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Preface

Zipf’s law is one of the few quantitative reproducible regularities found in eco-
nomics. It states that, for most countries, the size distributions of cities and of
firms (with additional examples found in many other scientific fields) are power
laws with a specific exponent: the number of cities and firms with a size greater
than S is inversely proportional to S. Most explanations start with Gibrat’s law of
proportional growth but need to incorporate additional constraints and ingredients
introducing deviations from it. Here, we present a general theoretical derivation of
Zipf’s law, providing a synthesis and extension of previous approaches. First, we
show that combining Gibrat’s law at all firm levels with random processes of firm’s
births and deaths yield Zipf’s law under a “balance” condition between a firm’s
growth and death rate. We find that Gibrat’s law of proportionate growth does not
need to be strictly satisfied. As long as the volatility of firms’ sizes increase asymp-
totically proportionally to the size of the firm and that the instantaneous growth
rate increases not faster than the volatility, the distribution of firm sizes follows
Zipf’s law. This suggests that the occurrence of very large firms in the distribu-
tion of firm sizes described by Zipf’s law is more a consequence of random growth
than systematic returns: in particular, for large firms, volatility must dominate over
the instantaneous growth rate. We develop the theoretical framework to take into
account (1) time-varying firm creation, (2) firm’s exit resulting from both a lack
of sufficient capital and sudden external shocks, (3) the coupling between firm’s
birth rate and the growth of the value of the population of firms. We predict devi-
ations from Zipf’s law under a variety of circumstances, for instance, when the
balance between the birth rate, the instantaneous growth rate and the death rate
is not fulfilled, providing a framework for identifying the possible origin(s) of the
many reports of deviations from the pure Zipf’s law. Reciprocally, deviations from
Zipf’s law in a given economy provides a diagnostic, suggesting possible policy
corrections. The results obtained here are general and provide an underpinning for
understanding and quantifying Zipf’s law and the power law distribution of sizes
found in many fields.

Nizhni Novgorod, Russia A. Saichev
Lyon & Saint-Etienne, France Y. Malevergne
Zürich, Switzerland D. Sornette
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Chapter 1
Introduction

One of the broadly accepted universal laws of complex systems, particularly relevant
in social sciences and economics, is that proposed by Zipf (1949). Zipf’s law usually
refers to the fact that the probability P (s) = Pr{S > s} that the value S of some
stochastic variable, usually a size or frequency, is greater than s, decays with the
growth of s as P (s) ∼ s−1. This in turn means that the probability density functions
p(s) exhibits the power law dependence

p(s) ∼ 1/s1+m with m = 1. (1.1)

Perhaps the distribution most studied from the perspective of Zipf’s law is that of
firm sizes, where size is proxied by sales, income, number of employees, or total
assets. Many studies have confirmed the validity of Zipf’s law for firm sizes exist-
ing at current time t and estimated with these different measures (Simon and Bonini,
1958; Ijri and Simon, 1977; Sutton, 1997; Axtell, 2001; Okuyama et al., 1999;
Gaffeo et al., 2003; Aoyama et al., 2004; Fujiwara et al., 2004a,b; Takayasu et al.,
2008).

Initially formulated as a rank-frequency relationship quantifying the relative
commonness of words in natural languages (Zipf, 1949), Zipf himself recognized
in his book the general relevance to this law to the distribution of city sizes,
among others. Many works have since shown that Zipf’s law indeed accounts
well for the distribution of city sizes (see for a review Gabaix, 1999 and refer-
ences therein), as well as firm sizes all over the world, as just mentioned. Zipf’s
law has also been found in Web access statistics and Internet traffic characteris-
tics (Glassman, 1994; Nielsen, 1997; Adamic and Huberman, 2000; Barabasi and
Albert, 2002; and with deviations Breslau et al., 1999), in inbound degree dis-
tributions over Web pages (Kong et al., 2008), in weekend gross per theater for
a movie scaled by the average weekend gross over its theatrical lifespan (Sinha
and Pan, 2006), in bibliometrics, informetrics, scientometrics, and library science
(Adamic and Huberman, 2002, and references therein) and in the distribution of
incoming links to packages found in different Linux open source software releases
(Maillart et al., 2008). Sinha and Pan (2006) provides a rather exhaustive review
of the many power laws found in the distribution of human activities. There are
also suggestions for applications to other physical and biological, sociological and

A. Saichev et al., Theory of Zipf’s Law and Beyond,
Lecture Notes in Economics and Mathematical Systems 632,
DOI 10.1007/978-3-642-02946-2 1, c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1.1 Illustration of Zipf’s law for city sizes (upper left panel, reproduced from Ioannides and
Gabaix, 2003), for firm sizes (upper right panel, reproduced from Axtell, 2001), for the number of
Internet links pointing to some website (lower left panel, reproduced from Adamic and Huberman,
2002) and for the number of incoming links to packages found in different Linux open source
software releases (lower right panel, reproduced from Maillart et al., 2008)

financial market processes. For instance, using data from gene expression databases
on various organisms and tissues, including yeast, nematodes, human normal and
cancer tissues, and embryonic stem cells, Furusawa and Kaneko (2003) found that
the abundances of expressed genes obey Zipf’s law. See the list of references in
http://linkage.rockefeller.edu/wli/zipf/index ru.html. Figure 1.1 illustrates several
cases where Zipf’s law holds for different fields of social and natural sciences.

We should point out that there are some dissenting notes. For instance, several
works have suggested that, for the distribution of firm’s sizes, the log-normal distri-
bution may actually be a better model than Zipf’s law (Stanley et al., 1995; Cabral
and Mata, 2003; Kaizoji et al., 2006; Duchin and Levy, 2008; Schwarzkopf and
Farmer, 2008). The issue is confounding because often the authors are not always
speaking of the same thing. Stanley et al. (1995)’s result has now been understood
as due to an incomplete database, missing most of the small firms and hence bias-
ing the distribution downward towards the log-normal shape for small firms (Axtell,
2001). Axtell (2001) has shown that firm’ sizes measured by the number of employ-
ees, by the total sales or by the economic capital (debt + equity) are all consistently

http://linkage.rockefeller.edu/wli/zipf/index_ru.html


1 Introduction 3

obeying Zipf’s law. From an economic view point, it can indeed be expected that
these three firm characteristics are globally proportional to each other in a same
industry branch, or for a same business model, so that if Zipf’s law holds for one of
them, it should hold for the others. On the other hand, equity provides only a part
of the economic capital of a firm, which depends on the financing strategies chosen
by the firm, in addition to the impact of the stock market fluctuations. It is not clear
that the financing strategies are stationary as a function of time, except perhaps for
mature firms with no more any innovation or M&A (mergers and acquisitions) for
which the financial structure of the firm (its debt/equity ratio) may be approximately
constant. Therefore, the fact that Zipf’s law may not be the best model for the dis-
tribution of equity sizes (Duchin and Levy, 2008) is not surprising. Another issue
is the possible slow convergence of the distribution to its expected asymptotic long-
time shape (Schwarzkopf and Farmer, 2008). Difference between countries due to
the presence of specific financial constraints may be also an issue (Cabral and Mata,
2003).

Kitov (2009) points out that the significant differences in the evolution of firm
size distribution for various industries in the United States puts important constraints
on the modelling of firm growth. This line of thought opens the road toward linking
asset pricing models, investment strategies and firm growth processes. In this spirit,
Malevergne and Sornette (2007) have discovered a new endogenous pricing fac-
tor resulting from the heavy-tailed distribution of firm sizes, which has empirically
a similar explanatory power as the phenomenological Fama–French three-factor
model (Fama and French, 1993, 1995).

Employing Census 2000 data to create the most extensive and thorough investi-
gation to date of the distribution of city sizes in the USA, Eeckhout (2004) reported
that the empirical distribution follows a log-normal distribution rather than Zipf’s
law. Reanalysing this data, Levy (2009) confirms that the log-normal distribution
indeed provides an excellent fit to the empirical data for 99.4% of the size range.
However, for the top 0.6% of largest cities, the empirical distribution is dramati-
cally different from the log-normal, and follows a power law. Levy notes that, while
this top part of the distribution involves only 0.6% of the cities, it is extremely
important as it accounts for more than 30% of the sample population. This type
of hybrid log-normal-power-law distribution will find a natural explanation in the
framework that we develop in the following chapters, and in particular in Chap. 6.
The debate is however not closed as Eeckhout (2009) argues that the deviations
from the log-normal model identified visually by Levy (2009) can be expected
from the confidence bands generated by the Lilliefors test with 5% significance
level. The problem however is that Eeckhout (2009)’s argument is based on a very
weak test: the Lilliefors test, an adaptation of Kolmogorov–Smirnov test, is inade-
quate to identify deviations that occur in the tail, since its statistics is constructed
from the maximum discrepancy between the log-normal and the empirical distri-
bution. Anderson–Darling tests, for instance, are more adapted to the problem of
distinguishing distributions in their tails (Malevergne et al., 2005; Malevergne and
Sornette, 2006). In a forthcoming paper, Malevergne et al. (2009) develop a more
powerful test specifically designed to compare the log-normal family to the power
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law family, which confirms quantitatively the intuition of Levy (2009). In order to
address the issues associated with the definition of a city (administrative or geo-
graphic), Rozenfeld et al. (2009) employ a recently proposed clustering algorithm
Rozenfeld et al. (2008) to construct cities from the bottom-up, without administra-
tive data, but by using geographical proximity. They find that Zipf’s law holds for
cities above 10,000 inhabitants in the USA, and above 1,000 inhabitants in the UK.

Among the many more or less successful explanations proposed to understand
the origin of Zipf’s law, one of the most promising seems to be the explanation
by Gabaix (1999) and Ioannides and Gabaix (2003) formulated in the context of
the distribution of city sizes, based on Gibrat’s law. Gabaix (1999) assumed that
each city exhibits a stochastic growth rate distributed independently from its present
size. Gibrat’s law for city growth (together with some deviations of Gibrat’s law for
small sizes), normalized to the whole population of a given country, then leads to
distributions of city sizes very close to Zipf’s law. In general terms, Gibrat’s law
amounts to assume a stochastic multiplicative process. Such processes are found in
many economic as well as natural systems (Sornette, 2006, and references therein).
As a recent illustration, Clauset and Erwin (2006) explain in this way (with the
inclusion of a mechanism involving size-dependent long-term extinction risks) the
evolution and distribution of biological species body sizes.

However, the derivation of Zipf’s law from the pure Gibrat’s rule suffer from a
few problems. First, the exact scale-independent Gibrat’s law leads to a log-normal
distribution of sizes, which is not a power law and only slowly approaches to a
power law in the limit of large log-variance (and some other conditions), becoming
at the same time more and more degenerate. Some additional assumptions are there-
fore needed in order to produce the stable non-degenerate Zipf’s law. In particular,
Gabaix (1999) assumed that, for cities of small sizes, there are some exogenous fac-
tors preventing further decaying of their population (see also Levy and Solomon,
1996; Malcai et al., 1999). More appropriate to social and economic phenomena is
to allow for eliminating cities or firms as they reach a small size. An example is the
transition from city to rank of village as the size goes below some threshold.

More generally, it is important to take into account the continuous process with
births and deaths, which plays a central role at time scales as short as a few years.
This is in contrast with Gabaix’s approach for instance based on the supposition,
simplifying considerably the theoretical modeling, that all cities originate at the
same instant t0, and then only grow stochastically, obeying the balanced Gibrat’s
law mentioned above. This supposition is clearly falsified by empirical evidence, as
discussed later in the book.

A goal of this book is to demonstrate that birth as well as death processes are
especially important to understand the economic foundation of Zipf’s law and its
robustness. Yamasaki et al. (2006) have shown that a model of proportional growth
of the existing firms in the presence of a steady influx of new firms leads to Zipf’s
law truncated by an exponential taper, without the need to modify Gibrat’s law for
small sizes. The exponential cut-off results from the finite life of the economy. Our
general analysis encompasses these results and put them in a larger perspective.
Expressed in the context of an economy of firms, we will consider two different
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mechanisms for the exit of a firm: (1) when the firm total asset value becomes
smaller than a given minimum threshold (which can vary with time and with coun-
tries) and (2) when an exogenous shock occurs, modeling for instance operational
risks, independently of the size of the firm. Of course, these two mechanisms have
their counterparts in the different fields of application where Zipf’s law is discussed.

The following chapters are built on the realistic description of the behavior of the
asset value of firms (which is more dynamic than the formation of cities), according
to which the births of firms occur according to a random point process characterized
by some intensity ν(t). Jointly, one should take into account the well-documented
evidence that firms die, for instance when their size goes under some low asset value
level. It turns out that taking into account the random flow of firm births and deaths,
in combination with Gibrat’s law, leads to the pure and non-degenerate Zipf’s law
under a balance condition, without the need for the rather artificial modification
of Zipf’s law for small sizes. (We note that the fact that deviation of Gibrat’s law
has been documented for small firms is another issue, as the documented devia-
tions do not necessarily obey the assumptions needed in Gabaix’s derivation.) As a
bonus, the approach in terms of the dynamics of birth–death together with stochastic
growth, that we develop here, leads to specific predictions of the conditions under
which deviations from Zipf’s law occur, which help rationalize the empirical evi-
dence documented in the literature. The conditions involve either deviations from
Gibrat’s law in the stochastic growth process of firms or the existence of an unbal-
anced growth or decay of the birth intensity ν(t) of new firms, as we explain in
details below.

In the theory developed in the following chapters, we also take into account that
the intensity of firm’s births may increase exponentially, that the sizes of entrant
firms and the minimum viable size may grow exponentially with time with addi-
tional random fluctuations, hence generalizing Blank and Solomon (2000). Putting
all elements and results of our analyses together, we conclude that the explanation
for the generic empirical evidence that the exponentm is close to 1 (Zipf’s law) is
likely due to the weak dependence ofm on the different parameters of the problem.
This renders unnecessary the question for why the parameters would combine to
obey exactly the balance condition. The closeness of the exponentm to 1 for a large
range of parameters is quantified for instance in Figs. 7.5 and 8.1.

For transparency of derivations and for convenience of analytic calculations, we
use a continuous version of Gibrat’s law, allowing us to benefit from the properties
of the Wiener process and the mathematical framework of Kolmogorov’s diffusion
equations. We unearth new properties associated with the stochastic behavior of
firm assets. We show that the death of firms at some low value level as well as
the possibility of significant deviations from Gibrat’s law do not affect the asymp-
totic validity of Zipf’s law in the limit of large firm sizes. By analyzing a large
class of diffusion processes modeling the behavior of firm assets with growth rates
very different from Gibrat’s condition, we find general conditions for the validity
of Zipf’s law. Specifically, we have discovered stochastic growth models with non-
Gibrat properties, leading to Zipf’s and related power laws for the current density of
firm’s asset values.
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Our book does not cover the more economically based theories, in the spirit for
instance of Lucas (1978), which developed a theory of size distribution of business
firms based on an underlying distribution of managerial talents and the competi-
tive process of allocation of productive factors. Similarly, we do not expand on the
general equilibrium model of the distribution of firm sizes proposed by Luttmer
(2007), in terms of primitives such as entry and fixed costs, and the ease with which
entrant firms can imitate incumbent firms. Let us also mention Rossi-Hansberg
and Wright (2007a) which develops a general equilibrium theory of economic
growth in an urban environment. In this theory, variation in the urban structure
through the growth, birth, and death of cities is the margin that eliminates local
increasing returns to yield constant returns to scale in the aggregate. They show
that scale-independent growth for a finite number of industries, combined with an
empirically-based form of entry and exit and a lower bound for establishment sizes
that converges to zero, is sufficient to generate an invariant distribution that satisfies
Zipf’s law. Rossi-Hansberg and Wright (2007b) present a theory of the establish-
ment size dynamics based on the accumulation of industry-specific human capital
that simultaneously rationalizes the economy-wide facts on establishment growth
rates, exit rates, and size distributions. Using a simple model of market share dynam-
ics with bounded rational consumers and firms interacting with each other, Yanagita
and Onozaki (2008) find that, in an oligopolistic phase associated with intermediate
greediness of agents, the market-share distribution of firms follows Zipf’s law and
the growth-rate distribution of firms follows Gibrat’s law.

The book is organized as follows. Chapter 2 presents the continuous version
of Gibrat’s law and some peculiarities of the stochastic behavior of the geometric
Brownian motion of firm’s asset values, resulting from Gibrat’s law.

Chapter 3 describes the proposed model for the current density of firm’s asset
values, taking into account the random flow of the birth of firms. We show that, if
some natural balance condition holds, while the intensity of firms is independent of
time (ν = const.), then the exact Zipf’s law holds true.

Amazingly, despite the relevance of Gibrat’s law and the corresponding geomet-
ric Brownian motion in a wide range of physical, biological, sociological and other
applications, many researchers do not make use of many of the interesting proper-
ties exhibited by realizations of the geometric Brownian motion, in order to derive
detailed explanations of Zipf’s and related power laws. Thus, in Chap. 4, we gather
useful properties of realizations of the geometric Brownian motion, which play a
significant role for the understanding of the roots and conditions of the validity of
Zipf’s law.

Chapter 5 discusses in detail the influence on the validity of Zipf’s law of the
occurrence of the death of firms when their value falls below some low level. In
Chap. 6, we derive an equation for the steady-state density of firm asset values,
which enables us to explore in detail the consequences of deviations from Gibrat’s
law at moderate asset values on the validity of Zipf’s law at higher asset values.

Chapter 7 is devoted to discussing the conditions for the existence of Zipf’s
law and the circumstances under which deviations from it occur, when taking into
account the possibility for sudden death of firms occurring even for large sizes.
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Chapter 8 provides the most general treatment taking into account time dependence
of birth rates, sizes at birth, and minimum firm sizes. Chapters 7 and 8 show that,
with all these additional ingredients, Zipf’s law holds if a generalized balance condi-
tion is valid. In particular, we discuss the robustness of Zipf’s law to variations of the
mean birth rate and of the rate of growth of the mean asset value of particular firms.
Moreover, we find that Zipf’s law is “attracting” the power laws found in absence
of the strict validity of the balance condition: as the volatility of the growth of firms
increases, the power law distribution of firm’s sizes becomes closer to Zipf’s law,
and the later is obtained asymptotically for very large volatilities for all values of
the other parameters.

All previous chapters have emphasized the dynamics of the statistical average
of various firm properties in the limit where the number of firms in the economy
grows without bounds. Chapter 9 asks if the results described in previous chapters
can be used for the description of a single realization of a finite economy, an issue
of great importance for the application of our theory to empirical data. For this, we
derive the statistics of the number of firms, the fluctuation characteristics of the size
of the global economy and the size of fluctuations decorating the asymptotic Zipf’s
law for finite economies. We provide a simple estimation of the expected statistical
deviations from Zipf’s law and its range of validity for realistic parameters. This
provides a benchmark for assessing the range of validity of Zipf’s law in empirical
data.

Chapter 10 concludes first by stressing the importance of the balance conditions
for Zipf’s law to hold. Then, we provide the nucleus of what could be a more com-
plete mathematical theory of firm sizes, based on taking into account in addition
the mergers between firms as well as it symmetric, the creation of spin-off firms
from parents which outsource a part of their existing business as separate units.
These economic events can be modeled by using the mathematics of coagulation-
fragmentation processes, which are briefly described here in the context of the
dynamics of firms. We provide only a preliminary introduction to encourage future
works to tackle these complex and rich issues.

For clarity, consistence of language and conciseness, we will discuss the origin
and conditions of the validity of Zipf’s law using the terminology of financial mar-
kets and referring to the density of the firm’s asset values. We use firms at the entities
whose size distributions are to be explained. It should be noted, however, that most
of the relations discussed in this book, especially the intimate connection between
Zipf’s and Gibrat’s laws, underlie Zipf’s law in diverse scientific areas. The same
models and variations thereof can be straightforwardly applied to any of the other
domains of application.



Chapter 2
Continuous Gibrat’s Law and Gabaix’s
Derivation of Zipf’s Law

In this chapter, we describe in detail the continuous version of Gibrat’s law and
explain its close connection with the geometric Brownian motion (GBM), underly-
ing any scale independent stochastic process. Due to the importance of the GBM
for many economical, physical, biological and sociological applications, we focus
our attention on the basic key properties of GBM. Some more subtle statistical
properties of the GBM necessary for a deep understanding of the behavior of its
realizations and, ultimately, the corresponding power distributions, are discussed
in the following chapters. Although the GBM adequately simulates stochastic pro-
cesses occurring in various scientific fields, here and for the remaining of the book,
we use the terminology of firm’s asset values.

2.1 Definition of Continuous Gibrat’s Law

Let S(t) be the current asset value of some given firm, established at the instant
t = 0. The corresponding growth rate of the firm’s asset value within the time
window [t, t+ Δ] is equal, by definition, to the ratio

R(t,Δ) :=
S(t+ Δ) − S(t)

S(t)
, t ≥ 0, Δ > 0. (2.1)

According to Gibrat’s law, the growth rate R(t,Δ) of the firm’s asset value is inde-
pendent of the asset value S(t). Thus, if a given firm was born at the instant t = 0,
then at the time t = nΔ, where n is an arbitrary positive integer, one may represent
the firm’s asset value as the product of n independent factors

S(nΔ) = s0

n−1∏

k=0

[1 +R(kΔ,Δ)] , (2.2)

where s0 > 0 is the firm’s initial asset value. Correspondingly, the logarithm of the
current asset value is equal to the sum of the statistically independent summands

A. Saichev et al., Theory of Zipf’s Law and Beyond,
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Y (nΔ) := lnS(nΔ) − ln s0 =
n−1∑

k=0

r(kΔ), (2.3)

where
r(kΔ) := ln [1 +R(kΔ,Δ)] . (2.4)

In what follows, we will suppose, mostly for simplicity, that the sequence
{r(kΔ)}k∈N is statistically homogeneous in the sense that {r(kΔ)}k∈N are iden-
tically independently distributed (i.i.d.) random variables, and such that their mean
and variance are finite

E[r(Δ)] <∞, E[r(Δ)2] <∞. (2.5)

There are two interpretations of the above relations, the purely mathematical and
the “real life” ones. The former implies that elements of the sequence {r(kΔ)}k∈N

are i.i.d. for any, even infinitesimal, time step Δ. This means in turn that, for any
t > 0, Y (t) is a Wiener process with drift, which can thus be written as

Y (t) := Y (t, c, b) = ct+ bW (t), (2.6)

whereW (t) is a standard Wiener process. We recall that

Definition 2.1.1. The stochastic process {W (t), t ≥ 0} is a standard Wiener
process starting from 0 on the probability space (Ω,F ,P) if:

1. P(W (0) = 0) = 1
2. ∀ 0 ≤ s ≤ t, the random variableW (t) −W (s) follows the normal distribution

with mean 0 and variance t− s
3. ∀ 0 = t0 < t1 < · · · < tp, the random variables (W (tk) −W (tk−1), 1 ≤ k ≤ p)

are independent

The coeffcients c and b in (2.6) respectively denote the drift and the intensity of
the stochastic component of the behavior of the logarithm of the firm’s asset value.
They satisfy the relations

cΔ = E[Y (t+ Δ)] − E[Y (t)], b2Δ = Var[Y (t+ Δ) − Y (t)]. (2.7)

In the “real life” interpretation, relation (2.7) is valid only asymptotically for
Δ � Δc, where Δc is some characteristic time scale of the random behavior of the
firm’s asset value. In this case, equality (2.6) is only asymptotically true, due to the
Central Limit Theorem, for large enough t � Δc. We will suppose that t is large
enough, so that the relation (2.6) holds true. Correspondingly, Y (t, c, b) defined by
(2.6) is a Wiener process with drift, whose pdf is Gaussian and given by

φ(y; t) :=
1√

2πb2t
exp

(
− (y − ct)2

2b2t

)
. (2.8)
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2.2 Geometric Brownian Motion

It follows from the above reasoning that, in the framework of the continuous Gibrat’s
law, the logarithm of the firm’s current asset value, normalized by the initial value,
S(t)/s0, is a Wiener process with drift (2.6), so that S(t) is proportional to the
exponential of the Wiener process with drift

S(t) = s0e
ct+bW (t). (2.9)

Note also that (2.9) explicitly expresses the scale invariance of the stochastic
behavior of the firm’s asset value. Namely

S(t) = s0X(t, c, b), (2.10)

where the geometric Brownian motion (hereafter GBM)

X(t, c, b) := eY (t,c,b) = ect+bW (t) (2.11)

does not depend on the initial asset value s0. This scale invariance is a direct
consequence of Gibrat’s law of proportional growth.

An alternative and maybe more transparent explanation of the relation between
Gibrat’s law and the geometric Brownian motion can be obtained by considering
the stochastic differential equation (SDE) solved by the GBM. The Wiener process
with drift Y (t) given by (2.6) is solution to

dY (t) = c dt+ b dW (t). (2.12)

Ito calculus allows us to derive the SDE solved by the GBM S(t):

dS(t) = a · S(t) dt+ b · S(t) dW (t), (2.13)

where

a := c+
b2

2
(2.14)

denotes the expected growth rate of a single firm. It clearly appears that the growth
rate

R(t, dt) =
dS(t)
S(t)

= a dt+ b dW (t), (2.15)

is independent of the current firm size, as stated by Gibrat’s law.
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2.3 Self-Similar Properties of the Geometric Brownian Motion

One can represent the GBM in a form convenient for analytic calculations

X(t, c, b) = χ(t/tb, λ), (2.16)

where
χ(τ, λ) := eλτ+ω(τ) (2.17)

is the GBM expressed in terms of the dimensionless argument τ :

τ := t/tb, tb := 2/b2, (2.18)

defining tb as a characteristic time associated with the volatility of the firm asset
values. Here, λ is also a dimensionless parameter

λ := ctb = 2c/b2, (2.19)

while ω(τ) is the Wiener process in the variable τ , such that

E[ω(τ)] = 0, E[ω2(τ)] = 2τ. (2.20)

Equivalently, ω(τ) law=
√

2W (τ). The Wiener process possesses the following self-
similar (fractal) property

ξω(τ) law= ω(ξ2τ), (2.21)

where, here and below, the symbol
law= expresses the statistical equivalence, i.e.,

equality in law. Accordingly, the GBM χ(τ, λ) obeys the following statistical
equivalence relation

χ(τ, λ) law= χ1/λ(λ2τ, 1). (2.22)

This leads, in particular, to the following inverse relation, which is useful in what
follows

χ(τ, λ) law= χ−1(τ,−λ) ⇐⇒ X(t, c, b) law= X−1(t,−c, b). (2.23)

2.4 Time Reversible Geometric Brownian Motion

We will call the GBM X(t, c, b) defined by (2.11) time reversible if the growth rate
R(t,Δ) of asset values (2.1) possesses the same statistical properties both forwards
and backwards in time. Specifically,

Definition 2.4.1. The GBM S(t) is a time reversible GBM if the growth rate
R(t,Δ) defined by (2.1) forwards in time is statistically equivalent to the growth
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rate backwards in time, defined by

R−(t,Δ) :=
S(t) − S(t+ Δ)
S(t+ Δ)

. (2.24)

Obviously, a necessary and sufficient condition of time reversibility of the diffusion
process S(t) given by (2.10)–(2.11) is

c = 0 ⇐⇒ λ = 0. (2.25)

This condition separates the whole family of GBM diffusion processes into two
qualitatively different sub-families. Namely, there are stochastically growing (c > 0)
and stochastically decaying (c < 0) GBMs. The precise sense of the above terminol-
ogy will become clearer when we will discuss in detail the probabilistic properties of
realizations of GBM (see Chap. 4). Here we note only that the two sub-families gen-
erate qualitatively different stochastic phenomena1 which, nevertheless, give both
birth to power law distributions.

2.5 Balance Condition

In Gabaix (1999)’s explanation of Zipf’s law, in addition to Gibrat’s law, a nor-
malization condition plays a crucial role. We reformulate it in a somewhat different
form, appropriate for our following derivations. Let there be N firms at the initial
instant t = 0, whose asset values are equal to s0i, i = 1, . . . , N , so that the initial
overall asset value Υ0 reads

Υ0 =
N∑

i=1

s0i. (2.26)

Suppose that the stochastic behavior of each firm’s asset value obeys the continuous
Gibrat’s law, leading to the following expression of the size of firm i [according to
(2.10)]

Si(t) = s0iXi(t), (2.27)

where {Xi(t)} are statistically equivalent GBMs, which may be but do not need to
be independent. Correspondingly, the current mean overall asset value is the sum of
the mean asset value of each firm

Υ (t) =
N∑

i=1

E[Si(t)] = Υ0E[X(t, c, b)], (2.28)

1 For example c < 0 is inherent to the stochastic behavior of firm’s asset values, while c > 0 is
typical of a number of genera and their growth, as described by models of biological evolution.
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where E[X(t, c, b)] is the mean of the GBM, simulating the stochastic behavior of
the asset value of any firm. It follows from the statistical properties of the Wiener
process that the moment of order n of the GBM is equal to

E[Xn(t)] = exp
(
nct+

n2b2

2
t

)
. (2.29)

Thus, the mean of the current overall asset value is

Υ (t) = Υ0e
at. (2.30)

It justifies the denomination of expected growth rate given to the coefficient a
defined by (2.14).

Gabaix (1999) introduced the normalization condition, which demands that the
mean of the overall asset value does not depend on time. At face value, this condi-
tion describes a stationary economy. Because real economies grow (at least at times
without significant wars or crises in the western world), this condition needs to be
generalized with a change of frame growing with the global economy.

Let us first discuss the simple case where the economy is stationary. We will call
this condition the balance condition. Mathematically, it means that

Definition 2.5.1. In Gabaix (1999)’s model, the economy follows a balance growth
path if its expected growth rate equals zero: a = 0.

This condition is obviously equivalent to c = − b2

2 , or λ = −1 [where λ is defined
in (2.19)] and ensures that

Υ (t) = Υ0 = const. (2.31)

One can explain the balance condition as a consequence of some kind of equal
opportunities (in a mean sense) for all firms established at the same time t0 (above,
we have chosen for convenience of analysis t0 = 0).

Note that the balanced GBM, in the sense of Definition 2.5.1, is stochastically
decaying since c < 0. Roughly speaking, due to the stochastic decay of the bal-
anced asset value S(t), after some time only a few firms among those established
simultaneously still keep a non-vanishingly small size. We will return to discussing
this dramatic peculiarity of firm’s size under the balance condition first in Sect. 2.7
and then in more details in Chap. 5. It is worthwhile emphasizing additionally that,
in some unstable growing or slumping economic era, where the overall asset value
might exponentially grow, decay or change periodically, the balance condition might
be violated.

2.6 Log-Normal Distribution

Similarly to the purpose of Gabaix (1999)’s paper, we intend to derive Zipf’s law
based on the continuous Gibrat’s law and the balance condition. Firstly, in order
to better reveal the hidden assumptions underlying Zipf’s law, we point out some
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statistical properties of the GBM defined by (2.11) and describe the stochastic
behavior of some given firm’s asset value. Simple analytical calculations show that
the pdf of the GBM X(t, c, b) is log-normal

ψ(x; τ) :=
1

2
√
πτx

exp
(
− (lnx− λτ)2

4τ

)
. (2.32)

The log-normal distribution can be shown to be asymptotic to a power law for
intermediate values of x in the following sense. We rewrite equality (2.32) in the
form

ψ(x; τ) = ψ0(τ)x−1−ζ(x,τ), (2.33)

where

ψ0(τ) :=
1

2
√
πτ

exp
(
−λ

2

4
τ

)
(2.34)

and

ζ(x, τ) :=
lnx
4τ

− λ

2
. (2.35)

If the second term of the r.h.s. of (2.35) prevails over the first term, i.e., if

τ � τp(x), τp(x) :=
1
2

∣∣∣∣
lnx
λ

∣∣∣∣ , (2.36)

then one can neglect the first term and replace the log-normal distribution (2.32) by
the power law

ψ(x; τ) � ψ0(τ)xλ/2−1. (2.37)

In particular, if the balance condition is valid (i.e., λ = −1), then we have

ψ(x; τ) ∼ x−3/2. (2.38)

Thus, when the balance condition holds for the GBM X(t, c, b), the distribution
of firm sizes is very well approximated at long times by a power law distribution,
but the exponent m = 1/2 is different from the value m = 1 required for Zipf’s
law (1.1) to hold. Figure 2.1 shows the log-log plot of the log-normal distribution
(2.32), illustrating the existence of the asymptotic power law (2.38) for intermediate
sizes x’s. As τ increases, the inequality in (2.36) is better and better verified and
Fig. 2.1 indeed shows that the log-normal distribution (2.32) is better and better
approximated by the power law (2.38). We stress in particular the very large range
(number of decades) over which this asymptotic correspondence can hold.

Expression (2.37) shows that Zipf’s law is obtained in this framework for the
special unbalanced case λ = −2 for which the log-normal distribution (2.32) does
have Zipf’s law asymptotics ψ ∼ x−2. This is one of the several mechanisms found
in the present book for Zipf’s law. We do not emphasize it because it requires a
special tuning of the parameter λ to a value which is not economically realistic

insofar as it yields an exponentially decaying overall asset value: Υ (t) = Υ0e
− b2

2 t.
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Fig. 2.1 Log-log plot of the log-normal distribution (2.32). From top to bottom τ = 20, 50, 100.
The corresponding straight lines indicate a pure power law ∼x−3/2

2.7 Gabaix’s Steady-State Distribution

The previous subsection has shown that Gibrat’s law and the balance condition are
not sufficient to obtain Zipf’s law in general. Thus, in order to get Zipf’s law, one
needs some additional key supposition. One possible assumption was suggested by
Gabaix (1999), which involves breaking Gibrat’s law below some small threshold
smin in order to prevent cities/firms from becoming too small.

To illustrate more clearly the spirit of Gabaix’s mechanism to prevent cities/firms
from becoming too small, we provide a detailed mathematical explanation. Let S(t)
be some arbitrary diffusion process, whose pdf f(s; t) is the solution to the diffusion
equation

∂f(s; t)
∂t

+
∂[a(s)f(s; t)]

∂s
=

1
2
∂2[b2(s)f(s; t)]

∂s2
(2.39)

satisfying some initial condition that reflects the statistical properties of the diffusion
process S(t) at the initial instant t = 0. If the value of S(t) at t = 0 is known and is
equal to s0, then the initial condition takes the singular form

f(s; 0) = δ(s− s0), (2.40)

where δ(s− s0) denotes Dirac’s unit mass at s0.
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In the case of GBMs (2.10), we have

a(s) = a · s , b(s) = b · s, (2.41)

where the factor a is defined by equality (2.14). The linear dependence of a(s)
and b(s) as a function of the size s is nothing but a rephrasing of Gibrat’s law of
proportional growth. If the balance condition a = 0 holds, then (2.39) reduces to
the form

∂f(s; t)
∂t

=
b2

2
∂2[s2f(s; t)]

∂s2
. (2.42)

Using arguments similar to those which led us to the power laws (2.37) and (2.38),
here gives analogously to (2.38)

f(s; t) ∼ s−3/2 at large times. (2.43)

Accordingly, as already mentioned, to obtain Zipf’s law for the balanced case,
Gabaix was forced to break Gibrat’s law at some small level smin > 0, to prevent
cities from becoming too small. We will not reproduce here the details of Gabaix’s
specification on how cities are prevented from becoming too small. Instead, we
propose another more mathematically convenient procedure, which reproduces
Gabaix’s results that Zipf’s law is recovered asymptotically for large sizes s. Our
specification consists in replacing the coefficient b(s) = b · s in (2.42) by

b(s) = b ·
√
s2 + s2min, smin > 0, (2.44)

so that (2.42) is replaced by

∂f(s; t)
∂t

=
b2

2
∂2[(s2 + s2min)f(s; t)]

∂s2
, (2.45)

and we supplement it with the reflection condition

∂f(s; t)
∂s

∣∣∣∣
s=0

= 0, t > 0. (2.46)

The characteristic scale smin violates Gibrat’s law, which remains valid only asymp-
totically for s� smin for which expression (2.44) reduces to the second equation in
(2.41). Expression (2.44) and condition (2.46) embody two different mechanisms.
The former expresses that the random relative changes of sizes of small cities/firms
become more intensive than predicted by Gibrat’s law. The later is the simplest
device to prevent firms from dying, in the sense that their value is assumed to remain
always positive. Together, these two expressions prevent cities/firms from becom-
ing too small. Changing the reflection condition (2.46) into an absorption condition
f(s; t)s=0 = 0 would lead to a fast decay of the number of firms and would prevent
Zipf’s law from appearing.
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Then, an obvious non-degenerate normalized steady-state solution to (2.45) reads

f(s) =
2
π

smin

s2 + s2min

, s > 0, (2.47)

which recovers Zipf’s law for s � smin. This concludes the simple presentation of
the main idea in Gabaix (1999)’s paper to explain Zipf’s law. An important point
made clear by our derivation is that the specific way with which Gibrat’s law is bro-
ken for small sizes s is not important as long as it conserves the key characteristics
of preventing the small cities/firms from disappearing.

