ∩ Z �= ∅}
= E

(
P {X ∩ Z �= ∅ | Z} )

= E
(
1dimH X≥αP {X ∩ Z �= ∅ | Z} )

≤ E
(
1dimH X≥α

) = P {dimH X ≥ α} . ��

Theorem 4.24 (Lower bound on the Hausdorff dimension). If a random closed set
X has TX (K ) > 0 for all deterministic sets K with dimH K > β, then dimH X ≥ d−β

with positive probability.

Proof. Let Z1 and Z2 be two independent random sets such that Z1
d∼ Z(2−(d−β))

and Z2
d∼ Z(2−(β−ε)). Then

Z1 ∩ Z2
d∼ Z(2−(d−ε)) .
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By the theory of branching processes, Z(2−(d−ε)) is non-empty with positive proba-
bility, since the number of daughter cubes at every step has the expected value 2ε >

1. By Proposition 4.23(ii) and letting ε → 0, one obtains that dimH Z(2−(d−β)) ≥ β

with positive probability.
The condition of the theorem implies that P

{
X ∩ Z(2−(d−β−ε)) �= ∅} > 0 for

ε > 0 and dimH X ≥ d − β with positive probability by Proposition 4.23(ii). ��

Intersection-equivalence and capacity-equivalence

It is well known that two functions are equivalent at x if their ratio is bounded away
from zero and infinity in the neighbourhood of x . It is possible to extend this concept
for random (closed) sets using their capacity functionals.

Definition 4.25 (Intersection-equivalent random sets). Two random closed sets X
and Y in a Polish space E are intersection-equivalent in the open set G, if there exist
constants c1, c2 > 0 such that for any closed set F ⊂ G,

c1TY (F) ≤ TX (F) ≤ c2TY (F) . (4.15)

Note that (4.15) means that the ratio TX (F)/TY (F) is bounded above and below
by positive constants that do not depend on F ⊂ G. Two random singletons X = {ξ}
and Y = {η} with absolutely continuous distributions are intersection-equivalent if
the ratio of the densities of ξ and η is bounded away from zero and infinity.

Let cap f denote the capacity obtained by (E.7) with the kernel

k(x, y) = f (‖x − y‖)
for a decreasing function f : R+ �→ [0,∞].
Definition 4.26 (Capacity equivalence). Two (random) sets X and Y are capacity
equivalent if there exist positive constants c1 and c2 such that

c1 cap f (Y ) ≤ cap f (X) ≤ c2 cap f (Y )

for all decreasing functions f .

The following results are proved by Pemantle, Peres and Shapiro [451].

Theorem 4.27 (Random sets generated by Brownian motion).
(i) The trace of spatial Brownian motion in Rd with d ≥ 3 is capacity-equivalent

to the unit square [0, 1]2.
(ii) The zero-set X = {t ∈ [0, 1] : wt = 0} for the Wiener process wt is capacity-

equivalent to the middle- 1
2 Cantor set K that consists of all points in [0, 1] that

have only digits 0 and 3 in their 4-adic expansions.
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4.6 Random open sets

It is natural to define random open sets as complements to random closed sets, so
that Y : Ω �→ G is called a random open set if its complement X = Y c is a random
closed set. Since {Y c ∩ F = ∅} = {F ⊂ Y }, Y is a random open set if and only
if {F ⊂ Y } is a measurable event for every F ∈ F . Theorem 2.28 implies that the
distribution of Y is uniquely determined by its inclusion functional

IY (F) = P {F ⊂ Y } , F ∈ F .

Proposition 4.28 (Closure and interior of random sets). Assume that E is LCHS.
(i) If Y is a random open set, then its closure X = cl(Y ) is a random closed set.

(ii) If X is a random closed set, then its interior Y = Int(X) is a random open set.

Proof.
(i) It suffices to note that {cl(Y ) ∩ G = ∅} = {Y ∩ G = ∅} = {G ⊂ Y c} is a

measurable event for every open set G.
(ii) For every F ∈ F , {F ⊂ Y } = {F ∩ cl(Xc) = ∅}, so that the statement follows
from Theorem 2.25(iii). ��

The fact that cl(Y ) is a random closed set for an open Y does not imply that Y is
a random open set. Proposition 4.28 justifies correctness of the following definition.

Definition 4.29 (Regular closed random set). A random closed set X is called
regular closed if X = cl(Int(X)) a.s. A random open set Y is called regular open if
Y = Int(cl(Y )) a.s.

Theorem 2.6 implies that X is a random regular closed set if X takes values in
the family of regular closed sets and {x ∈ X} is a measurable event for every x ∈ E.
It follows from Theorem 4.9 that the distribution of every regular closed set X is
uniquely determined by its inclusion functional IX defined on the family I of finite
sets.

It should be noted that for a general open random set Y the inclusion functional
cannot be extended uniquely from the family I of finite sets onto K. For instance, if
Y = Xc where X = {ξ} is a random singleton with non-atomic ξ , then IY (L) = 1
for every finite set L. This situation differs from the case of random closed sets, see
(1.33). The following result follows from Theorem 4.9.

Proposition 4.30 (Inclusion functional of random open set). Let E be a LCHS
space. For every functional I : I �→ [0, 1] such that 1− I is a capacity functional on
I there is a unique random open set Y such that P {L ⊂ Y } = I (L) for all L ∈ I and
Y c is a separable random closed set.

In particular, if Y is a random convex open set in Rd (i.e. Y ∈ coG a.s), then its
complement is a separable random closed set. This yields the following corollary.

Corollary 4.31 (Distribution of random open convex set). Let I be a functional on
the family I of finite sets in Rd such that I (∅) = 1, I (L) ∈ [0, 1] for all L ∈ I,
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1− I is a completely alternating functional on I, I (Ln)→ I (L) if co(Ln) ↓ co(L)

and I (L) = I (L ∪ {x}) if co(L) = co(L ∪ {x}). Then there exists a unique random
convex open set Y with the inclusion functional I .

4.7 C-additive capacities and random convex sets

C-additivity

Using capacity functionals, it is possible to provide necessary and sufficient condi-
tions for a random closed set X to be almost surely convex. Denote by coF (re-
spectively coK) the family of convex closed (respectively compact) sets in a Banach
space E. The families coF and coK are Effros measurable, for instance,

F \ (coF) =
⋃

x,y∈Q

⋃
c∈Q1

{F ∈ F : {x, y} ⊂ F, (cx + (1− c)y) /∈ F} , (4.16)

where [x, y] denotes the segment with end-points x and y, Q is a countable dense
set in Rd and Q1 is the set of rational points in [0, 1].
Definition 4.32 (Convex random set). A random closed (respectively compact) set
X is called random convex closed set (respectively random convex compact set) if
X ∈ coF (respectively X ∈ coK) a.s.

To characterise random convex sets in terms of their capacity functionals we
make use of the Choquet theorem and so need to assume that E is locally compact.
Without loss of generality consider E = Rd .

Definition 4.33 (Separated sets). Two compact sets K1 and K2 in Rd are said to be
separated by a compact set K if, for every x1 ∈ K1 and x2 ∈ K2, there is c ∈ [0, 1]
such that cx1 + (1− c)x2 ∈ K .

It is easy to see that every two convex compact sets K1 and K2 such that K1∪K2
is also convex are separated by L = K1∩K2, see Figure 4.1. The following definition
strengthens the subadditive property (1.16) of general capacities.

a) b)

K1
K K2

K1

K2

K1 ∩ K2

Figure 4.1. a) K1 and K2 separated by K ; b) K1 and K2 separated by K1 ∩ K2.
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Definition 4.34 (C-additive capacity).
(i) A capacity ϕ is said to be C-additive on K if

ϕ(K )+ ϕ(K ∪ K1 ∪ K2) = ϕ(K ∪ K1)+ ϕ(K ∪ K2) (4.17)

for each K1, K2 ∈ K that are separated by K ∈ K.
(ii) A capacity ϕ is said to be C-additive on coK if

ϕ(K1 ∩ K2)+ ϕ(K1 ∪ K2) = ϕ(K1)+ ϕ(K2) (4.18)

for all K1, K2 ∈ coK such that K1 ∪ K2 ∈ coK.

Every measure is C-additive with (4.17) valid for disjoint K1 and K2 without
assuming that K separates K1 and K2.

Theorem 4.35 (Convexity and C-additivity). Let TX be the capacity functional of
a random closed set X in Rd . Then the following statements are equivalent.
(i) X is almost surely convex.

(ii) TX is C-additive on K.
(iii) TX is C-additive on coK.

Proof. If X is a.s. convex, then, for every K1 and K2 separated by K , Defini-
tion 4.34(i) implies that

0 = P {X ∩ K = ∅, X ∩ K1 �= ∅, X ∩ K2 �= ∅} = −�K2�K1 TX (K ) ,

whence TX satisfies (4.17) so that (ii) follows from (i). Furthermore, (iii) follows
from (ii) since K1 and K2 are separated by K1 ∩ K2.

It remains to prove that the C-additivity of TX on coK implies that X is a.s.
convex. For every two points x, y ∈ Rd and z = cx + (1− c)y with c ∈ [0, 1],

P {{x, y} ⊂ X, z /∈ X} = TX (K1)+ TX (K2)− TX (K1 ∩ K2)− TX (K1 ∪ K2)

= 0 ,

which is easily seen by applying (4.18) to K1 = [x, z] and K2 = [z, y]. Therefore,
the probabilities of all events from the countable union in the right-hand side of (4.16)
vanish. ��
Open problem 4.36. Characterise, in terms of the capacity functional TX , the prop-
erty that random closed set X almost surely belongs to the convex ring, i.e. almost
all realisations of X are finite unions of convex compact sets.

Open problem 4.37. Apart from the characterisation of convexity it is very difficult
to characterise geometric properties of X using its capacity functional. Is it possible
to characterise connectivity properties of X using TX ? In particular, this concerns the
existence of unbounded connected components, the question typical in continuum
percolation theory, see Meester and Roy [387].
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Semi-Markov random sets

Definition 4.38 (Semi-Markov random set). A random closed set X in Rd is said
to be semi-Markov if its avoidance functional QX satisfies

QX (K ∪ K1 ∪ K2)QX (K ) = QX (K ∪ K1)QX (K ∪ K2)

for all K1, K2 ∈ K that are separated by K ∈ K.

The above definition is equivalent to the property that

ΨX (K ) = − log(QX (K ))

is a C-additive functional on K. This property will be further discussed in Sec-
tion 4.1.2 in relation to the union infinite divisibility concept.

Proposition 4.39. A random closed set X is semi-Markov if and only if X ∩ K1 and
X ∩ K2 are conditionally independent given {X ∩ K = ∅} for K that separates K1
and K2.

Proof. Let K ′ and K ′′ be two compact sets. Then

P
{
(X ∩ K1) ∩ K ′ = ∅, (X ∩ K2) ∩ K ′′ = ∅

∣∣∣X ∩ K = ∅
}

= QX ((K1 ∩ K ′) ∪ (K2 ∩ K ′′) ∪ K )/QX (K )

= QX (K1 ∩ K ′)QX (K2 ∩ K ′′) ,

since (K1∩K ′) and (K2∩K ′′) are also separated by K . Proposition 1.19 (formulated
for the avoidance functional) finishes the proof. ��

Let X be a stationary semi-Markov random closed set. For every unit vector u
and t1, t2 > 0, Definition 4.38 applied to K1 = [0, t1u], K2 = [t1u, (t1 + t2)u] and
K = {t1u} implies that

q(u, t1 + t2)q0 = q(u, t1)q(u, t2) ,

where q(u, t) = QX ([0, tu]) and q0 = QX ({0}). Since q(u, t) is monotone with
respect to t ,

q(u, t) = q0e−θ(u)t , t ≥ 0 ,

where θ(u) = θ(−u) for all u. On the line (if d = 1) or for isotropic X , q(u, t) =
q(t) does not depend on u and satisfies q(t) = q0e−θ t , t ≥ 0.

Examples of semi-Markov stationary random sets on the line are provided by al-
ternating renewal processes given by the union of disjoint random segments of i.i.d.
lengths separated by a sequence of i.i.d. exponentially distributed gaps, cf Exam-
ple 4.19. In particular, if the segments shrink to points, then we obtain a stationary
Poisson point process on the real line. Note also that a regenerative event is the com-
plement of a semi-Markov (non-stationary) set.

Open problem 4.40. Characterise semi-Markov sets in Rd . Under an additional
assumption of the infinite divisibility for unions, such sets have been characterised
in Matheron [381, Th. 5.4.1].
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4.8 Comparison of random sets

Comparison of random elements

Let L be a Polish space partially ordered by a relation ≤, so that the set {(x, y) ∈
L× L : x ≤ y} is closed in the product topology on L× L. A function f : L �→ R
is called increasing if x ≤ y implies f (x) ≤ f (y). A subset A ⊂ L is increasing if
its indicator is an increasing function, i.e. x ∈ A and x ≤ y together imply y ∈ A.
The family of all bounded increasing functions (respectively sets) on L is denoted by
J (L) (respectively J0(L)). In the lattice theory increasing sets are called upper sets.

Consider two L-valued random elements ξ1 and ξ2 which correspond to the prob-
ability measures P1 and P2 on the family B(L) of Borel subsets of L. We say that
ξ1 (or P1) is stochastically smaller than ξ2 (or P2) and write ξ1 ≤st ξ2 (or P1 ≤st P2)
if E f (ξ1) ≤ E f (ξ2) for every f ∈ J (L). This is equivalent to the requirement that
P1(A) ≤ P2(A) for every A ∈ J0(L).

Theorem 4.41 (Stochastic order for probability measures). The following condi-
tions are equivalent for any two probability measures P1 and P2 on B(L).
(1) P1 ≤st P2.
(2) There exists a probability measure on {(x, y) ∈ L × L : x ≤ y} with the first

marginal P1 and the second marginal P2.
(3) There exists a real-valued random variable α and two measurable functions f

and g mapping R into L with f ≤ g such that the distribution of f (α) is P1 and
that of g(α) is P2.

(4) There exist two L-valued random elements ξ̃1 and ξ̃2 (providing an ordered
coupling of ξ1 and ξ2) such that ξ̃1 ≤ ξ̃2 a.s. and the distribution of ξ̃i is Pi ,
i = 1, 2.

(5) P1(A) ≤ P2(A) for all closed A ∈ J0(L).

Stochastic order for random sets

In the case of random closed sets, L becomes the family F = F(E) of all closed
subsets of E ordered by inclusion. Assume that E is a LCHS space. Then Theo-
rem B.2(iii) implies that F is a Polish space in the Fell topology. It is easy to see
that {(F1, F2) : F1 ⊂ F2} is closed in the product Fell topology on F × F . The-
orem 4.41 is therefore applicable, so that a random closed set X with distribution
P1 is stochastically smaller than a random closed set Y with distribution P2 if and
only if P1(Y) ≤ P2(Y) for every Y ∈ J0(F), such that, with every F ∈ Y , the
family Y contains all closed sets F ′ ⊃ F . In terms of X and Y this condition can be
formulated as

P {X ∈ Y} ≤ P {Y ∈ Y} (4.19)

for every increasing family Y of closed sets. An example of such family is Y = FK

for any K ∈ K. Then (4.19) implies
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TX (K ) ≤ TY (K ) , K ∈ K , (4.20)

where TX and TY are the capacity functionals of X and Y respectively. By similar
arguments,

P {X ∩ K1 �= ∅, . . . , Xn ∩ Kn �= ∅} ≤ P {Y ∩ K1 �= ∅, . . . ,Yn ∩ Kn �= ∅} (4.21)

for every n ≥ 1 and all K1, . . . , Kn ∈ K. Using the successive differences introduced
in (1.7) and (1.8), it is possible to rewrite (4.21) as

�Kn · · ·�K1 TX (∅) ≥ �Kn · · ·�K1 TY (∅) . (4.22)

It should be noted that (4.22) is obtained by specialising (4.19) for Y = FK1,...,Kn .
Although these families of closed sets do not exhaust all possible choices of Y ∈
J0(F), the following result confirms that (4.22) is a sufficient condition for (4.19).

Theorem 4.42 (Stochastic order for random closed sets). Let E be a LCHS space.
For two random closed sets X and Y , X is stochastically smaller than Y if and only
if (4.21) or (4.22) holds for every n ≥ 1 and all compact (or, equivalently, all open,
or all closed) sets K1, . . . , Kn .

Proof. The necessity of (4.21) follows from (4.19) for all compact sets K1, . . . , Kn

and furthermore for all closed/open sets by approximations.
A family Y ⊂ F is called decreasing if F ∈ Y and F ′ ⊂ F imply F ′ ∈ Y .

It suffices to prove that (4.21) implies P {X /∈ Y} ≤ P {Y /∈ Y} for every decreasing
family Y which is open in the Fell topology.

It is useful to consider the family F endowed with decreasing topology having
the base FK , K ∈ K. Let us show that a decreasing family Y is open in decreasing
topology if Fn ↓ F for any Fn, F ∈ Y implies Fn ∈ Y for some n. Suppose that F
does not belong to the interior of Y . Then F ∩ K �= ∅ if FK ⊂ Y for K ∈ K. For
every s /∈ F pick Gs ∈ G and Ks ∈ K such that s ∈ Gs ⊂ Ks ⊂ Fc. Because of
the second countability property, Fc = ∪n≥1Gsn for a sequence {sn, n ≥ 1}. Then
∩n

i=1Gc
si
↓ F , so that by the assumed condition on Y , ∩n

i=1Gc
si
∈ Y for some n.

Furthermore, K = ∩n
i=1 Ksi ∈ K and F ∩K = ∅. If a closed set H does not intersect

K , then H ⊂ ∩n
i=1Gc

si
, so that H ∈ Y , since Y is decreasing. Thus, FK ⊂ Y and

F ∩ K = ∅ contrary to the assumption.
The decreasing topology is second countable. To show this, consider a countable

base G0 of G which consists of open sets with compact closures and note that F∩K =
∅ implies K ⊂ Fc, so that a finite collection of Gi ∈ G0 satisfies K ⊂ ∪i Gi ⊂
∪i cl(Gi ) ⊂ Fc. Thus, F ∩ ∪i cl(Gi ) = ∅, i.e. a countable base of the decreasing
topology is composed of the families FK for K being finite unions of sets from G0.

Consider a decreasing set Y open in the Fell topology. Let Fn, F ∈ Y , n ≥
1, with Fn ↓ F . Then Fn converges to F in the Fell topology, so that Fn ∈ Y
for sufficiently large n (since Y is open). By the above arguments, Y is open in
the decreasing topology. Since the decreasing topology is second countable, Y =
∪n≥1FKn for some K1, K2, . . . ∈ K. Now (4.21) implies
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P {X /∈ Y} = lim
n

P(∩n
i=1{X ∩ Ki �= ∅})

≤ lim
n

P(∩n
i=1{Y ∩ Ki �= ∅}) = P {Y /∈ Y} ,

which finishes the proof. ��

Application to selections

If (4.20) holds, then X is said to be smaller in capacity than Y . It should be noted
that (4.20) is not sufficient in general to deduce that X is stochastically smaller than
Y .

Example 4.43 (Smaller in capacity does not imply stochastically smaller).
(i) Consider a two-points space E = {a, b} with the discrete topology (so that

all subsets are open). Let X be empty with probability 2/3 and X = {a, b} other-
wise. A random closed set Y takes values {a} and {b} with probabilities 3/8 each
and the value {a, b} with probability 1/4. Then (4.20) holds for all K , whereas
P {X = {a, b}} > P {Y = {a, b}} which is impossible if X is stochastically smaller
than Y .
(ii) Consider a random closed set X on the line which is equal to [1/3, 2/3] with
probability 1/2 and to [0, 1] otherwise. Let Y take values [0, 2/3] and [1/3, 1] with
probabilities 1/2. Then X is smaller in capacity than Y . Let f (B) = 1 if B ⊃ [0, 1]
and f (B) = 0 otherwise. Then E f (X) = 1/2 is strictly greater than E f (Y ) = 0, so
that X is not stochastically smaller than Y .

However, (4.20) does imply that X ≤st Y if X is a singleton as the following
result shows.

Corollary 4.44 (Selectionable distributions). Assume E is LCHS. An E-valued
random element ξ is stochastically smaller than a random closed set Y if and only if

P {ξ ∈ G} ≤ P {Y ∩ G �= ∅} = TY (G) (4.23)

for all G ∈ G (alternatively, open sets G can be replaced by compact sets K ∈ K or
closed sets F ∈ F ).

Proof. Since necessity is trivial, we have to prove sufficiency only. Put X = {ξ} (the
proof also works for a non-Hausdorff sober space E with X given by the closure of
{ξ}). By (4.23),

P {X ∩ G1 �= ∅, . . . , X ∩ Gn �= ∅} = P {ξ ∈ (∩Gi )}
≤ P {Y ∩ (∩Gi ) �= ∅}
≤ P {Y ∩ G1 �= ∅, . . . ,Y ∩ Gn �= ∅} .

By Theorem 4.42, X ≤st Y , which immediately yields the required statement. ��
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Since {Y ⊂ F} = {Y ∩ Fc = ∅} for F ∈ F , it is easy to see that (4.23) is
equivalent to the condition P {Y ⊂ F} ≤ P {ξ ∈ F} for all F ∈ F . The fact that

{ξ} ≤st Y means that there exists a random element ξ̂
d∼ ξ and a random closed

set Ŷ
d∼ Y such that ξ̂ is a selection of Ŷ . Then the distribution P of ξ is called

Y -selectionable, see Section 2.2. An application of Theorem 3 from Strassen [550]
shows that if P is dominated by TX , then

P(A) = Eµ(A) , (4.24)

where µ is a random measure supported by X . For instance, µ may be chosen to be an
atomic measure concentrated at a selection of X , so that P becomes the distribution
of the corresponding selection.

5 Calculus with capacities

5.1 Choquet integral

Definition and basic properties

Consider a function f that maps E into R+ = [0,∞). If ϕ is a functional defined
on subsets of E such that ϕ({x : f ≥ t}) is well defined for every t > 0, then the
Choquet integral of f with respect to ϕ is defined as∫

f dϕ =
∞∫

0

ϕ({x : f ≥ t})dt . (5.1)

This integral can be restricted to a subset M ⊂ E as∫
M

f dϕ =
∫

f 1Mdϕ =
∞∫

0

ϕ({x ∈ M : f ≥ t})dt .

In particular, the definition of the Choquet integral is applicable if f is a measur-
able function and ϕ is one of functionals determined by a random closed set X , e.g.
the capacity functional TX or the containment functional CX .

Theorem 5.1 (Choquet integral with respect to distributions of random sets).
Let X be an almost surely non-empty random closed set. For every measurable non-
negative function f , ∫

f dTX = E sup f (X) , (5.2)∫
f dCX = E inf f (X) , (5.3)

where f (X) = { f (x) : x ∈ X}. If X may be empty with positive probability, then
(5.2) holds with sup∅ = 0.
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Proof. The proof follows from Fubini’s theorem, since

∫
f dTX =

∞∫
0

TX ({x : f (x) ≥ t})dt

=
∞∫

0

P {α ≥ t} dt

= Eα ,

where α = sup{ f (x) : x ∈ X}. The second statement can be proved similarly. ��

Proposition 5.2 (Properties of Choquet integral). Consider non-negative functions
f and g for which the Choquet integral (5.1) is defined for a subadditive functional
ϕ. Then
(i) for every c ≥ 0,

∫
(c f )dϕ = c

∫
f dϕ ;

(ii) for every a ≥ 0,
∫
( f + a)dϕ = a + ∫ f dϕ ;

(iii)
∫
( f + g)dϕ ≤ ∫ f dϕ + ∫ gdϕ .

Proof. For ϕ = TX , the proofs immediately follow from Theorem 5.1. The general
case can be easily handled using the subadditivity of ϕ, see [135]. ��

Since ∫
f dCX ≤

∫
f dTX (5.4)

with a superlinear functional of f in the left and a sublinear functional in the right-
hand side, the sandwich theorem (Theorem A.5) implies that there exists a linear
functional of f sandwiched between the two sides of (5.4). This linear functional can
be represented as an integral

∫
f dµ, where the corresponding probability measure µ

can be identified as the distribution of a selection of X .

Example 5.3 (Choquet integral with respect to sup-measure). Let ϕ = f ∨ be the
sup-measure generated by an upper semicontinuous function f : E �→ [0, 1]. The
corresponding random closed set X appears as {x : f (x) ≥ α} for α uniformly
distributed on [0, 1], see Example 1.15. By Theorem 5.1,

∫
gdϕ = E sup{g(x) :

f (x) ≥ α}. In particular,
∫

M f dϕ = ϕ(M)2 and
∫
{y} gdϕ = g(y) f (y).

Comonotonic additivity

It is easy to check either directly or with the help of Theorem 5.1 that if ϕ is a
measure, then

∫
f dϕ coincides with the usual definition of the Lebesgue integral.

In difference to the Lebesgue integral, the Choquet integral is not additive in gen-
eral. However, its additivity property can be verified if the integrated functions are
comonotonic as described in the following definition.
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Definition 5.4 (Comonotonic functions). Real-valued functions f and g are called
comonotonic if ( f (x) − f (x ′))(g(x) − g(x ′)) ≥ 0 for all x, x ′ ∈ E. Furthermore,
f and g are strongly comonotonic if, for all x, x ′ ∈ E, f (x) < f (x ′) if and only if
g(x) < g(x ′).

The following proposition is easy to prove for ϕ = TX by using Theorem 5.1 and
the fact that

sup{a f (x)+ bg(x) : x ∈ X} = a sup f (X)+ b sup g(X)

if f and g are comonotonic. The case of a generalϕ is considered in Dellacherie [130]
and Denneberg [135].

Theorem 5.5 (Comonotonic additivity). For every two comonotonic functions f
and g and every a, b > 0∫

(a f + bg)dϕ = a
∫

f dϕ + b
∫

gdϕ

holds for every functional ϕ.

The comonotonicity establishes an equivalence relationship on the family of
functions, so that a finite collection of functions is comonotonic if and only if all
functions are pairwise comonotonic.

If ϕ(E) = 1, the Choquet integral can be consistently defined for not necessarily
non-negative functions as∫

f dϕ =
∞∫

0

ϕ({x : f (x) ≥ t})dt −
0∫

−∞
[1− ϕ({x : f (x) ≥ t})]dt .

This integral is called the upper integral, while the lower integral is defined as

(L)

∫
f dϕ =

∞∫
0

[1− ϕ({x : f (x) ≤ t})]dt −
0∫

−∞
ϕ({x : f (x) ≤ t})dt .

It is easy to see that the upper integral with respect to the capacity functional TX coin-
cides with the lower integral with respect to the containment functional, the property
shared by each pair of dual capacities. Similarly to Theorem 5.1, it is easy to see that
if X is almost surely non-empty, then∫

f dTX = E| sup f (X)| ,
∫

f dCX = E| inf f (X)| .

5.2 The Radon–Nikodym theorem for capacities

Indefinite Choquet integral

Observe that the Choquet integral of f with respect to a capacity ϕ yields a new
capacity as
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ψ(K ) =
∫
K

f dϕ , K ∈ K . (5.5)

Then ψ is said to be an indefinite integral of ϕ and the function f is called the
Radon–Nikodym derivative of ψ with respect to ϕ, i.e.

f (x) = dψ

dϕ
(x) , x ∈ E .

Proposition 5.6 (Alternation and semicontinuity). The degree of alternation (mono-
tonicity) of ψ defined by (5.5) is not less than the analogous degree of ϕ. In particu-
lar if ϕ is completely alternating (monotonic), then so is ψ . The capacity ψ is upper
semicontinuous if both f and ϕ are upper semicontinuous.

Proof. It is easy to see that

�Kn · · ·�K1ψ(K ) =
∞∫

0

�Kn · · ·�K1ϕ({x ∈ K : f (x) ≥ t})dt ,

whence ψ is alternating (monotonic) of a certain degree if ϕ is. The upper semicon-
tinuity of ψ follows from the monotone convergence theorem. ��

In particular, if ϕ = TX and E sup f (X) ≤ 1, then

TY (K ) =
∫
K

f dTX = E f ∨(X ∩ K ) (5.6)

is a capacity functional of a certain random closed set Y . Therefore, the Choquet
integral provides a way of introducing new capacity functionals of random closed
sets.

Example 5.7 (Capacity functional defined by indefinite integrals). Let TY be
defined by (5.6).
(i) If f (x) = 1F (x) for F ∈ F , then TY (K ) = P {X ∩ K ∩ F �= ∅} is the capacity

functional of Y = X ∩ F .
(ii) Let f (x) = 1F1(x) + p1F2(x) with p ∈ (0, 1) and disjoint closed sets F1 and
F2. Then Y is the union of X ∩ F1 and the random set that equals X ∩ F2 with
probability p independently of X and is empty otherwise.
(iii) Let f (x) = e−‖x‖ on E = Rd . Then Y is the intersection of X and independent
random ball Bξ centred at the origin with the exponentially distributed radius of
mean 1. Indeed,

P
{

X ∩ K ∩ Bξ �= ∅
} = P {ξ ≥ ρ(0, X ∩ K )}
= Ee−ρ(0,X∩K ) = E f ∨(X ∩ K ) .
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(iv) Let X = {ξ} be a random singleton. If sup f = 1, then

TY (K ) = E( f (ξ)1K (ξ))

is a probability measure, i.e. Y is a random singleton too.
(v) Let X be a stationary Poisson point process in Rd with intensity λ, see Defini-

tion 8.7. Then

E f ∨(X ∩ K ) =
sup f∫
0

(
1− e−mes({x∈K : f (x)≥s})) dt .

Absolute continuity

If the capacity functionals of X and Y are related by (5.6), then TY (K ) = 0 given that
TX (K ) = 0. This is a particular case of absolute continuity of capacities as defined
below.

Definition 5.8 (Absolutely continuous capacities). A capacity ψ is absolutely con-
tinuous with respect to ϕ (notation ψ � ϕ) if, for every K ∈ K, ψ(K ) = 0 provided
ϕ(K ) = 0.

While absolute continuity of measures implies the existence of the corresponding
Radon–Nikodym derivative, this is no longer true for capacities. To see this, consider
the case of a finite E of cardinality n. Then f is determined by n numbers, which
clearly do not suffice to define uniquely a capacity on subsets of E that may need up
to 2n − 1 numbers to be completely determined.

Strong decomposition and Radon–Nikodym theorem

Let us formulate here a general Radon–Nikodym theorem for capacities ϕ and ψ that
are monotone, subadditive and continuous from below. The pair (ϕ,ψ) is said to
have a strong decomposition property if, for every t ≥ 0, there exists a measurable
set At such that the following conditions hold

t (ψ(A)− ψ(B)) ≤ ϕ(A)− ϕ(B) if B ⊂ A ⊂ At , (5.7)

t (ψ(A)− ψ(A ∩ At )) ≥ ϕ(A)− ϕ(A ∩ At ) for all A . (5.8)

Every two measures (µ, ν) possess a strong decomposition property and At can be
derived from the Hahn decomposition of the signed measure tν − µ. The strong
decomposition property can be formulated as follows.

Definition 5.9 (Strong decomposition property). The pair (ϕ,ψ) has a strong
decomposition property if, for every t > 0, there exists a set At such that, for
wt = tψ − ϕ, the set function wt (At ∪ ·) is non-decreasing and wt (At ∩ ·) is non-
increasing.

The following result is proved by Graf [208].
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Theorem 5.10 (Radon–Nikodym theorem for capacities). For every two capaci-
ties ϕ and ψ , ψ is an indefinite integral of ϕ if and only if (ϕ,ψ) has the strong
decomposition property and ψ � ϕ.

Open problem 5.11. Consider a random closed set with the capacity functional T .
For a fixed L ∈ K define TL(K ) = P {X ∩ K �= ∅, X ∩ L �= ∅}, K ∈ K. It is
evident that TL � T . Does the pair (T, TL) possess a strong decomposition property
and, if yes, what is the corresponding Radon–Nikodym derivative?

Open problem 5.12. Interpret the conditions of the Radon–Nikodym theorem for
capacities (Theorem 5.10) for completely alternating capacities that correspond to
distributions of random closed sets. As a first step, note that (5.7) and (5.8) written
for ψ = TX and ϕ = TY mean that tPX (F B

A ) ≤ PY (F B
A ) if B ⊂ A ⊂ At and

tPX (F A∩At
A ) ≥ PY (F A∩At

A ) for all A.

5.3 Dominating probability measures

Upper probability

Let E be a LCHS space. Corollary 4.44 says that if the capacity functional TX of
a non-empty random closed set X dominates a probability measure µ, then X pos-
sesses a selection with distribution µ. Let PX be the family of all probability mea-
sures µ that are dominated by TX , i.e. µ(K ) ≤ TX (K ) for each K ∈ K. Note
that PX can be alternatively defined as the family of all measures that dominate the
containment functional CX , implying that all measures from PX are “sandwiched”
between CX and TX . The following result establishes that the capacity functional is
upper probability, i.e. it equals the upper envelope of all probability measures that it
dominates.

Theorem 5.13 (Capacity functional as upper probability). For every almost surely
non-empty random closed set X in a LCHS space,

TX (K ) = sup{µ(K ) : µ ∈ PX } , K ∈ K .

Proof. Consider an arbitrary K ∈ K. Let ξ be a selection of X ∩K if X ∩K �= ∅ and
otherwise let ξ be equal to any other selection of X \ K (note that X \ K is closed
if X ∩ K = ∅). Then ξ ∈ K if and only if X ∩ K �= ∅. If µ is the distribution of ξ ,
then µ is dominated by TX and µ(K ) = TX (K ). ��

Proposition 5.14. For every bounded upper semicontinuous non-negative function
f on E and a capacity functional T there exists a probability measure µ such that
T ({x : f (x) ≥ t}) = µ({x : f (x) ≥ t}) for all t ≥ 0.

Proof. Consider a random closed set X with the capacity functional T . The statement
is easily seen by identifying the required µ with the distribution of a selection ξ ∈
S(X) that satisfies f (ξ) = sup f (X). ��
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The capacity T is said to be dichotomous if, for each compact set K and each
ε > 0, there are disjoint compact sets K1 and K2 contained in K such that T (Ki ) ≥
T (K )− ε. It is known that the Newton capacity is dichotomous with ε = 0. Also it
is easy to see that the maxitive capacity f ∨ is dichotomous if f is continuous near
its maximum point. Note that a probability measure is not dichotomous.

The capacity functional TX is called equalised if (CX (K )+ TX (K ))/2 is a prob-
ability measure. If X �= ∅ a.s., Theorem 5.1 implies that TX is equalised if and only
if

I ( f ) = E(sup f (X)+ inf f (X))

is a linear functional of f . This is the case if X = {ξ, η} consists of at most two
points, since

E [max( f (ξ), f (η))+min( f (ξ), f (η))] = E [ f (ξ)+ f (η)]

is a linear functional of f .

Finite space case

For capacities on finite spaces, the Möbius inversion can be used to obtain a sufficient
domination condition.

Proposition 5.15 (Dominating measures on finite spaces). Assume that E is fi-
nite. Let CX be a containment functional and let PX be its Möbius inverse defined
by (1.36). Then every measure µ satisfying

µ({x}) =
∑
B�x

λ(B, x)PX (B)

dominates CX . Here λ(B, x) is any non-negative function defined for x ∈ B ⊂ E
satisfying ∑

B�x

λ(B, x) = 1 , B ⊂ E .

The following result provides a characterisation of equalised capacity functionals
for the case of finite E.

Proposition 5.16 (Equalised capacity functionals on finite space). Let E be a finite
space. Then TX is equalised if and only if the cardinality of X is at most 2.

Proof. For every L ⊂ E denote P(L) = P {X = L}. Then C(K ) = ∑L⊂K P(L)

and T (K ) =∑K∩L �=∅ P(L). The equalising condition yields

0 =
∑
x∈E

(C({x})+ T ({x}))− 2

=
∑
x∈E

P({x})+
∑
x∈E

∑
L�x

P(L) − 2
∑
L⊂E

P(L) .
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Rearrangement of the terms verifies that

∑
x∈E

∑
L�x

P(L) =
card(E)∑

k=1

k
∑

card(L)=k

P(L)

=
card(E)∑

k=3

k
∑

card(L)=k

P(L) + 2
∑

card(L)=2

P(L) +
∑
x∈E

P({x}) .

Therefore,

0 =
card(E)∑

k=3

(k − 2)
∑

card(L)=k

P(L) ,

meaning that P(L) = 0 whenever card(L) > 2. ��
Open problem 5.17. Characterise equalised capacity functionals on a non-finite
space E.

5.4 Carathéodory’s extension

Carathéodory’s construction described in Appendix E makes it possible to construct
a measure ϕ̄ from a given capacity ϕ on a family of sets. Fix a family of sets M
that contains all open balls and is used to construct ϕ̄ as described in (E.1) and (E.2).
Henceforth we assume that E = Rd .

Proposition 5.18 (Subadditivity and extension of a measure).
(i) If ϕ is subadditive on M, i.e. ϕ(M1 ∪M2) ≤ ϕ(M1)+ ϕ(M2) for all M1, M2 ∈

M, then ϕ ≤ ϕ̄ on M.
(ii) If ϕ is the restriction to M of a locally finite measure µ, then ϕ̄ = µ.

Proof.
(i) follows from the fact that Carathéodory’s construction preserves the monotonic-

ity property.
(ii) Clearly, ϕ̄ ≥ µ and ϕ̄(M) = µ(M) for every M ∈ M. Let G be a relatively
compact open set, so that µ(G) < ∞ and ϕ̄(G) < ∞ also. By the Besicovitch cov-
ering theorem (see Federer [167, Th. 2.8.15]), there is a countable disjoint collection
of balls {Bn, n ≥ 1} contained in G such that ϕ̄(C) = 0 for C = G \ ⋃n≥1 Bn .
Hence µ(C) = 0. But then

ϕ̄(G) =
∑
n≥1

ϕ̄(Bn) =
∑
n≥1

µ(Bn) = µ(G)− µ(C) = µ(A) .

Thus, µ agrees with ϕ̄ on relatively compact open sets, and hence on Borel sets. ��
In view of applications discussed later on in Section 8.5, consider Carathéodory’s

extension υϕ of the product of two capacities υ and ϕ. Write f ∨ for a sup-measure
generated by a function f .
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Theorem 5.19 (Extension of the product). Suppose ϕ̄ = µ is a locally finite mea-
sure.
(i) Assume that υ is a uniformly bounded capacity. Then f (x) = υ({x}) is an

upper semicontinuous function and, for all Borel A,

υϕ(A) =
∫
A

f dµ .

(ii) Let f : Rd �→ R+ be a bounded upper semicontinuous function such that∫
K f dµ <∞ for all compact sets K . Then, for all Borel A,

f ∨ϕ(A) =
∫
A

f dµ . (5.9)

Proof. We prove only (ii); statement (i) is similar. Write ν = f ∨ϕ and η(A) =∫
A f dµ. Suppose A is Borel with η(A) < ∞. Choosing ε > 0, partition A into a

finite number of disjoint Borel sets Bi such that∑
i

ai 1Bi ≤ f 1A ≤
∑

i

ai 1Bi + ε (5.10)

for some ai ∈ R. Integrating over Bi yields that

aiµ(Bi) ≤ η(Bi ) ≤ (ai + ε)µ(Bi) .

Since η is bounded on compact sets, it is also a locally finite measure and there exist
open sets Gi ⊃ Bi such that

η(Gi ) < (1+ ε) η(Bi ) , µ(Gi ) < (1+ ε) µ(Bi) .

By the Besicovitch covering theorem there are open balls Cni ⊂ Gi covering ν-
almost all of Gi such that diam(Cni ) < δ and f (xni ) ≤ f ∨(Cni ) ≤ f (xni ) + ε ,

where xni is the centre of Cni .
By (5.10) we have ai ≤ f (xni ) ≤ ai + ε so that ai ≤ f ∨(Cni ) ≤ ai + 2ε. Hence

for each i

( f ∨ϕ)δ(Bi ) ≤
∑
n≥1

f ∨(Cni )ϕ(Cni ) ≤ (ai + 2ε)
∑
n≥1

ϕ(Cni )

giving

ν(Bi ) ≤ (ai + 2ε) sup
δ>0

ϕδ(Gi ) = (ai + 2ε)µ(Gi) < (ai + 2ε)(1+ ε)µ(Bi) ,

so that
ν(A) ≤

∑
i

(ai + 2ε)(1+ ε)µ(Bi).
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Since ε was arbitrary we have ν(A) ≤ η(A).
Next we prove that (5.9) holds for each upper semicontinuous step-function f =∑
αi 1Bi , where αi > 0 for all i = 1, . . . , k and B1, . . . , Bk are disjoint Borel sets.

Since the Bi are disjoint we have f ∨ϕ(A) =∑i f ∨ϕ(A∩Bi ). For any δ-cover {Cn}
of A∩Bi , without loss of generality discarding sets Cn which do not intersect A∩Bi ,
we have f ∨(Cn) ≥ αi , so that

( f ∨ϕ)δ(A ∩ Bi ) ≥ αiϕδ(A ∩ Bi ) .

Therefore, f ∨ϕ(A ∩ Bi ) ≥ αiµ(A ∩ Bi ). Finally,

f ∨ϕ(A) ≥
∑

f ∨ϕ(A ∩ Bi ) ≥
∑

αiµ(A ∩ Bi ) =
∫

A∩(∪Bi )

f dµ =
∫
A

f dµ .

From this we obtain (5.9) for the step-function f .
Now approximate f by µ-integrable upper semicontinuous step-functions f ′n

such that f ′n(x) ↑ f (x) as n → ∞ for all x ∈ A. By the monotone convergence
theorem,

ν(A) = f ∨ϕ(A) ≥ ( f ′n)∨ϕ(A) =
∫
A

f ′ndµ→
∫
A

f dµ = η(A)

so that ν = η. ��
The following proposition concerns one particularly important case of ϕ being

the indicator capacity ϕ(K ) = 1F∩K �=∅ generated by a closed set F . If ῡ is a locally
finite (Radon) measure, then Equation (5.11) below is the special case of (5.9) with
f being the indicator of F . A simple argument based on checking that any δ-cover of
F∩K can be extended to a δ-cover of K without increasing the sum

∑
ϕ(Mn)υ(Mn)

shows that the result holds without assuming that ῡ is a locally finite measure.

Proposition 5.20. For a closed set F ⊂ Rd let ϕ(K ) = 1F∩K �=∅ be the indicator
capacity. Then, for every set function υ, ϕυ is the restriction of ῡ to F , i.e.

ϕυ(K ) = ῡ(F ∩ K ) . (5.11)

5.5 Derivatives of capacities

Definition

The definition of the derivative for capacities relies on the vague convergence concept
for capacities defined in Appendix E. Assume throughout that E = Rd .

Definition 5.21 (Derivative for capacities). A capacity ϕ is said to be differentiable
at K ∈ K if, for some α > 0 (called the exponent of the derivative), the capacity

ϕ(K + (t L ∪ {0}))− ϕ(K )

tα
, L ∈ K ,
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converges vaguely as a function of L to dLϕ(K ) as t ↓ 0. The limit dLϕ(K ) (called
the derivative of ϕ at K ) may be infinite, but it is assumed that 0 < dLϕ(K ) < ∞
for at least one L ∈ K.

If K = {x} is a singleton, write dLϕ(x) instead of dLϕ({x}). The differential of a
measure µ is defined by Faro, Navarro and Sancho [166] as the weak limit of µ(x +
t L)/tα as t ↓ 0. In our terms this corresponds to dLµ({x}), since a differentiable
measure satisfies µ({x}) = 0.

Example 5.22 (Derivative at singletons). If ϕ does not charge singletons (i.e.
ϕ({x}) = 0 for all x), is homogeneous and translation invariant, then dLϕ(x) =
ϕ(L). If µ is a measure Rd with density p with respect to the Lebesgue measure,
then dLµ(x) = p(x) mes(L). Similarly,

dLµ({x1, . . . , xn}) = mes(L)

n∑
i=1

p(xi) . (5.12)

Derivatives of capacity functionals

If ϕ = T is the capacity functional of a random closed set X , then dL T (K ) is
completely alternating as a function of L and is upper semicontinuous as a vague
limit of upper semicontinuous capacities. By Proposition 1.11,

T K (L) = 1− exp{−dLT (K )} , L ∈ K , (5.13)

is a capacity functional of a random closed set. Considered as a function of L, the
derivative dL T (K ) is homogeneous of order α, that is dcL T (K ) = cαdL T (K ) for
all c > 0. In the theory of random sets homogeneous capacities arise naturally as
probability distributions of union-stable random closed sets, see Section 4.1.3. For
example, the derivative in (5.12) corresponds to the Poisson point process with in-
tensity

∑
p(xi).

If L contains the origin, then dL T (K ) appears as the normalised limit of

T ((K + t L) ∪ L)− T (K ) = P {X ∩ K = ∅, X ∩ (K + t L) �= ∅} .
The event in the right-hand side means that X hits a neighbourhood of K while not
touching K itself. Define Zn = X1∪· · ·∪Xn for i.i.d. random closed sets X1, X2, . . .

with the capacity functional T that is differentiable at K ∈ K. Then, for each L ∈ K
with 0 ∈ L,

P{Zn ∩ (K + n−1/αL) �= ∅ | Zn ∩ K = ∅}
= 1−

[
P
{

X1 ∩ (K + n−1/αL) = ∅ | X1 ∩ K = ∅
}]n

= 1−
[

1− T (K + n−1/αL)− T (K )

1− T (K )

]n

converges vaguely as n →∞ to

T̃ (K ) = 1− exp

{
− dL T (K )

1− T (K )

}
.
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Derivative of the Lebesgue measure

Assume that µ = mes is the Lebesgue measure in Rd .

Theorem 5.23 (Derivative of the Lebesgue measure). If K is a regular closed con-
vex compact set, then

dLµ(K ) =
∫

Sd−1

h(L, u)Sd−1(K , du) , L ∈ K , (5.14)

where h(L, u) is the support function of L and Sd−1(K , du) is the area measure of
K , see Appendix F.

Lemma 5.24. If K is a regular closed convex compact set, then, for each L ∈ K,

dLµ(K ) = dco(L)µ(K ) . (5.15)

Proof. Without loss of generality assume that 0 ∈ L. If L = {0, x}, then

µ(K + t co(L))− µ(K + t L) = o(t) as t ↓ 0 .

The same argument implies (5.15) for each finite L. A general L ∈ K can be ap-
proximated from the above by a sequence {Ln, n ≥ 1} of polyhedrons, such that
co(Ln) = co(Fn) for some finite set Fn ⊂ Ln , n ≥ 1. Then dLnµ(K ) = dco(Ln)µ(K )

and (5.15) follows from the upper semicontinuity of dLµ(K ) with respect to L. ��
Proof of Theorem 5.23. By Lemma 5.24 it suffices to assume that L ∈ coK. The
translative integral formula (see Schneider [520, Eq. (4.5.32)]) yields

µ(K + t L) = µ(t L)+
d−1∑
k=1

Vk(K , t L) + µ(K ) .

The functionals Vk(·, t L) and Vk(K , ·) are additive; the first is homogeneous of de-
gree k, while the second is homogeneous of degree (d − k). The proof is finished by
noticing that the functional Vd−1(K , L) equals the right-hand side of (5.14). ��
Example 5.25 (Derivative of sup-measure). Assume that ϕ = f ∨ for an upper
semicontinuous function f . The set

argmaxK f = {x ∈ K : f (x) = f ∨(K )}
is not empty, since f is upper semicontinuous. If there exists a point x ∈ argmaxK f
such that x ∈ Int K , then x ∈ K+t L for all sufficiently small t , whence dLϕ(K ) = 0.
To exclude this trivial case, assume that argmaxK f is a subset of ∂K .

Assume that f is continuous in a neighbourhood of K and continuously differ-
entiable in a neighbourhood of argmaxK f . The derivative of the sup-measure (with
the exponent α = 1) is given by
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dLϕ(K ) = sup
x∈argmaxK f

h(L, f ′(x)) . (5.16)

This is easily seen by using the Taylor expansion for f (y) with y ∈ x + t L and
x ∈ argmaxK f . The random set Z with the capacity functional (5.13) is the union
of half-spaces

Z =
⋃

x∈argmaxK f

{z : 〈z, f ′(x)〉 ≥ ξ} ,

where ξ has the exponential distribution with mean 1.

Union of independent random sets

If X1 and X2 are independent random closed sets, then

TX1∪X2(K ) = 1− (1− TX1(K ))(1− TX2(K )) .

If the capacity functionals TX1 and TX2 are differentiable at K with the same expo-
nent α, then

dL TX1∪X2(K ) = (1− TX2(K ))dL TX1(K )+ (1− TX1(K ))dL TX2(K ) .

Example 5.26. Let X = {ξ, η} where ξ and η are independent random points with
distributions Pξ and Pη. Then

dL TX (K ) = P {η /∈ K } dLPξ (K )+ P {ξ /∈ K } dLPη(K ) .

If ξ and η have absolutely continuous distributions with densities pξ and pη, then
dL TX (x) = (pξ (x)+ pη(x)) mes(L) .

Differentiation of the Choquet integral

Below we will find a derivative of the capacity given by the Choquet integral. For a
capacity ϕ, we write ϕ(x) instead of ϕ({x}).

Theorem 5.27 (Derivative of Choquet integral at singleton). Let

ψ(K ) =
∫
K

f dϕ , K ∈ K ,

for a continuous non-negative function f and a capacity ϕ, which is differentiable at
{x} with exponent α.
(i) If ϕ(x) = 0 and/or f is Lipschitz of order β > α in a neighbourhood of x , then

ψ is differentiable at {x} with exponent α and

dLψ(x) = f (x)dLϕ(x) .
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(ii) If α ≥ 1, ϕ(x) > 0, f is continuously differentiable in a neighbourhood of
x and ϕ is upper semicontinuous at {x}, then ψ is differentiable at {x} with
exponent 1 and

dLψ(x) =
{

f (x)dLϕ(x)+ ϕ(x)h(L, f ′(x)) , α = 1 ,

ϕ(x)h(L, f ′(x)) , α > 1 .

Proof. By the definition of the Choquet integral,

t−α

[ ∫
x+t L

f dϕ −
∫
{x}

dϕ

]
= t−α

∞∫
0

[ϕ((x + t L) ∩ Fs)− ϕ({x} ∩ Fs)] ds

= t−α I1 + t−α I2 + t−α I3 ,

where Fs = {x : f (x) ≥ s} and

t−α I1 = t−α

inf f (x+t L)∫
0

[ϕ(x + t L)− ϕ(x)]ds

= inf f (x + t L)
ϕ(x + t L)− ϕ(x)

tα
→ f (x)dLϕ(x) ,

t−α I2 = t−α

f (x)∫
inf f (x+t L)

[ϕ((x + t L) ∩ Fs)− ϕ(x)]ds

≤ ϕ(x + t L)− ϕ(x)

tα
[ f (x)− inf f (x + t L)] → 0 as t ↓ 0 ,

and

t−α I3 = t−α

sup f (x+t L)∫
f (x)

ϕ((x + t L) ∩ Fs)ds .

(i) If ϕ(x) = 0, then

ϕ((x + t L) ∩ Fs)

tα
≤ ϕ(x + t L)− ϕ(x)

tα
→ dLϕ(x) ,

whence t−α I3 converges to zero. This holds also if f is Lipschitz, since

I3 ≤ ϕ(x + t L)(sup f (x + t L)− f (x)) .

(ii) In this case t−1 I1 converges to zero if α > 1 and to f (x)dLϕ(x) if α = 1.
Furthermore,

ϕ(x)
sup f (x + t L)− f (x)

t
≤ t−1 I3 ≤ ϕ(x + t L)

sup f (x + t L)− f (x)

t
.

Both sides converge to ϕ(x)h(L, f ′(x)). ��
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Example 5.28. If ϕ = µ is the Lebesgue measure and ψ(K ) = ∫K f dµ (in this case
the Choquet integral coincides with the Lebesgue integral), Theorem 5.27 implies
that dLψ(x) = f (x)µ(L). Assume now that ϕ(K ) = µ(K r ) for fixed r > 0, where
K r is the r -envelope of K . By (5.14),

dLϕ(x) = dLµ(Br (0)) = rd−1
∫

Sd−1

h(L, u)Hd−1(du) = 1

2
rd−1ωdb(L) ,

where b(L) is the mean width of L. If ψ = ∫ f dϕ, then Theorem 5.27(ii) implies
that

dLψ(x) = 1

2
rd−1ωdb(L) f (x)+ rdκd h(L, f ′(x)) .

If d = 2, the corresponding random closed set with the capacity functional (5.13) is
the union of two independent random sets: the half-space {z : rdκd 〈z, f ′(x)〉 ≥ ξ}
with the exponentially distributed ξ of mean 1 and the other being the stationary
isotropic Poisson line process with intensity π f (x)rd−1, see Stoyan, Kendall and
Mecke [544, p. 250].

Corollary 5.29 (Radon–Nikodym derivative). If ψ is the Choquet integral of a
differentiable capacity ϕ and ϕ(x) = 0 for all x , then, for each L ∈ K with 0 ∈ L,

ψ(K ) =
∫
K

dLψ(x)

dLϕ(x)
dϕ , K ∈ K ,

where the function dLψ(x)/dLϕ(x) is independent of L and yields the Radon–
Nikodym derivative of ψ with respect to ϕ.

Note that Corollary 5.29 is trivial if ϕ and ψ are measures.

6 Convergence

6.1 Weak convergence

Continuity sets

The weak convergence of random closed sets is a special case of the weak conver-
gence of probability measures, since a random closed set is a particular case of a
general random element and can be associated with a probability measure on B(F).

Definition 6.1 (Weak convergence). A sequence of random closed sets {Xn, n ≥ 1}
is said to converge weakly (or converge in distribution) to a random closed set X

with distribution P (notation Xn
d→ X) if the corresponding probability measures

{Pn, n ≥ 1} converge weakly to P, i.e.

Pn(Y)→ P(Y) as n →∞ (6.1)

for each Y ∈ B(F) such that P(∂Y) = 0, where the boundary of Y is defined with
respect to a topology on F that generates the Effros σ -algebra.



6 Convergence 85

If E is a LCHS space, then the boundary of Y in Definition 6.1 is taken in the
Fell topology. Since in this case the family F of closed sets is compact (see Theo-
rem B.2(i)), no tightness conditions are needed for the weak convergence of random
closed sets in LCHS spaces, i.e. all families of distributions of random closed sets
are relatively compact. This fact can be formulated as follows.

Theorem 6.2 (Helly theorem for random sets). If E is a LCHS space, then every
sequence {Xn, n ≥ 1} of random closed sets has a weakly convergent subsequence.

It is difficult to check (6.1) for all Y from B(F). The first natural step is to use
Y = FK for K running through K.

Lemma 6.3. Let E be a LCHS space. For each K ∈ K,

P(FK ) = P(FInt K ) (6.2)

implies P(∂FK ) = 0.

Proof. Let us show that the interior of FK in the Fell topology contains FInt K . If
F ∩ Int K �= ∅ and Fn Painlevé–Kuratowski converges to F , then Fn ∩ Int K �= ∅
for all sufficiently large n, see Corollary B.7. It suffices to note that that the Fell
topology coincides with the Painlevé–Kuratowski convergence if E is LCHS, see
Theorem B.6. Since FK is closed, ∂FK ⊂ FK \ FInt K , so that P(∂FK ) = 0 if (6.2)
holds. ��

Note that (6.2) is equivalent to P {X ∩ K �= ∅, X ∩ Int K = ∅} = 0 or

TX (K ) = TX (Int K )

for the corresponding random closed set X , where TX (Int K ) is defined using (1.19).
The following definition is a special case of Definition 1.26.

Definition 6.4 (Continuity family). The family of relatively compact Borel sets B
satisfying

TX (cl B) = TX (Int B)

is called the continuity family of X and denoted by STX or SX .

It is shown by Molchanov [394] that SX contains all regular closed compact sets
if X is stationary.

Pointwise convergence of capacity functionals

It is straightforward to deduce from Lemma 6.3 that Xn
d→ X yields TXn (K ) →

TX (K ) as n → ∞ for every compact set K ∈ SX . The following theorem charac-
terises the weak convergence of random closed sets in terms of the pointwise con-
vergence of capacity functionals.
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Theorem 6.5 (Convergence of capacity functionals). A sequence of random closed
sets {Xn, n ≥ 1} in a LCHS space converges weakly to a random closed set X if and
only if

TXn (K )→ TX (K ) as n →∞ (6.3)

for each K ∈ SX ∩K.

It is possible to prove Theorem 6.5 directly by first showing that TXn (G) →
TX (G) for all open sets G such that TX (G) = TX (cl G), then deducing from this
convergence of probability measures on the families Y = FK

G1,...,Gn
with P(∂Y) = 0

and finally referring to Theorem 2.2 of Billingsley [70]. Alternatively, Theorem 6.5
can be obtained as a particular case of Theorem 6.8 below.

Example 6.6 (Convergence of random singletons). If Xn = {ξn}, n ≥ 1, then the
weak convergence of Xn is equivalent to the weak convergence of ξn in the conven-
tional sense, see Billingsley [70]. Then P {ξn ∈ K } = TXn (K ), so that (6.3) is read
as the weak convergence of the sequence {ξn, n ≥ 1}.
Example 6.7 (Convergence of random balls). Random balls Xn = Bηn (ξn), n ≥
1, converge weakly if (ηn, ξn) converge weakly as random elements in the product
space R+× E. Indeed, Xn ∩ K �= ∅ if and only if

(ηn, ξn) ∈ F =
⋃
r≥0

({r} × K r )

with F being a closed set. Since the map Br (x) �→ (r, x) is a continuous bijection

between the family of balls and R+× E, Xn
d→ X implies that (ηn, ξn) converges

weakly as n →∞.

Convergence determining classes

The following important theorem relies on Definition 1.25 of the separating class and
refers to the notation introduced in Section 1.4. Its formulation involves the capacity
functionals extended to the family of all subsets of E by means of (1.19) and (1.20).

Theorem 6.8 (Characterisation of weak convergence). A sequence of random
closed sets {Xn, n ≥ 1} in a LCHS space converges weakly to a random closed set
X if there exists a separating class A and an increasing set function ϕ : A �→ [0, 1]
such that

ϕ0(Int B) ≤ lim inf
n

TXn (B) ≤ lim sup
n

TXn (B) ≤ ϕ−(cl A) (6.4)

for all A ∈ A. Then TX (K ) = ϕ−(K ) for all K ∈ K and TX (G) = ϕ0(G) for all
G ∈ G. If A ⊂ Sϕ , then TX (B) = ϕ(B) for all B ∈ A.

Proof. Fix K ∈ K and choose a sequence {Bm,m ≥ 1} ⊂ A such that Bm ↓ K and
K ⊂ cl Bm+1 ⊂ Int Bm for all m ≥ 1. By (6.4) and (1.30),
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lim sup
n→∞

TXn (K ) ≤ lim sup
n→∞

TXn (Bn) ≤ ϕ−(cl Bm)→ ϕ−(K ) .

A similar argument yields

lim inf
n→∞ TXn (K ) ≥ lim inf

n→∞ TXn (Int K ) ≥ ϕ0(Int K ) .

Therefore,
lim

n→∞ TXn (K ) = ϕ−(K )

for all K ∈ K ∩ Sϕ . If {Xn(k), k ≥ 1} is a subsequence of {Xn, n ≥ 1}, then, by
Theorem 6.2, it has a subsequence that converges weakly to a random closed set
X . Then TX (K ) = ϕ−(K ) for all K from K ∩ Sϕ ∩ SX . Every K ∈ K can be
approximated from the above by a sequence {Kn, n ≥ 1} ⊂ K ∩ Sϕ ∩ SX such
that Int Kn ↓ K . Since T−X = TX by the semicontinuity of TX and ϕ−− = ϕ−,
we obtain that TX (K ) = ϕ−(K ) for all K ∈ K. The same argument shows that
TX ′(K ) = ϕ−(K ) for every possible weak limit X ′ of {Xn(k), k ≥ 1}. The Choquet

theorem implies X
d∼ X ′. It follows from Billingsley [70, Th. 2.3] that Xn

d→ X .
Similar arguments can be used to show that TX (G) = ϕ0(G) for all G ∈ G, whence
SX = Sϕ . ��

Corollary 6.9 (Sufficient condition for weak convergence). Let A be a separating
class in a LCHS space. If TXn (B) → TX (B) as n → ∞ for all B ∈ A ∩SX , then

Xn
d→ X as n →∞.

Corollary 6.9 implies Theorem 6.5 for A = K. Other typically used separating
classes are the class of finite unions of balls of positive radii (or the countable class
of finite unions of balls with rational midpoints and positive rational radii) and the
class of finite unions of parallelepipeds. These classes are called convergence deter-
mining. In general, a family M ⊂ K is said to determine the weak convergence if
the pointwise convergence of the capacity functionals on M ∩ST yields the weak
convergence of distributions for the corresponding random closed sets.

Convergence of Choquet integrals and selections

It is well known that the weak convergence of random variables is characterised
by the convergence of expectations for every bounded continuous function of the
variables. A parallel result holds for random closed sets. Recall that E f ∨(X) =
E sup f (X) for a non-negative measurable function f equals the Choquet integral of
f with respect to TX , see Theorem 5.1.

Proposition 6.10 (Convergence of Choquet integrals). A sequence {Xn, n ≥ 1}
of random closed sets converges weakly to a random closed set X if and only if
E f ∨(Xn) converges to E f ∨(X) for every continuous function f : E �→ R with a
bounded support.
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Proof. It suffices to consider non-negative functions f . Denote Fs = {x : f (x) ≥
s}. Note that TX (Fs) �= TX (Int Fs) for at most a countable set of s. Therefore,
TXn (Fs) → TX (s) for almost all s > 0, whence the convergence of the Choquet
integrals easily follows. The inverse implication follows from the fact that the indi-
cator function g(x) = 1K (x) can be approximated from below and from above by
continuous functions with bounded supports. ��

The weak convergence of random closed sets in a general Polish space E with
a metric ρ can be characterised in terms of the weak convergence of their distance
functions. In line with Theorem 2.28, a sequence {Xn, n ≥ 1} of random closed
sets converges weakly to X if and only if the finite-dimensional distributions of the
process ρ(x, Xn) converge to the finite-dimensional distributions of ρ(x, X), x ∈ E,
see Salinetti and Wets [512].

The weak convergence of random convex closed sets implies the convergence of
their selections.

Proposition 6.11. Let {Xn, n ≥ 1} be a sequence of almost surely non-empty ran-

dom convex closed sets in a separable Banach space, such that Xn
d→ X . Then X is

a random convex closed set and there exists a sequence of selections ξn ∈ S(Xn),

n ≥ 1, such that ξn
d→ ξ with ξ ∈ S(X).

Proof. Since the family coF ′ of non-empty convex closed sets is closed in F ,

P
{

X ∈ coF ′
} ≥ lim sup

n→∞
P
{

Xn ∈ coF ′
} = 1 .

Let f be a continuous selection operator on coF ′, see Section 2.2. Define selections
of X and Xn by ξ = f(X) and ξn = f(Xn), n ≥ 1. If g is a bounded continuous func-

tion on E, then g(f(F)) is a continuous real-valued function on coF ′. Now Xn
d→ X

implies Eg(f(Xn))→ Eg(f(X)), which means Eg(ξn)→ Eg(ξ), i.e. ξn
d→ ξ . ��

Open problem 6.12. Does Xn
d→ X as n →∞ for not necessarily convex random

closed sets imply that there is a sequence of selection ξn ∈ S(Xn) and ξ ∈ S(X)

such that ξn
d→ ξ? By Proposition 6.11, this holds for random convex sets.

Proposition 6.13 (Convergence of support functions). Let {Xn, n ≥ 1} be a se-
quence of almost surely non-empty random convex compact sets. Then Xn converges
weakly to a random convex compact set X if and only if the finite-dimensional dis-
tributions of h(Xn, ·) converge to those of h(X, ·) and supn P {‖Xn‖ ≥ c} → 0 as
c →∞.

Proof. It suffices to show that the imposed conditions imply the weak convergence
of the support functions in the space of continuous functions on the unit sphere. The
corresponding tightness condition (see Billingsley [70]) requires
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lim
δ↓0

lim sup
n→∞

P

{
sup

‖u−v‖≤δ

|h(Xn, u)− h(Xn, v)| ≥ ε

}
= 0 .

The inequality for the support functions (F.4) yields

P

{
sup

‖u−v‖≤δ

|h(Xn, u)− h(Xn, v)| ≥ ε

}
≤ P {‖Xn‖ ≥ ε/δ} ,

whence the condition of the theorem implies that the sequence h(Xn, ·) is tight. ��

Convergence to a singleton

In optimisation problems it is often possible to assume that a sequence of random
closed sets converges to a random closed set X which is either empty or consists
of a single point, i.e. P {card(X) > 1} = 0. The following theorem deals with the
convergence of selections for such sequences. Note that a random element ξ is said
to be a generalised selection of X if ξ ∈ X a.s. on the event {X �= ∅}. Recall that a
sequence of random elements {ξn, n ≥ 1} is tight if for all ε > 0 there is a compact
set K ⊂ E such that P {ξn ∈ K } ≥ 1− ε for all n.

Theorem 6.14 (Weak convergence to a singleton). Let {Xn, n ≥ 1} be a sequence
of random closed sets in a Polish space E. Assume that Xn weakly converges to a
random closed set X such that card(X) ≤ 1 a.s. and P {Xn �= ∅} → P {X �= ∅}. Let
ξn and ξ be generalised selections of Xn and X respectively. Then ξn converges in
distribution to ξ if at least one of the following conditions holds
(i) the sequence {ξn, n ≥ 1} is tight;

(ii) P {card(Xn) > 1} → 0.

Proof.
(i) Assume without loss of generality that X is almost surely non-empty. By The-

orem E.6, it suffices to show that lim sup P {ξn ∈ F} ≤ P {ξ ∈ F} for all F ∈ F . Fix
ε > 0 and let K be a compact set such that P {ξn ∈ K } ≥ 1− ε for all n ≥ 1. Then

P {ξn ∈ F} − ε ≤ P {ξn ∈ (F ∩ K )} ≤ P {Xn ∩ (F ∩ K ) �= ∅} .
Since FF∩K is closed in F and Xn

d→ X ,

lim sup
n→∞

P {Xn ∩ (F ∩ K ) �= ∅} ≤ P {X ∩ (F ∩ K ) �= ∅} .

Since X is assumed to be a.s. non-empty, X = {ξ} is a singleton, whence

lim sup
n→∞

P {ξn ∈ F} ≤ TX (F ∩ K )+ ε = P {ξ ∈ F} + ε ,

so letting ε ↓ 0 finishes the proof.
(ii) For every F ∈ SX , one has

P {Xn ∩ F �= ∅, card(Xn) = 1} ≤ P {ξn ∈ F} ≤ P {Xn ∩ F �= ∅} ,
so that the required weak convergence follows from the imposed conditions. ��
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Semi-differentiability

In sensitivity studies of optimisation problems it is essential to be able to deduce
the weak convergence of set-valued functions from the weak convergence of their
arguments. Let F : Rm �→ F(Rd ) be a multifunction measurable with respect to
the Borel σ -algebra on Rm and the Effros σ -algebra on F(Rd), see Appendix D. If
ξ is a random vector in Rm with distribution P, then F(ξ) is a random closed set
in Rd . Let P be a probability measure on Rm . The multifunction F is called P-a.s.
semi-differentiable at z0 ∈ Rm relative to x0 ∈ F(z0) if there exists a multifunction
F ′z0,x0

: Rm �→ F(Rd ) such that

F ′z0,x0
(z) = lim

t↓0, z′→z
t−1[F(z0 + tz′)− x0]

holds for all points z except those in a set of P-measure zero. The following result
follows directly from the continuous mapping theorem, see Billingsley [70, Th. 5.5].

Theorem 6.15 (Weak convergence of semi-differentiable multifunctions). Let
{ξn, n ≥ 1} be a sequence of random vectors in Rm such that a−1

n (ξn− z0) converges
in distribution to a random vector ξ with distribution P, where {an, n ≥ 1} is a se-
quence of positive normalising constants and z0 is a non-random point in Rm . If F is
P-a.s. semi-differentiable at z0 relative to a point x0 ∈ F(z0), then a−1

n (F(ξn)− x0)

converges in distribution to F ′z0,x0
(ξ).

If F(x) = { f (x)} is a single valued function, Theorem 6.15 implies that
a−1

n ( f (ξn)− f (z0)) converges in distribution to f ′(z0)ξ .

6.2 Convergence almost surely and in probability

Definition

It is easy to define the almost sure convergence of random closed sets using one of the

topologies on F described in Appendix B. For example, Xn
PK−→ X a.s. if Xn(ω)

PK−→
X (ω) for almost all ω ∈ Ω . If E is locally compact, this convergence is equivalent
to the almost sure convergence in the Fell topology. In this case the indication of the
topology is usually omitted and we write Xn → X a.s. The almost sure convergence
of random compact sets is usually defined with respect to the Hausdorff metric as
ρH(Xn, X)→ 0 a.s.

As a consequence of a general property of probability measures in topological
spaces, the almost sure convergence of random closed sets (in the Fell topology)
implies their weak convergence. On the other hand, a weakly convergent sequence
of random closed sets can be realised on a single probability space as an almost
surely convergent sequence, see Wichura [610].

Example 6.16 (A.s. convergence of convex hulls). Let K be a convex compact set
in Rd with sufficiently smooth boundary ∂K . Choose n independent random points
uniformly distributed in K and denote by Pn their convex hull. Then Pn is a random
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polyhedron, such that Pn → K almost surely as n → ∞. Since the classical paper
by Rényi and Sulanke [478], the rate of convergence for various functionals of Pn

(e.g. its area mes2(Pn)) and the corresponding limit theorems have been the focus of
attention of many probabilists. For instance, if d = 2 and the curvature k(x) does not
vanish for all x ∈ ∂K , then

lim
n→∞ n2/3[mes2(K )− E mes2(Pn)] = (2/3)1/3 � (5/3)mes2(K )2/3

∫
∂K

k1/3(s)ds ,

see Schneider [519]. Further results in this direction can be found in Bräker and
Hsing [76], Groeneboom [212] and McClure and Vitale [385].

Deterministic limits

Deriving the almost sure convergence of random closed sets in the Fell topology
involves checking the conditions (F1) and (F2) of Corollary B.7. These conditions
can be reformulated for the sets K and G from some countable subfamilies of K and
G and then applied for a sequence of random sets with a non-random limit.

Proposition 6.17 (A.s. convergence to deterministic limit). A sequence Xn , n ≥ 1,
of random closed sets in a LCHS space a.s. converges to a deterministic closed set F
if and only if the following conditions hold.

(R1) If K ∩ F = ∅ for K ∈ K, then

P {Xn ∩ K �= ∅ i.o.} = P

{ ∞⋂
n=1

∞⋃
m=n

{Xn ∩ K �= ∅}
}
= 0 ,

where “i.o.” means “infinitely often”.
(R2) If G ∩ F �= ∅ for G ∈ G, then

P {Xn ∩ G = ∅ i.o.} = P

{ ∞⋂
n=1

∞⋃
m=n

{Xn ∩ G = ∅}
}
= 0 .

These conditions can be relaxed by replacing K in (R1) with a separating class A ⊂
K and G in (R2) with A′ = {Int K : K ∈ A}.

Proposition C.10 together with a usual separability argument based on choosing
a countable dense set yields the following result concerning the almost sure conver-
gence of random compact sets.

Proposition 6.18 (A.s. convergence of random compact sets). Let V be a closed
subset of K and let {Xn, n ≥ 1} be a sequence of V-valued random sets such that
cl(∪n Xn) is compact almost surely. If dH(Xn, V ) (see (C.2)) a.s. converges for each
V ∈ V , then {Xn, n ≥ 1} converges a.s. in the Hausdorff metric.

In a Banach space it is possible to define weak and strong almost sure limits
of a sequence of random closed sets. Hiai [253] showed that if supn≥1 ‖Xn‖ < ∞
a.s. in a reflexive space E, then there exists a random closed set X such that X =
w−lim sup Xn a.s.
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Convergence in probability

In order to define the convergence of random closed sets in probability, it is necessary
to assume that E is a metric space. Recall that Fε− is the open ε-envelope of F .

Definition 6.19 (Convergence in probability). A sequence {Xn, n ≥ 1} is said to
converge in probability if, for every ε > 0 and K ∈ K,

P
{[(Xn \ Xε−) ∪ (X \ Xε−

n )] ∩ K �= ∅}→ 0 as n →∞ . (6.5)

For brevity, it is sensible to denote

Yε,n = (Xn \ Xε−) ∪ (X \ Xε−
n )

so that (6.5) means that Yε,n
d→ ∅ for each ε > 0.

Lemma 6.20 (Convergent subsequences). If the random closed sets {Xn, n ≥ 1}
converge in probability to X , then there exists a subsequence {n(i), i ≥ 1} such that
Xn(i) → X almost surely as i →∞.

Proof. Choose a sequence {(εi , Ki )} ⊂ (R+ × K) such that εi ↓ 0,
∑∞

i=1 εi < ∞
and Ki ↑ E. By (6.5), for every i ≥ 1 it is possible to find an integer n(i) such that
the sequence {n(i), i ≥ 1} is strictly increasing and P

{
Yεi ,n ∩ Ki �= ∅

} ≤ εi for all
n ≥ n(i). Then

∞∑
i=1

P
{
Yεi ,n(i) ∩ Ki �= ∅

} ≤ ∞∑
i=1

εi <∞

and, by the Borel–Cantelli lemma, Yεi ,n(i)∩Ki �= ∅ at most a finite number of times.
For every ε > 0 and K ∈ K, we get Yε,n(i) ⊂ Yεi ,n(i) and K ⊂ Ki for sufficiently
large i . Therefore,

lim
k→∞ P(∪∞i=k{Yε,n(i) ∩ K �= ∅}) = 0 .

This implies Yε,n(i) → ∅ a.s., whence Xn(i) → X a.s. by Proposition B.3. ��

Theorem 6.21. Let ρ̃ be any metric on F that is compatible with the Fell topol-
ogy. If X and Xn , n ≥ 1, are random closed sets, then the following statements are
equivalent:
(i) Xn → X in probability;

(ii) ρ̃(Xn, X)→ 0 in probability;
(iii) every subsequence of {Xn, n ≥ 1} contains a further subsequence that con-

verges to X almost surely.

Proof. The implication (i)⇒(ii) follows from Lemma 6.20. Condition (iii) means
that any subsequence of random variables {ρ̃(Xn, X), n ≥ 1} contains a further sub-
sequence converging almost surely to zero. This fact for real-valued random variables
is equivalent to (ii).



6 Convergence 93

The implication (ii)⇒(i) is easy to prove by assuming that (i) does not hold,
so there is a subsequence {Xn(i), i ≥ 1} such that P

{
Yε,n(i) ∩ K �= ∅} > ε for

some fixed ε > 0 and K ∈ K. Now (ii) implies Xn(i(k)) → X a.s. for a further
subsequence. By Proposition B.3, Yε,n(i(k)) → ∅ a.s. contrary to the assumption. ��

Corollary 6.22. If Xn → X in probability, then Xn
d→ X as n →∞.

Proof. For every bounded continuous function g : F �→ R, the dominated conver-
gence theorem and Theorem 6.21 imply that every subsequence of {Eg(Xn), n ≥ 1}
contains a further subsequence converging to Eg(X), whence Eg(Xn) converges to
Eg(X). ��

6.3 Probability metrics

Probability metrics in general spaces

In this section we discuss probability metrics in the space of random closed sets
distributions which generalise well known concepts of the uniform distance and the
Lévy distance between distributions of random variables and the Prokhorov metric
for random elements in metric spaces.

Definition 6.23 (Probability metric). A probability metric m(ξ, η) is a numerical
function on the space of distributions of random elements, which satisfies the fol-
lowing conditions

m(ξ, η) = 0 implies P {ξ = η} = 1 ,

m(ξ, η) = m(η, ξ) ,

m(ξ, η) ≤ m(ξ, ζ )+m(ζ, η) ,

for all random elements ξ, η and ζ .

Since a random compact set is a K-valued random element, probability metrics
for random compact sets can be defined by specialising general metrics for the case
of random elements in the space K equipped with the Hausdorff metric ρH. For
instance, the Prokhorov metric uses only the metric structure of the carrier space
(see Rachev [470, p. 30]) and can be defined for random compact sets as

p(X,Y ) = inf{ε > 0 : P {X ∈ Y} ≤ P
{
Y ∈ Yε

}+ ε, Y ∈ B(K)} ,
where Yε is the ε-neighbourhood of Y ⊂ K in the Hausdorff metric. Another metric
can be defined as

K H (X,Y ) = inf
{
ε > 0 : P

{
ρH(X,Y ) > ε

}
< ε
}
,

where X and Y are random compact sets. This metric K H metrises the convergence
of random compact sets in probability with respect to the Hausdorff metric. An ana-
logue of the so-called “engineering” metric (see Rachev [470, p. 5]) is defined as
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IH (X,Y ) = EρH(X,Y ) .

The above mentioned metrics are compound [470, p. 39], i.e. their values depend
on the joint distributions of X and Y as opposed to simple metrics that depend only
on their marginal distributions. It is well known that simple metrics are more con-
venient, since they can be naturally applied to limit theorems. However, many inter-
esting simple metrics for random variables are defined by means of their densities or
characteristic functions, which are quite difficult to extend for random closed sets.

Probability metrics based on Castaing representation

Another possible approach to define probability metrics for random sets relies on
their Castaing representation using selections. If m is a probability metric for random
elements in E, then a metric

mH (X,Y ) = max

{
sup

ξ∈S(X)

inf
η∈S(Y )

m(ξ, η), sup
η∈S(Y )

inf
ξ∈S(X)

m(ξ, η)

}
for a.s. non-empty random closed sets X and Y is introduced in the same way as the
Hausdorff metric is constructed from a metric on E.

Example 6.24 (Engineering metric). Let E = Rd and choose m to be the sim-
ple “engineering” metric on the space of integrable random vectors, i.e. m(ξ, η) =
ρ(Eξ,Eη). Assume that both X and Y have at least one integrable selection. Then

mH (X,Y ) = max

{
sup

x∈E X
inf

y∈EY
ρ(x, y), sup

y∈EY
inf

x∈E X
ρ(x, y)

}
= ρH(EX,EY ) ,

where EX (respectively EY ) is the set of expectations of all integrable selections
of X (respectively Y ). The set EX is the selection expectation of X , which will be
studied in detail in Section 2.1.2. Thus, mH (X,Y ) is the Hausdorff distance between
the selection expectations of X and Y . Unfortunately, for a more complicated metric
m the evaluation of mH for random sets is very difficult, since the family of selections
is rich even for simple random sets.

Probability metrics based on capacity functionals

A useful generalisation of classical probability metrics can be obtained by replac-
ing distribution functions in their definitions with capacity functionals. The uniform
distance between the random closed sets X and Y is defined as

u(X,Y ;A) = sup {|TX (K )− TY (K )| : K ∈ A} , (6.6)

where A is a subclass of K. The Lévy metric is defined as follows
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L(X,Y ;A) = inf
{
r > 0 :

TX (K ) ≤ TY (K r )+ r , TY (K ) ≤ TX (K r )+ r , K ∈ A
}
, (6.7)

where K r is the r -envelope of K . Hereafter we omit A if A = K, i.e. u(X,Y ) =
u(X,Y ;K) and L(X,Y ) = L(X,Y ;K) etc.

Example 6.25. Let X = {ξ} and Y = {η} be random singletons. Then L(X,Y ) is
the Lévy–Prokhorov distance between ξ and η (see Zolotarev [630]) and u(X,Y )

coincides with the total variation distance between the distributions of ξ and η.

Weak convergence

The following result shows that the Lévy metric determines the weak convergence
of random sets.

Theorem 6.26 (Lévy metric and weak convergence). Let A ⊂ K be a separating
class. A sequence {Xn, n ≥ 1} of random closed sets converges weakly to a random
closed set X if and only if L(Xn, X;A(K0)) → 0 as n → ∞ for each K0 ∈ K,
where A(K0) = {K ∈ A : K ⊂ K0}.
Proof. Sufficiency. Let L(Xn, X;A(K0)) → 0 as n → ∞, It follows from (6.7)
that, for K ∈ A(K0) ∩SX ,

TX (K ) ≤ TXn (K εn)+ εn and TXn (K ) ≤ TX (K εn )+ εn, n ≥ 1 , (6.8)

where εn ↓ 0 as n →∞. Assume that TX (K ) > 0, whence Int K �= ∅. Since A is a
separating class, there exists a sequence {Kn, n ≥ 1} ⊂ A such that

TX (Kn) ↑ TX (Int K ) = TX (K ) (6.9)

and K εn
n ⊂ K for all n ≥ 1. Since (6.8) holds on A(K0),

TXn (Kn) ≤ TXn (K εn
n )+ εn ≤ TXn (K )+ εn.

Thus,

TX (K )− εn − (TX (K )− TX (Kn)) ≤ TXn (K ) ≤ TX (K )+ εn

+ (TX (K εn)− TX (K )
)
.

The upper semicontinuity of TX and (6.9) yield that TXn (K )→ TX (K ) as n →∞.

Necessity. If Xn
d→ X , then TXn (K ) → TX (K ) for each K ∈ A ∩ SX . Let ε > 0

and K0 ∈ K be specified. Consider compact sets K1, . . . , Km , which form an ε-net
of A(K0) in the Hausdorff metric. It is easy to show that K ri

i belongs to SX for some
ri ∈ [ε, 2ε], 1 ≤ i ≤ m. It follows from the pointwise convergence of the capacity
functionals on K ri

i that for a certain integer n0 and every n ≥ n0,

|TXn (K ri
i )− TX (K ri

i )| ≤ ε , 1 ≤ i ≤ m .
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Let K j be the nearest neighbour of an arbitrary K ∈ A from the chosen ε-net. Then,
for all n ≥ n0,

TXn (K ) ≤ TXn (K ε
j ) ≤ TXn (K

r j
j ) ≤ TX (K

r j
j )+ ε ≤ TX (K 3ε)+ 3ε . (6.10)

Similarly,
TX (K ) ≤ TXn (K 3ε)+ 3ε . (6.11)

Thus, L(Xn, X;A(K0)) ≤ 3ε. Letting ε go to zero proves the necessity. ��

Corollary 6.27. A sequence of random closed sets {Xn, n ≥ 1} converges weakly to
a random compact set X if and only if L(Xn, X)→ 0 as n →∞.

Proof. Sufficiency immediately follows from Theorem 6.26.
Necessity. Let {Kn, n ≥ 1} be an increasing sequence of compact sets, such that
Kn ↑ Rd as n →∞. Then TX (Rd )− TX (Kn) < ε for a certain n. It is easy to show
that K ′ = K δ

n belongs to SX for some δ > 0, whence

TXn (R
d)− TXn (K ′) < ε

for sufficiently large n. Inequalities (6.10) and (6.11) hold for each K ⊂ K ′. If
K �⊂ K ′, then

TXn (K ) ≤ TXn (K ∩ K ′)+ ε ≤ TX (K 3ε)+ 4ε

and
TX (K ) ≤ TXn (K 3ε)+ 4ε .

Hence L(Xn, X)→ 0 as n →∞. ��

Uniform convergence

The convergence in the uniform metric does not follow in general from the pointwise
convergence of capacity functionals. The following result shows that the uniform
convergence is related to the weak convergence of inner envelopes of random sets.
For every set F and δ > 0, F−δ = {x : Bδ(x) ⊂ F} is the inner parallel set of F .
Note that the weak convergence of outer envelopes X δ

n to X δ follows from the weak
convergence of the corresponding random closed sets.

Proposition 6.28 (Uniform convergence and inner envelopes). Let X−δ
n

d→ X−δ

as n → ∞ for every δ ≥ 0, where X is an almost surely regular closed random set
such that P {Int X ∩ K �= ∅} = TX (K ) for each K ∈ K. Then u(Xn, X,K(K0))→ 0
for every K0 ∈ K.

Proof. Without loss of generality assume that E is compact and K0 = E. It is easy
to see that TX is continuous in the Hausdorff metric on K and so SX = K. For every
δ > 0 fix a finite δ-net Nδ = {K1, . . . , Km(δ)} of K in the Hausdorff metric. For
every K ∈ K denote by Nδ(K ) the element of Nδ closest to K . Then
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TXn (K )− TX (K ) ≤ max
1≤i≤m

|TXn (K δ
i )− TX (K δ

i )| + sup
K∈K

(TX (K δ)− TX (K )) .

The first term converges to zero as n → ∞, while the second one can be made
arbitrarily small by the choice of δ. Furthermore,

TXn (K )− TX (K ) ≥ TX−2δ
n

(Nδ(K )δ)− TX (K ) .

The right-hand side is smaller in absolute value than

sup
K∈Nδ

|TX−2δ
n

(K δ)− TX−2δ (K δ)| + sup
K∈Nδ

[TX (K δ)− TX−2δ (K )|]

+ sup
K∈K

[TX (K 2δ)− TX (K )] .

The first term converges to zero by the convergence assumption, the second con-
verges to zero by the assumptions imposed on X , while the third term converges to
zero by the continuity of TX . ��

Further probability metrics for random closed sets can be defined using the fol-
lowing idea. Let H be a family of functions that map F into R. For h ∈ H write h∨
for the sup-integral of h. Put

mH(X,Y ) = sup
h∈H

|Eh∨(X)− Eh∨(Y )| . (6.12)

If the family H contains all indicators, then mH is a probability metric. If h = 1K is
an indicator function, then Eh∨(X) − Eh∨(Y ) = TX (K )− TY (K ). In general, mH
is a probability metric if the family H is so rich that the values Eh∨(X) for h ∈ H
determine uniquely the distribution of X . Since Eh∨(X) equals the Choquet integral∫

hdTX , the metric defined by (6.12) is a generalisation of the integral metric from
Müller [417].

7 Random sets and hitting processes

7.1 Hitting processes

As we have seen, the distribution of a random closed set in a LCHS space is uniquely
determined by the hitting probabilities of compact sets or open sets. This means that
a random closed set X is identifiable by its hitting process

ζ(G) = 1X∩G �=∅ , G ∈ G ,

considered to be a random function on G, or the process ζ(K ) = 1X∩K �=∅ being a
random function on K, see Figure 7.1. Note that

Eζ(K ) = TX (K ) = P {X ∩ K �= ∅} .
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X
K

L

M

ζ(M) = 1

ζ(K ) = 1

ζ(L) = 0

Figure 7.1. Hitting process ζ generated by X .

The process ζ can be extended from its values on a separating class A using (1.30)
and (1.31). The following result deals with the extension of hitting processes and is
similar to Theorem 1.27 that concerns extensions of capacity functionals defined on
separating classes. The notation ζ− and ζ 0 also appears in Theorem 1.27.

Theorem 7.1 (Extension of the hitting process). Let A ⊂ Bk be separating and
closed under finite union class and let ζ(A), A ∈ A, be an increasing {0, 1}-valued
random process satisfying ζ(∅) = 0 and

ζ(A1 ∪ A2) = max(ζ(A1), ζ(A2)) a.s. for all A1, A2 ∈ A . (7.1)

Then there exists a random closed set X such that with probability one 1X∩K �=∅ =
ζ−(K ) for every K ∈ K and 1X∩G �=∅ = ζ 0(G) for every G ∈ G. If also

ζ 0(Int A) = ζ−(cl A) a.s., A ∈ A , (7.2)

then the hitting process generated by X is an extension of ζ . If A ⊂ K, then (7.2)
may be replaced by ζ(A) = ζ−(A) a.s. for all A ∈ A, and if A ⊂ G, then both (7.1)
and (7.2) may be replaced by

ζ(∪n≥1 An) = sup
n≥1

ζ(An) a.s. (7.3)

for all sequences {An, n ≥ 1} ⊂ A such that ∪n≥1 An ∈ A.

Proof. It is easy to see that ζ 0(G1 ∪ G2) = max(ζ 0(G1), ζ
0(G2)) a.s. for all

G1, G2 ∈ G. The same holds simultaneously for all G1, G2 from a countable sepa-
rating class G0 ⊂ G.

If {x1, . . . , xn} ⊂ K , then K is covered by A1, . . . , An where xi ∈ Int Ai and
Ai ∈ A for all i . Therefore,

ζ−(K ) = sup
x∈K

ζ−({x}) , K ∈ K .
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If X = {x ∈ E : ζ−({x}) = 1}, then the hitting process generated by X coincides
with ζ− on K, i.e. 1X∩K �=∅ = ζ−(K ) for all K ∈ K. Therefore, the hitting process
coincides with ζ 0 on G.

If A ∈ A satisfies ζ 0(Int A) = ζ−(cl A), then 1X∩Int A �=∅ = 1X∩cl A �=∅. The
last two assertions are easy to prove noticing that (7.3) implies (7.1) and ζ(A) =
ζ 0(Int A) for all A ∈ A. ��

7.2 Trapping systems

T -closure

A hitting process defined on a rich family of sets (e.g. on a separating class) is a rather
complicated object. It is quite natural to attempt to restrict it to a smaller family of
sets, even at the cost of an incomplete characterisation of the sets that generate this
hitting process.

Let us fix a family T of Borel sets called a trapping system. The only assumptions
on T are that every set A ∈ T is non-empty and all traps cover E. Assume that every
set F ⊂ E is accessible only through the knowledge of whether or not F hits sets
from the trapping system T . In other words, instead of F we observe its hitting
process 1F∩K �=∅ for K ∈ T . With every set F ⊂ E we associate its T -closure
cl(F; T ) defined as the intersection of all sets Ac such that A ∩ F = ∅ and A ∈ T .

It is easy to see that F ⊂ cl(F; T ) and the T -closure is a monotone idempotent
operation, i.e. cl(F1; T ) ⊂ cl(F2; T ) for F1 ⊂ F2 and cl(cl(F; T ); T ) = cl(F; T ).
A set F is called T -closed if F = cl(F; T ). However, unlike the topological closure,
the T -closure does not distribute over intersections or finite unions.

Example 7.2 (Trapping by disks). In R2 consider the family T of all disks of
radius r . If r → ∞, then the corresponding T -closure coincides with the convex
hull operation. Otherwise, the T -closure of F is a subset of the convex hull of F ,
which is obtained by rolling a disk of radius r outside F , see Figure 7.2.

F

Figure 7.2. T -closure of F using the family of disks in R2.
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Incidence functions

A zero-one function f over T is called a strong incidence function if A ⊂ ∪i∈I Ai

and f (A) = 1 imply f (Ai ) for some i ∈ I from an arbitrary family of traps Ai ,
i ∈ I , and a trap A ∈ T . A weak incidence function satisfies the above requirement
for finite collections Ai , i ∈ I , only. The hitting process 1M∩A �=∅, A ∈ T , generated
by any set M is a strong incidence function.

Proposition 7.3 (Strong incidence functions). A zero-one function f over a trap-
ping system T is a strong incidence function if and only if f is the hitting process
on T generated by the set

F =
⋂

A∈T , f (A)=0

Ac .

This is the unique T -closed set which generates the hitting process f .

Proof. For arbitrary A ∈ T , f (A) = 0 implies A ∩ F = ∅. If A ∩ F = ∅, then
A is covered by the union of sets A′ ∈ T with f (A′) = 0, whence f (A) = 0 by
the condition imposed on strong incidence functions. Thus, f is a hitting process
generated by F . It is easy to see that F is T -closed. Any two T -closed sets are
identical if and only if they avoid the same traps, which immediately implies the
uniqueness. ��

The above result makes it possible to treat T -closed sets as strong incidence
functions on the corresponding trapping system T . If T is the family G of all open
sets, then the T -closure becomes the topological closure and the family of T -closed
sets coincides with the family F of all closed sets. The flexibility associated with a
choice of trapping system makes it possible to adjust the trapping system T in order
to obtain a rather general family of subsets of E as the family of T -closed sets. The
following easy result formalises such a choice.

Proposition 7.4 (T -closed sets). A system Z of subsets of E is identifiable with the
system of T -closed sets for a suitably chosen trapping system T if and only if Z
contains ∅, E and is closed under arbitrary intersections. The corresponding trapping
system may be obtained as the family of all sets Fc where F ∈ Z and F �= E.

It suffices to take T that consists of all the sets Fc, F ∈ Z ′, whereZ ′ is a subclass
of Z such that every F ∈ Z (F �= E) can be obtained as an intersection of sets from
Z ′. If the conditions on Z imposed in Proposition 7.4 are not satisfied, then it is still
possible to come up with a trapping system which yields a family of T -closed sets
larger than Z . Each F ∈ Z is T -closed for each trapping system T such that each
element of Z can be expressed as an intersection of complements of sets from T .

Random weak and strong incidence functions

Let T∪ consist of the empty set and all finite unions of traps from T . Any incidence
function can be naturally extended onto the family T∪ as f (∪Ai ) = maxi ( f (Ai )).
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Since the definition of weak incidence functions involves values of the function on
any finite collection of traps, it is possible to define a random weak incidence function
as a stochastic process ζ defined on T∪ such that ζ(∪Ai ) = maxi (ζ(Ai )) a.s. for all
finite collections Ai ∈ T . Then T (A) = P {ζ(A) = 1} for A ∈ T∪ determines the
finite-dimensional distributions of ζ(A), A ∈ T∪, as

P {ζ(A) = 0, ζ(A1) = 1, . . . , ζ(An) = 1} = −�An · · ·�A1 T (A) ,

see (1.9). Therefore, the distribution of a random weak incidence function can be
defined by a completely alternating functional on T∪ with values in [0, 1].

However, random strong incidence functions are more important from the point
of view of their possible interpretation as random T -closed sets, see Proposition 7.3.
Their definition involves arbitrary collections of traps, which calls for arguments
similar to the separability concept in the studies of stochastic processes. In order to
be able to construct a random strong incidence function the trapping system ought to
satisfy some separability assumptions.

Definition 7.5 (c-traps and trapping space). A trap A is called a c-trap, when every
covering by traps of cl(A; T ) can be reduced to a finite subcovering. The pair (E,T )

is called a trapping space if T is a trapping system and also
(i) with every trap A we can associate a countable system of subtraps of A in such

a way that all possible subtraps of A can be obtained as unions of some traps
from the chosen countable system;

(ii) if x ∈ A ∈ T , then x belongs to a c-trap whose T -closure is contained in A.

If T is the system of all open sets, then the above requirements are clearly sat-
isfied if E is a LCHS space. The c-traps are relatively compact open sets and the
countable system in Definition 7.5(i) is the base of the topology.

Theorem 7.6 (Random strong incidence functions). Let (E,T ) be a trapping
space. A completely alternating function T on T∪ with values in [0, 1] such that
T (∅) = 0 corresponds to a random strong incidence function (or, equivalently a
random T -closed set) if and only if T is continuous from below, i.e., for every trap
A ∈ T , T (A) equals the supremum of T (∪n

i=1 Ai ) for every n ≥ 1 and all c-traps
A1, . . . , An such that ∪n

i=1 Ai ⊂ A.

Theorem 7.6 can be interpreted from the general point of view of measures on
lattices described in Section 3. If the corresponding lattice operation is defined by
F1 ∨ F2 = cl(F1 ∩ F2; T ), then the conditions on the trapping space ensure that
the corresponding Scott topology is second countable, see Proposition 3.2. No other
topological assumptions are made on E.

Random closed sets with special realisations

If random closed sets take values in a subfamily Z of the family F of all closed
sets, then this additional information can be used to reduce the family of compact
sets needed to define the capacity functional and still ensure the uniqueness. In this
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context it is desirable to construct the probability measure on the whole σ -algebra
B(F). The following theorem provides alternative conditions that make it possible.

Theorem 7.7 (Distributions of random closed sets with restriction on realisa-
tions). Let E be a LCHS space. Consider Z ⊂ F and T ⊂ K and suppose that the
following conditions hold.
(i) T is closed with respect to finite unions.

(ii) There exists a countable subclass G′ ⊂ G such that any K ∈ T is the limit of
a decreasing sequence of sets from G′ and also any G ∈ G′ is the limit of an
increasing sequence from T .

(iii) For any G ∈ G′ ∪ {∅} and K1, . . . , Kn ∈ T , n ≥ 0, the family

FG
K1,...,Kn

∩ Z

is non-empty, provided Ki \ G �= ∅ for all 1 ≤ i ≤ n.
(iv) The σ -algebra σ(Z) generated by{

FK
G1,...,Gn

∩ Z : K ∈ T ∪ {∅}, Gi ∈ G′, 1 ≤ i ≤ n
}

coincides with the σ -algebra B(F) ∩ Z = {Y ∩ Z : Y ∈ B(F)} induced by
B(F) on Z .

Let Z̄ be the closure of Z in the Fell topology. If T : T �→ [0, 1] is a completely al-
ternating upper semicontinuous functional with T (∅) = 0, then there is a (necessary
unique) probability P on σ(Z) satisfying P

{
FK ∩ Z̄

} = T (K ) for all K ∈ T .

7.3 Distributions of random convex sets

Containment functional of random convex compact sets

In the following assume that E is the finite-dimensional Euclidean space Rd . A ran-
dom closed set X in Rd is said to be convex if its realisations are almost surely
convex, i.e. X belongs to coF almost surely, see Definition 4.32. Of course, the
Choquet theorem implies that the distribution of each random convex closed set X in
Rd is determined by the corresponding capacity functional. However, there is a more
economical way to define distributions of random convex compact sets.

Theorem 7.8 (Distribution of convex compact sets). The distribution of a random
convex compact set X in Rd is determined uniquely by the values of the containment
functional CX (K ) = P {X ⊂ K } for K ∈ coK. Moreover, it suffices to consider all
K being convex polytopes.

Proof. By Proposition 2.5, X is a random convex compact set in Rd if and only if the
support function h(X, u) is a random variable for every u from the unit sphere Sd−1.
The finite-dimensional distributions of the stochastic process h(X, u), u ∈ Sd−1, are
uniquely determined by the containment functional of X . For example,
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P {h(X, u) ≤ t} = lim
n→∞CX (H−u (t) ∩ Bn) ,

where H−u (t) = {x : 〈x, u〉 ≤ t} and {Bn, n ≥ 1} is an increasing sequence of balls
of radius n centred at the origin. ��

Theorem 7.8 can be obtained using lattice-theoretic arguments described in Sec-
tion 3.4. If X is a non-convex random compact set, then the containment functional
CX (K ), K ∈ coK, does determine the distribution of co(X). The containment func-
tional can be extended onto the family coF of convex closed sets by

CX (F) = P {X ⊂ F} , F ∈ coF .

The containment functional is a completely monotone capacity on coF , see Defini-
tion 1.9. In other words, it satisfies the following conditions:

(I1) CX is upper semicontinuous, i.e. CX (Fn) ↓ CX (F) if Fn ↓ F as n → ∞ for
F, F1, F2, . . . ∈ coF .

(I2) The recurrently defined functionals ∇Fn · · · ∇F1CX (F) are non-negative for all
F1, . . . , Fn ∈ coF and n ≥ 1, see (1.14).

Note that

∇Fn · · · ∇F1CX (F) = P {X ⊂ F, X �⊂ Fi , 1 ≤ i ≤ n} .

Unbounded random convex closed sets

Although it is tempting to extend Theorem 7.8 for a not necessarily compact random
closed set X by considering its containment functional CX (F) for F ∈ coF , the fol-
lowing example shows that the distribution of a general non-compact convex random
closed set cannot be determined by its containment functional on coF .

Example 7.9 (Unbounded random convex closed set). Let X be the half-space
which touches the unit ball B1 at a random point uniformly distributed on its bound-
ary. Then CX (F) = 0 for each F ∈ coF , F �= Rd , so that this containment func-
tional does not determine the distribution of X .

Now consider a special family of random convex closed (not necessarily com-
pact) sets whose distributions are characterised by the containment functionals. Let
X be a random convex closed set which is not necessarily compact. Define

L X = {u ∈ Sd−1 : h(X, u) <∞ a.s.} , (7.4)

where h(X, u) is the support function of X . Then L X is a convex subset of Sd−1,
where the convexity means that the cone generated by L X is convex. Note that L X is
not necessarily closed or open. For a convex set L ⊂ Sd−1, define a family of convex
closed sets as

C(L) = {F ∈ coF : h(F, u) = ∞, u /∈ L, h(F, u) <∞, u ∈ L} . (7.5)



104 1 Random Closed Sets and Capacity Functionals

Clearly, if X ∈ C(L) a.s., then L X = L. In the following we consider random sets
with values in C(L). Consider a σ -algebra σ(L) on C(L) generated by the families
{F ∈ C(L) : F ⊂ G} for all open convex G. Since the same σ -algebra is generated
if G is taken from the family of all open half-spaces, X is a σ(L)-measurable random
element if and only if h(X, u), u ∈ L, is a random function.

Proposition 7.10. For each convex set L ⊂ Sd−1, σ(L) = B(F) ∩ C(L), i.e. the
σ -algebra σ(L) coincides with the σ -algebra induced by B(F) on the family C(L).

Proof. One-side inclusion σ(L) ⊂ B(F) ∩ C(L) is evident. For each F ∈ coF ,
the support function h(F, u) equals the supremum of continuous linear functions
and, therefore, is lower semicontinuous. Furthermore, if un → u as n → ∞ and
u, u1, u2, . . . ∈ L, then h(F, un) → h(F, u) for each F ∈ C(L). Consider a count-
able dense set L ′ ⊂ L and a compact set K . For each F from FK ∩C(L) there exists
a hyperplane which separates F and K , see Hiriart-Urruty and Lemaréchal [258,
Cor. 4.1.3]. Because of the continuity of the support function on L, it is possible to
find a hyperplane which separates F and K and has a normal from L ′. Therefore,
FK ∩ C(L) is a countable union of sets from σ(L). ��

By the same arguments as in Theorem 7.8, we obtain the following result.

Proposition 7.11 (Distribution of random convex closed set). The distribution of
a random closed set X with realisations in C(L) for some non-empty convex set L ⊂
Sd−1 is uniquely determined by the containment functional CX (F) for F ∈ C(L).

Weak convergence of random convex compact sets

It is well known (see Billingsley [70, p. 15]) that a class of events that determines
the distribution is not necessarily a convergence determining class. In other words,
while the probabilities of a given family of events may determine the distribution
uniquely, this does not mean that the pointwise convergence on all continuity events
from the same family automatically implies the weak convergence. However, for
random convex compact sets, the pointwise convergence of containment functionals
does imply the weak convergence.

Theorem 7.12. A sequence {Xn, n ≥ 1} of random convex compact sets converges
weakly to a random closed set X if

CXn (K )→ CX (K ) as n →∞ (7.6)

for every K ∈ coK such that CX (K ) = CX (Int K ).

A proof can be produced using support functions of random compact sets,
since (7.6) for all K ∈ coK implies the convergence of the finite-dimensional distri-
butions of the support functions of Xn . The corresponding tightness condition in the
space of continuous functions easily follows from the Lipschitz property of the sup-

port functions (see Theorem F.1) and the fact that (7.6) implies ‖Xn‖ d→ ‖X‖ if K is
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chosen to be an arbitrary ball, see also Proposition 6.13. Furthermore, it is possible
to show that it suffices to require (7.6) for K from a suitably chosen separating class
of convex compact sets, e.g. from the family of all compact polytopes.

Star-shaped sets

A random closed set X in Rd is said to be star-shaped with respect to a deterministic
point a ∈ Rd if c(X − a) ⊂ (X − a) a.s. for all c ∈ [0, 1]. This is equivalent to
the requirement that a ∈ X a.s. and [a, ξ ] ⊂ X a.s. for every selection ξ ∈ S(X).
Clearly, every convex set is star-shaped. Every star-shaped set corresponds to its
radius-vector function rX (u) = sup{t ≥ 0 : a + tu ∈ X}. Since the distribution of
a star-shaped set is determined uniquely by the finite-dimensional distributions of its
radius-vector function, the containment functional CX (F) for all star-shaped closed
sets F determines uniquely the distribution of X .

A random closed set X is star-shaped with respect to its selection ξ if X − ξ is
star-shaped with respect to the origin. Let Y be the set of all selections ξ ∈ S(X)

such that X is star-shaped with respect to ξ . The set Y is called the kernel of X .

Theorem 7.13. Let X be a random compact set. Then its kernel is a random compact
convex set.

Proof. Without loss of generality we can assume that X is star-shaped with respect
to the origin. Otherwise one can consider an appropriate random translation of X . It
is easy to see that Y is closed. Furthermore, for any two selections ξ, η ∈ Y and any
selection ζ ∈ S(X), the triangle with vertices ξ, η and ζ is contained in X . Hence
the set Y is convex.

If Y has non-empty interior (and so is regular closed), it is easy to show that Y is
a random closed set. By Theorem 2.6, it suffices to show that {y ∈ Y } is measurable
for any y. This event can be represented as the intersection of the events [y, ξ ] ⊂ X
for all ξ from a Castaing representation of X .

In the general case, consider the r -envelope Xr . Then the kernel Yr of Xr con-
tains a neighbourhood of the origin. Indeed, if ‖y‖ < r , then, for any point x ∈ X ,
the segment [y, x] lies within the Hausdorff distance at most r from [0, x] ⊂ X ,
whence [y, x] is contained in Xr . Hence Yr is regular closed and so is a random
compact convex set. The proof is finished by observing that Yr converges almost
surely to the kernel of X as r ↓ 0. ��

8 Point processes and random measures

8.1 Random sets and point processes

Locally finite measures

A measure µ on the family B of Borel sets in E is called counting if it takes only
non-negative integer values. A counting measure µ is locally finite if µ is finite on
bounded subsets of E.
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Proposition 8.1 (Support of locally finite measure). Let E be a LCHS space. If µ

is a locally finite measure on E, then
(i) the support of µ is closed, i.e. suppµ ∈ F ;

(ii) for all G ∈ G, suppµ ∩ G �= ∅ if and only if µ(G) > 0.

Proof. If x /∈ suppµ, then x ∈ G for an open set G with µ(G) = 0. Therefore,
G ⊂ (suppµ)c, which means that (suppµ)c is open and suppµ is closed. Since E is
second countable, µ((suppµ)c) = 0. ��

Applied to a counting measure µ, Proposition 8.1 implies that suppµ is a locally
finite set, i.e. suppµ has at most a finite number of points in any compact set.

The family N of all counting measures can be endowed with a σ -algebra gener-
ated by {µ ∈ N : µ(B) = k} for k = 0, 1, 2, . . . and B ∈ B, so that a random
counting measure can be defined as a random element N in N . A random count-
ing measure is also called a point process. The measurability condition implies that
N(B), the number of points in a Borel set B , is a random variable. A point process
(or the corresponding counting measure) is called simple if supx N({x}) ≤ 1 a.s.
The following important result follows from Proposition 8.1 and the fundamental
measurability theorem (Theorem 2.3).

Corollary 8.2 (Counting measures and point processes). Let E be LCHS. Then N
is a simple point process if and only if supp N is a locally finite random closed set in
E.

Since the map F �→ card(F ∩ K ) is measurable on F for every K ∈ K, it
is easily seen that the family of locally finite sets belongs to B(F). Therefore, the
event {X is locally finite} is measurable for every random closed set X .

A point process is said to be stationary if its distribution is invariant under trans-
lations. This is equivalent to the statement that supp N is a stationary locally finite
random closed set.

Application of the Choquet theorem

Corollary 8.2 yields the following interesting conclusion, which immediately follows
from the Choquet theorem. The letter N is used to denote both the random counting
measure and the random locally finite set being its support.

Theorem 8.3 (Distribution of a simple point process). The distribution of a sim-
ple point process N in a LCHS space is uniquely determined by the probabilities
P {N ∩ K = ∅} (or P {N(K ) = 0}) for all K ∈ K. Alternatively, the distribution of
N is determined uniquely by P {N ∩ G �= ∅} for all G ∈ G.

Let us define by

QN (K ) = P {N(K ) = 0} , K ∈ K ,

the avoidance functional generated by a simple point process N . Since QN (K ) is
the avoidance functional of the random closed set supp N , TN (K ) = 1 − QN (K ) is
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a completely alternating upper semicontinuous functional. It is quite natural to ask
if it is possible to single out those capacity (or avoidance) functionals which gener-
ate distributions of locally finite random sets and so can be interpreted as capacity
(or avoidance) functionals corresponding to simple point processes. The following
result provides necessary and sufficient conditions for this. It can be equivalently
reformulated for the avoidance functional instead of the capacity functional.

Proposition 8.4. A capacity functional T defines a locally finite random closed set if
and only if, for every compact set K and every ε > 0, there exists kε ≥ 1 such that,
whenever K = ∪∞i=1 Bi and the Bi are disjoint, one has

T (K )− ε ≤ −
∑

�Bik
· · ·�Bi1

T (K \ (∪k
j=1 Bi j )) , (8.1)

where the sum ranges over all non-empty, finite subcollections {Bi1 , . . . , Bik } ⊂
{B1, B2, . . . } with k ≤ kε.

Proof. Let X be a random closed set with the capacity functional T . In view of (1.9),
condition (8.1) can be reformulated as

P {X ∩ K �= ∅} (8.2)

−
∑

P
{

X ∩ Bi1 �= ∅, . . . , X ∩ Bik �= ∅, X ∩ (K \ (∪k
j=1 Bi j )) = ∅

}
< ε .

The left-hand side of (8.2) is smaller than P {X ∩ K �= ∅, card(X ∩ K ) > kε}. If X
is locally finite, then P {card(X ∩ K ) > kε} is smaller than ε for sufficiently large kε,
so that (8.2) is a necessary condition for the local finiteness.

Now assume that (8.1) holds. Let {An
i , 1 ≤ i ≤ mi }, n ≥ 1, be an increasing

sequence of finite partitions of K ∈ K, so that K = ∪i An
i and each set An

i , 1 ≤
i ≤ mn , is a union of sets from {An+1

j , 1 ≤ j ≤ mn+1}. Furthermore, let Yn be the
cardinality of {i : An

i ∩ X �= ∅}. Then Yn ≤ Yn+1 and the number of points in X ∩K
is at most limn→∞ Yn . Now (8.2) implies P {Yn > kε} < ε, so that limn→∞ Yn is
finite almost surely. ��

In general, it is difficult and often impossible to verify the assumptions of Propo-
sition 8.4. Consider a particular case of E = R and translation-invariant capacity
functionals, with the aim of characterising locally finite stationary random closed
sets on the line in terms of their capacity functionals. For every t > 0 put

q(t) = QX ((0, t)) = 1− TX ((0, t)) = P {X ∩ (0, t) = ∅} .

Proposition 8.5 (Stationary locally finite random sets on the line). Let X be a
stationary random closed subset of R. If X is locally finite, then
(i) q(0+) = 1.

On the other hand, X is locally finite if one of the following equivalent conditions is
satisfied:
(ii) q has a finite right-hand derivative at 0;
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(iii) limn→∞ 2n(1− q(2−n)) <∞.

Proof. If X is locally finite, then

1− q(0+) = lim
t↓0

P {X ∩ (0, t) �= ∅} = 0 ,

so (i) is necessary.
Note that (ii) and (iii) are equivalent because of the monotonicity of q . Let us

show that (iii) implies that X ∩ [0, 1] is almost surely finite, whence X is necessarily
locally finite. For every n ≥ 1 and k = 0, . . . , 2n − 2 introduce events

A(n, k) = {X ∩ [k2−n, (k + 1)2−n) �= ∅ , X ∩ [(k + 1)2−n, (k + 2)2−n) �= ∅}
and put

A(n) =
2n−2⋃
k=0

A(n, k) .

Then X ∩ [0, 1] is almost surely finite if no more than a finite number of events
A1, A2, . . . occurs. For this, it suffices to show that∑

n≥1

P(A(n)) <∞ . (8.3)

By stationarity,

P(A(n, k)) = P(A(n, 0))

= 2P
{

X ∩ [0, 2−n) �= ∅}− P
{

X ∩ [0, 2−n+1) �= ∅
}

= 1− 2q̄(2−n)+ q̄(2−n+1) = 2bn − bn−1 ,

where q̄(t) = P {X ∩ [0, t) = ∅} and bn = 1− q̄(2−n). Then

m∑
n=1

P(A(n, k)) ≤
m∑

n=1

2nP(A(n, 0)) =
m∑

n=1

2n(2bn)−
m∑

n=1

2nbn−1

= 2(2mbm − b0) .

Note that

q(t) ≥ q̄(t) ≥ q(t)− P {0 /∈ X} = q(t)− (1− q(0+)) = q(t) ,

so that q̄(t) = q(t). Now condition (iii) implies that 2mbm = 2m(1 − q(2−m)) is
bounded, which yields (8.3). ��
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Ordered coupling and thinning

The following result is a corollary of Theorem 4.42 on the ordered coupling for
random sets. It establishes a condition for a point process N ′ to be a thinning of
another point process N . Recall that a thinning of N is defined as a point process N ′
which is a subset of N , see Stoyan, Kendall and Mecke [544, p. 146].

Proposition 8.6 (Thinning of point processes). Let N ′ and N be two simple point
processes on a LCHS space E. Then N ′ can be realised as a thinning of N (so that
N ′ is stochastically smaller than N) if and only if

P
{

N ′ ∩ G1 �= ∅, . . . , N ′ ∩ Gn �= ∅
} ≤ P {N ∩ G1 �= ∅, . . . , N ∩ Gn �= ∅}

for every n ≥ 1 and G1, . . . , Gn ∈ G.

Poisson point process

One particularly important example of a point process is the Poisson point process
defined as follows.

Definition 8.7 (Poisson point process). Let Λ be a locally finite measure on a topo-
logical space E with Borel σ -algebra B. The Poisson point process ΠΛ with the
intensity measure Λ is a random subset of Rd such that the following properties are
satisfied.
(1) For each bounded set B the random variable card(ΠΛ ∩ B) (number of points

in ΠΛ ∩ B) has a Poisson distribution with mean Λ(B).
(2) Numbers of points of ΠΛ in each of disjoint sets B1, . . . , Bn are independent

for every n ≥ 2 and any collection of disjoint Borel sets.

The capacity functional of the locally finite random set corresponding to ΠΛ

equals the probability that the Poisson random variable with mean Λ(K ) does not
vanish, whence

TΠΛ(K ) = P {ΠΛ ∩ K �= ∅} = 1− exp{−Λ(K )} . (8.4)

If Λ is absolutely continuous with respect to the Lebesgue measure, then the corre-
sponding Radon–Nikodym derivative (or density) λ is called the intensity function.
If E = Rd and Λ is proportional to the Lebesgue measure, then the Poisson point
process is said to be stationary. It is possible to extend Definition 8.7 for the case
when Λ is not locally finite.

Definition 8.8 (Poisson random set). Let F be a closed subset of E. Assume that
Λ(K ) < ∞ for any compact set K ∩ F = ∅ and Λ(K ) = ∞ otherwise. A Poisson
random set ΠΛ with intensity Λ is the union of F and the Poisson point process on
Fc with intensity measure Λ.

It should be noted that the capacity functional of the Poisson random set ΠΛ is
also given by (8.4).
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Example 8.9. Let Λ be a measure on E = Rd (d ≥ 2) with the density λ(x) =
‖x‖−2. Then Λ is infinite in any neighbourhood of the origin, but locally finite on
Rd \ {0}. The corresponding Poisson random set contains the origin almost surely
and is a Poisson point process on Rd \ {0}.

Let B be a measurable space. A point process in the product space E × B is
called a marked point process with the second component being the mark and the
first component called the location. A point process is called independently marked
if the marks at different points are independent.

If N is a general point process, the expectation Λ(K ) = EN(K ) is called the
intensity measure of N . The following useful fact, known as the Campbell theorem,
makes it possible to evaluate expectations of sums defined on point processes.

Theorem 8.10 (Campbell theorem). If N is a point process with the intensity mea-
sure Λ, then

E

[ ∑
x∈N

f (x)

]
=
∫
E

f (x)Λ(dx)

for each measurable function f : E �→ R.

Weak convergence of point processes

The conditions for the weak convergence of random closed sets can be specified to
show the weak convergence of point processes. If N is a simple point process, then
the corresponding family of continuity sets is defined as

SN = {B ∈ Bk : N(∂B) = 0 a.s.} .
Alternatively, SN can be defined as the family of all relatively compact Borel sets B
such that N(cl B) = N(Int B) a.s.

Proposition 8.11 (Continuity sets for point process). If N is a simple point process,
then SN = SX , where X = supp N .

Proof. It suffices to note that

P {X ∩ cl B �= ∅, X ∩ Int B = ∅} = P {N(∂B) = 0} . ��
Although the distribution of a simple point process is determined by its hitting (or

avoidance) probabilities, the pointwise convergence of those probabilities does not
suffice to ensure the weak convergence of the point processes. The following result
shows that an additional condition ought to be satisfied in order to obtain a simple
point process in the limit.

Theorem 8.12 (Weak convergence of point processes). Let N and {Nn , n ≥ 1} be
point processes in a LCHS space E. Assume that N is simple. Let A ⊂ Bk be a
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separating class and A0 ⊂ SN be a pre-separating class. Then Nn weakly converges
to N if

lim
n→∞P {Nn(A) = 0} = P {N(A) = 0} , A ∈ A , (8.5)

and
lim sup

n→∞
P {Nn(A) > 1} ≤ P {N(A) > 1} , A ∈ A0 . (8.6)

If A ⊂ SN , then (8.5) and (8.6) are also necessary for the convergence Nn
d→ N .

Proof. By (8.5) and Theorem 6.8, supp Nn
d→ supp N as random closed sets. Since

both the space of all counting measures and the space of closed sets are Polish with
respect to the vague topology (for measures) and the Fell topology (for closed sets)
and the map N �→ supp N is measurable, Proposition E.7 implies that we can assume
(passing to random elements defined on the same probability space) that

supp Nn
F−→ supp N a.s. (8.7)

First, prove that

lim sup
n→∞

min(Nn(A), 1) ≤ N(A) ≤ lim inf
n→∞ Nn(A) , A ∈ SN . (8.8)

For the first of these inequalities, it suffices to assume that N(A) = 0 and so
N(cl A) = 0 (since A ∈ SN ). Then (8.7) together with the definition of the Fell
topology (Appendix B) imply that supp Nn ∩ A = ∅ for all sufficiently large n,
whence lim supn→∞ min(Nn(A), 1) = 0. For the second inequality in (8.8), assume
that N(A) = m > 0. Since SN is a separating class and N is simple, it is possible
to choose A1, . . . , Am ∈ SN such that N(Ak ) = N(Int Ak) = 1 for every k. Then
supp Nn ∩ Int Ak �= ∅ for all sufficiently large n. Thus, lim inf Nn(Ak) ≥ 1 and

N(A) = m ≤
m∑

k=1

lim inf
n→∞ Nn(Ak) ≤ lim inf

n→∞

m∑
k=1

Nn(Ak) = lim inf
n→∞ Nn(A) .

Let us show that for A ∈ A0 it is possible to replace min(Nn(A), 1) by Nn(A) in
the left-hand side of (8.8). Note that, for m and n being non-negative integers,

{m > 1} ∪ {m < min(n, 2)} = {n > 1} ∪ {m = 0, n = 1} ∪ {m > 1 ≥ n} ,
where all unions are disjoint. Substituting m = N(A) and n = Nn(A), (8.8) and (8.6)
imply that

lim
n→∞P {N(A) < min(Nn(A), 2)} = 0 , A ∈ A0 . (8.9)

For each set B ⊂ A ∈ A0,

{Nn(B) > N(B)} ⊂ {Nn(A) > N(A)} ∪ {Nn(A \ B) < N(A \ B)}
⊂ {min(Nn(A), 2) > N(A)} ∪ {N(A) > 1}

∪ {Nn(A \ B) < N(A \ B)} .
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Fix any B ∈ SN and K ∈ K such that cl B ⊂ Int K . Because A0 is a pre-separating
class, it is possible to find A1, . . . , Am ∈ A0 with diameters less than a fixed number
ε > 0 such that B ⊂ (A1 ∪ · · · ∪ Am) ⊂ K . Then (8.8) and (8.9) yield that

lim sup
n→∞

P {Nn(B) > N(B)} ≤ P(∪m
k=1{N(Ak) > 1}) . (8.10)

Since N is a simple point process, the right-hand side of (8.10) is bounded by
P {α < ε}, where α is a positive random variable being the smallest distance between
the points of (supp N) ∩ K . Since ε > 0 is arbitrary,

P {Nn(A) > N(A)} → 0 as n →∞ .

