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Foreword

Theoretical Computer Science as a new research area was established by pioneers
like Alan Turing (1912-1954) and Alonzo Church (1903-1995) around the ques-
tion which mathematical functions were computable, and which not. The Church-
Turing thesis states equivalence on the early notions of computability, which solves
this first question. However, there are computable functions that grow so fast that
in practice they cannot be computed (e.g. the Ackermann function).

After the first computers had been built, it soon became clear that the resources
(computing time and storage space) needed to compute a function also limited the
range of functions that could practically be computed. Systematic studies were
initiated by the seminal paper of Juris Hartmanis and Richard Stearns in 1965.
Shortly after, Stephen Cook and Leonid Levin independently proved that there ex-
ist practically important problems that most probably were impossible to solve on
Turing-equivalent computers. These so-called NP-complete problems include e.g.
the well-known Travelling Salesman problem. In 1972 Richard Karp described
reductions between these problems, a technique that should become extremely im-
portant in modern cryptography.

Nobody could imagine at this time that problems which are impossible to solve
given restrictions on computing time should be of any use. Thus the ideas of Whit-
field Diffie and Martin Hellman, published in their seminal paper “New Directions
in Cryptography” in 1976, aroused controversy (which finally resulted in the dis-
covery of the RSA algorithm in 1978). Nevertheless, it laid the foundations for
modern cryptography, which is one of the most important areas of applied mathe-
matics today. The concept of “one-way functions” introduced in this paper can be
found, with many sophisticated variations, in nearly every paper published in the
area of Public-Key Cryptography.

For one-way functions, we need an asymmetry in computational complexity:
It must be practically feasible to evaluate a function f at a given point, i.e. the
computational resources needed to compute f (x) must be bounded. On the other
hand, computing the preimage of a function value should ideally need a practically
unbounded amount of resources (at least computing time).

At a first glance, this concept very much resembles the complexity class NP
(“Nondeterministc Polynomial Time”), which plays a central role in complexity
theory. The famous assumption P �= NP implies the existence of one-way func-
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tions, but yet remains unproven. Moreover, this assumption only implies worst-
case complexity, and only for NP-complete problems.

In Public-Key Cryptography, two mathematical structures play a fundamental
role: commutative groups, and rings modulo a composite integer. In both struc-
tures, problems are known which are assumed to be practically uncomputable: the
discrete logarithm problem in groups, and computing roots in these rings. Both
problems are not NP-complete, and both require average-case intractability. So
the challenge was to secure the foundations of modern cryptography by proving
some lower bounds on the computational complexity of these problems. In the
Turing machine model, this seems impossible: researchers tried to prove such
lower bounds since the early seventies of the last century, and failed. It was thus
necessary to restrict the computation model, and several restrictions had been tried
in the past.

For the two algebraic problems mentioned above, Victor Shoup in 1997 most
convincingly proposed an algebraic restriction, and supported this restriction with
an impressive result: For solving the discrete logarithm problem in commutative
groups, he restricted the operations of the “computer” to performing group op-
erations and testing equality. He was able to show a lower bound on the time
complexity of these generic algorithms, which exactly matched the complexity of
known generic algorithms. His result implied that all improved algorithms (which
exist for certain groups) must be non-generic.

The paper by Shoup was the starting point for research in the area of generic
algorithms. This research soon included finite fields, and the above mentioned
ring structures. Research in this area at the Horst Görtz Institute for IT Security
(HGI) started independently from the established chairs, and was performed solely
by postdocs and PhD students. Andy Rupp was the first to work in this field. To-
gether with Gregor Leander he achieved the first important result by showing that
in the generic ring model, the RSA problem is equivalent to factoring integers, thus
solving a special case of one of the most important open questions in cryptography.

However, the elegance of this proof raised questions about the suitability of
the generic model for indicating lower bounds also in the Turing machine model
(where the RSA problem is still an open research issue). Up to this point, the
generic model was used as a “test model” to see if an algebraic structure was
suitable for cryptography. Thus e.g. new algorithms and assumptions based on
bilinear pairings were checked in the generic model, before introducing them.

The author of the book presented here took up all these loose ends and stretched
the generic model to its limits: Tibor Jager, who was introduced to this field by
the two aforementioned researchers, and works in close collaboration with them,
gives a unified treatment on all variants of generic models, and presents the most
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important proofs in a clear and readable fashion. His research is centered around
three main questions:

• Are generic models a reasonable abstraction of reality?
• Can we weaken these models (i.e. give the computer more power) to better

adapt these models?
• Is solving the Diffie-Hellman problem equivalent to solving the discrete log-

arithm problem?
Chapter 3 answers the third question in the negative, but only for algebraic rings
modulo a composite integer. (The question remains open for algebraic groups of
prime order.) This result was published together with Altmann and Rupp, but the
proof given here is much simpler and elegant.

In Chapter 4, the first question is answered in the negative for generic ring algo-
rithms as used by Leander and Rupp in 2006, and Aggarval and Maurer in 2009.
This result clearly shows the limits of generic algorithms, thus marking a boundary
of their applicability: In the generic ring model, both deciding quadratic residuos-
ity and computing Jacobi symbols is infeasible. However, in the Turing machine
model, Jacobi symbols are easy to compute (using the algorithm given by Gauss),
whereas the quadratic residuosity problem is assumed to remain hard. This shows
that results proved for generic ring algorithms cannot give any indication for Tur-
ing machine complexity, and should thus be treated with great care.

Semi-generic algorithms are proposed as a means to achive results with better
applicability to the “real” world. The most prominent example for the applicability
of such algorithms are bilinear pairings, where the constructions typically involve
groups based on elliptic curves (where only generic algorithms are known) and
prime order groups over the integers (where better, non-generic algorithms can
be applied). By allowing non-generic algorithms in the proof for lower bounds
where applicable, the semi-generic model is better adapted to the real problem
than a purely generic approach. As a promising result Mr. Jager has shown that
the Computational Diffie-Hellman problem (CDH), adapted to the bilinear setting,
is semi-generically equivalent to the corresponding discrete logarithm problem.

To summarize: The book authored by Tibor Jager is the most comprehensive
overview on a restricted computational model, the generic algorithm model, for
algebraic groups, rings, fields, and other cryptographically relevant domains. It
presents both the major achievements in this field in terms of lower computational
bounds and equivalence results, and shows the limitations of this approach. By
carefully considering these limitations, generic algorithms are one of the most
important foundations for modern cryptography.

Prof. Dr. Jörg Schwenk
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1 Introduction

The security of many cryptosystems relies on assumptions that certain computa-
tional problems, mostly from number theory and algebra, are intractable. There-
fore it is important to study the validity of these assumptions. Ideally, we would
like to show that these assumptions hold in a standard model of computation, e.g.
where algorithms intending to solve a computational problem are modeled as Tur-
ing machines with reasonably restricted running time. Unfortunately, proving use-
ful lower complexity bounds in the standard model seems to be impossible with
currently available techniques.

Many important hardness assumptions are based on computational problems
defined over algebraic groups. Famous examples are, for instance, the discrete
logarithm problem [DH76] and the RSA problem [RSA78]. A natural approach
to analyze these assumptions is to consider algorithms solving a given problem
by performing only the abstractly defined properties of a group, without exploiting
specific properties of the representation of group elements. Indeed, there are group
representations, such as for instance certain elliptic curve groups, for which only
very few properties beyond the abstractly defined properties of a group are known.

The generic group model considers a class of algorithms operating on an al-
gebraic group by performing only certain operations, such as applying the group
law and testing for equality of group elements. In particular, generic algorithms
do not exploit specific properties of a particular representation of group elements.
This is modeled by treating the group as a black box. The algorithm interacts
with this black box in order to perform computations. Since all computations are
independent of a particular representation of group elements, an algorithm solv-
ing a problem in the generic group model is capable of solving the problem in
any concrete instantiation of the group, thus is generic. Well-known examples for
such algorithms are Pollard’s Rho [Pol75] or the Baby-Step Giant-Step [Sha71]
algorithm for computing discrete logarithms.

Generic groups and their extensions to generic bilinear groups and generic rings
are used as tools to analyze the validity of classical and newly introduced compu-
tational hardness assumptions.

There are basically two motivations for the study of cryptographic assumptions
in these black-box models.

T. Jager, Black-Box Models of Computation in Cryptology, 
DOI 10.1007/978-3-8348-1990-1_1, © Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden 2012



2 1 Introduction

1. THE CRYPTOGRAPHER’S MOTIVATION. A proof that a computational prob-
lem cannot be solved by a reasonably restricted class of algorithms may be
seen as support towards the assumption that the problem is also hard to solve
in the standard model (where algorithms are modeled as Turing machines).
Thus, a proof in an idealized model may strenghten the trust in the validity
of a hardness assumption.

2. THE CRYPTANALYST’S MOTIVATION. Showing that a certain class of algo-
rithms is not able to solve a certain problem efficiently is a helpful insight
for the search for cryptanalytic algorithms. Proving that a certain class of
algorithms is not capable of solving a problem efficiently can for instance
help to falsify approaches for finding efficient algorithms.

Several fundamental questions concerning generic models of computation arise
with these motivations, which are addressed in this book.

• Are the generic group model and the generic ring model, as currently used
in the cryptographic literature, a reasonable abstraction of reality? What are
the limitations of these models, and to which extent can results be adopted
to the “real world”?

• Can we relax these models to bring them closer to the standard model? The
challenge here is to make the models as realistic as possible, while still being
able to prove meaningful results that we are currently not able to obtain in
the standard model. How close can we get to reality?

• One of the most important open questions in cryptography is whether solv-
ing the computational Diffie-Hellman problem is equivalent to computing
discrete logarithms. A generic reduction from the discrete logarithm prob-
lem to the Diffie-Hellman problem would be particularly interesting, since
it would imply the equivalence of both problems in all groups. Does such a
reduction exist?

1.1 Outline of this Book

In Chapter 2 we start with describing a general black-box model of computation,
which provides a unified description for various models, and allows us to instanti-
ate all generic group and generic ring models that are currently used in the litera-
ture. The general model serves also to provide a unified notation for the different
models presented and used in this book.
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In Chapter 3 the black-box ring extraction problem is considered. This prob-
lem is interesting, since an efficient algorithm for this problem would imply the
equivalence of the discrete logarithm and the Diffie-Hellman problem in all finite
cyclic groups, and the inexistence of ring-homomorphic one-way permutations.
We show that an efficient algorithm for the black-box ring extraction problem over
ZN yields an efficient algorithm finding a factor of N. This shows that there is no
efficient reduction from the discrete logarithm to the Diffie-Hellman problem that
works in any group, unless factoring integers is easy. This chapter is based on a
work presented at ICALP 2008 [AJR08]. In contrast to the original paper, we give
a new reduction which is simpler, more general, and tighter than the original one.

Another fundamental open problem in cryptology is whether solving the RSA
problem is equivalent to factoring. It was shown that indeed this equivalence holds
in the generic ring model [LR06, AM09]. In Chapter 4 we consider the question
whether these results suggest that breaking RSA is also equivalent to factoring
in the standard model. Our answer is negative, since we show that there exist a
simple and natural (i.e., not contrived) computational problem which is easy to
solve in the standard model, but equivalent to factoring in the generic ring model.
Concretely, we show that computing the Jacobi symbol is equivalent to factoring
with respect to generic ring algorithms. We achieve this result by proving a general
theorem which states that a large class of decisional problems is hard in the generic
ring model. As a further application of this theorem, we show that no generic
ring algorithm can solve the quadratic residuosity problem without (essentially)
factoring the modulus. This chapter is based on [JS09], but we give alternate (and
significantly simpler) proofs for the two key lemmas leading to the main result.

Chapter 5 considers a generalized version of the decisional composite residuos-
ity problem, which captures several variants that were proposed in the literature.
These problems have recently found several interesting cryptographic applications.
Due to a different algebraic setting, the main theorem from Chapter 4 can not be
applied. Therefore we have to devise a different technique to relate the generic
decisional composite residuosity problem to the so-called Hensel-RSA problem.

A caveat of existing generic group models is that not all currently known algo-
rithms for solving computational problems are captured. Thus, hardness results
are of very limited significance. In Chapter 6 we extend the notion of semi-generic
groups introduced in [JR10]. We propose novel idealizations of groups and bi-
linear groups, which capture all currently known algorithms, and thus allow to
derive more meaningful results than the classical models. We show the applica-
bility of the new models by analyzing exemplarily several relevant computational
problems, and show for instance that solving the computational Diffie-Hellman
problem semi-generically is equivalent to solving the discrete logarithm problem.



2 Black-Box Models of Computation

Several abstract models of computation have been proposed in the literature to
capture the notion of “generic groups” or their extensions [BS84, Nec94, Sho97,
Mau05]. The black-box model we are going to describe in the sequel is a gen-
eralization of the model introduced by Maurer in [Mau05], which in turn can be
seen as a generalization of the model of [Sho97]. While Maurer’s model captures
only the case where a generic algorithm operates on elements of a single algebraic
structure, like a group or a ring, we extend this model in order to be able to describe
settings where more than one algebraic structure is considered, as in pairing-based
cryptography [DBS04], for instance.

2.1 A General Black-Box Model

Our black-box model is characterized by q+2 sets

S1, . . . ,Sq,Π,Σ.

Each set Si contains elements of an algebraic structure, like a group or a ring.
The set Π contains functions representing computations that can be performed on
elements of

⋃q
i=1 Si, and Σ contains relations on elements of

⋃q
i=1 Si.

An algorithm A intending to solve a computational problem over S1, . . . ,Sq
interacts with an oracle O . The oracle keeps internal lists storing elements of⋃q

i=1 Si. It may be queried by A to compute functions from Π and relations from
Σ on elements of

⋃q
i=1 Si.

2.1.1 Internal State of O

For each set Si, the oracle maintains a list Li storing elements of Si. We write Li, j
to denote the j-th entry of list Li.

The oracle receives as input q vectors�x1, . . . ,�xq. Each vector

�xi = (xi,1, . . . ,xi,ki) ∈ Ski
i

consists of ki elements of Si. The lists are initialized such that

Li, j = xi, j for i ∈ {1, . . . ,q} and j ∈ {1, . . . ,ki}.

T. Jager, Black-Box Models of Computation in Cryptology, 
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6 2 Black-Box Models of Computation

The distribution of each vector�xi depends on the considered computational prob-
lem, and will be described seperately for each problem considered in the sequel.

2.1.2 Querying Operations and Relations

The algorithm may query the oracle to perform computations and relations on ele-
ments stored in variables. In order to query a computation, the algorithm submits
2n indices (i1, j1, . . . , in, jn) and some n-ary function

f : Si1 ×·· ·×Sin → Si

with f ∈ Π. If f (Li1, j1 , . . . ,Lin, jn) is undefined1 then the oracle returns an error
symbol ⊥. Otherwise it computes

f (Li1, j1 , . . . ,Lin, jn).

and appends the result to list i.
The algorithm may also issue relation queries from set Σ. To this end, it submits

2n indices (i1, j1, . . . , in, jn) and an n-ary relation

ρ : Si1 ×·· ·×Sin →{0,1}
with ρ ∈ Σ. The oracle returns ρ(Li1, j1 , . . . ,Lin, jn).

2.1.3 Notation

We write
O(S1, . . . ,Sq,Π,Σ;�x1, . . . ,�xq)

to denote that we consider an oracle storing elements of S1, . . . ,Sq in the lists
L1, . . . ,Lq, providing operations from Π and relations from Σ, and whose lists are
initialized with (�x1, . . . ,�xq).

When it is clear from the context, then we omit S1, . . . ,Sq and (Π,Σ), and write
O(�x1, . . . ,�xq) or simply O for short. In scenarios where q = 1, that is, when only
a single algebraic structure is considered, then we omit the subscripts indicating
different sets Si and write S, L, and�x = (x1, . . . ,xk).

We write A O(X) to denote that an algorithm A has oracle access to O , and
receives X as additional input (X may be the order of the considered group, for
instance).

If A is a set, then we write a $← A to denote that a is chosen uniformly random
from A.

1For instance, Si may be a semi-group and f tries to compute the inverse of a non-invertible element.
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2.2 The Generic Group Model

Let G= (S,◦) be a group. In the generic group model (GGM) an algorithm inter-
acts with an oracle

O(S,Π,Σ;�x),

where Π = {◦} and Σ = {=}. Here = denotes the (binary) equality relation. The
vector �x is chosen according to the considered computational problem, and con-
tains usually at least a generator of the group (S,◦).

2.2.1 The Generic Hardness of Computing Discrete Logarithms

In this section, we will present a classical result from [Nec94, Sho97, Mau05] on
the hardness of computing discrete logarithms with generic group algorithms. This
should serve as an illustration how proofs in the generic group model usually work,
since it uses the standard “polynomial degree” argument which has been used for
several further results in the generic model, in particular for the hardness condi-
tions of [RLB+08] which capture nearly all cryptographically relevant problems
over groups.

In the sequel let us consider the discrete logarithm problem in a finite cyclic
group G = (S,◦) of order N. Let g be a generator of G. The discrete logarithm
problem is: given g,gx ∈ S, where x $← ZN is uniformly random, determine x =
logg gx.

To analyze the discrete logarithm problem in the generic group model, we con-
sider algorithms interacting with a generic group oracle

O(S,Π,Σ;�x),

where�x = (g,gx) with x $← ZN , Π = {◦} and Σ = {=}.

Definition 2.1

We say that the generic discrete logarithm problem is (εdl, t)-hard, if

Pr[A O (N) = x]≤ εdl

for all algorithms A running in time t.

Theorem 2.1

Let G= (S,◦) be a cyclic group of order N, and let P be the largest prime factor of N. Then
solving the discrete logarithm problem generically is (εdl, t)-hard with

εdl ≤ 1/N +
t2 +3t +2

P
.
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Proof outline. We proceed in a sequence of games (cf. [Sho04, BR06]). We start
with the original discrete logarithm security experiment. We end up in a game
where the oracle performs all computation independent of the discrete logarithm
challenge x ∈ ZN , thus any algorithm can only guess the discrete logarithm x. We
conclude by showing that each game is indistinguishable from the previous one,
except with probability (t2 +3t +2)/P, which yields the result.

PROOF. In the following let Oi denote the oracle that A interacts with in Game i.

Game 0. This is the original discrete logarithm security experiment. That is, O0
proceeds exactly like Oracle O from Definition 2.1. Thus we have

Pr[A O0(N) = x] = ε

for some ε .