There is another, to our mind more natural, mechanism leading to Zipf’s law,
which does not require violating Gibrat’s law at small firm value levels. It consists
in taking into account the existence of incessant birth and death events among the
population of firms occurring at successive random instants of time. As we show
below, it turns out that firm birth and death processes are capable of creating power
laws, and in particular Zipf’s law in the balanced case λ = −1, without any violation
of Gibrat’s law. Moreover, these power laws are robust for even significant devia-
tions from Gibrat’s law. The following chapters are devoted to presenting detailed
discussions of the connection between the process of birth and death of firms and
the power laws for the mean density of firm’s asset values.



Chapter 3
Flow of Firm Creation

3.1 Empirical Evidence and Previous Works
on the Arrival of New Firms

The failure of the approach based solely on Gibrat’s principle stems, at least in part,
from the fact that it attempts to derive the distribution of firm sizes directly from the
distribution of the asset value of a single firm. Indeed, many models start with the
implicit or explicit assumption that the set of firms under consideration was born at
the same origin of time. This approach is equivalent to considering that the economy
is made of only one firm. Therefore, the distribution of firm sizes can reach a steady-
state if and only if the distribution of the asset value of a single firm reaches a steady
state, which seems rather counterfactual.

An alternative approach to model a stationary distribution of firm sizes is to
account for the fact that firms do not appear at the same time but are born according
to a more or less regular flow of newly created firms. For instance, Bonaccorsi Di
Patti and Dell’Ariccia (2004) report a yearly average (over all industry branches)
rate of birth for the period 1996–1998 equal to 5.6% for Italian firms with a maxi-
mum of 32% in some industry branches. Reynolds et al. (1994) give the regional
average firm birth rates (annual firm births per 100 firms) of several advanced
countries in different time periods: 10.4% (France; 1981–1991), 8.6% (Germany;
1986), 9.3% (Italy; 1987–1991), 14.3% (United Kingdom; 1980–1990), 15.7%
(Sweden; 1985–1990), 6.9% (United States; 1986–1988). They also document a
large variability from one industrial sector to another.

Simon (1955) was the first to address the question of the arrival of new firms (see
also Ijri and Simon, 1977). He proposed to modify Gibrat’s model by accounting for
the entry of new firms over time as the overall industry grows. In Simon’s model,
at each time step, a new investment opportunity is created. It is either captured by
a new entrant (probability p) that settles a new firm with unit size or by an already
running firm (probability (1 − p)) whose size grows by one unit. In the later case,
the probability that an existing firm seizes the next investment opportunity is pro-
portional to its current size, in accordance with Gibrat’s rule. Simon showed that

A. Saichev et al., Theory of Zipf’s Law and Beyond,
Lecture Notes in Economics and Mathematical Systems 632,
DOI 10.1007/978-3-642-02946-2 3, c© Springer-Verlag Berlin Heidelberg 2010
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this model leads to a steady-state distribution of firm sizes with a regularly varying
upper tail whose exponent is given bym = 1/(1 − p).1

The drawback of Simon (1955)’s approach and of subsequent related develop-
ments comes from the fact that the growth of existing firms is assumed to be strongly
coupled with the entry of new firms. Either an existing firm is allowed to grow at the
exclusion of the creation of a new firm, or a new firm is created but then there is no
growth of any existing firm. In addition, no more than one existing firm can grow
at any given time step. These different assumptions are obviously counterfactual.
Besides, in order to get Zipf’s law, the probability p that a new firm is created must
be vanishingly small since m = 1 only in the limit where p goes to zero. Addi-
tionally, as noted by Krugman (1996), the convergence toward the steady-state is
infinitely slow when p goes to zero.

In addition to Simon (1955)’s model, Gabaix (1999) accounts for the birth of new
firms with the probability to create a new firm of size s being proportional to the
current fraction of firms of that size and otherwise independent of time. However,
this model does not reflect the real dynamics of firm’s creation. For instance, using
a data set from the Italian National Institute for Social Security dealing with 12
quarterly cohorts of new manufacturing firms (with at least one paid employee) born
in each month of 1987, and their follow up until December 1992, Lotti and Santarelli
(2004) find that the standard deviation of firm sizes is much smaller in the first
quarter following their birth than at the end of the relevant period. Dispersion of firm
sizes tends therefore to widen as surviving firms reach the minimum efficient scale
level of output and specialize in one of the many clusters of products. Bartelsman
et al. (2003) document that new entrant firms have a relatively small size compared
with the more mature efficient size they develop as they grow. The effect is more
pronounced in Canada and especially in the United States. In other words, it seems
to be unrealistic to expect a non-zero probability for the birth of a firm of very large
size, say, of size comparable to the largest capitalization currently in the market.2

Luttmer (2007) developed a general equilibrium model of the distribution of firm
sizes, in terms of primitives such as entry and fixed costs, and the ease with which
entrant firms can imitate incumbent firms. The tail index is a function of the popu-
lation growth rate, the curvature parameter of the utility function of consumers, and
of three technology parameters, which makes Zipf’s law relying in this model on
rather restrictive assumptions. The tail index however converges from above to the
value 1 (Zipf’s law) if either the technologies available to entrants improve at a rate
that is only slightly above the rate at which the technologies of incumbents improve,
or if the cost of entry becomes large relative to the fixed cost of operating a firm and
as the extent to which new entrants lag behind incumbents in terms of productivity
and market size becomes large. The later assumptions seem rather questionable.

1 This model has recently been rediscovered under the name “preferential attachment” in the con-
text of scale-free networks found in social networks, the world-wide web, or networks of proteins
reacting with each other in the cell (Barabasi and Albert, 1999, 2002).
2 We do not consider spin-off’s or M&A (mergers and acquisitions).
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3.2 Mathematical Formulation of the Flow of Firm’s
Births at Random Instants

A major qualitative difference between the approach developed here and Gabaix’s
approach is that he assumed that all cities (firms) were born at the same (possibly
very ancient) time t0. In contrast, we suppose that all firms present at the current
time were born at random time instants {ti} in the past. A schematic illustration of
this difference is shown in Fig. 3.1. This section describes the basic consequences
of the existence of the random flow of firm’s births at successive times {ti}. For a
more formal derivation, which relies on the theory of compound point processes,
we refer the reader to Daley and Vere-Jones (2007). We will suppose for simplic-
ity, but without loss of the main mechanism of firm creation, that the initial asset
values of all firms at birth are the same and are equal to s0. This assumption will
be relaxed later. The value s0 can be thought of as the minimal size below which
a firm cannot be registered. In the case of cities, s0 might be the minimal size of a

Fig. 3.1 A schematic illustration of Gabaix’s and our models, leading to Zipf’s law. Schematically
depicted in the upper plot are graphs of sizes S(t) of different firms (cities), which were all born at
the same original time. The lower plot illustrates graphs of S(t) of firms (cities) which were born
at different instants. The black filled circles symbolize the instants of birth of subsequent firms
(cities). The birth instants form in general a non-periodic time series
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city, below which the settlement loses the status of city and becomes a village. As
in the previous chapter, we will use, for consistency, the terminology of firm’s asset
values.

Definition 3.2.1. Let {ti}i∈N be an increasing random sequence representing the
firm’s birth dates

t0 < t1 < t2 < · · · < ti < ti+1 · · ·, (3.1)

where t0 is the date of birth of the oldest firm. We call the point process {ti}i∈N the
firm’s births flow.

As a first pass, we do not make any additional assumption about the properties on
the births flow. We will provide specific examples later on.

The second ingredient of our theory is the asset value Si(t, ti), at time t ≥ ti, of
the firm i born at time ti.

Assumption 1 Conditional on the date of birth ti, the stochastic process that is the

same for all firms, so that Si(t, ti)
law= S(t, ti) of the asset value of firm i.

We are interested in the number G̃(s, t) of firms whose asset values are smaller
than s at time t. Obviously, G̃(s, t) reads

G̃(s, t) :=
∞∑

i=0

1 [s− S(t, ti)] 1(t− ti), (3.2)

where 1(x) is the indicator function of the event {x � 0}. For any finite t, because
there is an oldest firm, i.e., the economy started at some finite time in the past, this
sum only involves a finite number of terms, and is therefore well-defined. We can
rewrite the r.h.s. of (3.2) as the Lebesgue–Stieltjes integral

G̃(s, t) =
∫ t

t0

1 [s− S(t, u)]dÑ(u), (3.3)

where Ñ(u) is the counting measure, i.e., the largest integer i, satisfying the
condition ti < u.

We can now derive the expression of the expected value of G̃(s, t) given by (3.3).
We first consider the expected value of G̃(s, t) conditional on all instants of the point
process (3.1). It follows from (3.3) that this conditional expectation is equal to

E
[
G̃(s, t)

∣∣∣ {ti}
]

=
∫ t

t0

E [1 [s− S(t, u)] |{ti}]dÑ(u). (3.4)

Under the additional assumption

Assumption 2 The stochastic process S(t, u) are independent of the births flow
{ti}i∈N for all u,
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then
E [1 [s− S(t, u)] |{ti}] = E [1 (s− S(t, u))] . (3.5)

Consequently, denoting by F (s; t|u) the cumulative distribution function (cdf) of
S(t, u)

F (s; t|u) := Pr{S(t, u) ≤ s} = E [1 (s− S(t, u))] , (3.6)

we can rewrite equality (3.4) in the form

E
[
G̃(s, t)

∣∣∣ {ti}
]

=
∫ t

t0

F (s; t|u) dÑ(u). (3.7)

By the law of iterated expectations, the mean number of firms whose size is less
than s at time t

G(s, t) := E
[
G̃(s, t)

]
(3.8)

is equal to

G(s, t) = E
[
E
[
G̃(s, t)

∣∣∣ {ti}
]]

=
∫ t

t0

F (s; t|u)dN(u), (3.9)

where
N(u) := E

[
Ñ(u)

]
(3.10)

is the average number of firms born up to time u.
Everywhere below we assume, for simplicity, that

Assumption 3 The average number of firms born up to time u,N(u), is absolutely
continuous with respect to Lebesgue measure so that it admits a density ν(u).

This density, which will be called the intensity of firms births, allows us to state that

Proposition 3.2.1. Under the Assumptions 1–3, the mean distribution of firm’s size
reads

G(s, t) =
∫ t

t0

ν(u)F (s; t|u)du. (3.11)

In what follows, it will be more convenient to deal with the derivative of G(s, t)
with respect to s

g(s, t) :=
∂G(s, t)
∂s

. (3.12)

We call this derivative the mean density of firm asset’s values, which is defined
for firms which are in business at the current time t. Differentiating both sides of
equality (3.11) with respect to s, and assuming that F (s; t|u) admits an integrable
derivative with respect to s

f(s; t|u) :=
∂F (s; t|u)

∂s
, (3.13)

we obtain from Proposition 3.2.1 the following result
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Corollary 3.2.1. Under the assumptions of Proposition 3.2.1 and assuming addi-
tionally that the cumulative distribution F (s, t|u) of S(t, u) admits a integrable
derivative with respect to s, the mean density of firm’s size reads

g(s, t) =
∫ t

t0

ν(u)f(s; t|u)du. (3.14)

It relates the mean density of firms size g(s, t) to the probability density function
(pdf) f(s; t|u) of the size s at time t of some particular firm born at time u < t.

In order to simplify one step further the result of Corollary 3.2.1, let us introduce
the notion of homogeneous stochastic growth

Definition 3.2.2. The stochastic growth of firm asset values is homogeneous if
f(s; t|u) = f(s; t− u).

It allows us to state that

Corollary 3.2.2. Under the assumption of Corollary 3.2.1, the mean density of
firm’s size for homogeneously stochastically growing firms reads

g(s, t) =
∫ t−t0

0

ν(t− u)f(s;u)du. (3.15)

Remark 3.2.1. Taking here for simplicity but without loss of generality the origin
time of the economy as the time origin t0 = 0, we finally get

g(s, t) =
∫ t

0

ν(t− u)f(s;u)du. (3.16)

The relations (3.14) and (3.16) hold for arbitrary stochastic births flows {ti},
only assuming that (1) the stochastic processes S(t, ti) and the birth flow {ti} are
independent, and (2) that there exists a continuous mean birth rate ν(t). To make
explicit the hidden springs underlying the concept of a mean rate ν(t), we present
in appendix some particular examples of statistics for typical births flow {ti}.

3.3 Existence of a Steady-State Distribution of Firm’s Sizes

We proved in the previous section that the mean density g(s, t) is given by the rela-
tion (3.16) when we take into account the flow of firm’s births, provided that the
births flow {ti} in Definition 3.2.1 and the stochastic processes S(t, ti) of firms
assets values are statistically independent. It turns out that, under some natural con-
ditions, the mean density g(s, t) admits, as t goes to infinity, a limit expression
(independent of t):
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Definition 3.3.1. If there exists a positive integrable function g(s) such that

g(s) := lim
t→∞

g(s, t),

it is called the steady-state mean density of firms size.

In what follows, for the sake of pedagogy of the exposition, we will omit some
details of the derivations and corresponding proofs for the general case. We how-
ever present in some depth the specific case where the mean rate of firm’s birth is
constant, so that (3.16) reads

g(s, t) = ν

∫ t

0

f(s;u)du (3.17)

and provide rigorous arguments and conditions, ensuring the existence of a steady-
state density.

The existence of a steady-state mean density is equivalent to the convergence of
the improper integral

g(s) = ν

∫ ∞

0

f(s;u)du. (3.18)

It is well-known that, for some given s, the improper integral converges, if the pdf
f(s;u), as a function of u, tends to zero, for u→ ∞, faster than the power function
u−p, where p > 1. In particular, the following condition of convergence is sufficient
for the existence of the integral (3.18): the function f(s;u) is finite for any u ∈
[0,∞) and the asymptotic relation holds uniformly

f(s;u) ∼ o{u−p}, u→ ∞, p > 1. (3.19)

Let us check the validity of this condition in the case of a GBM, which plays a
central role due to Gibrat’s rule. Recall that the pdf of a GBM is described by the
log-normal distribution ψ(x; τ) given by (2.32), where τ is the counterpart of u,
while x = s/s0, where s0 is the initial asset’s value. One can easily show, that the
function ψ(x; τ) is finite for any

x > 0 and x �= 1 ⇒ s > 0 and s �= s0. (3.20)

Besides, it is seen from (2.33–2.34), that ψ(x; τ) tends to zero exponentially, as
τ → ∞

ψ(x; τ) ∼ o
{

exp
(
−λ

2

4
τ

)}
τ → ∞

provided that λ �= 0.
Thus, we have proved that in the case where firm’s asset values obey a GBM, a

steady-state density exists provided that condition (3.20) holds together with λ �= 0.
Noticing that, in the case x = 1 (s = s0), the function ψ(x; τ) exhibits an integrable
singularity in the vicinity of τ = 0+
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ψ(x; τ) ∼ O
{

1√
τ

}
, τ → 0+, x = 1, (3.21)

we conclude with

Proposition 3.3.1. Under Assumptions 1–3, in the case where the firm’s asset value
is governed by a GBM, i.e., continuous Gibrat’s law holds, and provided that the
intensity of firms births is constant ν, it exists a steady-state mean density of firm’s
size for any s > 0 if and only if λ �= 0.

Later on, we will discuss in details the meaning of the condition λ �= 0, from
the point of view of the behavior of the realizations of the stochastic process S(t)
(2.10). Here we only notice that, if λ > 0, one can prove that the realizations of the
stochastic process S(t) tend, almost surely, to +∞, as t→ ∞. The convergence of
the improper integral (3.18) for any finite s > 0 follows. Analogously, if λ < 0, the
realizations of S(t) tend, almost surely, to zero, as t → ∞, so that integral (3.18)
converges as well.

3.4 Steady-State Density of Firm’s Asset Values Obeying
Gibrat’s Law

Let us calculate the steady-state density (3.18), supposing that the initial asset value
of all firms is the same and is equal to s0. Due to the scale invariance of Gibrat’s
law, the pdf of a given firm’s current asset value can be expressed in terms of the
log-normal distribution (2.32) of the GBM (2.11) in the following way

f(s; s0, t) =
1
s0
ψ

(
s

s0
;
b2t

2

)
. (3.22)

Substituting this in (3.18) and using the relation3

∫ ∞

0

1
2
√
πτ

exp
(
− (v − cτ)2

4τ
− μτ

)
dτ

=
1√

c2 + 4μ
exp

[
1
2

(
cv −

√
c2 + 4μ |v|

)]
, c2 + 4μ > 0,

(3.23)

we obtain the following inverse relations for stochastically decaying processes
(λ < 0) and for stochastically growing ones (λ > 0).

3 This equality can be found in Bateman and Erdelyi (1954) together with the condition of validity
c2 + 4μ > 0. We discuss here the particular case μ = 0 for which the improper integral (3.23)
uniformly converges provided that c �= 0 or, equivalently, for λ �= 0. We have derived the neces-
sity of this condition for the convergence of the corresponding improper integral in the previous
subsection.
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Proposition 3.4.1. Under the assumptions of Proposition 3.3.1, the steady-state
mean density of firm’s size exists and is such that

g(s) =
ν

|c|

{
s−1, 0 < s < s0,

s−λ
0 sλ−1, s > s0,

λ < 0, (3.24)

which includes the balanced growth case λ = −1, while

g(s) =
ν

c

{
s−λ
0 sλ−1, 0 < s < s0,

s−1, s > s0,
λ > 0. (3.25)

It can be seen from the above relations that the steady-state mean density pos-
sesses two, lower and upper, power tails, which exchange their role as the parameter
λ crosses the critical value λ = 0. Below, we will give a detailed explanation of
this exchange, and in addition explain the values of the exponents of the upper and
lower tails.

Here we note only that the upper tail of the mean density (3.24), corresponding
to the stochastically decaying GBM (λ < 0) is

g(s) =
ν

|c| s
−λ
0 sλ−1, s > s0, λ < 0. (3.26)

In the balanced case λ = −1, this corresponds to Zipf’s law

g(s) =
ν

|c| s0 s
−2, s > s0. (3.27)

Thus, we have derived Zipf’s law from Gibrat’s law and the balance condition, with-
out requiring Gibrat’s law to be broken in the vicinity of some small level smin > 0.
Instead, we have taken into consideration the existence of births of firms at random
instants {ti}. Given the empirical evidence presented in Sect. 3.1, this approach
seems much more natural than those based on Gabaix’s supposition.

The existence of a possible randomness of the initial asset values s0 does not
change our main results and does not destroy Zipf’s law. If, as a particular example,
the pdf f0(s) of the random value s0 of initial assets has a finite support, so that it
is identically equal to zero for s0 > sm, where sm < ∞ is some maximal possible
initial asset value, then for any s > sm, the exact Zipf’s law holds:

g(s) =
ν

|c| E [s0] s−2, s > sm. (3.28)

Here, E [s0] denotes the expectation taken over the distribution of possible initial
firm sizes. We will consider the case of random initial firm’s sizes in more detail at
the end of Chap. 5.
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3.5 Mean Density of Firms Younger than Age t

For a better comprehensive understanding of power laws, and in particular of Zipf’s
law, which follows from Gibrat’s law for the stochastic behavior of firm’s asset
values, let us consider the case of a finite time t. In this situation, the expression for
the mean density of firm’s asset values (3.16) reduces to

g(s, t) = ν

∫ t

0

f(s;u)du. (3.29)

It describes, for instance, the mean density of firm’s asset values in some stable
market (ν = const.), if the statistical treatment takes into account only firms younger
than some age t. Plots demonstrating the convergence of the mean density g(s, t)
given by (3.29) to the steady-state mean density g(s) given by (3.24) with the growth
of t when λ = −1 are depicted in Fig. 3.2.

Taking the annual volatility equal to b = 0.2, we find that τ = b2t/2 = 10
corresponds to a calendar time of t = 500 years, while τ = 100, for which Zipf’s

10−4 10−2 100 102 104 106
10−15

10−10

10−5

100

s/s0

g(
s,

t)

Fig. 3.2 Log-log plots of the mean density g(s, t) given by (3.29), for the case of GBMs describ-
ing the stochastic behavior of firm’s asset values. The plots are drawn for λ = −1, ensuring
that Zipf’s law holds for the steady-state mean density g(s) of firm’s sizes. From bottom to top,
τ ≡ b2t/2 = 10, 20, 50, 100. The upper curve is the steady-state density given by (3.24)
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law is recovered, corresponds to 5,000 years. It would thus seem that the conver-
gence to Zipf’s law is extremely slow, perhaps too slow to describe the real world.
However, Schwarzkopf and Farmer recently reported that the monthly volatility of
mutual fund sizes is about 0.25 (see Table 1 in Schwarzkopf and Farmer, 2008),
corresponding to an annual volatility b � 0.87. Accordingly, the characteristic time
tb = 2/b2 is tb � 2.67 years and thus τ = t/tb = 10 corresponds to t = 27 years,
while τ = 100 corresponds to 267 years. This rate of convergence to Zipf’s law is
compatible with the empirical data described in Schwarzkopf and Farmer (2008).

3.6 Heuristic derivation of the origin of the power law
distribution of firm sizes given by Gibrat’s rule

The GBM resulting from Gibrat’s law was shown above to be described by the log-
normal distribution (3.22) of firm’s asset values, which itself was demonstrated to
be accurately approximated at large times by the power law

f(s; s0, t) ∼ sλ/2−1. (3.30)

How can we then understand intuitively that this power law transforms into another
power law g(s) ∼ sλ−1 given by (3.26) for the steady-state mean density in the
presence of firm’s birth when λ < 0?

To better understand the transition from (3.30) to (3.26), let us study in more
details the steady-state mean density g(s) given by (3.18) in which f(s; t) =
f(s; s0, t) is given by (3.22), itself derived from the log-normal distribution (2.32).
For all s > s0 , we split the integral (3.18) into two parts

g(s) = ν

⎛

⎝
∫ 4τp

(
s

s0

)

0

f(s; s0, u)du+
∫ ∞

4τp

(
s

s0

) f(s; s0, u)du

⎞

⎠ , (3.31)

where τp(x) has been defined by (2.36) in such a way that for all τ � τp, the
asymptotics

f(s; s0, τ) � ψ0(τ)s−1

(
s

s0

)λ/2

, (3.32)

holds uniformly in τ . Note that (3.32) refines (3.30) by providing the pre-factors
ψ0(τ) [given by expression (2.34)] of the asymptotic power law dependence in s.

Considering the first integral in the r.h.s. of equality (3.31), we get

∫ 4τp

(
s

s0

)

0

f(s; s0, u)du ≤ 4τp

(
s

s0

)
· max

u∈[0,4τp]
f(s; s0, u), (3.33)

∼

√
ln s

s0

π|λ| (s/s0)
1/2(|λ|−λ)−1

, as s� s0. (3.34)
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Using the asymptotic relation (3.32), the second integral in the r.h.s. of (3.31)
reads ∫ ∞

4τp

f(s; s0, u)du ∼ sλ/2−1

∫ ∞

4τp

ψ0(τ)dτ. (3.35)

The integral in the r.h.s. of the last relation becomes

∫ ∞

4τp

ψ0(τ)dτ =
1
|λ| erfc

(
|λ|√τp

)
, (3.36)

∼ exp
(
−λ2τp

)
, τp � 1, (3.37)

∼
(
s

s0

)−|λ|/2

, s� s0, (3.38)

and ∫ ∞

4τp

f(s; s0, u)du ∼ s−(|λ|−λ)/2−1, s� s0. (3.39)

As a consequence, for λ < 0, the first integral in the r.h.s. of (3.31) can be neglected
for large s so that g(s) ∼ sλ−1.

Thus, roughly speaking, the transition from the asymptotic power law (3.30), for
the log-normal distribution of any firm’s asset value, to the power law (3.26) for
the steady-state mean density of firm sizes, is due to the increase in time of the
lower threshold above which the power law asymptotics (3.30) holds, which grows
as sp ∼ eτ .

Appendix

Examples of Firm Birth Flows

The derivation of (3.14) and (3.16) holds for arbitrary stochastic births flows {ti}
provided that the following assumptions hold: (1) the stochastic processes S(t, ti)
and the births flow {ti} are independent, and (2) there exists a continuous mean birth
rate ν(t). In this appendix, we present three examples of typical birth flow processes
{ti}i∈N to provide a better understanding of the meaning of the mean rate ν(t).

Inhomogeneous Poisson Birth Flow

As a first example, we consider the inhomogeneous Poisson process {ti}i∈N, assum-
ing for simplicity, but without loss of generality, that the origin time of the economy
and the time origin coincide: t0 = 0. Let us divide the interval u ∈ [0, t] into k
adjacent intervals
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u ∈ [uk, uk+1], uk :=
k

n
t, Δ := uk+1 − uk =

t

n
, k = 0, . . . n− 1, (3.40)

and assume that the number Ñk of births within each interval obeys the standard
Poisson law, such that the expected number of births is equal to

E
[
Ñk

]
= νkΔ. (3.41)

The characteristic function ϕk(v) of the random number Ñk of births in the k-th
interval is equal to

ϕk(v) := E
[
eivÑk

]
= exp

[
νkΔ(eiu − 1)

]
. (3.42)

By definition of Poisson processes, the numbers of births within different intervals
(3.40) are independent random variables. As a consequence, the total number of
births within the interval (0, t), defined by

Ñ(t) :=
n−1∑

k=0

Ñk, (3.43)

admits the following characteristic function

ϕ(v; t) := E
[
eivÑ(t)

]
=

n−1∏

k=0

ϕk(v) = exp

[
(eiv − 1)

n−1∑

k=0

νkΔ

]
. (3.44)

Let ν(u) be some integrable function such that

ν(tk) := νk. (3.45)

In the limit n→ ∞, the sum in (3.44) converges to the integral

lim
n→∞

n−1∑

k=0

νkΔ =
∫ t

0

ν(u)du, (3.46)

so that, at the limit, the characteristic function (3.44) reads

ϕ(v; t) = exp
[
(eiv − 1)

∫ t

0

ν(u)du
]
. (3.47)

Correspondingly, the expected value of the number of births within the interval (0, t)
is equal to

N(t) = −i∂ϕ(v; t)
∂v

∣∣∣
v=0

=
∫ t

0

ν(u)du. (3.48)



32 3 Flow of Firm Creation

In this process, the mean birth rate ν(t) of firm’s birth is therefore nothing but the
intensity of the inhomogeneous Poisson process.

Stationary Renewal Process

The firms birth flow

{ti}, i = . . .− 2,−1, 0, 1, 2 . . . (3.49)

is a stationary Renewal Process (Karlin and Taylor, 1975, for instance), if the
intervals

τk := tk+1 − tk, k = . . .− 2,−1, 0, 1, 2, . . . (3.50)

between two subsequent births are (positive) independent and identically distributed
random variables. Let us denote by κ(t) the pdf of each τk. We assume that the
expected value of the random variable τk is finite and is equal to the integral

E [τk] =
∫ ∞

0

tκ(t)dt <∞.

We define ν (0 < ν <∞) as follows

ν E [τk] = 1 ⇒ ν = 1/E [τk] . (3.51)

Let us consider, additionally, the random interval

τ+ = t1, (3.52)

where t0 is the time interval from the origin of time t = 0 till the birthdate t1 of the
first firm (see Fig. 3.3).

In general, its pdf κ+(t) does not coincide with the pdf κ(t) of the other intervals
(3.50). In order to obtain the relation between the pdf’s κ+(t) and κ(t), we note that,
due to the stationarity of the point process . . . tk−1, tk, tk+1 . . . , the conditional

t t=0 t t t0 1 2 3

t t t0 1 2

t+

Fig. 3.3 Birthdates of firms and definition of τ+ as the duration of the time interval beginning
from the origin of time t = 0 till the birthdate t1 of the first firm
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pdf κ+(t|s) of the random durations of the intervals τ+, under the condition that the
duration of the corresponding whole (virtual) interval τ which includes t = 0 would
be equal to a given s,4 is the uniform distribution

κ+(t|s) =

{
1
s , 0 < t < s,

0, t < 0, t > s.
(3.53)

Averaging this uniform distribution over the statistics κ̂(t) of durations of the whole
intervals τ(t0) yields

κ+(t) =
∫ ∞

0

κ+(t|s)κ̂(s)ds =
∫ ∞

t

κ̂(s)
ds

s
. (3.54)

Here, κ̂(t) is the pdf of the random durations of the interval τ(t0), which is related
to the pdf κ(t) by

κ̂(t) =
t

E[τk]
κ(t). (3.55)

The factor t in the r.h.s. of (3.55) expresses the fact that the probability for the
origin of time t = 0 to fall within the interval τ0 of duration t is proportional
to the duration of this interval times its pdf κ(t). The constant 1/E[τk] ensures
the normalization of κ̂(t). Putting (3.55) in (3.54) finally yields (Feller, 1966, for
instance)

κ+(t) =
1

E [τk]

∫ ∞

t

κ(x)dx. (3.56)

In view of relation (3.51), it reads

κ+(t) = ν

∫ ∞

t

κ(x)dx. (3.57)

We will expand on the meaning of this pdf below. Here, we just mention that the
expected value of the random variable τ+ (3.52) exists only if

E
[
τ2
k

]
=

∫ ∞

0

x2κ(x)dx <∞, (3.58)

and is equal to

E [τ+] =
ν

2
E
[
τ2
k

]
. (3.59)

We will assume, in what follows, that inequality (3.58) holds.
In order to study the statistical properties of the Renewal Process {ti}i∈N, two

approaches are possible. The first one consists in studying the time duration until

4 Where τ is defined as the waiting time t1 − t0 , obtained by extending the process backward by
one event.
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the n-th birth, which amounts to studying the random sum

T (n) := τ+ +
n−1∑

k=1

τk. (3.60)

The cumulative distribution function of T (n) isKn(t) given by

Kn(t) =
∫ t

0

κ+(x) ⊗ κ(x) ⊗ · · · ⊗ κ(x)︸ ︷︷ ︸
n−1

dx, K1(t) =
∫ t

0

κ+(x)dx, (3.61)

where ⊗ denotes the convolution product.
Another approach consists in describing the properties of the random number

of births Ñ(t) within the interval [0, t]. Let P (n; t) be the probability that n births
occur within the interval [0, t]. The cumulative distribution function Kn(t) (3.61)
of the random sum T (n) (3.60) is related to the probability P (n; t) of the random
numbers Ñ(t) by the relation (Karlin and Taylor, 1975, for instance)

P (n; t) = Kn(t) −Kn+1(t) (n � 1), P (0; t) = 1 −K1(t). (3.62)

In view of relation (3.9), we need the expected value N(t) (3.10) of the number
of births within the interval (0, t). It follows from (3.62) that it is equal to

N(t) =
∞∑

n=1

nP (n; t) =
∞∑

n=1

Kn(t) (t > 0). (3.63)

It is convenient to explore the properties of this sum by use of the Laplace trans-
forms of its summands. The Laplace transform of some integrable function Q(t) is
denoted as

Q̂(ρ) :=
∫ ∞

0

Q(t) e−ρtdt. (3.64)

Applying the Laplace transform to both sides of equality (3.63) and assuming that
the series (3.63) converges uniformly within the interval [0,∞), we obtain

N̂(ρ) =
∞∑

n=1

K̂n(ρ). (3.65)

The series in (3.65) converges absolutely for any ρ > 0, as we now show. The
Laplace transform ofKn(t) is [by (3.61)]

K̂n(ρ) =
1
ρ
κ̂+(ρ) · κ̂n−1(ρ). (3.66)
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Since κ̂(ρ) < 1 for ρ > 0, the r.h.s. of equality (3.65) is a convergent geometric
series, whose summation yields

N̂(ρ) =
1
ρ

κ̂+(ρ)
1 − κ̂(ρ) . (3.67)

To better understand the sense of this last relation, we introduce an important
characteristic of the births flow {ti}i∈N. Let T > 0 be some instant, while i(T )
is the number indexing the first birth occurring immediately after the instant T . In
other words, i− 1 firm births occurred within the time interval [0, T ]. Consider the
time interval

τ+(T ) = ti(T ) − T. (3.68)

It is well-known that, under the conditions imposed above on the Renewal Process
{ti}i∈N (stationarity and existence of first and second moments of the pdf of waiting
times between births), the pdf κ+(t;T ) of the random variable (3.68) admits the
following limit

lim
T→∞

κ+(t;T ) = κ+(t), (3.69)

where κ+(t) is given by equality (3.57). In words, the limit (3.69) means that, as
T → ∞, the Renewal Process becomes “truly stationary,” in the sense that the
statistical properties of the time intervals (3.50) do not depend on i, and in addition
the statistical properties of the intervals (3.68) do not depend on the current time
T . The essence of the demonstration of formula (3.57) is based on the formulation
that views T falling equiprobably within any interval [tk, tk+1]. A Renewal Process
{ti}i∈N, for which the pdf of random interval (3.52) obeys relation (3.57), can be
called a stationary Renewal Process.

Applying Laplace transform to the pdf (3.57) yields

κ̂+(ρ) =
ν

ρ
[1 − κ̂(ρ)] . (3.70)

After substitution into equality (3.67), we finally get

N̂(ρ) =
ν

ρ2
⇒ N(t) = νt (t > 0). (3.71)

This last relation means that, if the births flow {ti}i∈N is a stationary Renewal Pro-
cess, then, irrespective of the pdf κ(t) of the random intervals (3.50), the mean birth
rate is constant, and is defined by equality (3.51). Then, the mean density (3.16) of
firms assets values reads

g(s, t) = ν

∫ t

0

f(s;u)du. (3.72)

This relation remains true even for a pure periodic birth flow, for which the pdf of
intervals (3.50) is singular
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κ(t) = νδ(νt− 1), (3.73)

where δ(x) is Dirac’s delta function. As seen from (3.57), such kind of periodic
birth flow with period 1/ν becomes stationary if the pdf of the initial interval τ+
(3.52) is uniform:

κ+(t) = ν 1(1 − νt). (3.74)

Rarefied Poisson Flow

We here illustrate the properties of Renewal Processes for the particular case of
rarefied Poisson processes. We first need to recall some properties of homoge-
neous Poisson point processes, for which the pdf of interval durations (3.50) are
exponential

κ(t; ν) = νe−νt, t > 0. (3.75)

Due to the Markovian property of Poisson point processes, it is easy to show that
the pdf (3.57) of the initial interval (3.52) coincides with the exponential distribution
(3.75):

κ+(t; ν) = κ(t; ν) = νe−νt. (3.76)

Correspondingly, one may replace the sum (3.60) by

T (n; ν) =
n−1∑

k=0

τk, (3.77)

where the summands are i.i.d and possess some pdf κ(t; ν). As is well-known from
the theory of Poisson point processes, the pdf of the sum (3.77) is equal to

κn(t; ν) = ν
(νt)n−1

Γ (n)
e−νt, t > 0. (3.78)

Thus, the cumulative distribution function of the random sum (3.77) is

Kn(t; ν) =
∫ t

0

κn(x; ν)dx. (3.79)

Accordingly, the mean number of births of the Poisson point process, within the
time interval [0, t], is equal to

N(t) =
∞∑

n=1

∫ t

0

κn(x; ν)dx.