Combining this with (8.8) implies that Nn(B) converges to N(B) is probabil-
ity. In particular, the m-tuple (Nn(A1), . . . , Nn (Am)) converges in distribution to
(N(A1), . . . , N(Am )). By Kallenberg [287, Th. 4.2], the point process Nn converges
weakly to N . ��

8.2 A representation of random sets as point processes

The space E in the definition of a point process can be a rather general measurable
space. Typical examples include the Euclidean space Rd , the space of all compact
sets K, the space of all compact convex sets coK, the space of all upper semicontin-
uous functions, etc.

In particular, a locally finite point process on K is a countable family of compact
sets K1, K2, . . . such that only a finite number of the Ki ’s hits any given bounded
set. This local finiteness property ensures that

X = K1 ∪ K2 ∪ · · · (8.11)

is a closed set, which is also measurable, since {X ∩ G = ∅} = ∩i {Ki ∩ G = ∅} is
measurable for every open G.

The following decomposition theorem states that rather general random closed
sets in E = Rd can be obtained using (8.11) with K1, K2, . . . being convex compact
sets. The random set X is said to belong to the extended convex ring R̄ if X ∩ W
belongs to the convex ring R for each convex compact set W , i.e. X ∩ W is a union
of at most a finite number of convex compact sets, see Appendix F.

Theorem 8.13 (Decomposition theorem). If X is a random closed set in E = Rd

with values in the extended convex ring, then there exists a point process N =
{Y1,Y2, . . .} on the family coK′ of non-empty convex compact sets such that

X = Y1 ∪ Y2 ∪ · · · . (8.12)

If X is stationary, then the point process N can be chosen to be stationary (with
respect to translations of sets from coK′).
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Y1
Y2

Y3 Y4

Figure 8.1. Representation (8.12).

Let us start with two auxiliary results. For a non-empty K ∈ R, let n(K ) be
the minimal number n ≥ 1 such that K is a union of n convex compact sets. By
agreement, put n(∅) = 0.

Lemma 8.14. The map n : R �→ {0, 1, 2, . . . } is measurable and R is a union of an
at most countable family of closed subsets of K.

Proof. For each n ≥ 0 define Rn = {K ∈ R : n(K ) ≤ n}. Since R = ∪n≥0Rn ,
it suffices to show that Rn is a closed subset of K for every n ≥ 0. Assume that Ki

converges to K in the Fell topology, where Ki ∈ Rn , i ≥ 1. Then Ki = ∪n
j=1Kij

with Kij ∈ coK′. It is easy to see that {Kij } are uniformly bounded, so that there
exists a subsequence {ik, k ≥ 1} such that Kik j → K ′j as k → ∞. Hence Kik →
∪n

j=1K ′j ∈ Rn , so that Rn is closed. ��
Let (coK)∞0 be the family of all finite sequences (K1, . . . , Km), m ≥ 0, of con-

vex compact sets with the standard σ -algebra. Note that (coK)m denotes the family
of m-tuples of convex compact sets for fixed m.

Lemma 8.15. There exists a measurable map s : R �→ (coK)∞0 such that s(K ) =
(K1, . . . , Kn(K )) and ⋃

s(K ) =
n(K )⋃
i=1

Ki = K

for each K ∈ R.

Proof. The families Rn = {K ∈ R : n(K ) = n}, n ≥ 0, are pairwise disjoint. For
every fixed n,

F(K ) = {(K1, . . . , Kn) : ∪n
i=1 Ki = K }

is a set-valued map from Rn into (coK)n . Consider a closed family Y ⊂ (coK)n .
For every m ≥ 1 let

Ym = {(K1 ∩ Bm(0), . . . , Kn ∩ Bm(0)) : (K1, . . . , Kn) ∈ Y} ,
where Bm(0) is the ball of radius m centred at the origin. Then
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{K ∈ Rn : F(K ) ∩ Y �= ∅} =
∞⋃

m=1

{K ∈ Rn : F(K ) ∩ Ym �= ∅}

=
∞⋃

m=1

Rn ∩ {∪n
i=1 Ki : (K1, . . . , Kn) ∈ Ym} .

Note that {∪n
i=1 Ki : (K1, . . . , Kn) ∈ Ym} is compact in K and so measur-

able, which implies the measurability of F . By the fundamental selection theorem
(Theorem 2.13), there exists a measurable selection s : Rn �→ (coK)n such that
s(K ) ∈ F(K ). The required map on R can be obtained by combining these measur-
able selections for n ≥ 0. ��
Proof of Theorem 8.13. Without loss of generality assume that X is almost surely
non-empty. Let C = {x = (x1, . . . , xd) ∈ Rd : |xi | ≤ 1/2, 1 ≤ i ≤ d} be
the unit cube in Rd and let Cz = C + z from z from Zd (the integer grid in Rd ).
Furthermore, let ξ be a random vector uniformly distributed in C . Using the map s
from Lemma 8.15 define

N(X) =
⋃

z∈Zd

[s((X ∩ (Cz + ξ))− z)+ z] .

This map is a measurable map from R̄ into the family of locally finite collections of
convex compact sets. Thus, N(X) is a point process on coK′ which satisfies (8.12).

If X is stationary, then, for every x ∈ Rd , we have

N(X) + x =
⋃

z∈Zd

[s((X ∩ (Cz + ξ))− z)+ z + x]

d∼
⋃

z∈Zd

[s(((X − x) ∩ (Cz + ξ − x))− z)+ z + x]

=
⋃

z∈Zd

[s((X ∩ (Cz + ξ))− z)+ z] = N(X) ,

so that N(X) is indeed stationary. ��
It is possible to extend the above result to show that the point process N is in-

variant with respect to any rigid motion for which X is invariant. To prove this, it is
possible to use the group of invariant motions to “randomise” the cubic tiling.

Let us associate with each Yi from (8.12) a point c(Yi ) in such a way that c(Yi +
x) = Yi + x for all x . For instance, c(Yi ) can be the centre of gravity of Yi . Then
instead of (8.12) X can be represented as

X =
⋃

i

(c(Yi )+ Y 0
i ) (8.13)

with Y 0
i = Yi − c(Yi ). This representation is called a germ-grain model, where the

points c(Yi ) are called germs and the corresponding sets Y 0
i are grains. A particu-

larly important case of this construction appears if N is a Poisson process on coK;
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then X is called a Boolean model, see Molchanov [406] and Stoyan, Kendall and
Mecke [544]. In this case the germs form a Poisson point process independently
marked by i.i.d. grains.

Similarly to Theorem 8.13, it is possible to show that a general random closed
set X can be represented as a union-set for a point process on K. The corresponding
point process can be trivially obtained as Yz = (X ∩ Cz) for z ∈ Zd .

8.3 Random sets and random measures

Random measures associated with random sets

Similarly to the σ -algebra on the family N of all counting measures used to define
a random point process, the family M of all locally finite measures on E can be
equipped with a σ -algebra generated by {µ ∈ M : µ(B) > t} for every B ∈ B and
t > 0. A random measure M is an M-valued random element, i.e. M(B) is a random
variable for each Borel set B .

The fundamental construction which delivers random measures related to ran-
dom closed sets can be described as follows. Let X be a random closed set in E and
let µ be a fixed measure on E such that µ(B ∩ X) is almost surely finite for every
bounded Borel set B . Then M(B) = µ(B ∩ X) is a locally finite random measure.
This construction can be generalised by taking a measurable random function ζ(x),
x ∈ E, and letting

M(B) =
∫

X∩B

ζ(x)dµ(x) .

Particularly important examples of random measures associated with random
closed sets are related to the Hausdorff measures. If Hd−1 is the (d−1)-dimensional
Hausdorff measure, then M(B) = Hd−1(X ∩ B) (if it exists) is called the surface
measure generated by X . Further examples are provided by the curvature measures
described in Appendix F.

A natural question whether a random measure determines the distribution of a
random closed set has been answered positively in Section 8.1 for counting measures
and the corresponding locally finite random sets. However, in general, this is not
the case. For instance, if X = {ξ} is a singleton (or any other random set of zero
Lebesgue measure), then the random measure M(B) = mes(X ∩ B) vanishes and
does not determine the distribution of X . Note that the support of a measure µ is
defined to be the set of all x ∈ E such that x ∈ G for an open set G implies µ(G) >

0. The support of µ can be alternatively defined as

suppµ =
∞⋂

i=1

cl{x j ∈ Q : µ(Bεi (x j )) > 0} ,

where εi ↓ 0 and Q is a countable dense set in E. Proposition 8.1 yields the following
result.
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Proposition 8.16 (Support of a random measure). For every random measure µ,
suppµ is a random closed set whose distribution is uniquely determined by the dis-
tribution of µ.

Intersections of random sets

Let {Xn, n ≥ 1} be a sequence of i.i.d. random closed sets in a space E which itself
is a second countable compact group G. Assume that all these sets have G-invariant
distributions, see Section 4.1. Let ν be the Haar measure on G. It is interesting to
find out whether or not the event

An = {Xn ∩ (∪n−1
i=1 Xi ) = ∅} (8.14)

occurs for infinitely many n, meaning that a new Xn infinitely often fits in the gap
left free by the previous sets. By the Hewitt–Savage zero-one law this happens with
probability either zero or one, so that P(lim sup An) is either 0 or 1. A necessary
condition for

P(lim sup An) = 0 (8.15)

is P
{

Xi ∩ X j �= ∅|X j
}
> 0 for i �= j . A sufficient condition can be formulated us-

ing random measures {µn, n ≥ 1} such that Xn = suppµn , n ≥ 1. The convolution
of µ1 and inverted µ2 is defined as

(µ1 � µ̃2)(B) =
∫
G

µ1(dx)µ2(x B−1) , B ∈ B(G) .

Proposition 8.17 (Random sets in a group). Let {µn, n ≥ 1} be a sequence of i.i.d.
random probability measures on G such that µn(x−1 B) has the same distribution as
µn(B) for all x ∈ G and B ∈ B(G). If µi �µ̃ j is almost surely absolutely continuous
with respect to ν for i �= j with a mean square integrable density g, then (8.15) holds
for An defined by (8.14) with Xn = suppµn , n ≥ 1.

Proof. Observe that

P(An) = E

[
n−1∏
i=1

P {Xi ∩ Xn = ∅ |µn}
]

= E
[
(P {X1 ∩ X2 = ∅ |µ2})n−1

]
.

By the Borel–Cantelli lemma, it suffices to show that

E

[ ∞∑
n=1

(P {X1 ∩ X2 = ∅ |µ2})n−1

]
= E

[
P {X1 ∩ X2 �= ∅ |µ2}−1

]
<∞ .

Let Bε be a ball centred at the identity in any metric on G compatible with the
topology. Using the inequality P {α > 0} ≥ (Eα)2/E(α2) for a random variable α,
we can write
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P {X1 ∩ X2 �= ∅ |µ2} = lim
ε↓0

P
{∫∫

1Bε (yz−1)µ1(dy)µ2(dz) > 0 |µ2

}
≥ lim sup

ε↓0

(E
[
(µ1 � µ̃2)(Bε) |µ2

]
)2

E
[
(µ1 � µ̃2)(Bε)2 |µ2

]
=
(

lim inf
ε↓0

E
[
(ν(Bε)

−1(µ1 � µ̃2)(Bε))
2 |µ2

])−1

,

where we have used the fact that E
[
µ1 � µ̃

] = ν for every finite deterministic prob-
ability measure µ. Fatou’s lemma and Jensen’s inequality imply

E
[
P
{

X1 ∩ X2 �= ∅ |µ2
}−1
]
≤ lim inf

ε↓0
E
[
(ν(Bε)

−1(µ1 � µ̃2)(Bε))
2
]

= lim inf
ε↓0

E

[(
1

ν(Bε)

∫
1Bε (y)g(y)ν(dy)

)2
]

= lim inf
ε↓0

E

[∫ (
1

ν(Bε)

∫
1Bε(xy)g(y)ν(dy)

)2

ν(dx)

]

≤ lim inf
ε↓0

E
[

1

ν(Bε)

∫∫
1Bε(xy)g2(y)ν(dy)ν(dx)

]
= E

[∫
g2(y)ν(dy)

]
<∞ . ��

8.4 Random capacities

Consider a general capacity ϕ defined on subsets of a LCHS space E. It is only
assumed that ϕ(∅) = 0, ϕ is increasing and upper semicontinuous on K. More ex-
actly, such functionals on K are called topological precapacities (see Appendix E),
but we will use the term capacity without risk of ambiguity. The family of capacities
is equipped with the vague topology, which is generated by {ϕ : ϕ(K ) < t} and
{ϕ : ϕ(G) > t} where K ∈ K, G ∈ G and t > 0. The Borel σ -algebra generated
by the vague topology is the smallest σ -algebra which makes the map ϕ �→ ϕ(K )

measurable for every K ∈ K.
A random capacity (also denoted by ϕ) is a random element in the family of all

capacities which is measurable with respect to the Borel σ -algebra generated by the
vague topology, i.e. ϕ(K ) and ϕ(G) are random variables for each compact K and
open G. It is also possible to define random capacities that satisfy certain properties,
for example, random strongly subadditive capacities, random sup-measures, etc.

A random capacity ϕ gives rise to the family of continuity sets defined by

Sϕ = {B ∈ Bk : ϕ(Int B) = ϕ(cl(B)) a.s.} .
It is important to know when it is possible to extend a random function defined
on a separating class A to a capacity on Borel subsets of E. A random function ϕ

on A is a stochastic process indexed by A, defined by means of finite-dimensional
distributions (ϕ(A1), . . . , ϕ(An)) where A1, . . . , An ∈ A and n ≥ 1.
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Proposition 8.18 (Extension of random capacity). Let E be a LCHS space and let
ϕ be a random process on a separating class A that consists of relatively compact
sets. Assume that ϕ(∅) = 0 a.s. and
(1) P {ϕ(A1) ≤ t, ϕ(A2) ≤ t} = P {ϕ(A2) ≤ t} for all t > 0 and A1, A2 ∈ A such

that A1 ⊂ A2;
(2) ϕ(An) weakly converges to ϕ(A) if An ↓ A for all A, A1, A2, . . . ∈ A with

cl(An+1) ⊂ Int An , n ≥ 1;
(3) ϕ(An) weakly converges to ϕ(A) if An ↑ A for all A, A1, A2, . . . ∈ A with

cl(An) ⊂ Int An+1, n ≥ 1.
Then there exists a random capacity ϕ∗ such that A ⊂ Sϕ∗ and ϕ(A) = ϕ∗(A) for
all A ∈ A.

Proof. A separating class always contains a countable separating class, so that we
can consider a countable separating class A0 ⊂ A. It follows from (1) that ϕ is
increasing on A0 with probability one. On this set of probability one, it is possible
to extend ϕ to ϕ∗ on B(E) by (1.30) and (1.31). Then ϕ and ϕ∗ coincide on A and
A ⊂ Sϕ∗ . ��

If A ⊂ K, then Proposition 8.18 holds without condition (3). Similarly, if A ⊂
G, then (2) can be dropped. If A ⊂ K and A is closed under finite union, then
the properties of ϕ usually hold for its extension. For example, if ϕ is completely
alternating on A, then so is ϕ∗. This is easy to see by choosing a countable separating
subclass of A, where all those properties hold with probability one.

The convergence of random capacities in distribution is defined in a conventional
way using the vague topology.

Proposition 8.19 (Weak convergence of random capacities). Let ϕ, ϕ1, ϕ2, . . . be

random capacities. Then ϕn
d→ ϕ if and only if there exists a separating class A with

elements being bounded Borel sets, such that the random vector (ϕn(A), A ∈ A0)

weakly converges to (ϕ(A), A ∈ A0) for each finite subfamily A0 ⊂ Sϕ .

Proof. The necessity is a direct implication of Billingsley [70, Th. 5.5]. To prove the
sufficiency, note that the map ϕ �→ ϕ∗ is continuous in the vague topology. Since ϕn

converges in distribution to ϕ as a stochastic process on A, their extensions converge
in distribution by the continuous mapping theorem, see Billingsley [70, p. 29]. ��
Definition 8.20 (Completely random capacity). A random capacity ϕ is called
completely random if ϕ(K1), . . . , ϕ(Kn) are independent whenever K1, . . . , Kn are
disjoint sets from the domain of definition of ϕ.

The family of capacities can be considered as a lattice. By applying the lattice-
theoretic technique, it is possible to show that ϕ1 is stochastically smaller than ϕ2

(respectively ϕ1
d∼ ϕ2) if and only if the random vector (ϕ1(G1), . . . , ϕ1(Gn)) is

stochastically smaller than (respectively coincides in distribution with) the random
vector (ϕ2(G1), . . . , ϕ2(Gn)) for every n ≥ 1 and each G1, . . . , Gn ∈ G, see Nor-
berg [433].
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The concept of a random capacity covers random closed sets (including point
processes), random upper semicontinuous functions, random measures and sup-
measures. If X is a random set, then

ϕ(K ) = 1X∩K �=∅ (8.16)

is a random capacity called indicator random capacity; every random measure is a
random capacity; and the random sup-measure

ϕ(K ) = f ∨(K ) = sup
x∈K

f (x)

is a random capacity if f is a random upper semicontinuous function.

8.5 Robbin’s theorem for random capacities

Carathéodory’s extension of a capacity

A random capacity ϕ can be extended to a measure ϕ̄ by Carathéodory’s extension
described in Appendix E. As in Section 5.4, assume that the family M used to define
this extension contains all open balls.

Lemma 8.21 (Carathéodory’s extension using a subclass). Let M ⊂ G consist of
open sets and let B be a subclass of M which is closed under finite unions. Assume
that any set M ∈ M is a (possibly uncountable) union of members of B. Then, for
each capacity ϕ, its Carathéodory extensions using M and B coincide.

Proof. It suffices to show that ϕ̄M
δ and ϕ̄B

δ (defined by (E.1) for the families M and
B respectively) coincide on the family of all compact sets. Let K be compact; clearly
it suffices to consider only finite δ-covers in (E.1). Let {Mi

1, . . . , Mi
ni
} be a family

of δ-covers from M such that
∑

ϕ(Mi
k) → ϕ̄M

δ (K ) as i → ∞. We can find sets
Bi

k ∈ B such that Bi
k ⊂ Mi

k and {Bi
1, . . . , Bi

ni
} cover K . Thus,

ϕ̄B
δ (K ) ≤ lim

∑
ϕ(Bi

k) ≤ lim
∑

ϕ(Mi
k) = ϕ̄M

δ (K ) .

On the other hand, ϕ̄B
δ ≥ ϕ̄M

δ , since B ⊂M. ��
For example, Lemma 8.21 applies when M is the family of all open sets and B

is the class of all finite unions of elements from an open base for the topology.

Proposition 8.22 (Carathéodory’s extension as random measure). Assume that
M is a subfamily of G that has a countable subclass B as in Lemma 8.21. If ϕ is a
random capacity, then ϕ̄ is a random measure on Rd .

Proof. Clearly µ = ϕ is a measure almost surely. It suffices to show that the value
µ(K ) is a random variable for each compact set K . Since (E.2) involves monotone
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pointwise limits, it suffices to show that ϕ̄δ(K ) is a random variable for each compact
set K . For any a > 0,

{ϕ̄δ(K ) > a} =
{

inf
∑

ϕ(Mn) > a
}
=
⋂{∑

ϕ(Mn) > a
}

, (8.17)

where the infimum and intersection are taken over the family of all δ-covers of K
by sets from M. By Lemma 8.21, M can be replaced with B. Since K is compact,
the intersection in (8.17) is taken over finite subsets of B. Hence ϕ̄δ(K ) is a random
variable. ��

Capacity version of Robbins’ theorem

Definition 8.23 (Integrable random capacity). A random capacity ϕ is called in-
tegrable if Eϕ(K ) < ∞ for each K ∈ K. For an integrable random capacity ϕ the
functional (Eϕ)(K ) = Eϕ(K ) is a capacity called the intensity of ϕ.

If ϕ is a random measure, then Eϕ is the corresponding intensity measure. In
particular, if ϕ = N is a counting measure generated by a point process N , then EN
is the intensity measure of N . If X is a random closed set, then

E1X∩K �=∅ = P {X ∩ K �= ∅} = TX (K )

is the capacity functional of X . Robbins’ Theorem 4.21 can now be expressed as
follows.

Theorem 8.24 (Robbins’ theorem, capacity version). Let X be a random closed
set in Rd and µ a locally finite measure. Then, for the indicator capacity ϕ(K ) =
1X∩K �=∅, we have

Eϕµ = TXµ .

Proof. By Proposition 5.20 the left side is Eµ(X ∩ ·). Since TX is bounded and µ is
Radon, Theorem 5.19(i) shows

TXµ(K ) =
∫
K

P {x ∈ X}µ(dx) .

The two sides are equal by Fubini’s theorem. ��
General conditions that would guarantee

Eϕυ = Eϕυ (8.18)

for a random capacity ϕ and a deterministic capacity υ are not known. The following
example describes a special case when (8.18) holds although Robbins’ theorem is not
applicable because the Carathéodory extension ῡ is not a locally finite measure.
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Example 8.25 (Robbins’ theorem for counting measures). Let N be a simple
point process on Rd . Two principal random capacities associated with N are the
random counting measure N(K ) and the indicator capacity ϕ(K ) = 1X∩K �=∅ of the
associated random closed set X = supp N . Note that Robbins’ theorem does not hold
for the counting measure as the latter is not locally finite. Let M = G be the family of
all open sets. If υ = 1, then the Carathéodory extension of ϕυ is the random counting
measure N , see Example E.2 and Proposition 5.20. Then EN is the intensity measure
λ of N , whereas the expectation Eϕ(K ) of the indicator capacity on the right-hand
side of (8.18) is the capacity functional of X . Carathéodory’s extension of TX is the
so-called parametric measure ν of the point process. Korolyuk’s theorem (see Daley
and Vere-Jones [117, p. 120]) states that the intensity measure λ and the parametric
measure ν coincide if the process is orderly. Therefore,

Eϕυ = λ = ν = Eϕυ

showing that (8.18) holds provided N is orderly.

Theorem 8.26 (Campbell theorem, capacity version). Let N be an orderly point
process in Rd whose intensity measure λ is locally finite. If f : Rd �→ R is an upper
semicontinuous function such that

∫
K f dλ < ∞ for all compact sets K , then, for

X = supp N and ϕ(K ) = 1X∩K �=∅,

E f ∨ϕ = f ∨Eϕ . (8.19)

Proof. Since X is almost surely locally finite, we have

f ∨ϕ(A) =
∑
xi∈A

f (xi) a.s. ,

where the sum is over all points of N falling in A. Note that this is a random variable
by Proposition 8.22. On the right-hand side of (8.19) Eϕ = TX and Carathéodory’s
extension of TX is the parametric measure ν. Since N is orderly ν = λ; since λ is
locally finite we may apply Theorem 5.19(ii) to yield

f ∨Eϕ(A) =
∫
A

f dλ .

The two sides are equal by Theorem 8.10. ��

Intrinsic density

Definition 8.27 (Intensity measure and parametric measure). Let ϕ be a random
capacity and υ a deterministic capacity. Then µ(K ) = Eϕυ(K ) is said to be the (υ-
weighted) intensity measure of ϕ and ν(K ) = Eϕυ(K ) the (υ-weighted) parametric
measure of ϕ. Both depend implicitly on the family M used to define Carathéodory’s
extension.
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By applying Fatou’s lemma to (E.1) and the monotone convergence theorem to
(E.2) it is easily seen that

µ(K ) ≤ ν(K ) (8.20)

for all measurable K , whence µ � ν. In general, the inequality (8.20) cannot be
improved to the equality (8.18), so that a counterpart of Robbins’ theorem in the
form (8.18) does not hold, see Example 8.30. However, a weighted form of Robbins’
theorem holds.

Definition 8.28 (Intrinsic density). Assume that the parametric measure ν of ϕ is
locally finite. Then the Radon–Nikodym derivative

ι(x) = dµ

dν
(x)

is called the (υ-weighted) intrinsic density of the random capacity ϕ (with respect to
the class M used to define Carathéodory’s extensions). If ϕ is the indicator capacity
of a random closed set X , then ι is called the intrinsic density of X .

It should be noted that the parametric measure (and hence the intrinsic density)
is sensitive to the choice of the family of sets M used to define Carathéodory’s
construction. The following result follows from Theorem 5.19(ii).

Theorem 8.29 (Weighted Robbins’ formula). Let ϕ be a random capacity and let
υ be a deterministic capacity. If ν = Eϕυ is locally finite and the intrinsic density ι

is upper semicontinuous, then

Eϕυ = ι∨Eϕυ .

A random capacity ϕ is said to be stationary if the finite-dimensional distribu-
tions of the random function {ϕ(K + a), K ∈ K} indexed by compact sets do not
depend on a ∈ Rd . It is easy to see that indicator capacities generated by stationary
random sets or sup-measures obtained from stationary upper semicontinuous func-
tions are stationary. If ϕ is a stationary capacity, then its intensity Eϕ is translation
invariant, i.e. Eϕ(K ) = Eϕ(K + a) for each a ∈ Rd . For instance, if ϕ is the indica-
tor capacity of a stationary random closed set X , then its intrinsic density is constant,
i.e. ι(x) = a, whence

Eῡ(X ∩ K ) = aTXυ(K ) , K ∈ K .

Clearly, 0 ≤ ι(x) ≤ 1 for ν-almost all x . We have seen that ι = 1 for the cases
of a random closed set X (if ϕ is the indicator capacity and υ is locally finite) and
a simple orderly point process (for υ = 1). Below we give examples where the
intrinsic density is not unity.

Example 8.30 (Boolean segment process). Let X be a planar Boolean segment
process of intensity α (see Molchanov [406] and Stoyan, Kendall and Mecke [544]),
i.e. X is defined by (8.13) where the germs form a Poisson point process in R2 and
the grains are isotropic random segments of the constant length l. Then, for a ball B ,
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T (B) = 1− exp{−α(l diam(B)+ π(diam(B))2/4)} ∼ λl(diam(B))

if the diameter of B is small.
(i) Put υ(B) = diam(B) so that ῡ = H1 is the one-dimensional Hausdorff mea-

sure. The expected one-dimensional Hausdorff measure of X ∩ K is equal to

µ(K ) = Eῡ(X ∩ K ) = EH1(X ∩ K ) = αl mes(K ) ,

see Stoyan, Kendall and Mecke [544]. On the other hand,∑
TX (Bi )υ(Bi) ∼ αl

∑
(diam(Bi ))

2 .

Thus,

ν(K ) = TXυ(K ) = 4

π
αl mes(K ) .

Therefore, ι(x) is identically equal to π/4.
(ii) Let L ⊂ R2 be a rectifiable curve. If υ = 1, then ϕ̄(L) is the number of in-
tersections of X with L. We have Eϕ(L) = λl|L|, where |L| is the length of L, but
Eϕ̄(L) = 2λl|L|/π , so that ι(x) = 2/π .

Open problem 8.31. Find necessary and sufficient conditions on a random capacity
ϕ (or indicator random capacity) and a set-function υ that would guarantee (8.18),
meaning that the υ-weighted intrinsic density is identically equal to one.

Upper bound on Hausdorff dimension

Let ϕ be the indicator random capacity of X . Since 0 ≤ ι ≤ 1,

Eῡ(X ∩ K ) ≤ TXυ(K ) .

Therefore, TXυ(K ) = 0 implies that ῡ(X ∩ K ) = 0 a.s. This fact can be used to
bound the Hausdorff dimension of X ∩ K .

Example 8.32. In E = Rd choose υ(K ) = diam(K )α with α ∈ [0, d] as in Exam-
ple E.1. Then ῡ = Hα is the α-dimensional Hausdorff measure. If TXυ(K ) = 0,
then Hα(X ∩ K ) = 0, i.e. the Hausdorff dimension of X ∩ K does not exceed α.

If K = Rd , then TXυ vanishes if TX (Br (x)) ≥ crγ for all sufficiently small
r uniformly over x ∈ Rd with a constant c > 0 and γ > d − α. For instance if
TX (K ) = 1 − exp{−C(K )} where C(K ) is the Newton capacity of K (see Exam-
ple 4.1.19) in Rd with d ≥ 3, then TX (Br (x)) ∼ crd−2 for a constant c > 0. There-
fore, TXυ = 0 for υ(K ) = diam(K )α with α > 2. Accordingly, dimH(X) ≤ 2,
which corresponds to the fact that X (being the path of a Brownian motion) has the
Hausdorff dimension 2.
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9 Various interpretations of capacities

9.1 Non-additive measures

Definitions

Assume that E is a Polish space, unless stated otherwise. A set-function ϕ defined on
an algebra E of subsets of E is said to be a non-additive measure if it is normalised,
i.e. ϕ(∅) = 0 and ϕ(E) = 1, and monotonic, i.e.

ϕ(A) ≤ ϕ(B) if A ⊂ B .

In game theory, the elements of E are called players, subsets of E are coalitions and
ϕ acts on coalitions and determines the game. The total value of ϕ may be different
from 1, as is also typical in the theory of fuzzy measures (see Sugeno, Narukawa and
Murofushi [552]) which are allowed to take values from the extended half-line.

The dual (conjugate) to ϕ function ϕ̃ is defined as ϕ̃(A) = 1−ϕ(Ac). This duality
relationship is identical to the relationship between the containment functional and
the capacity functional of a random closed set. The non-additive measure ϕ is said
to be equalised if (ϕ̃+ ϕ)/2 is a measure. For capacity functionals of random closed
sets, this property was discussed in Section 5.3.

Definition 9.1 (Symmetric and coherent non-additive measures).
(i) A non-additive measure ϕ defined on a σ -algebra E is weakly symmetric with

respect to a non-atomic probability measure µ on E if µ(A) = µ(B) implies
ϕ(A) = ϕ(B) for all A, B ∈ E .

(ii) ϕ : E �→ [0, 1] is coherent if there exists a family of probability measures P on
E such that ϕ(A) = supµ∈P µ(A) for every A ∈ E .

Coherent non-additive measures are also called upper probabilities, see Sec-
tion 9.3.

Core of non-additive measure

A non-additive measure (game) ϕ is called convex if ϕ satisfies

ϕ(A ∩ B)+ ϕ(A ∪ B) ≥ ϕ(A)+ ϕ(B)

for all A, B ∈ E , compare with (1.18) which defines a concave capacity. Further-
more, ϕ is called decomposable if

ϕ(A) =
n∑

i=1

ϕ(A ∩ Hi)

for every A ∈ E , where H1, . . . , Hn is a fixed partition of E.

Definition 9.2 (Feasible measures and the core). A finite-additive measure µ

(called a payoff in game theory) is said to be feasible if µ(E) ≤ ϕ(E). The core
of ϕ is defined as the set of all feasible µ such that µ(A) ≥ ϕ(A) for all A ∈ E .
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If ϕ(E) = 1, then by a simple duality argument, the core of ϕ can be defined as
the family of all measures µ satisfying µ(A) ≤ ϕ̃(A) for all A ∈ E . An important
result in game theory states that every convex non-additive measure (game) has a
non-empty core, see Shapley [535].

Decomposition of non-additive measures

For every F ⊂ E, the unanimity game on F is defined by

uF (A) =
{

1 , F ⊂ A ,

0, otherwise ,
(9.1)

which is the containment functional of a deterministic set identically equal to F .
Gilboa and Schmeidler [196] showed that if ϕ is defined on a finite algebra E0, then

ϕ =
∑

K∈E0

α
ϕ
K uK , (9.2)

where α
ϕ
K , K ∈ E0, are uniquely defined coefficients. If ϕ is the containment func-

tional of a random closed set X , then α
ϕ
K = P {X = K } is the probability that X

takes a value K . The non-negativity condition on α
ϕ
K characterises the completely

monotone ϕ. In general, every ϕ on a finite algebra E0 may be decomposed as

ϕ = ϕ+ − ϕ− , (9.3)

where ϕ+ and ϕ− are two completely monotone functionals such that

‖ϕ‖E0 = ‖ϕ+‖E0 + ‖ϕ−‖E0 ,

where
‖ϕ‖E0 =

∑
K∈E0

|αϕ
K |

is called the composition norm. In the infinite case, the composition norm is defined
as the supremum of ‖ϕ‖E0 over all finite sub-algebras E0 ⊂ E . If ϕ is additive, then
‖ϕ‖E turns into the total variation norm ‖ϕ‖ of ϕ. In the infinite case decomposi-
tion (9.2) is written as

ϕ =
∫
E\∅

uK dµϕ(K ) , (9.4)

where µϕ is a signed finitely additive measure on the algebra in E generated by
{A ∈ E : A ⊂ K } for all K ∈ E . Then ‖ϕ‖E = ‖µϕ‖ and ϕ is completely monotone
if and only if µϕ is non-negative. The Jordan decomposition (9.3) continues to hold
in the infinite case provided ϕ has a finite composition norm and the family of non-
additive measures with a finite composition norm forms a Banach space.
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Choquet and Sugeno integrals

A non-additive measure can be used to define a Choquet integral in the same way
as has been done in Section 5.1 for integrals with respect to the capacity functional
and the containment functional. Let f be a non-negative function of E such that
{ f ≥ t} = {x : f (x) ≥ t} ∈ E for all t ≥ 0. The Choquet integral of f is defined
by ∫

f dϕ =
∞∫

0

ϕ({ f ≥ t})dt .

It is shown by Graf [208] and Schmeidler [516] that a non-additive measure is
convex if and only if its core is non-empty and for every measurable function f the
Choquet integral equals the infimum of the integrals of f with respect to measures
from the core of ϕ. Decomposition (9.4) leads to∫

f dϕ =
∫
E\∅

(inf f (K ))µϕ(dK )

assuming that µϕ is σ -additive.
Schmeidler [516] proved that a general non-negative functional I ( f ) defined

on the family of bounded measurable real-valued functions on E is comonotonic
additive (see Definition 5.4) and monotone (i.e. I ( f ) ≤ I (g) if f ≤ g pointwise on
E) if and only if I is the Choquet integral with respect to a non-additive measure ϕ

given by ϕ(M) = I (1M ).
It is shown in Sugeno, Narukawa and Murofushi [552] that for every continuous

f with a compact support there exists a measure µ such that∫
gdϕ =

∫
gdµ (9.5)

for all g which are strongly comonotonic with f . This implies that, for every such f
and ε > 0, there exist a1, . . . , an ≥ 0 and x1, . . . , xn ∈ E such that∣∣∣∣∫ f dϕ −

∑
ai f (xi )

∣∣∣∣ < ε ,

meaning that the Choquet integral can be approximated by the integral of a step-
function. If ϕ is the capacity functional of a random closed set, the measure µ

from (9.5) admits a simple interpretation given in Proposition 5.14.
The Sugeno integral of f is defined as

(S)
∫
A

f dϕ = sup
r≥0

min(r, ϕ(A ∩ { f ≥ r})) . (9.6)

As shown by Ralescu and Adams [473], this definition is equivalent to
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(S)
∫
A

f dϕ = sup
B∈E,B⊂A

min(ϕ(B), inf f (B)) .

The latter definition extends to the case when the sets { f ≥ r} do not neces-
sarily belong to E . Then (9.6) holds for an outer non-additive measure ϕ∗(A) =
infB∈E,B⊃A ϕ(B), see Murofushi [419]. If ϕ is the capacity functional of a random
closed set X , then

(S)
∫
A

f dTX = sup{r : P {(sup f (X ∩ A)) ≥ r} ≥ r} .

Example 9.3 (Integrals of indicator function). Let f = a1A. Then the Choquet
integral of f equals aϕ(A), while the Sugeno integral is min(a, ϕ(A)).

Another integral introduced in Gerritse [188] in view of applications to the theory
of large deviations is∫

f dϕ = sup{ϕ(A) inf
x∈A

f (x) : A ∈ E} = sup
r≥0

rϕ(A ∩ { f ≥ r}) .

9.2 Belief functions

Belief and plausibility functions

Belief functions are non-additive measures that satisfy additional monotonicity con-
ditions. In statistics of imprecise data, the belief function replaces the probability that
a true value lies in a particular set.

Definition 9.4 (Belief and plausibility functions). A function Bel(A) for A from
an algebra E with values in [0, 1] is said to be a belief function if Bel(∅) = 0,
Bel(E) = 1 and Bel is completely monotone on E . The dual function to Bel is said
to be a plausibility function and denoted by Pl.

An extension of the belief function to the family of all subsets of E is defined as

B̃el(A) = sup{Bel(B) : B ⊂ A, B ∈ E} .
A belief function is called continuous if B̃el(An) ↓ B̃el(A) as An ↓ A. General belief
functions are not assumed to be semicontinuous and also the basic space E is not
necessarily locally compact Hausdorff separable. Although a containment functional
of a random closed set is a continuous belief function, a general belief function does
not necessarily satisfy the regularity conditions that hold for a containment functional
and so cannot be interpreted as Bel(A) = P {X ⊂ A} for a random closed set X . If
this representation is possible, then X can be interpreted as a region where the true
value belongs.

Shafer [534] proved that a general belief function can be represented as

Bel(A) = µ(r(A)) , (9.7)
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where µ is a finitely additive probability measure on an abstract space Ω and r maps
E into measurable subsets of Ω . In the case of containment functionals of random
closed sets, Ω = F and r(A) = {F ∈ F : F ⊂ A}. The map r is called an
allocation of probability.

The vacuous belief function satisfies Bel(A) = 1 for A = E and is zero other-
wise and so represents the state of complete ignorance. This belief function is the
containment functional of the deterministic set X = E. The Boolean belief function
models the information that the true value lies in F ⊂ E and is given by Bel(A) = 1
for F ⊂ A and zero otherwise. This belief function is indeed the unanimity game
defined in (9.1).

A plausibility function is called condensable if its value on every compact set
K is equal to the supremum of its values on finite subsets of K . The corresponding
belief function is also called condensable. This property is similar to the separability
property of random closed sets.

Updating belief functions

The idea of updating belief functions is central to statistical reasoning with imprecise
probabilities (see Walley [591]) and also to applications in artificial intelligence, eco-
nomic theory, etc. The Dempster rule of combination suggests that, given an event
A, the new belief function BelA should be

BelA(B) = Bel((A ∩ B) ∪ Ac)− Bel(Ac)

1− Bel(Ac)
. (9.8)

Note that the denominator is the plausibility function. Updating belief functions us-
ing the Dempster rule can be easily interpreted for containment functionals of ran-
dom closed sets. The orthogonal sum of two containment functionals CX and CY is
the containment functional of X ∩ Y (with independent X and Y ) conditional on the
event {X ∩ Y �= ∅}. This reduces to (9.8) if Y = A is a deterministic set. Indeed,

P {(X ∩ A) ⊂ B | X ∩ A �= ∅} = P
{
(X ∩ A) ⊂ (B ∩ A), X �⊂ Ac}

TX (A)

= P
{

X ⊂ (A ∩ B) ∪ Ac, X �⊂ Ac
}

TX (A)

= CX ((A ∩ B) ∪ Ac)− CX (Ac)

1− CX (Ac)
.

Therefore, the Dempster rule of combination can be interpreted as taking the con-
ditional containment functional of the intersection of a random closed set with a
deterministic set. If the true value belongs to X , given the prior information that the
value lies in A, it is natural to believe that it belongs to X ∩ A.

An adaptation of the classical concept of the conditional probability leads to an
alternative Bayesian updating rule

BelA(B) = Bel(A ∩ B)

Bel(A)
. (9.9)
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The latter rule can be deduced from decomposition (9.4) applied to ϕ = Bel, then
updating µϕ using the conditional probability formula and then retrieving Bel using
the updated µϕ .

Likelihood-based belief function

If E represents possible values of the parameters and L(x), x ∈ E, is a likeli-
hood function for the estimated parameter x (its dependence on the observed sam-
ple is suppressed in the notation), then the likelihood-based belief function (see
Shafer [533] and Wasserman [598]) is defined by its dual (plausibility) function

Pl(A) = sup
x∈A

L̃(x) ,

where

L̃(x) = L(x)

sup{L(x) : x ∈ E}
is the normalised likelihood function. The so-defined plausibility function is the sup-
measure generated by L̃ and the corresponding random closed set is given by

X = {x : L̃(x) ≥ α}
with α uniformly distributed on [0, 1] (see Example 1.15), so that X has realisations
being likelihood regions. It is easy to combine the likelihood-based belief function
with another belief function. Let Y be a random closed set independent of X and such
that E sup L(Y ) > 0. Then the conditional capacity functional of the intersection
X ∩ Y is given by

P {(X ∩ Y ) ∩ A �= ∅ | X ∩ Y �= ∅} =
P
{

sup L̃(Y ∩ A) ≥ α
}

P
{

sup L̃(Y ) ≥ α
}

= E sup L(Y ∩ A)

E sup L(Y )
,

where sup∅ = 0. If Y = {η} is a singleton, then this rule reduces to the usual
Bayesian methodology with the update given by E(L(η)1η∈A)/EL(η).

Open problem 9.5. For a containment functional C (or belief function) find a prob-
ability measure P that dominates C and has the maximal entropy. The answer for
finite spaces in known, see Jaffray [278].

9.3 Upper and lower probabilities

Definitions

A pair u, v of non-additive measures with total mass 1 is said to be a lower and upper
probability if u and v are dual, i.e. v(A) + u(Ac) = 1 for every A, v is subadditive
and u is superadditive, i.e.
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u(A ∪ B) ≥ u(A)+ u(B) , v(A ∪ B) ≤ v(A)+ v(B) ,

for every two disjoint sets A and B from an algebra E of sets where u and v are de-
fined. A measure µ dominates u if µ(A) ≥ u(A) for all A ∈ E . The lower probability
is said to be the lower envelope if u is the infimum of all measures that dominate it.
In this case, v is coherent, i.e. equals the upper envelope of the family of measure
that it dominates. It is known that there are lower probabilities with no measures that
dominate it and not all lower probabilities are lower envelopes, see Papamarcou and
Fine [449].

In the following we consider only upper and lower probabilities that are coherent,
i.e. equal to upper and lower envelopes of a family of measures. Every non-empty
family P of probability measures on E with a σ -algebra F naturally generates two
non-additive measures, the upper probability (upper envelope)

v(A) = sup{P(A) : P ∈ P} , A ∈ F , (9.10)

and the lower probability (lower envelope)

u(A) = inf{P(A) : P ∈ P} , A ∈ F .

The family P is said to be m-closed if the core of u is P itself, so that P is exactly the
family of measures that dominate u.

The lower probability is monotonic and inherits the properties of the outer conti-
nuity and the outer regularity of a probability measure. Every coherent upper proba-
bility is σ -subadditive, i.e.

v(∪∞i=1 Ai ) ≤
∞∑

i=1

v(Ai ) .

Sudadditive capacities as upper probabilities

Theorem 5.13 implies that the capacity functional of a random closed set X is the
upper envelope of the family P that consists of distributions for all selections of
X . This fact is, however, more general and holds for every 2-alternating (strongly
subadditive) capacity, see (1.18).

Theorem 9.6 (Subadditive capacities as upper envelopes of measures). Every
strongly subadditive capacity equals the upper envelope for the family of measures
that it dominates.

Note that not every coherent upper probability is 2-alternating, see Huber and
Strassen [268, Ex. 2]. For instance, let E = {1, 2, 3, 4} have four elements with
the two probability distributions given by the vectors p1 = (0.5, 0.2, 0.2, 0.1) and
p2 = (0.6, 0.1, 0.1, 0.2). For the corresponding upper probability v, one has v(A) =
v(B) = 0.7 for A = {1, 2} and B = {1, 3}. On the other hand, v(A∪B)+v(A∩B) =
1.5 > v(A)+ v(B) = 1.4, i.e. v is not 2-alternating.
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Upper and lower Choquet integrals

The upper and lower probability v and u can be used to construct Choquet integrals
that are called upper and lower expectations. If v and u are respectively 2-alternating
and 2-monotone and v is regular, i.e.

v(B) = sup{v(K ) : K ⊂ B, K ∈ K}
= inf{v(G) : G ⊃ B, G ∈ G} , B ∈ B(E) ,

then the Choquet integrals can be obtained as infimum and supremum of expectations
with respect to the family P that generates u and v,∫

f du = inf{
∫

f dP : P ∈ P} ,∫
f dv = sup{

∫
f dP : P ∈ P} ,

see Huber [267, p. 262] for a finite E and Graf [208, Prop. 2.3] for a general E. If
v (respectively u) is completely alternating (respectively monotone), this fact easily
follows by identifying all P ∈ P as distributions of selections for the corresponding
random closed set. The upper expectation is called symmetric if

∫
f1du = ∫ f2du

whenever µ({ f1 ≥ t}) = µ({ f2 ≥ t}) for all t , i.e. f1 and f2 are µ-equimeasurable
functions. If the upper expectation is symmetric, then u is weakly symmetric. The
reverse conclusion is wrong, see Wasserman and Kadane [601, Ex. 4].

Unambiguous events

The interval [u(A), v(A)] characterises the degree of uncertainty associated with the
family P of probability distributions. An event A ∈ F is called unambiguous if this
interval shrinks to a single point, i.e. u(A) = v(A) or v(A) + v(Ac) = 1. The
following proposition characterises symmetric coherent upper probabilities.

Proposition 9.7 (Upper probabilities with an unambiguous event). Let v be an
upper probability on a σ -algebra F which is symmetric with respect to a non-atomic
probability measure µ.
(i) If v is coherent, then there exists a non-trivial unambiguous event if and only if

v is a probability measure.
(ii) If v is monotonic and subadditive, then the existence of a non-trivial unambigu-

ous event implies that µ is the unique probability measure dominated by v.

Proof. Let A be a non-trivial unambiguous event.
(i) There exists a function g : [0, 1] �→ [0, 1] such that v(D) = g(µ(D)) for all

D ∈ F. Then any set B ∈ F with µ(B) = µ(A) is also unambiguous for v, whence
v(B)+v(Bc) = 1 and v(B) = P(B) for all P ∈ P. Therefore, µ(A) = µ(B) implies
P(A) = P(B) for every P ∈ P, whence P = {µ} and v = µ identically.
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(ii) Since v is symmetric, v(D) = g(µ(D)), D ∈ F, for a function g : [0, 1] �→
[0, 1] such that g(0) = 0 and g(1) = 1. We show first that g is non-decreasing.
Suppose that 1 > x > y > 0. Since µ is non-atomic there exist D, B ∈ F such that
µ(D) = x , µ(B) = y and B ⊂ D. Therefore, v(B) ≤ v(D), whence g(x) ≥ g(y).

Since v is subadditive, g(x + y) ≤ g(x) + g(y) and g(1 − x − y) ≤ g(1 −
x) + g(1 − y) for x, y ∈ [0, 1] with x + y ≤ 1. By Wasserman and Kadane [601,
Lemma 9], g(x) ≥ x for all x ∈ [0, 1], so µ is dominated by u. The proof finishes
similarly to the proof of (i). ��

If v is the capacity functional T of a random closed set, then the existence of
an unambiguous event A means that T (A) = C(A), i.e. the values of the capacity
functional and the containment functional coincide. If T (K ) = g(µ(K )) for a certain
function g (i.e. T is symmetric), then Proposition 9.7 implies that the corresponding
random closed set is necessarily a singleton.

9.4 Capacities in robust statistics

“Contaminated” families of probability measures

In robust statistics it is typical to consider a family P of measures that includes the
“true” probability measure P and other probability measures interpreted as “contami-
nations” of P. These contaminations can be defined as belonging to a neighbourhood
of P with respect to some probability metric. The family P gives rise to the upper
probability given by (9.10). Although it is usually very difficult to prove that v is
completely alternating, this is easy for the ε-contamination model, which deals with
the family P = Pε of all probability measures that can be represented as the sum of
(1− ε)P and εQ for all probability measures Q. The corresponding upper probabil-
ity v(A) = (1 − ε)P + ε is the capacity functional of a random closed set that with
probability (1 − ε) equals to a singleton {ξ} with the distribution P and otherwise
equals the whole space. In many interesting cases v is 2-alternating capacity, which
is extremely important in view of applications to robust statistics, see Huber [267].

Neyman–Pearson lemma

In general, it is quite difficult to construct a minimax test that discriminates between
the two composite alternatives P0 and P1. However, the situation becomes much
simpler if P0 and P1 are the cores of 2-alternating capacities v0 and v1 with the
corresponding dual (2-monotone) capacities u0 and u1. Let A denote a critical region
for testing between P0 and P1, i.e. P0 is rejected if x ∈ A is observed. Then the upper
probability of falsely rejecting P0 is v0(A) and of falsely accepting P0 is v1(Ac) =
1− u1(A).

If P0 is true with prior probability p = t/(1 + t), 0 ≤ t ≤ ∞, then the upper
Bayes risk of the critical region A is by definition

t

1+ t
v0(A)+ 1

1+ t
(1− u1(A)) .
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This risk is a function of wt (A) = tv0(A) − u1(A) that is to be minimised through
a suitable choice of A. Note that a similar function appears in the Radon–Nikodym
theorem for capacities in order to describe the strong decomposition property of two
capacities, see Definition 5.9. It is possible to show that, for each t , there is a critical
region At minimising wt (A), and the sets At can be chosen to form a decreasing
family. Define

π(x) = inf{t : x /∈ At } .
For instance, if v0 and v1 are probability measures (i.e. the alternatives P0 and P1
are simple), then π is a version of the Radon–Nikodym derivative dv1/dv0 (if v1 is
absolutely continuous with respect to v0). Interestingly, a similar interpretation holds
for pairs of 2-alternating capacities.

Theorem 9.8 (Neyman–Pearson lemma for capacities). Let v0 and v1 be a pair of
2-alternating capacities such that vi (An) ↑ vi (A) for all An ↑ A and vi (Fn) ↓ vi (F)

for closed Fn ↓ F , i = 0, 1. Then there exist probabilities Q0 ∈ P0 and Q1 ∈ P1
such that, for all t ,

Q0({π > t}) = v0({π > t}) , Q1({π > t}) = u1({π > t}) ,
and π = dQ1/dQ0.

The regularity condition imposed on v0 and v1 in Theorem 9.8 guarantees that
the families P0 and P1 are weakly compact. It should be noted that this is a restrictive
condition that for many interesting cases would require the compactness of E.

The pair Q0 and Q1 from Theorem 9.8 is called the least favourable pair. Con-
versely, if v1 is a probability measure and the conclusion of Theorem 9.8 holds, then
v0 is necessarily 2-alternating. Consider the Neyman–Pearson test of level α between
Q0 and Q1 with the critical function

ϕ(x1, . . . , xn) =

⎧⎪⎨⎪⎩
1 ,

∏
π(xi) > C ,

γ ,
∏

π(xi) = C ,

0 ,
∏

π(xi) < C ,

where γ and C are chosen such that the expectation of ϕ with respect to Q0 equals
α. Theorem 9.8 implies that, for any sample size n and any level α, this test is also
a minimax test between P0 and P1 with the same level α and the same minimum
power.

Application of belief functions

Consider now an application of belief functions to robust Bayesian inference. Let P
be a fixed prior distribution and let Py denote the posterior of P after observing y. In
order to examine the sensitivity of the posterior with respect to the choice of the prior,
we can consider a family P of prior distributions. Then the upper and lower posterior
probabilities are given as upper and lower envelopes of the posteriors obtained for
all possible priors P ∈ P,
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vy(A) = sup
P∈P

Py(A) , uy(A) = inf
P∈P

Py(A) .

These upper and lower envelopes may then be examined to quantify the robustness
with respect to the choice of the prior.

Let L(y|x) be the likelihood function of observing y if the unknown parameter
is x . Then

Py(A) =
∫

A L(y|x)P(dx)∫
E L(y|x)P(dx)

= E(L(y|ξ)1ξ∈A)

E(L(y|ξ)) ,

where ξ is a random element with distribution P. If P is the family of distributions
of selections for a random closed set X , then

vy(A) = E sup L(X ∩ A)

E sup L(X ∩ A)+ E inf L(X)1X⊂Ac
, (9.11)

see Wasserman [599, Th. 4.1]. For example, if P is the ε-contamination family of a
prior P, then, for A �= E,

vy(A) = (1− ε)
∫

A L(x)P(dx)+ ε sup L(A)

(1− ε)
∫
E L(x)P(dx)+ ε sup L(A)

.

Open problem 9.9. Find the order of alternation for the capacity vy obtained in
(9.11) as the Bayesian update of a belief function. In particular, what is the answer
for the case of the ε-contamination model?

Notes to Chapter 1

Section 1.1. The definition of a random closed set closely follows Matheron [381, Sec. 2.1].
Sometimes, the σ -algebra B(F) is called Matheron’s σ -algebra, while we prefer to re-
conciliate the terminology with the preexisting concepts in the set-valued analysis and call
it Effros σ -algebra (also applicable for non-locally compact spaces). The letter F for the fam-
ily of closed sets stems from the French word “ferme”.

The concept of a random closed set is principally different from the concept of a fuzzy
set, see Zadeh [621]. The latter is a function A on E with values in [0, 1]. The value A(x) at
x ∈ E determines a “degree of membership” of x to the fuzzy set. A random closed set X
can be associated with a fuzzy set by considering the coverage function A(x) = P {x ∈ X}.
However, taking the coverage function seriously reduces the amount of information available
about the distribution of X . Nguyen [427] interpreted the coverage function of a random set
as the membership function of a fuzzy set that results in a characterisation of fuzzy sets satis-
fying some measurability conditions as equivalence classes of random sets, see Goodman and
Nguyen [207].
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The studies of random sets on the line were initiated by Dellacherie [129, 131] mostly
motivated by applications to the general theory of stochastic processes, see also Section 5.2.3.

Various applications of random sets in statistical physics and material science are de-
scribed by Torquato [564].

Section 1.2. The fact that it is possible to define a measure on the space of closed sets by
its values on the families FK and the corresponding complete alternation concept go back
to Choquet [98]. Later on Matheron [381] formulated and proved this result explicitly for
distributions of random closed sets and capacity functionals. At the same time, this fact was
realised by Kendall [295] who worked with incidence functions (or hitting processes) and not
necessarily closed sets, see Section 7.2. Because of these contributions, the Choquet theo-
rem is sometimes called the Choquet–Kendall–Matheron theorem. Similar results in a more
general setting of partially ordered topological spaces were obtained by Revuz [486] and Hun-
eycutt [270], see also Talagrand [556].

The definition of a general capacity goes back to Choquet [98], see also Landkof [343]
and Matheron [381]. Extensive studies of completely alternating and completely monotone
capacities have been initiated by the seminal work by Choquet [98]. There (and in many other
places) such capacities appear under the names of alternating of infinite order and monotone
of infinite order. They are also sometimes called infinitely alternating (monotone) or totally
alternating (monotone). Here we follow the terminology of Berg, Christensen and Ressel [61].
The notation of successive differences follows the pattern used by Norberg [432]. The ∪- and
∩-monotone (alternating) functionals were introduced to cover various concepts that appear
when dealing with various functionals related to distributions of random sets and also set
functionals in the theory of belief functions and cooperative games. In lattice theory and com-
binatorial mathematics 2-alternating capacities are called submodular or lower semi-modular.

Proposition 1.14 is a folklore fact that appears, for instance, in King [305].
Maxitive capacity functionals appear under the name of possibility measures in the theory

of fuzzy sets (Zadeh [622]), where it is assumed that the value of the functional on a count-
able union of sets coincides with the supremum of the functional’s values on the individual
sets. Maxitive capacities generated by a likelihood function were considered in Walley and
Moral [592]. Proposition 1.16 is due to Nguyen and Nguyen [428], who also gave a different
proof of Theorem 1.17.

In the Russian translation of G. Matheron’s book [381] the capacity functional of random
closed set X is called an accompanying functional of X . This doubly translated term appears
in several papers on random closed sets translated from the Russian.

Section 1.3. The presented measure-theoretic proof of the Choquet theorem is taken from
Matheron [381]. The original G. Choquet’s proof [98] is based on a representation of posi-
tive definite functions on cones and is similar to the presented harmonic analysis proof of the
Choquet theorem. The harmonic analysis proof is adapted from Berg, Christensen and Res-
sel [61], where all the missing details can be retrieved. The Choquet theorem appears then as a
particular case of a representation of a positive definite function on an idempotent semigroup.

Section 1.4. Separating classes were introduced by Norberg [429] who also used them to
characterise the weak convergence of random closed sets. It should be noted that a simple
separating class of unions of all closed balls has been already mentioned by Matheron [381].
The uniqueness property in a variant of the Choquet theorem for capacity functionals on open
sets was noticed by Fortet and Kambouzia [179] who also considered several relationships
with point processes.
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Section 1.5. This section contains mostly well known facts whose origins are difficult to trace.
Theorem 1.31 is proved by Crauel [109].

Section 1.6. Various functionals related to random closed sets have been discussed in Math-
eron [381], although without names used consistently in Section 1.6. Inclusion functionals
defined on finite sets (also called point laws) have been studied by Matheron [381] and
Engl [162]. In the theory of evidence Shafer [533] for expert systems, capacity functionals
appear under the name of plausibility functionals, containment functionals are known as be-
lief functions and inclusion functionals are called commonality functionals, see Thoma [563].

The Möbius inversion originates in combinatorial mathematics, while its application to
general set-functions was described by Shafer [533]. More generally, the Möbius inversion can
be defined for a not necessarily finite space E assuming that a random set takes at most a finite
number of possible values. The non-negativity property of the Möbius inversion characterises
completely monotone capacities, while a modification of the non-negativity condition singles
out capacities with a given degree of monotonicity, see Chateauneuf and Jaffray [94].

Rataj [476] considered three-point covariances given by the measure of intersection of X
and its two translations. A generalisation of the exponential covariance model is considered
by Böhm and Schmidt [75]. The spectral theory for random closed sets has been described by
Koch, Ohser and Schladitz [320].

Section 2.1. There is a vast literature on multifunctions and their selections. The main ar-
eas of applications are control and optimisation and mathematical economy. The fundamental
measurability theorem for multifunctions (Theorem 2.3) is due to Himmelberg [257]. Further
variants of this theorem have been surveyed by Wagner [588]. Other proofs of Theorem 2.3
are given by Castaing and Valadier [91, p. 59] and Aubin and Frankowska [30, Th. 8.1.4].
Proposition 2.5 was proved by Papageorgiou [442], while its variant for compact convex mul-
tifunctions under weaker restrictions on E is due to Valadier [569]. Theorem 2.6 was proved
by Rockafellar [496] in the Euclidean case; his proof is restated here for a general Polish
space E. The predictability properties of the graph of a multifunction as a subset of Ω × E
were studied by Ransford [475].

Theorem 2.7 is a synthesis of several results published in the literature. Part (i) is the
statement of the Hess theorem [56, Th. 6.5.14] originally proved by Hess [240]. The current
proof is a modified original proof by Ch. Hess. Part (ii) is a relatively well known fact, see
Castaing and Valadier [91, p. 62]. The separability of F in the Wijsman topology is shown in
Beer [56, Th. 2.5.4]. A number of further results related to part (ii) can be found in Barbati,
Beer and Hess [48], in particular, those concerning the case when the Effros σ -algebra is
generated by the Attouch–Wets topology. The latter generates the Effros σ -algebra if and
only if all bounded subsets of E are totally bounded (a set F is totally bounded if F can be
decomposed into a finite union of sets of diameter not greater than any given ε > 0).

The concept of Hausdorff approximable bounded random closed sets appears in Hiai and
Umegaki [255], however without a special name. It was noticed by Hess [240] that each
random closed set is Wijsman approximable. Theorem 2.11(ii) follows from a result of De-
breu [124], who has shown that (K, ρH) is separable. The two examples of non-approximable
random closed sets are due to Hiai and Umegaki [254, 255]. Relationships between the scalar
measurability and the Effros measurability were investigated by Barbati and Hess [49].

Section 2.2. Selections (sometimes called selectors, sections or uniformisations) provide a
very useful tool for the studies of multifunctions. It is especially important to establish the
existence of selections. The studies of selections are summarised in useful surveys by Wag-
ner [588, 589]. Although the fundamental selection theorem (Theorem 2.13) is often associ-
ated with the names of Kuratowski and Ryll-Nardzewski [339], similar results were obtained
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by von Neumann [423], by P.S. Novikov who much earlier used selections to prove implicit
functions theorems and by V.A. Rokhlin who formulated the selection theorem and applied it
to study dynamical systems.

Selections are discussed in Section 2.1.1 in view of their integrability properties and ap-
plications to define an integral of a multifunction (or an expectation of a random closed set).
There is a vast literature on selections with special properties, for example, continuous selec-
tions (Repoš and Semenov [479]) and differentiable selections (Dentcheva [136]). Generalised
Steiner points have been used by Dentcheva [136] to obtain a Castaing representation that con-
sists of the Lipschitz selections.

Theorem 2.16 was proved by Hart and Kohlberg [223] for integrably bounded (see Def-
inition 2.1.11) random compact sets in Euclidean space and further generalised by Artstein
and Hart [22] for general random closed sets in Rd . Example 2.15 is taken from Hart and
Kohlberg [223]. A direct proof of Theorem 2.20 (based on matching lemma in the spirit of Hal-
mos and Vaughan [218]) is provided by Artstein [19]. A weaker variant of Theorem 2.20 for
a measure ν on K and with K being an arbitrary closed set in (2.4) appeared in Artstein [16].
Another proof involving constructions from nonstandard analysis, relaxing topological as-
sumptions on E and assuming that the involved measures are Radon is given by Ross [502].
Theorem 2.17 and Proposition 2.18 were proved by Hess [247]. Relationships with Young
multimeasures (maps on a probability space with values being collections of measures) have
been discussed by Artstein [19].

Proposition 2.21 and Theorem 2.22 are due to Artstein [16]. Selection operators and their
applications to set-valued processes were discussed by Gao and Zhang [187].

Section 2.3. Theorem 2.25 is a synthesis of a number of results concerning the measurabil-
ity of set-theoretic operations with multifunctions. The relevant results can be proved using
arguments based on semicontinuity of the relevant maps, as was done by Matheron [381] for
random closed sets in locally compact spaces. Many parts of Theorem 2.25 are of folklore
nature, while some proofs can be found in Aubin and Frankowska [30] and Hess [240]. Rock-
afellar [496] discusses in detail the case of multifunctions with values in the Euclidean space.
The second part of Theorem 2.26 is Filippov’s theorem on implicit functions. Its proof has
been adapted from Aubin and Frankowska [30].

Section 2.4. Theorem 2.28 was announced by Hess [238], see also Hess [247, Prop. 2.1]. Its
variant in E = Rd is given by Salinetti and Wets [512]. The local compactness assumption on
E is difficult to relax in the Choquet theorem. The described counterexample to the Choquet
theorem is due to Nguyen and Nguyen [428]. An attempt to prove the Choquet theorem on
non-separable spaces was unsuccessful; the main result of Ross [501] is wrong.

Section 2.5. In the general theory of stochastic processes it is quite typical to define random
sets as measurable subsets of the product space Ω × E, see Dellacherie and Meyer [131,
132]. Countable dense random sets were studied by Kendall [297]. Straka and Štěpán [548]
investigated relationships between random Borel sets in [0, 1] and random automorphisms.

Section 3. The lattice theoretic approach to constructions of distributions of random sets
has been developed by Norberg [432] who studied measures on continuous posets and, in
particular, identified those measures corresponding to distributions of random closed sets. The
presentation is adapted from Norberg [432, 434]. General results on continuous posets can
be found in a comprehensive monograph by Gierz et al. [192]. A number of further papers
concerning probability measures on lattices are collected by Vervaat and Holwerda [573].

Section 4.1. Stationary random closed sets were defined by Matheron [381]. A variant of
Proposition 4.4 for avoidance functionals defined on open sets is given by Kendall [295,
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Th. 18]. In that case it is possible to prove that every completely monotone functional is
lower semicontinuous and to provide an integral representation for the function q(t) =
P {X ∩ (0, t) = ∅}, t > 0, see Kendall [295, Th. 20]. Kendall [297] proved that all quasi-
stationary countable dense sets (which are not closed) satisfy zero-one law, so that every
(measurable) event associated with such sets has probability either 0 or 1. General proper-
ties of invariant capacities have been investigated by Talagrand [556].

Self-similar random sets on the line have been investigated by Pitman and Yor [459].

Section 4.2. Separable random sets and the corresponding inclusion functionals on finite sets
have been studied by Matheron [381] and Engl [162]. Proposition 4.7 is taken from [381]. The
capacity functional on the family of finite sets was called a space law in Matheron [381],but
we avoid using this term.

The definition of P-continuous random closed sets is equivalent to Definition 2.5.1 of
Matheron [381], but formulated in a different way. Definition 4.13 of an a.s.-continuous ran-
dom closed set and the relevant results can also be found in Matheron [381], although some
parts of the proofs presented here are new, in particular, those related to the separability and
stochastic continuity concepts for indicator functions.

Section 4.3. The theory of regenerative events (or regenerative phenomena) was developed
by Kingman [308] who generalised the concept of a recurrent event (for discrete time) de-
scribed by W. Feller. A number of results on regenerative events (or regenerative phenom-
ena) are summarised by Kingman [309]. Mathematical theory of subordinators is presented
in depth by Bertoin [65, Ch. III]. The avoidance probabilities for an interval were obtained
by Kendall [294]. The current proof follows a modern approach of Bertoin [65]. It is easy
to extend (4.11) to calculate avoidance probabilities for a finite union of intervals. Proposi-
tion 4.20 is intrinsically related to results on hitting probabilities for stochastic processes with
independent increments described by Kesten [298].

Section 4.4. Results similar to the current formulation of Robbins’ theorem were appar-
ently first stated by Kolmogorov [321, p. 41], Kolmogorov and Leontovich [322] and Rob-
bins [494, 495], who assumed that the indicator function of X is jointly measurable, where-
upon the identity (4.13) is a straightforward application of Fubini’s theorem. Further results
along this line can be found in Kendall and Moran [296] and Bronowski and Neyman [77].
Matheron [381, Cor. 1, p. 47] wrongly formulated Theorem 4.21 without the local-finiteness
assumption on µ. This mistake has been repeated since then several times, for instance by
Schmitt and Mattioli [518]. Baddeley and Molchanov [39] discussed possible generalisations
of Robbins’ theorem, see also Section 8.5.

Section 4.5. The presentation follows the ideas of Peres [453, 454] and Pemantle, Peres
and Shapiro [451], see also Peres [455, Sec. 24] for the proofs in the one-dimensional case.
Proposition 4.23(i) goes back to Hawkes [225], where also the converse statement is proved.
The set Z(p) appears also in the studies of fractal percolation, see Falconer [165, Sec. 15.2].

Section 4.6. Random open sets were defined by Matheron [381]. The formulated proposi-
tions are apparently new. A direct proof of Corollary 4.31 is given by Dynkin and Fitzsim-
mons [153]. Proposition 4.28 appears also in Crauel [109]. It is also possible to define random
open sets in a Polish space by replacing K ∈ K with F ∈ F .

Section 4.7. C-additive capacity functionals and their relationships to random convex sets
have been thoroughly investigated by Matheron [381, Ch. 4]. The semi-Markov property is
discussed in [381, Ch. 5] in relation to the infinite divisibility of random sets with respect to
unions, see Section 4.1.2.
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Section 4.8. Some parts of Theorem 4.41 go back to the pioneering work by Strassen [550],
while its current formulation is taken from Kamae, Krengel and O’Brien [290].

Stochastic orders for random closed sets were introduced by Stoyan and Stoyan [546].
They considered particular cases of comparison of random sets of the same shape and with the
same expected volume. The ordering concept was further studied by Norberg [433]. For a non-
Hausdorff E, Norberg showed that Theorem 4.42 implies the Strassen theorem, i.e. the equiv-
alence of (1) and (4) in Theorem 4.41. Examples 4.43(i), (ii) are taken from Norberg [433]
and Stoyan and Stoyan [546]. It is also possible to prove Theorem 4.42 without referring to
Theorem 4.41, but instead using a direct method that involves probability measures on lattices,
see Norberg [433]. Representation (4.24) is obtained by Wasserman [599].

If the random sets are almost surely convex, then it is possible to order them using one
of the conventional orderings for their support functions considered as a stochastic process on
the unit sphere, see Müller and Stoyan [418]. Furthermore, it is possible to order integrable
random closed sets using the concepts of the expectation. For example, if E denotes the
selection expectation (see Definition 2.1.1), then we say that X is symmetrically smaller than
Y if E(X ∪K ) ⊂ E(Y ∪K ) for every ball Br . The properties of this and other orderings based
on the selection expectation are studied by Cascos and Molchanov [87].

Section 5.1. The Choquet integral was introduced by Choquet [98] and further has been
extensively studied. Denneberg [135] provides an excellent source of information about inte-
gration with respect to non-additive measures. Theorem 5.1 goes back to Wasserman [599],
but in the current form appeared first in Molchanov [398]. A number of properties of the
Choquet integral interpreted from the perspective of game theory can be found in Gilboa and
Schmeidler [196]. Applications of the comonotonicity concept in mathematical economics are
discussed by Dhaene et al. [138, 139].

Section 5.2. The Radon–Nikodym theorem for capacities is proved by Graf [208] who also
analysed related decomposition properties and characterised measures among capacities in
terms of the conditional expectation. The Choquet integral and Radon–Nikodym theorem for
capacities defined on algebras of sets was also considered by Harding et al. [220]. In par-
ticular, the corresponding “local” versions appear if the corresponding algebra is finite. Ghi-
rardato [190] investigated conditions that yield Fubini’s theorem for Choquet integrals.

Section 5.3. Theorem 5.13 holds for all strongly subadditive capacities, see Huber and
Strassen [268]. A number of related references can be found in Anger and Lembcke [9].
The current proof of Theorem 5.13 is considerably simplified by appealing to the selection
theorem, which is not possible for general strongly subadditive capacities as they do not nec-
essarily correspond to distributions of random closed sets. A more general proof appeals to the
separation theorem in Banach spaces. Birgé [72] showed that Proposition 5.14 can be extended
for all 2-alternating capacities. Proposition 5.15 is due to Chateauneuf and Jaffray [94].

Dichotomous capacities were introduced by Choquet [99]. Further references can be found
in Fitzsimmons and Kanda [177]. A characterisation of random closed sets with dichotomous
capacity functionals is not known.

The definition of an equalised capacity functional has been adapted from Wolfenson and
Fine [611], where they are called coherent. The current name has been chosen to avoid confu-
sion with a number of texts, where a coherent capacity is defined as equal to the upper (lower)
envelopes of a family of probability measures that it dominates (dominated by it), see Kadane
and Wasserman [285] and Walley [591].

An upper (lower) probability u generates the corresponding Choquet integral that is some-
times called upper (lower) prevision and can be used as a risk measure associated with a ran-
dom variable. Delbaen [127] shows that an upper prevision

∫
f du is the supremum of the
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expectations taken with respect to finitely additive measures if the upper prevision is subad-
ditive, positively homogeneous and takes negative values on a negative f . In this case the
upper prevision is called coherent and u is the supremum of a family of finitely-additive mea-
sures. This result can be strengthened to show the σ -additivity if

∫
f du ≥ lim sup

∫
fndu if a

sequence fn is uniformly bounded by 1 and converges in probability to f .

Section 5.4. This section is based on results of Baddeley and Molchanov [39]. As shown in
Section 8.5 the technique described here is useful for deriving a generalisation of Robbins’
formula for random capacities.

Section 5.5. This section presents a new concept of capacity derivative. Definition 5.21 is in-
spired by the concept of the direct Radon–Nikodym derivative for measures in Rd introduced
by Faro, Navarro and Sancho [166]. A principal difference is that the capacity of a point may
be (and often is) different from zero. Note also that the vague limit in Definition 5.21 allows
some mass to disappear. Furthermore, the main definition in [166] requires that the limit of
µ({x} ⊕ t L)/td is finite, while the presented definition allows dLϕ(K ) to take infinite values,
but not identically for all L ∈ K. The capacity derivative is similar to the concept of tangent
measures, see Mattila [383] and Graf [209].

A variant of the introduced capacity derivative, obtained as the limit of

ϕ(K ∪ (x + t L))− ϕ(K )

ϕ(t L)
.

was considered by Choquet [98] in application to ϕ being the Newton capacity. This derivative
has been used by Fitzsimmons [175] to study hitting probabilities for Markov processes.

Derivatives of capacities are important in the context of data fusion, see Mori [414] for a
discussion of application and some theory in the discrete case. Derivatives for a set-function
and their applications in the data fusion are discussed by Mahler [371]. The information com-
ing from different sensors is interpreted as random sets that combine the effects of clutter,
jamming, measurement noise, false alarms, missed detections, unresolved measurements and
target manoeuvres using set-theoretic operations. The concept of density is vital as it leads to
applications of the likelihood inference and so yields efficient estimators.

Section 6.1. The weak convergence concept for random closed sets goes back to Lya-
shenko [367] and Norberg [429]. A parallel development of the theory in view of applica-
tions to the epiconvergence (see Section 5.3.1) is due to Salinetti and Wets [512]. Lemma 6.3
is due to Lyashenko [367] and Salinetti and Wets [512]. Theorem 6.8 is presented following
Norberg [429]. Theorem 6.14 concerning the convergence of selections is due to King [305].
Proposition 6.11 is taken from Gao and Zhang [187]. Results similar to Theorem 6.15 are of-
ten called delta theorems in optimisation, see King [305]. Further results and applications can
be found in [136, 305, 342]. Applications to statistical estimation problems are discussed by
Dupačová and Wets [149], see also Section 5.3.2. The weak convergence of general lattice-
valued random elements is considered by Norberg [434]. Further intricate facts about the
weak convergence of general random elements and, in particular, random sets are discussed
by Hoffman-Jørgensen [263].

Section 6.2. There is a vast literature concerning the polygonal approximation of convex sets.
It is possible to generalise this framework in many ways: change dimension, relax assumptions
on the boundary and allow points to be distributed according to certain densities or let them ap-
pear only on the boundary. Useful surveys are provided by Schneider [519] and Gruber [213].
Proposition 6.17 was proved by Davis, Mulrow and Resnick [119]. The convergence of ran-
dom closed sets in probability was studied by Salinetti, Vervaat and Wets [510, 511, 512].
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Section 6.3. Probability metrics for random closed sets have been studied by Molchanov [398,
403], although the first definition of distances between upper semicontinuous set functions
(the Lévy metric for set functions) goes back to Rachev [469]. A comprehensive account of
the theory of probability metrics can be found in Rachev [470]. Applications of probability
metric for random sets to some problems in image analysis have been considered by Friel and
Molchanov [182].

Section 7.1. Hitting processes (or incidence functions) have been studied by Norberg [429]
and Vervaat [572]. Such processes are also called random sup-measures. Theorem 7.1 is taken
from Norberg [429].

Section 7.2. The idea of the trapping system representation of a random closed set was used
by Kendall [295] to build a foundation for the theory of random sets. This approach is espe-
cially important when dealing with general (non-closed) random sets. Section 7.2 is based on
Kendall [295], where all details can be found. This approach can be quite naturally put within
the framework of the theory of lattices, see Norberg [432]. Related ideas are discussed in Sec-
tion 2.3.1. Theorem 7.7 is derived by Molchanov [391] by following the measure-theoretic
proof of the Choquet theorem.

Section 7.3. The characterisation result for distributions of random convex compact sets is due
to Vitale [576]. It was proved independently by Trader [565] and Molchanov [391]. The latter
proof is based on Theorem 7.7. Norberg [432] showed that this fact naturally follows from
the general results for the lattice of all convex compact sets. Theorem 7.12 follows from the
weak convergence criteria for lattice valued random elements, see Norberg [434, Prop. 5.6].
Its direct proof (based on Billingsley [70, Th. 2.2]) can be found in Molchanov [397].

Theorem 7.13 is apparently new.

Section 8.1. An excellent presentation of the theory of point processes is given by Daley
and Vere-Jones [117], which can be complemented by Stoyan, Kendall and Mecke [544] and
Stoyan and Stoyan [547]. The fact that the avoidance probabilities characterise the distribu-
tion of a point process was proved by Mönch [412] and Kallenberg [286]. The direct relation-
ship to the Choquet theorem was noticed by Ripley [492]. Other results relaxing topological
assumptions are due to Ripley [490, 491]. Some of these results have been later rediscov-
ered by Baudin [53]. Xia [616] relaxed the assumption on the point process being simple. He
showed that if N is a point process orderly outside a single point, then the distribution of N
is uniquely characterised by the one-dimensional distributions of N(A) for all bounded Borel
sets A. Proposition 8.4 was proved by Kurtz [340] and Ripley [491]. Proposition 8.5 is taken
from Ripley [491].

Applications of ordered coupling theorem for random closed sets to thinning of point
processes are due to Norberg [433]. Theorem 8.12 is proved by Kallenberg [288]. This result
can be extended for the weak convergence for superpositions of null-arrays of point processes
(Kallenberg [288]), which is closely related to the limit theorem for unions of random closed
sets discussed in Chapter 4.

Although the concept of marking is very fruitful in the theory of point processes, its direct
generalisation for random closed sets encounters a problem of ensuring the closedness. For
example, if some points of a closed set F have mark 1 and other mark 2, then F is split into
two sets F1 and F2, so that both F1 and F2 cannot be closed if F is connected. This shows
that marked random closed sets should be necessarily non-connected. Marked (also called
labelled) random closed sets were studied by Molchanov [392] and later on applied in image
analysis by Ayala and Simó [36]. Marked random sets generated by excursions of random
fields have been investigated by Nott and Wilson [437].
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Section 8.2. Theorem 8.13 and the corresponding lemmas were proved by Weil and Wiea-
cker [605, 606].

Section 8.3. The theory of random measures is outlined in Daley and Vere-Jones [117] and
Stoyan, Kendall and Mecke [544], while a thorough exposition is provided by the classical
book of Kallenberg [287]. Relationships between the distribution of a random measure and
its support was studied by Ayala, Ferrandiz and Montes [34] who established a variant of
Proposition 8.16 for rectifiable sets and the Hausdorff coverage measures.

Proposition 8.17 is due to Evans and Peres [163], who applied it to derive results concern-
ing eventual intersection for sequences of Lévy processes.

Section 8.4. Random capacities have been studied by Norberg [430] where Propositions 8.18
and 8.19 are proved. Random capacities generalise the concepts of a random measure (see
Harris [221] and Kallenberg [287]), random set and random semicontinuous functions. Further
extensions of these results for capacities in non-Hausdorff spaces are discussed in Norberg and
Vervaat [433, 435].

Section 8.5. Robbins’ theorem for random capacities is presented following the paper by
Baddeley and Molchanov [39], where also a number of further examples concerning intrinsic
densities can be found. An application to the upper bound of the Hausdorff dimension is new.

Section 9.1. Non-additive measures naturally appear in decision-making studies and utility
theory in economics, see Gilboa and Schmeidler [196] and Schmeidler [517]. In game theory,
a non-additive measure ϕ is called a game, see Shapley [535] and Delbaen [126], and it is
often denoted by v with its dual being u. A non-additive measure ϕ is sometimes called a
fuzzy measure, see Murofushi and Sugeno [420] and Sugeno, Narukawa and Murofushi [552].
Couso, Montes and Gil [106] studied the convergence of Choquet integrals with respect to
non-additive measures.

The Jordan decomposition of a non-additive measure (9.3) was described by Gilboa and
Schmeidler [196]. The decomposition (9.4) and the corresponding Jordan decomposition for
the infinite case is due to Gilboa and Schmeidler [197].

Another definition of the coherent set-functions can be found in de Cooman and Aeyels [104].
Symmetric coherent capacities were studied by Kadane and Wasserman [285].

The integration and calculus with non-additive measures are discussed in detail by
Denneberg [135]. A representation theorem for comonotonic additive functionals is due to
Schmeidler [516], another variant is described in Sugeno, Narukawa and Murofushi [552].
Sugeno [551] and Ralescu and Adams [473] introduced the integral with respect to non-
additive measures and studied its convergence properties.

The weak convergence of non-additive measures was studied by Girotto and Holzer [203].
The weak convergence can be defined by means of convergence of the corresponding integrals,
see Wang and Li [593]. Jang and Kwon [280] studied Choquet integrals of set-valued func-
tions defined using selections. The Choquet integral is systematically studied by König [324]
under the name of a horizontal integral. A generalisation of the Choquet integral (the so-called
p-integral) is defined in Gerritse [188] as the Choquet integral of f p with respect to ϕ p sub-
sequently raised to the power 1/p. Gerritse [188] described an application of these integrals to
the theory of large deviations. Laws of large numbers with respect to non-additive probabilities
have been considered by Marinacci [377].

A function on E with values in an abstract set W is called an act with W being a set
of possible consequences. A real-valued functional u on W is called an utility function. If a
non-additive measure describes uncertainty, then the Choquet integral of u( f (·)) with respect
to a non-additive measure describes a quality of the decision taken and decisions are made as
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to maximise the Choquet expected utility. The corresponding order on the family of acts was
investigated by Dyckerhoff and Mosler [151]. On the other hand, Schmeidler [517] showed
that natural ordering axioms imply that the expected utility is given by the Choquet integral.

Relationships to the updating rules in Bayesian statistics and the theory of evidence are
discussed by Gilboa and Schmeidler [195]. The Radon–Nikodym theorem for non-additive
measures on finite spaces is proved by Gilboa and Schmeidler [196].

Non-monotonic set-functions were considered by Aumann and Shapley [32].

Section 9.2. The basic text on belief functions is G. Shafer’s book Mathematical Theory of
Evidence [533] that deals mostly with the case of a finite E. The infinite case was considered
by Shafer [534] where it is shown that belief functions can be represented as allocations of
probability satisfying more specific requirements if the continuity assumption (or more re-
strictive condensability assumption) holds. Belief functions are often defined on a family of
sets that is not necessarily an algebra, but only closed under finite intersections and contains
E.

The representation of continuous belief functions given by (9.7) goes back to Cho-
quet [98], see also Huneycutt [270] and Revuz [486]. Applications of belief functions to sta-
tistical inference are surveyed by Walley [590, 591].

Relationships with random closed sets have been noticed first by Dempster [133] and
further developed by Nguyen [426]. Since belief functions generalise probability measures, it
is more typical to define them on subsets of the space Ω of elementary events rather than E.
With such an interpretation, the Choquet integral is defined for random variables (functions on
Ω) and so extends the concept of expectation of random variables for non-additive measures.
Condensable belief functions have been introduced by Nguyen [426].

Gilboa and Lehrer [194] show that every completely monotone game (belief function)
defined on a finite algebra can be represented as a linear combination of unanimity games.
If the belief function corresponds to a random closed set X , then the coefficient before the
unanimity game uK in the representation is equal to the probability P(K ) = P {X = K }. The
Choquet integral of f with respect to a belief function becomes

∑
K⊂E P(K ) inf f (K ) and

is equal to the infimum of integrals with respect to measures that dominate it. This fact was
obtained by Wasserman [598] and also noticed by a number of other authors, see Gilboa and
Schmeidler [196].

The Dempster rule of combination is described by Dempster [134], see also Shafer [533].
An axiomatic approach leading to (9.9) was described by Gilboa and Schmeidler [195, 196].
Using signed measures as distributions of random sets, Kramosil [329] considered the inver-
sion problem for belief functions.

Section 9.3. Upper and lower probabilities generated by a multivalued mapping (random set)
as the capacity and containment functionals have been considered by Dempster [133]. Wal-
ley [591] provides a comprehensive account of various issues related to upper/lower probabil-
ities and their various applications in statistics. The upper and lower probabilities have been
used in the Bayesian decision theory by Wolfenson and Fine [611]. Within this context, upper
and lower probabilities can be used to represent indeterminacy when assigning a prior distri-
bution in Bayesian statistics. The interval [u(A), v(A)] is also useful in interval computations
where interval probabilities represent uncertainty. Completely monotone lower probabilities
(i.e. containment functionals within the random sets framework) and their applications in de-
cision making have been studied by Philippe, Debbs and Jaffray [456]. They also studied the
m-closed families of probability measures.

As shown by Grize and Fine [211] and Papamarcou and Fine [450], it is possible to
use (undominated) upper and lower probabilities to justify divergence of time averages ob-
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served for some stationary time series and unexplainable within the conventional probability
framework. Domination properties for lower probabilities were studied by Papamarcou and
Fine [449] and Fine [171].

In the capital investment, the interval between the lower and upper expectations (integrals)
represents the passive interval, so that no action is required if the current price belongs to
it, see Heilpern [230]. The concept of an unambiguous event can be generalised to define
unambiguous functions. Families of measures that yield symmetric upper expectations have
been characterised by Wasserman and Kadane [601] as those being closed with respect to a
sort of a majorisation relation.

The fact that a strongly subadditive capacity coincides with the upper envelope for the
family of measures that it dominates goes back to Choquet [98] and Strassen [549]. A full
characterisation of upper envelopes in terms of an appropriately strengthened subadditivity
property was obtained by Anger and Lembcke [9], see also Adamski [2] and Krätschmer [330].
What we call here upper (lower) envelopes are often called upper (lower) probabilities or
coherent upper (lower) probabilities, see Kadane and Wasserman [285]. A characterisation of
the supremum/infimum of a family of integrals (in application to asset pricing) is given in
Chateauneuf, Kast and Lapied [95] where further references may be found.

Proposition 9.7 is due to Marinacci [378].

Section 9.4. The Neyman–Pearson lemma for 2-alternating capacities was proved by Huber
and Strassen [268] and also explained in P.J. Huber’s book Robust Statistics [267]. Buja [82]
showed that it is possible to replace a rather restrictive condition v(Fn) ↓ v(F) for closed
Fn ↓ F by v(An) ↓ v(A) for Borel An ↓ A �= ∅, An essential feature of this change is that it
allows the contamination to concentrate in arbitrarily small non-empty sets, such that only the
empty set escapes the possibility of hosting contamination.

The Neyman–Pearson lemma for “special capacities” that are superpositions of probabil-
ity measures and concave functions was obtained by Bednarski [55] and Rieder [489] who
elaborated some explicit ways of constructing the Radon–Nikodym derivative instead of just
establishing its existence.

In the context of Bayesian inference, the intervals of measures have been used by DeR-
obertis and Hartigan [137]. An approach to robust Bayesian inference based on families of pri-
ors was developed by Berger [63] and Berger and Berliner [62]. It differs from the approach of
Walley [591] where the lower probabilities rather than the sets of probabilities are of primary
importance. The current presentation follows Wasserman [598, 599]. Similar results in the
discrete case concerning envelopes of Bayesian updates of probabilities that dominate a given
belief function are discussed by Jaffray [277]. A generalisation of (9.11) for general envelopes
of measures and, in particular, for 2-alternating capacities was obtained by Wasserman and
Kadane [600].
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Expectations of Random Sets

1 The selection expectation

The space F of closed sets (and also the space K of compact sets) is non-linear, so
that conventional concepts of expectations in linear spaces are not directly applica-
ble for random closed (or compact) sets. Sets have different features (that often are
difficult to express numerically) and particular definitions of expectations highlight
various features important in the chosen context.

To explain that an expectation of a random closed (or compact) set is not straight-
forward to define, consider a random closed set X which equals [0, 1] with proba-
bility 1/2 and otherwise is {0, 1}. For another example, let X be a triangle with
probability 1/2 and a disk otherwise. A “reasonable” expectation in either example
is not easy to define. Strictly speaking, the definition of the expectation depends on
what the objective is, which features of random sets are important to average and
which are possible to neglect.

This section deals with the selection expectation (also called the Aumann ex-
pectation), which is the best investigated concept of expectation for random sets.
Since many results can be naturally formulated for random closed sets in Banach
spaces, we assume that E is a separable Banach space unless stated otherwise. Spe-
cial features inherent to expectations of random closed sets in Rd will be highlighted
throughout. To avoid unnecessary complications, it is always assumed that all ran-
dom closed sets are almost surely non-empty.

1.1 Integrable selections

The key idea in the definition of the selection expectation is to represent a random
closed set as a family of its integrable selections. The concept of a selection of a
random closed set was introduced in Definition 1.2.2. While properties of selections
discussed in Section 1.2.1 can be formulated without assuming a linear structure on
E, now we discuss further features of random selections with the key issue being
their integrability. We systematically use the Bochner expectation (see Vakhaniya,
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Tarieladze and Chobanyan [568]) in the space E, so that Eξ denotes the Bochner
expectation of an E-valued random element ξ . If E = Rd , then the Bochner expec-
tation of the random vector ξ = (ξ1, . . . , ξd ) is the vector Eξ = (Eξ1, . . . ,Eξd ) of
coordinate expectations.

Fix a complete probability space (Ω,F,P). Let Lp = Lp(Ω;E) denote the
space of random elements with values in E such that the Lp-norm

‖ξ‖p = E‖ξ‖p

for p ∈ [1,∞) or the L∞-norm

‖ξ‖∞ = E ess sup
ω∈Ω

ξ(ω)

is finite. We treat Lp as a normed linear space whose strong topology is generated
by the norm. The weak topology corresponds to the weak convergence of random
variables and gives rise to the concepts of weak closure, weak compactness, etc.

Definition 1.1 (p-integrable selections). If X is a random closed set in E, then
S p(X), 1 ≤ p ≤ ∞, denotes the family of all selections of X from Lp , so that

S p(X) = S(X) ∩ Lp ,

where S(X) denotes the family of all (measurable) selections of X . In particular,
S1(X) is the family of integrable selections.

The following proposition establishes elementary properties of integrable selec-
tions.

Proposition 1.2. If X is a random closed set in E, then, for any p ∈ [1,∞],
(i) S p(X) is a closed subset of Lp;

(ii) if S p(X) �= ∅, then there exists a sequence {ξn, n ≥ 1} ⊂ S p(X) such that
X = cl{ξn, n ≥ 1};

(iii) if S p(X) = S p(Y ) �= ∅, then X = Y almost surely.

Proof.
(i) If ξn → ξ in Lp , then there is a subsequence {n(k), k ≥ 1} such that ξn(k) → ξ

a.s., so that ξ ∈ S p(X).
(ii) By Theorem 1.2.3, there exists a sequence {ξn, n ≥ 1} of (not necessarily inte-
grable) selections such that X = cl{ξn, n ≥ 1}. For a fixed ξ ∈ S p(X) define

ξ ′nm = 1‖ξn‖∈[m−1,m)ξn + 1‖ξn‖/∈[m−1,m)ξ ,

which belongs to S p(X). Then X = cl{ξ ′nm , n,m ≥ 1}.
(iii) immediately follows from (ii). ��

The following useful lemma says that one can fix a countable family of selections
such that every other selection can be approximated using selections from the chosen
family.
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Lemma 1.3 (Approximation by step-functions). Let {ξn, n ≥ 1} ⊂ S p(X) with
1 ≤ p < ∞ such that X = cl{ξn, n ≥ 1}. Then, for each ξ ∈ S p(X) and ε > 0,
there exists a finite measurable partition A1, . . . , An of Ω such that

∥∥∥ξ − n∑
i=1

1Ai ξi

∥∥∥
p
< ε .

Proof. Without loss of generality assume that ξ(ω) ∈ X (ω) for all ω. Fix a positive
random variable α such that Eα < εp/3. Then there exists a countable measurable
partition {Bn, n ≥ 1} of Ω such that ‖ξ(ω) − ξi (ω)‖ < α(ω) for all ω ∈ Bi , i ≥ 1.
Pick n such that

∞∑
i=n+1

E
(
1Bi‖ξ‖p) < 1

3
(ε/2)p and

∞∑
i=n+1

E
(
1Bi‖ξ1‖p) < 1

3
(ε/2)p .

Define
A1 = B1 ∪ (∪∞i=n+1 Bi ) and Ai = Bi , 2 ≤ i ≤ n .

Then ∥∥∥ξ − n∑
i=1

1Ai ξi

∥∥∥p

p
=

n∑
i=1

E
(
1Bi‖ξ − ξi‖p)+ n∑

i=n+1

E
(
1Bi‖ξ − ξ1‖p)

≤ Eα +
n∑

i=n+1

E1Bi (‖ξ‖p + ‖ξi‖p) < ε p . ��

The following results establish relationships between families of integrable se-
lections and operations with random closed sets.

Proposition 1.4. Let X = cl(X1 + X2). If both S p(X1) and S p(X2) are non-empty
with 1 ≤ p <∞, then

S p(X) = cl(S p(X1)+ S p(X2)) ,

the closure and Minkowski sum in the right-hand side taken in Lp .

Proof. By Proposition 1.2(ii), Xi = cl{ξin , n ≥ 1} for {ξin, n ≥ 1} ⊂ S p(Xi ),
i = 1, 2. Then X = cl{ξ1i + ξ2 j , i, j ≥ 1}. By Lemma 1.3, each ξ ∈ S p(X) can be
approximated by

∑n
k=1 1Ak (ξ1ik + ξ2 jk ), whence S p(X) ⊂ cl(S p(X1) + S p(X2)).

The reverse inclusion is evident. ��

Proposition 1.5. Let X be a random closed set. If S p(X) �= ∅ with 1 ≤ p < ∞,
then S p(co (X)) = co (S p(X)), the closed convex hull in the right-hand side taken
in Lp . Furthermore, S p(X) is convex in Lp if and only if X is almost surely convex.
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Proof. Since S p(co (X)) is a convex closed subset of Lp , S p(co (X)) ⊃ co (S p(X)).
To prove the converse, take {ξi , i ≥ 1} ⊂ S p(X) such that X = cl{ξi , i ≥ 1}. The
set Y of all finite convex combinations of {ξi , i ≥ 1} with rational coefficients is a
countable subset of S p(co (X)) and co (X) = cl(Y ). Each ξ ∈ S p(co (X)) can be
approximated by

∑
1Ak ηk with {ηk, k ≥ 1} ⊂ Y , which turns into a convex combi-

nation of selections from S p(X). Thus, ξ ∈ co (S p(X)). The last statement follows
from Proposition 1.2(iii). ��

The following theorem characterises closed subsets of Lp that can be represented
as S p(X) for a random closed set X . A subset Ξ ⊂ Lp is called decomposable if,
for any ξ1, ξ2 ∈ Ξ and A ∈ F, we have 1Aξ1 + 1Ω\Aξ2 ∈ Ξ . This further implies∑

1Ai ξi ∈ Ξ for all measurable partitions A1, . . . , An of Ω and ξ1, . . . , ξn ∈ Ξ .

Theorem 1.6 (Decomposable sets and selections). Let Ξ be a non-empty closed
subset of Lp , 1 ≤ p ≤ ∞. Then Ξ = S p(X) for a random closed set X if and only
if Ξ is decomposable.

Proof. Clearly, S p(X) is closed and decomposable. Let Ξ �= ∅ be a closed decom-
posable subset of Lp for 1 ≤ p <∞. Choose a sequence {ξi , i ≥ 1} ⊂ Lp which is
dense in E for all ω. For each i ≥ 1, choose {ηi j , j ≥ 1} ⊂ Ξ such that

‖ξi − ηi j ‖p → αi = inf
η∈Ξ ‖ξi − η‖p as j →∞ . (1.1)

Define X = cl{ηi j , i, j ≥ 1} with the aim of showing that Ξ = S p(X). By
Lemma 1.3, for each ξ ∈ S p(X) and ε > 0, there exists a measurable partition
A1, . . . , An of Ω and ξ ′1, . . . , ξ ′n ∈ {ηi j , i, j ≥ 1} such that∥∥∥ξ −∑ 1Ak ξ

′
k

∥∥∥
p
< ε .

Since
∑

1Ak ξ
′
k ∈ Ξ , we obtain that ξ ∈ Ξ , so that S p(X) ⊂ Ξ .

Suppose that there exists ξ ∈ Ξ such that

inf
i, j≥1

‖ξ(ω)− ηi j (ω)‖p ≥ δ > 0

for ω ∈ A with P(A) > 0. Fix i such that

B = A ∩ {ω : ‖ξ(ω)− ξi (ω)‖ < δ/3}
has a positive probability and let η′j = 1Bξ + 1Ω\Bηi j for j ≥ 1. Then η′j ∈ Ξ for
j ≥ 1. Since

‖ξi − ηi j ‖ ≥ ‖ξ − ηi j ‖ − ‖ξ − ξi‖ ≥ 2δ/3 , ω ∈ B ,

condition (1.1) implies
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‖ξi − ηi j ‖p
p − α

p
i ≥ ‖ξi − ηi j ‖p

p − ‖ξi − η′j‖p
p

= E
[
1B(‖ξi − ηi j ‖p

p − ‖ξi − ξ‖p
p)
]

≥ ((2δ/3)p − (δ/3)p)P(B) > 0 .

Letting j →∞ leads to a contradiction.
Now consider the case p = ∞. Let Ξ ′ be the closure of Ξ taken in L1. Since

Ξ ′ is decomposable, Ξ ′ = S1(X) for a random closed set X . Let us prove that
Ξ = S∞(X). For each ξ ∈ S∞(X) choose a sequence {ξn, n ≥ 1} ⊂ Ξ such that
‖ξn − ξ‖1 → 0 and ξn → ξ a.s. If α > ‖ξ‖∞, then ηn = 1ξn<αξn + 1ξn≥αξ1
converges to ξ in L∞, whence ξ ∈ Ξ . ��

The following theorem establishes a necessary and sufficient condition for the
existence of integrable selections.

Theorem 1.7 (Existence of integrable selection). For each p ∈ [1,∞], the family
S p(X) is non-empty if and only if the random variable

α = inf{‖x‖ : x ∈ X} = ρ(0, X) (1.2)

belongs to Lp(Ω;R), i.e. Eα p < ∞ if p ∈ [1,∞) or α is essentially bounded if
p = ∞.

Proof. Since the event {α > r} = {X ∩ Br (0) = ∅} is measurable by Theorem 1.2.3,
α is a random variable. Then Y = {x : ‖x‖ = α} is a random closed set. By
Theorem 1.2.25, X ∩ Y is a random closed set, which is almost surely non-empty by
construction. Then there exists a selection ξ of X ∩ Y which is also a selection of X .
Finally, ξ ∈ Lp , since ‖ξ‖ = α ∈ Lp(Ω;R). ��

It is often useful to construct selections measurable with respect to the minimal σ -
algebra FX generated by X . It is easy to see that α defined by (1.2) is FX -measurable.
Then Y = {x : ‖x‖ = α} is FX -measurable, so that X ∩ Y possesses at least one
FX -measurable selection. This leads to the following result.

Proposition 1.8 (FX -measurable selections). Let p ∈ [1,∞]. If S p(X) is non-
empty, then there exists an FX -measurable selection ξ ∈ S p(X).

Two identically distributed random sets may have different families of distribu-
tions of random selections. However, it is possible to extract identically distributed
selections from identically distributed sets using their minimal generated σ -algebras
(or the canonical representations of random sets). Although the following proposi-
tion is formulated in the Euclidean space, an appropriate generalisation for infinite-
dimensional Banach spaces holds.

Proposition 1.9. For each closed set F ⊂ Rd define F0 to be the set of all x ∈ F
such that ‖x‖ ≤ ‖y‖ for all y ∈ F . Let e(F) be the lexicographical minimum of
F0.
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(i) If X a random set in Rd , then e(X) is FX -measurable. If S p(X) �= ∅ for p ∈
[1,∞], then e(X) ∈ S p(X).

(ii) Let {Xn, n ≥ 1} be a sequence of i.i.d. random closed sets in Rd . Then there
exists a sequence {ξn, n ≥ 1} of i.i.d. random selections of the corresponding
random closed sets. If S p(X1) �= ∅, then ξn can be chosen from S p(Xn), n ≥ 1.

Proof.
(i) is a direct implication of Proposition 1.8.

(ii) Define ξn(ω) = e(Xn(ω)) and use (i). ��
Representations of random closed sets through the families of their selections are

helpful to characterise lower bounds for integral functionals. The probability space
(Ω,F,P) is assumed to be complete. Let ζx (ω) be a function defined for x ∈ E
and ω ∈ Ω with values in the extended real line R̄ = [−∞,∞]. Assume that ζ is
measurable with respect to F⊗B(R̄) being the product of F and the Borel σ -algebra
on R̄. Then ζ is a stochastic process on E with values in the extended real line. For a
random E-valued random element ξ consider Eζξ , allowing for possible values±∞.
Note that additive functionals on Lp can be represented as Eζξ , see Theorem 5.3.19.
The following result can be proved using the Castaing representation of a random
closed set, see Hiai and Umegaki [255, Th. 2.2].

Theorem 1.10 (Infimum for integral functionals). Assume that the function ζx (ω)

defined for x from a separable Banach space E is upper semicontinuous for every
ω ∈ Ω or lower semicontinuous for every ω ∈ Ω .
(i) If X is a random closed set, then inf{ζx : x ∈ X} is a random variable.

(ii) If, additionally, S p(X) �= ∅, Eζξ is defined for all ξ ∈ S p(X) and Eζη < ∞
for at least one η ∈ S p(X), then

inf
ξ∈S p(X)

Eζξ = E inf
x∈X

ζx . (1.3)

Theorem 1.10(i) strengthens the first assertion of Theorem 1.2.27. For example,
if ζx(ω) = ‖x‖, then (1.3) yields

inf
ξ∈S1(X)

E‖ξ‖ = E inf
x∈X

‖x‖ .

1.2 The selection expectation

Integrable random sets

Let X be a random closed set in a separable Banach space E.

Definition 1.11 (Integrable random sets).
(i) A random closed set X is called integrably bounded if

‖X‖ = sup{‖x‖ : x ∈ X}
has a finite expectation.
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(ii) A random closed set is called integrable if S1(X) �= ∅.

Example 1.1.3(i) demonstrates that ‖X‖ is a random variable. Clearly, an inte-
grably bounded random closed set X is integrable. Moreover, since ‖ξ‖ ≤ ‖X‖,
all selections of X are integrable. If E is locally compact, the integrability of ‖X‖
implies that X is a random compact set, while if E is infinite-dimensional, then an
integrably bounded random closed set is almost surely bounded but not necessarily
compact. Furthermore, integrable random closed sets may be unbounded and so are
not necessarily integrably bounded.

Definition 1.12 (Selection expectation). The selection expectation of X is the clo-
sure of the set of all expectations of integrable selections, i.e.

EX = cl{Eξ : ξ ∈ S1(X)} . (1.4)

The selection expectation of X will be sometimes denoted by EA X , where con-
fusion with other definitions of expectations (introduced later) may occur. It is also
often called the Aumann expectation. If A ⊂ Ω is measurable, define

E(1A X) = cl{E(1Aξ) : ξ ∈ S1(X)} .
Definition 1.13 (Aumann integral). The Aumann integral of X is defined as

EI X = {Eξ : ξ ∈ S1(X)} . (1.5)

Theorem 1.24 provides some conditions which ensure that EI X = EX , while, in
general, EI X is not always closed.

Example 1.14 (Selections of deterministic set). The family of all selections de-
pends on the structure of the underlying probability space. For instance, consider
a random set X which equals {0, 1} almost surely. Then all selections of X can be
obtained as

ξ(ω) =
{

0 , ω ∈ Ω1 ,

1 , ω ∈ Ω2 ,

for all measurable partitions Ω = Ω1 ∪Ω2 of Ω into two disjoint sets. Since Eξ =
P(Ω2), the range of expectations of selections depends on the atomic structure of the
underlying probability space. If the probability space has no atoms, then the possible
values for P(Ω2) fill in the whole segment [0, 1].

Example 1.14 explains that two identically distributed random sets may have
different selection expectations. Let Ω ′ = {ω} be a single-point probability space
and Ω ′′ = [0, 1] with its Borel σ -algebra. Define two random sets on these spaces:
X1(ω) = {0, 1} for ω ∈ Ω ′, and X2(ω) = {0, 1} for all ω ∈ Ω ′′. Then X1 and X2
have the same distribution (in fact, both sets are deterministic), but EX1 = {0, 1},
while EX2 = [0, 1]. The main difference between Ω ′ and Ω ′′ is that Ω ′′ is not
atomic. Note that Ω ′ provides the so-called reduced representation of X1, since the
σ -algebra on Ω ′ coincides with the minimal σ -algebra generated by X1.



152 2 Expectations of Random Sets

Convexification

The following theorem establishes an important fact that on non-atomic probability
spaces the expectation EX is convex and coincides with the expectation of the convex
hull of X . It is instructive to give two formulations and proofs of this result: one for
integrably bounded random closed sets in the Euclidean space E = Rd and the other
for random closed sets in a separable Banach space.

Theorem 1.15 (Convexification in Rd ). Let E = Rd . If the basic probability space
(Ω,F,P) contains no atoms and X is an integrably bounded random compact set,
then EX and EI X are convex, EI X = EI co(X) and EX = E co(X).

Proof. The proof is based on Lyapunov’s theorem for vector measures. Lyapunov’s
theorem states that if µ1, . . . , µd are finite non-atomic measures on Ω , then the range
of the vector measure µ = (µ1, . . . , µd) is a convex closed set in Rd . Without loss
of generality all µi can be considered probability measures. In probabilistic terms,
Lyapunov’s theorem is equivalent to the statement that, for each random variable ξ

with 0 ≤ ξ ≤ 1 a.s., there exists a measurable set Ω ′ such that∫
Ω

ξ(ω)µ(dω) = µ(Ω ′) = (µ1(Ω
′), . . . , µd (Ω

′)) . (1.6)

From (1.6) we get ∫
Ω

ξ(ω)η(ω)µ(dω) =
∫
Ω ′

η(ω)µ(dω) (1.7)

first for an indicator random variable η and then for all integrable random variables.
Returning to Theorem 1.15, note that the convexity of EX and EI X would follow

from the equality EI X = EI co(X). To see this, it suffices to note that the closure of a
convex set is convex and to apply the second part of Theorem 1.15 to the random set
{ξ1, ξ2} for two arbitrary integrable selections ξ1 and ξ2 of X . Below we will prove
that EI X = EI co(X).

First, prove that every selection ζ of co(X) can be represented as

ζ =
k∑

i=1

αiξi , (1.8)

where k ≤ d + 1, αi are non-negative random variables such that
∑

αi = 1 a.s. and
ξi are selections of X , i = 1, . . . , k. Define

S = {α = (α1, . . . , αd+1) ∈ Rd+1 : αi ≥ 0,
∑

αi = 1} ,

g(α, x1, . . . , xd+1) =
d+1∑
i=1

αi xi .

Then
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Y = {(α, x1, . . . , xd+1) ∈ S × X × · · · × X : g(α, x1, . . . , xd+1) = ζ }
is a non-empty random closed set. Thus, there exists its selection (α, ξ1, . . . , ξd ) with
α = (α1, . . . , αd+1) which satisfies (1.8).

Second, prove Theorem 1.15 for a finite random set X = {ξ1, . . . , ξm }. For this,
we use induction with respect to m. The first step (for m = 1) is evident. Assume that
the statement holds for m = k − 1 and prove it for m = k. If Y = {ξ2, . . . , ξk}, then
co(X) = co(Y ∪{ξ1}), so that each measurable selection of co(X) can be represented
as

ξ = αξ1 + (1− α)η = η + α(ξ1 − η) ,

where η is a selection of co(Y ) and 0 ≤ α ≤ 1. If x ∈ EI co(X), then x = Eξ for a
selection ξ . By (1.7), there exists a measurable set Ω ′ such that

Eα(ξ1 − η) = E1Ω ′(ξ1 − η) .

Thus, x = E1Ω ′ξ1 + E1Ω\Ω ′η. Note that Y can be considered a random set on the
probability space Ω \ Ω ′. By the induction assumption, there exists a measurable
selection ζ of Y such that E1Ω\Ω ′η = E1Ω\Ω ′ζ . Then ξ ′ = ξ11Ω ′ + ζ1Ω\Ω ′ is a
measurable selection of X and Eξ ′ = x .

Finally, we prove that EI X = EI co(X) for a general integrably bounded random
closed set X . Let x = Eζ , where ζ ∈ co(X) a.s. By (1.8), ζ =∑k

i=1 αiξi . Consider
the set Y = {ξ1, . . . , ξk}. Obviously, EIY ⊂ EI X and ζ ∈ co(Y ). But EIY =
EI co(Y ), so that x ∈ EI co(Y ) ⊂ EI X . Thus, EI co(X) ⊂ EI X . The reverse inclusion
is obvious. ��

Theorem 1.16 (Convexification in Banach space). Let E be a separable Banach
space. If (Ω,F,P) has no atoms and X is an integrable random closed set, then EX
is convex.

Proof. It suffices to show that for any two integrable selections ξ1, ξ2 ∈ S1(X), any
ε > 0 and α ∈ [0, 1], there exists η ∈ S1(X) such that

‖αEξ1 + (1− α)Eξ2 − Eη‖ < ε . (1.9)

Define an E× E-valued measure λ by

λ(A) = (E(1Aξ1),E(1Aξ2)) , A ∈ F .

A generalisation of Lyapunov’s theorem for vector-valued measures [567] implies
that the closure of the range of λ is convex in E × E. Since λ(∅) = (0, 0) and
λ(Ω) = (Eξ1,Eξ2), there exists an A ∈ F such that

‖αEξi − E(1Aξi )‖ < ε/2 , i = 1, 2 .

Taking η = 1Aξ1 + 1Ω\Aξ2 we get a selection of X which satisfies (1.9). ��
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It is easy to see that Theorem 1.16 holds if the probability space has atoms, but
X takes convex values on the atoms of Ω . The following theorem establishes further
properties of the selection expectation. They do not require that the probability space
is non-atomic.

Theorem 1.17 (Properties of selection expectation). Let X and Y be two integrable
random closed sets in a Banach space. Then
(i) ρH(EX,EY ) ≤ EρH(X,Y ), where ρH is the Hausdorff metric (possibly infi-

nite) generated by the norm on E.
(ii) Eco (X + Y ) = co (EX + EY ).
(iii) Eco (X) = co (EX). If (Ω,F,P) contains no atom, then Eco (X) = EX .

Proof. Note that (i) follows from

inf
η∈S1(Y )

‖Eξ − Eη‖ ≤ inf
η∈S1(Y )

E‖ξ − η‖ = Eρ(ξ,Y )

≤ EρH(X,Y ) ,

where the equality is provided by Theorem 1.10. For (ii) and (iii) similar arguments
furnish the proofs. The final part of (iii) refers to Theorem 1.16. ��

Theorem 1.17(iii) can be strengthened to co(EI X) = EI co(X), which holds if
X is an integrable random closed set in Rd and co(EI X) does not contain a line, see
Artstein and Wets [24].

Properties of selections

The following proposition characterises selections and distributions of random closed
sets in terms of their selection expectations. Recall that a bounded random closed set
X is said to be Hausdorff approximable if X is an almost sure limit (in the Hausdorff
metric) of a sequence of simple random closed sets, see Section 1.2.1.

Proposition 1.18 (Distributions of random sets in terms of their selection ex-
pectations). Let X and Y be Hausdorff approximable integrably bounded random
convex closed sets.
(i) A random element ξ is an integrable selection of X if and only if E(1Aξ) ∈

E(1A X) for all A ∈ F. If the dual space E∗ is separable, then the statement
holds for each integrably bounded random closed set X without assuming that
X is Hausdorff approximable.

(ii) X = Y a.s. if and only if E(1A X) = E(1AY ) for all A ∈ F.

Proof. Since X is Hausdorff approximable, it is possible to choose a null-set Ω ′ (i.e.
P(Ω ′) = 0) and a sequence {Fi , i ≥ 1} ⊂ coF such that {Fi , i ≥ 1} is dense
(in the Hausdorff metric) in the set {X (ω) : ω ∈ Ω \ Ω ′} of values of X . For
each i , let {yi j , j ≥ 1} be a countable dense subset of E \ Fi . For i, j ≥ 1, by the
separation theorem (see Dunford and Schwartz [148, Th. V.1.12]), there exists an
element ui j ∈ E∗ with ‖ui j ‖ = 1 such that
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〈yi j , ui j 〉 ≥ sup
y∈Fi

〈y, ui j 〉 .

Let U = {ui j , i, j ≥ 1}. Then for each ω ∈ Ω \Ω ′ we have x ∈ X (ω) if and only if

〈x, u〉 ≤ sup
y∈X (ω)

〈y, u〉 , u ∈ U .

Assume ξ /∈ S1(X). Then there exists a set A ∈ F of positive probability such that

〈ξ(ω), u〉 > sup
y∈X (ω)

〈y, u〉 , ω ∈ A ,

for some u ∈ U . By Theorem 1.10,

〈E1Aξ, u〉 = E (1A〈ξ, u〉) > E(1A sup
y∈X (ω)

〈y, u〉)

= sup
η∈S1(X)

E (1A〈η, u〉) = sup
x∈E(1A X)

〈x, u〉 ,

whence E(1Aξ) /∈ E(1A X). If E∗ is separable, then the above proof is applicable
with U being a countable sense subset of E∗. The second statement easily follows
from (i). ��

The following two theorems deal with the weak compactness of the set of inte-
grable selections of an integrably bounded random closed set.

Theorem 1.19 (Weak compactness of integrable selections). Let X be a bounded
random closed set in a reflexive Banach separable space E. Then the following con-
ditions are equivalent.
(i) X is an integrably bounded random convex closed set.

(ii) S1(X) is a non-empty bounded convex subset of L1.
(iii) S1(X) is non-empty weakly compact convex in L1.

Proof. Conditions (i) and (ii) are equivalent by Proposition 1.5; (ii) trivially follows
from (iii). The implication (i)⇒(iii) follows from the known fact (cf. Dunford and
Schwartz [148, Th. IV.8.9]) saying that Ξ ⊂ L1 is relatively weakly compact if Ξ

is bounded and the countable additivity of the integrals
∫

A ‖ f (ω)‖P(dω) is uniform
with respect to f ∈ Ξ . ��

It is shown in Papageorgiou [442] that S1(X) is a non-empty weakly compact
convex set if X is an integrably bounded weakly compact convex random set. The
following theorem is proved by Byrne [85].

Theorem 1.20 (Weak compactness for families of selections). Let X be a Haus-
dorff approximable integrably bounded random set with almost surely convex weakly
compact values. If {Xn, n ≥ 1} is a sequence of simple random sets with convex
weakly compact values such that Xn → X a.s., then S1(X) ∪ (∪n≥1S1(Xn)) is
weakly compact in L1.
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Debreu expectation

According to the Rȧdström embedding theorem (see Rȧdström [472]) coK can be
embedded as a convex cone in a real Banach space Y in such a way that the em-
bedding is isometric; addition in Y induces addition in coK; multiplication by non-
negative real numbers in Y induces the corresponding operation in coK. Then an
integrably bounded random convex compact set X corresponds to a random element
in Y which is Bochner integrable. Its Bochner expectation (in the space Y) can be
identified with an element of coK which is called the Debreu expectation of X and
denoted by EB X (the subscript “B” stands for the Bochner expectation in Y used
in this construction). A similar construction is applicable if X is a bounded random
convex closed set in a reflexive space E.

If X is Hausdorff approximable, then this construction corresponds to the expec-
tation defined as a limit of expectations of simple random sets Xn such that Xn → X
a.s. If Xn is a simple random convex closed set which takes values F1, . . . , Fk with
probabilities p1, . . . , pk , then the Debreu expectation of Xn is given by the weighted
Minkowski sum

EB Xn = cl(p1 F1 + · · · + pk Fk) ,

and EB X is the limit of EB Xn in the Hausdorff metric.

Theorem 1.21 (Debreu and selection expectations). Let X be an integrably bounded
random closed set. The Debreu expectation of X coincides with the selection expec-
tation of X if one of the following assumptions holds:
(i) X ∈ coK a.s.;

(ii) E is reflexive, X is Hausdorff approximable and a.s. convex;
(iii) X is Hausdorff approximable and a.s. weakly compact convex.

Proof.
(i) Since the image of coK is a closed convex cone in Y, EB X ∈ coK. If X

is simple, then by writing down all selections of X , it is easily seen that EX =
EB X . Note that each random convex compact set X is Hausdorff approximable, see
Theorem 1.2.11. Take a sequence {Xn, n ≥ 1} of simple random convex compact sets
such that EρH(Xn, X) → 0 as n → ∞. By Theorem 1.17(i), ρH(EXn,EX) → 0.
The definition of EB X implies ρH(EB Xn,EB X) → 0, whence EX = EB X . The
same arguments are applicable to prove (ii).
(iii) Let z ∈ EB X . Then there are zn ∈ EB Xn = EXn , n ≥ 1, such that zn → z.
Note that zn = Eξn with ξn ∈ S1(Xn). By Theorem 1.20, we may assume that
ξn converges weakly to ξ ∈ L1, whence Eξn → Eξ . It is easy to see that ξ is a
selection of X , whence EB X ⊂ EX . In the other direction, for each ξ ∈ S1(X) there
is a sequence {ξn, n ≥ 1} such that ξn ∈ S1(Xn) and ξn → ξ a.s., which implies
Eξ ∈ EB X and EX ⊂ EB X . ��

Theorem 1.21(i) implies that EX ∈ coK if X is an integrably bounded random
convex compact set.
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Selection expectation and support function

An embedding of the family of bounded convex closed sets into a Banach space
provided by the Hörmander embedding theorem (see Hörmander [264]) is realised
by support functions of random sets, see (F.1). Each random convex closed set X
corresponds uniquely to its support function h(X, u) which is a random function
on the dual space E∗. Note that h(X, u) ≤ ‖X‖‖u‖ for all u ∈ E∗. If E‖X‖ <

∞, then Eh(X, u) is finite for all u ∈ E∗. Support functions are characterised by
their sublinear property (homogeneity and subadditivity) which is kept after taking
expectation. Therefore, Eh(X, u), u ∈ E∗, is the support function of a convex set.
As the following theorem states, this fact leads to an equivalent definition of the
selection expectation if X is convex or if the probability space is non-atomic.

Theorem 1.22 (Selection expectation and support functions). If X is an integrably
bounded random set and X ∈ coF a.s. or the probability space (Ω,F,P) is non-
atomic, then the selection expectation of X is the unique convex closed set EX sat-
isfying

Eh(X, u) = h(EX, u) (1.10)

for all u from the dual space E∗.

Proof. In both cases EX is convex, so it suffices to consider only the case of a con-
vex X and show that EX satisfies (1.10). The proof can be provided by applying
Theorem 1.10 to ζx = −〈x, u〉. An alternative proof can be carried over as follows.

For each point x ∈ EX , there exist selections ξn ∈ S1(X), n ≥ 1, such that
Eξn → x as n →∞. Thus,

h({x}, u) = lim
n→∞〈Eξn , u〉 = lim

n→∞E〈ξn, u〉 ≤ Eh(X, u) , u ∈ E∗ .

Hence h(EX, u) ≤ Eh(X, u) for all u ∈ E∗.
For each u ∈ E∗ define

Yε = {x ∈ E : 〈x, u〉 ≥ h(X, u)− ε} , ε > 0 .

Then Yε∩ X is a non-empty random closed set, which possesses a selection ξε . Since
h(ξε, u) ≥ h(X, u)− ε, passing to expectations yields

Eh(X, u)− ε ≤ h({Eξε}, u) ≤ h(EX, u) .