Game 1. In this game we replace Oracle O0 with

O1(ZN ,Π,Σ;�x),

where�x = (1,x) with x $←ZN , Π = {+} and Σ = {=}. Thus, O1 performs all com-
putations in the group (ZN ,+) using generator 1 ∈ ZN . Since the groups (ZN ,+)
and G are isomorphic, we have

Pr[A O1(N) = x] = Pr[A O0(N) = x]

Game 2. We replace Oracle O1 with O2. Instead of x, Oracle O2 uses variable X
as a wildcard character. It simulates O1 as follows.

• The list L is initialized with�x = (1,X).

• Whenever the algorithm queries to apply the group law to two list elements
Li,L j, the oracle computes

Li +L j ∈ ZN [X ].

Note that we can write each list element Li as a polynomial Li(X) = aiX +
bi ∈ ZN [X ] of degree 1, with ai,bi ∈ ZN ,

• Whenever the algorithm issues an equality test query of two list elements
Li(X),L j(X) ∈ ZN [X ], the oracle returns 1 if

Li(x) = L j(x),

and 0 otherwise.
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For algorithm A oracle O2 is perfectly indistinguishable from oracle O1. This
implies that we have

Pr[A O2(N) = x] = Pr[A O1(N) = x].

Game 3. We replace Oracle O2 with a simulator O3 which performs all compu-
tations independent of x. O2 proceeds exactly like O2, except for the following.

• Whenever the algorithm issues an equality test query of two list elements
Li(X),L j(X) ∈ ZN [X ], the oracle returns 1 if

Li(X) = L j(X),

where equality is tested by checking whether (ai,bi) = (a j,b j), and 0 other-
wise.

Note that the simulator O3 simulates O2 perfectly, unless the algorithm issues
an equality test query for two list elements Li(X) = aiX +bi and L j(X) = a jX +b j
such that Li(X) �= L j(X) and Li(x)≡ L j(x) mod N, or equivalently

(Li −L j)(X) �≡ 0 mod N but (Li −L j)(x)≡ 0 mod N.

We denote this event with F . Note that we have

Pr[A O3(N) = x] = Pr[A O3(N) = x∧¬F ]+Pr[A O3(N) = x∧F ]

≤ Pr[A O3(N) = x∧¬F ]+Pr[F ].

Note that by applying only addition and subtraction operations, the algorithm
computes polynomials Li(X) of degree at most one. Thus, for each (i, j) the poly-
nomial Δi, j(X) = (Li − L j)(X) has at most one root modulo P, where P is the
largest prime factor of N. A issues at most t oracle queries, thus there are at
most t + 2 polynomials in the list L. Therefore there are at most (t + 2)(t + 1) =
t2 +3t +2 possible difference polynomials Δi, j. Since x is uniformly random and
independent of A ’s view (and thus independent of all (ai,bi)), we have

Pr[F ]≤ t2 +3t +2
P

.

Moreover, all computations of A are independent of x, thus we have

Pr[A O3(N) = x∧¬F ] = 1/N.
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Summing up, we obtain that the success probability of A when interacting with
oracle O3 is bounded by

Pr[A O3(N) = x]≤ 1/N +
t2 +3t +2

P

which implies

ε ≤ 1/N +
t2 +3t +2

P
.

�

2.2.2 Generic Group Models in the Literature

Several formalizations of the notion of generic groups have been proposed in the
literature [Nec94, Sho97, Mau05]. The model of Nechaev [Nec94] is focused
only on the analysis of the discrete logarithm problem. Shoup [Sho97] has intro-
duced a more general model, where group elements are encoded by random bit
strings, which models the space requirements of certain algorithms, such as Pol-
lard’s Rho [Pol75], more accurately. The fact that elements are encoded by random
strings has been criticised [Fis00], since it may be abused in security proofs, for
instance to implement a random oracle [BR93]. The most flexible description of
the model was formulated by Maurer [Mau05], this model is equivalent to the one
described above. One can however show that the model of Maurer (and thus also
the above model) and the model of Shoup are equivalent as long as

1. only the algebraic properties are relevant, but not the encoding of group
elements as random strings from [Sho97], and

2. only the total running time of algorithms is analyzed, but not the space re-
quirements.

See [JS08] for details.

2.3 The Generic Ring Model

Let R = (S,+, ·) be a ring. In the generic ring model (GRM) an algorithm interacts
with an oracle

O(S,Π,Σ;�x),
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where Π = {+,−, ·,÷} and Σ = {=}. Here − is the addition with additive in-
verses, ÷ is the multiplication with multiplicative inverses, and = denotes the
equality relation.

2.3.1 Comparing the Generic Ring Model to the Generic Group

Model

The generic ring model (GRM) is an extension of the generic group model (GGM).
Despite many similarities to the GGM, showing the hardness of computational
problems in the GRM seems to be more involved than standard proofs in the GGM.
The reason is that a typical proof in the GGM (cf. Section 2.2.1 and [Sho97,
Mau05, RLB+08], for instance) introduces a simulation game where group ele-
ments are replaced with polynomials (or sometimes rational functions, given as
straight line programs) that are (implicitly) evaluated with some group elements
corresponding to a given problem instance. A key argument in these proofs is
that, by construction of the simulator, the degree of these polynomials cannot ex-
ceed a certain small bound (often degree one or two). Following Shoup’s seminal
work [Sho97], a lower bound on the success probability of any generic group al-
gorithm for the given problem is then derived by bounding the number of roots
of these polynomials. Usually the bound is useful only if the number of roots is
sufficiently small.

For instance, in the proof of Theorem 2.1 in Section 2.2.1, a key argument was
that by performing a sequence of addition operations on the initial list elements
1 and X ∈ ZN [X ] the algorithm is only able to compute polynomials of the form
aX + b having degree one. This technique is the basis for many proofs in the
generic group model: the number of roots of polynomials is kept small by perform-
ing only addition operations on polynomials of bounded degree in the simulation
game. Sometimes also a small bounded number of multiplications is allowed, for
instance when the model is extended to groups with bilinear pairing map, as done
in [KSW08, RLB+08, Boy08, BB08] (see also Section 2.4).

However, in the generic ring model we do not want to bound the number of
allowed multiplications. Thus, by repeated squaring an algorithm may compute
polynomials of exponential degree. In this case we cannot obtain a useful bound
by counting the number of roots.

2.3.2 Generic Ring Models in the Literature

There are several variants of the GRM in the literature. The model described above
is equivalent to the models used in [AM09] and [JS09]. This is the strongest and
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most general variant, in the sense that it gives the algorithm more power than other
models.

In [LR06] a slightly weaker model was considered, where Π = {+,−, ·} and
Σ = {=}, thus the algorithm may not multiply by multiplicative inverses of ring
elements. In [Bro05] a model is considered where Π = {+,−, ·,÷} and Σ = /0,
thus no equality tests are allowed. Damgård and Koprowski [DK02] considered
only the multiplicative group, that is, a model where Π = {·,÷} and Σ = {=}.

2.4 The Generic Bilinear Group Model

Let G1 = (S1,◦1), G2 = (S2,◦2), G3 = (S3,◦3) be groups.

Definition 2.2

A pairing is a map e : G1 ×G2 →G3 with the following properties:

1. Bilinearity: ∀(a,b) ∈G1 ×G2 and x1,x2 ∈ Zp holds that e(ax1 ,bx2) = e(a,b)x1x2 .

2. Non-degeneracy: g3 := e(g1,g2) is a generator of G3, if g1 and g2 are generators.

3. e is efficiently computable.

Following [GPS08], we distinguish three different types of bilinear group settings:

• Type 1: G1 =G2. We will call this the setting with symmetric bilinear map.

• Type 2: G1 �=G2 and there is an efficiently computable isomorphism ψ : G1 →G2.

• Type 3: G1 �=G2 and there is no efficiently computable isomorphism ψ : G1 →G2.

The generic bilinear group model is defined as follows.

Type-I Settings. When considering Type I settings (i.e., symmetric bilinear groups),
then an algorithm interacts with an oracle

O((S1,S3),Π,Σ;�x1,�x3),

where Σ= {=} contains the equality relation, Π= {◦1,◦3,e}, and e is a symmetric
bilinear map e : S1 ×S1 → S3.

Type-II Settings. When considering Type II settings (asymmetric bilinear groups
with efficient isomorphism ψ : S1 → S2), then an algorithm interacts with an oracle

O((S1,S2,S3),Π,Σ;�x1,�x2,�x3),

where Π = {◦1,◦2,◦3,e,ψ}, Σ = {=} contains the equality relation, e is a bilinear
map e : S1 ×S2 → S3, and ψ is the isomorphism ψ : G1 →G2.
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Type-III Settings. The model for Type III settings is identical to the Type II-
model, except that Π = {◦1,◦2,◦3,e}, thus there is no efficiently computable iso-
morphism ψ .

2.4.1 Generic Bilinear Group Models in the Literature

Models similar to the above have been used in [KSW08, RLB+08, Boy08, BB08]
to analyze novel cryptographic assumptions from pairing-based cryptography. All
these models are a straightforward extensions of the generic group model.



3 On Black-Box Ring Extraction and

Integer Factorization

The black-box ring extraction (BBRE) problem is the problem of extracting a se-
cret ring element from a black-box which may be queried to perform the ring
operations and equality tests on internally stored ring elements. This problem has
at least two important applications to cryptography (see Section 3.1 for details).

1. An efficient algorithm for the black-box ring extraction problem implies the
equivalence of the discrete logarithm and the Diffie-Hellman problem.

2. At the same time this implies the inexistence of ring-homomorphic one-way
permutations.

The BBRE problem has been studied in a long line of research [Mau94, BL96,
MW98, MW99, MR07, AJR08], which we describe in more detail in Section 3.3.
It is, however, still unknown whether the known subexponential-time algorithms
for BBRE are optimal. In this chapter we describe an efficient reduction from the
problem of factoring integers to the black-box ring extraction problem. This result
has the following consequences.

1. It implies that there is no generic reduction from the discrete logarithm to
the Diffie-Hellman problem, unless factoring integers is easy.

2. It may be seen as an indicator that ring-homomorphic one-way permutations
may exist.

The existence of such a reduction has been conjectured by Stefan Wolf in his
PhD thesis [Wol99, Conjecture 10.1]. A preliminary version of the results de-
scribed in this chapter was presented at ICALP 2008 [AJR08]. Compared to the
proof [AJR08], we give an improved reduction which is more general, tighter, and
much simpler.

3.1 Motivation

A famous open question in cryptology is whether breaking the Diffie-Hellman
protocol [DH76] is as hard as computing discrete logarithms. The discrete loga-
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rithm problem can be reduced to the Diffie-Hellman problem by assuming a Diffie-
Hellman oracle DH solving the Diffie-Hellman problem, and showing that there
exists an algorithm solving the discrete logarithm problem efficiently using DH.
If the reduction algorithm is generic, that is, does not exploit specific properties
of a given representation of group elements, then such an algorithm would im-
ply that breaking the Diffie-Hellman protocol is equivalent to computing discrete
logarithms in any group. Maurer and Wolf [MW99] have shown that any such
reduction has complexity Ω(

√
p), if the group order is divisible by p2 for a large

prime p. However, for all other groups,in particular many cryptographically rele-
vant groups whose order is not divisible by a large square, it is unknown whether
an efficient reduction exists.

3.1.1 Is Solving the Diffie-Hellman Problem Equivalent to

Computing Discrete Logarithms?

Let G = (S,◦) be a finite cyclic group of order N ∈ N with generator g, and let φ
be the isomorphism

φ : (ZN ,+)→G, a → ga.

In this notation, applying the group law to two elements φ(a) and φ(b) yields
φ(a+b), and the discrete logarithm problem in G is to compute a ∈ ZN on input
φ(1) and φ(a).

Now let us assume a Diffie-Hellman oracle DH for G taking as input a pair
(φ(a),φ(b)), and returning φ(ab). Then the group G together with the Diffie-
Hellman oracle is isomorphic to the ring ZN , where addition in ZN can be per-
formed by applying the group law

φ(a+b) = φ(a)◦φ(b)

and the multiplication operation can be performed by querying the Diffie-Hellman
oracle

φ(ab) = DH(φ(a),φ(b)).
Thus we see that the question whether there exists a generic reduction from the dis-
crete logarithm problem to the Diffie-Hellman problem corresponds to the question
whether there exists an algorithm inverting any function φ by exploiting only the
structure of the ring (S,◦,DH)∼= (ZN ,+, ·).

3.1.2 Do Ring-Homomorphic One-Way Permutations Exist?

Now let us consider a one-way permutation φ : S → S. We say that φ is homomor-
phic, if
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1. S exhibits an algebraic structure (e.g., S is a group or a ring, for instance),

2. the algebraic operations on S can be computed efficiently, and

3. φ preserves the algebraic structure of S, that is, we have

φ(a)◦φ(b) = φ(a◦b)

for all a,b ∈ S and an algebraic operation ◦ provided by S

Under various complexity assumptions, there are several group-homomorphic one-
way permutations, which are homomorphic with respect to one algebraic opera-
tion over S. Well-known examples are the RSA permutation [RSA78] over Z∗

N or
the Rabin permutation [Rab79] over the quadratic residues modulo N for suitable
N ∈ N, for instance. However, it is a long-standing open question whether there
exist ring-homomorphic one-way permutations, which are homomorphic with re-
spect to two operations such that the resulting algebraic structure forms a ring.
An important step towards an answer of this question is to answer the following
questions.

• Is the structure of a ring sufficient to invert any ring-homomorphic permu-
tation φ efficiently? This would imply the inexistence of such one-way per-
mutations.

• Which conditions must be satisfied by a ring such that there is no efficient
inversion algorithm?

Motivated by the above observations, we define the black-box ring extraction prob-
lem as the problem of inverting a ring-homomorphism φ by exploiting solely the
structure of the given ring, without exploiting specific properties of a representa-
tion of ring elements.

3.2 Results of This Chapter

In preliminary work [AJR08] it was shown that there is no algorithm solving the
BBRE problem for rings of characteristic N without (essentially) revealing a factor
of N, thus in this sense the ZN-variant of the algorithm described in [BL96], which
requires to factorize N, is optimal. Hence, the black-box extraction problem can
not be solved efficiently in general, unless there is an efficient algorithm for inte-
ger factorization. We note that in the model of [AJR08] an explicit operation for
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computing multiplicative inverses was excluded. Since inverses can be computed
efficiently in many rings (such as Zn), it is desirable to include this operation.

In this chapter, we devise a novel technique to reduce the problem of factoring
an integer N to the black-box ring extraction problem in the ring ZN . We obtain
a tighter reduction than [AJR08], by a much simpler argument, and in addition
allow the computation of multiplicative inverses. In combination with [AJR08],
the results in this chapter can be generalized to arbitrary rings of characteristic N.

3.3 Related Work

Nechaev [Nec94] and Shoup [Sho97] studied the black-box extraction problem for
groups, showing that any generic algorithm has to perform Ω(

√
p) group opera-

tions to solve this problem, where p is the largest prime factor of the order of the
group (see also Section 2.2.1). This bound essentially matches the running time of
well-known generic algorithms for the discrete logarithm problem [Sha71, Pol75].
Hence, the structure of a group is in general not sufficient to solve the black-box
extraction problem efficiently. Efficient reductions are known only if the group or-
der meets certain properties [den90, MW96], or if a certain auxiliary information
depending on the group order is given [Mau94].

Boneh and Lipton [BL96] applied a technique due to Maurer [Mau94] to de-
scribe an algorithm solving the black-box extraction problem over prime fields
Fp in subexponential-time in log p under a (plausible) number-theoretic conjec-
ture on the distribution of smooth integers. Hence, in comparison to the results of
Nechaev [Nec94] and Shoup [Sho97], the additional structure of a field helps to
solve the problem considerably more efficiently than in the case where the under-
lying algebraic structure is a group. It is unknown whether there are more efficient
algorithms than the one proposed in [BL96]. Maurer and Raub [MR07] augmented
the work of [BL96] from prime fields to extension fields, by reducing the BBRE
problem over an extension field to the BBRE problem over the underlying prime
field.

As mentioned by Boneh and Lipton, the algorithm described in [BL96] can also
be extended from prime fields to rings ZN if N is a squarefree composite integer,
by first factoring N = ∏k

i=1 Pi (which can be done in subexponential time with
current factoring algorithms) and then solving the BBRE problem for all fields ZPi ,
i ∈ {1, . . . ,k}. The solution for ZN can then be obtained by Chinese remaindering.

Maurer and Wolf [MW99] considered the BBRE problem for ZN when showing
that there is no efficient generic reduction from the discrete logarithm to the Diffie-
Hellman problem if the group order is divisible by a large multiple prime factor.
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3.4 The Black-Box Ring Extraction Problem

We formalize the BBRE problem over a ring (R,+, ·) using the framework from
Section 2.1. Consider a game between an algorithm A for the BBRE problem and
an oracle

O(R,Π,Σ;(1,x))

where Π contains the operations addition (with inverses) and multiplication (with
inverses) in R, denoted with Π = {+,−, ·,÷}, and Σ provides the equality relation
in R, i.e. Σ = {=}. The element 1 ∈ R given as input to O is a generator of (R,+)

and enables the algorithm to compute any element of R inside O . The value x $← R
is chosen uniformly random from R.

The black-box ring extraction problem is to extract x from O(R,Π,Σ;(1,x)).

Definition 3.1

We say that algorithm A (ε, t)-solves the black-box ring extraction problem for R, if A
makes at most t oracle queries, and

Pr
[
A O(R,Π,Σ;(1,x))(N) = x

]
≥ ε.

3.5 Main Result

Now let us consider the BBRE problem for the ring R = ZN . As explained before,
this case has the most interesting cryptographic applications.

Theorem 3.1

Let N ∈ N be a composite integer, and let P be the smallest prime factor of N. Suppose
there exists an algorithm A (ε, t)-solving the black-box ring extraction problem over ZN .
Then there exists a factoring algorithm B, which returns P on input N with probability

Pr[B(N) = P]≥ ε −P/N

by performing t ring operations and equality tests in ZN , and t2 computations of a greatest
common divisor on log2 N-bit integers.