Exchanging the order of the summation and integration, and taking into account the
identity

∞∑

n=1

kn(x; ν) = νe−νt
∞∑

n=1

(νt)n−1

(n− 1)!
= νe−νt · eνt = ν, (3.80)
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we finally obtain
N(t) = νt. (3.81)

We are now armed to study rarefied Poisson processes. We will call the point
process {ti}i∈N a rarefied Poisson point process of order m, if the waiting time
τk(m) between two successive births is given by

τk(m) =
m∑

j=1

τ(k−1)m+j , (3.82)

where τ(k−1)m+j denotes the duration of the (k − 1)m+ j time interval of a Pois-
son process with intensity ν. By construction, the pdf’s of these sums are equal to
κm(t; ν) given by (3.78). By substitution into (3.56), and taking into account that
the expected value of the random sum (3.82) is equal to

E [τk(m)] =
m

ν
, (3.83)

we obtain the pdf of the initial interval τ+(m) of a stationary rarefied Poisson
process

κ+(t; ν|m) =
1
m

m∑

j=1

κj(t; ν). (3.84)

The mean rate of births of the rarefied Poisson process can be calculated as fol-
lows. Analogously to (3.63), the expected number of births within the time interval
[0, t] is equal to

N(t;m) =
∞∑

n=0

Kn(t;m), t > 0, (3.85)

where

Kn(t;m) =
∫ t

0

κ+(x; ν|m) ⊗ κmn(x; ν)dx, n > 0,

K0(t;m) =
∫ t

0

κ+(x; ν|m)dx.
(3.86)

By substitution of expression (3.84) and by use of the semigroup property of the
Poisson pdf’s (3.78) which reads

κm(t; ν) ⊗ κn(t; ν) = κm+n(t; ν) ∀m,n = 1, 2, . . . , (3.87)

(3.85) can be rewritten in the form

N(t;m) =
1
m

∫ t

0

∞∑

n=0

m∑

j=1

κnm+j(x; ν)dx. (3.88)
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Obviously,
∞∑

n=0

m∑

j=1

κnm+j(x; ν) =
∞∑

n=1

κn(x; ν) = ν,

so we have
N(t) =

ν

m
t. (3.89)

This last relation quantifies how the rarefaction of a Poisson process with mean
rate ν creates a stationary rarefied Poisson process of order m, whose mean rate
is m times smaller. In order to keep the mean rate constant, while changing the
order m of the rarefied Poisson process, we have to replace the mean rate ν of
the original Poisson process by ν · m. Figure 3.4 shows the rescaled pdf’s (3.84)
of the initial interval τ+(m) for different values of m. While the stationary rarefied
Poisson process becomes more and more similar to a periodic point process whenm
increases, the pdf (3.84) converges, asm→ ∞, to the uniform distribution (3.74).

The situation drastically changes, at least for t � 1/ν, if the distribution of the
initial interval τ+(m) (3.50) is different from (3.84). To illustrate this remarkable
fact, let us replace κ+(t; ν|m) by the pdf κm(t; ν) (3.78) of any subsequent interval
τk(m) of the rarefied Poisson process. To make the exposition slightly more gen-
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Fig. 3.4 Plots of rescaled pdf’s mκ+(t; mν|m) of the duration of the initial interval τ+(m), for
rarefied Poisson point processes of orders m = 1, 10, 100
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eral, we interpret κm(t; ν) (3.78) as a Gamma distribution, so that the parameterm
can take arbitrary positive real values. Recall that m = 1 corresponds to a Pois-
son process, which describes mathematically a pure stochastic dissemination of the
points {ti}i∈N. When m > 1, there is some repulsion between successive points,
while points aggregate into clusters form ∈ (0, 1).

In this case, one has to substitute into (3.85)

Kn(t;m) =
∫ t

0

κ(n+1)m(x; ν)dx. (3.90)

Accordingly, the expected number N(t; ν) of points within the interval (0, t) is
equal to

N(t; ν|m) =
∫ t

0

ν(x; ν|m)dx, (3.91)

where the mean rate

ν(t; ν|m) =
∞∑

n=1

κnm(t; ν) (3.92)
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Fig. 3.5 Graphs of the rescaled mean rates (3.92) for m = 0.5, 1, 5, 10
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is not constant. For instance

N(t; ν|1/2) = ν

[
1 +

e−νt

√
πνt

+ erf(
√
νt)

]
,

N(t; ν|1) = ν, N(t; ν|2) = νe−νt sinh(νt),

N(t; ν|4) =
ν

2
e−νt [sinh(νt) − sin(νt)] .

(3.93)

Figure 3.5 depicts the mean rate (3.92) of non-stationary rarified Poisson processes,
for different ordersm. All the mean rates tend, for large values of νt, to a constant
limit. At the same time, the repulsion between events associated withm > 1 makes
the mean rate of birth smaller than the limiting value for not large νt. In contrast,
clusters appear for 0 < m < 1 and give rise to a singularity of the mean rate in the
vicinity of t = 0.



Chapter 4
Useful Properties of Realizations
of the Geometric Brownian Motion

In the previous chapter, we introduced the mean density of firm’s asset values (3.18),
taking into account the flow of firm’s births {ti}. We provided a preliminary analysis
of the properties of the mean density of firm sizes. In order to understand more
deeply the roots of the power laws (3.24) and (3.25), and at the same time the basis
of Zipf’s law (3.27) and (3.28), we discuss in detail in this chapter the statistical
properties of the realizations of the GBM (2.11).

4.1 Relationship Between the Distributions of Firm’s Mean
Ages and Sizes

Let us first describe the intimate connection existing between the steady-state mean
density g(s) given by (3.18) and the stochastic behavior of the asset value S(t) of
some given firm.

We have defined f(s; t) as the pdf of the current asset value S(t) of some firm
which was born at the initial instant t0 = 0. The corresponding complementary cdf
(or survival distribution) F̄ (s; t) is equal to

F̄ (s; t) = E[1(S(t) − s)], (4.1)

where 1(z) is the unit step function, equal to one for z ≥ 0 and zero for z < 0.
Let us introduce the integral

∫ ∞

0

1(S(t) − s)dt =
∑

k

Tk, (4.2)

where the Tk’s are the durations of time intervals for which S(t) > s. This integral
or sum in (4.2) converges for λ < 0. Figure 4.1 shows a schematic illustration of
equality (4.2). The Tk’s can be thought of as the waiting times between successive
crossings of the level s. Averaging both sides of equality (4.2) over the statistical
ensemble of the diffusion process S(t), we obtain

A. Saichev et al., Theory of Zipf’s Law and Beyond,
Lecture Notes in Economics and Mathematical Systems 632,
DOI 10.1007/978-3-642-02946-2 4, c© Springer-Verlag Berlin Heidelberg 2010
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S(t)

t

s0

s

1[S(t)-s]

t

1

T1 T2 T3

Fig. 4.1 Schematic illustration of equality (4.2)

∫ ∞

0

F̄ (s; t)dt = T (s), (4.3)

where

T (s) := E

[
∑

k

Tk

]
=

∑

k

E [Tk] (4.4)

is the mean of the total duration of all time intervals for which S(t) > s. In what
follows, it will be convenient to use the probability density distribution of mean time
interval durations

θ(s) = −dT (s)
ds

=
∫ ∞

0

f(s; t)dt. (4.5)

Note that θ(s) differs only by the factor ν from the steady-state mean density g(s)
given by (3.18). When the intensity of firm’s birth ν is constant, this provides a new
interpretation of Zipf’s law (3.27). Rewritten in terms of the mean total duration
T (s) given by (4.4) for λ = −1, it takes the form



4.2 Mean Growth vs. Stochastic Decay 43

T (s) =
s0
|c|s , s > s0. (4.6)

In other words, if the stochastic behavior of a firm’s asset value obeys the balanced
Gibrat’s law, then the overall mean duration T (s) (s > s0) of time intervals when
the firm has an asset value S(t) exceeding a given level s, satisfies Zipf’s law. It is
worthwhile pointing out that Zipf’s law does not mean that the larger the asset value
s of some firm, the smaller the time its asset value remains larger than s. We will
see in what follows that it means only that the larger the value of s, the smaller is
the fraction of firms having an asset value larger than s.

4.2 Mean Growth vs. Stochastic Decay

As follows from (2.29), the mean value of the normalized GBM is equal to

E [X(t, c, b)] = e(1+λ)τ . (4.7)

and is growing (for λ > −1) even ifX(t, c, b) is stochastically decreasing, as occurs
for c < 0 ⇐⇒ λ < 0. It thus seems that, for λ ∈ [−1, 0), there is a discrepancy
between our terminology and the behavior of the mean value of the GBM.

To elucidate this paradox, consider the continuous limit of an hypothetical capital
taxation system imposed on firms, which works as follows. At equidistant instants
tm = mΔ, a firm has to pay a kind of capital tax equal to the fraction κ of its asset
value S at that instant. Assuming a discount rate of zero (or equivalently subtracting
the discount rate from the drift c of the GBM describing the time evolution of the
firm value), the total tax revenue from an original instant t0 = 0 at which the firm
was established over the total life of the firm is equal to

T = κ

∞∑

m=1

S(mΔ). (4.8)

Bankruptcies could be taken into account in this formally infinite sum by simply
writing that S(mΔ) = 0 beyond the firm’s death.

Let us assume that Δ is smaller than the characteristic time over which the firm’s
asset value S(t) varies significantly, while κ � 1 so that the influence of taxation
on the behavior of the firm’s asset value S(t) is negligible. One may then replace
the above sum (4.8) by the integral

T � κ

Δ

∫ ∞

0

S(t)dt. (4.9)

Let us explore the statistical properties of the integral (4.9), replacing it, for conve-
nience of analysis, by the integral over the dimensionless time τ defined by (2.18)



44 4 Useful Properties of Realizations of the Geometric Brownian Motion

of the GBM defined by (2.17), that we denote by

A(λ) :=
∫ ∞

0

χ(τ, λ)dτ, (4.10)

where λ is defined by (2.19). The process χ(τ, λ) satisfies the stochastic equation

dχ(τ, λ) = (1 + λ)χ(τ, λ)dτ + χ(τ, λ)dω(τ). (4.11)

Consider the auxiliary stochastic equation

dB(τ, λ) = [1 + (1 + λ)B(τ, λ)]dτ +B(τ, λ)dω(τ), B(τ = 0, λ) = 0. (4.12)

Let represent its solution in the form

B(τ, λ) = χ(τ, λ)C(τ, λ). (4.13)

Substituting it into the previous equation and using the stochastic equation (4.11)
yields the equation for C(τ, λ) as

dC(τ, λ) = χ−1(τ, λ)dτ, C(τ = 0, λ) = 0. (4.14)

Its solution reads

C(τ, λ) =
∫ τ

0

dτ ′

χ(τ ′, λ)
. (4.15)

Using (4.13), we obtain

B(τ, λ) =
∫ τ

0

χ(τ, λ)
χ(τ ′, λ)

dτ ′. (4.16)

Because χ(τ, λ) enjoys the following symmetric property

χ(τ, λ)
χ(τ ′, λ)

law= χ(τ − τ ′, λ), (4.17)

we have
∫ τ

0

χ(τ, λ)
χ(τ ′, λ)

dτ ′
law=

∫ τ

0

χ(τ − τ ′, λ)dτ ′ =
∫ τ

0

χ(τ ′, λ)dτ ′. (4.18)

This gives

B(τ, λ) law=
∫ τ

0

χ(τ ′, λ)dτ ′. (4.19)

It follows from the last relation that, if
∫ τ

0 χ(τ ′, λ)dτ ′ converges in probability
to a random value A(λ),
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lim
τ→∞

∫ τ

0

χ(τ ′, λ)dτ ′ = A(λ), (4.20)

then the pdf ε(r;λ) of the random valueA(λ), defined by (4.10), coincides with the
following limit

ε(r;λ) := lim
τ→∞

ε(r;λ, τ), (4.21)

where ε(r;λ, τ) is the pdf of the solution B(τ, λ) to the stochastic equation (4.12).
A standard result of the theory of stochastic processes is that ε(r;λ, τ) satisfies the
diffusion equation

∂ε

∂τ
+
∂ε

∂r
+ (1 + λ) · ∂(rε)

∂r
=
∂2(r2ε)
∂r2

, ε(r;λ, 0) = δ(r). (4.22)

Defining the stationary probability flux

Ω(r;λ) = [1 + (1 + λ)r] ε(r, λ) − d[r2ε(r;λ)]
dr

, (4.23)

then, the limiting pdf (4.21), if it exists, must be the solution to the stationary
equation

Ω(r, λ) = Ω∞ = const., (4.24)

where Ω∞ is the value of the probability flux at infinity. It is easy to show that, if
λ < 0, then (4.24) with (4.23) has a non-degenerate solution, corresponding to a
zero flux Ω∞ = 0. This solution reads:

ε(r, λ) =
1

Γ (|λ|)

(
1
r

)1−λ

exp
(
−1
r

)
, λ < 0. (4.25)

Recall that ε(r, λ) is the pdf of the random value A(λ) given by (4.10).
We can now resolve the paradox introduced at the beginning of this section and

justify the use of the term “stochastically decaying” in reference to the GBM in the
case λ < 0. In this goal, we note that A(λ) has the transparent geometrical sense
of being the random area under the GBM realization χ(τ, λ) (see Fig. 4.2). The
existence of the non-degenerate pdf (4.25) then means that the random area under
the realization χ(τ, λ < 0) is almost surely finite which implies that χ(τ, λ < 0)
decays faster than 1/τ as τ → ∞.

4.3 Geometrically Transparent Definitions of Stochastically
Decaying and Growing Processes

In the two previous chapters, we have introduced and referred to the notion of
stochastically decaying (or growing) GBMs defined by the condition c < 0 (c > 0).
In the previous section, we discussed the finiteness of the areas of the domains
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Fig. 4.2 A plot of one realization of the balanced GBM χ(τ, λ = −1) defined in (2.17), illustrat-
ing the stochastic decay. Although the mean value of a balanced GBM is constant so that the mean
area under its realization is equal to infinity, the random area under any realization of balanced
GBMs is almost surely finite

delineated by the trajectories of the realizations of stochastically decaying GBMs.
This suggests the following more geometrically transparent and precise definition
of stochastically decaying and growing processes.

Definition 4.3.1. A non-negative diffusion process {S(t)}t∈R+ is stochastically
decaying if the area of the domain under its trajectory is almost surely finite:

Pr
{∫ ∞

0

S(t)dt <∞
}

= 1. (4.26)

Consider as an example the case of the balanced GBM (λ = −1). As fol-
lows from expression (4.25), the pdf of the random areas under the realizations
of balanced GBM samples χ(τ, λ = −1) is equal to

ε(r, λ = −1) =
1
r2

exp
(
−1
r

)
. (4.27)
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The mean of this distribution does not exist in compliance with the balance condition

E[χ(τ,−1)] = 1 ⇒ E[A(−1)] =
∫ ∞

0

E[χ(τ,−1)]dτ = ∞. (4.28)

Nevertheless, as shown in the previous section, the area under χ(τ, λ = −1) is
almost surely finite, so that the balanced GBM is stochastically decaying.

We have already remarked that the pdf (4.27) expresses a kind of Zipf’s law
for the total tax revenue T defined by expression (4.8), when the behavior of the
firm’s asset value obeys the balanced Gibrat’s law. Specifically, the complementary
cdf (survival distribution) of the random areas under realizations χ(τ,−1) of the
balanced GBM is given by

∫ ∞

r

ε(r,−1)dr = 1 − exp
(
−1
r

)
, (4.29)

and decays as � 1/r for r � 1.
Relation (2.23) implies that the finiteness of the area under realizations of the

GBM χ(τ, λ < 0) is equivalent to the finiteness of the area under the inverse of
the realizations of the diffusion process χ(τ, λ > 0). This suggests a geometrically
transparent notion of stochastically growing processes:

Definition 4.3.2. A positive diffusion process {S(t)}t∈R+ is stochastically grow-
ing if

Pr
{∫ ∞

0

dt

S(t)
<∞

}
= 1. (4.30)

4.4 Majorant Curves of Stochastically Decaying Geometric
Brownian Motion

In order to obtain a deeper understanding of Zipf’s law (3.27) for the mean steady-
state density g(s) given by (3.18) of firm’s asset values, we explore in more detail
the statistical properties of the realizations of the GBM defined by (2.11).

Definition 4.4.1. Given a diffusion process {S(t)}t∈R+ , the mappingM(t, p): R+×
(0, 1) �→ R is called a majorant curve at probability level p if

Pr [S(t) < M(t, p); ∀t ∈ [0,∞)] = p. (4.31)

For the Wiener process, a particularly useful quantity is the probability that the
process never touches the linearly growing boundary:

P (x, V ) := Pr{bW (t) < lnx+ vt|t ∈ [0,∞)}, x > 1, v > 0. (4.32)
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We have introduced the dimensionless parameter

V := vtb, (4.33)

where tb is defined in (2.18). It is well-known (see, for instance, Borodin and
Salminen, 2002, p. 251) that

P (x, V ) = 1 − x−V . (4.34)

In view of the statistical symmetry of the Wiener process, the following inverse
relationship is true:

Pr{bW (t) > lnx− vt|t ∈ [0,∞)} = P (x,−V ), x < 1, v > 0. (4.35)

With reference to the firm’s current asset value (2.9), expression (4.32) with
(4.34) means that there is a family of majorant curves

M(τ, p|V ) := s0

(
1

1 − p

)1/V

e(λ+V )τ , V > 0, (4.36)

such that, with a given probability p, the firm’s current asset value S(t) will never
exceed the majorant curve (4.36).

In the case of the stochastically decaying GBMs (λ < 0) under discussion, one
may also choose λ+ V to be negative so that the majorant curve (4.36) is exponen-
tially decaying. In particular, half of all realizations of the balanced (λ = −1) GBM
defined by (2.11) are situated under the majorant curve

M(τ, 1/2 |1/2) = 4e−τ/2. (4.37)

A plot of this exponentially decaying curve, and one example from half of the real-
izations of the GBM (2.11) that always remain beneath the given majorant curve,
are depicted in Fig. 4.3.

4.5 Maximal Value of Stochastically Decaying Geometric
Brownian Motion

Let us rewrite expression (4.36) in another form

M = s · e(λ+V )τ , (4.38)

where s > s0 is the maximal value (if λ < 0, V < |λ|) of the majorant curve, which
is related to the probability level p by the equality

s = s0

(
1

1 − p

)1/V

. (4.39)
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Fig. 4.3 Plots of the exponentially decaying majorant (4.37) and one example from half of the
realizations of the balanced GBM (2.11) that are always beneath the majorant curve (4.37)

One may interpret this equality, for given s and V , as an equation in p. An obvious
solution to this equation is

p = p+(s, s0, V ) = 1 −
(s0
s

)V

, s > s0. (4.40)

For the case V = −λ (λ < 0), the r.h.s. of the last relation has a transparent
geometrical interpretation. Indeed, by replacing V = −λ in the r.h.s. of equality
(4.38), we find that the majorant curve reduces to the constantM = s. This means
in turn that

P+(s, s0, λ) := p+(s, s0,−λ) = 1 −
(s0
s

)−λ

, s > s0, (4.41)

is the cdf of the maximal values

S+ := max
t∈[0,∞)

S(t) (4.42)

over realizations of stochastically decaying asset value S(t)’s (for the case under
discussion characterized by λ < 0). In other words,
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P+(s, s0, λ) = Pr{S+ < s}. (4.43)

The corresponding complementary cdf is equal to

Q+(s, s0, λ) := 1 − P+(s, s0, λ) =
(s0
s

)−λ

, s > s0, λ < 0. (4.44)

Taking λ = −1 (balanced Gibrat’s law) in (4.44) leads to Zipf’s law as shown in
the previous chapter, together with the result that the complementary cdf of absolute
maximal values of the realizations of the firm’s asset value S(t) obey

Q+(s, s0,−1) =
s0
s
, s > s0. (4.45)

Note in conclusion that one may interpret Q+(s, s0, λ) given by (4.44) as the
probability that the realization S(t) crosses a given level s > s0. In the case λ < 0,
the stochastically decaying realization of the firm’s asset value S(t) necessarily
crosses any level below s0, so we have Q+(s, s0, λ) = 1 for s ∈ [0, s0]. Thus,
the final expression for the probability Q+(s, s0, λ) of crossing any level s > 0 by
the stochastically decaying GBM S(t) is

Q+(s, s0, λ) =

⎧
⎨

⎩
1, 0 < s < s0,
(s0
s

)−λ

, s > s0,
λ < 0. (4.46)

4.6 Extremal Properties of Realizations of Stochastically
Growing Geometric Brownian Motion

For stochastically decaying GBMs (λ < 0), and especially when the balanced
Gibrat’s law λ = −1 holds, the discussion of the previous chapter seems suffi-
cient for substantiating Zipf’s laws (3.27), (4.6), (4.29), (4.45). Nevertheless, to
gain a comprehensive understanding of Zipf’s and related power laws inherent to
diffusion processes obeying Gibrat’s law, we discuss in detail the opposite case of
stochastically growing GBMs, corresponding to λ > 0.

We first introduce the notion of a minorant curve

Definition 4.6.1. Given a diffusion process {S(t)}t∈R+ , the mappingm(t, p): R+×
(0, 1) �→ R is called a minorant curve at probability level p if

Pr [S(t) > m(t, p); ∀t ∈ [0,∞)] = p. (4.47)

Expressions (4.35) with (4.34) imply that one can define minorant curves

m(τ |V ) := se(λ−V )τ , s < s0, (4.48)
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such that, with probability

p−(s, s0, V ) := 1 −
(
s

s0

)V

, s < s0, (4.49)

the current asset value S(t) will never touch the minorant curve defined by (4.48).
If we choose 0 < V < λ, then the minorant curve (4.48) is exponentially growing.
In particular, half of the realizations of the GBM (2.11), corresponding to λ = 1,
are always above the minorant curve

m(τ, 1/2) = 0.25eτ/2. (4.50)

A graphical representation of this exponentially growing curve, and one example
from half of the realizations of the stochastically growing GBM that are always
larger than the given minorant curve, are depicted in Fig. 4.4.

Substituting V = λ in (4.48) and (4.49), we obtain the cdf

Q−(s, s0, λ) =
(
s

s0

)λ

, 0 < s < s0, λ > 0, (4.51)
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Fig. 4.4 Plot of the exponentially growing minorant curve (4.50), and one example among half
of the realizations of the stochastically growing GBM (2.11) corresponding to λ = 1, which are
always larger than the mentioned minorant curve
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of the minimum values of the process S(t) defined by (2.10):

S− := min
t∈[0,∞)

S(t). (4.52)

InterpretingQ−(s, s0, λ) as the probability that the diffusion process S(t) (2.10)
crosses a given level s, and taking into account that for the case under inspection
(λ > 0), the diffusion process S(t) necessarily crosses any level s > s0, we finally
obtain

Q−(s, s0, λ) =

⎧
⎪⎨

⎪⎩

(
s

s0

)λ

, 0 < s < s0,

1, s > s0,

λ > 0. (4.53)

4.7 Quantile Curves

It is clear from the above discussion that the properties of stochastically growing and
stochastically decaying processes provide important insights for understanding the
dependence on s of the mean density g(s, t) of firm sizes. This motivates an inves-
tigation of more detailed properties of the realizations of stochastically growing
and stochastically decaying processes. In this section, we consider some transparent
characteristic of stochastic processes, embodied by the notion of quantile curves,
which provide additional insight on the behavior of realizations of the GBM S(t)
defined by (2.9).

Let us first introduce the notion of quantile curves.

Definition 4.7.1. Given a diffusion process {S(t)}t∈R+ , the mapping Sq(t): R+ �→
R is called a quantile curve at probability level q if

∀t, Pr [S(t) > Sq(t)] = q. (4.54)

In order to understand the underpinning of this notion of quantile curves for
an arbitrary stochastic process S(t), consider again its complementary cdf F̄ (s; t)
defined by (4.1). After integrating it over some time interval [t1, t2], we obtain

∫ t2

t1

F̄ (s; t)dt = E

[∫ t2

t1

1(S(t) − s) dt
]
. (4.55)

The integral

T̃ (s, t1, t2) :=
∫ t2

t1

1(S(t) − s) dt (4.56)

in the r.h.s. of (4.55) has the simple geometric meaning of being the total random
duration T̃ (s, t1, t2) of the time intervals during which a given realization of the
stochastic processS(t) remains above the level swithin the total interval t ∈ [t1, t2].
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Correspondingly, both parts of equality (4.55) are equal to the expected value of the
total duration of the mentioned time intervals

∫ t2

t1

F̄ (s; t)dt = T (s, t1, t2), (4.57)

where
T (s, t1, t2) := E[T̃ (s, t1, t2)]. (4.58)

Consider now some function Sq(t), which, for any time t, satisfies the equation

F̄ [Sq(t); t] = q, (4.59)

for some given value q ∈ (0, 1). Integrating (4.59) over the interval t ∈ [t1, t2]
yields ∫ t2

t1

F̄ (Sq(t); t)dt = q · (t2 − t1). (4.60)

The integral in the l.h.s. of (4.60) is the expected value Tq(x) of the total duration of
time intervals, belonging to the global interval [t1, t2], within which the realizations
of the stochastic process S(t) remain above the curve Sq(t). Thus, one may rewrite
the last relation in the form

Tq(s) :=
∫ t2

t1

F̄ (Sq(t); t)dt = q · (t2 − t1). (4.61)

In other words, the function Sq(t) is such that, for any time interval (t1, t2), the
fraction of expected time, during which the realization of the stochastic process
S(t) remains above level s, is equal to q. It is natural to refer to such functions as
quantile curves.

Let us determine the quantile curves for the GBM S(t) given by (2.9), whose
distribution f(s; t) is log-normal

f(s; t) =
1

s
√

2πt b
exp

[
− 1

2b2t

(
ln

(
s

s0

)
− ct

)2
]
. (4.62)

Correspondingly, its complementary cdf is equal to

F̄ (s; t) =
∫ ∞

s

f(s′, t)ds′ =
1
2

(
1 + erf

[
1√
2t b

ln
(s0
s
ect

)])
.

Thus, the quantile curves of the GBM S(t) are given by

Sq(t) = s0 e
ct−p(q)

√
2t b = s0 e

λτ−2p(q)
√

τ , τ =
b2t

2
, λ =

2c
b2
, (4.63)
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where p(q) is the solution to the equation

erf(p) = 2q − 1.

Notice that, if q is close to 1, then, at almost all time, the realizations of the stochastic
process S(t) remain above the quantile curve Sq(t), as expected. In this sense, one
can say that the quantile curves for q → 1 constitute weak versions of the minorant
curves discussed previously. Analogously, for q close to zero, the quantile curves
are weak versions of the majorant curves. Plots of some quantile curves for stochas-
tically growing (c > 0) and stochastically decaying (c < 0) geometric Brownian
motions are depicted in Figs. 4.5 and 4.6.

Figure 4.7 presents a quantile curve Sq(t) for λ = −1, q = 0.1, together with a
typical realization of the corresponding stochastically decaying process S(t), such
that the expected fraction of time intervals, for which S(t) > Sq(t), is equal to 0.1.
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Fig. 4.5 Plots of “minorant” quantile curves for stochastically growing (c = b2/2) GBM S(t),
for s0 = 1 and for q = 0.8, 0.85, 0.9. These large values of q imply that the realizations of
stochastically growing GBM S(t) spend most of their time above these growing quantile curves,
at least for large times. A typical realization of the corresponding stochastically growing process
S(t) is shown
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Fig. 4.6 Plots of “majorant” quantile curves for stochastically decaying (c = −b2/2) GBM
S(t), for q = 0.1, 0.15, 0.2. Realizations of the stochastically decaying GBM S(t) spend most
of their time underneath these decaying quantile curves at large times. A typical realization of the
corresponding stochastically decaying process S(t) is shown

4.8 Geometric Explanation of the Steady-State Density
of a Firm’s Asset Value

The properties of GBMs discussed above allow us to present new transparent geo-
metrical interpretations of the expressions (3.24), (3.25) for the steady-state mean
density g(s) of a firm’s asset value given by (3.18). In this goal, suppose for a while
that a firm’s asset value S(t) obeys the deterministic initial value problem

dS(t)
dt

= c [S(t)] , S(0) = s0. (4.64)

In this case, the pdf of the firm’s asset value is singular

f(s; t) = δ [S(t) − s] . (4.65)

Below we will suppose for simplicity that c(s) is a smooth function, strictly negative
for s � s0 or strictly positive for s � s0.
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Fig. 4.7 Plots of the quantile curve Sq(t) for λ = −1, q = 0.1, and a typical realization of the
corresponding stochastically decaying process S(t)

Substituting (4.65) into the r.h.s. of expression (3.18) for the steady-state density
of firm’s asset values, and using both (4.64) and the following property of delta
functions

δ [S(t) − s] =
∣∣∣∣
dS(t∗)
dt∗

∣∣∣∣
−1

δ(t− t∗), (4.66)

where t∗ is the root of the equation S(t) = s, we obtain

g0(s) =
ν

c(s)
1(s− s0). (4.67)

We introduced the subscript “0” to distinguish the deterministic growth steady-state
density g0(s) from the random growth steady-state mean density g(s).

We supposed above that c(s) > 0 for any s > s0. Similarly, if c(s) < 0 for any
s < s0, then

g0(s) =
ν

|c(s)|1(s0 − s). (4.68)

The geometrical meaning of these two relations (4.67) and (4.68) is obvious: the
greater the absolute value of the velocity c(s) when crossing some given level s,
the smaller the steady-state density g0(s). In other words, the steady-state density
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g0(s) is the inverse of the absolute value of the velocity at crossing level s. Looked
at in another way, the unit step functions in (4.67) and (4.68) take into account that,
if c > 0, then S(t) never crosses any level s < s0 and vice versa. Substituting
c(s) = c · s in these expressions, we obtain in particular that

g0(s) =
ν

|c|s (4.69)

for {
s > s0 if c > 0 (λ > 0),

0 < s < s0 if c < 0 (λ < 0).
(4.70)

Amazingly, g0(s) given by (4.69) coincides with the corresponding parts of the
mean densities (3.24), (3.25). One can interpret this fact in the sense that, within
the intervals defined in (4.70), the stochastic component of the asset value’s S(t)
behavior does not influence the shape of the mean density g(s).

In contrast, when the deterministic densities (4.67) and (4.68) are equal to zero,
the stochastic component of S(t) plays the crucial role. Let us determine it for the
case when the density corresponds to the stochastically decaying GBM of firm’s
asset values given by (3.24). The density g(s) is then transformed into

g(s) =
ν

|c|sQ+(s, s0, λ), λ < 0, (4.71)

where the unit step function 1(s0 − s) in the r.h.s. of expression (4.68), which holds
in the case where the deterministic drift dominates, is replaced by the probability
Q+(s, s0, λ) given by (4.46) that the diffusion process S(t) crosses a given level s.

Analogously, expression (3.25) may be rewritten in the geometrically transparent
form as

g(s) =
ν

|c|sQ−(s, s0, λ), (4.72)

where Q−(s, s0, λ) is the probability given by (4.53) that a stochastically growing
process S(t) defined by (2.10) crosses a level s > 0.

Therefore, both steady-state mean densities (3.24) and (3.25) have a clear struc-
ture: they are equal to the product of two factors. The first one is the “deterministic”
density g0(s) (4.69), taking into account the regular drift of the GBM S(t) (2.10).
The second one is the probabilityQ±(s, δ) that the diffusion process S(t) crosses a
given level s. For the case of balanced GBMs S(t), and for s > s0, both of the afore-
mentioned factors g0(s) andQ+(s, s0, λ) are proportional to 1/s, thus contributing
equally to Zipf’s law g(s) ∼ 1/s2.

Having developed an intimate understanding of Zipf’s law and its deviations in
the presence of a flow of firm births, the next chapter adds a key ingredient, namely
the fact that firms do not live forever but may disappear when their sizes become
smaller than a minimum viable threshold. Chapter 7 will examine the impact of an
addition channel of firm demises due to abrupt shocks, such as those resulting from
operational risks.



Chapter 5
Exit or “Death” of Firms

5.1 Empirical Evidence and Previous Works
on the Exit of Firms

Many theoretical models neglect the possibility that firms disappear. However, firms
do not continuously grow. They undergo transient periods of decay that are some-
times persistent and then surrender to their decline which may ultimately lead to
their exit from business.

Referring as in Chap. 2 to Bonaccorsi Di Patti and Dell’Ariccia (2004), the yearly
rate of death of Italian firms is, on average, equal to 5.7% with a maximum of about
20% for some specific industry branches. Knaup (2005) examined the business sur-
vival characteristics of all establishments that started in the United States in the late
1990s when the boom of much of that decade was not yet showing signs of weak-
ness, and found that, if 85% of firms survive more than one year, only 45% survive
more than four years. Brixy and Grotz (2007) analyzed the factors that influence
regional birth and survival rates of new firms for 74 West German regions over a
10-year period. They documented significant regional factors as well as variability
in time: the 5-year survival rate fluctuates between 45% and 51% over the period
from 1983 to 1992.

Bartelsman et al. (2003) confirmed that a large number of firms enter and exit
most markets every year in a group of ten OECD countries: data covering the first
part of the 1990s show the firm turnover rate (entry plus exit rates) to be between
15% and 20% in the business sectors of most countries: i.e., a fifth of firms are
either recent entrants, or will close down within the year. In the CRSP database
of 26,800 firms quoted on the North American markets covering the period from
January 1926 to December 2006 (http://www.crsp.com/), Daniel et al. (2008) found
that 25% of names disappear after 3.3 years, 75% of names disappear after 14 years
and 95% of names disappeared after 34 years.1 Using an exhaustive list of Japanese
bankruptcy in 1997, Fujiwara (2004) showed that the distribution of total liabilities

1 Disappearance from the CRSP database is not uniquely associated with the exit of a firm in the
sense used in this book, but may result from merger and acquisition, or delisting. Section 10.1
briefly discuss a model of merger and acquisition which generalizes the GBM model.

A. Saichev et al., Theory of Zipf’s Law and Beyond,
Lecture Notes in Economics and Mathematical Systems 632,
DOI 10.1007/978-3-642-02946-2 5, c© Springer-Verlag Berlin Heidelberg 2010
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of bankrupted firms in the high debt range also obeys Zipf’s law. While it has been
established that a first-order characterization for firm death involves lower failure
rates for larger firms (Dunne et al., 1988, 1989; Bartelsman et al., 2003), Bartelsman
et al. (2003) also state that for sufficiently old firms, there seems to be no difference
in the firm failure rate across size categories.

To the extent that the empirical literature documents a sizable exit at all size
categories, we suggest that it is timely to study different models with both firm exit
at a size lower bound and due to a size-independent hazard rate.

Simon (1960) as well as Steindl (1965) have considered this stylized fact and
provide a generalization of Simon (1955) where the decline of a firm and ultimately
its exit is accounted for when its size reaches zero. Both Simon’s and Steindl’s
models involve a discrete scale of firm sizes since, for each time interval, the growth
of a firm is restricted to one size unit up or down. In Simon (1960)’s model, the rate
of firm’s exits exactly compensates for the flow of firm’s births so that the economy
is stationary and the steady-state distribution of firm sizes exhibit the same upper tail
behavior as in Simon (1955). In contrast, Steindl (1965) includes births and deaths
but within an industry with a growing number of firms. A steady-state distribution is
obtained whose tail follows a power law with an exponent which depends on the net
entry rate of new firms and on the average growth rate of incumbent firms. Zipf’s
law is only recovered in the limit where the net entry rate of new firms goes to zero.

Both models rely on the existence of a minimum size below which a firm runs
out of business. This hypothesis corresponds to the existence of a minimum efficient
size below which a firm cannot operate, as is well established in economic theory.
However, there may be in general more than one minimum size as the exit (death)
level of a firm has no reason to be equal to the size of a firm at birth. In the afore
mentioned models, these two sizes are assumed to be equal, while there is a priori
no reason for such an assumption. Moreover, this minimum size is taken to be the
same for all firms. Again, this assumption is counterfactual and needs to be relaxed.

In addition to the exit of a firm resulting from its value decreasing below a certain
level, it sometimes happens that a firm encounters financial troubles while its asset
value is still fairly high. Recent striking examples are Enron Corp. and Worldcom
whose market capitalization were still high (actually the result of inflated total asset
value of about $11 billion for Worldcom and probably much higher for Enron) when
they bankrupted. As a consequence, it is also necessary to account for the disappear-
ance of firms whose total asset values are still far from the lower limit determining
the smallest efficient size. Gabaix (1999) considers an analogous situation (at least
from a mathematical perspective) and suggests that it may have an important impact
on the shape of the distribution of firm sizes.

The above empirical facts show that one should enrich the model describing the
stochastic behavior of any given asset value to take into account the possible death
of firms. This chapter is devoted to discussing various aspects of the dynamics of
firm’s asset values modeled by the stochastically decaying GBM (λ < 0), in the
presence of death that occurs when a firm asset value becomes smaller than a given
pre-defined level s1.
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5.2 Life-Span Above a Given Level

Before implementing the actual exit of firms whose sizes become smaller than s1,
one can introduce the concept of a finite life-span in an otherwise infinitely lived
decaying GBM (λ < 0) defined by (2.9), as being the time it takes for the firm to
see its size shrink below a small level s1 > 0.