Letting ε ↓ 0 finishes the proof. ��

Aumann integral

The Aumann integral EI X is defined in (1.5) similarly to Definition 1.12, but with-
out taking closure of the set of expectations of integrable selections. The following
examples show that the set EI X is not always closed, so that EI X may constitute a
proper subset of EX .
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Example 1.23 (Random sets with non-closed Aumann integrals).
(i) Let Ω = [0, 1] with the Lebesgue measure. Consider a random closed set

X (ω) = {0, 1[0,ω](t)} in the space of square integrable functions on [0, 1]. Then

EI X =
⎧⎨⎩

1∫
0

η(ω)1[0,ω](t)dω : η(ω) = 0, 1

⎫⎬⎭ =
⎧⎨⎩

1∫
t

1A(ω)dω : A ∈ B([0, 1])
⎫⎬⎭ ,

while

EX = Eco (X) ⊃ EIco (X) =
⎧⎨⎩

1∫
t

α(ω)dω : 0 ≤ α(ω) ≤ 1

⎫⎬⎭ , (1.11)

see Theorem 1.17(iii). Then x(t) = (1− t)/2 appears in the right-hand side of (1.11)
if α(ω) = 1/2, while it cannot be obtained as

∫ 1
t 1A(ω)dω = µ(A ∩ [t, 1]) for all

Borel sets A. Thus, x belongs to EX , but x /∈ EI X .
(ii) Let E be a non-reflexive separable Banach space. Then there exist two disjoint
sets F1, F2 ∈ coF which cannot be separated by a hyperplane, so that inf{‖x1 −
x2‖ : x1 ∈ F1, x2 ∈ F2} = 0. Let X be equal to F1 with probability 1/2 and to
F̌2 = {−x : x ∈ F2} otherwise. Then EI X = {(x1 − x2)/2 : x1 ∈ F1, x2 ∈ F2} .
Since F1 and F2 are disjoint, 0 /∈ EI X , but 0 ∈ EX = cl(EI X).

In the following we describe several particular cases when EI X is closed and,
therefore, coincides with EX . The Banach space E is said to have the Radon–
Nikodym property if for each finite measure space (Ω,F, µ) and each E-valued mea-
sure λ on F which is of bounded variation and absolutely continuous with respect to
µ, there exists an integrable function f such that λ(A) = ∫A f dµ for all A ∈ F. It is
known that reflexive spaces have the Radon–Nikodym property.

Theorem 1.24 (Closedness of Aumann integral). Let X be an integrably bounded
random closed set. Then EI X is closed if one of the following conditions is satisfied.
(i) E is a finite-dimensional space.

(ii) E has the Radon–Nikodym property and X ∈ coK a.s.
(iii) E is reflexive and X ∈ coF a.s.
(iv) X is Hausdorff approximable with a.s. bounded weakly compact convex values.

Proof.
(i) follows from Fatou’s lemma in finite-dimensional spaces. Let Xn = X for all

n ≥ 1. Theorem 1.37 implies

EI X = EI lim sup Xn ⊃ lim sup EI Xn = cl(EI X) = EX ,

and hence EI X is closed.
(ii) Let {ξn, n ≥ 1} ⊂ S1(X) and ‖Eξn − x‖ → 0 for some x ∈ E. Consider
a countable algebra F0 ⊂ F such that X and all random elements {ξn, n ≥ 1} are
measurable with respect to the minimal σ -field σ(F0) generated by F0. For each
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A ∈ F0, E(1Aξn) ∈ E(1A X) = EB(1A(X)), the latter being a convex compact set.
Thus, {E(1Aξn), n ≥ 1} has a convergent subsequence. By the diagonal method,
there exists a sequence ηk = ξn(k), k ≥ 1, such that E(1Aηn) → λ(A) for every
A ∈ F0. Since ‖ηn‖ ≤ ‖X‖ a.s., it follows from [148, Lemma IV.8.8, Th. IV.10.6]
that the limit λ(A) exists for all A ∈ σ(F) and λ is an E-valued measure which is
of bounded variation and absolutely continuous with respect to P. By the Radon–
Nikodym property, there exists a σ(F0)-measurable function η ∈ L1 such that
λ(A) = ∫

A ηdP = E(1Aη) for all A ∈ σ(F0). Since E(1Aη) ∈ E(1A X), Propo-
sition 1.18(i) yields η ∈ S1(X), so that x = Eη ∈ EI X .
(iii) follows from Theorem 1.19 and the weak continuity of the mapping ξ �→ Eξ

from L1 to E.
(iv) is an immediate corollary of Theorem 1.20. ��

For further results along the same line, note that Fatou’s lemma for random closed
sets in Banach spaces (see Theorem 1.42) implies that EI X is closed in weak topol-
ogy. If X is an integrably bounded weakly compact convex random set, then EI X is
weakly compact and convex, see Klee [317]. Yannelis [619] showed that EI X = EX
if X is a random convex closed set such that X ⊂ Y a.s. with Y being an integrably
bounded weakly compact convex random set.

Open problem 1.25. Find conditions that guarantee EX = EI X in a general Banach
space E for possibly non-compact X .

Selection expectation in Rd

Let us summarise several facts inherent to the case when X is an integrably bounded
random compact set in the Euclidean space.

Theorem 1.26 (Selection expectation for random sets in Rd ). If X is an integrably
bounded random compact set in Rd , then

EX = {Eξ : ξ ∈ S1(X)}
is a compact set in Rd . If the basic probability space is non-atomic, then EX is
convex and coincides with E co(X), and

Eh(X, u) = h(EX, u) , u ∈ Sd−1 , (1.12)

which identifies EX uniquely from the family of convex compact sets. If X is almost
surely convex, then EX = EB X .

The mean width of a convex compact set is defined by (F.5). If X is a random
convex compact set in Rd , then (1.12) yields

Eb(X) = 2

ωd

∫
Sd−1

(Eh(X, u))Hd−1(du) = b(EX) .
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The same relationship holds for the first intrinsic volume V1(X) related to the mean
width by (F.8). Since in the plane the perimeter U(X) is 2V1(X), we obtain the
following result.

Proposition 1.27 (Expected perimeter). If X is an integrably bounded random com-
pact set in the plane, then the perimeter of EX equals the expected perimeter of X ,
i.e. EU(X) = U(EX). In a general dimension, the mean width of EX equals the
expected mean width of X .

1.3 Applications to characterisation of distributions

A famous characterisation result for order statistics due to Hoeffding [260] states
that if α1, α2, . . . are i.i.d. integrable random variables, then the distribution of α1 is
uniquely determined by the sequence E max(α1, . . . , αn), n ≥ 1. Below we describe
a generalisation for random elements in separable Banach spaces.

Theorem 1.28 (A characterisation of multivariate distributions). Let ξ, ξ1, ξ2, . . .

be i.i.d. Bochner integrable random elements in a separable Banach space. Then the
distribution of ξ is uniquely determined by the nested (increasing) sequence of con-
vex compact sets E co{ξ1, . . . , ξn}, n ≥ 1.

Proof. Put Xn = co{ξ1, . . . , ξn}. Then ‖Xn‖ ≤ max(‖ξ1‖, . . . , ‖ξn‖) ≤∑ ‖ξi‖, so
that E‖Xn‖ < ∞ for all n ≥ 1, which means that the Xn’s are integrably bounded.
Since Xn ⊂ Xn+1, {EXn, n ≥ 1} is an increasing (nested) sequence of convex
compact sets, see Theorem 1.21(i). For each u ∈ E∗,

h(EXn, u) = E max{〈ξ1, u〉, . . . , 〈ξn , u〉} .
By the one-dimensional Hoeffding theorem, the sequence {EXn, n ≥ 1} uniquely
determines the distribution of 〈ξ, u〉, which is the probability that ξ is contained in a
half-space. These probabilities determine uniquely the distribution of ξ . ��
Example 1.29 (Nested sequences of selection expectations).
(i) If ξ is a Gaussian random element in a Hilbert space E, then

EXn = γn{x ∈ E : 〈x, u〉 ≤ √Var〈ξ, u〉 for all u ∈ E∗} ,
where γn = E max(α1, . . . , αn) with α1, . . . , αn being i.i.d. standard normal random
variables. For instance, if ξ is a centred Gaussian vector in Rd with covariance matrix
A, then EXn = γn{Ap : p ∈ Rd , 〈p, Ap〉 ≤ 1}.
(ii) If E is the space of continuous functions on [0, 1] and ξ is the Wiener process,
then

EXn = γn

⎧⎨⎩ f ∈ E : f (t) =
t∫

0

y(s)ds,

1∫
0

y2(s)ds ≤ 1

⎫⎬⎭ .

The set EXn/γn appears in connection to the Wiener process as the unit ball of a
Hilbert space associated with an underlying measure and also in Strassen’s law of
the iterated logarithm.
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Now consider a result of another kind, which concerns the case when the selec-
tion expectation of X is degenerated.

Proposition 1.30. Assume that E∗ is separable.
(i) If X is integrable and EX = {x} for some x ∈ E, then X is a singleton almost

surely.
(ii) If X and Y are weakly compact convex random sets, X ⊂ Y a.s. and EX = EY ,

then X = Y a.s.

Proof.
(i) Take ξ ∈ S1(X) and define Y = X − ξ . Then EY = {0} and 0 ∈ Y almost

surely. By Theorem 1.17(iii), Eco (Y ) = {0}. Theorem 1.22 implies that Eh(Y, u) =
0 for all u ∈ E∗. Since h(Y, u) is non-negative almost surely, this implies h(Y, u) = 0
a.s., so that Y = {0} a.s.
(ii) is proved similarly. ��

1.4 Variants of the selection expectation

Reduced selection expectation

The convexifying property of the selection expectation is largely determined by the
richness of the σ -algebra F on the space of elementary events Ω . Let S1

H(X) be the
family of integrable selections of X which are measurable with respect to a sub-σ -
algebra H of F. Define

EHX = cl{Eξ : ξ ∈ S1
H(X)} . (1.13)

For example, if H = {∅,Ω} is the trivial σ -algebra, then EHX = {x : x ∈ X a.s.}
is the set of fixed points of X . This shows that S1

H(X) can be empty even if X is
integrably bounded.

A canonical sub-σ -algebra FX of F is generated by the random closed set X
itself. Considering EFX X reduces the convexifying effect of the selection expectation
if X takes a finite or a countable number of possible values. This is equivalent to
redefining X as a random closed set X  on the probability space being the space of
sets itself. If X is an integrable random closed set, then S1

FX
(X) is not empty by

Proposition 1.8.

Definition 1.31 (Reduced selection expectation). Let X be an integrable random
closed set. The reduced selection expectation of X is defined by EX  = EFX X .

Since S1
FX

(X) ⊂ S1(X),

EX  ⊂ EX . (1.14)

Therefore, EX  is the intersection of EY for all random closed sets Y sharing the
distribution with X . If X is a simple random closed set, which takes a finite number of
values F1, . . . , Fn with the corresponding probabilities p1, . . . , pn , then FX consists
of a finite number of events and
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EX  = cl(p1 F1 + p2F2 + · · · + pn Fn) , (1.15)

while if the basic probability space is non-atomic, then

EX = co (p1 F1 + p2 F2 + · · · + pn Fn) .

Note that (1.15) also holds if X takes a countable family of values with the finite
sum replaced by the sum of series. The inclusion in (1.14) can be strict if X takes
non-convex values on at least one atom of Ω .

Theorem 1.32. Let E be a separable Banach space.
(i) For each integrable random closed set X , co EX = co EX  .

(ii) Let X and Y be identically distributed integrable random closed sets. For
each integrable FX -measurable selection ξ of X there exists an integrable FY -
measurable selection η of Y such that ξ and η are identically distributed.

(iii) If X and Y are identically distributed and integrable, then EX  = EY  .
(iv) If S1

FX
(X) = S1

FY
(Y ) �= ∅, then X and Y are identically distributed.

Proof.
(i) Since co X is FX -measurable (see Section 1.2.1) we have (using the notation of

Section 1.6)
SFX (co X) = {E(ξ |FX ) : ξ ∈ S1(co X)} .

Proposition 1.5 implies S1(co X) = coS1(X) and S1
FX

(co X) = coS1
FX

(X). Hence

co EX = Eco X = cl{E(Eξ |FX )) : ξ ∈ S1(co X)}
= cl{E(ξ) : ξ ∈ S1

FX
(co X)} = co EX  .

(ii) Since E is separable and ξ is FX measurable, there exists a (B(F),B(E))-
measurable function Φ : F �→ E satisfying ξ(ω) = Φ(X (ω)) for every ω ∈ Ω . If
η = Φ(Y (ω)), then η and ξ are identically distributed. Furthermore,

E‖η‖ = E‖Φ(Y )‖ = E‖Φ(X)‖ = E‖ξ‖ <∞ .

Because the function (x, F) �→ ρ(x, F) = inf{‖x − y‖ : y ∈ F} is B(E)⊗B(F)-
measurable, ρ(ξ, X) and ρ(η,Y ) are identically distributed, whence ρ(η,Y ) = 0
almost surely. Thus, η is a selection of Y .
(iii) immediately follows from (ii).
(iv) Assume that P {X ∩ G �= ∅} > P {Y ∩ G �= ∅} for an open set G ∈ G. Follow-
ing the proof of Theorem 1.2.28 is is possible to see that G may be assumed to be
bounded. Consider a Castaing representation {ξn, n ≥ 1} of X whose members are
FX -measurable. Define events An = {ξn ∈ G}, n ≥ 1, and further events B1 = A1,
Bn = An \ (∪ j<n A j ), n ≥ 2. Fix ξ0 ∈ S1

FX
(X) and let

ξ =
∑
n≥1

1Bnξn + 1Aξ0 ,
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where A is the complement to ∪n≥1 An . Then ξ is an FX -measurable integrable se-
lection of X and ξ ∈ G whenever X ∩ G �= ∅. For any η ∈ S1

FY
(Y ) we then have

P {η ∈ G} ≤ P {Y ∩ G �= ∅} < P {X ∩ G �= ∅} = P {ξ ∈ G} ,
which shows that no such η shares the distribution with ξ . ��

Translative expectation

Random translations of X affect the shape of the reduced selection expectation. For
example, if X = {0, 1} is a deterministic subset of the real line and Y = X +
ξ for a random variable ξ uniformly distributed on [−1, 1], then EX  = {0, 1},
whereas EY  = [0, 1] �= EX  + Eξ = EX  . This happens because adding ξ makes
the relevant canonical σ -algebra FY non-atomic. A possible way to eliminate such
dependence is to consider the “smallest” possible expectation for all translations of
X .

Definition 1.33 (Translative expectation). For an integrable random compact set
X in Rd , its translative expectation is defined by

ET A =
⋂

E‖ξ‖<∞

(
E(X − ξ) + Eξ

)
, (1.16)

where the intersection is taken over all integrable random vectors ξ .

The following result shows that the intersection in the right-hand side of (1.16)
can be effectively computed using the special choice of translation given by its
Steiner point, s(X), see Appendix F. This is not possible in infinite-dimensional
spaces because an analogue of the Steiner point does not exist there, see Giné and
Hahn [200].

Theorem 1.34. Let X be an integrable random compact set in Rd . Then

ET X = E(X − s(X)) + Es(X) .

Proof. First, note that Es(X) = s(EX) by definition of the Steiner point (F.6). If X
and X ′ are two identically distributed integrable random sets, then s(X) and s(X ′)
are identically distributed, whence s(EX) = s(EX ′). Therefore, s(EX  ) = s(EX).

Define Y = X − s(X) and η = s(X)− ξ . It suffices to show that

EY  + Eη ⊂ E(Y + η) (1.17)

for each random compact set Y with s(Y ) = 0 a.s. and any integrable random vec-
tor η. If Y has no atoms, then the selection expectation of Y and (Y + η) and their
canonical representations coincide with the selection expectations of the correspond-
ing convex hulls, whence (1.17) holds with the exact equality.

If Y = K with probability 1 and η is atomic (takes values z1, z2, . . . with proba-
bilities p1, p2, . . . ), then (1.17) follows from the fact that
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K ⊂ p1K + p2K + · · · .
For the non-atomic part of η one can write

E(Y + η) = E co(Y + η) = EAY + Eη ,

whence (1.17) holds. The general cases of Y having an atomic or mixed distribution
are handled similarly. ��

Multivalued measures

The selection expectation of an integrably bounded random closed set X gives rise
to a multivalued (set-valued) measure on F. For each A ∈ F put

M(A) = E(1A X) .

Then M is a multivalued measure on Ω , which means that M(∅) = {0} and, for each
disjoint sequence of sets {An, n ≥ 1} ⊂ F,

cl M(∪n≥1 An) = cl
∑
n≥1

M(An) ,

where the latter sum is understood as the set of x =∑∞
n=1 xn given by the absolutely

convergent sum of xn ∈ M(An), n ≥ 1. The variation of M is defined as

|M|(A) = sup
n∑

i=1

‖M(Ai )‖ ,

where the supremum is taken over all measurable partitions A1, . . . , An of A ∈ F.
We say that M has a bounded variation if |M|(Ω) < ∞. The multivalued measure
M is called absolutely continuous with respect to P if P(A) = 0 for any A ∈ F
implies M(A) = {0}.

Theorem 1.35 (Convexity and representation of multivalued measures). Let
M : F �→ F be a multivalued measure on the space E having the Radon–Nikodym
property.
(i) If |M| is non-atomic, then M(A) is convex for every A ∈ F.

(ii) If M is absolutely continuous with respect to P, then there exists an integrably
bounded random closed set X such that M(A) = E(1A X) for all A ∈ F.

Proof. For (i) we refer to Godet-Thobie [205]. To prove (ii), consider all measures µ

such that µ(A) ∈ M(A) for all A ∈ F (then µ is called a selection of M). Then show
that µ(A) = E(1Aξ), A ∈ F, for some ξ ∈ L1, whence the set of the corresponding
ξ ’s is decomposable, so that the statement follows from Theorem 1.7. ��
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An integral of a real-valued function f with respect to a multivalued measure
M is defined as the set of integrals of f with respect to all measures µ being se-
lections of M . For multivalued measures with convex compact values, Hiai [254]
and Luu [361] provide necessary and sufficient conditions for the existence of the
multivalued Radon–Nikodym derivative.

Proposition 1.36. Let E∗ be separable. If M is a multivalued measure of bounded
variation with weakly compact values, which is absolutely continuous with respect
to P, then there is an integrably bounded random closed set X such that∫

α(ω)M(dω) = E(αX)

for every integrable real-valued random variable α.

1.5 Convergence of the selection expectations

Fatou’s lemma for bounded sets in Rd

Many results concerning the convergence of selection expectations deal with vari-
ous generalisations of Fatou’s lemma for random closed sets. First, consider Fatou’s
lemma for integrably bounded random closed sets in Rd . It is traditionally formu-
lated for the Aumann integral EI X since the effect of taking closure is quite intricate
in this setting.

Theorem 1.37 (Fatou’s lemma in Rd ). Let {Xn, n ≥ 1} be a sequence of random
compact sets in Rd such that α = supn≥1 ‖Xn‖ is integrable. Then

lim sup EI Xn ⊂ EI lim sup Xn . (1.18)

Proof. Assume first that the probability space is non-atomic. If x ∈ lim sup EI Xn ,
then x is a limit point of a sequence {Eξn, n ≥ 1}, where ξn ∈ S1(Xn), n ≥ 1.
Since ‖Eξn‖ ≤ E‖ξn‖ ≤ Eα, without loss of generality, assume that Eξn → x
as n → ∞. Because the norms ‖Eξn‖ are all bounded by an integrable random
variable α, there is a subsequence of {ξn, n ≥ 1} with a weak limit, see Dunford and
Schwartz [148, Th. IV.8.9]. Therefore, we can assume that ξn converges weakly to
an E-valued random element ξ .

From [148, Cor. V.3.14] it follows that there is a sequence {ηn, n ≥ 1} of convex
combinations of ξn, ξn+1, . . . such that ηn converges to ξ in L1(Ω;Rd), so that
‖ηn − ξ‖1 → 0 as n → ∞. Since there exists a subsequence of {ηn, n ≥ 1} that
converges to ξ almost surely, it is possible to assume that ηn → ξ a.s. as n →∞.

Since ξn ∈ Rd , n ≥ 1, it is possible to represent ηn as a finite convex combination
of ξn, ξn+1, . . . , i.e.

ηn =
d∑

j=0

θ j nζ j n ,
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where θin , 0 ≤ j ≤ d , are non-negative and sum to 1 and ζ j n, 0 ≤ j ≤ d , are chosen
from among ξn, ξn+1, . . . . By passing to subsequences, it is possible to assume that

ξ = lim
n→∞ ηn =

d∑
j=0

θ jζ j a.s.,

where θ j , 0 ≤ j ≤ d , are non-negative and sum to 1, and ζ j , 0 ≤ j ≤ d , are the
limiting points of {ξn, n ≥ 1}. If Y is the set of the limiting points of {ξn, n ≥ 1},
then ξ ∈ co(Y ). Thus,

x = Eξ ∈ EI co(Y ) ⊂ EI co(lim sup Xn) = EI lim sup Xn ,

since the probability space is non-atomic, see Theorem 1.15.
If the probability space is purely atomic, then (in the above notation) the weak

convergence of ξn implies that ξn → ξ almost surely, so that ξ is a limiting point of
{ξn, n ≥ 1}. A general probability space Ω can be decomposed into its purely atomic
part Ω ′ and the non-atomic part Ω ′′. Then

lim sup EI Xn = lim sup(EI(1Ω ′Xn)+ EI(1Ω ′′Xn))

⊂ lim sup EI(1Ω ′Xn)+ lim sup EI(1Ω ′′Xn) ,

i.e. the proof follows from the results in the non-atomic and purely atomic cases. ��
It was shown in the proof of Theorem 1.24(i) that Theorem 1.37 implies that

the Aumann integral EI X equals the selection expectation EX for any integrably
bounded random compact set X in Rd . Formulated for the selection expectation in-
stead of the Aumann integral, (1.18) becomes a weaker statement:

lim sup EXn ⊂ E lim sup Xn . (1.19)

It is possible to prove a complementary result to Theorem 1.37 which establishes
the reverse inclusion for lower limits and is useful to derive a dominated convergence
theorem. In view of Theorem 1.24(i), it is formulated for the selection expectation
instead of the Aumann integral, since both coincide for integrably bounded random
closed sets in Rd .

Theorem 1.38 (Dominated convergence for selection expectations). Let Xn , n ≥
1, be random compact sets in Rd such that α = supn≥1 ‖Xn‖ is integrable. Then

E lim inf Xn ⊂ lim inf EXn ⊂ lim sup EXn ⊂ E lim sup Xn . (1.20)

If, additionally, Xn → X almost surely in the Hausdorff metric, then

ρH(EXn ,EX)→ 0 as n →∞ . (1.21)
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Proof. Let us show that

EI lim inf Xn ⊂ lim inf EI Xn . (1.22)

If x ∈ EI lim inf Xn , then x = Eξ for ξ being an integrable selection of lim inf Xn .
Define a Borel random subset of Rd × Rd × · · · as

Z = {(x1, x2, . . . ) : x1 ∈ X1, x2 ∈ X2, . . . , lim xn = ξ} .
Then the statement ξ ∈ lim inf Xn a.s. is equivalent to Z �= ∅ a.s. A selection
theorem of von Neumann [423] implies that Z has a measurable selection being a
sequence (ξ1, ξ2, . . . ) such that ξn ∈ Xn a.s. and ξn → ξ for all ω ∈ Ω . Since
‖ξn‖ ≤ α, the dominated convergence theorem yields Eξn → Eξ = x , whence
x ∈ lim inf EI Xn . Since lim inf EI Xn = lim inf EXn , (1.22) together with (1.19)
imply (1.20). Finally, (1.21) follows from (1.20) if lim inf Xn = lim sup Xn . ��

Fatou’s lemma for unbounded random sets

It is possible to generalise Theorem 1.37 in two directions: by relaxing conditions
on the boundedness and uniform integrability of {Xn, n ≥ 1} or by generalising
it to infinite-dimensional spaces. The first generalisation causes appearance of an
additional additive term in the right-hand side of (1.18). Infinite dimensional variants
of Fatou’s lemma generally involve taking a closure in the right-hand side of (1.18);
the corresponding results are often called approximate Fatou’s lemmas.

Let us formulate a general Fatou’s lemma which holds for unbounded random
closed sets. Its proof (and the proof of Theorem 1.42 below) are rather technical and
can be found in Balder and Hess [45]. Even the formulations involve several further
concepts from convex analysis. If F is a non-empty closed convex set, then As(F)

denotes the asymptotic (or recession) cone of F which is the largest convex cone C
satisfying x0 + C ⊂ F for some x0 ∈ F . Then

As(F) =
⋂
t>0

t (F − x0)

does not depend on x0 ∈ F . If C is a cone in E∗, then its polar cone Co is the set of
all x ∈ Rd such that 〈x, u〉 ≤ 0 for all u ∈ C. Furthermore, Čo = {−x : x ∈ Co} is
the central symmetric cone to Co.

Theorem 1.39 (Fatou’s lemma: finite-dimensional). Let {Xn, n ≥ 1} be a sequence
of random closed sets in Rd such that

Xn ⊂ Yn + αn L , n ≥ 1 ,

where {Yn, n ≥ 1} are random compact sets with supn≥1 E‖Yn‖ <∞, {αn, n ≥ 1} is
a uniformly integrable sequence of random variables and L is a deterministic closed
set such that co (L) does not contain any line. Let C be a convex cone which consists
of all u ∈ Rd such that max(0, h(Yn,−u)) is uniformly integrable. Then

lim sup EI Xn ⊂ EI(lim sup Xn)+ As(L + Čo) . (1.23)
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If {‖Yn‖, n ≥ 1} is a uniformly integrable sequence, then Co = {0} and

lim sup EI Xn ⊂ EI lim sup Xn + As(L) .

If supn≥1 ‖Xn‖ is integrable, then L = {0} and (1.23) turns into (1.18).

Example 1.40 (Fatou’s lemma applies). Let Ω = [0, 1] with the Lebesgue mea-
sure, E = R, and let Xn(ω) = L = [0,∞) if ω ∈ [0, 1/n] and Xn(ω) = {0} oth-
erwise. Then lim sup Xn = {0}, the conditions of Theorem 1.39 hold for Yn = {0},
α = 1, Co = {0} and

lim sup EI Xn = L ⊂ {0} + As(L + {0}) = L

in agreement with Theorem 1.39.

Example 1.41 (Fatou’s lemma does not apply). Let E = R and let Xn be either
{n} or {−n} with equal probabilities. Then Xn ⊂ Yn + L, where L = R in order to
ensure the boundedness of E‖Yn‖, n ≥ 1. Such L contains the whole line and does
not satisfy Theorem 1.39. Then EI Xn = {0} for all n, so that the left-hand side of
(1.23) is {0}. However lim sup Xn is empty almost surely, so that the right-hand side
of (1.23) is empty, which shows that Fatou’s lemma does not hold in this case.

Approximate Fatou’s lemma: infinite-dimensional case

To formulate the result in infinite-dimensional spaces, we need several further con-
cepts. A set F ⊂ E is called weakly ball-compact if its intersection with every closed
ball if weakly compact. If E is reflexive, then all weakly closed sets are automati-
cally weakly ball-compact. If {Fn, n ≥ 1} is a sequence of subsets of E, then its
weak sequential upper limit w−seq−lim sup Fn is the set of all x ∈ E such that x is a
weak limit of xnk where xnk ∈ Fnk , k ≥ 1. The weak non-sequential upper limit is
the intersection of the weak closures of ∪k≥n Fk for all n ≥ 1.

Theorem 1.42 (Fatou’s lemma: infinite-dimensional). Let {Xn, n ≥ 1} be a se-
quence of random closed subsets of a separable Banach space E such that

Xn ⊂ Yn + αn L , n ≥ 1 ,

where {Yn, n ≥ 1} are random weakly compact sets with supn≥1 E‖Yn‖ < ∞,
{αn, n ≥ 1} is a uniformly integrable sequence of random variables and L is a
deterministic subset of E such that co (L) is locally weakly compact and does not
contain any line. If E is not reflexive, assume additionally that ∪n≥1 Xn ⊂ Z
a.s., where Z is a weakly closed weakly ball-compact set. Let C be a convex cone
which consists of all u ∈ E∗ such that max(0, h(Yn,−u)) is uniformly integrable. If
X = w−lim sup Xn , then

w−seq−lim sup EI Xn ⊂ EI(1Ωpa X)+ cl EI(1Ωna X)+ As(L + Čo) , (1.24)

where the closure in the right-hand side is taken in the strong topology, Ωpa is the
purely atomic part of Ω and Ωna is the non-atomic part of Ω .
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The following theorem (which is an extension of the dominated convergence
theorem to infinite-dimensional spaces) provides useful sufficient conditions for the
convergence of selection expectations. Its proof can be found in Hiai [253, Th. 2.8].
Note that part (ii) follows from Theorem 1.42.

Theorem 1.43 (Dominated convergence theorem in Banach spaces). Let Xn , n ≥
1 be integrably bounded random closed sets in a separable Banach space E.
(i) If the sequence {ρ(0, Xn), n ≥ 1} is uniformly integrable and X = s−lim inf Xn

is an integrable random closed set, then

EX ⊂ s−lim inf EXn .

(ii) Assume that E is reflexive and {‖Xn‖, n ≥ 1} is uniformly integrable. If X =
w−lim sup Xn is integrable, then

w−lim sup EXn ⊂ EX .

If, additionally, Xn converges to X almost surely in the Mosco topology, then
EXn converges to EX in the Mosco topology as n →∞.

(iii) If {‖Xn‖, n ≥ 1} is uniformly integrable and ρH(Xn, X) → 0 in probability,
then ρH(EXn,EX)→ 0 as n →∞.

Monotone and weak convergence

The monotone convergence theorem holds under rather general assumptions.

Theorem 1.44 (Monotone convergence theorem). Assume that {Xn, n ≥ 1} is
a non-decreasing sequence of random closed sets and X1 is integrable. If X =
cl(∪n≥1 Xn), then

EX = cl(∪n≥1EXn) .

Proof. For each ξ ∈ S1(X), Theorem 1.10 applied to ζx = ‖ξ − x‖ yields

inf
η∈S1(Xn)

‖ξ − η‖1 = Eρ(ξ, Xn) .

The right-hand side tends to zero, since ρ(ξ, X1) is integrable and ρ(ξ, Xn) ↓ 0 a.s.
Therefore, S1(X) = cl(∪nS1(Xn)), which finishes the proof. ��

The weak convergence of a sequence of random compact sets implies the con-
vergence of their expectations.

Theorem 1.45 (Expectations of weakly convergent sequences). Let {Xn, n ≥ 1}
and X be random convex compact sets in Rd such that α = supn≥1 ‖Xn‖ is inte-
grable. If Xn weakly converges to X as n → ∞, then EXn converges to EX in the
Hausdorff metric and the Lebesgue measure of EXn converges to the Lebesgue mea-
sure of EX as n →∞. The statement holds if Xn and X are not necessarily convex
and the probability space is non-atomic.
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Proof. The dominated convergence theorem yields Eh(Xn , u)→ Eh(X, u) as n →
∞ for each u ∈ Sd−1. Assume that {un, n ≥ 1} ⊂ Sd−1 and un → u0 as n → ∞.
By subadditivity of support functions,

Eh(Xn, u0)− Eh(Xn, u0 − un)− Eh(X, u0) ≤ Eh(Xn, un)− Eh(X, u0)

≤ Eh(Xn, u0)+ Eh(Xn, un − u0)− Eh(X, u0) .

Clearly,
|Eh(X, u0 − un)| ≤ Eα‖u0 − un‖ → 0 as n →∞ .

Therefore,
sup

u∈Sd−1
|Eh(Xn, u)− Eh(X, u)| → 0 as n →∞ ,

whence EXn converges to EX in the Hausdorff metric. The convergence of measures
immediately follows from convexity. The statement for non-convex random closed
sets follows from Theorem 1.15. ��

It is easy to see that Theorem 1.45 holds if the sequence {‖Xn‖, n ≥ 1} is uni-
formly integrable. If {‖Xn‖, n ≥ 1} are not necessarily bounded by an integrable
random variable a truncation argument yields EX ⊂ lim inf EXn .

1.6 Conditional expectation

Existence

Let H be a sub-σ -algebra of F. By L1
H we denote the family of η ∈ L1 = L1(Ω;E)

which are measurable with respect to H. The conditional expectation, E(ξ |H), of an
integrable random element ξ is η ∈ L1

H such that E1Aη = E1Aξ for every A ∈ H.
If E is a Banach space, then the conditional expectation exists and is unique up to
a.s. equivalence for each ξ ∈ L1 and σ -algebra H ⊂ F.

The following theorem defines the conditional expectation for an integrable ran-
dom closed set and at the same time establishes its existence and uniqueness. Recall
that S1

H(X) denotes the family of H-measurable integrable selections of X .

Theorem 1.46 (Existence of the conditional expectation). Let X be an integrable
random closed set. For each σ -algebra H ⊂ F there exists a unique integrable H-
measurable random closed set Y (denoted by Y = E(X |H) and called the conditional
selection expectation of X) such that

S1
H(Y ) = cl{E(ξ |H) : ξ ∈ S1(X)} , (1.25)

where the closure is taken with respect to the norm in L1
H. If X is integrably bounded,

so is Y .

Proof. The set {E(ξ |H) : ξ ∈ S1(X)} is decomposable in L1
H, whence its closure

is also decomposable. By Theorem 1.6, there exists a unique random closed set Y
satisfying (1.25). If X is integrably bounded, then the set in the right-hand side of
(1.25) is bounded in L1

H, whence Y is also integrably bounded. ��
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Properties of conditional expectation

It should be noted that the conditions (ii) or (iii) of Theorem 1.24 imply that
{E(ξ |H) : ξ ∈ S1(X)} is a closed set if H is countably generated, see Li and
Ogura [352]. Many properties of the conditional expectation are easily recognisable
counterparts of the properties for the (unconditional) selection expectation.

Theorem 1.47 (Properties of conditional expectation). Let X and Y be integrable
random closed sets and let H be a sub-σ -algebra of F. Then
(i) E(co (X)|H) = co (E(X |H)) a.s.

(ii) E(cl(X + Y )|H) = cl(E(X |H)+ E(Y |H)) a.s.
(iii) If αX is integrable for a H-measurable random variable α, then

E(αX |H) = αE(X |H) a.s.

(iv) For every u ∈ E∗,

h(E(X |H), u) = E(h(X, u)|H) a.s.

(v) If both X and Y are integrably bounded, then

EρH(E(X |H),E(Y |H)) ≤ EρH(X,Y ) .

(vi) Assume that E∗ is separable. If E(X |H) is a singleton almost surely, so is X .

Proof. Denote X ′ = E(X |H) and Y ′ = E(Y |H).
(i) follows from

S1
H(E(co (X)|H)) = cl{E(ξ |H) : ξ ∈ S1(co (X))}

= co {E(ξ |H) : ξ ∈ S1(X)}
= co (S1

H(X ′)) = S1
H(co (X ′)) .

Similar arguments lead to (ii).
(iii) We have

S1
H(E(αX |H)) = cl{E(η|H) : η ∈ S1(αX)}

= cl{E(αξ |H) : ξ ∈ S1(αX), αξ ∈ L1}
= cl{αE(ξ |H) : ξ ∈ S1(αX), αξ ∈ L1} ⊂ S1

H(αX ′) .

Now prove the reverse inclusion. Note that

S1
H(αX ′) = cl{αξ : ξ ∈ S1

H(X ′), αξ ∈ L1} .
For each ξ ∈ S1

H(X ′) with αξ ∈ L1 choose a sequence {ξn, n ≥ 1} ⊂ S1(X) such

that ‖E(ξn |H)− ξ‖1 → 0 and define ηnk = α(1Bk ξn + 1Ω\Bkξ0) ∈ S1(αX), where
Bk = {ω : ‖ξ‖ ≤ k} ∈ H and ξ0 is an integrable selection of X such that αξ0 is also
integrable. Since



172 2 Expectations of Random Sets

E(ηnk |H) = α(1Bk E(ξn |H)+ 1Ω\Bk E(ξ0|H)) ,

the conditional expectation E(ηnk |H) tends to αξ in L1-norm, whence αξ belongs to
S1

H(E(αX |H)).
(iv) For every A ∈ H, by applying Theorem 1.10 twice we get

E(1Ah(X ′, u)) = sup
ξ ′∈S1

H (X ′)
E(1A〈ξ ′, u〉)

= sup
ξ∈S1(X)

E(1A〈E(ξ |H), u〉)

= sup
ξ∈S1(X)

E(1A〈ξ, u〉) = E(1Ah(X, u)) ,

so that h(X ′, u) = E(h(X, u)|H) a.s.
(v) Write the Hausdorff distance between X ′ and Y ′ as

EρH(X ′,Y ′) = E(1A sup
x∈X ′

ρ(x,Y ′))+ E(1Ω\A sup
y∈Y ′

ρ(y, X ′))

with
A = {ω : sup

x∈X ′
ρ(x,Y ′) ≥ sup

y∈Y ′
ρ(y, X ′)} .

The proof is finished by applying Theorem 1.10 several times, see Hiai and Ume-
gaki [255, Th. 5.2(1)].
(vi) Because of (ii), assume without loss of generality that 0 ∈ X a.s. and E(X |H) =
{0}. Furthermore, (iv) implies

0 = h(E(X |H), u) = E(h(X, u)|H) a.s.

Taking the expectations of both sides yields Eh(X, u) = 0. Since 0 ∈ X a.s.,
h(X, u) = 0 a.s. for all u ∈ E∗. ��

The following properties are derived in Hiai and Umegaki [255] for integrably
bounded random convex closed sets. As shown by Hiai [254], easy modifications of
the arguments prove the identical statements for integrable random convex closed
sets as formulated below.

Theorem 1.48. Let X be a random convex closed set.
(i) If α is a non-negative integrable random variable and X is H-measurable with

non-empty S1
H(αX), then E(αX |H) = E(α|H)X a.s. In particular, E(X |H) =

X a.s. if S1
H(X) is non-empty.

(ii) If H′ ⊂ H ⊂ F and X is H-measurable with non-empty S1
H(X), then E(X |H′)

on the probability space (Ω,F,P) is a.s. identical to the conditional expectation
of X relative to H′ taken on the probability space (Ω,H,P).

(iii) If H′ ⊂ H ⊂ F and X is integrable, then E(E(X |H)|H′) = E(X |H′) a.s.
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If α in (i) is allowed to be negative, then the result no longer holds for a general
X . Indeed, if Eα = 0, then E(α|H)X = {0}, whence the only X being a singleton
ensures E(αX |H) = {0}, see Theorem 1.47(vi).

The following results justify the introduced concept of the conditional expecta-
tion. The proofs can be found in Hiai and Umegaki [255].

Theorem 1.49.
(i) If X is an integrable random closed set, then

EH(1AE(X |H)) = E(1A X) , A ∈ H . (1.26)

(ii) If X is an integrable random convex closed set, then

E(1AE(X |H)) = E(1A X) , A ∈ H . (1.27)

(iii) If E∗ is separable and X is an integrably bounded random convex closed set,
then E(X |H) is uniquely determined as an integrably bounded random convex
closed set satisfying either (1.26) or (1.27). If Q∗ is a countable dense set in E∗,
then

E(X |H) =
⋂

u∈Q∗
{x ∈ E : 〈x, u〉 ≤ E(h(X, u)|H)} a.s.

(iv) If X is an integrably bounded random convex compact set, then E(X |H) is
almost surely convex compact,

EH
I (1AE(X |H)) = EI(1AE(X |H)) = EI(1A X) , A ∈ H , (1.28)

and
S1

H(E(X |H)) = {E(ξ |H) : ξ ∈ S1(X)} . (1.29)

(v) If E is reflexive, then (1.28) and (1.29) hold for every integrably bounded ran-
dom convex closed set X .

An event A ∈ H is called a H-atom if for each A′ ∈ F with A′ ⊂ A, there exists
a B ∈ H satisfying P((A ∩ B)"A′) = 0. It has been shown by Valadier [571] that
if the probability space has no H-atom, then E(co (X)|H) = E(X |H) a.s. for every
integrable random closed set X .

Convergence of conditional expectations

It is possible to provide a whole spectrum of results on convergence of conditional
expectations of random closed sets, which are more or less exact counterparts of
the results from Section 1.5. The monotone convergence theorem keeps its exact
formulation for conditional expectations. Here are several other results taken from
Hiai [253].
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Theorem 1.50 (Convergence of conditional expectations).
(i) Assume that supn≥1 ρ(0, Xn) is integrable. If X = s−lim inf Xn a.s. is integrable,

then E(X |H) ⊂ s−lim inf E(Xn |H) a.s.
(ii) Assume that E is reflexive and supn≥1 ‖Xn‖ is integrable. If X = w−lim sup Xn

a.s., then
w−lim sup E(Xn |H) ⊂ E(co (X)|H) a.s.

If the probability space contains no H-atom or X is almost surely convex, then
the Mosco convergence Xn → X a.s. implies that E(Xn |H) almost surely con-
verges in the Mosco topology to E(X |H) a.s. as n →∞.

(iii) If supn≥1 ‖Xn‖ is integrable and ρH(Xn, X)→ 0 a.s. (respectively in probabil-
ity), then ρH(E(Xn |H),E(X |H))→ 0 a.s. (respectively in probability).

2 Further definitions of expectations

2.1 Linearisation approach

Since the space F is not linear, conventional tools suitable for defining an expectation
of a random element in a linear space are not applicable for general random closed
sets. A common approach to handle similar situations is to linearise F using a map
(or maps) from F to a linear space, where it is easy to define an expectation.

In a general situation, a random closed set X is associated with a random element
ξX taking values in a Banach space Y. This is done by mapping F into Y, so that ξX

becomes the image of X under this map. Then the expectation of ξX is defined in Y
with the aim to map it back into F . If EξX has a unique inverse image, i.e.

EξX = ξF (2.1)

for some F ∈ F , then F is said to be the expectation of X . For example, the selection
expectation in Rd can be defined using embedding of convex compact sets in the
space of continuous functions on the unit sphere, so that ξX (·) = h(X, ·) is the
support function of X . By Theorem 1.22, the expected support function is the support
function of the selection expectation of X .

However, it is quite typical that the possible values for ξF for F ∈ F do not
form a convex set in Y, so that EξX may not be representable as ξF for any F ∈ F .
In this case the aim is to find a closed set F such that ξF “mimics” EξX in some
sense or is “sufficiently near” to EξX . For this, it is necessary to equip Y with a
metric or pseudometric d which assesses the discrepancy between EξX and ξF for
possible “candidates” F . The pseudometric d satisfies the triangle inequality and is
symmetric in its arguments, whereas d( f, g) = 0 for f, g ∈ Y does not necessarily
imply f = g. The expectation of X is defined by

EX = argminF∈Z d(EξX , ξF ) , (2.2)

i.e. EX is an element of Z such that ξF is the closest to EξX . Here Z is a subfamily of
F which consists of possible candidates for the expectation. A proper choice of Z is
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important, since it is difficult to solve minimisation problems over the whole family
of closed sets. In general, several sets F ∈ Z may minimise d(EξX , ξF ). However, it
is possible to avoid this ambiguity by imposing extra conditions on EX , for example,
assuming that EX is convex or regular closed. The linearisation approach can be
illustrated by the following diagram

X −→ ξX ∈ Y⏐⏐⏐4 (2.3)

EX ←−
(2.1) or (2.2)

EξX .

In many examples, the space Y is a space of functions defined on a parameter space
U and ξX (u), u ∈ U , is a function on U . Then d can be either the uniform (L∞) or
Lp metric (if U is equipped with a measure µ). In the first case EX is the set F ∈ Z
that minimises

‖EξX (u)− ξF (u)‖∞ = sup
u∈U

|EξX (u)− ξF (u)| ,

while the choice of the Lp-metric leads to the minimisation of

‖EξX (u)− ξF (u)‖p =
⎛⎝ ∫

U

(EξX (u)− ξF (u))pµ(du)

⎞⎠1/p

.

Clearly, various definitions of expectations utilise different features of the reali-
sations of X . The situation can be explained by the following lucid example. Imagine
that X is a “cat” with probability 1/2 and a “dog” otherwise. Clearly, it is pointless to
average them, there is no known animal that might serve as their average. However,
the question becomes sensible if we aim to average several features of a “cat” and
a “dog” (weight, tail length, etc.) and then find an existing animal with the features
matching the obtained averages as exactly as possible. The values ξX (u) for various
u represent those features or measurements that are being matched when defining an
expectation.

Therefore, the expectation of X can be determined by the following ingredients:
(1) the Banach space Y;
(2) the map ξF : F �→ Y;
(3) the metric d on Y;
(4) the family of closed sets Z providing candidates for EX .

A generic notation EX for an expectation of a random set X will be equipped with
different subscripts in order to designate various particular expectations, for instance,
the selection expectation is denoted by EA X . From the point of view of many appli-
cations it suffices to assume that X is a random compact set in Rd , although several
definitions of expectation are also applicable for unbounded random closed sets and
random closed sets in a Polish space E.
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2.2 The Vorob’ev expectation

Indicator and coverage functions

Let E be a space with a σ -finite measure µ. Put U = E and define

ξX (u) = 1X (u) =
{

1 , u ∈ X ,

0 , otherwise ,

to be the indicator function of X . If µ(X) is finite almost surely, then X is associated
with a random element ξX (·) in the space Y of square integrable functions on E.

The expectation of the indicator function

EξX (u) = E1X (u) = P {u ∈ X} = pX (u)

is called the coverage function of X , see Section 1.1.6. Unless X is deterministic or
pX vanishes everywhere, the coverage function is not an indicator function itself.
Therefore, there is no set F which satisfies (2.1). The approach outlined in (2.3)
suggests finding a closed set F such that its indicator function mimics the cover-
age function as exactly as possible. Natural candidates for F are determined by the
coverage function itself as excursion (thresholded) sets of pX (u)

{pX ≥ t} = {u ∈ E : pX (u) ≥ t} , t ∈ (0, 1] , (2.4)

called the t-th quantile of X , see Figure 2.1. By Proposition 1.1.34, the coverage
function pX is upper semicontinuous, so that all excursion sets are closed and {pX ≥
t} is left-continuous as a function of t .

t

u

pX (u) = P {u ∈ X}

1 {pX ≥ t}

Figure 2.1. Excursion set of the coverage function.

Assume that Eµ(X) <∞. By Robbins’ theorem (see Section 1.4.4),∫
E

pX (u)du = Eµ(X) <∞ ,

whence µ({pX ≥ t}) is finite for all t ∈ (0, 1].
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Definition 2.1 (Vorob’ev expectation). The Vorob’ev expectation, EV X , is defined
as the set {pX ≥ t} for t ∈ [0, 1] which is determined from the equation Eµ(X) =
µ({pX ≥ t}) if this equation has a solution, or, in general, from the condition

µ({pX ≥ s}) ≤ Eµ(X) ≤ µ({pX ≥ t})
for all s > t .

In other words, EV X is a quantile of X (or the excursion set of the coverage
function) such that its Lebesgue measure is the closest to Eµ(X).

Example 2.2. Let X = Bξ (0) be a random disk in E = R2 centred at the origin with
the radius ξ . If µ in Definition 2.1 is the Lebesgue measure, then EV X = Br (0) with
r = (Eξ2)1/2.

It should be noted that the Vorob’ev expectation treats all random sets with almost
sure vanishing coverage functions as non-essential, so that the Vorob’ev expectation
of X equals the Vorob’ev expectation of X∪Y if P {x ∈ Y } = 0 for µ-almost all x . If
E is the Euclidean space Rd and µ is the Lebesgue measure in Rd , then all singletons
or curve pieces with absolutely continuous distributions are not taken into account
when calculating the expectation.

Vorob’ev expectation as minimiser

The following result shows that the Vorob’ev expectation minimises the expected
measure of the symmetric difference.

Theorem 2.3 (Vorob’ev expectation and minimisation problem). For each mea-
surable set M with µ(M) = Eµ(X),

Eµ(X"EV X) ≤ Eµ(X"M) .

Proof. Denote F = EV X = {pX ≥ t}. Then

Eµ(X"M)− Eµ(X"F) = 2[µ(X ∩ (F \ M))− µ(X ∩ (M \ F))]
= 2

∫
F\M

pX (u)µ(du)− 2
∫

M\F

pX (u)µ(du)

≥ 2[tµ(F \ M)− tµ(M \ F)]
= 2t[µ(F \ M)− µ(M \ F)]
= 2t[µ(F)− µ(M)] ≥ 0 ,

because µ(M) = Eµ(X) ≤ µ(F). ��
Definition 2.1 appears as a particular case of (2.2) with the family Z that consists

of all excursion sets given by (2.4) and a pseudometric
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d( f, g) =
∣∣∣ ∫

E

( f (u)− g(u))µ(du)
∣∣∣ .

If d is the uniform metric, then the solution of (2.2) is the set {pX ≥ 1/2} = {x ∈ E :
pX (u) ≥ 1/2} called the Vorob’ev median of X . The following proposition estab-
lishes a property of the Vorob’ev median, which is similar to the classical property of
the median which minimises the first absolute central moment.

Proposition 2.4. For every measurable set M with µ(M) <∞,

Eµ(X"{pX ≥ 1/2}) ≤ Eµ(X"M) . (2.5)

Proof. Denote F = {pX ≥ 1/2}. By Robbins’ theorem,

Eµ(X"M) =
∫
E

pX (u)µ(du)−
∫
M

pX (u)µ(du)+
∫
M

(1− pX (u))µ(du)

=
∫
E

pX (u)µ(du)+
∫

M∩F

(1− 2 pX(u))µ(du)

+
∫

M\F

(1− 2 pX(u))µ(du)

≥
∫
E

pX (u)µ(du)+
∫
F

(1− 2 pX (u))µ(du) = Eµ(X"F) . ��

It is possible to generalise the Vorob’ev expectation by choosing other distances.
For instance, if d is either L1 or L2 metrics, then (2.2) yields other expectations given
by {pX ≥ t} with t chosen to minimise

‖pX (u)− 1{pX≥t}(u)‖1 = Eµ(X)+ µ({pX ≥ t})− 2
∫

{pX≥t}
pX (u)du

or

‖pX (u)− 1{pX≥t}(u)‖2 =
∫
E

p2
X (u)du + µ({pX ≥ t})− 2

∫
{pX≥t}

pX (u)du .

2.3 Distance average

Distance functions

Let E be a metric space with metric ρ. For each set F ⊂ E all points in E can be
classified according to their positions with respect to F . For example, each point can
be assigned its distance to F . However, this is not the only possible way.
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Definition 2.5 (Distance function). Let F ′ be the space of all non-empty closed
sets. A function d : E × F ′ �→ R is said to be a distance function if it is lower
semicontinuous with respect to its first argument, measurable with respect to the
second and satisfies the following two conditions:

(D1) If F1 ⊂ F2, then d(x, F1) ≥ d(x, F2) for all x ∈ E (monotonicity);
(D2) F = {x : d(x, F) ≤ 0} for every F ∈ F ′ (consistency).

Example 2.6 (Various distance functions).
(i) The metric distance function d(x, F) is equal to the distance between x ∈ E

and F ∈ F in the metric ρ, that is

d(x, F) = ρ(x, F) = inf{ρ(x, y) : y ∈ F} , x ∈ E .

(ii) The square distance function is defined as d(x, F) = ρ2(x, F).
(iii) The signed distance function is given by

d(x, F) =
{
ρ(x, F) , x /∈ F ,

−ρ(x, Fc) , x ∈ F .

If F has empty interior, then the signed distance function is equal to the metric dis-
tance function. A rationale for using the signed distance function is that it treats the
set symmetrically with respect to exchanging black and white.
(iv) The indicator distance function is defined by letting d(x, F) be the indicator of
the complement Fc, i.e. d(x, F) = 1Fc(x). Formally, this is a particular case of the
ρ-distance function, taking ρ to be the discrete metric.

The map F �→ d(·, F) linearises F ′ by embedding it into the space Y of func-
tions on E. Let d be a pseudometric on Y. For example, if d is the uniform distance,
then the uniform distance between two distance functions equals the Hausdorff dis-
tance between the corresponding closed sets. Other metrics can be defined using Lp

metrics on the family of distance functions, see Definition C.12.
If the space E is not compact, then some “bounded” or “restricted” versions of

these Lp metrics are needed, for example,

d( f, g) =
⎛⎝ ∫

W

( f (x)− g(x))pdx

⎞⎠1/p

,

where W is a compact set (window). This metric induces a pseudometric on F as

∆
p
W (F1, F2) =

⎛⎝ ∫
W

|d(x, F1)− d(x, F2)|pdx

⎞⎠1/p

. (2.6)

These pseudometrics are convenient in image analysis, since they are less sensitive
to small transformations of sets than the Hausdorff distance.
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In general,
dW ( f, g) = d(1W f, 1W g)

denotes the restricted version of d. Assume that dW ( f, g) ≤ dW1( f, g) if W ⊂
W1, which automatically holds for ∆

p
W metrics. We also write d(F, G) instead of

d(d(·, F),d(·, G)) and d(F, g) instead of d(d(·, F), g(·)). In most cases d is either
the uniform metric or Lp metric. It is useful to put d(x,∅) =∞ and d(∅,∅) = 0.

Mean distance function and distance average

Assume that d(x, X) is integrable for all x ∈ E and define the mean distance function

d̄(x) = Ed(x, X) . (2.7)

Proposition 2.7. If d is a non-negative distance function, then d̄(x) = d(x, F) for
some F ∈ F if and only if X is deterministic, i.e. X = F almost surely.

Proof. Sufficiency is evident. To prove necessity, suppose that

d̄(x) = Ed(x, X) = d(x, F) for all x ∈ E . (2.8)

By (D2), F = {x : d̄(x) = 0}. Since the distance function is non-negative,
d(x, X) = 0 a.s. for all x ∈ F . Thus, X ⊃ F a.s. By (D1), d(x, X) ≤ d(x, F).
Finally, by (2.8), d(x, X) = d(x, F) a.s. for all x . ��

For the signed distance function (and other non-positive distance functions) the
conclusion of Proposition 2.7 is not true.

Since, in general, d̄ is not a distance function itself, the minimisation problem
(2.2) ought to be solved. Fix a closed set W (window) and define an increasing family
of sets

{d̄ ≤ t} = {x ∈ W : d̄(x) ≤ t} , t ∈ R .

by introducing a moving (upper) threshold for the mean distance function d̄(x). The
lower semicontinuity of d̄ follows from Fatou’s lemma and, in turn, yields the closed-
ness of {d̄ ≤ t}. The family Z = {{d̄ ≤ t} : t ∈ R} provides candidates for the
expectation of X .

Definition 2.8 (Distance average). Let t̄ be the value of t ∈ R which minimises the
dW -distance dW ({d̄ ≤ t}, d̄ ) between the distance function of {d̄ ≤ t} and the mean
distance function of X . If dW ({d̄ ≤ t}, d̄) achieves its minimum at several points,
then t̄ is chosen to be their infimum. The set

EDA X = EDA,dW X = {d̄ ≤ t̄ }
is said to be the distance average of X .
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Note that dW ({d̄ ≤ t}, d̄ ) attains its minimum, since {d̄ ≤ t} is a right-continuous
function of t . Mostly we omit the subscripts d and W , but always remember that the
distance average depends on the choice of the metric d and the window W . The
definition of the distance average does not use the linear structure of the underlying
space E. Thus, it is applicable for random sets in curved spaces (e.g. on the sphere).

Example 2.9 (Deterministic set). If X is a deterministic compact subset of W , then
EDA X = X .

Example 2.10 (Random singleton). Let X = {ξ} be a random singleton on the
line.
(i) Assume that ξ = 1 with probability 1/2 and ξ = 0 otherwise. Then, for the

metric distance function d ,

d̄(x) = 1

2
|x − 1| + 1

2
|x | .

If dW is either the Hausdorff metric or Lp metric with W ⊃ [0, 1], then t̄ = 1/2 and
EDA X = [0, 1]. The square distance function yields d̄(x) = x2 − x + 1/2, so that
EDA X = {1/2} with t̄ = 1/4.
(ii) If ξ is uniformly distributed in [0, a], then EDA X = {a/2} for the metric dis-
tance function and d being the Hausdorff metric. However, in general, the distance
average of a random singleton may contain several points.

Example 2.11 (Segment and its boundary). Let E = R. Suppose X = {0, 1} with
probability 1/2 and X = [0, 1] otherwise. Then

d̄(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−x , x < 0 ,

x/2 , 0 ≤ x < 1/2 ,

1/2− x/2 , 1/2 ≤ x < 1 ,

x − 1 , x ≥ 1 .

If d is the uniform metric (with W = R), then t̄ = 1/12, and

EDA X = [−1/12, 1/6] ∪ [5/6, 13/12] .
Example 2.12 (Two-point set). Let X = {0, ξ} be a two-point random set, where
ξ is uniformly distributed in the unit interval [0, 1] on the x-axis on the plane R2.
Then, for v = (x, 0) ∈ R2 and the Euclidean distance function, we get

d̄(v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−x , x < 0 ,

x − x2 , 0 ≤ x ≤ 1/2 ,

x2 − x + 1/2 , 1/2 < x ≤ 1 ,

x − 1/2 , x > 1 .

If dW is the uniform metric with sufficiently large W , then t̄ > 0. Conversely, for
each t > 0 the set {d̄ ≤ t} contains a certain neighbourhood of the origin. Hence
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EDA X is not a subset of [0, 1]× {0}, although X ⊂ [0, 1]× {0} almost surely. There-
fore, we conclude that the property X ⊂ K0 a.s. for non-random convex compact set
K0 does not yield EDA X ⊂ K0.

It is easily seen that EDA X always contains the set of minimum points for the
mean distance function d̄. For instance, if X is a singleton, then EDA X contains the
set of points which minimise the expectation Ed(x, {ξ}). Therefore, for the metric
distance function, EDA X contains the set of spatial medians of ξ , see Small [538].

Proposition 2.13. If d is the square distance function on a Hilbert space E and X =
{ξ} is a random point with integrable norm, then EDA X = {Eξ}.
Proof. In a Hilbert space, the expectation a = Eξ minimises the expected square
distance function d̄(x) = E [ρ(x, ξ)2]. Therefore, Eξ ∈ EDA X , since each non-
empty set {d̄ ≤ t} contains the minimum point of d̄(·). By the monotonicity property
(D1),

ρ(x,EDA X)2 ≤ ρ(x,Eξ)2 ≤ E [ρ(x, ξ)2] = d̄(x)

for all x . Thus, dW ({d̄ ≤ t}, d̄) ≥ dW ({Eξ}, d̄), whence EDA X = {d̄ ≤ t} = {Eξ}
for t̄ = E [(ξ − Eξ)2]. ��

It should be noted that the distance average, like many morphological opera-
tors (see Heijmans [228]) is non-linear, that is, the average of the union or the
Minkowski (element-wise) sum of two random sets does not coincide with the union
or Minkowski sum of the corresponding averages. Moreover, the distance average is
not associative in general and EDA(cX) is not necessarily equal to cEDA X for c > 0.

Open problem 2.14. When is EDA{ξ} equal to the conventional expectation of a
random element ξ in a Banach space E?

2.4 Radius-vector expectation

Let E = Rd be the Euclidean space. A compact set K is called star-shaped with
respect to the origin 0 if, for each x ∈ X , the segment [0, x] with end-points 0 and x
is contained in K . The radius-vector function of K is defined by

rK (u) = sup{t : tu ∈ K , t ≥ 0}
for u from the unit sphere Sd−1, see Figure 2.2.

The representation of star-shaped compact sets by means of their radius-vector
functions establishes a correspondence X �→ rX (·) = ξX (·) between star-shaped
random compact sets and random functions on the unit sphere and so can be used
to define an expectation of X . The expected values ErX (u), u ∈ Sd−1, define a
function which is the radius-vector function of a deterministic star-shaped set K
called the radius-vector expectation of X . The major shortcomings are the necessity
to work with star-shaped sets and the non-linearity with respect to translations of
the sets, since the radius-vector function depends non-linearly on the location of
the origin within the set, whereas its natural location is difficult to identify in many
applications.
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u

K

rK (u)

Figure 2.2. The radius-vector function of a star-shaped set.

3 Expectations on lattices and in metric spaces

3.1 Evaluations and expectations on lattices

Let � be a sup-generating family in a lattice L, i.e. assume that every element in L
can be written as a supremum ∨D for some D ⊂ �. A mapping u : � �→ R̄ is called
an evaluation if x ≤ ∨D implies u(x) ≤ ∨{u(y) : y ∈ D} for all x ∈ � and D ⊂ �.
Define the mappings δu : L �→ R̄ and εu : R̄ �→ L as

δu(F) = sup{u(x) : x ∈ �, x ≤ F} , F ∈ L ,

εu(y) = ∨{x ∈ � : u(x) ≤ y} , y ∈ R̄ .

The pair (εu, δu) forms an adjunction between R̄ and L, which means that δu(F) ≤ y
if and only if F ≤ εu(y), see Heijmans [228].

Let U be a family of evaluations. For each F ∈ L define

cl(F;U) =
∧
u∈U

εu(δu(X)) ,

which is called the U-closure of F . If the lattice L contains the objects under study,
then the evaluations represent the available information and may be regarded as mea-
surements. Then cl(F;U) is an element of L which is retrievable from the measure-
ments of F . The family U is called unbiased if cl({x};U) = x for all x ∈ �. This
is the case if for any two elements x, y ∈ � with x �≤ y there exists an evaluation
u ∈ U such that u(x) �≤ u(y).

Let X be an L-valued random element. Assume that each u ∈ U is measurable
with respect to the σ -algebra σ(L) generated by the Scott topology on L. Then δu(X)

is a random variable for each u ∈ U and X is said to be U -integrable if δu(X) is
integrable for each u ∈ U . The U-expectation of X is defined as

EU X =
∧
u∈U

εu(Eδu(X)) . (3.1)

If X is deterministic, then EU X = cl(X;U) is the U -closure of X . In general, EU X
is U -closed and

EU X = EU cl(X;U) . (3.2)
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Example 3.1 (U -expectation of random closed sets). Let L = F be the lattice of
closed sets in E ordered by inclusion. The sup-generating family � is the family of
all singletons, i.e. � can be identified with E. A function u : E �→ R̄ is an evaluation
if x ∈ cl(D) implies u(x) ≤ u∨(D) = sup{u(y) : y ∈ D} for all x ∈ E and D ⊂ E.
Then δu(F) = u∨(F) and εu(y) = cl({x ∈ E : u(x) ≤ y}). The U-expectation of a
random closed set X is given by

EU X =
⋂
u∈U

εu(Eδu(X)) =
⋂
u∈U

{x : u(x) ≤ Eu∨(X)} . (3.3)

For instance, the selection expectation is obtained if U is the family of all linear
functions on Rd . Then u∨(X) = h(X, u) is the support function, the U -closure is
the convex hull, (3.3) becomes the definition of the selection expectation using the
support functions and (3.2) corresponds to Theorem 1.26.

3.2 Fréchet expectation

It is well known that if E is a Hilbert space, then the expectation Eξ of a square
integrable E-valued random element ξ can be defined as the (necessarily unique)
element a ∈ E which minimises E‖ξ − a‖2. This definition can be extended to
general metric spaces, although then the uniqueness property might be lost.

Definition 3.2 (Fréchet expectation). Let ξ be a random element in the space E with
metric (or pseudometric) ρ such that Eρ(ξ, x0)

2 <∞ for some x0 ∈ E. The Fréchet
expectation of ξ (denoted by EFξ ) is the set of all a ∈ E such that x = a minimises
Eρ(ξ, x)2 over x ∈ E. The value of Eρ(ξ, a)2 is called the Fréchet variance of ξ .

This general definition is applicable to the family K′ of non-empty compact sub-
sets of E equipped with the Hausdorff metric (if E is infinite-dimensional, it is pos-
sible to consider the family of non-empty bounded closed sets instead of K′). Let X
be a random set with values in K′ such that EρH(X, L)2 <∞ for some L ∈ K′. The
Fréchet expectation, EF X , of X is a family of sets which consists of all sets K ∈ K′
providing a global minimum for EρH(X, K )2.

Example 3.3. If X ⊂ R1 takes values [0, 1] and {0, 1} with probabilities 1/2, then
its Fréchet expectation is unique and equals [0, 0.4] ∪ [0.6, 1].

This approach is very general and can be used if the Hausdorff metric ρH is
replaced by another metric on K′, for example, by one of the ∆-metrics from (2.6)
or Definition C.12. Unfortunately, in most practical cases it is not possible to solve
the basic minimisation problem, since the parameter space K′ is too rich.

The Fréchet expectation can be defined for a sample in a metric space, so that
a ∈ E is called a mean of x1, . . . , xn ∈ E if

n∑
i=1

ρ(xi , a)2 = inf
b∈E

n∑
i=1

ρ(xi , b)2 .
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The set of all means of x1, . . . , xn is denoted by M(x1, . . . , xn). The following result
provides a strong law of large numbers for the Fréchet expectation. It is formulated
for general metric spaces, and so holds for the space of compact sets equipped with
the Hausdorff metric.

Theorem 3.4 (Law of large numbers for Fréchet expectation). Let ξ, ξ1, ξ2, . . .

be i.i.d. random elements in a separable space E with a finite pseudometric ρ. If
Eρ(ξ, x0)

2 <∞ for some x0 ∈ E, then

M =
∞⋂

k=1

cl(
∞⋃

n=k

M(ξ1, . . . , ξn)) ⊂ EFξ a.s.

Proof. Let Q be a countable dense subset of E. By the strong law of large numbers,
the event

A =
{

lim
n→∞

1

n

n∑
i=1

ρ(ξi , x)m = Eρ(ξi , x)m for all x ∈ Q, m = 1, 2

}

occurs with probability 1. Consider an arbitrary point x ∈ E. There exists a sequence
{xn, n ≥ 1} ⊂ Q such that xn → x . Then∣∣∣∣∣1n

n∑
i=1

[ρ(ξi , xk)
2 − ρ(ξi , x)2]

∣∣∣∣∣ ≤ ρ(xk, x)2 + 2ρ(xk, x)
1

n

n∑
i=1

ρ(ξi , xk) .

The continuity of Eρ(ξ, ·) and Eρ(ξ, ·)2 implies

lim
n→∞

1

n

n∑
i=1

ρ(ξi , x)2 = Eρ(ξ, x)2 a.s.

for all x ∈ E.
Fix an elementary event ω ∈ A and any point z ∈ M . For every k ≥ 1 pick

zk ∈ ∪∞n=k M(ξ1(ω), . . . , ξn(ω))

with ρ(zk, z) ≤ 1/k and define

nk = min{n ≥ 1 : zk ∈ M(ξ1(ω), . . . , ξn(ω))} .
From(

1

nk

nk∑
i=1

ρ(ξi , z)2

)1/2

≤
(

1

nk

nk∑
i=1

ρ(ξi , zk)
2

)1/2

+
(

1

nk

nk∑
i=1

ρ(zk, z)2

)1/2

≤
(

1

nk

nk∑
i=1

ρ(ξi , zk)
2

)1/2

+ 1

k
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it follows that

(Eρ(ξ, z)2)1/2 ≤ lim inf
k→∞

(
1

nk

nk∑
i=1

ρ(ξi , zk)
2

)1/2

.

Since zk ∈ M(ξ1, . . . , ξn),

Eρ(ξ, z)2 ≤ Eρ(ξ, x)2

for every x ∈ E, whence z ∈ EFξ . ��

3.3 Expectations of Doss and Herer

Doss expectation in metric spaces

The following definition is applicable for random elements in a metric space (E, ρ).

Definition 3.5 (Doss expectation). Let ξ be a random element in E such that
Eρ(ξ, x) is finite for some x ∈ E. The Doss expectation of ξ ∈ E is the set EDξ

of all points a ∈ E such that ρ(a, x) ≤ Eρ(ξ, x) for all x ∈ E.

The triangle inequality implies that Eρ(ξ, x) is finite for all x ∈ E if it is finite
for at least one x . In comparison with the Fréchet expectation, the Doss expecta-
tion does not require the existence of the second moment of ρ(ξ, x). The following
proposition shows that if E is a Banach space, then the Doss expectation becomes
the conventional expectation of ξ .

Theorem 3.6 (Doss and Bochner expectations). If E is the Banach space with the
metric ρ(x, y) = ‖x − y‖ generated by the corresponding norm, then each Bochner
integrable random element ξ ∈ E satisfies EDξ = {Eξ}, where Eξ is the Bochner
expectation of ξ .

Proof. We have to show that Eξ is the unique element of E satisfying

‖Eξ − x‖ ≤ E‖ξ − x‖
for all x ∈ E. If u ∈ EDξ and a ∈ E, then u + a ∈ ED(ξ + a).

Let ξ and η be two Bochner integrable random elements in E with distributions
Pξ and Pη respectively. If a ∈ EDξ and b ∈ EDη, then a+ b ∈ ED(ξ + η), since, for
all x ∈ E,

E‖ξ + η − x‖ =
∫
E

⎛⎝∫
E

‖v − (x − u)‖Pη(dv)

⎞⎠Pξ (du)

≥
∫
E

‖(x − u)− b‖Pξ (du) ≥ ‖a + b − x‖ .
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Let {ξn, n ≥ 1} be a sequence of i.i.d. random elements having the same distribution
as ξ . Without loss of generality assume that Eξ = 0. Let ai ∈ EDξi , i ≥ 1. Then

1

n

n∑
i=1

ai ∈ ED

(
1

n

n∑
i=1

ξi

)
,

that is, for all x ∈ E, ∥∥∥∥∥1

n

n∑
i=1

ai − x

∥∥∥∥∥ ≤ E

∥∥∥∥∥1

n

n∑
i=1

ξi − x

∥∥∥∥∥ .

The right-hand side converges to ‖x‖ by the strong law of large numbers in E. There-
fore,

lim sup
n→∞

∥∥∥∥∥1

n

n∑
i=1

ai − x

∥∥∥∥∥ ≤ ‖x‖

for all x ∈ E. If we assume that EDξ contains a point a �= 0, then we come to a
contradiction by putting ai = a, i ≥ 1. ��

Doss expectation for random sets and Herer expectation

It is possible to specialise the Doss expectation for non-empty bounded random
closed sets, since the family F ′b of non-empty bounded closed sets forms a metric
space under the Hausdorff metric. Let X be an almost surely non-empty bounded
random closed set such that ρH(X, x0) has a finite expectation for some x0 ∈ E (so
that X is integrably bounded). Then EρH(X, {x}) is finite for all x ∈ E and, more-
over, EρH(X, L) <∞ for all L ∈ F ′b. By Definition 3.5, the Doss expectation of X
is given by

ED X = {K ∈ F ′b : ρH(K , L) ≤ EρH(X, L) for all L ∈ F ′b} .
Thus, ED X is a family of sets. It is possible to come up with a modification of this
expectation which yields a single set.

Definition 3.7 (Herer expectation). Let X be an integrable random closed set. The
Herer expectation of X is defined as

EH X = {a ∈ E : ρ(a, x) ≤ EρH(X, {x}) for all x ∈ E} . (3.4)

Example 3.8. Let E = R and let X take values {0} and {0, 2} with equal probabil-
ities. Then ED X is the family of all compact sets K such that {0, 1} ⊂ K ⊂ [0, 1]
and EH X = [0, 1].

It is easy to show that EH X is the union of all sets K from ED X . Indeed,

ED X ⊂ {K ∈ F ′b : ρH(K , {x}) ≤ EρH(X, {x}) for all x ∈ E} ,
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while the union of all K from the right-hand side equals the Herer expectation of X .
The Herer expectation appears as a particular case of the expectation on lattices

defined by (3.1), if L is the lattice of closed bounded subsets of E and u(x) = ρ(x, u)
with u ∈ U = Rd . If X = {ξ} is a singleton, then (3.4) turns into the definition of
the Doss expectation of ξ . Theorem 3.6 implies EH{ξ} = Eξ , so that the Herer
expectation of a singleton in a Banach space coincides with its Bochner expectation.

It is possible to rewrite (3.4) as

EH X =
⋂
x∈E

BEρH(X,{x})(x) . (3.5)

For example, if E = Rd , then EH X is the intersection of closed balls and so is a
convex set. The following proposition immediately follows from (3.5).

Proposition 3.9 (Monotonicity of Herer expectation). If X ⊂ Y and Y is an inte-
grable random closed set, then EH X ⊂ EHY .

If applied to all selections ξ ∈ X , Proposition 3.9 yields the following relation-
ship between the selection and Herer expectations.

Theorem 3.10 (Herer and selection expectations).
(i) If E is a Banach space and X is an integrable random closed set, then EA X ⊂

EH X . In particular, EH X is not empty.
(ii) Let X be an integrably bounded random compact set in a Hilbert space E. As-

sume that X is either almost surely convex or the probability space is non-
atomic. Then EA X = EH X .

Proof.
(i) For each selection ξ ∈ X we have EH{ξ} ⊂ EH X by Proposition 3.9. Since

EH{ξ} = {Eξ}, the Herer expectation EH X contains expectations of all selections of
X , whence the statement of the theorem immediately follows.
(ii) In view of (i), it suffices to show that the Herer expectation is contained in the
selection expectation assuming that EA X is convex. By the Hahn–Banach theorem,
for every y /∈ EA X and ε > 0, there exists an u ∈ Rd such that

h(EA X, u) ≤ 〈y, u〉 − ε .

For every x ∈ E, referring to Theorem 1.10, we have

EρH(X, {x})2 − ‖x − y‖2 = E
(

sup
z∈X
‖x − z‖2 − ‖x − y‖2

)
= sup

ξ∈S(X)

E
(
‖x − ξ‖2 − ‖x − y‖2

)
≤ sup

ξ∈S(X)

E‖y − ξ‖2 + 2 sup
ξ∈S(X)

E〈y − ξ, x − y〉 .
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In particular, for xc = y − cu the above inequality implies that

EρH(X, {xc})2 − ‖xc − y‖2 ≤ sup
ξ∈S(X)

E‖y − ξ‖2 + 2 sup
ξ∈S(X)

E〈y − ξ,−cu〉

= EρH(X, {y})2 − 2c(〈y, u〉 − sup
ξ∈S(X)

〈Eξ, u〉)

= EρH(X, {y})2 − 2c(〈y, u〉 − h(EA X, u))

≤ EρH(X, {y})2 − 2cε .

For c > EρH(X, {y})2/(2ε) the right-hand side becomes negative, meaning that

EρH(X, {xc}) < ‖xc − y‖ ,
whence y does not belong to the Herer expectation of X . ��
Open problem 3.11. Find minimal conditions on a general Banach space E that
would guarantee that Theorem 3.10(ii) holds.

Doss convexity

It should be noted that the Herer expectation can be defined in general metric spaces,
where the selection expectation makes no sense. However, the Herer expectation can
be empty, as the following example shows.

Example 3.12 (Empty Herer expectation). Let E = S1 be the unit circle in R2

with the geodesic distance as the metric. Consider a random singleton X = {ξ} with
ξ taking the values (0, 1) and (0,−1) with equal probabilities. Then both the Doss
expectation of ξ and the Herer expectation of X are empty. Indeed, Eρ(ξ, x) = π/2
and EDξ = ∩x∈E{y : ρ(y, x) ≤ π/2} is empty.

Incidentally, in this case the distance average with the metric distance function
yields EDA X = S1. The distance average with the square distance function yields
EDA X = {(1, 0), (−1, 0)}. The latter coincides with the Fréchet expectation of X .

Definition 3.13 (Doss convexity). A metric space (E, ρ) is called convex in the sense
of Doss if for any two elements x1, x2 ∈ E there exists an element a ∈ E such that

ρ(x, a) ≤ 1

2
(ρ(x, x1)+ ρ(x, x2)) (3.6)

for all x ∈ E.

It is easy to see that (3.6) implies that the Doss expectation exists for all ran-
dom elements which take two values with equal probabilities. The following theorem
proved by Herer [234] shows that the convexity in the sense of Doss guarantees that
the Herer expectation is not empty. Clearly, a Banach space is convex in the sense of
Doss.

Theorem 3.14 (Herer expectation in Doss-convex space). Assume that all bounded
closed sets in E are compact. Any integrable random closed set X has a non-empty
Herer expectation if and only if E is convex in the sense of Doss.
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3.4 Properties of expectations

It is possible to formulate several basic properties of a “reasonable” expectation EX
of a random closed set X . The first group of properties is related to inclusion rela-
tionships.

(A1) If X is deterministic, then EX = X .
(A2) If K ⊂ X a.s., where K is deterministic, then K ⊂ EX .
(A3) If X ⊂ W a.s. for a deterministic set W , then EX ⊂ W .
(A4) If X ⊂ Y a.s., then EX ⊂ EY .

Clearly, (A2) and (A3) imply (A1), while (A1) and (A4) yield both (A2) and (A3).

The second group consists of the properties related to invariance with respect to
some transformations.

(B1) If X and gX coincide in distribution for every g from a certain group G, then
gEX = EX for each g ∈ G.

(B2) Translation-equivariance: E(X + x) = EX + x for all translations x (if E =
Rd ).

(B3) Homogeneity: E(cX) = cE(X) for each c ∈ R.

The third group of properties relates expectations of sets and “usual” expectations
of random variables and vectors.

(C1) If X = {ξ} is a random singleton, then EX = {Eξ}.
(C2) If X = Bη(ξ) is a ball of random radius η and centre ξ , then EX = BEη(Eξ).
(C3) If X = co(ξ1, . . . , ξn) is the convex hull of a finite number of random elements,

then EX = co(Eξ1, . . . ,Eξn).
(C4) If X = {ξ1, . . . , ξn}, then EX = {Eξ1, . . . ,Eξn}.

Some of these natural properties are non-compatible and have far-reaching con-
sequences. For example, (A4) and (C1) imply that Eξ ∈ EX for each selection
ξ ∈ X , so that EX contains the selection expectation of X . For instance, the Doss
expectation satisfies (C1) and (A4), whence it contains the selection expectation.
However the convexity of both selection and Doss expectations severely restricts
possible applications, e.g. in image analysis, where most images are non-convex.
The distance average seems to be the most versatile expectation, which can have a
wide range of possible applications in image analysis, see Lewis, Owens and Badde-
ley [350].
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Notes to Chapter 2

Section 1.1. Most of results of Section 1.1 are taken from Hiai and Umegaki [255], who
considered a more general case of multivalued functions defined on a measurable space with
a not necessarily finite measure. It should be noted that the results for the selection (Aumann)
expectation are often formulated for integrals of multivalued functions.

The results concerning FX -measurable selections are due to Hart and Kohlberg [223] for
the case of random compact sets. They have been generalised by Artstein and Hart [22] for
general random closed sets. Some of them have been reformulated here for random closed sets
in Banach spaces.

A converse statement to Proposition 1.2(iii) is wrong, as Example 1.2.15 shows. The-
orem 1.2.16 concludes that the weak closures of the families of all selections coincide for
two identically distributed random closed sets on non-atomic probability spaces. The same
result holds for the families of integrable selections provided that the random closed sets are
integrable, i.e. possess at least one integrable selection. This has been proved by Hart and
Kohlberg [223] for random compact sets, while a simple truncation argument extends this
statement for any two integrable random closed sets assuming that E is locally compact, see
Artstein [16] and Artstein and Hart [22].

Theorem 1.10 goes back to Hiai and Umegaki [255], but is reformulated here in a proba-
bilistic language for stochastic processes and random sets.

Section 1.2. The selection expectation stems from the theory of multivalued functions. It is
sometimes called the Kudo–Aumann integral, acknowledging the contribution by Kudo [336].
Aumann [31] defined an integral of a multivalued function in Rd as a family of all integrals
of its selections, while its random sets meaning was discovered by Artstein and Vitale [23].
Another integral of a set-valued function was defined by Debreu [124] as a limit of sums for
simple functions. Both definitions are equivalent, as shown by Byrne [85]. A construction
of the expectation for random convex sets in the Euclidean space using approximations by
simple random sets is described by Hess [246]. Artstein and Burns [20] introduced a set-valued
integral of a closed-valued multifunction using Riemann sums, which can be used to define an
expectation if the probability space is [0, 1]. Then it coincides with the Debreu approach for
random compact sets in Rd . The Aumann and Bochner integrals for multivalued functions can
be defined with respect to any finitely-additive measure, see Martellotti and Sambucini [379].

Theorem 1.15 goes back to Richter [488]. The current proof is adapted from Ioffe and
Tihomirov [271], where also various relationships with optimisation are discussed. Theo-
rem 1.16 was proved by Hiai and Umegaki [255]. Relationships with the so-called bang-bang
principle in optimisation are discussed by Artstein [15]. A proof of Lyapunov’s theorem for
set-valued measures can be found in Ioffe and Tihomirov [271]. A generalisation of Lya-
punov’s theorem for vector valued measures is given by Cerf and Mariconda [93].

Example 1.23(i) is given in Giné and Hahn [198] and goes back to Z. Artstein and R.A. Vi-
tale. Example 1.23(ii) is taken from Li and Ogura [352]. Theorem 1.24 is a synthesis of results
from Hiai and Umegaki [255] and Byrne [85]. These results have been generalised for con-
ditional expectations by Li and Ogura [352]. It should be noted that necessary and sufficient
conditions for E X = EI X in a general separable Banach space E are not known so far. Theo-
rem 1.22 is a folklore fact that also appears in Papageorgiou [442].

Stich [542] extended the Aumann integral for non-measurable maps X from (Ω,F,P)

into the family of closed subsets of the real line. Khan and Sun [300] proved a number of
results on integrals of set-valued functions with a countable family of values giving rather
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general statements about their convexity and the closedness. These results can be immedi-
ately interpreted as concerning selection expectations of random closed sets with at most a
countable family of values. Pucci and Vitiliaro [460] considered the Aumann integral of not
necessarily closed set-valued functions in a separable reflexive Banach space.

The concept of a Pettis integral is essentially weaker than the Bochner integral in infinite-
dimensional spaces. Then the Aumann–Pettis expectation (or integral) is defined as the set
of all Pettis integrals for Pettis integrable selections. El Amri and Hess [160] study the Pettis
integrability for random closed sets with possibly unbounded values. Hess [248] provides a
useful survey on set-valued integration and set-valued probability theory.

Section 1.3. Theorem 1.28 was proved by Vitale [579] and subsequently generalised for
random convex sets by Molchanov [400].

Section 1.4. Although the idea of a canonical representation of a random set goes back to
Matheron [381], its use within the context of expectations of random sets was realised by Vi-
tale [582]. The current presentation incorporates some ideas from Hiai [253], in particular, this
relates to Theorem 1.32. Theorem 1.32(ii),(iv) appears also in Hess [247]. The translative ex-
pectation was defined by Vitale [584] with the aim to tighten the Brunn–Minkowski inequality
for random sets, see Theorem 3.1.11. Another proof of Theorem 1.34 is given in Vitale [584].

Multivalued measures were studied by Artstein [14], Costé [105], Debreu and Schmei-
dler [125], Godet-Thobie [205], Hiai [250] and Luu [361]. The current presentation follows
Hiai [254]. Proposition 1.36 is proved by Papageorgiou [442].

Section 1.5. The first variant of Fatou’s lemma for multivalued functions is due to Au-
mann [31], see Theorem 1.37 for the non-atomic case. Subsequent improvements have been
done by Schmeidler [515] (where another proof of Theorem 1.37 can be found), Hildenbrand
and Mertens [256], Hiai [253], Khan and Majumdar [299], Yannelis [619] and Balder [43, 44].
The most general case so far is treated by Balder and Hess [45]. It should be noted that the
formulations of [45] are more general than Theorems 1.39 and 1.42 by imposing less restric-
tive conditions on measurability of multivalued functions. Examples 1.40 and 1.41 are taken
from Hess [241] and Balder and Hess [45].

Theorems 1.43 and 1.44 are due to Hiai [253]. It is shown by Jacobs [276] that E(X ∩
Br (0)) converges to E(X) as r ↑ ∞ if X has a bounded selection.

The convergence of expectations for a weakly convergent sequence of random sets was
considered by Artstein and Wets [24] (in a different setup involving integrals of a fixed multi-
function with respect to a weakly convergent sequence of probability measures) and Molcha-
nov [398], where Theorem 1.45 was proved. Further results on the convergence of conditional
expectations are due to Castaing, Ezzaki and Hess [90].

Section 1.6. The presentation of conditional expectations of random closed sets follows
Hiai [254] and Hiai and Umegaki [255], where all proofs can be found. Conditional expecta-
tions of random sets are widely investigated in the literature, mostly because of applications
to the studies of multivalued martingales, see Section 5.1.1. Other results on conditional ex-
pectations are due to Dynkin and Evstigneev [152], Neveu [425], Sainte-Beuve [508], Val-
adier [570] and van Cutsem [114]. The convergence results for conditional expectations are
due to Hiai [253] and Hess [241]. The latter paper deals with unbounded random closed sets
exploiting the truncation argument to prove the results.

Similar to a definition of an essential supremum, it is possible to define an essential convex
closure For a family of random closed sets, Wang [595] considered the properties of condi-
tional expectation in this framework and applied them to prove an optional sampling theorem
and the convergence results for set-valued martingales.
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Section 2.1. The general linearisation approach to defining expectation in the space F was
described in Molchanov [405].

Section 2.2. The Vorob’ev expectation was originally defined by Vorob’ev [586] for discrete
random sets (in a finite space E) with measures replaced by cardinalities of the corresponding
sets. This concept was reformulated for the general case by Stoyan and Stoyan [547]. Fur-
ther generalisations of the Vorob’ev expectation are suggested by Molchanov [408]. Note that
the coverage function is called the membership function in the theory of fuzzy sets and the
thresholded sets are called α-cuts, see Li and Lee [351].

Section 2.3. The distance average was introduced by Baddeley and Molchanov [40] who also
discuss applications to image analysis and properties of the empirical estimator of the distance
average.

The metric distance function is a well known binary distance transform from the im-
age processing literature. Distance functions are widely used in image analysis and can be
computed very efficiently, see Rosenfeld and Pfalz [500]. Applications of the signed distance
function to shape analysis were considered by Delfour and Zolésio [128]. It should be noted
that the distance average includes the Vorob’ev expectation as a particular case for the indi-
cator distance function defined in Example 2.6(iv). A characterisation theorem for random
closed sets by their distance functions (called processes of first contact variables) is obtained
by Ayala and Montes [35].

The ∆-metric (2.6) was defined by Baddeley [38], who showed that it has a number of
advantages over the Hausdorff metric when assessing dissimilarities between binary images.

The mean distance function was studied by Molchanov and Terán [411] and applied to the
thresholding problem in image analysis by Friel and Molchanov [183].

Section 2.4. The radius-vector expectation is described in Stoyan and Stoyan [547]. Radius-
vector functions are very popular in the engineering literature, where it is usual to apply
Fourier methods for shape description, see Beddow and Mellow [54] and Réti and Czi-
nege [485]. An application of the radius-vector expectation to averaging and modelling of
images is discussed by Hobolth and Vedel Jensen [259], Mancham and Molchanov [375] and
Stoyan and Stoyan [547]. The common idea is to perturb the template given by the radius-
vector expectation using a stochastic process on the unit circle (or unit sphere).

Section 3.1. The presentation follows Heijmans and Molchanov [229] who elaborate this idea
for maps between two lattices and discuss a number of further concepts including convolution
operation on lattices and the corresponding strong law of large numbers. Section 3.1 describes
the simplest variant, where the second lattice is the extended real line. A related concept
appears in Molchanov [398, Ch. 2].

An expectation for a lattice-valued random element can be defined using approximations
by simple functions. A systematic study of this definition including the related concepts of
conditional expectation, martingales and the convergence is published by Jonasson [282].

Section 3.2. The Fréchet expectation on metric spaces is due to Fréchet [181]. The strong
law of large numbers for the Fréchet expectation (Theorem 3.4) was proved by Ziezold [627].
Its variant for the centroids of order k ≥ 1 (the minimisers of Eρ(ξ, x)k ) is due to Sverdrup-
Thygeson [553].

Section 3.3. The Doss expectation was introduced by Doss [144], who proved Theorem 3.6
for E being the real line. The general variant of Theorem 3.6 is due to Bru, Heinich and
Lootgieter [81]. Definition 3.7 is due to Herer [234]. T. Okon (unpublished report) studied
relationships between the Doss and Herer expectations. Theorem 3.10(ii) is due to Ch. Hess,
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see Aubin [28, Th. 3.10.3]. The Herer expectation described here is often also called the Doss
expectation, see Aubin [28].

Further results concerning the Doss expectation in metric spaces of negative curvature
(which are convex in the sense of Doss) can be found in Herer [235] and Raynaud de Fitte [173].
The corresponding definition of a conditional expectation and a martingale is explored by
Doss [145] and Herer [235, 236]. The Doss definition can be applied to define an average of
several points in a metric space, which leads to classification of metric spaces, see Gähler and
Murphy [185] and Pick [458]. The ideas similar to Doss and Fréchet expectations are used to
define barycentres for probability measures on manifolds, see Emery and Mokobodzki [161]
and Picard [457]. General ergodic theorems and laws of large numbers for the Herer expecta-
tion in a metric space are obtained by Raynaud de Fitte [173].

Section 3.4. The properties of expectations are presented here following Molchanov [405].
Many concepts of the expectation can be extended to define the corresponding conditional
expectations.

While the described expectations are derived from the probability distributions of ran-
dom sets, in practice they are estimated as averages if a sample of independent identically
distributed realisations is given. Such a sample of sets X1, . . . , Xn can be interpreted as a
random closed set X which takes the enlisted values with equal probabilities 1/n. This allows
us to reformulate all expectations for samples of sets. In statistical language this approach
means substituting the empirical distribution instead of the theoretical distribution of X . The
corresponding “naive” estimators are unbiased for the case of the selection and radius-vector
expectations and asymptotically unbiased in other cases. The strong law of large numbers for
the selection expectation is treated in detail in Section 3.1.2.

It is possible to define the variance for general random compact sets using the Fréchet
variance being the minimum value of EρH(X, K )2 for K ∈ K. If X is a random convex
compact set, then its variance can be identified with the covariance operator of the support
function h(X, ·). Kruse [334] defined a variance of a random closed set as a set of variances
of all its square integrable selections. This definition leads to a set-valued variance, which is
however far too complicated to evaluate even for random intervals on the real line.
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Minkowski Addition

1 Strong law of large numbers for random sets

1.1 Minkowski sums of deterministic sets

Shapley–Folkman–Starr theorem

Minkowski addition is a natural operation for sets in linear spaces, see Appendix A. If
M and L are two subsets of a linear space E, then their Minkowski (or elementwise)
sum is defined as

M ⊕ L = {x + y : x ∈ M, y ∈ L} .
We systematically write M + L instead of M ⊕ L.

This chapter deals with laws of large numbers and limit theorems for Minkowski
sums of random sets. The relevant methods are closely related to probabilities in
Banach spaces, since the Minkowski addition of convex sets can be identified with
the conventional arithmetic addition of their support functions. Therefore, a number
of results for Minkowski sums of random sets can be obtained using well-known
results for sums of random functions. Many results hold for random closed sets in a
general Banach space E, which is the typical setting in this chapter. The space E is
often assumed to be separable and we also specify results for random closed sets in
the Euclidean space Rd .

Minkowski addition of sets has a “convexifying” property, which means that the
sum is “more convex” than the summands. This property is formalised by the fol-
lowing important result. Recall that ‖K‖ is the norm of set K , see (A.3) and ρH is
the Hausdorff metric.

Theorem 1.1 (Shapley–Folkman–Starr). Let K1, . . . , Kn be compact subsets of
Rd for n ≥ 1. Then

ρH(K1 + · · · + Kn, co(K1 + · · · + Kn)) ≤
√

d max
1≤i≤n

‖Ki‖ . (1.1)
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This theorem holds for sets in any finite-dimensional linear space E. A stronger
variant of Theorem 1.1 is Theorem C.13 proved in Appendix C. An important feature
of (1.1) is that the upper bound does not depend on n if the norms ‖Ki‖, 1 ≤ i ≤ n,
are bounded by a constant c.

Corollary 1.2 (Sums of identical sets). If K is a compact subset of Rd , then

ρH(K (n), co(K (n)) ≤ √d‖K‖ , (1.2)

where K (n) = K + · · · + K is the Minkowski sum of n identical summands.

It follows from (1.2) that

ρH(n−1 K (n), n−1 co(K (n)) ≤
√

d

n
‖K‖

with the right-hand side converging to 0 as n → ∞. Therefore, n−1 K (n) converges
to a convex set as the number of summands n tends to infinity. A deterministic com-
pact set K is said to be infinitely divisible for Minkowski summation (or M-infinitely
divisible) if, for each n ≥ 2, there exists a convex set Ln such that K is equal to the
Minkowski sum of n identical sets equal to Ln .

Theorem 1.3 (M-infinitely divisible deterministic sets). A compact set K is M-
infinitely divisible if and only if K is convex.

Proof. Sufficiency is obvious with Ln = n−1 K . For the proof of necessity, note that
Corollary 1.2 implies ρH(K , co(K )) ≤ √d‖Ln‖. The statement now follows from
the fact that ‖Ln‖ ≤ n−1‖K‖. ��

It is interesting to note that every continuous linear map g from K(Rd ) into a
linear space satisfies g(K ) = g(co K ). Indeed,

g(K ) = 1

n

∑
g(K ) = g(n−1(K + · · · + K ))→ g(co K ) .

Therefore, it is not possible to embed the family of compact sets isomorphically into
a linear space.

Convexification in Banach spaces

The explicit constant in the right-hand side of (1.1) makes no sense if the space E
is infinite-dimensional. The following result replaces Theorem 1.1 in the infinite-
dimensional setting.

Theorem 1.4 (Convexification of deterministic sums). Let {Kn, n ≥ 1} be a se-
quence of compact sets in Banach space E and let K0 be compact and convex. If

ρH(n−1(co(K1)+ · · · + co(Kn)), K0)→ 0 as n →∞ , (1.3)

then
ρH(n−1(K1 + · · · + Kn), K0)→ 0 as n →∞ . (1.4)
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Proof. Let e be an exposed point in K0, i.e. there exists a linear functional f such
that f (e) > f (x) for x ∈ K0, x �= e. For each i , let xi ∈ Ki be a maximiser of f on
Ki , i.e. f (xi ) ≥ f (x) for every x ∈ Ki .

Then yn = n−1(x1+· · ·+xn) is a maximiser of f on n−1(co(K1)+· · ·+co(Kn)).
By (1.3), each limiting point of yn lies in K0, whence

yn → e as n →∞ . (1.5)

Let 0 ≤ λ ≤ 1 and let p(n) = [λn] be the integer part of λn. Choose m(n) such
that 1 ≤ m(n) ≤ n − p(n). Then

n−1(xm(n) + · · · + xm(n)+p(n))→ λe as n →∞ .

Now consider a finite number of exposed points e j and the corresponding maximis-
ers x j

i , 1 ≤ j ≤ k, i ≥ 1. Let m j (n) = [(λ1 + · · · + λ j )n], where λ j ∈ [0, 1], and
λ1 + · · · + λk = 1. Put

zi,n = x j
i if m j (n) < j ≤ m j+1(n) .

Then
n−1(z1,n + · · · + zn,n)→ λ1e1 + · · · + λkek . (1.6)

If wn ∈ n−1(K1 + · · · + Kn), then every limiting point of {wn, n ≥ 1} belongs to
K0. The exposed points are these limits by (1.5) and convex combinations of them
by (1.6). Since convex combinations of the exposed points are dense in K0 (see
Köthe [328, p. 337]), we obtain (1.4). ��

In Rd the assertion of Theorem 1.4 can be derived from the Shapley–Folkman–
Starr theorem. Denote Sn = K1 + · · · + Kn and note that co(S) = co(K1) + · · · +
co(Kn). The triangle inequality yields

ρH(n−1Sn, K0) ≤ ρH(n−1Sn, n−1 co(Sn))+ ρH(n−1 co(Sn), K0) .

The second summand converges to zero by (1.3). By (1.3), ‖ co(Kn)‖ = o(n),
whence

max
1≤i≤n

‖Ki‖/n → 0 as n →∞ .

By (1.1),

ρH(n−1Sn, n−1 co(Sn)) ≤
√

d max
1≤i≤n

‖Ki‖/n → 0 as n →∞ .

A direct generalisation of Theorem 1.1 for compact sets in a Banach space E is
possible under additional geometric assumptions on E. The space E is said to be of
type p if there exists a constant C > 0 such that

E(‖
n∑

i=1

ξi‖p) ≤ C
n∑

i=1

E(‖ξi‖p)
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for each n ≥ 2 and independent E-valued elements ξ1, . . . , ξn with mean zero. Every
Hilbert space is of type 2, the spaces Lp with 1 < p < ∞ are of type min(p, 2),
while the space C([0, 1]) of continuous functions with the uniform metric and L∞
are not of type p for any p > 1.

Theorem 1.5. Let E be a Banach space of type p > 1. Then there exists a constant
C > 0 such that, for all K1, . . . , Kn ∈ K,

ρH(K1 + · · · + Kn, co(K1 + · · · + Kn)) ≤ C1/p

(
n∑

i=1

‖Ki‖
)1/p

. (1.7)

Proof. See Puri and Ralescu [464] for the proof of a stronger inequality with the
norms of Ki in (1.7) replaced by the inner radius of Ki given by (C.6), which is
one of the non-convexity measures. The particular case of a Hilbert space E was
considered by Cassels [88]. ��

1.2 Strong law of large numbers

Euclidean case

A useful tool suitable to derive the strong law of large numbers (SLLN) for random
convex sets is based on their representation as elements of functional spaces. For the
time being, assume that E = Rd . A set K from the family coK of convex compact
sets in Rd gives rise to its support function

h(K , u) = sup{〈x, u〉 : x ∈ K } , u ∈ Rd .

In the following we usually consider the support function as a function defined on
the unit ball B1 or the unit sphere Sd−1. The support function is Lipschitz on Rd , see
Theorem F.1. The properties

h(K1 + K2, u) = h(K1, u)+ h(K2, u)

and
h(cK , u) = ch(K , u)

make it possible to convert the Minkowski sums of convex sets into the arithmetic
sums of the corresponding support functions. Furthermore,

ρH(K1, K2) = sup
‖u‖=1

|h(K1, u)− h(K2, u)| (1.8)

= sup
‖u‖≤1

|h(K1, u)− h(K2, u)| .

and, in particular,

‖K‖ = ‖ co(K )‖ = ρH(K , {0}) = sup
‖u‖=1

|h(K , u)| .
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Thus, the support function provides an isometric embedding of the family coK of
convex compact subsets of E into the Banach space C(B1) (or C(Sd−1)) of continu-
ous functions on B1 (or Sd−1) with the uniform norm.

The general approach to derive strong laws of large numbers and limit theorems
for random compact sets Xn , n ≥ 1, consists of two steps:

Step 1: Reduce consideration to the case of random convex compact sets.
Step 2: Derive results for random convex sets by invoking the corresponding results

for probabilities in Banach spaces and applying them to the sequence h(Xn, ·)
of the support functions of Xn , n ≥ 1.

Recall that the representation of random sets through their support functions can
be used to define the selection (or the Aumann) expectation, see Theorem 2.1.22.
Therefore, it is natural that the selection expectation appears in the strong law of
large numbers for random sets with respect to Minkowski addition. In its simplest
form this law of large numbers establishes the almost sure convergence with respect
to the Hausdorff metric of normalised Minkowski sums of i.i.d. random closed sets
to the selection expectation of a summand. The mere existence of a sequence of
independent random elements implies that the underlying probability space is non-
atomic, so that the selection expectation is convex. In this chapter EX always means
the selection expectation. Recall that a random compact set X is called integrably
bounded if ‖X‖ is integrable, see Definition 2.1.11(i).

Theorem 1.6 (SLLN for random sets in Rd ). Let X, X1, X2, . . . be i.i.d. integrably
bounded random compact sets in Rd and let Sn = X1 + · · · + Xn , n ≥ 1. Then

ρH(n−1Sn,EX)→ 0 a.s. as n →∞. (1.9)

Proof. If X is almost surely convex, then

h(n−1 Sn, u) = 1

n

n∑
i=1

h(Xi , u)→ Eh(X, u) = h(EX, u)

by a strong law of large numbers in a Banach space (see Mourier [416]) specialised
for the space C(B1) of continuous functions on B1 with the uniform metric. By
(1.8) the uniform metric on C(B1) corresponds to the Hausdorff metric on coK,
whence (1.9) holds. A not necessarily convex X can be replaced with co(X), so that
an application of Theorem 1.1 or Theorem 1.4 finishes the proof. The integrable
boundedness of X implies EρH(n−1Sn,EX)→ 0 as n →∞. ��

SLLN in Banach space

Now consider the case when E is a general Banach space. The Rȧdström embed-
ding theorem (see Rȧdström [472]) provides a normed linear space Y and a linear
isometry g between coK and Y. However, this space Y is not complete in general.
The Hörmander embedding theorem says more specifically that g maps coK into the
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space Cb(B∗1 ) of bounded continuous functions on the unit ball B∗1 in the dual space
E∗. This embedding is realised by the support function

h(K , u) = sup{〈x, u〉 : x ∈ K } , u ∈ B∗1 . (1.10)

Applying the strong law of large numbers in the space Cb(B∗1 ) yields a law of large
numbers for integrably bounded random convex compact sets in a Banach space.
Finally, the result can be extended to non-convex compact sets by applying Theo-
rem 1.4.

Theorem 1.7 (SLLN for random sets in Banach space). Let {Xn, n ≥ 1} be a se-
quence of i.i.d. Hausdorff approximable integrably bounded random sets in a Banach
space E. Then n−1(X1 + · · · + Xn) converges almost surely in the Hausdorff metric
to a compact convex set being the selection expectation of co(X1).

Theorem 1.2.11(ii) implies that a random compact set is Hausdorff approx-
imable, whence Theorem 1.7 holds for a sequence of integrably bounded random
compact sets in E. Theorem 1.7 also holds for a general (possibly non-separable)
Banach space E, see Artstein and Hansen [21]. The limit of the normalised sums in
Theorem 1.7 is the expectation of the convex hull of X1, since in a general Banach
space, EX may be a proper subset of E co(X), see Example 2.1.23(i).

Open problem 1.8. Prove the strong law of large numbers for operator-normalised
sums of random closed sets, e.g. for the sequences An(X1 + · · · + Xn) or An1 X1 +
· · ·+ Ann Xn with An, An1, . . . , Ann , n ≥ 1, being linear operators. The correspond-
ing results for operator normalised sums of random vectors can be found, e.g. in
Buldygin and Solntsev [83].

Blaschke sums

Let Sd−1(K , ·) be the area measure of a convex compact set K ⊂ Rd , see Ap-
pendix F. The area measure is a measure on the unit sphere that depends on K and
can be extended for sets K from the convex ring R. If X is a random set with values
in R, then the Blaschke expectation of X is defined (up to a translation) by

Sd−1(EBL X, ·) = ESd−1(X, ·) .
The Blaschke sum of X1 and X2 from R is a convex set with the surface area measure
equal to the sum of the surface area measures of X1 and X2.

Using this embedding of sets in the space of measures on the unit sphere it is
possible to derive the strong law of large numbers for normalised Blaschke sums.
Note that we do not need to resort to convexification arguments, since the Blaschke
sum of two sets from the convex ring is always convex by definition.

1.3 Applications of the strong law of large numbers

The Brunn–Minkowski theorem

The classical Brunn–Minkowski inequality (see Schneider [520, p. 309]) states that
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V1/d(λK + (1− λ)L) ≥ λV1/d(K )+ (1− λ)V1/d(L) , (1.11)

where V = mes is the d-dimensional Lebesgue measure (volume) in Rd , λ ∈ [0, 1]
and K , L are arbitrary compact sets (in fact, their measurability suffices).

Theorem 1.9 (Brunn–Minkowski inequality for random sets). If X is an inte-
grably bounded random compact set in Rd , then

V1/d(EX) ≥ EV1/d(X) . (1.12)

Proof. We prove the stronger statement

V1/d(EX  ) ≥ EV1/d(X) , (1.13)

where X  is the reduced representation of X , see Section 2.1.4. Indeed, EX  can be
a proper subset of EX , while EV1/d (X) = EV1/d (X  ).

Consider first the non-atomic case when EX = EX  . Let X, X1, X2, . . . be i.i.d.
random sets. Then (1.11) can be iterated to get

V1/d(n−1(X1 + · · · + Xn)) ≥ n−1
n∑

i−1

V1/d(Xi ) . (1.14)

Since E‖X‖ < ∞ and V1/d(X) ≤ c‖X‖ for some c > 0 (depending on the di-
mension of the space), the Kolmogorov strong law of large numbers implies that the
right-hand side of (1.14) converges to EV1/d(X) < ∞ almost surely. Theorem 1.6
yields

V1/d(E co(X)) ≥ EV1/d(X) ,

since V is continuous on coK. Now (1.12) follows from the fact that the selec-
tion expectation of X coincides with the selection expectation of co(X), see The-
orem 2.1.15.

In the pure atomic case, assume that X takes values K1, K2, . . . with probabili-
ties p1, p2, . . . . Then (1.11) implies

V1/d(p1K1 + · · · + pn Kn) ≥
n∑

i=1

piV1/d(Ki ) (1.15)

for each n ≥ 2. The right-hand side converges as n → ∞ to the associated infinite
sum. For the left-hand side, one can refer to (2.1.15) and the inclusion

EX  = p1K1 + p2K2 + · · · ⊃ p1K1 + · · · + pn Kn .

In the general case, X  can be considered as a mixture of two random sets, X1
with the probability distribution attaching the masses p1, p2, . . . to the compact sets
K1, K2, . . . and X2 distributed on K \ {K1, K2, . . . }. If θ is the sum of all pi ’s, then

EX = θEX1 + (1− θ)EX2 .
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By (1.11) and the two cases discussed above,

V1/d(EX) ≥ θV1/d(EX1)+ (1− θ)V1/d(EX2)

≥ θEV1/d(X1)+ (1− θ)EV1/d(X2) ≥ EV1/d(X) . ��
Note that (1.12) implies the classical Brunn–Minkowski inequality (1.11) for X

taking two values K and L with probabilities λ and (1− λ) respectively.

Proposition 1.10. Let K ∈ coK and let X be an integrably bounded random compact
set such that X ∩ K �= ∅ a.s. Then

V1/d((EX) ∩ K ) ≥ EV1/d(X ∩ K ) . (1.16)

Proof. Note that (EX) ∩ K ⊃ E(X ∩ K ) because every selection ξ of X ∩ K is a
selection of both X and K and Eξ ∈ K by the convexity of K . Then apply (1.12) to
the random set (X ∩ K ). ��

The Brunn–Minkowski inequality for random compact sets can be sharpened fur-
ther by noticing that translations of X are immaterial for the inequality. The transla-
tive expectation from Section 2.1.4 can be used to formulate the following variant
of (1.12).

Theorem 1.11. Let X be a random compact set such that E‖X − ξ‖ < ∞ for a
random vector ξ . Then

V1/d(E(X − ξ) ) ≥ EV1/d(X) . (1.17)

If such ξ exists, it is possible to sharpen the inequality by taking the Steiner point
s(X) as ξ . The equality in (1.17) holds if X is a random translate of a fixed convex
set.

Proof. First, (1.17) easily follows from (1.13) since translations leave the volume
invariant. Replacement of ξ by s(X) makes the inequality tighter because of Theo-
rem 2.1.34. If X = K + ξ , then (X − s(X)) = K − s(K ) and (1.17) turns into an
equality. ��

Translations of unimodal functions

The conventional Brunn–Minkowski inequality has been applied by Anderson [8] to
study translates of multivariate density functions.

Theorem 1.12 (Anderson inequality). If K is a symmetric convex set in Rd and
f : Rd �→ R is a non-negative symmetric unimodal function (so that {x ∈ Rd :
f (x) ≥ u} is convex for each u), then∫

K

f (x + λy)dx ≥
∫
K

f (x + y)dx (1.18)

for all y ∈ Rd and λ ∈ [0, 1].
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Proof. It suffices to consider a centrally symmetric K ∈ coK and f (x) = 1L(x)
with symmetric L ∈ coK. Then (1.18) is equivalent to

V(K ∩ (L − λy)) ≥ V(K ∩ (L − y)) .

Consider random compact set X = η(L − y), where η takes values 1 and −1 with
probabilities p ∈ [0.5, 1] and (1− p) respectively. By symmetry of K ,

EV(K ∩ X) = pV(K ∩ (L − y))+ (1− p)V(−K ∩ (L − y))

= V(K ∩ (L − y)) .

Since L is also symmetric,

EX = Eη(L − y) = E [ηL − ηy] = E [L − ηy] .
Note that E(L−ηy) = L−λy for λ = 2 p−1. Now (1.18) follows from (1.13). ��

Isoperimetric inequality

Theorem 1.9 yields the isoperimetric inequality in R2, which states that the disk
has the maximal area among all sets with the given perimeter. Clearly, it suffices to
prove this for convex sets. Let K ∈ coK and let w be an isotropic random rotation,
i.e. rotation to an angle uniformly distributed over [0, 2π]. Then X = wK is an
isotropic random set. Its selection expectation is a disk B whose perimeter is equal to
the expected perimeter of X (or the perimeter of K ), see Proposition 2.1.27. Finally,
(1.12) for d = 2 yields

(mes2(B))1/2 ≥ E(mes2(X))1/2 = (mes2(K ))1/2 ,

where mes2(K ) is the area of K . Thus the area of B does not exceed the area of K .

Random convex hulls

The Brunn–Minkowski inequality may be used to bound the tail of the distribution
for the volume of random convex hulls. Let Xn be the convex hull of i.i.d. random
points ξ1, . . . , ξn in Rd with a radially symmetric distribution. The selection expec-
tation of Xn can be found from

h(EXn , u) = E max
1≤i≤n

〈ξi , u〉 .

By radial symmetry, this support function is a constant denoted by an . Then EXn =
Ban is the ball of radius an . By (1.12),

EV1/d(Xn) ≤ V1/d(Ban) = anκ1/d
d ,

where κd is the volume of the unit ball in Rd . By Markov’s inequality, for t > 0,

P {V(Xn) ≥ t} = P
{
V1/d(Xn) ≥ t1/d

}
≤ EV1/d(Xn)

t1/d
≤ an

(κd

t

)1/d
. (1.19)
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Isotropic rotations and rounding of sets

By applying isotropic random rotations w1,w2, . . . to a fixed compact set K and
taking their Minkowski averages it is possible to “round” the set K . Indeed,

n−1(w1 K + · · · + wn K )

converges to E(w1 K ) which is a ball. Thus, K can be rounded by almost all se-
quences of independent rotations. Repeating the same argument for a countable
dense collection of compact sets in K shows that almost every sequence of rotations
rounds every K .

Zonoids

Convex bodies that appear as finite sums of linear segments are called zonotopes;
limits of zonotopes in the Hausdorff metrics are called zonoids. The following theo-
rem provides a probabilistic interpretation of zonoids by applying the strong law of
large numbers for sums of random segments.

Theorem 1.13 (Representation of zonoids). A random convex closed set Z is a
zonoid if and only if there is x ∈ Rd and random vector ξ with integrable norm such
that Z = x + E{0, ξ}.
Proof. Necessity. Let Y = L1 + · · · + Ln be a zonotope given by a sum of linear
segments. This sum can be rewritten as

Y = p1 L̃1 + · · · + pn L̃n ,

where pi = ‖Li‖/∑ ‖Li‖ and L̃i = p−1
i Li . If e1, . . . , ed is the standard basis in

Rd , then ∑
i

‖Li‖ ≤
∑

i

∑
k

[h(Li , ek)+ h(Li ,−ek)]

=
∑

k

∑
i

[h(Li , ek)+ h(Li ,−ek)]

≤
∑

k

[h(Y, ek)+ h(Y,−ek)] ≤ 2d‖Y‖ .

Hence ‖L̃i‖ ≤ 2d‖Y‖. One concludes that Y is the selection expectation of the
segment [ζ, η] with the end-points ζ and η having the discrete distributions with
uniformly bounded supports.

A general zonoid, Z , is a limit of Zn = E [ζn, ηn], where all ηn’s and ζn’s are
uniformly bounded. Without loss of generality, the joint distribution of ζn and ηn

converges to a distribution of a pair (ζ, η), so that

h(Zn, u) = E max(〈ζn, u〉, 〈ηn , u〉)→ E max(〈ζ, u〉, 〈η, u〉) as n →∞
= 〈Eζ, u〉 + Eh({0, η − ζ }, u) ,
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which yields the required representation with ξ = η − ζ .
Sufficiency is easily seen by approximating the distribution of ξ using random vec-
tors having a finite number of values. ��
Definition 1.14 (Zonoid and lift zonoid of a random vector). Let ξ be a random
vector in Rd . Its zonoid, Zξ , is the selection expectation of X = {0, ξ}. The lift
zonoid, Z̃ξ , of ξ is the selection expectation of the segment in Rd+1 with the end-
points being the origin and the (d + 1)-dimensional vector (1, ξ).

Although different distributions on Rd may share the same zonoid, the lift zonoid
uniquely characterises the corresponding multivariate distribution.

Theorem 1.15 (Characterisation of distribution by lift zonoid). The lift zonoid
Z̃ξ characterises uniquely the probability distribution of ξ in Rd .

Proof. The support function of Z̃ξ is given by

h(Z̃ξ , (t, u)) = E(max(0, (t + 〈ξ, u〉)) , (1.20)

where u ∈ Rd and t ∈ R. It is easy to see that the right-hand side of (1.20) as a func-
tion of t determines uniquely the distribution of 〈ξ, u〉 and thereupon the distribution
of ξ itself. ��

Theorem 1.13 can be generalised for a more general subfamilyM of coK instead
of the family of segments. Assume that cK ∈M for each K ∈M and c ∈ (0, 1]. By
M̃ denote the family of all convex bodies which appear as limits (in the Hausdorff
metric) of sums of elements of M. For instance, M̃ is the family of zonoids if
M consists of all segments. The following proposition can be proved similarly to
Theorem 1.13.

Proposition 1.16. For each K ∈ M̃ there exists a random convex closed set X such
that X ∈M almost surely and K = EX .

Random determinants

Now formulate results on determinants for a random matrix whose columns are given
by i.i.d. realisations of a random vector ξ .

Theorem 1.17. If ξ is a random vector in Rd with E‖ξ‖ <∞, then

E| det Mξ | = d!V(E{0, ξ}) ,
where Mξ denotes a d × d matrix whose columns are i.i.d. copies of ξ .

Proof. Consider a sequence {ξn, n ≥ 1} of i.i.d. copies of ξ . For each n ≥ 1 define
the zonotope

Zn = n−1([0, ξ1] + · · · + [0, ξn]) .
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The strong law of large numbers implies V(Zn) → V(E{0, ξ}) a.s. as n →∞. It is
possible (see Shephard [536]) to decompose the volume of Zn as follows:

V(Zn) = 1

nd

∑
i1<i1<···<id

| det M(ξi1 , . . . , ξid )| ,

where M(ξi1 , . . . , ξid ) is the matrix with the columns ξi1 , . . . , ξid . It follows from
the theory of U-statistics (see Serfling [531]) that V(Zn)→ (d!)−1E| det Mξ | almost
surely, which completes the proof. ��

1.4 Non-identically distributed summands

As in the i.i.d. case, the principal technique for non-identically distributed summands
relies on the corresponding laws of large numbers in Banach spaces. However, now
either geometric conditions on Banach spaces and/or a kind of uniform integrability
condition for random sets are needed. As usual, the Banach space E is assumed to
be separable.

Weighted sums

The simplest case of non-identically distributed summands appears while consid-
ering weighted sums of random compact sets. The weak law of large numbers for
weighted sums of random elements in type p Banach spaces (see Adler, Rosalsky
and Taylor [3]) yields the following result for weighted sums of random compact
sets.

Theorem 1.18 (Weighted sums of random compact sets). Let {Xn, n ≥ 1} be a
sequence of i.i.d. random compact sets in a separable Banach space E. Let an and
bn , n ≥ 1, be positive constants such that bn/an is an increasing sequence, and

bn

nan
→∞ ,

n∑
i=1

ai = O(nan) ,

n∑
i=1

bi

i2ai
= O(bn(

n∑
i=1

ai )
−1) .

If nP {‖X1‖ > bn/an} → 0, then

ρH

(
b−1

n

n∑
i=1

ai Xi , b−1
n

n∑
i=1

ai E(co(X1)1‖X1‖≤a−1
n bn

)

)
→ 0

in probability as n →∞.

The identical distribution condition in Theorem 1.18 cannot be easily dropped, as
is shown in Taylor [558, Ex. 4.1.1] for the “classical” case when Xi ’s are singletons.
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Conditions of uniform integrability type

Further laws of large numbers can be proved under some conditions on distributions
of the summands. The following conditions stems from Daffer and Taylor [115]. A
sequence of random sets {Xn, n ≥ 1} is said to be tight if, for each ε > 0, there
exists a compact in the Hausdorff metric set Dε ⊂ K, such that P {Xn /∈ Dε} < ε for
all n ≥ 1. A sequence of i.i.d. random sets is tight, while the converse is not true.
Furthermore, {Xn, n ≥ 1} is compactly uniform integrable if

E‖Xn1Xn /∈Dε
‖ < ε .

The compactly uniform integrability implies both the tightness and the uniform inte-
grability of the sequence {‖Xn‖, n ≥ 1}, but not conversely.

Theorem 1.19. Let {Xn, n ≥ 1} be a compactly uniform integrable sequence of
independent random compact sets in a separable Banach space. If

∞∑
n=1

n−pE‖Xn‖p <∞ (1.21)

for some 1 ≤ p ≤ 2, then

ρH(n−1
n∑

i=1

Xi , n−1
n∑

i=1

E co(Xi ))→ 0 a.s. as n →∞ .

Proof. Let ε > 0 be given. Fix a finite ε-net K1, . . . , Km ∈ Dε, so that each K ∈ Dε

can be approximated by at least one of Ki with ρH(K , Ki ) ≤ ε. Define random
sets Y ′n , n ≥ 1, as being equal to the set K j with the minimum possible j such that
ρH(Xn, K j ) is minimal among K1, . . . , Km . Let Yn = Y ′n1X∈Dε

, so that Yn = Y ′n if
X ∈ Dε and Yn = {0} otherwise. Then, for each n,

ρH(n−1
n∑

k=1

Xk, n−1
n∑

k=1

E co(Xk))

≤ ρH(n−1
n∑

k=1

Xk, n−1
n∑

k=1

Xk1Xk∈Dε
) (I)

+ ρH(n−1
n∑

k=1

Xk1Xk∈Dε
, n−1

n∑
k=1

Yk) (II)

+ ρH(n−1
n∑

k=1

Yk, n−1
n∑

k=1

E co(Yk)) (III)

+ ρH(n−1
n∑

k=1

E co(Yk), n−1
n∑

k=1

E(co(Xk)1Xk∈Dε
)) (IV)

+ ρH(n−1
n∑

k=1

E(co(Xk)1Xk∈Dε
), n−1

n∑
k=1

E co(Xk)) . (V)



208 3 Minkowski Addition

Since ‖Xk1Xk∈Dε
‖, k ≥ 1, is a sequence of independent random variables and be-

cause of (1.21), term (I) is bounded from above by

lim sup
n→∞

n−1
n∑

k=1

ρH(Xk, Xk1Xk∈Dε
) = lim sup

n→∞
n−1

n∑
k=1

‖Xk1Xk /∈Dε
‖

≤ lim sup
n→∞

n−1
n∑

k=1

E‖Xk1Xk /∈Dε
‖ < ε a.s. (1.22)

Term (II) is bounded by ε, since ρH(Xk1Xk∈Dε
,Yk) < ε for each k. By Theorem 1.4,

ρH(n−1
n∑

k=1

Yk, n−1
n∑

k=1

co(Yk))

≤
m∑

j=1

ρH(n−1
n∑

k=1

K j 1Yk=K j , n−1
n∑

k=1

co(K j )1Yk=K j )→ 0 .

The strong law of large numbers in Banach spaces (Daffer and Taylor [115]) yields:

ρH(n−1
n∑

k=1

co(Yk), n−1
n∑

k=1

E co(Yk))→ 0 a.s. as n →∞ .

Thus, term (III) converges to 0 almost surely. Term (IV) can be made arbitrarily
small, since ρH(EX,EY ) ≤ EρH(X,Y ) for any two integrably bounded convex
compact sets. The proof is finished by noticing that the reasons that led to (1.22) are
also applicable for term (V). ��

Note that (1.21) holds if

sup
n≥1

E‖Xn‖p <∞ (1.23)

for some p > 1. If E = Rd , (1.23) implies the compactly uniform integrability, since

E‖Xn1‖Xn‖>c‖ ≤ (E‖Xn‖p)1/p(P {‖Xn‖ > c})(p−1)/p

≤ (E‖Xn‖p)1/p(c−1E‖Xn‖)(p−1) .