Proof outline. We prove the theorem by a short sequence of games [Sho04,
BR06]. Game 0 corresponds to the original BBRE game, where the algorithm
A interacts with an oracle O(ZN ,Π,Σ;(1,x)). In Game 1 we add an event abort
and terminate the game, if abort occurs. Then we describe Game 2, which is per-
fectly indistinguishable from Game 1. In Game 2 the algorithm interacts with an
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oracle
O ′(ZP,Π,Σ,(1,x mod P)),

which performs all computations in the ring ZP, and thus reveals only x mod P
(information-theoretically). Therefore A does not learn anything about x mod
N/P, which implies that the probability that A outputs x correctly in Game 0 is
at most ε ≤ P/N +Pr[abort]. Finally we show that there exists an algorithm B
running A as a subroutine and finding a factor of N with probability Pr[abort]
whose running time is bounded by a polynomial in t.

PROOF.

Game 0. This is the original BBRE experiment played between algorithm A
and Oracle O . By assumption, we have

Pr
[
A O(ZN ,Π,Σ;(1,x))(N) = x

]
≥ ε.

Game 1. We replace oracle O(ZN ,Π,Σ;(1,x)) with O1(ZN ,Π,Σ;(1,x)). O1
proceeds exactly like O , except for the following. Each time a ring element y ∈ZN
is appended to list L1, oracle O1 tests whether there exists some ring element
y′ ∈ L1 ∪{0} such that

y �≡ y′ mod N and y ≡ y′ mod P. (3.1)

(We may assume that oracle O1 is computationally unbounded, and thus can com-
pute P on input N, since this oracle is never implemented and thus need not be
efficient). If Condition (3.1) holds, then O1 raises event abort and terminates.

Since Game 1 and Game 0 proceed identical until abort is raised, we have∣∣∣Pr
[
A O(ZN ,Π,Σ;(1,x))(N) = x

]
−Pr

[
A O1(ZN ,Π,Σ;(1,x))(N) = x

]∣∣∣≤ Pr[abort]

Note that in Game 1 it holds that

y ≡ y′ mod N ⇐⇒ y ≡ y′ mod P and y ≡ 0 mod N ⇐⇒ y ≡ 0 mod P

for all elements y,y′ ∈ L1, as the game is aborted otherwise.

Game 2. In this game, we replace O1(ZN ,Π,Σ;(1,x)) with oracle

O2(ZP,Π,Σ,(1,x mod P)).

O2 proceeds exactly like O1, except that it represents elements of ZN by elements
of ZP, and performs all computations modulo P.
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Recall that, due to the modifications introduced in Game 1, we have

y ≡ y′ mod N ⇐⇒ y ≡ y′ mod P and y ≡ 0 mod N ⇐⇒ y ≡ 0 mod P.

Therefore O2 responds to all queries issued by A exactly like O1 does. Thus O2
simulates O1 perfectly. This implies

Pr
[
A O1(ZN ,Π,Σ;(1,x))(N) = x

]
= Pr

[
A O2(ZP,Π,Σ,(1,x mod P))(N) = x

]
.

In Game 2 algorithm A can (information-theoretically) learn only x mod P.
Since x is distributed uniformly over ZN and P divides N, this implies that

Pr
[
A O2(ZP,Π,Σ,(1,x mod P))(N) = x

]
≤ P/N.

Summing up probabilities from Game 0 to Game 2, we obtain that

Pr[abort]≥ |ε −P/N| .
It remains to show that there exists a factoring algorithm B returning P on input

N with probability Pr[abort]. B proceeds as follows. It receives as input N and
samples x $←{0, . . . ,N−1} uniformly random. Then it runs A as a subroutine, by
implementing the generic ring oracle from Game 0 for A (representing elements
of ZN by integers from the set {0, . . . ,N −1}).

Each time an element y is appended to L1, it computes gcd(y,y′) for all y′ ∈ L1.
With probability Pr[abort], A performs a sequence of ring operations such that
the list L1 contains two elements y,y′ such that

y �≡ y′ mod N and y ≡ y′ mod P.

In this case, gcd(y,y′) reveals a non-trivial factor P of N.
Clearly, B succeeds with probability Pr[abort], and performs at most t ring

operations in ZN plus less than t2 gcd-computations on log2 N-bit integers. �

3.6 Implications

We can derive the following corollaries from the main theorem from in Section 3.5.
The first one confirms a conjecture of Wolf [Wol99, Conjecture 10.1], whereas the
second one may be seen as support towards the existence of ring-homomorphic
one-way permutations.
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Corollary 3.1

If there exists an efficient generic reduction from the discrete logarithm problem to the
Diffie-Hellman problem in groups of order N, then there exists an efficient algorithm finding
a factor of N.

Note that the above corollary holds even if the reduction algorithm may query an
additional “inverting” Diffie-Hellman oracle returning gab−1

on input ga,gb. Such
an oracle does not to seem to be implied by a Diffie-Hellman oracle, if the order
φ(N) of the group Z∗

N is unknown. Recall here that computing φ(N) on input N is
as hard as factoring N [Mil76, RSA78, May04].

However, our results say nothing if factoring N is easy, for instance if N is prime.
Thus, there may still exist a generic reduction from the discrete logarithm to the
Diffie-Hellman problem which works in any group whose order can be factored
efficiently.

Another implication is that in general solely the structure of a ring is not suffi-
cient to invert a ring-homomorphic one-way permutation efficiently.

Corollary 3.2

If there exists an algorithm inverting any ring-homomorphic one-way permutation with ring
structure isomorphic to ZN efficiently, then there exists an efficient algorithm finding a
factor of N.

3.7 Extensions

The proof of Theorem 3.1 can be generalized from the ring ZN to finite commu-
tative unitary rings of characteristic N, by combining the technique presented here
with results of [AJR08].

Let us sketch this. Let N = ∏k
i=1 Pei

i be the prime factor decomposition of N,
and let RN be a ring of characteristic N. The extension exploits that any such ring
RN is decomposable into a direct product of rings RN ∼= RP ×RQ such that RP has
characteristic P, where P = pk is a prime power such that pk | N, but pk+1 � N.

Let ξ : RN → RP ×RQ be the isomorphism mapping RN to RP ×RQ. We adopt
the proof framework of Theorem 3.1 from ZN to RN as follows.

1. First, the abort condition in Game 1 is modified such that abort is raised
if the algorithm computes two ring elements y,y′ such that the difference
δ = y− y′ corresponds to a ring element δ ∈ RN with

ξ (δ ) = (0,δQ) ∈ RP ×RQ.

Thus, we can construct an algorithm finding such ring elements with proba-
bility Pr[abort].
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2. Then in Game 2 we introduce an oracle which uses the subring RP instead of
RN for the internal representation of ring elements, and which performs all
computations in RP. Thus the success probability of any BBRE algorithm
in Game 2 is at most |RP|/|RN |.

3. Finally, we use the algorithms described in [AJR08] to construct a factoring
algorithm which can be used to factorize N efficiently, given a ring element
δ with ξ (δ ) = (0,δQ). We refer to [AJR08] for details.

The cryptographic implications of this extension regarding the “DL-vs.-DH”-
question are limited, since in cryptography usually cyclic groups are used which
are covered by the ZN-case. However, the above extension indicates that ring-
homomorphic one-way permutations not only with a structure isomorphic to ZN
may exist, but also with a structure isomorphic to arbitrary finite commutative
unitary rings of characteristic N.

Corollary 3.3

Let R be a finite commutative unitary ring with characteristic N. If there exists an algorithm
inverting any ring-homomorphic one-way permutation with ring structure isomorphic to R
efficiently, then there exists an efficient factoring algorithm.



4 Analysis of Cryptographic Assumptions

in the Generic Ring Model

One goal of the generic group model is to provide a reasonable abstraction for
certain groups, such as elliptic curve groups, for which not many properties beyond
the abstractly defined properties of a group are known.

However, important computational problems, such as the RSA problem and the
quadratic residuosity problem, are defined over the multiplicative group (Z∗

N , ·),
represented by integers modulo N. This representation exhibits many properties
beyond the abstract group definition, such as for instance the fact that the group
(Z∗

N , ·) is embedded into the ring (ZN ,+, ·). The generic group model seems too
restrictive to provide a tool for a meaningful analysis of such problems.

As an approach to reflect the additional algebraic structure of a ring, the notion
of generic groups was extended to generic rings. A long line of research [BL96,
BV98, Bro05, LR06, MR07, AJR08, AM09, AMS11] analyzes cryptographically
relevant computational problems and their relationships in the generic ring model.
Recall from Chapter 2.3 that this model is a simple extension of the generic group
model, which allows to compute an additional algebraic operation, such that the
resulting structure forms a ring. Clearly, when considering hardness assumptions
defined over rings, then this idealization is much more appropiate than the generic
group model.

The RSA problem was studied extensively in the generic ring model, see [BV98,
Bro05, LR06, AM09, AMS11]. For instance, Aggarwal and Maurer [AM09] show
that solving the RSA problem with generic ring algorithms is equivalent to factor-
ing integers. A common conclusion drawn in previous works is that a proof in the
generic model supports the conjecture that breaking RSA is also equivalent to fac-
toring integers in a standard model of computation. Is this conclusion reasonable?

4.1 Main Results

We prove a main theorem which states that solving certain subset membership
problems in ZN with generic ring algorithms is equivalent to factoring N. Then we
show that this main theorem has both positive and negative implications.
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Negative implications. The main theorem allows us to provide an example of
a computational problem of high cryptographic relevance which is equivalent to
factoring in the generic model, but easy to solve if elements of ZN are given in
their standard representation as integers. Concretely, we prove that computing the
Jacobi symbol [Sho08, Chapter 12.2] of an integer modulo N in the generic ring
model is equivalent to factoring N. Since there are simple and efficient non-generic
algorithms which compute the Jacobi symbol [Sho08, Chapter 12.2], this provides
an example of a natural computational problem which is hard in the generic ring
model, but easy to solve if elements of ZN are given in their standard representation
as integers. Thus, a proof in the generic ring model is unfortunately not a strong
indicator for the hardness of a computational problem in the standard model.

Interpretation. For many common idealized models in cryptography it has been
shown that a cryptographic reduction in the ideal model need not guarantee secu-
rity in the “real world”. Famous examples are the random oracle model [CGH04],
the ideal cipher model [Bla06], and the generic group model [Fis00, Den02]. All
these results have in common that they provide somewhat “artificial” computa-
tional problems that deviate from standard cryptographic practice.

Note, however, that both the definition and the algebraic properties of the Ja-
cobi symbol are remarkably similar to the quadratic residuosity problem [GM84],
which builds the foundation of numerous cryptosystems and is widely conjectured
to be hard. Thus, in contrast to previous works, the equivalence of computing
the Jacobi symbol generically and factoring is an example of a natural compu-
tational problem that is provably hard in the generic model, but easy to solve
if elements of ZN are given in their standard representation as integers modulo
N. This is an important aspect for interpreting results in the generic ring model,
like [Bro05, LR06, AM09, AMS11]. Thus, a proof in the generic model is un-
fortunately not a strong indicator that the considered problem is indeed useful for
cryptographic applications.

Positive implications. Despite this negative result, generic hardness results still
provide a lower complexity bound for a large class of algorithms, namely all al-
gorithms solving a problem independent of a given representation of ring ele-
ments. Motivated by this fact, we show as another application of our main theorem
that solving the well-known quadratic residuosity problem [GM84] generically is
equivalent to factoring. Thus, from a cryptanalytic point of view, we cannot hope
to find an algorithm solving this problem efficiently without exploiting any prop-
erty of the representation of ring elements, unless factoring integers is easy.
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4.2 Related Work

Brown [Bro05] reduced the problem of factoring integers to solving the low-
exponent RSA problem with straight line programs, which are a subclass of generic
ring algorithms. Damgård and Koprowski showed the generic intractability of root
extraction in groups of hidden order [DK02]. Leander and Rupp [LR06] aug-
mented this result to generic ring algorithms, where the considered algorithms
may only perform the operations addition, subtraction and multiplication mod-
ulo n, but not multiplicative inversions. This result was extended by Aggarwal
and Maurer [AM09] from low-exponent RSA to full RSA and to generic ring al-
gorithms that may also compute multiplicative inverses, and by Aggarwal, Maurer
and Shparlinski [AMS11] to the related strong RSA problem. Furthermore, Boneh
and Venkatesan [BV98] have shown that there is no straight line program reducing
integer factorization to the low-exponent RSA problem, unless factoring integers
is easy.

The notion of generic ring algorithms has also been applied to study the rela-
tionship between the discrete logarithm and the Diffie-Hellman problem, and the
existence of ring-homomorphic one-way permutations [BL96, MR07, AJR08].

Comparison to previous works. In contrast to previous work [Bro05, LR06,
AJR08, AM09, AMS11], where integer factorization is reduced to solving search
problems (in the sense that the algorithm has to search for a certain ring element or
integer), we show that in order to factor N it suffices to be able to solve decisional
problems in ZN . Our results do not only cover the case where N is the product
of two primes, but hold in the general case where N is the product of at least two
primes.

4.3 Definitions

For � ∈ N we write [�] to denote the set [�] = {1, . . . , �}. We denote with a $← A
the action of sampling a uniformly random element a from set A. Throughout the
chapter we let N be the product of at least two different primes, and denote with
N = ∏�

i=1 pei
i the prime factor decomposition of N such that gcd(pi, p j) = 1 for

i �= j. Occasionally we write a ≡N b shorthand for a ≡ b mod N.
Let P = (S1, . . . ,Sm) be a finite sequence. Then |P| denotes its length, i.e., |P|=

m. For k ≤ m, we write Pk � P to denote that Pk is the subsequence of P that
consists of the first k elements of P, i.e., Pk = (S1, . . . ,Sk).
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4.3.1 Straight Line Programs

A straight line program P over a ring R is an algorithm performing a fixed sequence
of ring operations to its input x ∈ R, without branching or looping, that outputs an
element P(x) ∈ R.

In the sequel we are interested in straight line programs over the particular ring
R = ZN , where elements are represented by integers. Note that we can not only
compute the ring operations addition, subtraction, and multiplication in the ring
ZN , but we also know how to compute division, that is, multiplication by multi-
plicative inverses (if existent), efficiently. In order to make the class of considered
algorithms as broad and natural as possible, we therefore include an explicit divi-
sion operation, though it is generally not explicitly defined for a ring.

The following definition is a simple adaption of [Bro05, Definition 1] to straight
line programs that may also compute multiplicative inverses. For our purposes it is
sufficient to consider straight-line programs that take as input a single ring element
x ∈ R, a generalization to algorithms with more input values is straightforward.

Definition 4.1

A straight line program P of length m over R is a sequence of tuples

P = ((i1, j1,◦1), · · · ,(im, jm,◦m))

where ik, jk ∈ {−1, . . . ,m} and ◦k ∈ {+,−, ·,/} for k ∈ {1, . . . ,m}. The output P(x) of
straight line program P on input x ∈ R is computed as follows.

1. Initialize L−1 := 1 ∈ R and L0 := x.

2. For k from 1 to m do:
• if ◦k = / and L jk is not invertible, then return ⊥,
• else set Lk := Lik ◦L jk .

3. Return P(x) = Lm.

We say that each triple (i, j,◦) ∈ P is a SLP-step.

For notational convenience, for a given straight line program P we will denote with
Pk the straight line program given by the sequence of the first k elements of P, with
the additional convention that P−1(x) = 1 and P0(x) = x for all x ∈ R.

4.3.2 Uniform Closure

By the Chinese Remainder Theorem, for N = ∏�
i=1 pei

i the ring ZN is isomorphic
to the direct product of rings

Zp
e1
1
×·· ·×Zp

e�
�
.
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Let φ be the isomorphism φ : Zp
e1
1
×·· ·×Zp

e�
�
→ ZN , and for C ⊆ ZN let

Ci := {x mod pei
i : x ∈ C }

for all i ∈ [�].

Definition 4.2

We say that U [C ]⊆ ZN is the uniform closure of C ⊆ ZN , if

U [C ] = {y ∈ ZN : y = φ(x1 . . . ,x�),xi ∈ Ci for i ∈ [�]}.

Example 4.1

Let p1, p2 be different primes, N := p1 p2, and φ be the isomorphism Zp1 ×
Zp2 → ZN . For x ∈ ZN let x1 := x mod p1 and x2 := x mod p2. Consider the
subset C ⊆ ZN such that

C = {a,b}= {φ(a1,a2),φ(b1,b2)}.
The uniform closure U [C ] of C is the set

U [C ] = {φ(a1,a2),φ(b1,b2),φ(a1,b2),φ(a1,b2)}.

In particular note that C ⊆ U [C ], but not necessarily U [C ]⊆ C .

Lemma 4.1

Sampling y $← U [C ] is equivalent to sampling zi
$← Ci for i ∈ [�] independently and setting

y = ψ(z1, . . . ,z�).

The above follows directly from the definition of U [C ] and the Chinese Remain-
der Theorem.

4.3.3 Homogeneous Sets

Definition 4.3

We say that a set C ⊆ ZN is homogeneous, if for each i ∈ [�] and for each c ∈ Zpei
i

we have
that

Pr[x ≡ c mod pei
i : x $← C ] = Pr[y ≡ c mod pei

i : y $← U [C ]].

Putting it differently, C is homogeneous, if for each i ∈ [�] and for x $← C and
y $← U [C ] we have that x mod pei

i is identically distributed to y mod pei
i .

Example 4.2

Again let p1, p2 be different primes, N := p1 p2, φ be the isomorphism Zp1 ×
Zp2 → ZN , and for c ∈ {a,b} ⊂ ZN let c1 := c mod p1 and c2 := c mod p2.
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• Let C = {φ(a1,a2),φ(a1,b2),φ(b1,b2),φ(b1,a2)}, then C = U [C ].
Clearly C = U [C ] implies that C is homogeneous.

• Let C ′ = {φ(a1,a2),φ(a1,b2),φ(b1,b2)}, then we have U [C ′] = C .
Note that it holds that

Pr[x ≡ a1 mod p1 : x $← C ′] = 2/3,

but we have

Pr[x ≡ a1 mod p1 : x $← U [C ′]] = 1/2.

Thus, C ′ is not homogeneous.
• Let C ′′ = {φ(a1,a2),φ(b1,b2)}, then again we have U [C ′′] = C . C ′′

is homogeneous, since we have

Pr[x ≡ ci mod pi : x $← C ′′] = 1/2 = Pr[x ≡ ci mod pi : x $← U [C ′′]]

for all i ∈ {1,2} and ci ∈ {ai,bi}.

4.4 Straight Line Programs over the Ring ZN

In the following we will state a few lemmas on straight line programs over ZN that
will be useful for the proof of our main result.

Lemma 4.2

Suppose there exists a straight line program P such that for x,x′ ∈ ZN holds that

P(x′) �=⊥ and P(x) =⊥ .