While the statistical average of the total number of firms,
∫∞
0
g(s)ds, where g(s)

is the steady-state mean density given by Proposition 3.4.1 is infinite, it turns out
that the mean number of firms whose asset values are larger than any strictly positive
level s1 is finite. Indeed, using the mean steady-state density (3.24) corresponding
to stochastically decaying asset values (λ < 0), we obtain

G(s1) =
∫ ∞

s1

g(s)ds =
ν

|cλ| +
ν

|c| ln
(
s0
s1

)
, 0 < s1 < s0. (5.1)

The cumulative density G(s1) has the transparent meaning of being equal to

G(s1) = νT (s1), (5.2)

where T (s1) is the mean duration of the firm life above level s1. Thus, for the mean
density of firm sizes given by (3.24), the mean life duration above level s1 is finite:

T (s1) =
∫ ∞

s1

g(s)ds =
1

|cλ| +
1
|c| ln

(
s0
s1

)
<∞. (5.3)

In order to more accurately estimate the statistical properties of life durations
above some arbitrary level s1, we formulate the following definition.

Definition 5.2.1. Let some firm be born at time t0 = 0 and let {S(t)}t∈R+ be the
diffusion process describing the evolution of its size. The life duration td(s1) above
level s1 > 0 is the last instant when the firm size exceeds the given level s1.

td (s1) := sup {t ∈ R+ | ∀t′ ≤ t, S(t′) ≥ s1} . (5.4)

Correspondingly, we will call instant td the instant of natural death of the firm under
inspection.

When applied to Gabaix’s context of city sizes, it makes sense to choose s1 = s0,
interpreting s0 as a minimal size above which some settlement gains the status of
city, while below s0 it loses that status. In accordance with the above definition, any
city, even if it has been very large in the past, will never be qualified as city for any
t > td. Figure 5.1 illustrates the definition of a firm’s (city’s) natural death.

In the context of firms, the above definition of the life duration td can be inter-
preted as the time beyond which a procedure such as chapter 11 of the United States
Bankruptcy Code will not revive the firm. When a troubled business is unable to ser-
vice its debt or pay its creditors, usually because its assets become too low, the firm
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Fig. 5.1 A plot of one realization of the balanced GBM χ(τ,−1) defined by (2.17), illustrating
the notions of life duration above a given level and the corresponding instant of natural death. Here
the level of birth and death are identical and are equal to 1. The arrow points out the dimensionless
value of the instant of natural death τd = td/tb

or its creditors can file with a federal bankruptcy court for protection. One of these
procedures is the chapter 11 filing, which is usually an attempt to stay in business
while a bankruptcy court supervises the reorganization of the company’s contrac-
tual and debt obligations. The firm’s asset value depicted in Fig. 5.1 exhibits several
intervals, the largest one around the reduced time τ ≈ 4, during which a chapter 11
filing would be needed to ensure the survival the firm.

5.3 Distribution of Firm’s Life Durations Above a
Survival Level

Let us prove that, for stochastically decaying GBMs, the life duration td(s1) above
any level s1 > 0 is almost surely finite. This is equivalent to the fact that the
complementary cdf F̄d(t) of the random life durations, defined by

F̄d(t) := Pr{td(s1) > t} (5.5)

tends to zero as t→ ∞.
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Using the Markovian properties of the firm’s asset value S(t) defined in (2.9),
one can express the probability that the random instant td(s1) of the firm’s death is
smaller than a given t in the form

Pr{td(s1) ≤ t} = Fd(t) =
∫ s1

0

f(u; s0, t)P+(s1, u, λ)du, (5.6)

where P+(s1, u, λ) given by (4.41) is the probability that if, at a given time t, the
diffusion process S(t) defined by (2.9) has the value u < s1, then for any t′ > t the
process S(t′) will not exceed the level s1. Calculating the integral (5.6), one gets

F̄d(t) = 1 − 1
2

(
erfc

[
1

2
√
t/tb

ln
(
s0
s1
e

λ t
tb

)]

−
(
s1
s0

)λ

erfc

[
1

2
√
t/tb

ln
(
s0
s1
e
−λ t

tb

)])
. (5.7)

It is easy to show from expression (5.7) that, if the GBM S(t) is stochastically
decaying (λ < 0), then F̄d(t) converges to zero exponentially fast as t→ ∞.

Corresponding to (5.7), the pdf of firm’s dimensionless life duration τd(s1) =
td(s1)/tb above a given level s1 is equal to

fd(τ) =
|λ|

2
√
πτ

exp

[
− 1

4τ

(
ln
s0
s1

+ λτ
)2

]
, λ < 0. (5.8)

In particular, if the initial size coincides with the level of death (s1 = s0), then one
gets

fd(τ) =
|λ|

2
√
πτ

exp
(
−λ

2

4
τ

)
. (5.9)

Plots of the pdf given by (5.8) of life durations for different ratios of s0/s1 for the
case of the balanced Gibrat’s law (λ = −1) are depicted in Fig. 5.2.

5.4 Killing of Firms upon First Reaching a
Given Asset Level from Above

In the previous section, we have proved that, if one applies the status of firm only to
those which have asset values greater than or equal to some qualified amount s1 > 0
then, if λ < 0 and in particular for the balanced Gibrat’s law model (λ = −1),
each firm almost surely has a finite life duration td(s1) < ∞. However, as we did
not specified any dismantling or disrupting process, the firm actually still exists,
possessing an asset value smaller than s1 (S(t) < s1 for any t > td). One might
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Fig. 5.2 Plots of the pdf (5.8) of life durations, defined as the last instant when the firm asset
value was above a given level s1 for the case of balanced Gibrat’s law and for different ratios of s0

and s1: s1 = s0; s1 = s0/2 and s1 = s0/10

say that the firm survives with an insignificant asset value, never exceeding again
the marginal level s1.

In contrast, in this and the following sections, we consider another realistic
situation such that

Assumption 4 At the first crossing of the given level s1 which is considered to be
insufficient for further activity, the firm is dismantled.

Figure 5.3 makes clear the distinction between the killing process of the firm when
its value becomes smaller than some threshold s1 for the first time, and the demise
of the firm occurring in general at a later time beyond which the firm, which is still
allowed to survive, never reaches again the level s1.

In order to take into account the killing of a firm when it first crosses level s1,
we make use of the statistical description of the truncated Wiener process with drift
Y (t, c, b) (2.6), which is killed when first crossing a given level −y1, where

y1 := ln
(
s0
s1

)
, 0 < s1 < s0. (5.10)



5.4 Killing of Firms upon First Reaching a Given Asset Level from Above 65

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

τ

S
(t

)

instant τk

of killing of firm

instant τd

of death of firm

Fig. 5.3 An illustration comparing killing and natural death instants at a given level s1 (taken
to be half of the initial value s0 = 1) for the same realization of the balanced GBM (2.9). The
“killing” time τk corresponds to the first crossing of the level s1 from above. The instant τd is the
last time that the firm was found above level s1

It is known that the pdf h(y; t) of such truncated Wiener process with drift satisfies
the diffusion equation

∂h(y; t)
∂t

+ c
∂h(y, t)
∂y

=
b2

2
∂2h(y, t)
∂y2

(5.11)

with the following initial and absorbing boundary conditions

h(y; t = 0) = δ(y), h(y = −y1; t > 0) = 0. (5.12)

Solving the initial-boundary problem (5.11), (5.12), by the reflection method (Morse
and Feshbach, 1953), one gets

Proposition 5.4.1. The pdf of the truncated Wiener process Y (t, c, b), solution to
the mixed initial-boundary problem (5.11)–(5.12) is

h(y; t) = φ(y; t) − e−λy1 φ(y + 2y1; t), (5.13)

where the Gaussian distribution φ(y; t) is described by expression (2.8).
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In turn, given Proposition 5.4.1, one can obtain the pdf f(s; s0, t) of the firm’s
asset value S(t), taking into account the killing of the firm upon its asset value first
touching the level s1, using the formula

f(s; s0, t) =
1
s
h

[
ln

(
s

s0

)
; t
]
, (5.14)

which follows from the functional relation (2.10) with (2.11) between the Wiener
process with drift Y (t, c, b) and the GBM S(t).

To better realize the statistical meaning of the pdf f(s; s0, t) given by (5.14),
consider its transparent interpretation. Imagine that there were N � 1 firms born
at the same instant t0 = 0. Then, Nf(s; s0, t) describes the mean density of the
firm’s asset values, taking into account their killing upon first touching the level s1.
In particular, the integral

∫ ∞

s1

f(s; s0, t)ds =
∫ ∞

−y1

h(y; t)dy, (5.15)

is equal to the fraction of the originalN firms surviving until the current instant t.

5.5 Life-Span of Finitely Living Firms

Note that the fraction of surviving firms given by (5.15) has a clear probabilistic
interpretation. It provides the complementary cdf of life durations of the firms

F̄k(t) := Pr{tk(s1) > t}, (5.16)

where tk(s1) is the random instant of a firm’s exit. Recall that Fig. 5.3 makes
clear the difference between the random instant tk(s1) of a firm’s killing upon first
touching the level s1, and the instant td(s1) of firm’s natural death at the same
level s1.

Substituting expression (5.13) into the last integral of equality (5.15), and calcu-
lating the integral analytically, we obtain (with the notation τ = t/tb)

F̄k(τ) =
1
2

(
erfc

[
1

2
√
τ

ln
(
s1
s0
e−λτ

)]

−
(
s1
s0

)λ

erfc

[
1

2
√
τ

ln
(
s0
s1
e−λτ

)])
. (5.17)

For large τ = t/tb, expression (5.17) reduces to the accurate asymptotic

F̄k(τ) = e−λ2τ/4 2
λ2τ

√
πτ

(
s0
s1

)−λ/2

ln
(
s0
s1

)
. (5.18)
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The corresponding pdf of the dimensionless life-span of finitely living firms is

fk(τ) =
ln

(
s0
s1

)

2τ
√
πτ

exp

[
− 1

4τ

(
ln
s0
s1

+ λτ
)2

]
. (5.19)

Note that fk(τ) is related to the pdf fd(t) given by (5.8) of life durations above a
given level s1 by the following elegant relation

fd(τ) =
τ

E[τk]
fk(τ), (5.20)

where

E[τk] =
∫ ∞

0

fk(τ)dτ = − 1
λ

ln
(
s0
s1

)
(λ < 0) (5.21)

is the mean life duration of killed firms.

5.6 Influence of Firm’s Death on the Balance Condition

We have introduced above the natural balance condition (Definition 2.5.1), which
one may interpret as a consequence of the invariance of the statistical average of the
overall asset value of firms established at the same original instant t0. Because any
firm in this model is statistically equivalent to any other one, the balance condition
reduces to

E[S(t)] = const., (5.22)

where S(t) is the current asset value of some firm which was born at instant t0 = 0.
Remember also that, if S(t) obeys the pure Gibrat’s law, such that the life of each
firm is infinitely long, then equality (5.22) is valid if λ = −1.

One might assume that the inclusion of firm’s death causes the balance condition
to break, because the fraction of surviving firms out of firms which were born at the
same original instant t0 = 0 should decay with the growth of time t. It is worthwhile
exploring the influence of firm’s exits on the behavior of the firm’s mean asset value
E[S(t)], revealing whether the balance condition remains valid or not in the presence
of firm’s killing.

It is easy to calculate analytically the moments of the asset value S(t) of a firm
which has still not been killed at current instant t

E[Sm(t)] =
∫ ∞

s1

smf(s; s0, t)ds. (5.23)

Substituting here the pdf (5.14) [with (5.13)], we obtain (in reduced time)

E[Sm(t)] = E0[Sm(t)]K(τ, s0, s1, λ), (5.24)
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where
E0[Sm(t)] = sm0 e

m(m+λ)t (5.25)

is the corresponding moment of the pure GBM S(t) given by (2.9), while the last
factor

K(τ, s0, s1, λ) =
1

2

(
erfc

[
1

2
√

τ
ln

(
s1

s0
e−(λ+2m)τ

)]

−
(

s1
s0

)λ+2m
erfc

[
1

2
√

τ
ln

(
s0
s1

e−(λ+2m)τ
)]) (5.26)

takes into account the influence of firm’s deaths at a given level s1. In particular, the
average of the current firm’s asset values, for the balanced case λ = −1, is equal to

E[S(t)] =
1
2

(
s0 erfc

[
1

2
√
t
ln

(
s1
s0
e−t

)]

−s1 erfc
[

1
2
√

t
ln

(
s0
s1
e−t

)])
.

(5.27)

This expression predicts that, with the growth of the reduced time τ , the average of
the firm’s asset values (5.27) converges to a nonzero value

E[S(t = ∞)] = s0 − s1. (5.28)

This convergence is illustrated in Fig. 5.4. This means in particular that, asymptoti-
cally, the killing of firms does not break the balance condition. In other words, the
statistical average of the overall asset value of firms established at the same time is
asymptotically constant.

Inasmuch as the current fraction F̄k(τ) of surviving firms tends to zero, the
asymptotic balance condition (5.28) means that the average asset value of firms
that have survived until current time τ ,

E[S(t)|surviving firms] = E[S(t)]/F̄k(t), (5.29)

grows exponentially as ∼ eτ/4, for large τ � 1 for the case λ = −1, as illustrated
in Fig. 5.5.

5.7 Firm’s Death Does Not Destroy Zipf’s Law

It can be seen from the discussion of the previous section that it is possible to take
into account the death of firms at a given level s1 > 0 in the framework of stochastic
growth models of firms asset values using Gibrat’s law. We now consider in detail
the mean density of firm’s asset values taking into account the killing of firms upon
first touching a given level s1. It will be seen that firm’s death does not destroy
Zipf’s law.
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Fig. 5.4 Plots of the current mean asset value S(t) (in case s0 = 1), taking into account the
killing of firms at a given level s1, for the balanced condition λ = −1

Let us find the steady-state mean density of firms killed upon first touching level
s1 (0 < s1 < s0) according to Definition 3.3.1. The proof of the existence of
the steady-state mean density in the presence of the exit level (Assumption 4) is
the same as in its absence (see the derivation of Proposition 3.3.1). It is therefore
omitted. Thus, substituting (5.14)–(5.13) into (3.18), and supposing that λ < 0, we
obtain

Proposition 5.7.1. Under the assumptions of Proposition 3.3.1 and Assumption 4,
a steady-state mean density of firm’s size exists and is such that, for λ < 0,

g(s) =
ν

|c|s

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 −
(
s

s1

)λ

, s1 < s < s0,

(
s

s0

)λ
[
1 −

(
s0
s1

)λ
]
, s > s0,

. (5.30)

It is worthwhile to compare this mean density with the mean density given in the
absence of exit level by Proposition 3.4.1, corresponding to firms whose stochastic
behavior is described by the non-truncated GBM given by (2.10), (2.11). It is seen
that, due to firm’s death at level s1, the lower power tail g(s) ∼ s−1 inherent to
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Fig. 5.5 Plots of the mean asset value of firms that have survived until the current time t (for
s0 = 1 and for the balanced case λ = −1). From bottom to top s1 = 0.1, 0.3, 0.5

the steady-state density (3.24) is absent. On the other hand, for s > s0 both densi-
ties (5.30) and (3.24) possess an upper power tail g(s) ∼ sλ−1 which corresponds
to Zipf’s law for the balanced case λ = −1. Figure 5.6 shows a log-log plot of
the steady-state mean density (5.30) for the balanced case λ = −1, demonstrat-
ing the absence of a lower tail together with the presence of an upper Zipf’s law
tail. Unsurprisingly, the introduction of a mechanism for firm’s killing only dis-
turb the distribution for small s-values, while keeping unchanged the large s power
law tail. It shows that detailed descriptions and understanding of the economic rea-
sons underpinning the existence of a minimum firm size are not relevant for the
explanation of Zipf’s law, at least for large firm sizes.

5.8 Robustness Vis-a-vis the Randomness
of Initial Firm’s Sizes

The previous results are obtained for a fixed size s0 at birth, which is identical
for all firms. Let us now show that the asymptotic power law distribution of firm’s
sizes derived in Proposition 5.7.1 remains valid when taking into account that the
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Fig. 5.6 Log-log plot of the steady-state mean density (5.30) for the balanced case λ = −1 and
for s1 = s0/10. It is seen that the density satisfies Zipf’s law for all s > s0, while firm’s death at
level s1 destroys the lower power tail for s1 < s < s0

initial sizes of firms are not identical, but are randomly drawn from some statistical
distribution. We denote by fs0 the density of the initial firm sizes. The density of a
single firm f(s, t) then solves

∂f(s; t)
∂t

+
∂[a(s)f(s; t)]

∂s
=

1
2
∂2[b2(s)f(s; t)]

∂s2
(5.31)

with the initial condition
f(s; 0) = fs0(s). (5.32)

It is straightforward to show that

f(s; t) =
∫
f0(s; t; s0) · fs0(s0) ds0 = Es0 [f0(s; t; s̃0)] , (5.33)

where f0(s; t; s0) denotes the solution to (5.31) with the initial condition

f0(s; 0; s0) = δ(s− s0). (5.34)
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The steady-state mean density of firm’s size, with a random initial condition, reads

g(s) = ν

∫ ∞

0

f(s;u) du = ν

∫ ∞

0

Es0 [f0(s; t; s̃0)] du, (5.35)

and, provided that we can change the order of the expectation and integration, we get

g(s) = Es0 [g0(s; s̃0)] , (5.36)

where

g0(s; s0) := ν

∫ ∞

0

f0(s;u; s0) du (5.37)

denotes the density of firm’s size for a fixed initial condition s0.
Using Proposition 5.7.1 together with (5.36), we get for λ < 0

g(s) =
ν

|c|s1−λ

[∫ ∞

s

fs0(s0)
(
s−λ − s−λ

1

)
ds0 +

∫ s

s1

fs0(s0)
(
s−λ
0 − sλ1

)
ds0

]

=
ν

|c|s1−λ

[
s−λ Pr (s̃0 ≥ s) − s−λ

1 +
∫ s

s1

fs0(s0)s
−λ
0 ds0

]

=
ν

|c|s1−λ

(
E
[
s̃−λ
0

]
− s−λ

1 + o(s)
)
, as s→ ∞, (5.38)

provided that E
[
s̃−λ
0

]
<∞. Thus

Proposition 5.8.1. Under the assumptions of Proposition 5.7.1, the steady-state
mean density of firm’s size follows a power law with tail index m = |λ| provided
that the distribution of initial firm’s size fs0 admits a finite moment of order |λ|.

Hence, as long as the above mentioned moment condition holds, i.e., as long
as the distribution of initial firm’s sizes is not too fat-tailed, the shape of the mean
distribution of firm’s sizes remains the same as found in absence of heterogeneity of
initial firm sizes.



Chapter 6
Deviations from Gibrat’s Law
and Implications for Generalized Zipf’s Laws

The introduction of a mechanism in which firms die introduces already a devia-
tion from Gibrat’s law for small s-values. Killing firms upon first touching the level
s1 > 0 actually means that the corresponding firm’s asset values S(t) do not obey
strictly Gibrat’s law of proportionate growth. Indeed, when S(t) becomes close
to s1, the possibility of touching s1 arises, and the rate R(t,Δ) given by (2.1)
significantly depends on s1.

In the present chapter, we will discuss in detail another general class of models
in which the stochastic growth process deviates from Gibrat’s law in different ways.
Specifically, we will suppose that S(t) is a diffusion process, obeying the stochastic
equation

dS(t) = a[S(t)]dt+ b[S(t)]dW (t), S(t = 0) = s0, (6.1)

so that the corresponding pdf f(s; t) satisfies the diffusion equation (2.39) and the
initial condition (2.40). Recall that Gibrat’s law of proportionate growth implies
in particular that the coefficients a(s) and b(s) of the stochastic equation (6.1) are
given by relations (2.41), i.e., are proportional to s. However, there is a wide and
recent empirical literature, that suggests that Gibrat’s law does not hold, in particular
for small firms (Reid, 1992; Audretsch, 1995; Harhoff et al., 1998; Weiss, 1998;
Audretsch et al., 1999; Almus and Nerlinger, 2000; Calvo, 2006) See however Lotti
et al. (2003, 2007) for a dissenting view.

Thus, in order to get a more realistic description of the behavior of firm’s asset
values, we have to explore in detail the consequences of possible deviations of the
coefficients a(s) and b(s) from direct proportionality to s, expressed by relations
(2.41). We will quantitatively characterize the deviation from Gibrat’s law of the
stochastic process S(t), satisfying the stochastic equation (6.1), by the ratios

A(s) :=
a(s)
s
, B(s) :=

b(s)
s
. (6.2)

For instance, several groups have reported a nontrivial relationship between the size
S of the firm and the variance [B(S)]2 of its growth rate: B(S) ∼ 1/Sβ with
β(S) ≈ 0.2 is an exponent that weakly depends on S (Stanley et al., 1996; Bottazzi

A. Saichev et al., Theory of Zipf’s Law and Beyond,
Lecture Notes in Economics and Mathematical Systems 632,
DOI 10.1007/978-3-642-02946-2 6, c© Springer-Verlag Berlin Heidelberg 2010
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et al., 2001; Sutton, 2002; Podobnik et al., 2009). Similar results have been found
also for economic variables such as exports, imports, foreign debt and the growth of
the GDP (Lee et al., 1998; Podobnik et al., 2008). We note that such a dependence
has the same qualitative monotonous decay as the semi-geometric Brownian process
(6.78) corresponding to B(s) = b(1 + κ

s ), which is analyzed in details below.
Obviously, the more the ratios (6.2) differ from constants, the stronger the devia-

tions from Gibrat’s law. As suggested by the empirical findings of Lotti et al. (2003,
2007), we will assume in some of the models of non-Gibrat’s diffusion processes
S(t), that the larger S(t) is, the better is the approximation provided by Gibrat’s
law. This means in particular that there is a non-zero finite limit

lim
s→∞

b(s)
s

= b, 0 < b <∞, (6.3)

so that the asymptotic relation

b(s) � b · s, s→ ∞, (6.4)

remains valid.
This assumption (6.3) differs from the prediction of models in which firms are

considered to be aggregates of sub-units of uneven sizes (Fu et al., 2005; Pammolli
et al., 2007; Buldyrev et al., 2007a,b; Riccabonia et al., 2008; Sakai and Watanabe,
2009). Assuming proportional growth in both the number of units in firms and their
sizes, Fu et al. (2005) showed that the size-variance relationship is not a true power
law with a single well-defined exponent but undergoes a slow crossover from β = 0
for S → 0 to β = 1/2 for S → +∞ (Riccabonia et al., 2008).

The derivations of this chapter provide a general framework to treat the distribu-
tion of firm sizes, for arbitrary forms of A(s) and B(s) as defined in (6.2).

6.1 Generalized Brownian Motions

6.1.1 Statistical Properties of Generalized GBM

To better understand the consequences resulting from the deviations of the stochas-
tic behavior of firm’s asset value S(t) from the geometric Brownian motion, we
consider here the stochastic process

S(t) = ω[Y (t)], (6.5)

equal to an arbitrary function ω(·) of the Wiener process with drift Y (t) defined
by (2.6)

dY (t) = c dt+ b dW (t), Y (0) = 0.
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We will suppose in what follows that s = ω(y) is a smooth, positive, and increasing
function of y, y ∈ R. Accordingly, associated to (6.5), there exists a single-valued
and increasing inverse function y = ω̃(s). We will suppose for definiteness that the
following inequalities are true

ω̃(s) > 0 if s > s0 and ω̃(s) < 0 for s < s0. (6.6)

The set of stochastic processes (6.5) includes the geometric Brownian motion as a
particular case for

ω(y) = s0e
y ⇐⇒ ω̃(s) = ln

(
s

s0

)
. (6.7)

The semi-geometric Brownian motion (6.78) is also a particular case of the stochas-
tic processes (6.5). We refer to the stochastic process (6.5) as a generalized geomet-
ric Brownian motion.

Introducing the notation

c(s) :=
c

ω̃′(s)
, (6.8)

it is convenient to apply Ito’s lemma to derive the stochastic differential equation
that gives the dynamics of the generalized GBM (6.5)

dS(t) =
(
c[S(t)] +

b2

4c2
dc2[S(t)]
dS(t)

)

︸ ︷︷ ︸
a[S(t)]

dt+ b
c[S(t)]
c

dW (t) S(0) = s0. (6.9)

For the sequel, it is useful to determine the relation between the density φ(y; t)
given by (2.8) of the Brownian motion with drift Y (t) given by (2.6) and the density
f(s; t) of S(t) defined as a function of Y (t) according to (6.5). Let F (s; t) and
H(y; t) be the cumulative distributions of the stochastic processes S(t) and Y (t).
By definition,

F (s; t) := Pr{S(t) < s} H(y; t) := Pr{Y (t) < y}. (6.10)

The following inequalities are equivalent:

S(t) < s ⇐⇒ Y (t) < ω̃(s), (6.11)

which leads to
F (s; t) = H(ω̃(s); t). (6.12)

Differentiating both sides of (6.12) with respect to s, we obtain the sought relation
between the distributions f(s; t) and φ(y; t):

f(s; t) = ω̃′(s)φ(ω̃(s); t). (6.13)
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Substituting here φ(y; t) given by (2.8), the distribution of the stochastic process
(6.5) reads

f(s; t) =
ω̃′(s)√
2πb2t

exp
(
− (ω̃(s) − ct)2

2b2t

)
. (6.14)

Replacing this distribution in the integral (3.18) yields

Proposition 6.1.1. Under assumptions 1-3 articulated in Chap. 3. There exists a
stationary mean density of firm asset values, whose behavior is described by the
stochastic process (6.5). It reads

g(s) =
ν

|c| ω̃
′(s) exp

(
1
b2

[cω̃(s) − |cω̃(s)|]
)
. (6.15)

Accounting for condition (6.6), relation (6.15) can be rewritten as

g(s) =
ν

|c| ω̃
′(s) exp

(
−|c| − c

b2

∫ s

s0

ω̃′(u) du
)
, s ≥ s0, (6.16)

so that, by virtue of Theorem A3.3 on regularly varying functions in Embrechts et al.
(1997), we can state

Proposition 6.1.2. When λ = 2c
b2 < 0, the stationary mean density of firms assets

values, whose behavior is described by the stochastic process (6.5) follows an
asymptotic power law if and only if

lim
s→∞

s · ω̃′(s) = α > 0. (6.17)

In such a case, the tail index of the power law ism = α · |λ|
Remark 6.1.1. When λ (or c) is positive, the stationary mean density simplifies to

g(s) =
ν

|c| ω̃
′(s), s ≥ s0, (6.18)

and it follows an asymptotic power law if ω̃′(s) is itself a power law. But, assuming
for instance that ω̃′(s) = s−2, so that Zipf’s law holds, we get ω̃(s) = s−1

0 − s−1

in order to satisfy assumption (6.6) and ω(y) =
(
s−1
0 − y

)−1
, which is neither a

positive nor an increasing function on R as initially assumed. Consequently, Zipf’s
law cannot be obtained when λ > 0.

As a byproduct of Proposition 6.1.2, we get

Corollary 6.1.1. Under assumptions 1-3 articulated in Chap. 3. The stationary
mean density of firms assets values, whose behavior is described by the stochastic
process (6.5) follows Zipf’s law if and only if

lim
s→∞

s · ω̃′(s) = − 1
λ
> 0. (6.19)
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Accounting for relations (6.2) and (6.9), Corollary 6.1.1 leads to

A(s) =
c

s · ω̃′(s)

(
1 − 1

λ
· ω̃

′′(s)
ω̃′(s)2

)
→ 0, as s→ ∞, (6.20)

B(s) =
b

s · ω̃′(s)
→ 2|c|

b
, as s→ ∞, (6.21)

which means that

Proposition 6.1.3. When the dynamic of firm’s asset values follow generalized-
GBMs, the stationary mean distribution of firm sizes follows Zipf’s law if and only
if both Gibrat’s law and the balance condition hold asymptotically, i.e., A(s) → 0
and B(s) → constant ∈ R+ as s→ ∞.

6.1.2 Deterministic Skeleton of the Mean Density g(s)
Given by a Generalized-GBM

Taking into account inequalities (6.6), we observe that, in the deterministic limit
(b→ 0), expression (6.15) reduces to

g(s) =
ν

|c| ω̃
′(s)1[c(s− s0)]. (6.22)

In the particular case where c > 0, expression (6.22) becomes

g(s) =
ν

c
ω̃′(s)1(s− s0), c > 0, (6.23)

which is nothing but expression (6.18) when s ≥ s0. This result is also reminiscent
of those obtained in Sect. 4.8.

In order to reveal the geometrical meaning of relation (6.23), let us first dis-
cuss the deterministic limit of the stochastic process S(t) given by (6.5). This limit
amounts to replacing the Brownian motion Y (t) with drift by its deterministic limit
Y0(t) = ct, yielding the deterministic process S0(t) = ω(ct). The differential equa-
tion to which this process satisfies is obtained by differentiating S0(t) = ω(ct) with
respect to t to obtain

dS0(t)
dt

= c ω′(ct) = c ω′(Y0(t)), (6.24)

where ω′(y) is the derivative of the function ω(y) with respect to y. Replacing in
the r.h.s. of (6.24) ct by ω̃[S0(t)] and using the identity

ω′[ω̃(s)] ≡ 1
ω̃′(s)

, (6.25)
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we rewrite (6.24) in the form of the differential equation

dS0(t)
dt

= c[S0(t)], (6.26)

where c(s) has been defined by (6.8).
From the assumption that ω̃(s) is an increasing function, so that its derivative

ω̃′(s) is positive, the velocity c(s) given by (6.8) of the deterministic process S0(t)
should be positive, if c is positive, and negative, if c is negative. Either way, we can
write

ω̃′(s) =
∣∣∣∣
c

c(s)

∣∣∣∣ =
c

c(s)
. (6.27)

Then, using relation (6.27), equality (6.15) can be rewritten in the geometrically
transparent form

g(s) =
ν

c(s)
1(s− s0), (6.28)

which coincides with relation (4.67).

6.1.3 Size Dependent Drift and Volatility

We now treat a specific example of the generalized geometric Brownian motion
introduced above, inspired by the model of mutual fund sizes introduced by
Schwarzkopf and Farmer (2008). Let U(t) be the logarithm of a firm’s asset value

S(t) = s0e
U(t), U(t) = ln

(
S(t)
s0

)
, (6.29)

which is assumed to follow a stochastic process, whose drift and diffusion are
functions of size according to

c(u) = c(κv(u) + 1), b(u) = bc(u)/c = b(κv(u) + 1). (6.30)

Here, v(u) is a decreasing function of u, such that v(0) = 1 and v(∞) = 0. In the
interpretation of Schwarzkopf and Farmer (2008), v(u) describes the dependence of
the money flux to mutual funds as a function of their sizes, or just the fact that it is
more difficult to raise large sums of money in absolute terms. In what follows we
will suppose, for concreteness, that v(u) is exponential

v(u) = e−ϑu, (6.31)

so that relations (6.30) transform to the following relations, which are similar to
those used by Schwarzkopf and Farmer (2008),
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c(u) = c(κe−ϑu + 1) = c0 s
−ϑ + c∞, c0 = cκsϑ0 , c∞ = c,

b(u) = b(κe−ϑu + 1) = b0 s
−ϑ + b∞, b0 = bκsϑ0 , b∞ = b.

(6.32)

The data on mutual funds analyzed by Schwarzkopf and Farmer (2008) suggest the
following orders of magnitudes for the parameters of the model:

ϑ � 0.3,
b0
b∞

= κsϑ0 � 6 ÷ 10 ⇒ κ
1/ϑs0 � 4 · 102 ÷ 2 · 103. (6.33)

It follows from (6.30), (6.31), and from previous relations derived in this chapter,
that U(t) and S(t) are generalized GBMs, such that

ω̃(s) = 1
ϑ ln

(
1
sϑ
0

sϑ+κsϑ
0

1+κ

)
,

ω̃′(s) = sϑ−1

sϑ+κsϑ
0
.

(6.34)

Substituting the last two equalities into (6.15), we obtain the mean density of firm
asset values in the case of size-dependent drift and volatility given by (6.32)

g(s) =
ν

|c| (1 + κ)
|c|−c

ϑb2 s
|c|−c

b2
0

sϑ−1

(sϑ + κsϑ0 )1+
|c|−c

ϑb2

, s > s0. (6.35)

This mean density is characterized by two power asymptotics. For small asset
values, where κsϑ0 � sϑ, one has

g(s) ∼ sϑ−1, s0 < s� κ
1/ϑs0. (6.36)

For large asset values, g(s) ∼ s−( |c|−c

b2
+1), so that Zipf’s law is recovered if the

balance condition a = 0, i.e., c = − b2

2 , is satisfied. Figure 6.1 shows the mean
density of firm sizes given by (6.35) when the latter condition holds.

6.2 Diffusion Process with Constant Volatility

In our previous explanation of the statistical properties of the GBM (2.10), expres-
sion (2.11) was essentially based on the statistical properties of the Wiener process
Y (t, c, b) with drift defined by (2.6), which satisfies the stochastic equation

dY (t, c, b) = c dt+ b dW (t), Y (0) = 0. (6.37)
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Fig. 6.1 Log-log plots of the mean density (6.35) for s0 = 1, ϑ = 0.3 and κ = 6, 10. One can
observe clearly the two power asymptotics (6.36) and Zipf’s law g(s) ∼ s−2

The distinctive peculiarity of the process defined by (6.37) is the constancy of the
volatility coefficient b = const. It will be clear later on, that the analogous diffusion
process Z(t) with constant (unit) volatility which satisfies the stochastic equation

dZ(t) = c[Z(t)] dt+ dW (t), Z(0) = z0, (6.38)

plays an essential role in discussing the statistical properties of process S(t) which
satisfies the general stochastic equation (6.1). Bearing this in mind, let us find a
relation expressing the solution to (6.1) via the solution to the auxiliary stochas-
tic equation (6.38). To find the mentioned relation, we first rewrite the diffusion
equation (2.39) in a form more convenient for the following analysis

∂f(s; t)
∂t

+
∂[c̃(s)f(s; t)]

∂s
=

1
2
∂

∂s

(
b(s)

∂[b(s)f(s; t)]
∂s

)
, (6.39)

where

c̃(s) := a(s) − 1
2
b(s)

db(s)
ds

. (6.40)



6.2 Diffusion Process with Constant Volatility 81

We will suppose in what follows that b(s) is positive everywhere and is a differen-
tiable function of the argument s.

We introduce the change of variable

z = z(s) :=
∫ s

s1

du

b(u)
⇒ ds(z)

dz
= b(s(z)). (6.41)

Multiplying all terms of (6.39) by b(s) and taking into account the following
operational relation

b(s)
∂

∂s
⇐⇒ ∂

∂z
, (6.42)

we obtain the diffusion equation

∂h(z; t)
∂t

+
∂[c(z)h(z; t)]

∂z
=

1
2
∂2h(z; t)
∂z2

, (6.43)

with
h(z; t) = b(s)f(s; t)

∣∣∣
s=s(z)

, (6.44)

where s(z) is the inverse of function z(s) defined in (6.41), and

c(z) :=
c̃(s)
b(s)

∣∣∣∣
s=s(z)

=
(
a(s)
b(s)

− 1
2
db(s)
ds

) ∣∣∣∣
s=s(z)

. (6.45)

If the diffusion equation (2.39) is supplemented by the initial condition (2.40),
then one has to supplement (6.43) by the analogous condition

h(z; 0) = δ(z − z0), where z0 = z(s0). (6.46)

In turn, if the solution to the diffusion equation (2.39) satisfies the condition of firm’s
exit at level s1

f(s1; t) = 0, (6.47)

then it follows from (6.44) and (6.41) that the solution to (6.43) should satisfy the
similar condition

h(0; t) = 0. (6.48)

Reversely, if one knows the solution to the initial-boundary problem (6.43),
(6.46), (6.48), then one can obtain the solution to the initial-boundary problem
(2.39), (2.40), (6.47), using the inverse of relation (6.44):

f(s; t) =
h[z(s); t]
b(s)

. (6.49)

As the pdf h(z; t) of the solution to the stochastic equation (6.38) satisfies the
diffusion equation (6.43), one may interpret the above relations (6.44) and (6.49)
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in the sense that the diffusion processes S(t) and Z(t) are tied by the equivalence
relation

S(t) ≡ s[Z(t)] ⇐⇒ Z(t) ≡ z[S(t)]. (6.50)

To sum up, we state

Proposition 6.2.1. The solution to the stochastic differential equation (6.1) sup-
plemented by the exit condition at the level s1 is S(t) = s(Z(t)), where Z(t) is
the stochastic process solution to the stochastic differential equation (6.38) supple-
mented by the exit condition at the level z = 0 and s(·) := z−1(·) is defined by
(6.41).