It is also possible to consider weighted Minkowski sums of the form

an1 X1 + an2 X2 + · · · + ann Xn ,

where {ani : 1 ≤ i ≤ n, n ≥ 1} is a triangular array of non-negative constants such
that

∑n
i=1 ani ≤ 1 for all n ≥ 1. The following result can be proved similarly to

Theorem 1.19, see Taylor and Inoue [559].
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Theorem 1.20. Let {Xn, n ≥ 1} be a compactly uniform integrable sequence of
independent compact sets in a separable Banach space. Let ξ be a random variable
such that P {‖Xn‖ > t} ≤ P {ξ > t} for all n and t > 0. If Eξ1+1/γ < ∞ for some
γ > 0 and max1≤i≤n ani = O(n−γ ), then

ρH(an1 X1 + · · · + ann Xn, an1EX1 + · · · + annEXn)→ 0 a.s. as n →∞ .

1.5 Non-compact summands

Consider a sequence {Xn, n ≥ 1} of i.i.d. integrable (but possibly unbounded and
non-compact) random closed sets in a Banach space E. Since Minkowski sums of
non-compact closed sets are not necessarily closed, define

Sn = cl(X1 + · · · + Xn) , n ≥ 1 .

Euclidean case

The strong law of large numbers for random closed sets in Rd is formulated with
respect to the Painlevé–Kuratowski convergence of closed sets, see Definition B.5.

Theorem 1.21 (SLLN for integrable random sets in Rd ). Let X, X1, X2, . . . be a
sequence of i.i.d. integrable random convex closed sets in Rd . Then n−1Sn converges
in the Painlevé–Kuratowski sense to the closed convex hull of EX .

Proof. First, prove that lim sup n−1Sn ⊂ C = co (EX) almost surely. Since C
is convex and closed, this inclusion is equivalent to the inequality h(n−1 Sn, u) ≤
h(C, u) for all u ∈ Rd . It suffices to check this inequality for a countable set of
those u where h(C, u) < ∞. The strong law of large numbers for random variables
implies

h(lim sup n−1Sn, u) ≤ lim sup h(n−1 Sn, u)

= lim sup n−1
n∑

i=1

h(Xi , u) = h(C, u)

for every such u, whence lim sup n−1Sn ⊂ C .
It remains to prove that lim inf n−1Sn ⊃ C almost surely. Assume that 0 ∈ Xn

almost surely for each n ≥ 1. Otherwise, we can replace Xn with Xn− e(Xn), where
e(Xi ) is defined in Lemma 2.1.9 and note that the sequence {e(Xn), n ≥ 1} satisfies
the strong law of large numbers. Let us show that almost surely every point in C is
a limit of a sequence of points in n−1Sn . It suffices to show this for a dense fam-
ily of points y ∈ C having representation y = ∑d+1

j=1 c j e j , where c1, . . . , cd+1 are
non-negative rational numbers that sum up to 1 and each e j = Eξ j is the expecta-
tion of a bounded FX -measurable selection ξ j of X . This choice is possible since the
expectations of bounded selections are dense in EFX X (which is the reduced selec-
tion expectation from Section 2.1.4) and the convex hull of the latter is dense in C .
The proof is finished by applying the strong law of large numbers to the integrably
bounded random compact (and finite) set {ξ1, . . . , ξd+1}. ��
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A converse to Theorem 1.21 can be formulated as follows.

Theorem 1.22. Let X, X1, X2, . . . be i.i.d. random closed sets in Rd such that X ⊂ F
a.s. for a closed set F that does not contain any whole line. If X is not integrable,
then n−1Sn converges in the Painlevé–Kuratowski sense to the empty set.

SLLN in Mosco and Wijsman topologies

While Theorem 1.21 provides the full generalisation of the strong law of large num-
bers for random closed sets in E = Rd , the situation is more complicated if E is a
general Banach space. Then many further variants of the strong law of large num-
bers are possible, according to a number of meaningful concepts of convergence for
closed sets in Banach spaces. The simplest result follows directly from the strong law
of large numbers for support functions if {Xn, n ≥ 1} is a family of bounded random
convex closed sets (which are not necessarily compact if E is infinite-dimensional).
Note a difference with Theorem 1.7 which deals with random compact sets.

Theorem 1.23. If {Xn, n ≥ 1} is a sequence of i.i.d. integrably bounded random
convex closed sets in a separable Banach space E, then n−1Sn converges to EX1
in the Hausdorff metric, where EX1 is the convex set that satisfies Eh(X1, u) =
h(EX1, u).

Further conditions are required to ensure the convexification in the limit (guar-
anteed by Theorem 1.4 in the case of compact summands). The following theorem
establishes the strong law of large numbers with respect to the Mosco convergence
defined in Appendix B.

Theorem 1.24 (SLLN for Mosco convergence). Let {Xn, n ≥ 1} be a sequence of
i.i.d. non-deterministic integrable random closed sets in a separable Banach space E.
Then n−1 Sn Mosco-converges to co (EX1) as n →∞.

Proof. Let C = co (EX1) and Yn = n−1 Sn . For any x ∈ C and ε > 0, by Theo-
rem 2.1.32(i) we can choose ξ j ∈ S1

FX j
(X j ), 1 ≤ j ≤ m, such that

‖m−1
m∑

j=1

x j − x‖ < ε ,

where x j = Eξ j , 1 ≤ j ≤ m. By Theorem 2.1.32(ii), there exists a sequence
{ξn, n ≥ 1} of selections ξn ∈ S1

FXn
(Xn) such that ξ(k−1)m+ j , k ≥ 1, are identically

distributed for each j = 1, . . . ,m. If n = (k − 1)m + l with 1 ≤ l ≤ m, then
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∥∥1

n

n∑
i=1

ξi − 1

m

m∑
j=1

x j
∥∥

= ∥∥1

n

m∑
j=1

k∑
i=1

ξ(i−1)m+ j − 1

n

m∑
j=l+1

ξ(k−1)m+ j − 1

m

m∑
j=1

x j
∥∥

≤ k

n

m∑
j=1

∥∥1

k

k∑
i=1

ξ(i−1)m+ j − x j
∥∥

+ k

n

m∑
j=1

1

k

∥∥ξ(k−1)m+ j
∥∥+ ( k

n
− 1

m

)∥∥ m∑
j=1

x j
∥∥ .

Since ξ(k−1)m+ j , k ≥ 1, are i.i.d. integrable random variables for j = 1, . . . ,m,

∥∥1

k

k∑
i=1

ξ(i−1)m+ j − x j
∥∥→ 0 a.s. as k →∞ ,

whence k−1‖ξ(k−1)m+ j‖ → 0 a.s. as k →∞. Therefore,

∥∥1

n

n∑
i=1

ξi − 1

m

m∑
j=1

x j
∥∥→ 0 a.s. as n →∞ .

Since n−1∑n
i=1 ξi ∈ Yn a.s., we have m−1∑m

j=1 x j ∈ lim inf Yn a.s. Thus, C ⊂
s−lim inf Yn a.s.

Let {x j , j ≥ 1} be a dense sequence in E \ C . By the separation theorem, there
exists a sequence {u j , j ≥ 1} of linear continuous functionals with unit norms in E∗
such that

〈x j , u j 〉 − ρ(x j ,C) ≥ h(C, u j ) , j ≥ 1 .

Then x ∈ C if and only if 〈x, u j 〉 ≤ h(C, u j ) for all j ≥ 1. Because the function
h(F, u j ) is B(F)-measurable as a function of F ∈ F and Eh(X1, u j ) = h(C, u j ) <

∞ for all j ≥ 1, it follows that {h(Xn, u j ), n ≥ 1} is a sequence of i.i.d. integrable
random variables for each j ≥ 1. By the strong law of large numbers applied for
each j , h(Yn, u j ) → h(C, u j ) a.s. as n → ∞ for all j ≥ 1 simultaneously. Except
an event of probability zero, x ∈ w−lim sup Yn implies that xk → x weakly for some
xk ∈ Ynk and hence

〈x, u j 〉 = lim
k→∞〈xk, u j 〉 ≤ lim

k→∞ h(Ynk , u j ) = h(C, u j ) , j ≥ 1 ,

which implies x ∈ C . Thus, w−lim sup Yn ⊂ C a.s. ��
Since the Mosco convergence coincides with the Painlevé–Kuratowski conver-

gence if E = Rd , Theorem 1.21 follows from Theorem 1.24. If the (possibly un-
bounded) summands are not identically distributed, then it is possible to derive a
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strong law of large numbers assuming that E is a Banach space of type p ∈ (1, 2]
and imposing a moment condition on the sequence {Xn, n ≥ 1}, see Hiai [253,
Th. 3.3].

Theorem 1.25 (SLLN in Wijsman topology). If {Xn, n ≥ 1} is a sequence of
i.i.d. integrable random closed sets in a separable Banach space E, then n−1Sn con-
verges almost surely in the Wijsman topology to co (EX1), that is ρ(x, n−1Sn) →
ρ(x, co (EX1)) almost surely simultaneously for all x ∈ E.

Proof. Denote C = co (EX1). Choose a countable subset Q∗ of the unit ball B∗1 in
the dual space E∗ such that

ρ(x,C) = sup
u∈Q∗

[〈x, u〉 − h(u,C)] for all x ∈ E .

Indeed, if y ∈ C is a point nearest to x , then u ∈ B∗1 can be chosen to be the normal
of the support hyperplane to C that passes through y. Passing to a countable family
of u is possible because E is separable.

Note that {h(u, Xn), n ≥ 1} is a sequence of i.i.d. random variables and
ρ(0, Xi ) = supu∈B∗1 (−h(u, Xi )). By the strong law of large numbers, h(u, Sn) →
h(u,C) a.s. as n → ∞ for every u ∈ B∗1 . Hence this convergence holds almost
surely simultaneously for all u ∈ Q∗. Then

lim inf
n→∞ ρ(x, Sn) ≥ lim inf

n→∞ ρ(x, co (Sn))

≥ sup
u∈Q∗

[〈x, u〉 − lim sup
n→∞

h(u, co (Sn))]

= sup
u∈Q∗

[〈x, u〉 − lim sup
n→∞

h(u, Sn)]

≥ sup
u∈Q∗

[〈x, u〉 − h(u,C)] = ρ(x,C) .

Let C ′ be the set of all rational convex combinations of members of a countable
dense subset of C . For every x ∈ E and m ≥ 1, there exists y ∈ C ′ such that

ρ(x, y) ≤ ρ(x,C)+ 1/m .

Using rather delicate arguments (see Hess [247, Prop. 3.3]) it is possible to show that
there exists a sequence of selections ξn ∈ S1

FXn
(Xn) such that n−1(ξ1+· · ·+ξn)→ y

a.s. as n →∞. The corresponding negligible event depends on x and m. Taking the
countable union of these negligible events we arrive at

lim sup
n→∞

ρ(x, Sn) ≤ ρ(x, y) ≤ ρ(x,C)+ 1/m

that holds almost surely simultaneously for all x from a countable dense set in E
and m ≥ 1. Letting m go to infinity and using the Lipschitz property of the distance
function we conclude that
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lim sup
n→∞

ρ(x, Sn) ≤ ρ(x,C)

almost surely for all x ∈ E simultaneously. ��
If E is finite-dimensional then the Wijsman topology coincides with the Fell

topology which is equivalent to the Painlevé–Kuratowski convergence. If E is reflex-
ive, then the Wijsman topology is weaker than the Mosco topology and Theorem 1.24
implies Theorem 1.25.

SLLN in the Hausdorff metric

To prove a strong law of large numbers in the Hausdorff metric on the family of
bounded closed sets in a Banach space, one should restrict the consideration to ran-
dom closed sets with special values. Let Fco be the family of all closed sets F that
satisfy

ρH(n−1(F (n), co F)→ 0 as n →∞ ,

where F (n) is the sum of n identical summands equal to F . By Theorem 1.3, K ⊂
Fco. It should be noted that Fco is a proper subclass of all bounded closed sets.

Example 1.26. Let E = �1 be the space of all summable sequences and let ei =
(0, . . . , 0, 1, 0, . . . ) with 1 on the i th place, i ≥ 1. Then F = {ei , i ≥ 1} is bounded,
but F /∈ Fco. To see this, it is easy to check that Fn = n−1(F + · · · + F) is not a
Cauchy sequence with respect to the Hausdorff metric. Take xm = (e1+· · ·+em)/m
and n < m/2. Then

inf
y∈Fn

‖xm − y‖ ≥ m − n

m
>

1

2
.

The following theorem was proved by Uemura [566] similarly to Theorem 1.19
(also in the case of non-identically distributed random sets).

Theorem 1.27. Let {Xn, n ≥ 1} be a sequence of i.i.d. random closed sets with
values in Fco. Assume that
(1) E‖X1‖p <∞ for some p ∈ (1, 2];
(2) for any ε > 0 there exists a compact in the Hausdorff metric set Dε ⊂ Fco such

that P {X1 /∈ Dε} < ε.
Then ρH(n−1Sn ,E(co X1))→ 0 a.s. as n →∞.

Probably the most important unbounded random closed sets appear from stochas-
tic processes as epigraphs of random functions. An application of the strong law of
large numbers in this context is described in Section 5.3.5.

2 The central limit theorem

2.1 A central limit theorem for Minkowski averages

Euclidean case

By the strong law of large numbers, the Minkowski averages
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X̄n = n−1(X1 + · · · + Xn)

converge to the selection expectation EX under rather mild assumptions. In the clas-
sical probability theory the speed of this convergence is assessed by taking the dif-
ference between X̄n and EX and normalising it with a growing sequence. However,
Minkowski addition is not invertible, so that it is not possible to subtract EX from
X̄n . Nor it is possible to circumvent the problem by considering random sets with
zero expectation, since all integrable random compact sets with zero expectation are
singletons.

It is possible to avoid subtraction by considering the normalised Hausdorff dis-
tance

√
nρH(X̄n,EX) between the Minkowski averaged and the selection expecta-

tion. The central limit theorem for Minkowski sums of random compact sets yields
the weak convergence of this Hausdorff distance to a random variable equal to the
maximum of a Gaussian random function on the unit ball B1 in Rd . Similar to the
strong law of large numbers, a central limit theorem (CLT) for random convex com-
pact sets in Rd follows from the corresponding results in the Banach space C(B1) of
continuous functions on the unit ball.

Let X be a random compact set which is square integrable, i.e. E‖X‖2 < ∞.
Define its covariance function ΓX : C(B1)×C(B1) �→ R as

ΓX (u, v) = E
[
h(X, u)h(X, v)

]− Eh(X, u)Eh(X, v) , (2.1)

i.e. ΓX (·, ·) is the covariance of the support function h(X, ·) considered to be a ran-
dom element in C(B1). Note that ΓX = Γco(X).

Theorem 2.1 (CLT for random sets in Rd ). Let X, X1, X2, . . . be i.i.d. square inte-
grable random sets. Then

√
nρH(n−1(X1 + · · · + Xn),EX)→ sup

u∈B1

‖ζ(u)‖ , (2.2)

where {ζ(u), u ∈ B1} is a centred Gaussian random function in C(B1) with the
covariance E[ζ(u)ζ(v)] = ΓX (u, v).

Proof. First, note that co(X), co(X1), co(X2), . . . is a sequence of i.i.d. random con-
vex compact sets and E‖ co(X)‖2 = E‖X‖2 <∞. Thus,

E‖h(co(X), ·)‖2∞ <∞ ,

where ‖ f ‖∞ = sup{ f (u) : u ∈ B1} is the uniform norm of f ∈ C(B1). Then

√
nρH(n−1(co(X)1 + · · · + co(X)n),EX1)

= √n
∥∥∥1

n

n∑
i=1

h(co(Xi ), ·)− Eh(co(X), ·)
∥∥∥∞ . (2.3)

The key argument of the proof is an application of the central limit theorem in C(B1),
see Araujo and Giné [12, Cor. 7.17] and Jain and Markus [279]. For this, we have to
check the entropy condition
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1∫
0

H 1/2(α)dα <∞ , (2.4)

where H (α) = log N(α) for the metric entropy N(α) of the unit ball, i.e. the small-
est number of balls of radius α covering B1. By replacing B1 with a cube we can
conclude that N(α) ≤ cdα

−d for some dimension-dependent constant cd , whence
integral (2.4) is finite.

By Theorem F.1, the centred support function is Lipschitz, i.e.

|h(co(X), u)−h(EX, u)− h(co(X), v) + h(EX, v)|
≤ |h(co(X), u)− h(co(X), v)| + |h(EX, u)− h(EX, v)|
≤
(
‖h(co(X), ·)‖∞ + ‖h(EX, ·)‖∞

)
‖u − v‖ .

The central limit theorem in C(B1) implies that

n−1/2
n∑

i=1

(
h(co(Xi ), ·)− h(EX, ·)

)
converges weakly in the space C(B1) to the Gaussian random function ζ with the
covariance ΓX . This weak convergence implies the convergence in distribution of
the maximum for the corresponding random functions and (2.3) yields (2.2). This
finishes the proof for random convex sets.

It remains to show that it is possible to replace Xn , n ≥ 1, by their convex hulls
without changing the limiting distribution. Note that co(X̄n) = n−1(co(X1)+ · · · +
co(Xn)). The triangle inequality together with Theorem 1.1 yields that

|√nρH(X̄n,EX1)−
√

nρH(co(X̄n),EX1)| ≤
√

nρH(X̄n, co(X̄n))

= n−1/2ρH(X1 + · · · + Xn, co(X1)+ · · · + co(Xn))

≤ cn−1/2 max
1≤i≤n

‖Xi‖

for a constant c. Since ‖X1‖, ‖X2‖, . . . are i.i.d. random variables with a finite second
moment, the right-hand side converges in distribution to zero as n → ∞. Indeed, if
Mn = n−1/2 max(‖X1‖, . . . , ‖Xn‖), then

P {Mn < x} = P
{
‖X‖ < n1/2x

}n
.

Now E‖X‖2 <∞ implies that

P
{
‖X‖ > n1/2x

}
≤ n−1x−2E

[
1‖X‖>n1/2 x‖X‖2

]
→ 0 as n →∞ ,

whence lim sup P {Mn < x} = 1. ��
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Since

ρH(K , L) = sup
u∈B1

|h(K , u) − h(L, u)| = sup
u∈Sd−1

|h(K , u) − h(L, u)|

for all K , L ∈ K, it is easy to show that the suprema of ζ over the unit ball B1 and
over the unit sphere Sd−1 are almost surely equal. Therefore, the Gaussian random
function ζ can be alternatively defined on the unit sphere.

Proposition 2.2 (Random sets with ζ being a support function). If the limiting
random field ζ(u), u ∈ Sd−1, in Theorem 2.1 is almost surely a support function of
a random compact set, then the summands are distributed as X = η+ K , where η is
a random vector in Rd and K is a deterministic convex compact set.

Proof. If ζ is the support function of a random convex compact set Z , then Eζ(u) =
Eh(Z , u) = 0 for all u, whence Z = {ξ} for a centred Gaussian random vector
ξ , see Proposition 2.1.30(i). Hence ΓX (u, v) is a bilinear form determined by the
covariance matrix of ξ . Fix any u ∈ Sd−1. Then both α1 = h(X, u) and α2 =
h(X,−u) have identical variances and the correlation coefficient between α1 and α2
is −1. Hence α1 + α2 is constant, i.e. X has a deterministic width in the direction
u. The same argument applies for a countable set of u. Therefore, X = η + K for
a deterministic set K . The random vector η, however, does not necessarily have the
Gaussian distribution, cf. Theorem 2.11. ��
Open problem 2.3. Find a geometrical interpretation of the Gaussian function ζ

that appears in Theorem 2.1. Can it be interpreted geometrically as determined by a
certain random set Z?

Open problem 2.4. Formulate the central limit theorem for Minkowski sums of ran-
dom sets using asymptotic expansions on the same probability space as suggested by
Zolotarev [629] for the classical central limit theorem. The idea is to avoid subtrac-
tion of sets by decomposing the average X̄n as

X̄n = EX + n−1/2 Z + · · · ,
where all relevant random sets are defined on the same probability space.

Non-square integrable summands

The following theorem gives other sufficient conditions for the central limit theorem
without assuming that X is square integrable.

Theorem 2.5. Let a random compact set X in Rd satisfy the following conditions:
(1) E

[‖X‖21‖X‖≤t
]

is a slowly varying function;

(2) ΓX (u, u) = limt→∞ E
[
(h(X, u))21|h(X,u)|≤t

]/
E
[‖X‖21‖X‖≤t

]
.
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Then na−1
n ρH(X̄n,EX) converges in distribution to ‖ζ‖∞, where

an = sup{t : t−2E(‖X‖21‖X‖≤t ) ≥ n−1}
and ζ is a centred Gaussian element in C(B1) with covariance (2.1)

Similar ideas yield a limit theorem with non-Gaussian limits. Here is a theorem
from Giné, Hahn and Zinn [202] which provides the condition for the convergence
to a p-stable law with 1 < p < 2.

Theorem 2.6 (Convergence to stable laws). Let X be a random convex compact set
in Rd and, for some p ∈ (1, 2),
(1) the function t pP {‖X‖ > t} is slowly varying;
(2) there exists a finite measure µ on K1 = {K ∈ coK : ‖K‖ = 1} such that

lim
t→∞

P {X/‖X‖ ∈ D, ‖X‖ ≥ t}
P {‖X‖ ≥ t} = µ(D)

µ(K1)

for every µ-continuity set D ⊂ K1.
If an = sup{t : nP {‖X‖ > t} ≥ µ(K1)/p}, n ≥ 1, then na−1

n ρH(X̄n,EX) con-
verges in distribution to the maximum of a p-stable random function on B1.

CLT in Banach space

Similar to the finite-dimensional case, each convex compact set in a separable Ba-
nach space E corresponds to its support function which is a continuous functional on
the unit ball B∗1 in the dual space E∗, see (1.10). Although this unit ball B∗1 is not
compact and also is not separable in the strong topology on E∗, this unit ball is com-
pact in the weak∗-topology on E∗, i.e. the space (B∗1 ,w∗) is compact. This topology
is metrised by

ρ∗(u, v) =
∑
n≥1

2−n|〈xn, u〉 − 〈xn, v〉| , u, v ∈ B∗1 ,

where {xn, n ≥ 1} is a countable dense set in the unit ball B1 in E. Since the sup-
port function of a finite set is weak∗-continuous, the continuity in the general case
is derived by approximation. Thus, h(X, u) belongs to the space C(B∗1 ) of weak∗
continuous functions on B∗1 .

For K ∈ K, define a variant of its support function

h̄(K , u) = sup
x∈K

|〈x, u〉| = max(h(K , u), h(K ,−u)) .

Consider a function g : R+ �→ R+, which is non-decreasing continuous sublinear
(i.e. g(r+ s) ≤ g(r)+ g(s)) and satisfies g(0) = 0. Let L be a fixed compact convex
centrally symmetric set in E. A semi-metric on B∗1 can be defined as

ρg,L(u, v) = g(h̄(L, u − v)) .
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For K ∈ coK, let ‖K‖g,L be the smallest t ≥ 0 such that, for any u, v ∈ B∗1 , one
has h̄(K , u− v) ≤ tρg,L(u, v). Furthermore, H (B∗1 , ρg,L , ε) denotes the ρg,L(u, v)-
metric entropy of B∗1 , i.e. the logarithm of the minimal number of balls of radius ε in
metric ρg,L that cover B∗1 .

Theorem 2.7. Let {Xn, n ≥ 1} be a sequence of i.i.d. random convex compact sets
in a separable Banach space E such that E‖X1‖2

g,L <∞ and

1∫
0

H 1/2(B∗1 , ρg,L, ε)dε <∞ . (2.5)

Then
√

nρH(X̄n,EX1) converges in distribution to ‖ζ‖∞, where ζ is a centred Gaus-
sian random element in C(B∗1 ) with the covariance given by (2.1) for u, v ∈ B∗1 .

Proof. For each K ∈ coK with ‖K‖g,L <∞ and u, v ∈ B∗1 ,

|h(K , u)− h(K , v)| ≤ h̄(K , u − v) ≤= ‖K‖g,L ρg,L(u, v) .

Thus,
|h(X1, u)− h(X1, v)| ≤ ‖X1‖g,L ρg,L(u, v) .

This condition together with the metric entropy condition (equivalent to (2.5)) are
known to imply the central limit theorem in the Banach space of weak∗-continuous
functions on B∗1 , see Jain and Markus [279]. This finishes the proof because of the
isometry between this Banach space and the family of convex compact sets. ��

It is more complicated to prove the central limit theorem for non-convex random
sets in Banach spaces, than for random sets in Rd . This is explained by the lack of
an analogue of the Shapley–Folkman–Starr theorem in infinite-dimensional spaces,
while quantitative results like Theorem 1.4 are no longer useful to show that in a
central limit theorem non-convex sets can be replaced by their convex hulls.

2.2 Gaussian random sets

Lipschitz functionals

Gaussian random functions on Sd−1 (or on the unit ball B1) appear naturally in the
limit theorem for Minkowski sums of random compact sets in Rd , since the nor-
malised Hausdorff distance between X̄n = n−1(X1 + · · · + Xn) and EX1 converges
in distribution to the maximum of a Gaussian random function on B1 or Sd−1. It is
well known that Gaussian random elements in linear spaces can be defined through
Gaussian distributions of all linear continuous functionals. A similar approach can
be applied to the (non-linear) space K of compact sets.

Let Lip+(K,R) denote the family of functionals g : K �→ R which satisfy the
following conditions.
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(i) g is positively linear, i.e. for all a, b ≥ 0 and K , L ∈ K,

g(aK + bL) = ag(K )+ bg(L) . (2.6)

(ii) g is Lipschitz with respect to the Hausdorff metric.

Definition 2.8 (Gaussian random sets). A random compact set X in Rd is said to
be Gaussian, if g(X) is a Gaussian random variable for each g ∈ Lip+(K,R).

It is possible to consider random convex sets whose support functions are Gaus-
sian, i.e. have Gaussian finite-dimensional distributions. The following result estab-
lishes the equivalence of this property of support functions and Definition 2.8.

Proposition 2.9 (Gaussian support functions). A random convex compact set X is
Gaussian if and only if its support function h(X, u) is a Gaussian random function
on Sd−1, i.e. h(X, u1), . . . , h(X, um) are jointly Gaussian for all u1, . . . , um ∈ Sd−1

and m ≥ 1.

Proof. If f is a linear functional on the space C(Sd−1), then f (h(X, ·)) = g(X)

for some g ∈ Lip+(K,R). Thus, f (h(X, ·)) is a Gaussian random variable, whence
h(X, ·) is a Gaussian random element in C(Sd−1).

In the other direction, assume that h(X, ·) is a Gaussian random function. Each
functional g ∈ Lip+(K,R) can be regarded as a functional of h(X, ·) ∈ C(Sd−1).
It is possible to extend g onto the linear subspace of C(Sd−1) obtained as the linear
span of all support functions. The Lipschitz property implies the continuity of the
extended version of g. By the Hahn–Banach theorem, g is extendable to a bounded
linear functional on C(Sd−1), which is Gaussian by Definition 2.8. ��

Since the support function does not make a distinction between X and its convex
hull, we obtain the following corollary.

Corollary 2.10. A random compact set X is Gaussian if and only if its convex hull
co(X) is Gaussian.

Proof. For the alternative proof, note that g(K ) = g(co(K )) for any g ∈ Lip+(K,R)

and (possibly non-convex) K ∈ K. The Lipschitz property of g yields its continuity,
whence

g(K ) = g(n−1 K + · · · + n−1 K )→ g(co(K )) as n →∞ . ��

Characterisation theorem

The following important result characterises Gaussian random compact sets as those
having degenerate shapes. More exactly, each Gaussian random set is a translation
of a deterministic convex compact set by a Gaussian random vector. The main idea
of the proof is to show that the support function can be made positive and then argue
that a non-negative Gaussian random variable is degenerate.
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Theorem 2.11 (Characterisation of Gaussian sets). A random compact set X in
Rd is Gaussian if and only if

co(X) = K + ξ a.s.

for a deterministic non-empty convex compact set K ⊂ Rd and a Gaussian random
vector ξ .

Proof. Sufficiency. Note that g(X) = g(K ) + g({ξ}) is Gaussian for any g ∈
Lip+(K,R), since g(K ) is deterministic and g({ξ}) is a linear bounded functional of
ξ .
Necessity. With each K ∈ coK it is possible to associate its Steiner point s(K )

defined by (F.6). If K ∈ K is non-convex, set s(K ) = s(co(K )). All coordinates
of s(K ) are functionals from Lip+(K,R). By the assumption, s(X) is a Gaussian
random vector. It is known that s(K ) ∈ K for each K from coK. Then X0 = X −
s(X) is a translate of X such that h(X0, u) ≥ 0 for all u ∈ Sd−1. Hence h(X0, u)
is Gaussian and non-negative almost surely, which is possible only for a degenerate
distribution, i.e. for h(X0, u) being a constant. This holds for a countable set of u
and, by continuity, for all u ∈ Sd−1. Thus, X0 = X − s(X) = K is a deterministic
set, whence X = K + ξ with ξ = s(X). ��

A similar characterisation result holds for square integrable convex compact ran-
dom sets in a separable Banach space E. For this, define

g(u) = h(X, u)− h(EX, u) , u ∈ E∗ ,

then prove that g is weak∗-continuous on E∗, so that g(u) = 〈ξ, u〉 for some ξ ∈ E.
Then it is possible to show that ξ is measurable and Gaussian.

Open problem 2.12. Suggest an alternative and “natural” definition of Gaussian
random sets that yields sets with variable shapes.

2.3 Stable random compact sets

The following definition is similar to the classical definition of a stable random ele-
ment with values in a Banach space.

Definition 2.13 (p-stable random sets). A random convex compact set X in a Ba-
nach space E is called p-stable, 0 < p ≤ 2, if, for X1, X2 i.i.d. with the same
distribution as X and for all α, β ≥ 0, there exist sets C, D ∈ coK such that

αX1 + βX2 + C
d∼ (α p + β p)1/p X + D . (2.7)

X is said to be strictly p-stable if (2.7) holds with C = D = {0}.
It should be noted that D may be chosen to be {0} for 0 < p < 1, and C may

be set to {0} for 1 ≤ p ≤ 2. By considering a deterministic set X , it is easy to see
that it is not possible to get rid of both C and D simultaneously for the whole range
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of p, so there are p-stable sets that are not strictly p-stable. Let Lip+(K,Rd ) denote
the family of Rd -valued Lipschitz functions on K, which are positively linear as in
(2.6).

Theorem 2.14. The following statements are equivalent for a random convex com-
pact set X in a separable Banach space E.
(i) X is p-stable.

(ii) The support function of X is a p-stable random element in C(B∗1 ).
(iii) ϕ(X) is p-stable for all ϕ ∈ Lip+(K,R2).
(iv) ϕ(X) is p-stable for all ϕ ∈ Lip+(K,Rd ) and all d ≥ 1.

Since the Gaussian distribution is p-stable with p = 2, Theorem 2.14 shows that
Gaussian random sets appear as a particular case of p-stable sets.

Theorem 2.15 (Characterisation of p-stable sets). If X is a p-stable random con-
vex compact set with 1 ≤ p ≤ 2, then X = K + ξ , where K ∈ coK and ξ is a
p-stable random element in E. If 0 < p < 1, then

X = K +
∫
K1

LM(dL) ,

where the integral is understood as the limit of Minkowski sums and M is a com-
pletely random p-stable measure on K1 = {L ∈ coK : ‖L‖ = 1}.

The complete randomness of M in Theorem 2.15 means that the values of M
on disjoint sets are independent and its p-stability signifies that M(D) coincides in
distribution with µ(D)1/pθ for D ∈ B(K1), where µ is a measure on K1 called the
spectral measure and θ is a p-stable random variable. The proof of Theorem 2.15 is
based on an interpretation of h(X, u) as a stable random vector in the Banach space
C(B∗1 ) using the characterisation of p-stable elements in Banach spaces from Araujo
and Giné [12]. The degenerate representation for 1 ≤ p ≤ 2 is obtained by show-
ing that the corresponding spectral measure is supported by linear functions, which
implies that K is deterministic. Therefore, p-stable sets with p ∈ [1, 2] are degen-
erate similarly to Gaussian random sets characterised in Theorem 2.11. However,
non-trivial p-stable sets may appear if p < 1.

2.4 Minkowski infinitely divisible random compact sets

Compound Poisson law and Lévy measure

Following the representation of random convex compact sets by their support func-
tions, it is possible to invoke results on infinitely divisible random elements in Ba-
nach spaces in order to characterise random sets which are infinitely divisible with
respect to Minkowski addition. The key idea is to use the fact that infinitely divisible
laws in Banach spaces have a Lévy–Khinchin representation, i.e. they are convolu-
tions of point masses, Gaussian laws and limits of compound Poisson laws.
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Definition 2.16 (M-infinite divisibility). A random convex compact set X is called
M-infinitely divisible, if, for each n ≥ 1, there exist i.i.d. random convex compact
sets Zn1, . . . , Znn such that

Zn1 + · · · + Znn
d∼ X . (2.8)

A finite measure Λ on coK determines a finite Poisson process ΠΛ whose
“points” are convex compact sets, see Definition 1.8.7.

Definition 2.17 (Compound Poisson sets). If ΠΛ = {X1, . . . , X N } is a finite Pois-
son process on coK with the intensity measure Λ, then the random convex compact
set Z = X1 + · · · + X N is called compound Poisson with measure Λ (notation
Z ∈ Pois+(Λ)). Note that Z is empty if at least one summand is empty or N = 0.

The following definition extends the above concept to σ -finite measures.

Definition 2.18 (Lévy measure). A σ -finite measure Λ on coK is a Lévy measure, if
there exist finite measures Λn on coK and convex compact sets Kn such that Λn ↑ Λ

and the sequence of random closed sets {Kn + Zn} with Zn ∈ Pois+(Λn) converges
weakly to a random closed set Z whose distribution is denoted by Pois+(Λ).

It follows from the general results of Araujo and Giné [12], that a σ -finite mea-
sure Λ on coK is a Lévy measure if and only if∫

coK

min(1, ‖L‖)Λ(dL) <∞ . (2.9)

Characterisation of infinite divisibility

First, we provide a characterisation for M-infinitely divisible random compact sets
in Rd containing the origin almost surely.

Theorem 2.19. A random convex compact set X in Rd containing the origin almost
surely is M-infinitely divisible if and only if there exist a deterministic convex com-
pact set K containing the origin and a σ -finite measure Λ on the family of convex
compact sets containing the origin which satisfies (2.9) such that X coincides in
distribution with K + Z for Z ∈ Pois+(Λ).

Proof. Sufficiency is easy, since K = n−1 K + · · · + n−1 K and Z ∈ Pois+(Λ) can
be represented as a sum of i.i.d. random sets Zn1, . . . , Znn from Pois+(n−1Λ).
Necessity follows from the Lévy–Khinchin representation of infinitely divisible laws
in Banach spaces. The fact that 0 ∈ X almost surely implies that the support func-
tions are almost surely non-negative. Therefore, all one-dimensional projections of
the distribution law in C(B1) are supported by half-lines. Since Lévy measures sup-
ported by half-lines must integrate min(1, ‖ · ‖), a bound based on the dimension d
yields (2.9). ��
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If the condition that 0 ∈ X is dropped, then one has to translate X , for example,
using the Steiner point s(X) as in Section 2.2.

Theorem 2.20. A random convex compact set X in Rd is M-infinitely divisible if and
only if there exist a deterministic set K ∈ coK, a centred Gaussian random vector
ξ ∈ Rd and a σ -finite measure Λ on coK satisfying∫

coK

min(1, ‖s(L)‖2)Λ(dL) <∞ ,

∫
coK

min(1, ‖L − s(L)‖)Λ(dL) <∞ ,

such that X = ξ + K + Z , where Z is the weak limit of the sequence of random
convex compact sets

Zn =
∫

n−1<‖L‖≤1

s(L)Λ(dL)+ Z ′n n ≥ 1 ,

with Z ′n ∈ Pois+(Λn) and Λn being the restriction of Λ onto the family of convex
compact sets with the norm greater than n−1.

While the M-infinite divisibility of X implies that s(X) is an infinitely divisible
random vector and X − s(X) is an M-infinitely divisible random set which contains
the origin, the converse is not true.

Example 2.21. Let E = R and let X = [η1 − η2, η1 + η2], where η1, η2 are non-
negative infinitely divisible random variables such that their sum is not infinitely
divisible. Then s(X) = η1 is infinitely divisible and X − s(X) = [−η2, η2] is M-
infinitely divisible, while X is not M-infinitely divisible. Indeed, if X satisfies (2.8),
then Zni = [η′ni , η

′′
ni ], 1 ≤ i ≤ n, are i.i.d random segments such that η1 + η2 =

η′′n1 + · · · + η′′nn , which contradicts the choice of η1 + η2 as not being infinitely
divisible.

Open problem 2.22. Characterise M-infinitely divisible random closed (compact)
sets in a separable Banach space. Some results in this direction are given in Giné
and Hahn [200], where it is explained that the main obstacle is the non-existence
of a generalised Steiner functional for convex compact subsets of a general Banach
space.

3 Further results related to Minkowski sums

3.1 Law of iterated logarithm

The law of iterated logarithm for a square integrable random compact set X in Rd

states
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lim sup
n→∞

√
n√

2 log log n
ρH(X̄n,E co(X)) ≤

√
E‖X‖2 , (3.1)

where X̄n denotes the Minkowski average of i.i.d. random sets X1, . . . , Xn having
the same distribution as X .

The proof is based on the convexification argument and passing to support func-
tions. Denote an =

√
2n log log n. By Theorem 1.1,

ρH(a−1
n

n∑
i=1

Xi , a−1
n

n∑
i=1

co(Xi )) ≤ (2n log log n)−1/2
√

d max
1≤i≤n

‖Xi‖ ,

which converges almost surely to zero. So we may assume in (3.1) that X1, . . . , Xn

are almost surely convex and pass to their support functions. Since the support func-
tions satisfy the central limit theorem and have integrable norms, they also satisfy
the compact law of iterated logarithm. The bound in the right-hand side of (3.1) cor-
responds to the fact that the cluster set of

∑
(h(Xi , ·) − Eh(Xi , ·))/an is a bounded

set contained in the ball {u ∈ B∗1 : ‖u‖ ≤
√

E‖X‖2}.
Similarly, the conditions of Theorem 2.7 imply that the corresponding random

sets satisfy the law of iterated logarithm in the Banach space E.

3.2 Three series theorem

The classical Kolmogorov three series theorem can be generalised for random com-
pact sets. Recall that this theorem characterises convergent series of independent
random variables in terms of the convergence of three other series built from means,
variances and truncation probabilities. Consider here only the case of random com-
pact sets in the Euclidean space. For a random compact set X , define

VarA X = E(ρH(X,EX))2 .

Note that the smallest value of E(ρH(X, K )2) over K ∈ K is called the Fréchet
variance of X , see Definition 2.3.2. Therefore, VarA X is not smaller than the Fréchet
variance of X . Below we discuss the almost sure convergence of the series

∞∑
n=1

Xn = X1 + X2 + · · · (3.2)

for i.i.d. random compact sets X1, X2, . . . which share the same distribution with
X . If 0 ∈ X a.s., then (3.2) converges if and only if the sum of the norms

∑ ‖Xn‖
converges. For each c > 0, introduce a truncated variant of X , defined as

X (c) =
{

X , ‖X‖ ≤ c ,

{0} , otherwise.
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Theorem 3.1 (Three series theorem). Let {Xn, n ≥ 1} be a sequence of indepen-
dent random compact sets. Then

∑
Xn converges almost surely if and only if the

following three series ∑
P {‖Xn‖ > c} , (3.3)∑

EXn(c) , (3.4)∑
VarA Xn(c) (3.5)

converge for some c > 0.

Proof. First, assume that 0 ∈ Xn almost surely for all n ≥ 1. Denote ξn = ‖Xn‖ and
ξn(c) = ‖Xn(c)‖. To prove sufficiency, note that

∑
P {‖ξn‖ > c} converges. The

convergence of (3.4) implies the convergence of
∑

E‖Xn(c)‖ and thereupon of both∑
Eξn(c) and

∑
(Eξn(c))2. Since

‖Xn(c)‖2 ≤ 2ρH(Xn(c),EXn(c))
2 + 2ρH(EXn(c), {0})2 ,

the convergence of (3.5) implies that
∑

Eξn(c)2 converges. Therefore, the conditions
of Kolmogorov’s three series theorem are fulfilled for the sequence {ξn, n ≥ 1}, so
that

∑
ξn converges, which implies the convergence of

∑
Xn . Necessity is proved

similarly.
Now prove sufficiency for the general case. Let Xn = Yn + ηn , where Yn con-

tains the origin almost surely and ηn is a random vector. The particular choice of
this decomposition is not important. Then (3.3) implies that both

∑
P {‖Yn‖ > c}

and
∑

P {‖ηn‖ > c} converge for some c > 0. Set ηn(c) = ηn if ‖ηn‖ ≤ c and
ηn(c) = 0 otherwise. The convergence of (3.4) implies that

∑
Eηn(c) converges,

so that
∑

EYn(c) converges, whence both
∑ ‖EYn(c)‖ and

∑ ‖EYn(c)‖2 also con-
verge. Taking (3.5) into account we deduce that

∑
E(‖Yn(c)‖2) converges, whence

both
∑

VarA{ηn(c)} and
∑

VarA Yn(c) converge. Thus, the convergence of (3.2) fol-
lows from the first part of the proof (for Yn) and Kolmogorov’s three series theorem
for the random vectors ηn , n ≥ 1.

Necessity in the general case can be proved by arguing that the convergence
of (3.2) implies that both

∑
Yn and

∑
ηn converge with subsequent application of

the three series theorem and noticing that

VarA(Xn) ≤ 2(VarA(Yn)+ VarA({ηn})) . ��
Using a similar (but simpler) proof one can deduce from the “two series” theorem

in classical probability theory the following result.

Proposition 3.2. If {Xn, n ≥ 1} is a sequence of independent random compact sets
such that both

∑
EXn and

∑
VarA Xn converge, then

∑
Xn a.s. converges.



226 3 Minkowski Addition

3.3 Komlós theorem

A sequence of random variables {ξn, n ≥ 1} is said to K-converge to a random
variable ξ0 if

1

m

m∑
k=1

ξn(k) → ξ0 a.s. as m →∞

for every subsequence {ξn(k), k ≥ 1}. This concept can be generalised for sequences
of random closed sets using any of the possible definitions of convergence for sets,
see Appendix B.

The theorem of J. Komlós [323] states that if {ξn, n ≥ 1} is a sequence of inte-
grable random variables with supn≥1 E|ξn | <∞, then there exists a random variable
ξ0 such that ξn K-converges to ξ0.

Theorem 3.3 (Komlós theorem for random sets). Let {Xn, n ≥ 1} be a sequence
of integrably bounded random convex compact sets in a separable Banach space
such that supn≥1 E‖Xn‖ < ∞ and co (∪n≥1 Xn) has a compact intersection with
every ball. Then there exists a subsequence {Xn(k), k ≥ 1} of {Xn, n ≥ 1} and an
integrably bounded random convex compact set X0 such that Xn(k) K-converges to
X0 in the Hausdorff metric and X0 ⊂ co (s−lim sup Xn(k)) a.s.

3.4 Renewal theorems for random convex compact sets

Multivariate renewal theorem

The elementary renewal theorem for i.i.d. non-negative random variables ξ1, . . . , ξn

states that H (t)/t converges to 1/Eξ1 as t →∞ for the renewal function

H (t) = 1+
∞∑

n=0

P {ξ1 + · · · + ξn ≤ t} . (3.6)

We will make use of the following theorem (proved in Molchanov, Omey and
Kozarovitzky [410]) which is a multivariate analogue of the elementary renewal the-
orem. Let ξn = (ξn1, . . . , ξnd ), n ≥ 1, be a sequence of i.i.d. random vectors with
the cumulative distribution function F(x1, . . . , xd ) = P {ξ11 ≤ x1, . . . , ξ1d ≤ xd}.
Put Sn =∑n

i=1 ξi , S0 = 0 and define the renewal function by

H (x1, . . . , xd) =
∞∑

n=0

P {Sn1 ≤ x1, . . . , Snd ≤ xd} .

Theorem 3.4 (Multivariate renewal theorem). Assume that all Eξ1i = µi , 1 ≤ i ≤
d , are finite and that max(µi ) is strictly positive. Furthermore, let E(ξ−1i )

2 <∞, 1 ≤
i ≤ d , where ξ−1i is the negative part of ξ1i . Then, for all finite positive x1, . . . , xd ,

lim
t→∞

1

t
H (tx1, . . . , txd ) = min

1≤i≤d, µi>0

xi

µi
. (3.7)
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Containment renewal function for random sets

Let Sn = X1 + · · · + Xn , n ≥ 1, be partial sums of i.i.d. random compact sets
X, X1, X2, . . . in Rd (S0 = {0} is the origin). For a closed set K define the contain-
ment renewal function

H (K ) =
∞∑

n=0

P {Sn ⊂ K } .

If d = 1, K = [0, 1] and X = {ξ} for a non-negative random variable ξ , then
H (t K ) becomes the renewal function from (3.6). In contrast to the strong law of
large numbers, Banach space variants of renewal theorems are not known, which
makes it impossible to obtain the result simply by reformulating the problem for the
support functions. For K ∈ K define

S+K = {u ∈ Sd−1 : h(K , u) > 0} .

Theorem 3.5 (Elementary renewal theorem for random sets). Assume that X
is an integrably bounded random compact set and Eρ(0, co(X))2 < ∞, where
ρ(0, co(X)) is the distance between co(X) and the origin. Then

lim
t→∞

H (t K )

t
= inf

u∈S+E X

h(K , u)

h(EX, u)
(3.8)

for each convex compact set K such that 0 ∈ Int K .

Proof. First, note that Sn ⊂ t K if and only if the support function of Sn is not greater
than the support function of t K , that is

h(Sn, u) =
n∑

i=1

h(Xi , u) ≤ th(K , u), u ∈ Sd−1 .

Note also that
sup

u∈Sd−1
h(X, u)− < ρ(0, co(X)) ,

where h(X, u)− is the negative part of h(X, u). Choose an ε-net u1, . . . , um on the
unit sphere Sd−1. Then

K ′ε =
m⋂

j=1

H−u j
(s′j ) ⊂ K ⊂ K ′′ε =

m⋂
j=1

H−u j
(s′′j )

for suitable positive reals s′j , s′′j , 1 ≤ j ≤ m, where H−u (s) = {y ∈ Rd : 〈y, u〉 ≤ s}.
Thus, K can be approximated by polyhedra K ′ε and K ′′ε with facets orthogonal to
u1, . . . , um , so that

ρH(K ′ε, K ′′ε )→ 0 as ε → 0 . (3.9)

By Theorem 3.4,
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H (t K )

t
≥ t−1

∞∑
n=0

P

{
n∑

i=1

h(Xi , u j ) ≤ ts′j ; 1 ≤ j ≤ m

}

→ min
1≤ j≤m; u j∈S+E X

s′j
Eh(X, u j )

as t →∞

≥ min
1≤ j≤m; u j∈S+E X

h(K , u j )− ρH(K ′ε, K )

Eh(X, u j )
.

A similar bound from above yields

min
1≤ j≤m; u j∈S+E X

h(K , u j )− ρH(K ′ε, K )

Eh(X, u j )
≤ lim

t→∞
H (t K )

t

≤ min
1≤ j≤m; u j∈S+E X

h(K , u j )+ ρH(K ′′ε , K )

Eh(X, u j )
.

The continuity of the support function and (3.9) finish the proof. ��
It is easy to see that H (t K )/t = (‖EX‖)−1 as t →∞ if K is the unit ball B1.

Example 3.6. If X is isotropic and 0 ∈ Int K , then

lim
t→∞ H (t K )/t = 2(Eb(X))−1 sup{r : Br (0) ⊂ K },

where b(X) is the mean width of X defined by (F.5). If X is the ball Bξ (η) with
rotation invariant distribution of its centre η, then Eb(X) = 2Eξ and

lim
t→∞ H (t K )/t = (Eξ)−1 sup{r : Br (0) ⊂ K } .

Example 3.7. Let X = {ξ} be a random singleton. If E‖ξ‖2 <∞, then Theorem 3.5
yields

lim
t→∞

H (t K )

t
= sup{r : rEξ ∈ K } = 1

g(K ,Eξ)
,

where g(K , x) = inf{r ≥ 0 : x ∈ r K } is the gauge function of K , see Schnei-
der [520, p. 43].

In the following the assumption 0 ∈ Int K is dropped. The proofs are similar
to the proof of Theorem 3.5 and can be found in Molchanov, Omey and Kozarovit-
zky [410].

Theorem 3.8. Assume that X is integrably bounded and Eρ(0, co(X))2 < ∞. Let
K be a convex compact set.
(i) If 0 /∈ K , then

lim
t→∞

H (t K )

t
= αK −min(αK , βK ) ,

where αK (respectively βK ) is the infimum of h(K , u)/h(EX, u) taken over all
u ∈ Sd−1 such that h(K , u) > 0 and h(EX, u) > 0 (respectively h(K , u) < 0
and h(EX, u) < 0). Here inf∅ = ∞ and∞−∞ = 0.
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(ii) Let the origin be a boundary point of K . If X is a.s. a subset of the minimum
cone containing K , then

lim
t→∞

H (t K )

t
= inf

u∈S+E X

h(K , u)

h(EX, u)
. (3.10)

The same result holds if S+E X ⊂ S+K and 0 /∈ EX . If S+E X �⊂ S+K , then the limit
in (3.10) is zero.

Open problem 3.9. Provide a geometric interpretation of the limit of H (t K )/t from
Theorems 3.5 and 3.8.

Further renewal functions

It is also possible to consider the inclusion renewal function defined as

J (K ) =
∞∑

n=1

P {K ⊂ Sn} , K ∈ coK .

If 0 ∈ K , then J (t K ) decreases, whence either J (K ) = ∞ or J (t K )/t converges to
zero as t →∞. Thus we have to consider only the case 0 /∈ K .

Theorem 3.10. Let 0 /∈ K . Under the conditions and in the notation of Theo-
rem 3.8(i)

lim
t→∞

J (t K )

t
= βK −min(αK , βK ) ,

if 0 /∈ EX . If 0 ∈ Int EX , then J (K ) is infinite. If 0 belongs to the boundary of
EX , then J (t K )/t converges to zero if h(K , u) �= 0 and h(EX, u) = 0 for some u.
Otherwise J (K ) is infinite.

It is interesting also to consider the hitting renewal function

U(K ) =
∞∑

n=1

P {Sn ∩ K �= ∅} .

If X is a singleton, then U coincides with the containment renewal function H , while
Theorem 3.10 can be applied if K is a singleton. If X = [ξ, η] is a convex subset
of the line (d = 1), then a renewal theorem for the hitting function follows from
Theorem 3.4. It is easily seen that

P {X ∩ [a, b] �= ∅} = P {ξ ≤ a, η ≥ a} + P {ξ ∈ (a, b]} .
If a, b > 0 and Eξ,Eη > 0, then

lim
t→∞U(t[a, b])/t = b/Eξ −min(b/Eη, a/Eξ) .

Similar results can be obtained for other a and b. It is possible to derive further results
for K being a finite union of disjoint segments.

Open problem 3.11. Find the limit of U(t K )/t as t → ∞ for a general compact
set K , where U is the hitting renewal function.
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3.5 Ergodic theorems

The pointwise ergodic theorem for families of random sets goes back to the subad-
ditive ergodic theorem of Kingman [312] (further generalised to the Banach valued
case by Ghoussoub and Steele [191]) and M. Abid’s extension of Birkhoff’s point-
wise ergodic theorem for super-stationary and subadditive processes, see [1]. Since
the general pointwise ergodic theorem does not hold in the Banach space of con-
tinuous functions, this calls for a specific generalisation of the ergodic theorem for
random closed sets.

Consider a triangular array X = {Xm,n, m, n = 0, 1, 2, . . . , m < n} of ran-
dom convex compact sets in a separable Banach space E. A sequence {Xn, n ≥
1} of random compact sets is said to be superstationary if E f (X1, X2, . . .) ≥
E f (X2, X3, . . .) for all bounded Borel coordinatewise increasing functions f .

Definition 3.12 (Subadditive superstationary arrays). A triangular array X is
called
(i) subadditive if X0,n ⊂ X0,m + Xm,n a.s. for all 0 < m < n;

(ii) superstationary if {X(m−1)k,mk, m ≥ 1} is a superstationary sequence for each
k ≥ 1 and, for each m ≥ 0, the joint distributions of {Xm,m+n, n ≥ 1}
dominate those of {Xm+1,m+n+1, n ≥ 1}, i.e. E f (Xm,m+1, Xm,m+2, . . .) ≥
E f (Xm+1,m+2, Xm+1,m+3, . . .) for all coordinatewise increasing bounded Borel
functions f .

Theorem 3.13 (Ergodic theorem). Let X be a subadditive, superstationary family
of random convex compact sets such that E‖X0,1‖ <∞. Then there exists a random
convex compact set X∞ such that ρH(n−1 X0,n, X∞)→ 0 as n →∞.

Proof. Since X0,n ⊂ ∑n
i=1 Xi−1,i and {Xn−1,n, n ≥ 1} is a superstationary se-

quence, Lemma 3.14 is applicable, whence cl(∪∞n=1n−1 X0,n) is compact. By Propo-
sition 1.6.18, it suffices to show that dH(n−1 X0,n, K ) (given by (C.2)) converges
for all K ∈ coK. Since dH(·, K ) is an increasing function, the random vari-
ables {ρH(Xm,n, (n − m)K )} form a superstationary subadditive family. Indeed,
for 0 < m < n and x ∈ X0,n , there exist x1 ∈ X0,m and x2 ∈ Xm,n such that
x = x1 + x2. For any y1, y2 ∈ K , y = n−1(my1 + (n − m)y2) ∈ K by convexity,
and ‖x − ny‖ ≤ ‖x1 − my1‖ + ‖x2 − (n − m)y2‖, whence

dH(X0,n, K ) ≤ dH(X0,m,mK )+ dH(Xm,n, (n − m)K ) .

Furthermore, dH(X0,n, nK ) ≤ ‖X0,n‖ + ‖nK‖ and ‖X0,n‖ ≤ ∑n
i=1 ‖Xi−1,i‖ a.s.

Hence
EdH(X0,n, nK ) ≤ n(E‖X0,1‖ + ‖K‖) <∞ .

By the subadditive ergodic theorem for random variables (see Liggett [356]), the
random variable dH(n−1 X0,n, K ) converges a.s., whence the result follows. ��

Lemma 3.14. Let {Xn, n ≥ 1} be a superstationary sequence of random compact sets
such that X1 is integrably bounded. Then cl(∪∞n=1n−1∑n

i=1 Xi ) is compact almost
surely.
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Proof. Let Q = {xk, k ≥ 0} be a countable dense set in E, with x0 = 0. De-
fine Vk = co{x0, . . . , xk} and dk(K ) = dH(K , Vk) for k ≥ 1 and V ∈ K. For
each k, {dk(Xn), n ≥ 1} is a superstationary sequence of random variables and
dk(X1) ≤ ‖X1‖. Since X1 is almost surely compact, dk(X1) → 0 a.s. as k → ∞,
whence Edk(X1)→ 0 as k →∞. Given ε > 0, choose k such that Edk(X1) ≤ ε2/4.
By the superstationary ergodic theorem, there exists a random variable ξ such that
n−1∑n

i=1 dk(Xi ) → ξ a.s. as n → ∞ and P {ξ > ε/2} ≤ ε/2. By Egoroff’s theo-
rem using the uniform convergence on the subset of measure at least 1 − ε/2, one
obtains that

P

{
sup
n≥N

n−1
n∑

i=1

dk(Xi ) > ε

}
≤ ε

for some number N . Since Vk is convex,

P

{
sup
n≥N

dk(n
−1

n∑
i=1

dk(Xi )) > ε

}
≤ ε .

For ε ≥ 0, define an event

Aε =
⋃
k,N

{ ∞⋃
n=N

n−1
n∑

i=1

Xi ⊂ V ε
k

}
.

Then P(Aε) ≥ 1 − ε and P(∩ε>0 Aε) = 1. Given ε > 0, one can choose k and N
such that ∞⋃

n=N

(
n−1

n∑
i=1

Xi

)
⊂ V ε

k

almost surely. Note that V ε
k is contained in a finite number of balls of radius ε.

Since ∪N−1
n=1 n−1∑n

i=1 Xi is contained in a finite number of balls of radius ε, the
set ∪∞n=1n−1∑n

i=1 Xi is totally bounded, whence the result follows. ��
It is easy to see that the limit in Theorem 3.13 is deterministic if the sequences

{dH(Xmn,(m+1)n, nK ), m ≥ 1} are ergodic for every n ≥ 1 and K ∈ coK. An
important example of a subadditive family X = {Xm,n} appears if Xm,n = Yn−m ,
where {Yk, k ≥ 1} is a subadditive sequence of random convex compact sets, i.e.

Ym+n ⊂ Ym + Yn (3.11)

for all m, n ≥ 0. Clearly, the partial sums Yn = X1 + · · · + Xn of a sequence
{Xn, n ≥ 1} of i.i.d. random compact sets satisfy (3.11). Theorem 3.13 implies the
following result.

Corollary 3.15. If {Yn, n ≥ 1} is a subadditive family of integrably bounded random
convex compact sets, then n−1Yn converges in the Hausdorff metric.

Theorem 3.16 (Mean ergodic theorem). Let X and X∞ be as in Theorem 3.13. If
E‖X0,1‖p <∞ for p ≥ 1, then

EρH(n−1 X0,n, X∞)p → 0 as n →∞ .
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3.6 Large deviation estimates

It is possible to give a large deviation type estimate for the Hausdorff distance be-
tween the Minkowski averages of random sets and the averages of their selection
expectations.

Theorem 3.17 (Large deviation for Minkowski averages). Let X1, . . . , Xn be in-
dependent random convex compact sets in Rd such that ‖Xi‖ ≤ b a.s. for a constant
b and all i = 1, . . . , n. Define β to be the essential supremum of ρH(Xi ,EXi ) for
all i = 1, . . . , n. Let ρ < 1 be fixed. Then, for every ε > 0,

P
{
ρH(X̄n,EX n) > ε

} ≤ c exp{−ρε2n/(4b2)} , (3.12)

where X̄n = n−1(X1+ · · ·+ Xn) and EX n = n−1(EX1+ · · ·+EXn). The constant
c depends on ε/b and ρ.

Proof. The proof is based on the inequality

P
{

n−1|ξ1 + · · · + ξn | > ε
}
≤ 2 exp{−ε2n/4} (3.13)

valid for independent centred random variables ξ1, . . . , ξn with absolute values not
exceeding 1. For each u with norm 1, |h(Xi , u)−h(EXi , u)|, i ≥ 1, are independent
and bounded by b almost surely. Therefore, (3.13) yields

P
{
|h(X n, u)− h(EX n, u)| > ερ1/2

}
≤ 2 exp{−ρε2n/(4b2)} .

Let u1, . . . , ul be unit vectors, which form a 2δ-net on the unit sphere with 2δ =
ε(1 − ρ1/2)(2b)−1. With this choice, |h(X̄n, u) − h(EX n, u)| > ε for any u im-
plies |h(X̄n, ui ) − h(EX n, ui )| > ερ1/2 for at least one ui from the chosen 2δ-net.
Therefore, (3.12) holds with c = 2l which depends on ε/b and ρ. ��

If the random sets are not necessarily convex, then (3.12) holds with ε under the
probability sign replaced by εθ for any θ > 1 provided that n is large enough in
order to ensure that the Shapley–Folkman–Starr theorem yields an effective bound
for the Hausdorff distance. The following is a general large deviation theorem for
Minkowski sums of i.i.d. random compact sets.

Theorem 3.18 (Large deviation for random sets). Let {Xn, n ≥ 1} be a sequence
of i.i.d. random compact sets in a separable Banach space E such that Eeα‖X1‖ <∞
for all α > 0. For a signed measure λ on the unit ball B∗1 in the dual space E∗ define

Φ(λ) = log E

⎡⎢⎣exp

⎧⎪⎨⎪⎩
∫
B∗1

h(X1, u)λ(du)

⎫⎪⎬⎪⎭
⎤⎥⎦

and for a convex compact set K put
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Φ∗(K ) = sup
λ

⎛⎜⎝ ∫
B∗1

h(K , u)λ(du)−Φ(λ)

⎞⎟⎠ ,

where the supremum is taken over all signed measures λ on B∗1 . Set Φ∗(K ) = ∞ if
K is a non-convex compact set. Then the Minkowski averages X̄n , n ≥ 1, satisfy a
large deviations principle with rate function Φ∗, i.e. for each measurable family M
of compact sets

− inf
K∈IntM

Φ∗(K ) ≤ lim inf
n→∞

1

n
log P

{
X̄n ∈M

}
≤ lim sup

n→∞
1

n
log P

{
X̄n ∈M

} ≤ − inf
K∈cl(M)

Φ∗(K ) ,

where the closure and the interior of M are taken in the topology generated by the
Hausdorff metric.

Open problem 3.19. Derive an analogue of Theorem 3.18 for the case of non-
compact or unbounded summands (as in Section 1.5).

3.7 Convergence of functionals

The strong law of large numbers implies that all continuous in the Hausdorff metric
functionals of X̄n converge almost surely to their values on EX , where X has the
distribution common to all summands {Xn, n ≥ 1}.

The classical law of large numbers for random variables immediately yields the
almost sure convergence of mean widths (perimeters in the planar case), since they
can be easily represented as integrals of the support function and as such commute
with the selection expectation, i.e.

b(X̄n) = 1

n

n∑
i=1

b(Xi )→ Eb(X) = b(EX) a.s. as n →∞ .

The corresponding central limit theorem follows from the classical results for sums
of random variables.

The convergence of volumes is more intricate. The key idea is to use the expan-
sion (F.9) for the Minkowski sums of convex compact sets using the mixed volumes
V(Ki1 , . . . , Kid ). Then

V(X̄n) =
(n

d

)
n!nd

Un +O(n−1) ,

where the sum of mixed volumes

Un = 1(n
d

) ∑
1≤i1<i2<···<id≤n

V(Xi1 , . . . , Xid ) (3.14)
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can be regarded as an U-statistic. It follows from the theory of U-statistics (see Ser-
fling [531]) that EV(X̄n) converges to EV(X1, . . . , Xd ) and

V(X̄n)→ EV(X1, . . . , Xd ) a.s. as n →∞ .

This implies, by the way, that

V(EX) = EV(X1, . . . , Xd ) .

Applying the theory of the U-statistic to the deviation ∆n = V(X̄n) − V(EX1) we
obtain

∆n = V(X̄n)− EV(X̄n)+O(n−1) .

Then
√

n∆n converges in distribution to the centred normal random variance with
the variance

σ 2 = Var[E(V(X1, . . . , Xn)|X1)]
provided σ 2 is positive. If σ 2 = 0, then applying the results of Rubin and Vitale [506]
it is possible to deduce that n∆n converges in distribution to a random variable given
by

∞∑
j=1

λ j (Z2
j − 1)+

(
d

2

)
[EV(X1, . . . , Xd )− V(EX1)] ,

where {Zn, n ≥ 1} are i.i.d. standard Gaussian random variables.

Open problem 3.20. Investigate asymptotic distributions of Vj (X̄n) where Vj is the
j th intrinsic volume, see Appendix F.

3.8 Convergence of random broken lines

Let ξ be a random vector distributed on the right half-plane of R2. Consider a se-
quence ξ1, ξ2, . . . , ξn of i.i.d. copies of ξ . For each i = 1, . . . , n, let θi be the angle
between ξi and the abscissa axis. Order the vectors according to the growing angles
θi to get a sequence ξ ′1, . . . , ξ ′n . If several vectors share the same angles, they can be
rearranged in an arbitrary manner. The successive sums 0, ξ ′1, ξ

′
1+ξ ′2, . . . , ξ

′
1+· · ·+ξ ′n

form the vertices of a broken line Cn which is called a convex rearrangement of the
sequence ξ1, . . . , ξn , see Figure 3.1.

Assume that E‖ξ‖ <∞ and denote by F the cumulative distribution function of
θ , which is concentrated on [−π/2, π/2], by the assumption.

Theorem 3.21. The normalised convex rearrangements n−1Cn converge in the Haus-
dorff metric to the convex curve C = {(x(t), y(t)) : t ∈ [−π/2, π/2]} with

x(t) =
t∫

−π/2

a(s) cos(s)dF(s) , y(t) =
t∫

−π/2

a(s) sin(s)dF(s) ,

where a(t) = E(‖ξ‖ | θ = t).
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Figure 3.1. Convex rearrangement.

Proof. Let (xn(t), yn(t)) be the coordinates of the vertex of n−1Cn such that θi < t
for all i < n and θi ≥ t for all i ≥ n. Then

xn(t) = n−1
n∑

i=1

‖ξi‖ cos(θi )1[−π/2,t)(θi ) .

This is a sum of i.i.d random variables. The strong law of large numbers yields the
desired representation of the curve C .

Notice that Cn is the “bottom half” of the Minkowski sum [0, ξ1]+ · · ·+ [0, ξn] .
By the strong law of large numbers the normalised sum converges almost surely in
the Hausdorff metric to a convex set with the bottom half being the curve C . ��

It is possible to extend Theorem 3.21 to the case when ξ is distributed on the
whole plane. Then the limiting set is closed if and only if Eξ = 0.

3.9 An application to allocation problem

The strong law of large numbers can be applied to optimisation problems concerning
optimal allocations of resources. A general problem of this kind can be formulated
as

J (x)→ max subject to x ∈ Y , (3.15)

x = 1

n
(x1 + · · · + xn) , xi ∈ Xi , 1 ≤ i ≤ n ,

where X1, . . . , Xn are independent identically distributed random closed sets (or
multifunctions on Ω in the usual optimisation terms) and Y is a random compact set.
For simplicity, assume that all random sets are subsets of the Euclidean space Rd .

The applied nature of this problem can be explained as follows. There are n
firms, and each receives its share of the total resources determined by the vector
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nq = (nq1, . . . , nqd ). If firm number i receives amount fi , it produces ui ( fi ) where
fi ∈ Fi with Fi being the constraint set (usually Fi = [0,∞)d ). The objective
function is n−1∑ ui ( fi ) and the global constraint is f = n−1( f1 + · · · + fn) ≤ q
coordinatewise. This problem can be reformulated as a particular case of (3.15) for
x = ( f, α) ∈ Rd × R with the objective function J (x) = α under the constraints
Y = {( f, α) : f ≤ q} and Xi = {( f, α) : f ∈ Fi , α = ui ( f )}.

For every n, the problem (3.15) is solved by specifying a programme, or a se-
quence of n measurable functions ξ1n(ω), . . . , ξnn(ω) which give the optimal alloca-
tions among the n firms for each ω. Because of the constraints,

ζn = n−1(ξ1n + · · · + ξnn) ∈ Y (ω) (3.16)

for each ω. Such a programme is called exact. In many cases instead of the exact
condition (3.16) one defines a relaxed programme satisfying ρ(ζn(ω),Y (ω)) → 0
as n → ∞ for almost all ω. The stationary programmes are determined by the
constraints only, so that ξin(ω) = ξi (ω). The following theorem follows from the
strong law of large numbers for (possibly unbounded) random closed sets, see The-
orem 1.21. The proofs can be found in Artstein [18] together with further results
which deal with the existence of stationary solutions.

Theorem 3.22. Assume that X1 is integrable. A relaxed programme exists if and
only if Y0 = Y ∩ co (EX1) �= ∅ almost surely. If Y0 �= ∅ a.s., then the following
statements hold.
(i) For every relaxed programme,

v = sup{J (x) : x ∈ Y0} ≥ lim sup J (ζn) a.s.

(ii) There exists a relaxed programme with

v = lim sup J (ζn) a.s. (3.17)

(iii) If {x ∈ Int Y0 : J (x) = v} is non-empty almost surely, then there exists an
exact programme which satisfies (3.17).

3.10 Infinite divisibility in positive convex cones

Let L be a LCHS space, which is also assumed to be a positive convex cone with
respect to an operation +. The latter means that L is closed under addition and mul-
tiplication by non-negative scalars and the sum of two elements is zero if and only if
both elements are zeros. A character on L is a bounded continuous real- or complex-
valued function χ on L such that

χ(x + y) = χ(x)χ(y) , χ(0) = 1 , |χ(y)| ≤ 1

for every x, y ∈ L. The family of all characters is denoted by L̂. If µ is a finite
measure on L, its Laplace transform is a function on L̂ given by
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µ̂(χ) =
∫
L

χ(x)µ(dx) .

As in the classical situation, the measure µ is completely specified by its Laplace
transform. Moreover, it suffices to consider µ̂(χ) for χ from a subset L̂, e.g. on the
subset given by {e− f : f ∈ F} ∪ {1} , where F is a class of continuous, positively
homogeneous, additive functionals f : L �→ R+ such that {x : f (x) = 0} = 0.
Assume that for every x, y ∈ L with x �= y there exists an f ∈ F such that f (x) �=
f (y).

An L-valued random element ξ is said to be infinitely divisible if, for every
n ≥ 2, ξ coincides in distribution with the sum of i.i.d. L-valued random elements
ξ1, . . . , ξn .

Theorem 3.23. A probability measure P on L is infinitely divisible if and only if its
Laplace transform can be uniquely represented as

P̂(e− f ) = exp

⎧⎨⎩− f (x0)+
∫
L

(e− f (x) − 1)
1+ g(x)

g(x)
µ(dx)

⎫⎬⎭ ,

where f runs through F, x0 is a fixed point in L, g is a fixed functional from F and
µ is a finite measure on L with µ({0}) = 0.

Following the classical terminology for infinite divisible random variables, the
measure µ is called the Lévy–Khinchin measure of P. Theorem 3.23 yields the well-
known representation of infinitely divisible non-negative random variables. In this
case L = R+ and F = {sx : s > 0}. Theorem 3.23 is related to the studies of gen-
eral semigroups, see Appendix G and Berg, Christensen and Ressel [61, Th. 4.3.20,
3.2.3].

If L is the family of all all convex compact sets in Rd which contain the origin
with Minkowski addition as the additive operation, then Theorem 3.23 yields the
characterisation of M-infinite divisible sets, see Theorem 2.19 with the Lévy measure
given by (1+ g(x))g(x)−1µ(dx).

Notes to Chapter 3

Section 1.1. The Shapley–Folkman–Starr theorem is relevant in many areas, see Arrow and
Hahn [13] for further references. Its proof in Appendix C is reproduced from the book by
Arrow and Hahn [13, pp. 396–398], who also discuss numerous applications of this result
to the mathematical economy. Further results in this direction are due to Artstein [15] and
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Cassels [88]. The Banach space generalisation was proved by Puri and Ralescu [464]. Theo-
rem 1.3 goes back to Matheron [381], although his original proof did not refer to the Shapley–
Folkman–Starr theorem.

Section 1.2. Although the concept of the Aumann integral of a multivalued function goes
back to the early 1960s, see Richter [488], Aumann [31] and Debreu [124], the relationship
between this concept of expectation and the first strong law of large numbers for Minkowski
sums of random sets was discovered in 1975 by Artstein and Vitale [23]. Their paper gave
rise to a large number of further studies which successfully applied methods from the theory
of Banach space valued random elements to investigate Minkowski sums of random compact
sets. An independent approach was developed by Lyashenko [364].

Further results concerning strong laws of large numbers for random sets are due to
Hess [237], Giné, Hahn and Zinn [202] (for separable spaces) and Puri and Ralescu [462, 464].
The latter derived the convexifying part of the strong law of large numbers from the gener-
alised Shapley–Folkman–Starr theorem (see Theorem 1.5). Finally, Artstein and Hansen [21]
established the strong law of large numbers without both convexity and separability assump-
tions by proving the convexifying Theorem 1.4. Theorem 1.7 is proved in [21]. The latter
theorem and the strong law of large numbers for random compact sets in Banach spaces have
been obtained independently by Hiai [252].

It usually suffices to assume that the sequence of random closed sets is pairwise indepen-
dent in order to ensure that the strong law of large numbers holds.

Blaschke addition of random sets is important in the context of statistical estimation for
Boolean models of random sets, see Weil [604]. It is also possible to use the surface area
measure representation instead of the support function in order to prove the strong law of
large numbers for random convex compact sets.

Section 1.3. Various applications of the strong law of large numbers have been explored by
Vitale [581, 582, 584, 585]. Theorem 1.12 is proved by Anderson [8]. Rounding of compact
sets is discussed in detail by Vitale [585].

The studies of zonoids and zonotopes in the literature on convex geometry are surveyed
in Schneider and Weil [521] and Goodey and Weil [206]. Theorems 1.13 and 1.17 are due
to Vitale [583], where further results including bounds on absolute determinants and com-
parisons of the expected absolute determinants can be found. Proposition 1.16 is apparently
new. Applications of zonoids and lift zonoids to statistics and characterisation of multivariate
probability distributions have been developed by Koshevoi and Mosler [327, 415].

It is possible to prove the Brunn–Minkowski inequality for random sets by applying its
classical variant first to simple random sets (with a finite number of values) and then using
approximations, see Hess [246]. This yields, in particular, a variant of the Brunn–Minkowski
inequality for conditional expectations.

Section 1.4. A number of results on the strong law of large numbers for non-identically
distributed summands are due to R.L. Taylor and his collaborators. Section 1.4 is adapted from
the survey by Taylor and Inoue [561] where further references can be found. Theorem 1.19
was proved by Taylor and Inoue [559].

Section 1.5. The strong law of large numbers for random closed (not necessarily compact) sets
in Rd (Theorem 1.21) is due to Artstein and Hart [22]. Theorem 1.22 is proved by Hess [239]
for random closed sets in Banach spaces. Theorem 1.24 is due to Hiai [253].

Further generalisations for random closed sets in Banach spaces (including random sets
with non-identical distributions and pairwise independent) are due to Hiai [252, 253] and
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Hess [243]. The latter paper deals with the strong law of large numbers in the slice topol-
ogy, which is stronger than the Mosco topology in some cases. Theorem 1.25 is proved by
Hess [247]. The strong law of large numbers in the Hausdorff metric is due to Uemura [566].
The latter paper deals also with non-identically distributed random sets using the approach
similar to Taylor and Inoue [560]. Castaing and Ezzaki [89] showed how to derive a strong
law of large numbers for random convex closed sets using the Mosco convergence of reversed
martingales.

Note that the results related to the strong law of large numbers for Minkowski sums of
unbounded random sets will appear later in Sections 5.3.5 and 5.3.6 where similar addition
schemes are considered for random upper semicontinuous functions.

Section 2.1. The first central limit theorem for random sets with a finite number of values
has been proved by Cressie [110] using explicit calculations of probabilities. A further variant
is due to Lyashenko [364]. Theorem 2.1 is the most general central limit theorem for sums
of i.i.d. square integrable random compact sets in the Euclidean space. It was obtained by
Weil [602] followed by more general studies of random compact sets in Banach spaces by
Giné, Hahn and Zinn [202] where Theorem 2.5 is proved and Puri and Ralescu [464]. Theo-
rem 2.7 is proved in Giné, Hahn and Zinn [202], where further examples for particular choices
of g can be found.

A number of results on limit theorems for random sets are summarised by Li, Ogura and
Kreinovich [354].

Section 2.2. The concept of a Gaussian random set was suggested by Lyashenko [366]
who defined such sets as those having Gaussian support functions. Using a rather technical
proof he showed that Gaussian random sets have a degenerate shape. Section 2.2 follows Vi-
tale [577] who suggested another definition of a Gaussian random set (equivalent to one given
by N.N. Lyashenko by Proposition 2.9) and came up with a simple proof of the characterisa-
tion theorem (see Theorem 2.11). These characterisation results show that Gaussian random
sets are not very interesting from the point of view of modelling, since these sets have degen-
erated shapes.

Gaussian random sets in Banach spaces have been characterised by Puri, Ralescu and
Ralescu [467]. A generalisation for random upper semicontinuous functions is given by
Puriand Ralescu [463].

Section 2.3. The concept of a Gaussian random set was substantially generalised by Giné and
Hahn [198] who proved Theorems 2.14 and 2.15 and characterised Gaussian random sets as a
special case of their general characterisation theorem for p-stable random sets. Further results
(including a characterisation of Gaussian set-valued processes) can be found in Meaya [386]
and Davydov, Paulauskas and Račkauskas [120].

Section 2.4. Studies of infinite divisible random sets with respect to Minkowski addition
were initiated by Mase [380] who proved Theorem 2.19 without resorting to the technique of
probabilities in Banach spaces. This theorem was proved using the Lévy–Khinchin theorem
in Banach spaces by Giné and Hahn [199] who also generalised it for random sets which do
not necessarily contain the origin. Theorem 2.20 is proved in Giné and Hahn [199]. A partial
generalisation for random convex compact sets in Banach spaces has been reported in Giné
and Hahn [200]. Intrinsic volumes for M-infinitely divisible random sets have been studied by
Mase [380].

Section 3.1. The law of iterated logarithm for random compact sets goes back to Giné, Hahn
and Zinn [202].



240 3 Minkowski Addition

Section 3.2. The three series theorem for random sets goes back to Lyashenko [364], where
further results for random convex sets based on their support function representation are de-
rived. Wang [594] proved a set-valued Wald’s formula. Three series theorem for increasing
set-valued processes (interpreted as thresholds of a random upper semicontinuous function) is
proved by Feng [170].

Section 3.3. The Komlós theorem for random sets is proved by Balder and Hess [46]. Further
results are obtained by Krupa [332]. Hess and Ziat [249] extended the Komlós theorem for
Pettis integrable random sets.

Section 3.4. The elementary renewal theorem for random convex sets was proved by Molcha-
nov, Omey and Kozarovitzky [410]. This theorem generalises the elementary renewal theorem
in finite-dimensional spaces (Bickel and Yahav [69]). Further results along this line for count-
ing processes generated by Minkowski sums of random fuzzy sets (see Section 5.3.6) are
obtained by Dozzi, Merzbach and Schmidt [147].

Section 3.5. The studies of the ergodic theorem for families of random compact sets were
initiated by Hess [237] and Schürger [528]. A systematic approach to ergodic theorems for
random sets was developed by Krupa [332], who considered also the case of unbounded ran-
dom sets in Banach spaces. Section 3.5 follows Hansen and Hulse [219]. Theorem 3.13 en-
tails a strong law of large numbers for pairwise independent identically distributed integrably
bounded random compact sets.

Section 3.6. Large deviation estimates for sums of random sets have been reported by Art-
stein [17], who also gave an explicit bound for the constant c in (3.12). Theorem 3.18 was
proved by Cerf [92].

Section 3.7. The results on the convergence of volumes of Minkowski sums were obtained
by Vitale [580] who suggested using the theory of U-statistics (symmetric statistics) to derive
a limit theorem for the volume.

Section 3.8. The convergence of random broken lines was studied by Davydov and Ver-
shik [122], Davydov and Thilly [121] and Vilkov [575], where a number of further results,
for example, concerning the smoothness of the limiting curve can be found. Applications to
Lorenz curves when observations are stationary and either short-range or long-range depen-
dent are discussed by Davydov and Zitikis [123].

Section 3.9. Applications to allocation problems have been worked out by Artstein [18] and
Artstein and Hart [22].

Section 3.10. Infinitely divisible random elements in locally compact positive convex cones
have been characterised by Jonasson [281].
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Unions of Random Sets

1 Union-infinite-divisibility and union-stability

1.1 Extreme values: a reminder

Unions of random sets generalise the concept of extremes for random variables. The
classical theory of extreme values deals with maximum or minimum of i.i.d. random
variables ξ1, . . . , ξn , for instance the distribution of max(ξ1, . . . , ξn) is of interest,
see Galambos [186], Leadbetter, Lindgren and Rootzen [346]. It is easy to see that

every random variable ξ is max-infinitely divisible, i.e. ξ
d∼ max(ξ1n, . . . , ξnn) for

i.i.d. random variables ξ1n, . . . , ξnn .
A random variable ξ is said to be max-stable if, for all n > 1, there exist an > 0

and bn ∈ R such that

anξ + bn
d∼ max(ξ1, . . . , ξn) ,

where ξ1, . . . , ξn are i.i.d. copies of ξ . It is well known (see Galambos [186]) that,
up to an affine transform, any non-degenerate max-stable random variable can be
identified as having a distribution from the parametric family

Fγ (x) = exp
{
−(1+ γ x)−1/γ

}
, γ x ≥ −1 , γ ∈ R . (1.1)

Besides, if γ > 0 (type I), then Fγ (x) = 0 for x ≤ −1/γ , if γ < 0 (type II) then
Fγ (x) = 1 for x ≥ −1/γ , and if γ = 0 (type III), then (1+ γ x)−1/γ is an abuse of
language for e−x . These cumulative distribution functions can also be written as

Fα(x) =
{

0 , x ≤ 0 ,

exp{−x−α} , x > 0 ,
α > 0 (type I) ; (1.2)

Fα(x) =
{

exp{−(−x)−α} , x < 0 ,

1 , x ≥ 0 ,
α < 0 (type II) ; (1.3)

F(x) = exp{−e−x} , x ∈ R , (type III) , (1.4)
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where α = 1/γ if γ �= 0.
If ζn = max(ξ1, . . . , ξn) is the maximum of i.i.d. random variables, then the

asymptotic properties of the normalised sequence (anζn + bn) are determined by the
regular variation property of the cumulative distribution function or the probability
density of ξ1, see Galambos [186] and Seneta [530]. See Appendix H for the defini-
tion of regularly varying functions. The limiting distribution of (anζn + bn) (if it is
non-degenerate) is max-stable and belongs to one of the three types given by (1.1)
(up to an affine transform of x).

Similar concepts can be formulated for random vectors (although not all vec-
tors are max-infinitely divisible) and random elements in partially ordered spaces,
semigroups or lattices.

1.2 Infinite divisibility for unions

Definition

It is easy to see that the maximum of random variables can be easily “translated” into
operations with random closed sets. For instance, if Xi = (−∞, ξi ], 1 ≤ i ≤ n, are
random half-lines, then X1 ∪ · · · ∪ Xn is the half-line bounded by max(ξ1, . . . , ξn).
Example 1.1.5(ii) shows that the cumulative distribution function of a random vari-
able ξ is closely related to the capacity functional of X = (−∞, ξ ]. In contrast to
the studies of Minkowski sums which rely on representation of random sets through
their support functions, the main tool suitable to work with unions of random sets is
the capacity functional of random sets. Since we rely on the Choquet theorem and
extensively use the concept of a capacity functional, it is assumed throughout this
chapter that E is a locally compact Hausdorff second countable (LCHS) space (un-
less another type of space is specifically mentioned). Quite often, E is assumed to be
the Euclidean space Rd .

It is easy to express the capacity functional of the union of independent random
closed sets X and Y as

TX∪Y (K ) = TX (K )+ TY (K )− TX (K )TY (K ) .

If X1, . . . , Xn are i.i.d. random closed sets with the common capacity functional T ,
then the capacity functional of Zn = X1 ∪ · · · ∪ Xn is given by

TZn (K ) = 1− (1− T (K ))n . (1.5)

Definition 1.1 (Union-infinite-divisibility). A random closed set X is said to be
infinitely divisible for unions (or union-infinitely-divisible) if, for every n ≥ 1, there
exist i.i.d. random closed sets Xn1, . . . , Xnn such that

X
d∼ Xn1 ∪ · · · ∪ Xnn .
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Fixed points of random closed set

Clearly, each deterministic set is infinitely divisible in the sense of Definition 1.1. To
exclude this trivial case it is useful to remove from consideration the deterministic
part of a random closed set X .

Definition 1.2 (Fixed point). A point x ∈ E is said to be a fixed point of X if

P {x ∈ X} = T ({x}) = 1 ,

where T is the capacity functional of X . The set of all fixed points is denoted by FX .

The random closed set X is said to be non-trivial if P {X = FX } < 1, i.e. X does
not coincide almost surely with the set of its fixed points. This excludes both the case
of a deterministic X and the set X which is empty with probability 1.

Proposition 1.3. Let X be a random closed set in a LCHS space. Then
(i) FX is a closed set;

(ii) P {FX ⊂ X} = 1.

Proof.
(i) Note that FX = {x : p(x) ≥ 1}, where pX (x) = P {x ∈ X} is the coverage

function of X . Then FX is closed, since pX is an upper semicontinuous function by
Proposition 1.1.34.
(ii) There exists a countable set D such that FX = cl(FX ∩ D). For example, if E
is a metric space, then D can be constructed as the set of points x ∈ (FX ∩ B1/n(q)),
where q belongs to a countable dense set in E and n ≥ 1. Then P {D ⊂ X} = 1, so
that (ii) follows from the fact that X is closed. ��
Example 1.4. Let X = (−∞, ξ ] be a random subset of R1. If the random variable
ξ is positive almost surely, then FX contains (−∞, 0].

If ξ
d∼ max(ξ1, . . . , ξn) for some n ≥ 2 with i.i.d. random variables ξ1, . . . , ξn

having the same distribution as ξ , then ξ is deterministic almost surely. The following
proposition generalises this fact for random closed sets.

Proposition 1.5. Let X be a random closed set in a LCHS space E. If, for some
n ≥ 2, either

X
d∼ X1 ∩ · · · ∩ Xn (1.6)

or
X

d∼ X1 ∪ · · · ∪ Xn (1.7)

with X1, . . . , Xn being i.i.d. copies of X , then X = FX almost surely.
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Proof. By (1.5) and (1.7), we obtain

1− TX (K ) = (1− TX (K ))n .

Therefore, TX (K ) equals either 0 or 1, whence X is a deterministic set. If (1.6) holds,
then TX (K ) ≤ TX (K )n for all K ∈ K, whence TX (K ) is either 0 or 1. ��

Characterisation theorem

Clearly, T (K ) = 1 if K has a non-empty intersection with the set FX of fixed points.
To exclude such sets K , introduce the family

KX = {K ∈ K : K ∩ FX = ∅}
of compact sets that miss FX . Having replaced E by the space E\FX , we can consider
only random sets without fixed points, as was done by Matheron [381]. The following
theorem provides a slight modification of G. Matheron’s result, which can either be
proved directly as it done below or derived by the instrumentality of the harmonic
analysis on semigroups (see Berg, Christensen and Ressel [61, Prop. 4.6.10]) or the
theory of lattices (see Norberg [432, Th. 6.2]).

Theorem 1.6 (Characterisation of infinite divisibility for unions). A random
closed set X in a LCHS space E is infinitely divisible for unions if and only if its
capacity functional is represented as

T (K ) = 1− exp{−Ψ (K )} , (1.8)

where Ψ (K ) is a completely alternating non-negative upper semicontinuous capacity
such that Ψ (∅) = 0 and Ψ (K ) is finite for each K ∈ KX .

Lemma 1.7. Let q(s) = Esζ be the probability generating function of a non-negative
discrete random variable ζ . Then T = 1 − q(1− T ′) is a capacity functional, if T ′
is a capacity functional. In particular, T = 1− exp{−λT ′} is a capacity functional if
T ′ is.

Proof. Let T ′ be the capacity functional of a random closed set X ′. Put X = X ′1 ∪· · · ∪ X ′ζ for i.i.d. realisations of X ′ which are also independent of ζ . Then

1− TX (K ) = P {X ∩ K = ∅}

=
∞∑

n=0

P {ζ = n} (1− T ′(K ))n = q(1− T ′(K )) .

Thus, T (K ) = 1 − q(1 − T ′(K )) is a capacity functional of X . In particular, if ζ

is a Poisson random variable with mean λ, then q(s) = e−λ(1−s), whence T (K ) =
1− exp{−λT ′(K )} is a capacity functional. ��
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Lemma 1.7 can be alternatively derived from Proposition 1.1.11 that refers to the
results of harmonic analysis on semigroups.

Lemma 1.8. If X is infinitely divisible for unions, then its capacity functional satis-
fies T (K ) < 1 for all K ∈ KX .

Proof. Assume that T (K ) = 1 for some K ∈ KX . By Zorn’s lemma, there exists
a minimal set K0 ⊂ K such that T (K0) = 1. If we show that K0 is a singleton,
this would prove the lemma. Assume that K0 contains at least two points. Then
K0 = K1∪K2 with both K1 and K2 strictly included in K0. This implies T (K1) < 1,
T (K2) < 1 and also

P {X ∩ K1 = ∅, X ∩ K2 = ∅}
= P {X ∩ K1 = ∅} + P {X ∩ K2 = ∅} − P {X ∩ (K1 ∪ K2) = ∅}
= P {X ∩ K1 = ∅} + P {X ∩ K2 = ∅} .

The random closed set Xn1 from Definition 1.1 has the same fixed points as X ,
whence

P {Xn1 ∩ K1 = ∅, Xn1 ∩ K2 = ∅}
= (P {X ∩ K1 = ∅})1/n + (P {X ∩ K2 = ∅})1/n .

The right-hand side can be made strictly larger than 1 for sufficiently large n. The
obtained contradiction confirms that K0 is a singleton. ��
Proof of Theorem 1.6. Necessity. If X is infinitely divisible for unions, then

T = 1− (1− Tn)
n ,

with Tn being a capacity functional. By Lemma 1.8, T (K ) < 1 for each K ∈ KX ,
whence

Ψ (K ) = − log(1− T (K )) <∞ .

Clearly, Ψ is upper semicontinuous on KX . Furthermore,

nTn(K ) = n(1 − (1− T (K ))1/n)→ − log(1− T (K )) = Ψ (K ) as n →∞ ,

so that Ψ is a pointwise limit of completely alternating capacities nTn , whence Ψ is
completely alternating.
Sufficiency. Let us show that T (K ) given by (1.8) is a capacity functional of a ran-
dom closed set. For this, it suffices to prove that T is completely alternating. Let
{Kn, n ≥ 1} be a sequence of compact sets such that Kn ↑ (E \ FX ). By assump-
tion, Ψ (Kn) <∞. Then T ′n(K ) = Ψ (K ∩ Kn)/Ψ (Kn) is a capacity functional. For
λ = Ψ (Kn), Lemma 1.7 implies that

Tn(K ) = 1− exp{−Ψ (K ∩ Kn)}
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is a capacity functional of a random closed set Xn such that Xn ⊂ Kn a.s. Put
T (K ) = Tn(K ) where n is such that K ⊂ Kn . Then T is a capacity functional of a
random closed set X̃ , such that X̃ ⊂ (E \ FX ) a.s. and

TX̃ (K ) = P
{

X̃ ∩ K �= ∅
}
= 1− exp{−Ψ(K )} , K ∈ KX .

Finally, X = FX ∪ X̃ is infinitely divisible for unions, since

1− (1− T (K ))1/n = 1− exp{−n−1Ψ (K )}
is a capacity functional for each n ≥ 1. ��

Representation by Poisson process

It is known from the theory of multivariate extremes and pointwise extremes of up-
per semicontinuous functions (see Norberg [431, 481]) that a max-infinitely divisible
random element can be obtained as the maximum of points of a Poisson point pro-
cess whose intensity measure is called the Lévy measure of the corresponding max-
infinitely divisible law. Let us show that every union-infinitely-divisible random set
can be obtained as a union of sets that constitute a Poisson point process on F . This
statement can be compared with Theorem 1.8.13 saying that each random closed set
in the extended convex ring can be represented as the union of sets that appear as a
(not necessarily Poisson) point process on coK′ and the representation of M-infinite
divisible random compact sets as the Minkowski sum of a Poisson process on coK,
see Section 3.2.4.

Assume first that FX = ∅. It follows from the general results on probability
measures on lattices (see Corollary 1.3.18) that Ψ generates a locally finite measure
Λ on F such that

Λ({F ∈ F : F ∩ K �= ∅}) = Λ(FK ) = Ψ (K ) (1.9)

for all K ∈ K. Note that FK = {F ∈ F : F ∩ K = ∅} is open in the Fell topology.
The locally finite measure Λ on F can be interpreted as the intensity measure of

a Poisson point process ΠΛ = {F1, F2, . . . } on F , so that the number of the Fi s in
any measurable D ⊂ F is Poisson distributed with mean Λ(D) and these numbers
are independent for disjoint sets D1, . . . ,Dk ⊂ F , see Definition 1.8.7. Note that the
union of all sets from ΠΛ is closed since the intensity measure Λ is locally finite.
The distribution of the random closed set X = F1∪F2∪· · · is denoted by Pois∪(Λ),
cf. Definition 3.2.17. It is easy to see that (1.8) follows from this representation of
X , since

T (K ) = 1− P {X ∩ K = ∅}
= 1− P {no points of ΠΛ(F) in FK }
= 1− e−Λ(FK )

= 1− e−Ψ (K ) .
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If FX �= ∅, then the intensity measure Λ is concentrated on the family of closed sets
F ∈ F such that F ⊃ FX and X = FX ∪ F1 ∪ F2 ∪ · · · .

As explained in Section 1.4.7, C-additive capacities correspond to random con-
vex sets. Similar to Theorem 1.4.35, it is easy to prove that if Ψ (K ) = − log(1 −
T (K )) is a C-additive capacity, then the measure Λ defined by (1.9) is supported by
the family coF of convex closed sets, whence X is the union of a Poisson process
of convex closed sets. The corresponding random closed set X is semi-Markov, see
Definition 1.4.38.

1.3 Union-stable random sets

Definitions

In the following (unless otherwise stated) we assume that E is the Euclidean space
Rd , noticing that all results also hold in every finite-dimensional linear space. First,
define union-stable sets that form a subclass of random closed sets infinitely divisible
for unions.

Definition 1.9 (Union-stability). A random closed set X is said to be union-stable
if, for every n ≥ 2, there exists an > 0 such that

an X
d∼ X1 ∪ · · · ∪ Xn , (1.10)

where X1, . . . , Xn are independent random closed sets distributed as X .

Proposition 1.10 (Alternative definitions of union-stability). A random closed set
X is union-stable if and only if one of the following conditions holds for i.i.d. random
closed sets X1, X2 having the same distribution as X .
(i) For each s > 0, there exists t > 0 such that

X1 ∪ s X2
d∼ t X . (1.11)

(ii) There exists γ �= 0 such that for all s, t > 0

tγ X1 ∪ sγ X2
d∼ (t + s)γ X .

Proof.
(i) Note that (1.11) implies (1.10) by successive applications. Conversely, (1.10)

implies (1.11) first for s and t being positive rational numbers and then for general s
and t by approximation.
(ii) easily follows from the characterisation of union-stable random closed sets in
Theorem 1.12. Note that γ = −1/α for α that appears in (1.12). ��
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Characterisation of distributions for union-stable sets

The main difficulty in the characterisation of union-stable random sets is caused
by the possible self-similarity of random sets. If a random variable ξ coincides in
distribution with cξ , then ξ = 0 a.s. However, there are non-trivial random closed

sets (called self-similar) that satisfy X
d∼ t X for all t > 0, see Example 1.4.5. If

X does not contain fixed points, then X cannot be self-similar, which immediately
simplifies the arguments used to characterise union-stable sets. Unlike the infinite
divisibility for unions, possible fixed points cannot be simply eliminated by consid-
ering the space Rd \ FX , since Rd \ FX is not necessarily invariant with respect to
multiplication by positive numbers. However, even in R1 there are simple examples
of union-stable sets that do have fixed points.

Example 1.11 (Union-stable random set with fixed points). Let X = (−∞, ξ ]
be a random subset of R1. Then X is union-stable if and only if ξ is a max-stable
random variable. For max-stable laws of type I, ξ is positive almost surely, whence
the corresponding set of fixed points FX = (−∞, 0] is not empty.

Union-stable sets without fixed points have been characterised by Matheron [381]
whose result is covered by Theorem 1.12 for the case α > 0.

Theorem 1.12 (Characterisation of union-stable random sets). A non-trivial ran-
dom closed set X is union-stable if and only if its capacity functional TX is given
by (1.8), where Ψ (K ) is a completely alternating upper semicontinuous capacity,
Ψ (∅) = 0 and there exists α �= 0 such that

Ψ (sK ) = sαΨ (K ) , (1.12)

Ψ (K ) <∞ and

s FX = FX (1.13)

for all s > 0 and K ∈ KX .

Proof. The proof of necessity falls into several steps. The key idea is to show that a
union-stable set is not self-similar.

Step I. Let T (aK ) = T (a1 K ) for all K ∈ K and some a, a1 > 0. Prove that a = a1.
It suffices to consider the case a1 = 1, a < 1. Then T (K ) = T (an K ) for all n ≥ 1
and K ∈ K. Hence T (K ) ≤ T (Bε(0)) for each ε > 0. The semicontinuity of T
implies T (K ) ≤ T ({0}) for each K ∈ K. Thus, T ({0}) ≥ T (Rd ) > 0, since X is
non-empty with positive probability. It follows from (1.10) that

T ({0}) = 1− (1− T ({0}))n ,

whence T ({0}) = 1, i.e. 0 ∈ FX . If X has no fixed points, then the first step has been
proved by contradiction. If FX is non-void, then (1.10) yields
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T (K ) = 1− (1− T (an K ))n , n ≥ 1 , K ∈ K , (1.14)

for some an > 0. Since a �= 1,

an = am(n)δn , n ≥ 1 ,

for integer m(n) and δn belonging to (a, 1]. Then, for each compact set K and n ≥ 1,

T (K ) = 1−
(

1− T (an K/am(n))
)n = 1− (1− T (δn K ))n . (1.15)

Without loss of generality assume δn → δ ∈ [a, 1] as n → ∞. Take any K ∈ K
such that K ∩ FX = ∅. Then K ε ∩ FX = ∅ for some ε > 0, so that T (K ε) < 1,
where K ε = {x : ρ(x, K ) ≤ ε} is the ε-envelope of K . Therefore, T (δn K ε) → 0
as n → ∞. Then T (δK ) = 0 for each K which misses FX . It is easy to derive
from (1.15) that δn FX = FX , whence δFX = FX , meaning that K ∩ FX = ∅ if and
only if δK ∩ FX = ∅. Therefore, T (K ) = 0 for each K that misses FX , whence
X ∩ (Rd \ FX ) is empty almost surely. Thus, X = FX almost surely, contrary to the
condition of Theorem 1.12. The obtained contradiction shows that a = 1.

Step II. Since a union-stable random closed set is infinitely divisible for unions, its
capacity functional is given by (1.8). It follows from (1.10) that nΨ (an K ) = Ψ (K )

and an FX = FX for each n ≥ 1 and K ∈ KX . For any positive rational number
s = m/n ∈ Q+ put a(s) = am/an . It is easy to show that a(s) does not depend on
the representation of s. Then, for any s from Q+, a(s)FX = FX and

sΨ (a(s)K ) = Ψ (K ) , K ∈ KX . (1.16)

It follows from (1.16) that Ψ (a(s)a(s1)K ) = Ψ (a(ss1)K ) for each s, s1 ∈ Q+. The
first step of the proof and (1.8) yield

a(ss1) = a(s)a(s1) . (1.17)

Step III. It follows from (1.8) and (1.16) that T (a(sn)K ) → T (K ) as sn → 1 for
each K ∈ K. Without loss of generality assume that the sequence {a(sn), n ≥ 1} has
a limit (which is allowed to be infinite). Let this limit be finite and equal to a > 0.
Then, for any ε > 0 and sufficiently large n,

T (a(sn)K ) ≤ T (aK ε) .

Hence T (K ) ≤ T (aK ). Similarly, T (K/a) ≥ T (K ). Thus, T (aK ) = T (K ) for
each K ∈ K, whence a = 1.

Since Ψ (a(sn)K ) = Ψ (K )/sn and Ψ (K/a(sn)) = snΨ (K ), it suffices to assume
that either a(sn) → 0 or a(sn) → ∞ as n → ∞. Choose an integer m > 1. Let
am > 1. Suppose that a(sn)→∞ as n →∞. Then, for all sufficiently large n,

a(sn) = (am)k(n)δn ,

where 1 ≤ δn < am and k(n) is a positive integer. It follows from (1.14) and (1.17)
that (am)k(n) = amk(n) . Hence
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T (δn K ) = 1−
[
1− T

(
(am)k(n)δn K

)]mk(n)

= 1− [1− T (a(sn)K )]mk(n)
.

If T (K ) > 0, then T (δn K ) → 1, since T (a(sn)K ) → T (K ) > 0. Without
loss of generality assume that δn → δ as n → ∞. The semicontinuity of T implies
T (δK ) = 1. Hence δK ∩ FX �= ∅ whenever T (K ) > 0. It is easy to show that
δn FX = FX for all n ≥ 1, whence δFX = FX . Thus, K ∩ FX �= ∅ whenever
T (K ) > 0, so that X = FX almost surely.

It is obvious that am �= 1. If am < 1, then suppose a(sn) → 0 as n → ∞ and
arrive at a contradiction using the same arguments as above. Thus, a(sn)→ 1 = a(1)
as sn → 1, i.e. the function a(s) is continuous on Q+ at s = 1.

Step IV. If sn → s ∈ Q+ as n →∞, then a(sn) = a(s)a(sn/s)→ a(s) as n →∞,
since a(sn/s)→ 1. Thus, a(s) is continuous on Q+.

Extend a(s) onto the positive half-line by continuity, i.e. for any positive s denote
a(s) = lim a(sn), where sn → s as n → ∞, sn ∈ Q+. Then the function a(s) is
continuous on R+ and a(ss1) = a(s)a(s1) for each s, s1 > 0. Thus, a(s) = sγ for a
real number γ . If γ = 0, then sΨ (K ) = Ψ (K ), i.e. X = FX almost surely. Hence
γ �= 0, so that (1.12) and (1.13) hold with α = −1/γ .

Sufficiency. The capacity functional of X1 ∪ · · · ∪ Xn is equal to

Tn(K ) = 1− exp{−nΨ (K )} .
The capacity functional of an X is given by

T ′n(K ) = 1− exp{−Ψ(K/an)} .
If an = n−1/α , then Tn = T ′n on K. Now (1.10) follows from the Choquet theorem.

��

Corollary 1.13.
(i) If a union-stable random set X has no fixed points, then α > 0 in (1.12).

(ii) If α < 0, then FX is non-empty and 0 ∈ FX .
(iii) A stationary non-trivial union-stable random closed set X has a positive param-

eter α in (1.12).
(iv) If X is union-stable with parameter α, then in (1.10) one has an = n1/α, n ≥ 1.

Proof.
(i) If FX = ∅, then Ψ (Br (0)) < ∞ for each r > 0. The homogeneity property

implies that Ψ (Br (0)) = rαΨ (B1(0)). Thus, α > 0.
(ii) Let α < 0. Then Ψ (sK )→∞ as s ↓ 0, whence T ({0}) = 1 by the semiconti-
nuity of the capacity functional.
(iii) If α is negative, then X has a fixed point, whence X = Rd .
(iv) Follows from the proof of sufficiency in Theorem 1.12. ��
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Corollary 1.14. A random closed set X with the closed inverse

X∗ = {x‖x‖−2 : x ∈ X , x �= 0} (1.18)

is union-stable with parameter α �= 0 if and only if X∗ is union-stable with parameter
(−α).

Proof. Evidently,

P
{

X∗ ∩ K �= ∅} = P
{

X ∩ K ∗ �= ∅} = 1− exp{−Ψ(K ∗)} .
By (1.12), Ψ (sK ∗) = sαΨ (K ∗), whence Ψ ((sK )∗) = s−αΨ (K ∗). ��

Examples of union-stable random sets

Example 1.15 (Max-stable laws of types I and II). The random set X = (−∞, ξ ] ⊂
R1 is union-stable if and only if ξ is max-stable with parameter γ = α−1 �= 0. If X
is union-stable, then (1.13) implies that the set of fixed points of X is either empty or
is (−∞, 0]. Furthermore, (1.12) yields

T ({x}) =
{

1− exp{−c1xα} , x > 0 ,

1− exp{−c2(−x)α} , x < 0 ,

for some non-negative constants c1 and c2. Since P {ξ < x} = 1 − T ({x}) is mono-
tone, we immediately obtain c1 = 0 if α > 0 and c2 = 0 if α < 0. The first case
corresponds to the law of type II, see (1.3), and the second one to the law of type I,
see (1.2). Therefore, Theorem 1.12 yields the representation of cumulative distribu-
tion functions of stable laws of types I and II.

Example 1.16 (Poisson point process in Rd ). Let X = ΠΛ be a Poisson point
process in Rd with intensity measure Λ, see Definition 1.8.7. The capacity functional
of X is equal to

T (K ) = P {ΠΛ ∩ K �= ∅} = 1− exp{−Λ(K )} .
Each Borel measure is an upper semicontinuous completely alternating capacity, so
that Theorem 1.6 implies that ΠΛ is infinitely divisible for unions. Then X is union-
stable if and only if Λ is homogeneous, i.e., for some α �= 0,

Λ(sK ) = sαΛ(K ) , K ∈ K , s ≥ 0 . (1.19)

If Λ is absolutely continuous with respect to the Lebesgue measure. Then X is union-
stable if and only if the density λ is homogeneous, i.e.

λ(su) = sα−dλ(u) , s > 0, u ∈ Rd ,

for a real α. If α < d , then Λ is not locally finite at the origin, and the origin is a
fixed point of X . For α = d , ΠΛ becomes the stationary Poisson point process.
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Example 1.17 (Poisson-rescaled sets). Let ΠΛ be a Poisson point process on R+
with intensity measure Λ. For a deterministic compact set Z define

X =
⋃

xi∈ΠΛ

xγ
i Z ,

where γ > 0. Then
TX (K ) = 1− exp{−Λ(K/Z)} ,

where K/Z = {t ≥ 0 : (tγ Z) ∩ K �= ∅}. If Λ is homogeneous of degree α, then X
is union-stable with parameter α/γ . Indeed,

Λ((cK )/Z) = Λ({t : (tγ Z) ∩ cK �= ∅})
= Λ(c1/γ {t : (tγ Z) ∩ K �= ∅}) = cα/γΛ(K/Z) .

Example 1.18 (Maxitive union-stable random sets). If f : Rd �→ [0,∞] is an
upper semicontinuous function, then

Ψ (K ) = sup
x∈K

f (x)

is a maxitive capacity, see Example 1.1.15. The capacity functional (1.8) corresponds
to the random closed set X = {x : f (x) ≥ ξ}, where ξ is a random variable
exponentially distributed with parameter 1. The random closed set X is union-stable
if and only if f is homogeneous, i.e. f (sx) = sα f (x) for each s > 0 and x ∈ Rd .
Note that FX = {x : f (x) = ∞}.
Example 1.19 (Riesz capacities). Let C be the capacity defined by (E.7) for ker-
nel k(x, y). Assume that C is an upper semicontinuous completely alternating ca-
pacity. By Theorem 1.6, the functional T (K ) = 1 − exp{−C(K )} is the capac-
ity functional of a random closed set X . Then X is union-stable if and only if
k(sx, sy) = s−αk(x, y) for some α �= 0, all s > 0 and x, y ∈ Rd . If X is sta-
tionary and isotropic, then k(x, y) depends on ‖x − y‖ only. Thus, for some a > 0
and q ∈ [0,∞],

k(x, y) =
{

a‖x − y‖−α, x �= y ,

q, x = y .

If q = 0, then C({x}) = ∞, so that X = Rd a.s. by the stationarity. If 0 < q < ∞,
then C({x}) = 1/q and C({x, y}) = 2(q + k(x, y)). If α < 0, then

lim
y→x

C({x, y}) = 2/q > C({x}) ,

i.e. C is not upper semicontinuous. If α > 0, then C({x, y}) < C({x}) for sufficiently
small ‖x − y‖, i.e. C is not increasing. Thus, q = ∞ and k(x, y) = a‖x − y‖−α

equals (up to a constant factor) the Riesz kernel kd,γ ‖x − y‖γ−d with γ = d − α.
Then C is the Riesz capacity, see Appendix E.

If α = d − 2 and d ≥ 3, then C is the Newton capacity up to a proportionality
constant and the corresponding random closed set X can be constructed as follows.
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Let µ be the equilibrium probability measure on Br (0) = {x : ‖x‖ ≤ r} with
respect to the kernel k(x, y) = ‖x − y‖2−d , i.e.

Uk
µ(x) =

∫
K

k(x, y)µ(dy) = 1

C(Br (0))
, x ∈ Br (0) ,

and let N be the Poisson random variable of mean C(Br (0)). At time t = 0 we
launch N mutually independent and independent of N random Wiener processes
wi (t), 1 ≤ i ≤ N , with the initial distribution µ. The path of each process until it
leaves Br (0) is denoted by Xi . Let X = X1 ∪ · · · ∪ X N be the union of these paths.
The capacity functional of X is equal to

T (K ) = 1− exp
{−C(Br (0))TX1(K )

}
,

where TX1(K ) is the capacity functional of X1. Let Px be the distribution of the
process w1(·) which starts from x , τG = inf{t : w1(t) ∈ G} for some open set
G ⊂ Br (0). Since Px{τG <∞} is the potential of the equilibrium measure µG on G
(see Itô and McKean [272, p. 352]) we obtain

TX1(G) =
∫
Br

Px{τG <∞}µ(dx)

=
∫
Br

⎡⎣ ∫
K

k(x, y)µG(dy)

⎤⎦µ(dx)

=
∫
G

µG(dy)

C(Br (0))
= C(G)

C(Br (0))
, G ⊂ Br (0) .

By approximation, the same formula holds with G replaced by a compact set K ,
whence T (K ) = 1−e−C(K ). The above construction defines a random closed subset
of the ball Br (0) or, equivalently, the probability measure on the family of compact
subsets of Br (0). Theorem E.3 establishes the existence of a random closed set X in
Rd such that X ∩ Br (0) has the above specified distribution.

Open problem 1.20. Characterise stationary isotropic union-stable random closed
sets. Note that the Riesz capacities from Example 1.19 may not exhaust all examples
of their capacity functionals.

1.4 Other normalisations

Different scaling factors

It is possible to generalise the union-stability definition by using non-equal normal-
ising constants along different axes in Rd . A particular case appears if the various
axes are being rescaled according to various powers of the same constant. Consider
a transformation in Rd given by
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ag ◦ x = (aγ1 x1, . . . , aγd xd) , (1.20)

where g = (γ1, . . . , γd) ∈ (0,∞)d and x = (x1, . . . , xd). For every x ∈ Rd define

fg(x) = (sign(x1)|x1|γ1, . . . , sign(xd)|xd |γd ) .

The normalisation (1.20) can be applied to a random closed set and used in the left-
hand side of (1.10) to define the corresponding stable random closed sets. The union-
stable random sets from Definition 1.9 appear if g = (1, . . . , 1).

Proposition 1.21. A random closed set X is stable with respect to the normalisation
(1.20) if and only if there exists a union-stable random closed set Y such that X =
fg(Y ).

Proof. Since fg is a continuous bijection, X = fg(Y ) for a random closed set Y .
Then

ag
n ◦ X

d∼ X1 ∪ · · · ∪ Xn

implies that fg(an ◦ Y ) coincides in distribution with fg(Y1 ∪ · · · ∪ Yn), whence Y is
union-stable. ��

Proposition 1.21 shows that an example of stable random sets with respect to the
normalisation (1.20) can be constructed by applying the function fg to union-stable
random closed sets. In particular, Example 1.17 is applicable with xγ

i Z replaced by
xg

i ◦ Z and {xi , i ≥ 1} that form a Poisson point process in [0,∞)d .

Affine normalisation

Possible generalisations of union-stable random sets are based on analogues of (1.10)
using normalisations other than the pure multiplicative one.

Definition 1.22 (Affine union-stable random sets). A random closed set X in Rd is
said to be affine union-stable if, for every n ≥ 2 and X1, . . . , Xn being independent
copies of X , there exist an > 0 and bn ∈ Rd such that

an X + bn
d∼ (X1 ∪ · · · ∪ Xn) . (1.21)

The main difficulty in the way of characterising affine union-stable random
closed sets is caused by the lack of a convergence of types theorem. Let M be a fam-
ily of probability measures and let A be a topological group of transformations. Any
A ∈ A acts on µ ∈ M in the standard way Aµ(F) = µ(A−1 F). The pair (A,M)

fulfils the convergence of types condition if for any sequence {µn, n ≥ 1} ⊂ M
and {An, n ≥ 1} ⊂ A such that µn converges weakly to µ ∈ M and Anµn con-
verges weakly to ν ∈ M, the sequence {An, n ≥ 1} is relatively compact in A, see
Hazod [227]. This fact is known also under the name of the Khinchin lemma (see
Leadbetter, Lindgren and Rootzen [346]) that, in its classical formulation, applies to
affine transformations of random variables.
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Unfortunately, the convergence of types theorem does not hold even for A being
the group of homothetical transformations used to define union-stable random sets.
For instance, if µ is the distribution of a self-similar random closed set, then Aµ = µ

for every homothetical transformation A, so that one can put µn = µ and obtain
Anµn → µ for every sequence of homotheties. If we allow all affine transformations
(as in Definition 1.22), then we should take into account the fact that the distribution
of a random closed set X may coincide with the distribution of X + u for some (and
possibly all) u ∈ Rd . The convergence T (an K + bn) → T (K ) as n →∞ for each
K ∈ K does not automatically imply the boundedness of the sequences {an, n ≥ 1}
and {‖bn‖, n ≥ 1}.

The characterisation theorem of union-stable sets relies on the fact that a union-
stable random set cannot be self-similar. This also implies that the family of distri-
butions for union-stable random closed sets together with the family of homothetical
transformations satisfy the convergence of types condition. However, an affine union-

stable set X may satisfy X +b
d∼ X for b �= 0, so that the convergence of types fails.

Indeed, this is the case if X is a stationary Poisson point process from Example 1.16.
Since we have to pay special attention to the case when the distribution of X is

invariant with respect to translations, define the set

HX =
{

u ∈ Rd : X
d∼ X + u

}
of all translations which leave the distribution of X invariant. If X is stationary, then
HX = Rd , while if X is compact, then HX = {0}. It is easy to see that HX is centrally
symmetric with respect to the origin and is closed for sums.

Theorem 1.23 (Reduction to union-stable sets). Assume that HX is a linear sub-
space of Rd . If X is an affine union-stable random closed set and am from (1.21)
is not equal to 1 for some m ≥ 2, then there exists b ∈ Rd such that X + b is
union-stable.

Proof. For the chosen m and any b ∈ Rd we have

m⋃
i=1

(Xi + b)
d∼ am X + bm + b = am(X + b)+ (bm + b − amb) .

Denote b = bm/(1 − am). The random closed set Y = X + b is affine union-
stable with the same multiplicative constants an as X and with the additive constants
b′n = bn + b(1− an), n ≥ 1. Note that b′m = 0.

Let {Yn, n ≥ 1} and {Y ′n, n ≥ 1} be two independent sequences of i.i.d. copies of
Y . Then, for each k ≥ 2,

mk⋃
i=1

Yi
d∼

k⋃
j=1

amY ′j = am

k⋃
j=1

Y ′j
d∼ am(akY + b′k) .

Furthermore,
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mk⋃
i=1

Yi
d∼

m⋃
j=1

(akY ′j + b′k) = ak

k⋃
j=1

Y ′j + b′k
d∼ akamY + b′k .

Therefore,

amakY + amb′k
d∼ akamY + b′k .

Note that HY = HX , whence

am − 1

amak
b′k = uk ∈ HX .

By the assumption on HX , we get

akY + b′k = ak(Y + b′ka−1
k )

d∼ akY ,

whence akY
d∼ Y1 ∪ · · · ∪ Yk for each k ≥ 2. ��

Additive normalisation

If at least one of the multiplicative constants an , n ≥ 2, in Definition 1.22 is not 1,
then it is possible to reduce the consideration to the case of union-stable random sets.
Now assume that an = 1 for all n ≥ 2.

Definition 1.24 (Additive union-stable random sets). A random set X is said to be
additive union-stable if, for every n ≥ 2, there exists bn ∈ Rd such that

X + bn
d∼ (X1 ∪ · · · ∪ Xn) .

The following definition is helpful to establish the convergence of types theorem
for the pure additive normalisation.

Definition 1.25 (Homogeneity at infinity). A non-stationary random closed set X
is said to be homogeneous at infinity if HX is a linear subspace of Rd and, for each
sequence {bn, n ≥ 1} ⊂ Rd ,

lim
n→∞ T (K + bn) = lim

n→∞ T (K + u + bn) , K ∈ K , u ∈ Rd , (1.22)

given that at least one limit exists and ρ(bn, HX )→∞ as n →∞.

Each random compact set is homogeneous at infinity.

Lemma 1.26. If X is homogeneous at infinity, then X satisfies the convergence of
types theorem, i.e. for each sequence {bn, n ≥ 1} ⊂ Rd , the convergence T (K +
bn)→ T (K ) as n →∞ for K ∈ K implies sup{ρ(bn, HX ) : n ≥ 1} <∞.

Proof. Suppose that ρ(bn, HX) → ∞ as n → ∞. It follows from (1.22) that the
limit of T (K +u+bn) exists and is equal to T (K ). Furthermore, T (K +u+bn)→
T (K + u) as n → ∞. Thus T (K ) = T (K + u) for each u, i.e. HX = Rd . The
obtained contradiction shows that the sequence {ρ(bn, HX ), n ≥ 1} is bounded. ��
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Open problem 1.27. Which other conditions (apart from the homogeneity at infin-
ity) imply that the convergence of types theorem holds for the additive normalising
scheme?

Theorem 1.28 (Characterisation of additive union-stable random sets). A ran-
dom closed set X is additive union-stable if (and only if in the case X is homoge-
neous at infinity and HX is a linear space) its capacity functional is given by (1.8),
where Ψ (∅) = 0 and, for some v orthogonal to HX ,

Ψ (K + vs) = e−sΨ (K ), FX + vs = FX (1.23)

whatever K ∈ KX and s ∈ R may be.

Proof. Sufficiency can be obtained from (1.23) and (1.21) for bn = v log n.
Necessity. Since X is infinitely divisible for unions, (1.8) holds. It is easy to prove
the existence of a function b(s), s ∈ Q+, with values in the orthogonal complement
to HX such that

sΨ (b(s)+ K ) = Ψ (K ), b(s)+ FX = FX , (1.24)

for all s ∈ R and K ∈ KX . As in the proof of Theorem 1.6, we can show that
b(ss1) = b(s) + b(s1) for all positive rational numbers s, s1. It follows from (1.24)
that T (b(sn) + K ) → T (K ) for K ∈ K, if sn → 1 and n → ∞. By Lemma 1.26,
the norms ‖b(sn)‖ = ρ(bn, HX ), n ≥ 1, are bounded. Without loss of generality
assume that b(sn) → b as n → ∞. It is easy to show that T (K + b) = T (K ) for
each K ∈ K, whence b = 0. Thus, b(s) is continuous at s = 1 and, therefore, may
be continuously extended onto the positive half-line. Hence b(s) = v log s for some
v orthogonal to HX . ��
Example 1.29 (Additive union-stable sets).
(i) The random set X = (−∞, ξ ] is additive union-stable if and only if ξ is a

max-stable random variable of type III, see (1.4).
(ii) The Poisson process ΠΛ from Example 1.16 is additive union-stable if there
exists v ∈ Rd \ {0} such that λ(u + vs) = e−sλ(u) for all u ∈ Rd and s ∈ R.

Further generalisations

It is possible to generalise Definition 1.22 by replacing the an in the left-hand side
of (1.21) with an invertible linear operator An . Then it is possible to use the same
reasoning as in Theorems 1.23 and 1.12. For this, X is assumed to be compact and
(I − Am) should be invertible for some m.