Then there exists Pj � P such that

Pj(x′) ∈ Z∗
N and Pj(x) ∈ ZN \Z∗

N .

PROOF. P(x) =⊥ means that there exists an SLP-step (i, j,◦) ∈ P such that ◦= /
and L j = Pj(x) ∈ ZN \Z∗

N . However, P(x′) does not evaluate to ⊥, thus it must
hold that Pj(x′) ∈ Z∗

N . �

The following lemma provides a lower bound on the probability of factoring
N by evaluating a straight line program P with a random value y $← U [C ] and
computing gcd(N,P(y)), relative to the probability that P(x′)∈ZN \Z∗

N and P(x)∈
Z∗

N for randomly chosen x,x′ $← C .
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Lemma 4.3

Let N =∏�
i=1 pei

i with �≥ 2, and let C ⊆ZN be homogeneous. For any straight line program

P, and for uniformly random x,x′ $← C and y $← U [C ], holds that

Pr
[
P(x′) ∈ ZNn\Z∗

N and P(x) ∈ Z∗
N
] ≤ Pr [gcd(N,P(y)) �∈ {1,N}] .

Similar to the above, the following lemma provides a lower bound on the proba-
bility of factoring N by computing gcd(N,P(y)−Q(y)) with y $← U [C ] for two
given straight line programs P and Q, relative to the probability that P(x)≡N Q(x)
and P(x′) �≡N Q(x′) for random x,x′ $← C .

Lemma 4.4

Let N = ∏�
i=1 pei

i with � ≥ 2, and let C ⊆ ZN be homogeneous. For any pair (P,Q) of

straight line programs, x,x′ $← C , and y $← U [C ] holds that

Pr
[
P(x)≡N Q(x) and P(x′) �≡N Q(x′)

] ≤ Pr [gcd(N,P(y)−Q(y)) �∈ {1,N}] .

Before proving Lemmas 4.3 and 4.4, we will give some intuition in the following
section.

4.4.1 Some Intuition for Lemma 4.3 and 4.4

Simplifying a little, Lemma 4.3 and 4.4 state essentially that: if we are given a
straight line program mapping “many” inputs to zero and “many” inputs to a non-
zero value, then we can find a factor of N by sampling y $← U [C ] and computing
gcd(N,P(y)).1 At a first glance this seems counterintuitive.

The simple case: C = ZN . As an example let us consider the case C = ZN
with N = p1 p2, where p1 and p2 are not necessarily prime, but p1, p2 > 1 and
gcd(p1, p2) = 1. Note that we have U [C ] = ZN . Assume a straight line program
P mapping about one half of the elements of ZN to 0, and the other half to 1.
Then P maps “many” inputs to zero and “many” inputs to a non-zero value, but
clearly computing gcd(N,P(y)) for any y ∈ ZN yields only trivial factors of N.
This seems to be a counterexample to Lemma 4.3 and 4.4. However, in fact it is
not, since there exists no straight line program P satisfying the assumed property,
if N is the product of at least two different primes.

1In case of Lemma 4.3 note that P(x) ∈ Z∗
N and P(x′) ∈ ZN \Z∗

N means that P(x′) is zero modulo at
least one prime factor of N, while P(x) �≡ 0 modulo all prime factors of N. In case of Lemma 4.4
observe that if we have P(x)−Q(x)≡ 0 mod N and P(x′)−Q(x′) �≡ 0 mod N, then x is mapped to
zero and x′ is not mapped to zero by the straight line program S(x) := P(x)−Q(x).
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The reason for this is a consequence of the Chinese Remainder Theorem, which
states that the ring ZN is isomorphic to Zp1 ×Zp2 . Let φ : Zp1 ×Zp2 → ZN de-
note this isomorphism. Assume x,x′ ∈ ZN and a straight line program P such
that P(x) ≡ 0 mod N and P(x′) ≡ 1 mod N. Since φ is a ring-isomorphism and P
performs only ring operations, it holds that

P(x) = φ(P(x) mod p1,P(x) mod p2) = φ(0,0)

and
P(x′) = φ(P(x′) mod p1,P(x′) mod p2) = φ(1,1).

The crucial observation is now that for each pair (x,x′) ∈ Z2
N , there exist c,d ∈ ZN

such that c = φ(x′ mod p1,x mod p2) and d = φ(x mod p1,x′ mod p2). Evaluat-
ing P with c or d yields

P(c) = φ(P(x′) mod p1,P(x) mod p2) = φ(1,0)

or
P(d) = φ(P(x) mod p1,P(x′) mod p2) = φ(0,1).

We therefore have gcd(N,P(c)) = p2 and gcd(N,P(d)) = p1.
In this example we have C = U [C ] = ZN , and we assume that P has the prop-

erty that P(x) = φ(0,0) and P(x′) = φ(1,1) with “high” probability for uniformly
random x,x′ $← ZN . The crucial observation is now that the Chinese Remainder
Theorem implies that if we sample y $← ZN uniformly random, then we also have
with “high” probability that P(y) = φ(0,1) or P(y) = φ(1,0). A factor of N can
therefore be found by sampling y and computing gcd(N,P(y)).

The general case: C ⊂ ZN . The proofs of Lemma 4.3 and 4.4 generalize the
above idea to the case where C is a subset of ZN . This generalization made it
necessary to define the uniform closure U [C ] and homogeneous sets.

For instance, consider a subset C = {x,x′} with x = φ(xp,xq) and x′ = φ(x′p,x′q).
Suppose we are given a straight line program P such that P(x) = 0 and P(x′) = 1.
We can factor N using this straight line program by computing gcd(N,P(y)), if we
can find a suitable y such that y ∈ {φ(xp,x′q),φ(x′p,xq)}.

The uniform closure U [C ] is defined such that we know that it contains such a
suitable y ∈ U [C ]. Moreover, as we show in the proofs of Lemma 4.3 and 4.4, if
C is homogeneous, then we can find a suitable y with sufficiently high probability
simply by sampling y $← U [C ] uniformly random.

Finally, in order to obtain an efficient factoring algorithm, we will need to re-
quire that there exist efficient sampling algorithms for C and U [C ]. We will have
to show this separately for each considered subset membership problem.



4.4 Straight Line Programs over the Ring ZN 33

4.4.2 Proof of Lemma 4.3

First, observe that P(x′) ∈ ZN \Z∗
N implies, that there exists at least one i ∈ [�]

such that P(x′)≡ 0 mod pi, while P(x)∈Z∗
N implies that P(x)∈Z∗

p j
for all j ∈ [�].

Thus, we have

Pr[P(x′) ∈ ZN \Z∗
N and P(x) ∈ Z∗

N ]

=Pr[∃i ∈ [�] s.t. P(x′)≡ 0 mod pi and P(x) ∈ Z∗
p j

for all j ∈ [�]]

≤Pr[∃i, j ∈ [�] s.t. j �= i and P(x′)≡ 0 mod pi and P(x) ∈ Z∗
p j
].

Note furthermore that we have P(x) ≡ P(x mod pei
i ) mod pi, since P performs

only ring operations. Thus we have

Pr[∃i, j ∈ [�] s.t. j �= i and P(x′)≡ 0 mod pi and P(x) ∈ Z∗
p j
]

=Pr[∃i, j ∈ [�] s.t. j �= i and P(x′i)≡ 0 mod pi and P(x j) ∈ Z∗
p j
],

where x′i := x′ mod pei
i and x j := x mod p

e j
j .

Since C is homogeneous, we have that sampling x,x′ $← C and computing x′i =
x′ mod pei

i and x j = x mod p
e j
j is equivalent to sampling z,z′ $← U [C ] and setting

z′i := z′ mod pei
i and z j := z mod p

e j
j . Thus we have

Pr[∃i, j ∈ [�] s.t. j �= i and P(x′i)≡ 0 mod pi and P(x j) ∈ Z∗
p j
]

=Pr[∃i, j ∈ [�] s.t. j �= i and P(z′i)≡ 0 mod pi and P(z j) ∈ Z∗
p j
]

for z,z′ $← U [C ].

Now Lemma 4.1 states that for z,z′,y $← U [C ] holds that

Pr[∃i, j ∈ [�] s.t. j �= i and P(z′i)≡ 0 mod pi and P(z j) ∈ Z∗
p j
]

=Pr[∃i, j ∈ [�] s.t. j �= i and P(yi)≡ 0 mod pi and P(y j) ∈ Z∗
p j
],

where yi = y mod pei
i and y j = y mod p

e j
j .

Using again that P performs only ring operations, we obtain that

Pr[∃i, j ∈ [�] s.t. j �= i and P(yi)≡ 0 mod pi and P(y j) ∈ Z∗
p j
]

=Pr[∃i, j ∈ [�] s.t. j �= i and P(y)≡ 0 mod pi and P(y) ∈ Z∗
p j
].
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Finally, we find a factor of N by computing gcd(N,P(y)) if there exists i, j ∈ [�]
such that P(y)≡ 0 mod pi and P(y) ∈ Z∗

p j
. Thus we have

Pr[∃i, j ∈ [�] s.t. j �= i and P(y)≡ 0 mod pi and P(y) ∈ Z∗
p j
]

≤Pr [gcd(N,P(y)) �∈ {1,n}] .

4.4.3 Proof of Lemma 4.4

Let x,x′ $← C and y $← U [C ], and let us write ai := a mod pei
i for all a ∈ {x′,x,y}.

Let Δ(x) := P(x)− Q(x). Then, with the same arguments as in the proof of
Lemma 4.3, we have

Pr
[
Δ(x′) �≡N 0 and Δ(x)≡N 0

]
=Pr

[
∃i s.t. Δ(x′) �≡ 0 mod pei

i and Δ(x)≡ 0 mod p
e j
j for all j ∈ [�]

]
≤Pr

[
∃i, j s.t. j �= i and Δ(x′) �≡ 0 mod pei

i and Δ(x)≡ 0 mod p
e j
j

]
=Pr

[
∃i, j s.t. j �= i and Δ(x′i) �≡ 0 mod pei

i and Δ(x j)≡ 0 mod p
e j
j

]
=Pr

[
∃i, j s.t. j �= i and Δ(yi) �≡ 0 mod pei

i and Δ(y j)≡ 0 mod p
e j
j

]
=Pr

[
∃i, j s.t. j �= i and Δ(y) �≡ 0 mod pei

i and Δ(y)≡ 0 mod p
e j
j

]
≤Pr [gcd(N,Δ(y)) �∈ {1,N}] .

4.5 Subset Membership Problems in the Generic

Ring Model

Definition 4.4

Let C ⊆ ZN and V ⊆ C with |V |> 1. The subset membership problem defined by (C ,V )

is: given x $← C , decide whether x ∈ V .

In this chapter we will consider only subset membership problems such that |C |=
2 · |V |, this is sufficient for all our applications.

We formalize the notion of subset membership problems in the generic ring
model as a game between an algorithm A and a generic ring oracle O . Oracle O
is defined exactly like the generic ring oracle described in Section 2.3, and receives
1 ∈ ZN and a uniformly random element x $← C as input. That is, the adversary
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interacts with an oracle
O(ZN ,Π,Σ;(1,x)),

where x $←C is chosen uniformly random from C , Π= {+,−, ·,÷}, and Σ= {=}.
Let Succ(A ) denote the event that an algorithm A interacting with O solves the

given instance of the subset membership problem successfully. That is, Succ(A )
occurs if

A O(ZN ,Π,Σ;(1,x))(N) = 1 and x ∈ V , or A O(ZN ,Π,Σ;(1,x))(N) = 0 and x �∈ V .

Note that any algorithm for a given subset membership problem (C ,V ) has at least
the trivial success probability 1/2 of solving a given problem instance correctly by
guessing. Note also that Pr[x ∈ V : x $← C ] = 1/2, since x is chosen uniformly
random and we have |C |= 2 · |V |.

Definition 4.5

We say that a generic ring algorithm A (ε, t)-solves the subset membership problem
(C ,V ), if A issues at most t oracle queries, and

Pr[Succ(A )]≥ |1/2+ ε| .

4.5.1 Implementing the Generic Ring Oracle

For our results presented in the sequel, it will be helpful to have an abstract “imple-
mentation” of the generic ring oracle O described above. That is, we will describe
some specific details how the oracle O processes queries internally. Later in the
proof we will modify these procedures.

Let us define the following two procedures.

• The Compute-procedure takes as input two indices (i, j) and a symbol ◦ ∈
{+,−, ·,/} as input. The procedure returns false if ◦ = / and L j �∈ Z∗

N .
Otherwise it computes Li ◦ L j mod N, appends the result to L, and returns
true.

• The Equal-procedure takes two indices (i, j) as input. The procedure re-
turns true if Li ≡ L j mod N and false otherwise.

Whenever the algorithm submits a query (i, j,◦) with ◦ ∈ {+,−, ·,÷}, the oracle
runs Compute(i, j,◦), and returns ⊥ if Compute returns false. Whenever the
algorithm makes a query (i, j,=), the oracle returns Equal(i, j).
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4.6 Main Result

Our main result relates the probability that an algorithm A solves an instance of
a given subset membership problem (C ,V ) to the probability of factoring N with
an algorithm B that runs A as a subroutine by simulating the generic ring oracle
for A .

Theorem 4.1

Let N = ∏�
i=1 pei

i . Let (C ,V ) be a subset membership problem over ZN such that C is
homogeneous and 2 · |V | = |C |. For any generic ring algorithm A (ε, t)-solving (C ,V ),
there exists an algorithm B that outputs a non-trivial factor of N with success probability at
least ε

2(t2 +4t +3)

by running A once, performing at most 2t additional operations in ZN and at most (t +2)2

gcd-computations on �log2 N�-bit numbers, and sampling each one random element from
C and U [C ].

Note that the factoring algorithm B from the above theorem is efficient only if we
can efficiently sample uniformly random elements from C and U [C ]. In general
such an algorithm need not exist for any subset C ⊆ ZN . There are simple exam-
ples for sets C where sampling uniformly random from U [C ] is already equiva-
lent to factoring.2 Thus, in order to apply the above theorem to show that factoring
reduces efficiently to solving a given subset membership problem (C ,V ) in the
generic ring model, we will also have to show that there exists efficient sampling
algorithms for C and U [C ].

Proof outline. We proceed in a short sequence of games (cf. [Sho04]). We start
in Game 0 with the original game played between algorithm A and the generic
ring oracle O described above. Then in Game 1 we replace oracle O with an oracle
O1. This oracle uses slightly modified procedures Compute1 and Equal1, but is
equivalent to O , and thus perfectly indistinguishable from O for A . In Game 2 O1
is then replaced with an oracle O2, which uses procedures Compute2 and Equal2
such that all computations are performed independent of the ring element x. Thus,
in this game the success probability of A equals the trivial success probability
1/2.

2For instance, if N = pq is the product of two primes and C := {0,1} ⊂ ZN , then the uni-
form closure of C is equal to U [C ] = {0,1, p(p−1 mod q),q(q−1 mod p)}. Clearly computing
gcd(N, p(p−1 mod q)) = p or gcd(N,q(q−1 mod p)) = q reveals a non-trivial factor of N.
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Clearly, any algorithm A which has a success probability significantly better
than the trivial guessing-algorithm must be able to distinguish O2 from O1. How-
ever, this is possible only if O2 fails to simulate O1 perfectly. We thus conclude
by showing that there exists a factoring algorithm B which runs A as a subrou-
tine and returns a factor of N, such that the success probability of B corresponds
(essentially) to the probability that O2 fails to simulate O1.

Remark. The idea of making the computations of the generic ring algorithm
independent of the challenge input value was introduced by Gregor Leander and
Andy Rupp [LR06, Lemma 2] for the case where N = pq is the product of two
primes, C = ZN , and generic ring algorithms that do not compute multiplica-
tive inverses. This was generalized in [Jag07, Chapter 5.3.2] and independently
in [AM09, Lemma 7] to generic ring algorithms that may also compute inverses,
still for the case C = ZN with N the product of two primes. To prove our theo-
rem we have to generalize this to the general case where algorithms may compute
inverses, N = ∏�

i=1 pei
i is the product of at least two different primes, and where

C ⊆ ZN may be a subset of ZN .

4.6.1 Sequence of Games

Let Succi(A ) denote the event that A solves the given instance of the subset
membership problem successfully in Game i.

Game 0. In this game the algorithm A interacts with the generic ring oracle
O(ZN ,Π,Σ;(1,x)), where x $←C is chosen uniformly random from C . We assume
that O internally uses the procedures Compute and Equal, as described above.
Clearly, we have

Pr[Succ0(A )]≥ 1/2+ ε

for some ε ≥ 0.

Game 1. We replace the original oracle O with an equivalent oracle O1. Oracle
O1 proceeds exactly like O , except for the following.

Instead of list L, O1 maintains a sequence P storing the sequence of computa-
tions performed by A . P is initialized to the empty sequence. Recall that for k ≥ 1
we denote with Pk � P the subsequence of P consisting of the first k entries of P,
and with Pk(x) the evaluation of Pk on input x, and that we have P−1(x) = 1 and
P0(x) = x by Definition 4.1. Due to our construction of the generic ring oracle
(newly computed ring elements are always appended to L, see Chapter 2) we have

Pk−2(x) = Lk
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for all k ∈ {1, . . . , t + 2}. Thus, it does not matter whether the oracle uses Lk or
Pk−2(x) in order to perform computations or equality tests. Therefore we replace
the Compute and Equal procedures with the following procedures:

• Compute1: Given a triple (i, j,◦) ∈ {1, . . . , t}×{+,−, ·,÷}, the Compute1
procedure returns false if ◦=÷ and Pj−2(x)∈ZN \Z∗

N . Otherwise (i, j,◦)
is appended to P, and true is returned.

• Equal1: The Equal1-procedure takes a tuple (i, j) ∈ {1, . . . , t}×{1, . . . , t}
as input. The procedure returns true if Pi−2(x)≡ Pj−2(x) mod n and false
otherwise.

Note that the only differences between O and O1 are that

• O1 records the sequence of computations issued by A in the sequence P,
instead of applying these computations directly to elements of the list L, and

• instead of testing whether some list element L j is invertible (resp. whether
two list elements Li and L j are equal), O1 recomputes the required ring el-
ements first, and checks then whether Pj−2(x) is invertible (resp. whether
Pi−2(x)≡ Pj−2(x) mod N), which is equivalent.

Therefore O1 is just a different “implementation” of oracle O , but both oracles are
perfectly indistinguishable for the adversary, and therefore equivalent. Thus we
have

Pr[Succ1(A )] = Pr[Succ0(A )].