6.3 Steady-State Density of Firm’s Asset Values
in the Presence of Deviations from Gibrat’s Law

Let us discuss the influence of deviations from Gibrat’s law on the steady-state mean
density g(s) given by (3.18), supposing that the firm’s asset value S(t) satisfies the
general stochastic equation (6.1). The corresponding pdf f(s; t) is expressed via the
solution to the diffusion equation (6.43) by equality (6.49). Integrating both sides of
this equality with respect to t over the interval t ∈ [0,∞), we obtain, provided that∫∞
0
f(s, t)dt <∞, for all s

g(s) =
ν

b(s)
η[z(s)], (6.51)

where

η(z) :=
∫ ∞

0

h(z; t)dt (6.52)

is, analogously to (4.5), the distribution of mean time interval durations for which
the processZ(t) with unit volatility satisfying the stochastic equation (6.38) is above
some arbitrary level z.

Integrating the diffusion equation (6.43) with respect to t over the interval t ∈
[0,∞), and assuming that due to diffusion, drift and/or death of the diffusion process
Z(t) upon first touching the zero level, the pdf h(z; t) satisfies the limiting condition

lim
t→∞

h(z; t) = 0, (6.53)

we obtain the following equation for η(z)

1
2
d2η(z)
dz2

− d[c(z)η(z)]
dz

= −δ(z − z0). (6.54)

Dirac’s delta function in the r.h.s. of the last equation takes into account the initial
condition (6.46). In addition, to take into account the killing of the process Z(t) at
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zero level, we have to supplement (6.46) by the boundary condition

η(z = 0) = 0, (6.55)

following from condition (6.48).
It is easy to show that the general solution to (6.54), together with boundary

condition (6.55), is equal to

η(z) = 2

⎧
⎨

⎩
(1 −D)S(z, 0), 0 < z < z0,

S(z0, 0) Q(z, z0) −D[S(z0, 0)Q(z, z0) + S(z, z0)], z > z0,

(6.56)
where

Q(x, y) := exp
(

2
∫ x

y

c(z)dz
)
, S(x, y) :=

∫ x

y

Q(x, z)dz. (6.57)

Solution (6.56) depends on an arbitrary constantD. Its arbitrariness is the conse-
quence of a lack of boundary condition prescribing the asymptotic behavior of the
distribution η(z) as z → ∞.1 Before seeking the value of the constantD, note that
the asymptotic behavior of η(z) as z → ∞ strongly depends on the behavior of
the realizations of the diffusion process Z(t) under investigation. In the following
section, we will discuss the behavior of the diffusion process Z(t) in detail, while
in this section we will restrict ourselves to discussing the financial meaning of the
constantD appearing in the r.h.s. of expression (6.56).

One may interpret the diffusion equation (6.43) as a continuity equation and
rewrite it in the form

∂h(z; t)
∂t

+
∂F(z; t)
∂z

= 0, (6.58)

where

F(z; t) := c(z)h(z; t) − 1
2
∂h(z; t)
∂z

. (6.59)

The function F(z; t) has a transparent geometrical interpretation. It is the mean flow
of the realizations of the diffusion process Z(t) through the level z at current time t.
It is easy to check that the discussed arbitrary constant D is nothing but the mean
flow above the initial level z > z0 integrated over all times

D =
∫ ∞

0

F(z; t)dt, z > z0. (6.60)

Proposition 6.3.1. Under the assumption that the integrated flow is equal to zero
for s > s0, thenD = 0 and the steady-state mean density reads

1 The fact that z → +∞ as s → +∞ is ensured by assumption (6.3) and definition (6.41).
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g(s) =
2ν
b(s)

×

⎧
⎨

⎩
S(z(s), 0), s1 < s < s0,

S(z(s0), 0) Q(z(s), z(s0)), s > s0.
(6.61)

Below, we will discuss why and under which conditions the equalityD = 0 may be
true.

6.4 Integrated Flow

As we just showed, the solution (6.56) to the boundary condition problem (6.54),
(6.55) contains the constant D, which is equal to the mean integrated flow (6.60)
above some initial level z > z0. In order to determine the value ofD for some cases
that are important for our purposes, we will use the following conjecture:

Conjecture 6.4.1. If the realizations of the diffusion process Z(t), satisfying the
stochastic equation (6.38), are bounded from above, then the integrated flow (6.60)
at z > z0 is almost surely equal to zero (D = 0).

We interpret the conjectured boundedness of the realizations of the diffusion
process Z(t) in the sense that the cdf

F+(z) := Pr{Z+ < z} (6.62)

of the absolute maximal values of the realizations

Z+ := max
t∈[0,∞)

Z(t) (6.63)

tends to one as z tends to infinity:

lim
z→∞

F+(z) = 1. (6.64)

The following calculations support the above conjecture. Consider the distribu-
tion η(z) of mean life durations in the simplest case of constant drift c(z) = c =
const. We can obtain η(z) by direct calculation of the integral (6.52). Firstly, we
need to find the solution to the diffusion equation

∂h(z; t)
∂t

+ c
∂h(z; t)
∂z

=
1
2
∂2h(z; t)
∂z2

(6.65)

with initial condition (6.46) and boundary condition (6.48). Using the reflection
method (Morse and Feshbach, 1953), we obtain the expression [analogously to
(5.13)]

h(z; t) = ϕ(z − z0; t) − e−2cz0ϕ(z + z0; t), (6.66)
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where

ϕ(z; t) =
1√
2πt

exp
(
− (z − ct)2

2t

)
. (6.67)

Substituting (6.66) into relation (6.52) and using the integral identity (3.23), we
obtain

η(z) =
1
|c|e

c(z−z0)
[
e−|c(z−z0)| − e|c|(z+z0)

]
. (6.68)

Thus, for the case c < 0, we have

η(z) =
1
|c|

{
1 − e2cz, 0 < z < z0,

e2cz
(
e−2cz0 − 1

)
, z > z0,

c < 0, (6.69)

while for c > 0 we obtain

η(z) =
1
c

{
e−2cz0

(
e2cz − 1

)
, 0 < z < z0,

1 − e−2cz0 , z > z0,
c > 0. (6.70)

We note that expression (6.69) does obey the above conjecture. Indeed, the diffu-
sion process Z1(t), whose pdf obeys the initial-value problem (6.65), (6.46), (6.48),
satisfies the stochastic equation

dZ1 = c dt+ dW (t), Z1(0) = z0. (6.71)

The corresponding cdf (6.62) of the maximal value of the diffusion process Z1(t) is
equal to

F+(z) = 1 −
∫ ∞

0

h(z; t)dt, (6.72)

where h(z; t) is described by expression (6.65). Calculating the integral, we obtain

F+(z) = 1 − e2c(z−z0), z > z0, c < 0. (6.73)

Obviously this cdf tends to one as z → ∞. Thus, the diffusion process Z1(t) is
almost surely bounded from above. This means, according to our conjecture, that
the integrated flow for z > z0 should be equal to zero (D = 0). In fact, it is easy
to show that the distribution η(z) given by (6.69) of mean time durations coincides
with expression (6.61) for c = const., corresponding to zero integrated flowD = 0.

Based on our conjecture, one may use expression (6.61) for the distribution of
mean time duration η(z) if the realizations of the solutions to the stochastic equa-
tion (6.38) are almost surely bounded from above. Some necessary conditions for
realizations of the diffusion process Z(t) to be bounded from above are detailed
below.

Proposition 6.4.1. Suppose that there exists a negative constant c < 0 such that the
following inequality is valid
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c(z) < c < 0, 0 < z <∞, (6.74)

then, almost surely, the stochastic process S(t) given by (6.50) is bounded from
above.

To prove this proposition, we first note that, if inequality (6.74) is true, then, for
the same initial conditions Z(0) = Z1(0) = z0 and for the same realization of
the Wiener process W (t), the corresponding solutions to the stochastic equations
(6.71), (6.38) obey the inequality

Z(t) < Z1(t), t > 0. (6.75)

In fact, it follows from (6.71), (6.38) that the residual

V (t) := Z(t) − Z1(t) (6.76)

satisfies the inequality

dV (t) = c[Z(t)] − c < 0 ⇒ V (t) < 0, t > 0. (6.77)

This means in turn that inequality (6.75) is valid.
We already showed that, if c < 0 then, the diffusion process Z1(t) is almost

surely bounded from above. Thus, it follows from inequality (6.75) that S(t) given
by (6.50) is also bounded from above. �

There is a non-rigorous but geometrically transparent explanation of why, for the
above-bounded diffusion process Z(t), the integrated flow at Z > z0 is equal to
zero. Roughly speaking, this kind of process Z(t) crosses any level z > z0 an even
number of times, so that the mean flows up and down occurring over an infinite
time interval t ∈ [0,∞) compensate each other exactly. In other words, the equality
D = 0 at z > z0 expresses an integrated balance condition for the diffusion process
Z(t) bounded from above. Figure 6.2 presents schematic pictures illustrating why
the integrated flowD is equal to zero for any strictly negative c(z) and for z > z0.

6.5 The Semi-Geometric Brownian Motion

Using the approach developed above, based on relations between the statistical prop-
erties of the diffusion process S(t) and the auxiliary process Z(t) with constant
(unit) volatility, let us consider the statistical properties of the simplest diffusion
process that demonstrates a deviation from Gibrat’s law:

Definition 6.5.1. The diffusion process S(t) with drift and diffusion coefficients:

a(s) = a · (s+ κ), b(s) = b · (s+ κ), κ > 0, (6.78)

is called a semi-geometric Brownian motion.
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Fig. 6.2 A schematic illustration of the value of the integrated flow D (6.60) for cases of positive
and negative regular drift c(z). In the first case (left picture), the regular upward drift prevails over
the diffusion part, so that a nonzero fraction of realizations of the process Z(t) are not killed at the
zero level and escape. These realizations tend to infinity with the course of time. Such realizations
cross any level z > z0 an odd number of times, with the number of upward crossings being one
unit more than the number of downward crossings. As a result, the integrated flow D defined by
(6.60) becomes positive. In contrast, all realizations, which are killed at the zero level, cross any
level z < z0 downwards one more time than they cross the same level while going upwards. As a
result, the integrated flow under the level z0 is negative. For the case of strictly negative c(z) (right
picture), the number of crossings of a level z > z0 downwards and upwards are the same, so that
the integrated flow D turns out to be exactly zero

Obviously, it reduces to the regular GBM for the particular case κ = 0.
The main distinction between the semi-GBM and the regular GBM is the fact

that both the drift a(s) and the volatility b(s) do not vanish as s→ 0. This means in
particular that, unlike for the regular GBM, there is a nonzero probability of crossing
the zero level (s = 0), due to a positive zero-level diffusion coefficient

b0 := b(0) = bκ. (6.79)

In contrast, for κ = 0, the diffusion coefficient vanishes at s = 0 preventing cross-
ing by so-to-speak “freezing” the diffusion dynamics for small s values. Figure 6.3
plots the ratio B(s) defined by (6.2) for the case (6.78), demonstrating the essential
deviation of the semi-GBM from Gibrat’s law for s � κ.

Substituting the diffusion coefficient b(s) given in (6.78) into relation (6.41),
we obtain a function that maps the semi-GBM into a diffusion process with unit
volatility (and vice versa)

z(s) =
1
b

ln
(
s+ κ
s1 + κ

)
⇐⇒ s(z) = (s1 + κ)ebz − κ. (6.80)

It is seen from (6.45) that the auxiliary process with constant volatility is nothing
but a diffusion process Z1(t) satisfying the stochastic equation (6.71), where

c =
a

b
− b

2
. (6.81)
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Fig. 6.3 A plot of the ratio B(s) defined by (6.2), for b = 1 and κ = 1, demonstrating the
deviation of the semi-GBM from the regular GBM

In turn, Z1(t) is tied to a Wiener process with drift defined by (2.6) by the obvious
relation

Z1(t) = z0 + Y (t, c, 1), z0 =
1
b

ln
(
s0 + κ
s1 + κ

)
. (6.82)

Thus, it follows from (6.80), (6.82) and (6.50), that there is a linear relation between
the semi-GBM and the regular GBM X(t, c, 1) defined by (2.11):

S(t) = (s0 + κ)X(t, c, 1)− κ. (6.83)

Substituting the auxiliary functions η(z) defined by (6.69) and z(s) defined by
(6.80) into (6.51), and taking into account relation (6.81), we obtain the steady-state
mean density of firm’s asset values for the case where their stochastic behavior is
described by the semi-GBM.

Proposition 6.5.1. The steady-state mean density of firm’s size when the stochastic
behavior of firm’s size is described by the semi-GBM with λ < 0 is

g(s) =
N

(s+ κ)

⎧
⎪⎪⎨

⎪⎪⎩

1 −
(

s+κ
s1+κ

)λ

, s1 < s < s0,

(
s+κ
s0+κ

)λ
[
1 −

(
s0+κ
s1+κ

)λ
]
, s > s0,

(6.84)
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where

N =
2ν
b2|λ| . (6.85)

Note in conclusion that, for the case κ = 0, expression (6.84) reduces to the already
known Proposition 5.7.1.

Proposition 6.5.1 describes the influence on the steady-state density g(s) of firm’s
sizes of two distinct deviations from Gibrat’s law, associated with the two scales, s1
and κ, which are present in the relation. The former scale s1 takes into account the
violation of Gibrat’s law due to a non-zero asset value at which firms exit. The latter
scale κ describes the deviations to Gibrat’s law of the diffusion process S(t) for
small sizes, before firms disappear.

Taking s1 = 0 in (6.84) allows us to isolate the influence of κ alone. In particular,
for the balanced case λ = −1, for which Gibrat’s law leads to Zipf’s law, we have

g(s) =
2ν

b2|λ|(s + κ)2

{
s, 0 < s < s0,

s0, s > s0.
(6.86)

Let us stress that the steady-state mean density g(s) given by (6.86) depends on two
scale parameters, essentially influencing the shape of the steady-state mean density.
The first one is κ, responsible for the non-Gibrat’s behavior of realizations of the
diffusion process S(t). The second one is the initial asset value s0 of all firms.

Assuming that all firms were born with the same initial asset value is of course
too restrictive. To weaken this assumption, suppose that the initial asset value s0
is a random variable whose complementary cdf is equal to F̄s0(s). Averaging g(s)
given by (6.86) over the statistic of the random initial asset value, we obtain the new
density of firm’s sizes, which takes into account the distribution of their sizes at the
times of their creation:

g(s) =
2ν

b2|λ|(s+ κ)2

∫ s

0

F̄s0(u)du. (6.87)

As a plausible distribution of the random asset value s0 at birth, we consider the
gamma distribution whose complementary cumulative distribution reads

F̄s0(s) := F̄s0(s; s̄, q) =
1

Γ(q)
Γ
(
q, q

s

s̄

)
. (6.88)

The parameter s̄ here is the average initial asset value s̄ = E[s0]. The other param-
eter q controls the width of the gamma distribution. In particular, for q → ∞, the
random initial asset value s0 converges in probability to s̄, which, in this sense, plays
the role of a generalized initial asset value. We then have

∫ s

0

F̄s0 (u; s̄, q)du = s̄+
s

Γ(q)
Γ
(
q, q

s

s̄

)
− s̄

Γ(q + 1)
Γ
(
q + 1, q

s

s̄

)
, (6.89)
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Fig. 6.4 Plots of the steady-state density g(s, s̄, κ, q) for q = 1, demonstrating the influence of
the ratio of the two scales, κ and s̄. The plots are drawn for N = 1, q = 1 and s̄ = 1. Top to
bottom: κ = 0.1, 1, 10

or, in terms of the complementary cdf F̄s0(s; s̄, q) given by (6.88):

∫ s

0

F̄s0 (u; s̄, q)du = s̄+ s F̄s0(s; s̄, q) − s̄ F̄s0(qs; (q + 1)s̄, q). (6.90)

Let us denote by g(s, s̄, κ, q) the steady-state mean density (6.87), for the case where
F̄s0(s) corresponds to the gamma distribution (6.88), making explicit the depen-
dence of g on the two scales s̄ and κ. Figure 6.4 shows g(s, s̄, κ, q) for q = 1 and
different ratios of the scales κ and s̄.

Figure 6.5 shows the steady-state density g(s, s̄, κ, q) for s̄ = κ = 1, illustrating
its dependence on the parameter q, controlling the width of the gamma distribution.

6.6 Zipf’s Laws When Gibrat’s Law Does Not Hold

As we have demonstrated at length, when the behavior of firm’s asset values is
described by the GBM, then the steady-state mean density g(s) obeys Zipf’s law
only if the balance condition λ = −1 holds true. In terms of the diffusion process
S(t), this means that any regular drift is absent: a = 0.
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Fig. 6.5 Plots of the steady-state density g(s, s̄, κ, q) for N = 1, s̄ = κ = 1. From bottom to top:
q = 0.1, 1, 10

If the stochastic behavior of a firm’s asset value deviates from Gibrat’s law such
that the asset value S(t) is described by the general stochastic equation (6.1), where
a(s) and b(s) are nonlinear functions of s, it is important to obtain the general
conditions for the validity of Zipf’s law, which should be imposed on the drift a(s)
and the diffusion coefficient b(s). Since one can be interested in situations where
Zipf’s law holds only in an asymptotic sense, i.e., for large firms, these conditions
may also be sufficient in an asymptotic sense for large sizes s. We derive below
these general conditions in the case where the inequalities (6.74) holds true. Let us
rewrite the first inequality in (6.74) in the form

c(z) < 0 ⇒ a(s) <
1
4
db2(s)
ds

(b(s) > 0). (6.91)

If this condition is valid, then the steady-state density g(s) is described by expres-
sions (6.51) and (6.61). Eliminating the auxiliary variable z, we rewrite the steady-
state density in a form more convenient for our analysis,

g(s) =
2ν
b2(s)

Q(s)

⎧
⎨

⎩
S(s), 0 < s < s0,

S(s0), s > s0,
(6.92)
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where we have used the notations

Q(s) := exp
(∫ s

0

δ(u)du
)
, S(s) :=

∫ s

0

du

Q(u)
, (6.93)

and

δ(s) :=
2a(s)
b2(s)

. (6.94)

In addition, we supposed for simplicity (but without loss of generality) in (6.92)
that firms are killed at the zero level (s1 = 0). Notice that condition (6.74) can be
rewritten as

δ(s) <
d ln b(s)
ds

⇐⇒ Q(s) <
b(s)
b(0)

. (6.95)

For large size s, the steady-state mean density g(s) behaves like Q(s)
b2(s) so that four

cases are of interest.

Case 1

Let us first assume that
∃ lim

s→∞
s · δ(s) = γ ∈ R. (6.96)

According to Theorem A3.3 in Embrechts et al. (1997), Q(s) is a regularly varying
function at infinity. This means that Q(s) behaves like an asymptotic power law
with tail index γ. When γ = 0, one gets a slowly varying function, like a constant or
a logarithm. In order for condition (6.74) – or alternatively (6.95) – to be satisfied,
we need that, for large s, b(s) grows at least as fast as sγ when γ > 0 and decreases
not faster than sγ when γ < 0. If such a requirement holds, we get

g(s) ∼ sγ

b2(s)
, as s→ ∞. (6.97)

We can then obtain Zipf’s law if, and only if, b(s) ∼ s
γ
2 +1 for large s, with γ ≤ 2

so that b(s) can grow faster than sγ when s → ∞. From (6.96), we conclude that,
necessarily, a(s) ∼ sgn(γ) · sγ+1, for large s.

Case 2

Let us now focus on the particular case where γ = 0 and let us in addition assume
that the function δ(s) is integrable, i.e., the integral

� :=
∫ ∞

0

δ(u)du (6.98)

is finite (|�| < ∞). It is interesting to remark that the asymptotic behavior (for
s→ ∞) of the steady-state mean density g(s) given by (6.92) then does not depend
on the drift a(s).
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Indeed, in this case, the asymptotic behavior of the steady-state mean density
g(s) given by (6.92) is described by the relation

g(s) ∼ 2νe�S(s0)
b2(s)

, s→ ∞. (6.99)

In particular, if S(t) satisfies the asymptotic diffusive Gibrat’s law, i.e., if the
volatility coefficient is asymptotically linear

b(s) � b · s, s→ ∞, (6.100)

then we recover from (6.99) an asymptotic Zipf’s law for the steady-state density of
firm’s sizes: g(s) ∼ s−2.

In the case where the asymptotic diffusive Gibrat’s law is valid, then the condi-
tion of absolute integrability of δ(s) reduces to the condition that the drift grows
sufficiently slowly with s, that is, a(s) is of the order of sα, or in mathematical
notations,

a(s) = O{sα}, α < 1, s→ ∞. (6.101)

Case 3

We now assume that
lim

s→∞
s · δ(s) = +∞. (6.102)

Thus Q(s) is increasing as s goes to infinity and, according to Theorem A3.3 in
Embrechts et al. (1997), it is a rapidly varying function at infinity. It means that
Q(s) grows at infinity faster than any power law.

By virtue of condition (6.95), b(s) must grow at least as fast as Q(s) so that b(s)
must also be a rapidly increasing function. Putting (6.92) and (6.95) together, we
conclude that

g(s) <
2νS(s0)
b(0)

· 1
b(s)

, (6.103)

which means that the stationary mean density g(s) is a rapidly decreasing function,
i.e., goes to zero faster than any power law. This situation is therefore not compatible
with Zipf’s law.

Case 4

We finally assume that
lim

s→∞
s · δ(s) = −∞. (6.104)

Necessarily, lim
s→∞

a(s) < 0 and Q(s) is a rapidly decreasing function. In order

for the steady-state mean density of firm sizes to follow an asymptotic power law
g(s) ∼ s−m−1, we need that, for s large enough
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b(s)2 = Ks−m−1Q(s) + o(s), (6.105)

so that, taking the logarithm of both sides, differentiating and multiplying by s yields

2
s · b′(s)
b(s)

= −(m+ 1) + s · δ(s) + o′(s) (6.106)

Taking the limit s→ ∞ we conclude, using assumption (6.104), that

lim
s→∞

2
s · b′(s)
b(s)

= −∞. (6.107)

This would mean that lim
s→∞

b′(s) < 0, which is impossible since b(s) > 0 for all s,

so that lim
s→∞

b(s) ≥ 0. Consequently, g(s) cannot be an asymptotic power law under

assumption (6.104).
To sum up the results of this chapter, we can state

Proposition 6.6.1. When the dynamic of firm’s asset value follows the diffusion
equation (6.1), provided that condition (6.74) holds, the mean steady-state distri-
bution of firm sizes follows Zipf’s law if and only if:

1. ∃γ ∈ (−∞, 2], such that lim
s→∞

s · 2a(s)
b(s)2

= γ

2. The volatility b(s) is a regularly varying function at infinity with tail index γ
2 + 1

Remark 6.6.1. As a consequence of this proposition, we can notice that the drift
a(s) is also necessarily regularly varying at infinity. Indeed, by 1., when γ �= 0, we
get

a(s) ∼ γ

2
· b

2(s)
s
, as s→ ∞, (6.108)

which leads to
a(s)
b(s)

∼ γ

2
· s

γ
2 , as s→ ∞. (6.109)

This means that, when γ < 0, the distribution of firm sizes described by Zipf’s law
is more the consequence of random growth than systematic returns. In particular for
large firms, volatility dominates over the instantaneous growth rate. On the contrary,
when γ ∈ (0, 2], Zipf’s law is more the result of systematic returns than random
growth.

To complete the analysis of the possible validity of Zipf’s law for non-Gibrat
behavior of firm’s asset values, let us consider the consequence of the following
power law asymptotics of the drift and volatility coefficients:

a(s) � a · sα, b(s) � b · sβ, s→ ∞. (6.110)

In this case, the condition (6.91) of applicability of the steady-state density expres-
sion (6.92) reduces to
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δ < βs−γ−1, γ := α− 2β, δ :=
2a
b2
. (6.111)

This condition is qualitatively different for γ < −1, γ = 1 and γ > 1. Correspond-
ingly, there are three qualitatively different asymptotics for the steady-state density
g(s) (6.92):

1. γ < −1 is a particular case of the absolute integrability condition (6.98). For
γ < −1, the asymptotic relation (6.99) is true for any δ. In view of the
asymptotics (6.110), we obtain g(s) ∼ s−2β for s→ ∞.

2. For γ = −1, condition (6.111) transforms into inequality δ < β. If this inequality
holds true, then we have the asymptotics

Q(s) ∼ sδ ⇒ g(s) ∼ sδ−2β , s→ ∞. (6.112)

Then, if

δ − 2β = −2 ⇒ α = δ + 1, β =
δ + 2

2
, δ < 1, (6.113)

we obtain Zipf’s law θ(s) ∼ s−2. Note also that δ = 0 corresponds to Zipf’s law
derived from Gibrat’s law, as discussed above with respect to expression (3.27).

3. Finally, if γ > −1, then condition (6.111) is true only if δ < 0. In this case, g(s)
is an exponentially decaying function of s:

Q(s) ∼ eδsγ+1
⇒ g(s) ∼ s−2βeδsγ+1

, s→ ∞ (δ < 0). (6.114)



Chapter 7
Firm’s Sudden Deaths

There are a priori two exit mechanisms for firms:

• Firms disappear when their asset values become smaller than some minimum
level. This is based on the standard idea, justified by the existence of a minimum
efficient size, that there is a minimum firm size below which the firm cannot exist.
This idea has been considered in several models of firm growth (see, e.g., de Wit,
2005 and references therein). An alternative approach suggested for instance by
Gabaix (1999), considers that firms cannot decline below a minimum size and
remain in business at this size until they start growing up again.

• In addition to the exit of a firm resulting from its value decreasing below a cer-
tain level, it sometimes happens that a firm encounters financial troubles while
its asset value is still fairly high. One could cite the striking examples of Enron
Corp. and Worldcom, whose market capitalization were supposedly high (actu-
ally the result of inflated total asset value of about $11 billion for Worldcom and
probably much higher for Enron) when they went bankrupt. Beyond these anec-
dotic examples, there is a large empirical literature on firm entries and exits, that
suggests the need for taking into account the existence of failure of large firms.
For example, while it has been established that a first-order characterization for
firm death involves lower failure rates for larger firms (Dunne et al., 1988, 1989),
Bartelsman et al. (2003) also state that, for sufficiently old firms, there seems to
be no difference in the firm failure rate across size categories.

In previous chapters, we have examined the consequences and impact on Zipf’s law
of the first exit mechanism. The present chapter is devoted to the study of the second
mechanism.

7.1 Definition of the Survival Function

The abrupt death of firms can be described in terms of the random duration T of
a firm’s life, which is assumed here to be statistically independent from the firm’s
asset value. We will relax this assumption in the last section of this chapter.

A. Saichev et al., Theory of Zipf’s Law and Beyond,
Lecture Notes in Economics and Mathematical Systems 632,
DOI 10.1007/978-3-642-02946-2 7, c© Springer-Verlag Berlin Heidelberg 2010
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If a firm was born at t = 0, one can interpret a firm’s finite lifespan T as the
instant of sudden death of the firm. Taking into account the possible occurrence of
such sudden firm’s exit, we obtain the mean density g(s, t) of the current firm’s asset
values, by replacing the pdf f(s; t) in the r.h.s. of expression (3.16) by the product

f(s; t)Q(t) , (7.1)

where Q(t) is a the survival function, equal by definition to the probability that the
life-span T is larger than the current elapsed time t since birth:

Q(t) := Pr{T > t} . (7.2)

As a result, we obtain the following expression for the mean density of firm’s asset
values:

Proposition 7.1.1. Under the assumptions of Corollary 3.2.1 and when firms have
finite life durations T independent from their sizes, distributed according to the sur-
vival functionQ(t), the mean density of firm’s size for homogeneously stochastically
growing firms reads

g(s, t) =
∫ t

0

ν(t− u)Q(u)f(s;u)du , (7.3)

if the first firm was born at time t0 = 0.

This results generalizes Corollary 3.2.2. The intensity of birth ν(t) can be a priori
an arbitrary function of time. Note that, if the pdf f(s; t) takes into account the first
possibility of firm’s exits due to the crossing of their wealth of some level s1, the
mean density (7.3) then takes into account both possibilities of firm’s death listed at
the beginning of this chapter.

7.2 Exponential Distribution of Sudden Deaths

Let us now suppose for simplicity that the intensity ν(t) of firm’s births is constant,
so that expression (7.3), in the limit t→ ∞, reduces to

g(s) = ν

∫ ∞

0

Q(t)f(s; t)dt. (7.4)

We discuss in appendix the conditions for the existence of this steady-state mean
density, which are mush broader than those stated in Sect. 3.3.

In order to account for the sudden exit of firms due to an unexpected event, we
introduce the hazard rate μ characterizing the probability that a firm exits in the next
instant given it is still alive at the present time. Alternatively, the probability that a
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firm has never encountered such an event until time t (given it was born at time zero)
is equal to the survival function which takes the form of a pure exponential

Q(t) = e−μt , μ > 0 . (7.5)

Thus, we have

g(s) = ν

∫ ∞

0

e−μtf(s; t)dt. (7.6)

The relation (6.49) forms the basis of our following analysis of the properties of
this steady-state mean density of firm’s sizes. Substituting it into the integral (7.6),
we obtain, analogously to (6.51), the relation

g(s) =
ν

b(s)
η (z(s), μ) , (7.7)

where
η(z, μ) :=

∫ ∞

0

e−μth(z; t)dt (7.8)

and h(z; t) is the solution to the initial-boundary problem (6.43), (6.46) and (6.48).
Multiplying the diffusion equation (6.43) by e−μt and integrating it term by

term over the interval t ∈ [0,∞), we obtain, analogously to (6.54), the ordinary
differential equation for the auxiliary function η(z, μ)

1
2
d2η(z, μ)
dz2

− d[c(z)η(z, μ)]
dz

− μη(z, μ) = −δ(z − z0) . (7.9)

We supplement this equation with the boundary condition

η(0, μ) = 0 . (7.10)

One might also find another boundary condition adapted to other z-dependences of
c(z), by analyzing the properties of some corresponding sample solutions.

7.3 Implications of the Existence of Sudden Firm
Exits for Semi-Geometric Brownian Motions

The properties of the steady-state mean density (7.6) of firm’s values for the case
where the firm’s asset values follow semi-GBMs are interesting for economic appli-
cations. When the dynamics of the firm’s value follows a semi-GBM, the auxiliary
pdf h(z; t) is given by the explicit expression (6.66), where c is given by (6.81).
Substituting h(z; t) given by (6.66) into (7.8) and using the integral identity (3.23),
we obtain an explicit expression for η(z, μ):

η(z, μ) =
ec(z−z0)

√
c2 + 2μ

(
e−

√
c2+2μ |z−z0| − e−

√
c2+2μ (z+z0)

)
. (7.11)
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Substituting this expression, together with the functions z(s) given by (6.80) and
b(s) given by (6.78), into the r.h.s. of relation (7.7), we finally obtain

Proposition 7.3.1. Under assumptions 1-3 articulated in chapter 3. When the sto-
chastic behavior of firm’s sizes is described by the semi-GBM and firms have a finite
life duration T (independent from the firm’s size) with survival function Q(t) =
e−μt, the steady-state mean density of firm’s sizes is

g(s) =
ν

b2ρ(s+ κ)

(
s+ κ
s0 + κ

) 1
2 (λ−ρ)

×

⎧
⎪⎪⎨

⎪⎪⎩

(
s+κ
s0+κ

)ρ

−
(

s1+κ
s0+κ

)ρ

, s1 < s < s0 ,

1 −
(
s1 + κ
s0 + κ

)ρ

, s > s0 ,

(7.12)

where the following notations are used

ρ :=
√
λ2 + 4ζ , ζ :=

2μ
b2
. (7.13)

Expression (7.12) takes into account the two mechanisms for firm’s exits: (1) upon
shrinking to a value below the survival threshold s1 (0 � s1 < s0) and (2) abrupt
death occurring independently of their value.

Expression (7.12) depends on three characteristic scales of the firm’s asset val-
ues. The first scale is the initial asset value s0. The two other scales, s1 and κ,
characterize the deviations from Gibrat’s law. The scale s1 introduces a deviation
from Gibrat’s law due to death below the survival level which is s1 itself. The scale
κ describes an explicit deviation from Gibrat’s law for low firm’s values.

In the case where s1 = 0 and when Gibrat’s law exactly holds (κ = 0),
expression (7.12) reduces to

g(s) =
ν

b2ρs

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
s

s0

) 1
2 (λ+ρ)

, 0 < s < s0 ,

(
s

s0

) 1
2 (λ−ρ)

, s > s0 .

(7.14)

This result illustrates that, even in the presence of sudden deaths due to external
events, for any s > s0, the steady-state mean density g(s) of firm’s sizes follows a
pure power law

g(s) ∼ s−(1+m) , s > s0 , (7.15)

where

m =
1
2

(ρ− λ) =
1
2

(√
λ2 + 4ζ − λ

)
. (7.16)

The same power law is obtained from expression (7.12) in the asymptotic limit
s� κ (and for s > s0), showing that it is a robust property also of semi-GBMs.
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The asymptotic power law distribution of firm’s sizes obtained from (7.12), with
tail index given by (7.16), still holds when taking into account that the initial sizes
of firms are not identical, but are randomly drawn from some statistical distribu-
tion. In this case, it is easy to show that expression (7.6) is modified by taking the
expectation of its r.h.s. with respect to the distribution of initial sizes. This yields

g(s) ∼ ν

b2ρ s1+m
(E [(s0 + κ)m] − (s1 + κ)m + o(s)) as s→ ∞ . (7.17)

provided that E [sm0 ] <∞. This generalizes the result stated at the end of Sect. 5.8.

7.4 Zipf’s Law in the Presence of Sudden Deaths

The introduction of the mechanism by which firms can exit due to sudden events
have a significant influence on the exponent of the power law (7.15). In particular,
in the presence of sudden deaths,

Proposition 7.4.1 (Generalized balance condition). Under the assumptions of
Proposition 7.3.1, the condition for Zipf’s law to be valid takes the form

λ = ζ − 1 ⇐⇒ a = μ . (7.18)

This condition is a natural generalization of the balance condition a = 0 provided
by Definition 2.5.1, which was required for Zipf’s law to hold for the steady-state
mean density g(s) given by (3.18), in the case of a constant intensity of birth and in
the absence of sudden death:

ν(t) = const. Q(t) = 1 =⇒ μ = ζ = 0 . (7.19)

Let us discuss some peculiarities of Zipf’s law for the example of semi-GBMs
in the presence of sudden deaths together with firm’s exits when the value reaches
the zero level (s1 = 0). In this case, if condition (7.18) holds, the steady-state mean
density g(s) given by Proposition 7.3.1 reduces to

g(s) =
N

κ
(

s
κ + 1

)2 ( s0
κ + 1

)λ+1

⎧
⎪⎪⎨

⎪⎪⎩

( s
κ

+ 1
)λ+2

− 1 , 0 <
s

κ
<
s0
κ
,

(s0
κ

+ 1
)λ+2

− 1 ,
s

κ
≥ s0
κ
,

(7.20)

where we have introduced the constant

N :=
ν

(λ+ 2)b2
. (7.21)
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The properties of the steady-state mean density g(s) of firm’s sizes given by
(7.20) depend in an essential way on the ratio of the characteristic scales s0 and κ.
In particular, it follows from (7.20) that, if κ � s0, then Zipf’s law holds only if
s� s0 (if s � κ). In the opposite case, κ� s0, Zipf’s law is true for any s > s0.

Expression (7.20) shows that the presence of Zipf’s law for s > s0 is accom-
panied by lower power laws over the interval s ∈ (0, s0). Their exponents depend
on the interplay between the scales κ, s0 and on the value of the dimensionless
parameter λ. Namely, if κ� s0, then

g(s) � (λ+ 2)
s

s0
, s < s0, κ� s0 . (7.22)

For the opposite case κ � s0, there are two power laws for the lower values of s.
For s� κ, the linear law (7.22) is valid, while if κ� s < s0, we get the following
asymptotic

g(s) � N
s0

(
s

s0

)λ

, κ� s < s0 . (7.23)

Figures 7.1 and 7.2 plot the steady-state mean density of firm’s sizes given by (7.20)
for different values of λ and for different ratios of the scales s0 and κ, inherent to
the stochastic behavior of firm’s asset values.