A far reaching generalisation of the stability concept for random closed sets can
be introduced as follows. Let M1 andM2 be two families of compact sets. A random
closed set X is called (M1,M2)-union-stable if, for each n ≥ 2,

An X + Ln
d∼ (X1 ∪ · · · ∪ Xn)+ Kn (1.25)
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for an invertible linear operator An , Ln ∈ M1 and Kn ∈ M2. The problem is
getting considerably more complicated if Kn and Ln from (1.25) are not singletons,
for example, if one of them is allowed to be a ball. A peculiar situation that might
appear in this context is that the stability condition

X + Ln
d∼ X1 ∪ · · · ∪ Xn , n ≥ 1 ,

does not imply anymore that X is infinitely divisible for unions.
It is possible also to consider random closed sets which are infinitely divisible

or stable with respect to intersection. However, in many cases this can be reduced to
consideration of unions of their complements.

1.5 Infinite divisibility of lattice-valued random elements

The infinite divisibility is a general concept which can be defined for random ele-
ments in cones, semigroups or lattices. Here we concentrate on the latter case with
the aim to characterise infinite divisible random elements on continuous posets. The
notation of Section 1.3.1 is used without further comments.

Consider a random element ξ in a continuous semi-lattice L. Assume that L has
a top and a second countable Scott topology. We say that ξ (or its distribution P) is
infinitely divisible if, for every n ≥ 2, there exist i.i.d. L-valued random elements
ξ1, . . . , ξn such that

ξ
d∼
∧

1≤i≤n

ξi . (1.26)

Recall that L denotes the collection Ofilt(L) of Scott open filters on L. Since each
F ∈ L is an upper set, (1.26) implies, for every n ≥ 2,

P(F) = Pn(F)n , F ∈ L , (1.27)

where Pn is a probability measure on the family σ(L) of Borel sets in L. In the
following an infinite-divisible distribution P on L will be associated with a measure
ν on L and the latter, in turn, with a completely ∩-alternating function Ψ on L, see
Definition 1.1.9(i). This programme will be first carried over in case P(F) > 0 for
each non-empty F ∈ L (the case of no fixed points) and then the strict positivity
assumption will be dropped.

The lattice L can be considered an idempotent semigroup (L,∩), so that (1.27)
implies that P is an infinitely divisible function on L. By duality, the semicharacters
on L can be identified with elements of L. Therefore, (G.3) implies the following
result.

Proposition 1.30. Let L be a continuous semi-lattice with a top I and a second count-
able Scott topology. Then the formula

P(F) = exp{−ν(L \ F)} , F ∈ L , (1.28)



1 Union-infinite-divisibility and union-stability 259

defines a bijection between the family of infinitely divisible probability measures P
on L satisfying P(F) > 0 for each non-empty F ∈ L and the family of measures ν

on L which concentrate their mass on L \ {I} and satisfy

ν(L \ F) <∞ , F ∈ L . (1.29)

By a Lévy–Khinchin measure on L we understand a measure ν on L which may
appear in the right-hand side of (1.28), so that ν concentrates its mass on L \ {I} and
satisfies (1.29). It is possible to show that (1.29) is equivalent to one of the following
conditions:
(1) ν(L \ F) <∞ for all non-empty F ∈ Scott(L);
(2) ν(L \ (↑ x)) <∞ for all x ∈ L such that x � I.

Theorem 1.31. Let L be a continuous semi-lattice with a top and a second countable
Scott topology. Then

Ψ (F) = ν(L \ F) , F ∈ L ,

defines a bijection between the family of Lévy–Khinchin measures ν on L and the
family of completely ∩-alternating functionals Ψ : L �→ R+ satisfying Ψ (L) = 0
and Ψ (Fn)→ Ψ (F) as Fn ↑ F for F, F1, F2, . . . ∈ L.

Proof. Necessity follows from Ψ (L) = ν(L \ L) = 0, the continuity of ν and the
fact that ∇Fn · · · ∇F1Ψ (F) = ν(F \ ∪i Fi ).
Sufficiency. For each H ∈ L the function Ψ (F ∩ H )− Ψ (F), F ∈ L, satisfies the
condition of Corollary 1.3.18. Therefore, there is a locally finite measure νH on L
satisfying

νH (F) = Ψ (F ∩ H )− Ψ (F)

for all F ∈ L. Since νH (L) = Ψ (H )− Ψ (L) = Ψ (H ),

νH (L \ F) = Ψ (H )− Ψ (F ∩ H )+ Ψ (F) , F ∈ L .

Define a measure ν

ν(B) = sup
H∈L

νH (B) , B ∈ σ(L) .

If F ∈ L, then

ν(L \ F) = Ψ (F)+ sup
H∈L

(Ψ (H )− Ψ (F ∩ H )) = Ψ (F) .

Furthermore, each H ∈ L contains the top I, whence

ν({I}) = sup
H∈L

νH ({I}) = 0 . ��

We proceed to generalise Proposition 1.30 for the general case which would al-
low P(F) = 0 for non-empty F ∈ L. Define the support of a random element ξ

as
Lξ =

⋂
{L \ F : F ∈ L , P(F) = 0} .
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Hence P
{
ξ ∈ Lξ

} = 1. Since Lξ is a continuous semi-lattice itself, it is possible to
define a family Lξ = OFilt(Lξ ) if all open filters in Lξ . Then

Lξ = {F ∩ Lξ : F ∈ L , F ∩ Lξ �= ∅}
and F ∩ Lξ �= ∅ for F ∈ L if and only if P {ξ ∈ F} > 0. The following proposition
characterises the supports of infinitely divisible random elements and can be regarded
as an abstract variant of Lemma 1.8.

Proposition 1.32. Let L be a continuous semi-lattice with a second countable Scott
topology and let ξ be an infinitely divisible random variable in L. Let

x = ∨{y ∈ L : P {y ≤ ξ} > 0} . (1.30)

Then Lξ = ↓x = {y ∈ L : y ≤ x} and so P {ξ ≤ x} = 1.

Proof. Let F1, F2 ∈ L and assume that P(F1 ∩ F2) = 0. Using (1.27), we conclude
that

1 = P(Fc
1 ∪ Fc

2 ) = Pn(Fc
1 ∪ Fc

2 ) ≤ Pn(Fc
1 )+ Pn(Fc

2 ) .

Therefore,
n ≤ n(1− P(F1)

1/n)+ n(1− P(F2)
1/n) .

By letting n →∞ we deduce that P(F1) = 0 or P(F2) = 0. This shows that Lξ is a
semi-lattice. A general argument from the theory of lattices implies that its dual Lξ

has a top z. If y � z, then we may choose F ∈ L with z ∈ F ⊂ ↑ y and F ∩Lξ �= ∅.
Then P {y ≤ ξ} > 0, so that y ≤ x and z ≤ x .

Assume that P {y ≤ ξ} > 0 for some y � x . Then P {ξ ∈ F} > 0 for some
F ∈ L and F ⊂ ↑ y. This yields F ∩ Lξ �= ∅, i.e. x ∈ F and x ≤ z. Thus, the top of
Lξ is given by (1.30). ��

A general infinitely divisible random element in L can be characterised by re-
ducing the consideration to the lattice Lξ . The following result is a generalisation of
Proposition 1.30.

Theorem 1.33. Let L be a continuous semi-lattice with a top and a second countable
Scott topology. The formulae

x = ∨{y ∈ L : P(↑ y) > 0} ,
P(F) = exp{−ν(↓ x \ F)} , F ∈ L ,

define a bijection between the set of all infinitely divisible probability measures P on
L and the set of all pairs (x, ν), where x ∈ L and ν is a Lévy–Khinchin measure on
↓ x .

The following result generalises Theorem 1.31 and exploits the duality between
L and L.
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Theorem 1.34. Let P be a probability measure on L. Define

Ψ (F) = − log P(F) , F ∈ L , (1.31)

and LΨ = {F ∈ L : Ψ (F) < ∞}. Then P is infinitely divisible if and only if
LΨ is a semi-lattice and Ψ : L �→ [0,∞] is completely ∩-alternating on LΨ . If also
Ψ (L) = 0 and Ψ (Fn) → Ψ (F) as Fn ↑ F for F, F1, F2, . . . ∈ L, then there exists
a unique infinitely divisible probability measure P on L satisfying (1.31).

Note that Ψ extends to a unique locally finite measure Λ on σ(L). The measure
µ determines a Poisson point process ΠΛ = {η1, η2, . . . } on L, so that the numbers
of points in each F ∈ σ(L) is Poisson and the numbers of points in disjoint sets are
independent. Then the random element ξ with distribution P can be obtained as

ξ = x ∧
∧

η∈ΠΛ

η

for x defined by (1.30).

Example 1.35 (Infinite divisibility for unions). Let X be a random closed set in a
second countable sober space E (which is the case if E is LCHS). Let F be a lattice
of all closed subsets of E with the reversed inclusion, so that F1 ∨ F2 = F1 ∩ F2
and F1 ∧ F2 = F1 ∪ F2. The infinite divisibility concept in the lattice F turns into
the infinite divisibility concept for unions of random closed sets. Furthermore, (1.30)
defines the set

H = ∩{F ∈ F : P {F ⊃ X} > 0}.
If X is infinitely divisible for unions, Proposition 1.32 yields

P {X ≤ H } = P {H ⊂ X} = 1 ,

whence H coincides with the set FX of fixed points of X . Assume that FX �= E. It
was shown in Section 1.3.4 that OFilt(F) consists of the families FK for K ∈ K.
Theorem 1.34 implies that

Ψ (K ) = − log P
{

X ∈ FK
}
= − log(1− TX (K ))

is a completely alternating capacity on KX . Conversely, for every pair (H, Ψ ), where
H ∈ F , H �= E and Ψ is a completely alternating capacity on KH with Ψ (∅) = 0,
there exists an infinitely divisible random closed set X with the capacity functional

TX (K ) =
{

1− exp{−Ψ (K )} , K ∩ H = ∅ ,

1 , K ∩ H �= ∅ ,
K ∈ K . (1.32)

Theorem 1.34 says that, for each upper semicontinuous and completely alternating
capacity Ψ : K �→ [0,∞] such that the family {K ∈ K : Ψ (K ) < ∞} is closed
under finite non-empty unions, there exists an infinitely divisible random closed set
X with the capacity functional given by (1.32).
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A random element X in L is called self-decomposable if, for each t > 0, there
exists a random element Xt such that

X
d∼ At X ∨ Xt ,

where At belongs to a predetermined group A = {At , t ∈ R} of bijections L �→ L
and At X and Xt are independent. The bijections are assumed to be order preserving
and anti-extensive for t > 0, i.e. At x ≤ x for all x ∈ L and t > 0. The self-
decomposable random elements form a class sandwiched between infinitely divisible
and stable laws. However, this concept is not meaningful for random closed sets
without some restrictions on the families of their realisations. For instance, let L be
the family F of all closed subsets of a T1 space E (so that all singletons are closed
and belong to F ). Then the conditions on the transformations At imply that At leave
singletons invariant and so are identical transformations. It is possible to get a non-
trivial situation if E is not a T1 space (and so has some non-closed singletons) or if
L is a proper subfamily of F , for example, if L consists of all epigraphs of upper
semicontinuous functions, see Section 5.3.1.

2 Weak convergence of normalised unions

2.1 Sufficient conditions

Similar to the classical theory of extreme values, limit theorems for scaled unions
of random sets can be formulated using regular variation conditions imposed on the
capacity functionals, see Appendix H for information on regularly varying functions.
In this section we consider limit theorems for scaled unions of random sets, where
union-stable sets appear as weak limits. Define

Zn = X1 ∪ · · · ∪ Xn , n ≥ 1 ,

for independent identically distributed random closed sets X, X1, X2, . . . with the
common capacity functional T . We study the weak convergence of a−1

n Zn where
{an, n ≥ 1} is a sequence of normalising constants. Naturally, while dealing with
unions of random sets we use methods similar to the theory of extreme values. The
function 1−T (x K ), x > 0, plays in our consideration the same role as the cumulative
distribution function in limit theorems for extremes, but this function is no longer
monotone and may not converge to 1 as x →∞.

We first consider the case an →∞ as n →∞. Then the limiting random set Z
has the origin as a fixed point, so that Corollary 1.13 yields α < 0 for the parameter
α of Z . For each compact set K , define

an(K ) = sup {x > 0 : T (x K ) ≥ 1/n} , (2.1)

where sup∅ = 0. Introduce the function vK (x) = T (x K ) for x ≥ 0 and the family
V of compact sets by

V =
{

K ∈ K : lim inf
x→∞ T (x K ) = 0

}
.
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Theorem 2.1 (Weak convergence of scaled unions). Assume that for each K from
V there exists a (possibly infinite) limit of an(K )/an and vK (x) is a regularly varying
function with a negative exponent α (i.e. vK ∈ RVα). Then a−1

n Zn weakly converges
to the union-stable random closed set Z with the capacity functional

TZ (K ) = 1− exp{−ΨZ (K )} , (2.2)

where

ΨZ (K ) =
{

lim(an(K )/an)
−α , K ∈ V ,

∞ , otherwise .
(2.3)

The following lemma can be derived from the representation (H.3) of slowly
varying functions, see Molchanov [398, Lemma 1.2].

Lemma 2.2. Let f ∈ RVα with α < 0 and let g(x) be a non-negative function such
that xg(x) → ∞ as x → ∞ and g(x) has a (possibly infinite) limit as x → ∞.
Then

lim
x→∞

f (xg(x))

f (x)
= lim

x→∞ g(x)α .

Proof of Theorem 2.1. If T is the capacity functional of the random set X1, then
a−1

n Zn has the capacity functional Tn given by

Tn(K ) = 1− (1− T (an K ))n . (2.4)

Step I. If K /∈ V , then Tn(K ) → 1 = TZ (K ) as n → ∞, i.e. (2.3) holds. Further
suppose that K ∈ V . It follows from (2.4) that

TZ (K ) = lim
n→∞ Tn(K ) = 1− exp{−ΨZ (K )}

if nT (an K ) → ΨZ (K ) as n → ∞. Note that ΨZ (K ) can be infinite, which is the
case if K hits the set of fixed points of Z .

Step II. Suppose that
lim sup

x→∞
T (x K ) ≥ ε > 0 .

Then an(K ) = ∞ for all n ≥ n0, i.e. an(K )/an = ∞ for n ≥ n0. Let λ > 1 be
specified. Then, for each n ≥ n0, there exists λn > λ such that T (anλn K ) ≥ 1/n.
Hence

lim
n→∞ nT (an K ) = lim

n→∞ n
T (anλn K )vK (an)

vK (anλn)

≥ lim inf
n→∞ λ−α

n ≥ λ−α .

Letting λ go to infinity yields nT (an K ) → ∞ as n → ∞. Hence TZ (K ) = 1, i.e.
(2.3) holds with ΨZ (K ) = ∞.
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Step III. It remains to consider the case vK (x) → 0 as x → ∞. Then an(K ) < ∞
for all n ≥ 1. If the sequence {an(K ), n ≥ 1} is bounded, then T (x K ) = 0 for all
sufficiently large x , so that Tn(K )→ 0 as n →∞ and (2.3) holds, since

ΨZ (K ) = lim
n→∞(an(K )/an)

−α = 0 .

Assume that vK (x) → 0 as x → ∞ and an(K ) → ∞ as n → ∞. Lemma 2.2
yields

lim
n→∞

vK (an)

vK (an(K ))
= lim

n→∞ (an(K )/an)
−α . (2.5)

Let us prove that nT (an(K )K ) → 1 as n → ∞. For arbitrary n ≥ 1, choose
{xm,m ≥ 1} such that

an(K )− 1/m ≤ xm ≤ an(K )

and T (xm K ) ≥ 1/n for all m ≥ 1. The upper semicontinuity of T implies that

1/n ≤ lim
m→∞ T (xm K ) ≤ T (an(K )K ) .

Thus nT (an(K )K ) ≥ 1 for all n ≥ 1. It follows from (2.1) that T (an(K )λK ) ≤ 1/n
for λ > 1. Since vK is regularly varying,

1 ≤ lim
n→∞ nT (an(K )K ) = lim

n→∞ nT (an(K )λK )
vK (an(K ))

vK (λan(K ))
≤ λ−α .

Letting λ go to 1 yields nT (an(K )K )→ 1 as n →∞. From (2.5) we get

lim
n→∞ nT (an K ) = lim

n→∞ nT (an(K )K )
vK (an)

vK (an(K ))

= lim
n→∞ (an(K )/an)

−α .

Thus (2.3) holds for each compact set K . It is easy to verify that, for each K ∈ V
and s > 0, the set sK belongs to V and also

ΨZ (sK ) = lim
n→∞ (an(sK )/an)

−α = sαΨZ (K ) .

Therefore, Z is union-stable with parameter α. The limiting random set Z in Theo-
rem 2.1 has the origin as a fixed point, since an(Br (0)) = ∞ for each r > 0. ��

We have proved the pointwise convergence of the capacity functional of a−1
n Zn

to the capacity functional of Z on all compact sets and not only on those compact sets
which are continuous for the limiting capacity functional TZ . As in Section 1.6.1, it
is easy to see that a−1

n Zn converges weakly if the conditions of Theorem 2.1 hold for
the family V ∩A instead of V for any separating class A ⊂ K.

If the normalising factor an converges to a positive constant a, then a−1
n Xn con-

verges almost surely in the Fell topology to a deterministic set M equal to the com-
plement of ⋃({

a Br (x) : T (Br (x)) = 0, r > 0, x ∈ Rd
})

.

The case an → 0 as n → ∞ can be reduced to Theorem 2.1 by using the inverse
transform defined in (1.18).
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Different scaling factors

Consider a more general normalisation scheme for unions of random sets which
allows for different normalising factors along different axes. For y = (y1, . . . , yd )

from Int Rd+ = (0,∞)d and K ⊂ Rd define

y ◦ K = {(y1x1, . . . , yd xd) : (x1, . . . , xd ) ∈ K } . (2.6)

Let Zn = X1 ∪ · · · ∪ Xn for i.i.d. random closed sets X1, X2, . . . with the common
capacity functional T . Consider a sequence {an = (an1, . . . , and), n ≥ 1}. Define

qn(K ) = sup{t ≥ 0 : T ((tan) ◦ K ) ≥ n−1} ,
V = {K ∈ K : lim inf

t→∞ T (ty ◦ K ) = 0 for every y ∈ (0,∞)d} .
Note that qn(K ) is the analogue of an(K )/an from Theorem 2.1. The following limit
theorem for a−1

n ◦ Zn and can be proved similarly to Theorem 2.1.

Theorem 2.3. Assume that, for every K ∈ V , qn(K ) has a (possibly infinite) limit
as n → ∞. Let T (y ◦ K ) (as a function of y) belong to RVu

α(R
d+) with α < 0. If

limn→∞ an‖an‖−1 exists and belongs to Int Rd+, then a−1
n ◦ Zn converges weakly to

a random closed set Z with the capacity functional

TZ (K ) =
{

1− exp{− lim(qn(K ))α} , K ∈ V ,

1 , otherwise .

The limiting random set Z is stable in the following sense. For each n ≥ 1 and
i.i.d. copies Z1, . . . , Zn of Z there exists an ∈ (0,∞)d such that

an ◦ Z
d∼ Z1 ∪ · · · ∪ Zn .

Open problem 2.4. Prove analogues of limit theorems for more general normalisa-
tion schemes than purely multiplicative (e.g. a−1

n Zn+bn or An Zn , where An , n ≥ 1,
are linear operators). Similar to the characterisation problem, the main obstacle here
is the lack of an analogue of the convergence of types results for random sets.

2.2 Necessary conditions

It is well known that regular variation conditions are both sufficient and necessary in
limit theorems for extremes of random variables, see Galambos [186, Th. 2.4.3]. For
unions of random sets, the situation is different to some extent, since the pointwise
convergence of Tn(x K ) for all positive x no longer implies the uniform convergence
(recall that Tn(x K ) is not necessarily monotone as a function of x).

Theorem 2.5 (Necessary condition for weak convergence of scaled unions). Let
the capacity functional Tn of a−1

n Zn converge uniformly on K to the capacity func-
tional TZ of a union-stable random closed set Z with parameter α. Consider a com-
pact set K such that TZ (K ) < 1. If α < 0, then K ∈ V and the function vK (x) is
regularly varying with exponent α.
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Proof. Let T be the capacity functional of X1. Denote F(x) = 1−T (x K ) for x > 0.
Since TZ (K ) < 1, ΨZ (K ) = − log(1 − TZ (K )) is finite. It follows from (2.4) and
the condition of the theorem that

Fn(anx)→ exp{−ΨZ (x K )} = exp{−xαΨZ (K )} = F̃(x) as n →∞ (2.7)

uniformly for x > 0. If α < 0, then F̃(x) is the distribution function of a max-stable
random variable of type I, see (1.2). Denote

F∗(x) = inf
x<t

F(t) , F∗(x) = sup
0<t≤x

F(t) , x > 0 .

The uniform convergence in (2.7) yields

(F∗(anx))n → F̃(x) , (F∗(anx))n → F̃(x) as n →∞ (2.8)

for each positive x . The functions F∗ and F∗ are right-continuous. Since TZ (K ) < 1,
Ψ (K ) is finite, whence F∗(∞) = F∗(∞) = 1, i.e. F∗ and F∗ are distribution
functions and K belongs to V . From (2.8) and the necessary conditions in the limit
theorem for the maximum of random variables (see Galambos [186, Th. 2.4.3]) we
derive that the functions 1−F∗(x) and 1−F∗(x) are regularly varying with exponent
α. Evidently,

1− F∗(x) ≤ 1− F(x) ≤ 1− F∗(x) . (2.9)

For some s > 1, let n(k) = [sk] be the integer part of sk , k ≥ 1. Then, for all
sufficiently large t , there exists k such that an(k) ≤ t < an(k+1) and also

F∗(an(k)) ≤ F∗(t) ≤ F∗(an(k+1)),

F∗(an(k)) ≤ F∗(t) ≤ F∗(an(k+1)).

Hence
log F∗(an(k+1))

log F∗(an(k))
≤ log F∗(t)

log F∗(t)
≤ log F∗(an(k))

log F∗(an(k+1))
.

It follows from (2.8) that

log F∗(t)
log F∗(t)

→ 1 as t →∞ ,

whence

lim
x→∞

1− F∗(x)
1− F∗(x)

= 1 .

Now (2.9) and the regular variation of F∗ and F∗ imply that vK (x) = 1 − F(x) is
regularly varying. ��

The following example shows that the capacity functional Tn in Theorem 2.5
may converge pointwisely but not uniformly.
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Example 2.6. Let Y ⊂ (−∞, 0] be a union-stable random closed set with α = −1.
Put M = ∪k≥2 Mk for a sequence M2, M3, . . . of independent random closed sets
such that Mk = [k, k + 1/2], with probability k−3, k ≥ 2 and Mk = ∅ otherwise.
Let {Xn, n ≥ 1} be i.i.d. copies of the random closed set X = Y ∪ M . Put an = n
and Zn = X1 ∪ · · · ∪ Xn . The capacity functional of n−1 Zn is

Tn(K ) = 1− (1− TY (nK ))n (1− TM (nK ))n

= 1− (1− TY (K )) (1− TM (nK ))n .

Let K ⊂ [a, b] for a > 0. Then

1− TM (nK ) ≥
(

1− [na]−3
)[n(b−a)]

.

Hence (1 − TM (nK ))n → 1 as n → ∞, whence Tn(K ) → TY (K ) as n → ∞, i.e.

n−1 Zn
d→ Y as n → ∞. However, the corresponding capacity functionals do not

converge uniformly on the family {x K , x > 0} even for K = {1}. Indeed, TY ({x}) =
0 for all x > 0 and also

sup
x>0
|Tn({x})− TY ({x})| ≥ Tn({xn})

= 1−
(

1− [nxn]−3
)n → 1− e−1 as n →∞

for xn = [n1/3]n−1, n ≥ 1. Note that the function TX (x K ) is not regularly varying
in this example.

It is an open problem to derive necessary and sufficient conditions for the weak
convergence of scaled unions of random closed sets. It follows from Example 2.6 that
the regular variation condition for the function vK (x) is too restrictive. But it cannot
be weakened, since for the random set X = (−∞, ξ ] the corresponding regular
variation condition is necessary and sufficient. It should be noted that Example 2.6
is quite artificial, since, in fact, the limiting random set is degenerated on [0,∞).

Open problem 2.7. Find necessary and sufficient conditions for the pointwise con-
vergence of the capacity functions for normalised unions of random closed sets. Is
it possible to construct an example of a random set X such that T (x K ) is regularly
varying as a function of x , but the capacity functional of a−1

n Zn does not converge
uniformly to TZ ?

Let us show that the weak convergence of normalised unions together with the
regular variation property for the sequence of normalising constants imply that the
limiting random closed set is union-stable.

Theorem 2.8 (Union-stability of weak limits). Let {Xn, n ≥ 1} be a sequence of
i.i.d. random closed sets such that a−1

n Zn = a−1
n (X1 ∪ · · · ∪ Xn) converges in dis-

tribution to a non-trivial random closed set Z , where either an → 0 or an → ∞. If
there exists α �= 0 such that
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lim
n→∞

a[nt ]
an

= t−1/α (2.10)

for every t ∈ R, then Z is union-stable with parameter α.

Proof. Note that

ΨZ (sK ) = − lim
n→∞ log P

{
a−1

n Zn ∩ sK = ∅
}
= − lim

n→∞ log(1− TX1(ansK ))n .

Without loss of generality K can be assumed regular closed. Then

a[ns−α]K−δn ⊂ ansK ⊂ a[ns−α]K δn

with δn ↓ 0, where K δ is the δ-envelope of K and K−δ is the inner envelope of K .
Each K ∈ SZ (the continuity set for Z ) can be approximated by K−δn and K δn ,
whence

ΨZ (sK ) = − lim
n→∞ log(1− TX (a[ns−α]K ))n

= − n

[ns−α] lim
n→∞ log(1− TX (a[ns−α]K ))[ns−α] = sαΨZ (K ) .

By the semicontinuity of Ψ , this equality holds for all K ∈ KZ . ��
If Xn = {ξn}, n ≥ 1, are random singletons, then the weak convergence of a−1

n Zn

already implies (2.10), so that the limit is union-stable. To see this, it suffices to
apply the necessary conditions for extremes of random variables (see Galambos [186,
Sec. 2.4]) to the sequence of random variables αn = inf{s > 0 : ξn ∈ s F} (or
αn = sup{s > 0 : ξn ∈ s F}), where F = (−∞, x1] × · · · × (−∞, xd]. This idea
can be extended for random closed sets using their support functions.

Theorem 2.9 (Regular valiation of normalising constants). Let X, X1, X2, . . . be
a sequence of i.i.d. random closed sets such that a−1

n Zn weakly converges to a non-
trivial random closed set Z . Assume that one of the following conditions holds:
(i) an →∞ and max(h(X, u), h(Z , u)) <∞ a.s. for some u �= 0.

(ii) an → 0 and TX ({0}) = TZ ({0}) = 0.
Then (2.10) holds and Z is union-stable.

Proof.
(i) αn = h(Xn, u) is a sequence of i.i.d. almost surely finite random variables.

Furthermore, h(a−1
n Zn, u) = a−1

n max(α1, . . . , αn). By Galambos [186, Th. 2.4.3],
(2.10) holds, so that Z is union-stable by Theorem 2.8.
(ii) Let αn = ρ(Xn, 0). Then ρ(a−1

n Zn, 0) = a−1
n min(α1, . . . , αn) and the result

follows from Galambos [186, Th. 2.4.4]. ��
Open problem 2.10. Find general conditions under which a−1

n Zn
d→ Z for a non-

trivial random closed set Z implies a[nt ]/an → tα as n →∞.
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2.3 Scheme of series for unions of random closed sets

Let {Xnj , n ≥ 1, j ∈ Jn} be a family of random closed sets, where Jn is a finite
set for each n ≥ 1. For instance, a triangular array corresponds to Jn = {1, . . . , n}.
Note that Jn is allowed to be infinite if ∪ j∈Jn Xnj is closed almost surely.

Definition 2.11 (Null-array). Say that {Xnj } is a null-array if, for each n ≥ 1, the
random closed sets Xnj , j ∈ Jn , are independent and

sup
j∈Jn

TXnj (K )→ 0 as n →∞

for all K ∈ K.

Theorem 2.12 (Limit theorem in the scheme of series). Let {Xnj } be a null-array
of random closed sets. Put Xn = ∪ j∈Jn Xnj , n ≥ 1. If Xn converges in distribution
to a random closed set Z , then Z is infinitely divisible for unions and there exists a
(possibly infinite) limit

lim
n→∞

∑
j∈Jn

TXnj (K ) = − log(1− TZ (K ))

for all K ∈ SZ . Conversely, if there exists a capacity ΨZ on K such that

ΨZ (Int K ) ≤ lim inf
n→∞

∑
j∈Jn

TXnj (K ) ≤ lim sup
n→∞

∑
j∈Jn

TXnj (K ) ≤ ΨZ (K )

for all K ∈ K (allowing infinite values for ΨZ and the limits), then Xn converges
in distribution to a random closed set Z with the capacity functional TZ (K ) = 1 −
exp{−ΨZ (K )}.
Proof. We will use the inequalities

x ≤ − log(1− x) ≤ c1x

and
0 ≤ −x − log(1− x) ≤ c1x2/2

valid for all x ∈ [0, c] for some c ∈ (0, 1) with c1 = 1/(1 − c). Since {Xnj } is a
null-array, assume that TXnj (K ) ≤ c for some c ∈ (0, 1). Then∑

j∈Jn

TXnj (K ) ≤
∑
j∈Jn

− log(1− TXnj (K ))

= − log(1− TXn (K )) ≤ c1

∑
j∈Jn

TXnj (K ) .

Furthermore,



270 4 Unions of Random Sets

0 ≤ −
∑
j∈Jn

TXnj (K )− log(1− TXn (K )) ≤ c1

2

∑
j∈Jn

TXnj (K )2

≤ c1

2

∑
j∈Jn

TXnj (K ) sup
j∈Jn

TXnj (K ) .

Therefore,
∑

j TXnj (K ) → a is equivalent to TXn (K ) → 1 − e−a . The proof is
finished by referring to Theorem 1.6.5. ��

It is possible to strengthen Theorem 2.12 by replacing the family K with a sep-
arating class of compact sets. For non-identically distributed summands the limiting
distribution corresponds to a union-infinitely-divisible random closed set, which is
not necessarily union-stable.

Limit theorems for unions of random sets can be formulated within the frame-
work of general lattice-valued elements, see Norberg [434]. This formulation avoids
the concepts of regular variation and normalisation by scaling and instead formulates
the limit theorem in the scheme of series similarly to Theorem 2.12.

It should be pointed out that all results on the pointwise convergence of capacity
functionals remain true for unions of random sets in Banach spaces. However, they
do not imply the weak convergence, since distributions of random closed sets in
infinite-dimensional Banach spaces are no longer determined by the corresponding
capacity functionals.

3 Convergence with probability 1

3.1 Regularly varying capacities

Definition

We keep the setting of Section 2.1 and find conditions which ensure that a−1
n Zn con-

verges almost surely as n →∞ to a deterministic limit. The almost sure convergence
of random sets in a LCHS space is defined in the Fell topology. The special case of
the convergence to a deterministic limit was characterised in Proposition 1.6.17. To
apply this proposition, fix a pre-separating class A ⊂ K that satisfies the following
assumption.

Assumption 3.1. A pre-separating class A consists of regularly closed sets and
cK ∈ A for each c > 0 and K ∈ A. Denote A′ = {Int K : K ∈ A}.

Assume that R : A �→ [0,∞] is a non-increasing lower semicontinuous capacity
without any restrictions on signs of higher differences inherent to alternating capac-
ities.

Definition 3.2 (Regularly varying capacity). The capacity R is said to be reg-
ularly varying on A with the limiting capacity % and exponent β (notation R ∈
RVβ,g,%(A)) if
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lim
t→∞

R(t K )

g(t)
= %(K ) (3.1)

for each K ∈ A, where g : (0,∞) �→ (0,∞) is a regularly varying function of
exponent β and the limiting capacity %(K ) is allowed to take zero or infinite values
but is not identically equal to zero or infinity.

Limiting capacity

It is easily seen that % is a non-increasing functional on A and %(cK ) = cβ%(K )

for each c > 0 and K ∈ A. In the following we mostly consider the case of R(K )

given by − log T (K ) for a capacity functional T .

Lemma 3.3. Let T be the capacity functional of a random closed set X and let

R(K ) = − log T (K )

belong to RVβ,g,%(A) with a positive β. Then, for any K1 and K2 from A, the limit
(3.1) exists for the set K = K1 ∪ K2 and

%(K ) = min(%(K1),%(K2)) . (3.2)

Proof. It is evident that

lim sup
t→∞

R(t K )

g(t)
≤ lim

t→∞
R(t Ki )

g(t)
≤ min(%(K1),%(K2)) , i = 1, 2 .

If either %(K1) or %(K2) vanishes then (3.2) is evident. Let both %(K1) and %(K2)

be finite and strictly positive. Then, for any ε > 0 and sufficiently large t ,

T (t Ki ) ≤ exp {−g(t)%(Ki )(1− ε)} , i = 1, 2 . (3.3)

The subadditivity of T yields

lim inf
t→∞

R(t K )

g(t)
≥ lim inf

t→∞ − log(T (t K1)+ T (t K2))

g(t)

≥ lim inf
t→∞ − log (2 exp {−g(t) min(%(K1),%(K2))(1− ε)})

g(t)

= min (%(K1),%(K2)) (1− ε) .

Hence (3.2) holds.
If %(K1) = ∞, then (3.3) is replaced with T (t K1) ≤ exp {−g(t)c}, which holds

for any c > 0 and sufficiently large t . Then, for c > %(K2),

lim inf
t→∞

R(t K )

g(t)
≥ lim inf

t→∞ − log (exp{−g(t)c} + exp{−g(t)%(K2)(1− ε)})
g(t)

≥ lim inf
t→∞ − log (2 exp{−g(t)%(K2)(1− ε)})

g(t)

= %(K2)(1− ε)

= min(%(K1),%(K2))(1− ε) . ��
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It follows from Lemma 3.3 that % is a minitive capacity, compare with maxitive
capacities introduced in (1.1.21). It is tempting to deduce that %(K ) is equal to the
infimum of %({x}) for x ∈ K . However, this is wrong in general, since A does not
necessarily contain singletons and %({x}) may be infinite for all x .

Definition 3.4 (Strictly increasing functional). The functional % is said to be
strictly decreasing on A if %(K1) > %(K ) for every K , K1 ∈ A such that
K1 ⊂ Int K and %(K ) <∞.

The limiting function % determines the following closed set in Rd

Z(%;A) = Rd \
⋃
{Int K : K ∈ A, %(K ) > 1} .

The inequality %(sK ) = sβ%(K ) > %(K ) for s > 1 yields s Z(%;A) ⊂ Z(%;A)

for all s ≥ 1 if % is the limiting capacity in (3.1).

3.2 Almost sure convergence of scaled unions

Unions of random sets

The following theorem provides a sufficient condition for the almost sure conver-
gence of scaled normalised unions of i.i.d. random closed sets X, X1, X2, . . .. For a
compact set K denote

K̂ = ∪{sK : s ≥ 1} .
It is evident that K̂ is closed and s K̂ ⊂ K̂ for all s ≥ 1.

Theorem 3.5 (Almost sure convergence in the Fell topology). Let X be a random
closed set with the capacity functional T . Define the capacity R with possibly infi-
nite values by R(K ) = − log T (K ) for K from a pre-separating class A satisfying
Assumption 3.1. Assume that R ∈ RVβ,g,%(A) with β > 0 and a strictly monotone
capacity % on A such that

lim
t→∞

R(t K̂ )

g(t)
= %(K̂ ) = %(K ) (3.4)

for each K ∈ A. Since β > 0, we can define an to satisfy g(an) ∼ log n as n →∞.
Then a−1

n Zn = a−1
n (X1∪· · ·∪Xn) converges in the Fell topology (or in the Painlevé–

Kuratowski sense) to Z(%;A).

Proof. Let K belong to A and miss Z(%;A). Then K is covered by the sets Int L
for L ∈ A with %(L) > 1. By compactness, K is covered by a finite collection
Int L1, . . . , Int Lm of such sets. It follows from (3.1) and the choice of an that

lim
n→∞

R(an Li )

log n
= %(Li ) .

Lemma 3.3 yields
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lim
n→∞

R(an K )

log n
= %(K ) ≥ min

1≤i≤m
%(Li ) = a > 1 .

It follows from (3.4) that

lim
n→∞

R(an K̂ )

log n
= %(K̂ ) = %(K ) > a .

Pick ζ > 0 such that a − ζ > 1. Then

T (an K̂ ) ≤ n−(a−ζ ) (3.5)

for all sufficiently large n. Note that

P
{

a−1
n Zn ∩ K̂ �= ∅ i.o.

}
= P

{
Xin ∩ an K̂ �= ∅ i.o.

}
,

where i.o. abbreviates infinitely often and 1 ≤ in ≤ n for n ≥ 1. It is easy to show
that the sequence {in, n ≥ 1} is unbounded. Since an K̂ ⊂ an+1 K̂ for n ≥ 1,

P
{

a−1
n Zn ∩ K̂ �= ∅ i.o.

}
= P

{
(X1 ∪ · · · ∪ Xn) ∩ an K̂ �= ∅ i.o.

}
= P

{
Xin ∩ an K̂ �= ∅ i.o.

}
≤ P

{
Xn ∩ an K̂ �= ∅ i.o.

}
.

The right-hand side vanishes because of (3.5) and the Borel–Cantelli lemma, since

∞∑
n=1

P
{

Xn ∩ an K̂ �= ∅
}
=

∞∑
n=1

T (an K̂ ) ≤
∞∑

n=1

n−(a−ζ ) <∞ .

If x ∈ (G ∩ Z(%;A)) with G ∈ A′, then

G �⊂
⋃
{Int K : %(K ) > 1, K ∈ A} .

Choose an open neighbourhood U(x) ⊂ G and pick K and K1 from A such that

U(x) ⊂ K1 ⊂ Int K ⊂ K ⊂ G .

If %(K ) ≥ 1, then %(K1) > 1, since % is strictly monotone. Hence x ∈ Int K1 and
%(K1) > 1, so that x /∈ Z(%;A). Thus, %(K ) = a < 1 and K ∩ Z(%;A) �= ∅.
Clearly,

P
{

a−1
n Zn ∩ G = ∅ i.o.

}
≤ P

{
a−1

n Zn ∩ K = ∅ i.o.
}

.

Pick ζ > 0 such that a + ζ < 1. Then T (an K ) ≥ n−(a+ζ ) for all sufficiently large
n, whence

P {(X1 ∪ · · · ∪ Xn) ∩ an K = ∅} = (1− TX (an K ))n

≤ exp{−nTX (an K )}
≤ exp{−n1−(a+ζ )} .
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Since δ = 1− (a + ζ ) > 0,

∞∑
n=1

P
{

a−1
n Zn ∩ K = ∅

}
≤

∞∑
n=1

exp{−nδ} <∞ .

Hence P
{
a−1

n Zn ∩ G = ∅ i.o.
} = 0. An application of Proposition 1.6.17 con-

cludes the proof. ��
Theorem 3.5 can be formulated for an → 0 if the regular variation condition (3.1)

is appropriately modified with g being regularly varying at zero. The following result
concerns the convergence in the Hausdorff metric as an →∞.

Corollary 3.6. Let X be a random compact set which satisfies the conditions of
Theorem 3.5. Assume that the limit in (3.1) exists and is different from 0 and in-
finity for a convex compact set K0 such that 0 ∈ Int K0 and K c

0 ∈ A′. Then
ρH(a−1

n Zn, Z(%;A))→ 0 a.s. as n →∞.

Proof. We have to check that supn≥1 ‖a−1
n Zn‖ is a.s. bounded, see also Davis, Mul-

row and Resnick [119]. It suffices to show that

P

{
sup
n≥1

inf{t > 0 : a−1
n Zn ⊂ t K0} <∞

}

= P

{
sup
n≥1

a−1
n inf{t > 0 : X1 ∪ · · · ∪ Xn ⊂ t K0} <∞

}
= 1 .

If ζn = inf{t > 0 : X1 ∪ · · · ∪ Xn ⊂ t K0} for n ≥ 1, then ζn = max(η1, . . . , ηn)

for i.i.d. random variables η1, . . . , ηn with the common distribution P {η1 > y} =
T (yK c

0 ). Hence − log(P {η1 > y}) is a regularly varying function. This suffices for
the almost sure stability of supn≥1 a−1

n ζn , see Resnick and Tomkins [484]. ��

Application to random singletons

Let X = {ξ} be a random singleton which almost surely has all non-negative co-
ordinates. If A is the class of all bounded parallelepipeds, then %(K ) from (3.4)
for each parallelepiped K depends on the lower-left vertex of K only. Define
r(x) = − log P {ξ ≤ x}, where the inequality is understood coordinatewisely. Theo-
rem 3.5 yields the following result.

Theorem 3.7 (A.s. convergence of scaled multivariate samples). Assume that r ∈
RVu

β,g,θ(R
d+) with a coordinatewisely strictly increasing function θ . If g(an) ∼ log n,

then a−1
n {ξ1, . . . , ξn} converges almost surely as n →∞ in the Hausdorff metric to

the compact set K = {x ∈ Rd+ : θ(x) ≤ 1}.
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It should be noted that the lack of preferable directions in Theorem 3.5 (in con-
trast to Theorem 3.7 where ξ is distributed within Rd+) makes it possible to apply it
for random samples in all quadrants of Rd without any changes. For this, it is useful
to choose A to be the family of sets {ux : u ∈ S, a ≤ x ≤ b} for S running through
the family of regular closed (in the induced topology) subsets of Sd−1. This choice
of A is similar to the formulation of the problem in polar coordinates efficiently used
in Kinoshita and Resnick [313] to deduce a necessary and sufficient condition for the
almost sure convergence for scaled samples of random vectors, see Section 3.3.

Example 3.8. Let ξ = (ξ1, ξ2) be a random vector in R2+ with i.i.d. marginals such
that − log(1 − F1) ∈ RVα with α > 0, where F1 is the cumulative distribution
function of ξ1. Then Theorem 3.7 is applicable with K = {(x1, x2) ∈ R2+ : (xα

1 +
xα

2 ) ≤ 2}.
Example 3.9. Define X = (−∞, ξ1] × · · · × (−∞, ξd ], where ξ = (ξ1, . . . , ξd )

has the cumulative distribution function F . If [a, b] = [a1, b1] × · · · × [ad , bd ],
then P {A ∩ t[a, b] �= ∅} = P {ξ ≥ ta}. The regular variation property of the func-
tion − log P {ξ ≥ ta} for all a ∈ Rd+ with the strictly monotone limiting function θ

ensures the almost sure convergence of the normalised unions to the deterministic
limit {y ∈ Rd : y ≤ x, x ∈ Rd+, θ(x) ≤ 1}.

3.3 Stability and relative stability of unions

Let {Xn, n ≥ 1} be a sequence of i.i.d. random compact sets. Below we will give a
necessary and sufficient condition for the relative stability of the sequence Zn = X1∪
· · · ∪ Xn , n ≥ 1, and characterise possible limits of a−1

n Zn . Because the random sets
are compact, it is appropriate to consider the convergence in the Hausdorff metric.

Definition 3.10 (Stable and relatively stable sequences).
(i) A sequence {Zn, n ≥ 1} of random closed sets in Rd is called (almost surely)

relatively stable if there exists a sequence {an, n ≥ 1} of normalising multi-
plicative constants such that a−1

n Zn has a non-trivial deterministic Painlevé–
Kuratowski limit (not equal to ∅ or Rd ).

(ii) A sequence {Zn, n ≥ 1} of random compact sets in Rd is called (almost surely)
stable if there exists a sequence {Kn, n ≥ 1} of deterministic compact sets such
that ρH(Zn, Kn)→ 0 a.s. as n →∞.

Definition 3.10(i) is a generalisation of the stability concept for random variables.
The sequence of random variables {ζn, n ≥ 1} is called relatively stable if there exists
a sequence an < 0, n ≥ 1, such that a−1

n ζn converges almost surely as n →∞ with
a deterministic limit in (0,∞).

The following proposition says that the relative stability of the unions implies
that the norms of random sets are relatively stable and that possible limits (in the
Hausdorff metric) of a−1

n Zn are always star-shaped.

Proposition 3.11 (Relative stability of unions). Let {Xn, n ≥ 1} be i.i.d. random
compact sets in Rd and let Zn = X1 ∪ · · · ∪ Xn , n ≥ 1. If there exist an →∞ and a
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non-empty deterministic compact set Z such that

ρH(a−1
n Zn, Z)→ 0 a.s. as n →∞ , (3.6)

then the sequence ζn = max(‖X1‖, . . . , ‖Xn‖), n ≥ 1, is relatively stable and Z is
star-shaped.

Proof. Since Zn ⊂ Z ε and Z ⊂ Z ε
n for each ε > 0 and sufficiently large n,

‖Z‖ − ε ≤ a−1
n ζn ≤ ‖Z‖ + ε ,

whence {ζn, n ≥ 1} is relatively stable.
A result on the almost sure stability of a sequence of random variables {ζn, n ≥

1} (see Kinoshita and Resnick [313, Prop. 3.1]) implies that, for given t ∈ (0, 1),
there is a subsequence {ak(n), n ≥ 1} such that k(n) ≤ n for all sufficiently large n,
k(n)→∞ as n →∞ and ak(n)/an → t as n →∞. Since Zk(n) ⊂ Zn , (3.6) yields
a−1

n Zk(n) ⊂ Z ε for all ε > 0 and sufficiently large n. Therefore,

Z ε ⊃ a−1
n Zk(n) = a−1

k(n)Zk(n)
ak(n)

an
.

The right-hand side converges to t Z in the Hausdorff metric, whence Z ε ⊃ t Z for
all ε > 0. Therefore, Z ⊃ t Z for all t ∈ (0, 1), meaning that Z is star-shaped. ��

The compactness assumption in Proposition 3.11 is indispensable. To produce a
counterexample, consider a relatively stable sequence {ξn, n ≥ 1} of non-negative
random variables such that a−1

n min(ξ1, . . . , ξn) converges almost surely to a con-
stant c > 0. Then a−1

n ∪n≥1 [ξn,∞) converges to [c,∞) with the limit not being
star-shaped.

The following result can be proved similarly to Kinoshita and Resnick [313,
Th. 4.6]. The main idea of the proof is to replace the star-shaped sets by their radius-
vector functions and use the fact that compact star-shaped sets converge in the Haus-
dorff metric if and only if their radius-vector functions converge sup-vaguely, see
Vervaat [572]. For each S ⊂ Sd−1 define

CS(t) = {sx : s > t, x ∈ S} .
Write CS instead of CS(0−) = {sx : s ≥ 0, x ∈ S}.

Theorem 3.12 (Star-shaped limits). Let {Xn, n ≥ 1} be a sequence of i.i.d. random
compact sets. Then there exists a sequence {an, n ≥ 1} of non-negative constants,
an → ∞ as n → ∞, such that a−1

n Zn a.s. converges to a star-shaped random
compact set Z as n →∞, if and only if the following two conditions hold.
(i) {ζn = max(‖X1‖, . . . , ‖Xn‖), n ≥ 1} is relatively stable.

(ii) If ‖Z ∩ CS‖ = ‖Z ∩ CInt S‖ for a regular closed set S ⊂ Sd−1, then
P {X1 ∩ CS = ∅} = 0 implies Z ∩ CS = ∅ and otherwise

lim
s→∞

P {X1 ∩ CS(ts) �= ∅}
P {‖X1‖ > s} =

{
0, t > ‖Z ∩ CS‖ ,
∞, t < ‖Z ∩ CS‖ .
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Open problem 3.13. Characterise the almost sure relative stability property for se-
quences of random closed (not necessarily compact) sets.

3.4 Functionals of unions

Consider now limit theorems for functionals of unions of i.i.d. random closed sets
X1, X2, . . ., e.g. for µ(Zc

n), where µ is the probability measure on E and Zn =
X1 ∪ · · · ∪ Xn . However, this is a particular case of the following more general
situation.

Let Y be a random closed set in E with the avoidance functional QY (F) =
P {Y ∩ F = ∅}. For example,

µ(Zc
n) = QY (Zn)

if Y is a singleton distributed according to µ. The value of the avoidance functional
and the value of the capacity functional on a random closed set are random variables
themselves. Let

F(t) = P {TX (Y ) ≤ t}
be the cumulative distribution function of TX (Y ). Then

P {Zn ∩ Y = ∅} = E(1 − TX (Y ))n =
∫
[0,1]

(1− t)ndF(t) .

Therefore,

log((1− 1/n)n F(1/n))

log n
≤ P {Zn ∩ Y = ∅}

log n
≤ log(F(εn)+ (1− εn)

n)

log n
,

where εn = (log n)2/n. By an argument similar to the one used in the proof of
Lemma 3.3, one shows that

− lim sup
t→0

log F(t)

log t
≤ lim inf

n→∞
P {Zn ∩ Y = ∅}

log n

≤ lim sup
n→∞

P {Zn ∩ Y = ∅}
log n

≤ − lim inf
t→0

log F(t)

log t
.

Theorem 3.14 (Asymptotics for expected avoidance functional). Assume that
F(0) = 0 and F is absolutely continuous in a neighbourhood of zero with density
ψ(t) = ctα + o(tα), where c is a positive constant and α > −1. Then

EQY (Zn) = c�(α + 1)n−(α+1) + o(n−(α+1)) .
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Proof. For arbitrary a > 0, c(1− a)tα ≤ ϕ(t) ≤ c(1+ a)tα for t ∈ (0, δ] and some
δ > 0. Then

nα+1P {Zn ∩ Y = ∅} = nα+1

δ∫
0

(1− t)nϕ(t)dt + nα+1

1∫
δ

(1− t)ndF(t) .

The second summand converges exponentially to 0, while the first one lies between
c(1−a)

∫ δ

0 (1−t)ntαdt and c(1+a)
∫ δ

0 (1−t)ntαdt . The proof is finished by observing
that

lim
n→∞ nα+1

δ∫
0

(1− t)ntαdt = �(α + 1) . ��

The following results concern the higher moments of QY (Zn). The proofs are
based on replacing Y with Y1 ∪ · · · ∪ Yk for i.i.d. random closed sets Y1, . . . ,Yk

distributed as Y . Denote

TX (F1, F2) = P {X ∩ F1 �= ∅, X ∩ F2 �= ∅} = −�F1�F2 TX (∅) .

Theorem 3.15 (Higher-order asymptotics for avoidance functional). If there ex-
ists a (possibly infinite) limit

γ = lim
t→0

log F(t)

log t
.

Then

lim
n→∞

E(QY (Zn)
k)

log n
= −kγ .

If there also exists an ε > 0 such that

E
(
TX (Y1,Y2)1TX (Y1)≤t 1TX (Y2)≤t

) = O(t1+ε F2(t))

for independent Y1 and Y2 sharing the distribution with Y , then under the conditions
of Theorem 3.14

E(QY (Zn)
k) = (c�(α + 1))kn−k(α+1) + o(n−k(α+1)) ,

and nα+1 QY (Zn) converges in probability to c�(α + 1).

4 Convex hulls

4.1 Infinite divisibility with respect to convex hulls

Consider convex hulls of unions

Yn = co (X1 ∪ · · · ∪ Xn)
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X1

Xn

Yn

Figure 4.1. Convex hull of random compact sets.

for random closed sets in the Euclidean space Rd . It is essential to take the closure
of the convex hull, since the convex hull of a closed set is not always closed. If
X1, . . . , Xn are almost surely compact, then the closure can be omitted.

Convergence results for convex hulls of random compact sets typically follow
from the corresponding results for unions of random sets, since the map K �→ co(K )

is continuous on K in the myopic topology. In many other cases taking convex hulls
allows us to derive results not available for unions of random sets.

Definition 4.1 (Infinite divisibility for convex hulls). A random convex closed set
X is said to be infinitely divisible for convex hulls if, for each n ≥ 2, there exist i.i.d.
random closed sets X1, . . . , Xn such that

X
d∼ co (X1 ∪ · · · ∪ Xn) . (4.1)

When studying convex hulls of random closed sets, it is natural to work with
the containment functional CX (F) = P {X ⊂ F} for F ∈ coF . However, as Ex-
ample 1.7.9 shows, the containment functional defined on coF does not determine
uniquely the distribution of a (non-compact) random convex closed set. Because of
this reason, we often restrict attention to the case of random convex compact sets.
The family coK of convex compact sets is an idempotent semigroup with the semi-
group operation being the convex hull of the union. For each L ∈ coK, the function
χ(K ) = 1K⊂L , K ∈ coK, is a semicharacter, since

1co(K1∪K2)⊂L = 1K1⊂L1K2⊂L

for all K1, K2 ∈ coK. In terms of the containment functionals, (4.1) implies

CX (L) = P {X ⊂ L} = (P {X1 ⊂ L})n = CX1(L)n , L ∈ coK , (4.2)

i.e. Eχ(X) = (Eχ(X1))
n . The results of Appendix G yield a representation of the

containment functionals of random compact convex sets which are infinitely divisible
for convex hulls. However, this requires a careful handling of the situation when the
containment functional vanishes. Note that (4.2) makes it possible to characterise
the containment functional of X in the same manner as was done in Section 1.2 for
the union-infinitely-divisibility using entirely elementary tools. However, it is more
instructive to derive this characterisation from the general approach worked out in
Section 1.5 for lattice-valued random elements.
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Consider the family coK as a partially ordered set with the reverse inclusion and
the top element being the empty set. Then K ∨ L = K ∩ L and K ∧ L = co(K ∪ L).
It is not difficult to show that K � L is equivalent to L ⊂ Int K , see also Gierz et
al. [192, p. 50]. The Scott topology on coK is generated by {K ∈ coK : K ⊂ G}
for G ∈ G. Since coK contains a countable separating subset (for example, convex
hulls of finite unions of balls with rational centres and radii), the Scott topology is
second countable.

Let X be an infinitely divisible random element in coK. Define

H = ∨{K ∈ coK : P {K ≤ X} > 0} = ∩{K ∈ coK : P {X ⊂ K } > 0} .
Note that H is convex as the intersection of convex compact sets. Proposition 1.32
implies that P {X ≤ H } = P {H ⊂ X} = 1. Therefore, H coincides with the set FX

of fixed points for X . Consider the family

coKX = {K ∈ coK : FX ⊂ K }
as a sub-lattice of coK with the top being FX .

Theorem 4.2 (Infinite divisibility for convex hulls). A random convex compact set
X is infinitely divisible for convex hulls if and only if its containment functional is
given by

C(K ) = exp{−Λ({L ∈ coKX : L �⊂ K })} , K ∈ coKX , (4.3)

where Λ is a measure concentrated on coKX \ {FX } such that

Λ({L ∈ coKX : L �⊂ Int K }) <∞ , K ∈ coKX . (4.4)

If ΠΛ = {K1, K2, . . . } is a Poisson point process on coKX with the intensity mea-
sure Λ, then

X
d∼ co (FX ∪ K1 ∪ K2 ∪ · · · ) . (4.5)

If X is non-empty almost surely, then FX �= ∅.

Proof. Representation (4.3) and the fact that Λ is locally finite follow from Propo-
sition 1.30 applied to the semi-lattice coKX . Since Λ is locally finite, it defines a
Poisson point process on coKX , such that only a finite number of “points” (actually
sets) from the process are not contained in any K ∈ coKX such that Int K ⊃ FX .
Therefore, the set in the right-hand side of (4.5) is compact almost surely. For each
K ∈ coKX , we have

P {co (FX ∪ K1 ∪ K2 ∪ · · · ) ⊂ K } = exp{−Λ({L ∈ coKH : L �⊂ K })} .
Thus, (4.5) follows from the fact that distributions of random convex compact sets
are uniquely determined by their containment functionals.

If FX = ∅, then (4.5) shows that X is empty with a positive probability unless
the total mass of Λ is infinite. For two disjoint regular closed sets K1, K2 ∈ coK,
one has Λ({L ∈ coK : L �⊂ Int Ki }) <∞ for i = 1, 2, contrary to the fact that the
total mass of Λ is infinite, since any L ∈ coK satisfies L �⊂ K1 or L �⊂ K2. ��
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The following corollary follows from (4.3) and Theorem 1.31.

Corollary 4.3. A random convex compact set X is infinitely divisible for convex
hulls if and only if its containment functional is given by

CX (K ) = exp{−Ψ (K )} , K ∈ coKX , (4.6)

where Ψ is a completely ∩-alternating non-negative functional on coKX such that
Ψ (K ) < ∞ for K �= FX and Ψ (Kn) ↑ Ψ (K ) if Kn ↑ K with K , K1, K2, . . . from
coKX .

Open problem 4.4. Characterise random closed (not necessarily compact) sets that
are infinitely divisible for convex hulls.

4.2 Convex-stable sets

Distributions and containment functionals

A natural stability concept associated with the convex hull operation can be formu-
lated as follows.

Definition 4.5 (Convex-stable random sets). A random convex closed set X is said
to be convex-stable if, for every n ≥ 2 and independent copies X1, . . . , Xn of X ,

an X
d∼ co (X1 ∪ · · · ∪ Xn)+ Kn (4.7)

for some an > 0 and Kn ∈ K, where the sum in the right-hand side is understood as
the Minkowski sum of sets. If Kn = {bn}, n ≥ 1, i.e. Kn is a singleton for all n ≥ 1,
then X is said to be strictly convex-stable.

It should be noted that, for every union-stable random closed set X , its closed
convex hull co (X) is strictly convex-stable. Convex hulls of sets correspond to a
pointwise maximum of their support functions. Therefore, (4.7) yields

anh(X, u)
d∼ max {h(X1, u), . . . , h(Xn, u)} + h(Kn, u) , u ∈ Sd−1 . (4.8)

If X is compact and h(X, u) has a non-degenerate distribution for each u ∈ Sd−1,
then h(X, ·) is a random max-stable sample continuous process. Define L X as the set
of all u ∈ Sd−1 such that h(X, u) is almost surely finite, see (1.7.4).

Proposition 4.6. If X is a convex-stable random closed set, then

dom h(X, ·) = {u ∈ Sd−1 : h(X, u) <∞}
is a deterministic set equal to L X .
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Proof. It can be shown that dom h(X, ·) is a random closed subset of Sd−1, while (4.7)
yields

dom h(X, ·) d∼ dom h(co(X1, . . . , Xn)+ Kn, ·) =
n⋂

i=1

dom h(Xi , ·) .

Proposition 1.5 implies that dom h(X, ·) = L X a.s. ��

Corollary 4.7. The distribution of a convex-stable random closed set X is uniquely
determined by its containment functional CX (F) = P {X ⊂ F} for F ∈ coF .

Proof. The functional CX (F) determines uniquely the finite-dimensional distribu-
tions of h(X, u), u ∈ L X , and, therefore, the distribution of X . Note that the com-
pactness of X is not required, cf. Example 1.7.9 and Theorem 1.7.8. ��

Characterisation in terms of containment functionals

All realisations of a convex-stable random closed set X belong to the family

CX = C(L X ) ∩ {F ∈ coF : FX ⊂ F} ,
where C(L X ) is defined in (1.7.5) as the family of sets F ∈ coF such that h(F, u) <

∞ if and only if u ∈ L X and FX is the set of fixed points of X . Then CX (F) = 0 if
a convex set F does not belong to CX .

Theorem 4.8 (Characterisation of strictly convex-stable sets). A random (non-
deterministic) convex closed set X is strictly convex-stable if and only if

C(F) = exp{−Ψ (F)} , F ∈ CX , (4.9)

where Ψ is a completely ∩-alternating non-negative functional such that Ψ (F) <∞
if F �= FX , Ψ (Fn) ↑ Ψ (F) if Fn ↑ F for F, F1, F2, . . . ∈ CX and there exists α �= 0
such that Ψ (s F) = sαΨ (F) and s FX = FX for all F ∈ CX and s > 0. Then (4.7)
holds with an = n−1/α, n ≥ 1.

Proof. Representation (4.9) does not follow immediately from (4.6), since Theo-
rem 4.2 and Corollary 4.3 do not cover the case of non-compact random closed sets.
However, (4.9) follows from the general results on infinitely divisible random ele-
ments in lattices applied to the lattice CX with the reverse inclusion and the top being
FX . This general result is applicable because of Proposition 4.6 and Corollary 4.7.
The homogeneity property of Ψ can be proved similarly to Theorem 1.12. Its proof

is even simpler, since cX
d∼ X for a convex-stable random closed set X necessarily

implies that either c = 1 or X is a deterministic cone. ��
Note that representation (4.9) holds also for convex-stable sets which are not

necessarily strictly convex-stable. The following theorem deals with general convex-
stable sets. Recall that Ȟ is the centrally symmetric set to H and ( denotes the
Minkowski subtraction, see Appendix A.
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Theorem 4.9 (Characterisation of convex-stable sets). A non-trivial random con-
vex set X is convex-stable in one and only one of the following three cases.
(i) There exist a strictly convex-stable random set Y with α < 0 and a compact

convex set H such that X = Y + H . Then Kn = (n−1/α − 1)H and an =
n−1/α in (4.7). If, additionally, X is compact and h(X, u) has a non-degenerate
distribution for each u ∈ Sd−1, then 0 ∈ Int Y almost surely.

(ii) There exists a convex compact set H such that Y = X + H is a strictly convex-
stable random set with α > 0. Then an = n−1/α and Kn = (1 − n−1/α)H ,
n ≥ 1.

(iii) There exists a convex compact set H such that X satisfies (4.7) with an = 1
and Kn = H log n for all n ≥ 1. This happens if and only if its containment
functional is given by (4.9) where Ψ is a completely ∩-alternating non-negative
functional on CX such that Ψ (F) < ∞ if F �= FX , Ψ (Fn) ↑ Ψ (F) if Fn ↑ F
with F, F1, F2, . . . ∈ CX and

Ψ (F) = sΨ (F ( Ȟ log s) , FX ( Ȟ log s = FX ,

for all s > 0.

Proof. (i) and (ii) can be proved similarly to Theorem 1.23. The part of case (i) con-
cerning compact convex-stable random sets with non-degenerate support functions
is contained in Giné, Hahn and Vatan [201]. Statement (iii) follows from the results
of [201], which make it possible to identify Kn as H log n using their support func-
tion representation and (4.8). Then

X
d∼ co (X1 ∪ · · · ∪ Xn)+ H log n

and (4.9) imply nΨ (F ( Ȟ log n) = Ψ (F). The proof can be finished similarly to
the proof of Theorem 1.28 by reducing the problem to functional equations. ��

Note that if X is a compact convex-stable random set, then only the case (i) of
Theorem 4.9 is possible with α < 0.

Example 4.10. Let ξ = (ξ1, . . . , ξd ) be a random vector in Rd . Define

X = co {ei xi : 1 ≤ i ≤ d, xi ≤ ξi } , (4.10)

where e1, . . . , ed is the basis in Rd , see Figure 4.2. Then X is strictly convex-
stable if and only if ξ is a max-stable random vector with respect to coordinate-
wise maximum, see Balkema and Resnick [47] and Galambos [186]. Evidently,
C(↓ x) = P {X ⊂ (↓x)} = Fξ (x), where Fξ is the cumulative distribution func-
tion of ξ and (↓ x) = (−∞, x1] × · · · × (−∞, xd ] for x = (x1, . . . , xd). Thus, X is
strictly convex-stable if and only if Fξ (x) = exp{−ψ(x)}, where ψ(x) ≤ ψ(y) ≤ 0
if x ≤ y coordinatewisely, ψ is right-continuous, satisfies (3.7) and there exists
v ∈ Rd such that either ψ(x) = sψ(x + v log s) or ψ(s(x + v)) = sαψ(x + v)

for each s > 0 and x ∈ Rd . This is a known representation of max-stable random
vectors.
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0

x2

x1

ξ2

ξ1X

Figure 4.2. A random set X generated by a random vector ξ in R2.

Example 4.11. If ΠΛ is a Poisson point process from Example 1.16 with α < 0,
then the random closed set X = co (ΠΛ) is strictly convex-stable and CX (F) =
exp{−Λ(Fc)} for any convex closed set F such that 0 ∈ Int F .

Open problem 4.12. Characterise distributions of random vectors that give rise to
not necessarily strictly stable random closed sets by (4.10).

4.3 Convergence of normalised convex hulls

Weak convergence

Results concerning the weak convergence of convex hulls are simpler than those
concerning general unions of random sets, since it is possible to handle convex sets
by means of their support functions. Let {Xn, n ≥ 1} be i.i.d. random closed sets,
possibly non-convex and unbounded, with

C(F) = P {co (X1) ⊂ F}
being the containment functional of co (X1). Define Yn = co (X1 ∪ · · · ∪ Xn). Evi-
dently, for each convex F ,

Cn(F) = P
{

a−1
n Yn ⊂ F

}
= (C(an F))n .

Define L = L X1 to be the set of all u ∈ Sd−1 such that h(X1, u) is almost surely
finite. Then the weak limit of a−1

n Yn almost surely belongs to the family C(L) intro-
duced in (1.7.5).

Let an →∞ as n →∞. Similar to Section 2.1, define for any convex F

an(F) = sup{x : C(x F) ≤ 1− 1/n} ,
where sup∅ = 0, and introduce a subfamily of C(L) by
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Vc = {F ∈ C(L) : lim sup
x→∞

C(x F) = 1} .
The following theorem resembles Theorem 2.1 although its proof is simpler,

since the limit theorem for convex hulls can be reduced directly to the limit theo-
rem for the maximum of random variables.

Theorem 4.13 (Weak convergence of convex hulls). Let F ∈ Vc. Suppose that
an(F)/an → q(F) as n →∞, where q(F) is allowed to be infinite. Then

lim
n→∞Cn(F) = exp

{−q(F)−α
}
, (4.11)

if (and only if in the case 0 < q(F) <∞) the function vF (x) = 1− C(x F), x ≥ 0,
is regularly varying with exponent α < 0. If F /∈ Vc then Cn(F)→ 0 as n →∞.

If the above conditions hold for each F ∈ Vc, then a−1
n Yn converges weakly to a

strictly convex-stable random closed set Z with the containment functional given by

CZ (F) =
{

exp{−q(F)α}, F ∈ Vc ,

0, otherwise .

Proof. If 0 /∈ F , then Cn(F)→ 0, so assume 0 ∈ F and define

ξ(Xi ) = inf{s ≥ 0 : Xi ⊂ s F} .
The cumulative distribution function of the random variable ξ(Xi ) is evaluated as

P {ξ(Xi ) ≤ x} = P {Xi ⊂ x F} = C(x F) .

Hence an(F) = sup{x : Fξ (x) ≤ 1 − 1/n} , and F belongs to Vc if and only if
P {ξ(Xi ) ≤ x} → 1 as x →∞. Moreover,

ζn = ξ(Yn) = max {ξ(Xi ), 1 ≤ i ≤ n} .
The classical limit theorem for extremes (Galambos [186, Th. 2.1.1]) yields that

P {ζn < an(F)x} → exp
{−xα

}
as n →∞.

Then (4.11) holds, since

Cn(an F) = P {ζn < an} = P
{
ζn < an(F)

an

an(F)

}
.

If 0 < q(F) < ∞, then the necessity follows from the corresponding theorem for
extremes of random variables, see Galambos [186, Th. 2.4.3].

For each F ∈ Vc and s > 0, the set s F belongs to Vc and q(s F)−α = sαq(F),
so that the limiting distribution corresponds to a strictly convex-stable set with pa-
rameter α < 0. The weak convergence follows from the results of Section 1.6.1. ��

Limit theorems for convex hulls of non-compact random sets do not follow im-
mediately from the corresponding results for unions, since the map F �→ co (F)

is not continuous in the Fell topology, but only lower semicontinuous. In contrast,
the map K �→ co(K ) is continuous in the Hausdorff metric, so that the weak con-
vergence of unions in the myopic topology implies the weak convergence of their
convex hulls.
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Convergence almost surely

The following theorem follows from Resnick and Tomkins [484].

Theorem 4.14. Let X, X1, X2, . . . be i.i.d. random compact sets. Assume that for
every u ∈ Sd−1 and x > 0 there exists a finite limit

lim
t→∞

− log P {h(X, ux) ≥ t}
g(t)

= ϕ(ux) .

Then a−1
n co(X1 ∪ · · · ∪ Xn) a.s. converges in the Hausdorff metric to

{ux : u ∈ Sd−1, x ≥ 0, ϕ(ux) ≥ 1} .

5 Unions and convex hulls of random functions

5.1 Random points

Consider convergence of random samples in Rd and their convex hulls. In this case
Xn = {ξn}, n ≥ 1, are i.i.d. random singletons and Zn = {ξ1, . . . , ξn}, n ≥ 1.
The following well-known result states that the scaled sample converges weakly to a
Poisson point process if ξ1 has a regular varying distribution.

Theorem 5.1. Let X1 = {ξ1}, where ξ1 is a random vector with a regularly varying
positive density f ∈ RVu

α−d (R
d) with α < 0. Assume that f can be decomposed as

f = ϕL for a slowly varying function L and a homogeneous function ϕ. Define

an = sup
{
x : xαL(xe) ≥ 1/n

}
for some e ∈ Rd \ {0}. Then a−1

n Zn = a−1
n {ξ1, . . . , ξn} converges weakly to the

Poisson random set Z = ΠΛ with the capacity functional TZ (K ) = 1−exp{−Λ(K )}
and the intensity measure

Λ(K ) =
∫
K

ϕ(u)du , K ∈ K . (5.1)

Proof. The proof is based on application of Theorem 2.1. Since α < 0, an → ∞
as n → ∞. If 0 ∈ K , then T (x K ) does not converge to 0 as x → ∞, so that
TZ (K ) = 1. If 0 /∈ K , then

vK (x) = P {ξ ∈ x K } = xα

∫
K

ϕ(u)L(xu)du .

It follows from (H.8) that vK (x)→ 0 as x →∞ and vK ∈ RVα . Note that vK (x) ∼
xαL(xe)Λ(K ). It follows from the inversion theorem for regularly varying functions
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(see Appendix H) and Theorem 2.1 that Ψ (K ) = Λ(K ) (if 0 ∈ Int K we assume
Λ(K ) = ∞). The random closed set Z is compact almost surely, since

P {Z ⊂ Br (0)} = exp

⎧⎪⎨⎪⎩−
∫

‖u‖>r

ϕ(u)du

⎫⎪⎬⎪⎭→ 1 as r ↑ ∞ ,

and ϕ is integrable outside a neighbourhood of the origin. ��
The limiting Poisson point process in Theorem 5.1 with the intensity measure Λ

given by (5.1) is not locally finite with the origin being its accumulation point, since
the function ϕ is not integrable near the origin.

If Z is the limiting random set in Theorem 5.1, then

P {h(Z , v) < x} = P
{

Z ⊂ x H c
v

} = exp
{−xαa(v)

}
,

where

a(v) =
∫

〈u,v〉≥1

ϕ(u)du

=
∫
S+v

du

∞∫
〈u,v〉−1

ϕ(yu)yd−1dy = −α−1
∫
S+v

ϕ(u)〈u, v〉−αdu ,

where
S+v = {u ∈ Sd−1 : 〈u, v〉 ≥ 0} .

Elementary calculations yield the support function of the selection expectation of Z :

h(EZ , v) = Eh(Z , v) = a(v)−1/α�(1/α + 1)

= �(1 + 1/α)

⎡⎢⎣−α−1
∫
S+v

ϕ(u)〈u, v〉−αdu

⎤⎥⎦
−1/α

.

where � is the gamma-function.
Below we outline an analogue of the previous results for convergence to union-

stable and convex-stable random sets with α > 0.

Theorem 5.2. Let ξ be distributed with the density g in a convex cone C ⊂ Rd .
Suppose that the function f (u) = g(u‖u‖−2), u �= 0, belongs to the class RVu

d−α(C)

with α > 0 and f = Lϕ. For e ∈ C \ {0} put an = inf{t > 0 : tα L(t−1e) ≥ n−1}.
If ξ1, . . . , ξn are i.i.d. copies of ξ , then a−1

n {ξ1, . . . , ξn} weakly converges to Z as
n →∞, where

TZ (K ) = 1− exp

⎧⎨⎩−
∫

C∩K

ϕ(u‖u‖−2)du

⎫⎬⎭ , K ∈ K .
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If C does not contain any line, then a−1
n co{ξ1, . . . , ξn}weakly converges to a strictly

convex-stable random set co(Z) with the containment functional

P {co Z ⊂ F} = exp

⎧⎪⎨⎪⎩−
∫

C\F

ϕ(u‖u‖−2)du

⎫⎪⎬⎪⎭ , F ∈ coF .

5.2 Multivalued mappings

Weak convergence

Let {Xn, n ≥ 1} be i.i.d. copies of the random closed set X = M(ξ), where M is
a multifunction continuous in the Hausdorff metric and ξ is a random vector in Rm

with a regularly varying density. The function M : Rm �→ K is called homogeneous
if M(su) = sηM(u) for all s > 0 and u ∈ Rm .

Theorem 5.3. Let ξ be a random vector distributed in a cone C ⊂ Rm with a positive
density f ∈ RVu

α−m(C), α < 0 and let M be a homogeneous multifunction of order
η > 0. Denote

M−(K ) = {u ∈ C : M(u) ∩ K �= ∅} ,
an = sup{xη : xαL(xe) ≥ 1/n} ,

where e is a fixed point in Rm \ {0} and f = ϕL for a slowly varying function L
and homogeneous ϕ. Then a−1

n Zn = a−1
n (X1 ∪ · · · ∪ Xn) converges weakly to the

union-stable set Z with

TZ (K ) =
{

1− exp
{
− ∫M−(K )

ϕ(u)du
}

, 0 /∈ K ,

1 , otherwise .

If α/η < −1, then Z is integrably bounded and

h(EZ , v) = �(1 + η/α)

⎡⎢⎣− η

α

∫
{u: h(M(u),v)≥1}

ϕ(u)du

⎤⎥⎦
−η/α

, v ∈ Sd−1 .

Proof. Note that

a−1
n (X1 ∪ · · · ∪ Xn) = M(a−1/η

n {ξ1, . . . , ξn})
and refer to Theorem 5.1. The evaluation of the support function of EZ is straight-
forward. ��
Example 5.4. Let m = d = 1 and let X = ξM be a random subset of R, where ξ is a
random variable having the Cauchy distribution and M is a deterministic compact set
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missing the origin. Then n−1(ξ1 M ∪ · · · ∪ ξn M) converges weakly to a union-stable
random set Z with α = −1 and the capacity functional

TZ (K ) = 1− exp

⎧⎪⎨⎪⎩−
∫

K/M

u−2du

⎫⎪⎬⎪⎭ ,

where K/M = {x/y : x ∈ K , y ∈ M}.
Theorem 5.3 makes it possible to obtain limit theorems for unions and convex

hulls of random balls (m = d + 1, M(u1, . . . , ud+1) is the ball in Rd of radius ud+1
centred at (u1, . . . , ud )) or random triangles (m = 3d and M(u1, . . . , u3d ) is the
triangle with the vertices (u1, . . . , ud ), (ud+1, . . . , u2d), (u2d+1, . . . , u3d )). In these
cases M(su) = sM(u) for all u ∈ Rm and s > 0, whence η = 1. The following
result follows from Theorem 5.3 for M(u1, . . . , ud+1) = (u1, . . . , ud ) + ud+1K ,
where K is a compact set.

Proposition 5.5. Let (ξ1, . . . , ξd , ζ ) be a random vector in Rd × [0,∞) with the
regularly varying density f (u; y) ∈ RVα−d−1(Rd × [0,∞)), α < 0, and let X =
(ξ1, . . . , ξd )+ ζ K , where ξ = (ξ1, . . . , ξd ) and K is a compact set in Rd containing
the origin. Furthermore, let f (u; y) = ϕ(u; y)L(u; y) for u ∈ Rd and y > 0, where
ϕ is homogeneous and L is slowly varying. Define

an = sup
{
x : xαL(xe; xt) ≥ 1/n

}
for some (e; t) ∈ (Rd \ {0}) × (0,∞). Then a−1

n Zn converges weakly to a union-
stable random set Z with the capacity functional

TZ (K ) = 1− exp

⎧⎪⎨⎪⎩−
∞∫

0

dy
∫

K+y Ǩ

ϕ(u; y)du

⎫⎪⎬⎪⎭ .

If α < −1, then EZ exists and has the support function

h(EZ , v) = �(1+1/α)

⎡⎢⎣−α−1

∞∫
0

dy
∫
S+v

ϕ(w; y) (〈w, v〉 + yh(K , v))−α dw

⎤⎥⎦
−1/α

.

Example 5.6. Let d = 2, α = −2 and let ξ have a circular symmetric distribution
with

f (u; y) = 2π−1(1+ (‖u‖y)4)−1
.

Then

h(EZ , v) = π

25/4

(π
2
+ 23/2h(K , v) + h(K , v)2

)1/2
.
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Almost sure convergence

Let h ∈ RVu
α,ϕ(C) be a regularly varying function on a cone C ⊂ Rm . Fix a vector

e ∈ C \ {0} in the definition of regular variation, see (H.6). Assume that α > 0 and
ϕ does not vanish on Sm−1 ∩ C.

Let ξ be a random vector in C with the probability density function exp{−h(x)}
and let X1, X2, . . . be independent copies of the random compact set X = M(ξ).
For simplicity, assume that M(u) hits any open cone G ⊂ Rd for the set of u ∈ C
with a positive Lebesgue measure. Otherwise the range of possible values of X is a
cone G′, so that all formulations can be amended by replacing Rd with G′ and Sd−1

with Sd−1 ∩G′. For each S ⊂ Sd−1 denote

CS = {xv : x ≥ 0, v ∈ S} ,
AS = {u ∈ Sm−1 ∩ C : M(u) ∩ CS �= ∅} ,

qS(u) = ‖M(u) ∩ CS‖ , u ∈ AS.

For S = {v}, the corresponding left-hand sides are written as Cv , Av and qv(u) re-
spectively. A rather technical proof of the following theorem relies on Corollary 3.6,
see Molchanov [398, 402].

Theorem 5.7. Let X = M(ξ) for ξ defined above and a homogeneous multifunction
M of order η. Assume that, for each regular closed (in the induced topology) set
S ⊂ Sd−1, w ∈ AS , δ > 0 and u ∈ M(w) ∩ CS , there exists v ∈ AS such that
M(v) ∩ Int CS ∩ Bδ(u) �= ∅. If h(a1/η

n e) ∼ log n as n → ∞, then Yn = a−1
n (X1 ∪

· · · ∪ Xn) converges almost surely in the Hausdorff metric to

Z = {vx : v ∈ Sd−1, 0 ≤ x ≤ f (v)} ,
where f (v) = sup{qv(u)ϕ(u)−η/α : u ∈ Av} .

In particular, if ϕ(u) = c for all u ∈ Sd−1, then

Z =
{
vx : v ∈ Sd−1, 0 ≤ x ≤ c−η/α sup{qv(u) : u ∈ Av}

}
. (5.2)

The condition of Theorem 5.7 is satisfied for M(u) = {u}. Then η = 1, X = {ξ},
Av = {v}, qv(u) = ‖u‖ and

Z = {vx : v ∈ Sd−1, x ≥ 0, ϕ(vx) ≤ 1} .
The condition on M in Theorem 5.7 holds for a function M defined as

M(x1, . . . , xdn+l) = co
{
(x1, . . . , xd), . . . , (x(n−1)d+1, . . . , xnd )

}
+ xdn+1M1 + · · · + xdn+l Ml ,

where M1, . . . , Ml are compact subsets of Rd . This representation covers many im-
portant examples of random sets, for instance, random balls if n = 1, l = 1 and
M1 = B1(0).
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Example 5.8 (Random rotation). Let M0 be a non-random convex subset of R2 and
let wβ denote a rotation (say clockwise) to the angle β. Denote M(tu) = tηwβ M0
for t > 0 and u = (cosβ, sinβ). Then the conditions of Theorem 5.7 are satisfied
and qv(u) = q(w−1

β v), where q(u) = sup{r : ru ∈ M0} for u ∈ S1. Similarly,

Av = {u = (cosβ, sinβ) ∈ S1 : w−1
β v ∈ S0} ,

where S0 = {u‖u‖−1 : u ∈ M0 \ {0}}. The limiting set in Theorem 5.7 is given by

Z =
⎧⎨⎩xv : v ∈ S1, 0 ≤ x ≤ sup

u=(cosβ,sinβ)∈S0

(
q(u)

ϕ(w−1
β v)

)η/α
⎫⎬⎭ .

In the isotropic case ϕ(u) = c for all u ∈ Sm−1, whence Z = Br (0) with r =
c−η/α‖M0‖.
Example 5.9 (Random balls). Let X1 = Bξ (ζ ) be a random ball in Rd . Then
X1 = M(ξ, ζ ), where M(u) = Bu0(u1, . . . , ud) for u = (u0, u1, . . . , ud) ∈ Rm ,
u0 ≥ 0, m = d + 1. The function M satisfies the conditions of Theorem 5.7 with
η = 1. For any v ∈ Sd−1 and u = (u0, u1, . . . , ud ) ∈ Sm−1 we get

qv(u) = sup{r : rv ∈ Bu0(u1, . . . , ud )} .
In general the evaluation of f (v) in Theorem 5.7 is very complicated. If ϕ(u) = c is
a constant on the unit sphere, then (5.2) holds. Since qv(u) attains its maximum for
(u1, . . . , ud ) = tv and u2

0 + u2
1 + · · · + u2

d = 1,

sup{qv(u) : u ∈ Av} = sup{t + u0 : t2 + u2
0 = 1, t, e0 ≥ 0} = √2 .

Thus, the scaled unions converge to Br (0) with r = c−1/α
√

2.

Example 5.10 (Random triangles). Let m = 6, d = 2 and let M(u) for u =
(u1, . . . , u6) be the triangle with the vertices (u1, u2), (u3, u4) and (u5, u6). Then

Z =
{
vx : v ∈ Sd−1, 0 ≤ x ≤ sup

u∈Av

qv(u)

ϕ(u)η/α

}
,

where
Av = {u = (u1, . . . , u6) ∈ Sm−1 : M(u) ∩ Sv �= ∅} .

The function qv(u) = qv(u1, . . . , u6) attains its minimum for (u2i−1, u2i ) = tiv,
i = 1, 2, 3, i.e. for the degenerated triangle M(u). In the isotropic case ϕ(u) = c and

f (v) = sup{qv(u)ϕ(u)
−1/α : u ∈ Av}

= c−1/α sup{max(t1, t2, t3) : t2
1 + t2

2 + t2
3 = 1} = 1 .

Hence Yn almost surely converges to Z = Br (0) with r = c−1/α.
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Regularly varying functions of random vectors

Results of Section 5.2 can be extended for unions of random sets defined as regularly
varying multivalued functions of random vectors. Let ξ be a random point in a cone
C ⊂ Rm having the probability density function f ∈ RVu

α−m(C) with α < 0, so that
f = ϕL, where ϕ is homogeneous and L is a slowly varying function on C. Consider
independent copies {Xn, n ≥ 1} of a random compact set X = M(ξ), where M is a
multivalued function from RVu

α,g,Φ(C;K) with η > 0. Define a−1
n Zn = a−1

n (X1 ∪
· · · ∪ Xn) for

an = sup{g(s) : sα L(se) ≥ 1/n} , n ≥ 1 ,

with a fixed e ∈ C′ = C \ {0}.
The following result can be proved using the inversion theorem for multivalued

regularly varying functions, see Theorem H.5.

Theorem 5.11. Assume that M ∈ RVu
α,g,Φ(C;K) and, for every u0 ∈ C′, positive r

and K from a separating class A ⊂ K, the conditions Φ(u0) ∩ K �= ∅ and Φ(u0) ∩
Int K = ∅ yield the existence of u1, u2 ∈ Br (u0) such that Φ(u1) ∩ K = ∅ and
Φ(u2) ∩ Int K �= ∅. If M satisfies (H.17), then a−1

n Zn converges weakly to the
random closed set Z with the capacity functional given by

TZ (K ) =
{

1− exp
{
− ∫

Φ−(K )
ϕ(u)du

}
, 0 /∈ K ,

1 , otherwise ,

where Φ− is the inverse function to Φ, see (H.16).

Intersections of random half-spaces

For u ∈ Rd define the corresponding half-space H (u) as

H (u) = {x ∈ Rd : 〈x, u〉 ≤ ‖u‖2} .
Consider normalised intersections of random half-spaces defined as

a−1
n Zn = a−1

n (H (ξ1) ∩ · · · ∩ H (ξn)) ,

where an → 0 as n →∞ and ξ, ξ1, ξ2, . . . are i.i.d. random vectors in Rd . Suppose
that ξ has a density f which is regularly varying at zero with exponent α−d for α >

0. This means that the function f̃ (u) = f (u‖u‖−2) belongs to the class RVu
d−α(R

d ),
see (H.6).

Let Yn be the closure of Rd \ (a−1
n Zn). Then a−1

n Zn converges in distribution
to a random convex closed set Z if and only if Yn converges in distribution to Y =
cl(Rd \ Z). Furthermore,

P {Y ∩ K = ∅} = P {K ⊂ Int Z} (5.3)
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for all K ∈ K. The random closed set Yn is the normalised union of the complements
to the half-spaces H (ξi), that is

Yn = a−1
n (M(ξ1) ∪ · · · ∪ M(ξn)) ,

where M(u) = {x ∈ Rd : 〈x, u〉 ≥ ‖u‖2} for u ∈ Rd . Theorem 5.3 is applicable for
the random set X = M(ξ). Evidently,

M−(K ) = {u : K ∩ M(u) �= ∅}
= {yv : v ∈ S+K , y ≥ 0, h(K , v) ≥ y} ,

where S+K = {v ∈ Sd−1 : h(K , v) > 0}. Then

P {X ∩ t K �= ∅} = P {M(ξ) ∩ t K �= ∅}

= td
∫

S+K

dv

h(K ,v)∫
0

yd−1
1 f (y1vt)dy1

∼ tαα−1 L(te)
∫

S+K

h(K , v)αϕ(v)dv as t → 0 ,

where e ∈ Rd \ {0}, L is slowly varying at zero and ϕ is a homogeneous function,

such that f = ϕL. If an = inf{t ≥ 0 : tα L(te) ≥ n−1}, then Yn
d→ Y with

TY (K ) = 1− exp

⎧⎪⎪⎨⎪⎪⎩−α−1
∫

S+K

h(K , v)αϕ(v)dv

⎫⎪⎪⎬⎪⎪⎭ .

From (5.3) and using the continuity of ϕ we get

P {K ⊂ Z} = P {K ⊂ Int Z} = exp

⎧⎪⎪⎨⎪⎪⎩−α−1
∫

S+K

h(K , v)αϕ(v)dv

⎫⎪⎪⎬⎪⎪⎭ .

For instance,

P {Br (0) ⊂ Z} = exp

⎧⎪⎨⎪⎩−rαα−1
∫

Sd−1

ϕ(v)dv

⎫⎪⎬⎪⎭ .

6 Probability metrics method

6.1 Inequalities between metrics

The probability metrics method and its applications to limit theorems were elabo-
rated by Zolotarev [630], see also Rachev [470]. The probability metrics method
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makes it possible to prove limit theorems for the most convenient metric. After-
wards, the speed of convergence in other metrics can be assessed using inequalities
between the metrics.

Example 6.1 (Proof of central limit theorem). To explain why probability metrics
are important, we will show how to prove the central limit theorem using probability
metrics. Suppose that the metric m(ξ, η) depends only on the marginal distributions
of the random variables ξ and η and
(1) for some γ > 2, m(cξ, cη) = |c|γm(ξ, η), c ∈ R, for all random variables ξ

and η with finite second moments;
(2) m(ξ + ζ, η + ζ ) ≤ m(ξ, η) if ζ is independent of both ξ and η.

Examples of such metrics can be found in Zolotarev [630] and Rachev [470]. Con-
sider a random variable ξ such that m(ξ, ζ ) < ∞ for a centred Gaussian random
variable ζ . Note that

m(ξ1 + ξ2, η1 + η2) ≤ m(ξ1 + ξ2, η1 + ξ2)+m(η1 + ξ2, η1 + η2)

≤ m(ξ1, η1)+m(ξ2, η2) .

Since ζ = n−1/2(ζ1 + · · · + ζn) for ζ1, . . . , ζn being i.i.d. copies of ζ ,

m(n−1/2(ξ1 + · · · + ξn), ζ ) = m(n−1/2(ξ1 + · · · + ξn), n−1/2(ζ1 + · · · + ζn))

= n−γ /2m(ξ1 + · · · + ξn, ζ1 + · · · + ζn)

≤ n1−γ /2m(ξ1, ζ )→ 0 as n →∞ .

By the way, the above expression provides an estimate for the speed of the conver-
gence with respect to the chosen metric m.

Basic concepts of probability metrics for random closed sets are discussed in
Section 1.6.3, in particular, the uniform metric u(X,Y ;M) and the Lévy metric
L(X,Y ;M) for two random closed sets X and Y , where M is a subfamily of K.

It is often desirable to obtain bounds for the speed of convergence in the uni-
form metric by relating it to other metrics that are better designed for the particular
summation scheme. Recall that the classical inequality between uniform and Lévy
metrics involves concentration functions of random variables, see Hengartner and
Theodorescu [233]. The concentration function of a random closed set X is defined
as

Q(ε, X;M) = sup{TX (K ε)− TX (K ) : K ∈M} , ε > 0 .

Evidently, Q(ε, X;M) coincides with the uniform distance between the distribu-
tions of X and Xε , i.e. Q(ε, X;M) = u(X, Xε;M). The following theorem pro-
vides an inequality between the uniform and Lévy metrics.

Theorem 6.2 (Uniform and Lévy metrics). If L = L(X,Y ;M), then

L ≤ u(X,Y ;M) ≤ L +min {Q(L, X;M), Q(L,Y ;M)} .
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Proof. It suffices to refer to the obvious inequalities L ≤ u(X,Y ;M) and

TX (K )− TY (K ) = TX (K )− TY (K ε)+ TY (K ε)− TY (K )

≤ L(X,Y ;M)+ Q(ε,Y ;M)

for ε ≤ L(X,Y ;M). ��
Example 6.3 (Half-lines). Let X = (−∞, ξ ] and Y = (−∞, η] be random subsets
of R1. Assume that {inf K : K ∈M} = R1, i.e. the class M is sufficiently rich. Then
u(X,Y ;M) coincides with the uniform distance between distribution functions of ξ
and η and L(X,Y ;M) equals the Lévy distance between them. The concentration
functions of X and Y are equal to the concentration functions of the random variables
ξ and η, see Hengartner and Theodorescu [233].

Example 6.4 (Distance between Poisson processes). Let X and Y be the Poisson
point processes in Rd with intensity measures ΛX and ΛY respectively. Then

|TX (K )− TY (K )| ≤ |ΛX (K )−ΛY (K )| ,
so that u(X,Y ;K) is bounded by the total variation distance between ΛX and ΛY .
If X and Y are stationary and have intensities λX and λY , then u(X,Y ;K) =
g (λX/λY ), where

g(x) =
∣∣∣x1/(1−x) − x x/(1−x)

∣∣∣ , 0 < x < 1 . (6.1)

Example 6.5 (Distance between union-stable sets). If X and Y are union-stable
with the same parameter α then

u(X,Y ;MK ) = sup
{
| exp{−sαΨX (K )} − exp{−sαΨY (K )}| : s ≥ 0

}
,

where MK = {sK : s ≥ 0} is the family of scale transformations of K ∈ K.
Without loss of generality assume that ΨX (K ) < ΨY (K ). Then

u(X,Y ;MK ) = g (ΨX (K )/ΨY (K )) ,

where g is given by (6.1). Similarly, Q(ε, X;MK ) = g (ΨX (K )/ΨX (K ε)). If the
random closed sets X and Y are stationary and union-stable and M0 is the family of
all balls in Rd , then

u(X,Y ;M0) = u(X,Y ;MB1(0)) = g

(
ΨX (B1(0))

ΨY (B1(0))

)
,

Q(ε, X;M0) = g((1+ ε)−|α|) . (6.2)

6.2 Ideal metrics and their applications

Definition

It was shown in Zolotarev [628, 630] that the so-called ideal metrics are particularly
useful in the studies of limit theorems for random variables.
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Definition 6.6 (Ideal metrics for random sets). A probability metric m is said to
be:
(i) homogeneous of degree γ if m(cX, cY ) = |c|γm(X,Y ) for all c �= 0;

(ii) regular with respect to unions if m(X ∪ Z ,Y ∪ Z) ≤ m(X,Y ) for each ran-
dom closed set Z independent of X and Y (regular metrics with respect to the
Minkowski addition are defined similarly);

(iii) ideal if m is homogeneous and regular.

Ideal metrics of zero degree

Unless otherwise stated we assume that with every set K the family M contains cK
for all c > 0 and K r for all r > 0. The typical example is the family M0 = {Br (x) :
r ≥ 0, x ∈ Rd} of all closed balls. Then the uniform metric u(X,Y ;M) is ideal of
zero degree. Indeed, u(cX, cY ;M) = u(X,Y ;M/c) = u(X,Y ;M) and

u(X ∪ Z ,Y ∪ Z;M) = sup{|TX∪Z (K )− TY∪Z (K )| : K ∈M}
= sup{|TX (K )+ TZ (K )− TX (K )TZ (K )− TY (K )− TZ (K )

+ TZ (K )TY (K )| : K ∈M}
= sup{|(TX (K )− TY (K ))|(1− TZ (K )) : K ∈M}
≤ u(X,Y ;M) .

The metric u(X,Y ;K) is regular with respect to the Minkowski addition, since

u(X + Z ,Y + Z) = sup{|E[TX (K + Ž)− TY (K + Ž) | Z ]| : K ∈ K} ≤ u(X,Y ) .

The Lévy metric L(X,Y ;M) is regular with respect to unions and with respect to
the Minkowski addition in the case M = K.

Ideal metric of a positive degree

Although u and L are ideal metrics of zero degree, an ideal metric of a positive
degree γ is desirable to prove limit theorems as explained in Example 6.1. Such a
metric can be constructed by generalising the uniform metric u. Put

uυ(X,Y ;M) = sup{υ(K )|TX (K )− TY (K )| : K ∈M} ,
where υ : K �→ [0,∞) is non-negative increasing and homogeneous of degree γ >

0, i.e. υ(sK ) = sγ υ(K ) for all s > 0 and K ∈ K. Possible choices are υ(K ) =
(mes(K ))γ /d or υ(K ) = (C(K ))γ , where mes is the Lebesgue measure and C is the
Newton capacity. It is easy to see that uυ is an ideal metric of degree γ with respect
to unions.

Assume that υ(K δ)→ υ(K ε) as δ → ε > 0 for each K ∈ K and denote

Uδ(K0) = {K ∈ K : K0 ⊂ K ⊂ K δ
0 }
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for K0 ∈ K and δ > 0. It is well known that the Lévy distance between random
variables is equal to the side of the maximal square inscribed between the graphs of
their cumulative distribution functions. Proposition 6.7 generalised this property for
the Lévy distance between capacity functionals. The family Uδ(K0) plays the role of
the square inscribed between the graphs of capacity functionals.

Proposition 6.7. The value L(X,Y ;M) is equal to the supremum L̂ of all positive δ

such that for a compact set K0 ∈M with |TX (K1)− TY (K2)| ≥ δ for all K1, K2 ∈
Uδ(K0) ∩M.

Proof. Let L̂ < δ. Fix some K ∈ M. Then |TX (K1) − TY (K2)| ≤ δ for some K1,
K2 from Uδ(K ) ∩M. Hence

TX (K ) ≤ TX (K1) ≤ TY (K2)+ δ ≤ TY (K δ)+ δ .

Similarly, TY (K ) ≤ TX (K δ)+ δ. Thus, L(X,Y ;M) ≤ δ for all δ > L̂.
Let L(X,Y ;M) < δ. For sufficiently small ε > 0 there exists a compact set K0

such that TX (K0) ≥ TY (K δ−ε
0 )+ δ − ε or TY (K0) ≥ TX (K δ−ε

0 )+ δ − ε. Then, for
each K from Uδ−ε(K0),

TX (K ) ≥ TX (K0) ≥ TY (K δ−ε
0 )+ δ − ε ≥ TY (K )+ δ − ε

or
TY (K ) ≥ TX (K )+ δ − ε .

Hence L̂ ≤ δ − ε and, therefore, L̂ ≤ L(X,Y ;M). ��
The following result provides an inequality between uυ and the Lévy metric L.

Theorem 6.8 (Weighted uniform and Lévy metrics). If L = L(X,Y ;M), then

uυ(X,Y ;M) ≥ L1+γ inf
x∈Rd

υ(B1(x)) .

Proof. If δ < L, then Proposition 6.7 yields |TX (K δ
0 ) − TY (K δ

0)| ≥ δ for some
K0 ∈M. Hence

uυ(X,Y ;M) ≥ υ(K δ
0 )|TX (K δ

0 )− TY (K δ
0 )| ≥ δυ(K δ

0 ) .

The homogeneity property of υ yields

uυ(X,Y ;M) ≥ L inf
K∈M

υ(K L)

≥ L inf
x∈Rd

υ(BL(x))

= L1+γ inf
x∈Rd

υ(B1(x)) . ��
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If the functional υ is translation invariant, then

uυ(X,Y ;M) ≥ L(X,Y ;M)1+γ υ(B1(0)) .

Theorem 6.2 yields the following inequality between uυ and u:

u(X,Y ;M) ≤ q +min(Q(q, X;M), Q(q,Y ;M)) , (6.3)

where
q = (uυ(X,Y ;M)/υ(B1(0)))1/(1+γ ) .

For example, (6.2) yields u(X,Y ;M) ≤ q + h((1 + q)−α) if X is stationary and
union-stable with α > 0.

Speed of convergence for normalised unions

Let {Xn, n ≥ 1} be i.i.d. copies of a random closed set X . If

Yn = n1/α(X1 ∪ · · · ∪ Xn)

weakly converges to a non-trivial random set Z , then Z is union-stable with param-
eter α. To cover the cases of α being either positive or negative, we use the “inverse”
set Z∗ defined by (1.18).

Theorem 6.9. Let Z be a union-stable random set with a parameter α and let υ be
an increasing functional which is homogeneous of degree γ .
(i) If γ > −α > 0 and uυ(X1, Z;M) <∞, then

uυ(Yn, Z;M) ≤ n1+γ /αuυ(X1, Z;M) . (6.4)

(ii) If γ > α > 0 and uυ(X∗1 , Z∗;M) <∞, then

uυ(Yn, Z;M) ≤ n1−γ /αuυ(X∗1 , Z∗;M) .

Proof.
(i) The proof follows the scheme described in Example 6.1. Since Z is union-

stable,

Z
d∼ n1/α(Z1 ∪ · · · ∪ Zn) ,

for i.i.d. random closed sets Z1, . . . , Zn having the same distribution as Z . Then
(6.4) follows from the homogeneity and regularity properties of m. Indeed,

uυ(Yn, Z;M) = uυ

(
n1/α(X1 ∪ · · · ∪ Xn), n1/α(Z1 ∪ · · · ∪ Zn);M

)
≤ nγ /α

n∑
k=1

uυ(Xk, Zk;M)

= n1+γ /αuυ(X1, Z;M) .
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(ii) Since (cF)∗ = c−1 F∗, we have Y ∗n = n−1/α(X∗1 ∪ · · · ∪ X∗n), so that (ii)
immediately follows from (6.4). ��

Theorem 6.9 and inequality (6.3) yield that

u(Yn, Z;M) ≤ q + Q(q, Z;M) ,

where

q =
(

n1+γ /αuυ(A1, Z;M)/υ(B1(0))
)1/(1+γ )

.

Notes to Chapter 4

Section 1.1. There is a vast literature on extreme values of random variables and extensions
to the multivariate case, see, e.g. monographs by Galambos [186], Leadbetter, Lindgren and
Rootzen [346], Resnick [481] and Reiss [477].

The studies of max-stable vectors in Rd with respect to coordinatewise maximum were
initiated by Balkema and Resnick [47] and de Haan and Resnick [216]. These ideas were
extended for pointwise maximum of random functions in [201, 215, 216, 431] and for a
rather general case of random elements in a lattice in Gerritse [189] and Norberg [432, 434].
Schlather [514] considered models for stationary max-stable random fields.

Section 1.2. The concept of infinite divisibility for unions is due to Matheron [381] whose
proof of Theorem 1.6 is given here for a general case that allows for possible fixed points.
Matheron also characterised union-infinitely-divisible semi-Markov random closed sets.

Section 1.3. The first to study the stability of random closed sets with respect to unions was
Matheron [381]. He considered the simplest case of union-stable sets without fixed points.
General union-stable random closed sets were characterised by Molchanov [395], where The-
orem 1.12 was proved.

Following Example 1.19, it is shown in Molchanov [398] that a random closed set with
the capacity functional derived from the Riesz capacity can be obtained by considering paths
of stable processes with exponent d − α. Recall that a homogeneous stochastic process ζ(t)
with independent increment is said to be stable if its increment has a stable distribution, so
that the characteristic function of process ζ(t)− ζ(0) is exp{−c|t |d−α} for d − 2 < α ≤ d .

Section 1.4. The concepts of stability and infinite divisibility for random sets were discussed
from a very general point of view by Trader [565]. However D.A. Trader’s approach evaded
some difficulties. For instance, the characterisation problem was merely reduced to some func-
tional equations. Theorem 1.23 was proved in Trader [565] for m = 2 implicitly assuming that
X is not invariant under any non-trivial translation. The current proof rectifies this deficiency.
There are close connections between max-stable stochastic processes and union-stable ran-
dom sets, since the hypograph of any max-stable process is a union-stable random set (cf.
Section 5.3.3). Operator-stable distributions and the corresponding convergence of types the-
orems in linear spaces are considered by Jurek and Mason [284].
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Proposition 1.21 is new. Different normalisations along different axes were used by Pen-
rose [452] to define semi-min-stable processes. These processes have epigraphs that satisfy
Proposition 1.21.

Section 1.5. This section refers to the results of Norberg [432], which go back to the studies of
infinitely divisible functions on semigroups, see Appendix G. However, the lattice framework
allows us to incorporate very naturally topological considerations which are missed if one
exclusively follows the semigroup approach. Self-decomposable random elements in a lattice
and self-decomposable random vectors with respect to coordinatewise maximum have been
studied by Gerritse [189].

Section 2.1. A limit theorem for normalised unions of random closed sets was proved by
Molchanov [398, 399]. It is quite natural that the regular variation condition plays the key role
in limit theorems for unions of random sets. Appendix H surveys some results on numerical
regularly varying functions.

Random closed sets with capacity functionals related to derivatives of capacities appear
as conditional limiting distributions for unions with an → 0, see Section 1.5.5.

Theorem 2.3 is taken from Molchanov [398]. Pancheva [440] and Zolotarev [630] consid-
ered a very general normalising scheme for the maximum of random variables and showed that
the use of non-linear normalisations led to unification of max-stable and self-decomposable
laws. The main difficulty in generalising this idea for random sets lies in the solving of some
functional equations in the space of closed sets.

Section 2.2. Theorem 2.5 and the corresponding example are taken from Molchanov [398].
Theorems 2.8 and 2.9 are apparently new.

Section 2.3. The results of Norberg [429] concern the scheme of series, where the regu-
lar variation of the capacity functional appears as an implicit condition. A generalisation for
lattice-valued random elements is described in Norberg [434].

Superpositions of point processes can be naturally interpreted as unions of random closed
sets. Along the same lines, Nagel and Weiss [421] consider limits of rescaled superpositions
of stationary planar tessellations. The limits are given by tessellations formed by a stationary
Poisson line process.

Section 3.1. The concept of regularly varying capacities in Definition 3.2 was introduced by
Molchanov [402]. It can be extended to general functions defined on a subclass of K that is
closed under homotheties.

Section 3.2. Results on the almost sure convergence of scaled unions are due to Molcha-
nov [402], see also Molchanov [398, Ch. 5]. The almost sure convergence for random samples
was investigated by Eddy [154] and Eddy and Gale [156] for the case of Gaussian samples.
Theorem 3.7 is due to Davis, Mulrow and Resnick [119], while its proof based on application
of Theorem 3.5 can be found in Molchanov [398, Th. 3.3]. Example 3.8 replicates the result
of Fisher [172]. Further examples for the almost sure limits of random samples can be found
in Davis, Mulrow and Resnick [119] and Kinoshita and Resnick [313].

Section 3.3. It is possible to mention a number of studies concerned with almost sure limits
for a random sample (or its convex hull) in Rd as the sample size increases. This problem was
finally solved by Kinoshita and Resnick [313] who found necessary and sufficient conditions
for the convergence of scaled samples of random vectors. Almost sure stability of random
samples was studied by McBeth and Resnick [384]. Section 3.3 uses the technique of Ki-
noshita and Resnick [313] to formulate (apparently new) necessary and sufficient conditions
for the stability of unions of random compact sets.
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Section 3.4. The presentation follows Schreiber [526, 525]. Theorem 3.15 is proved in
Schreiber [526]. It is also possible to use these results in order to prove a limit theorem for the
mean width of a random polyhedron formed by a random sample in a ball. Schreiber [525]
presented refinements of these results that can be obtained if the avoidance functional QY (Zn)

is replaced by µ(Zc
n) for a probability measure µ. A central limit theorem for the measures of

the complement of Zn is proved in Schreiber [525].
Yurachkivsky [620] applied martingale methods in order to derive a central limit theorem

for the measure of the union of random sets.

Section 4.1. The concepts of infinite divisibility and stability of random closed sets with re-
spect to convex hulls go back to Trader [565], who obtained the first characterisation result
in this direction. D.A. Trader’s proof was based on semigroup techniques and did not give an
explicit representation of the containment functional, but just the fact that infinitely divisible
sets appear as convex hulls of a Poisson point process on the space of compact sets. The in-
finite divisibility property for convex hulls is characterised by Norberg [432] and Giné, Hahn
and Vatan [201]. T. Norberg’s proof is essentially lattice theoretic (as outlined in Section 4.1),
while Giné, Hahn and Vatan obtained their characterisation through representations of contin-
uous max-infinitely-divisible functions on a metric space.

Section 4.2. Definition 4.5 of the stability of random convex compact sets with respect to
convex hulls appeared first in Giné, Hahn and Vatan [201] where such a set X is additionally
assumed to be compact with support function having a non-degenerate distribution. Some
unnatural restrictions have been removed by Molchanov [397, 398]. The current formulations
of the results of Section 4.2 are new, although they can be traced back to their remote origins in
Molchanov [397]. Assuming the compactness and a non-degenerate distribution of the support
functions at each direction, it is possible to represent the functional ψ as an integral, which
provides a spectral representation of distributions for convex-stable random sets. The details
can be found in Giné, Hahn and Vatan [201].

Section 4.3. The weak convergence of convex hulls was considered in Molchanov [397]. The
presented results provide a slight extension of [397] which dealt mostly with random convex
compact sets.

Almost sure and weak convergence results for convex hulls of random closed sets can
be deduced from pointwise limit theorems for the maximum of support functions, the latter
extensively studied by de Haan and Resnick [215, 216] and Norberg [431].

Section 5.1. The presentation follows Molchanov [398], where further results can be found.
Theorem 5.1 goes back to Resnick [480], while its proof based on application of Theorem 2.1
can be found in Molchanov [398, 399] (in a slightly different form). Some statistical applica-
tions of the estimates for tail probabilities of volumes of convex hulls are discussed in Mol-
chanov [398, Sec. 8.2]. Results on the almost sure convergence of scaled random samples can
be obtained from Theorem 3.12, see further examples in Davis, Mulrow and Resnick [119]
and Kinoshita and Resnick [313]. The convergence of distributions of scaled samples may be
also used as an alternative definition of regularly varying distributions, see Resnick [481].

Another direction of research concerns limiting behaviour of convex hulls of random sam-
ples. This vast programme of research was initiated by Rényi and Sulanke [478], Efron [158]
and Carnal [86]. The major direction of work was the development of asymptotic formulae for
geometric quantities (number of vertices, perimeter, area, etc.) of the convex hull as the sam-
ple size increases. For more recent results, surveys and further references see Schneider [519]
and Groeneboom [212].
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The fact that asymptotic behaviour of convex hulls is related to the limit theorems for the
corresponding samples considered as random closed sets has not been explicitly used in the
above mentioned studies. Brozius and de Haan [79, 80] and Davis, Mulrow and Resnick [118]
showed how to deduce some asymptotic formulae for the geometric characteristics of the
convex hull from the weak convergence of the corresponding random convex sets and how to
deduce the convergence of moments. The convex hull of a sample can be used to estimate the
support of distribution (Moore [413] and Ripley and Rasson [493]), as an order statistic for a
multivariate sample (Barnett [50] and Eddy [155]) and as multivariate quantiles. The convex
hull can be used to assess circular symmetry of the sample and to trim the sample. Stam [540]
studied expectation and the variance of the volume of unions of random sets obtained as unions
of random translations of a deterministic set.

Section 5.2. Limit theorems for unions of homogeneous multivalued functions were consid-
ered in Molchanov [398]. Theorem 5.7 on the almost sure convergence is proved in Molcha-
nov [398, 402]. Proposition 5.5 is proved in Molchanov [398, Th. 4.8]. Applied to random
singletons, Theorem 5.7 turns into Theorem 6.3 from Davis, Mulrow and Resnick [119] with-
out a strict monotonicity condition imposed on ϕ in [119].

Multivalued regular varying functions of random vectors are discussed in Molchanov [398,
401]. Intersections of random half-spaces using the approach based on unions of random sets
were studied by Molchanov [398, Sec. 8.5]. They can be interpreted as feasible sets in linear
programming problems with random constraints.

Section 6. The probability metric method in application to limit theorems for random vari-
ables was developed by Zolotarev [628, 630]. A comprehensive monograph by Rachev [470]
covers many aspects of probability metrics. Properties of concentration functions for random
closed sets are considered in Molchanov [398, Sec. 7.2]. Applications to unions of random sets
are due to Molchanov [398, 403], where further results along the lines described in Section 6
can be found.
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Random Sets and Random Functions

1 Random multivalued functions

A random set is a multivalued measurable function defined on a probability space.
If this multivalued function depends on the second argument (time), then random
processes of sets (or random multivalued functions) appear. Important examples are
provided by growth processes, multivalued martingales and solutions of stochastic
differential inclusions. We consider often the case of the discrete time, i.e. sequences
of random closed sets.

1.1 Multivalued martingales

Definition and main properties

The concept of a multivalued (or set-valued) martingale relies on the definition of the
conditional selection expectation, see Section 2.1.6. Let {Fn, n ≥ 1} be a filtration
on (Ω,F,P), i.e. family of complete sub-σ -algebras of F such that Fm ⊂ Fn if
m ≤ n.

An adapted family {ξn, n ≥ 1} of E-valued integrable random elements is called
a martingale if E(ξn+1|Fn) = ξn for every n ≥ 1, see Chatterji [96] and Vakhaniya,
Tarieladze and Chobanyan [568]. When discussing martingales the filtration is usu-
ally mentioned along with the relevant random elements. However, we often omit
the filtration if it is Fn , n ≥ 1.

Consider a sequence of random closed sets {Xn, n ≥ 1} such that Xn is Effros
measurable with respect to Fn , i.e. {Xn ∩ G �= ∅} ∈ Fn for every open G. Then
the set-valued process {Xn, n ≥ 1} is called adapted. A sequence {Xn, n ≥ 1} is
adapted with respect to the minimal filtration Fn = σ(Xm, m ≤ n) generated by Xm

for m ≤ n.

Definition 1.1 (Multivalued martingales). An adapted sequence (Xn,Fn), n ≥ 1,
of multivalued integrable random convex closed sets is called a multivalued (or set-
valued)
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(i) martingale if E(Xn+1|Fn) = Xn a.s. for all n ≥ 1;
(ii) supermartingale if E(Xn+1|Fn) ⊂ Xn a.s. for all n ≥ 1;
(iii) submartingale if E(Xn+1|Fn) ⊃ Xn a.s. for all n ≥ 1.

All random closed sets in Definition 1.1 are almost surely convex. In the classical
case of single-valued processes with real values, submartingales and supermartin-
gales are closely related, i.e. −ξ is a submartingale if and only if ξ is a supermartin-
gale. This is not the case for set-valued random processes, so that multivalued sub-
martingales and supermartingales require separate treatments. In the single-valued
case Definition 1.1 complies with the definition of a martingale in a Banach space
and makes no difference between single-valued martingales, submartingales or su-
permartingales.

Example 1.2. Let ξn be a real-valued martingale. Then Xn = co(0, ξn) (the segment
with end-points zero and ξn) is a multivalued martingale if ξn is almost surely positive
for all n or almost surely negative. If ξn is a single-valued martingale in Rd , then
Xn = co(0, ξn) is a multivalued submartingale.

A multivalued martingale is called integrably bounded if E‖Xn‖ <∞ (i.e. Xn is
integrably bounded) for every n ≥ 1. Multivalued martingales give rise to a number
of martingale-like sequences with values in the real line.

Theorem 1.3 (Numerical martingales generated by multivalued ones).
(i) If Xn is a multivalued submartingale such that Xn is bounded for every n ≥ 1,

then ‖Xn‖ is a submartingale.
(ii) If x ∈ E and Xn is a multivalued supermartingale, then ρ(x, Xn) is a submartin-

gale.
(iii) If Xn is an integrably bounded multivalued martingale (respectively submartin-

gale, supermartingale), then their support functions h(Xn, u), n ≥ 1, form a
martingale (respectively submartingale, supermartingale) for every linear func-
tional u.

Proof.
(i) By the definition of conditional expectation,

‖Xn‖ ≤ ‖E(Xn+1|Fn)‖ = sup{‖E(ξ |Fn)‖ : ξ ∈ S1
Fn+1

(Xn+1)}
≤ E(sup{‖ξ‖ : ξ ∈ S1

Fn+1
(Xn+1)}|Fn)

= E(‖Xn+1‖|Fn) .

(ii) It suffices to show that ρ(x,E(X |H)) ≤ E(ρ(x, X)|H) for any sub-σ -algebra
H ⊂ F and any integrable random closed set X . By the fundamental selection theo-
rem, for each δ > 0 there exists an integrable selection η ∈ S1(X) satisfying

‖x − η‖ ≤ ρ(x, X)+ δ a.s.

Taking conditional expectations and applying Jensen’s inequality yields
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‖x − E(η|H)‖ = ‖E(x − η|H)‖ ≤ E(ρ(x, F)|H)+ δ .

Since E(η|H) ∈ E(X |H),

ρ(x,E(X |H)) ≤ E(ρ(x, F)|H)+ δ ,

which immediately yields the required statement.
(iii) follows from Theorem 2.1.47(iv). ��

The following result easily follows from the definition of the conditional expec-
tation.

Proposition 1.4. If Xn and Yn are multivalued submartingales (respectively super-
martingales), then Xn ∪ Yn (respectively Xn ∩ Yn) is a multivalued submartingale
(respectively supermartingale).

Convergence of multivalued (super-) martingales

The embedding technique (see Theorem 2.1.21) allows us to replace the selection
expectation with the Bochner integral in a linear space where all convex sets can
be embedded. This approach works if {Xn, n ≥ 1} is a sequence of either random
compact sets or integrably bounded Hausdorff approximable random convex closed
sets in a reflexive space. Then it is possible to apply the martingale convergence
theorem in Banach spaces (see Chatterji [96]) to deduce the following result.

Theorem 1.5 (Convergence of conditional expectations). Let Xn = E(X |Fn),
n ≥ 1, where X is an integrably bounded random convex compact set (if E is reflex-
ive, the compactness can be replaced by the Hausdorff approximability assumption).
Then EρH(Xn, X∞) → 0 and ρH(Xn, X∞) → 0 a.s., where X∞ = E(X |F∞) and
F∞ is the σ -algebra generated by ∪∞n=1Fn .

The following result concerns general integrably bounded multivalued martin-
gales.

Theorem 1.6 (Convergence of multivalued martingales). Assume that E has the
Radon–Nikodym property and that E∗ is separable. Let (Xn,Fn) be an integrably
bounded multivalued martingale. If {‖Xn‖, n ≥ 1} is uniformly integrable, then there
exists a unique integrably bounded random convex closed set X∞ such that Xn =
E(X∞|Fn) for all n ≥ 1.

Proof. Without loss of generality assume that F = F∞. Let Ξ be the family of
all integrable E-valued random elements ξ such that E(ξ |Fn) ∈ S1

Fn
(Xn) for every

n ≥ 1. It is easy to see that Ξ is a convex closed subset of L1 = L1(Ω;E). Let us
show that Ξ is bounded and decomposable.

Let ξ, η ∈ Ξ and A ∈ F. Denote ξn = E(ξ |Fn) and ηn = E(η|Fn), n ≥ 1. The
convergence theorem for real-valued martingales implies that ξn → ξ and ηn → η

a.s. Then
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ζn = E(1A|Fn)ξn + E(1Ω\A|Fn)ηn

is an integrable Fn-measurable selection of Xn , so that {‖ζn‖, n ≥ 1} is uniformly
integrable. Since ζn → ζ = 1Aξ + 1Ω\Aη a.s., it follows that E‖ζn − ζ‖ → 0. If
m ≥ n, then E(ζm |Fn) ∈ S1

Fn
(Xn) and

E‖E(ζ |Fn)− E(ζm |Fn)‖ ≤ E‖ζ − ζm‖ .
Letting m go to infinity yields E(ζ |Fn) ∈ S1

Fn
(Xn), so that ζ ∈ Ξ , which means that

Ξ is decomposable. For every ξ ∈ Ξ ,

E‖ξ‖ = lim
n→∞E‖E(ξ |Fn)‖ ≤ sup

n≥1
E‖Xn‖ ,

so that Ξ is bounded.
Let us show that for every n ≥ 1, ξ ∈ S1

Fn
(Xn) and ε > 0 there exists a η ∈ Ξ

such that
‖E(1Aξ)− E(1Aη)‖ ≤ ε , A ∈ Fn . (1.1)

Without loss of generality put n = 1. Since X j = E(X j+1|F j ), j ≥ 1, we can
choose a sequence {ξi , i ≥ 1} with ξ1 = ξ such that ξ j ∈ S1

Fj
(X j ) and

E‖ξ j − E(ξ j+1|F j )‖ < 2− jε , j ≥ 1 .

If m > j ≥ k, then

‖E(1Aξi )− E(1Aξm)‖ =
∥∥∥ m−1∑

i= j

E(1A(ξi − E(ξi+1|Fi )))

∥∥∥
≤

m−1∑
i= j

E‖ξi − E(ξi+1|Fi )‖ < 2− j+1ε (1.2)

for all A ∈ Fk . Therefore,

λ(A) = lim
m→∞E(1Aξm)

exists for every A ∈ ∪∞k=1Fk . Because of the uniform integrability, the limit exists
for all A ∈ F. The Radon–Nikodym property implies that there exists η ∈ L1 such
that λ(A) = E(1Aη) for all A ∈ F. Since E(ξm |F j ) ∈ S1

Fj
(X j ) for m ≥ j ,

E(1AE(η|F j )) = E(1Aη) = lim
m→∞E(1Aξm)

= lim
m→∞E(1AE(ξm |F j )) ∈ EFj (1A X j )

for all A ∈ F j and j ≥ 1, see (2.1.13). By Proposition 2.1.18(i), E(η|F j ) ∈ S1
Fj

(X j )

for all j ≥ 1, so that η ∈ Ξ . Letting m → ∞ and j = k = 1 in (1.2) yields (1.1).
This also shows that Ξ is not empty.
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By Theorem 2.1.6 there exists a random closed set X∞ such that Ξ = S1(X∞).
Furthermore, X∞ is convex by Proposition 2.1.5 and integrably bounded by Theo-
rem 2.1.19. By (1.1),

EFn (Xn) = cl{E(1Aξ) : ξ ∈ S1
Fn

(Xn)}
= cl{E(1Aη) : η ∈ Ξ}
= E(1A X∞) , A ∈ Fn, n ≥ 1 .