Game 2. We replace oracle O1 with oracle O2. Our goal is to make an interaction
of A with its oracle independent of the challenge value x. To this end, note that O1
uses x only inside the Compute1 and Equal1 procedures. Let us therefore consider
an oracle O2 which is defined exactly like O2, but samples x′ $←C at random at the
beginning of the game, and replaces the procedures Compute1 and Equal1 with
procedures Compute2 and Equal2.

• Compute2: Given a triple (i, j,◦) ∈ {1, . . . , t}×{+,−, ·,÷}, Compute2 re-
turns false if ◦=÷ and Pj−2(x′) ∈ ZN \Z∗

N . Otherwise it appends (i, j,◦)
to P and returns true.

• Equal2: The Equal2-procedure takes a tuple (i, j) ∈ {1, . . . , t}×{1, . . . , t}
as input. The procedure returns true if Pi−2(x′) ≡ Pj−2(x′) mod N and
false otherwise.
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Note that all computations of A are independent of the challenge value x when in-
teracting with O2. Hence, any algorithm A has at most trivial success probability
in the simulation game, and therefore we have

Pr[Succ2(A )] = 1/2.

We say that a simulation failure, denoted F , occurs if O2 does not simulate O1
perfectly. Clearly we have

Pr[Succ1(A )]≤ Pr[Succ2(A )]+Pr[F ]

by Shoup’s Difference Lemma [Sho04, Lemma 1].

4.6.2 Bounding the Probability of a Simulation Failure

Observe that an interaction of A with O2 is perfectly indistinguishable from an
interaction with O1, unless at least one of the following events occurs.

1. The Compute2-procedure fails to simulate Compute1 perfectly. This means
that Compute2 returns true on a procedure call where Compute1 would
have returned false, or Compute2 returns false where Compute1 would
have returned true. Let Ftest denote the event that this happens on at least
one call of Compute2.

2. The Equal2-procedure fails to simulate Equal1 perfectly. This means that
Equal2 has returned true where Equal1 would have returned false, or
Equal2 has returned false where Equal1 would have returned true. Let
Fequal denote the event that this happens at at least one call of Equal2.

Since F implies that at least one of the events Ftest and Fequal has occurred, it
holds that

Pr[F ] =Pr[Ftest∪Fequal]

=Pr[Ftest]+Pr[Fequal]−Pr[Ftest∩Fequal]

=Pr[Ftest]+Pr[Fequal]−Pr[Fequal | Ftest] ·Pr[Ftest]

=Pr[Ftest]+Pr[Fequal | Ftest] ·Pr[Ftest]+Pr[Fequal | ¬Ftest] ·Pr[¬Ftest]

−Pr[Fequal | Ftest] ·Pr[Ftest]

=Pr[Ftest]+Pr[Fequal | ¬Ftest] ·Pr[¬Ftest]

≤Pr[Ftest]+Pr[Fequal | ¬Ftest]

In the following we will bound Pr[Ftest] and Pr[Fequal | ¬Ftest] separately.
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Bounding the Probability of Ftest. By construction of oracle O2, Ftest occurs
only if Compute2 has returned false where Compute1 would have returned true,
or vice versa. This happens only if there exists Pj � P such that

(Pj(x) ∈ Z∗
N and Pj(x′) �∈ Z∗

N) or (Pj(x′) ∈ Z∗
N and Pj(x) �∈ Z∗

N).

Note that we may have Pj(x̃) =⊥ �∈ Z∗
N for x̃ ∈ {x,x′}.

We can simplify our analysis a little by applying Lemma 4.2. The existence
of Pj � P such that Pj(x̃) =⊥ implies the existence of Pk � Pj such that Pk(x̃) ∈
ZN \Z∗

N . Hence, Ftest occurs only if there exists Pj � P such that

(Pj(x) ∈ Z∗
N and Pj(x′) ∈ ZN \Z∗

N) or (Pj(x′) ∈ Z∗
N and Pj(x) ∈ ZN \Z∗

N).

Note that for one fixed Pj we have

Pr
[
(Pj(x′) ∈ ZN \Z∗

N and Pj(x) ∈ Z∗
N) or (Pj(x) ∈ ZN \Z∗

N and Pj(x′) ∈ Z∗
N)
]

≤2 ·Pr
[
Pj(x) ∈ ZN \Z∗

N and Pj(x′) ∈ Z∗
N
]
.

Thus, by taking the maximum probability over all Pj, we get

Pr[Ftest]≤ 2 ·
t

∑
j=0

Pr
[
Pj(x) ∈ ZN \Z∗

N and Pj(x′) ∈ Z∗
N : x,x′ $← C

]

≤ 2(t +1) max
0≤ j≤t

{
Pr
[
Pj(x) ∈ ZN \Z∗

N and Pj(x′) ∈ Z∗
N : x,x′ $← C

]}

Bounding the Probability of Fequal. By construction of the simulator, Fequal

occurs if there exist Pi,Pj � P such that

(Pi(x) = Pj(x) and Pi(x′) �= Pj(x′)) or (Pi(x) �= Pj(x) and Pi(x′) = Pj(x′)). (4.1)

Note that we want to consider the event Fequal, conditioned on that event Ftest

did not occur. Therefore we may assume that there exists no straight line program
Pk �P such that Pk(x)=⊥ and Pk(x′) �=⊥, or vice versa. This allows us to simplify
our analysis slightly, since in this case (4.1) is equivalent to

(Pi(x)≡N Pj(x) and Pi(x′) �≡N Pj(x′)) or (Pi(x)≡N Pj(x) and Pi(x′) �≡N Pj(x′)).

Thus, like in the previous section, we have

Pr[Fequal | ¬Ftest]≤ ∑
−1≤i< j≤t

2 ·Pr
[
Pi(x)≡N Pj(x) and Pi(x′) �≡N Pj(x′)

]
≤2(t +2)(t +1) max

−1≤i< j≤t

{
Pr
[
Pi(x)≡N Pj(x) and Pi(x′) �≡N Pj(x′)

]}
=2(t2 +3t +2) max

−1≤i< j≤t

{
Pr
[
Pi(x)≡N Pj(x) and Pi(x′) �≡N Pj(x′)

]}
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Bounding the Probability of F . Summing up, we obtain that the total proba-
bility of F is at most

Pr[F ]≤ Pr[Ftest]+Pr[Fequal]≤
2(t2 +3t +2) max

−1≤i< j≤t

{
Pr
[
Pi(x)≡ Pj(x) and Pi(x′) �≡ Pj(x′) : x,x′ $← C

]}
+2(t +1) max

0≤k≤t

{
Pr
[
Pk(x) ∈ ZN \Z∗

N and Pk(x′) ∈ Z∗
N : x,x′ $← C

]}
.

4.6.3 Bounding the Success Probability

Since all computations of A are independent of the challenge value x in the simu-
lation game, any algorithm has only the trivial success probability when interacting
with the simulator. Thus the success probability of any algorithm when interacting
with the original oracle is bounded by

1/2+ ε =Pr[Succ0(A )] = Pr[Succ1(A )]

≤Pr[Succ2(A )]+Pr[F ]

≤1/2+Pr[F ],

which implies
ε ≤ Pr[F ].

4.6.4 The Factoring Algorithm

Consider a factoring algorithm B which samples a random element x ∈ C and
runs A as a subroutine by implementing the generic ring oracle for A . That is, it
performs all computations queried by A to x ∈ ZN .

In parallel, B applies all queried operations to y ∈ ZN , where y $← U [C ] is
chosen uniformly random at the beginning of the game. Moreover, each time a
triple (i, j,◦) is appended to P, B computes

• gcd(P(y),N), and

• gcd(P(y)−Pi(y),N) for all i ∈ {−1, . . . , |P|−1}.

Running time. B samples random values x $← C and y $← U [C ]. Since by
assumption A submits t queries, B has to perform at most 2t operations in ZN
in order to perform all computations queried by A simultaneously on x ∈ C and
y∈U [C ]. In addition, B performs at most (t+2)2 gcd-computations on �log2 N�-
bit numbers.
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Success probability. B evaluates any straight line program Pk with a uniformly
random element y of U [C ]. In particular, B computes gcd(Pk(y),N) for y $←
U [C ] and the straight line program Pk � P satisfying

Pr
[
Pk(x) ∈ ZN \Z∗

N and Pk(x′) ∈ Z∗
N : x,x′ $← C

]
= max

0≤k≤t

{
Pr
[
Pk(x) ∈ ZN \Z∗

N and Pk(x′) ∈ Z∗
N : x,x′ $← C

]}
.

Let
γ1 := max

0≤k≤t
{Pr[Pk(x) ∈ ZN \Z∗

N and Pk(x′) ∈ Z∗
N : x,x′ $← C ]},

then by Lemma 4.3 algorithm B finds a factor in this step with probability at least
γ1.

Moreover, B evaluates any pair Pi,Pj of straight line programs in P with a uni-

formly random element y $←U [C ] and computes gcd(Pi(y)−Pj(y),N). So in par-

ticular B computes gcd(Pi(y)−Pj(y),N) with y $← U [C ] for the pair of straight
line programs Pi,Pj � P satisfying

Pr
[
Pi(x)≡N Pj(x) and Pi(x′) �≡N Pj(x′) : x,x′ $← C

]
= max

−1≤i< j≤t

{
Pr
[
Pi(x)≡N Pj(x) and Pi(x′) �≡N Pj(x′) : x,x′ $← C

]}
.

Let

γ2 := max
−1≤i< j≤t

{Pr[Pi(x)≡N Pj(x) and Pi(x′) �≡N Pj(x′) : x,x′ $← C ],}

then by Lemma 4.4 algorithm B succeeds in this step with probability at least γ2.
So, if we set γ := max{γ1,γ2}, the total success probability of algorithm B is at

least γ .

Relating the success probability of B to the advantage of A . Using the above
definitions of γ1, γ2, and γ , the fact that ε ≤ Pr[F ], and the derived bound on Pr[F ],
we can obtain a lower bound on γ by

ε ≤ Pr[F ]≤ 2(t +1)γ1 +2(t2 +3t +2)γ2 ≤ 2(t2 +4t +3)γ,

which implies the inequality

γ ≥ ε
2(t2 +4t +3)

.
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Therefore the success probability of B is at least

ε
2(t2 +4t +3)

.

4.7 Applications

In this section, we apply our general theorem to two specific subset membership
problems with high cryptographic relevance. The first application shows that com-
puting Jacobi symbols modulo N with generic ring algorithms is as hard as factor-
ing N. Since there exist efficient non-generic algorithms computing the Jacobi
symbol, this shows that a proof in the generic ring model can not give any evi-
dence towards the hardness of a computational problem.

Then we apply our main theorem to the well-known quadratic residuosity prob-
lem. It is unknown whether there exists an efficient algorithm for this problem,
and it is widely conjectured that this problem is hard if factoring the modulus N
is hard. We show that any algorithm solving this problem efficiently needs to ex-
ploit specific properties of the representation of elements of ZN (possibly in a way
similar to known algorithms for computing Jacobi symbols).

4.7.1 Computing the Jacobi Symbol with Generic Ring

Algorithms

In order to define and analyze the Jacobi symbol we need the Legendre symbol. For
an integer x and a prime p the Legendre symbol (x | p) of x modulo p is defined as

(x | p) =

⎧⎪⎪⎨
⎪⎪⎩

0, if gcd(x, p) �= 1,

1, if gcd(x, p) = 1 and x has a square root modulo p,

−1, if gcd(x, p) = 1 and x has no square root modulo p.

The Jacobi symbol generalizes the Legendre symbol from prime to composite
moduli. If N = ∏l

i=1 pei
i is the prime factor decomposition of N, then the Jacobi

symbol (x | N) of an integer x modulo N is defined as

(x | N) :=
�

∏
i=1

(x | pi)
ei , (4.2)

where (x | pi) is the Legendre symbol. There exists an algorithm computing the
Jacobi symbol (x | N) efficiently, even if the factorization of N is not given, using
the law of quadratic reciprocity. See [Sho08, Chapter 12.3], for instance.
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Properties of the Jacobi symbol. In the sequel we will consider the problem of
computing the Jacobi symbol as a subset membership problem over ZN . To this
end, let us summarize some properties of the Jacobi symbol, which will become
relevant.

1. Note that for x ∈ Z∗
N we have (x | N) ∈ {1,−1}. Let

JN := {x ∈ Z∗
N : (x | N) = 1}

be the set of elements of ZN having Jacobi symbol 1. Thus, we can per-
ceive the problem of computing the Jacobi symbol as a subset membership
problem (C ,V ) over ZN with C = Z∗

N and V = JN .

2. The cardinality |JN | of the set of elements having Jacobi symbol 1 depends
on whether N is a square in N. We have

|JN |=
{

ϕ(N)/2, if N is not a square in N,

ϕ(N), if N is a square in N,

where ϕ(·) is the Euler totient function [Sho08, Chapter 2.6]. This is an
immediate consequence of the definition of the Jacobi symbol.

Now we are ready to apply our main theorem to show that there is no efficient
generic ring algorithm computing the Jacobi symbol efficiently, unless factoring
N is easy.

Theorem 4.2

Let N = ∏�
i=1 pei

i . Suppose there exist a generic ring algorithm A (ε, t)-solving the subset
membership problem given by (C ,V ) with C = Z∗

N and V = JN . Then there exists an
algorithm B finding a non-trivial factor of N with probability at least

ε
2(t2 +4t +3)

by running A once, performing at most 2t additional operations in ZN and at most (t +2)2

gcd-computations on �log2 N�-bit numbers, and sampling two random elements from Z∗
N .

PROOF. If n is a square in N then the theorem is trivially true, since in this case it
is easy to find a factor of N. Therefore we only need to consider the case where N
is not a square.

Note that in this case we have 2 · |JN | = ϕ(N) = |Z∗
N | = |C |. Furthermore, it

holds that U [C ] =U [Z∗
N ] = Z∗

N = C , which implies that C is homogeneous. The
result follows by applying Theorem 4.1. �
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4.7.2 The Generic Quadratic Residuosity Problem and

Factoring

Let us denote with QRN ⊆ ZN the set of quadratic residues modulo N, i.e.

QRN := {x ∈ Z∗
N : x ≡ y2 mod n,y ∈ Z∗

N}.

It holds that QRN ⊆ JN , and therefore given x ∈ ZN\JN it is easy to decide that x
is not a quadratic residue by computing the Jacobi symbol.

Definition 4.6

The quadratic residuosity problem [GM84] is the subset membership problem given by
C = JN and V =QRN .

If N = pq is the product of two different odd primes, then it holds that

|QRN |= ϕ(N)/4 and |JN |= ϕ(N)/2,

see for instance [Sho08, p.348]. Thus, for N = pq we have 2 · |V |= |C |.

Lemma 4.5

Let N = p1 p2 be the product of two different odd primes. Then JN is homogeneous.

PROOF. We have to show that for each c1 ∈ Zp1 and c2 ∈ Zp2 holds that

Pr[x ≡ c1 mod p1 : x $← JN ] = Pr[x ≡ c1 mod p1 : x $← Z∗
N ] (4.3)

and Pr[x ≡ c2 mod p2 : x $← JN ] = Pr[x ≡ c2 mod p2 : x $← Z∗
N ]. (4.4)

In the sequel we will consider case (4.3), case (4.4) is identical.
Note first that we have Pr[x ≡ 0 mod p1 : x $← Z∗

N ] = 0, and for each c1 ∈ Z∗
p1

with c1 �≡ 0 mod p1 we have

Pr[x ≡ c1 mod p1 : x $← Z∗
N ] = 1/(p1 −1).

Since JN ⊆ Z∗
N we have Pr[x ≡ 0 mod p1 : x $← JN ] = 0, thus it only remains to

show that
Pr[x ≡ c1 mod p1 : x $← JN ] = 1/(p1 −1)

holds for all for all c1 �≡ 0 mod p1.
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Let ψ denote the isomorphism ψ : Zp1 ×Zp2 → ZN . Then the set JN consists of
all elements x = ψ(x1,x2) ∈ Z∗

N such that (x1 | p1) · (x2 | p2) = 1, which is equiv-
alent to (x1 | p1) = (x2 | p2). Thus we have

JN = {x ∈ Z∗
N : (x | n) = 1}

= {ψ(x1,x2) ∈ Z∗
N : (x1 | p1) · (x2 | p2) = 1}

= {ψ(x1,x2) ∈ Z∗
N : (x1 | p1) = (x2 | p2)}

It is well-known that for each odd prime p2 holds that∣∣{x2 ∈ Z∗
p2

: (x2 | p2) = 1}∣∣= ∣∣{x2 ∈ Z∗
p2

: (x2 | p2) =−1}∣∣= (p2 −1)/2.

Therefore for each element x1 ∈ Z∗
p1

there are exactly (p2 −1)/2 elements x2 ∈
Z∗

q such that (x1 | p1) · (x2 | p2) = 1, and thus ψ(x1,x2) ∈ JN . Thus we have

|{x ∈ JN : x ≡ c1 mod p1}|= (p2 −1)/2.

This yields that for each c1 ∈ Z∗
p1

with c1 �≡ 0 mod p1 we have

Pr[x ≡ c1 mod p1 : x $← JN ] =
|{x ∈ JN : x ≡ c1 mod p1}|

|JN |
=

(p2 −1)/2
(p1 −1)(p2 −1)/2

=
1

p1 −1
.

�

Given the factorization of an integer N, the quadratic residuosity problem in
ZN can be solved easily by a generic ring algorithm. Thus, in order to show the
equivalence of generic quadratic residuosity and factoring, we have to prove the
following theorem.

Theorem 4.3

Let N = pq be the product of two different odd primes. Suppose there exist a generic ring
algorithm A (ε, t)-solving the subset membership problem given by (C ,V ) with C = JN
and V = QRN . Then there exists an algorithm B finding a non-trivial factor of N with
probability at least

ε
2(t2 +4t +3)

by running A once, performing at most 2t additional operations in ZN and at most (t +2)2

gcd-computations on �log2 Nn�-bit numbers, and sampling each one random element from
JN and Z∗

N .
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PROOF. If N = pq is the product of two different odd primes, then we have
U [C ] = U [JN ] = Z∗

N and |C | = |JN | = 2 · |QRN | = 2 · |V |. The result follows
by applying Lemma 4.5 and Theorem 4.1. �

To show that B factors N efficiently, it remains to show that B can efficiently
sample uniformly random elements of JN . Consider an algorithm B which sam-
ples uniformly random elements x from ZN until x ∈ JN (note that B can test
efficiently whether x ∈ JN by running the algorithm from [Sho08, Chapter 12.3]).
Moreover, for x $← ZN and large N, we have

Pr[x ∈ JN ] =
|JN |
|ZN | =

ϕ(N)/2
N

≈ 1
2

thus we may expect that B finds a suitable x very quickly.