In conclusion, consider the properties of the steady-state mean density g(s) for
the limiting case κ = 0, so that, as long as a sudden death does not occur, the
stochastic behavior of a firm is governed by the pure Gibrat’s law. Supposing that
condition (7.18) is valid, we obtain

g(s) =
N
s0

⎧
⎪⎪⎨

⎪⎪⎩

(
s

s0

)λ

, 0 < s < s0 ,

(s0
s

)2

, s > s0 .

(7.24)

Let us assume that the initial asset value s0 is random and is distributed according to
the pdf γ(s). Averaging the expression (7.24) over the distribution of s0, we obtain

g(s) = N
[
sλ

∫ ∞

s

u−(λ+1)γ(u)du+ s−2

∫ s

0

uγ(u)du
]
. (7.25)

Using simple manipulations, we transform the previous relation into

g(s) = N
[
sλF(s, λ) − s−1F(s,−1) + s−2

∫ s

0

F(u,−1)du
]
, (7.26)

where we have introduced the notation

F(s, λ) =
∫ ∞

s

u−(λ+1)γ(u)du . (7.27)
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Fig. 7.1 Log-log plots of the steady-state mean density g(s) given by (7.20) of firm’s sizes for
κ = 100s0 and for N = 1. From bottom to top, λ = −1, 1, 3. The linear behavior (7.22) is clearly
visible for the interval s ∈ (0, s0), and Zipf’s law can be observed for s � κ

Let γ(s) be the gamma distribution given by (6.88), then

F(s, λ) = F(s, s̄, q, λ) =
(q
s̄

)λ+1 Γ (q − λ− 1, qs/s̄)
Γ(q)

. (7.28)

Furthermore, the integral in the last term of equality (7.26) is described by expres-
sion (6.89). Figure 7.3 plots the steady-state mean density of firm’s sizes given by
(7.26) for different values of λ.

7.5 Explanation of the Generalized Balance Condition

We now discuss the meaning of the balance condition given by Proposition 7.4.1 for
the validity of Zipf’s law. In this goal, let us first consider the case where sudden
deaths are absent, for which the natural balance condition introduced by Defini-
tion 2.5.1, i.e., λ = −1 or equivalently a = 0, is necessary for Zipf’s law to hold.
Assuming that Gibrat’s law holds, i.e., the stochastic behavior of the firm’s asset
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the crossover between linear and power laws (7.22), (7.23) can be observed within the interval
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values S(t) is described by GBMs, then the statistical average of S(t) is equal to

E[S(t)] = s0 e
at . (7.29)

In this case, the balance condition a = 0 means that the statistical average of firm’s
asset values does not depend on time:

E[S(t)] = s0 ⇐⇒ a = 0 ⇐⇒ λ = −1 . (7.30)

In other words, the balance condition means that the overall asset values of firms
that were born at the same time is constant.

Consider now the statistical average of some firm’s asset value Ed[S(t)], where
the index d indicates that this average takes into account the possibility of the firm’s
sudden death. Obviously, this average is equal to

Ed[S(t)] = Q(t)E[S(t)] , (7.31)
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where E[S(t)] is the statistical average of the firm’s asset value S(t) in the absence
of sudden death and Q(t) is a the survival function defined in Sect. 7.1. Assuming
for simplicity that S(t) is a GBM whose average is given by relation (7.29), while
the survival function in the presence of sudden deaths is the exponential (7.5), we
find that the average firm valueEd[S(t)], taking into account the existence of sudden
deaths and for a GBM dynamics of the firm’s asset values before death, is equal
to

Ed[S(t)] = s0 e
(a−μ)t . (7.32)

If condition (7.18) is valid, then we have

Ed[S(t)] = s0 . (7.33)

Thus, condition (7.18) necessary for Zipf’s law to be valid is nothing but a gen-
eralization of the Definition 2.5.1 of a balanced growth for the general case μ �=
0. In other words, if condition (7.18) holds, then in spite of the existence of
sudden deaths, the overall asset value of surviving firms that were born at the
same time does not depend on time and remains equal to the overall initial asset
value.
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7.6 Some Consequences of the Generalized Balance Condition

Let us now consider in detail the average Ed[S(t)] given by (7.31), in which the
factor E[S(t)] in the r.h.s. of relation (7.31) takes into account both the killing of
firms upon first reaching the survival level s1 � 0 and deviations from Gibrat’s law
due to a non-zero κ > 0. Obviously

E[S(t)] =
∫ ∞

s1

sf(s; t)ds, (7.34)

where f(s; t) is the solution to the diffusion equation (2.39), satisfying both initial
(2.40) and boundary (6.48) conditions. Using relations (6.41) and (6.49), we rewrite
the last equality in the form

E[S(t)] =
∫ ∞

0

s(z)h(z; t)dz , (7.35)

where h(z; t) is the solution to the initial-boundary problem (6.43), (6.46), (6.48).
For the particular case where S(t) follows a semi-GBM, for which the pdf h(z; t)
is given by the explicit expression (6.66), (6.67), we obtain

E[S(t)] = (s1 + κ)E(t) − κE0(t) , (7.36)

where

E(t) =
∫ ∞

0

ebzh(z; t)dz , E0(t) =
∫ ∞

0

h(z; t)dz . (7.37)

After simple calculations, one obtains

E(t) =
1
2
e(1+λ)τ

[
s0 + κ
s1 + κ

erfc

(
1

2
√
τ

ln
[
s1 + κ
s0 + κ

e−(λ+2)τ

])

−
(
s1 + κ
s0 + κ

)λ+1

erfc

(
1

2
√
τ

ln
[
s0 + κ
s1 + κ

e−(λ+2)τ

])]
(7.38)

and

E0(t) =
1
2

[
erfc

(
1

2
√
τ

ln
[
s1 + κ
s0 + κ

e−λτ

])

−
(
s1 + κ
s0 + κ

)λ

erfc

(
1

2
√
τ

ln
[
s0 + κ
s1 + κ

e−λτ

])]
. (7.39)

In particular, it follows from these results that, if condition (7.18) is valid, then there
is a finite non-zero limit

lim
τ→∞

Ed[S(t)] = lim
τ→∞

E[S(t)]e−(1+λ)τ = s0 Ω(x, y, λ) , (7.40)
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where

Ω(x, y, λ) = (1 + x)

[
1 −

(
y + x
1 + x

)λ+2
]
, x =

κ

s0
, y =

s1
s0
, λ > −1 .

(7.41)
One can interpret Ω as the ratio of the long-term average asset value E[S(∞)] of
surviving firms to the initial asset value s0. The finiteness of the limit (7.40) means
that, despite sudden deaths and killing at level s1, the mean asset value of surviving
firms remains finite and comparable with the initial value s0. In this sense, condition
(7.18) is actually a balance condition, even in the presence of firms being killed at
level s1. Figure 7.4 shows the function Ω(x, y, λ).

7.7 Zipf’s Law as a Universal Law with a Large
Basin of Attraction

We have shown that, for given parameters a, μ, and volatility b, the steady-state
mean density of firm’s asset values has the power asymptotics

g ∼ s−(m+1) , (7.42)



108 7 Firm’s Sudden Deaths

where the exponentm given by (7.16) is a function of the values of the parameters
a, μ and b. In particular, for different coefficients of volatility b, and unchanged
parameters a and μ, the exponent of the power law (7.42) is different.

There is a unique exception to this behavior, which occurs when Zipf’s law holds.
Indeed, if the general balance condition (7.18) is valid, then for any b we have
m = 1. In contrast, if a �= μ, then it is not possible to find a value for the volatility
b < ∞ giving m = 1. In other words, Zipf’s law exhibits a universal behavior in
the sense that, if it is true for some volatility b1, then it will be true for any other
volatility b2.

At the same time, as the volatility b increases, the power law (7.42) becomes
closer to Zipf’s law, and the later is obtained asymptotically for very large volatilities
b for all values of the other parameters. In this sense, Zipf’s law is “attracting” the
power laws (7.42). To illustrate this property of Zipf’s law, we rewrite the expression
of the exponent (7.16) in the form

m =
1

2δ′
(√

(δ′ − 1)2 + 4δ′ ε+ δ′ − 1
)
, (7.43)

where the distance of the ratio
ε :=

μ

a
(7.44)

to 1 provides a quantification of how much the condition (7.18) is violated. The
parameter

δ′ :=
1

1 + λ
=
b2

2a
(7.45)

is proportional to b2 and goes to infinity as λ → −1, i.e., approaches the balance
condition in absence of sudden death. Plots of the exponentm given by (7.43) as a
function of δ′ are depicted in Fig. 7.5, for different values of the ratio ε. It can be
seen in particular that the greater δ′, i.e., the more volatile are the GBMs of the asset
values, the closer the exponent m is to 1, and the closer the power law (7.42) is to
Zipf’s law.

7.8 Rate of Sudden Death Depending on Firm’s Asset Value

Until now, we have considered only the case where the abrupt death of a given
firm was independent of the firm’s asset value, and was controlled by a simple sta-
tionary process. Accordingly, the survival function defined in Sect. 7.1 was a pure
exponential with constant hazard coefficient μ.

We now investigate the more general case where the hazard coefficient is a func-
tion of the firm’s asset value and of the age of the firm. This implies that the survival
function Q(t) of a firm which was born at the instant t = 0 satisfies the general
equation

dQ(t) = −μ (S(t), t)Q(t) dt , Q(0) = 1 . (7.46)
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Fig. 7.5 Plot of the dependence of the exponent m given by (7.43) as a function of δ′ defined by
(7.45) for different fixed values of the ratio ε = μ/a. From bottom to top, ε = 0.6, 0.8, 1, 1.2, 1.4.
The greater the volatility is, the closer the power law (7.42) is to Zipf’s law

Its solution reads

Q(t) = exp
(
−

∫ t

0

μ(S(t′), t′)dt′
)
. (7.47)

Note that, as S(t) is in general described by a stochastic process, then the survival
function Q(t) is also random. The corresponding pdf of the firm’s asset value is
given by

f(s; t) = E [Q(t)δ(S(t) − s)] . (7.48)

Let us assume that S(t) satisfies the stochastic equation (6.1). It is easy to show
that in this case the pdf f(s; t) given by (7.48) satisfies the equation

∂f(s; t)
∂t

+
∂[a(s)f(s; t)]

∂s
+ μ(s, t)f(s; t) =

1
2
∂2[b2(s)f(s; t)]

∂s2
. (7.49)

with the initial condition (2.40). Correspondingly, if the intensity of birth is constant,
while the hazard rate does not depend on the age of the firm, i.e., if μ = μ(s), then
the steady-state mean density g(s) defined in (3.18) satisfies the equation

1
2
d2[b2(s)g(s)]

ds2
− d[a(s)g(s)]

ds
− μ(s)g(s) = −δ(s− s0) . (7.50)
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As an example, let us calculate the steady-state mean density g(s) of firm’s sizes,
supposing that S(t) follows a GBM, such that a = 0 and b(s) = b · s, while μ(s) is
a linear function of s: μ(s) = μ · s. In this case, introducing the auxiliary function
ψ(s) := s2g(s), (7.50) reduces to the homogeneous equation

s
d2ψ(s)
ds2

− ζψ(s) = 0 , (7.51)

with ζ = 2μ
b2 as defined in Proposition 7.3.1. In addition, the function ψ(s) has to

obey the following conditions of continuity at s0

ψ(s0 − 0) = ψ(s0 + 0) ,
d2ψ(s)
ds2

∣∣∣
s0−0

s0+0
=

2
b2
, (7.52)

in order to take into account the delta function in the r.h.s. of (7.50). A general
solution to (7.51), expressed in terms of the steady-state mean density

g(s) = ψ(s)/s2 , (7.53)

reads

g(s) =
1
s

√
ζ

s

[
A I1

(
2
√
ζs

)
+B K1

(
2
√
ζs

)]
, (7.54)

where I1(x) and K1(x) are respectively the modified Bessel functions of the first
and second kind. A and B are two constants to be determined.

In order to fully determine g(s) from (7.54), it is convenient to use the inverse
relation pointed out in Sect. 2.3 with (2.23). We compare the asymptotic, for ζ → 0,
of the two terms of the general solution (7.54) and the corresponding steady-state
mean density given by (3.24), which for λ = −1 is equal to

g(s) =
2ν
b2

{
s−1 , 0 < s < s0 ,

s0s
−2 , s > s0 .

(7.55)

The following asymptotics are true:

1
s

√
ζ

s
I1

(
2
√
ζs

)
� ζ

s
,

1
s

√
ζ

s
K1

(
2
√
ζs

)
� 1

2s2
, s→ 0 . (7.56)

It follows from these asymptotics and from the limiting mean density (7.55), that
the sought mean density is equal to

g(s) =
2ν
b2
C

1
s

√
ζ

s

⎧
⎪⎨

⎪⎩

I1

(
2
√
ζs

)/
ζ , 0 < s < s0 ,

s0DK1

(
2
√
ζs

)
, s > s0 ,

(7.57)
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Fig. 7.6 Log-log plot of expression (7.57) for the mean density of firm’s sizes, demonstrating the
distortion of Zipf’s law due to the linear dependence of the hazard coefficient μ · s on the asset
value s. From bottom to top, ζ = 2µ

b2
= 10−3 , 10−4, 10−5. The upper dashed straight line shows

the exact Zipf’s law g(s) ∼ s−2

where the two constants C and D are determined as follows. The constant D is
determined from the continuity condition (7.52):

D =
I1

(
2
√
ζs0

)

ζs0K1

(
2
√
ζs0

) . (7.58)

The other proportionality constantC is obtained by using the second jump condition
(7.52). Figure 7.6 shows the mean density of firm’s sizes given by (7.57), demon-
strating the distortion of Zipf’s law due to the linear dependence μ(s) = μ · s of the
hazard coefficient as a function of the asset value s.

7.9 Rate of Sudden Death Depending on Firm’s Age

We now focus on the case where the hazard rate μ depends only on the age of
the firms. This situation is important insofar as the literature often reports that new
born firms have a much larger failure rate than well-established firms (Becchetti and
Trovato, 2002, for instance). One of the goals of this section is to analyze possible
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deviation from Zipf’s law of the mean density g(s) of firm’s assets resulting from a
time-dependent hazard rate.

Following the same approach as previously, we explore the properties of the
mean density

g(s) = ν

∫ ∞

0

Q(u)f(s;u)du , (7.59)

where the surviving function Q(t) takes into account the dependence of the surviv-
ing probability with respect to the age of the firms. In order to account for the larger
failure rate of newly born firms, let us choose

Q(t) = exp
(
−

∫ t

0

μ(t′)dt′
)
, (7.60)

with
μ(t) = μ∞ + (μ0 − μ∞)e−kt . (7.61)

Here, k is a time scale factor. Instead of e−kt, we could have chosen any arbitrary
monotonically decreasing function, such that h(0) = 1 and h(∞) = 0. However,
the present choice allows us to obtain analytical results. In this case

Q(t) = exp
(
−μ∞t−

μ0 − μ∞
k

(
1 − e−kt

))
. (7.62)

It is convenient to rewrite this expression in dimensionless form, taking as the natu-
ral time scale the characteristic time tb = 2/b2 given by (2.18), associated with the
volatility of the GBM. Expression (7.62) thus becomes

Q(t) = exp
(
−ζ∞τ −

ζ0 − ζ∞
κ

(
1 − e−κτ

))
, (7.63)

where

ζ0 :=
2μ0

b2
, ζ∞ :=

2μ∞
b2

, κ :=
2k
b2
. (7.64)

The parameter κ, in a unit inverse to the volatility time tb given by (2.18), is the rate
of switching between the two asymptotic exponential surviving regimes:

Q(t) � e−μ0t = e−ζ0τ (κτ � 1) Q(t) ∼ e−μ∞t = e−ζ∞τ (κτ � 1)
(7.65)

Let us determine the order of magnitude of the different parameters. First, tb =
2/b2 is the characteristic volatility time. For an annual volatility b � 0.2, we obtain
tb � 50 years. It seems reasonable to consider that the formation of an “adult” firm
takes approximately 1/k � 1 ∼ 5 years, leading to a characteristic value of the
parameter κ (7.64) in the range κ � 10 ∼ 50. It also appears reasonable to take as
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typical that the characteristic lifetime of an “adult” firm is approximately 25 years1

1
μ∞

� tb
2

� 25 years ⇒ ζ∞ � 2 . (7.66)

In order to describe the fact that young firms are more prone to fail, we assume that
the characteristic lifetime of young firms is approximately 5 years:

1
μ0

� tb
10

� 5 years ⇒ ζ0 � 10 . (7.67)

For a numerical illustration of the effect of a time-dependent hazard rate, this
suggests to choose the parameters defined in (7.64) as follows:

ζ∞ = 2 , ζ0 = 10 , κ = 10 ∼ 50 . (7.68)

Figure 7.7 shows a log-log plot of the surviving function (7.63), for the parameter
values given by (7.68), for different values of κ.

Substituting in (7.59) the log-normal pdf f(s; t) given by (4.62) and the survival
function (7.60), we obtain

g(s) =
ν̄

s

∫ ∞

0

dτ√
πτ

× exp

(
−ζ∞τ −

ζ0 − ζ∞
κ

(
1 − e−κτ

)

−

(
ln

(
s
s0

)
+ τ − δτ

)2

4τ

)
.

(7.69)

where ν̄ := ν
b2 is the dimensionless rate of firm’s births.

We are now in position to explore numerically the possible deviations from Zipf’s
law, caused by a non-exponential form of the survival function Q(t) (7.63) which
takes into account different decaying rates for “young” and “adult” firms. In the case
of a pure exponential survival function given by (7.5), recall that the balance condi-
tion λ = ζ−1 ensures the validity of Zipf’s law. Let us here assume that the balance
condition holds for “adult” firms, i.e., λ = ζ∞ − 1. For the parameter values (7.68),
Fig. 7.8 shows the mean density given by (7.69). One can conclude that the existence
of different rates of deaths for “young” and “adult” firms does not modify signifi-
cantly Zipf’s law when the balance condition λ = ζ∞ − 1 for “adult” firms holds.

We can also resort to a saddle point approximation to derive the large s behavior
of the distribution of firm’s sizes given by (7.69). Let us first rewrite this relation as

g(s) =
ν̄

s
√
π

∫ ∞

0

dτ e−fx(τ) , (7.70)

1 Daniel et al. (2008) find that the half-time (time needed for half a population to disappear) of all
firms recorded on the CRSP database is significantly shorter, of the order of 5–10 years.
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Fig. 7.7 Log-log plot of the surviving function Q(t) given by (7.63), for the parameters values
given by (7.68). The two dashed lines are the exponential asymptotes given by (7.65)

with

fx(τ) =
1
2

ln τ + ζ∞τ +
ζ0 − ζ∞
κ

(
1 − e−κτ

)
+

1
4τ

(x− λτ)2 , (7.71)

and x stands for ln
(

s
s0

)
. Expanding fx(τ) around its minimal value τ∗, in the limit

of large x, we get

fx(τ) ≈ fx(τ∗) +
1
2
f ′′x (τ∗)(τ − τ∗) (7.72)

with
τ∗ ≈ x ·

[
λ2 + 4ζ∞

]−1/2
(7.73)

and

fx(τ∗) ≈ 1
2

ln
x√

λ2 + 4ζ∞
+
ζ0 − ζ∞
κ

+
x

2

[√
λ2 + 4ζ∞ − λ

]
, (7.74)
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Fig. 7.8 Solid lines: log-log plots of the steady-state mean density g(s) given by (7.69) for the
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f ′′x (τ∗) ≈ 1

2x [λ2 + 4ζ∞]3/2
. (7.75)

After integration of the Gaussian term that results from the second order approxi-
mation of expression (7.70), we obtain

g(s) ≈ 2ν̄ e
ζ0−ζ∞

κ

√
λ2 + 4ζ∞

(
s

s0

)−(1+m)

(7.76)

with

m =
1
2

(√
λ2 + 4ζ∞ − λ

)
. (7.77)

Thus, provided that the hazard rate of firm’s sudden death goes to some constant
for large time, the asymptotic behavior of the distribution of firm’s size is left
unchanged. The tail index of the distribution is still controlled by the parameter
λ and the long term hazard rate of firm’s deaths.
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Appendix

Interrelation Between the Steady-State Mean Density g(s)
and the Steady-State Pdf f(s)

In this appendix, we come back to the discussion started in Sect. 3.3 about the con-
ditions of stationarity of the mean density of firm’s sizes. We had seen that, if the
integral

ν

∫ ∞

0

f(s; t)dt (7.78)

converges so that the corresponding steady-state density g(s) exists, then a nonzero
steady-state distribution in Gabaix’s sense cannot exist, and vice-verse. Indeed,
mathematically speaking, the existence of Gabaix’s steady-state distribution is
equivalent to the existence of a nonzero limit

f(s) = lim
t→∞

f(s; t) , (7.79)

i.e., to the existence of a steady-state pdf f(s) of individual asset values. It is obvious
that, if f(s) > 0 for some s, then the improper integral (7.78) diverges and the
steady-state density g(s) does not exist. There is thus a contradiction between the
existence of a steady-state density in Gabaix’s sense and in the presence of a flow
of firm’s birth which is central to this book.

Nevertheless, if one takes into account not only the birth flow, but also the possi-
ble deaths of firms, then a steady-state mean density g(s) may exist even if the pdf
f(s, t) admits a non-zero limit. To explain this fact, consider the improper integral

ν

∫ ∞

0

Q(u)f(s;u)du , (7.80)

which is the limit, if it exists, of (7.3) as t goes to infinity, in the case where the mean
rate of firms birth ν is constant. As it will be seen hereafter, a monotonically decay-
ing function Q(u) can describe either the process of firm’s death or inhomogeneous
mean rates of firm births.

To ensure the consistency between the steady-state mean density g(s) and the
steady-state pdf f(s), notice that it is easy to prove the following

Proposition 7.9.1. If f(s;u) is a bounded function of u, i.e., there exists a positive
constant 0 < B(s) <∞ such that

f(s;u) < B(s) ∀ u ∈ [0,∞) ,

while Q(u) is a function, satisfying the asymptotic relation

Q(u) ∼ o{u−p} , u→ ∞ , p > 1 ,
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then the improper integral (7.80) converges, and the steady-state mean density g(s)
exists for the range of s such that the first condition is fulfilled.

The above assertion remains true even when f(s;u) presents an integrable
singularity at u→ 0+ of the form (3.21)

f(s;u) ∼ O
{

1√
u

}
, u→ 0+ .

Let us illustrate the joint existence, as t → ∞, of a mean density of firm’s sizes
g(s) and of a distribution f(s) of individual asset value using the example of the
GBM S(t) satisfying the stochastic equation

dS(t) = a · S(t) dt+ b · S(t) dW (t) , S(t = 0) = s0 > 0 , (7.81)

where W (t) is a standard Wiener process. The corresponding pdf f(s; t) satisfies
the diffusion equation

∂f(s; t)
∂t

+ a
∂sf(s; t)
∂s

=
b2

2
∂s2f(s; t)
∂s2

. (7.82)

Suppose that a reflecting barrier is located at s = s1, such that the following
boundary condition holds (Karatzas and Shreve, 1991)

F(s1; t) = 0 , (7.83)

where

F(s; t) = a s f(s; t) − b2

2
∂s2f(s; t)

∂s
(7.84)

is the flow of the probability measure.
Let us find the steady-state solution to the diffusion equation (7.82), satisfying

the boundary condition (7.83). Noticing that the steady-state pdf corresponds to a
zero flow for any s > s1, we obtain

lim
t→+∞

F(s, t) ≡ F(s) = a s f(s) − b2

2
ds2f(s)
ds

= 0 , s > s1 . (7.85)

A non-vanishing solution of the last equation, satisfying the normalizing condition

∫ ∞

s1

f(s)ds = 1 ,

exists for
λ < 0 . (7.86)
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It takes the power law form

f(s) =
|λ|
s1

(
s

s1

)λ−1

∼ sλ−1 , s > s1 , λ < 0 . (7.87)

As discussed previously, Zipf’s law follows from the balance condition λ = −1.
We now determine the corresponding steady-state density g(s), assuming that

Q(t) is exponential
Q(t) = e−μt , μ > 0 . (7.88)

For this, we first determine the solution to the diffusion equation (7.82), satisfying
the initial condition

f(s, t = 0) = δ(s− s0) (7.89)

and the boundary condition (7.83). By the change of variable

z :=
1
b

ln
(
s

s0

)
⇐⇒ s = s0 e

bz , (7.90)

the boundary-initial problem (7.82), (7.83), (7.89) reduces to the auxiliary initial-
boundary problem

∂ϕ(z; t)
∂t

+ �
∂ϕ(z; t)
∂z

=
1
2
∂2ϕ(z; t)
∂z2

,

ϕ(z; t = 0) = δ(z) , G(z1; t) = 0 ,

(7.91)

where ϕ(z; t) and f(s; t) are tied by the relation

f(s; t) =
1
b · sϕ

[
1
b

ln
(
s

s0

)
; t
]

(7.92)

and

G(z; t) := �ϕ(z; t) − 1
2
∂ϕ(z; t)
∂z

, z1 :=
1
b

ln
(
s1
s0

)
, � :=

a

b
− b

2
. (7.93)

A standard approach to obtain the solution to the initial-boundary problem (7.91)
is to use the reflection method (Borodin and Salminen, 2002), which leads to

ϕ(z; t) =
1√
2πt

exp
(
− (z − �t)2

2t

)

+ e2�z1
1√
2πt

exp
(
− (z − 2z1 − �t)2

2t

)

− �e2�(z−z1) erfc

(
z − 2z1 + �t√

2t

)
, z > z1, z1 < 0. (7.94)
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Fig. 7.9 Plots of the pdf f(s; t) given by (7.92) and (7.94) as a function of s for different times,
illustrating its convergence to the steady-state pdf f(s) given by (7.87). Here, s0 = 1, s1 = 0.1,
a = 0, b = 1, so that λ = −1 satisfies the condition λ < 0 for the existence of a non-zero
steady-state f(s)

Figures 7.9 and 7.10 show the pdf f(s; t) obtained from (7.92) and (7.94) for two
different regimes. Figure 7.9 corresponds to λ < 0 for which f(s; t) converges at
long times to the non-vanishing steady-state pdf (7.87). Figure 7.10 shows the decay
of f(s; t) to zero at long times, for λ > 0.

Let us now prove that the steady-state density

g(s) = ν

∫ ∞

0

e−μuf(s;u)du , μ > 0 , (7.95)

exists for any λ. We see from (7.94) that, for z �= 0 (and for z > z1), the pdf
ϕ(z; t) is bounded from above while, for z = 0, it exhibits an integrable singularity,
analogous to (3.21). Thus, there exists, for any z > z1, a well-defined functionϕ(z),
which is equal to the convergent improper integral

ϕ(z) = ν

∫ ∞

0

e−μuϕ(z;u)du . (7.96)
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Fig. 7.10 Plots of the pdf f(s; t) given by (7.92) and (7.94), illustrating its uniform convergence
to zero, as t → ∞. Here, s0 = 1, s1 = 0.1, a = 1, b = 1, so that λ = 1 does not satisfy the
condition λ < 0 for the existence of a non-zero steady-state pdf f(s)

In turn, due to relation (7.92), there exists a steady-state density

g(s) =
1
bs
ϕ

[
1
b

ln
(
s

s0

)]
. (7.97)

After substitution of (7.94) into (7.96), we obtain2

ϕ(z) =
1√

2μ+ �2
ez(�−

√
2μ+�2)

(
1 + e2a

√
2μ+�2

√
2μ+ �2 − �√
2μ+ �2 + �

)
. (7.98)

Then, substituting the last expression into (7.97), we finally get

g(s) =
2ν
b2s0

A(λ, ζ)
(
s

s0

)−1−m

∼ s−1−m , (7.99)

where

A(δ, ζ) =
1
ρ

[
1 +

(
s1
s0

)ρ
ρ− λ
ρ+ λ

]
, (7.100)

2 Related integrals are tabulated in Bateman and Erdelyi (1954).
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Fig. 7.11 Dependence of the factor A(λ, ζ) defined in (7.100) as a function of λ, for values of
parameter ζ = 0.1, 0.05, 0.01, and for s1 = 0.1s0

andm is the same as in (7.13)–(7.16):

m = m(λ, ζ) =
1
2
(ρ− λ) , ρ =

√
λ2 + 4ζ , ζ =

2μ
b2
. (7.101)

Let us compare the steady-state density g(s) given by (7.99) and the steady-
state pdf f(s) given by (7.87). Recall that a non-vanishing steady-state pdf f(s)
(7.87) exists only if λ < 0, while a steady-state density g(s) exists for any λ under
the condition μ > 0. On the other hand, the aforementioned mutually exclusive
existence of g(s) and f(s) for μ = 0 implies that, as μ→ 0+, the steady-state mean
density g(s) (7.99) tends to infinity, if λ < 0, and remains finite, if λ > 0.

This warrants studying the limit μ→ 0+ in more detail. The meaning of μ going
to zero can be better understood when interpreted in terms of the expected lifetime
μ−1 of a typical firm. This lifetime μ−1 should be compared with the volatility time
tb defined in (7.101), which is the characteristic time of change of the asset’s value
S(t) due to volatility. The limit μ→ 0+ corresponds to the condition

tb � μ−1 ⇐⇒ ζ � 1 . (7.102)
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Fig. 7.12 Plots of the tail index −1−m [where m is given in (7.101)] of the steady-state density
g(s) (7.99) as a function of λ, for values of the parameter ζ = 0.1; 0.05; 0.01. The straight line
(for λ < 0) plots the exponent λ − 1 of the steady-state pdf f(s) (7.87)

Inequality (7.102) expresses that the characteristic lifetime of a typical firm is
much larger than the volatility time tb over which significant firm value variations
occur according to GBM processes. Figure 7.11 shows the dependence of the fac-
tor A(λ, ζ) given by (7.100) as a function of λ, for three decreasing values of the
parameter ζ, illustrating the announced divergence of g(s) as μ→ 0+.

Another important comparison is that the steady-state pdf f(s) (7.87) and den-
sity g(s) (7.99) are power laws with generally different exponents. But, in the limit
where (7.102) holds, the exponents of the two power laws (7.87) and (7.99) become
equal as ζ → 0, in the domain λ < 0 for which the steady-state pdf f(s) exists.
Figure 7.12 plots the exponent −1 −m(λ, ζ) (where m is given by (7.101)) of the
power law g(s) (7.99) as a function of λ, for different values of ζ, demonstrating
that, for λ < 0 and in the limit ζ → 0, the power laws (7.87) and (7.99) are actually
the same.



Chapter 8
Non-stationary Mean Birth Rate

In all previous chapters, we have studied the steady-state mean density g(s) given
by (3.18) of firm’s asset values and its properties, for a stationary intensity ν of
firm’s births. In real life, ν is not constant, with periods of strong growth, such
as during “new economy bubbles” (Galbraith, 1997; Kindleberger, 2000; Shefrin,
2000; Shiller, 2000; Shleifer, 2000; Sornette, 2003; White, 1996) or during and after
political transitions, and periods of stagnation, for instance during depressions. Over
large times, there are even secular variations of firms creations, such as for instance
during the transition associated with the political “big bang” of the Soviet Bloc in
the 1990s (Nowak et al., 2005). In some countries, (e.g., Poland), not long after the
transition, the economy started to grow at a fast rate soon surpassing the level of
its economy under socialism, with a large growth of the number of privately owned
enterprises during the transition from centrally governed to the market economy
(Nowak et al., 2000, 2005; Gur et al., 2008).

In this chapter, we first derive some properties resulting from a non-stationary
birth intensity ν(t) of the mean density g(s, t) of firm’s asset values given by (3.15).
Then, we introduce and study a model in which the intensity of firm’s birth is
coupled with the overall firm’s asset value: as the later grows, the former is also
assumed to grow correspondingly. This simple model accounts more realistically
for the fact that firm’s creation is indeed related to the innovation dynamics and
capital availability, both being stronger in periods of firm’s growth.

8.1 Exponential Growth of Firm’s Birth Rate

Let us assume that the intensity of firm’s births is exponentially growing as

ν(t) = ν0e
dt, d > 0. (8.1)

Substituting this expression into (3.16), we obtain

g(s, t) = edt

∫ t

0

e−duf(s;u)du = ν(t)
∫ t

0

e−duf(s;u)du. (8.2)

A. Saichev et al., Theory of Zipf’s Law and Beyond,
Lecture Notes in Economics and Mathematical Systems 632,
DOI 10.1007/978-3-642-02946-2 8, c© Springer-Verlag Berlin Heidelberg 2010
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This formula (8.2) differs from expression (7.6) only by the replacement of ν by
ν(t). Thus, all the properties of the mean density of firm’s asset values which were
previously derived for a constant ν, including those taking into account the pos-
sibility of sudden firm’s death, carry over to the present case with a ν(t) varying
exponentially with time. In particular, the generalized balance condition stated in
Proposition 7.4.1 (with replacing μ by d) holds true, although it acquires another
interpretation.

Consider firms which were born at some instant t0 = t− u, so that at the current
time t their mean asset values are equal to E[S(u)]. Correspondingly, the overall
mean asset value Ω(t, u), at the current instant t, of all firms which were born at
instant t− u, is proportional to

Ω(t, u) ∼ ν(t− u)E[S(u)]. (8.3)

Supposing for simplicity that S(t) is a GBM whose expectation is given by equality
(7.29), and taking into account relation (8.1), we obtain

Ω(t, u) ∼ ed(t−u)s0e
au = s0e

dt e(a−d)u. (8.4)

If condition a = d, which is formally equivalent to the generalized balance condition
(Proposition 7.4.1), is valid, then the overall mean asset value at current time t

Ω(t, u) ∼ s0edt, (8.5)

does not depend on u. In other words, equality a = d is a balance condition in the
sense that a group of firms which were born at the time t1 (t1 < t) has the same
mean overall asset value as another groups of firms which were born at any other
instant t2 (t2 < t).

8.2 Deterministic Skeleton of Zipf’s Law

We can now reveal more transparently the hidden working of Zipf’s law for the
mean density of firm’s asset values, where the generalized balance condition is valid,
based on the deterministic version of the distribution of firm’s asset values. Let
S(t − t′) be a deterministic function describing the growth of the asset value of
some firm which was born at instant t′, while ν(t) is the intensity of firm’s birth.
Then the overall number of firms, whose asset values at current time t are larger
than some level s, is equal to

G(s; t) =
∫ t

0

ν(t′)1 [S(t− t′) − s] dt′, (8.6)

where 1(x) is the unit step function. Let S(t) be an increasing function, so that the
integral (8.6) is equal to
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G(s; t) =
∫ t−t∗(s)

0

ν(t′) dt′, (8.7)

where t∗(s) is the age of the firm upon reaching asset value s. One can find t∗ by
solving the equation

S(t∗) = s (8.8)

with respect to t∗. In particular, if the deterministic version of Gibrat’s law is true,
then we have

S(t) = s0e
at =⇒ t∗(s) =

1
a

ln
(
s

s0

)
, a > 0. (8.9)

From another point of view, if the intensity of firm’s birth grows exponentially, i.e.,
if it is given by expression (8.1), then it follows from (8.7) that

G(s; t) =
ν(t)
d

· e−dt∗(s). (8.10)

Expression (8.10) implies that, the larger the exponent d of firm’s births, and the
greater the age t∗(s) of firms upon reaching the level s, the smaller the fraction of
firms whose asset values exceed s.

One may interpret the exponential growth (8.1) as some kind of Gibrat’s law
for the intensity of firm’s birth. Substituting into (8.10) the consequence of a deter-
ministic Gibrat’s law for firm’s asset values given by (8.9), we obtain the power
law

G(s; t) =
ν(t)
d

(s0
s

)ε

, ε =
d

a
. (8.11)

If both Gibrat’s laws are consistent, in the sense that their growth rates are identical
(a = d), then we get Zipf’s law.

8.3 Simple Model of Birth Rate Coupled with the Overall
Firm’s Value

The properties of the mean density of firm’s asset values, when Gibrat’s law holds
exactly or approximately in some asymptotic regimes, have been studied by con-
sidering that the three controlling processes are decoupled and can be chosen
independently to represent different properties of the economics of firm’s dynamics.
These three processes are:

1. The instantaneous growth rate a(t) of the firm’s asset values
2. The volatility b(t)
3. The intensity of firm’s birth ν(t)
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However, as discussed in the introduction of this chapter, it seems reasonable to
consider the possibility that some or all three processes are coupled. For instance,
as the overall value of the firms belonging to an economy grows, the availability for
innovations and capital to seed new firms should also grow concomitantly.