By Theorem 2.1.49(iii), Xn = E(X∞|Fn) for n ≥ 1.
It remains to confirm the uniqueness of the limiting random closed set. Let Y be

an integrably bounded random closed set such that Xn = E(Y |Fn) for n ≥ 1. Then
E(1AY ) = E(1A X∞) for all A ∈ ∪∞n=1Fn and, by an approximation argument, for
all A ∈ F. Proposition 2.1.18(i) implies that Y = X∞ a.s. ��

Combining Theorem 1.6 with Theorem 1.5 and noticing that in the Euclidean
space every random convex closed set is Hausdorff approximable, we obtain that
any multivalued martingale in Rd with uniformly integrable norms converges. The
following result establishes the convergence for multivalued supermartingales.

Theorem 1.7 (Multivalued supermartingales in Rd ). Consider a multivalued su-
permartingale (Xn,Fn) in Rd , such that supn≥1 E‖Xn‖ < ∞. Then there exists an
integrably bounded random convex compact set X∞ such that ρH(Xn, X∞)→ 0 a.s.
If {‖Xn‖, n ≥ 1} is uniformly integrable, then also EρH(Xn, X∞)→ 0 as n →∞.

Proof. For every u ∈ Rd the support function h(Xn, u), n ≥ 1, is a supermartingale.
The supermartingale convergence theorem implies that h(Xn, u) L1-converges to an
integrable random variable α(u). Thus, for all A ∈ F,

fn(A, u) = E(1Ah(Xn, u))→ f (A, u) = E(1Aα(u)) ,

whence | f (A, u)| ≤ c = supn≥1 E‖Xn‖. It is easy to see that f (A, u) is a sup-
port function for every u. By the Radon–Nikodym theorem for multivalued mea-
sures (Theorem 2.1.35(ii)), f (A, u) = h(E(1A X∞), u). Therefore, h(Xn, u) →
h(X∞, u) a.s. for all u from a countable dense subset of Rd . The proof is finished
by using the fact that the pointwise convergence of support functions to a contin-
uous limit implies the Painlevé–Kuratowski convergence of the corresponding sets,
which in turn yields the convergence in the Hausdorff metric provided that the limit
is compact and convex, see Papageorgiou [444, Th. 2.2]. ��

The Banach space variant of Theorem 1.7 holds if the uniform integrability as-
sumption is replaced by a stronger one that requires that {Xn, n ≥ 1} is uniformly
integrably bounded, i.e. sup{‖Xn‖ : n ≥ 1} is integrable.

Theorem 1.8 (Mosco convergence of multivalued maringales). Assume that E has
the Radon–Nikodym property and E∗ is separable. If (Xn,Fn), n ≥ 1, is a uniformly
integrably bounded multivalued martingale, then Xn a.s. converges in the Mosco
sense as n →∞ to an integrably bounded random convex closed set X∞.
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Proof. Theorem 1.6 yields the existence of X∞ such that E(X∞|Fn) = Xn . For
every integrable selection ξ ∈ S1(X∞), the sequence ξn = E(ξ |Hn) is a single-
valued martingale in E. By the convergence theorem for E-valued martingales, ξn →
ξ a.s. in the strong topology on E. Thus X∞ ⊂ s−lim inf Xn a.s.

It will be shown in Theorem 1.12(ii) below that Xn = cl{ξ(k)
n , k ≥ 1} for every

n ≥ 1, where {ξ(k)
n , n ≥ 1} is a martingale for every k ≥ 1. Since h(Xn, u) =

sup{〈ξ(k)
n , u〉 : k ≥ 1}, using the fact that 〈ξ(k)

n , u〉 is a real-valued martingale, it is
possible to deduce that

sup
k≥1
〈ξ(k)

n , u〉 → sup
k≥1
〈ξ(k), u〉 a.s. as n →∞ ,

where {ξ(k), k ≥ 1} are integrable selections of X∞. The exceptional sets in the
above almost sure convergence can be combined using the separability of E∗, which
implies

lim sup h(Xn, u) ≤ h(X∞, u) a.s., u ∈ E∗ .

Therefore, w−lim sup Xn ⊂ X∞ a.s., so that Xn
M−→ X∞ a.s. ��

The following result provides a rather general convergence theorem for possibly
unbounded supermartingales in Banach spaces.

Theorem 1.9 (Convergence of supermartingales in Banach space). Let E be a
separable Banach space and let (Xn,Fn), n ≥ 1, be a multivalued supermartingale
such that supn≥1 Eρ(0, Xn) < ∞ and Xn ⊂ Y a.s. for every n ≥ 1, where Y is a
random closed set such that the intersection of Y with an arbitrary closed ball is al-
most surely weakly compact. Then Xn converges in the Mosco sense to an integrable
random closed set X∞ such that X∞ has almost surely weakly compact intersec-
tion with every ball. If, additionally, {ρ(0, Xn), n ≥ 1} is uniformly integrable, then
E(X∞|Fn) ⊂ Xn a.s. for every n ≥ 1.

Proof. Let us outline the proof which is based on truncation arguments. All missing
details can be retrieved from Hess [242]. By Theorem 1.3(ii), αk

n = ρ(0, Xn) + k,
n ≥ 1, is a positive submartingale for every fixed k. By Krickeberg’s decomposi-
tion theorem, αk

n = βk
n − sk

n , where βk
n is a positive integrable martingale and sk

n
is a positive integrable supermartingale. Then Y k

n = Xn ∩ Bβk
n
(0) is a multivalued

supermartingale, so that Y k
n ⊂ Y ∩ Bwk (0), where wk is an integrable random vari-

able which bounds the a.s. convergent martingale βk
n . By the assumption on Y , the

random closed set Y k
n is a.s. weakly compact. By Theorem 1.3(iii), h(Y k

n , u) forms a
supermartingale. Using separability arguments and the boundedness of Y k

n together
with Theorem F.1, it is possible to show that h(Y k

n , u) → h(Y k∞, u) a.s. as n → ∞
for every k ≥ 1. The latter implies the Mosco convergence of Y k

n to Y k∞ a.s. Proposi-
tion B.10 establishes the weak convergence of Xn to X∞ = ∪k≥1Y k∞. The inclusion
E(X∞|Fn) ⊂ Xn follows from Theorem 2.1.50. ��
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Corollary 1.10 (Convergence of supermartingales with possibly unbounded val-
ues in Rd ). If (Xn,Fn), n ≥ 1, is a multivalued supermartingale in Rd such that
supn≥1 Eρ(0, Xn) <∞, then there exists an integrable random closed set X∞ such
that Xn converges to X a.s. in the Fell topology as n →∞.

Martingale selections

The following concept relates multivalued and single-valued martingales.

Definition 1.11 (Martingale selection). An E-valued martingale (ξn,Fn), n ≥ 1, is
said to be a martingale selection of {Xn, n ≥ 1} if ξn ∈ S1(Xn) for every n ≥ 1. The
family of all martingale selections is denoted by MS(Xn, n ≥ 1).

The concept of the projective limit from Appendix A makes it possible to estab-
lish the existence of martingale selections and to provide a Castaing representation
of Xn that consists of martingale selections. Note that projk({ξn, n ≥ 1}) = ξk de-
notes a projection of a sequence {ξn, n ≥ 1} onto its kth coordinate. For example,
projk(MS(Xn, n ≥ 1)) is the family of all martingale selections at time k.

Theorem 1.12 (Existence of martingale selections). Let E be a separable Banach
space.
(i) Any multivalued martingale admits at least one martingale selection.

(ii) For every k ≥ 1, projk(MS(Xn, n ≥ 1)) is dense in S1
Fk

(Xk).
(iii) There exists a countable subset D of MS(Xn, n ≥ 1) such that projk(D) is a

Castaing representation of Xk for any k ≥ 1.

Proof.
(i) For m ≤ n define um,n( f ) = E( f |Fm) for f ∈ S1

Fn
(Xn). The sequence

{S1
Fn

(Xn), n ≥ 1} together with the maps um,n is a projective system of non-empty

complete subsets of L1. By the definition of the multivalued conditional expectation,

un,n+1(S1
Fn+1

(Xn+1)) = {E(ξ |Fn) : ξ ∈ S1
Fn+1

(Xn+1)}

is dense in S1
Fn

(Xn). Theorem A.4 implies that this projective system has a non-
empty projective limit. Any member ξ = {ξn, n ≥ 1} of the projective limit satisfies

projm(ξ) = um,n(projn(ξ)) , m ≤ n ,

or, equivalently, ξm = E(ξn |Fn), so that (ξn,Fn) is a required martingale selection.
(ii) is an immediate consequence of Theorem A.4.
(iii) By Proposition 2.1.2(ii), Xn has a Castaing representation {ξ(k)

n , k ≥ 1} which
consists of integrable selections for all n ≥ 1. Since projn(MS(Xn, n ≥ 1)) is dense
in S1

Fn
(Xn), for every k ≥ 1 there exists a sequence

{η(kj )
n , j ≥ 1} ⊂ MS(Xn, n ≥ 1)
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such that η
(kj )
n → ξn(k) in L1 as j → ∞. Therefore, η

(kj (i))
n → ξn(k) a.s. for

a subsequence { j (i), i ≥ 1}. By taking the unions of the exceptional sets where
the convergence fails for all n and k, it is readily seen that {η(kj )

n , k, j ≥ 1} is
dense in Xn a.s., and so provides a Castaing representation that consists of martingale
selections. ��

Using a similar idea it is possible to show that every weakly compact submartin-
gale Xn admits a martingale selection if Xn ⊂ Y for a weakly compact convex ran-
dom set Y , see Papageorgiou [442, Th. 2.2]. In particular, this immediately implies
that lim inf Xn �= ∅ a.s.

The technique based on projective limits yields that an integrably bounded mul-
tivalued supermartingale admits at least one martingale selection if Xn has weakly
compact values, see Hess [242, Prop. 3.6]. Indeed, then S1

Fn
(Xn) is weakly com-

pact in L1, which allows us to refer to Proposition A.3. This result holds also for
supermartingales with unbounded values.

Theorem 1.13 (Martingale selections of possibly unbounded supermartingales).
Let Xn , n ≥ 1, be a multivalued supermartingale in a reflexive space E.
(i) If {Eρ(0, Xn), n ≥ 1} is bounded, then there exists a martingale selection ξn ,

n ≥ 1, such that {E‖ξn‖, n ≥ 1} is bounded.
(ii) If, additionally, {ρ(0, Xn), n ≥ 1} is a uniformly integrable sequence of ran-

dom variables, then there exists a martingale selection, which is uniformly inte-
grable in L1.

Proof. By Theorem 1.3(ii), αn = ρ(0, Xn)+1 is a positive integrable submartingale
verifying supn≥1 Eαn < ∞. By Krickeberg’s decomposition theorem, it is possible
to decompose αn as αn = βn − sn , where βn is a positive integrable martingale
and sn is a positive integrable supermartingale. It is readily seen that Bβn (0) is a
multivalued martingale. It follows from Theorem 1.2.25(iv) that Yn = Xn ∩ Bβn(0),
n ≥ 1, is a sequence of random closed sets, which are non-empty by the choice of
βn . Proposition 1.4(ii) implies that (Yn,Fn) is a multivalued supermartingale. Since
E is reflexive, Yn has weakly compact values. Then Yn has at least one martingale
selection {ξn, n ≥ 1} which satisfies

sup
n≥1

E‖ξn‖ ≤ sup
n≥1

Eβn ≤ sup
n≥1

Eαn <∞ ,

proving (i). The uniform integrability of ρ(0, Xn) implies that ‖ξn‖ is uniformly
integrable. ��

It is shown in Luu [362] that, under some conditions, the closure of a set of mar-
tingale selections is a multivalued martingale. Theorem 1.14 follows from a repre-
sentation theorem for multivalued amarts (see Definition 1.16) proved by Luu [363].
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Theorem 1.14 (Castaing representation of multivalued martingale). An adapted
sequence {Xn, n ≥ 1} of integrably bounded random convex closed sets in a sep-
arable Banach space is a multivalued martingale if and only if the following two
conditions hold.
(1) There exists a family {ξ(k)

n , n ≥ 1}, k ≥ 1, of martingale selections such that
Xn = cl{ξ(k)

n , k ≥ 1}.
(2) If ηn ∈ S(Xn), n ≥ 1, and ‖ηn − η̃n‖ → 0 a.s. for a martingale η̃n , then

{η̃n, n ≥ 1} is a martingale selection of {Xn, n ≥ 1}.

Optional sampling

A random variable τ with values in {1, 2, . . . } is said to be a stopping time if {τ =
n} ∈ Fn for every n ≥ 1. The associated stopping σ -algebra Fτ is the family of all
A ∈ F such that A ∩ {τ = n} ∈ Fn for every n ≥ 1.

Theorem 1.15 (Optional sampling theorem). Let (Xn,Fn), n ≥ 1, be an integrably
bounded multivalued martingale. If {τm,m ≥ 1} is an increasing sequence of stop-
ping times, X̂m = Xτm and F̂m = Fτm , then (X̂m, F̂m), m ≥ 1, is a multivalued
martingale.

Proof. Let {ξ(k)
n , n ≥ 1} be a family of martingale selections such that Xn =

cl{ξ(k)
n , k ≥ 1} for every n ≥ 1. By the optional sampling theorem for single-valued

martingales, ξ̂m = ξτm is a martingale, so that the proof is finished by referring to
Theorem 1.14. ��

Theorem 1.15 is equivalent to the fact that E(Xσ |Fτ ) = Xτ for every two stop-
ping times σ and τ such that σ ≥ τ almost surely. The optional sampling theorem
implies E(Xτ ) = E(X0) for every stopping time τ , which is Wald’s identity for
multivalued martingales.

Multivalued supermartingales can be applied to decision-making problems. If i
is an action and j is its outcome, I (n)

i j is an a priori range for the score that a decision-

maker associates with the pair (i, j) that appears in the step n. If p̂(n) is an estimate
on the nth step of the conditional probability of outcome j given that the course of
action i was chosen, then the expected score is estimated by

X̂ (n)
i =

∑
j

I (n)
i j p̂(n) ,

which is the Minkowski sum of sets, for instance, line segments if the score ranges
are given by intervals. If the decision-maker has less uncertainty as n increases, then
I (n+1)
i j ⊂ I (n)

i j . A supermartingale property of X̂ (n)
i makes it possible to prove the

convergence of X̂ (n)
i to a random closed set Xi , see de Korvin and Kleyle [325].
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Martingale-like set-valued processes

It is possible to obtain meaningful results for set-valued processes which satisfy a
weaker form of the martingale property.

Definition 1.16. An adapted sequence {(Xn,Fn), n ≥ 1} of integrably bounded
random weakly compact convex sets is
(i) a mil (martingale in the limit) if for every ε > 0, there exists m ≥ 1 such that

P

{
sup

m≤k≤n
ρH(Xk,E(Xn |Fk)) > ε

}
< ε , n ≥ m ;

(ii) a multivalued quasi-martingale if

∞∑
n=1

EρH(Xn,E(Xn+1|Fn)) <∞;

(iii) a multivalued amart if EXτn converges in ρH for a sequence of stopping times
{τn, n ≥ 1} increasing to infinity;

(iv) a multivalued subpramart (respectively superpramart) if for any ε > 0 there
exists a stopping time σ0 such that P {Xσ ⊂ (E(Xτ |Fσ ))

ε} ≥ 1−ε (respectively
P
{
E(Xτ |Fσ ) ⊂ Xε

σ

} ≥ 1 − ε) for any two stopping times σ and τ such that
σ0 ≤ σ ≤ τ , where Fε denotes the ε-envelope of F ⊂ E;

(v) a multivalued pramart if it is both sub- and superpramart, i.e. if the Hausdorff
distance between Xσ and E(Xτ |Fσ ) converges to zero in probability uniformly
over the family of all stopping times τ ≥ σ ≥ σ0 as σ0 ↑ ∞.

Every submartingale is a subpramart, every supermartingale is a superpramart
and every martingale is a pramart. Furthermore, every pramart is a mil and every
quasi-martingale is a pramart, see Papageorgiou [448, Prop. 13].

1.2 Set-valued random processes

A function X : Ω×T �→ F is called a set-valued process on T, where the parameter
set T is usually the half-line, the whole line, the set of non-negative integers, or the set
E itself. It is assumed that Xt is a random closed set for every t ∈ T. Many particular
definitions of special set-valued processes (Markov, stationary) are applicable for
stochastic processes in general state spaces and can be reformulated for set-valued
processes without difficulties. For some other families of stochastic process (with
independent increments, diffusion processes) it is quite difficult to define their set-
valued analogues.

A question specific to the studies of set-valued processes concerns the existence
of a single-valued process ξt , t ∈ T, such that ξt is a selection of Xt for every t ∈ T
and ξ satisfies a particular property, for example, is Markov or stationary, etc.
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Set-valued Markov processes

A set-valued process Xt , t ≥ 0, is said to be Markov if it is a Markov process in the
state space F with its Effros σ -algebra. The sub-σ -algebra of F generated by Xs ,
s ≤ t , is denoted by Ft . Set-valued Markov processes that are related to the extremal
processes will be considered in Section 3.3.

Proposition 1.17 (Markov selections). If Xt is a set-valued Markov process, then
there exists a family of E-valued stochastic processes ξ

(n)
t , n ≥ 1, such that Xt =

cl{ξ(n)
t , n ≥ 1} for all t ≥ 0 and (ξ

(1)
t , ξ

(2)
t , . . . ), t ≥ 0, is a Markov process in the

space E{1,2,...}.

Proof. Define ξ
(n)
t = fn(Xt ), where fn , n ≥ 1, is a sequence of selection operators

introduced in Proposition 1.2.23. Since the sequence (ξ
(1)
t , ξ

(2)
t , . . . ) generates the

same σ -algebras as Xt , it also satisfies the Markov property. ��

Stationary processes

A set-valued process Xt , t ∈ R is said to be strictly stationary if for every
t1, . . . , tn ∈ R and s ∈ R the joint distribution of (Xt1, . . . , Xtn ) coincides with the
joint distribution of (Xt1+s , . . . , Xtn+s). This concept is a specialisation of a general
concept of strictly stationary stochastic processes in an abstract measurable space. A
process ξt , t ∈ R, is called a stationary selection of Xt if ξt is a stationary process
and ξt ∈ Xt a.s. for every t . Applying Proposition 1.2.23 and following the proof of
Proposition 1.17 it is easy to deduce the following result.

Proposition 1.18 (Stationary selections). A set-valued process Xt , t ∈ R, is strictly
stationary if and only if there exists a sequence {ξ(k)

t , k ≥ 1} of single-valued
strictly stationary processes such that Xt = cl{ξ(k)

t , k ≥ 1} for every t ∈ R and
(ξ

(1)
t , . . . , ξ

(n)
t ) is an En-valued stationary process for every n ≥ 1.

Ergodic theorems for strictly stationary set-valued processes follow from the er-
godic theorem for superstationary subadditive families of random closed sets con-
sidered in Section 3.3.5.

A process Xt , t ∈ R, is said to be the first-order stationary if the distribution of
Xt does not depend on t; the process is second-order stationary if the distribution of
(Xt1+s, Xt2+s) does not depend on s, etc.

Open problem 1.19. Investigate filtering problems for second-order stationary set-
valued processes.

Increasing set-valued processes

A set-valued process Xt , t ≥ 0, is said to be increasing if Xt ⊂ Xs a.s. for t ≤ s.
Examples of such processes are readily provided by taking successive Minkowski
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sums of random closed sets. For example, consider a sequence {Xn, n ≥ 1} of i.i.d.
integrable random compact sets containing the origin in E = Rd and define

Sn(t) =
∑
j≤nt

X j , n ≥ 1 , 0 ≤ t ≤ 1 .

Then Sn(t) is a piecewise constant increasing set-valued process. The strong law of
large numbers for Minkowski sums (Theorem 3.1.6) implies that

ρH(n−1Sn(t), tEX1)→ 0 a.s. as n →∞
uniformly in t ∈ [0, 1], where EX1 is the selection expectation of X1.

Another family of increasing set-valued processes is obtained by taking unions
of random closed sets X1, X2, . . . as

Zn(t) =
⋃
j≤nt

X j . (1.3)

The properties of Zn(t) as n →∞ follow from the limit theorems for unions of ran-
dom closed sets, see Chapter 4. It is also possible to prove a large deviation principle
for the sequence of multifunctions Zn , n ≥ 1, assuming that the random closed sets
X1, X2, . . . form a Markov chain, see Schreiber [524].

Example 1.20 (Large deviation principle for convex hulls). Let ξ1, ξ2, . . . be
i.i.d. random points uniformly distributed in a unit ball B in Rd . Define Zn(t) =
co{ξ1, . . . , ξn}. Then Zn satisfies the large deviation principle in the family U of in-
creasing set-valued functions on [0, 1] with the metric generated by the Hausdorff
metric between their graphs, i.e. for each open set G ⊂ U

lim inf
n→∞

1

n
log P {Zn ∈ G} ≥ − inf

U∈G
I (U)

and for each closed F ⊂ U

lim sup
n→∞

1

n
log P {Zn ∈ F} ≤ − inf

U∈F
I (U) .

The rate function I is given by

I (U) = log κd −
1∫

0

log(mes(U(t))) dt .

The proof relies on a representation of convex hulls by pointwise maxima of the
corresponding support functions, see (4.4.8) and Theorem 3.34.
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Random differential inclusions

Deterministic differential inclusions extend the concept of a differential equation.
For example, the differential equation dx/dt = f (t, x) is a particular case of the
differential inclusion

dx

dt
∈ F(t, x) ,

where F(t, x) is a multifunction for t, x ∈ R. This concept is particularly useful if
the right-hand side f (t, x) of the differential equation is discontinuous. Then F(t, x)
equals { f (t, x)} at all continuity points while at a discontinuity point (t0, x0) of f ,
the set F(t0, x0) is the convex hull of all partial limits of f (t, x) as (t, x)→ (t0, x0).

Random differential inclusions give rise to set-valued random processes. Let
[a, b] be a bounded closed interval in R+. Consider a random element ξ0 in a sepa-
rable Banach space E and a multifunction F defined on Ω × [a, b] × E with values
being non-empty closed sets in E. The random multivalued Cauchy problem can be
formulated as follows

∂

∂ t
ξ(ω, t) ∈ F(ω, t, ξ) , ξ(ω, 0) = ξ0(ω) . (1.4)

By a random solution of (1.4) we understand a stochastic process ξ(ω, t) with almost
surely differentiable sample paths.

Theorem 1.21 (Existence of solution for random differential inclusion). The ran-
dom differential inclusion (1.4) admits a solution if the following conditions hold.
(1) F has compact convex values.
(2) For all x ∈ E, (ω, t) �→ F(ω, t, x) is measurable.
(3) For all (ω, t) ∈ Ω × [a, b], x �→ F(ω, t, x) is continuous in the Hausdorff

metric.
(4) For almost all ω and all x ∈ E,

‖F(ω, t, x)‖ ≤ a(ω, t)+ b(ω, t)‖x‖ ,
where a and b are jointly measurable and integrable with respect to t for all ω.

(5) For all bounded B ⊂ E,

nc(F(ω, t, B)) ≤ ϕ(ω, t) nc(B) a.s. ,

where nc(B) is the Kuratowski measure of non-compactness of B ⊂ E, ϕ is
jointly measurable and

∫ b
a ϕ(ω, t)dt < 1/2 for all ω.

Set-valued stochastic integrals

Let Xt , t ≥ 0, be an Ft -adapted set-valued random process in E = Rd such that

t∫
0

‖Xs‖2ds <∞ a.s.
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for every t > 0. The fundamental selection theorem implies that there exists an
adapted stochastic process ξt , t ≥ 0, such that ξt is a measurable selection of Xt for
every t ≥ 0 and

∫ t
0 ‖ξs‖2ds <∞ for every t > 0. The process ξt is called an adapted

selection of Xt .
A set-valued stochastic integral is defined by taking integrals of all adapted se-

lections. For example, if wt is a Wiener process in R, then
∫ t

0 Xsdws is the set of∫ t
0 ξsdws for all adapted selections ξt of Xt . It is easy to see that the integral of a

convex process is convex. Although E[∫ t
0 ξsdws] = 0 for every adapted selection

ξt , the selection expectation E[∫ t
0 Xsdws] of the set-valued stochastic integral is not

zero. The following result follows from the fact that
∫ t

0 ξsdws is a martingale.

Proposition 1.22 (Submartingale property of the stochastic integral). If Xt is
almost surely convex for every t ≥ 0, then

∫ t
0 Xsdws is a multivalued submartingale.

Let F(t, x) and H (t, x) be multifunctions defined for t ≥ 0 and x ∈ Rd such
that their norms are square integrable over t ∈ [0, s] for every s > 0 and x ∈ Rd .
The corresponding stochastic differential inclusion can be written as

ζt ∈ ζ0 + clL2

⎛⎝ t∫
0

H (s, ζs)ds +
t∫

0

F(s, ζs)dws

⎞⎠ , (1.5)

where the closure in the right-hand side is taken in the space of square-integrable Ft -
measurable functions and the addition under the closure is in the Minkowski sense.
An alternative (however less precise) notation is dζt ∈ H (t, ζt)dt + F(t, ζt )dwt .
The closure Zt of the family of all ζt satisfying (1.5) is called the set-valued solu-
tion of (1.5). The existence theorem for solutions of stochastic differential equations
can be formulated for the set-valued case if the functions F and H admits (say,
Lipschitz) selections, so that the corresponding single-valued stochastic differential
equation has a solution. For instance, if both F and H admit Lipschitz selections and
ρ(0, F(t, x))2+ρ(0, H (t, x))2 ≤ c(1+‖x‖2) for some constant c, then the solution
exists by Ito’s existence theorem. The existence theorems for Lipschitz selections is
considered by Dentcheva [136].

It is quite difficult to find all single-valued solutions of set-valued stochastic dif-
ferential inclusions, since a set-valued function usually possesses a large family of
measurable selections.

Open problem 1.23. Suggest a way to calculate efficiently the stochastic integral
of set-valued processes (e.g.

∫ t
0 Xsdws for Xt = ζt M with a deterministic convex

M ⊂ Rd and a single-valued stochastic process ζt ) and solve stochastic differential
inclusions (e.g. dζt ∈ Fζt dwt , where F is a deterministic interval on the real line).

Open problem 1.24. Define a set-valued analogue of the Wiener process and the
corresponding stochastic integral.
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Stochastic control processes

Set-valued random functions appear naturally in stochastic control problems. Con-
sider the following controlled stochastic process

ξ(t, ω, u) , u ∈ U(t) ,

where u denotes the control and U(t) is the set of admissible controls at time t . Then
all possible values of the controlled process form a set-valued process X (t, ω) =
{ξ(t, ω, u) : u ∈ U(t)}. This often helps to establish the existence of optimal or
approximately optimal control strategies if the objective function does not directly
depend on the values of controls. For example, the minimisation of supt |ξ(t, ω, u)|
for the controlled process reduces to the minimisation of supt ‖X (t, ω)‖, i.e. the
controlled optimisation is reduced to optimisation without control but for a set-valued
process.

Set-valued shot-noise processes

Let N = {xi , i ≥ 1} be a stationary point process in Rd and let {βi , i ≥ 1} be a
sequence of i.i.d. random variables. If f : Rd × R �→ R is a measurable function
which vanishes outside a compact set, then the random function

υ(x) =
∑
i≥1

f (x − xi , βi ) (1.6)

is called a shot-noise process. The response function f (x − xi , βi ) is interpreted
as the effect at x ∈ Rd caused by an event which is characterised by the random
position xi at which the event occurs and by the random mark βi giving additional
information about the event, for example, the event’s “magnitude”. Then υ(x) is the
total effect observed at x . Two multivalued generalisations of the shot-noise process
are presented below.

Definition 1.25 (Set-valued shot-noise processes). Let F : Rd × R �→ K(Rm) be
a multivalued response function with values being compact subsets of Rm and let
Nλ = {xi , i ≥ 1} be a stationary point process in Rd with intensity λ. Consider a
sequence {βi , i ≥ 1} of i.i.d. random variables.
(i) The set-valued stochastic process

Ξλ(x) =
∑
i≥1

F(x − xi , βi ) , x ∈ Rd , (1.7)

(with the summation being the Minkowski sum) is called the Minkowski shot-
noise process.

(ii) The set-valued stochastic process

Ξλ(x) = cl

(⋃
i≥1

F(x − xi , βi )

)
, x ∈ Rd ,

is called the union shot-noise process.
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The sum in (1.7) is well defined if E‖F(x, β)‖ is integrable over Rd , where β is
a random element that shares the distribution with the βi s. One is mainly interested
in the limiting behaviour of the suitably normalised stochastic process Ξλ(t) when
the intensity λ of the underlying point process N tends either to ∞ (“high density
case”) or to 0 (“low density case”).

Consider first the Minkowski shot-noise process. By passing to support functions,
(1.7) yields a family of single-valued shot-noise processes

vu
λ(x) = h(Ξλ(x), u) =

∑
i≥1

h(F(x − xi , βi ), u) , x ∈ Rd , u ∈ Sd−1 .

By the Campbell theorem (see Theorem 1.8.10),

Evu
λ(x) =

∫
Rd

E(h(F(y, β), u))dy ,

noticing that the left-hand side yields the support function of the selection expec-
tation of Ξλ(x). By stationarity, it suffices to let x = 0. A limit theorem for vu

λ(0)
for any single u follows from a limit theorem for a single-valued shot-noise process
proved by Heinrich and Schmidt [232]. A limit theorem for finite-dimensional dis-
tributions for several values of u can be obtained using the Cramér–Wold device.
Indeed, for every u1, . . . , uk ∈ Sd−1 and a1, . . . , ak ∈ R,

ṽλ(x) =
k∑

j=1

a jv
u j
λ (x) =

∑
i≥1

f̃ (x − xi , βi ) ,

where f̃ (x, β) =∑k
j=1 a j h(F(x, β), u j ). Define

σ̃ 2 =
∫
Rd

E( f̃ (x, β))2dx =
k∑

i j=1

aia jσ
ui u j ,

where

σ uv =
∫
Rd

E[h(F(x, β), u)h(F(x, β), v)] dx . (1.8)

If Nλ is a Poisson point process, then σ̃ 2 <∞ implies that λ−1/2(ṽλ(0)−Eṽλ(0))
converges weakly as λ →∞ to the normal distribution with the variance σ̃ 2. Thus,
the finite-dimensional distributions of λ−1/2(vu

λ(0) − Evu
λ(0)) converge to finite-

dimensional distributions of a centred Gaussian process on Sd−1 with the covariance
given by (1.8). This readily implies the weak convergence in the space of continuous
functions on Sd−1 arguing similarly to the proof of Theorem 3.2.1.

Theorem 1.26 (Weak convergence for Minkowski shot-noise). Let E‖F(x, β)‖2 <

∞ for all x ∈ Rd and let
∫
Rd E‖F(x, β)‖2dx < ∞. If Ξλ is the Minkowski shot-

noise process generated by a Poisson point process, then
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λ−1/2(h(Ξλ(0), u)− Eh(Ξλ(0), u)) , u ∈ Sd−1 ,

converges weakly as λ → ∞ to a centred Gaussian process ζ on Sd−1 with the
covariance (1.8). If F(x, β) is convex almost surely for all x , then

λ−1/2ρH(Ξλ(0),EΞλ(0))
d→ sup

u∈Sd−1
|ζ(u)| .

Limit theorems for union shot-noise processes rely on regular variation properties
of the response function F . We give here only a basic result that provides a sufficient
condition for the weak convergence of the suitably scaled random closed set Ξλt (0)
as λt → ∞ or λt → 0 in the case Nλ is Poisson and F is homogeneous. As in
(H.13),

F−(K , β) = {u ∈ Rd : F(u, β) ∩ K �= ∅} , K ∈ K ,

denotes the inverse function to F .

Theorem 1.27 (Weak convergence of union shot-noise). Assume that
(1) F is homogeneous, i.e. F(su, β) = sα F(u, β) for all s > 0 and u ∈ Rd ;
(2) F(u, β) is continuous in the Hausdorff metric with respect to β for all u ∈ Rd ;
(3) mes(F−(K , β) + Bδ(0)) is integrable for each δ > 0 and each compact set K

missing the origin.
If Ξλ is the union shot-noise process generated by the stationary Poisson point pro-
cess of intensity λ, then λ

1/(dα)
t Ξλt (0) converges weakly as λt → ∞ or λt → 0

to
Ξ =

⋃
xi∈Π1

F(xi , β) ,

where Π1 is the Poisson point process in Rd of intensity 1.

1.3 Random functions with stochastic domains

In the theory of Markov processes it is quite usual to consider processes defined until
a random time moment. This concept can be extended by restoring the symmetry and
adding a random birth time, so that a process “lives” on a random interval on the line.
The basic arguments are quite general and can be extended to the non-Markovian and
multidimensional cases.

Finite-dimensional distributions

Let Y be a random open set in Rd , see Section 1.4.6. Suppose that ζx , x ∈ Rd ,
are random elements in a measurable space (E,E) defined on a probability space
(Ω,F,P).

Definition 1.28 (Stochastic process with random domain). A family of random
elements ζx , x ∈ Rd , is said to be a stochastic process with random open domain Y
if {ω : x ∈ Y, ζx ∈ B} ∈ F for each x ∈ Rd and B ∈ E.
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Note that it suffices to define ζx(ω) only on the graph of X , i.e. for x ∈ X (ω).
The finite-dimensional distributions of ζ are defined by

I (L; BL) = P
{

L ⊂ Y, ζxi ∈ Bi , 1 ≤ i ≤ n
}
,

where L = {x1, . . . , xn} is a finite set (i.e. L ∈ I, see Section 1.4.2) and BL =
(B1, . . . , Bn) for B1, . . . , Bn ∈ E. Clearly, IY (L) = I (L;EL) is the inclusion
functional of Y , where EL = (E, . . . ,E). For L ′ ⊃ L define I (L ′; BL) =
I (L ′; BL × EL ′\L).

Theorem 1.29 (Distribution of stochastic process with random open domain).
(i) A functional I (L; BL) determines finite-dimensional distributions of a stochas-

tic process with a random open domain if and only if ϕ(L) = 1− I (L ′ ∪L; BL ′)
is a capacity functional on L ∈ I for every L ′ ∈ I and BL ′ ∈ E× · · · × E.

(ii) A functional I (L; BL) determines finite-dimensional distributions of a stochas-
tic process on a random open convex domain Y if and only if I (L ′ ∪ L; BL ′) is
a completely monotone functional on L ∈ I,

I (L ∪ L ′; BL × EL ′) = I (L; BL)

for all L, L ′ ∈ I satisfying co(L ∪ L ′) = co(L) and

I (L ∪ Ln; BL × BLn )→ I (L; BL)

if co(L ∪ Ln) ↓ co(L) as n →∞.

Proof.
(i) follows from a general inverse limit theorem proved in Dynkin and Fitzsim-

mons [153, Th. 3.1].
(ii) can be proved similarly to Corollary 1.4.31. ��

Multivalued operators with stochastic domain

If a set-valued random process Zx (ω) is defined for x from the space E itself, i.e.
Zx is a random closed set in E for each x ∈ E, then it is usually called a random
multivalued operator. It is essential to know when a random multivalued operator
has a fixed point, i.e. a random element ξ satisfying ξ ∈ Zξ almost surely. The
fixed point x0 can be regarded as an equilibrium point of the discrete set-valued
dynamical system xn+1 ∈ Zxn . The deterministic case is treated by the following
famous theorem, see Aubin and Frankowska [30, Th. 3.2.3].

Theorem 1.30 (Kakutani fixed point theorem). Let Zx be a function defined for
x from a Banach space E with values being non-empty closed convex subsets of a
convex compact set K ⊂ E. If the support function h(Zx , u) is upper semicontinuous
for each u ∈ E∗, then Z has a fixed point x0 which satisfies x0 ∈ K ∩ Zx0 .
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Let X be a random closed set. A multifunction Z : Graph(X) �→ F \ {∅} is said
to be a multivalued operator with stochastic domain if

{ω : Zx(ω) ∩ G �= ∅, x ∈ X (ω)} ∈ F

for all x ∈ E and G ∈ G. The following result provides the basic fixed point theorem
for random operators with stochastic domains.

Theorem 1.31 (Stochastic fixed point theorem). Let Zx (ω) be a random operator
with stochastic domain X being a separable almost surely non-empty random closed
set. If Zx(ω) is Wijsman-continuous with respect to x and, for almost all ω ∈ Ω ,
there exists x ∈ X (ω) such that x ∈ Zx(ω), then there exists a measurable selection
ξ ∈ S(X) (called a random fixed point) such that ξ(ω) = Zξ(ω)(ω) almost surely.

Proof. The proof relies on applying the fundamental selection theorem to the multi-
function

Y (ω) = {x ∈ X : x ∈ Z̃ x(ω)} ,
where Z̃ x(ω)} = Zx(ω) if x ∈ X (ω) and Z̃ x(ω) = C otherwise, where C is an
arbitrary non-empty closed set, see Papageorgiou [445, Th. 3.1]. ��

Theorem 1.31 can be applied to prove the existence of a random fixed point
for a Wijsman-continuous random operator with stochastic domain F such that
F(ω, X (ω)) ⊂ X (ω) almost surely and F is bounded and condensing so that
nc(F(ω, A)) < nc(A) for every A ⊂ E with a positive Kuratowski measure of
non-compactness.

Allocation problems

Random functions with stochastic domains can be used to formulate random allo-
cation problems in mathematical economy. Assume that C is a closed convex cone
in E = Rd which defines a partial order so that x ≤ y if and only if y − x ∈ C.
Let the probability space (Ω,F,P) describe random events that influence economic
processes. With every ω ∈ Ω we associate a realisation X (ω) of a random convex
closed set X which describes all feasible consumption plans.

Definition 1.32 (Utility function). A utility function u : Ω × Rd �→ R is a real-
valued stochastic process such that
(i) u(ω, ·) is continuous and convex for all ω ∈ Ω ;

(ii) u(·, ·) is jointly measurable;
(iii) |u(ω, x)| ≤ α(ω) with Eα <∞;
(iv) u(ω, ·) is a.s. monotone increasing, so that x ≤ y and x �= y imply u(ω, x) <

u(ω, y).

An allocation ξ (i.e. an integrable selection of X) is said to be X-efficient if
ξ /∈ (X + Int C). Furthermore, an allocation ξ is called (u, X)-optimal if u(ω, ξ) ≤
u(ω, η) a.s. for every selection η ∈ S1(X). The linear utility function is determined
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by a system of prices p, which is an element of L∞(Ω;Rd). An allocation ξ is said
to be (p, X)-efficient if E(ξp) ≤ E(ηp) for all η ∈ S1(X).

It is proved by Papageorgiou [441] that an (u, X)-optimal allocation is X-
efficient. Furthermore, if Int X �= ∅ a.s. and ξ is X-efficient, then ξ is (p, X)-efficient
for a certain price system p and 〈ξ, p〉 = inf〈X, p〉 a.s.

2 Levels and excursion sets of random functions

2.1 Excursions of random fields

Important examples of random sets appear as level sets of random functions. For
instance, if ζx , x ∈ Rd , is an almost surely continuous random function, then

{ζ = a} = {x ∈ Rd : ζx = a}
is a random closed set called the level set of ζ , where a takes a value from the state
space of ζx . If ζ is not necessarily continuous (but jointly measurable in x and ω),
then {ζ = a} is a random Borel set, see Section 1.2.5. Indeed, for every Borel B ,
{{ζ = a} ∩ B �= ∅} is the projection on Ω of {(x, ω) : ζx(ω) = a, x ∈ B}, which
is measurable by the projection theorem, see Theorem E.5.

If the state space is R (and so is totally ordered), then {ζ = a} is the boundary of
the excursion (upper level) set

{ζ ≥ a} = {x ∈ Rd : ζx ≥ a} .
The excursion set is closed for every a if and only if ζ is almost surely upper semi-
continuous.

Smooth random functions on R

Consider the case when both the state space and the parameter space are R. The
following result is a famous theorem concerning level sets of differentiable random
functions.

Theorem 2.1 (Bulinskaya’s theorem). Let ζt , t ∈ R, be a stochastic process with
almost surely continuously differentiable sample paths. Suppose that ζt admits a den-
sity for every t and these probability density functions are bounded uniformly in t .
Then

P
{
ζt = a and ζ ′t = 0 for some t ∈ [0, 1]} = 0

and {ζ = a} ∩ [0, 1] is finite almost surely.

If ζt is a stationary random function, then {ζ = a} is a stationary random closed
set, which is also locally finite if the realisations of ζt are smooth. Assume that ζt

is a stationary Gaussian process normalised to have zero mean and unit variance. Its
covariance function is
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r(s) = E(ζtζt+s) .

The second derivativeλ2 = −r ′′(0) (if it exists) is called the second spectral moment.
Under conditions of Theorem 2.1, the number of points t ∈ [0, 1] with ζt = a is
twice the number of upcrossings (intersections of a level moving upward) of the
level a.

Theorem 2.2 (Rice’s formula). If λ2 is finite, then the mean number of upcrossings
of the level a in the unit time interval is finite and given by

1

2π
λ

1/2
2 exp

{
−a2/2

}
.

Non-differentiable processes

If ζt has non-differentiable trajectories, then {ζ = a} may have a fractal nature. For
instance, if wt is the Wiener process, then X = {t ≥ 0 : wt = 0} is a fractal
set whose Hausdorff dimension dimH X equals 1/2 almost surely. The capacity func-
tional of X on a segment [t, t + s] is given by

TX ([t, t + s]) = P {X ∩ [t, t + s] �= ∅} = 1− 2

π
arcsin

√
t

t + s
.

Further results of this kind can be found in Itô and McKean [272], Lévy [349] and
Peres [455].

Random fields

Consider a stationary Gaussian random field ζx parametrised by x ∈ Rd . The fol-
lowing results aim to determine the expectation of the Euler–Poincaré characteristic
χ(Zt ) (see Appendix F) of the random closed set Zt = {x ∈ W : ζx ≥ t}, where
W is a compact subset of Rd with the boundary being a regular (d − 1)-dimensional
manifold and with at most a finite number of connected components.

Assuming that the realisations of ζ are sufficiently regular (in the Gaussian case
it suffices to assume that the third derivatives of ζ exist and have finite variances),
Worsley [612, Th. 1] proved that, for all x ,

χ(Zt ) =
∑
x∈W

1ζx≥t 1ζ̇x=0 sign(det(−ζ̈x))

+
∑

x∈∂W

1ζx≥t 1ζ̇
 
x=01ζ̇*x <0 sign(det(−ζ̈  

x − ζ̇*x Mx )) , (2.1)

where ζ̇ (respectively ζ̈ ) is the gradient (respectively the Hessian matrix) of ζ , ζ̇*
is the directional derivative of ζ in the direction of the inside normal of ∂W , ζ̇  and
ζ̈  are the (d − 1)-dimensional gradient and the (d − 1) × (d − 1) Hessian of ζ in
the tangent plane to ∂W and Mx is the (d − 1)× (d − 1) inside curvature matrix of
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∂W . The reasons that led to (2.1) are essentially deterministic and its proof is based
on Morse’s theorem from differential topology, which is applicable because of the
regularity conditions imposed on ζ .

By taking expectations it is possible to deduce the following result valid under
the same assumptions as (2.1)

Eχ(Zt ) =
∫
W

E
[
1ζx≥t det(−ζ̈x)|ζ̇x = 0

]
θ0(x)dx

+
∫

∂W

E
[
1ζx≥t 1ζ̇*x <0 det(−ζ̈  

x − ζ̇*x Mx )|ζ̇  
x = 0

]
θ
 

0(x)dx ,

where θ0(x) and θ
 
0(x) are the densities (evaluated at zero) of ζ̇x and ζ̇

 
x respectively.

If ζ is stationary, then θ0 does not depend on x whence the first term in the right-hand
side can be written as mes(W )δ(ζ, t) with

δ(ζ, t) = E
[
1ζ≥t det(−ζ̈x)|ζ̇x = 0

]
θ0

being the rate (or intensity) of the Euler–Poincaré characteristic of Zt .
The result becomes much simpler if ζ is isotropic. For instance, if d = 2 and

Eζx is identically zero, then

Eχ(Zt ) = mes(W )(2π)−3/2 det(Γ )1/2σ−3t exp{−u2/(2σ 2)} , (2.2)

where Γ is the covariance matrix of ζ̇ and σ 2 = Eζ 2
0 .

Open problem 2.3. Characterise classes of random processes by intrinsic properties
of their level sets. For instance, if X is a stationary random closed set, then there is a
stationary stochastic process with level set X . Which conditions on X ⊂ Rd must be
imposed in order to ensure the existence of a Gaussian (continuous) random process
ζx such that X = {x : ζx = a}?

Hitting times

Let ζt be a continuous Markov process in E. For every t ≥ 0, let

Xt = {ζs : 0 ≤ s ≤ t}
be the image of ζ until time t . The first hitting time of a set K is defined as

τK = inf{t ≥ 0 : ζt ∈ K } = inf{t ≥ 0 : Xt ∩ K �= ∅} .
Note that Px (respectively Ex ) designates the probability (respectively expectation)
taken with respect to the distribution of the process that starts at x . Then, for every
constant q > 0,

T x (K ) = Ex (e−qτK ) (2.3)
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is a capacity functional of a random closed set Xτ = {ζt : 0 ≤ t ≤ τ } which is the
image of ζ (starting from x) until the exponentially distributed time moment τ with
mean q−1 and independent of ζ . Indeed,

Px{Xτ ∩ K �= ∅} = Px{τK ≤ τ } = Ex (e−qτK ) .

The integral of T x(K ) over all x

Cq(K ) = q
∫
Rd

Ex (e−qτK )dx

is called the q-capacity of K . If ζ is a transient process and K is a compact set, then
the 0-capacity of K is defined as the limit of Cq (K ) as q ↓ 0.

The following result provides another interpretation of the capacity functional T
from (2.3). Note that the set Xt + K can be viewed as a sausage of shape K drawn
around the path of the stochastic process ζ .

Proposition 2.4 (Sausages and capacities). Let K be a compact set. Then

∫
Rd

T x (K )dx =
∞∫

0

E mes(Xt + Ǩ )e−qt dt .

Proof. Note that the expectation Ex mes(Xt + Ǩ ) does not depend on x by the
translation-invariance of the Lebesgue measure. By Robbins’ theorem,

E mes(Xt + Ǩ ) =
∫
Rd

P0{−x ∈ Xt + Ǩ }dx =
∫
Rd

Px {Xt ∩ K �= ∅}dx .

Therefore,

∞∫
0

E mes(Xt + Ǩ )e−qt dt =
∞∫

0

∫
Rd

Px {Xt ∩ K �= ∅}e−qt dxdt

=
∫
Rd

Ex (e−qτK )dx . ��

2.2 Random subsets of the positive half-line and filtrations

A random closed set X in R+ = [0,∞) naturally gives rise to a filtration Ft , t ≥ 0,
where Ft is the completion of the minimal complete σ -algebra generated by the set
Xt = X ∩ [0, t]. The filtration Ft is called the natural filtration of X . Recall that the
natural filtration of a stochastic process ζt , t ≥ 0, is formed by the minimal complete
σ -algebras Ft generated by ζs for s ≤ t .
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By the fundamental measurability theorem, the graph of the random closed set X
belongs to the product σ -algebra B([0,∞))⊗ F. By the construction of the natural
filtration, the graph of X ∩ [0, t] is measurable with respect to B([0, t])⊗F for each
t ≥ 0, i.e. X is progressively measurable, see Dellacherie [131, III-O8]. Therefore,
the indicator of a random closed set in R+ is progressively measurable with respect
to the natural filtration.

Important stochastic processes associated with X are forward recurrence process
(or residual lifetime process)

x+t = inf(X ∩ (t,∞))− t

(with the convention inf∅ = ∞) and the backward recurrence process (or age pro-
cess)

x−t = t − sup(X ∩ [0, t]) ,
see Figure 2.1.

t

x−t

Figure 2.1. A realisation of the age process.

The both recurrence processes x+t and x−t are right-continuous. Furthermore,
X = {t : x−t = 0}. The zero set of x+t is not X , but the set X & that consists of the
isolated points from X or those points that are limits of a decreasing sequence from
X . Denote also

z+t = inf(X ∩ (t,∞)) .

Lemma 2.5. The natural filtration of X coincides with the natural filtration generated
by the process x−t .

Proof. The process x−t is measurable with respect to Ft , since {x−t > a} = {Xt∩[t−
a, t] = ∅} ∈ Ft for every a. If x−t is adapted with respect to a complete filtration,
then this process is progressive measurable. The measurability of Xt then follows
from the projection theorem, see Theorem E.5. ��

The stopping time τ is a random variable with values in [0,∞] such that {τ ≤
t} ∈ Ft for each t . The corresponding stopping σ -algebra Fτ is the family of all
A ∈ F such that A ∩ {τ ≤ t} ∈ Ft for all t ≥ 0. The following result provides
another interpretation of the stopping σ -algebra.



2 Levels and excursion sets of random functions 327

Theorem 2.6. Let ζt be a right-continuous stochastic process in a locally compact
space E with the natural filtration Ft . If τ is a stopping time, then Fτ coincides with
the minimal complete σ -algebra generated by the process

ζ̃t =
{
ζt , t ≤ τ ,

δ , t > τ ,
t ≥ 0 ,

where δ is a point that does not belong to E.

Proof. Without loss of generality assume that τ < ∞ almost surely. Let F̌t be the
(not necessarily complete) σ -algebra generated by ζs for s ≤ t . Denote by Fτ−
(respectively F̌τ−) the σ -algebra generated by the sets A ∩ {τ > t} for A ∈ Ft

(respectively A ∈ F̌t ) and t ≥ 0. Define

ζ̌t =
{
ζt , t < τ ,

δ , t ≥ τ ,
t ≥ 0 .

Then the σ -algebra σ(ζ̌t , t ≥ 0) generated by the process ζ̌t includes F̌τ−.
For a σ -algebra F̌, its P-completion is denoted by F̌P. The completion theorem

for σ -algebras (see Gihman and Skorohod [193, p. 125]) implies that Fτ− ⊂ F̌P
τ−.

For n ≥ 1, define

ζ
(n)
t =

{
ζt , t < τ + n−1 ,

δ , t ≥ τ + n−1 ,
t ≥ 0 .

Using the above arguments and Dellacherie [131, III-T35], one obtains

Fτ =
⋂
n≥1

Fτ+1/n ⊂
⋂
n≥1

F̌P
τ+1/n− ⊂

⋂
n≥1

σ(ζ
(n)
t , t ≥ 0)P

⊂
(⋂

n≥1

σ(ζ
(n)
t , t ≥ 0)

)P
.

Since σ(ζ
(n)
t , t ≥ 0) is generated by σ(ζ̃t , t ≥ 0) together with σ(ζs+τ , 0 < s <

n−1), ⋂
n≥1

σ(ζ
(n)
t , t ≥ 0) = σ(ζ̃t , t ≥ 0) ,

whence Fτ ⊂ σ(ζ̃t , t ≥ 0)P.
The process ζ̃ is Fτ -measurable. Indeed, for all t, s ≥ 0 and Borel set B ,

{ζ̃s ∈ B} ∩ {τ ≤ t} = {ζs ∈ B} ∩ {s ≤ τ } ∩ {τ ≤ t} ∈ Ft

and {ζ̃ = δ} ∩ {τ ≤ t} = {τ < s} ∩ {τ ≤ t} ∈ Ft . Since Fτ is complete, σ(ζ̃t , t ≥
0)P ⊂ Fτ . ��

Theorem 2.6 together with Lemma 2.5 yield the following result.
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Proposition 2.7. Let X be a random closed set in R+ with the natural filtration Ft . If
τ is a stopping time, such that τ ∈ X &∪{∞} a.s., then Fτ coincides with the minimal
complete σ -algebra σ(Xτ )

P generated by Xτ = X ∩ [0, τ ].
Proof. By Lemma 2.5, Ft = σ(x−s , s ≤ t)P. Consider the process

x̃t =
{

x−t , t ≤ τ ,

δ , t > τ ,
t ≥ 0 .

For all t ≥ 0, {x̃t = δ} = {Xτ ∩ (t,∞) = ∅} ∈ F(Xτ )
P. For every a ≥ 0,

{x̃t ≥ a} = {[t − a, t] ∩ Xτ = ∅} ∩ {x̃t �= δ} ∈ F(Xτ )
P .

Therefore, Xτ is measurable with respect to the completion of the σ -algebra gener-
ated by the process x̃t , t ≥ 0. The proof is finished by applying Theorem 2.6. ��

For a pair of stopping times τ1 and τ2 such that τ1 ≤ τ2 a.s. define the random
interval Z = [τ1, τ2). An important σ -algebra on R+ × Ω (called the optional σ -
algebra) is generated by the graphs of such random intervals Z , i.e. sets {(t, ω) : t ∈
Z(ω)}. If the graph of X is measurable with respect to the optional σ -algebra, then
X is said to be the optional random set. It follows from Dellacherie [131, IV-T10]
that if X is optional, then for every ε > 0 there exists a stopping time τ such that
τ ∈ X almost surely on {τ <∞} and P {X �= ∅} ≤ P {τ <∞}+ ε.

It is known that every closed set F in R can be decomposed into the union of
at most a countable set and a perfect set F ′. The following result proved by Del-
lacherie [131, Ch. VI] also holds for not necessarily closed sets. It provides a sort of
the Castaing representation for optional random closed sets. Note that a selection of
X provided by the fundamental selection theorem is not necessarily a stopping time.

Theorem 2.8 (Decomposition of optional random closed sets). Let X be an op-
tional random closed set in R+.
(i) X can be decomposed as X ′ ∪ {τi , i ≥ 1}, where X ′ is a random perfect set and

τi , i ≥ 1, are stopping times.
(ii) If X is almost surely finite or countable, then X can be represented as {τi , i ≥ 1}

for stopping times τi , i ≥ 1.

If ξt is a non-decreasing process, then t ≥ 0 is called a point of increase if
ξt+ε − ξt > 0 or ξt − ξt−ε > 0 for all ε > 0. The set of all points of increase
is a random closed set, which is also perfect if ξ is almost surely continuous, see
Dellacherie [131, VI-T35].

Theorem 2.9 (Increasing process supported by a random perfect set). Every ran-
dom perfect set X is the set of points of increase for a continuous and bounded
non-decreasing stochastic process ξ .

Proof. Since [0,∞] is homeomorphic to [0.5, 1], it is possible to assume that X ⊂
[0.5, 1] a.s. Then X = X1 ∪ X2 for two random closed sets X1 and X2, where
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X1 = cl(Int X) is regular closed and X2 = cl(X \ X1) has an empty interior. A
bounded continuous non-decreasing process corresponding to X1 is given by

ξt =
t∫

0

e−t 1s∈X1ds .

The increasing process corresponding to X2 can be constructed by an induction ar-
gument, see Dellacherie [131, VI-T37]. ��

If ζt = inf{s : ξs > t} is the right-continuous inverse to ξ from Theorem 2.9,
then X can be represented as the image of ζ .

2.3 Level sets of strong Markov processes

Below we deal with random closed subsets of the positive half-line that appear as
level sets of strong Markov processes. Recall that the strong Markov property extends
the usual Markov property for random moments being stopping times. Assuming the
strong Markov property leads to a full characterisation of level sets that are often
called strong Markov random sets or regenerative sets. The latter term emphasises
their close relationships to the regenerative events considered in Section 1.4.3.

Let ξt , t ≥ 0, be a right-continuous real-valued strong Markov process with
ξ0 = 0. Although its level set {ξ = 0} is not necessarily closed, it is right-closed,
i.e. {ξ = 0} contains limits of every converging decreasing sequences of its points.
The closure of the level set {ξ = 0} will be denoted by X . If ξt has a finite state
space, then X consists of segments of independent exponentially distributed lengths
separated by independent random intervals. This set is a particular example of the
alternating renewal process.

The coverage function pX (t) = P {t ∈ X} is called the p-function of X . If
pX (t) → 1 as t → 0, then X and its p-function are said to be standard. In this
case pX (t) has nice analytic properties and pX (t), t ≥ 0, determines the distribution
of X , see Section 1.4.3. If pX (t) �→ 1 as t → 0 (e.g. if pX vanishes identically),
then the p-function is no longer useful to analyse probabilistic properties of X . One
should use a different technique based on filtrations and stopping times.

Strong Markov random sets

Let X be a random subset of [0,∞). Recall that X & denotes the set of all isolated or
right-limit points of X . For t ≥ 0, define

θt (X) = X ∩ [t,∞)− t .

Definition 2.10 (Strong Markov set). A random closed set X in [0,∞) with the
natural filtration Ft , t ≥ 0, is said to be homogeneous strong Markov random set if
0 ∈ X a.s. and, for every Ft -stopping time τ such than τ ∈ X & a.s. on {τ <∞},
(i) θτ (X) and X ∩ [0, τ ] are conditionally independent given {τ <∞} and
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(ii) conditional distribution of θτ (X) given {τ <∞} coincides with the distribution
of X .

The conditions of Definition 2.10 are intrinsic, i.e. they are formulated as proper-
ties of X only. It is possible to weaken slightly the condition and define a regenerative
set as follows. Let Ht be the σ -algebra generated by z+t and X ∩ [0, t].
Definition 2.11 (Regenerative set). A random closed set X in [0,∞) is said to be
regenerative if there exists a random closed set X0 such that, for each t ∈ [0,∞),
the conditional distribution of θz+t (X) given Ht coincides with the distribution of X0

on {z+t <∞}.
The random variable z+t is an Ft -stopping time and z+t ∈ X & a.s., whence the

strong Markov property implies the regenerative one. Since the requirement 0 ∈ X
is dropped in Definition 2.11, it may be used to define stationary regenerative sets,
see Fitzsimmons and Taksar [178]. The following result shows that a regenerative
property imposed in Definition 2.11 is not much weaker than the property required
in Definition 2.10(i).

Proposition 2.12. Let Ft be the natural filtration of a regenerative set X . For each
Ft -stopping time τ such that τ ∈ X & a.s. on {τ <∞}, the conditional distribution of
θτ (X) given Fτ coincides with the distribution of X0 on {τ <∞}.

It has been shown by Krylov and Yushkevitch [335] and Hoffman-Jørgensen [261]
that the backward recurrence process x−t generated by X is strong Markov if and only
if X is a strong Markov random set. Noticing that X = {t ≥ 0 : x−t = 0}, this imme-
diately leads to the following intrinsic characterisation of level sets of strong Markov
processes.

Theorem 2.13 (Level sets of strong Markov processes). A random closed set X
in [0,∞) is strong Markov if and only if there exists a right-continuous real-valued
strong Markov process ξt such that X = cl{t : ξt = 0} and ξ0 = 0 almost surely.

Open problem 2.14. Find an intrinsic characterisation of level sets for Markov pro-
cesses without assuming the strong Markov property.

Subordinators and local time

The Markov property also holds for the forward recurrence process x+t . Denote its
transition probabilities by Pt (x, B) = P

{
x+t+s ∈ B | x+s = x

}
for B being a Borel

subset of [0,∞). The semi-linear structure of trajectories of x+t implies Pt (x, B) =
Pt−x(B) for t ≥ x , where Pt (B) = Pt (0, B), t > 0. The Chapman–Kolmogorov
equation for x+t can be written as

Ps+t (B) =
∫
[0,t ]

Ps(dy)Pt−y(B)+
∫

[t,∞)

Ps(dy)1B(y − t) .

From this, it is possible to show that
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∞∫
0

∞∫
0

e−αt−θy Pt (dy)dt = Φ(θ)−Φ(α)

(θ − α)Φ(α)
,

for α > 0, θ ≥ 0, θ �= α, where

Φ(θ) = εθ +
∫

(0,∞]
(1− e−θx )µ(dx) (2.4)

with ε ≥ 0 and a measure µ on (0,∞] such that
∫
(1 − e−x)µ(dx) < ∞. The

function Φ is called the Laplace exponent of X , while µ is the Lévy measure. The
Laplace exponent also appears in (1.4.10) with ε = 1.

Theorem 2.9 implies that there exists an increasing process ξt called the local
time such that X constitutes its points of increase. If X is a regenerative set, it is pos-
sible to define ξ in such a way that its right-continuous inverse ζ is a non-decreasing
process with independent increments called a subordinator. Its cumulant is given by
(2.4), i.e.

Ee−θζs = e−sΦ(θ) , s ≥ 0 .

If ε > 0 in (2.4), then X is standard. We say that X is light if the drift coefficient ε
vanishes. Kesten [298] showed that ε = 0 implies pX (x) = P {x ∈ X} = 0 for all
x �= 0, whence the Lebesgue measure of X vanishes almost surely. If ε = 0 and µ is
finite, then X is a renewal process. It is easy to see (Kingman [310] and Fitzsimmons,
Fristedt and Maisonneuve [176]) that X is discrete a.s. or perfect a.s. according to
whether both ε = 0 and µ(0,∞] < ∞ or not. Furthermore, X has empty interior
a.s. if µ(0,∞] = ∞, while X is a union of disjoint closed non-degenerate intervals
if ε > 0 and µ(0,∞] < ∞. A non-negative value µ({∞}) implies that X is almost
surely bounded.

It is possible to define the local time constructively as

ξt = lim
δ→0

mes(Xδ(t))

l(δ)

where

Xδ(t) =
⋃

s∈X∩[0,t ]
(s, s + δ) ,

l(δ) =
∫

(0,∞]
min(x, δ)µ(dx) .

Example 2.15 (Zero set of the Wiener process). Let X = {t : wt = 0} be the zero
set for the Wiener process. Then Φ(θ) = θ1/2, µ(dx) = cx−3/2dx and l(δ) = cδ1/2

for a constant c > 0 and the Hausdorff dimension of X is 1/2.

Example 2.16 (Stable subordinator). The stable subordinator arises when ε =
0 and there exists α ∈ (0, 1) and c > 0 such that the measure µ is absolutely
continuous with density cαx−(1+α)/�(1 − α) for x > 0, whence
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µ((x,∞)) = cx−α/�(1 − α)

and Φ(θ) = cθα. Then X is said to be a stable strong Markov random set. It is shown
by Hawkes [226, Lemma 1] that stable strong Markov random sets are characterised
by the property that

P {X ∩ (a, b] �= ∅} = P {X ∩ (ta, tb] �= ∅}
whenever 0 < a < b and t > 0. In this case X is also self-similar, i.e. X

d∼ cX for
every c > 0.

The following theorem provides a variant of Proposition 1.4.20 for strong Markov
random closed sets.

Theorem 2.17 (Hitting probability for the range of subordinator). Let ζt be a
drift-free subordinator (i.e. ε = 0 in (2.4)) having continuous distributions. If 0 <

a < b, then

P {ζt ∈ (a, b] for some t} =
b∫

a

H (b− s)dU(s) ,

where H (x) = µ((0,∞]) is the tail of the Lévy measure and

U(A) = E

∞∫
0

1A(ζt )dt

is the occupation measure of ζ . In particular, if ζ is a stable subordinator of index α,
then

P {ζt ∈ (a, b] for some t} = sin πα

π

1−a/b∫
0

t−α(1− t)α−1dt .

Proof. Note that ζt ∈ (a, b] for some t if and only if ζηa ≤ b for ηa = inf{t : ζt >

a}. Furthermore,

P
{
ζηa > b

} = ∞∫
0

P
{
ηa ∈ dt, ζηa > b

}

=
∞∫

0

a∫
0

P {ζt ∈ ds, jump exceeding b − s in dt}

=
∞∫

0

a∫
0

P {ζt ∈ ds} H (b− s)dt

=
a∫

0

H (b− s)dU(s) .
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By using Laplace transforms one can show that
∫ b

0 H (b− s)dU(s) = 1 for all b, see
Kesten [298, pp. 117-118]. Then

P
{
ζηa ∈ (a, b]} = 1− P

{
ζηa > b

} = b∫
a

H (b− s)dU(s) . ��

Weak convergence and embedding

The regenerative property is kept under taking weak limits, meaning that if a se-
quence of regenerative sets converges weakly, then its limit is also regenerative.

Theorem 2.18 (Weak convergence of strong Markov sets). A sequence of strong
Markov random sets {Xn, n ≥ 1} with Laplace exponents {Φn(θ), n ≥ 1} converges
weakly to a (necessarily strong Markov) random closed set X with the Laplace ex-
ponent Φ if and only if Φn converges pointwisely toward Φ.

If X1 and X2 are independent strong Markov sets, then their intersection X1∩X2
is strong Markov too. If both X1 and X2 are standard, then it is easy to find the
distribution of their intersection using its p-function, since

pX1∩X2(t) = P {t ∈ (X1 ∩ X2)} = pX1(t)pX2(t) .

This argument is no longer applicable if the p-function of either X1 or X2 vanishes.

Theorem 2.19 (Intersection of strong Markov sets). Let X1 and X2 be independent
strong Markov random closed sets. Assume that their occupation measures U1 and
U2 have the densities u1 and u2. Then
(i) X1 ∩ X2 �= ∅ a.s. if and only if capu1

(X2) > 0, where capu1
is the capacity

defined for the kernel u1, see Appendix E.
(ii) If X1 ∩ X2 �= ∅ a.s., then

∫ 1
0 u1(t)U2(dt) is finite. If u1 is monotone, then the

converse holds.
(iii) If u1 exists and is continuous and monotone, then X1 ∩ X2 �= ∅ a.s. if and only

if u1(t)U2(dt) defines a locally finite measure, in which case this measure is
proportional to the occupation measure of X1 ∩ X2.

Example 2.20 (Intersection of stable sets). If X1 and X2 are stable strong Markov
random sets with parameters α1 and α2, then u1u2 is proportional to t(α1+α2−1)−1

which is locally integrable if and only if α1 + α2 > 1. Hence X1 and X2 have a non-
trivial intersection if and only if α1+α2 > 1, in which case the intersection coincides
in distribution with the stable strong Markov random set of index α1 + α2 − 1.
For instance if X1 and X2 are zero sets of two independent Wiener processes, then
α1 = α2 = 1/2 whence X1 ∩ X2 is empty a.s.

Note that X1 ∩ X2 is a strong Markov set that can be embedded or coupled as a
subset of either X1 and X2, see Section 1.4.8. We say that a strong Markov random
set X can be regeneratively embedded into a strong Markov random set Y if it is
possible to realise X and Y on a same probability space such that X ⊂ Y a.s.
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Theorem 2.21 (Embedding of strong Markov sets). Let X and Y be strong Markov
sets with Laplace exponents ΦX and ΦY . Then X is regeneratively embedded into Y
if and only if ΦX/ΦY is a completely monotone function.

Example 2.22. If X is stable strong Markov set with parameter α, then ΦX/ΦY is
the Laplace transform of the fractional derivative of order α of the renewal measure
UY for Y . Then X can be embedded into Y if and only if the α-fractional derivative
of the renewal measure of Y is a Radon measure on [0,∞).

Open problem 2.23. Provide an intrinsic characterisation of all random closed sets
on the positive half-line that may appear as level sets of a diffusion process, see
Itô and McKean [272, p. 217]. The corresponding result for quasi-diffusions can
be found in Knight [319]. The same question may be posed for zero sets of Lévy
processes.

Open problem 2.24. Characterise all regenerative sets that are infinitely divisible
for intersections, see also Fristedt [184].

2.4 Set-valued stopping times and set-indexed martingales

Set-indexed filtration

Examples of set-indexed stochastic processes are provided by counting measures
related to point processes, general random measures and random capacities. For
such processes it is possible to explore the natural partial order on the family of
sets and introduce the concepts of progressive measurability, predictability and mar-
tingale properties. The starting point is a set-indexed filtration on a probability space
(Ω,F,P). Assume that E is LCHS.

Definition 2.25 (Set-indexed filtration). A family of complete σ -algebras FK , K ∈
K, is a set-indexed filtration if is
(i) monotone, i.e. FK1 ⊂ FK2 whenever K1 ⊂ K2;

(ii) continuous from above, i.e. FK = ∩∞n=1FKn if Kn ↓ K .

Without loss of generality assume that F is the minimal σ -algebra that contains
all FK for K ∈ K.

Example 2.26 (Set-indexed filtrations).
(i) FK = σ(ζx , x ∈ K ) is the minimal σ -algebra generated by ζx , x ∈ K , where

ζx , x ∈ E, is a random field on E.
(ii) FK = σ(X ∩K ) is the minimal σ -algebra generated by X ∩K if X is a random
closed set in E.
(iii) FK generated by ϕ(L) for L ⊂ K , L ∈ K, where ϕ is a random capacity.

A set-indexed process ζK is said to be FK -adapted if ζK is FK -measurable for
each K ∈ K. Applied to the hitting process of a random closed set X (see Sec-
tion 1.7.1), this means that X is FK -adapted if {X ∩ K �= ∅} ∈ FK for each K ∈ K.
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Stopping set

Definition 2.27 (Stopping set). A random compact set Z is called a stopping set if
{Z ⊂ K } ∈ FK for every K ∈ K. The stopping σ -algebra FZ is the family of all
A ∈ F such that A ∩ {Z ⊂ K } ∈ FK for every K ∈ K.

Many examples of stopping sets are related to point processes. If a filtration is
generated by a point process N with an infinite number of points, then the smallest
ball centred at a given point containing a fixed number k of points of the process is a
stopping set. Further examples are related to Delaunay triangulation and Voronoi tes-
sellation generated by N , see Zuyev [631]. Below we discuss several measurability
issues related to stopping sets.

Proposition 2.28 (Measurability with respect to the stopping σ -algebra). If X is
an adapted random closed set and Z is a stopping set, then X ∩ Z is FZ -measurable.
For instance, Z is FZ -measurable.

Proof. For any K ∈ K put Z K = X if Z ⊂ K and Z K = K otherwise. Since

{Z K ⊂ L} = {Z K ⊂ (L ∩ K )} ∪ {K ⊂ L, Z �⊂ K } ∈ FK ,

Z K is FK -measurable for all K ∈ K. For every L ∈ K,

{X ∩ Z ∩ L �= ∅} ∩ {Z ⊂ K } = {(X ∩ K ) ∩ (Z K ∩ L) �= ∅} ∩ {Z ⊂ K } .
Now X ∩ Z and Z K ∩ L are measurable with respect to FK . By Theorem 1.2.25, the
intersection of these two random sets is also FK -measurable. Finally, {Z ⊂ K } ∈ FK

by the definition of the stopping set. ��
The following result is similar to Theorem 2.6 and Proposition 2.7.

Proposition 2.29 (Generator of the stopping σ -algebra). Let FK = σ(X ∩ K )

be a filtration generated by a random closed set X . Then for every stopping set Z ,
FZ = σ(X ∩ Z).

Proof. We outline the proof referring to Zuyev [631] for details. Given a stopping
set Z1 define the following σ -algebra

FZ1− = σ
(

AL ∩ {L ⊂ Int Z1}, AL ∈ FL, L ∈ K
)
.

The first step is to show that if Z and Z1 are two stopping sets such that Z ⊂ Int Z1
a.s., then FZ ⊂ FZ1−. Further, observe that for the natural filtration of X and any
stopping set Z1 one has

FZ1− = σ
(

X ∩ K , K ⊂ Int Z1, K ∈ K
)
.

Choose a sequence of stopping sets {Zn, n ≥ 1} such that Zn ↓ Z and Z ⊂ Int Zn

for all n. Then
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FZ ⊂
⋂
n≥1

FZn− =
⋂
n≥1

σ
(

X ∩ K , K ⊂ Int Zn, K ∈ K
)

= σ
(

X ∩ K , K ⊂ Z , K ∈ K
)
= σ(X ∩ Z) .

Since Z is FZ -measurable, it suffices to show that ({X ∩ K �= ∅} ∩ {K ⊂ Z}) ∈
FZ for all K , that is

{X ∩ K �= ∅} ∩ {K ⊂ Z ⊂ L} ∈ FL

for any L ∈ K. This is evident if K �⊂ L. Otherwise, {X ∩ K �= ∅} ∈ FL which
finishes the proof. ��

Set-indexed martingales

By adapting the definition of a martingale indexed by a partially ordered set from
Kurtz [341] to the family of compact sets ordered by inclusion, a set-indexed mar-
tingale is defined as follows.

Definition 2.30 (Set-indexed martingale). A set-indexed random process ζK , K ∈
K, is called a martingale if E(ζK2 |ζK1) = ζK1 a.s. for all K1, K2 ∈ K such that
K1 ⊂ K2.

Under some uniform integrability condition it is possible to prove the optional
sampling theorem that is formulated by replacing K1 and K2 in Definition 2.30 by
stopping sets Z1 ⊂ Z2.

3 Semicontinuous random functions

3.1 Epigraphs of random functions and epiconvergence

Epiconvergence

In the following we assume that E is LCHS, although many concepts can be gener-
alised for E being a general Polish space. If f (x) is a lower semicontinuous function
defined for x ∈ E with values in the extended real line R̄ = [−∞,∞], then

epi f = {(x, t) ∈ E×R : t ≥ f (x)}
is called the epigraph of f . By Proposition A.2, epi f is closed in the product topol-
ogy on E×R if and only if f is lower semicontinuous.

The epigraph is an enormously influential concept in optimisation. If f is
lower semicontinuous, then epi f contains all information necessary to evaluate
infx∈K f (x) for any compact set K . Using epigraphs, the family of all lower semi-
continuous functions is embedded into the family of closed subsets of E × R. The
convergence concepts for closed sets discussed in Appendix B can be used to define
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the convergence of lower semicontinuous functions using their epigraphs. The Fell
topology is especially important if E is a locally compact space; in this case it is
equivalent to the Painlevé–Kuratowski convergence. If E is a general Banach space,
then the convergence of epigraphs is often considered in the Mosco sense.

Definition 3.1 (Epiconvergence). A sequence of lower semicontinuous functions

{ fn, n ≥ 1} is said to epiconverge to f (notation fn
epi−→ f ) if epi fn converges to

epi f as n →∞ in the space F of closed sets in the Painlevé–Kuratowski sense.

The limiting function f in Definition 3.1 may take infinite values. Note that the

arithmetic sum is not continuous with respect to the epiconvergence, i.e. fn
epi−→ f

and gn
epi−→ g does not necessarily imply the epiconvergence of fn + gn to f + g.

Proposition 3.2 (Equivalent definitions of epiconvergence). For a sequence of
lower semicontinuous functions, the following statements are equivalent.
(i) fn epiconverges to f as n →∞.

(ii) For all x ∈ E,
lim inf
n→∞ fn(xn) ≥ f (x)

for all sequences xn → x and

lim sup
n→∞

fn(xn) ≤ f (x)

for at least one sequence xn → x .
(iii) For all K ∈ K and G ∈ G,

lim inf
n→∞

(
inf

x∈K
fn(x)

)
≥ inf

x∈K
f (x) ,

lim sup
n→∞

(
inf
x∈G

fn(x)
)
≤ inf

x∈G
f (x) .

The above properties are often alternatively used to define the epigraphical con-
vergence. Another characterisation in terms of the convergence of excursion sets
{ f ≤ t} is also possible.

Proposition 3.3 (Epiconvergence in terms of excursion sets). For a sequence of

lower semicontinuous functions, fn
epi−→ f if and only if the following two conditions

hold:
(1) lim supn→∞{ fn ≤ tn} ⊂ { f ≤ t} for all sequences tn → t ;
(2) lim infn→∞{ fn ≤ tn} ⊃ { f ≤ t} for some sequence tn → t in which case this

sequence can be chosen with tn ↓ t .

The set of points that minimise f is denoted by

argmin f = {x ∈ E : f (x) ≤ inf f <∞} ,
where inf f = inf{ f (x) : x ∈ E}. Note that dom f is the set of all x ∈ E such
that f (x) if finite, so that argmin f = ∅ if dom f = ∅. The points which are nearly
optimal or ε-optimal for some ε > 0 comprise the set
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ε- argmin f = {x ∈ E : f (x) ≤ inf f + ε <∞} ,
see Figure 3.1.

f (x)

x

ε

inf f

ε- argmin f

inf f + ε

Figure 3.1. Optimal and nearly optimal points.

A sequence { fn, n ≥ 1} is said to have a relatively compact sequence of ε-
optimal points if, for any ε > 0, there exists a compact set Kε and a sequence
{an, n ≥ 1} ⊂ Kε such that fn(an) < inf fn + ε for all n ≥ 1. This is the case if
there exists a compact set K such that (dom fn) ⊂ K for all sufficiently large n.

Theorem 3.4 (Convergence of minimisers). If a sequence of lower semicontinuous
functions { fn, n ≥ 1} epiconverges to f , then

lim sup
n→∞

(inf fn) ≤ inf f

with the equality holding if { fn, n ≥ 1} has a relatively compact sequence of ε-
optimal points. Furthermore,

lim sup
n→∞

(argmin fn) ⊂ argmin f . (3.1)

If argmin f �= ∅, then

argmin f =
⋂
ε>0

lim inf
n→∞

(
ε- argmin fn

)
if and only if inf fn → inf f as n →∞.

Proposition D.2 together with (3.1) imply that the argmin functional is an up-
per semicontinuous multifunction on the family of lower semicontinuous func-
tions. It should be noted that additional conditions (see Rockafellar and Wets [498,
Prop. 3.42]) are required to ensure that argmin fn converges to argmin f in the Fell
topology.
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It is easy to see that the uniform convergence of lower semicontinuous func-
tions implies their epiconvergence. The epiconvergence of lower semicontinuous
functions and their pointwise convergence do not imply each other. It is possible
to show (see Dolecki, Salinetti and Wets [140]) that these two concepts coincide on
any family V of lower semicontinuous functions which is equi-lower semicontinu-
ous, i.e. for all x ∈ E and ε > 0 there exists a neighbourhood U of x such that
f (y) ≥ min(ε−1, f (x)− ε) for all y ∈ U and f ∈ V .

Normal integrands

Consider a function ζ : E × Ω �→ R̄, where E is a LCHS space and (Ω,F,P) is a
complete probability space. Such functions are sometimes called variational systems.

Definition 3.5 (Normal integrand). A function ζ(x, ω), x ∈ E, ω ∈ Ω , is called a
normal integrand if its epigraph X (ω) = epi ζ(·, ω) is a random closed set measur-
able with respect to F. A normal integrand is said to be proper if it does not take a
value −∞ and is not identically equal to +∞.
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a x ∈ E

epi ζ

ζ(x)

Figure 3.2. Normal integrand ζ(x), x ∈ E, and its epigraph. Note that ζ is discontinuous at
x = a, where ζ(a) is smaller than the corresponding left- and right-hand limits.

The closedness of the epigraph imposed in Definition 3.5 implies that ζ is lower
semicontinuous with respect to x for almost all ω. To simplify notation we will usu-
ally write ζ(x) or ζx instead of ζ(x, ω). If ξ is an E-valued random element, then
ζ(ξ) is a random variable, since

{ω : ζ(ξ) ≤ t} = {ω : (epi ζ ) ∩ ({ξ} × (−∞, t]) �= ∅} ∈ F , t ∈ R .

In particular, ζ(x) is a random variable for every x ∈ E. However, if ζ(x) is a
random variable for every x ∈ E and ζ is almost surely lower semicontinuous, then
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ζ is not necessarily a normal integrand. In this case ζ is called a random lower
semicontinuous function.

Proposition 3.6 (Joint measurability). Let ζ be a random lower semicontinuous
function. If ζ(x, ω) is jointly measurable in (x, ω), then ζ is a normal integrand.

Proof. For every measurable subset A ⊂ E and t ∈ R,

{(x, ω) : (epi ζ ) ∩ (A × (−∞, t]) �= ∅} = {(x, ω) : A ∈ K , ζ(x, ω) ≤ t}
is a measurable set in the product space, so that its projection on Ω is measurable by
the completeness of the probability space, see Theorem E.5. ��

Since X = epi ζ is a random closed subset of E × R, its distribution is deter-
mined by the capacity functional T (K ) defined on compact subsets of E × R. The
finite-dimensional distributions of ζ(x), x ∈ E, can be retrieved from the capacity
functional of epi ζ , since

P {ζ(x1) > t1, . . . , ζ(xn) > tn} = 1− T (∪n
i=1({xi} × (−∞, ti ])) .

As in Section 1.6.1, Sepi ζ denotes the family of all K ∈ K(E×R) such that T (K ) =
T (Int K ).

The family of finite unions of sets of type K j×[a j , b j ]where K j ∈ K(E) forms a
separating class in E×R. By the construction of the epigraph, epi ζ hits K j×[a j , b j ]
if and only if epi ζ hits K j × (−∞, b j ]. Therefore, it suffices to define the capacity
functional on the finite unions of type ∪m

j=1(K j ×(−∞, t j ]). The family of such sets
will be denoted by Ke. Without loss of generality assume that t1 < t2 < · · · < tm
and K1 ⊃ K2 ⊃ · · · ⊃ Km , see Figure 3.3.

t1

t2

t3

Figure 3.3. A set from Ke.

A stochastic process ζ is separable if there exists an everywhere dense count-
able set Q ⊂ E and a set Ω0 of probability zero such that for every open set
G ⊂ E and closed subset F ⊂ R, the events {ζ(x) ∈ F for all x ∈ G ∩ Q}
and {ζ(x) ∈ F for all x ∈ G} differ from each other at most on a subset of Ω0,
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see Gihman and Skorohod [193]. The approach to stochastic processes based on
their finite-dimensional distributions requires the separability to handle such proper-
ties like the continuity or the boundedness of stochastic processes. This is explained
by the fact that the cylindrical σ -algebra is constructed without any topological as-
sumptions on the index space, while these assumptions are being brought in later by
means of the separability concept. In contrast, the epigraphical approach allows us
to work with non-separable stochastic processes including those that may also have
discontinuities of the second kind.

Example 3.7 (Non-separable process). Let ξ be a random element in E = Rd with
an absolutely continuous distribution and let ζ(x) = 0 if x = ξ and ζ(x) = 1 other-
wise, see Figure 3.4. Then ζ is not separable and its finite-dimensional distributions
are indistinguishable with those of the function identically equal to 1. However, epi ζ
is a non-trivial random closed set X = ({ξ} × [0, 1]) ∪ (E× [1,∞)).

R1ξ

ζ(x)

Figure 3.4. Non-separable stochastic process on R1.

For any normal integrand ζ , its epigraph epi ζ is a random closed set that pos-
sesses a Castaing representation, see Section 1.2.2. If ζ is a separable stochastic
process, then it is possible to define constructively a Castaing representation of epi ζ .
If Q is the separability set of ζ and Q+ is a countable dense subset of [0,∞), then
{(q, ζ(q)+ a) : q ∈ Q, a ∈ Q+} provides a Castaing representation of epi ζ .

Definition 3.8 (Inner separability). A normal integrand is said to be inner sepa-
rable if, to each compact set K ∈ Sepi ζ and ε > 0, there corresponds a finite set
Iε ⊂ K such that T (K ) ≤ T (Iε)+ ε.

Proposition 3.9 (Separability and inner separability). If ζ is a separable stochastic
process, then the corresponding normal integrand is inner separable.

Proof. It suffices to check the condition of Definition 3.8 for K = ∪m
j=1(K j ×

(−∞, t j ]) where K j × (−∞, t j ] ∈ Sepi ζ for all j . For all ε > 0 there exist open
sets G j ⊂ K j and numbers s j < t j , 1 ≤ j ≤ m, such that

T (∪ j G j × (−∞, s j )) ≥ T (∪ j K j × (−∞, t j ])− ε/2 .

By the separability property of ζ ,
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1− T (∪ j G j × (−∞, s j )) = P(∩ j { inf
x∈G j

ζ(x) ≥ s j })
= P(∩ j { inf

x∈Q∩G j

ζ(x) ≥ s j })

≥ P(∩ j { inf
x∈D j

ζ(x) ≥ s j })− ε/2 ,

where D j ⊂ G j , 1 ≤ j ≤ m, are finite sets. Then for I = {(x, s j ) : x ∈ D j , 1 ≤
j ≤ m}, we have

T (I ) ≥ T (∪ j G j × (−∞, s j ))− ε/2 ≥ T (K )− ε . ��
The following proposition concerns the properties of normal integrands related

to their level sets and minimisers.

Proposition 3.10 (Excursion sets and minimisers). If ζ is a normal integrand, then
(i) {ζ ≤ α} = {x ∈ E : ζ(x) ≤ α} is a random closed set for every random

variable α ∈ R̄;
(ii) {ζ ≤ t}, t ∈ R, is an increasing set-valued process;
(iii) inf ζ is a random variable with values in R̄ and argmin ζ and ε- argmin ζ (for

any ε > 0) are random closed subsets of E.

Proof.
(i) It suffices to note that {({ζ ≤ t}) ∩ K �= ∅} coincides with {(epi ζ ) ∩ (K ×

(−∞, t]) �= ∅} for every K ∈ K(E).
(ii) Apply (i) to α = t .
(iii) Notice that α = inf ζ is a random variable and apply (i). ��

By Theorem 1.2.25(iii), the boundary ∂ epi ζ is a random closed set. Let ∂−epi ζ
be the set of points (x, t) ∈ epi ζ such that (x, s) /∈ epi ζ for all s < t , see Figure 3.5.
Note that ∂−epi ζ is not necessarily closed.

Definition 3.11 (Sharp integrand). If ∂ epi ζ = epi ζ a.s. and ∂−epi ζ is a locally
finite subset of E×R, then ζ is called a sharp integrand.

Proposition 3.12. If ζ is a sharp integrand, then ∂−epi ζ is a locally finite point pro-
cess.

Proof. It suffices to prove that ∂−epi ζ is measurable. Let G0 be a countable base of
topology on E composed of relatively compact sets. For every G ∈ G0 consider the
random closed set

XG = {(x, t) ∈ E×R : ζ(x) = t = inf
y∈cl G

ζ(y)} .

Then ∂−epi ζ is the union of XG for G ∈ G0, so is measurable. ��
Recall that the conjugate f o and the subdifferential of ∂ f of a (convex) function

f are defined in Appendix F. These definitions can be applied to a normal integrand
ζ defined on Rd .
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Figure 3.5. Sharp integrand ζ(x). The points of ∂−epi ζ are shown as bold dots.

Theorem 3.13 (Conjugate and subdifferential of normal integrand).
(i) If ζ is a normal integrand on Rd , then its conjugate ζ o is a normal integrand.

(ii) If ζ is a proper normal integrand and ξ is an E-valued random element such
that ζ(ξ) < ∞ a.s., then the subdifferential ∂ζ(ξ) is a random convex closed
set (with possibly empty values).

Proof.
(i) Let {(ξi , αi ), i ≥ 1} be the Castaing representation of the random closed set

epi ζ . Then
gi(y) = 〈ξi , y〉 − αi

is a normal integrand on Ω ′ = {ω : epi ζ �= ∅} for every i , whence ζ o(y) =
supi gi(y) is a normal integrand on Ω ′. For every ω /∈ Ω ′, we have ζ(x) = ∞ for
all x , so that ζ o(y) = −∞ identically, i.e. epi ζ o = Rd ×R in this case. Since Ω ′ is
measurable, this finishes the proof of (i).
(ii) Let ζ be almost surely convex. Then

∂ζ(x) = {y ∈ Rd : 〈x, y〉 − ζ(x) ≥ 〈x ′, y〉 − ζ(x ′) for all x ′}
= {y ∈ Rd : 〈x, y〉 − ζ(x) ≥ ζ o(y)}
= {y ∈ Rd : ζ o(y)− 〈x, y〉 ≥ ζ(x)} .

Note that ζ o(y)− 〈ξ, y〉 is a normal integrand with respect to y. Therefore, ∂ζ(ξ) is
the projection on E = Rd of the random closed set obtained as the intersection of
epi(ζ o(·)−〈ξ, ·〉) and E×[ζ(ξ),∞). It follows from the results of Section 1.2.3 that
this projection is a random closed set in E.

For a general ζ the statement follows from Theorem 1.2.25 concerning the mea-
surability of limits for sequences of random closed sets. ��
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Weak epiconvergence

Definition 3.14 (Weak epiconvergence). A sequence {ζn, n ≥ 1} of normal inte-
grands weakly epiconverges (or epiconverges in distribution) to ζ if Xn = epi ζn

converge weakly to X = epi ζ as random closed sets in E× R.

Since E is LCHS, the weak epiconvergence can be formulated in terms of capac-
ity functionals as

Tepi ζn (K )→ Tepi ζ (K ) as n →∞ (3.2)

for all K ∈ Sepi ζ . By Corollary 1.6.9, it suffices to check (3.2) for all K =
∪m

j=1K j × (−∞, t j ] ∈ Sepi ζ , where K1, . . . , Km belong to a separating class in
E and t j ∈ R, 1 ≤ j ≤ m, m ≥ 1. Reformulating this fact for the stochastic pro-
cesses ζn instead of their capacity functionals we come to the following conclusion.

Proposition 3.15 (Weak epiconvergence of normal integrands). A sequence ζn ,
n ≥ 1, of normal integrands weakly epiconverges to a normal integrand ζ if and only
if

P
{

inf
x∈Ki

ζn(x) > ti , i = 1, . . . ,m

}
→ P

{
inf

x∈Ki
ζ(x) > ti , i = 1, . . . ,m

}
as n →∞ for all m ≥ 1, t1, . . . , tm ∈ R and K1, . . . , Km belonging to a separating
class A on E and satisfying the continuity condition

P
{

inf
x∈Ki

ζ(x) > ti

}
= P

{
inf

x∈Int Ki
ζ(x) ≥ ti

}
, i = 1, . . . ,m .

Proposition 3.16 (Weak convergence for boundaries of epigraphs). Let ζ and
{ζn, n ≥ 1} be proper normal integrands.
(i) If ∂ epi ζn weakly converges to ∂ epi ζ , then ζn weakly epiconverges to ζ .

(ii) If E is locally connected and ∂ epi ζ = epi ζ a.s., then the weak epiconvergence
of ζn to ζ implies that ∂ epi ζn weakly converges to epi ζ = ∂ epi ζ .

Proof. By the continuous mapping theorem, it suffices to prove the conclusions for
deterministic lower semicontinuous functions { fn, n ≥ 1} that converge to a lower
semicontinuous function f . For each K ∈ K, infx∈K f (x) > t if and only if epi f ∩
(K × (−∞, t]) = ∅; and for each relatively compact open set G, infx∈G f (x) < t if
and only if

epi f ∩ (G × (−∞, t)) �= ∅ .

(i) Assume that ∂ epi fn converges to ∂ epi f in the Fell topology. For any K ∈
K, infx∈K f (x) > t implies (∂ epi f ) ∩ (K × (−∞, t]) = ∅ and so (∂ epi fn) ∩
(K × (−∞, t]) = ∅ for all sufficiently large n, whence infx∈K fn(x) > t (here it is
important that the value −∞ for f and fn is excluded). Similarly, infx∈G f (x) < t
implies (∂ epi fn)∩(G×(−∞, t)) �= ∅, whence infx∈G fn(x) < t for all sufficiently
large n. By Proposition 3.2, fn epiconverges to f .
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(ii) Suppose that fn epiconverges to f and ∂ epi f = epi f . Since E× R is locally
connected, taking a boundary is a lower semicontinuous mapping on the family of
closed subsets of E× R, see Proposition D.6(iii). Therefore,

epi f = ∂ epi f ⊂ lim inf(∂ epi fn)

⊂ lim sup(∂ epi fn) ⊂ lim sup(epi fn) = epi f ,

whence ∂ epi fn
PK−→ epi f . ��

Proposition 3.17 (Weak convergence of excursion sets).
(i) If ζ is a normal integrand, then the set of t ∈ R such that {ζ ≤ t} almost surely

coincides with cl({ζ < t}) is dense in R.
(ii) If ζn weakly epiconverges to ζ and {ζ ≤ ti } = cl({ζ < ti }) a.s. for t1, . . . , tm ,

then the m-tuple of random closed sets ({ζn ≤ t1}, . . . , {ζn ≤ tm}) converges in
distribution to ({ζ ≤ t1}, . . . , {ζ ≤ tm}).

(iii) If, additionally to (ii), E is locally connected and ∂{ζ ≤ ti } = {ζ ≤ ti } a.s.
for all i (e.g. this is the case when ζ is a sharp integrand), then the m-tuple of
random closed sets (∂{ζn ≤ t1}, . . . , ∂{ζn ≤ tm}) converges in distribution to
(∂{ζ ≤ t1}, . . . , ∂{ζ ≤ tm}).

Proof.
(i) Let G0 be a countable base of G. If {ζ ≤ t} �= cl({ζ < t}), then ζ(x) ≤ t for

some x /∈ cl({ζ < t}), whence infy∈G ζ(y) ≥ t for some G ∈ G0 with x ∈ G.
Therefore, infy∈G ζ(y) = t and{

t : P {{ζ ≤ t} = cl({ζ < t})} < 1
}
⊂
⋃

G∈G0

{
t : P

{
inf
x∈G

ζ(x) = t

}
> 0

}
.

The right-hand side is a countable union of at most countable sets, whence the set in
the left-hand side is at most countable.
(ii, iii) If fn epiconverges to f and { f ≤ t} = cl({ f < t}), then Proposition 3.3
implies that { fn ≤ t} Painlevé–Kuratowski converges to { f ≤ t}. If ∂{ f ≤ t} =
{ f ≤ t}, then ∂{ fn ≤ t} converges to { f ≤ t} in the Painlevé–Kuratowski sense.
Now all statements follow from the continuous mapping theorem. ��

In general the weak epiconvergence of ζn to ζ does not follow from and does
not imply the convergence of the corresponding finite-dimensional distributions. It
is possible to enforce the relevant implications by imposing the uniform regularity
conditions on the normal integrands using a kind of uniformity condition for the
values of the capacity functionals on finite sets and sets of type ∪ j (K j × (−∞, t j ])
(belonging to the family Ke).

It was shown by Salinetti and Wets [512] that the weak epiconvergence implies
the convergence of finite-dimensional distributions if and only if ζn are equi-outer
regular, i.e. for every finite set I ⊂ E × R and every ε > 0 there exists a compact
set K ∈ Ke ∩Sepi ζ such that Tepi ζn (K ) < Tepi ζn (I )+ ε. The convergence of finite-
dimensional distributions implies the weak epiconvergence if the ζn’s are equi-inner
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separable, i.e. for each K ∈ Ke and ε > 0, there exists a finite set I ⊂ K such that
Tepi ζn (K ) < Tepi ζn (I )+ ε for all n.

Clearly, the epiconvergence is weaker than the conventional definition of the
weak convergence of stochastic process in the uniform metric. But for the later con-
vergence one should check some tightness conditions, while it is not necessary to
deal with the tightness to prove the weak convergence of epigraphs.

Theorem 3.18 (Tightness for epigraphs). Any sequence {ζn, n ≥ 1} of normal inte-
grands in a LCHS space is relative compact with respect to the weak epiconvergence,
i.e. there exists a subsequence {ζn(k), k ≥ 1} which epiconverges in distribution.

Proof. The family of closed subsets of E × R is compact in the Fell topology. The
family of all epigraphs is closed in the Fell topology and so is also compact. This
immediately implies the tightness of their probability distributions. ��

Epigraphical representation of additive functionals

The epigraphical technique yields a representation of additive functionals acting on
the space Lp of integrable random elements in E = Rd . A functional W : Lp(Ω;Rd) �→
R̄ is said to be additive if

W (1Aξ + 1Ω\Aξ) = W (1Aξ)+W (1Ω\Aξ)

for every ξ ∈ Lp and A ∈ F. The functional W is called proper if it never takes the
value −∞ and is not identically equal to +∞.

Theorem 3.19. Let W : Lp �→ R̄ be an additive lower semicontinuous (with respect
to Lp-norm) proper functional, where p ∈ [1,∞]. Then W (ξ) = Eζ(ξ) for all ξ

from Lp , where ζ is a uniquely determined (up to a set of probability zero) proper
normal integrand with ζ(0) = 0 a.s.

Proof. Since W is additive and proper, W (0) = 0. Let Ξ be the set of pairs (ξ, α)

with ξ ∈ Lp and α ∈ L1(Ω;R) such that W (1Aξ) ≤ E(1Aα) for all A ∈ F. If
(ξ, α), (ξ ′, α′) ∈ Ξ and B ∈ F, then

W (1A(1Bξ + 1Ω\Bξ
′)) = W (1A∩Bξ)+W (1A\Bξ ′)
≤ E(1A∩Bα) + E(1A\Bα′)
= E(1A(1Bα + 1Ω\Bα

′)) , A ∈ F .

Therefore, (1Bξ + 1Ω\Bξ
′, 1Bα + 1Ω\Bα

′) ∈ Ξ , i.e. Ξ is a decomposable set of
random elements, see Section 2.1.1. If {(ξn, αn), n ≥ 1} are elements of Ξ that
converge to (ξ, α) in Lp × L1, then the lower semicontinuity of W implies that

W (1Aξ) ≤ lim inf
n→∞ W (1Aξn) ≤ lim

n→∞E(1Aξn) = E(1Aξ) , A ∈ F .

Thus, Ξ is a closed subset of Lp(Ω;Rd)×L1(Ω;R) which is also non-empty, since
(0, 0) ∈ Ξ . By a variant of Theorem 2.1.6 for product spaces, there exists a random
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closed set Z in E×R such that Ξ is the set of selections of Z . Let {(ξn, αn), n ≥ 1}
be the Castaing representation of Z . Since (ξn, αn + c) ∈ Ξ for every c ≥ 0, it is
easy to see that, on a subset Ω ′ ⊂ Ω of probability one, (x, t) ∈ Z implies that
{x} × [t,∞) ⊂ Z .

Define a random function ζ(x) with values in the extended real line by

ζ(x) =
{

inf{t : (x, t) ∈ Z} , ω ∈ Ω ′ ,
0 , ω ∈ Ω \Ω ′ .

Then epi ζ = Z on Ω ′ and otherwise epi ζ = E × [0,∞). Thus, epi ζ is a random
closed set, i.e. ζ is a normal integrand. Let us prove that the constructed process ζ

provides the required representation of W . Consider ξ ∈ Lp such that W (ξ) < ∞.
If A = ∪∞n=1 An with pairwise disjoint An ∈ F, n ≥ 1, then

W (1Aξ) =
n∑

k=1

W (1Ak ξ)+ W (1∪k>n An ξ) .

Since lim infn→∞ W (1∪k>n An ξ) ≥ W (0) = 0,

W (1Aξ) ≥ lim sup
n→∞

n∑
k=1

W (1Ak ξ) .

Furthermore,

W (1Aξ) ≤ lim inf
n→∞

n∑
k=1

W (1Ak ξ) .

Therefore, W (1Aξ) = ∑∞
k=1 W (1Ak ξ), which means that W (1Aξ) is a bounded

signed measure on F, which is P-absolutely continuous. Let α be its Radon–
Nikodym derivative with respect to P, so that W (1Aξ) = E(1Aα). Then (ξ, α) ∈ Ξ ,
whence (ξ, α) ∈ Z and ζ(ξ) ≤ α a.s. Thus, Eζ(ξ) ≤ E(1Ωα) = W (ξ).

Let Eζ(ξ) < ∞ for ξ ∈ Lp . Choose a sequence {αn, n ≥ 1} of integrable
random variables such that αn ↓ ζ(ξ) a.s. Since (ξ, αn) ∈ epi ζ = Z a.s., we have
(ξ, αn) ∈ Ξ and hence W (ξ) ≤ E(αn) ↓ Eζ(ξ). Thus,

W (ξ) ≤ Eζ(ξ) . (3.3)

It remains to show that Eζ(ξ) is defined (possibly being infinite) for every ξ ∈ Lp .
If Eζ(ξ) is not defined, then E(1Aζ(ξ)) = −∞ with A = {ω : ζ(ξ) < 0}. By (3.3),
W (1Aξ) = −∞ contrary to the assumption that W is proper. Therefore, Eζ(ξ) =
W (ξ) for all ξ ∈ Lp .

It is possible to choose ζ in such a way that ζ(x) is a proper function on E for
every ω. Since W (0) = 0 and ζ(0) < ∞ a.s., ζ(x) can be replaced by ζ(x)− ζ(0).
Therefore, we can assume that ζ(0) = 0 a.s. To show the uniqueness, it suffices to
note that any two normal integrands ζ1 and ζ2 providing the representation for W
will have identical epigraphs, whence ζ1 and ζ2 coincide almost everywhere. ��
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3.2 Stochastic optimisation

Convergence of minimisers

Stochastic optimisation in a broad sense deals with the convergence of minimis-
ers and minimum values of a sequence of random functions. Consider a sequence
{ζn, n ≥ 1} of normal integrands defined on a LCHS space E. Assume that ζn weakly
epiconverges to ζ as n →∞. Then Theorem 3.4 implies that argmin ζ (respectively
inf ζ ) are stochastically larger (see Section 1.4.8) than lim sup(argmin ζn) (respec-
tively lim sup(inf ζn)).

Theorem 3.20 (Weak convergence of infima). If the normal integrands ζn , n ≥ 1,
weakly epiconverge to a normal integrand ζ , then

P {inf ζ < t} ≤ lim inf
n→∞ P {inf ζn < t}

for all t ∈ R. Furthermore, inf ζn converges in distribution to inf ζ if the sequence
{ζn, n ≥ 1} is equi-inf-compact, i.e. for every t ∈ R there exists a compact set K
such that {ζn ≤ t} ⊂ K a.s. for all n ≥ 1.

Proof. The method of a single probability space yields a sequence ζ ′n , n ≥ 1, of
normal integrands having the same distribution as ζn and such that ζ ′n epiconverges
almost surely to ζ ′, where the latter has the same distribution as ζ . The proof is
finished by applying Theorem 3.4. ��

The situation is especially simple if E is a compact space, since then the map
f �→ inf f is continuous with respect to the epiconvergence, see Theorem 3.4.

Epiconvergence of averages

Let ζ be a proper normal integrand such that Eζ(x) is well defined (but may be
infinite). By Fatou’s lemma h(x) = Eζ(x) is lower semicontinuous. A sequence
{ζn, n ≥ 1} of i.i.d. normal integrands having the same distribution as ζ can be used
to estimate h as

ηn(x) = 1

n

n∑
i=1

ζi (x) , x ∈ E .

Then ηn is a proper normal integrand and, for all x , ηn(x) → h(x) = Eζ(x) a.s.
as n → ∞ by the strong law of large numbers. The following result shows that,
under relatively mild conditions, ηn epiconverges almost surely to h(x). This issue
is central to optimisation problems since the epiconvergence may be used to obtain
results about the convergence of minimum values and minimisers.

Theorem 3.21 (Epiconvergence of averages). Assume that each x0 ∈ E has an open
neighbourhood G such that there exists an integrable random variable α with

inf
x∈G

ζ(x) ≥ α a.s. (3.4)
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Then ηn
epi−→ h a.s. as n →∞.

Proof. Referring to Proposition 3.2, we prove that lim inf ηn(xn) ≥ h(x0) a.s. when-
ever xn → x0 and x0 ∈ E. First, show this fact for the restriction of ηn and h onto
an open neighbourhood G satisfying (3.4). If infx∈G ζ(x) is infinite with positive
probability, then the result evidently holds. Therefore, assume that ζ(x) < ∞ a.s.
for some x ∈ G.

For every n ≥ 1, define a sequence of random functions {gn
k (x), k ≥ 1} by

induction as follows. First, put g0(x) = α(x). If gn
k (x) is given, then put

ϕn
k (x) = inf

{
ρ(x, y)+ |gn

k (x)− r | : y ∈ G, r ≥ ζn(y)
}
, (3.5)

where ρ is a metric on E. Note that ϕn
k (x) determines a distance from (x, gn

k (x)) to
the epigraph of ζn restricted on G. Since ζn is not identically ∞, the function ϕn

k is
finite. Define

gn
k+1(x) = gn

k (x)+ ϕn
k (x) .

By gk , k ≥ 1, we denote functions obtained by applying the above construction to
the function ζ instead of ζn . Let us establish several useful properties of the sequence
{gn

k , k ≥ 1}.
(a) gn

k is measurable on G × Ω . Indeed, ϕn
k is measurable, since it is a distance

from a point to a random closed set in the metric space E × R with the metric
ρ′((x1, t1), (x2, t2)) = ρ(x1, x2)+ |t1 − t2|, see Section 1.2.3.
(b) Each gn

k is Lipschitz with a Lipschitz constant independent of n. First, g0 is
constant, so has a Lipschitz constant 0. Proceeding by induction, let c be a Lipschitz
constant for gn

k . It follows from (3.5) that ϕn
k is Lipschitz with constant c+1, whence

gn
k+1 has a Lipschitz constant 2c+ 1.

(c) gn
k (x) ≥ α and gn

k (x) ↑ ζn(x) as k → ∞, which follows immediately from the
construction noticing that ϕn

k (x) ≤ ζn(x)− gn
k (x).

Note that gk and {gn
k , n ≥ 1} are i.i.d. random functions. For x and k fixed, define

γ n
k (x) = 1

n

n∑
i=1

gi
k(x) .

The classical strong law of large numbers implies that

γ n
k (x)→ Egk(x) a.s. as n →∞ (3.6)

for each fixed x . Since all {gn
k , n ≥ 1} have the same Lipschitz constant, it follows

that Egk and each γ n
k are Lipschitz. Let {xi , i ≥ 1} be a dense sequence in G. By the

countability and the Lipschitz property (b), (3.6) almost surely holds for all x ∈ G
simultaneously.

Pick any x0 ∈ G. Suppose that h(x0) = Eζ(x0) < ∞. Then (c) implies that for
large k the value Egk(x0) is close to h(x0), i.e. h(x0)−Egk(x0) < ε. Since ηn ≥ γ n

k
always, it follows that
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lim inf
xn→x0

ηn(xn) ≥ h(x0)− ε a.s. (3.7)

Since ε is arbitrarily small, this concludes the proof. If h(x0) = ∞, similar arguments
are applicable with ε arbitrarily small replaced by Egk(x0) arbitrarily large. Since E
is separable, it is covered by a countable number of open sets G such that (3.7) holds
on every G. Then (3.7) holds almost surely for all x0 ∈ E and all sequences xn → x0.

We now verify that ηn(yn) → h(x0) a.s. for at least one sequence yn → x0. Let
{xi , i ≥ 1} be a dense sequence in E. The lower semicontinuity of h implies that, for
each x0 ∈ E, a subsequence of {(xi , h(xi )), i ≥ 1} converges to (x0, h(x0)). By the
strong law of large numbers, Eηn(xi ) → h(xi ) a.s. as n → ∞ simultaneously for
all xi . Hence it is possible to find a subsequence {yn, n ≥ 1} of {xi , i ≥ 1} such that
ηn(yn) → h(x0) as n → ∞. By Proposition 3.2, ηn almost surely epiconverges to
h. ��

If ζ is a non-negative normal integrand, then (3.4) automatically holds for α = 0,
so that the strong law of large numbers holds for non-negative integrands without
any additional conditions.

Minimisation of expectations

Many stochastic optimisation problems can be written in the following form

J (x) = Eg(x, θ) =
∫
%

g(x, θ)P(dθ)→ min , x ∈ E , (3.8)

where θ is a random element in a measurable space %. This problem can also be
interpreted within the framework of the Bayesian decision theory, where E is a de-
cision space, θ ∈ % is an unknown quantity affecting the decision process (state of
nature) with the prior distribution P and g(x, θ) is the loss incurred when the chosen
action is x and the true state of nature is θ .

Assume that g(x, θ) is a non-negative function jointly measurable in θ and x and
lower semicontinuous with respect to x for P-almost all θ . Sometimes, (3.8) can be
approximated by a different problem:

Jn(x) = 1

n

n∑
i=1

g(x, θi)→ min , x ∈ E , (3.9)

where θ1, . . . , θn is a sample of i.i.d. observations of θ distributed according to P.
Note that (3.9) is a particular case of the general setup, where

Jn(x, ω) =
∫
%

g(x, θ)Pn(dθ)(ω)

for a sequence of random measures {Pn(ω), n ≥ 1} that converges to P in some
sense as n →∞. Then (3.9) appears if Pn is the empirical probability measure.
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Theorem 3.22 (Convergence of expectations). Let E be a Polish space and let g be
a normal integrand that satisfies condition (3.4). Assume that % is a general topolog-
ical space and ∫

f (θ)Pn(dθ)(ω)→
∫

f (θ)P(dθ) a.s. as n →∞ (3.10)

for every measurable and P-integrable function f on %. Then J (x) is lower semi-
continuous and Jn epiconverges to J a.s. as n →∞.

If Pn is an empirical measure, then (3.10) holds and Theorem 3.22 corresponds
to Theorem 3.21.

The epiconvergence of Jn implies the convergence of minimisers if E is a
compact space. If E is not compact, Theorem 3.4 implies that inf Jn → inf J if
{Jn, n ≥ 1} almost surely has a relatively compact sequence of ε-optimal points.

Convergence of maximum likelihood estimators

Many statistical estimators appear as solutions of minimisation (or maximisation)
problems. Since the epiconvergence is the weakest functional convergence which
ensures the convergence of minimum points, it can be applied to prove strong con-
sistency of estimators under minimal conditions.

Let (E,F, µ) be a complete measurable space with a σ -finite measure µ. Con-
sider a parametric family Pθ of probability distributions on E which are absolutely
continuous with respect to µ with the densities fθ (x), x ∈ E, parametrised by θ from
a Polish space %.

Assumptions 3.23.
(i) f is jointly measurable with respect to x and θ .

(ii) For every θ ∈ %, fθ is a probability density function with respect to µ.
(iii) For µ-almost all x , fθ (x) is sup-compact as a function of θ , i.e. for each r > 0,

the set {θ : fθ (x) ≥ r} is compact in %.
(iv) θ1 �= θ2 implies µ({x : fθ1(x) �= fθ2(x)}) > 0.

Fix a θ0 ∈ % and assume that fθ0 is a probability density function of a ran-
dom element ξ . Consider a basic statistical problem of estimating θ0 from a sample
x1, . . . , xn of n realisations of ξ . The maximum likelihood approach suggests esti-
mating θ0 by the maximum likelihood estimator θ̂n defined as a maximiser of the
likelihood function

L(x1, . . . , xn|θ) =
n∏

i=1

fθ (xi ) , θ ∈ % .

Define
b(x) = sup

θ∈%
fθ (x) ,

so that b(x) = b1(x), where

bn(x1, . . . , xn) = sup
θ∈%

L(x1, . . . , xn|θ) , n ≥ 1 .
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Theorem 3.24 (Consistency of maximum likelihood estimators). Let Assump-
tions 3.23 hold. Assume also that

Eθ0

[
log

b(ξ)

fθ0(ξ)

]
<∞ , (3.11)

where Eθ0 denotes the expectation with respect to Pθ0 . If εn ↓ 0 as n →∞, then the
following statements hold.
(i) There exists a sequence {θ̂n, n ≥ 1} of εn-approximate maximum likelihood

estimators, namely a sequence of measurable maps from En into % such that

L(x1, . . . , xn|θ̂n) ≥ bn(x1, . . . , xn)− εn , n ≥ 1 .

(ii) For every such sequence {θ̂n, n ≥ 1}, θ̂n → θ0 almost surely as n →∞.

Proof.
(i) By Assumptions 3.23(i),(iii), the functions b and bn are measurable and fi-

nite. Assumption 3.23(iii) implies that f is upper semicontinuous with respect to
θ , whence the likelihood function is upper semicontinuous too. For any fixed n and
ε > 0 define

Xn,ε = {θ : Ln(x1, . . . , xn |θ) ≥ bn(x1, . . . , xn)− ε}
and

Xn = Xn,0 = {θ : Ln(x1, . . . , xn |θ) = bn(x1, . . . , xn)} .
By a dual to Proposition 3.10(iii) for upper semicontinuous functions, Xn,ε and Xn

are random closed subsets of %. By the fundamental selection theorem there exist
selections θ̂n,ε and θ̂n of Xn,ε and Xn respectively. This proves (i).
(ii) Define g(x, θ) = − log fθ (x) for x ∈ Ω , θ ∈ % and put

ηn(θ) = 1

n

n∑
i=1

g(xi , θ) = −1

n
log Ln(x1, . . . , xn|θ) .

Define a function with possibly infinite values by

ϕ(θ) = Eθ0

[
log

b(ξ)

fθ (ξ)

]
, θ ∈ % .

Since it is possible to replace µ by cµ and the function f by f/b, assume that f
takes values in [0, 1], g takes values in [0,∞] and b(x) is identically equal to 1.
Using Jensen’s inequality, it is easily seen that θ0 is the unique minimiser of ϕ(θ),
θ ∈ %.

The finding of the maximum likelihood estimator is equivalent to minimisation
of ηn , which is a stochastic optimisation problem. By Theorem 3.21, ηn epiconverges
to ϕ almost surely. Note that (3.11) is important to ensure that ϕ(θ0) <∞, so that ϕ
is not identically equal to ∞, i.e. g(x, θ) is a proper normal integrand with respect
to θ . Now (ii) follows from (3.1) of Theorem 3.4. ��
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3.3 Epigraphs and extremal processes

Pointwise extremes

If ζ1 and ζ2 are two normal integrands, then

epi ζ1 ∪ epi ζ2 = epi ζ

where ζ(x) = min(ζ1(x), ζ2(x)), x ∈ E, is the pointwise minimum of ζ1 and ζ2.
Therefore, a pointwise minimum of functions corresponds to the unions of their
epigraphs. This observation allows us to apply results for unions of random closed
sets for epigraphs of random functions in order to prove limit theorems for pointwise
minima of random lower semicontinuous functions. In what follows we mostly dis-
cuss the dual statements for pointwise maxima of upper semicontinuous functions
and unions of their hypographs, as is more typical in the literature devoted to the
studies of maxima of random functions.

Assume that E is a LCHS space. Let USC(E) denote the family of upper semi-
continuous functions on E. The hypotopology on USC(E) is induced by the Fell
topology on closed sets in E×R. If f is a (random) upper semicontinuous function,
then f ∨(K ) = supx∈K f (x) denotes the corresponding maxitive random capacity
(or sup-measure).

Definition 3.25 (Max-infinite divisibility and max-stability). Let ζ be a random
upper semicontinuous function on E.
(i) ζ is called max-infinitely divisible if for each n there exist i.i.d. random up-

per semicontinuous functions η1, . . . , ηn such that ζ(x), x ∈ E, coincides in
distribution with max1≤i≤n ηi (x), x ∈ E.

(ii) ζ is max-stable if, for every n ≥ 2, there are constants an > 0 and bn ∈ R such
that ζ coincides in distribution with an max1≤i≤n ζi + bn where ζ1, . . . , ζn are
i.i.d. with the same distribution as ζ .

Theorem 4.1.33 applied to the lattice of upper semicontinuous functions with
the lattice operation being the intersection of hypographs (or pointwise minima of
functions) yields the following result.

Theorem 3.26 (Max-infinite divisible functions). A random upper semicontinuous
function ζ which is not identically equal to∞ is max-infinitely divisible if and only
if ζ(x) coincides in distribution with max(h(x), ηi (x), i ≥ 1), x ∈ E, where
(1) h : E �→ R̄ is an upper semicontinuous function which is not identically equal

to∞ and satisfies

h(x) = sup{t : P {ζ(x) ≥ t} = 1} ;
(2) {ηi , i ≥ 1} are atoms of the Poisson point process on USC(E) with uniquely

determined locally finite intensity measure ν on { f ∈ USC(E) : f �= h, f ≥
h} (i.e. ν is finite on compact in the hypotopology sets) such that

ν(∪n
i=1{ f : f ∨(Ki ) ≥ xi }) = − log P(∩n

i=1{ζ∨(Ki ) < xi })
for all Ki ∈ K, xi > h∨(Ki ), i = 1, . . . , n and n ≥ 1.
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Since pointwise maxima of random upper semicontinuous functions correspond
to unions of their hypographs, it is possible to use limit theorems for unions of ran-
dom closed sets in order to derive results for pointwise maxima of upper semicon-
tinuous functions.

Semi-min-stable processes

A stochastic process ζ(t), t ≥ 0, is said to be semi-min-stable of order α if, for
each n ≥ 2 and i.i.d. processes ζ, ζ1, . . . , ζn , the process n min(ζ1(t), . . . , ζn(t)),
t ≥ 0, coincides in distribution with ζ(nα t), t ≥ 0. By considering the epigraph
X = epi ζ as a random closed set in R2, it is easy to see that X is stable in the sense
of Proposition 4.1.21 with g = (α, 1). Examples of semi-min-stable processes can
then be constructed using the scheme of Example 4.1.17 with Z being the epigraph
of a deterministic lower semicontinuous function.

Continuous choice processes

Because of a number of applications to dynamic modelling of consumer choice it is
interesting to study stochastic processes with values in USC(E) or time-dependent
sequences of random upper semicontinuous functions. Such an object is denoted by
ζt , so that ζt = ζt (x), x ∈ E, is a random element in USC(E) for every t ≥ 0.
Without loss of generality assume that all processes take non-negative values and so
belong to the family Υ of non-negative upper semicontinuous functions punctured
by removal of the function identically vanishing on E. A sufficiently flexible model
for random elements in Υ is provided by super-extremal processes.

Definition 3.27 (Super-extremal process). If Π = {(tk, ηk), k ≥ 1} is a Poisson
point process on R+ × Υ with the intensity measure µ, then the super-extremal
process is given by

ζt = sup
tk≤t

ηk , t > 0 .

For every B ∈ B(E), the process ζ∨t (B), t > 0, is a classical univariate extremal
process, see Resnick [481, p. 180]. By construction, ζt is max-infinitely divisible for
every t > 0. It is shown in Resnick and Roy [482, Th. 3.1] that, for every t > 0,
the defined ζt is a random element in Υ (i.e. hypo ζt is a random closed set) and
there is a version of ζt which is continuous from the right and has limits from the left
with respect to t (with respect to the hypotopology on Υ ). The Markov property of
ζt follows from the fact that ζt = max(ζs, ζs,t) for s < t , where

ζs,t = sup
s<tk≤t

ηk

is independent of ζs .
The super-extremal process represents the evolution of random utilities where

at each time t the utility for the choice x is given by ζt (x). At every time moment
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t the customer choice aims to maximise the utility, so that the preferable options
correspond to the argmax set

Mt = {x ∈ E : ζt (x) = ζ∨t (E)}
called the choice process, where ζ∨t (E) = supx∈E ζt (x). Note that Mt can be empty if
ζt is unbounded on E and does not take infinite values. This situation can be avoided
if E is compact.

An analogue of Proposition 3.10(iii) immediately shows that Mt is a random
closed set for every t > 0. Similar to Theorem 3.4, it is possible to show that the
argmax functional is upper semicontinuous on USC(E). Since ζt is continuous from
the right, Mt is upper semicontinuous from the right in the Fell topology.

Example 3.28 (Simple choice processes). Let {tk} form a stationary Poisson point
process on (0,∞) and let ηk(x) = 1Xk (x), k ≥ 1, where {Xk} are random compact
sets that constitute a Poisson point process on K(E). Then Mt = ∪k: tk≤t Xk is the
increasing set-valued process, cf (1.3).

If ηk(x) = sk1Xk (x), where Y = {sk} is a union-stable Poisson point process
on [0,∞) with intensity function λ(x) = x−2 (see Example 1.16), then Mt = Xn ,
where sn = max{sk : tk ≤ t}. Note that Y is bounded almost surely, so that sn0 =
max(Y ). Then Mt converges in distribution to Xn0 .

From now on assume that E is compact, so that F = K. Let µ be a locally finite
measure on (0,∞)×Υ such that µ({t} ×Υ ) = 0 and µt (·) = µ((0, t] × ·) satisfies
µt (Υ ) = ∞ and

µt ({ f : f ∨(K ) =∞}) = 0 , K ∈ K ,

for all t > 0. Furthermore, assume that

cαµt (cY ) = µt (Y ) , c > 0 , (3.12)

for some α > 0 and each Y from the family B(Υ ) of the Borel subsets of Υ defined
with respect to the hypotopology. If (3.12) holds, then ζt is said to have max-stable
components; in particular, this implies that ζt itself is max-stable for every t > 0. By
transforming [0,∞) it is possible to assume without loss of generality that α = 1.

For Y ∈ B(Υ ) put
ζt [Y ] = sup

tk≤t, ηk∈Y
η∨k (E) .