4.7.3 Analysis of Search Problems

In the proof of Theorem 4.1 we have constructed a simulator for a generic ring
oracle for the ring ZN . When interacting with the simulator, all computations
are independent of the secret challenge value x. Therefore we have been able to
conclude that any generic algorithm has only the trivial probability of success in
solving certain decisional problems (namely the considered subset membership
problems) when interacting with the simulator. Moreover, we have shown that any
algorithm distinguishing between simulator and original oracle can be turned into
a factoring algorithm with (asymptotically) the same running time.

In contrast to decisional problems, where the algorithm outputs a bit, our con-
struction of the simulator can also be applied to prove the generic hardness of
search problems where the algorithm outputs a ring element or integer. Let us
sketch two possibilities. The first one is to formulate a suitable subset membership
problem which reduces to the considered search problem and then apply Theo-
rem 4.1. Another possibility is to use our construction of the simulator to bound
the probability of a simulation failure relative to factoring. In order to bound the
success probability in the simulation game, it remains to show that there exists no
straight line program solving the considered problem efficiently under the factor-
ing assumption. This implies the following theorem.

Theorem 4.4

Let N ∈ N such that finding a factor of N is hard. For any search problem in ZN with

uniformly random challenge x $← ZN , there exist a generic ring algorithm A solving the
problem efficiently if and only if there exists a straight line program solving the problem
efficiently.



5 The Generic Composite Residuosity

Problem

The decisional composite residuosity problem (DCR) was introduced by Paillier
in [Pai99]. Essentially, the problem is to distinguish an N-th residue rN mod N2,
where r $← Z∗

N , from a random element of Z∗
N2 , where N = PQ is a RSA modulus.

This problem was later generalized by Damgård and Jurik [DJ01] and Catalano et
al. [CGHGN01].

It is known that the DCR problem can be reduced to factoring N. However,
no reduction from a well-studied computational problem to the DCR problem is
known so far, neither in the standard model nor in an idealized model of computa-
tion. Since the assumption that solving this problem is hard has found many inter-
esting cryptographic applications, such as efficient instantiations of additively ho-
momorphic encryption [Pai99], lossy trapdoor functions [RS08, FGK+10], public-
key encryption schemes secure against selective-opening attacks [HLOV09], and
many more, it is interesting to study the validity of this assumption.

We analyze a generalized version of the DCR problem, which includes the vari-
ants from [Pai99, DJ01, CGHGN01] as special cases, in the generic ring model. As
illustrated in Section 5.4, the general theorem from Chapter 4, stating the generic
hardness of a large class of decisional problems, can not be applied to the DCR
problem. Therefore we devise a different argument that allows us to relate the
generic DCR problem modulo N� to the so-called Hensel-RSA problem [CNS02].
Reductions to the Hensel-RSA problem are known from the well-studied RSA
problem [RSA78], and from the composite residuosity class problem [CNS02],
depending on the considered algebraic setting.

5.1 Related Work

Decisional Composite Residuosity and Variants. Let N = PQ be a RSA mod-
ulus, and let y $← Z∗

N2 and b $← {0,1}. The DCR problem, originally introduced

in [Pai99], is to compute b on input x = yNb
mod N2. Thus, the DCR problem asks

to distinguish an N-th residue modulo N2 from a random element of Z∗
N2 . This

problem was generalized by Damgård and Jurik [DJ01] to computing b on input

T. Jager, Black-Box Models of Computation in Cryptology, 
DOI 10.1007/978-3-8348-1990-1_5, © Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden 2012
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x = yNb(�−1)
mod N� for � ≥ 2. In [CGHGN01] a variant was introduced, where

instead of N-th residues e-th residues are considered with gcd(e,φ(N)) = 1.

Hensel-RSA. We are going to relate the generic DCR problem to the so-called
Hensel-RSA problem. This problem was introduced and studied by Catalano,
Nguyen, and Stern in [CNS02]. The (N, �,e)-Hensel-RSA problem is to com-
pute xe mod N� on input xe mod N for random x $← ZN . It was shown in [CNS02]
that the Hensel-RSA is equivalent to the classical RSA problem [RSA78] if �≥ 3,
and harder than the composite residuosity class problem [CNS02] for � ≥ 2 (see
Section 5.5 for details).

5.2 Results of This Chapter

We define a generalized DCR problem, which captures the variants from [Pai99,
DJ01, CGHGN01] as special cases, and describe it in the generic ring model. We
give an intuitive explanation why the general theorem on the hardness of subset
membership problems from Chapter 4 is not applicable to DCR-type problems.
Our main result is then a proof that solving the generalized DCR problem gener-
ically is equivalent to solving the Hensel-RSA problem. In combination with the
work of [CNS02], this implies that solving DCR-type problems generically is hard,
if the RSA problem or the composite residuosity class problem are hard.

5.3 Generic Decisional Composite Residuosity

The following generalized DCR problem captures the variants of [Pai99, DJ01,
CGHGN01] as special cases.

Definition 5.1

We say the that the (N, �,e)-DCR problem is (εDCR, t)-hard, if

|Pr[A (N, �,e,x0) = 1]−Pr[A (N, �,e,x1) = 1]| ≤ εDCR,

where x0
$← Z∗

N� and x1 := xe
0 mod N�, for all algorithms A running in time t.

Then the classical DCR problem from [Pai99] is called the (N,2,N)-DCR prob-
lem, the (N, �,N�−1)-DCR problem with �≥ 2 is due to Damgård and Jurik [DJ01],
and the (N,2,e)-DCR problem with gcd(e,φ(N)) = 1 is from [CGHGN01].
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Generic Decisional Composite Redisuosity. To analyze the (N, �,e)-DCR prob-
lem in the generic ring model, we consider algorithms interacting with an oracle

O(ZN� ,Π,Σ;�x),

where�x = (1,x) for x = yeb
mod N� with y $← Z∗

N� and b $← {0,1}, Π = {+,−, ·}
and Σ = {=}. Note that we are using the generic ring model of [LR06], where no
explicit division operation ÷ is included. This is unfortunately necessary, due to
the fact that the proving technique applied below allows to consider only this class
of generic ring algorithms.

Definition 5.2

We say the that the generic (N, �,e)-decisional composite residuosity problem is (εDCR, t)-
hard, if ∣∣∣Pr[A O (N, �,e) = 1 | b = 0]−Pr[A O (N, �,e) = 1 | b = 1]

∣∣∣≤ εDCR.

for all algorithms A running in time t.

5.4 Why Theorem 4.1 is Not Applicable

In Chapter 4 we have proven a general theorem on the hardness of a large class of
subset membership problems in ZN . Unfortunately, this theorem is not applicable
to the DCR problem, and it seems hard to generalize it to the DCR case, as we
illustrate in the sequel.

Limitations of Theorem 4.1 from Chapter 4. Recall that Theorem 4.1 requries
that challenges are sampled uniformly random from C . This requirement seems
to be inherent in the argument applied in the proof, since the factoring algorithm
B works only in this case. We do not know how to prove the same statement for
subset membership problems where this does not hold.

Applicability to Paillier’s DCR problem. The DCR problem [Pai99] is a subset
membership problem which does not have the required property. In the notation
from Chapter 4, Paillier’s DCR problem is the subset membership problem (C ,V )
with

C = Z∗
N2 and V = {rN mod N2 : r ∈ Z∗

N2}.
Here we have |C | = φ(N) ·N and |V | = φ(N). The probability that a random
element of C is an element of V is

Pr[x ∈ V : x $← C ] = 1/N,
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and thus negligibly small. Therefore sampling a uniformly random challence x $←
C would nearly always yield an N-th non-residue.

In the sequel we thus have to develop another technique to study the generic
hardness of Paillier’s DCR problem and its variants.

5.5 Hardness of Hensel-RSA Lifting

We are going to relate the generic hardness of DCR to solving the so-called Hensel-
RSA problem introduced by Catalano, Nguyen, and Stern [CNS02].

Definition 5.3

We say that the (N, �,e)-Hensel-RSA problem is (εHRSA, t)-hard, if

Pr[A (N, �,e,xe mod N) = xe mod N�]≤ εHRSA

for all algorithms A running in time t.

As shown by Catalano et al. in [CNS02], the following two problems reduce to
solving Hensel-RSA.

• RSA PROBLEM. Let e be an integer such that gcd(e,φ(N)) = 1, where φ
denotes Euler’s Phi function. The (N,e)-RSA problem is to compute x ∈ZN

on input xe mod N, where x $← ZN is chosen uniformly random. A special
case is the (N,N)-RSA problem, where the exponent e equals the modulus
N.

• COMPOSITE RESIDUOSITY CLASS PROBLEM. The (N,g)-composite resid-
uosity class problem is: given a random element y $← Z∗

N2 , compute m ∈ ZN
such that

y = gmrN mod N2. (5.1)

In [Pai99] it was proven that for each y ∈ Z∗
N2 there exists a unique pair

(m,r) ∈ ZN ×Z∗
N satisfying (5.1). Note that the composite residuosity class

problem is exactly the problem of decrypting a Paillier ciphertext.

Both above problems are assumed to be hard if factoring N is hard. Strong evi-
dence towards this assumption was given by Catalano et al. [CNS02], who proved
the following lemma.
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Lemma 5.1 ([CNS02])

Let N = PQ be a RSA modulus.

• If there exists an algorithm solving the (N, �,e)-Hensel-RSA problem for �≥ 3, then
there exists an algorithm solving the (N,e)-RSA problem.

• If there exists an algorithm solving the (N,2,N)-Hensel-RSA problem, then there
exists an algorithm solving the (N,g)-composite residuosity class problem.

5.6 Analysis of the Generic DCR Problem

We relate the hardness of solving the generic DCR problem to solving the Hensel-
RSA problem. In combination with the above results of Catalano et al., this relates
the generic DCR problem to the RSA problem if � ≥ 3, and to the composite
residuosity class problem if �≥ 2.

Theorem 5.1

If solving the (N, �,e)-Hensel-RSA problem is (εHRSA, t)-hard, then solving the generic
(N, �,e)-decisional composite residuosity problem over ZN� is (ε ′, t ′) hard with

ε ′ ≤ q2

εHRSA
+

q2

P
+

2N�−1(P+Q+1)
N�

and t ′+q ≈ t,

where P is the smallest prime factor of N and q is an upper bound on the number of oracle
queries issued by the generic ring algorithm A .

PROOF. We proceed in a sequence of games. We start with a game where the
algorithm interacts with an oracle with inital state (1,x) where x $←Z∗

N� is a random
element of Z∗

N� , and we end up with a game where the algorithm interacts with
an oracle where x ≡ ye mod N� is an e-th residue. We will obtain the result by
bounding the probability that the algorithm distinguishes Game i from Game i−1
for all i. In the following let Oi denote the oracle that A interacts with in Game i.

Game 0. This game corresponds to the generic DCR experiment described above,
with b = 0. That is, the algorithm interacts with an oracle O0 whose initial list con-
tents is L1 = (1,x), where x $← Z∗

N� is a random element of Z∗
N� . We have

Pr[A O0(N, �,e) = 1] = Pr[A O(N, �,e) = 1 | b = 0].
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Game 1. We change the way the challenge x is sampled. Instead of choosing
x $← Z∗

N� , O1 samples x $← ZN� . We assume that O1 does so by choosing two

integers x0
$← ZN and x1

$← ZN�−1 and setting x = x1N + x0. This is equivalent to
sampling x $← ZN� . Otherwise O1 proceeds exactly like O0.

We have N�−φ(N�) = N�−N�−1(P−1)(Q−1) = N�−1(P+Q+1), and thus

∣∣∣Pr[A O1(N, �,e) = 1]−Pr[A O0(N, �,e) = 1]
∣∣∣≤ N�−1(P+Q+1)

N�
.

Game 2. In this game we modify the way the integer x is sampled. Oracle O2

samples x0
$← ZN and x1

$← ZN�−1 , but instead of performing all computations on
integers, oracle O2 uses polynomials from ZN� [X ] for the internal representation
of ring elements. To this end, it proceeds as follows.

1. The list L is initialized with L1 = 1 and L2 = x = XN + x0. Note that the
variable X is used instead of x1 (x1 is not used throughout the game, but it
is useful to have it defined in order to compare Game 2 to Game 1 in the
analysis below).

2. Whenever the algorithm asks to perform a computation ◦ ∈ {+,−, ·} on two
list elements Li,L j, the oracle computes

Lk = Li ◦L j.

Note that each list element Li can be written as a polynomial Li(X) = (aiX +
bi)N + ci, where ai,bi ∈ ZN�−1 and ci ∈ ZN .

3. Whenever the algorithm asks to perform an equality test on two list elements
Li,L j, then O2 returns 1 if

(ai,bi,ci) = (a j,b j,c j),

and 0 otherwise.

Observe that O2 simulates O1 perfectly, unless O2 replies with 0 on an equality
test query where O1 would have returned 1 (the opposite case is impossible). Note
that this happens only if

(ai,bi,ci) �= (a j,b j,c j) but Li(x1)≡ L j(x1) mod N�.
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Since ci �= c j implies Li(x1) �≡ L j(x1) mod N�, it suffices to consider the case
where ci = c j and (ai,bi) �= (a j,b j). In this case we have

aix1 +bi ≡ a jx1 +b j mod N�−1,

or equivalently
(ai −a j)x1 +(bi −b j)≡ 0 mod N�−1, (5.2)

where x1 is uniformly random and independent of the algorithm’s view. If P de-
notes the smallest prime factor of N, then the polynomial (5.2) of degree one has at
most one root modulo P. Thus, the probability that by issuing q oracle queries the
algorithm computes two pairs (ai,bi) and (a j,b j)) such that O2 fails to simulate
O1 is at most q2/P. This implies

∣∣∣Pr[A O2(N, �,e) = 1]−Pr[A O1(N, �,e) = 1]
∣∣∣≤ q2

P
.

Game 3. This game corresponds to the generic DCR experiment described above,
with b= 1. That is, we replace the simulator from the previous game with an oracle
O3 whose initial list contents is L1 = (1,x). Here x is sampled by O3 by choosing
y $← ZN� and computing x := yN mod N�. We write x as x = x1N + x0.

Note that O2 simulates O3 perfectly, unless

(ai,bi,ci) �= (a j,b j,c j) but Li(x1)≡ L j(x1) mod N�.

Note that in this case the algorithm must have computed two pairs (ai,bi) and
(a j,b j)) such that

aix1 +bi ≡ a jx1 +b j mod N�−1,

or equivalently
x1 ≡ (b j −bi)(ai −a j)

−1 mod N�−1. (5.3)

Suppose there exists an algorithm A performing a sequence of at most q oper-
ations such that the probability that there exist two pairs (ai,bi) and (a j,b j)) such
that (5.3) holds is at least ε . Then we have∣∣∣Pr[A O3(N, �,e) = 1]−Pr[A O3(N, �,e) = 1]

∣∣∣≤ ε.

We can construct an algorithm B solving the (N, �,e)-Hensel-RSA problem as
follows. B receives as input x0 = xe mod N for random x $← ZN . Note that x0 is
uniformly distributed over ZN , since the map x → xe mod N is a permutation over
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ZN if gcd(e,φ(N)) = 1. B runs A as a subroutine by implementing the simulator
from Game 2 for A . When A terminates, or after at most q oracle queries, B

guesses two random indices i, j $←{1, . . . ,q}, and computes and returns

τ ≡ (b j −bi)(ai −a j)
−1 mod N�−1.

By assumption, with probability at least ε there exist two pairs (ai,bi) and
(a j,b j)) such that (5.3) holds. With probability 1/q2, B guesses the indices i, j
correctly, such that it obtains τ = x1. Thus we have ε ≤ q2/εHRSA, and therefore∣∣∣Pr[A O3(N, �,e) = 1]−Pr[A O2(N, �,e) = 1]

∣∣∣≤ q2

εHRSA
.

Game 4. We change the way the challenge is sampled. Instead of choosing
y $← ZN� , O4 chooses y $← Z∗

N� and then computes x := yN mod N�. Thus we have

Pr[A O4(N, �,e) = 1] = Pr[A O(N, �,e) = 1 | b = 1].

and, like in Game 1,∣∣∣Pr[A O4(N, �,e) = 1]−Pr[A O3(N, �,e) = 1]
∣∣∣≤ N�−1(P+Q+1)

N�
.

Collecting probabilities from Game 0 to Game 4 yields∣∣∣Pr[A O(N, �,e) = 1 | b = 0]−Pr[A O(N, �,e) = 1 | b = 1]
∣∣∣

≤ q2

εHRSA
+

q2

P
+

2N�−1(P+Q+1)
N�

�

Generic disclaimer. We note again that it seems dangerous to perceive hardness
results in the generic model as evidence towards a hardness assumption, since
the result holds only for a (quite general, but still) restricted class of algorithms.
This holds especially given the results from Chapter 4, showing that there exist
practical (i.e. not contrived) computational problems which are provably hard to
solve generically, but easy to solve in general.

However, we think that a proof in the generic model is still interesting from a
cryptanalytic point of view, since it rules out a large class of algorithms (namely
all algorithms that do not exploit specific properties of the representation of ring
elements) solving the considered problem efficiently.



6 Semi-Generic Groups and Their

Applications

The generic group model (GGM) is used frequently to provide evidence towards
newly introduced hardness assumptions. In particular in the area of pairing-based
cryptography numerous novel assumptions have been introduced over the last
decade. Unfortunately, the GGM does not reflect many known properties of bi-
linear group settings. Not at least currently known algorithms for solving compu-
tational problems over bilinear groups are captured, and thus hardness results in
this model are of limited significance.

In this chapter, we propose a novel black-box model, called the semi-generic
group model, that is closer to the standard model and allows to make more mean-
ingful security statements. We describe several instantiations of this model, which
apply to both single-group settings and different types of group settings from
pairing-based cryptography.

An inportant aspect of these models is that the best algorithms currently known
for solving algebraic problems commonly used in cryptography are semi-generic
in nature, and thus captured by the model. We demonstrate the usefulness of our
new model by applying it exemplarily to study important assumptions, namely the
computational Diffie-Hellman problem, the Co-Diffie-Hellman problem, and the
bilinear decisional Diffie-Hellman problem. The presented techniques are rather
general and can be adopted to study further hardness assumptions.