In the sequel, we introduce the simplest model that takes into account a possible
coupling between the birth rate of firms at a given time and the distribution of firm’s
values as a function of time, which is taken to characterize the evolution with time
of the state of the economy. The model is defined by

ν(t) = ν0(t) + ς K(t) , K(t) :=
∫ ∞

0

θ(s)g(s, t)ds. (8.12)

Here, ς is a coupling factor, while the term ν0(t) describes the spontaneous appear-
ance of some “pioneering firms,” arising due to new inventions, new technologies,
and new niches, giving rise to a new area of economic development. In what follows,
we will suppose that

ν0(t) = 0 for all t < t0, (8.13)

where t0 is the time of foundation of the new economic era. Correspondingly, we
will suppose, in accordance with the causality principle, that both the intensity of
firm’s birth and the mean density of firm’s asset values are equal to zero earlier than
the foundation time:

ν(t) = 0 , g(s, t) = 0 , for all t < t0. (8.14)

The function θ(s) in (8.12) describes the mechanism(s) for the initialization of
new firms that result from the coupling with the current existence of firms. For
instance, in a situation in which the greater the number of firms which possess assets
whose values are larger than some given value s∗, the larger the probability of firm’s
births, then θ(s) = 1(s− s∗) and relation (8.12) becomes

ν(t) = ν0(t) + ςN (s∗, t) = ν0(t) + ς
∫ ∞

s∗
g(s, t)ds, (8.15)

where N (s∗, t) is the average number of firms whose asset values at instant t
are larger than s∗. In a different economy in which the probability of the birth of
firms increases with the overall firm asset value, then θ(s) = s, which leads to the
following expression

ν(t) = ν0(t) + ςΩ(t) = ν0(t) + ς
∫ ∞

s1

sg(s, t)ds, (8.16)

where s1 is the lowest possible asset value.
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We have seen that the mean density g(s, t) of firm’s asset values is given by
Corollary 3.2.1, which has to be complemented with the conditions (8.14). We can
thus write

g(s, t) =
∫ t

t0

ν(t′)f(s; t− t′)dt′. (8.17)

Equation (8.16) together with (8.17) constitute two coupled integral equations in the
functions ν(t) and g(s, t).

We first consider the general case. Substituting (8.17) into (8.12), we obtain the
following integral equation with respect to the mean birth rate ν(t):

ν(t) = ν0(t) + ςR(t) ⊗ ν(t), (8.18)

where

R(t) :=
∫ ∞

0

θ(s)f(s; t)ds. (8.19)

Without loss of generality, we have put t0 = 0 in (8.18), and have used the sign ⊗
for the convolution integral.

Using the Laplace transform

ν̂(u) :=
∫ ∞

0

ν(t)e−utdt (8.20)

of ν(t) allows us to transform the integral equation (8.18) for the unknown intensity
of firm’s birth ν(t) into an algebraic equation for its Laplace transform ν̂(u):

ν̂(u) = ν̂0(u) + ς R̂(u) · ν̂(u). (8.21)

Thus, the explicit expression for the Laplace transform of the intensity of firm’s
birth is

ν̂(u) =
ν̂0(u)

1 − ςR̂(u)
. (8.22)

We can now explore some properties of the intensity of firm’s birth ν(t) for a
case appropriate for many applications, such that R(t) is proportional to the firm’s
mean asset value

R(t) =
∫ ∞

s1

sf(s; t)ds = E [S(t)] . (8.23)

As already mentioned, this situation describes an economy in which θ(s) = s.
Taking s1 = 0 for simplicity, and supposing that the stochastic behavior of the asset
value S(t) of any firm obeys the pure Gibrat’s law, we obtain

R(t) = s0e
at =⇒ R̂(u) =

s0
u− a. (8.24)
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Let us assume that the birth intensity of pioneering firms ν0(t) is given by

ν0(t) := ν0e
−dt1(t) =⇒ ν̂0(u) =

ν0
u+ d

, (8.25)

corresponding to a burst of innovation at the origin of the new technological era,
followed by a progressive exponential relaxation. Substituting the Laplace images
(8.24) and (8.25) into (8.22), we obtain

ν̂(u) = ν0
u− a

(u+ d)(u − a− ςs0)
. (8.26)

This leads to

ν(t) = ν0
1 + λ+ ρ

1 + λ+ ρ+ γ
e−ρτ + ν0

γ

1 + λ+ ρ+ γ
e(1+λ+γ)τ , (8.27)

where we have used the following dimensionless parameters

γ :=
2ςs0
b2

, ρ :=
2d
b2
. (8.28)

The first term in the r.h.s. of (8.27) describes the impact of pioneering firms, whose
rate of birth is obtained by a renormalization of the bare exponent d by the stochastic
diffusive terms of the GBM dynamics of firm’s asset values. The second term in the
r.h.s. of (8.27) results from the cascades of firms born as the economy develops, and
reveals the coupling between the multiplicative Gibrat growth and the feedback of
the growth of the population of firms on the creation of new firms.

Since the first term in the r.h.s. of (8.27) decays exponentially, we can omit it at
long times (τ � 1/ρ), leading to the asymptotic expression

ν(t) � N0 e
(1+λ+γ)τ (1 + λ > −γ) , N0 := ν0

γ

1 + δ + ρ+ γ
. (8.29)

Expression (8.29) describes the intensity of firm’s birth in a “developed market.”
Correspondingly, in accordance with (7.15), the mean density of firm’s asset values
in a developed market regime obeys the asymptotic power law

g(s) ∼ s−(1+m) , s > s0, (8.30)

where the exponent takes the new expression

m =
1
2

(√
(2 + λ)2 + 4γ − λ

)
. (8.31)

Zipf’s law is recovered in the limit γ → 0. Again, we see that Zipf’s law is a robust
outcome of firm’s growth characterized by large stochasticity (b large relative to√

2ςs0). For small γ’s, this economy is thus described by an approximate Zipf’s law
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Fig. 8.1 Plot of the dependence of the exponent m given by (8.31) as a function of λ for different
values of the dimensionless parameter γ. From bottom to top, γ = 0.1, 0.2, 0.3, 0.4

(m ≈ 1) for arbitrary values of λ. Figure 8.1 shows the dependence of m given by
(8.31) as a function of λ, for different values of the parameter γ.

8.4 Generalization When Both the Initial Firm’s Sizes
and the Minimum Firm’s Size Grow at Constant Rates

8.4.1 Formulation of the Model

In order to generalize the results derived in the previous sections, and to be closer to
the real world, we now assume that, in addition to the intensity of firm’s births, both
the initial size of an entrant firm and the minimum size of an incumbent firm grow
at the constant rates c0 and c1 respectively. As a consequence, assuming without
loss of generality that the economy starts at t = 0, the initial size of an entrant firm
at time t is given by

s0(t) := s0 e
c0t. (8.32)

Similarly, the minimum size of a firm at time t, below which the firm exits, is

s1(t) := s1 e
c1t , c1 ≤ c0 , s1 ≤ s0. (8.33)
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Fig. 8.2 Three firm birth events (followed by the size dynamics of the three firms) are shown at
three different times, to illustrate the effect of the constant growth rate c0 of initial firm sizes. A
death event is also represented and illustrates the existence of the constant growth rate c1 of the
minimum firm size.

In other words, when at some instant te, the firm size “touches” for the first time
the exit level s1(t), the firm dies. This generalization of the model will allow us to
better understand the underpinning of the balance condition which has appeared up
to now as the keystone constraining the tail index of the firm size distribution to the
value 1 (Zipf’s law). Figure 8.2 illustrates the model.

Let us consider a firm born at time u, whose size at the current time t, denoted
by S(t, u), is given by the following stochastic process

S(t, u) = s0(u)ec(t−u)+bW (t−u), (8.34)

whereW (t) is a standard Wiener process, while s0(u) is the initial size of the firm.
The process (8.34) with the conditions (8.32) and (8.33) can be reformulated as

S(t, u) = s1(t)eZ(t,u), (8.35)

where
Z(t, u) := z∗(u) + (c− c1)(t− u) + bW (t− u), (8.36)
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is an auxiliary Wiener process with drift, and

z∗(u) := ln
(
s0
s1

)
+ (c0 − c1)u. (8.37)

The first condition (8.32) on the initial size of firms is accounted for in the auxiliary
Wiener process Z(t, u) with drift. The firm’s death occurring when S(t, u) touches
for the first time the value s1(t) given by (8.33) is now replaced by the condition
that Z(t, u) touches the zero level Z = 0. We derive below the statistical proper-
ties of the stochastic firm’s size S(t, u) from the known statistical properties of the
stochastic process Z(t, u).

Both the auxiliary stochastic process Z(t, u) and the original stochastic firm’s
size S(t, u) depend on the current time t and on the birthdate u. For our following
calculations, it is more convenient to express these processes in terms of t and of the
current age of the firm

θ := t− u > 0. (8.38)

We then have

Z(t, u) = Z(t, θ) =⇒ S(t, u) = s1(t) eZ(t,θ), (8.39)

where
Z(t, θ) := z∗(u) + (c− c1)θ + bW (θ). (8.40)

Since z∗(u) = ln ρ(t) + (c1 − c0)θ, with

ρ(t) :=
s0(t)
s1(t)

, (8.41)

we obtain
Z(t, θ) = ln ρ(t) + (c− c0)θ + bW (θ). (8.42)

The change of variables (t, u) → (t, θ) allows us to analyze the statistical properties
of firm’s sizes at a fixed time t as a function of their ages θ. Denoting as above by
te the time at which the firm disappears due to Z(t, θ) touching the zero level, we
need to take into account only those realizations of the stochastic process Z(t, θ),
for which t < te. Equivalently, this amounts to studying only those realizations of
the stochastic process Z(t, θ) (8.42) such that θ < θe, where θe = te − u is the age
of the firm at death.

For the model to be consistent, the initial firm size must be always larger than the
minimum firm size. This implies that the economy started at a time not earlier than
u∗ given by

u∗ :=
1

c1 − c0
ln

(
s0
s1

)
, u∗ > −∞. (8.43)
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Therefore, the oldest firm was born at u∗. At time t, its age is

θ∗(t) =
ln ρ(t)
c0 − c1

, (8.44)

where ρ(t) is defined in (8.41).

8.4.2 Pdf f(s; t, θ) of Firm’s Size

Let us now determine the pdf f(s; t, θ) of the firm sizes at age θ, taking into account
a possible firm’s death when its size reaches the exit level s1(t). It follows from
(8.39) that f(s; t, θ) is obtained from the pdf ϕ(z; t, θ) of the stochastic process
Z(t, θ) (8.40) through the relationship

f(s; t, θ) =
1
s
ϕ

[
ln
(

s

s1(t)

)
; t, θ

]
. (8.45)

We thus need to derive the pdf ϕ(z; t, θ) of the stochastic process Z(t, θ) (8.42).
Interpreting Z(t, θ) as a Wiener process with drift with respect to the variable θ,
ϕ(z; t, θ) is found as the solution to the initial-boundary problem

∂ϕ(z; t, θ)
∂θ

+ (c− c1)
∂ϕ(z; t, θ)

∂z
=
b2

2
∂2ϕ(z; t, θ)

∂z2
,

ϕ(z; t, θ = 0) = δ(z − ln ρ(u)),

ϕ(z = 0; t, θ) = 0 , θ > 0.

(8.46)

Using the reflection method, the solution to (8.46) is

ϕ(z; t, θ) =
1√

2πb2θ
exp

(
− (z − ln ρ(t) − (c− c1)θ)2

2b2θ

)

− A√
2πb2θ

exp
(
− (z + ln ρ(t) − (c− c1)θ)2

2b2θ

)
, (8.47)

where the constantA is determined so thatϕ(z; t, θ) satisfies the boundary condition
ϕ(z = 0; t, θ) = 0 defined in (8.46):

A := ρλ1−λ(t), (8.48)

where

λ0 :=
2c0
b2

, λ1 :=
2c1
b2

, τ :=
b2

2
θ , τ∗ :=

b2

2
θ∗(t). (8.49)
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This leads finally to

ϕ(z; t, θ) =
1

2
√
πτ

[
exp

(
− (z − ln ρ(t) − (λ− λ1)τ)2

4τ

)

− ρ(t)λ1−λ exp
(
− (z + ln ρ(t) − (λ − λ1)τ)2

4τ

)]
. (8.50)

Below, we restrict ourself by discussing only the most natural case c0 = c1, for
instance to account for a global impact of inflation leading to the same growth rate
for the initial firm sizes s0(t) and the exit boundary s1(t).

In this case, one can rewrite the previous expression in the form

ϕ(z; t, θ) =
1

2
√
πτ

[
exp

(
− (z− − ατ)2

4τ

)
− ρ(t)−α exp

(
− (z+ − ατ)2

4τ

)]
,

(8.51)

where
z± = z ± ln ρ(t) and α = λ− λ0. (8.52)

8.4.3 Mean Density g(s, t) of Firm Sizes

The mean density of firm sizes at the current time t is equal to the following integral
over all possible firm’s birthdates u

g(s, t) =
∫ t

u0

ν(u)Q(t− u)f(s; t, t− u)du , t > t0, (8.53)

where t0 is the birthdate of the given economy, ν(t) is the intensity of firm’s births,
and Q(θ) is the survival function, i.e., the probability for a firm to survive till the
age θ. As in Chap. 7, we assume that both ν(t) and Q(θ) are exponential:

ν(t) = ν edt , and Q(θ) = e−μt , μ > 0, (8.54)

where μ is the hazard rate. Using these expressions in (8.53) and performing the
change of variable from birthdate u to age θ = t− u leads to

g(s, t) = ν(t)
∫ θ0

0

e−(d+h)θf(s; t, θ)dθ, (8.55)

where θ0 = t − u0 is the age of the given economy. Inasmuch as u0 should not be
smaller than u∗ given by (8.43), we should thus have θ0 < θ∗.

Substituting (8.45) into (8.55), we obtain

g(s, t) = ν̃(t)
1
s
g̃

(
ln
(

s

s1(t)

)
; t, τ∗, τ0

)
, ν̃(t) :=

2ν(t)
b2

, (8.56)



134 8 Non-stationary Mean Birth Rate

where

g̃(z; t, τ∗, τ0) :=
∫ τ0

0

e−ητϕ(z; t, θ)dτ, (8.57)

with

τ0 :=
b2

2
θ0 (τ0 < τ∗) , η :=

2
b2

(d+ μ). (8.58)

The substitution of ϕ(z; t, θ) (8.51) into the integral (8.57) leads to two integrals,
which can be reduced to the following integral function

I(z, θ, α, β) :=
∫ θ

0

exp
(
− (z − ατ)2

4τ
− βτ

)
dτ

2
√
πτ
. (8.59)

This integral function I(z, θ, α, β) generalizes the integral function

I(z, α, β) = I(z, θ = ∞, α, β) =
∫ ∞

0

exp
(
− (z − ατ)2

4τ
− βτ

)
dτ

2
√
πτ
.

(8.60)
Performing the integration in (8.60) leads to

I(z, α, β) =
1√

α2 + 4β
exp

[
1
2

(
αz −

√
α2 + 4β |z|

)]
,

(α2 + 4β > 0).
(8.61)

Using the tabulated integral (7.4.33) in Abramowitz and Stegun (1964) yields

I(z, θ, α, β) =
1

2α(β)

[
exp

[
1
2

(αz − α(β) |z|)
]

erfc

(
|z| − θα(β)

2
√
θ

)

− exp
[
1
2

(αz + α(β) |z|)
]

erfc

(
|z| + θα(β)

2
√
θ

)]
, (8.62)

where

α(β) :=
√
α2 + 4β . (8.63)

Formula (8.62) holds true even for imaginary α(β) (obtained for 4β < −α2).
We verify directly that expression (8.62) recovers (8.61) by using the following
asymptotic relations

erfc(x) � e−x2
(

1√
πx

+O

(
1
x3

))
, x→ ∞,

erfc(x) � 2 + e−x2
(

1√
πx

+O

(
1
x3

))
, x→ −∞.

(8.64)



8.4 Generalization When Both the Initial Firm’s Sizes 135

Substituting in expression (8.57) for g̃(z; t, τ∗, τ0) the function ϕ(z; t, θ) given
by (8.51) and using the analytical form (8.62) for the integral function (8.59), we
obtain

g̃(z; t, τ0) =
1

2α(η)

{
e

1
2 (αz−−α(η)|z−|)erfc

(
|z−| − τ0α(η)

2
√
τ0

)

− e
1
2 (αz−+α(η)|z−|)erfc

(
|z−| + τ0α(η)

2
√
τ0

)
− ρ(t)−α

×
[
e

1
2 (αz+−α(η)|z+|)erfc

(
|z+| − τ0α(η)

2
√
τ0

)

− e
1
2 (αz++α(η)|z+|)erfc

(
|z+| + τ0α(η)

2
√
τ0

)]}
. (8.65)

In the case where α(η)
√
τ0 � 1, we can expand the above expression forG(z; t, τ0)

using the asymptotic (8.64) and obtain

g̃(z; t, τ0) =
1

α(η)

[
e

1
2 (αz−−α(η)|z−|) − ρ(t)−αe

1
2 (αz+−α(η)|z+|)

]
. (8.66)

We now substitute this last expression into (8.56) for the mean density of firm’s
sizes, after making explicit the s-dependence of the variable z according to z =
ln
(

s
s1(t)

)
. Using the following notations summarizing our definitions in (8.41) and

(8.52),

z− = lnκ , z+ = ln(κρ2) , κ =
s

s0(t)
, ρ =

s0(t)
s1(t)

, (8.67)

we thus obtain finally, for large τ0 � 1,

g(s, t) =
ν̃(t)
sα(η)

⎧
⎨

⎩

κ
1
2 (α−α(η))

(
1 − ρ−α(η)

)
, κ > 1,

κ
1
2 (α+α(η)) − ρ−α(η)κ

1
2 (α−α(η)) , 1 > κ > ρ−1.

(8.68)

8.4.4 Local Principle

Before discussing the conditions controlling the value of the exponent of the
asymptotic power law describing the tail of the mean density g(s, t), we point out
important properties of the general expression for g(s, t) given by (8.56) with (8.65),
as well as its limiting case (8.68).
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The general expression of the mean density given by (8.56) with (8.65) does
not depend explicitly on the (dimensionless) maximum age τ∗ of the economy, but
only on the (dimensionless) time τ0, corresponding to the lower limit of the integral
(8.53) associated with the birthdate u0 of the oldest firm in the economy. As dis-
cussed above, for our results to hold, we must have τ0 � τ∗. It is therefore natural
to identify τ0 with τ∗, and we will drop the index 0 or ∗ in the following.

The mean density g(s, t) determined by (8.56) with (8.65) as a function of the
reduced variable κ := s/s0(t) depends on the initial firm sizes s0(u) and on the exit
level s1(t) only through their combination ρ(t) = s0(t)/s1(t) > 1 at the current
observation time t. We refer to this remarkable fact as

Proposition 8.4.1 (Local Principle). The mean density g(s, t) of firm’s sizes at cur-
rent time t depends only on the ratio ρ(t) of the initial size to the exit level at the
same current time t, and does not depend on the growth rate c1 of the exit level.

A first consequence of the Local Principle is that our results hold for any time
dependence of the exit level, as long as ρ(t) remains larger than 1. A second con-
sequence of the local principle is that the time dependence of the mean density
g(s, t) is fully captured in the scaling variable κ, together with the ratio ρ at current
time, and the (dimensionless) age τ of the economy. Formally, these statements are
summarized as follows. The normalized mean density

G(κ, α, η, ρ(t), τ) =
g(κs0(t), t)
ν̃(t)s0(t)

(8.69)

depends only on the following five dimensionless parameters:

1. Normalized firm size κ = s
s0(t) .

2. Dimensionless relative drift α = λ− λ0 = 2
b2 (c− c0).

3. Composed birth and death hazard rates η = 2
b2 (d+ μ).

4. Current ratio of the initial size and exit level ρ(t) = s0(t)
s1(t) .

5. Current normalized overall age of the economy τ = b2

2 (t− u∗), where u∗ given
by (8.43) is the birthdate of the economy.

8.4.5 Power Law Exponent and Balance Condition

Expression (8.69) with (8.68) shows that the normalized mean density of firm’s sizes
has the following upper power tail

G(κ, α, η, ρ, τ) ∼ κ−m−1, κ > 1 (s > s0(t)), (8.70)

where

m =
1
2

(√
α2 + 4η − α

)
. (8.71)
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Zipf’s law, which corresponds to the case m = 1, is recovered under the balance
condition:

m = 1 ⇒ α− η = −1, (8.72)

which translates in terms of original rates as

c− c0 − μ− d = −b
2

2
. (8.73)

Introducing the average growth rate of a firm’s size

a = c+
b2

2
, (8.74)

the balance condition (8.73) now reads

a = μ+ d+ c0 ⇐⇒ μ = a− c0 − d (8.75)

Again, notice that the balance condition does not depend on the growth rate c1 of
the exit level.

In the limiting case τ = ∞, G(κ, α, η, ρ, τ) takes the simple form

G(κ, α, η, ρ, τ → ∞) =
1

α(η)κ

{
κ−m−

(
1 − ρ−α(η)

)
, κ > 1 ,

κm+ − ρ−α(η)κ−m− , 1 > κ > ρ−1,
(8.76)

where

m− :=
1
2

(α(η) − α) , m+ :=
1
2

(α(η) + α) , α(η) =
√
α2 + 4η.

(8.77)
When the balance condition (8.72) is valid, then m− = 1, m+ = η and expression
(8.76) takes the simple form

G(κ, α, η, ρ) =
1

1 + η

⎧
⎨

⎩

κ−2(1 − ρ−η−1), κ > 1

κη−1 − ρ−η−1κ−2, 1 > κ > ρ−1.

(8.78)

Figure 8.3 shows the normalized mean density given by (8.78) for ρ(t) = 103 and
η = 0; 1; 2.

8.4.6 Finite Lifetime of the Economy and Transition
to the Power Law Regime

In reality, any economy has a finite lifetime, which leads to interesting questions on
the transient regime before the establishment of the power law tail of the normal-
ized mean density of firm’s sizes G(κ, α, η, ρ, τ). Here, we study the dependence of
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Fig. 8.3 Plot of the limit normalized density given by (8.78), when the balance condition holds,
for ρ = 103 and η = 0; 1; 2

G(κ, α, η, ρ, τ) on the (dimensionless) age τ = b2

2 θ0 of the economy. For this, let
us first give the complete analytical expression of G(κ, α, η, ρ, τ):

G(κ, α, η, ρ, τ) =
1

2α(η)
κ

α
2 −1

[
e−

1
2α(η)| ln κ|erfc

(
| lnκ| − τα(η)

2
√
τ

)

− e 1
2α(η)| lnκ|erfc

(
| lnκ| + τα(η)

2
√
τ

)

− (κρ2)−α(η)/2erfc

(
ln(κρ2) − τα(η)

2
√
τ

)

+ (κρ2)α(η)/2erfc

(
ln(κρ2) + τα(η)

2
√
τ

)]
. (8.79)

It is easy to check that this expression reduces to (8.76) in the limit τ → +∞.
The complete formula (8.79) allows us to visualize how the normalized mean

density of firm’s sizes converges to the asymptotic power law (8.76). Figure 8.4
shows the normalized mean density (8.79) for the balanced case α = η − 1, for
η = 3, ρ = 102 and for two ages of the economy: τ = 1 and τ = ∞. It is
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interesting to see that, even for quite small ages of the economy, Zipf’s law holds to
a good approximation over three decades. At the same time, a clear deviation from a
pure power law can be observed in the tail, typically for s � 104 · s0. This deviation
from Zipf’s law reflects the limited lifetime of the economy in which firms have not
had time yet to grow to very large sizes. The deviation of expression (8.79) from a
pure power law provides the potential to extract some meaningful information on
the parameters that would be otherwise hidden in the universal character of Zipf’s
law, such as the dimensionless relative drift α = λ−λ0 = 2

b2 (c−c0), the composed
birth and death hazard rates η = 2

b2 (d+ μ) and the standard deviation b of the firm
growth stochastic process.

We now proceed to a quantitative determination of the deviations from the power
law tail (8.76) due to the finite age τ of the economy. For this, it is convenient to
study the s-dependence of the mean number of firms whose sizes exceed a given
level s:

N(s, t) =
∫ ∞

s

g(s′, t)ds′. (8.80)

Zipf’s law corresponds to N(s, t) ∼ s−1 for large s. As before, we study the
normalized mean number of firms of normalized sizes larger than κ:
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N (κ, α, η, ρ, τ) :=
∫ ∞

κ

G(κ′, α, η, ρ, τ)dκ′. (8.81)

While it is straightforward to calculate this integral for any κ > 0, we restrict our
analysis here to the range κ > 1 (s > s0(t)).

Expression (8.79), for κ > 1, can be rewritten in the more convenient form:

G(κ, α, η, ρ, τ) =
1

2α(η)κ
(
A− κ

−m− +A+ κ
m+

)
, (8.82)

where

A− := erfc

(
lnκ− τα(η)

2
√
τ

)
− ρ−α(η)erfc

(
ln(κρ2) − τα(η)

2
√
τ

)
,

A+ := ρα(η)erfc

(
ln(κρ2) + τα(η)

2
√
τ

)
− erfc

(
lnκ+ τα(η)

2
√
τ

)
.

(8.83)

Substituting (8.82), (8.83) into (8.81), and using the table integral

∫ ∞

y

erfc(β lnx+ γ)
dx

xα+1
=

1
α

[
y−αerfc(β ln y + γ) − exp

(
α(α+ 4βγ)

4β2

)

× erfc

(
β ln y + γ +

α

2β

)]
, (8.84)

we obtain

N (κ, α, η, ρ, τ) = B− κ
−m− +B+ κ

m+ − C , (8.85)

where �− and �+ are defined in (8.77) and

B− : =
1

2α(η)m−

[
erfc

(
lnκ− τα(η)

2
√
τ

)
− ρ−α(η)erfc

(
ln(κρ2) − τα(η)

2
√
τ

)]
,

B+ : =
1

2α(η)m+

[
erfc

(
lnκ+ τα(η)

2
√
τ

)
− ρα(η)erfc

(
ln(κρ2) + τα(η)

2
√
τ

)]
,

C : =
1
2η
e−ητ

[
erfc

(
lnκ− τα

2
√
τ

)
− ρ−αerfc

(
ln(κρ2) − τα

2
√
τ

)]
.

Figure 8.5 shows the mean cumulative number N (κ, α, η, ρ, τ) of firms as a
function of the normalized firm size κ, for α = −1 and η = 0 satisfying the balance
condition, for ρ = 100 and τ = 5; 10; 50. As expected, the older the economy,
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the closer is the mean cumulative number N (κ, α, η, ρ, τ) to Zipf’s law N ∼ κ−1.
Already for τ = 50, N (κ, α, η, ρ, τ) obeys Zipf’s law in the range κ ∈ (1, 106).

Finally, by the same derivations as in the previous chapters, one can show that all
the results discussed in this section hold in the case where the initial firm size factor
s0 is a random variable as long as the distribution of the initial firm sizes is not too
fat-tailed, i.e., its moment of orderm is finite.

8.5 Time-Dependence of the Average Size of the Global
Economy of Firms

The economy considered here at a given time t is constituted of the firms that have
been born in the past and are still in operation. It is interesting to ask what our
model of firms, which includes birth, death and stochastic growth, predicts for the
time-dependence of the total size of this economy. The derivation below leads to
classify three regimes:

1. Stationarity of the real economy
2. Balanced growth
3. Positive growth



142 8 Non-stationary Mean Birth Rate

This calculation will also provide a natural economic interpretation of the second
balance condition (8.75) discussed earlier for Zipf’s law to hold.

In order to describe the time-dependence of the size of the global economy, we
have to account for (1) the increase (or decrease) of the number of active firms due
to the entry and exit processes and (2) the collective aggregate of the growth (or
decay) of the sizes of the existing firms under their governing stochastic multiplica-
tive growth processes. Including these two ingredients, the mean size of the global
economy of firms can be written as

Ω(t) :=
∫ t

0

ν(ζ)Q(t, ζ)E[S(t, ζ)]dζ, (8.86)

where ν(t) is the birth intensity, Q(t, ζ) is the survival function taking into account
the sudden firm exits occurring at random times, S(t, ζ) is the size at time t of
some firm born at a previous time ζ and E[S(t, ζ)] its statistical average over the
stochastic growth process. In expression (8.86), we have taken for convenience of
notations that the economy started at t = 0 so that the current time t is also the age
of the economy.

In what follows, we still suppose that the birth intensity is exponentially growing
with time, while the survival function is exponentially decaying with time:

ν(t) := νedt, Q(t, ζ) := e−μ(t−ζ). (8.87)

Then, expression (8.86) reads

Ω(t) =
∫ t

0

νe−dζ e−μ(t−ζ)E[S(t, ζ)]dζ, (8.88)

In a first step, we assume that there is no minimum exit level (or equivalently, it
is zero), and that the current firm size S(t, ζ) follows a pure geometric Brownian
motion

S(t, ζ) = s0(ζ) ec(t−ζ)+bW (t−ζ), (8.89)

whereW (·) is a standard Wiener process. This implies that

E[S(t, ζ)] = s0(ζ) ea(t−ζ), where a = c+
b2

2
. (8.90)

Substituting this expectation into (8.88), and taking the initial size of firms at cre-
ation to grow exponentially with time (so as to reflect the presence of inflation for
instance),

s0(ζ) := s0 e
c0ζ , (8.91)

we obtain

Ω(t) =
∫ t

0

νedζ e−μ(t−ζ) s0e
c0ζ+a(t−ζ)dζ. (8.92)
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After simple transformations, expression (8.92) can be written in the form

Ω(t) = s0(t) ν(t) T (t, γ), (8.93)

where

T (t, γ) :=
∫ t

0

eγv dv =
1
γ

(
eγt − 1

)
, (8.94)

and
γ := a− c0 − d− μ. (8.95)

Expression (8.93) shows that the growth or decay of the nominal size of the
economy is driven by three factors:

1. The size s0(t) of firms at birth, which grows in nominal terms to reflect the
existence of inflation

2. The intensity ν(t) of new firms created in the economy, which reflects several
factors, including pro-business legislation and tax laws, entrepreneur spirit as
well as human population growth

3. The term T (t, γ) reflecting the overall success of typical firms in the economy

The sign of γ determines three qualitatively different growth regimes of the
economy.

First Scenario (γ < 0), Stationary Real Economy per Firm

Expression (8.94) can be rewritten as

T (t, γ) =
1
|γ|

(
1 − e−|γ|t

)
→ 1

|γ| for large t. (8.96)

Thus, at long times, the mean nominal size of the economy,

Ω(t) =
1
|γ|s0(t) ν(t) ∼ e

(c0+d)t, (8.97)

is only driven by inflation and the intensity of firm entries. Since the number of
active firms at time t is

∫ t

0 ν(t
′)dt′ ∼ edt at large times, we conclude that, in real

terms (i.e., discounting for inflation) and per firm (∼ per capita), the economy is
stationary.

Second Scenario (γ = 0), Balanced Growth

Expression (8.94) leads to
T (t, γ) = t, (8.98)

so that the mean size of the economy is

Ω(t) = s0(t) ν(t) t ∼ t e(c0+d)t. (8.99)
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In real terms and per firm, the economy is growing linearly with time, corresponding
to an asymptotically vanishing real growth rate per firm (∼ per capita). This scenario
for γ = 0 corresponds to the balanced condition a − c0 − d − μ = 0, that ensures
the validity of Zipf’s law, as demonstrated in Chap. 7.

Third Scenario (γ > 0), Growing Economy

Expression (8.94) shows that the real size of the economy grows with the real
growth rate γ + d + c0. The coefficient γ measures directly the contribution to
the growth resulting from increasing performance of individual firms, for instance
due to productivity gains.

Using the approach developed in Sect. 8.4, appendix shows that these results
remain valid in the presence of a growing minimum size [given by expression (8.33)]
below which firms exit.

Appendix

Influence of a Minimum Firm Size on the Classification
of Economic Growth Regimes

Using the approach developed in Sect. 8.4, this appendix shows that the results
obtained in Sect. 8.5 remain valid in the presence of a growing minimum size [given
by expression (8.33)] below which firms exit.

In Sect. 8.4, we showed that, in the presence of a minimum firm size s1(t) =
s1e

c1t, the stochastic size of a given firm can be expressed in the form

S(t, u) = s1(t) eZ(t,θ), (8.100)

where

Z(t, θ) = z∗(ζ) + (c− c1)θ + bW (θ) , θ = t− ζ. (8.101)

We have also determined the pdf ϕ(z; t, θ) of the auxiliary Wiener process with drift
Z(t, θ) under the form (8.47) that we recall for convenience,

ϕ(z; t, θ) =
1

2
√
πτ

[
exp

(
− (z − ln ρ(t) − ατ)2

4τ

)

− ρ−α(t) exp
(
− (z + ln ρ(t) − ατ)2

4τ

)]
, (8.102)

where

α =
2
b2

(c− c0) , τ =
b2

2
(t− ζ) , ρ =

s0(t)
s1(t)

. (8.103)
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This allows us to calculate the expectation E[S(t, ζ)] that we need for the determi-
nation of the mean size Ω(t) of the economy as given by (8.86):

E [S(t, ζ)] = s1(t)
∫ ∞

0

ez ϕ(z; t, t− ζ)dz. (8.104)

The calculation of this integral yields

E [S(t, ζ)] = s0(t) e(1+α)τΦ(τ), (8.105)

where

Φ(τ, α, ρ) =1 − 1
2

[
erfc

(
(2 + α)τ + ln ρ

2
√
τ

)

+ ρ−2−α erfc

(
−(2 + α)τ + ln ρ

2
√
τ

)]
. (8.106)

The function Φ(τ, α, ρ) has the following limit

lim
τ→∞

Φ(τ, α, ρ) =

{
1 − ρ−2−α, α > −2,

0 α < −2.
(8.107)

Reporting this limit in (8.105), we obtain the asymptotic dependence of the mean
firm size

E [S(t, ζ)] � s0(t)e(1+α)τ (1 − ρ−2−α), τ → ∞, α > −2. (8.108)

This expression differs only by a positive constant factor from that obtained in the
absence of the exit level (ρ = ∞). Thus, the classification of the three growth
regimes obtained in Sect. 8.5 remains valid in the presence of a growing minimum
size below which firms exit given by expression (8.33), as long as α > −2. The
condition α > −2 holds for most the cases of interest, since the balance condition
γ = a − c0 − d − μ = 0 translates into α = 2(d+μ)

b2 − 1. Since the hazard rate
h is positive, and as long as the intensity ν(t) is not decreasing (d � 0), we have
α � −1.



Chapter 9
Properties of the Realization Dependent
Distribution of Firm Sizes

This chapter discuss the properties of the realization-dependent density of firm’s
sizes. We put together the different ingredients introduced in the previous chapters
to analyze the extent to which the mean density of firm’s sizes, which has been the
main topic of this book, is representative of the realized density of firm’s sizes in a
given economy (i.e., a single realization).

9.1 Derivation of the Poissonian Distribution
of the Number of Firms

As a preparation to the analysis of the typical fluctuations decorating the time-
dependence of the mean size of the global economy, we derive in this first section
the distribution of the number of firms in the economy and its evolution as a func-
tion of time, taking into account the birth and the two death processes discussed in
the previous chapters.

We use the following assumptions:

• The birth flow of firms, described by the set of birth dates {t�}, is a Poissonian
process with intensity ν(t), which is a continuous function of t.

• The firms sizes {S�(t, t�)}, for any given sequence of birth dates {t�}, are
mutually statistically independent stochastic processes.

• The sequence {t�} of birth dates does not depend on the random firm sizes
{S�(t, t�)}.

It is convenient to represent the time interval (−∞, t] as a sequence of adjacent
intervals

Tk := (t− (k + 1)Δ, t− kΔ] , k = 0, 1, 2, . . . (9.1)

For simplicity and without loss of generality (as Δ can be taken arbitrary and, in
particular, to recover the continuous limit Δ → 0), we assume that, in each k-th
interval, the mean rate of firm births is the constant denoted as ν(t − kΔ). This
staircase representation of the intensity can be thought of as a discretized approx-
imation to the assumed continuous function ν(t). To obtain the distribution of the
number of firms, it is convenient to calculate the characteristic function
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Θk(u, s, t) := E
[
eiuÑk(s,t)

]
(9.2)

of the random number

Ñk(s, t) :=
∑

�:t�∈Tk

1(S(t, t�) − s), (9.3)

of firms whose size is larger than s at time t and that were born in the interval Tk.
In order to calculate the characteristic function Θk(u, s, t) (9.2), let us denote

by Mk the random number of firms, that were born in the interval Tk. Due to the
Poissonian nature of the birth process, the probability thatMk is equal tom is given
by

Pr{Mk = m} =
(ν(t− kΔ)Δ)m

m!
e−ν(t−kΔ)Δ. (9.4)

Correspondingly, the characteristic function Θk(u, s, t) defined by (9.2) is equal to

Θk(u, s, t) = e−ν(t−kΔ)Δ
∞∑

m=0

(ν(t − kΔ)Δ)m

m!