Since {(tk, ηk), k ≥ 1} is a Poisson point process, ζt [Yi ], i = 1, . . . , n, are mutually
independent for disjoint Y1, . . . ,Yn . Particular important subsets of Υ are

ΥK = { f ∈ Υ : (argmax f ) ∩ K �= ∅} ,
Υ K = { f ∈ Υ : (argmax f ) ⊂ K } ,
Υ1 = { f ∈ Υ : f ∨(E) ≥ 1} .
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Lemma 3.29. If ζt has max-stable components and Y ∈ B(Υ ) is a cone, i.e. cY = Y
for all c > 0, then ζt [Y ] is does not have atoms and

P {ζt [Y ] < s} = exp{−s−1µt (Y ∩ Υ1)} , t > 0 .

Proof. The construction of the Poisson point process Π from Definition 3.27 implies
that

P {ζt [Y ] < s} = exp{−µt (Y ∩ { f : f ∨(E) ≥ s})} .
By (3.12) and the assumption on Y ,

µt (Y ∩ { f : f ∨(E) ≥ s}) = µt (s(Y ∩ { f : f ∨(E) ≥ 1}))
= s−1µt (Y ∩ Υ1) . ��

Theorem 3.30 (Distribution of the choice process). Let ζt be a super-extremal pro-
cess with max-stable components in a compact space E. Then
(i) ζ∨t (E) and Mt are independent for each t > 0;

(ii) the containment functional of Mt is given by

P {Mt ⊂ K } = µt (Υ
K ∩ Υ1)

µt (Υ1)
, K ∈ K ,

and is called the choice probability;
(iii) the capacity functional of Mt is

TMt (K ) = P {Mt ∩ K �= ∅} = µt (ΥK ∩ Υ1)

µt (Υ1)
, K ∈ K .

Proof. Note that

P {Mt ⊂ K } = P
{
ζt [Υ K ] > ζt [(Υ K )c]

}
and cΥ K = Υ K for every K ⊂ E. Lemma 3.29 and the total probability formula
imply that

P {Mt ⊂ K } =
∞∫

0

exp{−s−1µt ((Υ
K )c ∩ Υ1)} d exp{−s−1µt (Υ

K ∩ Υ1)}

= µt (Υ
K ∩ Υ1)

µt (Υ1)

as required. The proof of (iii) is similar. To show (i), observe that

ζ∨t (E) = max(ζt [Υ K ], ζt [(Υ K )c]) .
By a similar expression of P {Mt ⊂ K } with the integral taken from 0 to z we obtain
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P
{

Mt ⊂ K , ζ∨t (E) ≤ z
} = P

{
ζt [Υ K ] > ζt [(Υ K )c], ζ∨t (E) ≤ z

}
= µt (Υ

K ∩ Υ1)

µt (Υ1)
(1− exp{−zµt (Υ1)}) .

Since the containment functional determines the distribution of Mt , this shows that
Mt and ζ∨t (E) are independent. ��

Corollary 3.31. If ζt has max-stable components and is time-homogeneous, i.e.
µt (·) = tµ(·), then the distribution of Mt does not depend on t and

C(K ) = P {Mt ⊂ K } = µ(Υ K ∩ Υ1)

µ(Υ1)
, K ∈ K , (3.13)

T (K ) = P {Mt ∩ K �= ∅} = µ(ΥK ∩ Υ1)

µ(Υ1)
, K ∈ K . (3.14)

The following result establishes that the set-valued random process Mt , t > 0, is
Markov and gives its transition probabilities.

Theorem 3.32 (Markov property of the choice process). If ζt is a super-extremal
process with max-stable components, then Mt , t > 0, is a Markov process with state
space K. For 0 < s < t , K , L ∈ K, the transition probabilities are determined
(i) in terms of the containment functional (choice probability) by

P {Mt ⊂ K |Ms = L} = µs,t (Υ
K ∩ Υ1)

µt (Υ1)
+ 1L⊂K

µs(Υ1)

µt (Υ1)
,

where µs,t(·) = µt (·)− µs(·);
(ii) in terms of the capacity functional by

P {Mt ∩ K �= ∅|Ms = L} = µs,t(ΥK ∩ Υ1)

µt (Υ1)
+ 1L∩K �=∅

µs(Υ1)

µt (Υ1)
.

Corollary 3.33. If ζt is a time-homogeneous super-extremal process with max-stable
components, then

P {Mt ⊂ K |Ms = L} = t−1
(
(t − s)C(K )+ s1L⊂K

)
,

P {Mt ∩ K �= ∅ |Ms = L} = t−1
(
(t − s)T (K )+ s1L∩K �=∅

)
,

where C(K ) and T (K ) are given by (3.13) and (3.14) respectively. The time-
changed choice process Met is a time-homogeneous Markov process.

Epiconvergence of support functions for polyhedral approximations of convex
sets

The following example is related to the epiconvergence, unions of random sets and
polygonal approximations of convex sets. Let F be a convex compact set in Rd with a
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twice continuously differentiable boundary ∂F and let n(x) be the unit outer normal
vector at x ∈ ∂F . Furthermore, let P be a probability measure on F with continuous
density f which is non-vanishing on Int F . Consider i.i.d. random points ξ1, . . . , ξn

with distribution P. Their convex hull

Ξn = co(ξ1, . . . , ξn)

is a random polyhedron which approximates F as n →∞, see Figure 3.6. Define

ηn(u) = h(F, u) − h(Ξn, u) , u ∈ Sd−1 .

F
x

ξi

Ξn

ηn(u)

u

n(x)

Figure 3.6. Polyhedral approximation of F .

Theorem 3.34 (Epiconvergence for polyhedral approximations).
(i) If f does not vanish identically on ∂F , then nηn weakly epiconverges to a sharp

integrand η such that ∂−epiη is a Poisson point process on Sd−1 × [0,∞) with
the intensity measure

Λ(K ) =
∫

FK

f (x)Hd−1(dx)dt , K ⊂ Sd−1 × [0,∞) ,

where Hd−1 is the (d − 1)-dimensional Hausdorff measure and

FK =
⋃

(u,t)∈K

{(x, s) : x ∈ ∂F, n(x) = u, s ∈ [0, t]} .

(ii) Assume that f (x) = 0 for all x ∈ ∂F and f is continuously differentiable in a
neighbourhood of ∂F with 〈 f ′(x),n(x)〉 not vanishing identically on ∂F , where
f ′ is the vector of the partial derivatives of f . Then

√
nηn weakly epiconverges

to a sharp integrand η such that ∂−epi η is a Poisson point process on Sd−1 ×
[0,∞) with the intensity measure
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Λ(K ) =
∫

FK

x〈 f ′(x),n(x)〉Hd−1(dx)dt .

Proof.
(i) Since ηn(u) = min{h(F, u) − 〈u, ξi 〉 : 1 ≤ i ≤ n}, the epigraph of ηn is the

union of epigraphs of functions h(F, u)− 〈u, ξi 〉 for 1 ≤ i ≤ n, i.e.

Hn = epiηn = X1 ∪ · · · ∪ Xn ,

where

Xi = {(u, t) : u ∈ Sd−1, t ≥ 0, 〈u, ξi 〉 ≥ h(F, u) − t} , i ≥ 1 ,

are i.i.d. random closed sets. Fix a sequence an → 0 of normalising constants. Then

a−1
n ◦ Hn = {(u, a−1

n t) : (u, t) ∈ Hn} = epi(a−1
n ηn) .

The weak convergence of a−1
n ◦ Hn would follow from the pointwise convergence of

its capacity functional on compact sets given by

K̃ =
m⋃

i=1

Ki × [0, ti ] , (3.15)

where K1, . . . , Km are compact subsets of Sd−1, t1, . . . , tm > 0 and m ≥ 1. It is
possible to assume that K1, . . . , Km are regular closed with respect to the induced
topology on the unit sphere and have disjoint interiors, since such sets form a sepa-
rating class on Sd−1. First, consider K̃ = K × [0, x], where K is a regular closed
subset of Sd−1. Introduce the sets

M(K , t) = {x ∈ F : inf{h(F, u)− 〈u, x〉 : u ∈ K } ≤ t} ,
N(K ) = {x ∈ ∂F : n(x) ∈ K } ,

N(K , t) = {x − sn(x) : x ∈ N(K ), 0 ≤ s ≤ t} .
Then

P
{

X1 ∩ t ◦ K̃ �= ∅
}
= P (M(K , t)) =

∫
M(K ,t)

f (u)du .

Note that for all ε > 0 and sufficiently small t > 0,

N(K , t) ⊂ M(K , t) ⊂ N(K ε, t) , (3.16)

where K ε = {v ∈ Sd−1 : Bε(v)∩K �= ∅}. It can be shown that for a certain constant
c and each sufficiently small positive t∣∣∣∣∣∣∣

∫
N(K ,t)

f (x)dx −
∫

N(K )

Hd−1(dx)

t∫
0

f (x − sn(x))ds

∣∣∣∣∣∣∣ ≤ c sup
u∈N(K ,t)

f (u)t2 .
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Furthermore,

∫
N(K )

Hd−1(dx)

t∫
0

f (x − sn(x))ds

= t
∫

N(K )

f (x)Hd−1(dx)− t2

2

∫
N(K )

〈 f ′(x),n(x)〉Hd−1(dx)+ o(t2)

as t → 0. By the condition on f , Hd−1({v ∈ ∂F : f (v) �= 0}) > 0. Therefore,

t−1
∫

N(K ,t)

f (x)dx →
∫

N(K )

f (x)Hd−1(dx) as t → 0 .

It follows from (3.16) that∫
N(K )

f (x)Hd−1(dx) ≤ lim
t→0

t−1
∫

M(K ,t)

f (x)dx ≤
∫

N(K ε)

f (x)Hd−1(dx) .

A similar inequality holds for K given by (3.15), i.e.

m∑
i=1

ti

∫
N(Ki )

f (x)Hd−1(dx) ≤ lim
s→0

s−1P
{

X1 ∩ s ◦ K̃ �= ∅
}

≤
m∑

i=1

ti

∫
N(K ε

i )

f (x)Hd−1(dx) .

Theorem 4.2.3 implies that the random closed set n ◦Hn (i.e. a−1
n ◦Hn for an = n−1)

converges weakly to the random set H having the capacity functional

TH (K ) = 1− exp

⎧⎪⎨⎪⎩−
∫

FK

f (x)dxdt

⎫⎪⎬⎪⎭ .

Note that FK = FK̂ , where K̂ = {(u, s) : s ≤ t, (u, t) ∈ K } and FK1 and FK2

are disjoint if K̂1 and K̂2 are disjoint. Therefore, Λ(K̂ ) is a measure, whence nηn

epiconverges to a sharp integrand η such that epi η = H and ∂−epiη is a Poisson
point process with the intensity measure Λ.
(ii) In this case

sup
x∈N(K ,t)

f (x)→ 0 as t → 0 .

Hence
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t−2
∫

N(K ,t)

f (x)dx → −1

2

∫
N(K )

〈 f ′(x),n(x)〉Hd−1(dx) as t → 0 .

Thus, for an = n−1/2, the weak epilimit of a−1
n ηn has the capacity functional

TH (K ) = 1− exp

⎧⎪⎨⎪⎩
∫

FK

s〈 f ′(x),n(x)〉dxds

⎫⎪⎬⎪⎭ . ��

Example 3.35. If ξ1, . . . , ξn are uniformly distributed on F , then the limiting capac-
ity functional is given by

TH (K ) = 1− exp{−µ(FK )/ mes(F)} ,
where µ is the product of Hd−1 and the Lebesgue measure on the line.

3.4 Increasing set-valued processes of excursion sets

It is possible to strengthen the epiconvergence by adding a uniformity requirement
to it. Observe that if f is a lower semicontinuous function, then the family of its
excursion sets { f ≤ t} parametrised by the level t ∈ R is an increasing set-valued
process on R which is also right-continuous, i.e. { f ≤ s} ↓ { f ≤ t} if s ↓ t .
Discontinuities from the left are caused by local minima of f . If f (x) = t is a
local minimum, then { f ≤ t} contains x , while { f ≤ s} for s < t does not hit a
neighbourhood of x .

Let ρ be a metric on the family of closed sets in a LCHS space E that metrises
the Fell topology, e.g. the Hausdorff–Busemann metric (B.1) or the Hausdorff metric
if E is compact. Consider two lower semicontinuous functions f and g with values
in [0, 1]. The corresponding uniform metric is defined as

ρU( f, g) = sup
0≤t≤1

ρ({ f ≤ t}, {g ≤ t}) .

However, because of possible discontinuities, the uniform metric is too strong. Gen-
eralising the concept of convergence for numerical right-continuous functions with
left limits, it is possible to use the Skorohod distance together with the Hausdorff
(or Hausdorff–Busemann) metric for closed sets in order to define the DH-distance
between lower semicontinuous functions.

Definition 3.36 (DH-distance and convergence). The DH-distance between lower
semicontinuous functions f and g is defined as

ρDH( f, g) = inf
λ∈Σ

[
ρU(λ( f ), g)+ sup

0≤t≤1
|λ(t)− t|

]
,

where Σ is the family of continuous bijections of [0, 1]. We say that fn DH-
converges to f is ρDH( fn, f )→ 0 as n →∞.
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It is easy to generalise the DH-convergence concept for functions with values in
a general interval and then further to functions with possibly unbounded families of
values by considering their arbitrary truncations. The DH-convergence is generally
incomparable with classical definitions of convergence.

Example 3.37 (Convergence modes).
(i) Let fn(t) = 1[1/2,1](t)(2tn−1 + 1 − 2n−1). Then fn uniformly converges to

1[1/2,1], but fn does not DH-converge. The uniform convergence does not imply
DH-convergence even if the limiting function is continuous.
(ii) The function fn(t) = 1[1/2+1/n,1](t)+1[1/2,1/2+1/n](t)(nt−n/2) DH-converges
to 1[1/2,1](t), but does not admit a limit in the Skorohod space or in the uniform
metric.
(iii) If fn(t) = tn , 0 ≤ t ≤ 1, then fn epiconverges to 0, but does not DH-converge,
i.e. the epiconvergence does not imply the DH-convergence.

The following result follows from Proposition 3.3.

Proposition 3.38 (DH-convergence implies epiconvergence). If lower semicontin-
uous functions fn DH-converge to f , then the sequence { fn, n ≥ 1} also epicon-
verges to f as n →∞.

The first passage time

τK = inf{t : { f ≤ t} ∩ K �= ∅}
of the process { f ≤ t} is directly related to the infimum of f , since τK ≤ t if and
only if infx∈K f (x) ≤ t . Therefore, the DH-convergence ensures the convergence of
the first passage times.

Now consider the weak DH-convergence of a sequence {ζn} of normal inte-
grands. We begin with the convergence of finite-dimensional distributions.

Theorem 3.39 (Finite-dimensional distributions for the excursion process). Sup-
pose that ζ is a random lower semicontinuous function such that the distribution of
infx∈K ζ(x) is atomless for each K ∈ K. Then the finite-dimensional distributions
of the set-valued process {ζn ≤ t}, t ∈ [0, 1], converge to the finite-dimensional
distributions of {ζ ≤ t}, t ∈ [0, 1], if and only if ζn weakly epiconverges to ζ as
n →∞.

Proof. The one-dimensional distribution of {ζn ≤ t} for t ∈ [0, 1] is given by the
corresponding capacity functional

P
{
{ζn ≤ t} ∩ K �= ∅

}
= P

{
inf

x∈K
ζn ≤ t

}
.

For the continuity property, note that

P
{
{ζ ≤ t} ∩ Int K = ∅, {ζ ≤ t} ∩ K �= ∅

}
+ P

{
inf

x∈K
ζ(x) = t

}
= P

{
(epi ζ ) ∩ F �= ∅, (epi ζ ) ∩ Int F = ∅

}
,
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where F = K × [0, t]. The same holds for the capacity functional of the m-tuple
of random sets ({ζn ≤ t1}, . . . , {ζn ≤ t1}) for t1 < t2 < · · · < tm . Therefore, the
weak epiconvergence of ζn is equivalent to the convergence of finite-dimensional
distributions. ��

In difference to Theorem 3.18, the convergence of finite-dimensional distribu-
tions of the process {ζn ≤ t} does not suffice for the weak DH-convergence. One
also needs to check the tightness condition described in Theorem 3.40. For a lower
semicontinuous function f and x ∈ E define

ωε( f, x) = f (x)− inf{ f (y) : y ∈ Bε(x)} ,
ω̄ε( f, x) = inf

{
f (y) : inf f (Bε(y)) > f (x)

}
− f (x) ,

where the infimum over an empty set equals∞. The value

�̂ε( f ) = inf
x∈E

max(ωε( f, x), ω̄ε( f, x)) ,

is related to the continuity modulus

�h(F) = sup
h≤t≤1−h

min (ρ(Ft−h, Ft ), ρ(Ft , Ft+h))

+ ρ(F0, Fh)+ ρ(F1−h, F1)

for the set-valued function Ft = { f ≤ t}, t ∈ [0, 1]. It is possible to show that
for each ε > 0 and sufficiently small h, �h(F) > ε implies �̂ε( f ) < 2h and
�̂ε( f ) < h implies �h(F) > ε.

Theorem 3.40 (Tightness for DH-convergence). A sequence {ζn, n ≥ 1} of lower
semicontinuous functions with values in [0, 1] weakly DH-converges to a function ζ

if the finite-dimensional distributions of {ζn ≤ t} converge to the finite-dimensional
distributions of {ζ ≤ t} and, for each ε > 0,

lim
h↓0

sup
n≥1

P
{
�̂ε(ζn) ≤ h

}
= 0 .

3.5 Strong law of large numbers for epigraphical sums

Operations with epigraphs

Let ζ1 and ζ2 be proper normal integrands defined on E = Rd . Two basic operations
with functions, addition and pointwise minimum, can be reformulated for epigraphs,
so that the pointwise minimum corresponds to the union of the epigraphs, i.e.

epi(min(ζ1, ζ2)) = epi ζ1 ∪ epi ζ2 ,

and the pointwise addition
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epi(ζ1 + ζ2) = {(x, t1 + t2) : (x, ti ) ∈ epi ζi , i = 1, 2}
is obtained as a “vertical” sum of the epigraphs.

It is possible to define another operation with functions by taking Minkowski
sums of their epigraphs as closed subsets of Rd × R, so that

cl(epi ζ1 + epi ζ2) = cl({(x1 + x2, t1 + t2) : (xi , ti ) ∈ epi ζi , i = 1, 2})
is the epigraph of a lower semicontinuous function ζ called the epigraphical sum of
ζ1 and ζ2 and denoted ζ = ζ1 ⊕ ζ2. It is easy to see that

ζ(x) = inf{ζ1(y)+ ζ2(z) : y + z = x} . (3.17)

The scaling operation is defined similarly as c , ζ with

epi(c , ζ ) = c epi ζ = {(cx, ct) : (x, t) ∈ epi ζ } , c > 0 .

so that (c , ζ )(x) = cζ(c−1x). These definitions show a great degree of similar-
ity with the setup of Chapter 3 which deals with normalised Minkowski sums of
random closed sets. However, the specific feature of integrands requires results for
unbounded random closed sets.

Selection expectation for normal integrands

A normal integrand ζ is said to be integrable if epi ζ is an integrable random closed
set. This is equivalent to the integrability of ζ(ξ) for an integrable random vector ξ in
Rd . In particular, it suffices to assume that ζ(x) is integrable for at least one x ∈ Rd .
If ζ is integrable, then epi ζ possesses a non-empty selection expectation E(epi ζ ).

Proposition 3.41 (Selection expectation integrands). If ζ is an integrable normal
integrand, then E(epi ζ ) = co (epi g) where

g(x) = inf{Eζ(ξ) : ξ ∈ L1, Eξ = x} , x ∈ E . (3.18)

Proof. For a lower semicontinuous function f define its strict epigraph by

epi′ f = {(x, t) : f (x) > t} .
It suffices to show that the strict epigraph epi′ g coincides with the Aumann integral
EI(epi′ ζ ), see Definition 2.1.13.

If (x, t) ∈ epi′ g, then there exists ξ ∈ L1 verifying Eξ = x and Eζ(ξ) < t .
Define

α = ζ(ξ)+ t − Eζ(ξ) .

Then (ξ, α) is an integrable selection of the random (not necessarily closed) set epi′ ζ
and E(ξ, α) = (x, t), whence (x, t) ∈ EI epi′ ζ .

Conversely, if (x, t) ∈ EI(epi′ ζ ), then there are ξ ∈ L1 and an integrable random
variable α such that Eξ = x , Eα = t and ζ(ξ) < α a.s. Then

g(x) ≤ Eζ(ξ) < Eα = t . ��
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If f is a lower semicontinuous function, then co (epi f ) is the epigraph of a con-
vex lower semicontinuous function called the biconjugate of f , which is the largest
convex lower semicontinuous function which is smaller than f . Proposition 3.41
implies that E(epi ζ ) is the epigraph of the biconjugate of Eζ(x), x ∈ E.

Law of large numbers and application to allocation problem

Theorem 3.1.21 implies that if {ζn, n ≥ 1} are i.i.d. integrable proper normal inte-
grands, then

ηn = n−1 , (ζ1 ⊕ · · · ⊕ ζn)

epiconverges almost surely to the function of g defined by (3.18). Note that ηn can
be equivalently obtained as

ηn(x) = inf{n−1
n∑

i=1

ζi (xi) : x1, . . . , xn ∈ Rd , n−1
n∑

i=1

xi = x} .

This explains the close relationships with the allocation problem in mathematical
economy, see Artstein and Hart [22], which is usually formulated for maximum in-
stead of minimum and refers to the dual results for hypographs.

Consider a sequence {ζn, n ≥ 1} of random production functions, which are i.i.d.
random upper semicontinuous functions defined on Rd+ = [0,∞)d with values in
R+ = [0,∞). The random variable ζi (xi ) determines the output of the i th firm if
it has xi ∈ Rd+ resources of d different types. Let q ∈ Rd+ be a vector with strictly
positive coordinates, which represents the total initial resources to be allocated for
n different firms with production functions ζ1, . . . , ζn respectively. Consider the fol-
lowing optimisation (allocation) problem:

1

n

n∑
i=1

ζi (xi )→ max subject to
1

n

n∑
i=1

xi ≤ q , (3.19)

where the inequality in Rd+ is coordinatewise. The supremum in (3.19) is denoted by
vn(q) (remember that vn(q) is a random variable so it also depends on ω). Note that
Xi = hypo ζi , i ≥ 1, form a sequence of i.i.d. random closed (unbounded) sets and

EXi = hypo g , (3.20)

where g is the smallest concave function which is larger than Eζi (x) for all x ∈ Rd+.
If ζi = f is deterministic, then g is the smallest concave hull of f . Assume that
n →∞, i.e. the number of firms is large.

Theorem 3.42 (Optimal allocations). For any q ∈ (0,∞)d , the value vn(q) of the
problem (3.19) converges almost surely as n →∞ to v(q), which is the supremum
of Eg(ξ) subject to Eξ ≤ q , where g is defined by (3.20). The convergence is
uniform for q from each bounded subset of (0,∞)d .
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Proof. It follows from (3.19) that vn(q) is the supremum of r such that (x, r) be-
longs to n−1(X1 + · · · + Xn) and x ≤ q . By Theorem 3.1.21, n−1(X1 + · · · + Xn)

converges in the Fell topology to the closed convex hull of EX1. The convergence
of hypographs implies the convergence of maxima over compact sets, so that vn(q)

converges uniformly for q in a bounded set to the supremum of r such that there
exists x ≤ q with (x, r) ∈ co (EX1). By (3.20) the latter is equal to v(q). ��

The concept of conditional selection expectation applied to a sequence of epigraphs
leads to the following definition.

Definition 3.43 (Martingale integrand). A sequence {ζn, n ≥ 1} of convex inte-
grable proper normal integrands is called a martingale integrand if {epi ζn, n ≥ 1} is
a multivalued martingale with closed convex values in E× R.

Submartingale and supermartingale integrands are defined similarly which makes
it possible to formulate for integrands a number of those results from Section 1.1
which are applicable for unbounded random closed sets.

3.6 Level sums of random upper semicontinuous functions

Deterministic level sums and convergence

Although it is possible to apply arithmetic addition or pointwise maxima to upper
semicontinuous functions, there are several “non-traditional” operations which make
sense in this setting. Here we consider the operation based on Minkowski addition of
the excursion sets. For simplicity, assume that E is the Euclidean space Rd , although
many results hold for a general Banach space. Let Υ0 denote the family of upper
semicontinuous functions f with values in [0, 1] such that { f ≥ t} is compact for
each t ∈ (0, 1] and { f = 1} �= ∅. Furthermore, let { f > t−} denote the closure of
{x ∈ E : f (x) > t}. The set { f > 0−} = supp f is called the support of f .

f (t)

1

xsupp f

{ f ≥ t}
t

Figure 3.7. Upper semicontinuous function f and its upper excursion set.

A deterministic upper semicontinuous function f ∈ Υ0 can be represented as a
“stacked” composition of its excursion sets { f ≥ t} for 0 < t ≤ 1, see Figure 3.7.
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Operations with functions can now be defined using set-theoretical operations with
their excursion sets and then stacking them back together. For instance, the level sum
of f and g is defined as

( f � g)(x) = sup
y+z=x

min( f (y), g(z)) , x ∈ E ,

cf. (3.17). It is easy to see that the excursion sets of f � g are equal to Minkowski
sums of the corresponding excursion sets of f and g, i.e.

{( f � g) ≥ t} = { f ≥ t} + {g ≥ t} , 0 < t ≤ 1 .

Multiplication by a real number c �= 0 is defined as

(c � f )(x) = f (x/c) .

The family Υ0 can be equipped with various metrics. The following two metrics
are especially important in the following:

ρ∞H ( f, g) = sup
0<t≤1

ρH({ f ≥ t}, {g ≥ t}) ,

ρ1
H( f, g) =

1∫
0

ρH({ f ≥ t}, {g ≥ t})dt .

Clearly, ρ1
H( f, g) ≤ ρ∞H ( f, g). It is shown by Puri and Ralescu [465] that the space

Υ0 with metric ρ∞H is a complete non-separable metric space. In contrast, the metric
ρ1

H turns Υ0 into a separable metric space, see Klement, Puri and Ralescu [318]. It is
possible also to define an analogue of the DH-metric from Definition 3.36.

The following fact states that the convergence in the uniform metric ρ∞H follows
from the pointwise convergence of the Hausdorff distances between the correspond-
ing excursion sets and the supports.

Theorem 3.44 (ρ∞H -convergence in terms of excursion sets). Let { fn, n ≥ 1} be a
sequence of functions from Υ0. Then ρ∞H ( fn, f )→ 0 as n →∞ for f ∈ Υ0 if and
only if

ρH({ fn ≥ t}, { f ≥ t})→ 0 as n →∞ for all t ∈ (0, 1] ,

and

ρH({ fn > t−}, { f > t−})→ 0 as n →∞ for all t ∈ [0, 1) .

Proof. Necessity is clear, so let us prove sufficiency. Note that if K1 ⊂ K ⊂ K2 and
L1 ⊂ L ⊂ L2 (all sets are compact), then

ρH(K , L) ≤ max(ρH(K1, L2), ρH(K2, L1)) . (3.21)
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Fix ε > 0 arbitrarily small. Since the family of sets { f ≥ t}, 0 < t ≤ 1, is decreasing
and all these sets are contained within the compact set supp f , there is at most a finite
number of points 0 < s1 < · · · < sm < 1 such that

ρH({ f > si−}, { f ≥ si }) ≥ ε .

Put s0 = 0 and sm+1 = 1.
Fix any i ∈ {0, . . . ,m}. Since supp f is a compact set, we can partition the

interval (si , si+1] by points si = t0 < t1 < · · · < tni = si+1 such that

ρH({ f > t j−}, { f ≥ t j+1}) < ε , j = 0, . . . , ni − 1 . (3.22)

For any j = 0, . . . , ni − 1, by (3.21) and the triangle inequality

sup
t j<t≤t j+1

ρH({ fn ≥ t}, { f ≥ t})

≤ max
[
ρH({ fn > t j−}, { f ≥ t j+1}), ρH({ fn ≥ t j+1}, { f > t j−})

]
≤ max

[
ρH({ fn > t j−}, { f > t j−}), ρH({ fn ≥ t j+1}, { f ≥ t j+1})

]
+ ρH({ f ≥ t j+1}, { f > t j−}) .

The choice of partitioning points implies that the first term in the right-hand side
converges to zero by the condition of the theorem and the second term is bounded by
ε as chosen in (3.22).

Then, for any i = 0, 1, . . . ,m,

sup
si<t≤si+1

ρH({ fn ≥ t}, { f ≥ t}) ≤ max
0≤ j≤ni−1

sup
t j<t≤t j+1

ρH({ fn ≥ t}, { f ≥ t})

converges to zero, which immediately yields ρ∞H ( fn, f )→ 0 as n →∞. ��

Random level sums

If ζ is a random element in Υ0, then {ζ ≥ t} is a random compact set for each
t ∈ (0, 1]. Note that ζ is said to be integrably bounded if all random compact sets
{ζ ≥ t} are integrably bounded, i.e. E‖{ζ ≥ t}‖ < ∞ for all 0 < t ≤ 1. We call ζ
strongly integrable if E‖ supp ζ‖ < ∞. The expectation of ζ which complies with
the above introduced operations can be defined by taking the selection expectations
of the excursion sets of ζ and then stacking them together. This is possible because
the selection expectation respects the inclusion relationship between random com-
pact sets.

Assume that ζ is integrable and define

(EAζ )(x) = sup{t : x ∈ EA{ζ ≥ t}} , x ∈ E . (3.23)

It is easy to show that {EAζ ≥ t} = EA{ζ ≥ t} because the family EA{ζ ≥ t} is
monotone with respect to t and
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EA{ζ ≥ t} = lim
tn↓t

EA{ζ ≥ tn}

by the convergence theorem for the selection expectation, see Section 2.1.2. In the
following we assume that the basic probability space is non-atomic, so that all excur-
sion sets of EAζ are convex. An integrable random function ζ is strongly integrable
if and only if supp EAζ is compact.

The strong law of large numbers for i.i.d. random upper semicontinuous func-
tions ζ, ζ1, ζ2, . . . aims to establish the convergence of

ζ̄n = n−1 � (ζ1 � . . . � ζn)

to the expectation EAζ in one of the metrics ρ∞H or ρ1
H. A simple inequality between

these metrics entails that it suffices to prove it with respect to ρ∞H only.

Theorem 3.45 (Strong law of large numbers for level sums). Every sequence ζn ,
n ≥ 1, of i.i.d. strongly integrable random upper semicontinuous functions satisfies
the strong law of large numbers in ρ∞H metric, i.e. ρ∞H (ζ̄n,EAζ1) → 0 a.s. as n →
∞.

Proof. It suffices to note that by the strong law of large numbers for random com-
pact sets (Theorem 3.1.6) ρH({ζ̄n ≥ t}, {Eζ1 ≥ t}) → 0 (respectively ρH({ζ̄n >

t−}, {Eζ1 > t−}) → 0) almost surely as n → ∞ for each t ∈ (0, 1] (respectively
t ∈ [0, 1)). The proof is concluded by applying Theorem 3.44. ��

3.7 Graphical convergence of random functions

Graphical convergence

As we have seen, random functions give rise to various random sets which appear as
their epigraphs, hypographs or graphs. Apart from providing new interesting exam-
ples of random sets, this allows us to handle random functions in a new specific way.
In this section we consider limit theorems for graphs of random functions. First, note
that in limit theorems for stochastic processes two basic convergences are usually
considered. This is the uniform convergence and the Skorohod convergence , see,
e.g. Billingsley [70] and Skorohod [537]. However, often a sequence of functions
does not converge in any of the topologies known from the classical theory of func-
tional limit theorems. At the same time the pointwise convergence or epi- (hypo-)
convergences are too weak to make conclusions about the limits of many interesting
functionals.

Example 3.46 (“Non-traditional” convergence).
(i) Let fn(t) = nx1[0,1/n](t) + 1(1/n,∞)(t), 0 ≤ t ≤ 1, n ≥ 1. Then fn(t) con-

verges pointwisely to f (t) = 1t>0, but does not converge either uniformly or in the
Skorohod sense.
(ii) fn(t) = nt , 0 ≤ t ≤ 1, “converges” to the vertical line as n →∞.
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(iii) The sequence fn(t) = sin nt , 0 ≤ t ≤ 1, n ≥ 1, fills in the rectangle [0, 1] ×
[−1, 1], but does not converge pointwisely.

The convergence statements from Example 3.46 can be made precise in terms
of the epiconvergence. An alternative is to formulate the convergence results for
the completed graphs of functions considered as closed subsets of [0, 1] × R, see
(3.35). While some closed sets in [0, 1] × R are obtained as closed graphs of func-
tions, many other do not admit such representations and are sometimes called “non-
functional”. Example 3.46(iii) provides a sequence of functions that converges to
a rectangle. This calls for formulating the problem for a sequence of multifunctions
Fn(t) = {sin nt} (they are actually single-valued) that converges to a set-valued func-
tion F(t) = [−1, 1], 0 ≤ t ≤ 1.

In many cases set-valued functions can be naturally used to replace single-valued
functions. For instance, when considering the weak convergence of random vari-
ables, it may be helpful to replace jumps of the cumulative probability distribution
function with segments filling the whole vertical intervals between its limits from the
left and from the right.

Definition 3.47 (Graphical convergence). Let Fn(t), t ∈ E, n ≥ 1, be a sequence
of functions whose values are closed subsets of a topological space E′. Assume that
both E and E′ are LCHS. The graph of Fn is a subset of E× E′ defined as

Graph Fn = {(t, x) : t ∈ E, x ∈ Fn(t)} .
The sequence {Fn, n ≥ 1} is said to graphically converge to F if cl(Graph Fn) con-
verge to cl(Graph F) in the Painlevé–Kuratowski sense as subsets of E×E′ with the
product topology.

Note that F can be retrieved from its graph as

F(t) = {x : (t, x) ∈ Graph F} .
The graphical convergence of functions is in general not comparable with their point-
wise convergence; it is easy to provide an example of a sequence that converges both
pointwisely and graphically, but the limits differ. For instance, if E = [0, 1], E′ = R
and Fn(t) = { fn(t)} are single-valued functions given by

fn(t) =

⎧⎪⎨⎪⎩
nt , 0 ≤ t ≤ 1/n ,

2− nt , 1/n < t ≤ 2/n ,

0 , 2/n < t ≤ 1 ,

then fn(t) converges pointwisely to zero, while its graphical limit is a set-valued
function given by

F(t) =
{
[0, 1] , t = 0 ,

{0} , 0 < t ≤ 1 .

If E′ is a metric space, the uniform convergence with respect to the Hausdorff metric
implies the graphical convergence.
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Definition 3.48 (Graphical convergence in distribution). A sequence {Zn, n ≥ 1}
of random set-valued functions is said to graphically converge in distribution to a
random closed set Z if cl(Graph Zn) weakly converges to Z as n →∞.

According to Definition 3.48, a sequence of random single-valued functions may
converge to a random closed set which has no direct interpretation as a graph of a
random single-valued function. However, the limiting random set Z can be inter-
preted as the graph of the random set-valued function Z(t) = {x : (t, x) ∈ Z}. In
general spaces one has to define the weak convergence with respect to a topology
that generates the Effros σ -algebra, see Theorem 1.2.7.

Random step-functions

Consider a situation when E = [0, 1] and E′ = R, which means that all functions are
defined on [0, 1] and have values being subsets of the real line. Then all closed graphs
become random closed subsets of [0, 1] × R. It is easy to see that the finite unions
of rectangles [s, t] × [x, y] for (s, x), (t, y) from a countable dense set in [0, 1] ×R
constitute a separating class A in [0, 1] × R. We start with a basic result concerning
the graphical convergence of step-functions. Let {αn, n ≥ 0} be a sequence of i.i.d.
random variables with distribution

P(A) = P {α0 ∈ A} , A ∈ B(R) . (3.24)

Define a step-function

ζn(t) = a−1
n α[nt ] , 0 ≤ t ≤ 1 , (3.25)

for a monotone sequence {an, n ≥ 1} of positive normalising constants satisfying
either an ↓ 0 or an ↑ ∞, see Figure 3.8.

0

ζn(t)

t

1k/n

a−1
n αk

Figure 3.8. Step-function ζn(t), 0 ≤ t ≤ 1.
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Theorem 3.49 (Convergence of single-valued step-functions). Random function
ζn graphically converges in distribution to a non-trivial random set X if and only if
there exists a dense set Q in R2 such that

lim
n→∞ nP(an[x, y]) = ν([x, y]) ∈ [0,+∞] (3.26)

for all (x, y) ∈ Q with x ≤ y, where ν is a measure on B(R) such that 0 <

ν([x, y]) < +∞ for some (x, y) ∈ Q.

Proof. Define Xn = cl(Graph ζn). Corollary 1.6.9 together with Theorem 1.6.5 im-

ply that Xn
d→ X if and only if TXn (K )→ TX (K ) as n →∞ for each K ∈ A∩SX .

Let Kβ = [s + β, t − β] × [x + β, y − β] for β ≥ 0. The function

f (β) = QX (Kβ) = 1− TX (Kβ) = P
{

X ∩ Kβ = ∅
}

is monotone, so that f (β) has arbitrary small points of continuity, where

TX (Kβ) = TX (Int Kβ) .

For any such β ≥ 0, write Kβ = [s̄, t̄] × [x̄, ȳ]. If hn = P(an[x̄, ȳ]), then

(1− hn)
[nt̄]−[ns̄]+3 ≤ QXn (Kβ) ≤ (1− hn)

[nt̄]−[ns̄]−1 . (3.27)

Necessity. Assume that

P
{

Xn ∩ Kβ = ∅
}→ P

{
X ∩ Kβ = ∅

}
as n →∞ .

If hn = P(an[x̄, ȳ])→ 0 as n →∞, then (3.27) yields

n(t̄ − s̄)hn →− log Q(Kβ) = ν([x̄, ȳ]) ∈ [0,+∞] ,
and Q(Kβ) = exp{−(t̄ − s̄)ν([x̄, ȳ])}. If hn ≥ δ > 0 for sufficiently large n, then
Q(Kβ) = 0 and nhn →∞, i.e.

lim
n→∞ nhn = exp{−(t̄ − s̄)ν([x̄, ȳ])}

with ν([x̄, ȳ]) = ∞. The same conclusion holds if hnk → 0 for a subsequence
{nk, k ≥ 1}, but hn �→ 0.

The set Q of all pairs (x̄, ȳ) such that limn→∞ nP(an[x̄, ȳ]) exists is dense in R2.
There is one pair (x̄, ȳ) ∈ Q that yields a non-trivial limit, since otherwise Q(Kβ) is
either zero or one and the limiting distribution is degenerated by Theorem 1.1.27.

Sufficiency. Let Q(K ) = exp{−(mes1⊗ν)(K )}, where K ∈ K([0, 1] × R). Then
1− Q(K ) = T (K ) is a capacity functional of a random set X . Since 0 < Q([0, 1]×
[x, y]) < 1 for some x, y, the limiting random closed set is non-degenerated.

From (3.27) we deduce that QXn ([s, t] × [x, y]) → Q(K ) if (s, x), (t, y) ∈ Q.
Inequality (3.27) can be generalised for K = ∪m

j=1([s j , t j ] × [x j , y j ]) and used to
prove that also in this case QXn (K )→ Q(K ) as n →∞. ��
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The limiting random closed set X in Theorem 3.49 has the capacity functional

TX (K ) = 1− exp{−(mes1⊗ν)(K )} , (3.28)

where mes1 is the Lebesgue measure in R1. By Theorem 4.1.6, X is infinitely di-
visible for unions. Indeed, X is a Poisson random set in [0, 1] × R with intensity
mes1⊗ν, see Definition 1.8.8. If the total mass of ν is infinite, then X has an infi-
nite number of points. It is easily seen that if ν is supported by the whole line, then
both the epi- and hypo-limits of ζn are degenerated, while ζn may have a non-trivial
graphical limit in distribution.

Proposition 3.50. Let X be a random closed set with the capacity functional (3.28).
(i) X has no fixed points if and only if ν([x, y]) <∞ for all finite x and y.

(ii) If X has no fixed points, then X is the limit of step-functions with P({0}) = 0
and an → 0.

(iii) The set of fixed points of X is

FX = {(t, y) : 0 ≤ t ≤ 1, y ∈ R, ν({y}) = ∞} .
Proof.
(i) follows from Lemma 4.1.8, since X is infinitely divisible for unions.

(ii) If x < 0 < y, then P(an[x, y])→ P({0}). Furthermore, nP(an[x, y]) converges
to ν([x, y]) being finite by the condition. This implies P({0}) = 0. Clearly, an →∞
is impossible, since in this case [0, 1] × {0} are fixed points of the limiting random
closed set.
(iii) It follows from (3.28) that (x, y) ∈ FX if and only if ν({y}) = ∞, which proves
the conclusion. ��

Graphical convergence of set-valued processes

Consider a generalisation of the previous scheme for set-valued processes. Let
{Xn, n ≥ 0} be a sequence of i.i.d. random closed sets in [0, 1] ×Rd . For a, b ≥ 0,
t ≥ 0 and x ∈ Rd denote

(b, a) ◦ (t, x) = (bt, ax)

and similarly (b, a)◦ F for F ⊂ [0, 1]×Rd , cf (4.2.6). Define the set-valued process

Zn(t) = (n−1, a−1
n ) ◦ (X[nt ] + ([nt], 0)

)
, 0 ≤ t ≤ 1 . (3.29)

The projection of Xn onto its Rd -coordinate is denoted by

X̃n = {x ∈ Rd : ([0, 1] × {x}) ∩ Xn �= ∅} .
Since for every K ∈ K(Rd )

P
{
(a−1

n ∪n
i=1 X̃i ) ∩ K = ∅

}
= P {cl(Graph Zn) ∩ ([0, 1] × K ) = ∅} ,



374 5 Random Sets and Random Functions

the graphical convergence in distribution of Zn implies the weak convergence of the
normalised unions for the sequence {X̃n, n ≥ 1}. The following theorem states that
under some conditions the converse statement holds.

Theorem 3.51. The set-valued process Zn defined by (3.29) graphically converges
in distribution if
(1) Yn = a−1

n ∪n
i=1 X̃i converges in distribution as n →∞ and

(2) there exists α �= 0 such that, for every t ≥ 0,

lim
n→∞

a[nt ]
an

= t−1/α . (3.30)

Then nTX̃1
(an K ) converges as n → ∞ to a completely alternating upper semicon-

tinuous capacity Ψ (K ) for for all K ∈ K ∩ SΨ and Zn graphically converges in
distribution to a random closed subset Z in [0, 1] ×Rd with the capacity functional

TZ (K ) = 1− exp

⎧⎨⎩−
1∫

0

Ψ ({x : (t, x) ∈ K })dt

⎫⎬⎭ . (3.31)

The random closed set Z can be represented as

Z =
⋃
i≥1

({ti } × Fi
)
, (3.32)

where {ti , i ≥ 1} are i.i.d. random variables uniformly distributed on [0, 1] and
{Fi , i ≥ 1} is a Poisson point process on the family F of closed subsets of Rd

with intensity measure Λ satisfying Λ(FK ) = Ψ (K ).

Proof. The family A of sets ∪m
i=1[si , ti ] × Ki where m ≥ 1, 0 ≤ s1 < t1 ≤ · · · ≤

sn < tn ≤ 1, and K1, . . . , Km ∈ K(Rd ) is a separating class in [0, 1]×Rd . If m = 1,
then (

P
{

a−1
n X̃1 ∩ K = ∅

})[nt ]−[ns]+3 ≤ P {cl(Graph Zn) ∩ ([s, t] × K ) = ∅}
≤ (P {a−1

n X̃1 ∩ K = ∅
} )[nt ]−[ns]−1

.

Therefore,∣∣∣P {cl(Graph Zn) ∩ ([s, t] × K ) = ∅}
− P

{(
a−1

n ∪[n(t−s)]
i=1 X̃i

)
∩ K = ∅

} ∣∣∣→ 0

as n →∞. Furthermore,

P
{(

a−1
n ∪[n(t−s)]

i=1 X̃i

)
∩ K = ∅

}
= P

{
(a−1

n a[n(t−s)])Y[n(t−s)] ∩ K = ∅
}

,
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where Y[n(t−s)]
d→ Y as n →∞. By (3.30),

P
{

a−1
n ∪[n(t−s)]

i=1 X̃i ∩ K = ∅
}
→ P

{
(t − s)−1/αY ∩ K = ∅

}
= QY ((t − s)1/αK ) = exp{−Ψ((t − s)1/αK )} .

By Theorem 4.2.8, Y is union-stable with parameter α, whence

exp{−Ψ((t − s)1/αK )} = exp{−(t − s)Ψ (K )} .
By similar arguments using approximations from below and above we obtain

P
{
cl(Graph Zn) ∩

(∪m
i=1[si , ti ] × Ki

) �= ∅}→ 1−
m∏

i=1

QY ((ti − si )
1/αKi )

= 1− exp{−
m∑

i=1

(ti − si )Ψ (Ki )} .

The right-hand side can be extended to a capacity functional on K([0, 1]×Rd) which
is determined by (3.31). By comparison of the capacity functionals it is easy to check
the applicability of the construction given by (3.32). ��

Note that both (1) and (2) in Theorem 3.51 hold if {Xn, n ≥ 1} satisfies the
conditions of Theorem 4.2.1 (for α < 0) or its dual for α > 0.

Theorem 3.51 provides also an alternative way to derive Theorem 3.49 for the
case of Xn being singletons in R. If in this case an → 0 and P({0}) = 0 in (3.24),
then Theorem 4.2.9 implies that condition (2) of Theorem 3.51 can be omitted. Then
Ψ is a measure that is denoted by ν. If Z is a union-stable random set without fixed
points, Corollary 4.1.13 yields α > 0 and

ν([x, y]) = θ(y)− θ(x) (3.33)

with
θ(x) = 1x>0c1xα − 1x<0c2|x |α ,

c1, c2 ≥ 0 and c1 + c2 > 0.

Weakly dependent sequences and linearly interpolated step-functions

Assume that the sequence {Xn, n ≥ 1} is m-dependent, i.e. there exists m ≥ 1 such
that Xi , i ≤ n, and Xk , k ≥ n + m + 1 are independent for every n ≥ 1. Then
Theorem 3.51 also holds, i.e. the graphical convergence of Zn in distribution implies
that a−1

n ◦ ∪n
i=1 X̃i converges in distribution as n →∞ and the converse holds if the

sequence of normalising constants satisfies (3.30).
This can be used to prove a limit theorem for linearly interpolated step-functions

constructed by a sequence {αn, n ≥ 0} of i.i.d. random variables with distribu-
tion (3.24). For any set F ⊂ R write F∼ = co(F ∪ {0}) for the convex hull of
the union of F and the origin. If K ∈ K([0, 1]×R) define K∼ = co(K ∪K ′), where
K ′ = proj[0,1] K is the projection of K onto [0, 1].
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Proposition 3.52. Let an → 0 and let

lim
n→∞ nP(an[x, y]∼) = ν([x, y]∼) (3.34)

for (x, y) from a dense set Q ⊂ R2, where ν is a measure on B(R) such that
ν([x, y]) < ∞ for at least one (x, y) ∈ Q. Assume that α0 > 0 a.s. or α0 < 0
a.s. Then

ζn(t) = a−1
n (α[nt ] + (nt − [nt])(α[nt ]+1 − α[nt ])) , 0 ≤ t ≤ 1 ,

graphically converges in distribution to a random closed set Z with the capacity
functional

TZ (K ) = 1− exp{−(mes1⊗ν)(K∼)} , K ∈ K([0, 1] ×R) .

Proof. Let Xk be the segment in [0, 1] × R with the end-points being (0, αk) and
(1, αk+1). Then Graph ζn = Graph Zn , where Zn is the set-valued process defined
by (3.29). The sequence {Xn, n ≥ 1} defined above is 1-dependent. By the necessary
conditions in the limit theorem for extremes of random variables (see Galambos [186,
Th. 2.4.3, 2.4.4]), (3.34) implies (3.30). It suffices to prove that Yn = a−1

n ◦ ∪n
i=1 X̃i

converges in distribution as n →∞. Note that X̃i is the segment with the end-points
αi−1 and αi . If K is a compact subset of R, then

P {Yn ∩ K = ∅} =
n+1∏
i=1

P {αi ≤ an inf K } +
n+1∏
i=1

P {αi ≥ an sup K } .

Assume that α0 ≥ 0 a.s. (the case α0 ≤ 0 is treated similarly). Then the first
summand in the right-hand side tends to zero. By (3.34), P {Yn ∩ K = ∅} →
exp{−ν(K∼)} with K∼ = [0, sup K ]. An application of Theorem 3.51 (modified
for weakly dependent random closed sets) finishes the proof. ��

As shown by Lyashenko [365], the conditions of Proposition 3.52 are also nec-
essary. The limiting random closed set Z in Proposition 3.52 is a sharp integrand, so
that ∂−Z is a Poisson point process with the intensity measure Λ. A similar result
holds for the case an → ∞. Further generalisations are possible for random func-
tions obtained as partial linear interpolators of the step function defined in (3.25).

Graphically continuous functionals

The maximum and minimum of a function over a closed subset of [0, 1] are contin-
uous functionals with respect to the graphical convergence. However, a number of
other interesting functionals are not continuous in the Fell topology that generates
the graphical convergence of functions. Fortunately, it is possible to define “smooth”
versions of many geometric functionals which are continuous with respect to the
graphical convergence. Fix an ε > 0. For K ∈ K([0, 1]×R) and F ∈ F([0, 1]×R)

define
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Lenε(F) = 1

2ε
mes2(Fε) ,

Cardε(F) = 1

πε2
mes2(Fε) ,

Ranε(F) = mes1(prRFε)− 2ε ,

where prR is the projection of the second coordinate. If ε is small, then Lenε(F)

(respectively Cardε(F)) approximates the perimeter (respectively cardinality) of F .
Corollary E.13(ii) implies that these ε-versions of conventional geometric function-
als are continuous with respect to the graphical convergence.

M2-topology

Another concept of the convergence of graphs can be introduced as follows. For a
Polish space E, consider a family KE of functions f : [0, 1] �→ E that are continuous
from the right and have left limits everywhere on [0, 1]. Let � f be the completed
graph of f , i.e. the set of all points (t, x) ∈ [0, 1] × E such that x belongs to the
segment with end-points f (t − 0) and f (t). Note that � f is a continuous curve in
[0, 1] × E. A sequence { fn, n ≥ 1} ⊂ KE is said to converge to f if

ρH(� f , � fn )→ 0 as n →∞ . (3.35)

x

� f

f (t−)

f (t)

f (x)

t

Figure 3.9. A function and its completed graph.

This topology appears under the name of M2 topology in Skorohod [537]. If E is
a real line, then (3.35) is equivalent to the convergence of maximum and minimum
of fn over any segment [s, t] ⊂ [0, 1]. Therefore, (3.35) holds if and only if fn both
epi- and hypo-converges to f as n → ∞. Although Theorem 3.18 and its variant
for the hypoconvergence imply that any sequence of random functions from KR is
tight in this topology, the limit may be non-functional. A tightness condition that
guarantees the weak convergence to a random function in KR can be formulated as
follows.
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Theorem 3.53. A sequence ζn , n ≥ 1, of random functions from KE converges in
distribution to a random function ζ in the M2 topology if the finite dimensional
distributions of ζn(t) converge to those of ζ(t) for t from a dense set in [0, 1] and

lim
c↓0

lim sup
n→∞

P {�(c, ζn) > ε} = 0 ,

for all ε > 0, where, for every f ∈ KE,

�(c, f ) = sup
t∈[0,1], t ′∈[t∗c−c/2,t∗c ], t ′′∈[tc,tc+c/2]

ρH( f (t), co{ f (t ′), f (t ′′)}) ,

tc = max(0, t − c) and t∗c = min(1, t + c). These conditions are also necessary if E
contains a subset which can be mapped continuously onto a line segment.

Notes to Chapter 5

Section 1.1. The studies of multivalued martingales in the Euclidean space were initiated by
van Cutsem [113, 114] and Neveu [425] who investigated their convergence properties. Hiai
and Umegaki [255] extended the theory to integrably bounded set-valued martingales in a Ba-
nach space. Theorem 1.3 is a synthesis of results of Papageorgiou [446] and Hess [242]. The
fundamental convergence theorems (Theorems 1.5 and 1.6) for integrably bounded multival-
ued martingales are taken from Hiai and Umegaki [255]. For compact-valued martingales, it
is possible to replace the uniform integrability condition with the so-called terminal uniform
integrability.

Papageorgiou [446, Th. 3.1] showed that the separability assumption of E∗ in Theorem 1.6
can be dropped; the proof refers to the Castaing representation of multivalued martingales de-
scribed in Theorem 1.12(ii). The Radon–Nikodym property of E can also be replaced by the
condition that Xn ⊂ Y for every n ≥ 1, where Y is a weakly compact integrably bounded ran-
dom set, see Papageorgiou [446, Th. 3.2]. It is shown by Choukari-Dini [100] that E(1A Xn)

Mosco converges to E(1A X∞) for every A ∈ F under the conditions of Theorem 1.6. Un-
der the same conditions, Xn converges almost surely to X∞ in the Mosco sense, see Li and
Ogura [352]. If all σ -algebras in the filtration are countably generated and one of the condi-
tions (ii) or (iii) of Theorem 2.1.24 holds, then Theorem 1.6 holds for multivalued submartin-
gales, see Li and Ogura [352].

The convergence theorem for multivalued martingales in Rd with uniformly integrable
norms goes back to van Cutsem [113] and Neveu [425]. An alternative proof of the conver-
gence results by Papageorgiou [442] refers to Theorem 1.3(iii) which says that taking support
functions preserves martingale properties. This fact yields the scalar convergence of the se-
quence {Xn, n ≥ 1}, which corresponds to the pointwise convergence of their support func-
tions. Other types of convergence can be obtained by requiring some conditions on the se-
quence of support functions. For example, it is possible to deduce a convergence theorem for
submartingales by assuming that the support functions are equi-lower semicontinuous, see
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Papageorgiou [442, Th. 2.3, 2.4]. To ensure the boundedness of the support function it is usu-
ally assumed that Xn ⊂ Y for an integrably bounded random weakly compact convex set
Y . Without loss of generality Y can be chosen to be symmetric, since by the Krein–Smulian
theorem co (Y ∪ Y̌ ) is weakly compact. Therefore, |h(Xn , u)| ≤ h(Y, u) for every u ∈ E∗.
This argument was used to prove a convergence theorem for multivalued supermartingales in
Papageorgiou [444].

Theorem 1.8 was proved by Papageorgiou [446]. The Mosco convergence of supermartin-
gales was studied by Li and Ogura [352] and also in the context of fuzzy random sets in Li and
Ogura [353]. Couvreux and Hess [107] obtained a Lévy type martingale convergence theorem
for random closed sets with unbounded values and under sufficiently weak conditions.

Subsequent extensions followed a number of different routes. First, many results have
been extended for reversed martingales (see Hiai and Umegaki [255]) defined for time param-
eter n ≤ 0 and applied to derive strong laws of large numbers by Castaing and Ezzaki [89].
These results can be extended for supermartingales and submartingales. Ziat [626] obtained
convergence results of multivalued reversed martingales.

As shown by Hess [242], it is possible to drop the boundedness condition for multivalued
supermartingales in Theorem 1.9, which extends earlier results by Choukari-Dini [100].

Theorems 1.12 and 1.13 concerning the existence of martingale selections and the Cas-
taing representation for multivalued martingales were proved by Hess [242] in this generality,
although a number of other results existed earlier, see Luu [362]. Theorem 1.13 can be gener-
alised for non-reflexive spaces given that Xn ∩ Br (0) is almost surely weakly compact for all
n ≥ 1 and r > 0, see Hess [242]. A result similar to the Castaing representation for submartin-
gales was obtained by Li and Ogura [352]. Further results on representations and convergence
of multivalued martingales have been published by Wang and Xue [597]. Multivalued martin-
gales in continuous time were investigated by Dong and Wang [141].

de Korvin and Kleyle [325, 326] proved a convergence theorem for integrably bounded
supermartingales with uniformly integrable norms and applied it to decision-making.

The optional sampling theorem for multivalued martingales in Euclidean spaces was
proved in Aló, de Korvin and Roberts [7] under some restrictions of the uniform integrability
type. The presented optional sampling theorem (Theorem 1.15) is due to Papageorgiou [448].
Wang [595] introduced the concept of essential closure (or closed convex hull) for a family of
random closed sets and set-valued processes in order to extend the optional sampling theorem
for integrable (but not necessarily integrably bounded) multivalued martingales with closed
convex values in a Banach space.

Single-valued pramarts and mils were surveyed by Egghe [159]. Multivalued generali-
sations are due to Luu [361], Bagchi [41], Choukari-Dini [100, 101] and Papageorgiou [446,
448]. Further results have been obtained by Krupa [332] and Avgerinos and Papageorgiou [33].
Results from the vast Chinese literature on multivalued martingales are summarised in Zhang,
Wang and Gao [624]. Recent results on multivalued and fuzzy-valued martingales are pre-
sented by Li, Ogura and Kreinovich [354].

Multivalued martingales appear as Radon–Nikodym derivatives of multivalued measures
(see Theorem 1.35) with respect to an increasing family of σ -algebras. The convergence theo-
rems for multivalued martingales can be applied to show that the estimator E(θ |ξ1, . . . , ξn) of
a set-valued parameter θ based on a sample ξ1, . . . , ξn converges almost surely to E(θ |F∞)

with the σ -algebra F∞ generated by all observations.
It is possible to define multivalued martingales in general metric spaces using the Herer

expectation of random sets, see Definition 2.3.7. Several results on such martingales can be
found in Herer [234, 236].
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Section 1.2. Set-valued Markov process have been considered by Xu [617] and Gao and
Zhang [187]. However, little is known about them beyond the representation theorems in terms
of Markov selections. Set-valued Markov processes in a discrete space E are widely studied
in probability theory, see Harris [222] and Liggett [357]. Set-valued stationary processes were
studied by Wang and Wang [596].

It is possible to derive a central limit theorem for increasing processes defined by partial
Minkowski sums of square integrable random compact sets. Schreiber [524] derived a large de-
viation principle for set-valued union processes. Example 1.20 is taken from Schreiber [524].
Krupa [333] considered a problem of finding the optimal stopping time for a sequence of ran-
dom sets that maximises the selection expectation, which is a multivalued analogue of Snell’s
optimisation problem.

Non-trivial growth models that lead to random fractal sets are widely used in physics.
Physical applications of growth models are discussed by Vicsek [574], see also the collection
of papers [541] edited by H.E. Stanley and N. Ostrowsky, where further references, simulated
and real pictures and discussions can be found.

One of the first stochastic models of spread on the lattice is due to Richardson, see also
Durrett and Liggett [150]. Growth models that describe the spread of fires using increasing
processes of random sets are discussed by Vorob’ev [587]. Stoyan and Lippmann [545] sur-
veyed continuous models that can be used to describe the growth of cancer. Growth models re-
lated to the Boolean model of random sets (see Molchanov [406]) were considered by Cressie
and Hulting [111]. Such processes may be used to describe the growth of cells or crystals in
space.

Theorem 1.21 on random differential inclusions was proved by Papageorgiou [445], who
generalised earlier results by Nowak [438]. Deterministic differential inclusions are discussed
in detail by Aubin and Cellina [29].

Stochastic integrals of set-valued processes were introduced by Kisielewicz and Sosul-
ski [314, 315] and Kim and Kim [302], where a number of results concerning selections
of the integrals and the corresponding set-valued stochastic inclusions can be found. The
same approach can be used to define the set-valued integral

∫ t
0 Xsds and an integral with

respect to a Poisson measure. Set-valued stochastic differential inclusions were studied by
Kree [331]. Jung and Kim [283] investigated set-valued integrals in case the set-valued pro-
cess has intervals as possible values. Applications to controlled processes are discussed in
Kisielewicz [314].

Ransford [474] defined a family of set-valued processes (called subholomorphic) on the
Riemann sphere by assuming regularity properties of their paths and a predictability-like as-
sumption. The family of such processes is closed under a wide variety of operations. In par-
ticular, it is possible to derive an inequality for the number of downcrossings, which leads to
a number of convergence results.

Real-valued shot-noise processes were introduced in the 1960s, mostly in relation to mod-
elling of queueing systems and physical phenomena, see Heinrich and Schmidt [232] for a
survey and mathematical results concerning limit theorems for shot-noise processes. Typi-
cally, the response function f takes values in the real line; in many applications the marked
point process of events is assumed to be Poisson. The Minkowski shot-noise process is pre-
sented here for the first time, while the union shot-noise was studied by Heinrich and Molcha-
nov [231], where Theorem 1.27 is proved. It should be noted that all results can be generalised
for N being Brillinger mixing (see Heinrich and Schmidt [232]) point processes and can be
formulated in terms of the second order factorial cumulant measures. These cumulant mea-
sures vanish in the Poisson case.
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It is possible to generalise Theorem 1.27 for multivalued functions F which are regularly
varying as considered in Appendix H. The proof relies on the inversion theorem for regularly
varying multifunctions (see Theorem H.5). The details can be found in Heinrich and Molcha-
nov [231].

Section 1.3. Stochastic processes on random open convex domains and their finite-dimensional
distributions have been considered by Dynkin and Fitzsimmons [153], see also Hu [266].
These papers pay particular attention to applications of these results to the construction to
Markov processes.

The Tietze extension theorem for continuous functions (see Kuratowski [337, p. 127])
is generalised for random functions with random domains by Zhdanok [625], Brown and
Schreiber [78] and Beg and Shahzad [57]. Measurability issues for random functions with
random domains have been studied by Bocşan [74].

Cross [112] provides a comprehensive account of the theory of deterministic multival-
ued linear operators. Random multivalued operators have been studied by Itoh [273]. Further
results are due to Beg and Shahzad [58, 59] and Tarafdar et al. [557].

Random multivalued operators with stochastic domain were introduced by Engl [162].
Theorem 1.31 and a number of further results on multivalued operators with stochastic do-
mains are proved by Papageorgiou [445]. Other classical results on fixed points also have their
set-valued counterparts that are often formulated using selections. A major restriction is the
separability requirement on X , which is necessary to apply Theorem 1.31. It is possible to
prove a stochastic variant of the Riesz representation theorem for random functionals defined
on a random linear subspace X of a Hilbert space, see Papageorgiou [445, Th. 5.1]. An appli-
cation of random multivalued functions with stochastic domains to differential equations and
inclusions is described by Kandilakis and Papageorgiou [291].

Section 2.1. Theorem 2.1 was proved by Bulinskaya [84]. Theorem 2.2 is a famous result
that was first derived heuristically by Rice [487]. Level crossings of a stationary (Gaussian)
process are discussed in detail by Cramér and Leadbetter [108] and Leadbetter, Lindgren
and Rootzen [346]. Further results and references concerning the Rice formula can be found
in [346, Ch. 7]. A multidimensional analogue of the Rice formula is due to Radchenko [471].
Under certain conditions on the covariance, the point set of upcrossings converges in distribu-
tion to the Poisson point process, see Aldous [6].

Basic results on geometric properties of random fields can be found in a monograph by
Adler [4]. The expected value of the Euler–Poincaré characteristic given by (2.2) is derived
in Adler [4, Th. 5.4.1] as a corollary of a general result that gives the expected value of the
so-called differential geometric characteristic of the level set, see Adler [4, Th. 5.3.1]. See also
the recent survey by Adler [5].

Further advances are due to Worsley [612, 613] who discussed a number of applications
in image analysis and astronomy (where results in two and three dimensions are of particular
importance). The relevant random field may describe an image, so that particular high values
(or upper excursions) signpost “active” areas that are important, for instance, in brain imaging.
In astronomy such random fields determine cosmic background radiation where fluctuations
may give some insight into the formation of the universe. Results for random fields with dis-
tributions derived from the Gaussian one (χ2, F or t) can be found in Worsley [614]. It is also
possible to relax the conditions on W by allowing piecewise smooth boundaries in two or three
dimensions. Related properties of random surfaces were considered by Wschebor [615]. Nott
and Wilson [436] considered parameter estimation problems for excursion sets of Gaussian
random fields.
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Hitting times of sets by Markov processes are widely studied in the potential theory for
Markov processes, see Blumenthal and Getoor [73]. The q-capacities are discussed in Bertoin
[65], where Proposition 2.4 also originates from. If, for some q > 0, two transient Markov
processes share the same capacities given by (2.3) or the hitting probabilities Px {τK < ∞}
of the two processes coincide for all x and K ∈ K, then the processes are time changes
of each other, see Fitzsimmons [174, 175] for exact formulations and further references. This
conclusion also holds for 0-capacities of symmetric processes, see [175]. Glover and Rao [204]
applied the Choquet theorem in this context.

The hitting times for diffusion processes and the corresponding capacities are discussed
by Itô and McKean [272]. Intersections of paths of Brownian motions are studied by Khosh-
nevisan [301]. The capacity functional of type (2.3) determined by hitting times of a stochastic
process was considered by Le Yan [345]. The construction can be extended for stochastic pro-
cesses that are right-continuous and have left limits at every time moment.

Section 2.2. Theorem 2.6 and the related results are reproduced from Molchanov [393].
The concept of a random (not necessarily closed) set is one of the key concepts in Del-
lacherie [131], where random sets are used to study measurability, predictability and further
related concepts for stochastic processes on the positive half-line. Theorem 2.8 also holds for
not necessarily closed sets. Azema [37] discusses in detail random sets on the line.

Section 2.3. The concept of a strong Markov set is due to Hoffman-Jørgensen [261] who used
this name in order to emphasise that the Markov property holds at random times. It was also
called a Markov set by Krylov and Yushkevitch [335]. These random sets were thoroughly
studied by Maisonneuve and Meyer [374, 389]. Later on the name regenerative set became
more widely used. Regenerative sets form a special case of general regenerative systems stud-
ied by Maisonneuve [372]. Definition 2.10 is taken from Molchanov [393, 396].

Definition 2.11 is due to Maisonneuve [373] who proved Proposition 2.12 that establishes
a relationship between regenerative and strong Markov random sets, see also Fitzsimmons,
Fristedt and Maisonneuve [176]. They called random sets satisfying Definition 2.10 renewal
sets.

A classification of regenerative phenomena according to the elements of the Laplace expo-
nent (or the cumulant of the subordinator) is due to Kingman [309]. The explicit construction
of the local time is described in Kingman [311]. It is a particular case of the general definition
of the occupation density (see Bertoin [65, Sec. 5.1]) applied to the age process. A thorough
study of various definitions of Markov random sets (using semilinear processes, intrinsic def-
inition and the definition as the range of a subordinator) is due to Horowitz [265].

Although it is not straightforward to extend the described concepts for stationary Markov
sets, it is also possible to show that such sets correspond to the image of a subordinator, see
Taksar [554, 555] and Fitzsimmons and Taksar [178] for results in this area.

Theorem 2.17 is proved by Hawkes [226]. It is related to earlier results by Kesten [298].
Theorem 2.19 and the subsequent example are due to Hawkes [224].

Intersections of standard regenerative phenomena were studied by Kendall [293] and
Kingman [309] using multiplication of their p-functions. Theorem 2.18 was proved by
Fitzsimmons, Fristedt and Maisonneuve [176]. A thorough study of intersections of regen-
erative sets has been undertaken by Bertoin [67]. Fristedt [184] examined the weak conver-
gence, intersections and the infinite divisibility for intersections of regenerative sets within
various settings: for subsets of non-negative integers, all integers, the positive half-line and
the whole line. It is shown by Molchanov [396] how to find the distribution of the intersection
of independent strong Markov sets X and Y by solving an integral equation for the function
χ(t) = P {X ∩ (Y + t) �= ∅}.
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Regenerative embedding of Markov sets was studied by Bertoin [66] who also discussed
related concepts of thinning and thickening of regenerative sets. Geometric properties of re-
generative sets, e.g. their fractal dimension, are discussed in Bertoin [68].

Knight [319] characterised level sets of the so-called quasi-diffusions (or gap diffusions)
in terms of their local times. The corresponding problem for diffusion processes is still open,
see Itô and McKean [272, p. 217].

Kallenberg [289] studied symmetric interval partitions (or exchangeable random sets) that
are the finite-interval counterpart of regenerative sets. If b1 ≥ b2 ≥ b3 ≥ · · · > 0 are
numbers that sum up to 1, then the exchangeable random sets X on the line has the complement
Xc, where the intervals of lengths b1, b2, . . . occur in random order, i.e. for every ε > 0,
the intervals lengths greater than ε enumerated from left to right form a finite exchangeable
sequence. Then X is the closure of the range of the process

ζt =
∑

k

bk1τk≤t ,

where {tk , k ≥ 1} are i.i.d. random variables uniformly distributed on [0, 1].
Section 2.4. This section follows Zuyev [631], who applied the concept of a stopping set
to obtain rather general results for the case when the basic filtration is generated by a Pois-
son point process. As shown in Zuyev [631], the optional sampling theorem holds for all
set-indexed martingales obtained as likelihood ratios. Propositions 2.28 and 2.29 have been
proved in Zuyev [631] generalising similar results for stopping times by Molchanov [393].
The underlying theory of martingales on partially ordered sets was developed by Kurtz [341],
see also Edgar and Sucheston [157].

Set-indexed martingales have been thoroughly studied by Ivanoff and Merzbach [274].
Their definition of the stopping set is dual to Definition 2.27 and requires that {K ⊂ Z} ∈ FK
for all compact K . This definition is more convenient to apply for stopping sets whose val-
ues belong to some predetermined family of closed sets since then the family of stopping
sets becomes closed under intersection. This establishes close links with the studies of mul-
tiparametric martingales, where stopping sets also naturally appear. It is possible to consider
stopping sets with closed but not necessarily compact values. The predictability and progres-
sive measurability aspects have been studied in Ivanoff, Merzbach and Schiopu-Kratina [275].
Stopping sets have been used to formulate strong Markov property of random fields by
Rozanov [505] and Evstigneev [164], see also Kinateder [304] and Balan [42].

Set-indexed Brownian motion was investigated by Pyke [468] and Bass and Pyke [51].

Section 3.1. The epiconvergence of lower semicontinuous functions is a well-known con-
cept described by Attouch [26], Dal Maso [116] and Rockafellar and Wets [499]. Aubin and
Frankowska [30] presented this concept within the unified treatment of set-valued analysis.
This is an extremely influential concept in optimisation and modern variational calculus. In
the calculus of variations it is sometimes called the �-convergence, while in the studies of
extremes it appears under the name of inf-vague convergence as opposed to the sup-vague
convergence for sequences of upper semicontinuous functions and their hypographs studied
by Vervaat [572]. Propositions 3.2 and 3.3 are proved in Rockafellar and Wets [499, Ch. 7,14],
see also Attouch [26]. Further results mentioned in Section 3.1 stem from Rockafellar and
Wets [498] and Salinetti and Wets [512]. Theorem 3.4 is due to Rockafellar and Wets [498]
and Attouch [26]. Some topological generalisations for E being a Polish space are due to
Beer [56].

An interpretation of epigraphs of stochastic processes as random closed sets was devel-
oped by Salinetti and Wets [512, 513]. They introduced the concepts of the (equi-) inner
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separability and the equi-outer regularity for random lower semicontinuous functions. Nor-
mal integrands are often called random lower semicontinuous functions. Propositions 3.16
and 3.17 go back to Norberg [431] (however, formulated for upper semicontinuous functions
and their hypographs). Theorem 3.13 (with part (ii) formulated for convex integrands) goes
back to Rockafellar [496, pp. 181-183]. Later on it was generalised by Hess [244] for inte-
grands defined on a Banach space with a strongly separable dual. Epiderivatives are discussed
by Rockafellar and Wets [497, 499] and Aubin and Frankowska [30]. It is clearly possible to
define epiderivatives for normal integrands using the almost sure convergence. An alternative
definition of epiderivative in distribution is possible using the weak epiconvergence of normal
integrands.

The weak convergence of sharp integrands is closely related to the weak convergence
conditions for point processes discussed in Section 1.8.1, see Norberg [431, Prop. 2.3].

Theorem 3.19 is proved by Hiai [251, 254], but is reformulated using the probabilistic
terminology.

It should be noted that the duals for the introduced concepts are possible for upper semi-
continuous functions, their hypographs and lower excursions.

Section 3.2. The convergence of minimum for convex normal integrands was considered by
Ch.J. Geyer (unpublished report). Anisimov and Seilhamer [11] investigated the convergence
of minimisers in a setup when the limiting process has only a unique minimum point.

The epiconvergence of averages of i.i.d. lower semicontinuous functions (as formulated
in Theorem 3.21) was studied by Attouch and Wets [27] assuming the existence of a quadratic
minorant, in which case also bounds for the Hausdorff distance between the epigraphs are
given. Hess [245, Th. 5.1] obtained this result for a general (not necessarily complete) metric
space E and non-negative integrands. Theorem 3.21 as formulated in Section 3.2 goes back
to Artstein and Wets [25, Th. 2.3], where also uniformity problems have been addressed and
the case of a general Polish space E has been considered. This result was mentioned also
as a possible extension by Hess [245]. Theorem 3.22 is due to Zervos [623] who proved it
for a Souslin space E and generalised it for a general topological space E and a separable
metric space % assuming that Pn converges narrowly to P under a relaxed condition on the
integrands. Earlier results by Berger and Salinetti [64] concern the case when both E and % are
Euclidean spaces in view of applications of the epiconvergence technique to Bayes decision
theory. The average in (3.9) can be weighted, which is often useful in the framework of Monte
Carlo importance sampling, see Berger and Salinetti [64].

Applications of the epiconvergence technique to stochastic optimisation are described
in [25, 64, 509, 512] among a number of other references. Applications to convergence of es-
timators have been pioneered by J. Pfanzagl and further studied by Dupačová and Wets [149],
Hoffman-Jørgensen [262, Ch. 13] and Hess [245]. Dupačová and Wets [149] discussed ap-
plications of epiderivatives to the asymptotic analysis of estimators. Further general results
concerning asymptotics of solutions of stochastic programming problems have been obtained
by King and Rockafellar [306]. They are formulated in terms of derivatives of multivalued
functions. The large deviation technique is exploited by Kaniovski, King and Wets [292]. Sta-
bility issues in stochastic programming are surveyed by Schultz [527].

The convergence of zero sets, {x : ζn(x) = 0}, is studied by Anisimov and Pflug [10].
For this, one typically requires that ζn converges weakly uniformly or the bands constructed
around the graph of ζn converge as random closed sets.

Section 3.3. Norberg [431] initiated studies of extremes for random semicontinuous processes
from the point of view of convergence of the associated random closed sets. He mostly worked
with upper semicontinuous processes, their hypographs and associated sup-measures. A gen-
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eralisation of Theorem 3.26 for max-infinitely divisible capacities is given in Norberg [430].
This theorem yields a characterisation of max-infinitely divisible random vectors as a particu-
lar case, see Balkema and Resnick [47]. Giné, Hahn and Vatan [201] modified the representa-
tion given by Theorem 3.26 (for semicontinuous processes) for the case of sample continuous
processes and obtained spectral representation for max-stable sample continuous processes.
The approach based on limit theorems for unions of random sets was developed by Molcha-
nov [398, Sec. 8.3]. The application to polygonal approximations of convex sets was adapted
from Molchanov [404]. Semi-min-stable processes have been introduced and characterised by
Penrose [452] without using the random sets interpretation.

Super-extremal processes and their applications to continuous choice models have been
considered by Resnick and Roy [482, 483], where most of the presented results originated
from (however, notation is generally different and the statement of Theorem 3.32 has been
corrected). It is possible to define lattice valued extremal processes which would serve as a
generalisation of time-dependent processes with values in the family of upper semicontinuous
functions.

Section 3.4. A representation of level sets of upper semicontinuous functions as a set-valued
function from the Skorohod space goes back to Colubi et al. [102] and Kim [303]. The conver-
gence results and properties of DH-convergence presented in this section are new. It is possible
to generalise them for lower semicontinuous functions with arbitrary real values.

Section 3.5. A law of large numbers for epigraphs was obtained by Artstein and Hart [22] who
also considered applications to allocation problem as described in Section 3.5. The optimality
of allocations related to random closed sets was further studied by Papageorgiou [441, 443].
Generalisations of the law of large numbers for epigraphs are possible for E being a general
Banach space, see Hess [243], King and Wets [307] and Krupa [332]. Castaing and Ezzaki [89]
showed that the strong law of large numbers for epigraphs can be naturally derived from the
Mosco convergence of reversed integrand martingales. Results on martingale integrands can
be found in Hess [242] and Krupa [332]. The ergodic theorem for integrands is proved by
Choirat, Hess and Seri [97]

Section 3.6. Random upper semicontinuous functions appear under different names in various
settings. For instance, they are called random fuzzy sets or fuzzy random variables, see Puri
and Ralescu [461, 465], or random grey-scale images, see Serra [532] and Molchanov [407].
The approach based on level sets decomposition and subsequent stacking them together is
popular in image processing, where its generalisations give rise to the so-called stack filters,
see Wendt, Cole and Callagher [608] and Maragos and Schafer [376].

Random fuzzy sets (or random upper semicontinuous functions) have been extensively
studied by Puri and Ralescu [461, 465] and Klement, Puri and Ralescu [318]. The proofs
given in Section 3.6 are taken from Molchanov [409]. The simple fact given by Theorem 3.44
was apparently overlooked in the previous papers that dealt with fuzzy random variables. A
more complicated proof for the strong law of large numbers with respect to the uniform metric
ρ∞H is obtained by Colubi et al. [103] using approximation of upper semicontinuous functions
by functions with simple excursion sets derived in López-Dı́az and Gil [359]. A strong law of
large numbers for upper semicontinuous random functions under exchangeability conditions
was proved by Terán [562].

The definition of Gaussian random sets from Section 3.2.2 can be easily generalised for
excursion sets of random upper semicontinuous functions. The corresponding theorem for
Gaussian random sets was generalised for upper semicontinuous random functions by Puri and
Ralescu [463]. Li, Ogura, Proske and Puri [355] proved a central limit theorem counterpart of
Theorem 3.44.
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Distances between random fuzzy sets and various concepts of expectations are considered
by Näther [422]. A natural generalisation of the conditional selection expectation (see Sec-
tion 2.1.6) for the case of random upper semicontinuous functions leads to the concept of a
martingale. The corresponding convergence theorems were proved by Puri and Ralescu [466]
and Stojaković [543]. Dominated convergence theorems for expectations of sequences of ran-
dom upper semicontinuous functions in the metrics ρ1

H and ρ∞H are proved by Klement, Puri
and Ralescu [318, 465]. It is possible to consider level sums of capacities or non-additive mea-
sures, so that (ϕ � ψ)(K ) equals the supremum of min(ϕ(K1), ψ(K2)) for K1 + K2 ⊂ K .

Formula (3.23) can be used for other expectations from Chapter 2. However, additional
care is needed since other expectations do not necessarily respect the monotonicity relation-
ship between random sets, see Section 2.3.4.

Section 3.7. Several topologies on the space of functions have been defined by Skoro-
hod [537]. One particular topology (called J2-topology) has later become widely used in the
studies of stochastic processes under the name of the D-topology, see Billingsley [70]. The
D-convergence of stochastic processes has been defined first for the parameter space [0, 1]
and then generalised for more general parameters spaces, see e.g. Bass and Pyke [52] and
Lindvall [358]. It should be noted that other topologies defined by Skorohod [537] are more
intrinsically related to graphs of random functions. One example is the M2 topology that ap-
pears in Theorem 3.53 proved in Skorohod [537]. This topology is discussed in detail by
Whitt [609]. The idea of M2-topology was extended to set-indexed random functions by Bass
and Pyke [52]. Kisyński [316] showed that the Skorohod D-topology can be generated by the
Hausdorff distance between the graphs of functions (ζ(t−), ζ(t)) taking values in the product
space E× E if ζ is a E-valued function.

The graphical convergence of set-valued functions is considered in Rockafellar and
Wets [499, Sec. 5E]. The formal definition of the graphical convergence in distribution of
random set-valued functions is apparently new, although it has been studied extensively by
Lyashenko [365, 367, 369] who obtained necessary and sufficient conditions for the graphical
convergence in distribution for single-valued random functions and an → 0. Theorem 3.49
goes back to Lyashenko [367] while its generalisation for set-valued processes was formu-
lated in Lyashenko [370]. The representation (3.33) was obtained in Lyashenko [368] directly
without using a characterisation theorem for union-stable random closed sets.

The present formulation of Theorem 3.51 is new. Lyashenko [370] presented further re-
sults concerning the case when random closed sets Xn in (3.29) are given by graphs of ran-
dom functions. The results are formulated using regular variation ideas in an implicit form.
Random functions obtained by a partial interpolation of step-functions are considered in Lya-
shenko [365]. It was assumed that the step-functions are interpolated for points from a fixed
set of integers. The current presentation of these results based on set-valued processes is new.



Appendices

A Topological spaces and linear spaces

Sets

We use standard set-theoretic notation for union and intersection, A \ B denotes the
set-theoretic difference of A and B , A"B = (A \ B) ∪ (B \ A) is the symmetric
difference. The same sign is used for strict and non-strict inclusions, so that A ⊂ B
allows for A = B . Further, An ↑ A (respectively An ↓ A) means that An is a
non-decreasing (respectively non-increasing) sequence of sets with A = ∪An (re-
spectively A = ∩An). The set of all integers is denoted by Z. The integer part of a
real number x is denoted by [x].

Topological spaces

An arbitrary set E can be made a topological space by choosing a topology G, which
is a family of open sets, so that G is closed under arbitrary unions and finite inter-
sections. A subfamily G0 ⊂ G is called the base of topology if each open set G ∈ G
can be represented as a union of sets from G0. For instance, if E = R = (−∞,+∞)

is the real line, then the base of the standard topology is given by all open intervals
and a countable base is formed by intervals with rational end-points. A sub-base of
a topology is a family of sets such that their finite intersections form the base of the
topology.

Open sets from G yield closed sets as their complements. The family of closed
sets is denoted by F , so that F = {Gc : G ∈ G}, where Gc = E \ G denotes the
complement of G. We write G(E) and F(E) to denote the space of open sets and
closed sets of the particular carrier space E and omit E where no ambiguity occurs.

If E′ ⊂ E then the induced (or relative) topology on E′ is given by intersections
G∩E′ for all G ∈ E. If E and E′ are two topological spaces, then their product space
E× E′ consists of all pairs (x, y) for x ∈ E and y ∈ E′. The topology on E×E′ has
the base given by G × G′ for G ∈ G(E) and G′ ∈ G(E′).
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Let A be an arbitrary subset of E. The intersection of all closed sets that contain
A is denoted by cl A or A and is called the closure of A. An open set U such that
U ⊃ A is said to be a neighbourhood of A. A point x ∈ A is said to be an interior
point of A if U ⊂ A for some neighbourhood U of x . The set of all interior points
of A is denoted by Int A and called the interior of A. A set A is said to be regular
closed if A coincides with the closure of its interior, i.e. A = cl(Int A). The boundary
of A equals the set-theoretic difference between the closure and interior of A, i.e.
∂ A = (cl A) \ (Int A). Equivalently, ∂ A = (cl A) ∩ (cl Ac), i.e. the boundary of
A consists of the limiting points for both A and its complement. A closed set A is
said to be perfect if A does not have isolated points, i.e. every x ∈ A is a limit of a
sequence {xn, n ≥ 1} such that xn �= x for all n ≥ 1. A sequence {xn, n ≥ 1} is said
to converge to x as n →∞ if every neighbourhood of x contains all xn with n ≥ n0
for some n0. A set is closed if and only if it contains the limit for every convergent
sequence of its points.

A set K ⊂ E is compact if each open covering of K admits a finite subcovering,
i.e. K ⊂ ∪i∈I Gi for any open sets {Gi , i ∈ I } with an arbitrary family of subscripts
I implies K ⊂ Gi1 ∪ · · · ∪ Gin for a finite set of subscripts {i1, . . . , in} ⊂ I . The
family of all compact sets is denoted by K or K(E). Letters F, G and K (with or
without indices) are typically used to denote generic closed, open and compact sub-
sets of E. The empty set is both open and closed and also compact. The family of all
non-empty closed (respectively open, compact) sets is denoted by F ′ (respectively
G′, K′).

A class A of subsets of E is said to be separating if, whenever K ⊂ G for K ∈ K
and G ∈ G, there exists an A ∈ A such that K ⊂ A ⊂ G.

If E is itself a compact set, then E is called a compact space. Furthermore, E
is called locally compact if each point x ∈ E has a neighbourhood with compact
closure. If E can be represented as a countable union of compact sets, E is said to be
σ -compact. A set B ⊂ E is said to be relatively compact if cl(B) is a compact set. If
M is any family of sets, then Mk denotes the family of relatively compact sets from
M, for example Gk denotes the family of relatively compact open sets.

A locally compact space can be made compact by adding one additional point
located “at infinity” and adjusting appropriately the topology. This construction is
called one-point (or Aleksandrov) compactification. The corresponding open sets are
sets from G(E) and the added point {∞} has neighbourhoods which are complements
to compact sets.

If the topology on E has a countable base (in this case E is called second count-
able), then the compactness property of K ∈ F is equivalent to the fact that every
sequence {xn, n ≥ 1} ⊂ K admits a convergent subsequence. The existence of a
countable base implies that E is separable, i.e. E = cl Q for a countable set Q ⊂ E.

A topological space E is said to be Hausdorff if each two disjoint points of E
have disjoint open neighbourhoods. We often assume this property, which however
is not automatically valid for general topological spaces. If all singletons are closed
(which is a weaker requirement), then E is said to be T1-space. A weaker condition
which singles out T0-spaces requires that for each pair of different points there exists
an open set which contains one point and does not contain the other one. Every
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compact set in a Hausdorff space is closed, i.e. K ⊂ F . This might not be the case if
the space is not Hausdorff, where compact sets are usually called quasicompact.

The saturation, satA, of a set A ⊂ E is the intersection of all open sets that
contain A. Set A is called saturated if A = satA. All sets are saturated if and only if
E is a T1-space.

A locally compact Hausdorff second countable space is said to be LCHS space.
Sometimes these spaces are called semi-compact. The following well-known propo-
sition says that in LCHS spaces compact sets can be approximated by open sets and
open sets can be approximated from below by compact sets.

Proposition A.1. If E is a LCHS space, then the following statements hold.
(i) Each compact set K has a sequence of neighbourhoods {Gn, n ≥ 1} such that

Gn ⊂ G for some n and each open set G ⊂ K .
(ii) For each G ∈ G there exists a sequence of relatively compact open sets

{Gn, n ≥ 1} such that cl Gn ∈ K, cl Gn ⊂ Gn+1 for all n and G = ∪n≥1Gn .
(iii) If K ∈ K and F ∈ F are disjoint, then K and F have disjoint neighbourhoods.

Sometimes, we need a stronger property than Proposition A.1(iii), which requires
that every two disjoint closed sets have disjoint open neighbourhoods. Then the space
E is called normal.

A function f : E �→ E′ which maps E into another topological space E′ is con-
tinuous if, for each G ∈ G(E′), the inverse image

f −1(G) = {x ∈ E : f (x) ∈ G}
is an open set in E.

Algebras and σ -algebras

A family of sets is called an algebra if this family contains ∅ and is closed under
taking complements and finite unions. An algebra F is called a σ -algebra if it is
closed under countable unions. If M is any family of sets, then σ(M) denotes the
smallest σ -algebra generated by M.

One particular case of this construction is worth special attention. The minimal
σ -algebra which contains the family G of all open sets is called the Borel σ -algebra
on E and denoted by B(E) or, shortly, B if no ambiguity occurs. It is easy to see that
B contains all closed sets and can be equivalently defined as the minimal σ -algebra
generated by the family of all closed sets, so that B = σ(G) = σ(F). Furthermore,
Bk denotes the family of relatively compact Borel sets.

If F is a σ -algebra on E and F′ is a σ -algebra on E′, then a function f : E �→ E′
is called (F,F′)-measurable if f −1(A) ∈ F for every A ∈ F′. A function f : E �→ R
is called Borel if it is (B(E),B(R))-measurable.

A paving of E is any class E of subsets of E which includes the empty set. If E is a
paving, then Eσ (respectively Eδ) denotes the class of countable unions (respectively
intersections) of sets from E . An E-analytic (analytic over E) set is a set which can
be represented as ∪(nk )(Yn1 ∩ Yn1n2 ∩ · · · ), where the outer union is taken over all
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possible sequences (nk) = (n1, n2, . . . ) of non-negative integers and Yn1...nk ∈ E
for every k-tuple n1, . . . , nk and k ≥ 1. A set is called analytic if it is a subset of a
metrisable space and is analytic over the class of closed subsets of this space. The
family of analytic sets is richer than the Borel σ -algebra on the corresponding space.

Metric spaces

The topological properties of E are especially simple if E is a metric (or metrisable)
space. A metric on E is a non-negative function ρ(x, y), x, y ∈ E, such that
(1) ρ(x, y) = 0 implies x = y (full identification property);
(2) ρ(x, y) = ρ(y, x) (symmetry);
(3) ρ(x, z) ≤ ρ(x, y)+ ρ(y, z) (triangle inequality).

A sequence of points {xn, n ≥ 1} in E is a Cauchy sequence, if, for every ε > 0,
there exists an n ≥ 1 such that ρ(xk, xm) < ε for every k,m ≥ n. A metric space
is called complete if every Cauchy sequence is convergent. Complete separable met-
ric spaces are called Polish. Continuous images of Polish spaces are called Souslin
spaces. All analytic sets in a Polish space can be characterised as continuous images
of another Polish space. A metric space is compact if and only if it is complete and
totally bounded, i.e. for any ε > 0 the space can be covered by a finite number of
balls of radius ε. A ball of radius r ≥ 0 centred at x ∈ E is denoted by

Br (x) = {y ∈ E : ρ(x, y) ≤ r} .
A set G in a metric space is open if and only if, for each x ∈ G, there exists r > 0
such that Br (x) ⊂ G. Furthermore, xn converges to x as n → ∞ if and only if
ρ(xn, x)→ 0 as n →∞. A separable metric space always has a countable base, so
is also second countable.

A distance from a point x to a non-empty set A is defined as

ρ(x, A) = inf{ρ(x, y) : y ∈ A} .
The union of Br (x) for x ∈ A is said to be the r-envelope (or parallel set) of A and
denoted by Ar . see Figure A.1. The r -envelope of A is alternatively defined as

Ar = {x ∈ E : Br (x) ∩ A �= ∅} = {x ∈ E : ρ(x, A) ≤ r} . (A.1)

The open r -envelope of A is defined by

Ar− = {x ∈ E : ρ(x, A) < r} (A.2)

and the inner parallel set by

A−r = {x ∈ E : Br (x) ⊂ A} .
The diameter of A is defined by

diam(A) = sup{ρ(x, y) : x, y ∈ A} ,
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Ar

A−r

A

Figure A.1. Outer and inner parallel sets.

and A is called bounded if diam(A) is finite. If E is σ -compact, then all bounded
sets are relatively compact. By nc(A) we denote the Kuratowski measure of non-
compactness of A ⊂ E, which is equal to the smallest ε > 0 such that A admits a
finite covering of sets of diameter less than or equal to ε.

A function f which maps a metric space (E, ρ) into another metric space (E′, ρ′)
is said to be Lipschitz if there exists a constant c > 0 such that ρ′( f (x), f (y)) ≤
cρ(x, y) for every x, y ∈ E. A subset F ⊂ E is said to be d-rectifiable if F is an
image of a bounded subset of Rd under a Lipschitz mapping.

Semicontinuity

A function f : E �→ R̄ defined on a topological space E with values in the extended
real line R̄ = [−∞,∞] is called upper semicontinuous at x ∈ E if

lim sup
y→x

f (y) ≤ f (x) ,

and lower semicontinuous if

lim inf
y→x

f (y) ≥ f (x) .

Furthermore, f is said to be upper (lower) semicontinuous if it is upper (lower)
semicontinuous at every x ∈ E. The family of all upper semicontinuous functions on
E is denoted by USC(E). It is easy to see that the indicator function

1A(x) = 1x∈A =
{

1 , x ∈ A ,

0 , otherwise ,

is upper semicontinuous if and only if A is closed. The following proposition intro-
duces a number of important concepts related to semicontinuous functions, estab-
lishes their equivalence and fixes notation.
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Proposition A.2 (Semicontinuous functions). Let f : E �→ R be a real-valued
function. Then the following statements are equivalent.
(U1) f is upper semicontinuous.
(U2) The hypograph

hypo f = {(x, t) : t ≤ f (x)}
is closed in E× R.
(U3) For each t ∈ R, the upper excursion set

{ f ≥ t} = {x ∈ E : f (x) ≥ t}
is closed.
(U4) f −1((−∞, t)) is open for all t ∈ R.
Furthermore, all statements from the following group are equivalent
(L1) f is lower semicontinuous.
(L2) The epigraph

epi f = {(x, t) : t ≥ f (x)}
is closed in E× R.
(L3) For each t ∈ R, the lower excursion set

{ f ≤ t} = {x ∈ E : f (x) ≤ t}
is closed.
(L4) f −1((t,∞)) is open for all t ∈ R.

f

x

t

f

x

hypo( f )

epi( f )

a) b)

t

Figure A.2. Examples of upper semicontinuous (a) and lower semicontinuous (b) functions.

It is possible to characterise hypographs of upper semicontinuous functions as
closed subsets of the product space E×I, where I is the extended real line topologised
in such a way that only non-trivial open sets are (x,∞], see Vervaat [572]. The
studies of random closed sets in non-Hausdorff spaces are motivated by the fact that
the corresponding product space is not Hausdorff.
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Projective systems

Let {An, n ≥ 1} be a sequence of non-empty sets and let {um,n} be a two-parametric
sequence of functions such that um,n : An �→ Am for all m ≤ n. Assume that um,m

is the identity map on Am for every m ≥ 1 and um,p is equal to the superposition of
um,n and un,p for every m ≤ n ≤ p. The sequence {An, n ≥ 1} together with the
functions {um,n} is called a projective system.

Let A = A1 × A2 × · · · be the Cartesian product of the {An, n ≥ 1}. By projn
denote the projection from A onto An . The subset A′ ⊂ A defined by

A′ = {x = (x1, x2, . . . ) : projm(x) = um,n(projn(x)), m ≤ n}
is called the projective limit of the projective system defined above. The definition
of the projective limit for a sequence of sets is sometimes useful when dealing with
unbounded random closed sets. The following two results describe two important
cases when the projective limit is not empty.

Proposition A.3. If {An, n ≥ 1} are compact topological spaces and {um,n} are con-
tinuous for every m ≤ n, then the projective limit A′ is non-empty and compact.

Theorem A.4 (Mittag–Leffler’s theorem). If {An, n ≥ 1} are complete metric
spaces, {um,n} are uniformly continuous for every m ≤ n and un,n+1(An+1) is dense
in An for every n ≥ 1, then the projective limit A′ is non-empty and projn(A′) is
dense in An for every n ≥ 1.

Linear normed spaces

Assume that E is a linear normed space. The linear structure entails E with two
operations: addition and multiplication by scalars (real numbers). The correspond-
ing norm ‖·‖ satisfies the identification property and the triangle inequality, so that
ρ(x, y) = ‖x − y‖ is a metric on E. If E is complete with respect to this norm, E is
called Banach space. The norm of a set A ⊂ E is defined by

‖A‖ = sup{‖x‖ : x ∈ A} . (A.3)

Sets with a finite norm are bounded. Clearly, ‖A‖ ≤ diam(A) ≤ 2‖A‖.
The closed linear hull of a set A ⊂ E is the closure of all finite linear combina-

tions of points from A. A subset A ⊂ E is called a linear subspace if A is closed
with respect to addition and multiplication by constants.

A set F ⊂ E is called convex if tx + (1 − t)y ∈ F for every x, y ∈ F and
t ∈ (0, 1). The family of closed convex subsets of E is denoted by coF . The prefix
“co” denotes the convex sets from the chosen family, for instance, coK is the family
of convex compact sets, coK′ is the family of non-empty convex compact sets, etc.
The space E is called locally convex if each point x ∈ E has a convex neighbourhood.
The empty set is always regarded as being convex.
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If t1, . . . , tn are non-negative numbers that sum to 1, then t1x1 + · · · + tnxn is
called a convex combination of x1, . . . , xn ∈ E. The convex hull, co A, of A ⊂ E is
the set of all finite convex combinations of points from F . If A is closed, its convex
hull is not necessarily closed. The closed convex hull co A is the closure of co A.
Then co A equals the intersection of all convex closed sets that contain A.

A function u : E �→ R is said to be a linear functional if u(αx + βy) = αu(x)+
βu(y) for all x, y ∈ E and real numbers α, β. The family of all linear continuous
functionals is denoted by E∗ and is called the dual space to E. A generic element of
E∗ is often denoted by u. We often write 〈x, u〉 instead of u(x). The norm of u in E∗
is given by

‖u‖ = sup{〈x, u〉 : ‖x‖ ≤ 1} .
The dual space E∗ with this norm is also a linear normed space. A linear space E is
called reflexive if the second dual space (E∗)∗ is isomorphic to E, so that there is a
bijection between (E∗)∗ and E which preserves the linear operations and the norm.

The norm on E generates the corresponding metric and topology. The conver-
gence in this topology is called strong convergence. A sequence {xn, n ≥ 1} ⊂ E
is said to converge weakly to x ∈ E if 〈xn, u〉 → 〈x, u〉 for every u ∈ E∗. Both
strong and weak topologies generate the corresponding concepts of the closedness,
compactness, etc. For example, a set is called strong compact (or compact) if it is
compact in the strong topology, a set is called weakly closed if it is closed with re-
spect to the weak topology, etc. The prefix “s−” usually denotes concepts that are
related to the strong topology, while “w−” denotes the corresponding concepts for
the weak topology, e.g. w−lim xn is the weak limit of {xn, n ≥ 1}.

A function x �→ Ax from E into another linear space E′ is called a linear oper-
ator if A(x + y) = Ax + Ay and A(cx) = cAx for all x, y ∈ E and c ∈ R. The
norm of A is defined by ‖A‖ = sup{‖Ax‖ : ‖x‖ ≤ 1}, where the norm ‖Ax‖ is
taken in E′. A linear operator has a finite norm if and only if it is continuous. A linear
operator A is called an isometry if ‖Ax‖ = ‖x‖ for all x ∈ E.

A linear space E is called a Hilbert space if it is complete and is equipped with
an inner product 〈·, ·〉 which is a real valued function defined on E×E such that, for
all x, y, z ∈ E and real α, β,
(1) 〈x, y〉 = 〈y, x〉;
(2) 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉;
(3) 〈x, x〉 ≥ 0 with equality if and only if x = 0.
The corresponding norm is given by ‖x‖2 = 〈x, x〉. The Riesz representation theo-
rem says that every continuous functional u on Hilbert space E can be represented
as u(y) = 〈x, y〉 for a unique x ∈ E. Thus, the space E∗ is isomorphic to E.

Cones

A cone is a set C endowed with an addition and a scalar multiplication. The addition
is supposed to be associative and commutative and there is a neutral element 0. For
the scalar multiplication the usual associative and distributive properties hold. The
cancellation law, stating that x + y = x + z implies y = z, however does not hold in
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general. A (possibly non-convex) cone can be also defined as a subset C ⊂ E such
that C is closed under multiplication by positive scalars.

An order on C is a reflexive transitive relation ≤ such that x ≤ y implies x +
z ≤ y + z and cx ≤ cy for all x, y, z ∈ C and c ≥ 0. A sublinear (respectively
superlinear) functional on C is a mapping p : C �→ (−∞,∞] such that p(cx) =
cp(x) and p(x + y) is smaller (respectively greater) than or equal to p(x) + p(y)
for every x, y ∈ C and c ≥ 0. The following Hahn–Banach type sandwich theorem
is the basis for the duality theory of ordered cones, see Roth [504].

Theorem A.5 (Sandwich theorem). Let C be an ordered cone and let p be a sub-
linear and q a superlinear functional such that q(x) ≤ p(y) whenever x ≤ y for
x, y ∈ C. Then there exists a monotone linear functional f such that q ≤ f ≤ p.

Euclidean space

The d-dimensional Euclidean space Rd = R × · · · × R consists of d-tuples x =
(x1, . . . , xd) (d-dimensional vectors) with the standard coordinatewise addition and
the norm

‖x‖ =
√

x2
1 + · · · + x2

d .

The origin 0 has all zero coordinates 0 = (0, . . . , 0). The space Rd is not compact,
but locally compact and also σ -compact, since it can be represented as the union of
compact balls Bn(0). In Rd , we write shortly Br instead of Br (0) for a ball centred
at the origin. Compact sets in Rd can be characterised as bounded closed sets. The
unit sphere is denoted by

Sd−1 = {u ∈ Rd : ‖u‖ = 1} .
The space Rd is a Hilbert space with the inner product

〈x, y〉 =
d∑

i=1

xi yi .

Linear operators that map Rd into Rd are given by matrices. Among them very im-
portant are rigid motions in Rd : translations, x �→ x + a, and rotations, x �→ wx .

It is possible to define a partial order on Rd . A point x = (x1, . . . , xd ) is said to
be lexicographically smaller than y = (y1, . . . , yd ) (notation x ≤ y) if x1 ≤ y1, or
x1 = y1 and x2 ≤ y2, or x1 = y1, x2 = y2 and x3 ≤ y3, etc.

A hyperplane (or (d − 1)-dimensional affine subspace of Rd ) is defined as

Hu(t) = {x ∈ Rd : 〈x, u〉 = t}
for some u ∈ Sd−1 and t > 0. Then u is the corresponding normal vector and t is the
distance between the hyperplane and the origin. The hyperplane Hu(t) bounds the
closed half-space

H−u (t) = {x ∈ Rd : 〈x, u〉 ≤ t} .
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Minkowski operations

Vector operations with points in a general linear normed space E induce operations
with subsets of E. For any A ⊂ E its dilation by a real number c (or homothety) is
defined by

cA = {cx : x ∈ A} .
In particular, for c = −1 we obtain the reflection of A with respect to zero:

Ǎ = −A = {−x : x ∈ A} .
A set A is said to be centrally symmetric if A = Ǎ.

For A, B ⊂ E define

A ⊕ B = {x + y : x ∈ A, y ∈ B} .
Then A ⊕ B is called the Minkowski sum of A and B , see Figure A.3. It is clear
that this operation is commutative and associative. By agreement the sum is empty
if at least one summand is empty. If A is convex, then A ⊕ A = 2A, while there are
non-convex sets such that A ⊕ A is strictly larger than 2A, for example, this is the
case for a two-point set A. The set 1

2 (A ⊕ Ǎ) is called the central symmetrisation of

A and A⊕ Ǎ is called the difference body for A. If no ambiguity occurs, we will not
use the special sign for the Minkowski addition and write A + B instead of A ⊕ B
and A1 + · · · + An instead of A1 ⊕ · · · ⊕ An . For x ∈ E we always write x + A
instead of {x} ⊕ A.

=B A ⊕ B⊕A

Figure A.3. Minkowski sum of a polygon and a circle.

If both A and B are compact, then A⊕B is a compact set. If at least one summand
is compact and the other is closed, then the sum is closed. However, care should be
taken when adding two closed non-compact sets, since their Minkowski sum is not
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necessarily closed. For example, if E = Rd , A = {(x1, x2) : x1 > 0, x2 = 1/x1}
and B = {(x1, 0) : x1 ≤ 0}, then A ⊕ B is not closed.

The Minkowski addition is not an invertible operation in general, so that for A
and B it may be impossible to find a set X such that A ⊕ X = B . For example, if
B is a triangle (or any polygon) and A is a ball, then A ⊕ X = B is impossible for
any X , since A⊕ X smooths out all vertices as shown in Figure A.3. The Minkowski
difference of two sets is defined by

A ( B = {x ∈ E : x + B̌ ⊂ A} .
This subtraction operation is however not the exact dual to the Minkowski addition,
since the inclusion (A(B)⊕B ⊂ A can be strict. If A is bounded, then A( Ǎ = {0},
while this is not generally applicable to unbounded sets.

Some properties of the Minkowski addition and subtraction are listed below.
They are formulated for three arbitrary sets A, B,C ⊂ E. The proofs are easy and
can be found in Matheron [381, Sec. 1.5] as well as in a number of other texts devoted
to mathematical morphology.

(A ( B)( C = A ( (B ⊕ C) , (A ( C)⊕ B ⊂ (A ⊕ B)( C ,

A ⊕ (B ∪ C) = (A ⊕ B) ∪ (A ⊕ C) , A ⊕ (B ∩ C) ⊂ (A ⊕ B) ∩ (A ⊕ C) ,

A ( (B ∪ C) = (A ( B) ∩ (A ( C) , A ( (B ∩ C) ⊃ (A ( B) ∪ (A ( C) ,

(B ∩ C)( A = (B ( A) ∩ (C ( A) , (B ∪ C)( A ⊃ (B ( A) ∪ (C ( C) .

In image processing and mathematical morphology (see Dougherty [146], Heij-
mans [228], Serra [532])

A ⊕ B̌ = {x : (x + B) ∩ A �= ∅}
is called a dilation of A by B and

A ( B̌ = {x : (x + B) ⊂ A}
is called the erosion of A by B . In this context the set B is called the structuring
element. Combinations of dilations and erosions are used to create effective filtering
procedures for binary images represented by sets in Rd . For instance, the combina-
tion of dilation and erosion (A ⊕ B̌) ( B̌ is called the closing, while the reversed
combination (A( B̌)⊕ B̌ is called the opening. Both closing and opening are idem-
potent operations with the closing being extensive. i.e. (A ⊕ B̌) ( B̌ ⊃ A, and the
opening being anti-extensive, i.e. (A ( B̌)⊕ B̌ ⊂ A, see Matheron [381, Ch. 7].

There are further definitions of difference of sets, which are better adjusted for
convex sets, but are less popular that the Minkowski subtraction. Let us describe one
such concept called the Demyanov difference [507]. For a compact convex set K

H (K , u) = {x ∈ K : 〈x, u〉 = sup
x∈K
〈x, u〉} , u ∈ Sd−1 ,



398 Appendices

is called the support set (or the face) of K . The Demyanov difference of two convex
compact sets K and L is defined as the closed convex hull of all conventional differ-
ences H (K , u) − H (L, u) taken for all u ∈ Sd−1 such that H (K , u) and H (L, u)
are singletons.

B Space of closed sets

Fell topology

The space F of closed sets of a topological space is one of the standard objects in
set theory and general topology. There are a number of ways to endow the family F
with a structure of a topological space, see Beer [56], Lucchetti and Torre [360] and
Sonntag and Zǎlinescu [539]. Below we describe only several possible topologies on
F leaving the reader to explore the wealth of topologies in the cited references. Note
also that the space of closed sets can also be described as a full locally convex cone,
see Roth [503].

Topologies on F are often introduced by describing their sub-bases. The follow-
ing notation are useful for this purpose. For each A ⊂ E,

FA = {F ∈ F : F ∩ A �= ∅}
denotes the family of closed sets which have non-empty intersection with A;

F A = {F ∈ F : F ∩ A = ∅}
is the family of closed sets which miss A.

Definition B.1. (Vietoris and Fell topologies)
(i) The Vietoris topology has as a sub-base sets FG for all G ∈ G and F F for all

F ∈ F , see Michael [390].
(ii) The Fell topology has a sub-base which consists of FG for all G ∈ G and FK

for all K ∈ K, see Fell [169] and Matheron [381].

The Fell topology is weaker than the Vietoris topology, so that all sequences that
converge in the Vietoris topology do converge in the Fell topology. If E is Hausdorff,
then both topologies agree on the family F ′ of non-empty closed sets if and only if
E is compact.

The Vietoris topology is also called exponential topology, see Kuratowski [337,
§ 17] and [338, § 42] where related topological results are discussed. For instance,
if E is compact, so is the space F with the Vietoris topology (and only if provided
E is a T1-space). The Fell topology is sometimes called the vague topology. It can
be modified for non-Hausdorff spaces by replacing compact sets with the saturated
sets, see Vervaat [572].
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Since
FK1 ∩ FK2 = FK1∪K2 ,

intersections of open sets from the sub-base described in Definition B.1(ii) are given
by

FK
G1,...,Gn

= FK ∩ FG1 ∩ · · · ∩ FGn

= {F ∈ F : F ∩ K = ∅, F ∩ G1 �= ∅, . . . , F ∩ Gn �= ∅}
for K ∈ K and G1, . . . , Gn ∈ G, n ≥ 0 (so that none of the G’s are present if n = 0).
Since the family of such sets is closed under finite intersections, they constitute a
base of the Fell topology on F . The following results have been proved in Beer [56,
Sec. 5.1]. Some of them are contained in Matheron [381, Sec. 1.2] for the case of
locally compact E.

Theorem B.2 (Properties of the Fell topology).
(i) If E is a Hausdorff space, then F is compact in the Fell topology and FK is

compact in F for every K ∈ K.
(ii) If E is a locally compact Hausdorff space, then F is a compact Hausdorff space

and F ′ is a locally compact Hausdorff space.
(iii) If E is Hausdorff, then E is locally compact second countable if and only if F ′

is locally compact and second countable in the Fell topology (or, equivalently,
F ′ is a Polish space).

(iv) If E is Hausdorff and second countable, then F ′ is compact in the Fell topology
if and only if E is compact.

If E is a LCHS space, then the Fell topology is metrisable, see (B.1). If Fn con-

verges to F in the Fell topology, we write Fn
F−→ F . Note that Fn

F−→ ∅ if and only
Fn∩K = ∅ for all K ∈ K and sufficiently large n, i.e. Fn “escapes” from all compact
sets.

Proposition B.3 (see Salinetti and Wets [511]). Let E be a Polish locally compact
space with metric ρ. A sequence of closed sets {Fn, n ≥ 1} converges to F in the
Fell topology if and only if

(Fn \ Fr−) ∪ (F \ Fr−
n )

F−→ ∅
for all r > 0, where Fr− is the open r -envelope of F , see (A.2).

Painlevé–Kuratowski convergence

Definition B.4 (Lower and upper limits of a sequence of sets). Let {An, n ≥ 1}
be a sequence of (not necessarily closed) subsets of E. The lower limit, lim inf An ,
consists of points x such that xn → x for xn ∈ An , n ≥ 1. The upper limit is the
set lim sup An of all points x ∈ E such that xn(k) → x for xn(k) ∈ An(k) and a
subsequence {n(k), k ≥ 1}.
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The above defined limits differ from the lower and upper set-theoretic limits of a
sequence of sets:

LiminfAn =
∞⋃

n=1

⋂
m≥n

Am , LimsupAn =
∞⋂

n=1

⋃
m≥n

Am ,

so that the following inclusions hold:

LiminfAn ⊂ lim inf An , LimsupAn ⊂ lim sup An .

Definition B.5 (Painlevé–Kuratowski convergence). A sequence {An, n ≥ 1}
of subsets of E is said to converge to A in the Painlevé–Kuratowski sense if

A = lim sup An = lim inf An . In this case we write An
PK−→ A or PK- lim An = A.

The following results proved in Beer [56, Th. 5.2.6, 5.2.10] establish relation-
ships between the Painlevé–Kuratowski convergence and the convergence in the Fell
topology.

Theorem B.6 (Fell topology and Painlevé–Kuratowski convergence). Let F ∈ F
and let {Fn, n ≥ 1} be a sequence of closed sets in a Hausdorff space E.

(i) Fn
F−→ F if Fn

PK−→ F (and only if in case E is locally compact).

(ii) If E is separable, then Fn
PK−→ F if and only if Fn

F−→ F .

The equivalence of the Fell topology and the Painlevé–Kuratowski convergence
can be reformulated as follows.

Corollary B.7 (see Matheron [381]). Let E be LCHS. A sequence {Fn, n ≥ 1}
of closed sets converges to F in the Painlevé–Kuratowski sense if and only if the
following two conditions hold:

(F1) if K ∩ F = ∅, K ∈ K, then K ∩ F = ∅ eventually (for all sufficiently large n);
(F2) if G ∩ F �= ∅ for G ∈ G, then G ∩ Fn �= ∅ eventually.

This characterisation of the Painlevé–Kuratowski convergence is helpful to es-
tablish the continuity of maps on the space F , see Proposition D.5. However, many
other interesting operations with sets are only semicontinuous, see Appendix D.

Example B.8. If Fn = {1/n}, then Fn
PK−→ F = {0}, but Fn∩F = ∅, whence Fn∩F

does not converge to F ∩ F = {0}. Thus, the intersection of sets is not a continuous
operation.

Closed sets in Polish spaces

In infinite-dimensional linear spaces the Painlevé–Kuratowski convergence and the
Fell topology do not have nice properties and Definition B.5 has to be modified in
order to formulate a useful convergence concept. Recall that a normed linear space
E can be equipped with the strong topology generated by the norm and the weak
topology induced by the convergence of all linear continuous functionals, see Ap-
pendix A.
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Definition B.9 (Mosco convergence). A sequence {Fn, n ≥ 1} of weakly closed

sets in a normed linear space E is said to Mosco converge to F (notation Fn
M−→ F)

if
w−lim sup Fn ⊂ F ⊂ s−lim inf Fn ,

i.e. each x ∈ F is a strong limit of a sequence {xn, n ≥ 1} with xn ∈ Fn , n ≥ 1,
and for each subsequence {n(k), k ≥ 1} and xn(k) from Fn(k), k ≥ 1, the weak
convergence xn(k) → x implies x ∈ F .

Let w−F designate the family of weakly closed sets. It is possible to specify the
sub-base of the Mosco topology as the families w−FG and w−FK for strongly open
sets G and weakly compact sets K .

Proposition B.10 (see Hess [242]). Let {Fn, n ≥ 1} be a sequence of closed sets
and let rk → ∞ be an increasing sequence of positive real numbers. Assume that

(Fn ∩ Brk (0))
M−→ F ′k for every k ≥ 1. Then Fn Mosco converges to the (necessarily)

closed set F = ∪k F ′k .

The following convergence concept is particularly useful for closed sets in gen-
eral Polish spaces. Remember that ρ(x, F) is the distance function of F , i.e. the
minimum distance from x to F . The distance function of the empty set F = ∅ iden-
tically equals infinity.

Definition B.11 (Wijsman convergence). The Wijsman topology on F is the topol-
ogy which is determined by the pointwise convergence of the distance functions, so
that a sequence of closed sets {Fn, n ≥ 1} converges to F in the Wijsman topology

(notation Fn
W−→ F) if ρ(x, Fn)→ ρ(x, F) for every x ∈ E.

Theorem B.12 (see Beer [56, Th. 2.5.4]). If E is a Polish space, then F ′ equipped
with the Wijsman topology is also Polish.

Theorem B.13 (see Francaviglia, Lechicki and Levi [180]). If {Fn, n ≥ 1} is a
sequence of closed sets, then

(i) Fn
W−→ F implies Fn

PK−→ F .
(ii) F ⊃ lim sup Fn if lim infρ(x, Fn) ≥ ρ(x, F) for all x ∈ E.
(iii) F ⊂ lim inf Fn if and only if lim supρ(x, Fn) ≤ ρ(x, y) for all x ∈ E.
(iv) The Wijsman and Painlevé–Kuratowski convergence are identical if closed balls

in E are compact.
(v) If the distance function ρ(x, Fn) converges pointwisely to ρ(x, F), then it con-

verges uniformly for x from every compact set K .

It is possible to show that coF ′ is a closed subset of F ′ in the Wijsman topology.
If E is a separable reflexive Banach space with a Fréchet differentiable norm, then a
sequence of closed convex sets converges in Mosco sense if and only if it converges
in the Wijsman topology. The space F is compact in the Wijsman topology if and
only if each closed ball in E is compact, see Lechicki and Levi [347]. The Wijsman
topology is metrisable if E is separable.
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The difference between the Wijsman and Painlevé–Kuratowski convergences can
be easily explained for sequences of closed sets that converge to an empty set. If Fn

converges to ∅ in the Wijsman topology, Fn eventually escapes from every bounded

set, while Fn
PK−→ ∅ means that Fn eventually escapes from every compact set. The

Attouch–Wets topology is also related to the convergence of the distance functions.

Definition B.14 (Attouch–Wets convergence). A sequence {Fn, n ≥ 1} of closed
sets is said to converge to F in the Attouch–Wets topology if

sup
x∈B

|ρ(x, Fn)− ρ(x, F)| → 0 as n →∞

for every bounded set B .

The Attouch–Wets topology can be strengthened by assuming that ρ(x, Fn) con-
verges to ρ(x, F) uniformly over all x ∈ E. This concept leads to the Hausdorff
metric between closed sets discussed in Appendix C. Then Fn converges to F in the

Hausdorff metric (notation F
H−→ F , ρH- lim Fn = F or ρH(Fn, F)→ 0) if

ρH(Fn, F) = sup
x∈E

|ρ(x, Fn)− ρ(x, F)| → 0 as n →∞ .

This is a quite restrictive concept for closed non-compact sets, since, for example,
bounded closed sets may not converge to unbounded. A variant of this metric

ρHB(Fn, F) = sup
x∈E

e−ρ(0,x)|ρ(x, Fn)− ρ(x, F)| (B.1)

called the Hausdorff–Buseman metric metrises the Fell topology.
A sequence of (not necessarily closed) sets {An, n ≥ 1} in a Banach space is said

to converge scalarly to A if h(An, u) → h(A, u) for every u ∈ E∗, where h(An, u)
is the support function of An , see (F.1). The family of all weakly compact convex
sets is a Polish space with respect to the scalar topology. Sometimes (see Papageor-
giou [447]) this mode of convergence is unfortunately called a weak convergence,
which causes misunderstanding when discussing the weak convergence of random
closed sets.

C Compact sets and the Hausdorff metric

Myopic topology

The family K of compact subsets of E can be equipped with topologies induced by
the topologies on the space F of closed sets described in Appendix B (assuming
that E is Hausdorff so that compact sets are closed). However, it is more appropriate
to endow K with a topology and a convergence specific to the fact that the sets are
compact.
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Definition C.1 (Myopic topology). The myopic (or narrow) topology on K has the
sub-base that consists of

KF = {K ∈ K : K ∩ F = ∅} , F ∈ F ,

and
KG = {K ∈ K : K ∩ G �= ∅} , G ∈ G .

By comparing the above families with the sub-base of the Fell topology on F it
is easy to see that the myopic topology is stronger than the topology induced on K
by the Fell topology. For example, Kn = {0, n} converges in the Fell topology to {0},
but does not converge in K. This explains the fact that K with the myopic topology
is not a compact space, but only locally compact.

Theorem C.2 (see Matheron [381]). Let E be a locally compact Hausdorff space.
(i) A set V ⊂ K is compact in K if and only if V is closed in the Fell topology and

there exists K0 ∈ K such that K ⊂ K0 for all K ∈ V .
(ii) K is locally compact in the myopic topology.
(iii) A sequence {Kn, n ≥ 1} of compact sets myopically converges to K ∈ K if

Kn
PK−→ K and there exists K0 ∈ K such that Kn ⊂ K0 for all n ≥ 1.

It is possible to see that ∅ is an isolated point in K, i.e. no sequence of non-empty
compact sets converges to ∅. If E is separable (so that E = cl Q for a countable set
Q), then K is separable. A countable dense set in K consists of all finite sets from Q.

Proposition C.3. Let {Kn, n ≥ 1} be a sequence of compact sets. If Kn ↓ K then
Kn myopically converges to K . If Kn ↑ A and cl(A) ∈ K, then Kn myopically
converges to cl(A).

Hausdorff metric

If E is a metric space, then the myopic topology on the family K′ of non-empty
compact sets is metrisable by the Hausdorff metric.

Definition C.4 (Hausdorff metric). Let E be equipped with metric ρ. For each
two non-empty compact sets K and L define the Hausdorff metric (or Hausdorff
distance) between K and L by

ρH(K , L) = max

(
sup
x∈K

ρ(x, L), sup
y∈L

ρ(y, K )

)
.