6.1 Motivation and Related Work

It is widely known that one has to take care when interpreting a proof in the generic
group model as evidence towards the validity of a cryptographic hardness assump-
tion or the security of a cryptosystem [Fis00, Den02, KM07], since it abstracts
away from potentially many properties an adversary might be able to exploit in
the real world. On the one hand, there exist cryptographic groups (such as certain
elliptic curve groups) for which not many properties beyond the axioms of an alge-
braic group are known. Hence, modeling such groups as generic can be seen as a
reasonable abstraction. On the other hand, there are groups featuring many further

T. Jager, Black-Box Models of Computation in Cryptology, 
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properties, which clearly makes the generic group model an inappropriate reflec-
tion for them. A prime example are multiplicative groups of finite fields or rings.
These structures offer many well-understood properties beyond the group axioms,
such as additional efficient algebraic operations (e.g., addition in the field or ring),
and other properties of the group representation (e.g., the notion of prime integers
and irreducible polynomials), that are simply ignored by the generic group model,
but give rise to more efficient algorithms for certain problems (e.g., index calculus
algorithms for computing discrete logarithms). But should a minimal requirement
on such an idealized model of computation not be that at least all currently known
algorithms are captured?

There exist some first approaches in the cryptographic literature to tackle this is-
sue: The pseudo-free group model proposed by Hohenberger [Hoh03] and Rivest
[Riv04] (see also [Mic05, CFW11]) does not treat a group as a black-box. Un-
fortunately, the definition of pseudo-freeness is very restrictive in the sense that
a number of important groups (like all known-order groups) are immediately ex-
cluded and important problems, such as Diffie-Hellman-type problems, seem not
to be covered by the model. Other approaches due to Leander and Rupp [LR06]
and Aggarwal and Maurer [AM09] take into account that the RSA group Z∗

N is em-
bedded in the ring ZN . They use the generic ring model (see Section 2.3), where an
algorithm may perform both multiplication and addition operations in ZN to show
that breaking RSA is equivalent to factoring. Unfortunately, our work presented
in Chapter 4 and [JS09] shows that even computing the Jacobi symbol [Sho08] is
equivalent to factoring in this model. Thus this approach has not led to a satisfying
abstraction of reality yet.

6.2 Results of This Chapter

We describe a novel black-box model of computation, which we call the semi-
generic group model, and describe several instantiations of this model that apply
both to single-group settings and to different types of settings from pairing-based
cryptography. In contrast to the classical generic group model, the new model cap-
tures the best currently known algorithms for solving various algebraic problems
commonly used in cryptography.

While the new model results from a simple technical modification to the clas-
sical generic group model, we need to develop new proof techniques which differ
from classical proofs in the GGM. These new techniques rely on reduction tech-
niques known from proofs in the standard model, since the (less natural) technique
of deriving exponential complexity lower bounds is not applicable anymore.
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As an exemplary application of the model, we analyze some important com-
putational and decisional hardness assumptions from classical and pairing-based
cryptography in our new model. This includes the Diffie-Hellman, Co-Diffie-
Hellman, and decisional bilinear Diffie-Hellman problems.

The semi-generic group model should not be seen as a replacement for the care-
ful analysis of cryptographic hardness assumptions, or reductions from thoroughly
analyzed assumptions, in the standard model. It should rather be seen as a tool to
get the currently best possible immediate evidence towards a hardness assumption,
or to analyze the security of a practical cryptosystem that cannot be proven secure
in the standard model.

6.3 An Extended Black-Box Model of Computation

In Chapter 2 we have described a general black-box model of computation. Two
concrete instantiations of this general model, the generic group model (Section 2.2)
and the generic bilinear group model (Section 2.4), have been used in various
previous works to analyze both classical [Sho97, MW98, MW99, Mau05] and
newly introduced cryptographic hardness assumptions in bilinear groups [KSW08,
RLB+08, Boy08, BB08]. In this section, we will describe an extension of this
model, and use it to instantiate what we call semi-generic groups and semi-generic
bilinear groups.

The modification is technically rather simple. Recall that in Section 2.1 we
have characterized a black-box oracle by q+ 2 sets S1, . . . ,Sq,Π,Σ. We extend
this characterization by another set Θ ⊆ {1, . . . ,q}. Based on this additonal set,
we allow a further type of queries an algorithm may ask to the oracle. In addition
to computation queries from Π and relation queries from Σ, an algorithm in the
semi-generic group model may ask reveal-queries of elements stored in the lists
Li, i∈Θ. To this end, the algorithm submits two indices (i, j). The oracle responds
as follows.

• If i �∈ Θ, then the oracle returns an error symbol ⊥.

• If i ∈ Θ, then the oracle returns the contents of Li, j.

Thus, by making reveal-queries, an algorithm may learn the elements stored in the
list Li in their standard representation, if i ∈ Θ.
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6.4 Semi-Generic Groups

Let G= (S,◦) be a group. In the semi-generic group model (sGGM) an algorithm
interacts with an oracle

O(S,Π,Σ,Θ;�x),

where Π= {◦}, Σ= {=}, and Θ= {1}. As described in Section 2.2, = denotes the
(binary) equality relation, and the vector �x is chosen according to the considered
computational problem, and contains usually at least a generator of the group G.

6.4.1 Relation to the Generic and Standard Model

It is obvious that the semi-generic group model considers a larger class of algo-
rithms than the generic group model from Section 2.2, since it allows to exploit
specific properties of the given representation of group elements. There are many
trivial examples for computational problems which are provably “hard” in the
black-box model, but “easy” to solve semi-generically. Consider, for instance,
the discrete logarithm problem in the additive group (Zp,+) of integers modulo
p. However, the relation between the semi-generic group model and the standard
model is not that obvious.

One may be tempted to think that the semi-generic group model is equivalent
to the standard model: an algorithm may simply issue reveal-queries to all initial
list elements in L1, . . . ,Lq, and then perform all computations “offline”, that is,
independent of the oracle. If this was true, then the semi-generic group model
would clearly not be useful. However, whether this is true or not depends on the
considered computational problem. We explain this by giving two examples.

Example 6.1

Let G = (S,◦) be a group of order p with generator g. Let a,b,c $← Zp be
uniformly random. We say that an algorithm A (ε, t)-solves the decisional
Diffie-Hellman (DDH) problem in the standard model, if A runs in time t
and ∣∣∣Pr[A (p,g,ga,gb,gab) = 1]−Pr[A (p,g,ga,gb,gc) = 1]

∣∣∣≥ ε.

We say that an algorithm A ′ (ε ′, t ′)-solves the DDH problem semi-generically,
if A ′ runs in time t ′ and∣∣∣Pr[A ′O(g,ga,gb,gab)(p) = 1]−Pr[A ′O(g,ga,gb,gc)(p) = 1]

∣∣∣≥ ε ′.

It is easy to see that if there exists an algorithm A (ε, t)-solving DDH in
the standard model, then this implies an algorithm A ′ (ε ′, t ′)-solving DDH
semi-generically with success probability ε ′ = ε in time t ′ ≈ t:
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• A ′ makes four reveal-queries to its oracle O to obtain (g,ga,gb,gd)

with d ∈ {ab,c}.

• Then A ′ runs A (p,g,ga,gb,gd) as a subroutine.

• A ′ outputs whatever A returns.

Clearly, the success probability of A ′ equals the success probability of A ,
and the running time of A ′ equals the running time of A plus four ora-
cle queries. Thus, an efficient standard-model algorithm implies an efficient
semi-generic algorithm for DDH. The converse is trivially true. Thus, when
considering the DDH problem, then both the semi-generic group model and
the standard model are equivalent.

The above example shows that there exists a common cryptographic problem
for which the semi-generic group model is equivalent to the standard model. The
next example will show that there exists a strongly related problem, namely the
computational version of the decisional problem considered above, for which the
semi-generic group model and the standard model seem not to be equivalent.

Example 6.2

Let G= (S,◦) be a group of order p with generator g. Let a,b $← Zp be uni-
formly random. We say that an algorithm A (ε, t)-solves the Computational
Diffie-Hellman (CDH) problem in the standard model, if A runs in time t
and

Pr[A (p,g,ga,gb) = gab]≥ ε.

We say that an algorithm A ′ (ε ′, t ′)-solves the CDH problem semi-generically,
if A ′ runs in time t ′ and

Pr[A ′O(g,ga,gb)(p) = j : [gab] = j]≥ ε ′.

Thus, in the semi-generic group model we demand that A ′ outputs an index
pointing to a variable containing gab.

The major difference is that A ′ has to compute the solution gab to its chal-
lenge by applying group operations to the initial contents (g,ga,gb) of the
list L. While all currently known algorithms for solving the computational
Diffie-Hellman problem are indeed semi-generic, since they solve it by first
computing the discrete logarithm of ga (or gb), and then computing gab as
(gb)a (or (ga)b), it is not clear that all algorithms need to solve CDH this
way. Therefore it seems that the semi-generic group model is not equivalent
to the standard model when considering CDH. However, note that (in contrast
to the black-box generic group model) the currently known algorithms, such
as index calculus algorithms for finite field groups or elliptic curve groups,
are covered in the semi-generic group model.
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6.4.2 Analysis of the Diffie-Hellman Problem

As a first application of our model, we show that solving the computational Diffie-
Hellman problem semi-generically is as hard as computing discrete logarithms.
This simple example illustrates a proving technique which can be applied to other
search problems as well.

Theorem 6.1

Let G = (S,◦) be a group of prime order p with generator g. Let �x = (g,ga,gb) with

g,ga,gb $← S. Suppose there exists an algorithm A running in time t and returning an index
j such that

Pr[A O (p) = j : [gab] = j]≥ ε.

Then there exists an algorithm B solving the discrete logarithm in G in time t ′ ≈ t with
success probability ε ′ ≥ ε/2.

PROOF. Algorithm B receives as input a discrete logarithm challenge (g,gy). It
implements the semi-generic group oracle O for A as follows. B samples z $←Zp

and tosses a coin ρ $← {0,1}. If ρ = 0, then it sets �x = (g,gy,gz). Otherwise B
sets �x = (g,gz,gy). Then it starts A . Clearly, B can answer all oracle queries of
A .

With probability at least ε , A returns an index j such that j = [gyz]. Note that
A needs to compute the list element L j = gyz by applying a sequence of group
operations to the initial contents�x=(x1,x2,x3) of L, where either (x2,x3)= (gy,gz)
or (x2,x3) = (gz,gy). Thus, B obtains an equation

gyz = xα
1 ◦ xβ

2 ◦ xγ
3 = gα ◦ xβ

2 ◦ xγ
3,

or equivalently
yz ≡ α +β logg x2 + γ logg x3 mod p.

Let us consider two cases.

Case 1: β �≡ logg x3 mod p. With probability 1/2 we have ρ = 0, and therefore
logg x2 = y and logg x3 = z. In this case, B can compute y as

yz ≡ α +βy+ γz mod p ⇐⇒ y ≡ (α + γz)(z−β )−1 mod p.

Case 2: β ≡ logg x3 mod p. In this case, B can trivially compute y, since with
probability 1/2 we have ρ = 1, and thus

logg x3 ≡ y ≡ β mod p.
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Note that in both cases the running time of B is dominated by the running time of
A , plus some minor additional effort to simulate the oracle O . In both cases, B
succeeds with probability at least ε/2. �

The following corollary is essentially an alternative formulation of Theorem 6.1,
which captures the most interesting aspect of the result.

Corollary 6.1

Solving the Diffie-Hellman problem semi-generically is equivalent to computing discrete
logarithms.

6.5 Semi-Generic Bilinear Groups

Over the last decade a considerable number of innovative cryptosystems, such as
identity-based encryption [BF01, BF03], efficient digital signature schemes with
strong security [BLS01, BLS04], or powerful primitives like attribute-based en-
cryption [GPSW06, BSW07, OSW07] or functional encryption [OT10, LOS+10]
schemes have been proposed over bilinear groups. A bilinear group setting con-
sists of groups G1, G2, and G3, with a bilinear map e : G1 ×G2 → G3, called
a pairing. See Section 2.4 for a description of common types of bilinear group
settings with different algebraic properties.

Along with these cryptosystems many new assumptions have been introduced,
such as for instance

• bilinear Diffie-Hellman (BDH) [Jou04],

• q-strong Diffie-Hellman [BB04, Che06],

• decision linear Diffie-Hellman (DLIN) [BBS04],

• Co-Diffie-Hellman (Co-DH) [BLS01, BLS04, BGLS03],

and countless more. Unfortunately, for virtually all of them no reduction to a well-
analyzed assumption like the discrete logarithm assumption is known. In fact,
finding such reductions seems to be a difficult task, since the algebraic settings
underlying classic problems (e.g., a single cyclic group for discrete logarithms)
significantly differ from bilinear settings. Hence, given an instance of a classic
problem it appears to be hard to transform this instance to one of the bilinear
problem in order to leverage an algorithm for the former. Consequently, the only
way to go beyond pure belief, by providing some sort of immediate evidence that
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these novel assumptions hold at least heuristically, consists of proofs in restricted
models of computation.

So far, the only such model for bilinear settings is a straightforward extension
of the generic group model, where all three groups G1, G2, and G3 are modeled
as generic groups [RLB+08, KSW08]. We derive two new semi-generic bilinear
group models from the general semi-generic model described above, a weak semi-
generic bilinear group model and a strong variant of it.

6.6 Weak Semi-Generic Bilinear Groups

The weak variant is a straightforward extension of the semi-generic group model
from Section 6.4 to the bilinear group setting. Let G1 = (S1,◦1), G2 = (S2,◦2),
G3 = (S3,◦3) be groups with bilinear pairing e : G1 ×G2 → G3. In the weak
semi-generic bilinear group model (weak sGGM) an algorithm interacts with an
oracle

O(S1,S2,S3,Π,Σ,Θ;�x1,�x2,�x3),

where Π = {◦1,◦2,◦3} (in Type 1 or Type 3 settings) or Π = {◦1,◦2,◦3,ψ} (in
Type 2 settings), Σ = {=}, and Θ = {1,2,3}. Here = denotes the (binary) equality
relation.

Note that the algorithm may ask reveal-queries for all three groups G1, G2,
G3, and thus may obtain all list elements in their standard representation. As we
will show below, the techniques used in the previous section to show the semi-
generic equivalence of the discrete logarithm and the Diffie-Hellman problem can
be adapted to reduce the bilinear discrete logarithm problem to newly introduced
computational problems, like Co-DH [BLS01, BLS04, BGLS03].

6.6.1 Relation to the Generic Model and the Standard Model

With the same arguments as in Section 6.4, one can see that the weak semi-generic
bilinear group model considers a strictly broader class of algorithms than the
generic bilinear group model from Section 2.4, since it allows to exploit specific
properties of the given representation of group elements. A well-known example
for a computational problem which in the semi-generic bilinear group model is
significantly easier than in the generic group model is computing the discrete log-
arithm problem in bilinear group settings where the MOV-reduction [MOV93] can
be applied to solve the problem using index calculus algorithms in G3.

It is furthermore easy to adopt Examples 6.1 and 6.2 from Section 6.4.1 to bi-
linear groups, which shows that the weak semi-generic group model is equivalent
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to the standard model when decisional assumptions are considered, but seems to
be stronger when search problems are considered.

6.6.2 Analysis of the Co-Diffie-Hellman Problem

As an application of the weak semi-generic group model, we show that solving the
Co-Diffie-Hellman problem semi-generically is equivalent to computing discrete
logarithms.

Let G1 = (S1,◦1), G2 = (S2,◦2), G3 = (S3,◦3) be groups of prime order p with
bilinear pairing e : G1 ×G2 → G3. Let us consider an asymmetric bilinear group
setting, that is, such that G1 �=G2. The Co-Diffie-Hellman problem is to compute
ga

2 ∈G2, given g1,ga
1 ∈G1 and g2 ∈G2. Note that in Type 1 bilinear group settings

the Co-Diffie-Hellman is equivalent to the Diffie-Hellman problem. In the semi-
generic group model, consider an oracle

O(S1,S2,S3,Π,Σ,Θ;�x1,�x2),

where�x1 = (g1,ga
1) and�x2 = (g2), and either Π = {◦1,◦2,◦3} (Type 3 setting) or

Π = {◦1,◦2,◦3,ψ} (Type 2 setting).

Definition 6.1

We say that an algorithm A (ε, t)-solves the Co-Diffie-Hellman problem semi-generically,
if A runs in time t and

Pr[A O (p) = j : [ga
2] = j]≥ ε.

Theorem 6.2

Suppose there exists an algorithm A that (ε, t)-solves the Co-Diffie-Hellman problem semi-
generically. Then there exists an algorithm B solving the discrete logarithm problem in G1
in time t ′ ≈ t with success probability ε ′ ≥ ε/2.

PROOF. Algorithm B receives as input a discrete logarithm challenge (g1,ga
1) ∈

S1 ×S1. It implements the semi-generic group oracle O for A as follows.

Type 1 setting. This case is identical to the proof of Theorem 6.1 and thus omit-
ted.

Type 2 setting. B flips a coin ρ $←{0,1}. If ρ = 0, then B

• computes h = ψ(g1) and ha = ψ(ga
1),
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• determines a random generator g2 ∈ S2 by sampling z $← Z∗
p and setting

g2 := hz,

• and sets�x1 = (g1,ga
1) and�x2 = (g2).

If ρ = 1, then B

• samples z $← Zp and computes gz
1 ∈G1,

• sets g2 := ψ(ga
1) ∈G2,

• and sets�x1 = (g1,gz
1) and�x2 = (g2) = (ψ(ga

1)).

Then it starts A . Note that in both cases B can answer all oracle queries of A .
Since A needs to compute its solution L j = ga

2 by applying a sequence of group
operations to the initial contents of L2, but in addition may also apply the isomor-
phism ψ to elements of L1 and thus can map these elements to L2, B obtains an
equation

L j = ga
2 = gα

2 hβ haγ .

where h = ψ(g1) and the exponents α,β ,γ ∈ Zp can be computed by the oracle
by examining the sequence of operations performed by A . Once again we need to
consider two cases.

Case 1: γ �≡ logh g2 mod p. When A returns an index j such that j = [ga
2], then

B obtains an equation

L j = ga
2 = gα

2 hβ haγ ⇐⇒ haz = hαzhβ haγ ,

which is equivalent to
az ≡ αz+β +aγ.