× E

[
exp

(
iu

∑

�:t�∈Tk

1(S(t, t�) − s)
)∣∣∣Mk = m

]
. (9.5)

The expectation E [·] is taken over the statistics of firms sizes S(t, t�) and over
the m random birth dates {t�} which are statistically independent and uniformly
distributed within the interval Tk. Taking into account that all {S(t, t�)}’s are sta-
tistically independent, and assuming that the statistical properties of any given firm
size S(t, t�) at time t are stationary (i.e., remain the same for any t� ∈ Tk), we
obtain

E

[
exp

(
iu

∑

�:t�∈Tk

1(S(t, t�) − s)
) ∣∣∣Mk = m

]
= E

[
eiu1(S(t,t−kΔ)−s)

]m

.

(9.6)
This allows us to transform (9.5) into

Θk(u, s, t) = exp
(
ν(t− kΔ)Δ

[
E
[
eiu1(S(t,t−kΔ)−s)

]
− 1

])
, (9.7)

where the expectation E [·] corresponds to averaging over the statistics of the random
size S(t, t− kΔ) of a firm.

In order to calculate the expectation in (9.7), we use the identity valid for any
real value y:

eiu1(y) = 1 + (eiu − 1)1(y), (9.8)

in which 1(y) is the indicator function. Accordingly
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E
[
eiu·1(S(t,t−kΔ)−s)

]
− 1 = (eiu − 1)E [1(S(t, t− kΔ) − s)]. (9.9)

We thus obtain

Θk(u, s, t) = exp
[
(eiu − 1)ν(t− kΔ)Δ F̄ (s; t, t− kΔ)

]
, (9.10)

where we have used the definition,

F̄ (s; t, t− kΔ) := E [1(S(t, t− kΔ) − s)], (9.11)

of the complementary cumulative distribution function (ccdf) F̄ (s; t, t0) of the cur-
rent size S(t, t0) of some firm, which was born at the instant t0. In other words,
F̄ (s; t|s0, t0) =

∫∞
s f(s′; t|s0, t0)ds′, where f(s; t|s0, t0) is the pdf of the size

S(t, t0) of some firm.
Given the statistical independence of the firm sizes {S(t, t�)} and the statistical

independence of the Poissonian birth dates of firms within non-overlapping inter-
vals, the characteristic function of the total number Ñ(s, t) of firms whose sizes are
larger than s is equal to the product of the characteristic functions of the numbers of
firms which were born within the intervals Tk:

Θ(u, s, t; Δ) =
∞∏

k=0

Θk(u, s, t) = exp
[
(eiu − 1)N(s, t; Δ)

]
, (9.12)

where

N(s, t; Δ) :=
∞∑

k=0

Δν(t− kΔ)F̄ (s; t− kΔ). (9.13)

By taking the continuous limit Δ → 0, we finally obtain the expression of the
characteristic function Θ(u, s, t) = limΔ→0 Θ(u, s, t; Δ) of the random number
Ñ(s, t) of firms with sizes larger s:

Θ(u, s, t) = exp
[
(eiu − 1)N(s, t)

]
, (9.14)

where

N(s, t) := E
[
Ñ(s, t)

]
= lim

Δ→0
N(s, t; Δ) =

∫ t

0

ν(t− ξ)F̄ (s; t, t− ξ)dξ (9.15)

is the mean number of firms of sizes larger than s at time t. The expression (9.14)
for the characteristic function of the random number Ñ(s, t) implies

Proposition 9.1.1. Under the assumptions made at the begin of this section, the
random number Ñ(s, t) of firms whose size is larger than s in a given economy
follows a Poisson law with parameter N(s, t), i.e., the probability that Ñ(s, t) is
equal to n is
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Pr{Ñ(s, t) = n} =
[N(s, t)]n

n!
e−N(s,t). (9.16)

Remark 9.1.1. Expression (9.15) for the mean current number N(s, t) of firms of
sizes larger than s remains valid even if the processes governing the firm’s sizes
{S(t, t�)} are mutually statistically dependent and the birth flow {t�} is not Pois-
sonian. A necessary and sufficient condition for formula (9.15) to hold is that the
stochastic process S(t, t�), describing the size of a firm born at instant t�, be sta-
tistically dependent solely on its own birthdate t� and not on any other element
of the sequence {t�}. However, the validity of formula (9.15) does not imply nec-
essarily that the random number Ñ(s, t) is Poissonian. For this later property to
hold, one needs in addition the size processes {S(t, t�)} to be mutually statistically
independent and the birthdates {ti} to be Poissonian as well, as mentioned above.

Remark 9.1.2. The Poissonian property of the random number Ñ(s, t) is robust
with respect to different ingredients impacting the lives of the firms. This is the
case with respect to the two exit mechanisms discussed in Chap. 5 (by dropping
below a minimum level) and in Chap. 7 (by a sudden exit at some random time), for
which the random number Ñ(s, t) remains Poissonian.

Each exit mechanism requires its specific treatment. For the first one treated in
Chap. 5, we need to solve the diffusion equation for the probability density function
(pdf) of firm sizes, defined by

f(s; t, t�) = −∂F̄ (s; t, t�)
∂s

, (9.17)

in the presence of an absorbing boundary condition at the exit level.
For the sudden exit mechanism of Chap. 7, provided that its occurrence does not

depend on the firm size, one can account for it explicitly in the formalism leading to
(9.14) with (9.15) by rewriting relation (9.15) in the form

N(s, t) =
∫ t

0

H(t, t− ξ)ν(t− ξ)F̄ (s; t, t− ξ)dξ, (9.18)

where H(t, t�) is the survival function of the firm born at t�. If the sudden exit
times are statistically stationary, then H(t, t�) = H(t − t�). Assuming in addition
a Poissonian statistics for the sudden exit times implies that the survival function is
exponential,

H(t, t�) = e−μ(t−t�) , t > t�, (9.19)

where μ is the hazard rate. In this case, expression (9.18) reduces to

N(s, t) =
∫ t

0

ν(t− ξ)e−μξF̄ (s; t, t− ξ)dξ. (9.20)
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9.2 Finite-Size and Statistical Fluctuation Effects
on the Empirical Measurement of Zipf’s Law

Expression (9.16) shows that the distribution of firm sizes Ñ(s, t) is Poissonian. It
allows us to quantify the typical deviations from the pure mathematical Zipf’s law,
that occur especially in the tail for large firm sizes s for which the number of firms
in any empirical sample becomes limited.

As a metric of the statistical fluctuations occurring in the tail of empirical
distributions of firm sizes due to finite-size effects, we consider the ratio of the
realization-dependence number of firms of size larger than s at time t, Ñ(s, t), to
its statistical averageN(s, t). Its variance reads

Var

[
Ñ(s, t)
N(s, t)

]
=

E
[
Ñ2(s, t) −N2(s, t)

]

N2(s, t)
. (9.21)

We use the well-known result that all cumulants κm of a Poissonian random
variable are all identical and equal to

κm = N(s, t) , m = 1, 2, . . . (9.22)

In particular
Var[Ñ(s, t)] = N(s, t) (9.23)

so that

Var

[
Ñ(s, t)
N(s, t)

]
=

1
N(s, t)

. (9.24)

To give a quantitative illustration, let us consider firms whose sizes evolve
according to the pure geometric Brownian motion with no minimum exit size. Then,

N(s, t) = N(s) =
∫ ∞

s

g(s′)ds′, (9.25)

where

g(s) =
2ν
b2|λ| s

−λ
0 sλ−1 , s > s0 , λ < 0. (9.26)

This leads to

N(s) = N0

(s0
s

)−λ

, (9.27)

where

N0 =
∫ ∞

s0

g(s)ds =
2ν
b2λ2

(9.28)

is the mean number of firms, whose sizes, at a given time t, are larger than the initial
size s0. Using (9.24) and (9.27), we obtain
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Fig. 9.1 Number of firms whose size is larger than s when σ = 0.01, ν = 50, λ = −1 for ten
realizations of the economy. The straight line depicts Zipf’s law for the mean number of firms

Var

[
Ñ(s, t)
N(s, t)

]
=

1
N0

s

s0
, (9.29)

where we have assumed that λ = −1, so that Zipf’s law N(s) ∼ s−1 should hold
exactly in absence of statistical fluctuations.

In this illustrative example, the total number of firms is infinite while N0

remains finite. Let us consider a data set spanning the range s ∈ [s0, s∗] where

s∗ := 0.01N0 s0 is such that Var
[

Ñ(s,t)
N(s,t)

]
remains smaller than 10−2 over this

entire range. Suppose that the mean number of firms in the economy, whose sizes
are larger than s0, is equal to N0 = 106. Then s∗ = 104 s0, showing that Zipf’s
law should be observed with good accuracy over four orders of magnitudes in this
example. Figure 9.1 depicts ten simulation results obtained for such an economy.

9.3 Estimation of the Distribution of Firm Sizes

Let us now discuss some specificities of the estimation of the distribution of firm
sizes. For simplicity, we focus on the simple case where there is no exit level and
where both the firm’s birth intensity ν and the initial size of entrant firms s0 are
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constant. We first consider the mean density of firm’s size g(s) for s ≥ s0. Recall
that in such a case the mean number of firms whose sizes are larger than s is

N(x) = N0 x
δ−1 , x :=

s

s0
, (9.30)

where N0 is the mean number of firms, whose size is larger than s0. Let us divide
the semi-axis x ∈ [1,∞) into adjacent intervals

x ∈ [xk, xk+1) , xk = Δk−1 , Δ > 1 , k = 1, 2, . . . (9.31)

The mean number of firms, whose sizes belong to the kth interval, is equal to

Nk := N(xk) −N(xk+1) = A(Δ, λ)N(xk) , A(Δ, λ) := 1 − Δλ. (9.32)

Then, plotting the points of coordinates {(yk, zk)}, with

zk := log10Nk , yk := log10 xk, (9.33)

we obtain an approximate graph of the mean density of firm’s size in a double log-
arithmic scale, for which Zipf’s Law is characterized by a straight line with slope
equal to −1.

Given a random sample of firms sizes S̃1, S̃2, . . . , we can plot on the same graph
the points of coordinates {(yk, z̃k)}, with

z̃k := log10 Ñk, (9.34)

where {Ñk} are random numbers of firms, whose sizes lie within the interval
[xk, xk+1). It is easy to show that, under the assumptions in Sect. 9.1, all the ran-
dom numbers {Nk} are independent and distributed according to a Poisson law with
mean and variance

E
[
Ñk

]
= Var

[
Ñk

]
= Nk. (9.35)

If, additionally, Nk � 102, one may interpret the random numbers Ñk as
Gaussian, with very high accuracy. We can then estimate the number k∗ of inter-
vals, for which the mean numbers of firms are larger than some givenN∗. It follows
from (9.30) and (9.32) that

k∗ =
1

|λ| log10 Δ

[
log10

(
N0

N∗

)
+ log10

(
Δ−λ − 1

)]
. (9.36)

Taking here, for instance

N0 = 106 , N∗ = 102 , Δ = 0 , Δ = 101/8, (9.37)
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Fig. 9.2 Empirical estimates of Zipf’s law for values of Ñk obtained by numerical simulation with
parameter values N0 = 106, N∗ = 102, λ = −1 and Δ = 101/8

we obtain
k∗ ≈ 36.

This means that, over more than four decades, i.e., from y1 = 0 to yk∗ ≈ 36
8 =

4.375, the relative error between the estimated density and the mean density of

firms sizes, given by
E[Ñk]√
Var[Ñk]

≤ 1√
N∗

, is at most 10%. Figure 9.2 illustrates this

fact by depicting the set of numerically simulated points (9.34), for the parameter
values (9.37). As expected, we observe that Zipf’s law is estimated with a very high
accuracy over the interval x ∈ [1, 104].

9.4 Statistical Fluctuations of the Size of the Global Economy
Using Characteristic Functions

This section extends the analysis of Sect. 8.5 by characterizing the typical fluctu-
ations decorating the time-dependence of the mean size of the global economy.
We use the method of characteristic functions and the reasonings developed in the
previous Sect. 9.1.

Let us consider a specific realization of the economy, whose nominal size at time
t is the sum of the sizes of all existing firms:
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Ω̃(t) :=
∑

�

S(t, t�). (9.38)

Following the same reasoning that led to formula (9.14) for the characteristic func-
tion of the current number of firms, the characteristic functionΨ(u, t) = E

[
eiuΩ(t)

]

of the total current size of the economy is given by

Ψ(u, t) = eL(u,t), (9.39)

where

L(u, t) =
∫ t

0

ν(ζ)H(t, ζ)
(

E
[
eiuS(t,ζ)

]
− 1

)
dζ. (9.40)

These expressions allow us to obtain the cumulants of the distribution of the
size of the economy at a given time t over many equivalent statistical realizations.
Indeed, by definition, the cumulants κn(t) are the coefficients of the power series
expansions with respect to iu of the logarithm of the characteristic function:

L(u, t) =
∞∑

n=1

κn(t)
(iu)n

n!
. (9.41)

Expanding E
[
eiuS(t,ζ)

]
in powers of iu, expression (9.40) yields

κn(t) =
∫ t

0

ν(ζ)H(t, ζ)E[Sn(t, ζ)]dζ. (9.42)

The first four cumulants give respectively the mean size κ1(t) of the economy, its
variance κ2(t), its skewness κ3(t)/[κ2(t)]3/2 and its excess kurtosis κ4(t)/[κ2(t)]2.
We thus recover expression (8.86) for the mean size of the economy. The variance
of the fluctuations of the size of the economy at time t is

Var
[
Ω̃(t)

]
=

∫ t

0

ν(ζ)H(t, ζ)E[S2(t, ζ)]dζ. (9.43)

For simplicity, let us consider the case where the exit level is zero (no exit due
to small firm sizes), while the intensity of firm’s birth, the hazard function and the
initial size at birth are exponential functions of time described by the relations (8.87)
and (8.91). We also assume that the firm size processes S(t, ζ) are pure geometric
Brownian motions given by (8.89). This leads to

E[Sn(t, ζ)] = sn0 (t) exp
[
n
(
c− c0 +

n

2
b2
)

(t− ζ)
]
, (9.44)

so that the cumulants κn(t) are given by

κn(t) = ν(t) sn0 (t) T (t, γn), (9.45)
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where T (t, γ) is defined by (8.94), and

γn = n

[
γ +

1
2
(n− 1)b2

]
, with γ = a− c0 − d− μ . (9.46)

The main consequence of this calculation is that, according to the classification of
the economic regime made in Sect. 8.5, even for stationary economies (γ < 0) for
which the mean T (t, γ) tends to a finite limit as t→ ∞, there always exists a finite
value

n∗ =
2|γ|
b2

<∞ (9.47)

such that, for n > n∗, T (t, γn) grows exponentially without bounds at long times.
Thus, even in a stationary economy, cumulants of order n > n∗ grow without limit,
expressing the existence of ever increasing statistical fluctuations decorating the
mean size of the economy. Of course, this phenomenon holds true with even stronger
amplitude for γ � 0.

For illustration, let us consider the balance case γ = 0 for which

γn =
1
2
n(n− 1)b2. (9.48)

In this case,

κ1(t) � τ ν̃(t) s0(t) , with ν̃(t) :=
2
b2
ν(t) , τ :=

b2

2
t,

κn(t) � ν̃(t)
n(n− 1)

sn0 (t) en(n−1)τ , n > 1 .
(9.49)

These expressions allow us to explore the validity of (1) the law of large numbers
(LLN) and (2) the central limit theorem (CLT). The LLN describes how the sample
mean of a random variable converges to its expected value. This convergence (for
the so-called “strong law”) is controlled by the dimensionless ratio κ2(t)/[κ1(t)]2.
In the balanced case γ = 0, the asymptotic behavior of this parameter is

κ2(t)
[κ1(t)]2

� e2τ

2τ2ν̃(t)
∼ e(b

2−d)t. (9.50)

Thus, for d < b2, i.e., if the proportional fluctuations describing the stochastic
growth of individual firms are sufficiently large compared with the growth rate the
firm entry rate, then the size of the global economy becomes more and more random
with the course of time and the LLN is not satisfied.

A necessary condition for the validity of the CLT is that the excess kurtosis
κ4(t)/[κ2(t)]2 tends asymptotically to zero. Using the expressions in (9.49) for the
balanced case γ = 0, we obtain the following asymptotic dependence for the excess
kurtosis of the size of the global economy:



9.4 Statistical Fluctuations of the Size of the Global Economy Using Characteristic Functions 157

κ4(t)
[κ2(t)]2

� e8τ

3ν̃(t)
∼ e(4b2−d)t. (9.51)

This indicates that, for d < 4b2, the distribution of the size of the global economy
over many equivalent statistical realizations becomes less and less Gaussian at a
function of time and the CLT does not hold. For b2 < d < 4b2, the LLN holds but
the CLT does not. Gabaix (2005) has built on this intuition to suggest that idiosyn-
cratic firm-level fluctuations can explain an important part of aggregate shocks, and
provide a microfoundation for aggregate productivity shocks.



Chapter 10
Future Directions and Conclusions

10.1 Mergers and Acquisitions and Spin-offs

The set of mechanisms that we have considered up to now explains quite well both
ends of the distribution of firm’s sizes. Indeed, while the average growth rate of
firm’s asset values, the intensity of firm’s births and the hazard rate of a firm’s
sudden death accurately explain the behavior of the population of large firms, the
introduction of a lower threshold below which firms disappear (by lack of efficiency,
for instance) explains the behavior of the population of small firms. Everything is not
perfect however. In many countries, like France and India amongst others, the pop-
ulation of medium size firms exhibits an anomalous behavior. One usually speaks
of the “missing middle” phenomenon to describe the fact there is a deficit of firms
of intermediate sizes. Our model, while already quite versatile, does not account
for this country-specific stylized fact. The reason is in fact rather simple. To a large
extent, the “missing middle” phenomenon could be explained by the strong propen-
sity of large firms to merge with firms which are still small but present a promising
potential. This should yield a depletion of the population of medium size firms.

In addition to the mechanisms in terms of birth, death and random growth which
have been considered in the previous chapters, we envision that the next level of
development of a complete mathematical theory of the dynamics of the popula-
tion of firms needs to take into account the mechanism of mergers between firms
(referred to as M&A for “merger and acquisition”), as well as it symmetric, the
phenomenon of creation of spin-off firms born from parent firms which outsource
a part of their existing business as separate units. For this, the long tradition in
physics concerning the investigation of the processes of coagulation (merger) and
of fragmentation (spin-off) could provide a fertile reservoir of ideas and techniques
(Aldous, 1999; Leyvraz, 2003).

10.1.1 General Formalism

The approach that we have used up to now, in which each firm follows its own
path of stochastic growth and death, does not apply anymore. Indeed, due to both
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the M&A and the spin-off processes, firms are not independent from one another.
Therefore, the distribution of firm’s sizes g(s, t) is not simply given by the integral
equation (3.15) but by an integro-differential equation that expresses the coupling
between firms introduced by M&A and spinoffs. This equation can be decomposed
into three main contributions:

• As we have seen, in the absence of M&A and of spin-offs, g(s, t) is solution to

[
∂g(s, t)
∂t

]

int. growth

= − ∂

∂s
(a(s, t)g(s, t)) +

1
2
∂2

∂s2
(
b2(s, t)g(s, t)

)

+ δ(s− s0) · ν(t), (10.1)

with g(s; 0) = 0 if the intensity of firm’s birth ν(t) equals zero for all t < 0,
provided that the density f(s; t) of the single firm’s size satisfies

∂f(s; t)
∂t

+
∂

∂s
(a(s, t)f(s; t)) =

1
2
∂2

∂s2
(
b2(s, t)f(s; t)

)
, (10.2)

with f(s; 0) = δ(s − s0). These equations account for the creation of firms
and their subsequent stochastic growth as explained in Sect. 2.7 and following.
In expression (10.1), we have omitted the hazard rate of firm’s sudden death as
well as the lower threshold s1 below which firms disappear as they can be easily
reintroduced.

• Firm’s growth via mergers and acquisitions can be accounted for by the term

[
∂g(s, t)
∂t

]

M&A

=
1
2

∫ s

0

M(s− s′, s′)g(s− s′; t)g(s′, t)ds′

− g(s, t)
∫ ∞

0

M(s, s′)g(s′; t)ds′, (10.3)

whereM(s, s′) � 0 is the rate of mergers between pairs of firms of sizes s and s′

to form a new firm of size s+s′. The first term in the r.h.s. of (10.3) describes the
creation of a firm of size s by merging two firms of sizes s′ and s−s′. The second
term in the r.h.s. of (10.3) states that the population of firms of size s decreases
when some of them merge with any other firm, thereby creating a larger firm. We
neglect here any dilution of size that may occur during the merger.

• The opposite of M&A is the process of spin-off in which a firm parts with a
fraction of its assets to create a new firm. This process is accounted for by

[
∂g(s, t)
∂t

]

spin−off

= − g(s, t)
∫ s

0

SO(s− s′, s′)ds′

+ 2
∫ ∞

0

SO(s, s′)g(s+ s′, t)ds′, (10.4)
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where SO(s, s′) ≥ 0 denotes the rate of spin-off by which a firm of size s + s′

creates a new firm endowed with a part s′ of its pre-spin-off asset and retains an
asset value equals to s. The first term in the r.h.s. of (10.4) describes the process
in which a firm of size s decreases from size s to size s− s′ while creating a new
spin-off firm of size s′ < s. The second term in the r.h.s. of (10.4) accounts for
the creation of firms of size s as spin-offs of large firms.

Putting all the terms together, the dynamic of the density of firm sizes is solution
to the integro-differential equation

∂g(s, t)
∂t

=
1
2

∫ s

0

M(s− s′, s′)g(s− s′, t)g(s′, t)ds′

− g(s, t)
∫ ∞

0

M(s, s′)g(s′, t)ds′ − g(s, t)
∫ s

0

SO(s− s′, s′)ds′

+ 2
∫ ∞

0

SO(s, s′)g(s+ s′, t)ds′ − ∂

∂s
(a(s, t)g(s, t))

+
1
2
∂2

∂s2
(
b2(s, t)g(s, t)

)
+ δ(s− s0) · ν(t). (10.5)

Specific instances of this class of integro-differential equations has been studied to
describe the processes of coagulation (merger) and of fragmentation (spin-off) in
the physics and mathematical literature (Aldous, 1999; Leyvraz, 2003). Here, given
the fact that the stochastic growth process is included, there are not general solu-
tions. The specific solutions exist under simplifying assumptions on the functional
dependence of the rates of M&A (M ) and of spin-off creation (SO), while often
neglecting the stochastic growth process (i.e., putting a(s, t) = b(s, t) = 0).

In order to make further progress, we first make the additional assumption that
both M and SO are constants, independent of the firm sizes. Consequently, the
previous equation simplifies into

∂g(s, t)
∂t

=
M

2

∫ s

0

g(s− s′, t)g(s′, t)ds′ −M · g(s, t)
∫ ∞

0

g(s′, t)ds′

− SO · s · g(s, t) + 2SO
∫ ∞

0

g(s+ s′, t)ds′ − ∂

∂s
(a(s, t)g(s, t))

+
1
2
∂2

∂s2
(
b2(s, t)g(s, t)

)
+ δ(s− s0) · ν(t). (10.6)

10.1.2 Mergers and Acquisitions and Spin-offs with Brownian
Internal Growth

We first consider the case where the internal growth dynamics (10.1) is an arithmetic
Brownian motion, i.e., a and b are constants. Besides, we assume that
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g′(0) ≡ lim
s→0+

dg(s)
ds

<∞. (10.7)

Under the assumption that ν does not depend on t explicitly, we look for the sta-
tionary solution of (10.6), and focus on the large s behavior of the solution(s) g(s)
that satisfies the boundary conditions g(0) = 0 and g(s) → 0 as s goes to infinity.
This condition (10.7) can be justified by the “absorption” conditions for small firms
which disappear below a small size.

The above conditions allow us to perform the Laplace transform of (10.6), which
yields

M

2
ĝ(k)2 −

[
Mĝ(0) + ak − b2

2
k2

]
ĝ(k) − b2

2
g′(0)

+SO ·
[
∂kĝ(k) − 2

ĝ(k) − ĝ(0)
k

]
+ νe−ks0 = 0, (10.8)

where

ĝ(k) :=
∫ ∞

0

g(s)e−ksds. (10.9)

This equation is of the Ricatti type. We can therefore perform the change of
function

ĝ(k) =
2 · SO
M

F ′(k)
F (k)

, (10.10)

so that (10.8) reads

F ′′ (k) +
[
b2k2

2 · SO − ak

SO
− M

SO
ĝ (0) − 2

k

]
F ′ (k)

+
[
Mĝ (0)
SO k

+
Mνe−ks0

2SO2 − Mb2g′ (0)
4SO2

]
F (k) = 0. (10.11)

It is a second order ordinary differential equation with a regular singular point at
k = 0. It can be locally solved by the Frobenius method and, after a little algebra,
we find that

ĝ(k) =
M

2SO
ĝ(0) +

[
Mν

2SO2 − Mb2g′ (0)
4SO2 − M2ĝ (0)2

4SO2

]
k

=

[
3M2ĝ (0) ν

8SO3 − 3M2ĝ (0) b2g′ (0)
16SO3 +

Mν s0

6SO2

− 7Mĝ (0) a
12SO2 − M3g (0)3

8SO3 − b2

2SO
+ C

]
k2

+
[
Mν s0

2SO2 +
Mĝ (0) a
2SO2

]
k2 ln(k) +O(k3), (10.12)
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where C is an arbitrary constant. A solution exists if the following consistency
condition holds,

M

2SO
= 1 , (10.13)

which ensures that the r.h.s. of (10.12) recovers ĝ(0) in the limit k → 0. This con-
sistency condition expressed a balance between firm’s mergers and fragmentations
through spin-offs. If this condition holds, we get

ĝ(k) = ĝ(0) +
[
ν

SO
− b2g′ (0)

2SO
− ĝ (0)2

]
k

=
[
3ĝ (0) ν
2SO

− 3ĝ (0) b2g′ (0)
4SO

+
ν s0
3SO

− 7ĝ (0) a
6SO

− g (0)3 − b2

2SO
+ C

]
k2

+
[
ν s0
SO

+
ĝ (0) a
SO

]
k2 ln(k) +O(k3), (10.14)

where ĝ(0) remains undetermined. By virtue of Theorem 8.1.6 in Bingham et al.
(1987), g(s) is regularly varying at infinity with a tail index m equal to 2, i.e.,
g(s) ∼ L(s)/s1+m withm = 2 for large s, whereL(s) is a slowly varying function.
This tail exponent is one unit more that the value for Zipf’s law to hold. This section
provides a novel potentially interesting mechanism for the emergence of a power
law tail with exponent 2. Actually, Frobenius’ method shows that the origin of the
value 2 of the exponent can be traced back to the term proportional to (2/k)F ′(k)
in (10.11), which itself comes from the term (−2(ĝ(k) − ĝ(0))/k in (10.8), which
comes from the spin-off term 2SO

∫∞
0
g(s + s′)ds′ in (10.6). This shows that the

internal growth dynamics of firms does not a play a role in determining the exponent:
intuitively, the arithmetic Brownian motion creates fluctuations in the sizes of firms
which are small compared with those resulting from the spin-off mechanism.

Again, a stationary power law is obtained here when a balance condition (10.13)
holds. The study of the different possible regimes appearing when (10.13) is vio-
lated is an interesting avenue for future research. Possible new regimes can appear,
such as “shattering” into a universe dominated by firms of minimal size with one
individual (dynamics dominated by spin-off) or the emergence of a monopolistic
firm (dynamics dominated by mergers). These regimes have been studied in spe-
cific cases in previous investigations of the physics of coagulation-fragmentation
processes (Leyvraz, 2003).

10.1.3 Mergers and Acquisitions and Spin-offs with GBM
for the Internal Growth Process

Under the assumption that ν does not depend on t explicitly and that the internal
growth follows a GBM (a(s, t) = a · s; b(s, t) = b · s), (10.6) for g(s) becomes
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M

2

∫ s

0

g(s− s′)g(s′)ds′ −M · g(s)
∫ ∞

0

g(s′)ds′ − SO · s · g(s)

+2SO
∫ ∞

0

g(s+ s′)ds′ − a · ∂ s · g(s)
∂s

+
b2

2
∂2 s2 · g(s)

∂s2
+ ν · δ(s− s0) = 0.

(10.15)
The solution(s) g(s) have to satisfy the boundary conditions g(0) = 0 and g(s) → 0
as s goes to infinity.

Since the GBM process of firm’s value growth, together with birth and death
processes, can create Zipf’s law with an exponent m = 1 smaller than the value
obtained with the arithmetic Brownian motion in the presence of M&A and spin-
offs, one can expect that the solution of this equation exhibits interesting compe-
titions between the different mechanisms. Here, we just show the nature of the
nonlinear nonlocal equation as a future challenge towards the development of a
more complete theory of the dynamics of interacting firms.

10.2 Summary of Main Results

10.2.1 Importance of Balance Conditions for Zipf’s Law

Starting from Gibrat’s rule of proportionate growth, and considering some departures
thereof, we have investigated the extent to which Zipf’s law could be the robust result
of the dynamics of a population of firms in an evolving economy. We have shown that
taking into account the birth and death of firms, in addition to their random growth,
does not qualitatively alter the shape of the distribution of firm’s sizes. The typical
power law shape of the distribution of firm’s size is a pervasive feature. However, the
tail index that characterizes the hyperbolic decay of the distribution does depend on
several characteristics of the economic environment. Amongst others, the average
growth rate of firm’s asset values, the firm’s birth intensity and the hazard rate of a
firm’s sudden death have a direct impact on the value of the tail index.

A general result unraveled by our study is that Zipf’s law is strictly valid if and
only if a balanced condition is fulfilled: the sum of all the mechanisms responsible
for the growth and decline of firms must vanish on average in a precise sense. Any
departure from this requirement yields a departure of the tail index from its canoni-
cal valuem = 1. This result can allow one to understand why different tail indexes
are reported in the literature for different countries around the world. However, the
reasons that underpin the validity of the balance condition are not yet clear. No eco-
nomic law can justify why all these mechanisms should almost exactly compensate
one another.

In the absence of such economic arguments, one would be tempted to resort
to Gabaix’s explanation based upon the idea that, in order to make stationary the
distribution of firm’s sizes, one has to first remove the impact of the overall economy
on the growth of each individual firm. Therefore, since the overall economy grows
at the same rate as each individual firm, on average, the balance condition is satisfied
in the referential of the growing economy.
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However, this argument can be justified, and Gabaix (1999)’s derivation of Zipf’s
law holds, only for models of the economy in which all firms are born at the same
time. In Gabaix (1999)’s framework, because the firms are all born at the same
instant, firms grow – on average – at the same rate as the overall economy. Con-
sequently, when discounted by the global growth rate of the economy, the average
expected growth rate of the firms must be zero.

10.2.2 Essential Differences with Gabaix (1999)’s
Derivation of Zipf’s Law

Applied to the framework developed in this book, and focusing on the distribution of
discounted firm sizes, Gabaix (1999)’s argument would lead to the conditions a =
μ, with d = c0 = c1 = 0 (in order to match Gabaix’s assumptions). Gabaix (1999)’s
condition would thus seem to be equivalent to our balance condition for Zipf’s law
describing the density of firms’ sizes to hold. Actually, this reasoning is incorrect.
Consider the case where a > μ, such that the global economy grows at the average
growth rate rG = a−μ. Gabaix (1999) proposed to measure the growth of a firm in
the frame of the global economy. In this frame, the new average growth rate of the
firm is a′ = a− rG = μ, which indeed would suggest that the balance condition is
automatically obeyed when a is replaced by a′. But, one should notice that a′ is a
transformed growth rate, and not the true rate. The average growth rate rG = a− μ
of the global economy is micro-founded on the contributions of all growing firms.
It would be incorrect to insert a′ in the statements of Proposition 7.4.1, as a′ is the
effective growth rate resulting from the change of frame, while our exact derivation
requires the parameters a and μ for Proposition 7.4.1 to hold. As such, nothing in our
model automatically sets the growth rate a of firms to their death rate μ, contrarily
to what happens in Gabaix (1999)’s model. The main difference that invalidates the
application of Gabaix (1999)’s argument is the stochastic flow of firm’s births and
deaths.

Summing up, Gabaix (1999)’s derivation of Zipf’s law relies crucially on a model
view of the economy in which all firms are born at the same instant. Our approach
is thus essentially different since it considers the flow of firm births, as well as their
deaths, which is more in agreement with empirical evidence.

In addition, it is important to stress that the available empirical evidence on Zipf’s
law is based on analyzing cross-sectional distributions of firm sizes, i.e., at spe-
cific times. As a consequence, the change to the global economic growth frame,
argued by Gabaix (1999), just amounts to multiplying the value of each firm by the
same constant of normalization, equal to the size of the economy at the time when
the cross-section is measured. Obviously, this normalization does not change the
exponent of the power law distribution of sizes, if it exists.

Furthermore, elaborating on Krugman (1996)’s argument about the non-
convergence of the distribution of firm sizes toward Zipf’s law in Simon (1955)’s
model, Blank and Solomon (2000) have shown that Gabaix (1999)’s argument suf-
fers from a more technical problem. Based on the demonstration that the two limits,
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the number of firms N → ∞ and smin/E[S] → 01 (or equivalently the limit of
large times t → ∞) are non-commutative, Blank and Solomon (2000) showed that
Zipf’s exponentm = 1 as obtained by Gabaix (1999)’s argument requires (1) tak-
ing the long time limit smin/E[S] → 0 over which the economy made of a large
but finite number N of firms grows without bounds, while simultaneously obeying
the condition (2) N � exp[E[S]/smin]. The problem is that conditions (1) and (2)
are mutually exclusive. Blank and Solomon (2000) showed that this inconsistency
can be resolved by allowing the number of firms to grow proportionally to the total
wealth of the economy.

As we have shown in Chaps. 7 and 8, our approach allows one to overcome Blank
and Solomon (2000)’s objection to Gabaix’s model. Indeed, in Gabaix’s model, the
balance condition ensures that the size of any firm goes to zero almost surely. Thus,
since all the firms are born at the same time, it is necessary to introduce a repelling
lower bound in order to let some of them keep a non-vanishing size. Otherwise,
the size distribution degenerates. In contrast, our approach assumes an unremitting
flow of firm’s births. So, even if our balance condition implies that firm sizes almost
surely go to zero (or to the lower admissible firm size) as in Gabaix’s model, our
economy always exhibits a significant number of firms whose size is arbitrarily large
so that the convergence toward the limit distribution always occurs, whether or not
Blank and Solomon’s condition holds. This issue has been discussed in more details
in Chap. 9, which studies the effect of the finite age of the economy on the shape
of the distribution of firm sizes. In addition, since expression (8.69) with (8.68) for
the normalized mean density of firm’s sizes also takes into account the case where
the rate of firms’ births increases exponentially as ν(t) = ν0e

d·t, when d > 0, our
analysis provides a generalization of Blank and Solomon (2000)’s results.

10.2.3 Robustness of Zipf’s Law as an Attractor for Large
Variance of the GMB of Firm’s Growth

Our theory suggests a simple explanation for the empirical evidence that the expo-
nent m for the distribution of firm’s sizes is close to 1 (Zipf’s law): the exponent
m of the tail of the distribution of firms sizes is a weakly varying function of the
parameters ν, a, b, μ, as shown explicitly in Fig. 7.5, where one can observe that
the exponent m is close to 1 for a very wide range of parameters. As a quanti-
tative illustration, consider a globally growing economy a > μ, with growth rate
rG = a− μ = 2–3% per year, and μ = 0.15 per year, corresponding to about 50%
of the firms disappearing within five years of their existence. Putting c0 = c1 = 0,
this yields ε = μ/a = 0.88. For this value, Fig. 7.5 shows that 0.9 ≤ m < 1 for all
values of δ′ = b2/2a, which is empirically undistinguishable from the exact Zipf’s
law valuem = 1 in available empirical data.

1 The term E[S] refers to the statistical average over the finite but large population of N firms.
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