The Hausdorff distance can be defined for any pair of bounded sets in a metric
space. The following well-known result clarifies the structure of open sets in the
topology generated by the Hausdorff metric on K and the corresponding Borel σ -
algebra, see Castaing and Valadier [91, Th. II-6, II-10].

Theorem C.5 (Topology and σ -algebra generated by Hausdorff metric). Let E
be a metric space.
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(i) For each G ∈ G, the sets {K ∈ K : K ⊂ G} and {K ∈ K : K ∩ G �= ∅} are
open in the topology generated by the Hausdorff metric.

(ii) For each K0 ∈ K, a basis of neighbourhoods of K0 in (K, ρH) consists of the
sets {K ∈ K : K ⊂ G, K ∩G1 �= ∅, . . . , K ∩Gn �= ∅} for all n ≥ 0 and open
sets G, G1, . . . , Gn such that G ⊃ K0.

(iii) The Borel σ -algebra B(K) generated on K by the Hausdorff metric coincides
with both of the following σ -algebras:

(1) generated by {K ∈ K : K ⊂ G} for G ∈ G;
(2) generated by {K ∈ K : K ∩ G �= ∅} for G ∈ G.

Proof.
(i) If K0 ⊂ G, then, by the compactness of K0,

ε = inf{ρ(x, y) : x ∈ K0, y ∈ Gc} > 0 .

Then K ⊂ G for each compact set K with ρH(K , K0) < ε, whence the set {K :
K ⊂ G} is open. If K0∩G �= ∅, then there exists an open ball centred at x ∈ K0∩G
and contained in G. Therefore ρH(K , K0) < ε implies K ∩ G �= ∅, so that {K :
K ∩ G �= ∅} is open.
(ii) Fix a compact set K0 and ε > 0. Let G1, . . . , Gn be open balls of radius ε/2
which cover K0 and let G = {x : ρ(x, K ) < ε}. If K ⊂ G and K hits each of
G1, . . . , Gn , then ρH(K , K0) < ε. This immediately implies (ii).
(iii) By (i), the σ -algebras (1) and (2) are contained in B(K). The reverse inclusion
would follow from (ii) if we prove that (1) and (2) define identical σ -algebras. Note
that G = ∪n Fn with Fn = {x : ρ(x, Gc) ≥ n−1}. Then

{K : K ∩ G �= ∅} =
⋃

n

{K : K ∩ Fn �= ∅} =
⋃

n

(K \ {K : K ⊂ Fc
n }) .

This implies that (2) is included in (1).
Let Gn = {x : ρ(x, Gc) < n−1}. Then Gc = ∩n Gn and K \ {K : K ⊂ G} =

∩n{K : K ∩ Gn �= ∅}. Therefore, (1) is included in (2), so that the σ -algebras (1)
and (2) are identical. ��

Corollary C.6 (Myopic topology and Hausdorff metric). The topology on K′ gen-
erated by the Hausdorff metric on K′ is equivalent to the myopic topology on K′.

Taking into account Corollary C.6, we write ρH- lim Kn = K to denote the my-
opic convergence of Kn to K in a metric space. It is possible to formulate Corol-
lary C.6 for the whole family K = K′ ∪ {∅} if we allow the Hausdorff metric to take
infinite values and put ρH(∅, K ) =∞ for every non-empty K .

Proposition C.7 (Alternative definitions of Hausdorff metric).
(i) For every K , L ∈ K′,

ρH(K , L) = max{dH(K , L), dH(L, K )} , (C.1)

where
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dH(K , L) = inf{ε > 0 : K ⊂ Lε} (C.2)

and Lε is the ε-envelope of L, see (A.1).
(ii) The Hausdorff distance between K and L equals the uniform distance between

their distance functions, i.e.

ρH(K , L) = sup
x∈E

|ρ(x, K )− ρ(x, L)| .

The following result is widely known for E being a locally compact space (see
Schneider [520, Th. 1.8.2]), while the proof in this generality goes back to Fedorchuk
and Filippov [168].

Theorem C.8 (Completeness of K′). If E is a complete metric space, then the space
K′ of non-empty compact sets is complete in the Hausdorff metric.

Proof. Let {xn} be a sequence of points from E. Then either {xn} has a con-
vergent subsequence or there exist δ > 0 and a subsequence {xn(k)} such that
ρ(xn( j ), xn(k)) ≥ δ for j �= k. Indeed, define a sequence γ 0 = {x0

n} by x0
n = xn

for all n ≥ 1. Proceed by induction. If An = B1/k(xk−1
n ) ∩ γ k−1 is infinite for at

least one n, then γ k is a subsequence of γ k−1 which consists of points from An .
If all An are finite, then by taking a point from every non-empty An \ ∪n−1

j=1 A j we
can find a subsequence such that distances between every two points are not less
than δ = 1/k. If it is possible to continue this construction until infinity, we get se-
quences γ 0, γ 1, . . . such that {xn

n } is a Cauchy sequence which has a limit, since E
is complete.

Let {Kn} be a Cauchy sequence in K′. Put F0 = cl(∪∞n=1 Kn). Each of the sets Kn

is separable, so that F0 is separable and is second countable (because E is a metric
space). Therefore, every open cover of F0 contains a countable subcover. In view
of this, the compactness of F0 is equivalent to the property that every sequence of
points of F0 has a convergent subsequence.

It suffices to prove that there is no sequence {xn} ⊂ F0 such that ρ(xi , x j ) ≥ δ

for some δ > 0 and all i �= j . Assume that such a sequence exists. Fix N ≥ 1 such
that ρH(Km, Kn) ≤ δ/5 for all m, n ≥ N . Then ∪∞n=N Kn is a subset of the closed
δ/5-envelope of KN , so that

F0 ⊂ K1 ∪ · · · ∪ KN−1 ∪ (KN )δ/5 .

For each i ≥ 1 put yi = xi if xi ∈ K1∪· · ·∪KN−1 and otherwise let yi be any point
of KN ∩ B2δ/5(xi). For i �= j ,

ρ(yi , y j ) ≥ ρ(xi , x j )− ρ(xi , yi )− ρ(x j , y j ) > δ − 2δ/5− 2δ/5 = δ/5 ,

which means that {yi } does not have a convergent subsequence, contrary to the com-
pactness of K1 ∪ · · · ∪ KN .

For every n ≥ 1, the set Fn = cl(∪∞i=n Ki ) is compact, since Fn is a closed subset
of F0. The decreasing sequence of compact sets {Fn} converges in the Hausdorff
metric to K = ∩n Fn . Hence, for any given ε > 0 there exists n0 such that Kn ⊂ K ε
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for every n ≥ n0. Since {Kn} is a Cauchy sequence, there exists N ≥ n0 such that
Kn ⊂ K ε

m for every m, n ≥ N . Thus, Fn ⊂ K ε
m , so that K ⊂ K ε

m for every m ≥ N .
This implies ρH(K , Km) ≤ ε for every m ≥ N , so that Kn converges to K in the
Hausdorff metric. ��

The following theorem easily follows from the compactness of F , see Theo-
rem B.2.

Theorem C.9 (Relative compactness in K′). If E is locally compact, then from
each bounded sequence in K′ one can select a convergent subsequence.

The following result taken from Hansen and Hulse [219] provides a useful con-
dition for the convergence in the Hausdorff metric.

Proposition C.10. Let {Kn, n ≥ 1} ⊂ V , where V is a closed subset of K. If
cl(∪n Kn) is compact and {dH(Kn, V ), n ≥ 1} converges for each V ∈ V , then
{Kn, n ≥ 1} converges in the Hausdorff metric.

Assume that E is a linear normed space and restrict attention to the family coK′
of convex bodies (non-empty compact convex sets). The statement (ii) of the follow-
ing theorem is the famous Blaschke selection theorem (originally formulated for E
being the Euclidean space Rd ).

Theorem C.11 (Relative compactness in coK′). Let E be a linear normed space.
Then
(i) coK′ is a closed subset of K.

(ii) If E is locally compact, then every bounded sequence of convex bodies has a
subsequence converging to a convex body.

Proof.
(i) It suffices to show that K \ coK′ is open. Let K be a non-convex compact

set. Then there are points x, y ∈ K and t ∈ (0, 1) such that Bε(z) ∩ K = ∅ for
some ε > 0, where z = tx + (1 − t)y. Consider an arbitrary K ′ ∈ K such that
ρH(K , K ′) < ε/2. Then there are points x ′, y ′ ∈ K ′ such that ρ(x, x ′) < ε/2 and
ρ(y, y ′) < ε/2, so that z′ = tx ′ + (1 − t)y ′ satisfies ρ(z, z′) < ε/2. If z′ ∈ K ′,
then there is a point w ∈ K such that ρ(w, z′) < ε/2, which leads to a contradiction
ρ(w, z) < ε. Thus every such K ′ is not convex.
(ii) follows from (i) and Theorem C.9. ��

The space K can be metrised using a number of different metrics. A family of
metrics useful in image analysis is obtained by considering Lp distances between the
distance functions.

Definition C.12 (Baddeley’s delta-metric). Suppose that E is equipped with a
Radon measure ν which satisfies

inf
x∈E

ν(Br (x)) > 0
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for any fixed r > 0. Let w : [0,∞] �→ [0,∞] be any bounded concave function with
w(0) = 0. For p ∈ [1,∞) and K , L ∈ K′ define

∆p
w(K , L) =

⎛⎝∫
E

|w(ρ(x, K ))−w(ρ(x, L))|ν(dx)

⎞⎠1/p

.

This metric has been introduced by Baddeley [38], who proved that it generates
the myopic topology under the assumption that E is compact or w is eventually
constant, i.e. w(t) = c for all sufficiently large t . Further metrics on the family
of compact convex sets can be defined using Lp distances between their support
functions, see Vitale [578].

Convexification

For compact sets in the Euclidean space Rd , it is possible to provide a useful bound
for the Hausdorff distance between Minkowski sums of sets and their convex hulls.
The corresponding result is known under the name of Shapley–Folkman–Starr theo-
rem (or Shapley-Folkman theorem). The proof given below is adapted from Arrow
and Hahn [13]. For a compact set K denote its radius by

rad(K ) = inf
x

sup
y∈K

‖x − y‖ = inf
x
‖K − x‖ .

Clearly, rad(K ) ≤ ‖K‖ and rad(K ) = 1
2 diam(K ).

Theorem C.13 (Shapley–Folkman–Starr). For each K1, . . . , Kn ∈ K,

ρH(K1 + · · · + Kn, co(K1 + · · · + Kn)) ≤
√

d max
1≤i≤n

rad(Ki ) . (C.3)

Lemma C.14. For all K1, . . . , Kn ∈ K,

ρH(K1 + · · · + Kn, co(K1 + · · · + Kn))
2 ≤

n∑
i=1

(rad(Ki ))
2 . (C.4)

Proof. We proceed by induction on n. If n = 1, then each x ∈ co(K ) can be rep-
resented as x = α1 y1 + · · · + αm ym for some y1, . . . , ym ∈ K and non-negative
coefficients α1, . . . , αm with α1+· · ·+αm = 1. Let rad(K ) = ‖K − x∗‖. It is easily
seen that

0 =
m∑

i=1

αi 〈x − yi , x − x∗〉 .

It is impossible that 〈x − yi , x − x∗〉 > 0 for all yi because their weighted sum
vanishes. Pick y = yi such that 〈x − y, x − x∗〉 ≤ 0. For such y,
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(rad(K ))2 ≥ ‖x∗ − y‖2 = ‖(x − x∗)− (x − y)‖2

= ‖x − y‖2 + ‖x − x∗‖2 − 2〈x − x∗, x − y〉
≥ ‖x − y‖2 .

Since x is arbitrary, we obtain (C.4) for n = 1.
Next, suppose that (C.4) holds for n sets; we will prove it for n + 1 sets

K1, . . . , Kn+1. Each x ∈ co(K1 + · · · + Kn+1) can be represented as the sum
x = x ′ + x ′′ where x ′ ∈ co(K1 + · · · + Kn) and x ′′ ∈ co(Kn+1). By the induc-
tion hypothesis, there is y ′ ∈ K1 + · · · + Kn such that

‖x ′ − y ′‖2 ≤
n∑

i=1

(rad(Ki ))
2 .

Choose z = z∗ to minimise ‖x − y ′ − z‖ for z ∈ co(Kn+1). Then

‖x − y ′ − z∗‖2 ≤ ‖x − y ′ − x ′′‖2 = ‖x ′ − y ′‖2 ≤
n∑

i=1

(rad(Ki ))
2 .

For each z ∈ co(Kn+1) and 0 < t ≤ 1,

‖x − y ′ − z∗‖ ≤ ‖x − y ′ − (tz + (1− t)z∗)‖2

= ‖x − y ′ − z − t (z − z∗)‖2

= ‖x − y ′ − z∗‖2 − 2t〈x − y ′ − z, z − z∗〉 + t2‖z − z∗‖2 .

Letting t ↓ 0 yields
〈x − y ′ − z, z − z∗〉 ≤ 0 (C.5)

for all z ∈ co(Kn+1). Choose a finite subset K ′n+1 ⊂ Kn+1 and y ′′ ∈ K ′n+1 such that

‖y ′′ − z∗‖ ≤ (rad(K ′n+1))
2 ≤ (rad(Kn+1))

2 .

Note that z = z∗ + t (y ′′ − z∗) ∈ co(Kn+1) for all sufficiently small |t|. Substituting
such z into (C.5) we get

t〈x − y ′ − z∗, y ′′ − z∗〉 ≤ 0 .

Since t can be of either sign,

〈x − y ′ − z∗, y ′′ − z∗〉 = 0 .

Let y = y ′ + y ′′. Then

‖x − y‖2 = ‖(x − y ′ − z∗)− (y ′′ − z∗)‖2

= ‖x − y ′ − z∗‖2 − 2〈x − y ′ − z∗, y ′′ − z∗〉 + ‖y ′′ − z∗‖2

≤
n+1∑
i=1

(rad(Ki ))
2 . ��
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Proof of Theorem C.13.. If n ≤ d , then by (C.4),

ρH(K1 + · · · + Kn, co(K1 + · · · + Kn))
2 ≤

∑
(rad(Ki ))

2

≤ d( max
1≤i≤n

rad(Ki ))
2 ,

whence (C.3) immediately follows. If n ≥ d , decompose

x = x ′ + x ′′ ∈ co(K1 + · · · + Kn)

so that x ′ belongs to a convex hull of the sum of at most d sets from K1, . . . , Kn and
x ′′ belongs to the sum of all other sets. Such a decomposition exists by [13, Th. 8,
Appendix B]. Then Theorem C.13 follows from Lemma C.14 applied to x ′ and the
chosen d sets from K1, . . . , Kn . ��

It is also possible to tighten the bound in (C.3) as follows, see Arrow and
Hahn [13, p. 399]. Let

radi(K ) = sup
x∈co(K )

inf
x∈co(L), L⊂K

rad(L) (C.6)

denote the inner radius of K ∈ K. Note that radi(K ) = 0 if K is convex.

Theorem C.15. For every K1, . . . , Kn ∈ K,

ρH(K1 + · · · + Kn, co(K1 + · · · + Kn)) ≤
√

d max
1≤i≤n

radi(Ki ) .

D Multifunctions and semicontinuity

Consider a topological space E and a set V. A function F : V �→ F on V with values
in F(E) is called a closed set-valued function or closed-valued multifunction. The
set V is often the space Ω of elementary events, the real line or E itself. The graph
of F is a subset of V× E defined by

Graph F = {(v, x) : x ∈ F(v)} .
The effective domain of F is

dom F = {v ∈ V : F(v) �= ∅} .
The inverse of F is a multifunction

F−(A) = {v ∈ V : F(v) ∩ A �= ∅} , A ⊂ E ,

which acts on subsets of E.
Assume that both V and E are second countable Hausdorff topological spaces.

Extending the concept of semicontinuous functions with values in the real line, it is
possible to define semicontinuous functions with values in F .
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Definition D.1 (Semicontinuous multifunctions). A closed-valued multifunction
F : V �→ F(E) is said to be
(i) upper semicontinuous if F−(K ) is closed in V for all K ∈ K(E);

(ii) lower semicontinuous if F−(G) is open in V for all G ∈ G(E).

In view of Theorem B.6, it is possible to reformulate Definition D.1 in terms of
the Painlevé–Kuratowski convergence of sequences of sets.

Proposition D.2. A multifunction F is lower (respectively upper) semicontinuous if
and only if, for every v ∈ V,

PK- lim inf
v′→v

F(v′) ⊃ F(v) (respectively PK- lim sup
v′→v

F(v′) ⊂ F(v) ) .

A function f : V �→ R̄ = [−∞,∞] is upper semicontinuous if and only if
F(v) = [−∞, f (v)] is an upper semicontinuous multifunction and f is lower semi-
continuous if and only if F(v) = [ f (v),∞] is a lower semicontinuous multifunc-
tion.

Proposition D.3 (see Rockafellar and Wets [498]). A closed-valued multifunction
F is upper semicontinuous if and only if Graph F is a closed subset of V× E.

Semicontinuous multifunctions are (B(V),B(F))-measurable, where B(V) is
the Borel σ -algebra on V and B(F) is the Borel σ -algebra generated by the Fell
topology.

Definition D.4 (Continuous multifunction). A closed-valued multifunction F is
called continuous if it is both upper and lower semicontinuous, i.e. F is continuous
in the Fell topology.

Applied for bounded single-valued functions, Definition D.4 coincides with the
conventional continuity definition, whereas for unbounded functions, it may lead to
a different concept. For instance, the function F(v) = {v−1} becomes continuous on
V = R if we put F(0) = ∅.

It is often useful to put V = F(E) or V = F(E) × F(E), so that the corre-
sponding closed-valued multifunctions map F into itself or act on pairs of closed
sets. It is useful to list the continuity properties for several such transformations, see
Matheron [381].

Proposition D.5 (Continuous maps). The following maps are continuous.
(i) (F, F ′) �→ (F ∪ F ′) from F × F into F .

(ii) F �→ cF from F into F and K �→ cK from K into K, where c is any real
number.

(iii) The map (F, K ) �→ (F⊕K ) from F ×K into F and (K , L) �→ (K ⊕ L) from
K ×K into K.

(iv) F �→ F̌ from F into F and K �→ Ǩ from K into K.
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Proposition D.6 (Semicontinuous maps).
(i) (F, F ′) �→ F ∩ F ′ from F × F into F is upper semicontinuous.

(ii) F �→ cl(Fc) from F into F is lower semicontinuous.
(iii) If E is locally connected (so that each point has a connected neighbourhood),

then F �→ ∂F (boundary of F) is a lower semicontinuous map from F into F .
(iv) F �→ co (F) (the closed convex hull of F) from F into F is lower semicontin-

uous.
(v) (F, F ′) �→ cl(F ⊕ F ′) from F × F �→ F is lower semicontinuous (assuming

E is a linear space).
(vi) Closing (F, K ) �→ (F ⊕ Ǩ ) ( Ǩ and opening (F, K ) �→ (F ( Ǩ ) ⊕ Ǩ are

upper semicontinuous maps from F ×K′ into F .

It is possible to define and characterise semicontinuous functions on K as it
has been done for the space F . The following useful result (see Matheron [381,
Prop. 1.4.2]) deals with increasing real-valued functionals T : K �→ R. Note that T
is increasing if T (K1) ≤ T (K2) for K1 ⊂ K2.

Proposition D.7 (Semicontinuity of increasing functionals). Let E be LCHS. An
increasing map T : K �→ R is upper semicontinuous if and only if T (Kn) ↓ T (K )

as Kn ↓ K and n →∞.

Proof. Clearly, Kn ↓ K yields T (Kn) ↓ T (K ) if T is upper semicontinuous. For the
converse statement, assume that Kn myopically converges to K . Then K = ∩n K̃n ,
where K̃n is the closure of ∪i≥n Ki . By Theorem C.2(iii), the sequence {Kn} is
bounded, so that K̃n is compact. Then K̃n ↓ K , whence T (K̃n) ↓ T (K ). By the
monotonicity of T ,

lim sup T (Kn) ≤ lim sup T (K̃n) = T (K ) . ��
Some maps are semicontinuous on K but not on F . For instance, if E = Rd ,

then the Lebesgue measure mes(F) is not upper semicontinuous on F , since there
exists Fn ↓ F such that mes(Fn) does not converge to mes(F). The following result
implies, in particular, that the Lebesgue measure is upper semicontinuous on K.

Proposition D.8 (Semicontinuity of a measure). Let E be a LCHS space. Then any
σ -finite measure µ is upper semicontinuous on K.

Proof. By Proposition D.7, it suffices to assume that Kn ↓ K . Then the result follows
from the dominated convergence theorem. ��

A wealth of material on multifunctions in Euclidean spaces can be found in
Rockafellar and Wets [499], Aubin and Frankowska [30] and Hiriart-Urruty and
Lemaréchal [258].
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E Measures, probabilities and capacities

Measures

Consider an abstract set Ω with a σ -algebra F. A measure µ is a function defined on
F with values in [0,∞] which is σ -additive, i.e.

µ(∪∞n=1 An) =
∞∑

n=1

µ(An) ,

where {An, n ≥ 1} is any sequence of disjoint sets from F. It is possible to consider
measures with values in more general spaces than R, for example vector measures or
set-valued measures. If µ and λ are two measures on spaces (Ω1,F1) and (Ω2,F2),
then µ ⊗ λ denotes the product-measure on Ω1 × Ω2 with the product σ -algebra
F1 ⊗ F2 generated by A1 × A2 for A1 ∈ F1 and A2 ∈ F2. If f : Ω �→ Ω ′ is a
measurable map on (Ω,F, µ), then µ′ = f (µ) (or f ◦ µ) is the image of µ, which
is a measure on the σ -algebra on Ω ′ generated by {A ⊂ Ω ′ : f −1(A) ∈ F} and
µ′(A) = µ( f −1(A)).

A measure µ is called finite if µ(Ω) <∞; µ is σ -finite if Ω can be represented
as a countable union of sets of finite measure; µ is locally finite if every point x ∈
E has a neighbourhood of finite measure. The Lebesgue integral of a real-valued
function f : Ω �→ R with respect to µ is denoted by

∫
f (ω)µ(dω) or

∫
f dµ. The

Lebesgue measure on Rd is usually denoted by mes or mesd to specify the dimension.
The measure of value 1 concentrated at a point x ∈ E is called the Dirac measure
and denoted by δx , so that δx(A) = 1 if x ∈ A and δx(A) = 0 otherwise.

A measure µ is absolutely continuous with respect to another measure λ defined
on the same σ -algebra (notation µ � λ) if µ(A) = 0 for every A ∈ F such that
λ(A) = 0. The Radon–Nikodym derivative (if it exists) is denoted by dµ/dλ, so that

µ(A) =
∫
A

dµ

dλ
(x)λ(dx) .

Assume now that Ω = E is a topological space. The support of a measure µ

(notation suppµ) on a topological space E is the set of all points x ∈ E such that
µ(G) > 0 for each open set G that contains x . A measure µ on a topological space E
with a σ -algebra F is called Radon if µ is locally finite and µ(B) for each B ∈ F, can
be approximated from below by µ(K ) with K being a compact subset of B . Every
locally finite measure on a Polish space is Radon.

Carathéodory’s construction

Here we recall Carathéodory’s construction described in Mattila [382, p. 54 ff.] or
Federer [167, pp. 169–170] that produces a measure from a rather general functional
on a family of sets. Let ϕ : M �→ R be a map defined on a family M of subsets of a
metric space E, such that
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(1) for every δ > 0 there are A1, A2, . . . ∈ M such that
⋃∞

n=1 An = E and
diam(An) < δ;

(2) for every δ > 0 there is A ∈M such that ϕ(A) ≤ δ and diam(A) ≤ δ.

For each δ > 0 define the approximating outer measure

ϕ̄δ(A) = inf

{ ∞∑
n=1

ϕ(An)

}
, A ⊂ E , (E.1)

where the infimum is taken over all countable coverings {An, n ≥ 1} of A by sets
An ∈M with diam(An) < δ. The limit

ϕ̄(A) = sup
δ>0

ϕ̄δ(A) = lim
δ↓0

ϕ̄δ(A) (E.2)

is a measure on Borel sets. If M consists of Borel sets then ϕ̄ is Borel regular. The
process of deriving ϕ̄ from ϕ is called Carathéodory’s construction and ϕ̄ is called
Carathéodory’s extension of ϕ. If ϕ is a restriction of a Radon measure µ onto a fam-
ily M that contains all open balls, then ϕ̄ = µ, see Baddeley and Molchanov [39].
Furthermore, if M′ is a subclass of M ⊂ G such that M′ is closed under finite
unions and all elements of M are (possibly uncountable) unions of elements of M′
then the Carathéodory’ extensions of ϕ using M and M′ coincide.

Example E.1 (Hausdorff measures). For α ∈ [0, d] let

ϕ(A) = 2−ακα(diam A)α

where

κα = �(1/2)α

�(α/2 + 1)
= 2πα/2

α�(α/2)
. (E.3)

Note that κk is the volume of the k-dimensional unit ball, when α = k is an integer.
If M is the class of all closed sets, or open sets, or convex sets of Rd then ϕ̄ is
the α-dimensional Hausdorff measure Hα in Rd . In the case α = d we obtain the
Lebesgue measure.

For a set A, the infimum of the values of α ≥ 0 with Hα(A) = 0 is called the
Hausdorff dimension of A and is denoted by dimH(A).

The measure Hd−1 is the surface area for “sufficiently smooth” (rectifiable) sur-
faces. In particular, the surface area measure on the unit sphere is denoted by νd and

ωd = νd (S
d−1) = Hd−1(Sd−1) = dκd = 2πd/2

�(d/2)

is the surface area of the unit sphere in Rd . The measure νd is the unique (up to
proportionality) measure on Sd−1 which is invariant under rotations; it is called the
Haar measure.

Example E.2 (Counting measure). Let ϕ(A) be identically equal to 1. Then ϕ̄ is
the counting measure, i.e. ϕ̄(A) = N(A) = card(A) is the cardinality of A if A is
finite.
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Projective systems and measures

Let {An, n ≥ 1} be a sequence of Hausdorff spaces. Let um,n : An �→ Am , m ≤ n,
be a family of projection maps, so that {An} and {um,n} form a projective system.
Assume that the projective system has a limit A′, see Appendix A. A decreasing
projective system of measures is a sequence of Radon measures µn on An , n ≥ 1,
such that um,n(µn) ≤ µm for m ≤ n. An exact projective system of measures is
a decreasing projective system with the additional condition that um,n(µn) = µm

for m ≤ n. The following theorem is adapted from Schwartz [529, Th. 21] and
formulated for the case of a countably indexed projective system.

Theorem E.3 (Projective systems of measures).
(i) Given a decreasing projective system of finite Radon measures {µn, n ≥ 1} on
{An, n ≥ 1}, there exists a Radon measure µ on A′ such that projn(µ) ≤ µn for
every n ≥ 1.

(ii) Given an exact projective system of Radon probability measures {µn, n ≥ 1}
on {An, n ≥ 1}, there exists a Radon measure µ on A′ such that projn(µ) = µn

for every n ≥ 1.

Example E.4. Let {An, n ≥ 1} be an increasing sequence of measurable sets and
let µn be a probability measure on An so that µn(A) = µm(A) whenever A is a
measurable subset of Am . Put Ãn = A1 × · · · × An and µ̃n = µ1 × · · · × µn . Then
{ Ãn, n ≥ 1} and {µ̃n, n ≥ 1} form an exact projective system with respect to the
projection maps um,n . Theorem E.3 establishes the existence of the projective limit
µ which can be interpreted as a measure on ∪n≥1 An such that its restriction onto
every An coincides with µn .

Probability measures

If µ(Ω) = 1, then µ is said to be a probability measure, and then we usually write
P instead of µ. The triplet (Ω,F,P) is called the probability space. The σ -algebra
F and also the probability space are called complete if, for every set A ∈ F with
P(A) = 0, all subsets of A are contained in F. The abbreviation a.s. indicates that
a certain property holds almost surely (i.e. with probability 1) with respect to the
underlying probability measure.

A random variable is a real-valued Borel measurable function ξ defined on Ω .
The cumulative distribution function of ξ is F(x) = P {ξ ≤ x}. If A ∈ F, then the
corresponding indicator random variable is denoted by 1A. The expectation of ξ is
denoted by Eξ ; ξ is said to be integrable if it has a finite expectation. A sequence of
random variables {ξn, n ≥ 1} is said to be uniformly integrable if

sup
n≥1

E(1|ξn |>c|ξn |)→ 0 as c ↑ ∞ .

An E-valued random element ξ is a (F,B(E))-measurable map from Ω into E.
This map induces a probability measure on the family of Borel subsets of E, so that
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P(B) = P {ξ ∈ B} for B ∈ B(E). Two random elements ξ and η are said to be

identically distributed (notation ξ
d∼ η) if P {ξ ∈ B} = P {η ∈ B} for all B ∈ B(E).

If E = Rd , then ξ = (ξ1, . . . , ξd ) is a random vector. If E is a Banach space and
E‖ξ‖ is finite, then it is possible to define the Bochner expectation (or the Bochner
integral), Eξ , by approximating ξ with simple random elements. Alternatively, Eξ

can be defined as a (unique) element x ∈ E such that E〈ξ, u〉 = 〈x, u〉 for every u
from the dual space E∗. If A ∈ F, then E(1Aξ) is the Bochner integral of ξ restricted
onto the set A.

A sequence {ξn, n ≥ 1} is said to be an i.i.d. sequence if the random elements
ξ1, ξ2, . . . are independent and share the same distribution.

The following useful theorem (Dellacherie [131, I-T32]) concerns measurability
of projections.

Theorem E.5 (Measurability of projections). Let (Ω,F,P) be a complete proba-
bility space and let E be a LCHS space with its Borel σ -algebra B. For every A from
the product σ -algebra F⊗B, the projection of A onto Ω is F-measurable.

Weak convergence

A sequence of probability measures {Pn, n ≥ 1} on B(E) weakly converges to P if∫
f dPn →

∫
f dP for every bounded, continuous real function f . Equivalently, a

sequence of random elements {ξn, n ≥ 1} with distributions {Pn, n ≥ 1} is said to

converge weakly (or in distribution) to ξ (notation ξn
d→ ξ ) if E f (ξn)→ E f (ξ) for

every bounded continuous function f . A set A ∈ B(E) is said to be a P-continuity
set if P(∂ A) = 0.

Theorem E.6 (see Billingsley [70]). The following conditions are equivalent.

(i) Pn weakly converges to P (i.e. ξn
d→ ξ ).

(ii) limn
∫

f dPn =
∫

f dP (i.e. limn E f (ξn) = E f (ξ)) for all bounded, uniformly
continuous real function f .

(iii) lim supn Pn(F) ≤ P(F) (i.e. lim supn P {ξn ∈ F} ≤ P {ξ ∈ F}) for all closed
F .

(iv) lim infn Pn(G) ≥ P(G) (i.e. lim infn P {ξn ∈ G} ≥ P {ξ ∈ G}) for all open G.
(v) limn Pn(A) = P(A) (i.e. limn P {ξn ∈ A} = P {ξ ∈ A}) for all P-continuity sets

A.

If E is a Polish space and Pn weakly converges to P, then it is possible to construct
E-valued random elements {ξn, n ≥ 1} and ξ with distributions {Pn, n ≥ 1} and ξ

defined on the same probability space such that ξn converges to ξ in probability, i.e.
P {ρ(ξn, ξ) ≥ ε} → 0 for every ε > 0. This useful tool is due to A.V. Skorohod and
is known under the name of a single probability space technique. This technique can
be extended as follows.

Proposition E.7 (see Kallenberg [288]). Let f, f1, f2, . . . be measurable maps be-
tween Polish spaces E and E′ and let ξ, ξ1, ξ2, . . . be random elements in E satisfying
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fn(ξn)
d→ f (ξ). Then there exist, on a suitable probability space, random elements

η
d∼ ξ and ηn

d∼ ξn , n ≥ 1, such that fn(ηn)→ f (η) a.s.

A subclass V of B(E) is a convergence determining class if the convergence
Pn(A) → P(A) for all P-continuity sets A ∈ V entails the weak convergence of Pn

to P. In separable spaces, the finite intersections of spheres constitute a convergence-
determining class. Further, V is convergence-determining if V is closed under finite
intersections and each open set in E is at most a countable union of elements of V .
Each convergence-determining class is also a determining class. The latter means
any two probability measures are identical if they agree on V . The class of closed
sets is a determining class as is any other family that generates B(E).

Capacities

Let (E, E) be a paved space for which the paving E is closed under finite unions and
intersections.

Definition E.8 (Choquet capacity). A function ϕ defined on all subsets of E with
values in the extended real line is called a Choquet capacity (or Choquet E-capacity)
if it satisfies the following properties.
(1) ϕ is increasing, i.e. ϕ(A1) ≤ ϕ(A2) if A1 ⊂ A2.
(2) ϕ(An) ↑ ϕ(A) for each increasing sequence of sets An ↑ A.
(3) An ∈ E , n ≥ 1, and An ↓ A implies ϕ(An) ↓ ϕ(A).

A set A ⊂ E is called capacitable (or ϕ-capacitable) if

ϕ(A) = sup{ϕ(B) : B ⊂ A, B ∈ Eδ} .
Note that Eδ (respectively Eσ ) is the family of all countable intersections (respectively
unions) of sets from E , and Eσδ is the family of all countable intersections of sets
from Eσ . The following principal result is due to Choquet [98], see also Meyer [388,
Th. III.19]. The idea of the proof is to show that every set from Eσδ is capacitable
and then use a representation of analytic sets as projections of (E ′ ×E)σδ-sets, where
(E′, E ′) is an auxiliary paved space.

Theorem E.9 (Choquet capacitability theorem). If ϕ is a Choquet E-capacity, then
every E-analytic set is capacitable.

Among many applications of this capacitability theorem one can mention the
proof of the measurability of the first hitting times and a number of other results
from the general theory of stochastic processes, see Dellacherie [131].

A fundamental example of a Choquet capacity can be obtained as follows. Let
(Ω,F, µ) be a complete finite measure space. Then µ∗(A) = inf{µ(B) : A ⊂
B, B ∈ F} is the corresponding outer measure defined for all A ⊂ E. Let E be the
family of finite unions of subsets of R+ ×Ω of the form C × B , where C ∈ K(R+)
and B ∈ F. If A ⊂ R+ × Ω , then π(A) denotes the projection of A on Ω . Then
ϕ(A) = µ∗(π(A)) is a Choquet E-capacity on the product space.
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Definition E.10 (Strongly subadditive capacity). A function ϕ on E with values in
either [−∞,∞) or (−∞,∞] is called strongly subadditive if ϕ increasing and

ϕ(A ∪ B)+ ϕ(A ∩ B) ≤ ϕ(A)+ ϕ(B) (E.4)

for all A, B ∈ E .

If ϕ is increasing, then (E.4) is equivalent to

ϕ(A ∪ B ∪ C)+ ϕ(C) ≤ ϕ(A ∪ C)+ ϕ(B ∪ C) (E.5)

for all A, B,C ∈ E . Under the assumption that ϕ is increasing, (E.4) is also equiva-
lent to

ϕ(∪m
i=1 Bi )+

n∑
i=1

ϕ(Ai) ≤ ϕ(∪m
i=1 Ai )+

n∑
i=1

ϕ(Bi ) (E.6)

for Ai ⊂ Bi , i = 1. . . . , n. If (E.6) holds for countable sequences, then ϕ is called
countably strongly subadditive.

Let ϕ be a non-negative strongly subadditive set function on E and let Ê be a
subclass of Eσ , closed under finite intersections and countable unions. Define

ϕ∗(A) = sup{ϕ(B) : B ⊂ A, B ∈ E} , A ∈ Ê ,

ϕ∗(A) = inf{ϕ∗(B) : A ⊂ B, B ∈ Ê} , A ⊂ E ,

where inf∅ = +∞. The following result describes the conditions which guarantee
that the extension is well defined.

Theorem E.11 (see Doob [143, Appendix II]). Let ϕ be a non-negative strongly
subadditive set function on E . If
(1) ϕ(An) ↑ ϕ(A) for all An, A ∈ E , An ↑ A;
(2) ϕ(An) ↓ ϕ∗(A) for all An ∈ E , An ↓ A,

then ϕ∗ is an extension of ϕ, it does not depend on the choice of Ê and ϕ∗ is a Choquet
E-capacity, which is countably strongly subadditive on the family of all subsets of
E.
If ϕ∗(A) < ∞, then A is capacitable if and only if for all ε > 0 there exist A′ε ∈ Eδ

and A′′ε ∈ Ê such that A′ε ⊂ A ⊂ A′′ε and ϕ∗(A′′ε) < ϕ∗(A′ε)+ ε.

Capacities on K

Assume that E is a LCHS space. A particularly important paving E = K consists
of all compact subsets of E. Let ϕ : K �→ [0,∞] be a capacity that satisfies the
following conditions:

(S1) ϕ is strongly subadditive on K;
(S2) if Kn ↓ K with K ∈ K and {Kn, n ≥ 1} ⊂ K, then ϕ(Kn) ↓ ϕ(K ).
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Note that (S2) implies that ϕ is upper semicontinuous on K with the myopic topol-
ogy, see Proposition D.7. If (S2) holds, then ϕ is called a (topological) precapacity
on E. Let Ê be the family G of all open subsets which is a subfamily of Eσ = Kσ .
Theorem E.11 provides an extension of ϕ:

ϕ∗(G) = sup{ϕ(K ) : K ⊂ G, K ∈ K} , G ∈ G ,

ϕ∗(A) = inf{ϕ∗(G) : A ⊂ G, G ∈ G} , A ⊂ E .

All analytic sets are capacitable and ϕ∗(K ) = ϕ(K ) for every K ∈ K.
The following result provides a continuity condition for a capacity.

Proposition E.12 (Continuity of capacity). Let Kε = {K ε : K ∈ K} be the family
of ε-envelopes of compact sets for some fixed ε > 0. If ϕ is a Choquet Kε-capacity
and ϕ(K ) = ϕ(Int K ) for all K ∈ Kε , then ϕ is continuous on Kε in the Hausdorff
metric.

Proof. If K , K1, K2, . . . ∈ Kε and ρH(Kn, K ) → 0, then K−δn ⊂ Kn ⊂ K δn

for a sequence δn ↓ 0, where K−δn is the inner parallel set. By Definition E.8,
ϕ(K−δn ) ↑ ϕ(Int K ) and ϕ(K δn ) ↓ ϕ(K ). Therefore, ϕ is continuous. ��

Propositions D.8 and E.12 yield the following useful fact.

Corollary E.13 (Continuity of measure). Let E be a LCHS space.
(i) If µ is a σ -finite measure such that µ(K ) = µ(Int K ) for every K ∈ Kε for

some ε > 0, then µ is continuous on Kε in the Hausdorff metric.
(ii) If µ is a finite Radon measure, then µ is continuous with respect to the Fell

topology on Fε = {Fε : F ∈ F}.

Vague topology

We also use the term capacity for any function ϕ on K with values in [0,∞] satisfy-
ing the outer continuity condition (S2) above and such that ϕ(∅) = 0. The family of
all such capacities can be endowed with the vague topology generated by the fami-
lies {ϕ : ϕ(K ) < t} and {ϕ : ϕ(G) > t} where K ∈ K, G ∈ G and t > 0. The
narrow topology is generated by the families {ϕ : ϕ(F) < t} and {ϕ : ϕ(G) > t}
for F ∈ F , G ∈ G and t > 0. Then ϕn converges to ϕ vaguely if and only if

lim sup
n

ϕn(K ) ≤ ϕ(K ) , K ∈ K ,

lim inf
n

ϕn(G) ≥ ϕ(G) , G ∈ G .

The relative compactness for various families of capacities, upper semicontinuous
functions and closed sets is studied in O’Brien and Watson [439].

Theorem E.14 (see Norberg [430]). The family of all capacities in a LCHS space is
itself a Polish space in the vague topology.
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Sup-measures

An important particular family of capacities is provided by sup-measures, see Ver-
vaat [572]. Write ∧ instead of the minimum and ∨ instead of the maximum of num-
bers from the extended real line R̄. If ϕ is a function on G with values in the extended
real line, then its sup-derivative is the function d∧ϕ : E �→ R̄ defined by

d∧ϕ(x) =
∧
G�x

ϕ(G) , x ∈ E .

The sup-integral of a function f : E �→ R̄ is the function f ∨ : G �→ R̄ given by

f ∨(G) =
∨
t∈G

f (t) , G ∈ G .

A function ϕ : G �→ R̄ is called a sup-measure if ϕ(∅) = 0 and for all families
{G j , j ∈ J } of open sets

ϕ(∪i∈J G j ) =
∨
j∈J

ϕ(G j ) .

The vague topology induced on the family of measures is called the vague topol-
ogy for measures; the vague topology induced on the family of sup-measures is called
the sup-vague topology and is equivalent to the Fell convergence of the hypographs
of the corresponding functions. A closed set F gives rise to the indicator sup-measure
ϕ(K ) = 1K∩F �=∅, so that the relative vague topology on the family of such sup-
measures coincides with the Fell topology on F , see Norberg [430].

The family of all sup-measures can be endowed with a topology using the fol-
lowing construction. Let B be a family of subsets of E with the only requirement
that ∅ ∈ B. The sup-B-topology is the smallest topology that makes the function
ϕ �→ ϕ(A) upper semicontinuous for every A ∈ B and lower semicontinuous for
every A ∈ G. If B = F , then the sup-F -topology is called the sup-narrow topology;
the choice B = K yields the sup-vague topology.

If f ∈ USC(E) is an upper semicontinuous function, then its sup-integral f ∨ is
a sup-measure. The sup-B-topology on the family of sup-measures induces the sup-
B-topology on USC(E) defined as the smallest topology that makes f �→ f ∨(A)

upper semicontinuous for every A ∈ B and lower semicontinuous for every open set
A. Then fn → f in this topology if and only if

lim sup
n

f ∨n (B) ≤ f ∨(B) , B ∈ B ,

lim inf
n

f ∨n (G) ≥ f ∨(G) , G ∈ G .

An extremal process is a random element with values in the family of sup-
measures. It is often useful to be able to extend such a random element from its
values on a base G0 of the topology G. Assume that E is locally compact. If ζ(G),
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G ∈ G0, is a stochastic process defined on G0 such that ζ(∪n≥1Gn) = ∨iζ(Gi )

a.s. for each sequence {Gn, n ≥ 1} ⊂ G0 with ∪n≥1Gn ∈ G0, then there exists an
extremal process ζ ∗(G) defined for G ∈ G such that M(G) = ζ(G) a.s. for every
G ∈ G0 separately, see Vervaat [572].

Potentials and capacities

Let k(x, y) : Rd × Rd �→ [0,∞] be a lower semicontinuous function which is said
to be a kernel. Then

Uk
µ(x) =

∫
K

k(x, y)µ(dy)

denotes the potential of µ. Assume that k satisfies the maximum principle, i.e.
Uk

µ(x) ≤ a for all x ∈ suppµ implies this inequality everywhere on Rd . Then
the functional

C(K ) = sup
{
µ(K ) : Uk

µ(x) ≤ 1, x ∈ suppµ
}

, K ∈ K , (E.7)

is a completely alternating Choquet capacity on K, see Choquet [98] and Land-
kof [343]. Then C(K ) = µ(K ) for a measure µ called the equilibrium measure
and satisfying Uk

µ(x) ≤ 1 for x ∈ suppµ and Uk
µ(x) ≥ 1 up to a set of zero capacity

(approximately everywhere) on K , see Landkof [343, Th. 2.3]. The existence of the
equilibrium measure implies that the capacity C is subadditive and upper semicon-
tinuous, see Landkof [343, p. 141]. It is possible to show that C(K ) can be obtained
as

C(K ) = capk(K ) = [inf{Ek(µ) : µ(K ) = 1, µ(K c) = 0}]−1
,

where the infimum is taken over Radon measures µ and

Ek(µ) =
∫∫

k(x, y)µ(dx)µ(dy)

denotes the energy of µ.
An important family of kernels that produce completely alternating capacities is

the family of Riesz kernels k(x, y) = kd,γ‖x − y‖γ−d with

kd,γ = πγ−d/2�((d − γ )/2)

�(γ /2)
.

The corresponding C = capk is called the Riesz capacity and is often denoted as
capγ . It is known (see Landkof [343, p. 143]) that capγ satisfies the maximum prin-
ciple and therefore is completely alternating in the case 0 < γ ≤ 2 for d ≥ 3 and
0 < γ < 2 for d = 2. In this case the equilibrium potential of µ satisfies Uk

µ(x) ≤ 1
everywhere and Uk

µ(x) = 1 approximately everywhere on K .
Note also that the sup-measure ϕ(K ) = supx∈K f (x) can be obtained using (E.7)

with k(x, y) = 1/ max( f (x), f (y)).
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F Convex sets

Support functions

The support function of a closed subset F of a linear space E is defined on the dual
space E∗ as

h(F, u) = sup{〈x, u〉 : x ∈ F} , u ∈ E∗ . (F.1)

The support function may take infinite values if F is unbounded. The weak∗ topol-
ogy on E∗ is the topology of weak convergence of linear functionals. The support
function of a compact set can be characterised as a weak∗-continuous function h on
the unit ball B∗1 in E∗, which is subadditive, i.e.

h(u + v) ≤ h(u)+ h(v) for all u, v ∈ B∗1 with u + v ∈ B∗1 ; (F.2)

and positively homogeneous, i.e.

h(cu) = ch(u) , c > 0, u, cu ∈ B∗1 . (F.3)

Both (F.2) and (F.3) are summarised by saying that h is sublinear. The family of
support functions of compact convex sets is a closed cone in the space of weak∗-
continuous functions on B∗1 . A singleton {x} has as the support function h({x}, u) =
〈x, u〉, which is linear. Conversely, if h : B∗1 �→ R is linear, then h is a support
function of a singleton.

Theorem F.1. Let E be a linear normed space. For each bounded closed set F , its
support function is Lipschitz with Lipschitz constant ‖F‖, that is

‖h(F, u1)− h(F, u2)‖ ≤ ‖F‖‖u1 − u2‖ , u1, u2 ∈ E∗ . (F.4)

Proof. For each u and v

h(F, u + v) ≤ h(F, u)+ h(F, v) ≤ h(F, u)+ ‖F‖‖v‖ ,
whence the Lipschitz property immediately follows. ��

Convex sets in Rd

For the rest of Appendix F, assume that E = Rd . Figure F.1 shows the geometri-
cal meaning of the support function in the planar case. For every closed set F , its
support function h(F, u) is defined for all u ∈ Rd , while (F.3) implies that the sup-
port function can be uniquely extended from its values on the unit sphere Sd−1. An
important theorem establishes that every real-valued sublinear function on Rd is a
support function of the unique convex compact set, see Schneider [520, Th. 1.7.1].

The supporting plane of F is defined by

H(F, u) = {x ∈ Rd : 〈x, u〉 = h(F, u)} .
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0

h(K , u)

K

u

Figure F.1. Support function of a planar compact set.

Every non-empty closed convex set in Rd is the intersection of its supporting
half-spaces and so is uniquely determined by its support function. Furthermore,
H (F, u) = H(F, u) ∩ F is called the support set of F .

The function
w(K , u) = h(K , u) + h(K ,−u)

is called the width function of K ∈ K. Its mean value

b(K ) = 2

ωd

∫
Sd−1

h(K , u)Hd−1(du) , (F.5)

is called the mean width b(K ). The vector-valued integral

s(K ) = 1

κd

∫
Sd−1

h(K , u)uHd−1(du) (F.6)

defines the Steiner point s(K ) of K . For every non-empty convex compact set K ,
we have s(K ) ∈ K . Moreover, the Steiner point belongs to the relative interior of K
taken in the topology induced on the smallest affine subspace that contains K .

If E is a linear space, a function f : E �→ (−∞,∞] is convex if f is not identi-
cally equal to infinity and if

f ((1− t)x + ty) ≤ (1− t) f (x)+ t f (y)

for all x, y ∈ E and for 0 ≤ t ≤ 1. A function f is convex if and only if its epigraph
epi f is a non-trivial convex subset of E× (−∞,∞].
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For convex functions on Rd the concepts of gradient and differential have natural
extensions. If f is a convex function, then

∂ f (x) = {v ∈ Rd : f (y) ≥ f (x)+ 〈v, y − x〉 for all y ∈ Rd}
is a convex closed set called the subdifferential of f at x ; each element of ∂ f (x)
is called a subgradient of f . If f (u) = h(F, u) is a support function of a convex
closed set F which is distinct from the whole space, then ∂ f (0) = ∂h(F, 0) = F . If
K ∈ coK and u ∈ Rd \{0}, then the subdifferential ∂h(K , u) of the support function
at u coincides with the support set H (K , u).

Consider K ∈ coK such that 0 ∈ Int K . The set

K o = {x ∈ Rd : 〈x, y〉 ≤ 1, y ∈ K }
is called the polar set to K (in a general linear space, the polar is a subset of the dual
space). If f is a convex function on Rd , then its conjugate function is defined by

f o(v) = sup{〈v, x〉 − f (x) : x ∈ Rd} , v ∈ Rd .

The mapping f �→ f o is called the Legendre–Fenchel transform, see Rockafellar
and Wets [499, Sec. 11A].

Intrinsic volumes

While intersections of convex sets are convex, this is clearly not the case for their
unions. The family of finite unions of compact convex sets in Rd is called the convex
ring and is denoted by R. The extended convex ring R̄ consists of all sets F ∈ F
such that F ∩ K ∈ R for every K ∈ coK. A numerical function ϕ on R is called a
valuation if

ϕ(K ∪ L)+ ϕ(K ∩ L) = ϕ(K )+ ϕ(L) , K , L ∈ R .

A particularly important valuation assigns 1 to every convex non-empty set. It ex-
tends uniquely to a valuation on the convex ring; this extension is called the Euler–
Poincaré characteristic and denoted by χ(K ) for K ∈ R.

Important functionals on the family coK′ of non-empty convex compact sets in
Rd are the intrinsic volumes V j (K ), 0 ≤ j ≤ d , which can be defined by means of
the Steiner formula

mes(K r ) =
d∑

j=0

rd− j κd− j V j (K ) , (F.7)

where K r is the r -envelope of K and κd− j is the volume of the (d − j)-dimensional
unit ball given by (E.3), see Schneider [520, p. 210] and Schneider and Weil [522,
pp. 38–39]. Then V0(K ) = 1, Vd (K ) = V(K ) = mes(K ) is the volume or the d-
dimensional Lebesgue measure, Vd−1(K ) equals half of the surface area of K and
V1(K ) is proportional to the mean width of K , more precisely,
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V1(K ) = ωdb(K )/(2κd−1) . (F.8)

Other functionals Vd−2(K ), . . . ,V2(K ) can be found as integrals of curvature func-
tions (if K is smooth). The intrinsic volumes are equal up to proportionality constants
to the so-called quermassintegrals, see Leichtweiss [348].

It is possible to write down a local variant of the Steiner formula. For every
x /∈ K and K ∈ coK′ let p(x, K ) be the uniquely determined nearest point to x in
K . The local parallel set to K is the set Mr (K , B × A) of all points x ∈ Rd such
that ρ(x, K ) ≤ r , p(x, K ) belongs to B ∈ B(Rd) and the unit normal vector to K
at p(x, K ) belongs to a Borel set A in Sd−1. The local Steiner formula establishes
that mes(Mr (K , B × A)) is a polynomial given by

mes(Mr (K , B × A)) = 1

d

d∑
i=0

rd−i
(

n

i

)
%i (K , B × A) ,

where %i (K , ·) can be extended to a measure on B(Rd ×Sd−1) called the i th gener-
alised curvature measure. In particular, Ci (K , B) = %i (K , B×Sd−1), B ∈ B(Rd ),
is called the curvature measure and Si (K , A) = %i (K ,Rd × A), A ∈ B(Sd−1),
is the area measure of K . Being normalised by (dκd−i)

−1
(n

i

)
, their total values are

equal to the value of the corresponding intrinsic volume Vi (K ).
The intrinsic volumes can be extended to valuations on the convex ring, see also

Schneider [520] and Weil [603]. If K is the union of convex sets K1, . . . , Kn , then
the additive extension

V j (K ) =
∑

i

V j (Ki )−
∑
i1<i2

V j (Ki1 ∩ Ki2 )+ · · ·

+ (−1)n+1V j (K1 ∩ · · · ∩ Kn)

is defined by the usual inclusion-exclusion formula. Then Vd and Vd−1 retain their
geometrical meanings and remain positive, while other functionals can become neg-
ative, in particular V0(K ) = χ(K ) is the Euler–Poincaré characteristic of K . The
curvature can also be extended by additivity for K ∈ R. A further extension to
general compact sets is described in Hug, Last and Weil [269].

The positive extension of the intrinsic volumes onto the convex ring can be de-
fined as follows, see Weil [603]. For x ∈ Rd and K from the convex ring we call a
point y ∈ K a metric projection of x onto K if there is a neighbourhood U of y such
that ‖x − z‖ > ‖x − y‖ for all z ∈ U ∩ K , z �= y, see Figure F.2.

Let c̄r (K , x) be the number of projections y of x with ‖y − x‖ ≤ r for r > 0.
The expansion ∫

Rd

c̄r (K , x)dx =
d∑

j=0

rd− j bd− j V̄ j (K )

defines the positive extensions of the intrinsic volumes. If K is convex, then the left-
hand side equals the volume of K r , whence V̄ j = V j for convex compact sets.
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K

x

y1 y2

Figure F.2. Two metric projections of x onto K .

An important theorem of convex geometry yields an expression of the volume
for Minkowski combinations of convex compact sets K1, . . . , Kn as

V(λ1 K1 + · · · + λn Kn) =
m∑

i1=1

· · ·
m∑

id=1

λi1 · · ·λid V(Ki1 , . . . , Kid ) (F.9)

valid for all λ1, . . . , λn ≥ 0. The coefficients V(Ki1 , . . . , Kid ) are called mixed vol-
umes.

A substantial amount of information on convex sets and integral geometry can
be found in a monograph by Schneider [520] and in the handbook by Gruber and
Wills [214]. Geometric measure theory and rectifiable sets are treated in detail by
Federer [167] and Mattila [382].

G Semigroups and harmonic analysis

Let S be an arbitrary abelian semigroup, i.e. S is a set equipped with a commu-
tative and associative binary operation called addition and denoted +. Assume the
existence of a neutral element denoted by 0.

Definition G.1 (Semicharacter). A semicharacter on S is a function χ : S �→
[−1, 1] satisfying χ(0) = 1 and χ(s + t) = χ(s)χ(t) for all s, t ∈ S.

The set of all semicharacters on S is denoted Ŝ, which itself is an abelian
semigroup under pointwise multiplication and with the neutral element being the
semicharacter identically equal to 1.
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Definition G.2 (Positive and negative definiteness).
(i) A real-valued function f : S �→ R is called positive definite (notation f ∈

P(S)) if f is bounded and the matrix ‖ f (si + s j )‖i, j=1,...,n is positive semidef-
inite for every n ≥ 1 and for each n-tuple s1, . . . , sn ∈ S.

(ii) A function f : S �→ R+ = [0,∞) is called negative definite (notation f ∈
N(S)) if the matrix ‖ f (si )+ f (s j )− f (si+s j )‖i, j=1,...,n is positive semidefinite
for every n ≥ 1 and for each n-tuple s1, . . . , sn ∈ S.

The following results provide representations of positive definite and negative
definite functions on semigroups.

Theorem G.3 (Representaion of positive definite functions). For every f ∈ P(S)

there exists one and only one positive Radon measure µ on Ŝ such that

f (s) =
∫
Ŝ

χ(s)µ(dχ) , s ∈ S .

Theorem G.4 (Representation of negative definite functions). Let f ∈ N(S).
Then

f (s) = c + h(s)+
∫

Ŝ\{1}

(1− χ(s))µ(dχ) , (G.1)

where f uniquely determines: a non-negative constant c, a function h : S �→ R+
satisfying h(s + t) = h(s)+ h(t) for all s, t ∈ S and a non-negative Radon measure
µ on Ŝ \ {1} with the property∫

Ŝ\{1}

(1− χ(s))µ(dχ) <∞ , s ∈ S .

The measure µ in (G.1) is said to be the Lévy–Khinchin measure of f . Note that
h vanishes if f is bounded.

For a function f : S �→ R introduce the successive differences as

�s1 f (s) = f (s)− f (s + s1) ,

�sn · · ·�s1 f (s) = �sn−1 · · ·�s1 f (s)−�sn−1 · · ·�s1 f (s + sn) , n ≥ 2 ,

where s, s1, . . . , sn ∈ S.

Definition G.5 (Complete alternation and monotonicity). A function f : S �→
R+ is said to be completely alternating (notation f ∈ A(S)) if �sn · · ·�s1 f (s) ≤ 0
and completely monotone (notation f ∈ M(S)) if �sn · · ·�s1 f (s) ≥ 0 for all n ≥ 1
and s, s1, . . . , sn ∈ S.

Theorem G.6 (M(S) and A(S) as cones). M(S) is an extreme sub-cone of the family
P(S) of positive definite functions on S; A(S) is an extreme sub-cone of the family
N(S) of all negative definite functions.
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The following is a useful characterisation of completely alternating functions.

Theorem G.7 (Completely alternating functions). Each function f ∈ A(S) admits
the representation (G.1) with the Lévy–Khinchin measure µ concentrated on the set
(Ŝ \ {1})+ of non-negative semicharacters from Ŝ \ {1}.

Theorem G.8. Let f be a non-negative function on S. Then f ∈ A(S) if and only if
e−t f ∈ M(S) for all t > 0.

A function f ∈ P1(S) = { f ∈ P(S) : f (0) = 1} is called infinitely divisible
if and only if for each n ≥ 1 there exists fn ∈ P1(S) such that f = ( fn)

n . The
family of all infinitely divisible functions is denoted by Pi (S). Let N∞(S) be the
closure of { f ∈ N(S) : f (0) = 0} with respect to the pointwise convergence.
Note that functions from N∞(S) may attain infinite values. The following theorem
characterises logarithms of infinitely divisible functions.

Theorem G.9 (Infinitely divisible functions). Let f be a non-negative function in
P1(S) and let ϕ = − log f . Then the following conditions are equivalent.
(i) f ∈ Pi (S).

(ii) ϕ ∈ N∞(S).
(iii) e−tϕ ∈ P1(S) for all t > 0.
The same results hold if P1 is replaced by M1 (the family of all completely monotone
functions, f (0) = 1), Pi by Mi (infinitely divisible functions from M1) and N∞ by
A∞ (completely alternating functions which may assume infinite values).

An important example of infinitely divisible functions is related to random ele-
ments in semigroups. If ξ is a random element in S, then ξ is said to be infinitely
divisible if ξ coincides in distribution with ξ1 + · · · + ξn for each n ≥ 2, where
ξ1, . . . , ξn are i.i.d. random elements in S. Then

f (χ) = Eχ(ξ) , χ ∈ Ŝ ,

is called the Laplace transform of ξ . It is easy to check that

�χn · · ·�χ1Eχ(ξ) = E [χ(ξ)(1− χ1(ξ)) · · · (1− χn(ξ))] ≥ 0 ,

so that the Laplace transform is completely monotone on Ŝ, i.e. f ∈ M(Ŝ). The infi-
nite divisibility property of ξ implies that its Laplace transform is infinitely divisible
on Ŝ, i.e. Eχ(ξ) ∈ Mi (Ŝ) ⊂ Pi (Ŝ). Theorem G.9 yields

Eχ(ξ) = e−ϕ(χ) , χ ∈ Ŝ , (G.2)

where ϕ ∈ A∞(Ŝ).

Assume that S is idempotent, that is s + s = s for every s ∈ S. It is possible
to define an ordering on S by s ≤ t if s + t = t , so that s + t = s ∨ t . Every
semicharacter χ on S is a {0, 1}-valued function. For each χ ∈ Ŝ, the set I =
χ−1({1}) is a semigroup which is hereditary on the left, i.e. for s, t ∈ S with s ≤ t
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and t ∈ I we have s ∈ I . Conversely, if I ⊂ S is a semigroup and hereditary
on the left, then 1I is a semicharacter. Therefore, Ŝ is isomorphic with the set I
of semigroups which are hereditary on the left, considered as a semigroup under
intersection. Every function f ∈ P(S) is non-negative, decreasing and bounded,
while each f ∈ N(S) is increasing and satisfies f (0) ≤ f (s). The following theorem
provides the representations of positive definite and negative definite functions on
idempotent semigroups.

Theorem G.10 (Positive and negative definite functions on imdepotent semi-
group). Let S be an idempotent semigroup. For f ∈ P(S) there is a unique Radon
measure µ on the semicharacters Ŝ (or, equivalently on the family I of hereditary on
the left semigroups) such that

f (s) = µ({χ ∈ Ŝ : χ(s) = 1}) = µ({I ∈ I : s ∈ I }) , s ∈ S .

For f ∈ N(S) there is a unique Radon measure µ on Ŝ \ {1} = I \ {S} such that

f (s) = f (0)+ µ({χ ∈ Ŝ : χ(s) = 0})
= f (0)+ µ({I ∈ I \ {S} : s /∈ I }) , s ∈ S .

The semicharacters on Ŝ can be identified with elements of S. Therefore, if ξ

is an infinitely divisible random element in an idempotent semigroup, then Theo-
rem G.10 (applied to the semigroup Ŝ) and (G.2) imply

E1ξ∈I = P {ξ ∈ I } = exp{−µ(S \ I )} , (G.3)

where µ is concentrated on S \ {0}.
Most of the results presented above are taken from Berg, Christensen and Res-

sel [60]. A comprehensive account on harmonic analysis on semigroups can be found
in the monograph Berg, Christensen and Ressel [61].

H Regular variation

Numerical regularly varying functions

A measurable function f : R+ = [0,∞) �→ R+ is regularly varying with the expo-
nent α if, for each x > 0,

lim
t→∞

f (tx)

f (t)
= xα , (H.1)

see Seneta [530] and Bingham, Goldie and Teugels [71]. We then write f ∈ RVα . In
this case (H.1) holds uniformly for x ∈ [a, b], 0 < a < b <∞. A function L is said
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to be slowly varying if L satisfies (H.1) with α = 0. Each f ∈ RVα can be written as

f (x) = xα L(x) (H.2)

for a slowly varying function L. A slowly varying function L admits the representa-
tion

L(x) = exp

⎧⎨⎩η(x)+
x∫

b

t−1ε(t)dt

⎫⎬⎭ , x ≥ b , (H.3)

for a certain b ≥ 0. Here η(x) is bounded on [b,∞) and admits a finite limit as
x →∞ and ε(t) is a continuous function such that ε(t)→ 0 as t →∞.

Let us mention several useful properties of regularly varying functions (all proofs
can be found in Seneta [530]). The letters f and L stand for arbitrary regular varying
and slowly varying functions.

1. For each α > 0

xαL(x)→∞ and x−α L(x)→ 0 as x →∞ .

2. If f ∈ RVα, then there exists a function f − ∈ RV1/α (called the asymptotic
inverse function for f ) such that

f ( f −(x)) ∼ x and f −( f (x)) ∼ x as x →∞ .

3. Let L be slowly varying. If f (x) = xαL(x) is non-decreasing on [a,∞) for
some a > 0 and α > 0, then

f −(x) = inf{y : f (y) ≥ x, y ∈ [a,∞)}
is the asymptotic inverse function for f . This fact is called the inverse theorem
for univariate regularly varying functions.

Multivariate regularly varying functions

For the generalisation to multivariate functions we follow Yakimiv [618], see also
de Haan and Resnick [216, 217] and Resnick [480]. Let C be a cone in Rd and let
C′ = C \ {0}. A measurable function f : C �→ R+ is said to be regularly varying
with exponent α if, for any fixed e ∈ C′,

lim
t→∞

∣∣∣∣ f (tx)

f (te)
− ϕ(x)

∣∣∣∣ = 0 , x ∈ C′ . (H.4)

The function ϕ is homogeneous with exponent α, i.e.

ϕ(tx) = tαϕ(x) , t > 0 , x ∈ S . (H.5)

Condition (H.4) is too weak to ensure desirable properties of regular varying mul-
tivariate functions. The function f is said to belong to RVu

α(C) if (H.4) is valid
uniformly on Sd−1 ∩ C, i.e.
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lim
t→∞ sup

x∈Sd−1∩C

∣∣∣∣ f (tx)

f (te)
− ϕ(x)

∣∣∣∣ = 0 . (H.6)

It is possible to show that (H.4) and (H.6) are equivalent if and only if d = 1.
Let RVu

0(C) be the class of slowly varying functions on C such that (H.6) holds
with the function ϕ identically equal to 1. Furthermore, let Homα(C) be the class
of all continuous functions which satisfy (H.5). It was proved in Yakimiv [618] that
f ∈ RVu

α(C) if and only if
f = Lϕ (H.7)

for L ∈ RVu
0(C) and ϕ ∈ Homα(C). It was proved in de Haan and Resnick [217]

that for each L ∈ RVu
0(C) and c > 0, ε > 0 there exists t0 such that

(1− ε)‖x‖−ε ≤ L(tx)

L(te)
≤ (1+ ε)‖x‖ε (H.8)

for all t ≥ t0 and ‖x‖ ≥ c.

Multivalued regular variation

Regular varying multifunctions have been introduced in Molchanov [398, Ch. 6],
where further details and proofs can be found. Let C be a regular closed cone in Rm ,
C′ = C \ {0} and let M : C �→ F be a function on C with values in the family F of
closed subsets of Rd . Assume that M(0) = {0} and M is measurable, i.e. for each
compact set K the set {u ∈ C : M(u) ∩ K �= ∅} is measurable. The dimensions d
and m are not supposed to be equal.

Definition H.1 (Regularly varying multifunction). A multifunction M : C �→ F
is said to be regularly varying with the limiting function Φ and index α if

PK- lim
t→∞

M(tu)

g(t)
= Φ(u) (H.9)

for every sequence ut ∈ C′, such that ut → u �= 0 as t → ∞, where Φ(u) is a
non-trivial closed subset of Rd , Φ(u) �= {0} for u �= 0 and g : (0,∞) �→ (0,∞)

is a numerical univariate regularly varying function of index α. We then write M ∈
RVu

α,g,Φ(C;F) or, briefly, M ∈ RVu
α(C;F). If M takes only compact values and

(H.9) holds in the Hausdorff metric, i.e.

ρH- lim
t→∞

M(tut )

g(t)
= Φ(u) , (H.10)

then M is said to belong to RVu
α,g,Φ(C;K).

Definition H.1 complies with the definitions of multivariate regular varying func-
tions. Indeed, a function h : C �→ R1 belongs to RVu

α(C) if and only if M(u) =
{h(u)} ∈ RVu

α(C;K). The limiting multifunction Φ(u) in (H.9) is homogeneous, i.e.
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Φ(su) = sαΦ(u) , s > 0 , u ∈ Rm . (H.11)

It is obvious that continuous homogeneous functions satisfying (H.11) are regularly
varying.

Theorem H.2 (see Molchanov [398]). If M ∈ RVu
α(C;F) (respectively M ∈

RVu
α(C;K)), then the function Φ from (H.9) (respectively (H.10)) is continuous in

the Fell topology (respectively in the Hausdorff metric) on C′.

Example H.3. Let hi : Rm �→ R1, 1 ≤ i ≤ d , be regularly varying numerical
multivariate functions from RVu

α,ϕ(C) such that

lim
t→∞

hi (tu)

g(t)
= ϕi (u) , 1 ≤ i ≤ d, u ∈ C′ , (H.12)

for a univariate function g ∈ RVα. Then

M(u) = {(h1(u), . . . , hd (u))} ∈ RVu
α,g,Φ(C;K)

where Φ(u) = {(ϕ1(u), . . . , ϕd (u))} is a singleton for each u. The function M maps
Rm into the class of single-point subsets of Rd .

The following lemma shows that some set-theoretic operations preserve the reg-
ular variation property. It easily follows from the continuity of these operations with
respect to the Hausdorff metric.

Lemma H.4. Let Mi ∈ RVu
α(C;K), ci > 0, 1 ≤ i ≤ p. Then the functions

c1M1 ∪ · · · ∪ cp Mp ,

co(M(1)) ,

c1M1 ⊕ · · · ⊕ cp Mp

belong to the class RVu
α(C;K).

Inversion theorems

If M : C �→ F is a multifunction defined on C, then

M−(K ) = {u ∈ C : M(u) ∩ K �= ∅} (H.13)

is said to be the inverse for M . The following theorem is an analogue of the inversion
theorem for numerical univariate regularly varying functions.

Theorem H.5 (Inversion theorem). Let M ∈ RVu
α,g,Φ(C;F) with α > 0. Assume

that for all u0 ∈ C′ and ε > 0 there exists δ > 0 such that

Φ(u0)
δ ⊂

⋃
u∈Bε(u0)

M(tu)

g(t)
(H.14)
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for all sufficiently large t . Then, for every fixed a > 0,

PK- lim
t→∞

M−(t Kt )

g−(t)
∩ Ca = Φ−(K ) ∩ Ca (H.15)

if ρH(Kt , K ) → 0 and 0 /∈ K . Here Ca = {u ∈ C : ‖u‖ ≥ a}, γ = 1/α, g− is the
asymptotic inverse function to g and

Φ−(K ) = {u ∈ C : Φ(u) ∩ K �= ∅} . (H.16)

If M ∈ RVu
α,g,Φ(C;K) and 0 /∈ Φ(u) for all u ∈ C′, then the Painlevé–Kuratowski

limit in (H.15) can be replaced with the limit in the Hausdorff metric. If

ρH- lim
t→∞

M(tut )

g(t)
= {0} , (H.17)

whenever ut → 0 as t →∞, then (H.15) holds for a = 0.

The closed sets K , Kt , t > 0, in Theorem H.5 are allowed to be non-compact,
provided ρH(K , Kt )→ 0 as t →∞.

The following propositions reformulate (H.14) for particular functions M .

Proposition H.6. Let M(u) = {(h1(u), . . . , hd (u))} be the function from Exam-
ple H.3, where hi ∈ RVu

α(C), 1 ≤ i ≤ d , are continuous functions. If the function g
in (H.12) is continuous, then (H.14) holds.

Proposition H.7. Let M(u) = g(‖u‖)F(eu), where F : Sm−1 �→ F is a multifunc-
tion on the unit sphere and eu = u/‖u‖. Then (H.17) holds if F is bounded on S and
g(txt )/g(t)→ 0 as xt → 0 and t →∞.

Note also that all functions from Lemma H.4 satisfy the conditions (H.14) in case
all their components Mi , 1 ≤ i ≤ p, satisfy the same condition. Without (H.14),
statement (H.15) should be replaced with

PK- lim
t→∞

M−(t Kt )

g−(t)
∩ Ca ⊂ Φ−(K ) ∩ Ca.

Now consider a particular case of Theorem H.5, which, in fact, is the inversion
theorem for multivariate regularly varying functions.

Theorem H.8. Let h ∈ RVu
α,ϕ(C) be a continuous regularly varying numerical func-

tion with α > 0. Assume that the corresponding normalising function g in (H.12) is
continuous. Define for any fixed a > 0

M−(x) = {u ∈ C : ‖u‖ ≥ a, h(u) ≥ x} , x > 0 .

Then M− ∈ RVu
γ,g−,Φ−((0,∞),F), where g− is the asymptotically inverse function

for g, γ = 1/α and Φ−(x) = {u ∈ C : ϕ(u) ≥ x}.
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Integrals of regularly varying functions

The following result concerns asymptotic properties of an integral, whose domain of
integration is a regularly varying multifunction.

Theorem H.9. Let L ∈ RVu
0(C) be a slowly varying function with non-negative

values and let ϕ : C �→ R1 be a continuous homogeneous function of exponent α−d
with α < 0, where C is a cone in Rd . Furthermore, let

M : R1 �→ F(C′) = {F ∈ F : F ⊂ C′}
be a multivalued function, whose values are closed subsets of C′ = C \ {0}. Suppose
that

inf

{
ε > 0 : D−ε ∩ K ⊂ M(t)

g(t)
∩ K ⊂ Dε ∩ K

}
→ 0 as t →∞ (H.18)

holds for a regular closed set D missing the origin and for every compact set K ,
where g ∈ RVγ (R+) with γ > 0. Then, for every e ∈ C′,∫

M(t)

ϕ(u)L(u)du ∼ L(g(s)e)g(s)α
∫
D

ϕ(u)du as s →∞ .

Note that (H.18) is more restrictive than

PK- lim
t→∞

M(t)

g(t)
= D .

Nevertheless, for convex-valued multifunctions these conditions are equivalent.

Corollary H.10. Let M ∈ RVu
α(C;K) be a convex-valued multifunction and let the

functions ϕ and L satisfy the conditions of Theorem H.9. Then

H (v) =
∫

M(v)

ϕ(u)L(u)du

is a regularly varying multivariate function from RVu
α. In particular, this holds if

H (v) is the Lebesgue measure of M(v).
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74. BOCŞAN, G. (1986). Random Sets and Related Topics, vol. 27 of Monografii Matemat-

ice. Universitatea din Timişoara, Timişoara.
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In Séminair de Probabilités V , edited by M. Karoubi and P. A. Meyer, vol. 191 of Lect.
Notes Math., 77–81. Springer, Berlin.

131. DELLACHERIE, C. (1972). Capacités et processus stochastiques. Springer, Berlin.
132. DELLACHERIE, C. and MEYER, P.-A. (1978). Probabilities and Potential. North-

Holland, Amsterdam.
133. DEMPSTER, A. P. (1967). Upper and lower probabilities induced by a multivalued

mapping. Ann. Math. Statist. 38, 325–329.



References 441

134. DEMPSTER, A. P. (1968). A generalization of Bayesian inference. J. R. Statist. Soc.
Ser. B 30, 205–247.

135. DENNEBERG, D. (1994). Non-Additive Measure and Integral. Kluwer, Dordrecht.
136. DENTCHEVA, D. (1998). Differentiable selections and Castaing representations of mul-

tifunctions. J. Math. Anal. Appl. 223, 371–396.
137. DEROBERTIS, L. and HARTIGAN, J. A. (1981). Bayesian inference using intervals of

measures. Ann. Statist. 9, 235–244.
138. DHAENE, J., DENUIT, M., GOOVAERTS, M. J., KAAS, R. and VYNCKE, D. (2002).

The concept of comonotonicity in actuarial science and finance: applications. Insurance
Math. Econom. 31, 133–161.

139. DHAENE, J., DENUIT, M., GOOVAERTS, M. J., KAAS, R. and VYNCKE, D. (2002).
The concept of comonotonicity in actuarial science and finance: theory. Insurance Math.
Econom. 31, 3–33.

140. DOLECKI, S., SALINETTI, G. and WETS, R. J.-B. (1983). Convergence of functions:
equi-semicontinuity. Trans. Amer. Math. Soc. 276, 409–429.

141. DONG, W. and WANG, Z. P. (1998). On representation and regularity of continuous
parameter multivalued martingales. Proc. Amer. Math. Soc. 126, 1799–1810.

142. DOOB, J. L. (1953). Stochastic Processes. Wiley, New York.
143. DOOB, J. L. (1984). Classical Potential Theory and its Probabilistic Counterparts.

Springer, Berlin.
144. DOSS, S. (1949). Sur la moyenne d’un élément aléatoire dans un espace distancié. Bull.
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173. RAYNAUD DE FITTE, P. (1997). Théoreme ergodique ponctuel et lois fortes des grand
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distancié. Ann. Inst. H.Poincaré, Sect. B, Prob. et Stat. 10, 235–310.



References 443

182. FRIEL, N. and MOLCHANOV, I. S. (1998). A class of error metrics for grey-scale
image comparison. In Mathematical Modelling and Estimation Techniques in Computer
Vision, edited by J. L. D. F. Prêteux and E. R. Dougherty, vol. 3457 of Proceedings of
SPIE, 194–201, San Diego, California. SPIE.

183. FRIEL, N. and MOLCHANOV, I. S. (1999). A new thresholding technique based on
random sets. Pattern Recognition 32, 1507–1517.

184. FRISTEDT, B. (1996). Intersections and limits of regenerative sets. In Random Dis-
crete Structures, edited by D. Aldous and R. Pemantle, vol. 76 of The IMA Volumes in
Mathematics and its Applications, 121–151. Springer, New York.
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330. KRÄTSCHMER, V. (2003). When fuzzy measures are upper envelopes of probability

measures. Fuzzy Sets and Systems 138, 455–468.
331. KREE, P. (1982). Diffusion equations for multivalued stochastic differential equations.

J. Funct. Anal. 49, 73–90.
332. KRUPA, G. (1998). Limit Theorems for Random Sets. Ph.D. thesis, University of

Utrecht, Utrecht, The Netherlands.
333. KRUPA, G. (2003). Snell’s optimization problem for sequences of convex compact

valued random sets. Probab. Math. Statist. 23, 77–91.
334. KRUSE, R. (1987). On the variance of random sets. J. Math. Anal. Appl. 122, 469–473.
335. KRYLOV, N. V. and YUSHKEVITCH, A. A. (1964). Markov random sets. Theory

Probab. Appl. 9, 738–743. In Russian.
336. KUDO, H. (1953). Dependent experiments and sufficient statistics. Natural Science

Report. Ochanomizu University 4, 905–927.
337. KURATOWSKI, K. (1966). Topology I. Academic Press, New York.
338. KURATOWSKI, K. (1968). Topology II. Academic Press, New York.
339. KURATOWSKI, K. and RYLL-NARDZEWSKI, C. (1965). A general theorem on selec-

tors. Bull. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13, 397–403.
340. KURTZ, T. G. (1974). Point processes and completely monotone set functions. Z.

Wahrsch. verw. Gebiete 31, 57–67.
341. KURTZ, T. G. (1980). The optional sampling theorem for martingales indexed by di-

rected sets. Ann. Probab. 8, 675–681.
342. LACHOUT, P. (1995). On multifunction transforms of probability measures. Ann. Oper.

Res. 56, 241–249.
343. LANDKOF, N. S. (1972). Foundations of Modern Potential Theory. Springer, Berlin.
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Sect. B, Prob. et Stat. 30, 647–702.
458. PICK, R. (1987). Expectation in metric spaces. Studia Scientarium Mathematicarum

Hungarica 22, 347–350.
459. PITMAN, J. and YOR, M. (1996). Random discrete distributions derived from self-

similar random sets. Electron. J. Probab. 1, 1–28.
460. PUCCI, P. and VITILARO, G. (1984). A representation theorem for Aumann integrals.

J. Math. Anal. Appl. 102, 86–101.
461. PURI, M. L. and RALESCU, D. A. (1983). Differentials of fuzzy functions. J. Math.

Anal. Appl. 91, 552–558.
462. PURI, M. L. and RALESCU, D. A. (1983). Strong law of large numbers for Banach

space-valued random sets. Ann. Probab. 11, 222–224.
463. PURI, M. L. and RALESCU, D. A. (1985). The concept of normality for fuzzy random

variables. Ann. Probab. 13, 1373–1379.
464. PURI, M. L. and RALESCU, D. A. (1985). Limit theorems for random compact sets in

Banach space. Math. Proc. Cambridge Philos. Soc. 97, 151–158.
465. PURI, M. L. and RALESCU, D. A. (1986). Fuzzy random variables. J. Math. Anal.

Appl. 114, 409–422.
466. PURI, M. L. and RALESCU, D. A. (1991). Convergence theorem for fuzzy martingales.

J. Math. Anal. Appl. 160, 107–122.



References 455

467. PURI, M. L., RALESCU, D. A. and RALESCU, S. S. (1987). Gaussian random sets in
Banach space. Theory Probab. Appl. 31, 598–601.

468. PYKE, R. (1983). The Haar-function construction of Brownian motion indexed by sets.
Z. Wahrsch. verw. Gebiete 64, 523–539.
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543. STOJAKOVIĆ, M. (1994). Fuzzy random variables, expectations, and martingales. J.

Math. Anal. Appl. 184, 594–606.



458 References

544. STOYAN, D., KENDALL, W. S. and MECKE, J. (1995). Stochastic Geometry and its
Applications. Wiley, Chichester, 2nd edn.

545. STOYAN, D. and LIPPMANN, G. (1993). Models of stochastic geometry — a survey. Z.
Oper. Res. 38, 235–260.

546. STOYAN, D. and STOYAN, H. (1980). On some partial orderings of random closed sets.
Math. Operationsforsch. Statist. Ser. Optimization 11, 145–154.

547. STOYAN, D. and STOYAN, H. (1994). Fractals, Random Shapes and Point Fields. Wi-
ley, Chichester.
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J. Math. Pures Appl. 50, 265–292.

570. VALADIER, M. (1980). On conditional expectation of random sets. Ann. Mat. Pura
Appl. (4) 126, 81–91.

571. VALADIER, M. (1980). Sur l’espérance conditionelle multivoque non convexe. Ann.
Inst. H.Poincaré, Sect. B, Prob. et Stat. 16, 109–116.

572. VERVAAT, W. (1997). Random upper semicontinuous functions and extremal processes.
In Probability and Lattices, edited by W. Vervaat and H. Holwerda, vol. 110 of CWI
Tracts, 1–56. CWI, Amsterdam.

573. VERVAAT, W. and HOLWERDA, H., eds. (1997). Probability and Lattices, vol. 110 of
CWI Tracts. CWI, Amsterdam.

574. VICSEK, T. (1989). Fractal Growth Phenomena. World Scientific, Singapore.
575. VILKOV, B. N. (1995). Asymptotics of random convex broken lines. Zap. Nauchn. Sem.

S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 223, 263–279. In Russian.
576. VITALE, R. A. (1983). Some developments in the theory of random sets. Bull. Inst.

Intern. Statist. 50, 863–871.
577. VITALE, R. A. (1984). On Gaussian random sets. In Stochastic Geometry, Geometric

Statistics, Stereology, edited by R. V. Ambartzumian and W. Weil, 222–224. Teubner,
Leipzig. Teubner Texte zur Mathematik, B.65.

578. VITALE, R. A. (1985). L p metrics for compact, convex sets. J. Approx. Theory 45,
280–287.

579. VITALE, R. A. (1987). Expected convex hulls, order statistics, and Banach space prob-
abilities. Acta Appl. Math. 9, 97–102.

580. VITALE, R. A. (1987). Symmetric statistics and random shape. In Proceedings of the
1st World Congress of the Bernoulli Society. Vol.1. Probability theory and applications,
edited by Y. A. Prohorov and V. V. Sazonov, 595–600, Utrecht. VNU Science Press.

581. VITALE, R. A. (1988). An alternate formulation of mean value for random geometric
figures. J. Microscopy 151, 197–204.

582. VITALE, R. A. (1990). The Brunn–Minkowski inequality for random sets. J. Multivari-
ate Anal. 33, 286–293.

583. VITALE, R. A. (1991). Expected absolute random determinants and zonoids. Ann. Appl.
Probab. 1, 293–300.

584. VITALE, R. A. (1991). The translative expectation of a random set. J. Math. Anal. Appl.
160, 556–562.

585. VITALE, R. A. (1994). Stochastic smoothing of convex bodies: two examples. Rend.
Circ. Mat. Palermo (2) 35, 315–322.

586. VOROB’EV, O. Y. (1984). Srednemernoje Modelirovanie (Mean-Measure Modelling).
Nauka, Moscow. In Russian.

587. VOROB’EV, O. Y. (1996). Random set models of fire spread. Fire Technology 32,
137–173.

588. WAGNER, D. H. (1977). Survey of measurable selection theorem. SIAM J. Control
Optim. 15, 859–903.



460 References

589. WAGNER, D. H. (1979). Survey of measurable selection theorem: an update. In Mea-
sure Theory, edited by D. Kölzow, vol. 794 of Lect. Notes Math., 176–219. Springer,
Berlin.

590. WALLEY, P. (1987). Belief function representations of statistical evidence. Ann. Statist.
15, 1439–1465.

591. WALLEY, P. (1991). Statistical reasoning with Imprecise Probabilities. Chapman and
Hall, London.

592. WALLEY, P. and MORAL, S. (1999). Upper probabilities based only on the likelihood
function. J. R. Statist. Soc. Ser. B 61, 831–847.

593. WANG, G. and LI, X. (2000). On the weak convergence of sequences of fuzzy measures
and metric of fuzzy measures. Fuzzy Sets and Systems 112, 217–222.

594. WANG, R. (1998). Some properties of sums of independent random sets. Northeast.
Math. J. 14, 203–210.

595. WANG, R. (2001). Essentiual (convex) closure of a family of random sets and its appli-
cations. J. Math. Anal. Appl. 262, 667–687.

596. WANG, R. and WANG, Z. (1997). Set-valued stationary processes. J. Multivariate Anal.
63, 180–198.

597. WANG, Z. P. and XUE, X. H. (1994). On convergence and closedness of multivalued
martingales. Trans. Amer. Math. Soc. 341, 807–827.

598. WASSERMAN, L. A. (1990). Belief functions and statistical inference. Canad. J. Statist.
18, 183–196.

599. WASSERMAN, L. A. (1990). Prior envelopes based on belief functions. Ann. Statist.
18(1), 454–464.

600. WASSERMAN, L. A. and KADANE, J. B. (1990). Bayes’ theorem for Choquet capaci-
ties. Ann. Statist. 18, 1328–1339.

601. WASSERMAN, L. A. and KADANE, J. B. (1992). Symmetric upper probabilities. Ann.
Statist. 20, 1720–1736.

602. WEIL, W. (1982). An application of the central limit theorem for Banach-space-valued
random variables to the theory of random sets. Z. Wahrsch. verw. Gebiete 60, 203–208.

603. WEIL, W. (1983). Stereology: A survey for geometers. In Convexity and Its Applica-
tions, edited by P. M. Gruber and J. M. Wills, 360–412. Birkhäuser, Basel.
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List of Notation

The notation list is ordered by the following groups: Latin letters (lowercase, up-
percase, boldface, blackboard style, calligraphic, serif); Greek letters; Gothic letters;
mathematical operators; symbols; abbreviations.

Letters F , G and K usually denote a general closed, open and compact set; X , Y ,
etc. are random sets; t , s are time points; x, y, z are points in space; ξ, ζ are ran-
dom elements or random functions. Spaces, lattices, cones are usually denoted by
blackboard style, families of sets by calligraphic and σ -algebras by Gothic letters.

an (normalising constant) 262
an(K ) (adjusted normalising constants)

262
d∧ϕ (sup-derivative) 419
f −1 (inverse image) 389
f ∨ (sup-integral) 419
h(F, u) (support function) 421
h(K , u) (support function) 198
k(x, y) (kernel) 420
pX (coverage function) 23, 176
〈x, u〉 (linear functional) 394
vK (x) (function T (x K )) 262
x−t (backward recurrence process) 326
x+t (forward recurrence process) 326

Ar (r -envelope) 390
A−r (inner r -envelope) 390
Ar− (open r -envelope) 390
B1 (unit ball) 198
Br (ball centred at origin) 395
Br (x) (ball centred at x) 390
B∗1 (unit ball in dual space) 28, 200
CX (containment functional) 22, 279

F− (inverse multifunction) 409
X∗ (inversion) 251
FX (fixed points of X) 243
H(F, u) (support set) 422
H(K ) (renewal function) 227
HX (invariant translations) 255
IX (inclusion functional) 22
L X (directions u with a.s. finite h(X, u))

103
Mt (choice process) 355
Q X (avoidance functional) 22
S+K (positive directions) 227, 293
Sn (partial sum of i.i.d. sets) 199, 209
T, T (K ), TX (K ) (capacity functional)

4
T ∗ (extension of T ) 9
Uk

µ (potential of µ) 420
X (random set) 1
X& (isolated or right-limit points) 326
X∞ (limit of martingale) 305
X− (inverse of X) 2, 26
X̄n (Minkowski average) 214
‖X‖ (norm of X) 3, 150
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Yn (closed convex hull of union) 278
Zn (intersection of random half-spaces)

292
Zn (union of n i.i.d. random sets) 262
Z(p) (fractal set generated by dyadic

cubes) 61

d (distance function) 179
d̄ (mean distance function) 180
EAζ (level selection expectation) 368
E X (selection expectation) 151
EA X (selection expectation) 151
EB X (Debreu expectation) 156
EDA X (distance average) 180
EF X (Fréchet expectation) 184
EH X (Herer expectation) 187
EI X (Aumann integral) 151
Eξ (Bochner expectation) 146
EDξ (Doss expectation) 186
E(ξ |H) (conditional expectation) 170
E X (reduced expectation) 161
E(X |H) (conditional expectation) 170
EHX (H-selection expectation) 161
ET X (translative expectation) 163
EV X (Vorob’ev expectation) 177
Lp (p-integrable random elements) 146
n(u) (unit normal vector) 358
P (probability measure) 414
s(·) (Steiner point) 36, 422

C (cone) 394
CS , CS(t) (cone generated by S) 276
E (space) 1
E∗ (dual space) 27, 394
H(F, u) (supporting plane) 421
Hu(t) (hyperplane) 395
H−u (t) (half-space) 395
I (top of lattice) 258
L (lattice) 183, 258
L (poset) 42
Lξ (support of ξ ∈ L) 259
M (locally finite measures) 115
P (subfamily of all probability measures)

124
Q (separant) 53
R (real line) 387
R̄ (extended line) 410
Rd (Euclidean space) 1, 395
Sd−1 (sphere in Rd ) 198, 395

Y (linearising Banach space) 174
Z (integers) 387
Zd (integer grid in Rd ) 114

A (separating class) 19
A0 (pre-separating class) 19
C(L) (convex closed sets with infinite on

L support function) 104
CX (admissible realisations) 282
E (algebra of sets in E) 124
E (paving) 389, 416
F (closed sets) 1, 387
FK

K1,...,Kn
(closed sets hitting K1, . . . , Kn

and missing K ) 5
F ′ (non-empty closed sets) 179, 388
FA (closed sets hitting A) 398
F A (closed sets missing A) 398
G (open sets) 1, 387
G0 (base of topology) 387
Hα (Hausdorff measure) 413
Hd−1 ((d − 1)-dimensional Hausdorff

measure) 115
J (L), J0(L) (increasing functions, sets)

67
K (compact sets) 1, 388
K0 (closures of relatively compact sets

from G0) 20
coKX (convex compact sets containing

FX ) 280
K′ (non-empty compact sets) 388
KG (compact sets hitting G) 403
KF (compact sets missing F) 403
KX (compact sets missing FX ) 244
L (Scott open filters) 42, 258
� (sup-generating family in L) 183
Lx (Lawson duality map) 42
M (subfamily of compact sets) 294
N (counting measures) 106
P (all subsets of E) 9
R (convex ring) 423
R̄ (extended convex ring) 423
V (compact sets with lim inf T (x K ) = 0)

262
T (trapping system) 99
Z (subfamily of F) 100, 174
SH(X) (H-measurable selections) 33
S(ν) (selectionable distributions) 34
S(X) (measurable selections) 26, 146
S p(X) (p-integrable selections) 146
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A (completely alternating) 426
A(D), A∪(D) (completely alternating)

7
A∩(D) (completely ∩-alternating) 7
b (mean width) 422
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ϕ̄ (Carathéodory’s extension) 119
ϕ− (outer extension of ϕ) 19
ϕ∗ (extension of set-function) 417
ϕ̃ (dual functional) 8
ϕ0 (inner extension of ϕ) 19
ΠΛ (Poisson process) 109, 246
Ψ (capacity related to T ) 244
ΨZ (limiting capacity for unions) 263
ρH (Hausdorff metric) 198, 404

ρ1
H (L1-Hausdorff metric) 367

ρ∞H (uniform Hausdorff metric) 367
ρ(x, A) (distance from point to set) 390

σ(·) (generated σ -algebra) 389
σ(L) (σ -algebra on C(L)) 104
σ(L) (σ -algebra on L) 42
τ (stopping time) 311
% (limiting capacity) 271
Υ (non-negative upper semicontinuous

functions) 354
υ (deterministic capacity) 120
υ (weighting function) 296
Υ0 (upper semicontinuous functions with

compact support) 366
Ξλ(x) (set-valued shot-noise) 317
ξX (linearisation of X) 174
ζ (Gaussian function on Sd−1) 214
ζ(G) (hitting process) 97

B (Borel sets) 389
B(F) (Borel σ -algebra in F) 2
Bk (relative compact Borel sets) 389
d (metric in Y) 174
F (σ -algebra) 412
FK (set-indexed filtration) 334
Fn (filtration) 303
Ft (filtration) 325
Fτ (stopping σ -algebra) 326
FX (σ -algebra generated by X) 27
I (family of finite sets) 23
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Fréchet, M. 193
Friel, N. 141, 193
Fristedt, B. 331, 334, 382

Gähler, S. 194
Galambos, J. 241, 242, 265, 266, 268, 283,

285, 299, 376
Gale, J.D. 300
Gao, Y. 36, 137, 140, 379, 380
Gerritse, B. 127, 142
Gerritse, G. 299, 300
Getoor, R.K. 382
Geyer, Ch.J. 384
Ghirardato, P. 139
Ghoussoub, N. 230
Gierz, G. 137, 280
Gihman, I.I. 54, 55, 327, 341
Gil, M.A. 385
Gil, P. 142
Gilboa, I. 125, 139, 142, 143



Name Index 469
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Rényi, A. 91, 301
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binary distance transform 193
Blaschke

expectation 200
selection theorem 406
sum 200

Bochner expectation 146, 156, 186, 188,
192, 415

Bochner integral see Bochner expectation
Boolean model 115, 238, 380
Borel σ -algebra 389, 390
boundary 388
branching process 62
broken line 234, 240
Brownian motion 62
Brunn–Minkowski inequality 192, 200,

238
for random sets 201

Bulinskaya’s theorem 322

c-trap 101
Campbell theorem 110, 318

capacity version 121
Cantor set 62
capacitability theorem 10, 416
capacity 9, 117, 417, 418

2-alternating 132
absolutely continuous 74
C-additive 65, 138, 247
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Choquet see Choquet capacity
completely alternating 9, 420
completely monotone 103
continuity of 418
countably strongly additive 417
dichotomous 76
differentiable 79
indicator 79
max-infinitely divisible 385
maxitive 11, 252

complete alternation 11
upper semicontinuity 11

minitive 272
Newton 252, 296
random see random capacity
regularly varying 270, 300
Riesz 252, 299, 420
strongly subadditive 417
subadditive 420
upper semicontinuous 420
vague convergence 418

capacity functional 4, 7, 10, 22, 70, 94,
130, 132, 244, 344

and hitting time 325
as probability measure 10
complete alternation property 7
conditional 129
continuous in Hausdorff metric 96
equalised 76, 77, 139
extension 9, 98
maxitive 135
monotonicity 4
non-additive 6
of the limit for unions 263
of the union 242
of union-infinite-divisible random set

244
of union-stable random set 248
on finite sets 52, 63, 138, 345
on open sets 40, 44
rotation invariant 50
semicontinuity 4
translation invariant 50, 107

capacity functionals
pointwise convergence 86, 87, 264, 270,

359
uniform convergence 96, 265

Carathéodory’s extension 77, 119, 413
of random capacity 119

cardinality 377
Castaing representation 32, 94, 150, 309,

328
Cauchy distribution 288
Cauchy sequence 390
central limit theorem 239
centroid 193
Chapman–Kolmogorov equation 330
character 236
choice probability 356
choice process 355

capacity functional 356
containment functional 356
Markov property 357
transition probability 357

Choquet
capacitability theorem 416
capacity 416, 420
E -capacity 416, 417

Choquet integral 70, 126, 139
comonotonic additivity 72
derivative of 82
indefinite 73, 75
lower 72
properties 71
upper 72

Choquet theorem 10, 41, 48
harmonic analysis proof 18
measure-theoretic proof 13, 141

Choquet–Kendall–Matheron theorem see
Choquet theorem

class
convergence determining 87, 104, 416
determining 416
pre-separating 19, 112, 270
separating 19, 86, 98, 118, 388

countable 118
closed set-valued function see multifunc-

tion
closing 397
closure 388
coalition 124
compactification 388
compactly uniform integrable sequence

207
completed graph 377
conditional expectation 170

convergence 174
properties 171



Subject Index 477

cone 394
asymptotic 167
full locally convex 398
ordered 395
polar 167

conjugate 342
containment functional 22, 70, 75, 102,

104, 125, 127, 279, 280
on convex compact sets 103
orthogonal sum 128
pointwise convergence 104

continuity family 85
continuity set 19, 340
convergence

in distribution see weak convergence
of minimisers 338
of types 254
strong 394
weak see weak convergence, 394

convergence of sets
lower and upper limits 399
Mosco 401
Painlevé–Kuratowski 400, 410
scalar 402
Wijsman 401

convex cone 156
convex hull 358, 394

closed 394
convex hulls 314

volumes of 301
convex rearrangement 234
convex ring 423

extended 112, 423
covariance function 23

exponential 24
covariance matrix 160
coverage function 23, 55, 134, 176, 177,

243
cumulant 58, 331
curvature 91
curvature measure 424

D-convergence 386
D-topology 361, 386
Debreu expectation 156
decision

Bayesian theory 350
making 311
space 350

decomposable set 148
delta theorem 140
∆-metric 179, 193, 407
Dempster rule of combination 128
Demyanov difference 397
derivative of capacity 80
DH-convergence 361, 385

tightness condition 363
weak 362

DH-distance 361
diameter 390
difference

body 396
set-theoretic 387
symmetric 387

differential inclusion 315
random 315, 380

existence of solution 315
stochastic 316

dilation
by a number 396
by set 397

distance average 180, 189, 190
distance function 27, 88, 179, 401, 405

indicator 179
mean 180
metric 179
signed 179, 180
square 179, 182

distribution selectionable 34, 69
Doss expectation 187, 190

in metric space 186
of bounded random set 187

effective domain 409
Effros σ -algebra 2, 26, 84, 134
elementary renewal theorem 226

for random sets 227, 228, 240
multivariate 226

empirical probability measure 350
energy of measure 420
entropy condition 214
envelope 48, 390, 405

open 390
epiconvergence 337, 370, 383

of averages 348
weak 344, 346, 348, 358, 362

epiderivative 384
epigraph 213, 336, 353, 392
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strict 364
unions of 353

epigraphical sum 364
equilibrium measure 420
ergodic theorem 230, 240

pointwise 230
erosion 397
Euclidean space 1, 395
Euler–Poincaré characteristic 323, 324,

423, 424
evaluation 183
exact programme 236
excursion set 176, 322, 337, 361, 366

lower 392
upper 392

expectation
lower 131
upper 131

expected utility 143
extremal process 313, 419
extreme sub-cone 426
extreme values 241

Fatou’s lemma 158, 159, 165, 192
approximate 167
finite dimensional 167
infinite-dimensional 168

Fell topology 2, 398
base of 399
continuity of measure 418
convergence 399
generated σ -algebra 410
metrisability 399
properties of 399

filter 42
filtration 303

natural 325, 328–330
set-indexed 334

finite-dimensional distributions 52
first passage time 362
fixed point 161, 243
forward recurrence process 326

transition probability 330
Fourier transform 25
Fréchet

expectation 186, 193
mean 184
variance 184, 224

function

asymptotic inverse 429, 432
biconjugate 365
Borel 389
completely alternating 426, 427
completely monotone 334, 426
conjugate 423
continuous 389
convex 422
homogeneous 251, 433
indicator see indicator function
infinitely divisible 427
Lipschitz 391
lower semicontinuous 361, 391
measurable 389
negative definite 426
positive definite 135, 426
positively homogeneous 421
regularly varying 428, 429, 432

multivariate 429, 433
semicontinuous 410
set-valued see multifunction
slowly varying 216, 429, 430
strong incidence 100

random 101
subadditive 421
sublinear 157, 421
support see support function
unimodal 202
upper semicontinuous 353, 366, 391

support of 366
weak incidence 100

random 101
functional

accompanying see capacity functional
additive 346

epigraphical representation 346
alternating of infinite order see

functional, completely alternating
capacity see capacity functional
completely alternating 7, 14, 73
completely monotone 7, 125, 127, 320
concave 9
containment see containment functional
continuous 233, 394
dual 7, 22
inclusion see inclusion functional
increasing 411
infinitely alternating see functional,

completely alternating
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linear 394
continuous 394, 400

Lipschitz 219
maxitive see capacity, maxitive
positively linear 219
proper 346
strictly decreasing 272
strongly subadditive see functional

concave
strongly superadditive see functional

convex
subadditive 6
sublinear 71, 395
superlinear 71, 395
upper semicontinuous 73

functions
comonotonic 72
equi-lower semicontinuous 339, 378

fundamental measurability theorem 26,
114, 326

fundamental selection theorem 32, 328
fuzzy random variable 385
fuzzy set 134

membership function 134

game see non-additive measure
�-convergence 383
gauge function 228
Gaussian process 322
Gaussian random field 323
geometric covariogram 24
germ-grain model 114
graph 409
graphical convergence 370, 386

continuous functionals 377
in distribution 371, 376

growth model 380

H-atom 173
half-space 395

random 103, 292
harmonic analysis 16
Hausdorff dimension 12, 60, 61, 123, 323,

331, 413
Hausdorff distance see Hausdorff metric
Hausdorff measure 115, 123, 358, 413
Hausdorff metric 21, 402, 403

completeness 405
continuity of measure 418

convergence 406
for random sets distributions 35

Hausdorff space 388, 399, 414
Hausdorff–Busemann metric 361, 402
Herer expectation 187, 188, 379
Hilbert space 184, 198, 394
hitting functional 22
hitting probability 140
hitting process 97–100, 141

extension 98
finite-dimensional distributions 101

Hoeffding theorem 160
homothety 396
horizontal integral 142
Hörmander embedding theorem 157, 199
hyperplane 395
hypograph 353, 365, 392
hypotopology 353

inclusion 387
inclusion functional 22, 55, 320

multiple integral of 60
of random open set 63

indicator 3
indicator function 176, 391

first-order stationary 51
inf-vague convergence 383
infimum, measurability of 39
inner extension 19
inner radius 198, 409
inner separability 341
integrable selections 146, 151

decomposability 148
on atomic and non-atomic spaces 151
weak compactness 155

integral see named integrals
integral functional 150
intensity function 109
intensity measure 109, 110, 246, 295
interior 388
intrinsic density 122
intrinsic volume 160, 234, 423, 424

additive extension 424
positive extension 424

inverse image 174, 389
inverse multifunction see multifunction,

inverse of, 409
inversion theorem 429, 431
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for multivariate regular varying functions
432

isometry 394
isoperimetric inequality 203
isotropic rotation 203, 204

K-convergence 226
Kakutani fixed point theorem 320
kernel 252, 420

Riesz 252, 420
Khinchin lemma 254
Komlós theorem 226
Korolyuk’s theorem 121
Krein–Smulian theorem 379
Krickeberg’s decomposition theorem 308,

310
Kudo–Aumann integral 191
Kuratowski measure of non-compactness

41, 391

Laplace exponent 331, 333
Laplace transform 236, 427
large deviation 232, 240

principle 233, 314
theory 127

lattice 42, 183
complete 42
continuous 42
of closed sets 48

law of iterated logarithm 223, 239
Lawson duality 42
LCHS space 1, 389
Lebesgue integral 71
Lebesgue measure 201, 411–413, 423
Legendre–Fenchel transform 423
level set 322
level sum 367
Lévy measure 222, 246, 331, 332
Lévy metric 294
Lévy–Khinchin measure

on a lattice 259, 260
Lévy–Khinchin representation 221
Lévy–Khinchin theorem 239
lexicographical minimum 149
lexicographical order 395
lift zonoid 238
likelihood

function 129, 351
region 129

linear hull 393
linear operator 394
linearisation 175
local time 331
Lorenz curve 240
loss 350
lower expectation 131
lower probability 129
lower semicontinuous function

random 340
Lp-norm 146
Lyapunov’s theorem 152, 153, 191

M2-topology 386
martingale 303

set-indexed 336, 383
martingale in the limit 312
martingale integrand 366, 385
martingale selection 309, 310
max-stable 299
maximum likelihood estimator 351

consistency 352
maximum principle 420
mean distance function 180, 193
mean ergodic theorem 231
mean width 159, 233, 422, 423

expected 160
measurable selection see selection
measure 412

absolutely continuous 412
completely random 221
counting 105, 106, 413

locally finite 105
random 106

Dirac 412
energy of 420
feasible 124
finite 412
finitely additive 191
fuzzy 124
generalised curvature 424
Haar 413
Hausdorff see Hausdorff measure
image of 412
Lebesgue see Lebesgue measure
Lévy–Khinchin 426, 427
locally finite 412
multivalued 164, 165

absolutely continuous 164
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integral with respect to 165
selection of 164
variation of 164

non-additive see non-additive measure
outer 416
potential of 420
Radon 412, 418, 426
semicontinuity of 411
set-valued 412
σ -finite 176, 412
spectral 221
support of 106, 115, 412

measures
vague topology 419

membership function 193
metric 390

Hausdorff see Hausdorff metric
metric entropy 215, 218
minimisation of expectations 350
Minkowski addition see Minkowski sum
Minkowski average 213
Minkowski combination 425
Minkowski difference 397
Minkowski sum 195, 314, 396

closedness 396
operator-normalised 200
strong law of large numbers 199
volume of 240
weighted 156

Mittag–Leffler’s theorem 393
mixed volume 233, 425
Möbius inverse 76
Möbius inversion 25, 136
Mosco convergence 210, 211
Mosco topology 239, 401
multifunction 25, 315, 370, 409

Borel measurable 41
continuous 410

examples of 410
effective domain of 409
Effros measurable 26
graph of 27, 370, 409, 410
homogeneous 288, 319, 430
inverse of 319, 409, 431
P-a.s. semi-differentiable 90
regularly varying 292, 430
semicontinuous 410

examples of 411
strongly measurable 26

weakly measurable 26
multivalued amart 310, 312
multivalued function see multifunction
multivalued martingale 304, 310, 366

as closure of martingale selections 311
Castaing representation 311
convergence 305
integrably bounded 304
Mosco convergence 307
optional sampling theorem see optional

sampling theorem
reversed 379
uniformly integrably bounded 307

multivalued measure 164
multivalued operator

fixed point 320
random 320, 381
with stochastic domain 321, 381

multivalued pramart 312
multivalued quasi-martingale 312
multivalued submartingale 304, 316
multivalued supermartingale 304, 310

convergence 307
in Banach space 308

multivariate distribution
characterisation of 160

multivariate quantile 302
myopic topology 21, 403, 418

convergence 403
properties of 403

n-point coverage probabilities 23
neighbourhood 388
neutral element 425
Newton capacity 123
Neyman–Pearson lemma for capacities

133
Neyman–Pearson test 133
non-additive measure 124, 142

coherent 124
convex 124
core of 124
decomposable 124
dual 124
equalised 124
Jordan decomposition 125
outer 127
weakly symmetric 124

non-closed random set 41
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norm 393
composition 125
total variation 125

norm of set see set, norm of
normal integrand 339, 340, 348, 384

conjugate of 343
inner separable 341
integrable 364
non-negative 350
proper 339, 346, 363
selection expectation 364
sharp 342, 358, 376, 384
subdifferential 343
weak convergence see epiconvergence,

weak, 344
normal integrands

convergence of finite-dimensional
distributions 345

equi-inner separable 345
equi-outer regular 345

normal vector 358
null-array of random sets 269

opening 397
optional sampling theorem

for multivalued martingales 311, 379
order statistic 160
origin 395
outer extension 19

p-function 57
standard 57, 329

parallel set 390
inner 390

partially ordered set 42
paving 389, 416, 417
payoff 124
perimeter 160, 377

expected 160, 203
Pettis integral 192
plane supporting 421
plausibility function 127
point

exposed 197
interior 388

point process 106, 141, 342
marked 110
on K 112
orderly 121

parametric measure 121
simple 106, 107, 109, 121
stationary 106, 317
superposition 300
thinning 109
weak convergence 111

Poisson point process 66, 80, 109, 246,
261, 286, 295, 318, 353, 354, 358, 374,
376

capacity functional 109, 251
on coK 222
stationary 109, 251

Poisson-rescaled random set 252
polar set 423
Polish space 25, 390

of capacities 418
of closed sets 401

poset see partially ordered set
positive convex cone 236
possibility measure 135
potential 420
pramart 379
precapacity 117, 418

extension of 418
prevision 139

coherent 140
probability density function 351
probability generating function 244
probability measure 414

weak convergence 84, 415
probability metric 93, 97, 294

compound 94
homogeneous 296
ideal 296
integral 97
Lévy 93–95
Prokhorov 93
regular 296
simple 94
uniform 94

probability space 1, 146, 414
complete 414

progressive measurability 326
projection 393, 424
projection theorem 415
projective limit 309, 393
projective system 393, 414

exact 414
Prokhorov metric 32, 35
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Prokhorov theorem 35
Prokhorov–Hausdorff metric 35
pseudometric 174

quasi-diffusion 383
quermassintegral 424

radius-vector expectation 182
radius-vector function 105, 182, 276

expected 182
Radon–Nikodym derivative 412

for capacities 73
of multivalued measure 379

Radon–Nikodym property 158, 164, 305
Radon–Nikodym theorem

for capacities 75
for multivalued measures 307

Rȧdström embedding theorem 156, 199
random ball 3, 86, 289, 291
random Borel set 41, 322
random capacity 117, 353

continuity set 117
extension 118
indicator 119, 121
integrable 120
intensity 120
intensity measure of 121
intrinsic density 122
parametric measure of 121
stationary 122
weak convergence 118

random closed set 1, 2, 339
a.s. continuous 56
adapted 334, 335
additive union-stable 256
affine union-stable 254
approximable 30
boundary of 37
closed complement of 37
closed convex hull of 37
concentration function 294
conditional distribution 12
convex see random convex closed set
exchangeable 383
first-order stationary 50
fixed point of see fixed point
g-invariant 49
Hausdorff approximable 154
homogeneous at infinity 256

in extended convex ring 112
in Polish space 27, 40
infinite divisible for unions 242, 373
integrable 151, 364
integrably bounded 150, 199, 305
integrably bounded in Rd 159
intrinsic density 122
isotropic 49, 203
kernel of 105
locally finite 106, 107

stationary on the line 107
marked 141
minimal σ -algebra 27
natural filtration see natural filtration
non-approximable 31
non-trivial 243
norm of 3
P-continuous 55
Pettis integrable 240
Poisson 373
Poisson rescaled 252
quantile 177
quantile of 176
quasi-stationary 51
reduced representation 151, 201
regenerative 330
regular closed 63, 96
self-similar 51, 248, 332
semi-Markov 66, 247
separable 53, 63, 128, 138
simple 30, 154, 156
star-shaped 105
stationary 49, 122, 137, 322
stochastic order 67, 68
strong Markov see strong Markov

random set
surface measure of 115
union-infinitely-divisible see random

closed set, infinite divisible for unions
union-stable see union-stable random

closed set
variance 194
Wijsman approximable 31

random closed sets
a.s. convergence 90, 92
capacity equivalent 62
convergence in probability 92
identically distributed 4
independent 12
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intersection-equivalent 62
Minkowski sum 37
relative compactness of distributions 85
unions 314
weak convergence see weak conver-

gence
random compact set 21, 23, 151, 335

a.s. convergence 91
compound Poisson 222
convergence in probability 93
convex see random convex compact set
covariance function 214
Gaussian 219, 220, 239
Hausdorff approximable 31
isotropic 228
M-infinitely divisible 222
p-stable 220, 239
square integrable 214
truncation 224

random convex closed set 64, 102, 343
convex-stable 281

characterisation of 283
infinitely divisible for convex hulls 279
integrably bounded 157
strictly convex-stable 281

characterisation of 282
unbounded 103

random convex compact set 88, 102, 305
random convex hull 203
random element 93, 146, 174, 414

conditional expectation of 170
expectation see Bochner expectation
Fréchet expectation 184
Gaussian 160
in a cone 237
in semigroup 427

infinitely divisible 427, 428
infinite divisible in a semi-lattice 258
integrable 146, 170
self-decomposable 262, 300
tight sequence 89

random field 381, 383
random fractal set 380
random fuzzy set 386
random grey-scale image 385
random indicator function 42
random interval 328
random matrix 205
random measure 115, 120

counting 121
random open set 63, 319

convex 64
inclusion functional of 63

random polyhedron 90, 358
random rotation 291
random sample

almost sure stability 300
convergence 286, 300

random segment 204
random set

Borel 167
closed see random closed set
discrete 193
graph-measurable 41, 326
open see random open set
optional 328
Poisson 109, 286
T -closed 101

random set-valued function 371
random translation 163
random triangle 3, 289, 291
random upper semicontinuous function

368, 385
dominated convergence 386
integrably bounded 368
max-infinitely divisible 353
max-stable 353
strong law of large numbers 369
strongly integrable 368, 369

random variable 160, 414
expectation of 414
integrable 414
max-stable 241

random vector 90, 146, 415
Gaussian 160
lift zonoid of 205
zonoid of 205

rate function 233, 314
reduced representation 13, 44
reflection 396
regenerative embedding 333
regenerative event 57, 66, 138, 329

avoidance functional 58
instantaneous 58
stable 58
standard 57

relative compact sequence of ε-optimal
points 338
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relaxed programme 236
renewal function 226

containment 227
hitting 229
inclusion 229

residual lifetime process see forward
recurrence process

response function 317
multivalued 317

Rice’s formula 323
rigid motion 395
Robbin’s formula weighted 122
Robbins’ theorem 59, 176

capacity version 120
robust statistics 132
rounding 204

sandwich theorem 71, 395
saturation 389
sausage 325
scalar convergence 378
scheme of series 270
Scott topology 42

second countable 40, 43, 101
second spectral moment 323
selection 26, 94, 130, 145

adapted 316
existence 31
FX -measurable 33, 149
generalised 89
integrable 94, 146, 304

existence 149
properties of 146
set of see integrable selections

Lipschitz 316
Markov 313
of set-valued process 312
stationary 313

selection expectation 94, 139, 151, 156,
157, 184, 188, 199

conditional see conditional expectation
convergence 165
convexity 153
dominated convergence theorem 166,

169
limit of averages 214
monotone convergence 169
of segment 205
reduced 161, 209

selection operator 36, 88
semi-lattice 42, 258
semi-min-stable process 300
semicharacter 16, 425, 427, 428
semigroup 9, 16, 425

idempotent 16, 427, 428
semiring 44
separant 53
separating class 344
sequence m-dependent 375
sequence of random closed sets

relatively stable 275
stable 275

sequence of random variables
relatively stable 275

set
analytic 390, 418
bounded 391, 393
capacitable 416
centrally symmetric 396
closed 387, 388, 391
compact 388
convex 393, 396

closed 393, 394
decomposable 148, 305, 346
increasing 67
inverse 251
irreducible 49
locally finite 106
M-infinitely divisible 196
norm of 393
of fixed points 243
open 387
P-continuous 415
parallel 390

inner 390
perfect 388
quasicompact 389
radius of 407
rectifiable 391
regular closed 28, 388
relatively compact 19, 388, 391
saturated 48, 389
Scott open 42
separating 42
star-shaped 182, 276
stopping see stopping set
support function of see support function
T -closed 99, 100
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totally bounded 390
upper 42, 67
weakly ball-compact 168

set-indexed process 334
set-valued see multivalued
set-valued function see multifunction
set-valued martingale see multivalued

martingale
set-valued process 312, 317, 373

adapted 303
finite-dimensional distributions 362
Gaussian 239
increasing 313, 361
Markov 313, 357
second-order stationary 313
stochastic integral of 380
strictly stationary 313

ergodic theorem 313
subholomorphic 380
union 380

Shapley–Folkman theorem see Shapley–
Folkman–Starr theorem

Shapley–Folkman–Starr theorem 195,
218, 407

shot-noise process 317, 380
Minkowski 317

weak convergence 318
union 317

σ -algebra 389
Borel see Borel σ -algebra
complete 414
completion 327
stopping 335

singleton 161, 421
random 2, 10

convergence 86
Skorohod convergence 369
Skorohod distance 361
Skorohod space 385
slice topology 29, 239
Snell’s optimisation problem 380
space

Banach see Banach space
compact 388, 390
dual 27, 394
Euclidean see Euclidean space
Hausdorff see Hausdorff space
Hilbert see Hilbert space
LCHS 389

locally compact 388, 399
locally compact Hausdorff second

countable 389
locally connected 411
locally convex 393
metric 390, 403

complete 390
Doss-convex 189
of negative curvature 194
separable 390

non-Hausdorff 392
of closed sets 145, 398

topology see topology on F
paved 416
Polish see Polish space
product 387, 392
reflexive 394
second countable 388, 390
separable 388
σ -compact 388
sober 49
Souslin 390
T1 388, 389
T0 388
topological 387

space law 138
spatial median 182
sphere 395, 421

surface area of 413
stack filter 385
Steiner formula 423

local 424
Steiner point 36, 163, 422

generalised 36
step-function random 371

linearly interpolated 375
stochastic control 317
stochastic integral set-valued 315
stochastic optimisation 348, 350, 352
stochastic order 67
stochastic process

Gaussian 318
max-stable 299
semi-min-stable 354, 385
separable 340, 341
with random open domain 319

finite-dimensional distributions 320
stopping set 335
stopping σ -algebra 311, 326
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stopping time 311, 312, 326, 328
optimal 380

strong decomposition property 74
strong law of large numbers

Mosco convergence 210
Painlevé–Kuratowski convergence 209
Wijsman convergence 212

strong law of large numbers for Minkowski
sums 199

strong Markov process
level set 329, 330

strong Markov random set 329, 330
embedding 333
intersection of 333
stable 332, 333
weak convergence 333

structuring element 397
sub-probability measure 10
sub-σ -algebra 161
subdifferential 342, 423
subgradient 423
subordinator 58, 331

occupation measure 332
stable 331, 332

successive differences 5, 7, 68
Sugeno integral 126
sup-derivative 419
sup-generating family 183
sup-integral 97, 419
sup-measure 11, 353, 384, 419, 420

derivative of 81
random 119

sup-vague convergence 383
super-extremal process 354, 385

with max-stable components 355, 356
superstationary sequence 230
support estimation 302
support function 27, 39, 157, 198, 421

covariance 214
Gaussian 219, 239
Lipschitz property 421
subdifferential 423

support set 422, 423
surface area 413
symmetric interval partition 383
symmetric order 139
symmetrisation 396

T -closure 99, 101

tangent cone 37
tessellation 300
three series theorem 225, 240
Tietze extension theorem 381
tight sequence of random sets 207
top of lattice 258
topologies for capacities 418
topology 387

base of 387, 419
decreasing 68
exponential 398
induced 387
narrow see myopic topology, 418
scalar 402
strong 394, 400
sub-base of 387
sup-narrow 419
sup-vague 419
vague 111, 117, 398, 418, 419
weak 159, 394, 400
weak∗ 421

topology on F
Attouch–Wets 402
Fell see Fell topology
Vietoris 398
Wijsman see Wijsman topology

translative expectation 163, 202
translative integral formula 81
trap 100

c-trap 101
trapping space 101
trapping system 99, 100, 141
triangular array 230

subadditive 230
superstationary 230

two series theorem 225
types convergence 254

U -closure 183
U -expectation 184
U-statistic 206, 234
unambiguous event 131
unanimity game 125, 128
uniform convergence 369
uniform integrability 414

terminal 378
uniform metric 294

generalised 296
union-infinite-divisibility 242
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characterisation 244
union-stable random closed set 80, 247,

295, 386
characterisation 248

unit ball, volume of 203
upper expectation 131

symmetric 131
upper level set see excursion set
upper probability 75, 129

regular 131
utility function 321

vague convergence 79
valuation 423
variational system 339
volume 201
von Neumann selection theorem 167
Vorob’ev expectation 177

as minimiser 177
generalisation 178

Vorob’ev median 178

Wald’s formula 240
Wald’s identity 311
weak convergence 84, 86, 169, 371

and Lévy metric 95
of random convex compact sets 104

width function 422
Wiener process 51, 160, 316

zero set 323, 331, 333
Wijsman topology 29, 401

metrisability 401
properties of 401

zonoid 204, 238
zonotope 204, 205
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