If ρ = 0, then we have logh g2 = z mod p and thus γ �≡ z mod p. In this case
the discrete logarithm a can be computed as

a ≡ (αz+β )(z− γ)−1.

Case 2: γ ≡ logh g2 mod p. If ρ = 1, then we have logh g2 = a mod p and thus
B can compute the discrete logarithm γ ≡ a mod p.
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Type 3 setting. B samples a random generator g2
$← S2 and sets �x1 = (g1,ga

1)
and�x2 = (g2). Then it runs A . Clearly, B can answer all oracle queries of A .

With probability at least ε , A returns an index j such that j = [ga
2]. Algorithm

A needs to compute the list element L j = ga
2 by applying a sequence of group

operations to the initial contents�x2 =(g2) of L2. Thus, B can observe the sequence
of group operations performed by A to obtain α ∈ Zp such that ga

2 = gα
2 , which is

equivalent to α ≡ a mod p.
�

6.7 Strong Semi-Generic Bilinear Groups

As noted before, the weak semi-generic group model is equivalent to the standard
model (and thus not useful) when decisional assumptions are considered. There-
fore we introduce a second, stronger model. In this model an algorithm interacts
with an oracle

O((S1,S2,S3),Π,Σ,Θ;�x1,�x2,�x3),

where Σ = {=1,=2,=3}, Π = {◦1,◦2,◦3,e}, and Θ = {3}. Note that in contrast
to the weak model, we have Θ = {3} instead of Θ = {1,2,3}. Thus, the algorithm
may only obtain elements of G3 in their standard representation, while G1 and G2
are modeled as generic groups. The justification for this model is based on the
following two observations.

1. In all known instances of bilinear settings, the groups G1 and G2 are elliptic
curve groups. Modeling elliptic curve groups as generic groups may be
considered as a reasonable abstraction.

2. However, in contrast to that, the group G3 is usually a subgroup of the mul-
tiplicative group of a finite field. Modeling this group as a generic group is
clearly inappropriate: There exist algorithms, which exploit the field struc-
ture of G3 to solve cryptographic problems siginicantly faster than generic
group algorithms. For instance, there are sub-exponential time algorithms
that map the inputs over G1 and G2 (given as part of a problem instance)
to G3, using the bilinear map, and then determine the discrete logarithms of
these elements over G3 using index calculus (MOV reduction [MOV93]).

The stronger model leverages this observation by modeling the elliptic curve groups
as black-box generic groups, while reveal-queries are allowed for G3. Thus, an al-
gorithm can perform any computation over G3 that is possible in the subgroup of a
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finite field. This enables us to relate the semi-generic hardness of many decisional
problems from pairing based cryptography, like the bilinear decisional Diffie-
Hellman problem (BDDH), to one single hardness assumption in G3, namely the
square decisional Diffie-Hellman assumptions.

6.7.1 Relation to the Generic Group Model and to the Weak

Semi-Generic Group Model

Again it is easy to see that the strong semi-generic bilinear group model consid-
ers a strictly broader class of algorithms than the generic bilinear group model
from Section 2.4, since at least specific properties of the given representation of
elements of G3 can be exploited. This is still sufficient to capture known attacks,
such as the MOV-reduction [MOV93], which are excluded in the generic group
model.

For instance, the techniques of Dent [Den02] can be used to separate the strong
model from the weak model. The (contrived but valid) separation between generic
groups and standard groups from [Den02] adopts the separation of Canetti, Gol-
dreich, and Halevi [CGH98, CGH04] from random oracles to generic groups.

The strong model is clearly more restrictive than its weak sibling, thus a smaller
class of algorithms is considered, but both the weak and the strong model are
significantly closer to the “real world” than the generic group model. In general,
it is a more realistic heuristic to assume that a given bilinear group setting realizes
weak rather than strong semi-generic groups, therefore the weak model should
be preferred over the strong variant. However, to the best of our knowledge all
algorithms currently known for solving pairing-based algebraic problems work
also in the strong semi-generic group model. This holds in particular for the sub-
exponential time algorithms applying a MOV reduction [MOV93]. Moreover, an
important justification for the strong model is that it allows to analyze decisional
assumptions, as we illustrate below.

6.7.2 Some Helpful Observations

This section describes a few simple observations that will turn out to be the helpful
ingredients for proofs in the strong semi-generic group model.

Observation 1: The internal representation of elements inside the oracle is ar-
bitrary. In the strong semi-generic group model, an algorithm may obtain only
elements of G3 in their explicit representation. Elements of G1 and G2 are only
represented implicitly by pointers referring to list entries. Thus, algorithms are
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“blind” with respect to the internal representation of the groups G1 and G2 (as
well as the pairing e and the isomorphism ψ).

Hence, we can plug in “something else” for these components as long as these
replacements behave like cyclic groups with a bilinear map and an isomorphism.
We will utilize this observation to map inputs given over G3 back to G1 and G2
by setting G1 := G2 := G3 internally, and simulating the bilinear map e and the
isomorphism ψ .

Observation 2: Computed elements over G1 and G2 are linear polynomials in
initial inputs. Consider a strong semi-generic group oracle O(�x1,�x2,�x3), where
�x1 = (x1,1, . . . ,x1,m) and �x2 = (x2,1, . . . ,x2,n). A semi-generic algorithm A is re-
stricted to applying a sequence of group operations to elements of the list L1 and
L2. Thus, in Type 1 and Type 3 settings (without efficiently computable isomor-
phism ψ : G1 → G2), each element of L1 and L2 computed by the algorithm can
be written as

L1, j =
m

∏
k=1

x
α1,k
1,k and L2, j =

n

∏
k=1

x
α2,k
2,k

for integers αi,k that can be computed by the oracle by examining the sequence of
operations performed by A . In Type 2 settings we additionally have the isomor-
phism ψ : G1 →G2. In this case, each list element computed by the algorithm can
be written as

L1, j =
m

∏
k=1

x
α1,k
1,k and L2, j =

n

∏
k=1

x
α2,k
2,k

m

∏
k=1

ψ(x1,k)
β2,k

for known integers αi,k and β2,k.
Note that Observation 2 has already been used in the proofs of Theorems 6.1

and 6.2. However, we think it is instructive to state it explicitly here, since it
simplifies the description of Observation 3.

Observation 3: The pairing is simulatable knowing the images of initial inputs.
Let L1,i ∈ G1 and L2, j ∈ G2 be two elements computed by a semi-generic algo-
rithm. Then by using Observation 2 it is easy to see that in Type 1 and Type 3
settings we have

e(L1,i,L2, j) = e(
m

∏
k=1

x
α1,k
1,k ,

n

∏
�=1

x
α2,�
2,� ) =

m

∏
k=1

n

∏
�=1

e(x1,k,x2,�)
α1,�α2,� ,

where the integers αi, j can be computed by examining the sequence of operations
performed by the algorithm. Thus, in order to be able to simulate the pairing map
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for all elements computed by the algorithm, it suffices to know all elements of the
set

Θ =
{

e(x1,k,x2,�) : k ∈ [m], � ∈ [n]
}

containing the images of all initial inputs to the oracle under the pairing map. The
case of Type 2 settings is analogous, howevever, we need to take the isomorphism
map into account. Thus we need

Θ′ = Θ∪{
e(x1,k,ψ(x1,�)) : k, � ∈ [m]

}
.

6.7.3 Analysis of the Decisional Bilinear Diffie-Hellman

Problem

The bilinear decisional Diffie-Hellman problem (bilinear DDH) is certainly one of
the most important computational problems over bilinear groups. It has originally
been introduced in a seminal paper by Joux [Jou00, Jou04] and since then been
used in several cryptographic constructions, such as [BF01, BF03, Wat05, KG06,
BDNS07] and many more.

Definition. Let us consider the bilinear DDH problem over a Type 1 setting.
Consider groups G1 = (S1,◦1) and G3 = (S3,◦3) of prime order p with generator
g1 ∈G1 and bilinear map e : G1×G1 →G3. Let g3 = e(g1,g1). The bilinear DDH
problem is to compute b∈{0,1} on input (g1,gx

1,g
y
1,g

z
1,g

rb
3 ), where x,y,z,r0

$←Zp,

r1 = xyz, and b $← {0,1}. In the strong semi-generic group model, this problem
can be defined as follows. Consider a strong semi-generic bilinear group oracle

O(�x1,�x3),

where�x1 = (g1,gx
1,g

y
1,g

z
1) and�x3 = (grb

3 ).

Definition 6.2

We say the that the bilinear decisional Diffie-Hellman problem is (εbDDH, t)-hard in the
strong semi-generic model, if∣∣∣Pr[A O((g1,gx

1,g
y
1,g

z
1),(g

xyz
3 ))(p) = 1]−Pr[A O((g1,gx

1,g
y
1,g

z
1),(g

r0
3 ))(p) = 1]

∣∣∣≤ εbDDH.

for all algorithms A running in time t.
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Square Decisional Diffie-Hellman. We relate the semi-generic hardness of the
bilinear DDH problem to the hardness of the square decisional Diffie-Hellman
(square DDH) problem over G3. The square DDH problem is a potentially eas-
ier variant of the decisional Diffie-Hellman problem: Given (g3,gx

3,g
rb
3 ), where

x,r0
$← Zp, b $←{0,1}, and r1 = x2, compute b.

Definition 6.3

We say that the square decisional Diffie-Hellman problem is (εsqDDH, t)-hard, if∣∣∣Pr[A (p,g3,gx
3,g

x2

3 ) = 1]−Pr[A (p,g3,gx
3,g

r0
3 ) = 1]

∣∣∣≤ εsqDDH

for all algorithms A running in time t.

An auxiliary lemma. As a last prerequisite we need the following lemma.

Lemma 6.1

Let G3 be a group of prime order p with random generator g3. Suppose that solving the
square DDH problem in G3 is (εsqDDH, t)-hard. Let

V0 := (g3,gx
3,g

y
3,g

z
3,g

x2

3 ,gy2

3 ,gz2

3 ,gxy
3 ,gxz

3 ,gyz
3 ,gr

3),

V1 := (g3,gx
3,g

y
3,g

z
3,g

x2

3 ,gy2

3 ,gz2

3 ,gxy
3 ,gxz

3 ,gyz
3 ,gxyz

3 )

for random x,y,z,r $← Zp. Then for all algorithms A running in time t ′ ≈ t holds that

|Pr[A (p,V0) = 1]−Pr[A (p,V1) = 1]| ≤ 9 · εsqDDH.

The proof of Lemma 6.1 is deferred to Section 6.7.4.

Main Theorem. Now we are ready to state and prove the main theorem of this
section.

Theorem 6.3

If solving the square DDH problem over G3 is (εsqDDH, t)-hard, then solving the bilinear
DDH problem semi-generically is (εbDDH, t ′)-hard with

εbDDH ≤ 9 · εsqDDH and t ≈ t ′.

PROOF.We proceed in a sequence of four games G1, . . . ,G3. In the first game, we
consider an interaction of an adversary A with an oracle with proceeds exactly
like the oracle O((g1,gx

1,g
y
1,g

z
1),(g

xyz
3 )) described above, when it receives as input

a “real” bilinear DDH tuple. Then we gradually make modifications to this oracle,
until we end up with the last game where we have an oracle proceeding exactly like
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oracle O((g1,gx
1,g

y
1,g

z
1),(g

r
3)) receiving as input a “random” bilinear DDH tuple

with�x1 = (g1,gx
1,g

y
1,g

z
1) and�x3 = (gr

3) for random x,y,z,r $← Zp as input.
In the following let Oi denote the oracle that A interacts with in Game i. Thus,

to prove our claim we have to show that∣∣∣Pr[A O0 = 1]−Pr[A O3 = 1]
∣∣∣≤ 9 · εsqDDH.

Game 0. In this game, the oracle O0 proceeds exactly like the original oracle

O((g1,gx
1,g

y
1,g

z
1),(g

xyz
3 )).

Game 1. In this game we modify the internal representation of elements of G1
inside the oracle. Technically, we replace O0 with an oracle O1, which receives as
input a single vector

�x = (g3,gx
3,g

y
3,g

z
3,g

x2

3 ,gy2

3 ,gz2

3 ,gxy
3 ,gxz

3 ,g
yz
3 ,g

xyz
3 )

containing only elements of G3, where g3 is a random generator of G3 and x,y,z $←
Zp are random integers. O1 simulates O0 as follows.

• It initializes the list L1 with (g3,gx
3,g

y
3,g

z
3), and list L3 with (gxyz

3 ).

• When queried to apply a group operation or equality test of elements of L1 or
L3, it applies the queried operation to elements of G3. Note that G1 and G3
are cyclic groups of equal order (and thus isomorphic), and that the internal
representation of elements of G1 inside the black-box is hidden from the
algorithm (cf. Observation 1 in Section 6.7.2).

• When queried to apply the bilinear map to two elements of L1, it uses the
additional group elements gx2

,gy2
,gz2

,gxy
3 ,gxz

3 ,g
yz
3 from its input to run the

simulation procedure illustrated in Observation 3 from Section 6.7.2. The
result is appended to L3.

• Reveal-queries to elements of L3 are answered as before.

The change of the internal representation of group elements is hidden from the
adversary, since the group operations and the pairing evaluation can be simulated.
Thus, for algorithm A the oracle O1 is perfectly indistinguishable from O0, which
yields

Pr[A O1 = 1] = Pr[A O0 = 1].
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Game 2. We modify the input to O1. Oracle O2 proceeds exactly like oracle
prevgame, except that it receives as input a vector

�x = (g3,gx
3,g

y
3,g

z
3,g

x2

3 ,gy2

3 ,gz2

3 ,gxy
3 ,gxz

3 ,g
yz
3 ,g

r
3)

where g3 is a random generator of G3 and x,y,z,r $←Zp are random integers. Note
that the input vector is identical to the input vector from Game 1, except that the
last element is gr

3 for random r instead of gxyz
3 . By Lemma 6.1, we have∣∣∣Pr[A O2 = 1]−Pr[A O1 = 1]

∣∣∣≤ 9 · εsqDDH.

Game 3. In this game, we revert our modification introduced in the transition
from Game 0 to Game 1. That is, our Oracle O3 proceeds exactly like oracle
O((g1,gx

1,g
y
1,g

z
1),(g

r
3)).

With the same arguments as in Game 1, one can see that oracle O2 from the
Game 2 is a perfect simulator for Oracle O((g1,gx

1,g
y
1,g

z
1),(g

r
3)), and thus a perfect

simulator for O3, whose only essential difference is that it uses a different internal
representation of group elements. This implies

Pr[A O3 = 1] = Pr[A O2 = 1].

Summing up probabilities from Game 0 to Game 3, we obtain∣∣∣Pr[A O0 = 1]−Pr[A O3 = 1]
∣∣∣≤ 9 · εsqDDH.

�

6.7.4 Proof of Lemma 6.1

To complete the proof of our theorem on the semi-generic hardness of bilinear
decisional Diffie-Hellman, it remains to prove Lemma 6.1. To this end, we first
need to define the decisional Diffie-Hellman problem and show that the square
decisional Diffie-Hellman problem is a potentially easier variant of it.

Decisional Diffie-Hellman and its Relation to Square DDH. The decisional
Diffie-Hellman (DDH) problem is to compute b ∈ {0,1}, given

(g3,gx
3,g

y
3,g

rb
3 ),

where a,b,r0
$← Zp, r1 = xy, and b $←{0,1}.
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Definition 6.4

Let G3 be a group with random generator g3 of order p. Let x,y,r0
$← Zp be random

integers. We say that the decisional Diffie-Hellman problem is (εDDH, t)-hard, if∣∣Pr[A (p,g3,gx
3,g

y
3,g

xy
3 ) = 1]−Pr[A (p,g3,gx

3,g
y
3,g

r0
3 ) = 1]

∣∣≤ εDDH

for all algorithms A running in time t.

It is a simple fact that the square DDH problem reduces to the DDH problem,
thus square DDH is potentially easier than DDH. This is captured by the following
lemma. It is unknown whether both problems are equivalent.

Lemma 6.2

If solving the square DDH problem is (εsqDDH, t)-hard, then solving the DDH problem is
(εDDH, t ′)-hard with t ≈ t ′ and εDDH ≤ εsqDDH.

PROOF. We suppose there exists an algorithm A (εDDH, t ′)-solving the DDH prob-
lem, and show that this implies an algorithm B that (ε, t ′)-solves the square DDH
problem with t ′ ≈ t.

B receives as input a square DDH challenge (g3,gx
3,g

rb
3 ). It samples a random

integer α $← Zp, sets h := gx+α
3 and h′ := grb+xα

3 , and runs A (p,g3,gx
3,h,h

′). Al-
gorithm B returns whathever A returns.

Note that if grb
3 = gx2

3 , then we have h′ = gx2+xα
3 = gx(x+α)

3 . In this case, A
receives a correctly distributed “real” DDH tuple as input. If grb

3 is a uniformly
random group element, then h′ := grb+xα

3 is uniformly random, thus A receives a
correctly distributed “random” DDH tuple. Thus B can use A to solve its square
DDH challenge. �

Proof of Lemma 6.1. To prove Lemma 6.1, consider the following sequence of
vectors of group elements, where each vector Wi is identical to Wi−1 except for the
entries highlighted in boldface.
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W0 := (g3,gx
3,g

y
3,g

z
3,g

x2

3 ,gy2

3 ,gz2

3 ,gxy
3 ,gxz

3 ,g
yz
3 ,g

r
3),

W1 := (g3,gx
3,g

y
3,g

z
3,g

r1
3 ,gy2

3 ,gz2

3 ,gxy
3 ,gxz

3 ,g
yz
3 ,g

r
3),

W2 := (g3,gx
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First, note that W0 is identically distributed to V0, and W9 is distributed exactly like
V1. Moreover, observe that for all i ∈ {1,2,3,7,8,9} an algorithm distinguishing
Wi from Wi−1 in time t with advantage ε implies an algorithm solving the square
DDH problem in time t ′ ≈ t with advantage at least εsqDDH ≥ ε . Likewise, for all
i ∈ {4,5,6} an algorithm distinguishing Wi from Wi−1 in time t with advantage ε
implies an algorithm solving the DDH problem in time t ′ ≈ t with advantage at
least εDDH ≥ ε . Thus, in combination with Lemma 6.2 we have

ε ≤ 6 · εsqDDH+3 · εDDH =⇒ ε ≤ 9 · εsqDDH.
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